]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched.c
sched: add /proc/sys/kernel/sched_compat_yield
[mirror_ubuntu-jammy-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
1da177e4 64
5517d86b 65#include <asm/tlb.h>
1da177e4 66
b035b6de
AD
67/*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72unsigned long long __attribute__((weak)) sched_clock(void)
73{
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75}
76
1da177e4
LT
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
6aa645ea
IM
101#define NICE_0_LOAD SCHED_LOAD_SCALE
102#define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
1da177e4
LT
104/*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
5517d86b
ED
114#ifdef CONFIG_SMP
115/*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120{
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122}
123
124/*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129{
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132}
133#endif
134
634fa8c9
IM
135#define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
91fcdd4e 138/*
634fa8c9 139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 140 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 141 */
634fa8c9 142static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 143{
634fa8c9
IM
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
151}
152
e05606d3
IM
153static inline int rt_policy(int policy)
154{
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158}
159
160static inline int task_has_rt_policy(struct task_struct *p)
161{
162 return rt_policy(p->policy);
163}
164
1da177e4 165/*
6aa645ea 166 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 167 */
6aa645ea
IM
168struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171};
172
173struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177};
178
179/* CFS-related fields in a runqueue */
180struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193#ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208#endif
209};
1da177e4 210
6aa645ea
IM
211/* Real-Time classes' related field in a runqueue: */
212struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216};
217
1da177e4
LT
218/*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
70b97a7f 225struct rq {
6aa645ea 226 spinlock_t lock; /* runqueue lock */
1da177e4
LT
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
6aa645ea
IM
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 235 unsigned char idle_at_tick;
46cb4b7c
SS
236#ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238#endif
6aa645ea
IM
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 246#endif
6aa645ea 247 struct rt_rq rt;
1da177e4
LT
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
36c8b586 257 struct task_struct *curr, *idle;
c9819f45 258 unsigned long next_balance;
1da177e4 259 struct mm_struct *prev_mm;
6aa645ea 260
6aa645ea
IM
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
265 u64 idle_clock;
266 unsigned int clock_deep_idle_events;
529c7726 267 u64 tick_timestamp;
6aa645ea 268
1da177e4
LT
269 atomic_t nr_iowait;
270
271#ifdef CONFIG_SMP
272 struct sched_domain *sd;
273
274 /* For active balancing */
275 int active_balance;
276 int push_cpu;
0a2966b4 277 int cpu; /* cpu of this runqueue */
1da177e4 278
36c8b586 279 struct task_struct *migration_thread;
1da177e4
LT
280 struct list_head migration_queue;
281#endif
282
283#ifdef CONFIG_SCHEDSTATS
284 /* latency stats */
285 struct sched_info rq_sched_info;
286
287 /* sys_sched_yield() stats */
288 unsigned long yld_exp_empty;
289 unsigned long yld_act_empty;
290 unsigned long yld_both_empty;
291 unsigned long yld_cnt;
292
293 /* schedule() stats */
294 unsigned long sched_switch;
295 unsigned long sched_cnt;
296 unsigned long sched_goidle;
297
298 /* try_to_wake_up() stats */
299 unsigned long ttwu_cnt;
300 unsigned long ttwu_local;
301#endif
fcb99371 302 struct lock_class_key rq_lock_key;
1da177e4
LT
303};
304
f34e3b61 305static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 306static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 307
dd41f596
IM
308static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
309{
310 rq->curr->sched_class->check_preempt_curr(rq, p);
311}
312
0a2966b4
CL
313static inline int cpu_of(struct rq *rq)
314{
315#ifdef CONFIG_SMP
316 return rq->cpu;
317#else
318 return 0;
319#endif
320}
321
20d315d4 322/*
b04a0f4c
IM
323 * Update the per-runqueue clock, as finegrained as the platform can give
324 * us, but without assuming monotonicity, etc.:
20d315d4 325 */
b04a0f4c 326static void __update_rq_clock(struct rq *rq)
20d315d4
IM
327{
328 u64 prev_raw = rq->prev_clock_raw;
329 u64 now = sched_clock();
330 s64 delta = now - prev_raw;
331 u64 clock = rq->clock;
332
b04a0f4c
IM
333#ifdef CONFIG_SCHED_DEBUG
334 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
335#endif
20d315d4
IM
336 /*
337 * Protect against sched_clock() occasionally going backwards:
338 */
339 if (unlikely(delta < 0)) {
340 clock++;
341 rq->clock_warps++;
342 } else {
343 /*
344 * Catch too large forward jumps too:
345 */
529c7726
IM
346 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
347 if (clock < rq->tick_timestamp + TICK_NSEC)
348 clock = rq->tick_timestamp + TICK_NSEC;
349 else
350 clock++;
20d315d4
IM
351 rq->clock_overflows++;
352 } else {
353 if (unlikely(delta > rq->clock_max_delta))
354 rq->clock_max_delta = delta;
355 clock += delta;
356 }
357 }
358
359 rq->prev_clock_raw = now;
360 rq->clock = clock;
b04a0f4c 361}
20d315d4 362
b04a0f4c
IM
363static void update_rq_clock(struct rq *rq)
364{
365 if (likely(smp_processor_id() == cpu_of(rq)))
366 __update_rq_clock(rq);
20d315d4
IM
367}
368
674311d5
NP
369/*
370 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 371 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
372 *
373 * The domain tree of any CPU may only be accessed from within
374 * preempt-disabled sections.
375 */
48f24c4d
IM
376#define for_each_domain(cpu, __sd) \
377 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
378
379#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
380#define this_rq() (&__get_cpu_var(runqueues))
381#define task_rq(p) cpu_rq(task_cpu(p))
382#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
383
e436d800
IM
384/*
385 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
386 * clock constructed from sched_clock():
387 */
388unsigned long long cpu_clock(int cpu)
389{
e436d800
IM
390 unsigned long long now;
391 unsigned long flags;
b04a0f4c 392 struct rq *rq;
e436d800 393
2cd4d0ea 394 local_irq_save(flags);
b04a0f4c
IM
395 rq = cpu_rq(cpu);
396 update_rq_clock(rq);
397 now = rq->clock;
2cd4d0ea 398 local_irq_restore(flags);
e436d800
IM
399
400 return now;
401}
402
138a8aeb
IM
403#ifdef CONFIG_FAIR_GROUP_SCHED
404/* Change a task's ->cfs_rq if it moves across CPUs */
405static inline void set_task_cfs_rq(struct task_struct *p)
406{
407 p->se.cfs_rq = &task_rq(p)->cfs;
408}
409#else
410static inline void set_task_cfs_rq(struct task_struct *p)
411{
412}
413#endif
414
1da177e4 415#ifndef prepare_arch_switch
4866cde0
NP
416# define prepare_arch_switch(next) do { } while (0)
417#endif
418#ifndef finish_arch_switch
419# define finish_arch_switch(prev) do { } while (0)
420#endif
421
422#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 423static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
424{
425 return rq->curr == p;
426}
427
70b97a7f 428static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
429{
430}
431
70b97a7f 432static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 433{
da04c035
IM
434#ifdef CONFIG_DEBUG_SPINLOCK
435 /* this is a valid case when another task releases the spinlock */
436 rq->lock.owner = current;
437#endif
8a25d5de
IM
438 /*
439 * If we are tracking spinlock dependencies then we have to
440 * fix up the runqueue lock - which gets 'carried over' from
441 * prev into current:
442 */
443 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
444
4866cde0
NP
445 spin_unlock_irq(&rq->lock);
446}
447
448#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 449static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
450{
451#ifdef CONFIG_SMP
452 return p->oncpu;
453#else
454 return rq->curr == p;
455#endif
456}
457
70b97a7f 458static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
459{
460#ifdef CONFIG_SMP
461 /*
462 * We can optimise this out completely for !SMP, because the
463 * SMP rebalancing from interrupt is the only thing that cares
464 * here.
465 */
466 next->oncpu = 1;
467#endif
468#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
469 spin_unlock_irq(&rq->lock);
470#else
471 spin_unlock(&rq->lock);
472#endif
473}
474
70b97a7f 475static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
476{
477#ifdef CONFIG_SMP
478 /*
479 * After ->oncpu is cleared, the task can be moved to a different CPU.
480 * We must ensure this doesn't happen until the switch is completely
481 * finished.
482 */
483 smp_wmb();
484 prev->oncpu = 0;
485#endif
486#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
487 local_irq_enable();
1da177e4 488#endif
4866cde0
NP
489}
490#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 491
b29739f9
IM
492/*
493 * __task_rq_lock - lock the runqueue a given task resides on.
494 * Must be called interrupts disabled.
495 */
70b97a7f 496static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
497 __acquires(rq->lock)
498{
70b97a7f 499 struct rq *rq;
b29739f9
IM
500
501repeat_lock_task:
502 rq = task_rq(p);
503 spin_lock(&rq->lock);
504 if (unlikely(rq != task_rq(p))) {
505 spin_unlock(&rq->lock);
506 goto repeat_lock_task;
507 }
508 return rq;
509}
510
1da177e4
LT
511/*
512 * task_rq_lock - lock the runqueue a given task resides on and disable
513 * interrupts. Note the ordering: we can safely lookup the task_rq without
514 * explicitly disabling preemption.
515 */
70b97a7f 516static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
517 __acquires(rq->lock)
518{
70b97a7f 519 struct rq *rq;
1da177e4
LT
520
521repeat_lock_task:
522 local_irq_save(*flags);
523 rq = task_rq(p);
524 spin_lock(&rq->lock);
525 if (unlikely(rq != task_rq(p))) {
526 spin_unlock_irqrestore(&rq->lock, *flags);
527 goto repeat_lock_task;
528 }
529 return rq;
530}
531
70b97a7f 532static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
533 __releases(rq->lock)
534{
535 spin_unlock(&rq->lock);
536}
537
70b97a7f 538static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
539 __releases(rq->lock)
540{
541 spin_unlock_irqrestore(&rq->lock, *flags);
542}
543
1da177e4 544/*
cc2a73b5 545 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 546 */
70b97a7f 547static inline struct rq *this_rq_lock(void)
1da177e4
LT
548 __acquires(rq->lock)
549{
70b97a7f 550 struct rq *rq;
1da177e4
LT
551
552 local_irq_disable();
553 rq = this_rq();
554 spin_lock(&rq->lock);
555
556 return rq;
557}
558
1b9f19c2 559/*
2aa44d05 560 * We are going deep-idle (irqs are disabled):
1b9f19c2 561 */
2aa44d05 562void sched_clock_idle_sleep_event(void)
1b9f19c2 563{
2aa44d05
IM
564 struct rq *rq = cpu_rq(smp_processor_id());
565
566 spin_lock(&rq->lock);
567 __update_rq_clock(rq);
568 spin_unlock(&rq->lock);
569 rq->clock_deep_idle_events++;
570}
571EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
572
573/*
574 * We just idled delta nanoseconds (called with irqs disabled):
575 */
576void sched_clock_idle_wakeup_event(u64 delta_ns)
577{
578 struct rq *rq = cpu_rq(smp_processor_id());
579 u64 now = sched_clock();
1b9f19c2 580
2aa44d05
IM
581 rq->idle_clock += delta_ns;
582 /*
583 * Override the previous timestamp and ignore all
584 * sched_clock() deltas that occured while we idled,
585 * and use the PM-provided delta_ns to advance the
586 * rq clock:
587 */
588 spin_lock(&rq->lock);
589 rq->prev_clock_raw = now;
590 rq->clock += delta_ns;
591 spin_unlock(&rq->lock);
1b9f19c2 592}
2aa44d05 593EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 594
c24d20db
IM
595/*
596 * resched_task - mark a task 'to be rescheduled now'.
597 *
598 * On UP this means the setting of the need_resched flag, on SMP it
599 * might also involve a cross-CPU call to trigger the scheduler on
600 * the target CPU.
601 */
602#ifdef CONFIG_SMP
603
604#ifndef tsk_is_polling
605#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
606#endif
607
608static void resched_task(struct task_struct *p)
609{
610 int cpu;
611
612 assert_spin_locked(&task_rq(p)->lock);
613
614 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
615 return;
616
617 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
618
619 cpu = task_cpu(p);
620 if (cpu == smp_processor_id())
621 return;
622
623 /* NEED_RESCHED must be visible before we test polling */
624 smp_mb();
625 if (!tsk_is_polling(p))
626 smp_send_reschedule(cpu);
627}
628
629static void resched_cpu(int cpu)
630{
631 struct rq *rq = cpu_rq(cpu);
632 unsigned long flags;
633
634 if (!spin_trylock_irqsave(&rq->lock, flags))
635 return;
636 resched_task(cpu_curr(cpu));
637 spin_unlock_irqrestore(&rq->lock, flags);
638}
639#else
640static inline void resched_task(struct task_struct *p)
641{
642 assert_spin_locked(&task_rq(p)->lock);
643 set_tsk_need_resched(p);
644}
645#endif
646
45bf76df
IM
647static u64 div64_likely32(u64 divident, unsigned long divisor)
648{
649#if BITS_PER_LONG == 32
650 if (likely(divident <= 0xffffffffULL))
651 return (u32)divident / divisor;
652 do_div(divident, divisor);
653
654 return divident;
655#else
656 return divident / divisor;
657#endif
658}
659
660#if BITS_PER_LONG == 32
661# define WMULT_CONST (~0UL)
662#else
663# define WMULT_CONST (1UL << 32)
664#endif
665
666#define WMULT_SHIFT 32
667
194081eb
IM
668/*
669 * Shift right and round:
670 */
cf2ab469 671#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 672
cb1c4fc9 673static unsigned long
45bf76df
IM
674calc_delta_mine(unsigned long delta_exec, unsigned long weight,
675 struct load_weight *lw)
676{
677 u64 tmp;
678
679 if (unlikely(!lw->inv_weight))
194081eb 680 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
681
682 tmp = (u64)delta_exec * weight;
683 /*
684 * Check whether we'd overflow the 64-bit multiplication:
685 */
194081eb 686 if (unlikely(tmp > WMULT_CONST))
cf2ab469 687 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
688 WMULT_SHIFT/2);
689 else
cf2ab469 690 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 691
ecf691da 692 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
693}
694
695static inline unsigned long
696calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
697{
698 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
699}
700
701static void update_load_add(struct load_weight *lw, unsigned long inc)
702{
703 lw->weight += inc;
704 lw->inv_weight = 0;
705}
706
707static void update_load_sub(struct load_weight *lw, unsigned long dec)
708{
709 lw->weight -= dec;
710 lw->inv_weight = 0;
711}
712
2dd73a4f
PW
713/*
714 * To aid in avoiding the subversion of "niceness" due to uneven distribution
715 * of tasks with abnormal "nice" values across CPUs the contribution that
716 * each task makes to its run queue's load is weighted according to its
717 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
718 * scaled version of the new time slice allocation that they receive on time
719 * slice expiry etc.
720 */
721
dd41f596
IM
722#define WEIGHT_IDLEPRIO 2
723#define WMULT_IDLEPRIO (1 << 31)
724
725/*
726 * Nice levels are multiplicative, with a gentle 10% change for every
727 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
728 * nice 1, it will get ~10% less CPU time than another CPU-bound task
729 * that remained on nice 0.
730 *
731 * The "10% effect" is relative and cumulative: from _any_ nice level,
732 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
733 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
734 * If a task goes up by ~10% and another task goes down by ~10% then
735 * the relative distance between them is ~25%.)
dd41f596
IM
736 */
737static const int prio_to_weight[40] = {
254753dc
IM
738 /* -20 */ 88761, 71755, 56483, 46273, 36291,
739 /* -15 */ 29154, 23254, 18705, 14949, 11916,
740 /* -10 */ 9548, 7620, 6100, 4904, 3906,
741 /* -5 */ 3121, 2501, 1991, 1586, 1277,
742 /* 0 */ 1024, 820, 655, 526, 423,
743 /* 5 */ 335, 272, 215, 172, 137,
744 /* 10 */ 110, 87, 70, 56, 45,
745 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
746};
747
5714d2de
IM
748/*
749 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
750 *
751 * In cases where the weight does not change often, we can use the
752 * precalculated inverse to speed up arithmetics by turning divisions
753 * into multiplications:
754 */
dd41f596 755static const u32 prio_to_wmult[40] = {
254753dc
IM
756 /* -20 */ 48388, 59856, 76040, 92818, 118348,
757 /* -15 */ 147320, 184698, 229616, 287308, 360437,
758 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
759 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
760 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
761 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
762 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
763 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 764};
2dd73a4f 765
dd41f596
IM
766static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
767
768/*
769 * runqueue iterator, to support SMP load-balancing between different
770 * scheduling classes, without having to expose their internal data
771 * structures to the load-balancing proper:
772 */
773struct rq_iterator {
774 void *arg;
775 struct task_struct *(*start)(void *);
776 struct task_struct *(*next)(void *);
777};
778
779static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
780 unsigned long max_nr_move, unsigned long max_load_move,
781 struct sched_domain *sd, enum cpu_idle_type idle,
782 int *all_pinned, unsigned long *load_moved,
a4ac01c3 783 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
784
785#include "sched_stats.h"
786#include "sched_rt.c"
787#include "sched_fair.c"
788#include "sched_idletask.c"
789#ifdef CONFIG_SCHED_DEBUG
790# include "sched_debug.c"
791#endif
792
793#define sched_class_highest (&rt_sched_class)
794
9c217245
IM
795static void __update_curr_load(struct rq *rq, struct load_stat *ls)
796{
797 if (rq->curr != rq->idle && ls->load.weight) {
798 ls->delta_exec += ls->delta_stat;
799 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
800 ls->delta_stat = 0;
801 }
802}
803
804/*
805 * Update delta_exec, delta_fair fields for rq.
806 *
807 * delta_fair clock advances at a rate inversely proportional to
808 * total load (rq->ls.load.weight) on the runqueue, while
809 * delta_exec advances at the same rate as wall-clock (provided
810 * cpu is not idle).
811 *
812 * delta_exec / delta_fair is a measure of the (smoothened) load on this
813 * runqueue over any given interval. This (smoothened) load is used
814 * during load balance.
815 *
816 * This function is called /before/ updating rq->ls.load
817 * and when switching tasks.
818 */
84a1d7a2 819static void update_curr_load(struct rq *rq)
9c217245
IM
820{
821 struct load_stat *ls = &rq->ls;
822 u64 start;
823
824 start = ls->load_update_start;
d281918d
IM
825 ls->load_update_start = rq->clock;
826 ls->delta_stat += rq->clock - start;
9c217245
IM
827 /*
828 * Stagger updates to ls->delta_fair. Very frequent updates
829 * can be expensive.
830 */
831 if (ls->delta_stat >= sysctl_sched_stat_granularity)
832 __update_curr_load(rq, ls);
833}
834
29b4b623 835static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 836{
84a1d7a2 837 update_curr_load(rq);
9c217245
IM
838 update_load_add(&rq->ls.load, p->se.load.weight);
839}
840
79b5dddf 841static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 842{
84a1d7a2 843 update_curr_load(rq);
9c217245
IM
844 update_load_sub(&rq->ls.load, p->se.load.weight);
845}
846
e5fa2237 847static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
848{
849 rq->nr_running++;
29b4b623 850 inc_load(rq, p);
9c217245
IM
851}
852
db53181e 853static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
854{
855 rq->nr_running--;
79b5dddf 856 dec_load(rq, p);
9c217245
IM
857}
858
45bf76df
IM
859static void set_load_weight(struct task_struct *p)
860{
dd41f596
IM
861 p->se.wait_runtime = 0;
862
45bf76df 863 if (task_has_rt_policy(p)) {
dd41f596
IM
864 p->se.load.weight = prio_to_weight[0] * 2;
865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
866 return;
867 }
45bf76df 868
dd41f596
IM
869 /*
870 * SCHED_IDLE tasks get minimal weight:
871 */
872 if (p->policy == SCHED_IDLE) {
873 p->se.load.weight = WEIGHT_IDLEPRIO;
874 p->se.load.inv_weight = WMULT_IDLEPRIO;
875 return;
876 }
71f8bd46 877
dd41f596
IM
878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
880}
881
8159f87e 882static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 883{
dd41f596 884 sched_info_queued(p);
fd390f6a 885 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 886 p->se.on_rq = 1;
71f8bd46
IM
887}
888
69be72c1 889static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 890{
f02231e5 891 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 892 p->se.on_rq = 0;
71f8bd46
IM
893}
894
14531189 895/*
dd41f596 896 * __normal_prio - return the priority that is based on the static prio
14531189 897 */
14531189
IM
898static inline int __normal_prio(struct task_struct *p)
899{
dd41f596 900 return p->static_prio;
14531189
IM
901}
902
b29739f9
IM
903/*
904 * Calculate the expected normal priority: i.e. priority
905 * without taking RT-inheritance into account. Might be
906 * boosted by interactivity modifiers. Changes upon fork,
907 * setprio syscalls, and whenever the interactivity
908 * estimator recalculates.
909 */
36c8b586 910static inline int normal_prio(struct task_struct *p)
b29739f9
IM
911{
912 int prio;
913
e05606d3 914 if (task_has_rt_policy(p))
b29739f9
IM
915 prio = MAX_RT_PRIO-1 - p->rt_priority;
916 else
917 prio = __normal_prio(p);
918 return prio;
919}
920
921/*
922 * Calculate the current priority, i.e. the priority
923 * taken into account by the scheduler. This value might
924 * be boosted by RT tasks, or might be boosted by
925 * interactivity modifiers. Will be RT if the task got
926 * RT-boosted. If not then it returns p->normal_prio.
927 */
36c8b586 928static int effective_prio(struct task_struct *p)
b29739f9
IM
929{
930 p->normal_prio = normal_prio(p);
931 /*
932 * If we are RT tasks or we were boosted to RT priority,
933 * keep the priority unchanged. Otherwise, update priority
934 * to the normal priority:
935 */
936 if (!rt_prio(p->prio))
937 return p->normal_prio;
938 return p->prio;
939}
940
1da177e4 941/*
dd41f596 942 * activate_task - move a task to the runqueue.
1da177e4 943 */
dd41f596 944static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 945{
dd41f596
IM
946 if (p->state == TASK_UNINTERRUPTIBLE)
947 rq->nr_uninterruptible--;
1da177e4 948
8159f87e 949 enqueue_task(rq, p, wakeup);
e5fa2237 950 inc_nr_running(p, rq);
1da177e4
LT
951}
952
953/*
dd41f596 954 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 955 */
dd41f596 956static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 957{
a8e504d2 958 update_rq_clock(rq);
1da177e4 959
dd41f596
IM
960 if (p->state == TASK_UNINTERRUPTIBLE)
961 rq->nr_uninterruptible--;
ece8a684 962
8159f87e 963 enqueue_task(rq, p, 0);
e5fa2237 964 inc_nr_running(p, rq);
1da177e4
LT
965}
966
967/*
968 * deactivate_task - remove a task from the runqueue.
969 */
2e1cb74a 970static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 971{
dd41f596
IM
972 if (p->state == TASK_UNINTERRUPTIBLE)
973 rq->nr_uninterruptible++;
974
69be72c1 975 dequeue_task(rq, p, sleep);
db53181e 976 dec_nr_running(p, rq);
1da177e4
LT
977}
978
1da177e4
LT
979/**
980 * task_curr - is this task currently executing on a CPU?
981 * @p: the task in question.
982 */
36c8b586 983inline int task_curr(const struct task_struct *p)
1da177e4
LT
984{
985 return cpu_curr(task_cpu(p)) == p;
986}
987
2dd73a4f
PW
988/* Used instead of source_load when we know the type == 0 */
989unsigned long weighted_cpuload(const int cpu)
990{
dd41f596
IM
991 return cpu_rq(cpu)->ls.load.weight;
992}
993
994static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
995{
996#ifdef CONFIG_SMP
997 task_thread_info(p)->cpu = cpu;
998 set_task_cfs_rq(p);
999#endif
2dd73a4f
PW
1000}
1001
1da177e4 1002#ifdef CONFIG_SMP
c65cc870 1003
dd41f596 1004void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1005{
dd41f596
IM
1006 int old_cpu = task_cpu(p);
1007 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1008 u64 clock_offset, fair_clock_offset;
1009
1010 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1011 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
1012
dd41f596
IM
1013 if (p->se.wait_start_fair)
1014 p->se.wait_start_fair -= fair_clock_offset;
6cfb0d5d
IM
1015 if (p->se.sleep_start_fair)
1016 p->se.sleep_start_fair -= fair_clock_offset;
1017
1018#ifdef CONFIG_SCHEDSTATS
1019 if (p->se.wait_start)
1020 p->se.wait_start -= clock_offset;
dd41f596
IM
1021 if (p->se.sleep_start)
1022 p->se.sleep_start -= clock_offset;
1023 if (p->se.block_start)
1024 p->se.block_start -= clock_offset;
6cfb0d5d 1025#endif
dd41f596
IM
1026
1027 __set_task_cpu(p, new_cpu);
c65cc870
IM
1028}
1029
70b97a7f 1030struct migration_req {
1da177e4 1031 struct list_head list;
1da177e4 1032
36c8b586 1033 struct task_struct *task;
1da177e4
LT
1034 int dest_cpu;
1035
1da177e4 1036 struct completion done;
70b97a7f 1037};
1da177e4
LT
1038
1039/*
1040 * The task's runqueue lock must be held.
1041 * Returns true if you have to wait for migration thread.
1042 */
36c8b586 1043static int
70b97a7f 1044migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1045{
70b97a7f 1046 struct rq *rq = task_rq(p);
1da177e4
LT
1047
1048 /*
1049 * If the task is not on a runqueue (and not running), then
1050 * it is sufficient to simply update the task's cpu field.
1051 */
dd41f596 1052 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1053 set_task_cpu(p, dest_cpu);
1054 return 0;
1055 }
1056
1057 init_completion(&req->done);
1da177e4
LT
1058 req->task = p;
1059 req->dest_cpu = dest_cpu;
1060 list_add(&req->list, &rq->migration_queue);
48f24c4d 1061
1da177e4
LT
1062 return 1;
1063}
1064
1065/*
1066 * wait_task_inactive - wait for a thread to unschedule.
1067 *
1068 * The caller must ensure that the task *will* unschedule sometime soon,
1069 * else this function might spin for a *long* time. This function can't
1070 * be called with interrupts off, or it may introduce deadlock with
1071 * smp_call_function() if an IPI is sent by the same process we are
1072 * waiting to become inactive.
1073 */
36c8b586 1074void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1075{
1076 unsigned long flags;
dd41f596 1077 int running, on_rq;
70b97a7f 1078 struct rq *rq;
1da177e4
LT
1079
1080repeat:
fa490cfd
LT
1081 /*
1082 * We do the initial early heuristics without holding
1083 * any task-queue locks at all. We'll only try to get
1084 * the runqueue lock when things look like they will
1085 * work out!
1086 */
1087 rq = task_rq(p);
1088
1089 /*
1090 * If the task is actively running on another CPU
1091 * still, just relax and busy-wait without holding
1092 * any locks.
1093 *
1094 * NOTE! Since we don't hold any locks, it's not
1095 * even sure that "rq" stays as the right runqueue!
1096 * But we don't care, since "task_running()" will
1097 * return false if the runqueue has changed and p
1098 * is actually now running somewhere else!
1099 */
1100 while (task_running(rq, p))
1101 cpu_relax();
1102
1103 /*
1104 * Ok, time to look more closely! We need the rq
1105 * lock now, to be *sure*. If we're wrong, we'll
1106 * just go back and repeat.
1107 */
1da177e4 1108 rq = task_rq_lock(p, &flags);
fa490cfd 1109 running = task_running(rq, p);
dd41f596 1110 on_rq = p->se.on_rq;
fa490cfd
LT
1111 task_rq_unlock(rq, &flags);
1112
1113 /*
1114 * Was it really running after all now that we
1115 * checked with the proper locks actually held?
1116 *
1117 * Oops. Go back and try again..
1118 */
1119 if (unlikely(running)) {
1da177e4 1120 cpu_relax();
1da177e4
LT
1121 goto repeat;
1122 }
fa490cfd
LT
1123
1124 /*
1125 * It's not enough that it's not actively running,
1126 * it must be off the runqueue _entirely_, and not
1127 * preempted!
1128 *
1129 * So if it wa still runnable (but just not actively
1130 * running right now), it's preempted, and we should
1131 * yield - it could be a while.
1132 */
dd41f596 1133 if (unlikely(on_rq)) {
fa490cfd
LT
1134 yield();
1135 goto repeat;
1136 }
1137
1138 /*
1139 * Ahh, all good. It wasn't running, and it wasn't
1140 * runnable, which means that it will never become
1141 * running in the future either. We're all done!
1142 */
1da177e4
LT
1143}
1144
1145/***
1146 * kick_process - kick a running thread to enter/exit the kernel
1147 * @p: the to-be-kicked thread
1148 *
1149 * Cause a process which is running on another CPU to enter
1150 * kernel-mode, without any delay. (to get signals handled.)
1151 *
1152 * NOTE: this function doesnt have to take the runqueue lock,
1153 * because all it wants to ensure is that the remote task enters
1154 * the kernel. If the IPI races and the task has been migrated
1155 * to another CPU then no harm is done and the purpose has been
1156 * achieved as well.
1157 */
36c8b586 1158void kick_process(struct task_struct *p)
1da177e4
LT
1159{
1160 int cpu;
1161
1162 preempt_disable();
1163 cpu = task_cpu(p);
1164 if ((cpu != smp_processor_id()) && task_curr(p))
1165 smp_send_reschedule(cpu);
1166 preempt_enable();
1167}
1168
1169/*
2dd73a4f
PW
1170 * Return a low guess at the load of a migration-source cpu weighted
1171 * according to the scheduling class and "nice" value.
1da177e4
LT
1172 *
1173 * We want to under-estimate the load of migration sources, to
1174 * balance conservatively.
1175 */
a2000572 1176static inline unsigned long source_load(int cpu, int type)
1da177e4 1177{
70b97a7f 1178 struct rq *rq = cpu_rq(cpu);
dd41f596 1179 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1180
3b0bd9bc 1181 if (type == 0)
dd41f596 1182 return total;
b910472d 1183
dd41f596 1184 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1185}
1186
1187/*
2dd73a4f
PW
1188 * Return a high guess at the load of a migration-target cpu weighted
1189 * according to the scheduling class and "nice" value.
1da177e4 1190 */
a2000572 1191static inline unsigned long target_load(int cpu, int type)
1da177e4 1192{
70b97a7f 1193 struct rq *rq = cpu_rq(cpu);
dd41f596 1194 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1195
7897986b 1196 if (type == 0)
dd41f596 1197 return total;
3b0bd9bc 1198
dd41f596 1199 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1200}
1201
1202/*
1203 * Return the average load per task on the cpu's run queue
1204 */
1205static inline unsigned long cpu_avg_load_per_task(int cpu)
1206{
70b97a7f 1207 struct rq *rq = cpu_rq(cpu);
dd41f596 1208 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1209 unsigned long n = rq->nr_running;
1210
dd41f596 1211 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1212}
1213
147cbb4b
NP
1214/*
1215 * find_idlest_group finds and returns the least busy CPU group within the
1216 * domain.
1217 */
1218static struct sched_group *
1219find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1220{
1221 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1222 unsigned long min_load = ULONG_MAX, this_load = 0;
1223 int load_idx = sd->forkexec_idx;
1224 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1225
1226 do {
1227 unsigned long load, avg_load;
1228 int local_group;
1229 int i;
1230
da5a5522
BD
1231 /* Skip over this group if it has no CPUs allowed */
1232 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1233 goto nextgroup;
1234
147cbb4b 1235 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1236
1237 /* Tally up the load of all CPUs in the group */
1238 avg_load = 0;
1239
1240 for_each_cpu_mask(i, group->cpumask) {
1241 /* Bias balancing toward cpus of our domain */
1242 if (local_group)
1243 load = source_load(i, load_idx);
1244 else
1245 load = target_load(i, load_idx);
1246
1247 avg_load += load;
1248 }
1249
1250 /* Adjust by relative CPU power of the group */
5517d86b
ED
1251 avg_load = sg_div_cpu_power(group,
1252 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1253
1254 if (local_group) {
1255 this_load = avg_load;
1256 this = group;
1257 } else if (avg_load < min_load) {
1258 min_load = avg_load;
1259 idlest = group;
1260 }
da5a5522 1261nextgroup:
147cbb4b
NP
1262 group = group->next;
1263 } while (group != sd->groups);
1264
1265 if (!idlest || 100*this_load < imbalance*min_load)
1266 return NULL;
1267 return idlest;
1268}
1269
1270/*
0feaece9 1271 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1272 */
95cdf3b7
IM
1273static int
1274find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1275{
da5a5522 1276 cpumask_t tmp;
147cbb4b
NP
1277 unsigned long load, min_load = ULONG_MAX;
1278 int idlest = -1;
1279 int i;
1280
da5a5522
BD
1281 /* Traverse only the allowed CPUs */
1282 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1283
1284 for_each_cpu_mask(i, tmp) {
2dd73a4f 1285 load = weighted_cpuload(i);
147cbb4b
NP
1286
1287 if (load < min_load || (load == min_load && i == this_cpu)) {
1288 min_load = load;
1289 idlest = i;
1290 }
1291 }
1292
1293 return idlest;
1294}
1295
476d139c
NP
1296/*
1297 * sched_balance_self: balance the current task (running on cpu) in domains
1298 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1299 * SD_BALANCE_EXEC.
1300 *
1301 * Balance, ie. select the least loaded group.
1302 *
1303 * Returns the target CPU number, or the same CPU if no balancing is needed.
1304 *
1305 * preempt must be disabled.
1306 */
1307static int sched_balance_self(int cpu, int flag)
1308{
1309 struct task_struct *t = current;
1310 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1311
c96d145e 1312 for_each_domain(cpu, tmp) {
9761eea8
IM
1313 /*
1314 * If power savings logic is enabled for a domain, stop there.
1315 */
5c45bf27
SS
1316 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1317 break;
476d139c
NP
1318 if (tmp->flags & flag)
1319 sd = tmp;
c96d145e 1320 }
476d139c
NP
1321
1322 while (sd) {
1323 cpumask_t span;
1324 struct sched_group *group;
1a848870
SS
1325 int new_cpu, weight;
1326
1327 if (!(sd->flags & flag)) {
1328 sd = sd->child;
1329 continue;
1330 }
476d139c
NP
1331
1332 span = sd->span;
1333 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1334 if (!group) {
1335 sd = sd->child;
1336 continue;
1337 }
476d139c 1338
da5a5522 1339 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1340 if (new_cpu == -1 || new_cpu == cpu) {
1341 /* Now try balancing at a lower domain level of cpu */
1342 sd = sd->child;
1343 continue;
1344 }
476d139c 1345
1a848870 1346 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1347 cpu = new_cpu;
476d139c
NP
1348 sd = NULL;
1349 weight = cpus_weight(span);
1350 for_each_domain(cpu, tmp) {
1351 if (weight <= cpus_weight(tmp->span))
1352 break;
1353 if (tmp->flags & flag)
1354 sd = tmp;
1355 }
1356 /* while loop will break here if sd == NULL */
1357 }
1358
1359 return cpu;
1360}
1361
1362#endif /* CONFIG_SMP */
1da177e4
LT
1363
1364/*
1365 * wake_idle() will wake a task on an idle cpu if task->cpu is
1366 * not idle and an idle cpu is available. The span of cpus to
1367 * search starts with cpus closest then further out as needed,
1368 * so we always favor a closer, idle cpu.
1369 *
1370 * Returns the CPU we should wake onto.
1371 */
1372#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1373static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1374{
1375 cpumask_t tmp;
1376 struct sched_domain *sd;
1377 int i;
1378
4953198b
SS
1379 /*
1380 * If it is idle, then it is the best cpu to run this task.
1381 *
1382 * This cpu is also the best, if it has more than one task already.
1383 * Siblings must be also busy(in most cases) as they didn't already
1384 * pickup the extra load from this cpu and hence we need not check
1385 * sibling runqueue info. This will avoid the checks and cache miss
1386 * penalities associated with that.
1387 */
1388 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1389 return cpu;
1390
1391 for_each_domain(cpu, sd) {
1392 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1393 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1394 for_each_cpu_mask(i, tmp) {
1395 if (idle_cpu(i))
1396 return i;
1397 }
9761eea8 1398 } else {
e0f364f4 1399 break;
9761eea8 1400 }
1da177e4
LT
1401 }
1402 return cpu;
1403}
1404#else
36c8b586 1405static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1406{
1407 return cpu;
1408}
1409#endif
1410
1411/***
1412 * try_to_wake_up - wake up a thread
1413 * @p: the to-be-woken-up thread
1414 * @state: the mask of task states that can be woken
1415 * @sync: do a synchronous wakeup?
1416 *
1417 * Put it on the run-queue if it's not already there. The "current"
1418 * thread is always on the run-queue (except when the actual
1419 * re-schedule is in progress), and as such you're allowed to do
1420 * the simpler "current->state = TASK_RUNNING" to mark yourself
1421 * runnable without the overhead of this.
1422 *
1423 * returns failure only if the task is already active.
1424 */
36c8b586 1425static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1426{
1427 int cpu, this_cpu, success = 0;
1428 unsigned long flags;
1429 long old_state;
70b97a7f 1430 struct rq *rq;
1da177e4 1431#ifdef CONFIG_SMP
7897986b 1432 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1433 unsigned long load, this_load;
1da177e4
LT
1434 int new_cpu;
1435#endif
1436
1437 rq = task_rq_lock(p, &flags);
1438 old_state = p->state;
1439 if (!(old_state & state))
1440 goto out;
1441
dd41f596 1442 if (p->se.on_rq)
1da177e4
LT
1443 goto out_running;
1444
1445 cpu = task_cpu(p);
1446 this_cpu = smp_processor_id();
1447
1448#ifdef CONFIG_SMP
1449 if (unlikely(task_running(rq, p)))
1450 goto out_activate;
1451
7897986b
NP
1452 new_cpu = cpu;
1453
1da177e4
LT
1454 schedstat_inc(rq, ttwu_cnt);
1455 if (cpu == this_cpu) {
1456 schedstat_inc(rq, ttwu_local);
7897986b
NP
1457 goto out_set_cpu;
1458 }
1459
1460 for_each_domain(this_cpu, sd) {
1461 if (cpu_isset(cpu, sd->span)) {
1462 schedstat_inc(sd, ttwu_wake_remote);
1463 this_sd = sd;
1464 break;
1da177e4
LT
1465 }
1466 }
1da177e4 1467
7897986b 1468 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1469 goto out_set_cpu;
1470
1da177e4 1471 /*
7897986b 1472 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1473 */
7897986b
NP
1474 if (this_sd) {
1475 int idx = this_sd->wake_idx;
1476 unsigned int imbalance;
1da177e4 1477
a3f21bce
NP
1478 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1479
7897986b
NP
1480 load = source_load(cpu, idx);
1481 this_load = target_load(this_cpu, idx);
1da177e4 1482
7897986b
NP
1483 new_cpu = this_cpu; /* Wake to this CPU if we can */
1484
a3f21bce
NP
1485 if (this_sd->flags & SD_WAKE_AFFINE) {
1486 unsigned long tl = this_load;
33859f7f
MOS
1487 unsigned long tl_per_task;
1488
1489 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1490
1da177e4 1491 /*
a3f21bce
NP
1492 * If sync wakeup then subtract the (maximum possible)
1493 * effect of the currently running task from the load
1494 * of the current CPU:
1da177e4 1495 */
a3f21bce 1496 if (sync)
dd41f596 1497 tl -= current->se.load.weight;
a3f21bce
NP
1498
1499 if ((tl <= load &&
2dd73a4f 1500 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1501 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1502 /*
1503 * This domain has SD_WAKE_AFFINE and
1504 * p is cache cold in this domain, and
1505 * there is no bad imbalance.
1506 */
1507 schedstat_inc(this_sd, ttwu_move_affine);
1508 goto out_set_cpu;
1509 }
1510 }
1511
1512 /*
1513 * Start passive balancing when half the imbalance_pct
1514 * limit is reached.
1515 */
1516 if (this_sd->flags & SD_WAKE_BALANCE) {
1517 if (imbalance*this_load <= 100*load) {
1518 schedstat_inc(this_sd, ttwu_move_balance);
1519 goto out_set_cpu;
1520 }
1da177e4
LT
1521 }
1522 }
1523
1524 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1525out_set_cpu:
1526 new_cpu = wake_idle(new_cpu, p);
1527 if (new_cpu != cpu) {
1528 set_task_cpu(p, new_cpu);
1529 task_rq_unlock(rq, &flags);
1530 /* might preempt at this point */
1531 rq = task_rq_lock(p, &flags);
1532 old_state = p->state;
1533 if (!(old_state & state))
1534 goto out;
dd41f596 1535 if (p->se.on_rq)
1da177e4
LT
1536 goto out_running;
1537
1538 this_cpu = smp_processor_id();
1539 cpu = task_cpu(p);
1540 }
1541
1542out_activate:
1543#endif /* CONFIG_SMP */
2daa3577 1544 update_rq_clock(rq);
dd41f596 1545 activate_task(rq, p, 1);
1da177e4
LT
1546 /*
1547 * Sync wakeups (i.e. those types of wakeups where the waker
1548 * has indicated that it will leave the CPU in short order)
1549 * don't trigger a preemption, if the woken up task will run on
1550 * this cpu. (in this case the 'I will reschedule' promise of
1551 * the waker guarantees that the freshly woken up task is going
1552 * to be considered on this CPU.)
1553 */
dd41f596
IM
1554 if (!sync || cpu != this_cpu)
1555 check_preempt_curr(rq, p);
1da177e4
LT
1556 success = 1;
1557
1558out_running:
1559 p->state = TASK_RUNNING;
1560out:
1561 task_rq_unlock(rq, &flags);
1562
1563 return success;
1564}
1565
36c8b586 1566int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1567{
1568 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1569 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1570}
1da177e4
LT
1571EXPORT_SYMBOL(wake_up_process);
1572
36c8b586 1573int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1574{
1575 return try_to_wake_up(p, state, 0);
1576}
1577
1da177e4
LT
1578/*
1579 * Perform scheduler related setup for a newly forked process p.
1580 * p is forked by current.
dd41f596
IM
1581 *
1582 * __sched_fork() is basic setup used by init_idle() too:
1583 */
1584static void __sched_fork(struct task_struct *p)
1585{
1586 p->se.wait_start_fair = 0;
dd41f596
IM
1587 p->se.exec_start = 0;
1588 p->se.sum_exec_runtime = 0;
f6cf891c 1589 p->se.prev_sum_exec_runtime = 0;
dd41f596
IM
1590 p->se.delta_exec = 0;
1591 p->se.delta_fair_run = 0;
1592 p->se.delta_fair_sleep = 0;
1593 p->se.wait_runtime = 0;
6cfb0d5d
IM
1594 p->se.sleep_start_fair = 0;
1595
1596#ifdef CONFIG_SCHEDSTATS
1597 p->se.wait_start = 0;
dd41f596
IM
1598 p->se.sum_wait_runtime = 0;
1599 p->se.sum_sleep_runtime = 0;
1600 p->se.sleep_start = 0;
dd41f596
IM
1601 p->se.block_start = 0;
1602 p->se.sleep_max = 0;
1603 p->se.block_max = 0;
1604 p->se.exec_max = 0;
1605 p->se.wait_max = 0;
1606 p->se.wait_runtime_overruns = 0;
1607 p->se.wait_runtime_underruns = 0;
6cfb0d5d 1608#endif
476d139c 1609
dd41f596
IM
1610 INIT_LIST_HEAD(&p->run_list);
1611 p->se.on_rq = 0;
476d139c 1612
e107be36
AK
1613#ifdef CONFIG_PREEMPT_NOTIFIERS
1614 INIT_HLIST_HEAD(&p->preempt_notifiers);
1615#endif
1616
1da177e4
LT
1617 /*
1618 * We mark the process as running here, but have not actually
1619 * inserted it onto the runqueue yet. This guarantees that
1620 * nobody will actually run it, and a signal or other external
1621 * event cannot wake it up and insert it on the runqueue either.
1622 */
1623 p->state = TASK_RUNNING;
dd41f596
IM
1624}
1625
1626/*
1627 * fork()/clone()-time setup:
1628 */
1629void sched_fork(struct task_struct *p, int clone_flags)
1630{
1631 int cpu = get_cpu();
1632
1633 __sched_fork(p);
1634
1635#ifdef CONFIG_SMP
1636 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1637#endif
1638 __set_task_cpu(p, cpu);
b29739f9
IM
1639
1640 /*
1641 * Make sure we do not leak PI boosting priority to the child:
1642 */
1643 p->prio = current->normal_prio;
1644
52f17b6c 1645#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1646 if (likely(sched_info_on()))
52f17b6c 1647 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1648#endif
d6077cb8 1649#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1650 p->oncpu = 0;
1651#endif
1da177e4 1652#ifdef CONFIG_PREEMPT
4866cde0 1653 /* Want to start with kernel preemption disabled. */
a1261f54 1654 task_thread_info(p)->preempt_count = 1;
1da177e4 1655#endif
476d139c 1656 put_cpu();
1da177e4
LT
1657}
1658
dd41f596
IM
1659/*
1660 * After fork, child runs first. (default) If set to 0 then
1661 * parent will (try to) run first.
1662 */
1663unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1664
1da177e4
LT
1665/*
1666 * wake_up_new_task - wake up a newly created task for the first time.
1667 *
1668 * This function will do some initial scheduler statistics housekeeping
1669 * that must be done for every newly created context, then puts the task
1670 * on the runqueue and wakes it.
1671 */
36c8b586 1672void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1673{
1674 unsigned long flags;
dd41f596
IM
1675 struct rq *rq;
1676 int this_cpu;
1da177e4
LT
1677
1678 rq = task_rq_lock(p, &flags);
147cbb4b 1679 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1680 this_cpu = smp_processor_id(); /* parent's CPU */
a8e504d2 1681 update_rq_clock(rq);
1da177e4
LT
1682
1683 p->prio = effective_prio(p);
1684
cad60d93
IM
1685 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1686 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1687 !current->se.on_rq) {
1688
dd41f596 1689 activate_task(rq, p, 0);
1da177e4 1690 } else {
1da177e4 1691 /*
dd41f596
IM
1692 * Let the scheduling class do new task startup
1693 * management (if any):
1da177e4 1694 */
ee0827d8 1695 p->sched_class->task_new(rq, p);
e5fa2237 1696 inc_nr_running(p, rq);
1da177e4 1697 }
dd41f596
IM
1698 check_preempt_curr(rq, p);
1699 task_rq_unlock(rq, &flags);
1da177e4
LT
1700}
1701
e107be36
AK
1702#ifdef CONFIG_PREEMPT_NOTIFIERS
1703
1704/**
421cee29
RD
1705 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1706 * @notifier: notifier struct to register
e107be36
AK
1707 */
1708void preempt_notifier_register(struct preempt_notifier *notifier)
1709{
1710 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1711}
1712EXPORT_SYMBOL_GPL(preempt_notifier_register);
1713
1714/**
1715 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1716 * @notifier: notifier struct to unregister
e107be36
AK
1717 *
1718 * This is safe to call from within a preemption notifier.
1719 */
1720void preempt_notifier_unregister(struct preempt_notifier *notifier)
1721{
1722 hlist_del(&notifier->link);
1723}
1724EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1725
1726static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1727{
1728 struct preempt_notifier *notifier;
1729 struct hlist_node *node;
1730
1731 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1732 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1733}
1734
1735static void
1736fire_sched_out_preempt_notifiers(struct task_struct *curr,
1737 struct task_struct *next)
1738{
1739 struct preempt_notifier *notifier;
1740 struct hlist_node *node;
1741
1742 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1743 notifier->ops->sched_out(notifier, next);
1744}
1745
1746#else
1747
1748static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1749{
1750}
1751
1752static void
1753fire_sched_out_preempt_notifiers(struct task_struct *curr,
1754 struct task_struct *next)
1755{
1756}
1757
1758#endif
1759
4866cde0
NP
1760/**
1761 * prepare_task_switch - prepare to switch tasks
1762 * @rq: the runqueue preparing to switch
421cee29 1763 * @prev: the current task that is being switched out
4866cde0
NP
1764 * @next: the task we are going to switch to.
1765 *
1766 * This is called with the rq lock held and interrupts off. It must
1767 * be paired with a subsequent finish_task_switch after the context
1768 * switch.
1769 *
1770 * prepare_task_switch sets up locking and calls architecture specific
1771 * hooks.
1772 */
e107be36
AK
1773static inline void
1774prepare_task_switch(struct rq *rq, struct task_struct *prev,
1775 struct task_struct *next)
4866cde0 1776{
e107be36 1777 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1778 prepare_lock_switch(rq, next);
1779 prepare_arch_switch(next);
1780}
1781
1da177e4
LT
1782/**
1783 * finish_task_switch - clean up after a task-switch
344babaa 1784 * @rq: runqueue associated with task-switch
1da177e4
LT
1785 * @prev: the thread we just switched away from.
1786 *
4866cde0
NP
1787 * finish_task_switch must be called after the context switch, paired
1788 * with a prepare_task_switch call before the context switch.
1789 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1790 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1791 *
1792 * Note that we may have delayed dropping an mm in context_switch(). If
1793 * so, we finish that here outside of the runqueue lock. (Doing it
1794 * with the lock held can cause deadlocks; see schedule() for
1795 * details.)
1796 */
70b97a7f 1797static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1798 __releases(rq->lock)
1799{
1da177e4 1800 struct mm_struct *mm = rq->prev_mm;
55a101f8 1801 long prev_state;
1da177e4
LT
1802
1803 rq->prev_mm = NULL;
1804
1805 /*
1806 * A task struct has one reference for the use as "current".
c394cc9f 1807 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1808 * schedule one last time. The schedule call will never return, and
1809 * the scheduled task must drop that reference.
c394cc9f 1810 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1811 * still held, otherwise prev could be scheduled on another cpu, die
1812 * there before we look at prev->state, and then the reference would
1813 * be dropped twice.
1814 * Manfred Spraul <manfred@colorfullife.com>
1815 */
55a101f8 1816 prev_state = prev->state;
4866cde0
NP
1817 finish_arch_switch(prev);
1818 finish_lock_switch(rq, prev);
e107be36 1819 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1820 if (mm)
1821 mmdrop(mm);
c394cc9f 1822 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1823 /*
1824 * Remove function-return probe instances associated with this
1825 * task and put them back on the free list.
9761eea8 1826 */
c6fd91f0 1827 kprobe_flush_task(prev);
1da177e4 1828 put_task_struct(prev);
c6fd91f0 1829 }
1da177e4
LT
1830}
1831
1832/**
1833 * schedule_tail - first thing a freshly forked thread must call.
1834 * @prev: the thread we just switched away from.
1835 */
36c8b586 1836asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1837 __releases(rq->lock)
1838{
70b97a7f
IM
1839 struct rq *rq = this_rq();
1840
4866cde0
NP
1841 finish_task_switch(rq, prev);
1842#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1843 /* In this case, finish_task_switch does not reenable preemption */
1844 preempt_enable();
1845#endif
1da177e4
LT
1846 if (current->set_child_tid)
1847 put_user(current->pid, current->set_child_tid);
1848}
1849
1850/*
1851 * context_switch - switch to the new MM and the new
1852 * thread's register state.
1853 */
dd41f596 1854static inline void
70b97a7f 1855context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1856 struct task_struct *next)
1da177e4 1857{
dd41f596 1858 struct mm_struct *mm, *oldmm;
1da177e4 1859
e107be36 1860 prepare_task_switch(rq, prev, next);
dd41f596
IM
1861 mm = next->mm;
1862 oldmm = prev->active_mm;
9226d125
ZA
1863 /*
1864 * For paravirt, this is coupled with an exit in switch_to to
1865 * combine the page table reload and the switch backend into
1866 * one hypercall.
1867 */
1868 arch_enter_lazy_cpu_mode();
1869
dd41f596 1870 if (unlikely(!mm)) {
1da177e4
LT
1871 next->active_mm = oldmm;
1872 atomic_inc(&oldmm->mm_count);
1873 enter_lazy_tlb(oldmm, next);
1874 } else
1875 switch_mm(oldmm, mm, next);
1876
dd41f596 1877 if (unlikely(!prev->mm)) {
1da177e4 1878 prev->active_mm = NULL;
1da177e4
LT
1879 rq->prev_mm = oldmm;
1880 }
3a5f5e48
IM
1881 /*
1882 * Since the runqueue lock will be released by the next
1883 * task (which is an invalid locking op but in the case
1884 * of the scheduler it's an obvious special-case), so we
1885 * do an early lockdep release here:
1886 */
1887#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1888 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1889#endif
1da177e4
LT
1890
1891 /* Here we just switch the register state and the stack. */
1892 switch_to(prev, next, prev);
1893
dd41f596
IM
1894 barrier();
1895 /*
1896 * this_rq must be evaluated again because prev may have moved
1897 * CPUs since it called schedule(), thus the 'rq' on its stack
1898 * frame will be invalid.
1899 */
1900 finish_task_switch(this_rq(), prev);
1da177e4
LT
1901}
1902
1903/*
1904 * nr_running, nr_uninterruptible and nr_context_switches:
1905 *
1906 * externally visible scheduler statistics: current number of runnable
1907 * threads, current number of uninterruptible-sleeping threads, total
1908 * number of context switches performed since bootup.
1909 */
1910unsigned long nr_running(void)
1911{
1912 unsigned long i, sum = 0;
1913
1914 for_each_online_cpu(i)
1915 sum += cpu_rq(i)->nr_running;
1916
1917 return sum;
1918}
1919
1920unsigned long nr_uninterruptible(void)
1921{
1922 unsigned long i, sum = 0;
1923
0a945022 1924 for_each_possible_cpu(i)
1da177e4
LT
1925 sum += cpu_rq(i)->nr_uninterruptible;
1926
1927 /*
1928 * Since we read the counters lockless, it might be slightly
1929 * inaccurate. Do not allow it to go below zero though:
1930 */
1931 if (unlikely((long)sum < 0))
1932 sum = 0;
1933
1934 return sum;
1935}
1936
1937unsigned long long nr_context_switches(void)
1938{
cc94abfc
SR
1939 int i;
1940 unsigned long long sum = 0;
1da177e4 1941
0a945022 1942 for_each_possible_cpu(i)
1da177e4
LT
1943 sum += cpu_rq(i)->nr_switches;
1944
1945 return sum;
1946}
1947
1948unsigned long nr_iowait(void)
1949{
1950 unsigned long i, sum = 0;
1951
0a945022 1952 for_each_possible_cpu(i)
1da177e4
LT
1953 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1954
1955 return sum;
1956}
1957
db1b1fef
JS
1958unsigned long nr_active(void)
1959{
1960 unsigned long i, running = 0, uninterruptible = 0;
1961
1962 for_each_online_cpu(i) {
1963 running += cpu_rq(i)->nr_running;
1964 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1965 }
1966
1967 if (unlikely((long)uninterruptible < 0))
1968 uninterruptible = 0;
1969
1970 return running + uninterruptible;
1971}
1972
48f24c4d 1973/*
dd41f596
IM
1974 * Update rq->cpu_load[] statistics. This function is usually called every
1975 * scheduler tick (TICK_NSEC).
48f24c4d 1976 */
dd41f596 1977static void update_cpu_load(struct rq *this_rq)
48f24c4d 1978{
dd41f596
IM
1979 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1980 unsigned long total_load = this_rq->ls.load.weight;
1981 unsigned long this_load = total_load;
1982 struct load_stat *ls = &this_rq->ls;
dd41f596
IM
1983 int i, scale;
1984
1985 this_rq->nr_load_updates++;
1986 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1987 goto do_avg;
1988
1989 /* Update delta_fair/delta_exec fields first */
84a1d7a2 1990 update_curr_load(this_rq);
dd41f596
IM
1991
1992 fair_delta64 = ls->delta_fair + 1;
1993 ls->delta_fair = 0;
1994
1995 exec_delta64 = ls->delta_exec + 1;
1996 ls->delta_exec = 0;
1997
d281918d
IM
1998 sample_interval64 = this_rq->clock - ls->load_update_last;
1999 ls->load_update_last = this_rq->clock;
dd41f596
IM
2000
2001 if ((s64)sample_interval64 < (s64)TICK_NSEC)
2002 sample_interval64 = TICK_NSEC;
2003
2004 if (exec_delta64 > sample_interval64)
2005 exec_delta64 = sample_interval64;
2006
2007 idle_delta64 = sample_interval64 - exec_delta64;
2008
2009 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
2010 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
2011
2012 this_load = (unsigned long)tmp64;
2013
2014do_avg:
2015
2016 /* Update our load: */
2017 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2018 unsigned long old_load, new_load;
2019
2020 /* scale is effectively 1 << i now, and >> i divides by scale */
2021
2022 old_load = this_rq->cpu_load[i];
2023 new_load = this_load;
2024
2025 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2026 }
48f24c4d
IM
2027}
2028
dd41f596
IM
2029#ifdef CONFIG_SMP
2030
1da177e4
LT
2031/*
2032 * double_rq_lock - safely lock two runqueues
2033 *
2034 * Note this does not disable interrupts like task_rq_lock,
2035 * you need to do so manually before calling.
2036 */
70b97a7f 2037static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2038 __acquires(rq1->lock)
2039 __acquires(rq2->lock)
2040{
054b9108 2041 BUG_ON(!irqs_disabled());
1da177e4
LT
2042 if (rq1 == rq2) {
2043 spin_lock(&rq1->lock);
2044 __acquire(rq2->lock); /* Fake it out ;) */
2045 } else {
c96d145e 2046 if (rq1 < rq2) {
1da177e4
LT
2047 spin_lock(&rq1->lock);
2048 spin_lock(&rq2->lock);
2049 } else {
2050 spin_lock(&rq2->lock);
2051 spin_lock(&rq1->lock);
2052 }
2053 }
6e82a3be
IM
2054 update_rq_clock(rq1);
2055 update_rq_clock(rq2);
1da177e4
LT
2056}
2057
2058/*
2059 * double_rq_unlock - safely unlock two runqueues
2060 *
2061 * Note this does not restore interrupts like task_rq_unlock,
2062 * you need to do so manually after calling.
2063 */
70b97a7f 2064static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2065 __releases(rq1->lock)
2066 __releases(rq2->lock)
2067{
2068 spin_unlock(&rq1->lock);
2069 if (rq1 != rq2)
2070 spin_unlock(&rq2->lock);
2071 else
2072 __release(rq2->lock);
2073}
2074
2075/*
2076 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2077 */
70b97a7f 2078static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2079 __releases(this_rq->lock)
2080 __acquires(busiest->lock)
2081 __acquires(this_rq->lock)
2082{
054b9108
KK
2083 if (unlikely(!irqs_disabled())) {
2084 /* printk() doesn't work good under rq->lock */
2085 spin_unlock(&this_rq->lock);
2086 BUG_ON(1);
2087 }
1da177e4 2088 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2089 if (busiest < this_rq) {
1da177e4
LT
2090 spin_unlock(&this_rq->lock);
2091 spin_lock(&busiest->lock);
2092 spin_lock(&this_rq->lock);
2093 } else
2094 spin_lock(&busiest->lock);
2095 }
2096}
2097
1da177e4
LT
2098/*
2099 * If dest_cpu is allowed for this process, migrate the task to it.
2100 * This is accomplished by forcing the cpu_allowed mask to only
2101 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2102 * the cpu_allowed mask is restored.
2103 */
36c8b586 2104static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2105{
70b97a7f 2106 struct migration_req req;
1da177e4 2107 unsigned long flags;
70b97a7f 2108 struct rq *rq;
1da177e4
LT
2109
2110 rq = task_rq_lock(p, &flags);
2111 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2112 || unlikely(cpu_is_offline(dest_cpu)))
2113 goto out;
2114
2115 /* force the process onto the specified CPU */
2116 if (migrate_task(p, dest_cpu, &req)) {
2117 /* Need to wait for migration thread (might exit: take ref). */
2118 struct task_struct *mt = rq->migration_thread;
36c8b586 2119
1da177e4
LT
2120 get_task_struct(mt);
2121 task_rq_unlock(rq, &flags);
2122 wake_up_process(mt);
2123 put_task_struct(mt);
2124 wait_for_completion(&req.done);
36c8b586 2125
1da177e4
LT
2126 return;
2127 }
2128out:
2129 task_rq_unlock(rq, &flags);
2130}
2131
2132/*
476d139c
NP
2133 * sched_exec - execve() is a valuable balancing opportunity, because at
2134 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2135 */
2136void sched_exec(void)
2137{
1da177e4 2138 int new_cpu, this_cpu = get_cpu();
476d139c 2139 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2140 put_cpu();
476d139c
NP
2141 if (new_cpu != this_cpu)
2142 sched_migrate_task(current, new_cpu);
1da177e4
LT
2143}
2144
2145/*
2146 * pull_task - move a task from a remote runqueue to the local runqueue.
2147 * Both runqueues must be locked.
2148 */
dd41f596
IM
2149static void pull_task(struct rq *src_rq, struct task_struct *p,
2150 struct rq *this_rq, int this_cpu)
1da177e4 2151{
2e1cb74a 2152 deactivate_task(src_rq, p, 0);
1da177e4 2153 set_task_cpu(p, this_cpu);
dd41f596 2154 activate_task(this_rq, p, 0);
1da177e4
LT
2155 /*
2156 * Note that idle threads have a prio of MAX_PRIO, for this test
2157 * to be always true for them.
2158 */
dd41f596 2159 check_preempt_curr(this_rq, p);
1da177e4
LT
2160}
2161
2162/*
2163 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2164 */
858119e1 2165static
70b97a7f 2166int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2167 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2168 int *all_pinned)
1da177e4
LT
2169{
2170 /*
2171 * We do not migrate tasks that are:
2172 * 1) running (obviously), or
2173 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2174 * 3) are cache-hot on their current CPU.
2175 */
1da177e4
LT
2176 if (!cpu_isset(this_cpu, p->cpus_allowed))
2177 return 0;
81026794
NP
2178 *all_pinned = 0;
2179
2180 if (task_running(rq, p))
2181 return 0;
1da177e4 2182
1da177e4
LT
2183 return 1;
2184}
2185
dd41f596 2186static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2187 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2188 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2189 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2190 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2191{
dd41f596
IM
2192 int pulled = 0, pinned = 0, skip_for_load;
2193 struct task_struct *p;
2194 long rem_load_move = max_load_move;
1da177e4 2195
2dd73a4f 2196 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2197 goto out;
2198
81026794
NP
2199 pinned = 1;
2200
1da177e4 2201 /*
dd41f596 2202 * Start the load-balancing iterator:
1da177e4 2203 */
dd41f596
IM
2204 p = iterator->start(iterator->arg);
2205next:
2206 if (!p)
1da177e4 2207 goto out;
50ddd969
PW
2208 /*
2209 * To help distribute high priority tasks accross CPUs we don't
2210 * skip a task if it will be the highest priority task (i.e. smallest
2211 * prio value) on its new queue regardless of its load weight
2212 */
dd41f596
IM
2213 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2214 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2215 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2216 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2217 p = iterator->next(iterator->arg);
2218 goto next;
1da177e4
LT
2219 }
2220
dd41f596 2221 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2222 pulled++;
dd41f596 2223 rem_load_move -= p->se.load.weight;
1da177e4 2224
2dd73a4f
PW
2225 /*
2226 * We only want to steal up to the prescribed number of tasks
2227 * and the prescribed amount of weighted load.
2228 */
2229 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2230 if (p->prio < *this_best_prio)
2231 *this_best_prio = p->prio;
dd41f596
IM
2232 p = iterator->next(iterator->arg);
2233 goto next;
1da177e4
LT
2234 }
2235out:
2236 /*
2237 * Right now, this is the only place pull_task() is called,
2238 * so we can safely collect pull_task() stats here rather than
2239 * inside pull_task().
2240 */
2241 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2242
2243 if (all_pinned)
2244 *all_pinned = pinned;
dd41f596 2245 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2246 return pulled;
2247}
2248
dd41f596 2249/*
43010659
PW
2250 * move_tasks tries to move up to max_load_move weighted load from busiest to
2251 * this_rq, as part of a balancing operation within domain "sd".
2252 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2253 *
2254 * Called with both runqueues locked.
2255 */
2256static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2257 unsigned long max_load_move,
dd41f596
IM
2258 struct sched_domain *sd, enum cpu_idle_type idle,
2259 int *all_pinned)
2260{
2261 struct sched_class *class = sched_class_highest;
43010659 2262 unsigned long total_load_moved = 0;
a4ac01c3 2263 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2264
2265 do {
43010659
PW
2266 total_load_moved +=
2267 class->load_balance(this_rq, this_cpu, busiest,
2268 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2269 sd, idle, all_pinned, &this_best_prio);
dd41f596 2270 class = class->next;
43010659 2271 } while (class && max_load_move > total_load_moved);
dd41f596 2272
43010659
PW
2273 return total_load_moved > 0;
2274}
2275
2276/*
2277 * move_one_task tries to move exactly one task from busiest to this_rq, as
2278 * part of active balancing operations within "domain".
2279 * Returns 1 if successful and 0 otherwise.
2280 *
2281 * Called with both runqueues locked.
2282 */
2283static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2284 struct sched_domain *sd, enum cpu_idle_type idle)
2285{
2286 struct sched_class *class;
a4ac01c3 2287 int this_best_prio = MAX_PRIO;
43010659
PW
2288
2289 for (class = sched_class_highest; class; class = class->next)
2290 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2291 1, ULONG_MAX, sd, idle, NULL,
2292 &this_best_prio))
43010659
PW
2293 return 1;
2294
2295 return 0;
dd41f596
IM
2296}
2297
1da177e4
LT
2298/*
2299 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2300 * domain. It calculates and returns the amount of weighted load which
2301 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2302 */
2303static struct sched_group *
2304find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2305 unsigned long *imbalance, enum cpu_idle_type idle,
2306 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2307{
2308 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2309 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2310 unsigned long max_pull;
2dd73a4f
PW
2311 unsigned long busiest_load_per_task, busiest_nr_running;
2312 unsigned long this_load_per_task, this_nr_running;
7897986b 2313 int load_idx;
5c45bf27
SS
2314#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2315 int power_savings_balance = 1;
2316 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2317 unsigned long min_nr_running = ULONG_MAX;
2318 struct sched_group *group_min = NULL, *group_leader = NULL;
2319#endif
1da177e4
LT
2320
2321 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2322 busiest_load_per_task = busiest_nr_running = 0;
2323 this_load_per_task = this_nr_running = 0;
d15bcfdb 2324 if (idle == CPU_NOT_IDLE)
7897986b 2325 load_idx = sd->busy_idx;
d15bcfdb 2326 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2327 load_idx = sd->newidle_idx;
2328 else
2329 load_idx = sd->idle_idx;
1da177e4
LT
2330
2331 do {
5c45bf27 2332 unsigned long load, group_capacity;
1da177e4
LT
2333 int local_group;
2334 int i;
783609c6 2335 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2336 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2337
2338 local_group = cpu_isset(this_cpu, group->cpumask);
2339
783609c6
SS
2340 if (local_group)
2341 balance_cpu = first_cpu(group->cpumask);
2342
1da177e4 2343 /* Tally up the load of all CPUs in the group */
2dd73a4f 2344 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2345
2346 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2347 struct rq *rq;
2348
2349 if (!cpu_isset(i, *cpus))
2350 continue;
2351
2352 rq = cpu_rq(i);
2dd73a4f 2353
9439aab8 2354 if (*sd_idle && rq->nr_running)
5969fe06
NP
2355 *sd_idle = 0;
2356
1da177e4 2357 /* Bias balancing toward cpus of our domain */
783609c6
SS
2358 if (local_group) {
2359 if (idle_cpu(i) && !first_idle_cpu) {
2360 first_idle_cpu = 1;
2361 balance_cpu = i;
2362 }
2363
a2000572 2364 load = target_load(i, load_idx);
783609c6 2365 } else
a2000572 2366 load = source_load(i, load_idx);
1da177e4
LT
2367
2368 avg_load += load;
2dd73a4f 2369 sum_nr_running += rq->nr_running;
dd41f596 2370 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2371 }
2372
783609c6
SS
2373 /*
2374 * First idle cpu or the first cpu(busiest) in this sched group
2375 * is eligible for doing load balancing at this and above
9439aab8
SS
2376 * domains. In the newly idle case, we will allow all the cpu's
2377 * to do the newly idle load balance.
783609c6 2378 */
9439aab8
SS
2379 if (idle != CPU_NEWLY_IDLE && local_group &&
2380 balance_cpu != this_cpu && balance) {
783609c6
SS
2381 *balance = 0;
2382 goto ret;
2383 }
2384
1da177e4 2385 total_load += avg_load;
5517d86b 2386 total_pwr += group->__cpu_power;
1da177e4
LT
2387
2388 /* Adjust by relative CPU power of the group */
5517d86b
ED
2389 avg_load = sg_div_cpu_power(group,
2390 avg_load * SCHED_LOAD_SCALE);
1da177e4 2391
5517d86b 2392 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2393
1da177e4
LT
2394 if (local_group) {
2395 this_load = avg_load;
2396 this = group;
2dd73a4f
PW
2397 this_nr_running = sum_nr_running;
2398 this_load_per_task = sum_weighted_load;
2399 } else if (avg_load > max_load &&
5c45bf27 2400 sum_nr_running > group_capacity) {
1da177e4
LT
2401 max_load = avg_load;
2402 busiest = group;
2dd73a4f
PW
2403 busiest_nr_running = sum_nr_running;
2404 busiest_load_per_task = sum_weighted_load;
1da177e4 2405 }
5c45bf27
SS
2406
2407#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2408 /*
2409 * Busy processors will not participate in power savings
2410 * balance.
2411 */
dd41f596
IM
2412 if (idle == CPU_NOT_IDLE ||
2413 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2414 goto group_next;
5c45bf27
SS
2415
2416 /*
2417 * If the local group is idle or completely loaded
2418 * no need to do power savings balance at this domain
2419 */
2420 if (local_group && (this_nr_running >= group_capacity ||
2421 !this_nr_running))
2422 power_savings_balance = 0;
2423
dd41f596 2424 /*
5c45bf27
SS
2425 * If a group is already running at full capacity or idle,
2426 * don't include that group in power savings calculations
dd41f596
IM
2427 */
2428 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2429 || !sum_nr_running)
dd41f596 2430 goto group_next;
5c45bf27 2431
dd41f596 2432 /*
5c45bf27 2433 * Calculate the group which has the least non-idle load.
dd41f596
IM
2434 * This is the group from where we need to pick up the load
2435 * for saving power
2436 */
2437 if ((sum_nr_running < min_nr_running) ||
2438 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2439 first_cpu(group->cpumask) <
2440 first_cpu(group_min->cpumask))) {
dd41f596
IM
2441 group_min = group;
2442 min_nr_running = sum_nr_running;
5c45bf27
SS
2443 min_load_per_task = sum_weighted_load /
2444 sum_nr_running;
dd41f596 2445 }
5c45bf27 2446
dd41f596 2447 /*
5c45bf27 2448 * Calculate the group which is almost near its
dd41f596
IM
2449 * capacity but still has some space to pick up some load
2450 * from other group and save more power
2451 */
2452 if (sum_nr_running <= group_capacity - 1) {
2453 if (sum_nr_running > leader_nr_running ||
2454 (sum_nr_running == leader_nr_running &&
2455 first_cpu(group->cpumask) >
2456 first_cpu(group_leader->cpumask))) {
2457 group_leader = group;
2458 leader_nr_running = sum_nr_running;
2459 }
48f24c4d 2460 }
5c45bf27
SS
2461group_next:
2462#endif
1da177e4
LT
2463 group = group->next;
2464 } while (group != sd->groups);
2465
2dd73a4f 2466 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2467 goto out_balanced;
2468
2469 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2470
2471 if (this_load >= avg_load ||
2472 100*max_load <= sd->imbalance_pct*this_load)
2473 goto out_balanced;
2474
2dd73a4f 2475 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2476 /*
2477 * We're trying to get all the cpus to the average_load, so we don't
2478 * want to push ourselves above the average load, nor do we wish to
2479 * reduce the max loaded cpu below the average load, as either of these
2480 * actions would just result in more rebalancing later, and ping-pong
2481 * tasks around. Thus we look for the minimum possible imbalance.
2482 * Negative imbalances (*we* are more loaded than anyone else) will
2483 * be counted as no imbalance for these purposes -- we can't fix that
2484 * by pulling tasks to us. Be careful of negative numbers as they'll
2485 * appear as very large values with unsigned longs.
2486 */
2dd73a4f
PW
2487 if (max_load <= busiest_load_per_task)
2488 goto out_balanced;
2489
2490 /*
2491 * In the presence of smp nice balancing, certain scenarios can have
2492 * max load less than avg load(as we skip the groups at or below
2493 * its cpu_power, while calculating max_load..)
2494 */
2495 if (max_load < avg_load) {
2496 *imbalance = 0;
2497 goto small_imbalance;
2498 }
0c117f1b
SS
2499
2500 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2501 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2502
1da177e4 2503 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2504 *imbalance = min(max_pull * busiest->__cpu_power,
2505 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2506 / SCHED_LOAD_SCALE;
2507
2dd73a4f
PW
2508 /*
2509 * if *imbalance is less than the average load per runnable task
2510 * there is no gaurantee that any tasks will be moved so we'll have
2511 * a think about bumping its value to force at least one task to be
2512 * moved
2513 */
7fd0d2dd 2514 if (*imbalance < busiest_load_per_task) {
48f24c4d 2515 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2516 unsigned int imbn;
2517
2518small_imbalance:
2519 pwr_move = pwr_now = 0;
2520 imbn = 2;
2521 if (this_nr_running) {
2522 this_load_per_task /= this_nr_running;
2523 if (busiest_load_per_task > this_load_per_task)
2524 imbn = 1;
2525 } else
2526 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2527
dd41f596
IM
2528 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2529 busiest_load_per_task * imbn) {
2dd73a4f 2530 *imbalance = busiest_load_per_task;
1da177e4
LT
2531 return busiest;
2532 }
2533
2534 /*
2535 * OK, we don't have enough imbalance to justify moving tasks,
2536 * however we may be able to increase total CPU power used by
2537 * moving them.
2538 */
2539
5517d86b
ED
2540 pwr_now += busiest->__cpu_power *
2541 min(busiest_load_per_task, max_load);
2542 pwr_now += this->__cpu_power *
2543 min(this_load_per_task, this_load);
1da177e4
LT
2544 pwr_now /= SCHED_LOAD_SCALE;
2545
2546 /* Amount of load we'd subtract */
5517d86b
ED
2547 tmp = sg_div_cpu_power(busiest,
2548 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2549 if (max_load > tmp)
5517d86b 2550 pwr_move += busiest->__cpu_power *
2dd73a4f 2551 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2552
2553 /* Amount of load we'd add */
5517d86b 2554 if (max_load * busiest->__cpu_power <
33859f7f 2555 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2556 tmp = sg_div_cpu_power(this,
2557 max_load * busiest->__cpu_power);
1da177e4 2558 else
5517d86b
ED
2559 tmp = sg_div_cpu_power(this,
2560 busiest_load_per_task * SCHED_LOAD_SCALE);
2561 pwr_move += this->__cpu_power *
2562 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2563 pwr_move /= SCHED_LOAD_SCALE;
2564
2565 /* Move if we gain throughput */
7fd0d2dd
SS
2566 if (pwr_move > pwr_now)
2567 *imbalance = busiest_load_per_task;
1da177e4
LT
2568 }
2569
1da177e4
LT
2570 return busiest;
2571
2572out_balanced:
5c45bf27 2573#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2574 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2575 goto ret;
1da177e4 2576
5c45bf27
SS
2577 if (this == group_leader && group_leader != group_min) {
2578 *imbalance = min_load_per_task;
2579 return group_min;
2580 }
5c45bf27 2581#endif
783609c6 2582ret:
1da177e4
LT
2583 *imbalance = 0;
2584 return NULL;
2585}
2586
2587/*
2588 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2589 */
70b97a7f 2590static struct rq *
d15bcfdb 2591find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2592 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2593{
70b97a7f 2594 struct rq *busiest = NULL, *rq;
2dd73a4f 2595 unsigned long max_load = 0;
1da177e4
LT
2596 int i;
2597
2598 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2599 unsigned long wl;
0a2966b4
CL
2600
2601 if (!cpu_isset(i, *cpus))
2602 continue;
2603
48f24c4d 2604 rq = cpu_rq(i);
dd41f596 2605 wl = weighted_cpuload(i);
2dd73a4f 2606
dd41f596 2607 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2608 continue;
1da177e4 2609
dd41f596
IM
2610 if (wl > max_load) {
2611 max_load = wl;
48f24c4d 2612 busiest = rq;
1da177e4
LT
2613 }
2614 }
2615
2616 return busiest;
2617}
2618
77391d71
NP
2619/*
2620 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2621 * so long as it is large enough.
2622 */
2623#define MAX_PINNED_INTERVAL 512
2624
1da177e4
LT
2625/*
2626 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2627 * tasks if there is an imbalance.
1da177e4 2628 */
70b97a7f 2629static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2630 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2631 int *balance)
1da177e4 2632{
43010659 2633 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2634 struct sched_group *group;
1da177e4 2635 unsigned long imbalance;
70b97a7f 2636 struct rq *busiest;
0a2966b4 2637 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2638 unsigned long flags;
5969fe06 2639
89c4710e
SS
2640 /*
2641 * When power savings policy is enabled for the parent domain, idle
2642 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2643 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2644 * portraying it as CPU_NOT_IDLE.
89c4710e 2645 */
d15bcfdb 2646 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2647 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2648 sd_idle = 1;
1da177e4 2649
1da177e4
LT
2650 schedstat_inc(sd, lb_cnt[idle]);
2651
0a2966b4
CL
2652redo:
2653 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2654 &cpus, balance);
2655
06066714 2656 if (*balance == 0)
783609c6 2657 goto out_balanced;
783609c6 2658
1da177e4
LT
2659 if (!group) {
2660 schedstat_inc(sd, lb_nobusyg[idle]);
2661 goto out_balanced;
2662 }
2663
0a2966b4 2664 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2665 if (!busiest) {
2666 schedstat_inc(sd, lb_nobusyq[idle]);
2667 goto out_balanced;
2668 }
2669
db935dbd 2670 BUG_ON(busiest == this_rq);
1da177e4
LT
2671
2672 schedstat_add(sd, lb_imbalance[idle], imbalance);
2673
43010659 2674 ld_moved = 0;
1da177e4
LT
2675 if (busiest->nr_running > 1) {
2676 /*
2677 * Attempt to move tasks. If find_busiest_group has found
2678 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2679 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2680 * correctly treated as an imbalance.
2681 */
fe2eea3f 2682 local_irq_save(flags);
e17224bf 2683 double_rq_lock(this_rq, busiest);
43010659 2684 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2685 imbalance, sd, idle, &all_pinned);
e17224bf 2686 double_rq_unlock(this_rq, busiest);
fe2eea3f 2687 local_irq_restore(flags);
81026794 2688
46cb4b7c
SS
2689 /*
2690 * some other cpu did the load balance for us.
2691 */
43010659 2692 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2693 resched_cpu(this_cpu);
2694
81026794 2695 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2696 if (unlikely(all_pinned)) {
2697 cpu_clear(cpu_of(busiest), cpus);
2698 if (!cpus_empty(cpus))
2699 goto redo;
81026794 2700 goto out_balanced;
0a2966b4 2701 }
1da177e4 2702 }
81026794 2703
43010659 2704 if (!ld_moved) {
1da177e4
LT
2705 schedstat_inc(sd, lb_failed[idle]);
2706 sd->nr_balance_failed++;
2707
2708 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2709
fe2eea3f 2710 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2711
2712 /* don't kick the migration_thread, if the curr
2713 * task on busiest cpu can't be moved to this_cpu
2714 */
2715 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2716 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2717 all_pinned = 1;
2718 goto out_one_pinned;
2719 }
2720
1da177e4
LT
2721 if (!busiest->active_balance) {
2722 busiest->active_balance = 1;
2723 busiest->push_cpu = this_cpu;
81026794 2724 active_balance = 1;
1da177e4 2725 }
fe2eea3f 2726 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2727 if (active_balance)
1da177e4
LT
2728 wake_up_process(busiest->migration_thread);
2729
2730 /*
2731 * We've kicked active balancing, reset the failure
2732 * counter.
2733 */
39507451 2734 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2735 }
81026794 2736 } else
1da177e4
LT
2737 sd->nr_balance_failed = 0;
2738
81026794 2739 if (likely(!active_balance)) {
1da177e4
LT
2740 /* We were unbalanced, so reset the balancing interval */
2741 sd->balance_interval = sd->min_interval;
81026794
NP
2742 } else {
2743 /*
2744 * If we've begun active balancing, start to back off. This
2745 * case may not be covered by the all_pinned logic if there
2746 * is only 1 task on the busy runqueue (because we don't call
2747 * move_tasks).
2748 */
2749 if (sd->balance_interval < sd->max_interval)
2750 sd->balance_interval *= 2;
1da177e4
LT
2751 }
2752
43010659 2753 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2754 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2755 return -1;
43010659 2756 return ld_moved;
1da177e4
LT
2757
2758out_balanced:
1da177e4
LT
2759 schedstat_inc(sd, lb_balanced[idle]);
2760
16cfb1c0 2761 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2762
2763out_one_pinned:
1da177e4 2764 /* tune up the balancing interval */
77391d71
NP
2765 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2766 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2767 sd->balance_interval *= 2;
2768
48f24c4d 2769 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2770 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2771 return -1;
1da177e4
LT
2772 return 0;
2773}
2774
2775/*
2776 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2777 * tasks if there is an imbalance.
2778 *
d15bcfdb 2779 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2780 * this_rq is locked.
2781 */
48f24c4d 2782static int
70b97a7f 2783load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2784{
2785 struct sched_group *group;
70b97a7f 2786 struct rq *busiest = NULL;
1da177e4 2787 unsigned long imbalance;
43010659 2788 int ld_moved = 0;
5969fe06 2789 int sd_idle = 0;
969bb4e4 2790 int all_pinned = 0;
0a2966b4 2791 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2792
89c4710e
SS
2793 /*
2794 * When power savings policy is enabled for the parent domain, idle
2795 * sibling can pick up load irrespective of busy siblings. In this case,
2796 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2797 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2798 */
2799 if (sd->flags & SD_SHARE_CPUPOWER &&
2800 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2801 sd_idle = 1;
1da177e4 2802
d15bcfdb 2803 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2804redo:
d15bcfdb 2805 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2806 &sd_idle, &cpus, NULL);
1da177e4 2807 if (!group) {
d15bcfdb 2808 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2809 goto out_balanced;
1da177e4
LT
2810 }
2811
d15bcfdb 2812 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2813 &cpus);
db935dbd 2814 if (!busiest) {
d15bcfdb 2815 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2816 goto out_balanced;
1da177e4
LT
2817 }
2818
db935dbd
NP
2819 BUG_ON(busiest == this_rq);
2820
d15bcfdb 2821 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2822
43010659 2823 ld_moved = 0;
d6d5cfaf
NP
2824 if (busiest->nr_running > 1) {
2825 /* Attempt to move tasks */
2826 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2827 /* this_rq->clock is already updated */
2828 update_rq_clock(busiest);
43010659 2829 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2830 imbalance, sd, CPU_NEWLY_IDLE,
2831 &all_pinned);
d6d5cfaf 2832 spin_unlock(&busiest->lock);
0a2966b4 2833
969bb4e4 2834 if (unlikely(all_pinned)) {
0a2966b4
CL
2835 cpu_clear(cpu_of(busiest), cpus);
2836 if (!cpus_empty(cpus))
2837 goto redo;
2838 }
d6d5cfaf
NP
2839 }
2840
43010659 2841 if (!ld_moved) {
d15bcfdb 2842 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2843 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2844 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2845 return -1;
2846 } else
16cfb1c0 2847 sd->nr_balance_failed = 0;
1da177e4 2848
43010659 2849 return ld_moved;
16cfb1c0
NP
2850
2851out_balanced:
d15bcfdb 2852 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2853 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2854 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2855 return -1;
16cfb1c0 2856 sd->nr_balance_failed = 0;
48f24c4d 2857
16cfb1c0 2858 return 0;
1da177e4
LT
2859}
2860
2861/*
2862 * idle_balance is called by schedule() if this_cpu is about to become
2863 * idle. Attempts to pull tasks from other CPUs.
2864 */
70b97a7f 2865static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2866{
2867 struct sched_domain *sd;
dd41f596
IM
2868 int pulled_task = -1;
2869 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2870
2871 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2872 unsigned long interval;
2873
2874 if (!(sd->flags & SD_LOAD_BALANCE))
2875 continue;
2876
2877 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2878 /* If we've pulled tasks over stop searching: */
1bd77f2d 2879 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2880 this_rq, sd);
2881
2882 interval = msecs_to_jiffies(sd->balance_interval);
2883 if (time_after(next_balance, sd->last_balance + interval))
2884 next_balance = sd->last_balance + interval;
2885 if (pulled_task)
2886 break;
1da177e4 2887 }
dd41f596 2888 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2889 /*
2890 * We are going idle. next_balance may be set based on
2891 * a busy processor. So reset next_balance.
2892 */
2893 this_rq->next_balance = next_balance;
dd41f596 2894 }
1da177e4
LT
2895}
2896
2897/*
2898 * active_load_balance is run by migration threads. It pushes running tasks
2899 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2900 * running on each physical CPU where possible, and avoids physical /
2901 * logical imbalances.
2902 *
2903 * Called with busiest_rq locked.
2904 */
70b97a7f 2905static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2906{
39507451 2907 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2908 struct sched_domain *sd;
2909 struct rq *target_rq;
39507451 2910
48f24c4d 2911 /* Is there any task to move? */
39507451 2912 if (busiest_rq->nr_running <= 1)
39507451
NP
2913 return;
2914
2915 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2916
2917 /*
39507451
NP
2918 * This condition is "impossible", if it occurs
2919 * we need to fix it. Originally reported by
2920 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2921 */
39507451 2922 BUG_ON(busiest_rq == target_rq);
1da177e4 2923
39507451
NP
2924 /* move a task from busiest_rq to target_rq */
2925 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2926 update_rq_clock(busiest_rq);
2927 update_rq_clock(target_rq);
39507451
NP
2928
2929 /* Search for an sd spanning us and the target CPU. */
c96d145e 2930 for_each_domain(target_cpu, sd) {
39507451 2931 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2932 cpu_isset(busiest_cpu, sd->span))
39507451 2933 break;
c96d145e 2934 }
39507451 2935
48f24c4d
IM
2936 if (likely(sd)) {
2937 schedstat_inc(sd, alb_cnt);
39507451 2938
43010659
PW
2939 if (move_one_task(target_rq, target_cpu, busiest_rq,
2940 sd, CPU_IDLE))
48f24c4d
IM
2941 schedstat_inc(sd, alb_pushed);
2942 else
2943 schedstat_inc(sd, alb_failed);
2944 }
39507451 2945 spin_unlock(&target_rq->lock);
1da177e4
LT
2946}
2947
46cb4b7c
SS
2948#ifdef CONFIG_NO_HZ
2949static struct {
2950 atomic_t load_balancer;
2951 cpumask_t cpu_mask;
2952} nohz ____cacheline_aligned = {
2953 .load_balancer = ATOMIC_INIT(-1),
2954 .cpu_mask = CPU_MASK_NONE,
2955};
2956
7835b98b 2957/*
46cb4b7c
SS
2958 * This routine will try to nominate the ilb (idle load balancing)
2959 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2960 * load balancing on behalf of all those cpus. If all the cpus in the system
2961 * go into this tickless mode, then there will be no ilb owner (as there is
2962 * no need for one) and all the cpus will sleep till the next wakeup event
2963 * arrives...
2964 *
2965 * For the ilb owner, tick is not stopped. And this tick will be used
2966 * for idle load balancing. ilb owner will still be part of
2967 * nohz.cpu_mask..
7835b98b 2968 *
46cb4b7c
SS
2969 * While stopping the tick, this cpu will become the ilb owner if there
2970 * is no other owner. And will be the owner till that cpu becomes busy
2971 * or if all cpus in the system stop their ticks at which point
2972 * there is no need for ilb owner.
2973 *
2974 * When the ilb owner becomes busy, it nominates another owner, during the
2975 * next busy scheduler_tick()
2976 */
2977int select_nohz_load_balancer(int stop_tick)
2978{
2979 int cpu = smp_processor_id();
2980
2981 if (stop_tick) {
2982 cpu_set(cpu, nohz.cpu_mask);
2983 cpu_rq(cpu)->in_nohz_recently = 1;
2984
2985 /*
2986 * If we are going offline and still the leader, give up!
2987 */
2988 if (cpu_is_offline(cpu) &&
2989 atomic_read(&nohz.load_balancer) == cpu) {
2990 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2991 BUG();
2992 return 0;
2993 }
2994
2995 /* time for ilb owner also to sleep */
2996 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2997 if (atomic_read(&nohz.load_balancer) == cpu)
2998 atomic_set(&nohz.load_balancer, -1);
2999 return 0;
3000 }
3001
3002 if (atomic_read(&nohz.load_balancer) == -1) {
3003 /* make me the ilb owner */
3004 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3005 return 1;
3006 } else if (atomic_read(&nohz.load_balancer) == cpu)
3007 return 1;
3008 } else {
3009 if (!cpu_isset(cpu, nohz.cpu_mask))
3010 return 0;
3011
3012 cpu_clear(cpu, nohz.cpu_mask);
3013
3014 if (atomic_read(&nohz.load_balancer) == cpu)
3015 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3016 BUG();
3017 }
3018 return 0;
3019}
3020#endif
3021
3022static DEFINE_SPINLOCK(balancing);
3023
3024/*
7835b98b
CL
3025 * It checks each scheduling domain to see if it is due to be balanced,
3026 * and initiates a balancing operation if so.
3027 *
3028 * Balancing parameters are set up in arch_init_sched_domains.
3029 */
d15bcfdb 3030static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3031{
46cb4b7c
SS
3032 int balance = 1;
3033 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3034 unsigned long interval;
3035 struct sched_domain *sd;
46cb4b7c 3036 /* Earliest time when we have to do rebalance again */
c9819f45 3037 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3038 int update_next_balance = 0;
1da177e4 3039
46cb4b7c 3040 for_each_domain(cpu, sd) {
1da177e4
LT
3041 if (!(sd->flags & SD_LOAD_BALANCE))
3042 continue;
3043
3044 interval = sd->balance_interval;
d15bcfdb 3045 if (idle != CPU_IDLE)
1da177e4
LT
3046 interval *= sd->busy_factor;
3047
3048 /* scale ms to jiffies */
3049 interval = msecs_to_jiffies(interval);
3050 if (unlikely(!interval))
3051 interval = 1;
dd41f596
IM
3052 if (interval > HZ*NR_CPUS/10)
3053 interval = HZ*NR_CPUS/10;
3054
1da177e4 3055
08c183f3
CL
3056 if (sd->flags & SD_SERIALIZE) {
3057 if (!spin_trylock(&balancing))
3058 goto out;
3059 }
3060
c9819f45 3061 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3062 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3063 /*
3064 * We've pulled tasks over so either we're no
5969fe06
NP
3065 * longer idle, or one of our SMT siblings is
3066 * not idle.
3067 */
d15bcfdb 3068 idle = CPU_NOT_IDLE;
1da177e4 3069 }
1bd77f2d 3070 sd->last_balance = jiffies;
1da177e4 3071 }
08c183f3
CL
3072 if (sd->flags & SD_SERIALIZE)
3073 spin_unlock(&balancing);
3074out:
f549da84 3075 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3076 next_balance = sd->last_balance + interval;
f549da84
SS
3077 update_next_balance = 1;
3078 }
783609c6
SS
3079
3080 /*
3081 * Stop the load balance at this level. There is another
3082 * CPU in our sched group which is doing load balancing more
3083 * actively.
3084 */
3085 if (!balance)
3086 break;
1da177e4 3087 }
f549da84
SS
3088
3089 /*
3090 * next_balance will be updated only when there is a need.
3091 * When the cpu is attached to null domain for ex, it will not be
3092 * updated.
3093 */
3094 if (likely(update_next_balance))
3095 rq->next_balance = next_balance;
46cb4b7c
SS
3096}
3097
3098/*
3099 * run_rebalance_domains is triggered when needed from the scheduler tick.
3100 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3101 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3102 */
3103static void run_rebalance_domains(struct softirq_action *h)
3104{
dd41f596
IM
3105 int this_cpu = smp_processor_id();
3106 struct rq *this_rq = cpu_rq(this_cpu);
3107 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3108 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3109
dd41f596 3110 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3111
3112#ifdef CONFIG_NO_HZ
3113 /*
3114 * If this cpu is the owner for idle load balancing, then do the
3115 * balancing on behalf of the other idle cpus whose ticks are
3116 * stopped.
3117 */
dd41f596
IM
3118 if (this_rq->idle_at_tick &&
3119 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3120 cpumask_t cpus = nohz.cpu_mask;
3121 struct rq *rq;
3122 int balance_cpu;
3123
dd41f596 3124 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3125 for_each_cpu_mask(balance_cpu, cpus) {
3126 /*
3127 * If this cpu gets work to do, stop the load balancing
3128 * work being done for other cpus. Next load
3129 * balancing owner will pick it up.
3130 */
3131 if (need_resched())
3132 break;
3133
de0cf899 3134 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3135
3136 rq = cpu_rq(balance_cpu);
dd41f596
IM
3137 if (time_after(this_rq->next_balance, rq->next_balance))
3138 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3139 }
3140 }
3141#endif
3142}
3143
3144/*
3145 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3146 *
3147 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3148 * idle load balancing owner or decide to stop the periodic load balancing,
3149 * if the whole system is idle.
3150 */
dd41f596 3151static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3152{
46cb4b7c
SS
3153#ifdef CONFIG_NO_HZ
3154 /*
3155 * If we were in the nohz mode recently and busy at the current
3156 * scheduler tick, then check if we need to nominate new idle
3157 * load balancer.
3158 */
3159 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3160 rq->in_nohz_recently = 0;
3161
3162 if (atomic_read(&nohz.load_balancer) == cpu) {
3163 cpu_clear(cpu, nohz.cpu_mask);
3164 atomic_set(&nohz.load_balancer, -1);
3165 }
3166
3167 if (atomic_read(&nohz.load_balancer) == -1) {
3168 /*
3169 * simple selection for now: Nominate the
3170 * first cpu in the nohz list to be the next
3171 * ilb owner.
3172 *
3173 * TBD: Traverse the sched domains and nominate
3174 * the nearest cpu in the nohz.cpu_mask.
3175 */
3176 int ilb = first_cpu(nohz.cpu_mask);
3177
3178 if (ilb != NR_CPUS)
3179 resched_cpu(ilb);
3180 }
3181 }
3182
3183 /*
3184 * If this cpu is idle and doing idle load balancing for all the
3185 * cpus with ticks stopped, is it time for that to stop?
3186 */
3187 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3188 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3189 resched_cpu(cpu);
3190 return;
3191 }
3192
3193 /*
3194 * If this cpu is idle and the idle load balancing is done by
3195 * someone else, then no need raise the SCHED_SOFTIRQ
3196 */
3197 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3198 cpu_isset(cpu, nohz.cpu_mask))
3199 return;
3200#endif
3201 if (time_after_eq(jiffies, rq->next_balance))
3202 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3203}
dd41f596
IM
3204
3205#else /* CONFIG_SMP */
3206
1da177e4
LT
3207/*
3208 * on UP we do not need to balance between CPUs:
3209 */
70b97a7f 3210static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3211{
3212}
dd41f596
IM
3213
3214/* Avoid "used but not defined" warning on UP */
3215static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3216 unsigned long max_nr_move, unsigned long max_load_move,
3217 struct sched_domain *sd, enum cpu_idle_type idle,
3218 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3219 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3220{
3221 *load_moved = 0;
3222
3223 return 0;
3224}
3225
1da177e4
LT
3226#endif
3227
1da177e4
LT
3228DEFINE_PER_CPU(struct kernel_stat, kstat);
3229
3230EXPORT_PER_CPU_SYMBOL(kstat);
3231
3232/*
41b86e9c
IM
3233 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3234 * that have not yet been banked in case the task is currently running.
1da177e4 3235 */
41b86e9c 3236unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3237{
1da177e4 3238 unsigned long flags;
41b86e9c
IM
3239 u64 ns, delta_exec;
3240 struct rq *rq;
48f24c4d 3241
41b86e9c
IM
3242 rq = task_rq_lock(p, &flags);
3243 ns = p->se.sum_exec_runtime;
3244 if (rq->curr == p) {
a8e504d2
IM
3245 update_rq_clock(rq);
3246 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3247 if ((s64)delta_exec > 0)
3248 ns += delta_exec;
3249 }
3250 task_rq_unlock(rq, &flags);
48f24c4d 3251
1da177e4
LT
3252 return ns;
3253}
3254
1da177e4
LT
3255/*
3256 * Account user cpu time to a process.
3257 * @p: the process that the cpu time gets accounted to
3258 * @hardirq_offset: the offset to subtract from hardirq_count()
3259 * @cputime: the cpu time spent in user space since the last update
3260 */
3261void account_user_time(struct task_struct *p, cputime_t cputime)
3262{
3263 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3264 cputime64_t tmp;
3265
3266 p->utime = cputime_add(p->utime, cputime);
3267
3268 /* Add user time to cpustat. */
3269 tmp = cputime_to_cputime64(cputime);
3270 if (TASK_NICE(p) > 0)
3271 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3272 else
3273 cpustat->user = cputime64_add(cpustat->user, tmp);
3274}
3275
3276/*
3277 * Account system cpu time to a process.
3278 * @p: the process that the cpu time gets accounted to
3279 * @hardirq_offset: the offset to subtract from hardirq_count()
3280 * @cputime: the cpu time spent in kernel space since the last update
3281 */
3282void account_system_time(struct task_struct *p, int hardirq_offset,
3283 cputime_t cputime)
3284{
3285 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3286 struct rq *rq = this_rq();
1da177e4
LT
3287 cputime64_t tmp;
3288
3289 p->stime = cputime_add(p->stime, cputime);
3290
3291 /* Add system time to cpustat. */
3292 tmp = cputime_to_cputime64(cputime);
3293 if (hardirq_count() - hardirq_offset)
3294 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3295 else if (softirq_count())
3296 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3297 else if (p != rq->idle)
3298 cpustat->system = cputime64_add(cpustat->system, tmp);
3299 else if (atomic_read(&rq->nr_iowait) > 0)
3300 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3301 else
3302 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3303 /* Account for system time used */
3304 acct_update_integrals(p);
1da177e4
LT
3305}
3306
3307/*
3308 * Account for involuntary wait time.
3309 * @p: the process from which the cpu time has been stolen
3310 * @steal: the cpu time spent in involuntary wait
3311 */
3312void account_steal_time(struct task_struct *p, cputime_t steal)
3313{
3314 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3315 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3316 struct rq *rq = this_rq();
1da177e4
LT
3317
3318 if (p == rq->idle) {
3319 p->stime = cputime_add(p->stime, steal);
3320 if (atomic_read(&rq->nr_iowait) > 0)
3321 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3322 else
3323 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3324 } else
3325 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3326}
3327
7835b98b
CL
3328/*
3329 * This function gets called by the timer code, with HZ frequency.
3330 * We call it with interrupts disabled.
3331 *
3332 * It also gets called by the fork code, when changing the parent's
3333 * timeslices.
3334 */
3335void scheduler_tick(void)
3336{
7835b98b
CL
3337 int cpu = smp_processor_id();
3338 struct rq *rq = cpu_rq(cpu);
dd41f596 3339 struct task_struct *curr = rq->curr;
529c7726 3340 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3341
3342 spin_lock(&rq->lock);
546fe3c9 3343 __update_rq_clock(rq);
529c7726
IM
3344 /*
3345 * Let rq->clock advance by at least TICK_NSEC:
3346 */
3347 if (unlikely(rq->clock < next_tick))
3348 rq->clock = next_tick;
3349 rq->tick_timestamp = rq->clock;
f1a438d8 3350 update_cpu_load(rq);
dd41f596
IM
3351 if (curr != rq->idle) /* FIXME: needed? */
3352 curr->sched_class->task_tick(rq, curr);
dd41f596 3353 spin_unlock(&rq->lock);
7835b98b 3354
e418e1c2 3355#ifdef CONFIG_SMP
dd41f596
IM
3356 rq->idle_at_tick = idle_cpu(cpu);
3357 trigger_load_balance(rq, cpu);
e418e1c2 3358#endif
1da177e4
LT
3359}
3360
1da177e4
LT
3361#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3362
3363void fastcall add_preempt_count(int val)
3364{
3365 /*
3366 * Underflow?
3367 */
9a11b49a
IM
3368 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3369 return;
1da177e4
LT
3370 preempt_count() += val;
3371 /*
3372 * Spinlock count overflowing soon?
3373 */
33859f7f
MOS
3374 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3375 PREEMPT_MASK - 10);
1da177e4
LT
3376}
3377EXPORT_SYMBOL(add_preempt_count);
3378
3379void fastcall sub_preempt_count(int val)
3380{
3381 /*
3382 * Underflow?
3383 */
9a11b49a
IM
3384 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3385 return;
1da177e4
LT
3386 /*
3387 * Is the spinlock portion underflowing?
3388 */
9a11b49a
IM
3389 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3390 !(preempt_count() & PREEMPT_MASK)))
3391 return;
3392
1da177e4
LT
3393 preempt_count() -= val;
3394}
3395EXPORT_SYMBOL(sub_preempt_count);
3396
3397#endif
3398
3399/*
dd41f596 3400 * Print scheduling while atomic bug:
1da177e4 3401 */
dd41f596 3402static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3403{
dd41f596
IM
3404 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3405 prev->comm, preempt_count(), prev->pid);
3406 debug_show_held_locks(prev);
3407 if (irqs_disabled())
3408 print_irqtrace_events(prev);
3409 dump_stack();
3410}
1da177e4 3411
dd41f596
IM
3412/*
3413 * Various schedule()-time debugging checks and statistics:
3414 */
3415static inline void schedule_debug(struct task_struct *prev)
3416{
1da177e4
LT
3417 /*
3418 * Test if we are atomic. Since do_exit() needs to call into
3419 * schedule() atomically, we ignore that path for now.
3420 * Otherwise, whine if we are scheduling when we should not be.
3421 */
dd41f596
IM
3422 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3423 __schedule_bug(prev);
3424
1da177e4
LT
3425 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3426
dd41f596
IM
3427 schedstat_inc(this_rq(), sched_cnt);
3428}
3429
3430/*
3431 * Pick up the highest-prio task:
3432 */
3433static inline struct task_struct *
ff95f3df 3434pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596
IM
3435{
3436 struct sched_class *class;
3437 struct task_struct *p;
1da177e4
LT
3438
3439 /*
dd41f596
IM
3440 * Optimization: we know that if all tasks are in
3441 * the fair class we can call that function directly:
1da177e4 3442 */
dd41f596 3443 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3444 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3445 if (likely(p))
3446 return p;
1da177e4
LT
3447 }
3448
dd41f596
IM
3449 class = sched_class_highest;
3450 for ( ; ; ) {
fb8d4724 3451 p = class->pick_next_task(rq);
dd41f596
IM
3452 if (p)
3453 return p;
3454 /*
3455 * Will never be NULL as the idle class always
3456 * returns a non-NULL p:
3457 */
3458 class = class->next;
3459 }
3460}
1da177e4 3461
dd41f596
IM
3462/*
3463 * schedule() is the main scheduler function.
3464 */
3465asmlinkage void __sched schedule(void)
3466{
3467 struct task_struct *prev, *next;
3468 long *switch_count;
3469 struct rq *rq;
dd41f596
IM
3470 int cpu;
3471
3472need_resched:
3473 preempt_disable();
3474 cpu = smp_processor_id();
3475 rq = cpu_rq(cpu);
3476 rcu_qsctr_inc(cpu);
3477 prev = rq->curr;
3478 switch_count = &prev->nivcsw;
3479
3480 release_kernel_lock(prev);
3481need_resched_nonpreemptible:
3482
3483 schedule_debug(prev);
1da177e4
LT
3484
3485 spin_lock_irq(&rq->lock);
dd41f596 3486 clear_tsk_need_resched(prev);
c1b3da3e 3487 __update_rq_clock(rq);
1da177e4 3488
1da177e4 3489 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3490 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3491 unlikely(signal_pending(prev)))) {
1da177e4 3492 prev->state = TASK_RUNNING;
dd41f596 3493 } else {
2e1cb74a 3494 deactivate_task(rq, prev, 1);
1da177e4 3495 }
dd41f596 3496 switch_count = &prev->nvcsw;
1da177e4
LT
3497 }
3498
dd41f596 3499 if (unlikely(!rq->nr_running))
1da177e4 3500 idle_balance(cpu, rq);
1da177e4 3501
31ee529c 3502 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3503 next = pick_next_task(rq, prev);
1da177e4
LT
3504
3505 sched_info_switch(prev, next);
dd41f596 3506
1da177e4 3507 if (likely(prev != next)) {
1da177e4
LT
3508 rq->nr_switches++;
3509 rq->curr = next;
3510 ++*switch_count;
3511
dd41f596 3512 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3513 } else
3514 spin_unlock_irq(&rq->lock);
3515
dd41f596
IM
3516 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3517 cpu = smp_processor_id();
3518 rq = cpu_rq(cpu);
1da177e4 3519 goto need_resched_nonpreemptible;
dd41f596 3520 }
1da177e4
LT
3521 preempt_enable_no_resched();
3522 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3523 goto need_resched;
3524}
1da177e4
LT
3525EXPORT_SYMBOL(schedule);
3526
3527#ifdef CONFIG_PREEMPT
3528/*
2ed6e34f 3529 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3530 * off of preempt_enable. Kernel preemptions off return from interrupt
3531 * occur there and call schedule directly.
3532 */
3533asmlinkage void __sched preempt_schedule(void)
3534{
3535 struct thread_info *ti = current_thread_info();
3536#ifdef CONFIG_PREEMPT_BKL
3537 struct task_struct *task = current;
3538 int saved_lock_depth;
3539#endif
3540 /*
3541 * If there is a non-zero preempt_count or interrupts are disabled,
3542 * we do not want to preempt the current task. Just return..
3543 */
beed33a8 3544 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3545 return;
3546
3547need_resched:
3548 add_preempt_count(PREEMPT_ACTIVE);
3549 /*
3550 * We keep the big kernel semaphore locked, but we
3551 * clear ->lock_depth so that schedule() doesnt
3552 * auto-release the semaphore:
3553 */
3554#ifdef CONFIG_PREEMPT_BKL
3555 saved_lock_depth = task->lock_depth;
3556 task->lock_depth = -1;
3557#endif
3558 schedule();
3559#ifdef CONFIG_PREEMPT_BKL
3560 task->lock_depth = saved_lock_depth;
3561#endif
3562 sub_preempt_count(PREEMPT_ACTIVE);
3563
3564 /* we could miss a preemption opportunity between schedule and now */
3565 barrier();
3566 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3567 goto need_resched;
3568}
1da177e4
LT
3569EXPORT_SYMBOL(preempt_schedule);
3570
3571/*
2ed6e34f 3572 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3573 * off of irq context.
3574 * Note, that this is called and return with irqs disabled. This will
3575 * protect us against recursive calling from irq.
3576 */
3577asmlinkage void __sched preempt_schedule_irq(void)
3578{
3579 struct thread_info *ti = current_thread_info();
3580#ifdef CONFIG_PREEMPT_BKL
3581 struct task_struct *task = current;
3582 int saved_lock_depth;
3583#endif
2ed6e34f 3584 /* Catch callers which need to be fixed */
1da177e4
LT
3585 BUG_ON(ti->preempt_count || !irqs_disabled());
3586
3587need_resched:
3588 add_preempt_count(PREEMPT_ACTIVE);
3589 /*
3590 * We keep the big kernel semaphore locked, but we
3591 * clear ->lock_depth so that schedule() doesnt
3592 * auto-release the semaphore:
3593 */
3594#ifdef CONFIG_PREEMPT_BKL
3595 saved_lock_depth = task->lock_depth;
3596 task->lock_depth = -1;
3597#endif
3598 local_irq_enable();
3599 schedule();
3600 local_irq_disable();
3601#ifdef CONFIG_PREEMPT_BKL
3602 task->lock_depth = saved_lock_depth;
3603#endif
3604 sub_preempt_count(PREEMPT_ACTIVE);
3605
3606 /* we could miss a preemption opportunity between schedule and now */
3607 barrier();
3608 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3609 goto need_resched;
3610}
3611
3612#endif /* CONFIG_PREEMPT */
3613
95cdf3b7
IM
3614int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3615 void *key)
1da177e4 3616{
48f24c4d 3617 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3618}
1da177e4
LT
3619EXPORT_SYMBOL(default_wake_function);
3620
3621/*
3622 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3623 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3624 * number) then we wake all the non-exclusive tasks and one exclusive task.
3625 *
3626 * There are circumstances in which we can try to wake a task which has already
3627 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3628 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3629 */
3630static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3631 int nr_exclusive, int sync, void *key)
3632{
3633 struct list_head *tmp, *next;
3634
3635 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3636 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3637 unsigned flags = curr->flags;
3638
1da177e4 3639 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3640 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3641 break;
3642 }
3643}
3644
3645/**
3646 * __wake_up - wake up threads blocked on a waitqueue.
3647 * @q: the waitqueue
3648 * @mode: which threads
3649 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3650 * @key: is directly passed to the wakeup function
1da177e4
LT
3651 */
3652void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3653 int nr_exclusive, void *key)
1da177e4
LT
3654{
3655 unsigned long flags;
3656
3657 spin_lock_irqsave(&q->lock, flags);
3658 __wake_up_common(q, mode, nr_exclusive, 0, key);
3659 spin_unlock_irqrestore(&q->lock, flags);
3660}
1da177e4
LT
3661EXPORT_SYMBOL(__wake_up);
3662
3663/*
3664 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3665 */
3666void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3667{
3668 __wake_up_common(q, mode, 1, 0, NULL);
3669}
3670
3671/**
67be2dd1 3672 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3673 * @q: the waitqueue
3674 * @mode: which threads
3675 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3676 *
3677 * The sync wakeup differs that the waker knows that it will schedule
3678 * away soon, so while the target thread will be woken up, it will not
3679 * be migrated to another CPU - ie. the two threads are 'synchronized'
3680 * with each other. This can prevent needless bouncing between CPUs.
3681 *
3682 * On UP it can prevent extra preemption.
3683 */
95cdf3b7
IM
3684void fastcall
3685__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3686{
3687 unsigned long flags;
3688 int sync = 1;
3689
3690 if (unlikely(!q))
3691 return;
3692
3693 if (unlikely(!nr_exclusive))
3694 sync = 0;
3695
3696 spin_lock_irqsave(&q->lock, flags);
3697 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3698 spin_unlock_irqrestore(&q->lock, flags);
3699}
3700EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3701
3702void fastcall complete(struct completion *x)
3703{
3704 unsigned long flags;
3705
3706 spin_lock_irqsave(&x->wait.lock, flags);
3707 x->done++;
3708 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3709 1, 0, NULL);
3710 spin_unlock_irqrestore(&x->wait.lock, flags);
3711}
3712EXPORT_SYMBOL(complete);
3713
3714void fastcall complete_all(struct completion *x)
3715{
3716 unsigned long flags;
3717
3718 spin_lock_irqsave(&x->wait.lock, flags);
3719 x->done += UINT_MAX/2;
3720 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3721 0, 0, NULL);
3722 spin_unlock_irqrestore(&x->wait.lock, flags);
3723}
3724EXPORT_SYMBOL(complete_all);
3725
3726void fastcall __sched wait_for_completion(struct completion *x)
3727{
3728 might_sleep();
48f24c4d 3729
1da177e4
LT
3730 spin_lock_irq(&x->wait.lock);
3731 if (!x->done) {
3732 DECLARE_WAITQUEUE(wait, current);
3733
3734 wait.flags |= WQ_FLAG_EXCLUSIVE;
3735 __add_wait_queue_tail(&x->wait, &wait);
3736 do {
3737 __set_current_state(TASK_UNINTERRUPTIBLE);
3738 spin_unlock_irq(&x->wait.lock);
3739 schedule();
3740 spin_lock_irq(&x->wait.lock);
3741 } while (!x->done);
3742 __remove_wait_queue(&x->wait, &wait);
3743 }
3744 x->done--;
3745 spin_unlock_irq(&x->wait.lock);
3746}
3747EXPORT_SYMBOL(wait_for_completion);
3748
3749unsigned long fastcall __sched
3750wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3751{
3752 might_sleep();
3753
3754 spin_lock_irq(&x->wait.lock);
3755 if (!x->done) {
3756 DECLARE_WAITQUEUE(wait, current);
3757
3758 wait.flags |= WQ_FLAG_EXCLUSIVE;
3759 __add_wait_queue_tail(&x->wait, &wait);
3760 do {
3761 __set_current_state(TASK_UNINTERRUPTIBLE);
3762 spin_unlock_irq(&x->wait.lock);
3763 timeout = schedule_timeout(timeout);
3764 spin_lock_irq(&x->wait.lock);
3765 if (!timeout) {
3766 __remove_wait_queue(&x->wait, &wait);
3767 goto out;
3768 }
3769 } while (!x->done);
3770 __remove_wait_queue(&x->wait, &wait);
3771 }
3772 x->done--;
3773out:
3774 spin_unlock_irq(&x->wait.lock);
3775 return timeout;
3776}
3777EXPORT_SYMBOL(wait_for_completion_timeout);
3778
3779int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3780{
3781 int ret = 0;
3782
3783 might_sleep();
3784
3785 spin_lock_irq(&x->wait.lock);
3786 if (!x->done) {
3787 DECLARE_WAITQUEUE(wait, current);
3788
3789 wait.flags |= WQ_FLAG_EXCLUSIVE;
3790 __add_wait_queue_tail(&x->wait, &wait);
3791 do {
3792 if (signal_pending(current)) {
3793 ret = -ERESTARTSYS;
3794 __remove_wait_queue(&x->wait, &wait);
3795 goto out;
3796 }
3797 __set_current_state(TASK_INTERRUPTIBLE);
3798 spin_unlock_irq(&x->wait.lock);
3799 schedule();
3800 spin_lock_irq(&x->wait.lock);
3801 } while (!x->done);
3802 __remove_wait_queue(&x->wait, &wait);
3803 }
3804 x->done--;
3805out:
3806 spin_unlock_irq(&x->wait.lock);
3807
3808 return ret;
3809}
3810EXPORT_SYMBOL(wait_for_completion_interruptible);
3811
3812unsigned long fastcall __sched
3813wait_for_completion_interruptible_timeout(struct completion *x,
3814 unsigned long timeout)
3815{
3816 might_sleep();
3817
3818 spin_lock_irq(&x->wait.lock);
3819 if (!x->done) {
3820 DECLARE_WAITQUEUE(wait, current);
3821
3822 wait.flags |= WQ_FLAG_EXCLUSIVE;
3823 __add_wait_queue_tail(&x->wait, &wait);
3824 do {
3825 if (signal_pending(current)) {
3826 timeout = -ERESTARTSYS;
3827 __remove_wait_queue(&x->wait, &wait);
3828 goto out;
3829 }
3830 __set_current_state(TASK_INTERRUPTIBLE);
3831 spin_unlock_irq(&x->wait.lock);
3832 timeout = schedule_timeout(timeout);
3833 spin_lock_irq(&x->wait.lock);
3834 if (!timeout) {
3835 __remove_wait_queue(&x->wait, &wait);
3836 goto out;
3837 }
3838 } while (!x->done);
3839 __remove_wait_queue(&x->wait, &wait);
3840 }
3841 x->done--;
3842out:
3843 spin_unlock_irq(&x->wait.lock);
3844 return timeout;
3845}
3846EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3847
0fec171c
IM
3848static inline void
3849sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3850{
3851 spin_lock_irqsave(&q->lock, *flags);
3852 __add_wait_queue(q, wait);
1da177e4 3853 spin_unlock(&q->lock);
0fec171c 3854}
1da177e4 3855
0fec171c
IM
3856static inline void
3857sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3858{
3859 spin_lock_irq(&q->lock);
3860 __remove_wait_queue(q, wait);
3861 spin_unlock_irqrestore(&q->lock, *flags);
3862}
1da177e4 3863
0fec171c 3864void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3865{
0fec171c
IM
3866 unsigned long flags;
3867 wait_queue_t wait;
3868
3869 init_waitqueue_entry(&wait, current);
1da177e4
LT
3870
3871 current->state = TASK_INTERRUPTIBLE;
3872
0fec171c 3873 sleep_on_head(q, &wait, &flags);
1da177e4 3874 schedule();
0fec171c 3875 sleep_on_tail(q, &wait, &flags);
1da177e4 3876}
1da177e4
LT
3877EXPORT_SYMBOL(interruptible_sleep_on);
3878
0fec171c 3879long __sched
95cdf3b7 3880interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3881{
0fec171c
IM
3882 unsigned long flags;
3883 wait_queue_t wait;
3884
3885 init_waitqueue_entry(&wait, current);
1da177e4
LT
3886
3887 current->state = TASK_INTERRUPTIBLE;
3888
0fec171c 3889 sleep_on_head(q, &wait, &flags);
1da177e4 3890 timeout = schedule_timeout(timeout);
0fec171c 3891 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3892
3893 return timeout;
3894}
1da177e4
LT
3895EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3896
0fec171c 3897void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3898{
0fec171c
IM
3899 unsigned long flags;
3900 wait_queue_t wait;
3901
3902 init_waitqueue_entry(&wait, current);
1da177e4
LT
3903
3904 current->state = TASK_UNINTERRUPTIBLE;
3905
0fec171c 3906 sleep_on_head(q, &wait, &flags);
1da177e4 3907 schedule();
0fec171c 3908 sleep_on_tail(q, &wait, &flags);
1da177e4 3909}
1da177e4
LT
3910EXPORT_SYMBOL(sleep_on);
3911
0fec171c 3912long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3913{
0fec171c
IM
3914 unsigned long flags;
3915 wait_queue_t wait;
3916
3917 init_waitqueue_entry(&wait, current);
1da177e4
LT
3918
3919 current->state = TASK_UNINTERRUPTIBLE;
3920
0fec171c 3921 sleep_on_head(q, &wait, &flags);
1da177e4 3922 timeout = schedule_timeout(timeout);
0fec171c 3923 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3924
3925 return timeout;
3926}
1da177e4
LT
3927EXPORT_SYMBOL(sleep_on_timeout);
3928
b29739f9
IM
3929#ifdef CONFIG_RT_MUTEXES
3930
3931/*
3932 * rt_mutex_setprio - set the current priority of a task
3933 * @p: task
3934 * @prio: prio value (kernel-internal form)
3935 *
3936 * This function changes the 'effective' priority of a task. It does
3937 * not touch ->normal_prio like __setscheduler().
3938 *
3939 * Used by the rt_mutex code to implement priority inheritance logic.
3940 */
36c8b586 3941void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3942{
3943 unsigned long flags;
dd41f596 3944 int oldprio, on_rq;
70b97a7f 3945 struct rq *rq;
b29739f9
IM
3946
3947 BUG_ON(prio < 0 || prio > MAX_PRIO);
3948
3949 rq = task_rq_lock(p, &flags);
a8e504d2 3950 update_rq_clock(rq);
b29739f9 3951
d5f9f942 3952 oldprio = p->prio;
dd41f596
IM
3953 on_rq = p->se.on_rq;
3954 if (on_rq)
69be72c1 3955 dequeue_task(rq, p, 0);
dd41f596
IM
3956
3957 if (rt_prio(prio))
3958 p->sched_class = &rt_sched_class;
3959 else
3960 p->sched_class = &fair_sched_class;
3961
b29739f9
IM
3962 p->prio = prio;
3963
dd41f596 3964 if (on_rq) {
8159f87e 3965 enqueue_task(rq, p, 0);
b29739f9
IM
3966 /*
3967 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3968 * our priority decreased, or if we are not currently running on
3969 * this runqueue and our priority is higher than the current's
b29739f9 3970 */
d5f9f942
AM
3971 if (task_running(rq, p)) {
3972 if (p->prio > oldprio)
3973 resched_task(rq->curr);
dd41f596
IM
3974 } else {
3975 check_preempt_curr(rq, p);
3976 }
b29739f9
IM
3977 }
3978 task_rq_unlock(rq, &flags);
3979}
3980
3981#endif
3982
36c8b586 3983void set_user_nice(struct task_struct *p, long nice)
1da177e4 3984{
dd41f596 3985 int old_prio, delta, on_rq;
1da177e4 3986 unsigned long flags;
70b97a7f 3987 struct rq *rq;
1da177e4
LT
3988
3989 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3990 return;
3991 /*
3992 * We have to be careful, if called from sys_setpriority(),
3993 * the task might be in the middle of scheduling on another CPU.
3994 */
3995 rq = task_rq_lock(p, &flags);
a8e504d2 3996 update_rq_clock(rq);
1da177e4
LT
3997 /*
3998 * The RT priorities are set via sched_setscheduler(), but we still
3999 * allow the 'normal' nice value to be set - but as expected
4000 * it wont have any effect on scheduling until the task is
dd41f596 4001 * SCHED_FIFO/SCHED_RR:
1da177e4 4002 */
e05606d3 4003 if (task_has_rt_policy(p)) {
1da177e4
LT
4004 p->static_prio = NICE_TO_PRIO(nice);
4005 goto out_unlock;
4006 }
dd41f596
IM
4007 on_rq = p->se.on_rq;
4008 if (on_rq) {
69be72c1 4009 dequeue_task(rq, p, 0);
79b5dddf 4010 dec_load(rq, p);
2dd73a4f 4011 }
1da177e4 4012
1da177e4 4013 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4014 set_load_weight(p);
b29739f9
IM
4015 old_prio = p->prio;
4016 p->prio = effective_prio(p);
4017 delta = p->prio - old_prio;
1da177e4 4018
dd41f596 4019 if (on_rq) {
8159f87e 4020 enqueue_task(rq, p, 0);
29b4b623 4021 inc_load(rq, p);
1da177e4 4022 /*
d5f9f942
AM
4023 * If the task increased its priority or is running and
4024 * lowered its priority, then reschedule its CPU:
1da177e4 4025 */
d5f9f942 4026 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4027 resched_task(rq->curr);
4028 }
4029out_unlock:
4030 task_rq_unlock(rq, &flags);
4031}
1da177e4
LT
4032EXPORT_SYMBOL(set_user_nice);
4033
e43379f1
MM
4034/*
4035 * can_nice - check if a task can reduce its nice value
4036 * @p: task
4037 * @nice: nice value
4038 */
36c8b586 4039int can_nice(const struct task_struct *p, const int nice)
e43379f1 4040{
024f4747
MM
4041 /* convert nice value [19,-20] to rlimit style value [1,40] */
4042 int nice_rlim = 20 - nice;
48f24c4d 4043
e43379f1
MM
4044 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4045 capable(CAP_SYS_NICE));
4046}
4047
1da177e4
LT
4048#ifdef __ARCH_WANT_SYS_NICE
4049
4050/*
4051 * sys_nice - change the priority of the current process.
4052 * @increment: priority increment
4053 *
4054 * sys_setpriority is a more generic, but much slower function that
4055 * does similar things.
4056 */
4057asmlinkage long sys_nice(int increment)
4058{
48f24c4d 4059 long nice, retval;
1da177e4
LT
4060
4061 /*
4062 * Setpriority might change our priority at the same moment.
4063 * We don't have to worry. Conceptually one call occurs first
4064 * and we have a single winner.
4065 */
e43379f1
MM
4066 if (increment < -40)
4067 increment = -40;
1da177e4
LT
4068 if (increment > 40)
4069 increment = 40;
4070
4071 nice = PRIO_TO_NICE(current->static_prio) + increment;
4072 if (nice < -20)
4073 nice = -20;
4074 if (nice > 19)
4075 nice = 19;
4076
e43379f1
MM
4077 if (increment < 0 && !can_nice(current, nice))
4078 return -EPERM;
4079
1da177e4
LT
4080 retval = security_task_setnice(current, nice);
4081 if (retval)
4082 return retval;
4083
4084 set_user_nice(current, nice);
4085 return 0;
4086}
4087
4088#endif
4089
4090/**
4091 * task_prio - return the priority value of a given task.
4092 * @p: the task in question.
4093 *
4094 * This is the priority value as seen by users in /proc.
4095 * RT tasks are offset by -200. Normal tasks are centered
4096 * around 0, value goes from -16 to +15.
4097 */
36c8b586 4098int task_prio(const struct task_struct *p)
1da177e4
LT
4099{
4100 return p->prio - MAX_RT_PRIO;
4101}
4102
4103/**
4104 * task_nice - return the nice value of a given task.
4105 * @p: the task in question.
4106 */
36c8b586 4107int task_nice(const struct task_struct *p)
1da177e4
LT
4108{
4109 return TASK_NICE(p);
4110}
1da177e4 4111EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4112
4113/**
4114 * idle_cpu - is a given cpu idle currently?
4115 * @cpu: the processor in question.
4116 */
4117int idle_cpu(int cpu)
4118{
4119 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4120}
4121
1da177e4
LT
4122/**
4123 * idle_task - return the idle task for a given cpu.
4124 * @cpu: the processor in question.
4125 */
36c8b586 4126struct task_struct *idle_task(int cpu)
1da177e4
LT
4127{
4128 return cpu_rq(cpu)->idle;
4129}
4130
4131/**
4132 * find_process_by_pid - find a process with a matching PID value.
4133 * @pid: the pid in question.
4134 */
36c8b586 4135static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4136{
4137 return pid ? find_task_by_pid(pid) : current;
4138}
4139
4140/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4141static void
4142__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4143{
dd41f596 4144 BUG_ON(p->se.on_rq);
48f24c4d 4145
1da177e4 4146 p->policy = policy;
dd41f596
IM
4147 switch (p->policy) {
4148 case SCHED_NORMAL:
4149 case SCHED_BATCH:
4150 case SCHED_IDLE:
4151 p->sched_class = &fair_sched_class;
4152 break;
4153 case SCHED_FIFO:
4154 case SCHED_RR:
4155 p->sched_class = &rt_sched_class;
4156 break;
4157 }
4158
1da177e4 4159 p->rt_priority = prio;
b29739f9
IM
4160 p->normal_prio = normal_prio(p);
4161 /* we are holding p->pi_lock already */
4162 p->prio = rt_mutex_getprio(p);
2dd73a4f 4163 set_load_weight(p);
1da177e4
LT
4164}
4165
4166/**
72fd4a35 4167 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4168 * @p: the task in question.
4169 * @policy: new policy.
4170 * @param: structure containing the new RT priority.
5fe1d75f 4171 *
72fd4a35 4172 * NOTE that the task may be already dead.
1da177e4 4173 */
95cdf3b7
IM
4174int sched_setscheduler(struct task_struct *p, int policy,
4175 struct sched_param *param)
1da177e4 4176{
dd41f596 4177 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4178 unsigned long flags;
70b97a7f 4179 struct rq *rq;
1da177e4 4180
66e5393a
SR
4181 /* may grab non-irq protected spin_locks */
4182 BUG_ON(in_interrupt());
1da177e4
LT
4183recheck:
4184 /* double check policy once rq lock held */
4185 if (policy < 0)
4186 policy = oldpolicy = p->policy;
4187 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4188 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4189 policy != SCHED_IDLE)
b0a9499c 4190 return -EINVAL;
1da177e4
LT
4191 /*
4192 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4193 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4194 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4195 */
4196 if (param->sched_priority < 0 ||
95cdf3b7 4197 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4198 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4199 return -EINVAL;
e05606d3 4200 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4201 return -EINVAL;
4202
37e4ab3f
OC
4203 /*
4204 * Allow unprivileged RT tasks to decrease priority:
4205 */
4206 if (!capable(CAP_SYS_NICE)) {
e05606d3 4207 if (rt_policy(policy)) {
8dc3e909 4208 unsigned long rlim_rtprio;
8dc3e909
ON
4209
4210 if (!lock_task_sighand(p, &flags))
4211 return -ESRCH;
4212 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4213 unlock_task_sighand(p, &flags);
4214
4215 /* can't set/change the rt policy */
4216 if (policy != p->policy && !rlim_rtprio)
4217 return -EPERM;
4218
4219 /* can't increase priority */
4220 if (param->sched_priority > p->rt_priority &&
4221 param->sched_priority > rlim_rtprio)
4222 return -EPERM;
4223 }
dd41f596
IM
4224 /*
4225 * Like positive nice levels, dont allow tasks to
4226 * move out of SCHED_IDLE either:
4227 */
4228 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4229 return -EPERM;
5fe1d75f 4230
37e4ab3f
OC
4231 /* can't change other user's priorities */
4232 if ((current->euid != p->euid) &&
4233 (current->euid != p->uid))
4234 return -EPERM;
4235 }
1da177e4
LT
4236
4237 retval = security_task_setscheduler(p, policy, param);
4238 if (retval)
4239 return retval;
b29739f9
IM
4240 /*
4241 * make sure no PI-waiters arrive (or leave) while we are
4242 * changing the priority of the task:
4243 */
4244 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4245 /*
4246 * To be able to change p->policy safely, the apropriate
4247 * runqueue lock must be held.
4248 */
b29739f9 4249 rq = __task_rq_lock(p);
1da177e4
LT
4250 /* recheck policy now with rq lock held */
4251 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4252 policy = oldpolicy = -1;
b29739f9
IM
4253 __task_rq_unlock(rq);
4254 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4255 goto recheck;
4256 }
2daa3577 4257 update_rq_clock(rq);
dd41f596 4258 on_rq = p->se.on_rq;
2daa3577 4259 if (on_rq)
2e1cb74a 4260 deactivate_task(rq, p, 0);
1da177e4 4261 oldprio = p->prio;
dd41f596
IM
4262 __setscheduler(rq, p, policy, param->sched_priority);
4263 if (on_rq) {
4264 activate_task(rq, p, 0);
1da177e4
LT
4265 /*
4266 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4267 * our priority decreased, or if we are not currently running on
4268 * this runqueue and our priority is higher than the current's
1da177e4 4269 */
d5f9f942
AM
4270 if (task_running(rq, p)) {
4271 if (p->prio > oldprio)
4272 resched_task(rq->curr);
dd41f596
IM
4273 } else {
4274 check_preempt_curr(rq, p);
4275 }
1da177e4 4276 }
b29739f9
IM
4277 __task_rq_unlock(rq);
4278 spin_unlock_irqrestore(&p->pi_lock, flags);
4279
95e02ca9
TG
4280 rt_mutex_adjust_pi(p);
4281
1da177e4
LT
4282 return 0;
4283}
4284EXPORT_SYMBOL_GPL(sched_setscheduler);
4285
95cdf3b7
IM
4286static int
4287do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4288{
1da177e4
LT
4289 struct sched_param lparam;
4290 struct task_struct *p;
36c8b586 4291 int retval;
1da177e4
LT
4292
4293 if (!param || pid < 0)
4294 return -EINVAL;
4295 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4296 return -EFAULT;
5fe1d75f
ON
4297
4298 rcu_read_lock();
4299 retval = -ESRCH;
1da177e4 4300 p = find_process_by_pid(pid);
5fe1d75f
ON
4301 if (p != NULL)
4302 retval = sched_setscheduler(p, policy, &lparam);
4303 rcu_read_unlock();
36c8b586 4304
1da177e4
LT
4305 return retval;
4306}
4307
4308/**
4309 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4310 * @pid: the pid in question.
4311 * @policy: new policy.
4312 * @param: structure containing the new RT priority.
4313 */
4314asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4315 struct sched_param __user *param)
4316{
c21761f1
JB
4317 /* negative values for policy are not valid */
4318 if (policy < 0)
4319 return -EINVAL;
4320
1da177e4
LT
4321 return do_sched_setscheduler(pid, policy, param);
4322}
4323
4324/**
4325 * sys_sched_setparam - set/change the RT priority of a thread
4326 * @pid: the pid in question.
4327 * @param: structure containing the new RT priority.
4328 */
4329asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4330{
4331 return do_sched_setscheduler(pid, -1, param);
4332}
4333
4334/**
4335 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4336 * @pid: the pid in question.
4337 */
4338asmlinkage long sys_sched_getscheduler(pid_t pid)
4339{
36c8b586 4340 struct task_struct *p;
1da177e4 4341 int retval = -EINVAL;
1da177e4
LT
4342
4343 if (pid < 0)
4344 goto out_nounlock;
4345
4346 retval = -ESRCH;
4347 read_lock(&tasklist_lock);
4348 p = find_process_by_pid(pid);
4349 if (p) {
4350 retval = security_task_getscheduler(p);
4351 if (!retval)
4352 retval = p->policy;
4353 }
4354 read_unlock(&tasklist_lock);
4355
4356out_nounlock:
4357 return retval;
4358}
4359
4360/**
4361 * sys_sched_getscheduler - get the RT priority of a thread
4362 * @pid: the pid in question.
4363 * @param: structure containing the RT priority.
4364 */
4365asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4366{
4367 struct sched_param lp;
36c8b586 4368 struct task_struct *p;
1da177e4 4369 int retval = -EINVAL;
1da177e4
LT
4370
4371 if (!param || pid < 0)
4372 goto out_nounlock;
4373
4374 read_lock(&tasklist_lock);
4375 p = find_process_by_pid(pid);
4376 retval = -ESRCH;
4377 if (!p)
4378 goto out_unlock;
4379
4380 retval = security_task_getscheduler(p);
4381 if (retval)
4382 goto out_unlock;
4383
4384 lp.sched_priority = p->rt_priority;
4385 read_unlock(&tasklist_lock);
4386
4387 /*
4388 * This one might sleep, we cannot do it with a spinlock held ...
4389 */
4390 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4391
4392out_nounlock:
4393 return retval;
4394
4395out_unlock:
4396 read_unlock(&tasklist_lock);
4397 return retval;
4398}
4399
4400long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4401{
1da177e4 4402 cpumask_t cpus_allowed;
36c8b586
IM
4403 struct task_struct *p;
4404 int retval;
1da177e4 4405
5be9361c 4406 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4407 read_lock(&tasklist_lock);
4408
4409 p = find_process_by_pid(pid);
4410 if (!p) {
4411 read_unlock(&tasklist_lock);
5be9361c 4412 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4413 return -ESRCH;
4414 }
4415
4416 /*
4417 * It is not safe to call set_cpus_allowed with the
4418 * tasklist_lock held. We will bump the task_struct's
4419 * usage count and then drop tasklist_lock.
4420 */
4421 get_task_struct(p);
4422 read_unlock(&tasklist_lock);
4423
4424 retval = -EPERM;
4425 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4426 !capable(CAP_SYS_NICE))
4427 goto out_unlock;
4428
e7834f8f
DQ
4429 retval = security_task_setscheduler(p, 0, NULL);
4430 if (retval)
4431 goto out_unlock;
4432
1da177e4
LT
4433 cpus_allowed = cpuset_cpus_allowed(p);
4434 cpus_and(new_mask, new_mask, cpus_allowed);
4435 retval = set_cpus_allowed(p, new_mask);
4436
4437out_unlock:
4438 put_task_struct(p);
5be9361c 4439 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4440 return retval;
4441}
4442
4443static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4444 cpumask_t *new_mask)
4445{
4446 if (len < sizeof(cpumask_t)) {
4447 memset(new_mask, 0, sizeof(cpumask_t));
4448 } else if (len > sizeof(cpumask_t)) {
4449 len = sizeof(cpumask_t);
4450 }
4451 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4452}
4453
4454/**
4455 * sys_sched_setaffinity - set the cpu affinity of a process
4456 * @pid: pid of the process
4457 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4458 * @user_mask_ptr: user-space pointer to the new cpu mask
4459 */
4460asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4461 unsigned long __user *user_mask_ptr)
4462{
4463 cpumask_t new_mask;
4464 int retval;
4465
4466 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4467 if (retval)
4468 return retval;
4469
4470 return sched_setaffinity(pid, new_mask);
4471}
4472
4473/*
4474 * Represents all cpu's present in the system
4475 * In systems capable of hotplug, this map could dynamically grow
4476 * as new cpu's are detected in the system via any platform specific
4477 * method, such as ACPI for e.g.
4478 */
4479
4cef0c61 4480cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4481EXPORT_SYMBOL(cpu_present_map);
4482
4483#ifndef CONFIG_SMP
4cef0c61 4484cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4485EXPORT_SYMBOL(cpu_online_map);
4486
4cef0c61 4487cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4488EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4489#endif
4490
4491long sched_getaffinity(pid_t pid, cpumask_t *mask)
4492{
36c8b586 4493 struct task_struct *p;
1da177e4 4494 int retval;
1da177e4 4495
5be9361c 4496 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4497 read_lock(&tasklist_lock);
4498
4499 retval = -ESRCH;
4500 p = find_process_by_pid(pid);
4501 if (!p)
4502 goto out_unlock;
4503
e7834f8f
DQ
4504 retval = security_task_getscheduler(p);
4505 if (retval)
4506 goto out_unlock;
4507
2f7016d9 4508 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4509
4510out_unlock:
4511 read_unlock(&tasklist_lock);
5be9361c 4512 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4513
9531b62f 4514 return retval;
1da177e4
LT
4515}
4516
4517/**
4518 * sys_sched_getaffinity - get the cpu affinity of a process
4519 * @pid: pid of the process
4520 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4521 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4522 */
4523asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4524 unsigned long __user *user_mask_ptr)
4525{
4526 int ret;
4527 cpumask_t mask;
4528
4529 if (len < sizeof(cpumask_t))
4530 return -EINVAL;
4531
4532 ret = sched_getaffinity(pid, &mask);
4533 if (ret < 0)
4534 return ret;
4535
4536 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4537 return -EFAULT;
4538
4539 return sizeof(cpumask_t);
4540}
4541
4542/**
4543 * sys_sched_yield - yield the current processor to other threads.
4544 *
dd41f596
IM
4545 * This function yields the current CPU to other tasks. If there are no
4546 * other threads running on this CPU then this function will return.
1da177e4
LT
4547 */
4548asmlinkage long sys_sched_yield(void)
4549{
70b97a7f 4550 struct rq *rq = this_rq_lock();
1da177e4
LT
4551
4552 schedstat_inc(rq, yld_cnt);
1799e35d 4553 current->sched_class->yield_task(rq, current);
1da177e4
LT
4554
4555 /*
4556 * Since we are going to call schedule() anyway, there's
4557 * no need to preempt or enable interrupts:
4558 */
4559 __release(rq->lock);
8a25d5de 4560 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4561 _raw_spin_unlock(&rq->lock);
4562 preempt_enable_no_resched();
4563
4564 schedule();
4565
4566 return 0;
4567}
4568
e7b38404 4569static void __cond_resched(void)
1da177e4 4570{
8e0a43d8
IM
4571#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4572 __might_sleep(__FILE__, __LINE__);
4573#endif
5bbcfd90
IM
4574 /*
4575 * The BKS might be reacquired before we have dropped
4576 * PREEMPT_ACTIVE, which could trigger a second
4577 * cond_resched() call.
4578 */
1da177e4
LT
4579 do {
4580 add_preempt_count(PREEMPT_ACTIVE);
4581 schedule();
4582 sub_preempt_count(PREEMPT_ACTIVE);
4583 } while (need_resched());
4584}
4585
4586int __sched cond_resched(void)
4587{
9414232f
IM
4588 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4589 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4590 __cond_resched();
4591 return 1;
4592 }
4593 return 0;
4594}
1da177e4
LT
4595EXPORT_SYMBOL(cond_resched);
4596
4597/*
4598 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4599 * call schedule, and on return reacquire the lock.
4600 *
4601 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4602 * operations here to prevent schedule() from being called twice (once via
4603 * spin_unlock(), once by hand).
4604 */
95cdf3b7 4605int cond_resched_lock(spinlock_t *lock)
1da177e4 4606{
6df3cecb
JK
4607 int ret = 0;
4608
1da177e4
LT
4609 if (need_lockbreak(lock)) {
4610 spin_unlock(lock);
4611 cpu_relax();
6df3cecb 4612 ret = 1;
1da177e4
LT
4613 spin_lock(lock);
4614 }
9414232f 4615 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4616 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4617 _raw_spin_unlock(lock);
4618 preempt_enable_no_resched();
4619 __cond_resched();
6df3cecb 4620 ret = 1;
1da177e4 4621 spin_lock(lock);
1da177e4 4622 }
6df3cecb 4623 return ret;
1da177e4 4624}
1da177e4
LT
4625EXPORT_SYMBOL(cond_resched_lock);
4626
4627int __sched cond_resched_softirq(void)
4628{
4629 BUG_ON(!in_softirq());
4630
9414232f 4631 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4632 local_bh_enable();
1da177e4
LT
4633 __cond_resched();
4634 local_bh_disable();
4635 return 1;
4636 }
4637 return 0;
4638}
1da177e4
LT
4639EXPORT_SYMBOL(cond_resched_softirq);
4640
1da177e4
LT
4641/**
4642 * yield - yield the current processor to other threads.
4643 *
72fd4a35 4644 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4645 * thread runnable and calls sys_sched_yield().
4646 */
4647void __sched yield(void)
4648{
4649 set_current_state(TASK_RUNNING);
4650 sys_sched_yield();
4651}
1da177e4
LT
4652EXPORT_SYMBOL(yield);
4653
4654/*
4655 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4656 * that process accounting knows that this is a task in IO wait state.
4657 *
4658 * But don't do that if it is a deliberate, throttling IO wait (this task
4659 * has set its backing_dev_info: the queue against which it should throttle)
4660 */
4661void __sched io_schedule(void)
4662{
70b97a7f 4663 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4664
0ff92245 4665 delayacct_blkio_start();
1da177e4
LT
4666 atomic_inc(&rq->nr_iowait);
4667 schedule();
4668 atomic_dec(&rq->nr_iowait);
0ff92245 4669 delayacct_blkio_end();
1da177e4 4670}
1da177e4
LT
4671EXPORT_SYMBOL(io_schedule);
4672
4673long __sched io_schedule_timeout(long timeout)
4674{
70b97a7f 4675 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4676 long ret;
4677
0ff92245 4678 delayacct_blkio_start();
1da177e4
LT
4679 atomic_inc(&rq->nr_iowait);
4680 ret = schedule_timeout(timeout);
4681 atomic_dec(&rq->nr_iowait);
0ff92245 4682 delayacct_blkio_end();
1da177e4
LT
4683 return ret;
4684}
4685
4686/**
4687 * sys_sched_get_priority_max - return maximum RT priority.
4688 * @policy: scheduling class.
4689 *
4690 * this syscall returns the maximum rt_priority that can be used
4691 * by a given scheduling class.
4692 */
4693asmlinkage long sys_sched_get_priority_max(int policy)
4694{
4695 int ret = -EINVAL;
4696
4697 switch (policy) {
4698 case SCHED_FIFO:
4699 case SCHED_RR:
4700 ret = MAX_USER_RT_PRIO-1;
4701 break;
4702 case SCHED_NORMAL:
b0a9499c 4703 case SCHED_BATCH:
dd41f596 4704 case SCHED_IDLE:
1da177e4
LT
4705 ret = 0;
4706 break;
4707 }
4708 return ret;
4709}
4710
4711/**
4712 * sys_sched_get_priority_min - return minimum RT priority.
4713 * @policy: scheduling class.
4714 *
4715 * this syscall returns the minimum rt_priority that can be used
4716 * by a given scheduling class.
4717 */
4718asmlinkage long sys_sched_get_priority_min(int policy)
4719{
4720 int ret = -EINVAL;
4721
4722 switch (policy) {
4723 case SCHED_FIFO:
4724 case SCHED_RR:
4725 ret = 1;
4726 break;
4727 case SCHED_NORMAL:
b0a9499c 4728 case SCHED_BATCH:
dd41f596 4729 case SCHED_IDLE:
1da177e4
LT
4730 ret = 0;
4731 }
4732 return ret;
4733}
4734
4735/**
4736 * sys_sched_rr_get_interval - return the default timeslice of a process.
4737 * @pid: pid of the process.
4738 * @interval: userspace pointer to the timeslice value.
4739 *
4740 * this syscall writes the default timeslice value of a given process
4741 * into the user-space timespec buffer. A value of '0' means infinity.
4742 */
4743asmlinkage
4744long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4745{
36c8b586 4746 struct task_struct *p;
1da177e4
LT
4747 int retval = -EINVAL;
4748 struct timespec t;
1da177e4
LT
4749
4750 if (pid < 0)
4751 goto out_nounlock;
4752
4753 retval = -ESRCH;
4754 read_lock(&tasklist_lock);
4755 p = find_process_by_pid(pid);
4756 if (!p)
4757 goto out_unlock;
4758
4759 retval = security_task_getscheduler(p);
4760 if (retval)
4761 goto out_unlock;
4762
b78709cf 4763 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4764 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4765 read_unlock(&tasklist_lock);
4766 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4767out_nounlock:
4768 return retval;
4769out_unlock:
4770 read_unlock(&tasklist_lock);
4771 return retval;
4772}
4773
2ed6e34f 4774static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4775
4776static void show_task(struct task_struct *p)
1da177e4 4777{
1da177e4 4778 unsigned long free = 0;
36c8b586 4779 unsigned state;
1da177e4 4780
1da177e4 4781 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4782 printk("%-13.13s %c", p->comm,
4783 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4784#if BITS_PER_LONG == 32
1da177e4 4785 if (state == TASK_RUNNING)
4bd77321 4786 printk(" running ");
1da177e4 4787 else
4bd77321 4788 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4789#else
4790 if (state == TASK_RUNNING)
4bd77321 4791 printk(" running task ");
1da177e4
LT
4792 else
4793 printk(" %016lx ", thread_saved_pc(p));
4794#endif
4795#ifdef CONFIG_DEBUG_STACK_USAGE
4796 {
10ebffde 4797 unsigned long *n = end_of_stack(p);
1da177e4
LT
4798 while (!*n)
4799 n++;
10ebffde 4800 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4801 }
4802#endif
4bd77321 4803 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4804
4805 if (state != TASK_RUNNING)
4806 show_stack(p, NULL);
4807}
4808
e59e2ae2 4809void show_state_filter(unsigned long state_filter)
1da177e4 4810{
36c8b586 4811 struct task_struct *g, *p;
1da177e4 4812
4bd77321
IM
4813#if BITS_PER_LONG == 32
4814 printk(KERN_INFO
4815 " task PC stack pid father\n");
1da177e4 4816#else
4bd77321
IM
4817 printk(KERN_INFO
4818 " task PC stack pid father\n");
1da177e4
LT
4819#endif
4820 read_lock(&tasklist_lock);
4821 do_each_thread(g, p) {
4822 /*
4823 * reset the NMI-timeout, listing all files on a slow
4824 * console might take alot of time:
4825 */
4826 touch_nmi_watchdog();
39bc89fd 4827 if (!state_filter || (p->state & state_filter))
e59e2ae2 4828 show_task(p);
1da177e4
LT
4829 } while_each_thread(g, p);
4830
04c9167f
JF
4831 touch_all_softlockup_watchdogs();
4832
dd41f596
IM
4833#ifdef CONFIG_SCHED_DEBUG
4834 sysrq_sched_debug_show();
4835#endif
1da177e4 4836 read_unlock(&tasklist_lock);
e59e2ae2
IM
4837 /*
4838 * Only show locks if all tasks are dumped:
4839 */
4840 if (state_filter == -1)
4841 debug_show_all_locks();
1da177e4
LT
4842}
4843
1df21055
IM
4844void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4845{
dd41f596 4846 idle->sched_class = &idle_sched_class;
1df21055
IM
4847}
4848
f340c0d1
IM
4849/**
4850 * init_idle - set up an idle thread for a given CPU
4851 * @idle: task in question
4852 * @cpu: cpu the idle task belongs to
4853 *
4854 * NOTE: this function does not set the idle thread's NEED_RESCHED
4855 * flag, to make booting more robust.
4856 */
5c1e1767 4857void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4858{
70b97a7f 4859 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4860 unsigned long flags;
4861
dd41f596
IM
4862 __sched_fork(idle);
4863 idle->se.exec_start = sched_clock();
4864
b29739f9 4865 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4866 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4867 __set_task_cpu(idle, cpu);
1da177e4
LT
4868
4869 spin_lock_irqsave(&rq->lock, flags);
4870 rq->curr = rq->idle = idle;
4866cde0
NP
4871#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4872 idle->oncpu = 1;
4873#endif
1da177e4
LT
4874 spin_unlock_irqrestore(&rq->lock, flags);
4875
4876 /* Set the preempt count _outside_ the spinlocks! */
4877#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4878 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4879#else
a1261f54 4880 task_thread_info(idle)->preempt_count = 0;
1da177e4 4881#endif
dd41f596
IM
4882 /*
4883 * The idle tasks have their own, simple scheduling class:
4884 */
4885 idle->sched_class = &idle_sched_class;
1da177e4
LT
4886}
4887
4888/*
4889 * In a system that switches off the HZ timer nohz_cpu_mask
4890 * indicates which cpus entered this state. This is used
4891 * in the rcu update to wait only for active cpus. For system
4892 * which do not switch off the HZ timer nohz_cpu_mask should
4893 * always be CPU_MASK_NONE.
4894 */
4895cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4896
dd41f596
IM
4897/*
4898 * Increase the granularity value when there are more CPUs,
4899 * because with more CPUs the 'effective latency' as visible
4900 * to users decreases. But the relationship is not linear,
4901 * so pick a second-best guess by going with the log2 of the
4902 * number of CPUs.
4903 *
4904 * This idea comes from the SD scheduler of Con Kolivas:
4905 */
4906static inline void sched_init_granularity(void)
4907{
4908 unsigned int factor = 1 + ilog2(num_online_cpus());
21805085 4909 const unsigned long limit = 100000000;
dd41f596 4910
172ac3db
IM
4911 sysctl_sched_min_granularity *= factor;
4912 if (sysctl_sched_min_granularity > limit)
4913 sysctl_sched_min_granularity = limit;
dd41f596 4914
21805085
PZ
4915 sysctl_sched_latency *= factor;
4916 if (sysctl_sched_latency > limit)
4917 sysctl_sched_latency = limit;
4918
50c46637
IM
4919 sysctl_sched_runtime_limit = sysctl_sched_latency;
4920 sysctl_sched_wakeup_granularity = sysctl_sched_min_granularity / 2;
dd41f596
IM
4921}
4922
1da177e4
LT
4923#ifdef CONFIG_SMP
4924/*
4925 * This is how migration works:
4926 *
70b97a7f 4927 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4928 * runqueue and wake up that CPU's migration thread.
4929 * 2) we down() the locked semaphore => thread blocks.
4930 * 3) migration thread wakes up (implicitly it forces the migrated
4931 * thread off the CPU)
4932 * 4) it gets the migration request and checks whether the migrated
4933 * task is still in the wrong runqueue.
4934 * 5) if it's in the wrong runqueue then the migration thread removes
4935 * it and puts it into the right queue.
4936 * 6) migration thread up()s the semaphore.
4937 * 7) we wake up and the migration is done.
4938 */
4939
4940/*
4941 * Change a given task's CPU affinity. Migrate the thread to a
4942 * proper CPU and schedule it away if the CPU it's executing on
4943 * is removed from the allowed bitmask.
4944 *
4945 * NOTE: the caller must have a valid reference to the task, the
4946 * task must not exit() & deallocate itself prematurely. The
4947 * call is not atomic; no spinlocks may be held.
4948 */
36c8b586 4949int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4950{
70b97a7f 4951 struct migration_req req;
1da177e4 4952 unsigned long flags;
70b97a7f 4953 struct rq *rq;
48f24c4d 4954 int ret = 0;
1da177e4
LT
4955
4956 rq = task_rq_lock(p, &flags);
4957 if (!cpus_intersects(new_mask, cpu_online_map)) {
4958 ret = -EINVAL;
4959 goto out;
4960 }
4961
4962 p->cpus_allowed = new_mask;
4963 /* Can the task run on the task's current CPU? If so, we're done */
4964 if (cpu_isset(task_cpu(p), new_mask))
4965 goto out;
4966
4967 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4968 /* Need help from migration thread: drop lock and wait. */
4969 task_rq_unlock(rq, &flags);
4970 wake_up_process(rq->migration_thread);
4971 wait_for_completion(&req.done);
4972 tlb_migrate_finish(p->mm);
4973 return 0;
4974 }
4975out:
4976 task_rq_unlock(rq, &flags);
48f24c4d 4977
1da177e4
LT
4978 return ret;
4979}
1da177e4
LT
4980EXPORT_SYMBOL_GPL(set_cpus_allowed);
4981
4982/*
4983 * Move (not current) task off this cpu, onto dest cpu. We're doing
4984 * this because either it can't run here any more (set_cpus_allowed()
4985 * away from this CPU, or CPU going down), or because we're
4986 * attempting to rebalance this task on exec (sched_exec).
4987 *
4988 * So we race with normal scheduler movements, but that's OK, as long
4989 * as the task is no longer on this CPU.
efc30814
KK
4990 *
4991 * Returns non-zero if task was successfully migrated.
1da177e4 4992 */
efc30814 4993static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4994{
70b97a7f 4995 struct rq *rq_dest, *rq_src;
dd41f596 4996 int ret = 0, on_rq;
1da177e4
LT
4997
4998 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4999 return ret;
1da177e4
LT
5000
5001 rq_src = cpu_rq(src_cpu);
5002 rq_dest = cpu_rq(dest_cpu);
5003
5004 double_rq_lock(rq_src, rq_dest);
5005 /* Already moved. */
5006 if (task_cpu(p) != src_cpu)
5007 goto out;
5008 /* Affinity changed (again). */
5009 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5010 goto out;
5011
dd41f596 5012 on_rq = p->se.on_rq;
6e82a3be 5013 if (on_rq)
2e1cb74a 5014 deactivate_task(rq_src, p, 0);
6e82a3be 5015
1da177e4 5016 set_task_cpu(p, dest_cpu);
dd41f596
IM
5017 if (on_rq) {
5018 activate_task(rq_dest, p, 0);
5019 check_preempt_curr(rq_dest, p);
1da177e4 5020 }
efc30814 5021 ret = 1;
1da177e4
LT
5022out:
5023 double_rq_unlock(rq_src, rq_dest);
efc30814 5024 return ret;
1da177e4
LT
5025}
5026
5027/*
5028 * migration_thread - this is a highprio system thread that performs
5029 * thread migration by bumping thread off CPU then 'pushing' onto
5030 * another runqueue.
5031 */
95cdf3b7 5032static int migration_thread(void *data)
1da177e4 5033{
1da177e4 5034 int cpu = (long)data;
70b97a7f 5035 struct rq *rq;
1da177e4
LT
5036
5037 rq = cpu_rq(cpu);
5038 BUG_ON(rq->migration_thread != current);
5039
5040 set_current_state(TASK_INTERRUPTIBLE);
5041 while (!kthread_should_stop()) {
70b97a7f 5042 struct migration_req *req;
1da177e4 5043 struct list_head *head;
1da177e4 5044
1da177e4
LT
5045 spin_lock_irq(&rq->lock);
5046
5047 if (cpu_is_offline(cpu)) {
5048 spin_unlock_irq(&rq->lock);
5049 goto wait_to_die;
5050 }
5051
5052 if (rq->active_balance) {
5053 active_load_balance(rq, cpu);
5054 rq->active_balance = 0;
5055 }
5056
5057 head = &rq->migration_queue;
5058
5059 if (list_empty(head)) {
5060 spin_unlock_irq(&rq->lock);
5061 schedule();
5062 set_current_state(TASK_INTERRUPTIBLE);
5063 continue;
5064 }
70b97a7f 5065 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5066 list_del_init(head->next);
5067
674311d5
NP
5068 spin_unlock(&rq->lock);
5069 __migrate_task(req->task, cpu, req->dest_cpu);
5070 local_irq_enable();
1da177e4
LT
5071
5072 complete(&req->done);
5073 }
5074 __set_current_state(TASK_RUNNING);
5075 return 0;
5076
5077wait_to_die:
5078 /* Wait for kthread_stop */
5079 set_current_state(TASK_INTERRUPTIBLE);
5080 while (!kthread_should_stop()) {
5081 schedule();
5082 set_current_state(TASK_INTERRUPTIBLE);
5083 }
5084 __set_current_state(TASK_RUNNING);
5085 return 0;
5086}
5087
5088#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5089/*
5090 * Figure out where task on dead CPU should go, use force if neccessary.
5091 * NOTE: interrupts should be disabled by the caller
5092 */
48f24c4d 5093static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5094{
efc30814 5095 unsigned long flags;
1da177e4 5096 cpumask_t mask;
70b97a7f
IM
5097 struct rq *rq;
5098 int dest_cpu;
1da177e4 5099
efc30814 5100restart:
1da177e4
LT
5101 /* On same node? */
5102 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5103 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5104 dest_cpu = any_online_cpu(mask);
5105
5106 /* On any allowed CPU? */
5107 if (dest_cpu == NR_CPUS)
48f24c4d 5108 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5109
5110 /* No more Mr. Nice Guy. */
5111 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5112 rq = task_rq_lock(p, &flags);
5113 cpus_setall(p->cpus_allowed);
5114 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5115 task_rq_unlock(rq, &flags);
1da177e4
LT
5116
5117 /*
5118 * Don't tell them about moving exiting tasks or
5119 * kernel threads (both mm NULL), since they never
5120 * leave kernel.
5121 */
48f24c4d 5122 if (p->mm && printk_ratelimit())
1da177e4
LT
5123 printk(KERN_INFO "process %d (%s) no "
5124 "longer affine to cpu%d\n",
48f24c4d 5125 p->pid, p->comm, dead_cpu);
1da177e4 5126 }
48f24c4d 5127 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5128 goto restart;
1da177e4
LT
5129}
5130
5131/*
5132 * While a dead CPU has no uninterruptible tasks queued at this point,
5133 * it might still have a nonzero ->nr_uninterruptible counter, because
5134 * for performance reasons the counter is not stricly tracking tasks to
5135 * their home CPUs. So we just add the counter to another CPU's counter,
5136 * to keep the global sum constant after CPU-down:
5137 */
70b97a7f 5138static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5139{
70b97a7f 5140 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5141 unsigned long flags;
5142
5143 local_irq_save(flags);
5144 double_rq_lock(rq_src, rq_dest);
5145 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5146 rq_src->nr_uninterruptible = 0;
5147 double_rq_unlock(rq_src, rq_dest);
5148 local_irq_restore(flags);
5149}
5150
5151/* Run through task list and migrate tasks from the dead cpu. */
5152static void migrate_live_tasks(int src_cpu)
5153{
48f24c4d 5154 struct task_struct *p, *t;
1da177e4
LT
5155
5156 write_lock_irq(&tasklist_lock);
5157
48f24c4d
IM
5158 do_each_thread(t, p) {
5159 if (p == current)
1da177e4
LT
5160 continue;
5161
48f24c4d
IM
5162 if (task_cpu(p) == src_cpu)
5163 move_task_off_dead_cpu(src_cpu, p);
5164 } while_each_thread(t, p);
1da177e4
LT
5165
5166 write_unlock_irq(&tasklist_lock);
5167}
5168
dd41f596
IM
5169/*
5170 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5171 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5172 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5173 */
5174void sched_idle_next(void)
5175{
48f24c4d 5176 int this_cpu = smp_processor_id();
70b97a7f 5177 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5178 struct task_struct *p = rq->idle;
5179 unsigned long flags;
5180
5181 /* cpu has to be offline */
48f24c4d 5182 BUG_ON(cpu_online(this_cpu));
1da177e4 5183
48f24c4d
IM
5184 /*
5185 * Strictly not necessary since rest of the CPUs are stopped by now
5186 * and interrupts disabled on the current cpu.
1da177e4
LT
5187 */
5188 spin_lock_irqsave(&rq->lock, flags);
5189
dd41f596 5190 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5191
5192 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5193 activate_idle_task(p, rq);
1da177e4
LT
5194
5195 spin_unlock_irqrestore(&rq->lock, flags);
5196}
5197
48f24c4d
IM
5198/*
5199 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5200 * offline.
5201 */
5202void idle_task_exit(void)
5203{
5204 struct mm_struct *mm = current->active_mm;
5205
5206 BUG_ON(cpu_online(smp_processor_id()));
5207
5208 if (mm != &init_mm)
5209 switch_mm(mm, &init_mm, current);
5210 mmdrop(mm);
5211}
5212
054b9108 5213/* called under rq->lock with disabled interrupts */
36c8b586 5214static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5215{
70b97a7f 5216 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5217
5218 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5219 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5220
5221 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5222 BUG_ON(p->state == TASK_DEAD);
1da177e4 5223
48f24c4d 5224 get_task_struct(p);
1da177e4
LT
5225
5226 /*
5227 * Drop lock around migration; if someone else moves it,
5228 * that's OK. No task can be added to this CPU, so iteration is
5229 * fine.
054b9108 5230 * NOTE: interrupts should be left disabled --dev@
1da177e4 5231 */
054b9108 5232 spin_unlock(&rq->lock);
48f24c4d 5233 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5234 spin_lock(&rq->lock);
1da177e4 5235
48f24c4d 5236 put_task_struct(p);
1da177e4
LT
5237}
5238
5239/* release_task() removes task from tasklist, so we won't find dead tasks. */
5240static void migrate_dead_tasks(unsigned int dead_cpu)
5241{
70b97a7f 5242 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5243 struct task_struct *next;
48f24c4d 5244
dd41f596
IM
5245 for ( ; ; ) {
5246 if (!rq->nr_running)
5247 break;
a8e504d2 5248 update_rq_clock(rq);
ff95f3df 5249 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5250 if (!next)
5251 break;
5252 migrate_dead(dead_cpu, next);
e692ab53 5253
1da177e4
LT
5254 }
5255}
5256#endif /* CONFIG_HOTPLUG_CPU */
5257
e692ab53
NP
5258#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5259
5260static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5261 {
5262 .procname = "sched_domain",
c57baf1e 5263 .mode = 0555,
e0361851 5264 },
e692ab53
NP
5265 {0,},
5266};
5267
5268static struct ctl_table sd_ctl_root[] = {
e0361851 5269 {
c57baf1e 5270 .ctl_name = CTL_KERN,
e0361851 5271 .procname = "kernel",
c57baf1e 5272 .mode = 0555,
e0361851
AD
5273 .child = sd_ctl_dir,
5274 },
e692ab53
NP
5275 {0,},
5276};
5277
5278static struct ctl_table *sd_alloc_ctl_entry(int n)
5279{
5280 struct ctl_table *entry =
5281 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5282
5283 BUG_ON(!entry);
5284 memset(entry, 0, n * sizeof(struct ctl_table));
5285
5286 return entry;
5287}
5288
5289static void
e0361851 5290set_table_entry(struct ctl_table *entry,
e692ab53
NP
5291 const char *procname, void *data, int maxlen,
5292 mode_t mode, proc_handler *proc_handler)
5293{
e692ab53
NP
5294 entry->procname = procname;
5295 entry->data = data;
5296 entry->maxlen = maxlen;
5297 entry->mode = mode;
5298 entry->proc_handler = proc_handler;
5299}
5300
5301static struct ctl_table *
5302sd_alloc_ctl_domain_table(struct sched_domain *sd)
5303{
5304 struct ctl_table *table = sd_alloc_ctl_entry(14);
5305
e0361851 5306 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5307 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5308 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5309 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5310 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5311 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5312 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5313 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5314 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5315 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5316 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5317 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5318 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5319 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5320 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5321 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5322 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5323 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5324 set_table_entry(&table[10], "cache_nice_tries",
e692ab53
NP
5325 &sd->cache_nice_tries,
5326 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5327 set_table_entry(&table[12], "flags", &sd->flags,
e692ab53
NP
5328 sizeof(int), 0644, proc_dointvec_minmax);
5329
5330 return table;
5331}
5332
5333static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5334{
5335 struct ctl_table *entry, *table;
5336 struct sched_domain *sd;
5337 int domain_num = 0, i;
5338 char buf[32];
5339
5340 for_each_domain(cpu, sd)
5341 domain_num++;
5342 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5343
5344 i = 0;
5345 for_each_domain(cpu, sd) {
5346 snprintf(buf, 32, "domain%d", i);
e692ab53 5347 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5348 entry->mode = 0555;
e692ab53
NP
5349 entry->child = sd_alloc_ctl_domain_table(sd);
5350 entry++;
5351 i++;
5352 }
5353 return table;
5354}
5355
5356static struct ctl_table_header *sd_sysctl_header;
5357static void init_sched_domain_sysctl(void)
5358{
5359 int i, cpu_num = num_online_cpus();
5360 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5361 char buf[32];
5362
5363 sd_ctl_dir[0].child = entry;
5364
5365 for (i = 0; i < cpu_num; i++, entry++) {
5366 snprintf(buf, 32, "cpu%d", i);
e692ab53 5367 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5368 entry->mode = 0555;
e692ab53
NP
5369 entry->child = sd_alloc_ctl_cpu_table(i);
5370 }
5371 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5372}
5373#else
5374static void init_sched_domain_sysctl(void)
5375{
5376}
5377#endif
5378
1da177e4
LT
5379/*
5380 * migration_call - callback that gets triggered when a CPU is added.
5381 * Here we can start up the necessary migration thread for the new CPU.
5382 */
48f24c4d
IM
5383static int __cpuinit
5384migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5385{
1da177e4 5386 struct task_struct *p;
48f24c4d 5387 int cpu = (long)hcpu;
1da177e4 5388 unsigned long flags;
70b97a7f 5389 struct rq *rq;
1da177e4
LT
5390
5391 switch (action) {
5be9361c
GS
5392 case CPU_LOCK_ACQUIRE:
5393 mutex_lock(&sched_hotcpu_mutex);
5394 break;
5395
1da177e4 5396 case CPU_UP_PREPARE:
8bb78442 5397 case CPU_UP_PREPARE_FROZEN:
dd41f596 5398 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5399 if (IS_ERR(p))
5400 return NOTIFY_BAD;
1da177e4
LT
5401 kthread_bind(p, cpu);
5402 /* Must be high prio: stop_machine expects to yield to it. */
5403 rq = task_rq_lock(p, &flags);
dd41f596 5404 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5405 task_rq_unlock(rq, &flags);
5406 cpu_rq(cpu)->migration_thread = p;
5407 break;
48f24c4d 5408
1da177e4 5409 case CPU_ONLINE:
8bb78442 5410 case CPU_ONLINE_FROZEN:
1da177e4
LT
5411 /* Strictly unneccessary, as first user will wake it. */
5412 wake_up_process(cpu_rq(cpu)->migration_thread);
5413 break;
48f24c4d 5414
1da177e4
LT
5415#ifdef CONFIG_HOTPLUG_CPU
5416 case CPU_UP_CANCELED:
8bb78442 5417 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5418 if (!cpu_rq(cpu)->migration_thread)
5419 break;
1da177e4 5420 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5421 kthread_bind(cpu_rq(cpu)->migration_thread,
5422 any_online_cpu(cpu_online_map));
1da177e4
LT
5423 kthread_stop(cpu_rq(cpu)->migration_thread);
5424 cpu_rq(cpu)->migration_thread = NULL;
5425 break;
48f24c4d 5426
1da177e4 5427 case CPU_DEAD:
8bb78442 5428 case CPU_DEAD_FROZEN:
1da177e4
LT
5429 migrate_live_tasks(cpu);
5430 rq = cpu_rq(cpu);
5431 kthread_stop(rq->migration_thread);
5432 rq->migration_thread = NULL;
5433 /* Idle task back to normal (off runqueue, low prio) */
5434 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5435 update_rq_clock(rq);
2e1cb74a 5436 deactivate_task(rq, rq->idle, 0);
1da177e4 5437 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5438 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5439 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5440 migrate_dead_tasks(cpu);
5441 task_rq_unlock(rq, &flags);
5442 migrate_nr_uninterruptible(rq);
5443 BUG_ON(rq->nr_running != 0);
5444
5445 /* No need to migrate the tasks: it was best-effort if
5be9361c 5446 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5447 * the requestors. */
5448 spin_lock_irq(&rq->lock);
5449 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5450 struct migration_req *req;
5451
1da177e4 5452 req = list_entry(rq->migration_queue.next,
70b97a7f 5453 struct migration_req, list);
1da177e4
LT
5454 list_del_init(&req->list);
5455 complete(&req->done);
5456 }
5457 spin_unlock_irq(&rq->lock);
5458 break;
5459#endif
5be9361c
GS
5460 case CPU_LOCK_RELEASE:
5461 mutex_unlock(&sched_hotcpu_mutex);
5462 break;
1da177e4
LT
5463 }
5464 return NOTIFY_OK;
5465}
5466
5467/* Register at highest priority so that task migration (migrate_all_tasks)
5468 * happens before everything else.
5469 */
26c2143b 5470static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5471 .notifier_call = migration_call,
5472 .priority = 10
5473};
5474
5475int __init migration_init(void)
5476{
5477 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5478 int err;
48f24c4d
IM
5479
5480 /* Start one for the boot CPU: */
07dccf33
AM
5481 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5482 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5483 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5484 register_cpu_notifier(&migration_notifier);
48f24c4d 5485
1da177e4
LT
5486 return 0;
5487}
5488#endif
5489
5490#ifdef CONFIG_SMP
476f3534
CL
5491
5492/* Number of possible processor ids */
5493int nr_cpu_ids __read_mostly = NR_CPUS;
5494EXPORT_SYMBOL(nr_cpu_ids);
5495
1a20ff27 5496#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5497#ifdef SCHED_DOMAIN_DEBUG
5498static void sched_domain_debug(struct sched_domain *sd, int cpu)
5499{
5500 int level = 0;
5501
41c7ce9a
NP
5502 if (!sd) {
5503 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5504 return;
5505 }
5506
1da177e4
LT
5507 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5508
5509 do {
5510 int i;
5511 char str[NR_CPUS];
5512 struct sched_group *group = sd->groups;
5513 cpumask_t groupmask;
5514
5515 cpumask_scnprintf(str, NR_CPUS, sd->span);
5516 cpus_clear(groupmask);
5517
5518 printk(KERN_DEBUG);
5519 for (i = 0; i < level + 1; i++)
5520 printk(" ");
5521 printk("domain %d: ", level);
5522
5523 if (!(sd->flags & SD_LOAD_BALANCE)) {
5524 printk("does not load-balance\n");
5525 if (sd->parent)
33859f7f
MOS
5526 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5527 " has parent");
1da177e4
LT
5528 break;
5529 }
5530
5531 printk("span %s\n", str);
5532
5533 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5534 printk(KERN_ERR "ERROR: domain->span does not contain "
5535 "CPU%d\n", cpu);
1da177e4 5536 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5537 printk(KERN_ERR "ERROR: domain->groups does not contain"
5538 " CPU%d\n", cpu);
1da177e4
LT
5539
5540 printk(KERN_DEBUG);
5541 for (i = 0; i < level + 2; i++)
5542 printk(" ");
5543 printk("groups:");
5544 do {
5545 if (!group) {
5546 printk("\n");
5547 printk(KERN_ERR "ERROR: group is NULL\n");
5548 break;
5549 }
5550
5517d86b 5551 if (!group->__cpu_power) {
1da177e4 5552 printk("\n");
33859f7f
MOS
5553 printk(KERN_ERR "ERROR: domain->cpu_power not "
5554 "set\n");
1da177e4
LT
5555 }
5556
5557 if (!cpus_weight(group->cpumask)) {
5558 printk("\n");
5559 printk(KERN_ERR "ERROR: empty group\n");
5560 }
5561
5562 if (cpus_intersects(groupmask, group->cpumask)) {
5563 printk("\n");
5564 printk(KERN_ERR "ERROR: repeated CPUs\n");
5565 }
5566
5567 cpus_or(groupmask, groupmask, group->cpumask);
5568
5569 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5570 printk(" %s", str);
5571
5572 group = group->next;
5573 } while (group != sd->groups);
5574 printk("\n");
5575
5576 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5577 printk(KERN_ERR "ERROR: groups don't span "
5578 "domain->span\n");
1da177e4
LT
5579
5580 level++;
5581 sd = sd->parent;
33859f7f
MOS
5582 if (!sd)
5583 continue;
1da177e4 5584
33859f7f
MOS
5585 if (!cpus_subset(groupmask, sd->span))
5586 printk(KERN_ERR "ERROR: parent span is not a superset "
5587 "of domain->span\n");
1da177e4
LT
5588
5589 } while (sd);
5590}
5591#else
48f24c4d 5592# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5593#endif
5594
1a20ff27 5595static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5596{
5597 if (cpus_weight(sd->span) == 1)
5598 return 1;
5599
5600 /* Following flags need at least 2 groups */
5601 if (sd->flags & (SD_LOAD_BALANCE |
5602 SD_BALANCE_NEWIDLE |
5603 SD_BALANCE_FORK |
89c4710e
SS
5604 SD_BALANCE_EXEC |
5605 SD_SHARE_CPUPOWER |
5606 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5607 if (sd->groups != sd->groups->next)
5608 return 0;
5609 }
5610
5611 /* Following flags don't use groups */
5612 if (sd->flags & (SD_WAKE_IDLE |
5613 SD_WAKE_AFFINE |
5614 SD_WAKE_BALANCE))
5615 return 0;
5616
5617 return 1;
5618}
5619
48f24c4d
IM
5620static int
5621sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5622{
5623 unsigned long cflags = sd->flags, pflags = parent->flags;
5624
5625 if (sd_degenerate(parent))
5626 return 1;
5627
5628 if (!cpus_equal(sd->span, parent->span))
5629 return 0;
5630
5631 /* Does parent contain flags not in child? */
5632 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5633 if (cflags & SD_WAKE_AFFINE)
5634 pflags &= ~SD_WAKE_BALANCE;
5635 /* Flags needing groups don't count if only 1 group in parent */
5636 if (parent->groups == parent->groups->next) {
5637 pflags &= ~(SD_LOAD_BALANCE |
5638 SD_BALANCE_NEWIDLE |
5639 SD_BALANCE_FORK |
89c4710e
SS
5640 SD_BALANCE_EXEC |
5641 SD_SHARE_CPUPOWER |
5642 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5643 }
5644 if (~cflags & pflags)
5645 return 0;
5646
5647 return 1;
5648}
5649
1da177e4
LT
5650/*
5651 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5652 * hold the hotplug lock.
5653 */
9c1cfda2 5654static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5655{
70b97a7f 5656 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5657 struct sched_domain *tmp;
5658
5659 /* Remove the sched domains which do not contribute to scheduling. */
5660 for (tmp = sd; tmp; tmp = tmp->parent) {
5661 struct sched_domain *parent = tmp->parent;
5662 if (!parent)
5663 break;
1a848870 5664 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5665 tmp->parent = parent->parent;
1a848870
SS
5666 if (parent->parent)
5667 parent->parent->child = tmp;
5668 }
245af2c7
SS
5669 }
5670
1a848870 5671 if (sd && sd_degenerate(sd)) {
245af2c7 5672 sd = sd->parent;
1a848870
SS
5673 if (sd)
5674 sd->child = NULL;
5675 }
1da177e4
LT
5676
5677 sched_domain_debug(sd, cpu);
5678
674311d5 5679 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5680}
5681
5682/* cpus with isolated domains */
67af63a6 5683static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5684
5685/* Setup the mask of cpus configured for isolated domains */
5686static int __init isolated_cpu_setup(char *str)
5687{
5688 int ints[NR_CPUS], i;
5689
5690 str = get_options(str, ARRAY_SIZE(ints), ints);
5691 cpus_clear(cpu_isolated_map);
5692 for (i = 1; i <= ints[0]; i++)
5693 if (ints[i] < NR_CPUS)
5694 cpu_set(ints[i], cpu_isolated_map);
5695 return 1;
5696}
5697
5698__setup ("isolcpus=", isolated_cpu_setup);
5699
5700/*
6711cab4
SS
5701 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5702 * to a function which identifies what group(along with sched group) a CPU
5703 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5704 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5705 *
5706 * init_sched_build_groups will build a circular linked list of the groups
5707 * covered by the given span, and will set each group's ->cpumask correctly,
5708 * and ->cpu_power to 0.
5709 */
a616058b 5710static void
6711cab4
SS
5711init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5712 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5713 struct sched_group **sg))
1da177e4
LT
5714{
5715 struct sched_group *first = NULL, *last = NULL;
5716 cpumask_t covered = CPU_MASK_NONE;
5717 int i;
5718
5719 for_each_cpu_mask(i, span) {
6711cab4
SS
5720 struct sched_group *sg;
5721 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5722 int j;
5723
5724 if (cpu_isset(i, covered))
5725 continue;
5726
5727 sg->cpumask = CPU_MASK_NONE;
5517d86b 5728 sg->__cpu_power = 0;
1da177e4
LT
5729
5730 for_each_cpu_mask(j, span) {
6711cab4 5731 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5732 continue;
5733
5734 cpu_set(j, covered);
5735 cpu_set(j, sg->cpumask);
5736 }
5737 if (!first)
5738 first = sg;
5739 if (last)
5740 last->next = sg;
5741 last = sg;
5742 }
5743 last->next = first;
5744}
5745
9c1cfda2 5746#define SD_NODES_PER_DOMAIN 16
1da177e4 5747
9c1cfda2 5748#ifdef CONFIG_NUMA
198e2f18 5749
9c1cfda2
JH
5750/**
5751 * find_next_best_node - find the next node to include in a sched_domain
5752 * @node: node whose sched_domain we're building
5753 * @used_nodes: nodes already in the sched_domain
5754 *
5755 * Find the next node to include in a given scheduling domain. Simply
5756 * finds the closest node not already in the @used_nodes map.
5757 *
5758 * Should use nodemask_t.
5759 */
5760static int find_next_best_node(int node, unsigned long *used_nodes)
5761{
5762 int i, n, val, min_val, best_node = 0;
5763
5764 min_val = INT_MAX;
5765
5766 for (i = 0; i < MAX_NUMNODES; i++) {
5767 /* Start at @node */
5768 n = (node + i) % MAX_NUMNODES;
5769
5770 if (!nr_cpus_node(n))
5771 continue;
5772
5773 /* Skip already used nodes */
5774 if (test_bit(n, used_nodes))
5775 continue;
5776
5777 /* Simple min distance search */
5778 val = node_distance(node, n);
5779
5780 if (val < min_val) {
5781 min_val = val;
5782 best_node = n;
5783 }
5784 }
5785
5786 set_bit(best_node, used_nodes);
5787 return best_node;
5788}
5789
5790/**
5791 * sched_domain_node_span - get a cpumask for a node's sched_domain
5792 * @node: node whose cpumask we're constructing
5793 * @size: number of nodes to include in this span
5794 *
5795 * Given a node, construct a good cpumask for its sched_domain to span. It
5796 * should be one that prevents unnecessary balancing, but also spreads tasks
5797 * out optimally.
5798 */
5799static cpumask_t sched_domain_node_span(int node)
5800{
9c1cfda2 5801 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5802 cpumask_t span, nodemask;
5803 int i;
9c1cfda2
JH
5804
5805 cpus_clear(span);
5806 bitmap_zero(used_nodes, MAX_NUMNODES);
5807
5808 nodemask = node_to_cpumask(node);
5809 cpus_or(span, span, nodemask);
5810 set_bit(node, used_nodes);
5811
5812 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5813 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5814
9c1cfda2
JH
5815 nodemask = node_to_cpumask(next_node);
5816 cpus_or(span, span, nodemask);
5817 }
5818
5819 return span;
5820}
5821#endif
5822
5c45bf27 5823int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5824
9c1cfda2 5825/*
48f24c4d 5826 * SMT sched-domains:
9c1cfda2 5827 */
1da177e4
LT
5828#ifdef CONFIG_SCHED_SMT
5829static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5830static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5831
6711cab4
SS
5832static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5833 struct sched_group **sg)
1da177e4 5834{
6711cab4
SS
5835 if (sg)
5836 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5837 return cpu;
5838}
5839#endif
5840
48f24c4d
IM
5841/*
5842 * multi-core sched-domains:
5843 */
1e9f28fa
SS
5844#ifdef CONFIG_SCHED_MC
5845static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5846static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5847#endif
5848
5849#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5850static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5851 struct sched_group **sg)
1e9f28fa 5852{
6711cab4 5853 int group;
a616058b
SS
5854 cpumask_t mask = cpu_sibling_map[cpu];
5855 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5856 group = first_cpu(mask);
5857 if (sg)
5858 *sg = &per_cpu(sched_group_core, group);
5859 return group;
1e9f28fa
SS
5860}
5861#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5862static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5863 struct sched_group **sg)
1e9f28fa 5864{
6711cab4
SS
5865 if (sg)
5866 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5867 return cpu;
5868}
5869#endif
5870
1da177e4 5871static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5872static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5873
6711cab4
SS
5874static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5875 struct sched_group **sg)
1da177e4 5876{
6711cab4 5877 int group;
48f24c4d 5878#ifdef CONFIG_SCHED_MC
1e9f28fa 5879 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5880 cpus_and(mask, mask, *cpu_map);
6711cab4 5881 group = first_cpu(mask);
1e9f28fa 5882#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5883 cpumask_t mask = cpu_sibling_map[cpu];
5884 cpus_and(mask, mask, *cpu_map);
6711cab4 5885 group = first_cpu(mask);
1da177e4 5886#else
6711cab4 5887 group = cpu;
1da177e4 5888#endif
6711cab4
SS
5889 if (sg)
5890 *sg = &per_cpu(sched_group_phys, group);
5891 return group;
1da177e4
LT
5892}
5893
5894#ifdef CONFIG_NUMA
1da177e4 5895/*
9c1cfda2
JH
5896 * The init_sched_build_groups can't handle what we want to do with node
5897 * groups, so roll our own. Now each node has its own list of groups which
5898 * gets dynamically allocated.
1da177e4 5899 */
9c1cfda2 5900static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5901static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5902
9c1cfda2 5903static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5904static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5905
6711cab4
SS
5906static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5907 struct sched_group **sg)
9c1cfda2 5908{
6711cab4
SS
5909 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5910 int group;
5911
5912 cpus_and(nodemask, nodemask, *cpu_map);
5913 group = first_cpu(nodemask);
5914
5915 if (sg)
5916 *sg = &per_cpu(sched_group_allnodes, group);
5917 return group;
1da177e4 5918}
6711cab4 5919
08069033
SS
5920static void init_numa_sched_groups_power(struct sched_group *group_head)
5921{
5922 struct sched_group *sg = group_head;
5923 int j;
5924
5925 if (!sg)
5926 return;
5927next_sg:
5928 for_each_cpu_mask(j, sg->cpumask) {
5929 struct sched_domain *sd;
5930
5931 sd = &per_cpu(phys_domains, j);
5932 if (j != first_cpu(sd->groups->cpumask)) {
5933 /*
5934 * Only add "power" once for each
5935 * physical package.
5936 */
5937 continue;
5938 }
5939
5517d86b 5940 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5941 }
5942 sg = sg->next;
5943 if (sg != group_head)
5944 goto next_sg;
5945}
1da177e4
LT
5946#endif
5947
a616058b 5948#ifdef CONFIG_NUMA
51888ca2
SV
5949/* Free memory allocated for various sched_group structures */
5950static void free_sched_groups(const cpumask_t *cpu_map)
5951{
a616058b 5952 int cpu, i;
51888ca2
SV
5953
5954 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5955 struct sched_group **sched_group_nodes
5956 = sched_group_nodes_bycpu[cpu];
5957
51888ca2
SV
5958 if (!sched_group_nodes)
5959 continue;
5960
5961 for (i = 0; i < MAX_NUMNODES; i++) {
5962 cpumask_t nodemask = node_to_cpumask(i);
5963 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5964
5965 cpus_and(nodemask, nodemask, *cpu_map);
5966 if (cpus_empty(nodemask))
5967 continue;
5968
5969 if (sg == NULL)
5970 continue;
5971 sg = sg->next;
5972next_sg:
5973 oldsg = sg;
5974 sg = sg->next;
5975 kfree(oldsg);
5976 if (oldsg != sched_group_nodes[i])
5977 goto next_sg;
5978 }
5979 kfree(sched_group_nodes);
5980 sched_group_nodes_bycpu[cpu] = NULL;
5981 }
51888ca2 5982}
a616058b
SS
5983#else
5984static void free_sched_groups(const cpumask_t *cpu_map)
5985{
5986}
5987#endif
51888ca2 5988
89c4710e
SS
5989/*
5990 * Initialize sched groups cpu_power.
5991 *
5992 * cpu_power indicates the capacity of sched group, which is used while
5993 * distributing the load between different sched groups in a sched domain.
5994 * Typically cpu_power for all the groups in a sched domain will be same unless
5995 * there are asymmetries in the topology. If there are asymmetries, group
5996 * having more cpu_power will pickup more load compared to the group having
5997 * less cpu_power.
5998 *
5999 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6000 * the maximum number of tasks a group can handle in the presence of other idle
6001 * or lightly loaded groups in the same sched domain.
6002 */
6003static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6004{
6005 struct sched_domain *child;
6006 struct sched_group *group;
6007
6008 WARN_ON(!sd || !sd->groups);
6009
6010 if (cpu != first_cpu(sd->groups->cpumask))
6011 return;
6012
6013 child = sd->child;
6014
5517d86b
ED
6015 sd->groups->__cpu_power = 0;
6016
89c4710e
SS
6017 /*
6018 * For perf policy, if the groups in child domain share resources
6019 * (for example cores sharing some portions of the cache hierarchy
6020 * or SMT), then set this domain groups cpu_power such that each group
6021 * can handle only one task, when there are other idle groups in the
6022 * same sched domain.
6023 */
6024 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6025 (child->flags &
6026 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6027 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6028 return;
6029 }
6030
89c4710e
SS
6031 /*
6032 * add cpu_power of each child group to this groups cpu_power
6033 */
6034 group = child->groups;
6035 do {
5517d86b 6036 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6037 group = group->next;
6038 } while (group != child->groups);
6039}
6040
1da177e4 6041/*
1a20ff27
DG
6042 * Build sched domains for a given set of cpus and attach the sched domains
6043 * to the individual cpus
1da177e4 6044 */
51888ca2 6045static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6046{
6047 int i;
d1b55138
JH
6048#ifdef CONFIG_NUMA
6049 struct sched_group **sched_group_nodes = NULL;
6711cab4 6050 int sd_allnodes = 0;
d1b55138
JH
6051
6052 /*
6053 * Allocate the per-node list of sched groups
6054 */
dd41f596 6055 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6056 GFP_KERNEL);
d1b55138
JH
6057 if (!sched_group_nodes) {
6058 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6059 return -ENOMEM;
d1b55138
JH
6060 }
6061 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6062#endif
1da177e4
LT
6063
6064 /*
1a20ff27 6065 * Set up domains for cpus specified by the cpu_map.
1da177e4 6066 */
1a20ff27 6067 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6068 struct sched_domain *sd = NULL, *p;
6069 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6070
1a20ff27 6071 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6072
6073#ifdef CONFIG_NUMA
dd41f596
IM
6074 if (cpus_weight(*cpu_map) >
6075 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6076 sd = &per_cpu(allnodes_domains, i);
6077 *sd = SD_ALLNODES_INIT;
6078 sd->span = *cpu_map;
6711cab4 6079 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6080 p = sd;
6711cab4 6081 sd_allnodes = 1;
9c1cfda2
JH
6082 } else
6083 p = NULL;
6084
1da177e4 6085 sd = &per_cpu(node_domains, i);
1da177e4 6086 *sd = SD_NODE_INIT;
9c1cfda2
JH
6087 sd->span = sched_domain_node_span(cpu_to_node(i));
6088 sd->parent = p;
1a848870
SS
6089 if (p)
6090 p->child = sd;
9c1cfda2 6091 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6092#endif
6093
6094 p = sd;
6095 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6096 *sd = SD_CPU_INIT;
6097 sd->span = nodemask;
6098 sd->parent = p;
1a848870
SS
6099 if (p)
6100 p->child = sd;
6711cab4 6101 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6102
1e9f28fa
SS
6103#ifdef CONFIG_SCHED_MC
6104 p = sd;
6105 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6106 *sd = SD_MC_INIT;
6107 sd->span = cpu_coregroup_map(i);
6108 cpus_and(sd->span, sd->span, *cpu_map);
6109 sd->parent = p;
1a848870 6110 p->child = sd;
6711cab4 6111 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6112#endif
6113
1da177e4
LT
6114#ifdef CONFIG_SCHED_SMT
6115 p = sd;
6116 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6117 *sd = SD_SIBLING_INIT;
6118 sd->span = cpu_sibling_map[i];
1a20ff27 6119 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6120 sd->parent = p;
1a848870 6121 p->child = sd;
6711cab4 6122 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6123#endif
6124 }
6125
6126#ifdef CONFIG_SCHED_SMT
6127 /* Set up CPU (sibling) groups */
9c1cfda2 6128 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6129 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6130 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6131 if (i != first_cpu(this_sibling_map))
6132 continue;
6133
dd41f596
IM
6134 init_sched_build_groups(this_sibling_map, cpu_map,
6135 &cpu_to_cpu_group);
1da177e4
LT
6136 }
6137#endif
6138
1e9f28fa
SS
6139#ifdef CONFIG_SCHED_MC
6140 /* Set up multi-core groups */
6141 for_each_cpu_mask(i, *cpu_map) {
6142 cpumask_t this_core_map = cpu_coregroup_map(i);
6143 cpus_and(this_core_map, this_core_map, *cpu_map);
6144 if (i != first_cpu(this_core_map))
6145 continue;
dd41f596
IM
6146 init_sched_build_groups(this_core_map, cpu_map,
6147 &cpu_to_core_group);
1e9f28fa
SS
6148 }
6149#endif
6150
1da177e4
LT
6151 /* Set up physical groups */
6152 for (i = 0; i < MAX_NUMNODES; i++) {
6153 cpumask_t nodemask = node_to_cpumask(i);
6154
1a20ff27 6155 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6156 if (cpus_empty(nodemask))
6157 continue;
6158
6711cab4 6159 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6160 }
6161
6162#ifdef CONFIG_NUMA
6163 /* Set up node groups */
6711cab4 6164 if (sd_allnodes)
dd41f596
IM
6165 init_sched_build_groups(*cpu_map, cpu_map,
6166 &cpu_to_allnodes_group);
9c1cfda2
JH
6167
6168 for (i = 0; i < MAX_NUMNODES; i++) {
6169 /* Set up node groups */
6170 struct sched_group *sg, *prev;
6171 cpumask_t nodemask = node_to_cpumask(i);
6172 cpumask_t domainspan;
6173 cpumask_t covered = CPU_MASK_NONE;
6174 int j;
6175
6176 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6177 if (cpus_empty(nodemask)) {
6178 sched_group_nodes[i] = NULL;
9c1cfda2 6179 continue;
d1b55138 6180 }
9c1cfda2
JH
6181
6182 domainspan = sched_domain_node_span(i);
6183 cpus_and(domainspan, domainspan, *cpu_map);
6184
15f0b676 6185 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6186 if (!sg) {
6187 printk(KERN_WARNING "Can not alloc domain group for "
6188 "node %d\n", i);
6189 goto error;
6190 }
9c1cfda2
JH
6191 sched_group_nodes[i] = sg;
6192 for_each_cpu_mask(j, nodemask) {
6193 struct sched_domain *sd;
9761eea8 6194
9c1cfda2
JH
6195 sd = &per_cpu(node_domains, j);
6196 sd->groups = sg;
9c1cfda2 6197 }
5517d86b 6198 sg->__cpu_power = 0;
9c1cfda2 6199 sg->cpumask = nodemask;
51888ca2 6200 sg->next = sg;
9c1cfda2
JH
6201 cpus_or(covered, covered, nodemask);
6202 prev = sg;
6203
6204 for (j = 0; j < MAX_NUMNODES; j++) {
6205 cpumask_t tmp, notcovered;
6206 int n = (i + j) % MAX_NUMNODES;
6207
6208 cpus_complement(notcovered, covered);
6209 cpus_and(tmp, notcovered, *cpu_map);
6210 cpus_and(tmp, tmp, domainspan);
6211 if (cpus_empty(tmp))
6212 break;
6213
6214 nodemask = node_to_cpumask(n);
6215 cpus_and(tmp, tmp, nodemask);
6216 if (cpus_empty(tmp))
6217 continue;
6218
15f0b676
SV
6219 sg = kmalloc_node(sizeof(struct sched_group),
6220 GFP_KERNEL, i);
9c1cfda2
JH
6221 if (!sg) {
6222 printk(KERN_WARNING
6223 "Can not alloc domain group for node %d\n", j);
51888ca2 6224 goto error;
9c1cfda2 6225 }
5517d86b 6226 sg->__cpu_power = 0;
9c1cfda2 6227 sg->cpumask = tmp;
51888ca2 6228 sg->next = prev->next;
9c1cfda2
JH
6229 cpus_or(covered, covered, tmp);
6230 prev->next = sg;
6231 prev = sg;
6232 }
9c1cfda2 6233 }
1da177e4
LT
6234#endif
6235
6236 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6237#ifdef CONFIG_SCHED_SMT
1a20ff27 6238 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6239 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6240
89c4710e 6241 init_sched_groups_power(i, sd);
5c45bf27 6242 }
1da177e4 6243#endif
1e9f28fa 6244#ifdef CONFIG_SCHED_MC
5c45bf27 6245 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6246 struct sched_domain *sd = &per_cpu(core_domains, i);
6247
89c4710e 6248 init_sched_groups_power(i, sd);
5c45bf27
SS
6249 }
6250#endif
1e9f28fa 6251
5c45bf27 6252 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6253 struct sched_domain *sd = &per_cpu(phys_domains, i);
6254
89c4710e 6255 init_sched_groups_power(i, sd);
1da177e4
LT
6256 }
6257
9c1cfda2 6258#ifdef CONFIG_NUMA
08069033
SS
6259 for (i = 0; i < MAX_NUMNODES; i++)
6260 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6261
6711cab4
SS
6262 if (sd_allnodes) {
6263 struct sched_group *sg;
f712c0c7 6264
6711cab4 6265 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6266 init_numa_sched_groups_power(sg);
6267 }
9c1cfda2
JH
6268#endif
6269
1da177e4 6270 /* Attach the domains */
1a20ff27 6271 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6272 struct sched_domain *sd;
6273#ifdef CONFIG_SCHED_SMT
6274 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6275#elif defined(CONFIG_SCHED_MC)
6276 sd = &per_cpu(core_domains, i);
1da177e4
LT
6277#else
6278 sd = &per_cpu(phys_domains, i);
6279#endif
6280 cpu_attach_domain(sd, i);
6281 }
51888ca2
SV
6282
6283 return 0;
6284
a616058b 6285#ifdef CONFIG_NUMA
51888ca2
SV
6286error:
6287 free_sched_groups(cpu_map);
6288 return -ENOMEM;
a616058b 6289#endif
1da177e4 6290}
1a20ff27
DG
6291/*
6292 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6293 */
51888ca2 6294static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6295{
6296 cpumask_t cpu_default_map;
51888ca2 6297 int err;
1da177e4 6298
1a20ff27
DG
6299 /*
6300 * Setup mask for cpus without special case scheduling requirements.
6301 * For now this just excludes isolated cpus, but could be used to
6302 * exclude other special cases in the future.
6303 */
6304 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6305
51888ca2
SV
6306 err = build_sched_domains(&cpu_default_map);
6307
6308 return err;
1a20ff27
DG
6309}
6310
6311static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6312{
51888ca2 6313 free_sched_groups(cpu_map);
9c1cfda2 6314}
1da177e4 6315
1a20ff27
DG
6316/*
6317 * Detach sched domains from a group of cpus specified in cpu_map
6318 * These cpus will now be attached to the NULL domain
6319 */
858119e1 6320static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6321{
6322 int i;
6323
6324 for_each_cpu_mask(i, *cpu_map)
6325 cpu_attach_domain(NULL, i);
6326 synchronize_sched();
6327 arch_destroy_sched_domains(cpu_map);
6328}
6329
6330/*
6331 * Partition sched domains as specified by the cpumasks below.
6332 * This attaches all cpus from the cpumasks to the NULL domain,
6333 * waits for a RCU quiescent period, recalculates sched
6334 * domain information and then attaches them back to the
6335 * correct sched domains
6336 * Call with hotplug lock held
6337 */
51888ca2 6338int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6339{
6340 cpumask_t change_map;
51888ca2 6341 int err = 0;
1a20ff27
DG
6342
6343 cpus_and(*partition1, *partition1, cpu_online_map);
6344 cpus_and(*partition2, *partition2, cpu_online_map);
6345 cpus_or(change_map, *partition1, *partition2);
6346
6347 /* Detach sched domains from all of the affected cpus */
6348 detach_destroy_domains(&change_map);
6349 if (!cpus_empty(*partition1))
51888ca2
SV
6350 err = build_sched_domains(partition1);
6351 if (!err && !cpus_empty(*partition2))
6352 err = build_sched_domains(partition2);
6353
6354 return err;
1a20ff27
DG
6355}
6356
5c45bf27 6357#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6358static int arch_reinit_sched_domains(void)
5c45bf27
SS
6359{
6360 int err;
6361
5be9361c 6362 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6363 detach_destroy_domains(&cpu_online_map);
6364 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6365 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6366
6367 return err;
6368}
6369
6370static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6371{
6372 int ret;
6373
6374 if (buf[0] != '0' && buf[0] != '1')
6375 return -EINVAL;
6376
6377 if (smt)
6378 sched_smt_power_savings = (buf[0] == '1');
6379 else
6380 sched_mc_power_savings = (buf[0] == '1');
6381
6382 ret = arch_reinit_sched_domains();
6383
6384 return ret ? ret : count;
6385}
6386
5c45bf27
SS
6387#ifdef CONFIG_SCHED_MC
6388static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6389{
6390 return sprintf(page, "%u\n", sched_mc_power_savings);
6391}
48f24c4d
IM
6392static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6393 const char *buf, size_t count)
5c45bf27
SS
6394{
6395 return sched_power_savings_store(buf, count, 0);
6396}
6707de00
AB
6397static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6398 sched_mc_power_savings_store);
5c45bf27
SS
6399#endif
6400
6401#ifdef CONFIG_SCHED_SMT
6402static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6403{
6404 return sprintf(page, "%u\n", sched_smt_power_savings);
6405}
48f24c4d
IM
6406static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6407 const char *buf, size_t count)
5c45bf27
SS
6408{
6409 return sched_power_savings_store(buf, count, 1);
6410}
6707de00
AB
6411static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6412 sched_smt_power_savings_store);
6413#endif
6414
6415int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6416{
6417 int err = 0;
6418
6419#ifdef CONFIG_SCHED_SMT
6420 if (smt_capable())
6421 err = sysfs_create_file(&cls->kset.kobj,
6422 &attr_sched_smt_power_savings.attr);
6423#endif
6424#ifdef CONFIG_SCHED_MC
6425 if (!err && mc_capable())
6426 err = sysfs_create_file(&cls->kset.kobj,
6427 &attr_sched_mc_power_savings.attr);
6428#endif
6429 return err;
6430}
5c45bf27
SS
6431#endif
6432
1da177e4
LT
6433/*
6434 * Force a reinitialization of the sched domains hierarchy. The domains
6435 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6436 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6437 * which will prevent rebalancing while the sched domains are recalculated.
6438 */
6439static int update_sched_domains(struct notifier_block *nfb,
6440 unsigned long action, void *hcpu)
6441{
1da177e4
LT
6442 switch (action) {
6443 case CPU_UP_PREPARE:
8bb78442 6444 case CPU_UP_PREPARE_FROZEN:
1da177e4 6445 case CPU_DOWN_PREPARE:
8bb78442 6446 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6447 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6448 return NOTIFY_OK;
6449
6450 case CPU_UP_CANCELED:
8bb78442 6451 case CPU_UP_CANCELED_FROZEN:
1da177e4 6452 case CPU_DOWN_FAILED:
8bb78442 6453 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6454 case CPU_ONLINE:
8bb78442 6455 case CPU_ONLINE_FROZEN:
1da177e4 6456 case CPU_DEAD:
8bb78442 6457 case CPU_DEAD_FROZEN:
1da177e4
LT
6458 /*
6459 * Fall through and re-initialise the domains.
6460 */
6461 break;
6462 default:
6463 return NOTIFY_DONE;
6464 }
6465
6466 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6467 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6468
6469 return NOTIFY_OK;
6470}
1da177e4
LT
6471
6472void __init sched_init_smp(void)
6473{
5c1e1767
NP
6474 cpumask_t non_isolated_cpus;
6475
5be9361c 6476 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6477 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6478 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6479 if (cpus_empty(non_isolated_cpus))
6480 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6481 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6482 /* XXX: Theoretical race here - CPU may be hotplugged now */
6483 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6484
e692ab53
NP
6485 init_sched_domain_sysctl();
6486
5c1e1767
NP
6487 /* Move init over to a non-isolated CPU */
6488 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6489 BUG();
dd41f596 6490 sched_init_granularity();
1da177e4
LT
6491}
6492#else
6493void __init sched_init_smp(void)
6494{
dd41f596 6495 sched_init_granularity();
1da177e4
LT
6496}
6497#endif /* CONFIG_SMP */
6498
6499int in_sched_functions(unsigned long addr)
6500{
6501 /* Linker adds these: start and end of __sched functions */
6502 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6503
1da177e4
LT
6504 return in_lock_functions(addr) ||
6505 (addr >= (unsigned long)__sched_text_start
6506 && addr < (unsigned long)__sched_text_end);
6507}
6508
dd41f596
IM
6509static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6510{
6511 cfs_rq->tasks_timeline = RB_ROOT;
6512 cfs_rq->fair_clock = 1;
6513#ifdef CONFIG_FAIR_GROUP_SCHED
6514 cfs_rq->rq = rq;
6515#endif
6516}
6517
1da177e4
LT
6518void __init sched_init(void)
6519{
dd41f596 6520 u64 now = sched_clock();
476f3534 6521 int highest_cpu = 0;
dd41f596
IM
6522 int i, j;
6523
6524 /*
6525 * Link up the scheduling class hierarchy:
6526 */
6527 rt_sched_class.next = &fair_sched_class;
6528 fair_sched_class.next = &idle_sched_class;
6529 idle_sched_class.next = NULL;
1da177e4 6530
0a945022 6531 for_each_possible_cpu(i) {
dd41f596 6532 struct rt_prio_array *array;
70b97a7f 6533 struct rq *rq;
1da177e4
LT
6534
6535 rq = cpu_rq(i);
6536 spin_lock_init(&rq->lock);
fcb99371 6537 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6538 rq->nr_running = 0;
dd41f596
IM
6539 rq->clock = 1;
6540 init_cfs_rq(&rq->cfs, rq);
6541#ifdef CONFIG_FAIR_GROUP_SCHED
6542 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6543 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6544#endif
6545 rq->ls.load_update_last = now;
6546 rq->ls.load_update_start = now;
1da177e4 6547
dd41f596
IM
6548 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6549 rq->cpu_load[j] = 0;
1da177e4 6550#ifdef CONFIG_SMP
41c7ce9a 6551 rq->sd = NULL;
1da177e4 6552 rq->active_balance = 0;
dd41f596 6553 rq->next_balance = jiffies;
1da177e4 6554 rq->push_cpu = 0;
0a2966b4 6555 rq->cpu = i;
1da177e4
LT
6556 rq->migration_thread = NULL;
6557 INIT_LIST_HEAD(&rq->migration_queue);
6558#endif
6559 atomic_set(&rq->nr_iowait, 0);
6560
dd41f596
IM
6561 array = &rq->rt.active;
6562 for (j = 0; j < MAX_RT_PRIO; j++) {
6563 INIT_LIST_HEAD(array->queue + j);
6564 __clear_bit(j, array->bitmap);
1da177e4 6565 }
476f3534 6566 highest_cpu = i;
dd41f596
IM
6567 /* delimiter for bitsearch: */
6568 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6569 }
6570
2dd73a4f 6571 set_load_weight(&init_task);
b50f60ce 6572
e107be36
AK
6573#ifdef CONFIG_PREEMPT_NOTIFIERS
6574 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6575#endif
6576
c9819f45 6577#ifdef CONFIG_SMP
476f3534 6578 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6579 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6580#endif
6581
b50f60ce
HC
6582#ifdef CONFIG_RT_MUTEXES
6583 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6584#endif
6585
1da177e4
LT
6586 /*
6587 * The boot idle thread does lazy MMU switching as well:
6588 */
6589 atomic_inc(&init_mm.mm_count);
6590 enter_lazy_tlb(&init_mm, current);
6591
6592 /*
6593 * Make us the idle thread. Technically, schedule() should not be
6594 * called from this thread, however somewhere below it might be,
6595 * but because we are the idle thread, we just pick up running again
6596 * when this runqueue becomes "idle".
6597 */
6598 init_idle(current, smp_processor_id());
dd41f596
IM
6599 /*
6600 * During early bootup we pretend to be a normal task:
6601 */
6602 current->sched_class = &fair_sched_class;
1da177e4
LT
6603}
6604
6605#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6606void __might_sleep(char *file, int line)
6607{
48f24c4d 6608#ifdef in_atomic
1da177e4
LT
6609 static unsigned long prev_jiffy; /* ratelimiting */
6610
6611 if ((in_atomic() || irqs_disabled()) &&
6612 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6613 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6614 return;
6615 prev_jiffy = jiffies;
91368d73 6616 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6617 " context at %s:%d\n", file, line);
6618 printk("in_atomic():%d, irqs_disabled():%d\n",
6619 in_atomic(), irqs_disabled());
a4c410f0 6620 debug_show_held_locks(current);
3117df04
IM
6621 if (irqs_disabled())
6622 print_irqtrace_events(current);
1da177e4
LT
6623 dump_stack();
6624 }
6625#endif
6626}
6627EXPORT_SYMBOL(__might_sleep);
6628#endif
6629
6630#ifdef CONFIG_MAGIC_SYSRQ
6631void normalize_rt_tasks(void)
6632{
a0f98a1c 6633 struct task_struct *g, *p;
1da177e4 6634 unsigned long flags;
70b97a7f 6635 struct rq *rq;
dd41f596 6636 int on_rq;
1da177e4
LT
6637
6638 read_lock_irq(&tasklist_lock);
a0f98a1c 6639 do_each_thread(g, p) {
dd41f596
IM
6640 p->se.fair_key = 0;
6641 p->se.wait_runtime = 0;
6cfb0d5d 6642 p->se.exec_start = 0;
dd41f596 6643 p->se.wait_start_fair = 0;
6cfb0d5d
IM
6644 p->se.sleep_start_fair = 0;
6645#ifdef CONFIG_SCHEDSTATS
dd41f596 6646 p->se.wait_start = 0;
dd41f596 6647 p->se.sleep_start = 0;
dd41f596 6648 p->se.block_start = 0;
6cfb0d5d 6649#endif
dd41f596
IM
6650 task_rq(p)->cfs.fair_clock = 0;
6651 task_rq(p)->clock = 0;
6652
6653 if (!rt_task(p)) {
6654 /*
6655 * Renice negative nice level userspace
6656 * tasks back to 0:
6657 */
6658 if (TASK_NICE(p) < 0 && p->mm)
6659 set_user_nice(p, 0);
1da177e4 6660 continue;
dd41f596 6661 }
1da177e4 6662
b29739f9
IM
6663 spin_lock_irqsave(&p->pi_lock, flags);
6664 rq = __task_rq_lock(p);
dd41f596
IM
6665#ifdef CONFIG_SMP
6666 /*
6667 * Do not touch the migration thread:
6668 */
6669 if (p == rq->migration_thread)
6670 goto out_unlock;
6671#endif
1da177e4 6672
2daa3577 6673 update_rq_clock(rq);
dd41f596 6674 on_rq = p->se.on_rq;
2daa3577
IM
6675 if (on_rq)
6676 deactivate_task(rq, p, 0);
dd41f596
IM
6677 __setscheduler(rq, p, SCHED_NORMAL, 0);
6678 if (on_rq) {
2daa3577 6679 activate_task(rq, p, 0);
1da177e4
LT
6680 resched_task(rq->curr);
6681 }
dd41f596
IM
6682#ifdef CONFIG_SMP
6683 out_unlock:
6684#endif
b29739f9
IM
6685 __task_rq_unlock(rq);
6686 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6687 } while_each_thread(g, p);
6688
1da177e4
LT
6689 read_unlock_irq(&tasklist_lock);
6690}
6691
6692#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6693
6694#ifdef CONFIG_IA64
6695/*
6696 * These functions are only useful for the IA64 MCA handling.
6697 *
6698 * They can only be called when the whole system has been
6699 * stopped - every CPU needs to be quiescent, and no scheduling
6700 * activity can take place. Using them for anything else would
6701 * be a serious bug, and as a result, they aren't even visible
6702 * under any other configuration.
6703 */
6704
6705/**
6706 * curr_task - return the current task for a given cpu.
6707 * @cpu: the processor in question.
6708 *
6709 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6710 */
36c8b586 6711struct task_struct *curr_task(int cpu)
1df5c10a
LT
6712{
6713 return cpu_curr(cpu);
6714}
6715
6716/**
6717 * set_curr_task - set the current task for a given cpu.
6718 * @cpu: the processor in question.
6719 * @p: the task pointer to set.
6720 *
6721 * Description: This function must only be used when non-maskable interrupts
6722 * are serviced on a separate stack. It allows the architecture to switch the
6723 * notion of the current task on a cpu in a non-blocking manner. This function
6724 * must be called with all CPU's synchronized, and interrupts disabled, the
6725 * and caller must save the original value of the current task (see
6726 * curr_task() above) and restore that value before reenabling interrupts and
6727 * re-starting the system.
6728 *
6729 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6730 */
36c8b586 6731void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6732{
6733 cpu_curr(cpu) = p;
6734}
6735
6736#endif