]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched.c
sched: Cure more NO_HZ load average woes
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
052f1dc7
PZ
256#endif
257
258#ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
d0b27fa7 262 struct rt_bandwidth rt_bandwidth;
052f1dc7 263#endif
6b2d7700 264
ae8393e5 265 struct rcu_head rcu;
6f505b16 266 struct list_head list;
f473aa5e
PZ
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
29f59db3
SV
271};
272
eff766a6 273#define root_task_group init_task_group
6f505b16 274
8ed36996 275/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
276 * a task group's cpu shares.
277 */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
57310a98
PZ
282#ifdef CONFIG_SMP
283static int root_task_group_empty(void)
284{
285 return list_empty(&root_task_group.children);
286}
287#endif
288
052f1dc7 289# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 290
cb4ad1ff 291/*
2e084786
LJ
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
cb4ad1ff
MX
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
18d95a28 299#define MIN_SHARES 2
2e084786 300#define MAX_SHARES (1UL << 18)
18d95a28 301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3 309
7c941438 310#endif /* CONFIG_CGROUP_SCHED */
29f59db3 311
6aa645ea
IM
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
6aa645ea 317 u64 exec_clock;
e9acbff6 318 u64 min_vruntime;
6aa645ea
IM
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
4a55bd5e
PZ
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
4793241b 330 struct sched_entity *curr, *next, *last;
ddc97297 331
5ac5c4d6 332 unsigned int nr_spread_over;
ddc97297 333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857
PZ
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
f1d239f7
PZ
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2 429 struct cpupri cpupri;
57d885fe
GH
430};
431
dc938520
GH
432/*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
57d885fe
GH
436static struct root_domain def_root_domain;
437
ed2d372c 438#endif /* CONFIG_SMP */
57d885fe 439
1da177e4
LT
440/*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
70b97a7f 447struct rq {
d8016491 448 /* runqueue lock: */
05fa785c 449 raw_spinlock_t lock;
1da177e4
LT
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
6aa645ea
IM
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 458 unsigned long last_load_update_tick;
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
83cd4fe2 461 unsigned char nohz_balance_kick;
46cb4b7c 462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
34f971f6 489 struct task_struct *curr, *idle, *stop;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
305e6835 494 u64 clock_task;
6aa645ea 495
1da177e4
LT
496 atomic_t nr_iowait;
497
498#ifdef CONFIG_SMP
0eab9146 499 struct root_domain *rd;
1da177e4
LT
500 struct sched_domain *sd;
501
e51fd5e2
PZ
502 unsigned long cpu_power;
503
a0a522ce 504 unsigned char idle_at_tick;
1da177e4 505 /* For active balancing */
3f029d3c 506 int post_schedule;
1da177e4
LT
507 int active_balance;
508 int push_cpu;
969c7921 509 struct cpu_stop_work active_balance_work;
d8016491
IM
510 /* cpu of this runqueue: */
511 int cpu;
1f11eb6a 512 int online;
1da177e4 513
a8a51d5e 514 unsigned long avg_load_per_task;
1da177e4 515
e9e9250b
PZ
516 u64 rt_avg;
517 u64 age_stamp;
1b9508f6
MG
518 u64 idle_stamp;
519 u64 avg_idle;
1da177e4
LT
520#endif
521
aa483808
VP
522#ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524#endif
525
dce48a84
TG
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
8f4d37ec 530#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
531#ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534#endif
8f4d37ec
PZ
535 struct hrtimer hrtick_timer;
536#endif
537
1da177e4
LT
538#ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
9c2c4802
KC
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
543
544 /* sys_sched_yield() stats */
480b9434 545 unsigned int yld_count;
1da177e4
LT
546
547 /* schedule() stats */
480b9434
KC
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
1da177e4
LT
551
552 /* try_to_wake_up() stats */
480b9434
KC
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
b8efb561
IM
555
556 /* BKL stats */
480b9434 557 unsigned int bkl_count;
1da177e4
LT
558#endif
559};
560
f34e3b61 561static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 562
a64692a3 563
1e5a7405 564static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 565
0a2966b4
CL
566static inline int cpu_of(struct rq *rq)
567{
568#ifdef CONFIG_SMP
569 return rq->cpu;
570#else
571 return 0;
572#endif
573}
574
497f0ab3 575#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
579
674311d5
NP
580/*
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 582 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
583 *
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
586 */
48f24c4d 587#define for_each_domain(cpu, __sd) \
497f0ab3 588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
589
590#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591#define this_rq() (&__get_cpu_var(runqueues))
592#define task_rq(p) cpu_rq(task_cpu(p))
593#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 594#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 595
dc61b1d6
PZ
596#ifdef CONFIG_CGROUP_SCHED
597
598/*
599 * Return the group to which this tasks belongs.
600 *
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
605 */
606static inline struct task_group *task_group(struct task_struct *p)
607{
608 struct cgroup_subsys_state *css;
609
610 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
611 lockdep_is_held(&task_rq(p)->lock));
612 return container_of(css, struct task_group, css);
613}
614
615/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617{
618#ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621#endif
622
623#ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626#endif
627}
628
629#else /* CONFIG_CGROUP_SCHED */
630
631static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632static inline struct task_group *task_group(struct task_struct *p)
633{
634 return NULL;
635}
636
637#endif /* CONFIG_CGROUP_SCHED */
638
305e6835 639static u64 irq_time_cpu(int cpu);
aa483808 640static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
305e6835 641
aa9c4c0f 642inline void update_rq_clock(struct rq *rq)
3e51f33f 643{
305e6835
VP
644 if (!rq->skip_clock_update) {
645 int cpu = cpu_of(rq);
646 u64 irq_time;
647
648 rq->clock = sched_clock_cpu(cpu);
649 irq_time = irq_time_cpu(cpu);
650 if (rq->clock - irq_time > rq->clock_task)
651 rq->clock_task = rq->clock - irq_time;
aa483808
VP
652
653 sched_irq_time_avg_update(rq, irq_time);
305e6835 654 }
3e51f33f
PZ
655}
656
bf5c91ba
IM
657/*
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659 */
660#ifdef CONFIG_SCHED_DEBUG
661# define const_debug __read_mostly
662#else
663# define const_debug static const
664#endif
665
017730c1
IM
666/**
667 * runqueue_is_locked
e17b38bf 668 * @cpu: the processor in question.
017730c1
IM
669 *
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
673 */
89f19f04 674int runqueue_is_locked(int cpu)
017730c1 675{
05fa785c 676 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
677}
678
bf5c91ba
IM
679/*
680 * Debugging: various feature bits
681 */
f00b45c1
PZ
682
683#define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
bf5c91ba 686enum {
f00b45c1 687#include "sched_features.h"
bf5c91ba
IM
688};
689
f00b45c1
PZ
690#undef SCHED_FEAT
691
692#define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
bf5c91ba 695const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
696#include "sched_features.h"
697 0;
698
699#undef SCHED_FEAT
700
701#ifdef CONFIG_SCHED_DEBUG
702#define SCHED_FEAT(name, enabled) \
703 #name ,
704
983ed7a6 705static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
706#include "sched_features.h"
707 NULL
708};
709
710#undef SCHED_FEAT
711
34f3a814 712static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 713{
f00b45c1
PZ
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
717 if (!(sysctl_sched_features & (1UL << i)))
718 seq_puts(m, "NO_");
719 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 720 }
34f3a814 721 seq_puts(m, "\n");
f00b45c1 722
34f3a814 723 return 0;
f00b45c1
PZ
724}
725
726static ssize_t
727sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
729{
730 char buf[64];
7740191c 731 char *cmp;
f00b45c1
PZ
732 int neg = 0;
733 int i;
734
735 if (cnt > 63)
736 cnt = 63;
737
738 if (copy_from_user(&buf, ubuf, cnt))
739 return -EFAULT;
740
741 buf[cnt] = 0;
7740191c 742 cmp = strstrip(buf);
f00b45c1 743
c24b7c52 744 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
745 neg = 1;
746 cmp += 3;
747 }
748
749 for (i = 0; sched_feat_names[i]; i++) {
7740191c 750 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
751 if (neg)
752 sysctl_sched_features &= ~(1UL << i);
753 else
754 sysctl_sched_features |= (1UL << i);
755 break;
756 }
757 }
758
759 if (!sched_feat_names[i])
760 return -EINVAL;
761
42994724 762 *ppos += cnt;
f00b45c1
PZ
763
764 return cnt;
765}
766
34f3a814
LZ
767static int sched_feat_open(struct inode *inode, struct file *filp)
768{
769 return single_open(filp, sched_feat_show, NULL);
770}
771
828c0950 772static const struct file_operations sched_feat_fops = {
34f3a814
LZ
773 .open = sched_feat_open,
774 .write = sched_feat_write,
775 .read = seq_read,
776 .llseek = seq_lseek,
777 .release = single_release,
f00b45c1
PZ
778};
779
780static __init int sched_init_debug(void)
781{
f00b45c1
PZ
782 debugfs_create_file("sched_features", 0644, NULL, NULL,
783 &sched_feat_fops);
784
785 return 0;
786}
787late_initcall(sched_init_debug);
788
789#endif
790
791#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 792
b82d9fdd
PZ
793/*
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
796 */
797const_debug unsigned int sysctl_sched_nr_migrate = 32;
798
2398f2c6
PZ
799/*
800 * ratelimit for updating the group shares.
55cd5340 801 * default: 0.25ms
2398f2c6 802 */
55cd5340 803unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 804unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 805
ffda12a1
PZ
806/*
807 * Inject some fuzzyness into changing the per-cpu group shares
808 * this avoids remote rq-locks at the expense of fairness.
809 * default: 4
810 */
811unsigned int sysctl_sched_shares_thresh = 4;
812
e9e9250b
PZ
813/*
814 * period over which we average the RT time consumption, measured
815 * in ms.
816 *
817 * default: 1s
818 */
819const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
820
fa85ae24 821/*
9f0c1e56 822 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
823 * default: 1s
824 */
9f0c1e56 825unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 826
6892b75e
IM
827static __read_mostly int scheduler_running;
828
9f0c1e56
PZ
829/*
830 * part of the period that we allow rt tasks to run in us.
831 * default: 0.95s
832 */
833int sysctl_sched_rt_runtime = 950000;
fa85ae24 834
d0b27fa7
PZ
835static inline u64 global_rt_period(void)
836{
837 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
838}
839
840static inline u64 global_rt_runtime(void)
841{
e26873bb 842 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
843 return RUNTIME_INF;
844
845 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
846}
fa85ae24 847
1da177e4 848#ifndef prepare_arch_switch
4866cde0
NP
849# define prepare_arch_switch(next) do { } while (0)
850#endif
851#ifndef finish_arch_switch
852# define finish_arch_switch(prev) do { } while (0)
853#endif
854
051a1d1a
DA
855static inline int task_current(struct rq *rq, struct task_struct *p)
856{
857 return rq->curr == p;
858}
859
4866cde0 860#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 861static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 862{
051a1d1a 863 return task_current(rq, p);
4866cde0
NP
864}
865
70b97a7f 866static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
867{
868}
869
70b97a7f 870static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 871{
da04c035
IM
872#ifdef CONFIG_DEBUG_SPINLOCK
873 /* this is a valid case when another task releases the spinlock */
874 rq->lock.owner = current;
875#endif
8a25d5de
IM
876 /*
877 * If we are tracking spinlock dependencies then we have to
878 * fix up the runqueue lock - which gets 'carried over' from
879 * prev into current:
880 */
881 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
882
05fa785c 883 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
884}
885
886#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 887static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
888{
889#ifdef CONFIG_SMP
890 return p->oncpu;
891#else
051a1d1a 892 return task_current(rq, p);
4866cde0
NP
893#endif
894}
895
70b97a7f 896static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
897{
898#ifdef CONFIG_SMP
899 /*
900 * We can optimise this out completely for !SMP, because the
901 * SMP rebalancing from interrupt is the only thing that cares
902 * here.
903 */
904 next->oncpu = 1;
905#endif
906#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 907 raw_spin_unlock_irq(&rq->lock);
4866cde0 908#else
05fa785c 909 raw_spin_unlock(&rq->lock);
4866cde0
NP
910#endif
911}
912
70b97a7f 913static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
914{
915#ifdef CONFIG_SMP
916 /*
917 * After ->oncpu is cleared, the task can be moved to a different CPU.
918 * We must ensure this doesn't happen until the switch is completely
919 * finished.
920 */
921 smp_wmb();
922 prev->oncpu = 0;
923#endif
924#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
925 local_irq_enable();
1da177e4 926#endif
4866cde0
NP
927}
928#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 929
0970d299 930/*
65cc8e48
PZ
931 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
932 * against ttwu().
0970d299
PZ
933 */
934static inline int task_is_waking(struct task_struct *p)
935{
0017d735 936 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
937}
938
b29739f9
IM
939/*
940 * __task_rq_lock - lock the runqueue a given task resides on.
941 * Must be called interrupts disabled.
942 */
70b97a7f 943static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
944 __acquires(rq->lock)
945{
0970d299
PZ
946 struct rq *rq;
947
3a5c359a 948 for (;;) {
0970d299 949 rq = task_rq(p);
05fa785c 950 raw_spin_lock(&rq->lock);
65cc8e48 951 if (likely(rq == task_rq(p)))
3a5c359a 952 return rq;
05fa785c 953 raw_spin_unlock(&rq->lock);
b29739f9 954 }
b29739f9
IM
955}
956
1da177e4
LT
957/*
958 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 959 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
960 * explicitly disabling preemption.
961 */
70b97a7f 962static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
963 __acquires(rq->lock)
964{
70b97a7f 965 struct rq *rq;
1da177e4 966
3a5c359a
AK
967 for (;;) {
968 local_irq_save(*flags);
969 rq = task_rq(p);
05fa785c 970 raw_spin_lock(&rq->lock);
65cc8e48 971 if (likely(rq == task_rq(p)))
3a5c359a 972 return rq;
05fa785c 973 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 974 }
1da177e4
LT
975}
976
a9957449 977static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
978 __releases(rq->lock)
979{
05fa785c 980 raw_spin_unlock(&rq->lock);
b29739f9
IM
981}
982
70b97a7f 983static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
984 __releases(rq->lock)
985{
05fa785c 986 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
987}
988
1da177e4 989/*
cc2a73b5 990 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 991 */
a9957449 992static struct rq *this_rq_lock(void)
1da177e4
LT
993 __acquires(rq->lock)
994{
70b97a7f 995 struct rq *rq;
1da177e4
LT
996
997 local_irq_disable();
998 rq = this_rq();
05fa785c 999 raw_spin_lock(&rq->lock);
1da177e4
LT
1000
1001 return rq;
1002}
1003
8f4d37ec
PZ
1004#ifdef CONFIG_SCHED_HRTICK
1005/*
1006 * Use HR-timers to deliver accurate preemption points.
1007 *
1008 * Its all a bit involved since we cannot program an hrt while holding the
1009 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1010 * reschedule event.
1011 *
1012 * When we get rescheduled we reprogram the hrtick_timer outside of the
1013 * rq->lock.
1014 */
8f4d37ec
PZ
1015
1016/*
1017 * Use hrtick when:
1018 * - enabled by features
1019 * - hrtimer is actually high res
1020 */
1021static inline int hrtick_enabled(struct rq *rq)
1022{
1023 if (!sched_feat(HRTICK))
1024 return 0;
ba42059f 1025 if (!cpu_active(cpu_of(rq)))
b328ca18 1026 return 0;
8f4d37ec
PZ
1027 return hrtimer_is_hres_active(&rq->hrtick_timer);
1028}
1029
8f4d37ec
PZ
1030static void hrtick_clear(struct rq *rq)
1031{
1032 if (hrtimer_active(&rq->hrtick_timer))
1033 hrtimer_cancel(&rq->hrtick_timer);
1034}
1035
8f4d37ec
PZ
1036/*
1037 * High-resolution timer tick.
1038 * Runs from hardirq context with interrupts disabled.
1039 */
1040static enum hrtimer_restart hrtick(struct hrtimer *timer)
1041{
1042 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1043
1044 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1045
05fa785c 1046 raw_spin_lock(&rq->lock);
3e51f33f 1047 update_rq_clock(rq);
8f4d37ec 1048 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1049 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1050
1051 return HRTIMER_NORESTART;
1052}
1053
95e904c7 1054#ifdef CONFIG_SMP
31656519
PZ
1055/*
1056 * called from hardirq (IPI) context
1057 */
1058static void __hrtick_start(void *arg)
b328ca18 1059{
31656519 1060 struct rq *rq = arg;
b328ca18 1061
05fa785c 1062 raw_spin_lock(&rq->lock);
31656519
PZ
1063 hrtimer_restart(&rq->hrtick_timer);
1064 rq->hrtick_csd_pending = 0;
05fa785c 1065 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1066}
1067
31656519
PZ
1068/*
1069 * Called to set the hrtick timer state.
1070 *
1071 * called with rq->lock held and irqs disabled
1072 */
1073static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1074{
31656519
PZ
1075 struct hrtimer *timer = &rq->hrtick_timer;
1076 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1077
cc584b21 1078 hrtimer_set_expires(timer, time);
31656519
PZ
1079
1080 if (rq == this_rq()) {
1081 hrtimer_restart(timer);
1082 } else if (!rq->hrtick_csd_pending) {
6e275637 1083 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1084 rq->hrtick_csd_pending = 1;
1085 }
b328ca18
PZ
1086}
1087
1088static int
1089hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1090{
1091 int cpu = (int)(long)hcpu;
1092
1093 switch (action) {
1094 case CPU_UP_CANCELED:
1095 case CPU_UP_CANCELED_FROZEN:
1096 case CPU_DOWN_PREPARE:
1097 case CPU_DOWN_PREPARE_FROZEN:
1098 case CPU_DEAD:
1099 case CPU_DEAD_FROZEN:
31656519 1100 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1101 return NOTIFY_OK;
1102 }
1103
1104 return NOTIFY_DONE;
1105}
1106
fa748203 1107static __init void init_hrtick(void)
b328ca18
PZ
1108{
1109 hotcpu_notifier(hotplug_hrtick, 0);
1110}
31656519
PZ
1111#else
1112/*
1113 * Called to set the hrtick timer state.
1114 *
1115 * called with rq->lock held and irqs disabled
1116 */
1117static void hrtick_start(struct rq *rq, u64 delay)
1118{
7f1e2ca9 1119 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1120 HRTIMER_MODE_REL_PINNED, 0);
31656519 1121}
b328ca18 1122
006c75f1 1123static inline void init_hrtick(void)
8f4d37ec 1124{
8f4d37ec 1125}
31656519 1126#endif /* CONFIG_SMP */
8f4d37ec 1127
31656519 1128static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1129{
31656519
PZ
1130#ifdef CONFIG_SMP
1131 rq->hrtick_csd_pending = 0;
8f4d37ec 1132
31656519
PZ
1133 rq->hrtick_csd.flags = 0;
1134 rq->hrtick_csd.func = __hrtick_start;
1135 rq->hrtick_csd.info = rq;
1136#endif
8f4d37ec 1137
31656519
PZ
1138 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1139 rq->hrtick_timer.function = hrtick;
8f4d37ec 1140}
006c75f1 1141#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1142static inline void hrtick_clear(struct rq *rq)
1143{
1144}
1145
8f4d37ec
PZ
1146static inline void init_rq_hrtick(struct rq *rq)
1147{
1148}
1149
b328ca18
PZ
1150static inline void init_hrtick(void)
1151{
1152}
006c75f1 1153#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1154
c24d20db
IM
1155/*
1156 * resched_task - mark a task 'to be rescheduled now'.
1157 *
1158 * On UP this means the setting of the need_resched flag, on SMP it
1159 * might also involve a cross-CPU call to trigger the scheduler on
1160 * the target CPU.
1161 */
1162#ifdef CONFIG_SMP
1163
1164#ifndef tsk_is_polling
1165#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1166#endif
1167
31656519 1168static void resched_task(struct task_struct *p)
c24d20db
IM
1169{
1170 int cpu;
1171
05fa785c 1172 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1173
5ed0cec0 1174 if (test_tsk_need_resched(p))
c24d20db
IM
1175 return;
1176
5ed0cec0 1177 set_tsk_need_resched(p);
c24d20db
IM
1178
1179 cpu = task_cpu(p);
1180 if (cpu == smp_processor_id())
1181 return;
1182
1183 /* NEED_RESCHED must be visible before we test polling */
1184 smp_mb();
1185 if (!tsk_is_polling(p))
1186 smp_send_reschedule(cpu);
1187}
1188
1189static void resched_cpu(int cpu)
1190{
1191 struct rq *rq = cpu_rq(cpu);
1192 unsigned long flags;
1193
05fa785c 1194 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1195 return;
1196 resched_task(cpu_curr(cpu));
05fa785c 1197 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1198}
06d8308c
TG
1199
1200#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1201/*
1202 * In the semi idle case, use the nearest busy cpu for migrating timers
1203 * from an idle cpu. This is good for power-savings.
1204 *
1205 * We don't do similar optimization for completely idle system, as
1206 * selecting an idle cpu will add more delays to the timers than intended
1207 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1208 */
1209int get_nohz_timer_target(void)
1210{
1211 int cpu = smp_processor_id();
1212 int i;
1213 struct sched_domain *sd;
1214
1215 for_each_domain(cpu, sd) {
1216 for_each_cpu(i, sched_domain_span(sd))
1217 if (!idle_cpu(i))
1218 return i;
1219 }
1220 return cpu;
1221}
06d8308c
TG
1222/*
1223 * When add_timer_on() enqueues a timer into the timer wheel of an
1224 * idle CPU then this timer might expire before the next timer event
1225 * which is scheduled to wake up that CPU. In case of a completely
1226 * idle system the next event might even be infinite time into the
1227 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1228 * leaves the inner idle loop so the newly added timer is taken into
1229 * account when the CPU goes back to idle and evaluates the timer
1230 * wheel for the next timer event.
1231 */
1232void wake_up_idle_cpu(int cpu)
1233{
1234 struct rq *rq = cpu_rq(cpu);
1235
1236 if (cpu == smp_processor_id())
1237 return;
1238
1239 /*
1240 * This is safe, as this function is called with the timer
1241 * wheel base lock of (cpu) held. When the CPU is on the way
1242 * to idle and has not yet set rq->curr to idle then it will
1243 * be serialized on the timer wheel base lock and take the new
1244 * timer into account automatically.
1245 */
1246 if (rq->curr != rq->idle)
1247 return;
1248
1249 /*
1250 * We can set TIF_RESCHED on the idle task of the other CPU
1251 * lockless. The worst case is that the other CPU runs the
1252 * idle task through an additional NOOP schedule()
1253 */
5ed0cec0 1254 set_tsk_need_resched(rq->idle);
06d8308c
TG
1255
1256 /* NEED_RESCHED must be visible before we test polling */
1257 smp_mb();
1258 if (!tsk_is_polling(rq->idle))
1259 smp_send_reschedule(cpu);
1260}
39c0cbe2 1261
6d6bc0ad 1262#endif /* CONFIG_NO_HZ */
06d8308c 1263
e9e9250b
PZ
1264static u64 sched_avg_period(void)
1265{
1266 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1267}
1268
1269static void sched_avg_update(struct rq *rq)
1270{
1271 s64 period = sched_avg_period();
1272
1273 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1274 /*
1275 * Inline assembly required to prevent the compiler
1276 * optimising this loop into a divmod call.
1277 * See __iter_div_u64_rem() for another example of this.
1278 */
1279 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1280 rq->age_stamp += period;
1281 rq->rt_avg /= 2;
1282 }
1283}
1284
1285static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1286{
1287 rq->rt_avg += rt_delta;
1288 sched_avg_update(rq);
1289}
1290
6d6bc0ad 1291#else /* !CONFIG_SMP */
31656519 1292static void resched_task(struct task_struct *p)
c24d20db 1293{
05fa785c 1294 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1295 set_tsk_need_resched(p);
c24d20db 1296}
e9e9250b
PZ
1297
1298static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1299{
1300}
da2b71ed
SS
1301
1302static void sched_avg_update(struct rq *rq)
1303{
1304}
6d6bc0ad 1305#endif /* CONFIG_SMP */
c24d20db 1306
45bf76df
IM
1307#if BITS_PER_LONG == 32
1308# define WMULT_CONST (~0UL)
1309#else
1310# define WMULT_CONST (1UL << 32)
1311#endif
1312
1313#define WMULT_SHIFT 32
1314
194081eb
IM
1315/*
1316 * Shift right and round:
1317 */
cf2ab469 1318#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1319
a7be37ac
PZ
1320/*
1321 * delta *= weight / lw
1322 */
cb1c4fc9 1323static unsigned long
45bf76df
IM
1324calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1325 struct load_weight *lw)
1326{
1327 u64 tmp;
1328
7a232e03
LJ
1329 if (!lw->inv_weight) {
1330 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1331 lw->inv_weight = 1;
1332 else
1333 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1334 / (lw->weight+1);
1335 }
45bf76df
IM
1336
1337 tmp = (u64)delta_exec * weight;
1338 /*
1339 * Check whether we'd overflow the 64-bit multiplication:
1340 */
194081eb 1341 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1342 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1343 WMULT_SHIFT/2);
1344 else
cf2ab469 1345 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1346
ecf691da 1347 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1348}
1349
1091985b 1350static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1351{
1352 lw->weight += inc;
e89996ae 1353 lw->inv_weight = 0;
45bf76df
IM
1354}
1355
1091985b 1356static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1357{
1358 lw->weight -= dec;
e89996ae 1359 lw->inv_weight = 0;
45bf76df
IM
1360}
1361
2dd73a4f
PW
1362/*
1363 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1364 * of tasks with abnormal "nice" values across CPUs the contribution that
1365 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1366 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1367 * scaled version of the new time slice allocation that they receive on time
1368 * slice expiry etc.
1369 */
1370
cce7ade8
PZ
1371#define WEIGHT_IDLEPRIO 3
1372#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1373
1374/*
1375 * Nice levels are multiplicative, with a gentle 10% change for every
1376 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1377 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1378 * that remained on nice 0.
1379 *
1380 * The "10% effect" is relative and cumulative: from _any_ nice level,
1381 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1382 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1383 * If a task goes up by ~10% and another task goes down by ~10% then
1384 * the relative distance between them is ~25%.)
dd41f596
IM
1385 */
1386static const int prio_to_weight[40] = {
254753dc
IM
1387 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1388 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1389 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1390 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1391 /* 0 */ 1024, 820, 655, 526, 423,
1392 /* 5 */ 335, 272, 215, 172, 137,
1393 /* 10 */ 110, 87, 70, 56, 45,
1394 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1395};
1396
5714d2de
IM
1397/*
1398 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1399 *
1400 * In cases where the weight does not change often, we can use the
1401 * precalculated inverse to speed up arithmetics by turning divisions
1402 * into multiplications:
1403 */
dd41f596 1404static const u32 prio_to_wmult[40] = {
254753dc
IM
1405 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1406 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1407 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1408 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1409 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1410 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1411 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1412 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1413};
2dd73a4f 1414
ef12fefa
BR
1415/* Time spent by the tasks of the cpu accounting group executing in ... */
1416enum cpuacct_stat_index {
1417 CPUACCT_STAT_USER, /* ... user mode */
1418 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1419
1420 CPUACCT_STAT_NSTATS,
1421};
1422
d842de87
SV
1423#ifdef CONFIG_CGROUP_CPUACCT
1424static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1425static void cpuacct_update_stats(struct task_struct *tsk,
1426 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1427#else
1428static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1429static inline void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1431#endif
1432
18d95a28
PZ
1433static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1434{
1435 update_load_add(&rq->load, load);
1436}
1437
1438static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1439{
1440 update_load_sub(&rq->load, load);
1441}
1442
7940ca36 1443#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1444typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1445
1446/*
1447 * Iterate the full tree, calling @down when first entering a node and @up when
1448 * leaving it for the final time.
1449 */
eb755805 1450static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1451{
1452 struct task_group *parent, *child;
eb755805 1453 int ret;
c09595f6
PZ
1454
1455 rcu_read_lock();
1456 parent = &root_task_group;
1457down:
eb755805
PZ
1458 ret = (*down)(parent, data);
1459 if (ret)
1460 goto out_unlock;
c09595f6
PZ
1461 list_for_each_entry_rcu(child, &parent->children, siblings) {
1462 parent = child;
1463 goto down;
1464
1465up:
1466 continue;
1467 }
eb755805
PZ
1468 ret = (*up)(parent, data);
1469 if (ret)
1470 goto out_unlock;
c09595f6
PZ
1471
1472 child = parent;
1473 parent = parent->parent;
1474 if (parent)
1475 goto up;
eb755805 1476out_unlock:
c09595f6 1477 rcu_read_unlock();
eb755805
PZ
1478
1479 return ret;
c09595f6
PZ
1480}
1481
eb755805
PZ
1482static int tg_nop(struct task_group *tg, void *data)
1483{
1484 return 0;
c09595f6 1485}
eb755805
PZ
1486#endif
1487
1488#ifdef CONFIG_SMP
f5f08f39
PZ
1489/* Used instead of source_load when we know the type == 0 */
1490static unsigned long weighted_cpuload(const int cpu)
1491{
1492 return cpu_rq(cpu)->load.weight;
1493}
1494
1495/*
1496 * Return a low guess at the load of a migration-source cpu weighted
1497 * according to the scheduling class and "nice" value.
1498 *
1499 * We want to under-estimate the load of migration sources, to
1500 * balance conservatively.
1501 */
1502static unsigned long source_load(int cpu, int type)
1503{
1504 struct rq *rq = cpu_rq(cpu);
1505 unsigned long total = weighted_cpuload(cpu);
1506
1507 if (type == 0 || !sched_feat(LB_BIAS))
1508 return total;
1509
1510 return min(rq->cpu_load[type-1], total);
1511}
1512
1513/*
1514 * Return a high guess at the load of a migration-target cpu weighted
1515 * according to the scheduling class and "nice" value.
1516 */
1517static unsigned long target_load(int cpu, int type)
1518{
1519 struct rq *rq = cpu_rq(cpu);
1520 unsigned long total = weighted_cpuload(cpu);
1521
1522 if (type == 0 || !sched_feat(LB_BIAS))
1523 return total;
1524
1525 return max(rq->cpu_load[type-1], total);
1526}
1527
ae154be1
PZ
1528static unsigned long power_of(int cpu)
1529{
e51fd5e2 1530 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1531}
1532
eb755805
PZ
1533static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1534
1535static unsigned long cpu_avg_load_per_task(int cpu)
1536{
1537 struct rq *rq = cpu_rq(cpu);
af6d596f 1538 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1539
4cd42620
SR
1540 if (nr_running)
1541 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1542 else
1543 rq->avg_load_per_task = 0;
eb755805
PZ
1544
1545 return rq->avg_load_per_task;
1546}
1547
1548#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1549
43cf38eb 1550static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1551
c09595f6
PZ
1552static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1553
1554/*
1555 * Calculate and set the cpu's group shares.
1556 */
34d76c41
PZ
1557static void update_group_shares_cpu(struct task_group *tg, int cpu,
1558 unsigned long sd_shares,
1559 unsigned long sd_rq_weight,
4a6cc4bd 1560 unsigned long *usd_rq_weight)
18d95a28 1561{
34d76c41 1562 unsigned long shares, rq_weight;
a5004278 1563 int boost = 0;
c09595f6 1564
4a6cc4bd 1565 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1566 if (!rq_weight) {
1567 boost = 1;
1568 rq_weight = NICE_0_LOAD;
1569 }
c8cba857 1570
c09595f6 1571 /*
a8af7246
PZ
1572 * \Sum_j shares_j * rq_weight_i
1573 * shares_i = -----------------------------
1574 * \Sum_j rq_weight_j
c09595f6 1575 */
ec4e0e2f 1576 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1577 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1578
ffda12a1
PZ
1579 if (abs(shares - tg->se[cpu]->load.weight) >
1580 sysctl_sched_shares_thresh) {
1581 struct rq *rq = cpu_rq(cpu);
1582 unsigned long flags;
c09595f6 1583
05fa785c 1584 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1585 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1586 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1587 __set_se_shares(tg->se[cpu], shares);
05fa785c 1588 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1589 }
18d95a28 1590}
c09595f6
PZ
1591
1592/*
c8cba857
PZ
1593 * Re-compute the task group their per cpu shares over the given domain.
1594 * This needs to be done in a bottom-up fashion because the rq weight of a
1595 * parent group depends on the shares of its child groups.
c09595f6 1596 */
eb755805 1597static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1598{
cd8ad40d 1599 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1600 unsigned long *usd_rq_weight;
eb755805 1601 struct sched_domain *sd = data;
34d76c41 1602 unsigned long flags;
c8cba857 1603 int i;
c09595f6 1604
34d76c41
PZ
1605 if (!tg->se[0])
1606 return 0;
1607
1608 local_irq_save(flags);
4a6cc4bd 1609 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1610
758b2cdc 1611 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1612 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1613 usd_rq_weight[i] = weight;
34d76c41 1614
cd8ad40d 1615 rq_weight += weight;
ec4e0e2f
KC
1616 /*
1617 * If there are currently no tasks on the cpu pretend there
1618 * is one of average load so that when a new task gets to
1619 * run here it will not get delayed by group starvation.
1620 */
ec4e0e2f
KC
1621 if (!weight)
1622 weight = NICE_0_LOAD;
1623
cd8ad40d 1624 sum_weight += weight;
c8cba857 1625 shares += tg->cfs_rq[i]->shares;
c09595f6 1626 }
c09595f6 1627
cd8ad40d
PZ
1628 if (!rq_weight)
1629 rq_weight = sum_weight;
1630
c8cba857
PZ
1631 if ((!shares && rq_weight) || shares > tg->shares)
1632 shares = tg->shares;
1633
1634 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1635 shares = tg->shares;
c09595f6 1636
758b2cdc 1637 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1638 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1639
1640 local_irq_restore(flags);
eb755805
PZ
1641
1642 return 0;
c09595f6
PZ
1643}
1644
1645/*
c8cba857
PZ
1646 * Compute the cpu's hierarchical load factor for each task group.
1647 * This needs to be done in a top-down fashion because the load of a child
1648 * group is a fraction of its parents load.
c09595f6 1649 */
eb755805 1650static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1651{
c8cba857 1652 unsigned long load;
eb755805 1653 long cpu = (long)data;
c09595f6 1654
c8cba857
PZ
1655 if (!tg->parent) {
1656 load = cpu_rq(cpu)->load.weight;
1657 } else {
1658 load = tg->parent->cfs_rq[cpu]->h_load;
1659 load *= tg->cfs_rq[cpu]->shares;
1660 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1661 }
c09595f6 1662
c8cba857 1663 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1664
eb755805 1665 return 0;
c09595f6
PZ
1666}
1667
c8cba857 1668static void update_shares(struct sched_domain *sd)
4d8d595d 1669{
e7097159
PZ
1670 s64 elapsed;
1671 u64 now;
1672
1673 if (root_task_group_empty())
1674 return;
1675
c676329a 1676 now = local_clock();
e7097159 1677 elapsed = now - sd->last_update;
2398f2c6
PZ
1678
1679 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1680 sd->last_update = now;
eb755805 1681 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1682 }
4d8d595d
PZ
1683}
1684
eb755805 1685static void update_h_load(long cpu)
c09595f6 1686{
eb755805 1687 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1688}
1689
c09595f6
PZ
1690#else
1691
c8cba857 1692static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1693{
1694}
1695
18d95a28
PZ
1696#endif
1697
8f45e2b5
GH
1698#ifdef CONFIG_PREEMPT
1699
b78bb868
PZ
1700static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1701
70574a99 1702/*
8f45e2b5
GH
1703 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1704 * way at the expense of forcing extra atomic operations in all
1705 * invocations. This assures that the double_lock is acquired using the
1706 * same underlying policy as the spinlock_t on this architecture, which
1707 * reduces latency compared to the unfair variant below. However, it
1708 * also adds more overhead and therefore may reduce throughput.
70574a99 1709 */
8f45e2b5
GH
1710static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1711 __releases(this_rq->lock)
1712 __acquires(busiest->lock)
1713 __acquires(this_rq->lock)
1714{
05fa785c 1715 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1716 double_rq_lock(this_rq, busiest);
1717
1718 return 1;
1719}
1720
1721#else
1722/*
1723 * Unfair double_lock_balance: Optimizes throughput at the expense of
1724 * latency by eliminating extra atomic operations when the locks are
1725 * already in proper order on entry. This favors lower cpu-ids and will
1726 * grant the double lock to lower cpus over higher ids under contention,
1727 * regardless of entry order into the function.
1728 */
1729static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1730 __releases(this_rq->lock)
1731 __acquires(busiest->lock)
1732 __acquires(this_rq->lock)
1733{
1734 int ret = 0;
1735
05fa785c 1736 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1737 if (busiest < this_rq) {
05fa785c
TG
1738 raw_spin_unlock(&this_rq->lock);
1739 raw_spin_lock(&busiest->lock);
1740 raw_spin_lock_nested(&this_rq->lock,
1741 SINGLE_DEPTH_NESTING);
70574a99
AD
1742 ret = 1;
1743 } else
05fa785c
TG
1744 raw_spin_lock_nested(&busiest->lock,
1745 SINGLE_DEPTH_NESTING);
70574a99
AD
1746 }
1747 return ret;
1748}
1749
8f45e2b5
GH
1750#endif /* CONFIG_PREEMPT */
1751
1752/*
1753 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1754 */
1755static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1756{
1757 if (unlikely(!irqs_disabled())) {
1758 /* printk() doesn't work good under rq->lock */
05fa785c 1759 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1760 BUG_ON(1);
1761 }
1762
1763 return _double_lock_balance(this_rq, busiest);
1764}
1765
70574a99
AD
1766static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1767 __releases(busiest->lock)
1768{
05fa785c 1769 raw_spin_unlock(&busiest->lock);
70574a99
AD
1770 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1771}
1e3c88bd
PZ
1772
1773/*
1774 * double_rq_lock - safely lock two runqueues
1775 *
1776 * Note this does not disable interrupts like task_rq_lock,
1777 * you need to do so manually before calling.
1778 */
1779static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1780 __acquires(rq1->lock)
1781 __acquires(rq2->lock)
1782{
1783 BUG_ON(!irqs_disabled());
1784 if (rq1 == rq2) {
1785 raw_spin_lock(&rq1->lock);
1786 __acquire(rq2->lock); /* Fake it out ;) */
1787 } else {
1788 if (rq1 < rq2) {
1789 raw_spin_lock(&rq1->lock);
1790 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1791 } else {
1792 raw_spin_lock(&rq2->lock);
1793 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1794 }
1795 }
1e3c88bd
PZ
1796}
1797
1798/*
1799 * double_rq_unlock - safely unlock two runqueues
1800 *
1801 * Note this does not restore interrupts like task_rq_unlock,
1802 * you need to do so manually after calling.
1803 */
1804static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1805 __releases(rq1->lock)
1806 __releases(rq2->lock)
1807{
1808 raw_spin_unlock(&rq1->lock);
1809 if (rq1 != rq2)
1810 raw_spin_unlock(&rq2->lock);
1811 else
1812 __release(rq2->lock);
1813}
1814
18d95a28
PZ
1815#endif
1816
30432094 1817#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1818static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1819{
30432094 1820#ifdef CONFIG_SMP
34e83e85
IM
1821 cfs_rq->shares = shares;
1822#endif
1823}
30432094 1824#endif
e7693a36 1825
74f5187a 1826static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1827static void update_sysctl(void);
acb4a848 1828static int get_update_sysctl_factor(void);
fdf3e95d 1829static void update_cpu_load(struct rq *this_rq);
dce48a84 1830
cd29fe6f
PZ
1831static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1832{
1833 set_task_rq(p, cpu);
1834#ifdef CONFIG_SMP
1835 /*
1836 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1837 * successfuly executed on another CPU. We must ensure that updates of
1838 * per-task data have been completed by this moment.
1839 */
1840 smp_wmb();
1841 task_thread_info(p)->cpu = cpu;
1842#endif
1843}
dce48a84 1844
1e3c88bd 1845static const struct sched_class rt_sched_class;
dd41f596 1846
34f971f6 1847#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1848#define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
dd41f596 1850
1e3c88bd
PZ
1851#include "sched_stats.h"
1852
c09595f6 1853static void inc_nr_running(struct rq *rq)
9c217245
IM
1854{
1855 rq->nr_running++;
9c217245
IM
1856}
1857
c09595f6 1858static void dec_nr_running(struct rq *rq)
9c217245
IM
1859{
1860 rq->nr_running--;
9c217245
IM
1861}
1862
45bf76df
IM
1863static void set_load_weight(struct task_struct *p)
1864{
dd41f596
IM
1865 /*
1866 * SCHED_IDLE tasks get minimal weight:
1867 */
1868 if (p->policy == SCHED_IDLE) {
1869 p->se.load.weight = WEIGHT_IDLEPRIO;
1870 p->se.load.inv_weight = WMULT_IDLEPRIO;
1871 return;
1872 }
71f8bd46 1873
dd41f596
IM
1874 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1875 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1876}
1877
371fd7e7 1878static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1879{
a64692a3 1880 update_rq_clock(rq);
dd41f596 1881 sched_info_queued(p);
371fd7e7 1882 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1883 p->se.on_rq = 1;
71f8bd46
IM
1884}
1885
371fd7e7 1886static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1887{
a64692a3 1888 update_rq_clock(rq);
46ac22ba 1889 sched_info_dequeued(p);
371fd7e7 1890 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1891 p->se.on_rq = 0;
71f8bd46
IM
1892}
1893
1e3c88bd
PZ
1894/*
1895 * activate_task - move a task to the runqueue.
1896 */
371fd7e7 1897static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1898{
1899 if (task_contributes_to_load(p))
1900 rq->nr_uninterruptible--;
1901
371fd7e7 1902 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1903 inc_nr_running(rq);
1904}
1905
1906/*
1907 * deactivate_task - remove a task from the runqueue.
1908 */
371fd7e7 1909static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1910{
1911 if (task_contributes_to_load(p))
1912 rq->nr_uninterruptible++;
1913
371fd7e7 1914 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1915 dec_nr_running(rq);
1916}
1917
b52bfee4
VP
1918#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1919
305e6835
VP
1920/*
1921 * There are no locks covering percpu hardirq/softirq time.
1922 * They are only modified in account_system_vtime, on corresponding CPU
1923 * with interrupts disabled. So, writes are safe.
1924 * They are read and saved off onto struct rq in update_rq_clock().
1925 * This may result in other CPU reading this CPU's irq time and can
1926 * race with irq/account_system_vtime on this CPU. We would either get old
1927 * or new value (or semi updated value on 32 bit) with a side effect of
1928 * accounting a slice of irq time to wrong task when irq is in progress
1929 * while we read rq->clock. That is a worthy compromise in place of having
1930 * locks on each irq in account_system_time.
1931 */
b52bfee4
VP
1932static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1933static DEFINE_PER_CPU(u64, cpu_softirq_time);
1934
1935static DEFINE_PER_CPU(u64, irq_start_time);
1936static int sched_clock_irqtime;
1937
1938void enable_sched_clock_irqtime(void)
1939{
1940 sched_clock_irqtime = 1;
1941}
1942
1943void disable_sched_clock_irqtime(void)
1944{
1945 sched_clock_irqtime = 0;
1946}
1947
305e6835
VP
1948static u64 irq_time_cpu(int cpu)
1949{
1950 if (!sched_clock_irqtime)
1951 return 0;
1952
1953 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1954}
1955
b52bfee4
VP
1956void account_system_vtime(struct task_struct *curr)
1957{
1958 unsigned long flags;
1959 int cpu;
1960 u64 now, delta;
1961
1962 if (!sched_clock_irqtime)
1963 return;
1964
1965 local_irq_save(flags);
1966
b52bfee4 1967 cpu = smp_processor_id();
d267f87f 1968 now = sched_clock_cpu(cpu);
b52bfee4
VP
1969 delta = now - per_cpu(irq_start_time, cpu);
1970 per_cpu(irq_start_time, cpu) = now;
1971 /*
1972 * We do not account for softirq time from ksoftirqd here.
1973 * We want to continue accounting softirq time to ksoftirqd thread
1974 * in that case, so as not to confuse scheduler with a special task
1975 * that do not consume any time, but still wants to run.
1976 */
1977 if (hardirq_count())
1978 per_cpu(cpu_hardirq_time, cpu) += delta;
1979 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1980 per_cpu(cpu_softirq_time, cpu) += delta;
1981
1982 local_irq_restore(flags);
1983}
b7dadc38 1984EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1985
aa483808
VP
1986static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
1987{
1988 if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
1989 u64 delta_irq = curr_irq_time - rq->prev_irq_time;
1990 rq->prev_irq_time = curr_irq_time;
1991 sched_rt_avg_update(rq, delta_irq);
1992 }
1993}
1994
305e6835
VP
1995#else
1996
1997static u64 irq_time_cpu(int cpu)
1998{
1999 return 0;
2000}
2001
aa483808
VP
2002static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
2003
b52bfee4
VP
2004#endif
2005
1e3c88bd
PZ
2006#include "sched_idletask.c"
2007#include "sched_fair.c"
2008#include "sched_rt.c"
34f971f6 2009#include "sched_stoptask.c"
1e3c88bd
PZ
2010#ifdef CONFIG_SCHED_DEBUG
2011# include "sched_debug.c"
2012#endif
2013
34f971f6
PZ
2014void sched_set_stop_task(int cpu, struct task_struct *stop)
2015{
2016 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2017 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2018
2019 if (stop) {
2020 /*
2021 * Make it appear like a SCHED_FIFO task, its something
2022 * userspace knows about and won't get confused about.
2023 *
2024 * Also, it will make PI more or less work without too
2025 * much confusion -- but then, stop work should not
2026 * rely on PI working anyway.
2027 */
2028 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2029
2030 stop->sched_class = &stop_sched_class;
2031 }
2032
2033 cpu_rq(cpu)->stop = stop;
2034
2035 if (old_stop) {
2036 /*
2037 * Reset it back to a normal scheduling class so that
2038 * it can die in pieces.
2039 */
2040 old_stop->sched_class = &rt_sched_class;
2041 }
2042}
2043
14531189 2044/*
dd41f596 2045 * __normal_prio - return the priority that is based on the static prio
14531189 2046 */
14531189
IM
2047static inline int __normal_prio(struct task_struct *p)
2048{
dd41f596 2049 return p->static_prio;
14531189
IM
2050}
2051
b29739f9
IM
2052/*
2053 * Calculate the expected normal priority: i.e. priority
2054 * without taking RT-inheritance into account. Might be
2055 * boosted by interactivity modifiers. Changes upon fork,
2056 * setprio syscalls, and whenever the interactivity
2057 * estimator recalculates.
2058 */
36c8b586 2059static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2060{
2061 int prio;
2062
e05606d3 2063 if (task_has_rt_policy(p))
b29739f9
IM
2064 prio = MAX_RT_PRIO-1 - p->rt_priority;
2065 else
2066 prio = __normal_prio(p);
2067 return prio;
2068}
2069
2070/*
2071 * Calculate the current priority, i.e. the priority
2072 * taken into account by the scheduler. This value might
2073 * be boosted by RT tasks, or might be boosted by
2074 * interactivity modifiers. Will be RT if the task got
2075 * RT-boosted. If not then it returns p->normal_prio.
2076 */
36c8b586 2077static int effective_prio(struct task_struct *p)
b29739f9
IM
2078{
2079 p->normal_prio = normal_prio(p);
2080 /*
2081 * If we are RT tasks or we were boosted to RT priority,
2082 * keep the priority unchanged. Otherwise, update priority
2083 * to the normal priority:
2084 */
2085 if (!rt_prio(p->prio))
2086 return p->normal_prio;
2087 return p->prio;
2088}
2089
1da177e4
LT
2090/**
2091 * task_curr - is this task currently executing on a CPU?
2092 * @p: the task in question.
2093 */
36c8b586 2094inline int task_curr(const struct task_struct *p)
1da177e4
LT
2095{
2096 return cpu_curr(task_cpu(p)) == p;
2097}
2098
cb469845
SR
2099static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2100 const struct sched_class *prev_class,
2101 int oldprio, int running)
2102{
2103 if (prev_class != p->sched_class) {
2104 if (prev_class->switched_from)
2105 prev_class->switched_from(rq, p, running);
2106 p->sched_class->switched_to(rq, p, running);
2107 } else
2108 p->sched_class->prio_changed(rq, p, oldprio, running);
2109}
2110
1e5a7405
PZ
2111static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2112{
2113 const struct sched_class *class;
2114
2115 if (p->sched_class == rq->curr->sched_class) {
2116 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2117 } else {
2118 for_each_class(class) {
2119 if (class == rq->curr->sched_class)
2120 break;
2121 if (class == p->sched_class) {
2122 resched_task(rq->curr);
2123 break;
2124 }
2125 }
2126 }
2127
2128 /*
2129 * A queue event has occurred, and we're going to schedule. In
2130 * this case, we can save a useless back to back clock update.
2131 */
2132 if (test_tsk_need_resched(rq->curr))
2133 rq->skip_clock_update = 1;
2134}
2135
1da177e4 2136#ifdef CONFIG_SMP
cc367732
IM
2137/*
2138 * Is this task likely cache-hot:
2139 */
e7693a36 2140static int
cc367732
IM
2141task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2142{
2143 s64 delta;
2144
e6c8fba7
PZ
2145 if (p->sched_class != &fair_sched_class)
2146 return 0;
2147
ef8002f6
NR
2148 if (unlikely(p->policy == SCHED_IDLE))
2149 return 0;
2150
f540a608
IM
2151 /*
2152 * Buddy candidates are cache hot:
2153 */
f685ceac 2154 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2155 (&p->se == cfs_rq_of(&p->se)->next ||
2156 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2157 return 1;
2158
6bc1665b
IM
2159 if (sysctl_sched_migration_cost == -1)
2160 return 1;
2161 if (sysctl_sched_migration_cost == 0)
2162 return 0;
2163
cc367732
IM
2164 delta = now - p->se.exec_start;
2165
2166 return delta < (s64)sysctl_sched_migration_cost;
2167}
2168
dd41f596 2169void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2170{
e2912009
PZ
2171#ifdef CONFIG_SCHED_DEBUG
2172 /*
2173 * We should never call set_task_cpu() on a blocked task,
2174 * ttwu() will sort out the placement.
2175 */
077614ee
PZ
2176 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2177 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2178#endif
2179
de1d7286 2180 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2181
0c69774e
PZ
2182 if (task_cpu(p) != new_cpu) {
2183 p->se.nr_migrations++;
2184 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2185 }
dd41f596
IM
2186
2187 __set_task_cpu(p, new_cpu);
c65cc870
IM
2188}
2189
969c7921 2190struct migration_arg {
36c8b586 2191 struct task_struct *task;
1da177e4 2192 int dest_cpu;
70b97a7f 2193};
1da177e4 2194
969c7921
TH
2195static int migration_cpu_stop(void *data);
2196
1da177e4
LT
2197/*
2198 * The task's runqueue lock must be held.
2199 * Returns true if you have to wait for migration thread.
2200 */
969c7921 2201static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2202{
70b97a7f 2203 struct rq *rq = task_rq(p);
1da177e4
LT
2204
2205 /*
2206 * If the task is not on a runqueue (and not running), then
e2912009 2207 * the next wake-up will properly place the task.
1da177e4 2208 */
969c7921 2209 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2210}
2211
2212/*
2213 * wait_task_inactive - wait for a thread to unschedule.
2214 *
85ba2d86
RM
2215 * If @match_state is nonzero, it's the @p->state value just checked and
2216 * not expected to change. If it changes, i.e. @p might have woken up,
2217 * then return zero. When we succeed in waiting for @p to be off its CPU,
2218 * we return a positive number (its total switch count). If a second call
2219 * a short while later returns the same number, the caller can be sure that
2220 * @p has remained unscheduled the whole time.
2221 *
1da177e4
LT
2222 * The caller must ensure that the task *will* unschedule sometime soon,
2223 * else this function might spin for a *long* time. This function can't
2224 * be called with interrupts off, or it may introduce deadlock with
2225 * smp_call_function() if an IPI is sent by the same process we are
2226 * waiting to become inactive.
2227 */
85ba2d86 2228unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2229{
2230 unsigned long flags;
dd41f596 2231 int running, on_rq;
85ba2d86 2232 unsigned long ncsw;
70b97a7f 2233 struct rq *rq;
1da177e4 2234
3a5c359a
AK
2235 for (;;) {
2236 /*
2237 * We do the initial early heuristics without holding
2238 * any task-queue locks at all. We'll only try to get
2239 * the runqueue lock when things look like they will
2240 * work out!
2241 */
2242 rq = task_rq(p);
fa490cfd 2243
3a5c359a
AK
2244 /*
2245 * If the task is actively running on another CPU
2246 * still, just relax and busy-wait without holding
2247 * any locks.
2248 *
2249 * NOTE! Since we don't hold any locks, it's not
2250 * even sure that "rq" stays as the right runqueue!
2251 * But we don't care, since "task_running()" will
2252 * return false if the runqueue has changed and p
2253 * is actually now running somewhere else!
2254 */
85ba2d86
RM
2255 while (task_running(rq, p)) {
2256 if (match_state && unlikely(p->state != match_state))
2257 return 0;
3a5c359a 2258 cpu_relax();
85ba2d86 2259 }
fa490cfd 2260
3a5c359a
AK
2261 /*
2262 * Ok, time to look more closely! We need the rq
2263 * lock now, to be *sure*. If we're wrong, we'll
2264 * just go back and repeat.
2265 */
2266 rq = task_rq_lock(p, &flags);
27a9da65 2267 trace_sched_wait_task(p);
3a5c359a
AK
2268 running = task_running(rq, p);
2269 on_rq = p->se.on_rq;
85ba2d86 2270 ncsw = 0;
f31e11d8 2271 if (!match_state || p->state == match_state)
93dcf55f 2272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2273 task_rq_unlock(rq, &flags);
fa490cfd 2274
85ba2d86
RM
2275 /*
2276 * If it changed from the expected state, bail out now.
2277 */
2278 if (unlikely(!ncsw))
2279 break;
2280
3a5c359a
AK
2281 /*
2282 * Was it really running after all now that we
2283 * checked with the proper locks actually held?
2284 *
2285 * Oops. Go back and try again..
2286 */
2287 if (unlikely(running)) {
2288 cpu_relax();
2289 continue;
2290 }
fa490cfd 2291
3a5c359a
AK
2292 /*
2293 * It's not enough that it's not actively running,
2294 * it must be off the runqueue _entirely_, and not
2295 * preempted!
2296 *
80dd99b3 2297 * So if it was still runnable (but just not actively
3a5c359a
AK
2298 * running right now), it's preempted, and we should
2299 * yield - it could be a while.
2300 */
2301 if (unlikely(on_rq)) {
2302 schedule_timeout_uninterruptible(1);
2303 continue;
2304 }
fa490cfd 2305
3a5c359a
AK
2306 /*
2307 * Ahh, all good. It wasn't running, and it wasn't
2308 * runnable, which means that it will never become
2309 * running in the future either. We're all done!
2310 */
2311 break;
2312 }
85ba2d86
RM
2313
2314 return ncsw;
1da177e4
LT
2315}
2316
2317/***
2318 * kick_process - kick a running thread to enter/exit the kernel
2319 * @p: the to-be-kicked thread
2320 *
2321 * Cause a process which is running on another CPU to enter
2322 * kernel-mode, without any delay. (to get signals handled.)
2323 *
2324 * NOTE: this function doesnt have to take the runqueue lock,
2325 * because all it wants to ensure is that the remote task enters
2326 * the kernel. If the IPI races and the task has been migrated
2327 * to another CPU then no harm is done and the purpose has been
2328 * achieved as well.
2329 */
36c8b586 2330void kick_process(struct task_struct *p)
1da177e4
LT
2331{
2332 int cpu;
2333
2334 preempt_disable();
2335 cpu = task_cpu(p);
2336 if ((cpu != smp_processor_id()) && task_curr(p))
2337 smp_send_reschedule(cpu);
2338 preempt_enable();
2339}
b43e3521 2340EXPORT_SYMBOL_GPL(kick_process);
476d139c 2341#endif /* CONFIG_SMP */
1da177e4 2342
0793a61d
TG
2343/**
2344 * task_oncpu_function_call - call a function on the cpu on which a task runs
2345 * @p: the task to evaluate
2346 * @func: the function to be called
2347 * @info: the function call argument
2348 *
2349 * Calls the function @func when the task is currently running. This might
2350 * be on the current CPU, which just calls the function directly
2351 */
2352void task_oncpu_function_call(struct task_struct *p,
2353 void (*func) (void *info), void *info)
2354{
2355 int cpu;
2356
2357 preempt_disable();
2358 cpu = task_cpu(p);
2359 if (task_curr(p))
2360 smp_call_function_single(cpu, func, info, 1);
2361 preempt_enable();
2362}
2363
970b13ba 2364#ifdef CONFIG_SMP
30da688e
ON
2365/*
2366 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2367 */
5da9a0fb
PZ
2368static int select_fallback_rq(int cpu, struct task_struct *p)
2369{
2370 int dest_cpu;
2371 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2372
2373 /* Look for allowed, online CPU in same node. */
2374 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2375 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2376 return dest_cpu;
2377
2378 /* Any allowed, online CPU? */
2379 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2380 if (dest_cpu < nr_cpu_ids)
2381 return dest_cpu;
2382
2383 /* No more Mr. Nice Guy. */
897f0b3c 2384 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2385 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2386 /*
2387 * Don't tell them about moving exiting tasks or
2388 * kernel threads (both mm NULL), since they never
2389 * leave kernel.
2390 */
2391 if (p->mm && printk_ratelimit()) {
2392 printk(KERN_INFO "process %d (%s) no "
2393 "longer affine to cpu%d\n",
2394 task_pid_nr(p), p->comm, cpu);
2395 }
2396 }
2397
2398 return dest_cpu;
2399}
2400
e2912009 2401/*
30da688e 2402 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2403 */
970b13ba 2404static inline
0017d735 2405int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2406{
0017d735 2407 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2408
2409 /*
2410 * In order not to call set_task_cpu() on a blocking task we need
2411 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2412 * cpu.
2413 *
2414 * Since this is common to all placement strategies, this lives here.
2415 *
2416 * [ this allows ->select_task() to simply return task_cpu(p) and
2417 * not worry about this generic constraint ]
2418 */
2419 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2420 !cpu_online(cpu)))
5da9a0fb 2421 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2422
2423 return cpu;
970b13ba 2424}
09a40af5
MG
2425
2426static void update_avg(u64 *avg, u64 sample)
2427{
2428 s64 diff = sample - *avg;
2429 *avg += diff >> 3;
2430}
970b13ba
PZ
2431#endif
2432
9ed3811a
TH
2433static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2434 bool is_sync, bool is_migrate, bool is_local,
2435 unsigned long en_flags)
2436{
2437 schedstat_inc(p, se.statistics.nr_wakeups);
2438 if (is_sync)
2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2440 if (is_migrate)
2441 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2442 if (is_local)
2443 schedstat_inc(p, se.statistics.nr_wakeups_local);
2444 else
2445 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2446
2447 activate_task(rq, p, en_flags);
2448}
2449
2450static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2451 int wake_flags, bool success)
2452{
2453 trace_sched_wakeup(p, success);
2454 check_preempt_curr(rq, p, wake_flags);
2455
2456 p->state = TASK_RUNNING;
2457#ifdef CONFIG_SMP
2458 if (p->sched_class->task_woken)
2459 p->sched_class->task_woken(rq, p);
2460
2461 if (unlikely(rq->idle_stamp)) {
2462 u64 delta = rq->clock - rq->idle_stamp;
2463 u64 max = 2*sysctl_sched_migration_cost;
2464
2465 if (delta > max)
2466 rq->avg_idle = max;
2467 else
2468 update_avg(&rq->avg_idle, delta);
2469 rq->idle_stamp = 0;
2470 }
2471#endif
21aa9af0
TH
2472 /* if a worker is waking up, notify workqueue */
2473 if ((p->flags & PF_WQ_WORKER) && success)
2474 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2475}
2476
2477/**
1da177e4 2478 * try_to_wake_up - wake up a thread
9ed3811a 2479 * @p: the thread to be awakened
1da177e4 2480 * @state: the mask of task states that can be woken
9ed3811a 2481 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2482 *
2483 * Put it on the run-queue if it's not already there. The "current"
2484 * thread is always on the run-queue (except when the actual
2485 * re-schedule is in progress), and as such you're allowed to do
2486 * the simpler "current->state = TASK_RUNNING" to mark yourself
2487 * runnable without the overhead of this.
2488 *
9ed3811a
TH
2489 * Returns %true if @p was woken up, %false if it was already running
2490 * or @state didn't match @p's state.
1da177e4 2491 */
7d478721
PZ
2492static int try_to_wake_up(struct task_struct *p, unsigned int state,
2493 int wake_flags)
1da177e4 2494{
cc367732 2495 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2496 unsigned long flags;
371fd7e7 2497 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2498 struct rq *rq;
1da177e4 2499
e9c84311 2500 this_cpu = get_cpu();
2398f2c6 2501
04e2f174 2502 smp_wmb();
ab3b3aa5 2503 rq = task_rq_lock(p, &flags);
e9c84311 2504 if (!(p->state & state))
1da177e4
LT
2505 goto out;
2506
dd41f596 2507 if (p->se.on_rq)
1da177e4
LT
2508 goto out_running;
2509
2510 cpu = task_cpu(p);
cc367732 2511 orig_cpu = cpu;
1da177e4
LT
2512
2513#ifdef CONFIG_SMP
2514 if (unlikely(task_running(rq, p)))
2515 goto out_activate;
2516
e9c84311
PZ
2517 /*
2518 * In order to handle concurrent wakeups and release the rq->lock
2519 * we put the task in TASK_WAKING state.
eb24073b
IM
2520 *
2521 * First fix up the nr_uninterruptible count:
e9c84311 2522 */
cc87f76a
PZ
2523 if (task_contributes_to_load(p)) {
2524 if (likely(cpu_online(orig_cpu)))
2525 rq->nr_uninterruptible--;
2526 else
2527 this_rq()->nr_uninterruptible--;
2528 }
e9c84311 2529 p->state = TASK_WAKING;
efbbd05a 2530
371fd7e7 2531 if (p->sched_class->task_waking) {
efbbd05a 2532 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2533 en_flags |= ENQUEUE_WAKING;
2534 }
efbbd05a 2535
0017d735
PZ
2536 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2537 if (cpu != orig_cpu)
5d2f5a61 2538 set_task_cpu(p, cpu);
0017d735 2539 __task_rq_unlock(rq);
ab19cb23 2540
0970d299
PZ
2541 rq = cpu_rq(cpu);
2542 raw_spin_lock(&rq->lock);
f5dc3753 2543
0970d299
PZ
2544 /*
2545 * We migrated the task without holding either rq->lock, however
2546 * since the task is not on the task list itself, nobody else
2547 * will try and migrate the task, hence the rq should match the
2548 * cpu we just moved it to.
2549 */
2550 WARN_ON(task_cpu(p) != cpu);
e9c84311 2551 WARN_ON(p->state != TASK_WAKING);
1da177e4 2552
e7693a36
GH
2553#ifdef CONFIG_SCHEDSTATS
2554 schedstat_inc(rq, ttwu_count);
2555 if (cpu == this_cpu)
2556 schedstat_inc(rq, ttwu_local);
2557 else {
2558 struct sched_domain *sd;
2559 for_each_domain(this_cpu, sd) {
758b2cdc 2560 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2561 schedstat_inc(sd, ttwu_wake_remote);
2562 break;
2563 }
2564 }
2565 }
6d6bc0ad 2566#endif /* CONFIG_SCHEDSTATS */
e7693a36 2567
1da177e4
LT
2568out_activate:
2569#endif /* CONFIG_SMP */
9ed3811a
TH
2570 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2571 cpu == this_cpu, en_flags);
1da177e4 2572 success = 1;
1da177e4 2573out_running:
9ed3811a 2574 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2575out:
2576 task_rq_unlock(rq, &flags);
e9c84311 2577 put_cpu();
1da177e4
LT
2578
2579 return success;
2580}
2581
21aa9af0
TH
2582/**
2583 * try_to_wake_up_local - try to wake up a local task with rq lock held
2584 * @p: the thread to be awakened
2585 *
2586 * Put @p on the run-queue if it's not alredy there. The caller must
2587 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2588 * the current task. this_rq() stays locked over invocation.
2589 */
2590static void try_to_wake_up_local(struct task_struct *p)
2591{
2592 struct rq *rq = task_rq(p);
2593 bool success = false;
2594
2595 BUG_ON(rq != this_rq());
2596 BUG_ON(p == current);
2597 lockdep_assert_held(&rq->lock);
2598
2599 if (!(p->state & TASK_NORMAL))
2600 return;
2601
2602 if (!p->se.on_rq) {
2603 if (likely(!task_running(rq, p))) {
2604 schedstat_inc(rq, ttwu_count);
2605 schedstat_inc(rq, ttwu_local);
2606 }
2607 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2608 success = true;
2609 }
2610 ttwu_post_activation(p, rq, 0, success);
2611}
2612
50fa610a
DH
2613/**
2614 * wake_up_process - Wake up a specific process
2615 * @p: The process to be woken up.
2616 *
2617 * Attempt to wake up the nominated process and move it to the set of runnable
2618 * processes. Returns 1 if the process was woken up, 0 if it was already
2619 * running.
2620 *
2621 * It may be assumed that this function implies a write memory barrier before
2622 * changing the task state if and only if any tasks are woken up.
2623 */
7ad5b3a5 2624int wake_up_process(struct task_struct *p)
1da177e4 2625{
d9514f6c 2626 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2627}
1da177e4
LT
2628EXPORT_SYMBOL(wake_up_process);
2629
7ad5b3a5 2630int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2631{
2632 return try_to_wake_up(p, state, 0);
2633}
2634
1da177e4
LT
2635/*
2636 * Perform scheduler related setup for a newly forked process p.
2637 * p is forked by current.
dd41f596
IM
2638 *
2639 * __sched_fork() is basic setup used by init_idle() too:
2640 */
2641static void __sched_fork(struct task_struct *p)
2642{
dd41f596
IM
2643 p->se.exec_start = 0;
2644 p->se.sum_exec_runtime = 0;
f6cf891c 2645 p->se.prev_sum_exec_runtime = 0;
6c594c21 2646 p->se.nr_migrations = 0;
6cfb0d5d
IM
2647
2648#ifdef CONFIG_SCHEDSTATS
41acab88 2649 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2650#endif
476d139c 2651
fa717060 2652 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2653 p->se.on_rq = 0;
4a55bd5e 2654 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2655
e107be36
AK
2656#ifdef CONFIG_PREEMPT_NOTIFIERS
2657 INIT_HLIST_HEAD(&p->preempt_notifiers);
2658#endif
dd41f596
IM
2659}
2660
2661/*
2662 * fork()/clone()-time setup:
2663 */
2664void sched_fork(struct task_struct *p, int clone_flags)
2665{
2666 int cpu = get_cpu();
2667
2668 __sched_fork(p);
06b83b5f 2669 /*
0017d735 2670 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2671 * nobody will actually run it, and a signal or other external
2672 * event cannot wake it up and insert it on the runqueue either.
2673 */
0017d735 2674 p->state = TASK_RUNNING;
dd41f596 2675
b9dc29e7
MG
2676 /*
2677 * Revert to default priority/policy on fork if requested.
2678 */
2679 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2680 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2681 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2682 p->normal_prio = p->static_prio;
2683 }
b9dc29e7 2684
6c697bdf
MG
2685 if (PRIO_TO_NICE(p->static_prio) < 0) {
2686 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2687 p->normal_prio = p->static_prio;
6c697bdf
MG
2688 set_load_weight(p);
2689 }
2690
b9dc29e7
MG
2691 /*
2692 * We don't need the reset flag anymore after the fork. It has
2693 * fulfilled its duty:
2694 */
2695 p->sched_reset_on_fork = 0;
2696 }
ca94c442 2697
f83f9ac2
PW
2698 /*
2699 * Make sure we do not leak PI boosting priority to the child.
2700 */
2701 p->prio = current->normal_prio;
2702
2ddbf952
HS
2703 if (!rt_prio(p->prio))
2704 p->sched_class = &fair_sched_class;
b29739f9 2705
cd29fe6f
PZ
2706 if (p->sched_class->task_fork)
2707 p->sched_class->task_fork(p);
2708
86951599
PZ
2709 /*
2710 * The child is not yet in the pid-hash so no cgroup attach races,
2711 * and the cgroup is pinned to this child due to cgroup_fork()
2712 * is ran before sched_fork().
2713 *
2714 * Silence PROVE_RCU.
2715 */
2716 rcu_read_lock();
5f3edc1b 2717 set_task_cpu(p, cpu);
86951599 2718 rcu_read_unlock();
5f3edc1b 2719
52f17b6c 2720#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2721 if (likely(sched_info_on()))
52f17b6c 2722 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2723#endif
d6077cb8 2724#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2725 p->oncpu = 0;
2726#endif
1da177e4 2727#ifdef CONFIG_PREEMPT
4866cde0 2728 /* Want to start with kernel preemption disabled. */
a1261f54 2729 task_thread_info(p)->preempt_count = 1;
1da177e4 2730#endif
917b627d
GH
2731 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2732
476d139c 2733 put_cpu();
1da177e4
LT
2734}
2735
2736/*
2737 * wake_up_new_task - wake up a newly created task for the first time.
2738 *
2739 * This function will do some initial scheduler statistics housekeeping
2740 * that must be done for every newly created context, then puts the task
2741 * on the runqueue and wakes it.
2742 */
7ad5b3a5 2743void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2744{
2745 unsigned long flags;
dd41f596 2746 struct rq *rq;
c890692b 2747 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2748
2749#ifdef CONFIG_SMP
0017d735
PZ
2750 rq = task_rq_lock(p, &flags);
2751 p->state = TASK_WAKING;
2752
fabf318e
PZ
2753 /*
2754 * Fork balancing, do it here and not earlier because:
2755 * - cpus_allowed can change in the fork path
2756 * - any previously selected cpu might disappear through hotplug
2757 *
0017d735
PZ
2758 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2759 * without people poking at ->cpus_allowed.
fabf318e 2760 */
0017d735 2761 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2762 set_task_cpu(p, cpu);
1da177e4 2763
06b83b5f 2764 p->state = TASK_RUNNING;
0017d735
PZ
2765 task_rq_unlock(rq, &flags);
2766#endif
2767
2768 rq = task_rq_lock(p, &flags);
cd29fe6f 2769 activate_task(rq, p, 0);
27a9da65 2770 trace_sched_wakeup_new(p, 1);
a7558e01 2771 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2772#ifdef CONFIG_SMP
efbbd05a
PZ
2773 if (p->sched_class->task_woken)
2774 p->sched_class->task_woken(rq, p);
9a897c5a 2775#endif
dd41f596 2776 task_rq_unlock(rq, &flags);
fabf318e 2777 put_cpu();
1da177e4
LT
2778}
2779
e107be36
AK
2780#ifdef CONFIG_PREEMPT_NOTIFIERS
2781
2782/**
80dd99b3 2783 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2784 * @notifier: notifier struct to register
e107be36
AK
2785 */
2786void preempt_notifier_register(struct preempt_notifier *notifier)
2787{
2788 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2789}
2790EXPORT_SYMBOL_GPL(preempt_notifier_register);
2791
2792/**
2793 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2794 * @notifier: notifier struct to unregister
e107be36
AK
2795 *
2796 * This is safe to call from within a preemption notifier.
2797 */
2798void preempt_notifier_unregister(struct preempt_notifier *notifier)
2799{
2800 hlist_del(&notifier->link);
2801}
2802EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2803
2804static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2805{
2806 struct preempt_notifier *notifier;
2807 struct hlist_node *node;
2808
2809 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2810 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2811}
2812
2813static void
2814fire_sched_out_preempt_notifiers(struct task_struct *curr,
2815 struct task_struct *next)
2816{
2817 struct preempt_notifier *notifier;
2818 struct hlist_node *node;
2819
2820 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2821 notifier->ops->sched_out(notifier, next);
2822}
2823
6d6bc0ad 2824#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2825
2826static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2827{
2828}
2829
2830static void
2831fire_sched_out_preempt_notifiers(struct task_struct *curr,
2832 struct task_struct *next)
2833{
2834}
2835
6d6bc0ad 2836#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2837
4866cde0
NP
2838/**
2839 * prepare_task_switch - prepare to switch tasks
2840 * @rq: the runqueue preparing to switch
421cee29 2841 * @prev: the current task that is being switched out
4866cde0
NP
2842 * @next: the task we are going to switch to.
2843 *
2844 * This is called with the rq lock held and interrupts off. It must
2845 * be paired with a subsequent finish_task_switch after the context
2846 * switch.
2847 *
2848 * prepare_task_switch sets up locking and calls architecture specific
2849 * hooks.
2850 */
e107be36
AK
2851static inline void
2852prepare_task_switch(struct rq *rq, struct task_struct *prev,
2853 struct task_struct *next)
4866cde0 2854{
e107be36 2855 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2856 prepare_lock_switch(rq, next);
2857 prepare_arch_switch(next);
2858}
2859
1da177e4
LT
2860/**
2861 * finish_task_switch - clean up after a task-switch
344babaa 2862 * @rq: runqueue associated with task-switch
1da177e4
LT
2863 * @prev: the thread we just switched away from.
2864 *
4866cde0
NP
2865 * finish_task_switch must be called after the context switch, paired
2866 * with a prepare_task_switch call before the context switch.
2867 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2868 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2869 *
2870 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2871 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2872 * with the lock held can cause deadlocks; see schedule() for
2873 * details.)
2874 */
a9957449 2875static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2876 __releases(rq->lock)
2877{
1da177e4 2878 struct mm_struct *mm = rq->prev_mm;
55a101f8 2879 long prev_state;
1da177e4
LT
2880
2881 rq->prev_mm = NULL;
2882
2883 /*
2884 * A task struct has one reference for the use as "current".
c394cc9f 2885 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2886 * schedule one last time. The schedule call will never return, and
2887 * the scheduled task must drop that reference.
c394cc9f 2888 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2889 * still held, otherwise prev could be scheduled on another cpu, die
2890 * there before we look at prev->state, and then the reference would
2891 * be dropped twice.
2892 * Manfred Spraul <manfred@colorfullife.com>
2893 */
55a101f8 2894 prev_state = prev->state;
4866cde0 2895 finish_arch_switch(prev);
8381f65d
JI
2896#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2897 local_irq_disable();
2898#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2899 perf_event_task_sched_in(current);
8381f65d
JI
2900#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2901 local_irq_enable();
2902#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2903 finish_lock_switch(rq, prev);
e8fa1362 2904
e107be36 2905 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2906 if (mm)
2907 mmdrop(mm);
c394cc9f 2908 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2909 /*
2910 * Remove function-return probe instances associated with this
2911 * task and put them back on the free list.
9761eea8 2912 */
c6fd91f0 2913 kprobe_flush_task(prev);
1da177e4 2914 put_task_struct(prev);
c6fd91f0 2915 }
1da177e4
LT
2916}
2917
3f029d3c
GH
2918#ifdef CONFIG_SMP
2919
2920/* assumes rq->lock is held */
2921static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2922{
2923 if (prev->sched_class->pre_schedule)
2924 prev->sched_class->pre_schedule(rq, prev);
2925}
2926
2927/* rq->lock is NOT held, but preemption is disabled */
2928static inline void post_schedule(struct rq *rq)
2929{
2930 if (rq->post_schedule) {
2931 unsigned long flags;
2932
05fa785c 2933 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2934 if (rq->curr->sched_class->post_schedule)
2935 rq->curr->sched_class->post_schedule(rq);
05fa785c 2936 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2937
2938 rq->post_schedule = 0;
2939 }
2940}
2941
2942#else
da19ab51 2943
3f029d3c
GH
2944static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2945{
2946}
2947
2948static inline void post_schedule(struct rq *rq)
2949{
1da177e4
LT
2950}
2951
3f029d3c
GH
2952#endif
2953
1da177e4
LT
2954/**
2955 * schedule_tail - first thing a freshly forked thread must call.
2956 * @prev: the thread we just switched away from.
2957 */
36c8b586 2958asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2959 __releases(rq->lock)
2960{
70b97a7f
IM
2961 struct rq *rq = this_rq();
2962
4866cde0 2963 finish_task_switch(rq, prev);
da19ab51 2964
3f029d3c
GH
2965 /*
2966 * FIXME: do we need to worry about rq being invalidated by the
2967 * task_switch?
2968 */
2969 post_schedule(rq);
70b97a7f 2970
4866cde0
NP
2971#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2972 /* In this case, finish_task_switch does not reenable preemption */
2973 preempt_enable();
2974#endif
1da177e4 2975 if (current->set_child_tid)
b488893a 2976 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2977}
2978
2979/*
2980 * context_switch - switch to the new MM and the new
2981 * thread's register state.
2982 */
dd41f596 2983static inline void
70b97a7f 2984context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2985 struct task_struct *next)
1da177e4 2986{
dd41f596 2987 struct mm_struct *mm, *oldmm;
1da177e4 2988
e107be36 2989 prepare_task_switch(rq, prev, next);
27a9da65 2990 trace_sched_switch(prev, next);
dd41f596
IM
2991 mm = next->mm;
2992 oldmm = prev->active_mm;
9226d125
ZA
2993 /*
2994 * For paravirt, this is coupled with an exit in switch_to to
2995 * combine the page table reload and the switch backend into
2996 * one hypercall.
2997 */
224101ed 2998 arch_start_context_switch(prev);
9226d125 2999
31915ab4 3000 if (!mm) {
1da177e4
LT
3001 next->active_mm = oldmm;
3002 atomic_inc(&oldmm->mm_count);
3003 enter_lazy_tlb(oldmm, next);
3004 } else
3005 switch_mm(oldmm, mm, next);
3006
31915ab4 3007 if (!prev->mm) {
1da177e4 3008 prev->active_mm = NULL;
1da177e4
LT
3009 rq->prev_mm = oldmm;
3010 }
3a5f5e48
IM
3011 /*
3012 * Since the runqueue lock will be released by the next
3013 * task (which is an invalid locking op but in the case
3014 * of the scheduler it's an obvious special-case), so we
3015 * do an early lockdep release here:
3016 */
3017#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3018 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3019#endif
1da177e4
LT
3020
3021 /* Here we just switch the register state and the stack. */
3022 switch_to(prev, next, prev);
3023
dd41f596
IM
3024 barrier();
3025 /*
3026 * this_rq must be evaluated again because prev may have moved
3027 * CPUs since it called schedule(), thus the 'rq' on its stack
3028 * frame will be invalid.
3029 */
3030 finish_task_switch(this_rq(), prev);
1da177e4
LT
3031}
3032
3033/*
3034 * nr_running, nr_uninterruptible and nr_context_switches:
3035 *
3036 * externally visible scheduler statistics: current number of runnable
3037 * threads, current number of uninterruptible-sleeping threads, total
3038 * number of context switches performed since bootup.
3039 */
3040unsigned long nr_running(void)
3041{
3042 unsigned long i, sum = 0;
3043
3044 for_each_online_cpu(i)
3045 sum += cpu_rq(i)->nr_running;
3046
3047 return sum;
f711f609 3048}
1da177e4
LT
3049
3050unsigned long nr_uninterruptible(void)
f711f609 3051{
1da177e4 3052 unsigned long i, sum = 0;
f711f609 3053
0a945022 3054 for_each_possible_cpu(i)
1da177e4 3055 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3056
3057 /*
1da177e4
LT
3058 * Since we read the counters lockless, it might be slightly
3059 * inaccurate. Do not allow it to go below zero though:
f711f609 3060 */
1da177e4
LT
3061 if (unlikely((long)sum < 0))
3062 sum = 0;
f711f609 3063
1da177e4 3064 return sum;
f711f609 3065}
f711f609 3066
1da177e4 3067unsigned long long nr_context_switches(void)
46cb4b7c 3068{
cc94abfc
SR
3069 int i;
3070 unsigned long long sum = 0;
46cb4b7c 3071
0a945022 3072 for_each_possible_cpu(i)
1da177e4 3073 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3074
1da177e4
LT
3075 return sum;
3076}
483b4ee6 3077
1da177e4
LT
3078unsigned long nr_iowait(void)
3079{
3080 unsigned long i, sum = 0;
483b4ee6 3081
0a945022 3082 for_each_possible_cpu(i)
1da177e4 3083 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3084
1da177e4
LT
3085 return sum;
3086}
483b4ee6 3087
8c215bd3 3088unsigned long nr_iowait_cpu(int cpu)
69d25870 3089{
8c215bd3 3090 struct rq *this = cpu_rq(cpu);
69d25870
AV
3091 return atomic_read(&this->nr_iowait);
3092}
46cb4b7c 3093
69d25870
AV
3094unsigned long this_cpu_load(void)
3095{
3096 struct rq *this = this_rq();
3097 return this->cpu_load[0];
3098}
e790fb0b 3099
46cb4b7c 3100
dce48a84
TG
3101/* Variables and functions for calc_load */
3102static atomic_long_t calc_load_tasks;
3103static unsigned long calc_load_update;
3104unsigned long avenrun[3];
3105EXPORT_SYMBOL(avenrun);
46cb4b7c 3106
74f5187a
PZ
3107static long calc_load_fold_active(struct rq *this_rq)
3108{
3109 long nr_active, delta = 0;
3110
3111 nr_active = this_rq->nr_running;
3112 nr_active += (long) this_rq->nr_uninterruptible;
3113
3114 if (nr_active != this_rq->calc_load_active) {
3115 delta = nr_active - this_rq->calc_load_active;
3116 this_rq->calc_load_active = nr_active;
3117 }
3118
3119 return delta;
3120}
3121
0f004f5a
PZ
3122static unsigned long
3123calc_load(unsigned long load, unsigned long exp, unsigned long active)
3124{
3125 load *= exp;
3126 load += active * (FIXED_1 - exp);
3127 load += 1UL << (FSHIFT - 1);
3128 return load >> FSHIFT;
3129}
3130
74f5187a
PZ
3131#ifdef CONFIG_NO_HZ
3132/*
3133 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3134 *
3135 * When making the ILB scale, we should try to pull this in as well.
3136 */
3137static atomic_long_t calc_load_tasks_idle;
3138
3139static void calc_load_account_idle(struct rq *this_rq)
3140{
3141 long delta;
3142
3143 delta = calc_load_fold_active(this_rq);
3144 if (delta)
3145 atomic_long_add(delta, &calc_load_tasks_idle);
3146}
3147
3148static long calc_load_fold_idle(void)
3149{
3150 long delta = 0;
3151
3152 /*
3153 * Its got a race, we don't care...
3154 */
3155 if (atomic_long_read(&calc_load_tasks_idle))
3156 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3157
3158 return delta;
3159}
0f004f5a
PZ
3160
3161/**
3162 * fixed_power_int - compute: x^n, in O(log n) time
3163 *
3164 * @x: base of the power
3165 * @frac_bits: fractional bits of @x
3166 * @n: power to raise @x to.
3167 *
3168 * By exploiting the relation between the definition of the natural power
3169 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3170 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3171 * (where: n_i \elem {0, 1}, the binary vector representing n),
3172 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3173 * of course trivially computable in O(log_2 n), the length of our binary
3174 * vector.
3175 */
3176static unsigned long
3177fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3178{
3179 unsigned long result = 1UL << frac_bits;
3180
3181 if (n) for (;;) {
3182 if (n & 1) {
3183 result *= x;
3184 result += 1UL << (frac_bits - 1);
3185 result >>= frac_bits;
3186 }
3187 n >>= 1;
3188 if (!n)
3189 break;
3190 x *= x;
3191 x += 1UL << (frac_bits - 1);
3192 x >>= frac_bits;
3193 }
3194
3195 return result;
3196}
3197
3198/*
3199 * a1 = a0 * e + a * (1 - e)
3200 *
3201 * a2 = a1 * e + a * (1 - e)
3202 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3203 * = a0 * e^2 + a * (1 - e) * (1 + e)
3204 *
3205 * a3 = a2 * e + a * (1 - e)
3206 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3207 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3208 *
3209 * ...
3210 *
3211 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3212 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3213 * = a0 * e^n + a * (1 - e^n)
3214 *
3215 * [1] application of the geometric series:
3216 *
3217 * n 1 - x^(n+1)
3218 * S_n := \Sum x^i = -------------
3219 * i=0 1 - x
3220 */
3221static unsigned long
3222calc_load_n(unsigned long load, unsigned long exp,
3223 unsigned long active, unsigned int n)
3224{
3225
3226 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3227}
3228
3229/*
3230 * NO_HZ can leave us missing all per-cpu ticks calling
3231 * calc_load_account_active(), but since an idle CPU folds its delta into
3232 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3233 * in the pending idle delta if our idle period crossed a load cycle boundary.
3234 *
3235 * Once we've updated the global active value, we need to apply the exponential
3236 * weights adjusted to the number of cycles missed.
3237 */
3238static void calc_global_nohz(unsigned long ticks)
3239{
3240 long delta, active, n;
3241
3242 if (time_before(jiffies, calc_load_update))
3243 return;
3244
3245 /*
3246 * If we crossed a calc_load_update boundary, make sure to fold
3247 * any pending idle changes, the respective CPUs might have
3248 * missed the tick driven calc_load_account_active() update
3249 * due to NO_HZ.
3250 */
3251 delta = calc_load_fold_idle();
3252 if (delta)
3253 atomic_long_add(delta, &calc_load_tasks);
3254
3255 /*
3256 * If we were idle for multiple load cycles, apply them.
3257 */
3258 if (ticks >= LOAD_FREQ) {
3259 n = ticks / LOAD_FREQ;
3260
3261 active = atomic_long_read(&calc_load_tasks);
3262 active = active > 0 ? active * FIXED_1 : 0;
3263
3264 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3265 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3266 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3267
3268 calc_load_update += n * LOAD_FREQ;
3269 }
3270
3271 /*
3272 * Its possible the remainder of the above division also crosses
3273 * a LOAD_FREQ period, the regular check in calc_global_load()
3274 * which comes after this will take care of that.
3275 *
3276 * Consider us being 11 ticks before a cycle completion, and us
3277 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3278 * age us 4 cycles, and the test in calc_global_load() will
3279 * pick up the final one.
3280 */
3281}
74f5187a
PZ
3282#else
3283static void calc_load_account_idle(struct rq *this_rq)
3284{
3285}
3286
3287static inline long calc_load_fold_idle(void)
3288{
3289 return 0;
3290}
0f004f5a
PZ
3291
3292static void calc_global_nohz(unsigned long ticks)
3293{
3294}
74f5187a
PZ
3295#endif
3296
2d02494f
TG
3297/**
3298 * get_avenrun - get the load average array
3299 * @loads: pointer to dest load array
3300 * @offset: offset to add
3301 * @shift: shift count to shift the result left
3302 *
3303 * These values are estimates at best, so no need for locking.
3304 */
3305void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3306{
3307 loads[0] = (avenrun[0] + offset) << shift;
3308 loads[1] = (avenrun[1] + offset) << shift;
3309 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3310}
46cb4b7c 3311
46cb4b7c 3312/*
dce48a84
TG
3313 * calc_load - update the avenrun load estimates 10 ticks after the
3314 * CPUs have updated calc_load_tasks.
7835b98b 3315 */
0f004f5a 3316void calc_global_load(unsigned long ticks)
7835b98b 3317{
dce48a84 3318 long active;
1da177e4 3319
0f004f5a
PZ
3320 calc_global_nohz(ticks);
3321
3322 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3323 return;
1da177e4 3324
dce48a84
TG
3325 active = atomic_long_read(&calc_load_tasks);
3326 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3327
dce48a84
TG
3328 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3329 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3330 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3331
dce48a84
TG
3332 calc_load_update += LOAD_FREQ;
3333}
1da177e4 3334
dce48a84 3335/*
74f5187a
PZ
3336 * Called from update_cpu_load() to periodically update this CPU's
3337 * active count.
dce48a84
TG
3338 */
3339static void calc_load_account_active(struct rq *this_rq)
3340{
74f5187a 3341 long delta;
08c183f3 3342
74f5187a
PZ
3343 if (time_before(jiffies, this_rq->calc_load_update))
3344 return;
783609c6 3345
74f5187a
PZ
3346 delta = calc_load_fold_active(this_rq);
3347 delta += calc_load_fold_idle();
3348 if (delta)
dce48a84 3349 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3350
3351 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3352}
3353
fdf3e95d
VP
3354/*
3355 * The exact cpuload at various idx values, calculated at every tick would be
3356 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3357 *
3358 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3359 * on nth tick when cpu may be busy, then we have:
3360 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3361 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3362 *
3363 * decay_load_missed() below does efficient calculation of
3364 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3365 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3366 *
3367 * The calculation is approximated on a 128 point scale.
3368 * degrade_zero_ticks is the number of ticks after which load at any
3369 * particular idx is approximated to be zero.
3370 * degrade_factor is a precomputed table, a row for each load idx.
3371 * Each column corresponds to degradation factor for a power of two ticks,
3372 * based on 128 point scale.
3373 * Example:
3374 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3375 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3376 *
3377 * With this power of 2 load factors, we can degrade the load n times
3378 * by looking at 1 bits in n and doing as many mult/shift instead of
3379 * n mult/shifts needed by the exact degradation.
3380 */
3381#define DEGRADE_SHIFT 7
3382static const unsigned char
3383 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3384static const unsigned char
3385 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3386 {0, 0, 0, 0, 0, 0, 0, 0},
3387 {64, 32, 8, 0, 0, 0, 0, 0},
3388 {96, 72, 40, 12, 1, 0, 0},
3389 {112, 98, 75, 43, 15, 1, 0},
3390 {120, 112, 98, 76, 45, 16, 2} };
3391
3392/*
3393 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3394 * would be when CPU is idle and so we just decay the old load without
3395 * adding any new load.
3396 */
3397static unsigned long
3398decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3399{
3400 int j = 0;
3401
3402 if (!missed_updates)
3403 return load;
3404
3405 if (missed_updates >= degrade_zero_ticks[idx])
3406 return 0;
3407
3408 if (idx == 1)
3409 return load >> missed_updates;
3410
3411 while (missed_updates) {
3412 if (missed_updates % 2)
3413 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3414
3415 missed_updates >>= 1;
3416 j++;
3417 }
3418 return load;
3419}
3420
46cb4b7c 3421/*
dd41f596 3422 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3423 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3424 * every tick. We fix it up based on jiffies.
46cb4b7c 3425 */
dd41f596 3426static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3427{
495eca49 3428 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3429 unsigned long curr_jiffies = jiffies;
3430 unsigned long pending_updates;
dd41f596 3431 int i, scale;
46cb4b7c 3432
dd41f596 3433 this_rq->nr_load_updates++;
46cb4b7c 3434
fdf3e95d
VP
3435 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3436 if (curr_jiffies == this_rq->last_load_update_tick)
3437 return;
3438
3439 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3440 this_rq->last_load_update_tick = curr_jiffies;
3441
dd41f596 3442 /* Update our load: */
fdf3e95d
VP
3443 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3444 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3445 unsigned long old_load, new_load;
7d1e6a9b 3446
dd41f596 3447 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3448
dd41f596 3449 old_load = this_rq->cpu_load[i];
fdf3e95d 3450 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3451 new_load = this_load;
a25707f3
IM
3452 /*
3453 * Round up the averaging division if load is increasing. This
3454 * prevents us from getting stuck on 9 if the load is 10, for
3455 * example.
3456 */
3457 if (new_load > old_load)
fdf3e95d
VP
3458 new_load += scale - 1;
3459
3460 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3461 }
da2b71ed
SS
3462
3463 sched_avg_update(this_rq);
fdf3e95d
VP
3464}
3465
3466static void update_cpu_load_active(struct rq *this_rq)
3467{
3468 update_cpu_load(this_rq);
46cb4b7c 3469
74f5187a 3470 calc_load_account_active(this_rq);
46cb4b7c
SS
3471}
3472
dd41f596 3473#ifdef CONFIG_SMP
8a0be9ef 3474
46cb4b7c 3475/*
38022906
PZ
3476 * sched_exec - execve() is a valuable balancing opportunity, because at
3477 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3478 */
38022906 3479void sched_exec(void)
46cb4b7c 3480{
38022906 3481 struct task_struct *p = current;
1da177e4 3482 unsigned long flags;
70b97a7f 3483 struct rq *rq;
0017d735 3484 int dest_cpu;
46cb4b7c 3485
1da177e4 3486 rq = task_rq_lock(p, &flags);
0017d735
PZ
3487 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3488 if (dest_cpu == smp_processor_id())
3489 goto unlock;
38022906 3490
46cb4b7c 3491 /*
38022906 3492 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3493 */
30da688e 3494 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3495 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3496 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3497
1da177e4 3498 task_rq_unlock(rq, &flags);
969c7921 3499 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3500 return;
3501 }
0017d735 3502unlock:
1da177e4 3503 task_rq_unlock(rq, &flags);
1da177e4 3504}
dd41f596 3505
1da177e4
LT
3506#endif
3507
1da177e4
LT
3508DEFINE_PER_CPU(struct kernel_stat, kstat);
3509
3510EXPORT_PER_CPU_SYMBOL(kstat);
3511
3512/*
c5f8d995 3513 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3514 * @p in case that task is currently running.
c5f8d995
HS
3515 *
3516 * Called with task_rq_lock() held on @rq.
1da177e4 3517 */
c5f8d995
HS
3518static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3519{
3520 u64 ns = 0;
3521
3522 if (task_current(rq, p)) {
3523 update_rq_clock(rq);
305e6835 3524 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3525 if ((s64)ns < 0)
3526 ns = 0;
3527 }
3528
3529 return ns;
3530}
3531
bb34d92f 3532unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3533{
1da177e4 3534 unsigned long flags;
41b86e9c 3535 struct rq *rq;
bb34d92f 3536 u64 ns = 0;
48f24c4d 3537
41b86e9c 3538 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3539 ns = do_task_delta_exec(p, rq);
3540 task_rq_unlock(rq, &flags);
1508487e 3541
c5f8d995
HS
3542 return ns;
3543}
f06febc9 3544
c5f8d995
HS
3545/*
3546 * Return accounted runtime for the task.
3547 * In case the task is currently running, return the runtime plus current's
3548 * pending runtime that have not been accounted yet.
3549 */
3550unsigned long long task_sched_runtime(struct task_struct *p)
3551{
3552 unsigned long flags;
3553 struct rq *rq;
3554 u64 ns = 0;
3555
3556 rq = task_rq_lock(p, &flags);
3557 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3558 task_rq_unlock(rq, &flags);
3559
3560 return ns;
3561}
48f24c4d 3562
c5f8d995
HS
3563/*
3564 * Return sum_exec_runtime for the thread group.
3565 * In case the task is currently running, return the sum plus current's
3566 * pending runtime that have not been accounted yet.
3567 *
3568 * Note that the thread group might have other running tasks as well,
3569 * so the return value not includes other pending runtime that other
3570 * running tasks might have.
3571 */
3572unsigned long long thread_group_sched_runtime(struct task_struct *p)
3573{
3574 struct task_cputime totals;
3575 unsigned long flags;
3576 struct rq *rq;
3577 u64 ns;
3578
3579 rq = task_rq_lock(p, &flags);
3580 thread_group_cputime(p, &totals);
3581 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3582 task_rq_unlock(rq, &flags);
48f24c4d 3583
1da177e4
LT
3584 return ns;
3585}
3586
1da177e4
LT
3587/*
3588 * Account user cpu time to a process.
3589 * @p: the process that the cpu time gets accounted to
1da177e4 3590 * @cputime: the cpu time spent in user space since the last update
457533a7 3591 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3592 */
457533a7
MS
3593void account_user_time(struct task_struct *p, cputime_t cputime,
3594 cputime_t cputime_scaled)
1da177e4
LT
3595{
3596 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3597 cputime64_t tmp;
3598
457533a7 3599 /* Add user time to process. */
1da177e4 3600 p->utime = cputime_add(p->utime, cputime);
457533a7 3601 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3602 account_group_user_time(p, cputime);
1da177e4
LT
3603
3604 /* Add user time to cpustat. */
3605 tmp = cputime_to_cputime64(cputime);
3606 if (TASK_NICE(p) > 0)
3607 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3608 else
3609 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3610
3611 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3612 /* Account for user time used */
3613 acct_update_integrals(p);
1da177e4
LT
3614}
3615
94886b84
LV
3616/*
3617 * Account guest cpu time to a process.
3618 * @p: the process that the cpu time gets accounted to
3619 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3620 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3621 */
457533a7
MS
3622static void account_guest_time(struct task_struct *p, cputime_t cputime,
3623 cputime_t cputime_scaled)
94886b84
LV
3624{
3625 cputime64_t tmp;
3626 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3627
3628 tmp = cputime_to_cputime64(cputime);
3629
457533a7 3630 /* Add guest time to process. */
94886b84 3631 p->utime = cputime_add(p->utime, cputime);
457533a7 3632 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3633 account_group_user_time(p, cputime);
94886b84
LV
3634 p->gtime = cputime_add(p->gtime, cputime);
3635
457533a7 3636 /* Add guest time to cpustat. */
ce0e7b28
RO
3637 if (TASK_NICE(p) > 0) {
3638 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3639 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3640 } else {
3641 cpustat->user = cputime64_add(cpustat->user, tmp);
3642 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3643 }
94886b84
LV
3644}
3645
1da177e4
LT
3646/*
3647 * Account system cpu time to a process.
3648 * @p: the process that the cpu time gets accounted to
3649 * @hardirq_offset: the offset to subtract from hardirq_count()
3650 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3651 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3652 */
3653void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3654 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3655{
3656 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3657 cputime64_t tmp;
3658
983ed7a6 3659 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3660 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3661 return;
3662 }
94886b84 3663
457533a7 3664 /* Add system time to process. */
1da177e4 3665 p->stime = cputime_add(p->stime, cputime);
457533a7 3666 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3667 account_group_system_time(p, cputime);
1da177e4
LT
3668
3669 /* Add system time to cpustat. */
3670 tmp = cputime_to_cputime64(cputime);
3671 if (hardirq_count() - hardirq_offset)
3672 cpustat->irq = cputime64_add(cpustat->irq, tmp);
75e1056f 3673 else if (in_serving_softirq())
1da177e4 3674 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3675 else
79741dd3
MS
3676 cpustat->system = cputime64_add(cpustat->system, tmp);
3677
ef12fefa
BR
3678 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3679
1da177e4
LT
3680 /* Account for system time used */
3681 acct_update_integrals(p);
1da177e4
LT
3682}
3683
c66f08be 3684/*
1da177e4 3685 * Account for involuntary wait time.
1da177e4 3686 * @steal: the cpu time spent in involuntary wait
c66f08be 3687 */
79741dd3 3688void account_steal_time(cputime_t cputime)
c66f08be 3689{
79741dd3
MS
3690 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3691 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3692
3693 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3694}
3695
1da177e4 3696/*
79741dd3
MS
3697 * Account for idle time.
3698 * @cputime: the cpu time spent in idle wait
1da177e4 3699 */
79741dd3 3700void account_idle_time(cputime_t cputime)
1da177e4
LT
3701{
3702 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3703 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3704 struct rq *rq = this_rq();
1da177e4 3705
79741dd3
MS
3706 if (atomic_read(&rq->nr_iowait) > 0)
3707 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3708 else
3709 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3710}
3711
79741dd3
MS
3712#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3713
3714/*
3715 * Account a single tick of cpu time.
3716 * @p: the process that the cpu time gets accounted to
3717 * @user_tick: indicates if the tick is a user or a system tick
3718 */
3719void account_process_tick(struct task_struct *p, int user_tick)
3720{
a42548a1 3721 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3722 struct rq *rq = this_rq();
3723
3724 if (user_tick)
a42548a1 3725 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3726 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3727 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3728 one_jiffy_scaled);
3729 else
a42548a1 3730 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3731}
3732
3733/*
3734 * Account multiple ticks of steal time.
3735 * @p: the process from which the cpu time has been stolen
3736 * @ticks: number of stolen ticks
3737 */
3738void account_steal_ticks(unsigned long ticks)
3739{
3740 account_steal_time(jiffies_to_cputime(ticks));
3741}
3742
3743/*
3744 * Account multiple ticks of idle time.
3745 * @ticks: number of stolen ticks
3746 */
3747void account_idle_ticks(unsigned long ticks)
3748{
3749 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3750}
3751
79741dd3
MS
3752#endif
3753
49048622
BS
3754/*
3755 * Use precise platform statistics if available:
3756 */
3757#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3758void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3759{
d99ca3b9
HS
3760 *ut = p->utime;
3761 *st = p->stime;
49048622
BS
3762}
3763
0cf55e1e 3764void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3765{
0cf55e1e
HS
3766 struct task_cputime cputime;
3767
3768 thread_group_cputime(p, &cputime);
3769
3770 *ut = cputime.utime;
3771 *st = cputime.stime;
49048622
BS
3772}
3773#else
761b1d26
HS
3774
3775#ifndef nsecs_to_cputime
b7b20df9 3776# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3777#endif
3778
d180c5bc 3779void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3780{
d99ca3b9 3781 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3782
3783 /*
3784 * Use CFS's precise accounting:
3785 */
d180c5bc 3786 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3787
3788 if (total) {
e75e863d 3789 u64 temp = rtime;
d180c5bc 3790
e75e863d 3791 temp *= utime;
49048622 3792 do_div(temp, total);
d180c5bc
HS
3793 utime = (cputime_t)temp;
3794 } else
3795 utime = rtime;
49048622 3796
d180c5bc
HS
3797 /*
3798 * Compare with previous values, to keep monotonicity:
3799 */
761b1d26 3800 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3801 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3802
d99ca3b9
HS
3803 *ut = p->prev_utime;
3804 *st = p->prev_stime;
49048622
BS
3805}
3806
0cf55e1e
HS
3807/*
3808 * Must be called with siglock held.
3809 */
3810void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3811{
0cf55e1e
HS
3812 struct signal_struct *sig = p->signal;
3813 struct task_cputime cputime;
3814 cputime_t rtime, utime, total;
49048622 3815
0cf55e1e 3816 thread_group_cputime(p, &cputime);
49048622 3817
0cf55e1e
HS
3818 total = cputime_add(cputime.utime, cputime.stime);
3819 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3820
0cf55e1e 3821 if (total) {
e75e863d 3822 u64 temp = rtime;
49048622 3823
e75e863d 3824 temp *= cputime.utime;
0cf55e1e
HS
3825 do_div(temp, total);
3826 utime = (cputime_t)temp;
3827 } else
3828 utime = rtime;
3829
3830 sig->prev_utime = max(sig->prev_utime, utime);
3831 sig->prev_stime = max(sig->prev_stime,
3832 cputime_sub(rtime, sig->prev_utime));
3833
3834 *ut = sig->prev_utime;
3835 *st = sig->prev_stime;
49048622 3836}
49048622 3837#endif
49048622 3838
7835b98b
CL
3839/*
3840 * This function gets called by the timer code, with HZ frequency.
3841 * We call it with interrupts disabled.
3842 *
3843 * It also gets called by the fork code, when changing the parent's
3844 * timeslices.
3845 */
3846void scheduler_tick(void)
3847{
7835b98b
CL
3848 int cpu = smp_processor_id();
3849 struct rq *rq = cpu_rq(cpu);
dd41f596 3850 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3851
3852 sched_clock_tick();
dd41f596 3853
05fa785c 3854 raw_spin_lock(&rq->lock);
3e51f33f 3855 update_rq_clock(rq);
fdf3e95d 3856 update_cpu_load_active(rq);
fa85ae24 3857 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3858 raw_spin_unlock(&rq->lock);
7835b98b 3859
e9d2b064 3860 perf_event_task_tick();
e220d2dc 3861
e418e1c2 3862#ifdef CONFIG_SMP
dd41f596
IM
3863 rq->idle_at_tick = idle_cpu(cpu);
3864 trigger_load_balance(rq, cpu);
e418e1c2 3865#endif
1da177e4
LT
3866}
3867
132380a0 3868notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3869{
3870 if (in_lock_functions(addr)) {
3871 addr = CALLER_ADDR2;
3872 if (in_lock_functions(addr))
3873 addr = CALLER_ADDR3;
3874 }
3875 return addr;
3876}
1da177e4 3877
7e49fcce
SR
3878#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3879 defined(CONFIG_PREEMPT_TRACER))
3880
43627582 3881void __kprobes add_preempt_count(int val)
1da177e4 3882{
6cd8a4bb 3883#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3884 /*
3885 * Underflow?
3886 */
9a11b49a
IM
3887 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3888 return;
6cd8a4bb 3889#endif
1da177e4 3890 preempt_count() += val;
6cd8a4bb 3891#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3892 /*
3893 * Spinlock count overflowing soon?
3894 */
33859f7f
MOS
3895 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3896 PREEMPT_MASK - 10);
6cd8a4bb
SR
3897#endif
3898 if (preempt_count() == val)
3899 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3900}
3901EXPORT_SYMBOL(add_preempt_count);
3902
43627582 3903void __kprobes sub_preempt_count(int val)
1da177e4 3904{
6cd8a4bb 3905#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3906 /*
3907 * Underflow?
3908 */
01e3eb82 3909 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3910 return;
1da177e4
LT
3911 /*
3912 * Is the spinlock portion underflowing?
3913 */
9a11b49a
IM
3914 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3915 !(preempt_count() & PREEMPT_MASK)))
3916 return;
6cd8a4bb 3917#endif
9a11b49a 3918
6cd8a4bb
SR
3919 if (preempt_count() == val)
3920 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3921 preempt_count() -= val;
3922}
3923EXPORT_SYMBOL(sub_preempt_count);
3924
3925#endif
3926
3927/*
dd41f596 3928 * Print scheduling while atomic bug:
1da177e4 3929 */
dd41f596 3930static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3931{
838225b4
SS
3932 struct pt_regs *regs = get_irq_regs();
3933
3df0fc5b
PZ
3934 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3935 prev->comm, prev->pid, preempt_count());
838225b4 3936
dd41f596 3937 debug_show_held_locks(prev);
e21f5b15 3938 print_modules();
dd41f596
IM
3939 if (irqs_disabled())
3940 print_irqtrace_events(prev);
838225b4
SS
3941
3942 if (regs)
3943 show_regs(regs);
3944 else
3945 dump_stack();
dd41f596 3946}
1da177e4 3947
dd41f596
IM
3948/*
3949 * Various schedule()-time debugging checks and statistics:
3950 */
3951static inline void schedule_debug(struct task_struct *prev)
3952{
1da177e4 3953 /*
41a2d6cf 3954 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3955 * schedule() atomically, we ignore that path for now.
3956 * Otherwise, whine if we are scheduling when we should not be.
3957 */
3f33a7ce 3958 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3959 __schedule_bug(prev);
3960
1da177e4
LT
3961 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3962
2d72376b 3963 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3964#ifdef CONFIG_SCHEDSTATS
3965 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3966 schedstat_inc(this_rq(), bkl_count);
3967 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3968 }
3969#endif
dd41f596
IM
3970}
3971
6cecd084 3972static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3973{
a64692a3
MG
3974 if (prev->se.on_rq)
3975 update_rq_clock(rq);
3976 rq->skip_clock_update = 0;
6cecd084 3977 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3978}
3979
dd41f596
IM
3980/*
3981 * Pick up the highest-prio task:
3982 */
3983static inline struct task_struct *
b67802ea 3984pick_next_task(struct rq *rq)
dd41f596 3985{
5522d5d5 3986 const struct sched_class *class;
dd41f596 3987 struct task_struct *p;
1da177e4
LT
3988
3989 /*
dd41f596
IM
3990 * Optimization: we know that if all tasks are in
3991 * the fair class we can call that function directly:
1da177e4 3992 */
dd41f596 3993 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3994 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3995 if (likely(p))
3996 return p;
1da177e4
LT
3997 }
3998
34f971f6 3999 for_each_class(class) {
fb8d4724 4000 p = class->pick_next_task(rq);
dd41f596
IM
4001 if (p)
4002 return p;
dd41f596 4003 }
34f971f6
PZ
4004
4005 BUG(); /* the idle class will always have a runnable task */
dd41f596 4006}
1da177e4 4007
dd41f596
IM
4008/*
4009 * schedule() is the main scheduler function.
4010 */
ff743345 4011asmlinkage void __sched schedule(void)
dd41f596
IM
4012{
4013 struct task_struct *prev, *next;
67ca7bde 4014 unsigned long *switch_count;
dd41f596 4015 struct rq *rq;
31656519 4016 int cpu;
dd41f596 4017
ff743345
PZ
4018need_resched:
4019 preempt_disable();
dd41f596
IM
4020 cpu = smp_processor_id();
4021 rq = cpu_rq(cpu);
25502a6c 4022 rcu_note_context_switch(cpu);
dd41f596 4023 prev = rq->curr;
dd41f596
IM
4024
4025 release_kernel_lock(prev);
4026need_resched_nonpreemptible:
4027
4028 schedule_debug(prev);
1da177e4 4029
31656519 4030 if (sched_feat(HRTICK))
f333fdc9 4031 hrtick_clear(rq);
8f4d37ec 4032
05fa785c 4033 raw_spin_lock_irq(&rq->lock);
1e819950 4034 clear_tsk_need_resched(prev);
1da177e4 4035
246d86b5 4036 switch_count = &prev->nivcsw;
1da177e4 4037 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4038 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4039 prev->state = TASK_RUNNING;
21aa9af0
TH
4040 } else {
4041 /*
4042 * If a worker is going to sleep, notify and
4043 * ask workqueue whether it wants to wake up a
4044 * task to maintain concurrency. If so, wake
4045 * up the task.
4046 */
4047 if (prev->flags & PF_WQ_WORKER) {
4048 struct task_struct *to_wakeup;
4049
4050 to_wakeup = wq_worker_sleeping(prev, cpu);
4051 if (to_wakeup)
4052 try_to_wake_up_local(to_wakeup);
4053 }
371fd7e7 4054 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 4055 }
dd41f596 4056 switch_count = &prev->nvcsw;
1da177e4
LT
4057 }
4058
3f029d3c 4059 pre_schedule(rq, prev);
f65eda4f 4060
dd41f596 4061 if (unlikely(!rq->nr_running))
1da177e4 4062 idle_balance(cpu, rq);
1da177e4 4063
df1c99d4 4064 put_prev_task(rq, prev);
b67802ea 4065 next = pick_next_task(rq);
1da177e4 4066
1da177e4 4067 if (likely(prev != next)) {
673a90a1 4068 sched_info_switch(prev, next);
49f47433 4069 perf_event_task_sched_out(prev, next);
673a90a1 4070
1da177e4
LT
4071 rq->nr_switches++;
4072 rq->curr = next;
4073 ++*switch_count;
4074
dd41f596 4075 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4076 /*
246d86b5
ON
4077 * The context switch have flipped the stack from under us
4078 * and restored the local variables which were saved when
4079 * this task called schedule() in the past. prev == current
4080 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4081 */
4082 cpu = smp_processor_id();
4083 rq = cpu_rq(cpu);
1da177e4 4084 } else
05fa785c 4085 raw_spin_unlock_irq(&rq->lock);
1da177e4 4086
3f029d3c 4087 post_schedule(rq);
1da177e4 4088
246d86b5 4089 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 4090 goto need_resched_nonpreemptible;
8f4d37ec 4091
1da177e4 4092 preempt_enable_no_resched();
ff743345 4093 if (need_resched())
1da177e4
LT
4094 goto need_resched;
4095}
1da177e4
LT
4096EXPORT_SYMBOL(schedule);
4097
c08f7829 4098#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4099/*
4100 * Look out! "owner" is an entirely speculative pointer
4101 * access and not reliable.
4102 */
4103int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4104{
4105 unsigned int cpu;
4106 struct rq *rq;
4107
4108 if (!sched_feat(OWNER_SPIN))
4109 return 0;
4110
4111#ifdef CONFIG_DEBUG_PAGEALLOC
4112 /*
4113 * Need to access the cpu field knowing that
4114 * DEBUG_PAGEALLOC could have unmapped it if
4115 * the mutex owner just released it and exited.
4116 */
4117 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4118 return 0;
0d66bf6d
PZ
4119#else
4120 cpu = owner->cpu;
4121#endif
4122
4123 /*
4124 * Even if the access succeeded (likely case),
4125 * the cpu field may no longer be valid.
4126 */
4127 if (cpu >= nr_cpumask_bits)
4b402210 4128 return 0;
0d66bf6d
PZ
4129
4130 /*
4131 * We need to validate that we can do a
4132 * get_cpu() and that we have the percpu area.
4133 */
4134 if (!cpu_online(cpu))
4b402210 4135 return 0;
0d66bf6d
PZ
4136
4137 rq = cpu_rq(cpu);
4138
4139 for (;;) {
4140 /*
4141 * Owner changed, break to re-assess state.
4142 */
9d0f4dcc
TC
4143 if (lock->owner != owner) {
4144 /*
4145 * If the lock has switched to a different owner,
4146 * we likely have heavy contention. Return 0 to quit
4147 * optimistic spinning and not contend further:
4148 */
4149 if (lock->owner)
4150 return 0;
0d66bf6d 4151 break;
9d0f4dcc 4152 }
0d66bf6d
PZ
4153
4154 /*
4155 * Is that owner really running on that cpu?
4156 */
4157 if (task_thread_info(rq->curr) != owner || need_resched())
4158 return 0;
4159
4160 cpu_relax();
4161 }
4b402210 4162
0d66bf6d
PZ
4163 return 1;
4164}
4165#endif
4166
1da177e4
LT
4167#ifdef CONFIG_PREEMPT
4168/*
2ed6e34f 4169 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4170 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4171 * occur there and call schedule directly.
4172 */
d1f74e20 4173asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4174{
4175 struct thread_info *ti = current_thread_info();
6478d880 4176
1da177e4
LT
4177 /*
4178 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4179 * we do not want to preempt the current task. Just return..
1da177e4 4180 */
beed33a8 4181 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4182 return;
4183
3a5c359a 4184 do {
d1f74e20 4185 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4186 schedule();
d1f74e20 4187 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4188
3a5c359a
AK
4189 /*
4190 * Check again in case we missed a preemption opportunity
4191 * between schedule and now.
4192 */
4193 barrier();
5ed0cec0 4194 } while (need_resched());
1da177e4 4195}
1da177e4
LT
4196EXPORT_SYMBOL(preempt_schedule);
4197
4198/*
2ed6e34f 4199 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4200 * off of irq context.
4201 * Note, that this is called and return with irqs disabled. This will
4202 * protect us against recursive calling from irq.
4203 */
4204asmlinkage void __sched preempt_schedule_irq(void)
4205{
4206 struct thread_info *ti = current_thread_info();
6478d880 4207
2ed6e34f 4208 /* Catch callers which need to be fixed */
1da177e4
LT
4209 BUG_ON(ti->preempt_count || !irqs_disabled());
4210
3a5c359a
AK
4211 do {
4212 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4213 local_irq_enable();
4214 schedule();
4215 local_irq_disable();
3a5c359a 4216 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4217
3a5c359a
AK
4218 /*
4219 * Check again in case we missed a preemption opportunity
4220 * between schedule and now.
4221 */
4222 barrier();
5ed0cec0 4223 } while (need_resched());
1da177e4
LT
4224}
4225
4226#endif /* CONFIG_PREEMPT */
4227
63859d4f 4228int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4229 void *key)
1da177e4 4230{
63859d4f 4231 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4232}
1da177e4
LT
4233EXPORT_SYMBOL(default_wake_function);
4234
4235/*
41a2d6cf
IM
4236 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4237 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4238 * number) then we wake all the non-exclusive tasks and one exclusive task.
4239 *
4240 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4241 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4242 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4243 */
78ddb08f 4244static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4245 int nr_exclusive, int wake_flags, void *key)
1da177e4 4246{
2e45874c 4247 wait_queue_t *curr, *next;
1da177e4 4248
2e45874c 4249 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4250 unsigned flags = curr->flags;
4251
63859d4f 4252 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4253 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4254 break;
4255 }
4256}
4257
4258/**
4259 * __wake_up - wake up threads blocked on a waitqueue.
4260 * @q: the waitqueue
4261 * @mode: which threads
4262 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4263 * @key: is directly passed to the wakeup function
50fa610a
DH
4264 *
4265 * It may be assumed that this function implies a write memory barrier before
4266 * changing the task state if and only if any tasks are woken up.
1da177e4 4267 */
7ad5b3a5 4268void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4269 int nr_exclusive, void *key)
1da177e4
LT
4270{
4271 unsigned long flags;
4272
4273 spin_lock_irqsave(&q->lock, flags);
4274 __wake_up_common(q, mode, nr_exclusive, 0, key);
4275 spin_unlock_irqrestore(&q->lock, flags);
4276}
1da177e4
LT
4277EXPORT_SYMBOL(__wake_up);
4278
4279/*
4280 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4281 */
7ad5b3a5 4282void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4283{
4284 __wake_up_common(q, mode, 1, 0, NULL);
4285}
22c43c81 4286EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4287
4ede816a
DL
4288void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4289{
4290 __wake_up_common(q, mode, 1, 0, key);
4291}
4292
1da177e4 4293/**
4ede816a 4294 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4295 * @q: the waitqueue
4296 * @mode: which threads
4297 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4298 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4299 *
4300 * The sync wakeup differs that the waker knows that it will schedule
4301 * away soon, so while the target thread will be woken up, it will not
4302 * be migrated to another CPU - ie. the two threads are 'synchronized'
4303 * with each other. This can prevent needless bouncing between CPUs.
4304 *
4305 * On UP it can prevent extra preemption.
50fa610a
DH
4306 *
4307 * It may be assumed that this function implies a write memory barrier before
4308 * changing the task state if and only if any tasks are woken up.
1da177e4 4309 */
4ede816a
DL
4310void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4311 int nr_exclusive, void *key)
1da177e4
LT
4312{
4313 unsigned long flags;
7d478721 4314 int wake_flags = WF_SYNC;
1da177e4
LT
4315
4316 if (unlikely(!q))
4317 return;
4318
4319 if (unlikely(!nr_exclusive))
7d478721 4320 wake_flags = 0;
1da177e4
LT
4321
4322 spin_lock_irqsave(&q->lock, flags);
7d478721 4323 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4324 spin_unlock_irqrestore(&q->lock, flags);
4325}
4ede816a
DL
4326EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4327
4328/*
4329 * __wake_up_sync - see __wake_up_sync_key()
4330 */
4331void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4332{
4333 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4334}
1da177e4
LT
4335EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4336
65eb3dc6
KD
4337/**
4338 * complete: - signals a single thread waiting on this completion
4339 * @x: holds the state of this particular completion
4340 *
4341 * This will wake up a single thread waiting on this completion. Threads will be
4342 * awakened in the same order in which they were queued.
4343 *
4344 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4345 *
4346 * It may be assumed that this function implies a write memory barrier before
4347 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4348 */
b15136e9 4349void complete(struct completion *x)
1da177e4
LT
4350{
4351 unsigned long flags;
4352
4353 spin_lock_irqsave(&x->wait.lock, flags);
4354 x->done++;
d9514f6c 4355 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4356 spin_unlock_irqrestore(&x->wait.lock, flags);
4357}
4358EXPORT_SYMBOL(complete);
4359
65eb3dc6
KD
4360/**
4361 * complete_all: - signals all threads waiting on this completion
4362 * @x: holds the state of this particular completion
4363 *
4364 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4365 *
4366 * It may be assumed that this function implies a write memory barrier before
4367 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4368 */
b15136e9 4369void complete_all(struct completion *x)
1da177e4
LT
4370{
4371 unsigned long flags;
4372
4373 spin_lock_irqsave(&x->wait.lock, flags);
4374 x->done += UINT_MAX/2;
d9514f6c 4375 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4376 spin_unlock_irqrestore(&x->wait.lock, flags);
4377}
4378EXPORT_SYMBOL(complete_all);
4379
8cbbe86d
AK
4380static inline long __sched
4381do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4382{
1da177e4
LT
4383 if (!x->done) {
4384 DECLARE_WAITQUEUE(wait, current);
4385
a93d2f17 4386 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4387 do {
94d3d824 4388 if (signal_pending_state(state, current)) {
ea71a546
ON
4389 timeout = -ERESTARTSYS;
4390 break;
8cbbe86d
AK
4391 }
4392 __set_current_state(state);
1da177e4
LT
4393 spin_unlock_irq(&x->wait.lock);
4394 timeout = schedule_timeout(timeout);
4395 spin_lock_irq(&x->wait.lock);
ea71a546 4396 } while (!x->done && timeout);
1da177e4 4397 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4398 if (!x->done)
4399 return timeout;
1da177e4
LT
4400 }
4401 x->done--;
ea71a546 4402 return timeout ?: 1;
1da177e4 4403}
1da177e4 4404
8cbbe86d
AK
4405static long __sched
4406wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4407{
1da177e4
LT
4408 might_sleep();
4409
4410 spin_lock_irq(&x->wait.lock);
8cbbe86d 4411 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4412 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4413 return timeout;
4414}
1da177e4 4415
65eb3dc6
KD
4416/**
4417 * wait_for_completion: - waits for completion of a task
4418 * @x: holds the state of this particular completion
4419 *
4420 * This waits to be signaled for completion of a specific task. It is NOT
4421 * interruptible and there is no timeout.
4422 *
4423 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4424 * and interrupt capability. Also see complete().
4425 */
b15136e9 4426void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4427{
4428 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4429}
8cbbe86d 4430EXPORT_SYMBOL(wait_for_completion);
1da177e4 4431
65eb3dc6
KD
4432/**
4433 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4434 * @x: holds the state of this particular completion
4435 * @timeout: timeout value in jiffies
4436 *
4437 * This waits for either a completion of a specific task to be signaled or for a
4438 * specified timeout to expire. The timeout is in jiffies. It is not
4439 * interruptible.
4440 */
b15136e9 4441unsigned long __sched
8cbbe86d 4442wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4443{
8cbbe86d 4444 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4445}
8cbbe86d 4446EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4447
65eb3dc6
KD
4448/**
4449 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4450 * @x: holds the state of this particular completion
4451 *
4452 * This waits for completion of a specific task to be signaled. It is
4453 * interruptible.
4454 */
8cbbe86d 4455int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4456{
51e97990
AK
4457 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4458 if (t == -ERESTARTSYS)
4459 return t;
4460 return 0;
0fec171c 4461}
8cbbe86d 4462EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4463
65eb3dc6
KD
4464/**
4465 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4466 * @x: holds the state of this particular completion
4467 * @timeout: timeout value in jiffies
4468 *
4469 * This waits for either a completion of a specific task to be signaled or for a
4470 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4471 */
b15136e9 4472unsigned long __sched
8cbbe86d
AK
4473wait_for_completion_interruptible_timeout(struct completion *x,
4474 unsigned long timeout)
0fec171c 4475{
8cbbe86d 4476 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4477}
8cbbe86d 4478EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4479
65eb3dc6
KD
4480/**
4481 * wait_for_completion_killable: - waits for completion of a task (killable)
4482 * @x: holds the state of this particular completion
4483 *
4484 * This waits to be signaled for completion of a specific task. It can be
4485 * interrupted by a kill signal.
4486 */
009e577e
MW
4487int __sched wait_for_completion_killable(struct completion *x)
4488{
4489 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4490 if (t == -ERESTARTSYS)
4491 return t;
4492 return 0;
4493}
4494EXPORT_SYMBOL(wait_for_completion_killable);
4495
0aa12fb4
SW
4496/**
4497 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4498 * @x: holds the state of this particular completion
4499 * @timeout: timeout value in jiffies
4500 *
4501 * This waits for either a completion of a specific task to be
4502 * signaled or for a specified timeout to expire. It can be
4503 * interrupted by a kill signal. The timeout is in jiffies.
4504 */
4505unsigned long __sched
4506wait_for_completion_killable_timeout(struct completion *x,
4507 unsigned long timeout)
4508{
4509 return wait_for_common(x, timeout, TASK_KILLABLE);
4510}
4511EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4512
be4de352
DC
4513/**
4514 * try_wait_for_completion - try to decrement a completion without blocking
4515 * @x: completion structure
4516 *
4517 * Returns: 0 if a decrement cannot be done without blocking
4518 * 1 if a decrement succeeded.
4519 *
4520 * If a completion is being used as a counting completion,
4521 * attempt to decrement the counter without blocking. This
4522 * enables us to avoid waiting if the resource the completion
4523 * is protecting is not available.
4524 */
4525bool try_wait_for_completion(struct completion *x)
4526{
7539a3b3 4527 unsigned long flags;
be4de352
DC
4528 int ret = 1;
4529
7539a3b3 4530 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4531 if (!x->done)
4532 ret = 0;
4533 else
4534 x->done--;
7539a3b3 4535 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4536 return ret;
4537}
4538EXPORT_SYMBOL(try_wait_for_completion);
4539
4540/**
4541 * completion_done - Test to see if a completion has any waiters
4542 * @x: completion structure
4543 *
4544 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4545 * 1 if there are no waiters.
4546 *
4547 */
4548bool completion_done(struct completion *x)
4549{
7539a3b3 4550 unsigned long flags;
be4de352
DC
4551 int ret = 1;
4552
7539a3b3 4553 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4554 if (!x->done)
4555 ret = 0;
7539a3b3 4556 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4557 return ret;
4558}
4559EXPORT_SYMBOL(completion_done);
4560
8cbbe86d
AK
4561static long __sched
4562sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4563{
0fec171c
IM
4564 unsigned long flags;
4565 wait_queue_t wait;
4566
4567 init_waitqueue_entry(&wait, current);
1da177e4 4568
8cbbe86d 4569 __set_current_state(state);
1da177e4 4570
8cbbe86d
AK
4571 spin_lock_irqsave(&q->lock, flags);
4572 __add_wait_queue(q, &wait);
4573 spin_unlock(&q->lock);
4574 timeout = schedule_timeout(timeout);
4575 spin_lock_irq(&q->lock);
4576 __remove_wait_queue(q, &wait);
4577 spin_unlock_irqrestore(&q->lock, flags);
4578
4579 return timeout;
4580}
4581
4582void __sched interruptible_sleep_on(wait_queue_head_t *q)
4583{
4584 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4585}
1da177e4
LT
4586EXPORT_SYMBOL(interruptible_sleep_on);
4587
0fec171c 4588long __sched
95cdf3b7 4589interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4590{
8cbbe86d 4591 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4592}
1da177e4
LT
4593EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4594
0fec171c 4595void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4596{
8cbbe86d 4597 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4598}
1da177e4
LT
4599EXPORT_SYMBOL(sleep_on);
4600
0fec171c 4601long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4602{
8cbbe86d 4603 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4604}
1da177e4
LT
4605EXPORT_SYMBOL(sleep_on_timeout);
4606
b29739f9
IM
4607#ifdef CONFIG_RT_MUTEXES
4608
4609/*
4610 * rt_mutex_setprio - set the current priority of a task
4611 * @p: task
4612 * @prio: prio value (kernel-internal form)
4613 *
4614 * This function changes the 'effective' priority of a task. It does
4615 * not touch ->normal_prio like __setscheduler().
4616 *
4617 * Used by the rt_mutex code to implement priority inheritance logic.
4618 */
36c8b586 4619void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4620{
4621 unsigned long flags;
83b699ed 4622 int oldprio, on_rq, running;
70b97a7f 4623 struct rq *rq;
83ab0aa0 4624 const struct sched_class *prev_class;
b29739f9
IM
4625
4626 BUG_ON(prio < 0 || prio > MAX_PRIO);
4627
4628 rq = task_rq_lock(p, &flags);
4629
a8027073 4630 trace_sched_pi_setprio(p, prio);
d5f9f942 4631 oldprio = p->prio;
83ab0aa0 4632 prev_class = p->sched_class;
dd41f596 4633 on_rq = p->se.on_rq;
051a1d1a 4634 running = task_current(rq, p);
0e1f3483 4635 if (on_rq)
69be72c1 4636 dequeue_task(rq, p, 0);
0e1f3483
HS
4637 if (running)
4638 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4639
4640 if (rt_prio(prio))
4641 p->sched_class = &rt_sched_class;
4642 else
4643 p->sched_class = &fair_sched_class;
4644
b29739f9
IM
4645 p->prio = prio;
4646
0e1f3483
HS
4647 if (running)
4648 p->sched_class->set_curr_task(rq);
dd41f596 4649 if (on_rq) {
371fd7e7 4650 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4651
4652 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4653 }
4654 task_rq_unlock(rq, &flags);
4655}
4656
4657#endif
4658
36c8b586 4659void set_user_nice(struct task_struct *p, long nice)
1da177e4 4660{
dd41f596 4661 int old_prio, delta, on_rq;
1da177e4 4662 unsigned long flags;
70b97a7f 4663 struct rq *rq;
1da177e4
LT
4664
4665 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4666 return;
4667 /*
4668 * We have to be careful, if called from sys_setpriority(),
4669 * the task might be in the middle of scheduling on another CPU.
4670 */
4671 rq = task_rq_lock(p, &flags);
4672 /*
4673 * The RT priorities are set via sched_setscheduler(), but we still
4674 * allow the 'normal' nice value to be set - but as expected
4675 * it wont have any effect on scheduling until the task is
dd41f596 4676 * SCHED_FIFO/SCHED_RR:
1da177e4 4677 */
e05606d3 4678 if (task_has_rt_policy(p)) {
1da177e4
LT
4679 p->static_prio = NICE_TO_PRIO(nice);
4680 goto out_unlock;
4681 }
dd41f596 4682 on_rq = p->se.on_rq;
c09595f6 4683 if (on_rq)
69be72c1 4684 dequeue_task(rq, p, 0);
1da177e4 4685
1da177e4 4686 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4687 set_load_weight(p);
b29739f9
IM
4688 old_prio = p->prio;
4689 p->prio = effective_prio(p);
4690 delta = p->prio - old_prio;
1da177e4 4691
dd41f596 4692 if (on_rq) {
371fd7e7 4693 enqueue_task(rq, p, 0);
1da177e4 4694 /*
d5f9f942
AM
4695 * If the task increased its priority or is running and
4696 * lowered its priority, then reschedule its CPU:
1da177e4 4697 */
d5f9f942 4698 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4699 resched_task(rq->curr);
4700 }
4701out_unlock:
4702 task_rq_unlock(rq, &flags);
4703}
1da177e4
LT
4704EXPORT_SYMBOL(set_user_nice);
4705
e43379f1
MM
4706/*
4707 * can_nice - check if a task can reduce its nice value
4708 * @p: task
4709 * @nice: nice value
4710 */
36c8b586 4711int can_nice(const struct task_struct *p, const int nice)
e43379f1 4712{
024f4747
MM
4713 /* convert nice value [19,-20] to rlimit style value [1,40] */
4714 int nice_rlim = 20 - nice;
48f24c4d 4715
78d7d407 4716 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4717 capable(CAP_SYS_NICE));
4718}
4719
1da177e4
LT
4720#ifdef __ARCH_WANT_SYS_NICE
4721
4722/*
4723 * sys_nice - change the priority of the current process.
4724 * @increment: priority increment
4725 *
4726 * sys_setpriority is a more generic, but much slower function that
4727 * does similar things.
4728 */
5add95d4 4729SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4730{
48f24c4d 4731 long nice, retval;
1da177e4
LT
4732
4733 /*
4734 * Setpriority might change our priority at the same moment.
4735 * We don't have to worry. Conceptually one call occurs first
4736 * and we have a single winner.
4737 */
e43379f1
MM
4738 if (increment < -40)
4739 increment = -40;
1da177e4
LT
4740 if (increment > 40)
4741 increment = 40;
4742
2b8f836f 4743 nice = TASK_NICE(current) + increment;
1da177e4
LT
4744 if (nice < -20)
4745 nice = -20;
4746 if (nice > 19)
4747 nice = 19;
4748
e43379f1
MM
4749 if (increment < 0 && !can_nice(current, nice))
4750 return -EPERM;
4751
1da177e4
LT
4752 retval = security_task_setnice(current, nice);
4753 if (retval)
4754 return retval;
4755
4756 set_user_nice(current, nice);
4757 return 0;
4758}
4759
4760#endif
4761
4762/**
4763 * task_prio - return the priority value of a given task.
4764 * @p: the task in question.
4765 *
4766 * This is the priority value as seen by users in /proc.
4767 * RT tasks are offset by -200. Normal tasks are centered
4768 * around 0, value goes from -16 to +15.
4769 */
36c8b586 4770int task_prio(const struct task_struct *p)
1da177e4
LT
4771{
4772 return p->prio - MAX_RT_PRIO;
4773}
4774
4775/**
4776 * task_nice - return the nice value of a given task.
4777 * @p: the task in question.
4778 */
36c8b586 4779int task_nice(const struct task_struct *p)
1da177e4
LT
4780{
4781 return TASK_NICE(p);
4782}
150d8bed 4783EXPORT_SYMBOL(task_nice);
1da177e4
LT
4784
4785/**
4786 * idle_cpu - is a given cpu idle currently?
4787 * @cpu: the processor in question.
4788 */
4789int idle_cpu(int cpu)
4790{
4791 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4792}
4793
1da177e4
LT
4794/**
4795 * idle_task - return the idle task for a given cpu.
4796 * @cpu: the processor in question.
4797 */
36c8b586 4798struct task_struct *idle_task(int cpu)
1da177e4
LT
4799{
4800 return cpu_rq(cpu)->idle;
4801}
4802
4803/**
4804 * find_process_by_pid - find a process with a matching PID value.
4805 * @pid: the pid in question.
4806 */
a9957449 4807static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4808{
228ebcbe 4809 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4810}
4811
4812/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4813static void
4814__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4815{
dd41f596 4816 BUG_ON(p->se.on_rq);
48f24c4d 4817
1da177e4
LT
4818 p->policy = policy;
4819 p->rt_priority = prio;
b29739f9
IM
4820 p->normal_prio = normal_prio(p);
4821 /* we are holding p->pi_lock already */
4822 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4823 if (rt_prio(p->prio))
4824 p->sched_class = &rt_sched_class;
4825 else
4826 p->sched_class = &fair_sched_class;
2dd73a4f 4827 set_load_weight(p);
1da177e4
LT
4828}
4829
c69e8d9c
DH
4830/*
4831 * check the target process has a UID that matches the current process's
4832 */
4833static bool check_same_owner(struct task_struct *p)
4834{
4835 const struct cred *cred = current_cred(), *pcred;
4836 bool match;
4837
4838 rcu_read_lock();
4839 pcred = __task_cred(p);
4840 match = (cred->euid == pcred->euid ||
4841 cred->euid == pcred->uid);
4842 rcu_read_unlock();
4843 return match;
4844}
4845
961ccddd
RR
4846static int __sched_setscheduler(struct task_struct *p, int policy,
4847 struct sched_param *param, bool user)
1da177e4 4848{
83b699ed 4849 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4850 unsigned long flags;
83ab0aa0 4851 const struct sched_class *prev_class;
70b97a7f 4852 struct rq *rq;
ca94c442 4853 int reset_on_fork;
1da177e4 4854
66e5393a
SR
4855 /* may grab non-irq protected spin_locks */
4856 BUG_ON(in_interrupt());
1da177e4
LT
4857recheck:
4858 /* double check policy once rq lock held */
ca94c442
LP
4859 if (policy < 0) {
4860 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4861 policy = oldpolicy = p->policy;
ca94c442
LP
4862 } else {
4863 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4864 policy &= ~SCHED_RESET_ON_FORK;
4865
4866 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4867 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4868 policy != SCHED_IDLE)
4869 return -EINVAL;
4870 }
4871
1da177e4
LT
4872 /*
4873 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4874 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4875 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4876 */
4877 if (param->sched_priority < 0 ||
95cdf3b7 4878 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4879 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4880 return -EINVAL;
e05606d3 4881 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4882 return -EINVAL;
4883
37e4ab3f
OC
4884 /*
4885 * Allow unprivileged RT tasks to decrease priority:
4886 */
961ccddd 4887 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4888 if (rt_policy(policy)) {
a44702e8
ON
4889 unsigned long rlim_rtprio =
4890 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4891
4892 /* can't set/change the rt policy */
4893 if (policy != p->policy && !rlim_rtprio)
4894 return -EPERM;
4895
4896 /* can't increase priority */
4897 if (param->sched_priority > p->rt_priority &&
4898 param->sched_priority > rlim_rtprio)
4899 return -EPERM;
4900 }
dd41f596
IM
4901 /*
4902 * Like positive nice levels, dont allow tasks to
4903 * move out of SCHED_IDLE either:
4904 */
4905 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4906 return -EPERM;
5fe1d75f 4907
37e4ab3f 4908 /* can't change other user's priorities */
c69e8d9c 4909 if (!check_same_owner(p))
37e4ab3f 4910 return -EPERM;
ca94c442
LP
4911
4912 /* Normal users shall not reset the sched_reset_on_fork flag */
4913 if (p->sched_reset_on_fork && !reset_on_fork)
4914 return -EPERM;
37e4ab3f 4915 }
1da177e4 4916
725aad24 4917 if (user) {
b0ae1981 4918 retval = security_task_setscheduler(p);
725aad24
JF
4919 if (retval)
4920 return retval;
4921 }
4922
b29739f9
IM
4923 /*
4924 * make sure no PI-waiters arrive (or leave) while we are
4925 * changing the priority of the task:
4926 */
1d615482 4927 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4928 /*
4929 * To be able to change p->policy safely, the apropriate
4930 * runqueue lock must be held.
4931 */
b29739f9 4932 rq = __task_rq_lock(p);
dc61b1d6 4933
34f971f6
PZ
4934 /*
4935 * Changing the policy of the stop threads its a very bad idea
4936 */
4937 if (p == rq->stop) {
4938 __task_rq_unlock(rq);
4939 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4940 return -EINVAL;
4941 }
4942
dc61b1d6
PZ
4943#ifdef CONFIG_RT_GROUP_SCHED
4944 if (user) {
4945 /*
4946 * Do not allow realtime tasks into groups that have no runtime
4947 * assigned.
4948 */
4949 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4950 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4951 __task_rq_unlock(rq);
4952 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4953 return -EPERM;
4954 }
4955 }
4956#endif
4957
1da177e4
LT
4958 /* recheck policy now with rq lock held */
4959 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4960 policy = oldpolicy = -1;
b29739f9 4961 __task_rq_unlock(rq);
1d615482 4962 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4963 goto recheck;
4964 }
dd41f596 4965 on_rq = p->se.on_rq;
051a1d1a 4966 running = task_current(rq, p);
0e1f3483 4967 if (on_rq)
2e1cb74a 4968 deactivate_task(rq, p, 0);
0e1f3483
HS
4969 if (running)
4970 p->sched_class->put_prev_task(rq, p);
f6b53205 4971
ca94c442
LP
4972 p->sched_reset_on_fork = reset_on_fork;
4973
1da177e4 4974 oldprio = p->prio;
83ab0aa0 4975 prev_class = p->sched_class;
dd41f596 4976 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4977
0e1f3483
HS
4978 if (running)
4979 p->sched_class->set_curr_task(rq);
dd41f596
IM
4980 if (on_rq) {
4981 activate_task(rq, p, 0);
cb469845
SR
4982
4983 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4984 }
b29739f9 4985 __task_rq_unlock(rq);
1d615482 4986 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4987
95e02ca9
TG
4988 rt_mutex_adjust_pi(p);
4989
1da177e4
LT
4990 return 0;
4991}
961ccddd
RR
4992
4993/**
4994 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4995 * @p: the task in question.
4996 * @policy: new policy.
4997 * @param: structure containing the new RT priority.
4998 *
4999 * NOTE that the task may be already dead.
5000 */
5001int sched_setscheduler(struct task_struct *p, int policy,
5002 struct sched_param *param)
5003{
5004 return __sched_setscheduler(p, policy, param, true);
5005}
1da177e4
LT
5006EXPORT_SYMBOL_GPL(sched_setscheduler);
5007
961ccddd
RR
5008/**
5009 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5010 * @p: the task in question.
5011 * @policy: new policy.
5012 * @param: structure containing the new RT priority.
5013 *
5014 * Just like sched_setscheduler, only don't bother checking if the
5015 * current context has permission. For example, this is needed in
5016 * stop_machine(): we create temporary high priority worker threads,
5017 * but our caller might not have that capability.
5018 */
5019int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5020 struct sched_param *param)
5021{
5022 return __sched_setscheduler(p, policy, param, false);
5023}
5024
95cdf3b7
IM
5025static int
5026do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5027{
1da177e4
LT
5028 struct sched_param lparam;
5029 struct task_struct *p;
36c8b586 5030 int retval;
1da177e4
LT
5031
5032 if (!param || pid < 0)
5033 return -EINVAL;
5034 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5035 return -EFAULT;
5fe1d75f
ON
5036
5037 rcu_read_lock();
5038 retval = -ESRCH;
1da177e4 5039 p = find_process_by_pid(pid);
5fe1d75f
ON
5040 if (p != NULL)
5041 retval = sched_setscheduler(p, policy, &lparam);
5042 rcu_read_unlock();
36c8b586 5043
1da177e4
LT
5044 return retval;
5045}
5046
5047/**
5048 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5049 * @pid: the pid in question.
5050 * @policy: new policy.
5051 * @param: structure containing the new RT priority.
5052 */
5add95d4
HC
5053SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5054 struct sched_param __user *, param)
1da177e4 5055{
c21761f1
JB
5056 /* negative values for policy are not valid */
5057 if (policy < 0)
5058 return -EINVAL;
5059
1da177e4
LT
5060 return do_sched_setscheduler(pid, policy, param);
5061}
5062
5063/**
5064 * sys_sched_setparam - set/change the RT priority of a thread
5065 * @pid: the pid in question.
5066 * @param: structure containing the new RT priority.
5067 */
5add95d4 5068SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5069{
5070 return do_sched_setscheduler(pid, -1, param);
5071}
5072
5073/**
5074 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5075 * @pid: the pid in question.
5076 */
5add95d4 5077SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5078{
36c8b586 5079 struct task_struct *p;
3a5c359a 5080 int retval;
1da177e4
LT
5081
5082 if (pid < 0)
3a5c359a 5083 return -EINVAL;
1da177e4
LT
5084
5085 retval = -ESRCH;
5fe85be0 5086 rcu_read_lock();
1da177e4
LT
5087 p = find_process_by_pid(pid);
5088 if (p) {
5089 retval = security_task_getscheduler(p);
5090 if (!retval)
ca94c442
LP
5091 retval = p->policy
5092 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5093 }
5fe85be0 5094 rcu_read_unlock();
1da177e4
LT
5095 return retval;
5096}
5097
5098/**
ca94c442 5099 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5100 * @pid: the pid in question.
5101 * @param: structure containing the RT priority.
5102 */
5add95d4 5103SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5104{
5105 struct sched_param lp;
36c8b586 5106 struct task_struct *p;
3a5c359a 5107 int retval;
1da177e4
LT
5108
5109 if (!param || pid < 0)
3a5c359a 5110 return -EINVAL;
1da177e4 5111
5fe85be0 5112 rcu_read_lock();
1da177e4
LT
5113 p = find_process_by_pid(pid);
5114 retval = -ESRCH;
5115 if (!p)
5116 goto out_unlock;
5117
5118 retval = security_task_getscheduler(p);
5119 if (retval)
5120 goto out_unlock;
5121
5122 lp.sched_priority = p->rt_priority;
5fe85be0 5123 rcu_read_unlock();
1da177e4
LT
5124
5125 /*
5126 * This one might sleep, we cannot do it with a spinlock held ...
5127 */
5128 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5129
1da177e4
LT
5130 return retval;
5131
5132out_unlock:
5fe85be0 5133 rcu_read_unlock();
1da177e4
LT
5134 return retval;
5135}
5136
96f874e2 5137long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5138{
5a16f3d3 5139 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5140 struct task_struct *p;
5141 int retval;
1da177e4 5142
95402b38 5143 get_online_cpus();
23f5d142 5144 rcu_read_lock();
1da177e4
LT
5145
5146 p = find_process_by_pid(pid);
5147 if (!p) {
23f5d142 5148 rcu_read_unlock();
95402b38 5149 put_online_cpus();
1da177e4
LT
5150 return -ESRCH;
5151 }
5152
23f5d142 5153 /* Prevent p going away */
1da177e4 5154 get_task_struct(p);
23f5d142 5155 rcu_read_unlock();
1da177e4 5156
5a16f3d3
RR
5157 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5158 retval = -ENOMEM;
5159 goto out_put_task;
5160 }
5161 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5162 retval = -ENOMEM;
5163 goto out_free_cpus_allowed;
5164 }
1da177e4 5165 retval = -EPERM;
c69e8d9c 5166 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5167 goto out_unlock;
5168
b0ae1981 5169 retval = security_task_setscheduler(p);
e7834f8f
DQ
5170 if (retval)
5171 goto out_unlock;
5172
5a16f3d3
RR
5173 cpuset_cpus_allowed(p, cpus_allowed);
5174 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5175again:
5a16f3d3 5176 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5177
8707d8b8 5178 if (!retval) {
5a16f3d3
RR
5179 cpuset_cpus_allowed(p, cpus_allowed);
5180 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5181 /*
5182 * We must have raced with a concurrent cpuset
5183 * update. Just reset the cpus_allowed to the
5184 * cpuset's cpus_allowed
5185 */
5a16f3d3 5186 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5187 goto again;
5188 }
5189 }
1da177e4 5190out_unlock:
5a16f3d3
RR
5191 free_cpumask_var(new_mask);
5192out_free_cpus_allowed:
5193 free_cpumask_var(cpus_allowed);
5194out_put_task:
1da177e4 5195 put_task_struct(p);
95402b38 5196 put_online_cpus();
1da177e4
LT
5197 return retval;
5198}
5199
5200static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5201 struct cpumask *new_mask)
1da177e4 5202{
96f874e2
RR
5203 if (len < cpumask_size())
5204 cpumask_clear(new_mask);
5205 else if (len > cpumask_size())
5206 len = cpumask_size();
5207
1da177e4
LT
5208 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5209}
5210
5211/**
5212 * sys_sched_setaffinity - set the cpu affinity of a process
5213 * @pid: pid of the process
5214 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5215 * @user_mask_ptr: user-space pointer to the new cpu mask
5216 */
5add95d4
HC
5217SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5218 unsigned long __user *, user_mask_ptr)
1da177e4 5219{
5a16f3d3 5220 cpumask_var_t new_mask;
1da177e4
LT
5221 int retval;
5222
5a16f3d3
RR
5223 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5224 return -ENOMEM;
1da177e4 5225
5a16f3d3
RR
5226 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5227 if (retval == 0)
5228 retval = sched_setaffinity(pid, new_mask);
5229 free_cpumask_var(new_mask);
5230 return retval;
1da177e4
LT
5231}
5232
96f874e2 5233long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5234{
36c8b586 5235 struct task_struct *p;
31605683
TG
5236 unsigned long flags;
5237 struct rq *rq;
1da177e4 5238 int retval;
1da177e4 5239
95402b38 5240 get_online_cpus();
23f5d142 5241 rcu_read_lock();
1da177e4
LT
5242
5243 retval = -ESRCH;
5244 p = find_process_by_pid(pid);
5245 if (!p)
5246 goto out_unlock;
5247
e7834f8f
DQ
5248 retval = security_task_getscheduler(p);
5249 if (retval)
5250 goto out_unlock;
5251
31605683 5252 rq = task_rq_lock(p, &flags);
96f874e2 5253 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5254 task_rq_unlock(rq, &flags);
1da177e4
LT
5255
5256out_unlock:
23f5d142 5257 rcu_read_unlock();
95402b38 5258 put_online_cpus();
1da177e4 5259
9531b62f 5260 return retval;
1da177e4
LT
5261}
5262
5263/**
5264 * sys_sched_getaffinity - get the cpu affinity of a process
5265 * @pid: pid of the process
5266 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5267 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5268 */
5add95d4
HC
5269SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5270 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5271{
5272 int ret;
f17c8607 5273 cpumask_var_t mask;
1da177e4 5274
84fba5ec 5275 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5276 return -EINVAL;
5277 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5278 return -EINVAL;
5279
f17c8607
RR
5280 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5281 return -ENOMEM;
1da177e4 5282
f17c8607
RR
5283 ret = sched_getaffinity(pid, mask);
5284 if (ret == 0) {
8bc037fb 5285 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5286
5287 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5288 ret = -EFAULT;
5289 else
cd3d8031 5290 ret = retlen;
f17c8607
RR
5291 }
5292 free_cpumask_var(mask);
1da177e4 5293
f17c8607 5294 return ret;
1da177e4
LT
5295}
5296
5297/**
5298 * sys_sched_yield - yield the current processor to other threads.
5299 *
dd41f596
IM
5300 * This function yields the current CPU to other tasks. If there are no
5301 * other threads running on this CPU then this function will return.
1da177e4 5302 */
5add95d4 5303SYSCALL_DEFINE0(sched_yield)
1da177e4 5304{
70b97a7f 5305 struct rq *rq = this_rq_lock();
1da177e4 5306
2d72376b 5307 schedstat_inc(rq, yld_count);
4530d7ab 5308 current->sched_class->yield_task(rq);
1da177e4
LT
5309
5310 /*
5311 * Since we are going to call schedule() anyway, there's
5312 * no need to preempt or enable interrupts:
5313 */
5314 __release(rq->lock);
8a25d5de 5315 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5316 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5317 preempt_enable_no_resched();
5318
5319 schedule();
5320
5321 return 0;
5322}
5323
d86ee480
PZ
5324static inline int should_resched(void)
5325{
5326 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5327}
5328
e7b38404 5329static void __cond_resched(void)
1da177e4 5330{
e7aaaa69
FW
5331 add_preempt_count(PREEMPT_ACTIVE);
5332 schedule();
5333 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5334}
5335
02b67cc3 5336int __sched _cond_resched(void)
1da177e4 5337{
d86ee480 5338 if (should_resched()) {
1da177e4
LT
5339 __cond_resched();
5340 return 1;
5341 }
5342 return 0;
5343}
02b67cc3 5344EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5345
5346/*
613afbf8 5347 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5348 * call schedule, and on return reacquire the lock.
5349 *
41a2d6cf 5350 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5351 * operations here to prevent schedule() from being called twice (once via
5352 * spin_unlock(), once by hand).
5353 */
613afbf8 5354int __cond_resched_lock(spinlock_t *lock)
1da177e4 5355{
d86ee480 5356 int resched = should_resched();
6df3cecb
JK
5357 int ret = 0;
5358
f607c668
PZ
5359 lockdep_assert_held(lock);
5360
95c354fe 5361 if (spin_needbreak(lock) || resched) {
1da177e4 5362 spin_unlock(lock);
d86ee480 5363 if (resched)
95c354fe
NP
5364 __cond_resched();
5365 else
5366 cpu_relax();
6df3cecb 5367 ret = 1;
1da177e4 5368 spin_lock(lock);
1da177e4 5369 }
6df3cecb 5370 return ret;
1da177e4 5371}
613afbf8 5372EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5373
613afbf8 5374int __sched __cond_resched_softirq(void)
1da177e4
LT
5375{
5376 BUG_ON(!in_softirq());
5377
d86ee480 5378 if (should_resched()) {
98d82567 5379 local_bh_enable();
1da177e4
LT
5380 __cond_resched();
5381 local_bh_disable();
5382 return 1;
5383 }
5384 return 0;
5385}
613afbf8 5386EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5387
1da177e4
LT
5388/**
5389 * yield - yield the current processor to other threads.
5390 *
72fd4a35 5391 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5392 * thread runnable and calls sys_sched_yield().
5393 */
5394void __sched yield(void)
5395{
5396 set_current_state(TASK_RUNNING);
5397 sys_sched_yield();
5398}
1da177e4
LT
5399EXPORT_SYMBOL(yield);
5400
5401/*
41a2d6cf 5402 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5403 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5404 */
5405void __sched io_schedule(void)
5406{
54d35f29 5407 struct rq *rq = raw_rq();
1da177e4 5408
0ff92245 5409 delayacct_blkio_start();
1da177e4 5410 atomic_inc(&rq->nr_iowait);
8f0dfc34 5411 current->in_iowait = 1;
1da177e4 5412 schedule();
8f0dfc34 5413 current->in_iowait = 0;
1da177e4 5414 atomic_dec(&rq->nr_iowait);
0ff92245 5415 delayacct_blkio_end();
1da177e4 5416}
1da177e4
LT
5417EXPORT_SYMBOL(io_schedule);
5418
5419long __sched io_schedule_timeout(long timeout)
5420{
54d35f29 5421 struct rq *rq = raw_rq();
1da177e4
LT
5422 long ret;
5423
0ff92245 5424 delayacct_blkio_start();
1da177e4 5425 atomic_inc(&rq->nr_iowait);
8f0dfc34 5426 current->in_iowait = 1;
1da177e4 5427 ret = schedule_timeout(timeout);
8f0dfc34 5428 current->in_iowait = 0;
1da177e4 5429 atomic_dec(&rq->nr_iowait);
0ff92245 5430 delayacct_blkio_end();
1da177e4
LT
5431 return ret;
5432}
5433
5434/**
5435 * sys_sched_get_priority_max - return maximum RT priority.
5436 * @policy: scheduling class.
5437 *
5438 * this syscall returns the maximum rt_priority that can be used
5439 * by a given scheduling class.
5440 */
5add95d4 5441SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5442{
5443 int ret = -EINVAL;
5444
5445 switch (policy) {
5446 case SCHED_FIFO:
5447 case SCHED_RR:
5448 ret = MAX_USER_RT_PRIO-1;
5449 break;
5450 case SCHED_NORMAL:
b0a9499c 5451 case SCHED_BATCH:
dd41f596 5452 case SCHED_IDLE:
1da177e4
LT
5453 ret = 0;
5454 break;
5455 }
5456 return ret;
5457}
5458
5459/**
5460 * sys_sched_get_priority_min - return minimum RT priority.
5461 * @policy: scheduling class.
5462 *
5463 * this syscall returns the minimum rt_priority that can be used
5464 * by a given scheduling class.
5465 */
5add95d4 5466SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5467{
5468 int ret = -EINVAL;
5469
5470 switch (policy) {
5471 case SCHED_FIFO:
5472 case SCHED_RR:
5473 ret = 1;
5474 break;
5475 case SCHED_NORMAL:
b0a9499c 5476 case SCHED_BATCH:
dd41f596 5477 case SCHED_IDLE:
1da177e4
LT
5478 ret = 0;
5479 }
5480 return ret;
5481}
5482
5483/**
5484 * sys_sched_rr_get_interval - return the default timeslice of a process.
5485 * @pid: pid of the process.
5486 * @interval: userspace pointer to the timeslice value.
5487 *
5488 * this syscall writes the default timeslice value of a given process
5489 * into the user-space timespec buffer. A value of '0' means infinity.
5490 */
17da2bd9 5491SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5492 struct timespec __user *, interval)
1da177e4 5493{
36c8b586 5494 struct task_struct *p;
a4ec24b4 5495 unsigned int time_slice;
dba091b9
TG
5496 unsigned long flags;
5497 struct rq *rq;
3a5c359a 5498 int retval;
1da177e4 5499 struct timespec t;
1da177e4
LT
5500
5501 if (pid < 0)
3a5c359a 5502 return -EINVAL;
1da177e4
LT
5503
5504 retval = -ESRCH;
1a551ae7 5505 rcu_read_lock();
1da177e4
LT
5506 p = find_process_by_pid(pid);
5507 if (!p)
5508 goto out_unlock;
5509
5510 retval = security_task_getscheduler(p);
5511 if (retval)
5512 goto out_unlock;
5513
dba091b9
TG
5514 rq = task_rq_lock(p, &flags);
5515 time_slice = p->sched_class->get_rr_interval(rq, p);
5516 task_rq_unlock(rq, &flags);
a4ec24b4 5517
1a551ae7 5518 rcu_read_unlock();
a4ec24b4 5519 jiffies_to_timespec(time_slice, &t);
1da177e4 5520 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5521 return retval;
3a5c359a 5522
1da177e4 5523out_unlock:
1a551ae7 5524 rcu_read_unlock();
1da177e4
LT
5525 return retval;
5526}
5527
7c731e0a 5528static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5529
82a1fcb9 5530void sched_show_task(struct task_struct *p)
1da177e4 5531{
1da177e4 5532 unsigned long free = 0;
36c8b586 5533 unsigned state;
1da177e4 5534
1da177e4 5535 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5536 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5537 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5538#if BITS_PER_LONG == 32
1da177e4 5539 if (state == TASK_RUNNING)
3df0fc5b 5540 printk(KERN_CONT " running ");
1da177e4 5541 else
3df0fc5b 5542 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5543#else
5544 if (state == TASK_RUNNING)
3df0fc5b 5545 printk(KERN_CONT " running task ");
1da177e4 5546 else
3df0fc5b 5547 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5548#endif
5549#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5550 free = stack_not_used(p);
1da177e4 5551#endif
3df0fc5b 5552 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5553 task_pid_nr(p), task_pid_nr(p->real_parent),
5554 (unsigned long)task_thread_info(p)->flags);
1da177e4 5555
5fb5e6de 5556 show_stack(p, NULL);
1da177e4
LT
5557}
5558
e59e2ae2 5559void show_state_filter(unsigned long state_filter)
1da177e4 5560{
36c8b586 5561 struct task_struct *g, *p;
1da177e4 5562
4bd77321 5563#if BITS_PER_LONG == 32
3df0fc5b
PZ
5564 printk(KERN_INFO
5565 " task PC stack pid father\n");
1da177e4 5566#else
3df0fc5b
PZ
5567 printk(KERN_INFO
5568 " task PC stack pid father\n");
1da177e4
LT
5569#endif
5570 read_lock(&tasklist_lock);
5571 do_each_thread(g, p) {
5572 /*
5573 * reset the NMI-timeout, listing all files on a slow
5574 * console might take alot of time:
5575 */
5576 touch_nmi_watchdog();
39bc89fd 5577 if (!state_filter || (p->state & state_filter))
82a1fcb9 5578 sched_show_task(p);
1da177e4
LT
5579 } while_each_thread(g, p);
5580
04c9167f
JF
5581 touch_all_softlockup_watchdogs();
5582
dd41f596
IM
5583#ifdef CONFIG_SCHED_DEBUG
5584 sysrq_sched_debug_show();
5585#endif
1da177e4 5586 read_unlock(&tasklist_lock);
e59e2ae2
IM
5587 /*
5588 * Only show locks if all tasks are dumped:
5589 */
93335a21 5590 if (!state_filter)
e59e2ae2 5591 debug_show_all_locks();
1da177e4
LT
5592}
5593
1df21055
IM
5594void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5595{
dd41f596 5596 idle->sched_class = &idle_sched_class;
1df21055
IM
5597}
5598
f340c0d1
IM
5599/**
5600 * init_idle - set up an idle thread for a given CPU
5601 * @idle: task in question
5602 * @cpu: cpu the idle task belongs to
5603 *
5604 * NOTE: this function does not set the idle thread's NEED_RESCHED
5605 * flag, to make booting more robust.
5606 */
5c1e1767 5607void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5608{
70b97a7f 5609 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5610 unsigned long flags;
5611
05fa785c 5612 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5613
dd41f596 5614 __sched_fork(idle);
06b83b5f 5615 idle->state = TASK_RUNNING;
dd41f596
IM
5616 idle->se.exec_start = sched_clock();
5617
96f874e2 5618 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5619 /*
5620 * We're having a chicken and egg problem, even though we are
5621 * holding rq->lock, the cpu isn't yet set to this cpu so the
5622 * lockdep check in task_group() will fail.
5623 *
5624 * Similar case to sched_fork(). / Alternatively we could
5625 * use task_rq_lock() here and obtain the other rq->lock.
5626 *
5627 * Silence PROVE_RCU
5628 */
5629 rcu_read_lock();
dd41f596 5630 __set_task_cpu(idle, cpu);
6506cf6c 5631 rcu_read_unlock();
1da177e4 5632
1da177e4 5633 rq->curr = rq->idle = idle;
4866cde0
NP
5634#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5635 idle->oncpu = 1;
5636#endif
05fa785c 5637 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5638
5639 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5640#if defined(CONFIG_PREEMPT)
5641 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5642#else
a1261f54 5643 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5644#endif
dd41f596
IM
5645 /*
5646 * The idle tasks have their own, simple scheduling class:
5647 */
5648 idle->sched_class = &idle_sched_class;
fb52607a 5649 ftrace_graph_init_task(idle);
1da177e4
LT
5650}
5651
5652/*
5653 * In a system that switches off the HZ timer nohz_cpu_mask
5654 * indicates which cpus entered this state. This is used
5655 * in the rcu update to wait only for active cpus. For system
5656 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5657 * always be CPU_BITS_NONE.
1da177e4 5658 */
6a7b3dc3 5659cpumask_var_t nohz_cpu_mask;
1da177e4 5660
19978ca6
IM
5661/*
5662 * Increase the granularity value when there are more CPUs,
5663 * because with more CPUs the 'effective latency' as visible
5664 * to users decreases. But the relationship is not linear,
5665 * so pick a second-best guess by going with the log2 of the
5666 * number of CPUs.
5667 *
5668 * This idea comes from the SD scheduler of Con Kolivas:
5669 */
acb4a848 5670static int get_update_sysctl_factor(void)
19978ca6 5671{
4ca3ef71 5672 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5673 unsigned int factor;
5674
5675 switch (sysctl_sched_tunable_scaling) {
5676 case SCHED_TUNABLESCALING_NONE:
5677 factor = 1;
5678 break;
5679 case SCHED_TUNABLESCALING_LINEAR:
5680 factor = cpus;
5681 break;
5682 case SCHED_TUNABLESCALING_LOG:
5683 default:
5684 factor = 1 + ilog2(cpus);
5685 break;
5686 }
19978ca6 5687
acb4a848
CE
5688 return factor;
5689}
19978ca6 5690
acb4a848
CE
5691static void update_sysctl(void)
5692{
5693 unsigned int factor = get_update_sysctl_factor();
19978ca6 5694
0bcdcf28
CE
5695#define SET_SYSCTL(name) \
5696 (sysctl_##name = (factor) * normalized_sysctl_##name)
5697 SET_SYSCTL(sched_min_granularity);
5698 SET_SYSCTL(sched_latency);
5699 SET_SYSCTL(sched_wakeup_granularity);
5700 SET_SYSCTL(sched_shares_ratelimit);
5701#undef SET_SYSCTL
5702}
55cd5340 5703
0bcdcf28
CE
5704static inline void sched_init_granularity(void)
5705{
5706 update_sysctl();
19978ca6
IM
5707}
5708
1da177e4
LT
5709#ifdef CONFIG_SMP
5710/*
5711 * This is how migration works:
5712 *
969c7921
TH
5713 * 1) we invoke migration_cpu_stop() on the target CPU using
5714 * stop_one_cpu().
5715 * 2) stopper starts to run (implicitly forcing the migrated thread
5716 * off the CPU)
5717 * 3) it checks whether the migrated task is still in the wrong runqueue.
5718 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5719 * it and puts it into the right queue.
969c7921
TH
5720 * 5) stopper completes and stop_one_cpu() returns and the migration
5721 * is done.
1da177e4
LT
5722 */
5723
5724/*
5725 * Change a given task's CPU affinity. Migrate the thread to a
5726 * proper CPU and schedule it away if the CPU it's executing on
5727 * is removed from the allowed bitmask.
5728 *
5729 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5730 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5731 * call is not atomic; no spinlocks may be held.
5732 */
96f874e2 5733int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5734{
5735 unsigned long flags;
70b97a7f 5736 struct rq *rq;
969c7921 5737 unsigned int dest_cpu;
48f24c4d 5738 int ret = 0;
1da177e4 5739
65cc8e48
PZ
5740 /*
5741 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5742 * drop the rq->lock and still rely on ->cpus_allowed.
5743 */
5744again:
5745 while (task_is_waking(p))
5746 cpu_relax();
1da177e4 5747 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5748 if (task_is_waking(p)) {
5749 task_rq_unlock(rq, &flags);
5750 goto again;
5751 }
e2912009 5752
6ad4c188 5753 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5754 ret = -EINVAL;
5755 goto out;
5756 }
5757
9985b0ba 5758 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5759 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5760 ret = -EINVAL;
5761 goto out;
5762 }
5763
73fe6aae 5764 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5765 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5766 else {
96f874e2
RR
5767 cpumask_copy(&p->cpus_allowed, new_mask);
5768 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5769 }
5770
1da177e4 5771 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5772 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5773 goto out;
5774
969c7921
TH
5775 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5776 if (migrate_task(p, dest_cpu)) {
5777 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5778 /* Need help from migration thread: drop lock and wait. */
5779 task_rq_unlock(rq, &flags);
969c7921 5780 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5781 tlb_migrate_finish(p->mm);
5782 return 0;
5783 }
5784out:
5785 task_rq_unlock(rq, &flags);
48f24c4d 5786
1da177e4
LT
5787 return ret;
5788}
cd8ba7cd 5789EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5790
5791/*
41a2d6cf 5792 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5793 * this because either it can't run here any more (set_cpus_allowed()
5794 * away from this CPU, or CPU going down), or because we're
5795 * attempting to rebalance this task on exec (sched_exec).
5796 *
5797 * So we race with normal scheduler movements, but that's OK, as long
5798 * as the task is no longer on this CPU.
efc30814
KK
5799 *
5800 * Returns non-zero if task was successfully migrated.
1da177e4 5801 */
efc30814 5802static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5803{
70b97a7f 5804 struct rq *rq_dest, *rq_src;
e2912009 5805 int ret = 0;
1da177e4 5806
e761b772 5807 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5808 return ret;
1da177e4
LT
5809
5810 rq_src = cpu_rq(src_cpu);
5811 rq_dest = cpu_rq(dest_cpu);
5812
5813 double_rq_lock(rq_src, rq_dest);
5814 /* Already moved. */
5815 if (task_cpu(p) != src_cpu)
b1e38734 5816 goto done;
1da177e4 5817 /* Affinity changed (again). */
96f874e2 5818 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5819 goto fail;
1da177e4 5820
e2912009
PZ
5821 /*
5822 * If we're not on a rq, the next wake-up will ensure we're
5823 * placed properly.
5824 */
5825 if (p->se.on_rq) {
2e1cb74a 5826 deactivate_task(rq_src, p, 0);
e2912009 5827 set_task_cpu(p, dest_cpu);
dd41f596 5828 activate_task(rq_dest, p, 0);
15afe09b 5829 check_preempt_curr(rq_dest, p, 0);
1da177e4 5830 }
b1e38734 5831done:
efc30814 5832 ret = 1;
b1e38734 5833fail:
1da177e4 5834 double_rq_unlock(rq_src, rq_dest);
efc30814 5835 return ret;
1da177e4
LT
5836}
5837
5838/*
969c7921
TH
5839 * migration_cpu_stop - this will be executed by a highprio stopper thread
5840 * and performs thread migration by bumping thread off CPU then
5841 * 'pushing' onto another runqueue.
1da177e4 5842 */
969c7921 5843static int migration_cpu_stop(void *data)
1da177e4 5844{
969c7921 5845 struct migration_arg *arg = data;
f7b4cddc 5846
969c7921
TH
5847 /*
5848 * The original target cpu might have gone down and we might
5849 * be on another cpu but it doesn't matter.
5850 */
f7b4cddc 5851 local_irq_disable();
969c7921 5852 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5853 local_irq_enable();
1da177e4 5854 return 0;
f7b4cddc
ON
5855}
5856
1da177e4 5857#ifdef CONFIG_HOTPLUG_CPU
054b9108 5858/*
3a4fa0a2 5859 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5860 */
6a1bdc1b 5861void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5862{
1445c08d
ON
5863 struct rq *rq = cpu_rq(dead_cpu);
5864 int needs_cpu, uninitialized_var(dest_cpu);
5865 unsigned long flags;
e76bd8d9 5866
1445c08d 5867 local_irq_save(flags);
e76bd8d9 5868
1445c08d
ON
5869 raw_spin_lock(&rq->lock);
5870 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5871 if (needs_cpu)
5872 dest_cpu = select_fallback_rq(dead_cpu, p);
5873 raw_spin_unlock(&rq->lock);
c1804d54
ON
5874 /*
5875 * It can only fail if we race with set_cpus_allowed(),
5876 * in the racer should migrate the task anyway.
5877 */
1445c08d 5878 if (needs_cpu)
c1804d54 5879 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5880 local_irq_restore(flags);
1da177e4
LT
5881}
5882
5883/*
5884 * While a dead CPU has no uninterruptible tasks queued at this point,
5885 * it might still have a nonzero ->nr_uninterruptible counter, because
5886 * for performance reasons the counter is not stricly tracking tasks to
5887 * their home CPUs. So we just add the counter to another CPU's counter,
5888 * to keep the global sum constant after CPU-down:
5889 */
70b97a7f 5890static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5891{
6ad4c188 5892 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5893 unsigned long flags;
5894
5895 local_irq_save(flags);
5896 double_rq_lock(rq_src, rq_dest);
5897 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5898 rq_src->nr_uninterruptible = 0;
5899 double_rq_unlock(rq_src, rq_dest);
5900 local_irq_restore(flags);
5901}
5902
5903/* Run through task list and migrate tasks from the dead cpu. */
5904static void migrate_live_tasks(int src_cpu)
5905{
48f24c4d 5906 struct task_struct *p, *t;
1da177e4 5907
f7b4cddc 5908 read_lock(&tasklist_lock);
1da177e4 5909
48f24c4d
IM
5910 do_each_thread(t, p) {
5911 if (p == current)
1da177e4
LT
5912 continue;
5913
48f24c4d
IM
5914 if (task_cpu(p) == src_cpu)
5915 move_task_off_dead_cpu(src_cpu, p);
5916 } while_each_thread(t, p);
1da177e4 5917
f7b4cddc 5918 read_unlock(&tasklist_lock);
1da177e4
LT
5919}
5920
dd41f596
IM
5921/*
5922 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5923 * It does so by boosting its priority to highest possible.
5924 * Used by CPU offline code.
1da177e4
LT
5925 */
5926void sched_idle_next(void)
5927{
48f24c4d 5928 int this_cpu = smp_processor_id();
70b97a7f 5929 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5930 struct task_struct *p = rq->idle;
5931 unsigned long flags;
5932
5933 /* cpu has to be offline */
48f24c4d 5934 BUG_ON(cpu_online(this_cpu));
1da177e4 5935
48f24c4d
IM
5936 /*
5937 * Strictly not necessary since rest of the CPUs are stopped by now
5938 * and interrupts disabled on the current cpu.
1da177e4 5939 */
05fa785c 5940 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5941
dd41f596 5942 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5943
94bc9a7b 5944 activate_task(rq, p, 0);
1da177e4 5945
05fa785c 5946 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5947}
5948
48f24c4d
IM
5949/*
5950 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5951 * offline.
5952 */
5953void idle_task_exit(void)
5954{
5955 struct mm_struct *mm = current->active_mm;
5956
5957 BUG_ON(cpu_online(smp_processor_id()));
5958
5959 if (mm != &init_mm)
5960 switch_mm(mm, &init_mm, current);
5961 mmdrop(mm);
5962}
5963
054b9108 5964/* called under rq->lock with disabled interrupts */
36c8b586 5965static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5966{
70b97a7f 5967 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5968
5969 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5970 BUG_ON(!p->exit_state);
1da177e4
LT
5971
5972 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5973 BUG_ON(p->state == TASK_DEAD);
1da177e4 5974
48f24c4d 5975 get_task_struct(p);
1da177e4
LT
5976
5977 /*
5978 * Drop lock around migration; if someone else moves it,
41a2d6cf 5979 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5980 * fine.
5981 */
05fa785c 5982 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5983 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5984 raw_spin_lock_irq(&rq->lock);
1da177e4 5985
48f24c4d 5986 put_task_struct(p);
1da177e4
LT
5987}
5988
5989/* release_task() removes task from tasklist, so we won't find dead tasks. */
5990static void migrate_dead_tasks(unsigned int dead_cpu)
5991{
70b97a7f 5992 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5993 struct task_struct *next;
48f24c4d 5994
dd41f596
IM
5995 for ( ; ; ) {
5996 if (!rq->nr_running)
5997 break;
b67802ea 5998 next = pick_next_task(rq);
dd41f596
IM
5999 if (!next)
6000 break;
79c53799 6001 next->sched_class->put_prev_task(rq, next);
dd41f596 6002 migrate_dead(dead_cpu, next);
e692ab53 6003
1da177e4
LT
6004 }
6005}
dce48a84
TG
6006
6007/*
6008 * remove the tasks which were accounted by rq from calc_load_tasks.
6009 */
6010static void calc_global_load_remove(struct rq *rq)
6011{
6012 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 6013 rq->calc_load_active = 0;
dce48a84 6014}
1da177e4
LT
6015#endif /* CONFIG_HOTPLUG_CPU */
6016
e692ab53
NP
6017#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6018
6019static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6020 {
6021 .procname = "sched_domain",
c57baf1e 6022 .mode = 0555,
e0361851 6023 },
56992309 6024 {}
e692ab53
NP
6025};
6026
6027static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6028 {
6029 .procname = "kernel",
c57baf1e 6030 .mode = 0555,
e0361851
AD
6031 .child = sd_ctl_dir,
6032 },
56992309 6033 {}
e692ab53
NP
6034};
6035
6036static struct ctl_table *sd_alloc_ctl_entry(int n)
6037{
6038 struct ctl_table *entry =
5cf9f062 6039 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6040
e692ab53
NP
6041 return entry;
6042}
6043
6382bc90
MM
6044static void sd_free_ctl_entry(struct ctl_table **tablep)
6045{
cd790076 6046 struct ctl_table *entry;
6382bc90 6047
cd790076
MM
6048 /*
6049 * In the intermediate directories, both the child directory and
6050 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6051 * will always be set. In the lowest directory the names are
cd790076
MM
6052 * static strings and all have proc handlers.
6053 */
6054 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6055 if (entry->child)
6056 sd_free_ctl_entry(&entry->child);
cd790076
MM
6057 if (entry->proc_handler == NULL)
6058 kfree(entry->procname);
6059 }
6382bc90
MM
6060
6061 kfree(*tablep);
6062 *tablep = NULL;
6063}
6064
e692ab53 6065static void
e0361851 6066set_table_entry(struct ctl_table *entry,
e692ab53
NP
6067 const char *procname, void *data, int maxlen,
6068 mode_t mode, proc_handler *proc_handler)
6069{
e692ab53
NP
6070 entry->procname = procname;
6071 entry->data = data;
6072 entry->maxlen = maxlen;
6073 entry->mode = mode;
6074 entry->proc_handler = proc_handler;
6075}
6076
6077static struct ctl_table *
6078sd_alloc_ctl_domain_table(struct sched_domain *sd)
6079{
a5d8c348 6080 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6081
ad1cdc1d
MM
6082 if (table == NULL)
6083 return NULL;
6084
e0361851 6085 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6086 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6087 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6088 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6089 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6090 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6091 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6092 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6093 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6094 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6095 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6096 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6097 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6098 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6099 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6100 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6101 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6102 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6103 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6104 &sd->cache_nice_tries,
6105 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6106 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6107 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6108 set_table_entry(&table[11], "name", sd->name,
6109 CORENAME_MAX_SIZE, 0444, proc_dostring);
6110 /* &table[12] is terminator */
e692ab53
NP
6111
6112 return table;
6113}
6114
9a4e7159 6115static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6116{
6117 struct ctl_table *entry, *table;
6118 struct sched_domain *sd;
6119 int domain_num = 0, i;
6120 char buf[32];
6121
6122 for_each_domain(cpu, sd)
6123 domain_num++;
6124 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6125 if (table == NULL)
6126 return NULL;
e692ab53
NP
6127
6128 i = 0;
6129 for_each_domain(cpu, sd) {
6130 snprintf(buf, 32, "domain%d", i);
e692ab53 6131 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6132 entry->mode = 0555;
e692ab53
NP
6133 entry->child = sd_alloc_ctl_domain_table(sd);
6134 entry++;
6135 i++;
6136 }
6137 return table;
6138}
6139
6140static struct ctl_table_header *sd_sysctl_header;
6382bc90 6141static void register_sched_domain_sysctl(void)
e692ab53 6142{
6ad4c188 6143 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6144 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6145 char buf[32];
6146
7378547f
MM
6147 WARN_ON(sd_ctl_dir[0].child);
6148 sd_ctl_dir[0].child = entry;
6149
ad1cdc1d
MM
6150 if (entry == NULL)
6151 return;
6152
6ad4c188 6153 for_each_possible_cpu(i) {
e692ab53 6154 snprintf(buf, 32, "cpu%d", i);
e692ab53 6155 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6156 entry->mode = 0555;
e692ab53 6157 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6158 entry++;
e692ab53 6159 }
7378547f
MM
6160
6161 WARN_ON(sd_sysctl_header);
e692ab53
NP
6162 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6163}
6382bc90 6164
7378547f 6165/* may be called multiple times per register */
6382bc90
MM
6166static void unregister_sched_domain_sysctl(void)
6167{
7378547f
MM
6168 if (sd_sysctl_header)
6169 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6170 sd_sysctl_header = NULL;
7378547f
MM
6171 if (sd_ctl_dir[0].child)
6172 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6173}
e692ab53 6174#else
6382bc90
MM
6175static void register_sched_domain_sysctl(void)
6176{
6177}
6178static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6179{
6180}
6181#endif
6182
1f11eb6a
GH
6183static void set_rq_online(struct rq *rq)
6184{
6185 if (!rq->online) {
6186 const struct sched_class *class;
6187
c6c4927b 6188 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6189 rq->online = 1;
6190
6191 for_each_class(class) {
6192 if (class->rq_online)
6193 class->rq_online(rq);
6194 }
6195 }
6196}
6197
6198static void set_rq_offline(struct rq *rq)
6199{
6200 if (rq->online) {
6201 const struct sched_class *class;
6202
6203 for_each_class(class) {
6204 if (class->rq_offline)
6205 class->rq_offline(rq);
6206 }
6207
c6c4927b 6208 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6209 rq->online = 0;
6210 }
6211}
6212
1da177e4
LT
6213/*
6214 * migration_call - callback that gets triggered when a CPU is added.
6215 * Here we can start up the necessary migration thread for the new CPU.
6216 */
48f24c4d
IM
6217static int __cpuinit
6218migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6219{
48f24c4d 6220 int cpu = (long)hcpu;
1da177e4 6221 unsigned long flags;
969c7921 6222 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6223
6224 switch (action) {
5be9361c 6225
1da177e4 6226 case CPU_UP_PREPARE:
8bb78442 6227 case CPU_UP_PREPARE_FROZEN:
a468d389 6228 rq->calc_load_update = calc_load_update;
1da177e4 6229 break;
48f24c4d 6230
1da177e4 6231 case CPU_ONLINE:
8bb78442 6232 case CPU_ONLINE_FROZEN:
1f94ef59 6233 /* Update our root-domain */
05fa785c 6234 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6235 if (rq->rd) {
c6c4927b 6236 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6237
6238 set_rq_online(rq);
1f94ef59 6239 }
05fa785c 6240 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6241 break;
48f24c4d 6242
1da177e4 6243#ifdef CONFIG_HOTPLUG_CPU
1da177e4 6244 case CPU_DEAD:
8bb78442 6245 case CPU_DEAD_FROZEN:
1da177e4 6246 migrate_live_tasks(cpu);
1da177e4 6247 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 6248 raw_spin_lock_irq(&rq->lock);
2e1cb74a 6249 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
6250 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6251 rq->idle->sched_class = &idle_sched_class;
1da177e4 6252 migrate_dead_tasks(cpu);
05fa785c 6253 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
6254 migrate_nr_uninterruptible(rq);
6255 BUG_ON(rq->nr_running != 0);
dce48a84 6256 calc_global_load_remove(rq);
1da177e4 6257 break;
57d885fe 6258
08f503b0
GH
6259 case CPU_DYING:
6260 case CPU_DYING_FROZEN:
57d885fe 6261 /* Update our root-domain */
05fa785c 6262 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6263 if (rq->rd) {
c6c4927b 6264 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6265 set_rq_offline(rq);
57d885fe 6266 }
05fa785c 6267 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 6268 break;
1da177e4
LT
6269#endif
6270 }
6271 return NOTIFY_OK;
6272}
6273
f38b0820
PM
6274/*
6275 * Register at high priority so that task migration (migrate_all_tasks)
6276 * happens before everything else. This has to be lower priority than
cdd6c482 6277 * the notifier in the perf_event subsystem, though.
1da177e4 6278 */
26c2143b 6279static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6280 .notifier_call = migration_call,
50a323b7 6281 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6282};
6283
3a101d05
TH
6284static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6285 unsigned long action, void *hcpu)
6286{
6287 switch (action & ~CPU_TASKS_FROZEN) {
6288 case CPU_ONLINE:
6289 case CPU_DOWN_FAILED:
6290 set_cpu_active((long)hcpu, true);
6291 return NOTIFY_OK;
6292 default:
6293 return NOTIFY_DONE;
6294 }
6295}
6296
6297static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6298 unsigned long action, void *hcpu)
6299{
6300 switch (action & ~CPU_TASKS_FROZEN) {
6301 case CPU_DOWN_PREPARE:
6302 set_cpu_active((long)hcpu, false);
6303 return NOTIFY_OK;
6304 default:
6305 return NOTIFY_DONE;
6306 }
6307}
6308
7babe8db 6309static int __init migration_init(void)
1da177e4
LT
6310{
6311 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6312 int err;
48f24c4d 6313
3a101d05 6314 /* Initialize migration for the boot CPU */
07dccf33
AM
6315 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6316 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6317 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6318 register_cpu_notifier(&migration_notifier);
7babe8db 6319
3a101d05
TH
6320 /* Register cpu active notifiers */
6321 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6322 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6323
a004cd42 6324 return 0;
1da177e4 6325}
7babe8db 6326early_initcall(migration_init);
1da177e4
LT
6327#endif
6328
6329#ifdef CONFIG_SMP
476f3534 6330
3e9830dc 6331#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6332
f6630114
MT
6333static __read_mostly int sched_domain_debug_enabled;
6334
6335static int __init sched_domain_debug_setup(char *str)
6336{
6337 sched_domain_debug_enabled = 1;
6338
6339 return 0;
6340}
6341early_param("sched_debug", sched_domain_debug_setup);
6342
7c16ec58 6343static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6344 struct cpumask *groupmask)
1da177e4 6345{
4dcf6aff 6346 struct sched_group *group = sd->groups;
434d53b0 6347 char str[256];
1da177e4 6348
968ea6d8 6349 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6350 cpumask_clear(groupmask);
4dcf6aff
IM
6351
6352 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6353
6354 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6355 printk("does not load-balance\n");
4dcf6aff 6356 if (sd->parent)
3df0fc5b
PZ
6357 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6358 " has parent");
4dcf6aff 6359 return -1;
41c7ce9a
NP
6360 }
6361
3df0fc5b 6362 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6363
758b2cdc 6364 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6365 printk(KERN_ERR "ERROR: domain->span does not contain "
6366 "CPU%d\n", cpu);
4dcf6aff 6367 }
758b2cdc 6368 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6369 printk(KERN_ERR "ERROR: domain->groups does not contain"
6370 " CPU%d\n", cpu);
4dcf6aff 6371 }
1da177e4 6372
4dcf6aff 6373 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6374 do {
4dcf6aff 6375 if (!group) {
3df0fc5b
PZ
6376 printk("\n");
6377 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6378 break;
6379 }
6380
18a3885f 6381 if (!group->cpu_power) {
3df0fc5b
PZ
6382 printk(KERN_CONT "\n");
6383 printk(KERN_ERR "ERROR: domain->cpu_power not "
6384 "set\n");
4dcf6aff
IM
6385 break;
6386 }
1da177e4 6387
758b2cdc 6388 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6389 printk(KERN_CONT "\n");
6390 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6391 break;
6392 }
1da177e4 6393
758b2cdc 6394 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6395 printk(KERN_CONT "\n");
6396 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6397 break;
6398 }
1da177e4 6399
758b2cdc 6400 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6401
968ea6d8 6402 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6403
3df0fc5b 6404 printk(KERN_CONT " %s", str);
18a3885f 6405 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6406 printk(KERN_CONT " (cpu_power = %d)",
6407 group->cpu_power);
381512cf 6408 }
1da177e4 6409
4dcf6aff
IM
6410 group = group->next;
6411 } while (group != sd->groups);
3df0fc5b 6412 printk(KERN_CONT "\n");
1da177e4 6413
758b2cdc 6414 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6415 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6416
758b2cdc
RR
6417 if (sd->parent &&
6418 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6419 printk(KERN_ERR "ERROR: parent span is not a superset "
6420 "of domain->span\n");
4dcf6aff
IM
6421 return 0;
6422}
1da177e4 6423
4dcf6aff
IM
6424static void sched_domain_debug(struct sched_domain *sd, int cpu)
6425{
d5dd3db1 6426 cpumask_var_t groupmask;
4dcf6aff 6427 int level = 0;
1da177e4 6428
f6630114
MT
6429 if (!sched_domain_debug_enabled)
6430 return;
6431
4dcf6aff
IM
6432 if (!sd) {
6433 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6434 return;
6435 }
1da177e4 6436
4dcf6aff
IM
6437 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6438
d5dd3db1 6439 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6440 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6441 return;
6442 }
6443
4dcf6aff 6444 for (;;) {
7c16ec58 6445 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6446 break;
1da177e4
LT
6447 level++;
6448 sd = sd->parent;
33859f7f 6449 if (!sd)
4dcf6aff
IM
6450 break;
6451 }
d5dd3db1 6452 free_cpumask_var(groupmask);
1da177e4 6453}
6d6bc0ad 6454#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6455# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6456#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6457
1a20ff27 6458static int sd_degenerate(struct sched_domain *sd)
245af2c7 6459{
758b2cdc 6460 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6461 return 1;
6462
6463 /* Following flags need at least 2 groups */
6464 if (sd->flags & (SD_LOAD_BALANCE |
6465 SD_BALANCE_NEWIDLE |
6466 SD_BALANCE_FORK |
89c4710e
SS
6467 SD_BALANCE_EXEC |
6468 SD_SHARE_CPUPOWER |
6469 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6470 if (sd->groups != sd->groups->next)
6471 return 0;
6472 }
6473
6474 /* Following flags don't use groups */
c88d5910 6475 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6476 return 0;
6477
6478 return 1;
6479}
6480
48f24c4d
IM
6481static int
6482sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6483{
6484 unsigned long cflags = sd->flags, pflags = parent->flags;
6485
6486 if (sd_degenerate(parent))
6487 return 1;
6488
758b2cdc 6489 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6490 return 0;
6491
245af2c7
SS
6492 /* Flags needing groups don't count if only 1 group in parent */
6493 if (parent->groups == parent->groups->next) {
6494 pflags &= ~(SD_LOAD_BALANCE |
6495 SD_BALANCE_NEWIDLE |
6496 SD_BALANCE_FORK |
89c4710e
SS
6497 SD_BALANCE_EXEC |
6498 SD_SHARE_CPUPOWER |
6499 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6500 if (nr_node_ids == 1)
6501 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6502 }
6503 if (~cflags & pflags)
6504 return 0;
6505
6506 return 1;
6507}
6508
c6c4927b
RR
6509static void free_rootdomain(struct root_domain *rd)
6510{
047106ad
PZ
6511 synchronize_sched();
6512
68e74568
RR
6513 cpupri_cleanup(&rd->cpupri);
6514
c6c4927b
RR
6515 free_cpumask_var(rd->rto_mask);
6516 free_cpumask_var(rd->online);
6517 free_cpumask_var(rd->span);
6518 kfree(rd);
6519}
6520
57d885fe
GH
6521static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6522{
a0490fa3 6523 struct root_domain *old_rd = NULL;
57d885fe 6524 unsigned long flags;
57d885fe 6525
05fa785c 6526 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6527
6528 if (rq->rd) {
a0490fa3 6529 old_rd = rq->rd;
57d885fe 6530
c6c4927b 6531 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6532 set_rq_offline(rq);
57d885fe 6533
c6c4927b 6534 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6535
a0490fa3
IM
6536 /*
6537 * If we dont want to free the old_rt yet then
6538 * set old_rd to NULL to skip the freeing later
6539 * in this function:
6540 */
6541 if (!atomic_dec_and_test(&old_rd->refcount))
6542 old_rd = NULL;
57d885fe
GH
6543 }
6544
6545 atomic_inc(&rd->refcount);
6546 rq->rd = rd;
6547
c6c4927b 6548 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6549 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6550 set_rq_online(rq);
57d885fe 6551
05fa785c 6552 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6553
6554 if (old_rd)
6555 free_rootdomain(old_rd);
57d885fe
GH
6556}
6557
68c38fc3 6558static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6559{
6560 memset(rd, 0, sizeof(*rd));
6561
68c38fc3 6562 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6563 goto out;
68c38fc3 6564 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6565 goto free_span;
68c38fc3 6566 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6567 goto free_online;
6e0534f2 6568
68c38fc3 6569 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6570 goto free_rto_mask;
c6c4927b 6571 return 0;
6e0534f2 6572
68e74568
RR
6573free_rto_mask:
6574 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6575free_online:
6576 free_cpumask_var(rd->online);
6577free_span:
6578 free_cpumask_var(rd->span);
0c910d28 6579out:
c6c4927b 6580 return -ENOMEM;
57d885fe
GH
6581}
6582
6583static void init_defrootdomain(void)
6584{
68c38fc3 6585 init_rootdomain(&def_root_domain);
c6c4927b 6586
57d885fe
GH
6587 atomic_set(&def_root_domain.refcount, 1);
6588}
6589
dc938520 6590static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6591{
6592 struct root_domain *rd;
6593
6594 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6595 if (!rd)
6596 return NULL;
6597
68c38fc3 6598 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6599 kfree(rd);
6600 return NULL;
6601 }
57d885fe
GH
6602
6603 return rd;
6604}
6605
1da177e4 6606/*
0eab9146 6607 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6608 * hold the hotplug lock.
6609 */
0eab9146
IM
6610static void
6611cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6612{
70b97a7f 6613 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6614 struct sched_domain *tmp;
6615
669c55e9
PZ
6616 for (tmp = sd; tmp; tmp = tmp->parent)
6617 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6618
245af2c7 6619 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6620 for (tmp = sd; tmp; ) {
245af2c7
SS
6621 struct sched_domain *parent = tmp->parent;
6622 if (!parent)
6623 break;
f29c9b1c 6624
1a848870 6625 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6626 tmp->parent = parent->parent;
1a848870
SS
6627 if (parent->parent)
6628 parent->parent->child = tmp;
f29c9b1c
LZ
6629 } else
6630 tmp = tmp->parent;
245af2c7
SS
6631 }
6632
1a848870 6633 if (sd && sd_degenerate(sd)) {
245af2c7 6634 sd = sd->parent;
1a848870
SS
6635 if (sd)
6636 sd->child = NULL;
6637 }
1da177e4
LT
6638
6639 sched_domain_debug(sd, cpu);
6640
57d885fe 6641 rq_attach_root(rq, rd);
674311d5 6642 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6643}
6644
6645/* cpus with isolated domains */
dcc30a35 6646static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6647
6648/* Setup the mask of cpus configured for isolated domains */
6649static int __init isolated_cpu_setup(char *str)
6650{
bdddd296 6651 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6652 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6653 return 1;
6654}
6655
8927f494 6656__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6657
6658/*
6711cab4
SS
6659 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6660 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6661 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6662 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6663 *
6664 * init_sched_build_groups will build a circular linked list of the groups
6665 * covered by the given span, and will set each group's ->cpumask correctly,
6666 * and ->cpu_power to 0.
6667 */
a616058b 6668static void
96f874e2
RR
6669init_sched_build_groups(const struct cpumask *span,
6670 const struct cpumask *cpu_map,
6671 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6672 struct sched_group **sg,
96f874e2
RR
6673 struct cpumask *tmpmask),
6674 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6675{
6676 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6677 int i;
6678
96f874e2 6679 cpumask_clear(covered);
7c16ec58 6680
abcd083a 6681 for_each_cpu(i, span) {
6711cab4 6682 struct sched_group *sg;
7c16ec58 6683 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6684 int j;
6685
758b2cdc 6686 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6687 continue;
6688
758b2cdc 6689 cpumask_clear(sched_group_cpus(sg));
18a3885f 6690 sg->cpu_power = 0;
1da177e4 6691
abcd083a 6692 for_each_cpu(j, span) {
7c16ec58 6693 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6694 continue;
6695
96f874e2 6696 cpumask_set_cpu(j, covered);
758b2cdc 6697 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6698 }
6699 if (!first)
6700 first = sg;
6701 if (last)
6702 last->next = sg;
6703 last = sg;
6704 }
6705 last->next = first;
6706}
6707
9c1cfda2 6708#define SD_NODES_PER_DOMAIN 16
1da177e4 6709
9c1cfda2 6710#ifdef CONFIG_NUMA
198e2f18 6711
9c1cfda2
JH
6712/**
6713 * find_next_best_node - find the next node to include in a sched_domain
6714 * @node: node whose sched_domain we're building
6715 * @used_nodes: nodes already in the sched_domain
6716 *
41a2d6cf 6717 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6718 * finds the closest node not already in the @used_nodes map.
6719 *
6720 * Should use nodemask_t.
6721 */
c5f59f08 6722static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6723{
6724 int i, n, val, min_val, best_node = 0;
6725
6726 min_val = INT_MAX;
6727
076ac2af 6728 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6729 /* Start at @node */
076ac2af 6730 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6731
6732 if (!nr_cpus_node(n))
6733 continue;
6734
6735 /* Skip already used nodes */
c5f59f08 6736 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6737 continue;
6738
6739 /* Simple min distance search */
6740 val = node_distance(node, n);
6741
6742 if (val < min_val) {
6743 min_val = val;
6744 best_node = n;
6745 }
6746 }
6747
c5f59f08 6748 node_set(best_node, *used_nodes);
9c1cfda2
JH
6749 return best_node;
6750}
6751
6752/**
6753 * sched_domain_node_span - get a cpumask for a node's sched_domain
6754 * @node: node whose cpumask we're constructing
73486722 6755 * @span: resulting cpumask
9c1cfda2 6756 *
41a2d6cf 6757 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6758 * should be one that prevents unnecessary balancing, but also spreads tasks
6759 * out optimally.
6760 */
96f874e2 6761static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6762{
c5f59f08 6763 nodemask_t used_nodes;
48f24c4d 6764 int i;
9c1cfda2 6765
6ca09dfc 6766 cpumask_clear(span);
c5f59f08 6767 nodes_clear(used_nodes);
9c1cfda2 6768
6ca09dfc 6769 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6770 node_set(node, used_nodes);
9c1cfda2
JH
6771
6772 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6773 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6774
6ca09dfc 6775 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6776 }
9c1cfda2 6777}
6d6bc0ad 6778#endif /* CONFIG_NUMA */
9c1cfda2 6779
5c45bf27 6780int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6781
6c99e9ad
RR
6782/*
6783 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6784 *
6785 * ( See the the comments in include/linux/sched.h:struct sched_group
6786 * and struct sched_domain. )
6c99e9ad
RR
6787 */
6788struct static_sched_group {
6789 struct sched_group sg;
6790 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6791};
6792
6793struct static_sched_domain {
6794 struct sched_domain sd;
6795 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6796};
6797
49a02c51
AH
6798struct s_data {
6799#ifdef CONFIG_NUMA
6800 int sd_allnodes;
6801 cpumask_var_t domainspan;
6802 cpumask_var_t covered;
6803 cpumask_var_t notcovered;
6804#endif
6805 cpumask_var_t nodemask;
6806 cpumask_var_t this_sibling_map;
6807 cpumask_var_t this_core_map;
01a08546 6808 cpumask_var_t this_book_map;
49a02c51
AH
6809 cpumask_var_t send_covered;
6810 cpumask_var_t tmpmask;
6811 struct sched_group **sched_group_nodes;
6812 struct root_domain *rd;
6813};
6814
2109b99e
AH
6815enum s_alloc {
6816 sa_sched_groups = 0,
6817 sa_rootdomain,
6818 sa_tmpmask,
6819 sa_send_covered,
01a08546 6820 sa_this_book_map,
2109b99e
AH
6821 sa_this_core_map,
6822 sa_this_sibling_map,
6823 sa_nodemask,
6824 sa_sched_group_nodes,
6825#ifdef CONFIG_NUMA
6826 sa_notcovered,
6827 sa_covered,
6828 sa_domainspan,
6829#endif
6830 sa_none,
6831};
6832
9c1cfda2 6833/*
48f24c4d 6834 * SMT sched-domains:
9c1cfda2 6835 */
1da177e4 6836#ifdef CONFIG_SCHED_SMT
6c99e9ad 6837static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6838static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6839
41a2d6cf 6840static int
96f874e2
RR
6841cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6842 struct sched_group **sg, struct cpumask *unused)
1da177e4 6843{
6711cab4 6844 if (sg)
1871e52c 6845 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6846 return cpu;
6847}
6d6bc0ad 6848#endif /* CONFIG_SCHED_SMT */
1da177e4 6849
48f24c4d
IM
6850/*
6851 * multi-core sched-domains:
6852 */
1e9f28fa 6853#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6854static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6855static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6856
41a2d6cf 6857static int
96f874e2
RR
6858cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6859 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6860{
6711cab4 6861 int group;
f269893c 6862#ifdef CONFIG_SCHED_SMT
c69fc56d 6863 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6864 group = cpumask_first(mask);
f269893c
HC
6865#else
6866 group = cpu;
6867#endif
6711cab4 6868 if (sg)
6c99e9ad 6869 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6870 return group;
1e9f28fa 6871}
f269893c 6872#endif /* CONFIG_SCHED_MC */
1e9f28fa 6873
01a08546
HC
6874/*
6875 * book sched-domains:
6876 */
6877#ifdef CONFIG_SCHED_BOOK
6878static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6879static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6880
41a2d6cf 6881static int
01a08546
HC
6882cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6883 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6884{
01a08546
HC
6885 int group = cpu;
6886#ifdef CONFIG_SCHED_MC
6887 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6888 group = cpumask_first(mask);
6889#elif defined(CONFIG_SCHED_SMT)
6890 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6891 group = cpumask_first(mask);
6892#endif
6711cab4 6893 if (sg)
01a08546
HC
6894 *sg = &per_cpu(sched_group_book, group).sg;
6895 return group;
1e9f28fa 6896}
01a08546 6897#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6898
6c99e9ad
RR
6899static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6900static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6901
41a2d6cf 6902static int
96f874e2
RR
6903cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6904 struct sched_group **sg, struct cpumask *mask)
1da177e4 6905{
6711cab4 6906 int group;
01a08546
HC
6907#ifdef CONFIG_SCHED_BOOK
6908 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6909 group = cpumask_first(mask);
6910#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6911 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6912 group = cpumask_first(mask);
1e9f28fa 6913#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6914 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6915 group = cpumask_first(mask);
1da177e4 6916#else
6711cab4 6917 group = cpu;
1da177e4 6918#endif
6711cab4 6919 if (sg)
6c99e9ad 6920 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6921 return group;
1da177e4
LT
6922}
6923
6924#ifdef CONFIG_NUMA
1da177e4 6925/*
9c1cfda2
JH
6926 * The init_sched_build_groups can't handle what we want to do with node
6927 * groups, so roll our own. Now each node has its own list of groups which
6928 * gets dynamically allocated.
1da177e4 6929 */
62ea9ceb 6930static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6931static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6932
62ea9ceb 6933static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6934static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6935
96f874e2
RR
6936static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6937 struct sched_group **sg,
6938 struct cpumask *nodemask)
9c1cfda2 6939{
6711cab4
SS
6940 int group;
6941
6ca09dfc 6942 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6943 group = cpumask_first(nodemask);
6711cab4
SS
6944
6945 if (sg)
6c99e9ad 6946 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6947 return group;
1da177e4 6948}
6711cab4 6949
08069033
SS
6950static void init_numa_sched_groups_power(struct sched_group *group_head)
6951{
6952 struct sched_group *sg = group_head;
6953 int j;
6954
6955 if (!sg)
6956 return;
3a5c359a 6957 do {
758b2cdc 6958 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6959 struct sched_domain *sd;
08069033 6960
6c99e9ad 6961 sd = &per_cpu(phys_domains, j).sd;
13318a71 6962 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6963 /*
6964 * Only add "power" once for each
6965 * physical package.
6966 */
6967 continue;
6968 }
08069033 6969
18a3885f 6970 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6971 }
6972 sg = sg->next;
6973 } while (sg != group_head);
08069033 6974}
0601a88d
AH
6975
6976static int build_numa_sched_groups(struct s_data *d,
6977 const struct cpumask *cpu_map, int num)
6978{
6979 struct sched_domain *sd;
6980 struct sched_group *sg, *prev;
6981 int n, j;
6982
6983 cpumask_clear(d->covered);
6984 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6985 if (cpumask_empty(d->nodemask)) {
6986 d->sched_group_nodes[num] = NULL;
6987 goto out;
6988 }
6989
6990 sched_domain_node_span(num, d->domainspan);
6991 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6992
6993 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6994 GFP_KERNEL, num);
6995 if (!sg) {
3df0fc5b
PZ
6996 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6997 num);
0601a88d
AH
6998 return -ENOMEM;
6999 }
7000 d->sched_group_nodes[num] = sg;
7001
7002 for_each_cpu(j, d->nodemask) {
7003 sd = &per_cpu(node_domains, j).sd;
7004 sd->groups = sg;
7005 }
7006
18a3885f 7007 sg->cpu_power = 0;
0601a88d
AH
7008 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7009 sg->next = sg;
7010 cpumask_or(d->covered, d->covered, d->nodemask);
7011
7012 prev = sg;
7013 for (j = 0; j < nr_node_ids; j++) {
7014 n = (num + j) % nr_node_ids;
7015 cpumask_complement(d->notcovered, d->covered);
7016 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7017 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7018 if (cpumask_empty(d->tmpmask))
7019 break;
7020 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7021 if (cpumask_empty(d->tmpmask))
7022 continue;
7023 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7024 GFP_KERNEL, num);
7025 if (!sg) {
3df0fc5b
PZ
7026 printk(KERN_WARNING
7027 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7028 return -ENOMEM;
7029 }
18a3885f 7030 sg->cpu_power = 0;
0601a88d
AH
7031 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7032 sg->next = prev->next;
7033 cpumask_or(d->covered, d->covered, d->tmpmask);
7034 prev->next = sg;
7035 prev = sg;
7036 }
7037out:
7038 return 0;
7039}
6d6bc0ad 7040#endif /* CONFIG_NUMA */
1da177e4 7041
a616058b 7042#ifdef CONFIG_NUMA
51888ca2 7043/* Free memory allocated for various sched_group structures */
96f874e2
RR
7044static void free_sched_groups(const struct cpumask *cpu_map,
7045 struct cpumask *nodemask)
51888ca2 7046{
a616058b 7047 int cpu, i;
51888ca2 7048
abcd083a 7049 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7050 struct sched_group **sched_group_nodes
7051 = sched_group_nodes_bycpu[cpu];
7052
51888ca2
SV
7053 if (!sched_group_nodes)
7054 continue;
7055
076ac2af 7056 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7057 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7058
6ca09dfc 7059 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7060 if (cpumask_empty(nodemask))
51888ca2
SV
7061 continue;
7062
7063 if (sg == NULL)
7064 continue;
7065 sg = sg->next;
7066next_sg:
7067 oldsg = sg;
7068 sg = sg->next;
7069 kfree(oldsg);
7070 if (oldsg != sched_group_nodes[i])
7071 goto next_sg;
7072 }
7073 kfree(sched_group_nodes);
7074 sched_group_nodes_bycpu[cpu] = NULL;
7075 }
51888ca2 7076}
6d6bc0ad 7077#else /* !CONFIG_NUMA */
96f874e2
RR
7078static void free_sched_groups(const struct cpumask *cpu_map,
7079 struct cpumask *nodemask)
a616058b
SS
7080{
7081}
6d6bc0ad 7082#endif /* CONFIG_NUMA */
51888ca2 7083
89c4710e
SS
7084/*
7085 * Initialize sched groups cpu_power.
7086 *
7087 * cpu_power indicates the capacity of sched group, which is used while
7088 * distributing the load between different sched groups in a sched domain.
7089 * Typically cpu_power for all the groups in a sched domain will be same unless
7090 * there are asymmetries in the topology. If there are asymmetries, group
7091 * having more cpu_power will pickup more load compared to the group having
7092 * less cpu_power.
89c4710e
SS
7093 */
7094static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7095{
7096 struct sched_domain *child;
7097 struct sched_group *group;
f93e65c1
PZ
7098 long power;
7099 int weight;
89c4710e
SS
7100
7101 WARN_ON(!sd || !sd->groups);
7102
13318a71 7103 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7104 return;
7105
aae6d3dd
SS
7106 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7107
89c4710e
SS
7108 child = sd->child;
7109
18a3885f 7110 sd->groups->cpu_power = 0;
5517d86b 7111
f93e65c1
PZ
7112 if (!child) {
7113 power = SCHED_LOAD_SCALE;
7114 weight = cpumask_weight(sched_domain_span(sd));
7115 /*
7116 * SMT siblings share the power of a single core.
a52bfd73
PZ
7117 * Usually multiple threads get a better yield out of
7118 * that one core than a single thread would have,
7119 * reflect that in sd->smt_gain.
f93e65c1 7120 */
a52bfd73
PZ
7121 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7122 power *= sd->smt_gain;
f93e65c1 7123 power /= weight;
a52bfd73
PZ
7124 power >>= SCHED_LOAD_SHIFT;
7125 }
18a3885f 7126 sd->groups->cpu_power += power;
89c4710e
SS
7127 return;
7128 }
7129
89c4710e 7130 /*
f93e65c1 7131 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7132 */
7133 group = child->groups;
7134 do {
18a3885f 7135 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7136 group = group->next;
7137 } while (group != child->groups);
7138}
7139
7c16ec58
MT
7140/*
7141 * Initializers for schedule domains
7142 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7143 */
7144
a5d8c348
IM
7145#ifdef CONFIG_SCHED_DEBUG
7146# define SD_INIT_NAME(sd, type) sd->name = #type
7147#else
7148# define SD_INIT_NAME(sd, type) do { } while (0)
7149#endif
7150
7c16ec58 7151#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7152
7c16ec58
MT
7153#define SD_INIT_FUNC(type) \
7154static noinline void sd_init_##type(struct sched_domain *sd) \
7155{ \
7156 memset(sd, 0, sizeof(*sd)); \
7157 *sd = SD_##type##_INIT; \
1d3504fc 7158 sd->level = SD_LV_##type; \
a5d8c348 7159 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7160}
7161
7162SD_INIT_FUNC(CPU)
7163#ifdef CONFIG_NUMA
7164 SD_INIT_FUNC(ALLNODES)
7165 SD_INIT_FUNC(NODE)
7166#endif
7167#ifdef CONFIG_SCHED_SMT
7168 SD_INIT_FUNC(SIBLING)
7169#endif
7170#ifdef CONFIG_SCHED_MC
7171 SD_INIT_FUNC(MC)
7172#endif
01a08546
HC
7173#ifdef CONFIG_SCHED_BOOK
7174 SD_INIT_FUNC(BOOK)
7175#endif
7c16ec58 7176
1d3504fc
HS
7177static int default_relax_domain_level = -1;
7178
7179static int __init setup_relax_domain_level(char *str)
7180{
30e0e178
LZ
7181 unsigned long val;
7182
7183 val = simple_strtoul(str, NULL, 0);
7184 if (val < SD_LV_MAX)
7185 default_relax_domain_level = val;
7186
1d3504fc
HS
7187 return 1;
7188}
7189__setup("relax_domain_level=", setup_relax_domain_level);
7190
7191static void set_domain_attribute(struct sched_domain *sd,
7192 struct sched_domain_attr *attr)
7193{
7194 int request;
7195
7196 if (!attr || attr->relax_domain_level < 0) {
7197 if (default_relax_domain_level < 0)
7198 return;
7199 else
7200 request = default_relax_domain_level;
7201 } else
7202 request = attr->relax_domain_level;
7203 if (request < sd->level) {
7204 /* turn off idle balance on this domain */
c88d5910 7205 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7206 } else {
7207 /* turn on idle balance on this domain */
c88d5910 7208 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7209 }
7210}
7211
2109b99e
AH
7212static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7213 const struct cpumask *cpu_map)
7214{
7215 switch (what) {
7216 case sa_sched_groups:
7217 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7218 d->sched_group_nodes = NULL;
7219 case sa_rootdomain:
7220 free_rootdomain(d->rd); /* fall through */
7221 case sa_tmpmask:
7222 free_cpumask_var(d->tmpmask); /* fall through */
7223 case sa_send_covered:
7224 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7225 case sa_this_book_map:
7226 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7227 case sa_this_core_map:
7228 free_cpumask_var(d->this_core_map); /* fall through */
7229 case sa_this_sibling_map:
7230 free_cpumask_var(d->this_sibling_map); /* fall through */
7231 case sa_nodemask:
7232 free_cpumask_var(d->nodemask); /* fall through */
7233 case sa_sched_group_nodes:
d1b55138 7234#ifdef CONFIG_NUMA
2109b99e
AH
7235 kfree(d->sched_group_nodes); /* fall through */
7236 case sa_notcovered:
7237 free_cpumask_var(d->notcovered); /* fall through */
7238 case sa_covered:
7239 free_cpumask_var(d->covered); /* fall through */
7240 case sa_domainspan:
7241 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7242#endif
2109b99e
AH
7243 case sa_none:
7244 break;
7245 }
7246}
3404c8d9 7247
2109b99e
AH
7248static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7249 const struct cpumask *cpu_map)
7250{
3404c8d9 7251#ifdef CONFIG_NUMA
2109b99e
AH
7252 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7253 return sa_none;
7254 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7255 return sa_domainspan;
7256 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7257 return sa_covered;
7258 /* Allocate the per-node list of sched groups */
7259 d->sched_group_nodes = kcalloc(nr_node_ids,
7260 sizeof(struct sched_group *), GFP_KERNEL);
7261 if (!d->sched_group_nodes) {
3df0fc5b 7262 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7263 return sa_notcovered;
d1b55138 7264 }
2109b99e 7265 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7266#endif
2109b99e
AH
7267 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7268 return sa_sched_group_nodes;
7269 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7270 return sa_nodemask;
7271 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7272 return sa_this_sibling_map;
01a08546 7273 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7274 return sa_this_core_map;
01a08546
HC
7275 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7276 return sa_this_book_map;
2109b99e
AH
7277 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7278 return sa_send_covered;
7279 d->rd = alloc_rootdomain();
7280 if (!d->rd) {
3df0fc5b 7281 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7282 return sa_tmpmask;
57d885fe 7283 }
2109b99e
AH
7284 return sa_rootdomain;
7285}
57d885fe 7286
7f4588f3
AH
7287static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7288 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7289{
7290 struct sched_domain *sd = NULL;
7c16ec58 7291#ifdef CONFIG_NUMA
7f4588f3 7292 struct sched_domain *parent;
1da177e4 7293
7f4588f3
AH
7294 d->sd_allnodes = 0;
7295 if (cpumask_weight(cpu_map) >
7296 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7297 sd = &per_cpu(allnodes_domains, i).sd;
7298 SD_INIT(sd, ALLNODES);
1d3504fc 7299 set_domain_attribute(sd, attr);
7f4588f3
AH
7300 cpumask_copy(sched_domain_span(sd), cpu_map);
7301 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7302 d->sd_allnodes = 1;
7303 }
7304 parent = sd;
7305
7306 sd = &per_cpu(node_domains, i).sd;
7307 SD_INIT(sd, NODE);
7308 set_domain_attribute(sd, attr);
7309 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7310 sd->parent = parent;
7311 if (parent)
7312 parent->child = sd;
7313 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7314#endif
7f4588f3
AH
7315 return sd;
7316}
1da177e4 7317
87cce662
AH
7318static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7319 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7320 struct sched_domain *parent, int i)
7321{
7322 struct sched_domain *sd;
7323 sd = &per_cpu(phys_domains, i).sd;
7324 SD_INIT(sd, CPU);
7325 set_domain_attribute(sd, attr);
7326 cpumask_copy(sched_domain_span(sd), d->nodemask);
7327 sd->parent = parent;
7328 if (parent)
7329 parent->child = sd;
7330 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7331 return sd;
7332}
1da177e4 7333
01a08546
HC
7334static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7335 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7336 struct sched_domain *parent, int i)
7337{
7338 struct sched_domain *sd = parent;
7339#ifdef CONFIG_SCHED_BOOK
7340 sd = &per_cpu(book_domains, i).sd;
7341 SD_INIT(sd, BOOK);
7342 set_domain_attribute(sd, attr);
7343 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7344 sd->parent = parent;
7345 parent->child = sd;
7346 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7347#endif
7348 return sd;
7349}
7350
410c4081
AH
7351static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7352 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7353 struct sched_domain *parent, int i)
7354{
7355 struct sched_domain *sd = parent;
1e9f28fa 7356#ifdef CONFIG_SCHED_MC
410c4081
AH
7357 sd = &per_cpu(core_domains, i).sd;
7358 SD_INIT(sd, MC);
7359 set_domain_attribute(sd, attr);
7360 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7361 sd->parent = parent;
7362 parent->child = sd;
7363 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7364#endif
410c4081
AH
7365 return sd;
7366}
1e9f28fa 7367
d8173535
AH
7368static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7369 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7370 struct sched_domain *parent, int i)
7371{
7372 struct sched_domain *sd = parent;
1da177e4 7373#ifdef CONFIG_SCHED_SMT
d8173535
AH
7374 sd = &per_cpu(cpu_domains, i).sd;
7375 SD_INIT(sd, SIBLING);
7376 set_domain_attribute(sd, attr);
7377 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7378 sd->parent = parent;
7379 parent->child = sd;
7380 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7381#endif
d8173535
AH
7382 return sd;
7383}
1da177e4 7384
0e8e85c9
AH
7385static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7386 const struct cpumask *cpu_map, int cpu)
7387{
7388 switch (l) {
1da177e4 7389#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7390 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7391 cpumask_and(d->this_sibling_map, cpu_map,
7392 topology_thread_cpumask(cpu));
7393 if (cpu == cpumask_first(d->this_sibling_map))
7394 init_sched_build_groups(d->this_sibling_map, cpu_map,
7395 &cpu_to_cpu_group,
7396 d->send_covered, d->tmpmask);
7397 break;
1da177e4 7398#endif
1e9f28fa 7399#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7400 case SD_LV_MC: /* set up multi-core groups */
7401 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7402 if (cpu == cpumask_first(d->this_core_map))
7403 init_sched_build_groups(d->this_core_map, cpu_map,
7404 &cpu_to_core_group,
7405 d->send_covered, d->tmpmask);
7406 break;
01a08546
HC
7407#endif
7408#ifdef CONFIG_SCHED_BOOK
7409 case SD_LV_BOOK: /* set up book groups */
7410 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7411 if (cpu == cpumask_first(d->this_book_map))
7412 init_sched_build_groups(d->this_book_map, cpu_map,
7413 &cpu_to_book_group,
7414 d->send_covered, d->tmpmask);
7415 break;
1e9f28fa 7416#endif
86548096
AH
7417 case SD_LV_CPU: /* set up physical groups */
7418 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7419 if (!cpumask_empty(d->nodemask))
7420 init_sched_build_groups(d->nodemask, cpu_map,
7421 &cpu_to_phys_group,
7422 d->send_covered, d->tmpmask);
7423 break;
1da177e4 7424#ifdef CONFIG_NUMA
de616e36
AH
7425 case SD_LV_ALLNODES:
7426 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7427 d->send_covered, d->tmpmask);
7428 break;
7429#endif
0e8e85c9
AH
7430 default:
7431 break;
7c16ec58 7432 }
0e8e85c9 7433}
9c1cfda2 7434
2109b99e
AH
7435/*
7436 * Build sched domains for a given set of cpus and attach the sched domains
7437 * to the individual cpus
7438 */
7439static int __build_sched_domains(const struct cpumask *cpu_map,
7440 struct sched_domain_attr *attr)
7441{
7442 enum s_alloc alloc_state = sa_none;
7443 struct s_data d;
294b0c96 7444 struct sched_domain *sd;
2109b99e 7445 int i;
7c16ec58 7446#ifdef CONFIG_NUMA
2109b99e 7447 d.sd_allnodes = 0;
7c16ec58 7448#endif
9c1cfda2 7449
2109b99e
AH
7450 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7451 if (alloc_state != sa_rootdomain)
7452 goto error;
7453 alloc_state = sa_sched_groups;
9c1cfda2 7454
1da177e4 7455 /*
1a20ff27 7456 * Set up domains for cpus specified by the cpu_map.
1da177e4 7457 */
abcd083a 7458 for_each_cpu(i, cpu_map) {
49a02c51
AH
7459 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7460 cpu_map);
9761eea8 7461
7f4588f3 7462 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7463 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7464 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7465 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7466 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7467 }
9c1cfda2 7468
abcd083a 7469 for_each_cpu(i, cpu_map) {
0e8e85c9 7470 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7471 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7472 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7473 }
9c1cfda2 7474
1da177e4 7475 /* Set up physical groups */
86548096
AH
7476 for (i = 0; i < nr_node_ids; i++)
7477 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7478
1da177e4
LT
7479#ifdef CONFIG_NUMA
7480 /* Set up node groups */
de616e36
AH
7481 if (d.sd_allnodes)
7482 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7483
0601a88d
AH
7484 for (i = 0; i < nr_node_ids; i++)
7485 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7486 goto error;
1da177e4
LT
7487#endif
7488
7489 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7490#ifdef CONFIG_SCHED_SMT
abcd083a 7491 for_each_cpu(i, cpu_map) {
294b0c96 7492 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7493 init_sched_groups_power(i, sd);
5c45bf27 7494 }
1da177e4 7495#endif
1e9f28fa 7496#ifdef CONFIG_SCHED_MC
abcd083a 7497 for_each_cpu(i, cpu_map) {
294b0c96 7498 sd = &per_cpu(core_domains, i).sd;
89c4710e 7499 init_sched_groups_power(i, sd);
5c45bf27
SS
7500 }
7501#endif
01a08546
HC
7502#ifdef CONFIG_SCHED_BOOK
7503 for_each_cpu(i, cpu_map) {
7504 sd = &per_cpu(book_domains, i).sd;
7505 init_sched_groups_power(i, sd);
7506 }
7507#endif
1e9f28fa 7508
abcd083a 7509 for_each_cpu(i, cpu_map) {
294b0c96 7510 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7511 init_sched_groups_power(i, sd);
1da177e4
LT
7512 }
7513
9c1cfda2 7514#ifdef CONFIG_NUMA
076ac2af 7515 for (i = 0; i < nr_node_ids; i++)
49a02c51 7516 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7517
49a02c51 7518 if (d.sd_allnodes) {
6711cab4 7519 struct sched_group *sg;
f712c0c7 7520
96f874e2 7521 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7522 d.tmpmask);
f712c0c7
SS
7523 init_numa_sched_groups_power(sg);
7524 }
9c1cfda2
JH
7525#endif
7526
1da177e4 7527 /* Attach the domains */
abcd083a 7528 for_each_cpu(i, cpu_map) {
1da177e4 7529#ifdef CONFIG_SCHED_SMT
6c99e9ad 7530 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7531#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7532 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7533#elif defined(CONFIG_SCHED_BOOK)
7534 sd = &per_cpu(book_domains, i).sd;
1da177e4 7535#else
6c99e9ad 7536 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7537#endif
49a02c51 7538 cpu_attach_domain(sd, d.rd, i);
1da177e4 7539 }
51888ca2 7540
2109b99e
AH
7541 d.sched_group_nodes = NULL; /* don't free this we still need it */
7542 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7543 return 0;
51888ca2 7544
51888ca2 7545error:
2109b99e
AH
7546 __free_domain_allocs(&d, alloc_state, cpu_map);
7547 return -ENOMEM;
1da177e4 7548}
029190c5 7549
96f874e2 7550static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7551{
7552 return __build_sched_domains(cpu_map, NULL);
7553}
7554
acc3f5d7 7555static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7556static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7557static struct sched_domain_attr *dattr_cur;
7558 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7559
7560/*
7561 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7562 * cpumask) fails, then fallback to a single sched domain,
7563 * as determined by the single cpumask fallback_doms.
029190c5 7564 */
4212823f 7565static cpumask_var_t fallback_doms;
029190c5 7566
ee79d1bd
HC
7567/*
7568 * arch_update_cpu_topology lets virtualized architectures update the
7569 * cpu core maps. It is supposed to return 1 if the topology changed
7570 * or 0 if it stayed the same.
7571 */
7572int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7573{
ee79d1bd 7574 return 0;
22e52b07
HC
7575}
7576
acc3f5d7
RR
7577cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7578{
7579 int i;
7580 cpumask_var_t *doms;
7581
7582 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7583 if (!doms)
7584 return NULL;
7585 for (i = 0; i < ndoms; i++) {
7586 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7587 free_sched_domains(doms, i);
7588 return NULL;
7589 }
7590 }
7591 return doms;
7592}
7593
7594void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7595{
7596 unsigned int i;
7597 for (i = 0; i < ndoms; i++)
7598 free_cpumask_var(doms[i]);
7599 kfree(doms);
7600}
7601
1a20ff27 7602/*
41a2d6cf 7603 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7604 * For now this just excludes isolated cpus, but could be used to
7605 * exclude other special cases in the future.
1a20ff27 7606 */
96f874e2 7607static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7608{
7378547f
MM
7609 int err;
7610
22e52b07 7611 arch_update_cpu_topology();
029190c5 7612 ndoms_cur = 1;
acc3f5d7 7613 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7614 if (!doms_cur)
acc3f5d7
RR
7615 doms_cur = &fallback_doms;
7616 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7617 dattr_cur = NULL;
acc3f5d7 7618 err = build_sched_domains(doms_cur[0]);
6382bc90 7619 register_sched_domain_sysctl();
7378547f
MM
7620
7621 return err;
1a20ff27
DG
7622}
7623
96f874e2
RR
7624static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7625 struct cpumask *tmpmask)
1da177e4 7626{
7c16ec58 7627 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7628}
1da177e4 7629
1a20ff27
DG
7630/*
7631 * Detach sched domains from a group of cpus specified in cpu_map
7632 * These cpus will now be attached to the NULL domain
7633 */
96f874e2 7634static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7635{
96f874e2
RR
7636 /* Save because hotplug lock held. */
7637 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7638 int i;
7639
abcd083a 7640 for_each_cpu(i, cpu_map)
57d885fe 7641 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7642 synchronize_sched();
96f874e2 7643 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7644}
7645
1d3504fc
HS
7646/* handle null as "default" */
7647static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7648 struct sched_domain_attr *new, int idx_new)
7649{
7650 struct sched_domain_attr tmp;
7651
7652 /* fast path */
7653 if (!new && !cur)
7654 return 1;
7655
7656 tmp = SD_ATTR_INIT;
7657 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7658 new ? (new + idx_new) : &tmp,
7659 sizeof(struct sched_domain_attr));
7660}
7661
029190c5
PJ
7662/*
7663 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7664 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7665 * doms_new[] to the current sched domain partitioning, doms_cur[].
7666 * It destroys each deleted domain and builds each new domain.
7667 *
acc3f5d7 7668 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7669 * The masks don't intersect (don't overlap.) We should setup one
7670 * sched domain for each mask. CPUs not in any of the cpumasks will
7671 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7672 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7673 * it as it is.
7674 *
acc3f5d7
RR
7675 * The passed in 'doms_new' should be allocated using
7676 * alloc_sched_domains. This routine takes ownership of it and will
7677 * free_sched_domains it when done with it. If the caller failed the
7678 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7679 * and partition_sched_domains() will fallback to the single partition
7680 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7681 *
96f874e2 7682 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7683 * ndoms_new == 0 is a special case for destroying existing domains,
7684 * and it will not create the default domain.
dfb512ec 7685 *
029190c5
PJ
7686 * Call with hotplug lock held
7687 */
acc3f5d7 7688void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7689 struct sched_domain_attr *dattr_new)
029190c5 7690{
dfb512ec 7691 int i, j, n;
d65bd5ec 7692 int new_topology;
029190c5 7693
712555ee 7694 mutex_lock(&sched_domains_mutex);
a1835615 7695
7378547f
MM
7696 /* always unregister in case we don't destroy any domains */
7697 unregister_sched_domain_sysctl();
7698
d65bd5ec
HC
7699 /* Let architecture update cpu core mappings. */
7700 new_topology = arch_update_cpu_topology();
7701
dfb512ec 7702 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7703
7704 /* Destroy deleted domains */
7705 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7706 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7707 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7708 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7709 goto match1;
7710 }
7711 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7712 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7713match1:
7714 ;
7715 }
7716
e761b772
MK
7717 if (doms_new == NULL) {
7718 ndoms_cur = 0;
acc3f5d7 7719 doms_new = &fallback_doms;
6ad4c188 7720 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7721 WARN_ON_ONCE(dattr_new);
e761b772
MK
7722 }
7723
029190c5
PJ
7724 /* Build new domains */
7725 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7726 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7727 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7728 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7729 goto match2;
7730 }
7731 /* no match - add a new doms_new */
acc3f5d7 7732 __build_sched_domains(doms_new[i],
1d3504fc 7733 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7734match2:
7735 ;
7736 }
7737
7738 /* Remember the new sched domains */
acc3f5d7
RR
7739 if (doms_cur != &fallback_doms)
7740 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7741 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7742 doms_cur = doms_new;
1d3504fc 7743 dattr_cur = dattr_new;
029190c5 7744 ndoms_cur = ndoms_new;
7378547f
MM
7745
7746 register_sched_domain_sysctl();
a1835615 7747
712555ee 7748 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7749}
7750
5c45bf27 7751#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7752static void arch_reinit_sched_domains(void)
5c45bf27 7753{
95402b38 7754 get_online_cpus();
dfb512ec
MK
7755
7756 /* Destroy domains first to force the rebuild */
7757 partition_sched_domains(0, NULL, NULL);
7758
e761b772 7759 rebuild_sched_domains();
95402b38 7760 put_online_cpus();
5c45bf27
SS
7761}
7762
7763static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7764{
afb8a9b7 7765 unsigned int level = 0;
5c45bf27 7766
afb8a9b7
GS
7767 if (sscanf(buf, "%u", &level) != 1)
7768 return -EINVAL;
7769
7770 /*
7771 * level is always be positive so don't check for
7772 * level < POWERSAVINGS_BALANCE_NONE which is 0
7773 * What happens on 0 or 1 byte write,
7774 * need to check for count as well?
7775 */
7776
7777 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7778 return -EINVAL;
7779
7780 if (smt)
afb8a9b7 7781 sched_smt_power_savings = level;
5c45bf27 7782 else
afb8a9b7 7783 sched_mc_power_savings = level;
5c45bf27 7784
c70f22d2 7785 arch_reinit_sched_domains();
5c45bf27 7786
c70f22d2 7787 return count;
5c45bf27
SS
7788}
7789
5c45bf27 7790#ifdef CONFIG_SCHED_MC
f718cd4a 7791static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7792 struct sysdev_class_attribute *attr,
f718cd4a 7793 char *page)
5c45bf27
SS
7794{
7795 return sprintf(page, "%u\n", sched_mc_power_savings);
7796}
f718cd4a 7797static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7798 struct sysdev_class_attribute *attr,
48f24c4d 7799 const char *buf, size_t count)
5c45bf27
SS
7800{
7801 return sched_power_savings_store(buf, count, 0);
7802}
f718cd4a
AK
7803static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7804 sched_mc_power_savings_show,
7805 sched_mc_power_savings_store);
5c45bf27
SS
7806#endif
7807
7808#ifdef CONFIG_SCHED_SMT
f718cd4a 7809static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7810 struct sysdev_class_attribute *attr,
f718cd4a 7811 char *page)
5c45bf27
SS
7812{
7813 return sprintf(page, "%u\n", sched_smt_power_savings);
7814}
f718cd4a 7815static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7816 struct sysdev_class_attribute *attr,
48f24c4d 7817 const char *buf, size_t count)
5c45bf27
SS
7818{
7819 return sched_power_savings_store(buf, count, 1);
7820}
f718cd4a
AK
7821static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7822 sched_smt_power_savings_show,
6707de00
AB
7823 sched_smt_power_savings_store);
7824#endif
7825
39aac648 7826int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7827{
7828 int err = 0;
7829
7830#ifdef CONFIG_SCHED_SMT
7831 if (smt_capable())
7832 err = sysfs_create_file(&cls->kset.kobj,
7833 &attr_sched_smt_power_savings.attr);
7834#endif
7835#ifdef CONFIG_SCHED_MC
7836 if (!err && mc_capable())
7837 err = sysfs_create_file(&cls->kset.kobj,
7838 &attr_sched_mc_power_savings.attr);
7839#endif
7840 return err;
7841}
6d6bc0ad 7842#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7843
1da177e4 7844/*
3a101d05
TH
7845 * Update cpusets according to cpu_active mask. If cpusets are
7846 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7847 * around partition_sched_domains().
1da177e4 7848 */
0b2e918a
TH
7849static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7850 void *hcpu)
e761b772 7851{
3a101d05 7852 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7853 case CPU_ONLINE:
6ad4c188 7854 case CPU_DOWN_FAILED:
3a101d05 7855 cpuset_update_active_cpus();
e761b772 7856 return NOTIFY_OK;
3a101d05
TH
7857 default:
7858 return NOTIFY_DONE;
7859 }
7860}
e761b772 7861
0b2e918a
TH
7862static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7863 void *hcpu)
3a101d05
TH
7864{
7865 switch (action & ~CPU_TASKS_FROZEN) {
7866 case CPU_DOWN_PREPARE:
7867 cpuset_update_active_cpus();
7868 return NOTIFY_OK;
e761b772
MK
7869 default:
7870 return NOTIFY_DONE;
7871 }
7872}
e761b772
MK
7873
7874static int update_runtime(struct notifier_block *nfb,
7875 unsigned long action, void *hcpu)
1da177e4 7876{
7def2be1
PZ
7877 int cpu = (int)(long)hcpu;
7878
1da177e4 7879 switch (action) {
1da177e4 7880 case CPU_DOWN_PREPARE:
8bb78442 7881 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7882 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7883 return NOTIFY_OK;
7884
1da177e4 7885 case CPU_DOWN_FAILED:
8bb78442 7886 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7887 case CPU_ONLINE:
8bb78442 7888 case CPU_ONLINE_FROZEN:
7def2be1 7889 enable_runtime(cpu_rq(cpu));
e761b772
MK
7890 return NOTIFY_OK;
7891
1da177e4
LT
7892 default:
7893 return NOTIFY_DONE;
7894 }
1da177e4 7895}
1da177e4
LT
7896
7897void __init sched_init_smp(void)
7898{
dcc30a35
RR
7899 cpumask_var_t non_isolated_cpus;
7900
7901 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7902 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7903
434d53b0
MT
7904#if defined(CONFIG_NUMA)
7905 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7906 GFP_KERNEL);
7907 BUG_ON(sched_group_nodes_bycpu == NULL);
7908#endif
95402b38 7909 get_online_cpus();
712555ee 7910 mutex_lock(&sched_domains_mutex);
6ad4c188 7911 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7912 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7913 if (cpumask_empty(non_isolated_cpus))
7914 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7915 mutex_unlock(&sched_domains_mutex);
95402b38 7916 put_online_cpus();
e761b772 7917
3a101d05
TH
7918 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7919 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7920
7921 /* RT runtime code needs to handle some hotplug events */
7922 hotcpu_notifier(update_runtime, 0);
7923
b328ca18 7924 init_hrtick();
5c1e1767
NP
7925
7926 /* Move init over to a non-isolated CPU */
dcc30a35 7927 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7928 BUG();
19978ca6 7929 sched_init_granularity();
dcc30a35 7930 free_cpumask_var(non_isolated_cpus);
4212823f 7931
0e3900e6 7932 init_sched_rt_class();
1da177e4
LT
7933}
7934#else
7935void __init sched_init_smp(void)
7936{
19978ca6 7937 sched_init_granularity();
1da177e4
LT
7938}
7939#endif /* CONFIG_SMP */
7940
cd1bb94b
AB
7941const_debug unsigned int sysctl_timer_migration = 1;
7942
1da177e4
LT
7943int in_sched_functions(unsigned long addr)
7944{
1da177e4
LT
7945 return in_lock_functions(addr) ||
7946 (addr >= (unsigned long)__sched_text_start
7947 && addr < (unsigned long)__sched_text_end);
7948}
7949
a9957449 7950static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7951{
7952 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7953 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7954#ifdef CONFIG_FAIR_GROUP_SCHED
7955 cfs_rq->rq = rq;
7956#endif
67e9fb2a 7957 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7958}
7959
fa85ae24
PZ
7960static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7961{
7962 struct rt_prio_array *array;
7963 int i;
7964
7965 array = &rt_rq->active;
7966 for (i = 0; i < MAX_RT_PRIO; i++) {
7967 INIT_LIST_HEAD(array->queue + i);
7968 __clear_bit(i, array->bitmap);
7969 }
7970 /* delimiter for bitsearch: */
7971 __set_bit(MAX_RT_PRIO, array->bitmap);
7972
052f1dc7 7973#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7974 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7975#ifdef CONFIG_SMP
e864c499 7976 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7977#endif
48d5e258 7978#endif
fa85ae24
PZ
7979#ifdef CONFIG_SMP
7980 rt_rq->rt_nr_migratory = 0;
fa85ae24 7981 rt_rq->overloaded = 0;
05fa785c 7982 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7983#endif
7984
7985 rt_rq->rt_time = 0;
7986 rt_rq->rt_throttled = 0;
ac086bc2 7987 rt_rq->rt_runtime = 0;
0986b11b 7988 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7989
052f1dc7 7990#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7991 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7992 rt_rq->rq = rq;
7993#endif
fa85ae24
PZ
7994}
7995
6f505b16 7996#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7997static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7998 struct sched_entity *se, int cpu, int add,
7999 struct sched_entity *parent)
6f505b16 8000{
ec7dc8ac 8001 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8002 tg->cfs_rq[cpu] = cfs_rq;
8003 init_cfs_rq(cfs_rq, rq);
8004 cfs_rq->tg = tg;
8005 if (add)
8006 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8007
8008 tg->se[cpu] = se;
354d60c2
DG
8009 /* se could be NULL for init_task_group */
8010 if (!se)
8011 return;
8012
ec7dc8ac
DG
8013 if (!parent)
8014 se->cfs_rq = &rq->cfs;
8015 else
8016 se->cfs_rq = parent->my_q;
8017
6f505b16
PZ
8018 se->my_q = cfs_rq;
8019 se->load.weight = tg->shares;
e05510d0 8020 se->load.inv_weight = 0;
ec7dc8ac 8021 se->parent = parent;
6f505b16 8022}
052f1dc7 8023#endif
6f505b16 8024
052f1dc7 8025#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8026static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8027 struct sched_rt_entity *rt_se, int cpu, int add,
8028 struct sched_rt_entity *parent)
6f505b16 8029{
ec7dc8ac
DG
8030 struct rq *rq = cpu_rq(cpu);
8031
6f505b16
PZ
8032 tg->rt_rq[cpu] = rt_rq;
8033 init_rt_rq(rt_rq, rq);
8034 rt_rq->tg = tg;
ac086bc2 8035 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8036 if (add)
8037 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8038
8039 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8040 if (!rt_se)
8041 return;
8042
ec7dc8ac
DG
8043 if (!parent)
8044 rt_se->rt_rq = &rq->rt;
8045 else
8046 rt_se->rt_rq = parent->my_q;
8047
6f505b16 8048 rt_se->my_q = rt_rq;
ec7dc8ac 8049 rt_se->parent = parent;
6f505b16
PZ
8050 INIT_LIST_HEAD(&rt_se->run_list);
8051}
8052#endif
8053
1da177e4
LT
8054void __init sched_init(void)
8055{
dd41f596 8056 int i, j;
434d53b0
MT
8057 unsigned long alloc_size = 0, ptr;
8058
8059#ifdef CONFIG_FAIR_GROUP_SCHED
8060 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8061#endif
8062#ifdef CONFIG_RT_GROUP_SCHED
8063 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8064#endif
df7c8e84 8065#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8066 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8067#endif
434d53b0 8068 if (alloc_size) {
36b7b6d4 8069 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8070
8071#ifdef CONFIG_FAIR_GROUP_SCHED
8072 init_task_group.se = (struct sched_entity **)ptr;
8073 ptr += nr_cpu_ids * sizeof(void **);
8074
8075 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8076 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8077
6d6bc0ad 8078#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8079#ifdef CONFIG_RT_GROUP_SCHED
8080 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8081 ptr += nr_cpu_ids * sizeof(void **);
8082
8083 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8084 ptr += nr_cpu_ids * sizeof(void **);
8085
6d6bc0ad 8086#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8087#ifdef CONFIG_CPUMASK_OFFSTACK
8088 for_each_possible_cpu(i) {
8089 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8090 ptr += cpumask_size();
8091 }
8092#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8093 }
dd41f596 8094
57d885fe
GH
8095#ifdef CONFIG_SMP
8096 init_defrootdomain();
8097#endif
8098
d0b27fa7
PZ
8099 init_rt_bandwidth(&def_rt_bandwidth,
8100 global_rt_period(), global_rt_runtime());
8101
8102#ifdef CONFIG_RT_GROUP_SCHED
8103 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8104 global_rt_period(), global_rt_runtime());
6d6bc0ad 8105#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8106
7c941438 8107#ifdef CONFIG_CGROUP_SCHED
6f505b16 8108 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8109 INIT_LIST_HEAD(&init_task_group.children);
8110
7c941438 8111#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8112
4a6cc4bd
JK
8113#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
8114 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
8115 __alignof__(unsigned long));
8116#endif
0a945022 8117 for_each_possible_cpu(i) {
70b97a7f 8118 struct rq *rq;
1da177e4
LT
8119
8120 rq = cpu_rq(i);
05fa785c 8121 raw_spin_lock_init(&rq->lock);
7897986b 8122 rq->nr_running = 0;
dce48a84
TG
8123 rq->calc_load_active = 0;
8124 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8125 init_cfs_rq(&rq->cfs, rq);
6f505b16 8126 init_rt_rq(&rq->rt, rq);
dd41f596 8127#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8128 init_task_group.shares = init_task_group_load;
6f505b16 8129 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8130#ifdef CONFIG_CGROUP_SCHED
8131 /*
8132 * How much cpu bandwidth does init_task_group get?
8133 *
8134 * In case of task-groups formed thr' the cgroup filesystem, it
8135 * gets 100% of the cpu resources in the system. This overall
8136 * system cpu resource is divided among the tasks of
8137 * init_task_group and its child task-groups in a fair manner,
8138 * based on each entity's (task or task-group's) weight
8139 * (se->load.weight).
8140 *
8141 * In other words, if init_task_group has 10 tasks of weight
8142 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8143 * then A0's share of the cpu resource is:
8144 *
0d905bca 8145 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
8146 *
8147 * We achieve this by letting init_task_group's tasks sit
8148 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8149 */
ec7dc8ac 8150 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 8151#endif
354d60c2
DG
8152#endif /* CONFIG_FAIR_GROUP_SCHED */
8153
8154 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8155#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8156 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8157#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8158 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8159#endif
dd41f596 8160#endif
1da177e4 8161
dd41f596
IM
8162 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8163 rq->cpu_load[j] = 0;
fdf3e95d
VP
8164
8165 rq->last_load_update_tick = jiffies;
8166
1da177e4 8167#ifdef CONFIG_SMP
41c7ce9a 8168 rq->sd = NULL;
57d885fe 8169 rq->rd = NULL;
e51fd5e2 8170 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8171 rq->post_schedule = 0;
1da177e4 8172 rq->active_balance = 0;
dd41f596 8173 rq->next_balance = jiffies;
1da177e4 8174 rq->push_cpu = 0;
0a2966b4 8175 rq->cpu = i;
1f11eb6a 8176 rq->online = 0;
eae0c9df
MG
8177 rq->idle_stamp = 0;
8178 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8179 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8180#ifdef CONFIG_NO_HZ
8181 rq->nohz_balance_kick = 0;
8182 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8183#endif
1da177e4 8184#endif
8f4d37ec 8185 init_rq_hrtick(rq);
1da177e4 8186 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8187 }
8188
2dd73a4f 8189 set_load_weight(&init_task);
b50f60ce 8190
e107be36
AK
8191#ifdef CONFIG_PREEMPT_NOTIFIERS
8192 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8193#endif
8194
c9819f45 8195#ifdef CONFIG_SMP
962cf36c 8196 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8197#endif
8198
b50f60ce 8199#ifdef CONFIG_RT_MUTEXES
1d615482 8200 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8201#endif
8202
1da177e4
LT
8203 /*
8204 * The boot idle thread does lazy MMU switching as well:
8205 */
8206 atomic_inc(&init_mm.mm_count);
8207 enter_lazy_tlb(&init_mm, current);
8208
8209 /*
8210 * Make us the idle thread. Technically, schedule() should not be
8211 * called from this thread, however somewhere below it might be,
8212 * but because we are the idle thread, we just pick up running again
8213 * when this runqueue becomes "idle".
8214 */
8215 init_idle(current, smp_processor_id());
dce48a84
TG
8216
8217 calc_load_update = jiffies + LOAD_FREQ;
8218
dd41f596
IM
8219 /*
8220 * During early bootup we pretend to be a normal task:
8221 */
8222 current->sched_class = &fair_sched_class;
6892b75e 8223
6a7b3dc3 8224 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8225 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8226#ifdef CONFIG_SMP
7d1e6a9b 8227#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8228 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8229 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8230 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8231 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8232 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8233#endif
bdddd296
RR
8234 /* May be allocated at isolcpus cmdline parse time */
8235 if (cpu_isolated_map == NULL)
8236 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8237#endif /* SMP */
6a7b3dc3 8238
cdd6c482 8239 perf_event_init();
0d905bca 8240
6892b75e 8241 scheduler_running = 1;
1da177e4
LT
8242}
8243
8244#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8245static inline int preempt_count_equals(int preempt_offset)
8246{
234da7bc 8247 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8248
8249 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8250}
8251
d894837f 8252void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8253{
48f24c4d 8254#ifdef in_atomic
1da177e4
LT
8255 static unsigned long prev_jiffy; /* ratelimiting */
8256
e4aafea2
FW
8257 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8258 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8259 return;
8260 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8261 return;
8262 prev_jiffy = jiffies;
8263
3df0fc5b
PZ
8264 printk(KERN_ERR
8265 "BUG: sleeping function called from invalid context at %s:%d\n",
8266 file, line);
8267 printk(KERN_ERR
8268 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8269 in_atomic(), irqs_disabled(),
8270 current->pid, current->comm);
aef745fc
IM
8271
8272 debug_show_held_locks(current);
8273 if (irqs_disabled())
8274 print_irqtrace_events(current);
8275 dump_stack();
1da177e4
LT
8276#endif
8277}
8278EXPORT_SYMBOL(__might_sleep);
8279#endif
8280
8281#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8282static void normalize_task(struct rq *rq, struct task_struct *p)
8283{
8284 int on_rq;
3e51f33f 8285
3a5e4dc1
AK
8286 on_rq = p->se.on_rq;
8287 if (on_rq)
8288 deactivate_task(rq, p, 0);
8289 __setscheduler(rq, p, SCHED_NORMAL, 0);
8290 if (on_rq) {
8291 activate_task(rq, p, 0);
8292 resched_task(rq->curr);
8293 }
8294}
8295
1da177e4
LT
8296void normalize_rt_tasks(void)
8297{
a0f98a1c 8298 struct task_struct *g, *p;
1da177e4 8299 unsigned long flags;
70b97a7f 8300 struct rq *rq;
1da177e4 8301
4cf5d77a 8302 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8303 do_each_thread(g, p) {
178be793
IM
8304 /*
8305 * Only normalize user tasks:
8306 */
8307 if (!p->mm)
8308 continue;
8309
6cfb0d5d 8310 p->se.exec_start = 0;
6cfb0d5d 8311#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8312 p->se.statistics.wait_start = 0;
8313 p->se.statistics.sleep_start = 0;
8314 p->se.statistics.block_start = 0;
6cfb0d5d 8315#endif
dd41f596
IM
8316
8317 if (!rt_task(p)) {
8318 /*
8319 * Renice negative nice level userspace
8320 * tasks back to 0:
8321 */
8322 if (TASK_NICE(p) < 0 && p->mm)
8323 set_user_nice(p, 0);
1da177e4 8324 continue;
dd41f596 8325 }
1da177e4 8326
1d615482 8327 raw_spin_lock(&p->pi_lock);
b29739f9 8328 rq = __task_rq_lock(p);
1da177e4 8329
178be793 8330 normalize_task(rq, p);
3a5e4dc1 8331
b29739f9 8332 __task_rq_unlock(rq);
1d615482 8333 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8334 } while_each_thread(g, p);
8335
4cf5d77a 8336 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8337}
8338
8339#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8340
67fc4e0c 8341#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8342/*
67fc4e0c 8343 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8344 *
8345 * They can only be called when the whole system has been
8346 * stopped - every CPU needs to be quiescent, and no scheduling
8347 * activity can take place. Using them for anything else would
8348 * be a serious bug, and as a result, they aren't even visible
8349 * under any other configuration.
8350 */
8351
8352/**
8353 * curr_task - return the current task for a given cpu.
8354 * @cpu: the processor in question.
8355 *
8356 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8357 */
36c8b586 8358struct task_struct *curr_task(int cpu)
1df5c10a
LT
8359{
8360 return cpu_curr(cpu);
8361}
8362
67fc4e0c
JW
8363#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8364
8365#ifdef CONFIG_IA64
1df5c10a
LT
8366/**
8367 * set_curr_task - set the current task for a given cpu.
8368 * @cpu: the processor in question.
8369 * @p: the task pointer to set.
8370 *
8371 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8372 * are serviced on a separate stack. It allows the architecture to switch the
8373 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8374 * must be called with all CPU's synchronized, and interrupts disabled, the
8375 * and caller must save the original value of the current task (see
8376 * curr_task() above) and restore that value before reenabling interrupts and
8377 * re-starting the system.
8378 *
8379 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8380 */
36c8b586 8381void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8382{
8383 cpu_curr(cpu) = p;
8384}
8385
8386#endif
29f59db3 8387
bccbe08a
PZ
8388#ifdef CONFIG_FAIR_GROUP_SCHED
8389static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8390{
8391 int i;
8392
8393 for_each_possible_cpu(i) {
8394 if (tg->cfs_rq)
8395 kfree(tg->cfs_rq[i]);
8396 if (tg->se)
8397 kfree(tg->se[i]);
6f505b16
PZ
8398 }
8399
8400 kfree(tg->cfs_rq);
8401 kfree(tg->se);
6f505b16
PZ
8402}
8403
ec7dc8ac
DG
8404static
8405int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8406{
29f59db3 8407 struct cfs_rq *cfs_rq;
eab17229 8408 struct sched_entity *se;
9b5b7751 8409 struct rq *rq;
29f59db3
SV
8410 int i;
8411
434d53b0 8412 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8413 if (!tg->cfs_rq)
8414 goto err;
434d53b0 8415 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8416 if (!tg->se)
8417 goto err;
052f1dc7
PZ
8418
8419 tg->shares = NICE_0_LOAD;
29f59db3
SV
8420
8421 for_each_possible_cpu(i) {
9b5b7751 8422 rq = cpu_rq(i);
29f59db3 8423
eab17229
LZ
8424 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8425 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8426 if (!cfs_rq)
8427 goto err;
8428
eab17229
LZ
8429 se = kzalloc_node(sizeof(struct sched_entity),
8430 GFP_KERNEL, cpu_to_node(i));
29f59db3 8431 if (!se)
dfc12eb2 8432 goto err_free_rq;
29f59db3 8433
eab17229 8434 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8435 }
8436
8437 return 1;
8438
49246274 8439err_free_rq:
dfc12eb2 8440 kfree(cfs_rq);
49246274 8441err:
bccbe08a
PZ
8442 return 0;
8443}
8444
8445static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8446{
8447 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8448 &cpu_rq(cpu)->leaf_cfs_rq_list);
8449}
8450
8451static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8452{
8453 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8454}
6d6bc0ad 8455#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8456static inline void free_fair_sched_group(struct task_group *tg)
8457{
8458}
8459
ec7dc8ac
DG
8460static inline
8461int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8462{
8463 return 1;
8464}
8465
8466static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8467{
8468}
8469
8470static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8471{
8472}
6d6bc0ad 8473#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8474
8475#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8476static void free_rt_sched_group(struct task_group *tg)
8477{
8478 int i;
8479
d0b27fa7
PZ
8480 destroy_rt_bandwidth(&tg->rt_bandwidth);
8481
bccbe08a
PZ
8482 for_each_possible_cpu(i) {
8483 if (tg->rt_rq)
8484 kfree(tg->rt_rq[i]);
8485 if (tg->rt_se)
8486 kfree(tg->rt_se[i]);
8487 }
8488
8489 kfree(tg->rt_rq);
8490 kfree(tg->rt_se);
8491}
8492
ec7dc8ac
DG
8493static
8494int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8495{
8496 struct rt_rq *rt_rq;
eab17229 8497 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8498 struct rq *rq;
8499 int i;
8500
434d53b0 8501 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8502 if (!tg->rt_rq)
8503 goto err;
434d53b0 8504 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8505 if (!tg->rt_se)
8506 goto err;
8507
d0b27fa7
PZ
8508 init_rt_bandwidth(&tg->rt_bandwidth,
8509 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8510
8511 for_each_possible_cpu(i) {
8512 rq = cpu_rq(i);
8513
eab17229
LZ
8514 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8515 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8516 if (!rt_rq)
8517 goto err;
29f59db3 8518
eab17229
LZ
8519 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8520 GFP_KERNEL, cpu_to_node(i));
6f505b16 8521 if (!rt_se)
dfc12eb2 8522 goto err_free_rq;
29f59db3 8523
eab17229 8524 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8525 }
8526
bccbe08a
PZ
8527 return 1;
8528
49246274 8529err_free_rq:
dfc12eb2 8530 kfree(rt_rq);
49246274 8531err:
bccbe08a
PZ
8532 return 0;
8533}
8534
8535static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8536{
8537 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8538 &cpu_rq(cpu)->leaf_rt_rq_list);
8539}
8540
8541static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8542{
8543 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8544}
6d6bc0ad 8545#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8546static inline void free_rt_sched_group(struct task_group *tg)
8547{
8548}
8549
ec7dc8ac
DG
8550static inline
8551int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8552{
8553 return 1;
8554}
8555
8556static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8557{
8558}
8559
8560static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8561{
8562}
6d6bc0ad 8563#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8564
7c941438 8565#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8566static void free_sched_group(struct task_group *tg)
8567{
8568 free_fair_sched_group(tg);
8569 free_rt_sched_group(tg);
8570 kfree(tg);
8571}
8572
8573/* allocate runqueue etc for a new task group */
ec7dc8ac 8574struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8575{
8576 struct task_group *tg;
8577 unsigned long flags;
8578 int i;
8579
8580 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8581 if (!tg)
8582 return ERR_PTR(-ENOMEM);
8583
ec7dc8ac 8584 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8585 goto err;
8586
ec7dc8ac 8587 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8588 goto err;
8589
8ed36996 8590 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8591 for_each_possible_cpu(i) {
bccbe08a
PZ
8592 register_fair_sched_group(tg, i);
8593 register_rt_sched_group(tg, i);
9b5b7751 8594 }
6f505b16 8595 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8596
8597 WARN_ON(!parent); /* root should already exist */
8598
8599 tg->parent = parent;
f473aa5e 8600 INIT_LIST_HEAD(&tg->children);
09f2724a 8601 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8602 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8603
9b5b7751 8604 return tg;
29f59db3
SV
8605
8606err:
6f505b16 8607 free_sched_group(tg);
29f59db3
SV
8608 return ERR_PTR(-ENOMEM);
8609}
8610
9b5b7751 8611/* rcu callback to free various structures associated with a task group */
6f505b16 8612static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8613{
29f59db3 8614 /* now it should be safe to free those cfs_rqs */
6f505b16 8615 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8616}
8617
9b5b7751 8618/* Destroy runqueue etc associated with a task group */
4cf86d77 8619void sched_destroy_group(struct task_group *tg)
29f59db3 8620{
8ed36996 8621 unsigned long flags;
9b5b7751 8622 int i;
29f59db3 8623
8ed36996 8624 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8625 for_each_possible_cpu(i) {
bccbe08a
PZ
8626 unregister_fair_sched_group(tg, i);
8627 unregister_rt_sched_group(tg, i);
9b5b7751 8628 }
6f505b16 8629 list_del_rcu(&tg->list);
f473aa5e 8630 list_del_rcu(&tg->siblings);
8ed36996 8631 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8632
9b5b7751 8633 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8634 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8635}
8636
9b5b7751 8637/* change task's runqueue when it moves between groups.
3a252015
IM
8638 * The caller of this function should have put the task in its new group
8639 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8640 * reflect its new group.
9b5b7751
SV
8641 */
8642void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8643{
8644 int on_rq, running;
8645 unsigned long flags;
8646 struct rq *rq;
8647
8648 rq = task_rq_lock(tsk, &flags);
8649
051a1d1a 8650 running = task_current(rq, tsk);
29f59db3
SV
8651 on_rq = tsk->se.on_rq;
8652
0e1f3483 8653 if (on_rq)
29f59db3 8654 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8655 if (unlikely(running))
8656 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8657
810b3817 8658#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8659 if (tsk->sched_class->task_move_group)
8660 tsk->sched_class->task_move_group(tsk, on_rq);
8661 else
810b3817 8662#endif
b2b5ce02 8663 set_task_rq(tsk, task_cpu(tsk));
810b3817 8664
0e1f3483
HS
8665 if (unlikely(running))
8666 tsk->sched_class->set_curr_task(rq);
8667 if (on_rq)
371fd7e7 8668 enqueue_task(rq, tsk, 0);
29f59db3 8669
29f59db3
SV
8670 task_rq_unlock(rq, &flags);
8671}
7c941438 8672#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8673
052f1dc7 8674#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8675static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8676{
8677 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8678 int on_rq;
8679
29f59db3 8680 on_rq = se->on_rq;
62fb1851 8681 if (on_rq)
29f59db3
SV
8682 dequeue_entity(cfs_rq, se, 0);
8683
8684 se->load.weight = shares;
e05510d0 8685 se->load.inv_weight = 0;
29f59db3 8686
62fb1851 8687 if (on_rq)
29f59db3 8688 enqueue_entity(cfs_rq, se, 0);
c09595f6 8689}
62fb1851 8690
c09595f6
PZ
8691static void set_se_shares(struct sched_entity *se, unsigned long shares)
8692{
8693 struct cfs_rq *cfs_rq = se->cfs_rq;
8694 struct rq *rq = cfs_rq->rq;
8695 unsigned long flags;
8696
05fa785c 8697 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8698 __set_se_shares(se, shares);
05fa785c 8699 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8700}
8701
8ed36996
PZ
8702static DEFINE_MUTEX(shares_mutex);
8703
4cf86d77 8704int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8705{
8706 int i;
8ed36996 8707 unsigned long flags;
c61935fd 8708
ec7dc8ac
DG
8709 /*
8710 * We can't change the weight of the root cgroup.
8711 */
8712 if (!tg->se[0])
8713 return -EINVAL;
8714
18d95a28
PZ
8715 if (shares < MIN_SHARES)
8716 shares = MIN_SHARES;
cb4ad1ff
MX
8717 else if (shares > MAX_SHARES)
8718 shares = MAX_SHARES;
62fb1851 8719
8ed36996 8720 mutex_lock(&shares_mutex);
9b5b7751 8721 if (tg->shares == shares)
5cb350ba 8722 goto done;
29f59db3 8723
8ed36996 8724 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8725 for_each_possible_cpu(i)
8726 unregister_fair_sched_group(tg, i);
f473aa5e 8727 list_del_rcu(&tg->siblings);
8ed36996 8728 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8729
8730 /* wait for any ongoing reference to this group to finish */
8731 synchronize_sched();
8732
8733 /*
8734 * Now we are free to modify the group's share on each cpu
8735 * w/o tripping rebalance_share or load_balance_fair.
8736 */
9b5b7751 8737 tg->shares = shares;
c09595f6
PZ
8738 for_each_possible_cpu(i) {
8739 /*
8740 * force a rebalance
8741 */
8742 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8743 set_se_shares(tg->se[i], shares);
c09595f6 8744 }
29f59db3 8745
6b2d7700
SV
8746 /*
8747 * Enable load balance activity on this group, by inserting it back on
8748 * each cpu's rq->leaf_cfs_rq_list.
8749 */
8ed36996 8750 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8751 for_each_possible_cpu(i)
8752 register_fair_sched_group(tg, i);
f473aa5e 8753 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8754 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8755done:
8ed36996 8756 mutex_unlock(&shares_mutex);
9b5b7751 8757 return 0;
29f59db3
SV
8758}
8759
5cb350ba
DG
8760unsigned long sched_group_shares(struct task_group *tg)
8761{
8762 return tg->shares;
8763}
052f1dc7 8764#endif
5cb350ba 8765
052f1dc7 8766#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8767/*
9f0c1e56 8768 * Ensure that the real time constraints are schedulable.
6f505b16 8769 */
9f0c1e56
PZ
8770static DEFINE_MUTEX(rt_constraints_mutex);
8771
8772static unsigned long to_ratio(u64 period, u64 runtime)
8773{
8774 if (runtime == RUNTIME_INF)
9a7e0b18 8775 return 1ULL << 20;
9f0c1e56 8776
9a7e0b18 8777 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8778}
8779
9a7e0b18
PZ
8780/* Must be called with tasklist_lock held */
8781static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8782{
9a7e0b18 8783 struct task_struct *g, *p;
b40b2e8e 8784
9a7e0b18
PZ
8785 do_each_thread(g, p) {
8786 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8787 return 1;
8788 } while_each_thread(g, p);
b40b2e8e 8789
9a7e0b18
PZ
8790 return 0;
8791}
b40b2e8e 8792
9a7e0b18
PZ
8793struct rt_schedulable_data {
8794 struct task_group *tg;
8795 u64 rt_period;
8796 u64 rt_runtime;
8797};
b40b2e8e 8798
9a7e0b18
PZ
8799static int tg_schedulable(struct task_group *tg, void *data)
8800{
8801 struct rt_schedulable_data *d = data;
8802 struct task_group *child;
8803 unsigned long total, sum = 0;
8804 u64 period, runtime;
b40b2e8e 8805
9a7e0b18
PZ
8806 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8807 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8808
9a7e0b18
PZ
8809 if (tg == d->tg) {
8810 period = d->rt_period;
8811 runtime = d->rt_runtime;
b40b2e8e 8812 }
b40b2e8e 8813
4653f803
PZ
8814 /*
8815 * Cannot have more runtime than the period.
8816 */
8817 if (runtime > period && runtime != RUNTIME_INF)
8818 return -EINVAL;
6f505b16 8819
4653f803
PZ
8820 /*
8821 * Ensure we don't starve existing RT tasks.
8822 */
9a7e0b18
PZ
8823 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8824 return -EBUSY;
6f505b16 8825
9a7e0b18 8826 total = to_ratio(period, runtime);
6f505b16 8827
4653f803
PZ
8828 /*
8829 * Nobody can have more than the global setting allows.
8830 */
8831 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8832 return -EINVAL;
6f505b16 8833
4653f803
PZ
8834 /*
8835 * The sum of our children's runtime should not exceed our own.
8836 */
9a7e0b18
PZ
8837 list_for_each_entry_rcu(child, &tg->children, siblings) {
8838 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8839 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8840
9a7e0b18
PZ
8841 if (child == d->tg) {
8842 period = d->rt_period;
8843 runtime = d->rt_runtime;
8844 }
6f505b16 8845
9a7e0b18 8846 sum += to_ratio(period, runtime);
9f0c1e56 8847 }
6f505b16 8848
9a7e0b18
PZ
8849 if (sum > total)
8850 return -EINVAL;
8851
8852 return 0;
6f505b16
PZ
8853}
8854
9a7e0b18 8855static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8856{
9a7e0b18
PZ
8857 struct rt_schedulable_data data = {
8858 .tg = tg,
8859 .rt_period = period,
8860 .rt_runtime = runtime,
8861 };
8862
8863 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8864}
8865
d0b27fa7
PZ
8866static int tg_set_bandwidth(struct task_group *tg,
8867 u64 rt_period, u64 rt_runtime)
6f505b16 8868{
ac086bc2 8869 int i, err = 0;
9f0c1e56 8870
9f0c1e56 8871 mutex_lock(&rt_constraints_mutex);
521f1a24 8872 read_lock(&tasklist_lock);
9a7e0b18
PZ
8873 err = __rt_schedulable(tg, rt_period, rt_runtime);
8874 if (err)
9f0c1e56 8875 goto unlock;
ac086bc2 8876
0986b11b 8877 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8878 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8879 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8880
8881 for_each_possible_cpu(i) {
8882 struct rt_rq *rt_rq = tg->rt_rq[i];
8883
0986b11b 8884 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8885 rt_rq->rt_runtime = rt_runtime;
0986b11b 8886 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8887 }
0986b11b 8888 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8889unlock:
521f1a24 8890 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8891 mutex_unlock(&rt_constraints_mutex);
8892
8893 return err;
6f505b16
PZ
8894}
8895
d0b27fa7
PZ
8896int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8897{
8898 u64 rt_runtime, rt_period;
8899
8900 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8901 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8902 if (rt_runtime_us < 0)
8903 rt_runtime = RUNTIME_INF;
8904
8905 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8906}
8907
9f0c1e56
PZ
8908long sched_group_rt_runtime(struct task_group *tg)
8909{
8910 u64 rt_runtime_us;
8911
d0b27fa7 8912 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8913 return -1;
8914
d0b27fa7 8915 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8916 do_div(rt_runtime_us, NSEC_PER_USEC);
8917 return rt_runtime_us;
8918}
d0b27fa7
PZ
8919
8920int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8921{
8922 u64 rt_runtime, rt_period;
8923
8924 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8925 rt_runtime = tg->rt_bandwidth.rt_runtime;
8926
619b0488
R
8927 if (rt_period == 0)
8928 return -EINVAL;
8929
d0b27fa7
PZ
8930 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8931}
8932
8933long sched_group_rt_period(struct task_group *tg)
8934{
8935 u64 rt_period_us;
8936
8937 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8938 do_div(rt_period_us, NSEC_PER_USEC);
8939 return rt_period_us;
8940}
8941
8942static int sched_rt_global_constraints(void)
8943{
4653f803 8944 u64 runtime, period;
d0b27fa7
PZ
8945 int ret = 0;
8946
ec5d4989
HS
8947 if (sysctl_sched_rt_period <= 0)
8948 return -EINVAL;
8949
4653f803
PZ
8950 runtime = global_rt_runtime();
8951 period = global_rt_period();
8952
8953 /*
8954 * Sanity check on the sysctl variables.
8955 */
8956 if (runtime > period && runtime != RUNTIME_INF)
8957 return -EINVAL;
10b612f4 8958
d0b27fa7 8959 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8960 read_lock(&tasklist_lock);
4653f803 8961 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8962 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8963 mutex_unlock(&rt_constraints_mutex);
8964
8965 return ret;
8966}
54e99124
DG
8967
8968int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8969{
8970 /* Don't accept realtime tasks when there is no way for them to run */
8971 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8972 return 0;
8973
8974 return 1;
8975}
8976
6d6bc0ad 8977#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8978static int sched_rt_global_constraints(void)
8979{
ac086bc2
PZ
8980 unsigned long flags;
8981 int i;
8982
ec5d4989
HS
8983 if (sysctl_sched_rt_period <= 0)
8984 return -EINVAL;
8985
60aa605d
PZ
8986 /*
8987 * There's always some RT tasks in the root group
8988 * -- migration, kstopmachine etc..
8989 */
8990 if (sysctl_sched_rt_runtime == 0)
8991 return -EBUSY;
8992
0986b11b 8993 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8994 for_each_possible_cpu(i) {
8995 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8996
0986b11b 8997 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8998 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8999 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 9000 }
0986b11b 9001 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 9002
d0b27fa7
PZ
9003 return 0;
9004}
6d6bc0ad 9005#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9006
9007int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 9008 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9009 loff_t *ppos)
9010{
9011 int ret;
9012 int old_period, old_runtime;
9013 static DEFINE_MUTEX(mutex);
9014
9015 mutex_lock(&mutex);
9016 old_period = sysctl_sched_rt_period;
9017 old_runtime = sysctl_sched_rt_runtime;
9018
8d65af78 9019 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9020
9021 if (!ret && write) {
9022 ret = sched_rt_global_constraints();
9023 if (ret) {
9024 sysctl_sched_rt_period = old_period;
9025 sysctl_sched_rt_runtime = old_runtime;
9026 } else {
9027 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9028 def_rt_bandwidth.rt_period =
9029 ns_to_ktime(global_rt_period());
9030 }
9031 }
9032 mutex_unlock(&mutex);
9033
9034 return ret;
9035}
68318b8e 9036
052f1dc7 9037#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9038
9039/* return corresponding task_group object of a cgroup */
2b01dfe3 9040static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9041{
2b01dfe3
PM
9042 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9043 struct task_group, css);
68318b8e
SV
9044}
9045
9046static struct cgroup_subsys_state *
2b01dfe3 9047cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9048{
ec7dc8ac 9049 struct task_group *tg, *parent;
68318b8e 9050
2b01dfe3 9051 if (!cgrp->parent) {
68318b8e 9052 /* This is early initialization for the top cgroup */
68318b8e
SV
9053 return &init_task_group.css;
9054 }
9055
ec7dc8ac
DG
9056 parent = cgroup_tg(cgrp->parent);
9057 tg = sched_create_group(parent);
68318b8e
SV
9058 if (IS_ERR(tg))
9059 return ERR_PTR(-ENOMEM);
9060
68318b8e
SV
9061 return &tg->css;
9062}
9063
41a2d6cf
IM
9064static void
9065cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9066{
2b01dfe3 9067 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9068
9069 sched_destroy_group(tg);
9070}
9071
41a2d6cf 9072static int
be367d09 9073cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9074{
b68aa230 9075#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9076 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9077 return -EINVAL;
9078#else
68318b8e
SV
9079 /* We don't support RT-tasks being in separate groups */
9080 if (tsk->sched_class != &fair_sched_class)
9081 return -EINVAL;
b68aa230 9082#endif
be367d09
BB
9083 return 0;
9084}
68318b8e 9085
be367d09
BB
9086static int
9087cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9088 struct task_struct *tsk, bool threadgroup)
9089{
9090 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9091 if (retval)
9092 return retval;
9093 if (threadgroup) {
9094 struct task_struct *c;
9095 rcu_read_lock();
9096 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9097 retval = cpu_cgroup_can_attach_task(cgrp, c);
9098 if (retval) {
9099 rcu_read_unlock();
9100 return retval;
9101 }
9102 }
9103 rcu_read_unlock();
9104 }
68318b8e
SV
9105 return 0;
9106}
9107
9108static void
2b01dfe3 9109cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9110 struct cgroup *old_cont, struct task_struct *tsk,
9111 bool threadgroup)
68318b8e
SV
9112{
9113 sched_move_task(tsk);
be367d09
BB
9114 if (threadgroup) {
9115 struct task_struct *c;
9116 rcu_read_lock();
9117 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9118 sched_move_task(c);
9119 }
9120 rcu_read_unlock();
9121 }
68318b8e
SV
9122}
9123
052f1dc7 9124#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9125static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9126 u64 shareval)
68318b8e 9127{
2b01dfe3 9128 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9129}
9130
f4c753b7 9131static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9132{
2b01dfe3 9133 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9134
9135 return (u64) tg->shares;
9136}
6d6bc0ad 9137#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9138
052f1dc7 9139#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9140static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9141 s64 val)
6f505b16 9142{
06ecb27c 9143 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9144}
9145
06ecb27c 9146static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9147{
06ecb27c 9148 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9149}
d0b27fa7
PZ
9150
9151static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9152 u64 rt_period_us)
9153{
9154 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9155}
9156
9157static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9158{
9159 return sched_group_rt_period(cgroup_tg(cgrp));
9160}
6d6bc0ad 9161#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9162
fe5c7cc2 9163static struct cftype cpu_files[] = {
052f1dc7 9164#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9165 {
9166 .name = "shares",
f4c753b7
PM
9167 .read_u64 = cpu_shares_read_u64,
9168 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9169 },
052f1dc7
PZ
9170#endif
9171#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9172 {
9f0c1e56 9173 .name = "rt_runtime_us",
06ecb27c
PM
9174 .read_s64 = cpu_rt_runtime_read,
9175 .write_s64 = cpu_rt_runtime_write,
6f505b16 9176 },
d0b27fa7
PZ
9177 {
9178 .name = "rt_period_us",
f4c753b7
PM
9179 .read_u64 = cpu_rt_period_read_uint,
9180 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9181 },
052f1dc7 9182#endif
68318b8e
SV
9183};
9184
9185static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9186{
fe5c7cc2 9187 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9188}
9189
9190struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9191 .name = "cpu",
9192 .create = cpu_cgroup_create,
9193 .destroy = cpu_cgroup_destroy,
9194 .can_attach = cpu_cgroup_can_attach,
9195 .attach = cpu_cgroup_attach,
9196 .populate = cpu_cgroup_populate,
9197 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9198 .early_init = 1,
9199};
9200
052f1dc7 9201#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9202
9203#ifdef CONFIG_CGROUP_CPUACCT
9204
9205/*
9206 * CPU accounting code for task groups.
9207 *
9208 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9209 * (balbir@in.ibm.com).
9210 */
9211
934352f2 9212/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9213struct cpuacct {
9214 struct cgroup_subsys_state css;
9215 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9216 u64 __percpu *cpuusage;
ef12fefa 9217 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9218 struct cpuacct *parent;
d842de87
SV
9219};
9220
9221struct cgroup_subsys cpuacct_subsys;
9222
9223/* return cpu accounting group corresponding to this container */
32cd756a 9224static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9225{
32cd756a 9226 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9227 struct cpuacct, css);
9228}
9229
9230/* return cpu accounting group to which this task belongs */
9231static inline struct cpuacct *task_ca(struct task_struct *tsk)
9232{
9233 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9234 struct cpuacct, css);
9235}
9236
9237/* create a new cpu accounting group */
9238static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9239 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9240{
9241 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9242 int i;
d842de87
SV
9243
9244 if (!ca)
ef12fefa 9245 goto out;
d842de87
SV
9246
9247 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9248 if (!ca->cpuusage)
9249 goto out_free_ca;
9250
9251 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9252 if (percpu_counter_init(&ca->cpustat[i], 0))
9253 goto out_free_counters;
d842de87 9254
934352f2
BR
9255 if (cgrp->parent)
9256 ca->parent = cgroup_ca(cgrp->parent);
9257
d842de87 9258 return &ca->css;
ef12fefa
BR
9259
9260out_free_counters:
9261 while (--i >= 0)
9262 percpu_counter_destroy(&ca->cpustat[i]);
9263 free_percpu(ca->cpuusage);
9264out_free_ca:
9265 kfree(ca);
9266out:
9267 return ERR_PTR(-ENOMEM);
d842de87
SV
9268}
9269
9270/* destroy an existing cpu accounting group */
41a2d6cf 9271static void
32cd756a 9272cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9273{
32cd756a 9274 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9275 int i;
d842de87 9276
ef12fefa
BR
9277 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9278 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9279 free_percpu(ca->cpuusage);
9280 kfree(ca);
9281}
9282
720f5498
KC
9283static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9284{
b36128c8 9285 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9286 u64 data;
9287
9288#ifndef CONFIG_64BIT
9289 /*
9290 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9291 */
05fa785c 9292 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9293 data = *cpuusage;
05fa785c 9294 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9295#else
9296 data = *cpuusage;
9297#endif
9298
9299 return data;
9300}
9301
9302static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9303{
b36128c8 9304 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9305
9306#ifndef CONFIG_64BIT
9307 /*
9308 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9309 */
05fa785c 9310 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9311 *cpuusage = val;
05fa785c 9312 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9313#else
9314 *cpuusage = val;
9315#endif
9316}
9317
d842de87 9318/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9319static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9320{
32cd756a 9321 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9322 u64 totalcpuusage = 0;
9323 int i;
9324
720f5498
KC
9325 for_each_present_cpu(i)
9326 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9327
9328 return totalcpuusage;
9329}
9330
0297b803
DG
9331static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9332 u64 reset)
9333{
9334 struct cpuacct *ca = cgroup_ca(cgrp);
9335 int err = 0;
9336 int i;
9337
9338 if (reset) {
9339 err = -EINVAL;
9340 goto out;
9341 }
9342
720f5498
KC
9343 for_each_present_cpu(i)
9344 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9345
0297b803
DG
9346out:
9347 return err;
9348}
9349
e9515c3c
KC
9350static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9351 struct seq_file *m)
9352{
9353 struct cpuacct *ca = cgroup_ca(cgroup);
9354 u64 percpu;
9355 int i;
9356
9357 for_each_present_cpu(i) {
9358 percpu = cpuacct_cpuusage_read(ca, i);
9359 seq_printf(m, "%llu ", (unsigned long long) percpu);
9360 }
9361 seq_printf(m, "\n");
9362 return 0;
9363}
9364
ef12fefa
BR
9365static const char *cpuacct_stat_desc[] = {
9366 [CPUACCT_STAT_USER] = "user",
9367 [CPUACCT_STAT_SYSTEM] = "system",
9368};
9369
9370static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9371 struct cgroup_map_cb *cb)
9372{
9373 struct cpuacct *ca = cgroup_ca(cgrp);
9374 int i;
9375
9376 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9377 s64 val = percpu_counter_read(&ca->cpustat[i]);
9378 val = cputime64_to_clock_t(val);
9379 cb->fill(cb, cpuacct_stat_desc[i], val);
9380 }
9381 return 0;
9382}
9383
d842de87
SV
9384static struct cftype files[] = {
9385 {
9386 .name = "usage",
f4c753b7
PM
9387 .read_u64 = cpuusage_read,
9388 .write_u64 = cpuusage_write,
d842de87 9389 },
e9515c3c
KC
9390 {
9391 .name = "usage_percpu",
9392 .read_seq_string = cpuacct_percpu_seq_read,
9393 },
ef12fefa
BR
9394 {
9395 .name = "stat",
9396 .read_map = cpuacct_stats_show,
9397 },
d842de87
SV
9398};
9399
32cd756a 9400static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9401{
32cd756a 9402 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9403}
9404
9405/*
9406 * charge this task's execution time to its accounting group.
9407 *
9408 * called with rq->lock held.
9409 */
9410static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9411{
9412 struct cpuacct *ca;
934352f2 9413 int cpu;
d842de87 9414
c40c6f85 9415 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9416 return;
9417
934352f2 9418 cpu = task_cpu(tsk);
a18b83b7
BR
9419
9420 rcu_read_lock();
9421
d842de87 9422 ca = task_ca(tsk);
d842de87 9423
934352f2 9424 for (; ca; ca = ca->parent) {
b36128c8 9425 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9426 *cpuusage += cputime;
9427 }
a18b83b7
BR
9428
9429 rcu_read_unlock();
d842de87
SV
9430}
9431
fa535a77
AB
9432/*
9433 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9434 * in cputime_t units. As a result, cpuacct_update_stats calls
9435 * percpu_counter_add with values large enough to always overflow the
9436 * per cpu batch limit causing bad SMP scalability.
9437 *
9438 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9439 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9440 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9441 */
9442#ifdef CONFIG_SMP
9443#define CPUACCT_BATCH \
9444 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9445#else
9446#define CPUACCT_BATCH 0
9447#endif
9448
ef12fefa
BR
9449/*
9450 * Charge the system/user time to the task's accounting group.
9451 */
9452static void cpuacct_update_stats(struct task_struct *tsk,
9453 enum cpuacct_stat_index idx, cputime_t val)
9454{
9455 struct cpuacct *ca;
fa535a77 9456 int batch = CPUACCT_BATCH;
ef12fefa
BR
9457
9458 if (unlikely(!cpuacct_subsys.active))
9459 return;
9460
9461 rcu_read_lock();
9462 ca = task_ca(tsk);
9463
9464 do {
fa535a77 9465 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9466 ca = ca->parent;
9467 } while (ca);
9468 rcu_read_unlock();
9469}
9470
d842de87
SV
9471struct cgroup_subsys cpuacct_subsys = {
9472 .name = "cpuacct",
9473 .create = cpuacct_create,
9474 .destroy = cpuacct_destroy,
9475 .populate = cpuacct_populate,
9476 .subsys_id = cpuacct_subsys_id,
9477};
9478#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9479
9480#ifndef CONFIG_SMP
9481
03b042bf
PM
9482void synchronize_sched_expedited(void)
9483{
fc390cde 9484 barrier();
03b042bf
PM
9485}
9486EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9487
9488#else /* #ifndef CONFIG_SMP */
9489
cc631fb7 9490static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9491
cc631fb7 9492static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9493{
969c7921
TH
9494 /*
9495 * There must be a full memory barrier on each affected CPU
9496 * between the time that try_stop_cpus() is called and the
9497 * time that it returns.
9498 *
9499 * In the current initial implementation of cpu_stop, the
9500 * above condition is already met when the control reaches
9501 * this point and the following smp_mb() is not strictly
9502 * necessary. Do smp_mb() anyway for documentation and
9503 * robustness against future implementation changes.
9504 */
cc631fb7 9505 smp_mb(); /* See above comment block. */
969c7921 9506 return 0;
03b042bf 9507}
03b042bf
PM
9508
9509/*
9510 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9511 * approach to force grace period to end quickly. This consumes
9512 * significant time on all CPUs, and is thus not recommended for
9513 * any sort of common-case code.
9514 *
9515 * Note that it is illegal to call this function while holding any
9516 * lock that is acquired by a CPU-hotplug notifier. Failing to
9517 * observe this restriction will result in deadlock.
9518 */
9519void synchronize_sched_expedited(void)
9520{
969c7921 9521 int snap, trycount = 0;
03b042bf
PM
9522
9523 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9524 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9525 get_online_cpus();
969c7921
TH
9526 while (try_stop_cpus(cpu_online_mask,
9527 synchronize_sched_expedited_cpu_stop,
94458d5e 9528 NULL) == -EAGAIN) {
03b042bf
PM
9529 put_online_cpus();
9530 if (trycount++ < 10)
9531 udelay(trycount * num_online_cpus());
9532 else {
9533 synchronize_sched();
9534 return;
9535 }
969c7921 9536 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9537 smp_mb(); /* ensure test happens before caller kfree */
9538 return;
9539 }
9540 get_online_cpus();
9541 }
969c7921 9542 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9543 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9544 put_online_cpus();
03b042bf
PM
9545}
9546EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9547
9548#endif /* #else #ifndef CONFIG_SMP */