]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
[PATCH] Altix: ioc3 serial support
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
33#include <linux/security.h>
34#include <linux/notifier.h>
35#include <linux/profile.h>
36#include <linux/suspend.h>
198e2f18 37#include <linux/vmalloc.h>
1da177e4
LT
38#include <linux/blkdev.h>
39#include <linux/delay.h>
40#include <linux/smp.h>
41#include <linux/threads.h>
42#include <linux/timer.h>
43#include <linux/rcupdate.h>
44#include <linux/cpu.h>
45#include <linux/cpuset.h>
46#include <linux/percpu.h>
47#include <linux/kthread.h>
48#include <linux/seq_file.h>
49#include <linux/syscalls.h>
50#include <linux/times.h>
51#include <linux/acct.h>
52#include <asm/tlb.h>
53
54#include <asm/unistd.h>
55
56/*
57 * Convert user-nice values [ -20 ... 0 ... 19 ]
58 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
59 * and back.
60 */
61#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
62#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
63#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
64
65/*
66 * 'User priority' is the nice value converted to something we
67 * can work with better when scaling various scheduler parameters,
68 * it's a [ 0 ... 39 ] range.
69 */
70#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
71#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
72#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
73
74/*
75 * Some helpers for converting nanosecond timing to jiffy resolution
76 */
77#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
78#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
79
80/*
81 * These are the 'tuning knobs' of the scheduler:
82 *
83 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
84 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
85 * Timeslices get refilled after they expire.
86 */
87#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
88#define DEF_TIMESLICE (100 * HZ / 1000)
89#define ON_RUNQUEUE_WEIGHT 30
90#define CHILD_PENALTY 95
91#define PARENT_PENALTY 100
92#define EXIT_WEIGHT 3
93#define PRIO_BONUS_RATIO 25
94#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
95#define INTERACTIVE_DELTA 2
96#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
97#define STARVATION_LIMIT (MAX_SLEEP_AVG)
98#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
99
100/*
101 * If a task is 'interactive' then we reinsert it in the active
102 * array after it has expired its current timeslice. (it will not
103 * continue to run immediately, it will still roundrobin with
104 * other interactive tasks.)
105 *
106 * This part scales the interactivity limit depending on niceness.
107 *
108 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
109 * Here are a few examples of different nice levels:
110 *
111 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
112 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
113 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
114 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
116 *
117 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
118 * priority range a task can explore, a value of '1' means the
119 * task is rated interactive.)
120 *
121 * Ie. nice +19 tasks can never get 'interactive' enough to be
122 * reinserted into the active array. And only heavily CPU-hog nice -20
123 * tasks will be expired. Default nice 0 tasks are somewhere between,
124 * it takes some effort for them to get interactive, but it's not
125 * too hard.
126 */
127
128#define CURRENT_BONUS(p) \
129 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
130 MAX_SLEEP_AVG)
131
132#define GRANULARITY (10 * HZ / 1000 ? : 1)
133
134#ifdef CONFIG_SMP
135#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
136 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
137 num_online_cpus())
138#else
139#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
140 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
141#endif
142
143#define SCALE(v1,v1_max,v2_max) \
144 (v1) * (v2_max) / (v1_max)
145
146#define DELTA(p) \
147 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
148
149#define TASK_INTERACTIVE(p) \
150 ((p)->prio <= (p)->static_prio - DELTA(p))
151
152#define INTERACTIVE_SLEEP(p) \
153 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
154 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
155
156#define TASK_PREEMPTS_CURR(p, rq) \
157 ((p)->prio < (rq)->curr->prio)
158
159/*
160 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
161 * to time slice values: [800ms ... 100ms ... 5ms]
162 *
163 * The higher a thread's priority, the bigger timeslices
164 * it gets during one round of execution. But even the lowest
165 * priority thread gets MIN_TIMESLICE worth of execution time.
166 */
167
168#define SCALE_PRIO(x, prio) \
169 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
170
48c08d3f 171static unsigned int task_timeslice(task_t *p)
1da177e4
LT
172{
173 if (p->static_prio < NICE_TO_PRIO(0))
174 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
175 else
176 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
177}
178#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
179 < (long long) (sd)->cache_hot_time)
180
e56d0903
IM
181void __put_task_struct_cb(struct rcu_head *rhp)
182{
183 __put_task_struct(container_of(rhp, struct task_struct, rcu));
184}
185
186EXPORT_SYMBOL_GPL(__put_task_struct_cb);
187
1da177e4
LT
188/*
189 * These are the runqueue data structures:
190 */
191
192#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
193
194typedef struct runqueue runqueue_t;
195
196struct prio_array {
197 unsigned int nr_active;
198 unsigned long bitmap[BITMAP_SIZE];
199 struct list_head queue[MAX_PRIO];
200};
201
202/*
203 * This is the main, per-CPU runqueue data structure.
204 *
205 * Locking rule: those places that want to lock multiple runqueues
206 * (such as the load balancing or the thread migration code), lock
207 * acquire operations must be ordered by ascending &runqueue.
208 */
209struct runqueue {
210 spinlock_t lock;
211
212 /*
213 * nr_running and cpu_load should be in the same cacheline because
214 * remote CPUs use both these fields when doing load calculation.
215 */
216 unsigned long nr_running;
217#ifdef CONFIG_SMP
b910472d 218 unsigned long prio_bias;
7897986b 219 unsigned long cpu_load[3];
1da177e4
LT
220#endif
221 unsigned long long nr_switches;
222
223 /*
224 * This is part of a global counter where only the total sum
225 * over all CPUs matters. A task can increase this counter on
226 * one CPU and if it got migrated afterwards it may decrease
227 * it on another CPU. Always updated under the runqueue lock:
228 */
229 unsigned long nr_uninterruptible;
230
231 unsigned long expired_timestamp;
232 unsigned long long timestamp_last_tick;
233 task_t *curr, *idle;
234 struct mm_struct *prev_mm;
235 prio_array_t *active, *expired, arrays[2];
236 int best_expired_prio;
237 atomic_t nr_iowait;
238
239#ifdef CONFIG_SMP
240 struct sched_domain *sd;
241
242 /* For active balancing */
243 int active_balance;
244 int push_cpu;
245
246 task_t *migration_thread;
247 struct list_head migration_queue;
248#endif
249
250#ifdef CONFIG_SCHEDSTATS
251 /* latency stats */
252 struct sched_info rq_sched_info;
253
254 /* sys_sched_yield() stats */
255 unsigned long yld_exp_empty;
256 unsigned long yld_act_empty;
257 unsigned long yld_both_empty;
258 unsigned long yld_cnt;
259
260 /* schedule() stats */
261 unsigned long sched_switch;
262 unsigned long sched_cnt;
263 unsigned long sched_goidle;
264
265 /* try_to_wake_up() stats */
266 unsigned long ttwu_cnt;
267 unsigned long ttwu_local;
268#endif
269};
270
271static DEFINE_PER_CPU(struct runqueue, runqueues);
272
674311d5
NP
273/*
274 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 275 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
276 *
277 * The domain tree of any CPU may only be accessed from within
278 * preempt-disabled sections.
279 */
1da177e4 280#define for_each_domain(cpu, domain) \
674311d5 281for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
1da177e4
LT
282
283#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
284#define this_rq() (&__get_cpu_var(runqueues))
285#define task_rq(p) cpu_rq(task_cpu(p))
286#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
287
1da177e4 288#ifndef prepare_arch_switch
4866cde0
NP
289# define prepare_arch_switch(next) do { } while (0)
290#endif
291#ifndef finish_arch_switch
292# define finish_arch_switch(prev) do { } while (0)
293#endif
294
295#ifndef __ARCH_WANT_UNLOCKED_CTXSW
296static inline int task_running(runqueue_t *rq, task_t *p)
297{
298 return rq->curr == p;
299}
300
301static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
302{
303}
304
305static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
306{
da04c035
IM
307#ifdef CONFIG_DEBUG_SPINLOCK
308 /* this is a valid case when another task releases the spinlock */
309 rq->lock.owner = current;
310#endif
4866cde0
NP
311 spin_unlock_irq(&rq->lock);
312}
313
314#else /* __ARCH_WANT_UNLOCKED_CTXSW */
315static inline int task_running(runqueue_t *rq, task_t *p)
316{
317#ifdef CONFIG_SMP
318 return p->oncpu;
319#else
320 return rq->curr == p;
321#endif
322}
323
324static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
325{
326#ifdef CONFIG_SMP
327 /*
328 * We can optimise this out completely for !SMP, because the
329 * SMP rebalancing from interrupt is the only thing that cares
330 * here.
331 */
332 next->oncpu = 1;
333#endif
334#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
335 spin_unlock_irq(&rq->lock);
336#else
337 spin_unlock(&rq->lock);
338#endif
339}
340
341static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
342{
343#ifdef CONFIG_SMP
344 /*
345 * After ->oncpu is cleared, the task can be moved to a different CPU.
346 * We must ensure this doesn't happen until the switch is completely
347 * finished.
348 */
349 smp_wmb();
350 prev->oncpu = 0;
351#endif
352#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
353 local_irq_enable();
1da177e4 354#endif
4866cde0
NP
355}
356#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4
LT
357
358/*
359 * task_rq_lock - lock the runqueue a given task resides on and disable
360 * interrupts. Note the ordering: we can safely lookup the task_rq without
361 * explicitly disabling preemption.
362 */
363static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
364 __acquires(rq->lock)
365{
366 struct runqueue *rq;
367
368repeat_lock_task:
369 local_irq_save(*flags);
370 rq = task_rq(p);
371 spin_lock(&rq->lock);
372 if (unlikely(rq != task_rq(p))) {
373 spin_unlock_irqrestore(&rq->lock, *flags);
374 goto repeat_lock_task;
375 }
376 return rq;
377}
378
379static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
380 __releases(rq->lock)
381{
382 spin_unlock_irqrestore(&rq->lock, *flags);
383}
384
385#ifdef CONFIG_SCHEDSTATS
386/*
387 * bump this up when changing the output format or the meaning of an existing
388 * format, so that tools can adapt (or abort)
389 */
68767a0a 390#define SCHEDSTAT_VERSION 12
1da177e4
LT
391
392static int show_schedstat(struct seq_file *seq, void *v)
393{
394 int cpu;
395
396 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
397 seq_printf(seq, "timestamp %lu\n", jiffies);
398 for_each_online_cpu(cpu) {
399 runqueue_t *rq = cpu_rq(cpu);
400#ifdef CONFIG_SMP
401 struct sched_domain *sd;
402 int dcnt = 0;
403#endif
404
405 /* runqueue-specific stats */
406 seq_printf(seq,
407 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
408 cpu, rq->yld_both_empty,
409 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
410 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
411 rq->ttwu_cnt, rq->ttwu_local,
412 rq->rq_sched_info.cpu_time,
413 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
414
415 seq_printf(seq, "\n");
416
417#ifdef CONFIG_SMP
418 /* domain-specific stats */
674311d5 419 preempt_disable();
1da177e4
LT
420 for_each_domain(cpu, sd) {
421 enum idle_type itype;
422 char mask_str[NR_CPUS];
423
424 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
425 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
426 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
427 itype++) {
428 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
429 sd->lb_cnt[itype],
430 sd->lb_balanced[itype],
431 sd->lb_failed[itype],
432 sd->lb_imbalance[itype],
433 sd->lb_gained[itype],
434 sd->lb_hot_gained[itype],
435 sd->lb_nobusyq[itype],
436 sd->lb_nobusyg[itype]);
437 }
68767a0a 438 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 439 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
440 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
441 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
442 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
443 }
674311d5 444 preempt_enable();
1da177e4
LT
445#endif
446 }
447 return 0;
448}
449
450static int schedstat_open(struct inode *inode, struct file *file)
451{
452 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
453 char *buf = kmalloc(size, GFP_KERNEL);
454 struct seq_file *m;
455 int res;
456
457 if (!buf)
458 return -ENOMEM;
459 res = single_open(file, show_schedstat, NULL);
460 if (!res) {
461 m = file->private_data;
462 m->buf = buf;
463 m->size = size;
464 } else
465 kfree(buf);
466 return res;
467}
468
469struct file_operations proc_schedstat_operations = {
470 .open = schedstat_open,
471 .read = seq_read,
472 .llseek = seq_lseek,
473 .release = single_release,
474};
475
476# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
477# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
478#else /* !CONFIG_SCHEDSTATS */
479# define schedstat_inc(rq, field) do { } while (0)
480# define schedstat_add(rq, field, amt) do { } while (0)
481#endif
482
483/*
484 * rq_lock - lock a given runqueue and disable interrupts.
485 */
486static inline runqueue_t *this_rq_lock(void)
487 __acquires(rq->lock)
488{
489 runqueue_t *rq;
490
491 local_irq_disable();
492 rq = this_rq();
493 spin_lock(&rq->lock);
494
495 return rq;
496}
497
1da177e4
LT
498#ifdef CONFIG_SCHEDSTATS
499/*
500 * Called when a process is dequeued from the active array and given
501 * the cpu. We should note that with the exception of interactive
502 * tasks, the expired queue will become the active queue after the active
503 * queue is empty, without explicitly dequeuing and requeuing tasks in the
504 * expired queue. (Interactive tasks may be requeued directly to the
505 * active queue, thus delaying tasks in the expired queue from running;
506 * see scheduler_tick()).
507 *
508 * This function is only called from sched_info_arrive(), rather than
509 * dequeue_task(). Even though a task may be queued and dequeued multiple
510 * times as it is shuffled about, we're really interested in knowing how
511 * long it was from the *first* time it was queued to the time that it
512 * finally hit a cpu.
513 */
514static inline void sched_info_dequeued(task_t *t)
515{
516 t->sched_info.last_queued = 0;
517}
518
519/*
520 * Called when a task finally hits the cpu. We can now calculate how
521 * long it was waiting to run. We also note when it began so that we
522 * can keep stats on how long its timeslice is.
523 */
524static inline void sched_info_arrive(task_t *t)
525{
526 unsigned long now = jiffies, diff = 0;
527 struct runqueue *rq = task_rq(t);
528
529 if (t->sched_info.last_queued)
530 diff = now - t->sched_info.last_queued;
531 sched_info_dequeued(t);
532 t->sched_info.run_delay += diff;
533 t->sched_info.last_arrival = now;
534 t->sched_info.pcnt++;
535
536 if (!rq)
537 return;
538
539 rq->rq_sched_info.run_delay += diff;
540 rq->rq_sched_info.pcnt++;
541}
542
543/*
544 * Called when a process is queued into either the active or expired
545 * array. The time is noted and later used to determine how long we
546 * had to wait for us to reach the cpu. Since the expired queue will
547 * become the active queue after active queue is empty, without dequeuing
548 * and requeuing any tasks, we are interested in queuing to either. It
549 * is unusual but not impossible for tasks to be dequeued and immediately
550 * requeued in the same or another array: this can happen in sched_yield(),
551 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
552 * to runqueue.
553 *
554 * This function is only called from enqueue_task(), but also only updates
555 * the timestamp if it is already not set. It's assumed that
556 * sched_info_dequeued() will clear that stamp when appropriate.
557 */
558static inline void sched_info_queued(task_t *t)
559{
560 if (!t->sched_info.last_queued)
561 t->sched_info.last_queued = jiffies;
562}
563
564/*
565 * Called when a process ceases being the active-running process, either
566 * voluntarily or involuntarily. Now we can calculate how long we ran.
567 */
568static inline void sched_info_depart(task_t *t)
569{
570 struct runqueue *rq = task_rq(t);
571 unsigned long diff = jiffies - t->sched_info.last_arrival;
572
573 t->sched_info.cpu_time += diff;
574
575 if (rq)
576 rq->rq_sched_info.cpu_time += diff;
577}
578
579/*
580 * Called when tasks are switched involuntarily due, typically, to expiring
581 * their time slice. (This may also be called when switching to or from
582 * the idle task.) We are only called when prev != next.
583 */
584static inline void sched_info_switch(task_t *prev, task_t *next)
585{
586 struct runqueue *rq = task_rq(prev);
587
588 /*
589 * prev now departs the cpu. It's not interesting to record
590 * stats about how efficient we were at scheduling the idle
591 * process, however.
592 */
593 if (prev != rq->idle)
594 sched_info_depart(prev);
595
596 if (next != rq->idle)
597 sched_info_arrive(next);
598}
599#else
600#define sched_info_queued(t) do { } while (0)
601#define sched_info_switch(t, next) do { } while (0)
602#endif /* CONFIG_SCHEDSTATS */
603
604/*
605 * Adding/removing a task to/from a priority array:
606 */
607static void dequeue_task(struct task_struct *p, prio_array_t *array)
608{
609 array->nr_active--;
610 list_del(&p->run_list);
611 if (list_empty(array->queue + p->prio))
612 __clear_bit(p->prio, array->bitmap);
613}
614
615static void enqueue_task(struct task_struct *p, prio_array_t *array)
616{
617 sched_info_queued(p);
618 list_add_tail(&p->run_list, array->queue + p->prio);
619 __set_bit(p->prio, array->bitmap);
620 array->nr_active++;
621 p->array = array;
622}
623
624/*
625 * Put task to the end of the run list without the overhead of dequeue
626 * followed by enqueue.
627 */
628static void requeue_task(struct task_struct *p, prio_array_t *array)
629{
630 list_move_tail(&p->run_list, array->queue + p->prio);
631}
632
633static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
634{
635 list_add(&p->run_list, array->queue + p->prio);
636 __set_bit(p->prio, array->bitmap);
637 array->nr_active++;
638 p->array = array;
639}
640
641/*
642 * effective_prio - return the priority that is based on the static
643 * priority but is modified by bonuses/penalties.
644 *
645 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
646 * into the -5 ... 0 ... +5 bonus/penalty range.
647 *
648 * We use 25% of the full 0...39 priority range so that:
649 *
650 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
651 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
652 *
653 * Both properties are important to certain workloads.
654 */
655static int effective_prio(task_t *p)
656{
657 int bonus, prio;
658
659 if (rt_task(p))
660 return p->prio;
661
662 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
663
664 prio = p->static_prio - bonus;
665 if (prio < MAX_RT_PRIO)
666 prio = MAX_RT_PRIO;
667 if (prio > MAX_PRIO-1)
668 prio = MAX_PRIO-1;
669 return prio;
670}
671
b910472d 672#ifdef CONFIG_SMP
dad1c65c 673static inline void inc_prio_bias(runqueue_t *rq, int prio)
b910472d 674{
dad1c65c 675 rq->prio_bias += MAX_PRIO - prio;
b910472d
CK
676}
677
dad1c65c 678static inline void dec_prio_bias(runqueue_t *rq, int prio)
b910472d 679{
dad1c65c 680 rq->prio_bias -= MAX_PRIO - prio;
b910472d 681}
ede3d0fb
CK
682
683static inline void inc_nr_running(task_t *p, runqueue_t *rq)
684{
685 rq->nr_running++;
686 if (rt_task(p)) {
687 if (p != rq->migration_thread)
688 /*
689 * The migration thread does the actual balancing. Do
690 * not bias by its priority as the ultra high priority
691 * will skew balancing adversely.
692 */
693 inc_prio_bias(rq, p->prio);
694 } else
695 inc_prio_bias(rq, p->static_prio);
696}
697
698static inline void dec_nr_running(task_t *p, runqueue_t *rq)
699{
700 rq->nr_running--;
701 if (rt_task(p)) {
702 if (p != rq->migration_thread)
703 dec_prio_bias(rq, p->prio);
704 } else
705 dec_prio_bias(rq, p->static_prio);
706}
b910472d 707#else
dad1c65c 708static inline void inc_prio_bias(runqueue_t *rq, int prio)
b910472d
CK
709{
710}
711
dad1c65c 712static inline void dec_prio_bias(runqueue_t *rq, int prio)
b910472d
CK
713{
714}
b910472d
CK
715
716static inline void inc_nr_running(task_t *p, runqueue_t *rq)
717{
718 rq->nr_running++;
b910472d
CK
719}
720
721static inline void dec_nr_running(task_t *p, runqueue_t *rq)
722{
723 rq->nr_running--;
b910472d 724}
ede3d0fb 725#endif
b910472d 726
1da177e4
LT
727/*
728 * __activate_task - move a task to the runqueue.
729 */
730static inline void __activate_task(task_t *p, runqueue_t *rq)
731{
732 enqueue_task(p, rq->active);
b910472d 733 inc_nr_running(p, rq);
1da177e4
LT
734}
735
736/*
737 * __activate_idle_task - move idle task to the _front_ of runqueue.
738 */
739static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
740{
741 enqueue_task_head(p, rq->active);
b910472d 742 inc_nr_running(p, rq);
1da177e4
LT
743}
744
a3464a10 745static int recalc_task_prio(task_t *p, unsigned long long now)
1da177e4
LT
746{
747 /* Caller must always ensure 'now >= p->timestamp' */
748 unsigned long long __sleep_time = now - p->timestamp;
749 unsigned long sleep_time;
750
751 if (__sleep_time > NS_MAX_SLEEP_AVG)
752 sleep_time = NS_MAX_SLEEP_AVG;
753 else
754 sleep_time = (unsigned long)__sleep_time;
755
756 if (likely(sleep_time > 0)) {
757 /*
758 * User tasks that sleep a long time are categorised as
759 * idle and will get just interactive status to stay active &
760 * prevent them suddenly becoming cpu hogs and starving
761 * other processes.
762 */
763 if (p->mm && p->activated != -1 &&
764 sleep_time > INTERACTIVE_SLEEP(p)) {
765 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
766 DEF_TIMESLICE);
767 } else {
768 /*
769 * The lower the sleep avg a task has the more
770 * rapidly it will rise with sleep time.
771 */
772 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
773
774 /*
775 * Tasks waking from uninterruptible sleep are
776 * limited in their sleep_avg rise as they
777 * are likely to be waiting on I/O
778 */
779 if (p->activated == -1 && p->mm) {
780 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
781 sleep_time = 0;
782 else if (p->sleep_avg + sleep_time >=
783 INTERACTIVE_SLEEP(p)) {
784 p->sleep_avg = INTERACTIVE_SLEEP(p);
785 sleep_time = 0;
786 }
787 }
788
789 /*
790 * This code gives a bonus to interactive tasks.
791 *
792 * The boost works by updating the 'average sleep time'
793 * value here, based on ->timestamp. The more time a
794 * task spends sleeping, the higher the average gets -
795 * and the higher the priority boost gets as well.
796 */
797 p->sleep_avg += sleep_time;
798
799 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
800 p->sleep_avg = NS_MAX_SLEEP_AVG;
801 }
802 }
803
a3464a10 804 return effective_prio(p);
1da177e4
LT
805}
806
807/*
808 * activate_task - move a task to the runqueue and do priority recalculation
809 *
810 * Update all the scheduling statistics stuff. (sleep average
811 * calculation, priority modifiers, etc.)
812 */
813static void activate_task(task_t *p, runqueue_t *rq, int local)
814{
815 unsigned long long now;
816
817 now = sched_clock();
818#ifdef CONFIG_SMP
819 if (!local) {
820 /* Compensate for drifting sched_clock */
821 runqueue_t *this_rq = this_rq();
822 now = (now - this_rq->timestamp_last_tick)
823 + rq->timestamp_last_tick;
824 }
825#endif
826
a47ab937
KC
827 if (!rt_task(p))
828 p->prio = recalc_task_prio(p, now);
1da177e4
LT
829
830 /*
831 * This checks to make sure it's not an uninterruptible task
832 * that is now waking up.
833 */
834 if (!p->activated) {
835 /*
836 * Tasks which were woken up by interrupts (ie. hw events)
837 * are most likely of interactive nature. So we give them
838 * the credit of extending their sleep time to the period
839 * of time they spend on the runqueue, waiting for execution
840 * on a CPU, first time around:
841 */
842 if (in_interrupt())
843 p->activated = 2;
844 else {
845 /*
846 * Normal first-time wakeups get a credit too for
847 * on-runqueue time, but it will be weighted down:
848 */
849 p->activated = 1;
850 }
851 }
852 p->timestamp = now;
853
854 __activate_task(p, rq);
855}
856
857/*
858 * deactivate_task - remove a task from the runqueue.
859 */
860static void deactivate_task(struct task_struct *p, runqueue_t *rq)
861{
b910472d 862 dec_nr_running(p, rq);
1da177e4
LT
863 dequeue_task(p, p->array);
864 p->array = NULL;
865}
866
867/*
868 * resched_task - mark a task 'to be rescheduled now'.
869 *
870 * On UP this means the setting of the need_resched flag, on SMP it
871 * might also involve a cross-CPU call to trigger the scheduler on
872 * the target CPU.
873 */
874#ifdef CONFIG_SMP
875static void resched_task(task_t *p)
876{
64c7c8f8 877 int cpu;
1da177e4
LT
878
879 assert_spin_locked(&task_rq(p)->lock);
880
64c7c8f8
NP
881 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
882 return;
883
884 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 885
64c7c8f8
NP
886 cpu = task_cpu(p);
887 if (cpu == smp_processor_id())
888 return;
889
890 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
891 smp_mb();
892 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
893 smp_send_reschedule(cpu);
1da177e4
LT
894}
895#else
896static inline void resched_task(task_t *p)
897{
64c7c8f8 898 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
899 set_tsk_need_resched(p);
900}
901#endif
902
903/**
904 * task_curr - is this task currently executing on a CPU?
905 * @p: the task in question.
906 */
907inline int task_curr(const task_t *p)
908{
909 return cpu_curr(task_cpu(p)) == p;
910}
911
912#ifdef CONFIG_SMP
1da177e4
LT
913typedef struct {
914 struct list_head list;
1da177e4 915
1da177e4
LT
916 task_t *task;
917 int dest_cpu;
918
1da177e4
LT
919 struct completion done;
920} migration_req_t;
921
922/*
923 * The task's runqueue lock must be held.
924 * Returns true if you have to wait for migration thread.
925 */
926static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
927{
928 runqueue_t *rq = task_rq(p);
929
930 /*
931 * If the task is not on a runqueue (and not running), then
932 * it is sufficient to simply update the task's cpu field.
933 */
934 if (!p->array && !task_running(rq, p)) {
935 set_task_cpu(p, dest_cpu);
936 return 0;
937 }
938
939 init_completion(&req->done);
1da177e4
LT
940 req->task = p;
941 req->dest_cpu = dest_cpu;
942 list_add(&req->list, &rq->migration_queue);
943 return 1;
944}
945
946/*
947 * wait_task_inactive - wait for a thread to unschedule.
948 *
949 * The caller must ensure that the task *will* unschedule sometime soon,
950 * else this function might spin for a *long* time. This function can't
951 * be called with interrupts off, or it may introduce deadlock with
952 * smp_call_function() if an IPI is sent by the same process we are
953 * waiting to become inactive.
954 */
95cdf3b7 955void wait_task_inactive(task_t *p)
1da177e4
LT
956{
957 unsigned long flags;
958 runqueue_t *rq;
959 int preempted;
960
961repeat:
962 rq = task_rq_lock(p, &flags);
963 /* Must be off runqueue entirely, not preempted. */
964 if (unlikely(p->array || task_running(rq, p))) {
965 /* If it's preempted, we yield. It could be a while. */
966 preempted = !task_running(rq, p);
967 task_rq_unlock(rq, &flags);
968 cpu_relax();
969 if (preempted)
970 yield();
971 goto repeat;
972 }
973 task_rq_unlock(rq, &flags);
974}
975
976/***
977 * kick_process - kick a running thread to enter/exit the kernel
978 * @p: the to-be-kicked thread
979 *
980 * Cause a process which is running on another CPU to enter
981 * kernel-mode, without any delay. (to get signals handled.)
982 *
983 * NOTE: this function doesnt have to take the runqueue lock,
984 * because all it wants to ensure is that the remote task enters
985 * the kernel. If the IPI races and the task has been migrated
986 * to another CPU then no harm is done and the purpose has been
987 * achieved as well.
988 */
989void kick_process(task_t *p)
990{
991 int cpu;
992
993 preempt_disable();
994 cpu = task_cpu(p);
995 if ((cpu != smp_processor_id()) && task_curr(p))
996 smp_send_reschedule(cpu);
997 preempt_enable();
998}
999
1000/*
1001 * Return a low guess at the load of a migration-source cpu.
1002 *
1003 * We want to under-estimate the load of migration sources, to
1004 * balance conservatively.
1005 */
b910472d 1006static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
1da177e4
LT
1007{
1008 runqueue_t *rq = cpu_rq(cpu);
6dd4a85b 1009 unsigned long running = rq->nr_running;
3b0bd9bc 1010 unsigned long source_load, cpu_load = rq->cpu_load[type-1],
6dd4a85b 1011 load_now = running * SCHED_LOAD_SCALE;
b910472d 1012
3b0bd9bc
CK
1013 if (type == 0)
1014 source_load = load_now;
1015 else
1016 source_load = min(cpu_load, load_now);
1017
6dd4a85b 1018 if (running > 1 || (idle == NOT_IDLE && running))
b910472d 1019 /*
3b0bd9bc
CK
1020 * If we are busy rebalancing the load is biased by
1021 * priority to create 'nice' support across cpus. When
1022 * idle rebalancing we should only bias the source_load if
1023 * there is more than one task running on that queue to
1024 * prevent idle rebalance from trying to pull tasks from a
1025 * queue with only one running task.
b910472d 1026 */
6dd4a85b 1027 source_load = source_load * rq->prio_bias / running;
b910472d 1028
3b0bd9bc 1029 return source_load;
b910472d
CK
1030}
1031
1032static inline unsigned long source_load(int cpu, int type)
1033{
1034 return __source_load(cpu, type, NOT_IDLE);
1da177e4
LT
1035}
1036
1037/*
1038 * Return a high guess at the load of a migration-target cpu
1039 */
b910472d 1040static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1da177e4
LT
1041{
1042 runqueue_t *rq = cpu_rq(cpu);
6dd4a85b 1043 unsigned long running = rq->nr_running;
3b0bd9bc 1044 unsigned long target_load, cpu_load = rq->cpu_load[type-1],
6dd4a85b 1045 load_now = running * SCHED_LOAD_SCALE;
b910472d 1046
7897986b 1047 if (type == 0)
3b0bd9bc
CK
1048 target_load = load_now;
1049 else
1050 target_load = max(cpu_load, load_now);
1da177e4 1051
6dd4a85b
CK
1052 if (running > 1 || (idle == NOT_IDLE && running))
1053 target_load = target_load * rq->prio_bias / running;
3b0bd9bc
CK
1054
1055 return target_load;
b910472d
CK
1056}
1057
1058static inline unsigned long target_load(int cpu, int type)
1059{
1060 return __target_load(cpu, type, NOT_IDLE);
1da177e4
LT
1061}
1062
147cbb4b
NP
1063/*
1064 * find_idlest_group finds and returns the least busy CPU group within the
1065 * domain.
1066 */
1067static struct sched_group *
1068find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1069{
1070 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1071 unsigned long min_load = ULONG_MAX, this_load = 0;
1072 int load_idx = sd->forkexec_idx;
1073 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1074
1075 do {
1076 unsigned long load, avg_load;
1077 int local_group;
1078 int i;
1079
da5a5522
BD
1080 /* Skip over this group if it has no CPUs allowed */
1081 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1082 goto nextgroup;
1083
147cbb4b 1084 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1085
1086 /* Tally up the load of all CPUs in the group */
1087 avg_load = 0;
1088
1089 for_each_cpu_mask(i, group->cpumask) {
1090 /* Bias balancing toward cpus of our domain */
1091 if (local_group)
1092 load = source_load(i, load_idx);
1093 else
1094 load = target_load(i, load_idx);
1095
1096 avg_load += load;
1097 }
1098
1099 /* Adjust by relative CPU power of the group */
1100 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1101
1102 if (local_group) {
1103 this_load = avg_load;
1104 this = group;
1105 } else if (avg_load < min_load) {
1106 min_load = avg_load;
1107 idlest = group;
1108 }
da5a5522 1109nextgroup:
147cbb4b
NP
1110 group = group->next;
1111 } while (group != sd->groups);
1112
1113 if (!idlest || 100*this_load < imbalance*min_load)
1114 return NULL;
1115 return idlest;
1116}
1117
1118/*
1119 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1120 */
95cdf3b7
IM
1121static int
1122find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1123{
da5a5522 1124 cpumask_t tmp;
147cbb4b
NP
1125 unsigned long load, min_load = ULONG_MAX;
1126 int idlest = -1;
1127 int i;
1128
da5a5522
BD
1129 /* Traverse only the allowed CPUs */
1130 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1131
1132 for_each_cpu_mask(i, tmp) {
147cbb4b
NP
1133 load = source_load(i, 0);
1134
1135 if (load < min_load || (load == min_load && i == this_cpu)) {
1136 min_load = load;
1137 idlest = i;
1138 }
1139 }
1140
1141 return idlest;
1142}
1143
476d139c
NP
1144/*
1145 * sched_balance_self: balance the current task (running on cpu) in domains
1146 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1147 * SD_BALANCE_EXEC.
1148 *
1149 * Balance, ie. select the least loaded group.
1150 *
1151 * Returns the target CPU number, or the same CPU if no balancing is needed.
1152 *
1153 * preempt must be disabled.
1154 */
1155static int sched_balance_self(int cpu, int flag)
1156{
1157 struct task_struct *t = current;
1158 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1159
476d139c
NP
1160 for_each_domain(cpu, tmp)
1161 if (tmp->flags & flag)
1162 sd = tmp;
1163
1164 while (sd) {
1165 cpumask_t span;
1166 struct sched_group *group;
1167 int new_cpu;
1168 int weight;
1169
1170 span = sd->span;
1171 group = find_idlest_group(sd, t, cpu);
1172 if (!group)
1173 goto nextlevel;
1174
da5a5522 1175 new_cpu = find_idlest_cpu(group, t, cpu);
476d139c
NP
1176 if (new_cpu == -1 || new_cpu == cpu)
1177 goto nextlevel;
1178
1179 /* Now try balancing at a lower domain level */
1180 cpu = new_cpu;
1181nextlevel:
1182 sd = NULL;
1183 weight = cpus_weight(span);
1184 for_each_domain(cpu, tmp) {
1185 if (weight <= cpus_weight(tmp->span))
1186 break;
1187 if (tmp->flags & flag)
1188 sd = tmp;
1189 }
1190 /* while loop will break here if sd == NULL */
1191 }
1192
1193 return cpu;
1194}
1195
1196#endif /* CONFIG_SMP */
1da177e4
LT
1197
1198/*
1199 * wake_idle() will wake a task on an idle cpu if task->cpu is
1200 * not idle and an idle cpu is available. The span of cpus to
1201 * search starts with cpus closest then further out as needed,
1202 * so we always favor a closer, idle cpu.
1203 *
1204 * Returns the CPU we should wake onto.
1205 */
1206#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1207static int wake_idle(int cpu, task_t *p)
1208{
1209 cpumask_t tmp;
1210 struct sched_domain *sd;
1211 int i;
1212
1213 if (idle_cpu(cpu))
1214 return cpu;
1215
1216 for_each_domain(cpu, sd) {
1217 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1218 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1219 for_each_cpu_mask(i, tmp) {
1220 if (idle_cpu(i))
1221 return i;
1222 }
1223 }
e0f364f4
NP
1224 else
1225 break;
1da177e4
LT
1226 }
1227 return cpu;
1228}
1229#else
1230static inline int wake_idle(int cpu, task_t *p)
1231{
1232 return cpu;
1233}
1234#endif
1235
1236/***
1237 * try_to_wake_up - wake up a thread
1238 * @p: the to-be-woken-up thread
1239 * @state: the mask of task states that can be woken
1240 * @sync: do a synchronous wakeup?
1241 *
1242 * Put it on the run-queue if it's not already there. The "current"
1243 * thread is always on the run-queue (except when the actual
1244 * re-schedule is in progress), and as such you're allowed to do
1245 * the simpler "current->state = TASK_RUNNING" to mark yourself
1246 * runnable without the overhead of this.
1247 *
1248 * returns failure only if the task is already active.
1249 */
95cdf3b7 1250static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1da177e4
LT
1251{
1252 int cpu, this_cpu, success = 0;
1253 unsigned long flags;
1254 long old_state;
1255 runqueue_t *rq;
1256#ifdef CONFIG_SMP
1257 unsigned long load, this_load;
7897986b 1258 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
1259 int new_cpu;
1260#endif
1261
1262 rq = task_rq_lock(p, &flags);
1263 old_state = p->state;
1264 if (!(old_state & state))
1265 goto out;
1266
1267 if (p->array)
1268 goto out_running;
1269
1270 cpu = task_cpu(p);
1271 this_cpu = smp_processor_id();
1272
1273#ifdef CONFIG_SMP
1274 if (unlikely(task_running(rq, p)))
1275 goto out_activate;
1276
7897986b
NP
1277 new_cpu = cpu;
1278
1da177e4
LT
1279 schedstat_inc(rq, ttwu_cnt);
1280 if (cpu == this_cpu) {
1281 schedstat_inc(rq, ttwu_local);
7897986b
NP
1282 goto out_set_cpu;
1283 }
1284
1285 for_each_domain(this_cpu, sd) {
1286 if (cpu_isset(cpu, sd->span)) {
1287 schedstat_inc(sd, ttwu_wake_remote);
1288 this_sd = sd;
1289 break;
1da177e4
LT
1290 }
1291 }
1da177e4 1292
d7102e95 1293 if (p->last_waker_cpu != this_cpu)
1294 goto out_set_cpu;
1295
7897986b 1296 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1297 goto out_set_cpu;
1298
1da177e4 1299 /*
7897986b 1300 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1301 */
7897986b
NP
1302 if (this_sd) {
1303 int idx = this_sd->wake_idx;
1304 unsigned int imbalance;
1da177e4 1305
a3f21bce
NP
1306 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1307
7897986b
NP
1308 load = source_load(cpu, idx);
1309 this_load = target_load(this_cpu, idx);
1da177e4 1310
7897986b
NP
1311 new_cpu = this_cpu; /* Wake to this CPU if we can */
1312
a3f21bce
NP
1313 if (this_sd->flags & SD_WAKE_AFFINE) {
1314 unsigned long tl = this_load;
1da177e4 1315 /*
a3f21bce
NP
1316 * If sync wakeup then subtract the (maximum possible)
1317 * effect of the currently running task from the load
1318 * of the current CPU:
1da177e4 1319 */
a3f21bce
NP
1320 if (sync)
1321 tl -= SCHED_LOAD_SCALE;
1322
1323 if ((tl <= load &&
1324 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1325 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1326 /*
1327 * This domain has SD_WAKE_AFFINE and
1328 * p is cache cold in this domain, and
1329 * there is no bad imbalance.
1330 */
1331 schedstat_inc(this_sd, ttwu_move_affine);
1332 goto out_set_cpu;
1333 }
1334 }
1335
1336 /*
1337 * Start passive balancing when half the imbalance_pct
1338 * limit is reached.
1339 */
1340 if (this_sd->flags & SD_WAKE_BALANCE) {
1341 if (imbalance*this_load <= 100*load) {
1342 schedstat_inc(this_sd, ttwu_move_balance);
1343 goto out_set_cpu;
1344 }
1da177e4
LT
1345 }
1346 }
1347
1348 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1349out_set_cpu:
1350 new_cpu = wake_idle(new_cpu, p);
1351 if (new_cpu != cpu) {
1352 set_task_cpu(p, new_cpu);
1353 task_rq_unlock(rq, &flags);
1354 /* might preempt at this point */
1355 rq = task_rq_lock(p, &flags);
1356 old_state = p->state;
1357 if (!(old_state & state))
1358 goto out;
1359 if (p->array)
1360 goto out_running;
1361
1362 this_cpu = smp_processor_id();
1363 cpu = task_cpu(p);
1364 }
1365
d7102e95 1366 p->last_waker_cpu = this_cpu;
1367
1da177e4
LT
1368out_activate:
1369#endif /* CONFIG_SMP */
1370 if (old_state == TASK_UNINTERRUPTIBLE) {
1371 rq->nr_uninterruptible--;
1372 /*
1373 * Tasks on involuntary sleep don't earn
1374 * sleep_avg beyond just interactive state.
1375 */
1376 p->activated = -1;
1377 }
1378
d79fc0fc
IM
1379 /*
1380 * Tasks that have marked their sleep as noninteractive get
1381 * woken up without updating their sleep average. (i.e. their
1382 * sleep is handled in a priority-neutral manner, no priority
1383 * boost and no penalty.)
1384 */
1385 if (old_state & TASK_NONINTERACTIVE)
1386 __activate_task(p, rq);
1387 else
1388 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1389 /*
1390 * Sync wakeups (i.e. those types of wakeups where the waker
1391 * has indicated that it will leave the CPU in short order)
1392 * don't trigger a preemption, if the woken up task will run on
1393 * this cpu. (in this case the 'I will reschedule' promise of
1394 * the waker guarantees that the freshly woken up task is going
1395 * to be considered on this CPU.)
1396 */
1da177e4
LT
1397 if (!sync || cpu != this_cpu) {
1398 if (TASK_PREEMPTS_CURR(p, rq))
1399 resched_task(rq->curr);
1400 }
1401 success = 1;
1402
1403out_running:
1404 p->state = TASK_RUNNING;
1405out:
1406 task_rq_unlock(rq, &flags);
1407
1408 return success;
1409}
1410
95cdf3b7 1411int fastcall wake_up_process(task_t *p)
1da177e4
LT
1412{
1413 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1414 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1415}
1416
1417EXPORT_SYMBOL(wake_up_process);
1418
1419int fastcall wake_up_state(task_t *p, unsigned int state)
1420{
1421 return try_to_wake_up(p, state, 0);
1422}
1423
1da177e4
LT
1424/*
1425 * Perform scheduler related setup for a newly forked process p.
1426 * p is forked by current.
1427 */
476d139c 1428void fastcall sched_fork(task_t *p, int clone_flags)
1da177e4 1429{
476d139c
NP
1430 int cpu = get_cpu();
1431
1432#ifdef CONFIG_SMP
1433 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1434#endif
1435 set_task_cpu(p, cpu);
1436
1da177e4
LT
1437 /*
1438 * We mark the process as running here, but have not actually
1439 * inserted it onto the runqueue yet. This guarantees that
1440 * nobody will actually run it, and a signal or other external
1441 * event cannot wake it up and insert it on the runqueue either.
1442 */
1443 p->state = TASK_RUNNING;
1444 INIT_LIST_HEAD(&p->run_list);
1445 p->array = NULL;
1da177e4
LT
1446#ifdef CONFIG_SCHEDSTATS
1447 memset(&p->sched_info, 0, sizeof(p->sched_info));
1448#endif
d7102e95 1449#if defined(CONFIG_SMP)
1450 p->last_waker_cpu = cpu;
1451#if defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1452 p->oncpu = 0;
1453#endif
d7102e95 1454#endif
1da177e4 1455#ifdef CONFIG_PREEMPT
4866cde0 1456 /* Want to start with kernel preemption disabled. */
a1261f54 1457 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1458#endif
1459 /*
1460 * Share the timeslice between parent and child, thus the
1461 * total amount of pending timeslices in the system doesn't change,
1462 * resulting in more scheduling fairness.
1463 */
1464 local_irq_disable();
1465 p->time_slice = (current->time_slice + 1) >> 1;
1466 /*
1467 * The remainder of the first timeslice might be recovered by
1468 * the parent if the child exits early enough.
1469 */
1470 p->first_time_slice = 1;
1471 current->time_slice >>= 1;
1472 p->timestamp = sched_clock();
1473 if (unlikely(!current->time_slice)) {
1474 /*
1475 * This case is rare, it happens when the parent has only
1476 * a single jiffy left from its timeslice. Taking the
1477 * runqueue lock is not a problem.
1478 */
1479 current->time_slice = 1;
1da177e4 1480 scheduler_tick();
476d139c
NP
1481 }
1482 local_irq_enable();
1483 put_cpu();
1da177e4
LT
1484}
1485
1486/*
1487 * wake_up_new_task - wake up a newly created task for the first time.
1488 *
1489 * This function will do some initial scheduler statistics housekeeping
1490 * that must be done for every newly created context, then puts the task
1491 * on the runqueue and wakes it.
1492 */
95cdf3b7 1493void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1da177e4
LT
1494{
1495 unsigned long flags;
1496 int this_cpu, cpu;
1497 runqueue_t *rq, *this_rq;
1498
1499 rq = task_rq_lock(p, &flags);
147cbb4b 1500 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1501 this_cpu = smp_processor_id();
147cbb4b 1502 cpu = task_cpu(p);
1da177e4 1503
1da177e4
LT
1504 /*
1505 * We decrease the sleep average of forking parents
1506 * and children as well, to keep max-interactive tasks
1507 * from forking tasks that are max-interactive. The parent
1508 * (current) is done further down, under its lock.
1509 */
1510 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1511 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1512
1513 p->prio = effective_prio(p);
1514
1515 if (likely(cpu == this_cpu)) {
1516 if (!(clone_flags & CLONE_VM)) {
1517 /*
1518 * The VM isn't cloned, so we're in a good position to
1519 * do child-runs-first in anticipation of an exec. This
1520 * usually avoids a lot of COW overhead.
1521 */
1522 if (unlikely(!current->array))
1523 __activate_task(p, rq);
1524 else {
1525 p->prio = current->prio;
1526 list_add_tail(&p->run_list, &current->run_list);
1527 p->array = current->array;
1528 p->array->nr_active++;
b910472d 1529 inc_nr_running(p, rq);
1da177e4
LT
1530 }
1531 set_need_resched();
1532 } else
1533 /* Run child last */
1534 __activate_task(p, rq);
1535 /*
1536 * We skip the following code due to cpu == this_cpu
1537 *
1538 * task_rq_unlock(rq, &flags);
1539 * this_rq = task_rq_lock(current, &flags);
1540 */
1541 this_rq = rq;
1542 } else {
1543 this_rq = cpu_rq(this_cpu);
1544
1545 /*
1546 * Not the local CPU - must adjust timestamp. This should
1547 * get optimised away in the !CONFIG_SMP case.
1548 */
1549 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1550 + rq->timestamp_last_tick;
1551 __activate_task(p, rq);
1552 if (TASK_PREEMPTS_CURR(p, rq))
1553 resched_task(rq->curr);
1554
1555 /*
1556 * Parent and child are on different CPUs, now get the
1557 * parent runqueue to update the parent's ->sleep_avg:
1558 */
1559 task_rq_unlock(rq, &flags);
1560 this_rq = task_rq_lock(current, &flags);
1561 }
1562 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1563 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1564 task_rq_unlock(this_rq, &flags);
1565}
1566
1567/*
1568 * Potentially available exiting-child timeslices are
1569 * retrieved here - this way the parent does not get
1570 * penalized for creating too many threads.
1571 *
1572 * (this cannot be used to 'generate' timeslices
1573 * artificially, because any timeslice recovered here
1574 * was given away by the parent in the first place.)
1575 */
95cdf3b7 1576void fastcall sched_exit(task_t *p)
1da177e4
LT
1577{
1578 unsigned long flags;
1579 runqueue_t *rq;
1580
1581 /*
1582 * If the child was a (relative-) CPU hog then decrease
1583 * the sleep_avg of the parent as well.
1584 */
1585 rq = task_rq_lock(p->parent, &flags);
889dfafe 1586 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1587 p->parent->time_slice += p->time_slice;
1588 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1589 p->parent->time_slice = task_timeslice(p);
1590 }
1591 if (p->sleep_avg < p->parent->sleep_avg)
1592 p->parent->sleep_avg = p->parent->sleep_avg /
1593 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1594 (EXIT_WEIGHT + 1);
1595 task_rq_unlock(rq, &flags);
1596}
1597
4866cde0
NP
1598/**
1599 * prepare_task_switch - prepare to switch tasks
1600 * @rq: the runqueue preparing to switch
1601 * @next: the task we are going to switch to.
1602 *
1603 * This is called with the rq lock held and interrupts off. It must
1604 * be paired with a subsequent finish_task_switch after the context
1605 * switch.
1606 *
1607 * prepare_task_switch sets up locking and calls architecture specific
1608 * hooks.
1609 */
1610static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1611{
1612 prepare_lock_switch(rq, next);
1613 prepare_arch_switch(next);
1614}
1615
1da177e4
LT
1616/**
1617 * finish_task_switch - clean up after a task-switch
344babaa 1618 * @rq: runqueue associated with task-switch
1da177e4
LT
1619 * @prev: the thread we just switched away from.
1620 *
4866cde0
NP
1621 * finish_task_switch must be called after the context switch, paired
1622 * with a prepare_task_switch call before the context switch.
1623 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1624 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1625 *
1626 * Note that we may have delayed dropping an mm in context_switch(). If
1627 * so, we finish that here outside of the runqueue lock. (Doing it
1628 * with the lock held can cause deadlocks; see schedule() for
1629 * details.)
1630 */
4866cde0 1631static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1da177e4
LT
1632 __releases(rq->lock)
1633{
1da177e4
LT
1634 struct mm_struct *mm = rq->prev_mm;
1635 unsigned long prev_task_flags;
1636
1637 rq->prev_mm = NULL;
1638
1639 /*
1640 * A task struct has one reference for the use as "current".
1641 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1642 * calls schedule one last time. The schedule call will never return,
1643 * and the scheduled task must drop that reference.
1644 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1645 * still held, otherwise prev could be scheduled on another cpu, die
1646 * there before we look at prev->state, and then the reference would
1647 * be dropped twice.
1648 * Manfred Spraul <manfred@colorfullife.com>
1649 */
1650 prev_task_flags = prev->flags;
4866cde0
NP
1651 finish_arch_switch(prev);
1652 finish_lock_switch(rq, prev);
1da177e4
LT
1653 if (mm)
1654 mmdrop(mm);
1655 if (unlikely(prev_task_flags & PF_DEAD))
1656 put_task_struct(prev);
1657}
1658
1659/**
1660 * schedule_tail - first thing a freshly forked thread must call.
1661 * @prev: the thread we just switched away from.
1662 */
1663asmlinkage void schedule_tail(task_t *prev)
1664 __releases(rq->lock)
1665{
4866cde0
NP
1666 runqueue_t *rq = this_rq();
1667 finish_task_switch(rq, prev);
1668#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1669 /* In this case, finish_task_switch does not reenable preemption */
1670 preempt_enable();
1671#endif
1da177e4
LT
1672 if (current->set_child_tid)
1673 put_user(current->pid, current->set_child_tid);
1674}
1675
1676/*
1677 * context_switch - switch to the new MM and the new
1678 * thread's register state.
1679 */
1680static inline
1681task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1682{
1683 struct mm_struct *mm = next->mm;
1684 struct mm_struct *oldmm = prev->active_mm;
1685
1686 if (unlikely(!mm)) {
1687 next->active_mm = oldmm;
1688 atomic_inc(&oldmm->mm_count);
1689 enter_lazy_tlb(oldmm, next);
1690 } else
1691 switch_mm(oldmm, mm, next);
1692
1693 if (unlikely(!prev->mm)) {
1694 prev->active_mm = NULL;
1695 WARN_ON(rq->prev_mm);
1696 rq->prev_mm = oldmm;
1697 }
1698
1699 /* Here we just switch the register state and the stack. */
1700 switch_to(prev, next, prev);
1701
1702 return prev;
1703}
1704
1705/*
1706 * nr_running, nr_uninterruptible and nr_context_switches:
1707 *
1708 * externally visible scheduler statistics: current number of runnable
1709 * threads, current number of uninterruptible-sleeping threads, total
1710 * number of context switches performed since bootup.
1711 */
1712unsigned long nr_running(void)
1713{
1714 unsigned long i, sum = 0;
1715
1716 for_each_online_cpu(i)
1717 sum += cpu_rq(i)->nr_running;
1718
1719 return sum;
1720}
1721
1722unsigned long nr_uninterruptible(void)
1723{
1724 unsigned long i, sum = 0;
1725
1726 for_each_cpu(i)
1727 sum += cpu_rq(i)->nr_uninterruptible;
1728
1729 /*
1730 * Since we read the counters lockless, it might be slightly
1731 * inaccurate. Do not allow it to go below zero though:
1732 */
1733 if (unlikely((long)sum < 0))
1734 sum = 0;
1735
1736 return sum;
1737}
1738
1739unsigned long long nr_context_switches(void)
1740{
1741 unsigned long long i, sum = 0;
1742
1743 for_each_cpu(i)
1744 sum += cpu_rq(i)->nr_switches;
1745
1746 return sum;
1747}
1748
1749unsigned long nr_iowait(void)
1750{
1751 unsigned long i, sum = 0;
1752
1753 for_each_cpu(i)
1754 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1755
1756 return sum;
1757}
1758
1759#ifdef CONFIG_SMP
1760
1761/*
1762 * double_rq_lock - safely lock two runqueues
1763 *
1764 * Note this does not disable interrupts like task_rq_lock,
1765 * you need to do so manually before calling.
1766 */
1767static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1768 __acquires(rq1->lock)
1769 __acquires(rq2->lock)
1770{
1771 if (rq1 == rq2) {
1772 spin_lock(&rq1->lock);
1773 __acquire(rq2->lock); /* Fake it out ;) */
1774 } else {
1775 if (rq1 < rq2) {
1776 spin_lock(&rq1->lock);
1777 spin_lock(&rq2->lock);
1778 } else {
1779 spin_lock(&rq2->lock);
1780 spin_lock(&rq1->lock);
1781 }
1782 }
1783}
1784
1785/*
1786 * double_rq_unlock - safely unlock two runqueues
1787 *
1788 * Note this does not restore interrupts like task_rq_unlock,
1789 * you need to do so manually after calling.
1790 */
1791static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1792 __releases(rq1->lock)
1793 __releases(rq2->lock)
1794{
1795 spin_unlock(&rq1->lock);
1796 if (rq1 != rq2)
1797 spin_unlock(&rq2->lock);
1798 else
1799 __release(rq2->lock);
1800}
1801
1802/*
1803 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1804 */
1805static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1806 __releases(this_rq->lock)
1807 __acquires(busiest->lock)
1808 __acquires(this_rq->lock)
1809{
1810 if (unlikely(!spin_trylock(&busiest->lock))) {
1811 if (busiest < this_rq) {
1812 spin_unlock(&this_rq->lock);
1813 spin_lock(&busiest->lock);
1814 spin_lock(&this_rq->lock);
1815 } else
1816 spin_lock(&busiest->lock);
1817 }
1818}
1819
1da177e4
LT
1820/*
1821 * If dest_cpu is allowed for this process, migrate the task to it.
1822 * This is accomplished by forcing the cpu_allowed mask to only
1823 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1824 * the cpu_allowed mask is restored.
1825 */
1826static void sched_migrate_task(task_t *p, int dest_cpu)
1827{
1828 migration_req_t req;
1829 runqueue_t *rq;
1830 unsigned long flags;
1831
1832 rq = task_rq_lock(p, &flags);
1833 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1834 || unlikely(cpu_is_offline(dest_cpu)))
1835 goto out;
1836
1837 /* force the process onto the specified CPU */
1838 if (migrate_task(p, dest_cpu, &req)) {
1839 /* Need to wait for migration thread (might exit: take ref). */
1840 struct task_struct *mt = rq->migration_thread;
1841 get_task_struct(mt);
1842 task_rq_unlock(rq, &flags);
1843 wake_up_process(mt);
1844 put_task_struct(mt);
1845 wait_for_completion(&req.done);
1846 return;
1847 }
1848out:
1849 task_rq_unlock(rq, &flags);
1850}
1851
1852/*
476d139c
NP
1853 * sched_exec - execve() is a valuable balancing opportunity, because at
1854 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
1855 */
1856void sched_exec(void)
1857{
1da177e4 1858 int new_cpu, this_cpu = get_cpu();
476d139c 1859 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 1860 put_cpu();
476d139c
NP
1861 if (new_cpu != this_cpu)
1862 sched_migrate_task(current, new_cpu);
1da177e4
LT
1863}
1864
1865/*
1866 * pull_task - move a task from a remote runqueue to the local runqueue.
1867 * Both runqueues must be locked.
1868 */
1869static inline
1870void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1871 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1872{
1873 dequeue_task(p, src_array);
b910472d 1874 dec_nr_running(p, src_rq);
1da177e4 1875 set_task_cpu(p, this_cpu);
b910472d 1876 inc_nr_running(p, this_rq);
1da177e4
LT
1877 enqueue_task(p, this_array);
1878 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1879 + this_rq->timestamp_last_tick;
1880 /*
1881 * Note that idle threads have a prio of MAX_PRIO, for this test
1882 * to be always true for them.
1883 */
1884 if (TASK_PREEMPTS_CURR(p, this_rq))
1885 resched_task(this_rq->curr);
1886}
1887
1888/*
1889 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1890 */
1891static inline
1892int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
95cdf3b7
IM
1893 struct sched_domain *sd, enum idle_type idle,
1894 int *all_pinned)
1da177e4
LT
1895{
1896 /*
1897 * We do not migrate tasks that are:
1898 * 1) running (obviously), or
1899 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1900 * 3) are cache-hot on their current CPU.
1901 */
1da177e4
LT
1902 if (!cpu_isset(this_cpu, p->cpus_allowed))
1903 return 0;
81026794
NP
1904 *all_pinned = 0;
1905
1906 if (task_running(rq, p))
1907 return 0;
1da177e4
LT
1908
1909 /*
1910 * Aggressive migration if:
cafb20c1 1911 * 1) task is cache cold, or
1da177e4
LT
1912 * 2) too many balance attempts have failed.
1913 */
1914
cafb20c1 1915 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
1916 return 1;
1917
1918 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1919 return 0;
1da177e4
LT
1920 return 1;
1921}
1922
1923/*
1924 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1925 * as part of a balancing operation within "domain". Returns the number of
1926 * tasks moved.
1927 *
1928 * Called with both runqueues locked.
1929 */
1930static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1931 unsigned long max_nr_move, struct sched_domain *sd,
81026794 1932 enum idle_type idle, int *all_pinned)
1da177e4
LT
1933{
1934 prio_array_t *array, *dst_array;
1935 struct list_head *head, *curr;
81026794 1936 int idx, pulled = 0, pinned = 0;
1da177e4
LT
1937 task_t *tmp;
1938
81026794 1939 if (max_nr_move == 0)
1da177e4
LT
1940 goto out;
1941
81026794
NP
1942 pinned = 1;
1943
1da177e4
LT
1944 /*
1945 * We first consider expired tasks. Those will likely not be
1946 * executed in the near future, and they are most likely to
1947 * be cache-cold, thus switching CPUs has the least effect
1948 * on them.
1949 */
1950 if (busiest->expired->nr_active) {
1951 array = busiest->expired;
1952 dst_array = this_rq->expired;
1953 } else {
1954 array = busiest->active;
1955 dst_array = this_rq->active;
1956 }
1957
1958new_array:
1959 /* Start searching at priority 0: */
1960 idx = 0;
1961skip_bitmap:
1962 if (!idx)
1963 idx = sched_find_first_bit(array->bitmap);
1964 else
1965 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1966 if (idx >= MAX_PRIO) {
1967 if (array == busiest->expired && busiest->active->nr_active) {
1968 array = busiest->active;
1969 dst_array = this_rq->active;
1970 goto new_array;
1971 }
1972 goto out;
1973 }
1974
1975 head = array->queue + idx;
1976 curr = head->prev;
1977skip_queue:
1978 tmp = list_entry(curr, task_t, run_list);
1979
1980 curr = curr->prev;
1981
81026794 1982 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1da177e4
LT
1983 if (curr != head)
1984 goto skip_queue;
1985 idx++;
1986 goto skip_bitmap;
1987 }
1988
1989#ifdef CONFIG_SCHEDSTATS
1990 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1991 schedstat_inc(sd, lb_hot_gained[idle]);
1992#endif
1993
1994 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1995 pulled++;
1996
1997 /* We only want to steal up to the prescribed number of tasks. */
1998 if (pulled < max_nr_move) {
1999 if (curr != head)
2000 goto skip_queue;
2001 idx++;
2002 goto skip_bitmap;
2003 }
2004out:
2005 /*
2006 * Right now, this is the only place pull_task() is called,
2007 * so we can safely collect pull_task() stats here rather than
2008 * inside pull_task().
2009 */
2010 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2011
2012 if (all_pinned)
2013 *all_pinned = pinned;
1da177e4
LT
2014 return pulled;
2015}
2016
2017/*
2018 * find_busiest_group finds and returns the busiest CPU group within the
2019 * domain. It calculates and returns the number of tasks which should be
2020 * moved to restore balance via the imbalance parameter.
2021 */
2022static struct sched_group *
2023find_busiest_group(struct sched_domain *sd, int this_cpu,
5969fe06 2024 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1da177e4
LT
2025{
2026 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2027 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2028 unsigned long max_pull;
7897986b 2029 int load_idx;
1da177e4
LT
2030
2031 max_load = this_load = total_load = total_pwr = 0;
7897986b
NP
2032 if (idle == NOT_IDLE)
2033 load_idx = sd->busy_idx;
2034 else if (idle == NEWLY_IDLE)
2035 load_idx = sd->newidle_idx;
2036 else
2037 load_idx = sd->idle_idx;
1da177e4
LT
2038
2039 do {
2040 unsigned long load;
2041 int local_group;
2042 int i;
2043
2044 local_group = cpu_isset(this_cpu, group->cpumask);
2045
2046 /* Tally up the load of all CPUs in the group */
2047 avg_load = 0;
2048
2049 for_each_cpu_mask(i, group->cpumask) {
5969fe06
NP
2050 if (*sd_idle && !idle_cpu(i))
2051 *sd_idle = 0;
2052
1da177e4
LT
2053 /* Bias balancing toward cpus of our domain */
2054 if (local_group)
b910472d 2055 load = __target_load(i, load_idx, idle);
1da177e4 2056 else
b910472d 2057 load = __source_load(i, load_idx, idle);
1da177e4
LT
2058
2059 avg_load += load;
2060 }
2061
2062 total_load += avg_load;
2063 total_pwr += group->cpu_power;
2064
2065 /* Adjust by relative CPU power of the group */
2066 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2067
2068 if (local_group) {
2069 this_load = avg_load;
2070 this = group;
1da177e4
LT
2071 } else if (avg_load > max_load) {
2072 max_load = avg_load;
2073 busiest = group;
2074 }
1da177e4
LT
2075 group = group->next;
2076 } while (group != sd->groups);
2077
0c117f1b 2078 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
1da177e4
LT
2079 goto out_balanced;
2080
2081 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2082
2083 if (this_load >= avg_load ||
2084 100*max_load <= sd->imbalance_pct*this_load)
2085 goto out_balanced;
2086
2087 /*
2088 * We're trying to get all the cpus to the average_load, so we don't
2089 * want to push ourselves above the average load, nor do we wish to
2090 * reduce the max loaded cpu below the average load, as either of these
2091 * actions would just result in more rebalancing later, and ping-pong
2092 * tasks around. Thus we look for the minimum possible imbalance.
2093 * Negative imbalances (*we* are more loaded than anyone else) will
2094 * be counted as no imbalance for these purposes -- we can't fix that
2095 * by pulling tasks to us. Be careful of negative numbers as they'll
2096 * appear as very large values with unsigned longs.
2097 */
0c117f1b
SS
2098
2099 /* Don't want to pull so many tasks that a group would go idle */
2100 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2101
1da177e4 2102 /* How much load to actually move to equalise the imbalance */
0c117f1b 2103 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2104 (avg_load - this_load) * this->cpu_power)
2105 / SCHED_LOAD_SCALE;
2106
2107 if (*imbalance < SCHED_LOAD_SCALE) {
2108 unsigned long pwr_now = 0, pwr_move = 0;
2109 unsigned long tmp;
2110
2111 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2112 *imbalance = 1;
2113 return busiest;
2114 }
2115
2116 /*
2117 * OK, we don't have enough imbalance to justify moving tasks,
2118 * however we may be able to increase total CPU power used by
2119 * moving them.
2120 */
2121
2122 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2123 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2124 pwr_now /= SCHED_LOAD_SCALE;
2125
2126 /* Amount of load we'd subtract */
2127 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2128 if (max_load > tmp)
2129 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2130 max_load - tmp);
2131
2132 /* Amount of load we'd add */
2133 if (max_load*busiest->cpu_power <
2134 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2135 tmp = max_load*busiest->cpu_power/this->cpu_power;
2136 else
2137 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2138 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2139 pwr_move /= SCHED_LOAD_SCALE;
2140
2141 /* Move if we gain throughput */
2142 if (pwr_move <= pwr_now)
2143 goto out_balanced;
2144
2145 *imbalance = 1;
2146 return busiest;
2147 }
2148
2149 /* Get rid of the scaling factor, rounding down as we divide */
2150 *imbalance = *imbalance / SCHED_LOAD_SCALE;
1da177e4
LT
2151 return busiest;
2152
2153out_balanced:
1da177e4
LT
2154
2155 *imbalance = 0;
2156 return NULL;
2157}
2158
2159/*
2160 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2161 */
b910472d
CK
2162static runqueue_t *find_busiest_queue(struct sched_group *group,
2163 enum idle_type idle)
1da177e4
LT
2164{
2165 unsigned long load, max_load = 0;
2166 runqueue_t *busiest = NULL;
2167 int i;
2168
2169 for_each_cpu_mask(i, group->cpumask) {
b910472d 2170 load = __source_load(i, 0, idle);
1da177e4
LT
2171
2172 if (load > max_load) {
2173 max_load = load;
2174 busiest = cpu_rq(i);
2175 }
2176 }
2177
2178 return busiest;
2179}
2180
77391d71
NP
2181/*
2182 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2183 * so long as it is large enough.
2184 */
2185#define MAX_PINNED_INTERVAL 512
2186
1da177e4
LT
2187/*
2188 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2189 * tasks if there is an imbalance.
2190 *
2191 * Called with this_rq unlocked.
2192 */
2193static int load_balance(int this_cpu, runqueue_t *this_rq,
2194 struct sched_domain *sd, enum idle_type idle)
2195{
2196 struct sched_group *group;
2197 runqueue_t *busiest;
2198 unsigned long imbalance;
77391d71 2199 int nr_moved, all_pinned = 0;
81026794 2200 int active_balance = 0;
5969fe06
NP
2201 int sd_idle = 0;
2202
2203 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2204 sd_idle = 1;
1da177e4 2205
1da177e4
LT
2206 schedstat_inc(sd, lb_cnt[idle]);
2207
5969fe06 2208 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
1da177e4
LT
2209 if (!group) {
2210 schedstat_inc(sd, lb_nobusyg[idle]);
2211 goto out_balanced;
2212 }
2213
b910472d 2214 busiest = find_busiest_queue(group, idle);
1da177e4
LT
2215 if (!busiest) {
2216 schedstat_inc(sd, lb_nobusyq[idle]);
2217 goto out_balanced;
2218 }
2219
db935dbd 2220 BUG_ON(busiest == this_rq);
1da177e4
LT
2221
2222 schedstat_add(sd, lb_imbalance[idle], imbalance);
2223
2224 nr_moved = 0;
2225 if (busiest->nr_running > 1) {
2226 /*
2227 * Attempt to move tasks. If find_busiest_group has found
2228 * an imbalance but busiest->nr_running <= 1, the group is
2229 * still unbalanced. nr_moved simply stays zero, so it is
2230 * correctly treated as an imbalance.
2231 */
e17224bf 2232 double_rq_lock(this_rq, busiest);
1da177e4 2233 nr_moved = move_tasks(this_rq, this_cpu, busiest,
d6d5cfaf 2234 imbalance, sd, idle, &all_pinned);
e17224bf 2235 double_rq_unlock(this_rq, busiest);
81026794
NP
2236
2237 /* All tasks on this runqueue were pinned by CPU affinity */
2238 if (unlikely(all_pinned))
2239 goto out_balanced;
1da177e4 2240 }
81026794 2241
1da177e4
LT
2242 if (!nr_moved) {
2243 schedstat_inc(sd, lb_failed[idle]);
2244 sd->nr_balance_failed++;
2245
2246 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2247
2248 spin_lock(&busiest->lock);
fa3b6ddc
SS
2249
2250 /* don't kick the migration_thread, if the curr
2251 * task on busiest cpu can't be moved to this_cpu
2252 */
2253 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2254 spin_unlock(&busiest->lock);
2255 all_pinned = 1;
2256 goto out_one_pinned;
2257 }
2258
1da177e4
LT
2259 if (!busiest->active_balance) {
2260 busiest->active_balance = 1;
2261 busiest->push_cpu = this_cpu;
81026794 2262 active_balance = 1;
1da177e4
LT
2263 }
2264 spin_unlock(&busiest->lock);
81026794 2265 if (active_balance)
1da177e4
LT
2266 wake_up_process(busiest->migration_thread);
2267
2268 /*
2269 * We've kicked active balancing, reset the failure
2270 * counter.
2271 */
39507451 2272 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2273 }
81026794 2274 } else
1da177e4
LT
2275 sd->nr_balance_failed = 0;
2276
81026794 2277 if (likely(!active_balance)) {
1da177e4
LT
2278 /* We were unbalanced, so reset the balancing interval */
2279 sd->balance_interval = sd->min_interval;
81026794
NP
2280 } else {
2281 /*
2282 * If we've begun active balancing, start to back off. This
2283 * case may not be covered by the all_pinned logic if there
2284 * is only 1 task on the busy runqueue (because we don't call
2285 * move_tasks).
2286 */
2287 if (sd->balance_interval < sd->max_interval)
2288 sd->balance_interval *= 2;
1da177e4
LT
2289 }
2290
5969fe06
NP
2291 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2292 return -1;
1da177e4
LT
2293 return nr_moved;
2294
2295out_balanced:
1da177e4
LT
2296 schedstat_inc(sd, lb_balanced[idle]);
2297
16cfb1c0 2298 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2299
2300out_one_pinned:
1da177e4 2301 /* tune up the balancing interval */
77391d71
NP
2302 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2303 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2304 sd->balance_interval *= 2;
2305
5969fe06
NP
2306 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2307 return -1;
1da177e4
LT
2308 return 0;
2309}
2310
2311/*
2312 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2313 * tasks if there is an imbalance.
2314 *
2315 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2316 * this_rq is locked.
2317 */
2318static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2319 struct sched_domain *sd)
2320{
2321 struct sched_group *group;
2322 runqueue_t *busiest = NULL;
2323 unsigned long imbalance;
2324 int nr_moved = 0;
5969fe06
NP
2325 int sd_idle = 0;
2326
2327 if (sd->flags & SD_SHARE_CPUPOWER)
2328 sd_idle = 1;
1da177e4
LT
2329
2330 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
5969fe06 2331 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
1da177e4 2332 if (!group) {
1da177e4 2333 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2334 goto out_balanced;
1da177e4
LT
2335 }
2336
b910472d 2337 busiest = find_busiest_queue(group, NEWLY_IDLE);
db935dbd 2338 if (!busiest) {
1da177e4 2339 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2340 goto out_balanced;
1da177e4
LT
2341 }
2342
db935dbd
NP
2343 BUG_ON(busiest == this_rq);
2344
1da177e4 2345 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2346
2347 nr_moved = 0;
2348 if (busiest->nr_running > 1) {
2349 /* Attempt to move tasks */
2350 double_lock_balance(this_rq, busiest);
2351 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794 2352 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf
NP
2353 spin_unlock(&busiest->lock);
2354 }
2355
5969fe06 2356 if (!nr_moved) {
1da177e4 2357 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
5969fe06
NP
2358 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2359 return -1;
2360 } else
16cfb1c0 2361 sd->nr_balance_failed = 0;
1da177e4 2362
1da177e4 2363 return nr_moved;
16cfb1c0
NP
2364
2365out_balanced:
2366 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
5969fe06
NP
2367 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2368 return -1;
16cfb1c0
NP
2369 sd->nr_balance_failed = 0;
2370 return 0;
1da177e4
LT
2371}
2372
2373/*
2374 * idle_balance is called by schedule() if this_cpu is about to become
2375 * idle. Attempts to pull tasks from other CPUs.
2376 */
2377static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2378{
2379 struct sched_domain *sd;
2380
2381 for_each_domain(this_cpu, sd) {
2382 if (sd->flags & SD_BALANCE_NEWIDLE) {
2383 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2384 /* We've pulled tasks over so stop searching */
2385 break;
2386 }
2387 }
2388 }
2389}
2390
2391/*
2392 * active_load_balance is run by migration threads. It pushes running tasks
2393 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2394 * running on each physical CPU where possible, and avoids physical /
2395 * logical imbalances.
2396 *
2397 * Called with busiest_rq locked.
2398 */
2399static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2400{
2401 struct sched_domain *sd;
1da177e4 2402 runqueue_t *target_rq;
39507451
NP
2403 int target_cpu = busiest_rq->push_cpu;
2404
2405 if (busiest_rq->nr_running <= 1)
2406 /* no task to move */
2407 return;
2408
2409 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2410
2411 /*
39507451
NP
2412 * This condition is "impossible", if it occurs
2413 * we need to fix it. Originally reported by
2414 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2415 */
39507451 2416 BUG_ON(busiest_rq == target_rq);
1da177e4 2417
39507451
NP
2418 /* move a task from busiest_rq to target_rq */
2419 double_lock_balance(busiest_rq, target_rq);
2420
2421 /* Search for an sd spanning us and the target CPU. */
2422 for_each_domain(target_cpu, sd)
2423 if ((sd->flags & SD_LOAD_BALANCE) &&
2424 cpu_isset(busiest_cpu, sd->span))
2425 break;
2426
2427 if (unlikely(sd == NULL))
2428 goto out;
2429
2430 schedstat_inc(sd, alb_cnt);
2431
2432 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2433 schedstat_inc(sd, alb_pushed);
2434 else
2435 schedstat_inc(sd, alb_failed);
2436out:
2437 spin_unlock(&target_rq->lock);
1da177e4
LT
2438}
2439
2440/*
2441 * rebalance_tick will get called every timer tick, on every CPU.
2442 *
2443 * It checks each scheduling domain to see if it is due to be balanced,
2444 * and initiates a balancing operation if so.
2445 *
2446 * Balancing parameters are set up in arch_init_sched_domains.
2447 */
2448
2449/* Don't have all balancing operations going off at once */
2450#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2451
2452static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2453 enum idle_type idle)
2454{
2455 unsigned long old_load, this_load;
2456 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2457 struct sched_domain *sd;
7897986b 2458 int i;
1da177e4 2459
1da177e4 2460 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
2461 /* Update our load */
2462 for (i = 0; i < 3; i++) {
2463 unsigned long new_load = this_load;
2464 int scale = 1 << i;
2465 old_load = this_rq->cpu_load[i];
2466 /*
2467 * Round up the averaging division if load is increasing. This
2468 * prevents us from getting stuck on 9 if the load is 10, for
2469 * example.
2470 */
2471 if (new_load > old_load)
2472 new_load += scale-1;
2473 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2474 }
1da177e4
LT
2475
2476 for_each_domain(this_cpu, sd) {
2477 unsigned long interval;
2478
2479 if (!(sd->flags & SD_LOAD_BALANCE))
2480 continue;
2481
2482 interval = sd->balance_interval;
2483 if (idle != SCHED_IDLE)
2484 interval *= sd->busy_factor;
2485
2486 /* scale ms to jiffies */
2487 interval = msecs_to_jiffies(interval);
2488 if (unlikely(!interval))
2489 interval = 1;
2490
2491 if (j - sd->last_balance >= interval) {
2492 if (load_balance(this_cpu, this_rq, sd, idle)) {
fa3b6ddc
SS
2493 /*
2494 * We've pulled tasks over so either we're no
5969fe06
NP
2495 * longer idle, or one of our SMT siblings is
2496 * not idle.
2497 */
1da177e4
LT
2498 idle = NOT_IDLE;
2499 }
2500 sd->last_balance += interval;
2501 }
2502 }
2503}
2504#else
2505/*
2506 * on UP we do not need to balance between CPUs:
2507 */
2508static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2509{
2510}
2511static inline void idle_balance(int cpu, runqueue_t *rq)
2512{
2513}
2514#endif
2515
2516static inline int wake_priority_sleeper(runqueue_t *rq)
2517{
2518 int ret = 0;
2519#ifdef CONFIG_SCHED_SMT
2520 spin_lock(&rq->lock);
2521 /*
2522 * If an SMT sibling task has been put to sleep for priority
2523 * reasons reschedule the idle task to see if it can now run.
2524 */
2525 if (rq->nr_running) {
2526 resched_task(rq->idle);
2527 ret = 1;
2528 }
2529 spin_unlock(&rq->lock);
2530#endif
2531 return ret;
2532}
2533
2534DEFINE_PER_CPU(struct kernel_stat, kstat);
2535
2536EXPORT_PER_CPU_SYMBOL(kstat);
2537
2538/*
2539 * This is called on clock ticks and on context switches.
2540 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2541 */
2542static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2543 unsigned long long now)
2544{
2545 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2546 p->sched_time += now - last;
2547}
2548
2549/*
2550 * Return current->sched_time plus any more ns on the sched_clock
2551 * that have not yet been banked.
2552 */
2553unsigned long long current_sched_time(const task_t *tsk)
2554{
2555 unsigned long long ns;
2556 unsigned long flags;
2557 local_irq_save(flags);
2558 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2559 ns = tsk->sched_time + (sched_clock() - ns);
2560 local_irq_restore(flags);
2561 return ns;
2562}
2563
2564/*
2565 * We place interactive tasks back into the active array, if possible.
2566 *
2567 * To guarantee that this does not starve expired tasks we ignore the
2568 * interactivity of a task if the first expired task had to wait more
2569 * than a 'reasonable' amount of time. This deadline timeout is
2570 * load-dependent, as the frequency of array switched decreases with
2571 * increasing number of running tasks. We also ignore the interactivity
2572 * if a better static_prio task has expired:
2573 */
2574#define EXPIRED_STARVING(rq) \
2575 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2576 (jiffies - (rq)->expired_timestamp >= \
2577 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2578 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2579
2580/*
2581 * Account user cpu time to a process.
2582 * @p: the process that the cpu time gets accounted to
2583 * @hardirq_offset: the offset to subtract from hardirq_count()
2584 * @cputime: the cpu time spent in user space since the last update
2585 */
2586void account_user_time(struct task_struct *p, cputime_t cputime)
2587{
2588 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2589 cputime64_t tmp;
2590
2591 p->utime = cputime_add(p->utime, cputime);
2592
2593 /* Add user time to cpustat. */
2594 tmp = cputime_to_cputime64(cputime);
2595 if (TASK_NICE(p) > 0)
2596 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2597 else
2598 cpustat->user = cputime64_add(cpustat->user, tmp);
2599}
2600
2601/*
2602 * Account system cpu time to a process.
2603 * @p: the process that the cpu time gets accounted to
2604 * @hardirq_offset: the offset to subtract from hardirq_count()
2605 * @cputime: the cpu time spent in kernel space since the last update
2606 */
2607void account_system_time(struct task_struct *p, int hardirq_offset,
2608 cputime_t cputime)
2609{
2610 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2611 runqueue_t *rq = this_rq();
2612 cputime64_t tmp;
2613
2614 p->stime = cputime_add(p->stime, cputime);
2615
2616 /* Add system time to cpustat. */
2617 tmp = cputime_to_cputime64(cputime);
2618 if (hardirq_count() - hardirq_offset)
2619 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2620 else if (softirq_count())
2621 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2622 else if (p != rq->idle)
2623 cpustat->system = cputime64_add(cpustat->system, tmp);
2624 else if (atomic_read(&rq->nr_iowait) > 0)
2625 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2626 else
2627 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2628 /* Account for system time used */
2629 acct_update_integrals(p);
1da177e4
LT
2630}
2631
2632/*
2633 * Account for involuntary wait time.
2634 * @p: the process from which the cpu time has been stolen
2635 * @steal: the cpu time spent in involuntary wait
2636 */
2637void account_steal_time(struct task_struct *p, cputime_t steal)
2638{
2639 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2640 cputime64_t tmp = cputime_to_cputime64(steal);
2641 runqueue_t *rq = this_rq();
2642
2643 if (p == rq->idle) {
2644 p->stime = cputime_add(p->stime, steal);
2645 if (atomic_read(&rq->nr_iowait) > 0)
2646 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2647 else
2648 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2649 } else
2650 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2651}
2652
2653/*
2654 * This function gets called by the timer code, with HZ frequency.
2655 * We call it with interrupts disabled.
2656 *
2657 * It also gets called by the fork code, when changing the parent's
2658 * timeslices.
2659 */
2660void scheduler_tick(void)
2661{
2662 int cpu = smp_processor_id();
2663 runqueue_t *rq = this_rq();
2664 task_t *p = current;
2665 unsigned long long now = sched_clock();
2666
2667 update_cpu_clock(p, rq, now);
2668
2669 rq->timestamp_last_tick = now;
2670
2671 if (p == rq->idle) {
2672 if (wake_priority_sleeper(rq))
2673 goto out;
2674 rebalance_tick(cpu, rq, SCHED_IDLE);
2675 return;
2676 }
2677
2678 /* Task might have expired already, but not scheduled off yet */
2679 if (p->array != rq->active) {
2680 set_tsk_need_resched(p);
2681 goto out;
2682 }
2683 spin_lock(&rq->lock);
2684 /*
2685 * The task was running during this tick - update the
2686 * time slice counter. Note: we do not update a thread's
2687 * priority until it either goes to sleep or uses up its
2688 * timeslice. This makes it possible for interactive tasks
2689 * to use up their timeslices at their highest priority levels.
2690 */
2691 if (rt_task(p)) {
2692 /*
2693 * RR tasks need a special form of timeslice management.
2694 * FIFO tasks have no timeslices.
2695 */
2696 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2697 p->time_slice = task_timeslice(p);
2698 p->first_time_slice = 0;
2699 set_tsk_need_resched(p);
2700
2701 /* put it at the end of the queue: */
2702 requeue_task(p, rq->active);
2703 }
2704 goto out_unlock;
2705 }
2706 if (!--p->time_slice) {
2707 dequeue_task(p, rq->active);
2708 set_tsk_need_resched(p);
2709 p->prio = effective_prio(p);
2710 p->time_slice = task_timeslice(p);
2711 p->first_time_slice = 0;
2712
2713 if (!rq->expired_timestamp)
2714 rq->expired_timestamp = jiffies;
2715 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2716 enqueue_task(p, rq->expired);
2717 if (p->static_prio < rq->best_expired_prio)
2718 rq->best_expired_prio = p->static_prio;
2719 } else
2720 enqueue_task(p, rq->active);
2721 } else {
2722 /*
2723 * Prevent a too long timeslice allowing a task to monopolize
2724 * the CPU. We do this by splitting up the timeslice into
2725 * smaller pieces.
2726 *
2727 * Note: this does not mean the task's timeslices expire or
2728 * get lost in any way, they just might be preempted by
2729 * another task of equal priority. (one with higher
2730 * priority would have preempted this task already.) We
2731 * requeue this task to the end of the list on this priority
2732 * level, which is in essence a round-robin of tasks with
2733 * equal priority.
2734 *
2735 * This only applies to tasks in the interactive
2736 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2737 */
2738 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2739 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2740 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2741 (p->array == rq->active)) {
2742
2743 requeue_task(p, rq->active);
2744 set_tsk_need_resched(p);
2745 }
2746 }
2747out_unlock:
2748 spin_unlock(&rq->lock);
2749out:
2750 rebalance_tick(cpu, rq, NOT_IDLE);
2751}
2752
2753#ifdef CONFIG_SCHED_SMT
fc38ed75
CK
2754static inline void wakeup_busy_runqueue(runqueue_t *rq)
2755{
2756 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2757 if (rq->curr == rq->idle && rq->nr_running)
2758 resched_task(rq->idle);
2759}
2760
1da177e4
LT
2761static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2762{
41c7ce9a 2763 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2764 cpumask_t sibling_map;
2765 int i;
2766
41c7ce9a
NP
2767 for_each_domain(this_cpu, tmp)
2768 if (tmp->flags & SD_SHARE_CPUPOWER)
2769 sd = tmp;
2770
2771 if (!sd)
1da177e4
LT
2772 return;
2773
2774 /*
2775 * Unlock the current runqueue because we have to lock in
2776 * CPU order to avoid deadlocks. Caller knows that we might
2777 * unlock. We keep IRQs disabled.
2778 */
2779 spin_unlock(&this_rq->lock);
2780
2781 sibling_map = sd->span;
2782
2783 for_each_cpu_mask(i, sibling_map)
2784 spin_lock(&cpu_rq(i)->lock);
2785 /*
2786 * We clear this CPU from the mask. This both simplifies the
2787 * inner loop and keps this_rq locked when we exit:
2788 */
2789 cpu_clear(this_cpu, sibling_map);
2790
2791 for_each_cpu_mask(i, sibling_map) {
2792 runqueue_t *smt_rq = cpu_rq(i);
2793
fc38ed75 2794 wakeup_busy_runqueue(smt_rq);
1da177e4
LT
2795 }
2796
2797 for_each_cpu_mask(i, sibling_map)
2798 spin_unlock(&cpu_rq(i)->lock);
2799 /*
2800 * We exit with this_cpu's rq still held and IRQs
2801 * still disabled:
2802 */
2803}
2804
67f9a619
IM
2805/*
2806 * number of 'lost' timeslices this task wont be able to fully
2807 * utilize, if another task runs on a sibling. This models the
2808 * slowdown effect of other tasks running on siblings:
2809 */
2810static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2811{
2812 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2813}
2814
1da177e4
LT
2815static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2816{
41c7ce9a 2817 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2818 cpumask_t sibling_map;
2819 prio_array_t *array;
2820 int ret = 0, i;
2821 task_t *p;
2822
41c7ce9a
NP
2823 for_each_domain(this_cpu, tmp)
2824 if (tmp->flags & SD_SHARE_CPUPOWER)
2825 sd = tmp;
2826
2827 if (!sd)
1da177e4
LT
2828 return 0;
2829
2830 /*
2831 * The same locking rules and details apply as for
2832 * wake_sleeping_dependent():
2833 */
2834 spin_unlock(&this_rq->lock);
2835 sibling_map = sd->span;
2836 for_each_cpu_mask(i, sibling_map)
2837 spin_lock(&cpu_rq(i)->lock);
2838 cpu_clear(this_cpu, sibling_map);
2839
2840 /*
2841 * Establish next task to be run - it might have gone away because
2842 * we released the runqueue lock above:
2843 */
2844 if (!this_rq->nr_running)
2845 goto out_unlock;
2846 array = this_rq->active;
2847 if (!array->nr_active)
2848 array = this_rq->expired;
2849 BUG_ON(!array->nr_active);
2850
2851 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2852 task_t, run_list);
2853
2854 for_each_cpu_mask(i, sibling_map) {
2855 runqueue_t *smt_rq = cpu_rq(i);
2856 task_t *smt_curr = smt_rq->curr;
2857
fc38ed75
CK
2858 /* Kernel threads do not participate in dependent sleeping */
2859 if (!p->mm || !smt_curr->mm || rt_task(p))
2860 goto check_smt_task;
2861
1da177e4
LT
2862 /*
2863 * If a user task with lower static priority than the
2864 * running task on the SMT sibling is trying to schedule,
2865 * delay it till there is proportionately less timeslice
2866 * left of the sibling task to prevent a lower priority
2867 * task from using an unfair proportion of the
2868 * physical cpu's resources. -ck
2869 */
fc38ed75
CK
2870 if (rt_task(smt_curr)) {
2871 /*
2872 * With real time tasks we run non-rt tasks only
2873 * per_cpu_gain% of the time.
2874 */
2875 if ((jiffies % DEF_TIMESLICE) >
2876 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2877 ret = 1;
2878 } else
67f9a619
IM
2879 if (smt_curr->static_prio < p->static_prio &&
2880 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2881 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75
CK
2882 ret = 1;
2883
2884check_smt_task:
2885 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2886 rt_task(smt_curr))
2887 continue;
2888 if (!p->mm) {
2889 wakeup_busy_runqueue(smt_rq);
2890 continue;
2891 }
1da177e4
LT
2892
2893 /*
fc38ed75
CK
2894 * Reschedule a lower priority task on the SMT sibling for
2895 * it to be put to sleep, or wake it up if it has been put to
2896 * sleep for priority reasons to see if it should run now.
1da177e4 2897 */
fc38ed75
CK
2898 if (rt_task(p)) {
2899 if ((jiffies % DEF_TIMESLICE) >
2900 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2901 resched_task(smt_curr);
2902 } else {
67f9a619
IM
2903 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2904 smt_slice(p, sd) > task_timeslice(smt_curr))
fc38ed75
CK
2905 resched_task(smt_curr);
2906 else
2907 wakeup_busy_runqueue(smt_rq);
2908 }
1da177e4
LT
2909 }
2910out_unlock:
2911 for_each_cpu_mask(i, sibling_map)
2912 spin_unlock(&cpu_rq(i)->lock);
2913 return ret;
2914}
2915#else
2916static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2917{
2918}
2919
2920static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2921{
2922 return 0;
2923}
2924#endif
2925
2926#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2927
2928void fastcall add_preempt_count(int val)
2929{
2930 /*
2931 * Underflow?
2932 */
be5b4fbd 2933 BUG_ON((preempt_count() < 0));
1da177e4
LT
2934 preempt_count() += val;
2935 /*
2936 * Spinlock count overflowing soon?
2937 */
2938 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2939}
2940EXPORT_SYMBOL(add_preempt_count);
2941
2942void fastcall sub_preempt_count(int val)
2943{
2944 /*
2945 * Underflow?
2946 */
2947 BUG_ON(val > preempt_count());
2948 /*
2949 * Is the spinlock portion underflowing?
2950 */
2951 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2952 preempt_count() -= val;
2953}
2954EXPORT_SYMBOL(sub_preempt_count);
2955
2956#endif
2957
2958/*
2959 * schedule() is the main scheduler function.
2960 */
2961asmlinkage void __sched schedule(void)
2962{
2963 long *switch_count;
2964 task_t *prev, *next;
2965 runqueue_t *rq;
2966 prio_array_t *array;
2967 struct list_head *queue;
2968 unsigned long long now;
2969 unsigned long run_time;
a3464a10 2970 int cpu, idx, new_prio;
1da177e4
LT
2971
2972 /*
2973 * Test if we are atomic. Since do_exit() needs to call into
2974 * schedule() atomically, we ignore that path for now.
2975 * Otherwise, whine if we are scheduling when we should not be.
2976 */
2977 if (likely(!current->exit_state)) {
2978 if (unlikely(in_atomic())) {
2979 printk(KERN_ERR "scheduling while atomic: "
2980 "%s/0x%08x/%d\n",
2981 current->comm, preempt_count(), current->pid);
2982 dump_stack();
2983 }
2984 }
2985 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2986
2987need_resched:
2988 preempt_disable();
2989 prev = current;
2990 release_kernel_lock(prev);
2991need_resched_nonpreemptible:
2992 rq = this_rq();
2993
2994 /*
2995 * The idle thread is not allowed to schedule!
2996 * Remove this check after it has been exercised a bit.
2997 */
2998 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2999 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3000 dump_stack();
3001 }
3002
3003 schedstat_inc(rq, sched_cnt);
3004 now = sched_clock();
238628ed 3005 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 3006 run_time = now - prev->timestamp;
238628ed 3007 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
3008 run_time = 0;
3009 } else
3010 run_time = NS_MAX_SLEEP_AVG;
3011
3012 /*
3013 * Tasks charged proportionately less run_time at high sleep_avg to
3014 * delay them losing their interactive status
3015 */
3016 run_time /= (CURRENT_BONUS(prev) ? : 1);
3017
3018 spin_lock_irq(&rq->lock);
3019
3020 if (unlikely(prev->flags & PF_DEAD))
3021 prev->state = EXIT_DEAD;
3022
3023 switch_count = &prev->nivcsw;
3024 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3025 switch_count = &prev->nvcsw;
3026 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3027 unlikely(signal_pending(prev))))
3028 prev->state = TASK_RUNNING;
3029 else {
3030 if (prev->state == TASK_UNINTERRUPTIBLE)
3031 rq->nr_uninterruptible++;
3032 deactivate_task(prev, rq);
3033 }
3034 }
3035
3036 cpu = smp_processor_id();
3037 if (unlikely(!rq->nr_running)) {
3038go_idle:
3039 idle_balance(cpu, rq);
3040 if (!rq->nr_running) {
3041 next = rq->idle;
3042 rq->expired_timestamp = 0;
3043 wake_sleeping_dependent(cpu, rq);
3044 /*
3045 * wake_sleeping_dependent() might have released
3046 * the runqueue, so break out if we got new
3047 * tasks meanwhile:
3048 */
3049 if (!rq->nr_running)
3050 goto switch_tasks;
3051 }
3052 } else {
3053 if (dependent_sleeper(cpu, rq)) {
3054 next = rq->idle;
3055 goto switch_tasks;
3056 }
3057 /*
3058 * dependent_sleeper() releases and reacquires the runqueue
3059 * lock, hence go into the idle loop if the rq went
3060 * empty meanwhile:
3061 */
3062 if (unlikely(!rq->nr_running))
3063 goto go_idle;
3064 }
3065
3066 array = rq->active;
3067 if (unlikely(!array->nr_active)) {
3068 /*
3069 * Switch the active and expired arrays.
3070 */
3071 schedstat_inc(rq, sched_switch);
3072 rq->active = rq->expired;
3073 rq->expired = array;
3074 array = rq->active;
3075 rq->expired_timestamp = 0;
3076 rq->best_expired_prio = MAX_PRIO;
3077 }
3078
3079 idx = sched_find_first_bit(array->bitmap);
3080 queue = array->queue + idx;
3081 next = list_entry(queue->next, task_t, run_list);
3082
3083 if (!rt_task(next) && next->activated > 0) {
3084 unsigned long long delta = now - next->timestamp;
238628ed 3085 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3086 delta = 0;
3087
3088 if (next->activated == 1)
3089 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3090
3091 array = next->array;
a3464a10
CS
3092 new_prio = recalc_task_prio(next, next->timestamp + delta);
3093
3094 if (unlikely(next->prio != new_prio)) {
3095 dequeue_task(next, array);
3096 next->prio = new_prio;
3097 enqueue_task(next, array);
3098 } else
3099 requeue_task(next, array);
1da177e4
LT
3100 }
3101 next->activated = 0;
3102switch_tasks:
3103 if (next == rq->idle)
3104 schedstat_inc(rq, sched_goidle);
3105 prefetch(next);
383f2835 3106 prefetch_stack(next);
1da177e4
LT
3107 clear_tsk_need_resched(prev);
3108 rcu_qsctr_inc(task_cpu(prev));
3109
3110 update_cpu_clock(prev, rq, now);
3111
3112 prev->sleep_avg -= run_time;
3113 if ((long)prev->sleep_avg <= 0)
3114 prev->sleep_avg = 0;
3115 prev->timestamp = prev->last_ran = now;
3116
3117 sched_info_switch(prev, next);
3118 if (likely(prev != next)) {
3119 next->timestamp = now;
3120 rq->nr_switches++;
3121 rq->curr = next;
3122 ++*switch_count;
3123
4866cde0 3124 prepare_task_switch(rq, next);
1da177e4
LT
3125 prev = context_switch(rq, prev, next);
3126 barrier();
4866cde0
NP
3127 /*
3128 * this_rq must be evaluated again because prev may have moved
3129 * CPUs since it called schedule(), thus the 'rq' on its stack
3130 * frame will be invalid.
3131 */
3132 finish_task_switch(this_rq(), prev);
1da177e4
LT
3133 } else
3134 spin_unlock_irq(&rq->lock);
3135
3136 prev = current;
3137 if (unlikely(reacquire_kernel_lock(prev) < 0))
3138 goto need_resched_nonpreemptible;
3139 preempt_enable_no_resched();
3140 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3141 goto need_resched;
3142}
3143
3144EXPORT_SYMBOL(schedule);
3145
3146#ifdef CONFIG_PREEMPT
3147/*
3148 * this is is the entry point to schedule() from in-kernel preemption
3149 * off of preempt_enable. Kernel preemptions off return from interrupt
3150 * occur there and call schedule directly.
3151 */
3152asmlinkage void __sched preempt_schedule(void)
3153{
3154 struct thread_info *ti = current_thread_info();
3155#ifdef CONFIG_PREEMPT_BKL
3156 struct task_struct *task = current;
3157 int saved_lock_depth;
3158#endif
3159 /*
3160 * If there is a non-zero preempt_count or interrupts are disabled,
3161 * we do not want to preempt the current task. Just return..
3162 */
3163 if (unlikely(ti->preempt_count || irqs_disabled()))
3164 return;
3165
3166need_resched:
3167 add_preempt_count(PREEMPT_ACTIVE);
3168 /*
3169 * We keep the big kernel semaphore locked, but we
3170 * clear ->lock_depth so that schedule() doesnt
3171 * auto-release the semaphore:
3172 */
3173#ifdef CONFIG_PREEMPT_BKL
3174 saved_lock_depth = task->lock_depth;
3175 task->lock_depth = -1;
3176#endif
3177 schedule();
3178#ifdef CONFIG_PREEMPT_BKL
3179 task->lock_depth = saved_lock_depth;
3180#endif
3181 sub_preempt_count(PREEMPT_ACTIVE);
3182
3183 /* we could miss a preemption opportunity between schedule and now */
3184 barrier();
3185 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3186 goto need_resched;
3187}
3188
3189EXPORT_SYMBOL(preempt_schedule);
3190
3191/*
3192 * this is is the entry point to schedule() from kernel preemption
3193 * off of irq context.
3194 * Note, that this is called and return with irqs disabled. This will
3195 * protect us against recursive calling from irq.
3196 */
3197asmlinkage void __sched preempt_schedule_irq(void)
3198{
3199 struct thread_info *ti = current_thread_info();
3200#ifdef CONFIG_PREEMPT_BKL
3201 struct task_struct *task = current;
3202 int saved_lock_depth;
3203#endif
3204 /* Catch callers which need to be fixed*/
3205 BUG_ON(ti->preempt_count || !irqs_disabled());
3206
3207need_resched:
3208 add_preempt_count(PREEMPT_ACTIVE);
3209 /*
3210 * We keep the big kernel semaphore locked, but we
3211 * clear ->lock_depth so that schedule() doesnt
3212 * auto-release the semaphore:
3213 */
3214#ifdef CONFIG_PREEMPT_BKL
3215 saved_lock_depth = task->lock_depth;
3216 task->lock_depth = -1;
3217#endif
3218 local_irq_enable();
3219 schedule();
3220 local_irq_disable();
3221#ifdef CONFIG_PREEMPT_BKL
3222 task->lock_depth = saved_lock_depth;
3223#endif
3224 sub_preempt_count(PREEMPT_ACTIVE);
3225
3226 /* we could miss a preemption opportunity between schedule and now */
3227 barrier();
3228 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3229 goto need_resched;
3230}
3231
3232#endif /* CONFIG_PREEMPT */
3233
95cdf3b7
IM
3234int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3235 void *key)
1da177e4 3236{
c43dc2fd 3237 task_t *p = curr->private;
1da177e4
LT
3238 return try_to_wake_up(p, mode, sync);
3239}
3240
3241EXPORT_SYMBOL(default_wake_function);
3242
3243/*
3244 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3245 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3246 * number) then we wake all the non-exclusive tasks and one exclusive task.
3247 *
3248 * There are circumstances in which we can try to wake a task which has already
3249 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3250 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3251 */
3252static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3253 int nr_exclusive, int sync, void *key)
3254{
3255 struct list_head *tmp, *next;
3256
3257 list_for_each_safe(tmp, next, &q->task_list) {
3258 wait_queue_t *curr;
3259 unsigned flags;
3260 curr = list_entry(tmp, wait_queue_t, task_list);
3261 flags = curr->flags;
3262 if (curr->func(curr, mode, sync, key) &&
3263 (flags & WQ_FLAG_EXCLUSIVE) &&
3264 !--nr_exclusive)
3265 break;
3266 }
3267}
3268
3269/**
3270 * __wake_up - wake up threads blocked on a waitqueue.
3271 * @q: the waitqueue
3272 * @mode: which threads
3273 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3274 * @key: is directly passed to the wakeup function
1da177e4
LT
3275 */
3276void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3277 int nr_exclusive, void *key)
1da177e4
LT
3278{
3279 unsigned long flags;
3280
3281 spin_lock_irqsave(&q->lock, flags);
3282 __wake_up_common(q, mode, nr_exclusive, 0, key);
3283 spin_unlock_irqrestore(&q->lock, flags);
3284}
3285
3286EXPORT_SYMBOL(__wake_up);
3287
3288/*
3289 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3290 */
3291void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3292{
3293 __wake_up_common(q, mode, 1, 0, NULL);
3294}
3295
3296/**
67be2dd1 3297 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3298 * @q: the waitqueue
3299 * @mode: which threads
3300 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3301 *
3302 * The sync wakeup differs that the waker knows that it will schedule
3303 * away soon, so while the target thread will be woken up, it will not
3304 * be migrated to another CPU - ie. the two threads are 'synchronized'
3305 * with each other. This can prevent needless bouncing between CPUs.
3306 *
3307 * On UP it can prevent extra preemption.
3308 */
95cdf3b7
IM
3309void fastcall
3310__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3311{
3312 unsigned long flags;
3313 int sync = 1;
3314
3315 if (unlikely(!q))
3316 return;
3317
3318 if (unlikely(!nr_exclusive))
3319 sync = 0;
3320
3321 spin_lock_irqsave(&q->lock, flags);
3322 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3323 spin_unlock_irqrestore(&q->lock, flags);
3324}
3325EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3326
3327void fastcall complete(struct completion *x)
3328{
3329 unsigned long flags;
3330
3331 spin_lock_irqsave(&x->wait.lock, flags);
3332 x->done++;
3333 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3334 1, 0, NULL);
3335 spin_unlock_irqrestore(&x->wait.lock, flags);
3336}
3337EXPORT_SYMBOL(complete);
3338
3339void fastcall complete_all(struct completion *x)
3340{
3341 unsigned long flags;
3342
3343 spin_lock_irqsave(&x->wait.lock, flags);
3344 x->done += UINT_MAX/2;
3345 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3346 0, 0, NULL);
3347 spin_unlock_irqrestore(&x->wait.lock, flags);
3348}
3349EXPORT_SYMBOL(complete_all);
3350
3351void fastcall __sched wait_for_completion(struct completion *x)
3352{
3353 might_sleep();
3354 spin_lock_irq(&x->wait.lock);
3355 if (!x->done) {
3356 DECLARE_WAITQUEUE(wait, current);
3357
3358 wait.flags |= WQ_FLAG_EXCLUSIVE;
3359 __add_wait_queue_tail(&x->wait, &wait);
3360 do {
3361 __set_current_state(TASK_UNINTERRUPTIBLE);
3362 spin_unlock_irq(&x->wait.lock);
3363 schedule();
3364 spin_lock_irq(&x->wait.lock);
3365 } while (!x->done);
3366 __remove_wait_queue(&x->wait, &wait);
3367 }
3368 x->done--;
3369 spin_unlock_irq(&x->wait.lock);
3370}
3371EXPORT_SYMBOL(wait_for_completion);
3372
3373unsigned long fastcall __sched
3374wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3375{
3376 might_sleep();
3377
3378 spin_lock_irq(&x->wait.lock);
3379 if (!x->done) {
3380 DECLARE_WAITQUEUE(wait, current);
3381
3382 wait.flags |= WQ_FLAG_EXCLUSIVE;
3383 __add_wait_queue_tail(&x->wait, &wait);
3384 do {
3385 __set_current_state(TASK_UNINTERRUPTIBLE);
3386 spin_unlock_irq(&x->wait.lock);
3387 timeout = schedule_timeout(timeout);
3388 spin_lock_irq(&x->wait.lock);
3389 if (!timeout) {
3390 __remove_wait_queue(&x->wait, &wait);
3391 goto out;
3392 }
3393 } while (!x->done);
3394 __remove_wait_queue(&x->wait, &wait);
3395 }
3396 x->done--;
3397out:
3398 spin_unlock_irq(&x->wait.lock);
3399 return timeout;
3400}
3401EXPORT_SYMBOL(wait_for_completion_timeout);
3402
3403int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3404{
3405 int ret = 0;
3406
3407 might_sleep();
3408
3409 spin_lock_irq(&x->wait.lock);
3410 if (!x->done) {
3411 DECLARE_WAITQUEUE(wait, current);
3412
3413 wait.flags |= WQ_FLAG_EXCLUSIVE;
3414 __add_wait_queue_tail(&x->wait, &wait);
3415 do {
3416 if (signal_pending(current)) {
3417 ret = -ERESTARTSYS;
3418 __remove_wait_queue(&x->wait, &wait);
3419 goto out;
3420 }
3421 __set_current_state(TASK_INTERRUPTIBLE);
3422 spin_unlock_irq(&x->wait.lock);
3423 schedule();
3424 spin_lock_irq(&x->wait.lock);
3425 } while (!x->done);
3426 __remove_wait_queue(&x->wait, &wait);
3427 }
3428 x->done--;
3429out:
3430 spin_unlock_irq(&x->wait.lock);
3431
3432 return ret;
3433}
3434EXPORT_SYMBOL(wait_for_completion_interruptible);
3435
3436unsigned long fastcall __sched
3437wait_for_completion_interruptible_timeout(struct completion *x,
3438 unsigned long timeout)
3439{
3440 might_sleep();
3441
3442 spin_lock_irq(&x->wait.lock);
3443 if (!x->done) {
3444 DECLARE_WAITQUEUE(wait, current);
3445
3446 wait.flags |= WQ_FLAG_EXCLUSIVE;
3447 __add_wait_queue_tail(&x->wait, &wait);
3448 do {
3449 if (signal_pending(current)) {
3450 timeout = -ERESTARTSYS;
3451 __remove_wait_queue(&x->wait, &wait);
3452 goto out;
3453 }
3454 __set_current_state(TASK_INTERRUPTIBLE);
3455 spin_unlock_irq(&x->wait.lock);
3456 timeout = schedule_timeout(timeout);
3457 spin_lock_irq(&x->wait.lock);
3458 if (!timeout) {
3459 __remove_wait_queue(&x->wait, &wait);
3460 goto out;
3461 }
3462 } while (!x->done);
3463 __remove_wait_queue(&x->wait, &wait);
3464 }
3465 x->done--;
3466out:
3467 spin_unlock_irq(&x->wait.lock);
3468 return timeout;
3469}
3470EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3471
3472
3473#define SLEEP_ON_VAR \
3474 unsigned long flags; \
3475 wait_queue_t wait; \
3476 init_waitqueue_entry(&wait, current);
3477
3478#define SLEEP_ON_HEAD \
3479 spin_lock_irqsave(&q->lock,flags); \
3480 __add_wait_queue(q, &wait); \
3481 spin_unlock(&q->lock);
3482
3483#define SLEEP_ON_TAIL \
3484 spin_lock_irq(&q->lock); \
3485 __remove_wait_queue(q, &wait); \
3486 spin_unlock_irqrestore(&q->lock, flags);
3487
3488void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3489{
3490 SLEEP_ON_VAR
3491
3492 current->state = TASK_INTERRUPTIBLE;
3493
3494 SLEEP_ON_HEAD
3495 schedule();
3496 SLEEP_ON_TAIL
3497}
3498
3499EXPORT_SYMBOL(interruptible_sleep_on);
3500
95cdf3b7
IM
3501long fastcall __sched
3502interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3503{
3504 SLEEP_ON_VAR
3505
3506 current->state = TASK_INTERRUPTIBLE;
3507
3508 SLEEP_ON_HEAD
3509 timeout = schedule_timeout(timeout);
3510 SLEEP_ON_TAIL
3511
3512 return timeout;
3513}
3514
3515EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3516
3517void fastcall __sched sleep_on(wait_queue_head_t *q)
3518{
3519 SLEEP_ON_VAR
3520
3521 current->state = TASK_UNINTERRUPTIBLE;
3522
3523 SLEEP_ON_HEAD
3524 schedule();
3525 SLEEP_ON_TAIL
3526}
3527
3528EXPORT_SYMBOL(sleep_on);
3529
3530long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3531{
3532 SLEEP_ON_VAR
3533
3534 current->state = TASK_UNINTERRUPTIBLE;
3535
3536 SLEEP_ON_HEAD
3537 timeout = schedule_timeout(timeout);
3538 SLEEP_ON_TAIL
3539
3540 return timeout;
3541}
3542
3543EXPORT_SYMBOL(sleep_on_timeout);
3544
3545void set_user_nice(task_t *p, long nice)
3546{
3547 unsigned long flags;
3548 prio_array_t *array;
3549 runqueue_t *rq;
3550 int old_prio, new_prio, delta;
3551
3552 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3553 return;
3554 /*
3555 * We have to be careful, if called from sys_setpriority(),
3556 * the task might be in the middle of scheduling on another CPU.
3557 */
3558 rq = task_rq_lock(p, &flags);
3559 /*
3560 * The RT priorities are set via sched_setscheduler(), but we still
3561 * allow the 'normal' nice value to be set - but as expected
3562 * it wont have any effect on scheduling until the task is
3563 * not SCHED_NORMAL:
3564 */
3565 if (rt_task(p)) {
3566 p->static_prio = NICE_TO_PRIO(nice);
3567 goto out_unlock;
3568 }
3569 array = p->array;
738a2ccb 3570 if (array) {
1da177e4 3571 dequeue_task(p, array);
738a2ccb
CK
3572 dec_prio_bias(rq, p->static_prio);
3573 }
1da177e4
LT
3574
3575 old_prio = p->prio;
3576 new_prio = NICE_TO_PRIO(nice);
3577 delta = new_prio - old_prio;
3578 p->static_prio = NICE_TO_PRIO(nice);
3579 p->prio += delta;
3580
3581 if (array) {
3582 enqueue_task(p, array);
738a2ccb 3583 inc_prio_bias(rq, p->static_prio);
1da177e4
LT
3584 /*
3585 * If the task increased its priority or is running and
3586 * lowered its priority, then reschedule its CPU:
3587 */
3588 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3589 resched_task(rq->curr);
3590 }
3591out_unlock:
3592 task_rq_unlock(rq, &flags);
3593}
3594
3595EXPORT_SYMBOL(set_user_nice);
3596
e43379f1
MM
3597/*
3598 * can_nice - check if a task can reduce its nice value
3599 * @p: task
3600 * @nice: nice value
3601 */
3602int can_nice(const task_t *p, const int nice)
3603{
024f4747
MM
3604 /* convert nice value [19,-20] to rlimit style value [1,40] */
3605 int nice_rlim = 20 - nice;
e43379f1
MM
3606 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3607 capable(CAP_SYS_NICE));
3608}
3609
1da177e4
LT
3610#ifdef __ARCH_WANT_SYS_NICE
3611
3612/*
3613 * sys_nice - change the priority of the current process.
3614 * @increment: priority increment
3615 *
3616 * sys_setpriority is a more generic, but much slower function that
3617 * does similar things.
3618 */
3619asmlinkage long sys_nice(int increment)
3620{
3621 int retval;
3622 long nice;
3623
3624 /*
3625 * Setpriority might change our priority at the same moment.
3626 * We don't have to worry. Conceptually one call occurs first
3627 * and we have a single winner.
3628 */
e43379f1
MM
3629 if (increment < -40)
3630 increment = -40;
1da177e4
LT
3631 if (increment > 40)
3632 increment = 40;
3633
3634 nice = PRIO_TO_NICE(current->static_prio) + increment;
3635 if (nice < -20)
3636 nice = -20;
3637 if (nice > 19)
3638 nice = 19;
3639
e43379f1
MM
3640 if (increment < 0 && !can_nice(current, nice))
3641 return -EPERM;
3642
1da177e4
LT
3643 retval = security_task_setnice(current, nice);
3644 if (retval)
3645 return retval;
3646
3647 set_user_nice(current, nice);
3648 return 0;
3649}
3650
3651#endif
3652
3653/**
3654 * task_prio - return the priority value of a given task.
3655 * @p: the task in question.
3656 *
3657 * This is the priority value as seen by users in /proc.
3658 * RT tasks are offset by -200. Normal tasks are centered
3659 * around 0, value goes from -16 to +15.
3660 */
3661int task_prio(const task_t *p)
3662{
3663 return p->prio - MAX_RT_PRIO;
3664}
3665
3666/**
3667 * task_nice - return the nice value of a given task.
3668 * @p: the task in question.
3669 */
3670int task_nice(const task_t *p)
3671{
3672 return TASK_NICE(p);
3673}
1da177e4 3674EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3675
3676/**
3677 * idle_cpu - is a given cpu idle currently?
3678 * @cpu: the processor in question.
3679 */
3680int idle_cpu(int cpu)
3681{
3682 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3683}
3684
1da177e4
LT
3685/**
3686 * idle_task - return the idle task for a given cpu.
3687 * @cpu: the processor in question.
3688 */
3689task_t *idle_task(int cpu)
3690{
3691 return cpu_rq(cpu)->idle;
3692}
3693
3694/**
3695 * find_process_by_pid - find a process with a matching PID value.
3696 * @pid: the pid in question.
3697 */
3698static inline task_t *find_process_by_pid(pid_t pid)
3699{
3700 return pid ? find_task_by_pid(pid) : current;
3701}
3702
3703/* Actually do priority change: must hold rq lock. */
3704static void __setscheduler(struct task_struct *p, int policy, int prio)
3705{
3706 BUG_ON(p->array);
3707 p->policy = policy;
3708 p->rt_priority = prio;
3709 if (policy != SCHED_NORMAL)
d46523ea 3710 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
1da177e4
LT
3711 else
3712 p->prio = p->static_prio;
3713}
3714
3715/**
3716 * sched_setscheduler - change the scheduling policy and/or RT priority of
3717 * a thread.
3718 * @p: the task in question.
3719 * @policy: new policy.
3720 * @param: structure containing the new RT priority.
3721 */
95cdf3b7
IM
3722int sched_setscheduler(struct task_struct *p, int policy,
3723 struct sched_param *param)
1da177e4
LT
3724{
3725 int retval;
3726 int oldprio, oldpolicy = -1;
3727 prio_array_t *array;
3728 unsigned long flags;
3729 runqueue_t *rq;
3730
3731recheck:
3732 /* double check policy once rq lock held */
3733 if (policy < 0)
3734 policy = oldpolicy = p->policy;
3735 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3736 policy != SCHED_NORMAL)
3737 return -EINVAL;
3738 /*
3739 * Valid priorities for SCHED_FIFO and SCHED_RR are
3740 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3741 */
3742 if (param->sched_priority < 0 ||
95cdf3b7 3743 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3744 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4
LT
3745 return -EINVAL;
3746 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3747 return -EINVAL;
3748
37e4ab3f
OC
3749 /*
3750 * Allow unprivileged RT tasks to decrease priority:
3751 */
3752 if (!capable(CAP_SYS_NICE)) {
3753 /* can't change policy */
18586e72
AS
3754 if (policy != p->policy &&
3755 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
37e4ab3f
OC
3756 return -EPERM;
3757 /* can't increase priority */
3758 if (policy != SCHED_NORMAL &&
3759 param->sched_priority > p->rt_priority &&
3760 param->sched_priority >
3761 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3762 return -EPERM;
3763 /* can't change other user's priorities */
3764 if ((current->euid != p->euid) &&
3765 (current->euid != p->uid))
3766 return -EPERM;
3767 }
1da177e4
LT
3768
3769 retval = security_task_setscheduler(p, policy, param);
3770 if (retval)
3771 return retval;
3772 /*
3773 * To be able to change p->policy safely, the apropriate
3774 * runqueue lock must be held.
3775 */
3776 rq = task_rq_lock(p, &flags);
3777 /* recheck policy now with rq lock held */
3778 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3779 policy = oldpolicy = -1;
3780 task_rq_unlock(rq, &flags);
3781 goto recheck;
3782 }
3783 array = p->array;
3784 if (array)
3785 deactivate_task(p, rq);
3786 oldprio = p->prio;
3787 __setscheduler(p, policy, param->sched_priority);
3788 if (array) {
3789 __activate_task(p, rq);
3790 /*
3791 * Reschedule if we are currently running on this runqueue and
3792 * our priority decreased, or if we are not currently running on
3793 * this runqueue and our priority is higher than the current's
3794 */
3795 if (task_running(rq, p)) {
3796 if (p->prio > oldprio)
3797 resched_task(rq->curr);
3798 } else if (TASK_PREEMPTS_CURR(p, rq))
3799 resched_task(rq->curr);
3800 }
3801 task_rq_unlock(rq, &flags);
3802 return 0;
3803}
3804EXPORT_SYMBOL_GPL(sched_setscheduler);
3805
95cdf3b7
IM
3806static int
3807do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4
LT
3808{
3809 int retval;
3810 struct sched_param lparam;
3811 struct task_struct *p;
3812
3813 if (!param || pid < 0)
3814 return -EINVAL;
3815 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3816 return -EFAULT;
3817 read_lock_irq(&tasklist_lock);
3818 p = find_process_by_pid(pid);
3819 if (!p) {
3820 read_unlock_irq(&tasklist_lock);
3821 return -ESRCH;
3822 }
3823 retval = sched_setscheduler(p, policy, &lparam);
3824 read_unlock_irq(&tasklist_lock);
3825 return retval;
3826}
3827
3828/**
3829 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3830 * @pid: the pid in question.
3831 * @policy: new policy.
3832 * @param: structure containing the new RT priority.
3833 */
3834asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3835 struct sched_param __user *param)
3836{
3837 return do_sched_setscheduler(pid, policy, param);
3838}
3839
3840/**
3841 * sys_sched_setparam - set/change the RT priority of a thread
3842 * @pid: the pid in question.
3843 * @param: structure containing the new RT priority.
3844 */
3845asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3846{
3847 return do_sched_setscheduler(pid, -1, param);
3848}
3849
3850/**
3851 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3852 * @pid: the pid in question.
3853 */
3854asmlinkage long sys_sched_getscheduler(pid_t pid)
3855{
3856 int retval = -EINVAL;
3857 task_t *p;
3858
3859 if (pid < 0)
3860 goto out_nounlock;
3861
3862 retval = -ESRCH;
3863 read_lock(&tasklist_lock);
3864 p = find_process_by_pid(pid);
3865 if (p) {
3866 retval = security_task_getscheduler(p);
3867 if (!retval)
3868 retval = p->policy;
3869 }
3870 read_unlock(&tasklist_lock);
3871
3872out_nounlock:
3873 return retval;
3874}
3875
3876/**
3877 * sys_sched_getscheduler - get the RT priority of a thread
3878 * @pid: the pid in question.
3879 * @param: structure containing the RT priority.
3880 */
3881asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3882{
3883 struct sched_param lp;
3884 int retval = -EINVAL;
3885 task_t *p;
3886
3887 if (!param || pid < 0)
3888 goto out_nounlock;
3889
3890 read_lock(&tasklist_lock);
3891 p = find_process_by_pid(pid);
3892 retval = -ESRCH;
3893 if (!p)
3894 goto out_unlock;
3895
3896 retval = security_task_getscheduler(p);
3897 if (retval)
3898 goto out_unlock;
3899
3900 lp.sched_priority = p->rt_priority;
3901 read_unlock(&tasklist_lock);
3902
3903 /*
3904 * This one might sleep, we cannot do it with a spinlock held ...
3905 */
3906 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3907
3908out_nounlock:
3909 return retval;
3910
3911out_unlock:
3912 read_unlock(&tasklist_lock);
3913 return retval;
3914}
3915
3916long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3917{
3918 task_t *p;
3919 int retval;
3920 cpumask_t cpus_allowed;
3921
3922 lock_cpu_hotplug();
3923 read_lock(&tasklist_lock);
3924
3925 p = find_process_by_pid(pid);
3926 if (!p) {
3927 read_unlock(&tasklist_lock);
3928 unlock_cpu_hotplug();
3929 return -ESRCH;
3930 }
3931
3932 /*
3933 * It is not safe to call set_cpus_allowed with the
3934 * tasklist_lock held. We will bump the task_struct's
3935 * usage count and then drop tasklist_lock.
3936 */
3937 get_task_struct(p);
3938 read_unlock(&tasklist_lock);
3939
3940 retval = -EPERM;
3941 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3942 !capable(CAP_SYS_NICE))
3943 goto out_unlock;
3944
3945 cpus_allowed = cpuset_cpus_allowed(p);
3946 cpus_and(new_mask, new_mask, cpus_allowed);
3947 retval = set_cpus_allowed(p, new_mask);
3948
3949out_unlock:
3950 put_task_struct(p);
3951 unlock_cpu_hotplug();
3952 return retval;
3953}
3954
3955static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3956 cpumask_t *new_mask)
3957{
3958 if (len < sizeof(cpumask_t)) {
3959 memset(new_mask, 0, sizeof(cpumask_t));
3960 } else if (len > sizeof(cpumask_t)) {
3961 len = sizeof(cpumask_t);
3962 }
3963 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3964}
3965
3966/**
3967 * sys_sched_setaffinity - set the cpu affinity of a process
3968 * @pid: pid of the process
3969 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3970 * @user_mask_ptr: user-space pointer to the new cpu mask
3971 */
3972asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3973 unsigned long __user *user_mask_ptr)
3974{
3975 cpumask_t new_mask;
3976 int retval;
3977
3978 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3979 if (retval)
3980 return retval;
3981
3982 return sched_setaffinity(pid, new_mask);
3983}
3984
3985/*
3986 * Represents all cpu's present in the system
3987 * In systems capable of hotplug, this map could dynamically grow
3988 * as new cpu's are detected in the system via any platform specific
3989 * method, such as ACPI for e.g.
3990 */
3991
4cef0c61 3992cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
3993EXPORT_SYMBOL(cpu_present_map);
3994
3995#ifndef CONFIG_SMP
4cef0c61
AK
3996cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3997cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
1da177e4
LT
3998#endif
3999
4000long sched_getaffinity(pid_t pid, cpumask_t *mask)
4001{
4002 int retval;
4003 task_t *p;
4004
4005 lock_cpu_hotplug();
4006 read_lock(&tasklist_lock);
4007
4008 retval = -ESRCH;
4009 p = find_process_by_pid(pid);
4010 if (!p)
4011 goto out_unlock;
4012
4013 retval = 0;
4014 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
4015
4016out_unlock:
4017 read_unlock(&tasklist_lock);
4018 unlock_cpu_hotplug();
4019 if (retval)
4020 return retval;
4021
4022 return 0;
4023}
4024
4025/**
4026 * sys_sched_getaffinity - get the cpu affinity of a process
4027 * @pid: pid of the process
4028 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4029 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4030 */
4031asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4032 unsigned long __user *user_mask_ptr)
4033{
4034 int ret;
4035 cpumask_t mask;
4036
4037 if (len < sizeof(cpumask_t))
4038 return -EINVAL;
4039
4040 ret = sched_getaffinity(pid, &mask);
4041 if (ret < 0)
4042 return ret;
4043
4044 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4045 return -EFAULT;
4046
4047 return sizeof(cpumask_t);
4048}
4049
4050/**
4051 * sys_sched_yield - yield the current processor to other threads.
4052 *
4053 * this function yields the current CPU by moving the calling thread
4054 * to the expired array. If there are no other threads running on this
4055 * CPU then this function will return.
4056 */
4057asmlinkage long sys_sched_yield(void)
4058{
4059 runqueue_t *rq = this_rq_lock();
4060 prio_array_t *array = current->array;
4061 prio_array_t *target = rq->expired;
4062
4063 schedstat_inc(rq, yld_cnt);
4064 /*
4065 * We implement yielding by moving the task into the expired
4066 * queue.
4067 *
4068 * (special rule: RT tasks will just roundrobin in the active
4069 * array.)
4070 */
4071 if (rt_task(current))
4072 target = rq->active;
4073
5927ad78 4074 if (array->nr_active == 1) {
1da177e4
LT
4075 schedstat_inc(rq, yld_act_empty);
4076 if (!rq->expired->nr_active)
4077 schedstat_inc(rq, yld_both_empty);
4078 } else if (!rq->expired->nr_active)
4079 schedstat_inc(rq, yld_exp_empty);
4080
4081 if (array != target) {
4082 dequeue_task(current, array);
4083 enqueue_task(current, target);
4084 } else
4085 /*
4086 * requeue_task is cheaper so perform that if possible.
4087 */
4088 requeue_task(current, array);
4089
4090 /*
4091 * Since we are going to call schedule() anyway, there's
4092 * no need to preempt or enable interrupts:
4093 */
4094 __release(rq->lock);
4095 _raw_spin_unlock(&rq->lock);
4096 preempt_enable_no_resched();
4097
4098 schedule();
4099
4100 return 0;
4101}
4102
4103static inline void __cond_resched(void)
4104{
5bbcfd90
IM
4105 /*
4106 * The BKS might be reacquired before we have dropped
4107 * PREEMPT_ACTIVE, which could trigger a second
4108 * cond_resched() call.
4109 */
4110 if (unlikely(preempt_count()))
4111 return;
1da177e4
LT
4112 do {
4113 add_preempt_count(PREEMPT_ACTIVE);
4114 schedule();
4115 sub_preempt_count(PREEMPT_ACTIVE);
4116 } while (need_resched());
4117}
4118
4119int __sched cond_resched(void)
4120{
4121 if (need_resched()) {
4122 __cond_resched();
4123 return 1;
4124 }
4125 return 0;
4126}
4127
4128EXPORT_SYMBOL(cond_resched);
4129
4130/*
4131 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4132 * call schedule, and on return reacquire the lock.
4133 *
4134 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4135 * operations here to prevent schedule() from being called twice (once via
4136 * spin_unlock(), once by hand).
4137 */
95cdf3b7 4138int cond_resched_lock(spinlock_t *lock)
1da177e4 4139{
6df3cecb
JK
4140 int ret = 0;
4141
1da177e4
LT
4142 if (need_lockbreak(lock)) {
4143 spin_unlock(lock);
4144 cpu_relax();
6df3cecb 4145 ret = 1;
1da177e4
LT
4146 spin_lock(lock);
4147 }
4148 if (need_resched()) {
4149 _raw_spin_unlock(lock);
4150 preempt_enable_no_resched();
4151 __cond_resched();
6df3cecb 4152 ret = 1;
1da177e4 4153 spin_lock(lock);
1da177e4 4154 }
6df3cecb 4155 return ret;
1da177e4
LT
4156}
4157
4158EXPORT_SYMBOL(cond_resched_lock);
4159
4160int __sched cond_resched_softirq(void)
4161{
4162 BUG_ON(!in_softirq());
4163
4164 if (need_resched()) {
4165 __local_bh_enable();
4166 __cond_resched();
4167 local_bh_disable();
4168 return 1;
4169 }
4170 return 0;
4171}
4172
4173EXPORT_SYMBOL(cond_resched_softirq);
4174
4175
4176/**
4177 * yield - yield the current processor to other threads.
4178 *
4179 * this is a shortcut for kernel-space yielding - it marks the
4180 * thread runnable and calls sys_sched_yield().
4181 */
4182void __sched yield(void)
4183{
4184 set_current_state(TASK_RUNNING);
4185 sys_sched_yield();
4186}
4187
4188EXPORT_SYMBOL(yield);
4189
4190/*
4191 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4192 * that process accounting knows that this is a task in IO wait state.
4193 *
4194 * But don't do that if it is a deliberate, throttling IO wait (this task
4195 * has set its backing_dev_info: the queue against which it should throttle)
4196 */
4197void __sched io_schedule(void)
4198{
39c715b7 4199 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4200
4201 atomic_inc(&rq->nr_iowait);
4202 schedule();
4203 atomic_dec(&rq->nr_iowait);
4204}
4205
4206EXPORT_SYMBOL(io_schedule);
4207
4208long __sched io_schedule_timeout(long timeout)
4209{
39c715b7 4210 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4211 long ret;
4212
4213 atomic_inc(&rq->nr_iowait);
4214 ret = schedule_timeout(timeout);
4215 atomic_dec(&rq->nr_iowait);
4216 return ret;
4217}
4218
4219/**
4220 * sys_sched_get_priority_max - return maximum RT priority.
4221 * @policy: scheduling class.
4222 *
4223 * this syscall returns the maximum rt_priority that can be used
4224 * by a given scheduling class.
4225 */
4226asmlinkage long sys_sched_get_priority_max(int policy)
4227{
4228 int ret = -EINVAL;
4229
4230 switch (policy) {
4231 case SCHED_FIFO:
4232 case SCHED_RR:
4233 ret = MAX_USER_RT_PRIO-1;
4234 break;
4235 case SCHED_NORMAL:
4236 ret = 0;
4237 break;
4238 }
4239 return ret;
4240}
4241
4242/**
4243 * sys_sched_get_priority_min - return minimum RT priority.
4244 * @policy: scheduling class.
4245 *
4246 * this syscall returns the minimum rt_priority that can be used
4247 * by a given scheduling class.
4248 */
4249asmlinkage long sys_sched_get_priority_min(int policy)
4250{
4251 int ret = -EINVAL;
4252
4253 switch (policy) {
4254 case SCHED_FIFO:
4255 case SCHED_RR:
4256 ret = 1;
4257 break;
4258 case SCHED_NORMAL:
4259 ret = 0;
4260 }
4261 return ret;
4262}
4263
4264/**
4265 * sys_sched_rr_get_interval - return the default timeslice of a process.
4266 * @pid: pid of the process.
4267 * @interval: userspace pointer to the timeslice value.
4268 *
4269 * this syscall writes the default timeslice value of a given process
4270 * into the user-space timespec buffer. A value of '0' means infinity.
4271 */
4272asmlinkage
4273long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4274{
4275 int retval = -EINVAL;
4276 struct timespec t;
4277 task_t *p;
4278
4279 if (pid < 0)
4280 goto out_nounlock;
4281
4282 retval = -ESRCH;
4283 read_lock(&tasklist_lock);
4284 p = find_process_by_pid(pid);
4285 if (!p)
4286 goto out_unlock;
4287
4288 retval = security_task_getscheduler(p);
4289 if (retval)
4290 goto out_unlock;
4291
4292 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4293 0 : task_timeslice(p), &t);
4294 read_unlock(&tasklist_lock);
4295 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4296out_nounlock:
4297 return retval;
4298out_unlock:
4299 read_unlock(&tasklist_lock);
4300 return retval;
4301}
4302
4303static inline struct task_struct *eldest_child(struct task_struct *p)
4304{
4305 if (list_empty(&p->children)) return NULL;
4306 return list_entry(p->children.next,struct task_struct,sibling);
4307}
4308
4309static inline struct task_struct *older_sibling(struct task_struct *p)
4310{
4311 if (p->sibling.prev==&p->parent->children) return NULL;
4312 return list_entry(p->sibling.prev,struct task_struct,sibling);
4313}
4314
4315static inline struct task_struct *younger_sibling(struct task_struct *p)
4316{
4317 if (p->sibling.next==&p->parent->children) return NULL;
4318 return list_entry(p->sibling.next,struct task_struct,sibling);
4319}
4320
95cdf3b7 4321static void show_task(task_t *p)
1da177e4
LT
4322{
4323 task_t *relative;
4324 unsigned state;
4325 unsigned long free = 0;
4326 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4327
4328 printk("%-13.13s ", p->comm);
4329 state = p->state ? __ffs(p->state) + 1 : 0;
4330 if (state < ARRAY_SIZE(stat_nam))
4331 printk(stat_nam[state]);
4332 else
4333 printk("?");
4334#if (BITS_PER_LONG == 32)
4335 if (state == TASK_RUNNING)
4336 printk(" running ");
4337 else
4338 printk(" %08lX ", thread_saved_pc(p));
4339#else
4340 if (state == TASK_RUNNING)
4341 printk(" running task ");
4342 else
4343 printk(" %016lx ", thread_saved_pc(p));
4344#endif
4345#ifdef CONFIG_DEBUG_STACK_USAGE
4346 {
10ebffde 4347 unsigned long *n = end_of_stack(p);
1da177e4
LT
4348 while (!*n)
4349 n++;
10ebffde 4350 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4351 }
4352#endif
4353 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4354 if ((relative = eldest_child(p)))
4355 printk("%5d ", relative->pid);
4356 else
4357 printk(" ");
4358 if ((relative = younger_sibling(p)))
4359 printk("%7d", relative->pid);
4360 else
4361 printk(" ");
4362 if ((relative = older_sibling(p)))
4363 printk(" %5d", relative->pid);
4364 else
4365 printk(" ");
4366 if (!p->mm)
4367 printk(" (L-TLB)\n");
4368 else
4369 printk(" (NOTLB)\n");
4370
4371 if (state != TASK_RUNNING)
4372 show_stack(p, NULL);
4373}
4374
4375void show_state(void)
4376{
4377 task_t *g, *p;
4378
4379#if (BITS_PER_LONG == 32)
4380 printk("\n"
4381 " sibling\n");
4382 printk(" task PC pid father child younger older\n");
4383#else
4384 printk("\n"
4385 " sibling\n");
4386 printk(" task PC pid father child younger older\n");
4387#endif
4388 read_lock(&tasklist_lock);
4389 do_each_thread(g, p) {
4390 /*
4391 * reset the NMI-timeout, listing all files on a slow
4392 * console might take alot of time:
4393 */
4394 touch_nmi_watchdog();
4395 show_task(p);
4396 } while_each_thread(g, p);
4397
4398 read_unlock(&tasklist_lock);
de5097c2 4399 mutex_debug_show_all_locks();
1da177e4
LT
4400}
4401
f340c0d1
IM
4402/**
4403 * init_idle - set up an idle thread for a given CPU
4404 * @idle: task in question
4405 * @cpu: cpu the idle task belongs to
4406 *
4407 * NOTE: this function does not set the idle thread's NEED_RESCHED
4408 * flag, to make booting more robust.
4409 */
1da177e4
LT
4410void __devinit init_idle(task_t *idle, int cpu)
4411{
4412 runqueue_t *rq = cpu_rq(cpu);
4413 unsigned long flags;
4414
4415 idle->sleep_avg = 0;
4416 idle->array = NULL;
4417 idle->prio = MAX_PRIO;
4418 idle->state = TASK_RUNNING;
4419 idle->cpus_allowed = cpumask_of_cpu(cpu);
4420 set_task_cpu(idle, cpu);
4421
4422 spin_lock_irqsave(&rq->lock, flags);
4423 rq->curr = rq->idle = idle;
4866cde0
NP
4424#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4425 idle->oncpu = 1;
4426#endif
1da177e4
LT
4427 spin_unlock_irqrestore(&rq->lock, flags);
4428
4429 /* Set the preempt count _outside_ the spinlocks! */
4430#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4431 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4432#else
a1261f54 4433 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4434#endif
4435}
4436
4437/*
4438 * In a system that switches off the HZ timer nohz_cpu_mask
4439 * indicates which cpus entered this state. This is used
4440 * in the rcu update to wait only for active cpus. For system
4441 * which do not switch off the HZ timer nohz_cpu_mask should
4442 * always be CPU_MASK_NONE.
4443 */
4444cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4445
4446#ifdef CONFIG_SMP
4447/*
4448 * This is how migration works:
4449 *
4450 * 1) we queue a migration_req_t structure in the source CPU's
4451 * runqueue and wake up that CPU's migration thread.
4452 * 2) we down() the locked semaphore => thread blocks.
4453 * 3) migration thread wakes up (implicitly it forces the migrated
4454 * thread off the CPU)
4455 * 4) it gets the migration request and checks whether the migrated
4456 * task is still in the wrong runqueue.
4457 * 5) if it's in the wrong runqueue then the migration thread removes
4458 * it and puts it into the right queue.
4459 * 6) migration thread up()s the semaphore.
4460 * 7) we wake up and the migration is done.
4461 */
4462
4463/*
4464 * Change a given task's CPU affinity. Migrate the thread to a
4465 * proper CPU and schedule it away if the CPU it's executing on
4466 * is removed from the allowed bitmask.
4467 *
4468 * NOTE: the caller must have a valid reference to the task, the
4469 * task must not exit() & deallocate itself prematurely. The
4470 * call is not atomic; no spinlocks may be held.
4471 */
4472int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4473{
4474 unsigned long flags;
4475 int ret = 0;
4476 migration_req_t req;
4477 runqueue_t *rq;
4478
4479 rq = task_rq_lock(p, &flags);
4480 if (!cpus_intersects(new_mask, cpu_online_map)) {
4481 ret = -EINVAL;
4482 goto out;
4483 }
4484
4485 p->cpus_allowed = new_mask;
4486 /* Can the task run on the task's current CPU? If so, we're done */
4487 if (cpu_isset(task_cpu(p), new_mask))
4488 goto out;
4489
4490 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4491 /* Need help from migration thread: drop lock and wait. */
4492 task_rq_unlock(rq, &flags);
4493 wake_up_process(rq->migration_thread);
4494 wait_for_completion(&req.done);
4495 tlb_migrate_finish(p->mm);
4496 return 0;
4497 }
4498out:
4499 task_rq_unlock(rq, &flags);
4500 return ret;
4501}
4502
4503EXPORT_SYMBOL_GPL(set_cpus_allowed);
4504
4505/*
4506 * Move (not current) task off this cpu, onto dest cpu. We're doing
4507 * this because either it can't run here any more (set_cpus_allowed()
4508 * away from this CPU, or CPU going down), or because we're
4509 * attempting to rebalance this task on exec (sched_exec).
4510 *
4511 * So we race with normal scheduler movements, but that's OK, as long
4512 * as the task is no longer on this CPU.
4513 */
4514static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4515{
4516 runqueue_t *rq_dest, *rq_src;
4517
4518 if (unlikely(cpu_is_offline(dest_cpu)))
4519 return;
4520
4521 rq_src = cpu_rq(src_cpu);
4522 rq_dest = cpu_rq(dest_cpu);
4523
4524 double_rq_lock(rq_src, rq_dest);
4525 /* Already moved. */
4526 if (task_cpu(p) != src_cpu)
4527 goto out;
4528 /* Affinity changed (again). */
4529 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4530 goto out;
4531
4532 set_task_cpu(p, dest_cpu);
4533 if (p->array) {
4534 /*
4535 * Sync timestamp with rq_dest's before activating.
4536 * The same thing could be achieved by doing this step
4537 * afterwards, and pretending it was a local activate.
4538 * This way is cleaner and logically correct.
4539 */
4540 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4541 + rq_dest->timestamp_last_tick;
4542 deactivate_task(p, rq_src);
4543 activate_task(p, rq_dest, 0);
4544 if (TASK_PREEMPTS_CURR(p, rq_dest))
4545 resched_task(rq_dest->curr);
4546 }
4547
4548out:
4549 double_rq_unlock(rq_src, rq_dest);
4550}
4551
4552/*
4553 * migration_thread - this is a highprio system thread that performs
4554 * thread migration by bumping thread off CPU then 'pushing' onto
4555 * another runqueue.
4556 */
95cdf3b7 4557static int migration_thread(void *data)
1da177e4
LT
4558{
4559 runqueue_t *rq;
4560 int cpu = (long)data;
4561
4562 rq = cpu_rq(cpu);
4563 BUG_ON(rq->migration_thread != current);
4564
4565 set_current_state(TASK_INTERRUPTIBLE);
4566 while (!kthread_should_stop()) {
4567 struct list_head *head;
4568 migration_req_t *req;
4569
3e1d1d28 4570 try_to_freeze();
1da177e4
LT
4571
4572 spin_lock_irq(&rq->lock);
4573
4574 if (cpu_is_offline(cpu)) {
4575 spin_unlock_irq(&rq->lock);
4576 goto wait_to_die;
4577 }
4578
4579 if (rq->active_balance) {
4580 active_load_balance(rq, cpu);
4581 rq->active_balance = 0;
4582 }
4583
4584 head = &rq->migration_queue;
4585
4586 if (list_empty(head)) {
4587 spin_unlock_irq(&rq->lock);
4588 schedule();
4589 set_current_state(TASK_INTERRUPTIBLE);
4590 continue;
4591 }
4592 req = list_entry(head->next, migration_req_t, list);
4593 list_del_init(head->next);
4594
674311d5
NP
4595 spin_unlock(&rq->lock);
4596 __migrate_task(req->task, cpu, req->dest_cpu);
4597 local_irq_enable();
1da177e4
LT
4598
4599 complete(&req->done);
4600 }
4601 __set_current_state(TASK_RUNNING);
4602 return 0;
4603
4604wait_to_die:
4605 /* Wait for kthread_stop */
4606 set_current_state(TASK_INTERRUPTIBLE);
4607 while (!kthread_should_stop()) {
4608 schedule();
4609 set_current_state(TASK_INTERRUPTIBLE);
4610 }
4611 __set_current_state(TASK_RUNNING);
4612 return 0;
4613}
4614
4615#ifdef CONFIG_HOTPLUG_CPU
4616/* Figure out where task on dead CPU should go, use force if neccessary. */
4617static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4618{
4619 int dest_cpu;
4620 cpumask_t mask;
4621
4622 /* On same node? */
4623 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4624 cpus_and(mask, mask, tsk->cpus_allowed);
4625 dest_cpu = any_online_cpu(mask);
4626
4627 /* On any allowed CPU? */
4628 if (dest_cpu == NR_CPUS)
4629 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4630
4631 /* No more Mr. Nice Guy. */
4632 if (dest_cpu == NR_CPUS) {
b39c4fab 4633 cpus_setall(tsk->cpus_allowed);
1da177e4
LT
4634 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4635
4636 /*
4637 * Don't tell them about moving exiting tasks or
4638 * kernel threads (both mm NULL), since they never
4639 * leave kernel.
4640 */
4641 if (tsk->mm && printk_ratelimit())
4642 printk(KERN_INFO "process %d (%s) no "
4643 "longer affine to cpu%d\n",
4644 tsk->pid, tsk->comm, dead_cpu);
4645 }
4646 __migrate_task(tsk, dead_cpu, dest_cpu);
4647}
4648
4649/*
4650 * While a dead CPU has no uninterruptible tasks queued at this point,
4651 * it might still have a nonzero ->nr_uninterruptible counter, because
4652 * for performance reasons the counter is not stricly tracking tasks to
4653 * their home CPUs. So we just add the counter to another CPU's counter,
4654 * to keep the global sum constant after CPU-down:
4655 */
4656static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4657{
4658 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4659 unsigned long flags;
4660
4661 local_irq_save(flags);
4662 double_rq_lock(rq_src, rq_dest);
4663 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4664 rq_src->nr_uninterruptible = 0;
4665 double_rq_unlock(rq_src, rq_dest);
4666 local_irq_restore(flags);
4667}
4668
4669/* Run through task list and migrate tasks from the dead cpu. */
4670static void migrate_live_tasks(int src_cpu)
4671{
4672 struct task_struct *tsk, *t;
4673
4674 write_lock_irq(&tasklist_lock);
4675
4676 do_each_thread(t, tsk) {
4677 if (tsk == current)
4678 continue;
4679
4680 if (task_cpu(tsk) == src_cpu)
4681 move_task_off_dead_cpu(src_cpu, tsk);
4682 } while_each_thread(t, tsk);
4683
4684 write_unlock_irq(&tasklist_lock);
4685}
4686
4687/* Schedules idle task to be the next runnable task on current CPU.
4688 * It does so by boosting its priority to highest possible and adding it to
4689 * the _front_ of runqueue. Used by CPU offline code.
4690 */
4691void sched_idle_next(void)
4692{
4693 int cpu = smp_processor_id();
4694 runqueue_t *rq = this_rq();
4695 struct task_struct *p = rq->idle;
4696 unsigned long flags;
4697
4698 /* cpu has to be offline */
4699 BUG_ON(cpu_online(cpu));
4700
4701 /* Strictly not necessary since rest of the CPUs are stopped by now
4702 * and interrupts disabled on current cpu.
4703 */
4704 spin_lock_irqsave(&rq->lock, flags);
4705
4706 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4707 /* Add idle task to _front_ of it's priority queue */
4708 __activate_idle_task(p, rq);
4709
4710 spin_unlock_irqrestore(&rq->lock, flags);
4711}
4712
4713/* Ensures that the idle task is using init_mm right before its cpu goes
4714 * offline.
4715 */
4716void idle_task_exit(void)
4717{
4718 struct mm_struct *mm = current->active_mm;
4719
4720 BUG_ON(cpu_online(smp_processor_id()));
4721
4722 if (mm != &init_mm)
4723 switch_mm(mm, &init_mm, current);
4724 mmdrop(mm);
4725}
4726
4727static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4728{
4729 struct runqueue *rq = cpu_rq(dead_cpu);
4730
4731 /* Must be exiting, otherwise would be on tasklist. */
4732 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4733
4734 /* Cannot have done final schedule yet: would have vanished. */
4735 BUG_ON(tsk->flags & PF_DEAD);
4736
4737 get_task_struct(tsk);
4738
4739 /*
4740 * Drop lock around migration; if someone else moves it,
4741 * that's OK. No task can be added to this CPU, so iteration is
4742 * fine.
4743 */
4744 spin_unlock_irq(&rq->lock);
4745 move_task_off_dead_cpu(dead_cpu, tsk);
4746 spin_lock_irq(&rq->lock);
4747
4748 put_task_struct(tsk);
4749}
4750
4751/* release_task() removes task from tasklist, so we won't find dead tasks. */
4752static void migrate_dead_tasks(unsigned int dead_cpu)
4753{
4754 unsigned arr, i;
4755 struct runqueue *rq = cpu_rq(dead_cpu);
4756
4757 for (arr = 0; arr < 2; arr++) {
4758 for (i = 0; i < MAX_PRIO; i++) {
4759 struct list_head *list = &rq->arrays[arr].queue[i];
4760 while (!list_empty(list))
4761 migrate_dead(dead_cpu,
4762 list_entry(list->next, task_t,
4763 run_list));
4764 }
4765 }
4766}
4767#endif /* CONFIG_HOTPLUG_CPU */
4768
4769/*
4770 * migration_call - callback that gets triggered when a CPU is added.
4771 * Here we can start up the necessary migration thread for the new CPU.
4772 */
4773static int migration_call(struct notifier_block *nfb, unsigned long action,
4774 void *hcpu)
4775{
4776 int cpu = (long)hcpu;
4777 struct task_struct *p;
4778 struct runqueue *rq;
4779 unsigned long flags;
4780
4781 switch (action) {
4782 case CPU_UP_PREPARE:
4783 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4784 if (IS_ERR(p))
4785 return NOTIFY_BAD;
4786 p->flags |= PF_NOFREEZE;
4787 kthread_bind(p, cpu);
4788 /* Must be high prio: stop_machine expects to yield to it. */
4789 rq = task_rq_lock(p, &flags);
4790 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4791 task_rq_unlock(rq, &flags);
4792 cpu_rq(cpu)->migration_thread = p;
4793 break;
4794 case CPU_ONLINE:
4795 /* Strictly unneccessary, as first user will wake it. */
4796 wake_up_process(cpu_rq(cpu)->migration_thread);
4797 break;
4798#ifdef CONFIG_HOTPLUG_CPU
4799 case CPU_UP_CANCELED:
4800 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
4801 kthread_bind(cpu_rq(cpu)->migration_thread,
4802 any_online_cpu(cpu_online_map));
1da177e4
LT
4803 kthread_stop(cpu_rq(cpu)->migration_thread);
4804 cpu_rq(cpu)->migration_thread = NULL;
4805 break;
4806 case CPU_DEAD:
4807 migrate_live_tasks(cpu);
4808 rq = cpu_rq(cpu);
4809 kthread_stop(rq->migration_thread);
4810 rq->migration_thread = NULL;
4811 /* Idle task back to normal (off runqueue, low prio) */
4812 rq = task_rq_lock(rq->idle, &flags);
4813 deactivate_task(rq->idle, rq);
4814 rq->idle->static_prio = MAX_PRIO;
4815 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4816 migrate_dead_tasks(cpu);
4817 task_rq_unlock(rq, &flags);
4818 migrate_nr_uninterruptible(rq);
4819 BUG_ON(rq->nr_running != 0);
4820
4821 /* No need to migrate the tasks: it was best-effort if
4822 * they didn't do lock_cpu_hotplug(). Just wake up
4823 * the requestors. */
4824 spin_lock_irq(&rq->lock);
4825 while (!list_empty(&rq->migration_queue)) {
4826 migration_req_t *req;
4827 req = list_entry(rq->migration_queue.next,
4828 migration_req_t, list);
1da177e4
LT
4829 list_del_init(&req->list);
4830 complete(&req->done);
4831 }
4832 spin_unlock_irq(&rq->lock);
4833 break;
4834#endif
4835 }
4836 return NOTIFY_OK;
4837}
4838
4839/* Register at highest priority so that task migration (migrate_all_tasks)
4840 * happens before everything else.
4841 */
4842static struct notifier_block __devinitdata migration_notifier = {
4843 .notifier_call = migration_call,
4844 .priority = 10
4845};
4846
4847int __init migration_init(void)
4848{
4849 void *cpu = (void *)(long)smp_processor_id();
4850 /* Start one for boot CPU. */
4851 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4852 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4853 register_cpu_notifier(&migration_notifier);
4854 return 0;
4855}
4856#endif
4857
4858#ifdef CONFIG_SMP
1a20ff27 4859#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
4860#ifdef SCHED_DOMAIN_DEBUG
4861static void sched_domain_debug(struct sched_domain *sd, int cpu)
4862{
4863 int level = 0;
4864
41c7ce9a
NP
4865 if (!sd) {
4866 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4867 return;
4868 }
4869
1da177e4
LT
4870 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4871
4872 do {
4873 int i;
4874 char str[NR_CPUS];
4875 struct sched_group *group = sd->groups;
4876 cpumask_t groupmask;
4877
4878 cpumask_scnprintf(str, NR_CPUS, sd->span);
4879 cpus_clear(groupmask);
4880
4881 printk(KERN_DEBUG);
4882 for (i = 0; i < level + 1; i++)
4883 printk(" ");
4884 printk("domain %d: ", level);
4885
4886 if (!(sd->flags & SD_LOAD_BALANCE)) {
4887 printk("does not load-balance\n");
4888 if (sd->parent)
4889 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4890 break;
4891 }
4892
4893 printk("span %s\n", str);
4894
4895 if (!cpu_isset(cpu, sd->span))
4896 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4897 if (!cpu_isset(cpu, group->cpumask))
4898 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4899
4900 printk(KERN_DEBUG);
4901 for (i = 0; i < level + 2; i++)
4902 printk(" ");
4903 printk("groups:");
4904 do {
4905 if (!group) {
4906 printk("\n");
4907 printk(KERN_ERR "ERROR: group is NULL\n");
4908 break;
4909 }
4910
4911 if (!group->cpu_power) {
4912 printk("\n");
4913 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4914 }
4915
4916 if (!cpus_weight(group->cpumask)) {
4917 printk("\n");
4918 printk(KERN_ERR "ERROR: empty group\n");
4919 }
4920
4921 if (cpus_intersects(groupmask, group->cpumask)) {
4922 printk("\n");
4923 printk(KERN_ERR "ERROR: repeated CPUs\n");
4924 }
4925
4926 cpus_or(groupmask, groupmask, group->cpumask);
4927
4928 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4929 printk(" %s", str);
4930
4931 group = group->next;
4932 } while (group != sd->groups);
4933 printk("\n");
4934
4935 if (!cpus_equal(sd->span, groupmask))
4936 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4937
4938 level++;
4939 sd = sd->parent;
4940
4941 if (sd) {
4942 if (!cpus_subset(groupmask, sd->span))
4943 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4944 }
4945
4946 } while (sd);
4947}
4948#else
4949#define sched_domain_debug(sd, cpu) {}
4950#endif
4951
1a20ff27 4952static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
4953{
4954 if (cpus_weight(sd->span) == 1)
4955 return 1;
4956
4957 /* Following flags need at least 2 groups */
4958 if (sd->flags & (SD_LOAD_BALANCE |
4959 SD_BALANCE_NEWIDLE |
4960 SD_BALANCE_FORK |
4961 SD_BALANCE_EXEC)) {
4962 if (sd->groups != sd->groups->next)
4963 return 0;
4964 }
4965
4966 /* Following flags don't use groups */
4967 if (sd->flags & (SD_WAKE_IDLE |
4968 SD_WAKE_AFFINE |
4969 SD_WAKE_BALANCE))
4970 return 0;
4971
4972 return 1;
4973}
4974
1a20ff27 4975static int sd_parent_degenerate(struct sched_domain *sd,
245af2c7
SS
4976 struct sched_domain *parent)
4977{
4978 unsigned long cflags = sd->flags, pflags = parent->flags;
4979
4980 if (sd_degenerate(parent))
4981 return 1;
4982
4983 if (!cpus_equal(sd->span, parent->span))
4984 return 0;
4985
4986 /* Does parent contain flags not in child? */
4987 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4988 if (cflags & SD_WAKE_AFFINE)
4989 pflags &= ~SD_WAKE_BALANCE;
4990 /* Flags needing groups don't count if only 1 group in parent */
4991 if (parent->groups == parent->groups->next) {
4992 pflags &= ~(SD_LOAD_BALANCE |
4993 SD_BALANCE_NEWIDLE |
4994 SD_BALANCE_FORK |
4995 SD_BALANCE_EXEC);
4996 }
4997 if (~cflags & pflags)
4998 return 0;
4999
5000 return 1;
5001}
5002
1da177e4
LT
5003/*
5004 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5005 * hold the hotplug lock.
5006 */
9c1cfda2 5007static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5008{
1da177e4 5009 runqueue_t *rq = cpu_rq(cpu);
245af2c7
SS
5010 struct sched_domain *tmp;
5011
5012 /* Remove the sched domains which do not contribute to scheduling. */
5013 for (tmp = sd; tmp; tmp = tmp->parent) {
5014 struct sched_domain *parent = tmp->parent;
5015 if (!parent)
5016 break;
5017 if (sd_parent_degenerate(tmp, parent))
5018 tmp->parent = parent->parent;
5019 }
5020
5021 if (sd && sd_degenerate(sd))
5022 sd = sd->parent;
1da177e4
LT
5023
5024 sched_domain_debug(sd, cpu);
5025
674311d5 5026 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5027}
5028
5029/* cpus with isolated domains */
9c1cfda2 5030static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5031
5032/* Setup the mask of cpus configured for isolated domains */
5033static int __init isolated_cpu_setup(char *str)
5034{
5035 int ints[NR_CPUS], i;
5036
5037 str = get_options(str, ARRAY_SIZE(ints), ints);
5038 cpus_clear(cpu_isolated_map);
5039 for (i = 1; i <= ints[0]; i++)
5040 if (ints[i] < NR_CPUS)
5041 cpu_set(ints[i], cpu_isolated_map);
5042 return 1;
5043}
5044
5045__setup ("isolcpus=", isolated_cpu_setup);
5046
5047/*
5048 * init_sched_build_groups takes an array of groups, the cpumask we wish
5049 * to span, and a pointer to a function which identifies what group a CPU
5050 * belongs to. The return value of group_fn must be a valid index into the
5051 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5052 * keep track of groups covered with a cpumask_t).
5053 *
5054 * init_sched_build_groups will build a circular linked list of the groups
5055 * covered by the given span, and will set each group's ->cpumask correctly,
5056 * and ->cpu_power to 0.
5057 */
9c1cfda2
JH
5058static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5059 int (*group_fn)(int cpu))
1da177e4
LT
5060{
5061 struct sched_group *first = NULL, *last = NULL;
5062 cpumask_t covered = CPU_MASK_NONE;
5063 int i;
5064
5065 for_each_cpu_mask(i, span) {
5066 int group = group_fn(i);
5067 struct sched_group *sg = &groups[group];
5068 int j;
5069
5070 if (cpu_isset(i, covered))
5071 continue;
5072
5073 sg->cpumask = CPU_MASK_NONE;
5074 sg->cpu_power = 0;
5075
5076 for_each_cpu_mask(j, span) {
5077 if (group_fn(j) != group)
5078 continue;
5079
5080 cpu_set(j, covered);
5081 cpu_set(j, sg->cpumask);
5082 }
5083 if (!first)
5084 first = sg;
5085 if (last)
5086 last->next = sg;
5087 last = sg;
5088 }
5089 last->next = first;
5090}
5091
9c1cfda2 5092#define SD_NODES_PER_DOMAIN 16
1da177e4 5093
198e2f18 5094/*
5095 * Self-tuning task migration cost measurement between source and target CPUs.
5096 *
5097 * This is done by measuring the cost of manipulating buffers of varying
5098 * sizes. For a given buffer-size here are the steps that are taken:
5099 *
5100 * 1) the source CPU reads+dirties a shared buffer
5101 * 2) the target CPU reads+dirties the same shared buffer
5102 *
5103 * We measure how long they take, in the following 4 scenarios:
5104 *
5105 * - source: CPU1, target: CPU2 | cost1
5106 * - source: CPU2, target: CPU1 | cost2
5107 * - source: CPU1, target: CPU1 | cost3
5108 * - source: CPU2, target: CPU2 | cost4
5109 *
5110 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5111 * the cost of migration.
5112 *
5113 * We then start off from a small buffer-size and iterate up to larger
5114 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5115 * doing a maximum search for the cost. (The maximum cost for a migration
5116 * normally occurs when the working set size is around the effective cache
5117 * size.)
5118 */
5119#define SEARCH_SCOPE 2
5120#define MIN_CACHE_SIZE (64*1024U)
5121#define DEFAULT_CACHE_SIZE (5*1024*1024U)
5122#define ITERATIONS 2
5123#define SIZE_THRESH 130
5124#define COST_THRESH 130
5125
5126/*
5127 * The migration cost is a function of 'domain distance'. Domain
5128 * distance is the number of steps a CPU has to iterate down its
5129 * domain tree to share a domain with the other CPU. The farther
5130 * two CPUs are from each other, the larger the distance gets.
5131 *
5132 * Note that we use the distance only to cache measurement results,
5133 * the distance value is not used numerically otherwise. When two
5134 * CPUs have the same distance it is assumed that the migration
5135 * cost is the same. (this is a simplification but quite practical)
5136 */
5137#define MAX_DOMAIN_DISTANCE 32
5138
5139static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5140 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] = -1LL };
5141
5142/*
5143 * Allow override of migration cost - in units of microseconds.
5144 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5145 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5146 */
5147static int __init migration_cost_setup(char *str)
5148{
5149 int ints[MAX_DOMAIN_DISTANCE+1], i;
5150
5151 str = get_options(str, ARRAY_SIZE(ints), ints);
5152
5153 printk("#ints: %d\n", ints[0]);
5154 for (i = 1; i <= ints[0]; i++) {
5155 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5156 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5157 }
5158 return 1;
5159}
5160
5161__setup ("migration_cost=", migration_cost_setup);
5162
5163/*
5164 * Global multiplier (divisor) for migration-cutoff values,
5165 * in percentiles. E.g. use a value of 150 to get 1.5 times
5166 * longer cache-hot cutoff times.
5167 *
5168 * (We scale it from 100 to 128 to long long handling easier.)
5169 */
5170
5171#define MIGRATION_FACTOR_SCALE 128
5172
5173static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5174
5175static int __init setup_migration_factor(char *str)
5176{
5177 get_option(&str, &migration_factor);
5178 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5179 return 1;
5180}
5181
5182__setup("migration_factor=", setup_migration_factor);
5183
5184/*
5185 * Estimated distance of two CPUs, measured via the number of domains
5186 * we have to pass for the two CPUs to be in the same span:
5187 */
5188static unsigned long domain_distance(int cpu1, int cpu2)
5189{
5190 unsigned long distance = 0;
5191 struct sched_domain *sd;
5192
5193 for_each_domain(cpu1, sd) {
5194 WARN_ON(!cpu_isset(cpu1, sd->span));
5195 if (cpu_isset(cpu2, sd->span))
5196 return distance;
5197 distance++;
5198 }
5199 if (distance >= MAX_DOMAIN_DISTANCE) {
5200 WARN_ON(1);
5201 distance = MAX_DOMAIN_DISTANCE-1;
5202 }
5203
5204 return distance;
5205}
5206
5207static unsigned int migration_debug;
5208
5209static int __init setup_migration_debug(char *str)
5210{
5211 get_option(&str, &migration_debug);
5212 return 1;
5213}
5214
5215__setup("migration_debug=", setup_migration_debug);
5216
5217/*
5218 * Maximum cache-size that the scheduler should try to measure.
5219 * Architectures with larger caches should tune this up during
5220 * bootup. Gets used in the domain-setup code (i.e. during SMP
5221 * bootup).
5222 */
5223unsigned int max_cache_size;
5224
5225static int __init setup_max_cache_size(char *str)
5226{
5227 get_option(&str, &max_cache_size);
5228 return 1;
5229}
5230
5231__setup("max_cache_size=", setup_max_cache_size);
5232
5233/*
5234 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5235 * is the operation that is timed, so we try to generate unpredictable
5236 * cachemisses that still end up filling the L2 cache:
5237 */
5238static void touch_cache(void *__cache, unsigned long __size)
5239{
5240 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5241 chunk2 = 2*size/3;
5242 unsigned long *cache = __cache;
5243 int i;
5244
5245 for (i = 0; i < size/6; i += 8) {
5246 switch (i % 6) {
5247 case 0: cache[i]++;
5248 case 1: cache[size-1-i]++;
5249 case 2: cache[chunk1-i]++;
5250 case 3: cache[chunk1+i]++;
5251 case 4: cache[chunk2-i]++;
5252 case 5: cache[chunk2+i]++;
5253 }
5254 }
5255}
5256
5257/*
5258 * Measure the cache-cost of one task migration. Returns in units of nsec.
5259 */
5260static unsigned long long measure_one(void *cache, unsigned long size,
5261 int source, int target)
5262{
5263 cpumask_t mask, saved_mask;
5264 unsigned long long t0, t1, t2, t3, cost;
5265
5266 saved_mask = current->cpus_allowed;
5267
5268 /*
5269 * Flush source caches to RAM and invalidate them:
5270 */
5271 sched_cacheflush();
5272
5273 /*
5274 * Migrate to the source CPU:
5275 */
5276 mask = cpumask_of_cpu(source);
5277 set_cpus_allowed(current, mask);
5278 WARN_ON(smp_processor_id() != source);
5279
5280 /*
5281 * Dirty the working set:
5282 */
5283 t0 = sched_clock();
5284 touch_cache(cache, size);
5285 t1 = sched_clock();
5286
5287 /*
5288 * Migrate to the target CPU, dirty the L2 cache and access
5289 * the shared buffer. (which represents the working set
5290 * of a migrated task.)
5291 */
5292 mask = cpumask_of_cpu(target);
5293 set_cpus_allowed(current, mask);
5294 WARN_ON(smp_processor_id() != target);
5295
5296 t2 = sched_clock();
5297 touch_cache(cache, size);
5298 t3 = sched_clock();
5299
5300 cost = t1-t0 + t3-t2;
5301
5302 if (migration_debug >= 2)
5303 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5304 source, target, t1-t0, t1-t0, t3-t2, cost);
5305 /*
5306 * Flush target caches to RAM and invalidate them:
5307 */
5308 sched_cacheflush();
5309
5310 set_cpus_allowed(current, saved_mask);
5311
5312 return cost;
5313}
5314
5315/*
5316 * Measure a series of task migrations and return the average
5317 * result. Since this code runs early during bootup the system
5318 * is 'undisturbed' and the average latency makes sense.
5319 *
5320 * The algorithm in essence auto-detects the relevant cache-size,
5321 * so it will properly detect different cachesizes for different
5322 * cache-hierarchies, depending on how the CPUs are connected.
5323 *
5324 * Architectures can prime the upper limit of the search range via
5325 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5326 */
5327static unsigned long long
5328measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5329{
5330 unsigned long long cost1, cost2;
5331 int i;
5332
5333 /*
5334 * Measure the migration cost of 'size' bytes, over an
5335 * average of 10 runs:
5336 *
5337 * (We perturb the cache size by a small (0..4k)
5338 * value to compensate size/alignment related artifacts.
5339 * We also subtract the cost of the operation done on
5340 * the same CPU.)
5341 */
5342 cost1 = 0;
5343
5344 /*
5345 * dry run, to make sure we start off cache-cold on cpu1,
5346 * and to get any vmalloc pagefaults in advance:
5347 */
5348 measure_one(cache, size, cpu1, cpu2);
5349 for (i = 0; i < ITERATIONS; i++)
5350 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5351
5352 measure_one(cache, size, cpu2, cpu1);
5353 for (i = 0; i < ITERATIONS; i++)
5354 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5355
5356 /*
5357 * (We measure the non-migrating [cached] cost on both
5358 * cpu1 and cpu2, to handle CPUs with different speeds)
5359 */
5360 cost2 = 0;
5361
5362 measure_one(cache, size, cpu1, cpu1);
5363 for (i = 0; i < ITERATIONS; i++)
5364 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5365
5366 measure_one(cache, size, cpu2, cpu2);
5367 for (i = 0; i < ITERATIONS; i++)
5368 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5369
5370 /*
5371 * Get the per-iteration migration cost:
5372 */
5373 do_div(cost1, 2*ITERATIONS);
5374 do_div(cost2, 2*ITERATIONS);
5375
5376 return cost1 - cost2;
5377}
5378
5379static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5380{
5381 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5382 unsigned int max_size, size, size_found = 0;
5383 long long cost = 0, prev_cost;
5384 void *cache;
5385
5386 /*
5387 * Search from max_cache_size*5 down to 64K - the real relevant
5388 * cachesize has to lie somewhere inbetween.
5389 */
5390 if (max_cache_size) {
5391 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5392 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5393 } else {
5394 /*
5395 * Since we have no estimation about the relevant
5396 * search range
5397 */
5398 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5399 size = MIN_CACHE_SIZE;
5400 }
5401
5402 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5403 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5404 return 0;
5405 }
5406
5407 /*
5408 * Allocate the working set:
5409 */
5410 cache = vmalloc(max_size);
5411 if (!cache) {
5412 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5413 return 1000000; // return 1 msec on very small boxen
5414 }
5415
5416 while (size <= max_size) {
5417 prev_cost = cost;
5418 cost = measure_cost(cpu1, cpu2, cache, size);
5419
5420 /*
5421 * Update the max:
5422 */
5423 if (cost > 0) {
5424 if (max_cost < cost) {
5425 max_cost = cost;
5426 size_found = size;
5427 }
5428 }
5429 /*
5430 * Calculate average fluctuation, we use this to prevent
5431 * noise from triggering an early break out of the loop:
5432 */
5433 fluct = abs(cost - prev_cost);
5434 avg_fluct = (avg_fluct + fluct)/2;
5435
5436 if (migration_debug)
5437 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5438 cpu1, cpu2, size,
5439 (long)cost / 1000000,
5440 ((long)cost / 100000) % 10,
5441 (long)max_cost / 1000000,
5442 ((long)max_cost / 100000) % 10,
5443 domain_distance(cpu1, cpu2),
5444 cost, avg_fluct);
5445
5446 /*
5447 * If we iterated at least 20% past the previous maximum,
5448 * and the cost has dropped by more than 20% already,
5449 * (taking fluctuations into account) then we assume to
5450 * have found the maximum and break out of the loop early:
5451 */
5452 if (size_found && (size*100 > size_found*SIZE_THRESH))
5453 if (cost+avg_fluct <= 0 ||
5454 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5455
5456 if (migration_debug)
5457 printk("-> found max.\n");
5458 break;
5459 }
5460 /*
5461 * Increase the cachesize in 5% steps:
5462 */
5463 size = size * 20 / 19;
5464 }
5465
5466 if (migration_debug)
5467 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5468 cpu1, cpu2, size_found, max_cost);
5469
5470 vfree(cache);
5471
5472 /*
5473 * A task is considered 'cache cold' if at least 2 times
5474 * the worst-case cost of migration has passed.
5475 *
5476 * (this limit is only listened to if the load-balancing
5477 * situation is 'nice' - if there is a large imbalance we
5478 * ignore it for the sake of CPU utilization and
5479 * processing fairness.)
5480 */
5481 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5482}
5483
5484static void calibrate_migration_costs(const cpumask_t *cpu_map)
5485{
5486 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5487 unsigned long j0, j1, distance, max_distance = 0;
5488 struct sched_domain *sd;
5489
5490 j0 = jiffies;
5491
5492 /*
5493 * First pass - calculate the cacheflush times:
5494 */
5495 for_each_cpu_mask(cpu1, *cpu_map) {
5496 for_each_cpu_mask(cpu2, *cpu_map) {
5497 if (cpu1 == cpu2)
5498 continue;
5499 distance = domain_distance(cpu1, cpu2);
5500 max_distance = max(max_distance, distance);
5501 /*
5502 * No result cached yet?
5503 */
5504 if (migration_cost[distance] == -1LL)
5505 migration_cost[distance] =
5506 measure_migration_cost(cpu1, cpu2);
5507 }
5508 }
5509 /*
5510 * Second pass - update the sched domain hierarchy with
5511 * the new cache-hot-time estimations:
5512 */
5513 for_each_cpu_mask(cpu, *cpu_map) {
5514 distance = 0;
5515 for_each_domain(cpu, sd) {
5516 sd->cache_hot_time = migration_cost[distance];
5517 distance++;
5518 }
5519 }
5520 /*
5521 * Print the matrix:
5522 */
5523 if (migration_debug)
5524 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5525 max_cache_size,
5526#ifdef CONFIG_X86
5527 cpu_khz/1000
5528#else
5529 -1
5530#endif
5531 );
5532 printk("migration_cost=");
5533 for (distance = 0; distance <= max_distance; distance++) {
5534 if (distance)
5535 printk(",");
5536 printk("%ld", (long)migration_cost[distance] / 1000);
5537 }
5538 printk("\n");
5539 j1 = jiffies;
5540 if (migration_debug)
5541 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5542
5543 /*
5544 * Move back to the original CPU. NUMA-Q gets confused
5545 * if we migrate to another quad during bootup.
5546 */
5547 if (raw_smp_processor_id() != orig_cpu) {
5548 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5549 saved_mask = current->cpus_allowed;
5550
5551 set_cpus_allowed(current, mask);
5552 set_cpus_allowed(current, saved_mask);
5553 }
5554}
5555
9c1cfda2 5556#ifdef CONFIG_NUMA
198e2f18 5557
9c1cfda2
JH
5558/**
5559 * find_next_best_node - find the next node to include in a sched_domain
5560 * @node: node whose sched_domain we're building
5561 * @used_nodes: nodes already in the sched_domain
5562 *
5563 * Find the next node to include in a given scheduling domain. Simply
5564 * finds the closest node not already in the @used_nodes map.
5565 *
5566 * Should use nodemask_t.
5567 */
5568static int find_next_best_node(int node, unsigned long *used_nodes)
5569{
5570 int i, n, val, min_val, best_node = 0;
5571
5572 min_val = INT_MAX;
5573
5574 for (i = 0; i < MAX_NUMNODES; i++) {
5575 /* Start at @node */
5576 n = (node + i) % MAX_NUMNODES;
5577
5578 if (!nr_cpus_node(n))
5579 continue;
5580
5581 /* Skip already used nodes */
5582 if (test_bit(n, used_nodes))
5583 continue;
5584
5585 /* Simple min distance search */
5586 val = node_distance(node, n);
5587
5588 if (val < min_val) {
5589 min_val = val;
5590 best_node = n;
5591 }
5592 }
5593
5594 set_bit(best_node, used_nodes);
5595 return best_node;
5596}
5597
5598/**
5599 * sched_domain_node_span - get a cpumask for a node's sched_domain
5600 * @node: node whose cpumask we're constructing
5601 * @size: number of nodes to include in this span
5602 *
5603 * Given a node, construct a good cpumask for its sched_domain to span. It
5604 * should be one that prevents unnecessary balancing, but also spreads tasks
5605 * out optimally.
5606 */
5607static cpumask_t sched_domain_node_span(int node)
5608{
5609 int i;
5610 cpumask_t span, nodemask;
5611 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5612
5613 cpus_clear(span);
5614 bitmap_zero(used_nodes, MAX_NUMNODES);
5615
5616 nodemask = node_to_cpumask(node);
5617 cpus_or(span, span, nodemask);
5618 set_bit(node, used_nodes);
5619
5620 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5621 int next_node = find_next_best_node(node, used_nodes);
5622 nodemask = node_to_cpumask(next_node);
5623 cpus_or(span, span, nodemask);
5624 }
5625
5626 return span;
5627}
5628#endif
5629
5630/*
5631 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5632 * can switch it on easily if needed.
5633 */
1da177e4
LT
5634#ifdef CONFIG_SCHED_SMT
5635static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5636static struct sched_group sched_group_cpus[NR_CPUS];
1a20ff27 5637static int cpu_to_cpu_group(int cpu)
1da177e4
LT
5638{
5639 return cpu;
5640}
5641#endif
5642
5643static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5644static struct sched_group sched_group_phys[NR_CPUS];
1a20ff27 5645static int cpu_to_phys_group(int cpu)
1da177e4
LT
5646{
5647#ifdef CONFIG_SCHED_SMT
5648 return first_cpu(cpu_sibling_map[cpu]);
5649#else
5650 return cpu;
5651#endif
5652}
5653
5654#ifdef CONFIG_NUMA
1da177e4 5655/*
9c1cfda2
JH
5656 * The init_sched_build_groups can't handle what we want to do with node
5657 * groups, so roll our own. Now each node has its own list of groups which
5658 * gets dynamically allocated.
1da177e4 5659 */
9c1cfda2 5660static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5661static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5662
9c1cfda2 5663static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
d1b55138 5664static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
9c1cfda2
JH
5665
5666static int cpu_to_allnodes_group(int cpu)
5667{
5668 return cpu_to_node(cpu);
1da177e4
LT
5669}
5670#endif
5671
5672/*
1a20ff27
DG
5673 * Build sched domains for a given set of cpus and attach the sched domains
5674 * to the individual cpus
1da177e4 5675 */
9c1cfda2 5676void build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5677{
5678 int i;
d1b55138
JH
5679#ifdef CONFIG_NUMA
5680 struct sched_group **sched_group_nodes = NULL;
5681 struct sched_group *sched_group_allnodes = NULL;
5682
5683 /*
5684 * Allocate the per-node list of sched groups
5685 */
5686 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5687 GFP_ATOMIC);
5688 if (!sched_group_nodes) {
5689 printk(KERN_WARNING "Can not alloc sched group node list\n");
5690 return;
5691 }
5692 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5693#endif
1da177e4
LT
5694
5695 /*
1a20ff27 5696 * Set up domains for cpus specified by the cpu_map.
1da177e4 5697 */
1a20ff27 5698 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5699 int group;
5700 struct sched_domain *sd = NULL, *p;
5701 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5702
1a20ff27 5703 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5704
5705#ifdef CONFIG_NUMA
d1b55138 5706 if (cpus_weight(*cpu_map)
9c1cfda2 5707 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
d1b55138
JH
5708 if (!sched_group_allnodes) {
5709 sched_group_allnodes
5710 = kmalloc(sizeof(struct sched_group)
5711 * MAX_NUMNODES,
5712 GFP_KERNEL);
5713 if (!sched_group_allnodes) {
5714 printk(KERN_WARNING
5715 "Can not alloc allnodes sched group\n");
5716 break;
5717 }
5718 sched_group_allnodes_bycpu[i]
5719 = sched_group_allnodes;
5720 }
9c1cfda2
JH
5721 sd = &per_cpu(allnodes_domains, i);
5722 *sd = SD_ALLNODES_INIT;
5723 sd->span = *cpu_map;
5724 group = cpu_to_allnodes_group(i);
5725 sd->groups = &sched_group_allnodes[group];
5726 p = sd;
5727 } else
5728 p = NULL;
5729
1da177e4 5730 sd = &per_cpu(node_domains, i);
1da177e4 5731 *sd = SD_NODE_INIT;
9c1cfda2
JH
5732 sd->span = sched_domain_node_span(cpu_to_node(i));
5733 sd->parent = p;
5734 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5735#endif
5736
5737 p = sd;
5738 sd = &per_cpu(phys_domains, i);
5739 group = cpu_to_phys_group(i);
5740 *sd = SD_CPU_INIT;
5741 sd->span = nodemask;
5742 sd->parent = p;
5743 sd->groups = &sched_group_phys[group];
5744
5745#ifdef CONFIG_SCHED_SMT
5746 p = sd;
5747 sd = &per_cpu(cpu_domains, i);
5748 group = cpu_to_cpu_group(i);
5749 *sd = SD_SIBLING_INIT;
5750 sd->span = cpu_sibling_map[i];
1a20ff27 5751 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5752 sd->parent = p;
5753 sd->groups = &sched_group_cpus[group];
5754#endif
5755 }
5756
5757#ifdef CONFIG_SCHED_SMT
5758 /* Set up CPU (sibling) groups */
9c1cfda2 5759 for_each_cpu_mask(i, *cpu_map) {
1da177e4 5760 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 5761 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
5762 if (i != first_cpu(this_sibling_map))
5763 continue;
5764
5765 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5766 &cpu_to_cpu_group);
5767 }
5768#endif
5769
5770 /* Set up physical groups */
5771 for (i = 0; i < MAX_NUMNODES; i++) {
5772 cpumask_t nodemask = node_to_cpumask(i);
5773
1a20ff27 5774 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5775 if (cpus_empty(nodemask))
5776 continue;
5777
5778 init_sched_build_groups(sched_group_phys, nodemask,
5779 &cpu_to_phys_group);
5780 }
5781
5782#ifdef CONFIG_NUMA
5783 /* Set up node groups */
d1b55138
JH
5784 if (sched_group_allnodes)
5785 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5786 &cpu_to_allnodes_group);
9c1cfda2
JH
5787
5788 for (i = 0; i < MAX_NUMNODES; i++) {
5789 /* Set up node groups */
5790 struct sched_group *sg, *prev;
5791 cpumask_t nodemask = node_to_cpumask(i);
5792 cpumask_t domainspan;
5793 cpumask_t covered = CPU_MASK_NONE;
5794 int j;
5795
5796 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
5797 if (cpus_empty(nodemask)) {
5798 sched_group_nodes[i] = NULL;
9c1cfda2 5799 continue;
d1b55138 5800 }
9c1cfda2
JH
5801
5802 domainspan = sched_domain_node_span(i);
5803 cpus_and(domainspan, domainspan, *cpu_map);
5804
5805 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5806 sched_group_nodes[i] = sg;
5807 for_each_cpu_mask(j, nodemask) {
5808 struct sched_domain *sd;
5809 sd = &per_cpu(node_domains, j);
5810 sd->groups = sg;
5811 if (sd->groups == NULL) {
5812 /* Turn off balancing if we have no groups */
5813 sd->flags = 0;
5814 }
5815 }
5816 if (!sg) {
5817 printk(KERN_WARNING
5818 "Can not alloc domain group for node %d\n", i);
5819 continue;
5820 }
5821 sg->cpu_power = 0;
5822 sg->cpumask = nodemask;
5823 cpus_or(covered, covered, nodemask);
5824 prev = sg;
5825
5826 for (j = 0; j < MAX_NUMNODES; j++) {
5827 cpumask_t tmp, notcovered;
5828 int n = (i + j) % MAX_NUMNODES;
5829
5830 cpus_complement(notcovered, covered);
5831 cpus_and(tmp, notcovered, *cpu_map);
5832 cpus_and(tmp, tmp, domainspan);
5833 if (cpus_empty(tmp))
5834 break;
5835
5836 nodemask = node_to_cpumask(n);
5837 cpus_and(tmp, tmp, nodemask);
5838 if (cpus_empty(tmp))
5839 continue;
5840
5841 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5842 if (!sg) {
5843 printk(KERN_WARNING
5844 "Can not alloc domain group for node %d\n", j);
5845 break;
5846 }
5847 sg->cpu_power = 0;
5848 sg->cpumask = tmp;
5849 cpus_or(covered, covered, tmp);
5850 prev->next = sg;
5851 prev = sg;
5852 }
5853 prev->next = sched_group_nodes[i];
5854 }
1da177e4
LT
5855#endif
5856
5857 /* Calculate CPU power for physical packages and nodes */
1a20ff27 5858 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5859 int power;
5860 struct sched_domain *sd;
5861#ifdef CONFIG_SCHED_SMT
5862 sd = &per_cpu(cpu_domains, i);
5863 power = SCHED_LOAD_SCALE;
5864 sd->groups->cpu_power = power;
5865#endif
5866
5867 sd = &per_cpu(phys_domains, i);
5868 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5869 (cpus_weight(sd->groups->cpumask)-1) / 10;
5870 sd->groups->cpu_power = power;
5871
5872#ifdef CONFIG_NUMA
9c1cfda2
JH
5873 sd = &per_cpu(allnodes_domains, i);
5874 if (sd->groups) {
5875 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5876 (cpus_weight(sd->groups->cpumask)-1) / 10;
5877 sd->groups->cpu_power = power;
1da177e4
LT
5878 }
5879#endif
5880 }
5881
9c1cfda2
JH
5882#ifdef CONFIG_NUMA
5883 for (i = 0; i < MAX_NUMNODES; i++) {
5884 struct sched_group *sg = sched_group_nodes[i];
5885 int j;
5886
5887 if (sg == NULL)
5888 continue;
5889next_sg:
5890 for_each_cpu_mask(j, sg->cpumask) {
5891 struct sched_domain *sd;
5892 int power;
5893
5894 sd = &per_cpu(phys_domains, j);
5895 if (j != first_cpu(sd->groups->cpumask)) {
5896 /*
5897 * Only add "power" once for each
5898 * physical package.
5899 */
5900 continue;
5901 }
5902 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5903 (cpus_weight(sd->groups->cpumask)-1) / 10;
5904
5905 sg->cpu_power += power;
5906 }
5907 sg = sg->next;
5908 if (sg != sched_group_nodes[i])
5909 goto next_sg;
5910 }
5911#endif
5912
1da177e4 5913 /* Attach the domains */
1a20ff27 5914 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5915 struct sched_domain *sd;
5916#ifdef CONFIG_SCHED_SMT
5917 sd = &per_cpu(cpu_domains, i);
5918#else
5919 sd = &per_cpu(phys_domains, i);
5920#endif
5921 cpu_attach_domain(sd, i);
5922 }
198e2f18 5923 /*
5924 * Tune cache-hot values:
5925 */
5926 calibrate_migration_costs(cpu_map);
1da177e4 5927}
1a20ff27
DG
5928/*
5929 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5930 */
9c1cfda2 5931static void arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
5932{
5933 cpumask_t cpu_default_map;
1da177e4 5934
1a20ff27
DG
5935 /*
5936 * Setup mask for cpus without special case scheduling requirements.
5937 * For now this just excludes isolated cpus, but could be used to
5938 * exclude other special cases in the future.
5939 */
5940 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5941
5942 build_sched_domains(&cpu_default_map);
5943}
5944
5945static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 5946{
9c1cfda2
JH
5947#ifdef CONFIG_NUMA
5948 int i;
d1b55138 5949 int cpu;
1da177e4 5950
d1b55138
JH
5951 for_each_cpu_mask(cpu, *cpu_map) {
5952 struct sched_group *sched_group_allnodes
5953 = sched_group_allnodes_bycpu[cpu];
5954 struct sched_group **sched_group_nodes
5955 = sched_group_nodes_bycpu[cpu];
9c1cfda2 5956
d1b55138
JH
5957 if (sched_group_allnodes) {
5958 kfree(sched_group_allnodes);
5959 sched_group_allnodes_bycpu[cpu] = NULL;
5960 }
5961
5962 if (!sched_group_nodes)
9c1cfda2 5963 continue;
d1b55138
JH
5964
5965 for (i = 0; i < MAX_NUMNODES; i++) {
5966 cpumask_t nodemask = node_to_cpumask(i);
5967 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5968
5969 cpus_and(nodemask, nodemask, *cpu_map);
5970 if (cpus_empty(nodemask))
5971 continue;
5972
5973 if (sg == NULL)
5974 continue;
5975 sg = sg->next;
9c1cfda2 5976next_sg:
d1b55138
JH
5977 oldsg = sg;
5978 sg = sg->next;
5979 kfree(oldsg);
5980 if (oldsg != sched_group_nodes[i])
5981 goto next_sg;
5982 }
5983 kfree(sched_group_nodes);
5984 sched_group_nodes_bycpu[cpu] = NULL;
9c1cfda2
JH
5985 }
5986#endif
5987}
1da177e4 5988
1a20ff27
DG
5989/*
5990 * Detach sched domains from a group of cpus specified in cpu_map
5991 * These cpus will now be attached to the NULL domain
5992 */
5993static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5994{
5995 int i;
5996
5997 for_each_cpu_mask(i, *cpu_map)
5998 cpu_attach_domain(NULL, i);
5999 synchronize_sched();
6000 arch_destroy_sched_domains(cpu_map);
6001}
6002
6003/*
6004 * Partition sched domains as specified by the cpumasks below.
6005 * This attaches all cpus from the cpumasks to the NULL domain,
6006 * waits for a RCU quiescent period, recalculates sched
6007 * domain information and then attaches them back to the
6008 * correct sched domains
6009 * Call with hotplug lock held
6010 */
6011void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6012{
6013 cpumask_t change_map;
6014
6015 cpus_and(*partition1, *partition1, cpu_online_map);
6016 cpus_and(*partition2, *partition2, cpu_online_map);
6017 cpus_or(change_map, *partition1, *partition2);
6018
6019 /* Detach sched domains from all of the affected cpus */
6020 detach_destroy_domains(&change_map);
6021 if (!cpus_empty(*partition1))
6022 build_sched_domains(partition1);
6023 if (!cpus_empty(*partition2))
6024 build_sched_domains(partition2);
6025}
6026
1da177e4
LT
6027#ifdef CONFIG_HOTPLUG_CPU
6028/*
6029 * Force a reinitialization of the sched domains hierarchy. The domains
6030 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6031 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6032 * which will prevent rebalancing while the sched domains are recalculated.
6033 */
6034static int update_sched_domains(struct notifier_block *nfb,
6035 unsigned long action, void *hcpu)
6036{
1da177e4
LT
6037 switch (action) {
6038 case CPU_UP_PREPARE:
6039 case CPU_DOWN_PREPARE:
1a20ff27 6040 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6041 return NOTIFY_OK;
6042
6043 case CPU_UP_CANCELED:
6044 case CPU_DOWN_FAILED:
6045 case CPU_ONLINE:
6046 case CPU_DEAD:
6047 /*
6048 * Fall through and re-initialise the domains.
6049 */
6050 break;
6051 default:
6052 return NOTIFY_DONE;
6053 }
6054
6055 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6056 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6057
6058 return NOTIFY_OK;
6059}
6060#endif
6061
6062void __init sched_init_smp(void)
6063{
6064 lock_cpu_hotplug();
1a20ff27 6065 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6066 unlock_cpu_hotplug();
6067 /* XXX: Theoretical race here - CPU may be hotplugged now */
6068 hotcpu_notifier(update_sched_domains, 0);
6069}
6070#else
6071void __init sched_init_smp(void)
6072{
6073}
6074#endif /* CONFIG_SMP */
6075
6076int in_sched_functions(unsigned long addr)
6077{
6078 /* Linker adds these: start and end of __sched functions */
6079 extern char __sched_text_start[], __sched_text_end[];
6080 return in_lock_functions(addr) ||
6081 (addr >= (unsigned long)__sched_text_start
6082 && addr < (unsigned long)__sched_text_end);
6083}
6084
6085void __init sched_init(void)
6086{
6087 runqueue_t *rq;
6088 int i, j, k;
6089
6090 for (i = 0; i < NR_CPUS; i++) {
6091 prio_array_t *array;
6092
6093 rq = cpu_rq(i);
6094 spin_lock_init(&rq->lock);
7897986b 6095 rq->nr_running = 0;
1da177e4
LT
6096 rq->active = rq->arrays;
6097 rq->expired = rq->arrays + 1;
6098 rq->best_expired_prio = MAX_PRIO;
6099
6100#ifdef CONFIG_SMP
41c7ce9a 6101 rq->sd = NULL;
7897986b
NP
6102 for (j = 1; j < 3; j++)
6103 rq->cpu_load[j] = 0;
1da177e4
LT
6104 rq->active_balance = 0;
6105 rq->push_cpu = 0;
6106 rq->migration_thread = NULL;
6107 INIT_LIST_HEAD(&rq->migration_queue);
6108#endif
6109 atomic_set(&rq->nr_iowait, 0);
6110
6111 for (j = 0; j < 2; j++) {
6112 array = rq->arrays + j;
6113 for (k = 0; k < MAX_PRIO; k++) {
6114 INIT_LIST_HEAD(array->queue + k);
6115 __clear_bit(k, array->bitmap);
6116 }
6117 // delimiter for bitsearch
6118 __set_bit(MAX_PRIO, array->bitmap);
6119 }
6120 }
6121
6122 /*
6123 * The boot idle thread does lazy MMU switching as well:
6124 */
6125 atomic_inc(&init_mm.mm_count);
6126 enter_lazy_tlb(&init_mm, current);
6127
6128 /*
6129 * Make us the idle thread. Technically, schedule() should not be
6130 * called from this thread, however somewhere below it might be,
6131 * but because we are the idle thread, we just pick up running again
6132 * when this runqueue becomes "idle".
6133 */
6134 init_idle(current, smp_processor_id());
6135}
6136
6137#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6138void __might_sleep(char *file, int line)
6139{
6140#if defined(in_atomic)
6141 static unsigned long prev_jiffy; /* ratelimiting */
6142
6143 if ((in_atomic() || irqs_disabled()) &&
6144 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6145 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6146 return;
6147 prev_jiffy = jiffies;
6148 printk(KERN_ERR "Debug: sleeping function called from invalid"
6149 " context at %s:%d\n", file, line);
6150 printk("in_atomic():%d, irqs_disabled():%d\n",
6151 in_atomic(), irqs_disabled());
6152 dump_stack();
6153 }
6154#endif
6155}
6156EXPORT_SYMBOL(__might_sleep);
6157#endif
6158
6159#ifdef CONFIG_MAGIC_SYSRQ
6160void normalize_rt_tasks(void)
6161{
6162 struct task_struct *p;
6163 prio_array_t *array;
6164 unsigned long flags;
6165 runqueue_t *rq;
6166
6167 read_lock_irq(&tasklist_lock);
6168 for_each_process (p) {
6169 if (!rt_task(p))
6170 continue;
6171
6172 rq = task_rq_lock(p, &flags);
6173
6174 array = p->array;
6175 if (array)
6176 deactivate_task(p, task_rq(p));
6177 __setscheduler(p, SCHED_NORMAL, 0);
6178 if (array) {
6179 __activate_task(p, task_rq(p));
6180 resched_task(rq->curr);
6181 }
6182
6183 task_rq_unlock(rq, &flags);
6184 }
6185 read_unlock_irq(&tasklist_lock);
6186}
6187
6188#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6189
6190#ifdef CONFIG_IA64
6191/*
6192 * These functions are only useful for the IA64 MCA handling.
6193 *
6194 * They can only be called when the whole system has been
6195 * stopped - every CPU needs to be quiescent, and no scheduling
6196 * activity can take place. Using them for anything else would
6197 * be a serious bug, and as a result, they aren't even visible
6198 * under any other configuration.
6199 */
6200
6201/**
6202 * curr_task - return the current task for a given cpu.
6203 * @cpu: the processor in question.
6204 *
6205 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6206 */
6207task_t *curr_task(int cpu)
6208{
6209 return cpu_curr(cpu);
6210}
6211
6212/**
6213 * set_curr_task - set the current task for a given cpu.
6214 * @cpu: the processor in question.
6215 * @p: the task pointer to set.
6216 *
6217 * Description: This function must only be used when non-maskable interrupts
6218 * are serviced on a separate stack. It allows the architecture to switch the
6219 * notion of the current task on a cpu in a non-blocking manner. This function
6220 * must be called with all CPU's synchronized, and interrupts disabled, the
6221 * and caller must save the original value of the current task (see
6222 * curr_task() above) and restore that value before reenabling interrupts and
6223 * re-starting the system.
6224 *
6225 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6226 */
6227void set_curr_task(int cpu, task_t *p)
6228{
6229 cpu_curr(cpu) = p;
6230}
6231
6232#endif