]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
[PATCH] per-task-delay-accounting: sync block I/O and swapin delay collection
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
9a11b49a 33#include <linux/debug_locks.h>
1da177e4
LT
34#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
37#include <linux/suspend.h>
198e2f18 38#include <linux/vmalloc.h>
1da177e4
LT
39#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
52#include <linux/acct.h>
c6fd91f0 53#include <linux/kprobes.h>
0ff92245 54#include <linux/delayacct.h>
1da177e4
LT
55#include <asm/tlb.h>
56
57#include <asm/unistd.h>
58
59/*
60 * Convert user-nice values [ -20 ... 0 ... 19 ]
61 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 * and back.
63 */
64#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
65#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
66#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67
68/*
69 * 'User priority' is the nice value converted to something we
70 * can work with better when scaling various scheduler parameters,
71 * it's a [ 0 ... 39 ] range.
72 */
73#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
74#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
75#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76
77/*
78 * Some helpers for converting nanosecond timing to jiffy resolution
79 */
80#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
81#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82
83/*
84 * These are the 'tuning knobs' of the scheduler:
85 *
86 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
87 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
88 * Timeslices get refilled after they expire.
89 */
90#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
91#define DEF_TIMESLICE (100 * HZ / 1000)
92#define ON_RUNQUEUE_WEIGHT 30
93#define CHILD_PENALTY 95
94#define PARENT_PENALTY 100
95#define EXIT_WEIGHT 3
96#define PRIO_BONUS_RATIO 25
97#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
98#define INTERACTIVE_DELTA 2
99#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
100#define STARVATION_LIMIT (MAX_SLEEP_AVG)
101#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102
103/*
104 * If a task is 'interactive' then we reinsert it in the active
105 * array after it has expired its current timeslice. (it will not
106 * continue to run immediately, it will still roundrobin with
107 * other interactive tasks.)
108 *
109 * This part scales the interactivity limit depending on niceness.
110 *
111 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
112 * Here are a few examples of different nice levels:
113 *
114 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
115 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
116 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
118 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
119 *
120 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
121 * priority range a task can explore, a value of '1' means the
122 * task is rated interactive.)
123 *
124 * Ie. nice +19 tasks can never get 'interactive' enough to be
125 * reinserted into the active array. And only heavily CPU-hog nice -20
126 * tasks will be expired. Default nice 0 tasks are somewhere between,
127 * it takes some effort for them to get interactive, but it's not
128 * too hard.
129 */
130
131#define CURRENT_BONUS(p) \
132 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 MAX_SLEEP_AVG)
134
135#define GRANULARITY (10 * HZ / 1000 ? : 1)
136
137#ifdef CONFIG_SMP
138#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 num_online_cpus())
141#else
142#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
143 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144#endif
145
146#define SCALE(v1,v1_max,v2_max) \
147 (v1) * (v2_max) / (v1_max)
148
149#define DELTA(p) \
013d3868
MA
150 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 INTERACTIVE_DELTA)
1da177e4
LT
152
153#define TASK_INTERACTIVE(p) \
154 ((p)->prio <= (p)->static_prio - DELTA(p))
155
156#define INTERACTIVE_SLEEP(p) \
157 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
158 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
159
160#define TASK_PREEMPTS_CURR(p, rq) \
161 ((p)->prio < (rq)->curr->prio)
162
163/*
164 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
165 * to time slice values: [800ms ... 100ms ... 5ms]
166 *
167 * The higher a thread's priority, the bigger timeslices
168 * it gets during one round of execution. But even the lowest
169 * priority thread gets MIN_TIMESLICE worth of execution time.
170 */
171
172#define SCALE_PRIO(x, prio) \
2dd73a4f 173 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
1da177e4 174
2dd73a4f 175static unsigned int static_prio_timeslice(int static_prio)
1da177e4 176{
2dd73a4f
PW
177 if (static_prio < NICE_TO_PRIO(0))
178 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
1da177e4 179 else
2dd73a4f 180 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
1da177e4 181}
2dd73a4f 182
36c8b586 183static inline unsigned int task_timeslice(struct task_struct *p)
2dd73a4f
PW
184{
185 return static_prio_timeslice(p->static_prio);
186}
187
1da177e4
LT
188/*
189 * These are the runqueue data structures:
190 */
191
1da177e4
LT
192struct prio_array {
193 unsigned int nr_active;
d444886e 194 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
1da177e4
LT
195 struct list_head queue[MAX_PRIO];
196};
197
198/*
199 * This is the main, per-CPU runqueue data structure.
200 *
201 * Locking rule: those places that want to lock multiple runqueues
202 * (such as the load balancing or the thread migration code), lock
203 * acquire operations must be ordered by ascending &runqueue.
204 */
70b97a7f 205struct rq {
1da177e4
LT
206 spinlock_t lock;
207
208 /*
209 * nr_running and cpu_load should be in the same cacheline because
210 * remote CPUs use both these fields when doing load calculation.
211 */
212 unsigned long nr_running;
2dd73a4f 213 unsigned long raw_weighted_load;
1da177e4 214#ifdef CONFIG_SMP
7897986b 215 unsigned long cpu_load[3];
1da177e4
LT
216#endif
217 unsigned long long nr_switches;
218
219 /*
220 * This is part of a global counter where only the total sum
221 * over all CPUs matters. A task can increase this counter on
222 * one CPU and if it got migrated afterwards it may decrease
223 * it on another CPU. Always updated under the runqueue lock:
224 */
225 unsigned long nr_uninterruptible;
226
227 unsigned long expired_timestamp;
228 unsigned long long timestamp_last_tick;
36c8b586 229 struct task_struct *curr, *idle;
1da177e4 230 struct mm_struct *prev_mm;
70b97a7f 231 struct prio_array *active, *expired, arrays[2];
1da177e4
LT
232 int best_expired_prio;
233 atomic_t nr_iowait;
234
235#ifdef CONFIG_SMP
236 struct sched_domain *sd;
237
238 /* For active balancing */
239 int active_balance;
240 int push_cpu;
241
36c8b586 242 struct task_struct *migration_thread;
1da177e4
LT
243 struct list_head migration_queue;
244#endif
245
246#ifdef CONFIG_SCHEDSTATS
247 /* latency stats */
248 struct sched_info rq_sched_info;
249
250 /* sys_sched_yield() stats */
251 unsigned long yld_exp_empty;
252 unsigned long yld_act_empty;
253 unsigned long yld_both_empty;
254 unsigned long yld_cnt;
255
256 /* schedule() stats */
257 unsigned long sched_switch;
258 unsigned long sched_cnt;
259 unsigned long sched_goidle;
260
261 /* try_to_wake_up() stats */
262 unsigned long ttwu_cnt;
263 unsigned long ttwu_local;
264#endif
fcb99371 265 struct lock_class_key rq_lock_key;
1da177e4
LT
266};
267
70b97a7f 268static DEFINE_PER_CPU(struct rq, runqueues);
1da177e4 269
674311d5
NP
270/*
271 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 272 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
273 *
274 * The domain tree of any CPU may only be accessed from within
275 * preempt-disabled sections.
276 */
48f24c4d
IM
277#define for_each_domain(cpu, __sd) \
278 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
279
280#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
281#define this_rq() (&__get_cpu_var(runqueues))
282#define task_rq(p) cpu_rq(task_cpu(p))
283#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
284
1da177e4 285#ifndef prepare_arch_switch
4866cde0
NP
286# define prepare_arch_switch(next) do { } while (0)
287#endif
288#ifndef finish_arch_switch
289# define finish_arch_switch(prev) do { } while (0)
290#endif
291
292#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 293static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
294{
295 return rq->curr == p;
296}
297
70b97a7f 298static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
299{
300}
301
70b97a7f 302static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 303{
da04c035
IM
304#ifdef CONFIG_DEBUG_SPINLOCK
305 /* this is a valid case when another task releases the spinlock */
306 rq->lock.owner = current;
307#endif
8a25d5de
IM
308 /*
309 * If we are tracking spinlock dependencies then we have to
310 * fix up the runqueue lock - which gets 'carried over' from
311 * prev into current:
312 */
313 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
314
4866cde0
NP
315 spin_unlock_irq(&rq->lock);
316}
317
318#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 319static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
320{
321#ifdef CONFIG_SMP
322 return p->oncpu;
323#else
324 return rq->curr == p;
325#endif
326}
327
70b97a7f 328static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
329{
330#ifdef CONFIG_SMP
331 /*
332 * We can optimise this out completely for !SMP, because the
333 * SMP rebalancing from interrupt is the only thing that cares
334 * here.
335 */
336 next->oncpu = 1;
337#endif
338#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339 spin_unlock_irq(&rq->lock);
340#else
341 spin_unlock(&rq->lock);
342#endif
343}
344
70b97a7f 345static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
346{
347#ifdef CONFIG_SMP
348 /*
349 * After ->oncpu is cleared, the task can be moved to a different CPU.
350 * We must ensure this doesn't happen until the switch is completely
351 * finished.
352 */
353 smp_wmb();
354 prev->oncpu = 0;
355#endif
356#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
357 local_irq_enable();
1da177e4 358#endif
4866cde0
NP
359}
360#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 361
b29739f9
IM
362/*
363 * __task_rq_lock - lock the runqueue a given task resides on.
364 * Must be called interrupts disabled.
365 */
70b97a7f 366static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
367 __acquires(rq->lock)
368{
70b97a7f 369 struct rq *rq;
b29739f9
IM
370
371repeat_lock_task:
372 rq = task_rq(p);
373 spin_lock(&rq->lock);
374 if (unlikely(rq != task_rq(p))) {
375 spin_unlock(&rq->lock);
376 goto repeat_lock_task;
377 }
378 return rq;
379}
380
1da177e4
LT
381/*
382 * task_rq_lock - lock the runqueue a given task resides on and disable
383 * interrupts. Note the ordering: we can safely lookup the task_rq without
384 * explicitly disabling preemption.
385 */
70b97a7f 386static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
387 __acquires(rq->lock)
388{
70b97a7f 389 struct rq *rq;
1da177e4
LT
390
391repeat_lock_task:
392 local_irq_save(*flags);
393 rq = task_rq(p);
394 spin_lock(&rq->lock);
395 if (unlikely(rq != task_rq(p))) {
396 spin_unlock_irqrestore(&rq->lock, *flags);
397 goto repeat_lock_task;
398 }
399 return rq;
400}
401
70b97a7f 402static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
403 __releases(rq->lock)
404{
405 spin_unlock(&rq->lock);
406}
407
70b97a7f 408static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
409 __releases(rq->lock)
410{
411 spin_unlock_irqrestore(&rq->lock, *flags);
412}
413
414#ifdef CONFIG_SCHEDSTATS
415/*
416 * bump this up when changing the output format or the meaning of an existing
417 * format, so that tools can adapt (or abort)
418 */
68767a0a 419#define SCHEDSTAT_VERSION 12
1da177e4
LT
420
421static int show_schedstat(struct seq_file *seq, void *v)
422{
423 int cpu;
424
425 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
426 seq_printf(seq, "timestamp %lu\n", jiffies);
427 for_each_online_cpu(cpu) {
70b97a7f 428 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
429#ifdef CONFIG_SMP
430 struct sched_domain *sd;
431 int dcnt = 0;
432#endif
433
434 /* runqueue-specific stats */
435 seq_printf(seq,
436 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
437 cpu, rq->yld_both_empty,
438 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
439 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
440 rq->ttwu_cnt, rq->ttwu_local,
441 rq->rq_sched_info.cpu_time,
442 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
443
444 seq_printf(seq, "\n");
445
446#ifdef CONFIG_SMP
447 /* domain-specific stats */
674311d5 448 preempt_disable();
1da177e4
LT
449 for_each_domain(cpu, sd) {
450 enum idle_type itype;
451 char mask_str[NR_CPUS];
452
453 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
454 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
455 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
456 itype++) {
457 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
458 sd->lb_cnt[itype],
459 sd->lb_balanced[itype],
460 sd->lb_failed[itype],
461 sd->lb_imbalance[itype],
462 sd->lb_gained[itype],
463 sd->lb_hot_gained[itype],
464 sd->lb_nobusyq[itype],
465 sd->lb_nobusyg[itype]);
466 }
68767a0a 467 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 468 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
469 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
470 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
471 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
472 }
674311d5 473 preempt_enable();
1da177e4
LT
474#endif
475 }
476 return 0;
477}
478
479static int schedstat_open(struct inode *inode, struct file *file)
480{
481 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
482 char *buf = kmalloc(size, GFP_KERNEL);
483 struct seq_file *m;
484 int res;
485
486 if (!buf)
487 return -ENOMEM;
488 res = single_open(file, show_schedstat, NULL);
489 if (!res) {
490 m = file->private_data;
491 m->buf = buf;
492 m->size = size;
493 } else
494 kfree(buf);
495 return res;
496}
497
498struct file_operations proc_schedstat_operations = {
499 .open = schedstat_open,
500 .read = seq_read,
501 .llseek = seq_lseek,
502 .release = single_release,
503};
504
505# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
506# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
507#else /* !CONFIG_SCHEDSTATS */
508# define schedstat_inc(rq, field) do { } while (0)
509# define schedstat_add(rq, field, amt) do { } while (0)
510#endif
511
512/*
513 * rq_lock - lock a given runqueue and disable interrupts.
514 */
70b97a7f 515static inline struct rq *this_rq_lock(void)
1da177e4
LT
516 __acquires(rq->lock)
517{
70b97a7f 518 struct rq *rq;
1da177e4
LT
519
520 local_irq_disable();
521 rq = this_rq();
522 spin_lock(&rq->lock);
523
524 return rq;
525}
526
1da177e4
LT
527#ifdef CONFIG_SCHEDSTATS
528/*
529 * Called when a process is dequeued from the active array and given
530 * the cpu. We should note that with the exception of interactive
531 * tasks, the expired queue will become the active queue after the active
532 * queue is empty, without explicitly dequeuing and requeuing tasks in the
533 * expired queue. (Interactive tasks may be requeued directly to the
534 * active queue, thus delaying tasks in the expired queue from running;
535 * see scheduler_tick()).
536 *
537 * This function is only called from sched_info_arrive(), rather than
538 * dequeue_task(). Even though a task may be queued and dequeued multiple
539 * times as it is shuffled about, we're really interested in knowing how
540 * long it was from the *first* time it was queued to the time that it
541 * finally hit a cpu.
542 */
36c8b586 543static inline void sched_info_dequeued(struct task_struct *t)
1da177e4
LT
544{
545 t->sched_info.last_queued = 0;
546}
547
548/*
549 * Called when a task finally hits the cpu. We can now calculate how
550 * long it was waiting to run. We also note when it began so that we
551 * can keep stats on how long its timeslice is.
552 */
36c8b586 553static void sched_info_arrive(struct task_struct *t)
1da177e4
LT
554{
555 unsigned long now = jiffies, diff = 0;
70b97a7f 556 struct rq *rq = task_rq(t);
1da177e4
LT
557
558 if (t->sched_info.last_queued)
559 diff = now - t->sched_info.last_queued;
560 sched_info_dequeued(t);
561 t->sched_info.run_delay += diff;
562 t->sched_info.last_arrival = now;
563 t->sched_info.pcnt++;
564
565 if (!rq)
566 return;
567
568 rq->rq_sched_info.run_delay += diff;
569 rq->rq_sched_info.pcnt++;
570}
571
572/*
573 * Called when a process is queued into either the active or expired
574 * array. The time is noted and later used to determine how long we
575 * had to wait for us to reach the cpu. Since the expired queue will
576 * become the active queue after active queue is empty, without dequeuing
577 * and requeuing any tasks, we are interested in queuing to either. It
578 * is unusual but not impossible for tasks to be dequeued and immediately
579 * requeued in the same or another array: this can happen in sched_yield(),
580 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
581 * to runqueue.
582 *
583 * This function is only called from enqueue_task(), but also only updates
584 * the timestamp if it is already not set. It's assumed that
585 * sched_info_dequeued() will clear that stamp when appropriate.
586 */
36c8b586 587static inline void sched_info_queued(struct task_struct *t)
1da177e4
LT
588{
589 if (!t->sched_info.last_queued)
590 t->sched_info.last_queued = jiffies;
591}
592
593/*
594 * Called when a process ceases being the active-running process, either
595 * voluntarily or involuntarily. Now we can calculate how long we ran.
596 */
36c8b586 597static inline void sched_info_depart(struct task_struct *t)
1da177e4 598{
70b97a7f 599 struct rq *rq = task_rq(t);
1da177e4
LT
600 unsigned long diff = jiffies - t->sched_info.last_arrival;
601
602 t->sched_info.cpu_time += diff;
603
604 if (rq)
605 rq->rq_sched_info.cpu_time += diff;
606}
607
608/*
609 * Called when tasks are switched involuntarily due, typically, to expiring
610 * their time slice. (This may also be called when switching to or from
611 * the idle task.) We are only called when prev != next.
612 */
36c8b586
IM
613static inline void
614sched_info_switch(struct task_struct *prev, struct task_struct *next)
1da177e4 615{
70b97a7f 616 struct rq *rq = task_rq(prev);
1da177e4
LT
617
618 /*
619 * prev now departs the cpu. It's not interesting to record
620 * stats about how efficient we were at scheduling the idle
621 * process, however.
622 */
623 if (prev != rq->idle)
624 sched_info_depart(prev);
625
626 if (next != rq->idle)
627 sched_info_arrive(next);
628}
629#else
630#define sched_info_queued(t) do { } while (0)
631#define sched_info_switch(t, next) do { } while (0)
632#endif /* CONFIG_SCHEDSTATS */
633
634/*
635 * Adding/removing a task to/from a priority array:
636 */
70b97a7f 637static void dequeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
638{
639 array->nr_active--;
640 list_del(&p->run_list);
641 if (list_empty(array->queue + p->prio))
642 __clear_bit(p->prio, array->bitmap);
643}
644
70b97a7f 645static void enqueue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
646{
647 sched_info_queued(p);
648 list_add_tail(&p->run_list, array->queue + p->prio);
649 __set_bit(p->prio, array->bitmap);
650 array->nr_active++;
651 p->array = array;
652}
653
654/*
655 * Put task to the end of the run list without the overhead of dequeue
656 * followed by enqueue.
657 */
70b97a7f 658static void requeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
659{
660 list_move_tail(&p->run_list, array->queue + p->prio);
661}
662
70b97a7f
IM
663static inline void
664enqueue_task_head(struct task_struct *p, struct prio_array *array)
1da177e4
LT
665{
666 list_add(&p->run_list, array->queue + p->prio);
667 __set_bit(p->prio, array->bitmap);
668 array->nr_active++;
669 p->array = array;
670}
671
672/*
b29739f9 673 * __normal_prio - return the priority that is based on the static
1da177e4
LT
674 * priority but is modified by bonuses/penalties.
675 *
676 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
677 * into the -5 ... 0 ... +5 bonus/penalty range.
678 *
679 * We use 25% of the full 0...39 priority range so that:
680 *
681 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
682 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
683 *
684 * Both properties are important to certain workloads.
685 */
b29739f9 686
36c8b586 687static inline int __normal_prio(struct task_struct *p)
1da177e4
LT
688{
689 int bonus, prio;
690
1da177e4
LT
691 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
692
693 prio = p->static_prio - bonus;
694 if (prio < MAX_RT_PRIO)
695 prio = MAX_RT_PRIO;
696 if (prio > MAX_PRIO-1)
697 prio = MAX_PRIO-1;
698 return prio;
699}
700
2dd73a4f
PW
701/*
702 * To aid in avoiding the subversion of "niceness" due to uneven distribution
703 * of tasks with abnormal "nice" values across CPUs the contribution that
704 * each task makes to its run queue's load is weighted according to its
705 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
706 * scaled version of the new time slice allocation that they receive on time
707 * slice expiry etc.
708 */
709
710/*
711 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
712 * If static_prio_timeslice() is ever changed to break this assumption then
713 * this code will need modification
714 */
715#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
716#define LOAD_WEIGHT(lp) \
717 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
718#define PRIO_TO_LOAD_WEIGHT(prio) \
719 LOAD_WEIGHT(static_prio_timeslice(prio))
720#define RTPRIO_TO_LOAD_WEIGHT(rp) \
721 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
722
36c8b586 723static void set_load_weight(struct task_struct *p)
2dd73a4f 724{
b29739f9 725 if (has_rt_policy(p)) {
2dd73a4f
PW
726#ifdef CONFIG_SMP
727 if (p == task_rq(p)->migration_thread)
728 /*
729 * The migration thread does the actual balancing.
730 * Giving its load any weight will skew balancing
731 * adversely.
732 */
733 p->load_weight = 0;
734 else
735#endif
736 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
737 } else
738 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
739}
740
36c8b586 741static inline void
70b97a7f 742inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
743{
744 rq->raw_weighted_load += p->load_weight;
745}
746
36c8b586 747static inline void
70b97a7f 748dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
749{
750 rq->raw_weighted_load -= p->load_weight;
751}
752
70b97a7f 753static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
754{
755 rq->nr_running++;
756 inc_raw_weighted_load(rq, p);
757}
758
70b97a7f 759static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
760{
761 rq->nr_running--;
762 dec_raw_weighted_load(rq, p);
763}
764
b29739f9
IM
765/*
766 * Calculate the expected normal priority: i.e. priority
767 * without taking RT-inheritance into account. Might be
768 * boosted by interactivity modifiers. Changes upon fork,
769 * setprio syscalls, and whenever the interactivity
770 * estimator recalculates.
771 */
36c8b586 772static inline int normal_prio(struct task_struct *p)
b29739f9
IM
773{
774 int prio;
775
776 if (has_rt_policy(p))
777 prio = MAX_RT_PRIO-1 - p->rt_priority;
778 else
779 prio = __normal_prio(p);
780 return prio;
781}
782
783/*
784 * Calculate the current priority, i.e. the priority
785 * taken into account by the scheduler. This value might
786 * be boosted by RT tasks, or might be boosted by
787 * interactivity modifiers. Will be RT if the task got
788 * RT-boosted. If not then it returns p->normal_prio.
789 */
36c8b586 790static int effective_prio(struct task_struct *p)
b29739f9
IM
791{
792 p->normal_prio = normal_prio(p);
793 /*
794 * If we are RT tasks or we were boosted to RT priority,
795 * keep the priority unchanged. Otherwise, update priority
796 * to the normal priority:
797 */
798 if (!rt_prio(p->prio))
799 return p->normal_prio;
800 return p->prio;
801}
802
1da177e4
LT
803/*
804 * __activate_task - move a task to the runqueue.
805 */
70b97a7f 806static void __activate_task(struct task_struct *p, struct rq *rq)
1da177e4 807{
70b97a7f 808 struct prio_array *target = rq->active;
d425b274 809
f1adad78 810 if (batch_task(p))
d425b274
CK
811 target = rq->expired;
812 enqueue_task(p, target);
2dd73a4f 813 inc_nr_running(p, rq);
1da177e4
LT
814}
815
816/*
817 * __activate_idle_task - move idle task to the _front_ of runqueue.
818 */
70b97a7f 819static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4
LT
820{
821 enqueue_task_head(p, rq->active);
2dd73a4f 822 inc_nr_running(p, rq);
1da177e4
LT
823}
824
b29739f9
IM
825/*
826 * Recalculate p->normal_prio and p->prio after having slept,
827 * updating the sleep-average too:
828 */
36c8b586 829static int recalc_task_prio(struct task_struct *p, unsigned long long now)
1da177e4
LT
830{
831 /* Caller must always ensure 'now >= p->timestamp' */
72d2854d 832 unsigned long sleep_time = now - p->timestamp;
1da177e4 833
d425b274 834 if (batch_task(p))
b0a9499c 835 sleep_time = 0;
1da177e4
LT
836
837 if (likely(sleep_time > 0)) {
838 /*
72d2854d
CK
839 * This ceiling is set to the lowest priority that would allow
840 * a task to be reinserted into the active array on timeslice
841 * completion.
1da177e4 842 */
72d2854d 843 unsigned long ceiling = INTERACTIVE_SLEEP(p);
e72ff0bb 844
72d2854d
CK
845 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
846 /*
847 * Prevents user tasks from achieving best priority
848 * with one single large enough sleep.
849 */
850 p->sleep_avg = ceiling;
851 /*
852 * Using INTERACTIVE_SLEEP() as a ceiling places a
853 * nice(0) task 1ms sleep away from promotion, and
854 * gives it 700ms to round-robin with no chance of
855 * being demoted. This is more than generous, so
856 * mark this sleep as non-interactive to prevent the
857 * on-runqueue bonus logic from intervening should
858 * this task not receive cpu immediately.
859 */
860 p->sleep_type = SLEEP_NONINTERACTIVE;
1da177e4 861 } else {
1da177e4
LT
862 /*
863 * Tasks waking from uninterruptible sleep are
864 * limited in their sleep_avg rise as they
865 * are likely to be waiting on I/O
866 */
3dee386e 867 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
72d2854d 868 if (p->sleep_avg >= ceiling)
1da177e4
LT
869 sleep_time = 0;
870 else if (p->sleep_avg + sleep_time >=
72d2854d
CK
871 ceiling) {
872 p->sleep_avg = ceiling;
873 sleep_time = 0;
1da177e4
LT
874 }
875 }
876
877 /*
878 * This code gives a bonus to interactive tasks.
879 *
880 * The boost works by updating the 'average sleep time'
881 * value here, based on ->timestamp. The more time a
882 * task spends sleeping, the higher the average gets -
883 * and the higher the priority boost gets as well.
884 */
885 p->sleep_avg += sleep_time;
886
1da177e4 887 }
72d2854d
CK
888 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
889 p->sleep_avg = NS_MAX_SLEEP_AVG;
1da177e4
LT
890 }
891
a3464a10 892 return effective_prio(p);
1da177e4
LT
893}
894
895/*
896 * activate_task - move a task to the runqueue and do priority recalculation
897 *
898 * Update all the scheduling statistics stuff. (sleep average
899 * calculation, priority modifiers, etc.)
900 */
70b97a7f 901static void activate_task(struct task_struct *p, struct rq *rq, int local)
1da177e4
LT
902{
903 unsigned long long now;
904
905 now = sched_clock();
906#ifdef CONFIG_SMP
907 if (!local) {
908 /* Compensate for drifting sched_clock */
70b97a7f 909 struct rq *this_rq = this_rq();
1da177e4
LT
910 now = (now - this_rq->timestamp_last_tick)
911 + rq->timestamp_last_tick;
912 }
913#endif
914
a47ab937
KC
915 if (!rt_task(p))
916 p->prio = recalc_task_prio(p, now);
1da177e4
LT
917
918 /*
919 * This checks to make sure it's not an uninterruptible task
920 * that is now waking up.
921 */
3dee386e 922 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
923 /*
924 * Tasks which were woken up by interrupts (ie. hw events)
925 * are most likely of interactive nature. So we give them
926 * the credit of extending their sleep time to the period
927 * of time they spend on the runqueue, waiting for execution
928 * on a CPU, first time around:
929 */
930 if (in_interrupt())
3dee386e 931 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
932 else {
933 /*
934 * Normal first-time wakeups get a credit too for
935 * on-runqueue time, but it will be weighted down:
936 */
3dee386e 937 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
938 }
939 }
940 p->timestamp = now;
941
942 __activate_task(p, rq);
943}
944
945/*
946 * deactivate_task - remove a task from the runqueue.
947 */
70b97a7f 948static void deactivate_task(struct task_struct *p, struct rq *rq)
1da177e4 949{
2dd73a4f 950 dec_nr_running(p, rq);
1da177e4
LT
951 dequeue_task(p, p->array);
952 p->array = NULL;
953}
954
955/*
956 * resched_task - mark a task 'to be rescheduled now'.
957 *
958 * On UP this means the setting of the need_resched flag, on SMP it
959 * might also involve a cross-CPU call to trigger the scheduler on
960 * the target CPU.
961 */
962#ifdef CONFIG_SMP
495ab9c0
AK
963
964#ifndef tsk_is_polling
965#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
966#endif
967
36c8b586 968static void resched_task(struct task_struct *p)
1da177e4 969{
64c7c8f8 970 int cpu;
1da177e4
LT
971
972 assert_spin_locked(&task_rq(p)->lock);
973
64c7c8f8
NP
974 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
975 return;
976
977 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 978
64c7c8f8
NP
979 cpu = task_cpu(p);
980 if (cpu == smp_processor_id())
981 return;
982
495ab9c0 983 /* NEED_RESCHED must be visible before we test polling */
64c7c8f8 984 smp_mb();
495ab9c0 985 if (!tsk_is_polling(p))
64c7c8f8 986 smp_send_reschedule(cpu);
1da177e4
LT
987}
988#else
36c8b586 989static inline void resched_task(struct task_struct *p)
1da177e4 990{
64c7c8f8 991 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
992 set_tsk_need_resched(p);
993}
994#endif
995
996/**
997 * task_curr - is this task currently executing on a CPU?
998 * @p: the task in question.
999 */
36c8b586 1000inline int task_curr(const struct task_struct *p)
1da177e4
LT
1001{
1002 return cpu_curr(task_cpu(p)) == p;
1003}
1004
2dd73a4f
PW
1005/* Used instead of source_load when we know the type == 0 */
1006unsigned long weighted_cpuload(const int cpu)
1007{
1008 return cpu_rq(cpu)->raw_weighted_load;
1009}
1010
1da177e4 1011#ifdef CONFIG_SMP
70b97a7f 1012struct migration_req {
1da177e4 1013 struct list_head list;
1da177e4 1014
36c8b586 1015 struct task_struct *task;
1da177e4
LT
1016 int dest_cpu;
1017
1da177e4 1018 struct completion done;
70b97a7f 1019};
1da177e4
LT
1020
1021/*
1022 * The task's runqueue lock must be held.
1023 * Returns true if you have to wait for migration thread.
1024 */
36c8b586 1025static int
70b97a7f 1026migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1027{
70b97a7f 1028 struct rq *rq = task_rq(p);
1da177e4
LT
1029
1030 /*
1031 * If the task is not on a runqueue (and not running), then
1032 * it is sufficient to simply update the task's cpu field.
1033 */
1034 if (!p->array && !task_running(rq, p)) {
1035 set_task_cpu(p, dest_cpu);
1036 return 0;
1037 }
1038
1039 init_completion(&req->done);
1da177e4
LT
1040 req->task = p;
1041 req->dest_cpu = dest_cpu;
1042 list_add(&req->list, &rq->migration_queue);
48f24c4d 1043
1da177e4
LT
1044 return 1;
1045}
1046
1047/*
1048 * wait_task_inactive - wait for a thread to unschedule.
1049 *
1050 * The caller must ensure that the task *will* unschedule sometime soon,
1051 * else this function might spin for a *long* time. This function can't
1052 * be called with interrupts off, or it may introduce deadlock with
1053 * smp_call_function() if an IPI is sent by the same process we are
1054 * waiting to become inactive.
1055 */
36c8b586 1056void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1057{
1058 unsigned long flags;
70b97a7f 1059 struct rq *rq;
1da177e4
LT
1060 int preempted;
1061
1062repeat:
1063 rq = task_rq_lock(p, &flags);
1064 /* Must be off runqueue entirely, not preempted. */
1065 if (unlikely(p->array || task_running(rq, p))) {
1066 /* If it's preempted, we yield. It could be a while. */
1067 preempted = !task_running(rq, p);
1068 task_rq_unlock(rq, &flags);
1069 cpu_relax();
1070 if (preempted)
1071 yield();
1072 goto repeat;
1073 }
1074 task_rq_unlock(rq, &flags);
1075}
1076
1077/***
1078 * kick_process - kick a running thread to enter/exit the kernel
1079 * @p: the to-be-kicked thread
1080 *
1081 * Cause a process which is running on another CPU to enter
1082 * kernel-mode, without any delay. (to get signals handled.)
1083 *
1084 * NOTE: this function doesnt have to take the runqueue lock,
1085 * because all it wants to ensure is that the remote task enters
1086 * the kernel. If the IPI races and the task has been migrated
1087 * to another CPU then no harm is done and the purpose has been
1088 * achieved as well.
1089 */
36c8b586 1090void kick_process(struct task_struct *p)
1da177e4
LT
1091{
1092 int cpu;
1093
1094 preempt_disable();
1095 cpu = task_cpu(p);
1096 if ((cpu != smp_processor_id()) && task_curr(p))
1097 smp_send_reschedule(cpu);
1098 preempt_enable();
1099}
1100
1101/*
2dd73a4f
PW
1102 * Return a low guess at the load of a migration-source cpu weighted
1103 * according to the scheduling class and "nice" value.
1da177e4
LT
1104 *
1105 * We want to under-estimate the load of migration sources, to
1106 * balance conservatively.
1107 */
a2000572 1108static inline unsigned long source_load(int cpu, int type)
1da177e4 1109{
70b97a7f 1110 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1111
3b0bd9bc 1112 if (type == 0)
2dd73a4f 1113 return rq->raw_weighted_load;
b910472d 1114
2dd73a4f 1115 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1da177e4
LT
1116}
1117
1118/*
2dd73a4f
PW
1119 * Return a high guess at the load of a migration-target cpu weighted
1120 * according to the scheduling class and "nice" value.
1da177e4 1121 */
a2000572 1122static inline unsigned long target_load(int cpu, int type)
1da177e4 1123{
70b97a7f 1124 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1125
7897986b 1126 if (type == 0)
2dd73a4f 1127 return rq->raw_weighted_load;
3b0bd9bc 1128
2dd73a4f
PW
1129 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1130}
1131
1132/*
1133 * Return the average load per task on the cpu's run queue
1134 */
1135static inline unsigned long cpu_avg_load_per_task(int cpu)
1136{
70b97a7f 1137 struct rq *rq = cpu_rq(cpu);
2dd73a4f
PW
1138 unsigned long n = rq->nr_running;
1139
48f24c4d 1140 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1da177e4
LT
1141}
1142
147cbb4b
NP
1143/*
1144 * find_idlest_group finds and returns the least busy CPU group within the
1145 * domain.
1146 */
1147static struct sched_group *
1148find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1149{
1150 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1151 unsigned long min_load = ULONG_MAX, this_load = 0;
1152 int load_idx = sd->forkexec_idx;
1153 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1154
1155 do {
1156 unsigned long load, avg_load;
1157 int local_group;
1158 int i;
1159
da5a5522
BD
1160 /* Skip over this group if it has no CPUs allowed */
1161 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1162 goto nextgroup;
1163
147cbb4b 1164 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1165
1166 /* Tally up the load of all CPUs in the group */
1167 avg_load = 0;
1168
1169 for_each_cpu_mask(i, group->cpumask) {
1170 /* Bias balancing toward cpus of our domain */
1171 if (local_group)
1172 load = source_load(i, load_idx);
1173 else
1174 load = target_load(i, load_idx);
1175
1176 avg_load += load;
1177 }
1178
1179 /* Adjust by relative CPU power of the group */
1180 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1181
1182 if (local_group) {
1183 this_load = avg_load;
1184 this = group;
1185 } else if (avg_load < min_load) {
1186 min_load = avg_load;
1187 idlest = group;
1188 }
da5a5522 1189nextgroup:
147cbb4b
NP
1190 group = group->next;
1191 } while (group != sd->groups);
1192
1193 if (!idlest || 100*this_load < imbalance*min_load)
1194 return NULL;
1195 return idlest;
1196}
1197
1198/*
1199 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1200 */
95cdf3b7
IM
1201static int
1202find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1203{
da5a5522 1204 cpumask_t tmp;
147cbb4b
NP
1205 unsigned long load, min_load = ULONG_MAX;
1206 int idlest = -1;
1207 int i;
1208
da5a5522
BD
1209 /* Traverse only the allowed CPUs */
1210 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1211
1212 for_each_cpu_mask(i, tmp) {
2dd73a4f 1213 load = weighted_cpuload(i);
147cbb4b
NP
1214
1215 if (load < min_load || (load == min_load && i == this_cpu)) {
1216 min_load = load;
1217 idlest = i;
1218 }
1219 }
1220
1221 return idlest;
1222}
1223
476d139c
NP
1224/*
1225 * sched_balance_self: balance the current task (running on cpu) in domains
1226 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1227 * SD_BALANCE_EXEC.
1228 *
1229 * Balance, ie. select the least loaded group.
1230 *
1231 * Returns the target CPU number, or the same CPU if no balancing is needed.
1232 *
1233 * preempt must be disabled.
1234 */
1235static int sched_balance_self(int cpu, int flag)
1236{
1237 struct task_struct *t = current;
1238 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1239
c96d145e 1240 for_each_domain(cpu, tmp) {
5c45bf27
SS
1241 /*
1242 * If power savings logic is enabled for a domain, stop there.
1243 */
1244 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1245 break;
476d139c
NP
1246 if (tmp->flags & flag)
1247 sd = tmp;
c96d145e 1248 }
476d139c
NP
1249
1250 while (sd) {
1251 cpumask_t span;
1252 struct sched_group *group;
1253 int new_cpu;
1254 int weight;
1255
1256 span = sd->span;
1257 group = find_idlest_group(sd, t, cpu);
1258 if (!group)
1259 goto nextlevel;
1260
da5a5522 1261 new_cpu = find_idlest_cpu(group, t, cpu);
476d139c
NP
1262 if (new_cpu == -1 || new_cpu == cpu)
1263 goto nextlevel;
1264
1265 /* Now try balancing at a lower domain level */
1266 cpu = new_cpu;
1267nextlevel:
1268 sd = NULL;
1269 weight = cpus_weight(span);
1270 for_each_domain(cpu, tmp) {
1271 if (weight <= cpus_weight(tmp->span))
1272 break;
1273 if (tmp->flags & flag)
1274 sd = tmp;
1275 }
1276 /* while loop will break here if sd == NULL */
1277 }
1278
1279 return cpu;
1280}
1281
1282#endif /* CONFIG_SMP */
1da177e4
LT
1283
1284/*
1285 * wake_idle() will wake a task on an idle cpu if task->cpu is
1286 * not idle and an idle cpu is available. The span of cpus to
1287 * search starts with cpus closest then further out as needed,
1288 * so we always favor a closer, idle cpu.
1289 *
1290 * Returns the CPU we should wake onto.
1291 */
1292#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1293static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1294{
1295 cpumask_t tmp;
1296 struct sched_domain *sd;
1297 int i;
1298
1299 if (idle_cpu(cpu))
1300 return cpu;
1301
1302 for_each_domain(cpu, sd) {
1303 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1304 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1305 for_each_cpu_mask(i, tmp) {
1306 if (idle_cpu(i))
1307 return i;
1308 }
1309 }
e0f364f4
NP
1310 else
1311 break;
1da177e4
LT
1312 }
1313 return cpu;
1314}
1315#else
36c8b586 1316static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1317{
1318 return cpu;
1319}
1320#endif
1321
1322/***
1323 * try_to_wake_up - wake up a thread
1324 * @p: the to-be-woken-up thread
1325 * @state: the mask of task states that can be woken
1326 * @sync: do a synchronous wakeup?
1327 *
1328 * Put it on the run-queue if it's not already there. The "current"
1329 * thread is always on the run-queue (except when the actual
1330 * re-schedule is in progress), and as such you're allowed to do
1331 * the simpler "current->state = TASK_RUNNING" to mark yourself
1332 * runnable without the overhead of this.
1333 *
1334 * returns failure only if the task is already active.
1335 */
36c8b586 1336static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1337{
1338 int cpu, this_cpu, success = 0;
1339 unsigned long flags;
1340 long old_state;
70b97a7f 1341 struct rq *rq;
1da177e4 1342#ifdef CONFIG_SMP
7897986b 1343 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1344 unsigned long load, this_load;
1da177e4
LT
1345 int new_cpu;
1346#endif
1347
1348 rq = task_rq_lock(p, &flags);
1349 old_state = p->state;
1350 if (!(old_state & state))
1351 goto out;
1352
1353 if (p->array)
1354 goto out_running;
1355
1356 cpu = task_cpu(p);
1357 this_cpu = smp_processor_id();
1358
1359#ifdef CONFIG_SMP
1360 if (unlikely(task_running(rq, p)))
1361 goto out_activate;
1362
7897986b
NP
1363 new_cpu = cpu;
1364
1da177e4
LT
1365 schedstat_inc(rq, ttwu_cnt);
1366 if (cpu == this_cpu) {
1367 schedstat_inc(rq, ttwu_local);
7897986b
NP
1368 goto out_set_cpu;
1369 }
1370
1371 for_each_domain(this_cpu, sd) {
1372 if (cpu_isset(cpu, sd->span)) {
1373 schedstat_inc(sd, ttwu_wake_remote);
1374 this_sd = sd;
1375 break;
1da177e4
LT
1376 }
1377 }
1da177e4 1378
7897986b 1379 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1380 goto out_set_cpu;
1381
1da177e4 1382 /*
7897986b 1383 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1384 */
7897986b
NP
1385 if (this_sd) {
1386 int idx = this_sd->wake_idx;
1387 unsigned int imbalance;
1da177e4 1388
a3f21bce
NP
1389 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1390
7897986b
NP
1391 load = source_load(cpu, idx);
1392 this_load = target_load(this_cpu, idx);
1da177e4 1393
7897986b
NP
1394 new_cpu = this_cpu; /* Wake to this CPU if we can */
1395
a3f21bce
NP
1396 if (this_sd->flags & SD_WAKE_AFFINE) {
1397 unsigned long tl = this_load;
2dd73a4f
PW
1398 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1399
1da177e4 1400 /*
a3f21bce
NP
1401 * If sync wakeup then subtract the (maximum possible)
1402 * effect of the currently running task from the load
1403 * of the current CPU:
1da177e4 1404 */
a3f21bce 1405 if (sync)
2dd73a4f 1406 tl -= current->load_weight;
a3f21bce
NP
1407
1408 if ((tl <= load &&
2dd73a4f
PW
1409 tl + target_load(cpu, idx) <= tl_per_task) ||
1410 100*(tl + p->load_weight) <= imbalance*load) {
a3f21bce
NP
1411 /*
1412 * This domain has SD_WAKE_AFFINE and
1413 * p is cache cold in this domain, and
1414 * there is no bad imbalance.
1415 */
1416 schedstat_inc(this_sd, ttwu_move_affine);
1417 goto out_set_cpu;
1418 }
1419 }
1420
1421 /*
1422 * Start passive balancing when half the imbalance_pct
1423 * limit is reached.
1424 */
1425 if (this_sd->flags & SD_WAKE_BALANCE) {
1426 if (imbalance*this_load <= 100*load) {
1427 schedstat_inc(this_sd, ttwu_move_balance);
1428 goto out_set_cpu;
1429 }
1da177e4
LT
1430 }
1431 }
1432
1433 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1434out_set_cpu:
1435 new_cpu = wake_idle(new_cpu, p);
1436 if (new_cpu != cpu) {
1437 set_task_cpu(p, new_cpu);
1438 task_rq_unlock(rq, &flags);
1439 /* might preempt at this point */
1440 rq = task_rq_lock(p, &flags);
1441 old_state = p->state;
1442 if (!(old_state & state))
1443 goto out;
1444 if (p->array)
1445 goto out_running;
1446
1447 this_cpu = smp_processor_id();
1448 cpu = task_cpu(p);
1449 }
1450
1451out_activate:
1452#endif /* CONFIG_SMP */
1453 if (old_state == TASK_UNINTERRUPTIBLE) {
1454 rq->nr_uninterruptible--;
1455 /*
1456 * Tasks on involuntary sleep don't earn
1457 * sleep_avg beyond just interactive state.
1458 */
3dee386e 1459 p->sleep_type = SLEEP_NONINTERACTIVE;
e7c38cb4 1460 } else
1da177e4 1461
d79fc0fc
IM
1462 /*
1463 * Tasks that have marked their sleep as noninteractive get
e7c38cb4
CK
1464 * woken up with their sleep average not weighted in an
1465 * interactive way.
d79fc0fc 1466 */
e7c38cb4
CK
1467 if (old_state & TASK_NONINTERACTIVE)
1468 p->sleep_type = SLEEP_NONINTERACTIVE;
1469
1470
1471 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1472 /*
1473 * Sync wakeups (i.e. those types of wakeups where the waker
1474 * has indicated that it will leave the CPU in short order)
1475 * don't trigger a preemption, if the woken up task will run on
1476 * this cpu. (in this case the 'I will reschedule' promise of
1477 * the waker guarantees that the freshly woken up task is going
1478 * to be considered on this CPU.)
1479 */
1da177e4
LT
1480 if (!sync || cpu != this_cpu) {
1481 if (TASK_PREEMPTS_CURR(p, rq))
1482 resched_task(rq->curr);
1483 }
1484 success = 1;
1485
1486out_running:
1487 p->state = TASK_RUNNING;
1488out:
1489 task_rq_unlock(rq, &flags);
1490
1491 return success;
1492}
1493
36c8b586 1494int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1495{
1496 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1497 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1498}
1da177e4
LT
1499EXPORT_SYMBOL(wake_up_process);
1500
36c8b586 1501int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1502{
1503 return try_to_wake_up(p, state, 0);
1504}
1505
1da177e4
LT
1506/*
1507 * Perform scheduler related setup for a newly forked process p.
1508 * p is forked by current.
1509 */
36c8b586 1510void fastcall sched_fork(struct task_struct *p, int clone_flags)
1da177e4 1511{
476d139c
NP
1512 int cpu = get_cpu();
1513
1514#ifdef CONFIG_SMP
1515 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1516#endif
1517 set_task_cpu(p, cpu);
1518
1da177e4
LT
1519 /*
1520 * We mark the process as running here, but have not actually
1521 * inserted it onto the runqueue yet. This guarantees that
1522 * nobody will actually run it, and a signal or other external
1523 * event cannot wake it up and insert it on the runqueue either.
1524 */
1525 p->state = TASK_RUNNING;
b29739f9
IM
1526
1527 /*
1528 * Make sure we do not leak PI boosting priority to the child:
1529 */
1530 p->prio = current->normal_prio;
1531
1da177e4
LT
1532 INIT_LIST_HEAD(&p->run_list);
1533 p->array = NULL;
1da177e4
LT
1534#ifdef CONFIG_SCHEDSTATS
1535 memset(&p->sched_info, 0, sizeof(p->sched_info));
1536#endif
d6077cb8 1537#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1538 p->oncpu = 0;
1539#endif
1da177e4 1540#ifdef CONFIG_PREEMPT
4866cde0 1541 /* Want to start with kernel preemption disabled. */
a1261f54 1542 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1543#endif
1544 /*
1545 * Share the timeslice between parent and child, thus the
1546 * total amount of pending timeslices in the system doesn't change,
1547 * resulting in more scheduling fairness.
1548 */
1549 local_irq_disable();
1550 p->time_slice = (current->time_slice + 1) >> 1;
1551 /*
1552 * The remainder of the first timeslice might be recovered by
1553 * the parent if the child exits early enough.
1554 */
1555 p->first_time_slice = 1;
1556 current->time_slice >>= 1;
1557 p->timestamp = sched_clock();
1558 if (unlikely(!current->time_slice)) {
1559 /*
1560 * This case is rare, it happens when the parent has only
1561 * a single jiffy left from its timeslice. Taking the
1562 * runqueue lock is not a problem.
1563 */
1564 current->time_slice = 1;
1da177e4 1565 scheduler_tick();
476d139c
NP
1566 }
1567 local_irq_enable();
1568 put_cpu();
1da177e4
LT
1569}
1570
1571/*
1572 * wake_up_new_task - wake up a newly created task for the first time.
1573 *
1574 * This function will do some initial scheduler statistics housekeeping
1575 * that must be done for every newly created context, then puts the task
1576 * on the runqueue and wakes it.
1577 */
36c8b586 1578void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4 1579{
70b97a7f 1580 struct rq *rq, *this_rq;
1da177e4
LT
1581 unsigned long flags;
1582 int this_cpu, cpu;
1da177e4
LT
1583
1584 rq = task_rq_lock(p, &flags);
147cbb4b 1585 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1586 this_cpu = smp_processor_id();
147cbb4b 1587 cpu = task_cpu(p);
1da177e4 1588
1da177e4
LT
1589 /*
1590 * We decrease the sleep average of forking parents
1591 * and children as well, to keep max-interactive tasks
1592 * from forking tasks that are max-interactive. The parent
1593 * (current) is done further down, under its lock.
1594 */
1595 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1596 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1597
1598 p->prio = effective_prio(p);
1599
1600 if (likely(cpu == this_cpu)) {
1601 if (!(clone_flags & CLONE_VM)) {
1602 /*
1603 * The VM isn't cloned, so we're in a good position to
1604 * do child-runs-first in anticipation of an exec. This
1605 * usually avoids a lot of COW overhead.
1606 */
1607 if (unlikely(!current->array))
1608 __activate_task(p, rq);
1609 else {
1610 p->prio = current->prio;
b29739f9 1611 p->normal_prio = current->normal_prio;
1da177e4
LT
1612 list_add_tail(&p->run_list, &current->run_list);
1613 p->array = current->array;
1614 p->array->nr_active++;
2dd73a4f 1615 inc_nr_running(p, rq);
1da177e4
LT
1616 }
1617 set_need_resched();
1618 } else
1619 /* Run child last */
1620 __activate_task(p, rq);
1621 /*
1622 * We skip the following code due to cpu == this_cpu
1623 *
1624 * task_rq_unlock(rq, &flags);
1625 * this_rq = task_rq_lock(current, &flags);
1626 */
1627 this_rq = rq;
1628 } else {
1629 this_rq = cpu_rq(this_cpu);
1630
1631 /*
1632 * Not the local CPU - must adjust timestamp. This should
1633 * get optimised away in the !CONFIG_SMP case.
1634 */
1635 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1636 + rq->timestamp_last_tick;
1637 __activate_task(p, rq);
1638 if (TASK_PREEMPTS_CURR(p, rq))
1639 resched_task(rq->curr);
1640
1641 /*
1642 * Parent and child are on different CPUs, now get the
1643 * parent runqueue to update the parent's ->sleep_avg:
1644 */
1645 task_rq_unlock(rq, &flags);
1646 this_rq = task_rq_lock(current, &flags);
1647 }
1648 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1649 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1650 task_rq_unlock(this_rq, &flags);
1651}
1652
1653/*
1654 * Potentially available exiting-child timeslices are
1655 * retrieved here - this way the parent does not get
1656 * penalized for creating too many threads.
1657 *
1658 * (this cannot be used to 'generate' timeslices
1659 * artificially, because any timeslice recovered here
1660 * was given away by the parent in the first place.)
1661 */
36c8b586 1662void fastcall sched_exit(struct task_struct *p)
1da177e4
LT
1663{
1664 unsigned long flags;
70b97a7f 1665 struct rq *rq;
1da177e4
LT
1666
1667 /*
1668 * If the child was a (relative-) CPU hog then decrease
1669 * the sleep_avg of the parent as well.
1670 */
1671 rq = task_rq_lock(p->parent, &flags);
889dfafe 1672 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1673 p->parent->time_slice += p->time_slice;
1674 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1675 p->parent->time_slice = task_timeslice(p);
1676 }
1677 if (p->sleep_avg < p->parent->sleep_avg)
1678 p->parent->sleep_avg = p->parent->sleep_avg /
1679 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1680 (EXIT_WEIGHT + 1);
1681 task_rq_unlock(rq, &flags);
1682}
1683
4866cde0
NP
1684/**
1685 * prepare_task_switch - prepare to switch tasks
1686 * @rq: the runqueue preparing to switch
1687 * @next: the task we are going to switch to.
1688 *
1689 * This is called with the rq lock held and interrupts off. It must
1690 * be paired with a subsequent finish_task_switch after the context
1691 * switch.
1692 *
1693 * prepare_task_switch sets up locking and calls architecture specific
1694 * hooks.
1695 */
70b97a7f 1696static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1697{
1698 prepare_lock_switch(rq, next);
1699 prepare_arch_switch(next);
1700}
1701
1da177e4
LT
1702/**
1703 * finish_task_switch - clean up after a task-switch
344babaa 1704 * @rq: runqueue associated with task-switch
1da177e4
LT
1705 * @prev: the thread we just switched away from.
1706 *
4866cde0
NP
1707 * finish_task_switch must be called after the context switch, paired
1708 * with a prepare_task_switch call before the context switch.
1709 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1710 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1711 *
1712 * Note that we may have delayed dropping an mm in context_switch(). If
1713 * so, we finish that here outside of the runqueue lock. (Doing it
1714 * with the lock held can cause deadlocks; see schedule() for
1715 * details.)
1716 */
70b97a7f 1717static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1718 __releases(rq->lock)
1719{
1da177e4
LT
1720 struct mm_struct *mm = rq->prev_mm;
1721 unsigned long prev_task_flags;
1722
1723 rq->prev_mm = NULL;
1724
1725 /*
1726 * A task struct has one reference for the use as "current".
1727 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1728 * calls schedule one last time. The schedule call will never return,
1729 * and the scheduled task must drop that reference.
1730 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1731 * still held, otherwise prev could be scheduled on another cpu, die
1732 * there before we look at prev->state, and then the reference would
1733 * be dropped twice.
1734 * Manfred Spraul <manfred@colorfullife.com>
1735 */
1736 prev_task_flags = prev->flags;
4866cde0
NP
1737 finish_arch_switch(prev);
1738 finish_lock_switch(rq, prev);
1da177e4
LT
1739 if (mm)
1740 mmdrop(mm);
c6fd91f0 1741 if (unlikely(prev_task_flags & PF_DEAD)) {
1742 /*
1743 * Remove function-return probe instances associated with this
1744 * task and put them back on the free list.
1745 */
1746 kprobe_flush_task(prev);
1da177e4 1747 put_task_struct(prev);
c6fd91f0 1748 }
1da177e4
LT
1749}
1750
1751/**
1752 * schedule_tail - first thing a freshly forked thread must call.
1753 * @prev: the thread we just switched away from.
1754 */
36c8b586 1755asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1756 __releases(rq->lock)
1757{
70b97a7f
IM
1758 struct rq *rq = this_rq();
1759
4866cde0
NP
1760 finish_task_switch(rq, prev);
1761#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1762 /* In this case, finish_task_switch does not reenable preemption */
1763 preempt_enable();
1764#endif
1da177e4
LT
1765 if (current->set_child_tid)
1766 put_user(current->pid, current->set_child_tid);
1767}
1768
1769/*
1770 * context_switch - switch to the new MM and the new
1771 * thread's register state.
1772 */
36c8b586 1773static inline struct task_struct *
70b97a7f 1774context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1775 struct task_struct *next)
1da177e4
LT
1776{
1777 struct mm_struct *mm = next->mm;
1778 struct mm_struct *oldmm = prev->active_mm;
1779
1780 if (unlikely(!mm)) {
1781 next->active_mm = oldmm;
1782 atomic_inc(&oldmm->mm_count);
1783 enter_lazy_tlb(oldmm, next);
1784 } else
1785 switch_mm(oldmm, mm, next);
1786
1787 if (unlikely(!prev->mm)) {
1788 prev->active_mm = NULL;
1789 WARN_ON(rq->prev_mm);
1790 rq->prev_mm = oldmm;
1791 }
3a5f5e48
IM
1792 /*
1793 * Since the runqueue lock will be released by the next
1794 * task (which is an invalid locking op but in the case
1795 * of the scheduler it's an obvious special-case), so we
1796 * do an early lockdep release here:
1797 */
1798#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1799 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1800#endif
1da177e4
LT
1801
1802 /* Here we just switch the register state and the stack. */
1803 switch_to(prev, next, prev);
1804
1805 return prev;
1806}
1807
1808/*
1809 * nr_running, nr_uninterruptible and nr_context_switches:
1810 *
1811 * externally visible scheduler statistics: current number of runnable
1812 * threads, current number of uninterruptible-sleeping threads, total
1813 * number of context switches performed since bootup.
1814 */
1815unsigned long nr_running(void)
1816{
1817 unsigned long i, sum = 0;
1818
1819 for_each_online_cpu(i)
1820 sum += cpu_rq(i)->nr_running;
1821
1822 return sum;
1823}
1824
1825unsigned long nr_uninterruptible(void)
1826{
1827 unsigned long i, sum = 0;
1828
0a945022 1829 for_each_possible_cpu(i)
1da177e4
LT
1830 sum += cpu_rq(i)->nr_uninterruptible;
1831
1832 /*
1833 * Since we read the counters lockless, it might be slightly
1834 * inaccurate. Do not allow it to go below zero though:
1835 */
1836 if (unlikely((long)sum < 0))
1837 sum = 0;
1838
1839 return sum;
1840}
1841
1842unsigned long long nr_context_switches(void)
1843{
cc94abfc
SR
1844 int i;
1845 unsigned long long sum = 0;
1da177e4 1846
0a945022 1847 for_each_possible_cpu(i)
1da177e4
LT
1848 sum += cpu_rq(i)->nr_switches;
1849
1850 return sum;
1851}
1852
1853unsigned long nr_iowait(void)
1854{
1855 unsigned long i, sum = 0;
1856
0a945022 1857 for_each_possible_cpu(i)
1da177e4
LT
1858 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1859
1860 return sum;
1861}
1862
db1b1fef
JS
1863unsigned long nr_active(void)
1864{
1865 unsigned long i, running = 0, uninterruptible = 0;
1866
1867 for_each_online_cpu(i) {
1868 running += cpu_rq(i)->nr_running;
1869 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1870 }
1871
1872 if (unlikely((long)uninterruptible < 0))
1873 uninterruptible = 0;
1874
1875 return running + uninterruptible;
1876}
1877
1da177e4
LT
1878#ifdef CONFIG_SMP
1879
48f24c4d
IM
1880/*
1881 * Is this task likely cache-hot:
1882 */
1883static inline int
1884task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1885{
1886 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1887}
1888
1da177e4
LT
1889/*
1890 * double_rq_lock - safely lock two runqueues
1891 *
1892 * Note this does not disable interrupts like task_rq_lock,
1893 * you need to do so manually before calling.
1894 */
70b97a7f 1895static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1896 __acquires(rq1->lock)
1897 __acquires(rq2->lock)
1898{
1899 if (rq1 == rq2) {
1900 spin_lock(&rq1->lock);
1901 __acquire(rq2->lock); /* Fake it out ;) */
1902 } else {
c96d145e 1903 if (rq1 < rq2) {
1da177e4
LT
1904 spin_lock(&rq1->lock);
1905 spin_lock(&rq2->lock);
1906 } else {
1907 spin_lock(&rq2->lock);
1908 spin_lock(&rq1->lock);
1909 }
1910 }
1911}
1912
1913/*
1914 * double_rq_unlock - safely unlock two runqueues
1915 *
1916 * Note this does not restore interrupts like task_rq_unlock,
1917 * you need to do so manually after calling.
1918 */
70b97a7f 1919static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1920 __releases(rq1->lock)
1921 __releases(rq2->lock)
1922{
1923 spin_unlock(&rq1->lock);
1924 if (rq1 != rq2)
1925 spin_unlock(&rq2->lock);
1926 else
1927 __release(rq2->lock);
1928}
1929
1930/*
1931 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1932 */
70b97a7f 1933static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
1934 __releases(this_rq->lock)
1935 __acquires(busiest->lock)
1936 __acquires(this_rq->lock)
1937{
1938 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 1939 if (busiest < this_rq) {
1da177e4
LT
1940 spin_unlock(&this_rq->lock);
1941 spin_lock(&busiest->lock);
1942 spin_lock(&this_rq->lock);
1943 } else
1944 spin_lock(&busiest->lock);
1945 }
1946}
1947
1da177e4
LT
1948/*
1949 * If dest_cpu is allowed for this process, migrate the task to it.
1950 * This is accomplished by forcing the cpu_allowed mask to only
1951 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1952 * the cpu_allowed mask is restored.
1953 */
36c8b586 1954static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 1955{
70b97a7f 1956 struct migration_req req;
1da177e4 1957 unsigned long flags;
70b97a7f 1958 struct rq *rq;
1da177e4
LT
1959
1960 rq = task_rq_lock(p, &flags);
1961 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1962 || unlikely(cpu_is_offline(dest_cpu)))
1963 goto out;
1964
1965 /* force the process onto the specified CPU */
1966 if (migrate_task(p, dest_cpu, &req)) {
1967 /* Need to wait for migration thread (might exit: take ref). */
1968 struct task_struct *mt = rq->migration_thread;
36c8b586 1969
1da177e4
LT
1970 get_task_struct(mt);
1971 task_rq_unlock(rq, &flags);
1972 wake_up_process(mt);
1973 put_task_struct(mt);
1974 wait_for_completion(&req.done);
36c8b586 1975
1da177e4
LT
1976 return;
1977 }
1978out:
1979 task_rq_unlock(rq, &flags);
1980}
1981
1982/*
476d139c
NP
1983 * sched_exec - execve() is a valuable balancing opportunity, because at
1984 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
1985 */
1986void sched_exec(void)
1987{
1da177e4 1988 int new_cpu, this_cpu = get_cpu();
476d139c 1989 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 1990 put_cpu();
476d139c
NP
1991 if (new_cpu != this_cpu)
1992 sched_migrate_task(current, new_cpu);
1da177e4
LT
1993}
1994
1995/*
1996 * pull_task - move a task from a remote runqueue to the local runqueue.
1997 * Both runqueues must be locked.
1998 */
70b97a7f
IM
1999static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2000 struct task_struct *p, struct rq *this_rq,
2001 struct prio_array *this_array, int this_cpu)
1da177e4
LT
2002{
2003 dequeue_task(p, src_array);
2dd73a4f 2004 dec_nr_running(p, src_rq);
1da177e4 2005 set_task_cpu(p, this_cpu);
2dd73a4f 2006 inc_nr_running(p, this_rq);
1da177e4
LT
2007 enqueue_task(p, this_array);
2008 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
2009 + this_rq->timestamp_last_tick;
2010 /*
2011 * Note that idle threads have a prio of MAX_PRIO, for this test
2012 * to be always true for them.
2013 */
2014 if (TASK_PREEMPTS_CURR(p, this_rq))
2015 resched_task(this_rq->curr);
2016}
2017
2018/*
2019 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2020 */
858119e1 2021static
70b97a7f 2022int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
95cdf3b7
IM
2023 struct sched_domain *sd, enum idle_type idle,
2024 int *all_pinned)
1da177e4
LT
2025{
2026 /*
2027 * We do not migrate tasks that are:
2028 * 1) running (obviously), or
2029 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2030 * 3) are cache-hot on their current CPU.
2031 */
1da177e4
LT
2032 if (!cpu_isset(this_cpu, p->cpus_allowed))
2033 return 0;
81026794
NP
2034 *all_pinned = 0;
2035
2036 if (task_running(rq, p))
2037 return 0;
1da177e4
LT
2038
2039 /*
2040 * Aggressive migration if:
cafb20c1 2041 * 1) task is cache cold, or
1da177e4
LT
2042 * 2) too many balance attempts have failed.
2043 */
2044
cafb20c1 2045 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2046 return 1;
2047
2048 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 2049 return 0;
1da177e4
LT
2050 return 1;
2051}
2052
615052dc 2053#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
48f24c4d 2054
1da177e4 2055/*
2dd73a4f
PW
2056 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2057 * load from busiest to this_rq, as part of a balancing operation within
2058 * "domain". Returns the number of tasks moved.
1da177e4
LT
2059 *
2060 * Called with both runqueues locked.
2061 */
70b97a7f 2062static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f
PW
2063 unsigned long max_nr_move, unsigned long max_load_move,
2064 struct sched_domain *sd, enum idle_type idle,
2065 int *all_pinned)
1da177e4 2066{
48f24c4d
IM
2067 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2068 best_prio_seen, skip_for_load;
70b97a7f 2069 struct prio_array *array, *dst_array;
1da177e4 2070 struct list_head *head, *curr;
36c8b586 2071 struct task_struct *tmp;
2dd73a4f 2072 long rem_load_move;
1da177e4 2073
2dd73a4f 2074 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2075 goto out;
2076
2dd73a4f 2077 rem_load_move = max_load_move;
81026794 2078 pinned = 1;
615052dc 2079 this_best_prio = rq_best_prio(this_rq);
48f24c4d 2080 best_prio = rq_best_prio(busiest);
615052dc
PW
2081 /*
2082 * Enable handling of the case where there is more than one task
2083 * with the best priority. If the current running task is one
48f24c4d 2084 * of those with prio==best_prio we know it won't be moved
615052dc
PW
2085 * and therefore it's safe to override the skip (based on load) of
2086 * any task we find with that prio.
2087 */
48f24c4d 2088 best_prio_seen = best_prio == busiest->curr->prio;
81026794 2089
1da177e4
LT
2090 /*
2091 * We first consider expired tasks. Those will likely not be
2092 * executed in the near future, and they are most likely to
2093 * be cache-cold, thus switching CPUs has the least effect
2094 * on them.
2095 */
2096 if (busiest->expired->nr_active) {
2097 array = busiest->expired;
2098 dst_array = this_rq->expired;
2099 } else {
2100 array = busiest->active;
2101 dst_array = this_rq->active;
2102 }
2103
2104new_array:
2105 /* Start searching at priority 0: */
2106 idx = 0;
2107skip_bitmap:
2108 if (!idx)
2109 idx = sched_find_first_bit(array->bitmap);
2110 else
2111 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2112 if (idx >= MAX_PRIO) {
2113 if (array == busiest->expired && busiest->active->nr_active) {
2114 array = busiest->active;
2115 dst_array = this_rq->active;
2116 goto new_array;
2117 }
2118 goto out;
2119 }
2120
2121 head = array->queue + idx;
2122 curr = head->prev;
2123skip_queue:
36c8b586 2124 tmp = list_entry(curr, struct task_struct, run_list);
1da177e4
LT
2125
2126 curr = curr->prev;
2127
50ddd969
PW
2128 /*
2129 * To help distribute high priority tasks accross CPUs we don't
2130 * skip a task if it will be the highest priority task (i.e. smallest
2131 * prio value) on its new queue regardless of its load weight
2132 */
615052dc
PW
2133 skip_for_load = tmp->load_weight > rem_load_move;
2134 if (skip_for_load && idx < this_best_prio)
48f24c4d 2135 skip_for_load = !best_prio_seen && idx == best_prio;
615052dc 2136 if (skip_for_load ||
2dd73a4f 2137 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d
IM
2138
2139 best_prio_seen |= idx == best_prio;
1da177e4
LT
2140 if (curr != head)
2141 goto skip_queue;
2142 idx++;
2143 goto skip_bitmap;
2144 }
2145
2146#ifdef CONFIG_SCHEDSTATS
2147 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2148 schedstat_inc(sd, lb_hot_gained[idle]);
2149#endif
2150
2151 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2152 pulled++;
2dd73a4f 2153 rem_load_move -= tmp->load_weight;
1da177e4 2154
2dd73a4f
PW
2155 /*
2156 * We only want to steal up to the prescribed number of tasks
2157 * and the prescribed amount of weighted load.
2158 */
2159 if (pulled < max_nr_move && rem_load_move > 0) {
615052dc
PW
2160 if (idx < this_best_prio)
2161 this_best_prio = idx;
1da177e4
LT
2162 if (curr != head)
2163 goto skip_queue;
2164 idx++;
2165 goto skip_bitmap;
2166 }
2167out:
2168 /*
2169 * Right now, this is the only place pull_task() is called,
2170 * so we can safely collect pull_task() stats here rather than
2171 * inside pull_task().
2172 */
2173 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2174
2175 if (all_pinned)
2176 *all_pinned = pinned;
1da177e4
LT
2177 return pulled;
2178}
2179
2180/*
2181 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2182 * domain. It calculates and returns the amount of weighted load which
2183 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2184 */
2185static struct sched_group *
2186find_busiest_group(struct sched_domain *sd, int this_cpu,
5969fe06 2187 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1da177e4
LT
2188{
2189 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2190 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2191 unsigned long max_pull;
2dd73a4f
PW
2192 unsigned long busiest_load_per_task, busiest_nr_running;
2193 unsigned long this_load_per_task, this_nr_running;
7897986b 2194 int load_idx;
5c45bf27
SS
2195#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2196 int power_savings_balance = 1;
2197 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2198 unsigned long min_nr_running = ULONG_MAX;
2199 struct sched_group *group_min = NULL, *group_leader = NULL;
2200#endif
1da177e4
LT
2201
2202 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2203 busiest_load_per_task = busiest_nr_running = 0;
2204 this_load_per_task = this_nr_running = 0;
7897986b
NP
2205 if (idle == NOT_IDLE)
2206 load_idx = sd->busy_idx;
2207 else if (idle == NEWLY_IDLE)
2208 load_idx = sd->newidle_idx;
2209 else
2210 load_idx = sd->idle_idx;
1da177e4
LT
2211
2212 do {
5c45bf27 2213 unsigned long load, group_capacity;
1da177e4
LT
2214 int local_group;
2215 int i;
2dd73a4f 2216 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2217
2218 local_group = cpu_isset(this_cpu, group->cpumask);
2219
2220 /* Tally up the load of all CPUs in the group */
2dd73a4f 2221 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2222
2223 for_each_cpu_mask(i, group->cpumask) {
70b97a7f 2224 struct rq *rq = cpu_rq(i);
2dd73a4f 2225
5969fe06
NP
2226 if (*sd_idle && !idle_cpu(i))
2227 *sd_idle = 0;
2228
1da177e4
LT
2229 /* Bias balancing toward cpus of our domain */
2230 if (local_group)
a2000572 2231 load = target_load(i, load_idx);
1da177e4 2232 else
a2000572 2233 load = source_load(i, load_idx);
1da177e4
LT
2234
2235 avg_load += load;
2dd73a4f
PW
2236 sum_nr_running += rq->nr_running;
2237 sum_weighted_load += rq->raw_weighted_load;
1da177e4
LT
2238 }
2239
2240 total_load += avg_load;
2241 total_pwr += group->cpu_power;
2242
2243 /* Adjust by relative CPU power of the group */
2244 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2245
5c45bf27
SS
2246 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2247
1da177e4
LT
2248 if (local_group) {
2249 this_load = avg_load;
2250 this = group;
2dd73a4f
PW
2251 this_nr_running = sum_nr_running;
2252 this_load_per_task = sum_weighted_load;
2253 } else if (avg_load > max_load &&
5c45bf27 2254 sum_nr_running > group_capacity) {
1da177e4
LT
2255 max_load = avg_load;
2256 busiest = group;
2dd73a4f
PW
2257 busiest_nr_running = sum_nr_running;
2258 busiest_load_per_task = sum_weighted_load;
1da177e4 2259 }
5c45bf27
SS
2260
2261#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2262 /*
2263 * Busy processors will not participate in power savings
2264 * balance.
2265 */
2266 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2267 goto group_next;
2268
2269 /*
2270 * If the local group is idle or completely loaded
2271 * no need to do power savings balance at this domain
2272 */
2273 if (local_group && (this_nr_running >= group_capacity ||
2274 !this_nr_running))
2275 power_savings_balance = 0;
2276
2277 /*
2278 * If a group is already running at full capacity or idle,
2279 * don't include that group in power savings calculations
2280 */
2281 if (!power_savings_balance || sum_nr_running >= group_capacity
2282 || !sum_nr_running)
2283 goto group_next;
2284
2285 /*
2286 * Calculate the group which has the least non-idle load.
2287 * This is the group from where we need to pick up the load
2288 * for saving power
2289 */
2290 if ((sum_nr_running < min_nr_running) ||
2291 (sum_nr_running == min_nr_running &&
2292 first_cpu(group->cpumask) <
2293 first_cpu(group_min->cpumask))) {
2294 group_min = group;
2295 min_nr_running = sum_nr_running;
2296 min_load_per_task = sum_weighted_load /
2297 sum_nr_running;
2298 }
2299
2300 /*
2301 * Calculate the group which is almost near its
2302 * capacity but still has some space to pick up some load
2303 * from other group and save more power
2304 */
48f24c4d 2305 if (sum_nr_running <= group_capacity - 1) {
5c45bf27
SS
2306 if (sum_nr_running > leader_nr_running ||
2307 (sum_nr_running == leader_nr_running &&
2308 first_cpu(group->cpumask) >
2309 first_cpu(group_leader->cpumask))) {
2310 group_leader = group;
2311 leader_nr_running = sum_nr_running;
2312 }
48f24c4d 2313 }
5c45bf27
SS
2314group_next:
2315#endif
1da177e4
LT
2316 group = group->next;
2317 } while (group != sd->groups);
2318
2dd73a4f 2319 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2320 goto out_balanced;
2321
2322 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2323
2324 if (this_load >= avg_load ||
2325 100*max_load <= sd->imbalance_pct*this_load)
2326 goto out_balanced;
2327
2dd73a4f 2328 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2329 /*
2330 * We're trying to get all the cpus to the average_load, so we don't
2331 * want to push ourselves above the average load, nor do we wish to
2332 * reduce the max loaded cpu below the average load, as either of these
2333 * actions would just result in more rebalancing later, and ping-pong
2334 * tasks around. Thus we look for the minimum possible imbalance.
2335 * Negative imbalances (*we* are more loaded than anyone else) will
2336 * be counted as no imbalance for these purposes -- we can't fix that
2337 * by pulling tasks to us. Be careful of negative numbers as they'll
2338 * appear as very large values with unsigned longs.
2339 */
2dd73a4f
PW
2340 if (max_load <= busiest_load_per_task)
2341 goto out_balanced;
2342
2343 /*
2344 * In the presence of smp nice balancing, certain scenarios can have
2345 * max load less than avg load(as we skip the groups at or below
2346 * its cpu_power, while calculating max_load..)
2347 */
2348 if (max_load < avg_load) {
2349 *imbalance = 0;
2350 goto small_imbalance;
2351 }
0c117f1b
SS
2352
2353 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2354 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2355
1da177e4 2356 /* How much load to actually move to equalise the imbalance */
0c117f1b 2357 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2358 (avg_load - this_load) * this->cpu_power)
2359 / SCHED_LOAD_SCALE;
2360
2dd73a4f
PW
2361 /*
2362 * if *imbalance is less than the average load per runnable task
2363 * there is no gaurantee that any tasks will be moved so we'll have
2364 * a think about bumping its value to force at least one task to be
2365 * moved
2366 */
2367 if (*imbalance < busiest_load_per_task) {
48f24c4d 2368 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2369 unsigned int imbn;
2370
2371small_imbalance:
2372 pwr_move = pwr_now = 0;
2373 imbn = 2;
2374 if (this_nr_running) {
2375 this_load_per_task /= this_nr_running;
2376 if (busiest_load_per_task > this_load_per_task)
2377 imbn = 1;
2378 } else
2379 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2380
2dd73a4f
PW
2381 if (max_load - this_load >= busiest_load_per_task * imbn) {
2382 *imbalance = busiest_load_per_task;
1da177e4
LT
2383 return busiest;
2384 }
2385
2386 /*
2387 * OK, we don't have enough imbalance to justify moving tasks,
2388 * however we may be able to increase total CPU power used by
2389 * moving them.
2390 */
2391
2dd73a4f
PW
2392 pwr_now += busiest->cpu_power *
2393 min(busiest_load_per_task, max_load);
2394 pwr_now += this->cpu_power *
2395 min(this_load_per_task, this_load);
1da177e4
LT
2396 pwr_now /= SCHED_LOAD_SCALE;
2397
2398 /* Amount of load we'd subtract */
2dd73a4f 2399 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
1da177e4 2400 if (max_load > tmp)
2dd73a4f
PW
2401 pwr_move += busiest->cpu_power *
2402 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2403
2404 /* Amount of load we'd add */
2405 if (max_load*busiest->cpu_power <
2dd73a4f 2406 busiest_load_per_task*SCHED_LOAD_SCALE)
1da177e4
LT
2407 tmp = max_load*busiest->cpu_power/this->cpu_power;
2408 else
2dd73a4f
PW
2409 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2410 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
1da177e4
LT
2411 pwr_move /= SCHED_LOAD_SCALE;
2412
2413 /* Move if we gain throughput */
2414 if (pwr_move <= pwr_now)
2415 goto out_balanced;
2416
2dd73a4f 2417 *imbalance = busiest_load_per_task;
1da177e4
LT
2418 }
2419
1da177e4
LT
2420 return busiest;
2421
2422out_balanced:
5c45bf27
SS
2423#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2424 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2425 goto ret;
1da177e4 2426
5c45bf27
SS
2427 if (this == group_leader && group_leader != group_min) {
2428 *imbalance = min_load_per_task;
2429 return group_min;
2430 }
2431ret:
2432#endif
1da177e4
LT
2433 *imbalance = 0;
2434 return NULL;
2435}
2436
2437/*
2438 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2439 */
70b97a7f 2440static struct rq *
48f24c4d
IM
2441find_busiest_queue(struct sched_group *group, enum idle_type idle,
2442 unsigned long imbalance)
1da177e4 2443{
70b97a7f 2444 struct rq *busiest = NULL, *rq;
2dd73a4f 2445 unsigned long max_load = 0;
1da177e4
LT
2446 int i;
2447
2448 for_each_cpu_mask(i, group->cpumask) {
48f24c4d 2449 rq = cpu_rq(i);
2dd73a4f 2450
48f24c4d 2451 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2dd73a4f 2452 continue;
1da177e4 2453
48f24c4d
IM
2454 if (rq->raw_weighted_load > max_load) {
2455 max_load = rq->raw_weighted_load;
2456 busiest = rq;
1da177e4
LT
2457 }
2458 }
2459
2460 return busiest;
2461}
2462
77391d71
NP
2463/*
2464 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2465 * so long as it is large enough.
2466 */
2467#define MAX_PINNED_INTERVAL 512
2468
48f24c4d
IM
2469static inline unsigned long minus_1_or_zero(unsigned long n)
2470{
2471 return n > 0 ? n - 1 : 0;
2472}
2473
1da177e4
LT
2474/*
2475 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2476 * tasks if there is an imbalance.
2477 *
2478 * Called with this_rq unlocked.
2479 */
70b97a7f 2480static int load_balance(int this_cpu, struct rq *this_rq,
1da177e4
LT
2481 struct sched_domain *sd, enum idle_type idle)
2482{
48f24c4d 2483 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2484 struct sched_group *group;
1da177e4 2485 unsigned long imbalance;
70b97a7f 2486 struct rq *busiest;
5969fe06 2487
5c45bf27
SS
2488 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2489 !sched_smt_power_savings)
5969fe06 2490 sd_idle = 1;
1da177e4 2491
1da177e4
LT
2492 schedstat_inc(sd, lb_cnt[idle]);
2493
5969fe06 2494 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
1da177e4
LT
2495 if (!group) {
2496 schedstat_inc(sd, lb_nobusyg[idle]);
2497 goto out_balanced;
2498 }
2499
2dd73a4f 2500 busiest = find_busiest_queue(group, idle, imbalance);
1da177e4
LT
2501 if (!busiest) {
2502 schedstat_inc(sd, lb_nobusyq[idle]);
2503 goto out_balanced;
2504 }
2505
db935dbd 2506 BUG_ON(busiest == this_rq);
1da177e4
LT
2507
2508 schedstat_add(sd, lb_imbalance[idle], imbalance);
2509
2510 nr_moved = 0;
2511 if (busiest->nr_running > 1) {
2512 /*
2513 * Attempt to move tasks. If find_busiest_group has found
2514 * an imbalance but busiest->nr_running <= 1, the group is
2515 * still unbalanced. nr_moved simply stays zero, so it is
2516 * correctly treated as an imbalance.
2517 */
e17224bf 2518 double_rq_lock(this_rq, busiest);
1da177e4 2519 nr_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d
IM
2520 minus_1_or_zero(busiest->nr_running),
2521 imbalance, sd, idle, &all_pinned);
e17224bf 2522 double_rq_unlock(this_rq, busiest);
81026794
NP
2523
2524 /* All tasks on this runqueue were pinned by CPU affinity */
2525 if (unlikely(all_pinned))
2526 goto out_balanced;
1da177e4 2527 }
81026794 2528
1da177e4
LT
2529 if (!nr_moved) {
2530 schedstat_inc(sd, lb_failed[idle]);
2531 sd->nr_balance_failed++;
2532
2533 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2534
2535 spin_lock(&busiest->lock);
fa3b6ddc
SS
2536
2537 /* don't kick the migration_thread, if the curr
2538 * task on busiest cpu can't be moved to this_cpu
2539 */
2540 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2541 spin_unlock(&busiest->lock);
2542 all_pinned = 1;
2543 goto out_one_pinned;
2544 }
2545
1da177e4
LT
2546 if (!busiest->active_balance) {
2547 busiest->active_balance = 1;
2548 busiest->push_cpu = this_cpu;
81026794 2549 active_balance = 1;
1da177e4
LT
2550 }
2551 spin_unlock(&busiest->lock);
81026794 2552 if (active_balance)
1da177e4
LT
2553 wake_up_process(busiest->migration_thread);
2554
2555 /*
2556 * We've kicked active balancing, reset the failure
2557 * counter.
2558 */
39507451 2559 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2560 }
81026794 2561 } else
1da177e4
LT
2562 sd->nr_balance_failed = 0;
2563
81026794 2564 if (likely(!active_balance)) {
1da177e4
LT
2565 /* We were unbalanced, so reset the balancing interval */
2566 sd->balance_interval = sd->min_interval;
81026794
NP
2567 } else {
2568 /*
2569 * If we've begun active balancing, start to back off. This
2570 * case may not be covered by the all_pinned logic if there
2571 * is only 1 task on the busy runqueue (because we don't call
2572 * move_tasks).
2573 */
2574 if (sd->balance_interval < sd->max_interval)
2575 sd->balance_interval *= 2;
1da177e4
LT
2576 }
2577
5c45bf27
SS
2578 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2579 !sched_smt_power_savings)
5969fe06 2580 return -1;
1da177e4
LT
2581 return nr_moved;
2582
2583out_balanced:
1da177e4
LT
2584 schedstat_inc(sd, lb_balanced[idle]);
2585
16cfb1c0 2586 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2587
2588out_one_pinned:
1da177e4 2589 /* tune up the balancing interval */
77391d71
NP
2590 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2591 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2592 sd->balance_interval *= 2;
2593
48f24c4d
IM
2594 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2595 !sched_smt_power_savings)
5969fe06 2596 return -1;
1da177e4
LT
2597 return 0;
2598}
2599
2600/*
2601 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2602 * tasks if there is an imbalance.
2603 *
2604 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2605 * this_rq is locked.
2606 */
48f24c4d 2607static int
70b97a7f 2608load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2609{
2610 struct sched_group *group;
70b97a7f 2611 struct rq *busiest = NULL;
1da177e4
LT
2612 unsigned long imbalance;
2613 int nr_moved = 0;
5969fe06
NP
2614 int sd_idle = 0;
2615
5c45bf27 2616 if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
5969fe06 2617 sd_idle = 1;
1da177e4
LT
2618
2619 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
5969fe06 2620 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
1da177e4 2621 if (!group) {
1da177e4 2622 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2623 goto out_balanced;
1da177e4
LT
2624 }
2625
2dd73a4f 2626 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
db935dbd 2627 if (!busiest) {
1da177e4 2628 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2629 goto out_balanced;
1da177e4
LT
2630 }
2631
db935dbd
NP
2632 BUG_ON(busiest == this_rq);
2633
1da177e4 2634 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2635
2636 nr_moved = 0;
2637 if (busiest->nr_running > 1) {
2638 /* Attempt to move tasks */
2639 double_lock_balance(this_rq, busiest);
2640 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2641 minus_1_or_zero(busiest->nr_running),
81026794 2642 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf
NP
2643 spin_unlock(&busiest->lock);
2644 }
2645
5969fe06 2646 if (!nr_moved) {
1da177e4 2647 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
5969fe06
NP
2648 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2649 return -1;
2650 } else
16cfb1c0 2651 sd->nr_balance_failed = 0;
1da177e4 2652
1da177e4 2653 return nr_moved;
16cfb1c0
NP
2654
2655out_balanced:
2656 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
48f24c4d
IM
2657 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2658 !sched_smt_power_savings)
5969fe06 2659 return -1;
16cfb1c0 2660 sd->nr_balance_failed = 0;
48f24c4d 2661
16cfb1c0 2662 return 0;
1da177e4
LT
2663}
2664
2665/*
2666 * idle_balance is called by schedule() if this_cpu is about to become
2667 * idle. Attempts to pull tasks from other CPUs.
2668 */
70b97a7f 2669static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2670{
2671 struct sched_domain *sd;
2672
2673 for_each_domain(this_cpu, sd) {
2674 if (sd->flags & SD_BALANCE_NEWIDLE) {
48f24c4d
IM
2675 /* If we've pulled tasks over stop searching: */
2676 if (load_balance_newidle(this_cpu, this_rq, sd))
1da177e4 2677 break;
1da177e4
LT
2678 }
2679 }
2680}
2681
2682/*
2683 * active_load_balance is run by migration threads. It pushes running tasks
2684 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2685 * running on each physical CPU where possible, and avoids physical /
2686 * logical imbalances.
2687 *
2688 * Called with busiest_rq locked.
2689 */
70b97a7f 2690static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2691{
39507451 2692 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2693 struct sched_domain *sd;
2694 struct rq *target_rq;
39507451 2695
48f24c4d 2696 /* Is there any task to move? */
39507451 2697 if (busiest_rq->nr_running <= 1)
39507451
NP
2698 return;
2699
2700 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2701
2702 /*
39507451
NP
2703 * This condition is "impossible", if it occurs
2704 * we need to fix it. Originally reported by
2705 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2706 */
39507451 2707 BUG_ON(busiest_rq == target_rq);
1da177e4 2708
39507451
NP
2709 /* move a task from busiest_rq to target_rq */
2710 double_lock_balance(busiest_rq, target_rq);
2711
2712 /* Search for an sd spanning us and the target CPU. */
c96d145e 2713 for_each_domain(target_cpu, sd) {
39507451 2714 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2715 cpu_isset(busiest_cpu, sd->span))
39507451 2716 break;
c96d145e 2717 }
39507451 2718
48f24c4d
IM
2719 if (likely(sd)) {
2720 schedstat_inc(sd, alb_cnt);
39507451 2721
48f24c4d
IM
2722 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2723 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2724 NULL))
2725 schedstat_inc(sd, alb_pushed);
2726 else
2727 schedstat_inc(sd, alb_failed);
2728 }
39507451 2729 spin_unlock(&target_rq->lock);
1da177e4
LT
2730}
2731
2732/*
2733 * rebalance_tick will get called every timer tick, on every CPU.
2734 *
2735 * It checks each scheduling domain to see if it is due to be balanced,
2736 * and initiates a balancing operation if so.
2737 *
2738 * Balancing parameters are set up in arch_init_sched_domains.
2739 */
2740
48f24c4d
IM
2741/* Don't have all balancing operations going off at once: */
2742static inline unsigned long cpu_offset(int cpu)
2743{
2744 return jiffies + cpu * HZ / NR_CPUS;
2745}
1da177e4 2746
48f24c4d 2747static void
70b97a7f 2748rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle)
1da177e4 2749{
48f24c4d 2750 unsigned long this_load, interval, j = cpu_offset(this_cpu);
1da177e4 2751 struct sched_domain *sd;
48f24c4d 2752 int i, scale;
1da177e4 2753
2dd73a4f 2754 this_load = this_rq->raw_weighted_load;
48f24c4d
IM
2755
2756 /* Update our load: */
2757 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2758 unsigned long old_load, new_load;
2759
7897986b 2760 old_load = this_rq->cpu_load[i];
48f24c4d 2761 new_load = this_load;
7897986b
NP
2762 /*
2763 * Round up the averaging division if load is increasing. This
2764 * prevents us from getting stuck on 9 if the load is 10, for
2765 * example.
2766 */
2767 if (new_load > old_load)
2768 new_load += scale-1;
2769 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2770 }
1da177e4
LT
2771
2772 for_each_domain(this_cpu, sd) {
1da177e4
LT
2773 if (!(sd->flags & SD_LOAD_BALANCE))
2774 continue;
2775
2776 interval = sd->balance_interval;
2777 if (idle != SCHED_IDLE)
2778 interval *= sd->busy_factor;
2779
2780 /* scale ms to jiffies */
2781 interval = msecs_to_jiffies(interval);
2782 if (unlikely(!interval))
2783 interval = 1;
2784
2785 if (j - sd->last_balance >= interval) {
2786 if (load_balance(this_cpu, this_rq, sd, idle)) {
fa3b6ddc
SS
2787 /*
2788 * We've pulled tasks over so either we're no
5969fe06
NP
2789 * longer idle, or one of our SMT siblings is
2790 * not idle.
2791 */
1da177e4
LT
2792 idle = NOT_IDLE;
2793 }
2794 sd->last_balance += interval;
2795 }
2796 }
2797}
2798#else
2799/*
2800 * on UP we do not need to balance between CPUs:
2801 */
70b97a7f 2802static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle)
1da177e4
LT
2803{
2804}
70b97a7f 2805static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
2806{
2807}
2808#endif
2809
70b97a7f 2810static inline int wake_priority_sleeper(struct rq *rq)
1da177e4
LT
2811{
2812 int ret = 0;
48f24c4d 2813
1da177e4
LT
2814#ifdef CONFIG_SCHED_SMT
2815 spin_lock(&rq->lock);
2816 /*
2817 * If an SMT sibling task has been put to sleep for priority
2818 * reasons reschedule the idle task to see if it can now run.
2819 */
2820 if (rq->nr_running) {
2821 resched_task(rq->idle);
2822 ret = 1;
2823 }
2824 spin_unlock(&rq->lock);
2825#endif
2826 return ret;
2827}
2828
2829DEFINE_PER_CPU(struct kernel_stat, kstat);
2830
2831EXPORT_PER_CPU_SYMBOL(kstat);
2832
2833/*
2834 * This is called on clock ticks and on context switches.
2835 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2836 */
48f24c4d 2837static inline void
70b97a7f 2838update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
1da177e4 2839{
48f24c4d 2840 p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
1da177e4
LT
2841}
2842
2843/*
2844 * Return current->sched_time plus any more ns on the sched_clock
2845 * that have not yet been banked.
2846 */
36c8b586 2847unsigned long long current_sched_time(const struct task_struct *p)
1da177e4
LT
2848{
2849 unsigned long long ns;
2850 unsigned long flags;
48f24c4d 2851
1da177e4 2852 local_irq_save(flags);
48f24c4d
IM
2853 ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
2854 ns = p->sched_time + sched_clock() - ns;
1da177e4 2855 local_irq_restore(flags);
48f24c4d 2856
1da177e4
LT
2857 return ns;
2858}
2859
f1adad78
LT
2860/*
2861 * We place interactive tasks back into the active array, if possible.
2862 *
2863 * To guarantee that this does not starve expired tasks we ignore the
2864 * interactivity of a task if the first expired task had to wait more
2865 * than a 'reasonable' amount of time. This deadline timeout is
2866 * load-dependent, as the frequency of array switched decreases with
2867 * increasing number of running tasks. We also ignore the interactivity
2868 * if a better static_prio task has expired:
2869 */
70b97a7f 2870static inline int expired_starving(struct rq *rq)
48f24c4d
IM
2871{
2872 if (rq->curr->static_prio > rq->best_expired_prio)
2873 return 1;
2874 if (!STARVATION_LIMIT || !rq->expired_timestamp)
2875 return 0;
2876 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
2877 return 1;
2878 return 0;
2879}
f1adad78 2880
1da177e4
LT
2881/*
2882 * Account user cpu time to a process.
2883 * @p: the process that the cpu time gets accounted to
2884 * @hardirq_offset: the offset to subtract from hardirq_count()
2885 * @cputime: the cpu time spent in user space since the last update
2886 */
2887void account_user_time(struct task_struct *p, cputime_t cputime)
2888{
2889 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2890 cputime64_t tmp;
2891
2892 p->utime = cputime_add(p->utime, cputime);
2893
2894 /* Add user time to cpustat. */
2895 tmp = cputime_to_cputime64(cputime);
2896 if (TASK_NICE(p) > 0)
2897 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2898 else
2899 cpustat->user = cputime64_add(cpustat->user, tmp);
2900}
2901
2902/*
2903 * Account system cpu time to a process.
2904 * @p: the process that the cpu time gets accounted to
2905 * @hardirq_offset: the offset to subtract from hardirq_count()
2906 * @cputime: the cpu time spent in kernel space since the last update
2907 */
2908void account_system_time(struct task_struct *p, int hardirq_offset,
2909 cputime_t cputime)
2910{
2911 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 2912 struct rq *rq = this_rq();
1da177e4
LT
2913 cputime64_t tmp;
2914
2915 p->stime = cputime_add(p->stime, cputime);
2916
2917 /* Add system time to cpustat. */
2918 tmp = cputime_to_cputime64(cputime);
2919 if (hardirq_count() - hardirq_offset)
2920 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2921 else if (softirq_count())
2922 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2923 else if (p != rq->idle)
2924 cpustat->system = cputime64_add(cpustat->system, tmp);
2925 else if (atomic_read(&rq->nr_iowait) > 0)
2926 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2927 else
2928 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2929 /* Account for system time used */
2930 acct_update_integrals(p);
1da177e4
LT
2931}
2932
2933/*
2934 * Account for involuntary wait time.
2935 * @p: the process from which the cpu time has been stolen
2936 * @steal: the cpu time spent in involuntary wait
2937 */
2938void account_steal_time(struct task_struct *p, cputime_t steal)
2939{
2940 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2941 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 2942 struct rq *rq = this_rq();
1da177e4
LT
2943
2944 if (p == rq->idle) {
2945 p->stime = cputime_add(p->stime, steal);
2946 if (atomic_read(&rq->nr_iowait) > 0)
2947 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2948 else
2949 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2950 } else
2951 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2952}
2953
2954/*
2955 * This function gets called by the timer code, with HZ frequency.
2956 * We call it with interrupts disabled.
2957 *
2958 * It also gets called by the fork code, when changing the parent's
2959 * timeslices.
2960 */
2961void scheduler_tick(void)
2962{
48f24c4d 2963 unsigned long long now = sched_clock();
36c8b586 2964 struct task_struct *p = current;
1da177e4 2965 int cpu = smp_processor_id();
70b97a7f 2966 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
2967
2968 update_cpu_clock(p, rq, now);
2969
2970 rq->timestamp_last_tick = now;
2971
2972 if (p == rq->idle) {
2973 if (wake_priority_sleeper(rq))
2974 goto out;
2975 rebalance_tick(cpu, rq, SCHED_IDLE);
2976 return;
2977 }
2978
2979 /* Task might have expired already, but not scheduled off yet */
2980 if (p->array != rq->active) {
2981 set_tsk_need_resched(p);
2982 goto out;
2983 }
2984 spin_lock(&rq->lock);
2985 /*
2986 * The task was running during this tick - update the
2987 * time slice counter. Note: we do not update a thread's
2988 * priority until it either goes to sleep or uses up its
2989 * timeslice. This makes it possible for interactive tasks
2990 * to use up their timeslices at their highest priority levels.
2991 */
2992 if (rt_task(p)) {
2993 /*
2994 * RR tasks need a special form of timeslice management.
2995 * FIFO tasks have no timeslices.
2996 */
2997 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2998 p->time_slice = task_timeslice(p);
2999 p->first_time_slice = 0;
3000 set_tsk_need_resched(p);
3001
3002 /* put it at the end of the queue: */
3003 requeue_task(p, rq->active);
3004 }
3005 goto out_unlock;
3006 }
3007 if (!--p->time_slice) {
3008 dequeue_task(p, rq->active);
3009 set_tsk_need_resched(p);
3010 p->prio = effective_prio(p);
3011 p->time_slice = task_timeslice(p);
3012 p->first_time_slice = 0;
3013
3014 if (!rq->expired_timestamp)
3015 rq->expired_timestamp = jiffies;
48f24c4d 3016 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
1da177e4
LT
3017 enqueue_task(p, rq->expired);
3018 if (p->static_prio < rq->best_expired_prio)
3019 rq->best_expired_prio = p->static_prio;
3020 } else
3021 enqueue_task(p, rq->active);
3022 } else {
3023 /*
3024 * Prevent a too long timeslice allowing a task to monopolize
3025 * the CPU. We do this by splitting up the timeslice into
3026 * smaller pieces.
3027 *
3028 * Note: this does not mean the task's timeslices expire or
3029 * get lost in any way, they just might be preempted by
3030 * another task of equal priority. (one with higher
3031 * priority would have preempted this task already.) We
3032 * requeue this task to the end of the list on this priority
3033 * level, which is in essence a round-robin of tasks with
3034 * equal priority.
3035 *
3036 * This only applies to tasks in the interactive
3037 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3038 */
3039 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3040 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3041 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3042 (p->array == rq->active)) {
3043
3044 requeue_task(p, rq->active);
3045 set_tsk_need_resched(p);
3046 }
3047 }
3048out_unlock:
3049 spin_unlock(&rq->lock);
3050out:
3051 rebalance_tick(cpu, rq, NOT_IDLE);
3052}
3053
3054#ifdef CONFIG_SCHED_SMT
70b97a7f 3055static inline void wakeup_busy_runqueue(struct rq *rq)
fc38ed75
CK
3056{
3057 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3058 if (rq->curr == rq->idle && rq->nr_running)
3059 resched_task(rq->idle);
3060}
3061
c96d145e
KC
3062/*
3063 * Called with interrupt disabled and this_rq's runqueue locked.
3064 */
3065static void wake_sleeping_dependent(int this_cpu)
1da177e4 3066{
41c7ce9a 3067 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
3068 int i;
3069
c96d145e
KC
3070 for_each_domain(this_cpu, tmp) {
3071 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3072 sd = tmp;
c96d145e
KC
3073 break;
3074 }
3075 }
41c7ce9a
NP
3076
3077 if (!sd)
1da177e4
LT
3078 return;
3079
c96d145e 3080 for_each_cpu_mask(i, sd->span) {
70b97a7f 3081 struct rq *smt_rq = cpu_rq(i);
1da177e4 3082
c96d145e
KC
3083 if (i == this_cpu)
3084 continue;
3085 if (unlikely(!spin_trylock(&smt_rq->lock)))
3086 continue;
3087
fc38ed75 3088 wakeup_busy_runqueue(smt_rq);
c96d145e 3089 spin_unlock(&smt_rq->lock);
1da177e4 3090 }
1da177e4
LT
3091}
3092
67f9a619
IM
3093/*
3094 * number of 'lost' timeslices this task wont be able to fully
3095 * utilize, if another task runs on a sibling. This models the
3096 * slowdown effect of other tasks running on siblings:
3097 */
36c8b586
IM
3098static inline unsigned long
3099smt_slice(struct task_struct *p, struct sched_domain *sd)
67f9a619
IM
3100{
3101 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3102}
3103
c96d145e
KC
3104/*
3105 * To minimise lock contention and not have to drop this_rq's runlock we only
3106 * trylock the sibling runqueues and bypass those runqueues if we fail to
3107 * acquire their lock. As we only trylock the normal locking order does not
3108 * need to be obeyed.
3109 */
36c8b586 3110static int
70b97a7f 3111dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
1da177e4 3112{
41c7ce9a 3113 struct sched_domain *tmp, *sd = NULL;
1da177e4 3114 int ret = 0, i;
1da177e4 3115
c96d145e
KC
3116 /* kernel/rt threads do not participate in dependent sleeping */
3117 if (!p->mm || rt_task(p))
3118 return 0;
3119
3120 for_each_domain(this_cpu, tmp) {
3121 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3122 sd = tmp;
c96d145e
KC
3123 break;
3124 }
3125 }
41c7ce9a
NP
3126
3127 if (!sd)
1da177e4
LT
3128 return 0;
3129
c96d145e 3130 for_each_cpu_mask(i, sd->span) {
36c8b586 3131 struct task_struct *smt_curr;
70b97a7f 3132 struct rq *smt_rq;
1da177e4 3133
c96d145e
KC
3134 if (i == this_cpu)
3135 continue;
1da177e4 3136
c96d145e
KC
3137 smt_rq = cpu_rq(i);
3138 if (unlikely(!spin_trylock(&smt_rq->lock)))
3139 continue;
1da177e4 3140
c96d145e 3141 smt_curr = smt_rq->curr;
1da177e4 3142
c96d145e
KC
3143 if (!smt_curr->mm)
3144 goto unlock;
fc38ed75 3145
1da177e4
LT
3146 /*
3147 * If a user task with lower static priority than the
3148 * running task on the SMT sibling is trying to schedule,
3149 * delay it till there is proportionately less timeslice
3150 * left of the sibling task to prevent a lower priority
3151 * task from using an unfair proportion of the
3152 * physical cpu's resources. -ck
3153 */
fc38ed75
CK
3154 if (rt_task(smt_curr)) {
3155 /*
3156 * With real time tasks we run non-rt tasks only
3157 * per_cpu_gain% of the time.
3158 */
3159 if ((jiffies % DEF_TIMESLICE) >
3160 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3161 ret = 1;
c96d145e 3162 } else {
67f9a619
IM
3163 if (smt_curr->static_prio < p->static_prio &&
3164 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3165 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75 3166 ret = 1;
fc38ed75 3167 }
c96d145e
KC
3168unlock:
3169 spin_unlock(&smt_rq->lock);
1da177e4 3170 }
1da177e4
LT
3171 return ret;
3172}
3173#else
c96d145e 3174static inline void wake_sleeping_dependent(int this_cpu)
1da177e4
LT
3175{
3176}
48f24c4d 3177static inline int
70b97a7f 3178dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
1da177e4
LT
3179{
3180 return 0;
3181}
3182#endif
3183
3184#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3185
3186void fastcall add_preempt_count(int val)
3187{
3188 /*
3189 * Underflow?
3190 */
9a11b49a
IM
3191 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3192 return;
1da177e4
LT
3193 preempt_count() += val;
3194 /*
3195 * Spinlock count overflowing soon?
3196 */
9a11b49a 3197 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
1da177e4
LT
3198}
3199EXPORT_SYMBOL(add_preempt_count);
3200
3201void fastcall sub_preempt_count(int val)
3202{
3203 /*
3204 * Underflow?
3205 */
9a11b49a
IM
3206 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3207 return;
1da177e4
LT
3208 /*
3209 * Is the spinlock portion underflowing?
3210 */
9a11b49a
IM
3211 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3212 !(preempt_count() & PREEMPT_MASK)))
3213 return;
3214
1da177e4
LT
3215 preempt_count() -= val;
3216}
3217EXPORT_SYMBOL(sub_preempt_count);
3218
3219#endif
3220
3dee386e
CK
3221static inline int interactive_sleep(enum sleep_type sleep_type)
3222{
3223 return (sleep_type == SLEEP_INTERACTIVE ||
3224 sleep_type == SLEEP_INTERRUPTED);
3225}
3226
1da177e4
LT
3227/*
3228 * schedule() is the main scheduler function.
3229 */
3230asmlinkage void __sched schedule(void)
3231{
36c8b586 3232 struct task_struct *prev, *next;
70b97a7f 3233 struct prio_array *array;
1da177e4
LT
3234 struct list_head *queue;
3235 unsigned long long now;
3236 unsigned long run_time;
a3464a10 3237 int cpu, idx, new_prio;
48f24c4d 3238 long *switch_count;
70b97a7f 3239 struct rq *rq;
1da177e4
LT
3240
3241 /*
3242 * Test if we are atomic. Since do_exit() needs to call into
3243 * schedule() atomically, we ignore that path for now.
3244 * Otherwise, whine if we are scheduling when we should not be.
3245 */
77e4bfbc
AM
3246 if (unlikely(in_atomic() && !current->exit_state)) {
3247 printk(KERN_ERR "BUG: scheduling while atomic: "
3248 "%s/0x%08x/%d\n",
3249 current->comm, preempt_count(), current->pid);
3250 dump_stack();
1da177e4
LT
3251 }
3252 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3253
3254need_resched:
3255 preempt_disable();
3256 prev = current;
3257 release_kernel_lock(prev);
3258need_resched_nonpreemptible:
3259 rq = this_rq();
3260
3261 /*
3262 * The idle thread is not allowed to schedule!
3263 * Remove this check after it has been exercised a bit.
3264 */
3265 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3266 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3267 dump_stack();
3268 }
3269
3270 schedstat_inc(rq, sched_cnt);
3271 now = sched_clock();
238628ed 3272 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 3273 run_time = now - prev->timestamp;
238628ed 3274 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
3275 run_time = 0;
3276 } else
3277 run_time = NS_MAX_SLEEP_AVG;
3278
3279 /*
3280 * Tasks charged proportionately less run_time at high sleep_avg to
3281 * delay them losing their interactive status
3282 */
3283 run_time /= (CURRENT_BONUS(prev) ? : 1);
3284
3285 spin_lock_irq(&rq->lock);
3286
3287 if (unlikely(prev->flags & PF_DEAD))
3288 prev->state = EXIT_DEAD;
3289
3290 switch_count = &prev->nivcsw;
3291 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3292 switch_count = &prev->nvcsw;
3293 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3294 unlikely(signal_pending(prev))))
3295 prev->state = TASK_RUNNING;
3296 else {
3297 if (prev->state == TASK_UNINTERRUPTIBLE)
3298 rq->nr_uninterruptible++;
3299 deactivate_task(prev, rq);
3300 }
3301 }
3302
3303 cpu = smp_processor_id();
3304 if (unlikely(!rq->nr_running)) {
1da177e4
LT
3305 idle_balance(cpu, rq);
3306 if (!rq->nr_running) {
3307 next = rq->idle;
3308 rq->expired_timestamp = 0;
c96d145e 3309 wake_sleeping_dependent(cpu);
1da177e4
LT
3310 goto switch_tasks;
3311 }
1da177e4
LT
3312 }
3313
3314 array = rq->active;
3315 if (unlikely(!array->nr_active)) {
3316 /*
3317 * Switch the active and expired arrays.
3318 */
3319 schedstat_inc(rq, sched_switch);
3320 rq->active = rq->expired;
3321 rq->expired = array;
3322 array = rq->active;
3323 rq->expired_timestamp = 0;
3324 rq->best_expired_prio = MAX_PRIO;
3325 }
3326
3327 idx = sched_find_first_bit(array->bitmap);
3328 queue = array->queue + idx;
36c8b586 3329 next = list_entry(queue->next, struct task_struct, run_list);
1da177e4 3330
3dee386e 3331 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3332 unsigned long long delta = now - next->timestamp;
238628ed 3333 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3334 delta = 0;
3335
3dee386e 3336 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3337 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3338
3339 array = next->array;
a3464a10
CS
3340 new_prio = recalc_task_prio(next, next->timestamp + delta);
3341
3342 if (unlikely(next->prio != new_prio)) {
3343 dequeue_task(next, array);
3344 next->prio = new_prio;
3345 enqueue_task(next, array);
7c4bb1f9 3346 }
1da177e4 3347 }
3dee386e 3348 next->sleep_type = SLEEP_NORMAL;
c96d145e
KC
3349 if (dependent_sleeper(cpu, rq, next))
3350 next = rq->idle;
1da177e4
LT
3351switch_tasks:
3352 if (next == rq->idle)
3353 schedstat_inc(rq, sched_goidle);
3354 prefetch(next);
383f2835 3355 prefetch_stack(next);
1da177e4
LT
3356 clear_tsk_need_resched(prev);
3357 rcu_qsctr_inc(task_cpu(prev));
3358
3359 update_cpu_clock(prev, rq, now);
3360
3361 prev->sleep_avg -= run_time;
3362 if ((long)prev->sleep_avg <= 0)
3363 prev->sleep_avg = 0;
3364 prev->timestamp = prev->last_ran = now;
3365
3366 sched_info_switch(prev, next);
3367 if (likely(prev != next)) {
3368 next->timestamp = now;
3369 rq->nr_switches++;
3370 rq->curr = next;
3371 ++*switch_count;
3372
4866cde0 3373 prepare_task_switch(rq, next);
1da177e4
LT
3374 prev = context_switch(rq, prev, next);
3375 barrier();
4866cde0
NP
3376 /*
3377 * this_rq must be evaluated again because prev may have moved
3378 * CPUs since it called schedule(), thus the 'rq' on its stack
3379 * frame will be invalid.
3380 */
3381 finish_task_switch(this_rq(), prev);
1da177e4
LT
3382 } else
3383 spin_unlock_irq(&rq->lock);
3384
3385 prev = current;
3386 if (unlikely(reacquire_kernel_lock(prev) < 0))
3387 goto need_resched_nonpreemptible;
3388 preempt_enable_no_resched();
3389 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3390 goto need_resched;
3391}
1da177e4
LT
3392EXPORT_SYMBOL(schedule);
3393
3394#ifdef CONFIG_PREEMPT
3395/*
2ed6e34f 3396 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3397 * off of preempt_enable. Kernel preemptions off return from interrupt
3398 * occur there and call schedule directly.
3399 */
3400asmlinkage void __sched preempt_schedule(void)
3401{
3402 struct thread_info *ti = current_thread_info();
3403#ifdef CONFIG_PREEMPT_BKL
3404 struct task_struct *task = current;
3405 int saved_lock_depth;
3406#endif
3407 /*
3408 * If there is a non-zero preempt_count or interrupts are disabled,
3409 * we do not want to preempt the current task. Just return..
3410 */
3411 if (unlikely(ti->preempt_count || irqs_disabled()))
3412 return;
3413
3414need_resched:
3415 add_preempt_count(PREEMPT_ACTIVE);
3416 /*
3417 * We keep the big kernel semaphore locked, but we
3418 * clear ->lock_depth so that schedule() doesnt
3419 * auto-release the semaphore:
3420 */
3421#ifdef CONFIG_PREEMPT_BKL
3422 saved_lock_depth = task->lock_depth;
3423 task->lock_depth = -1;
3424#endif
3425 schedule();
3426#ifdef CONFIG_PREEMPT_BKL
3427 task->lock_depth = saved_lock_depth;
3428#endif
3429 sub_preempt_count(PREEMPT_ACTIVE);
3430
3431 /* we could miss a preemption opportunity between schedule and now */
3432 barrier();
3433 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3434 goto need_resched;
3435}
1da177e4
LT
3436EXPORT_SYMBOL(preempt_schedule);
3437
3438/*
2ed6e34f 3439 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3440 * off of irq context.
3441 * Note, that this is called and return with irqs disabled. This will
3442 * protect us against recursive calling from irq.
3443 */
3444asmlinkage void __sched preempt_schedule_irq(void)
3445{
3446 struct thread_info *ti = current_thread_info();
3447#ifdef CONFIG_PREEMPT_BKL
3448 struct task_struct *task = current;
3449 int saved_lock_depth;
3450#endif
2ed6e34f 3451 /* Catch callers which need to be fixed */
1da177e4
LT
3452 BUG_ON(ti->preempt_count || !irqs_disabled());
3453
3454need_resched:
3455 add_preempt_count(PREEMPT_ACTIVE);
3456 /*
3457 * We keep the big kernel semaphore locked, but we
3458 * clear ->lock_depth so that schedule() doesnt
3459 * auto-release the semaphore:
3460 */
3461#ifdef CONFIG_PREEMPT_BKL
3462 saved_lock_depth = task->lock_depth;
3463 task->lock_depth = -1;
3464#endif
3465 local_irq_enable();
3466 schedule();
3467 local_irq_disable();
3468#ifdef CONFIG_PREEMPT_BKL
3469 task->lock_depth = saved_lock_depth;
3470#endif
3471 sub_preempt_count(PREEMPT_ACTIVE);
3472
3473 /* we could miss a preemption opportunity between schedule and now */
3474 barrier();
3475 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3476 goto need_resched;
3477}
3478
3479#endif /* CONFIG_PREEMPT */
3480
95cdf3b7
IM
3481int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3482 void *key)
1da177e4 3483{
48f24c4d 3484 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3485}
1da177e4
LT
3486EXPORT_SYMBOL(default_wake_function);
3487
3488/*
3489 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3490 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3491 * number) then we wake all the non-exclusive tasks and one exclusive task.
3492 *
3493 * There are circumstances in which we can try to wake a task which has already
3494 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3495 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3496 */
3497static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3498 int nr_exclusive, int sync, void *key)
3499{
3500 struct list_head *tmp, *next;
3501
3502 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3503 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3504 unsigned flags = curr->flags;
3505
1da177e4 3506 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3507 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3508 break;
3509 }
3510}
3511
3512/**
3513 * __wake_up - wake up threads blocked on a waitqueue.
3514 * @q: the waitqueue
3515 * @mode: which threads
3516 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3517 * @key: is directly passed to the wakeup function
1da177e4
LT
3518 */
3519void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3520 int nr_exclusive, void *key)
1da177e4
LT
3521{
3522 unsigned long flags;
3523
3524 spin_lock_irqsave(&q->lock, flags);
3525 __wake_up_common(q, mode, nr_exclusive, 0, key);
3526 spin_unlock_irqrestore(&q->lock, flags);
3527}
1da177e4
LT
3528EXPORT_SYMBOL(__wake_up);
3529
3530/*
3531 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3532 */
3533void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3534{
3535 __wake_up_common(q, mode, 1, 0, NULL);
3536}
3537
3538/**
67be2dd1 3539 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3540 * @q: the waitqueue
3541 * @mode: which threads
3542 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3543 *
3544 * The sync wakeup differs that the waker knows that it will schedule
3545 * away soon, so while the target thread will be woken up, it will not
3546 * be migrated to another CPU - ie. the two threads are 'synchronized'
3547 * with each other. This can prevent needless bouncing between CPUs.
3548 *
3549 * On UP it can prevent extra preemption.
3550 */
95cdf3b7
IM
3551void fastcall
3552__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3553{
3554 unsigned long flags;
3555 int sync = 1;
3556
3557 if (unlikely(!q))
3558 return;
3559
3560 if (unlikely(!nr_exclusive))
3561 sync = 0;
3562
3563 spin_lock_irqsave(&q->lock, flags);
3564 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3565 spin_unlock_irqrestore(&q->lock, flags);
3566}
3567EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3568
3569void fastcall complete(struct completion *x)
3570{
3571 unsigned long flags;
3572
3573 spin_lock_irqsave(&x->wait.lock, flags);
3574 x->done++;
3575 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3576 1, 0, NULL);
3577 spin_unlock_irqrestore(&x->wait.lock, flags);
3578}
3579EXPORT_SYMBOL(complete);
3580
3581void fastcall complete_all(struct completion *x)
3582{
3583 unsigned long flags;
3584
3585 spin_lock_irqsave(&x->wait.lock, flags);
3586 x->done += UINT_MAX/2;
3587 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3588 0, 0, NULL);
3589 spin_unlock_irqrestore(&x->wait.lock, flags);
3590}
3591EXPORT_SYMBOL(complete_all);
3592
3593void fastcall __sched wait_for_completion(struct completion *x)
3594{
3595 might_sleep();
48f24c4d 3596
1da177e4
LT
3597 spin_lock_irq(&x->wait.lock);
3598 if (!x->done) {
3599 DECLARE_WAITQUEUE(wait, current);
3600
3601 wait.flags |= WQ_FLAG_EXCLUSIVE;
3602 __add_wait_queue_tail(&x->wait, &wait);
3603 do {
3604 __set_current_state(TASK_UNINTERRUPTIBLE);
3605 spin_unlock_irq(&x->wait.lock);
3606 schedule();
3607 spin_lock_irq(&x->wait.lock);
3608 } while (!x->done);
3609 __remove_wait_queue(&x->wait, &wait);
3610 }
3611 x->done--;
3612 spin_unlock_irq(&x->wait.lock);
3613}
3614EXPORT_SYMBOL(wait_for_completion);
3615
3616unsigned long fastcall __sched
3617wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3618{
3619 might_sleep();
3620
3621 spin_lock_irq(&x->wait.lock);
3622 if (!x->done) {
3623 DECLARE_WAITQUEUE(wait, current);
3624
3625 wait.flags |= WQ_FLAG_EXCLUSIVE;
3626 __add_wait_queue_tail(&x->wait, &wait);
3627 do {
3628 __set_current_state(TASK_UNINTERRUPTIBLE);
3629 spin_unlock_irq(&x->wait.lock);
3630 timeout = schedule_timeout(timeout);
3631 spin_lock_irq(&x->wait.lock);
3632 if (!timeout) {
3633 __remove_wait_queue(&x->wait, &wait);
3634 goto out;
3635 }
3636 } while (!x->done);
3637 __remove_wait_queue(&x->wait, &wait);
3638 }
3639 x->done--;
3640out:
3641 spin_unlock_irq(&x->wait.lock);
3642 return timeout;
3643}
3644EXPORT_SYMBOL(wait_for_completion_timeout);
3645
3646int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3647{
3648 int ret = 0;
3649
3650 might_sleep();
3651
3652 spin_lock_irq(&x->wait.lock);
3653 if (!x->done) {
3654 DECLARE_WAITQUEUE(wait, current);
3655
3656 wait.flags |= WQ_FLAG_EXCLUSIVE;
3657 __add_wait_queue_tail(&x->wait, &wait);
3658 do {
3659 if (signal_pending(current)) {
3660 ret = -ERESTARTSYS;
3661 __remove_wait_queue(&x->wait, &wait);
3662 goto out;
3663 }
3664 __set_current_state(TASK_INTERRUPTIBLE);
3665 spin_unlock_irq(&x->wait.lock);
3666 schedule();
3667 spin_lock_irq(&x->wait.lock);
3668 } while (!x->done);
3669 __remove_wait_queue(&x->wait, &wait);
3670 }
3671 x->done--;
3672out:
3673 spin_unlock_irq(&x->wait.lock);
3674
3675 return ret;
3676}
3677EXPORT_SYMBOL(wait_for_completion_interruptible);
3678
3679unsigned long fastcall __sched
3680wait_for_completion_interruptible_timeout(struct completion *x,
3681 unsigned long timeout)
3682{
3683 might_sleep();
3684
3685 spin_lock_irq(&x->wait.lock);
3686 if (!x->done) {
3687 DECLARE_WAITQUEUE(wait, current);
3688
3689 wait.flags |= WQ_FLAG_EXCLUSIVE;
3690 __add_wait_queue_tail(&x->wait, &wait);
3691 do {
3692 if (signal_pending(current)) {
3693 timeout = -ERESTARTSYS;
3694 __remove_wait_queue(&x->wait, &wait);
3695 goto out;
3696 }
3697 __set_current_state(TASK_INTERRUPTIBLE);
3698 spin_unlock_irq(&x->wait.lock);
3699 timeout = schedule_timeout(timeout);
3700 spin_lock_irq(&x->wait.lock);
3701 if (!timeout) {
3702 __remove_wait_queue(&x->wait, &wait);
3703 goto out;
3704 }
3705 } while (!x->done);
3706 __remove_wait_queue(&x->wait, &wait);
3707 }
3708 x->done--;
3709out:
3710 spin_unlock_irq(&x->wait.lock);
3711 return timeout;
3712}
3713EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3714
3715
3716#define SLEEP_ON_VAR \
3717 unsigned long flags; \
3718 wait_queue_t wait; \
3719 init_waitqueue_entry(&wait, current);
3720
3721#define SLEEP_ON_HEAD \
3722 spin_lock_irqsave(&q->lock,flags); \
3723 __add_wait_queue(q, &wait); \
3724 spin_unlock(&q->lock);
3725
3726#define SLEEP_ON_TAIL \
3727 spin_lock_irq(&q->lock); \
3728 __remove_wait_queue(q, &wait); \
3729 spin_unlock_irqrestore(&q->lock, flags);
3730
3731void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3732{
3733 SLEEP_ON_VAR
3734
3735 current->state = TASK_INTERRUPTIBLE;
3736
3737 SLEEP_ON_HEAD
3738 schedule();
3739 SLEEP_ON_TAIL
3740}
1da177e4
LT
3741EXPORT_SYMBOL(interruptible_sleep_on);
3742
95cdf3b7
IM
3743long fastcall __sched
3744interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3745{
3746 SLEEP_ON_VAR
3747
3748 current->state = TASK_INTERRUPTIBLE;
3749
3750 SLEEP_ON_HEAD
3751 timeout = schedule_timeout(timeout);
3752 SLEEP_ON_TAIL
3753
3754 return timeout;
3755}
1da177e4
LT
3756EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3757
3758void fastcall __sched sleep_on(wait_queue_head_t *q)
3759{
3760 SLEEP_ON_VAR
3761
3762 current->state = TASK_UNINTERRUPTIBLE;
3763
3764 SLEEP_ON_HEAD
3765 schedule();
3766 SLEEP_ON_TAIL
3767}
1da177e4
LT
3768EXPORT_SYMBOL(sleep_on);
3769
3770long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3771{
3772 SLEEP_ON_VAR
3773
3774 current->state = TASK_UNINTERRUPTIBLE;
3775
3776 SLEEP_ON_HEAD
3777 timeout = schedule_timeout(timeout);
3778 SLEEP_ON_TAIL
3779
3780 return timeout;
3781}
3782
3783EXPORT_SYMBOL(sleep_on_timeout);
3784
b29739f9
IM
3785#ifdef CONFIG_RT_MUTEXES
3786
3787/*
3788 * rt_mutex_setprio - set the current priority of a task
3789 * @p: task
3790 * @prio: prio value (kernel-internal form)
3791 *
3792 * This function changes the 'effective' priority of a task. It does
3793 * not touch ->normal_prio like __setscheduler().
3794 *
3795 * Used by the rt_mutex code to implement priority inheritance logic.
3796 */
36c8b586 3797void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3798{
70b97a7f 3799 struct prio_array *array;
b29739f9 3800 unsigned long flags;
70b97a7f 3801 struct rq *rq;
b29739f9
IM
3802 int oldprio;
3803
3804 BUG_ON(prio < 0 || prio > MAX_PRIO);
3805
3806 rq = task_rq_lock(p, &flags);
3807
3808 oldprio = p->prio;
3809 array = p->array;
3810 if (array)
3811 dequeue_task(p, array);
3812 p->prio = prio;
3813
3814 if (array) {
3815 /*
3816 * If changing to an RT priority then queue it
3817 * in the active array!
3818 */
3819 if (rt_task(p))
3820 array = rq->active;
3821 enqueue_task(p, array);
3822 /*
3823 * Reschedule if we are currently running on this runqueue and
3824 * our priority decreased, or if we are not currently running on
3825 * this runqueue and our priority is higher than the current's
3826 */
3827 if (task_running(rq, p)) {
3828 if (p->prio > oldprio)
3829 resched_task(rq->curr);
3830 } else if (TASK_PREEMPTS_CURR(p, rq))
3831 resched_task(rq->curr);
3832 }
3833 task_rq_unlock(rq, &flags);
3834}
3835
3836#endif
3837
36c8b586 3838void set_user_nice(struct task_struct *p, long nice)
1da177e4 3839{
70b97a7f 3840 struct prio_array *array;
48f24c4d 3841 int old_prio, delta;
1da177e4 3842 unsigned long flags;
70b97a7f 3843 struct rq *rq;
1da177e4
LT
3844
3845 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3846 return;
3847 /*
3848 * We have to be careful, if called from sys_setpriority(),
3849 * the task might be in the middle of scheduling on another CPU.
3850 */
3851 rq = task_rq_lock(p, &flags);
3852 /*
3853 * The RT priorities are set via sched_setscheduler(), but we still
3854 * allow the 'normal' nice value to be set - but as expected
3855 * it wont have any effect on scheduling until the task is
b0a9499c 3856 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4 3857 */
b29739f9 3858 if (has_rt_policy(p)) {
1da177e4
LT
3859 p->static_prio = NICE_TO_PRIO(nice);
3860 goto out_unlock;
3861 }
3862 array = p->array;
2dd73a4f 3863 if (array) {
1da177e4 3864 dequeue_task(p, array);
2dd73a4f
PW
3865 dec_raw_weighted_load(rq, p);
3866 }
1da177e4 3867
1da177e4 3868 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3869 set_load_weight(p);
b29739f9
IM
3870 old_prio = p->prio;
3871 p->prio = effective_prio(p);
3872 delta = p->prio - old_prio;
1da177e4
LT
3873
3874 if (array) {
3875 enqueue_task(p, array);
2dd73a4f 3876 inc_raw_weighted_load(rq, p);
1da177e4
LT
3877 /*
3878 * If the task increased its priority or is running and
3879 * lowered its priority, then reschedule its CPU:
3880 */
3881 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3882 resched_task(rq->curr);
3883 }
3884out_unlock:
3885 task_rq_unlock(rq, &flags);
3886}
1da177e4
LT
3887EXPORT_SYMBOL(set_user_nice);
3888
e43379f1
MM
3889/*
3890 * can_nice - check if a task can reduce its nice value
3891 * @p: task
3892 * @nice: nice value
3893 */
36c8b586 3894int can_nice(const struct task_struct *p, const int nice)
e43379f1 3895{
024f4747
MM
3896 /* convert nice value [19,-20] to rlimit style value [1,40] */
3897 int nice_rlim = 20 - nice;
48f24c4d 3898
e43379f1
MM
3899 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3900 capable(CAP_SYS_NICE));
3901}
3902
1da177e4
LT
3903#ifdef __ARCH_WANT_SYS_NICE
3904
3905/*
3906 * sys_nice - change the priority of the current process.
3907 * @increment: priority increment
3908 *
3909 * sys_setpriority is a more generic, but much slower function that
3910 * does similar things.
3911 */
3912asmlinkage long sys_nice(int increment)
3913{
48f24c4d 3914 long nice, retval;
1da177e4
LT
3915
3916 /*
3917 * Setpriority might change our priority at the same moment.
3918 * We don't have to worry. Conceptually one call occurs first
3919 * and we have a single winner.
3920 */
e43379f1
MM
3921 if (increment < -40)
3922 increment = -40;
1da177e4
LT
3923 if (increment > 40)
3924 increment = 40;
3925
3926 nice = PRIO_TO_NICE(current->static_prio) + increment;
3927 if (nice < -20)
3928 nice = -20;
3929 if (nice > 19)
3930 nice = 19;
3931
e43379f1
MM
3932 if (increment < 0 && !can_nice(current, nice))
3933 return -EPERM;
3934
1da177e4
LT
3935 retval = security_task_setnice(current, nice);
3936 if (retval)
3937 return retval;
3938
3939 set_user_nice(current, nice);
3940 return 0;
3941}
3942
3943#endif
3944
3945/**
3946 * task_prio - return the priority value of a given task.
3947 * @p: the task in question.
3948 *
3949 * This is the priority value as seen by users in /proc.
3950 * RT tasks are offset by -200. Normal tasks are centered
3951 * around 0, value goes from -16 to +15.
3952 */
36c8b586 3953int task_prio(const struct task_struct *p)
1da177e4
LT
3954{
3955 return p->prio - MAX_RT_PRIO;
3956}
3957
3958/**
3959 * task_nice - return the nice value of a given task.
3960 * @p: the task in question.
3961 */
36c8b586 3962int task_nice(const struct task_struct *p)
1da177e4
LT
3963{
3964 return TASK_NICE(p);
3965}
1da177e4 3966EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3967
3968/**
3969 * idle_cpu - is a given cpu idle currently?
3970 * @cpu: the processor in question.
3971 */
3972int idle_cpu(int cpu)
3973{
3974 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3975}
3976
1da177e4
LT
3977/**
3978 * idle_task - return the idle task for a given cpu.
3979 * @cpu: the processor in question.
3980 */
36c8b586 3981struct task_struct *idle_task(int cpu)
1da177e4
LT
3982{
3983 return cpu_rq(cpu)->idle;
3984}
3985
3986/**
3987 * find_process_by_pid - find a process with a matching PID value.
3988 * @pid: the pid in question.
3989 */
36c8b586 3990static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
3991{
3992 return pid ? find_task_by_pid(pid) : current;
3993}
3994
3995/* Actually do priority change: must hold rq lock. */
3996static void __setscheduler(struct task_struct *p, int policy, int prio)
3997{
3998 BUG_ON(p->array);
48f24c4d 3999
1da177e4
LT
4000 p->policy = policy;
4001 p->rt_priority = prio;
b29739f9
IM
4002 p->normal_prio = normal_prio(p);
4003 /* we are holding p->pi_lock already */
4004 p->prio = rt_mutex_getprio(p);
4005 /*
4006 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4007 */
4008 if (policy == SCHED_BATCH)
4009 p->sleep_avg = 0;
2dd73a4f 4010 set_load_weight(p);
1da177e4
LT
4011}
4012
4013/**
4014 * sched_setscheduler - change the scheduling policy and/or RT priority of
4015 * a thread.
4016 * @p: the task in question.
4017 * @policy: new policy.
4018 * @param: structure containing the new RT priority.
4019 */
95cdf3b7
IM
4020int sched_setscheduler(struct task_struct *p, int policy,
4021 struct sched_param *param)
1da177e4 4022{
48f24c4d 4023 int retval, oldprio, oldpolicy = -1;
70b97a7f 4024 struct prio_array *array;
1da177e4 4025 unsigned long flags;
70b97a7f 4026 struct rq *rq;
1da177e4 4027
66e5393a
SR
4028 /* may grab non-irq protected spin_locks */
4029 BUG_ON(in_interrupt());
1da177e4
LT
4030recheck:
4031 /* double check policy once rq lock held */
4032 if (policy < 0)
4033 policy = oldpolicy = p->policy;
4034 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
4035 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4036 return -EINVAL;
1da177e4
LT
4037 /*
4038 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
4039 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4040 * SCHED_BATCH is 0.
1da177e4
LT
4041 */
4042 if (param->sched_priority < 0 ||
95cdf3b7 4043 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4044 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4045 return -EINVAL;
b0a9499c
IM
4046 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
4047 != (param->sched_priority == 0))
1da177e4
LT
4048 return -EINVAL;
4049
37e4ab3f
OC
4050 /*
4051 * Allow unprivileged RT tasks to decrease priority:
4052 */
4053 if (!capable(CAP_SYS_NICE)) {
b0a9499c
IM
4054 /*
4055 * can't change policy, except between SCHED_NORMAL
4056 * and SCHED_BATCH:
4057 */
4058 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
4059 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
4060 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
37e4ab3f
OC
4061 return -EPERM;
4062 /* can't increase priority */
b0a9499c 4063 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
37e4ab3f
OC
4064 param->sched_priority > p->rt_priority &&
4065 param->sched_priority >
4066 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4067 return -EPERM;
4068 /* can't change other user's priorities */
4069 if ((current->euid != p->euid) &&
4070 (current->euid != p->uid))
4071 return -EPERM;
4072 }
1da177e4
LT
4073
4074 retval = security_task_setscheduler(p, policy, param);
4075 if (retval)
4076 return retval;
b29739f9
IM
4077 /*
4078 * make sure no PI-waiters arrive (or leave) while we are
4079 * changing the priority of the task:
4080 */
4081 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4082 /*
4083 * To be able to change p->policy safely, the apropriate
4084 * runqueue lock must be held.
4085 */
b29739f9 4086 rq = __task_rq_lock(p);
1da177e4
LT
4087 /* recheck policy now with rq lock held */
4088 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4089 policy = oldpolicy = -1;
b29739f9
IM
4090 __task_rq_unlock(rq);
4091 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4092 goto recheck;
4093 }
4094 array = p->array;
4095 if (array)
4096 deactivate_task(p, rq);
4097 oldprio = p->prio;
4098 __setscheduler(p, policy, param->sched_priority);
4099 if (array) {
4100 __activate_task(p, rq);
4101 /*
4102 * Reschedule if we are currently running on this runqueue and
4103 * our priority decreased, or if we are not currently running on
4104 * this runqueue and our priority is higher than the current's
4105 */
4106 if (task_running(rq, p)) {
4107 if (p->prio > oldprio)
4108 resched_task(rq->curr);
4109 } else if (TASK_PREEMPTS_CURR(p, rq))
4110 resched_task(rq->curr);
4111 }
b29739f9
IM
4112 __task_rq_unlock(rq);
4113 spin_unlock_irqrestore(&p->pi_lock, flags);
4114
95e02ca9
TG
4115 rt_mutex_adjust_pi(p);
4116
1da177e4
LT
4117 return 0;
4118}
4119EXPORT_SYMBOL_GPL(sched_setscheduler);
4120
95cdf3b7
IM
4121static int
4122do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4123{
1da177e4
LT
4124 struct sched_param lparam;
4125 struct task_struct *p;
36c8b586 4126 int retval;
1da177e4
LT
4127
4128 if (!param || pid < 0)
4129 return -EINVAL;
4130 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4131 return -EFAULT;
4132 read_lock_irq(&tasklist_lock);
4133 p = find_process_by_pid(pid);
4134 if (!p) {
4135 read_unlock_irq(&tasklist_lock);
4136 return -ESRCH;
4137 }
e74c69f4 4138 get_task_struct(p);
1da177e4 4139 read_unlock_irq(&tasklist_lock);
e74c69f4
TG
4140 retval = sched_setscheduler(p, policy, &lparam);
4141 put_task_struct(p);
36c8b586 4142
1da177e4
LT
4143 return retval;
4144}
4145
4146/**
4147 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4148 * @pid: the pid in question.
4149 * @policy: new policy.
4150 * @param: structure containing the new RT priority.
4151 */
4152asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4153 struct sched_param __user *param)
4154{
c21761f1
JB
4155 /* negative values for policy are not valid */
4156 if (policy < 0)
4157 return -EINVAL;
4158
1da177e4
LT
4159 return do_sched_setscheduler(pid, policy, param);
4160}
4161
4162/**
4163 * sys_sched_setparam - set/change the RT priority of a thread
4164 * @pid: the pid in question.
4165 * @param: structure containing the new RT priority.
4166 */
4167asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4168{
4169 return do_sched_setscheduler(pid, -1, param);
4170}
4171
4172/**
4173 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4174 * @pid: the pid in question.
4175 */
4176asmlinkage long sys_sched_getscheduler(pid_t pid)
4177{
36c8b586 4178 struct task_struct *p;
1da177e4 4179 int retval = -EINVAL;
1da177e4
LT
4180
4181 if (pid < 0)
4182 goto out_nounlock;
4183
4184 retval = -ESRCH;
4185 read_lock(&tasklist_lock);
4186 p = find_process_by_pid(pid);
4187 if (p) {
4188 retval = security_task_getscheduler(p);
4189 if (!retval)
4190 retval = p->policy;
4191 }
4192 read_unlock(&tasklist_lock);
4193
4194out_nounlock:
4195 return retval;
4196}
4197
4198/**
4199 * sys_sched_getscheduler - get the RT priority of a thread
4200 * @pid: the pid in question.
4201 * @param: structure containing the RT priority.
4202 */
4203asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4204{
4205 struct sched_param lp;
36c8b586 4206 struct task_struct *p;
1da177e4 4207 int retval = -EINVAL;
1da177e4
LT
4208
4209 if (!param || pid < 0)
4210 goto out_nounlock;
4211
4212 read_lock(&tasklist_lock);
4213 p = find_process_by_pid(pid);
4214 retval = -ESRCH;
4215 if (!p)
4216 goto out_unlock;
4217
4218 retval = security_task_getscheduler(p);
4219 if (retval)
4220 goto out_unlock;
4221
4222 lp.sched_priority = p->rt_priority;
4223 read_unlock(&tasklist_lock);
4224
4225 /*
4226 * This one might sleep, we cannot do it with a spinlock held ...
4227 */
4228 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4229
4230out_nounlock:
4231 return retval;
4232
4233out_unlock:
4234 read_unlock(&tasklist_lock);
4235 return retval;
4236}
4237
4238long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4239{
1da177e4 4240 cpumask_t cpus_allowed;
36c8b586
IM
4241 struct task_struct *p;
4242 int retval;
1da177e4
LT
4243
4244 lock_cpu_hotplug();
4245 read_lock(&tasklist_lock);
4246
4247 p = find_process_by_pid(pid);
4248 if (!p) {
4249 read_unlock(&tasklist_lock);
4250 unlock_cpu_hotplug();
4251 return -ESRCH;
4252 }
4253
4254 /*
4255 * It is not safe to call set_cpus_allowed with the
4256 * tasklist_lock held. We will bump the task_struct's
4257 * usage count and then drop tasklist_lock.
4258 */
4259 get_task_struct(p);
4260 read_unlock(&tasklist_lock);
4261
4262 retval = -EPERM;
4263 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4264 !capable(CAP_SYS_NICE))
4265 goto out_unlock;
4266
e7834f8f
DQ
4267 retval = security_task_setscheduler(p, 0, NULL);
4268 if (retval)
4269 goto out_unlock;
4270
1da177e4
LT
4271 cpus_allowed = cpuset_cpus_allowed(p);
4272 cpus_and(new_mask, new_mask, cpus_allowed);
4273 retval = set_cpus_allowed(p, new_mask);
4274
4275out_unlock:
4276 put_task_struct(p);
4277 unlock_cpu_hotplug();
4278 return retval;
4279}
4280
4281static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4282 cpumask_t *new_mask)
4283{
4284 if (len < sizeof(cpumask_t)) {
4285 memset(new_mask, 0, sizeof(cpumask_t));
4286 } else if (len > sizeof(cpumask_t)) {
4287 len = sizeof(cpumask_t);
4288 }
4289 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4290}
4291
4292/**
4293 * sys_sched_setaffinity - set the cpu affinity of a process
4294 * @pid: pid of the process
4295 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4296 * @user_mask_ptr: user-space pointer to the new cpu mask
4297 */
4298asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4299 unsigned long __user *user_mask_ptr)
4300{
4301 cpumask_t new_mask;
4302 int retval;
4303
4304 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4305 if (retval)
4306 return retval;
4307
4308 return sched_setaffinity(pid, new_mask);
4309}
4310
4311/*
4312 * Represents all cpu's present in the system
4313 * In systems capable of hotplug, this map could dynamically grow
4314 * as new cpu's are detected in the system via any platform specific
4315 * method, such as ACPI for e.g.
4316 */
4317
4cef0c61 4318cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4319EXPORT_SYMBOL(cpu_present_map);
4320
4321#ifndef CONFIG_SMP
4cef0c61
AK
4322cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4323cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
1da177e4
LT
4324#endif
4325
4326long sched_getaffinity(pid_t pid, cpumask_t *mask)
4327{
36c8b586 4328 struct task_struct *p;
1da177e4 4329 int retval;
1da177e4
LT
4330
4331 lock_cpu_hotplug();
4332 read_lock(&tasklist_lock);
4333
4334 retval = -ESRCH;
4335 p = find_process_by_pid(pid);
4336 if (!p)
4337 goto out_unlock;
4338
e7834f8f
DQ
4339 retval = security_task_getscheduler(p);
4340 if (retval)
4341 goto out_unlock;
4342
2f7016d9 4343 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4344
4345out_unlock:
4346 read_unlock(&tasklist_lock);
4347 unlock_cpu_hotplug();
4348 if (retval)
4349 return retval;
4350
4351 return 0;
4352}
4353
4354/**
4355 * sys_sched_getaffinity - get the cpu affinity of a process
4356 * @pid: pid of the process
4357 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4358 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4359 */
4360asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4361 unsigned long __user *user_mask_ptr)
4362{
4363 int ret;
4364 cpumask_t mask;
4365
4366 if (len < sizeof(cpumask_t))
4367 return -EINVAL;
4368
4369 ret = sched_getaffinity(pid, &mask);
4370 if (ret < 0)
4371 return ret;
4372
4373 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4374 return -EFAULT;
4375
4376 return sizeof(cpumask_t);
4377}
4378
4379/**
4380 * sys_sched_yield - yield the current processor to other threads.
4381 *
4382 * this function yields the current CPU by moving the calling thread
4383 * to the expired array. If there are no other threads running on this
4384 * CPU then this function will return.
4385 */
4386asmlinkage long sys_sched_yield(void)
4387{
70b97a7f
IM
4388 struct rq *rq = this_rq_lock();
4389 struct prio_array *array = current->array, *target = rq->expired;
1da177e4
LT
4390
4391 schedstat_inc(rq, yld_cnt);
4392 /*
4393 * We implement yielding by moving the task into the expired
4394 * queue.
4395 *
4396 * (special rule: RT tasks will just roundrobin in the active
4397 * array.)
4398 */
4399 if (rt_task(current))
4400 target = rq->active;
4401
5927ad78 4402 if (array->nr_active == 1) {
1da177e4
LT
4403 schedstat_inc(rq, yld_act_empty);
4404 if (!rq->expired->nr_active)
4405 schedstat_inc(rq, yld_both_empty);
4406 } else if (!rq->expired->nr_active)
4407 schedstat_inc(rq, yld_exp_empty);
4408
4409 if (array != target) {
4410 dequeue_task(current, array);
4411 enqueue_task(current, target);
4412 } else
4413 /*
4414 * requeue_task is cheaper so perform that if possible.
4415 */
4416 requeue_task(current, array);
4417
4418 /*
4419 * Since we are going to call schedule() anyway, there's
4420 * no need to preempt or enable interrupts:
4421 */
4422 __release(rq->lock);
8a25d5de 4423 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4424 _raw_spin_unlock(&rq->lock);
4425 preempt_enable_no_resched();
4426
4427 schedule();
4428
4429 return 0;
4430}
4431
e7b38404
AM
4432static inline int __resched_legal(void)
4433{
4434 if (unlikely(preempt_count()))
4435 return 0;
4436 if (unlikely(system_state != SYSTEM_RUNNING))
4437 return 0;
4438 return 1;
4439}
4440
4441static void __cond_resched(void)
1da177e4 4442{
8e0a43d8
IM
4443#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4444 __might_sleep(__FILE__, __LINE__);
4445#endif
5bbcfd90
IM
4446 /*
4447 * The BKS might be reacquired before we have dropped
4448 * PREEMPT_ACTIVE, which could trigger a second
4449 * cond_resched() call.
4450 */
1da177e4
LT
4451 do {
4452 add_preempt_count(PREEMPT_ACTIVE);
4453 schedule();
4454 sub_preempt_count(PREEMPT_ACTIVE);
4455 } while (need_resched());
4456}
4457
4458int __sched cond_resched(void)
4459{
e7b38404 4460 if (need_resched() && __resched_legal()) {
1da177e4
LT
4461 __cond_resched();
4462 return 1;
4463 }
4464 return 0;
4465}
1da177e4
LT
4466EXPORT_SYMBOL(cond_resched);
4467
4468/*
4469 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4470 * call schedule, and on return reacquire the lock.
4471 *
4472 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4473 * operations here to prevent schedule() from being called twice (once via
4474 * spin_unlock(), once by hand).
4475 */
95cdf3b7 4476int cond_resched_lock(spinlock_t *lock)
1da177e4 4477{
6df3cecb
JK
4478 int ret = 0;
4479
1da177e4
LT
4480 if (need_lockbreak(lock)) {
4481 spin_unlock(lock);
4482 cpu_relax();
6df3cecb 4483 ret = 1;
1da177e4
LT
4484 spin_lock(lock);
4485 }
e7b38404 4486 if (need_resched() && __resched_legal()) {
8a25d5de 4487 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4488 _raw_spin_unlock(lock);
4489 preempt_enable_no_resched();
4490 __cond_resched();
6df3cecb 4491 ret = 1;
1da177e4 4492 spin_lock(lock);
1da177e4 4493 }
6df3cecb 4494 return ret;
1da177e4 4495}
1da177e4
LT
4496EXPORT_SYMBOL(cond_resched_lock);
4497
4498int __sched cond_resched_softirq(void)
4499{
4500 BUG_ON(!in_softirq());
4501
e7b38404 4502 if (need_resched() && __resched_legal()) {
de30a2b3
IM
4503 raw_local_irq_disable();
4504 _local_bh_enable();
4505 raw_local_irq_enable();
1da177e4
LT
4506 __cond_resched();
4507 local_bh_disable();
4508 return 1;
4509 }
4510 return 0;
4511}
1da177e4
LT
4512EXPORT_SYMBOL(cond_resched_softirq);
4513
1da177e4
LT
4514/**
4515 * yield - yield the current processor to other threads.
4516 *
4517 * this is a shortcut for kernel-space yielding - it marks the
4518 * thread runnable and calls sys_sched_yield().
4519 */
4520void __sched yield(void)
4521{
4522 set_current_state(TASK_RUNNING);
4523 sys_sched_yield();
4524}
1da177e4
LT
4525EXPORT_SYMBOL(yield);
4526
4527/*
4528 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4529 * that process accounting knows that this is a task in IO wait state.
4530 *
4531 * But don't do that if it is a deliberate, throttling IO wait (this task
4532 * has set its backing_dev_info: the queue against which it should throttle)
4533 */
4534void __sched io_schedule(void)
4535{
70b97a7f 4536 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4537
0ff92245 4538 delayacct_blkio_start();
1da177e4
LT
4539 atomic_inc(&rq->nr_iowait);
4540 schedule();
4541 atomic_dec(&rq->nr_iowait);
0ff92245 4542 delayacct_blkio_end();
1da177e4 4543}
1da177e4
LT
4544EXPORT_SYMBOL(io_schedule);
4545
4546long __sched io_schedule_timeout(long timeout)
4547{
70b97a7f 4548 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4549 long ret;
4550
0ff92245 4551 delayacct_blkio_start();
1da177e4
LT
4552 atomic_inc(&rq->nr_iowait);
4553 ret = schedule_timeout(timeout);
4554 atomic_dec(&rq->nr_iowait);
0ff92245 4555 delayacct_blkio_end();
1da177e4
LT
4556 return ret;
4557}
4558
4559/**
4560 * sys_sched_get_priority_max - return maximum RT priority.
4561 * @policy: scheduling class.
4562 *
4563 * this syscall returns the maximum rt_priority that can be used
4564 * by a given scheduling class.
4565 */
4566asmlinkage long sys_sched_get_priority_max(int policy)
4567{
4568 int ret = -EINVAL;
4569
4570 switch (policy) {
4571 case SCHED_FIFO:
4572 case SCHED_RR:
4573 ret = MAX_USER_RT_PRIO-1;
4574 break;
4575 case SCHED_NORMAL:
b0a9499c 4576 case SCHED_BATCH:
1da177e4
LT
4577 ret = 0;
4578 break;
4579 }
4580 return ret;
4581}
4582
4583/**
4584 * sys_sched_get_priority_min - return minimum RT priority.
4585 * @policy: scheduling class.
4586 *
4587 * this syscall returns the minimum rt_priority that can be used
4588 * by a given scheduling class.
4589 */
4590asmlinkage long sys_sched_get_priority_min(int policy)
4591{
4592 int ret = -EINVAL;
4593
4594 switch (policy) {
4595 case SCHED_FIFO:
4596 case SCHED_RR:
4597 ret = 1;
4598 break;
4599 case SCHED_NORMAL:
b0a9499c 4600 case SCHED_BATCH:
1da177e4
LT
4601 ret = 0;
4602 }
4603 return ret;
4604}
4605
4606/**
4607 * sys_sched_rr_get_interval - return the default timeslice of a process.
4608 * @pid: pid of the process.
4609 * @interval: userspace pointer to the timeslice value.
4610 *
4611 * this syscall writes the default timeslice value of a given process
4612 * into the user-space timespec buffer. A value of '0' means infinity.
4613 */
4614asmlinkage
4615long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4616{
36c8b586 4617 struct task_struct *p;
1da177e4
LT
4618 int retval = -EINVAL;
4619 struct timespec t;
1da177e4
LT
4620
4621 if (pid < 0)
4622 goto out_nounlock;
4623
4624 retval = -ESRCH;
4625 read_lock(&tasklist_lock);
4626 p = find_process_by_pid(pid);
4627 if (!p)
4628 goto out_unlock;
4629
4630 retval = security_task_getscheduler(p);
4631 if (retval)
4632 goto out_unlock;
4633
b78709cf 4634 jiffies_to_timespec(p->policy == SCHED_FIFO ?
1da177e4
LT
4635 0 : task_timeslice(p), &t);
4636 read_unlock(&tasklist_lock);
4637 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4638out_nounlock:
4639 return retval;
4640out_unlock:
4641 read_unlock(&tasklist_lock);
4642 return retval;
4643}
4644
4645static inline struct task_struct *eldest_child(struct task_struct *p)
4646{
48f24c4d
IM
4647 if (list_empty(&p->children))
4648 return NULL;
1da177e4
LT
4649 return list_entry(p->children.next,struct task_struct,sibling);
4650}
4651
4652static inline struct task_struct *older_sibling(struct task_struct *p)
4653{
48f24c4d
IM
4654 if (p->sibling.prev==&p->parent->children)
4655 return NULL;
1da177e4
LT
4656 return list_entry(p->sibling.prev,struct task_struct,sibling);
4657}
4658
4659static inline struct task_struct *younger_sibling(struct task_struct *p)
4660{
48f24c4d
IM
4661 if (p->sibling.next==&p->parent->children)
4662 return NULL;
1da177e4
LT
4663 return list_entry(p->sibling.next,struct task_struct,sibling);
4664}
4665
2ed6e34f 4666static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4667
4668static void show_task(struct task_struct *p)
1da177e4 4669{
36c8b586 4670 struct task_struct *relative;
1da177e4 4671 unsigned long free = 0;
36c8b586 4672 unsigned state;
1da177e4 4673
1da177e4 4674 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4675 printk("%-13.13s %c", p->comm,
4676 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4
LT
4677#if (BITS_PER_LONG == 32)
4678 if (state == TASK_RUNNING)
4679 printk(" running ");
4680 else
4681 printk(" %08lX ", thread_saved_pc(p));
4682#else
4683 if (state == TASK_RUNNING)
4684 printk(" running task ");
4685 else
4686 printk(" %016lx ", thread_saved_pc(p));
4687#endif
4688#ifdef CONFIG_DEBUG_STACK_USAGE
4689 {
10ebffde 4690 unsigned long *n = end_of_stack(p);
1da177e4
LT
4691 while (!*n)
4692 n++;
10ebffde 4693 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4694 }
4695#endif
4696 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4697 if ((relative = eldest_child(p)))
4698 printk("%5d ", relative->pid);
4699 else
4700 printk(" ");
4701 if ((relative = younger_sibling(p)))
4702 printk("%7d", relative->pid);
4703 else
4704 printk(" ");
4705 if ((relative = older_sibling(p)))
4706 printk(" %5d", relative->pid);
4707 else
4708 printk(" ");
4709 if (!p->mm)
4710 printk(" (L-TLB)\n");
4711 else
4712 printk(" (NOTLB)\n");
4713
4714 if (state != TASK_RUNNING)
4715 show_stack(p, NULL);
4716}
4717
4718void show_state(void)
4719{
36c8b586 4720 struct task_struct *g, *p;
1da177e4
LT
4721
4722#if (BITS_PER_LONG == 32)
4723 printk("\n"
4724 " sibling\n");
4725 printk(" task PC pid father child younger older\n");
4726#else
4727 printk("\n"
4728 " sibling\n");
4729 printk(" task PC pid father child younger older\n");
4730#endif
4731 read_lock(&tasklist_lock);
4732 do_each_thread(g, p) {
4733 /*
4734 * reset the NMI-timeout, listing all files on a slow
4735 * console might take alot of time:
4736 */
4737 touch_nmi_watchdog();
4738 show_task(p);
4739 } while_each_thread(g, p);
4740
4741 read_unlock(&tasklist_lock);
9a11b49a 4742 debug_show_all_locks();
1da177e4
LT
4743}
4744
f340c0d1
IM
4745/**
4746 * init_idle - set up an idle thread for a given CPU
4747 * @idle: task in question
4748 * @cpu: cpu the idle task belongs to
4749 *
4750 * NOTE: this function does not set the idle thread's NEED_RESCHED
4751 * flag, to make booting more robust.
4752 */
36c8b586 4753void __devinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4754{
70b97a7f 4755 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4756 unsigned long flags;
4757
81c29a85 4758 idle->timestamp = sched_clock();
1da177e4
LT
4759 idle->sleep_avg = 0;
4760 idle->array = NULL;
b29739f9 4761 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4
LT
4762 idle->state = TASK_RUNNING;
4763 idle->cpus_allowed = cpumask_of_cpu(cpu);
4764 set_task_cpu(idle, cpu);
4765
4766 spin_lock_irqsave(&rq->lock, flags);
4767 rq->curr = rq->idle = idle;
4866cde0
NP
4768#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4769 idle->oncpu = 1;
4770#endif
1da177e4
LT
4771 spin_unlock_irqrestore(&rq->lock, flags);
4772
4773 /* Set the preempt count _outside_ the spinlocks! */
4774#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4775 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4776#else
a1261f54 4777 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4778#endif
4779}
4780
4781/*
4782 * In a system that switches off the HZ timer nohz_cpu_mask
4783 * indicates which cpus entered this state. This is used
4784 * in the rcu update to wait only for active cpus. For system
4785 * which do not switch off the HZ timer nohz_cpu_mask should
4786 * always be CPU_MASK_NONE.
4787 */
4788cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4789
4790#ifdef CONFIG_SMP
4791/*
4792 * This is how migration works:
4793 *
70b97a7f 4794 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4795 * runqueue and wake up that CPU's migration thread.
4796 * 2) we down() the locked semaphore => thread blocks.
4797 * 3) migration thread wakes up (implicitly it forces the migrated
4798 * thread off the CPU)
4799 * 4) it gets the migration request and checks whether the migrated
4800 * task is still in the wrong runqueue.
4801 * 5) if it's in the wrong runqueue then the migration thread removes
4802 * it and puts it into the right queue.
4803 * 6) migration thread up()s the semaphore.
4804 * 7) we wake up and the migration is done.
4805 */
4806
4807/*
4808 * Change a given task's CPU affinity. Migrate the thread to a
4809 * proper CPU and schedule it away if the CPU it's executing on
4810 * is removed from the allowed bitmask.
4811 *
4812 * NOTE: the caller must have a valid reference to the task, the
4813 * task must not exit() & deallocate itself prematurely. The
4814 * call is not atomic; no spinlocks may be held.
4815 */
36c8b586 4816int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4817{
70b97a7f 4818 struct migration_req req;
1da177e4 4819 unsigned long flags;
70b97a7f 4820 struct rq *rq;
48f24c4d 4821 int ret = 0;
1da177e4
LT
4822
4823 rq = task_rq_lock(p, &flags);
4824 if (!cpus_intersects(new_mask, cpu_online_map)) {
4825 ret = -EINVAL;
4826 goto out;
4827 }
4828
4829 p->cpus_allowed = new_mask;
4830 /* Can the task run on the task's current CPU? If so, we're done */
4831 if (cpu_isset(task_cpu(p), new_mask))
4832 goto out;
4833
4834 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4835 /* Need help from migration thread: drop lock and wait. */
4836 task_rq_unlock(rq, &flags);
4837 wake_up_process(rq->migration_thread);
4838 wait_for_completion(&req.done);
4839 tlb_migrate_finish(p->mm);
4840 return 0;
4841 }
4842out:
4843 task_rq_unlock(rq, &flags);
48f24c4d 4844
1da177e4
LT
4845 return ret;
4846}
1da177e4
LT
4847EXPORT_SYMBOL_GPL(set_cpus_allowed);
4848
4849/*
4850 * Move (not current) task off this cpu, onto dest cpu. We're doing
4851 * this because either it can't run here any more (set_cpus_allowed()
4852 * away from this CPU, or CPU going down), or because we're
4853 * attempting to rebalance this task on exec (sched_exec).
4854 *
4855 * So we race with normal scheduler movements, but that's OK, as long
4856 * as the task is no longer on this CPU.
efc30814
KK
4857 *
4858 * Returns non-zero if task was successfully migrated.
1da177e4 4859 */
efc30814 4860static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4861{
70b97a7f 4862 struct rq *rq_dest, *rq_src;
efc30814 4863 int ret = 0;
1da177e4
LT
4864
4865 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4866 return ret;
1da177e4
LT
4867
4868 rq_src = cpu_rq(src_cpu);
4869 rq_dest = cpu_rq(dest_cpu);
4870
4871 double_rq_lock(rq_src, rq_dest);
4872 /* Already moved. */
4873 if (task_cpu(p) != src_cpu)
4874 goto out;
4875 /* Affinity changed (again). */
4876 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4877 goto out;
4878
4879 set_task_cpu(p, dest_cpu);
4880 if (p->array) {
4881 /*
4882 * Sync timestamp with rq_dest's before activating.
4883 * The same thing could be achieved by doing this step
4884 * afterwards, and pretending it was a local activate.
4885 * This way is cleaner and logically correct.
4886 */
4887 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4888 + rq_dest->timestamp_last_tick;
4889 deactivate_task(p, rq_src);
0a565f79 4890 __activate_task(p, rq_dest);
1da177e4
LT
4891 if (TASK_PREEMPTS_CURR(p, rq_dest))
4892 resched_task(rq_dest->curr);
4893 }
efc30814 4894 ret = 1;
1da177e4
LT
4895out:
4896 double_rq_unlock(rq_src, rq_dest);
efc30814 4897 return ret;
1da177e4
LT
4898}
4899
4900/*
4901 * migration_thread - this is a highprio system thread that performs
4902 * thread migration by bumping thread off CPU then 'pushing' onto
4903 * another runqueue.
4904 */
95cdf3b7 4905static int migration_thread(void *data)
1da177e4 4906{
1da177e4 4907 int cpu = (long)data;
70b97a7f 4908 struct rq *rq;
1da177e4
LT
4909
4910 rq = cpu_rq(cpu);
4911 BUG_ON(rq->migration_thread != current);
4912
4913 set_current_state(TASK_INTERRUPTIBLE);
4914 while (!kthread_should_stop()) {
70b97a7f 4915 struct migration_req *req;
1da177e4 4916 struct list_head *head;
1da177e4 4917
3e1d1d28 4918 try_to_freeze();
1da177e4
LT
4919
4920 spin_lock_irq(&rq->lock);
4921
4922 if (cpu_is_offline(cpu)) {
4923 spin_unlock_irq(&rq->lock);
4924 goto wait_to_die;
4925 }
4926
4927 if (rq->active_balance) {
4928 active_load_balance(rq, cpu);
4929 rq->active_balance = 0;
4930 }
4931
4932 head = &rq->migration_queue;
4933
4934 if (list_empty(head)) {
4935 spin_unlock_irq(&rq->lock);
4936 schedule();
4937 set_current_state(TASK_INTERRUPTIBLE);
4938 continue;
4939 }
70b97a7f 4940 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
4941 list_del_init(head->next);
4942
674311d5
NP
4943 spin_unlock(&rq->lock);
4944 __migrate_task(req->task, cpu, req->dest_cpu);
4945 local_irq_enable();
1da177e4
LT
4946
4947 complete(&req->done);
4948 }
4949 __set_current_state(TASK_RUNNING);
4950 return 0;
4951
4952wait_to_die:
4953 /* Wait for kthread_stop */
4954 set_current_state(TASK_INTERRUPTIBLE);
4955 while (!kthread_should_stop()) {
4956 schedule();
4957 set_current_state(TASK_INTERRUPTIBLE);
4958 }
4959 __set_current_state(TASK_RUNNING);
4960 return 0;
4961}
4962
4963#ifdef CONFIG_HOTPLUG_CPU
4964/* Figure out where task on dead CPU should go, use force if neccessary. */
48f24c4d 4965static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 4966{
efc30814 4967 unsigned long flags;
1da177e4 4968 cpumask_t mask;
70b97a7f
IM
4969 struct rq *rq;
4970 int dest_cpu;
1da177e4 4971
efc30814 4972restart:
1da177e4
LT
4973 /* On same node? */
4974 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 4975 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
4976 dest_cpu = any_online_cpu(mask);
4977
4978 /* On any allowed CPU? */
4979 if (dest_cpu == NR_CPUS)
48f24c4d 4980 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
4981
4982 /* No more Mr. Nice Guy. */
4983 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
4984 rq = task_rq_lock(p, &flags);
4985 cpus_setall(p->cpus_allowed);
4986 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 4987 task_rq_unlock(rq, &flags);
1da177e4
LT
4988
4989 /*
4990 * Don't tell them about moving exiting tasks or
4991 * kernel threads (both mm NULL), since they never
4992 * leave kernel.
4993 */
48f24c4d 4994 if (p->mm && printk_ratelimit())
1da177e4
LT
4995 printk(KERN_INFO "process %d (%s) no "
4996 "longer affine to cpu%d\n",
48f24c4d 4997 p->pid, p->comm, dead_cpu);
1da177e4 4998 }
48f24c4d 4999 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5000 goto restart;
1da177e4
LT
5001}
5002
5003/*
5004 * While a dead CPU has no uninterruptible tasks queued at this point,
5005 * it might still have a nonzero ->nr_uninterruptible counter, because
5006 * for performance reasons the counter is not stricly tracking tasks to
5007 * their home CPUs. So we just add the counter to another CPU's counter,
5008 * to keep the global sum constant after CPU-down:
5009 */
70b97a7f 5010static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5011{
70b97a7f 5012 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5013 unsigned long flags;
5014
5015 local_irq_save(flags);
5016 double_rq_lock(rq_src, rq_dest);
5017 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5018 rq_src->nr_uninterruptible = 0;
5019 double_rq_unlock(rq_src, rq_dest);
5020 local_irq_restore(flags);
5021}
5022
5023/* Run through task list and migrate tasks from the dead cpu. */
5024static void migrate_live_tasks(int src_cpu)
5025{
48f24c4d 5026 struct task_struct *p, *t;
1da177e4
LT
5027
5028 write_lock_irq(&tasklist_lock);
5029
48f24c4d
IM
5030 do_each_thread(t, p) {
5031 if (p == current)
1da177e4
LT
5032 continue;
5033
48f24c4d
IM
5034 if (task_cpu(p) == src_cpu)
5035 move_task_off_dead_cpu(src_cpu, p);
5036 } while_each_thread(t, p);
1da177e4
LT
5037
5038 write_unlock_irq(&tasklist_lock);
5039}
5040
5041/* Schedules idle task to be the next runnable task on current CPU.
5042 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5043 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5044 */
5045void sched_idle_next(void)
5046{
48f24c4d 5047 int this_cpu = smp_processor_id();
70b97a7f 5048 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5049 struct task_struct *p = rq->idle;
5050 unsigned long flags;
5051
5052 /* cpu has to be offline */
48f24c4d 5053 BUG_ON(cpu_online(this_cpu));
1da177e4 5054
48f24c4d
IM
5055 /*
5056 * Strictly not necessary since rest of the CPUs are stopped by now
5057 * and interrupts disabled on the current cpu.
1da177e4
LT
5058 */
5059 spin_lock_irqsave(&rq->lock, flags);
5060
5061 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5062
5063 /* Add idle task to the _front_ of its priority queue: */
1da177e4
LT
5064 __activate_idle_task(p, rq);
5065
5066 spin_unlock_irqrestore(&rq->lock, flags);
5067}
5068
48f24c4d
IM
5069/*
5070 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5071 * offline.
5072 */
5073void idle_task_exit(void)
5074{
5075 struct mm_struct *mm = current->active_mm;
5076
5077 BUG_ON(cpu_online(smp_processor_id()));
5078
5079 if (mm != &init_mm)
5080 switch_mm(mm, &init_mm, current);
5081 mmdrop(mm);
5082}
5083
36c8b586 5084static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5085{
70b97a7f 5086 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5087
5088 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5089 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5090
5091 /* Cannot have done final schedule yet: would have vanished. */
48f24c4d 5092 BUG_ON(p->flags & PF_DEAD);
1da177e4 5093
48f24c4d 5094 get_task_struct(p);
1da177e4
LT
5095
5096 /*
5097 * Drop lock around migration; if someone else moves it,
5098 * that's OK. No task can be added to this CPU, so iteration is
5099 * fine.
5100 */
5101 spin_unlock_irq(&rq->lock);
48f24c4d 5102 move_task_off_dead_cpu(dead_cpu, p);
1da177e4
LT
5103 spin_lock_irq(&rq->lock);
5104
48f24c4d 5105 put_task_struct(p);
1da177e4
LT
5106}
5107
5108/* release_task() removes task from tasklist, so we won't find dead tasks. */
5109static void migrate_dead_tasks(unsigned int dead_cpu)
5110{
70b97a7f 5111 struct rq *rq = cpu_rq(dead_cpu);
48f24c4d 5112 unsigned int arr, i;
1da177e4
LT
5113
5114 for (arr = 0; arr < 2; arr++) {
5115 for (i = 0; i < MAX_PRIO; i++) {
5116 struct list_head *list = &rq->arrays[arr].queue[i];
48f24c4d 5117
1da177e4 5118 while (!list_empty(list))
36c8b586
IM
5119 migrate_dead(dead_cpu, list_entry(list->next,
5120 struct task_struct, run_list));
1da177e4
LT
5121 }
5122 }
5123}
5124#endif /* CONFIG_HOTPLUG_CPU */
5125
5126/*
5127 * migration_call - callback that gets triggered when a CPU is added.
5128 * Here we can start up the necessary migration thread for the new CPU.
5129 */
48f24c4d
IM
5130static int __cpuinit
5131migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5132{
1da177e4 5133 struct task_struct *p;
48f24c4d 5134 int cpu = (long)hcpu;
1da177e4 5135 unsigned long flags;
70b97a7f 5136 struct rq *rq;
1da177e4
LT
5137
5138 switch (action) {
5139 case CPU_UP_PREPARE:
5140 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5141 if (IS_ERR(p))
5142 return NOTIFY_BAD;
5143 p->flags |= PF_NOFREEZE;
5144 kthread_bind(p, cpu);
5145 /* Must be high prio: stop_machine expects to yield to it. */
5146 rq = task_rq_lock(p, &flags);
5147 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5148 task_rq_unlock(rq, &flags);
5149 cpu_rq(cpu)->migration_thread = p;
5150 break;
48f24c4d 5151
1da177e4
LT
5152 case CPU_ONLINE:
5153 /* Strictly unneccessary, as first user will wake it. */
5154 wake_up_process(cpu_rq(cpu)->migration_thread);
5155 break;
48f24c4d 5156
1da177e4
LT
5157#ifdef CONFIG_HOTPLUG_CPU
5158 case CPU_UP_CANCELED:
fc75cdfa
HC
5159 if (!cpu_rq(cpu)->migration_thread)
5160 break;
1da177e4 5161 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5162 kthread_bind(cpu_rq(cpu)->migration_thread,
5163 any_online_cpu(cpu_online_map));
1da177e4
LT
5164 kthread_stop(cpu_rq(cpu)->migration_thread);
5165 cpu_rq(cpu)->migration_thread = NULL;
5166 break;
48f24c4d 5167
1da177e4
LT
5168 case CPU_DEAD:
5169 migrate_live_tasks(cpu);
5170 rq = cpu_rq(cpu);
5171 kthread_stop(rq->migration_thread);
5172 rq->migration_thread = NULL;
5173 /* Idle task back to normal (off runqueue, low prio) */
5174 rq = task_rq_lock(rq->idle, &flags);
5175 deactivate_task(rq->idle, rq);
5176 rq->idle->static_prio = MAX_PRIO;
5177 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5178 migrate_dead_tasks(cpu);
5179 task_rq_unlock(rq, &flags);
5180 migrate_nr_uninterruptible(rq);
5181 BUG_ON(rq->nr_running != 0);
5182
5183 /* No need to migrate the tasks: it was best-effort if
5184 * they didn't do lock_cpu_hotplug(). Just wake up
5185 * the requestors. */
5186 spin_lock_irq(&rq->lock);
5187 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5188 struct migration_req *req;
5189
1da177e4 5190 req = list_entry(rq->migration_queue.next,
70b97a7f 5191 struct migration_req, list);
1da177e4
LT
5192 list_del_init(&req->list);
5193 complete(&req->done);
5194 }
5195 spin_unlock_irq(&rq->lock);
5196 break;
5197#endif
5198 }
5199 return NOTIFY_OK;
5200}
5201
5202/* Register at highest priority so that task migration (migrate_all_tasks)
5203 * happens before everything else.
5204 */
26c2143b 5205static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5206 .notifier_call = migration_call,
5207 .priority = 10
5208};
5209
5210int __init migration_init(void)
5211{
5212 void *cpu = (void *)(long)smp_processor_id();
48f24c4d
IM
5213
5214 /* Start one for the boot CPU: */
1da177e4
LT
5215 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5216 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5217 register_cpu_notifier(&migration_notifier);
48f24c4d 5218
1da177e4
LT
5219 return 0;
5220}
5221#endif
5222
5223#ifdef CONFIG_SMP
1a20ff27 5224#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5225#ifdef SCHED_DOMAIN_DEBUG
5226static void sched_domain_debug(struct sched_domain *sd, int cpu)
5227{
5228 int level = 0;
5229
41c7ce9a
NP
5230 if (!sd) {
5231 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5232 return;
5233 }
5234
1da177e4
LT
5235 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5236
5237 do {
5238 int i;
5239 char str[NR_CPUS];
5240 struct sched_group *group = sd->groups;
5241 cpumask_t groupmask;
5242
5243 cpumask_scnprintf(str, NR_CPUS, sd->span);
5244 cpus_clear(groupmask);
5245
5246 printk(KERN_DEBUG);
5247 for (i = 0; i < level + 1; i++)
5248 printk(" ");
5249 printk("domain %d: ", level);
5250
5251 if (!(sd->flags & SD_LOAD_BALANCE)) {
5252 printk("does not load-balance\n");
5253 if (sd->parent)
5254 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5255 break;
5256 }
5257
5258 printk("span %s\n", str);
5259
5260 if (!cpu_isset(cpu, sd->span))
5261 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5262 if (!cpu_isset(cpu, group->cpumask))
5263 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5264
5265 printk(KERN_DEBUG);
5266 for (i = 0; i < level + 2; i++)
5267 printk(" ");
5268 printk("groups:");
5269 do {
5270 if (!group) {
5271 printk("\n");
5272 printk(KERN_ERR "ERROR: group is NULL\n");
5273 break;
5274 }
5275
5276 if (!group->cpu_power) {
5277 printk("\n");
5278 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5279 }
5280
5281 if (!cpus_weight(group->cpumask)) {
5282 printk("\n");
5283 printk(KERN_ERR "ERROR: empty group\n");
5284 }
5285
5286 if (cpus_intersects(groupmask, group->cpumask)) {
5287 printk("\n");
5288 printk(KERN_ERR "ERROR: repeated CPUs\n");
5289 }
5290
5291 cpus_or(groupmask, groupmask, group->cpumask);
5292
5293 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5294 printk(" %s", str);
5295
5296 group = group->next;
5297 } while (group != sd->groups);
5298 printk("\n");
5299
5300 if (!cpus_equal(sd->span, groupmask))
5301 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5302
5303 level++;
5304 sd = sd->parent;
5305
5306 if (sd) {
5307 if (!cpus_subset(groupmask, sd->span))
5308 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5309 }
5310
5311 } while (sd);
5312}
5313#else
48f24c4d 5314# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5315#endif
5316
1a20ff27 5317static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5318{
5319 if (cpus_weight(sd->span) == 1)
5320 return 1;
5321
5322 /* Following flags need at least 2 groups */
5323 if (sd->flags & (SD_LOAD_BALANCE |
5324 SD_BALANCE_NEWIDLE |
5325 SD_BALANCE_FORK |
5326 SD_BALANCE_EXEC)) {
5327 if (sd->groups != sd->groups->next)
5328 return 0;
5329 }
5330
5331 /* Following flags don't use groups */
5332 if (sd->flags & (SD_WAKE_IDLE |
5333 SD_WAKE_AFFINE |
5334 SD_WAKE_BALANCE))
5335 return 0;
5336
5337 return 1;
5338}
5339
48f24c4d
IM
5340static int
5341sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5342{
5343 unsigned long cflags = sd->flags, pflags = parent->flags;
5344
5345 if (sd_degenerate(parent))
5346 return 1;
5347
5348 if (!cpus_equal(sd->span, parent->span))
5349 return 0;
5350
5351 /* Does parent contain flags not in child? */
5352 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5353 if (cflags & SD_WAKE_AFFINE)
5354 pflags &= ~SD_WAKE_BALANCE;
5355 /* Flags needing groups don't count if only 1 group in parent */
5356 if (parent->groups == parent->groups->next) {
5357 pflags &= ~(SD_LOAD_BALANCE |
5358 SD_BALANCE_NEWIDLE |
5359 SD_BALANCE_FORK |
5360 SD_BALANCE_EXEC);
5361 }
5362 if (~cflags & pflags)
5363 return 0;
5364
5365 return 1;
5366}
5367
1da177e4
LT
5368/*
5369 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5370 * hold the hotplug lock.
5371 */
9c1cfda2 5372static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5373{
70b97a7f 5374 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5375 struct sched_domain *tmp;
5376
5377 /* Remove the sched domains which do not contribute to scheduling. */
5378 for (tmp = sd; tmp; tmp = tmp->parent) {
5379 struct sched_domain *parent = tmp->parent;
5380 if (!parent)
5381 break;
5382 if (sd_parent_degenerate(tmp, parent))
5383 tmp->parent = parent->parent;
5384 }
5385
5386 if (sd && sd_degenerate(sd))
5387 sd = sd->parent;
1da177e4
LT
5388
5389 sched_domain_debug(sd, cpu);
5390
674311d5 5391 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5392}
5393
5394/* cpus with isolated domains */
9c1cfda2 5395static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5396
5397/* Setup the mask of cpus configured for isolated domains */
5398static int __init isolated_cpu_setup(char *str)
5399{
5400 int ints[NR_CPUS], i;
5401
5402 str = get_options(str, ARRAY_SIZE(ints), ints);
5403 cpus_clear(cpu_isolated_map);
5404 for (i = 1; i <= ints[0]; i++)
5405 if (ints[i] < NR_CPUS)
5406 cpu_set(ints[i], cpu_isolated_map);
5407 return 1;
5408}
5409
5410__setup ("isolcpus=", isolated_cpu_setup);
5411
5412/*
5413 * init_sched_build_groups takes an array of groups, the cpumask we wish
5414 * to span, and a pointer to a function which identifies what group a CPU
5415 * belongs to. The return value of group_fn must be a valid index into the
5416 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5417 * keep track of groups covered with a cpumask_t).
5418 *
5419 * init_sched_build_groups will build a circular linked list of the groups
5420 * covered by the given span, and will set each group's ->cpumask correctly,
5421 * and ->cpu_power to 0.
5422 */
9c1cfda2
JH
5423static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5424 int (*group_fn)(int cpu))
1da177e4
LT
5425{
5426 struct sched_group *first = NULL, *last = NULL;
5427 cpumask_t covered = CPU_MASK_NONE;
5428 int i;
5429
5430 for_each_cpu_mask(i, span) {
5431 int group = group_fn(i);
5432 struct sched_group *sg = &groups[group];
5433 int j;
5434
5435 if (cpu_isset(i, covered))
5436 continue;
5437
5438 sg->cpumask = CPU_MASK_NONE;
5439 sg->cpu_power = 0;
5440
5441 for_each_cpu_mask(j, span) {
5442 if (group_fn(j) != group)
5443 continue;
5444
5445 cpu_set(j, covered);
5446 cpu_set(j, sg->cpumask);
5447 }
5448 if (!first)
5449 first = sg;
5450 if (last)
5451 last->next = sg;
5452 last = sg;
5453 }
5454 last->next = first;
5455}
5456
9c1cfda2 5457#define SD_NODES_PER_DOMAIN 16
1da177e4 5458
198e2f18 5459/*
5460 * Self-tuning task migration cost measurement between source and target CPUs.
5461 *
5462 * This is done by measuring the cost of manipulating buffers of varying
5463 * sizes. For a given buffer-size here are the steps that are taken:
5464 *
5465 * 1) the source CPU reads+dirties a shared buffer
5466 * 2) the target CPU reads+dirties the same shared buffer
5467 *
5468 * We measure how long they take, in the following 4 scenarios:
5469 *
5470 * - source: CPU1, target: CPU2 | cost1
5471 * - source: CPU2, target: CPU1 | cost2
5472 * - source: CPU1, target: CPU1 | cost3
5473 * - source: CPU2, target: CPU2 | cost4
5474 *
5475 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5476 * the cost of migration.
5477 *
5478 * We then start off from a small buffer-size and iterate up to larger
5479 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5480 * doing a maximum search for the cost. (The maximum cost for a migration
5481 * normally occurs when the working set size is around the effective cache
5482 * size.)
5483 */
5484#define SEARCH_SCOPE 2
5485#define MIN_CACHE_SIZE (64*1024U)
5486#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5487#define ITERATIONS 1
198e2f18 5488#define SIZE_THRESH 130
5489#define COST_THRESH 130
5490
5491/*
5492 * The migration cost is a function of 'domain distance'. Domain
5493 * distance is the number of steps a CPU has to iterate down its
5494 * domain tree to share a domain with the other CPU. The farther
5495 * two CPUs are from each other, the larger the distance gets.
5496 *
5497 * Note that we use the distance only to cache measurement results,
5498 * the distance value is not used numerically otherwise. When two
5499 * CPUs have the same distance it is assumed that the migration
5500 * cost is the same. (this is a simplification but quite practical)
5501 */
5502#define MAX_DOMAIN_DISTANCE 32
5503
5504static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5505 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5506/*
5507 * Architectures may override the migration cost and thus avoid
5508 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5509 * virtualized hardware:
5510 */
5511#ifdef CONFIG_DEFAULT_MIGRATION_COST
5512 CONFIG_DEFAULT_MIGRATION_COST
5513#else
5514 -1LL
5515#endif
5516};
198e2f18 5517
5518/*
5519 * Allow override of migration cost - in units of microseconds.
5520 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5521 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5522 */
5523static int __init migration_cost_setup(char *str)
5524{
5525 int ints[MAX_DOMAIN_DISTANCE+1], i;
5526
5527 str = get_options(str, ARRAY_SIZE(ints), ints);
5528
5529 printk("#ints: %d\n", ints[0]);
5530 for (i = 1; i <= ints[0]; i++) {
5531 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5532 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5533 }
5534 return 1;
5535}
5536
5537__setup ("migration_cost=", migration_cost_setup);
5538
5539/*
5540 * Global multiplier (divisor) for migration-cutoff values,
5541 * in percentiles. E.g. use a value of 150 to get 1.5 times
5542 * longer cache-hot cutoff times.
5543 *
5544 * (We scale it from 100 to 128 to long long handling easier.)
5545 */
5546
5547#define MIGRATION_FACTOR_SCALE 128
5548
5549static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5550
5551static int __init setup_migration_factor(char *str)
5552{
5553 get_option(&str, &migration_factor);
5554 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5555 return 1;
5556}
5557
5558__setup("migration_factor=", setup_migration_factor);
5559
5560/*
5561 * Estimated distance of two CPUs, measured via the number of domains
5562 * we have to pass for the two CPUs to be in the same span:
5563 */
5564static unsigned long domain_distance(int cpu1, int cpu2)
5565{
5566 unsigned long distance = 0;
5567 struct sched_domain *sd;
5568
5569 for_each_domain(cpu1, sd) {
5570 WARN_ON(!cpu_isset(cpu1, sd->span));
5571 if (cpu_isset(cpu2, sd->span))
5572 return distance;
5573 distance++;
5574 }
5575 if (distance >= MAX_DOMAIN_DISTANCE) {
5576 WARN_ON(1);
5577 distance = MAX_DOMAIN_DISTANCE-1;
5578 }
5579
5580 return distance;
5581}
5582
5583static unsigned int migration_debug;
5584
5585static int __init setup_migration_debug(char *str)
5586{
5587 get_option(&str, &migration_debug);
5588 return 1;
5589}
5590
5591__setup("migration_debug=", setup_migration_debug);
5592
5593/*
5594 * Maximum cache-size that the scheduler should try to measure.
5595 * Architectures with larger caches should tune this up during
5596 * bootup. Gets used in the domain-setup code (i.e. during SMP
5597 * bootup).
5598 */
5599unsigned int max_cache_size;
5600
5601static int __init setup_max_cache_size(char *str)
5602{
5603 get_option(&str, &max_cache_size);
5604 return 1;
5605}
5606
5607__setup("max_cache_size=", setup_max_cache_size);
5608
5609/*
5610 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5611 * is the operation that is timed, so we try to generate unpredictable
5612 * cachemisses that still end up filling the L2 cache:
5613 */
5614static void touch_cache(void *__cache, unsigned long __size)
5615{
5616 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5617 chunk2 = 2*size/3;
5618 unsigned long *cache = __cache;
5619 int i;
5620
5621 for (i = 0; i < size/6; i += 8) {
5622 switch (i % 6) {
5623 case 0: cache[i]++;
5624 case 1: cache[size-1-i]++;
5625 case 2: cache[chunk1-i]++;
5626 case 3: cache[chunk1+i]++;
5627 case 4: cache[chunk2-i]++;
5628 case 5: cache[chunk2+i]++;
5629 }
5630 }
5631}
5632
5633/*
5634 * Measure the cache-cost of one task migration. Returns in units of nsec.
5635 */
48f24c4d
IM
5636static unsigned long long
5637measure_one(void *cache, unsigned long size, int source, int target)
198e2f18 5638{
5639 cpumask_t mask, saved_mask;
5640 unsigned long long t0, t1, t2, t3, cost;
5641
5642 saved_mask = current->cpus_allowed;
5643
5644 /*
5645 * Flush source caches to RAM and invalidate them:
5646 */
5647 sched_cacheflush();
5648
5649 /*
5650 * Migrate to the source CPU:
5651 */
5652 mask = cpumask_of_cpu(source);
5653 set_cpus_allowed(current, mask);
5654 WARN_ON(smp_processor_id() != source);
5655
5656 /*
5657 * Dirty the working set:
5658 */
5659 t0 = sched_clock();
5660 touch_cache(cache, size);
5661 t1 = sched_clock();
5662
5663 /*
5664 * Migrate to the target CPU, dirty the L2 cache and access
5665 * the shared buffer. (which represents the working set
5666 * of a migrated task.)
5667 */
5668 mask = cpumask_of_cpu(target);
5669 set_cpus_allowed(current, mask);
5670 WARN_ON(smp_processor_id() != target);
5671
5672 t2 = sched_clock();
5673 touch_cache(cache, size);
5674 t3 = sched_clock();
5675
5676 cost = t1-t0 + t3-t2;
5677
5678 if (migration_debug >= 2)
5679 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5680 source, target, t1-t0, t1-t0, t3-t2, cost);
5681 /*
5682 * Flush target caches to RAM and invalidate them:
5683 */
5684 sched_cacheflush();
5685
5686 set_cpus_allowed(current, saved_mask);
5687
5688 return cost;
5689}
5690
5691/*
5692 * Measure a series of task migrations and return the average
5693 * result. Since this code runs early during bootup the system
5694 * is 'undisturbed' and the average latency makes sense.
5695 *
5696 * The algorithm in essence auto-detects the relevant cache-size,
5697 * so it will properly detect different cachesizes for different
5698 * cache-hierarchies, depending on how the CPUs are connected.
5699 *
5700 * Architectures can prime the upper limit of the search range via
5701 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5702 */
5703static unsigned long long
5704measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5705{
5706 unsigned long long cost1, cost2;
5707 int i;
5708
5709 /*
5710 * Measure the migration cost of 'size' bytes, over an
5711 * average of 10 runs:
5712 *
5713 * (We perturb the cache size by a small (0..4k)
5714 * value to compensate size/alignment related artifacts.
5715 * We also subtract the cost of the operation done on
5716 * the same CPU.)
5717 */
5718 cost1 = 0;
5719
5720 /*
5721 * dry run, to make sure we start off cache-cold on cpu1,
5722 * and to get any vmalloc pagefaults in advance:
5723 */
5724 measure_one(cache, size, cpu1, cpu2);
5725 for (i = 0; i < ITERATIONS; i++)
5726 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5727
5728 measure_one(cache, size, cpu2, cpu1);
5729 for (i = 0; i < ITERATIONS; i++)
5730 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5731
5732 /*
5733 * (We measure the non-migrating [cached] cost on both
5734 * cpu1 and cpu2, to handle CPUs with different speeds)
5735 */
5736 cost2 = 0;
5737
5738 measure_one(cache, size, cpu1, cpu1);
5739 for (i = 0; i < ITERATIONS; i++)
5740 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5741
5742 measure_one(cache, size, cpu2, cpu2);
5743 for (i = 0; i < ITERATIONS; i++)
5744 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5745
5746 /*
5747 * Get the per-iteration migration cost:
5748 */
5749 do_div(cost1, 2*ITERATIONS);
5750 do_div(cost2, 2*ITERATIONS);
5751
5752 return cost1 - cost2;
5753}
5754
5755static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5756{
5757 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5758 unsigned int max_size, size, size_found = 0;
5759 long long cost = 0, prev_cost;
5760 void *cache;
5761
5762 /*
5763 * Search from max_cache_size*5 down to 64K - the real relevant
5764 * cachesize has to lie somewhere inbetween.
5765 */
5766 if (max_cache_size) {
5767 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5768 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5769 } else {
5770 /*
5771 * Since we have no estimation about the relevant
5772 * search range
5773 */
5774 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5775 size = MIN_CACHE_SIZE;
5776 }
5777
5778 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5779 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5780 return 0;
5781 }
5782
5783 /*
5784 * Allocate the working set:
5785 */
5786 cache = vmalloc(max_size);
5787 if (!cache) {
5788 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
2ed6e34f 5789 return 1000000; /* return 1 msec on very small boxen */
198e2f18 5790 }
5791
5792 while (size <= max_size) {
5793 prev_cost = cost;
5794 cost = measure_cost(cpu1, cpu2, cache, size);
5795
5796 /*
5797 * Update the max:
5798 */
5799 if (cost > 0) {
5800 if (max_cost < cost) {
5801 max_cost = cost;
5802 size_found = size;
5803 }
5804 }
5805 /*
5806 * Calculate average fluctuation, we use this to prevent
5807 * noise from triggering an early break out of the loop:
5808 */
5809 fluct = abs(cost - prev_cost);
5810 avg_fluct = (avg_fluct + fluct)/2;
5811
5812 if (migration_debug)
5813 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5814 cpu1, cpu2, size,
5815 (long)cost / 1000000,
5816 ((long)cost / 100000) % 10,
5817 (long)max_cost / 1000000,
5818 ((long)max_cost / 100000) % 10,
5819 domain_distance(cpu1, cpu2),
5820 cost, avg_fluct);
5821
5822 /*
5823 * If we iterated at least 20% past the previous maximum,
5824 * and the cost has dropped by more than 20% already,
5825 * (taking fluctuations into account) then we assume to
5826 * have found the maximum and break out of the loop early:
5827 */
5828 if (size_found && (size*100 > size_found*SIZE_THRESH))
5829 if (cost+avg_fluct <= 0 ||
5830 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5831
5832 if (migration_debug)
5833 printk("-> found max.\n");
5834 break;
5835 }
5836 /*
70b4d63e 5837 * Increase the cachesize in 10% steps:
198e2f18 5838 */
70b4d63e 5839 size = size * 10 / 9;
198e2f18 5840 }
5841
5842 if (migration_debug)
5843 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5844 cpu1, cpu2, size_found, max_cost);
5845
5846 vfree(cache);
5847
5848 /*
5849 * A task is considered 'cache cold' if at least 2 times
5850 * the worst-case cost of migration has passed.
5851 *
5852 * (this limit is only listened to if the load-balancing
5853 * situation is 'nice' - if there is a large imbalance we
5854 * ignore it for the sake of CPU utilization and
5855 * processing fairness.)
5856 */
5857 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5858}
5859
5860static void calibrate_migration_costs(const cpumask_t *cpu_map)
5861{
5862 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5863 unsigned long j0, j1, distance, max_distance = 0;
5864 struct sched_domain *sd;
5865
5866 j0 = jiffies;
5867
5868 /*
5869 * First pass - calculate the cacheflush times:
5870 */
5871 for_each_cpu_mask(cpu1, *cpu_map) {
5872 for_each_cpu_mask(cpu2, *cpu_map) {
5873 if (cpu1 == cpu2)
5874 continue;
5875 distance = domain_distance(cpu1, cpu2);
5876 max_distance = max(max_distance, distance);
5877 /*
5878 * No result cached yet?
5879 */
5880 if (migration_cost[distance] == -1LL)
5881 migration_cost[distance] =
5882 measure_migration_cost(cpu1, cpu2);
5883 }
5884 }
5885 /*
5886 * Second pass - update the sched domain hierarchy with
5887 * the new cache-hot-time estimations:
5888 */
5889 for_each_cpu_mask(cpu, *cpu_map) {
5890 distance = 0;
5891 for_each_domain(cpu, sd) {
5892 sd->cache_hot_time = migration_cost[distance];
5893 distance++;
5894 }
5895 }
5896 /*
5897 * Print the matrix:
5898 */
5899 if (migration_debug)
5900 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5901 max_cache_size,
5902#ifdef CONFIG_X86
5903 cpu_khz/1000
5904#else
5905 -1
5906#endif
5907 );
bd576c95
CE
5908 if (system_state == SYSTEM_BOOTING) {
5909 printk("migration_cost=");
5910 for (distance = 0; distance <= max_distance; distance++) {
5911 if (distance)
5912 printk(",");
5913 printk("%ld", (long)migration_cost[distance] / 1000);
5914 }
5915 printk("\n");
198e2f18 5916 }
198e2f18 5917 j1 = jiffies;
5918 if (migration_debug)
5919 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5920
5921 /*
5922 * Move back to the original CPU. NUMA-Q gets confused
5923 * if we migrate to another quad during bootup.
5924 */
5925 if (raw_smp_processor_id() != orig_cpu) {
5926 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5927 saved_mask = current->cpus_allowed;
5928
5929 set_cpus_allowed(current, mask);
5930 set_cpus_allowed(current, saved_mask);
5931 }
5932}
5933
9c1cfda2 5934#ifdef CONFIG_NUMA
198e2f18 5935
9c1cfda2
JH
5936/**
5937 * find_next_best_node - find the next node to include in a sched_domain
5938 * @node: node whose sched_domain we're building
5939 * @used_nodes: nodes already in the sched_domain
5940 *
5941 * Find the next node to include in a given scheduling domain. Simply
5942 * finds the closest node not already in the @used_nodes map.
5943 *
5944 * Should use nodemask_t.
5945 */
5946static int find_next_best_node(int node, unsigned long *used_nodes)
5947{
5948 int i, n, val, min_val, best_node = 0;
5949
5950 min_val = INT_MAX;
5951
5952 for (i = 0; i < MAX_NUMNODES; i++) {
5953 /* Start at @node */
5954 n = (node + i) % MAX_NUMNODES;
5955
5956 if (!nr_cpus_node(n))
5957 continue;
5958
5959 /* Skip already used nodes */
5960 if (test_bit(n, used_nodes))
5961 continue;
5962
5963 /* Simple min distance search */
5964 val = node_distance(node, n);
5965
5966 if (val < min_val) {
5967 min_val = val;
5968 best_node = n;
5969 }
5970 }
5971
5972 set_bit(best_node, used_nodes);
5973 return best_node;
5974}
5975
5976/**
5977 * sched_domain_node_span - get a cpumask for a node's sched_domain
5978 * @node: node whose cpumask we're constructing
5979 * @size: number of nodes to include in this span
5980 *
5981 * Given a node, construct a good cpumask for its sched_domain to span. It
5982 * should be one that prevents unnecessary balancing, but also spreads tasks
5983 * out optimally.
5984 */
5985static cpumask_t sched_domain_node_span(int node)
5986{
9c1cfda2 5987 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5988 cpumask_t span, nodemask;
5989 int i;
9c1cfda2
JH
5990
5991 cpus_clear(span);
5992 bitmap_zero(used_nodes, MAX_NUMNODES);
5993
5994 nodemask = node_to_cpumask(node);
5995 cpus_or(span, span, nodemask);
5996 set_bit(node, used_nodes);
5997
5998 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5999 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6000
9c1cfda2
JH
6001 nodemask = node_to_cpumask(next_node);
6002 cpus_or(span, span, nodemask);
6003 }
6004
6005 return span;
6006}
6007#endif
6008
5c45bf27 6009int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6010
9c1cfda2 6011/*
48f24c4d 6012 * SMT sched-domains:
9c1cfda2 6013 */
1da177e4
LT
6014#ifdef CONFIG_SCHED_SMT
6015static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6016static struct sched_group sched_group_cpus[NR_CPUS];
48f24c4d 6017
1a20ff27 6018static int cpu_to_cpu_group(int cpu)
1da177e4
LT
6019{
6020 return cpu;
6021}
6022#endif
6023
48f24c4d
IM
6024/*
6025 * multi-core sched-domains:
6026 */
1e9f28fa
SS
6027#ifdef CONFIG_SCHED_MC
6028static DEFINE_PER_CPU(struct sched_domain, core_domains);
36938169 6029static struct sched_group *sched_group_core_bycpu[NR_CPUS];
1e9f28fa
SS
6030#endif
6031
6032#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6033static int cpu_to_core_group(int cpu)
6034{
6035 return first_cpu(cpu_sibling_map[cpu]);
6036}
6037#elif defined(CONFIG_SCHED_MC)
6038static int cpu_to_core_group(int cpu)
6039{
6040 return cpu;
6041}
6042#endif
6043
1da177e4 6044static DEFINE_PER_CPU(struct sched_domain, phys_domains);
36938169 6045static struct sched_group *sched_group_phys_bycpu[NR_CPUS];
48f24c4d 6046
1a20ff27 6047static int cpu_to_phys_group(int cpu)
1da177e4 6048{
48f24c4d 6049#ifdef CONFIG_SCHED_MC
1e9f28fa
SS
6050 cpumask_t mask = cpu_coregroup_map(cpu);
6051 return first_cpu(mask);
6052#elif defined(CONFIG_SCHED_SMT)
1da177e4
LT
6053 return first_cpu(cpu_sibling_map[cpu]);
6054#else
6055 return cpu;
6056#endif
6057}
6058
6059#ifdef CONFIG_NUMA
1da177e4 6060/*
9c1cfda2
JH
6061 * The init_sched_build_groups can't handle what we want to do with node
6062 * groups, so roll our own. Now each node has its own list of groups which
6063 * gets dynamically allocated.
1da177e4 6064 */
9c1cfda2 6065static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6066static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6067
9c1cfda2 6068static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
d1b55138 6069static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
9c1cfda2
JH
6070
6071static int cpu_to_allnodes_group(int cpu)
6072{
6073 return cpu_to_node(cpu);
1da177e4 6074}
08069033
SS
6075static void init_numa_sched_groups_power(struct sched_group *group_head)
6076{
6077 struct sched_group *sg = group_head;
6078 int j;
6079
6080 if (!sg)
6081 return;
6082next_sg:
6083 for_each_cpu_mask(j, sg->cpumask) {
6084 struct sched_domain *sd;
6085
6086 sd = &per_cpu(phys_domains, j);
6087 if (j != first_cpu(sd->groups->cpumask)) {
6088 /*
6089 * Only add "power" once for each
6090 * physical package.
6091 */
6092 continue;
6093 }
6094
6095 sg->cpu_power += sd->groups->cpu_power;
6096 }
6097 sg = sg->next;
6098 if (sg != group_head)
6099 goto next_sg;
6100}
1da177e4
LT
6101#endif
6102
51888ca2
SV
6103/* Free memory allocated for various sched_group structures */
6104static void free_sched_groups(const cpumask_t *cpu_map)
6105{
36938169 6106 int cpu;
51888ca2
SV
6107#ifdef CONFIG_NUMA
6108 int i;
51888ca2
SV
6109
6110 for_each_cpu_mask(cpu, *cpu_map) {
6111 struct sched_group *sched_group_allnodes
6112 = sched_group_allnodes_bycpu[cpu];
6113 struct sched_group **sched_group_nodes
6114 = sched_group_nodes_bycpu[cpu];
6115
6116 if (sched_group_allnodes) {
6117 kfree(sched_group_allnodes);
6118 sched_group_allnodes_bycpu[cpu] = NULL;
6119 }
6120
6121 if (!sched_group_nodes)
6122 continue;
6123
6124 for (i = 0; i < MAX_NUMNODES; i++) {
6125 cpumask_t nodemask = node_to_cpumask(i);
6126 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6127
6128 cpus_and(nodemask, nodemask, *cpu_map);
6129 if (cpus_empty(nodemask))
6130 continue;
6131
6132 if (sg == NULL)
6133 continue;
6134 sg = sg->next;
6135next_sg:
6136 oldsg = sg;
6137 sg = sg->next;
6138 kfree(oldsg);
6139 if (oldsg != sched_group_nodes[i])
6140 goto next_sg;
6141 }
6142 kfree(sched_group_nodes);
6143 sched_group_nodes_bycpu[cpu] = NULL;
6144 }
6145#endif
36938169
SV
6146 for_each_cpu_mask(cpu, *cpu_map) {
6147 if (sched_group_phys_bycpu[cpu]) {
6148 kfree(sched_group_phys_bycpu[cpu]);
6149 sched_group_phys_bycpu[cpu] = NULL;
6150 }
6151#ifdef CONFIG_SCHED_MC
6152 if (sched_group_core_bycpu[cpu]) {
6153 kfree(sched_group_core_bycpu[cpu]);
6154 sched_group_core_bycpu[cpu] = NULL;
6155 }
6156#endif
6157 }
51888ca2
SV
6158}
6159
1da177e4 6160/*
1a20ff27
DG
6161 * Build sched domains for a given set of cpus and attach the sched domains
6162 * to the individual cpus
1da177e4 6163 */
51888ca2 6164static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6165{
6166 int i;
36938169
SV
6167 struct sched_group *sched_group_phys = NULL;
6168#ifdef CONFIG_SCHED_MC
6169 struct sched_group *sched_group_core = NULL;
6170#endif
d1b55138
JH
6171#ifdef CONFIG_NUMA
6172 struct sched_group **sched_group_nodes = NULL;
6173 struct sched_group *sched_group_allnodes = NULL;
6174
6175 /*
6176 * Allocate the per-node list of sched groups
6177 */
51888ca2 6178 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
d3a5aa98 6179 GFP_KERNEL);
d1b55138
JH
6180 if (!sched_group_nodes) {
6181 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6182 return -ENOMEM;
d1b55138
JH
6183 }
6184 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6185#endif
1da177e4
LT
6186
6187 /*
1a20ff27 6188 * Set up domains for cpus specified by the cpu_map.
1da177e4 6189 */
1a20ff27 6190 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6191 int group;
6192 struct sched_domain *sd = NULL, *p;
6193 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6194
1a20ff27 6195 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6196
6197#ifdef CONFIG_NUMA
d1b55138 6198 if (cpus_weight(*cpu_map)
9c1cfda2 6199 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
d1b55138
JH
6200 if (!sched_group_allnodes) {
6201 sched_group_allnodes
6202 = kmalloc(sizeof(struct sched_group)
6203 * MAX_NUMNODES,
6204 GFP_KERNEL);
6205 if (!sched_group_allnodes) {
6206 printk(KERN_WARNING
6207 "Can not alloc allnodes sched group\n");
51888ca2 6208 goto error;
d1b55138
JH
6209 }
6210 sched_group_allnodes_bycpu[i]
6211 = sched_group_allnodes;
6212 }
9c1cfda2
JH
6213 sd = &per_cpu(allnodes_domains, i);
6214 *sd = SD_ALLNODES_INIT;
6215 sd->span = *cpu_map;
6216 group = cpu_to_allnodes_group(i);
6217 sd->groups = &sched_group_allnodes[group];
6218 p = sd;
6219 } else
6220 p = NULL;
6221
1da177e4 6222 sd = &per_cpu(node_domains, i);
1da177e4 6223 *sd = SD_NODE_INIT;
9c1cfda2
JH
6224 sd->span = sched_domain_node_span(cpu_to_node(i));
6225 sd->parent = p;
6226 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6227#endif
6228
36938169
SV
6229 if (!sched_group_phys) {
6230 sched_group_phys
6231 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6232 GFP_KERNEL);
6233 if (!sched_group_phys) {
6234 printk (KERN_WARNING "Can not alloc phys sched"
6235 "group\n");
6236 goto error;
6237 }
6238 sched_group_phys_bycpu[i] = sched_group_phys;
6239 }
6240
1da177e4
LT
6241 p = sd;
6242 sd = &per_cpu(phys_domains, i);
6243 group = cpu_to_phys_group(i);
6244 *sd = SD_CPU_INIT;
6245 sd->span = nodemask;
6246 sd->parent = p;
6247 sd->groups = &sched_group_phys[group];
6248
1e9f28fa 6249#ifdef CONFIG_SCHED_MC
36938169
SV
6250 if (!sched_group_core) {
6251 sched_group_core
6252 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6253 GFP_KERNEL);
6254 if (!sched_group_core) {
6255 printk (KERN_WARNING "Can not alloc core sched"
6256 "group\n");
6257 goto error;
6258 }
6259 sched_group_core_bycpu[i] = sched_group_core;
6260 }
6261
1e9f28fa
SS
6262 p = sd;
6263 sd = &per_cpu(core_domains, i);
6264 group = cpu_to_core_group(i);
6265 *sd = SD_MC_INIT;
6266 sd->span = cpu_coregroup_map(i);
6267 cpus_and(sd->span, sd->span, *cpu_map);
6268 sd->parent = p;
6269 sd->groups = &sched_group_core[group];
6270#endif
6271
1da177e4
LT
6272#ifdef CONFIG_SCHED_SMT
6273 p = sd;
6274 sd = &per_cpu(cpu_domains, i);
6275 group = cpu_to_cpu_group(i);
6276 *sd = SD_SIBLING_INIT;
6277 sd->span = cpu_sibling_map[i];
1a20ff27 6278 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6279 sd->parent = p;
6280 sd->groups = &sched_group_cpus[group];
6281#endif
6282 }
6283
6284#ifdef CONFIG_SCHED_SMT
6285 /* Set up CPU (sibling) groups */
9c1cfda2 6286 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6287 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6288 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6289 if (i != first_cpu(this_sibling_map))
6290 continue;
6291
6292 init_sched_build_groups(sched_group_cpus, this_sibling_map,
6293 &cpu_to_cpu_group);
6294 }
6295#endif
6296
1e9f28fa
SS
6297#ifdef CONFIG_SCHED_MC
6298 /* Set up multi-core groups */
6299 for_each_cpu_mask(i, *cpu_map) {
6300 cpumask_t this_core_map = cpu_coregroup_map(i);
6301 cpus_and(this_core_map, this_core_map, *cpu_map);
6302 if (i != first_cpu(this_core_map))
6303 continue;
6304 init_sched_build_groups(sched_group_core, this_core_map,
6305 &cpu_to_core_group);
6306 }
6307#endif
6308
6309
1da177e4
LT
6310 /* Set up physical groups */
6311 for (i = 0; i < MAX_NUMNODES; i++) {
6312 cpumask_t nodemask = node_to_cpumask(i);
6313
1a20ff27 6314 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6315 if (cpus_empty(nodemask))
6316 continue;
6317
6318 init_sched_build_groups(sched_group_phys, nodemask,
6319 &cpu_to_phys_group);
6320 }
6321
6322#ifdef CONFIG_NUMA
6323 /* Set up node groups */
d1b55138
JH
6324 if (sched_group_allnodes)
6325 init_sched_build_groups(sched_group_allnodes, *cpu_map,
6326 &cpu_to_allnodes_group);
9c1cfda2
JH
6327
6328 for (i = 0; i < MAX_NUMNODES; i++) {
6329 /* Set up node groups */
6330 struct sched_group *sg, *prev;
6331 cpumask_t nodemask = node_to_cpumask(i);
6332 cpumask_t domainspan;
6333 cpumask_t covered = CPU_MASK_NONE;
6334 int j;
6335
6336 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6337 if (cpus_empty(nodemask)) {
6338 sched_group_nodes[i] = NULL;
9c1cfda2 6339 continue;
d1b55138 6340 }
9c1cfda2
JH
6341
6342 domainspan = sched_domain_node_span(i);
6343 cpus_and(domainspan, domainspan, *cpu_map);
6344
15f0b676 6345 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6346 if (!sg) {
6347 printk(KERN_WARNING "Can not alloc domain group for "
6348 "node %d\n", i);
6349 goto error;
6350 }
9c1cfda2
JH
6351 sched_group_nodes[i] = sg;
6352 for_each_cpu_mask(j, nodemask) {
6353 struct sched_domain *sd;
6354 sd = &per_cpu(node_domains, j);
6355 sd->groups = sg;
9c1cfda2
JH
6356 }
6357 sg->cpu_power = 0;
6358 sg->cpumask = nodemask;
51888ca2 6359 sg->next = sg;
9c1cfda2
JH
6360 cpus_or(covered, covered, nodemask);
6361 prev = sg;
6362
6363 for (j = 0; j < MAX_NUMNODES; j++) {
6364 cpumask_t tmp, notcovered;
6365 int n = (i + j) % MAX_NUMNODES;
6366
6367 cpus_complement(notcovered, covered);
6368 cpus_and(tmp, notcovered, *cpu_map);
6369 cpus_and(tmp, tmp, domainspan);
6370 if (cpus_empty(tmp))
6371 break;
6372
6373 nodemask = node_to_cpumask(n);
6374 cpus_and(tmp, tmp, nodemask);
6375 if (cpus_empty(tmp))
6376 continue;
6377
15f0b676
SV
6378 sg = kmalloc_node(sizeof(struct sched_group),
6379 GFP_KERNEL, i);
9c1cfda2
JH
6380 if (!sg) {
6381 printk(KERN_WARNING
6382 "Can not alloc domain group for node %d\n", j);
51888ca2 6383 goto error;
9c1cfda2
JH
6384 }
6385 sg->cpu_power = 0;
6386 sg->cpumask = tmp;
51888ca2 6387 sg->next = prev->next;
9c1cfda2
JH
6388 cpus_or(covered, covered, tmp);
6389 prev->next = sg;
6390 prev = sg;
6391 }
9c1cfda2 6392 }
1da177e4
LT
6393#endif
6394
6395 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6396#ifdef CONFIG_SCHED_SMT
1a20ff27 6397 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6398 struct sched_domain *sd;
1da177e4 6399 sd = &per_cpu(cpu_domains, i);
5c45bf27
SS
6400 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6401 }
1da177e4 6402#endif
1e9f28fa 6403#ifdef CONFIG_SCHED_MC
5c45bf27
SS
6404 for_each_cpu_mask(i, *cpu_map) {
6405 int power;
6406 struct sched_domain *sd;
1e9f28fa 6407 sd = &per_cpu(core_domains, i);
5c45bf27
SS
6408 if (sched_smt_power_savings)
6409 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6410 else
6411 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
1e9f28fa
SS
6412 * SCHED_LOAD_SCALE / 10;
6413 sd->groups->cpu_power = power;
5c45bf27
SS
6414 }
6415#endif
1e9f28fa 6416
5c45bf27
SS
6417 for_each_cpu_mask(i, *cpu_map) {
6418 struct sched_domain *sd;
6419#ifdef CONFIG_SCHED_MC
1e9f28fa 6420 sd = &per_cpu(phys_domains, i);
5c45bf27
SS
6421 if (i != first_cpu(sd->groups->cpumask))
6422 continue;
1da177e4 6423
5c45bf27
SS
6424 sd->groups->cpu_power = 0;
6425 if (sched_mc_power_savings || sched_smt_power_savings) {
6426 int j;
6427
6428 for_each_cpu_mask(j, sd->groups->cpumask) {
6429 struct sched_domain *sd1;
6430 sd1 = &per_cpu(core_domains, j);
6431 /*
6432 * for each core we will add once
6433 * to the group in physical domain
6434 */
6435 if (j != first_cpu(sd1->groups->cpumask))
6436 continue;
6437
6438 if (sched_smt_power_savings)
6439 sd->groups->cpu_power += sd1->groups->cpu_power;
6440 else
6441 sd->groups->cpu_power += SCHED_LOAD_SCALE;
6442 }
6443 } else
6444 /*
6445 * This has to be < 2 * SCHED_LOAD_SCALE
6446 * Lets keep it SCHED_LOAD_SCALE, so that
6447 * while calculating NUMA group's cpu_power
6448 * we can simply do
6449 * numa_group->cpu_power += phys_group->cpu_power;
6450 *
6451 * See "only add power once for each physical pkg"
6452 * comment below
6453 */
6454 sd->groups->cpu_power = SCHED_LOAD_SCALE;
1e9f28fa 6455#else
5c45bf27 6456 int power;
1da177e4 6457 sd = &per_cpu(phys_domains, i);
5c45bf27
SS
6458 if (sched_smt_power_savings)
6459 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6460 else
6461 power = SCHED_LOAD_SCALE;
1da177e4 6462 sd->groups->cpu_power = power;
1e9f28fa 6463#endif
1da177e4
LT
6464 }
6465
9c1cfda2 6466#ifdef CONFIG_NUMA
08069033
SS
6467 for (i = 0; i < MAX_NUMNODES; i++)
6468 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6469
08069033 6470 init_numa_sched_groups_power(sched_group_allnodes);
9c1cfda2
JH
6471#endif
6472
1da177e4 6473 /* Attach the domains */
1a20ff27 6474 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6475 struct sched_domain *sd;
6476#ifdef CONFIG_SCHED_SMT
6477 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6478#elif defined(CONFIG_SCHED_MC)
6479 sd = &per_cpu(core_domains, i);
1da177e4
LT
6480#else
6481 sd = &per_cpu(phys_domains, i);
6482#endif
6483 cpu_attach_domain(sd, i);
6484 }
198e2f18 6485 /*
6486 * Tune cache-hot values:
6487 */
6488 calibrate_migration_costs(cpu_map);
51888ca2
SV
6489
6490 return 0;
6491
51888ca2
SV
6492error:
6493 free_sched_groups(cpu_map);
6494 return -ENOMEM;
1da177e4 6495}
1a20ff27
DG
6496/*
6497 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6498 */
51888ca2 6499static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6500{
6501 cpumask_t cpu_default_map;
51888ca2 6502 int err;
1da177e4 6503
1a20ff27
DG
6504 /*
6505 * Setup mask for cpus without special case scheduling requirements.
6506 * For now this just excludes isolated cpus, but could be used to
6507 * exclude other special cases in the future.
6508 */
6509 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6510
51888ca2
SV
6511 err = build_sched_domains(&cpu_default_map);
6512
6513 return err;
1a20ff27
DG
6514}
6515
6516static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6517{
51888ca2 6518 free_sched_groups(cpu_map);
9c1cfda2 6519}
1da177e4 6520
1a20ff27
DG
6521/*
6522 * Detach sched domains from a group of cpus specified in cpu_map
6523 * These cpus will now be attached to the NULL domain
6524 */
858119e1 6525static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6526{
6527 int i;
6528
6529 for_each_cpu_mask(i, *cpu_map)
6530 cpu_attach_domain(NULL, i);
6531 synchronize_sched();
6532 arch_destroy_sched_domains(cpu_map);
6533}
6534
6535/*
6536 * Partition sched domains as specified by the cpumasks below.
6537 * This attaches all cpus from the cpumasks to the NULL domain,
6538 * waits for a RCU quiescent period, recalculates sched
6539 * domain information and then attaches them back to the
6540 * correct sched domains
6541 * Call with hotplug lock held
6542 */
51888ca2 6543int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6544{
6545 cpumask_t change_map;
51888ca2 6546 int err = 0;
1a20ff27
DG
6547
6548 cpus_and(*partition1, *partition1, cpu_online_map);
6549 cpus_and(*partition2, *partition2, cpu_online_map);
6550 cpus_or(change_map, *partition1, *partition2);
6551
6552 /* Detach sched domains from all of the affected cpus */
6553 detach_destroy_domains(&change_map);
6554 if (!cpus_empty(*partition1))
51888ca2
SV
6555 err = build_sched_domains(partition1);
6556 if (!err && !cpus_empty(*partition2))
6557 err = build_sched_domains(partition2);
6558
6559 return err;
1a20ff27
DG
6560}
6561
5c45bf27
SS
6562#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6563int arch_reinit_sched_domains(void)
6564{
6565 int err;
6566
6567 lock_cpu_hotplug();
6568 detach_destroy_domains(&cpu_online_map);
6569 err = arch_init_sched_domains(&cpu_online_map);
6570 unlock_cpu_hotplug();
6571
6572 return err;
6573}
6574
6575static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6576{
6577 int ret;
6578
6579 if (buf[0] != '0' && buf[0] != '1')
6580 return -EINVAL;
6581
6582 if (smt)
6583 sched_smt_power_savings = (buf[0] == '1');
6584 else
6585 sched_mc_power_savings = (buf[0] == '1');
6586
6587 ret = arch_reinit_sched_domains();
6588
6589 return ret ? ret : count;
6590}
6591
6592int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6593{
6594 int err = 0;
48f24c4d 6595
5c45bf27
SS
6596#ifdef CONFIG_SCHED_SMT
6597 if (smt_capable())
6598 err = sysfs_create_file(&cls->kset.kobj,
6599 &attr_sched_smt_power_savings.attr);
6600#endif
6601#ifdef CONFIG_SCHED_MC
6602 if (!err && mc_capable())
6603 err = sysfs_create_file(&cls->kset.kobj,
6604 &attr_sched_mc_power_savings.attr);
6605#endif
6606 return err;
6607}
6608#endif
6609
6610#ifdef CONFIG_SCHED_MC
6611static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6612{
6613 return sprintf(page, "%u\n", sched_mc_power_savings);
6614}
48f24c4d
IM
6615static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6616 const char *buf, size_t count)
5c45bf27
SS
6617{
6618 return sched_power_savings_store(buf, count, 0);
6619}
6620SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6621 sched_mc_power_savings_store);
6622#endif
6623
6624#ifdef CONFIG_SCHED_SMT
6625static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6626{
6627 return sprintf(page, "%u\n", sched_smt_power_savings);
6628}
48f24c4d
IM
6629static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6630 const char *buf, size_t count)
5c45bf27
SS
6631{
6632 return sched_power_savings_store(buf, count, 1);
6633}
6634SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6635 sched_smt_power_savings_store);
6636#endif
6637
6638
1da177e4
LT
6639#ifdef CONFIG_HOTPLUG_CPU
6640/*
6641 * Force a reinitialization of the sched domains hierarchy. The domains
6642 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6643 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6644 * which will prevent rebalancing while the sched domains are recalculated.
6645 */
6646static int update_sched_domains(struct notifier_block *nfb,
6647 unsigned long action, void *hcpu)
6648{
1da177e4
LT
6649 switch (action) {
6650 case CPU_UP_PREPARE:
6651 case CPU_DOWN_PREPARE:
1a20ff27 6652 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6653 return NOTIFY_OK;
6654
6655 case CPU_UP_CANCELED:
6656 case CPU_DOWN_FAILED:
6657 case CPU_ONLINE:
6658 case CPU_DEAD:
6659 /*
6660 * Fall through and re-initialise the domains.
6661 */
6662 break;
6663 default:
6664 return NOTIFY_DONE;
6665 }
6666
6667 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6668 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6669
6670 return NOTIFY_OK;
6671}
6672#endif
6673
6674void __init sched_init_smp(void)
6675{
6676 lock_cpu_hotplug();
1a20ff27 6677 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6678 unlock_cpu_hotplug();
6679 /* XXX: Theoretical race here - CPU may be hotplugged now */
6680 hotcpu_notifier(update_sched_domains, 0);
6681}
6682#else
6683void __init sched_init_smp(void)
6684{
6685}
6686#endif /* CONFIG_SMP */
6687
6688int in_sched_functions(unsigned long addr)
6689{
6690 /* Linker adds these: start and end of __sched functions */
6691 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6692
1da177e4
LT
6693 return in_lock_functions(addr) ||
6694 (addr >= (unsigned long)__sched_text_start
6695 && addr < (unsigned long)__sched_text_end);
6696}
6697
6698void __init sched_init(void)
6699{
1da177e4
LT
6700 int i, j, k;
6701
0a945022 6702 for_each_possible_cpu(i) {
70b97a7f
IM
6703 struct prio_array *array;
6704 struct rq *rq;
1da177e4
LT
6705
6706 rq = cpu_rq(i);
6707 spin_lock_init(&rq->lock);
fcb99371 6708 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6709 rq->nr_running = 0;
1da177e4
LT
6710 rq->active = rq->arrays;
6711 rq->expired = rq->arrays + 1;
6712 rq->best_expired_prio = MAX_PRIO;
6713
6714#ifdef CONFIG_SMP
41c7ce9a 6715 rq->sd = NULL;
7897986b
NP
6716 for (j = 1; j < 3; j++)
6717 rq->cpu_load[j] = 0;
1da177e4
LT
6718 rq->active_balance = 0;
6719 rq->push_cpu = 0;
6720 rq->migration_thread = NULL;
6721 INIT_LIST_HEAD(&rq->migration_queue);
6722#endif
6723 atomic_set(&rq->nr_iowait, 0);
6724
6725 for (j = 0; j < 2; j++) {
6726 array = rq->arrays + j;
6727 for (k = 0; k < MAX_PRIO; k++) {
6728 INIT_LIST_HEAD(array->queue + k);
6729 __clear_bit(k, array->bitmap);
6730 }
6731 // delimiter for bitsearch
6732 __set_bit(MAX_PRIO, array->bitmap);
6733 }
6734 }
6735
2dd73a4f 6736 set_load_weight(&init_task);
1da177e4
LT
6737 /*
6738 * The boot idle thread does lazy MMU switching as well:
6739 */
6740 atomic_inc(&init_mm.mm_count);
6741 enter_lazy_tlb(&init_mm, current);
6742
6743 /*
6744 * Make us the idle thread. Technically, schedule() should not be
6745 * called from this thread, however somewhere below it might be,
6746 * but because we are the idle thread, we just pick up running again
6747 * when this runqueue becomes "idle".
6748 */
6749 init_idle(current, smp_processor_id());
6750}
6751
6752#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6753void __might_sleep(char *file, int line)
6754{
48f24c4d 6755#ifdef in_atomic
1da177e4
LT
6756 static unsigned long prev_jiffy; /* ratelimiting */
6757
6758 if ((in_atomic() || irqs_disabled()) &&
6759 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6760 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6761 return;
6762 prev_jiffy = jiffies;
91368d73 6763 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6764 " context at %s:%d\n", file, line);
6765 printk("in_atomic():%d, irqs_disabled():%d\n",
6766 in_atomic(), irqs_disabled());
6767 dump_stack();
6768 }
6769#endif
6770}
6771EXPORT_SYMBOL(__might_sleep);
6772#endif
6773
6774#ifdef CONFIG_MAGIC_SYSRQ
6775void normalize_rt_tasks(void)
6776{
70b97a7f 6777 struct prio_array *array;
1da177e4 6778 struct task_struct *p;
1da177e4 6779 unsigned long flags;
70b97a7f 6780 struct rq *rq;
1da177e4
LT
6781
6782 read_lock_irq(&tasklist_lock);
c96d145e 6783 for_each_process(p) {
1da177e4
LT
6784 if (!rt_task(p))
6785 continue;
6786
b29739f9
IM
6787 spin_lock_irqsave(&p->pi_lock, flags);
6788 rq = __task_rq_lock(p);
1da177e4
LT
6789
6790 array = p->array;
6791 if (array)
6792 deactivate_task(p, task_rq(p));
6793 __setscheduler(p, SCHED_NORMAL, 0);
6794 if (array) {
6795 __activate_task(p, task_rq(p));
6796 resched_task(rq->curr);
6797 }
6798
b29739f9
IM
6799 __task_rq_unlock(rq);
6800 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6801 }
6802 read_unlock_irq(&tasklist_lock);
6803}
6804
6805#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6806
6807#ifdef CONFIG_IA64
6808/*
6809 * These functions are only useful for the IA64 MCA handling.
6810 *
6811 * They can only be called when the whole system has been
6812 * stopped - every CPU needs to be quiescent, and no scheduling
6813 * activity can take place. Using them for anything else would
6814 * be a serious bug, and as a result, they aren't even visible
6815 * under any other configuration.
6816 */
6817
6818/**
6819 * curr_task - return the current task for a given cpu.
6820 * @cpu: the processor in question.
6821 *
6822 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6823 */
36c8b586 6824struct task_struct *curr_task(int cpu)
1df5c10a
LT
6825{
6826 return cpu_curr(cpu);
6827}
6828
6829/**
6830 * set_curr_task - set the current task for a given cpu.
6831 * @cpu: the processor in question.
6832 * @p: the task pointer to set.
6833 *
6834 * Description: This function must only be used when non-maskable interrupts
6835 * are serviced on a separate stack. It allows the architecture to switch the
6836 * notion of the current task on a cpu in a non-blocking manner. This function
6837 * must be called with all CPU's synchronized, and interrupts disabled, the
6838 * and caller must save the original value of the current task (see
6839 * curr_task() above) and restore that value before reenabling interrupts and
6840 * re-starting the system.
6841 *
6842 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6843 */
36c8b586 6844void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6845{
6846 cpu_curr(cpu) = p;
6847}
6848
6849#endif