]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/sched.c
sched: Fix missing sched tunable recalculation on cpu add/remove
[mirror_ubuntu-eoan-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
ac086bc2 473 spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491
IM
527 /* runqueue lock: */
528 spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
537#ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1b9508f6
MG
592 u64 idle_stamp;
593 u64 avg_idle;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
674311d5
NP
648/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 650 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
48f24c4d
IM
655#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
657
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues))
660#define task_rq(p) cpu_rq(task_cpu(p))
661#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 662#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 663
aa9c4c0f 664inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
665{
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667}
668
bf5c91ba
IM
669/*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672#ifdef CONFIG_SCHED_DEBUG
673# define const_debug __read_mostly
674#else
675# define const_debug static const
676#endif
677
017730c1
IM
678/**
679 * runqueue_is_locked
e17b38bf 680 * @cpu: the processor in question.
017730c1
IM
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
89f19f04 688 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
c24b7c52 755 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
42994724 775 *ppos += cnt;
f00b45c1
PZ
776
777 return cnt;
778}
779
34f3a814
LZ
780static int sched_feat_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, sched_feat_show, NULL);
783}
784
828c0950 785static const struct file_operations sched_feat_fops = {
34f3a814
LZ
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
f00b45c1
PZ
791};
792
793static __init int sched_init_debug(void)
794{
f00b45c1
PZ
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799}
800late_initcall(sched_init_debug);
801
802#endif
803
804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 805
b82d9fdd
PZ
806/*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
2398f2c6
PZ
812/*
813 * ratelimit for updating the group shares.
55cd5340 814 * default: 0.25ms
2398f2c6 815 */
55cd5340 816unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 817unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 818
ffda12a1
PZ
819/*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824unsigned int sysctl_sched_shares_thresh = 4;
825
e9e9250b
PZ
826/*
827 * period over which we average the RT time consumption, measured
828 * in ms.
829 *
830 * default: 1s
831 */
832const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833
fa85ae24 834/*
9f0c1e56 835 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
836 * default: 1s
837 */
9f0c1e56 838unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 839
6892b75e
IM
840static __read_mostly int scheduler_running;
841
9f0c1e56
PZ
842/*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846int sysctl_sched_rt_runtime = 950000;
fa85ae24 847
d0b27fa7
PZ
848static inline u64 global_rt_period(void)
849{
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851}
852
853static inline u64 global_rt_runtime(void)
854{
e26873bb 855 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859}
fa85ae24 860
1da177e4 861#ifndef prepare_arch_switch
4866cde0
NP
862# define prepare_arch_switch(next) do { } while (0)
863#endif
864#ifndef finish_arch_switch
865# define finish_arch_switch(prev) do { } while (0)
866#endif
867
051a1d1a
DA
868static inline int task_current(struct rq *rq, struct task_struct *p)
869{
870 return rq->curr == p;
871}
872
4866cde0 873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 875{
051a1d1a 876 return task_current(rq, p);
4866cde0
NP
877}
878
70b97a7f 879static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
880{
881}
882
70b97a7f 883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 884{
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
4866cde0
NP
896 spin_unlock_irq(&rq->lock);
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 return p->oncpu;
904#else
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918#endif
919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq->lock);
921#else
922 spin_unlock(&rq->lock);
923#endif
924}
925
70b97a7f 926static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
927{
928#ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936#endif
937#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
1da177e4 939#endif
4866cde0
NP
940}
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 942
b29739f9
IM
943/*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
70b97a7f 947static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
948 __acquires(rq->lock)
949{
3a5c359a
AK
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
b29739f9 955 spin_unlock(&rq->lock);
b29739f9 956 }
b29739f9
IM
957}
958
1da177e4
LT
959/*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 961 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
962 * explicitly disabling preemption.
963 */
70b97a7f 964static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
965 __acquires(rq->lock)
966{
70b97a7f 967 struct rq *rq;
1da177e4 968
3a5c359a
AK
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
1da177e4 975 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 976 }
1da177e4
LT
977}
978
ad474cac
ON
979void task_rq_unlock_wait(struct task_struct *p)
980{
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq->lock);
985}
986
a9957449 987static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
988 __releases(rq->lock)
989{
990 spin_unlock(&rq->lock);
991}
992
70b97a7f 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
994 __releases(rq->lock)
995{
996 spin_unlock_irqrestore(&rq->lock, *flags);
997}
998
1da177e4 999/*
cc2a73b5 1000 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1001 */
a9957449 1002static struct rq *this_rq_lock(void)
1da177e4
LT
1003 __acquires(rq->lock)
1004{
70b97a7f 1005 struct rq *rq;
1da177e4
LT
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 spin_lock(&rq->lock);
1010
1011 return rq;
1012}
1013
8f4d37ec
PZ
1014#ifdef CONFIG_SCHED_HRTICK
1015/*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
8f4d37ec
PZ
1025
1026/*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031static inline int hrtick_enabled(struct rq *rq)
1032{
1033 if (!sched_feat(HRTICK))
1034 return 0;
ba42059f 1035 if (!cpu_active(cpu_of(rq)))
b328ca18 1036 return 0;
8f4d37ec
PZ
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
8f4d37ec
PZ
1040static void hrtick_clear(struct rq *rq)
1041{
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044}
1045
8f4d37ec
PZ
1046/*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051{
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 spin_lock(&rq->lock);
3e51f33f 1057 update_rq_clock(rq);
8f4d37ec
PZ
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062}
1063
95e904c7 1064#ifdef CONFIG_SMP
31656519
PZ
1065/*
1066 * called from hardirq (IPI) context
1067 */
1068static void __hrtick_start(void *arg)
b328ca18 1069{
31656519 1070 struct rq *rq = arg;
b328ca18 1071
31656519
PZ
1072 spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 spin_unlock(&rq->lock);
b328ca18
PZ
1076}
1077
31656519
PZ
1078/*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1084{
31656519
PZ
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1087
cc584b21 1088 hrtimer_set_expires(timer, time);
31656519
PZ
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
6e275637 1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1094 rq->hrtick_csd_pending = 1;
1095 }
b328ca18
PZ
1096}
1097
1098static int
1099hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100{
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
31656519 1110 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115}
1116
fa748203 1117static __init void init_hrtick(void)
b328ca18
PZ
1118{
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120}
31656519
PZ
1121#else
1122/*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127static void hrtick_start(struct rq *rq, u64 delay)
1128{
7f1e2ca9 1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1130 HRTIMER_MODE_REL_PINNED, 0);
31656519 1131}
b328ca18 1132
006c75f1 1133static inline void init_hrtick(void)
8f4d37ec 1134{
8f4d37ec 1135}
31656519 1136#endif /* CONFIG_SMP */
8f4d37ec 1137
31656519 1138static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1139{
31656519
PZ
1140#ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
8f4d37ec 1142
31656519
PZ
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146#endif
8f4d37ec 1147
31656519
PZ
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
8f4d37ec 1150}
006c75f1 1151#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1152static inline void hrtick_clear(struct rq *rq)
1153{
1154}
1155
8f4d37ec
PZ
1156static inline void init_rq_hrtick(struct rq *rq)
1157{
1158}
1159
b328ca18
PZ
1160static inline void init_hrtick(void)
1161{
1162}
006c75f1 1163#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1164
c24d20db
IM
1165/*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172#ifdef CONFIG_SMP
1173
1174#ifndef tsk_is_polling
1175#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176#endif
1177
31656519 1178static void resched_task(struct task_struct *p)
c24d20db
IM
1179{
1180 int cpu;
1181
1182 assert_spin_locked(&task_rq(p)->lock);
1183
5ed0cec0 1184 if (test_tsk_need_resched(p))
c24d20db
IM
1185 return;
1186
5ed0cec0 1187 set_tsk_need_resched(p);
c24d20db
IM
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197}
1198
1199static void resched_cpu(int cpu)
1200{
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
1204 if (!spin_trylock_irqsave(&rq->lock, flags))
1205 return;
1206 resched_task(cpu_curr(cpu));
1207 spin_unlock_irqrestore(&rq->lock, flags);
1208}
06d8308c
TG
1209
1210#ifdef CONFIG_NO_HZ
1211/*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221void wake_up_idle_cpu(int cpu)
1222{
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
5ed0cec0 1243 set_tsk_need_resched(rq->idle);
06d8308c
TG
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249}
6d6bc0ad 1250#endif /* CONFIG_NO_HZ */
06d8308c 1251
e9e9250b
PZ
1252static u64 sched_avg_period(void)
1253{
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255}
1256
1257static void sched_avg_update(struct rq *rq)
1258{
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265}
1266
1267static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268{
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271}
1272
6d6bc0ad 1273#else /* !CONFIG_SMP */
31656519 1274static void resched_task(struct task_struct *p)
c24d20db
IM
1275{
1276 assert_spin_locked(&task_rq(p)->lock);
31656519 1277 set_tsk_need_resched(p);
c24d20db 1278}
e9e9250b
PZ
1279
1280static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281{
1282}
6d6bc0ad 1283#endif /* CONFIG_SMP */
c24d20db 1284
45bf76df
IM
1285#if BITS_PER_LONG == 32
1286# define WMULT_CONST (~0UL)
1287#else
1288# define WMULT_CONST (1UL << 32)
1289#endif
1290
1291#define WMULT_SHIFT 32
1292
194081eb
IM
1293/*
1294 * Shift right and round:
1295 */
cf2ab469 1296#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1297
a7be37ac
PZ
1298/*
1299 * delta *= weight / lw
1300 */
cb1c4fc9 1301static unsigned long
45bf76df
IM
1302calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1304{
1305 u64 tmp;
1306
7a232e03
LJ
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1313 }
45bf76df
IM
1314
1315 tmp = (u64)delta_exec * weight;
1316 /*
1317 * Check whether we'd overflow the 64-bit multiplication:
1318 */
194081eb 1319 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1321 WMULT_SHIFT/2);
1322 else
cf2ab469 1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1324
ecf691da 1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1329{
1330 lw->weight += inc;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1335{
1336 lw->weight -= dec;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
2dd73a4f
PW
1340/*
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1347 */
1348
cce7ade8
PZ
1349#define WEIGHT_IDLEPRIO 3
1350#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1351
1352/*
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1357 *
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
dd41f596
IM
1363 */
1364static const int prio_to_weight[40] = {
254753dc
IM
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1373};
1374
5714d2de
IM
1375/*
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 *
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1381 */
dd41f596 1382static const u32 prio_to_wmult[40] = {
254753dc
IM
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1391};
2dd73a4f 1392
dd41f596
IM
1393static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395/*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404};
1405
e1d1484f
PW
1406#ifdef CONFIG_SMP
1407static unsigned long
1408balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413static int
1414iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
e1d1484f 1417#endif
dd41f596 1418
ef12fefa
BR
1419/* Time spent by the tasks of the cpu accounting group executing in ... */
1420enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1423
1424 CPUACCT_STAT_NSTATS,
1425};
1426
d842de87
SV
1427#ifdef CONFIG_CGROUP_CPUACCT
1428static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1429static void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1431#else
1432static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1433static inline void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1435#endif
1436
18d95a28
PZ
1437static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1438{
1439 update_load_add(&rq->load, load);
1440}
1441
1442static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1443{
1444 update_load_sub(&rq->load, load);
1445}
1446
7940ca36 1447#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1448typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1449
1450/*
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1453 */
eb755805 1454static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1455{
1456 struct task_group *parent, *child;
eb755805 1457 int ret;
c09595f6
PZ
1458
1459 rcu_read_lock();
1460 parent = &root_task_group;
1461down:
eb755805
PZ
1462 ret = (*down)(parent, data);
1463 if (ret)
1464 goto out_unlock;
c09595f6
PZ
1465 list_for_each_entry_rcu(child, &parent->children, siblings) {
1466 parent = child;
1467 goto down;
1468
1469up:
1470 continue;
1471 }
eb755805
PZ
1472 ret = (*up)(parent, data);
1473 if (ret)
1474 goto out_unlock;
c09595f6
PZ
1475
1476 child = parent;
1477 parent = parent->parent;
1478 if (parent)
1479 goto up;
eb755805 1480out_unlock:
c09595f6 1481 rcu_read_unlock();
eb755805
PZ
1482
1483 return ret;
c09595f6
PZ
1484}
1485
eb755805
PZ
1486static int tg_nop(struct task_group *tg, void *data)
1487{
1488 return 0;
c09595f6 1489}
eb755805
PZ
1490#endif
1491
1492#ifdef CONFIG_SMP
f5f08f39
PZ
1493/* Used instead of source_load when we know the type == 0 */
1494static unsigned long weighted_cpuload(const int cpu)
1495{
1496 return cpu_rq(cpu)->load.weight;
1497}
1498
1499/*
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1502 *
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1505 */
1506static unsigned long source_load(int cpu, int type)
1507{
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return min(rq->cpu_load[type-1], total);
1515}
1516
1517/*
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 */
1521static unsigned long target_load(int cpu, int type)
1522{
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long total = weighted_cpuload(cpu);
1525
1526 if (type == 0 || !sched_feat(LB_BIAS))
1527 return total;
1528
1529 return max(rq->cpu_load[type-1], total);
1530}
1531
ae154be1
PZ
1532static struct sched_group *group_of(int cpu)
1533{
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1535
1536 if (!sd)
1537 return NULL;
1538
1539 return sd->groups;
1540}
1541
1542static unsigned long power_of(int cpu)
1543{
1544 struct sched_group *group = group_of(cpu);
1545
1546 if (!group)
1547 return SCHED_LOAD_SCALE;
1548
1549 return group->cpu_power;
1550}
1551
eb755805
PZ
1552static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1553
1554static unsigned long cpu_avg_load_per_task(int cpu)
1555{
1556 struct rq *rq = cpu_rq(cpu);
af6d596f 1557 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1558
4cd42620
SR
1559 if (nr_running)
1560 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1561 else
1562 rq->avg_load_per_task = 0;
eb755805
PZ
1563
1564 return rq->avg_load_per_task;
1565}
1566
1567#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1568
4a6cc4bd 1569static __read_mostly unsigned long *update_shares_data;
34d76c41 1570
c09595f6
PZ
1571static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572
1573/*
1574 * Calculate and set the cpu's group shares.
1575 */
34d76c41
PZ
1576static void update_group_shares_cpu(struct task_group *tg, int cpu,
1577 unsigned long sd_shares,
1578 unsigned long sd_rq_weight,
4a6cc4bd 1579 unsigned long *usd_rq_weight)
18d95a28 1580{
34d76c41 1581 unsigned long shares, rq_weight;
a5004278 1582 int boost = 0;
c09595f6 1583
4a6cc4bd 1584 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1585 if (!rq_weight) {
1586 boost = 1;
1587 rq_weight = NICE_0_LOAD;
1588 }
c8cba857 1589
c09595f6 1590 /*
a8af7246
PZ
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
c09595f6 1594 */
ec4e0e2f 1595 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1596 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1597
ffda12a1
PZ
1598 if (abs(shares - tg->se[cpu]->load.weight) >
1599 sysctl_sched_shares_thresh) {
1600 struct rq *rq = cpu_rq(cpu);
1601 unsigned long flags;
c09595f6 1602
ffda12a1 1603 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1606 __set_se_shares(tg->se[cpu], shares);
1607 spin_unlock_irqrestore(&rq->lock, flags);
1608 }
18d95a28 1609}
c09595f6
PZ
1610
1611/*
c8cba857
PZ
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
c09595f6 1615 */
eb755805 1616static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1617{
cd8ad40d 1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1619 unsigned long *usd_rq_weight;
eb755805 1620 struct sched_domain *sd = data;
34d76c41 1621 unsigned long flags;
c8cba857 1622 int i;
c09595f6 1623
34d76c41
PZ
1624 if (!tg->se[0])
1625 return 0;
1626
1627 local_irq_save(flags);
4a6cc4bd 1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1629
758b2cdc 1630 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1631 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1632 usd_rq_weight[i] = weight;
34d76c41 1633
cd8ad40d 1634 rq_weight += weight;
ec4e0e2f
KC
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
ec4e0e2f
KC
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
cd8ad40d 1643 sum_weight += weight;
c8cba857 1644 shares += tg->cfs_rq[i]->shares;
c09595f6 1645 }
c09595f6 1646
cd8ad40d
PZ
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
c8cba857
PZ
1650 if ((!shares && rq_weight) || shares > tg->shares)
1651 shares = tg->shares;
1652
1653 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1654 shares = tg->shares;
c09595f6 1655
758b2cdc 1656 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1658
1659 local_irq_restore(flags);
eb755805
PZ
1660
1661 return 0;
c09595f6
PZ
1662}
1663
1664/*
c8cba857
PZ
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
c09595f6 1668 */
eb755805 1669static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1670{
c8cba857 1671 unsigned long load;
eb755805 1672 long cpu = (long)data;
c09595f6 1673
c8cba857
PZ
1674 if (!tg->parent) {
1675 load = cpu_rq(cpu)->load.weight;
1676 } else {
1677 load = tg->parent->cfs_rq[cpu]->h_load;
1678 load *= tg->cfs_rq[cpu]->shares;
1679 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 }
c09595f6 1681
c8cba857 1682 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1683
eb755805 1684 return 0;
c09595f6
PZ
1685}
1686
c8cba857 1687static void update_shares(struct sched_domain *sd)
4d8d595d 1688{
e7097159
PZ
1689 s64 elapsed;
1690 u64 now;
1691
1692 if (root_task_group_empty())
1693 return;
1694
1695 now = cpu_clock(raw_smp_processor_id());
1696 elapsed = now - sd->last_update;
2398f2c6
PZ
1697
1698 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1699 sd->last_update = now;
eb755805 1700 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1701 }
4d8d595d
PZ
1702}
1703
3e5459b4
PZ
1704static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705{
e7097159
PZ
1706 if (root_task_group_empty())
1707 return;
1708
3e5459b4
PZ
1709 spin_unlock(&rq->lock);
1710 update_shares(sd);
1711 spin_lock(&rq->lock);
1712}
1713
eb755805 1714static void update_h_load(long cpu)
c09595f6 1715{
e7097159
PZ
1716 if (root_task_group_empty())
1717 return;
1718
eb755805 1719 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1720}
1721
c09595f6
PZ
1722#else
1723
c8cba857 1724static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1725{
1726}
1727
3e5459b4
PZ
1728static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729{
1730}
1731
18d95a28
PZ
1732#endif
1733
8f45e2b5
GH
1734#ifdef CONFIG_PREEMPT
1735
b78bb868
PZ
1736static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737
70574a99 1738/*
8f45e2b5
GH
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
70574a99 1745 */
8f45e2b5
GH
1746static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 __releases(this_rq->lock)
1748 __acquires(busiest->lock)
1749 __acquires(this_rq->lock)
1750{
1751 spin_unlock(&this_rq->lock);
1752 double_rq_lock(this_rq, busiest);
1753
1754 return 1;
1755}
1756
1757#else
1758/*
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1764 */
1765static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1766 __releases(this_rq->lock)
1767 __acquires(busiest->lock)
1768 __acquires(this_rq->lock)
1769{
1770 int ret = 0;
1771
70574a99
AD
1772 if (unlikely(!spin_trylock(&busiest->lock))) {
1773 if (busiest < this_rq) {
1774 spin_unlock(&this_rq->lock);
1775 spin_lock(&busiest->lock);
1776 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1777 ret = 1;
1778 } else
1779 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1780 }
1781 return ret;
1782}
1783
8f45e2b5
GH
1784#endif /* CONFIG_PREEMPT */
1785
1786/*
1787 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1788 */
1789static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1790{
1791 if (unlikely(!irqs_disabled())) {
1792 /* printk() doesn't work good under rq->lock */
1793 spin_unlock(&this_rq->lock);
1794 BUG_ON(1);
1795 }
1796
1797 return _double_lock_balance(this_rq, busiest);
1798}
1799
70574a99
AD
1800static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1801 __releases(busiest->lock)
1802{
1803 spin_unlock(&busiest->lock);
1804 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1805}
18d95a28
PZ
1806#endif
1807
30432094 1808#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1809static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1810{
30432094 1811#ifdef CONFIG_SMP
34e83e85
IM
1812 cfs_rq->shares = shares;
1813#endif
1814}
30432094 1815#endif
e7693a36 1816
dce48a84 1817static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1818static void update_sysctl(void);
dce48a84 1819
cd29fe6f
PZ
1820static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1821{
1822 set_task_rq(p, cpu);
1823#ifdef CONFIG_SMP
1824 /*
1825 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1826 * successfuly executed on another CPU. We must ensure that updates of
1827 * per-task data have been completed by this moment.
1828 */
1829 smp_wmb();
1830 task_thread_info(p)->cpu = cpu;
1831#endif
1832}
1833
dd41f596 1834#include "sched_stats.h"
dd41f596 1835#include "sched_idletask.c"
5522d5d5
IM
1836#include "sched_fair.c"
1837#include "sched_rt.c"
dd41f596
IM
1838#ifdef CONFIG_SCHED_DEBUG
1839# include "sched_debug.c"
1840#endif
1841
1842#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1843#define for_each_class(class) \
1844 for (class = sched_class_highest; class; class = class->next)
dd41f596 1845
c09595f6 1846static void inc_nr_running(struct rq *rq)
9c217245
IM
1847{
1848 rq->nr_running++;
9c217245
IM
1849}
1850
c09595f6 1851static void dec_nr_running(struct rq *rq)
9c217245
IM
1852{
1853 rq->nr_running--;
9c217245
IM
1854}
1855
45bf76df
IM
1856static void set_load_weight(struct task_struct *p)
1857{
1858 if (task_has_rt_policy(p)) {
dd41f596
IM
1859 p->se.load.weight = prio_to_weight[0] * 2;
1860 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1861 return;
1862 }
45bf76df 1863
dd41f596
IM
1864 /*
1865 * SCHED_IDLE tasks get minimal weight:
1866 */
1867 if (p->policy == SCHED_IDLE) {
1868 p->se.load.weight = WEIGHT_IDLEPRIO;
1869 p->se.load.inv_weight = WMULT_IDLEPRIO;
1870 return;
1871 }
71f8bd46 1872
dd41f596
IM
1873 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1874 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1875}
1876
2087a1ad
GH
1877static void update_avg(u64 *avg, u64 sample)
1878{
1879 s64 diff = sample - *avg;
1880 *avg += diff >> 3;
1881}
1882
8159f87e 1883static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1884{
831451ac
PZ
1885 if (wakeup)
1886 p->se.start_runtime = p->se.sum_exec_runtime;
1887
dd41f596 1888 sched_info_queued(p);
fd390f6a 1889 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1890 p->se.on_rq = 1;
71f8bd46
IM
1891}
1892
69be72c1 1893static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1894{
831451ac
PZ
1895 if (sleep) {
1896 if (p->se.last_wakeup) {
1897 update_avg(&p->se.avg_overlap,
1898 p->se.sum_exec_runtime - p->se.last_wakeup);
1899 p->se.last_wakeup = 0;
1900 } else {
1901 update_avg(&p->se.avg_wakeup,
1902 sysctl_sched_wakeup_granularity);
1903 }
2087a1ad
GH
1904 }
1905
46ac22ba 1906 sched_info_dequeued(p);
f02231e5 1907 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1908 p->se.on_rq = 0;
71f8bd46
IM
1909}
1910
14531189 1911/*
dd41f596 1912 * __normal_prio - return the priority that is based on the static prio
14531189 1913 */
14531189
IM
1914static inline int __normal_prio(struct task_struct *p)
1915{
dd41f596 1916 return p->static_prio;
14531189
IM
1917}
1918
b29739f9
IM
1919/*
1920 * Calculate the expected normal priority: i.e. priority
1921 * without taking RT-inheritance into account. Might be
1922 * boosted by interactivity modifiers. Changes upon fork,
1923 * setprio syscalls, and whenever the interactivity
1924 * estimator recalculates.
1925 */
36c8b586 1926static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1927{
1928 int prio;
1929
e05606d3 1930 if (task_has_rt_policy(p))
b29739f9
IM
1931 prio = MAX_RT_PRIO-1 - p->rt_priority;
1932 else
1933 prio = __normal_prio(p);
1934 return prio;
1935}
1936
1937/*
1938 * Calculate the current priority, i.e. the priority
1939 * taken into account by the scheduler. This value might
1940 * be boosted by RT tasks, or might be boosted by
1941 * interactivity modifiers. Will be RT if the task got
1942 * RT-boosted. If not then it returns p->normal_prio.
1943 */
36c8b586 1944static int effective_prio(struct task_struct *p)
b29739f9
IM
1945{
1946 p->normal_prio = normal_prio(p);
1947 /*
1948 * If we are RT tasks or we were boosted to RT priority,
1949 * keep the priority unchanged. Otherwise, update priority
1950 * to the normal priority:
1951 */
1952 if (!rt_prio(p->prio))
1953 return p->normal_prio;
1954 return p->prio;
1955}
1956
1da177e4 1957/*
dd41f596 1958 * activate_task - move a task to the runqueue.
1da177e4 1959 */
dd41f596 1960static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1961{
d9514f6c 1962 if (task_contributes_to_load(p))
dd41f596 1963 rq->nr_uninterruptible--;
1da177e4 1964
8159f87e 1965 enqueue_task(rq, p, wakeup);
c09595f6 1966 inc_nr_running(rq);
1da177e4
LT
1967}
1968
1da177e4
LT
1969/*
1970 * deactivate_task - remove a task from the runqueue.
1971 */
2e1cb74a 1972static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1973{
d9514f6c 1974 if (task_contributes_to_load(p))
dd41f596
IM
1975 rq->nr_uninterruptible++;
1976
69be72c1 1977 dequeue_task(rq, p, sleep);
c09595f6 1978 dec_nr_running(rq);
1da177e4
LT
1979}
1980
1da177e4
LT
1981/**
1982 * task_curr - is this task currently executing on a CPU?
1983 * @p: the task in question.
1984 */
36c8b586 1985inline int task_curr(const struct task_struct *p)
1da177e4
LT
1986{
1987 return cpu_curr(task_cpu(p)) == p;
1988}
1989
cb469845
SR
1990static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1991 const struct sched_class *prev_class,
1992 int oldprio, int running)
1993{
1994 if (prev_class != p->sched_class) {
1995 if (prev_class->switched_from)
1996 prev_class->switched_from(rq, p, running);
1997 p->sched_class->switched_to(rq, p, running);
1998 } else
1999 p->sched_class->prio_changed(rq, p, oldprio, running);
2000}
2001
b84ff7d6
MG
2002/**
2003 * kthread_bind - bind a just-created kthread to a cpu.
968c8645 2004 * @p: thread created by kthread_create().
b84ff7d6
MG
2005 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2006 *
2007 * Description: This function is equivalent to set_cpus_allowed(),
2008 * except that @cpu doesn't need to be online, and the thread must be
2009 * stopped (i.e., just returned from kthread_create()).
2010 *
2011 * Function lives here instead of kthread.c because it messes with
2012 * scheduler internals which require locking.
2013 */
2014void kthread_bind(struct task_struct *p, unsigned int cpu)
2015{
2016 struct rq *rq = cpu_rq(cpu);
2017 unsigned long flags;
2018
2019 /* Must have done schedule() in kthread() before we set_task_cpu */
2020 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2021 WARN_ON(1);
2022 return;
2023 }
2024
2025 spin_lock_irqsave(&rq->lock, flags);
055a0086 2026 update_rq_clock(rq);
b84ff7d6
MG
2027 set_task_cpu(p, cpu);
2028 p->cpus_allowed = cpumask_of_cpu(cpu);
2029 p->rt.nr_cpus_allowed = 1;
2030 p->flags |= PF_THREAD_BOUND;
2031 spin_unlock_irqrestore(&rq->lock, flags);
2032}
2033EXPORT_SYMBOL(kthread_bind);
2034
1da177e4 2035#ifdef CONFIG_SMP
cc367732
IM
2036/*
2037 * Is this task likely cache-hot:
2038 */
e7693a36 2039static int
cc367732
IM
2040task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2041{
2042 s64 delta;
2043
f540a608
IM
2044 /*
2045 * Buddy candidates are cache hot:
2046 */
f685ceac 2047 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2048 (&p->se == cfs_rq_of(&p->se)->next ||
2049 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2050 return 1;
2051
cc367732
IM
2052 if (p->sched_class != &fair_sched_class)
2053 return 0;
2054
6bc1665b
IM
2055 if (sysctl_sched_migration_cost == -1)
2056 return 1;
2057 if (sysctl_sched_migration_cost == 0)
2058 return 0;
2059
cc367732
IM
2060 delta = now - p->se.exec_start;
2061
2062 return delta < (s64)sysctl_sched_migration_cost;
2063}
2064
2065
dd41f596 2066void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2067{
dd41f596 2068 int old_cpu = task_cpu(p);
5afcdab7 2069 struct rq *old_rq = cpu_rq(old_cpu);
2830cf8c
SV
2070 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2071 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
6cfb0d5d 2072
de1d7286 2073 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2074
cc367732 2075 if (old_cpu != new_cpu) {
6c594c21
IM
2076 p->se.nr_migrations++;
2077#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2078 if (task_hot(p, old_rq->clock, NULL))
2079 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2080#endif
cdd6c482 2081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2082 1, 1, NULL, 0);
6c594c21 2083 }
2830cf8c
SV
2084 p->se.vruntime -= old_cfsrq->min_vruntime -
2085 new_cfsrq->min_vruntime;
dd41f596
IM
2086
2087 __set_task_cpu(p, new_cpu);
c65cc870
IM
2088}
2089
70b97a7f 2090struct migration_req {
1da177e4 2091 struct list_head list;
1da177e4 2092
36c8b586 2093 struct task_struct *task;
1da177e4
LT
2094 int dest_cpu;
2095
1da177e4 2096 struct completion done;
70b97a7f 2097};
1da177e4
LT
2098
2099/*
2100 * The task's runqueue lock must be held.
2101 * Returns true if you have to wait for migration thread.
2102 */
36c8b586 2103static int
70b97a7f 2104migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2105{
70b97a7f 2106 struct rq *rq = task_rq(p);
1da177e4
LT
2107
2108 /*
2109 * If the task is not on a runqueue (and not running), then
2110 * it is sufficient to simply update the task's cpu field.
2111 */
dd41f596 2112 if (!p->se.on_rq && !task_running(rq, p)) {
055a0086 2113 update_rq_clock(rq);
1da177e4
LT
2114 set_task_cpu(p, dest_cpu);
2115 return 0;
2116 }
2117
2118 init_completion(&req->done);
1da177e4
LT
2119 req->task = p;
2120 req->dest_cpu = dest_cpu;
2121 list_add(&req->list, &rq->migration_queue);
48f24c4d 2122
1da177e4
LT
2123 return 1;
2124}
2125
a26b89f0
MM
2126/*
2127 * wait_task_context_switch - wait for a thread to complete at least one
2128 * context switch.
2129 *
2130 * @p must not be current.
2131 */
2132void wait_task_context_switch(struct task_struct *p)
2133{
2134 unsigned long nvcsw, nivcsw, flags;
2135 int running;
2136 struct rq *rq;
2137
2138 nvcsw = p->nvcsw;
2139 nivcsw = p->nivcsw;
2140 for (;;) {
2141 /*
2142 * The runqueue is assigned before the actual context
2143 * switch. We need to take the runqueue lock.
2144 *
2145 * We could check initially without the lock but it is
2146 * very likely that we need to take the lock in every
2147 * iteration.
2148 */
2149 rq = task_rq_lock(p, &flags);
2150 running = task_running(rq, p);
2151 task_rq_unlock(rq, &flags);
2152
2153 if (likely(!running))
2154 break;
2155 /*
2156 * The switch count is incremented before the actual
2157 * context switch. We thus wait for two switches to be
2158 * sure at least one completed.
2159 */
2160 if ((p->nvcsw - nvcsw) > 1)
2161 break;
2162 if ((p->nivcsw - nivcsw) > 1)
2163 break;
2164
2165 cpu_relax();
2166 }
2167}
2168
1da177e4
LT
2169/*
2170 * wait_task_inactive - wait for a thread to unschedule.
2171 *
85ba2d86
RM
2172 * If @match_state is nonzero, it's the @p->state value just checked and
2173 * not expected to change. If it changes, i.e. @p might have woken up,
2174 * then return zero. When we succeed in waiting for @p to be off its CPU,
2175 * we return a positive number (its total switch count). If a second call
2176 * a short while later returns the same number, the caller can be sure that
2177 * @p has remained unscheduled the whole time.
2178 *
1da177e4
LT
2179 * The caller must ensure that the task *will* unschedule sometime soon,
2180 * else this function might spin for a *long* time. This function can't
2181 * be called with interrupts off, or it may introduce deadlock with
2182 * smp_call_function() if an IPI is sent by the same process we are
2183 * waiting to become inactive.
2184 */
85ba2d86 2185unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2186{
2187 unsigned long flags;
dd41f596 2188 int running, on_rq;
85ba2d86 2189 unsigned long ncsw;
70b97a7f 2190 struct rq *rq;
1da177e4 2191
3a5c359a
AK
2192 for (;;) {
2193 /*
2194 * We do the initial early heuristics without holding
2195 * any task-queue locks at all. We'll only try to get
2196 * the runqueue lock when things look like they will
2197 * work out!
2198 */
2199 rq = task_rq(p);
fa490cfd 2200
3a5c359a
AK
2201 /*
2202 * If the task is actively running on another CPU
2203 * still, just relax and busy-wait without holding
2204 * any locks.
2205 *
2206 * NOTE! Since we don't hold any locks, it's not
2207 * even sure that "rq" stays as the right runqueue!
2208 * But we don't care, since "task_running()" will
2209 * return false if the runqueue has changed and p
2210 * is actually now running somewhere else!
2211 */
85ba2d86
RM
2212 while (task_running(rq, p)) {
2213 if (match_state && unlikely(p->state != match_state))
2214 return 0;
3a5c359a 2215 cpu_relax();
85ba2d86 2216 }
fa490cfd 2217
3a5c359a
AK
2218 /*
2219 * Ok, time to look more closely! We need the rq
2220 * lock now, to be *sure*. If we're wrong, we'll
2221 * just go back and repeat.
2222 */
2223 rq = task_rq_lock(p, &flags);
0a16b607 2224 trace_sched_wait_task(rq, p);
3a5c359a
AK
2225 running = task_running(rq, p);
2226 on_rq = p->se.on_rq;
85ba2d86 2227 ncsw = 0;
f31e11d8 2228 if (!match_state || p->state == match_state)
93dcf55f 2229 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2230 task_rq_unlock(rq, &flags);
fa490cfd 2231
85ba2d86
RM
2232 /*
2233 * If it changed from the expected state, bail out now.
2234 */
2235 if (unlikely(!ncsw))
2236 break;
2237
3a5c359a
AK
2238 /*
2239 * Was it really running after all now that we
2240 * checked with the proper locks actually held?
2241 *
2242 * Oops. Go back and try again..
2243 */
2244 if (unlikely(running)) {
2245 cpu_relax();
2246 continue;
2247 }
fa490cfd 2248
3a5c359a
AK
2249 /*
2250 * It's not enough that it's not actively running,
2251 * it must be off the runqueue _entirely_, and not
2252 * preempted!
2253 *
80dd99b3 2254 * So if it was still runnable (but just not actively
3a5c359a
AK
2255 * running right now), it's preempted, and we should
2256 * yield - it could be a while.
2257 */
2258 if (unlikely(on_rq)) {
2259 schedule_timeout_uninterruptible(1);
2260 continue;
2261 }
fa490cfd 2262
3a5c359a
AK
2263 /*
2264 * Ahh, all good. It wasn't running, and it wasn't
2265 * runnable, which means that it will never become
2266 * running in the future either. We're all done!
2267 */
2268 break;
2269 }
85ba2d86
RM
2270
2271 return ncsw;
1da177e4
LT
2272}
2273
2274/***
2275 * kick_process - kick a running thread to enter/exit the kernel
2276 * @p: the to-be-kicked thread
2277 *
2278 * Cause a process which is running on another CPU to enter
2279 * kernel-mode, without any delay. (to get signals handled.)
2280 *
2281 * NOTE: this function doesnt have to take the runqueue lock,
2282 * because all it wants to ensure is that the remote task enters
2283 * the kernel. If the IPI races and the task has been migrated
2284 * to another CPU then no harm is done and the purpose has been
2285 * achieved as well.
2286 */
36c8b586 2287void kick_process(struct task_struct *p)
1da177e4
LT
2288{
2289 int cpu;
2290
2291 preempt_disable();
2292 cpu = task_cpu(p);
2293 if ((cpu != smp_processor_id()) && task_curr(p))
2294 smp_send_reschedule(cpu);
2295 preempt_enable();
2296}
b43e3521 2297EXPORT_SYMBOL_GPL(kick_process);
476d139c 2298#endif /* CONFIG_SMP */
1da177e4 2299
0793a61d
TG
2300/**
2301 * task_oncpu_function_call - call a function on the cpu on which a task runs
2302 * @p: the task to evaluate
2303 * @func: the function to be called
2304 * @info: the function call argument
2305 *
2306 * Calls the function @func when the task is currently running. This might
2307 * be on the current CPU, which just calls the function directly
2308 */
2309void task_oncpu_function_call(struct task_struct *p,
2310 void (*func) (void *info), void *info)
2311{
2312 int cpu;
2313
2314 preempt_disable();
2315 cpu = task_cpu(p);
2316 if (task_curr(p))
2317 smp_call_function_single(cpu, func, info, 1);
2318 preempt_enable();
2319}
2320
970b13ba
PZ
2321#ifdef CONFIG_SMP
2322static inline
2323int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2324{
2325 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2326}
2327#endif
2328
1da177e4
LT
2329/***
2330 * try_to_wake_up - wake up a thread
2331 * @p: the to-be-woken-up thread
2332 * @state: the mask of task states that can be woken
2333 * @sync: do a synchronous wakeup?
2334 *
2335 * Put it on the run-queue if it's not already there. The "current"
2336 * thread is always on the run-queue (except when the actual
2337 * re-schedule is in progress), and as such you're allowed to do
2338 * the simpler "current->state = TASK_RUNNING" to mark yourself
2339 * runnable without the overhead of this.
2340 *
2341 * returns failure only if the task is already active.
2342 */
7d478721
PZ
2343static int try_to_wake_up(struct task_struct *p, unsigned int state,
2344 int wake_flags)
1da177e4 2345{
cc367732 2346 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2347 unsigned long flags;
f5dc3753 2348 struct rq *rq, *orig_rq;
1da177e4 2349
b85d0667 2350 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2351 wake_flags &= ~WF_SYNC;
2398f2c6 2352
e9c84311 2353 this_cpu = get_cpu();
2398f2c6 2354
04e2f174 2355 smp_wmb();
f5dc3753 2356 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2357 update_rq_clock(rq);
e9c84311 2358 if (!(p->state & state))
1da177e4
LT
2359 goto out;
2360
dd41f596 2361 if (p->se.on_rq)
1da177e4
LT
2362 goto out_running;
2363
2364 cpu = task_cpu(p);
cc367732 2365 orig_cpu = cpu;
1da177e4
LT
2366
2367#ifdef CONFIG_SMP
2368 if (unlikely(task_running(rq, p)))
2369 goto out_activate;
2370
e9c84311
PZ
2371 /*
2372 * In order to handle concurrent wakeups and release the rq->lock
2373 * we put the task in TASK_WAKING state.
eb24073b
IM
2374 *
2375 * First fix up the nr_uninterruptible count:
e9c84311 2376 */
eb24073b
IM
2377 if (task_contributes_to_load(p))
2378 rq->nr_uninterruptible--;
e9c84311 2379 p->state = TASK_WAKING;
ab19cb23 2380 __task_rq_unlock(rq);
e9c84311 2381
970b13ba 2382 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2383 if (cpu != orig_cpu)
5d2f5a61 2384 set_task_cpu(p, cpu);
ab19cb23
PZ
2385
2386 rq = __task_rq_lock(p);
2387 update_rq_clock(rq);
f5dc3753 2388
e9c84311
PZ
2389 WARN_ON(p->state != TASK_WAKING);
2390 cpu = task_cpu(p);
1da177e4 2391
e7693a36
GH
2392#ifdef CONFIG_SCHEDSTATS
2393 schedstat_inc(rq, ttwu_count);
2394 if (cpu == this_cpu)
2395 schedstat_inc(rq, ttwu_local);
2396 else {
2397 struct sched_domain *sd;
2398 for_each_domain(this_cpu, sd) {
758b2cdc 2399 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2400 schedstat_inc(sd, ttwu_wake_remote);
2401 break;
2402 }
2403 }
2404 }
6d6bc0ad 2405#endif /* CONFIG_SCHEDSTATS */
e7693a36 2406
1da177e4
LT
2407out_activate:
2408#endif /* CONFIG_SMP */
cc367732 2409 schedstat_inc(p, se.nr_wakeups);
7d478721 2410 if (wake_flags & WF_SYNC)
cc367732
IM
2411 schedstat_inc(p, se.nr_wakeups_sync);
2412 if (orig_cpu != cpu)
2413 schedstat_inc(p, se.nr_wakeups_migrate);
2414 if (cpu == this_cpu)
2415 schedstat_inc(p, se.nr_wakeups_local);
2416 else
2417 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2418 activate_task(rq, p, 1);
1da177e4
LT
2419 success = 1;
2420
831451ac
PZ
2421 /*
2422 * Only attribute actual wakeups done by this task.
2423 */
2424 if (!in_interrupt()) {
2425 struct sched_entity *se = &current->se;
2426 u64 sample = se->sum_exec_runtime;
2427
2428 if (se->last_wakeup)
2429 sample -= se->last_wakeup;
2430 else
2431 sample -= se->start_runtime;
2432 update_avg(&se->avg_wakeup, sample);
2433
2434 se->last_wakeup = se->sum_exec_runtime;
2435 }
2436
1da177e4 2437out_running:
468a15bb 2438 trace_sched_wakeup(rq, p, success);
7d478721 2439 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2440
1da177e4 2441 p->state = TASK_RUNNING;
9a897c5a
SR
2442#ifdef CONFIG_SMP
2443 if (p->sched_class->task_wake_up)
2444 p->sched_class->task_wake_up(rq, p);
eae0c9df
MG
2445
2446 if (unlikely(rq->idle_stamp)) {
2447 u64 delta = rq->clock - rq->idle_stamp;
2448 u64 max = 2*sysctl_sched_migration_cost;
2449
2450 if (delta > max)
2451 rq->avg_idle = max;
2452 else
2453 update_avg(&rq->avg_idle, delta);
2454 rq->idle_stamp = 0;
2455 }
9a897c5a 2456#endif
1da177e4
LT
2457out:
2458 task_rq_unlock(rq, &flags);
e9c84311 2459 put_cpu();
1da177e4
LT
2460
2461 return success;
2462}
2463
50fa610a
DH
2464/**
2465 * wake_up_process - Wake up a specific process
2466 * @p: The process to be woken up.
2467 *
2468 * Attempt to wake up the nominated process and move it to the set of runnable
2469 * processes. Returns 1 if the process was woken up, 0 if it was already
2470 * running.
2471 *
2472 * It may be assumed that this function implies a write memory barrier before
2473 * changing the task state if and only if any tasks are woken up.
2474 */
7ad5b3a5 2475int wake_up_process(struct task_struct *p)
1da177e4 2476{
d9514f6c 2477 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2478}
1da177e4
LT
2479EXPORT_SYMBOL(wake_up_process);
2480
7ad5b3a5 2481int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2482{
2483 return try_to_wake_up(p, state, 0);
2484}
2485
1da177e4
LT
2486/*
2487 * Perform scheduler related setup for a newly forked process p.
2488 * p is forked by current.
dd41f596
IM
2489 *
2490 * __sched_fork() is basic setup used by init_idle() too:
2491 */
2492static void __sched_fork(struct task_struct *p)
2493{
dd41f596
IM
2494 p->se.exec_start = 0;
2495 p->se.sum_exec_runtime = 0;
f6cf891c 2496 p->se.prev_sum_exec_runtime = 0;
6c594c21 2497 p->se.nr_migrations = 0;
4ae7d5ce
IM
2498 p->se.last_wakeup = 0;
2499 p->se.avg_overlap = 0;
831451ac
PZ
2500 p->se.start_runtime = 0;
2501 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2502
2503#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2504 p->se.wait_start = 0;
2505 p->se.wait_max = 0;
2506 p->se.wait_count = 0;
2507 p->se.wait_sum = 0;
2508
2509 p->se.sleep_start = 0;
2510 p->se.sleep_max = 0;
2511 p->se.sum_sleep_runtime = 0;
2512
2513 p->se.block_start = 0;
2514 p->se.block_max = 0;
2515 p->se.exec_max = 0;
2516 p->se.slice_max = 0;
2517
2518 p->se.nr_migrations_cold = 0;
2519 p->se.nr_failed_migrations_affine = 0;
2520 p->se.nr_failed_migrations_running = 0;
2521 p->se.nr_failed_migrations_hot = 0;
2522 p->se.nr_forced_migrations = 0;
2523 p->se.nr_forced2_migrations = 0;
2524
2525 p->se.nr_wakeups = 0;
2526 p->se.nr_wakeups_sync = 0;
2527 p->se.nr_wakeups_migrate = 0;
2528 p->se.nr_wakeups_local = 0;
2529 p->se.nr_wakeups_remote = 0;
2530 p->se.nr_wakeups_affine = 0;
2531 p->se.nr_wakeups_affine_attempts = 0;
2532 p->se.nr_wakeups_passive = 0;
2533 p->se.nr_wakeups_idle = 0;
2534
6cfb0d5d 2535#endif
476d139c 2536
fa717060 2537 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2538 p->se.on_rq = 0;
4a55bd5e 2539 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2540
e107be36
AK
2541#ifdef CONFIG_PREEMPT_NOTIFIERS
2542 INIT_HLIST_HEAD(&p->preempt_notifiers);
2543#endif
2544
1da177e4
LT
2545 /*
2546 * We mark the process as running here, but have not actually
2547 * inserted it onto the runqueue yet. This guarantees that
2548 * nobody will actually run it, and a signal or other external
2549 * event cannot wake it up and insert it on the runqueue either.
2550 */
2551 p->state = TASK_RUNNING;
dd41f596
IM
2552}
2553
2554/*
2555 * fork()/clone()-time setup:
2556 */
2557void sched_fork(struct task_struct *p, int clone_flags)
2558{
2559 int cpu = get_cpu();
2560
2561 __sched_fork(p);
2562
b9dc29e7
MG
2563 /*
2564 * Revert to default priority/policy on fork if requested.
2565 */
2566 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2567 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2568 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2569 p->normal_prio = p->static_prio;
2570 }
b9dc29e7 2571
6c697bdf
MG
2572 if (PRIO_TO_NICE(p->static_prio) < 0) {
2573 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2574 p->normal_prio = p->static_prio;
6c697bdf
MG
2575 set_load_weight(p);
2576 }
2577
b9dc29e7
MG
2578 /*
2579 * We don't need the reset flag anymore after the fork. It has
2580 * fulfilled its duty:
2581 */
2582 p->sched_reset_on_fork = 0;
2583 }
ca94c442 2584
f83f9ac2
PW
2585 /*
2586 * Make sure we do not leak PI boosting priority to the child.
2587 */
2588 p->prio = current->normal_prio;
2589
2ddbf952
HS
2590 if (!rt_prio(p->prio))
2591 p->sched_class = &fair_sched_class;
b29739f9 2592
cd29fe6f
PZ
2593 if (p->sched_class->task_fork)
2594 p->sched_class->task_fork(p);
2595
5f3edc1b 2596#ifdef CONFIG_SMP
970b13ba 2597 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2598#endif
2599 set_task_cpu(p, cpu);
2600
52f17b6c 2601#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2602 if (likely(sched_info_on()))
52f17b6c 2603 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2604#endif
d6077cb8 2605#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2606 p->oncpu = 0;
2607#endif
1da177e4 2608#ifdef CONFIG_PREEMPT
4866cde0 2609 /* Want to start with kernel preemption disabled. */
a1261f54 2610 task_thread_info(p)->preempt_count = 1;
1da177e4 2611#endif
917b627d
GH
2612 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2613
476d139c 2614 put_cpu();
1da177e4
LT
2615}
2616
2617/*
2618 * wake_up_new_task - wake up a newly created task for the first time.
2619 *
2620 * This function will do some initial scheduler statistics housekeeping
2621 * that must be done for every newly created context, then puts the task
2622 * on the runqueue and wakes it.
2623 */
7ad5b3a5 2624void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2625{
2626 unsigned long flags;
dd41f596 2627 struct rq *rq;
1da177e4
LT
2628
2629 rq = task_rq_lock(p, &flags);
147cbb4b 2630 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2631 update_rq_clock(rq);
cd29fe6f 2632 activate_task(rq, p, 0);
c71dd42d 2633 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2634 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2635#ifdef CONFIG_SMP
2636 if (p->sched_class->task_wake_up)
2637 p->sched_class->task_wake_up(rq, p);
2638#endif
dd41f596 2639 task_rq_unlock(rq, &flags);
1da177e4
LT
2640}
2641
e107be36
AK
2642#ifdef CONFIG_PREEMPT_NOTIFIERS
2643
2644/**
80dd99b3 2645 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2646 * @notifier: notifier struct to register
e107be36
AK
2647 */
2648void preempt_notifier_register(struct preempt_notifier *notifier)
2649{
2650 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2651}
2652EXPORT_SYMBOL_GPL(preempt_notifier_register);
2653
2654/**
2655 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2656 * @notifier: notifier struct to unregister
e107be36
AK
2657 *
2658 * This is safe to call from within a preemption notifier.
2659 */
2660void preempt_notifier_unregister(struct preempt_notifier *notifier)
2661{
2662 hlist_del(&notifier->link);
2663}
2664EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2665
2666static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2667{
2668 struct preempt_notifier *notifier;
2669 struct hlist_node *node;
2670
2671 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2672 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2673}
2674
2675static void
2676fire_sched_out_preempt_notifiers(struct task_struct *curr,
2677 struct task_struct *next)
2678{
2679 struct preempt_notifier *notifier;
2680 struct hlist_node *node;
2681
2682 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2683 notifier->ops->sched_out(notifier, next);
2684}
2685
6d6bc0ad 2686#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2687
2688static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2689{
2690}
2691
2692static void
2693fire_sched_out_preempt_notifiers(struct task_struct *curr,
2694 struct task_struct *next)
2695{
2696}
2697
6d6bc0ad 2698#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2699
4866cde0
NP
2700/**
2701 * prepare_task_switch - prepare to switch tasks
2702 * @rq: the runqueue preparing to switch
421cee29 2703 * @prev: the current task that is being switched out
4866cde0
NP
2704 * @next: the task we are going to switch to.
2705 *
2706 * This is called with the rq lock held and interrupts off. It must
2707 * be paired with a subsequent finish_task_switch after the context
2708 * switch.
2709 *
2710 * prepare_task_switch sets up locking and calls architecture specific
2711 * hooks.
2712 */
e107be36
AK
2713static inline void
2714prepare_task_switch(struct rq *rq, struct task_struct *prev,
2715 struct task_struct *next)
4866cde0 2716{
e107be36 2717 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2718 prepare_lock_switch(rq, next);
2719 prepare_arch_switch(next);
2720}
2721
1da177e4
LT
2722/**
2723 * finish_task_switch - clean up after a task-switch
344babaa 2724 * @rq: runqueue associated with task-switch
1da177e4
LT
2725 * @prev: the thread we just switched away from.
2726 *
4866cde0
NP
2727 * finish_task_switch must be called after the context switch, paired
2728 * with a prepare_task_switch call before the context switch.
2729 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2730 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2731 *
2732 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2733 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2734 * with the lock held can cause deadlocks; see schedule() for
2735 * details.)
2736 */
a9957449 2737static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2738 __releases(rq->lock)
2739{
1da177e4 2740 struct mm_struct *mm = rq->prev_mm;
55a101f8 2741 long prev_state;
1da177e4
LT
2742
2743 rq->prev_mm = NULL;
2744
2745 /*
2746 * A task struct has one reference for the use as "current".
c394cc9f 2747 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2748 * schedule one last time. The schedule call will never return, and
2749 * the scheduled task must drop that reference.
c394cc9f 2750 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2751 * still held, otherwise prev could be scheduled on another cpu, die
2752 * there before we look at prev->state, and then the reference would
2753 * be dropped twice.
2754 * Manfred Spraul <manfred@colorfullife.com>
2755 */
55a101f8 2756 prev_state = prev->state;
4866cde0 2757 finish_arch_switch(prev);
cdd6c482 2758 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2759 finish_lock_switch(rq, prev);
e8fa1362 2760
e107be36 2761 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2762 if (mm)
2763 mmdrop(mm);
c394cc9f 2764 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2765 /*
2766 * Remove function-return probe instances associated with this
2767 * task and put them back on the free list.
9761eea8 2768 */
c6fd91f0 2769 kprobe_flush_task(prev);
1da177e4 2770 put_task_struct(prev);
c6fd91f0 2771 }
1da177e4
LT
2772}
2773
3f029d3c
GH
2774#ifdef CONFIG_SMP
2775
2776/* assumes rq->lock is held */
2777static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2778{
2779 if (prev->sched_class->pre_schedule)
2780 prev->sched_class->pre_schedule(rq, prev);
2781}
2782
2783/* rq->lock is NOT held, but preemption is disabled */
2784static inline void post_schedule(struct rq *rq)
2785{
2786 if (rq->post_schedule) {
2787 unsigned long flags;
2788
2789 spin_lock_irqsave(&rq->lock, flags);
2790 if (rq->curr->sched_class->post_schedule)
2791 rq->curr->sched_class->post_schedule(rq);
2792 spin_unlock_irqrestore(&rq->lock, flags);
2793
2794 rq->post_schedule = 0;
2795 }
2796}
2797
2798#else
da19ab51 2799
3f029d3c
GH
2800static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2801{
2802}
2803
2804static inline void post_schedule(struct rq *rq)
2805{
1da177e4
LT
2806}
2807
3f029d3c
GH
2808#endif
2809
1da177e4
LT
2810/**
2811 * schedule_tail - first thing a freshly forked thread must call.
2812 * @prev: the thread we just switched away from.
2813 */
36c8b586 2814asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2815 __releases(rq->lock)
2816{
70b97a7f
IM
2817 struct rq *rq = this_rq();
2818
4866cde0 2819 finish_task_switch(rq, prev);
da19ab51 2820
3f029d3c
GH
2821 /*
2822 * FIXME: do we need to worry about rq being invalidated by the
2823 * task_switch?
2824 */
2825 post_schedule(rq);
70b97a7f 2826
4866cde0
NP
2827#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2828 /* In this case, finish_task_switch does not reenable preemption */
2829 preempt_enable();
2830#endif
1da177e4 2831 if (current->set_child_tid)
b488893a 2832 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2833}
2834
2835/*
2836 * context_switch - switch to the new MM and the new
2837 * thread's register state.
2838 */
dd41f596 2839static inline void
70b97a7f 2840context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2841 struct task_struct *next)
1da177e4 2842{
dd41f596 2843 struct mm_struct *mm, *oldmm;
1da177e4 2844
e107be36 2845 prepare_task_switch(rq, prev, next);
0a16b607 2846 trace_sched_switch(rq, prev, next);
dd41f596
IM
2847 mm = next->mm;
2848 oldmm = prev->active_mm;
9226d125
ZA
2849 /*
2850 * For paravirt, this is coupled with an exit in switch_to to
2851 * combine the page table reload and the switch backend into
2852 * one hypercall.
2853 */
224101ed 2854 arch_start_context_switch(prev);
9226d125 2855
710390d9 2856 if (likely(!mm)) {
1da177e4
LT
2857 next->active_mm = oldmm;
2858 atomic_inc(&oldmm->mm_count);
2859 enter_lazy_tlb(oldmm, next);
2860 } else
2861 switch_mm(oldmm, mm, next);
2862
710390d9 2863 if (likely(!prev->mm)) {
1da177e4 2864 prev->active_mm = NULL;
1da177e4
LT
2865 rq->prev_mm = oldmm;
2866 }
3a5f5e48
IM
2867 /*
2868 * Since the runqueue lock will be released by the next
2869 * task (which is an invalid locking op but in the case
2870 * of the scheduler it's an obvious special-case), so we
2871 * do an early lockdep release here:
2872 */
2873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2874 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2875#endif
1da177e4
LT
2876
2877 /* Here we just switch the register state and the stack. */
2878 switch_to(prev, next, prev);
2879
dd41f596
IM
2880 barrier();
2881 /*
2882 * this_rq must be evaluated again because prev may have moved
2883 * CPUs since it called schedule(), thus the 'rq' on its stack
2884 * frame will be invalid.
2885 */
2886 finish_task_switch(this_rq(), prev);
1da177e4
LT
2887}
2888
2889/*
2890 * nr_running, nr_uninterruptible and nr_context_switches:
2891 *
2892 * externally visible scheduler statistics: current number of runnable
2893 * threads, current number of uninterruptible-sleeping threads, total
2894 * number of context switches performed since bootup.
2895 */
2896unsigned long nr_running(void)
2897{
2898 unsigned long i, sum = 0;
2899
2900 for_each_online_cpu(i)
2901 sum += cpu_rq(i)->nr_running;
2902
2903 return sum;
2904}
2905
2906unsigned long nr_uninterruptible(void)
2907{
2908 unsigned long i, sum = 0;
2909
0a945022 2910 for_each_possible_cpu(i)
1da177e4
LT
2911 sum += cpu_rq(i)->nr_uninterruptible;
2912
2913 /*
2914 * Since we read the counters lockless, it might be slightly
2915 * inaccurate. Do not allow it to go below zero though:
2916 */
2917 if (unlikely((long)sum < 0))
2918 sum = 0;
2919
2920 return sum;
2921}
2922
2923unsigned long long nr_context_switches(void)
2924{
cc94abfc
SR
2925 int i;
2926 unsigned long long sum = 0;
1da177e4 2927
0a945022 2928 for_each_possible_cpu(i)
1da177e4
LT
2929 sum += cpu_rq(i)->nr_switches;
2930
2931 return sum;
2932}
2933
2934unsigned long nr_iowait(void)
2935{
2936 unsigned long i, sum = 0;
2937
0a945022 2938 for_each_possible_cpu(i)
1da177e4
LT
2939 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2940
2941 return sum;
2942}
2943
69d25870
AV
2944unsigned long nr_iowait_cpu(void)
2945{
2946 struct rq *this = this_rq();
2947 return atomic_read(&this->nr_iowait);
2948}
2949
2950unsigned long this_cpu_load(void)
2951{
2952 struct rq *this = this_rq();
2953 return this->cpu_load[0];
2954}
2955
2956
dce48a84
TG
2957/* Variables and functions for calc_load */
2958static atomic_long_t calc_load_tasks;
2959static unsigned long calc_load_update;
2960unsigned long avenrun[3];
2961EXPORT_SYMBOL(avenrun);
2962
2d02494f
TG
2963/**
2964 * get_avenrun - get the load average array
2965 * @loads: pointer to dest load array
2966 * @offset: offset to add
2967 * @shift: shift count to shift the result left
2968 *
2969 * These values are estimates at best, so no need for locking.
2970 */
2971void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2972{
2973 loads[0] = (avenrun[0] + offset) << shift;
2974 loads[1] = (avenrun[1] + offset) << shift;
2975 loads[2] = (avenrun[2] + offset) << shift;
2976}
2977
dce48a84
TG
2978static unsigned long
2979calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2980{
dce48a84
TG
2981 load *= exp;
2982 load += active * (FIXED_1 - exp);
2983 return load >> FSHIFT;
2984}
db1b1fef 2985
dce48a84
TG
2986/*
2987 * calc_load - update the avenrun load estimates 10 ticks after the
2988 * CPUs have updated calc_load_tasks.
2989 */
2990void calc_global_load(void)
2991{
2992 unsigned long upd = calc_load_update + 10;
2993 long active;
2994
2995 if (time_before(jiffies, upd))
2996 return;
db1b1fef 2997
dce48a84
TG
2998 active = atomic_long_read(&calc_load_tasks);
2999 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3000
dce48a84
TG
3001 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3002 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3003 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3004
3005 calc_load_update += LOAD_FREQ;
3006}
3007
3008/*
3009 * Either called from update_cpu_load() or from a cpu going idle
3010 */
3011static void calc_load_account_active(struct rq *this_rq)
3012{
3013 long nr_active, delta;
3014
3015 nr_active = this_rq->nr_running;
3016 nr_active += (long) this_rq->nr_uninterruptible;
3017
3018 if (nr_active != this_rq->calc_load_active) {
3019 delta = nr_active - this_rq->calc_load_active;
3020 this_rq->calc_load_active = nr_active;
3021 atomic_long_add(delta, &calc_load_tasks);
3022 }
db1b1fef
JS
3023}
3024
48f24c4d 3025/*
dd41f596
IM
3026 * Update rq->cpu_load[] statistics. This function is usually called every
3027 * scheduler tick (TICK_NSEC).
48f24c4d 3028 */
dd41f596 3029static void update_cpu_load(struct rq *this_rq)
48f24c4d 3030{
495eca49 3031 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3032 int i, scale;
3033
3034 this_rq->nr_load_updates++;
dd41f596
IM
3035
3036 /* Update our load: */
3037 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3038 unsigned long old_load, new_load;
3039
3040 /* scale is effectively 1 << i now, and >> i divides by scale */
3041
3042 old_load = this_rq->cpu_load[i];
3043 new_load = this_load;
a25707f3
IM
3044 /*
3045 * Round up the averaging division if load is increasing. This
3046 * prevents us from getting stuck on 9 if the load is 10, for
3047 * example.
3048 */
3049 if (new_load > old_load)
3050 new_load += scale-1;
dd41f596
IM
3051 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3052 }
dce48a84
TG
3053
3054 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3055 this_rq->calc_load_update += LOAD_FREQ;
3056 calc_load_account_active(this_rq);
3057 }
48f24c4d
IM
3058}
3059
dd41f596
IM
3060#ifdef CONFIG_SMP
3061
1da177e4
LT
3062/*
3063 * double_rq_lock - safely lock two runqueues
3064 *
3065 * Note this does not disable interrupts like task_rq_lock,
3066 * you need to do so manually before calling.
3067 */
70b97a7f 3068static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3069 __acquires(rq1->lock)
3070 __acquires(rq2->lock)
3071{
054b9108 3072 BUG_ON(!irqs_disabled());
1da177e4
LT
3073 if (rq1 == rq2) {
3074 spin_lock(&rq1->lock);
3075 __acquire(rq2->lock); /* Fake it out ;) */
3076 } else {
c96d145e 3077 if (rq1 < rq2) {
1da177e4 3078 spin_lock(&rq1->lock);
5e710e37 3079 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3080 } else {
3081 spin_lock(&rq2->lock);
5e710e37 3082 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3083 }
3084 }
6e82a3be
IM
3085 update_rq_clock(rq1);
3086 update_rq_clock(rq2);
1da177e4
LT
3087}
3088
3089/*
3090 * double_rq_unlock - safely unlock two runqueues
3091 *
3092 * Note this does not restore interrupts like task_rq_unlock,
3093 * you need to do so manually after calling.
3094 */
70b97a7f 3095static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3096 __releases(rq1->lock)
3097 __releases(rq2->lock)
3098{
3099 spin_unlock(&rq1->lock);
3100 if (rq1 != rq2)
3101 spin_unlock(&rq2->lock);
3102 else
3103 __release(rq2->lock);
3104}
3105
1da177e4
LT
3106/*
3107 * If dest_cpu is allowed for this process, migrate the task to it.
3108 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3109 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3110 * the cpu_allowed mask is restored.
3111 */
36c8b586 3112static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3113{
70b97a7f 3114 struct migration_req req;
1da177e4 3115 unsigned long flags;
70b97a7f 3116 struct rq *rq;
1da177e4
LT
3117
3118 rq = task_rq_lock(p, &flags);
96f874e2 3119 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3120 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3121 goto out;
3122
3123 /* force the process onto the specified CPU */
3124 if (migrate_task(p, dest_cpu, &req)) {
3125 /* Need to wait for migration thread (might exit: take ref). */
3126 struct task_struct *mt = rq->migration_thread;
36c8b586 3127
1da177e4
LT
3128 get_task_struct(mt);
3129 task_rq_unlock(rq, &flags);
3130 wake_up_process(mt);
3131 put_task_struct(mt);
3132 wait_for_completion(&req.done);
36c8b586 3133
1da177e4
LT
3134 return;
3135 }
3136out:
3137 task_rq_unlock(rq, &flags);
3138}
3139
3140/*
476d139c
NP
3141 * sched_exec - execve() is a valuable balancing opportunity, because at
3142 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3143 */
3144void sched_exec(void)
3145{
1da177e4 3146 int new_cpu, this_cpu = get_cpu();
970b13ba 3147 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3148 put_cpu();
476d139c
NP
3149 if (new_cpu != this_cpu)
3150 sched_migrate_task(current, new_cpu);
1da177e4
LT
3151}
3152
3153/*
3154 * pull_task - move a task from a remote runqueue to the local runqueue.
3155 * Both runqueues must be locked.
3156 */
dd41f596
IM
3157static void pull_task(struct rq *src_rq, struct task_struct *p,
3158 struct rq *this_rq, int this_cpu)
1da177e4 3159{
2e1cb74a 3160 deactivate_task(src_rq, p, 0);
1da177e4 3161 set_task_cpu(p, this_cpu);
dd41f596 3162 activate_task(this_rq, p, 0);
15afe09b 3163 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3164}
3165
3166/*
3167 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3168 */
858119e1 3169static
70b97a7f 3170int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3171 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3172 int *all_pinned)
1da177e4 3173{
708dc512 3174 int tsk_cache_hot = 0;
1da177e4
LT
3175 /*
3176 * We do not migrate tasks that are:
3177 * 1) running (obviously), or
3178 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3179 * 3) are cache-hot on their current CPU.
3180 */
96f874e2 3181 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3182 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3183 return 0;
cc367732 3184 }
81026794
NP
3185 *all_pinned = 0;
3186
cc367732
IM
3187 if (task_running(rq, p)) {
3188 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3189 return 0;
cc367732 3190 }
1da177e4 3191
da84d961
IM
3192 /*
3193 * Aggressive migration if:
3194 * 1) task is cache cold, or
3195 * 2) too many balance attempts have failed.
3196 */
3197
708dc512
LH
3198 tsk_cache_hot = task_hot(p, rq->clock, sd);
3199 if (!tsk_cache_hot ||
3200 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3201#ifdef CONFIG_SCHEDSTATS
708dc512 3202 if (tsk_cache_hot) {
da84d961 3203 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3204 schedstat_inc(p, se.nr_forced_migrations);
3205 }
da84d961
IM
3206#endif
3207 return 1;
3208 }
3209
708dc512 3210 if (tsk_cache_hot) {
cc367732 3211 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3212 return 0;
cc367732 3213 }
1da177e4
LT
3214 return 1;
3215}
3216
e1d1484f
PW
3217static unsigned long
3218balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3219 unsigned long max_load_move, struct sched_domain *sd,
3220 enum cpu_idle_type idle, int *all_pinned,
3221 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3222{
051c6764 3223 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3224 struct task_struct *p;
3225 long rem_load_move = max_load_move;
1da177e4 3226
e1d1484f 3227 if (max_load_move == 0)
1da177e4
LT
3228 goto out;
3229
81026794
NP
3230 pinned = 1;
3231
1da177e4 3232 /*
dd41f596 3233 * Start the load-balancing iterator:
1da177e4 3234 */
dd41f596
IM
3235 p = iterator->start(iterator->arg);
3236next:
b82d9fdd 3237 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3238 goto out;
051c6764
PZ
3239
3240 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3241 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3242 p = iterator->next(iterator->arg);
3243 goto next;
1da177e4
LT
3244 }
3245
dd41f596 3246 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3247 pulled++;
dd41f596 3248 rem_load_move -= p->se.load.weight;
1da177e4 3249
7e96fa58
GH
3250#ifdef CONFIG_PREEMPT
3251 /*
3252 * NEWIDLE balancing is a source of latency, so preemptible kernels
3253 * will stop after the first task is pulled to minimize the critical
3254 * section.
3255 */
3256 if (idle == CPU_NEWLY_IDLE)
3257 goto out;
3258#endif
3259
2dd73a4f 3260 /*
b82d9fdd 3261 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3262 */
e1d1484f 3263 if (rem_load_move > 0) {
a4ac01c3
PW
3264 if (p->prio < *this_best_prio)
3265 *this_best_prio = p->prio;
dd41f596
IM
3266 p = iterator->next(iterator->arg);
3267 goto next;
1da177e4
LT
3268 }
3269out:
3270 /*
e1d1484f 3271 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3272 * so we can safely collect pull_task() stats here rather than
3273 * inside pull_task().
3274 */
3275 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3276
3277 if (all_pinned)
3278 *all_pinned = pinned;
e1d1484f
PW
3279
3280 return max_load_move - rem_load_move;
1da177e4
LT
3281}
3282
dd41f596 3283/*
43010659
PW
3284 * move_tasks tries to move up to max_load_move weighted load from busiest to
3285 * this_rq, as part of a balancing operation within domain "sd".
3286 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3287 *
3288 * Called with both runqueues locked.
3289 */
3290static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3291 unsigned long max_load_move,
dd41f596
IM
3292 struct sched_domain *sd, enum cpu_idle_type idle,
3293 int *all_pinned)
3294{
5522d5d5 3295 const struct sched_class *class = sched_class_highest;
43010659 3296 unsigned long total_load_moved = 0;
a4ac01c3 3297 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3298
3299 do {
43010659
PW
3300 total_load_moved +=
3301 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3302 max_load_move - total_load_moved,
a4ac01c3 3303 sd, idle, all_pinned, &this_best_prio);
dd41f596 3304 class = class->next;
c4acb2c0 3305
7e96fa58
GH
3306#ifdef CONFIG_PREEMPT
3307 /*
3308 * NEWIDLE balancing is a source of latency, so preemptible
3309 * kernels will stop after the first task is pulled to minimize
3310 * the critical section.
3311 */
c4acb2c0
GH
3312 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3313 break;
7e96fa58 3314#endif
43010659 3315 } while (class && max_load_move > total_load_moved);
dd41f596 3316
43010659
PW
3317 return total_load_moved > 0;
3318}
3319
e1d1484f
PW
3320static int
3321iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3322 struct sched_domain *sd, enum cpu_idle_type idle,
3323 struct rq_iterator *iterator)
3324{
3325 struct task_struct *p = iterator->start(iterator->arg);
3326 int pinned = 0;
3327
3328 while (p) {
3329 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3330 pull_task(busiest, p, this_rq, this_cpu);
3331 /*
3332 * Right now, this is only the second place pull_task()
3333 * is called, so we can safely collect pull_task()
3334 * stats here rather than inside pull_task().
3335 */
3336 schedstat_inc(sd, lb_gained[idle]);
3337
3338 return 1;
3339 }
3340 p = iterator->next(iterator->arg);
3341 }
3342
3343 return 0;
3344}
3345
43010659
PW
3346/*
3347 * move_one_task tries to move exactly one task from busiest to this_rq, as
3348 * part of active balancing operations within "domain".
3349 * Returns 1 if successful and 0 otherwise.
3350 *
3351 * Called with both runqueues locked.
3352 */
3353static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3354 struct sched_domain *sd, enum cpu_idle_type idle)
3355{
5522d5d5 3356 const struct sched_class *class;
43010659 3357
cde7e5ca 3358 for_each_class(class) {
e1d1484f 3359 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3360 return 1;
cde7e5ca 3361 }
43010659
PW
3362
3363 return 0;
dd41f596 3364}
67bb6c03 3365/********** Helpers for find_busiest_group ************************/
1da177e4 3366/*
222d656d
GS
3367 * sd_lb_stats - Structure to store the statistics of a sched_domain
3368 * during load balancing.
1da177e4 3369 */
222d656d
GS
3370struct sd_lb_stats {
3371 struct sched_group *busiest; /* Busiest group in this sd */
3372 struct sched_group *this; /* Local group in this sd */
3373 unsigned long total_load; /* Total load of all groups in sd */
3374 unsigned long total_pwr; /* Total power of all groups in sd */
3375 unsigned long avg_load; /* Average load across all groups in sd */
3376
3377 /** Statistics of this group */
3378 unsigned long this_load;
3379 unsigned long this_load_per_task;
3380 unsigned long this_nr_running;
3381
3382 /* Statistics of the busiest group */
3383 unsigned long max_load;
3384 unsigned long busiest_load_per_task;
3385 unsigned long busiest_nr_running;
3386
3387 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3388#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3389 int power_savings_balance; /* Is powersave balance needed for this sd */
3390 struct sched_group *group_min; /* Least loaded group in sd */
3391 struct sched_group *group_leader; /* Group which relieves group_min */
3392 unsigned long min_load_per_task; /* load_per_task in group_min */
3393 unsigned long leader_nr_running; /* Nr running of group_leader */
3394 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3395#endif
222d656d 3396};
1da177e4 3397
d5ac537e 3398/*
381be78f
GS
3399 * sg_lb_stats - stats of a sched_group required for load_balancing
3400 */
3401struct sg_lb_stats {
3402 unsigned long avg_load; /*Avg load across the CPUs of the group */
3403 unsigned long group_load; /* Total load over the CPUs of the group */
3404 unsigned long sum_nr_running; /* Nr tasks running in the group */
3405 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3406 unsigned long group_capacity;
3407 int group_imb; /* Is there an imbalance in the group ? */
3408};
408ed066 3409
67bb6c03
GS
3410/**
3411 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3412 * @group: The group whose first cpu is to be returned.
3413 */
3414static inline unsigned int group_first_cpu(struct sched_group *group)
3415{
3416 return cpumask_first(sched_group_cpus(group));
3417}
3418
3419/**
3420 * get_sd_load_idx - Obtain the load index for a given sched domain.
3421 * @sd: The sched_domain whose load_idx is to be obtained.
3422 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3423 */
3424static inline int get_sd_load_idx(struct sched_domain *sd,
3425 enum cpu_idle_type idle)
3426{
3427 int load_idx;
3428
3429 switch (idle) {
3430 case CPU_NOT_IDLE:
7897986b 3431 load_idx = sd->busy_idx;
67bb6c03
GS
3432 break;
3433
3434 case CPU_NEWLY_IDLE:
7897986b 3435 load_idx = sd->newidle_idx;
67bb6c03
GS
3436 break;
3437 default:
7897986b 3438 load_idx = sd->idle_idx;
67bb6c03
GS
3439 break;
3440 }
1da177e4 3441
67bb6c03
GS
3442 return load_idx;
3443}
1da177e4 3444
1da177e4 3445
c071df18
GS
3446#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3447/**
3448 * init_sd_power_savings_stats - Initialize power savings statistics for
3449 * the given sched_domain, during load balancing.
3450 *
3451 * @sd: Sched domain whose power-savings statistics are to be initialized.
3452 * @sds: Variable containing the statistics for sd.
3453 * @idle: Idle status of the CPU at which we're performing load-balancing.
3454 */
3455static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3456 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3457{
3458 /*
3459 * Busy processors will not participate in power savings
3460 * balance.
3461 */
3462 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3463 sds->power_savings_balance = 0;
3464 else {
3465 sds->power_savings_balance = 1;
3466 sds->min_nr_running = ULONG_MAX;
3467 sds->leader_nr_running = 0;
3468 }
3469}
783609c6 3470
c071df18
GS
3471/**
3472 * update_sd_power_savings_stats - Update the power saving stats for a
3473 * sched_domain while performing load balancing.
3474 *
3475 * @group: sched_group belonging to the sched_domain under consideration.
3476 * @sds: Variable containing the statistics of the sched_domain
3477 * @local_group: Does group contain the CPU for which we're performing
3478 * load balancing ?
3479 * @sgs: Variable containing the statistics of the group.
3480 */
3481static inline void update_sd_power_savings_stats(struct sched_group *group,
3482 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3483{
408ed066 3484
c071df18
GS
3485 if (!sds->power_savings_balance)
3486 return;
1da177e4 3487
c071df18
GS
3488 /*
3489 * If the local group is idle or completely loaded
3490 * no need to do power savings balance at this domain
3491 */
3492 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3493 !sds->this_nr_running))
3494 sds->power_savings_balance = 0;
2dd73a4f 3495
c071df18
GS
3496 /*
3497 * If a group is already running at full capacity or idle,
3498 * don't include that group in power savings calculations
3499 */
3500 if (!sds->power_savings_balance ||
3501 sgs->sum_nr_running >= sgs->group_capacity ||
3502 !sgs->sum_nr_running)
3503 return;
5969fe06 3504
c071df18
GS
3505 /*
3506 * Calculate the group which has the least non-idle load.
3507 * This is the group from where we need to pick up the load
3508 * for saving power
3509 */
3510 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3511 (sgs->sum_nr_running == sds->min_nr_running &&
3512 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3513 sds->group_min = group;
3514 sds->min_nr_running = sgs->sum_nr_running;
3515 sds->min_load_per_task = sgs->sum_weighted_load /
3516 sgs->sum_nr_running;
3517 }
783609c6 3518
c071df18
GS
3519 /*
3520 * Calculate the group which is almost near its
3521 * capacity but still has some space to pick up some load
3522 * from other group and save more power
3523 */
d899a789 3524 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3525 return;
1da177e4 3526
c071df18
GS
3527 if (sgs->sum_nr_running > sds->leader_nr_running ||
3528 (sgs->sum_nr_running == sds->leader_nr_running &&
3529 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3530 sds->group_leader = group;
3531 sds->leader_nr_running = sgs->sum_nr_running;
3532 }
3533}
408ed066 3534
c071df18 3535/**
d5ac537e 3536 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3537 * @sds: Variable containing the statistics of the sched_domain
3538 * under consideration.
3539 * @this_cpu: Cpu at which we're currently performing load-balancing.
3540 * @imbalance: Variable to store the imbalance.
3541 *
d5ac537e
RD
3542 * Description:
3543 * Check if we have potential to perform some power-savings balance.
3544 * If yes, set the busiest group to be the least loaded group in the
3545 * sched_domain, so that it's CPUs can be put to idle.
3546 *
c071df18
GS
3547 * Returns 1 if there is potential to perform power-savings balance.
3548 * Else returns 0.
3549 */
3550static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3551 int this_cpu, unsigned long *imbalance)
3552{
3553 if (!sds->power_savings_balance)
3554 return 0;
1da177e4 3555
c071df18
GS
3556 if (sds->this != sds->group_leader ||
3557 sds->group_leader == sds->group_min)
3558 return 0;
783609c6 3559
c071df18
GS
3560 *imbalance = sds->min_load_per_task;
3561 sds->busiest = sds->group_min;
1da177e4 3562
c071df18 3563 return 1;
1da177e4 3564
c071df18
GS
3565}
3566#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3567static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3568 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3569{
3570 return;
3571}
408ed066 3572
c071df18
GS
3573static inline void update_sd_power_savings_stats(struct sched_group *group,
3574 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3575{
3576 return;
3577}
3578
3579static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3580 int this_cpu, unsigned long *imbalance)
3581{
3582 return 0;
3583}
3584#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3585
d6a59aa3
PZ
3586
3587unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3588{
3589 return SCHED_LOAD_SCALE;
3590}
3591
3592unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3593{
3594 return default_scale_freq_power(sd, cpu);
3595}
3596
3597unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3598{
3599 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3600 unsigned long smt_gain = sd->smt_gain;
3601
3602 smt_gain /= weight;
3603
3604 return smt_gain;
3605}
3606
d6a59aa3
PZ
3607unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3608{
3609 return default_scale_smt_power(sd, cpu);
3610}
3611
e9e9250b
PZ
3612unsigned long scale_rt_power(int cpu)
3613{
3614 struct rq *rq = cpu_rq(cpu);
3615 u64 total, available;
3616
3617 sched_avg_update(rq);
3618
3619 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3620 available = total - rq->rt_avg;
3621
3622 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3623 total = SCHED_LOAD_SCALE;
3624
3625 total >>= SCHED_LOAD_SHIFT;
3626
3627 return div_u64(available, total);
3628}
3629
ab29230e
PZ
3630static void update_cpu_power(struct sched_domain *sd, int cpu)
3631{
3632 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3633 unsigned long power = SCHED_LOAD_SCALE;
3634 struct sched_group *sdg = sd->groups;
ab29230e 3635
8e6598af
PZ
3636 if (sched_feat(ARCH_POWER))
3637 power *= arch_scale_freq_power(sd, cpu);
3638 else
3639 power *= default_scale_freq_power(sd, cpu);
3640
d6a59aa3 3641 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3642
3643 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3644 if (sched_feat(ARCH_POWER))
3645 power *= arch_scale_smt_power(sd, cpu);
3646 else
3647 power *= default_scale_smt_power(sd, cpu);
3648
ab29230e
PZ
3649 power >>= SCHED_LOAD_SHIFT;
3650 }
3651
e9e9250b
PZ
3652 power *= scale_rt_power(cpu);
3653 power >>= SCHED_LOAD_SHIFT;
3654
3655 if (!power)
3656 power = 1;
ab29230e 3657
18a3885f 3658 sdg->cpu_power = power;
ab29230e
PZ
3659}
3660
3661static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3662{
3663 struct sched_domain *child = sd->child;
3664 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3665 unsigned long power;
cc9fba7d
PZ
3666
3667 if (!child) {
ab29230e 3668 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3669 return;
3670 }
3671
d7ea17a7 3672 power = 0;
cc9fba7d
PZ
3673
3674 group = child->groups;
3675 do {
d7ea17a7 3676 power += group->cpu_power;
cc9fba7d
PZ
3677 group = group->next;
3678 } while (group != child->groups);
d7ea17a7
IM
3679
3680 sdg->cpu_power = power;
cc9fba7d 3681}
c071df18 3682
1f8c553d
GS
3683/**
3684 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3685 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3686 * @group: sched_group whose statistics are to be updated.
3687 * @this_cpu: Cpu for which load balance is currently performed.
3688 * @idle: Idle status of this_cpu
3689 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3690 * @sd_idle: Idle status of the sched_domain containing group.
3691 * @local_group: Does group contain this_cpu.
3692 * @cpus: Set of cpus considered for load balancing.
3693 * @balance: Should we balance.
3694 * @sgs: variable to hold the statistics for this group.
3695 */
cc9fba7d
PZ
3696static inline void update_sg_lb_stats(struct sched_domain *sd,
3697 struct sched_group *group, int this_cpu,
1f8c553d
GS
3698 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3699 int local_group, const struct cpumask *cpus,
3700 int *balance, struct sg_lb_stats *sgs)
3701{
3702 unsigned long load, max_cpu_load, min_cpu_load;
3703 int i;
3704 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3705 unsigned long sum_avg_load_per_task;
3706 unsigned long avg_load_per_task;
3707
cc9fba7d 3708 if (local_group) {
1f8c553d 3709 balance_cpu = group_first_cpu(group);
cc9fba7d 3710 if (balance_cpu == this_cpu)
ab29230e 3711 update_group_power(sd, this_cpu);
cc9fba7d 3712 }
1f8c553d
GS
3713
3714 /* Tally up the load of all CPUs in the group */
3715 sum_avg_load_per_task = avg_load_per_task = 0;
3716 max_cpu_load = 0;
3717 min_cpu_load = ~0UL;
408ed066 3718
1f8c553d
GS
3719 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3720 struct rq *rq = cpu_rq(i);
908a7c1b 3721
1f8c553d
GS
3722 if (*sd_idle && rq->nr_running)
3723 *sd_idle = 0;
5c45bf27 3724
1f8c553d 3725 /* Bias balancing toward cpus of our domain */
1da177e4 3726 if (local_group) {
1f8c553d
GS
3727 if (idle_cpu(i) && !first_idle_cpu) {
3728 first_idle_cpu = 1;
3729 balance_cpu = i;
3730 }
3731
3732 load = target_load(i, load_idx);
3733 } else {
3734 load = source_load(i, load_idx);
3735 if (load > max_cpu_load)
3736 max_cpu_load = load;
3737 if (min_cpu_load > load)
3738 min_cpu_load = load;
1da177e4 3739 }
5c45bf27 3740
1f8c553d
GS
3741 sgs->group_load += load;
3742 sgs->sum_nr_running += rq->nr_running;
3743 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3744
1f8c553d
GS
3745 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3746 }
5c45bf27 3747
1f8c553d
GS
3748 /*
3749 * First idle cpu or the first cpu(busiest) in this sched group
3750 * is eligible for doing load balancing at this and above
3751 * domains. In the newly idle case, we will allow all the cpu's
3752 * to do the newly idle load balance.
3753 */
3754 if (idle != CPU_NEWLY_IDLE && local_group &&
3755 balance_cpu != this_cpu && balance) {
3756 *balance = 0;
3757 return;
3758 }
5c45bf27 3759
1f8c553d 3760 /* Adjust by relative CPU power of the group */
18a3885f 3761 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3762
1f8c553d
GS
3763
3764 /*
3765 * Consider the group unbalanced when the imbalance is larger
3766 * than the average weight of two tasks.
3767 *
3768 * APZ: with cgroup the avg task weight can vary wildly and
3769 * might not be a suitable number - should we keep a
3770 * normalized nr_running number somewhere that negates
3771 * the hierarchy?
3772 */
18a3885f
PZ
3773 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3774 group->cpu_power;
1f8c553d
GS
3775
3776 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3777 sgs->group_imb = 1;
3778
bdb94aa5 3779 sgs->group_capacity =
18a3885f 3780 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3781}
dd41f596 3782
37abe198
GS
3783/**
3784 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3785 * @sd: sched_domain whose statistics are to be updated.
3786 * @this_cpu: Cpu for which load balance is currently performed.
3787 * @idle: Idle status of this_cpu
3788 * @sd_idle: Idle status of the sched_domain containing group.
3789 * @cpus: Set of cpus considered for load balancing.
3790 * @balance: Should we balance.
3791 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3792 */
37abe198
GS
3793static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3794 enum cpu_idle_type idle, int *sd_idle,
3795 const struct cpumask *cpus, int *balance,
3796 struct sd_lb_stats *sds)
1da177e4 3797{
b5d978e0 3798 struct sched_domain *child = sd->child;
222d656d 3799 struct sched_group *group = sd->groups;
37abe198 3800 struct sg_lb_stats sgs;
b5d978e0
PZ
3801 int load_idx, prefer_sibling = 0;
3802
3803 if (child && child->flags & SD_PREFER_SIBLING)
3804 prefer_sibling = 1;
222d656d 3805
c071df18 3806 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3807 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3808
3809 do {
1da177e4 3810 int local_group;
1da177e4 3811
758b2cdc
RR
3812 local_group = cpumask_test_cpu(this_cpu,
3813 sched_group_cpus(group));
381be78f 3814 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3815 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3816 local_group, cpus, balance, &sgs);
1da177e4 3817
37abe198
GS
3818 if (local_group && balance && !(*balance))
3819 return;
783609c6 3820
37abe198 3821 sds->total_load += sgs.group_load;
18a3885f 3822 sds->total_pwr += group->cpu_power;
1da177e4 3823
b5d978e0
PZ
3824 /*
3825 * In case the child domain prefers tasks go to siblings
3826 * first, lower the group capacity to one so that we'll try
3827 * and move all the excess tasks away.
3828 */
3829 if (prefer_sibling)
bdb94aa5 3830 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3831
1da177e4 3832 if (local_group) {
37abe198
GS
3833 sds->this_load = sgs.avg_load;
3834 sds->this = group;
3835 sds->this_nr_running = sgs.sum_nr_running;
3836 sds->this_load_per_task = sgs.sum_weighted_load;
3837 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3838 (sgs.sum_nr_running > sgs.group_capacity ||
3839 sgs.group_imb)) {
37abe198
GS
3840 sds->max_load = sgs.avg_load;
3841 sds->busiest = group;
3842 sds->busiest_nr_running = sgs.sum_nr_running;
3843 sds->busiest_load_per_task = sgs.sum_weighted_load;
3844 sds->group_imb = sgs.group_imb;
48f24c4d 3845 }
5c45bf27 3846
c071df18 3847 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3848 group = group->next;
3849 } while (group != sd->groups);
37abe198 3850}
1da177e4 3851
2e6f44ae
GS
3852/**
3853 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3854 * amongst the groups of a sched_domain, during
3855 * load balancing.
2e6f44ae
GS
3856 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3857 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3858 * @imbalance: Variable to store the imbalance.
3859 */
3860static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3861 int this_cpu, unsigned long *imbalance)
3862{
3863 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3864 unsigned int imbn = 2;
3865
3866 if (sds->this_nr_running) {
3867 sds->this_load_per_task /= sds->this_nr_running;
3868 if (sds->busiest_load_per_task >
3869 sds->this_load_per_task)
3870 imbn = 1;
3871 } else
3872 sds->this_load_per_task =
3873 cpu_avg_load_per_task(this_cpu);
1da177e4 3874
2e6f44ae
GS
3875 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3876 sds->busiest_load_per_task * imbn) {
3877 *imbalance = sds->busiest_load_per_task;
3878 return;
3879 }
908a7c1b 3880
1da177e4 3881 /*
2e6f44ae
GS
3882 * OK, we don't have enough imbalance to justify moving tasks,
3883 * however we may be able to increase total CPU power used by
3884 * moving them.
1da177e4 3885 */
2dd73a4f 3886
18a3885f 3887 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3888 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3889 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3890 min(sds->this_load_per_task, sds->this_load);
3891 pwr_now /= SCHED_LOAD_SCALE;
3892
3893 /* Amount of load we'd subtract */
18a3885f
PZ
3894 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3895 sds->busiest->cpu_power;
2e6f44ae 3896 if (sds->max_load > tmp)
18a3885f 3897 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3898 min(sds->busiest_load_per_task, sds->max_load - tmp);
3899
3900 /* Amount of load we'd add */
18a3885f 3901 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3902 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3903 tmp = (sds->max_load * sds->busiest->cpu_power) /
3904 sds->this->cpu_power;
2e6f44ae 3905 else
18a3885f
PZ
3906 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3907 sds->this->cpu_power;
3908 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3909 min(sds->this_load_per_task, sds->this_load + tmp);
3910 pwr_move /= SCHED_LOAD_SCALE;
3911
3912 /* Move if we gain throughput */
3913 if (pwr_move > pwr_now)
3914 *imbalance = sds->busiest_load_per_task;
3915}
dbc523a3
GS
3916
3917/**
3918 * calculate_imbalance - Calculate the amount of imbalance present within the
3919 * groups of a given sched_domain during load balance.
3920 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3921 * @this_cpu: Cpu for which currently load balance is being performed.
3922 * @imbalance: The variable to store the imbalance.
3923 */
3924static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3925 unsigned long *imbalance)
3926{
3927 unsigned long max_pull;
2dd73a4f
PW
3928 /*
3929 * In the presence of smp nice balancing, certain scenarios can have
3930 * max load less than avg load(as we skip the groups at or below
3931 * its cpu_power, while calculating max_load..)
3932 */
dbc523a3 3933 if (sds->max_load < sds->avg_load) {
2dd73a4f 3934 *imbalance = 0;
dbc523a3 3935 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3936 }
0c117f1b
SS
3937
3938 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3939 max_pull = min(sds->max_load - sds->avg_load,
3940 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3941
1da177e4 3942 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3943 *imbalance = min(max_pull * sds->busiest->cpu_power,
3944 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3945 / SCHED_LOAD_SCALE;
3946
2dd73a4f
PW
3947 /*
3948 * if *imbalance is less than the average load per runnable task
3949 * there is no gaurantee that any tasks will be moved so we'll have
3950 * a think about bumping its value to force at least one task to be
3951 * moved
3952 */
dbc523a3
GS
3953 if (*imbalance < sds->busiest_load_per_task)
3954 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3955
dbc523a3 3956}
37abe198 3957/******* find_busiest_group() helpers end here *********************/
1da177e4 3958
b7bb4c9b
GS
3959/**
3960 * find_busiest_group - Returns the busiest group within the sched_domain
3961 * if there is an imbalance. If there isn't an imbalance, and
3962 * the user has opted for power-savings, it returns a group whose
3963 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3964 * such a group exists.
3965 *
3966 * Also calculates the amount of weighted load which should be moved
3967 * to restore balance.
3968 *
3969 * @sd: The sched_domain whose busiest group is to be returned.
3970 * @this_cpu: The cpu for which load balancing is currently being performed.
3971 * @imbalance: Variable which stores amount of weighted load which should
3972 * be moved to restore balance/put a group to idle.
3973 * @idle: The idle status of this_cpu.
3974 * @sd_idle: The idleness of sd
3975 * @cpus: The set of CPUs under consideration for load-balancing.
3976 * @balance: Pointer to a variable indicating if this_cpu
3977 * is the appropriate cpu to perform load balancing at this_level.
3978 *
3979 * Returns: - the busiest group if imbalance exists.
3980 * - If no imbalance and user has opted for power-savings balance,
3981 * return the least loaded group whose CPUs can be
3982 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3983 */
3984static struct sched_group *
3985find_busiest_group(struct sched_domain *sd, int this_cpu,
3986 unsigned long *imbalance, enum cpu_idle_type idle,
3987 int *sd_idle, const struct cpumask *cpus, int *balance)
3988{
3989 struct sd_lb_stats sds;
1da177e4 3990
37abe198 3991 memset(&sds, 0, sizeof(sds));
1da177e4 3992
37abe198
GS
3993 /*
3994 * Compute the various statistics relavent for load balancing at
3995 * this level.
3996 */
3997 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3998 balance, &sds);
3999
b7bb4c9b
GS
4000 /* Cases where imbalance does not exist from POV of this_cpu */
4001 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4002 * at this level.
4003 * 2) There is no busy sibling group to pull from.
4004 * 3) This group is the busiest group.
4005 * 4) This group is more busy than the avg busieness at this
4006 * sched_domain.
4007 * 5) The imbalance is within the specified limit.
4008 * 6) Any rebalance would lead to ping-pong
4009 */
37abe198
GS
4010 if (balance && !(*balance))
4011 goto ret;
1da177e4 4012
b7bb4c9b
GS
4013 if (!sds.busiest || sds.busiest_nr_running == 0)
4014 goto out_balanced;
1da177e4 4015
b7bb4c9b 4016 if (sds.this_load >= sds.max_load)
1da177e4 4017 goto out_balanced;
1da177e4 4018
222d656d 4019 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4020
b7bb4c9b
GS
4021 if (sds.this_load >= sds.avg_load)
4022 goto out_balanced;
4023
4024 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4025 goto out_balanced;
4026
222d656d
GS
4027 sds.busiest_load_per_task /= sds.busiest_nr_running;
4028 if (sds.group_imb)
4029 sds.busiest_load_per_task =
4030 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4031
1da177e4
LT
4032 /*
4033 * We're trying to get all the cpus to the average_load, so we don't
4034 * want to push ourselves above the average load, nor do we wish to
4035 * reduce the max loaded cpu below the average load, as either of these
4036 * actions would just result in more rebalancing later, and ping-pong
4037 * tasks around. Thus we look for the minimum possible imbalance.
4038 * Negative imbalances (*we* are more loaded than anyone else) will
4039 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4040 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4041 * appear as very large values with unsigned longs.
4042 */
222d656d 4043 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4044 goto out_balanced;
4045
dbc523a3
GS
4046 /* Looks like there is an imbalance. Compute it */
4047 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4048 return sds.busiest;
1da177e4
LT
4049
4050out_balanced:
c071df18
GS
4051 /*
4052 * There is no obvious imbalance. But check if we can do some balancing
4053 * to save power.
4054 */
4055 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4056 return sds.busiest;
783609c6 4057ret:
1da177e4
LT
4058 *imbalance = 0;
4059 return NULL;
4060}
4061
4062/*
4063 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4064 */
70b97a7f 4065static struct rq *
d15bcfdb 4066find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4067 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4068{
70b97a7f 4069 struct rq *busiest = NULL, *rq;
2dd73a4f 4070 unsigned long max_load = 0;
1da177e4
LT
4071 int i;
4072
758b2cdc 4073 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4074 unsigned long power = power_of(i);
4075 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4076 unsigned long wl;
0a2966b4 4077
96f874e2 4078 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4079 continue;
4080
48f24c4d 4081 rq = cpu_rq(i);
bdb94aa5
PZ
4082 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4083 wl /= power;
2dd73a4f 4084
bdb94aa5 4085 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4086 continue;
1da177e4 4087
dd41f596
IM
4088 if (wl > max_load) {
4089 max_load = wl;
48f24c4d 4090 busiest = rq;
1da177e4
LT
4091 }
4092 }
4093
4094 return busiest;
4095}
4096
77391d71
NP
4097/*
4098 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4099 * so long as it is large enough.
4100 */
4101#define MAX_PINNED_INTERVAL 512
4102
df7c8e84
RR
4103/* Working cpumask for load_balance and load_balance_newidle. */
4104static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4105
1da177e4
LT
4106/*
4107 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4108 * tasks if there is an imbalance.
1da177e4 4109 */
70b97a7f 4110static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4111 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4112 int *balance)
1da177e4 4113{
43010659 4114 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4115 struct sched_group *group;
1da177e4 4116 unsigned long imbalance;
70b97a7f 4117 struct rq *busiest;
fe2eea3f 4118 unsigned long flags;
df7c8e84 4119 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4120
6ad4c188 4121 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4122
89c4710e
SS
4123 /*
4124 * When power savings policy is enabled for the parent domain, idle
4125 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4126 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4127 * portraying it as CPU_NOT_IDLE.
89c4710e 4128 */
d15bcfdb 4129 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4130 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4131 sd_idle = 1;
1da177e4 4132
2d72376b 4133 schedstat_inc(sd, lb_count[idle]);
1da177e4 4134
0a2966b4 4135redo:
c8cba857 4136 update_shares(sd);
0a2966b4 4137 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4138 cpus, balance);
783609c6 4139
06066714 4140 if (*balance == 0)
783609c6 4141 goto out_balanced;
783609c6 4142
1da177e4
LT
4143 if (!group) {
4144 schedstat_inc(sd, lb_nobusyg[idle]);
4145 goto out_balanced;
4146 }
4147
7c16ec58 4148 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4149 if (!busiest) {
4150 schedstat_inc(sd, lb_nobusyq[idle]);
4151 goto out_balanced;
4152 }
4153
db935dbd 4154 BUG_ON(busiest == this_rq);
1da177e4
LT
4155
4156 schedstat_add(sd, lb_imbalance[idle], imbalance);
4157
43010659 4158 ld_moved = 0;
1da177e4
LT
4159 if (busiest->nr_running > 1) {
4160 /*
4161 * Attempt to move tasks. If find_busiest_group has found
4162 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4163 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4164 * correctly treated as an imbalance.
4165 */
fe2eea3f 4166 local_irq_save(flags);
e17224bf 4167 double_rq_lock(this_rq, busiest);
43010659 4168 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4169 imbalance, sd, idle, &all_pinned);
e17224bf 4170 double_rq_unlock(this_rq, busiest);
fe2eea3f 4171 local_irq_restore(flags);
81026794 4172
46cb4b7c
SS
4173 /*
4174 * some other cpu did the load balance for us.
4175 */
43010659 4176 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4177 resched_cpu(this_cpu);
4178
81026794 4179 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4180 if (unlikely(all_pinned)) {
96f874e2
RR
4181 cpumask_clear_cpu(cpu_of(busiest), cpus);
4182 if (!cpumask_empty(cpus))
0a2966b4 4183 goto redo;
81026794 4184 goto out_balanced;
0a2966b4 4185 }
1da177e4 4186 }
81026794 4187
43010659 4188 if (!ld_moved) {
1da177e4
LT
4189 schedstat_inc(sd, lb_failed[idle]);
4190 sd->nr_balance_failed++;
4191
4192 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4193
fe2eea3f 4194 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4195
4196 /* don't kick the migration_thread, if the curr
4197 * task on busiest cpu can't be moved to this_cpu
4198 */
96f874e2
RR
4199 if (!cpumask_test_cpu(this_cpu,
4200 &busiest->curr->cpus_allowed)) {
fe2eea3f 4201 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4202 all_pinned = 1;
4203 goto out_one_pinned;
4204 }
4205
1da177e4
LT
4206 if (!busiest->active_balance) {
4207 busiest->active_balance = 1;
4208 busiest->push_cpu = this_cpu;
81026794 4209 active_balance = 1;
1da177e4 4210 }
fe2eea3f 4211 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4212 if (active_balance)
1da177e4
LT
4213 wake_up_process(busiest->migration_thread);
4214
4215 /*
4216 * We've kicked active balancing, reset the failure
4217 * counter.
4218 */
39507451 4219 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4220 }
81026794 4221 } else
1da177e4
LT
4222 sd->nr_balance_failed = 0;
4223
81026794 4224 if (likely(!active_balance)) {
1da177e4
LT
4225 /* We were unbalanced, so reset the balancing interval */
4226 sd->balance_interval = sd->min_interval;
81026794
NP
4227 } else {
4228 /*
4229 * If we've begun active balancing, start to back off. This
4230 * case may not be covered by the all_pinned logic if there
4231 * is only 1 task on the busy runqueue (because we don't call
4232 * move_tasks).
4233 */
4234 if (sd->balance_interval < sd->max_interval)
4235 sd->balance_interval *= 2;
1da177e4
LT
4236 }
4237
43010659 4238 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4239 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4240 ld_moved = -1;
4241
4242 goto out;
1da177e4
LT
4243
4244out_balanced:
1da177e4
LT
4245 schedstat_inc(sd, lb_balanced[idle]);
4246
16cfb1c0 4247 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4248
4249out_one_pinned:
1da177e4 4250 /* tune up the balancing interval */
77391d71
NP
4251 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4252 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4253 sd->balance_interval *= 2;
4254
48f24c4d 4255 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4256 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4257 ld_moved = -1;
4258 else
4259 ld_moved = 0;
4260out:
c8cba857
PZ
4261 if (ld_moved)
4262 update_shares(sd);
c09595f6 4263 return ld_moved;
1da177e4
LT
4264}
4265
4266/*
4267 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4268 * tasks if there is an imbalance.
4269 *
d15bcfdb 4270 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4271 * this_rq is locked.
4272 */
48f24c4d 4273static int
df7c8e84 4274load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4275{
4276 struct sched_group *group;
70b97a7f 4277 struct rq *busiest = NULL;
1da177e4 4278 unsigned long imbalance;
43010659 4279 int ld_moved = 0;
5969fe06 4280 int sd_idle = 0;
969bb4e4 4281 int all_pinned = 0;
df7c8e84 4282 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4283
6ad4c188 4284 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4285
89c4710e
SS
4286 /*
4287 * When power savings policy is enabled for the parent domain, idle
4288 * sibling can pick up load irrespective of busy siblings. In this case,
4289 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4290 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4291 */
4292 if (sd->flags & SD_SHARE_CPUPOWER &&
4293 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4294 sd_idle = 1;
1da177e4 4295
2d72376b 4296 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4297redo:
3e5459b4 4298 update_shares_locked(this_rq, sd);
d15bcfdb 4299 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4300 &sd_idle, cpus, NULL);
1da177e4 4301 if (!group) {
d15bcfdb 4302 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4303 goto out_balanced;
1da177e4
LT
4304 }
4305
7c16ec58 4306 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4307 if (!busiest) {
d15bcfdb 4308 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4309 goto out_balanced;
1da177e4
LT
4310 }
4311
db935dbd
NP
4312 BUG_ON(busiest == this_rq);
4313
d15bcfdb 4314 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4315
43010659 4316 ld_moved = 0;
d6d5cfaf
NP
4317 if (busiest->nr_running > 1) {
4318 /* Attempt to move tasks */
4319 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4320 /* this_rq->clock is already updated */
4321 update_rq_clock(busiest);
43010659 4322 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4323 imbalance, sd, CPU_NEWLY_IDLE,
4324 &all_pinned);
1b12bbc7 4325 double_unlock_balance(this_rq, busiest);
0a2966b4 4326
969bb4e4 4327 if (unlikely(all_pinned)) {
96f874e2
RR
4328 cpumask_clear_cpu(cpu_of(busiest), cpus);
4329 if (!cpumask_empty(cpus))
0a2966b4
CL
4330 goto redo;
4331 }
d6d5cfaf
NP
4332 }
4333
43010659 4334 if (!ld_moved) {
36dffab6 4335 int active_balance = 0;
ad273b32 4336
d15bcfdb 4337 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4338 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4339 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4340 return -1;
ad273b32
VS
4341
4342 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4343 return -1;
4344
4345 if (sd->nr_balance_failed++ < 2)
4346 return -1;
4347
4348 /*
4349 * The only task running in a non-idle cpu can be moved to this
4350 * cpu in an attempt to completely freeup the other CPU
4351 * package. The same method used to move task in load_balance()
4352 * have been extended for load_balance_newidle() to speedup
4353 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4354 *
4355 * The package power saving logic comes from
4356 * find_busiest_group(). If there are no imbalance, then
4357 * f_b_g() will return NULL. However when sched_mc={1,2} then
4358 * f_b_g() will select a group from which a running task may be
4359 * pulled to this cpu in order to make the other package idle.
4360 * If there is no opportunity to make a package idle and if
4361 * there are no imbalance, then f_b_g() will return NULL and no
4362 * action will be taken in load_balance_newidle().
4363 *
4364 * Under normal task pull operation due to imbalance, there
4365 * will be more than one task in the source run queue and
4366 * move_tasks() will succeed. ld_moved will be true and this
4367 * active balance code will not be triggered.
4368 */
4369
4370 /* Lock busiest in correct order while this_rq is held */
4371 double_lock_balance(this_rq, busiest);
4372
4373 /*
4374 * don't kick the migration_thread, if the curr
4375 * task on busiest cpu can't be moved to this_cpu
4376 */
6ca09dfc 4377 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4378 double_unlock_balance(this_rq, busiest);
4379 all_pinned = 1;
4380 return ld_moved;
4381 }
4382
4383 if (!busiest->active_balance) {
4384 busiest->active_balance = 1;
4385 busiest->push_cpu = this_cpu;
4386 active_balance = 1;
4387 }
4388
4389 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4390 /*
4391 * Should not call ttwu while holding a rq->lock
4392 */
4393 spin_unlock(&this_rq->lock);
ad273b32
VS
4394 if (active_balance)
4395 wake_up_process(busiest->migration_thread);
da8d5089 4396 spin_lock(&this_rq->lock);
ad273b32 4397
5969fe06 4398 } else
16cfb1c0 4399 sd->nr_balance_failed = 0;
1da177e4 4400
3e5459b4 4401 update_shares_locked(this_rq, sd);
43010659 4402 return ld_moved;
16cfb1c0
NP
4403
4404out_balanced:
d15bcfdb 4405 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4406 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4407 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4408 return -1;
16cfb1c0 4409 sd->nr_balance_failed = 0;
48f24c4d 4410
16cfb1c0 4411 return 0;
1da177e4
LT
4412}
4413
4414/*
4415 * idle_balance is called by schedule() if this_cpu is about to become
4416 * idle. Attempts to pull tasks from other CPUs.
4417 */
70b97a7f 4418static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4419{
4420 struct sched_domain *sd;
efbe027e 4421 int pulled_task = 0;
dd41f596 4422 unsigned long next_balance = jiffies + HZ;
1da177e4 4423
1b9508f6
MG
4424 this_rq->idle_stamp = this_rq->clock;
4425
4426 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4427 return;
4428
1da177e4 4429 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4430 unsigned long interval;
4431
4432 if (!(sd->flags & SD_LOAD_BALANCE))
4433 continue;
4434
4435 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4436 /* If we've pulled tasks over stop searching: */
7c16ec58 4437 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4438 sd);
92c4ca5c
CL
4439
4440 interval = msecs_to_jiffies(sd->balance_interval);
4441 if (time_after(next_balance, sd->last_balance + interval))
4442 next_balance = sd->last_balance + interval;
1b9508f6
MG
4443 if (pulled_task) {
4444 this_rq->idle_stamp = 0;
92c4ca5c 4445 break;
1b9508f6 4446 }
1da177e4 4447 }
dd41f596 4448 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4449 /*
4450 * We are going idle. next_balance may be set based on
4451 * a busy processor. So reset next_balance.
4452 */
4453 this_rq->next_balance = next_balance;
dd41f596 4454 }
1da177e4
LT
4455}
4456
4457/*
4458 * active_load_balance is run by migration threads. It pushes running tasks
4459 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4460 * running on each physical CPU where possible, and avoids physical /
4461 * logical imbalances.
4462 *
4463 * Called with busiest_rq locked.
4464 */
70b97a7f 4465static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4466{
39507451 4467 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4468 struct sched_domain *sd;
4469 struct rq *target_rq;
39507451 4470
48f24c4d 4471 /* Is there any task to move? */
39507451 4472 if (busiest_rq->nr_running <= 1)
39507451
NP
4473 return;
4474
4475 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4476
4477 /*
39507451 4478 * This condition is "impossible", if it occurs
41a2d6cf 4479 * we need to fix it. Originally reported by
39507451 4480 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4481 */
39507451 4482 BUG_ON(busiest_rq == target_rq);
1da177e4 4483
39507451
NP
4484 /* move a task from busiest_rq to target_rq */
4485 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4486 update_rq_clock(busiest_rq);
4487 update_rq_clock(target_rq);
39507451
NP
4488
4489 /* Search for an sd spanning us and the target CPU. */
c96d145e 4490 for_each_domain(target_cpu, sd) {
39507451 4491 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4492 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4493 break;
c96d145e 4494 }
39507451 4495
48f24c4d 4496 if (likely(sd)) {
2d72376b 4497 schedstat_inc(sd, alb_count);
39507451 4498
43010659
PW
4499 if (move_one_task(target_rq, target_cpu, busiest_rq,
4500 sd, CPU_IDLE))
48f24c4d
IM
4501 schedstat_inc(sd, alb_pushed);
4502 else
4503 schedstat_inc(sd, alb_failed);
4504 }
1b12bbc7 4505 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4506}
4507
46cb4b7c
SS
4508#ifdef CONFIG_NO_HZ
4509static struct {
4510 atomic_t load_balancer;
7d1e6a9b 4511 cpumask_var_t cpu_mask;
f711f609 4512 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4513} nohz ____cacheline_aligned = {
4514 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4515};
4516
eea08f32
AB
4517int get_nohz_load_balancer(void)
4518{
4519 return atomic_read(&nohz.load_balancer);
4520}
4521
f711f609
GS
4522#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4523/**
4524 * lowest_flag_domain - Return lowest sched_domain containing flag.
4525 * @cpu: The cpu whose lowest level of sched domain is to
4526 * be returned.
4527 * @flag: The flag to check for the lowest sched_domain
4528 * for the given cpu.
4529 *
4530 * Returns the lowest sched_domain of a cpu which contains the given flag.
4531 */
4532static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4533{
4534 struct sched_domain *sd;
4535
4536 for_each_domain(cpu, sd)
4537 if (sd && (sd->flags & flag))
4538 break;
4539
4540 return sd;
4541}
4542
4543/**
4544 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4545 * @cpu: The cpu whose domains we're iterating over.
4546 * @sd: variable holding the value of the power_savings_sd
4547 * for cpu.
4548 * @flag: The flag to filter the sched_domains to be iterated.
4549 *
4550 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4551 * set, starting from the lowest sched_domain to the highest.
4552 */
4553#define for_each_flag_domain(cpu, sd, flag) \
4554 for (sd = lowest_flag_domain(cpu, flag); \
4555 (sd && (sd->flags & flag)); sd = sd->parent)
4556
4557/**
4558 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4559 * @ilb_group: group to be checked for semi-idleness
4560 *
4561 * Returns: 1 if the group is semi-idle. 0 otherwise.
4562 *
4563 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4564 * and atleast one non-idle CPU. This helper function checks if the given
4565 * sched_group is semi-idle or not.
4566 */
4567static inline int is_semi_idle_group(struct sched_group *ilb_group)
4568{
4569 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4570 sched_group_cpus(ilb_group));
4571
4572 /*
4573 * A sched_group is semi-idle when it has atleast one busy cpu
4574 * and atleast one idle cpu.
4575 */
4576 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4577 return 0;
4578
4579 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4580 return 0;
4581
4582 return 1;
4583}
4584/**
4585 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4586 * @cpu: The cpu which is nominating a new idle_load_balancer.
4587 *
4588 * Returns: Returns the id of the idle load balancer if it exists,
4589 * Else, returns >= nr_cpu_ids.
4590 *
4591 * This algorithm picks the idle load balancer such that it belongs to a
4592 * semi-idle powersavings sched_domain. The idea is to try and avoid
4593 * completely idle packages/cores just for the purpose of idle load balancing
4594 * when there are other idle cpu's which are better suited for that job.
4595 */
4596static int find_new_ilb(int cpu)
4597{
4598 struct sched_domain *sd;
4599 struct sched_group *ilb_group;
4600
4601 /*
4602 * Have idle load balancer selection from semi-idle packages only
4603 * when power-aware load balancing is enabled
4604 */
4605 if (!(sched_smt_power_savings || sched_mc_power_savings))
4606 goto out_done;
4607
4608 /*
4609 * Optimize for the case when we have no idle CPUs or only one
4610 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4611 */
4612 if (cpumask_weight(nohz.cpu_mask) < 2)
4613 goto out_done;
4614
4615 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4616 ilb_group = sd->groups;
4617
4618 do {
4619 if (is_semi_idle_group(ilb_group))
4620 return cpumask_first(nohz.ilb_grp_nohz_mask);
4621
4622 ilb_group = ilb_group->next;
4623
4624 } while (ilb_group != sd->groups);
4625 }
4626
4627out_done:
4628 return cpumask_first(nohz.cpu_mask);
4629}
4630#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4631static inline int find_new_ilb(int call_cpu)
4632{
6e29ec57 4633 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4634}
4635#endif
4636
7835b98b 4637/*
46cb4b7c
SS
4638 * This routine will try to nominate the ilb (idle load balancing)
4639 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4640 * load balancing on behalf of all those cpus. If all the cpus in the system
4641 * go into this tickless mode, then there will be no ilb owner (as there is
4642 * no need for one) and all the cpus will sleep till the next wakeup event
4643 * arrives...
4644 *
4645 * For the ilb owner, tick is not stopped. And this tick will be used
4646 * for idle load balancing. ilb owner will still be part of
4647 * nohz.cpu_mask..
7835b98b 4648 *
46cb4b7c
SS
4649 * While stopping the tick, this cpu will become the ilb owner if there
4650 * is no other owner. And will be the owner till that cpu becomes busy
4651 * or if all cpus in the system stop their ticks at which point
4652 * there is no need for ilb owner.
4653 *
4654 * When the ilb owner becomes busy, it nominates another owner, during the
4655 * next busy scheduler_tick()
4656 */
4657int select_nohz_load_balancer(int stop_tick)
4658{
4659 int cpu = smp_processor_id();
4660
4661 if (stop_tick) {
46cb4b7c
SS
4662 cpu_rq(cpu)->in_nohz_recently = 1;
4663
483b4ee6
SS
4664 if (!cpu_active(cpu)) {
4665 if (atomic_read(&nohz.load_balancer) != cpu)
4666 return 0;
4667
4668 /*
4669 * If we are going offline and still the leader,
4670 * give up!
4671 */
46cb4b7c
SS
4672 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4673 BUG();
483b4ee6 4674
46cb4b7c
SS
4675 return 0;
4676 }
4677
483b4ee6
SS
4678 cpumask_set_cpu(cpu, nohz.cpu_mask);
4679
46cb4b7c 4680 /* time for ilb owner also to sleep */
6ad4c188 4681 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4682 if (atomic_read(&nohz.load_balancer) == cpu)
4683 atomic_set(&nohz.load_balancer, -1);
4684 return 0;
4685 }
4686
4687 if (atomic_read(&nohz.load_balancer) == -1) {
4688 /* make me the ilb owner */
4689 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4690 return 1;
e790fb0b
GS
4691 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4692 int new_ilb;
4693
4694 if (!(sched_smt_power_savings ||
4695 sched_mc_power_savings))
4696 return 1;
4697 /*
4698 * Check to see if there is a more power-efficient
4699 * ilb.
4700 */
4701 new_ilb = find_new_ilb(cpu);
4702 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4703 atomic_set(&nohz.load_balancer, -1);
4704 resched_cpu(new_ilb);
4705 return 0;
4706 }
46cb4b7c 4707 return 1;
e790fb0b 4708 }
46cb4b7c 4709 } else {
7d1e6a9b 4710 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4711 return 0;
4712
7d1e6a9b 4713 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4714
4715 if (atomic_read(&nohz.load_balancer) == cpu)
4716 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4717 BUG();
4718 }
4719 return 0;
4720}
4721#endif
4722
4723static DEFINE_SPINLOCK(balancing);
4724
4725/*
7835b98b
CL
4726 * It checks each scheduling domain to see if it is due to be balanced,
4727 * and initiates a balancing operation if so.
4728 *
4729 * Balancing parameters are set up in arch_init_sched_domains.
4730 */
a9957449 4731static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4732{
46cb4b7c
SS
4733 int balance = 1;
4734 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4735 unsigned long interval;
4736 struct sched_domain *sd;
46cb4b7c 4737 /* Earliest time when we have to do rebalance again */
c9819f45 4738 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4739 int update_next_balance = 0;
d07355f5 4740 int need_serialize;
1da177e4 4741
46cb4b7c 4742 for_each_domain(cpu, sd) {
1da177e4
LT
4743 if (!(sd->flags & SD_LOAD_BALANCE))
4744 continue;
4745
4746 interval = sd->balance_interval;
d15bcfdb 4747 if (idle != CPU_IDLE)
1da177e4
LT
4748 interval *= sd->busy_factor;
4749
4750 /* scale ms to jiffies */
4751 interval = msecs_to_jiffies(interval);
4752 if (unlikely(!interval))
4753 interval = 1;
dd41f596
IM
4754 if (interval > HZ*NR_CPUS/10)
4755 interval = HZ*NR_CPUS/10;
4756
d07355f5 4757 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4758
d07355f5 4759 if (need_serialize) {
08c183f3
CL
4760 if (!spin_trylock(&balancing))
4761 goto out;
4762 }
4763
c9819f45 4764 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4765 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4766 /*
4767 * We've pulled tasks over so either we're no
5969fe06
NP
4768 * longer idle, or one of our SMT siblings is
4769 * not idle.
4770 */
d15bcfdb 4771 idle = CPU_NOT_IDLE;
1da177e4 4772 }
1bd77f2d 4773 sd->last_balance = jiffies;
1da177e4 4774 }
d07355f5 4775 if (need_serialize)
08c183f3
CL
4776 spin_unlock(&balancing);
4777out:
f549da84 4778 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4779 next_balance = sd->last_balance + interval;
f549da84
SS
4780 update_next_balance = 1;
4781 }
783609c6
SS
4782
4783 /*
4784 * Stop the load balance at this level. There is another
4785 * CPU in our sched group which is doing load balancing more
4786 * actively.
4787 */
4788 if (!balance)
4789 break;
1da177e4 4790 }
f549da84
SS
4791
4792 /*
4793 * next_balance will be updated only when there is a need.
4794 * When the cpu is attached to null domain for ex, it will not be
4795 * updated.
4796 */
4797 if (likely(update_next_balance))
4798 rq->next_balance = next_balance;
46cb4b7c
SS
4799}
4800
4801/*
4802 * run_rebalance_domains is triggered when needed from the scheduler tick.
4803 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4804 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4805 */
4806static void run_rebalance_domains(struct softirq_action *h)
4807{
dd41f596
IM
4808 int this_cpu = smp_processor_id();
4809 struct rq *this_rq = cpu_rq(this_cpu);
4810 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4811 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4812
dd41f596 4813 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4814
4815#ifdef CONFIG_NO_HZ
4816 /*
4817 * If this cpu is the owner for idle load balancing, then do the
4818 * balancing on behalf of the other idle cpus whose ticks are
4819 * stopped.
4820 */
dd41f596
IM
4821 if (this_rq->idle_at_tick &&
4822 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4823 struct rq *rq;
4824 int balance_cpu;
4825
7d1e6a9b
RR
4826 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4827 if (balance_cpu == this_cpu)
4828 continue;
4829
46cb4b7c
SS
4830 /*
4831 * If this cpu gets work to do, stop the load balancing
4832 * work being done for other cpus. Next load
4833 * balancing owner will pick it up.
4834 */
4835 if (need_resched())
4836 break;
4837
de0cf899 4838 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4839
4840 rq = cpu_rq(balance_cpu);
dd41f596
IM
4841 if (time_after(this_rq->next_balance, rq->next_balance))
4842 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4843 }
4844 }
4845#endif
4846}
4847
8a0be9ef
FW
4848static inline int on_null_domain(int cpu)
4849{
4850 return !rcu_dereference(cpu_rq(cpu)->sd);
4851}
4852
46cb4b7c
SS
4853/*
4854 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4855 *
4856 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4857 * idle load balancing owner or decide to stop the periodic load balancing,
4858 * if the whole system is idle.
4859 */
dd41f596 4860static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4861{
46cb4b7c
SS
4862#ifdef CONFIG_NO_HZ
4863 /*
4864 * If we were in the nohz mode recently and busy at the current
4865 * scheduler tick, then check if we need to nominate new idle
4866 * load balancer.
4867 */
4868 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4869 rq->in_nohz_recently = 0;
4870
4871 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4872 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4873 atomic_set(&nohz.load_balancer, -1);
4874 }
4875
4876 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4877 int ilb = find_new_ilb(cpu);
46cb4b7c 4878
434d53b0 4879 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4880 resched_cpu(ilb);
4881 }
4882 }
4883
4884 /*
4885 * If this cpu is idle and doing idle load balancing for all the
4886 * cpus with ticks stopped, is it time for that to stop?
4887 */
4888 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4889 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4890 resched_cpu(cpu);
4891 return;
4892 }
4893
4894 /*
4895 * If this cpu is idle and the idle load balancing is done by
4896 * someone else, then no need raise the SCHED_SOFTIRQ
4897 */
4898 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4899 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4900 return;
4901#endif
8a0be9ef
FW
4902 /* Don't need to rebalance while attached to NULL domain */
4903 if (time_after_eq(jiffies, rq->next_balance) &&
4904 likely(!on_null_domain(cpu)))
46cb4b7c 4905 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4906}
dd41f596
IM
4907
4908#else /* CONFIG_SMP */
4909
1da177e4
LT
4910/*
4911 * on UP we do not need to balance between CPUs:
4912 */
70b97a7f 4913static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4914{
4915}
dd41f596 4916
1da177e4
LT
4917#endif
4918
1da177e4
LT
4919DEFINE_PER_CPU(struct kernel_stat, kstat);
4920
4921EXPORT_PER_CPU_SYMBOL(kstat);
4922
4923/*
c5f8d995 4924 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4925 * @p in case that task is currently running.
c5f8d995
HS
4926 *
4927 * Called with task_rq_lock() held on @rq.
1da177e4 4928 */
c5f8d995
HS
4929static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4930{
4931 u64 ns = 0;
4932
4933 if (task_current(rq, p)) {
4934 update_rq_clock(rq);
4935 ns = rq->clock - p->se.exec_start;
4936 if ((s64)ns < 0)
4937 ns = 0;
4938 }
4939
4940 return ns;
4941}
4942
bb34d92f 4943unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4944{
1da177e4 4945 unsigned long flags;
41b86e9c 4946 struct rq *rq;
bb34d92f 4947 u64 ns = 0;
48f24c4d 4948
41b86e9c 4949 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4950 ns = do_task_delta_exec(p, rq);
4951 task_rq_unlock(rq, &flags);
1508487e 4952
c5f8d995
HS
4953 return ns;
4954}
f06febc9 4955
c5f8d995
HS
4956/*
4957 * Return accounted runtime for the task.
4958 * In case the task is currently running, return the runtime plus current's
4959 * pending runtime that have not been accounted yet.
4960 */
4961unsigned long long task_sched_runtime(struct task_struct *p)
4962{
4963 unsigned long flags;
4964 struct rq *rq;
4965 u64 ns = 0;
4966
4967 rq = task_rq_lock(p, &flags);
4968 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4969 task_rq_unlock(rq, &flags);
4970
4971 return ns;
4972}
48f24c4d 4973
c5f8d995
HS
4974/*
4975 * Return sum_exec_runtime for the thread group.
4976 * In case the task is currently running, return the sum plus current's
4977 * pending runtime that have not been accounted yet.
4978 *
4979 * Note that the thread group might have other running tasks as well,
4980 * so the return value not includes other pending runtime that other
4981 * running tasks might have.
4982 */
4983unsigned long long thread_group_sched_runtime(struct task_struct *p)
4984{
4985 struct task_cputime totals;
4986 unsigned long flags;
4987 struct rq *rq;
4988 u64 ns;
4989
4990 rq = task_rq_lock(p, &flags);
4991 thread_group_cputime(p, &totals);
4992 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4993 task_rq_unlock(rq, &flags);
48f24c4d 4994
1da177e4
LT
4995 return ns;
4996}
4997
1da177e4
LT
4998/*
4999 * Account user cpu time to a process.
5000 * @p: the process that the cpu time gets accounted to
1da177e4 5001 * @cputime: the cpu time spent in user space since the last update
457533a7 5002 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5003 */
457533a7
MS
5004void account_user_time(struct task_struct *p, cputime_t cputime,
5005 cputime_t cputime_scaled)
1da177e4
LT
5006{
5007 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5008 cputime64_t tmp;
5009
457533a7 5010 /* Add user time to process. */
1da177e4 5011 p->utime = cputime_add(p->utime, cputime);
457533a7 5012 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5013 account_group_user_time(p, cputime);
1da177e4
LT
5014
5015 /* Add user time to cpustat. */
5016 tmp = cputime_to_cputime64(cputime);
5017 if (TASK_NICE(p) > 0)
5018 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5019 else
5020 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5021
5022 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5023 /* Account for user time used */
5024 acct_update_integrals(p);
1da177e4
LT
5025}
5026
94886b84
LV
5027/*
5028 * Account guest cpu time to a process.
5029 * @p: the process that the cpu time gets accounted to
5030 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5031 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5032 */
457533a7
MS
5033static void account_guest_time(struct task_struct *p, cputime_t cputime,
5034 cputime_t cputime_scaled)
94886b84
LV
5035{
5036 cputime64_t tmp;
5037 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5038
5039 tmp = cputime_to_cputime64(cputime);
5040
457533a7 5041 /* Add guest time to process. */
94886b84 5042 p->utime = cputime_add(p->utime, cputime);
457533a7 5043 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5044 account_group_user_time(p, cputime);
94886b84
LV
5045 p->gtime = cputime_add(p->gtime, cputime);
5046
457533a7 5047 /* Add guest time to cpustat. */
ce0e7b28
RO
5048 if (TASK_NICE(p) > 0) {
5049 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5050 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5051 } else {
5052 cpustat->user = cputime64_add(cpustat->user, tmp);
5053 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5054 }
94886b84
LV
5055}
5056
1da177e4
LT
5057/*
5058 * Account system cpu time to a process.
5059 * @p: the process that the cpu time gets accounted to
5060 * @hardirq_offset: the offset to subtract from hardirq_count()
5061 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5062 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5063 */
5064void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5065 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5066{
5067 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5068 cputime64_t tmp;
5069
983ed7a6 5070 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5071 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5072 return;
5073 }
94886b84 5074
457533a7 5075 /* Add system time to process. */
1da177e4 5076 p->stime = cputime_add(p->stime, cputime);
457533a7 5077 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5078 account_group_system_time(p, cputime);
1da177e4
LT
5079
5080 /* Add system time to cpustat. */
5081 tmp = cputime_to_cputime64(cputime);
5082 if (hardirq_count() - hardirq_offset)
5083 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5084 else if (softirq_count())
5085 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5086 else
79741dd3
MS
5087 cpustat->system = cputime64_add(cpustat->system, tmp);
5088
ef12fefa
BR
5089 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5090
1da177e4
LT
5091 /* Account for system time used */
5092 acct_update_integrals(p);
1da177e4
LT
5093}
5094
c66f08be 5095/*
1da177e4 5096 * Account for involuntary wait time.
1da177e4 5097 * @steal: the cpu time spent in involuntary wait
c66f08be 5098 */
79741dd3 5099void account_steal_time(cputime_t cputime)
c66f08be 5100{
79741dd3
MS
5101 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5102 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5103
5104 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5105}
5106
1da177e4 5107/*
79741dd3
MS
5108 * Account for idle time.
5109 * @cputime: the cpu time spent in idle wait
1da177e4 5110 */
79741dd3 5111void account_idle_time(cputime_t cputime)
1da177e4
LT
5112{
5113 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5114 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5115 struct rq *rq = this_rq();
1da177e4 5116
79741dd3
MS
5117 if (atomic_read(&rq->nr_iowait) > 0)
5118 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5119 else
5120 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5121}
5122
79741dd3
MS
5123#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5124
5125/*
5126 * Account a single tick of cpu time.
5127 * @p: the process that the cpu time gets accounted to
5128 * @user_tick: indicates if the tick is a user or a system tick
5129 */
5130void account_process_tick(struct task_struct *p, int user_tick)
5131{
a42548a1 5132 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5133 struct rq *rq = this_rq();
5134
5135 if (user_tick)
a42548a1 5136 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5137 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5138 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5139 one_jiffy_scaled);
5140 else
a42548a1 5141 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5142}
5143
5144/*
5145 * Account multiple ticks of steal time.
5146 * @p: the process from which the cpu time has been stolen
5147 * @ticks: number of stolen ticks
5148 */
5149void account_steal_ticks(unsigned long ticks)
5150{
5151 account_steal_time(jiffies_to_cputime(ticks));
5152}
5153
5154/*
5155 * Account multiple ticks of idle time.
5156 * @ticks: number of stolen ticks
5157 */
5158void account_idle_ticks(unsigned long ticks)
5159{
5160 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5161}
5162
79741dd3
MS
5163#endif
5164
49048622
BS
5165/*
5166 * Use precise platform statistics if available:
5167 */
5168#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5169void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5170{
d99ca3b9
HS
5171 *ut = p->utime;
5172 *st = p->stime;
49048622
BS
5173}
5174
0cf55e1e 5175void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5176{
0cf55e1e
HS
5177 struct task_cputime cputime;
5178
5179 thread_group_cputime(p, &cputime);
5180
5181 *ut = cputime.utime;
5182 *st = cputime.stime;
49048622
BS
5183}
5184#else
761b1d26
HS
5185
5186#ifndef nsecs_to_cputime
b7b20df9 5187# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5188#endif
5189
d180c5bc 5190void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5191{
d99ca3b9 5192 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5193
5194 /*
5195 * Use CFS's precise accounting:
5196 */
d180c5bc 5197 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5198
5199 if (total) {
d180c5bc
HS
5200 u64 temp;
5201
5202 temp = (u64)(rtime * utime);
49048622 5203 do_div(temp, total);
d180c5bc
HS
5204 utime = (cputime_t)temp;
5205 } else
5206 utime = rtime;
49048622 5207
d180c5bc
HS
5208 /*
5209 * Compare with previous values, to keep monotonicity:
5210 */
761b1d26 5211 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5212 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5213
d99ca3b9
HS
5214 *ut = p->prev_utime;
5215 *st = p->prev_stime;
49048622
BS
5216}
5217
0cf55e1e
HS
5218/*
5219 * Must be called with siglock held.
5220 */
5221void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5222{
0cf55e1e
HS
5223 struct signal_struct *sig = p->signal;
5224 struct task_cputime cputime;
5225 cputime_t rtime, utime, total;
49048622 5226
0cf55e1e 5227 thread_group_cputime(p, &cputime);
49048622 5228
0cf55e1e
HS
5229 total = cputime_add(cputime.utime, cputime.stime);
5230 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5231
0cf55e1e
HS
5232 if (total) {
5233 u64 temp;
49048622 5234
0cf55e1e
HS
5235 temp = (u64)(rtime * cputime.utime);
5236 do_div(temp, total);
5237 utime = (cputime_t)temp;
5238 } else
5239 utime = rtime;
5240
5241 sig->prev_utime = max(sig->prev_utime, utime);
5242 sig->prev_stime = max(sig->prev_stime,
5243 cputime_sub(rtime, sig->prev_utime));
5244
5245 *ut = sig->prev_utime;
5246 *st = sig->prev_stime;
49048622 5247}
49048622 5248#endif
49048622 5249
7835b98b
CL
5250/*
5251 * This function gets called by the timer code, with HZ frequency.
5252 * We call it with interrupts disabled.
5253 *
5254 * It also gets called by the fork code, when changing the parent's
5255 * timeslices.
5256 */
5257void scheduler_tick(void)
5258{
7835b98b
CL
5259 int cpu = smp_processor_id();
5260 struct rq *rq = cpu_rq(cpu);
dd41f596 5261 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5262
5263 sched_clock_tick();
dd41f596
IM
5264
5265 spin_lock(&rq->lock);
3e51f33f 5266 update_rq_clock(rq);
f1a438d8 5267 update_cpu_load(rq);
fa85ae24 5268 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5269 spin_unlock(&rq->lock);
7835b98b 5270
cdd6c482 5271 perf_event_task_tick(curr, cpu);
e220d2dc 5272
e418e1c2 5273#ifdef CONFIG_SMP
dd41f596
IM
5274 rq->idle_at_tick = idle_cpu(cpu);
5275 trigger_load_balance(rq, cpu);
e418e1c2 5276#endif
1da177e4
LT
5277}
5278
132380a0 5279notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5280{
5281 if (in_lock_functions(addr)) {
5282 addr = CALLER_ADDR2;
5283 if (in_lock_functions(addr))
5284 addr = CALLER_ADDR3;
5285 }
5286 return addr;
5287}
1da177e4 5288
7e49fcce
SR
5289#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5290 defined(CONFIG_PREEMPT_TRACER))
5291
43627582 5292void __kprobes add_preempt_count(int val)
1da177e4 5293{
6cd8a4bb 5294#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5295 /*
5296 * Underflow?
5297 */
9a11b49a
IM
5298 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5299 return;
6cd8a4bb 5300#endif
1da177e4 5301 preempt_count() += val;
6cd8a4bb 5302#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5303 /*
5304 * Spinlock count overflowing soon?
5305 */
33859f7f
MOS
5306 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5307 PREEMPT_MASK - 10);
6cd8a4bb
SR
5308#endif
5309 if (preempt_count() == val)
5310 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5311}
5312EXPORT_SYMBOL(add_preempt_count);
5313
43627582 5314void __kprobes sub_preempt_count(int val)
1da177e4 5315{
6cd8a4bb 5316#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5317 /*
5318 * Underflow?
5319 */
01e3eb82 5320 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5321 return;
1da177e4
LT
5322 /*
5323 * Is the spinlock portion underflowing?
5324 */
9a11b49a
IM
5325 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5326 !(preempt_count() & PREEMPT_MASK)))
5327 return;
6cd8a4bb 5328#endif
9a11b49a 5329
6cd8a4bb
SR
5330 if (preempt_count() == val)
5331 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5332 preempt_count() -= val;
5333}
5334EXPORT_SYMBOL(sub_preempt_count);
5335
5336#endif
5337
5338/*
dd41f596 5339 * Print scheduling while atomic bug:
1da177e4 5340 */
dd41f596 5341static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5342{
838225b4
SS
5343 struct pt_regs *regs = get_irq_regs();
5344
5345 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5346 prev->comm, prev->pid, preempt_count());
5347
dd41f596 5348 debug_show_held_locks(prev);
e21f5b15 5349 print_modules();
dd41f596
IM
5350 if (irqs_disabled())
5351 print_irqtrace_events(prev);
838225b4
SS
5352
5353 if (regs)
5354 show_regs(regs);
5355 else
5356 dump_stack();
dd41f596 5357}
1da177e4 5358
dd41f596
IM
5359/*
5360 * Various schedule()-time debugging checks and statistics:
5361 */
5362static inline void schedule_debug(struct task_struct *prev)
5363{
1da177e4 5364 /*
41a2d6cf 5365 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5366 * schedule() atomically, we ignore that path for now.
5367 * Otherwise, whine if we are scheduling when we should not be.
5368 */
3f33a7ce 5369 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5370 __schedule_bug(prev);
5371
1da177e4
LT
5372 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5373
2d72376b 5374 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5375#ifdef CONFIG_SCHEDSTATS
5376 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5377 schedstat_inc(this_rq(), bkl_count);
5378 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5379 }
5380#endif
dd41f596
IM
5381}
5382
6cecd084 5383static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5384{
6cecd084
PZ
5385 if (prev->state == TASK_RUNNING) {
5386 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5387
6cecd084
PZ
5388 runtime -= prev->se.prev_sum_exec_runtime;
5389 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5390
5391 /*
5392 * In order to avoid avg_overlap growing stale when we are
5393 * indeed overlapping and hence not getting put to sleep, grow
5394 * the avg_overlap on preemption.
5395 *
5396 * We use the average preemption runtime because that
5397 * correlates to the amount of cache footprint a task can
5398 * build up.
5399 */
6cecd084 5400 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5401 }
6cecd084 5402 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5403}
5404
dd41f596
IM
5405/*
5406 * Pick up the highest-prio task:
5407 */
5408static inline struct task_struct *
b67802ea 5409pick_next_task(struct rq *rq)
dd41f596 5410{
5522d5d5 5411 const struct sched_class *class;
dd41f596 5412 struct task_struct *p;
1da177e4
LT
5413
5414 /*
dd41f596
IM
5415 * Optimization: we know that if all tasks are in
5416 * the fair class we can call that function directly:
1da177e4 5417 */
dd41f596 5418 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5419 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5420 if (likely(p))
5421 return p;
1da177e4
LT
5422 }
5423
dd41f596
IM
5424 class = sched_class_highest;
5425 for ( ; ; ) {
fb8d4724 5426 p = class->pick_next_task(rq);
dd41f596
IM
5427 if (p)
5428 return p;
5429 /*
5430 * Will never be NULL as the idle class always
5431 * returns a non-NULL p:
5432 */
5433 class = class->next;
5434 }
5435}
1da177e4 5436
dd41f596
IM
5437/*
5438 * schedule() is the main scheduler function.
5439 */
ff743345 5440asmlinkage void __sched schedule(void)
dd41f596
IM
5441{
5442 struct task_struct *prev, *next;
67ca7bde 5443 unsigned long *switch_count;
dd41f596 5444 struct rq *rq;
31656519 5445 int cpu;
dd41f596 5446
ff743345
PZ
5447need_resched:
5448 preempt_disable();
dd41f596
IM
5449 cpu = smp_processor_id();
5450 rq = cpu_rq(cpu);
d6714c22 5451 rcu_sched_qs(cpu);
dd41f596
IM
5452 prev = rq->curr;
5453 switch_count = &prev->nivcsw;
5454
5455 release_kernel_lock(prev);
5456need_resched_nonpreemptible:
5457
5458 schedule_debug(prev);
1da177e4 5459
31656519 5460 if (sched_feat(HRTICK))
f333fdc9 5461 hrtick_clear(rq);
8f4d37ec 5462
8cd162ce 5463 spin_lock_irq(&rq->lock);
3e51f33f 5464 update_rq_clock(rq);
1e819950 5465 clear_tsk_need_resched(prev);
1da177e4 5466
1da177e4 5467 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5468 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5469 prev->state = TASK_RUNNING;
16882c1e 5470 else
2e1cb74a 5471 deactivate_task(rq, prev, 1);
dd41f596 5472 switch_count = &prev->nvcsw;
1da177e4
LT
5473 }
5474
3f029d3c 5475 pre_schedule(rq, prev);
f65eda4f 5476
dd41f596 5477 if (unlikely(!rq->nr_running))
1da177e4 5478 idle_balance(cpu, rq);
1da177e4 5479
df1c99d4 5480 put_prev_task(rq, prev);
b67802ea 5481 next = pick_next_task(rq);
1da177e4 5482
1da177e4 5483 if (likely(prev != next)) {
673a90a1 5484 sched_info_switch(prev, next);
cdd6c482 5485 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5486
1da177e4
LT
5487 rq->nr_switches++;
5488 rq->curr = next;
5489 ++*switch_count;
5490
dd41f596 5491 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5492 /*
5493 * the context switch might have flipped the stack from under
5494 * us, hence refresh the local variables.
5495 */
5496 cpu = smp_processor_id();
5497 rq = cpu_rq(cpu);
1da177e4
LT
5498 } else
5499 spin_unlock_irq(&rq->lock);
5500
3f029d3c 5501 post_schedule(rq);
1da177e4 5502
8f4d37ec 5503 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5504 goto need_resched_nonpreemptible;
8f4d37ec 5505
1da177e4 5506 preempt_enable_no_resched();
ff743345 5507 if (need_resched())
1da177e4
LT
5508 goto need_resched;
5509}
1da177e4
LT
5510EXPORT_SYMBOL(schedule);
5511
c08f7829 5512#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5513/*
5514 * Look out! "owner" is an entirely speculative pointer
5515 * access and not reliable.
5516 */
5517int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5518{
5519 unsigned int cpu;
5520 struct rq *rq;
5521
5522 if (!sched_feat(OWNER_SPIN))
5523 return 0;
5524
5525#ifdef CONFIG_DEBUG_PAGEALLOC
5526 /*
5527 * Need to access the cpu field knowing that
5528 * DEBUG_PAGEALLOC could have unmapped it if
5529 * the mutex owner just released it and exited.
5530 */
5531 if (probe_kernel_address(&owner->cpu, cpu))
5532 goto out;
5533#else
5534 cpu = owner->cpu;
5535#endif
5536
5537 /*
5538 * Even if the access succeeded (likely case),
5539 * the cpu field may no longer be valid.
5540 */
5541 if (cpu >= nr_cpumask_bits)
5542 goto out;
5543
5544 /*
5545 * We need to validate that we can do a
5546 * get_cpu() and that we have the percpu area.
5547 */
5548 if (!cpu_online(cpu))
5549 goto out;
5550
5551 rq = cpu_rq(cpu);
5552
5553 for (;;) {
5554 /*
5555 * Owner changed, break to re-assess state.
5556 */
5557 if (lock->owner != owner)
5558 break;
5559
5560 /*
5561 * Is that owner really running on that cpu?
5562 */
5563 if (task_thread_info(rq->curr) != owner || need_resched())
5564 return 0;
5565
5566 cpu_relax();
5567 }
5568out:
5569 return 1;
5570}
5571#endif
5572
1da177e4
LT
5573#ifdef CONFIG_PREEMPT
5574/*
2ed6e34f 5575 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5576 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5577 * occur there and call schedule directly.
5578 */
5579asmlinkage void __sched preempt_schedule(void)
5580{
5581 struct thread_info *ti = current_thread_info();
6478d880 5582
1da177e4
LT
5583 /*
5584 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5585 * we do not want to preempt the current task. Just return..
1da177e4 5586 */
beed33a8 5587 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5588 return;
5589
3a5c359a
AK
5590 do {
5591 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5592 schedule();
3a5c359a 5593 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5594
3a5c359a
AK
5595 /*
5596 * Check again in case we missed a preemption opportunity
5597 * between schedule and now.
5598 */
5599 barrier();
5ed0cec0 5600 } while (need_resched());
1da177e4 5601}
1da177e4
LT
5602EXPORT_SYMBOL(preempt_schedule);
5603
5604/*
2ed6e34f 5605 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5606 * off of irq context.
5607 * Note, that this is called and return with irqs disabled. This will
5608 * protect us against recursive calling from irq.
5609 */
5610asmlinkage void __sched preempt_schedule_irq(void)
5611{
5612 struct thread_info *ti = current_thread_info();
6478d880 5613
2ed6e34f 5614 /* Catch callers which need to be fixed */
1da177e4
LT
5615 BUG_ON(ti->preempt_count || !irqs_disabled());
5616
3a5c359a
AK
5617 do {
5618 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5619 local_irq_enable();
5620 schedule();
5621 local_irq_disable();
3a5c359a 5622 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5623
3a5c359a
AK
5624 /*
5625 * Check again in case we missed a preemption opportunity
5626 * between schedule and now.
5627 */
5628 barrier();
5ed0cec0 5629 } while (need_resched());
1da177e4
LT
5630}
5631
5632#endif /* CONFIG_PREEMPT */
5633
63859d4f 5634int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5635 void *key)
1da177e4 5636{
63859d4f 5637 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5638}
1da177e4
LT
5639EXPORT_SYMBOL(default_wake_function);
5640
5641/*
41a2d6cf
IM
5642 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5643 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5644 * number) then we wake all the non-exclusive tasks and one exclusive task.
5645 *
5646 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5647 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5648 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5649 */
78ddb08f 5650static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5651 int nr_exclusive, int wake_flags, void *key)
1da177e4 5652{
2e45874c 5653 wait_queue_t *curr, *next;
1da177e4 5654
2e45874c 5655 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5656 unsigned flags = curr->flags;
5657
63859d4f 5658 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5659 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5660 break;
5661 }
5662}
5663
5664/**
5665 * __wake_up - wake up threads blocked on a waitqueue.
5666 * @q: the waitqueue
5667 * @mode: which threads
5668 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5669 * @key: is directly passed to the wakeup function
50fa610a
DH
5670 *
5671 * It may be assumed that this function implies a write memory barrier before
5672 * changing the task state if and only if any tasks are woken up.
1da177e4 5673 */
7ad5b3a5 5674void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5675 int nr_exclusive, void *key)
1da177e4
LT
5676{
5677 unsigned long flags;
5678
5679 spin_lock_irqsave(&q->lock, flags);
5680 __wake_up_common(q, mode, nr_exclusive, 0, key);
5681 spin_unlock_irqrestore(&q->lock, flags);
5682}
1da177e4
LT
5683EXPORT_SYMBOL(__wake_up);
5684
5685/*
5686 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5687 */
7ad5b3a5 5688void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5689{
5690 __wake_up_common(q, mode, 1, 0, NULL);
5691}
5692
4ede816a
DL
5693void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5694{
5695 __wake_up_common(q, mode, 1, 0, key);
5696}
5697
1da177e4 5698/**
4ede816a 5699 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5700 * @q: the waitqueue
5701 * @mode: which threads
5702 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5703 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5704 *
5705 * The sync wakeup differs that the waker knows that it will schedule
5706 * away soon, so while the target thread will be woken up, it will not
5707 * be migrated to another CPU - ie. the two threads are 'synchronized'
5708 * with each other. This can prevent needless bouncing between CPUs.
5709 *
5710 * On UP it can prevent extra preemption.
50fa610a
DH
5711 *
5712 * It may be assumed that this function implies a write memory barrier before
5713 * changing the task state if and only if any tasks are woken up.
1da177e4 5714 */
4ede816a
DL
5715void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5716 int nr_exclusive, void *key)
1da177e4
LT
5717{
5718 unsigned long flags;
7d478721 5719 int wake_flags = WF_SYNC;
1da177e4
LT
5720
5721 if (unlikely(!q))
5722 return;
5723
5724 if (unlikely(!nr_exclusive))
7d478721 5725 wake_flags = 0;
1da177e4
LT
5726
5727 spin_lock_irqsave(&q->lock, flags);
7d478721 5728 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5729 spin_unlock_irqrestore(&q->lock, flags);
5730}
4ede816a
DL
5731EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5732
5733/*
5734 * __wake_up_sync - see __wake_up_sync_key()
5735 */
5736void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5737{
5738 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5739}
1da177e4
LT
5740EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5741
65eb3dc6
KD
5742/**
5743 * complete: - signals a single thread waiting on this completion
5744 * @x: holds the state of this particular completion
5745 *
5746 * This will wake up a single thread waiting on this completion. Threads will be
5747 * awakened in the same order in which they were queued.
5748 *
5749 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5750 *
5751 * It may be assumed that this function implies a write memory barrier before
5752 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5753 */
b15136e9 5754void complete(struct completion *x)
1da177e4
LT
5755{
5756 unsigned long flags;
5757
5758 spin_lock_irqsave(&x->wait.lock, flags);
5759 x->done++;
d9514f6c 5760 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5761 spin_unlock_irqrestore(&x->wait.lock, flags);
5762}
5763EXPORT_SYMBOL(complete);
5764
65eb3dc6
KD
5765/**
5766 * complete_all: - signals all threads waiting on this completion
5767 * @x: holds the state of this particular completion
5768 *
5769 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5770 *
5771 * It may be assumed that this function implies a write memory barrier before
5772 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5773 */
b15136e9 5774void complete_all(struct completion *x)
1da177e4
LT
5775{
5776 unsigned long flags;
5777
5778 spin_lock_irqsave(&x->wait.lock, flags);
5779 x->done += UINT_MAX/2;
d9514f6c 5780 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5781 spin_unlock_irqrestore(&x->wait.lock, flags);
5782}
5783EXPORT_SYMBOL(complete_all);
5784
8cbbe86d
AK
5785static inline long __sched
5786do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5787{
1da177e4
LT
5788 if (!x->done) {
5789 DECLARE_WAITQUEUE(wait, current);
5790
5791 wait.flags |= WQ_FLAG_EXCLUSIVE;
5792 __add_wait_queue_tail(&x->wait, &wait);
5793 do {
94d3d824 5794 if (signal_pending_state(state, current)) {
ea71a546
ON
5795 timeout = -ERESTARTSYS;
5796 break;
8cbbe86d
AK
5797 }
5798 __set_current_state(state);
1da177e4
LT
5799 spin_unlock_irq(&x->wait.lock);
5800 timeout = schedule_timeout(timeout);
5801 spin_lock_irq(&x->wait.lock);
ea71a546 5802 } while (!x->done && timeout);
1da177e4 5803 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5804 if (!x->done)
5805 return timeout;
1da177e4
LT
5806 }
5807 x->done--;
ea71a546 5808 return timeout ?: 1;
1da177e4 5809}
1da177e4 5810
8cbbe86d
AK
5811static long __sched
5812wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5813{
1da177e4
LT
5814 might_sleep();
5815
5816 spin_lock_irq(&x->wait.lock);
8cbbe86d 5817 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5818 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5819 return timeout;
5820}
1da177e4 5821
65eb3dc6
KD
5822/**
5823 * wait_for_completion: - waits for completion of a task
5824 * @x: holds the state of this particular completion
5825 *
5826 * This waits to be signaled for completion of a specific task. It is NOT
5827 * interruptible and there is no timeout.
5828 *
5829 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5830 * and interrupt capability. Also see complete().
5831 */
b15136e9 5832void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5833{
5834 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5835}
8cbbe86d 5836EXPORT_SYMBOL(wait_for_completion);
1da177e4 5837
65eb3dc6
KD
5838/**
5839 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5840 * @x: holds the state of this particular completion
5841 * @timeout: timeout value in jiffies
5842 *
5843 * This waits for either a completion of a specific task to be signaled or for a
5844 * specified timeout to expire. The timeout is in jiffies. It is not
5845 * interruptible.
5846 */
b15136e9 5847unsigned long __sched
8cbbe86d 5848wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5849{
8cbbe86d 5850 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5851}
8cbbe86d 5852EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5853
65eb3dc6
KD
5854/**
5855 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5856 * @x: holds the state of this particular completion
5857 *
5858 * This waits for completion of a specific task to be signaled. It is
5859 * interruptible.
5860 */
8cbbe86d 5861int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5862{
51e97990
AK
5863 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5864 if (t == -ERESTARTSYS)
5865 return t;
5866 return 0;
0fec171c 5867}
8cbbe86d 5868EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5869
65eb3dc6
KD
5870/**
5871 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5872 * @x: holds the state of this particular completion
5873 * @timeout: timeout value in jiffies
5874 *
5875 * This waits for either a completion of a specific task to be signaled or for a
5876 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5877 */
b15136e9 5878unsigned long __sched
8cbbe86d
AK
5879wait_for_completion_interruptible_timeout(struct completion *x,
5880 unsigned long timeout)
0fec171c 5881{
8cbbe86d 5882 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5883}
8cbbe86d 5884EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5885
65eb3dc6
KD
5886/**
5887 * wait_for_completion_killable: - waits for completion of a task (killable)
5888 * @x: holds the state of this particular completion
5889 *
5890 * This waits to be signaled for completion of a specific task. It can be
5891 * interrupted by a kill signal.
5892 */
009e577e
MW
5893int __sched wait_for_completion_killable(struct completion *x)
5894{
5895 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5896 if (t == -ERESTARTSYS)
5897 return t;
5898 return 0;
5899}
5900EXPORT_SYMBOL(wait_for_completion_killable);
5901
be4de352
DC
5902/**
5903 * try_wait_for_completion - try to decrement a completion without blocking
5904 * @x: completion structure
5905 *
5906 * Returns: 0 if a decrement cannot be done without blocking
5907 * 1 if a decrement succeeded.
5908 *
5909 * If a completion is being used as a counting completion,
5910 * attempt to decrement the counter without blocking. This
5911 * enables us to avoid waiting if the resource the completion
5912 * is protecting is not available.
5913 */
5914bool try_wait_for_completion(struct completion *x)
5915{
5916 int ret = 1;
5917
5918 spin_lock_irq(&x->wait.lock);
5919 if (!x->done)
5920 ret = 0;
5921 else
5922 x->done--;
5923 spin_unlock_irq(&x->wait.lock);
5924 return ret;
5925}
5926EXPORT_SYMBOL(try_wait_for_completion);
5927
5928/**
5929 * completion_done - Test to see if a completion has any waiters
5930 * @x: completion structure
5931 *
5932 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5933 * 1 if there are no waiters.
5934 *
5935 */
5936bool completion_done(struct completion *x)
5937{
5938 int ret = 1;
5939
5940 spin_lock_irq(&x->wait.lock);
5941 if (!x->done)
5942 ret = 0;
5943 spin_unlock_irq(&x->wait.lock);
5944 return ret;
5945}
5946EXPORT_SYMBOL(completion_done);
5947
8cbbe86d
AK
5948static long __sched
5949sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5950{
0fec171c
IM
5951 unsigned long flags;
5952 wait_queue_t wait;
5953
5954 init_waitqueue_entry(&wait, current);
1da177e4 5955
8cbbe86d 5956 __set_current_state(state);
1da177e4 5957
8cbbe86d
AK
5958 spin_lock_irqsave(&q->lock, flags);
5959 __add_wait_queue(q, &wait);
5960 spin_unlock(&q->lock);
5961 timeout = schedule_timeout(timeout);
5962 spin_lock_irq(&q->lock);
5963 __remove_wait_queue(q, &wait);
5964 spin_unlock_irqrestore(&q->lock, flags);
5965
5966 return timeout;
5967}
5968
5969void __sched interruptible_sleep_on(wait_queue_head_t *q)
5970{
5971 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5972}
1da177e4
LT
5973EXPORT_SYMBOL(interruptible_sleep_on);
5974
0fec171c 5975long __sched
95cdf3b7 5976interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5977{
8cbbe86d 5978 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5979}
1da177e4
LT
5980EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5981
0fec171c 5982void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5983{
8cbbe86d 5984 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5985}
1da177e4
LT
5986EXPORT_SYMBOL(sleep_on);
5987
0fec171c 5988long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5989{
8cbbe86d 5990 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5991}
1da177e4
LT
5992EXPORT_SYMBOL(sleep_on_timeout);
5993
b29739f9
IM
5994#ifdef CONFIG_RT_MUTEXES
5995
5996/*
5997 * rt_mutex_setprio - set the current priority of a task
5998 * @p: task
5999 * @prio: prio value (kernel-internal form)
6000 *
6001 * This function changes the 'effective' priority of a task. It does
6002 * not touch ->normal_prio like __setscheduler().
6003 *
6004 * Used by the rt_mutex code to implement priority inheritance logic.
6005 */
36c8b586 6006void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6007{
6008 unsigned long flags;
83b699ed 6009 int oldprio, on_rq, running;
70b97a7f 6010 struct rq *rq;
cb469845 6011 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6012
6013 BUG_ON(prio < 0 || prio > MAX_PRIO);
6014
6015 rq = task_rq_lock(p, &flags);
a8e504d2 6016 update_rq_clock(rq);
b29739f9 6017
d5f9f942 6018 oldprio = p->prio;
dd41f596 6019 on_rq = p->se.on_rq;
051a1d1a 6020 running = task_current(rq, p);
0e1f3483 6021 if (on_rq)
69be72c1 6022 dequeue_task(rq, p, 0);
0e1f3483
HS
6023 if (running)
6024 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6025
6026 if (rt_prio(prio))
6027 p->sched_class = &rt_sched_class;
6028 else
6029 p->sched_class = &fair_sched_class;
6030
b29739f9
IM
6031 p->prio = prio;
6032
0e1f3483
HS
6033 if (running)
6034 p->sched_class->set_curr_task(rq);
dd41f596 6035 if (on_rq) {
8159f87e 6036 enqueue_task(rq, p, 0);
cb469845
SR
6037
6038 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6039 }
6040 task_rq_unlock(rq, &flags);
6041}
6042
6043#endif
6044
36c8b586 6045void set_user_nice(struct task_struct *p, long nice)
1da177e4 6046{
dd41f596 6047 int old_prio, delta, on_rq;
1da177e4 6048 unsigned long flags;
70b97a7f 6049 struct rq *rq;
1da177e4
LT
6050
6051 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6052 return;
6053 /*
6054 * We have to be careful, if called from sys_setpriority(),
6055 * the task might be in the middle of scheduling on another CPU.
6056 */
6057 rq = task_rq_lock(p, &flags);
a8e504d2 6058 update_rq_clock(rq);
1da177e4
LT
6059 /*
6060 * The RT priorities are set via sched_setscheduler(), but we still
6061 * allow the 'normal' nice value to be set - but as expected
6062 * it wont have any effect on scheduling until the task is
dd41f596 6063 * SCHED_FIFO/SCHED_RR:
1da177e4 6064 */
e05606d3 6065 if (task_has_rt_policy(p)) {
1da177e4
LT
6066 p->static_prio = NICE_TO_PRIO(nice);
6067 goto out_unlock;
6068 }
dd41f596 6069 on_rq = p->se.on_rq;
c09595f6 6070 if (on_rq)
69be72c1 6071 dequeue_task(rq, p, 0);
1da177e4 6072
1da177e4 6073 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6074 set_load_weight(p);
b29739f9
IM
6075 old_prio = p->prio;
6076 p->prio = effective_prio(p);
6077 delta = p->prio - old_prio;
1da177e4 6078
dd41f596 6079 if (on_rq) {
8159f87e 6080 enqueue_task(rq, p, 0);
1da177e4 6081 /*
d5f9f942
AM
6082 * If the task increased its priority or is running and
6083 * lowered its priority, then reschedule its CPU:
1da177e4 6084 */
d5f9f942 6085 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6086 resched_task(rq->curr);
6087 }
6088out_unlock:
6089 task_rq_unlock(rq, &flags);
6090}
1da177e4
LT
6091EXPORT_SYMBOL(set_user_nice);
6092
e43379f1
MM
6093/*
6094 * can_nice - check if a task can reduce its nice value
6095 * @p: task
6096 * @nice: nice value
6097 */
36c8b586 6098int can_nice(const struct task_struct *p, const int nice)
e43379f1 6099{
024f4747
MM
6100 /* convert nice value [19,-20] to rlimit style value [1,40] */
6101 int nice_rlim = 20 - nice;
48f24c4d 6102
e43379f1
MM
6103 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6104 capable(CAP_SYS_NICE));
6105}
6106
1da177e4
LT
6107#ifdef __ARCH_WANT_SYS_NICE
6108
6109/*
6110 * sys_nice - change the priority of the current process.
6111 * @increment: priority increment
6112 *
6113 * sys_setpriority is a more generic, but much slower function that
6114 * does similar things.
6115 */
5add95d4 6116SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6117{
48f24c4d 6118 long nice, retval;
1da177e4
LT
6119
6120 /*
6121 * Setpriority might change our priority at the same moment.
6122 * We don't have to worry. Conceptually one call occurs first
6123 * and we have a single winner.
6124 */
e43379f1
MM
6125 if (increment < -40)
6126 increment = -40;
1da177e4
LT
6127 if (increment > 40)
6128 increment = 40;
6129
2b8f836f 6130 nice = TASK_NICE(current) + increment;
1da177e4
LT
6131 if (nice < -20)
6132 nice = -20;
6133 if (nice > 19)
6134 nice = 19;
6135
e43379f1
MM
6136 if (increment < 0 && !can_nice(current, nice))
6137 return -EPERM;
6138
1da177e4
LT
6139 retval = security_task_setnice(current, nice);
6140 if (retval)
6141 return retval;
6142
6143 set_user_nice(current, nice);
6144 return 0;
6145}
6146
6147#endif
6148
6149/**
6150 * task_prio - return the priority value of a given task.
6151 * @p: the task in question.
6152 *
6153 * This is the priority value as seen by users in /proc.
6154 * RT tasks are offset by -200. Normal tasks are centered
6155 * around 0, value goes from -16 to +15.
6156 */
36c8b586 6157int task_prio(const struct task_struct *p)
1da177e4
LT
6158{
6159 return p->prio - MAX_RT_PRIO;
6160}
6161
6162/**
6163 * task_nice - return the nice value of a given task.
6164 * @p: the task in question.
6165 */
36c8b586 6166int task_nice(const struct task_struct *p)
1da177e4
LT
6167{
6168 return TASK_NICE(p);
6169}
150d8bed 6170EXPORT_SYMBOL(task_nice);
1da177e4
LT
6171
6172/**
6173 * idle_cpu - is a given cpu idle currently?
6174 * @cpu: the processor in question.
6175 */
6176int idle_cpu(int cpu)
6177{
6178 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6179}
6180
1da177e4
LT
6181/**
6182 * idle_task - return the idle task for a given cpu.
6183 * @cpu: the processor in question.
6184 */
36c8b586 6185struct task_struct *idle_task(int cpu)
1da177e4
LT
6186{
6187 return cpu_rq(cpu)->idle;
6188}
6189
6190/**
6191 * find_process_by_pid - find a process with a matching PID value.
6192 * @pid: the pid in question.
6193 */
a9957449 6194static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6195{
228ebcbe 6196 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6197}
6198
6199/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6200static void
6201__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6202{
dd41f596 6203 BUG_ON(p->se.on_rq);
48f24c4d 6204
1da177e4
LT
6205 p->policy = policy;
6206 p->rt_priority = prio;
b29739f9
IM
6207 p->normal_prio = normal_prio(p);
6208 /* we are holding p->pi_lock already */
6209 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6210 if (rt_prio(p->prio))
6211 p->sched_class = &rt_sched_class;
6212 else
6213 p->sched_class = &fair_sched_class;
2dd73a4f 6214 set_load_weight(p);
1da177e4
LT
6215}
6216
c69e8d9c
DH
6217/*
6218 * check the target process has a UID that matches the current process's
6219 */
6220static bool check_same_owner(struct task_struct *p)
6221{
6222 const struct cred *cred = current_cred(), *pcred;
6223 bool match;
6224
6225 rcu_read_lock();
6226 pcred = __task_cred(p);
6227 match = (cred->euid == pcred->euid ||
6228 cred->euid == pcred->uid);
6229 rcu_read_unlock();
6230 return match;
6231}
6232
961ccddd
RR
6233static int __sched_setscheduler(struct task_struct *p, int policy,
6234 struct sched_param *param, bool user)
1da177e4 6235{
83b699ed 6236 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6237 unsigned long flags;
cb469845 6238 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6239 struct rq *rq;
ca94c442 6240 int reset_on_fork;
1da177e4 6241
66e5393a
SR
6242 /* may grab non-irq protected spin_locks */
6243 BUG_ON(in_interrupt());
1da177e4
LT
6244recheck:
6245 /* double check policy once rq lock held */
ca94c442
LP
6246 if (policy < 0) {
6247 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6248 policy = oldpolicy = p->policy;
ca94c442
LP
6249 } else {
6250 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6251 policy &= ~SCHED_RESET_ON_FORK;
6252
6253 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6254 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6255 policy != SCHED_IDLE)
6256 return -EINVAL;
6257 }
6258
1da177e4
LT
6259 /*
6260 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6261 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6262 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6263 */
6264 if (param->sched_priority < 0 ||
95cdf3b7 6265 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6266 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6267 return -EINVAL;
e05606d3 6268 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6269 return -EINVAL;
6270
37e4ab3f
OC
6271 /*
6272 * Allow unprivileged RT tasks to decrease priority:
6273 */
961ccddd 6274 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6275 if (rt_policy(policy)) {
8dc3e909 6276 unsigned long rlim_rtprio;
8dc3e909
ON
6277
6278 if (!lock_task_sighand(p, &flags))
6279 return -ESRCH;
6280 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6281 unlock_task_sighand(p, &flags);
6282
6283 /* can't set/change the rt policy */
6284 if (policy != p->policy && !rlim_rtprio)
6285 return -EPERM;
6286
6287 /* can't increase priority */
6288 if (param->sched_priority > p->rt_priority &&
6289 param->sched_priority > rlim_rtprio)
6290 return -EPERM;
6291 }
dd41f596
IM
6292 /*
6293 * Like positive nice levels, dont allow tasks to
6294 * move out of SCHED_IDLE either:
6295 */
6296 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6297 return -EPERM;
5fe1d75f 6298
37e4ab3f 6299 /* can't change other user's priorities */
c69e8d9c 6300 if (!check_same_owner(p))
37e4ab3f 6301 return -EPERM;
ca94c442
LP
6302
6303 /* Normal users shall not reset the sched_reset_on_fork flag */
6304 if (p->sched_reset_on_fork && !reset_on_fork)
6305 return -EPERM;
37e4ab3f 6306 }
1da177e4 6307
725aad24 6308 if (user) {
b68aa230 6309#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6310 /*
6311 * Do not allow realtime tasks into groups that have no runtime
6312 * assigned.
6313 */
9a7e0b18
PZ
6314 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6315 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6316 return -EPERM;
b68aa230
PZ
6317#endif
6318
725aad24
JF
6319 retval = security_task_setscheduler(p, policy, param);
6320 if (retval)
6321 return retval;
6322 }
6323
b29739f9
IM
6324 /*
6325 * make sure no PI-waiters arrive (or leave) while we are
6326 * changing the priority of the task:
6327 */
6328 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6329 /*
6330 * To be able to change p->policy safely, the apropriate
6331 * runqueue lock must be held.
6332 */
b29739f9 6333 rq = __task_rq_lock(p);
1da177e4
LT
6334 /* recheck policy now with rq lock held */
6335 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6336 policy = oldpolicy = -1;
b29739f9
IM
6337 __task_rq_unlock(rq);
6338 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6339 goto recheck;
6340 }
2daa3577 6341 update_rq_clock(rq);
dd41f596 6342 on_rq = p->se.on_rq;
051a1d1a 6343 running = task_current(rq, p);
0e1f3483 6344 if (on_rq)
2e1cb74a 6345 deactivate_task(rq, p, 0);
0e1f3483
HS
6346 if (running)
6347 p->sched_class->put_prev_task(rq, p);
f6b53205 6348
ca94c442
LP
6349 p->sched_reset_on_fork = reset_on_fork;
6350
1da177e4 6351 oldprio = p->prio;
dd41f596 6352 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6353
0e1f3483
HS
6354 if (running)
6355 p->sched_class->set_curr_task(rq);
dd41f596
IM
6356 if (on_rq) {
6357 activate_task(rq, p, 0);
cb469845
SR
6358
6359 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6360 }
b29739f9
IM
6361 __task_rq_unlock(rq);
6362 spin_unlock_irqrestore(&p->pi_lock, flags);
6363
95e02ca9
TG
6364 rt_mutex_adjust_pi(p);
6365
1da177e4
LT
6366 return 0;
6367}
961ccddd
RR
6368
6369/**
6370 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6371 * @p: the task in question.
6372 * @policy: new policy.
6373 * @param: structure containing the new RT priority.
6374 *
6375 * NOTE that the task may be already dead.
6376 */
6377int sched_setscheduler(struct task_struct *p, int policy,
6378 struct sched_param *param)
6379{
6380 return __sched_setscheduler(p, policy, param, true);
6381}
1da177e4
LT
6382EXPORT_SYMBOL_GPL(sched_setscheduler);
6383
961ccddd
RR
6384/**
6385 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6386 * @p: the task in question.
6387 * @policy: new policy.
6388 * @param: structure containing the new RT priority.
6389 *
6390 * Just like sched_setscheduler, only don't bother checking if the
6391 * current context has permission. For example, this is needed in
6392 * stop_machine(): we create temporary high priority worker threads,
6393 * but our caller might not have that capability.
6394 */
6395int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6396 struct sched_param *param)
6397{
6398 return __sched_setscheduler(p, policy, param, false);
6399}
6400
95cdf3b7
IM
6401static int
6402do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6403{
1da177e4
LT
6404 struct sched_param lparam;
6405 struct task_struct *p;
36c8b586 6406 int retval;
1da177e4
LT
6407
6408 if (!param || pid < 0)
6409 return -EINVAL;
6410 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6411 return -EFAULT;
5fe1d75f
ON
6412
6413 rcu_read_lock();
6414 retval = -ESRCH;
1da177e4 6415 p = find_process_by_pid(pid);
5fe1d75f
ON
6416 if (p != NULL)
6417 retval = sched_setscheduler(p, policy, &lparam);
6418 rcu_read_unlock();
36c8b586 6419
1da177e4
LT
6420 return retval;
6421}
6422
6423/**
6424 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6425 * @pid: the pid in question.
6426 * @policy: new policy.
6427 * @param: structure containing the new RT priority.
6428 */
5add95d4
HC
6429SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6430 struct sched_param __user *, param)
1da177e4 6431{
c21761f1
JB
6432 /* negative values for policy are not valid */
6433 if (policy < 0)
6434 return -EINVAL;
6435
1da177e4
LT
6436 return do_sched_setscheduler(pid, policy, param);
6437}
6438
6439/**
6440 * sys_sched_setparam - set/change the RT priority of a thread
6441 * @pid: the pid in question.
6442 * @param: structure containing the new RT priority.
6443 */
5add95d4 6444SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6445{
6446 return do_sched_setscheduler(pid, -1, param);
6447}
6448
6449/**
6450 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6451 * @pid: the pid in question.
6452 */
5add95d4 6453SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6454{
36c8b586 6455 struct task_struct *p;
3a5c359a 6456 int retval;
1da177e4
LT
6457
6458 if (pid < 0)
3a5c359a 6459 return -EINVAL;
1da177e4
LT
6460
6461 retval = -ESRCH;
6462 read_lock(&tasklist_lock);
6463 p = find_process_by_pid(pid);
6464 if (p) {
6465 retval = security_task_getscheduler(p);
6466 if (!retval)
ca94c442
LP
6467 retval = p->policy
6468 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6469 }
6470 read_unlock(&tasklist_lock);
1da177e4
LT
6471 return retval;
6472}
6473
6474/**
ca94c442 6475 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6476 * @pid: the pid in question.
6477 * @param: structure containing the RT priority.
6478 */
5add95d4 6479SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6480{
6481 struct sched_param lp;
36c8b586 6482 struct task_struct *p;
3a5c359a 6483 int retval;
1da177e4
LT
6484
6485 if (!param || pid < 0)
3a5c359a 6486 return -EINVAL;
1da177e4
LT
6487
6488 read_lock(&tasklist_lock);
6489 p = find_process_by_pid(pid);
6490 retval = -ESRCH;
6491 if (!p)
6492 goto out_unlock;
6493
6494 retval = security_task_getscheduler(p);
6495 if (retval)
6496 goto out_unlock;
6497
6498 lp.sched_priority = p->rt_priority;
6499 read_unlock(&tasklist_lock);
6500
6501 /*
6502 * This one might sleep, we cannot do it with a spinlock held ...
6503 */
6504 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6505
1da177e4
LT
6506 return retval;
6507
6508out_unlock:
6509 read_unlock(&tasklist_lock);
6510 return retval;
6511}
6512
96f874e2 6513long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6514{
5a16f3d3 6515 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6516 struct task_struct *p;
6517 int retval;
1da177e4 6518
95402b38 6519 get_online_cpus();
1da177e4
LT
6520 read_lock(&tasklist_lock);
6521
6522 p = find_process_by_pid(pid);
6523 if (!p) {
6524 read_unlock(&tasklist_lock);
95402b38 6525 put_online_cpus();
1da177e4
LT
6526 return -ESRCH;
6527 }
6528
6529 /*
6530 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6531 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6532 * usage count and then drop tasklist_lock.
6533 */
6534 get_task_struct(p);
6535 read_unlock(&tasklist_lock);
6536
5a16f3d3
RR
6537 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6538 retval = -ENOMEM;
6539 goto out_put_task;
6540 }
6541 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6542 retval = -ENOMEM;
6543 goto out_free_cpus_allowed;
6544 }
1da177e4 6545 retval = -EPERM;
c69e8d9c 6546 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6547 goto out_unlock;
6548
e7834f8f
DQ
6549 retval = security_task_setscheduler(p, 0, NULL);
6550 if (retval)
6551 goto out_unlock;
6552
5a16f3d3
RR
6553 cpuset_cpus_allowed(p, cpus_allowed);
6554 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6555 again:
5a16f3d3 6556 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6557
8707d8b8 6558 if (!retval) {
5a16f3d3
RR
6559 cpuset_cpus_allowed(p, cpus_allowed);
6560 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6561 /*
6562 * We must have raced with a concurrent cpuset
6563 * update. Just reset the cpus_allowed to the
6564 * cpuset's cpus_allowed
6565 */
5a16f3d3 6566 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6567 goto again;
6568 }
6569 }
1da177e4 6570out_unlock:
5a16f3d3
RR
6571 free_cpumask_var(new_mask);
6572out_free_cpus_allowed:
6573 free_cpumask_var(cpus_allowed);
6574out_put_task:
1da177e4 6575 put_task_struct(p);
95402b38 6576 put_online_cpus();
1da177e4
LT
6577 return retval;
6578}
6579
6580static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6581 struct cpumask *new_mask)
1da177e4 6582{
96f874e2
RR
6583 if (len < cpumask_size())
6584 cpumask_clear(new_mask);
6585 else if (len > cpumask_size())
6586 len = cpumask_size();
6587
1da177e4
LT
6588 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6589}
6590
6591/**
6592 * sys_sched_setaffinity - set the cpu affinity of a process
6593 * @pid: pid of the process
6594 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6595 * @user_mask_ptr: user-space pointer to the new cpu mask
6596 */
5add95d4
HC
6597SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6598 unsigned long __user *, user_mask_ptr)
1da177e4 6599{
5a16f3d3 6600 cpumask_var_t new_mask;
1da177e4
LT
6601 int retval;
6602
5a16f3d3
RR
6603 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6604 return -ENOMEM;
1da177e4 6605
5a16f3d3
RR
6606 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6607 if (retval == 0)
6608 retval = sched_setaffinity(pid, new_mask);
6609 free_cpumask_var(new_mask);
6610 return retval;
1da177e4
LT
6611}
6612
96f874e2 6613long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6614{
36c8b586 6615 struct task_struct *p;
31605683
TG
6616 unsigned long flags;
6617 struct rq *rq;
1da177e4 6618 int retval;
1da177e4 6619
95402b38 6620 get_online_cpus();
1da177e4
LT
6621 read_lock(&tasklist_lock);
6622
6623 retval = -ESRCH;
6624 p = find_process_by_pid(pid);
6625 if (!p)
6626 goto out_unlock;
6627
e7834f8f
DQ
6628 retval = security_task_getscheduler(p);
6629 if (retval)
6630 goto out_unlock;
6631
31605683 6632 rq = task_rq_lock(p, &flags);
96f874e2 6633 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6634 task_rq_unlock(rq, &flags);
1da177e4
LT
6635
6636out_unlock:
6637 read_unlock(&tasklist_lock);
95402b38 6638 put_online_cpus();
1da177e4 6639
9531b62f 6640 return retval;
1da177e4
LT
6641}
6642
6643/**
6644 * sys_sched_getaffinity - get the cpu affinity of a process
6645 * @pid: pid of the process
6646 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6647 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6648 */
5add95d4
HC
6649SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6650 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6651{
6652 int ret;
f17c8607 6653 cpumask_var_t mask;
1da177e4 6654
f17c8607 6655 if (len < cpumask_size())
1da177e4
LT
6656 return -EINVAL;
6657
f17c8607
RR
6658 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6659 return -ENOMEM;
1da177e4 6660
f17c8607
RR
6661 ret = sched_getaffinity(pid, mask);
6662 if (ret == 0) {
6663 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6664 ret = -EFAULT;
6665 else
6666 ret = cpumask_size();
6667 }
6668 free_cpumask_var(mask);
1da177e4 6669
f17c8607 6670 return ret;
1da177e4
LT
6671}
6672
6673/**
6674 * sys_sched_yield - yield the current processor to other threads.
6675 *
dd41f596
IM
6676 * This function yields the current CPU to other tasks. If there are no
6677 * other threads running on this CPU then this function will return.
1da177e4 6678 */
5add95d4 6679SYSCALL_DEFINE0(sched_yield)
1da177e4 6680{
70b97a7f 6681 struct rq *rq = this_rq_lock();
1da177e4 6682
2d72376b 6683 schedstat_inc(rq, yld_count);
4530d7ab 6684 current->sched_class->yield_task(rq);
1da177e4
LT
6685
6686 /*
6687 * Since we are going to call schedule() anyway, there's
6688 * no need to preempt or enable interrupts:
6689 */
6690 __release(rq->lock);
8a25d5de 6691 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6692 _raw_spin_unlock(&rq->lock);
6693 preempt_enable_no_resched();
6694
6695 schedule();
6696
6697 return 0;
6698}
6699
d86ee480
PZ
6700static inline int should_resched(void)
6701{
6702 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6703}
6704
e7b38404 6705static void __cond_resched(void)
1da177e4 6706{
e7aaaa69
FW
6707 add_preempt_count(PREEMPT_ACTIVE);
6708 schedule();
6709 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6710}
6711
02b67cc3 6712int __sched _cond_resched(void)
1da177e4 6713{
d86ee480 6714 if (should_resched()) {
1da177e4
LT
6715 __cond_resched();
6716 return 1;
6717 }
6718 return 0;
6719}
02b67cc3 6720EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6721
6722/*
613afbf8 6723 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6724 * call schedule, and on return reacquire the lock.
6725 *
41a2d6cf 6726 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6727 * operations here to prevent schedule() from being called twice (once via
6728 * spin_unlock(), once by hand).
6729 */
613afbf8 6730int __cond_resched_lock(spinlock_t *lock)
1da177e4 6731{
d86ee480 6732 int resched = should_resched();
6df3cecb
JK
6733 int ret = 0;
6734
f607c668
PZ
6735 lockdep_assert_held(lock);
6736
95c354fe 6737 if (spin_needbreak(lock) || resched) {
1da177e4 6738 spin_unlock(lock);
d86ee480 6739 if (resched)
95c354fe
NP
6740 __cond_resched();
6741 else
6742 cpu_relax();
6df3cecb 6743 ret = 1;
1da177e4 6744 spin_lock(lock);
1da177e4 6745 }
6df3cecb 6746 return ret;
1da177e4 6747}
613afbf8 6748EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6749
613afbf8 6750int __sched __cond_resched_softirq(void)
1da177e4
LT
6751{
6752 BUG_ON(!in_softirq());
6753
d86ee480 6754 if (should_resched()) {
98d82567 6755 local_bh_enable();
1da177e4
LT
6756 __cond_resched();
6757 local_bh_disable();
6758 return 1;
6759 }
6760 return 0;
6761}
613afbf8 6762EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6763
1da177e4
LT
6764/**
6765 * yield - yield the current processor to other threads.
6766 *
72fd4a35 6767 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6768 * thread runnable and calls sys_sched_yield().
6769 */
6770void __sched yield(void)
6771{
6772 set_current_state(TASK_RUNNING);
6773 sys_sched_yield();
6774}
1da177e4
LT
6775EXPORT_SYMBOL(yield);
6776
6777/*
41a2d6cf 6778 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6779 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6780 */
6781void __sched io_schedule(void)
6782{
54d35f29 6783 struct rq *rq = raw_rq();
1da177e4 6784
0ff92245 6785 delayacct_blkio_start();
1da177e4 6786 atomic_inc(&rq->nr_iowait);
8f0dfc34 6787 current->in_iowait = 1;
1da177e4 6788 schedule();
8f0dfc34 6789 current->in_iowait = 0;
1da177e4 6790 atomic_dec(&rq->nr_iowait);
0ff92245 6791 delayacct_blkio_end();
1da177e4 6792}
1da177e4
LT
6793EXPORT_SYMBOL(io_schedule);
6794
6795long __sched io_schedule_timeout(long timeout)
6796{
54d35f29 6797 struct rq *rq = raw_rq();
1da177e4
LT
6798 long ret;
6799
0ff92245 6800 delayacct_blkio_start();
1da177e4 6801 atomic_inc(&rq->nr_iowait);
8f0dfc34 6802 current->in_iowait = 1;
1da177e4 6803 ret = schedule_timeout(timeout);
8f0dfc34 6804 current->in_iowait = 0;
1da177e4 6805 atomic_dec(&rq->nr_iowait);
0ff92245 6806 delayacct_blkio_end();
1da177e4
LT
6807 return ret;
6808}
6809
6810/**
6811 * sys_sched_get_priority_max - return maximum RT priority.
6812 * @policy: scheduling class.
6813 *
6814 * this syscall returns the maximum rt_priority that can be used
6815 * by a given scheduling class.
6816 */
5add95d4 6817SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6818{
6819 int ret = -EINVAL;
6820
6821 switch (policy) {
6822 case SCHED_FIFO:
6823 case SCHED_RR:
6824 ret = MAX_USER_RT_PRIO-1;
6825 break;
6826 case SCHED_NORMAL:
b0a9499c 6827 case SCHED_BATCH:
dd41f596 6828 case SCHED_IDLE:
1da177e4
LT
6829 ret = 0;
6830 break;
6831 }
6832 return ret;
6833}
6834
6835/**
6836 * sys_sched_get_priority_min - return minimum RT priority.
6837 * @policy: scheduling class.
6838 *
6839 * this syscall returns the minimum rt_priority that can be used
6840 * by a given scheduling class.
6841 */
5add95d4 6842SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6843{
6844 int ret = -EINVAL;
6845
6846 switch (policy) {
6847 case SCHED_FIFO:
6848 case SCHED_RR:
6849 ret = 1;
6850 break;
6851 case SCHED_NORMAL:
b0a9499c 6852 case SCHED_BATCH:
dd41f596 6853 case SCHED_IDLE:
1da177e4
LT
6854 ret = 0;
6855 }
6856 return ret;
6857}
6858
6859/**
6860 * sys_sched_rr_get_interval - return the default timeslice of a process.
6861 * @pid: pid of the process.
6862 * @interval: userspace pointer to the timeslice value.
6863 *
6864 * this syscall writes the default timeslice value of a given process
6865 * into the user-space timespec buffer. A value of '0' means infinity.
6866 */
17da2bd9 6867SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6868 struct timespec __user *, interval)
1da177e4 6869{
36c8b586 6870 struct task_struct *p;
a4ec24b4 6871 unsigned int time_slice;
dba091b9
TG
6872 unsigned long flags;
6873 struct rq *rq;
3a5c359a 6874 int retval;
1da177e4 6875 struct timespec t;
1da177e4
LT
6876
6877 if (pid < 0)
3a5c359a 6878 return -EINVAL;
1da177e4
LT
6879
6880 retval = -ESRCH;
6881 read_lock(&tasklist_lock);
6882 p = find_process_by_pid(pid);
6883 if (!p)
6884 goto out_unlock;
6885
6886 retval = security_task_getscheduler(p);
6887 if (retval)
6888 goto out_unlock;
6889
dba091b9
TG
6890 rq = task_rq_lock(p, &flags);
6891 time_slice = p->sched_class->get_rr_interval(rq, p);
6892 task_rq_unlock(rq, &flags);
a4ec24b4 6893
1da177e4 6894 read_unlock(&tasklist_lock);
a4ec24b4 6895 jiffies_to_timespec(time_slice, &t);
1da177e4 6896 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6897 return retval;
3a5c359a 6898
1da177e4
LT
6899out_unlock:
6900 read_unlock(&tasklist_lock);
6901 return retval;
6902}
6903
7c731e0a 6904static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6905
82a1fcb9 6906void sched_show_task(struct task_struct *p)
1da177e4 6907{
1da177e4 6908 unsigned long free = 0;
36c8b586 6909 unsigned state;
1da177e4 6910
1da177e4 6911 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6912 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6913 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6914#if BITS_PER_LONG == 32
1da177e4 6915 if (state == TASK_RUNNING)
cc4ea795 6916 printk(KERN_CONT " running ");
1da177e4 6917 else
cc4ea795 6918 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6919#else
6920 if (state == TASK_RUNNING)
cc4ea795 6921 printk(KERN_CONT " running task ");
1da177e4 6922 else
cc4ea795 6923 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6924#endif
6925#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6926 free = stack_not_used(p);
1da177e4 6927#endif
aa47b7e0
DR
6928 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6929 task_pid_nr(p), task_pid_nr(p->real_parent),
6930 (unsigned long)task_thread_info(p)->flags);
1da177e4 6931
5fb5e6de 6932 show_stack(p, NULL);
1da177e4
LT
6933}
6934
e59e2ae2 6935void show_state_filter(unsigned long state_filter)
1da177e4 6936{
36c8b586 6937 struct task_struct *g, *p;
1da177e4 6938
4bd77321
IM
6939#if BITS_PER_LONG == 32
6940 printk(KERN_INFO
6941 " task PC stack pid father\n");
1da177e4 6942#else
4bd77321
IM
6943 printk(KERN_INFO
6944 " task PC stack pid father\n");
1da177e4
LT
6945#endif
6946 read_lock(&tasklist_lock);
6947 do_each_thread(g, p) {
6948 /*
6949 * reset the NMI-timeout, listing all files on a slow
6950 * console might take alot of time:
6951 */
6952 touch_nmi_watchdog();
39bc89fd 6953 if (!state_filter || (p->state & state_filter))
82a1fcb9 6954 sched_show_task(p);
1da177e4
LT
6955 } while_each_thread(g, p);
6956
04c9167f
JF
6957 touch_all_softlockup_watchdogs();
6958
dd41f596
IM
6959#ifdef CONFIG_SCHED_DEBUG
6960 sysrq_sched_debug_show();
6961#endif
1da177e4 6962 read_unlock(&tasklist_lock);
e59e2ae2
IM
6963 /*
6964 * Only show locks if all tasks are dumped:
6965 */
93335a21 6966 if (!state_filter)
e59e2ae2 6967 debug_show_all_locks();
1da177e4
LT
6968}
6969
1df21055
IM
6970void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6971{
dd41f596 6972 idle->sched_class = &idle_sched_class;
1df21055
IM
6973}
6974
f340c0d1
IM
6975/**
6976 * init_idle - set up an idle thread for a given CPU
6977 * @idle: task in question
6978 * @cpu: cpu the idle task belongs to
6979 *
6980 * NOTE: this function does not set the idle thread's NEED_RESCHED
6981 * flag, to make booting more robust.
6982 */
5c1e1767 6983void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6984{
70b97a7f 6985 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6986 unsigned long flags;
6987
5cbd54ef
IM
6988 spin_lock_irqsave(&rq->lock, flags);
6989
dd41f596
IM
6990 __sched_fork(idle);
6991 idle->se.exec_start = sched_clock();
6992
96f874e2 6993 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6994 __set_task_cpu(idle, cpu);
1da177e4 6995
1da177e4 6996 rq->curr = rq->idle = idle;
4866cde0
NP
6997#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6998 idle->oncpu = 1;
6999#endif
1da177e4
LT
7000 spin_unlock_irqrestore(&rq->lock, flags);
7001
7002 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7003#if defined(CONFIG_PREEMPT)
7004 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7005#else
a1261f54 7006 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7007#endif
dd41f596
IM
7008 /*
7009 * The idle tasks have their own, simple scheduling class:
7010 */
7011 idle->sched_class = &idle_sched_class;
fb52607a 7012 ftrace_graph_init_task(idle);
1da177e4
LT
7013}
7014
7015/*
7016 * In a system that switches off the HZ timer nohz_cpu_mask
7017 * indicates which cpus entered this state. This is used
7018 * in the rcu update to wait only for active cpus. For system
7019 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7020 * always be CPU_BITS_NONE.
1da177e4 7021 */
6a7b3dc3 7022cpumask_var_t nohz_cpu_mask;
1da177e4 7023
19978ca6
IM
7024/*
7025 * Increase the granularity value when there are more CPUs,
7026 * because with more CPUs the 'effective latency' as visible
7027 * to users decreases. But the relationship is not linear,
7028 * so pick a second-best guess by going with the log2 of the
7029 * number of CPUs.
7030 *
7031 * This idea comes from the SD scheduler of Con Kolivas:
7032 */
0bcdcf28 7033static void update_sysctl(void)
19978ca6 7034{
0bcdcf28
CE
7035 unsigned int cpus = min(num_online_cpus(), 8U);
7036 unsigned int factor = 1 + ilog2(cpus);
19978ca6 7037
0bcdcf28
CE
7038#define SET_SYSCTL(name) \
7039 (sysctl_##name = (factor) * normalized_sysctl_##name)
7040 SET_SYSCTL(sched_min_granularity);
7041 SET_SYSCTL(sched_latency);
7042 SET_SYSCTL(sched_wakeup_granularity);
7043 SET_SYSCTL(sched_shares_ratelimit);
7044#undef SET_SYSCTL
7045}
55cd5340 7046
0bcdcf28
CE
7047static inline void sched_init_granularity(void)
7048{
7049 update_sysctl();
19978ca6
IM
7050}
7051
1da177e4
LT
7052#ifdef CONFIG_SMP
7053/*
7054 * This is how migration works:
7055 *
70b97a7f 7056 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7057 * runqueue and wake up that CPU's migration thread.
7058 * 2) we down() the locked semaphore => thread blocks.
7059 * 3) migration thread wakes up (implicitly it forces the migrated
7060 * thread off the CPU)
7061 * 4) it gets the migration request and checks whether the migrated
7062 * task is still in the wrong runqueue.
7063 * 5) if it's in the wrong runqueue then the migration thread removes
7064 * it and puts it into the right queue.
7065 * 6) migration thread up()s the semaphore.
7066 * 7) we wake up and the migration is done.
7067 */
7068
7069/*
7070 * Change a given task's CPU affinity. Migrate the thread to a
7071 * proper CPU and schedule it away if the CPU it's executing on
7072 * is removed from the allowed bitmask.
7073 *
7074 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7075 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7076 * call is not atomic; no spinlocks may be held.
7077 */
96f874e2 7078int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7079{
70b97a7f 7080 struct migration_req req;
1da177e4 7081 unsigned long flags;
70b97a7f 7082 struct rq *rq;
48f24c4d 7083 int ret = 0;
1da177e4
LT
7084
7085 rq = task_rq_lock(p, &flags);
6ad4c188 7086 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7087 ret = -EINVAL;
7088 goto out;
7089 }
7090
9985b0ba 7091 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7092 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7093 ret = -EINVAL;
7094 goto out;
7095 }
7096
73fe6aae 7097 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7098 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7099 else {
96f874e2
RR
7100 cpumask_copy(&p->cpus_allowed, new_mask);
7101 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7102 }
7103
1da177e4 7104 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7105 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7106 goto out;
7107
6ad4c188 7108 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7109 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7110 struct task_struct *mt = rq->migration_thread;
7111
7112 get_task_struct(mt);
1da177e4
LT
7113 task_rq_unlock(rq, &flags);
7114 wake_up_process(rq->migration_thread);
693525e3 7115 put_task_struct(mt);
1da177e4
LT
7116 wait_for_completion(&req.done);
7117 tlb_migrate_finish(p->mm);
7118 return 0;
7119 }
7120out:
7121 task_rq_unlock(rq, &flags);
48f24c4d 7122
1da177e4
LT
7123 return ret;
7124}
cd8ba7cd 7125EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7126
7127/*
41a2d6cf 7128 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7129 * this because either it can't run here any more (set_cpus_allowed()
7130 * away from this CPU, or CPU going down), or because we're
7131 * attempting to rebalance this task on exec (sched_exec).
7132 *
7133 * So we race with normal scheduler movements, but that's OK, as long
7134 * as the task is no longer on this CPU.
efc30814
KK
7135 *
7136 * Returns non-zero if task was successfully migrated.
1da177e4 7137 */
efc30814 7138static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7139{
70b97a7f 7140 struct rq *rq_dest, *rq_src;
dd41f596 7141 int ret = 0, on_rq;
1da177e4 7142
e761b772 7143 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7144 return ret;
1da177e4
LT
7145
7146 rq_src = cpu_rq(src_cpu);
7147 rq_dest = cpu_rq(dest_cpu);
7148
7149 double_rq_lock(rq_src, rq_dest);
7150 /* Already moved. */
7151 if (task_cpu(p) != src_cpu)
b1e38734 7152 goto done;
1da177e4 7153 /* Affinity changed (again). */
96f874e2 7154 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7155 goto fail;
1da177e4 7156
dd41f596 7157 on_rq = p->se.on_rq;
6e82a3be 7158 if (on_rq)
2e1cb74a 7159 deactivate_task(rq_src, p, 0);
6e82a3be 7160
1da177e4 7161 set_task_cpu(p, dest_cpu);
dd41f596
IM
7162 if (on_rq) {
7163 activate_task(rq_dest, p, 0);
15afe09b 7164 check_preempt_curr(rq_dest, p, 0);
1da177e4 7165 }
b1e38734 7166done:
efc30814 7167 ret = 1;
b1e38734 7168fail:
1da177e4 7169 double_rq_unlock(rq_src, rq_dest);
efc30814 7170 return ret;
1da177e4
LT
7171}
7172
03b042bf
PM
7173#define RCU_MIGRATION_IDLE 0
7174#define RCU_MIGRATION_NEED_QS 1
7175#define RCU_MIGRATION_GOT_QS 2
7176#define RCU_MIGRATION_MUST_SYNC 3
7177
1da177e4
LT
7178/*
7179 * migration_thread - this is a highprio system thread that performs
7180 * thread migration by bumping thread off CPU then 'pushing' onto
7181 * another runqueue.
7182 */
95cdf3b7 7183static int migration_thread(void *data)
1da177e4 7184{
03b042bf 7185 int badcpu;
1da177e4 7186 int cpu = (long)data;
70b97a7f 7187 struct rq *rq;
1da177e4
LT
7188
7189 rq = cpu_rq(cpu);
7190 BUG_ON(rq->migration_thread != current);
7191
7192 set_current_state(TASK_INTERRUPTIBLE);
7193 while (!kthread_should_stop()) {
70b97a7f 7194 struct migration_req *req;
1da177e4 7195 struct list_head *head;
1da177e4 7196
1da177e4
LT
7197 spin_lock_irq(&rq->lock);
7198
7199 if (cpu_is_offline(cpu)) {
7200 spin_unlock_irq(&rq->lock);
371cbb38 7201 break;
1da177e4
LT
7202 }
7203
7204 if (rq->active_balance) {
7205 active_load_balance(rq, cpu);
7206 rq->active_balance = 0;
7207 }
7208
7209 head = &rq->migration_queue;
7210
7211 if (list_empty(head)) {
7212 spin_unlock_irq(&rq->lock);
7213 schedule();
7214 set_current_state(TASK_INTERRUPTIBLE);
7215 continue;
7216 }
70b97a7f 7217 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7218 list_del_init(head->next);
7219
03b042bf
PM
7220 if (req->task != NULL) {
7221 spin_unlock(&rq->lock);
7222 __migrate_task(req->task, cpu, req->dest_cpu);
7223 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7224 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7225 spin_unlock(&rq->lock);
7226 } else {
7227 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7228 spin_unlock(&rq->lock);
7229 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7230 }
674311d5 7231 local_irq_enable();
1da177e4
LT
7232
7233 complete(&req->done);
7234 }
7235 __set_current_state(TASK_RUNNING);
1da177e4 7236
1da177e4
LT
7237 return 0;
7238}
7239
7240#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7241
7242static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7243{
7244 int ret;
7245
7246 local_irq_disable();
7247 ret = __migrate_task(p, src_cpu, dest_cpu);
7248 local_irq_enable();
7249 return ret;
7250}
7251
054b9108 7252/*
3a4fa0a2 7253 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7254 */
48f24c4d 7255static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7256{
70b97a7f 7257 int dest_cpu;
6ca09dfc 7258 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7259
7260again:
7261 /* Look for allowed, online CPU in same node. */
6ad4c188 7262 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
e76bd8d9
RR
7263 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7264 goto move;
7265
7266 /* Any allowed, online CPU? */
6ad4c188 7267 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
e76bd8d9
RR
7268 if (dest_cpu < nr_cpu_ids)
7269 goto move;
7270
7271 /* No more Mr. Nice Guy. */
7272 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9 7273 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6ad4c188 7274 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
1da177e4 7275
e76bd8d9
RR
7276 /*
7277 * Don't tell them about moving exiting tasks or
7278 * kernel threads (both mm NULL), since they never
7279 * leave kernel.
7280 */
7281 if (p->mm && printk_ratelimit()) {
7282 printk(KERN_INFO "process %d (%s) no "
7283 "longer affine to cpu%d\n",
7284 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7285 }
e76bd8d9
RR
7286 }
7287
7288move:
7289 /* It can have affinity changed while we were choosing. */
7290 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7291 goto again;
1da177e4
LT
7292}
7293
7294/*
7295 * While a dead CPU has no uninterruptible tasks queued at this point,
7296 * it might still have a nonzero ->nr_uninterruptible counter, because
7297 * for performance reasons the counter is not stricly tracking tasks to
7298 * their home CPUs. So we just add the counter to another CPU's counter,
7299 * to keep the global sum constant after CPU-down:
7300 */
70b97a7f 7301static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7302{
6ad4c188 7303 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7304 unsigned long flags;
7305
7306 local_irq_save(flags);
7307 double_rq_lock(rq_src, rq_dest);
7308 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7309 rq_src->nr_uninterruptible = 0;
7310 double_rq_unlock(rq_src, rq_dest);
7311 local_irq_restore(flags);
7312}
7313
7314/* Run through task list and migrate tasks from the dead cpu. */
7315static void migrate_live_tasks(int src_cpu)
7316{
48f24c4d 7317 struct task_struct *p, *t;
1da177e4 7318
f7b4cddc 7319 read_lock(&tasklist_lock);
1da177e4 7320
48f24c4d
IM
7321 do_each_thread(t, p) {
7322 if (p == current)
1da177e4
LT
7323 continue;
7324
48f24c4d
IM
7325 if (task_cpu(p) == src_cpu)
7326 move_task_off_dead_cpu(src_cpu, p);
7327 } while_each_thread(t, p);
1da177e4 7328
f7b4cddc 7329 read_unlock(&tasklist_lock);
1da177e4
LT
7330}
7331
dd41f596
IM
7332/*
7333 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7334 * It does so by boosting its priority to highest possible.
7335 * Used by CPU offline code.
1da177e4
LT
7336 */
7337void sched_idle_next(void)
7338{
48f24c4d 7339 int this_cpu = smp_processor_id();
70b97a7f 7340 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7341 struct task_struct *p = rq->idle;
7342 unsigned long flags;
7343
7344 /* cpu has to be offline */
48f24c4d 7345 BUG_ON(cpu_online(this_cpu));
1da177e4 7346
48f24c4d
IM
7347 /*
7348 * Strictly not necessary since rest of the CPUs are stopped by now
7349 * and interrupts disabled on the current cpu.
1da177e4
LT
7350 */
7351 spin_lock_irqsave(&rq->lock, flags);
7352
dd41f596 7353 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7354
94bc9a7b
DA
7355 update_rq_clock(rq);
7356 activate_task(rq, p, 0);
1da177e4
LT
7357
7358 spin_unlock_irqrestore(&rq->lock, flags);
7359}
7360
48f24c4d
IM
7361/*
7362 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7363 * offline.
7364 */
7365void idle_task_exit(void)
7366{
7367 struct mm_struct *mm = current->active_mm;
7368
7369 BUG_ON(cpu_online(smp_processor_id()));
7370
7371 if (mm != &init_mm)
7372 switch_mm(mm, &init_mm, current);
7373 mmdrop(mm);
7374}
7375
054b9108 7376/* called under rq->lock with disabled interrupts */
36c8b586 7377static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7378{
70b97a7f 7379 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7380
7381 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7382 BUG_ON(!p->exit_state);
1da177e4
LT
7383
7384 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7385 BUG_ON(p->state == TASK_DEAD);
1da177e4 7386
48f24c4d 7387 get_task_struct(p);
1da177e4
LT
7388
7389 /*
7390 * Drop lock around migration; if someone else moves it,
41a2d6cf 7391 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7392 * fine.
7393 */
f7b4cddc 7394 spin_unlock_irq(&rq->lock);
48f24c4d 7395 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7396 spin_lock_irq(&rq->lock);
1da177e4 7397
48f24c4d 7398 put_task_struct(p);
1da177e4
LT
7399}
7400
7401/* release_task() removes task from tasklist, so we won't find dead tasks. */
7402static void migrate_dead_tasks(unsigned int dead_cpu)
7403{
70b97a7f 7404 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7405 struct task_struct *next;
48f24c4d 7406
dd41f596
IM
7407 for ( ; ; ) {
7408 if (!rq->nr_running)
7409 break;
a8e504d2 7410 update_rq_clock(rq);
b67802ea 7411 next = pick_next_task(rq);
dd41f596
IM
7412 if (!next)
7413 break;
79c53799 7414 next->sched_class->put_prev_task(rq, next);
dd41f596 7415 migrate_dead(dead_cpu, next);
e692ab53 7416
1da177e4
LT
7417 }
7418}
dce48a84
TG
7419
7420/*
7421 * remove the tasks which were accounted by rq from calc_load_tasks.
7422 */
7423static void calc_global_load_remove(struct rq *rq)
7424{
7425 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7426 rq->calc_load_active = 0;
dce48a84 7427}
1da177e4
LT
7428#endif /* CONFIG_HOTPLUG_CPU */
7429
e692ab53
NP
7430#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7431
7432static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7433 {
7434 .procname = "sched_domain",
c57baf1e 7435 .mode = 0555,
e0361851 7436 },
38605cae 7437 {0, },
e692ab53
NP
7438};
7439
7440static struct ctl_table sd_ctl_root[] = {
e0361851 7441 {
c57baf1e 7442 .ctl_name = CTL_KERN,
e0361851 7443 .procname = "kernel",
c57baf1e 7444 .mode = 0555,
e0361851
AD
7445 .child = sd_ctl_dir,
7446 },
38605cae 7447 {0, },
e692ab53
NP
7448};
7449
7450static struct ctl_table *sd_alloc_ctl_entry(int n)
7451{
7452 struct ctl_table *entry =
5cf9f062 7453 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7454
e692ab53
NP
7455 return entry;
7456}
7457
6382bc90
MM
7458static void sd_free_ctl_entry(struct ctl_table **tablep)
7459{
cd790076 7460 struct ctl_table *entry;
6382bc90 7461
cd790076
MM
7462 /*
7463 * In the intermediate directories, both the child directory and
7464 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7465 * will always be set. In the lowest directory the names are
cd790076
MM
7466 * static strings and all have proc handlers.
7467 */
7468 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7469 if (entry->child)
7470 sd_free_ctl_entry(&entry->child);
cd790076
MM
7471 if (entry->proc_handler == NULL)
7472 kfree(entry->procname);
7473 }
6382bc90
MM
7474
7475 kfree(*tablep);
7476 *tablep = NULL;
7477}
7478
e692ab53 7479static void
e0361851 7480set_table_entry(struct ctl_table *entry,
e692ab53
NP
7481 const char *procname, void *data, int maxlen,
7482 mode_t mode, proc_handler *proc_handler)
7483{
e692ab53
NP
7484 entry->procname = procname;
7485 entry->data = data;
7486 entry->maxlen = maxlen;
7487 entry->mode = mode;
7488 entry->proc_handler = proc_handler;
7489}
7490
7491static struct ctl_table *
7492sd_alloc_ctl_domain_table(struct sched_domain *sd)
7493{
a5d8c348 7494 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7495
ad1cdc1d
MM
7496 if (table == NULL)
7497 return NULL;
7498
e0361851 7499 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7500 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7501 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7502 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7503 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7504 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7505 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7506 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7507 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7508 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7509 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7510 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7511 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7512 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7513 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7514 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7515 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7516 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7517 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7518 &sd->cache_nice_tries,
7519 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7520 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7521 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7522 set_table_entry(&table[11], "name", sd->name,
7523 CORENAME_MAX_SIZE, 0444, proc_dostring);
7524 /* &table[12] is terminator */
e692ab53
NP
7525
7526 return table;
7527}
7528
9a4e7159 7529static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7530{
7531 struct ctl_table *entry, *table;
7532 struct sched_domain *sd;
7533 int domain_num = 0, i;
7534 char buf[32];
7535
7536 for_each_domain(cpu, sd)
7537 domain_num++;
7538 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7539 if (table == NULL)
7540 return NULL;
e692ab53
NP
7541
7542 i = 0;
7543 for_each_domain(cpu, sd) {
7544 snprintf(buf, 32, "domain%d", i);
e692ab53 7545 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7546 entry->mode = 0555;
e692ab53
NP
7547 entry->child = sd_alloc_ctl_domain_table(sd);
7548 entry++;
7549 i++;
7550 }
7551 return table;
7552}
7553
7554static struct ctl_table_header *sd_sysctl_header;
6382bc90 7555static void register_sched_domain_sysctl(void)
e692ab53 7556{
6ad4c188 7557 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7558 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7559 char buf[32];
7560
7378547f
MM
7561 WARN_ON(sd_ctl_dir[0].child);
7562 sd_ctl_dir[0].child = entry;
7563
ad1cdc1d
MM
7564 if (entry == NULL)
7565 return;
7566
6ad4c188 7567 for_each_possible_cpu(i) {
e692ab53 7568 snprintf(buf, 32, "cpu%d", i);
e692ab53 7569 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7570 entry->mode = 0555;
e692ab53 7571 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7572 entry++;
e692ab53 7573 }
7378547f
MM
7574
7575 WARN_ON(sd_sysctl_header);
e692ab53
NP
7576 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7577}
6382bc90 7578
7378547f 7579/* may be called multiple times per register */
6382bc90
MM
7580static void unregister_sched_domain_sysctl(void)
7581{
7378547f
MM
7582 if (sd_sysctl_header)
7583 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7584 sd_sysctl_header = NULL;
7378547f
MM
7585 if (sd_ctl_dir[0].child)
7586 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7587}
e692ab53 7588#else
6382bc90
MM
7589static void register_sched_domain_sysctl(void)
7590{
7591}
7592static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7593{
7594}
7595#endif
7596
1f11eb6a
GH
7597static void set_rq_online(struct rq *rq)
7598{
7599 if (!rq->online) {
7600 const struct sched_class *class;
7601
c6c4927b 7602 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7603 rq->online = 1;
7604
7605 for_each_class(class) {
7606 if (class->rq_online)
7607 class->rq_online(rq);
7608 }
7609 }
7610}
7611
7612static void set_rq_offline(struct rq *rq)
7613{
7614 if (rq->online) {
7615 const struct sched_class *class;
7616
7617 for_each_class(class) {
7618 if (class->rq_offline)
7619 class->rq_offline(rq);
7620 }
7621
c6c4927b 7622 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7623 rq->online = 0;
7624 }
7625}
7626
1da177e4
LT
7627/*
7628 * migration_call - callback that gets triggered when a CPU is added.
7629 * Here we can start up the necessary migration thread for the new CPU.
7630 */
48f24c4d
IM
7631static int __cpuinit
7632migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7633{
1da177e4 7634 struct task_struct *p;
48f24c4d 7635 int cpu = (long)hcpu;
1da177e4 7636 unsigned long flags;
70b97a7f 7637 struct rq *rq;
1da177e4
LT
7638
7639 switch (action) {
5be9361c 7640
1da177e4 7641 case CPU_UP_PREPARE:
8bb78442 7642 case CPU_UP_PREPARE_FROZEN:
dd41f596 7643 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7644 if (IS_ERR(p))
7645 return NOTIFY_BAD;
1da177e4
LT
7646 kthread_bind(p, cpu);
7647 /* Must be high prio: stop_machine expects to yield to it. */
7648 rq = task_rq_lock(p, &flags);
dd41f596 7649 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7650 task_rq_unlock(rq, &flags);
371cbb38 7651 get_task_struct(p);
1da177e4 7652 cpu_rq(cpu)->migration_thread = p;
a468d389 7653 rq->calc_load_update = calc_load_update;
1da177e4 7654 break;
48f24c4d 7655
1da177e4 7656 case CPU_ONLINE:
8bb78442 7657 case CPU_ONLINE_FROZEN:
3a4fa0a2 7658 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7659 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7660
7661 /* Update our root-domain */
7662 rq = cpu_rq(cpu);
7663 spin_lock_irqsave(&rq->lock, flags);
7664 if (rq->rd) {
c6c4927b 7665 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7666
7667 set_rq_online(rq);
1f94ef59
GH
7668 }
7669 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7670 break;
48f24c4d 7671
1da177e4
LT
7672#ifdef CONFIG_HOTPLUG_CPU
7673 case CPU_UP_CANCELED:
8bb78442 7674 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7675 if (!cpu_rq(cpu)->migration_thread)
7676 break;
41a2d6cf 7677 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7678 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7679 cpumask_any(cpu_online_mask));
1da177e4 7680 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7681 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7682 cpu_rq(cpu)->migration_thread = NULL;
7683 break;
48f24c4d 7684
1da177e4 7685 case CPU_DEAD:
8bb78442 7686 case CPU_DEAD_FROZEN:
470fd646 7687 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7688 migrate_live_tasks(cpu);
7689 rq = cpu_rq(cpu);
7690 kthread_stop(rq->migration_thread);
371cbb38 7691 put_task_struct(rq->migration_thread);
1da177e4
LT
7692 rq->migration_thread = NULL;
7693 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7694 spin_lock_irq(&rq->lock);
a8e504d2 7695 update_rq_clock(rq);
2e1cb74a 7696 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7697 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7698 rq->idle->sched_class = &idle_sched_class;
1da177e4 7699 migrate_dead_tasks(cpu);
d2da272a 7700 spin_unlock_irq(&rq->lock);
470fd646 7701 cpuset_unlock();
1da177e4
LT
7702 migrate_nr_uninterruptible(rq);
7703 BUG_ON(rq->nr_running != 0);
dce48a84 7704 calc_global_load_remove(rq);
41a2d6cf
IM
7705 /*
7706 * No need to migrate the tasks: it was best-effort if
7707 * they didn't take sched_hotcpu_mutex. Just wake up
7708 * the requestors.
7709 */
1da177e4
LT
7710 spin_lock_irq(&rq->lock);
7711 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7712 struct migration_req *req;
7713
1da177e4 7714 req = list_entry(rq->migration_queue.next,
70b97a7f 7715 struct migration_req, list);
1da177e4 7716 list_del_init(&req->list);
9a2bd244 7717 spin_unlock_irq(&rq->lock);
1da177e4 7718 complete(&req->done);
9a2bd244 7719 spin_lock_irq(&rq->lock);
1da177e4
LT
7720 }
7721 spin_unlock_irq(&rq->lock);
7722 break;
57d885fe 7723
08f503b0
GH
7724 case CPU_DYING:
7725 case CPU_DYING_FROZEN:
57d885fe
GH
7726 /* Update our root-domain */
7727 rq = cpu_rq(cpu);
7728 spin_lock_irqsave(&rq->lock, flags);
7729 if (rq->rd) {
c6c4927b 7730 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7731 set_rq_offline(rq);
57d885fe
GH
7732 }
7733 spin_unlock_irqrestore(&rq->lock, flags);
7734 break;
1da177e4
LT
7735#endif
7736 }
7737 return NOTIFY_OK;
7738}
7739
f38b0820
PM
7740/*
7741 * Register at high priority so that task migration (migrate_all_tasks)
7742 * happens before everything else. This has to be lower priority than
cdd6c482 7743 * the notifier in the perf_event subsystem, though.
1da177e4 7744 */
26c2143b 7745static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7746 .notifier_call = migration_call,
7747 .priority = 10
7748};
7749
7babe8db 7750static int __init migration_init(void)
1da177e4
LT
7751{
7752 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7753 int err;
48f24c4d
IM
7754
7755 /* Start one for the boot CPU: */
07dccf33
AM
7756 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7757 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7758 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7759 register_cpu_notifier(&migration_notifier);
7babe8db 7760
a004cd42 7761 return 0;
1da177e4 7762}
7babe8db 7763early_initcall(migration_init);
1da177e4
LT
7764#endif
7765
7766#ifdef CONFIG_SMP
476f3534 7767
3e9830dc 7768#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7769
f6630114
MT
7770static __read_mostly int sched_domain_debug_enabled;
7771
7772static int __init sched_domain_debug_setup(char *str)
7773{
7774 sched_domain_debug_enabled = 1;
7775
7776 return 0;
7777}
7778early_param("sched_debug", sched_domain_debug_setup);
7779
7c16ec58 7780static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7781 struct cpumask *groupmask)
1da177e4 7782{
4dcf6aff 7783 struct sched_group *group = sd->groups;
434d53b0 7784 char str[256];
1da177e4 7785
968ea6d8 7786 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7787 cpumask_clear(groupmask);
4dcf6aff
IM
7788
7789 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7790
7791 if (!(sd->flags & SD_LOAD_BALANCE)) {
7792 printk("does not load-balance\n");
7793 if (sd->parent)
7794 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7795 " has parent");
7796 return -1;
41c7ce9a
NP
7797 }
7798
eefd796a 7799 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7800
758b2cdc 7801 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7802 printk(KERN_ERR "ERROR: domain->span does not contain "
7803 "CPU%d\n", cpu);
7804 }
758b2cdc 7805 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7806 printk(KERN_ERR "ERROR: domain->groups does not contain"
7807 " CPU%d\n", cpu);
7808 }
1da177e4 7809
4dcf6aff 7810 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7811 do {
4dcf6aff
IM
7812 if (!group) {
7813 printk("\n");
7814 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7815 break;
7816 }
7817
18a3885f 7818 if (!group->cpu_power) {
4dcf6aff
IM
7819 printk(KERN_CONT "\n");
7820 printk(KERN_ERR "ERROR: domain->cpu_power not "
7821 "set\n");
7822 break;
7823 }
1da177e4 7824
758b2cdc 7825 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7826 printk(KERN_CONT "\n");
7827 printk(KERN_ERR "ERROR: empty group\n");
7828 break;
7829 }
1da177e4 7830
758b2cdc 7831 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7832 printk(KERN_CONT "\n");
7833 printk(KERN_ERR "ERROR: repeated CPUs\n");
7834 break;
7835 }
1da177e4 7836
758b2cdc 7837 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7838
968ea6d8 7839 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7840
7841 printk(KERN_CONT " %s", str);
18a3885f
PZ
7842 if (group->cpu_power != SCHED_LOAD_SCALE) {
7843 printk(KERN_CONT " (cpu_power = %d)",
7844 group->cpu_power);
381512cf 7845 }
1da177e4 7846
4dcf6aff
IM
7847 group = group->next;
7848 } while (group != sd->groups);
7849 printk(KERN_CONT "\n");
1da177e4 7850
758b2cdc 7851 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7852 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7853
758b2cdc
RR
7854 if (sd->parent &&
7855 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7856 printk(KERN_ERR "ERROR: parent span is not a superset "
7857 "of domain->span\n");
7858 return 0;
7859}
1da177e4 7860
4dcf6aff
IM
7861static void sched_domain_debug(struct sched_domain *sd, int cpu)
7862{
d5dd3db1 7863 cpumask_var_t groupmask;
4dcf6aff 7864 int level = 0;
1da177e4 7865
f6630114
MT
7866 if (!sched_domain_debug_enabled)
7867 return;
7868
4dcf6aff
IM
7869 if (!sd) {
7870 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7871 return;
7872 }
1da177e4 7873
4dcf6aff
IM
7874 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7875
d5dd3db1 7876 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7877 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7878 return;
7879 }
7880
4dcf6aff 7881 for (;;) {
7c16ec58 7882 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7883 break;
1da177e4
LT
7884 level++;
7885 sd = sd->parent;
33859f7f 7886 if (!sd)
4dcf6aff
IM
7887 break;
7888 }
d5dd3db1 7889 free_cpumask_var(groupmask);
1da177e4 7890}
6d6bc0ad 7891#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7892# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7893#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7894
1a20ff27 7895static int sd_degenerate(struct sched_domain *sd)
245af2c7 7896{
758b2cdc 7897 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7898 return 1;
7899
7900 /* Following flags need at least 2 groups */
7901 if (sd->flags & (SD_LOAD_BALANCE |
7902 SD_BALANCE_NEWIDLE |
7903 SD_BALANCE_FORK |
89c4710e
SS
7904 SD_BALANCE_EXEC |
7905 SD_SHARE_CPUPOWER |
7906 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7907 if (sd->groups != sd->groups->next)
7908 return 0;
7909 }
7910
7911 /* Following flags don't use groups */
c88d5910 7912 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7913 return 0;
7914
7915 return 1;
7916}
7917
48f24c4d
IM
7918static int
7919sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7920{
7921 unsigned long cflags = sd->flags, pflags = parent->flags;
7922
7923 if (sd_degenerate(parent))
7924 return 1;
7925
758b2cdc 7926 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7927 return 0;
7928
245af2c7
SS
7929 /* Flags needing groups don't count if only 1 group in parent */
7930 if (parent->groups == parent->groups->next) {
7931 pflags &= ~(SD_LOAD_BALANCE |
7932 SD_BALANCE_NEWIDLE |
7933 SD_BALANCE_FORK |
89c4710e
SS
7934 SD_BALANCE_EXEC |
7935 SD_SHARE_CPUPOWER |
7936 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7937 if (nr_node_ids == 1)
7938 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7939 }
7940 if (~cflags & pflags)
7941 return 0;
7942
7943 return 1;
7944}
7945
c6c4927b
RR
7946static void free_rootdomain(struct root_domain *rd)
7947{
047106ad
PZ
7948 synchronize_sched();
7949
68e74568
RR
7950 cpupri_cleanup(&rd->cpupri);
7951
c6c4927b
RR
7952 free_cpumask_var(rd->rto_mask);
7953 free_cpumask_var(rd->online);
7954 free_cpumask_var(rd->span);
7955 kfree(rd);
7956}
7957
57d885fe
GH
7958static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7959{
a0490fa3 7960 struct root_domain *old_rd = NULL;
57d885fe 7961 unsigned long flags;
57d885fe
GH
7962
7963 spin_lock_irqsave(&rq->lock, flags);
7964
7965 if (rq->rd) {
a0490fa3 7966 old_rd = rq->rd;
57d885fe 7967
c6c4927b 7968 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7969 set_rq_offline(rq);
57d885fe 7970
c6c4927b 7971 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7972
a0490fa3
IM
7973 /*
7974 * If we dont want to free the old_rt yet then
7975 * set old_rd to NULL to skip the freeing later
7976 * in this function:
7977 */
7978 if (!atomic_dec_and_test(&old_rd->refcount))
7979 old_rd = NULL;
57d885fe
GH
7980 }
7981
7982 atomic_inc(&rd->refcount);
7983 rq->rd = rd;
7984
c6c4927b 7985 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7986 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7987 set_rq_online(rq);
57d885fe
GH
7988
7989 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7990
7991 if (old_rd)
7992 free_rootdomain(old_rd);
57d885fe
GH
7993}
7994
fd5e1b5d 7995static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7996{
36b7b6d4
PE
7997 gfp_t gfp = GFP_KERNEL;
7998
57d885fe
GH
7999 memset(rd, 0, sizeof(*rd));
8000
36b7b6d4
PE
8001 if (bootmem)
8002 gfp = GFP_NOWAIT;
c6c4927b 8003
36b7b6d4 8004 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8005 goto out;
36b7b6d4 8006 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8007 goto free_span;
36b7b6d4 8008 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8009 goto free_online;
6e0534f2 8010
0fb53029 8011 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8012 goto free_rto_mask;
c6c4927b 8013 return 0;
6e0534f2 8014
68e74568
RR
8015free_rto_mask:
8016 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8017free_online:
8018 free_cpumask_var(rd->online);
8019free_span:
8020 free_cpumask_var(rd->span);
0c910d28 8021out:
c6c4927b 8022 return -ENOMEM;
57d885fe
GH
8023}
8024
8025static void init_defrootdomain(void)
8026{
c6c4927b
RR
8027 init_rootdomain(&def_root_domain, true);
8028
57d885fe
GH
8029 atomic_set(&def_root_domain.refcount, 1);
8030}
8031
dc938520 8032static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8033{
8034 struct root_domain *rd;
8035
8036 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8037 if (!rd)
8038 return NULL;
8039
c6c4927b
RR
8040 if (init_rootdomain(rd, false) != 0) {
8041 kfree(rd);
8042 return NULL;
8043 }
57d885fe
GH
8044
8045 return rd;
8046}
8047
1da177e4 8048/*
0eab9146 8049 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8050 * hold the hotplug lock.
8051 */
0eab9146
IM
8052static void
8053cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8054{
70b97a7f 8055 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8056 struct sched_domain *tmp;
8057
8058 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8059 for (tmp = sd; tmp; ) {
245af2c7
SS
8060 struct sched_domain *parent = tmp->parent;
8061 if (!parent)
8062 break;
f29c9b1c 8063
1a848870 8064 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8065 tmp->parent = parent->parent;
1a848870
SS
8066 if (parent->parent)
8067 parent->parent->child = tmp;
f29c9b1c
LZ
8068 } else
8069 tmp = tmp->parent;
245af2c7
SS
8070 }
8071
1a848870 8072 if (sd && sd_degenerate(sd)) {
245af2c7 8073 sd = sd->parent;
1a848870
SS
8074 if (sd)
8075 sd->child = NULL;
8076 }
1da177e4
LT
8077
8078 sched_domain_debug(sd, cpu);
8079
57d885fe 8080 rq_attach_root(rq, rd);
674311d5 8081 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8082}
8083
8084/* cpus with isolated domains */
dcc30a35 8085static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8086
8087/* Setup the mask of cpus configured for isolated domains */
8088static int __init isolated_cpu_setup(char *str)
8089{
bdddd296 8090 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8091 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8092 return 1;
8093}
8094
8927f494 8095__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8096
8097/*
6711cab4
SS
8098 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8099 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8100 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8101 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8102 *
8103 * init_sched_build_groups will build a circular linked list of the groups
8104 * covered by the given span, and will set each group's ->cpumask correctly,
8105 * and ->cpu_power to 0.
8106 */
a616058b 8107static void
96f874e2
RR
8108init_sched_build_groups(const struct cpumask *span,
8109 const struct cpumask *cpu_map,
8110 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8111 struct sched_group **sg,
96f874e2
RR
8112 struct cpumask *tmpmask),
8113 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8114{
8115 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8116 int i;
8117
96f874e2 8118 cpumask_clear(covered);
7c16ec58 8119
abcd083a 8120 for_each_cpu(i, span) {
6711cab4 8121 struct sched_group *sg;
7c16ec58 8122 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8123 int j;
8124
758b2cdc 8125 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8126 continue;
8127
758b2cdc 8128 cpumask_clear(sched_group_cpus(sg));
18a3885f 8129 sg->cpu_power = 0;
1da177e4 8130
abcd083a 8131 for_each_cpu(j, span) {
7c16ec58 8132 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8133 continue;
8134
96f874e2 8135 cpumask_set_cpu(j, covered);
758b2cdc 8136 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8137 }
8138 if (!first)
8139 first = sg;
8140 if (last)
8141 last->next = sg;
8142 last = sg;
8143 }
8144 last->next = first;
8145}
8146
9c1cfda2 8147#define SD_NODES_PER_DOMAIN 16
1da177e4 8148
9c1cfda2 8149#ifdef CONFIG_NUMA
198e2f18 8150
9c1cfda2
JH
8151/**
8152 * find_next_best_node - find the next node to include in a sched_domain
8153 * @node: node whose sched_domain we're building
8154 * @used_nodes: nodes already in the sched_domain
8155 *
41a2d6cf 8156 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8157 * finds the closest node not already in the @used_nodes map.
8158 *
8159 * Should use nodemask_t.
8160 */
c5f59f08 8161static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8162{
8163 int i, n, val, min_val, best_node = 0;
8164
8165 min_val = INT_MAX;
8166
076ac2af 8167 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8168 /* Start at @node */
076ac2af 8169 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8170
8171 if (!nr_cpus_node(n))
8172 continue;
8173
8174 /* Skip already used nodes */
c5f59f08 8175 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8176 continue;
8177
8178 /* Simple min distance search */
8179 val = node_distance(node, n);
8180
8181 if (val < min_val) {
8182 min_val = val;
8183 best_node = n;
8184 }
8185 }
8186
c5f59f08 8187 node_set(best_node, *used_nodes);
9c1cfda2
JH
8188 return best_node;
8189}
8190
8191/**
8192 * sched_domain_node_span - get a cpumask for a node's sched_domain
8193 * @node: node whose cpumask we're constructing
73486722 8194 * @span: resulting cpumask
9c1cfda2 8195 *
41a2d6cf 8196 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8197 * should be one that prevents unnecessary balancing, but also spreads tasks
8198 * out optimally.
8199 */
96f874e2 8200static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8201{
c5f59f08 8202 nodemask_t used_nodes;
48f24c4d 8203 int i;
9c1cfda2 8204
6ca09dfc 8205 cpumask_clear(span);
c5f59f08 8206 nodes_clear(used_nodes);
9c1cfda2 8207
6ca09dfc 8208 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8209 node_set(node, used_nodes);
9c1cfda2
JH
8210
8211 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8212 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8213
6ca09dfc 8214 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8215 }
9c1cfda2 8216}
6d6bc0ad 8217#endif /* CONFIG_NUMA */
9c1cfda2 8218
5c45bf27 8219int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8220
6c99e9ad
RR
8221/*
8222 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8223 *
8224 * ( See the the comments in include/linux/sched.h:struct sched_group
8225 * and struct sched_domain. )
6c99e9ad
RR
8226 */
8227struct static_sched_group {
8228 struct sched_group sg;
8229 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8230};
8231
8232struct static_sched_domain {
8233 struct sched_domain sd;
8234 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8235};
8236
49a02c51
AH
8237struct s_data {
8238#ifdef CONFIG_NUMA
8239 int sd_allnodes;
8240 cpumask_var_t domainspan;
8241 cpumask_var_t covered;
8242 cpumask_var_t notcovered;
8243#endif
8244 cpumask_var_t nodemask;
8245 cpumask_var_t this_sibling_map;
8246 cpumask_var_t this_core_map;
8247 cpumask_var_t send_covered;
8248 cpumask_var_t tmpmask;
8249 struct sched_group **sched_group_nodes;
8250 struct root_domain *rd;
8251};
8252
2109b99e
AH
8253enum s_alloc {
8254 sa_sched_groups = 0,
8255 sa_rootdomain,
8256 sa_tmpmask,
8257 sa_send_covered,
8258 sa_this_core_map,
8259 sa_this_sibling_map,
8260 sa_nodemask,
8261 sa_sched_group_nodes,
8262#ifdef CONFIG_NUMA
8263 sa_notcovered,
8264 sa_covered,
8265 sa_domainspan,
8266#endif
8267 sa_none,
8268};
8269
9c1cfda2 8270/*
48f24c4d 8271 * SMT sched-domains:
9c1cfda2 8272 */
1da177e4 8273#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8274static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8275static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8276
41a2d6cf 8277static int
96f874e2
RR
8278cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8279 struct sched_group **sg, struct cpumask *unused)
1da177e4 8280{
6711cab4 8281 if (sg)
6c99e9ad 8282 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8283 return cpu;
8284}
6d6bc0ad 8285#endif /* CONFIG_SCHED_SMT */
1da177e4 8286
48f24c4d
IM
8287/*
8288 * multi-core sched-domains:
8289 */
1e9f28fa 8290#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8291static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8292static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8293#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8294
8295#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8296static int
96f874e2
RR
8297cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8298 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8299{
6711cab4 8300 int group;
7c16ec58 8301
c69fc56d 8302 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8303 group = cpumask_first(mask);
6711cab4 8304 if (sg)
6c99e9ad 8305 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8306 return group;
1e9f28fa
SS
8307}
8308#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8309static int
96f874e2
RR
8310cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8311 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8312{
6711cab4 8313 if (sg)
6c99e9ad 8314 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8315 return cpu;
8316}
8317#endif
8318
6c99e9ad
RR
8319static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8320static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8321
41a2d6cf 8322static int
96f874e2
RR
8323cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8324 struct sched_group **sg, struct cpumask *mask)
1da177e4 8325{
6711cab4 8326 int group;
48f24c4d 8327#ifdef CONFIG_SCHED_MC
6ca09dfc 8328 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8329 group = cpumask_first(mask);
1e9f28fa 8330#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8331 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8332 group = cpumask_first(mask);
1da177e4 8333#else
6711cab4 8334 group = cpu;
1da177e4 8335#endif
6711cab4 8336 if (sg)
6c99e9ad 8337 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8338 return group;
1da177e4
LT
8339}
8340
8341#ifdef CONFIG_NUMA
1da177e4 8342/*
9c1cfda2
JH
8343 * The init_sched_build_groups can't handle what we want to do with node
8344 * groups, so roll our own. Now each node has its own list of groups which
8345 * gets dynamically allocated.
1da177e4 8346 */
62ea9ceb 8347static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8348static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8349
62ea9ceb 8350static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8351static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8352
96f874e2
RR
8353static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8354 struct sched_group **sg,
8355 struct cpumask *nodemask)
9c1cfda2 8356{
6711cab4
SS
8357 int group;
8358
6ca09dfc 8359 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8360 group = cpumask_first(nodemask);
6711cab4
SS
8361
8362 if (sg)
6c99e9ad 8363 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8364 return group;
1da177e4 8365}
6711cab4 8366
08069033
SS
8367static void init_numa_sched_groups_power(struct sched_group *group_head)
8368{
8369 struct sched_group *sg = group_head;
8370 int j;
8371
8372 if (!sg)
8373 return;
3a5c359a 8374 do {
758b2cdc 8375 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8376 struct sched_domain *sd;
08069033 8377
6c99e9ad 8378 sd = &per_cpu(phys_domains, j).sd;
13318a71 8379 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8380 /*
8381 * Only add "power" once for each
8382 * physical package.
8383 */
8384 continue;
8385 }
08069033 8386
18a3885f 8387 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8388 }
8389 sg = sg->next;
8390 } while (sg != group_head);
08069033 8391}
0601a88d
AH
8392
8393static int build_numa_sched_groups(struct s_data *d,
8394 const struct cpumask *cpu_map, int num)
8395{
8396 struct sched_domain *sd;
8397 struct sched_group *sg, *prev;
8398 int n, j;
8399
8400 cpumask_clear(d->covered);
8401 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8402 if (cpumask_empty(d->nodemask)) {
8403 d->sched_group_nodes[num] = NULL;
8404 goto out;
8405 }
8406
8407 sched_domain_node_span(num, d->domainspan);
8408 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8409
8410 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8411 GFP_KERNEL, num);
8412 if (!sg) {
8413 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8414 num);
8415 return -ENOMEM;
8416 }
8417 d->sched_group_nodes[num] = sg;
8418
8419 for_each_cpu(j, d->nodemask) {
8420 sd = &per_cpu(node_domains, j).sd;
8421 sd->groups = sg;
8422 }
8423
18a3885f 8424 sg->cpu_power = 0;
0601a88d
AH
8425 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8426 sg->next = sg;
8427 cpumask_or(d->covered, d->covered, d->nodemask);
8428
8429 prev = sg;
8430 for (j = 0; j < nr_node_ids; j++) {
8431 n = (num + j) % nr_node_ids;
8432 cpumask_complement(d->notcovered, d->covered);
8433 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8434 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8435 if (cpumask_empty(d->tmpmask))
8436 break;
8437 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8438 if (cpumask_empty(d->tmpmask))
8439 continue;
8440 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8441 GFP_KERNEL, num);
8442 if (!sg) {
8443 printk(KERN_WARNING
8444 "Can not alloc domain group for node %d\n", j);
8445 return -ENOMEM;
8446 }
18a3885f 8447 sg->cpu_power = 0;
0601a88d
AH
8448 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8449 sg->next = prev->next;
8450 cpumask_or(d->covered, d->covered, d->tmpmask);
8451 prev->next = sg;
8452 prev = sg;
8453 }
8454out:
8455 return 0;
8456}
6d6bc0ad 8457#endif /* CONFIG_NUMA */
1da177e4 8458
a616058b 8459#ifdef CONFIG_NUMA
51888ca2 8460/* Free memory allocated for various sched_group structures */
96f874e2
RR
8461static void free_sched_groups(const struct cpumask *cpu_map,
8462 struct cpumask *nodemask)
51888ca2 8463{
a616058b 8464 int cpu, i;
51888ca2 8465
abcd083a 8466 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8467 struct sched_group **sched_group_nodes
8468 = sched_group_nodes_bycpu[cpu];
8469
51888ca2
SV
8470 if (!sched_group_nodes)
8471 continue;
8472
076ac2af 8473 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8474 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8475
6ca09dfc 8476 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8477 if (cpumask_empty(nodemask))
51888ca2
SV
8478 continue;
8479
8480 if (sg == NULL)
8481 continue;
8482 sg = sg->next;
8483next_sg:
8484 oldsg = sg;
8485 sg = sg->next;
8486 kfree(oldsg);
8487 if (oldsg != sched_group_nodes[i])
8488 goto next_sg;
8489 }
8490 kfree(sched_group_nodes);
8491 sched_group_nodes_bycpu[cpu] = NULL;
8492 }
51888ca2 8493}
6d6bc0ad 8494#else /* !CONFIG_NUMA */
96f874e2
RR
8495static void free_sched_groups(const struct cpumask *cpu_map,
8496 struct cpumask *nodemask)
a616058b
SS
8497{
8498}
6d6bc0ad 8499#endif /* CONFIG_NUMA */
51888ca2 8500
89c4710e
SS
8501/*
8502 * Initialize sched groups cpu_power.
8503 *
8504 * cpu_power indicates the capacity of sched group, which is used while
8505 * distributing the load between different sched groups in a sched domain.
8506 * Typically cpu_power for all the groups in a sched domain will be same unless
8507 * there are asymmetries in the topology. If there are asymmetries, group
8508 * having more cpu_power will pickup more load compared to the group having
8509 * less cpu_power.
89c4710e
SS
8510 */
8511static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8512{
8513 struct sched_domain *child;
8514 struct sched_group *group;
f93e65c1
PZ
8515 long power;
8516 int weight;
89c4710e
SS
8517
8518 WARN_ON(!sd || !sd->groups);
8519
13318a71 8520 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8521 return;
8522
8523 child = sd->child;
8524
18a3885f 8525 sd->groups->cpu_power = 0;
5517d86b 8526
f93e65c1
PZ
8527 if (!child) {
8528 power = SCHED_LOAD_SCALE;
8529 weight = cpumask_weight(sched_domain_span(sd));
8530 /*
8531 * SMT siblings share the power of a single core.
a52bfd73
PZ
8532 * Usually multiple threads get a better yield out of
8533 * that one core than a single thread would have,
8534 * reflect that in sd->smt_gain.
f93e65c1 8535 */
a52bfd73
PZ
8536 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8537 power *= sd->smt_gain;
f93e65c1 8538 power /= weight;
a52bfd73
PZ
8539 power >>= SCHED_LOAD_SHIFT;
8540 }
18a3885f 8541 sd->groups->cpu_power += power;
89c4710e
SS
8542 return;
8543 }
8544
89c4710e 8545 /*
f93e65c1 8546 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8547 */
8548 group = child->groups;
8549 do {
18a3885f 8550 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8551 group = group->next;
8552 } while (group != child->groups);
8553}
8554
7c16ec58
MT
8555/*
8556 * Initializers for schedule domains
8557 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8558 */
8559
a5d8c348
IM
8560#ifdef CONFIG_SCHED_DEBUG
8561# define SD_INIT_NAME(sd, type) sd->name = #type
8562#else
8563# define SD_INIT_NAME(sd, type) do { } while (0)
8564#endif
8565
7c16ec58 8566#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8567
7c16ec58
MT
8568#define SD_INIT_FUNC(type) \
8569static noinline void sd_init_##type(struct sched_domain *sd) \
8570{ \
8571 memset(sd, 0, sizeof(*sd)); \
8572 *sd = SD_##type##_INIT; \
1d3504fc 8573 sd->level = SD_LV_##type; \
a5d8c348 8574 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8575}
8576
8577SD_INIT_FUNC(CPU)
8578#ifdef CONFIG_NUMA
8579 SD_INIT_FUNC(ALLNODES)
8580 SD_INIT_FUNC(NODE)
8581#endif
8582#ifdef CONFIG_SCHED_SMT
8583 SD_INIT_FUNC(SIBLING)
8584#endif
8585#ifdef CONFIG_SCHED_MC
8586 SD_INIT_FUNC(MC)
8587#endif
8588
1d3504fc
HS
8589static int default_relax_domain_level = -1;
8590
8591static int __init setup_relax_domain_level(char *str)
8592{
30e0e178
LZ
8593 unsigned long val;
8594
8595 val = simple_strtoul(str, NULL, 0);
8596 if (val < SD_LV_MAX)
8597 default_relax_domain_level = val;
8598
1d3504fc
HS
8599 return 1;
8600}
8601__setup("relax_domain_level=", setup_relax_domain_level);
8602
8603static void set_domain_attribute(struct sched_domain *sd,
8604 struct sched_domain_attr *attr)
8605{
8606 int request;
8607
8608 if (!attr || attr->relax_domain_level < 0) {
8609 if (default_relax_domain_level < 0)
8610 return;
8611 else
8612 request = default_relax_domain_level;
8613 } else
8614 request = attr->relax_domain_level;
8615 if (request < sd->level) {
8616 /* turn off idle balance on this domain */
c88d5910 8617 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8618 } else {
8619 /* turn on idle balance on this domain */
c88d5910 8620 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8621 }
8622}
8623
2109b99e
AH
8624static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8625 const struct cpumask *cpu_map)
8626{
8627 switch (what) {
8628 case sa_sched_groups:
8629 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8630 d->sched_group_nodes = NULL;
8631 case sa_rootdomain:
8632 free_rootdomain(d->rd); /* fall through */
8633 case sa_tmpmask:
8634 free_cpumask_var(d->tmpmask); /* fall through */
8635 case sa_send_covered:
8636 free_cpumask_var(d->send_covered); /* fall through */
8637 case sa_this_core_map:
8638 free_cpumask_var(d->this_core_map); /* fall through */
8639 case sa_this_sibling_map:
8640 free_cpumask_var(d->this_sibling_map); /* fall through */
8641 case sa_nodemask:
8642 free_cpumask_var(d->nodemask); /* fall through */
8643 case sa_sched_group_nodes:
d1b55138 8644#ifdef CONFIG_NUMA
2109b99e
AH
8645 kfree(d->sched_group_nodes); /* fall through */
8646 case sa_notcovered:
8647 free_cpumask_var(d->notcovered); /* fall through */
8648 case sa_covered:
8649 free_cpumask_var(d->covered); /* fall through */
8650 case sa_domainspan:
8651 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8652#endif
2109b99e
AH
8653 case sa_none:
8654 break;
8655 }
8656}
3404c8d9 8657
2109b99e
AH
8658static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8659 const struct cpumask *cpu_map)
8660{
3404c8d9 8661#ifdef CONFIG_NUMA
2109b99e
AH
8662 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8663 return sa_none;
8664 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8665 return sa_domainspan;
8666 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8667 return sa_covered;
8668 /* Allocate the per-node list of sched groups */
8669 d->sched_group_nodes = kcalloc(nr_node_ids,
8670 sizeof(struct sched_group *), GFP_KERNEL);
8671 if (!d->sched_group_nodes) {
d1b55138 8672 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8673 return sa_notcovered;
d1b55138 8674 }
2109b99e 8675 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8676#endif
2109b99e
AH
8677 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8678 return sa_sched_group_nodes;
8679 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8680 return sa_nodemask;
8681 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8682 return sa_this_sibling_map;
8683 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8684 return sa_this_core_map;
8685 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8686 return sa_send_covered;
8687 d->rd = alloc_rootdomain();
8688 if (!d->rd) {
57d885fe 8689 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8690 return sa_tmpmask;
57d885fe 8691 }
2109b99e
AH
8692 return sa_rootdomain;
8693}
57d885fe 8694
7f4588f3
AH
8695static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8696 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8697{
8698 struct sched_domain *sd = NULL;
7c16ec58 8699#ifdef CONFIG_NUMA
7f4588f3 8700 struct sched_domain *parent;
1da177e4 8701
7f4588f3
AH
8702 d->sd_allnodes = 0;
8703 if (cpumask_weight(cpu_map) >
8704 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8705 sd = &per_cpu(allnodes_domains, i).sd;
8706 SD_INIT(sd, ALLNODES);
1d3504fc 8707 set_domain_attribute(sd, attr);
7f4588f3
AH
8708 cpumask_copy(sched_domain_span(sd), cpu_map);
8709 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8710 d->sd_allnodes = 1;
8711 }
8712 parent = sd;
8713
8714 sd = &per_cpu(node_domains, i).sd;
8715 SD_INIT(sd, NODE);
8716 set_domain_attribute(sd, attr);
8717 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8718 sd->parent = parent;
8719 if (parent)
8720 parent->child = sd;
8721 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8722#endif
7f4588f3
AH
8723 return sd;
8724}
1da177e4 8725
87cce662
AH
8726static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8727 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8728 struct sched_domain *parent, int i)
8729{
8730 struct sched_domain *sd;
8731 sd = &per_cpu(phys_domains, i).sd;
8732 SD_INIT(sd, CPU);
8733 set_domain_attribute(sd, attr);
8734 cpumask_copy(sched_domain_span(sd), d->nodemask);
8735 sd->parent = parent;
8736 if (parent)
8737 parent->child = sd;
8738 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8739 return sd;
8740}
1da177e4 8741
410c4081
AH
8742static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8743 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8744 struct sched_domain *parent, int i)
8745{
8746 struct sched_domain *sd = parent;
1e9f28fa 8747#ifdef CONFIG_SCHED_MC
410c4081
AH
8748 sd = &per_cpu(core_domains, i).sd;
8749 SD_INIT(sd, MC);
8750 set_domain_attribute(sd, attr);
8751 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8752 sd->parent = parent;
8753 parent->child = sd;
8754 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8755#endif
410c4081
AH
8756 return sd;
8757}
1e9f28fa 8758
d8173535
AH
8759static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8760 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8761 struct sched_domain *parent, int i)
8762{
8763 struct sched_domain *sd = parent;
1da177e4 8764#ifdef CONFIG_SCHED_SMT
d8173535
AH
8765 sd = &per_cpu(cpu_domains, i).sd;
8766 SD_INIT(sd, SIBLING);
8767 set_domain_attribute(sd, attr);
8768 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8769 sd->parent = parent;
8770 parent->child = sd;
8771 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8772#endif
d8173535
AH
8773 return sd;
8774}
1da177e4 8775
0e8e85c9
AH
8776static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8777 const struct cpumask *cpu_map, int cpu)
8778{
8779 switch (l) {
1da177e4 8780#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8781 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8782 cpumask_and(d->this_sibling_map, cpu_map,
8783 topology_thread_cpumask(cpu));
8784 if (cpu == cpumask_first(d->this_sibling_map))
8785 init_sched_build_groups(d->this_sibling_map, cpu_map,
8786 &cpu_to_cpu_group,
8787 d->send_covered, d->tmpmask);
8788 break;
1da177e4 8789#endif
1e9f28fa 8790#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8791 case SD_LV_MC: /* set up multi-core groups */
8792 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8793 if (cpu == cpumask_first(d->this_core_map))
8794 init_sched_build_groups(d->this_core_map, cpu_map,
8795 &cpu_to_core_group,
8796 d->send_covered, d->tmpmask);
8797 break;
1e9f28fa 8798#endif
86548096
AH
8799 case SD_LV_CPU: /* set up physical groups */
8800 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8801 if (!cpumask_empty(d->nodemask))
8802 init_sched_build_groups(d->nodemask, cpu_map,
8803 &cpu_to_phys_group,
8804 d->send_covered, d->tmpmask);
8805 break;
1da177e4 8806#ifdef CONFIG_NUMA
de616e36
AH
8807 case SD_LV_ALLNODES:
8808 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8809 d->send_covered, d->tmpmask);
8810 break;
8811#endif
0e8e85c9
AH
8812 default:
8813 break;
7c16ec58 8814 }
0e8e85c9 8815}
9c1cfda2 8816
2109b99e
AH
8817/*
8818 * Build sched domains for a given set of cpus and attach the sched domains
8819 * to the individual cpus
8820 */
8821static int __build_sched_domains(const struct cpumask *cpu_map,
8822 struct sched_domain_attr *attr)
8823{
8824 enum s_alloc alloc_state = sa_none;
8825 struct s_data d;
294b0c96 8826 struct sched_domain *sd;
2109b99e 8827 int i;
7c16ec58 8828#ifdef CONFIG_NUMA
2109b99e 8829 d.sd_allnodes = 0;
7c16ec58 8830#endif
9c1cfda2 8831
2109b99e
AH
8832 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8833 if (alloc_state != sa_rootdomain)
8834 goto error;
8835 alloc_state = sa_sched_groups;
9c1cfda2 8836
1da177e4 8837 /*
1a20ff27 8838 * Set up domains for cpus specified by the cpu_map.
1da177e4 8839 */
abcd083a 8840 for_each_cpu(i, cpu_map) {
49a02c51
AH
8841 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8842 cpu_map);
9761eea8 8843
7f4588f3 8844 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8845 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8846 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8847 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8848 }
9c1cfda2 8849
abcd083a 8850 for_each_cpu(i, cpu_map) {
0e8e85c9 8851 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8852 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8853 }
9c1cfda2 8854
1da177e4 8855 /* Set up physical groups */
86548096
AH
8856 for (i = 0; i < nr_node_ids; i++)
8857 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8858
1da177e4
LT
8859#ifdef CONFIG_NUMA
8860 /* Set up node groups */
de616e36
AH
8861 if (d.sd_allnodes)
8862 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8863
0601a88d
AH
8864 for (i = 0; i < nr_node_ids; i++)
8865 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8866 goto error;
1da177e4
LT
8867#endif
8868
8869 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8870#ifdef CONFIG_SCHED_SMT
abcd083a 8871 for_each_cpu(i, cpu_map) {
294b0c96 8872 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8873 init_sched_groups_power(i, sd);
5c45bf27 8874 }
1da177e4 8875#endif
1e9f28fa 8876#ifdef CONFIG_SCHED_MC
abcd083a 8877 for_each_cpu(i, cpu_map) {
294b0c96 8878 sd = &per_cpu(core_domains, i).sd;
89c4710e 8879 init_sched_groups_power(i, sd);
5c45bf27
SS
8880 }
8881#endif
1e9f28fa 8882
abcd083a 8883 for_each_cpu(i, cpu_map) {
294b0c96 8884 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8885 init_sched_groups_power(i, sd);
1da177e4
LT
8886 }
8887
9c1cfda2 8888#ifdef CONFIG_NUMA
076ac2af 8889 for (i = 0; i < nr_node_ids; i++)
49a02c51 8890 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8891
49a02c51 8892 if (d.sd_allnodes) {
6711cab4 8893 struct sched_group *sg;
f712c0c7 8894
96f874e2 8895 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8896 d.tmpmask);
f712c0c7
SS
8897 init_numa_sched_groups_power(sg);
8898 }
9c1cfda2
JH
8899#endif
8900
1da177e4 8901 /* Attach the domains */
abcd083a 8902 for_each_cpu(i, cpu_map) {
1da177e4 8903#ifdef CONFIG_SCHED_SMT
6c99e9ad 8904 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8905#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8906 sd = &per_cpu(core_domains, i).sd;
1da177e4 8907#else
6c99e9ad 8908 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8909#endif
49a02c51 8910 cpu_attach_domain(sd, d.rd, i);
1da177e4 8911 }
51888ca2 8912
2109b99e
AH
8913 d.sched_group_nodes = NULL; /* don't free this we still need it */
8914 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8915 return 0;
51888ca2 8916
51888ca2 8917error:
2109b99e
AH
8918 __free_domain_allocs(&d, alloc_state, cpu_map);
8919 return -ENOMEM;
1da177e4 8920}
029190c5 8921
96f874e2 8922static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8923{
8924 return __build_sched_domains(cpu_map, NULL);
8925}
8926
acc3f5d7 8927static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8928static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8929static struct sched_domain_attr *dattr_cur;
8930 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8931
8932/*
8933 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8934 * cpumask) fails, then fallback to a single sched domain,
8935 * as determined by the single cpumask fallback_doms.
029190c5 8936 */
4212823f 8937static cpumask_var_t fallback_doms;
029190c5 8938
ee79d1bd
HC
8939/*
8940 * arch_update_cpu_topology lets virtualized architectures update the
8941 * cpu core maps. It is supposed to return 1 if the topology changed
8942 * or 0 if it stayed the same.
8943 */
8944int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8945{
ee79d1bd 8946 return 0;
22e52b07
HC
8947}
8948
acc3f5d7
RR
8949cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8950{
8951 int i;
8952 cpumask_var_t *doms;
8953
8954 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8955 if (!doms)
8956 return NULL;
8957 for (i = 0; i < ndoms; i++) {
8958 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8959 free_sched_domains(doms, i);
8960 return NULL;
8961 }
8962 }
8963 return doms;
8964}
8965
8966void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8967{
8968 unsigned int i;
8969 for (i = 0; i < ndoms; i++)
8970 free_cpumask_var(doms[i]);
8971 kfree(doms);
8972}
8973
1a20ff27 8974/*
41a2d6cf 8975 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8976 * For now this just excludes isolated cpus, but could be used to
8977 * exclude other special cases in the future.
1a20ff27 8978 */
96f874e2 8979static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8980{
7378547f
MM
8981 int err;
8982
22e52b07 8983 arch_update_cpu_topology();
029190c5 8984 ndoms_cur = 1;
acc3f5d7 8985 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 8986 if (!doms_cur)
acc3f5d7
RR
8987 doms_cur = &fallback_doms;
8988 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 8989 dattr_cur = NULL;
acc3f5d7 8990 err = build_sched_domains(doms_cur[0]);
6382bc90 8991 register_sched_domain_sysctl();
7378547f
MM
8992
8993 return err;
1a20ff27
DG
8994}
8995
96f874e2
RR
8996static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8997 struct cpumask *tmpmask)
1da177e4 8998{
7c16ec58 8999 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9000}
1da177e4 9001
1a20ff27
DG
9002/*
9003 * Detach sched domains from a group of cpus specified in cpu_map
9004 * These cpus will now be attached to the NULL domain
9005 */
96f874e2 9006static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9007{
96f874e2
RR
9008 /* Save because hotplug lock held. */
9009 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9010 int i;
9011
abcd083a 9012 for_each_cpu(i, cpu_map)
57d885fe 9013 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9014 synchronize_sched();
96f874e2 9015 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9016}
9017
1d3504fc
HS
9018/* handle null as "default" */
9019static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9020 struct sched_domain_attr *new, int idx_new)
9021{
9022 struct sched_domain_attr tmp;
9023
9024 /* fast path */
9025 if (!new && !cur)
9026 return 1;
9027
9028 tmp = SD_ATTR_INIT;
9029 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9030 new ? (new + idx_new) : &tmp,
9031 sizeof(struct sched_domain_attr));
9032}
9033
029190c5
PJ
9034/*
9035 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9036 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9037 * doms_new[] to the current sched domain partitioning, doms_cur[].
9038 * It destroys each deleted domain and builds each new domain.
9039 *
acc3f5d7 9040 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9041 * The masks don't intersect (don't overlap.) We should setup one
9042 * sched domain for each mask. CPUs not in any of the cpumasks will
9043 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9044 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9045 * it as it is.
9046 *
acc3f5d7
RR
9047 * The passed in 'doms_new' should be allocated using
9048 * alloc_sched_domains. This routine takes ownership of it and will
9049 * free_sched_domains it when done with it. If the caller failed the
9050 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9051 * and partition_sched_domains() will fallback to the single partition
9052 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9053 *
96f874e2 9054 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9055 * ndoms_new == 0 is a special case for destroying existing domains,
9056 * and it will not create the default domain.
dfb512ec 9057 *
029190c5
PJ
9058 * Call with hotplug lock held
9059 */
acc3f5d7 9060void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9061 struct sched_domain_attr *dattr_new)
029190c5 9062{
dfb512ec 9063 int i, j, n;
d65bd5ec 9064 int new_topology;
029190c5 9065
712555ee 9066 mutex_lock(&sched_domains_mutex);
a1835615 9067
7378547f
MM
9068 /* always unregister in case we don't destroy any domains */
9069 unregister_sched_domain_sysctl();
9070
d65bd5ec
HC
9071 /* Let architecture update cpu core mappings. */
9072 new_topology = arch_update_cpu_topology();
9073
dfb512ec 9074 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9075
9076 /* Destroy deleted domains */
9077 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9078 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9079 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9080 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9081 goto match1;
9082 }
9083 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9084 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9085match1:
9086 ;
9087 }
9088
e761b772
MK
9089 if (doms_new == NULL) {
9090 ndoms_cur = 0;
acc3f5d7 9091 doms_new = &fallback_doms;
6ad4c188 9092 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9093 WARN_ON_ONCE(dattr_new);
e761b772
MK
9094 }
9095
029190c5
PJ
9096 /* Build new domains */
9097 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9098 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9099 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9100 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9101 goto match2;
9102 }
9103 /* no match - add a new doms_new */
acc3f5d7 9104 __build_sched_domains(doms_new[i],
1d3504fc 9105 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9106match2:
9107 ;
9108 }
9109
9110 /* Remember the new sched domains */
acc3f5d7
RR
9111 if (doms_cur != &fallback_doms)
9112 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9113 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9114 doms_cur = doms_new;
1d3504fc 9115 dattr_cur = dattr_new;
029190c5 9116 ndoms_cur = ndoms_new;
7378547f
MM
9117
9118 register_sched_domain_sysctl();
a1835615 9119
712555ee 9120 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9121}
9122
5c45bf27 9123#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9124static void arch_reinit_sched_domains(void)
5c45bf27 9125{
95402b38 9126 get_online_cpus();
dfb512ec
MK
9127
9128 /* Destroy domains first to force the rebuild */
9129 partition_sched_domains(0, NULL, NULL);
9130
e761b772 9131 rebuild_sched_domains();
95402b38 9132 put_online_cpus();
5c45bf27
SS
9133}
9134
9135static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9136{
afb8a9b7 9137 unsigned int level = 0;
5c45bf27 9138
afb8a9b7
GS
9139 if (sscanf(buf, "%u", &level) != 1)
9140 return -EINVAL;
9141
9142 /*
9143 * level is always be positive so don't check for
9144 * level < POWERSAVINGS_BALANCE_NONE which is 0
9145 * What happens on 0 or 1 byte write,
9146 * need to check for count as well?
9147 */
9148
9149 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9150 return -EINVAL;
9151
9152 if (smt)
afb8a9b7 9153 sched_smt_power_savings = level;
5c45bf27 9154 else
afb8a9b7 9155 sched_mc_power_savings = level;
5c45bf27 9156
c70f22d2 9157 arch_reinit_sched_domains();
5c45bf27 9158
c70f22d2 9159 return count;
5c45bf27
SS
9160}
9161
5c45bf27 9162#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9163static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9164 char *page)
5c45bf27
SS
9165{
9166 return sprintf(page, "%u\n", sched_mc_power_savings);
9167}
f718cd4a 9168static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9169 const char *buf, size_t count)
5c45bf27
SS
9170{
9171 return sched_power_savings_store(buf, count, 0);
9172}
f718cd4a
AK
9173static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9174 sched_mc_power_savings_show,
9175 sched_mc_power_savings_store);
5c45bf27
SS
9176#endif
9177
9178#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9179static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9180 char *page)
5c45bf27
SS
9181{
9182 return sprintf(page, "%u\n", sched_smt_power_savings);
9183}
f718cd4a 9184static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9185 const char *buf, size_t count)
5c45bf27
SS
9186{
9187 return sched_power_savings_store(buf, count, 1);
9188}
f718cd4a
AK
9189static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9190 sched_smt_power_savings_show,
6707de00
AB
9191 sched_smt_power_savings_store);
9192#endif
9193
39aac648 9194int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9195{
9196 int err = 0;
9197
9198#ifdef CONFIG_SCHED_SMT
9199 if (smt_capable())
9200 err = sysfs_create_file(&cls->kset.kobj,
9201 &attr_sched_smt_power_savings.attr);
9202#endif
9203#ifdef CONFIG_SCHED_MC
9204 if (!err && mc_capable())
9205 err = sysfs_create_file(&cls->kset.kobj,
9206 &attr_sched_mc_power_savings.attr);
9207#endif
9208 return err;
9209}
6d6bc0ad 9210#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9211
e761b772 9212#ifndef CONFIG_CPUSETS
1da177e4 9213/*
e761b772
MK
9214 * Add online and remove offline CPUs from the scheduler domains.
9215 * When cpusets are enabled they take over this function.
1da177e4
LT
9216 */
9217static int update_sched_domains(struct notifier_block *nfb,
9218 unsigned long action, void *hcpu)
e761b772
MK
9219{
9220 switch (action) {
9221 case CPU_ONLINE:
9222 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9223 case CPU_DOWN_PREPARE:
9224 case CPU_DOWN_PREPARE_FROZEN:
9225 case CPU_DOWN_FAILED:
9226 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9227 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9228 return NOTIFY_OK;
9229
9230 default:
9231 return NOTIFY_DONE;
9232 }
9233}
9234#endif
9235
9236static int update_runtime(struct notifier_block *nfb,
9237 unsigned long action, void *hcpu)
1da177e4 9238{
7def2be1
PZ
9239 int cpu = (int)(long)hcpu;
9240
1da177e4 9241 switch (action) {
1da177e4 9242 case CPU_DOWN_PREPARE:
8bb78442 9243 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9244 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9245 return NOTIFY_OK;
9246
1da177e4 9247 case CPU_DOWN_FAILED:
8bb78442 9248 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9249 case CPU_ONLINE:
8bb78442 9250 case CPU_ONLINE_FROZEN:
7def2be1 9251 enable_runtime(cpu_rq(cpu));
e761b772
MK
9252 return NOTIFY_OK;
9253
1da177e4
LT
9254 default:
9255 return NOTIFY_DONE;
9256 }
1da177e4 9257}
1da177e4
LT
9258
9259void __init sched_init_smp(void)
9260{
dcc30a35
RR
9261 cpumask_var_t non_isolated_cpus;
9262
9263 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9264 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9265
434d53b0
MT
9266#if defined(CONFIG_NUMA)
9267 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9268 GFP_KERNEL);
9269 BUG_ON(sched_group_nodes_bycpu == NULL);
9270#endif
95402b38 9271 get_online_cpus();
712555ee 9272 mutex_lock(&sched_domains_mutex);
6ad4c188 9273 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9274 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9275 if (cpumask_empty(non_isolated_cpus))
9276 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9277 mutex_unlock(&sched_domains_mutex);
95402b38 9278 put_online_cpus();
e761b772
MK
9279
9280#ifndef CONFIG_CPUSETS
1da177e4
LT
9281 /* XXX: Theoretical race here - CPU may be hotplugged now */
9282 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9283#endif
9284
9285 /* RT runtime code needs to handle some hotplug events */
9286 hotcpu_notifier(update_runtime, 0);
9287
b328ca18 9288 init_hrtick();
5c1e1767
NP
9289
9290 /* Move init over to a non-isolated CPU */
dcc30a35 9291 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9292 BUG();
19978ca6 9293 sched_init_granularity();
dcc30a35 9294 free_cpumask_var(non_isolated_cpus);
4212823f 9295
0e3900e6 9296 init_sched_rt_class();
1da177e4
LT
9297}
9298#else
9299void __init sched_init_smp(void)
9300{
19978ca6 9301 sched_init_granularity();
1da177e4
LT
9302}
9303#endif /* CONFIG_SMP */
9304
cd1bb94b
AB
9305const_debug unsigned int sysctl_timer_migration = 1;
9306
1da177e4
LT
9307int in_sched_functions(unsigned long addr)
9308{
1da177e4
LT
9309 return in_lock_functions(addr) ||
9310 (addr >= (unsigned long)__sched_text_start
9311 && addr < (unsigned long)__sched_text_end);
9312}
9313
a9957449 9314static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9315{
9316 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9317 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9318#ifdef CONFIG_FAIR_GROUP_SCHED
9319 cfs_rq->rq = rq;
9320#endif
67e9fb2a 9321 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9322}
9323
fa85ae24
PZ
9324static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9325{
9326 struct rt_prio_array *array;
9327 int i;
9328
9329 array = &rt_rq->active;
9330 for (i = 0; i < MAX_RT_PRIO; i++) {
9331 INIT_LIST_HEAD(array->queue + i);
9332 __clear_bit(i, array->bitmap);
9333 }
9334 /* delimiter for bitsearch: */
9335 __set_bit(MAX_RT_PRIO, array->bitmap);
9336
052f1dc7 9337#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9338 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9339#ifdef CONFIG_SMP
e864c499 9340 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9341#endif
48d5e258 9342#endif
fa85ae24
PZ
9343#ifdef CONFIG_SMP
9344 rt_rq->rt_nr_migratory = 0;
fa85ae24 9345 rt_rq->overloaded = 0;
c20b08e3 9346 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9347#endif
9348
9349 rt_rq->rt_time = 0;
9350 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9351 rt_rq->rt_runtime = 0;
9352 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9353
052f1dc7 9354#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9355 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9356 rt_rq->rq = rq;
9357#endif
fa85ae24
PZ
9358}
9359
6f505b16 9360#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9361static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9362 struct sched_entity *se, int cpu, int add,
9363 struct sched_entity *parent)
6f505b16 9364{
ec7dc8ac 9365 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9366 tg->cfs_rq[cpu] = cfs_rq;
9367 init_cfs_rq(cfs_rq, rq);
9368 cfs_rq->tg = tg;
9369 if (add)
9370 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9371
9372 tg->se[cpu] = se;
354d60c2
DG
9373 /* se could be NULL for init_task_group */
9374 if (!se)
9375 return;
9376
ec7dc8ac
DG
9377 if (!parent)
9378 se->cfs_rq = &rq->cfs;
9379 else
9380 se->cfs_rq = parent->my_q;
9381
6f505b16
PZ
9382 se->my_q = cfs_rq;
9383 se->load.weight = tg->shares;
e05510d0 9384 se->load.inv_weight = 0;
ec7dc8ac 9385 se->parent = parent;
6f505b16 9386}
052f1dc7 9387#endif
6f505b16 9388
052f1dc7 9389#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9390static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9391 struct sched_rt_entity *rt_se, int cpu, int add,
9392 struct sched_rt_entity *parent)
6f505b16 9393{
ec7dc8ac
DG
9394 struct rq *rq = cpu_rq(cpu);
9395
6f505b16
PZ
9396 tg->rt_rq[cpu] = rt_rq;
9397 init_rt_rq(rt_rq, rq);
9398 rt_rq->tg = tg;
9399 rt_rq->rt_se = rt_se;
ac086bc2 9400 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9401 if (add)
9402 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9403
9404 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9405 if (!rt_se)
9406 return;
9407
ec7dc8ac
DG
9408 if (!parent)
9409 rt_se->rt_rq = &rq->rt;
9410 else
9411 rt_se->rt_rq = parent->my_q;
9412
6f505b16 9413 rt_se->my_q = rt_rq;
ec7dc8ac 9414 rt_se->parent = parent;
6f505b16
PZ
9415 INIT_LIST_HEAD(&rt_se->run_list);
9416}
9417#endif
9418
1da177e4
LT
9419void __init sched_init(void)
9420{
dd41f596 9421 int i, j;
434d53b0
MT
9422 unsigned long alloc_size = 0, ptr;
9423
9424#ifdef CONFIG_FAIR_GROUP_SCHED
9425 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9426#endif
9427#ifdef CONFIG_RT_GROUP_SCHED
9428 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9429#endif
9430#ifdef CONFIG_USER_SCHED
9431 alloc_size *= 2;
df7c8e84
RR
9432#endif
9433#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9434 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9435#endif
434d53b0 9436 if (alloc_size) {
36b7b6d4 9437 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9438
9439#ifdef CONFIG_FAIR_GROUP_SCHED
9440 init_task_group.se = (struct sched_entity **)ptr;
9441 ptr += nr_cpu_ids * sizeof(void **);
9442
9443 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9444 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9445
9446#ifdef CONFIG_USER_SCHED
9447 root_task_group.se = (struct sched_entity **)ptr;
9448 ptr += nr_cpu_ids * sizeof(void **);
9449
9450 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9451 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9452#endif /* CONFIG_USER_SCHED */
9453#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9454#ifdef CONFIG_RT_GROUP_SCHED
9455 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9456 ptr += nr_cpu_ids * sizeof(void **);
9457
9458 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9459 ptr += nr_cpu_ids * sizeof(void **);
9460
9461#ifdef CONFIG_USER_SCHED
9462 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9463 ptr += nr_cpu_ids * sizeof(void **);
9464
9465 root_task_group.rt_rq = (struct rt_rq **)ptr;
9466 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9467#endif /* CONFIG_USER_SCHED */
9468#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9469#ifdef CONFIG_CPUMASK_OFFSTACK
9470 for_each_possible_cpu(i) {
9471 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9472 ptr += cpumask_size();
9473 }
9474#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9475 }
dd41f596 9476
57d885fe
GH
9477#ifdef CONFIG_SMP
9478 init_defrootdomain();
9479#endif
9480
d0b27fa7
PZ
9481 init_rt_bandwidth(&def_rt_bandwidth,
9482 global_rt_period(), global_rt_runtime());
9483
9484#ifdef CONFIG_RT_GROUP_SCHED
9485 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9486 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9487#ifdef CONFIG_USER_SCHED
9488 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9489 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9490#endif /* CONFIG_USER_SCHED */
9491#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9492
052f1dc7 9493#ifdef CONFIG_GROUP_SCHED
6f505b16 9494 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9495 INIT_LIST_HEAD(&init_task_group.children);
9496
9497#ifdef CONFIG_USER_SCHED
9498 INIT_LIST_HEAD(&root_task_group.children);
9499 init_task_group.parent = &root_task_group;
9500 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9501#endif /* CONFIG_USER_SCHED */
9502#endif /* CONFIG_GROUP_SCHED */
6f505b16 9503
4a6cc4bd
JK
9504#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9505 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9506 __alignof__(unsigned long));
9507#endif
0a945022 9508 for_each_possible_cpu(i) {
70b97a7f 9509 struct rq *rq;
1da177e4
LT
9510
9511 rq = cpu_rq(i);
9512 spin_lock_init(&rq->lock);
7897986b 9513 rq->nr_running = 0;
dce48a84
TG
9514 rq->calc_load_active = 0;
9515 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9516 init_cfs_rq(&rq->cfs, rq);
6f505b16 9517 init_rt_rq(&rq->rt, rq);
dd41f596 9518#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9519 init_task_group.shares = init_task_group_load;
6f505b16 9520 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9521#ifdef CONFIG_CGROUP_SCHED
9522 /*
9523 * How much cpu bandwidth does init_task_group get?
9524 *
9525 * In case of task-groups formed thr' the cgroup filesystem, it
9526 * gets 100% of the cpu resources in the system. This overall
9527 * system cpu resource is divided among the tasks of
9528 * init_task_group and its child task-groups in a fair manner,
9529 * based on each entity's (task or task-group's) weight
9530 * (se->load.weight).
9531 *
9532 * In other words, if init_task_group has 10 tasks of weight
9533 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9534 * then A0's share of the cpu resource is:
9535 *
0d905bca 9536 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9537 *
9538 * We achieve this by letting init_task_group's tasks sit
9539 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9540 */
ec7dc8ac 9541 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9542#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9543 root_task_group.shares = NICE_0_LOAD;
9544 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9545 /*
9546 * In case of task-groups formed thr' the user id of tasks,
9547 * init_task_group represents tasks belonging to root user.
9548 * Hence it forms a sibling of all subsequent groups formed.
9549 * In this case, init_task_group gets only a fraction of overall
9550 * system cpu resource, based on the weight assigned to root
9551 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9552 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9553 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9554 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9555 */
ec7dc8ac 9556 init_tg_cfs_entry(&init_task_group,
84e9dabf 9557 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9558 &per_cpu(init_sched_entity, i), i, 1,
9559 root_task_group.se[i]);
6f505b16 9560
052f1dc7 9561#endif
354d60c2
DG
9562#endif /* CONFIG_FAIR_GROUP_SCHED */
9563
9564 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9565#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9566 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9567#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9568 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9569#elif defined CONFIG_USER_SCHED
eff766a6 9570 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9571 init_tg_rt_entry(&init_task_group,
6f505b16 9572 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9573 &per_cpu(init_sched_rt_entity, i), i, 1,
9574 root_task_group.rt_se[i]);
354d60c2 9575#endif
dd41f596 9576#endif
1da177e4 9577
dd41f596
IM
9578 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9579 rq->cpu_load[j] = 0;
1da177e4 9580#ifdef CONFIG_SMP
41c7ce9a 9581 rq->sd = NULL;
57d885fe 9582 rq->rd = NULL;
3f029d3c 9583 rq->post_schedule = 0;
1da177e4 9584 rq->active_balance = 0;
dd41f596 9585 rq->next_balance = jiffies;
1da177e4 9586 rq->push_cpu = 0;
0a2966b4 9587 rq->cpu = i;
1f11eb6a 9588 rq->online = 0;
1da177e4 9589 rq->migration_thread = NULL;
eae0c9df
MG
9590 rq->idle_stamp = 0;
9591 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9592 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9593 rq_attach_root(rq, &def_root_domain);
1da177e4 9594#endif
8f4d37ec 9595 init_rq_hrtick(rq);
1da177e4 9596 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9597 }
9598
2dd73a4f 9599 set_load_weight(&init_task);
b50f60ce 9600
e107be36
AK
9601#ifdef CONFIG_PREEMPT_NOTIFIERS
9602 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9603#endif
9604
c9819f45 9605#ifdef CONFIG_SMP
962cf36c 9606 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9607#endif
9608
b50f60ce
HC
9609#ifdef CONFIG_RT_MUTEXES
9610 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9611#endif
9612
1da177e4
LT
9613 /*
9614 * The boot idle thread does lazy MMU switching as well:
9615 */
9616 atomic_inc(&init_mm.mm_count);
9617 enter_lazy_tlb(&init_mm, current);
9618
9619 /*
9620 * Make us the idle thread. Technically, schedule() should not be
9621 * called from this thread, however somewhere below it might be,
9622 * but because we are the idle thread, we just pick up running again
9623 * when this runqueue becomes "idle".
9624 */
9625 init_idle(current, smp_processor_id());
dce48a84
TG
9626
9627 calc_load_update = jiffies + LOAD_FREQ;
9628
dd41f596
IM
9629 /*
9630 * During early bootup we pretend to be a normal task:
9631 */
9632 current->sched_class = &fair_sched_class;
6892b75e 9633
6a7b3dc3 9634 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9635 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9636#ifdef CONFIG_SMP
7d1e6a9b 9637#ifdef CONFIG_NO_HZ
49557e62 9638 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9639 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9640#endif
bdddd296
RR
9641 /* May be allocated at isolcpus cmdline parse time */
9642 if (cpu_isolated_map == NULL)
9643 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9644#endif /* SMP */
6a7b3dc3 9645
cdd6c482 9646 perf_event_init();
0d905bca 9647
6892b75e 9648 scheduler_running = 1;
1da177e4
LT
9649}
9650
9651#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9652static inline int preempt_count_equals(int preempt_offset)
9653{
9654 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9655
9656 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9657}
9658
9659void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9660{
48f24c4d 9661#ifdef in_atomic
1da177e4
LT
9662 static unsigned long prev_jiffy; /* ratelimiting */
9663
e4aafea2
FW
9664 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9665 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9666 return;
9667 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9668 return;
9669 prev_jiffy = jiffies;
9670
9671 printk(KERN_ERR
9672 "BUG: sleeping function called from invalid context at %s:%d\n",
9673 file, line);
9674 printk(KERN_ERR
9675 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9676 in_atomic(), irqs_disabled(),
9677 current->pid, current->comm);
9678
9679 debug_show_held_locks(current);
9680 if (irqs_disabled())
9681 print_irqtrace_events(current);
9682 dump_stack();
1da177e4
LT
9683#endif
9684}
9685EXPORT_SYMBOL(__might_sleep);
9686#endif
9687
9688#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9689static void normalize_task(struct rq *rq, struct task_struct *p)
9690{
9691 int on_rq;
3e51f33f 9692
3a5e4dc1
AK
9693 update_rq_clock(rq);
9694 on_rq = p->se.on_rq;
9695 if (on_rq)
9696 deactivate_task(rq, p, 0);
9697 __setscheduler(rq, p, SCHED_NORMAL, 0);
9698 if (on_rq) {
9699 activate_task(rq, p, 0);
9700 resched_task(rq->curr);
9701 }
9702}
9703
1da177e4
LT
9704void normalize_rt_tasks(void)
9705{
a0f98a1c 9706 struct task_struct *g, *p;
1da177e4 9707 unsigned long flags;
70b97a7f 9708 struct rq *rq;
1da177e4 9709
4cf5d77a 9710 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9711 do_each_thread(g, p) {
178be793
IM
9712 /*
9713 * Only normalize user tasks:
9714 */
9715 if (!p->mm)
9716 continue;
9717
6cfb0d5d 9718 p->se.exec_start = 0;
6cfb0d5d 9719#ifdef CONFIG_SCHEDSTATS
dd41f596 9720 p->se.wait_start = 0;
dd41f596 9721 p->se.sleep_start = 0;
dd41f596 9722 p->se.block_start = 0;
6cfb0d5d 9723#endif
dd41f596
IM
9724
9725 if (!rt_task(p)) {
9726 /*
9727 * Renice negative nice level userspace
9728 * tasks back to 0:
9729 */
9730 if (TASK_NICE(p) < 0 && p->mm)
9731 set_user_nice(p, 0);
1da177e4 9732 continue;
dd41f596 9733 }
1da177e4 9734
4cf5d77a 9735 spin_lock(&p->pi_lock);
b29739f9 9736 rq = __task_rq_lock(p);
1da177e4 9737
178be793 9738 normalize_task(rq, p);
3a5e4dc1 9739
b29739f9 9740 __task_rq_unlock(rq);
4cf5d77a 9741 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9742 } while_each_thread(g, p);
9743
4cf5d77a 9744 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9745}
9746
9747#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9748
9749#ifdef CONFIG_IA64
9750/*
9751 * These functions are only useful for the IA64 MCA handling.
9752 *
9753 * They can only be called when the whole system has been
9754 * stopped - every CPU needs to be quiescent, and no scheduling
9755 * activity can take place. Using them for anything else would
9756 * be a serious bug, and as a result, they aren't even visible
9757 * under any other configuration.
9758 */
9759
9760/**
9761 * curr_task - return the current task for a given cpu.
9762 * @cpu: the processor in question.
9763 *
9764 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9765 */
36c8b586 9766struct task_struct *curr_task(int cpu)
1df5c10a
LT
9767{
9768 return cpu_curr(cpu);
9769}
9770
9771/**
9772 * set_curr_task - set the current task for a given cpu.
9773 * @cpu: the processor in question.
9774 * @p: the task pointer to set.
9775 *
9776 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9777 * are serviced on a separate stack. It allows the architecture to switch the
9778 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9779 * must be called with all CPU's synchronized, and interrupts disabled, the
9780 * and caller must save the original value of the current task (see
9781 * curr_task() above) and restore that value before reenabling interrupts and
9782 * re-starting the system.
9783 *
9784 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9785 */
36c8b586 9786void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9787{
9788 cpu_curr(cpu) = p;
9789}
9790
9791#endif
29f59db3 9792
bccbe08a
PZ
9793#ifdef CONFIG_FAIR_GROUP_SCHED
9794static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9795{
9796 int i;
9797
9798 for_each_possible_cpu(i) {
9799 if (tg->cfs_rq)
9800 kfree(tg->cfs_rq[i]);
9801 if (tg->se)
9802 kfree(tg->se[i]);
6f505b16
PZ
9803 }
9804
9805 kfree(tg->cfs_rq);
9806 kfree(tg->se);
6f505b16
PZ
9807}
9808
ec7dc8ac
DG
9809static
9810int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9811{
29f59db3 9812 struct cfs_rq *cfs_rq;
eab17229 9813 struct sched_entity *se;
9b5b7751 9814 struct rq *rq;
29f59db3
SV
9815 int i;
9816
434d53b0 9817 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9818 if (!tg->cfs_rq)
9819 goto err;
434d53b0 9820 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9821 if (!tg->se)
9822 goto err;
052f1dc7
PZ
9823
9824 tg->shares = NICE_0_LOAD;
29f59db3
SV
9825
9826 for_each_possible_cpu(i) {
9b5b7751 9827 rq = cpu_rq(i);
29f59db3 9828
eab17229
LZ
9829 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9830 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9831 if (!cfs_rq)
9832 goto err;
9833
eab17229
LZ
9834 se = kzalloc_node(sizeof(struct sched_entity),
9835 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9836 if (!se)
9837 goto err;
9838
eab17229 9839 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9840 }
9841
9842 return 1;
9843
9844 err:
9845 return 0;
9846}
9847
9848static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9849{
9850 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9851 &cpu_rq(cpu)->leaf_cfs_rq_list);
9852}
9853
9854static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9855{
9856 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9857}
6d6bc0ad 9858#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9859static inline void free_fair_sched_group(struct task_group *tg)
9860{
9861}
9862
ec7dc8ac
DG
9863static inline
9864int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9865{
9866 return 1;
9867}
9868
9869static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9870{
9871}
9872
9873static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9874{
9875}
6d6bc0ad 9876#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9877
9878#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9879static void free_rt_sched_group(struct task_group *tg)
9880{
9881 int i;
9882
d0b27fa7
PZ
9883 destroy_rt_bandwidth(&tg->rt_bandwidth);
9884
bccbe08a
PZ
9885 for_each_possible_cpu(i) {
9886 if (tg->rt_rq)
9887 kfree(tg->rt_rq[i]);
9888 if (tg->rt_se)
9889 kfree(tg->rt_se[i]);
9890 }
9891
9892 kfree(tg->rt_rq);
9893 kfree(tg->rt_se);
9894}
9895
ec7dc8ac
DG
9896static
9897int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9898{
9899 struct rt_rq *rt_rq;
eab17229 9900 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9901 struct rq *rq;
9902 int i;
9903
434d53b0 9904 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9905 if (!tg->rt_rq)
9906 goto err;
434d53b0 9907 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9908 if (!tg->rt_se)
9909 goto err;
9910
d0b27fa7
PZ
9911 init_rt_bandwidth(&tg->rt_bandwidth,
9912 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9913
9914 for_each_possible_cpu(i) {
9915 rq = cpu_rq(i);
9916
eab17229
LZ
9917 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9918 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9919 if (!rt_rq)
9920 goto err;
29f59db3 9921
eab17229
LZ
9922 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9923 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9924 if (!rt_se)
9925 goto err;
29f59db3 9926
eab17229 9927 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9928 }
9929
bccbe08a
PZ
9930 return 1;
9931
9932 err:
9933 return 0;
9934}
9935
9936static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9937{
9938 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9939 &cpu_rq(cpu)->leaf_rt_rq_list);
9940}
9941
9942static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9943{
9944 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9945}
6d6bc0ad 9946#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9947static inline void free_rt_sched_group(struct task_group *tg)
9948{
9949}
9950
ec7dc8ac
DG
9951static inline
9952int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9953{
9954 return 1;
9955}
9956
9957static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9958{
9959}
9960
9961static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9962{
9963}
6d6bc0ad 9964#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9965
d0b27fa7 9966#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9967static void free_sched_group(struct task_group *tg)
9968{
9969 free_fair_sched_group(tg);
9970 free_rt_sched_group(tg);
9971 kfree(tg);
9972}
9973
9974/* allocate runqueue etc for a new task group */
ec7dc8ac 9975struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9976{
9977 struct task_group *tg;
9978 unsigned long flags;
9979 int i;
9980
9981 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9982 if (!tg)
9983 return ERR_PTR(-ENOMEM);
9984
ec7dc8ac 9985 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9986 goto err;
9987
ec7dc8ac 9988 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9989 goto err;
9990
8ed36996 9991 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9992 for_each_possible_cpu(i) {
bccbe08a
PZ
9993 register_fair_sched_group(tg, i);
9994 register_rt_sched_group(tg, i);
9b5b7751 9995 }
6f505b16 9996 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9997
9998 WARN_ON(!parent); /* root should already exist */
9999
10000 tg->parent = parent;
f473aa5e 10001 INIT_LIST_HEAD(&tg->children);
09f2724a 10002 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10003 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10004
9b5b7751 10005 return tg;
29f59db3
SV
10006
10007err:
6f505b16 10008 free_sched_group(tg);
29f59db3
SV
10009 return ERR_PTR(-ENOMEM);
10010}
10011
9b5b7751 10012/* rcu callback to free various structures associated with a task group */
6f505b16 10013static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10014{
29f59db3 10015 /* now it should be safe to free those cfs_rqs */
6f505b16 10016 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10017}
10018
9b5b7751 10019/* Destroy runqueue etc associated with a task group */
4cf86d77 10020void sched_destroy_group(struct task_group *tg)
29f59db3 10021{
8ed36996 10022 unsigned long flags;
9b5b7751 10023 int i;
29f59db3 10024
8ed36996 10025 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10026 for_each_possible_cpu(i) {
bccbe08a
PZ
10027 unregister_fair_sched_group(tg, i);
10028 unregister_rt_sched_group(tg, i);
9b5b7751 10029 }
6f505b16 10030 list_del_rcu(&tg->list);
f473aa5e 10031 list_del_rcu(&tg->siblings);
8ed36996 10032 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10033
9b5b7751 10034 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10035 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10036}
10037
9b5b7751 10038/* change task's runqueue when it moves between groups.
3a252015
IM
10039 * The caller of this function should have put the task in its new group
10040 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10041 * reflect its new group.
9b5b7751
SV
10042 */
10043void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10044{
10045 int on_rq, running;
10046 unsigned long flags;
10047 struct rq *rq;
10048
10049 rq = task_rq_lock(tsk, &flags);
10050
29f59db3
SV
10051 update_rq_clock(rq);
10052
051a1d1a 10053 running = task_current(rq, tsk);
29f59db3
SV
10054 on_rq = tsk->se.on_rq;
10055
0e1f3483 10056 if (on_rq)
29f59db3 10057 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10058 if (unlikely(running))
10059 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10060
6f505b16 10061 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10062
810b3817
PZ
10063#ifdef CONFIG_FAIR_GROUP_SCHED
10064 if (tsk->sched_class->moved_group)
10065 tsk->sched_class->moved_group(tsk);
10066#endif
10067
0e1f3483
HS
10068 if (unlikely(running))
10069 tsk->sched_class->set_curr_task(rq);
10070 if (on_rq)
7074badb 10071 enqueue_task(rq, tsk, 0);
29f59db3 10072
29f59db3
SV
10073 task_rq_unlock(rq, &flags);
10074}
6d6bc0ad 10075#endif /* CONFIG_GROUP_SCHED */
29f59db3 10076
052f1dc7 10077#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10078static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10079{
10080 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10081 int on_rq;
10082
29f59db3 10083 on_rq = se->on_rq;
62fb1851 10084 if (on_rq)
29f59db3
SV
10085 dequeue_entity(cfs_rq, se, 0);
10086
10087 se->load.weight = shares;
e05510d0 10088 se->load.inv_weight = 0;
29f59db3 10089
62fb1851 10090 if (on_rq)
29f59db3 10091 enqueue_entity(cfs_rq, se, 0);
c09595f6 10092}
62fb1851 10093
c09595f6
PZ
10094static void set_se_shares(struct sched_entity *se, unsigned long shares)
10095{
10096 struct cfs_rq *cfs_rq = se->cfs_rq;
10097 struct rq *rq = cfs_rq->rq;
10098 unsigned long flags;
10099
10100 spin_lock_irqsave(&rq->lock, flags);
10101 __set_se_shares(se, shares);
10102 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10103}
10104
8ed36996
PZ
10105static DEFINE_MUTEX(shares_mutex);
10106
4cf86d77 10107int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10108{
10109 int i;
8ed36996 10110 unsigned long flags;
c61935fd 10111
ec7dc8ac
DG
10112 /*
10113 * We can't change the weight of the root cgroup.
10114 */
10115 if (!tg->se[0])
10116 return -EINVAL;
10117
18d95a28
PZ
10118 if (shares < MIN_SHARES)
10119 shares = MIN_SHARES;
cb4ad1ff
MX
10120 else if (shares > MAX_SHARES)
10121 shares = MAX_SHARES;
62fb1851 10122
8ed36996 10123 mutex_lock(&shares_mutex);
9b5b7751 10124 if (tg->shares == shares)
5cb350ba 10125 goto done;
29f59db3 10126
8ed36996 10127 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10128 for_each_possible_cpu(i)
10129 unregister_fair_sched_group(tg, i);
f473aa5e 10130 list_del_rcu(&tg->siblings);
8ed36996 10131 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10132
10133 /* wait for any ongoing reference to this group to finish */
10134 synchronize_sched();
10135
10136 /*
10137 * Now we are free to modify the group's share on each cpu
10138 * w/o tripping rebalance_share or load_balance_fair.
10139 */
9b5b7751 10140 tg->shares = shares;
c09595f6
PZ
10141 for_each_possible_cpu(i) {
10142 /*
10143 * force a rebalance
10144 */
10145 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10146 set_se_shares(tg->se[i], shares);
c09595f6 10147 }
29f59db3 10148
6b2d7700
SV
10149 /*
10150 * Enable load balance activity on this group, by inserting it back on
10151 * each cpu's rq->leaf_cfs_rq_list.
10152 */
8ed36996 10153 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10154 for_each_possible_cpu(i)
10155 register_fair_sched_group(tg, i);
f473aa5e 10156 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10157 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10158done:
8ed36996 10159 mutex_unlock(&shares_mutex);
9b5b7751 10160 return 0;
29f59db3
SV
10161}
10162
5cb350ba
DG
10163unsigned long sched_group_shares(struct task_group *tg)
10164{
10165 return tg->shares;
10166}
052f1dc7 10167#endif
5cb350ba 10168
052f1dc7 10169#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10170/*
9f0c1e56 10171 * Ensure that the real time constraints are schedulable.
6f505b16 10172 */
9f0c1e56
PZ
10173static DEFINE_MUTEX(rt_constraints_mutex);
10174
10175static unsigned long to_ratio(u64 period, u64 runtime)
10176{
10177 if (runtime == RUNTIME_INF)
9a7e0b18 10178 return 1ULL << 20;
9f0c1e56 10179
9a7e0b18 10180 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10181}
10182
9a7e0b18
PZ
10183/* Must be called with tasklist_lock held */
10184static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10185{
9a7e0b18 10186 struct task_struct *g, *p;
b40b2e8e 10187
9a7e0b18
PZ
10188 do_each_thread(g, p) {
10189 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10190 return 1;
10191 } while_each_thread(g, p);
b40b2e8e 10192
9a7e0b18
PZ
10193 return 0;
10194}
b40b2e8e 10195
9a7e0b18
PZ
10196struct rt_schedulable_data {
10197 struct task_group *tg;
10198 u64 rt_period;
10199 u64 rt_runtime;
10200};
b40b2e8e 10201
9a7e0b18
PZ
10202static int tg_schedulable(struct task_group *tg, void *data)
10203{
10204 struct rt_schedulable_data *d = data;
10205 struct task_group *child;
10206 unsigned long total, sum = 0;
10207 u64 period, runtime;
b40b2e8e 10208
9a7e0b18
PZ
10209 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10210 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10211
9a7e0b18
PZ
10212 if (tg == d->tg) {
10213 period = d->rt_period;
10214 runtime = d->rt_runtime;
b40b2e8e 10215 }
b40b2e8e 10216
98a4826b
PZ
10217#ifdef CONFIG_USER_SCHED
10218 if (tg == &root_task_group) {
10219 period = global_rt_period();
10220 runtime = global_rt_runtime();
10221 }
10222#endif
10223
4653f803
PZ
10224 /*
10225 * Cannot have more runtime than the period.
10226 */
10227 if (runtime > period && runtime != RUNTIME_INF)
10228 return -EINVAL;
6f505b16 10229
4653f803
PZ
10230 /*
10231 * Ensure we don't starve existing RT tasks.
10232 */
9a7e0b18
PZ
10233 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10234 return -EBUSY;
6f505b16 10235
9a7e0b18 10236 total = to_ratio(period, runtime);
6f505b16 10237
4653f803
PZ
10238 /*
10239 * Nobody can have more than the global setting allows.
10240 */
10241 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10242 return -EINVAL;
6f505b16 10243
4653f803
PZ
10244 /*
10245 * The sum of our children's runtime should not exceed our own.
10246 */
9a7e0b18
PZ
10247 list_for_each_entry_rcu(child, &tg->children, siblings) {
10248 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10249 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10250
9a7e0b18
PZ
10251 if (child == d->tg) {
10252 period = d->rt_period;
10253 runtime = d->rt_runtime;
10254 }
6f505b16 10255
9a7e0b18 10256 sum += to_ratio(period, runtime);
9f0c1e56 10257 }
6f505b16 10258
9a7e0b18
PZ
10259 if (sum > total)
10260 return -EINVAL;
10261
10262 return 0;
6f505b16
PZ
10263}
10264
9a7e0b18 10265static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10266{
9a7e0b18
PZ
10267 struct rt_schedulable_data data = {
10268 .tg = tg,
10269 .rt_period = period,
10270 .rt_runtime = runtime,
10271 };
10272
10273 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10274}
10275
d0b27fa7
PZ
10276static int tg_set_bandwidth(struct task_group *tg,
10277 u64 rt_period, u64 rt_runtime)
6f505b16 10278{
ac086bc2 10279 int i, err = 0;
9f0c1e56 10280
9f0c1e56 10281 mutex_lock(&rt_constraints_mutex);
521f1a24 10282 read_lock(&tasklist_lock);
9a7e0b18
PZ
10283 err = __rt_schedulable(tg, rt_period, rt_runtime);
10284 if (err)
9f0c1e56 10285 goto unlock;
ac086bc2
PZ
10286
10287 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10288 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10289 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10290
10291 for_each_possible_cpu(i) {
10292 struct rt_rq *rt_rq = tg->rt_rq[i];
10293
10294 spin_lock(&rt_rq->rt_runtime_lock);
10295 rt_rq->rt_runtime = rt_runtime;
10296 spin_unlock(&rt_rq->rt_runtime_lock);
10297 }
10298 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10299 unlock:
521f1a24 10300 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10301 mutex_unlock(&rt_constraints_mutex);
10302
10303 return err;
6f505b16
PZ
10304}
10305
d0b27fa7
PZ
10306int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10307{
10308 u64 rt_runtime, rt_period;
10309
10310 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10311 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10312 if (rt_runtime_us < 0)
10313 rt_runtime = RUNTIME_INF;
10314
10315 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10316}
10317
9f0c1e56
PZ
10318long sched_group_rt_runtime(struct task_group *tg)
10319{
10320 u64 rt_runtime_us;
10321
d0b27fa7 10322 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10323 return -1;
10324
d0b27fa7 10325 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10326 do_div(rt_runtime_us, NSEC_PER_USEC);
10327 return rt_runtime_us;
10328}
d0b27fa7
PZ
10329
10330int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10331{
10332 u64 rt_runtime, rt_period;
10333
10334 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10335 rt_runtime = tg->rt_bandwidth.rt_runtime;
10336
619b0488
R
10337 if (rt_period == 0)
10338 return -EINVAL;
10339
d0b27fa7
PZ
10340 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10341}
10342
10343long sched_group_rt_period(struct task_group *tg)
10344{
10345 u64 rt_period_us;
10346
10347 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10348 do_div(rt_period_us, NSEC_PER_USEC);
10349 return rt_period_us;
10350}
10351
10352static int sched_rt_global_constraints(void)
10353{
4653f803 10354 u64 runtime, period;
d0b27fa7
PZ
10355 int ret = 0;
10356
ec5d4989
HS
10357 if (sysctl_sched_rt_period <= 0)
10358 return -EINVAL;
10359
4653f803
PZ
10360 runtime = global_rt_runtime();
10361 period = global_rt_period();
10362
10363 /*
10364 * Sanity check on the sysctl variables.
10365 */
10366 if (runtime > period && runtime != RUNTIME_INF)
10367 return -EINVAL;
10b612f4 10368
d0b27fa7 10369 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10370 read_lock(&tasklist_lock);
4653f803 10371 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10372 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10373 mutex_unlock(&rt_constraints_mutex);
10374
10375 return ret;
10376}
54e99124
DG
10377
10378int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10379{
10380 /* Don't accept realtime tasks when there is no way for them to run */
10381 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10382 return 0;
10383
10384 return 1;
10385}
10386
6d6bc0ad 10387#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10388static int sched_rt_global_constraints(void)
10389{
ac086bc2
PZ
10390 unsigned long flags;
10391 int i;
10392
ec5d4989
HS
10393 if (sysctl_sched_rt_period <= 0)
10394 return -EINVAL;
10395
60aa605d
PZ
10396 /*
10397 * There's always some RT tasks in the root group
10398 * -- migration, kstopmachine etc..
10399 */
10400 if (sysctl_sched_rt_runtime == 0)
10401 return -EBUSY;
10402
ac086bc2
PZ
10403 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10404 for_each_possible_cpu(i) {
10405 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10406
10407 spin_lock(&rt_rq->rt_runtime_lock);
10408 rt_rq->rt_runtime = global_rt_runtime();
10409 spin_unlock(&rt_rq->rt_runtime_lock);
10410 }
10411 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10412
d0b27fa7
PZ
10413 return 0;
10414}
6d6bc0ad 10415#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10416
10417int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10418 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10419 loff_t *ppos)
10420{
10421 int ret;
10422 int old_period, old_runtime;
10423 static DEFINE_MUTEX(mutex);
10424
10425 mutex_lock(&mutex);
10426 old_period = sysctl_sched_rt_period;
10427 old_runtime = sysctl_sched_rt_runtime;
10428
8d65af78 10429 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10430
10431 if (!ret && write) {
10432 ret = sched_rt_global_constraints();
10433 if (ret) {
10434 sysctl_sched_rt_period = old_period;
10435 sysctl_sched_rt_runtime = old_runtime;
10436 } else {
10437 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10438 def_rt_bandwidth.rt_period =
10439 ns_to_ktime(global_rt_period());
10440 }
10441 }
10442 mutex_unlock(&mutex);
10443
10444 return ret;
10445}
68318b8e 10446
052f1dc7 10447#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10448
10449/* return corresponding task_group object of a cgroup */
2b01dfe3 10450static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10451{
2b01dfe3
PM
10452 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10453 struct task_group, css);
68318b8e
SV
10454}
10455
10456static struct cgroup_subsys_state *
2b01dfe3 10457cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10458{
ec7dc8ac 10459 struct task_group *tg, *parent;
68318b8e 10460
2b01dfe3 10461 if (!cgrp->parent) {
68318b8e 10462 /* This is early initialization for the top cgroup */
68318b8e
SV
10463 return &init_task_group.css;
10464 }
10465
ec7dc8ac
DG
10466 parent = cgroup_tg(cgrp->parent);
10467 tg = sched_create_group(parent);
68318b8e
SV
10468 if (IS_ERR(tg))
10469 return ERR_PTR(-ENOMEM);
10470
68318b8e
SV
10471 return &tg->css;
10472}
10473
41a2d6cf
IM
10474static void
10475cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10476{
2b01dfe3 10477 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10478
10479 sched_destroy_group(tg);
10480}
10481
41a2d6cf 10482static int
be367d09 10483cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10484{
b68aa230 10485#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10486 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10487 return -EINVAL;
10488#else
68318b8e
SV
10489 /* We don't support RT-tasks being in separate groups */
10490 if (tsk->sched_class != &fair_sched_class)
10491 return -EINVAL;
b68aa230 10492#endif
be367d09
BB
10493 return 0;
10494}
68318b8e 10495
be367d09
BB
10496static int
10497cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10498 struct task_struct *tsk, bool threadgroup)
10499{
10500 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10501 if (retval)
10502 return retval;
10503 if (threadgroup) {
10504 struct task_struct *c;
10505 rcu_read_lock();
10506 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10507 retval = cpu_cgroup_can_attach_task(cgrp, c);
10508 if (retval) {
10509 rcu_read_unlock();
10510 return retval;
10511 }
10512 }
10513 rcu_read_unlock();
10514 }
68318b8e
SV
10515 return 0;
10516}
10517
10518static void
2b01dfe3 10519cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10520 struct cgroup *old_cont, struct task_struct *tsk,
10521 bool threadgroup)
68318b8e
SV
10522{
10523 sched_move_task(tsk);
be367d09
BB
10524 if (threadgroup) {
10525 struct task_struct *c;
10526 rcu_read_lock();
10527 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10528 sched_move_task(c);
10529 }
10530 rcu_read_unlock();
10531 }
68318b8e
SV
10532}
10533
052f1dc7 10534#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10535static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10536 u64 shareval)
68318b8e 10537{
2b01dfe3 10538 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10539}
10540
f4c753b7 10541static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10542{
2b01dfe3 10543 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10544
10545 return (u64) tg->shares;
10546}
6d6bc0ad 10547#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10548
052f1dc7 10549#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10550static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10551 s64 val)
6f505b16 10552{
06ecb27c 10553 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10554}
10555
06ecb27c 10556static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10557{
06ecb27c 10558 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10559}
d0b27fa7
PZ
10560
10561static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10562 u64 rt_period_us)
10563{
10564 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10565}
10566
10567static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10568{
10569 return sched_group_rt_period(cgroup_tg(cgrp));
10570}
6d6bc0ad 10571#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10572
fe5c7cc2 10573static struct cftype cpu_files[] = {
052f1dc7 10574#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10575 {
10576 .name = "shares",
f4c753b7
PM
10577 .read_u64 = cpu_shares_read_u64,
10578 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10579 },
052f1dc7
PZ
10580#endif
10581#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10582 {
9f0c1e56 10583 .name = "rt_runtime_us",
06ecb27c
PM
10584 .read_s64 = cpu_rt_runtime_read,
10585 .write_s64 = cpu_rt_runtime_write,
6f505b16 10586 },
d0b27fa7
PZ
10587 {
10588 .name = "rt_period_us",
f4c753b7
PM
10589 .read_u64 = cpu_rt_period_read_uint,
10590 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10591 },
052f1dc7 10592#endif
68318b8e
SV
10593};
10594
10595static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10596{
fe5c7cc2 10597 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10598}
10599
10600struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10601 .name = "cpu",
10602 .create = cpu_cgroup_create,
10603 .destroy = cpu_cgroup_destroy,
10604 .can_attach = cpu_cgroup_can_attach,
10605 .attach = cpu_cgroup_attach,
10606 .populate = cpu_cgroup_populate,
10607 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10608 .early_init = 1,
10609};
10610
052f1dc7 10611#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10612
10613#ifdef CONFIG_CGROUP_CPUACCT
10614
10615/*
10616 * CPU accounting code for task groups.
10617 *
10618 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10619 * (balbir@in.ibm.com).
10620 */
10621
934352f2 10622/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10623struct cpuacct {
10624 struct cgroup_subsys_state css;
10625 /* cpuusage holds pointer to a u64-type object on every cpu */
10626 u64 *cpuusage;
ef12fefa 10627 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10628 struct cpuacct *parent;
d842de87
SV
10629};
10630
10631struct cgroup_subsys cpuacct_subsys;
10632
10633/* return cpu accounting group corresponding to this container */
32cd756a 10634static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10635{
32cd756a 10636 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10637 struct cpuacct, css);
10638}
10639
10640/* return cpu accounting group to which this task belongs */
10641static inline struct cpuacct *task_ca(struct task_struct *tsk)
10642{
10643 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10644 struct cpuacct, css);
10645}
10646
10647/* create a new cpu accounting group */
10648static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10649 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10650{
10651 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10652 int i;
d842de87
SV
10653
10654 if (!ca)
ef12fefa 10655 goto out;
d842de87
SV
10656
10657 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10658 if (!ca->cpuusage)
10659 goto out_free_ca;
10660
10661 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10662 if (percpu_counter_init(&ca->cpustat[i], 0))
10663 goto out_free_counters;
d842de87 10664
934352f2
BR
10665 if (cgrp->parent)
10666 ca->parent = cgroup_ca(cgrp->parent);
10667
d842de87 10668 return &ca->css;
ef12fefa
BR
10669
10670out_free_counters:
10671 while (--i >= 0)
10672 percpu_counter_destroy(&ca->cpustat[i]);
10673 free_percpu(ca->cpuusage);
10674out_free_ca:
10675 kfree(ca);
10676out:
10677 return ERR_PTR(-ENOMEM);
d842de87
SV
10678}
10679
10680/* destroy an existing cpu accounting group */
41a2d6cf 10681static void
32cd756a 10682cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10683{
32cd756a 10684 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10685 int i;
d842de87 10686
ef12fefa
BR
10687 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10688 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10689 free_percpu(ca->cpuusage);
10690 kfree(ca);
10691}
10692
720f5498
KC
10693static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10694{
b36128c8 10695 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10696 u64 data;
10697
10698#ifndef CONFIG_64BIT
10699 /*
10700 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10701 */
10702 spin_lock_irq(&cpu_rq(cpu)->lock);
10703 data = *cpuusage;
10704 spin_unlock_irq(&cpu_rq(cpu)->lock);
10705#else
10706 data = *cpuusage;
10707#endif
10708
10709 return data;
10710}
10711
10712static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10713{
b36128c8 10714 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10715
10716#ifndef CONFIG_64BIT
10717 /*
10718 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10719 */
10720 spin_lock_irq(&cpu_rq(cpu)->lock);
10721 *cpuusage = val;
10722 spin_unlock_irq(&cpu_rq(cpu)->lock);
10723#else
10724 *cpuusage = val;
10725#endif
10726}
10727
d842de87 10728/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10729static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10730{
32cd756a 10731 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10732 u64 totalcpuusage = 0;
10733 int i;
10734
720f5498
KC
10735 for_each_present_cpu(i)
10736 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10737
10738 return totalcpuusage;
10739}
10740
0297b803
DG
10741static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10742 u64 reset)
10743{
10744 struct cpuacct *ca = cgroup_ca(cgrp);
10745 int err = 0;
10746 int i;
10747
10748 if (reset) {
10749 err = -EINVAL;
10750 goto out;
10751 }
10752
720f5498
KC
10753 for_each_present_cpu(i)
10754 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10755
0297b803
DG
10756out:
10757 return err;
10758}
10759
e9515c3c
KC
10760static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10761 struct seq_file *m)
10762{
10763 struct cpuacct *ca = cgroup_ca(cgroup);
10764 u64 percpu;
10765 int i;
10766
10767 for_each_present_cpu(i) {
10768 percpu = cpuacct_cpuusage_read(ca, i);
10769 seq_printf(m, "%llu ", (unsigned long long) percpu);
10770 }
10771 seq_printf(m, "\n");
10772 return 0;
10773}
10774
ef12fefa
BR
10775static const char *cpuacct_stat_desc[] = {
10776 [CPUACCT_STAT_USER] = "user",
10777 [CPUACCT_STAT_SYSTEM] = "system",
10778};
10779
10780static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10781 struct cgroup_map_cb *cb)
10782{
10783 struct cpuacct *ca = cgroup_ca(cgrp);
10784 int i;
10785
10786 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10787 s64 val = percpu_counter_read(&ca->cpustat[i]);
10788 val = cputime64_to_clock_t(val);
10789 cb->fill(cb, cpuacct_stat_desc[i], val);
10790 }
10791 return 0;
10792}
10793
d842de87
SV
10794static struct cftype files[] = {
10795 {
10796 .name = "usage",
f4c753b7
PM
10797 .read_u64 = cpuusage_read,
10798 .write_u64 = cpuusage_write,
d842de87 10799 },
e9515c3c
KC
10800 {
10801 .name = "usage_percpu",
10802 .read_seq_string = cpuacct_percpu_seq_read,
10803 },
ef12fefa
BR
10804 {
10805 .name = "stat",
10806 .read_map = cpuacct_stats_show,
10807 },
d842de87
SV
10808};
10809
32cd756a 10810static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10811{
32cd756a 10812 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10813}
10814
10815/*
10816 * charge this task's execution time to its accounting group.
10817 *
10818 * called with rq->lock held.
10819 */
10820static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10821{
10822 struct cpuacct *ca;
934352f2 10823 int cpu;
d842de87 10824
c40c6f85 10825 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10826 return;
10827
934352f2 10828 cpu = task_cpu(tsk);
a18b83b7
BR
10829
10830 rcu_read_lock();
10831
d842de87 10832 ca = task_ca(tsk);
d842de87 10833
934352f2 10834 for (; ca; ca = ca->parent) {
b36128c8 10835 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10836 *cpuusage += cputime;
10837 }
a18b83b7
BR
10838
10839 rcu_read_unlock();
d842de87
SV
10840}
10841
ef12fefa
BR
10842/*
10843 * Charge the system/user time to the task's accounting group.
10844 */
10845static void cpuacct_update_stats(struct task_struct *tsk,
10846 enum cpuacct_stat_index idx, cputime_t val)
10847{
10848 struct cpuacct *ca;
10849
10850 if (unlikely(!cpuacct_subsys.active))
10851 return;
10852
10853 rcu_read_lock();
10854 ca = task_ca(tsk);
10855
10856 do {
10857 percpu_counter_add(&ca->cpustat[idx], val);
10858 ca = ca->parent;
10859 } while (ca);
10860 rcu_read_unlock();
10861}
10862
d842de87
SV
10863struct cgroup_subsys cpuacct_subsys = {
10864 .name = "cpuacct",
10865 .create = cpuacct_create,
10866 .destroy = cpuacct_destroy,
10867 .populate = cpuacct_populate,
10868 .subsys_id = cpuacct_subsys_id,
10869};
10870#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10871
10872#ifndef CONFIG_SMP
10873
10874int rcu_expedited_torture_stats(char *page)
10875{
10876 return 0;
10877}
10878EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10879
10880void synchronize_sched_expedited(void)
10881{
10882}
10883EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10884
10885#else /* #ifndef CONFIG_SMP */
10886
10887static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10888static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10889
10890#define RCU_EXPEDITED_STATE_POST -2
10891#define RCU_EXPEDITED_STATE_IDLE -1
10892
10893static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10894
10895int rcu_expedited_torture_stats(char *page)
10896{
10897 int cnt = 0;
10898 int cpu;
10899
10900 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10901 for_each_online_cpu(cpu) {
10902 cnt += sprintf(&page[cnt], " %d:%d",
10903 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10904 }
10905 cnt += sprintf(&page[cnt], "\n");
10906 return cnt;
10907}
10908EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10909
10910static long synchronize_sched_expedited_count;
10911
10912/*
10913 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10914 * approach to force grace period to end quickly. This consumes
10915 * significant time on all CPUs, and is thus not recommended for
10916 * any sort of common-case code.
10917 *
10918 * Note that it is illegal to call this function while holding any
10919 * lock that is acquired by a CPU-hotplug notifier. Failing to
10920 * observe this restriction will result in deadlock.
10921 */
10922void synchronize_sched_expedited(void)
10923{
10924 int cpu;
10925 unsigned long flags;
10926 bool need_full_sync = 0;
10927 struct rq *rq;
10928 struct migration_req *req;
10929 long snap;
10930 int trycount = 0;
10931
10932 smp_mb(); /* ensure prior mod happens before capturing snap. */
10933 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10934 get_online_cpus();
10935 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10936 put_online_cpus();
10937 if (trycount++ < 10)
10938 udelay(trycount * num_online_cpus());
10939 else {
10940 synchronize_sched();
10941 return;
10942 }
10943 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10944 smp_mb(); /* ensure test happens before caller kfree */
10945 return;
10946 }
10947 get_online_cpus();
10948 }
10949 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10950 for_each_online_cpu(cpu) {
10951 rq = cpu_rq(cpu);
10952 req = &per_cpu(rcu_migration_req, cpu);
10953 init_completion(&req->done);
10954 req->task = NULL;
10955 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10956 spin_lock_irqsave(&rq->lock, flags);
10957 list_add(&req->list, &rq->migration_queue);
10958 spin_unlock_irqrestore(&rq->lock, flags);
10959 wake_up_process(rq->migration_thread);
10960 }
10961 for_each_online_cpu(cpu) {
10962 rcu_expedited_state = cpu;
10963 req = &per_cpu(rcu_migration_req, cpu);
10964 rq = cpu_rq(cpu);
10965 wait_for_completion(&req->done);
10966 spin_lock_irqsave(&rq->lock, flags);
10967 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10968 need_full_sync = 1;
10969 req->dest_cpu = RCU_MIGRATION_IDLE;
10970 spin_unlock_irqrestore(&rq->lock, flags);
10971 }
10972 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 10973 synchronize_sched_expedited_count++;
03b042bf
PM
10974 mutex_unlock(&rcu_sched_expedited_mutex);
10975 put_online_cpus();
10976 if (need_full_sync)
10977 synchronize_sched();
10978}
10979EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10980
10981#endif /* #else #ifndef CONFIG_SMP */