]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched.c
sched: Create a helper function to calculate sched_group stats for fbg()
[mirror_ubuntu-jammy-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
57310a98
PZ
334#ifdef CONFIG_SMP
335static int root_task_group_empty(void)
336{
337 return list_empty(&root_task_group.children);
338}
339#endif
340
052f1dc7 341#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
342#ifdef CONFIG_USER_SCHED
343# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 344#else /* !CONFIG_USER_SCHED */
052f1dc7 345# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 346#endif /* CONFIG_USER_SCHED */
052f1dc7 347
cb4ad1ff 348/*
2e084786
LJ
349 * A weight of 0 or 1 can cause arithmetics problems.
350 * A weight of a cfs_rq is the sum of weights of which entities
351 * are queued on this cfs_rq, so a weight of a entity should not be
352 * too large, so as the shares value of a task group.
cb4ad1ff
MX
353 * (The default weight is 1024 - so there's no practical
354 * limitation from this.)
355 */
18d95a28 356#define MIN_SHARES 2
2e084786 357#define MAX_SHARES (1UL << 18)
18d95a28 358
052f1dc7
PZ
359static int init_task_group_load = INIT_TASK_GROUP_LOAD;
360#endif
361
29f59db3 362/* Default task group.
3a252015 363 * Every task in system belong to this group at bootup.
29f59db3 364 */
434d53b0 365struct task_group init_task_group;
29f59db3
SV
366
367/* return group to which a task belongs */
4cf86d77 368static inline struct task_group *task_group(struct task_struct *p)
29f59db3 369{
4cf86d77 370 struct task_group *tg;
9b5b7751 371
052f1dc7 372#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
373 rcu_read_lock();
374 tg = __task_cred(p)->user->tg;
375 rcu_read_unlock();
052f1dc7 376#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
377 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
378 struct task_group, css);
24e377a8 379#else
41a2d6cf 380 tg = &init_task_group;
24e377a8 381#endif
9b5b7751 382 return tg;
29f59db3
SV
383}
384
385/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 386static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 387{
052f1dc7 388#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
389 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
390 p->se.parent = task_group(p)->se[cpu];
052f1dc7 391#endif
6f505b16 392
052f1dc7 393#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
394 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
395 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 396#endif
29f59db3
SV
397}
398
399#else
400
57310a98
PZ
401#ifdef CONFIG_SMP
402static int root_task_group_empty(void)
403{
404 return 1;
405}
406#endif
407
6f505b16 408static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
409static inline struct task_group *task_group(struct task_struct *p)
410{
411 return NULL;
412}
29f59db3 413
052f1dc7 414#endif /* CONFIG_GROUP_SCHED */
29f59db3 415
6aa645ea
IM
416/* CFS-related fields in a runqueue */
417struct cfs_rq {
418 struct load_weight load;
419 unsigned long nr_running;
420
6aa645ea 421 u64 exec_clock;
e9acbff6 422 u64 min_vruntime;
6aa645ea
IM
423
424 struct rb_root tasks_timeline;
425 struct rb_node *rb_leftmost;
4a55bd5e
PZ
426
427 struct list_head tasks;
428 struct list_head *balance_iterator;
429
430 /*
431 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
432 * It is set to NULL otherwise (i.e when none are currently running).
433 */
4793241b 434 struct sched_entity *curr, *next, *last;
ddc97297 435
5ac5c4d6 436 unsigned int nr_spread_over;
ddc97297 437
62160e3f 438#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
439 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
440
41a2d6cf
IM
441 /*
442 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
443 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
444 * (like users, containers etc.)
445 *
446 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
447 * list is used during load balance.
448 */
41a2d6cf
IM
449 struct list_head leaf_cfs_rq_list;
450 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
451
452#ifdef CONFIG_SMP
c09595f6 453 /*
c8cba857 454 * the part of load.weight contributed by tasks
c09595f6 455 */
c8cba857 456 unsigned long task_weight;
c09595f6 457
c8cba857
PZ
458 /*
459 * h_load = weight * f(tg)
460 *
461 * Where f(tg) is the recursive weight fraction assigned to
462 * this group.
463 */
464 unsigned long h_load;
c09595f6 465
c8cba857
PZ
466 /*
467 * this cpu's part of tg->shares
468 */
469 unsigned long shares;
f1d239f7
PZ
470
471 /*
472 * load.weight at the time we set shares
473 */
474 unsigned long rq_weight;
c09595f6 475#endif
6aa645ea
IM
476#endif
477};
1da177e4 478
6aa645ea
IM
479/* Real-Time classes' related field in a runqueue: */
480struct rt_rq {
481 struct rt_prio_array active;
63489e45 482 unsigned long rt_nr_running;
052f1dc7 483#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
484 struct {
485 int curr; /* highest queued rt task prio */
398a153b 486#ifdef CONFIG_SMP
e864c499 487 int next; /* next highest */
398a153b 488#endif
e864c499 489 } highest_prio;
6f505b16 490#endif
fa85ae24 491#ifdef CONFIG_SMP
73fe6aae 492 unsigned long rt_nr_migratory;
a22d7fc1 493 int overloaded;
917b627d 494 struct plist_head pushable_tasks;
fa85ae24 495#endif
6f505b16 496 int rt_throttled;
fa85ae24 497 u64 rt_time;
ac086bc2 498 u64 rt_runtime;
ea736ed5 499 /* Nests inside the rq lock: */
ac086bc2 500 spinlock_t rt_runtime_lock;
6f505b16 501
052f1dc7 502#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
503 unsigned long rt_nr_boosted;
504
6f505b16
PZ
505 struct rq *rq;
506 struct list_head leaf_rt_rq_list;
507 struct task_group *tg;
508 struct sched_rt_entity *rt_se;
509#endif
6aa645ea
IM
510};
511
57d885fe
GH
512#ifdef CONFIG_SMP
513
514/*
515 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
516 * variables. Each exclusive cpuset essentially defines an island domain by
517 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
518 * exclusive cpuset is created, we also create and attach a new root-domain
519 * object.
520 *
57d885fe
GH
521 */
522struct root_domain {
523 atomic_t refcount;
c6c4927b
RR
524 cpumask_var_t span;
525 cpumask_var_t online;
637f5085 526
0eab9146 527 /*
637f5085
GH
528 * The "RT overload" flag: it gets set if a CPU has more than
529 * one runnable RT task.
530 */
c6c4927b 531 cpumask_var_t rto_mask;
0eab9146 532 atomic_t rto_count;
6e0534f2
GH
533#ifdef CONFIG_SMP
534 struct cpupri cpupri;
535#endif
7a09b1a2
VS
536#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
537 /*
538 * Preferred wake up cpu nominated by sched_mc balance that will be
539 * used when most cpus are idle in the system indicating overall very
540 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
541 */
542 unsigned int sched_mc_preferred_wakeup_cpu;
543#endif
57d885fe
GH
544};
545
dc938520
GH
546/*
547 * By default the system creates a single root-domain with all cpus as
548 * members (mimicking the global state we have today).
549 */
57d885fe
GH
550static struct root_domain def_root_domain;
551
552#endif
553
1da177e4
LT
554/*
555 * This is the main, per-CPU runqueue data structure.
556 *
557 * Locking rule: those places that want to lock multiple runqueues
558 * (such as the load balancing or the thread migration code), lock
559 * acquire operations must be ordered by ascending &runqueue.
560 */
70b97a7f 561struct rq {
d8016491
IM
562 /* runqueue lock: */
563 spinlock_t lock;
1da177e4
LT
564
565 /*
566 * nr_running and cpu_load should be in the same cacheline because
567 * remote CPUs use both these fields when doing load calculation.
568 */
569 unsigned long nr_running;
6aa645ea
IM
570 #define CPU_LOAD_IDX_MAX 5
571 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 572#ifdef CONFIG_NO_HZ
15934a37 573 unsigned long last_tick_seen;
46cb4b7c
SS
574 unsigned char in_nohz_recently;
575#endif
d8016491
IM
576 /* capture load from *all* tasks on this cpu: */
577 struct load_weight load;
6aa645ea
IM
578 unsigned long nr_load_updates;
579 u64 nr_switches;
580
581 struct cfs_rq cfs;
6f505b16 582 struct rt_rq rt;
6f505b16 583
6aa645ea 584#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
585 /* list of leaf cfs_rq on this cpu: */
586 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
587#endif
588#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 589 struct list_head leaf_rt_rq_list;
1da177e4 590#endif
1da177e4
LT
591
592 /*
593 * This is part of a global counter where only the total sum
594 * over all CPUs matters. A task can increase this counter on
595 * one CPU and if it got migrated afterwards it may decrease
596 * it on another CPU. Always updated under the runqueue lock:
597 */
598 unsigned long nr_uninterruptible;
599
36c8b586 600 struct task_struct *curr, *idle;
c9819f45 601 unsigned long next_balance;
1da177e4 602 struct mm_struct *prev_mm;
6aa645ea 603
3e51f33f 604 u64 clock;
6aa645ea 605
1da177e4
LT
606 atomic_t nr_iowait;
607
608#ifdef CONFIG_SMP
0eab9146 609 struct root_domain *rd;
1da177e4
LT
610 struct sched_domain *sd;
611
a0a522ce 612 unsigned char idle_at_tick;
1da177e4
LT
613 /* For active balancing */
614 int active_balance;
615 int push_cpu;
d8016491
IM
616 /* cpu of this runqueue: */
617 int cpu;
1f11eb6a 618 int online;
1da177e4 619
a8a51d5e 620 unsigned long avg_load_per_task;
1da177e4 621
36c8b586 622 struct task_struct *migration_thread;
1da177e4
LT
623 struct list_head migration_queue;
624#endif
625
8f4d37ec 626#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
627#ifdef CONFIG_SMP
628 int hrtick_csd_pending;
629 struct call_single_data hrtick_csd;
630#endif
8f4d37ec
PZ
631 struct hrtimer hrtick_timer;
632#endif
633
1da177e4
LT
634#ifdef CONFIG_SCHEDSTATS
635 /* latency stats */
636 struct sched_info rq_sched_info;
9c2c4802
KC
637 unsigned long long rq_cpu_time;
638 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
639
640 /* sys_sched_yield() stats */
480b9434 641 unsigned int yld_count;
1da177e4
LT
642
643 /* schedule() stats */
480b9434
KC
644 unsigned int sched_switch;
645 unsigned int sched_count;
646 unsigned int sched_goidle;
1da177e4
LT
647
648 /* try_to_wake_up() stats */
480b9434
KC
649 unsigned int ttwu_count;
650 unsigned int ttwu_local;
b8efb561
IM
651
652 /* BKL stats */
480b9434 653 unsigned int bkl_count;
1da177e4
LT
654#endif
655};
656
f34e3b61 657static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 658
15afe09b 659static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 660{
15afe09b 661 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
662}
663
0a2966b4
CL
664static inline int cpu_of(struct rq *rq)
665{
666#ifdef CONFIG_SMP
667 return rq->cpu;
668#else
669 return 0;
670#endif
671}
672
674311d5
NP
673/*
674 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 675 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
676 *
677 * The domain tree of any CPU may only be accessed from within
678 * preempt-disabled sections.
679 */
48f24c4d
IM
680#define for_each_domain(cpu, __sd) \
681 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
682
683#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
684#define this_rq() (&__get_cpu_var(runqueues))
685#define task_rq(p) cpu_rq(task_cpu(p))
686#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
687
3e51f33f
PZ
688static inline void update_rq_clock(struct rq *rq)
689{
690 rq->clock = sched_clock_cpu(cpu_of(rq));
691}
692
bf5c91ba
IM
693/*
694 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
695 */
696#ifdef CONFIG_SCHED_DEBUG
697# define const_debug __read_mostly
698#else
699# define const_debug static const
700#endif
701
017730c1
IM
702/**
703 * runqueue_is_locked
704 *
705 * Returns true if the current cpu runqueue is locked.
706 * This interface allows printk to be called with the runqueue lock
707 * held and know whether or not it is OK to wake up the klogd.
708 */
709int runqueue_is_locked(void)
710{
711 int cpu = get_cpu();
712 struct rq *rq = cpu_rq(cpu);
713 int ret;
714
715 ret = spin_is_locked(&rq->lock);
716 put_cpu();
717 return ret;
718}
719
bf5c91ba
IM
720/*
721 * Debugging: various feature bits
722 */
f00b45c1
PZ
723
724#define SCHED_FEAT(name, enabled) \
725 __SCHED_FEAT_##name ,
726
bf5c91ba 727enum {
f00b45c1 728#include "sched_features.h"
bf5c91ba
IM
729};
730
f00b45c1
PZ
731#undef SCHED_FEAT
732
733#define SCHED_FEAT(name, enabled) \
734 (1UL << __SCHED_FEAT_##name) * enabled |
735
bf5c91ba 736const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
737#include "sched_features.h"
738 0;
739
740#undef SCHED_FEAT
741
742#ifdef CONFIG_SCHED_DEBUG
743#define SCHED_FEAT(name, enabled) \
744 #name ,
745
983ed7a6 746static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
747#include "sched_features.h"
748 NULL
749};
750
751#undef SCHED_FEAT
752
34f3a814 753static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 754{
f00b45c1
PZ
755 int i;
756
757 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
758 if (!(sysctl_sched_features & (1UL << i)))
759 seq_puts(m, "NO_");
760 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 761 }
34f3a814 762 seq_puts(m, "\n");
f00b45c1 763
34f3a814 764 return 0;
f00b45c1
PZ
765}
766
767static ssize_t
768sched_feat_write(struct file *filp, const char __user *ubuf,
769 size_t cnt, loff_t *ppos)
770{
771 char buf[64];
772 char *cmp = buf;
773 int neg = 0;
774 int i;
775
776 if (cnt > 63)
777 cnt = 63;
778
779 if (copy_from_user(&buf, ubuf, cnt))
780 return -EFAULT;
781
782 buf[cnt] = 0;
783
c24b7c52 784 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
785 neg = 1;
786 cmp += 3;
787 }
788
789 for (i = 0; sched_feat_names[i]; i++) {
790 int len = strlen(sched_feat_names[i]);
791
792 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
793 if (neg)
794 sysctl_sched_features &= ~(1UL << i);
795 else
796 sysctl_sched_features |= (1UL << i);
797 break;
798 }
799 }
800
801 if (!sched_feat_names[i])
802 return -EINVAL;
803
804 filp->f_pos += cnt;
805
806 return cnt;
807}
808
34f3a814
LZ
809static int sched_feat_open(struct inode *inode, struct file *filp)
810{
811 return single_open(filp, sched_feat_show, NULL);
812}
813
f00b45c1 814static struct file_operations sched_feat_fops = {
34f3a814
LZ
815 .open = sched_feat_open,
816 .write = sched_feat_write,
817 .read = seq_read,
818 .llseek = seq_lseek,
819 .release = single_release,
f00b45c1
PZ
820};
821
822static __init int sched_init_debug(void)
823{
f00b45c1
PZ
824 debugfs_create_file("sched_features", 0644, NULL, NULL,
825 &sched_feat_fops);
826
827 return 0;
828}
829late_initcall(sched_init_debug);
830
831#endif
832
833#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 834
b82d9fdd
PZ
835/*
836 * Number of tasks to iterate in a single balance run.
837 * Limited because this is done with IRQs disabled.
838 */
839const_debug unsigned int sysctl_sched_nr_migrate = 32;
840
2398f2c6
PZ
841/*
842 * ratelimit for updating the group shares.
55cd5340 843 * default: 0.25ms
2398f2c6 844 */
55cd5340 845unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 846
ffda12a1
PZ
847/*
848 * Inject some fuzzyness into changing the per-cpu group shares
849 * this avoids remote rq-locks at the expense of fairness.
850 * default: 4
851 */
852unsigned int sysctl_sched_shares_thresh = 4;
853
fa85ae24 854/*
9f0c1e56 855 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
856 * default: 1s
857 */
9f0c1e56 858unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 859
6892b75e
IM
860static __read_mostly int scheduler_running;
861
9f0c1e56
PZ
862/*
863 * part of the period that we allow rt tasks to run in us.
864 * default: 0.95s
865 */
866int sysctl_sched_rt_runtime = 950000;
fa85ae24 867
d0b27fa7
PZ
868static inline u64 global_rt_period(void)
869{
870 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
871}
872
873static inline u64 global_rt_runtime(void)
874{
e26873bb 875 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
876 return RUNTIME_INF;
877
878 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
879}
fa85ae24 880
1da177e4 881#ifndef prepare_arch_switch
4866cde0
NP
882# define prepare_arch_switch(next) do { } while (0)
883#endif
884#ifndef finish_arch_switch
885# define finish_arch_switch(prev) do { } while (0)
886#endif
887
051a1d1a
DA
888static inline int task_current(struct rq *rq, struct task_struct *p)
889{
890 return rq->curr == p;
891}
892
4866cde0 893#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 894static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 895{
051a1d1a 896 return task_current(rq, p);
4866cde0
NP
897}
898
70b97a7f 899static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
900{
901}
902
70b97a7f 903static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 904{
da04c035
IM
905#ifdef CONFIG_DEBUG_SPINLOCK
906 /* this is a valid case when another task releases the spinlock */
907 rq->lock.owner = current;
908#endif
8a25d5de
IM
909 /*
910 * If we are tracking spinlock dependencies then we have to
911 * fix up the runqueue lock - which gets 'carried over' from
912 * prev into current:
913 */
914 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
915
4866cde0
NP
916 spin_unlock_irq(&rq->lock);
917}
918
919#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 920static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
921{
922#ifdef CONFIG_SMP
923 return p->oncpu;
924#else
051a1d1a 925 return task_current(rq, p);
4866cde0
NP
926#endif
927}
928
70b97a7f 929static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 /*
933 * We can optimise this out completely for !SMP, because the
934 * SMP rebalancing from interrupt is the only thing that cares
935 * here.
936 */
937 next->oncpu = 1;
938#endif
939#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 spin_unlock_irq(&rq->lock);
941#else
942 spin_unlock(&rq->lock);
943#endif
944}
945
70b97a7f 946static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
947{
948#ifdef CONFIG_SMP
949 /*
950 * After ->oncpu is cleared, the task can be moved to a different CPU.
951 * We must ensure this doesn't happen until the switch is completely
952 * finished.
953 */
954 smp_wmb();
955 prev->oncpu = 0;
956#endif
957#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
958 local_irq_enable();
1da177e4 959#endif
4866cde0
NP
960}
961#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 962
b29739f9
IM
963/*
964 * __task_rq_lock - lock the runqueue a given task resides on.
965 * Must be called interrupts disabled.
966 */
70b97a7f 967static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
968 __acquires(rq->lock)
969{
3a5c359a
AK
970 for (;;) {
971 struct rq *rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
b29739f9 975 spin_unlock(&rq->lock);
b29739f9 976 }
b29739f9
IM
977}
978
1da177e4
LT
979/*
980 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 981 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
982 * explicitly disabling preemption.
983 */
70b97a7f 984static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
985 __acquires(rq->lock)
986{
70b97a7f 987 struct rq *rq;
1da177e4 988
3a5c359a
AK
989 for (;;) {
990 local_irq_save(*flags);
991 rq = task_rq(p);
992 spin_lock(&rq->lock);
993 if (likely(rq == task_rq(p)))
994 return rq;
1da177e4 995 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 996 }
1da177e4
LT
997}
998
ad474cac
ON
999void task_rq_unlock_wait(struct task_struct *p)
1000{
1001 struct rq *rq = task_rq(p);
1002
1003 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1004 spin_unlock_wait(&rq->lock);
1005}
1006
a9957449 1007static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1008 __releases(rq->lock)
1009{
1010 spin_unlock(&rq->lock);
1011}
1012
70b97a7f 1013static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1014 __releases(rq->lock)
1015{
1016 spin_unlock_irqrestore(&rq->lock, *flags);
1017}
1018
1da177e4 1019/*
cc2a73b5 1020 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1021 */
a9957449 1022static struct rq *this_rq_lock(void)
1da177e4
LT
1023 __acquires(rq->lock)
1024{
70b97a7f 1025 struct rq *rq;
1da177e4
LT
1026
1027 local_irq_disable();
1028 rq = this_rq();
1029 spin_lock(&rq->lock);
1030
1031 return rq;
1032}
1033
8f4d37ec
PZ
1034#ifdef CONFIG_SCHED_HRTICK
1035/*
1036 * Use HR-timers to deliver accurate preemption points.
1037 *
1038 * Its all a bit involved since we cannot program an hrt while holding the
1039 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1040 * reschedule event.
1041 *
1042 * When we get rescheduled we reprogram the hrtick_timer outside of the
1043 * rq->lock.
1044 */
8f4d37ec
PZ
1045
1046/*
1047 * Use hrtick when:
1048 * - enabled by features
1049 * - hrtimer is actually high res
1050 */
1051static inline int hrtick_enabled(struct rq *rq)
1052{
1053 if (!sched_feat(HRTICK))
1054 return 0;
ba42059f 1055 if (!cpu_active(cpu_of(rq)))
b328ca18 1056 return 0;
8f4d37ec
PZ
1057 return hrtimer_is_hres_active(&rq->hrtick_timer);
1058}
1059
8f4d37ec
PZ
1060static void hrtick_clear(struct rq *rq)
1061{
1062 if (hrtimer_active(&rq->hrtick_timer))
1063 hrtimer_cancel(&rq->hrtick_timer);
1064}
1065
8f4d37ec
PZ
1066/*
1067 * High-resolution timer tick.
1068 * Runs from hardirq context with interrupts disabled.
1069 */
1070static enum hrtimer_restart hrtick(struct hrtimer *timer)
1071{
1072 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1073
1074 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1075
1076 spin_lock(&rq->lock);
3e51f33f 1077 update_rq_clock(rq);
8f4d37ec
PZ
1078 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1079 spin_unlock(&rq->lock);
1080
1081 return HRTIMER_NORESTART;
1082}
1083
95e904c7 1084#ifdef CONFIG_SMP
31656519
PZ
1085/*
1086 * called from hardirq (IPI) context
1087 */
1088static void __hrtick_start(void *arg)
b328ca18 1089{
31656519 1090 struct rq *rq = arg;
b328ca18 1091
31656519
PZ
1092 spin_lock(&rq->lock);
1093 hrtimer_restart(&rq->hrtick_timer);
1094 rq->hrtick_csd_pending = 0;
1095 spin_unlock(&rq->lock);
b328ca18
PZ
1096}
1097
31656519
PZ
1098/*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1104{
31656519
PZ
1105 struct hrtimer *timer = &rq->hrtick_timer;
1106 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1107
cc584b21 1108 hrtimer_set_expires(timer, time);
31656519
PZ
1109
1110 if (rq == this_rq()) {
1111 hrtimer_restart(timer);
1112 } else if (!rq->hrtick_csd_pending) {
1113 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1114 rq->hrtick_csd_pending = 1;
1115 }
b328ca18
PZ
1116}
1117
1118static int
1119hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1120{
1121 int cpu = (int)(long)hcpu;
1122
1123 switch (action) {
1124 case CPU_UP_CANCELED:
1125 case CPU_UP_CANCELED_FROZEN:
1126 case CPU_DOWN_PREPARE:
1127 case CPU_DOWN_PREPARE_FROZEN:
1128 case CPU_DEAD:
1129 case CPU_DEAD_FROZEN:
31656519 1130 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1131 return NOTIFY_OK;
1132 }
1133
1134 return NOTIFY_DONE;
1135}
1136
fa748203 1137static __init void init_hrtick(void)
b328ca18
PZ
1138{
1139 hotcpu_notifier(hotplug_hrtick, 0);
1140}
31656519
PZ
1141#else
1142/*
1143 * Called to set the hrtick timer state.
1144 *
1145 * called with rq->lock held and irqs disabled
1146 */
1147static void hrtick_start(struct rq *rq, u64 delay)
1148{
1149 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1150}
b328ca18 1151
006c75f1 1152static inline void init_hrtick(void)
8f4d37ec 1153{
8f4d37ec 1154}
31656519 1155#endif /* CONFIG_SMP */
8f4d37ec 1156
31656519 1157static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1158{
31656519
PZ
1159#ifdef CONFIG_SMP
1160 rq->hrtick_csd_pending = 0;
8f4d37ec 1161
31656519
PZ
1162 rq->hrtick_csd.flags = 0;
1163 rq->hrtick_csd.func = __hrtick_start;
1164 rq->hrtick_csd.info = rq;
1165#endif
8f4d37ec 1166
31656519
PZ
1167 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1168 rq->hrtick_timer.function = hrtick;
8f4d37ec 1169}
006c75f1 1170#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1171static inline void hrtick_clear(struct rq *rq)
1172{
1173}
1174
8f4d37ec
PZ
1175static inline void init_rq_hrtick(struct rq *rq)
1176{
1177}
1178
b328ca18
PZ
1179static inline void init_hrtick(void)
1180{
1181}
006c75f1 1182#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1183
c24d20db
IM
1184/*
1185 * resched_task - mark a task 'to be rescheduled now'.
1186 *
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1189 * the target CPU.
1190 */
1191#ifdef CONFIG_SMP
1192
1193#ifndef tsk_is_polling
1194#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1195#endif
1196
31656519 1197static void resched_task(struct task_struct *p)
c24d20db
IM
1198{
1199 int cpu;
1200
1201 assert_spin_locked(&task_rq(p)->lock);
1202
5ed0cec0 1203 if (test_tsk_need_resched(p))
c24d20db
IM
1204 return;
1205
5ed0cec0 1206 set_tsk_need_resched(p);
c24d20db
IM
1207
1208 cpu = task_cpu(p);
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /* NEED_RESCHED must be visible before we test polling */
1213 smp_mb();
1214 if (!tsk_is_polling(p))
1215 smp_send_reschedule(cpu);
1216}
1217
1218static void resched_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long flags;
1222
1223 if (!spin_trylock_irqsave(&rq->lock, flags))
1224 return;
1225 resched_task(cpu_curr(cpu));
1226 spin_unlock_irqrestore(&rq->lock, flags);
1227}
06d8308c
TG
1228
1229#ifdef CONFIG_NO_HZ
1230/*
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1239 */
1240void wake_up_idle_cpu(int cpu)
1241{
1242 struct rq *rq = cpu_rq(cpu);
1243
1244 if (cpu == smp_processor_id())
1245 return;
1246
1247 /*
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1253 */
1254 if (rq->curr != rq->idle)
1255 return;
1256
1257 /*
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1261 */
5ed0cec0 1262 set_tsk_need_resched(rq->idle);
06d8308c
TG
1263
1264 /* NEED_RESCHED must be visible before we test polling */
1265 smp_mb();
1266 if (!tsk_is_polling(rq->idle))
1267 smp_send_reschedule(cpu);
1268}
6d6bc0ad 1269#endif /* CONFIG_NO_HZ */
06d8308c 1270
6d6bc0ad 1271#else /* !CONFIG_SMP */
31656519 1272static void resched_task(struct task_struct *p)
c24d20db
IM
1273{
1274 assert_spin_locked(&task_rq(p)->lock);
31656519 1275 set_tsk_need_resched(p);
c24d20db 1276}
6d6bc0ad 1277#endif /* CONFIG_SMP */
c24d20db 1278
45bf76df
IM
1279#if BITS_PER_LONG == 32
1280# define WMULT_CONST (~0UL)
1281#else
1282# define WMULT_CONST (1UL << 32)
1283#endif
1284
1285#define WMULT_SHIFT 32
1286
194081eb
IM
1287/*
1288 * Shift right and round:
1289 */
cf2ab469 1290#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1291
a7be37ac
PZ
1292/*
1293 * delta *= weight / lw
1294 */
cb1c4fc9 1295static unsigned long
45bf76df
IM
1296calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1297 struct load_weight *lw)
1298{
1299 u64 tmp;
1300
7a232e03
LJ
1301 if (!lw->inv_weight) {
1302 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1303 lw->inv_weight = 1;
1304 else
1305 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1306 / (lw->weight+1);
1307 }
45bf76df
IM
1308
1309 tmp = (u64)delta_exec * weight;
1310 /*
1311 * Check whether we'd overflow the 64-bit multiplication:
1312 */
194081eb 1313 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1314 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1315 WMULT_SHIFT/2);
1316 else
cf2ab469 1317 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1318
ecf691da 1319 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1320}
1321
1091985b 1322static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1323{
1324 lw->weight += inc;
e89996ae 1325 lw->inv_weight = 0;
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1329{
1330 lw->weight -= dec;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
2dd73a4f
PW
1334/*
1335 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1336 * of tasks with abnormal "nice" values across CPUs the contribution that
1337 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1338 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1339 * scaled version of the new time slice allocation that they receive on time
1340 * slice expiry etc.
1341 */
1342
cce7ade8
PZ
1343#define WEIGHT_IDLEPRIO 3
1344#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1345
1346/*
1347 * Nice levels are multiplicative, with a gentle 10% change for every
1348 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1349 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1350 * that remained on nice 0.
1351 *
1352 * The "10% effect" is relative and cumulative: from _any_ nice level,
1353 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1354 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1355 * If a task goes up by ~10% and another task goes down by ~10% then
1356 * the relative distance between them is ~25%.)
dd41f596
IM
1357 */
1358static const int prio_to_weight[40] = {
254753dc
IM
1359 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1360 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1361 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1362 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1363 /* 0 */ 1024, 820, 655, 526, 423,
1364 /* 5 */ 335, 272, 215, 172, 137,
1365 /* 10 */ 110, 87, 70, 56, 45,
1366 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1367};
1368
5714d2de
IM
1369/*
1370 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1371 *
1372 * In cases where the weight does not change often, we can use the
1373 * precalculated inverse to speed up arithmetics by turning divisions
1374 * into multiplications:
1375 */
dd41f596 1376static const u32 prio_to_wmult[40] = {
254753dc
IM
1377 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1378 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1379 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1380 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1381 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1382 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1383 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1384 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1385};
2dd73a4f 1386
dd41f596
IM
1387static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1388
1389/*
1390 * runqueue iterator, to support SMP load-balancing between different
1391 * scheduling classes, without having to expose their internal data
1392 * structures to the load-balancing proper:
1393 */
1394struct rq_iterator {
1395 void *arg;
1396 struct task_struct *(*start)(void *);
1397 struct task_struct *(*next)(void *);
1398};
1399
e1d1484f
PW
1400#ifdef CONFIG_SMP
1401static unsigned long
1402balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1403 unsigned long max_load_move, struct sched_domain *sd,
1404 enum cpu_idle_type idle, int *all_pinned,
1405 int *this_best_prio, struct rq_iterator *iterator);
1406
1407static int
1408iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 struct sched_domain *sd, enum cpu_idle_type idle,
1410 struct rq_iterator *iterator);
e1d1484f 1411#endif
dd41f596 1412
d842de87
SV
1413#ifdef CONFIG_CGROUP_CPUACCT
1414static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1415#else
1416static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1417#endif
1418
18d95a28
PZ
1419static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1420{
1421 update_load_add(&rq->load, load);
1422}
1423
1424static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1425{
1426 update_load_sub(&rq->load, load);
1427}
1428
7940ca36 1429#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1430typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1431
1432/*
1433 * Iterate the full tree, calling @down when first entering a node and @up when
1434 * leaving it for the final time.
1435 */
eb755805 1436static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1437{
1438 struct task_group *parent, *child;
eb755805 1439 int ret;
c09595f6
PZ
1440
1441 rcu_read_lock();
1442 parent = &root_task_group;
1443down:
eb755805
PZ
1444 ret = (*down)(parent, data);
1445 if (ret)
1446 goto out_unlock;
c09595f6
PZ
1447 list_for_each_entry_rcu(child, &parent->children, siblings) {
1448 parent = child;
1449 goto down;
1450
1451up:
1452 continue;
1453 }
eb755805
PZ
1454 ret = (*up)(parent, data);
1455 if (ret)
1456 goto out_unlock;
c09595f6
PZ
1457
1458 child = parent;
1459 parent = parent->parent;
1460 if (parent)
1461 goto up;
eb755805 1462out_unlock:
c09595f6 1463 rcu_read_unlock();
eb755805
PZ
1464
1465 return ret;
c09595f6
PZ
1466}
1467
eb755805
PZ
1468static int tg_nop(struct task_group *tg, void *data)
1469{
1470 return 0;
c09595f6 1471}
eb755805
PZ
1472#endif
1473
1474#ifdef CONFIG_SMP
1475static unsigned long source_load(int cpu, int type);
1476static unsigned long target_load(int cpu, int type);
1477static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1478
1479static unsigned long cpu_avg_load_per_task(int cpu)
1480{
1481 struct rq *rq = cpu_rq(cpu);
af6d596f 1482 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1483
4cd42620
SR
1484 if (nr_running)
1485 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1486 else
1487 rq->avg_load_per_task = 0;
eb755805
PZ
1488
1489 return rq->avg_load_per_task;
1490}
1491
1492#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1493
c09595f6
PZ
1494static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1495
1496/*
1497 * Calculate and set the cpu's group shares.
1498 */
1499static void
ffda12a1
PZ
1500update_group_shares_cpu(struct task_group *tg, int cpu,
1501 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1502{
c09595f6
PZ
1503 unsigned long shares;
1504 unsigned long rq_weight;
1505
c8cba857 1506 if (!tg->se[cpu])
c09595f6
PZ
1507 return;
1508
ec4e0e2f 1509 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1510
c09595f6
PZ
1511 /*
1512 * \Sum shares * rq_weight
1513 * shares = -----------------------
1514 * \Sum rq_weight
1515 *
1516 */
ec4e0e2f 1517 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1518 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1519
ffda12a1
PZ
1520 if (abs(shares - tg->se[cpu]->load.weight) >
1521 sysctl_sched_shares_thresh) {
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long flags;
c09595f6 1524
ffda12a1 1525 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1526 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1527
ffda12a1
PZ
1528 __set_se_shares(tg->se[cpu], shares);
1529 spin_unlock_irqrestore(&rq->lock, flags);
1530 }
18d95a28 1531}
c09595f6
PZ
1532
1533/*
c8cba857
PZ
1534 * Re-compute the task group their per cpu shares over the given domain.
1535 * This needs to be done in a bottom-up fashion because the rq weight of a
1536 * parent group depends on the shares of its child groups.
c09595f6 1537 */
eb755805 1538static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1539{
ec4e0e2f 1540 unsigned long weight, rq_weight = 0;
c8cba857 1541 unsigned long shares = 0;
eb755805 1542 struct sched_domain *sd = data;
c8cba857 1543 int i;
c09595f6 1544
758b2cdc 1545 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1546 /*
1547 * If there are currently no tasks on the cpu pretend there
1548 * is one of average load so that when a new task gets to
1549 * run here it will not get delayed by group starvation.
1550 */
1551 weight = tg->cfs_rq[i]->load.weight;
1552 if (!weight)
1553 weight = NICE_0_LOAD;
1554
1555 tg->cfs_rq[i]->rq_weight = weight;
1556 rq_weight += weight;
c8cba857 1557 shares += tg->cfs_rq[i]->shares;
c09595f6 1558 }
c09595f6 1559
c8cba857
PZ
1560 if ((!shares && rq_weight) || shares > tg->shares)
1561 shares = tg->shares;
1562
1563 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1564 shares = tg->shares;
c09595f6 1565
758b2cdc 1566 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1567 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1568
1569 return 0;
c09595f6
PZ
1570}
1571
1572/*
c8cba857
PZ
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
c09595f6 1576 */
eb755805 1577static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1578{
c8cba857 1579 unsigned long load;
eb755805 1580 long cpu = (long)data;
c09595f6 1581
c8cba857
PZ
1582 if (!tg->parent) {
1583 load = cpu_rq(cpu)->load.weight;
1584 } else {
1585 load = tg->parent->cfs_rq[cpu]->h_load;
1586 load *= tg->cfs_rq[cpu]->shares;
1587 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1588 }
c09595f6 1589
c8cba857 1590 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1591
eb755805 1592 return 0;
c09595f6
PZ
1593}
1594
c8cba857 1595static void update_shares(struct sched_domain *sd)
4d8d595d 1596{
2398f2c6
PZ
1597 u64 now = cpu_clock(raw_smp_processor_id());
1598 s64 elapsed = now - sd->last_update;
1599
1600 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1601 sd->last_update = now;
eb755805 1602 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1603 }
4d8d595d
PZ
1604}
1605
3e5459b4
PZ
1606static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1607{
1608 spin_unlock(&rq->lock);
1609 update_shares(sd);
1610 spin_lock(&rq->lock);
1611}
1612
eb755805 1613static void update_h_load(long cpu)
c09595f6 1614{
eb755805 1615 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1616}
1617
c09595f6
PZ
1618#else
1619
c8cba857 1620static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1621{
1622}
1623
3e5459b4
PZ
1624static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1625{
1626}
1627
18d95a28
PZ
1628#endif
1629
8f45e2b5
GH
1630#ifdef CONFIG_PREEMPT
1631
70574a99 1632/*
8f45e2b5
GH
1633 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1634 * way at the expense of forcing extra atomic operations in all
1635 * invocations. This assures that the double_lock is acquired using the
1636 * same underlying policy as the spinlock_t on this architecture, which
1637 * reduces latency compared to the unfair variant below. However, it
1638 * also adds more overhead and therefore may reduce throughput.
70574a99 1639 */
8f45e2b5
GH
1640static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(this_rq->lock)
1642 __acquires(busiest->lock)
1643 __acquires(this_rq->lock)
1644{
1645 spin_unlock(&this_rq->lock);
1646 double_rq_lock(this_rq, busiest);
1647
1648 return 1;
1649}
1650
1651#else
1652/*
1653 * Unfair double_lock_balance: Optimizes throughput at the expense of
1654 * latency by eliminating extra atomic operations when the locks are
1655 * already in proper order on entry. This favors lower cpu-ids and will
1656 * grant the double lock to lower cpus over higher ids under contention,
1657 * regardless of entry order into the function.
1658 */
1659static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1660 __releases(this_rq->lock)
1661 __acquires(busiest->lock)
1662 __acquires(this_rq->lock)
1663{
1664 int ret = 0;
1665
70574a99
AD
1666 if (unlikely(!spin_trylock(&busiest->lock))) {
1667 if (busiest < this_rq) {
1668 spin_unlock(&this_rq->lock);
1669 spin_lock(&busiest->lock);
1670 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1671 ret = 1;
1672 } else
1673 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1674 }
1675 return ret;
1676}
1677
8f45e2b5
GH
1678#endif /* CONFIG_PREEMPT */
1679
1680/*
1681 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1682 */
1683static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1684{
1685 if (unlikely(!irqs_disabled())) {
1686 /* printk() doesn't work good under rq->lock */
1687 spin_unlock(&this_rq->lock);
1688 BUG_ON(1);
1689 }
1690
1691 return _double_lock_balance(this_rq, busiest);
1692}
1693
70574a99
AD
1694static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1695 __releases(busiest->lock)
1696{
1697 spin_unlock(&busiest->lock);
1698 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1699}
18d95a28
PZ
1700#endif
1701
30432094 1702#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1703static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1704{
30432094 1705#ifdef CONFIG_SMP
34e83e85
IM
1706 cfs_rq->shares = shares;
1707#endif
1708}
30432094 1709#endif
e7693a36 1710
dd41f596 1711#include "sched_stats.h"
dd41f596 1712#include "sched_idletask.c"
5522d5d5
IM
1713#include "sched_fair.c"
1714#include "sched_rt.c"
dd41f596
IM
1715#ifdef CONFIG_SCHED_DEBUG
1716# include "sched_debug.c"
1717#endif
1718
1719#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1720#define for_each_class(class) \
1721 for (class = sched_class_highest; class; class = class->next)
dd41f596 1722
c09595f6 1723static void inc_nr_running(struct rq *rq)
9c217245
IM
1724{
1725 rq->nr_running++;
9c217245
IM
1726}
1727
c09595f6 1728static void dec_nr_running(struct rq *rq)
9c217245
IM
1729{
1730 rq->nr_running--;
9c217245
IM
1731}
1732
45bf76df
IM
1733static void set_load_weight(struct task_struct *p)
1734{
1735 if (task_has_rt_policy(p)) {
dd41f596
IM
1736 p->se.load.weight = prio_to_weight[0] * 2;
1737 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1738 return;
1739 }
45bf76df 1740
dd41f596
IM
1741 /*
1742 * SCHED_IDLE tasks get minimal weight:
1743 */
1744 if (p->policy == SCHED_IDLE) {
1745 p->se.load.weight = WEIGHT_IDLEPRIO;
1746 p->se.load.inv_weight = WMULT_IDLEPRIO;
1747 return;
1748 }
71f8bd46 1749
dd41f596
IM
1750 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1751 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1752}
1753
2087a1ad
GH
1754static void update_avg(u64 *avg, u64 sample)
1755{
1756 s64 diff = sample - *avg;
1757 *avg += diff >> 3;
1758}
1759
8159f87e 1760static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1761{
831451ac
PZ
1762 if (wakeup)
1763 p->se.start_runtime = p->se.sum_exec_runtime;
1764
dd41f596 1765 sched_info_queued(p);
fd390f6a 1766 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1767 p->se.on_rq = 1;
71f8bd46
IM
1768}
1769
69be72c1 1770static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1771{
831451ac
PZ
1772 if (sleep) {
1773 if (p->se.last_wakeup) {
1774 update_avg(&p->se.avg_overlap,
1775 p->se.sum_exec_runtime - p->se.last_wakeup);
1776 p->se.last_wakeup = 0;
1777 } else {
1778 update_avg(&p->se.avg_wakeup,
1779 sysctl_sched_wakeup_granularity);
1780 }
2087a1ad
GH
1781 }
1782
46ac22ba 1783 sched_info_dequeued(p);
f02231e5 1784 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1785 p->se.on_rq = 0;
71f8bd46
IM
1786}
1787
14531189 1788/*
dd41f596 1789 * __normal_prio - return the priority that is based on the static prio
14531189 1790 */
14531189
IM
1791static inline int __normal_prio(struct task_struct *p)
1792{
dd41f596 1793 return p->static_prio;
14531189
IM
1794}
1795
b29739f9
IM
1796/*
1797 * Calculate the expected normal priority: i.e. priority
1798 * without taking RT-inheritance into account. Might be
1799 * boosted by interactivity modifiers. Changes upon fork,
1800 * setprio syscalls, and whenever the interactivity
1801 * estimator recalculates.
1802 */
36c8b586 1803static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1804{
1805 int prio;
1806
e05606d3 1807 if (task_has_rt_policy(p))
b29739f9
IM
1808 prio = MAX_RT_PRIO-1 - p->rt_priority;
1809 else
1810 prio = __normal_prio(p);
1811 return prio;
1812}
1813
1814/*
1815 * Calculate the current priority, i.e. the priority
1816 * taken into account by the scheduler. This value might
1817 * be boosted by RT tasks, or might be boosted by
1818 * interactivity modifiers. Will be RT if the task got
1819 * RT-boosted. If not then it returns p->normal_prio.
1820 */
36c8b586 1821static int effective_prio(struct task_struct *p)
b29739f9
IM
1822{
1823 p->normal_prio = normal_prio(p);
1824 /*
1825 * If we are RT tasks or we were boosted to RT priority,
1826 * keep the priority unchanged. Otherwise, update priority
1827 * to the normal priority:
1828 */
1829 if (!rt_prio(p->prio))
1830 return p->normal_prio;
1831 return p->prio;
1832}
1833
1da177e4 1834/*
dd41f596 1835 * activate_task - move a task to the runqueue.
1da177e4 1836 */
dd41f596 1837static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1838{
d9514f6c 1839 if (task_contributes_to_load(p))
dd41f596 1840 rq->nr_uninterruptible--;
1da177e4 1841
8159f87e 1842 enqueue_task(rq, p, wakeup);
c09595f6 1843 inc_nr_running(rq);
1da177e4
LT
1844}
1845
1da177e4
LT
1846/*
1847 * deactivate_task - remove a task from the runqueue.
1848 */
2e1cb74a 1849static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1850{
d9514f6c 1851 if (task_contributes_to_load(p))
dd41f596
IM
1852 rq->nr_uninterruptible++;
1853
69be72c1 1854 dequeue_task(rq, p, sleep);
c09595f6 1855 dec_nr_running(rq);
1da177e4
LT
1856}
1857
1da177e4
LT
1858/**
1859 * task_curr - is this task currently executing on a CPU?
1860 * @p: the task in question.
1861 */
36c8b586 1862inline int task_curr(const struct task_struct *p)
1da177e4
LT
1863{
1864 return cpu_curr(task_cpu(p)) == p;
1865}
1866
dd41f596
IM
1867static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1868{
6f505b16 1869 set_task_rq(p, cpu);
dd41f596 1870#ifdef CONFIG_SMP
ce96b5ac
DA
1871 /*
1872 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1873 * successfuly executed on another CPU. We must ensure that updates of
1874 * per-task data have been completed by this moment.
1875 */
1876 smp_wmb();
dd41f596 1877 task_thread_info(p)->cpu = cpu;
dd41f596 1878#endif
2dd73a4f
PW
1879}
1880
cb469845
SR
1881static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1882 const struct sched_class *prev_class,
1883 int oldprio, int running)
1884{
1885 if (prev_class != p->sched_class) {
1886 if (prev_class->switched_from)
1887 prev_class->switched_from(rq, p, running);
1888 p->sched_class->switched_to(rq, p, running);
1889 } else
1890 p->sched_class->prio_changed(rq, p, oldprio, running);
1891}
1892
1da177e4 1893#ifdef CONFIG_SMP
c65cc870 1894
e958b360
TG
1895/* Used instead of source_load when we know the type == 0 */
1896static unsigned long weighted_cpuload(const int cpu)
1897{
1898 return cpu_rq(cpu)->load.weight;
1899}
1900
cc367732
IM
1901/*
1902 * Is this task likely cache-hot:
1903 */
e7693a36 1904static int
cc367732
IM
1905task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1906{
1907 s64 delta;
1908
f540a608
IM
1909 /*
1910 * Buddy candidates are cache hot:
1911 */
4793241b
PZ
1912 if (sched_feat(CACHE_HOT_BUDDY) &&
1913 (&p->se == cfs_rq_of(&p->se)->next ||
1914 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1915 return 1;
1916
cc367732
IM
1917 if (p->sched_class != &fair_sched_class)
1918 return 0;
1919
6bc1665b
IM
1920 if (sysctl_sched_migration_cost == -1)
1921 return 1;
1922 if (sysctl_sched_migration_cost == 0)
1923 return 0;
1924
cc367732
IM
1925 delta = now - p->se.exec_start;
1926
1927 return delta < (s64)sysctl_sched_migration_cost;
1928}
1929
1930
dd41f596 1931void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1932{
dd41f596
IM
1933 int old_cpu = task_cpu(p);
1934 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1935 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1936 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1937 u64 clock_offset;
dd41f596
IM
1938
1939 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1940
cbc34ed1
PZ
1941 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1942
6cfb0d5d
IM
1943#ifdef CONFIG_SCHEDSTATS
1944 if (p->se.wait_start)
1945 p->se.wait_start -= clock_offset;
dd41f596
IM
1946 if (p->se.sleep_start)
1947 p->se.sleep_start -= clock_offset;
1948 if (p->se.block_start)
1949 p->se.block_start -= clock_offset;
cc367732
IM
1950 if (old_cpu != new_cpu) {
1951 schedstat_inc(p, se.nr_migrations);
1952 if (task_hot(p, old_rq->clock, NULL))
1953 schedstat_inc(p, se.nr_forced2_migrations);
1954 }
6cfb0d5d 1955#endif
2830cf8c
SV
1956 p->se.vruntime -= old_cfsrq->min_vruntime -
1957 new_cfsrq->min_vruntime;
dd41f596
IM
1958
1959 __set_task_cpu(p, new_cpu);
c65cc870
IM
1960}
1961
70b97a7f 1962struct migration_req {
1da177e4 1963 struct list_head list;
1da177e4 1964
36c8b586 1965 struct task_struct *task;
1da177e4
LT
1966 int dest_cpu;
1967
1da177e4 1968 struct completion done;
70b97a7f 1969};
1da177e4
LT
1970
1971/*
1972 * The task's runqueue lock must be held.
1973 * Returns true if you have to wait for migration thread.
1974 */
36c8b586 1975static int
70b97a7f 1976migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1977{
70b97a7f 1978 struct rq *rq = task_rq(p);
1da177e4
LT
1979
1980 /*
1981 * If the task is not on a runqueue (and not running), then
1982 * it is sufficient to simply update the task's cpu field.
1983 */
dd41f596 1984 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1985 set_task_cpu(p, dest_cpu);
1986 return 0;
1987 }
1988
1989 init_completion(&req->done);
1da177e4
LT
1990 req->task = p;
1991 req->dest_cpu = dest_cpu;
1992 list_add(&req->list, &rq->migration_queue);
48f24c4d 1993
1da177e4
LT
1994 return 1;
1995}
1996
1997/*
1998 * wait_task_inactive - wait for a thread to unschedule.
1999 *
85ba2d86
RM
2000 * If @match_state is nonzero, it's the @p->state value just checked and
2001 * not expected to change. If it changes, i.e. @p might have woken up,
2002 * then return zero. When we succeed in waiting for @p to be off its CPU,
2003 * we return a positive number (its total switch count). If a second call
2004 * a short while later returns the same number, the caller can be sure that
2005 * @p has remained unscheduled the whole time.
2006 *
1da177e4
LT
2007 * The caller must ensure that the task *will* unschedule sometime soon,
2008 * else this function might spin for a *long* time. This function can't
2009 * be called with interrupts off, or it may introduce deadlock with
2010 * smp_call_function() if an IPI is sent by the same process we are
2011 * waiting to become inactive.
2012 */
85ba2d86 2013unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2014{
2015 unsigned long flags;
dd41f596 2016 int running, on_rq;
85ba2d86 2017 unsigned long ncsw;
70b97a7f 2018 struct rq *rq;
1da177e4 2019
3a5c359a
AK
2020 for (;;) {
2021 /*
2022 * We do the initial early heuristics without holding
2023 * any task-queue locks at all. We'll only try to get
2024 * the runqueue lock when things look like they will
2025 * work out!
2026 */
2027 rq = task_rq(p);
fa490cfd 2028
3a5c359a
AK
2029 /*
2030 * If the task is actively running on another CPU
2031 * still, just relax and busy-wait without holding
2032 * any locks.
2033 *
2034 * NOTE! Since we don't hold any locks, it's not
2035 * even sure that "rq" stays as the right runqueue!
2036 * But we don't care, since "task_running()" will
2037 * return false if the runqueue has changed and p
2038 * is actually now running somewhere else!
2039 */
85ba2d86
RM
2040 while (task_running(rq, p)) {
2041 if (match_state && unlikely(p->state != match_state))
2042 return 0;
3a5c359a 2043 cpu_relax();
85ba2d86 2044 }
fa490cfd 2045
3a5c359a
AK
2046 /*
2047 * Ok, time to look more closely! We need the rq
2048 * lock now, to be *sure*. If we're wrong, we'll
2049 * just go back and repeat.
2050 */
2051 rq = task_rq_lock(p, &flags);
0a16b607 2052 trace_sched_wait_task(rq, p);
3a5c359a
AK
2053 running = task_running(rq, p);
2054 on_rq = p->se.on_rq;
85ba2d86 2055 ncsw = 0;
f31e11d8 2056 if (!match_state || p->state == match_state)
93dcf55f 2057 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2058 task_rq_unlock(rq, &flags);
fa490cfd 2059
85ba2d86
RM
2060 /*
2061 * If it changed from the expected state, bail out now.
2062 */
2063 if (unlikely(!ncsw))
2064 break;
2065
3a5c359a
AK
2066 /*
2067 * Was it really running after all now that we
2068 * checked with the proper locks actually held?
2069 *
2070 * Oops. Go back and try again..
2071 */
2072 if (unlikely(running)) {
2073 cpu_relax();
2074 continue;
2075 }
fa490cfd 2076
3a5c359a
AK
2077 /*
2078 * It's not enough that it's not actively running,
2079 * it must be off the runqueue _entirely_, and not
2080 * preempted!
2081 *
80dd99b3 2082 * So if it was still runnable (but just not actively
3a5c359a
AK
2083 * running right now), it's preempted, and we should
2084 * yield - it could be a while.
2085 */
2086 if (unlikely(on_rq)) {
2087 schedule_timeout_uninterruptible(1);
2088 continue;
2089 }
fa490cfd 2090
3a5c359a
AK
2091 /*
2092 * Ahh, all good. It wasn't running, and it wasn't
2093 * runnable, which means that it will never become
2094 * running in the future either. We're all done!
2095 */
2096 break;
2097 }
85ba2d86
RM
2098
2099 return ncsw;
1da177e4
LT
2100}
2101
2102/***
2103 * kick_process - kick a running thread to enter/exit the kernel
2104 * @p: the to-be-kicked thread
2105 *
2106 * Cause a process which is running on another CPU to enter
2107 * kernel-mode, without any delay. (to get signals handled.)
2108 *
2109 * NOTE: this function doesnt have to take the runqueue lock,
2110 * because all it wants to ensure is that the remote task enters
2111 * the kernel. If the IPI races and the task has been migrated
2112 * to another CPU then no harm is done and the purpose has been
2113 * achieved as well.
2114 */
36c8b586 2115void kick_process(struct task_struct *p)
1da177e4
LT
2116{
2117 int cpu;
2118
2119 preempt_disable();
2120 cpu = task_cpu(p);
2121 if ((cpu != smp_processor_id()) && task_curr(p))
2122 smp_send_reschedule(cpu);
2123 preempt_enable();
2124}
2125
2126/*
2dd73a4f
PW
2127 * Return a low guess at the load of a migration-source cpu weighted
2128 * according to the scheduling class and "nice" value.
1da177e4
LT
2129 *
2130 * We want to under-estimate the load of migration sources, to
2131 * balance conservatively.
2132 */
a9957449 2133static unsigned long source_load(int cpu, int type)
1da177e4 2134{
70b97a7f 2135 struct rq *rq = cpu_rq(cpu);
dd41f596 2136 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2137
93b75217 2138 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2139 return total;
b910472d 2140
dd41f596 2141 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2142}
2143
2144/*
2dd73a4f
PW
2145 * Return a high guess at the load of a migration-target cpu weighted
2146 * according to the scheduling class and "nice" value.
1da177e4 2147 */
a9957449 2148static unsigned long target_load(int cpu, int type)
1da177e4 2149{
70b97a7f 2150 struct rq *rq = cpu_rq(cpu);
dd41f596 2151 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2152
93b75217 2153 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2154 return total;
3b0bd9bc 2155
dd41f596 2156 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2157}
2158
147cbb4b
NP
2159/*
2160 * find_idlest_group finds and returns the least busy CPU group within the
2161 * domain.
2162 */
2163static struct sched_group *
2164find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2165{
2166 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2167 unsigned long min_load = ULONG_MAX, this_load = 0;
2168 int load_idx = sd->forkexec_idx;
2169 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2170
2171 do {
2172 unsigned long load, avg_load;
2173 int local_group;
2174 int i;
2175
da5a5522 2176 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2177 if (!cpumask_intersects(sched_group_cpus(group),
2178 &p->cpus_allowed))
3a5c359a 2179 continue;
da5a5522 2180
758b2cdc
RR
2181 local_group = cpumask_test_cpu(this_cpu,
2182 sched_group_cpus(group));
147cbb4b
NP
2183
2184 /* Tally up the load of all CPUs in the group */
2185 avg_load = 0;
2186
758b2cdc 2187 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2188 /* Bias balancing toward cpus of our domain */
2189 if (local_group)
2190 load = source_load(i, load_idx);
2191 else
2192 load = target_load(i, load_idx);
2193
2194 avg_load += load;
2195 }
2196
2197 /* Adjust by relative CPU power of the group */
5517d86b
ED
2198 avg_load = sg_div_cpu_power(group,
2199 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2200
2201 if (local_group) {
2202 this_load = avg_load;
2203 this = group;
2204 } else if (avg_load < min_load) {
2205 min_load = avg_load;
2206 idlest = group;
2207 }
3a5c359a 2208 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2209
2210 if (!idlest || 100*this_load < imbalance*min_load)
2211 return NULL;
2212 return idlest;
2213}
2214
2215/*
0feaece9 2216 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2217 */
95cdf3b7 2218static int
758b2cdc 2219find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2220{
2221 unsigned long load, min_load = ULONG_MAX;
2222 int idlest = -1;
2223 int i;
2224
da5a5522 2225 /* Traverse only the allowed CPUs */
758b2cdc 2226 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2227 load = weighted_cpuload(i);
147cbb4b
NP
2228
2229 if (load < min_load || (load == min_load && i == this_cpu)) {
2230 min_load = load;
2231 idlest = i;
2232 }
2233 }
2234
2235 return idlest;
2236}
2237
476d139c
NP
2238/*
2239 * sched_balance_self: balance the current task (running on cpu) in domains
2240 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2241 * SD_BALANCE_EXEC.
2242 *
2243 * Balance, ie. select the least loaded group.
2244 *
2245 * Returns the target CPU number, or the same CPU if no balancing is needed.
2246 *
2247 * preempt must be disabled.
2248 */
2249static int sched_balance_self(int cpu, int flag)
2250{
2251 struct task_struct *t = current;
2252 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2253
c96d145e 2254 for_each_domain(cpu, tmp) {
9761eea8
IM
2255 /*
2256 * If power savings logic is enabled for a domain, stop there.
2257 */
5c45bf27
SS
2258 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2259 break;
476d139c
NP
2260 if (tmp->flags & flag)
2261 sd = tmp;
c96d145e 2262 }
476d139c 2263
039a1c41
PZ
2264 if (sd)
2265 update_shares(sd);
2266
476d139c 2267 while (sd) {
476d139c 2268 struct sched_group *group;
1a848870
SS
2269 int new_cpu, weight;
2270
2271 if (!(sd->flags & flag)) {
2272 sd = sd->child;
2273 continue;
2274 }
476d139c 2275
476d139c 2276 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2277 if (!group) {
2278 sd = sd->child;
2279 continue;
2280 }
476d139c 2281
758b2cdc 2282 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2283 if (new_cpu == -1 || new_cpu == cpu) {
2284 /* Now try balancing at a lower domain level of cpu */
2285 sd = sd->child;
2286 continue;
2287 }
476d139c 2288
1a848870 2289 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2290 cpu = new_cpu;
758b2cdc 2291 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2292 sd = NULL;
476d139c 2293 for_each_domain(cpu, tmp) {
758b2cdc 2294 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2295 break;
2296 if (tmp->flags & flag)
2297 sd = tmp;
2298 }
2299 /* while loop will break here if sd == NULL */
2300 }
2301
2302 return cpu;
2303}
2304
2305#endif /* CONFIG_SMP */
1da177e4 2306
1da177e4
LT
2307/***
2308 * try_to_wake_up - wake up a thread
2309 * @p: the to-be-woken-up thread
2310 * @state: the mask of task states that can be woken
2311 * @sync: do a synchronous wakeup?
2312 *
2313 * Put it on the run-queue if it's not already there. The "current"
2314 * thread is always on the run-queue (except when the actual
2315 * re-schedule is in progress), and as such you're allowed to do
2316 * the simpler "current->state = TASK_RUNNING" to mark yourself
2317 * runnable without the overhead of this.
2318 *
2319 * returns failure only if the task is already active.
2320 */
36c8b586 2321static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2322{
cc367732 2323 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2324 unsigned long flags;
2325 long old_state;
70b97a7f 2326 struct rq *rq;
1da177e4 2327
b85d0667
IM
2328 if (!sched_feat(SYNC_WAKEUPS))
2329 sync = 0;
2330
2398f2c6 2331#ifdef CONFIG_SMP
57310a98 2332 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2333 struct sched_domain *sd;
2334
2335 this_cpu = raw_smp_processor_id();
2336 cpu = task_cpu(p);
2337
2338 for_each_domain(this_cpu, sd) {
758b2cdc 2339 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2340 update_shares(sd);
2341 break;
2342 }
2343 }
2344 }
2345#endif
2346
04e2f174 2347 smp_wmb();
1da177e4 2348 rq = task_rq_lock(p, &flags);
03e89e45 2349 update_rq_clock(rq);
1da177e4
LT
2350 old_state = p->state;
2351 if (!(old_state & state))
2352 goto out;
2353
dd41f596 2354 if (p->se.on_rq)
1da177e4
LT
2355 goto out_running;
2356
2357 cpu = task_cpu(p);
cc367732 2358 orig_cpu = cpu;
1da177e4
LT
2359 this_cpu = smp_processor_id();
2360
2361#ifdef CONFIG_SMP
2362 if (unlikely(task_running(rq, p)))
2363 goto out_activate;
2364
5d2f5a61
DA
2365 cpu = p->sched_class->select_task_rq(p, sync);
2366 if (cpu != orig_cpu) {
2367 set_task_cpu(p, cpu);
1da177e4
LT
2368 task_rq_unlock(rq, &flags);
2369 /* might preempt at this point */
2370 rq = task_rq_lock(p, &flags);
2371 old_state = p->state;
2372 if (!(old_state & state))
2373 goto out;
dd41f596 2374 if (p->se.on_rq)
1da177e4
LT
2375 goto out_running;
2376
2377 this_cpu = smp_processor_id();
2378 cpu = task_cpu(p);
2379 }
2380
e7693a36
GH
2381#ifdef CONFIG_SCHEDSTATS
2382 schedstat_inc(rq, ttwu_count);
2383 if (cpu == this_cpu)
2384 schedstat_inc(rq, ttwu_local);
2385 else {
2386 struct sched_domain *sd;
2387 for_each_domain(this_cpu, sd) {
758b2cdc 2388 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2389 schedstat_inc(sd, ttwu_wake_remote);
2390 break;
2391 }
2392 }
2393 }
6d6bc0ad 2394#endif /* CONFIG_SCHEDSTATS */
e7693a36 2395
1da177e4
LT
2396out_activate:
2397#endif /* CONFIG_SMP */
cc367732
IM
2398 schedstat_inc(p, se.nr_wakeups);
2399 if (sync)
2400 schedstat_inc(p, se.nr_wakeups_sync);
2401 if (orig_cpu != cpu)
2402 schedstat_inc(p, se.nr_wakeups_migrate);
2403 if (cpu == this_cpu)
2404 schedstat_inc(p, se.nr_wakeups_local);
2405 else
2406 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2407 activate_task(rq, p, 1);
1da177e4
LT
2408 success = 1;
2409
831451ac
PZ
2410 /*
2411 * Only attribute actual wakeups done by this task.
2412 */
2413 if (!in_interrupt()) {
2414 struct sched_entity *se = &current->se;
2415 u64 sample = se->sum_exec_runtime;
2416
2417 if (se->last_wakeup)
2418 sample -= se->last_wakeup;
2419 else
2420 sample -= se->start_runtime;
2421 update_avg(&se->avg_wakeup, sample);
2422
2423 se->last_wakeup = se->sum_exec_runtime;
2424 }
2425
1da177e4 2426out_running:
468a15bb 2427 trace_sched_wakeup(rq, p, success);
15afe09b 2428 check_preempt_curr(rq, p, sync);
4ae7d5ce 2429
1da177e4 2430 p->state = TASK_RUNNING;
9a897c5a
SR
2431#ifdef CONFIG_SMP
2432 if (p->sched_class->task_wake_up)
2433 p->sched_class->task_wake_up(rq, p);
2434#endif
1da177e4
LT
2435out:
2436 task_rq_unlock(rq, &flags);
2437
2438 return success;
2439}
2440
7ad5b3a5 2441int wake_up_process(struct task_struct *p)
1da177e4 2442{
d9514f6c 2443 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2444}
1da177e4
LT
2445EXPORT_SYMBOL(wake_up_process);
2446
7ad5b3a5 2447int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2448{
2449 return try_to_wake_up(p, state, 0);
2450}
2451
1da177e4
LT
2452/*
2453 * Perform scheduler related setup for a newly forked process p.
2454 * p is forked by current.
dd41f596
IM
2455 *
2456 * __sched_fork() is basic setup used by init_idle() too:
2457 */
2458static void __sched_fork(struct task_struct *p)
2459{
dd41f596
IM
2460 p->se.exec_start = 0;
2461 p->se.sum_exec_runtime = 0;
f6cf891c 2462 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2463 p->se.last_wakeup = 0;
2464 p->se.avg_overlap = 0;
831451ac
PZ
2465 p->se.start_runtime = 0;
2466 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2467
2468#ifdef CONFIG_SCHEDSTATS
2469 p->se.wait_start = 0;
dd41f596
IM
2470 p->se.sum_sleep_runtime = 0;
2471 p->se.sleep_start = 0;
dd41f596
IM
2472 p->se.block_start = 0;
2473 p->se.sleep_max = 0;
2474 p->se.block_max = 0;
2475 p->se.exec_max = 0;
eba1ed4b 2476 p->se.slice_max = 0;
dd41f596 2477 p->se.wait_max = 0;
6cfb0d5d 2478#endif
476d139c 2479
fa717060 2480 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2481 p->se.on_rq = 0;
4a55bd5e 2482 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2483
e107be36
AK
2484#ifdef CONFIG_PREEMPT_NOTIFIERS
2485 INIT_HLIST_HEAD(&p->preempt_notifiers);
2486#endif
2487
1da177e4
LT
2488 /*
2489 * We mark the process as running here, but have not actually
2490 * inserted it onto the runqueue yet. This guarantees that
2491 * nobody will actually run it, and a signal or other external
2492 * event cannot wake it up and insert it on the runqueue either.
2493 */
2494 p->state = TASK_RUNNING;
dd41f596
IM
2495}
2496
2497/*
2498 * fork()/clone()-time setup:
2499 */
2500void sched_fork(struct task_struct *p, int clone_flags)
2501{
2502 int cpu = get_cpu();
2503
2504 __sched_fork(p);
2505
2506#ifdef CONFIG_SMP
2507 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2508#endif
02e4bac2 2509 set_task_cpu(p, cpu);
b29739f9
IM
2510
2511 /*
2512 * Make sure we do not leak PI boosting priority to the child:
2513 */
2514 p->prio = current->normal_prio;
2ddbf952
HS
2515 if (!rt_prio(p->prio))
2516 p->sched_class = &fair_sched_class;
b29739f9 2517
52f17b6c 2518#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2519 if (likely(sched_info_on()))
52f17b6c 2520 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2521#endif
d6077cb8 2522#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2523 p->oncpu = 0;
2524#endif
1da177e4 2525#ifdef CONFIG_PREEMPT
4866cde0 2526 /* Want to start with kernel preemption disabled. */
a1261f54 2527 task_thread_info(p)->preempt_count = 1;
1da177e4 2528#endif
917b627d
GH
2529 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2530
476d139c 2531 put_cpu();
1da177e4
LT
2532}
2533
2534/*
2535 * wake_up_new_task - wake up a newly created task for the first time.
2536 *
2537 * This function will do some initial scheduler statistics housekeeping
2538 * that must be done for every newly created context, then puts the task
2539 * on the runqueue and wakes it.
2540 */
7ad5b3a5 2541void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2542{
2543 unsigned long flags;
dd41f596 2544 struct rq *rq;
1da177e4
LT
2545
2546 rq = task_rq_lock(p, &flags);
147cbb4b 2547 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2548 update_rq_clock(rq);
1da177e4
LT
2549
2550 p->prio = effective_prio(p);
2551
b9dca1e0 2552 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2553 activate_task(rq, p, 0);
1da177e4 2554 } else {
1da177e4 2555 /*
dd41f596
IM
2556 * Let the scheduling class do new task startup
2557 * management (if any):
1da177e4 2558 */
ee0827d8 2559 p->sched_class->task_new(rq, p);
c09595f6 2560 inc_nr_running(rq);
1da177e4 2561 }
c71dd42d 2562 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2563 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2564#ifdef CONFIG_SMP
2565 if (p->sched_class->task_wake_up)
2566 p->sched_class->task_wake_up(rq, p);
2567#endif
dd41f596 2568 task_rq_unlock(rq, &flags);
1da177e4
LT
2569}
2570
e107be36
AK
2571#ifdef CONFIG_PREEMPT_NOTIFIERS
2572
2573/**
80dd99b3 2574 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2575 * @notifier: notifier struct to register
e107be36
AK
2576 */
2577void preempt_notifier_register(struct preempt_notifier *notifier)
2578{
2579 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2580}
2581EXPORT_SYMBOL_GPL(preempt_notifier_register);
2582
2583/**
2584 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2585 * @notifier: notifier struct to unregister
e107be36
AK
2586 *
2587 * This is safe to call from within a preemption notifier.
2588 */
2589void preempt_notifier_unregister(struct preempt_notifier *notifier)
2590{
2591 hlist_del(&notifier->link);
2592}
2593EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2594
2595static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2596{
2597 struct preempt_notifier *notifier;
2598 struct hlist_node *node;
2599
2600 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2601 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2602}
2603
2604static void
2605fire_sched_out_preempt_notifiers(struct task_struct *curr,
2606 struct task_struct *next)
2607{
2608 struct preempt_notifier *notifier;
2609 struct hlist_node *node;
2610
2611 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2612 notifier->ops->sched_out(notifier, next);
2613}
2614
6d6bc0ad 2615#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2616
2617static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2618{
2619}
2620
2621static void
2622fire_sched_out_preempt_notifiers(struct task_struct *curr,
2623 struct task_struct *next)
2624{
2625}
2626
6d6bc0ad 2627#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2628
4866cde0
NP
2629/**
2630 * prepare_task_switch - prepare to switch tasks
2631 * @rq: the runqueue preparing to switch
421cee29 2632 * @prev: the current task that is being switched out
4866cde0
NP
2633 * @next: the task we are going to switch to.
2634 *
2635 * This is called with the rq lock held and interrupts off. It must
2636 * be paired with a subsequent finish_task_switch after the context
2637 * switch.
2638 *
2639 * prepare_task_switch sets up locking and calls architecture specific
2640 * hooks.
2641 */
e107be36
AK
2642static inline void
2643prepare_task_switch(struct rq *rq, struct task_struct *prev,
2644 struct task_struct *next)
4866cde0 2645{
e107be36 2646 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2647 prepare_lock_switch(rq, next);
2648 prepare_arch_switch(next);
2649}
2650
1da177e4
LT
2651/**
2652 * finish_task_switch - clean up after a task-switch
344babaa 2653 * @rq: runqueue associated with task-switch
1da177e4
LT
2654 * @prev: the thread we just switched away from.
2655 *
4866cde0
NP
2656 * finish_task_switch must be called after the context switch, paired
2657 * with a prepare_task_switch call before the context switch.
2658 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2659 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2660 *
2661 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2662 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2663 * with the lock held can cause deadlocks; see schedule() for
2664 * details.)
2665 */
a9957449 2666static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2667 __releases(rq->lock)
2668{
1da177e4 2669 struct mm_struct *mm = rq->prev_mm;
55a101f8 2670 long prev_state;
967fc046
GH
2671#ifdef CONFIG_SMP
2672 int post_schedule = 0;
2673
2674 if (current->sched_class->needs_post_schedule)
2675 post_schedule = current->sched_class->needs_post_schedule(rq);
2676#endif
1da177e4
LT
2677
2678 rq->prev_mm = NULL;
2679
2680 /*
2681 * A task struct has one reference for the use as "current".
c394cc9f 2682 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2683 * schedule one last time. The schedule call will never return, and
2684 * the scheduled task must drop that reference.
c394cc9f 2685 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2686 * still held, otherwise prev could be scheduled on another cpu, die
2687 * there before we look at prev->state, and then the reference would
2688 * be dropped twice.
2689 * Manfred Spraul <manfred@colorfullife.com>
2690 */
55a101f8 2691 prev_state = prev->state;
4866cde0
NP
2692 finish_arch_switch(prev);
2693 finish_lock_switch(rq, prev);
9a897c5a 2694#ifdef CONFIG_SMP
967fc046 2695 if (post_schedule)
9a897c5a
SR
2696 current->sched_class->post_schedule(rq);
2697#endif
e8fa1362 2698
e107be36 2699 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2700 if (mm)
2701 mmdrop(mm);
c394cc9f 2702 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2703 /*
2704 * Remove function-return probe instances associated with this
2705 * task and put them back on the free list.
9761eea8 2706 */
c6fd91f0 2707 kprobe_flush_task(prev);
1da177e4 2708 put_task_struct(prev);
c6fd91f0 2709 }
1da177e4
LT
2710}
2711
2712/**
2713 * schedule_tail - first thing a freshly forked thread must call.
2714 * @prev: the thread we just switched away from.
2715 */
36c8b586 2716asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2717 __releases(rq->lock)
2718{
70b97a7f
IM
2719 struct rq *rq = this_rq();
2720
4866cde0
NP
2721 finish_task_switch(rq, prev);
2722#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2723 /* In this case, finish_task_switch does not reenable preemption */
2724 preempt_enable();
2725#endif
1da177e4 2726 if (current->set_child_tid)
b488893a 2727 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2728}
2729
2730/*
2731 * context_switch - switch to the new MM and the new
2732 * thread's register state.
2733 */
dd41f596 2734static inline void
70b97a7f 2735context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2736 struct task_struct *next)
1da177e4 2737{
dd41f596 2738 struct mm_struct *mm, *oldmm;
1da177e4 2739
e107be36 2740 prepare_task_switch(rq, prev, next);
0a16b607 2741 trace_sched_switch(rq, prev, next);
dd41f596
IM
2742 mm = next->mm;
2743 oldmm = prev->active_mm;
9226d125
ZA
2744 /*
2745 * For paravirt, this is coupled with an exit in switch_to to
2746 * combine the page table reload and the switch backend into
2747 * one hypercall.
2748 */
2749 arch_enter_lazy_cpu_mode();
2750
dd41f596 2751 if (unlikely(!mm)) {
1da177e4
LT
2752 next->active_mm = oldmm;
2753 atomic_inc(&oldmm->mm_count);
2754 enter_lazy_tlb(oldmm, next);
2755 } else
2756 switch_mm(oldmm, mm, next);
2757
dd41f596 2758 if (unlikely(!prev->mm)) {
1da177e4 2759 prev->active_mm = NULL;
1da177e4
LT
2760 rq->prev_mm = oldmm;
2761 }
3a5f5e48
IM
2762 /*
2763 * Since the runqueue lock will be released by the next
2764 * task (which is an invalid locking op but in the case
2765 * of the scheduler it's an obvious special-case), so we
2766 * do an early lockdep release here:
2767 */
2768#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2769 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2770#endif
1da177e4
LT
2771
2772 /* Here we just switch the register state and the stack. */
2773 switch_to(prev, next, prev);
2774
dd41f596
IM
2775 barrier();
2776 /*
2777 * this_rq must be evaluated again because prev may have moved
2778 * CPUs since it called schedule(), thus the 'rq' on its stack
2779 * frame will be invalid.
2780 */
2781 finish_task_switch(this_rq(), prev);
1da177e4
LT
2782}
2783
2784/*
2785 * nr_running, nr_uninterruptible and nr_context_switches:
2786 *
2787 * externally visible scheduler statistics: current number of runnable
2788 * threads, current number of uninterruptible-sleeping threads, total
2789 * number of context switches performed since bootup.
2790 */
2791unsigned long nr_running(void)
2792{
2793 unsigned long i, sum = 0;
2794
2795 for_each_online_cpu(i)
2796 sum += cpu_rq(i)->nr_running;
2797
2798 return sum;
2799}
2800
2801unsigned long nr_uninterruptible(void)
2802{
2803 unsigned long i, sum = 0;
2804
0a945022 2805 for_each_possible_cpu(i)
1da177e4
LT
2806 sum += cpu_rq(i)->nr_uninterruptible;
2807
2808 /*
2809 * Since we read the counters lockless, it might be slightly
2810 * inaccurate. Do not allow it to go below zero though:
2811 */
2812 if (unlikely((long)sum < 0))
2813 sum = 0;
2814
2815 return sum;
2816}
2817
2818unsigned long long nr_context_switches(void)
2819{
cc94abfc
SR
2820 int i;
2821 unsigned long long sum = 0;
1da177e4 2822
0a945022 2823 for_each_possible_cpu(i)
1da177e4
LT
2824 sum += cpu_rq(i)->nr_switches;
2825
2826 return sum;
2827}
2828
2829unsigned long nr_iowait(void)
2830{
2831 unsigned long i, sum = 0;
2832
0a945022 2833 for_each_possible_cpu(i)
1da177e4
LT
2834 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2835
2836 return sum;
2837}
2838
db1b1fef
JS
2839unsigned long nr_active(void)
2840{
2841 unsigned long i, running = 0, uninterruptible = 0;
2842
2843 for_each_online_cpu(i) {
2844 running += cpu_rq(i)->nr_running;
2845 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2846 }
2847
2848 if (unlikely((long)uninterruptible < 0))
2849 uninterruptible = 0;
2850
2851 return running + uninterruptible;
2852}
2853
48f24c4d 2854/*
dd41f596
IM
2855 * Update rq->cpu_load[] statistics. This function is usually called every
2856 * scheduler tick (TICK_NSEC).
48f24c4d 2857 */
dd41f596 2858static void update_cpu_load(struct rq *this_rq)
48f24c4d 2859{
495eca49 2860 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2861 int i, scale;
2862
2863 this_rq->nr_load_updates++;
dd41f596
IM
2864
2865 /* Update our load: */
2866 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2867 unsigned long old_load, new_load;
2868
2869 /* scale is effectively 1 << i now, and >> i divides by scale */
2870
2871 old_load = this_rq->cpu_load[i];
2872 new_load = this_load;
a25707f3
IM
2873 /*
2874 * Round up the averaging division if load is increasing. This
2875 * prevents us from getting stuck on 9 if the load is 10, for
2876 * example.
2877 */
2878 if (new_load > old_load)
2879 new_load += scale-1;
dd41f596
IM
2880 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2881 }
48f24c4d
IM
2882}
2883
dd41f596
IM
2884#ifdef CONFIG_SMP
2885
1da177e4
LT
2886/*
2887 * double_rq_lock - safely lock two runqueues
2888 *
2889 * Note this does not disable interrupts like task_rq_lock,
2890 * you need to do so manually before calling.
2891 */
70b97a7f 2892static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2893 __acquires(rq1->lock)
2894 __acquires(rq2->lock)
2895{
054b9108 2896 BUG_ON(!irqs_disabled());
1da177e4
LT
2897 if (rq1 == rq2) {
2898 spin_lock(&rq1->lock);
2899 __acquire(rq2->lock); /* Fake it out ;) */
2900 } else {
c96d145e 2901 if (rq1 < rq2) {
1da177e4 2902 spin_lock(&rq1->lock);
5e710e37 2903 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2904 } else {
2905 spin_lock(&rq2->lock);
5e710e37 2906 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2907 }
2908 }
6e82a3be
IM
2909 update_rq_clock(rq1);
2910 update_rq_clock(rq2);
1da177e4
LT
2911}
2912
2913/*
2914 * double_rq_unlock - safely unlock two runqueues
2915 *
2916 * Note this does not restore interrupts like task_rq_unlock,
2917 * you need to do so manually after calling.
2918 */
70b97a7f 2919static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2920 __releases(rq1->lock)
2921 __releases(rq2->lock)
2922{
2923 spin_unlock(&rq1->lock);
2924 if (rq1 != rq2)
2925 spin_unlock(&rq2->lock);
2926 else
2927 __release(rq2->lock);
2928}
2929
1da177e4
LT
2930/*
2931 * If dest_cpu is allowed for this process, migrate the task to it.
2932 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2933 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2934 * the cpu_allowed mask is restored.
2935 */
36c8b586 2936static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2937{
70b97a7f 2938 struct migration_req req;
1da177e4 2939 unsigned long flags;
70b97a7f 2940 struct rq *rq;
1da177e4
LT
2941
2942 rq = task_rq_lock(p, &flags);
96f874e2 2943 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2944 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2945 goto out;
2946
2947 /* force the process onto the specified CPU */
2948 if (migrate_task(p, dest_cpu, &req)) {
2949 /* Need to wait for migration thread (might exit: take ref). */
2950 struct task_struct *mt = rq->migration_thread;
36c8b586 2951
1da177e4
LT
2952 get_task_struct(mt);
2953 task_rq_unlock(rq, &flags);
2954 wake_up_process(mt);
2955 put_task_struct(mt);
2956 wait_for_completion(&req.done);
36c8b586 2957
1da177e4
LT
2958 return;
2959 }
2960out:
2961 task_rq_unlock(rq, &flags);
2962}
2963
2964/*
476d139c
NP
2965 * sched_exec - execve() is a valuable balancing opportunity, because at
2966 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2967 */
2968void sched_exec(void)
2969{
1da177e4 2970 int new_cpu, this_cpu = get_cpu();
476d139c 2971 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2972 put_cpu();
476d139c
NP
2973 if (new_cpu != this_cpu)
2974 sched_migrate_task(current, new_cpu);
1da177e4
LT
2975}
2976
2977/*
2978 * pull_task - move a task from a remote runqueue to the local runqueue.
2979 * Both runqueues must be locked.
2980 */
dd41f596
IM
2981static void pull_task(struct rq *src_rq, struct task_struct *p,
2982 struct rq *this_rq, int this_cpu)
1da177e4 2983{
2e1cb74a 2984 deactivate_task(src_rq, p, 0);
1da177e4 2985 set_task_cpu(p, this_cpu);
dd41f596 2986 activate_task(this_rq, p, 0);
1da177e4
LT
2987 /*
2988 * Note that idle threads have a prio of MAX_PRIO, for this test
2989 * to be always true for them.
2990 */
15afe09b 2991 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2992}
2993
2994/*
2995 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2996 */
858119e1 2997static
70b97a7f 2998int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2999 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3000 int *all_pinned)
1da177e4 3001{
708dc512 3002 int tsk_cache_hot = 0;
1da177e4
LT
3003 /*
3004 * We do not migrate tasks that are:
3005 * 1) running (obviously), or
3006 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3007 * 3) are cache-hot on their current CPU.
3008 */
96f874e2 3009 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3010 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3011 return 0;
cc367732 3012 }
81026794
NP
3013 *all_pinned = 0;
3014
cc367732
IM
3015 if (task_running(rq, p)) {
3016 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3017 return 0;
cc367732 3018 }
1da177e4 3019
da84d961
IM
3020 /*
3021 * Aggressive migration if:
3022 * 1) task is cache cold, or
3023 * 2) too many balance attempts have failed.
3024 */
3025
708dc512
LH
3026 tsk_cache_hot = task_hot(p, rq->clock, sd);
3027 if (!tsk_cache_hot ||
3028 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3029#ifdef CONFIG_SCHEDSTATS
708dc512 3030 if (tsk_cache_hot) {
da84d961 3031 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3032 schedstat_inc(p, se.nr_forced_migrations);
3033 }
da84d961
IM
3034#endif
3035 return 1;
3036 }
3037
708dc512 3038 if (tsk_cache_hot) {
cc367732 3039 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3040 return 0;
cc367732 3041 }
1da177e4
LT
3042 return 1;
3043}
3044
e1d1484f
PW
3045static unsigned long
3046balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3047 unsigned long max_load_move, struct sched_domain *sd,
3048 enum cpu_idle_type idle, int *all_pinned,
3049 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3050{
051c6764 3051 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3052 struct task_struct *p;
3053 long rem_load_move = max_load_move;
1da177e4 3054
e1d1484f 3055 if (max_load_move == 0)
1da177e4
LT
3056 goto out;
3057
81026794
NP
3058 pinned = 1;
3059
1da177e4 3060 /*
dd41f596 3061 * Start the load-balancing iterator:
1da177e4 3062 */
dd41f596
IM
3063 p = iterator->start(iterator->arg);
3064next:
b82d9fdd 3065 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3066 goto out;
051c6764
PZ
3067
3068 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3069 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3070 p = iterator->next(iterator->arg);
3071 goto next;
1da177e4
LT
3072 }
3073
dd41f596 3074 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3075 pulled++;
dd41f596 3076 rem_load_move -= p->se.load.weight;
1da177e4 3077
7e96fa58
GH
3078#ifdef CONFIG_PREEMPT
3079 /*
3080 * NEWIDLE balancing is a source of latency, so preemptible kernels
3081 * will stop after the first task is pulled to minimize the critical
3082 * section.
3083 */
3084 if (idle == CPU_NEWLY_IDLE)
3085 goto out;
3086#endif
3087
2dd73a4f 3088 /*
b82d9fdd 3089 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3090 */
e1d1484f 3091 if (rem_load_move > 0) {
a4ac01c3
PW
3092 if (p->prio < *this_best_prio)
3093 *this_best_prio = p->prio;
dd41f596
IM
3094 p = iterator->next(iterator->arg);
3095 goto next;
1da177e4
LT
3096 }
3097out:
3098 /*
e1d1484f 3099 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3100 * so we can safely collect pull_task() stats here rather than
3101 * inside pull_task().
3102 */
3103 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3104
3105 if (all_pinned)
3106 *all_pinned = pinned;
e1d1484f
PW
3107
3108 return max_load_move - rem_load_move;
1da177e4
LT
3109}
3110
dd41f596 3111/*
43010659
PW
3112 * move_tasks tries to move up to max_load_move weighted load from busiest to
3113 * this_rq, as part of a balancing operation within domain "sd".
3114 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3115 *
3116 * Called with both runqueues locked.
3117 */
3118static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3119 unsigned long max_load_move,
dd41f596
IM
3120 struct sched_domain *sd, enum cpu_idle_type idle,
3121 int *all_pinned)
3122{
5522d5d5 3123 const struct sched_class *class = sched_class_highest;
43010659 3124 unsigned long total_load_moved = 0;
a4ac01c3 3125 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3126
3127 do {
43010659
PW
3128 total_load_moved +=
3129 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3130 max_load_move - total_load_moved,
a4ac01c3 3131 sd, idle, all_pinned, &this_best_prio);
dd41f596 3132 class = class->next;
c4acb2c0 3133
7e96fa58
GH
3134#ifdef CONFIG_PREEMPT
3135 /*
3136 * NEWIDLE balancing is a source of latency, so preemptible
3137 * kernels will stop after the first task is pulled to minimize
3138 * the critical section.
3139 */
c4acb2c0
GH
3140 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3141 break;
7e96fa58 3142#endif
43010659 3143 } while (class && max_load_move > total_load_moved);
dd41f596 3144
43010659
PW
3145 return total_load_moved > 0;
3146}
3147
e1d1484f
PW
3148static int
3149iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3150 struct sched_domain *sd, enum cpu_idle_type idle,
3151 struct rq_iterator *iterator)
3152{
3153 struct task_struct *p = iterator->start(iterator->arg);
3154 int pinned = 0;
3155
3156 while (p) {
3157 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3158 pull_task(busiest, p, this_rq, this_cpu);
3159 /*
3160 * Right now, this is only the second place pull_task()
3161 * is called, so we can safely collect pull_task()
3162 * stats here rather than inside pull_task().
3163 */
3164 schedstat_inc(sd, lb_gained[idle]);
3165
3166 return 1;
3167 }
3168 p = iterator->next(iterator->arg);
3169 }
3170
3171 return 0;
3172}
3173
43010659
PW
3174/*
3175 * move_one_task tries to move exactly one task from busiest to this_rq, as
3176 * part of active balancing operations within "domain".
3177 * Returns 1 if successful and 0 otherwise.
3178 *
3179 * Called with both runqueues locked.
3180 */
3181static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3182 struct sched_domain *sd, enum cpu_idle_type idle)
3183{
5522d5d5 3184 const struct sched_class *class;
43010659
PW
3185
3186 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3187 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3188 return 1;
3189
3190 return 0;
dd41f596 3191}
67bb6c03
GS
3192/********** Helpers for find_busiest_group ************************/
3193
381be78f
GS
3194/**
3195 * sg_lb_stats - stats of a sched_group required for load_balancing
3196 */
3197struct sg_lb_stats {
3198 unsigned long avg_load; /*Avg load across the CPUs of the group */
3199 unsigned long group_load; /* Total load over the CPUs of the group */
3200 unsigned long sum_nr_running; /* Nr tasks running in the group */
3201 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3202 unsigned long group_capacity;
3203 int group_imb; /* Is there an imbalance in the group ? */
3204};
3205
67bb6c03
GS
3206/**
3207 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3208 * @group: The group whose first cpu is to be returned.
3209 */
3210static inline unsigned int group_first_cpu(struct sched_group *group)
3211{
3212 return cpumask_first(sched_group_cpus(group));
3213}
3214
3215/**
3216 * get_sd_load_idx - Obtain the load index for a given sched domain.
3217 * @sd: The sched_domain whose load_idx is to be obtained.
3218 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3219 */
3220static inline int get_sd_load_idx(struct sched_domain *sd,
3221 enum cpu_idle_type idle)
3222{
3223 int load_idx;
3224
3225 switch (idle) {
3226 case CPU_NOT_IDLE:
3227 load_idx = sd->busy_idx;
3228 break;
3229
3230 case CPU_NEWLY_IDLE:
3231 load_idx = sd->newidle_idx;
3232 break;
3233 default:
3234 load_idx = sd->idle_idx;
3235 break;
3236 }
3237
3238 return load_idx;
3239}
1f8c553d
GS
3240
3241
3242/**
3243 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3244 * @group: sched_group whose statistics are to be updated.
3245 * @this_cpu: Cpu for which load balance is currently performed.
3246 * @idle: Idle status of this_cpu
3247 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3248 * @sd_idle: Idle status of the sched_domain containing group.
3249 * @local_group: Does group contain this_cpu.
3250 * @cpus: Set of cpus considered for load balancing.
3251 * @balance: Should we balance.
3252 * @sgs: variable to hold the statistics for this group.
3253 */
3254static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3255 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3256 int local_group, const struct cpumask *cpus,
3257 int *balance, struct sg_lb_stats *sgs)
3258{
3259 unsigned long load, max_cpu_load, min_cpu_load;
3260 int i;
3261 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3262 unsigned long sum_avg_load_per_task;
3263 unsigned long avg_load_per_task;
3264
3265 if (local_group)
3266 balance_cpu = group_first_cpu(group);
3267
3268 /* Tally up the load of all CPUs in the group */
3269 sum_avg_load_per_task = avg_load_per_task = 0;
3270 max_cpu_load = 0;
3271 min_cpu_load = ~0UL;
3272
3273 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3274 struct rq *rq = cpu_rq(i);
3275
3276 if (*sd_idle && rq->nr_running)
3277 *sd_idle = 0;
3278
3279 /* Bias balancing toward cpus of our domain */
3280 if (local_group) {
3281 if (idle_cpu(i) && !first_idle_cpu) {
3282 first_idle_cpu = 1;
3283 balance_cpu = i;
3284 }
3285
3286 load = target_load(i, load_idx);
3287 } else {
3288 load = source_load(i, load_idx);
3289 if (load > max_cpu_load)
3290 max_cpu_load = load;
3291 if (min_cpu_load > load)
3292 min_cpu_load = load;
3293 }
3294
3295 sgs->group_load += load;
3296 sgs->sum_nr_running += rq->nr_running;
3297 sgs->sum_weighted_load += weighted_cpuload(i);
3298
3299 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3300 }
3301
3302 /*
3303 * First idle cpu or the first cpu(busiest) in this sched group
3304 * is eligible for doing load balancing at this and above
3305 * domains. In the newly idle case, we will allow all the cpu's
3306 * to do the newly idle load balance.
3307 */
3308 if (idle != CPU_NEWLY_IDLE && local_group &&
3309 balance_cpu != this_cpu && balance) {
3310 *balance = 0;
3311 return;
3312 }
3313
3314 /* Adjust by relative CPU power of the group */
3315 sgs->avg_load = sg_div_cpu_power(group,
3316 sgs->group_load * SCHED_LOAD_SCALE);
3317
3318
3319 /*
3320 * Consider the group unbalanced when the imbalance is larger
3321 * than the average weight of two tasks.
3322 *
3323 * APZ: with cgroup the avg task weight can vary wildly and
3324 * might not be a suitable number - should we keep a
3325 * normalized nr_running number somewhere that negates
3326 * the hierarchy?
3327 */
3328 avg_load_per_task = sg_div_cpu_power(group,
3329 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3330
3331 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3332 sgs->group_imb = 1;
3333
3334 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3335
3336}
67bb6c03 3337/******* find_busiest_group() helpers end here *********************/
dd41f596 3338
1da177e4
LT
3339/*
3340 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3341 * domain. It calculates and returns the amount of weighted load which
3342 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3343 */
3344static struct sched_group *
3345find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3346 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3347 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3348{
3349 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3350 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3351 unsigned long max_pull;
2dd73a4f
PW
3352 unsigned long busiest_load_per_task, busiest_nr_running;
3353 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3354 int load_idx, group_imb = 0;
5c45bf27
SS
3355#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3356 int power_savings_balance = 1;
3357 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3358 unsigned long min_nr_running = ULONG_MAX;
3359 struct sched_group *group_min = NULL, *group_leader = NULL;
3360#endif
1da177e4
LT
3361
3362 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3363 busiest_load_per_task = busiest_nr_running = 0;
3364 this_load_per_task = this_nr_running = 0;
408ed066 3365
67bb6c03 3366 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3367
3368 do {
381be78f 3369 struct sg_lb_stats sgs;
1da177e4 3370 int local_group;
1da177e4 3371
758b2cdc
RR
3372 local_group = cpumask_test_cpu(this_cpu,
3373 sched_group_cpus(group));
381be78f 3374 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3375 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3376 local_group, cpus, balance, &sgs);
1da177e4 3377
1f8c553d 3378 if (balance && !(*balance))
783609c6 3379 goto ret;
783609c6 3380
381be78f 3381 total_load += sgs.group_load;
5517d86b 3382 total_pwr += group->__cpu_power;
1da177e4 3383
1da177e4 3384 if (local_group) {
381be78f 3385 this_load = sgs.avg_load;
1da177e4 3386 this = group;
381be78f
GS
3387 this_nr_running = sgs.sum_nr_running;
3388 this_load_per_task = sgs.sum_weighted_load;
3389 } else if (sgs.avg_load > max_load &&
3390 (sgs.sum_nr_running > sgs.group_capacity ||
3391 sgs.group_imb)) {
3392 max_load = sgs.avg_load;
1da177e4 3393 busiest = group;
381be78f
GS
3394 busiest_nr_running = sgs.sum_nr_running;
3395 busiest_load_per_task = sgs.sum_weighted_load;
3396 group_imb = sgs.group_imb;
1da177e4 3397 }
5c45bf27
SS
3398
3399#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3400 /*
3401 * Busy processors will not participate in power savings
3402 * balance.
3403 */
dd41f596
IM
3404 if (idle == CPU_NOT_IDLE ||
3405 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3406 goto group_next;
5c45bf27
SS
3407
3408 /*
3409 * If the local group is idle or completely loaded
3410 * no need to do power savings balance at this domain
3411 */
381be78f 3412 if (local_group && (this_nr_running >= sgs.group_capacity ||
5c45bf27
SS
3413 !this_nr_running))
3414 power_savings_balance = 0;
3415
dd41f596 3416 /*
5c45bf27
SS
3417 * If a group is already running at full capacity or idle,
3418 * don't include that group in power savings calculations
dd41f596 3419 */
381be78f
GS
3420 if (!power_savings_balance ||
3421 sgs.sum_nr_running >= sgs.group_capacity ||
3422 !sgs.sum_nr_running)
dd41f596 3423 goto group_next;
5c45bf27 3424
dd41f596 3425 /*
5c45bf27 3426 * Calculate the group which has the least non-idle load.
dd41f596
IM
3427 * This is the group from where we need to pick up the load
3428 * for saving power
3429 */
381be78f
GS
3430 if ((sgs.sum_nr_running < min_nr_running) ||
3431 (sgs.sum_nr_running == min_nr_running &&
67bb6c03 3432 group_first_cpu(group) > group_first_cpu(group_min))) {
dd41f596 3433 group_min = group;
381be78f
GS
3434 min_nr_running = sgs.sum_nr_running;
3435 min_load_per_task = sgs.sum_weighted_load /
3436 sgs.sum_nr_running;
dd41f596 3437 }
5c45bf27 3438
dd41f596 3439 /*
5c45bf27 3440 * Calculate the group which is almost near its
dd41f596
IM
3441 * capacity but still has some space to pick up some load
3442 * from other group and save more power
3443 */
381be78f 3444 if (sgs.sum_nr_running > sgs.group_capacity - 1)
6dfdb062
GS
3445 goto group_next;
3446
381be78f
GS
3447 if (sgs.sum_nr_running > leader_nr_running ||
3448 (sgs.sum_nr_running == leader_nr_running &&
6dfdb062
GS
3449 group_first_cpu(group) < group_first_cpu(group_leader))) {
3450 group_leader = group;
381be78f 3451 leader_nr_running = sgs.sum_nr_running;
48f24c4d 3452 }
5c45bf27
SS
3453group_next:
3454#endif
1da177e4
LT
3455 group = group->next;
3456 } while (group != sd->groups);
3457
2dd73a4f 3458 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3459 goto out_balanced;
3460
3461 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3462
3463 if (this_load >= avg_load ||
3464 100*max_load <= sd->imbalance_pct*this_load)
3465 goto out_balanced;
3466
2dd73a4f 3467 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3468 if (group_imb)
3469 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3470
1da177e4
LT
3471 /*
3472 * We're trying to get all the cpus to the average_load, so we don't
3473 * want to push ourselves above the average load, nor do we wish to
3474 * reduce the max loaded cpu below the average load, as either of these
3475 * actions would just result in more rebalancing later, and ping-pong
3476 * tasks around. Thus we look for the minimum possible imbalance.
3477 * Negative imbalances (*we* are more loaded than anyone else) will
3478 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3479 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3480 * appear as very large values with unsigned longs.
3481 */
2dd73a4f
PW
3482 if (max_load <= busiest_load_per_task)
3483 goto out_balanced;
3484
3485 /*
3486 * In the presence of smp nice balancing, certain scenarios can have
3487 * max load less than avg load(as we skip the groups at or below
3488 * its cpu_power, while calculating max_load..)
3489 */
3490 if (max_load < avg_load) {
3491 *imbalance = 0;
3492 goto small_imbalance;
3493 }
0c117f1b
SS
3494
3495 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3496 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3497
1da177e4 3498 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3499 *imbalance = min(max_pull * busiest->__cpu_power,
3500 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3501 / SCHED_LOAD_SCALE;
3502
2dd73a4f
PW
3503 /*
3504 * if *imbalance is less than the average load per runnable task
3505 * there is no gaurantee that any tasks will be moved so we'll have
3506 * a think about bumping its value to force at least one task to be
3507 * moved
3508 */
7fd0d2dd 3509 if (*imbalance < busiest_load_per_task) {
48f24c4d 3510 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3511 unsigned int imbn;
3512
3513small_imbalance:
3514 pwr_move = pwr_now = 0;
3515 imbn = 2;
3516 if (this_nr_running) {
3517 this_load_per_task /= this_nr_running;
3518 if (busiest_load_per_task > this_load_per_task)
3519 imbn = 1;
3520 } else
408ed066 3521 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3522
01c8c57d 3523 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3524 busiest_load_per_task * imbn) {
2dd73a4f 3525 *imbalance = busiest_load_per_task;
1da177e4
LT
3526 return busiest;
3527 }
3528
3529 /*
3530 * OK, we don't have enough imbalance to justify moving tasks,
3531 * however we may be able to increase total CPU power used by
3532 * moving them.
3533 */
3534
5517d86b
ED
3535 pwr_now += busiest->__cpu_power *
3536 min(busiest_load_per_task, max_load);
3537 pwr_now += this->__cpu_power *
3538 min(this_load_per_task, this_load);
1da177e4
LT
3539 pwr_now /= SCHED_LOAD_SCALE;
3540
3541 /* Amount of load we'd subtract */
5517d86b
ED
3542 tmp = sg_div_cpu_power(busiest,
3543 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3544 if (max_load > tmp)
5517d86b 3545 pwr_move += busiest->__cpu_power *
2dd73a4f 3546 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3547
3548 /* Amount of load we'd add */
5517d86b 3549 if (max_load * busiest->__cpu_power <
33859f7f 3550 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3551 tmp = sg_div_cpu_power(this,
3552 max_load * busiest->__cpu_power);
1da177e4 3553 else
5517d86b
ED
3554 tmp = sg_div_cpu_power(this,
3555 busiest_load_per_task * SCHED_LOAD_SCALE);
3556 pwr_move += this->__cpu_power *
3557 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3558 pwr_move /= SCHED_LOAD_SCALE;
3559
3560 /* Move if we gain throughput */
7fd0d2dd
SS
3561 if (pwr_move > pwr_now)
3562 *imbalance = busiest_load_per_task;
1da177e4
LT
3563 }
3564
1da177e4
LT
3565 return busiest;
3566
3567out_balanced:
5c45bf27 3568#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3569 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3570 goto ret;
1da177e4 3571
6dfdb062
GS
3572 if (this != group_leader || group_leader == group_min)
3573 goto ret;
3574
3575 *imbalance = min_load_per_task;
3576 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3577 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3578 group_first_cpu(group_leader);
5c45bf27 3579 }
6dfdb062
GS
3580 return group_min;
3581
5c45bf27 3582#endif
783609c6 3583ret:
1da177e4
LT
3584 *imbalance = 0;
3585 return NULL;
3586}
3587
3588/*
3589 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3590 */
70b97a7f 3591static struct rq *
d15bcfdb 3592find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3593 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3594{
70b97a7f 3595 struct rq *busiest = NULL, *rq;
2dd73a4f 3596 unsigned long max_load = 0;
1da177e4
LT
3597 int i;
3598
758b2cdc 3599 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3600 unsigned long wl;
0a2966b4 3601
96f874e2 3602 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3603 continue;
3604
48f24c4d 3605 rq = cpu_rq(i);
dd41f596 3606 wl = weighted_cpuload(i);
2dd73a4f 3607
dd41f596 3608 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3609 continue;
1da177e4 3610
dd41f596
IM
3611 if (wl > max_load) {
3612 max_load = wl;
48f24c4d 3613 busiest = rq;
1da177e4
LT
3614 }
3615 }
3616
3617 return busiest;
3618}
3619
77391d71
NP
3620/*
3621 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3622 * so long as it is large enough.
3623 */
3624#define MAX_PINNED_INTERVAL 512
3625
1da177e4
LT
3626/*
3627 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3628 * tasks if there is an imbalance.
1da177e4 3629 */
70b97a7f 3630static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3631 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3632 int *balance, struct cpumask *cpus)
1da177e4 3633{
43010659 3634 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3635 struct sched_group *group;
1da177e4 3636 unsigned long imbalance;
70b97a7f 3637 struct rq *busiest;
fe2eea3f 3638 unsigned long flags;
5969fe06 3639
96f874e2 3640 cpumask_setall(cpus);
7c16ec58 3641
89c4710e
SS
3642 /*
3643 * When power savings policy is enabled for the parent domain, idle
3644 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3645 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3646 * portraying it as CPU_NOT_IDLE.
89c4710e 3647 */
d15bcfdb 3648 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3649 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3650 sd_idle = 1;
1da177e4 3651
2d72376b 3652 schedstat_inc(sd, lb_count[idle]);
1da177e4 3653
0a2966b4 3654redo:
c8cba857 3655 update_shares(sd);
0a2966b4 3656 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3657 cpus, balance);
783609c6 3658
06066714 3659 if (*balance == 0)
783609c6 3660 goto out_balanced;
783609c6 3661
1da177e4
LT
3662 if (!group) {
3663 schedstat_inc(sd, lb_nobusyg[idle]);
3664 goto out_balanced;
3665 }
3666
7c16ec58 3667 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3668 if (!busiest) {
3669 schedstat_inc(sd, lb_nobusyq[idle]);
3670 goto out_balanced;
3671 }
3672
db935dbd 3673 BUG_ON(busiest == this_rq);
1da177e4
LT
3674
3675 schedstat_add(sd, lb_imbalance[idle], imbalance);
3676
43010659 3677 ld_moved = 0;
1da177e4
LT
3678 if (busiest->nr_running > 1) {
3679 /*
3680 * Attempt to move tasks. If find_busiest_group has found
3681 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3682 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3683 * correctly treated as an imbalance.
3684 */
fe2eea3f 3685 local_irq_save(flags);
e17224bf 3686 double_rq_lock(this_rq, busiest);
43010659 3687 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3688 imbalance, sd, idle, &all_pinned);
e17224bf 3689 double_rq_unlock(this_rq, busiest);
fe2eea3f 3690 local_irq_restore(flags);
81026794 3691
46cb4b7c
SS
3692 /*
3693 * some other cpu did the load balance for us.
3694 */
43010659 3695 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3696 resched_cpu(this_cpu);
3697
81026794 3698 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3699 if (unlikely(all_pinned)) {
96f874e2
RR
3700 cpumask_clear_cpu(cpu_of(busiest), cpus);
3701 if (!cpumask_empty(cpus))
0a2966b4 3702 goto redo;
81026794 3703 goto out_balanced;
0a2966b4 3704 }
1da177e4 3705 }
81026794 3706
43010659 3707 if (!ld_moved) {
1da177e4
LT
3708 schedstat_inc(sd, lb_failed[idle]);
3709 sd->nr_balance_failed++;
3710
3711 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3712
fe2eea3f 3713 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3714
3715 /* don't kick the migration_thread, if the curr
3716 * task on busiest cpu can't be moved to this_cpu
3717 */
96f874e2
RR
3718 if (!cpumask_test_cpu(this_cpu,
3719 &busiest->curr->cpus_allowed)) {
fe2eea3f 3720 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3721 all_pinned = 1;
3722 goto out_one_pinned;
3723 }
3724
1da177e4
LT
3725 if (!busiest->active_balance) {
3726 busiest->active_balance = 1;
3727 busiest->push_cpu = this_cpu;
81026794 3728 active_balance = 1;
1da177e4 3729 }
fe2eea3f 3730 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3731 if (active_balance)
1da177e4
LT
3732 wake_up_process(busiest->migration_thread);
3733
3734 /*
3735 * We've kicked active balancing, reset the failure
3736 * counter.
3737 */
39507451 3738 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3739 }
81026794 3740 } else
1da177e4
LT
3741 sd->nr_balance_failed = 0;
3742
81026794 3743 if (likely(!active_balance)) {
1da177e4
LT
3744 /* We were unbalanced, so reset the balancing interval */
3745 sd->balance_interval = sd->min_interval;
81026794
NP
3746 } else {
3747 /*
3748 * If we've begun active balancing, start to back off. This
3749 * case may not be covered by the all_pinned logic if there
3750 * is only 1 task on the busy runqueue (because we don't call
3751 * move_tasks).
3752 */
3753 if (sd->balance_interval < sd->max_interval)
3754 sd->balance_interval *= 2;
1da177e4
LT
3755 }
3756
43010659 3757 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3758 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3759 ld_moved = -1;
3760
3761 goto out;
1da177e4
LT
3762
3763out_balanced:
1da177e4
LT
3764 schedstat_inc(sd, lb_balanced[idle]);
3765
16cfb1c0 3766 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3767
3768out_one_pinned:
1da177e4 3769 /* tune up the balancing interval */
77391d71
NP
3770 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3771 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3772 sd->balance_interval *= 2;
3773
48f24c4d 3774 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3775 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3776 ld_moved = -1;
3777 else
3778 ld_moved = 0;
3779out:
c8cba857
PZ
3780 if (ld_moved)
3781 update_shares(sd);
c09595f6 3782 return ld_moved;
1da177e4
LT
3783}
3784
3785/*
3786 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3787 * tasks if there is an imbalance.
3788 *
d15bcfdb 3789 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3790 * this_rq is locked.
3791 */
48f24c4d 3792static int
7c16ec58 3793load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3794 struct cpumask *cpus)
1da177e4
LT
3795{
3796 struct sched_group *group;
70b97a7f 3797 struct rq *busiest = NULL;
1da177e4 3798 unsigned long imbalance;
43010659 3799 int ld_moved = 0;
5969fe06 3800 int sd_idle = 0;
969bb4e4 3801 int all_pinned = 0;
7c16ec58 3802
96f874e2 3803 cpumask_setall(cpus);
5969fe06 3804
89c4710e
SS
3805 /*
3806 * When power savings policy is enabled for the parent domain, idle
3807 * sibling can pick up load irrespective of busy siblings. In this case,
3808 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3809 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3810 */
3811 if (sd->flags & SD_SHARE_CPUPOWER &&
3812 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3813 sd_idle = 1;
1da177e4 3814
2d72376b 3815 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3816redo:
3e5459b4 3817 update_shares_locked(this_rq, sd);
d15bcfdb 3818 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3819 &sd_idle, cpus, NULL);
1da177e4 3820 if (!group) {
d15bcfdb 3821 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3822 goto out_balanced;
1da177e4
LT
3823 }
3824
7c16ec58 3825 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3826 if (!busiest) {
d15bcfdb 3827 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3828 goto out_balanced;
1da177e4
LT
3829 }
3830
db935dbd
NP
3831 BUG_ON(busiest == this_rq);
3832
d15bcfdb 3833 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3834
43010659 3835 ld_moved = 0;
d6d5cfaf
NP
3836 if (busiest->nr_running > 1) {
3837 /* Attempt to move tasks */
3838 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3839 /* this_rq->clock is already updated */
3840 update_rq_clock(busiest);
43010659 3841 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3842 imbalance, sd, CPU_NEWLY_IDLE,
3843 &all_pinned);
1b12bbc7 3844 double_unlock_balance(this_rq, busiest);
0a2966b4 3845
969bb4e4 3846 if (unlikely(all_pinned)) {
96f874e2
RR
3847 cpumask_clear_cpu(cpu_of(busiest), cpus);
3848 if (!cpumask_empty(cpus))
0a2966b4
CL
3849 goto redo;
3850 }
d6d5cfaf
NP
3851 }
3852
43010659 3853 if (!ld_moved) {
36dffab6 3854 int active_balance = 0;
ad273b32 3855
d15bcfdb 3856 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3857 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3858 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3859 return -1;
ad273b32
VS
3860
3861 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3862 return -1;
3863
3864 if (sd->nr_balance_failed++ < 2)
3865 return -1;
3866
3867 /*
3868 * The only task running in a non-idle cpu can be moved to this
3869 * cpu in an attempt to completely freeup the other CPU
3870 * package. The same method used to move task in load_balance()
3871 * have been extended for load_balance_newidle() to speedup
3872 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3873 *
3874 * The package power saving logic comes from
3875 * find_busiest_group(). If there are no imbalance, then
3876 * f_b_g() will return NULL. However when sched_mc={1,2} then
3877 * f_b_g() will select a group from which a running task may be
3878 * pulled to this cpu in order to make the other package idle.
3879 * If there is no opportunity to make a package idle and if
3880 * there are no imbalance, then f_b_g() will return NULL and no
3881 * action will be taken in load_balance_newidle().
3882 *
3883 * Under normal task pull operation due to imbalance, there
3884 * will be more than one task in the source run queue and
3885 * move_tasks() will succeed. ld_moved will be true and this
3886 * active balance code will not be triggered.
3887 */
3888
3889 /* Lock busiest in correct order while this_rq is held */
3890 double_lock_balance(this_rq, busiest);
3891
3892 /*
3893 * don't kick the migration_thread, if the curr
3894 * task on busiest cpu can't be moved to this_cpu
3895 */
6ca09dfc 3896 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3897 double_unlock_balance(this_rq, busiest);
3898 all_pinned = 1;
3899 return ld_moved;
3900 }
3901
3902 if (!busiest->active_balance) {
3903 busiest->active_balance = 1;
3904 busiest->push_cpu = this_cpu;
3905 active_balance = 1;
3906 }
3907
3908 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
3909 /*
3910 * Should not call ttwu while holding a rq->lock
3911 */
3912 spin_unlock(&this_rq->lock);
ad273b32
VS
3913 if (active_balance)
3914 wake_up_process(busiest->migration_thread);
da8d5089 3915 spin_lock(&this_rq->lock);
ad273b32 3916
5969fe06 3917 } else
16cfb1c0 3918 sd->nr_balance_failed = 0;
1da177e4 3919
3e5459b4 3920 update_shares_locked(this_rq, sd);
43010659 3921 return ld_moved;
16cfb1c0
NP
3922
3923out_balanced:
d15bcfdb 3924 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3925 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3926 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3927 return -1;
16cfb1c0 3928 sd->nr_balance_failed = 0;
48f24c4d 3929
16cfb1c0 3930 return 0;
1da177e4
LT
3931}
3932
3933/*
3934 * idle_balance is called by schedule() if this_cpu is about to become
3935 * idle. Attempts to pull tasks from other CPUs.
3936 */
70b97a7f 3937static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3938{
3939 struct sched_domain *sd;
efbe027e 3940 int pulled_task = 0;
dd41f596 3941 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3942 cpumask_var_t tmpmask;
3943
3944 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3945 return;
1da177e4
LT
3946
3947 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3948 unsigned long interval;
3949
3950 if (!(sd->flags & SD_LOAD_BALANCE))
3951 continue;
3952
3953 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3954 /* If we've pulled tasks over stop searching: */
7c16ec58 3955 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3956 sd, tmpmask);
92c4ca5c
CL
3957
3958 interval = msecs_to_jiffies(sd->balance_interval);
3959 if (time_after(next_balance, sd->last_balance + interval))
3960 next_balance = sd->last_balance + interval;
3961 if (pulled_task)
3962 break;
1da177e4 3963 }
dd41f596 3964 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3965 /*
3966 * We are going idle. next_balance may be set based on
3967 * a busy processor. So reset next_balance.
3968 */
3969 this_rq->next_balance = next_balance;
dd41f596 3970 }
4d2732c6 3971 free_cpumask_var(tmpmask);
1da177e4
LT
3972}
3973
3974/*
3975 * active_load_balance is run by migration threads. It pushes running tasks
3976 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3977 * running on each physical CPU where possible, and avoids physical /
3978 * logical imbalances.
3979 *
3980 * Called with busiest_rq locked.
3981 */
70b97a7f 3982static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3983{
39507451 3984 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3985 struct sched_domain *sd;
3986 struct rq *target_rq;
39507451 3987
48f24c4d 3988 /* Is there any task to move? */
39507451 3989 if (busiest_rq->nr_running <= 1)
39507451
NP
3990 return;
3991
3992 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3993
3994 /*
39507451 3995 * This condition is "impossible", if it occurs
41a2d6cf 3996 * we need to fix it. Originally reported by
39507451 3997 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3998 */
39507451 3999 BUG_ON(busiest_rq == target_rq);
1da177e4 4000
39507451
NP
4001 /* move a task from busiest_rq to target_rq */
4002 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4003 update_rq_clock(busiest_rq);
4004 update_rq_clock(target_rq);
39507451
NP
4005
4006 /* Search for an sd spanning us and the target CPU. */
c96d145e 4007 for_each_domain(target_cpu, sd) {
39507451 4008 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4009 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4010 break;
c96d145e 4011 }
39507451 4012
48f24c4d 4013 if (likely(sd)) {
2d72376b 4014 schedstat_inc(sd, alb_count);
39507451 4015
43010659
PW
4016 if (move_one_task(target_rq, target_cpu, busiest_rq,
4017 sd, CPU_IDLE))
48f24c4d
IM
4018 schedstat_inc(sd, alb_pushed);
4019 else
4020 schedstat_inc(sd, alb_failed);
4021 }
1b12bbc7 4022 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4023}
4024
46cb4b7c
SS
4025#ifdef CONFIG_NO_HZ
4026static struct {
4027 atomic_t load_balancer;
7d1e6a9b 4028 cpumask_var_t cpu_mask;
46cb4b7c
SS
4029} nohz ____cacheline_aligned = {
4030 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4031};
4032
7835b98b 4033/*
46cb4b7c
SS
4034 * This routine will try to nominate the ilb (idle load balancing)
4035 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4036 * load balancing on behalf of all those cpus. If all the cpus in the system
4037 * go into this tickless mode, then there will be no ilb owner (as there is
4038 * no need for one) and all the cpus will sleep till the next wakeup event
4039 * arrives...
4040 *
4041 * For the ilb owner, tick is not stopped. And this tick will be used
4042 * for idle load balancing. ilb owner will still be part of
4043 * nohz.cpu_mask..
7835b98b 4044 *
46cb4b7c
SS
4045 * While stopping the tick, this cpu will become the ilb owner if there
4046 * is no other owner. And will be the owner till that cpu becomes busy
4047 * or if all cpus in the system stop their ticks at which point
4048 * there is no need for ilb owner.
4049 *
4050 * When the ilb owner becomes busy, it nominates another owner, during the
4051 * next busy scheduler_tick()
4052 */
4053int select_nohz_load_balancer(int stop_tick)
4054{
4055 int cpu = smp_processor_id();
4056
4057 if (stop_tick) {
46cb4b7c
SS
4058 cpu_rq(cpu)->in_nohz_recently = 1;
4059
483b4ee6
SS
4060 if (!cpu_active(cpu)) {
4061 if (atomic_read(&nohz.load_balancer) != cpu)
4062 return 0;
4063
4064 /*
4065 * If we are going offline and still the leader,
4066 * give up!
4067 */
46cb4b7c
SS
4068 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4069 BUG();
483b4ee6 4070
46cb4b7c
SS
4071 return 0;
4072 }
4073
483b4ee6
SS
4074 cpumask_set_cpu(cpu, nohz.cpu_mask);
4075
46cb4b7c 4076 /* time for ilb owner also to sleep */
7d1e6a9b 4077 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4078 if (atomic_read(&nohz.load_balancer) == cpu)
4079 atomic_set(&nohz.load_balancer, -1);
4080 return 0;
4081 }
4082
4083 if (atomic_read(&nohz.load_balancer) == -1) {
4084 /* make me the ilb owner */
4085 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4086 return 1;
4087 } else if (atomic_read(&nohz.load_balancer) == cpu)
4088 return 1;
4089 } else {
7d1e6a9b 4090 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4091 return 0;
4092
7d1e6a9b 4093 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4094
4095 if (atomic_read(&nohz.load_balancer) == cpu)
4096 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4097 BUG();
4098 }
4099 return 0;
4100}
4101#endif
4102
4103static DEFINE_SPINLOCK(balancing);
4104
4105/*
7835b98b
CL
4106 * It checks each scheduling domain to see if it is due to be balanced,
4107 * and initiates a balancing operation if so.
4108 *
4109 * Balancing parameters are set up in arch_init_sched_domains.
4110 */
a9957449 4111static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4112{
46cb4b7c
SS
4113 int balance = 1;
4114 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4115 unsigned long interval;
4116 struct sched_domain *sd;
46cb4b7c 4117 /* Earliest time when we have to do rebalance again */
c9819f45 4118 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4119 int update_next_balance = 0;
d07355f5 4120 int need_serialize;
a0e90245
RR
4121 cpumask_var_t tmp;
4122
4123 /* Fails alloc? Rebalancing probably not a priority right now. */
4124 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4125 return;
1da177e4 4126
46cb4b7c 4127 for_each_domain(cpu, sd) {
1da177e4
LT
4128 if (!(sd->flags & SD_LOAD_BALANCE))
4129 continue;
4130
4131 interval = sd->balance_interval;
d15bcfdb 4132 if (idle != CPU_IDLE)
1da177e4
LT
4133 interval *= sd->busy_factor;
4134
4135 /* scale ms to jiffies */
4136 interval = msecs_to_jiffies(interval);
4137 if (unlikely(!interval))
4138 interval = 1;
dd41f596
IM
4139 if (interval > HZ*NR_CPUS/10)
4140 interval = HZ*NR_CPUS/10;
4141
d07355f5 4142 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4143
d07355f5 4144 if (need_serialize) {
08c183f3
CL
4145 if (!spin_trylock(&balancing))
4146 goto out;
4147 }
4148
c9819f45 4149 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 4150 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
4151 /*
4152 * We've pulled tasks over so either we're no
5969fe06
NP
4153 * longer idle, or one of our SMT siblings is
4154 * not idle.
4155 */
d15bcfdb 4156 idle = CPU_NOT_IDLE;
1da177e4 4157 }
1bd77f2d 4158 sd->last_balance = jiffies;
1da177e4 4159 }
d07355f5 4160 if (need_serialize)
08c183f3
CL
4161 spin_unlock(&balancing);
4162out:
f549da84 4163 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4164 next_balance = sd->last_balance + interval;
f549da84
SS
4165 update_next_balance = 1;
4166 }
783609c6
SS
4167
4168 /*
4169 * Stop the load balance at this level. There is another
4170 * CPU in our sched group which is doing load balancing more
4171 * actively.
4172 */
4173 if (!balance)
4174 break;
1da177e4 4175 }
f549da84
SS
4176
4177 /*
4178 * next_balance will be updated only when there is a need.
4179 * When the cpu is attached to null domain for ex, it will not be
4180 * updated.
4181 */
4182 if (likely(update_next_balance))
4183 rq->next_balance = next_balance;
a0e90245
RR
4184
4185 free_cpumask_var(tmp);
46cb4b7c
SS
4186}
4187
4188/*
4189 * run_rebalance_domains is triggered when needed from the scheduler tick.
4190 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4191 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4192 */
4193static void run_rebalance_domains(struct softirq_action *h)
4194{
dd41f596
IM
4195 int this_cpu = smp_processor_id();
4196 struct rq *this_rq = cpu_rq(this_cpu);
4197 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4198 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4199
dd41f596 4200 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4201
4202#ifdef CONFIG_NO_HZ
4203 /*
4204 * If this cpu is the owner for idle load balancing, then do the
4205 * balancing on behalf of the other idle cpus whose ticks are
4206 * stopped.
4207 */
dd41f596
IM
4208 if (this_rq->idle_at_tick &&
4209 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4210 struct rq *rq;
4211 int balance_cpu;
4212
7d1e6a9b
RR
4213 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4214 if (balance_cpu == this_cpu)
4215 continue;
4216
46cb4b7c
SS
4217 /*
4218 * If this cpu gets work to do, stop the load balancing
4219 * work being done for other cpus. Next load
4220 * balancing owner will pick it up.
4221 */
4222 if (need_resched())
4223 break;
4224
de0cf899 4225 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4226
4227 rq = cpu_rq(balance_cpu);
dd41f596
IM
4228 if (time_after(this_rq->next_balance, rq->next_balance))
4229 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4230 }
4231 }
4232#endif
4233}
4234
8a0be9ef
FW
4235static inline int on_null_domain(int cpu)
4236{
4237 return !rcu_dereference(cpu_rq(cpu)->sd);
4238}
4239
46cb4b7c
SS
4240/*
4241 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4242 *
4243 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4244 * idle load balancing owner or decide to stop the periodic load balancing,
4245 * if the whole system is idle.
4246 */
dd41f596 4247static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4248{
46cb4b7c
SS
4249#ifdef CONFIG_NO_HZ
4250 /*
4251 * If we were in the nohz mode recently and busy at the current
4252 * scheduler tick, then check if we need to nominate new idle
4253 * load balancer.
4254 */
4255 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4256 rq->in_nohz_recently = 0;
4257
4258 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4259 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4260 atomic_set(&nohz.load_balancer, -1);
4261 }
4262
4263 if (atomic_read(&nohz.load_balancer) == -1) {
4264 /*
4265 * simple selection for now: Nominate the
4266 * first cpu in the nohz list to be the next
4267 * ilb owner.
4268 *
4269 * TBD: Traverse the sched domains and nominate
4270 * the nearest cpu in the nohz.cpu_mask.
4271 */
7d1e6a9b 4272 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4273
434d53b0 4274 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4275 resched_cpu(ilb);
4276 }
4277 }
4278
4279 /*
4280 * If this cpu is idle and doing idle load balancing for all the
4281 * cpus with ticks stopped, is it time for that to stop?
4282 */
4283 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4284 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4285 resched_cpu(cpu);
4286 return;
4287 }
4288
4289 /*
4290 * If this cpu is idle and the idle load balancing is done by
4291 * someone else, then no need raise the SCHED_SOFTIRQ
4292 */
4293 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4294 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4295 return;
4296#endif
8a0be9ef
FW
4297 /* Don't need to rebalance while attached to NULL domain */
4298 if (time_after_eq(jiffies, rq->next_balance) &&
4299 likely(!on_null_domain(cpu)))
46cb4b7c 4300 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4301}
dd41f596
IM
4302
4303#else /* CONFIG_SMP */
4304
1da177e4
LT
4305/*
4306 * on UP we do not need to balance between CPUs:
4307 */
70b97a7f 4308static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4309{
4310}
dd41f596 4311
1da177e4
LT
4312#endif
4313
1da177e4
LT
4314DEFINE_PER_CPU(struct kernel_stat, kstat);
4315
4316EXPORT_PER_CPU_SYMBOL(kstat);
4317
4318/*
f06febc9
FM
4319 * Return any ns on the sched_clock that have not yet been banked in
4320 * @p in case that task is currently running.
1da177e4 4321 */
bb34d92f 4322unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4323{
1da177e4 4324 unsigned long flags;
41b86e9c 4325 struct rq *rq;
bb34d92f 4326 u64 ns = 0;
48f24c4d 4327
41b86e9c 4328 rq = task_rq_lock(p, &flags);
1508487e 4329
051a1d1a 4330 if (task_current(rq, p)) {
f06febc9
FM
4331 u64 delta_exec;
4332
a8e504d2
IM
4333 update_rq_clock(rq);
4334 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4335 if ((s64)delta_exec > 0)
bb34d92f 4336 ns = delta_exec;
41b86e9c 4337 }
48f24c4d 4338
41b86e9c 4339 task_rq_unlock(rq, &flags);
48f24c4d 4340
1da177e4
LT
4341 return ns;
4342}
4343
1da177e4
LT
4344/*
4345 * Account user cpu time to a process.
4346 * @p: the process that the cpu time gets accounted to
1da177e4 4347 * @cputime: the cpu time spent in user space since the last update
457533a7 4348 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4349 */
457533a7
MS
4350void account_user_time(struct task_struct *p, cputime_t cputime,
4351 cputime_t cputime_scaled)
1da177e4
LT
4352{
4353 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4354 cputime64_t tmp;
4355
457533a7 4356 /* Add user time to process. */
1da177e4 4357 p->utime = cputime_add(p->utime, cputime);
457533a7 4358 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4359 account_group_user_time(p, cputime);
1da177e4
LT
4360
4361 /* Add user time to cpustat. */
4362 tmp = cputime_to_cputime64(cputime);
4363 if (TASK_NICE(p) > 0)
4364 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4365 else
4366 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4367 /* Account for user time used */
4368 acct_update_integrals(p);
1da177e4
LT
4369}
4370
94886b84
LV
4371/*
4372 * Account guest cpu time to a process.
4373 * @p: the process that the cpu time gets accounted to
4374 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4375 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4376 */
457533a7
MS
4377static void account_guest_time(struct task_struct *p, cputime_t cputime,
4378 cputime_t cputime_scaled)
94886b84
LV
4379{
4380 cputime64_t tmp;
4381 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4382
4383 tmp = cputime_to_cputime64(cputime);
4384
457533a7 4385 /* Add guest time to process. */
94886b84 4386 p->utime = cputime_add(p->utime, cputime);
457533a7 4387 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4388 account_group_user_time(p, cputime);
94886b84
LV
4389 p->gtime = cputime_add(p->gtime, cputime);
4390
457533a7 4391 /* Add guest time to cpustat. */
94886b84
LV
4392 cpustat->user = cputime64_add(cpustat->user, tmp);
4393 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4394}
4395
1da177e4
LT
4396/*
4397 * Account system cpu time to a process.
4398 * @p: the process that the cpu time gets accounted to
4399 * @hardirq_offset: the offset to subtract from hardirq_count()
4400 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4401 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4402 */
4403void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4404 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4405{
4406 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4407 cputime64_t tmp;
4408
983ed7a6 4409 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4410 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4411 return;
4412 }
94886b84 4413
457533a7 4414 /* Add system time to process. */
1da177e4 4415 p->stime = cputime_add(p->stime, cputime);
457533a7 4416 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4417 account_group_system_time(p, cputime);
1da177e4
LT
4418
4419 /* Add system time to cpustat. */
4420 tmp = cputime_to_cputime64(cputime);
4421 if (hardirq_count() - hardirq_offset)
4422 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4423 else if (softirq_count())
4424 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4425 else
79741dd3
MS
4426 cpustat->system = cputime64_add(cpustat->system, tmp);
4427
1da177e4
LT
4428 /* Account for system time used */
4429 acct_update_integrals(p);
1da177e4
LT
4430}
4431
c66f08be 4432/*
1da177e4 4433 * Account for involuntary wait time.
1da177e4 4434 * @steal: the cpu time spent in involuntary wait
c66f08be 4435 */
79741dd3 4436void account_steal_time(cputime_t cputime)
c66f08be 4437{
79741dd3
MS
4438 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4439 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4440
4441 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4442}
4443
1da177e4 4444/*
79741dd3
MS
4445 * Account for idle time.
4446 * @cputime: the cpu time spent in idle wait
1da177e4 4447 */
79741dd3 4448void account_idle_time(cputime_t cputime)
1da177e4
LT
4449{
4450 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4451 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4452 struct rq *rq = this_rq();
1da177e4 4453
79741dd3
MS
4454 if (atomic_read(&rq->nr_iowait) > 0)
4455 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4456 else
4457 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4458}
4459
79741dd3
MS
4460#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4461
4462/*
4463 * Account a single tick of cpu time.
4464 * @p: the process that the cpu time gets accounted to
4465 * @user_tick: indicates if the tick is a user or a system tick
4466 */
4467void account_process_tick(struct task_struct *p, int user_tick)
4468{
4469 cputime_t one_jiffy = jiffies_to_cputime(1);
4470 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4471 struct rq *rq = this_rq();
4472
4473 if (user_tick)
4474 account_user_time(p, one_jiffy, one_jiffy_scaled);
4475 else if (p != rq->idle)
4476 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4477 one_jiffy_scaled);
4478 else
4479 account_idle_time(one_jiffy);
4480}
4481
4482/*
4483 * Account multiple ticks of steal time.
4484 * @p: the process from which the cpu time has been stolen
4485 * @ticks: number of stolen ticks
4486 */
4487void account_steal_ticks(unsigned long ticks)
4488{
4489 account_steal_time(jiffies_to_cputime(ticks));
4490}
4491
4492/*
4493 * Account multiple ticks of idle time.
4494 * @ticks: number of stolen ticks
4495 */
4496void account_idle_ticks(unsigned long ticks)
4497{
4498 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4499}
4500
79741dd3
MS
4501#endif
4502
49048622
BS
4503/*
4504 * Use precise platform statistics if available:
4505 */
4506#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4507cputime_t task_utime(struct task_struct *p)
4508{
4509 return p->utime;
4510}
4511
4512cputime_t task_stime(struct task_struct *p)
4513{
4514 return p->stime;
4515}
4516#else
4517cputime_t task_utime(struct task_struct *p)
4518{
4519 clock_t utime = cputime_to_clock_t(p->utime),
4520 total = utime + cputime_to_clock_t(p->stime);
4521 u64 temp;
4522
4523 /*
4524 * Use CFS's precise accounting:
4525 */
4526 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4527
4528 if (total) {
4529 temp *= utime;
4530 do_div(temp, total);
4531 }
4532 utime = (clock_t)temp;
4533
4534 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4535 return p->prev_utime;
4536}
4537
4538cputime_t task_stime(struct task_struct *p)
4539{
4540 clock_t stime;
4541
4542 /*
4543 * Use CFS's precise accounting. (we subtract utime from
4544 * the total, to make sure the total observed by userspace
4545 * grows monotonically - apps rely on that):
4546 */
4547 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4548 cputime_to_clock_t(task_utime(p));
4549
4550 if (stime >= 0)
4551 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4552
4553 return p->prev_stime;
4554}
4555#endif
4556
4557inline cputime_t task_gtime(struct task_struct *p)
4558{
4559 return p->gtime;
4560}
4561
7835b98b
CL
4562/*
4563 * This function gets called by the timer code, with HZ frequency.
4564 * We call it with interrupts disabled.
4565 *
4566 * It also gets called by the fork code, when changing the parent's
4567 * timeslices.
4568 */
4569void scheduler_tick(void)
4570{
7835b98b
CL
4571 int cpu = smp_processor_id();
4572 struct rq *rq = cpu_rq(cpu);
dd41f596 4573 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4574
4575 sched_clock_tick();
dd41f596
IM
4576
4577 spin_lock(&rq->lock);
3e51f33f 4578 update_rq_clock(rq);
f1a438d8 4579 update_cpu_load(rq);
fa85ae24 4580 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4581 spin_unlock(&rq->lock);
7835b98b 4582
e418e1c2 4583#ifdef CONFIG_SMP
dd41f596
IM
4584 rq->idle_at_tick = idle_cpu(cpu);
4585 trigger_load_balance(rq, cpu);
e418e1c2 4586#endif
1da177e4
LT
4587}
4588
6cd8a4bb
SR
4589#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4590 defined(CONFIG_PREEMPT_TRACER))
4591
4592static inline unsigned long get_parent_ip(unsigned long addr)
4593{
4594 if (in_lock_functions(addr)) {
4595 addr = CALLER_ADDR2;
4596 if (in_lock_functions(addr))
4597 addr = CALLER_ADDR3;
4598 }
4599 return addr;
4600}
1da177e4 4601
43627582 4602void __kprobes add_preempt_count(int val)
1da177e4 4603{
6cd8a4bb 4604#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4605 /*
4606 * Underflow?
4607 */
9a11b49a
IM
4608 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4609 return;
6cd8a4bb 4610#endif
1da177e4 4611 preempt_count() += val;
6cd8a4bb 4612#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4613 /*
4614 * Spinlock count overflowing soon?
4615 */
33859f7f
MOS
4616 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4617 PREEMPT_MASK - 10);
6cd8a4bb
SR
4618#endif
4619 if (preempt_count() == val)
4620 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4621}
4622EXPORT_SYMBOL(add_preempt_count);
4623
43627582 4624void __kprobes sub_preempt_count(int val)
1da177e4 4625{
6cd8a4bb 4626#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4627 /*
4628 * Underflow?
4629 */
01e3eb82 4630 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4631 return;
1da177e4
LT
4632 /*
4633 * Is the spinlock portion underflowing?
4634 */
9a11b49a
IM
4635 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4636 !(preempt_count() & PREEMPT_MASK)))
4637 return;
6cd8a4bb 4638#endif
9a11b49a 4639
6cd8a4bb
SR
4640 if (preempt_count() == val)
4641 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4642 preempt_count() -= val;
4643}
4644EXPORT_SYMBOL(sub_preempt_count);
4645
4646#endif
4647
4648/*
dd41f596 4649 * Print scheduling while atomic bug:
1da177e4 4650 */
dd41f596 4651static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4652{
838225b4
SS
4653 struct pt_regs *regs = get_irq_regs();
4654
4655 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4656 prev->comm, prev->pid, preempt_count());
4657
dd41f596 4658 debug_show_held_locks(prev);
e21f5b15 4659 print_modules();
dd41f596
IM
4660 if (irqs_disabled())
4661 print_irqtrace_events(prev);
838225b4
SS
4662
4663 if (regs)
4664 show_regs(regs);
4665 else
4666 dump_stack();
dd41f596 4667}
1da177e4 4668
dd41f596
IM
4669/*
4670 * Various schedule()-time debugging checks and statistics:
4671 */
4672static inline void schedule_debug(struct task_struct *prev)
4673{
1da177e4 4674 /*
41a2d6cf 4675 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4676 * schedule() atomically, we ignore that path for now.
4677 * Otherwise, whine if we are scheduling when we should not be.
4678 */
3f33a7ce 4679 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4680 __schedule_bug(prev);
4681
1da177e4
LT
4682 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4683
2d72376b 4684 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4685#ifdef CONFIG_SCHEDSTATS
4686 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4687 schedstat_inc(this_rq(), bkl_count);
4688 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4689 }
4690#endif
dd41f596
IM
4691}
4692
df1c99d4
MG
4693static void put_prev_task(struct rq *rq, struct task_struct *prev)
4694{
4695 if (prev->state == TASK_RUNNING) {
4696 u64 runtime = prev->se.sum_exec_runtime;
4697
4698 runtime -= prev->se.prev_sum_exec_runtime;
4699 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4700
4701 /*
4702 * In order to avoid avg_overlap growing stale when we are
4703 * indeed overlapping and hence not getting put to sleep, grow
4704 * the avg_overlap on preemption.
4705 *
4706 * We use the average preemption runtime because that
4707 * correlates to the amount of cache footprint a task can
4708 * build up.
4709 */
4710 update_avg(&prev->se.avg_overlap, runtime);
4711 }
4712 prev->sched_class->put_prev_task(rq, prev);
4713}
4714
dd41f596
IM
4715/*
4716 * Pick up the highest-prio task:
4717 */
4718static inline struct task_struct *
b67802ea 4719pick_next_task(struct rq *rq)
dd41f596 4720{
5522d5d5 4721 const struct sched_class *class;
dd41f596 4722 struct task_struct *p;
1da177e4
LT
4723
4724 /*
dd41f596
IM
4725 * Optimization: we know that if all tasks are in
4726 * the fair class we can call that function directly:
1da177e4 4727 */
dd41f596 4728 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4729 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4730 if (likely(p))
4731 return p;
1da177e4
LT
4732 }
4733
dd41f596
IM
4734 class = sched_class_highest;
4735 for ( ; ; ) {
fb8d4724 4736 p = class->pick_next_task(rq);
dd41f596
IM
4737 if (p)
4738 return p;
4739 /*
4740 * Will never be NULL as the idle class always
4741 * returns a non-NULL p:
4742 */
4743 class = class->next;
4744 }
4745}
1da177e4 4746
dd41f596
IM
4747/*
4748 * schedule() is the main scheduler function.
4749 */
4750asmlinkage void __sched schedule(void)
4751{
4752 struct task_struct *prev, *next;
67ca7bde 4753 unsigned long *switch_count;
dd41f596 4754 struct rq *rq;
31656519 4755 int cpu;
dd41f596
IM
4756
4757need_resched:
4758 preempt_disable();
4759 cpu = smp_processor_id();
4760 rq = cpu_rq(cpu);
4761 rcu_qsctr_inc(cpu);
4762 prev = rq->curr;
4763 switch_count = &prev->nivcsw;
4764
4765 release_kernel_lock(prev);
4766need_resched_nonpreemptible:
4767
4768 schedule_debug(prev);
1da177e4 4769
31656519 4770 if (sched_feat(HRTICK))
f333fdc9 4771 hrtick_clear(rq);
8f4d37ec 4772
8cd162ce 4773 spin_lock_irq(&rq->lock);
3e51f33f 4774 update_rq_clock(rq);
1e819950 4775 clear_tsk_need_resched(prev);
1da177e4 4776
1da177e4 4777 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4778 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4779 prev->state = TASK_RUNNING;
16882c1e 4780 else
2e1cb74a 4781 deactivate_task(rq, prev, 1);
dd41f596 4782 switch_count = &prev->nvcsw;
1da177e4
LT
4783 }
4784
9a897c5a
SR
4785#ifdef CONFIG_SMP
4786 if (prev->sched_class->pre_schedule)
4787 prev->sched_class->pre_schedule(rq, prev);
4788#endif
f65eda4f 4789
dd41f596 4790 if (unlikely(!rq->nr_running))
1da177e4 4791 idle_balance(cpu, rq);
1da177e4 4792
df1c99d4 4793 put_prev_task(rq, prev);
b67802ea 4794 next = pick_next_task(rq);
1da177e4 4795
1da177e4 4796 if (likely(prev != next)) {
673a90a1
DS
4797 sched_info_switch(prev, next);
4798
1da177e4
LT
4799 rq->nr_switches++;
4800 rq->curr = next;
4801 ++*switch_count;
4802
dd41f596 4803 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4804 /*
4805 * the context switch might have flipped the stack from under
4806 * us, hence refresh the local variables.
4807 */
4808 cpu = smp_processor_id();
4809 rq = cpu_rq(cpu);
1da177e4
LT
4810 } else
4811 spin_unlock_irq(&rq->lock);
4812
8f4d37ec 4813 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4814 goto need_resched_nonpreemptible;
8f4d37ec 4815
1da177e4
LT
4816 preempt_enable_no_resched();
4817 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4818 goto need_resched;
4819}
1da177e4
LT
4820EXPORT_SYMBOL(schedule);
4821
4822#ifdef CONFIG_PREEMPT
4823/*
2ed6e34f 4824 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4825 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4826 * occur there and call schedule directly.
4827 */
4828asmlinkage void __sched preempt_schedule(void)
4829{
4830 struct thread_info *ti = current_thread_info();
6478d880 4831
1da177e4
LT
4832 /*
4833 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4834 * we do not want to preempt the current task. Just return..
1da177e4 4835 */
beed33a8 4836 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4837 return;
4838
3a5c359a
AK
4839 do {
4840 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4841 schedule();
3a5c359a 4842 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4843
3a5c359a
AK
4844 /*
4845 * Check again in case we missed a preemption opportunity
4846 * between schedule and now.
4847 */
4848 barrier();
5ed0cec0 4849 } while (need_resched());
1da177e4 4850}
1da177e4
LT
4851EXPORT_SYMBOL(preempt_schedule);
4852
4853/*
2ed6e34f 4854 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4855 * off of irq context.
4856 * Note, that this is called and return with irqs disabled. This will
4857 * protect us against recursive calling from irq.
4858 */
4859asmlinkage void __sched preempt_schedule_irq(void)
4860{
4861 struct thread_info *ti = current_thread_info();
6478d880 4862
2ed6e34f 4863 /* Catch callers which need to be fixed */
1da177e4
LT
4864 BUG_ON(ti->preempt_count || !irqs_disabled());
4865
3a5c359a
AK
4866 do {
4867 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4868 local_irq_enable();
4869 schedule();
4870 local_irq_disable();
3a5c359a 4871 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4872
3a5c359a
AK
4873 /*
4874 * Check again in case we missed a preemption opportunity
4875 * between schedule and now.
4876 */
4877 barrier();
5ed0cec0 4878 } while (need_resched());
1da177e4
LT
4879}
4880
4881#endif /* CONFIG_PREEMPT */
4882
95cdf3b7
IM
4883int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4884 void *key)
1da177e4 4885{
48f24c4d 4886 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4887}
1da177e4
LT
4888EXPORT_SYMBOL(default_wake_function);
4889
4890/*
41a2d6cf
IM
4891 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4892 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4893 * number) then we wake all the non-exclusive tasks and one exclusive task.
4894 *
4895 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4896 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4897 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4898 */
777c6c5f
JW
4899void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4900 int nr_exclusive, int sync, void *key)
1da177e4 4901{
2e45874c 4902 wait_queue_t *curr, *next;
1da177e4 4903
2e45874c 4904 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4905 unsigned flags = curr->flags;
4906
1da177e4 4907 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4908 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4909 break;
4910 }
4911}
4912
4913/**
4914 * __wake_up - wake up threads blocked on a waitqueue.
4915 * @q: the waitqueue
4916 * @mode: which threads
4917 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4918 * @key: is directly passed to the wakeup function
1da177e4 4919 */
7ad5b3a5 4920void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4921 int nr_exclusive, void *key)
1da177e4
LT
4922{
4923 unsigned long flags;
4924
4925 spin_lock_irqsave(&q->lock, flags);
4926 __wake_up_common(q, mode, nr_exclusive, 0, key);
4927 spin_unlock_irqrestore(&q->lock, flags);
4928}
1da177e4
LT
4929EXPORT_SYMBOL(__wake_up);
4930
4931/*
4932 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4933 */
7ad5b3a5 4934void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4935{
4936 __wake_up_common(q, mode, 1, 0, NULL);
4937}
4938
4939/**
67be2dd1 4940 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4941 * @q: the waitqueue
4942 * @mode: which threads
4943 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4944 *
4945 * The sync wakeup differs that the waker knows that it will schedule
4946 * away soon, so while the target thread will be woken up, it will not
4947 * be migrated to another CPU - ie. the two threads are 'synchronized'
4948 * with each other. This can prevent needless bouncing between CPUs.
4949 *
4950 * On UP it can prevent extra preemption.
4951 */
7ad5b3a5 4952void
95cdf3b7 4953__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4954{
4955 unsigned long flags;
4956 int sync = 1;
4957
4958 if (unlikely(!q))
4959 return;
4960
4961 if (unlikely(!nr_exclusive))
4962 sync = 0;
4963
4964 spin_lock_irqsave(&q->lock, flags);
4965 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4966 spin_unlock_irqrestore(&q->lock, flags);
4967}
4968EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4969
65eb3dc6
KD
4970/**
4971 * complete: - signals a single thread waiting on this completion
4972 * @x: holds the state of this particular completion
4973 *
4974 * This will wake up a single thread waiting on this completion. Threads will be
4975 * awakened in the same order in which they were queued.
4976 *
4977 * See also complete_all(), wait_for_completion() and related routines.
4978 */
b15136e9 4979void complete(struct completion *x)
1da177e4
LT
4980{
4981 unsigned long flags;
4982
4983 spin_lock_irqsave(&x->wait.lock, flags);
4984 x->done++;
d9514f6c 4985 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4986 spin_unlock_irqrestore(&x->wait.lock, flags);
4987}
4988EXPORT_SYMBOL(complete);
4989
65eb3dc6
KD
4990/**
4991 * complete_all: - signals all threads waiting on this completion
4992 * @x: holds the state of this particular completion
4993 *
4994 * This will wake up all threads waiting on this particular completion event.
4995 */
b15136e9 4996void complete_all(struct completion *x)
1da177e4
LT
4997{
4998 unsigned long flags;
4999
5000 spin_lock_irqsave(&x->wait.lock, flags);
5001 x->done += UINT_MAX/2;
d9514f6c 5002 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5003 spin_unlock_irqrestore(&x->wait.lock, flags);
5004}
5005EXPORT_SYMBOL(complete_all);
5006
8cbbe86d
AK
5007static inline long __sched
5008do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5009{
1da177e4
LT
5010 if (!x->done) {
5011 DECLARE_WAITQUEUE(wait, current);
5012
5013 wait.flags |= WQ_FLAG_EXCLUSIVE;
5014 __add_wait_queue_tail(&x->wait, &wait);
5015 do {
94d3d824 5016 if (signal_pending_state(state, current)) {
ea71a546
ON
5017 timeout = -ERESTARTSYS;
5018 break;
8cbbe86d
AK
5019 }
5020 __set_current_state(state);
1da177e4
LT
5021 spin_unlock_irq(&x->wait.lock);
5022 timeout = schedule_timeout(timeout);
5023 spin_lock_irq(&x->wait.lock);
ea71a546 5024 } while (!x->done && timeout);
1da177e4 5025 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5026 if (!x->done)
5027 return timeout;
1da177e4
LT
5028 }
5029 x->done--;
ea71a546 5030 return timeout ?: 1;
1da177e4 5031}
1da177e4 5032
8cbbe86d
AK
5033static long __sched
5034wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5035{
1da177e4
LT
5036 might_sleep();
5037
5038 spin_lock_irq(&x->wait.lock);
8cbbe86d 5039 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5040 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5041 return timeout;
5042}
1da177e4 5043
65eb3dc6
KD
5044/**
5045 * wait_for_completion: - waits for completion of a task
5046 * @x: holds the state of this particular completion
5047 *
5048 * This waits to be signaled for completion of a specific task. It is NOT
5049 * interruptible and there is no timeout.
5050 *
5051 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5052 * and interrupt capability. Also see complete().
5053 */
b15136e9 5054void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5055{
5056 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5057}
8cbbe86d 5058EXPORT_SYMBOL(wait_for_completion);
1da177e4 5059
65eb3dc6
KD
5060/**
5061 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5062 * @x: holds the state of this particular completion
5063 * @timeout: timeout value in jiffies
5064 *
5065 * This waits for either a completion of a specific task to be signaled or for a
5066 * specified timeout to expire. The timeout is in jiffies. It is not
5067 * interruptible.
5068 */
b15136e9 5069unsigned long __sched
8cbbe86d 5070wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5071{
8cbbe86d 5072 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5073}
8cbbe86d 5074EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5075
65eb3dc6
KD
5076/**
5077 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5078 * @x: holds the state of this particular completion
5079 *
5080 * This waits for completion of a specific task to be signaled. It is
5081 * interruptible.
5082 */
8cbbe86d 5083int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5084{
51e97990
AK
5085 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5086 if (t == -ERESTARTSYS)
5087 return t;
5088 return 0;
0fec171c 5089}
8cbbe86d 5090EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5091
65eb3dc6
KD
5092/**
5093 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5094 * @x: holds the state of this particular completion
5095 * @timeout: timeout value in jiffies
5096 *
5097 * This waits for either a completion of a specific task to be signaled or for a
5098 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5099 */
b15136e9 5100unsigned long __sched
8cbbe86d
AK
5101wait_for_completion_interruptible_timeout(struct completion *x,
5102 unsigned long timeout)
0fec171c 5103{
8cbbe86d 5104 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5105}
8cbbe86d 5106EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5107
65eb3dc6
KD
5108/**
5109 * wait_for_completion_killable: - waits for completion of a task (killable)
5110 * @x: holds the state of this particular completion
5111 *
5112 * This waits to be signaled for completion of a specific task. It can be
5113 * interrupted by a kill signal.
5114 */
009e577e
MW
5115int __sched wait_for_completion_killable(struct completion *x)
5116{
5117 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5118 if (t == -ERESTARTSYS)
5119 return t;
5120 return 0;
5121}
5122EXPORT_SYMBOL(wait_for_completion_killable);
5123
be4de352
DC
5124/**
5125 * try_wait_for_completion - try to decrement a completion without blocking
5126 * @x: completion structure
5127 *
5128 * Returns: 0 if a decrement cannot be done without blocking
5129 * 1 if a decrement succeeded.
5130 *
5131 * If a completion is being used as a counting completion,
5132 * attempt to decrement the counter without blocking. This
5133 * enables us to avoid waiting if the resource the completion
5134 * is protecting is not available.
5135 */
5136bool try_wait_for_completion(struct completion *x)
5137{
5138 int ret = 1;
5139
5140 spin_lock_irq(&x->wait.lock);
5141 if (!x->done)
5142 ret = 0;
5143 else
5144 x->done--;
5145 spin_unlock_irq(&x->wait.lock);
5146 return ret;
5147}
5148EXPORT_SYMBOL(try_wait_for_completion);
5149
5150/**
5151 * completion_done - Test to see if a completion has any waiters
5152 * @x: completion structure
5153 *
5154 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5155 * 1 if there are no waiters.
5156 *
5157 */
5158bool completion_done(struct completion *x)
5159{
5160 int ret = 1;
5161
5162 spin_lock_irq(&x->wait.lock);
5163 if (!x->done)
5164 ret = 0;
5165 spin_unlock_irq(&x->wait.lock);
5166 return ret;
5167}
5168EXPORT_SYMBOL(completion_done);
5169
8cbbe86d
AK
5170static long __sched
5171sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5172{
0fec171c
IM
5173 unsigned long flags;
5174 wait_queue_t wait;
5175
5176 init_waitqueue_entry(&wait, current);
1da177e4 5177
8cbbe86d 5178 __set_current_state(state);
1da177e4 5179
8cbbe86d
AK
5180 spin_lock_irqsave(&q->lock, flags);
5181 __add_wait_queue(q, &wait);
5182 spin_unlock(&q->lock);
5183 timeout = schedule_timeout(timeout);
5184 spin_lock_irq(&q->lock);
5185 __remove_wait_queue(q, &wait);
5186 spin_unlock_irqrestore(&q->lock, flags);
5187
5188 return timeout;
5189}
5190
5191void __sched interruptible_sleep_on(wait_queue_head_t *q)
5192{
5193 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5194}
1da177e4
LT
5195EXPORT_SYMBOL(interruptible_sleep_on);
5196
0fec171c 5197long __sched
95cdf3b7 5198interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5199{
8cbbe86d 5200 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5201}
1da177e4
LT
5202EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5203
0fec171c 5204void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5205{
8cbbe86d 5206 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5207}
1da177e4
LT
5208EXPORT_SYMBOL(sleep_on);
5209
0fec171c 5210long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5211{
8cbbe86d 5212 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5213}
1da177e4
LT
5214EXPORT_SYMBOL(sleep_on_timeout);
5215
b29739f9
IM
5216#ifdef CONFIG_RT_MUTEXES
5217
5218/*
5219 * rt_mutex_setprio - set the current priority of a task
5220 * @p: task
5221 * @prio: prio value (kernel-internal form)
5222 *
5223 * This function changes the 'effective' priority of a task. It does
5224 * not touch ->normal_prio like __setscheduler().
5225 *
5226 * Used by the rt_mutex code to implement priority inheritance logic.
5227 */
36c8b586 5228void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5229{
5230 unsigned long flags;
83b699ed 5231 int oldprio, on_rq, running;
70b97a7f 5232 struct rq *rq;
cb469845 5233 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5234
5235 BUG_ON(prio < 0 || prio > MAX_PRIO);
5236
5237 rq = task_rq_lock(p, &flags);
a8e504d2 5238 update_rq_clock(rq);
b29739f9 5239
d5f9f942 5240 oldprio = p->prio;
dd41f596 5241 on_rq = p->se.on_rq;
051a1d1a 5242 running = task_current(rq, p);
0e1f3483 5243 if (on_rq)
69be72c1 5244 dequeue_task(rq, p, 0);
0e1f3483
HS
5245 if (running)
5246 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5247
5248 if (rt_prio(prio))
5249 p->sched_class = &rt_sched_class;
5250 else
5251 p->sched_class = &fair_sched_class;
5252
b29739f9
IM
5253 p->prio = prio;
5254
0e1f3483
HS
5255 if (running)
5256 p->sched_class->set_curr_task(rq);
dd41f596 5257 if (on_rq) {
8159f87e 5258 enqueue_task(rq, p, 0);
cb469845
SR
5259
5260 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5261 }
5262 task_rq_unlock(rq, &flags);
5263}
5264
5265#endif
5266
36c8b586 5267void set_user_nice(struct task_struct *p, long nice)
1da177e4 5268{
dd41f596 5269 int old_prio, delta, on_rq;
1da177e4 5270 unsigned long flags;
70b97a7f 5271 struct rq *rq;
1da177e4
LT
5272
5273 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5274 return;
5275 /*
5276 * We have to be careful, if called from sys_setpriority(),
5277 * the task might be in the middle of scheduling on another CPU.
5278 */
5279 rq = task_rq_lock(p, &flags);
a8e504d2 5280 update_rq_clock(rq);
1da177e4
LT
5281 /*
5282 * The RT priorities are set via sched_setscheduler(), but we still
5283 * allow the 'normal' nice value to be set - but as expected
5284 * it wont have any effect on scheduling until the task is
dd41f596 5285 * SCHED_FIFO/SCHED_RR:
1da177e4 5286 */
e05606d3 5287 if (task_has_rt_policy(p)) {
1da177e4
LT
5288 p->static_prio = NICE_TO_PRIO(nice);
5289 goto out_unlock;
5290 }
dd41f596 5291 on_rq = p->se.on_rq;
c09595f6 5292 if (on_rq)
69be72c1 5293 dequeue_task(rq, p, 0);
1da177e4 5294
1da177e4 5295 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5296 set_load_weight(p);
b29739f9
IM
5297 old_prio = p->prio;
5298 p->prio = effective_prio(p);
5299 delta = p->prio - old_prio;
1da177e4 5300
dd41f596 5301 if (on_rq) {
8159f87e 5302 enqueue_task(rq, p, 0);
1da177e4 5303 /*
d5f9f942
AM
5304 * If the task increased its priority or is running and
5305 * lowered its priority, then reschedule its CPU:
1da177e4 5306 */
d5f9f942 5307 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5308 resched_task(rq->curr);
5309 }
5310out_unlock:
5311 task_rq_unlock(rq, &flags);
5312}
1da177e4
LT
5313EXPORT_SYMBOL(set_user_nice);
5314
e43379f1
MM
5315/*
5316 * can_nice - check if a task can reduce its nice value
5317 * @p: task
5318 * @nice: nice value
5319 */
36c8b586 5320int can_nice(const struct task_struct *p, const int nice)
e43379f1 5321{
024f4747
MM
5322 /* convert nice value [19,-20] to rlimit style value [1,40] */
5323 int nice_rlim = 20 - nice;
48f24c4d 5324
e43379f1
MM
5325 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5326 capable(CAP_SYS_NICE));
5327}
5328
1da177e4
LT
5329#ifdef __ARCH_WANT_SYS_NICE
5330
5331/*
5332 * sys_nice - change the priority of the current process.
5333 * @increment: priority increment
5334 *
5335 * sys_setpriority is a more generic, but much slower function that
5336 * does similar things.
5337 */
5add95d4 5338SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5339{
48f24c4d 5340 long nice, retval;
1da177e4
LT
5341
5342 /*
5343 * Setpriority might change our priority at the same moment.
5344 * We don't have to worry. Conceptually one call occurs first
5345 * and we have a single winner.
5346 */
e43379f1
MM
5347 if (increment < -40)
5348 increment = -40;
1da177e4
LT
5349 if (increment > 40)
5350 increment = 40;
5351
2b8f836f 5352 nice = TASK_NICE(current) + increment;
1da177e4
LT
5353 if (nice < -20)
5354 nice = -20;
5355 if (nice > 19)
5356 nice = 19;
5357
e43379f1
MM
5358 if (increment < 0 && !can_nice(current, nice))
5359 return -EPERM;
5360
1da177e4
LT
5361 retval = security_task_setnice(current, nice);
5362 if (retval)
5363 return retval;
5364
5365 set_user_nice(current, nice);
5366 return 0;
5367}
5368
5369#endif
5370
5371/**
5372 * task_prio - return the priority value of a given task.
5373 * @p: the task in question.
5374 *
5375 * This is the priority value as seen by users in /proc.
5376 * RT tasks are offset by -200. Normal tasks are centered
5377 * around 0, value goes from -16 to +15.
5378 */
36c8b586 5379int task_prio(const struct task_struct *p)
1da177e4
LT
5380{
5381 return p->prio - MAX_RT_PRIO;
5382}
5383
5384/**
5385 * task_nice - return the nice value of a given task.
5386 * @p: the task in question.
5387 */
36c8b586 5388int task_nice(const struct task_struct *p)
1da177e4
LT
5389{
5390 return TASK_NICE(p);
5391}
150d8bed 5392EXPORT_SYMBOL(task_nice);
1da177e4
LT
5393
5394/**
5395 * idle_cpu - is a given cpu idle currently?
5396 * @cpu: the processor in question.
5397 */
5398int idle_cpu(int cpu)
5399{
5400 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5401}
5402
1da177e4
LT
5403/**
5404 * idle_task - return the idle task for a given cpu.
5405 * @cpu: the processor in question.
5406 */
36c8b586 5407struct task_struct *idle_task(int cpu)
1da177e4
LT
5408{
5409 return cpu_rq(cpu)->idle;
5410}
5411
5412/**
5413 * find_process_by_pid - find a process with a matching PID value.
5414 * @pid: the pid in question.
5415 */
a9957449 5416static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5417{
228ebcbe 5418 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5419}
5420
5421/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5422static void
5423__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5424{
dd41f596 5425 BUG_ON(p->se.on_rq);
48f24c4d 5426
1da177e4 5427 p->policy = policy;
dd41f596
IM
5428 switch (p->policy) {
5429 case SCHED_NORMAL:
5430 case SCHED_BATCH:
5431 case SCHED_IDLE:
5432 p->sched_class = &fair_sched_class;
5433 break;
5434 case SCHED_FIFO:
5435 case SCHED_RR:
5436 p->sched_class = &rt_sched_class;
5437 break;
5438 }
5439
1da177e4 5440 p->rt_priority = prio;
b29739f9
IM
5441 p->normal_prio = normal_prio(p);
5442 /* we are holding p->pi_lock already */
5443 p->prio = rt_mutex_getprio(p);
2dd73a4f 5444 set_load_weight(p);
1da177e4
LT
5445}
5446
c69e8d9c
DH
5447/*
5448 * check the target process has a UID that matches the current process's
5449 */
5450static bool check_same_owner(struct task_struct *p)
5451{
5452 const struct cred *cred = current_cred(), *pcred;
5453 bool match;
5454
5455 rcu_read_lock();
5456 pcred = __task_cred(p);
5457 match = (cred->euid == pcred->euid ||
5458 cred->euid == pcred->uid);
5459 rcu_read_unlock();
5460 return match;
5461}
5462
961ccddd
RR
5463static int __sched_setscheduler(struct task_struct *p, int policy,
5464 struct sched_param *param, bool user)
1da177e4 5465{
83b699ed 5466 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5467 unsigned long flags;
cb469845 5468 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5469 struct rq *rq;
1da177e4 5470
66e5393a
SR
5471 /* may grab non-irq protected spin_locks */
5472 BUG_ON(in_interrupt());
1da177e4
LT
5473recheck:
5474 /* double check policy once rq lock held */
5475 if (policy < 0)
5476 policy = oldpolicy = p->policy;
5477 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5478 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5479 policy != SCHED_IDLE)
b0a9499c 5480 return -EINVAL;
1da177e4
LT
5481 /*
5482 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5483 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5484 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5485 */
5486 if (param->sched_priority < 0 ||
95cdf3b7 5487 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5488 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5489 return -EINVAL;
e05606d3 5490 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5491 return -EINVAL;
5492
37e4ab3f
OC
5493 /*
5494 * Allow unprivileged RT tasks to decrease priority:
5495 */
961ccddd 5496 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5497 if (rt_policy(policy)) {
8dc3e909 5498 unsigned long rlim_rtprio;
8dc3e909
ON
5499
5500 if (!lock_task_sighand(p, &flags))
5501 return -ESRCH;
5502 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5503 unlock_task_sighand(p, &flags);
5504
5505 /* can't set/change the rt policy */
5506 if (policy != p->policy && !rlim_rtprio)
5507 return -EPERM;
5508
5509 /* can't increase priority */
5510 if (param->sched_priority > p->rt_priority &&
5511 param->sched_priority > rlim_rtprio)
5512 return -EPERM;
5513 }
dd41f596
IM
5514 /*
5515 * Like positive nice levels, dont allow tasks to
5516 * move out of SCHED_IDLE either:
5517 */
5518 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5519 return -EPERM;
5fe1d75f 5520
37e4ab3f 5521 /* can't change other user's priorities */
c69e8d9c 5522 if (!check_same_owner(p))
37e4ab3f
OC
5523 return -EPERM;
5524 }
1da177e4 5525
725aad24 5526 if (user) {
b68aa230 5527#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5528 /*
5529 * Do not allow realtime tasks into groups that have no runtime
5530 * assigned.
5531 */
9a7e0b18
PZ
5532 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5533 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5534 return -EPERM;
b68aa230
PZ
5535#endif
5536
725aad24
JF
5537 retval = security_task_setscheduler(p, policy, param);
5538 if (retval)
5539 return retval;
5540 }
5541
b29739f9
IM
5542 /*
5543 * make sure no PI-waiters arrive (or leave) while we are
5544 * changing the priority of the task:
5545 */
5546 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5547 /*
5548 * To be able to change p->policy safely, the apropriate
5549 * runqueue lock must be held.
5550 */
b29739f9 5551 rq = __task_rq_lock(p);
1da177e4
LT
5552 /* recheck policy now with rq lock held */
5553 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5554 policy = oldpolicy = -1;
b29739f9
IM
5555 __task_rq_unlock(rq);
5556 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5557 goto recheck;
5558 }
2daa3577 5559 update_rq_clock(rq);
dd41f596 5560 on_rq = p->se.on_rq;
051a1d1a 5561 running = task_current(rq, p);
0e1f3483 5562 if (on_rq)
2e1cb74a 5563 deactivate_task(rq, p, 0);
0e1f3483
HS
5564 if (running)
5565 p->sched_class->put_prev_task(rq, p);
f6b53205 5566
1da177e4 5567 oldprio = p->prio;
dd41f596 5568 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5569
0e1f3483
HS
5570 if (running)
5571 p->sched_class->set_curr_task(rq);
dd41f596
IM
5572 if (on_rq) {
5573 activate_task(rq, p, 0);
cb469845
SR
5574
5575 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5576 }
b29739f9
IM
5577 __task_rq_unlock(rq);
5578 spin_unlock_irqrestore(&p->pi_lock, flags);
5579
95e02ca9
TG
5580 rt_mutex_adjust_pi(p);
5581
1da177e4
LT
5582 return 0;
5583}
961ccddd
RR
5584
5585/**
5586 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5587 * @p: the task in question.
5588 * @policy: new policy.
5589 * @param: structure containing the new RT priority.
5590 *
5591 * NOTE that the task may be already dead.
5592 */
5593int sched_setscheduler(struct task_struct *p, int policy,
5594 struct sched_param *param)
5595{
5596 return __sched_setscheduler(p, policy, param, true);
5597}
1da177e4
LT
5598EXPORT_SYMBOL_GPL(sched_setscheduler);
5599
961ccddd
RR
5600/**
5601 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5602 * @p: the task in question.
5603 * @policy: new policy.
5604 * @param: structure containing the new RT priority.
5605 *
5606 * Just like sched_setscheduler, only don't bother checking if the
5607 * current context has permission. For example, this is needed in
5608 * stop_machine(): we create temporary high priority worker threads,
5609 * but our caller might not have that capability.
5610 */
5611int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5612 struct sched_param *param)
5613{
5614 return __sched_setscheduler(p, policy, param, false);
5615}
5616
95cdf3b7
IM
5617static int
5618do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5619{
1da177e4
LT
5620 struct sched_param lparam;
5621 struct task_struct *p;
36c8b586 5622 int retval;
1da177e4
LT
5623
5624 if (!param || pid < 0)
5625 return -EINVAL;
5626 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5627 return -EFAULT;
5fe1d75f
ON
5628
5629 rcu_read_lock();
5630 retval = -ESRCH;
1da177e4 5631 p = find_process_by_pid(pid);
5fe1d75f
ON
5632 if (p != NULL)
5633 retval = sched_setscheduler(p, policy, &lparam);
5634 rcu_read_unlock();
36c8b586 5635
1da177e4
LT
5636 return retval;
5637}
5638
5639/**
5640 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5641 * @pid: the pid in question.
5642 * @policy: new policy.
5643 * @param: structure containing the new RT priority.
5644 */
5add95d4
HC
5645SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5646 struct sched_param __user *, param)
1da177e4 5647{
c21761f1
JB
5648 /* negative values for policy are not valid */
5649 if (policy < 0)
5650 return -EINVAL;
5651
1da177e4
LT
5652 return do_sched_setscheduler(pid, policy, param);
5653}
5654
5655/**
5656 * sys_sched_setparam - set/change the RT priority of a thread
5657 * @pid: the pid in question.
5658 * @param: structure containing the new RT priority.
5659 */
5add95d4 5660SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5661{
5662 return do_sched_setscheduler(pid, -1, param);
5663}
5664
5665/**
5666 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5667 * @pid: the pid in question.
5668 */
5add95d4 5669SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5670{
36c8b586 5671 struct task_struct *p;
3a5c359a 5672 int retval;
1da177e4
LT
5673
5674 if (pid < 0)
3a5c359a 5675 return -EINVAL;
1da177e4
LT
5676
5677 retval = -ESRCH;
5678 read_lock(&tasklist_lock);
5679 p = find_process_by_pid(pid);
5680 if (p) {
5681 retval = security_task_getscheduler(p);
5682 if (!retval)
5683 retval = p->policy;
5684 }
5685 read_unlock(&tasklist_lock);
1da177e4
LT
5686 return retval;
5687}
5688
5689/**
5690 * sys_sched_getscheduler - get the RT priority of a thread
5691 * @pid: the pid in question.
5692 * @param: structure containing the RT priority.
5693 */
5add95d4 5694SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5695{
5696 struct sched_param lp;
36c8b586 5697 struct task_struct *p;
3a5c359a 5698 int retval;
1da177e4
LT
5699
5700 if (!param || pid < 0)
3a5c359a 5701 return -EINVAL;
1da177e4
LT
5702
5703 read_lock(&tasklist_lock);
5704 p = find_process_by_pid(pid);
5705 retval = -ESRCH;
5706 if (!p)
5707 goto out_unlock;
5708
5709 retval = security_task_getscheduler(p);
5710 if (retval)
5711 goto out_unlock;
5712
5713 lp.sched_priority = p->rt_priority;
5714 read_unlock(&tasklist_lock);
5715
5716 /*
5717 * This one might sleep, we cannot do it with a spinlock held ...
5718 */
5719 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5720
1da177e4
LT
5721 return retval;
5722
5723out_unlock:
5724 read_unlock(&tasklist_lock);
5725 return retval;
5726}
5727
96f874e2 5728long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5729{
5a16f3d3 5730 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5731 struct task_struct *p;
5732 int retval;
1da177e4 5733
95402b38 5734 get_online_cpus();
1da177e4
LT
5735 read_lock(&tasklist_lock);
5736
5737 p = find_process_by_pid(pid);
5738 if (!p) {
5739 read_unlock(&tasklist_lock);
95402b38 5740 put_online_cpus();
1da177e4
LT
5741 return -ESRCH;
5742 }
5743
5744 /*
5745 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5746 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5747 * usage count and then drop tasklist_lock.
5748 */
5749 get_task_struct(p);
5750 read_unlock(&tasklist_lock);
5751
5a16f3d3
RR
5752 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5753 retval = -ENOMEM;
5754 goto out_put_task;
5755 }
5756 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5757 retval = -ENOMEM;
5758 goto out_free_cpus_allowed;
5759 }
1da177e4 5760 retval = -EPERM;
c69e8d9c 5761 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5762 goto out_unlock;
5763
e7834f8f
DQ
5764 retval = security_task_setscheduler(p, 0, NULL);
5765 if (retval)
5766 goto out_unlock;
5767
5a16f3d3
RR
5768 cpuset_cpus_allowed(p, cpus_allowed);
5769 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5770 again:
5a16f3d3 5771 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5772
8707d8b8 5773 if (!retval) {
5a16f3d3
RR
5774 cpuset_cpus_allowed(p, cpus_allowed);
5775 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5776 /*
5777 * We must have raced with a concurrent cpuset
5778 * update. Just reset the cpus_allowed to the
5779 * cpuset's cpus_allowed
5780 */
5a16f3d3 5781 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5782 goto again;
5783 }
5784 }
1da177e4 5785out_unlock:
5a16f3d3
RR
5786 free_cpumask_var(new_mask);
5787out_free_cpus_allowed:
5788 free_cpumask_var(cpus_allowed);
5789out_put_task:
1da177e4 5790 put_task_struct(p);
95402b38 5791 put_online_cpus();
1da177e4
LT
5792 return retval;
5793}
5794
5795static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5796 struct cpumask *new_mask)
1da177e4 5797{
96f874e2
RR
5798 if (len < cpumask_size())
5799 cpumask_clear(new_mask);
5800 else if (len > cpumask_size())
5801 len = cpumask_size();
5802
1da177e4
LT
5803 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5804}
5805
5806/**
5807 * sys_sched_setaffinity - set the cpu affinity of a process
5808 * @pid: pid of the process
5809 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5810 * @user_mask_ptr: user-space pointer to the new cpu mask
5811 */
5add95d4
HC
5812SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5813 unsigned long __user *, user_mask_ptr)
1da177e4 5814{
5a16f3d3 5815 cpumask_var_t new_mask;
1da177e4
LT
5816 int retval;
5817
5a16f3d3
RR
5818 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5819 return -ENOMEM;
1da177e4 5820
5a16f3d3
RR
5821 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5822 if (retval == 0)
5823 retval = sched_setaffinity(pid, new_mask);
5824 free_cpumask_var(new_mask);
5825 return retval;
1da177e4
LT
5826}
5827
96f874e2 5828long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5829{
36c8b586 5830 struct task_struct *p;
1da177e4 5831 int retval;
1da177e4 5832
95402b38 5833 get_online_cpus();
1da177e4
LT
5834 read_lock(&tasklist_lock);
5835
5836 retval = -ESRCH;
5837 p = find_process_by_pid(pid);
5838 if (!p)
5839 goto out_unlock;
5840
e7834f8f
DQ
5841 retval = security_task_getscheduler(p);
5842 if (retval)
5843 goto out_unlock;
5844
96f874e2 5845 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5846
5847out_unlock:
5848 read_unlock(&tasklist_lock);
95402b38 5849 put_online_cpus();
1da177e4 5850
9531b62f 5851 return retval;
1da177e4
LT
5852}
5853
5854/**
5855 * sys_sched_getaffinity - get the cpu affinity of a process
5856 * @pid: pid of the process
5857 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5858 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5859 */
5add95d4
HC
5860SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5861 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5862{
5863 int ret;
f17c8607 5864 cpumask_var_t mask;
1da177e4 5865
f17c8607 5866 if (len < cpumask_size())
1da177e4
LT
5867 return -EINVAL;
5868
f17c8607
RR
5869 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5870 return -ENOMEM;
1da177e4 5871
f17c8607
RR
5872 ret = sched_getaffinity(pid, mask);
5873 if (ret == 0) {
5874 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5875 ret = -EFAULT;
5876 else
5877 ret = cpumask_size();
5878 }
5879 free_cpumask_var(mask);
1da177e4 5880
f17c8607 5881 return ret;
1da177e4
LT
5882}
5883
5884/**
5885 * sys_sched_yield - yield the current processor to other threads.
5886 *
dd41f596
IM
5887 * This function yields the current CPU to other tasks. If there are no
5888 * other threads running on this CPU then this function will return.
1da177e4 5889 */
5add95d4 5890SYSCALL_DEFINE0(sched_yield)
1da177e4 5891{
70b97a7f 5892 struct rq *rq = this_rq_lock();
1da177e4 5893
2d72376b 5894 schedstat_inc(rq, yld_count);
4530d7ab 5895 current->sched_class->yield_task(rq);
1da177e4
LT
5896
5897 /*
5898 * Since we are going to call schedule() anyway, there's
5899 * no need to preempt or enable interrupts:
5900 */
5901 __release(rq->lock);
8a25d5de 5902 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5903 _raw_spin_unlock(&rq->lock);
5904 preempt_enable_no_resched();
5905
5906 schedule();
5907
5908 return 0;
5909}
5910
e7b38404 5911static void __cond_resched(void)
1da177e4 5912{
8e0a43d8
IM
5913#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5914 __might_sleep(__FILE__, __LINE__);
5915#endif
5bbcfd90
IM
5916 /*
5917 * The BKS might be reacquired before we have dropped
5918 * PREEMPT_ACTIVE, which could trigger a second
5919 * cond_resched() call.
5920 */
1da177e4
LT
5921 do {
5922 add_preempt_count(PREEMPT_ACTIVE);
5923 schedule();
5924 sub_preempt_count(PREEMPT_ACTIVE);
5925 } while (need_resched());
5926}
5927
02b67cc3 5928int __sched _cond_resched(void)
1da177e4 5929{
9414232f
IM
5930 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5931 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5932 __cond_resched();
5933 return 1;
5934 }
5935 return 0;
5936}
02b67cc3 5937EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5938
5939/*
5940 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5941 * call schedule, and on return reacquire the lock.
5942 *
41a2d6cf 5943 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5944 * operations here to prevent schedule() from being called twice (once via
5945 * spin_unlock(), once by hand).
5946 */
95cdf3b7 5947int cond_resched_lock(spinlock_t *lock)
1da177e4 5948{
95c354fe 5949 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5950 int ret = 0;
5951
95c354fe 5952 if (spin_needbreak(lock) || resched) {
1da177e4 5953 spin_unlock(lock);
95c354fe
NP
5954 if (resched && need_resched())
5955 __cond_resched();
5956 else
5957 cpu_relax();
6df3cecb 5958 ret = 1;
1da177e4 5959 spin_lock(lock);
1da177e4 5960 }
6df3cecb 5961 return ret;
1da177e4 5962}
1da177e4
LT
5963EXPORT_SYMBOL(cond_resched_lock);
5964
5965int __sched cond_resched_softirq(void)
5966{
5967 BUG_ON(!in_softirq());
5968
9414232f 5969 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5970 local_bh_enable();
1da177e4
LT
5971 __cond_resched();
5972 local_bh_disable();
5973 return 1;
5974 }
5975 return 0;
5976}
1da177e4
LT
5977EXPORT_SYMBOL(cond_resched_softirq);
5978
1da177e4
LT
5979/**
5980 * yield - yield the current processor to other threads.
5981 *
72fd4a35 5982 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5983 * thread runnable and calls sys_sched_yield().
5984 */
5985void __sched yield(void)
5986{
5987 set_current_state(TASK_RUNNING);
5988 sys_sched_yield();
5989}
1da177e4
LT
5990EXPORT_SYMBOL(yield);
5991
5992/*
41a2d6cf 5993 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5994 * that process accounting knows that this is a task in IO wait state.
5995 *
5996 * But don't do that if it is a deliberate, throttling IO wait (this task
5997 * has set its backing_dev_info: the queue against which it should throttle)
5998 */
5999void __sched io_schedule(void)
6000{
70b97a7f 6001 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6002
0ff92245 6003 delayacct_blkio_start();
1da177e4
LT
6004 atomic_inc(&rq->nr_iowait);
6005 schedule();
6006 atomic_dec(&rq->nr_iowait);
0ff92245 6007 delayacct_blkio_end();
1da177e4 6008}
1da177e4
LT
6009EXPORT_SYMBOL(io_schedule);
6010
6011long __sched io_schedule_timeout(long timeout)
6012{
70b97a7f 6013 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6014 long ret;
6015
0ff92245 6016 delayacct_blkio_start();
1da177e4
LT
6017 atomic_inc(&rq->nr_iowait);
6018 ret = schedule_timeout(timeout);
6019 atomic_dec(&rq->nr_iowait);
0ff92245 6020 delayacct_blkio_end();
1da177e4
LT
6021 return ret;
6022}
6023
6024/**
6025 * sys_sched_get_priority_max - return maximum RT priority.
6026 * @policy: scheduling class.
6027 *
6028 * this syscall returns the maximum rt_priority that can be used
6029 * by a given scheduling class.
6030 */
5add95d4 6031SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6032{
6033 int ret = -EINVAL;
6034
6035 switch (policy) {
6036 case SCHED_FIFO:
6037 case SCHED_RR:
6038 ret = MAX_USER_RT_PRIO-1;
6039 break;
6040 case SCHED_NORMAL:
b0a9499c 6041 case SCHED_BATCH:
dd41f596 6042 case SCHED_IDLE:
1da177e4
LT
6043 ret = 0;
6044 break;
6045 }
6046 return ret;
6047}
6048
6049/**
6050 * sys_sched_get_priority_min - return minimum RT priority.
6051 * @policy: scheduling class.
6052 *
6053 * this syscall returns the minimum rt_priority that can be used
6054 * by a given scheduling class.
6055 */
5add95d4 6056SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6057{
6058 int ret = -EINVAL;
6059
6060 switch (policy) {
6061 case SCHED_FIFO:
6062 case SCHED_RR:
6063 ret = 1;
6064 break;
6065 case SCHED_NORMAL:
b0a9499c 6066 case SCHED_BATCH:
dd41f596 6067 case SCHED_IDLE:
1da177e4
LT
6068 ret = 0;
6069 }
6070 return ret;
6071}
6072
6073/**
6074 * sys_sched_rr_get_interval - return the default timeslice of a process.
6075 * @pid: pid of the process.
6076 * @interval: userspace pointer to the timeslice value.
6077 *
6078 * this syscall writes the default timeslice value of a given process
6079 * into the user-space timespec buffer. A value of '0' means infinity.
6080 */
17da2bd9 6081SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6082 struct timespec __user *, interval)
1da177e4 6083{
36c8b586 6084 struct task_struct *p;
a4ec24b4 6085 unsigned int time_slice;
3a5c359a 6086 int retval;
1da177e4 6087 struct timespec t;
1da177e4
LT
6088
6089 if (pid < 0)
3a5c359a 6090 return -EINVAL;
1da177e4
LT
6091
6092 retval = -ESRCH;
6093 read_lock(&tasklist_lock);
6094 p = find_process_by_pid(pid);
6095 if (!p)
6096 goto out_unlock;
6097
6098 retval = security_task_getscheduler(p);
6099 if (retval)
6100 goto out_unlock;
6101
77034937
IM
6102 /*
6103 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6104 * tasks that are on an otherwise idle runqueue:
6105 */
6106 time_slice = 0;
6107 if (p->policy == SCHED_RR) {
a4ec24b4 6108 time_slice = DEF_TIMESLICE;
1868f958 6109 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6110 struct sched_entity *se = &p->se;
6111 unsigned long flags;
6112 struct rq *rq;
6113
6114 rq = task_rq_lock(p, &flags);
77034937
IM
6115 if (rq->cfs.load.weight)
6116 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6117 task_rq_unlock(rq, &flags);
6118 }
1da177e4 6119 read_unlock(&tasklist_lock);
a4ec24b4 6120 jiffies_to_timespec(time_slice, &t);
1da177e4 6121 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6122 return retval;
3a5c359a 6123
1da177e4
LT
6124out_unlock:
6125 read_unlock(&tasklist_lock);
6126 return retval;
6127}
6128
7c731e0a 6129static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6130
82a1fcb9 6131void sched_show_task(struct task_struct *p)
1da177e4 6132{
1da177e4 6133 unsigned long free = 0;
36c8b586 6134 unsigned state;
1da177e4 6135
1da177e4 6136 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6137 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6138 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6139#if BITS_PER_LONG == 32
1da177e4 6140 if (state == TASK_RUNNING)
cc4ea795 6141 printk(KERN_CONT " running ");
1da177e4 6142 else
cc4ea795 6143 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6144#else
6145 if (state == TASK_RUNNING)
cc4ea795 6146 printk(KERN_CONT " running task ");
1da177e4 6147 else
cc4ea795 6148 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6149#endif
6150#ifdef CONFIG_DEBUG_STACK_USAGE
6151 {
10ebffde 6152 unsigned long *n = end_of_stack(p);
1da177e4
LT
6153 while (!*n)
6154 n++;
10ebffde 6155 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
6156 }
6157#endif
ba25f9dc 6158 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6159 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6160
5fb5e6de 6161 show_stack(p, NULL);
1da177e4
LT
6162}
6163
e59e2ae2 6164void show_state_filter(unsigned long state_filter)
1da177e4 6165{
36c8b586 6166 struct task_struct *g, *p;
1da177e4 6167
4bd77321
IM
6168#if BITS_PER_LONG == 32
6169 printk(KERN_INFO
6170 " task PC stack pid father\n");
1da177e4 6171#else
4bd77321
IM
6172 printk(KERN_INFO
6173 " task PC stack pid father\n");
1da177e4
LT
6174#endif
6175 read_lock(&tasklist_lock);
6176 do_each_thread(g, p) {
6177 /*
6178 * reset the NMI-timeout, listing all files on a slow
6179 * console might take alot of time:
6180 */
6181 touch_nmi_watchdog();
39bc89fd 6182 if (!state_filter || (p->state & state_filter))
82a1fcb9 6183 sched_show_task(p);
1da177e4
LT
6184 } while_each_thread(g, p);
6185
04c9167f
JF
6186 touch_all_softlockup_watchdogs();
6187
dd41f596
IM
6188#ifdef CONFIG_SCHED_DEBUG
6189 sysrq_sched_debug_show();
6190#endif
1da177e4 6191 read_unlock(&tasklist_lock);
e59e2ae2
IM
6192 /*
6193 * Only show locks if all tasks are dumped:
6194 */
6195 if (state_filter == -1)
6196 debug_show_all_locks();
1da177e4
LT
6197}
6198
1df21055
IM
6199void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6200{
dd41f596 6201 idle->sched_class = &idle_sched_class;
1df21055
IM
6202}
6203
f340c0d1
IM
6204/**
6205 * init_idle - set up an idle thread for a given CPU
6206 * @idle: task in question
6207 * @cpu: cpu the idle task belongs to
6208 *
6209 * NOTE: this function does not set the idle thread's NEED_RESCHED
6210 * flag, to make booting more robust.
6211 */
5c1e1767 6212void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6213{
70b97a7f 6214 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6215 unsigned long flags;
6216
5cbd54ef
IM
6217 spin_lock_irqsave(&rq->lock, flags);
6218
dd41f596
IM
6219 __sched_fork(idle);
6220 idle->se.exec_start = sched_clock();
6221
b29739f9 6222 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6223 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6224 __set_task_cpu(idle, cpu);
1da177e4 6225
1da177e4 6226 rq->curr = rq->idle = idle;
4866cde0
NP
6227#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6228 idle->oncpu = 1;
6229#endif
1da177e4
LT
6230 spin_unlock_irqrestore(&rq->lock, flags);
6231
6232 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6233#if defined(CONFIG_PREEMPT)
6234 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6235#else
a1261f54 6236 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6237#endif
dd41f596
IM
6238 /*
6239 * The idle tasks have their own, simple scheduling class:
6240 */
6241 idle->sched_class = &idle_sched_class;
fb52607a 6242 ftrace_graph_init_task(idle);
1da177e4
LT
6243}
6244
6245/*
6246 * In a system that switches off the HZ timer nohz_cpu_mask
6247 * indicates which cpus entered this state. This is used
6248 * in the rcu update to wait only for active cpus. For system
6249 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6250 * always be CPU_BITS_NONE.
1da177e4 6251 */
6a7b3dc3 6252cpumask_var_t nohz_cpu_mask;
1da177e4 6253
19978ca6
IM
6254/*
6255 * Increase the granularity value when there are more CPUs,
6256 * because with more CPUs the 'effective latency' as visible
6257 * to users decreases. But the relationship is not linear,
6258 * so pick a second-best guess by going with the log2 of the
6259 * number of CPUs.
6260 *
6261 * This idea comes from the SD scheduler of Con Kolivas:
6262 */
6263static inline void sched_init_granularity(void)
6264{
6265 unsigned int factor = 1 + ilog2(num_online_cpus());
6266 const unsigned long limit = 200000000;
6267
6268 sysctl_sched_min_granularity *= factor;
6269 if (sysctl_sched_min_granularity > limit)
6270 sysctl_sched_min_granularity = limit;
6271
6272 sysctl_sched_latency *= factor;
6273 if (sysctl_sched_latency > limit)
6274 sysctl_sched_latency = limit;
6275
6276 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6277
6278 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6279}
6280
1da177e4
LT
6281#ifdef CONFIG_SMP
6282/*
6283 * This is how migration works:
6284 *
70b97a7f 6285 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6286 * runqueue and wake up that CPU's migration thread.
6287 * 2) we down() the locked semaphore => thread blocks.
6288 * 3) migration thread wakes up (implicitly it forces the migrated
6289 * thread off the CPU)
6290 * 4) it gets the migration request and checks whether the migrated
6291 * task is still in the wrong runqueue.
6292 * 5) if it's in the wrong runqueue then the migration thread removes
6293 * it and puts it into the right queue.
6294 * 6) migration thread up()s the semaphore.
6295 * 7) we wake up and the migration is done.
6296 */
6297
6298/*
6299 * Change a given task's CPU affinity. Migrate the thread to a
6300 * proper CPU and schedule it away if the CPU it's executing on
6301 * is removed from the allowed bitmask.
6302 *
6303 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6304 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6305 * call is not atomic; no spinlocks may be held.
6306 */
96f874e2 6307int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6308{
70b97a7f 6309 struct migration_req req;
1da177e4 6310 unsigned long flags;
70b97a7f 6311 struct rq *rq;
48f24c4d 6312 int ret = 0;
1da177e4
LT
6313
6314 rq = task_rq_lock(p, &flags);
96f874e2 6315 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6316 ret = -EINVAL;
6317 goto out;
6318 }
6319
9985b0ba 6320 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6321 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6322 ret = -EINVAL;
6323 goto out;
6324 }
6325
73fe6aae 6326 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6327 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6328 else {
96f874e2
RR
6329 cpumask_copy(&p->cpus_allowed, new_mask);
6330 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6331 }
6332
1da177e4 6333 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6334 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6335 goto out;
6336
1e5ce4f4 6337 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6338 /* Need help from migration thread: drop lock and wait. */
6339 task_rq_unlock(rq, &flags);
6340 wake_up_process(rq->migration_thread);
6341 wait_for_completion(&req.done);
6342 tlb_migrate_finish(p->mm);
6343 return 0;
6344 }
6345out:
6346 task_rq_unlock(rq, &flags);
48f24c4d 6347
1da177e4
LT
6348 return ret;
6349}
cd8ba7cd 6350EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6351
6352/*
41a2d6cf 6353 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6354 * this because either it can't run here any more (set_cpus_allowed()
6355 * away from this CPU, or CPU going down), or because we're
6356 * attempting to rebalance this task on exec (sched_exec).
6357 *
6358 * So we race with normal scheduler movements, but that's OK, as long
6359 * as the task is no longer on this CPU.
efc30814
KK
6360 *
6361 * Returns non-zero if task was successfully migrated.
1da177e4 6362 */
efc30814 6363static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6364{
70b97a7f 6365 struct rq *rq_dest, *rq_src;
dd41f596 6366 int ret = 0, on_rq;
1da177e4 6367
e761b772 6368 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6369 return ret;
1da177e4
LT
6370
6371 rq_src = cpu_rq(src_cpu);
6372 rq_dest = cpu_rq(dest_cpu);
6373
6374 double_rq_lock(rq_src, rq_dest);
6375 /* Already moved. */
6376 if (task_cpu(p) != src_cpu)
b1e38734 6377 goto done;
1da177e4 6378 /* Affinity changed (again). */
96f874e2 6379 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6380 goto fail;
1da177e4 6381
dd41f596 6382 on_rq = p->se.on_rq;
6e82a3be 6383 if (on_rq)
2e1cb74a 6384 deactivate_task(rq_src, p, 0);
6e82a3be 6385
1da177e4 6386 set_task_cpu(p, dest_cpu);
dd41f596
IM
6387 if (on_rq) {
6388 activate_task(rq_dest, p, 0);
15afe09b 6389 check_preempt_curr(rq_dest, p, 0);
1da177e4 6390 }
b1e38734 6391done:
efc30814 6392 ret = 1;
b1e38734 6393fail:
1da177e4 6394 double_rq_unlock(rq_src, rq_dest);
efc30814 6395 return ret;
1da177e4
LT
6396}
6397
6398/*
6399 * migration_thread - this is a highprio system thread that performs
6400 * thread migration by bumping thread off CPU then 'pushing' onto
6401 * another runqueue.
6402 */
95cdf3b7 6403static int migration_thread(void *data)
1da177e4 6404{
1da177e4 6405 int cpu = (long)data;
70b97a7f 6406 struct rq *rq;
1da177e4
LT
6407
6408 rq = cpu_rq(cpu);
6409 BUG_ON(rq->migration_thread != current);
6410
6411 set_current_state(TASK_INTERRUPTIBLE);
6412 while (!kthread_should_stop()) {
70b97a7f 6413 struct migration_req *req;
1da177e4 6414 struct list_head *head;
1da177e4 6415
1da177e4
LT
6416 spin_lock_irq(&rq->lock);
6417
6418 if (cpu_is_offline(cpu)) {
6419 spin_unlock_irq(&rq->lock);
6420 goto wait_to_die;
6421 }
6422
6423 if (rq->active_balance) {
6424 active_load_balance(rq, cpu);
6425 rq->active_balance = 0;
6426 }
6427
6428 head = &rq->migration_queue;
6429
6430 if (list_empty(head)) {
6431 spin_unlock_irq(&rq->lock);
6432 schedule();
6433 set_current_state(TASK_INTERRUPTIBLE);
6434 continue;
6435 }
70b97a7f 6436 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6437 list_del_init(head->next);
6438
674311d5
NP
6439 spin_unlock(&rq->lock);
6440 __migrate_task(req->task, cpu, req->dest_cpu);
6441 local_irq_enable();
1da177e4
LT
6442
6443 complete(&req->done);
6444 }
6445 __set_current_state(TASK_RUNNING);
6446 return 0;
6447
6448wait_to_die:
6449 /* Wait for kthread_stop */
6450 set_current_state(TASK_INTERRUPTIBLE);
6451 while (!kthread_should_stop()) {
6452 schedule();
6453 set_current_state(TASK_INTERRUPTIBLE);
6454 }
6455 __set_current_state(TASK_RUNNING);
6456 return 0;
6457}
6458
6459#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6460
6461static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6462{
6463 int ret;
6464
6465 local_irq_disable();
6466 ret = __migrate_task(p, src_cpu, dest_cpu);
6467 local_irq_enable();
6468 return ret;
6469}
6470
054b9108 6471/*
3a4fa0a2 6472 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6473 */
48f24c4d 6474static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6475{
70b97a7f 6476 int dest_cpu;
6ca09dfc 6477 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6478
6479again:
6480 /* Look for allowed, online CPU in same node. */
6481 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6482 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6483 goto move;
6484
6485 /* Any allowed, online CPU? */
6486 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6487 if (dest_cpu < nr_cpu_ids)
6488 goto move;
6489
6490 /* No more Mr. Nice Guy. */
6491 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6492 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6493 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6494
e76bd8d9
RR
6495 /*
6496 * Don't tell them about moving exiting tasks or
6497 * kernel threads (both mm NULL), since they never
6498 * leave kernel.
6499 */
6500 if (p->mm && printk_ratelimit()) {
6501 printk(KERN_INFO "process %d (%s) no "
6502 "longer affine to cpu%d\n",
6503 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6504 }
e76bd8d9
RR
6505 }
6506
6507move:
6508 /* It can have affinity changed while we were choosing. */
6509 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6510 goto again;
1da177e4
LT
6511}
6512
6513/*
6514 * While a dead CPU has no uninterruptible tasks queued at this point,
6515 * it might still have a nonzero ->nr_uninterruptible counter, because
6516 * for performance reasons the counter is not stricly tracking tasks to
6517 * their home CPUs. So we just add the counter to another CPU's counter,
6518 * to keep the global sum constant after CPU-down:
6519 */
70b97a7f 6520static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6521{
1e5ce4f4 6522 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6523 unsigned long flags;
6524
6525 local_irq_save(flags);
6526 double_rq_lock(rq_src, rq_dest);
6527 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6528 rq_src->nr_uninterruptible = 0;
6529 double_rq_unlock(rq_src, rq_dest);
6530 local_irq_restore(flags);
6531}
6532
6533/* Run through task list and migrate tasks from the dead cpu. */
6534static void migrate_live_tasks(int src_cpu)
6535{
48f24c4d 6536 struct task_struct *p, *t;
1da177e4 6537
f7b4cddc 6538 read_lock(&tasklist_lock);
1da177e4 6539
48f24c4d
IM
6540 do_each_thread(t, p) {
6541 if (p == current)
1da177e4
LT
6542 continue;
6543
48f24c4d
IM
6544 if (task_cpu(p) == src_cpu)
6545 move_task_off_dead_cpu(src_cpu, p);
6546 } while_each_thread(t, p);
1da177e4 6547
f7b4cddc 6548 read_unlock(&tasklist_lock);
1da177e4
LT
6549}
6550
dd41f596
IM
6551/*
6552 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6553 * It does so by boosting its priority to highest possible.
6554 * Used by CPU offline code.
1da177e4
LT
6555 */
6556void sched_idle_next(void)
6557{
48f24c4d 6558 int this_cpu = smp_processor_id();
70b97a7f 6559 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6560 struct task_struct *p = rq->idle;
6561 unsigned long flags;
6562
6563 /* cpu has to be offline */
48f24c4d 6564 BUG_ON(cpu_online(this_cpu));
1da177e4 6565
48f24c4d
IM
6566 /*
6567 * Strictly not necessary since rest of the CPUs are stopped by now
6568 * and interrupts disabled on the current cpu.
1da177e4
LT
6569 */
6570 spin_lock_irqsave(&rq->lock, flags);
6571
dd41f596 6572 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6573
94bc9a7b
DA
6574 update_rq_clock(rq);
6575 activate_task(rq, p, 0);
1da177e4
LT
6576
6577 spin_unlock_irqrestore(&rq->lock, flags);
6578}
6579
48f24c4d
IM
6580/*
6581 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6582 * offline.
6583 */
6584void idle_task_exit(void)
6585{
6586 struct mm_struct *mm = current->active_mm;
6587
6588 BUG_ON(cpu_online(smp_processor_id()));
6589
6590 if (mm != &init_mm)
6591 switch_mm(mm, &init_mm, current);
6592 mmdrop(mm);
6593}
6594
054b9108 6595/* called under rq->lock with disabled interrupts */
36c8b586 6596static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6597{
70b97a7f 6598 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6599
6600 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6601 BUG_ON(!p->exit_state);
1da177e4
LT
6602
6603 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6604 BUG_ON(p->state == TASK_DEAD);
1da177e4 6605
48f24c4d 6606 get_task_struct(p);
1da177e4
LT
6607
6608 /*
6609 * Drop lock around migration; if someone else moves it,
41a2d6cf 6610 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6611 * fine.
6612 */
f7b4cddc 6613 spin_unlock_irq(&rq->lock);
48f24c4d 6614 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6615 spin_lock_irq(&rq->lock);
1da177e4 6616
48f24c4d 6617 put_task_struct(p);
1da177e4
LT
6618}
6619
6620/* release_task() removes task from tasklist, so we won't find dead tasks. */
6621static void migrate_dead_tasks(unsigned int dead_cpu)
6622{
70b97a7f 6623 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6624 struct task_struct *next;
48f24c4d 6625
dd41f596
IM
6626 for ( ; ; ) {
6627 if (!rq->nr_running)
6628 break;
a8e504d2 6629 update_rq_clock(rq);
b67802ea 6630 next = pick_next_task(rq);
dd41f596
IM
6631 if (!next)
6632 break;
79c53799 6633 next->sched_class->put_prev_task(rq, next);
dd41f596 6634 migrate_dead(dead_cpu, next);
e692ab53 6635
1da177e4
LT
6636 }
6637}
6638#endif /* CONFIG_HOTPLUG_CPU */
6639
e692ab53
NP
6640#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6641
6642static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6643 {
6644 .procname = "sched_domain",
c57baf1e 6645 .mode = 0555,
e0361851 6646 },
38605cae 6647 {0, },
e692ab53
NP
6648};
6649
6650static struct ctl_table sd_ctl_root[] = {
e0361851 6651 {
c57baf1e 6652 .ctl_name = CTL_KERN,
e0361851 6653 .procname = "kernel",
c57baf1e 6654 .mode = 0555,
e0361851
AD
6655 .child = sd_ctl_dir,
6656 },
38605cae 6657 {0, },
e692ab53
NP
6658};
6659
6660static struct ctl_table *sd_alloc_ctl_entry(int n)
6661{
6662 struct ctl_table *entry =
5cf9f062 6663 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6664
e692ab53
NP
6665 return entry;
6666}
6667
6382bc90
MM
6668static void sd_free_ctl_entry(struct ctl_table **tablep)
6669{
cd790076 6670 struct ctl_table *entry;
6382bc90 6671
cd790076
MM
6672 /*
6673 * In the intermediate directories, both the child directory and
6674 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6675 * will always be set. In the lowest directory the names are
cd790076
MM
6676 * static strings and all have proc handlers.
6677 */
6678 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6679 if (entry->child)
6680 sd_free_ctl_entry(&entry->child);
cd790076
MM
6681 if (entry->proc_handler == NULL)
6682 kfree(entry->procname);
6683 }
6382bc90
MM
6684
6685 kfree(*tablep);
6686 *tablep = NULL;
6687}
6688
e692ab53 6689static void
e0361851 6690set_table_entry(struct ctl_table *entry,
e692ab53
NP
6691 const char *procname, void *data, int maxlen,
6692 mode_t mode, proc_handler *proc_handler)
6693{
e692ab53
NP
6694 entry->procname = procname;
6695 entry->data = data;
6696 entry->maxlen = maxlen;
6697 entry->mode = mode;
6698 entry->proc_handler = proc_handler;
6699}
6700
6701static struct ctl_table *
6702sd_alloc_ctl_domain_table(struct sched_domain *sd)
6703{
a5d8c348 6704 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6705
ad1cdc1d
MM
6706 if (table == NULL)
6707 return NULL;
6708
e0361851 6709 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6710 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6711 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6712 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6713 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6714 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6715 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6716 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6717 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6718 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6719 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6720 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6721 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6722 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6723 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6724 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6725 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6726 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6727 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6728 &sd->cache_nice_tries,
6729 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6730 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6731 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6732 set_table_entry(&table[11], "name", sd->name,
6733 CORENAME_MAX_SIZE, 0444, proc_dostring);
6734 /* &table[12] is terminator */
e692ab53
NP
6735
6736 return table;
6737}
6738
9a4e7159 6739static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6740{
6741 struct ctl_table *entry, *table;
6742 struct sched_domain *sd;
6743 int domain_num = 0, i;
6744 char buf[32];
6745
6746 for_each_domain(cpu, sd)
6747 domain_num++;
6748 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6749 if (table == NULL)
6750 return NULL;
e692ab53
NP
6751
6752 i = 0;
6753 for_each_domain(cpu, sd) {
6754 snprintf(buf, 32, "domain%d", i);
e692ab53 6755 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6756 entry->mode = 0555;
e692ab53
NP
6757 entry->child = sd_alloc_ctl_domain_table(sd);
6758 entry++;
6759 i++;
6760 }
6761 return table;
6762}
6763
6764static struct ctl_table_header *sd_sysctl_header;
6382bc90 6765static void register_sched_domain_sysctl(void)
e692ab53
NP
6766{
6767 int i, cpu_num = num_online_cpus();
6768 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6769 char buf[32];
6770
7378547f
MM
6771 WARN_ON(sd_ctl_dir[0].child);
6772 sd_ctl_dir[0].child = entry;
6773
ad1cdc1d
MM
6774 if (entry == NULL)
6775 return;
6776
97b6ea7b 6777 for_each_online_cpu(i) {
e692ab53 6778 snprintf(buf, 32, "cpu%d", i);
e692ab53 6779 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6780 entry->mode = 0555;
e692ab53 6781 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6782 entry++;
e692ab53 6783 }
7378547f
MM
6784
6785 WARN_ON(sd_sysctl_header);
e692ab53
NP
6786 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6787}
6382bc90 6788
7378547f 6789/* may be called multiple times per register */
6382bc90
MM
6790static void unregister_sched_domain_sysctl(void)
6791{
7378547f
MM
6792 if (sd_sysctl_header)
6793 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6794 sd_sysctl_header = NULL;
7378547f
MM
6795 if (sd_ctl_dir[0].child)
6796 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6797}
e692ab53 6798#else
6382bc90
MM
6799static void register_sched_domain_sysctl(void)
6800{
6801}
6802static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6803{
6804}
6805#endif
6806
1f11eb6a
GH
6807static void set_rq_online(struct rq *rq)
6808{
6809 if (!rq->online) {
6810 const struct sched_class *class;
6811
c6c4927b 6812 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6813 rq->online = 1;
6814
6815 for_each_class(class) {
6816 if (class->rq_online)
6817 class->rq_online(rq);
6818 }
6819 }
6820}
6821
6822static void set_rq_offline(struct rq *rq)
6823{
6824 if (rq->online) {
6825 const struct sched_class *class;
6826
6827 for_each_class(class) {
6828 if (class->rq_offline)
6829 class->rq_offline(rq);
6830 }
6831
c6c4927b 6832 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6833 rq->online = 0;
6834 }
6835}
6836
1da177e4
LT
6837/*
6838 * migration_call - callback that gets triggered when a CPU is added.
6839 * Here we can start up the necessary migration thread for the new CPU.
6840 */
48f24c4d
IM
6841static int __cpuinit
6842migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6843{
1da177e4 6844 struct task_struct *p;
48f24c4d 6845 int cpu = (long)hcpu;
1da177e4 6846 unsigned long flags;
70b97a7f 6847 struct rq *rq;
1da177e4
LT
6848
6849 switch (action) {
5be9361c 6850
1da177e4 6851 case CPU_UP_PREPARE:
8bb78442 6852 case CPU_UP_PREPARE_FROZEN:
dd41f596 6853 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6854 if (IS_ERR(p))
6855 return NOTIFY_BAD;
1da177e4
LT
6856 kthread_bind(p, cpu);
6857 /* Must be high prio: stop_machine expects to yield to it. */
6858 rq = task_rq_lock(p, &flags);
dd41f596 6859 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6860 task_rq_unlock(rq, &flags);
6861 cpu_rq(cpu)->migration_thread = p;
6862 break;
48f24c4d 6863
1da177e4 6864 case CPU_ONLINE:
8bb78442 6865 case CPU_ONLINE_FROZEN:
3a4fa0a2 6866 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6867 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6868
6869 /* Update our root-domain */
6870 rq = cpu_rq(cpu);
6871 spin_lock_irqsave(&rq->lock, flags);
6872 if (rq->rd) {
c6c4927b 6873 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6874
6875 set_rq_online(rq);
1f94ef59
GH
6876 }
6877 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6878 break;
48f24c4d 6879
1da177e4
LT
6880#ifdef CONFIG_HOTPLUG_CPU
6881 case CPU_UP_CANCELED:
8bb78442 6882 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6883 if (!cpu_rq(cpu)->migration_thread)
6884 break;
41a2d6cf 6885 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6886 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6887 cpumask_any(cpu_online_mask));
1da177e4
LT
6888 kthread_stop(cpu_rq(cpu)->migration_thread);
6889 cpu_rq(cpu)->migration_thread = NULL;
6890 break;
48f24c4d 6891
1da177e4 6892 case CPU_DEAD:
8bb78442 6893 case CPU_DEAD_FROZEN:
470fd646 6894 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6895 migrate_live_tasks(cpu);
6896 rq = cpu_rq(cpu);
6897 kthread_stop(rq->migration_thread);
6898 rq->migration_thread = NULL;
6899 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6900 spin_lock_irq(&rq->lock);
a8e504d2 6901 update_rq_clock(rq);
2e1cb74a 6902 deactivate_task(rq, rq->idle, 0);
1da177e4 6903 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6904 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6905 rq->idle->sched_class = &idle_sched_class;
1da177e4 6906 migrate_dead_tasks(cpu);
d2da272a 6907 spin_unlock_irq(&rq->lock);
470fd646 6908 cpuset_unlock();
1da177e4
LT
6909 migrate_nr_uninterruptible(rq);
6910 BUG_ON(rq->nr_running != 0);
6911
41a2d6cf
IM
6912 /*
6913 * No need to migrate the tasks: it was best-effort if
6914 * they didn't take sched_hotcpu_mutex. Just wake up
6915 * the requestors.
6916 */
1da177e4
LT
6917 spin_lock_irq(&rq->lock);
6918 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6919 struct migration_req *req;
6920
1da177e4 6921 req = list_entry(rq->migration_queue.next,
70b97a7f 6922 struct migration_req, list);
1da177e4 6923 list_del_init(&req->list);
9a2bd244 6924 spin_unlock_irq(&rq->lock);
1da177e4 6925 complete(&req->done);
9a2bd244 6926 spin_lock_irq(&rq->lock);
1da177e4
LT
6927 }
6928 spin_unlock_irq(&rq->lock);
6929 break;
57d885fe 6930
08f503b0
GH
6931 case CPU_DYING:
6932 case CPU_DYING_FROZEN:
57d885fe
GH
6933 /* Update our root-domain */
6934 rq = cpu_rq(cpu);
6935 spin_lock_irqsave(&rq->lock, flags);
6936 if (rq->rd) {
c6c4927b 6937 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6938 set_rq_offline(rq);
57d885fe
GH
6939 }
6940 spin_unlock_irqrestore(&rq->lock, flags);
6941 break;
1da177e4
LT
6942#endif
6943 }
6944 return NOTIFY_OK;
6945}
6946
6947/* Register at highest priority so that task migration (migrate_all_tasks)
6948 * happens before everything else.
6949 */
26c2143b 6950static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6951 .notifier_call = migration_call,
6952 .priority = 10
6953};
6954
7babe8db 6955static int __init migration_init(void)
1da177e4
LT
6956{
6957 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6958 int err;
48f24c4d
IM
6959
6960 /* Start one for the boot CPU: */
07dccf33
AM
6961 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6962 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6963 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6964 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6965
6966 return err;
1da177e4 6967}
7babe8db 6968early_initcall(migration_init);
1da177e4
LT
6969#endif
6970
6971#ifdef CONFIG_SMP
476f3534 6972
3e9830dc 6973#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6974
7c16ec58 6975static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6976 struct cpumask *groupmask)
1da177e4 6977{
4dcf6aff 6978 struct sched_group *group = sd->groups;
434d53b0 6979 char str[256];
1da177e4 6980
968ea6d8 6981 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6982 cpumask_clear(groupmask);
4dcf6aff
IM
6983
6984 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6985
6986 if (!(sd->flags & SD_LOAD_BALANCE)) {
6987 printk("does not load-balance\n");
6988 if (sd->parent)
6989 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6990 " has parent");
6991 return -1;
41c7ce9a
NP
6992 }
6993
eefd796a 6994 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6995
758b2cdc 6996 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6997 printk(KERN_ERR "ERROR: domain->span does not contain "
6998 "CPU%d\n", cpu);
6999 }
758b2cdc 7000 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7001 printk(KERN_ERR "ERROR: domain->groups does not contain"
7002 " CPU%d\n", cpu);
7003 }
1da177e4 7004
4dcf6aff 7005 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7006 do {
4dcf6aff
IM
7007 if (!group) {
7008 printk("\n");
7009 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7010 break;
7011 }
7012
4dcf6aff
IM
7013 if (!group->__cpu_power) {
7014 printk(KERN_CONT "\n");
7015 printk(KERN_ERR "ERROR: domain->cpu_power not "
7016 "set\n");
7017 break;
7018 }
1da177e4 7019
758b2cdc 7020 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7021 printk(KERN_CONT "\n");
7022 printk(KERN_ERR "ERROR: empty group\n");
7023 break;
7024 }
1da177e4 7025
758b2cdc 7026 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7027 printk(KERN_CONT "\n");
7028 printk(KERN_ERR "ERROR: repeated CPUs\n");
7029 break;
7030 }
1da177e4 7031
758b2cdc 7032 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7033
968ea6d8 7034 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 7035 printk(KERN_CONT " %s", str);
1da177e4 7036
4dcf6aff
IM
7037 group = group->next;
7038 } while (group != sd->groups);
7039 printk(KERN_CONT "\n");
1da177e4 7040
758b2cdc 7041 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7042 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7043
758b2cdc
RR
7044 if (sd->parent &&
7045 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7046 printk(KERN_ERR "ERROR: parent span is not a superset "
7047 "of domain->span\n");
7048 return 0;
7049}
1da177e4 7050
4dcf6aff
IM
7051static void sched_domain_debug(struct sched_domain *sd, int cpu)
7052{
d5dd3db1 7053 cpumask_var_t groupmask;
4dcf6aff 7054 int level = 0;
1da177e4 7055
4dcf6aff
IM
7056 if (!sd) {
7057 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7058 return;
7059 }
1da177e4 7060
4dcf6aff
IM
7061 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7062
d5dd3db1 7063 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7064 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7065 return;
7066 }
7067
4dcf6aff 7068 for (;;) {
7c16ec58 7069 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7070 break;
1da177e4
LT
7071 level++;
7072 sd = sd->parent;
33859f7f 7073 if (!sd)
4dcf6aff
IM
7074 break;
7075 }
d5dd3db1 7076 free_cpumask_var(groupmask);
1da177e4 7077}
6d6bc0ad 7078#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7079# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7080#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7081
1a20ff27 7082static int sd_degenerate(struct sched_domain *sd)
245af2c7 7083{
758b2cdc 7084 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7085 return 1;
7086
7087 /* Following flags need at least 2 groups */
7088 if (sd->flags & (SD_LOAD_BALANCE |
7089 SD_BALANCE_NEWIDLE |
7090 SD_BALANCE_FORK |
89c4710e
SS
7091 SD_BALANCE_EXEC |
7092 SD_SHARE_CPUPOWER |
7093 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7094 if (sd->groups != sd->groups->next)
7095 return 0;
7096 }
7097
7098 /* Following flags don't use groups */
7099 if (sd->flags & (SD_WAKE_IDLE |
7100 SD_WAKE_AFFINE |
7101 SD_WAKE_BALANCE))
7102 return 0;
7103
7104 return 1;
7105}
7106
48f24c4d
IM
7107static int
7108sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7109{
7110 unsigned long cflags = sd->flags, pflags = parent->flags;
7111
7112 if (sd_degenerate(parent))
7113 return 1;
7114
758b2cdc 7115 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7116 return 0;
7117
7118 /* Does parent contain flags not in child? */
7119 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7120 if (cflags & SD_WAKE_AFFINE)
7121 pflags &= ~SD_WAKE_BALANCE;
7122 /* Flags needing groups don't count if only 1 group in parent */
7123 if (parent->groups == parent->groups->next) {
7124 pflags &= ~(SD_LOAD_BALANCE |
7125 SD_BALANCE_NEWIDLE |
7126 SD_BALANCE_FORK |
89c4710e
SS
7127 SD_BALANCE_EXEC |
7128 SD_SHARE_CPUPOWER |
7129 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7130 if (nr_node_ids == 1)
7131 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7132 }
7133 if (~cflags & pflags)
7134 return 0;
7135
7136 return 1;
7137}
7138
c6c4927b
RR
7139static void free_rootdomain(struct root_domain *rd)
7140{
68e74568
RR
7141 cpupri_cleanup(&rd->cpupri);
7142
c6c4927b
RR
7143 free_cpumask_var(rd->rto_mask);
7144 free_cpumask_var(rd->online);
7145 free_cpumask_var(rd->span);
7146 kfree(rd);
7147}
7148
57d885fe
GH
7149static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7150{
a0490fa3 7151 struct root_domain *old_rd = NULL;
57d885fe 7152 unsigned long flags;
57d885fe
GH
7153
7154 spin_lock_irqsave(&rq->lock, flags);
7155
7156 if (rq->rd) {
a0490fa3 7157 old_rd = rq->rd;
57d885fe 7158
c6c4927b 7159 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7160 set_rq_offline(rq);
57d885fe 7161
c6c4927b 7162 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7163
a0490fa3
IM
7164 /*
7165 * If we dont want to free the old_rt yet then
7166 * set old_rd to NULL to skip the freeing later
7167 * in this function:
7168 */
7169 if (!atomic_dec_and_test(&old_rd->refcount))
7170 old_rd = NULL;
57d885fe
GH
7171 }
7172
7173 atomic_inc(&rd->refcount);
7174 rq->rd = rd;
7175
c6c4927b
RR
7176 cpumask_set_cpu(rq->cpu, rd->span);
7177 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7178 set_rq_online(rq);
57d885fe
GH
7179
7180 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7181
7182 if (old_rd)
7183 free_rootdomain(old_rd);
57d885fe
GH
7184}
7185
db2f59c8 7186static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7187{
7188 memset(rd, 0, sizeof(*rd));
7189
c6c4927b
RR
7190 if (bootmem) {
7191 alloc_bootmem_cpumask_var(&def_root_domain.span);
7192 alloc_bootmem_cpumask_var(&def_root_domain.online);
7193 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7194 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7195 return 0;
7196 }
7197
7198 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7199 goto out;
c6c4927b
RR
7200 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7201 goto free_span;
7202 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7203 goto free_online;
6e0534f2 7204
68e74568
RR
7205 if (cpupri_init(&rd->cpupri, false) != 0)
7206 goto free_rto_mask;
c6c4927b 7207 return 0;
6e0534f2 7208
68e74568
RR
7209free_rto_mask:
7210 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7211free_online:
7212 free_cpumask_var(rd->online);
7213free_span:
7214 free_cpumask_var(rd->span);
0c910d28 7215out:
c6c4927b 7216 return -ENOMEM;
57d885fe
GH
7217}
7218
7219static void init_defrootdomain(void)
7220{
c6c4927b
RR
7221 init_rootdomain(&def_root_domain, true);
7222
57d885fe
GH
7223 atomic_set(&def_root_domain.refcount, 1);
7224}
7225
dc938520 7226static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7227{
7228 struct root_domain *rd;
7229
7230 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7231 if (!rd)
7232 return NULL;
7233
c6c4927b
RR
7234 if (init_rootdomain(rd, false) != 0) {
7235 kfree(rd);
7236 return NULL;
7237 }
57d885fe
GH
7238
7239 return rd;
7240}
7241
1da177e4 7242/*
0eab9146 7243 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7244 * hold the hotplug lock.
7245 */
0eab9146
IM
7246static void
7247cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7248{
70b97a7f 7249 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7250 struct sched_domain *tmp;
7251
7252 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7253 for (tmp = sd; tmp; ) {
245af2c7
SS
7254 struct sched_domain *parent = tmp->parent;
7255 if (!parent)
7256 break;
f29c9b1c 7257
1a848870 7258 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7259 tmp->parent = parent->parent;
1a848870
SS
7260 if (parent->parent)
7261 parent->parent->child = tmp;
f29c9b1c
LZ
7262 } else
7263 tmp = tmp->parent;
245af2c7
SS
7264 }
7265
1a848870 7266 if (sd && sd_degenerate(sd)) {
245af2c7 7267 sd = sd->parent;
1a848870
SS
7268 if (sd)
7269 sd->child = NULL;
7270 }
1da177e4
LT
7271
7272 sched_domain_debug(sd, cpu);
7273
57d885fe 7274 rq_attach_root(rq, rd);
674311d5 7275 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7276}
7277
7278/* cpus with isolated domains */
dcc30a35 7279static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7280
7281/* Setup the mask of cpus configured for isolated domains */
7282static int __init isolated_cpu_setup(char *str)
7283{
968ea6d8 7284 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7285 return 1;
7286}
7287
8927f494 7288__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7289
7290/*
6711cab4
SS
7291 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7292 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7293 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7294 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7295 *
7296 * init_sched_build_groups will build a circular linked list of the groups
7297 * covered by the given span, and will set each group's ->cpumask correctly,
7298 * and ->cpu_power to 0.
7299 */
a616058b 7300static void
96f874e2
RR
7301init_sched_build_groups(const struct cpumask *span,
7302 const struct cpumask *cpu_map,
7303 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7304 struct sched_group **sg,
96f874e2
RR
7305 struct cpumask *tmpmask),
7306 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7307{
7308 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7309 int i;
7310
96f874e2 7311 cpumask_clear(covered);
7c16ec58 7312
abcd083a 7313 for_each_cpu(i, span) {
6711cab4 7314 struct sched_group *sg;
7c16ec58 7315 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7316 int j;
7317
758b2cdc 7318 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7319 continue;
7320
758b2cdc 7321 cpumask_clear(sched_group_cpus(sg));
5517d86b 7322 sg->__cpu_power = 0;
1da177e4 7323
abcd083a 7324 for_each_cpu(j, span) {
7c16ec58 7325 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7326 continue;
7327
96f874e2 7328 cpumask_set_cpu(j, covered);
758b2cdc 7329 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7330 }
7331 if (!first)
7332 first = sg;
7333 if (last)
7334 last->next = sg;
7335 last = sg;
7336 }
7337 last->next = first;
7338}
7339
9c1cfda2 7340#define SD_NODES_PER_DOMAIN 16
1da177e4 7341
9c1cfda2 7342#ifdef CONFIG_NUMA
198e2f18 7343
9c1cfda2
JH
7344/**
7345 * find_next_best_node - find the next node to include in a sched_domain
7346 * @node: node whose sched_domain we're building
7347 * @used_nodes: nodes already in the sched_domain
7348 *
41a2d6cf 7349 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7350 * finds the closest node not already in the @used_nodes map.
7351 *
7352 * Should use nodemask_t.
7353 */
c5f59f08 7354static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7355{
7356 int i, n, val, min_val, best_node = 0;
7357
7358 min_val = INT_MAX;
7359
076ac2af 7360 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7361 /* Start at @node */
076ac2af 7362 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7363
7364 if (!nr_cpus_node(n))
7365 continue;
7366
7367 /* Skip already used nodes */
c5f59f08 7368 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7369 continue;
7370
7371 /* Simple min distance search */
7372 val = node_distance(node, n);
7373
7374 if (val < min_val) {
7375 min_val = val;
7376 best_node = n;
7377 }
7378 }
7379
c5f59f08 7380 node_set(best_node, *used_nodes);
9c1cfda2
JH
7381 return best_node;
7382}
7383
7384/**
7385 * sched_domain_node_span - get a cpumask for a node's sched_domain
7386 * @node: node whose cpumask we're constructing
73486722 7387 * @span: resulting cpumask
9c1cfda2 7388 *
41a2d6cf 7389 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7390 * should be one that prevents unnecessary balancing, but also spreads tasks
7391 * out optimally.
7392 */
96f874e2 7393static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7394{
c5f59f08 7395 nodemask_t used_nodes;
48f24c4d 7396 int i;
9c1cfda2 7397
6ca09dfc 7398 cpumask_clear(span);
c5f59f08 7399 nodes_clear(used_nodes);
9c1cfda2 7400
6ca09dfc 7401 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7402 node_set(node, used_nodes);
9c1cfda2
JH
7403
7404 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7405 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7406
6ca09dfc 7407 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7408 }
9c1cfda2 7409}
6d6bc0ad 7410#endif /* CONFIG_NUMA */
9c1cfda2 7411
5c45bf27 7412int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7413
6c99e9ad
RR
7414/*
7415 * The cpus mask in sched_group and sched_domain hangs off the end.
7416 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7417 * for nr_cpu_ids < CONFIG_NR_CPUS.
7418 */
7419struct static_sched_group {
7420 struct sched_group sg;
7421 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7422};
7423
7424struct static_sched_domain {
7425 struct sched_domain sd;
7426 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7427};
7428
9c1cfda2 7429/*
48f24c4d 7430 * SMT sched-domains:
9c1cfda2 7431 */
1da177e4 7432#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7433static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7434static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7435
41a2d6cf 7436static int
96f874e2
RR
7437cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7438 struct sched_group **sg, struct cpumask *unused)
1da177e4 7439{
6711cab4 7440 if (sg)
6c99e9ad 7441 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7442 return cpu;
7443}
6d6bc0ad 7444#endif /* CONFIG_SCHED_SMT */
1da177e4 7445
48f24c4d
IM
7446/*
7447 * multi-core sched-domains:
7448 */
1e9f28fa 7449#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7450static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7451static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7452#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7453
7454#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7455static int
96f874e2
RR
7456cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7457 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7458{
6711cab4 7459 int group;
7c16ec58 7460
96f874e2
RR
7461 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7462 group = cpumask_first(mask);
6711cab4 7463 if (sg)
6c99e9ad 7464 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7465 return group;
1e9f28fa
SS
7466}
7467#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7468static int
96f874e2
RR
7469cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7470 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7471{
6711cab4 7472 if (sg)
6c99e9ad 7473 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7474 return cpu;
7475}
7476#endif
7477
6c99e9ad
RR
7478static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7479static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7480
41a2d6cf 7481static int
96f874e2
RR
7482cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7483 struct sched_group **sg, struct cpumask *mask)
1da177e4 7484{
6711cab4 7485 int group;
48f24c4d 7486#ifdef CONFIG_SCHED_MC
6ca09dfc 7487 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7488 group = cpumask_first(mask);
1e9f28fa 7489#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7490 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7491 group = cpumask_first(mask);
1da177e4 7492#else
6711cab4 7493 group = cpu;
1da177e4 7494#endif
6711cab4 7495 if (sg)
6c99e9ad 7496 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7497 return group;
1da177e4
LT
7498}
7499
7500#ifdef CONFIG_NUMA
1da177e4 7501/*
9c1cfda2
JH
7502 * The init_sched_build_groups can't handle what we want to do with node
7503 * groups, so roll our own. Now each node has its own list of groups which
7504 * gets dynamically allocated.
1da177e4 7505 */
62ea9ceb 7506static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7507static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7508
62ea9ceb 7509static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7510static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7511
96f874e2
RR
7512static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7513 struct sched_group **sg,
7514 struct cpumask *nodemask)
9c1cfda2 7515{
6711cab4
SS
7516 int group;
7517
6ca09dfc 7518 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7519 group = cpumask_first(nodemask);
6711cab4
SS
7520
7521 if (sg)
6c99e9ad 7522 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7523 return group;
1da177e4 7524}
6711cab4 7525
08069033
SS
7526static void init_numa_sched_groups_power(struct sched_group *group_head)
7527{
7528 struct sched_group *sg = group_head;
7529 int j;
7530
7531 if (!sg)
7532 return;
3a5c359a 7533 do {
758b2cdc 7534 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7535 struct sched_domain *sd;
08069033 7536
6c99e9ad 7537 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7538 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7539 /*
7540 * Only add "power" once for each
7541 * physical package.
7542 */
7543 continue;
7544 }
08069033 7545
3a5c359a
AK
7546 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7547 }
7548 sg = sg->next;
7549 } while (sg != group_head);
08069033 7550}
6d6bc0ad 7551#endif /* CONFIG_NUMA */
1da177e4 7552
a616058b 7553#ifdef CONFIG_NUMA
51888ca2 7554/* Free memory allocated for various sched_group structures */
96f874e2
RR
7555static void free_sched_groups(const struct cpumask *cpu_map,
7556 struct cpumask *nodemask)
51888ca2 7557{
a616058b 7558 int cpu, i;
51888ca2 7559
abcd083a 7560 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7561 struct sched_group **sched_group_nodes
7562 = sched_group_nodes_bycpu[cpu];
7563
51888ca2
SV
7564 if (!sched_group_nodes)
7565 continue;
7566
076ac2af 7567 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7568 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7569
6ca09dfc 7570 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7571 if (cpumask_empty(nodemask))
51888ca2
SV
7572 continue;
7573
7574 if (sg == NULL)
7575 continue;
7576 sg = sg->next;
7577next_sg:
7578 oldsg = sg;
7579 sg = sg->next;
7580 kfree(oldsg);
7581 if (oldsg != sched_group_nodes[i])
7582 goto next_sg;
7583 }
7584 kfree(sched_group_nodes);
7585 sched_group_nodes_bycpu[cpu] = NULL;
7586 }
51888ca2 7587}
6d6bc0ad 7588#else /* !CONFIG_NUMA */
96f874e2
RR
7589static void free_sched_groups(const struct cpumask *cpu_map,
7590 struct cpumask *nodemask)
a616058b
SS
7591{
7592}
6d6bc0ad 7593#endif /* CONFIG_NUMA */
51888ca2 7594
89c4710e
SS
7595/*
7596 * Initialize sched groups cpu_power.
7597 *
7598 * cpu_power indicates the capacity of sched group, which is used while
7599 * distributing the load between different sched groups in a sched domain.
7600 * Typically cpu_power for all the groups in a sched domain will be same unless
7601 * there are asymmetries in the topology. If there are asymmetries, group
7602 * having more cpu_power will pickup more load compared to the group having
7603 * less cpu_power.
7604 *
7605 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7606 * the maximum number of tasks a group can handle in the presence of other idle
7607 * or lightly loaded groups in the same sched domain.
7608 */
7609static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7610{
7611 struct sched_domain *child;
7612 struct sched_group *group;
7613
7614 WARN_ON(!sd || !sd->groups);
7615
758b2cdc 7616 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7617 return;
7618
7619 child = sd->child;
7620
5517d86b
ED
7621 sd->groups->__cpu_power = 0;
7622
89c4710e
SS
7623 /*
7624 * For perf policy, if the groups in child domain share resources
7625 * (for example cores sharing some portions of the cache hierarchy
7626 * or SMT), then set this domain groups cpu_power such that each group
7627 * can handle only one task, when there are other idle groups in the
7628 * same sched domain.
7629 */
7630 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7631 (child->flags &
7632 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7633 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7634 return;
7635 }
7636
89c4710e
SS
7637 /*
7638 * add cpu_power of each child group to this groups cpu_power
7639 */
7640 group = child->groups;
7641 do {
5517d86b 7642 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7643 group = group->next;
7644 } while (group != child->groups);
7645}
7646
7c16ec58
MT
7647/*
7648 * Initializers for schedule domains
7649 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7650 */
7651
a5d8c348
IM
7652#ifdef CONFIG_SCHED_DEBUG
7653# define SD_INIT_NAME(sd, type) sd->name = #type
7654#else
7655# define SD_INIT_NAME(sd, type) do { } while (0)
7656#endif
7657
7c16ec58 7658#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7659
7c16ec58
MT
7660#define SD_INIT_FUNC(type) \
7661static noinline void sd_init_##type(struct sched_domain *sd) \
7662{ \
7663 memset(sd, 0, sizeof(*sd)); \
7664 *sd = SD_##type##_INIT; \
1d3504fc 7665 sd->level = SD_LV_##type; \
a5d8c348 7666 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7667}
7668
7669SD_INIT_FUNC(CPU)
7670#ifdef CONFIG_NUMA
7671 SD_INIT_FUNC(ALLNODES)
7672 SD_INIT_FUNC(NODE)
7673#endif
7674#ifdef CONFIG_SCHED_SMT
7675 SD_INIT_FUNC(SIBLING)
7676#endif
7677#ifdef CONFIG_SCHED_MC
7678 SD_INIT_FUNC(MC)
7679#endif
7680
1d3504fc
HS
7681static int default_relax_domain_level = -1;
7682
7683static int __init setup_relax_domain_level(char *str)
7684{
30e0e178
LZ
7685 unsigned long val;
7686
7687 val = simple_strtoul(str, NULL, 0);
7688 if (val < SD_LV_MAX)
7689 default_relax_domain_level = val;
7690
1d3504fc
HS
7691 return 1;
7692}
7693__setup("relax_domain_level=", setup_relax_domain_level);
7694
7695static void set_domain_attribute(struct sched_domain *sd,
7696 struct sched_domain_attr *attr)
7697{
7698 int request;
7699
7700 if (!attr || attr->relax_domain_level < 0) {
7701 if (default_relax_domain_level < 0)
7702 return;
7703 else
7704 request = default_relax_domain_level;
7705 } else
7706 request = attr->relax_domain_level;
7707 if (request < sd->level) {
7708 /* turn off idle balance on this domain */
7709 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7710 } else {
7711 /* turn on idle balance on this domain */
7712 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7713 }
7714}
7715
1da177e4 7716/*
1a20ff27
DG
7717 * Build sched domains for a given set of cpus and attach the sched domains
7718 * to the individual cpus
1da177e4 7719 */
96f874e2 7720static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7721 struct sched_domain_attr *attr)
1da177e4 7722{
3404c8d9 7723 int i, err = -ENOMEM;
57d885fe 7724 struct root_domain *rd;
3404c8d9
RR
7725 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7726 tmpmask;
d1b55138 7727#ifdef CONFIG_NUMA
3404c8d9 7728 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7729 struct sched_group **sched_group_nodes = NULL;
6711cab4 7730 int sd_allnodes = 0;
d1b55138 7731
3404c8d9
RR
7732 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7733 goto out;
7734 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7735 goto free_domainspan;
7736 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7737 goto free_covered;
7738#endif
7739
7740 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7741 goto free_notcovered;
7742 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7743 goto free_nodemask;
7744 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7745 goto free_this_sibling_map;
7746 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7747 goto free_this_core_map;
7748 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7749 goto free_send_covered;
7750
7751#ifdef CONFIG_NUMA
d1b55138
JH
7752 /*
7753 * Allocate the per-node list of sched groups
7754 */
076ac2af 7755 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7756 GFP_KERNEL);
d1b55138
JH
7757 if (!sched_group_nodes) {
7758 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7759 goto free_tmpmask;
d1b55138 7760 }
d1b55138 7761#endif
1da177e4 7762
dc938520 7763 rd = alloc_rootdomain();
57d885fe
GH
7764 if (!rd) {
7765 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7766 goto free_sched_groups;
57d885fe
GH
7767 }
7768
7c16ec58 7769#ifdef CONFIG_NUMA
96f874e2 7770 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7771#endif
7772
1da177e4 7773 /*
1a20ff27 7774 * Set up domains for cpus specified by the cpu_map.
1da177e4 7775 */
abcd083a 7776 for_each_cpu(i, cpu_map) {
1da177e4 7777 struct sched_domain *sd = NULL, *p;
1da177e4 7778
6ca09dfc 7779 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7780
7781#ifdef CONFIG_NUMA
96f874e2
RR
7782 if (cpumask_weight(cpu_map) >
7783 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7784 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7785 SD_INIT(sd, ALLNODES);
1d3504fc 7786 set_domain_attribute(sd, attr);
758b2cdc 7787 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7788 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7789 p = sd;
6711cab4 7790 sd_allnodes = 1;
9c1cfda2
JH
7791 } else
7792 p = NULL;
7793
62ea9ceb 7794 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7795 SD_INIT(sd, NODE);
1d3504fc 7796 set_domain_attribute(sd, attr);
758b2cdc 7797 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7798 sd->parent = p;
1a848870
SS
7799 if (p)
7800 p->child = sd;
758b2cdc
RR
7801 cpumask_and(sched_domain_span(sd),
7802 sched_domain_span(sd), cpu_map);
1da177e4
LT
7803#endif
7804
7805 p = sd;
6c99e9ad 7806 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7807 SD_INIT(sd, CPU);
1d3504fc 7808 set_domain_attribute(sd, attr);
758b2cdc 7809 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7810 sd->parent = p;
1a848870
SS
7811 if (p)
7812 p->child = sd;
7c16ec58 7813 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7814
1e9f28fa
SS
7815#ifdef CONFIG_SCHED_MC
7816 p = sd;
6c99e9ad 7817 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7818 SD_INIT(sd, MC);
1d3504fc 7819 set_domain_attribute(sd, attr);
6ca09dfc
MT
7820 cpumask_and(sched_domain_span(sd), cpu_map,
7821 cpu_coregroup_mask(i));
1e9f28fa 7822 sd->parent = p;
1a848870 7823 p->child = sd;
7c16ec58 7824 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7825#endif
7826
1da177e4
LT
7827#ifdef CONFIG_SCHED_SMT
7828 p = sd;
6c99e9ad 7829 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7830 SD_INIT(sd, SIBLING);
1d3504fc 7831 set_domain_attribute(sd, attr);
758b2cdc
RR
7832 cpumask_and(sched_domain_span(sd),
7833 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7834 sd->parent = p;
1a848870 7835 p->child = sd;
7c16ec58 7836 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7837#endif
7838 }
7839
7840#ifdef CONFIG_SCHED_SMT
7841 /* Set up CPU (sibling) groups */
abcd083a 7842 for_each_cpu(i, cpu_map) {
96f874e2
RR
7843 cpumask_and(this_sibling_map,
7844 &per_cpu(cpu_sibling_map, i), cpu_map);
7845 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7846 continue;
7847
dd41f596 7848 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7849 &cpu_to_cpu_group,
7850 send_covered, tmpmask);
1da177e4
LT
7851 }
7852#endif
7853
1e9f28fa
SS
7854#ifdef CONFIG_SCHED_MC
7855 /* Set up multi-core groups */
abcd083a 7856 for_each_cpu(i, cpu_map) {
6ca09dfc 7857 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7858 if (i != cpumask_first(this_core_map))
1e9f28fa 7859 continue;
7c16ec58 7860
dd41f596 7861 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7862 &cpu_to_core_group,
7863 send_covered, tmpmask);
1e9f28fa
SS
7864 }
7865#endif
7866
1da177e4 7867 /* Set up physical groups */
076ac2af 7868 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7869 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7870 if (cpumask_empty(nodemask))
1da177e4
LT
7871 continue;
7872
7c16ec58
MT
7873 init_sched_build_groups(nodemask, cpu_map,
7874 &cpu_to_phys_group,
7875 send_covered, tmpmask);
1da177e4
LT
7876 }
7877
7878#ifdef CONFIG_NUMA
7879 /* Set up node groups */
7c16ec58 7880 if (sd_allnodes) {
7c16ec58
MT
7881 init_sched_build_groups(cpu_map, cpu_map,
7882 &cpu_to_allnodes_group,
7883 send_covered, tmpmask);
7884 }
9c1cfda2 7885
076ac2af 7886 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7887 /* Set up node groups */
7888 struct sched_group *sg, *prev;
9c1cfda2
JH
7889 int j;
7890
96f874e2 7891 cpumask_clear(covered);
6ca09dfc 7892 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7893 if (cpumask_empty(nodemask)) {
d1b55138 7894 sched_group_nodes[i] = NULL;
9c1cfda2 7895 continue;
d1b55138 7896 }
9c1cfda2 7897
4bdbaad3 7898 sched_domain_node_span(i, domainspan);
96f874e2 7899 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7900
6c99e9ad
RR
7901 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7902 GFP_KERNEL, i);
51888ca2
SV
7903 if (!sg) {
7904 printk(KERN_WARNING "Can not alloc domain group for "
7905 "node %d\n", i);
7906 goto error;
7907 }
9c1cfda2 7908 sched_group_nodes[i] = sg;
abcd083a 7909 for_each_cpu(j, nodemask) {
9c1cfda2 7910 struct sched_domain *sd;
9761eea8 7911
62ea9ceb 7912 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 7913 sd->groups = sg;
9c1cfda2 7914 }
5517d86b 7915 sg->__cpu_power = 0;
758b2cdc 7916 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7917 sg->next = sg;
96f874e2 7918 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7919 prev = sg;
7920
076ac2af 7921 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7922 int n = (i + j) % nr_node_ids;
9c1cfda2 7923
96f874e2
RR
7924 cpumask_complement(notcovered, covered);
7925 cpumask_and(tmpmask, notcovered, cpu_map);
7926 cpumask_and(tmpmask, tmpmask, domainspan);
7927 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7928 break;
7929
6ca09dfc 7930 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 7931 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7932 continue;
7933
6c99e9ad
RR
7934 sg = kmalloc_node(sizeof(struct sched_group) +
7935 cpumask_size(),
15f0b676 7936 GFP_KERNEL, i);
9c1cfda2
JH
7937 if (!sg) {
7938 printk(KERN_WARNING
7939 "Can not alloc domain group for node %d\n", j);
51888ca2 7940 goto error;
9c1cfda2 7941 }
5517d86b 7942 sg->__cpu_power = 0;
758b2cdc 7943 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7944 sg->next = prev->next;
96f874e2 7945 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7946 prev->next = sg;
7947 prev = sg;
7948 }
9c1cfda2 7949 }
1da177e4
LT
7950#endif
7951
7952 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7953#ifdef CONFIG_SCHED_SMT
abcd083a 7954 for_each_cpu(i, cpu_map) {
6c99e9ad 7955 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7956
89c4710e 7957 init_sched_groups_power(i, sd);
5c45bf27 7958 }
1da177e4 7959#endif
1e9f28fa 7960#ifdef CONFIG_SCHED_MC
abcd083a 7961 for_each_cpu(i, cpu_map) {
6c99e9ad 7962 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7963
89c4710e 7964 init_sched_groups_power(i, sd);
5c45bf27
SS
7965 }
7966#endif
1e9f28fa 7967
abcd083a 7968 for_each_cpu(i, cpu_map) {
6c99e9ad 7969 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7970
89c4710e 7971 init_sched_groups_power(i, sd);
1da177e4
LT
7972 }
7973
9c1cfda2 7974#ifdef CONFIG_NUMA
076ac2af 7975 for (i = 0; i < nr_node_ids; i++)
08069033 7976 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7977
6711cab4
SS
7978 if (sd_allnodes) {
7979 struct sched_group *sg;
f712c0c7 7980
96f874e2 7981 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7982 tmpmask);
f712c0c7
SS
7983 init_numa_sched_groups_power(sg);
7984 }
9c1cfda2
JH
7985#endif
7986
1da177e4 7987 /* Attach the domains */
abcd083a 7988 for_each_cpu(i, cpu_map) {
1da177e4
LT
7989 struct sched_domain *sd;
7990#ifdef CONFIG_SCHED_SMT
6c99e9ad 7991 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7992#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7993 sd = &per_cpu(core_domains, i).sd;
1da177e4 7994#else
6c99e9ad 7995 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7996#endif
57d885fe 7997 cpu_attach_domain(sd, rd, i);
1da177e4 7998 }
51888ca2 7999
3404c8d9
RR
8000 err = 0;
8001
8002free_tmpmask:
8003 free_cpumask_var(tmpmask);
8004free_send_covered:
8005 free_cpumask_var(send_covered);
8006free_this_core_map:
8007 free_cpumask_var(this_core_map);
8008free_this_sibling_map:
8009 free_cpumask_var(this_sibling_map);
8010free_nodemask:
8011 free_cpumask_var(nodemask);
8012free_notcovered:
8013#ifdef CONFIG_NUMA
8014 free_cpumask_var(notcovered);
8015free_covered:
8016 free_cpumask_var(covered);
8017free_domainspan:
8018 free_cpumask_var(domainspan);
8019out:
8020#endif
8021 return err;
8022
8023free_sched_groups:
8024#ifdef CONFIG_NUMA
8025 kfree(sched_group_nodes);
8026#endif
8027 goto free_tmpmask;
51888ca2 8028
a616058b 8029#ifdef CONFIG_NUMA
51888ca2 8030error:
7c16ec58 8031 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8032 free_rootdomain(rd);
3404c8d9 8033 goto free_tmpmask;
a616058b 8034#endif
1da177e4 8035}
029190c5 8036
96f874e2 8037static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8038{
8039 return __build_sched_domains(cpu_map, NULL);
8040}
8041
96f874e2 8042static struct cpumask *doms_cur; /* current sched domains */
029190c5 8043static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8044static struct sched_domain_attr *dattr_cur;
8045 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8046
8047/*
8048 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8049 * cpumask) fails, then fallback to a single sched domain,
8050 * as determined by the single cpumask fallback_doms.
029190c5 8051 */
4212823f 8052static cpumask_var_t fallback_doms;
029190c5 8053
ee79d1bd
HC
8054/*
8055 * arch_update_cpu_topology lets virtualized architectures update the
8056 * cpu core maps. It is supposed to return 1 if the topology changed
8057 * or 0 if it stayed the same.
8058 */
8059int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8060{
ee79d1bd 8061 return 0;
22e52b07
HC
8062}
8063
1a20ff27 8064/*
41a2d6cf 8065 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8066 * For now this just excludes isolated cpus, but could be used to
8067 * exclude other special cases in the future.
1a20ff27 8068 */
96f874e2 8069static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8070{
7378547f
MM
8071 int err;
8072
22e52b07 8073 arch_update_cpu_topology();
029190c5 8074 ndoms_cur = 1;
96f874e2 8075 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8076 if (!doms_cur)
4212823f 8077 doms_cur = fallback_doms;
dcc30a35 8078 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8079 dattr_cur = NULL;
7378547f 8080 err = build_sched_domains(doms_cur);
6382bc90 8081 register_sched_domain_sysctl();
7378547f
MM
8082
8083 return err;
1a20ff27
DG
8084}
8085
96f874e2
RR
8086static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8087 struct cpumask *tmpmask)
1da177e4 8088{
7c16ec58 8089 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8090}
1da177e4 8091
1a20ff27
DG
8092/*
8093 * Detach sched domains from a group of cpus specified in cpu_map
8094 * These cpus will now be attached to the NULL domain
8095 */
96f874e2 8096static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8097{
96f874e2
RR
8098 /* Save because hotplug lock held. */
8099 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8100 int i;
8101
abcd083a 8102 for_each_cpu(i, cpu_map)
57d885fe 8103 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8104 synchronize_sched();
96f874e2 8105 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8106}
8107
1d3504fc
HS
8108/* handle null as "default" */
8109static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8110 struct sched_domain_attr *new, int idx_new)
8111{
8112 struct sched_domain_attr tmp;
8113
8114 /* fast path */
8115 if (!new && !cur)
8116 return 1;
8117
8118 tmp = SD_ATTR_INIT;
8119 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8120 new ? (new + idx_new) : &tmp,
8121 sizeof(struct sched_domain_attr));
8122}
8123
029190c5
PJ
8124/*
8125 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8126 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8127 * doms_new[] to the current sched domain partitioning, doms_cur[].
8128 * It destroys each deleted domain and builds each new domain.
8129 *
96f874e2 8130 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8131 * The masks don't intersect (don't overlap.) We should setup one
8132 * sched domain for each mask. CPUs not in any of the cpumasks will
8133 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8134 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8135 * it as it is.
8136 *
41a2d6cf
IM
8137 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8138 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8139 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8140 * ndoms_new == 1, and partition_sched_domains() will fallback to
8141 * the single partition 'fallback_doms', it also forces the domains
8142 * to be rebuilt.
029190c5 8143 *
96f874e2 8144 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8145 * ndoms_new == 0 is a special case for destroying existing domains,
8146 * and it will not create the default domain.
dfb512ec 8147 *
029190c5
PJ
8148 * Call with hotplug lock held
8149 */
96f874e2
RR
8150/* FIXME: Change to struct cpumask *doms_new[] */
8151void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8152 struct sched_domain_attr *dattr_new)
029190c5 8153{
dfb512ec 8154 int i, j, n;
d65bd5ec 8155 int new_topology;
029190c5 8156
712555ee 8157 mutex_lock(&sched_domains_mutex);
a1835615 8158
7378547f
MM
8159 /* always unregister in case we don't destroy any domains */
8160 unregister_sched_domain_sysctl();
8161
d65bd5ec
HC
8162 /* Let architecture update cpu core mappings. */
8163 new_topology = arch_update_cpu_topology();
8164
dfb512ec 8165 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8166
8167 /* Destroy deleted domains */
8168 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8169 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8170 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8171 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8172 goto match1;
8173 }
8174 /* no match - a current sched domain not in new doms_new[] */
8175 detach_destroy_domains(doms_cur + i);
8176match1:
8177 ;
8178 }
8179
e761b772
MK
8180 if (doms_new == NULL) {
8181 ndoms_cur = 0;
4212823f 8182 doms_new = fallback_doms;
dcc30a35 8183 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8184 WARN_ON_ONCE(dattr_new);
e761b772
MK
8185 }
8186
029190c5
PJ
8187 /* Build new domains */
8188 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8189 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8190 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8191 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8192 goto match2;
8193 }
8194 /* no match - add a new doms_new */
1d3504fc
HS
8195 __build_sched_domains(doms_new + i,
8196 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8197match2:
8198 ;
8199 }
8200
8201 /* Remember the new sched domains */
4212823f 8202 if (doms_cur != fallback_doms)
029190c5 8203 kfree(doms_cur);
1d3504fc 8204 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8205 doms_cur = doms_new;
1d3504fc 8206 dattr_cur = dattr_new;
029190c5 8207 ndoms_cur = ndoms_new;
7378547f
MM
8208
8209 register_sched_domain_sysctl();
a1835615 8210
712555ee 8211 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8212}
8213
5c45bf27 8214#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8215static void arch_reinit_sched_domains(void)
5c45bf27 8216{
95402b38 8217 get_online_cpus();
dfb512ec
MK
8218
8219 /* Destroy domains first to force the rebuild */
8220 partition_sched_domains(0, NULL, NULL);
8221
e761b772 8222 rebuild_sched_domains();
95402b38 8223 put_online_cpus();
5c45bf27
SS
8224}
8225
8226static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8227{
afb8a9b7 8228 unsigned int level = 0;
5c45bf27 8229
afb8a9b7
GS
8230 if (sscanf(buf, "%u", &level) != 1)
8231 return -EINVAL;
8232
8233 /*
8234 * level is always be positive so don't check for
8235 * level < POWERSAVINGS_BALANCE_NONE which is 0
8236 * What happens on 0 or 1 byte write,
8237 * need to check for count as well?
8238 */
8239
8240 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8241 return -EINVAL;
8242
8243 if (smt)
afb8a9b7 8244 sched_smt_power_savings = level;
5c45bf27 8245 else
afb8a9b7 8246 sched_mc_power_savings = level;
5c45bf27 8247
c70f22d2 8248 arch_reinit_sched_domains();
5c45bf27 8249
c70f22d2 8250 return count;
5c45bf27
SS
8251}
8252
5c45bf27 8253#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8254static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8255 char *page)
5c45bf27
SS
8256{
8257 return sprintf(page, "%u\n", sched_mc_power_savings);
8258}
f718cd4a 8259static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8260 const char *buf, size_t count)
5c45bf27
SS
8261{
8262 return sched_power_savings_store(buf, count, 0);
8263}
f718cd4a
AK
8264static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8265 sched_mc_power_savings_show,
8266 sched_mc_power_savings_store);
5c45bf27
SS
8267#endif
8268
8269#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8270static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8271 char *page)
5c45bf27
SS
8272{
8273 return sprintf(page, "%u\n", sched_smt_power_savings);
8274}
f718cd4a 8275static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8276 const char *buf, size_t count)
5c45bf27
SS
8277{
8278 return sched_power_savings_store(buf, count, 1);
8279}
f718cd4a
AK
8280static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8281 sched_smt_power_savings_show,
6707de00
AB
8282 sched_smt_power_savings_store);
8283#endif
8284
39aac648 8285int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8286{
8287 int err = 0;
8288
8289#ifdef CONFIG_SCHED_SMT
8290 if (smt_capable())
8291 err = sysfs_create_file(&cls->kset.kobj,
8292 &attr_sched_smt_power_savings.attr);
8293#endif
8294#ifdef CONFIG_SCHED_MC
8295 if (!err && mc_capable())
8296 err = sysfs_create_file(&cls->kset.kobj,
8297 &attr_sched_mc_power_savings.attr);
8298#endif
8299 return err;
8300}
6d6bc0ad 8301#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8302
e761b772 8303#ifndef CONFIG_CPUSETS
1da177e4 8304/*
e761b772
MK
8305 * Add online and remove offline CPUs from the scheduler domains.
8306 * When cpusets are enabled they take over this function.
1da177e4
LT
8307 */
8308static int update_sched_domains(struct notifier_block *nfb,
8309 unsigned long action, void *hcpu)
e761b772
MK
8310{
8311 switch (action) {
8312 case CPU_ONLINE:
8313 case CPU_ONLINE_FROZEN:
8314 case CPU_DEAD:
8315 case CPU_DEAD_FROZEN:
dfb512ec 8316 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8317 return NOTIFY_OK;
8318
8319 default:
8320 return NOTIFY_DONE;
8321 }
8322}
8323#endif
8324
8325static int update_runtime(struct notifier_block *nfb,
8326 unsigned long action, void *hcpu)
1da177e4 8327{
7def2be1
PZ
8328 int cpu = (int)(long)hcpu;
8329
1da177e4 8330 switch (action) {
1da177e4 8331 case CPU_DOWN_PREPARE:
8bb78442 8332 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8333 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8334 return NOTIFY_OK;
8335
1da177e4 8336 case CPU_DOWN_FAILED:
8bb78442 8337 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8338 case CPU_ONLINE:
8bb78442 8339 case CPU_ONLINE_FROZEN:
7def2be1 8340 enable_runtime(cpu_rq(cpu));
e761b772
MK
8341 return NOTIFY_OK;
8342
1da177e4
LT
8343 default:
8344 return NOTIFY_DONE;
8345 }
1da177e4 8346}
1da177e4
LT
8347
8348void __init sched_init_smp(void)
8349{
dcc30a35
RR
8350 cpumask_var_t non_isolated_cpus;
8351
8352 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8353
434d53b0
MT
8354#if defined(CONFIG_NUMA)
8355 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8356 GFP_KERNEL);
8357 BUG_ON(sched_group_nodes_bycpu == NULL);
8358#endif
95402b38 8359 get_online_cpus();
712555ee 8360 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8361 arch_init_sched_domains(cpu_online_mask);
8362 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8363 if (cpumask_empty(non_isolated_cpus))
8364 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8365 mutex_unlock(&sched_domains_mutex);
95402b38 8366 put_online_cpus();
e761b772
MK
8367
8368#ifndef CONFIG_CPUSETS
1da177e4
LT
8369 /* XXX: Theoretical race here - CPU may be hotplugged now */
8370 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8371#endif
8372
8373 /* RT runtime code needs to handle some hotplug events */
8374 hotcpu_notifier(update_runtime, 0);
8375
b328ca18 8376 init_hrtick();
5c1e1767
NP
8377
8378 /* Move init over to a non-isolated CPU */
dcc30a35 8379 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8380 BUG();
19978ca6 8381 sched_init_granularity();
dcc30a35 8382 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8383
8384 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8385 init_sched_rt_class();
1da177e4
LT
8386}
8387#else
8388void __init sched_init_smp(void)
8389{
19978ca6 8390 sched_init_granularity();
1da177e4
LT
8391}
8392#endif /* CONFIG_SMP */
8393
8394int in_sched_functions(unsigned long addr)
8395{
1da177e4
LT
8396 return in_lock_functions(addr) ||
8397 (addr >= (unsigned long)__sched_text_start
8398 && addr < (unsigned long)__sched_text_end);
8399}
8400
a9957449 8401static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8402{
8403 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8404 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8405#ifdef CONFIG_FAIR_GROUP_SCHED
8406 cfs_rq->rq = rq;
8407#endif
67e9fb2a 8408 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8409}
8410
fa85ae24
PZ
8411static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8412{
8413 struct rt_prio_array *array;
8414 int i;
8415
8416 array = &rt_rq->active;
8417 for (i = 0; i < MAX_RT_PRIO; i++) {
8418 INIT_LIST_HEAD(array->queue + i);
8419 __clear_bit(i, array->bitmap);
8420 }
8421 /* delimiter for bitsearch: */
8422 __set_bit(MAX_RT_PRIO, array->bitmap);
8423
052f1dc7 8424#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8425 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8426#ifdef CONFIG_SMP
e864c499 8427 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8428#endif
48d5e258 8429#endif
fa85ae24
PZ
8430#ifdef CONFIG_SMP
8431 rt_rq->rt_nr_migratory = 0;
fa85ae24 8432 rt_rq->overloaded = 0;
917b627d 8433 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8434#endif
8435
8436 rt_rq->rt_time = 0;
8437 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8438 rt_rq->rt_runtime = 0;
8439 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8440
052f1dc7 8441#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8442 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8443 rt_rq->rq = rq;
8444#endif
fa85ae24
PZ
8445}
8446
6f505b16 8447#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8448static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8449 struct sched_entity *se, int cpu, int add,
8450 struct sched_entity *parent)
6f505b16 8451{
ec7dc8ac 8452 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8453 tg->cfs_rq[cpu] = cfs_rq;
8454 init_cfs_rq(cfs_rq, rq);
8455 cfs_rq->tg = tg;
8456 if (add)
8457 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8458
8459 tg->se[cpu] = se;
354d60c2
DG
8460 /* se could be NULL for init_task_group */
8461 if (!se)
8462 return;
8463
ec7dc8ac
DG
8464 if (!parent)
8465 se->cfs_rq = &rq->cfs;
8466 else
8467 se->cfs_rq = parent->my_q;
8468
6f505b16
PZ
8469 se->my_q = cfs_rq;
8470 se->load.weight = tg->shares;
e05510d0 8471 se->load.inv_weight = 0;
ec7dc8ac 8472 se->parent = parent;
6f505b16 8473}
052f1dc7 8474#endif
6f505b16 8475
052f1dc7 8476#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8477static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8478 struct sched_rt_entity *rt_se, int cpu, int add,
8479 struct sched_rt_entity *parent)
6f505b16 8480{
ec7dc8ac
DG
8481 struct rq *rq = cpu_rq(cpu);
8482
6f505b16
PZ
8483 tg->rt_rq[cpu] = rt_rq;
8484 init_rt_rq(rt_rq, rq);
8485 rt_rq->tg = tg;
8486 rt_rq->rt_se = rt_se;
ac086bc2 8487 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8488 if (add)
8489 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8490
8491 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8492 if (!rt_se)
8493 return;
8494
ec7dc8ac
DG
8495 if (!parent)
8496 rt_se->rt_rq = &rq->rt;
8497 else
8498 rt_se->rt_rq = parent->my_q;
8499
6f505b16 8500 rt_se->my_q = rt_rq;
ec7dc8ac 8501 rt_se->parent = parent;
6f505b16
PZ
8502 INIT_LIST_HEAD(&rt_se->run_list);
8503}
8504#endif
8505
1da177e4
LT
8506void __init sched_init(void)
8507{
dd41f596 8508 int i, j;
434d53b0
MT
8509 unsigned long alloc_size = 0, ptr;
8510
8511#ifdef CONFIG_FAIR_GROUP_SCHED
8512 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8513#endif
8514#ifdef CONFIG_RT_GROUP_SCHED
8515 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8516#endif
8517#ifdef CONFIG_USER_SCHED
8518 alloc_size *= 2;
434d53b0
MT
8519#endif
8520 /*
8521 * As sched_init() is called before page_alloc is setup,
8522 * we use alloc_bootmem().
8523 */
8524 if (alloc_size) {
5a9d3225 8525 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8526
8527#ifdef CONFIG_FAIR_GROUP_SCHED
8528 init_task_group.se = (struct sched_entity **)ptr;
8529 ptr += nr_cpu_ids * sizeof(void **);
8530
8531 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8532 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8533
8534#ifdef CONFIG_USER_SCHED
8535 root_task_group.se = (struct sched_entity **)ptr;
8536 ptr += nr_cpu_ids * sizeof(void **);
8537
8538 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8539 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8540#endif /* CONFIG_USER_SCHED */
8541#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8542#ifdef CONFIG_RT_GROUP_SCHED
8543 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8544 ptr += nr_cpu_ids * sizeof(void **);
8545
8546 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8547 ptr += nr_cpu_ids * sizeof(void **);
8548
8549#ifdef CONFIG_USER_SCHED
8550 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8551 ptr += nr_cpu_ids * sizeof(void **);
8552
8553 root_task_group.rt_rq = (struct rt_rq **)ptr;
8554 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8555#endif /* CONFIG_USER_SCHED */
8556#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8557 }
dd41f596 8558
57d885fe
GH
8559#ifdef CONFIG_SMP
8560 init_defrootdomain();
8561#endif
8562
d0b27fa7
PZ
8563 init_rt_bandwidth(&def_rt_bandwidth,
8564 global_rt_period(), global_rt_runtime());
8565
8566#ifdef CONFIG_RT_GROUP_SCHED
8567 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8568 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8569#ifdef CONFIG_USER_SCHED
8570 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8571 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8572#endif /* CONFIG_USER_SCHED */
8573#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8574
052f1dc7 8575#ifdef CONFIG_GROUP_SCHED
6f505b16 8576 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8577 INIT_LIST_HEAD(&init_task_group.children);
8578
8579#ifdef CONFIG_USER_SCHED
8580 INIT_LIST_HEAD(&root_task_group.children);
8581 init_task_group.parent = &root_task_group;
8582 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8583#endif /* CONFIG_USER_SCHED */
8584#endif /* CONFIG_GROUP_SCHED */
6f505b16 8585
0a945022 8586 for_each_possible_cpu(i) {
70b97a7f 8587 struct rq *rq;
1da177e4
LT
8588
8589 rq = cpu_rq(i);
8590 spin_lock_init(&rq->lock);
7897986b 8591 rq->nr_running = 0;
dd41f596 8592 init_cfs_rq(&rq->cfs, rq);
6f505b16 8593 init_rt_rq(&rq->rt, rq);
dd41f596 8594#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8595 init_task_group.shares = init_task_group_load;
6f505b16 8596 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8597#ifdef CONFIG_CGROUP_SCHED
8598 /*
8599 * How much cpu bandwidth does init_task_group get?
8600 *
8601 * In case of task-groups formed thr' the cgroup filesystem, it
8602 * gets 100% of the cpu resources in the system. This overall
8603 * system cpu resource is divided among the tasks of
8604 * init_task_group and its child task-groups in a fair manner,
8605 * based on each entity's (task or task-group's) weight
8606 * (se->load.weight).
8607 *
8608 * In other words, if init_task_group has 10 tasks of weight
8609 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8610 * then A0's share of the cpu resource is:
8611 *
8612 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8613 *
8614 * We achieve this by letting init_task_group's tasks sit
8615 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8616 */
ec7dc8ac 8617 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8618#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8619 root_task_group.shares = NICE_0_LOAD;
8620 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8621 /*
8622 * In case of task-groups formed thr' the user id of tasks,
8623 * init_task_group represents tasks belonging to root user.
8624 * Hence it forms a sibling of all subsequent groups formed.
8625 * In this case, init_task_group gets only a fraction of overall
8626 * system cpu resource, based on the weight assigned to root
8627 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8628 * by letting tasks of init_task_group sit in a separate cfs_rq
8629 * (init_cfs_rq) and having one entity represent this group of
8630 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8631 */
ec7dc8ac 8632 init_tg_cfs_entry(&init_task_group,
6f505b16 8633 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8634 &per_cpu(init_sched_entity, i), i, 1,
8635 root_task_group.se[i]);
6f505b16 8636
052f1dc7 8637#endif
354d60c2
DG
8638#endif /* CONFIG_FAIR_GROUP_SCHED */
8639
8640 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8641#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8642 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8643#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8644 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8645#elif defined CONFIG_USER_SCHED
eff766a6 8646 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8647 init_tg_rt_entry(&init_task_group,
6f505b16 8648 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8649 &per_cpu(init_sched_rt_entity, i), i, 1,
8650 root_task_group.rt_se[i]);
354d60c2 8651#endif
dd41f596 8652#endif
1da177e4 8653
dd41f596
IM
8654 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8655 rq->cpu_load[j] = 0;
1da177e4 8656#ifdef CONFIG_SMP
41c7ce9a 8657 rq->sd = NULL;
57d885fe 8658 rq->rd = NULL;
1da177e4 8659 rq->active_balance = 0;
dd41f596 8660 rq->next_balance = jiffies;
1da177e4 8661 rq->push_cpu = 0;
0a2966b4 8662 rq->cpu = i;
1f11eb6a 8663 rq->online = 0;
1da177e4
LT
8664 rq->migration_thread = NULL;
8665 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8666 rq_attach_root(rq, &def_root_domain);
1da177e4 8667#endif
8f4d37ec 8668 init_rq_hrtick(rq);
1da177e4 8669 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8670 }
8671
2dd73a4f 8672 set_load_weight(&init_task);
b50f60ce 8673
e107be36
AK
8674#ifdef CONFIG_PREEMPT_NOTIFIERS
8675 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8676#endif
8677
c9819f45 8678#ifdef CONFIG_SMP
962cf36c 8679 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8680#endif
8681
b50f60ce
HC
8682#ifdef CONFIG_RT_MUTEXES
8683 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8684#endif
8685
1da177e4
LT
8686 /*
8687 * The boot idle thread does lazy MMU switching as well:
8688 */
8689 atomic_inc(&init_mm.mm_count);
8690 enter_lazy_tlb(&init_mm, current);
8691
8692 /*
8693 * Make us the idle thread. Technically, schedule() should not be
8694 * called from this thread, however somewhere below it might be,
8695 * but because we are the idle thread, we just pick up running again
8696 * when this runqueue becomes "idle".
8697 */
8698 init_idle(current, smp_processor_id());
dd41f596
IM
8699 /*
8700 * During early bootup we pretend to be a normal task:
8701 */
8702 current->sched_class = &fair_sched_class;
6892b75e 8703
6a7b3dc3
RR
8704 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8705 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8706#ifdef CONFIG_SMP
7d1e6a9b
RR
8707#ifdef CONFIG_NO_HZ
8708 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8709#endif
dcc30a35 8710 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8711#endif /* SMP */
6a7b3dc3 8712
6892b75e 8713 scheduler_running = 1;
1da177e4
LT
8714}
8715
8716#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8717void __might_sleep(char *file, int line)
8718{
48f24c4d 8719#ifdef in_atomic
1da177e4
LT
8720 static unsigned long prev_jiffy; /* ratelimiting */
8721
aef745fc
IM
8722 if ((!in_atomic() && !irqs_disabled()) ||
8723 system_state != SYSTEM_RUNNING || oops_in_progress)
8724 return;
8725 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8726 return;
8727 prev_jiffy = jiffies;
8728
8729 printk(KERN_ERR
8730 "BUG: sleeping function called from invalid context at %s:%d\n",
8731 file, line);
8732 printk(KERN_ERR
8733 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8734 in_atomic(), irqs_disabled(),
8735 current->pid, current->comm);
8736
8737 debug_show_held_locks(current);
8738 if (irqs_disabled())
8739 print_irqtrace_events(current);
8740 dump_stack();
1da177e4
LT
8741#endif
8742}
8743EXPORT_SYMBOL(__might_sleep);
8744#endif
8745
8746#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8747static void normalize_task(struct rq *rq, struct task_struct *p)
8748{
8749 int on_rq;
3e51f33f 8750
3a5e4dc1
AK
8751 update_rq_clock(rq);
8752 on_rq = p->se.on_rq;
8753 if (on_rq)
8754 deactivate_task(rq, p, 0);
8755 __setscheduler(rq, p, SCHED_NORMAL, 0);
8756 if (on_rq) {
8757 activate_task(rq, p, 0);
8758 resched_task(rq->curr);
8759 }
8760}
8761
1da177e4
LT
8762void normalize_rt_tasks(void)
8763{
a0f98a1c 8764 struct task_struct *g, *p;
1da177e4 8765 unsigned long flags;
70b97a7f 8766 struct rq *rq;
1da177e4 8767
4cf5d77a 8768 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8769 do_each_thread(g, p) {
178be793
IM
8770 /*
8771 * Only normalize user tasks:
8772 */
8773 if (!p->mm)
8774 continue;
8775
6cfb0d5d 8776 p->se.exec_start = 0;
6cfb0d5d 8777#ifdef CONFIG_SCHEDSTATS
dd41f596 8778 p->se.wait_start = 0;
dd41f596 8779 p->se.sleep_start = 0;
dd41f596 8780 p->se.block_start = 0;
6cfb0d5d 8781#endif
dd41f596
IM
8782
8783 if (!rt_task(p)) {
8784 /*
8785 * Renice negative nice level userspace
8786 * tasks back to 0:
8787 */
8788 if (TASK_NICE(p) < 0 && p->mm)
8789 set_user_nice(p, 0);
1da177e4 8790 continue;
dd41f596 8791 }
1da177e4 8792
4cf5d77a 8793 spin_lock(&p->pi_lock);
b29739f9 8794 rq = __task_rq_lock(p);
1da177e4 8795
178be793 8796 normalize_task(rq, p);
3a5e4dc1 8797
b29739f9 8798 __task_rq_unlock(rq);
4cf5d77a 8799 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8800 } while_each_thread(g, p);
8801
4cf5d77a 8802 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8803}
8804
8805#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8806
8807#ifdef CONFIG_IA64
8808/*
8809 * These functions are only useful for the IA64 MCA handling.
8810 *
8811 * They can only be called when the whole system has been
8812 * stopped - every CPU needs to be quiescent, and no scheduling
8813 * activity can take place. Using them for anything else would
8814 * be a serious bug, and as a result, they aren't even visible
8815 * under any other configuration.
8816 */
8817
8818/**
8819 * curr_task - return the current task for a given cpu.
8820 * @cpu: the processor in question.
8821 *
8822 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8823 */
36c8b586 8824struct task_struct *curr_task(int cpu)
1df5c10a
LT
8825{
8826 return cpu_curr(cpu);
8827}
8828
8829/**
8830 * set_curr_task - set the current task for a given cpu.
8831 * @cpu: the processor in question.
8832 * @p: the task pointer to set.
8833 *
8834 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8835 * are serviced on a separate stack. It allows the architecture to switch the
8836 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8837 * must be called with all CPU's synchronized, and interrupts disabled, the
8838 * and caller must save the original value of the current task (see
8839 * curr_task() above) and restore that value before reenabling interrupts and
8840 * re-starting the system.
8841 *
8842 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8843 */
36c8b586 8844void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8845{
8846 cpu_curr(cpu) = p;
8847}
8848
8849#endif
29f59db3 8850
bccbe08a
PZ
8851#ifdef CONFIG_FAIR_GROUP_SCHED
8852static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8853{
8854 int i;
8855
8856 for_each_possible_cpu(i) {
8857 if (tg->cfs_rq)
8858 kfree(tg->cfs_rq[i]);
8859 if (tg->se)
8860 kfree(tg->se[i]);
6f505b16
PZ
8861 }
8862
8863 kfree(tg->cfs_rq);
8864 kfree(tg->se);
6f505b16
PZ
8865}
8866
ec7dc8ac
DG
8867static
8868int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8869{
29f59db3 8870 struct cfs_rq *cfs_rq;
eab17229 8871 struct sched_entity *se;
9b5b7751 8872 struct rq *rq;
29f59db3
SV
8873 int i;
8874
434d53b0 8875 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8876 if (!tg->cfs_rq)
8877 goto err;
434d53b0 8878 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8879 if (!tg->se)
8880 goto err;
052f1dc7
PZ
8881
8882 tg->shares = NICE_0_LOAD;
29f59db3
SV
8883
8884 for_each_possible_cpu(i) {
9b5b7751 8885 rq = cpu_rq(i);
29f59db3 8886
eab17229
LZ
8887 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8888 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8889 if (!cfs_rq)
8890 goto err;
8891
eab17229
LZ
8892 se = kzalloc_node(sizeof(struct sched_entity),
8893 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8894 if (!se)
8895 goto err;
8896
eab17229 8897 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8898 }
8899
8900 return 1;
8901
8902 err:
8903 return 0;
8904}
8905
8906static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8907{
8908 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8909 &cpu_rq(cpu)->leaf_cfs_rq_list);
8910}
8911
8912static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8913{
8914 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8915}
6d6bc0ad 8916#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8917static inline void free_fair_sched_group(struct task_group *tg)
8918{
8919}
8920
ec7dc8ac
DG
8921static inline
8922int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8923{
8924 return 1;
8925}
8926
8927static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8928{
8929}
8930
8931static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8932{
8933}
6d6bc0ad 8934#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8935
8936#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8937static void free_rt_sched_group(struct task_group *tg)
8938{
8939 int i;
8940
d0b27fa7
PZ
8941 destroy_rt_bandwidth(&tg->rt_bandwidth);
8942
bccbe08a
PZ
8943 for_each_possible_cpu(i) {
8944 if (tg->rt_rq)
8945 kfree(tg->rt_rq[i]);
8946 if (tg->rt_se)
8947 kfree(tg->rt_se[i]);
8948 }
8949
8950 kfree(tg->rt_rq);
8951 kfree(tg->rt_se);
8952}
8953
ec7dc8ac
DG
8954static
8955int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8956{
8957 struct rt_rq *rt_rq;
eab17229 8958 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8959 struct rq *rq;
8960 int i;
8961
434d53b0 8962 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8963 if (!tg->rt_rq)
8964 goto err;
434d53b0 8965 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8966 if (!tg->rt_se)
8967 goto err;
8968
d0b27fa7
PZ
8969 init_rt_bandwidth(&tg->rt_bandwidth,
8970 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8971
8972 for_each_possible_cpu(i) {
8973 rq = cpu_rq(i);
8974
eab17229
LZ
8975 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8976 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8977 if (!rt_rq)
8978 goto err;
29f59db3 8979
eab17229
LZ
8980 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8981 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8982 if (!rt_se)
8983 goto err;
29f59db3 8984
eab17229 8985 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8986 }
8987
bccbe08a
PZ
8988 return 1;
8989
8990 err:
8991 return 0;
8992}
8993
8994static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8995{
8996 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8997 &cpu_rq(cpu)->leaf_rt_rq_list);
8998}
8999
9000static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9001{
9002 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9003}
6d6bc0ad 9004#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9005static inline void free_rt_sched_group(struct task_group *tg)
9006{
9007}
9008
ec7dc8ac
DG
9009static inline
9010int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9011{
9012 return 1;
9013}
9014
9015static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9016{
9017}
9018
9019static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9020{
9021}
6d6bc0ad 9022#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9023
d0b27fa7 9024#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9025static void free_sched_group(struct task_group *tg)
9026{
9027 free_fair_sched_group(tg);
9028 free_rt_sched_group(tg);
9029 kfree(tg);
9030}
9031
9032/* allocate runqueue etc for a new task group */
ec7dc8ac 9033struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9034{
9035 struct task_group *tg;
9036 unsigned long flags;
9037 int i;
9038
9039 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9040 if (!tg)
9041 return ERR_PTR(-ENOMEM);
9042
ec7dc8ac 9043 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9044 goto err;
9045
ec7dc8ac 9046 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9047 goto err;
9048
8ed36996 9049 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9050 for_each_possible_cpu(i) {
bccbe08a
PZ
9051 register_fair_sched_group(tg, i);
9052 register_rt_sched_group(tg, i);
9b5b7751 9053 }
6f505b16 9054 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9055
9056 WARN_ON(!parent); /* root should already exist */
9057
9058 tg->parent = parent;
f473aa5e 9059 INIT_LIST_HEAD(&tg->children);
09f2724a 9060 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9061 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9062
9b5b7751 9063 return tg;
29f59db3
SV
9064
9065err:
6f505b16 9066 free_sched_group(tg);
29f59db3
SV
9067 return ERR_PTR(-ENOMEM);
9068}
9069
9b5b7751 9070/* rcu callback to free various structures associated with a task group */
6f505b16 9071static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9072{
29f59db3 9073 /* now it should be safe to free those cfs_rqs */
6f505b16 9074 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9075}
9076
9b5b7751 9077/* Destroy runqueue etc associated with a task group */
4cf86d77 9078void sched_destroy_group(struct task_group *tg)
29f59db3 9079{
8ed36996 9080 unsigned long flags;
9b5b7751 9081 int i;
29f59db3 9082
8ed36996 9083 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9084 for_each_possible_cpu(i) {
bccbe08a
PZ
9085 unregister_fair_sched_group(tg, i);
9086 unregister_rt_sched_group(tg, i);
9b5b7751 9087 }
6f505b16 9088 list_del_rcu(&tg->list);
f473aa5e 9089 list_del_rcu(&tg->siblings);
8ed36996 9090 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9091
9b5b7751 9092 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9093 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9094}
9095
9b5b7751 9096/* change task's runqueue when it moves between groups.
3a252015
IM
9097 * The caller of this function should have put the task in its new group
9098 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9099 * reflect its new group.
9b5b7751
SV
9100 */
9101void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9102{
9103 int on_rq, running;
9104 unsigned long flags;
9105 struct rq *rq;
9106
9107 rq = task_rq_lock(tsk, &flags);
9108
29f59db3
SV
9109 update_rq_clock(rq);
9110
051a1d1a 9111 running = task_current(rq, tsk);
29f59db3
SV
9112 on_rq = tsk->se.on_rq;
9113
0e1f3483 9114 if (on_rq)
29f59db3 9115 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9116 if (unlikely(running))
9117 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9118
6f505b16 9119 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9120
810b3817
PZ
9121#ifdef CONFIG_FAIR_GROUP_SCHED
9122 if (tsk->sched_class->moved_group)
9123 tsk->sched_class->moved_group(tsk);
9124#endif
9125
0e1f3483
HS
9126 if (unlikely(running))
9127 tsk->sched_class->set_curr_task(rq);
9128 if (on_rq)
7074badb 9129 enqueue_task(rq, tsk, 0);
29f59db3 9130
29f59db3
SV
9131 task_rq_unlock(rq, &flags);
9132}
6d6bc0ad 9133#endif /* CONFIG_GROUP_SCHED */
29f59db3 9134
052f1dc7 9135#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9136static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9137{
9138 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9139 int on_rq;
9140
29f59db3 9141 on_rq = se->on_rq;
62fb1851 9142 if (on_rq)
29f59db3
SV
9143 dequeue_entity(cfs_rq, se, 0);
9144
9145 se->load.weight = shares;
e05510d0 9146 se->load.inv_weight = 0;
29f59db3 9147
62fb1851 9148 if (on_rq)
29f59db3 9149 enqueue_entity(cfs_rq, se, 0);
c09595f6 9150}
62fb1851 9151
c09595f6
PZ
9152static void set_se_shares(struct sched_entity *se, unsigned long shares)
9153{
9154 struct cfs_rq *cfs_rq = se->cfs_rq;
9155 struct rq *rq = cfs_rq->rq;
9156 unsigned long flags;
9157
9158 spin_lock_irqsave(&rq->lock, flags);
9159 __set_se_shares(se, shares);
9160 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9161}
9162
8ed36996
PZ
9163static DEFINE_MUTEX(shares_mutex);
9164
4cf86d77 9165int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9166{
9167 int i;
8ed36996 9168 unsigned long flags;
c61935fd 9169
ec7dc8ac
DG
9170 /*
9171 * We can't change the weight of the root cgroup.
9172 */
9173 if (!tg->se[0])
9174 return -EINVAL;
9175
18d95a28
PZ
9176 if (shares < MIN_SHARES)
9177 shares = MIN_SHARES;
cb4ad1ff
MX
9178 else if (shares > MAX_SHARES)
9179 shares = MAX_SHARES;
62fb1851 9180
8ed36996 9181 mutex_lock(&shares_mutex);
9b5b7751 9182 if (tg->shares == shares)
5cb350ba 9183 goto done;
29f59db3 9184
8ed36996 9185 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9186 for_each_possible_cpu(i)
9187 unregister_fair_sched_group(tg, i);
f473aa5e 9188 list_del_rcu(&tg->siblings);
8ed36996 9189 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9190
9191 /* wait for any ongoing reference to this group to finish */
9192 synchronize_sched();
9193
9194 /*
9195 * Now we are free to modify the group's share on each cpu
9196 * w/o tripping rebalance_share or load_balance_fair.
9197 */
9b5b7751 9198 tg->shares = shares;
c09595f6
PZ
9199 for_each_possible_cpu(i) {
9200 /*
9201 * force a rebalance
9202 */
9203 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9204 set_se_shares(tg->se[i], shares);
c09595f6 9205 }
29f59db3 9206
6b2d7700
SV
9207 /*
9208 * Enable load balance activity on this group, by inserting it back on
9209 * each cpu's rq->leaf_cfs_rq_list.
9210 */
8ed36996 9211 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9212 for_each_possible_cpu(i)
9213 register_fair_sched_group(tg, i);
f473aa5e 9214 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9215 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9216done:
8ed36996 9217 mutex_unlock(&shares_mutex);
9b5b7751 9218 return 0;
29f59db3
SV
9219}
9220
5cb350ba
DG
9221unsigned long sched_group_shares(struct task_group *tg)
9222{
9223 return tg->shares;
9224}
052f1dc7 9225#endif
5cb350ba 9226
052f1dc7 9227#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9228/*
9f0c1e56 9229 * Ensure that the real time constraints are schedulable.
6f505b16 9230 */
9f0c1e56
PZ
9231static DEFINE_MUTEX(rt_constraints_mutex);
9232
9233static unsigned long to_ratio(u64 period, u64 runtime)
9234{
9235 if (runtime == RUNTIME_INF)
9a7e0b18 9236 return 1ULL << 20;
9f0c1e56 9237
9a7e0b18 9238 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9239}
9240
9a7e0b18
PZ
9241/* Must be called with tasklist_lock held */
9242static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9243{
9a7e0b18 9244 struct task_struct *g, *p;
b40b2e8e 9245
9a7e0b18
PZ
9246 do_each_thread(g, p) {
9247 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9248 return 1;
9249 } while_each_thread(g, p);
b40b2e8e 9250
9a7e0b18
PZ
9251 return 0;
9252}
b40b2e8e 9253
9a7e0b18
PZ
9254struct rt_schedulable_data {
9255 struct task_group *tg;
9256 u64 rt_period;
9257 u64 rt_runtime;
9258};
b40b2e8e 9259
9a7e0b18
PZ
9260static int tg_schedulable(struct task_group *tg, void *data)
9261{
9262 struct rt_schedulable_data *d = data;
9263 struct task_group *child;
9264 unsigned long total, sum = 0;
9265 u64 period, runtime;
b40b2e8e 9266
9a7e0b18
PZ
9267 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9268 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9269
9a7e0b18
PZ
9270 if (tg == d->tg) {
9271 period = d->rt_period;
9272 runtime = d->rt_runtime;
b40b2e8e 9273 }
b40b2e8e 9274
98a4826b
PZ
9275#ifdef CONFIG_USER_SCHED
9276 if (tg == &root_task_group) {
9277 period = global_rt_period();
9278 runtime = global_rt_runtime();
9279 }
9280#endif
9281
4653f803
PZ
9282 /*
9283 * Cannot have more runtime than the period.
9284 */
9285 if (runtime > period && runtime != RUNTIME_INF)
9286 return -EINVAL;
6f505b16 9287
4653f803
PZ
9288 /*
9289 * Ensure we don't starve existing RT tasks.
9290 */
9a7e0b18
PZ
9291 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9292 return -EBUSY;
6f505b16 9293
9a7e0b18 9294 total = to_ratio(period, runtime);
6f505b16 9295
4653f803
PZ
9296 /*
9297 * Nobody can have more than the global setting allows.
9298 */
9299 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9300 return -EINVAL;
6f505b16 9301
4653f803
PZ
9302 /*
9303 * The sum of our children's runtime should not exceed our own.
9304 */
9a7e0b18
PZ
9305 list_for_each_entry_rcu(child, &tg->children, siblings) {
9306 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9307 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9308
9a7e0b18
PZ
9309 if (child == d->tg) {
9310 period = d->rt_period;
9311 runtime = d->rt_runtime;
9312 }
6f505b16 9313
9a7e0b18 9314 sum += to_ratio(period, runtime);
9f0c1e56 9315 }
6f505b16 9316
9a7e0b18
PZ
9317 if (sum > total)
9318 return -EINVAL;
9319
9320 return 0;
6f505b16
PZ
9321}
9322
9a7e0b18 9323static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9324{
9a7e0b18
PZ
9325 struct rt_schedulable_data data = {
9326 .tg = tg,
9327 .rt_period = period,
9328 .rt_runtime = runtime,
9329 };
9330
9331 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9332}
9333
d0b27fa7
PZ
9334static int tg_set_bandwidth(struct task_group *tg,
9335 u64 rt_period, u64 rt_runtime)
6f505b16 9336{
ac086bc2 9337 int i, err = 0;
9f0c1e56 9338
9f0c1e56 9339 mutex_lock(&rt_constraints_mutex);
521f1a24 9340 read_lock(&tasklist_lock);
9a7e0b18
PZ
9341 err = __rt_schedulable(tg, rt_period, rt_runtime);
9342 if (err)
9f0c1e56 9343 goto unlock;
ac086bc2
PZ
9344
9345 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9346 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9347 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9348
9349 for_each_possible_cpu(i) {
9350 struct rt_rq *rt_rq = tg->rt_rq[i];
9351
9352 spin_lock(&rt_rq->rt_runtime_lock);
9353 rt_rq->rt_runtime = rt_runtime;
9354 spin_unlock(&rt_rq->rt_runtime_lock);
9355 }
9356 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9357 unlock:
521f1a24 9358 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9359 mutex_unlock(&rt_constraints_mutex);
9360
9361 return err;
6f505b16
PZ
9362}
9363
d0b27fa7
PZ
9364int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9365{
9366 u64 rt_runtime, rt_period;
9367
9368 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9369 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9370 if (rt_runtime_us < 0)
9371 rt_runtime = RUNTIME_INF;
9372
9373 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9374}
9375
9f0c1e56
PZ
9376long sched_group_rt_runtime(struct task_group *tg)
9377{
9378 u64 rt_runtime_us;
9379
d0b27fa7 9380 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9381 return -1;
9382
d0b27fa7 9383 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9384 do_div(rt_runtime_us, NSEC_PER_USEC);
9385 return rt_runtime_us;
9386}
d0b27fa7
PZ
9387
9388int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9389{
9390 u64 rt_runtime, rt_period;
9391
9392 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9393 rt_runtime = tg->rt_bandwidth.rt_runtime;
9394
619b0488
R
9395 if (rt_period == 0)
9396 return -EINVAL;
9397
d0b27fa7
PZ
9398 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9399}
9400
9401long sched_group_rt_period(struct task_group *tg)
9402{
9403 u64 rt_period_us;
9404
9405 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9406 do_div(rt_period_us, NSEC_PER_USEC);
9407 return rt_period_us;
9408}
9409
9410static int sched_rt_global_constraints(void)
9411{
4653f803 9412 u64 runtime, period;
d0b27fa7
PZ
9413 int ret = 0;
9414
ec5d4989
HS
9415 if (sysctl_sched_rt_period <= 0)
9416 return -EINVAL;
9417
4653f803
PZ
9418 runtime = global_rt_runtime();
9419 period = global_rt_period();
9420
9421 /*
9422 * Sanity check on the sysctl variables.
9423 */
9424 if (runtime > period && runtime != RUNTIME_INF)
9425 return -EINVAL;
10b612f4 9426
d0b27fa7 9427 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9428 read_lock(&tasklist_lock);
4653f803 9429 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9430 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9431 mutex_unlock(&rt_constraints_mutex);
9432
9433 return ret;
9434}
54e99124
DG
9435
9436int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9437{
9438 /* Don't accept realtime tasks when there is no way for them to run */
9439 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9440 return 0;
9441
9442 return 1;
9443}
9444
6d6bc0ad 9445#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9446static int sched_rt_global_constraints(void)
9447{
ac086bc2
PZ
9448 unsigned long flags;
9449 int i;
9450
ec5d4989
HS
9451 if (sysctl_sched_rt_period <= 0)
9452 return -EINVAL;
9453
ac086bc2
PZ
9454 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9455 for_each_possible_cpu(i) {
9456 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9457
9458 spin_lock(&rt_rq->rt_runtime_lock);
9459 rt_rq->rt_runtime = global_rt_runtime();
9460 spin_unlock(&rt_rq->rt_runtime_lock);
9461 }
9462 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9463
d0b27fa7
PZ
9464 return 0;
9465}
6d6bc0ad 9466#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9467
9468int sched_rt_handler(struct ctl_table *table, int write,
9469 struct file *filp, void __user *buffer, size_t *lenp,
9470 loff_t *ppos)
9471{
9472 int ret;
9473 int old_period, old_runtime;
9474 static DEFINE_MUTEX(mutex);
9475
9476 mutex_lock(&mutex);
9477 old_period = sysctl_sched_rt_period;
9478 old_runtime = sysctl_sched_rt_runtime;
9479
9480 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9481
9482 if (!ret && write) {
9483 ret = sched_rt_global_constraints();
9484 if (ret) {
9485 sysctl_sched_rt_period = old_period;
9486 sysctl_sched_rt_runtime = old_runtime;
9487 } else {
9488 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9489 def_rt_bandwidth.rt_period =
9490 ns_to_ktime(global_rt_period());
9491 }
9492 }
9493 mutex_unlock(&mutex);
9494
9495 return ret;
9496}
68318b8e 9497
052f1dc7 9498#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9499
9500/* return corresponding task_group object of a cgroup */
2b01dfe3 9501static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9502{
2b01dfe3
PM
9503 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9504 struct task_group, css);
68318b8e
SV
9505}
9506
9507static struct cgroup_subsys_state *
2b01dfe3 9508cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9509{
ec7dc8ac 9510 struct task_group *tg, *parent;
68318b8e 9511
2b01dfe3 9512 if (!cgrp->parent) {
68318b8e 9513 /* This is early initialization for the top cgroup */
68318b8e
SV
9514 return &init_task_group.css;
9515 }
9516
ec7dc8ac
DG
9517 parent = cgroup_tg(cgrp->parent);
9518 tg = sched_create_group(parent);
68318b8e
SV
9519 if (IS_ERR(tg))
9520 return ERR_PTR(-ENOMEM);
9521
68318b8e
SV
9522 return &tg->css;
9523}
9524
41a2d6cf
IM
9525static void
9526cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9527{
2b01dfe3 9528 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9529
9530 sched_destroy_group(tg);
9531}
9532
41a2d6cf
IM
9533static int
9534cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9535 struct task_struct *tsk)
68318b8e 9536{
b68aa230 9537#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9538 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9539 return -EINVAL;
9540#else
68318b8e
SV
9541 /* We don't support RT-tasks being in separate groups */
9542 if (tsk->sched_class != &fair_sched_class)
9543 return -EINVAL;
b68aa230 9544#endif
68318b8e
SV
9545
9546 return 0;
9547}
9548
9549static void
2b01dfe3 9550cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9551 struct cgroup *old_cont, struct task_struct *tsk)
9552{
9553 sched_move_task(tsk);
9554}
9555
052f1dc7 9556#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9557static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9558 u64 shareval)
68318b8e 9559{
2b01dfe3 9560 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9561}
9562
f4c753b7 9563static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9564{
2b01dfe3 9565 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9566
9567 return (u64) tg->shares;
9568}
6d6bc0ad 9569#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9570
052f1dc7 9571#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9572static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9573 s64 val)
6f505b16 9574{
06ecb27c 9575 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9576}
9577
06ecb27c 9578static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9579{
06ecb27c 9580 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9581}
d0b27fa7
PZ
9582
9583static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9584 u64 rt_period_us)
9585{
9586 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9587}
9588
9589static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9590{
9591 return sched_group_rt_period(cgroup_tg(cgrp));
9592}
6d6bc0ad 9593#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9594
fe5c7cc2 9595static struct cftype cpu_files[] = {
052f1dc7 9596#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9597 {
9598 .name = "shares",
f4c753b7
PM
9599 .read_u64 = cpu_shares_read_u64,
9600 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9601 },
052f1dc7
PZ
9602#endif
9603#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9604 {
9f0c1e56 9605 .name = "rt_runtime_us",
06ecb27c
PM
9606 .read_s64 = cpu_rt_runtime_read,
9607 .write_s64 = cpu_rt_runtime_write,
6f505b16 9608 },
d0b27fa7
PZ
9609 {
9610 .name = "rt_period_us",
f4c753b7
PM
9611 .read_u64 = cpu_rt_period_read_uint,
9612 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9613 },
052f1dc7 9614#endif
68318b8e
SV
9615};
9616
9617static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9618{
fe5c7cc2 9619 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9620}
9621
9622struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9623 .name = "cpu",
9624 .create = cpu_cgroup_create,
9625 .destroy = cpu_cgroup_destroy,
9626 .can_attach = cpu_cgroup_can_attach,
9627 .attach = cpu_cgroup_attach,
9628 .populate = cpu_cgroup_populate,
9629 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9630 .early_init = 1,
9631};
9632
052f1dc7 9633#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9634
9635#ifdef CONFIG_CGROUP_CPUACCT
9636
9637/*
9638 * CPU accounting code for task groups.
9639 *
9640 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9641 * (balbir@in.ibm.com).
9642 */
9643
934352f2 9644/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9645struct cpuacct {
9646 struct cgroup_subsys_state css;
9647 /* cpuusage holds pointer to a u64-type object on every cpu */
9648 u64 *cpuusage;
934352f2 9649 struct cpuacct *parent;
d842de87
SV
9650};
9651
9652struct cgroup_subsys cpuacct_subsys;
9653
9654/* return cpu accounting group corresponding to this container */
32cd756a 9655static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9656{
32cd756a 9657 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9658 struct cpuacct, css);
9659}
9660
9661/* return cpu accounting group to which this task belongs */
9662static inline struct cpuacct *task_ca(struct task_struct *tsk)
9663{
9664 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9665 struct cpuacct, css);
9666}
9667
9668/* create a new cpu accounting group */
9669static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9670 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9671{
9672 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9673
9674 if (!ca)
9675 return ERR_PTR(-ENOMEM);
9676
9677 ca->cpuusage = alloc_percpu(u64);
9678 if (!ca->cpuusage) {
9679 kfree(ca);
9680 return ERR_PTR(-ENOMEM);
9681 }
9682
934352f2
BR
9683 if (cgrp->parent)
9684 ca->parent = cgroup_ca(cgrp->parent);
9685
d842de87
SV
9686 return &ca->css;
9687}
9688
9689/* destroy an existing cpu accounting group */
41a2d6cf 9690static void
32cd756a 9691cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9692{
32cd756a 9693 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9694
9695 free_percpu(ca->cpuusage);
9696 kfree(ca);
9697}
9698
720f5498
KC
9699static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9700{
9701 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9702 u64 data;
9703
9704#ifndef CONFIG_64BIT
9705 /*
9706 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9707 */
9708 spin_lock_irq(&cpu_rq(cpu)->lock);
9709 data = *cpuusage;
9710 spin_unlock_irq(&cpu_rq(cpu)->lock);
9711#else
9712 data = *cpuusage;
9713#endif
9714
9715 return data;
9716}
9717
9718static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9719{
9720 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9721
9722#ifndef CONFIG_64BIT
9723 /*
9724 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9725 */
9726 spin_lock_irq(&cpu_rq(cpu)->lock);
9727 *cpuusage = val;
9728 spin_unlock_irq(&cpu_rq(cpu)->lock);
9729#else
9730 *cpuusage = val;
9731#endif
9732}
9733
d842de87 9734/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9735static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9736{
32cd756a 9737 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9738 u64 totalcpuusage = 0;
9739 int i;
9740
720f5498
KC
9741 for_each_present_cpu(i)
9742 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9743
9744 return totalcpuusage;
9745}
9746
0297b803
DG
9747static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9748 u64 reset)
9749{
9750 struct cpuacct *ca = cgroup_ca(cgrp);
9751 int err = 0;
9752 int i;
9753
9754 if (reset) {
9755 err = -EINVAL;
9756 goto out;
9757 }
9758
720f5498
KC
9759 for_each_present_cpu(i)
9760 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9761
0297b803
DG
9762out:
9763 return err;
9764}
9765
e9515c3c
KC
9766static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9767 struct seq_file *m)
9768{
9769 struct cpuacct *ca = cgroup_ca(cgroup);
9770 u64 percpu;
9771 int i;
9772
9773 for_each_present_cpu(i) {
9774 percpu = cpuacct_cpuusage_read(ca, i);
9775 seq_printf(m, "%llu ", (unsigned long long) percpu);
9776 }
9777 seq_printf(m, "\n");
9778 return 0;
9779}
9780
d842de87
SV
9781static struct cftype files[] = {
9782 {
9783 .name = "usage",
f4c753b7
PM
9784 .read_u64 = cpuusage_read,
9785 .write_u64 = cpuusage_write,
d842de87 9786 },
e9515c3c
KC
9787 {
9788 .name = "usage_percpu",
9789 .read_seq_string = cpuacct_percpu_seq_read,
9790 },
9791
d842de87
SV
9792};
9793
32cd756a 9794static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9795{
32cd756a 9796 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9797}
9798
9799/*
9800 * charge this task's execution time to its accounting group.
9801 *
9802 * called with rq->lock held.
9803 */
9804static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9805{
9806 struct cpuacct *ca;
934352f2 9807 int cpu;
d842de87 9808
c40c6f85 9809 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9810 return;
9811
934352f2 9812 cpu = task_cpu(tsk);
d842de87 9813 ca = task_ca(tsk);
d842de87 9814
934352f2
BR
9815 for (; ca; ca = ca->parent) {
9816 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9817 *cpuusage += cputime;
9818 }
9819}
9820
9821struct cgroup_subsys cpuacct_subsys = {
9822 .name = "cpuacct",
9823 .create = cpuacct_create,
9824 .destroy = cpuacct_destroy,
9825 .populate = cpuacct_populate,
9826 .subsys_id = cpuacct_subsys_id,
9827};
9828#endif /* CONFIG_CGROUP_CPUACCT */