]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: Move the second half of ttwu() to the remote cpu
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee
HC
233/*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
3fe1698b
PZ
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
ac53db59 329 struct sched_entity *curr, *next, *last, *skip;
ddc97297 330
5ac5c4d6 331 unsigned int nr_spread_over;
ddc97297 332
62160e3f 333#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
335
41a2d6cf
IM
336 /*
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
340 *
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
343 */
3d4b47b4 344 int on_list;
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857 362 /*
3b3d190e
PT
363 * Maintaining per-cpu shares distribution for group scheduling
364 *
365 * load_stamp is the last time we updated the load average
366 * load_last is the last time we updated the load average and saw load
367 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 368 */
2069dd75
PZ
369 u64 load_avg;
370 u64 load_period;
3b3d190e 371 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 372
2069dd75 373 unsigned long load_contribution;
c09595f6 374#endif
6aa645ea
IM
375#endif
376};
1da177e4 377
6aa645ea
IM
378/* Real-Time classes' related field in a runqueue: */
379struct rt_rq {
380 struct rt_prio_array active;
63489e45 381 unsigned long rt_nr_running;
052f1dc7 382#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
383 struct {
384 int curr; /* highest queued rt task prio */
398a153b 385#ifdef CONFIG_SMP
e864c499 386 int next; /* next highest */
398a153b 387#endif
e864c499 388 } highest_prio;
6f505b16 389#endif
fa85ae24 390#ifdef CONFIG_SMP
73fe6aae 391 unsigned long rt_nr_migratory;
a1ba4d8b 392 unsigned long rt_nr_total;
a22d7fc1 393 int overloaded;
917b627d 394 struct plist_head pushable_tasks;
fa85ae24 395#endif
6f505b16 396 int rt_throttled;
fa85ae24 397 u64 rt_time;
ac086bc2 398 u64 rt_runtime;
ea736ed5 399 /* Nests inside the rq lock: */
0986b11b 400 raw_spinlock_t rt_runtime_lock;
6f505b16 401
052f1dc7 402#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
403 unsigned long rt_nr_boosted;
404
6f505b16
PZ
405 struct rq *rq;
406 struct list_head leaf_rt_rq_list;
407 struct task_group *tg;
6f505b16 408#endif
6aa645ea
IM
409};
410
57d885fe
GH
411#ifdef CONFIG_SMP
412
413/*
414 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
415 * variables. Each exclusive cpuset essentially defines an island domain by
416 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
417 * exclusive cpuset is created, we also create and attach a new root-domain
418 * object.
419 *
57d885fe
GH
420 */
421struct root_domain {
422 atomic_t refcount;
c6c4927b
RR
423 cpumask_var_t span;
424 cpumask_var_t online;
637f5085 425
0eab9146 426 /*
637f5085
GH
427 * The "RT overload" flag: it gets set if a CPU has more than
428 * one runnable RT task.
429 */
c6c4927b 430 cpumask_var_t rto_mask;
0eab9146 431 atomic_t rto_count;
6e0534f2 432 struct cpupri cpupri;
57d885fe
GH
433};
434
dc938520
GH
435/*
436 * By default the system creates a single root-domain with all cpus as
437 * members (mimicking the global state we have today).
438 */
57d885fe
GH
439static struct root_domain def_root_domain;
440
ed2d372c 441#endif /* CONFIG_SMP */
57d885fe 442
1da177e4
LT
443/*
444 * This is the main, per-CPU runqueue data structure.
445 *
446 * Locking rule: those places that want to lock multiple runqueues
447 * (such as the load balancing or the thread migration code), lock
448 * acquire operations must be ordered by ascending &runqueue.
449 */
70b97a7f 450struct rq {
d8016491 451 /* runqueue lock: */
05fa785c 452 raw_spinlock_t lock;
1da177e4
LT
453
454 /*
455 * nr_running and cpu_load should be in the same cacheline because
456 * remote CPUs use both these fields when doing load calculation.
457 */
458 unsigned long nr_running;
6aa645ea
IM
459 #define CPU_LOAD_IDX_MAX 5
460 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 461 unsigned long last_load_update_tick;
46cb4b7c 462#ifdef CONFIG_NO_HZ
39c0cbe2 463 u64 nohz_stamp;
83cd4fe2 464 unsigned char nohz_balance_kick;
46cb4b7c 465#endif
a64692a3
MG
466 unsigned int skip_clock_update;
467
d8016491
IM
468 /* capture load from *all* tasks on this cpu: */
469 struct load_weight load;
6aa645ea
IM
470 unsigned long nr_load_updates;
471 u64 nr_switches;
472
473 struct cfs_rq cfs;
6f505b16 474 struct rt_rq rt;
6f505b16 475
6aa645ea 476#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
477 /* list of leaf cfs_rq on this cpu: */
478 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
479#endif
480#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 481 struct list_head leaf_rt_rq_list;
1da177e4 482#endif
1da177e4
LT
483
484 /*
485 * This is part of a global counter where only the total sum
486 * over all CPUs matters. A task can increase this counter on
487 * one CPU and if it got migrated afterwards it may decrease
488 * it on another CPU. Always updated under the runqueue lock:
489 */
490 unsigned long nr_uninterruptible;
491
34f971f6 492 struct task_struct *curr, *idle, *stop;
c9819f45 493 unsigned long next_balance;
1da177e4 494 struct mm_struct *prev_mm;
6aa645ea 495
3e51f33f 496 u64 clock;
305e6835 497 u64 clock_task;
6aa645ea 498
1da177e4
LT
499 atomic_t nr_iowait;
500
501#ifdef CONFIG_SMP
0eab9146 502 struct root_domain *rd;
1da177e4
LT
503 struct sched_domain *sd;
504
e51fd5e2
PZ
505 unsigned long cpu_power;
506
a0a522ce 507 unsigned char idle_at_tick;
1da177e4 508 /* For active balancing */
3f029d3c 509 int post_schedule;
1da177e4
LT
510 int active_balance;
511 int push_cpu;
969c7921 512 struct cpu_stop_work active_balance_work;
d8016491
IM
513 /* cpu of this runqueue: */
514 int cpu;
1f11eb6a 515 int online;
1da177e4 516
a8a51d5e 517 unsigned long avg_load_per_task;
1da177e4 518
e9e9250b
PZ
519 u64 rt_avg;
520 u64 age_stamp;
1b9508f6
MG
521 u64 idle_stamp;
522 u64 avg_idle;
1da177e4
LT
523#endif
524
aa483808
VP
525#ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 u64 prev_irq_time;
527#endif
528
dce48a84
TG
529 /* calc_load related fields */
530 unsigned long calc_load_update;
531 long calc_load_active;
532
8f4d37ec 533#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
534#ifdef CONFIG_SMP
535 int hrtick_csd_pending;
536 struct call_single_data hrtick_csd;
537#endif
8f4d37ec
PZ
538 struct hrtimer hrtick_timer;
539#endif
540
1da177e4
LT
541#ifdef CONFIG_SCHEDSTATS
542 /* latency stats */
543 struct sched_info rq_sched_info;
9c2c4802
KC
544 unsigned long long rq_cpu_time;
545 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
546
547 /* sys_sched_yield() stats */
480b9434 548 unsigned int yld_count;
1da177e4
LT
549
550 /* schedule() stats */
480b9434
KC
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
1da177e4
LT
554
555 /* try_to_wake_up() stats */
480b9434
KC
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
1da177e4 558#endif
317f3941
PZ
559
560#ifdef CONFIG_SMP
561 struct task_struct *wake_list;
562#endif
1da177e4
LT
563};
564
f34e3b61 565static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 566
a64692a3 567
1e5a7405 568static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 569
0a2966b4
CL
570static inline int cpu_of(struct rq *rq)
571{
572#ifdef CONFIG_SMP
573 return rq->cpu;
574#else
575 return 0;
576#endif
577}
578
497f0ab3 579#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
580 rcu_dereference_check((p), \
581 rcu_read_lock_sched_held() || \
582 lockdep_is_held(&sched_domains_mutex))
583
674311d5
NP
584/*
585 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 586 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
587 *
588 * The domain tree of any CPU may only be accessed from within
589 * preempt-disabled sections.
590 */
48f24c4d 591#define for_each_domain(cpu, __sd) \
497f0ab3 592 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
593
594#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
595#define this_rq() (&__get_cpu_var(runqueues))
596#define task_rq(p) cpu_rq(task_cpu(p))
597#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 598#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 599
dc61b1d6
PZ
600#ifdef CONFIG_CGROUP_SCHED
601
602/*
603 * Return the group to which this tasks belongs.
604 *
605 * We use task_subsys_state_check() and extend the RCU verification
0122ec5b 606 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
dc61b1d6
PZ
607 * holds that lock for each task it moves into the cgroup. Therefore
608 * by holding that lock, we pin the task to the current cgroup.
609 */
610static inline struct task_group *task_group(struct task_struct *p)
611{
5091faa4 612 struct task_group *tg;
dc61b1d6
PZ
613 struct cgroup_subsys_state *css;
614
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
0122ec5b 616 lockdep_is_held(&p->pi_lock));
5091faa4
MG
617 tg = container_of(css, struct task_group, css);
618
619 return autogroup_task_group(p, tg);
dc61b1d6
PZ
620}
621
622/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
623static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
624{
625#ifdef CONFIG_FAIR_GROUP_SCHED
626 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
627 p->se.parent = task_group(p)->se[cpu];
628#endif
629
630#ifdef CONFIG_RT_GROUP_SCHED
631 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
632 p->rt.parent = task_group(p)->rt_se[cpu];
633#endif
634}
635
636#else /* CONFIG_CGROUP_SCHED */
637
638static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
639static inline struct task_group *task_group(struct task_struct *p)
640{
641 return NULL;
642}
643
644#endif /* CONFIG_CGROUP_SCHED */
645
fe44d621 646static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 647
fe44d621 648static void update_rq_clock(struct rq *rq)
3e51f33f 649{
fe44d621 650 s64 delta;
305e6835 651
f26f9aff
MG
652 if (rq->skip_clock_update)
653 return;
aa483808 654
fe44d621
PZ
655 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
656 rq->clock += delta;
657 update_rq_clock_task(rq, delta);
3e51f33f
PZ
658}
659
bf5c91ba
IM
660/*
661 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
662 */
663#ifdef CONFIG_SCHED_DEBUG
664# define const_debug __read_mostly
665#else
666# define const_debug static const
667#endif
668
017730c1 669/**
1fd06bb1 670 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 671 * @cpu: the processor in question.
017730c1 672 *
017730c1
IM
673 * This interface allows printk to be called with the runqueue lock
674 * held and know whether or not it is OK to wake up the klogd.
675 */
89f19f04 676int runqueue_is_locked(int cpu)
017730c1 677{
05fa785c 678 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
679}
680
bf5c91ba
IM
681/*
682 * Debugging: various feature bits
683 */
f00b45c1
PZ
684
685#define SCHED_FEAT(name, enabled) \
686 __SCHED_FEAT_##name ,
687
bf5c91ba 688enum {
f00b45c1 689#include "sched_features.h"
bf5c91ba
IM
690};
691
f00b45c1
PZ
692#undef SCHED_FEAT
693
694#define SCHED_FEAT(name, enabled) \
695 (1UL << __SCHED_FEAT_##name) * enabled |
696
bf5c91ba 697const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
698#include "sched_features.h"
699 0;
700
701#undef SCHED_FEAT
702
703#ifdef CONFIG_SCHED_DEBUG
704#define SCHED_FEAT(name, enabled) \
705 #name ,
706
983ed7a6 707static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
708#include "sched_features.h"
709 NULL
710};
711
712#undef SCHED_FEAT
713
34f3a814 714static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 715{
f00b45c1
PZ
716 int i;
717
718 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
719 if (!(sysctl_sched_features & (1UL << i)))
720 seq_puts(m, "NO_");
721 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 722 }
34f3a814 723 seq_puts(m, "\n");
f00b45c1 724
34f3a814 725 return 0;
f00b45c1
PZ
726}
727
728static ssize_t
729sched_feat_write(struct file *filp, const char __user *ubuf,
730 size_t cnt, loff_t *ppos)
731{
732 char buf[64];
7740191c 733 char *cmp;
f00b45c1
PZ
734 int neg = 0;
735 int i;
736
737 if (cnt > 63)
738 cnt = 63;
739
740 if (copy_from_user(&buf, ubuf, cnt))
741 return -EFAULT;
742
743 buf[cnt] = 0;
7740191c 744 cmp = strstrip(buf);
f00b45c1 745
524429c3 746 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
747 neg = 1;
748 cmp += 3;
749 }
750
751 for (i = 0; sched_feat_names[i]; i++) {
7740191c 752 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
753 if (neg)
754 sysctl_sched_features &= ~(1UL << i);
755 else
756 sysctl_sched_features |= (1UL << i);
757 break;
758 }
759 }
760
761 if (!sched_feat_names[i])
762 return -EINVAL;
763
42994724 764 *ppos += cnt;
f00b45c1
PZ
765
766 return cnt;
767}
768
34f3a814
LZ
769static int sched_feat_open(struct inode *inode, struct file *filp)
770{
771 return single_open(filp, sched_feat_show, NULL);
772}
773
828c0950 774static const struct file_operations sched_feat_fops = {
34f3a814
LZ
775 .open = sched_feat_open,
776 .write = sched_feat_write,
777 .read = seq_read,
778 .llseek = seq_lseek,
779 .release = single_release,
f00b45c1
PZ
780};
781
782static __init int sched_init_debug(void)
783{
f00b45c1
PZ
784 debugfs_create_file("sched_features", 0644, NULL, NULL,
785 &sched_feat_fops);
786
787 return 0;
788}
789late_initcall(sched_init_debug);
790
791#endif
792
793#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 794
b82d9fdd
PZ
795/*
796 * Number of tasks to iterate in a single balance run.
797 * Limited because this is done with IRQs disabled.
798 */
799const_debug unsigned int sysctl_sched_nr_migrate = 32;
800
e9e9250b
PZ
801/*
802 * period over which we average the RT time consumption, measured
803 * in ms.
804 *
805 * default: 1s
806 */
807const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
808
fa85ae24 809/*
9f0c1e56 810 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
811 * default: 1s
812 */
9f0c1e56 813unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 814
6892b75e
IM
815static __read_mostly int scheduler_running;
816
9f0c1e56
PZ
817/*
818 * part of the period that we allow rt tasks to run in us.
819 * default: 0.95s
820 */
821int sysctl_sched_rt_runtime = 950000;
fa85ae24 822
d0b27fa7
PZ
823static inline u64 global_rt_period(void)
824{
825 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
826}
827
828static inline u64 global_rt_runtime(void)
829{
e26873bb 830 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
831 return RUNTIME_INF;
832
833 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
834}
fa85ae24 835
1da177e4 836#ifndef prepare_arch_switch
4866cde0
NP
837# define prepare_arch_switch(next) do { } while (0)
838#endif
839#ifndef finish_arch_switch
840# define finish_arch_switch(prev) do { } while (0)
841#endif
842
051a1d1a
DA
843static inline int task_current(struct rq *rq, struct task_struct *p)
844{
845 return rq->curr == p;
846}
847
70b97a7f 848static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 849{
3ca7a440
PZ
850#ifdef CONFIG_SMP
851 return p->on_cpu;
852#else
051a1d1a 853 return task_current(rq, p);
3ca7a440 854#endif
4866cde0
NP
855}
856
3ca7a440 857#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 858static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 859{
3ca7a440
PZ
860#ifdef CONFIG_SMP
861 /*
862 * We can optimise this out completely for !SMP, because the
863 * SMP rebalancing from interrupt is the only thing that cares
864 * here.
865 */
866 next->on_cpu = 1;
867#endif
4866cde0
NP
868}
869
70b97a7f 870static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 871{
3ca7a440
PZ
872#ifdef CONFIG_SMP
873 /*
874 * After ->on_cpu is cleared, the task can be moved to a different CPU.
875 * We must ensure this doesn't happen until the switch is completely
876 * finished.
877 */
878 smp_wmb();
879 prev->on_cpu = 0;
880#endif
da04c035
IM
881#ifdef CONFIG_DEBUG_SPINLOCK
882 /* this is a valid case when another task releases the spinlock */
883 rq->lock.owner = current;
884#endif
8a25d5de
IM
885 /*
886 * If we are tracking spinlock dependencies then we have to
887 * fix up the runqueue lock - which gets 'carried over' from
888 * prev into current:
889 */
890 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
891
05fa785c 892 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
893}
894
895#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 896static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
897{
898#ifdef CONFIG_SMP
899 /*
900 * We can optimise this out completely for !SMP, because the
901 * SMP rebalancing from interrupt is the only thing that cares
902 * here.
903 */
3ca7a440 904 next->on_cpu = 1;
4866cde0
NP
905#endif
906#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 907 raw_spin_unlock_irq(&rq->lock);
4866cde0 908#else
05fa785c 909 raw_spin_unlock(&rq->lock);
4866cde0
NP
910#endif
911}
912
70b97a7f 913static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
914{
915#ifdef CONFIG_SMP
916 /*
3ca7a440 917 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
918 * We must ensure this doesn't happen until the switch is completely
919 * finished.
920 */
921 smp_wmb();
3ca7a440 922 prev->on_cpu = 0;
4866cde0
NP
923#endif
924#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
925 local_irq_enable();
1da177e4 926#endif
4866cde0
NP
927}
928#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 929
0970d299 930/*
0122ec5b 931 * __task_rq_lock - lock the rq @p resides on.
b29739f9 932 */
70b97a7f 933static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
934 __acquires(rq->lock)
935{
0970d299
PZ
936 struct rq *rq;
937
0122ec5b
PZ
938 lockdep_assert_held(&p->pi_lock);
939
3a5c359a 940 for (;;) {
0970d299 941 rq = task_rq(p);
05fa785c 942 raw_spin_lock(&rq->lock);
65cc8e48 943 if (likely(rq == task_rq(p)))
3a5c359a 944 return rq;
05fa785c 945 raw_spin_unlock(&rq->lock);
b29739f9 946 }
b29739f9
IM
947}
948
1da177e4 949/*
0122ec5b 950 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 951 */
70b97a7f 952static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 953 __acquires(p->pi_lock)
1da177e4
LT
954 __acquires(rq->lock)
955{
70b97a7f 956 struct rq *rq;
1da177e4 957
3a5c359a 958 for (;;) {
0122ec5b 959 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 960 rq = task_rq(p);
05fa785c 961 raw_spin_lock(&rq->lock);
65cc8e48 962 if (likely(rq == task_rq(p)))
3a5c359a 963 return rq;
0122ec5b
PZ
964 raw_spin_unlock(&rq->lock);
965 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 966 }
1da177e4
LT
967}
968
a9957449 969static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
970 __releases(rq->lock)
971{
05fa785c 972 raw_spin_unlock(&rq->lock);
b29739f9
IM
973}
974
0122ec5b
PZ
975static inline void
976task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 977 __releases(rq->lock)
0122ec5b 978 __releases(p->pi_lock)
1da177e4 979{
0122ec5b
PZ
980 raw_spin_unlock(&rq->lock);
981 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
982}
983
1da177e4 984/*
cc2a73b5 985 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 986 */
a9957449 987static struct rq *this_rq_lock(void)
1da177e4
LT
988 __acquires(rq->lock)
989{
70b97a7f 990 struct rq *rq;
1da177e4
LT
991
992 local_irq_disable();
993 rq = this_rq();
05fa785c 994 raw_spin_lock(&rq->lock);
1da177e4
LT
995
996 return rq;
997}
998
8f4d37ec
PZ
999#ifdef CONFIG_SCHED_HRTICK
1000/*
1001 * Use HR-timers to deliver accurate preemption points.
1002 *
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1005 * reschedule event.
1006 *
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1008 * rq->lock.
1009 */
8f4d37ec
PZ
1010
1011/*
1012 * Use hrtick when:
1013 * - enabled by features
1014 * - hrtimer is actually high res
1015 */
1016static inline int hrtick_enabled(struct rq *rq)
1017{
1018 if (!sched_feat(HRTICK))
1019 return 0;
ba42059f 1020 if (!cpu_active(cpu_of(rq)))
b328ca18 1021 return 0;
8f4d37ec
PZ
1022 return hrtimer_is_hres_active(&rq->hrtick_timer);
1023}
1024
8f4d37ec
PZ
1025static void hrtick_clear(struct rq *rq)
1026{
1027 if (hrtimer_active(&rq->hrtick_timer))
1028 hrtimer_cancel(&rq->hrtick_timer);
1029}
1030
8f4d37ec
PZ
1031/*
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1034 */
1035static enum hrtimer_restart hrtick(struct hrtimer *timer)
1036{
1037 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1038
1039 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1040
05fa785c 1041 raw_spin_lock(&rq->lock);
3e51f33f 1042 update_rq_clock(rq);
8f4d37ec 1043 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1044 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1045
1046 return HRTIMER_NORESTART;
1047}
1048
95e904c7 1049#ifdef CONFIG_SMP
31656519
PZ
1050/*
1051 * called from hardirq (IPI) context
1052 */
1053static void __hrtick_start(void *arg)
b328ca18 1054{
31656519 1055 struct rq *rq = arg;
b328ca18 1056
05fa785c 1057 raw_spin_lock(&rq->lock);
31656519
PZ
1058 hrtimer_restart(&rq->hrtick_timer);
1059 rq->hrtick_csd_pending = 0;
05fa785c 1060 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1061}
1062
31656519
PZ
1063/*
1064 * Called to set the hrtick timer state.
1065 *
1066 * called with rq->lock held and irqs disabled
1067 */
1068static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1069{
31656519
PZ
1070 struct hrtimer *timer = &rq->hrtick_timer;
1071 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1072
cc584b21 1073 hrtimer_set_expires(timer, time);
31656519
PZ
1074
1075 if (rq == this_rq()) {
1076 hrtimer_restart(timer);
1077 } else if (!rq->hrtick_csd_pending) {
6e275637 1078 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1079 rq->hrtick_csd_pending = 1;
1080 }
b328ca18
PZ
1081}
1082
1083static int
1084hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1085{
1086 int cpu = (int)(long)hcpu;
1087
1088 switch (action) {
1089 case CPU_UP_CANCELED:
1090 case CPU_UP_CANCELED_FROZEN:
1091 case CPU_DOWN_PREPARE:
1092 case CPU_DOWN_PREPARE_FROZEN:
1093 case CPU_DEAD:
1094 case CPU_DEAD_FROZEN:
31656519 1095 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1096 return NOTIFY_OK;
1097 }
1098
1099 return NOTIFY_DONE;
1100}
1101
fa748203 1102static __init void init_hrtick(void)
b328ca18
PZ
1103{
1104 hotcpu_notifier(hotplug_hrtick, 0);
1105}
31656519
PZ
1106#else
1107/*
1108 * Called to set the hrtick timer state.
1109 *
1110 * called with rq->lock held and irqs disabled
1111 */
1112static void hrtick_start(struct rq *rq, u64 delay)
1113{
7f1e2ca9 1114 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1115 HRTIMER_MODE_REL_PINNED, 0);
31656519 1116}
b328ca18 1117
006c75f1 1118static inline void init_hrtick(void)
8f4d37ec 1119{
8f4d37ec 1120}
31656519 1121#endif /* CONFIG_SMP */
8f4d37ec 1122
31656519 1123static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1124{
31656519
PZ
1125#ifdef CONFIG_SMP
1126 rq->hrtick_csd_pending = 0;
8f4d37ec 1127
31656519
PZ
1128 rq->hrtick_csd.flags = 0;
1129 rq->hrtick_csd.func = __hrtick_start;
1130 rq->hrtick_csd.info = rq;
1131#endif
8f4d37ec 1132
31656519
PZ
1133 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1134 rq->hrtick_timer.function = hrtick;
8f4d37ec 1135}
006c75f1 1136#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1137static inline void hrtick_clear(struct rq *rq)
1138{
1139}
1140
8f4d37ec
PZ
1141static inline void init_rq_hrtick(struct rq *rq)
1142{
1143}
1144
b328ca18
PZ
1145static inline void init_hrtick(void)
1146{
1147}
006c75f1 1148#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1149
c24d20db
IM
1150/*
1151 * resched_task - mark a task 'to be rescheduled now'.
1152 *
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1155 * the target CPU.
1156 */
1157#ifdef CONFIG_SMP
1158
1159#ifndef tsk_is_polling
1160#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1161#endif
1162
31656519 1163static void resched_task(struct task_struct *p)
c24d20db
IM
1164{
1165 int cpu;
1166
05fa785c 1167 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1168
5ed0cec0 1169 if (test_tsk_need_resched(p))
c24d20db
IM
1170 return;
1171
5ed0cec0 1172 set_tsk_need_resched(p);
c24d20db
IM
1173
1174 cpu = task_cpu(p);
1175 if (cpu == smp_processor_id())
1176 return;
1177
1178 /* NEED_RESCHED must be visible before we test polling */
1179 smp_mb();
1180 if (!tsk_is_polling(p))
1181 smp_send_reschedule(cpu);
1182}
1183
1184static void resched_cpu(int cpu)
1185{
1186 struct rq *rq = cpu_rq(cpu);
1187 unsigned long flags;
1188
05fa785c 1189 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1190 return;
1191 resched_task(cpu_curr(cpu));
05fa785c 1192 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1193}
06d8308c
TG
1194
1195#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1196/*
1197 * In the semi idle case, use the nearest busy cpu for migrating timers
1198 * from an idle cpu. This is good for power-savings.
1199 *
1200 * We don't do similar optimization for completely idle system, as
1201 * selecting an idle cpu will add more delays to the timers than intended
1202 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1203 */
1204int get_nohz_timer_target(void)
1205{
1206 int cpu = smp_processor_id();
1207 int i;
1208 struct sched_domain *sd;
1209
1210 for_each_domain(cpu, sd) {
1211 for_each_cpu(i, sched_domain_span(sd))
1212 if (!idle_cpu(i))
1213 return i;
1214 }
1215 return cpu;
1216}
06d8308c
TG
1217/*
1218 * When add_timer_on() enqueues a timer into the timer wheel of an
1219 * idle CPU then this timer might expire before the next timer event
1220 * which is scheduled to wake up that CPU. In case of a completely
1221 * idle system the next event might even be infinite time into the
1222 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1223 * leaves the inner idle loop so the newly added timer is taken into
1224 * account when the CPU goes back to idle and evaluates the timer
1225 * wheel for the next timer event.
1226 */
1227void wake_up_idle_cpu(int cpu)
1228{
1229 struct rq *rq = cpu_rq(cpu);
1230
1231 if (cpu == smp_processor_id())
1232 return;
1233
1234 /*
1235 * This is safe, as this function is called with the timer
1236 * wheel base lock of (cpu) held. When the CPU is on the way
1237 * to idle and has not yet set rq->curr to idle then it will
1238 * be serialized on the timer wheel base lock and take the new
1239 * timer into account automatically.
1240 */
1241 if (rq->curr != rq->idle)
1242 return;
1243
1244 /*
1245 * We can set TIF_RESCHED on the idle task of the other CPU
1246 * lockless. The worst case is that the other CPU runs the
1247 * idle task through an additional NOOP schedule()
1248 */
5ed0cec0 1249 set_tsk_need_resched(rq->idle);
06d8308c
TG
1250
1251 /* NEED_RESCHED must be visible before we test polling */
1252 smp_mb();
1253 if (!tsk_is_polling(rq->idle))
1254 smp_send_reschedule(cpu);
1255}
39c0cbe2 1256
6d6bc0ad 1257#endif /* CONFIG_NO_HZ */
06d8308c 1258
e9e9250b
PZ
1259static u64 sched_avg_period(void)
1260{
1261 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1262}
1263
1264static void sched_avg_update(struct rq *rq)
1265{
1266 s64 period = sched_avg_period();
1267
1268 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1269 /*
1270 * Inline assembly required to prevent the compiler
1271 * optimising this loop into a divmod call.
1272 * See __iter_div_u64_rem() for another example of this.
1273 */
1274 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1275 rq->age_stamp += period;
1276 rq->rt_avg /= 2;
1277 }
1278}
1279
1280static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281{
1282 rq->rt_avg += rt_delta;
1283 sched_avg_update(rq);
1284}
1285
6d6bc0ad 1286#else /* !CONFIG_SMP */
31656519 1287static void resched_task(struct task_struct *p)
c24d20db 1288{
05fa785c 1289 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1290 set_tsk_need_resched(p);
c24d20db 1291}
e9e9250b
PZ
1292
1293static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1294{
1295}
da2b71ed
SS
1296
1297static void sched_avg_update(struct rq *rq)
1298{
1299}
6d6bc0ad 1300#endif /* CONFIG_SMP */
c24d20db 1301
45bf76df
IM
1302#if BITS_PER_LONG == 32
1303# define WMULT_CONST (~0UL)
1304#else
1305# define WMULT_CONST (1UL << 32)
1306#endif
1307
1308#define WMULT_SHIFT 32
1309
194081eb
IM
1310/*
1311 * Shift right and round:
1312 */
cf2ab469 1313#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1314
a7be37ac
PZ
1315/*
1316 * delta *= weight / lw
1317 */
cb1c4fc9 1318static unsigned long
45bf76df
IM
1319calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1320 struct load_weight *lw)
1321{
1322 u64 tmp;
1323
7a232e03
LJ
1324 if (!lw->inv_weight) {
1325 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1326 lw->inv_weight = 1;
1327 else
1328 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1329 / (lw->weight+1);
1330 }
45bf76df
IM
1331
1332 tmp = (u64)delta_exec * weight;
1333 /*
1334 * Check whether we'd overflow the 64-bit multiplication:
1335 */
194081eb 1336 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1337 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1338 WMULT_SHIFT/2);
1339 else
cf2ab469 1340 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1341
ecf691da 1342 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1343}
1344
1091985b 1345static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1346{
1347 lw->weight += inc;
e89996ae 1348 lw->inv_weight = 0;
45bf76df
IM
1349}
1350
1091985b 1351static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1352{
1353 lw->weight -= dec;
e89996ae 1354 lw->inv_weight = 0;
45bf76df
IM
1355}
1356
2069dd75
PZ
1357static inline void update_load_set(struct load_weight *lw, unsigned long w)
1358{
1359 lw->weight = w;
1360 lw->inv_weight = 0;
1361}
1362
2dd73a4f
PW
1363/*
1364 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1365 * of tasks with abnormal "nice" values across CPUs the contribution that
1366 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1367 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1368 * scaled version of the new time slice allocation that they receive on time
1369 * slice expiry etc.
1370 */
1371
cce7ade8
PZ
1372#define WEIGHT_IDLEPRIO 3
1373#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1374
1375/*
1376 * Nice levels are multiplicative, with a gentle 10% change for every
1377 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1378 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1379 * that remained on nice 0.
1380 *
1381 * The "10% effect" is relative and cumulative: from _any_ nice level,
1382 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1383 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1384 * If a task goes up by ~10% and another task goes down by ~10% then
1385 * the relative distance between them is ~25%.)
dd41f596
IM
1386 */
1387static const int prio_to_weight[40] = {
254753dc
IM
1388 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1389 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1390 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1391 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1392 /* 0 */ 1024, 820, 655, 526, 423,
1393 /* 5 */ 335, 272, 215, 172, 137,
1394 /* 10 */ 110, 87, 70, 56, 45,
1395 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1396};
1397
5714d2de
IM
1398/*
1399 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1400 *
1401 * In cases where the weight does not change often, we can use the
1402 * precalculated inverse to speed up arithmetics by turning divisions
1403 * into multiplications:
1404 */
dd41f596 1405static const u32 prio_to_wmult[40] = {
254753dc
IM
1406 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1407 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1408 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1409 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1410 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1411 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1412 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1413 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1414};
2dd73a4f 1415
ef12fefa
BR
1416/* Time spent by the tasks of the cpu accounting group executing in ... */
1417enum cpuacct_stat_index {
1418 CPUACCT_STAT_USER, /* ... user mode */
1419 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1420
1421 CPUACCT_STAT_NSTATS,
1422};
1423
d842de87
SV
1424#ifdef CONFIG_CGROUP_CPUACCT
1425static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1426static void cpuacct_update_stats(struct task_struct *tsk,
1427 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1428#else
1429static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1430static inline void cpuacct_update_stats(struct task_struct *tsk,
1431 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1432#endif
1433
18d95a28
PZ
1434static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1435{
1436 update_load_add(&rq->load, load);
1437}
1438
1439static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_sub(&rq->load, load);
1442}
1443
7940ca36 1444#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1445typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1446
1447/*
1448 * Iterate the full tree, calling @down when first entering a node and @up when
1449 * leaving it for the final time.
1450 */
eb755805 1451static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1452{
1453 struct task_group *parent, *child;
eb755805 1454 int ret;
c09595f6
PZ
1455
1456 rcu_read_lock();
1457 parent = &root_task_group;
1458down:
eb755805
PZ
1459 ret = (*down)(parent, data);
1460 if (ret)
1461 goto out_unlock;
c09595f6
PZ
1462 list_for_each_entry_rcu(child, &parent->children, siblings) {
1463 parent = child;
1464 goto down;
1465
1466up:
1467 continue;
1468 }
eb755805
PZ
1469 ret = (*up)(parent, data);
1470 if (ret)
1471 goto out_unlock;
c09595f6
PZ
1472
1473 child = parent;
1474 parent = parent->parent;
1475 if (parent)
1476 goto up;
eb755805 1477out_unlock:
c09595f6 1478 rcu_read_unlock();
eb755805
PZ
1479
1480 return ret;
c09595f6
PZ
1481}
1482
eb755805
PZ
1483static int tg_nop(struct task_group *tg, void *data)
1484{
1485 return 0;
c09595f6 1486}
eb755805
PZ
1487#endif
1488
1489#ifdef CONFIG_SMP
f5f08f39
PZ
1490/* Used instead of source_load when we know the type == 0 */
1491static unsigned long weighted_cpuload(const int cpu)
1492{
1493 return cpu_rq(cpu)->load.weight;
1494}
1495
1496/*
1497 * Return a low guess at the load of a migration-source cpu weighted
1498 * according to the scheduling class and "nice" value.
1499 *
1500 * We want to under-estimate the load of migration sources, to
1501 * balance conservatively.
1502 */
1503static unsigned long source_load(int cpu, int type)
1504{
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long total = weighted_cpuload(cpu);
1507
1508 if (type == 0 || !sched_feat(LB_BIAS))
1509 return total;
1510
1511 return min(rq->cpu_load[type-1], total);
1512}
1513
1514/*
1515 * Return a high guess at the load of a migration-target cpu weighted
1516 * according to the scheduling class and "nice" value.
1517 */
1518static unsigned long target_load(int cpu, int type)
1519{
1520 struct rq *rq = cpu_rq(cpu);
1521 unsigned long total = weighted_cpuload(cpu);
1522
1523 if (type == 0 || !sched_feat(LB_BIAS))
1524 return total;
1525
1526 return max(rq->cpu_load[type-1], total);
1527}
1528
ae154be1
PZ
1529static unsigned long power_of(int cpu)
1530{
e51fd5e2 1531 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1532}
1533
eb755805
PZ
1534static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1535
1536static unsigned long cpu_avg_load_per_task(int cpu)
1537{
1538 struct rq *rq = cpu_rq(cpu);
af6d596f 1539 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1540
4cd42620
SR
1541 if (nr_running)
1542 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1543 else
1544 rq->avg_load_per_task = 0;
eb755805
PZ
1545
1546 return rq->avg_load_per_task;
1547}
1548
1549#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1550
c09595f6 1551/*
c8cba857
PZ
1552 * Compute the cpu's hierarchical load factor for each task group.
1553 * This needs to be done in a top-down fashion because the load of a child
1554 * group is a fraction of its parents load.
c09595f6 1555 */
eb755805 1556static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1557{
c8cba857 1558 unsigned long load;
eb755805 1559 long cpu = (long)data;
c09595f6 1560
c8cba857
PZ
1561 if (!tg->parent) {
1562 load = cpu_rq(cpu)->load.weight;
1563 } else {
1564 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1565 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1566 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1567 }
c09595f6 1568
c8cba857 1569 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1570
eb755805 1571 return 0;
c09595f6
PZ
1572}
1573
eb755805 1574static void update_h_load(long cpu)
c09595f6 1575{
eb755805 1576 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1577}
1578
18d95a28
PZ
1579#endif
1580
8f45e2b5
GH
1581#ifdef CONFIG_PREEMPT
1582
b78bb868
PZ
1583static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1584
70574a99 1585/*
8f45e2b5
GH
1586 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1587 * way at the expense of forcing extra atomic operations in all
1588 * invocations. This assures that the double_lock is acquired using the
1589 * same underlying policy as the spinlock_t on this architecture, which
1590 * reduces latency compared to the unfair variant below. However, it
1591 * also adds more overhead and therefore may reduce throughput.
70574a99 1592 */
8f45e2b5
GH
1593static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1594 __releases(this_rq->lock)
1595 __acquires(busiest->lock)
1596 __acquires(this_rq->lock)
1597{
05fa785c 1598 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1599 double_rq_lock(this_rq, busiest);
1600
1601 return 1;
1602}
1603
1604#else
1605/*
1606 * Unfair double_lock_balance: Optimizes throughput at the expense of
1607 * latency by eliminating extra atomic operations when the locks are
1608 * already in proper order on entry. This favors lower cpu-ids and will
1609 * grant the double lock to lower cpus over higher ids under contention,
1610 * regardless of entry order into the function.
1611 */
1612static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1613 __releases(this_rq->lock)
1614 __acquires(busiest->lock)
1615 __acquires(this_rq->lock)
1616{
1617 int ret = 0;
1618
05fa785c 1619 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1620 if (busiest < this_rq) {
05fa785c
TG
1621 raw_spin_unlock(&this_rq->lock);
1622 raw_spin_lock(&busiest->lock);
1623 raw_spin_lock_nested(&this_rq->lock,
1624 SINGLE_DEPTH_NESTING);
70574a99
AD
1625 ret = 1;
1626 } else
05fa785c
TG
1627 raw_spin_lock_nested(&busiest->lock,
1628 SINGLE_DEPTH_NESTING);
70574a99
AD
1629 }
1630 return ret;
1631}
1632
8f45e2b5
GH
1633#endif /* CONFIG_PREEMPT */
1634
1635/*
1636 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1637 */
1638static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1639{
1640 if (unlikely(!irqs_disabled())) {
1641 /* printk() doesn't work good under rq->lock */
05fa785c 1642 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1643 BUG_ON(1);
1644 }
1645
1646 return _double_lock_balance(this_rq, busiest);
1647}
1648
70574a99
AD
1649static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1650 __releases(busiest->lock)
1651{
05fa785c 1652 raw_spin_unlock(&busiest->lock);
70574a99
AD
1653 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1654}
1e3c88bd
PZ
1655
1656/*
1657 * double_rq_lock - safely lock two runqueues
1658 *
1659 * Note this does not disable interrupts like task_rq_lock,
1660 * you need to do so manually before calling.
1661 */
1662static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1663 __acquires(rq1->lock)
1664 __acquires(rq2->lock)
1665{
1666 BUG_ON(!irqs_disabled());
1667 if (rq1 == rq2) {
1668 raw_spin_lock(&rq1->lock);
1669 __acquire(rq2->lock); /* Fake it out ;) */
1670 } else {
1671 if (rq1 < rq2) {
1672 raw_spin_lock(&rq1->lock);
1673 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1674 } else {
1675 raw_spin_lock(&rq2->lock);
1676 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1677 }
1678 }
1e3c88bd
PZ
1679}
1680
1681/*
1682 * double_rq_unlock - safely unlock two runqueues
1683 *
1684 * Note this does not restore interrupts like task_rq_unlock,
1685 * you need to do so manually after calling.
1686 */
1687static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1688 __releases(rq1->lock)
1689 __releases(rq2->lock)
1690{
1691 raw_spin_unlock(&rq1->lock);
1692 if (rq1 != rq2)
1693 raw_spin_unlock(&rq2->lock);
1694 else
1695 __release(rq2->lock);
1696}
1697
d95f4122
MG
1698#else /* CONFIG_SMP */
1699
1700/*
1701 * double_rq_lock - safely lock two runqueues
1702 *
1703 * Note this does not disable interrupts like task_rq_lock,
1704 * you need to do so manually before calling.
1705 */
1706static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1707 __acquires(rq1->lock)
1708 __acquires(rq2->lock)
1709{
1710 BUG_ON(!irqs_disabled());
1711 BUG_ON(rq1 != rq2);
1712 raw_spin_lock(&rq1->lock);
1713 __acquire(rq2->lock); /* Fake it out ;) */
1714}
1715
1716/*
1717 * double_rq_unlock - safely unlock two runqueues
1718 *
1719 * Note this does not restore interrupts like task_rq_unlock,
1720 * you need to do so manually after calling.
1721 */
1722static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1723 __releases(rq1->lock)
1724 __releases(rq2->lock)
1725{
1726 BUG_ON(rq1 != rq2);
1727 raw_spin_unlock(&rq1->lock);
1728 __release(rq2->lock);
1729}
1730
18d95a28
PZ
1731#endif
1732
74f5187a 1733static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1734static void update_sysctl(void);
acb4a848 1735static int get_update_sysctl_factor(void);
fdf3e95d 1736static void update_cpu_load(struct rq *this_rq);
dce48a84 1737
cd29fe6f
PZ
1738static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1739{
1740 set_task_rq(p, cpu);
1741#ifdef CONFIG_SMP
1742 /*
1743 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1744 * successfuly executed on another CPU. We must ensure that updates of
1745 * per-task data have been completed by this moment.
1746 */
1747 smp_wmb();
1748 task_thread_info(p)->cpu = cpu;
1749#endif
1750}
dce48a84 1751
1e3c88bd 1752static const struct sched_class rt_sched_class;
dd41f596 1753
34f971f6 1754#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1755#define for_each_class(class) \
1756 for (class = sched_class_highest; class; class = class->next)
dd41f596 1757
1e3c88bd
PZ
1758#include "sched_stats.h"
1759
c09595f6 1760static void inc_nr_running(struct rq *rq)
9c217245
IM
1761{
1762 rq->nr_running++;
9c217245
IM
1763}
1764
c09595f6 1765static void dec_nr_running(struct rq *rq)
9c217245
IM
1766{
1767 rq->nr_running--;
9c217245
IM
1768}
1769
45bf76df
IM
1770static void set_load_weight(struct task_struct *p)
1771{
dd41f596
IM
1772 /*
1773 * SCHED_IDLE tasks get minimal weight:
1774 */
1775 if (p->policy == SCHED_IDLE) {
1776 p->se.load.weight = WEIGHT_IDLEPRIO;
1777 p->se.load.inv_weight = WMULT_IDLEPRIO;
1778 return;
1779 }
71f8bd46 1780
dd41f596
IM
1781 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1782 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1783}
1784
371fd7e7 1785static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1786{
a64692a3 1787 update_rq_clock(rq);
dd41f596 1788 sched_info_queued(p);
371fd7e7 1789 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1790}
1791
371fd7e7 1792static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1793{
a64692a3 1794 update_rq_clock(rq);
46ac22ba 1795 sched_info_dequeued(p);
371fd7e7 1796 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1797}
1798
1e3c88bd
PZ
1799/*
1800 * activate_task - move a task to the runqueue.
1801 */
371fd7e7 1802static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1803{
1804 if (task_contributes_to_load(p))
1805 rq->nr_uninterruptible--;
1806
371fd7e7 1807 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1808 inc_nr_running(rq);
1809}
1810
1811/*
1812 * deactivate_task - remove a task from the runqueue.
1813 */
371fd7e7 1814static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1815{
1816 if (task_contributes_to_load(p))
1817 rq->nr_uninterruptible++;
1818
371fd7e7 1819 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1820 dec_nr_running(rq);
1821}
1822
b52bfee4
VP
1823#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1824
305e6835
VP
1825/*
1826 * There are no locks covering percpu hardirq/softirq time.
1827 * They are only modified in account_system_vtime, on corresponding CPU
1828 * with interrupts disabled. So, writes are safe.
1829 * They are read and saved off onto struct rq in update_rq_clock().
1830 * This may result in other CPU reading this CPU's irq time and can
1831 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1832 * or new value with a side effect of accounting a slice of irq time to wrong
1833 * task when irq is in progress while we read rq->clock. That is a worthy
1834 * compromise in place of having locks on each irq in account_system_time.
305e6835 1835 */
b52bfee4
VP
1836static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1837static DEFINE_PER_CPU(u64, cpu_softirq_time);
1838
1839static DEFINE_PER_CPU(u64, irq_start_time);
1840static int sched_clock_irqtime;
1841
1842void enable_sched_clock_irqtime(void)
1843{
1844 sched_clock_irqtime = 1;
1845}
1846
1847void disable_sched_clock_irqtime(void)
1848{
1849 sched_clock_irqtime = 0;
1850}
1851
8e92c201
PZ
1852#ifndef CONFIG_64BIT
1853static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1854
1855static inline void irq_time_write_begin(void)
1856{
1857 __this_cpu_inc(irq_time_seq.sequence);
1858 smp_wmb();
1859}
1860
1861static inline void irq_time_write_end(void)
1862{
1863 smp_wmb();
1864 __this_cpu_inc(irq_time_seq.sequence);
1865}
1866
1867static inline u64 irq_time_read(int cpu)
1868{
1869 u64 irq_time;
1870 unsigned seq;
1871
1872 do {
1873 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1874 irq_time = per_cpu(cpu_softirq_time, cpu) +
1875 per_cpu(cpu_hardirq_time, cpu);
1876 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1877
1878 return irq_time;
1879}
1880#else /* CONFIG_64BIT */
1881static inline void irq_time_write_begin(void)
1882{
1883}
1884
1885static inline void irq_time_write_end(void)
1886{
1887}
1888
1889static inline u64 irq_time_read(int cpu)
305e6835 1890{
305e6835
VP
1891 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1892}
8e92c201 1893#endif /* CONFIG_64BIT */
305e6835 1894
fe44d621
PZ
1895/*
1896 * Called before incrementing preempt_count on {soft,}irq_enter
1897 * and before decrementing preempt_count on {soft,}irq_exit.
1898 */
b52bfee4
VP
1899void account_system_vtime(struct task_struct *curr)
1900{
1901 unsigned long flags;
fe44d621 1902 s64 delta;
b52bfee4 1903 int cpu;
b52bfee4
VP
1904
1905 if (!sched_clock_irqtime)
1906 return;
1907
1908 local_irq_save(flags);
1909
b52bfee4 1910 cpu = smp_processor_id();
fe44d621
PZ
1911 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1912 __this_cpu_add(irq_start_time, delta);
1913
8e92c201 1914 irq_time_write_begin();
b52bfee4
VP
1915 /*
1916 * We do not account for softirq time from ksoftirqd here.
1917 * We want to continue accounting softirq time to ksoftirqd thread
1918 * in that case, so as not to confuse scheduler with a special task
1919 * that do not consume any time, but still wants to run.
1920 */
1921 if (hardirq_count())
fe44d621 1922 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1923 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1924 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1925
8e92c201 1926 irq_time_write_end();
b52bfee4
VP
1927 local_irq_restore(flags);
1928}
b7dadc38 1929EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1930
fe44d621 1931static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1932{
fe44d621
PZ
1933 s64 irq_delta;
1934
8e92c201 1935 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1936
1937 /*
1938 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1939 * this case when a previous update_rq_clock() happened inside a
1940 * {soft,}irq region.
1941 *
1942 * When this happens, we stop ->clock_task and only update the
1943 * prev_irq_time stamp to account for the part that fit, so that a next
1944 * update will consume the rest. This ensures ->clock_task is
1945 * monotonic.
1946 *
1947 * It does however cause some slight miss-attribution of {soft,}irq
1948 * time, a more accurate solution would be to update the irq_time using
1949 * the current rq->clock timestamp, except that would require using
1950 * atomic ops.
1951 */
1952 if (irq_delta > delta)
1953 irq_delta = delta;
1954
1955 rq->prev_irq_time += irq_delta;
1956 delta -= irq_delta;
1957 rq->clock_task += delta;
1958
1959 if (irq_delta && sched_feat(NONIRQ_POWER))
1960 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1961}
1962
abb74cef
VP
1963static int irqtime_account_hi_update(void)
1964{
1965 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1966 unsigned long flags;
1967 u64 latest_ns;
1968 int ret = 0;
1969
1970 local_irq_save(flags);
1971 latest_ns = this_cpu_read(cpu_hardirq_time);
1972 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1973 ret = 1;
1974 local_irq_restore(flags);
1975 return ret;
1976}
1977
1978static int irqtime_account_si_update(void)
1979{
1980 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1981 unsigned long flags;
1982 u64 latest_ns;
1983 int ret = 0;
1984
1985 local_irq_save(flags);
1986 latest_ns = this_cpu_read(cpu_softirq_time);
1987 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1988 ret = 1;
1989 local_irq_restore(flags);
1990 return ret;
1991}
1992
fe44d621 1993#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1994
abb74cef
VP
1995#define sched_clock_irqtime (0)
1996
fe44d621 1997static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1998{
fe44d621 1999 rq->clock_task += delta;
305e6835
VP
2000}
2001
fe44d621 2002#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2003
1e3c88bd
PZ
2004#include "sched_idletask.c"
2005#include "sched_fair.c"
2006#include "sched_rt.c"
5091faa4 2007#include "sched_autogroup.c"
34f971f6 2008#include "sched_stoptask.c"
1e3c88bd
PZ
2009#ifdef CONFIG_SCHED_DEBUG
2010# include "sched_debug.c"
2011#endif
2012
34f971f6
PZ
2013void sched_set_stop_task(int cpu, struct task_struct *stop)
2014{
2015 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2016 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2017
2018 if (stop) {
2019 /*
2020 * Make it appear like a SCHED_FIFO task, its something
2021 * userspace knows about and won't get confused about.
2022 *
2023 * Also, it will make PI more or less work without too
2024 * much confusion -- but then, stop work should not
2025 * rely on PI working anyway.
2026 */
2027 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2028
2029 stop->sched_class = &stop_sched_class;
2030 }
2031
2032 cpu_rq(cpu)->stop = stop;
2033
2034 if (old_stop) {
2035 /*
2036 * Reset it back to a normal scheduling class so that
2037 * it can die in pieces.
2038 */
2039 old_stop->sched_class = &rt_sched_class;
2040 }
2041}
2042
14531189 2043/*
dd41f596 2044 * __normal_prio - return the priority that is based on the static prio
14531189 2045 */
14531189
IM
2046static inline int __normal_prio(struct task_struct *p)
2047{
dd41f596 2048 return p->static_prio;
14531189
IM
2049}
2050
b29739f9
IM
2051/*
2052 * Calculate the expected normal priority: i.e. priority
2053 * without taking RT-inheritance into account. Might be
2054 * boosted by interactivity modifiers. Changes upon fork,
2055 * setprio syscalls, and whenever the interactivity
2056 * estimator recalculates.
2057 */
36c8b586 2058static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2059{
2060 int prio;
2061
e05606d3 2062 if (task_has_rt_policy(p))
b29739f9
IM
2063 prio = MAX_RT_PRIO-1 - p->rt_priority;
2064 else
2065 prio = __normal_prio(p);
2066 return prio;
2067}
2068
2069/*
2070 * Calculate the current priority, i.e. the priority
2071 * taken into account by the scheduler. This value might
2072 * be boosted by RT tasks, or might be boosted by
2073 * interactivity modifiers. Will be RT if the task got
2074 * RT-boosted. If not then it returns p->normal_prio.
2075 */
36c8b586 2076static int effective_prio(struct task_struct *p)
b29739f9
IM
2077{
2078 p->normal_prio = normal_prio(p);
2079 /*
2080 * If we are RT tasks or we were boosted to RT priority,
2081 * keep the priority unchanged. Otherwise, update priority
2082 * to the normal priority:
2083 */
2084 if (!rt_prio(p->prio))
2085 return p->normal_prio;
2086 return p->prio;
2087}
2088
1da177e4
LT
2089/**
2090 * task_curr - is this task currently executing on a CPU?
2091 * @p: the task in question.
2092 */
36c8b586 2093inline int task_curr(const struct task_struct *p)
1da177e4
LT
2094{
2095 return cpu_curr(task_cpu(p)) == p;
2096}
2097
cb469845
SR
2098static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2099 const struct sched_class *prev_class,
da7a735e 2100 int oldprio)
cb469845
SR
2101{
2102 if (prev_class != p->sched_class) {
2103 if (prev_class->switched_from)
da7a735e
PZ
2104 prev_class->switched_from(rq, p);
2105 p->sched_class->switched_to(rq, p);
2106 } else if (oldprio != p->prio)
2107 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2108}
2109
1e5a7405
PZ
2110static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2111{
2112 const struct sched_class *class;
2113
2114 if (p->sched_class == rq->curr->sched_class) {
2115 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2116 } else {
2117 for_each_class(class) {
2118 if (class == rq->curr->sched_class)
2119 break;
2120 if (class == p->sched_class) {
2121 resched_task(rq->curr);
2122 break;
2123 }
2124 }
2125 }
2126
2127 /*
2128 * A queue event has occurred, and we're going to schedule. In
2129 * this case, we can save a useless back to back clock update.
2130 */
fd2f4419 2131 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2132 rq->skip_clock_update = 1;
2133}
2134
1da177e4 2135#ifdef CONFIG_SMP
cc367732
IM
2136/*
2137 * Is this task likely cache-hot:
2138 */
e7693a36 2139static int
cc367732
IM
2140task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2141{
2142 s64 delta;
2143
e6c8fba7
PZ
2144 if (p->sched_class != &fair_sched_class)
2145 return 0;
2146
ef8002f6
NR
2147 if (unlikely(p->policy == SCHED_IDLE))
2148 return 0;
2149
f540a608
IM
2150 /*
2151 * Buddy candidates are cache hot:
2152 */
f685ceac 2153 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2154 (&p->se == cfs_rq_of(&p->se)->next ||
2155 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2156 return 1;
2157
6bc1665b
IM
2158 if (sysctl_sched_migration_cost == -1)
2159 return 1;
2160 if (sysctl_sched_migration_cost == 0)
2161 return 0;
2162
cc367732
IM
2163 delta = now - p->se.exec_start;
2164
2165 return delta < (s64)sysctl_sched_migration_cost;
2166}
2167
dd41f596 2168void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2169{
e2912009
PZ
2170#ifdef CONFIG_SCHED_DEBUG
2171 /*
2172 * We should never call set_task_cpu() on a blocked task,
2173 * ttwu() will sort out the placement.
2174 */
077614ee
PZ
2175 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2176 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2177
2178#ifdef CONFIG_LOCKDEP
2179 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2180 lockdep_is_held(&task_rq(p)->lock)));
2181#endif
e2912009
PZ
2182#endif
2183
de1d7286 2184 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2185
0c69774e
PZ
2186 if (task_cpu(p) != new_cpu) {
2187 p->se.nr_migrations++;
2188 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2189 }
dd41f596
IM
2190
2191 __set_task_cpu(p, new_cpu);
c65cc870
IM
2192}
2193
969c7921 2194struct migration_arg {
36c8b586 2195 struct task_struct *task;
1da177e4 2196 int dest_cpu;
70b97a7f 2197};
1da177e4 2198
969c7921
TH
2199static int migration_cpu_stop(void *data);
2200
1da177e4
LT
2201/*
2202 * The task's runqueue lock must be held.
2203 * Returns true if you have to wait for migration thread.
2204 */
7608dec2 2205static bool need_migrate_task(struct task_struct *p)
1da177e4 2206{
1da177e4
LT
2207 /*
2208 * If the task is not on a runqueue (and not running), then
e2912009 2209 * the next wake-up will properly place the task.
1da177e4 2210 */
7608dec2
PZ
2211 bool running = p->on_rq || p->on_cpu;
2212 smp_rmb(); /* finish_lock_switch() */
2213 return running;
1da177e4
LT
2214}
2215
2216/*
2217 * wait_task_inactive - wait for a thread to unschedule.
2218 *
85ba2d86
RM
2219 * If @match_state is nonzero, it's the @p->state value just checked and
2220 * not expected to change. If it changes, i.e. @p might have woken up,
2221 * then return zero. When we succeed in waiting for @p to be off its CPU,
2222 * we return a positive number (its total switch count). If a second call
2223 * a short while later returns the same number, the caller can be sure that
2224 * @p has remained unscheduled the whole time.
2225 *
1da177e4
LT
2226 * The caller must ensure that the task *will* unschedule sometime soon,
2227 * else this function might spin for a *long* time. This function can't
2228 * be called with interrupts off, or it may introduce deadlock with
2229 * smp_call_function() if an IPI is sent by the same process we are
2230 * waiting to become inactive.
2231 */
85ba2d86 2232unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2233{
2234 unsigned long flags;
dd41f596 2235 int running, on_rq;
85ba2d86 2236 unsigned long ncsw;
70b97a7f 2237 struct rq *rq;
1da177e4 2238
3a5c359a
AK
2239 for (;;) {
2240 /*
2241 * We do the initial early heuristics without holding
2242 * any task-queue locks at all. We'll only try to get
2243 * the runqueue lock when things look like they will
2244 * work out!
2245 */
2246 rq = task_rq(p);
fa490cfd 2247
3a5c359a
AK
2248 /*
2249 * If the task is actively running on another CPU
2250 * still, just relax and busy-wait without holding
2251 * any locks.
2252 *
2253 * NOTE! Since we don't hold any locks, it's not
2254 * even sure that "rq" stays as the right runqueue!
2255 * But we don't care, since "task_running()" will
2256 * return false if the runqueue has changed and p
2257 * is actually now running somewhere else!
2258 */
85ba2d86
RM
2259 while (task_running(rq, p)) {
2260 if (match_state && unlikely(p->state != match_state))
2261 return 0;
3a5c359a 2262 cpu_relax();
85ba2d86 2263 }
fa490cfd 2264
3a5c359a
AK
2265 /*
2266 * Ok, time to look more closely! We need the rq
2267 * lock now, to be *sure*. If we're wrong, we'll
2268 * just go back and repeat.
2269 */
2270 rq = task_rq_lock(p, &flags);
27a9da65 2271 trace_sched_wait_task(p);
3a5c359a 2272 running = task_running(rq, p);
fd2f4419 2273 on_rq = p->on_rq;
85ba2d86 2274 ncsw = 0;
f31e11d8 2275 if (!match_state || p->state == match_state)
93dcf55f 2276 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2277 task_rq_unlock(rq, p, &flags);
fa490cfd 2278
85ba2d86
RM
2279 /*
2280 * If it changed from the expected state, bail out now.
2281 */
2282 if (unlikely(!ncsw))
2283 break;
2284
3a5c359a
AK
2285 /*
2286 * Was it really running after all now that we
2287 * checked with the proper locks actually held?
2288 *
2289 * Oops. Go back and try again..
2290 */
2291 if (unlikely(running)) {
2292 cpu_relax();
2293 continue;
2294 }
fa490cfd 2295
3a5c359a
AK
2296 /*
2297 * It's not enough that it's not actively running,
2298 * it must be off the runqueue _entirely_, and not
2299 * preempted!
2300 *
80dd99b3 2301 * So if it was still runnable (but just not actively
3a5c359a
AK
2302 * running right now), it's preempted, and we should
2303 * yield - it could be a while.
2304 */
2305 if (unlikely(on_rq)) {
8eb90c30
TG
2306 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2307
2308 set_current_state(TASK_UNINTERRUPTIBLE);
2309 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2310 continue;
2311 }
fa490cfd 2312
3a5c359a
AK
2313 /*
2314 * Ahh, all good. It wasn't running, and it wasn't
2315 * runnable, which means that it will never become
2316 * running in the future either. We're all done!
2317 */
2318 break;
2319 }
85ba2d86
RM
2320
2321 return ncsw;
1da177e4
LT
2322}
2323
2324/***
2325 * kick_process - kick a running thread to enter/exit the kernel
2326 * @p: the to-be-kicked thread
2327 *
2328 * Cause a process which is running on another CPU to enter
2329 * kernel-mode, without any delay. (to get signals handled.)
2330 *
25985edc 2331 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2332 * because all it wants to ensure is that the remote task enters
2333 * the kernel. If the IPI races and the task has been migrated
2334 * to another CPU then no harm is done and the purpose has been
2335 * achieved as well.
2336 */
36c8b586 2337void kick_process(struct task_struct *p)
1da177e4
LT
2338{
2339 int cpu;
2340
2341 preempt_disable();
2342 cpu = task_cpu(p);
2343 if ((cpu != smp_processor_id()) && task_curr(p))
2344 smp_send_reschedule(cpu);
2345 preempt_enable();
2346}
b43e3521 2347EXPORT_SYMBOL_GPL(kick_process);
476d139c 2348#endif /* CONFIG_SMP */
1da177e4 2349
970b13ba 2350#ifdef CONFIG_SMP
30da688e 2351/*
013fdb80 2352 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2353 */
5da9a0fb
PZ
2354static int select_fallback_rq(int cpu, struct task_struct *p)
2355{
2356 int dest_cpu;
2357 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2358
2359 /* Look for allowed, online CPU in same node. */
2360 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2361 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2362 return dest_cpu;
2363
2364 /* Any allowed, online CPU? */
2365 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2366 if (dest_cpu < nr_cpu_ids)
2367 return dest_cpu;
2368
2369 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2370 dest_cpu = cpuset_cpus_allowed_fallback(p);
2371 /*
2372 * Don't tell them about moving exiting tasks or
2373 * kernel threads (both mm NULL), since they never
2374 * leave kernel.
2375 */
2376 if (p->mm && printk_ratelimit()) {
2377 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2378 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2379 }
2380
2381 return dest_cpu;
2382}
2383
e2912009 2384/*
013fdb80 2385 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2386 */
970b13ba 2387static inline
7608dec2 2388int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2389{
7608dec2 2390 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2391
2392 /*
2393 * In order not to call set_task_cpu() on a blocking task we need
2394 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2395 * cpu.
2396 *
2397 * Since this is common to all placement strategies, this lives here.
2398 *
2399 * [ this allows ->select_task() to simply return task_cpu(p) and
2400 * not worry about this generic constraint ]
2401 */
2402 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2403 !cpu_online(cpu)))
5da9a0fb 2404 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2405
2406 return cpu;
970b13ba 2407}
09a40af5
MG
2408
2409static void update_avg(u64 *avg, u64 sample)
2410{
2411 s64 diff = sample - *avg;
2412 *avg += diff >> 3;
2413}
970b13ba
PZ
2414#endif
2415
d7c01d27 2416static void
b84cb5df 2417ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2418{
d7c01d27 2419#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2420 struct rq *rq = this_rq();
2421
d7c01d27
PZ
2422#ifdef CONFIG_SMP
2423 int this_cpu = smp_processor_id();
2424
2425 if (cpu == this_cpu) {
2426 schedstat_inc(rq, ttwu_local);
2427 schedstat_inc(p, se.statistics.nr_wakeups_local);
2428 } else {
2429 struct sched_domain *sd;
2430
2431 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2432 for_each_domain(this_cpu, sd) {
2433 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2434 schedstat_inc(sd, ttwu_wake_remote);
2435 break;
2436 }
2437 }
2438 }
2439#endif /* CONFIG_SMP */
2440
2441 schedstat_inc(rq, ttwu_count);
9ed3811a 2442 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2443
2444 if (wake_flags & WF_SYNC)
9ed3811a 2445 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2446
2447 if (cpu != task_cpu(p))
9ed3811a 2448 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
9ed3811a 2449
d7c01d27
PZ
2450#endif /* CONFIG_SCHEDSTATS */
2451}
2452
2453static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2454{
9ed3811a 2455 activate_task(rq, p, en_flags);
fd2f4419 2456 p->on_rq = 1;
c2f7115e
PZ
2457
2458 /* if a worker is waking up, notify workqueue */
2459 if (p->flags & PF_WQ_WORKER)
2460 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2461}
2462
23f41eeb
PZ
2463/*
2464 * Mark the task runnable and perform wakeup-preemption.
2465 */
89363381 2466static void
23f41eeb 2467ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2468{
89363381 2469 trace_sched_wakeup(p, true);
9ed3811a
TH
2470 check_preempt_curr(rq, p, wake_flags);
2471
2472 p->state = TASK_RUNNING;
2473#ifdef CONFIG_SMP
2474 if (p->sched_class->task_woken)
2475 p->sched_class->task_woken(rq, p);
2476
2477 if (unlikely(rq->idle_stamp)) {
2478 u64 delta = rq->clock - rq->idle_stamp;
2479 u64 max = 2*sysctl_sched_migration_cost;
2480
2481 if (delta > max)
2482 rq->avg_idle = max;
2483 else
2484 update_avg(&rq->avg_idle, delta);
2485 rq->idle_stamp = 0;
2486 }
2487#endif
2488}
2489
c05fbafb
PZ
2490static void
2491ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2492{
2493#ifdef CONFIG_SMP
2494 if (p->sched_contributes_to_load)
2495 rq->nr_uninterruptible--;
2496#endif
2497
2498 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2499 ttwu_do_wakeup(rq, p, wake_flags);
2500}
2501
2502/*
2503 * Called in case the task @p isn't fully descheduled from its runqueue,
2504 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2505 * since all we need to do is flip p->state to TASK_RUNNING, since
2506 * the task is still ->on_rq.
2507 */
2508static int ttwu_remote(struct task_struct *p, int wake_flags)
2509{
2510 struct rq *rq;
2511 int ret = 0;
2512
2513 rq = __task_rq_lock(p);
2514 if (p->on_rq) {
2515 ttwu_do_wakeup(rq, p, wake_flags);
2516 ret = 1;
2517 }
2518 __task_rq_unlock(rq);
2519
2520 return ret;
2521}
2522
317f3941
PZ
2523#ifdef CONFIG_SMP
2524static void sched_ttwu_pending(void)
2525{
2526 struct rq *rq = this_rq();
2527 struct task_struct *list = xchg(&rq->wake_list, NULL);
2528
2529 if (!list)
2530 return;
2531
2532 raw_spin_lock(&rq->lock);
2533
2534 while (list) {
2535 struct task_struct *p = list;
2536 list = list->wake_entry;
2537 ttwu_do_activate(rq, p, 0);
2538 }
2539
2540 raw_spin_unlock(&rq->lock);
2541}
2542
2543void scheduler_ipi(void)
2544{
2545 sched_ttwu_pending();
2546}
2547
2548static void ttwu_queue_remote(struct task_struct *p, int cpu)
2549{
2550 struct rq *rq = cpu_rq(cpu);
2551 struct task_struct *next = rq->wake_list;
2552
2553 for (;;) {
2554 struct task_struct *old = next;
2555
2556 p->wake_entry = next;
2557 next = cmpxchg(&rq->wake_list, old, p);
2558 if (next == old)
2559 break;
2560 }
2561
2562 if (!next)
2563 smp_send_reschedule(cpu);
2564}
2565#endif
2566
c05fbafb
PZ
2567static void ttwu_queue(struct task_struct *p, int cpu)
2568{
2569 struct rq *rq = cpu_rq(cpu);
2570
317f3941
PZ
2571#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_TTWU_QUEUE)
2572 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2573 ttwu_queue_remote(p, cpu);
2574 return;
2575 }
2576#endif
2577
c05fbafb
PZ
2578 raw_spin_lock(&rq->lock);
2579 ttwu_do_activate(rq, p, 0);
2580 raw_spin_unlock(&rq->lock);
2581}
2582
9ed3811a 2583/**
1da177e4 2584 * try_to_wake_up - wake up a thread
9ed3811a 2585 * @p: the thread to be awakened
1da177e4 2586 * @state: the mask of task states that can be woken
9ed3811a 2587 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2588 *
2589 * Put it on the run-queue if it's not already there. The "current"
2590 * thread is always on the run-queue (except when the actual
2591 * re-schedule is in progress), and as such you're allowed to do
2592 * the simpler "current->state = TASK_RUNNING" to mark yourself
2593 * runnable without the overhead of this.
2594 *
9ed3811a
TH
2595 * Returns %true if @p was woken up, %false if it was already running
2596 * or @state didn't match @p's state.
1da177e4 2597 */
e4a52bcb
PZ
2598static int
2599try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2600{
1da177e4 2601 unsigned long flags;
c05fbafb 2602 int cpu, success = 0;
2398f2c6 2603
04e2f174 2604 smp_wmb();
013fdb80 2605 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2606 if (!(p->state & state))
1da177e4
LT
2607 goto out;
2608
c05fbafb 2609 success = 1; /* we're going to change ->state */
d7c01d27
PZ
2610 cpu = task_cpu(p);
2611
c05fbafb
PZ
2612 if (p->on_rq && ttwu_remote(p, wake_flags))
2613 goto stat;
1da177e4 2614
1da177e4 2615#ifdef CONFIG_SMP
c05fbafb
PZ
2616 /*
2617 * If the owning (remote) cpu is still in the middle of schedule() with
2618 * this task as prev, wait until its done referencing the task.
2619 */
e4a52bcb
PZ
2620 while (p->on_cpu) {
2621#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2622 /*
2623 * If called from interrupt context we could have landed in the
2624 * middle of schedule(), in this case we should take care not
2625 * to spin on ->on_cpu if p is current, since that would
2626 * deadlock.
2627 */
c05fbafb
PZ
2628 if (p == current) {
2629 ttwu_queue(p, cpu);
2630 goto stat;
2631 }
e4a52bcb
PZ
2632#endif
2633 cpu_relax();
2634 }
2635 /*
2636 * Pairs with the smp_wmb() in finish_lock_switch().
2637 */
2638 smp_rmb();
1da177e4 2639
a8e4f2ea 2640 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2641 p->state = TASK_WAKING;
efbbd05a 2642
e4a52bcb 2643 if (p->sched_class->task_waking)
74f8e4b2 2644 p->sched_class->task_waking(p);
efbbd05a 2645
7608dec2 2646 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
c05fbafb 2647 if (task_cpu(p) != cpu)
e4a52bcb 2648 set_task_cpu(p, cpu);
c05fbafb 2649#endif /* CONFIG_SMP */
1da177e4 2650
c05fbafb
PZ
2651 ttwu_queue(p, cpu);
2652stat:
b84cb5df 2653 ttwu_stat(p, cpu, wake_flags);
e4a52bcb 2654out:
013fdb80 2655 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2656
2657 return success;
2658}
2659
21aa9af0
TH
2660/**
2661 * try_to_wake_up_local - try to wake up a local task with rq lock held
2662 * @p: the thread to be awakened
2663 *
2acca55e 2664 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2665 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2666 * the current task.
21aa9af0
TH
2667 */
2668static void try_to_wake_up_local(struct task_struct *p)
2669{
2670 struct rq *rq = task_rq(p);
21aa9af0
TH
2671
2672 BUG_ON(rq != this_rq());
2673 BUG_ON(p == current);
2674 lockdep_assert_held(&rq->lock);
2675
2acca55e
PZ
2676 if (!raw_spin_trylock(&p->pi_lock)) {
2677 raw_spin_unlock(&rq->lock);
2678 raw_spin_lock(&p->pi_lock);
2679 raw_spin_lock(&rq->lock);
2680 }
2681
21aa9af0 2682 if (!(p->state & TASK_NORMAL))
2acca55e 2683 goto out;
21aa9af0 2684
fd2f4419 2685 if (!p->on_rq)
d7c01d27
PZ
2686 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2687
23f41eeb 2688 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2689 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2690out:
2691 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2692}
2693
50fa610a
DH
2694/**
2695 * wake_up_process - Wake up a specific process
2696 * @p: The process to be woken up.
2697 *
2698 * Attempt to wake up the nominated process and move it to the set of runnable
2699 * processes. Returns 1 if the process was woken up, 0 if it was already
2700 * running.
2701 *
2702 * It may be assumed that this function implies a write memory barrier before
2703 * changing the task state if and only if any tasks are woken up.
2704 */
7ad5b3a5 2705int wake_up_process(struct task_struct *p)
1da177e4 2706{
d9514f6c 2707 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2708}
1da177e4
LT
2709EXPORT_SYMBOL(wake_up_process);
2710
7ad5b3a5 2711int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2712{
2713 return try_to_wake_up(p, state, 0);
2714}
2715
1da177e4
LT
2716/*
2717 * Perform scheduler related setup for a newly forked process p.
2718 * p is forked by current.
dd41f596
IM
2719 *
2720 * __sched_fork() is basic setup used by init_idle() too:
2721 */
2722static void __sched_fork(struct task_struct *p)
2723{
fd2f4419
PZ
2724 p->on_rq = 0;
2725
2726 p->se.on_rq = 0;
dd41f596
IM
2727 p->se.exec_start = 0;
2728 p->se.sum_exec_runtime = 0;
f6cf891c 2729 p->se.prev_sum_exec_runtime = 0;
6c594c21 2730 p->se.nr_migrations = 0;
da7a735e 2731 p->se.vruntime = 0;
fd2f4419 2732 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2733
2734#ifdef CONFIG_SCHEDSTATS
41acab88 2735 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2736#endif
476d139c 2737
fa717060 2738 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2739
e107be36
AK
2740#ifdef CONFIG_PREEMPT_NOTIFIERS
2741 INIT_HLIST_HEAD(&p->preempt_notifiers);
2742#endif
dd41f596
IM
2743}
2744
2745/*
2746 * fork()/clone()-time setup:
2747 */
2748void sched_fork(struct task_struct *p, int clone_flags)
2749{
0122ec5b 2750 unsigned long flags;
dd41f596
IM
2751 int cpu = get_cpu();
2752
2753 __sched_fork(p);
06b83b5f 2754 /*
0017d735 2755 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2756 * nobody will actually run it, and a signal or other external
2757 * event cannot wake it up and insert it on the runqueue either.
2758 */
0017d735 2759 p->state = TASK_RUNNING;
dd41f596 2760
b9dc29e7
MG
2761 /*
2762 * Revert to default priority/policy on fork if requested.
2763 */
2764 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2765 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2766 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2767 p->normal_prio = p->static_prio;
2768 }
b9dc29e7 2769
6c697bdf
MG
2770 if (PRIO_TO_NICE(p->static_prio) < 0) {
2771 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2772 p->normal_prio = p->static_prio;
6c697bdf
MG
2773 set_load_weight(p);
2774 }
2775
b9dc29e7
MG
2776 /*
2777 * We don't need the reset flag anymore after the fork. It has
2778 * fulfilled its duty:
2779 */
2780 p->sched_reset_on_fork = 0;
2781 }
ca94c442 2782
f83f9ac2
PW
2783 /*
2784 * Make sure we do not leak PI boosting priority to the child.
2785 */
2786 p->prio = current->normal_prio;
2787
2ddbf952
HS
2788 if (!rt_prio(p->prio))
2789 p->sched_class = &fair_sched_class;
b29739f9 2790
cd29fe6f
PZ
2791 if (p->sched_class->task_fork)
2792 p->sched_class->task_fork(p);
2793
86951599
PZ
2794 /*
2795 * The child is not yet in the pid-hash so no cgroup attach races,
2796 * and the cgroup is pinned to this child due to cgroup_fork()
2797 * is ran before sched_fork().
2798 *
2799 * Silence PROVE_RCU.
2800 */
0122ec5b 2801 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2802 set_task_cpu(p, cpu);
0122ec5b 2803 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2804
52f17b6c 2805#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2806 if (likely(sched_info_on()))
52f17b6c 2807 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2808#endif
3ca7a440
PZ
2809#if defined(CONFIG_SMP)
2810 p->on_cpu = 0;
4866cde0 2811#endif
1da177e4 2812#ifdef CONFIG_PREEMPT
4866cde0 2813 /* Want to start with kernel preemption disabled. */
a1261f54 2814 task_thread_info(p)->preempt_count = 1;
1da177e4 2815#endif
806c09a7 2816#ifdef CONFIG_SMP
917b627d 2817 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2818#endif
917b627d 2819
476d139c 2820 put_cpu();
1da177e4
LT
2821}
2822
2823/*
2824 * wake_up_new_task - wake up a newly created task for the first time.
2825 *
2826 * This function will do some initial scheduler statistics housekeeping
2827 * that must be done for every newly created context, then puts the task
2828 * on the runqueue and wakes it.
2829 */
7ad5b3a5 2830void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2831{
2832 unsigned long flags;
dd41f596 2833 struct rq *rq;
fabf318e 2834
ab2515c4 2835 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2836#ifdef CONFIG_SMP
2837 /*
2838 * Fork balancing, do it here and not earlier because:
2839 * - cpus_allowed can change in the fork path
2840 * - any previously selected cpu might disappear through hotplug
fabf318e 2841 */
ab2515c4 2842 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
2843#endif
2844
ab2515c4 2845 rq = __task_rq_lock(p);
cd29fe6f 2846 activate_task(rq, p, 0);
fd2f4419 2847 p->on_rq = 1;
89363381 2848 trace_sched_wakeup_new(p, true);
a7558e01 2849 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2850#ifdef CONFIG_SMP
efbbd05a
PZ
2851 if (p->sched_class->task_woken)
2852 p->sched_class->task_woken(rq, p);
9a897c5a 2853#endif
0122ec5b 2854 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2855}
2856
e107be36
AK
2857#ifdef CONFIG_PREEMPT_NOTIFIERS
2858
2859/**
80dd99b3 2860 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2861 * @notifier: notifier struct to register
e107be36
AK
2862 */
2863void preempt_notifier_register(struct preempt_notifier *notifier)
2864{
2865 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2866}
2867EXPORT_SYMBOL_GPL(preempt_notifier_register);
2868
2869/**
2870 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2871 * @notifier: notifier struct to unregister
e107be36
AK
2872 *
2873 * This is safe to call from within a preemption notifier.
2874 */
2875void preempt_notifier_unregister(struct preempt_notifier *notifier)
2876{
2877 hlist_del(&notifier->link);
2878}
2879EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2880
2881static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2882{
2883 struct preempt_notifier *notifier;
2884 struct hlist_node *node;
2885
2886 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2887 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2888}
2889
2890static void
2891fire_sched_out_preempt_notifiers(struct task_struct *curr,
2892 struct task_struct *next)
2893{
2894 struct preempt_notifier *notifier;
2895 struct hlist_node *node;
2896
2897 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2898 notifier->ops->sched_out(notifier, next);
2899}
2900
6d6bc0ad 2901#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2902
2903static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2904{
2905}
2906
2907static void
2908fire_sched_out_preempt_notifiers(struct task_struct *curr,
2909 struct task_struct *next)
2910{
2911}
2912
6d6bc0ad 2913#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2914
4866cde0
NP
2915/**
2916 * prepare_task_switch - prepare to switch tasks
2917 * @rq: the runqueue preparing to switch
421cee29 2918 * @prev: the current task that is being switched out
4866cde0
NP
2919 * @next: the task we are going to switch to.
2920 *
2921 * This is called with the rq lock held and interrupts off. It must
2922 * be paired with a subsequent finish_task_switch after the context
2923 * switch.
2924 *
2925 * prepare_task_switch sets up locking and calls architecture specific
2926 * hooks.
2927 */
e107be36
AK
2928static inline void
2929prepare_task_switch(struct rq *rq, struct task_struct *prev,
2930 struct task_struct *next)
4866cde0 2931{
fe4b04fa
PZ
2932 sched_info_switch(prev, next);
2933 perf_event_task_sched_out(prev, next);
e107be36 2934 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2935 prepare_lock_switch(rq, next);
2936 prepare_arch_switch(next);
fe4b04fa 2937 trace_sched_switch(prev, next);
4866cde0
NP
2938}
2939
1da177e4
LT
2940/**
2941 * finish_task_switch - clean up after a task-switch
344babaa 2942 * @rq: runqueue associated with task-switch
1da177e4
LT
2943 * @prev: the thread we just switched away from.
2944 *
4866cde0
NP
2945 * finish_task_switch must be called after the context switch, paired
2946 * with a prepare_task_switch call before the context switch.
2947 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2948 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2949 *
2950 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2951 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2952 * with the lock held can cause deadlocks; see schedule() for
2953 * details.)
2954 */
a9957449 2955static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2956 __releases(rq->lock)
2957{
1da177e4 2958 struct mm_struct *mm = rq->prev_mm;
55a101f8 2959 long prev_state;
1da177e4
LT
2960
2961 rq->prev_mm = NULL;
2962
2963 /*
2964 * A task struct has one reference for the use as "current".
c394cc9f 2965 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2966 * schedule one last time. The schedule call will never return, and
2967 * the scheduled task must drop that reference.
c394cc9f 2968 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2969 * still held, otherwise prev could be scheduled on another cpu, die
2970 * there before we look at prev->state, and then the reference would
2971 * be dropped twice.
2972 * Manfred Spraul <manfred@colorfullife.com>
2973 */
55a101f8 2974 prev_state = prev->state;
4866cde0 2975 finish_arch_switch(prev);
8381f65d
JI
2976#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2977 local_irq_disable();
2978#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2979 perf_event_task_sched_in(current);
8381f65d
JI
2980#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2981 local_irq_enable();
2982#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2983 finish_lock_switch(rq, prev);
e8fa1362 2984
e107be36 2985 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2986 if (mm)
2987 mmdrop(mm);
c394cc9f 2988 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2989 /*
2990 * Remove function-return probe instances associated with this
2991 * task and put them back on the free list.
9761eea8 2992 */
c6fd91f0 2993 kprobe_flush_task(prev);
1da177e4 2994 put_task_struct(prev);
c6fd91f0 2995 }
1da177e4
LT
2996}
2997
3f029d3c
GH
2998#ifdef CONFIG_SMP
2999
3000/* assumes rq->lock is held */
3001static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3002{
3003 if (prev->sched_class->pre_schedule)
3004 prev->sched_class->pre_schedule(rq, prev);
3005}
3006
3007/* rq->lock is NOT held, but preemption is disabled */
3008static inline void post_schedule(struct rq *rq)
3009{
3010 if (rq->post_schedule) {
3011 unsigned long flags;
3012
05fa785c 3013 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3014 if (rq->curr->sched_class->post_schedule)
3015 rq->curr->sched_class->post_schedule(rq);
05fa785c 3016 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3017
3018 rq->post_schedule = 0;
3019 }
3020}
3021
3022#else
da19ab51 3023
3f029d3c
GH
3024static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3025{
3026}
3027
3028static inline void post_schedule(struct rq *rq)
3029{
1da177e4
LT
3030}
3031
3f029d3c
GH
3032#endif
3033
1da177e4
LT
3034/**
3035 * schedule_tail - first thing a freshly forked thread must call.
3036 * @prev: the thread we just switched away from.
3037 */
36c8b586 3038asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3039 __releases(rq->lock)
3040{
70b97a7f
IM
3041 struct rq *rq = this_rq();
3042
4866cde0 3043 finish_task_switch(rq, prev);
da19ab51 3044
3f029d3c
GH
3045 /*
3046 * FIXME: do we need to worry about rq being invalidated by the
3047 * task_switch?
3048 */
3049 post_schedule(rq);
70b97a7f 3050
4866cde0
NP
3051#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3052 /* In this case, finish_task_switch does not reenable preemption */
3053 preempt_enable();
3054#endif
1da177e4 3055 if (current->set_child_tid)
b488893a 3056 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3057}
3058
3059/*
3060 * context_switch - switch to the new MM and the new
3061 * thread's register state.
3062 */
dd41f596 3063static inline void
70b97a7f 3064context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3065 struct task_struct *next)
1da177e4 3066{
dd41f596 3067 struct mm_struct *mm, *oldmm;
1da177e4 3068
e107be36 3069 prepare_task_switch(rq, prev, next);
fe4b04fa 3070
dd41f596
IM
3071 mm = next->mm;
3072 oldmm = prev->active_mm;
9226d125
ZA
3073 /*
3074 * For paravirt, this is coupled with an exit in switch_to to
3075 * combine the page table reload and the switch backend into
3076 * one hypercall.
3077 */
224101ed 3078 arch_start_context_switch(prev);
9226d125 3079
31915ab4 3080 if (!mm) {
1da177e4
LT
3081 next->active_mm = oldmm;
3082 atomic_inc(&oldmm->mm_count);
3083 enter_lazy_tlb(oldmm, next);
3084 } else
3085 switch_mm(oldmm, mm, next);
3086
31915ab4 3087 if (!prev->mm) {
1da177e4 3088 prev->active_mm = NULL;
1da177e4
LT
3089 rq->prev_mm = oldmm;
3090 }
3a5f5e48
IM
3091 /*
3092 * Since the runqueue lock will be released by the next
3093 * task (which is an invalid locking op but in the case
3094 * of the scheduler it's an obvious special-case), so we
3095 * do an early lockdep release here:
3096 */
3097#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3098 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3099#endif
1da177e4
LT
3100
3101 /* Here we just switch the register state and the stack. */
3102 switch_to(prev, next, prev);
3103
dd41f596
IM
3104 barrier();
3105 /*
3106 * this_rq must be evaluated again because prev may have moved
3107 * CPUs since it called schedule(), thus the 'rq' on its stack
3108 * frame will be invalid.
3109 */
3110 finish_task_switch(this_rq(), prev);
1da177e4
LT
3111}
3112
3113/*
3114 * nr_running, nr_uninterruptible and nr_context_switches:
3115 *
3116 * externally visible scheduler statistics: current number of runnable
3117 * threads, current number of uninterruptible-sleeping threads, total
3118 * number of context switches performed since bootup.
3119 */
3120unsigned long nr_running(void)
3121{
3122 unsigned long i, sum = 0;
3123
3124 for_each_online_cpu(i)
3125 sum += cpu_rq(i)->nr_running;
3126
3127 return sum;
f711f609 3128}
1da177e4
LT
3129
3130unsigned long nr_uninterruptible(void)
f711f609 3131{
1da177e4 3132 unsigned long i, sum = 0;
f711f609 3133
0a945022 3134 for_each_possible_cpu(i)
1da177e4 3135 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3136
3137 /*
1da177e4
LT
3138 * Since we read the counters lockless, it might be slightly
3139 * inaccurate. Do not allow it to go below zero though:
f711f609 3140 */
1da177e4
LT
3141 if (unlikely((long)sum < 0))
3142 sum = 0;
f711f609 3143
1da177e4 3144 return sum;
f711f609 3145}
f711f609 3146
1da177e4 3147unsigned long long nr_context_switches(void)
46cb4b7c 3148{
cc94abfc
SR
3149 int i;
3150 unsigned long long sum = 0;
46cb4b7c 3151
0a945022 3152 for_each_possible_cpu(i)
1da177e4 3153 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3154
1da177e4
LT
3155 return sum;
3156}
483b4ee6 3157
1da177e4
LT
3158unsigned long nr_iowait(void)
3159{
3160 unsigned long i, sum = 0;
483b4ee6 3161
0a945022 3162 for_each_possible_cpu(i)
1da177e4 3163 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3164
1da177e4
LT
3165 return sum;
3166}
483b4ee6 3167
8c215bd3 3168unsigned long nr_iowait_cpu(int cpu)
69d25870 3169{
8c215bd3 3170 struct rq *this = cpu_rq(cpu);
69d25870
AV
3171 return atomic_read(&this->nr_iowait);
3172}
46cb4b7c 3173
69d25870
AV
3174unsigned long this_cpu_load(void)
3175{
3176 struct rq *this = this_rq();
3177 return this->cpu_load[0];
3178}
e790fb0b 3179
46cb4b7c 3180
dce48a84
TG
3181/* Variables and functions for calc_load */
3182static atomic_long_t calc_load_tasks;
3183static unsigned long calc_load_update;
3184unsigned long avenrun[3];
3185EXPORT_SYMBOL(avenrun);
46cb4b7c 3186
74f5187a
PZ
3187static long calc_load_fold_active(struct rq *this_rq)
3188{
3189 long nr_active, delta = 0;
3190
3191 nr_active = this_rq->nr_running;
3192 nr_active += (long) this_rq->nr_uninterruptible;
3193
3194 if (nr_active != this_rq->calc_load_active) {
3195 delta = nr_active - this_rq->calc_load_active;
3196 this_rq->calc_load_active = nr_active;
3197 }
3198
3199 return delta;
3200}
3201
0f004f5a
PZ
3202static unsigned long
3203calc_load(unsigned long load, unsigned long exp, unsigned long active)
3204{
3205 load *= exp;
3206 load += active * (FIXED_1 - exp);
3207 load += 1UL << (FSHIFT - 1);
3208 return load >> FSHIFT;
3209}
3210
74f5187a
PZ
3211#ifdef CONFIG_NO_HZ
3212/*
3213 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3214 *
3215 * When making the ILB scale, we should try to pull this in as well.
3216 */
3217static atomic_long_t calc_load_tasks_idle;
3218
3219static void calc_load_account_idle(struct rq *this_rq)
3220{
3221 long delta;
3222
3223 delta = calc_load_fold_active(this_rq);
3224 if (delta)
3225 atomic_long_add(delta, &calc_load_tasks_idle);
3226}
3227
3228static long calc_load_fold_idle(void)
3229{
3230 long delta = 0;
3231
3232 /*
3233 * Its got a race, we don't care...
3234 */
3235 if (atomic_long_read(&calc_load_tasks_idle))
3236 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3237
3238 return delta;
3239}
0f004f5a
PZ
3240
3241/**
3242 * fixed_power_int - compute: x^n, in O(log n) time
3243 *
3244 * @x: base of the power
3245 * @frac_bits: fractional bits of @x
3246 * @n: power to raise @x to.
3247 *
3248 * By exploiting the relation between the definition of the natural power
3249 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3250 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3251 * (where: n_i \elem {0, 1}, the binary vector representing n),
3252 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3253 * of course trivially computable in O(log_2 n), the length of our binary
3254 * vector.
3255 */
3256static unsigned long
3257fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3258{
3259 unsigned long result = 1UL << frac_bits;
3260
3261 if (n) for (;;) {
3262 if (n & 1) {
3263 result *= x;
3264 result += 1UL << (frac_bits - 1);
3265 result >>= frac_bits;
3266 }
3267 n >>= 1;
3268 if (!n)
3269 break;
3270 x *= x;
3271 x += 1UL << (frac_bits - 1);
3272 x >>= frac_bits;
3273 }
3274
3275 return result;
3276}
3277
3278/*
3279 * a1 = a0 * e + a * (1 - e)
3280 *
3281 * a2 = a1 * e + a * (1 - e)
3282 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3283 * = a0 * e^2 + a * (1 - e) * (1 + e)
3284 *
3285 * a3 = a2 * e + a * (1 - e)
3286 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3287 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3288 *
3289 * ...
3290 *
3291 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3292 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3293 * = a0 * e^n + a * (1 - e^n)
3294 *
3295 * [1] application of the geometric series:
3296 *
3297 * n 1 - x^(n+1)
3298 * S_n := \Sum x^i = -------------
3299 * i=0 1 - x
3300 */
3301static unsigned long
3302calc_load_n(unsigned long load, unsigned long exp,
3303 unsigned long active, unsigned int n)
3304{
3305
3306 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3307}
3308
3309/*
3310 * NO_HZ can leave us missing all per-cpu ticks calling
3311 * calc_load_account_active(), but since an idle CPU folds its delta into
3312 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3313 * in the pending idle delta if our idle period crossed a load cycle boundary.
3314 *
3315 * Once we've updated the global active value, we need to apply the exponential
3316 * weights adjusted to the number of cycles missed.
3317 */
3318static void calc_global_nohz(unsigned long ticks)
3319{
3320 long delta, active, n;
3321
3322 if (time_before(jiffies, calc_load_update))
3323 return;
3324
3325 /*
3326 * If we crossed a calc_load_update boundary, make sure to fold
3327 * any pending idle changes, the respective CPUs might have
3328 * missed the tick driven calc_load_account_active() update
3329 * due to NO_HZ.
3330 */
3331 delta = calc_load_fold_idle();
3332 if (delta)
3333 atomic_long_add(delta, &calc_load_tasks);
3334
3335 /*
3336 * If we were idle for multiple load cycles, apply them.
3337 */
3338 if (ticks >= LOAD_FREQ) {
3339 n = ticks / LOAD_FREQ;
3340
3341 active = atomic_long_read(&calc_load_tasks);
3342 active = active > 0 ? active * FIXED_1 : 0;
3343
3344 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3345 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3346 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3347
3348 calc_load_update += n * LOAD_FREQ;
3349 }
3350
3351 /*
3352 * Its possible the remainder of the above division also crosses
3353 * a LOAD_FREQ period, the regular check in calc_global_load()
3354 * which comes after this will take care of that.
3355 *
3356 * Consider us being 11 ticks before a cycle completion, and us
3357 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3358 * age us 4 cycles, and the test in calc_global_load() will
3359 * pick up the final one.
3360 */
3361}
74f5187a
PZ
3362#else
3363static void calc_load_account_idle(struct rq *this_rq)
3364{
3365}
3366
3367static inline long calc_load_fold_idle(void)
3368{
3369 return 0;
3370}
0f004f5a
PZ
3371
3372static void calc_global_nohz(unsigned long ticks)
3373{
3374}
74f5187a
PZ
3375#endif
3376
2d02494f
TG
3377/**
3378 * get_avenrun - get the load average array
3379 * @loads: pointer to dest load array
3380 * @offset: offset to add
3381 * @shift: shift count to shift the result left
3382 *
3383 * These values are estimates at best, so no need for locking.
3384 */
3385void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3386{
3387 loads[0] = (avenrun[0] + offset) << shift;
3388 loads[1] = (avenrun[1] + offset) << shift;
3389 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3390}
46cb4b7c 3391
46cb4b7c 3392/*
dce48a84
TG
3393 * calc_load - update the avenrun load estimates 10 ticks after the
3394 * CPUs have updated calc_load_tasks.
7835b98b 3395 */
0f004f5a 3396void calc_global_load(unsigned long ticks)
7835b98b 3397{
dce48a84 3398 long active;
1da177e4 3399
0f004f5a
PZ
3400 calc_global_nohz(ticks);
3401
3402 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3403 return;
1da177e4 3404
dce48a84
TG
3405 active = atomic_long_read(&calc_load_tasks);
3406 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3407
dce48a84
TG
3408 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3409 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3410 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3411
dce48a84
TG
3412 calc_load_update += LOAD_FREQ;
3413}
1da177e4 3414
dce48a84 3415/*
74f5187a
PZ
3416 * Called from update_cpu_load() to periodically update this CPU's
3417 * active count.
dce48a84
TG
3418 */
3419static void calc_load_account_active(struct rq *this_rq)
3420{
74f5187a 3421 long delta;
08c183f3 3422
74f5187a
PZ
3423 if (time_before(jiffies, this_rq->calc_load_update))
3424 return;
783609c6 3425
74f5187a
PZ
3426 delta = calc_load_fold_active(this_rq);
3427 delta += calc_load_fold_idle();
3428 if (delta)
dce48a84 3429 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3430
3431 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3432}
3433
fdf3e95d
VP
3434/*
3435 * The exact cpuload at various idx values, calculated at every tick would be
3436 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3437 *
3438 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3439 * on nth tick when cpu may be busy, then we have:
3440 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3441 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3442 *
3443 * decay_load_missed() below does efficient calculation of
3444 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3445 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3446 *
3447 * The calculation is approximated on a 128 point scale.
3448 * degrade_zero_ticks is the number of ticks after which load at any
3449 * particular idx is approximated to be zero.
3450 * degrade_factor is a precomputed table, a row for each load idx.
3451 * Each column corresponds to degradation factor for a power of two ticks,
3452 * based on 128 point scale.
3453 * Example:
3454 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3455 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3456 *
3457 * With this power of 2 load factors, we can degrade the load n times
3458 * by looking at 1 bits in n and doing as many mult/shift instead of
3459 * n mult/shifts needed by the exact degradation.
3460 */
3461#define DEGRADE_SHIFT 7
3462static const unsigned char
3463 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3464static const unsigned char
3465 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3466 {0, 0, 0, 0, 0, 0, 0, 0},
3467 {64, 32, 8, 0, 0, 0, 0, 0},
3468 {96, 72, 40, 12, 1, 0, 0},
3469 {112, 98, 75, 43, 15, 1, 0},
3470 {120, 112, 98, 76, 45, 16, 2} };
3471
3472/*
3473 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3474 * would be when CPU is idle and so we just decay the old load without
3475 * adding any new load.
3476 */
3477static unsigned long
3478decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3479{
3480 int j = 0;
3481
3482 if (!missed_updates)
3483 return load;
3484
3485 if (missed_updates >= degrade_zero_ticks[idx])
3486 return 0;
3487
3488 if (idx == 1)
3489 return load >> missed_updates;
3490
3491 while (missed_updates) {
3492 if (missed_updates % 2)
3493 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3494
3495 missed_updates >>= 1;
3496 j++;
3497 }
3498 return load;
3499}
3500
46cb4b7c 3501/*
dd41f596 3502 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3503 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3504 * every tick. We fix it up based on jiffies.
46cb4b7c 3505 */
dd41f596 3506static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3507{
495eca49 3508 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3509 unsigned long curr_jiffies = jiffies;
3510 unsigned long pending_updates;
dd41f596 3511 int i, scale;
46cb4b7c 3512
dd41f596 3513 this_rq->nr_load_updates++;
46cb4b7c 3514
fdf3e95d
VP
3515 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3516 if (curr_jiffies == this_rq->last_load_update_tick)
3517 return;
3518
3519 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3520 this_rq->last_load_update_tick = curr_jiffies;
3521
dd41f596 3522 /* Update our load: */
fdf3e95d
VP
3523 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3524 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3525 unsigned long old_load, new_load;
7d1e6a9b 3526
dd41f596 3527 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3528
dd41f596 3529 old_load = this_rq->cpu_load[i];
fdf3e95d 3530 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3531 new_load = this_load;
a25707f3
IM
3532 /*
3533 * Round up the averaging division if load is increasing. This
3534 * prevents us from getting stuck on 9 if the load is 10, for
3535 * example.
3536 */
3537 if (new_load > old_load)
fdf3e95d
VP
3538 new_load += scale - 1;
3539
3540 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3541 }
da2b71ed
SS
3542
3543 sched_avg_update(this_rq);
fdf3e95d
VP
3544}
3545
3546static void update_cpu_load_active(struct rq *this_rq)
3547{
3548 update_cpu_load(this_rq);
46cb4b7c 3549
74f5187a 3550 calc_load_account_active(this_rq);
46cb4b7c
SS
3551}
3552
dd41f596 3553#ifdef CONFIG_SMP
8a0be9ef 3554
46cb4b7c 3555/*
38022906
PZ
3556 * sched_exec - execve() is a valuable balancing opportunity, because at
3557 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3558 */
38022906 3559void sched_exec(void)
46cb4b7c 3560{
38022906 3561 struct task_struct *p = current;
1da177e4 3562 unsigned long flags;
0017d735 3563 int dest_cpu;
46cb4b7c 3564
8f42ced9 3565 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3566 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3567 if (dest_cpu == smp_processor_id())
3568 goto unlock;
38022906 3569
8f42ced9 3570 if (likely(cpu_active(dest_cpu))) {
969c7921 3571 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3572
8f42ced9
PZ
3573 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3574 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3575 return;
3576 }
0017d735 3577unlock:
8f42ced9 3578 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3579}
dd41f596 3580
1da177e4
LT
3581#endif
3582
1da177e4
LT
3583DEFINE_PER_CPU(struct kernel_stat, kstat);
3584
3585EXPORT_PER_CPU_SYMBOL(kstat);
3586
3587/*
c5f8d995 3588 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3589 * @p in case that task is currently running.
c5f8d995
HS
3590 *
3591 * Called with task_rq_lock() held on @rq.
1da177e4 3592 */
c5f8d995
HS
3593static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3594{
3595 u64 ns = 0;
3596
3597 if (task_current(rq, p)) {
3598 update_rq_clock(rq);
305e6835 3599 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3600 if ((s64)ns < 0)
3601 ns = 0;
3602 }
3603
3604 return ns;
3605}
3606
bb34d92f 3607unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3608{
1da177e4 3609 unsigned long flags;
41b86e9c 3610 struct rq *rq;
bb34d92f 3611 u64 ns = 0;
48f24c4d 3612
41b86e9c 3613 rq = task_rq_lock(p, &flags);
c5f8d995 3614 ns = do_task_delta_exec(p, rq);
0122ec5b 3615 task_rq_unlock(rq, p, &flags);
1508487e 3616
c5f8d995
HS
3617 return ns;
3618}
f06febc9 3619
c5f8d995
HS
3620/*
3621 * Return accounted runtime for the task.
3622 * In case the task is currently running, return the runtime plus current's
3623 * pending runtime that have not been accounted yet.
3624 */
3625unsigned long long task_sched_runtime(struct task_struct *p)
3626{
3627 unsigned long flags;
3628 struct rq *rq;
3629 u64 ns = 0;
3630
3631 rq = task_rq_lock(p, &flags);
3632 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3633 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3634
3635 return ns;
3636}
48f24c4d 3637
c5f8d995
HS
3638/*
3639 * Return sum_exec_runtime for the thread group.
3640 * In case the task is currently running, return the sum plus current's
3641 * pending runtime that have not been accounted yet.
3642 *
3643 * Note that the thread group might have other running tasks as well,
3644 * so the return value not includes other pending runtime that other
3645 * running tasks might have.
3646 */
3647unsigned long long thread_group_sched_runtime(struct task_struct *p)
3648{
3649 struct task_cputime totals;
3650 unsigned long flags;
3651 struct rq *rq;
3652 u64 ns;
3653
3654 rq = task_rq_lock(p, &flags);
3655 thread_group_cputime(p, &totals);
3656 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3657 task_rq_unlock(rq, p, &flags);
48f24c4d 3658
1da177e4
LT
3659 return ns;
3660}
3661
1da177e4
LT
3662/*
3663 * Account user cpu time to a process.
3664 * @p: the process that the cpu time gets accounted to
1da177e4 3665 * @cputime: the cpu time spent in user space since the last update
457533a7 3666 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3667 */
457533a7
MS
3668void account_user_time(struct task_struct *p, cputime_t cputime,
3669 cputime_t cputime_scaled)
1da177e4
LT
3670{
3671 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3672 cputime64_t tmp;
3673
457533a7 3674 /* Add user time to process. */
1da177e4 3675 p->utime = cputime_add(p->utime, cputime);
457533a7 3676 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3677 account_group_user_time(p, cputime);
1da177e4
LT
3678
3679 /* Add user time to cpustat. */
3680 tmp = cputime_to_cputime64(cputime);
3681 if (TASK_NICE(p) > 0)
3682 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3683 else
3684 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3685
3686 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3687 /* Account for user time used */
3688 acct_update_integrals(p);
1da177e4
LT
3689}
3690
94886b84
LV
3691/*
3692 * Account guest cpu time to a process.
3693 * @p: the process that the cpu time gets accounted to
3694 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3695 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3696 */
457533a7
MS
3697static void account_guest_time(struct task_struct *p, cputime_t cputime,
3698 cputime_t cputime_scaled)
94886b84
LV
3699{
3700 cputime64_t tmp;
3701 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3702
3703 tmp = cputime_to_cputime64(cputime);
3704
457533a7 3705 /* Add guest time to process. */
94886b84 3706 p->utime = cputime_add(p->utime, cputime);
457533a7 3707 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3708 account_group_user_time(p, cputime);
94886b84
LV
3709 p->gtime = cputime_add(p->gtime, cputime);
3710
457533a7 3711 /* Add guest time to cpustat. */
ce0e7b28
RO
3712 if (TASK_NICE(p) > 0) {
3713 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3714 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3715 } else {
3716 cpustat->user = cputime64_add(cpustat->user, tmp);
3717 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3718 }
94886b84
LV
3719}
3720
70a89a66
VP
3721/*
3722 * Account system cpu time to a process and desired cpustat field
3723 * @p: the process that the cpu time gets accounted to
3724 * @cputime: the cpu time spent in kernel space since the last update
3725 * @cputime_scaled: cputime scaled by cpu frequency
3726 * @target_cputime64: pointer to cpustat field that has to be updated
3727 */
3728static inline
3729void __account_system_time(struct task_struct *p, cputime_t cputime,
3730 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3731{
3732 cputime64_t tmp = cputime_to_cputime64(cputime);
3733
3734 /* Add system time to process. */
3735 p->stime = cputime_add(p->stime, cputime);
3736 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3737 account_group_system_time(p, cputime);
3738
3739 /* Add system time to cpustat. */
3740 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3741 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3742
3743 /* Account for system time used */
3744 acct_update_integrals(p);
3745}
3746
1da177e4
LT
3747/*
3748 * Account system cpu time to a process.
3749 * @p: the process that the cpu time gets accounted to
3750 * @hardirq_offset: the offset to subtract from hardirq_count()
3751 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3752 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3753 */
3754void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3755 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3756{
3757 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3758 cputime64_t *target_cputime64;
1da177e4 3759
983ed7a6 3760 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3761 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3762 return;
3763 }
94886b84 3764
1da177e4 3765 if (hardirq_count() - hardirq_offset)
70a89a66 3766 target_cputime64 = &cpustat->irq;
75e1056f 3767 else if (in_serving_softirq())
70a89a66 3768 target_cputime64 = &cpustat->softirq;
1da177e4 3769 else
70a89a66 3770 target_cputime64 = &cpustat->system;
ef12fefa 3771
70a89a66 3772 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3773}
3774
c66f08be 3775/*
1da177e4 3776 * Account for involuntary wait time.
544b4a1f 3777 * @cputime: the cpu time spent in involuntary wait
c66f08be 3778 */
79741dd3 3779void account_steal_time(cputime_t cputime)
c66f08be 3780{
79741dd3
MS
3781 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3782 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3783
3784 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3785}
3786
1da177e4 3787/*
79741dd3
MS
3788 * Account for idle time.
3789 * @cputime: the cpu time spent in idle wait
1da177e4 3790 */
79741dd3 3791void account_idle_time(cputime_t cputime)
1da177e4
LT
3792{
3793 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3794 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3795 struct rq *rq = this_rq();
1da177e4 3796
79741dd3
MS
3797 if (atomic_read(&rq->nr_iowait) > 0)
3798 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3799 else
3800 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3801}
3802
79741dd3
MS
3803#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3804
abb74cef
VP
3805#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3806/*
3807 * Account a tick to a process and cpustat
3808 * @p: the process that the cpu time gets accounted to
3809 * @user_tick: is the tick from userspace
3810 * @rq: the pointer to rq
3811 *
3812 * Tick demultiplexing follows the order
3813 * - pending hardirq update
3814 * - pending softirq update
3815 * - user_time
3816 * - idle_time
3817 * - system time
3818 * - check for guest_time
3819 * - else account as system_time
3820 *
3821 * Check for hardirq is done both for system and user time as there is
3822 * no timer going off while we are on hardirq and hence we may never get an
3823 * opportunity to update it solely in system time.
3824 * p->stime and friends are only updated on system time and not on irq
3825 * softirq as those do not count in task exec_runtime any more.
3826 */
3827static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3828 struct rq *rq)
3829{
3830 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3831 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3832 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3833
3834 if (irqtime_account_hi_update()) {
3835 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3836 } else if (irqtime_account_si_update()) {
3837 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3838 } else if (this_cpu_ksoftirqd() == p) {
3839 /*
3840 * ksoftirqd time do not get accounted in cpu_softirq_time.
3841 * So, we have to handle it separately here.
3842 * Also, p->stime needs to be updated for ksoftirqd.
3843 */
3844 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3845 &cpustat->softirq);
abb74cef
VP
3846 } else if (user_tick) {
3847 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3848 } else if (p == rq->idle) {
3849 account_idle_time(cputime_one_jiffy);
3850 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3851 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3852 } else {
3853 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3854 &cpustat->system);
3855 }
3856}
3857
3858static void irqtime_account_idle_ticks(int ticks)
3859{
3860 int i;
3861 struct rq *rq = this_rq();
3862
3863 for (i = 0; i < ticks; i++)
3864 irqtime_account_process_tick(current, 0, rq);
3865}
544b4a1f 3866#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3867static void irqtime_account_idle_ticks(int ticks) {}
3868static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3869 struct rq *rq) {}
544b4a1f 3870#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3871
3872/*
3873 * Account a single tick of cpu time.
3874 * @p: the process that the cpu time gets accounted to
3875 * @user_tick: indicates if the tick is a user or a system tick
3876 */
3877void account_process_tick(struct task_struct *p, int user_tick)
3878{
a42548a1 3879 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3880 struct rq *rq = this_rq();
3881
abb74cef
VP
3882 if (sched_clock_irqtime) {
3883 irqtime_account_process_tick(p, user_tick, rq);
3884 return;
3885 }
3886
79741dd3 3887 if (user_tick)
a42548a1 3888 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3889 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3890 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3891 one_jiffy_scaled);
3892 else
a42548a1 3893 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3894}
3895
3896/*
3897 * Account multiple ticks of steal time.
3898 * @p: the process from which the cpu time has been stolen
3899 * @ticks: number of stolen ticks
3900 */
3901void account_steal_ticks(unsigned long ticks)
3902{
3903 account_steal_time(jiffies_to_cputime(ticks));
3904}
3905
3906/*
3907 * Account multiple ticks of idle time.
3908 * @ticks: number of stolen ticks
3909 */
3910void account_idle_ticks(unsigned long ticks)
3911{
abb74cef
VP
3912
3913 if (sched_clock_irqtime) {
3914 irqtime_account_idle_ticks(ticks);
3915 return;
3916 }
3917
79741dd3 3918 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3919}
3920
79741dd3
MS
3921#endif
3922
49048622
BS
3923/*
3924 * Use precise platform statistics if available:
3925 */
3926#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3927void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3928{
d99ca3b9
HS
3929 *ut = p->utime;
3930 *st = p->stime;
49048622
BS
3931}
3932
0cf55e1e 3933void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3934{
0cf55e1e
HS
3935 struct task_cputime cputime;
3936
3937 thread_group_cputime(p, &cputime);
3938
3939 *ut = cputime.utime;
3940 *st = cputime.stime;
49048622
BS
3941}
3942#else
761b1d26
HS
3943
3944#ifndef nsecs_to_cputime
b7b20df9 3945# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3946#endif
3947
d180c5bc 3948void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3949{
d99ca3b9 3950 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3951
3952 /*
3953 * Use CFS's precise accounting:
3954 */
d180c5bc 3955 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3956
3957 if (total) {
e75e863d 3958 u64 temp = rtime;
d180c5bc 3959
e75e863d 3960 temp *= utime;
49048622 3961 do_div(temp, total);
d180c5bc
HS
3962 utime = (cputime_t)temp;
3963 } else
3964 utime = rtime;
49048622 3965
d180c5bc
HS
3966 /*
3967 * Compare with previous values, to keep monotonicity:
3968 */
761b1d26 3969 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3970 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3971
d99ca3b9
HS
3972 *ut = p->prev_utime;
3973 *st = p->prev_stime;
49048622
BS
3974}
3975
0cf55e1e
HS
3976/*
3977 * Must be called with siglock held.
3978 */
3979void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3980{
0cf55e1e
HS
3981 struct signal_struct *sig = p->signal;
3982 struct task_cputime cputime;
3983 cputime_t rtime, utime, total;
49048622 3984
0cf55e1e 3985 thread_group_cputime(p, &cputime);
49048622 3986
0cf55e1e
HS
3987 total = cputime_add(cputime.utime, cputime.stime);
3988 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3989
0cf55e1e 3990 if (total) {
e75e863d 3991 u64 temp = rtime;
49048622 3992
e75e863d 3993 temp *= cputime.utime;
0cf55e1e
HS
3994 do_div(temp, total);
3995 utime = (cputime_t)temp;
3996 } else
3997 utime = rtime;
3998
3999 sig->prev_utime = max(sig->prev_utime, utime);
4000 sig->prev_stime = max(sig->prev_stime,
4001 cputime_sub(rtime, sig->prev_utime));
4002
4003 *ut = sig->prev_utime;
4004 *st = sig->prev_stime;
49048622 4005}
49048622 4006#endif
49048622 4007
7835b98b
CL
4008/*
4009 * This function gets called by the timer code, with HZ frequency.
4010 * We call it with interrupts disabled.
4011 *
4012 * It also gets called by the fork code, when changing the parent's
4013 * timeslices.
4014 */
4015void scheduler_tick(void)
4016{
7835b98b
CL
4017 int cpu = smp_processor_id();
4018 struct rq *rq = cpu_rq(cpu);
dd41f596 4019 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4020
4021 sched_clock_tick();
dd41f596 4022
05fa785c 4023 raw_spin_lock(&rq->lock);
3e51f33f 4024 update_rq_clock(rq);
fdf3e95d 4025 update_cpu_load_active(rq);
fa85ae24 4026 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4027 raw_spin_unlock(&rq->lock);
7835b98b 4028
e9d2b064 4029 perf_event_task_tick();
e220d2dc 4030
e418e1c2 4031#ifdef CONFIG_SMP
dd41f596
IM
4032 rq->idle_at_tick = idle_cpu(cpu);
4033 trigger_load_balance(rq, cpu);
e418e1c2 4034#endif
1da177e4
LT
4035}
4036
132380a0 4037notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4038{
4039 if (in_lock_functions(addr)) {
4040 addr = CALLER_ADDR2;
4041 if (in_lock_functions(addr))
4042 addr = CALLER_ADDR3;
4043 }
4044 return addr;
4045}
1da177e4 4046
7e49fcce
SR
4047#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4048 defined(CONFIG_PREEMPT_TRACER))
4049
43627582 4050void __kprobes add_preempt_count(int val)
1da177e4 4051{
6cd8a4bb 4052#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4053 /*
4054 * Underflow?
4055 */
9a11b49a
IM
4056 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4057 return;
6cd8a4bb 4058#endif
1da177e4 4059 preempt_count() += val;
6cd8a4bb 4060#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4061 /*
4062 * Spinlock count overflowing soon?
4063 */
33859f7f
MOS
4064 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4065 PREEMPT_MASK - 10);
6cd8a4bb
SR
4066#endif
4067 if (preempt_count() == val)
4068 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4069}
4070EXPORT_SYMBOL(add_preempt_count);
4071
43627582 4072void __kprobes sub_preempt_count(int val)
1da177e4 4073{
6cd8a4bb 4074#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4075 /*
4076 * Underflow?
4077 */
01e3eb82 4078 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4079 return;
1da177e4
LT
4080 /*
4081 * Is the spinlock portion underflowing?
4082 */
9a11b49a
IM
4083 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4084 !(preempt_count() & PREEMPT_MASK)))
4085 return;
6cd8a4bb 4086#endif
9a11b49a 4087
6cd8a4bb
SR
4088 if (preempt_count() == val)
4089 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4090 preempt_count() -= val;
4091}
4092EXPORT_SYMBOL(sub_preempt_count);
4093
4094#endif
4095
4096/*
dd41f596 4097 * Print scheduling while atomic bug:
1da177e4 4098 */
dd41f596 4099static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4100{
838225b4
SS
4101 struct pt_regs *regs = get_irq_regs();
4102
3df0fc5b
PZ
4103 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4104 prev->comm, prev->pid, preempt_count());
838225b4 4105
dd41f596 4106 debug_show_held_locks(prev);
e21f5b15 4107 print_modules();
dd41f596
IM
4108 if (irqs_disabled())
4109 print_irqtrace_events(prev);
838225b4
SS
4110
4111 if (regs)
4112 show_regs(regs);
4113 else
4114 dump_stack();
dd41f596 4115}
1da177e4 4116
dd41f596
IM
4117/*
4118 * Various schedule()-time debugging checks and statistics:
4119 */
4120static inline void schedule_debug(struct task_struct *prev)
4121{
1da177e4 4122 /*
41a2d6cf 4123 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4124 * schedule() atomically, we ignore that path for now.
4125 * Otherwise, whine if we are scheduling when we should not be.
4126 */
3f33a7ce 4127 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4128 __schedule_bug(prev);
4129
1da177e4
LT
4130 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4131
2d72376b 4132 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4133#ifdef CONFIG_SCHEDSTATS
4134 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4135 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4136 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4137 }
4138#endif
dd41f596
IM
4139}
4140
6cecd084 4141static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4142{
fd2f4419 4143 if (prev->on_rq)
a64692a3 4144 update_rq_clock(rq);
6cecd084 4145 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4146}
4147
dd41f596
IM
4148/*
4149 * Pick up the highest-prio task:
4150 */
4151static inline struct task_struct *
b67802ea 4152pick_next_task(struct rq *rq)
dd41f596 4153{
5522d5d5 4154 const struct sched_class *class;
dd41f596 4155 struct task_struct *p;
1da177e4
LT
4156
4157 /*
dd41f596
IM
4158 * Optimization: we know that if all tasks are in
4159 * the fair class we can call that function directly:
1da177e4 4160 */
dd41f596 4161 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4162 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4163 if (likely(p))
4164 return p;
1da177e4
LT
4165 }
4166
34f971f6 4167 for_each_class(class) {
fb8d4724 4168 p = class->pick_next_task(rq);
dd41f596
IM
4169 if (p)
4170 return p;
dd41f596 4171 }
34f971f6
PZ
4172
4173 BUG(); /* the idle class will always have a runnable task */
dd41f596 4174}
1da177e4 4175
dd41f596
IM
4176/*
4177 * schedule() is the main scheduler function.
4178 */
ff743345 4179asmlinkage void __sched schedule(void)
dd41f596
IM
4180{
4181 struct task_struct *prev, *next;
67ca7bde 4182 unsigned long *switch_count;
dd41f596 4183 struct rq *rq;
31656519 4184 int cpu;
dd41f596 4185
ff743345
PZ
4186need_resched:
4187 preempt_disable();
dd41f596
IM
4188 cpu = smp_processor_id();
4189 rq = cpu_rq(cpu);
25502a6c 4190 rcu_note_context_switch(cpu);
dd41f596 4191 prev = rq->curr;
dd41f596 4192
dd41f596 4193 schedule_debug(prev);
1da177e4 4194
31656519 4195 if (sched_feat(HRTICK))
f333fdc9 4196 hrtick_clear(rq);
8f4d37ec 4197
05fa785c 4198 raw_spin_lock_irq(&rq->lock);
1da177e4 4199
246d86b5 4200 switch_count = &prev->nivcsw;
1da177e4 4201 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4202 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4203 prev->state = TASK_RUNNING;
21aa9af0 4204 } else {
2acca55e
PZ
4205 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4206 prev->on_rq = 0;
4207
21aa9af0 4208 /*
2acca55e
PZ
4209 * If a worker went to sleep, notify and ask workqueue
4210 * whether it wants to wake up a task to maintain
4211 * concurrency.
21aa9af0
TH
4212 */
4213 if (prev->flags & PF_WQ_WORKER) {
4214 struct task_struct *to_wakeup;
4215
4216 to_wakeup = wq_worker_sleeping(prev, cpu);
4217 if (to_wakeup)
4218 try_to_wake_up_local(to_wakeup);
4219 }
fd2f4419 4220
6631e635 4221 /*
2acca55e
PZ
4222 * If we are going to sleep and we have plugged IO
4223 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4224 */
4225 if (blk_needs_flush_plug(prev)) {
4226 raw_spin_unlock(&rq->lock);
4227 blk_flush_plug(prev);
4228 raw_spin_lock(&rq->lock);
4229 }
21aa9af0 4230 }
dd41f596 4231 switch_count = &prev->nvcsw;
1da177e4
LT
4232 }
4233
3f029d3c 4234 pre_schedule(rq, prev);
f65eda4f 4235
dd41f596 4236 if (unlikely(!rq->nr_running))
1da177e4 4237 idle_balance(cpu, rq);
1da177e4 4238
df1c99d4 4239 put_prev_task(rq, prev);
b67802ea 4240 next = pick_next_task(rq);
f26f9aff
MG
4241 clear_tsk_need_resched(prev);
4242 rq->skip_clock_update = 0;
1da177e4 4243
1da177e4 4244 if (likely(prev != next)) {
1da177e4
LT
4245 rq->nr_switches++;
4246 rq->curr = next;
4247 ++*switch_count;
4248
dd41f596 4249 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4250 /*
246d86b5
ON
4251 * The context switch have flipped the stack from under us
4252 * and restored the local variables which were saved when
4253 * this task called schedule() in the past. prev == current
4254 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4255 */
4256 cpu = smp_processor_id();
4257 rq = cpu_rq(cpu);
1da177e4 4258 } else
05fa785c 4259 raw_spin_unlock_irq(&rq->lock);
1da177e4 4260
3f029d3c 4261 post_schedule(rq);
1da177e4 4262
1da177e4 4263 preempt_enable_no_resched();
ff743345 4264 if (need_resched())
1da177e4
LT
4265 goto need_resched;
4266}
1da177e4
LT
4267EXPORT_SYMBOL(schedule);
4268
c08f7829 4269#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4270
c6eb3dda
PZ
4271static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4272{
4273 bool ret = false;
0d66bf6d 4274
c6eb3dda
PZ
4275 rcu_read_lock();
4276 if (lock->owner != owner)
4277 goto fail;
0d66bf6d
PZ
4278
4279 /*
c6eb3dda
PZ
4280 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4281 * lock->owner still matches owner, if that fails, owner might
4282 * point to free()d memory, if it still matches, the rcu_read_lock()
4283 * ensures the memory stays valid.
0d66bf6d 4284 */
c6eb3dda 4285 barrier();
0d66bf6d 4286
c6eb3dda
PZ
4287 ret = owner->on_cpu;
4288fail:
4289 rcu_read_unlock();
0d66bf6d 4290
c6eb3dda
PZ
4291 return ret;
4292}
0d66bf6d 4293
c6eb3dda
PZ
4294/*
4295 * Look out! "owner" is an entirely speculative pointer
4296 * access and not reliable.
4297 */
4298int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4299{
4300 if (!sched_feat(OWNER_SPIN))
4301 return 0;
0d66bf6d 4302
c6eb3dda
PZ
4303 while (owner_running(lock, owner)) {
4304 if (need_resched())
0d66bf6d
PZ
4305 return 0;
4306
335d7afb 4307 arch_mutex_cpu_relax();
0d66bf6d 4308 }
4b402210 4309
c6eb3dda
PZ
4310 /*
4311 * If the owner changed to another task there is likely
4312 * heavy contention, stop spinning.
4313 */
4314 if (lock->owner)
4315 return 0;
4316
0d66bf6d
PZ
4317 return 1;
4318}
4319#endif
4320
1da177e4
LT
4321#ifdef CONFIG_PREEMPT
4322/*
2ed6e34f 4323 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4324 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4325 * occur there and call schedule directly.
4326 */
d1f74e20 4327asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4328{
4329 struct thread_info *ti = current_thread_info();
6478d880 4330
1da177e4
LT
4331 /*
4332 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4333 * we do not want to preempt the current task. Just return..
1da177e4 4334 */
beed33a8 4335 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4336 return;
4337
3a5c359a 4338 do {
d1f74e20 4339 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4340 schedule();
d1f74e20 4341 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4342
3a5c359a
AK
4343 /*
4344 * Check again in case we missed a preemption opportunity
4345 * between schedule and now.
4346 */
4347 barrier();
5ed0cec0 4348 } while (need_resched());
1da177e4 4349}
1da177e4
LT
4350EXPORT_SYMBOL(preempt_schedule);
4351
4352/*
2ed6e34f 4353 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4354 * off of irq context.
4355 * Note, that this is called and return with irqs disabled. This will
4356 * protect us against recursive calling from irq.
4357 */
4358asmlinkage void __sched preempt_schedule_irq(void)
4359{
4360 struct thread_info *ti = current_thread_info();
6478d880 4361
2ed6e34f 4362 /* Catch callers which need to be fixed */
1da177e4
LT
4363 BUG_ON(ti->preempt_count || !irqs_disabled());
4364
3a5c359a
AK
4365 do {
4366 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4367 local_irq_enable();
4368 schedule();
4369 local_irq_disable();
3a5c359a 4370 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4371
3a5c359a
AK
4372 /*
4373 * Check again in case we missed a preemption opportunity
4374 * between schedule and now.
4375 */
4376 barrier();
5ed0cec0 4377 } while (need_resched());
1da177e4
LT
4378}
4379
4380#endif /* CONFIG_PREEMPT */
4381
63859d4f 4382int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4383 void *key)
1da177e4 4384{
63859d4f 4385 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4386}
1da177e4
LT
4387EXPORT_SYMBOL(default_wake_function);
4388
4389/*
41a2d6cf
IM
4390 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4391 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4392 * number) then we wake all the non-exclusive tasks and one exclusive task.
4393 *
4394 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4395 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4396 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4397 */
78ddb08f 4398static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4399 int nr_exclusive, int wake_flags, void *key)
1da177e4 4400{
2e45874c 4401 wait_queue_t *curr, *next;
1da177e4 4402
2e45874c 4403 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4404 unsigned flags = curr->flags;
4405
63859d4f 4406 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4407 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4408 break;
4409 }
4410}
4411
4412/**
4413 * __wake_up - wake up threads blocked on a waitqueue.
4414 * @q: the waitqueue
4415 * @mode: which threads
4416 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4417 * @key: is directly passed to the wakeup function
50fa610a
DH
4418 *
4419 * It may be assumed that this function implies a write memory barrier before
4420 * changing the task state if and only if any tasks are woken up.
1da177e4 4421 */
7ad5b3a5 4422void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4423 int nr_exclusive, void *key)
1da177e4
LT
4424{
4425 unsigned long flags;
4426
4427 spin_lock_irqsave(&q->lock, flags);
4428 __wake_up_common(q, mode, nr_exclusive, 0, key);
4429 spin_unlock_irqrestore(&q->lock, flags);
4430}
1da177e4
LT
4431EXPORT_SYMBOL(__wake_up);
4432
4433/*
4434 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4435 */
7ad5b3a5 4436void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4437{
4438 __wake_up_common(q, mode, 1, 0, NULL);
4439}
22c43c81 4440EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4441
4ede816a
DL
4442void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4443{
4444 __wake_up_common(q, mode, 1, 0, key);
4445}
bf294b41 4446EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4447
1da177e4 4448/**
4ede816a 4449 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4450 * @q: the waitqueue
4451 * @mode: which threads
4452 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4453 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4454 *
4455 * The sync wakeup differs that the waker knows that it will schedule
4456 * away soon, so while the target thread will be woken up, it will not
4457 * be migrated to another CPU - ie. the two threads are 'synchronized'
4458 * with each other. This can prevent needless bouncing between CPUs.
4459 *
4460 * On UP it can prevent extra preemption.
50fa610a
DH
4461 *
4462 * It may be assumed that this function implies a write memory barrier before
4463 * changing the task state if and only if any tasks are woken up.
1da177e4 4464 */
4ede816a
DL
4465void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4466 int nr_exclusive, void *key)
1da177e4
LT
4467{
4468 unsigned long flags;
7d478721 4469 int wake_flags = WF_SYNC;
1da177e4
LT
4470
4471 if (unlikely(!q))
4472 return;
4473
4474 if (unlikely(!nr_exclusive))
7d478721 4475 wake_flags = 0;
1da177e4
LT
4476
4477 spin_lock_irqsave(&q->lock, flags);
7d478721 4478 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4479 spin_unlock_irqrestore(&q->lock, flags);
4480}
4ede816a
DL
4481EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4482
4483/*
4484 * __wake_up_sync - see __wake_up_sync_key()
4485 */
4486void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4487{
4488 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4489}
1da177e4
LT
4490EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4491
65eb3dc6
KD
4492/**
4493 * complete: - signals a single thread waiting on this completion
4494 * @x: holds the state of this particular completion
4495 *
4496 * This will wake up a single thread waiting on this completion. Threads will be
4497 * awakened in the same order in which they were queued.
4498 *
4499 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4500 *
4501 * It may be assumed that this function implies a write memory barrier before
4502 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4503 */
b15136e9 4504void complete(struct completion *x)
1da177e4
LT
4505{
4506 unsigned long flags;
4507
4508 spin_lock_irqsave(&x->wait.lock, flags);
4509 x->done++;
d9514f6c 4510 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4511 spin_unlock_irqrestore(&x->wait.lock, flags);
4512}
4513EXPORT_SYMBOL(complete);
4514
65eb3dc6
KD
4515/**
4516 * complete_all: - signals all threads waiting on this completion
4517 * @x: holds the state of this particular completion
4518 *
4519 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4520 *
4521 * It may be assumed that this function implies a write memory barrier before
4522 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4523 */
b15136e9 4524void complete_all(struct completion *x)
1da177e4
LT
4525{
4526 unsigned long flags;
4527
4528 spin_lock_irqsave(&x->wait.lock, flags);
4529 x->done += UINT_MAX/2;
d9514f6c 4530 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4531 spin_unlock_irqrestore(&x->wait.lock, flags);
4532}
4533EXPORT_SYMBOL(complete_all);
4534
8cbbe86d
AK
4535static inline long __sched
4536do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4537{
1da177e4
LT
4538 if (!x->done) {
4539 DECLARE_WAITQUEUE(wait, current);
4540
a93d2f17 4541 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4542 do {
94d3d824 4543 if (signal_pending_state(state, current)) {
ea71a546
ON
4544 timeout = -ERESTARTSYS;
4545 break;
8cbbe86d
AK
4546 }
4547 __set_current_state(state);
1da177e4
LT
4548 spin_unlock_irq(&x->wait.lock);
4549 timeout = schedule_timeout(timeout);
4550 spin_lock_irq(&x->wait.lock);
ea71a546 4551 } while (!x->done && timeout);
1da177e4 4552 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4553 if (!x->done)
4554 return timeout;
1da177e4
LT
4555 }
4556 x->done--;
ea71a546 4557 return timeout ?: 1;
1da177e4 4558}
1da177e4 4559
8cbbe86d
AK
4560static long __sched
4561wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4562{
1da177e4
LT
4563 might_sleep();
4564
4565 spin_lock_irq(&x->wait.lock);
8cbbe86d 4566 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4567 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4568 return timeout;
4569}
1da177e4 4570
65eb3dc6
KD
4571/**
4572 * wait_for_completion: - waits for completion of a task
4573 * @x: holds the state of this particular completion
4574 *
4575 * This waits to be signaled for completion of a specific task. It is NOT
4576 * interruptible and there is no timeout.
4577 *
4578 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4579 * and interrupt capability. Also see complete().
4580 */
b15136e9 4581void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4582{
4583 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4584}
8cbbe86d 4585EXPORT_SYMBOL(wait_for_completion);
1da177e4 4586
65eb3dc6
KD
4587/**
4588 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4589 * @x: holds the state of this particular completion
4590 * @timeout: timeout value in jiffies
4591 *
4592 * This waits for either a completion of a specific task to be signaled or for a
4593 * specified timeout to expire. The timeout is in jiffies. It is not
4594 * interruptible.
4595 */
b15136e9 4596unsigned long __sched
8cbbe86d 4597wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4598{
8cbbe86d 4599 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4600}
8cbbe86d 4601EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4602
65eb3dc6
KD
4603/**
4604 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4605 * @x: holds the state of this particular completion
4606 *
4607 * This waits for completion of a specific task to be signaled. It is
4608 * interruptible.
4609 */
8cbbe86d 4610int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4611{
51e97990
AK
4612 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4613 if (t == -ERESTARTSYS)
4614 return t;
4615 return 0;
0fec171c 4616}
8cbbe86d 4617EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4618
65eb3dc6
KD
4619/**
4620 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4621 * @x: holds the state of this particular completion
4622 * @timeout: timeout value in jiffies
4623 *
4624 * This waits for either a completion of a specific task to be signaled or for a
4625 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4626 */
6bf41237 4627long __sched
8cbbe86d
AK
4628wait_for_completion_interruptible_timeout(struct completion *x,
4629 unsigned long timeout)
0fec171c 4630{
8cbbe86d 4631 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4632}
8cbbe86d 4633EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4634
65eb3dc6
KD
4635/**
4636 * wait_for_completion_killable: - waits for completion of a task (killable)
4637 * @x: holds the state of this particular completion
4638 *
4639 * This waits to be signaled for completion of a specific task. It can be
4640 * interrupted by a kill signal.
4641 */
009e577e
MW
4642int __sched wait_for_completion_killable(struct completion *x)
4643{
4644 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4645 if (t == -ERESTARTSYS)
4646 return t;
4647 return 0;
4648}
4649EXPORT_SYMBOL(wait_for_completion_killable);
4650
0aa12fb4
SW
4651/**
4652 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4653 * @x: holds the state of this particular completion
4654 * @timeout: timeout value in jiffies
4655 *
4656 * This waits for either a completion of a specific task to be
4657 * signaled or for a specified timeout to expire. It can be
4658 * interrupted by a kill signal. The timeout is in jiffies.
4659 */
6bf41237 4660long __sched
0aa12fb4
SW
4661wait_for_completion_killable_timeout(struct completion *x,
4662 unsigned long timeout)
4663{
4664 return wait_for_common(x, timeout, TASK_KILLABLE);
4665}
4666EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4667
be4de352
DC
4668/**
4669 * try_wait_for_completion - try to decrement a completion without blocking
4670 * @x: completion structure
4671 *
4672 * Returns: 0 if a decrement cannot be done without blocking
4673 * 1 if a decrement succeeded.
4674 *
4675 * If a completion is being used as a counting completion,
4676 * attempt to decrement the counter without blocking. This
4677 * enables us to avoid waiting if the resource the completion
4678 * is protecting is not available.
4679 */
4680bool try_wait_for_completion(struct completion *x)
4681{
7539a3b3 4682 unsigned long flags;
be4de352
DC
4683 int ret = 1;
4684
7539a3b3 4685 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4686 if (!x->done)
4687 ret = 0;
4688 else
4689 x->done--;
7539a3b3 4690 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4691 return ret;
4692}
4693EXPORT_SYMBOL(try_wait_for_completion);
4694
4695/**
4696 * completion_done - Test to see if a completion has any waiters
4697 * @x: completion structure
4698 *
4699 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4700 * 1 if there are no waiters.
4701 *
4702 */
4703bool completion_done(struct completion *x)
4704{
7539a3b3 4705 unsigned long flags;
be4de352
DC
4706 int ret = 1;
4707
7539a3b3 4708 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4709 if (!x->done)
4710 ret = 0;
7539a3b3 4711 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4712 return ret;
4713}
4714EXPORT_SYMBOL(completion_done);
4715
8cbbe86d
AK
4716static long __sched
4717sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4718{
0fec171c
IM
4719 unsigned long flags;
4720 wait_queue_t wait;
4721
4722 init_waitqueue_entry(&wait, current);
1da177e4 4723
8cbbe86d 4724 __set_current_state(state);
1da177e4 4725
8cbbe86d
AK
4726 spin_lock_irqsave(&q->lock, flags);
4727 __add_wait_queue(q, &wait);
4728 spin_unlock(&q->lock);
4729 timeout = schedule_timeout(timeout);
4730 spin_lock_irq(&q->lock);
4731 __remove_wait_queue(q, &wait);
4732 spin_unlock_irqrestore(&q->lock, flags);
4733
4734 return timeout;
4735}
4736
4737void __sched interruptible_sleep_on(wait_queue_head_t *q)
4738{
4739 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4740}
1da177e4
LT
4741EXPORT_SYMBOL(interruptible_sleep_on);
4742
0fec171c 4743long __sched
95cdf3b7 4744interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4745{
8cbbe86d 4746 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4747}
1da177e4
LT
4748EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4749
0fec171c 4750void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4751{
8cbbe86d 4752 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4753}
1da177e4
LT
4754EXPORT_SYMBOL(sleep_on);
4755
0fec171c 4756long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4757{
8cbbe86d 4758 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4759}
1da177e4
LT
4760EXPORT_SYMBOL(sleep_on_timeout);
4761
b29739f9
IM
4762#ifdef CONFIG_RT_MUTEXES
4763
4764/*
4765 * rt_mutex_setprio - set the current priority of a task
4766 * @p: task
4767 * @prio: prio value (kernel-internal form)
4768 *
4769 * This function changes the 'effective' priority of a task. It does
4770 * not touch ->normal_prio like __setscheduler().
4771 *
4772 * Used by the rt_mutex code to implement priority inheritance logic.
4773 */
36c8b586 4774void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4775{
83b699ed 4776 int oldprio, on_rq, running;
70b97a7f 4777 struct rq *rq;
83ab0aa0 4778 const struct sched_class *prev_class;
b29739f9
IM
4779
4780 BUG_ON(prio < 0 || prio > MAX_PRIO);
4781
0122ec5b 4782 rq = __task_rq_lock(p);
b29739f9 4783
a8027073 4784 trace_sched_pi_setprio(p, prio);
d5f9f942 4785 oldprio = p->prio;
83ab0aa0 4786 prev_class = p->sched_class;
fd2f4419 4787 on_rq = p->on_rq;
051a1d1a 4788 running = task_current(rq, p);
0e1f3483 4789 if (on_rq)
69be72c1 4790 dequeue_task(rq, p, 0);
0e1f3483
HS
4791 if (running)
4792 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4793
4794 if (rt_prio(prio))
4795 p->sched_class = &rt_sched_class;
4796 else
4797 p->sched_class = &fair_sched_class;
4798
b29739f9
IM
4799 p->prio = prio;
4800
0e1f3483
HS
4801 if (running)
4802 p->sched_class->set_curr_task(rq);
da7a735e 4803 if (on_rq)
371fd7e7 4804 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4805
da7a735e 4806 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4807 __task_rq_unlock(rq);
b29739f9
IM
4808}
4809
4810#endif
4811
36c8b586 4812void set_user_nice(struct task_struct *p, long nice)
1da177e4 4813{
dd41f596 4814 int old_prio, delta, on_rq;
1da177e4 4815 unsigned long flags;
70b97a7f 4816 struct rq *rq;
1da177e4
LT
4817
4818 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4819 return;
4820 /*
4821 * We have to be careful, if called from sys_setpriority(),
4822 * the task might be in the middle of scheduling on another CPU.
4823 */
4824 rq = task_rq_lock(p, &flags);
4825 /*
4826 * The RT priorities are set via sched_setscheduler(), but we still
4827 * allow the 'normal' nice value to be set - but as expected
4828 * it wont have any effect on scheduling until the task is
dd41f596 4829 * SCHED_FIFO/SCHED_RR:
1da177e4 4830 */
e05606d3 4831 if (task_has_rt_policy(p)) {
1da177e4
LT
4832 p->static_prio = NICE_TO_PRIO(nice);
4833 goto out_unlock;
4834 }
fd2f4419 4835 on_rq = p->on_rq;
c09595f6 4836 if (on_rq)
69be72c1 4837 dequeue_task(rq, p, 0);
1da177e4 4838
1da177e4 4839 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4840 set_load_weight(p);
b29739f9
IM
4841 old_prio = p->prio;
4842 p->prio = effective_prio(p);
4843 delta = p->prio - old_prio;
1da177e4 4844
dd41f596 4845 if (on_rq) {
371fd7e7 4846 enqueue_task(rq, p, 0);
1da177e4 4847 /*
d5f9f942
AM
4848 * If the task increased its priority or is running and
4849 * lowered its priority, then reschedule its CPU:
1da177e4 4850 */
d5f9f942 4851 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4852 resched_task(rq->curr);
4853 }
4854out_unlock:
0122ec5b 4855 task_rq_unlock(rq, p, &flags);
1da177e4 4856}
1da177e4
LT
4857EXPORT_SYMBOL(set_user_nice);
4858
e43379f1
MM
4859/*
4860 * can_nice - check if a task can reduce its nice value
4861 * @p: task
4862 * @nice: nice value
4863 */
36c8b586 4864int can_nice(const struct task_struct *p, const int nice)
e43379f1 4865{
024f4747
MM
4866 /* convert nice value [19,-20] to rlimit style value [1,40] */
4867 int nice_rlim = 20 - nice;
48f24c4d 4868
78d7d407 4869 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4870 capable(CAP_SYS_NICE));
4871}
4872
1da177e4
LT
4873#ifdef __ARCH_WANT_SYS_NICE
4874
4875/*
4876 * sys_nice - change the priority of the current process.
4877 * @increment: priority increment
4878 *
4879 * sys_setpriority is a more generic, but much slower function that
4880 * does similar things.
4881 */
5add95d4 4882SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4883{
48f24c4d 4884 long nice, retval;
1da177e4
LT
4885
4886 /*
4887 * Setpriority might change our priority at the same moment.
4888 * We don't have to worry. Conceptually one call occurs first
4889 * and we have a single winner.
4890 */
e43379f1
MM
4891 if (increment < -40)
4892 increment = -40;
1da177e4
LT
4893 if (increment > 40)
4894 increment = 40;
4895
2b8f836f 4896 nice = TASK_NICE(current) + increment;
1da177e4
LT
4897 if (nice < -20)
4898 nice = -20;
4899 if (nice > 19)
4900 nice = 19;
4901
e43379f1
MM
4902 if (increment < 0 && !can_nice(current, nice))
4903 return -EPERM;
4904
1da177e4
LT
4905 retval = security_task_setnice(current, nice);
4906 if (retval)
4907 return retval;
4908
4909 set_user_nice(current, nice);
4910 return 0;
4911}
4912
4913#endif
4914
4915/**
4916 * task_prio - return the priority value of a given task.
4917 * @p: the task in question.
4918 *
4919 * This is the priority value as seen by users in /proc.
4920 * RT tasks are offset by -200. Normal tasks are centered
4921 * around 0, value goes from -16 to +15.
4922 */
36c8b586 4923int task_prio(const struct task_struct *p)
1da177e4
LT
4924{
4925 return p->prio - MAX_RT_PRIO;
4926}
4927
4928/**
4929 * task_nice - return the nice value of a given task.
4930 * @p: the task in question.
4931 */
36c8b586 4932int task_nice(const struct task_struct *p)
1da177e4
LT
4933{
4934 return TASK_NICE(p);
4935}
150d8bed 4936EXPORT_SYMBOL(task_nice);
1da177e4
LT
4937
4938/**
4939 * idle_cpu - is a given cpu idle currently?
4940 * @cpu: the processor in question.
4941 */
4942int idle_cpu(int cpu)
4943{
4944 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4945}
4946
1da177e4
LT
4947/**
4948 * idle_task - return the idle task for a given cpu.
4949 * @cpu: the processor in question.
4950 */
36c8b586 4951struct task_struct *idle_task(int cpu)
1da177e4
LT
4952{
4953 return cpu_rq(cpu)->idle;
4954}
4955
4956/**
4957 * find_process_by_pid - find a process with a matching PID value.
4958 * @pid: the pid in question.
4959 */
a9957449 4960static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4961{
228ebcbe 4962 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4963}
4964
4965/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4966static void
4967__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4968{
1da177e4
LT
4969 p->policy = policy;
4970 p->rt_priority = prio;
b29739f9
IM
4971 p->normal_prio = normal_prio(p);
4972 /* we are holding p->pi_lock already */
4973 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4974 if (rt_prio(p->prio))
4975 p->sched_class = &rt_sched_class;
4976 else
4977 p->sched_class = &fair_sched_class;
2dd73a4f 4978 set_load_weight(p);
1da177e4
LT
4979}
4980
c69e8d9c
DH
4981/*
4982 * check the target process has a UID that matches the current process's
4983 */
4984static bool check_same_owner(struct task_struct *p)
4985{
4986 const struct cred *cred = current_cred(), *pcred;
4987 bool match;
4988
4989 rcu_read_lock();
4990 pcred = __task_cred(p);
b0e77598
SH
4991 if (cred->user->user_ns == pcred->user->user_ns)
4992 match = (cred->euid == pcred->euid ||
4993 cred->euid == pcred->uid);
4994 else
4995 match = false;
c69e8d9c
DH
4996 rcu_read_unlock();
4997 return match;
4998}
4999
961ccddd 5000static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5001 const struct sched_param *param, bool user)
1da177e4 5002{
83b699ed 5003 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5004 unsigned long flags;
83ab0aa0 5005 const struct sched_class *prev_class;
70b97a7f 5006 struct rq *rq;
ca94c442 5007 int reset_on_fork;
1da177e4 5008
66e5393a
SR
5009 /* may grab non-irq protected spin_locks */
5010 BUG_ON(in_interrupt());
1da177e4
LT
5011recheck:
5012 /* double check policy once rq lock held */
ca94c442
LP
5013 if (policy < 0) {
5014 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5015 policy = oldpolicy = p->policy;
ca94c442
LP
5016 } else {
5017 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5018 policy &= ~SCHED_RESET_ON_FORK;
5019
5020 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5021 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5022 policy != SCHED_IDLE)
5023 return -EINVAL;
5024 }
5025
1da177e4
LT
5026 /*
5027 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5028 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5029 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5030 */
5031 if (param->sched_priority < 0 ||
95cdf3b7 5032 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5033 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5034 return -EINVAL;
e05606d3 5035 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5036 return -EINVAL;
5037
37e4ab3f
OC
5038 /*
5039 * Allow unprivileged RT tasks to decrease priority:
5040 */
961ccddd 5041 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5042 if (rt_policy(policy)) {
a44702e8
ON
5043 unsigned long rlim_rtprio =
5044 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5045
5046 /* can't set/change the rt policy */
5047 if (policy != p->policy && !rlim_rtprio)
5048 return -EPERM;
5049
5050 /* can't increase priority */
5051 if (param->sched_priority > p->rt_priority &&
5052 param->sched_priority > rlim_rtprio)
5053 return -EPERM;
5054 }
c02aa73b 5055
dd41f596 5056 /*
c02aa73b
DH
5057 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5058 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5059 */
c02aa73b
DH
5060 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5061 if (!can_nice(p, TASK_NICE(p)))
5062 return -EPERM;
5063 }
5fe1d75f 5064
37e4ab3f 5065 /* can't change other user's priorities */
c69e8d9c 5066 if (!check_same_owner(p))
37e4ab3f 5067 return -EPERM;
ca94c442
LP
5068
5069 /* Normal users shall not reset the sched_reset_on_fork flag */
5070 if (p->sched_reset_on_fork && !reset_on_fork)
5071 return -EPERM;
37e4ab3f 5072 }
1da177e4 5073
725aad24 5074 if (user) {
b0ae1981 5075 retval = security_task_setscheduler(p);
725aad24
JF
5076 if (retval)
5077 return retval;
5078 }
5079
b29739f9
IM
5080 /*
5081 * make sure no PI-waiters arrive (or leave) while we are
5082 * changing the priority of the task:
0122ec5b 5083 *
25985edc 5084 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5085 * runqueue lock must be held.
5086 */
0122ec5b 5087 rq = task_rq_lock(p, &flags);
dc61b1d6 5088
34f971f6
PZ
5089 /*
5090 * Changing the policy of the stop threads its a very bad idea
5091 */
5092 if (p == rq->stop) {
0122ec5b 5093 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5094 return -EINVAL;
5095 }
5096
a51e9198
DF
5097 /*
5098 * If not changing anything there's no need to proceed further:
5099 */
5100 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5101 param->sched_priority == p->rt_priority))) {
5102
5103 __task_rq_unlock(rq);
5104 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5105 return 0;
5106 }
5107
dc61b1d6
PZ
5108#ifdef CONFIG_RT_GROUP_SCHED
5109 if (user) {
5110 /*
5111 * Do not allow realtime tasks into groups that have no runtime
5112 * assigned.
5113 */
5114 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5115 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5116 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5117 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5118 return -EPERM;
5119 }
5120 }
5121#endif
5122
1da177e4
LT
5123 /* recheck policy now with rq lock held */
5124 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5125 policy = oldpolicy = -1;
0122ec5b 5126 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5127 goto recheck;
5128 }
fd2f4419 5129 on_rq = p->on_rq;
051a1d1a 5130 running = task_current(rq, p);
0e1f3483 5131 if (on_rq)
2e1cb74a 5132 deactivate_task(rq, p, 0);
0e1f3483
HS
5133 if (running)
5134 p->sched_class->put_prev_task(rq, p);
f6b53205 5135
ca94c442
LP
5136 p->sched_reset_on_fork = reset_on_fork;
5137
1da177e4 5138 oldprio = p->prio;
83ab0aa0 5139 prev_class = p->sched_class;
dd41f596 5140 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5141
0e1f3483
HS
5142 if (running)
5143 p->sched_class->set_curr_task(rq);
da7a735e 5144 if (on_rq)
dd41f596 5145 activate_task(rq, p, 0);
cb469845 5146
da7a735e 5147 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5148 task_rq_unlock(rq, p, &flags);
b29739f9 5149
95e02ca9
TG
5150 rt_mutex_adjust_pi(p);
5151
1da177e4
LT
5152 return 0;
5153}
961ccddd
RR
5154
5155/**
5156 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5157 * @p: the task in question.
5158 * @policy: new policy.
5159 * @param: structure containing the new RT priority.
5160 *
5161 * NOTE that the task may be already dead.
5162 */
5163int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5164 const struct sched_param *param)
961ccddd
RR
5165{
5166 return __sched_setscheduler(p, policy, param, true);
5167}
1da177e4
LT
5168EXPORT_SYMBOL_GPL(sched_setscheduler);
5169
961ccddd
RR
5170/**
5171 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5172 * @p: the task in question.
5173 * @policy: new policy.
5174 * @param: structure containing the new RT priority.
5175 *
5176 * Just like sched_setscheduler, only don't bother checking if the
5177 * current context has permission. For example, this is needed in
5178 * stop_machine(): we create temporary high priority worker threads,
5179 * but our caller might not have that capability.
5180 */
5181int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5182 const struct sched_param *param)
961ccddd
RR
5183{
5184 return __sched_setscheduler(p, policy, param, false);
5185}
5186
95cdf3b7
IM
5187static int
5188do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5189{
1da177e4
LT
5190 struct sched_param lparam;
5191 struct task_struct *p;
36c8b586 5192 int retval;
1da177e4
LT
5193
5194 if (!param || pid < 0)
5195 return -EINVAL;
5196 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5197 return -EFAULT;
5fe1d75f
ON
5198
5199 rcu_read_lock();
5200 retval = -ESRCH;
1da177e4 5201 p = find_process_by_pid(pid);
5fe1d75f
ON
5202 if (p != NULL)
5203 retval = sched_setscheduler(p, policy, &lparam);
5204 rcu_read_unlock();
36c8b586 5205
1da177e4
LT
5206 return retval;
5207}
5208
5209/**
5210 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5211 * @pid: the pid in question.
5212 * @policy: new policy.
5213 * @param: structure containing the new RT priority.
5214 */
5add95d4
HC
5215SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5216 struct sched_param __user *, param)
1da177e4 5217{
c21761f1
JB
5218 /* negative values for policy are not valid */
5219 if (policy < 0)
5220 return -EINVAL;
5221
1da177e4
LT
5222 return do_sched_setscheduler(pid, policy, param);
5223}
5224
5225/**
5226 * sys_sched_setparam - set/change the RT priority of a thread
5227 * @pid: the pid in question.
5228 * @param: structure containing the new RT priority.
5229 */
5add95d4 5230SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5231{
5232 return do_sched_setscheduler(pid, -1, param);
5233}
5234
5235/**
5236 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5237 * @pid: the pid in question.
5238 */
5add95d4 5239SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5240{
36c8b586 5241 struct task_struct *p;
3a5c359a 5242 int retval;
1da177e4
LT
5243
5244 if (pid < 0)
3a5c359a 5245 return -EINVAL;
1da177e4
LT
5246
5247 retval = -ESRCH;
5fe85be0 5248 rcu_read_lock();
1da177e4
LT
5249 p = find_process_by_pid(pid);
5250 if (p) {
5251 retval = security_task_getscheduler(p);
5252 if (!retval)
ca94c442
LP
5253 retval = p->policy
5254 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5255 }
5fe85be0 5256 rcu_read_unlock();
1da177e4
LT
5257 return retval;
5258}
5259
5260/**
ca94c442 5261 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5262 * @pid: the pid in question.
5263 * @param: structure containing the RT priority.
5264 */
5add95d4 5265SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5266{
5267 struct sched_param lp;
36c8b586 5268 struct task_struct *p;
3a5c359a 5269 int retval;
1da177e4
LT
5270
5271 if (!param || pid < 0)
3a5c359a 5272 return -EINVAL;
1da177e4 5273
5fe85be0 5274 rcu_read_lock();
1da177e4
LT
5275 p = find_process_by_pid(pid);
5276 retval = -ESRCH;
5277 if (!p)
5278 goto out_unlock;
5279
5280 retval = security_task_getscheduler(p);
5281 if (retval)
5282 goto out_unlock;
5283
5284 lp.sched_priority = p->rt_priority;
5fe85be0 5285 rcu_read_unlock();
1da177e4
LT
5286
5287 /*
5288 * This one might sleep, we cannot do it with a spinlock held ...
5289 */
5290 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5291
1da177e4
LT
5292 return retval;
5293
5294out_unlock:
5fe85be0 5295 rcu_read_unlock();
1da177e4
LT
5296 return retval;
5297}
5298
96f874e2 5299long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5300{
5a16f3d3 5301 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5302 struct task_struct *p;
5303 int retval;
1da177e4 5304
95402b38 5305 get_online_cpus();
23f5d142 5306 rcu_read_lock();
1da177e4
LT
5307
5308 p = find_process_by_pid(pid);
5309 if (!p) {
23f5d142 5310 rcu_read_unlock();
95402b38 5311 put_online_cpus();
1da177e4
LT
5312 return -ESRCH;
5313 }
5314
23f5d142 5315 /* Prevent p going away */
1da177e4 5316 get_task_struct(p);
23f5d142 5317 rcu_read_unlock();
1da177e4 5318
5a16f3d3
RR
5319 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5320 retval = -ENOMEM;
5321 goto out_put_task;
5322 }
5323 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5324 retval = -ENOMEM;
5325 goto out_free_cpus_allowed;
5326 }
1da177e4 5327 retval = -EPERM;
b0e77598 5328 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5329 goto out_unlock;
5330
b0ae1981 5331 retval = security_task_setscheduler(p);
e7834f8f
DQ
5332 if (retval)
5333 goto out_unlock;
5334
5a16f3d3
RR
5335 cpuset_cpus_allowed(p, cpus_allowed);
5336 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5337again:
5a16f3d3 5338 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5339
8707d8b8 5340 if (!retval) {
5a16f3d3
RR
5341 cpuset_cpus_allowed(p, cpus_allowed);
5342 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5343 /*
5344 * We must have raced with a concurrent cpuset
5345 * update. Just reset the cpus_allowed to the
5346 * cpuset's cpus_allowed
5347 */
5a16f3d3 5348 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5349 goto again;
5350 }
5351 }
1da177e4 5352out_unlock:
5a16f3d3
RR
5353 free_cpumask_var(new_mask);
5354out_free_cpus_allowed:
5355 free_cpumask_var(cpus_allowed);
5356out_put_task:
1da177e4 5357 put_task_struct(p);
95402b38 5358 put_online_cpus();
1da177e4
LT
5359 return retval;
5360}
5361
5362static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5363 struct cpumask *new_mask)
1da177e4 5364{
96f874e2
RR
5365 if (len < cpumask_size())
5366 cpumask_clear(new_mask);
5367 else if (len > cpumask_size())
5368 len = cpumask_size();
5369
1da177e4
LT
5370 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5371}
5372
5373/**
5374 * sys_sched_setaffinity - set the cpu affinity of a process
5375 * @pid: pid of the process
5376 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5377 * @user_mask_ptr: user-space pointer to the new cpu mask
5378 */
5add95d4
HC
5379SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5380 unsigned long __user *, user_mask_ptr)
1da177e4 5381{
5a16f3d3 5382 cpumask_var_t new_mask;
1da177e4
LT
5383 int retval;
5384
5a16f3d3
RR
5385 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5386 return -ENOMEM;
1da177e4 5387
5a16f3d3
RR
5388 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5389 if (retval == 0)
5390 retval = sched_setaffinity(pid, new_mask);
5391 free_cpumask_var(new_mask);
5392 return retval;
1da177e4
LT
5393}
5394
96f874e2 5395long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5396{
36c8b586 5397 struct task_struct *p;
31605683 5398 unsigned long flags;
1da177e4 5399 int retval;
1da177e4 5400
95402b38 5401 get_online_cpus();
23f5d142 5402 rcu_read_lock();
1da177e4
LT
5403
5404 retval = -ESRCH;
5405 p = find_process_by_pid(pid);
5406 if (!p)
5407 goto out_unlock;
5408
e7834f8f
DQ
5409 retval = security_task_getscheduler(p);
5410 if (retval)
5411 goto out_unlock;
5412
013fdb80 5413 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5414 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5415 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5416
5417out_unlock:
23f5d142 5418 rcu_read_unlock();
95402b38 5419 put_online_cpus();
1da177e4 5420
9531b62f 5421 return retval;
1da177e4
LT
5422}
5423
5424/**
5425 * sys_sched_getaffinity - get the cpu affinity of a process
5426 * @pid: pid of the process
5427 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5428 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5429 */
5add95d4
HC
5430SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5431 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5432{
5433 int ret;
f17c8607 5434 cpumask_var_t mask;
1da177e4 5435
84fba5ec 5436 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5437 return -EINVAL;
5438 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5439 return -EINVAL;
5440
f17c8607
RR
5441 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5442 return -ENOMEM;
1da177e4 5443
f17c8607
RR
5444 ret = sched_getaffinity(pid, mask);
5445 if (ret == 0) {
8bc037fb 5446 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5447
5448 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5449 ret = -EFAULT;
5450 else
cd3d8031 5451 ret = retlen;
f17c8607
RR
5452 }
5453 free_cpumask_var(mask);
1da177e4 5454
f17c8607 5455 return ret;
1da177e4
LT
5456}
5457
5458/**
5459 * sys_sched_yield - yield the current processor to other threads.
5460 *
dd41f596
IM
5461 * This function yields the current CPU to other tasks. If there are no
5462 * other threads running on this CPU then this function will return.
1da177e4 5463 */
5add95d4 5464SYSCALL_DEFINE0(sched_yield)
1da177e4 5465{
70b97a7f 5466 struct rq *rq = this_rq_lock();
1da177e4 5467
2d72376b 5468 schedstat_inc(rq, yld_count);
4530d7ab 5469 current->sched_class->yield_task(rq);
1da177e4
LT
5470
5471 /*
5472 * Since we are going to call schedule() anyway, there's
5473 * no need to preempt or enable interrupts:
5474 */
5475 __release(rq->lock);
8a25d5de 5476 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5477 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5478 preempt_enable_no_resched();
5479
5480 schedule();
5481
5482 return 0;
5483}
5484
d86ee480
PZ
5485static inline int should_resched(void)
5486{
5487 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5488}
5489
e7b38404 5490static void __cond_resched(void)
1da177e4 5491{
e7aaaa69
FW
5492 add_preempt_count(PREEMPT_ACTIVE);
5493 schedule();
5494 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5495}
5496
02b67cc3 5497int __sched _cond_resched(void)
1da177e4 5498{
d86ee480 5499 if (should_resched()) {
1da177e4
LT
5500 __cond_resched();
5501 return 1;
5502 }
5503 return 0;
5504}
02b67cc3 5505EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5506
5507/*
613afbf8 5508 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5509 * call schedule, and on return reacquire the lock.
5510 *
41a2d6cf 5511 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5512 * operations here to prevent schedule() from being called twice (once via
5513 * spin_unlock(), once by hand).
5514 */
613afbf8 5515int __cond_resched_lock(spinlock_t *lock)
1da177e4 5516{
d86ee480 5517 int resched = should_resched();
6df3cecb
JK
5518 int ret = 0;
5519
f607c668
PZ
5520 lockdep_assert_held(lock);
5521
95c354fe 5522 if (spin_needbreak(lock) || resched) {
1da177e4 5523 spin_unlock(lock);
d86ee480 5524 if (resched)
95c354fe
NP
5525 __cond_resched();
5526 else
5527 cpu_relax();
6df3cecb 5528 ret = 1;
1da177e4 5529 spin_lock(lock);
1da177e4 5530 }
6df3cecb 5531 return ret;
1da177e4 5532}
613afbf8 5533EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5534
613afbf8 5535int __sched __cond_resched_softirq(void)
1da177e4
LT
5536{
5537 BUG_ON(!in_softirq());
5538
d86ee480 5539 if (should_resched()) {
98d82567 5540 local_bh_enable();
1da177e4
LT
5541 __cond_resched();
5542 local_bh_disable();
5543 return 1;
5544 }
5545 return 0;
5546}
613afbf8 5547EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5548
1da177e4
LT
5549/**
5550 * yield - yield the current processor to other threads.
5551 *
72fd4a35 5552 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5553 * thread runnable and calls sys_sched_yield().
5554 */
5555void __sched yield(void)
5556{
5557 set_current_state(TASK_RUNNING);
5558 sys_sched_yield();
5559}
1da177e4
LT
5560EXPORT_SYMBOL(yield);
5561
d95f4122
MG
5562/**
5563 * yield_to - yield the current processor to another thread in
5564 * your thread group, or accelerate that thread toward the
5565 * processor it's on.
16addf95
RD
5566 * @p: target task
5567 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5568 *
5569 * It's the caller's job to ensure that the target task struct
5570 * can't go away on us before we can do any checks.
5571 *
5572 * Returns true if we indeed boosted the target task.
5573 */
5574bool __sched yield_to(struct task_struct *p, bool preempt)
5575{
5576 struct task_struct *curr = current;
5577 struct rq *rq, *p_rq;
5578 unsigned long flags;
5579 bool yielded = 0;
5580
5581 local_irq_save(flags);
5582 rq = this_rq();
5583
5584again:
5585 p_rq = task_rq(p);
5586 double_rq_lock(rq, p_rq);
5587 while (task_rq(p) != p_rq) {
5588 double_rq_unlock(rq, p_rq);
5589 goto again;
5590 }
5591
5592 if (!curr->sched_class->yield_to_task)
5593 goto out;
5594
5595 if (curr->sched_class != p->sched_class)
5596 goto out;
5597
5598 if (task_running(p_rq, p) || p->state)
5599 goto out;
5600
5601 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5602 if (yielded) {
d95f4122 5603 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5604 /*
5605 * Make p's CPU reschedule; pick_next_entity takes care of
5606 * fairness.
5607 */
5608 if (preempt && rq != p_rq)
5609 resched_task(p_rq->curr);
5610 }
d95f4122
MG
5611
5612out:
5613 double_rq_unlock(rq, p_rq);
5614 local_irq_restore(flags);
5615
5616 if (yielded)
5617 schedule();
5618
5619 return yielded;
5620}
5621EXPORT_SYMBOL_GPL(yield_to);
5622
1da177e4 5623/*
41a2d6cf 5624 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5625 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5626 */
5627void __sched io_schedule(void)
5628{
54d35f29 5629 struct rq *rq = raw_rq();
1da177e4 5630
0ff92245 5631 delayacct_blkio_start();
1da177e4 5632 atomic_inc(&rq->nr_iowait);
73c10101 5633 blk_flush_plug(current);
8f0dfc34 5634 current->in_iowait = 1;
1da177e4 5635 schedule();
8f0dfc34 5636 current->in_iowait = 0;
1da177e4 5637 atomic_dec(&rq->nr_iowait);
0ff92245 5638 delayacct_blkio_end();
1da177e4 5639}
1da177e4
LT
5640EXPORT_SYMBOL(io_schedule);
5641
5642long __sched io_schedule_timeout(long timeout)
5643{
54d35f29 5644 struct rq *rq = raw_rq();
1da177e4
LT
5645 long ret;
5646
0ff92245 5647 delayacct_blkio_start();
1da177e4 5648 atomic_inc(&rq->nr_iowait);
73c10101 5649 blk_flush_plug(current);
8f0dfc34 5650 current->in_iowait = 1;
1da177e4 5651 ret = schedule_timeout(timeout);
8f0dfc34 5652 current->in_iowait = 0;
1da177e4 5653 atomic_dec(&rq->nr_iowait);
0ff92245 5654 delayacct_blkio_end();
1da177e4
LT
5655 return ret;
5656}
5657
5658/**
5659 * sys_sched_get_priority_max - return maximum RT priority.
5660 * @policy: scheduling class.
5661 *
5662 * this syscall returns the maximum rt_priority that can be used
5663 * by a given scheduling class.
5664 */
5add95d4 5665SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5666{
5667 int ret = -EINVAL;
5668
5669 switch (policy) {
5670 case SCHED_FIFO:
5671 case SCHED_RR:
5672 ret = MAX_USER_RT_PRIO-1;
5673 break;
5674 case SCHED_NORMAL:
b0a9499c 5675 case SCHED_BATCH:
dd41f596 5676 case SCHED_IDLE:
1da177e4
LT
5677 ret = 0;
5678 break;
5679 }
5680 return ret;
5681}
5682
5683/**
5684 * sys_sched_get_priority_min - return minimum RT priority.
5685 * @policy: scheduling class.
5686 *
5687 * this syscall returns the minimum rt_priority that can be used
5688 * by a given scheduling class.
5689 */
5add95d4 5690SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5691{
5692 int ret = -EINVAL;
5693
5694 switch (policy) {
5695 case SCHED_FIFO:
5696 case SCHED_RR:
5697 ret = 1;
5698 break;
5699 case SCHED_NORMAL:
b0a9499c 5700 case SCHED_BATCH:
dd41f596 5701 case SCHED_IDLE:
1da177e4
LT
5702 ret = 0;
5703 }
5704 return ret;
5705}
5706
5707/**
5708 * sys_sched_rr_get_interval - return the default timeslice of a process.
5709 * @pid: pid of the process.
5710 * @interval: userspace pointer to the timeslice value.
5711 *
5712 * this syscall writes the default timeslice value of a given process
5713 * into the user-space timespec buffer. A value of '0' means infinity.
5714 */
17da2bd9 5715SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5716 struct timespec __user *, interval)
1da177e4 5717{
36c8b586 5718 struct task_struct *p;
a4ec24b4 5719 unsigned int time_slice;
dba091b9
TG
5720 unsigned long flags;
5721 struct rq *rq;
3a5c359a 5722 int retval;
1da177e4 5723 struct timespec t;
1da177e4
LT
5724
5725 if (pid < 0)
3a5c359a 5726 return -EINVAL;
1da177e4
LT
5727
5728 retval = -ESRCH;
1a551ae7 5729 rcu_read_lock();
1da177e4
LT
5730 p = find_process_by_pid(pid);
5731 if (!p)
5732 goto out_unlock;
5733
5734 retval = security_task_getscheduler(p);
5735 if (retval)
5736 goto out_unlock;
5737
dba091b9
TG
5738 rq = task_rq_lock(p, &flags);
5739 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5740 task_rq_unlock(rq, p, &flags);
a4ec24b4 5741
1a551ae7 5742 rcu_read_unlock();
a4ec24b4 5743 jiffies_to_timespec(time_slice, &t);
1da177e4 5744 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5745 return retval;
3a5c359a 5746
1da177e4 5747out_unlock:
1a551ae7 5748 rcu_read_unlock();
1da177e4
LT
5749 return retval;
5750}
5751
7c731e0a 5752static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5753
82a1fcb9 5754void sched_show_task(struct task_struct *p)
1da177e4 5755{
1da177e4 5756 unsigned long free = 0;
36c8b586 5757 unsigned state;
1da177e4 5758
1da177e4 5759 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5760 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5761 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5762#if BITS_PER_LONG == 32
1da177e4 5763 if (state == TASK_RUNNING)
3df0fc5b 5764 printk(KERN_CONT " running ");
1da177e4 5765 else
3df0fc5b 5766 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5767#else
5768 if (state == TASK_RUNNING)
3df0fc5b 5769 printk(KERN_CONT " running task ");
1da177e4 5770 else
3df0fc5b 5771 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5772#endif
5773#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5774 free = stack_not_used(p);
1da177e4 5775#endif
3df0fc5b 5776 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5777 task_pid_nr(p), task_pid_nr(p->real_parent),
5778 (unsigned long)task_thread_info(p)->flags);
1da177e4 5779
5fb5e6de 5780 show_stack(p, NULL);
1da177e4
LT
5781}
5782
e59e2ae2 5783void show_state_filter(unsigned long state_filter)
1da177e4 5784{
36c8b586 5785 struct task_struct *g, *p;
1da177e4 5786
4bd77321 5787#if BITS_PER_LONG == 32
3df0fc5b
PZ
5788 printk(KERN_INFO
5789 " task PC stack pid father\n");
1da177e4 5790#else
3df0fc5b
PZ
5791 printk(KERN_INFO
5792 " task PC stack pid father\n");
1da177e4
LT
5793#endif
5794 read_lock(&tasklist_lock);
5795 do_each_thread(g, p) {
5796 /*
5797 * reset the NMI-timeout, listing all files on a slow
25985edc 5798 * console might take a lot of time:
1da177e4
LT
5799 */
5800 touch_nmi_watchdog();
39bc89fd 5801 if (!state_filter || (p->state & state_filter))
82a1fcb9 5802 sched_show_task(p);
1da177e4
LT
5803 } while_each_thread(g, p);
5804
04c9167f
JF
5805 touch_all_softlockup_watchdogs();
5806
dd41f596
IM
5807#ifdef CONFIG_SCHED_DEBUG
5808 sysrq_sched_debug_show();
5809#endif
1da177e4 5810 read_unlock(&tasklist_lock);
e59e2ae2
IM
5811 /*
5812 * Only show locks if all tasks are dumped:
5813 */
93335a21 5814 if (!state_filter)
e59e2ae2 5815 debug_show_all_locks();
1da177e4
LT
5816}
5817
1df21055
IM
5818void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5819{
dd41f596 5820 idle->sched_class = &idle_sched_class;
1df21055
IM
5821}
5822
f340c0d1
IM
5823/**
5824 * init_idle - set up an idle thread for a given CPU
5825 * @idle: task in question
5826 * @cpu: cpu the idle task belongs to
5827 *
5828 * NOTE: this function does not set the idle thread's NEED_RESCHED
5829 * flag, to make booting more robust.
5830 */
5c1e1767 5831void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5832{
70b97a7f 5833 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5834 unsigned long flags;
5835
05fa785c 5836 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5837
dd41f596 5838 __sched_fork(idle);
06b83b5f 5839 idle->state = TASK_RUNNING;
dd41f596
IM
5840 idle->se.exec_start = sched_clock();
5841
96f874e2 5842 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5843 /*
5844 * We're having a chicken and egg problem, even though we are
5845 * holding rq->lock, the cpu isn't yet set to this cpu so the
5846 * lockdep check in task_group() will fail.
5847 *
5848 * Similar case to sched_fork(). / Alternatively we could
5849 * use task_rq_lock() here and obtain the other rq->lock.
5850 *
5851 * Silence PROVE_RCU
5852 */
5853 rcu_read_lock();
dd41f596 5854 __set_task_cpu(idle, cpu);
6506cf6c 5855 rcu_read_unlock();
1da177e4 5856
1da177e4 5857 rq->curr = rq->idle = idle;
3ca7a440
PZ
5858#if defined(CONFIG_SMP)
5859 idle->on_cpu = 1;
4866cde0 5860#endif
05fa785c 5861 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5862
5863 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5864#if defined(CONFIG_PREEMPT)
5865 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5866#else
a1261f54 5867 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5868#endif
dd41f596
IM
5869 /*
5870 * The idle tasks have their own, simple scheduling class:
5871 */
5872 idle->sched_class = &idle_sched_class;
868baf07 5873 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5874}
5875
5876/*
5877 * In a system that switches off the HZ timer nohz_cpu_mask
5878 * indicates which cpus entered this state. This is used
5879 * in the rcu update to wait only for active cpus. For system
5880 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5881 * always be CPU_BITS_NONE.
1da177e4 5882 */
6a7b3dc3 5883cpumask_var_t nohz_cpu_mask;
1da177e4 5884
19978ca6
IM
5885/*
5886 * Increase the granularity value when there are more CPUs,
5887 * because with more CPUs the 'effective latency' as visible
5888 * to users decreases. But the relationship is not linear,
5889 * so pick a second-best guess by going with the log2 of the
5890 * number of CPUs.
5891 *
5892 * This idea comes from the SD scheduler of Con Kolivas:
5893 */
acb4a848 5894static int get_update_sysctl_factor(void)
19978ca6 5895{
4ca3ef71 5896 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5897 unsigned int factor;
5898
5899 switch (sysctl_sched_tunable_scaling) {
5900 case SCHED_TUNABLESCALING_NONE:
5901 factor = 1;
5902 break;
5903 case SCHED_TUNABLESCALING_LINEAR:
5904 factor = cpus;
5905 break;
5906 case SCHED_TUNABLESCALING_LOG:
5907 default:
5908 factor = 1 + ilog2(cpus);
5909 break;
5910 }
19978ca6 5911
acb4a848
CE
5912 return factor;
5913}
19978ca6 5914
acb4a848
CE
5915static void update_sysctl(void)
5916{
5917 unsigned int factor = get_update_sysctl_factor();
19978ca6 5918
0bcdcf28
CE
5919#define SET_SYSCTL(name) \
5920 (sysctl_##name = (factor) * normalized_sysctl_##name)
5921 SET_SYSCTL(sched_min_granularity);
5922 SET_SYSCTL(sched_latency);
5923 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5924#undef SET_SYSCTL
5925}
55cd5340 5926
0bcdcf28
CE
5927static inline void sched_init_granularity(void)
5928{
5929 update_sysctl();
19978ca6
IM
5930}
5931
1da177e4
LT
5932#ifdef CONFIG_SMP
5933/*
5934 * This is how migration works:
5935 *
969c7921
TH
5936 * 1) we invoke migration_cpu_stop() on the target CPU using
5937 * stop_one_cpu().
5938 * 2) stopper starts to run (implicitly forcing the migrated thread
5939 * off the CPU)
5940 * 3) it checks whether the migrated task is still in the wrong runqueue.
5941 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5942 * it and puts it into the right queue.
969c7921
TH
5943 * 5) stopper completes and stop_one_cpu() returns and the migration
5944 * is done.
1da177e4
LT
5945 */
5946
5947/*
5948 * Change a given task's CPU affinity. Migrate the thread to a
5949 * proper CPU and schedule it away if the CPU it's executing on
5950 * is removed from the allowed bitmask.
5951 *
5952 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5953 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5954 * call is not atomic; no spinlocks may be held.
5955 */
96f874e2 5956int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5957{
5958 unsigned long flags;
70b97a7f 5959 struct rq *rq;
969c7921 5960 unsigned int dest_cpu;
48f24c4d 5961 int ret = 0;
1da177e4 5962
0122ec5b 5963 rq = task_rq_lock(p, &flags);
e2912009 5964
6ad4c188 5965 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5966 ret = -EINVAL;
5967 goto out;
5968 }
5969
9985b0ba 5970 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5971 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5972 ret = -EINVAL;
5973 goto out;
5974 }
5975
73fe6aae 5976 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5977 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5978 else {
96f874e2
RR
5979 cpumask_copy(&p->cpus_allowed, new_mask);
5980 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5981 }
5982
1da177e4 5983 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5984 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5985 goto out;
5986
969c7921 5987 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
7608dec2 5988 if (need_migrate_task(p)) {
969c7921 5989 struct migration_arg arg = { p, dest_cpu };
1da177e4 5990 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5991 task_rq_unlock(rq, p, &flags);
969c7921 5992 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5993 tlb_migrate_finish(p->mm);
5994 return 0;
5995 }
5996out:
0122ec5b 5997 task_rq_unlock(rq, p, &flags);
48f24c4d 5998
1da177e4
LT
5999 return ret;
6000}
cd8ba7cd 6001EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6002
6003/*
41a2d6cf 6004 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6005 * this because either it can't run here any more (set_cpus_allowed()
6006 * away from this CPU, or CPU going down), or because we're
6007 * attempting to rebalance this task on exec (sched_exec).
6008 *
6009 * So we race with normal scheduler movements, but that's OK, as long
6010 * as the task is no longer on this CPU.
efc30814
KK
6011 *
6012 * Returns non-zero if task was successfully migrated.
1da177e4 6013 */
efc30814 6014static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6015{
70b97a7f 6016 struct rq *rq_dest, *rq_src;
e2912009 6017 int ret = 0;
1da177e4 6018
e761b772 6019 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6020 return ret;
1da177e4
LT
6021
6022 rq_src = cpu_rq(src_cpu);
6023 rq_dest = cpu_rq(dest_cpu);
6024
0122ec5b 6025 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6026 double_rq_lock(rq_src, rq_dest);
6027 /* Already moved. */
6028 if (task_cpu(p) != src_cpu)
b1e38734 6029 goto done;
1da177e4 6030 /* Affinity changed (again). */
96f874e2 6031 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6032 goto fail;
1da177e4 6033
e2912009
PZ
6034 /*
6035 * If we're not on a rq, the next wake-up will ensure we're
6036 * placed properly.
6037 */
fd2f4419 6038 if (p->on_rq) {
2e1cb74a 6039 deactivate_task(rq_src, p, 0);
e2912009 6040 set_task_cpu(p, dest_cpu);
dd41f596 6041 activate_task(rq_dest, p, 0);
15afe09b 6042 check_preempt_curr(rq_dest, p, 0);
1da177e4 6043 }
b1e38734 6044done:
efc30814 6045 ret = 1;
b1e38734 6046fail:
1da177e4 6047 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6048 raw_spin_unlock(&p->pi_lock);
efc30814 6049 return ret;
1da177e4
LT
6050}
6051
6052/*
969c7921
TH
6053 * migration_cpu_stop - this will be executed by a highprio stopper thread
6054 * and performs thread migration by bumping thread off CPU then
6055 * 'pushing' onto another runqueue.
1da177e4 6056 */
969c7921 6057static int migration_cpu_stop(void *data)
1da177e4 6058{
969c7921 6059 struct migration_arg *arg = data;
f7b4cddc 6060
969c7921
TH
6061 /*
6062 * The original target cpu might have gone down and we might
6063 * be on another cpu but it doesn't matter.
6064 */
f7b4cddc 6065 local_irq_disable();
969c7921 6066 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6067 local_irq_enable();
1da177e4 6068 return 0;
f7b4cddc
ON
6069}
6070
1da177e4 6071#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6072
054b9108 6073/*
48c5ccae
PZ
6074 * Ensures that the idle task is using init_mm right before its cpu goes
6075 * offline.
054b9108 6076 */
48c5ccae 6077void idle_task_exit(void)
1da177e4 6078{
48c5ccae 6079 struct mm_struct *mm = current->active_mm;
e76bd8d9 6080
48c5ccae 6081 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6082
48c5ccae
PZ
6083 if (mm != &init_mm)
6084 switch_mm(mm, &init_mm, current);
6085 mmdrop(mm);
1da177e4
LT
6086}
6087
6088/*
6089 * While a dead CPU has no uninterruptible tasks queued at this point,
6090 * it might still have a nonzero ->nr_uninterruptible counter, because
6091 * for performance reasons the counter is not stricly tracking tasks to
6092 * their home CPUs. So we just add the counter to another CPU's counter,
6093 * to keep the global sum constant after CPU-down:
6094 */
70b97a7f 6095static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6096{
6ad4c188 6097 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6098
1da177e4
LT
6099 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6100 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6101}
6102
dd41f596 6103/*
48c5ccae 6104 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6105 */
48c5ccae 6106static void calc_global_load_remove(struct rq *rq)
1da177e4 6107{
48c5ccae
PZ
6108 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6109 rq->calc_load_active = 0;
1da177e4
LT
6110}
6111
48f24c4d 6112/*
48c5ccae
PZ
6113 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6114 * try_to_wake_up()->select_task_rq().
6115 *
6116 * Called with rq->lock held even though we'er in stop_machine() and
6117 * there's no concurrency possible, we hold the required locks anyway
6118 * because of lock validation efforts.
1da177e4 6119 */
48c5ccae 6120static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6121{
70b97a7f 6122 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6123 struct task_struct *next, *stop = rq->stop;
6124 int dest_cpu;
1da177e4
LT
6125
6126 /*
48c5ccae
PZ
6127 * Fudge the rq selection such that the below task selection loop
6128 * doesn't get stuck on the currently eligible stop task.
6129 *
6130 * We're currently inside stop_machine() and the rq is either stuck
6131 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6132 * either way we should never end up calling schedule() until we're
6133 * done here.
1da177e4 6134 */
48c5ccae 6135 rq->stop = NULL;
48f24c4d 6136
dd41f596 6137 for ( ; ; ) {
48c5ccae
PZ
6138 /*
6139 * There's this thread running, bail when that's the only
6140 * remaining thread.
6141 */
6142 if (rq->nr_running == 1)
dd41f596 6143 break;
48c5ccae 6144
b67802ea 6145 next = pick_next_task(rq);
48c5ccae 6146 BUG_ON(!next);
79c53799 6147 next->sched_class->put_prev_task(rq, next);
e692ab53 6148
48c5ccae
PZ
6149 /* Find suitable destination for @next, with force if needed. */
6150 dest_cpu = select_fallback_rq(dead_cpu, next);
6151 raw_spin_unlock(&rq->lock);
6152
6153 __migrate_task(next, dead_cpu, dest_cpu);
6154
6155 raw_spin_lock(&rq->lock);
1da177e4 6156 }
dce48a84 6157
48c5ccae 6158 rq->stop = stop;
dce48a84 6159}
48c5ccae 6160
1da177e4
LT
6161#endif /* CONFIG_HOTPLUG_CPU */
6162
e692ab53
NP
6163#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6164
6165static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6166 {
6167 .procname = "sched_domain",
c57baf1e 6168 .mode = 0555,
e0361851 6169 },
56992309 6170 {}
e692ab53
NP
6171};
6172
6173static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6174 {
6175 .procname = "kernel",
c57baf1e 6176 .mode = 0555,
e0361851
AD
6177 .child = sd_ctl_dir,
6178 },
56992309 6179 {}
e692ab53
NP
6180};
6181
6182static struct ctl_table *sd_alloc_ctl_entry(int n)
6183{
6184 struct ctl_table *entry =
5cf9f062 6185 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6186
e692ab53
NP
6187 return entry;
6188}
6189
6382bc90
MM
6190static void sd_free_ctl_entry(struct ctl_table **tablep)
6191{
cd790076 6192 struct ctl_table *entry;
6382bc90 6193
cd790076
MM
6194 /*
6195 * In the intermediate directories, both the child directory and
6196 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6197 * will always be set. In the lowest directory the names are
cd790076
MM
6198 * static strings and all have proc handlers.
6199 */
6200 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6201 if (entry->child)
6202 sd_free_ctl_entry(&entry->child);
cd790076
MM
6203 if (entry->proc_handler == NULL)
6204 kfree(entry->procname);
6205 }
6382bc90
MM
6206
6207 kfree(*tablep);
6208 *tablep = NULL;
6209}
6210
e692ab53 6211static void
e0361851 6212set_table_entry(struct ctl_table *entry,
e692ab53
NP
6213 const char *procname, void *data, int maxlen,
6214 mode_t mode, proc_handler *proc_handler)
6215{
e692ab53
NP
6216 entry->procname = procname;
6217 entry->data = data;
6218 entry->maxlen = maxlen;
6219 entry->mode = mode;
6220 entry->proc_handler = proc_handler;
6221}
6222
6223static struct ctl_table *
6224sd_alloc_ctl_domain_table(struct sched_domain *sd)
6225{
a5d8c348 6226 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6227
ad1cdc1d
MM
6228 if (table == NULL)
6229 return NULL;
6230
e0361851 6231 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6232 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6233 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6234 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6235 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6236 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6237 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6238 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6239 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6240 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6241 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6242 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6243 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6244 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6245 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6246 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6247 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6248 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6249 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6250 &sd->cache_nice_tries,
6251 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6252 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6253 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6254 set_table_entry(&table[11], "name", sd->name,
6255 CORENAME_MAX_SIZE, 0444, proc_dostring);
6256 /* &table[12] is terminator */
e692ab53
NP
6257
6258 return table;
6259}
6260
9a4e7159 6261static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6262{
6263 struct ctl_table *entry, *table;
6264 struct sched_domain *sd;
6265 int domain_num = 0, i;
6266 char buf[32];
6267
6268 for_each_domain(cpu, sd)
6269 domain_num++;
6270 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6271 if (table == NULL)
6272 return NULL;
e692ab53
NP
6273
6274 i = 0;
6275 for_each_domain(cpu, sd) {
6276 snprintf(buf, 32, "domain%d", i);
e692ab53 6277 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6278 entry->mode = 0555;
e692ab53
NP
6279 entry->child = sd_alloc_ctl_domain_table(sd);
6280 entry++;
6281 i++;
6282 }
6283 return table;
6284}
6285
6286static struct ctl_table_header *sd_sysctl_header;
6382bc90 6287static void register_sched_domain_sysctl(void)
e692ab53 6288{
6ad4c188 6289 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6290 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6291 char buf[32];
6292
7378547f
MM
6293 WARN_ON(sd_ctl_dir[0].child);
6294 sd_ctl_dir[0].child = entry;
6295
ad1cdc1d
MM
6296 if (entry == NULL)
6297 return;
6298
6ad4c188 6299 for_each_possible_cpu(i) {
e692ab53 6300 snprintf(buf, 32, "cpu%d", i);
e692ab53 6301 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6302 entry->mode = 0555;
e692ab53 6303 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6304 entry++;
e692ab53 6305 }
7378547f
MM
6306
6307 WARN_ON(sd_sysctl_header);
e692ab53
NP
6308 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6309}
6382bc90 6310
7378547f 6311/* may be called multiple times per register */
6382bc90
MM
6312static void unregister_sched_domain_sysctl(void)
6313{
7378547f
MM
6314 if (sd_sysctl_header)
6315 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6316 sd_sysctl_header = NULL;
7378547f
MM
6317 if (sd_ctl_dir[0].child)
6318 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6319}
e692ab53 6320#else
6382bc90
MM
6321static void register_sched_domain_sysctl(void)
6322{
6323}
6324static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6325{
6326}
6327#endif
6328
1f11eb6a
GH
6329static void set_rq_online(struct rq *rq)
6330{
6331 if (!rq->online) {
6332 const struct sched_class *class;
6333
c6c4927b 6334 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6335 rq->online = 1;
6336
6337 for_each_class(class) {
6338 if (class->rq_online)
6339 class->rq_online(rq);
6340 }
6341 }
6342}
6343
6344static void set_rq_offline(struct rq *rq)
6345{
6346 if (rq->online) {
6347 const struct sched_class *class;
6348
6349 for_each_class(class) {
6350 if (class->rq_offline)
6351 class->rq_offline(rq);
6352 }
6353
c6c4927b 6354 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6355 rq->online = 0;
6356 }
6357}
6358
1da177e4
LT
6359/*
6360 * migration_call - callback that gets triggered when a CPU is added.
6361 * Here we can start up the necessary migration thread for the new CPU.
6362 */
48f24c4d
IM
6363static int __cpuinit
6364migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6365{
48f24c4d 6366 int cpu = (long)hcpu;
1da177e4 6367 unsigned long flags;
969c7921 6368 struct rq *rq = cpu_rq(cpu);
1da177e4 6369
48c5ccae 6370 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6371
1da177e4 6372 case CPU_UP_PREPARE:
a468d389 6373 rq->calc_load_update = calc_load_update;
1da177e4 6374 break;
48f24c4d 6375
1da177e4 6376 case CPU_ONLINE:
1f94ef59 6377 /* Update our root-domain */
05fa785c 6378 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6379 if (rq->rd) {
c6c4927b 6380 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6381
6382 set_rq_online(rq);
1f94ef59 6383 }
05fa785c 6384 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6385 break;
48f24c4d 6386
1da177e4 6387#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6388 case CPU_DYING:
317f3941 6389 sched_ttwu_pending();
57d885fe 6390 /* Update our root-domain */
05fa785c 6391 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6392 if (rq->rd) {
c6c4927b 6393 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6394 set_rq_offline(rq);
57d885fe 6395 }
48c5ccae
PZ
6396 migrate_tasks(cpu);
6397 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6398 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6399
6400 migrate_nr_uninterruptible(rq);
6401 calc_global_load_remove(rq);
57d885fe 6402 break;
1da177e4
LT
6403#endif
6404 }
49c022e6
PZ
6405
6406 update_max_interval();
6407
1da177e4
LT
6408 return NOTIFY_OK;
6409}
6410
f38b0820
PM
6411/*
6412 * Register at high priority so that task migration (migrate_all_tasks)
6413 * happens before everything else. This has to be lower priority than
cdd6c482 6414 * the notifier in the perf_event subsystem, though.
1da177e4 6415 */
26c2143b 6416static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6417 .notifier_call = migration_call,
50a323b7 6418 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6419};
6420
3a101d05
TH
6421static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6422 unsigned long action, void *hcpu)
6423{
6424 switch (action & ~CPU_TASKS_FROZEN) {
6425 case CPU_ONLINE:
6426 case CPU_DOWN_FAILED:
6427 set_cpu_active((long)hcpu, true);
6428 return NOTIFY_OK;
6429 default:
6430 return NOTIFY_DONE;
6431 }
6432}
6433
6434static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6435 unsigned long action, void *hcpu)
6436{
6437 switch (action & ~CPU_TASKS_FROZEN) {
6438 case CPU_DOWN_PREPARE:
6439 set_cpu_active((long)hcpu, false);
6440 return NOTIFY_OK;
6441 default:
6442 return NOTIFY_DONE;
6443 }
6444}
6445
7babe8db 6446static int __init migration_init(void)
1da177e4
LT
6447{
6448 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6449 int err;
48f24c4d 6450
3a101d05 6451 /* Initialize migration for the boot CPU */
07dccf33
AM
6452 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6453 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6454 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6455 register_cpu_notifier(&migration_notifier);
7babe8db 6456
3a101d05
TH
6457 /* Register cpu active notifiers */
6458 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6459 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6460
a004cd42 6461 return 0;
1da177e4 6462}
7babe8db 6463early_initcall(migration_init);
1da177e4
LT
6464#endif
6465
6466#ifdef CONFIG_SMP
476f3534 6467
3e9830dc 6468#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6469
f6630114
MT
6470static __read_mostly int sched_domain_debug_enabled;
6471
6472static int __init sched_domain_debug_setup(char *str)
6473{
6474 sched_domain_debug_enabled = 1;
6475
6476 return 0;
6477}
6478early_param("sched_debug", sched_domain_debug_setup);
6479
7c16ec58 6480static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6481 struct cpumask *groupmask)
1da177e4 6482{
4dcf6aff 6483 struct sched_group *group = sd->groups;
434d53b0 6484 char str[256];
1da177e4 6485
968ea6d8 6486 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6487 cpumask_clear(groupmask);
4dcf6aff
IM
6488
6489 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6490
6491 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6492 printk("does not load-balance\n");
4dcf6aff 6493 if (sd->parent)
3df0fc5b
PZ
6494 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6495 " has parent");
4dcf6aff 6496 return -1;
41c7ce9a
NP
6497 }
6498
3df0fc5b 6499 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6500
758b2cdc 6501 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6502 printk(KERN_ERR "ERROR: domain->span does not contain "
6503 "CPU%d\n", cpu);
4dcf6aff 6504 }
758b2cdc 6505 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6506 printk(KERN_ERR "ERROR: domain->groups does not contain"
6507 " CPU%d\n", cpu);
4dcf6aff 6508 }
1da177e4 6509
4dcf6aff 6510 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6511 do {
4dcf6aff 6512 if (!group) {
3df0fc5b
PZ
6513 printk("\n");
6514 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6515 break;
6516 }
6517
18a3885f 6518 if (!group->cpu_power) {
3df0fc5b
PZ
6519 printk(KERN_CONT "\n");
6520 printk(KERN_ERR "ERROR: domain->cpu_power not "
6521 "set\n");
4dcf6aff
IM
6522 break;
6523 }
1da177e4 6524
758b2cdc 6525 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6526 printk(KERN_CONT "\n");
6527 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6528 break;
6529 }
1da177e4 6530
758b2cdc 6531 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6532 printk(KERN_CONT "\n");
6533 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6534 break;
6535 }
1da177e4 6536
758b2cdc 6537 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6538
968ea6d8 6539 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6540
3df0fc5b 6541 printk(KERN_CONT " %s", str);
18a3885f 6542 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6543 printk(KERN_CONT " (cpu_power = %d)",
6544 group->cpu_power);
381512cf 6545 }
1da177e4 6546
4dcf6aff
IM
6547 group = group->next;
6548 } while (group != sd->groups);
3df0fc5b 6549 printk(KERN_CONT "\n");
1da177e4 6550
758b2cdc 6551 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6552 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6553
758b2cdc
RR
6554 if (sd->parent &&
6555 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6556 printk(KERN_ERR "ERROR: parent span is not a superset "
6557 "of domain->span\n");
4dcf6aff
IM
6558 return 0;
6559}
1da177e4 6560
4dcf6aff
IM
6561static void sched_domain_debug(struct sched_domain *sd, int cpu)
6562{
d5dd3db1 6563 cpumask_var_t groupmask;
4dcf6aff 6564 int level = 0;
1da177e4 6565
f6630114
MT
6566 if (!sched_domain_debug_enabled)
6567 return;
6568
4dcf6aff
IM
6569 if (!sd) {
6570 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6571 return;
6572 }
1da177e4 6573
4dcf6aff
IM
6574 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6575
d5dd3db1 6576 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6577 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6578 return;
6579 }
6580
4dcf6aff 6581 for (;;) {
7c16ec58 6582 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6583 break;
1da177e4
LT
6584 level++;
6585 sd = sd->parent;
33859f7f 6586 if (!sd)
4dcf6aff
IM
6587 break;
6588 }
d5dd3db1 6589 free_cpumask_var(groupmask);
1da177e4 6590}
6d6bc0ad 6591#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6592# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6593#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6594
1a20ff27 6595static int sd_degenerate(struct sched_domain *sd)
245af2c7 6596{
758b2cdc 6597 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6598 return 1;
6599
6600 /* Following flags need at least 2 groups */
6601 if (sd->flags & (SD_LOAD_BALANCE |
6602 SD_BALANCE_NEWIDLE |
6603 SD_BALANCE_FORK |
89c4710e
SS
6604 SD_BALANCE_EXEC |
6605 SD_SHARE_CPUPOWER |
6606 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6607 if (sd->groups != sd->groups->next)
6608 return 0;
6609 }
6610
6611 /* Following flags don't use groups */
c88d5910 6612 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6613 return 0;
6614
6615 return 1;
6616}
6617
48f24c4d
IM
6618static int
6619sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6620{
6621 unsigned long cflags = sd->flags, pflags = parent->flags;
6622
6623 if (sd_degenerate(parent))
6624 return 1;
6625
758b2cdc 6626 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6627 return 0;
6628
245af2c7
SS
6629 /* Flags needing groups don't count if only 1 group in parent */
6630 if (parent->groups == parent->groups->next) {
6631 pflags &= ~(SD_LOAD_BALANCE |
6632 SD_BALANCE_NEWIDLE |
6633 SD_BALANCE_FORK |
89c4710e
SS
6634 SD_BALANCE_EXEC |
6635 SD_SHARE_CPUPOWER |
6636 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6637 if (nr_node_ids == 1)
6638 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6639 }
6640 if (~cflags & pflags)
6641 return 0;
6642
6643 return 1;
6644}
6645
c6c4927b
RR
6646static void free_rootdomain(struct root_domain *rd)
6647{
047106ad
PZ
6648 synchronize_sched();
6649
68e74568
RR
6650 cpupri_cleanup(&rd->cpupri);
6651
c6c4927b
RR
6652 free_cpumask_var(rd->rto_mask);
6653 free_cpumask_var(rd->online);
6654 free_cpumask_var(rd->span);
6655 kfree(rd);
6656}
6657
57d885fe
GH
6658static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6659{
a0490fa3 6660 struct root_domain *old_rd = NULL;
57d885fe 6661 unsigned long flags;
57d885fe 6662
05fa785c 6663 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6664
6665 if (rq->rd) {
a0490fa3 6666 old_rd = rq->rd;
57d885fe 6667
c6c4927b 6668 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6669 set_rq_offline(rq);
57d885fe 6670
c6c4927b 6671 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6672
a0490fa3
IM
6673 /*
6674 * If we dont want to free the old_rt yet then
6675 * set old_rd to NULL to skip the freeing later
6676 * in this function:
6677 */
6678 if (!atomic_dec_and_test(&old_rd->refcount))
6679 old_rd = NULL;
57d885fe
GH
6680 }
6681
6682 atomic_inc(&rd->refcount);
6683 rq->rd = rd;
6684
c6c4927b 6685 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6686 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6687 set_rq_online(rq);
57d885fe 6688
05fa785c 6689 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6690
6691 if (old_rd)
6692 free_rootdomain(old_rd);
57d885fe
GH
6693}
6694
68c38fc3 6695static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6696{
6697 memset(rd, 0, sizeof(*rd));
6698
68c38fc3 6699 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6700 goto out;
68c38fc3 6701 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6702 goto free_span;
68c38fc3 6703 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6704 goto free_online;
6e0534f2 6705
68c38fc3 6706 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6707 goto free_rto_mask;
c6c4927b 6708 return 0;
6e0534f2 6709
68e74568
RR
6710free_rto_mask:
6711 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6712free_online:
6713 free_cpumask_var(rd->online);
6714free_span:
6715 free_cpumask_var(rd->span);
0c910d28 6716out:
c6c4927b 6717 return -ENOMEM;
57d885fe
GH
6718}
6719
6720static void init_defrootdomain(void)
6721{
68c38fc3 6722 init_rootdomain(&def_root_domain);
c6c4927b 6723
57d885fe
GH
6724 atomic_set(&def_root_domain.refcount, 1);
6725}
6726
dc938520 6727static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6728{
6729 struct root_domain *rd;
6730
6731 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6732 if (!rd)
6733 return NULL;
6734
68c38fc3 6735 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6736 kfree(rd);
6737 return NULL;
6738 }
57d885fe
GH
6739
6740 return rd;
6741}
6742
1da177e4 6743/*
0eab9146 6744 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6745 * hold the hotplug lock.
6746 */
0eab9146
IM
6747static void
6748cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6749{
70b97a7f 6750 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6751 struct sched_domain *tmp;
6752
669c55e9
PZ
6753 for (tmp = sd; tmp; tmp = tmp->parent)
6754 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6755
245af2c7 6756 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6757 for (tmp = sd; tmp; ) {
245af2c7
SS
6758 struct sched_domain *parent = tmp->parent;
6759 if (!parent)
6760 break;
f29c9b1c 6761
1a848870 6762 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6763 tmp->parent = parent->parent;
1a848870
SS
6764 if (parent->parent)
6765 parent->parent->child = tmp;
f29c9b1c
LZ
6766 } else
6767 tmp = tmp->parent;
245af2c7
SS
6768 }
6769
1a848870 6770 if (sd && sd_degenerate(sd)) {
245af2c7 6771 sd = sd->parent;
1a848870
SS
6772 if (sd)
6773 sd->child = NULL;
6774 }
1da177e4
LT
6775
6776 sched_domain_debug(sd, cpu);
6777
57d885fe 6778 rq_attach_root(rq, rd);
674311d5 6779 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6780}
6781
6782/* cpus with isolated domains */
dcc30a35 6783static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6784
6785/* Setup the mask of cpus configured for isolated domains */
6786static int __init isolated_cpu_setup(char *str)
6787{
bdddd296 6788 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6789 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6790 return 1;
6791}
6792
8927f494 6793__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6794
6795/*
6711cab4
SS
6796 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6797 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6798 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6799 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6800 *
6801 * init_sched_build_groups will build a circular linked list of the groups
6802 * covered by the given span, and will set each group's ->cpumask correctly,
6803 * and ->cpu_power to 0.
6804 */
a616058b 6805static void
96f874e2
RR
6806init_sched_build_groups(const struct cpumask *span,
6807 const struct cpumask *cpu_map,
6808 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6809 struct sched_group **sg,
96f874e2
RR
6810 struct cpumask *tmpmask),
6811 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6812{
6813 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6814 int i;
6815
96f874e2 6816 cpumask_clear(covered);
7c16ec58 6817
abcd083a 6818 for_each_cpu(i, span) {
6711cab4 6819 struct sched_group *sg;
7c16ec58 6820 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6821 int j;
6822
758b2cdc 6823 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6824 continue;
6825
758b2cdc 6826 cpumask_clear(sched_group_cpus(sg));
18a3885f 6827 sg->cpu_power = 0;
1da177e4 6828
abcd083a 6829 for_each_cpu(j, span) {
7c16ec58 6830 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6831 continue;
6832
96f874e2 6833 cpumask_set_cpu(j, covered);
758b2cdc 6834 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6835 }
6836 if (!first)
6837 first = sg;
6838 if (last)
6839 last->next = sg;
6840 last = sg;
6841 }
6842 last->next = first;
6843}
6844
9c1cfda2 6845#define SD_NODES_PER_DOMAIN 16
1da177e4 6846
9c1cfda2 6847#ifdef CONFIG_NUMA
198e2f18 6848
9c1cfda2
JH
6849/**
6850 * find_next_best_node - find the next node to include in a sched_domain
6851 * @node: node whose sched_domain we're building
6852 * @used_nodes: nodes already in the sched_domain
6853 *
41a2d6cf 6854 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6855 * finds the closest node not already in the @used_nodes map.
6856 *
6857 * Should use nodemask_t.
6858 */
c5f59f08 6859static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6860{
6861 int i, n, val, min_val, best_node = 0;
6862
6863 min_val = INT_MAX;
6864
076ac2af 6865 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6866 /* Start at @node */
076ac2af 6867 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6868
6869 if (!nr_cpus_node(n))
6870 continue;
6871
6872 /* Skip already used nodes */
c5f59f08 6873 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6874 continue;
6875
6876 /* Simple min distance search */
6877 val = node_distance(node, n);
6878
6879 if (val < min_val) {
6880 min_val = val;
6881 best_node = n;
6882 }
6883 }
6884
c5f59f08 6885 node_set(best_node, *used_nodes);
9c1cfda2
JH
6886 return best_node;
6887}
6888
6889/**
6890 * sched_domain_node_span - get a cpumask for a node's sched_domain
6891 * @node: node whose cpumask we're constructing
73486722 6892 * @span: resulting cpumask
9c1cfda2 6893 *
41a2d6cf 6894 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6895 * should be one that prevents unnecessary balancing, but also spreads tasks
6896 * out optimally.
6897 */
96f874e2 6898static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6899{
c5f59f08 6900 nodemask_t used_nodes;
48f24c4d 6901 int i;
9c1cfda2 6902
6ca09dfc 6903 cpumask_clear(span);
c5f59f08 6904 nodes_clear(used_nodes);
9c1cfda2 6905
6ca09dfc 6906 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6907 node_set(node, used_nodes);
9c1cfda2
JH
6908
6909 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6910 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6911
6ca09dfc 6912 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6913 }
9c1cfda2 6914}
6d6bc0ad 6915#endif /* CONFIG_NUMA */
9c1cfda2 6916
5c45bf27 6917int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6918
6c99e9ad
RR
6919/*
6920 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6921 *
6922 * ( See the the comments in include/linux/sched.h:struct sched_group
6923 * and struct sched_domain. )
6c99e9ad
RR
6924 */
6925struct static_sched_group {
6926 struct sched_group sg;
6927 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6928};
6929
6930struct static_sched_domain {
6931 struct sched_domain sd;
6932 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6933};
6934
49a02c51
AH
6935struct s_data {
6936#ifdef CONFIG_NUMA
6937 int sd_allnodes;
6938 cpumask_var_t domainspan;
6939 cpumask_var_t covered;
6940 cpumask_var_t notcovered;
6941#endif
6942 cpumask_var_t nodemask;
6943 cpumask_var_t this_sibling_map;
6944 cpumask_var_t this_core_map;
01a08546 6945 cpumask_var_t this_book_map;
49a02c51
AH
6946 cpumask_var_t send_covered;
6947 cpumask_var_t tmpmask;
6948 struct sched_group **sched_group_nodes;
6949 struct root_domain *rd;
6950};
6951
2109b99e
AH
6952enum s_alloc {
6953 sa_sched_groups = 0,
6954 sa_rootdomain,
6955 sa_tmpmask,
6956 sa_send_covered,
01a08546 6957 sa_this_book_map,
2109b99e
AH
6958 sa_this_core_map,
6959 sa_this_sibling_map,
6960 sa_nodemask,
6961 sa_sched_group_nodes,
6962#ifdef CONFIG_NUMA
6963 sa_notcovered,
6964 sa_covered,
6965 sa_domainspan,
6966#endif
6967 sa_none,
6968};
6969
9c1cfda2 6970/*
48f24c4d 6971 * SMT sched-domains:
9c1cfda2 6972 */
1da177e4 6973#ifdef CONFIG_SCHED_SMT
6c99e9ad 6974static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6975static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6976
41a2d6cf 6977static int
96f874e2
RR
6978cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6979 struct sched_group **sg, struct cpumask *unused)
1da177e4 6980{
6711cab4 6981 if (sg)
1871e52c 6982 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6983 return cpu;
6984}
6d6bc0ad 6985#endif /* CONFIG_SCHED_SMT */
1da177e4 6986
48f24c4d
IM
6987/*
6988 * multi-core sched-domains:
6989 */
1e9f28fa 6990#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6991static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6992static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6993
41a2d6cf 6994static int
96f874e2
RR
6995cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6996 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6997{
6711cab4 6998 int group;
f269893c 6999#ifdef CONFIG_SCHED_SMT
c69fc56d 7000 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7001 group = cpumask_first(mask);
f269893c
HC
7002#else
7003 group = cpu;
7004#endif
6711cab4 7005 if (sg)
6c99e9ad 7006 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7007 return group;
1e9f28fa 7008}
f269893c 7009#endif /* CONFIG_SCHED_MC */
1e9f28fa 7010
01a08546
HC
7011/*
7012 * book sched-domains:
7013 */
7014#ifdef CONFIG_SCHED_BOOK
7015static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
7016static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
7017
41a2d6cf 7018static int
01a08546
HC
7019cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
7020 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7021{
01a08546
HC
7022 int group = cpu;
7023#ifdef CONFIG_SCHED_MC
7024 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7025 group = cpumask_first(mask);
7026#elif defined(CONFIG_SCHED_SMT)
7027 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7028 group = cpumask_first(mask);
7029#endif
6711cab4 7030 if (sg)
01a08546
HC
7031 *sg = &per_cpu(sched_group_book, group).sg;
7032 return group;
1e9f28fa 7033}
01a08546 7034#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 7035
6c99e9ad
RR
7036static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7037static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7038
41a2d6cf 7039static int
96f874e2
RR
7040cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7041 struct sched_group **sg, struct cpumask *mask)
1da177e4 7042{
6711cab4 7043 int group;
01a08546
HC
7044#ifdef CONFIG_SCHED_BOOK
7045 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
7046 group = cpumask_first(mask);
7047#elif defined(CONFIG_SCHED_MC)
6ca09dfc 7048 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7049 group = cpumask_first(mask);
1e9f28fa 7050#elif defined(CONFIG_SCHED_SMT)
c69fc56d 7051 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7052 group = cpumask_first(mask);
1da177e4 7053#else
6711cab4 7054 group = cpu;
1da177e4 7055#endif
6711cab4 7056 if (sg)
6c99e9ad 7057 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7058 return group;
1da177e4
LT
7059}
7060
7061#ifdef CONFIG_NUMA
1da177e4 7062/*
9c1cfda2
JH
7063 * The init_sched_build_groups can't handle what we want to do with node
7064 * groups, so roll our own. Now each node has its own list of groups which
7065 * gets dynamically allocated.
1da177e4 7066 */
62ea9ceb 7067static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7068static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7069
62ea9ceb 7070static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7071static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7072
96f874e2
RR
7073static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7074 struct sched_group **sg,
7075 struct cpumask *nodemask)
9c1cfda2 7076{
6711cab4
SS
7077 int group;
7078
6ca09dfc 7079 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7080 group = cpumask_first(nodemask);
6711cab4
SS
7081
7082 if (sg)
6c99e9ad 7083 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7084 return group;
1da177e4 7085}
6711cab4 7086
08069033
SS
7087static void init_numa_sched_groups_power(struct sched_group *group_head)
7088{
7089 struct sched_group *sg = group_head;
7090 int j;
7091
7092 if (!sg)
7093 return;
3a5c359a 7094 do {
758b2cdc 7095 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7096 struct sched_domain *sd;
08069033 7097
6c99e9ad 7098 sd = &per_cpu(phys_domains, j).sd;
13318a71 7099 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
7100 /*
7101 * Only add "power" once for each
7102 * physical package.
7103 */
7104 continue;
7105 }
08069033 7106
18a3885f 7107 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
7108 }
7109 sg = sg->next;
7110 } while (sg != group_head);
08069033 7111}
0601a88d
AH
7112
7113static int build_numa_sched_groups(struct s_data *d,
7114 const struct cpumask *cpu_map, int num)
7115{
7116 struct sched_domain *sd;
7117 struct sched_group *sg, *prev;
7118 int n, j;
7119
7120 cpumask_clear(d->covered);
7121 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7122 if (cpumask_empty(d->nodemask)) {
7123 d->sched_group_nodes[num] = NULL;
7124 goto out;
7125 }
7126
7127 sched_domain_node_span(num, d->domainspan);
7128 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7129
7130 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7131 GFP_KERNEL, num);
7132 if (!sg) {
3df0fc5b
PZ
7133 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7134 num);
0601a88d
AH
7135 return -ENOMEM;
7136 }
7137 d->sched_group_nodes[num] = sg;
7138
7139 for_each_cpu(j, d->nodemask) {
7140 sd = &per_cpu(node_domains, j).sd;
7141 sd->groups = sg;
7142 }
7143
18a3885f 7144 sg->cpu_power = 0;
0601a88d
AH
7145 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7146 sg->next = sg;
7147 cpumask_or(d->covered, d->covered, d->nodemask);
7148
7149 prev = sg;
7150 for (j = 0; j < nr_node_ids; j++) {
7151 n = (num + j) % nr_node_ids;
7152 cpumask_complement(d->notcovered, d->covered);
7153 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7154 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7155 if (cpumask_empty(d->tmpmask))
7156 break;
7157 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7158 if (cpumask_empty(d->tmpmask))
7159 continue;
7160 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7161 GFP_KERNEL, num);
7162 if (!sg) {
3df0fc5b
PZ
7163 printk(KERN_WARNING
7164 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7165 return -ENOMEM;
7166 }
18a3885f 7167 sg->cpu_power = 0;
0601a88d
AH
7168 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7169 sg->next = prev->next;
7170 cpumask_or(d->covered, d->covered, d->tmpmask);
7171 prev->next = sg;
7172 prev = sg;
7173 }
7174out:
7175 return 0;
7176}
6d6bc0ad 7177#endif /* CONFIG_NUMA */
1da177e4 7178
a616058b 7179#ifdef CONFIG_NUMA
51888ca2 7180/* Free memory allocated for various sched_group structures */
96f874e2
RR
7181static void free_sched_groups(const struct cpumask *cpu_map,
7182 struct cpumask *nodemask)
51888ca2 7183{
a616058b 7184 int cpu, i;
51888ca2 7185
abcd083a 7186 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7187 struct sched_group **sched_group_nodes
7188 = sched_group_nodes_bycpu[cpu];
7189
51888ca2
SV
7190 if (!sched_group_nodes)
7191 continue;
7192
076ac2af 7193 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7194 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7195
6ca09dfc 7196 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7197 if (cpumask_empty(nodemask))
51888ca2
SV
7198 continue;
7199
7200 if (sg == NULL)
7201 continue;
7202 sg = sg->next;
7203next_sg:
7204 oldsg = sg;
7205 sg = sg->next;
7206 kfree(oldsg);
7207 if (oldsg != sched_group_nodes[i])
7208 goto next_sg;
7209 }
7210 kfree(sched_group_nodes);
7211 sched_group_nodes_bycpu[cpu] = NULL;
7212 }
51888ca2 7213}
6d6bc0ad 7214#else /* !CONFIG_NUMA */
96f874e2
RR
7215static void free_sched_groups(const struct cpumask *cpu_map,
7216 struct cpumask *nodemask)
a616058b
SS
7217{
7218}
6d6bc0ad 7219#endif /* CONFIG_NUMA */
51888ca2 7220
89c4710e
SS
7221/*
7222 * Initialize sched groups cpu_power.
7223 *
7224 * cpu_power indicates the capacity of sched group, which is used while
7225 * distributing the load between different sched groups in a sched domain.
7226 * Typically cpu_power for all the groups in a sched domain will be same unless
7227 * there are asymmetries in the topology. If there are asymmetries, group
7228 * having more cpu_power will pickup more load compared to the group having
7229 * less cpu_power.
89c4710e
SS
7230 */
7231static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7232{
7233 struct sched_domain *child;
7234 struct sched_group *group;
f93e65c1
PZ
7235 long power;
7236 int weight;
89c4710e
SS
7237
7238 WARN_ON(!sd || !sd->groups);
7239
13318a71 7240 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7241 return;
7242
aae6d3dd
SS
7243 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7244
89c4710e
SS
7245 child = sd->child;
7246
18a3885f 7247 sd->groups->cpu_power = 0;
5517d86b 7248
f93e65c1
PZ
7249 if (!child) {
7250 power = SCHED_LOAD_SCALE;
7251 weight = cpumask_weight(sched_domain_span(sd));
7252 /*
7253 * SMT siblings share the power of a single core.
a52bfd73
PZ
7254 * Usually multiple threads get a better yield out of
7255 * that one core than a single thread would have,
7256 * reflect that in sd->smt_gain.
f93e65c1 7257 */
a52bfd73
PZ
7258 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7259 power *= sd->smt_gain;
f93e65c1 7260 power /= weight;
a52bfd73
PZ
7261 power >>= SCHED_LOAD_SHIFT;
7262 }
18a3885f 7263 sd->groups->cpu_power += power;
89c4710e
SS
7264 return;
7265 }
7266
89c4710e 7267 /*
f93e65c1 7268 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7269 */
7270 group = child->groups;
7271 do {
18a3885f 7272 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7273 group = group->next;
7274 } while (group != child->groups);
7275}
7276
7c16ec58
MT
7277/*
7278 * Initializers for schedule domains
7279 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7280 */
7281
a5d8c348
IM
7282#ifdef CONFIG_SCHED_DEBUG
7283# define SD_INIT_NAME(sd, type) sd->name = #type
7284#else
7285# define SD_INIT_NAME(sd, type) do { } while (0)
7286#endif
7287
7c16ec58 7288#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7289
7c16ec58
MT
7290#define SD_INIT_FUNC(type) \
7291static noinline void sd_init_##type(struct sched_domain *sd) \
7292{ \
7293 memset(sd, 0, sizeof(*sd)); \
7294 *sd = SD_##type##_INIT; \
1d3504fc 7295 sd->level = SD_LV_##type; \
a5d8c348 7296 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7297}
7298
7299SD_INIT_FUNC(CPU)
7300#ifdef CONFIG_NUMA
7301 SD_INIT_FUNC(ALLNODES)
7302 SD_INIT_FUNC(NODE)
7303#endif
7304#ifdef CONFIG_SCHED_SMT
7305 SD_INIT_FUNC(SIBLING)
7306#endif
7307#ifdef CONFIG_SCHED_MC
7308 SD_INIT_FUNC(MC)
7309#endif
01a08546
HC
7310#ifdef CONFIG_SCHED_BOOK
7311 SD_INIT_FUNC(BOOK)
7312#endif
7c16ec58 7313
1d3504fc
HS
7314static int default_relax_domain_level = -1;
7315
7316static int __init setup_relax_domain_level(char *str)
7317{
30e0e178
LZ
7318 unsigned long val;
7319
7320 val = simple_strtoul(str, NULL, 0);
7321 if (val < SD_LV_MAX)
7322 default_relax_domain_level = val;
7323
1d3504fc
HS
7324 return 1;
7325}
7326__setup("relax_domain_level=", setup_relax_domain_level);
7327
7328static void set_domain_attribute(struct sched_domain *sd,
7329 struct sched_domain_attr *attr)
7330{
7331 int request;
7332
7333 if (!attr || attr->relax_domain_level < 0) {
7334 if (default_relax_domain_level < 0)
7335 return;
7336 else
7337 request = default_relax_domain_level;
7338 } else
7339 request = attr->relax_domain_level;
7340 if (request < sd->level) {
7341 /* turn off idle balance on this domain */
c88d5910 7342 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7343 } else {
7344 /* turn on idle balance on this domain */
c88d5910 7345 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7346 }
7347}
7348
2109b99e
AH
7349static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7350 const struct cpumask *cpu_map)
7351{
7352 switch (what) {
7353 case sa_sched_groups:
7354 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7355 d->sched_group_nodes = NULL;
7356 case sa_rootdomain:
7357 free_rootdomain(d->rd); /* fall through */
7358 case sa_tmpmask:
7359 free_cpumask_var(d->tmpmask); /* fall through */
7360 case sa_send_covered:
7361 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7362 case sa_this_book_map:
7363 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7364 case sa_this_core_map:
7365 free_cpumask_var(d->this_core_map); /* fall through */
7366 case sa_this_sibling_map:
7367 free_cpumask_var(d->this_sibling_map); /* fall through */
7368 case sa_nodemask:
7369 free_cpumask_var(d->nodemask); /* fall through */
7370 case sa_sched_group_nodes:
d1b55138 7371#ifdef CONFIG_NUMA
2109b99e
AH
7372 kfree(d->sched_group_nodes); /* fall through */
7373 case sa_notcovered:
7374 free_cpumask_var(d->notcovered); /* fall through */
7375 case sa_covered:
7376 free_cpumask_var(d->covered); /* fall through */
7377 case sa_domainspan:
7378 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7379#endif
2109b99e
AH
7380 case sa_none:
7381 break;
7382 }
7383}
3404c8d9 7384
2109b99e
AH
7385static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7386 const struct cpumask *cpu_map)
7387{
3404c8d9 7388#ifdef CONFIG_NUMA
2109b99e
AH
7389 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7390 return sa_none;
7391 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7392 return sa_domainspan;
7393 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7394 return sa_covered;
7395 /* Allocate the per-node list of sched groups */
7396 d->sched_group_nodes = kcalloc(nr_node_ids,
7397 sizeof(struct sched_group *), GFP_KERNEL);
7398 if (!d->sched_group_nodes) {
3df0fc5b 7399 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7400 return sa_notcovered;
d1b55138 7401 }
2109b99e 7402 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7403#endif
2109b99e
AH
7404 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7405 return sa_sched_group_nodes;
7406 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7407 return sa_nodemask;
7408 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7409 return sa_this_sibling_map;
01a08546 7410 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7411 return sa_this_core_map;
01a08546
HC
7412 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7413 return sa_this_book_map;
2109b99e
AH
7414 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7415 return sa_send_covered;
7416 d->rd = alloc_rootdomain();
7417 if (!d->rd) {
3df0fc5b 7418 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7419 return sa_tmpmask;
57d885fe 7420 }
2109b99e
AH
7421 return sa_rootdomain;
7422}
57d885fe 7423
7f4588f3
AH
7424static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7425 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7426{
7427 struct sched_domain *sd = NULL;
7c16ec58 7428#ifdef CONFIG_NUMA
7f4588f3 7429 struct sched_domain *parent;
1da177e4 7430
7f4588f3
AH
7431 d->sd_allnodes = 0;
7432 if (cpumask_weight(cpu_map) >
7433 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7434 sd = &per_cpu(allnodes_domains, i).sd;
7435 SD_INIT(sd, ALLNODES);
1d3504fc 7436 set_domain_attribute(sd, attr);
7f4588f3
AH
7437 cpumask_copy(sched_domain_span(sd), cpu_map);
7438 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7439 d->sd_allnodes = 1;
7440 }
7441 parent = sd;
7442
7443 sd = &per_cpu(node_domains, i).sd;
7444 SD_INIT(sd, NODE);
7445 set_domain_attribute(sd, attr);
7446 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7447 sd->parent = parent;
7448 if (parent)
7449 parent->child = sd;
7450 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7451#endif
7f4588f3
AH
7452 return sd;
7453}
1da177e4 7454
87cce662
AH
7455static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7456 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7457 struct sched_domain *parent, int i)
7458{
7459 struct sched_domain *sd;
7460 sd = &per_cpu(phys_domains, i).sd;
7461 SD_INIT(sd, CPU);
7462 set_domain_attribute(sd, attr);
7463 cpumask_copy(sched_domain_span(sd), d->nodemask);
7464 sd->parent = parent;
7465 if (parent)
7466 parent->child = sd;
7467 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7468 return sd;
7469}
1da177e4 7470
01a08546
HC
7471static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7472 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7473 struct sched_domain *parent, int i)
7474{
7475 struct sched_domain *sd = parent;
7476#ifdef CONFIG_SCHED_BOOK
7477 sd = &per_cpu(book_domains, i).sd;
7478 SD_INIT(sd, BOOK);
7479 set_domain_attribute(sd, attr);
7480 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7481 sd->parent = parent;
7482 parent->child = sd;
7483 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7484#endif
7485 return sd;
7486}
7487
410c4081
AH
7488static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7489 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7490 struct sched_domain *parent, int i)
7491{
7492 struct sched_domain *sd = parent;
1e9f28fa 7493#ifdef CONFIG_SCHED_MC
410c4081
AH
7494 sd = &per_cpu(core_domains, i).sd;
7495 SD_INIT(sd, MC);
7496 set_domain_attribute(sd, attr);
7497 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7498 sd->parent = parent;
7499 parent->child = sd;
7500 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7501#endif
410c4081
AH
7502 return sd;
7503}
1e9f28fa 7504
d8173535
AH
7505static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7506 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7507 struct sched_domain *parent, int i)
7508{
7509 struct sched_domain *sd = parent;
1da177e4 7510#ifdef CONFIG_SCHED_SMT
d8173535
AH
7511 sd = &per_cpu(cpu_domains, i).sd;
7512 SD_INIT(sd, SIBLING);
7513 set_domain_attribute(sd, attr);
7514 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7515 sd->parent = parent;
7516 parent->child = sd;
7517 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7518#endif
d8173535
AH
7519 return sd;
7520}
1da177e4 7521
0e8e85c9
AH
7522static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7523 const struct cpumask *cpu_map, int cpu)
7524{
7525 switch (l) {
1da177e4 7526#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7527 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7528 cpumask_and(d->this_sibling_map, cpu_map,
7529 topology_thread_cpumask(cpu));
7530 if (cpu == cpumask_first(d->this_sibling_map))
7531 init_sched_build_groups(d->this_sibling_map, cpu_map,
7532 &cpu_to_cpu_group,
7533 d->send_covered, d->tmpmask);
7534 break;
1da177e4 7535#endif
1e9f28fa 7536#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7537 case SD_LV_MC: /* set up multi-core groups */
7538 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7539 if (cpu == cpumask_first(d->this_core_map))
7540 init_sched_build_groups(d->this_core_map, cpu_map,
7541 &cpu_to_core_group,
7542 d->send_covered, d->tmpmask);
7543 break;
01a08546
HC
7544#endif
7545#ifdef CONFIG_SCHED_BOOK
7546 case SD_LV_BOOK: /* set up book groups */
7547 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7548 if (cpu == cpumask_first(d->this_book_map))
7549 init_sched_build_groups(d->this_book_map, cpu_map,
7550 &cpu_to_book_group,
7551 d->send_covered, d->tmpmask);
7552 break;
1e9f28fa 7553#endif
86548096
AH
7554 case SD_LV_CPU: /* set up physical groups */
7555 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7556 if (!cpumask_empty(d->nodemask))
7557 init_sched_build_groups(d->nodemask, cpu_map,
7558 &cpu_to_phys_group,
7559 d->send_covered, d->tmpmask);
7560 break;
1da177e4 7561#ifdef CONFIG_NUMA
de616e36
AH
7562 case SD_LV_ALLNODES:
7563 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7564 d->send_covered, d->tmpmask);
7565 break;
7566#endif
0e8e85c9
AH
7567 default:
7568 break;
7c16ec58 7569 }
0e8e85c9 7570}
9c1cfda2 7571
2109b99e
AH
7572/*
7573 * Build sched domains for a given set of cpus and attach the sched domains
7574 * to the individual cpus
7575 */
7576static int __build_sched_domains(const struct cpumask *cpu_map,
7577 struct sched_domain_attr *attr)
7578{
7579 enum s_alloc alloc_state = sa_none;
7580 struct s_data d;
294b0c96 7581 struct sched_domain *sd;
2109b99e 7582 int i;
7c16ec58 7583#ifdef CONFIG_NUMA
2109b99e 7584 d.sd_allnodes = 0;
7c16ec58 7585#endif
9c1cfda2 7586
2109b99e
AH
7587 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7588 if (alloc_state != sa_rootdomain)
7589 goto error;
7590 alloc_state = sa_sched_groups;
9c1cfda2 7591
1da177e4 7592 /*
1a20ff27 7593 * Set up domains for cpus specified by the cpu_map.
1da177e4 7594 */
abcd083a 7595 for_each_cpu(i, cpu_map) {
49a02c51
AH
7596 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7597 cpu_map);
9761eea8 7598
7f4588f3 7599 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7600 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7601 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7602 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7603 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7604 }
9c1cfda2 7605
abcd083a 7606 for_each_cpu(i, cpu_map) {
0e8e85c9 7607 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7608 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7609 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7610 }
9c1cfda2 7611
1da177e4 7612 /* Set up physical groups */
86548096
AH
7613 for (i = 0; i < nr_node_ids; i++)
7614 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7615
1da177e4
LT
7616#ifdef CONFIG_NUMA
7617 /* Set up node groups */
de616e36
AH
7618 if (d.sd_allnodes)
7619 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7620
0601a88d
AH
7621 for (i = 0; i < nr_node_ids; i++)
7622 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7623 goto error;
1da177e4
LT
7624#endif
7625
7626 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7627#ifdef CONFIG_SCHED_SMT
abcd083a 7628 for_each_cpu(i, cpu_map) {
294b0c96 7629 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7630 init_sched_groups_power(i, sd);
5c45bf27 7631 }
1da177e4 7632#endif
1e9f28fa 7633#ifdef CONFIG_SCHED_MC
abcd083a 7634 for_each_cpu(i, cpu_map) {
294b0c96 7635 sd = &per_cpu(core_domains, i).sd;
89c4710e 7636 init_sched_groups_power(i, sd);
5c45bf27
SS
7637 }
7638#endif
01a08546
HC
7639#ifdef CONFIG_SCHED_BOOK
7640 for_each_cpu(i, cpu_map) {
7641 sd = &per_cpu(book_domains, i).sd;
7642 init_sched_groups_power(i, sd);
7643 }
7644#endif
1e9f28fa 7645
abcd083a 7646 for_each_cpu(i, cpu_map) {
294b0c96 7647 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7648 init_sched_groups_power(i, sd);
1da177e4
LT
7649 }
7650
9c1cfda2 7651#ifdef CONFIG_NUMA
076ac2af 7652 for (i = 0; i < nr_node_ids; i++)
49a02c51 7653 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7654
49a02c51 7655 if (d.sd_allnodes) {
6711cab4 7656 struct sched_group *sg;
f712c0c7 7657
96f874e2 7658 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7659 d.tmpmask);
f712c0c7
SS
7660 init_numa_sched_groups_power(sg);
7661 }
9c1cfda2
JH
7662#endif
7663
1da177e4 7664 /* Attach the domains */
abcd083a 7665 for_each_cpu(i, cpu_map) {
1da177e4 7666#ifdef CONFIG_SCHED_SMT
6c99e9ad 7667 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7668#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7669 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7670#elif defined(CONFIG_SCHED_BOOK)
7671 sd = &per_cpu(book_domains, i).sd;
1da177e4 7672#else
6c99e9ad 7673 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7674#endif
49a02c51 7675 cpu_attach_domain(sd, d.rd, i);
1da177e4 7676 }
51888ca2 7677
2109b99e
AH
7678 d.sched_group_nodes = NULL; /* don't free this we still need it */
7679 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7680 return 0;
51888ca2 7681
51888ca2 7682error:
2109b99e
AH
7683 __free_domain_allocs(&d, alloc_state, cpu_map);
7684 return -ENOMEM;
1da177e4 7685}
029190c5 7686
96f874e2 7687static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7688{
7689 return __build_sched_domains(cpu_map, NULL);
7690}
7691
acc3f5d7 7692static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7693static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7694static struct sched_domain_attr *dattr_cur;
7695 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7696
7697/*
7698 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7699 * cpumask) fails, then fallback to a single sched domain,
7700 * as determined by the single cpumask fallback_doms.
029190c5 7701 */
4212823f 7702static cpumask_var_t fallback_doms;
029190c5 7703
ee79d1bd
HC
7704/*
7705 * arch_update_cpu_topology lets virtualized architectures update the
7706 * cpu core maps. It is supposed to return 1 if the topology changed
7707 * or 0 if it stayed the same.
7708 */
7709int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7710{
ee79d1bd 7711 return 0;
22e52b07
HC
7712}
7713
acc3f5d7
RR
7714cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7715{
7716 int i;
7717 cpumask_var_t *doms;
7718
7719 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7720 if (!doms)
7721 return NULL;
7722 for (i = 0; i < ndoms; i++) {
7723 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7724 free_sched_domains(doms, i);
7725 return NULL;
7726 }
7727 }
7728 return doms;
7729}
7730
7731void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7732{
7733 unsigned int i;
7734 for (i = 0; i < ndoms; i++)
7735 free_cpumask_var(doms[i]);
7736 kfree(doms);
7737}
7738
1a20ff27 7739/*
41a2d6cf 7740 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7741 * For now this just excludes isolated cpus, but could be used to
7742 * exclude other special cases in the future.
1a20ff27 7743 */
96f874e2 7744static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7745{
7378547f
MM
7746 int err;
7747
22e52b07 7748 arch_update_cpu_topology();
029190c5 7749 ndoms_cur = 1;
acc3f5d7 7750 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7751 if (!doms_cur)
acc3f5d7
RR
7752 doms_cur = &fallback_doms;
7753 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7754 dattr_cur = NULL;
acc3f5d7 7755 err = build_sched_domains(doms_cur[0]);
6382bc90 7756 register_sched_domain_sysctl();
7378547f
MM
7757
7758 return err;
1a20ff27
DG
7759}
7760
96f874e2
RR
7761static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7762 struct cpumask *tmpmask)
1da177e4 7763{
7c16ec58 7764 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7765}
1da177e4 7766
1a20ff27
DG
7767/*
7768 * Detach sched domains from a group of cpus specified in cpu_map
7769 * These cpus will now be attached to the NULL domain
7770 */
96f874e2 7771static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7772{
96f874e2
RR
7773 /* Save because hotplug lock held. */
7774 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7775 int i;
7776
abcd083a 7777 for_each_cpu(i, cpu_map)
57d885fe 7778 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7779 synchronize_sched();
96f874e2 7780 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7781}
7782
1d3504fc
HS
7783/* handle null as "default" */
7784static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7785 struct sched_domain_attr *new, int idx_new)
7786{
7787 struct sched_domain_attr tmp;
7788
7789 /* fast path */
7790 if (!new && !cur)
7791 return 1;
7792
7793 tmp = SD_ATTR_INIT;
7794 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7795 new ? (new + idx_new) : &tmp,
7796 sizeof(struct sched_domain_attr));
7797}
7798
029190c5
PJ
7799/*
7800 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7801 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7802 * doms_new[] to the current sched domain partitioning, doms_cur[].
7803 * It destroys each deleted domain and builds each new domain.
7804 *
acc3f5d7 7805 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7806 * The masks don't intersect (don't overlap.) We should setup one
7807 * sched domain for each mask. CPUs not in any of the cpumasks will
7808 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7809 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7810 * it as it is.
7811 *
acc3f5d7
RR
7812 * The passed in 'doms_new' should be allocated using
7813 * alloc_sched_domains. This routine takes ownership of it and will
7814 * free_sched_domains it when done with it. If the caller failed the
7815 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7816 * and partition_sched_domains() will fallback to the single partition
7817 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7818 *
96f874e2 7819 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7820 * ndoms_new == 0 is a special case for destroying existing domains,
7821 * and it will not create the default domain.
dfb512ec 7822 *
029190c5
PJ
7823 * Call with hotplug lock held
7824 */
acc3f5d7 7825void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7826 struct sched_domain_attr *dattr_new)
029190c5 7827{
dfb512ec 7828 int i, j, n;
d65bd5ec 7829 int new_topology;
029190c5 7830
712555ee 7831 mutex_lock(&sched_domains_mutex);
a1835615 7832
7378547f
MM
7833 /* always unregister in case we don't destroy any domains */
7834 unregister_sched_domain_sysctl();
7835
d65bd5ec
HC
7836 /* Let architecture update cpu core mappings. */
7837 new_topology = arch_update_cpu_topology();
7838
dfb512ec 7839 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7840
7841 /* Destroy deleted domains */
7842 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7843 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7844 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7845 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7846 goto match1;
7847 }
7848 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7849 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7850match1:
7851 ;
7852 }
7853
e761b772
MK
7854 if (doms_new == NULL) {
7855 ndoms_cur = 0;
acc3f5d7 7856 doms_new = &fallback_doms;
6ad4c188 7857 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7858 WARN_ON_ONCE(dattr_new);
e761b772
MK
7859 }
7860
029190c5
PJ
7861 /* Build new domains */
7862 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7863 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7864 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7865 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7866 goto match2;
7867 }
7868 /* no match - add a new doms_new */
acc3f5d7 7869 __build_sched_domains(doms_new[i],
1d3504fc 7870 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7871match2:
7872 ;
7873 }
7874
7875 /* Remember the new sched domains */
acc3f5d7
RR
7876 if (doms_cur != &fallback_doms)
7877 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7878 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7879 doms_cur = doms_new;
1d3504fc 7880 dattr_cur = dattr_new;
029190c5 7881 ndoms_cur = ndoms_new;
7378547f
MM
7882
7883 register_sched_domain_sysctl();
a1835615 7884
712555ee 7885 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7886}
7887
5c45bf27 7888#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7889static void arch_reinit_sched_domains(void)
5c45bf27 7890{
95402b38 7891 get_online_cpus();
dfb512ec
MK
7892
7893 /* Destroy domains first to force the rebuild */
7894 partition_sched_domains(0, NULL, NULL);
7895
e761b772 7896 rebuild_sched_domains();
95402b38 7897 put_online_cpus();
5c45bf27
SS
7898}
7899
7900static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7901{
afb8a9b7 7902 unsigned int level = 0;
5c45bf27 7903
afb8a9b7
GS
7904 if (sscanf(buf, "%u", &level) != 1)
7905 return -EINVAL;
7906
7907 /*
7908 * level is always be positive so don't check for
7909 * level < POWERSAVINGS_BALANCE_NONE which is 0
7910 * What happens on 0 or 1 byte write,
7911 * need to check for count as well?
7912 */
7913
7914 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7915 return -EINVAL;
7916
7917 if (smt)
afb8a9b7 7918 sched_smt_power_savings = level;
5c45bf27 7919 else
afb8a9b7 7920 sched_mc_power_savings = level;
5c45bf27 7921
c70f22d2 7922 arch_reinit_sched_domains();
5c45bf27 7923
c70f22d2 7924 return count;
5c45bf27
SS
7925}
7926
5c45bf27 7927#ifdef CONFIG_SCHED_MC
f718cd4a 7928static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7929 struct sysdev_class_attribute *attr,
f718cd4a 7930 char *page)
5c45bf27
SS
7931{
7932 return sprintf(page, "%u\n", sched_mc_power_savings);
7933}
f718cd4a 7934static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7935 struct sysdev_class_attribute *attr,
48f24c4d 7936 const char *buf, size_t count)
5c45bf27
SS
7937{
7938 return sched_power_savings_store(buf, count, 0);
7939}
f718cd4a
AK
7940static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7941 sched_mc_power_savings_show,
7942 sched_mc_power_savings_store);
5c45bf27
SS
7943#endif
7944
7945#ifdef CONFIG_SCHED_SMT
f718cd4a 7946static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7947 struct sysdev_class_attribute *attr,
f718cd4a 7948 char *page)
5c45bf27
SS
7949{
7950 return sprintf(page, "%u\n", sched_smt_power_savings);
7951}
f718cd4a 7952static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7953 struct sysdev_class_attribute *attr,
48f24c4d 7954 const char *buf, size_t count)
5c45bf27
SS
7955{
7956 return sched_power_savings_store(buf, count, 1);
7957}
f718cd4a
AK
7958static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7959 sched_smt_power_savings_show,
6707de00
AB
7960 sched_smt_power_savings_store);
7961#endif
7962
39aac648 7963int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7964{
7965 int err = 0;
7966
7967#ifdef CONFIG_SCHED_SMT
7968 if (smt_capable())
7969 err = sysfs_create_file(&cls->kset.kobj,
7970 &attr_sched_smt_power_savings.attr);
7971#endif
7972#ifdef CONFIG_SCHED_MC
7973 if (!err && mc_capable())
7974 err = sysfs_create_file(&cls->kset.kobj,
7975 &attr_sched_mc_power_savings.attr);
7976#endif
7977 return err;
7978}
6d6bc0ad 7979#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7980
1da177e4 7981/*
3a101d05
TH
7982 * Update cpusets according to cpu_active mask. If cpusets are
7983 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7984 * around partition_sched_domains().
1da177e4 7985 */
0b2e918a
TH
7986static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7987 void *hcpu)
e761b772 7988{
3a101d05 7989 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7990 case CPU_ONLINE:
6ad4c188 7991 case CPU_DOWN_FAILED:
3a101d05 7992 cpuset_update_active_cpus();
e761b772 7993 return NOTIFY_OK;
3a101d05
TH
7994 default:
7995 return NOTIFY_DONE;
7996 }
7997}
e761b772 7998
0b2e918a
TH
7999static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
8000 void *hcpu)
3a101d05
TH
8001{
8002 switch (action & ~CPU_TASKS_FROZEN) {
8003 case CPU_DOWN_PREPARE:
8004 cpuset_update_active_cpus();
8005 return NOTIFY_OK;
e761b772
MK
8006 default:
8007 return NOTIFY_DONE;
8008 }
8009}
e761b772
MK
8010
8011static int update_runtime(struct notifier_block *nfb,
8012 unsigned long action, void *hcpu)
1da177e4 8013{
7def2be1
PZ
8014 int cpu = (int)(long)hcpu;
8015
1da177e4 8016 switch (action) {
1da177e4 8017 case CPU_DOWN_PREPARE:
8bb78442 8018 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8019 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8020 return NOTIFY_OK;
8021
1da177e4 8022 case CPU_DOWN_FAILED:
8bb78442 8023 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8024 case CPU_ONLINE:
8bb78442 8025 case CPU_ONLINE_FROZEN:
7def2be1 8026 enable_runtime(cpu_rq(cpu));
e761b772
MK
8027 return NOTIFY_OK;
8028
1da177e4
LT
8029 default:
8030 return NOTIFY_DONE;
8031 }
1da177e4 8032}
1da177e4
LT
8033
8034void __init sched_init_smp(void)
8035{
dcc30a35
RR
8036 cpumask_var_t non_isolated_cpus;
8037
8038 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 8039 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 8040
434d53b0
MT
8041#if defined(CONFIG_NUMA)
8042 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8043 GFP_KERNEL);
8044 BUG_ON(sched_group_nodes_bycpu == NULL);
8045#endif
95402b38 8046 get_online_cpus();
712555ee 8047 mutex_lock(&sched_domains_mutex);
6ad4c188 8048 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
8049 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8050 if (cpumask_empty(non_isolated_cpus))
8051 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8052 mutex_unlock(&sched_domains_mutex);
95402b38 8053 put_online_cpus();
e761b772 8054
3a101d05
TH
8055 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8056 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
8057
8058 /* RT runtime code needs to handle some hotplug events */
8059 hotcpu_notifier(update_runtime, 0);
8060
b328ca18 8061 init_hrtick();
5c1e1767
NP
8062
8063 /* Move init over to a non-isolated CPU */
dcc30a35 8064 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8065 BUG();
19978ca6 8066 sched_init_granularity();
dcc30a35 8067 free_cpumask_var(non_isolated_cpus);
4212823f 8068
0e3900e6 8069 init_sched_rt_class();
1da177e4
LT
8070}
8071#else
8072void __init sched_init_smp(void)
8073{
19978ca6 8074 sched_init_granularity();
1da177e4
LT
8075}
8076#endif /* CONFIG_SMP */
8077
cd1bb94b
AB
8078const_debug unsigned int sysctl_timer_migration = 1;
8079
1da177e4
LT
8080int in_sched_functions(unsigned long addr)
8081{
1da177e4
LT
8082 return in_lock_functions(addr) ||
8083 (addr >= (unsigned long)__sched_text_start
8084 && addr < (unsigned long)__sched_text_end);
8085}
8086
a9957449 8087static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8088{
8089 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8090 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8091#ifdef CONFIG_FAIR_GROUP_SCHED
8092 cfs_rq->rq = rq;
f07333bf 8093 /* allow initial update_cfs_load() to truncate */
6ea72f12 8094#ifdef CONFIG_SMP
f07333bf 8095 cfs_rq->load_stamp = 1;
6ea72f12 8096#endif
dd41f596 8097#endif
67e9fb2a 8098 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8099}
8100
fa85ae24
PZ
8101static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8102{
8103 struct rt_prio_array *array;
8104 int i;
8105
8106 array = &rt_rq->active;
8107 for (i = 0; i < MAX_RT_PRIO; i++) {
8108 INIT_LIST_HEAD(array->queue + i);
8109 __clear_bit(i, array->bitmap);
8110 }
8111 /* delimiter for bitsearch: */
8112 __set_bit(MAX_RT_PRIO, array->bitmap);
8113
052f1dc7 8114#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8115 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8116#ifdef CONFIG_SMP
e864c499 8117 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8118#endif
48d5e258 8119#endif
fa85ae24
PZ
8120#ifdef CONFIG_SMP
8121 rt_rq->rt_nr_migratory = 0;
fa85ae24 8122 rt_rq->overloaded = 0;
05fa785c 8123 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
8124#endif
8125
8126 rt_rq->rt_time = 0;
8127 rt_rq->rt_throttled = 0;
ac086bc2 8128 rt_rq->rt_runtime = 0;
0986b11b 8129 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8130
052f1dc7 8131#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8132 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8133 rt_rq->rq = rq;
8134#endif
fa85ae24
PZ
8135}
8136
6f505b16 8137#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8138static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8139 struct sched_entity *se, int cpu,
ec7dc8ac 8140 struct sched_entity *parent)
6f505b16 8141{
ec7dc8ac 8142 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8143 tg->cfs_rq[cpu] = cfs_rq;
8144 init_cfs_rq(cfs_rq, rq);
8145 cfs_rq->tg = tg;
6f505b16
PZ
8146
8147 tg->se[cpu] = se;
07e06b01 8148 /* se could be NULL for root_task_group */
354d60c2
DG
8149 if (!se)
8150 return;
8151
ec7dc8ac
DG
8152 if (!parent)
8153 se->cfs_rq = &rq->cfs;
8154 else
8155 se->cfs_rq = parent->my_q;
8156
6f505b16 8157 se->my_q = cfs_rq;
9437178f 8158 update_load_set(&se->load, 0);
ec7dc8ac 8159 se->parent = parent;
6f505b16 8160}
052f1dc7 8161#endif
6f505b16 8162
052f1dc7 8163#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8164static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8165 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8166 struct sched_rt_entity *parent)
6f505b16 8167{
ec7dc8ac
DG
8168 struct rq *rq = cpu_rq(cpu);
8169
6f505b16
PZ
8170 tg->rt_rq[cpu] = rt_rq;
8171 init_rt_rq(rt_rq, rq);
8172 rt_rq->tg = tg;
ac086bc2 8173 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8174
8175 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8176 if (!rt_se)
8177 return;
8178
ec7dc8ac
DG
8179 if (!parent)
8180 rt_se->rt_rq = &rq->rt;
8181 else
8182 rt_se->rt_rq = parent->my_q;
8183
6f505b16 8184 rt_se->my_q = rt_rq;
ec7dc8ac 8185 rt_se->parent = parent;
6f505b16
PZ
8186 INIT_LIST_HEAD(&rt_se->run_list);
8187}
8188#endif
8189
1da177e4
LT
8190void __init sched_init(void)
8191{
dd41f596 8192 int i, j;
434d53b0
MT
8193 unsigned long alloc_size = 0, ptr;
8194
8195#ifdef CONFIG_FAIR_GROUP_SCHED
8196 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8197#endif
8198#ifdef CONFIG_RT_GROUP_SCHED
8199 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8200#endif
df7c8e84 8201#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8202 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8203#endif
434d53b0 8204 if (alloc_size) {
36b7b6d4 8205 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8206
8207#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8208 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8209 ptr += nr_cpu_ids * sizeof(void **);
8210
07e06b01 8211 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8212 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8213
6d6bc0ad 8214#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8215#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8216 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8217 ptr += nr_cpu_ids * sizeof(void **);
8218
07e06b01 8219 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8220 ptr += nr_cpu_ids * sizeof(void **);
8221
6d6bc0ad 8222#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8223#ifdef CONFIG_CPUMASK_OFFSTACK
8224 for_each_possible_cpu(i) {
8225 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8226 ptr += cpumask_size();
8227 }
8228#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8229 }
dd41f596 8230
57d885fe
GH
8231#ifdef CONFIG_SMP
8232 init_defrootdomain();
8233#endif
8234
d0b27fa7
PZ
8235 init_rt_bandwidth(&def_rt_bandwidth,
8236 global_rt_period(), global_rt_runtime());
8237
8238#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8239 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8240 global_rt_period(), global_rt_runtime());
6d6bc0ad 8241#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8242
7c941438 8243#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8244 list_add(&root_task_group.list, &task_groups);
8245 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8246 autogroup_init(&init_task);
7c941438 8247#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8248
0a945022 8249 for_each_possible_cpu(i) {
70b97a7f 8250 struct rq *rq;
1da177e4
LT
8251
8252 rq = cpu_rq(i);
05fa785c 8253 raw_spin_lock_init(&rq->lock);
7897986b 8254 rq->nr_running = 0;
dce48a84
TG
8255 rq->calc_load_active = 0;
8256 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8257 init_cfs_rq(&rq->cfs, rq);
6f505b16 8258 init_rt_rq(&rq->rt, rq);
dd41f596 8259#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8260 root_task_group.shares = root_task_group_load;
6f505b16 8261 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8262 /*
07e06b01 8263 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8264 *
8265 * In case of task-groups formed thr' the cgroup filesystem, it
8266 * gets 100% of the cpu resources in the system. This overall
8267 * system cpu resource is divided among the tasks of
07e06b01 8268 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8269 * based on each entity's (task or task-group's) weight
8270 * (se->load.weight).
8271 *
07e06b01 8272 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8273 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8274 * then A0's share of the cpu resource is:
8275 *
0d905bca 8276 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8277 *
07e06b01
YZ
8278 * We achieve this by letting root_task_group's tasks sit
8279 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8280 */
07e06b01 8281 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8282#endif /* CONFIG_FAIR_GROUP_SCHED */
8283
8284 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8285#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8286 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8287 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8288#endif
1da177e4 8289
dd41f596
IM
8290 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8291 rq->cpu_load[j] = 0;
fdf3e95d
VP
8292
8293 rq->last_load_update_tick = jiffies;
8294
1da177e4 8295#ifdef CONFIG_SMP
41c7ce9a 8296 rq->sd = NULL;
57d885fe 8297 rq->rd = NULL;
e51fd5e2 8298 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8299 rq->post_schedule = 0;
1da177e4 8300 rq->active_balance = 0;
dd41f596 8301 rq->next_balance = jiffies;
1da177e4 8302 rq->push_cpu = 0;
0a2966b4 8303 rq->cpu = i;
1f11eb6a 8304 rq->online = 0;
eae0c9df
MG
8305 rq->idle_stamp = 0;
8306 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8307 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8308#ifdef CONFIG_NO_HZ
8309 rq->nohz_balance_kick = 0;
8310 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8311#endif
1da177e4 8312#endif
8f4d37ec 8313 init_rq_hrtick(rq);
1da177e4 8314 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8315 }
8316
2dd73a4f 8317 set_load_weight(&init_task);
b50f60ce 8318
e107be36
AK
8319#ifdef CONFIG_PREEMPT_NOTIFIERS
8320 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8321#endif
8322
c9819f45 8323#ifdef CONFIG_SMP
962cf36c 8324 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8325#endif
8326
b50f60ce 8327#ifdef CONFIG_RT_MUTEXES
1d615482 8328 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8329#endif
8330
1da177e4
LT
8331 /*
8332 * The boot idle thread does lazy MMU switching as well:
8333 */
8334 atomic_inc(&init_mm.mm_count);
8335 enter_lazy_tlb(&init_mm, current);
8336
8337 /*
8338 * Make us the idle thread. Technically, schedule() should not be
8339 * called from this thread, however somewhere below it might be,
8340 * but because we are the idle thread, we just pick up running again
8341 * when this runqueue becomes "idle".
8342 */
8343 init_idle(current, smp_processor_id());
dce48a84
TG
8344
8345 calc_load_update = jiffies + LOAD_FREQ;
8346
dd41f596
IM
8347 /*
8348 * During early bootup we pretend to be a normal task:
8349 */
8350 current->sched_class = &fair_sched_class;
6892b75e 8351
6a7b3dc3 8352 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8353 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8354#ifdef CONFIG_SMP
7d1e6a9b 8355#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8356 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8357 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8358 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8359 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8360 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8361#endif
bdddd296
RR
8362 /* May be allocated at isolcpus cmdline parse time */
8363 if (cpu_isolated_map == NULL)
8364 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8365#endif /* SMP */
6a7b3dc3 8366
6892b75e 8367 scheduler_running = 1;
1da177e4
LT
8368}
8369
8370#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8371static inline int preempt_count_equals(int preempt_offset)
8372{
234da7bc 8373 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8374
4ba8216c 8375 return (nested == preempt_offset);
e4aafea2
FW
8376}
8377
d894837f 8378void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8379{
48f24c4d 8380#ifdef in_atomic
1da177e4
LT
8381 static unsigned long prev_jiffy; /* ratelimiting */
8382
e4aafea2
FW
8383 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8384 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8385 return;
8386 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8387 return;
8388 prev_jiffy = jiffies;
8389
3df0fc5b
PZ
8390 printk(KERN_ERR
8391 "BUG: sleeping function called from invalid context at %s:%d\n",
8392 file, line);
8393 printk(KERN_ERR
8394 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8395 in_atomic(), irqs_disabled(),
8396 current->pid, current->comm);
aef745fc
IM
8397
8398 debug_show_held_locks(current);
8399 if (irqs_disabled())
8400 print_irqtrace_events(current);
8401 dump_stack();
1da177e4
LT
8402#endif
8403}
8404EXPORT_SYMBOL(__might_sleep);
8405#endif
8406
8407#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8408static void normalize_task(struct rq *rq, struct task_struct *p)
8409{
da7a735e
PZ
8410 const struct sched_class *prev_class = p->sched_class;
8411 int old_prio = p->prio;
3a5e4dc1 8412 int on_rq;
3e51f33f 8413
fd2f4419 8414 on_rq = p->on_rq;
3a5e4dc1
AK
8415 if (on_rq)
8416 deactivate_task(rq, p, 0);
8417 __setscheduler(rq, p, SCHED_NORMAL, 0);
8418 if (on_rq) {
8419 activate_task(rq, p, 0);
8420 resched_task(rq->curr);
8421 }
da7a735e
PZ
8422
8423 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8424}
8425
1da177e4
LT
8426void normalize_rt_tasks(void)
8427{
a0f98a1c 8428 struct task_struct *g, *p;
1da177e4 8429 unsigned long flags;
70b97a7f 8430 struct rq *rq;
1da177e4 8431
4cf5d77a 8432 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8433 do_each_thread(g, p) {
178be793
IM
8434 /*
8435 * Only normalize user tasks:
8436 */
8437 if (!p->mm)
8438 continue;
8439
6cfb0d5d 8440 p->se.exec_start = 0;
6cfb0d5d 8441#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8442 p->se.statistics.wait_start = 0;
8443 p->se.statistics.sleep_start = 0;
8444 p->se.statistics.block_start = 0;
6cfb0d5d 8445#endif
dd41f596
IM
8446
8447 if (!rt_task(p)) {
8448 /*
8449 * Renice negative nice level userspace
8450 * tasks back to 0:
8451 */
8452 if (TASK_NICE(p) < 0 && p->mm)
8453 set_user_nice(p, 0);
1da177e4 8454 continue;
dd41f596 8455 }
1da177e4 8456
1d615482 8457 raw_spin_lock(&p->pi_lock);
b29739f9 8458 rq = __task_rq_lock(p);
1da177e4 8459
178be793 8460 normalize_task(rq, p);
3a5e4dc1 8461
b29739f9 8462 __task_rq_unlock(rq);
1d615482 8463 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8464 } while_each_thread(g, p);
8465
4cf5d77a 8466 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8467}
8468
8469#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8470
67fc4e0c 8471#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8472/*
67fc4e0c 8473 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8474 *
8475 * They can only be called when the whole system has been
8476 * stopped - every CPU needs to be quiescent, and no scheduling
8477 * activity can take place. Using them for anything else would
8478 * be a serious bug, and as a result, they aren't even visible
8479 * under any other configuration.
8480 */
8481
8482/**
8483 * curr_task - return the current task for a given cpu.
8484 * @cpu: the processor in question.
8485 *
8486 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8487 */
36c8b586 8488struct task_struct *curr_task(int cpu)
1df5c10a
LT
8489{
8490 return cpu_curr(cpu);
8491}
8492
67fc4e0c
JW
8493#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8494
8495#ifdef CONFIG_IA64
1df5c10a
LT
8496/**
8497 * set_curr_task - set the current task for a given cpu.
8498 * @cpu: the processor in question.
8499 * @p: the task pointer to set.
8500 *
8501 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8502 * are serviced on a separate stack. It allows the architecture to switch the
8503 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8504 * must be called with all CPU's synchronized, and interrupts disabled, the
8505 * and caller must save the original value of the current task (see
8506 * curr_task() above) and restore that value before reenabling interrupts and
8507 * re-starting the system.
8508 *
8509 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8510 */
36c8b586 8511void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8512{
8513 cpu_curr(cpu) = p;
8514}
8515
8516#endif
29f59db3 8517
bccbe08a
PZ
8518#ifdef CONFIG_FAIR_GROUP_SCHED
8519static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8520{
8521 int i;
8522
8523 for_each_possible_cpu(i) {
8524 if (tg->cfs_rq)
8525 kfree(tg->cfs_rq[i]);
8526 if (tg->se)
8527 kfree(tg->se[i]);
6f505b16
PZ
8528 }
8529
8530 kfree(tg->cfs_rq);
8531 kfree(tg->se);
6f505b16
PZ
8532}
8533
ec7dc8ac
DG
8534static
8535int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8536{
29f59db3 8537 struct cfs_rq *cfs_rq;
eab17229 8538 struct sched_entity *se;
29f59db3
SV
8539 int i;
8540
434d53b0 8541 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8542 if (!tg->cfs_rq)
8543 goto err;
434d53b0 8544 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8545 if (!tg->se)
8546 goto err;
052f1dc7
PZ
8547
8548 tg->shares = NICE_0_LOAD;
29f59db3
SV
8549
8550 for_each_possible_cpu(i) {
eab17229
LZ
8551 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8552 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8553 if (!cfs_rq)
8554 goto err;
8555
eab17229
LZ
8556 se = kzalloc_node(sizeof(struct sched_entity),
8557 GFP_KERNEL, cpu_to_node(i));
29f59db3 8558 if (!se)
dfc12eb2 8559 goto err_free_rq;
29f59db3 8560
3d4b47b4 8561 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8562 }
8563
8564 return 1;
8565
49246274 8566err_free_rq:
dfc12eb2 8567 kfree(cfs_rq);
49246274 8568err:
bccbe08a
PZ
8569 return 0;
8570}
8571
bccbe08a
PZ
8572static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8573{
3d4b47b4
PZ
8574 struct rq *rq = cpu_rq(cpu);
8575 unsigned long flags;
3d4b47b4
PZ
8576
8577 /*
8578 * Only empty task groups can be destroyed; so we can speculatively
8579 * check on_list without danger of it being re-added.
8580 */
8581 if (!tg->cfs_rq[cpu]->on_list)
8582 return;
8583
8584 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8585 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8586 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8587}
6d6bc0ad 8588#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8589static inline void free_fair_sched_group(struct task_group *tg)
8590{
8591}
8592
ec7dc8ac
DG
8593static inline
8594int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8595{
8596 return 1;
8597}
8598
bccbe08a
PZ
8599static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8600{
8601}
6d6bc0ad 8602#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8603
8604#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8605static void free_rt_sched_group(struct task_group *tg)
8606{
8607 int i;
8608
d0b27fa7
PZ
8609 destroy_rt_bandwidth(&tg->rt_bandwidth);
8610
bccbe08a
PZ
8611 for_each_possible_cpu(i) {
8612 if (tg->rt_rq)
8613 kfree(tg->rt_rq[i]);
8614 if (tg->rt_se)
8615 kfree(tg->rt_se[i]);
8616 }
8617
8618 kfree(tg->rt_rq);
8619 kfree(tg->rt_se);
8620}
8621
ec7dc8ac
DG
8622static
8623int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8624{
8625 struct rt_rq *rt_rq;
eab17229 8626 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8627 struct rq *rq;
8628 int i;
8629
434d53b0 8630 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8631 if (!tg->rt_rq)
8632 goto err;
434d53b0 8633 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8634 if (!tg->rt_se)
8635 goto err;
8636
d0b27fa7
PZ
8637 init_rt_bandwidth(&tg->rt_bandwidth,
8638 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8639
8640 for_each_possible_cpu(i) {
8641 rq = cpu_rq(i);
8642
eab17229
LZ
8643 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8644 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8645 if (!rt_rq)
8646 goto err;
29f59db3 8647
eab17229
LZ
8648 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8649 GFP_KERNEL, cpu_to_node(i));
6f505b16 8650 if (!rt_se)
dfc12eb2 8651 goto err_free_rq;
29f59db3 8652
3d4b47b4 8653 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8654 }
8655
bccbe08a
PZ
8656 return 1;
8657
49246274 8658err_free_rq:
dfc12eb2 8659 kfree(rt_rq);
49246274 8660err:
bccbe08a
PZ
8661 return 0;
8662}
6d6bc0ad 8663#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8664static inline void free_rt_sched_group(struct task_group *tg)
8665{
8666}
8667
ec7dc8ac
DG
8668static inline
8669int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8670{
8671 return 1;
8672}
6d6bc0ad 8673#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8674
7c941438 8675#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8676static void free_sched_group(struct task_group *tg)
8677{
8678 free_fair_sched_group(tg);
8679 free_rt_sched_group(tg);
e9aa1dd1 8680 autogroup_free(tg);
bccbe08a
PZ
8681 kfree(tg);
8682}
8683
8684/* allocate runqueue etc for a new task group */
ec7dc8ac 8685struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8686{
8687 struct task_group *tg;
8688 unsigned long flags;
bccbe08a
PZ
8689
8690 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8691 if (!tg)
8692 return ERR_PTR(-ENOMEM);
8693
ec7dc8ac 8694 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8695 goto err;
8696
ec7dc8ac 8697 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8698 goto err;
8699
8ed36996 8700 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8701 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8702
8703 WARN_ON(!parent); /* root should already exist */
8704
8705 tg->parent = parent;
f473aa5e 8706 INIT_LIST_HEAD(&tg->children);
09f2724a 8707 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8708 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8709
9b5b7751 8710 return tg;
29f59db3
SV
8711
8712err:
6f505b16 8713 free_sched_group(tg);
29f59db3
SV
8714 return ERR_PTR(-ENOMEM);
8715}
8716
9b5b7751 8717/* rcu callback to free various structures associated with a task group */
6f505b16 8718static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8719{
29f59db3 8720 /* now it should be safe to free those cfs_rqs */
6f505b16 8721 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8722}
8723
9b5b7751 8724/* Destroy runqueue etc associated with a task group */
4cf86d77 8725void sched_destroy_group(struct task_group *tg)
29f59db3 8726{
8ed36996 8727 unsigned long flags;
9b5b7751 8728 int i;
29f59db3 8729
3d4b47b4
PZ
8730 /* end participation in shares distribution */
8731 for_each_possible_cpu(i)
bccbe08a 8732 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8733
8734 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8735 list_del_rcu(&tg->list);
f473aa5e 8736 list_del_rcu(&tg->siblings);
8ed36996 8737 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8738
9b5b7751 8739 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8740 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8741}
8742
9b5b7751 8743/* change task's runqueue when it moves between groups.
3a252015
IM
8744 * The caller of this function should have put the task in its new group
8745 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8746 * reflect its new group.
9b5b7751
SV
8747 */
8748void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8749{
8750 int on_rq, running;
8751 unsigned long flags;
8752 struct rq *rq;
8753
8754 rq = task_rq_lock(tsk, &flags);
8755
051a1d1a 8756 running = task_current(rq, tsk);
fd2f4419 8757 on_rq = tsk->on_rq;
29f59db3 8758
0e1f3483 8759 if (on_rq)
29f59db3 8760 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8761 if (unlikely(running))
8762 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8763
810b3817 8764#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8765 if (tsk->sched_class->task_move_group)
8766 tsk->sched_class->task_move_group(tsk, on_rq);
8767 else
810b3817 8768#endif
b2b5ce02 8769 set_task_rq(tsk, task_cpu(tsk));
810b3817 8770
0e1f3483
HS
8771 if (unlikely(running))
8772 tsk->sched_class->set_curr_task(rq);
8773 if (on_rq)
371fd7e7 8774 enqueue_task(rq, tsk, 0);
29f59db3 8775
0122ec5b 8776 task_rq_unlock(rq, tsk, &flags);
29f59db3 8777}
7c941438 8778#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8779
052f1dc7 8780#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8781static DEFINE_MUTEX(shares_mutex);
8782
4cf86d77 8783int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8784{
8785 int i;
8ed36996 8786 unsigned long flags;
c61935fd 8787
ec7dc8ac
DG
8788 /*
8789 * We can't change the weight of the root cgroup.
8790 */
8791 if (!tg->se[0])
8792 return -EINVAL;
8793
18d95a28
PZ
8794 if (shares < MIN_SHARES)
8795 shares = MIN_SHARES;
cb4ad1ff
MX
8796 else if (shares > MAX_SHARES)
8797 shares = MAX_SHARES;
62fb1851 8798
8ed36996 8799 mutex_lock(&shares_mutex);
9b5b7751 8800 if (tg->shares == shares)
5cb350ba 8801 goto done;
29f59db3 8802
9b5b7751 8803 tg->shares = shares;
c09595f6 8804 for_each_possible_cpu(i) {
9437178f
PT
8805 struct rq *rq = cpu_rq(i);
8806 struct sched_entity *se;
8807
8808 se = tg->se[i];
8809 /* Propagate contribution to hierarchy */
8810 raw_spin_lock_irqsave(&rq->lock, flags);
8811 for_each_sched_entity(se)
6d5ab293 8812 update_cfs_shares(group_cfs_rq(se));
9437178f 8813 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8814 }
29f59db3 8815
5cb350ba 8816done:
8ed36996 8817 mutex_unlock(&shares_mutex);
9b5b7751 8818 return 0;
29f59db3
SV
8819}
8820
5cb350ba
DG
8821unsigned long sched_group_shares(struct task_group *tg)
8822{
8823 return tg->shares;
8824}
052f1dc7 8825#endif
5cb350ba 8826
052f1dc7 8827#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8828/*
9f0c1e56 8829 * Ensure that the real time constraints are schedulable.
6f505b16 8830 */
9f0c1e56
PZ
8831static DEFINE_MUTEX(rt_constraints_mutex);
8832
8833static unsigned long to_ratio(u64 period, u64 runtime)
8834{
8835 if (runtime == RUNTIME_INF)
9a7e0b18 8836 return 1ULL << 20;
9f0c1e56 8837
9a7e0b18 8838 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8839}
8840
9a7e0b18
PZ
8841/* Must be called with tasklist_lock held */
8842static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8843{
9a7e0b18 8844 struct task_struct *g, *p;
b40b2e8e 8845
9a7e0b18
PZ
8846 do_each_thread(g, p) {
8847 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8848 return 1;
8849 } while_each_thread(g, p);
b40b2e8e 8850
9a7e0b18
PZ
8851 return 0;
8852}
b40b2e8e 8853
9a7e0b18
PZ
8854struct rt_schedulable_data {
8855 struct task_group *tg;
8856 u64 rt_period;
8857 u64 rt_runtime;
8858};
b40b2e8e 8859
9a7e0b18
PZ
8860static int tg_schedulable(struct task_group *tg, void *data)
8861{
8862 struct rt_schedulable_data *d = data;
8863 struct task_group *child;
8864 unsigned long total, sum = 0;
8865 u64 period, runtime;
b40b2e8e 8866
9a7e0b18
PZ
8867 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8868 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8869
9a7e0b18
PZ
8870 if (tg == d->tg) {
8871 period = d->rt_period;
8872 runtime = d->rt_runtime;
b40b2e8e 8873 }
b40b2e8e 8874
4653f803
PZ
8875 /*
8876 * Cannot have more runtime than the period.
8877 */
8878 if (runtime > period && runtime != RUNTIME_INF)
8879 return -EINVAL;
6f505b16 8880
4653f803
PZ
8881 /*
8882 * Ensure we don't starve existing RT tasks.
8883 */
9a7e0b18
PZ
8884 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8885 return -EBUSY;
6f505b16 8886
9a7e0b18 8887 total = to_ratio(period, runtime);
6f505b16 8888
4653f803
PZ
8889 /*
8890 * Nobody can have more than the global setting allows.
8891 */
8892 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8893 return -EINVAL;
6f505b16 8894
4653f803
PZ
8895 /*
8896 * The sum of our children's runtime should not exceed our own.
8897 */
9a7e0b18
PZ
8898 list_for_each_entry_rcu(child, &tg->children, siblings) {
8899 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8900 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8901
9a7e0b18
PZ
8902 if (child == d->tg) {
8903 period = d->rt_period;
8904 runtime = d->rt_runtime;
8905 }
6f505b16 8906
9a7e0b18 8907 sum += to_ratio(period, runtime);
9f0c1e56 8908 }
6f505b16 8909
9a7e0b18
PZ
8910 if (sum > total)
8911 return -EINVAL;
8912
8913 return 0;
6f505b16
PZ
8914}
8915
9a7e0b18 8916static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8917{
9a7e0b18
PZ
8918 struct rt_schedulable_data data = {
8919 .tg = tg,
8920 .rt_period = period,
8921 .rt_runtime = runtime,
8922 };
8923
8924 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8925}
8926
d0b27fa7
PZ
8927static int tg_set_bandwidth(struct task_group *tg,
8928 u64 rt_period, u64 rt_runtime)
6f505b16 8929{
ac086bc2 8930 int i, err = 0;
9f0c1e56 8931
9f0c1e56 8932 mutex_lock(&rt_constraints_mutex);
521f1a24 8933 read_lock(&tasklist_lock);
9a7e0b18
PZ
8934 err = __rt_schedulable(tg, rt_period, rt_runtime);
8935 if (err)
9f0c1e56 8936 goto unlock;
ac086bc2 8937
0986b11b 8938 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8939 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8940 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8941
8942 for_each_possible_cpu(i) {
8943 struct rt_rq *rt_rq = tg->rt_rq[i];
8944
0986b11b 8945 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8946 rt_rq->rt_runtime = rt_runtime;
0986b11b 8947 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8948 }
0986b11b 8949 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8950unlock:
521f1a24 8951 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8952 mutex_unlock(&rt_constraints_mutex);
8953
8954 return err;
6f505b16
PZ
8955}
8956
d0b27fa7
PZ
8957int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8958{
8959 u64 rt_runtime, rt_period;
8960
8961 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8962 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8963 if (rt_runtime_us < 0)
8964 rt_runtime = RUNTIME_INF;
8965
8966 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8967}
8968
9f0c1e56
PZ
8969long sched_group_rt_runtime(struct task_group *tg)
8970{
8971 u64 rt_runtime_us;
8972
d0b27fa7 8973 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8974 return -1;
8975
d0b27fa7 8976 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8977 do_div(rt_runtime_us, NSEC_PER_USEC);
8978 return rt_runtime_us;
8979}
d0b27fa7
PZ
8980
8981int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8982{
8983 u64 rt_runtime, rt_period;
8984
8985 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8986 rt_runtime = tg->rt_bandwidth.rt_runtime;
8987
619b0488
R
8988 if (rt_period == 0)
8989 return -EINVAL;
8990
d0b27fa7
PZ
8991 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8992}
8993
8994long sched_group_rt_period(struct task_group *tg)
8995{
8996 u64 rt_period_us;
8997
8998 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8999 do_div(rt_period_us, NSEC_PER_USEC);
9000 return rt_period_us;
9001}
9002
9003static int sched_rt_global_constraints(void)
9004{
4653f803 9005 u64 runtime, period;
d0b27fa7
PZ
9006 int ret = 0;
9007
ec5d4989
HS
9008 if (sysctl_sched_rt_period <= 0)
9009 return -EINVAL;
9010
4653f803
PZ
9011 runtime = global_rt_runtime();
9012 period = global_rt_period();
9013
9014 /*
9015 * Sanity check on the sysctl variables.
9016 */
9017 if (runtime > period && runtime != RUNTIME_INF)
9018 return -EINVAL;
10b612f4 9019
d0b27fa7 9020 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9021 read_lock(&tasklist_lock);
4653f803 9022 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9023 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9024 mutex_unlock(&rt_constraints_mutex);
9025
9026 return ret;
9027}
54e99124
DG
9028
9029int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9030{
9031 /* Don't accept realtime tasks when there is no way for them to run */
9032 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9033 return 0;
9034
9035 return 1;
9036}
9037
6d6bc0ad 9038#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9039static int sched_rt_global_constraints(void)
9040{
ac086bc2
PZ
9041 unsigned long flags;
9042 int i;
9043
ec5d4989
HS
9044 if (sysctl_sched_rt_period <= 0)
9045 return -EINVAL;
9046
60aa605d
PZ
9047 /*
9048 * There's always some RT tasks in the root group
9049 * -- migration, kstopmachine etc..
9050 */
9051 if (sysctl_sched_rt_runtime == 0)
9052 return -EBUSY;
9053
0986b11b 9054 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
9055 for_each_possible_cpu(i) {
9056 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9057
0986b11b 9058 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 9059 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 9060 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 9061 }
0986b11b 9062 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 9063
d0b27fa7
PZ
9064 return 0;
9065}
6d6bc0ad 9066#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9067
9068int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 9069 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9070 loff_t *ppos)
9071{
9072 int ret;
9073 int old_period, old_runtime;
9074 static DEFINE_MUTEX(mutex);
9075
9076 mutex_lock(&mutex);
9077 old_period = sysctl_sched_rt_period;
9078 old_runtime = sysctl_sched_rt_runtime;
9079
8d65af78 9080 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9081
9082 if (!ret && write) {
9083 ret = sched_rt_global_constraints();
9084 if (ret) {
9085 sysctl_sched_rt_period = old_period;
9086 sysctl_sched_rt_runtime = old_runtime;
9087 } else {
9088 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9089 def_rt_bandwidth.rt_period =
9090 ns_to_ktime(global_rt_period());
9091 }
9092 }
9093 mutex_unlock(&mutex);
9094
9095 return ret;
9096}
68318b8e 9097
052f1dc7 9098#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9099
9100/* return corresponding task_group object of a cgroup */
2b01dfe3 9101static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9102{
2b01dfe3
PM
9103 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9104 struct task_group, css);
68318b8e
SV
9105}
9106
9107static struct cgroup_subsys_state *
2b01dfe3 9108cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9109{
ec7dc8ac 9110 struct task_group *tg, *parent;
68318b8e 9111
2b01dfe3 9112 if (!cgrp->parent) {
68318b8e 9113 /* This is early initialization for the top cgroup */
07e06b01 9114 return &root_task_group.css;
68318b8e
SV
9115 }
9116
ec7dc8ac
DG
9117 parent = cgroup_tg(cgrp->parent);
9118 tg = sched_create_group(parent);
68318b8e
SV
9119 if (IS_ERR(tg))
9120 return ERR_PTR(-ENOMEM);
9121
68318b8e
SV
9122 return &tg->css;
9123}
9124
41a2d6cf
IM
9125static void
9126cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9127{
2b01dfe3 9128 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9129
9130 sched_destroy_group(tg);
9131}
9132
41a2d6cf 9133static int
be367d09 9134cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9135{
b68aa230 9136#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9137 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9138 return -EINVAL;
9139#else
68318b8e
SV
9140 /* We don't support RT-tasks being in separate groups */
9141 if (tsk->sched_class != &fair_sched_class)
9142 return -EINVAL;
b68aa230 9143#endif
be367d09
BB
9144 return 0;
9145}
68318b8e 9146
be367d09
BB
9147static int
9148cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9149 struct task_struct *tsk, bool threadgroup)
9150{
9151 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9152 if (retval)
9153 return retval;
9154 if (threadgroup) {
9155 struct task_struct *c;
9156 rcu_read_lock();
9157 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9158 retval = cpu_cgroup_can_attach_task(cgrp, c);
9159 if (retval) {
9160 rcu_read_unlock();
9161 return retval;
9162 }
9163 }
9164 rcu_read_unlock();
9165 }
68318b8e
SV
9166 return 0;
9167}
9168
9169static void
2b01dfe3 9170cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9171 struct cgroup *old_cont, struct task_struct *tsk,
9172 bool threadgroup)
68318b8e
SV
9173{
9174 sched_move_task(tsk);
be367d09
BB
9175 if (threadgroup) {
9176 struct task_struct *c;
9177 rcu_read_lock();
9178 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9179 sched_move_task(c);
9180 }
9181 rcu_read_unlock();
9182 }
68318b8e
SV
9183}
9184
068c5cc5 9185static void
d41d5a01
PZ
9186cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9187 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9188{
9189 /*
9190 * cgroup_exit() is called in the copy_process() failure path.
9191 * Ignore this case since the task hasn't ran yet, this avoids
9192 * trying to poke a half freed task state from generic code.
9193 */
9194 if (!(task->flags & PF_EXITING))
9195 return;
9196
9197 sched_move_task(task);
9198}
9199
052f1dc7 9200#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9201static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9202 u64 shareval)
68318b8e 9203{
2b01dfe3 9204 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9205}
9206
f4c753b7 9207static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9208{
2b01dfe3 9209 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9210
9211 return (u64) tg->shares;
9212}
6d6bc0ad 9213#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9214
052f1dc7 9215#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9216static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9217 s64 val)
6f505b16 9218{
06ecb27c 9219 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9220}
9221
06ecb27c 9222static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9223{
06ecb27c 9224 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9225}
d0b27fa7
PZ
9226
9227static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9228 u64 rt_period_us)
9229{
9230 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9231}
9232
9233static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9234{
9235 return sched_group_rt_period(cgroup_tg(cgrp));
9236}
6d6bc0ad 9237#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9238
fe5c7cc2 9239static struct cftype cpu_files[] = {
052f1dc7 9240#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9241 {
9242 .name = "shares",
f4c753b7
PM
9243 .read_u64 = cpu_shares_read_u64,
9244 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9245 },
052f1dc7
PZ
9246#endif
9247#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9248 {
9f0c1e56 9249 .name = "rt_runtime_us",
06ecb27c
PM
9250 .read_s64 = cpu_rt_runtime_read,
9251 .write_s64 = cpu_rt_runtime_write,
6f505b16 9252 },
d0b27fa7
PZ
9253 {
9254 .name = "rt_period_us",
f4c753b7
PM
9255 .read_u64 = cpu_rt_period_read_uint,
9256 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9257 },
052f1dc7 9258#endif
68318b8e
SV
9259};
9260
9261static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9262{
fe5c7cc2 9263 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9264}
9265
9266struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9267 .name = "cpu",
9268 .create = cpu_cgroup_create,
9269 .destroy = cpu_cgroup_destroy,
9270 .can_attach = cpu_cgroup_can_attach,
9271 .attach = cpu_cgroup_attach,
068c5cc5 9272 .exit = cpu_cgroup_exit,
38605cae
IM
9273 .populate = cpu_cgroup_populate,
9274 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9275 .early_init = 1,
9276};
9277
052f1dc7 9278#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9279
9280#ifdef CONFIG_CGROUP_CPUACCT
9281
9282/*
9283 * CPU accounting code for task groups.
9284 *
9285 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9286 * (balbir@in.ibm.com).
9287 */
9288
934352f2 9289/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9290struct cpuacct {
9291 struct cgroup_subsys_state css;
9292 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9293 u64 __percpu *cpuusage;
ef12fefa 9294 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9295 struct cpuacct *parent;
d842de87
SV
9296};
9297
9298struct cgroup_subsys cpuacct_subsys;
9299
9300/* return cpu accounting group corresponding to this container */
32cd756a 9301static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9302{
32cd756a 9303 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9304 struct cpuacct, css);
9305}
9306
9307/* return cpu accounting group to which this task belongs */
9308static inline struct cpuacct *task_ca(struct task_struct *tsk)
9309{
9310 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9311 struct cpuacct, css);
9312}
9313
9314/* create a new cpu accounting group */
9315static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9316 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9317{
9318 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9319 int i;
d842de87
SV
9320
9321 if (!ca)
ef12fefa 9322 goto out;
d842de87
SV
9323
9324 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9325 if (!ca->cpuusage)
9326 goto out_free_ca;
9327
9328 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9329 if (percpu_counter_init(&ca->cpustat[i], 0))
9330 goto out_free_counters;
d842de87 9331
934352f2
BR
9332 if (cgrp->parent)
9333 ca->parent = cgroup_ca(cgrp->parent);
9334
d842de87 9335 return &ca->css;
ef12fefa
BR
9336
9337out_free_counters:
9338 while (--i >= 0)
9339 percpu_counter_destroy(&ca->cpustat[i]);
9340 free_percpu(ca->cpuusage);
9341out_free_ca:
9342 kfree(ca);
9343out:
9344 return ERR_PTR(-ENOMEM);
d842de87
SV
9345}
9346
9347/* destroy an existing cpu accounting group */
41a2d6cf 9348static void
32cd756a 9349cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9350{
32cd756a 9351 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9352 int i;
d842de87 9353
ef12fefa
BR
9354 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9355 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9356 free_percpu(ca->cpuusage);
9357 kfree(ca);
9358}
9359
720f5498
KC
9360static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9361{
b36128c8 9362 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9363 u64 data;
9364
9365#ifndef CONFIG_64BIT
9366 /*
9367 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9368 */
05fa785c 9369 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9370 data = *cpuusage;
05fa785c 9371 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9372#else
9373 data = *cpuusage;
9374#endif
9375
9376 return data;
9377}
9378
9379static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9380{
b36128c8 9381 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9382
9383#ifndef CONFIG_64BIT
9384 /*
9385 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9386 */
05fa785c 9387 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9388 *cpuusage = val;
05fa785c 9389 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9390#else
9391 *cpuusage = val;
9392#endif
9393}
9394
d842de87 9395/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9396static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9397{
32cd756a 9398 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9399 u64 totalcpuusage = 0;
9400 int i;
9401
720f5498
KC
9402 for_each_present_cpu(i)
9403 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9404
9405 return totalcpuusage;
9406}
9407
0297b803
DG
9408static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9409 u64 reset)
9410{
9411 struct cpuacct *ca = cgroup_ca(cgrp);
9412 int err = 0;
9413 int i;
9414
9415 if (reset) {
9416 err = -EINVAL;
9417 goto out;
9418 }
9419
720f5498
KC
9420 for_each_present_cpu(i)
9421 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9422
0297b803
DG
9423out:
9424 return err;
9425}
9426
e9515c3c
KC
9427static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9428 struct seq_file *m)
9429{
9430 struct cpuacct *ca = cgroup_ca(cgroup);
9431 u64 percpu;
9432 int i;
9433
9434 for_each_present_cpu(i) {
9435 percpu = cpuacct_cpuusage_read(ca, i);
9436 seq_printf(m, "%llu ", (unsigned long long) percpu);
9437 }
9438 seq_printf(m, "\n");
9439 return 0;
9440}
9441
ef12fefa
BR
9442static const char *cpuacct_stat_desc[] = {
9443 [CPUACCT_STAT_USER] = "user",
9444 [CPUACCT_STAT_SYSTEM] = "system",
9445};
9446
9447static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9448 struct cgroup_map_cb *cb)
9449{
9450 struct cpuacct *ca = cgroup_ca(cgrp);
9451 int i;
9452
9453 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9454 s64 val = percpu_counter_read(&ca->cpustat[i]);
9455 val = cputime64_to_clock_t(val);
9456 cb->fill(cb, cpuacct_stat_desc[i], val);
9457 }
9458 return 0;
9459}
9460
d842de87
SV
9461static struct cftype files[] = {
9462 {
9463 .name = "usage",
f4c753b7
PM
9464 .read_u64 = cpuusage_read,
9465 .write_u64 = cpuusage_write,
d842de87 9466 },
e9515c3c
KC
9467 {
9468 .name = "usage_percpu",
9469 .read_seq_string = cpuacct_percpu_seq_read,
9470 },
ef12fefa
BR
9471 {
9472 .name = "stat",
9473 .read_map = cpuacct_stats_show,
9474 },
d842de87
SV
9475};
9476
32cd756a 9477static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9478{
32cd756a 9479 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9480}
9481
9482/*
9483 * charge this task's execution time to its accounting group.
9484 *
9485 * called with rq->lock held.
9486 */
9487static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9488{
9489 struct cpuacct *ca;
934352f2 9490 int cpu;
d842de87 9491
c40c6f85 9492 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9493 return;
9494
934352f2 9495 cpu = task_cpu(tsk);
a18b83b7
BR
9496
9497 rcu_read_lock();
9498
d842de87 9499 ca = task_ca(tsk);
d842de87 9500
934352f2 9501 for (; ca; ca = ca->parent) {
b36128c8 9502 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9503 *cpuusage += cputime;
9504 }
a18b83b7
BR
9505
9506 rcu_read_unlock();
d842de87
SV
9507}
9508
fa535a77
AB
9509/*
9510 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9511 * in cputime_t units. As a result, cpuacct_update_stats calls
9512 * percpu_counter_add with values large enough to always overflow the
9513 * per cpu batch limit causing bad SMP scalability.
9514 *
9515 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9516 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9517 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9518 */
9519#ifdef CONFIG_SMP
9520#define CPUACCT_BATCH \
9521 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9522#else
9523#define CPUACCT_BATCH 0
9524#endif
9525
ef12fefa
BR
9526/*
9527 * Charge the system/user time to the task's accounting group.
9528 */
9529static void cpuacct_update_stats(struct task_struct *tsk,
9530 enum cpuacct_stat_index idx, cputime_t val)
9531{
9532 struct cpuacct *ca;
fa535a77 9533 int batch = CPUACCT_BATCH;
ef12fefa
BR
9534
9535 if (unlikely(!cpuacct_subsys.active))
9536 return;
9537
9538 rcu_read_lock();
9539 ca = task_ca(tsk);
9540
9541 do {
fa535a77 9542 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9543 ca = ca->parent;
9544 } while (ca);
9545 rcu_read_unlock();
9546}
9547
d842de87
SV
9548struct cgroup_subsys cpuacct_subsys = {
9549 .name = "cpuacct",
9550 .create = cpuacct_create,
9551 .destroy = cpuacct_destroy,
9552 .populate = cpuacct_populate,
9553 .subsys_id = cpuacct_subsys_id,
9554};
9555#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9556