]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched.c
sched: add full schedstats to /proc/sched_debug
[mirror_ubuntu-jammy-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
6e0534f2
GH
77#include "sched_cpupri.h"
78
1da177e4
LT
79/*
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
83 */
84#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87
88/*
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
92 */
93#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96
97/*
d7876a08 98 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 99 */
d6322faf 100#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
d0b27fa7
PZ
113/*
114 * single value that denotes runtime == period, ie unlimited time.
115 */
116#define RUNTIME_INF ((u64)~0ULL)
117
5517d86b
ED
118#ifdef CONFIG_SMP
119/*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124{
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126}
127
128/*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133{
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136}
137#endif
138
e05606d3
IM
139static inline int rt_policy(int policy)
140{
3f33a7ce 141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
142 return 1;
143 return 0;
144}
145
146static inline int task_has_rt_policy(struct task_struct *p)
147{
148 return rt_policy(p->policy);
149}
150
1da177e4 151/*
6aa645ea 152 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 153 */
6aa645ea
IM
154struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
20b6331b 156 struct list_head queue[MAX_RT_PRIO];
6aa645ea
IM
157};
158
d0b27fa7 159struct rt_bandwidth {
ea736ed5
IM
160 /* nests inside the rq lock: */
161 spinlock_t rt_runtime_lock;
162 ktime_t rt_period;
163 u64 rt_runtime;
164 struct hrtimer rt_period_timer;
d0b27fa7
PZ
165};
166
167static struct rt_bandwidth def_rt_bandwidth;
168
169static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
170
171static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
172{
173 struct rt_bandwidth *rt_b =
174 container_of(timer, struct rt_bandwidth, rt_period_timer);
175 ktime_t now;
176 int overrun;
177 int idle = 0;
178
179 for (;;) {
180 now = hrtimer_cb_get_time(timer);
181 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
182
183 if (!overrun)
184 break;
185
186 idle = do_sched_rt_period_timer(rt_b, overrun);
187 }
188
189 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
190}
191
192static
193void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
194{
195 rt_b->rt_period = ns_to_ktime(period);
196 rt_b->rt_runtime = runtime;
197
ac086bc2
PZ
198 spin_lock_init(&rt_b->rt_runtime_lock);
199
d0b27fa7
PZ
200 hrtimer_init(&rt_b->rt_period_timer,
201 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
202 rt_b->rt_period_timer.function = sched_rt_period_timer;
203 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
204}
205
206static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
207{
208 ktime_t now;
209
210 if (rt_b->rt_runtime == RUNTIME_INF)
211 return;
212
213 if (hrtimer_active(&rt_b->rt_period_timer))
214 return;
215
216 spin_lock(&rt_b->rt_runtime_lock);
217 for (;;) {
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 break;
220
221 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
222 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
223 hrtimer_start(&rt_b->rt_period_timer,
224 rt_b->rt_period_timer.expires,
225 HRTIMER_MODE_ABS);
226 }
227 spin_unlock(&rt_b->rt_runtime_lock);
228}
229
230#ifdef CONFIG_RT_GROUP_SCHED
231static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
232{
233 hrtimer_cancel(&rt_b->rt_period_timer);
234}
235#endif
236
712555ee
HC
237/*
238 * sched_domains_mutex serializes calls to arch_init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
240 */
241static DEFINE_MUTEX(sched_domains_mutex);
242
052f1dc7 243#ifdef CONFIG_GROUP_SCHED
29f59db3 244
68318b8e
SV
245#include <linux/cgroup.h>
246
29f59db3
SV
247struct cfs_rq;
248
6f505b16
PZ
249static LIST_HEAD(task_groups);
250
29f59db3 251/* task group related information */
4cf86d77 252struct task_group {
052f1dc7 253#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
254 struct cgroup_subsys_state css;
255#endif
052f1dc7
PZ
256
257#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
052f1dc7
PZ
263#endif
264
265#ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
d0b27fa7 269 struct rt_bandwidth rt_bandwidth;
052f1dc7 270#endif
6b2d7700 271
ae8393e5 272 struct rcu_head rcu;
6f505b16 273 struct list_head list;
f473aa5e
PZ
274
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
29f59db3
SV
278};
279
354d60c2 280#ifdef CONFIG_USER_SCHED
eff766a6
PZ
281
282/*
283 * Root task group.
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
286 */
287struct task_group root_task_group;
288
052f1dc7 289#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
290/* Default task group's sched entity on each cpu */
291static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292/* Default task group's cfs_rq on each cpu */
293static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 294#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
295
296#ifdef CONFIG_RT_GROUP_SCHED
297static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
299#endif /* CONFIG_RT_GROUP_SCHED */
300#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 301#define root_task_group init_task_group
6d6bc0ad 302#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 303
8ed36996 304/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
305 * a task group's cpu shares.
306 */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
052f1dc7 309#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
310#ifdef CONFIG_USER_SCHED
311# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 312#else /* !CONFIG_USER_SCHED */
052f1dc7 313# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 314#endif /* CONFIG_USER_SCHED */
052f1dc7 315
cb4ad1ff 316/*
2e084786
LJ
317 * A weight of 0 or 1 can cause arithmetics problems.
318 * A weight of a cfs_rq is the sum of weights of which entities
319 * are queued on this cfs_rq, so a weight of a entity should not be
320 * too large, so as the shares value of a task group.
cb4ad1ff
MX
321 * (The default weight is 1024 - so there's no practical
322 * limitation from this.)
323 */
18d95a28 324#define MIN_SHARES 2
2e084786 325#define MAX_SHARES (1UL << 18)
18d95a28 326
052f1dc7
PZ
327static int init_task_group_load = INIT_TASK_GROUP_LOAD;
328#endif
329
29f59db3 330/* Default task group.
3a252015 331 * Every task in system belong to this group at bootup.
29f59db3 332 */
434d53b0 333struct task_group init_task_group;
29f59db3
SV
334
335/* return group to which a task belongs */
4cf86d77 336static inline struct task_group *task_group(struct task_struct *p)
29f59db3 337{
4cf86d77 338 struct task_group *tg;
9b5b7751 339
052f1dc7 340#ifdef CONFIG_USER_SCHED
24e377a8 341 tg = p->user->tg;
052f1dc7 342#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
343 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
344 struct task_group, css);
24e377a8 345#else
41a2d6cf 346 tg = &init_task_group;
24e377a8 347#endif
9b5b7751 348 return tg;
29f59db3
SV
349}
350
351/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 352static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 353{
052f1dc7 354#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
355 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
356 p->se.parent = task_group(p)->se[cpu];
052f1dc7 357#endif
6f505b16 358
052f1dc7 359#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
360 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
361 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 362#endif
29f59db3
SV
363}
364
365#else
366
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 368
052f1dc7 369#endif /* CONFIG_GROUP_SCHED */
29f59db3 370
6aa645ea
IM
371/* CFS-related fields in a runqueue */
372struct cfs_rq {
373 struct load_weight load;
374 unsigned long nr_running;
375
6aa645ea 376 u64 exec_clock;
e9acbff6 377 u64 min_vruntime;
103638d9 378 u64 pair_start;
6aa645ea
IM
379
380 struct rb_root tasks_timeline;
381 struct rb_node *rb_leftmost;
4a55bd5e
PZ
382
383 struct list_head tasks;
384 struct list_head *balance_iterator;
385
386 /*
387 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
388 * It is set to NULL otherwise (i.e when none are currently running).
389 */
aa2ac252 390 struct sched_entity *curr, *next;
ddc97297
PZ
391
392 unsigned long nr_spread_over;
393
62160e3f 394#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
395 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
396
41a2d6cf
IM
397 /*
398 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
399 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
400 * (like users, containers etc.)
401 *
402 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
403 * list is used during load balance.
404 */
41a2d6cf
IM
405 struct list_head leaf_cfs_rq_list;
406 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
407
408#ifdef CONFIG_SMP
409 unsigned long task_weight;
410 unsigned long shares;
411 /*
412 * We need space to build a sched_domain wide view of the full task
413 * group tree, in order to avoid depending on dynamic memory allocation
414 * during the load balancing we place this in the per cpu task group
415 * hierarchy. This limits the load balancing to one instance per cpu,
416 * but more should not be needed anyway.
417 */
418 struct aggregate_struct {
419 /*
420 * load = weight(cpus) * f(tg)
421 *
422 * Where f(tg) is the recursive weight fraction assigned to
423 * this group.
424 */
425 unsigned long load;
426
427 /*
428 * part of the group weight distributed to this span.
429 */
430 unsigned long shares;
431
432 /*
433 * The sum of all runqueue weights within this span.
434 */
435 unsigned long rq_weight;
436
437 /*
438 * Weight contributed by tasks; this is the part we can
439 * influence by moving tasks around.
440 */
441 unsigned long task_weight;
442 } aggregate;
443#endif
6aa645ea
IM
444#endif
445};
1da177e4 446
6aa645ea
IM
447/* Real-Time classes' related field in a runqueue: */
448struct rt_rq {
449 struct rt_prio_array active;
63489e45 450 unsigned long rt_nr_running;
052f1dc7 451#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
452 int highest_prio; /* highest queued rt task prio */
453#endif
fa85ae24 454#ifdef CONFIG_SMP
73fe6aae 455 unsigned long rt_nr_migratory;
a22d7fc1 456 int overloaded;
fa85ae24 457#endif
6f505b16 458 int rt_throttled;
fa85ae24 459 u64 rt_time;
ac086bc2 460 u64 rt_runtime;
ea736ed5 461 /* Nests inside the rq lock: */
ac086bc2 462 spinlock_t rt_runtime_lock;
6f505b16 463
052f1dc7 464#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
465 unsigned long rt_nr_boosted;
466
6f505b16
PZ
467 struct rq *rq;
468 struct list_head leaf_rt_rq_list;
469 struct task_group *tg;
470 struct sched_rt_entity *rt_se;
471#endif
6aa645ea
IM
472};
473
57d885fe
GH
474#ifdef CONFIG_SMP
475
476/*
477 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
478 * variables. Each exclusive cpuset essentially defines an island domain by
479 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
480 * exclusive cpuset is created, we also create and attach a new root-domain
481 * object.
482 *
57d885fe
GH
483 */
484struct root_domain {
485 atomic_t refcount;
486 cpumask_t span;
487 cpumask_t online;
637f5085 488
0eab9146 489 /*
637f5085
GH
490 * The "RT overload" flag: it gets set if a CPU has more than
491 * one runnable RT task.
492 */
493 cpumask_t rto_mask;
0eab9146 494 atomic_t rto_count;
6e0534f2
GH
495#ifdef CONFIG_SMP
496 struct cpupri cpupri;
497#endif
57d885fe
GH
498};
499
dc938520
GH
500/*
501 * By default the system creates a single root-domain with all cpus as
502 * members (mimicking the global state we have today).
503 */
57d885fe
GH
504static struct root_domain def_root_domain;
505
506#endif
507
1da177e4
LT
508/*
509 * This is the main, per-CPU runqueue data structure.
510 *
511 * Locking rule: those places that want to lock multiple runqueues
512 * (such as the load balancing or the thread migration code), lock
513 * acquire operations must be ordered by ascending &runqueue.
514 */
70b97a7f 515struct rq {
d8016491
IM
516 /* runqueue lock: */
517 spinlock_t lock;
1da177e4
LT
518
519 /*
520 * nr_running and cpu_load should be in the same cacheline because
521 * remote CPUs use both these fields when doing load calculation.
522 */
523 unsigned long nr_running;
6aa645ea
IM
524 #define CPU_LOAD_IDX_MAX 5
525 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 526 unsigned char idle_at_tick;
46cb4b7c 527#ifdef CONFIG_NO_HZ
15934a37 528 unsigned long last_tick_seen;
46cb4b7c
SS
529 unsigned char in_nohz_recently;
530#endif
d8016491
IM
531 /* capture load from *all* tasks on this cpu: */
532 struct load_weight load;
6aa645ea
IM
533 unsigned long nr_load_updates;
534 u64 nr_switches;
535
536 struct cfs_rq cfs;
6f505b16 537 struct rt_rq rt;
6f505b16 538
6aa645ea 539#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
540 /* list of leaf cfs_rq on this cpu: */
541 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
542#endif
543#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 544 struct list_head leaf_rt_rq_list;
1da177e4 545#endif
1da177e4
LT
546
547 /*
548 * This is part of a global counter where only the total sum
549 * over all CPUs matters. A task can increase this counter on
550 * one CPU and if it got migrated afterwards it may decrease
551 * it on another CPU. Always updated under the runqueue lock:
552 */
553 unsigned long nr_uninterruptible;
554
36c8b586 555 struct task_struct *curr, *idle;
c9819f45 556 unsigned long next_balance;
1da177e4 557 struct mm_struct *prev_mm;
6aa645ea 558
3e51f33f 559 u64 clock;
6aa645ea 560
1da177e4
LT
561 atomic_t nr_iowait;
562
563#ifdef CONFIG_SMP
0eab9146 564 struct root_domain *rd;
1da177e4
LT
565 struct sched_domain *sd;
566
567 /* For active balancing */
568 int active_balance;
569 int push_cpu;
d8016491
IM
570 /* cpu of this runqueue: */
571 int cpu;
1f11eb6a 572 int online;
1da177e4 573
36c8b586 574 struct task_struct *migration_thread;
1da177e4
LT
575 struct list_head migration_queue;
576#endif
577
8f4d37ec
PZ
578#ifdef CONFIG_SCHED_HRTICK
579 unsigned long hrtick_flags;
580 ktime_t hrtick_expire;
581 struct hrtimer hrtick_timer;
582#endif
583
1da177e4
LT
584#ifdef CONFIG_SCHEDSTATS
585 /* latency stats */
586 struct sched_info rq_sched_info;
587
588 /* sys_sched_yield() stats */
480b9434
KC
589 unsigned int yld_exp_empty;
590 unsigned int yld_act_empty;
591 unsigned int yld_both_empty;
592 unsigned int yld_count;
1da177e4
LT
593
594 /* schedule() stats */
480b9434
KC
595 unsigned int sched_switch;
596 unsigned int sched_count;
597 unsigned int sched_goidle;
1da177e4
LT
598
599 /* try_to_wake_up() stats */
480b9434
KC
600 unsigned int ttwu_count;
601 unsigned int ttwu_local;
b8efb561
IM
602
603 /* BKL stats */
480b9434 604 unsigned int bkl_count;
1da177e4 605#endif
fcb99371 606 struct lock_class_key rq_lock_key;
1da177e4
LT
607};
608
f34e3b61 609static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 610
dd41f596
IM
611static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
612{
613 rq->curr->sched_class->check_preempt_curr(rq, p);
614}
615
0a2966b4
CL
616static inline int cpu_of(struct rq *rq)
617{
618#ifdef CONFIG_SMP
619 return rq->cpu;
620#else
621 return 0;
622#endif
623}
624
674311d5
NP
625/*
626 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 627 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
628 *
629 * The domain tree of any CPU may only be accessed from within
630 * preempt-disabled sections.
631 */
48f24c4d
IM
632#define for_each_domain(cpu, __sd) \
633 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
634
635#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
636#define this_rq() (&__get_cpu_var(runqueues))
637#define task_rq(p) cpu_rq(task_cpu(p))
638#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
639
3e51f33f
PZ
640static inline void update_rq_clock(struct rq *rq)
641{
642 rq->clock = sched_clock_cpu(cpu_of(rq));
643}
644
bf5c91ba
IM
645/*
646 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
647 */
648#ifdef CONFIG_SCHED_DEBUG
649# define const_debug __read_mostly
650#else
651# define const_debug static const
652#endif
653
654/*
655 * Debugging: various feature bits
656 */
f00b45c1
PZ
657
658#define SCHED_FEAT(name, enabled) \
659 __SCHED_FEAT_##name ,
660
bf5c91ba 661enum {
f00b45c1 662#include "sched_features.h"
bf5c91ba
IM
663};
664
f00b45c1
PZ
665#undef SCHED_FEAT
666
667#define SCHED_FEAT(name, enabled) \
668 (1UL << __SCHED_FEAT_##name) * enabled |
669
bf5c91ba 670const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
671#include "sched_features.h"
672 0;
673
674#undef SCHED_FEAT
675
676#ifdef CONFIG_SCHED_DEBUG
677#define SCHED_FEAT(name, enabled) \
678 #name ,
679
983ed7a6 680static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
681#include "sched_features.h"
682 NULL
683};
684
685#undef SCHED_FEAT
686
983ed7a6 687static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
688{
689 filp->private_data = inode->i_private;
690 return 0;
691}
692
693static ssize_t
694sched_feat_read(struct file *filp, char __user *ubuf,
695 size_t cnt, loff_t *ppos)
696{
697 char *buf;
698 int r = 0;
699 int len = 0;
700 int i;
701
702 for (i = 0; sched_feat_names[i]; i++) {
703 len += strlen(sched_feat_names[i]);
704 len += 4;
705 }
706
707 buf = kmalloc(len + 2, GFP_KERNEL);
708 if (!buf)
709 return -ENOMEM;
710
711 for (i = 0; sched_feat_names[i]; i++) {
712 if (sysctl_sched_features & (1UL << i))
713 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
714 else
c24b7c52 715 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
716 }
717
718 r += sprintf(buf + r, "\n");
719 WARN_ON(r >= len + 2);
720
721 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
722
723 kfree(buf);
724
725 return r;
726}
727
728static ssize_t
729sched_feat_write(struct file *filp, const char __user *ubuf,
730 size_t cnt, loff_t *ppos)
731{
732 char buf[64];
733 char *cmp = buf;
734 int neg = 0;
735 int i;
736
737 if (cnt > 63)
738 cnt = 63;
739
740 if (copy_from_user(&buf, ubuf, cnt))
741 return -EFAULT;
742
743 buf[cnt] = 0;
744
c24b7c52 745 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
746 neg = 1;
747 cmp += 3;
748 }
749
750 for (i = 0; sched_feat_names[i]; i++) {
751 int len = strlen(sched_feat_names[i]);
752
753 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
754 if (neg)
755 sysctl_sched_features &= ~(1UL << i);
756 else
757 sysctl_sched_features |= (1UL << i);
758 break;
759 }
760 }
761
762 if (!sched_feat_names[i])
763 return -EINVAL;
764
765 filp->f_pos += cnt;
766
767 return cnt;
768}
769
770static struct file_operations sched_feat_fops = {
771 .open = sched_feat_open,
772 .read = sched_feat_read,
773 .write = sched_feat_write,
774};
775
776static __init int sched_init_debug(void)
777{
f00b45c1
PZ
778 debugfs_create_file("sched_features", 0644, NULL, NULL,
779 &sched_feat_fops);
780
781 return 0;
782}
783late_initcall(sched_init_debug);
784
785#endif
786
787#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 788
b82d9fdd
PZ
789/*
790 * Number of tasks to iterate in a single balance run.
791 * Limited because this is done with IRQs disabled.
792 */
793const_debug unsigned int sysctl_sched_nr_migrate = 32;
794
fa85ae24 795/*
9f0c1e56 796 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
797 * default: 1s
798 */
9f0c1e56 799unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 800
6892b75e
IM
801static __read_mostly int scheduler_running;
802
9f0c1e56
PZ
803/*
804 * part of the period that we allow rt tasks to run in us.
805 * default: 0.95s
806 */
807int sysctl_sched_rt_runtime = 950000;
fa85ae24 808
d0b27fa7
PZ
809static inline u64 global_rt_period(void)
810{
811 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
812}
813
814static inline u64 global_rt_runtime(void)
815{
816 if (sysctl_sched_rt_period < 0)
817 return RUNTIME_INF;
818
819 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
820}
fa85ae24 821
1da177e4 822#ifndef prepare_arch_switch
4866cde0
NP
823# define prepare_arch_switch(next) do { } while (0)
824#endif
825#ifndef finish_arch_switch
826# define finish_arch_switch(prev) do { } while (0)
827#endif
828
051a1d1a
DA
829static inline int task_current(struct rq *rq, struct task_struct *p)
830{
831 return rq->curr == p;
832}
833
4866cde0 834#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 835static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 836{
051a1d1a 837 return task_current(rq, p);
4866cde0
NP
838}
839
70b97a7f 840static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
841{
842}
843
70b97a7f 844static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 845{
da04c035
IM
846#ifdef CONFIG_DEBUG_SPINLOCK
847 /* this is a valid case when another task releases the spinlock */
848 rq->lock.owner = current;
849#endif
8a25d5de
IM
850 /*
851 * If we are tracking spinlock dependencies then we have to
852 * fix up the runqueue lock - which gets 'carried over' from
853 * prev into current:
854 */
855 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
856
4866cde0
NP
857 spin_unlock_irq(&rq->lock);
858}
859
860#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 861static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
862{
863#ifdef CONFIG_SMP
864 return p->oncpu;
865#else
051a1d1a 866 return task_current(rq, p);
4866cde0
NP
867#endif
868}
869
70b97a7f 870static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
871{
872#ifdef CONFIG_SMP
873 /*
874 * We can optimise this out completely for !SMP, because the
875 * SMP rebalancing from interrupt is the only thing that cares
876 * here.
877 */
878 next->oncpu = 1;
879#endif
880#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
881 spin_unlock_irq(&rq->lock);
882#else
883 spin_unlock(&rq->lock);
884#endif
885}
886
70b97a7f 887static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
888{
889#ifdef CONFIG_SMP
890 /*
891 * After ->oncpu is cleared, the task can be moved to a different CPU.
892 * We must ensure this doesn't happen until the switch is completely
893 * finished.
894 */
895 smp_wmb();
896 prev->oncpu = 0;
897#endif
898#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
899 local_irq_enable();
1da177e4 900#endif
4866cde0
NP
901}
902#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 903
b29739f9
IM
904/*
905 * __task_rq_lock - lock the runqueue a given task resides on.
906 * Must be called interrupts disabled.
907 */
70b97a7f 908static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
909 __acquires(rq->lock)
910{
3a5c359a
AK
911 for (;;) {
912 struct rq *rq = task_rq(p);
913 spin_lock(&rq->lock);
914 if (likely(rq == task_rq(p)))
915 return rq;
b29739f9 916 spin_unlock(&rq->lock);
b29739f9 917 }
b29739f9
IM
918}
919
1da177e4
LT
920/*
921 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 922 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
923 * explicitly disabling preemption.
924 */
70b97a7f 925static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
926 __acquires(rq->lock)
927{
70b97a7f 928 struct rq *rq;
1da177e4 929
3a5c359a
AK
930 for (;;) {
931 local_irq_save(*flags);
932 rq = task_rq(p);
933 spin_lock(&rq->lock);
934 if (likely(rq == task_rq(p)))
935 return rq;
1da177e4 936 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 937 }
1da177e4
LT
938}
939
a9957449 940static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
941 __releases(rq->lock)
942{
943 spin_unlock(&rq->lock);
944}
945
70b97a7f 946static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
947 __releases(rq->lock)
948{
949 spin_unlock_irqrestore(&rq->lock, *flags);
950}
951
1da177e4 952/*
cc2a73b5 953 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 954 */
a9957449 955static struct rq *this_rq_lock(void)
1da177e4
LT
956 __acquires(rq->lock)
957{
70b97a7f 958 struct rq *rq;
1da177e4
LT
959
960 local_irq_disable();
961 rq = this_rq();
962 spin_lock(&rq->lock);
963
964 return rq;
965}
966
8f4d37ec
PZ
967static void __resched_task(struct task_struct *p, int tif_bit);
968
969static inline void resched_task(struct task_struct *p)
970{
971 __resched_task(p, TIF_NEED_RESCHED);
972}
973
974#ifdef CONFIG_SCHED_HRTICK
975/*
976 * Use HR-timers to deliver accurate preemption points.
977 *
978 * Its all a bit involved since we cannot program an hrt while holding the
979 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
980 * reschedule event.
981 *
982 * When we get rescheduled we reprogram the hrtick_timer outside of the
983 * rq->lock.
984 */
985static inline void resched_hrt(struct task_struct *p)
986{
987 __resched_task(p, TIF_HRTICK_RESCHED);
988}
989
990static inline void resched_rq(struct rq *rq)
991{
992 unsigned long flags;
993
994 spin_lock_irqsave(&rq->lock, flags);
995 resched_task(rq->curr);
996 spin_unlock_irqrestore(&rq->lock, flags);
997}
998
999enum {
1000 HRTICK_SET, /* re-programm hrtick_timer */
1001 HRTICK_RESET, /* not a new slice */
b328ca18 1002 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1003};
1004
1005/*
1006 * Use hrtick when:
1007 * - enabled by features
1008 * - hrtimer is actually high res
1009 */
1010static inline int hrtick_enabled(struct rq *rq)
1011{
1012 if (!sched_feat(HRTICK))
1013 return 0;
b328ca18
PZ
1014 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1015 return 0;
8f4d37ec
PZ
1016 return hrtimer_is_hres_active(&rq->hrtick_timer);
1017}
1018
1019/*
1020 * Called to set the hrtick timer state.
1021 *
1022 * called with rq->lock held and irqs disabled
1023 */
1024static void hrtick_start(struct rq *rq, u64 delay, int reset)
1025{
1026 assert_spin_locked(&rq->lock);
1027
1028 /*
1029 * preempt at: now + delay
1030 */
1031 rq->hrtick_expire =
1032 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1033 /*
1034 * indicate we need to program the timer
1035 */
1036 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1037 if (reset)
1038 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1039
1040 /*
1041 * New slices are called from the schedule path and don't need a
1042 * forced reschedule.
1043 */
1044 if (reset)
1045 resched_hrt(rq->curr);
1046}
1047
1048static void hrtick_clear(struct rq *rq)
1049{
1050 if (hrtimer_active(&rq->hrtick_timer))
1051 hrtimer_cancel(&rq->hrtick_timer);
1052}
1053
1054/*
1055 * Update the timer from the possible pending state.
1056 */
1057static void hrtick_set(struct rq *rq)
1058{
1059 ktime_t time;
1060 int set, reset;
1061 unsigned long flags;
1062
1063 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1064
1065 spin_lock_irqsave(&rq->lock, flags);
1066 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1067 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1068 time = rq->hrtick_expire;
1069 clear_thread_flag(TIF_HRTICK_RESCHED);
1070 spin_unlock_irqrestore(&rq->lock, flags);
1071
1072 if (set) {
1073 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1074 if (reset && !hrtimer_active(&rq->hrtick_timer))
1075 resched_rq(rq);
1076 } else
1077 hrtick_clear(rq);
1078}
1079
1080/*
1081 * High-resolution timer tick.
1082 * Runs from hardirq context with interrupts disabled.
1083 */
1084static enum hrtimer_restart hrtick(struct hrtimer *timer)
1085{
1086 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1087
1088 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1089
1090 spin_lock(&rq->lock);
3e51f33f 1091 update_rq_clock(rq);
8f4d37ec
PZ
1092 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1093 spin_unlock(&rq->lock);
1094
1095 return HRTIMER_NORESTART;
1096}
1097
81d41d7e 1098#ifdef CONFIG_SMP
b328ca18
PZ
1099static void hotplug_hrtick_disable(int cpu)
1100{
1101 struct rq *rq = cpu_rq(cpu);
1102 unsigned long flags;
1103
1104 spin_lock_irqsave(&rq->lock, flags);
1105 rq->hrtick_flags = 0;
1106 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1107 spin_unlock_irqrestore(&rq->lock, flags);
1108
1109 hrtick_clear(rq);
1110}
1111
1112static void hotplug_hrtick_enable(int cpu)
1113{
1114 struct rq *rq = cpu_rq(cpu);
1115 unsigned long flags;
1116
1117 spin_lock_irqsave(&rq->lock, flags);
1118 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1119 spin_unlock_irqrestore(&rq->lock, flags);
1120}
1121
1122static int
1123hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1124{
1125 int cpu = (int)(long)hcpu;
1126
1127 switch (action) {
1128 case CPU_UP_CANCELED:
1129 case CPU_UP_CANCELED_FROZEN:
1130 case CPU_DOWN_PREPARE:
1131 case CPU_DOWN_PREPARE_FROZEN:
1132 case CPU_DEAD:
1133 case CPU_DEAD_FROZEN:
1134 hotplug_hrtick_disable(cpu);
1135 return NOTIFY_OK;
1136
1137 case CPU_UP_PREPARE:
1138 case CPU_UP_PREPARE_FROZEN:
1139 case CPU_DOWN_FAILED:
1140 case CPU_DOWN_FAILED_FROZEN:
1141 case CPU_ONLINE:
1142 case CPU_ONLINE_FROZEN:
1143 hotplug_hrtick_enable(cpu);
1144 return NOTIFY_OK;
1145 }
1146
1147 return NOTIFY_DONE;
1148}
1149
1150static void init_hrtick(void)
1151{
1152 hotcpu_notifier(hotplug_hrtick, 0);
1153}
81d41d7e 1154#endif /* CONFIG_SMP */
b328ca18
PZ
1155
1156static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1157{
1158 rq->hrtick_flags = 0;
1159 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1160 rq->hrtick_timer.function = hrtick;
1161 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1162}
1163
1164void hrtick_resched(void)
1165{
1166 struct rq *rq;
1167 unsigned long flags;
1168
1169 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1170 return;
1171
1172 local_irq_save(flags);
1173 rq = cpu_rq(smp_processor_id());
1174 hrtick_set(rq);
1175 local_irq_restore(flags);
1176}
1177#else
1178static inline void hrtick_clear(struct rq *rq)
1179{
1180}
1181
1182static inline void hrtick_set(struct rq *rq)
1183{
1184}
1185
1186static inline void init_rq_hrtick(struct rq *rq)
1187{
1188}
1189
1190void hrtick_resched(void)
1191{
1192}
b328ca18
PZ
1193
1194static inline void init_hrtick(void)
1195{
1196}
8f4d37ec
PZ
1197#endif
1198
c24d20db
IM
1199/*
1200 * resched_task - mark a task 'to be rescheduled now'.
1201 *
1202 * On UP this means the setting of the need_resched flag, on SMP it
1203 * might also involve a cross-CPU call to trigger the scheduler on
1204 * the target CPU.
1205 */
1206#ifdef CONFIG_SMP
1207
1208#ifndef tsk_is_polling
1209#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1210#endif
1211
8f4d37ec 1212static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1213{
1214 int cpu;
1215
1216 assert_spin_locked(&task_rq(p)->lock);
1217
8f4d37ec 1218 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1219 return;
1220
8f4d37ec 1221 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1222
1223 cpu = task_cpu(p);
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /* NEED_RESCHED must be visible before we test polling */
1228 smp_mb();
1229 if (!tsk_is_polling(p))
1230 smp_send_reschedule(cpu);
1231}
1232
1233static void resched_cpu(int cpu)
1234{
1235 struct rq *rq = cpu_rq(cpu);
1236 unsigned long flags;
1237
1238 if (!spin_trylock_irqsave(&rq->lock, flags))
1239 return;
1240 resched_task(cpu_curr(cpu));
1241 spin_unlock_irqrestore(&rq->lock, flags);
1242}
06d8308c
TG
1243
1244#ifdef CONFIG_NO_HZ
1245/*
1246 * When add_timer_on() enqueues a timer into the timer wheel of an
1247 * idle CPU then this timer might expire before the next timer event
1248 * which is scheduled to wake up that CPU. In case of a completely
1249 * idle system the next event might even be infinite time into the
1250 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1251 * leaves the inner idle loop so the newly added timer is taken into
1252 * account when the CPU goes back to idle and evaluates the timer
1253 * wheel for the next timer event.
1254 */
1255void wake_up_idle_cpu(int cpu)
1256{
1257 struct rq *rq = cpu_rq(cpu);
1258
1259 if (cpu == smp_processor_id())
1260 return;
1261
1262 /*
1263 * This is safe, as this function is called with the timer
1264 * wheel base lock of (cpu) held. When the CPU is on the way
1265 * to idle and has not yet set rq->curr to idle then it will
1266 * be serialized on the timer wheel base lock and take the new
1267 * timer into account automatically.
1268 */
1269 if (rq->curr != rq->idle)
1270 return;
1271
1272 /*
1273 * We can set TIF_RESCHED on the idle task of the other CPU
1274 * lockless. The worst case is that the other CPU runs the
1275 * idle task through an additional NOOP schedule()
1276 */
1277 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1278
1279 /* NEED_RESCHED must be visible before we test polling */
1280 smp_mb();
1281 if (!tsk_is_polling(rq->idle))
1282 smp_send_reschedule(cpu);
1283}
6d6bc0ad 1284#endif /* CONFIG_NO_HZ */
06d8308c 1285
6d6bc0ad 1286#else /* !CONFIG_SMP */
8f4d37ec 1287static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1288{
1289 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1290 set_tsk_thread_flag(p, tif_bit);
c24d20db 1291}
6d6bc0ad 1292#endif /* CONFIG_SMP */
c24d20db 1293
45bf76df
IM
1294#if BITS_PER_LONG == 32
1295# define WMULT_CONST (~0UL)
1296#else
1297# define WMULT_CONST (1UL << 32)
1298#endif
1299
1300#define WMULT_SHIFT 32
1301
194081eb
IM
1302/*
1303 * Shift right and round:
1304 */
cf2ab469 1305#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1306
a7be37ac
PZ
1307/*
1308 * delta *= weight / lw
1309 */
cb1c4fc9 1310static unsigned long
45bf76df
IM
1311calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1312 struct load_weight *lw)
1313{
1314 u64 tmp;
1315
7a232e03
LJ
1316 if (!lw->inv_weight) {
1317 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1318 lw->inv_weight = 1;
1319 else
1320 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1321 / (lw->weight+1);
1322 }
45bf76df
IM
1323
1324 tmp = (u64)delta_exec * weight;
1325 /*
1326 * Check whether we'd overflow the 64-bit multiplication:
1327 */
194081eb 1328 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1329 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1330 WMULT_SHIFT/2);
1331 else
cf2ab469 1332 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1333
ecf691da 1334 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1335}
1336
1091985b 1337static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1338{
1339 lw->weight += inc;
e89996ae 1340 lw->inv_weight = 0;
45bf76df
IM
1341}
1342
1091985b 1343static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1344{
1345 lw->weight -= dec;
e89996ae 1346 lw->inv_weight = 0;
45bf76df
IM
1347}
1348
2dd73a4f
PW
1349/*
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1354 * scaled version of the new time slice allocation that they receive on time
1355 * slice expiry etc.
1356 */
1357
dd41f596
IM
1358#define WEIGHT_IDLEPRIO 2
1359#define WMULT_IDLEPRIO (1 << 31)
1360
1361/*
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1366 *
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
dd41f596
IM
1372 */
1373static const int prio_to_weight[40] = {
254753dc
IM
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1382};
1383
5714d2de
IM
1384/*
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1386 *
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1390 */
dd41f596 1391static const u32 prio_to_wmult[40] = {
254753dc
IM
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1400};
2dd73a4f 1401
dd41f596
IM
1402static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1403
1404/*
1405 * runqueue iterator, to support SMP load-balancing between different
1406 * scheduling classes, without having to expose their internal data
1407 * structures to the load-balancing proper:
1408 */
1409struct rq_iterator {
1410 void *arg;
1411 struct task_struct *(*start)(void *);
1412 struct task_struct *(*next)(void *);
1413};
1414
e1d1484f
PW
1415#ifdef CONFIG_SMP
1416static unsigned long
1417balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 unsigned long max_load_move, struct sched_domain *sd,
1419 enum cpu_idle_type idle, int *all_pinned,
1420 int *this_best_prio, struct rq_iterator *iterator);
1421
1422static int
1423iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1424 struct sched_domain *sd, enum cpu_idle_type idle,
1425 struct rq_iterator *iterator);
e1d1484f 1426#endif
dd41f596 1427
d842de87
SV
1428#ifdef CONFIG_CGROUP_CPUACCT
1429static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1430#else
1431static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1432#endif
1433
18d95a28
PZ
1434static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1435{
1436 update_load_add(&rq->load, load);
1437}
1438
1439static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_sub(&rq->load, load);
1442}
1443
e7693a36
GH
1444#ifdef CONFIG_SMP
1445static unsigned long source_load(int cpu, int type);
1446static unsigned long target_load(int cpu, int type);
1447static unsigned long cpu_avg_load_per_task(int cpu);
1448static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
c09595f6
PZ
1449
1450#ifdef CONFIG_FAIR_GROUP_SCHED
1451
1452/*
1453 * Group load balancing.
1454 *
1455 * We calculate a few balance domain wide aggregate numbers; load and weight.
1456 * Given the pictures below, and assuming each item has equal weight:
1457 *
1458 * root 1 - thread
1459 * / | \ A - group
1460 * A 1 B
1461 * /|\ / \
1462 * C 2 D 3 4
1463 * | |
1464 * 5 6
1465 *
1466 * load:
1467 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1468 * which equals 1/9-th of the total load.
1469 *
1470 * shares:
1471 * The weight of this group on the selected cpus.
1472 *
1473 * rq_weight:
1474 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1475 * B would get 2.
1476 *
1477 * task_weight:
1478 * Part of the rq_weight contributed by tasks; all groups except B would
1479 * get 1, B gets 2.
1480 */
1481
1482static inline struct aggregate_struct *
1483aggregate(struct task_group *tg, struct sched_domain *sd)
1484{
1485 return &tg->cfs_rq[sd->first_cpu]->aggregate;
1486}
1487
1488typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
1489
1490/*
1491 * Iterate the full tree, calling @down when first entering a node and @up when
1492 * leaving it for the final time.
1493 */
1494static
1495void aggregate_walk_tree(aggregate_func down, aggregate_func up,
1496 struct sched_domain *sd)
1497{
1498 struct task_group *parent, *child;
1499
1500 rcu_read_lock();
1501 parent = &root_task_group;
1502down:
1503 (*down)(parent, sd);
1504 list_for_each_entry_rcu(child, &parent->children, siblings) {
1505 parent = child;
1506 goto down;
1507
1508up:
1509 continue;
1510 }
1511 (*up)(parent, sd);
1512
1513 child = parent;
1514 parent = parent->parent;
1515 if (parent)
1516 goto up;
1517 rcu_read_unlock();
1518}
1519
1520/*
1521 * Calculate the aggregate runqueue weight.
1522 */
1523static
1524void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
1525{
1526 unsigned long rq_weight = 0;
1527 unsigned long task_weight = 0;
1528 int i;
1529
1530 for_each_cpu_mask(i, sd->span) {
1531 rq_weight += tg->cfs_rq[i]->load.weight;
1532 task_weight += tg->cfs_rq[i]->task_weight;
1533 }
1534
1535 aggregate(tg, sd)->rq_weight = rq_weight;
1536 aggregate(tg, sd)->task_weight = task_weight;
1537}
1538
1539/*
1540 * Compute the weight of this group on the given cpus.
1541 */
1542static
1543void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
1544{
1545 unsigned long shares = 0;
1546 int i;
1547
1548 for_each_cpu_mask(i, sd->span)
1549 shares += tg->cfs_rq[i]->shares;
1550
1551 if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
1552 shares = tg->shares;
1553
1554 aggregate(tg, sd)->shares = shares;
1555}
1556
1557/*
1558 * Compute the load fraction assigned to this group, relies on the aggregate
1559 * weight and this group's parent's load, i.e. top-down.
1560 */
1561static
1562void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
1563{
1564 unsigned long load;
1565
1566 if (!tg->parent) {
1567 int i;
1568
1569 load = 0;
1570 for_each_cpu_mask(i, sd->span)
1571 load += cpu_rq(i)->load.weight;
1572
1573 } else {
1574 load = aggregate(tg->parent, sd)->load;
1575
1576 /*
1577 * shares is our weight in the parent's rq so
1578 * shares/parent->rq_weight gives our fraction of the load
1579 */
1580 load *= aggregate(tg, sd)->shares;
1581 load /= aggregate(tg->parent, sd)->rq_weight + 1;
1582 }
1583
1584 aggregate(tg, sd)->load = load;
1585}
1586
1587static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1588
1589/*
1590 * Calculate and set the cpu's group shares.
1591 */
1592static void
1593__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
1594 int tcpu)
1595{
1596 int boost = 0;
1597 unsigned long shares;
1598 unsigned long rq_weight;
1599
1600 if (!tg->se[tcpu])
1601 return;
1602
1603 rq_weight = tg->cfs_rq[tcpu]->load.weight;
1604
1605 /*
1606 * If there are currently no tasks on the cpu pretend there is one of
1607 * average load so that when a new task gets to run here it will not
1608 * get delayed by group starvation.
1609 */
1610 if (!rq_weight) {
1611 boost = 1;
1612 rq_weight = NICE_0_LOAD;
1613 }
1614
1615 /*
1616 * \Sum shares * rq_weight
1617 * shares = -----------------------
1618 * \Sum rq_weight
1619 *
1620 */
1621 shares = aggregate(tg, sd)->shares * rq_weight;
1622 shares /= aggregate(tg, sd)->rq_weight + 1;
1623
1624 /*
1625 * record the actual number of shares, not the boosted amount.
1626 */
1627 tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
1628
1629 if (shares < MIN_SHARES)
1630 shares = MIN_SHARES;
1631 else if (shares > MAX_SHARES)
1632 shares = MAX_SHARES;
1633
1634 __set_se_shares(tg->se[tcpu], shares);
1635}
1636
1637/*
1638 * Re-adjust the weights on the cpu the task came from and on the cpu the
1639 * task went to.
1640 */
1641static void
1642__move_group_shares(struct task_group *tg, struct sched_domain *sd,
1643 int scpu, int dcpu)
1644{
1645 unsigned long shares;
1646
1647 shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1648
1649 __update_group_shares_cpu(tg, sd, scpu);
1650 __update_group_shares_cpu(tg, sd, dcpu);
1651
1652 /*
1653 * ensure we never loose shares due to rounding errors in the
1654 * above redistribution.
1655 */
1656 shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1657 if (shares)
1658 tg->cfs_rq[dcpu]->shares += shares;
1659}
1660
1661/*
1662 * Because changing a group's shares changes the weight of the super-group
1663 * we need to walk up the tree and change all shares until we hit the root.
1664 */
1665static void
1666move_group_shares(struct task_group *tg, struct sched_domain *sd,
1667 int scpu, int dcpu)
1668{
1669 while (tg) {
1670 __move_group_shares(tg, sd, scpu, dcpu);
1671 tg = tg->parent;
1672 }
1673}
1674
1675static
1676void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
1677{
1678 unsigned long shares = aggregate(tg, sd)->shares;
1679 int i;
1680
1681 for_each_cpu_mask(i, sd->span) {
1682 struct rq *rq = cpu_rq(i);
1683 unsigned long flags;
1684
1685 spin_lock_irqsave(&rq->lock, flags);
1686 __update_group_shares_cpu(tg, sd, i);
1687 spin_unlock_irqrestore(&rq->lock, flags);
1688 }
1689
1690 aggregate_group_shares(tg, sd);
1691
1692 /*
1693 * ensure we never loose shares due to rounding errors in the
1694 * above redistribution.
1695 */
1696 shares -= aggregate(tg, sd)->shares;
1697 if (shares) {
1698 tg->cfs_rq[sd->first_cpu]->shares += shares;
1699 aggregate(tg, sd)->shares += shares;
1700 }
1701}
1702
1703/*
1704 * Calculate the accumulative weight and recursive load of each task group
1705 * while walking down the tree.
1706 */
1707static
1708void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
1709{
1710 aggregate_group_weight(tg, sd);
1711 aggregate_group_shares(tg, sd);
1712 aggregate_group_load(tg, sd);
1713}
1714
1715/*
1716 * Rebalance the cpu shares while walking back up the tree.
1717 */
1718static
1719void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
1720{
1721 aggregate_group_set_shares(tg, sd);
1722}
1723
1724static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
1725
1726static void __init init_aggregate(void)
1727{
1728 int i;
1729
1730 for_each_possible_cpu(i)
1731 spin_lock_init(&per_cpu(aggregate_lock, i));
1732}
1733
1734static int get_aggregate(struct sched_domain *sd)
1735{
1736 if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
1737 return 0;
1738
1739 aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
1740 return 1;
1741}
1742
1743static void put_aggregate(struct sched_domain *sd)
1744{
1745 spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
1746}
1747
1748static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1749{
1750 cfs_rq->shares = shares;
1751}
1752
1753#else
1754
1755static inline void init_aggregate(void)
1756{
1757}
1758
1759static inline int get_aggregate(struct sched_domain *sd)
1760{
1761 return 0;
1762}
1763
1764static inline void put_aggregate(struct sched_domain *sd)
1765{
1766}
1767#endif
1768
18d95a28
PZ
1769#endif
1770
dd41f596 1771#include "sched_stats.h"
dd41f596 1772#include "sched_idletask.c"
5522d5d5
IM
1773#include "sched_fair.c"
1774#include "sched_rt.c"
dd41f596
IM
1775#ifdef CONFIG_SCHED_DEBUG
1776# include "sched_debug.c"
1777#endif
1778
1779#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1780#define for_each_class(class) \
1781 for (class = sched_class_highest; class; class = class->next)
dd41f596 1782
c09595f6 1783static void inc_nr_running(struct rq *rq)
9c217245
IM
1784{
1785 rq->nr_running++;
9c217245
IM
1786}
1787
c09595f6 1788static void dec_nr_running(struct rq *rq)
9c217245
IM
1789{
1790 rq->nr_running--;
9c217245
IM
1791}
1792
45bf76df
IM
1793static void set_load_weight(struct task_struct *p)
1794{
1795 if (task_has_rt_policy(p)) {
dd41f596
IM
1796 p->se.load.weight = prio_to_weight[0] * 2;
1797 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1798 return;
1799 }
45bf76df 1800
dd41f596
IM
1801 /*
1802 * SCHED_IDLE tasks get minimal weight:
1803 */
1804 if (p->policy == SCHED_IDLE) {
1805 p->se.load.weight = WEIGHT_IDLEPRIO;
1806 p->se.load.inv_weight = WMULT_IDLEPRIO;
1807 return;
1808 }
71f8bd46 1809
dd41f596
IM
1810 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1811 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1812}
1813
8159f87e 1814static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1815{
dd41f596 1816 sched_info_queued(p);
fd390f6a 1817 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1818 p->se.on_rq = 1;
71f8bd46
IM
1819}
1820
69be72c1 1821static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1822{
f02231e5 1823 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1824 p->se.on_rq = 0;
71f8bd46
IM
1825}
1826
14531189 1827/*
dd41f596 1828 * __normal_prio - return the priority that is based on the static prio
14531189 1829 */
14531189
IM
1830static inline int __normal_prio(struct task_struct *p)
1831{
dd41f596 1832 return p->static_prio;
14531189
IM
1833}
1834
b29739f9
IM
1835/*
1836 * Calculate the expected normal priority: i.e. priority
1837 * without taking RT-inheritance into account. Might be
1838 * boosted by interactivity modifiers. Changes upon fork,
1839 * setprio syscalls, and whenever the interactivity
1840 * estimator recalculates.
1841 */
36c8b586 1842static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1843{
1844 int prio;
1845
e05606d3 1846 if (task_has_rt_policy(p))
b29739f9
IM
1847 prio = MAX_RT_PRIO-1 - p->rt_priority;
1848 else
1849 prio = __normal_prio(p);
1850 return prio;
1851}
1852
1853/*
1854 * Calculate the current priority, i.e. the priority
1855 * taken into account by the scheduler. This value might
1856 * be boosted by RT tasks, or might be boosted by
1857 * interactivity modifiers. Will be RT if the task got
1858 * RT-boosted. If not then it returns p->normal_prio.
1859 */
36c8b586 1860static int effective_prio(struct task_struct *p)
b29739f9
IM
1861{
1862 p->normal_prio = normal_prio(p);
1863 /*
1864 * If we are RT tasks or we were boosted to RT priority,
1865 * keep the priority unchanged. Otherwise, update priority
1866 * to the normal priority:
1867 */
1868 if (!rt_prio(p->prio))
1869 return p->normal_prio;
1870 return p->prio;
1871}
1872
1da177e4 1873/*
dd41f596 1874 * activate_task - move a task to the runqueue.
1da177e4 1875 */
dd41f596 1876static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1877{
d9514f6c 1878 if (task_contributes_to_load(p))
dd41f596 1879 rq->nr_uninterruptible--;
1da177e4 1880
8159f87e 1881 enqueue_task(rq, p, wakeup);
c09595f6 1882 inc_nr_running(rq);
1da177e4
LT
1883}
1884
1da177e4
LT
1885/*
1886 * deactivate_task - remove a task from the runqueue.
1887 */
2e1cb74a 1888static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1889{
d9514f6c 1890 if (task_contributes_to_load(p))
dd41f596
IM
1891 rq->nr_uninterruptible++;
1892
69be72c1 1893 dequeue_task(rq, p, sleep);
c09595f6 1894 dec_nr_running(rq);
1da177e4
LT
1895}
1896
1da177e4
LT
1897/**
1898 * task_curr - is this task currently executing on a CPU?
1899 * @p: the task in question.
1900 */
36c8b586 1901inline int task_curr(const struct task_struct *p)
1da177e4
LT
1902{
1903 return cpu_curr(task_cpu(p)) == p;
1904}
1905
dd41f596
IM
1906static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1907{
6f505b16 1908 set_task_rq(p, cpu);
dd41f596 1909#ifdef CONFIG_SMP
ce96b5ac
DA
1910 /*
1911 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1912 * successfuly executed on another CPU. We must ensure that updates of
1913 * per-task data have been completed by this moment.
1914 */
1915 smp_wmb();
dd41f596 1916 task_thread_info(p)->cpu = cpu;
dd41f596 1917#endif
2dd73a4f
PW
1918}
1919
cb469845
SR
1920static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1921 const struct sched_class *prev_class,
1922 int oldprio, int running)
1923{
1924 if (prev_class != p->sched_class) {
1925 if (prev_class->switched_from)
1926 prev_class->switched_from(rq, p, running);
1927 p->sched_class->switched_to(rq, p, running);
1928 } else
1929 p->sched_class->prio_changed(rq, p, oldprio, running);
1930}
1931
1da177e4 1932#ifdef CONFIG_SMP
c65cc870 1933
e958b360
TG
1934/* Used instead of source_load when we know the type == 0 */
1935static unsigned long weighted_cpuload(const int cpu)
1936{
1937 return cpu_rq(cpu)->load.weight;
1938}
1939
cc367732
IM
1940/*
1941 * Is this task likely cache-hot:
1942 */
e7693a36 1943static int
cc367732
IM
1944task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1945{
1946 s64 delta;
1947
f540a608
IM
1948 /*
1949 * Buddy candidates are cache hot:
1950 */
d25ce4cd 1951 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1952 return 1;
1953
cc367732
IM
1954 if (p->sched_class != &fair_sched_class)
1955 return 0;
1956
6bc1665b
IM
1957 if (sysctl_sched_migration_cost == -1)
1958 return 1;
1959 if (sysctl_sched_migration_cost == 0)
1960 return 0;
1961
cc367732
IM
1962 delta = now - p->se.exec_start;
1963
1964 return delta < (s64)sysctl_sched_migration_cost;
1965}
1966
1967
dd41f596 1968void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1969{
dd41f596
IM
1970 int old_cpu = task_cpu(p);
1971 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1972 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1973 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1974 u64 clock_offset;
dd41f596
IM
1975
1976 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1977
1978#ifdef CONFIG_SCHEDSTATS
1979 if (p->se.wait_start)
1980 p->se.wait_start -= clock_offset;
dd41f596
IM
1981 if (p->se.sleep_start)
1982 p->se.sleep_start -= clock_offset;
1983 if (p->se.block_start)
1984 p->se.block_start -= clock_offset;
cc367732
IM
1985 if (old_cpu != new_cpu) {
1986 schedstat_inc(p, se.nr_migrations);
1987 if (task_hot(p, old_rq->clock, NULL))
1988 schedstat_inc(p, se.nr_forced2_migrations);
1989 }
6cfb0d5d 1990#endif
2830cf8c
SV
1991 p->se.vruntime -= old_cfsrq->min_vruntime -
1992 new_cfsrq->min_vruntime;
dd41f596
IM
1993
1994 __set_task_cpu(p, new_cpu);
c65cc870
IM
1995}
1996
70b97a7f 1997struct migration_req {
1da177e4 1998 struct list_head list;
1da177e4 1999
36c8b586 2000 struct task_struct *task;
1da177e4
LT
2001 int dest_cpu;
2002
1da177e4 2003 struct completion done;
70b97a7f 2004};
1da177e4
LT
2005
2006/*
2007 * The task's runqueue lock must be held.
2008 * Returns true if you have to wait for migration thread.
2009 */
36c8b586 2010static int
70b97a7f 2011migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2012{
70b97a7f 2013 struct rq *rq = task_rq(p);
1da177e4
LT
2014
2015 /*
2016 * If the task is not on a runqueue (and not running), then
2017 * it is sufficient to simply update the task's cpu field.
2018 */
dd41f596 2019 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2020 set_task_cpu(p, dest_cpu);
2021 return 0;
2022 }
2023
2024 init_completion(&req->done);
1da177e4
LT
2025 req->task = p;
2026 req->dest_cpu = dest_cpu;
2027 list_add(&req->list, &rq->migration_queue);
48f24c4d 2028
1da177e4
LT
2029 return 1;
2030}
2031
2032/*
2033 * wait_task_inactive - wait for a thread to unschedule.
2034 *
2035 * The caller must ensure that the task *will* unschedule sometime soon,
2036 * else this function might spin for a *long* time. This function can't
2037 * be called with interrupts off, or it may introduce deadlock with
2038 * smp_call_function() if an IPI is sent by the same process we are
2039 * waiting to become inactive.
2040 */
36c8b586 2041void wait_task_inactive(struct task_struct *p)
1da177e4
LT
2042{
2043 unsigned long flags;
dd41f596 2044 int running, on_rq;
70b97a7f 2045 struct rq *rq;
1da177e4 2046
3a5c359a
AK
2047 for (;;) {
2048 /*
2049 * We do the initial early heuristics without holding
2050 * any task-queue locks at all. We'll only try to get
2051 * the runqueue lock when things look like they will
2052 * work out!
2053 */
2054 rq = task_rq(p);
fa490cfd 2055
3a5c359a
AK
2056 /*
2057 * If the task is actively running on another CPU
2058 * still, just relax and busy-wait without holding
2059 * any locks.
2060 *
2061 * NOTE! Since we don't hold any locks, it's not
2062 * even sure that "rq" stays as the right runqueue!
2063 * But we don't care, since "task_running()" will
2064 * return false if the runqueue has changed and p
2065 * is actually now running somewhere else!
2066 */
2067 while (task_running(rq, p))
2068 cpu_relax();
fa490cfd 2069
3a5c359a
AK
2070 /*
2071 * Ok, time to look more closely! We need the rq
2072 * lock now, to be *sure*. If we're wrong, we'll
2073 * just go back and repeat.
2074 */
2075 rq = task_rq_lock(p, &flags);
2076 running = task_running(rq, p);
2077 on_rq = p->se.on_rq;
2078 task_rq_unlock(rq, &flags);
fa490cfd 2079
3a5c359a
AK
2080 /*
2081 * Was it really running after all now that we
2082 * checked with the proper locks actually held?
2083 *
2084 * Oops. Go back and try again..
2085 */
2086 if (unlikely(running)) {
2087 cpu_relax();
2088 continue;
2089 }
fa490cfd 2090
3a5c359a
AK
2091 /*
2092 * It's not enough that it's not actively running,
2093 * it must be off the runqueue _entirely_, and not
2094 * preempted!
2095 *
2096 * So if it wa still runnable (but just not actively
2097 * running right now), it's preempted, and we should
2098 * yield - it could be a while.
2099 */
2100 if (unlikely(on_rq)) {
2101 schedule_timeout_uninterruptible(1);
2102 continue;
2103 }
fa490cfd 2104
3a5c359a
AK
2105 /*
2106 * Ahh, all good. It wasn't running, and it wasn't
2107 * runnable, which means that it will never become
2108 * running in the future either. We're all done!
2109 */
2110 break;
2111 }
1da177e4
LT
2112}
2113
2114/***
2115 * kick_process - kick a running thread to enter/exit the kernel
2116 * @p: the to-be-kicked thread
2117 *
2118 * Cause a process which is running on another CPU to enter
2119 * kernel-mode, without any delay. (to get signals handled.)
2120 *
2121 * NOTE: this function doesnt have to take the runqueue lock,
2122 * because all it wants to ensure is that the remote task enters
2123 * the kernel. If the IPI races and the task has been migrated
2124 * to another CPU then no harm is done and the purpose has been
2125 * achieved as well.
2126 */
36c8b586 2127void kick_process(struct task_struct *p)
1da177e4
LT
2128{
2129 int cpu;
2130
2131 preempt_disable();
2132 cpu = task_cpu(p);
2133 if ((cpu != smp_processor_id()) && task_curr(p))
2134 smp_send_reschedule(cpu);
2135 preempt_enable();
2136}
2137
2138/*
2dd73a4f
PW
2139 * Return a low guess at the load of a migration-source cpu weighted
2140 * according to the scheduling class and "nice" value.
1da177e4
LT
2141 *
2142 * We want to under-estimate the load of migration sources, to
2143 * balance conservatively.
2144 */
a9957449 2145static unsigned long source_load(int cpu, int type)
1da177e4 2146{
70b97a7f 2147 struct rq *rq = cpu_rq(cpu);
dd41f596 2148 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2149
3b0bd9bc 2150 if (type == 0)
dd41f596 2151 return total;
b910472d 2152
dd41f596 2153 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2154}
2155
2156/*
2dd73a4f
PW
2157 * Return a high guess at the load of a migration-target cpu weighted
2158 * according to the scheduling class and "nice" value.
1da177e4 2159 */
a9957449 2160static unsigned long target_load(int cpu, int type)
1da177e4 2161{
70b97a7f 2162 struct rq *rq = cpu_rq(cpu);
dd41f596 2163 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2164
7897986b 2165 if (type == 0)
dd41f596 2166 return total;
3b0bd9bc 2167
dd41f596 2168 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2169}
2170
2171/*
2172 * Return the average load per task on the cpu's run queue
2173 */
e7693a36 2174static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 2175{
70b97a7f 2176 struct rq *rq = cpu_rq(cpu);
dd41f596 2177 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
2178 unsigned long n = rq->nr_running;
2179
dd41f596 2180 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
2181}
2182
147cbb4b
NP
2183/*
2184 * find_idlest_group finds and returns the least busy CPU group within the
2185 * domain.
2186 */
2187static struct sched_group *
2188find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2189{
2190 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2191 unsigned long min_load = ULONG_MAX, this_load = 0;
2192 int load_idx = sd->forkexec_idx;
2193 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2194
2195 do {
2196 unsigned long load, avg_load;
2197 int local_group;
2198 int i;
2199
da5a5522
BD
2200 /* Skip over this group if it has no CPUs allowed */
2201 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2202 continue;
da5a5522 2203
147cbb4b 2204 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2205
2206 /* Tally up the load of all CPUs in the group */
2207 avg_load = 0;
2208
2209 for_each_cpu_mask(i, group->cpumask) {
2210 /* Bias balancing toward cpus of our domain */
2211 if (local_group)
2212 load = source_load(i, load_idx);
2213 else
2214 load = target_load(i, load_idx);
2215
2216 avg_load += load;
2217 }
2218
2219 /* Adjust by relative CPU power of the group */
5517d86b
ED
2220 avg_load = sg_div_cpu_power(group,
2221 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2222
2223 if (local_group) {
2224 this_load = avg_load;
2225 this = group;
2226 } else if (avg_load < min_load) {
2227 min_load = avg_load;
2228 idlest = group;
2229 }
3a5c359a 2230 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2231
2232 if (!idlest || 100*this_load < imbalance*min_load)
2233 return NULL;
2234 return idlest;
2235}
2236
2237/*
0feaece9 2238 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2239 */
95cdf3b7 2240static int
7c16ec58
MT
2241find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2242 cpumask_t *tmp)
147cbb4b
NP
2243{
2244 unsigned long load, min_load = ULONG_MAX;
2245 int idlest = -1;
2246 int i;
2247
da5a5522 2248 /* Traverse only the allowed CPUs */
7c16ec58 2249 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2250
7c16ec58 2251 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2252 load = weighted_cpuload(i);
147cbb4b
NP
2253
2254 if (load < min_load || (load == min_load && i == this_cpu)) {
2255 min_load = load;
2256 idlest = i;
2257 }
2258 }
2259
2260 return idlest;
2261}
2262
476d139c
NP
2263/*
2264 * sched_balance_self: balance the current task (running on cpu) in domains
2265 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2266 * SD_BALANCE_EXEC.
2267 *
2268 * Balance, ie. select the least loaded group.
2269 *
2270 * Returns the target CPU number, or the same CPU if no balancing is needed.
2271 *
2272 * preempt must be disabled.
2273 */
2274static int sched_balance_self(int cpu, int flag)
2275{
2276 struct task_struct *t = current;
2277 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2278
c96d145e 2279 for_each_domain(cpu, tmp) {
9761eea8
IM
2280 /*
2281 * If power savings logic is enabled for a domain, stop there.
2282 */
5c45bf27
SS
2283 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2284 break;
476d139c
NP
2285 if (tmp->flags & flag)
2286 sd = tmp;
c96d145e 2287 }
476d139c
NP
2288
2289 while (sd) {
7c16ec58 2290 cpumask_t span, tmpmask;
476d139c 2291 struct sched_group *group;
1a848870
SS
2292 int new_cpu, weight;
2293
2294 if (!(sd->flags & flag)) {
2295 sd = sd->child;
2296 continue;
2297 }
476d139c
NP
2298
2299 span = sd->span;
2300 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2301 if (!group) {
2302 sd = sd->child;
2303 continue;
2304 }
476d139c 2305
7c16ec58 2306 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2307 if (new_cpu == -1 || new_cpu == cpu) {
2308 /* Now try balancing at a lower domain level of cpu */
2309 sd = sd->child;
2310 continue;
2311 }
476d139c 2312
1a848870 2313 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2314 cpu = new_cpu;
476d139c
NP
2315 sd = NULL;
2316 weight = cpus_weight(span);
2317 for_each_domain(cpu, tmp) {
2318 if (weight <= cpus_weight(tmp->span))
2319 break;
2320 if (tmp->flags & flag)
2321 sd = tmp;
2322 }
2323 /* while loop will break here if sd == NULL */
2324 }
2325
2326 return cpu;
2327}
2328
2329#endif /* CONFIG_SMP */
1da177e4 2330
1da177e4
LT
2331/***
2332 * try_to_wake_up - wake up a thread
2333 * @p: the to-be-woken-up thread
2334 * @state: the mask of task states that can be woken
2335 * @sync: do a synchronous wakeup?
2336 *
2337 * Put it on the run-queue if it's not already there. The "current"
2338 * thread is always on the run-queue (except when the actual
2339 * re-schedule is in progress), and as such you're allowed to do
2340 * the simpler "current->state = TASK_RUNNING" to mark yourself
2341 * runnable without the overhead of this.
2342 *
2343 * returns failure only if the task is already active.
2344 */
36c8b586 2345static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2346{
cc367732 2347 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2348 unsigned long flags;
2349 long old_state;
70b97a7f 2350 struct rq *rq;
1da177e4 2351
b85d0667
IM
2352 if (!sched_feat(SYNC_WAKEUPS))
2353 sync = 0;
2354
04e2f174 2355 smp_wmb();
1da177e4
LT
2356 rq = task_rq_lock(p, &flags);
2357 old_state = p->state;
2358 if (!(old_state & state))
2359 goto out;
2360
dd41f596 2361 if (p->se.on_rq)
1da177e4
LT
2362 goto out_running;
2363
2364 cpu = task_cpu(p);
cc367732 2365 orig_cpu = cpu;
1da177e4
LT
2366 this_cpu = smp_processor_id();
2367
2368#ifdef CONFIG_SMP
2369 if (unlikely(task_running(rq, p)))
2370 goto out_activate;
2371
5d2f5a61
DA
2372 cpu = p->sched_class->select_task_rq(p, sync);
2373 if (cpu != orig_cpu) {
2374 set_task_cpu(p, cpu);
1da177e4
LT
2375 task_rq_unlock(rq, &flags);
2376 /* might preempt at this point */
2377 rq = task_rq_lock(p, &flags);
2378 old_state = p->state;
2379 if (!(old_state & state))
2380 goto out;
dd41f596 2381 if (p->se.on_rq)
1da177e4
LT
2382 goto out_running;
2383
2384 this_cpu = smp_processor_id();
2385 cpu = task_cpu(p);
2386 }
2387
e7693a36
GH
2388#ifdef CONFIG_SCHEDSTATS
2389 schedstat_inc(rq, ttwu_count);
2390 if (cpu == this_cpu)
2391 schedstat_inc(rq, ttwu_local);
2392 else {
2393 struct sched_domain *sd;
2394 for_each_domain(this_cpu, sd) {
2395 if (cpu_isset(cpu, sd->span)) {
2396 schedstat_inc(sd, ttwu_wake_remote);
2397 break;
2398 }
2399 }
2400 }
6d6bc0ad 2401#endif /* CONFIG_SCHEDSTATS */
e7693a36 2402
1da177e4
LT
2403out_activate:
2404#endif /* CONFIG_SMP */
cc367732
IM
2405 schedstat_inc(p, se.nr_wakeups);
2406 if (sync)
2407 schedstat_inc(p, se.nr_wakeups_sync);
2408 if (orig_cpu != cpu)
2409 schedstat_inc(p, se.nr_wakeups_migrate);
2410 if (cpu == this_cpu)
2411 schedstat_inc(p, se.nr_wakeups_local);
2412 else
2413 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2414 update_rq_clock(rq);
dd41f596 2415 activate_task(rq, p, 1);
1da177e4
LT
2416 success = 1;
2417
2418out_running:
4ae7d5ce
IM
2419 check_preempt_curr(rq, p);
2420
1da177e4 2421 p->state = TASK_RUNNING;
9a897c5a
SR
2422#ifdef CONFIG_SMP
2423 if (p->sched_class->task_wake_up)
2424 p->sched_class->task_wake_up(rq, p);
2425#endif
1da177e4
LT
2426out:
2427 task_rq_unlock(rq, &flags);
2428
2429 return success;
2430}
2431
7ad5b3a5 2432int wake_up_process(struct task_struct *p)
1da177e4 2433{
d9514f6c 2434 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2435}
1da177e4
LT
2436EXPORT_SYMBOL(wake_up_process);
2437
7ad5b3a5 2438int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2439{
2440 return try_to_wake_up(p, state, 0);
2441}
2442
1da177e4
LT
2443/*
2444 * Perform scheduler related setup for a newly forked process p.
2445 * p is forked by current.
dd41f596
IM
2446 *
2447 * __sched_fork() is basic setup used by init_idle() too:
2448 */
2449static void __sched_fork(struct task_struct *p)
2450{
dd41f596
IM
2451 p->se.exec_start = 0;
2452 p->se.sum_exec_runtime = 0;
f6cf891c 2453 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2454 p->se.last_wakeup = 0;
2455 p->se.avg_overlap = 0;
6cfb0d5d
IM
2456
2457#ifdef CONFIG_SCHEDSTATS
2458 p->se.wait_start = 0;
dd41f596
IM
2459 p->se.sum_sleep_runtime = 0;
2460 p->se.sleep_start = 0;
dd41f596
IM
2461 p->se.block_start = 0;
2462 p->se.sleep_max = 0;
2463 p->se.block_max = 0;
2464 p->se.exec_max = 0;
eba1ed4b 2465 p->se.slice_max = 0;
dd41f596 2466 p->se.wait_max = 0;
6cfb0d5d 2467#endif
476d139c 2468
fa717060 2469 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2470 p->se.on_rq = 0;
4a55bd5e 2471 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2472
e107be36
AK
2473#ifdef CONFIG_PREEMPT_NOTIFIERS
2474 INIT_HLIST_HEAD(&p->preempt_notifiers);
2475#endif
2476
1da177e4
LT
2477 /*
2478 * We mark the process as running here, but have not actually
2479 * inserted it onto the runqueue yet. This guarantees that
2480 * nobody will actually run it, and a signal or other external
2481 * event cannot wake it up and insert it on the runqueue either.
2482 */
2483 p->state = TASK_RUNNING;
dd41f596
IM
2484}
2485
2486/*
2487 * fork()/clone()-time setup:
2488 */
2489void sched_fork(struct task_struct *p, int clone_flags)
2490{
2491 int cpu = get_cpu();
2492
2493 __sched_fork(p);
2494
2495#ifdef CONFIG_SMP
2496 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2497#endif
02e4bac2 2498 set_task_cpu(p, cpu);
b29739f9
IM
2499
2500 /*
2501 * Make sure we do not leak PI boosting priority to the child:
2502 */
2503 p->prio = current->normal_prio;
2ddbf952
HS
2504 if (!rt_prio(p->prio))
2505 p->sched_class = &fair_sched_class;
b29739f9 2506
52f17b6c 2507#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2508 if (likely(sched_info_on()))
52f17b6c 2509 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2510#endif
d6077cb8 2511#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2512 p->oncpu = 0;
2513#endif
1da177e4 2514#ifdef CONFIG_PREEMPT
4866cde0 2515 /* Want to start with kernel preemption disabled. */
a1261f54 2516 task_thread_info(p)->preempt_count = 1;
1da177e4 2517#endif
476d139c 2518 put_cpu();
1da177e4
LT
2519}
2520
2521/*
2522 * wake_up_new_task - wake up a newly created task for the first time.
2523 *
2524 * This function will do some initial scheduler statistics housekeeping
2525 * that must be done for every newly created context, then puts the task
2526 * on the runqueue and wakes it.
2527 */
7ad5b3a5 2528void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2529{
2530 unsigned long flags;
dd41f596 2531 struct rq *rq;
1da177e4
LT
2532
2533 rq = task_rq_lock(p, &flags);
147cbb4b 2534 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2535 update_rq_clock(rq);
1da177e4
LT
2536
2537 p->prio = effective_prio(p);
2538
b9dca1e0 2539 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2540 activate_task(rq, p, 0);
1da177e4 2541 } else {
1da177e4 2542 /*
dd41f596
IM
2543 * Let the scheduling class do new task startup
2544 * management (if any):
1da177e4 2545 */
ee0827d8 2546 p->sched_class->task_new(rq, p);
c09595f6 2547 inc_nr_running(rq);
1da177e4 2548 }
dd41f596 2549 check_preempt_curr(rq, p);
9a897c5a
SR
2550#ifdef CONFIG_SMP
2551 if (p->sched_class->task_wake_up)
2552 p->sched_class->task_wake_up(rq, p);
2553#endif
dd41f596 2554 task_rq_unlock(rq, &flags);
1da177e4
LT
2555}
2556
e107be36
AK
2557#ifdef CONFIG_PREEMPT_NOTIFIERS
2558
2559/**
421cee29
RD
2560 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2561 * @notifier: notifier struct to register
e107be36
AK
2562 */
2563void preempt_notifier_register(struct preempt_notifier *notifier)
2564{
2565 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2566}
2567EXPORT_SYMBOL_GPL(preempt_notifier_register);
2568
2569/**
2570 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2571 * @notifier: notifier struct to unregister
e107be36
AK
2572 *
2573 * This is safe to call from within a preemption notifier.
2574 */
2575void preempt_notifier_unregister(struct preempt_notifier *notifier)
2576{
2577 hlist_del(&notifier->link);
2578}
2579EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2580
2581static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2582{
2583 struct preempt_notifier *notifier;
2584 struct hlist_node *node;
2585
2586 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2587 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2588}
2589
2590static void
2591fire_sched_out_preempt_notifiers(struct task_struct *curr,
2592 struct task_struct *next)
2593{
2594 struct preempt_notifier *notifier;
2595 struct hlist_node *node;
2596
2597 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2598 notifier->ops->sched_out(notifier, next);
2599}
2600
6d6bc0ad 2601#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2602
2603static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2604{
2605}
2606
2607static void
2608fire_sched_out_preempt_notifiers(struct task_struct *curr,
2609 struct task_struct *next)
2610{
2611}
2612
6d6bc0ad 2613#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2614
4866cde0
NP
2615/**
2616 * prepare_task_switch - prepare to switch tasks
2617 * @rq: the runqueue preparing to switch
421cee29 2618 * @prev: the current task that is being switched out
4866cde0
NP
2619 * @next: the task we are going to switch to.
2620 *
2621 * This is called with the rq lock held and interrupts off. It must
2622 * be paired with a subsequent finish_task_switch after the context
2623 * switch.
2624 *
2625 * prepare_task_switch sets up locking and calls architecture specific
2626 * hooks.
2627 */
e107be36
AK
2628static inline void
2629prepare_task_switch(struct rq *rq, struct task_struct *prev,
2630 struct task_struct *next)
4866cde0 2631{
e107be36 2632 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2633 prepare_lock_switch(rq, next);
2634 prepare_arch_switch(next);
2635}
2636
1da177e4
LT
2637/**
2638 * finish_task_switch - clean up after a task-switch
344babaa 2639 * @rq: runqueue associated with task-switch
1da177e4
LT
2640 * @prev: the thread we just switched away from.
2641 *
4866cde0
NP
2642 * finish_task_switch must be called after the context switch, paired
2643 * with a prepare_task_switch call before the context switch.
2644 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2645 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2646 *
2647 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2648 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2649 * with the lock held can cause deadlocks; see schedule() for
2650 * details.)
2651 */
a9957449 2652static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2653 __releases(rq->lock)
2654{
1da177e4 2655 struct mm_struct *mm = rq->prev_mm;
55a101f8 2656 long prev_state;
1da177e4
LT
2657
2658 rq->prev_mm = NULL;
2659
2660 /*
2661 * A task struct has one reference for the use as "current".
c394cc9f 2662 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2663 * schedule one last time. The schedule call will never return, and
2664 * the scheduled task must drop that reference.
c394cc9f 2665 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2666 * still held, otherwise prev could be scheduled on another cpu, die
2667 * there before we look at prev->state, and then the reference would
2668 * be dropped twice.
2669 * Manfred Spraul <manfred@colorfullife.com>
2670 */
55a101f8 2671 prev_state = prev->state;
4866cde0
NP
2672 finish_arch_switch(prev);
2673 finish_lock_switch(rq, prev);
9a897c5a
SR
2674#ifdef CONFIG_SMP
2675 if (current->sched_class->post_schedule)
2676 current->sched_class->post_schedule(rq);
2677#endif
e8fa1362 2678
e107be36 2679 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2680 if (mm)
2681 mmdrop(mm);
c394cc9f 2682 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2683 /*
2684 * Remove function-return probe instances associated with this
2685 * task and put them back on the free list.
9761eea8 2686 */
c6fd91f0 2687 kprobe_flush_task(prev);
1da177e4 2688 put_task_struct(prev);
c6fd91f0 2689 }
1da177e4
LT
2690}
2691
2692/**
2693 * schedule_tail - first thing a freshly forked thread must call.
2694 * @prev: the thread we just switched away from.
2695 */
36c8b586 2696asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2697 __releases(rq->lock)
2698{
70b97a7f
IM
2699 struct rq *rq = this_rq();
2700
4866cde0
NP
2701 finish_task_switch(rq, prev);
2702#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2703 /* In this case, finish_task_switch does not reenable preemption */
2704 preempt_enable();
2705#endif
1da177e4 2706 if (current->set_child_tid)
b488893a 2707 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2708}
2709
2710/*
2711 * context_switch - switch to the new MM and the new
2712 * thread's register state.
2713 */
dd41f596 2714static inline void
70b97a7f 2715context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2716 struct task_struct *next)
1da177e4 2717{
dd41f596 2718 struct mm_struct *mm, *oldmm;
1da177e4 2719
e107be36 2720 prepare_task_switch(rq, prev, next);
dd41f596
IM
2721 mm = next->mm;
2722 oldmm = prev->active_mm;
9226d125
ZA
2723 /*
2724 * For paravirt, this is coupled with an exit in switch_to to
2725 * combine the page table reload and the switch backend into
2726 * one hypercall.
2727 */
2728 arch_enter_lazy_cpu_mode();
2729
dd41f596 2730 if (unlikely(!mm)) {
1da177e4
LT
2731 next->active_mm = oldmm;
2732 atomic_inc(&oldmm->mm_count);
2733 enter_lazy_tlb(oldmm, next);
2734 } else
2735 switch_mm(oldmm, mm, next);
2736
dd41f596 2737 if (unlikely(!prev->mm)) {
1da177e4 2738 prev->active_mm = NULL;
1da177e4
LT
2739 rq->prev_mm = oldmm;
2740 }
3a5f5e48
IM
2741 /*
2742 * Since the runqueue lock will be released by the next
2743 * task (which is an invalid locking op but in the case
2744 * of the scheduler it's an obvious special-case), so we
2745 * do an early lockdep release here:
2746 */
2747#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2748 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2749#endif
1da177e4
LT
2750
2751 /* Here we just switch the register state and the stack. */
2752 switch_to(prev, next, prev);
2753
dd41f596
IM
2754 barrier();
2755 /*
2756 * this_rq must be evaluated again because prev may have moved
2757 * CPUs since it called schedule(), thus the 'rq' on its stack
2758 * frame will be invalid.
2759 */
2760 finish_task_switch(this_rq(), prev);
1da177e4
LT
2761}
2762
2763/*
2764 * nr_running, nr_uninterruptible and nr_context_switches:
2765 *
2766 * externally visible scheduler statistics: current number of runnable
2767 * threads, current number of uninterruptible-sleeping threads, total
2768 * number of context switches performed since bootup.
2769 */
2770unsigned long nr_running(void)
2771{
2772 unsigned long i, sum = 0;
2773
2774 for_each_online_cpu(i)
2775 sum += cpu_rq(i)->nr_running;
2776
2777 return sum;
2778}
2779
2780unsigned long nr_uninterruptible(void)
2781{
2782 unsigned long i, sum = 0;
2783
0a945022 2784 for_each_possible_cpu(i)
1da177e4
LT
2785 sum += cpu_rq(i)->nr_uninterruptible;
2786
2787 /*
2788 * Since we read the counters lockless, it might be slightly
2789 * inaccurate. Do not allow it to go below zero though:
2790 */
2791 if (unlikely((long)sum < 0))
2792 sum = 0;
2793
2794 return sum;
2795}
2796
2797unsigned long long nr_context_switches(void)
2798{
cc94abfc
SR
2799 int i;
2800 unsigned long long sum = 0;
1da177e4 2801
0a945022 2802 for_each_possible_cpu(i)
1da177e4
LT
2803 sum += cpu_rq(i)->nr_switches;
2804
2805 return sum;
2806}
2807
2808unsigned long nr_iowait(void)
2809{
2810 unsigned long i, sum = 0;
2811
0a945022 2812 for_each_possible_cpu(i)
1da177e4
LT
2813 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2814
2815 return sum;
2816}
2817
db1b1fef
JS
2818unsigned long nr_active(void)
2819{
2820 unsigned long i, running = 0, uninterruptible = 0;
2821
2822 for_each_online_cpu(i) {
2823 running += cpu_rq(i)->nr_running;
2824 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2825 }
2826
2827 if (unlikely((long)uninterruptible < 0))
2828 uninterruptible = 0;
2829
2830 return running + uninterruptible;
2831}
2832
48f24c4d 2833/*
dd41f596
IM
2834 * Update rq->cpu_load[] statistics. This function is usually called every
2835 * scheduler tick (TICK_NSEC).
48f24c4d 2836 */
dd41f596 2837static void update_cpu_load(struct rq *this_rq)
48f24c4d 2838{
495eca49 2839 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2840 int i, scale;
2841
2842 this_rq->nr_load_updates++;
dd41f596
IM
2843
2844 /* Update our load: */
2845 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2846 unsigned long old_load, new_load;
2847
2848 /* scale is effectively 1 << i now, and >> i divides by scale */
2849
2850 old_load = this_rq->cpu_load[i];
2851 new_load = this_load;
a25707f3
IM
2852 /*
2853 * Round up the averaging division if load is increasing. This
2854 * prevents us from getting stuck on 9 if the load is 10, for
2855 * example.
2856 */
2857 if (new_load > old_load)
2858 new_load += scale-1;
dd41f596
IM
2859 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2860 }
48f24c4d
IM
2861}
2862
dd41f596
IM
2863#ifdef CONFIG_SMP
2864
1da177e4
LT
2865/*
2866 * double_rq_lock - safely lock two runqueues
2867 *
2868 * Note this does not disable interrupts like task_rq_lock,
2869 * you need to do so manually before calling.
2870 */
70b97a7f 2871static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2872 __acquires(rq1->lock)
2873 __acquires(rq2->lock)
2874{
054b9108 2875 BUG_ON(!irqs_disabled());
1da177e4
LT
2876 if (rq1 == rq2) {
2877 spin_lock(&rq1->lock);
2878 __acquire(rq2->lock); /* Fake it out ;) */
2879 } else {
c96d145e 2880 if (rq1 < rq2) {
1da177e4
LT
2881 spin_lock(&rq1->lock);
2882 spin_lock(&rq2->lock);
2883 } else {
2884 spin_lock(&rq2->lock);
2885 spin_lock(&rq1->lock);
2886 }
2887 }
6e82a3be
IM
2888 update_rq_clock(rq1);
2889 update_rq_clock(rq2);
1da177e4
LT
2890}
2891
2892/*
2893 * double_rq_unlock - safely unlock two runqueues
2894 *
2895 * Note this does not restore interrupts like task_rq_unlock,
2896 * you need to do so manually after calling.
2897 */
70b97a7f 2898static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2899 __releases(rq1->lock)
2900 __releases(rq2->lock)
2901{
2902 spin_unlock(&rq1->lock);
2903 if (rq1 != rq2)
2904 spin_unlock(&rq2->lock);
2905 else
2906 __release(rq2->lock);
2907}
2908
2909/*
2910 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2911 */
e8fa1362 2912static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2913 __releases(this_rq->lock)
2914 __acquires(busiest->lock)
2915 __acquires(this_rq->lock)
2916{
e8fa1362
SR
2917 int ret = 0;
2918
054b9108
KK
2919 if (unlikely(!irqs_disabled())) {
2920 /* printk() doesn't work good under rq->lock */
2921 spin_unlock(&this_rq->lock);
2922 BUG_ON(1);
2923 }
1da177e4 2924 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2925 if (busiest < this_rq) {
1da177e4
LT
2926 spin_unlock(&this_rq->lock);
2927 spin_lock(&busiest->lock);
2928 spin_lock(&this_rq->lock);
e8fa1362 2929 ret = 1;
1da177e4
LT
2930 } else
2931 spin_lock(&busiest->lock);
2932 }
e8fa1362 2933 return ret;
1da177e4
LT
2934}
2935
1da177e4
LT
2936/*
2937 * If dest_cpu is allowed for this process, migrate the task to it.
2938 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2939 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2940 * the cpu_allowed mask is restored.
2941 */
36c8b586 2942static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2943{
70b97a7f 2944 struct migration_req req;
1da177e4 2945 unsigned long flags;
70b97a7f 2946 struct rq *rq;
1da177e4
LT
2947
2948 rq = task_rq_lock(p, &flags);
2949 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2950 || unlikely(cpu_is_offline(dest_cpu)))
2951 goto out;
2952
2953 /* force the process onto the specified CPU */
2954 if (migrate_task(p, dest_cpu, &req)) {
2955 /* Need to wait for migration thread (might exit: take ref). */
2956 struct task_struct *mt = rq->migration_thread;
36c8b586 2957
1da177e4
LT
2958 get_task_struct(mt);
2959 task_rq_unlock(rq, &flags);
2960 wake_up_process(mt);
2961 put_task_struct(mt);
2962 wait_for_completion(&req.done);
36c8b586 2963
1da177e4
LT
2964 return;
2965 }
2966out:
2967 task_rq_unlock(rq, &flags);
2968}
2969
2970/*
476d139c
NP
2971 * sched_exec - execve() is a valuable balancing opportunity, because at
2972 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2973 */
2974void sched_exec(void)
2975{
1da177e4 2976 int new_cpu, this_cpu = get_cpu();
476d139c 2977 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2978 put_cpu();
476d139c
NP
2979 if (new_cpu != this_cpu)
2980 sched_migrate_task(current, new_cpu);
1da177e4
LT
2981}
2982
2983/*
2984 * pull_task - move a task from a remote runqueue to the local runqueue.
2985 * Both runqueues must be locked.
2986 */
dd41f596
IM
2987static void pull_task(struct rq *src_rq, struct task_struct *p,
2988 struct rq *this_rq, int this_cpu)
1da177e4 2989{
2e1cb74a 2990 deactivate_task(src_rq, p, 0);
1da177e4 2991 set_task_cpu(p, this_cpu);
dd41f596 2992 activate_task(this_rq, p, 0);
1da177e4
LT
2993 /*
2994 * Note that idle threads have a prio of MAX_PRIO, for this test
2995 * to be always true for them.
2996 */
dd41f596 2997 check_preempt_curr(this_rq, p);
1da177e4
LT
2998}
2999
3000/*
3001 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3002 */
858119e1 3003static
70b97a7f 3004int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3005 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3006 int *all_pinned)
1da177e4
LT
3007{
3008 /*
3009 * We do not migrate tasks that are:
3010 * 1) running (obviously), or
3011 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3012 * 3) are cache-hot on their current CPU.
3013 */
cc367732
IM
3014 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
3015 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3016 return 0;
cc367732 3017 }
81026794
NP
3018 *all_pinned = 0;
3019
cc367732
IM
3020 if (task_running(rq, p)) {
3021 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3022 return 0;
cc367732 3023 }
1da177e4 3024
da84d961
IM
3025 /*
3026 * Aggressive migration if:
3027 * 1) task is cache cold, or
3028 * 2) too many balance attempts have failed.
3029 */
3030
6bc1665b
IM
3031 if (!task_hot(p, rq->clock, sd) ||
3032 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3033#ifdef CONFIG_SCHEDSTATS
cc367732 3034 if (task_hot(p, rq->clock, sd)) {
da84d961 3035 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3036 schedstat_inc(p, se.nr_forced_migrations);
3037 }
da84d961
IM
3038#endif
3039 return 1;
3040 }
3041
cc367732
IM
3042 if (task_hot(p, rq->clock, sd)) {
3043 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3044 return 0;
cc367732 3045 }
1da177e4
LT
3046 return 1;
3047}
3048
e1d1484f
PW
3049static unsigned long
3050balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3051 unsigned long max_load_move, struct sched_domain *sd,
3052 enum cpu_idle_type idle, int *all_pinned,
3053 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3054{
b82d9fdd 3055 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
3056 struct task_struct *p;
3057 long rem_load_move = max_load_move;
1da177e4 3058
e1d1484f 3059 if (max_load_move == 0)
1da177e4
LT
3060 goto out;
3061
81026794
NP
3062 pinned = 1;
3063
1da177e4 3064 /*
dd41f596 3065 * Start the load-balancing iterator:
1da177e4 3066 */
dd41f596
IM
3067 p = iterator->start(iterator->arg);
3068next:
b82d9fdd 3069 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3070 goto out;
50ddd969 3071 /*
b82d9fdd 3072 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
3073 * skip a task if it will be the highest priority task (i.e. smallest
3074 * prio value) on its new queue regardless of its load weight
3075 */
dd41f596
IM
3076 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
3077 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 3078 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 3079 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3080 p = iterator->next(iterator->arg);
3081 goto next;
1da177e4
LT
3082 }
3083
dd41f596 3084 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3085 pulled++;
dd41f596 3086 rem_load_move -= p->se.load.weight;
1da177e4 3087
2dd73a4f 3088 /*
b82d9fdd 3089 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3090 */
e1d1484f 3091 if (rem_load_move > 0) {
a4ac01c3
PW
3092 if (p->prio < *this_best_prio)
3093 *this_best_prio = p->prio;
dd41f596
IM
3094 p = iterator->next(iterator->arg);
3095 goto next;
1da177e4
LT
3096 }
3097out:
3098 /*
e1d1484f 3099 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3100 * so we can safely collect pull_task() stats here rather than
3101 * inside pull_task().
3102 */
3103 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3104
3105 if (all_pinned)
3106 *all_pinned = pinned;
e1d1484f
PW
3107
3108 return max_load_move - rem_load_move;
1da177e4
LT
3109}
3110
dd41f596 3111/*
43010659
PW
3112 * move_tasks tries to move up to max_load_move weighted load from busiest to
3113 * this_rq, as part of a balancing operation within domain "sd".
3114 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3115 *
3116 * Called with both runqueues locked.
3117 */
3118static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3119 unsigned long max_load_move,
dd41f596
IM
3120 struct sched_domain *sd, enum cpu_idle_type idle,
3121 int *all_pinned)
3122{
5522d5d5 3123 const struct sched_class *class = sched_class_highest;
43010659 3124 unsigned long total_load_moved = 0;
a4ac01c3 3125 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3126
3127 do {
43010659
PW
3128 total_load_moved +=
3129 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3130 max_load_move - total_load_moved,
a4ac01c3 3131 sd, idle, all_pinned, &this_best_prio);
dd41f596 3132 class = class->next;
43010659 3133 } while (class && max_load_move > total_load_moved);
dd41f596 3134
43010659
PW
3135 return total_load_moved > 0;
3136}
3137
e1d1484f
PW
3138static int
3139iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3140 struct sched_domain *sd, enum cpu_idle_type idle,
3141 struct rq_iterator *iterator)
3142{
3143 struct task_struct *p = iterator->start(iterator->arg);
3144 int pinned = 0;
3145
3146 while (p) {
3147 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3148 pull_task(busiest, p, this_rq, this_cpu);
3149 /*
3150 * Right now, this is only the second place pull_task()
3151 * is called, so we can safely collect pull_task()
3152 * stats here rather than inside pull_task().
3153 */
3154 schedstat_inc(sd, lb_gained[idle]);
3155
3156 return 1;
3157 }
3158 p = iterator->next(iterator->arg);
3159 }
3160
3161 return 0;
3162}
3163
43010659
PW
3164/*
3165 * move_one_task tries to move exactly one task from busiest to this_rq, as
3166 * part of active balancing operations within "domain".
3167 * Returns 1 if successful and 0 otherwise.
3168 *
3169 * Called with both runqueues locked.
3170 */
3171static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3172 struct sched_domain *sd, enum cpu_idle_type idle)
3173{
5522d5d5 3174 const struct sched_class *class;
43010659
PW
3175
3176 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3177 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3178 return 1;
3179
3180 return 0;
dd41f596
IM
3181}
3182
1da177e4
LT
3183/*
3184 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3185 * domain. It calculates and returns the amount of weighted load which
3186 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3187 */
3188static struct sched_group *
3189find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3190 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3191 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3192{
3193 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3194 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3195 unsigned long max_pull;
2dd73a4f
PW
3196 unsigned long busiest_load_per_task, busiest_nr_running;
3197 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3198 int load_idx, group_imb = 0;
5c45bf27
SS
3199#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3200 int power_savings_balance = 1;
3201 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3202 unsigned long min_nr_running = ULONG_MAX;
3203 struct sched_group *group_min = NULL, *group_leader = NULL;
3204#endif
1da177e4
LT
3205
3206 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3207 busiest_load_per_task = busiest_nr_running = 0;
3208 this_load_per_task = this_nr_running = 0;
d15bcfdb 3209 if (idle == CPU_NOT_IDLE)
7897986b 3210 load_idx = sd->busy_idx;
d15bcfdb 3211 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3212 load_idx = sd->newidle_idx;
3213 else
3214 load_idx = sd->idle_idx;
1da177e4
LT
3215
3216 do {
908a7c1b 3217 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3218 int local_group;
3219 int i;
908a7c1b 3220 int __group_imb = 0;
783609c6 3221 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3222 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
3223
3224 local_group = cpu_isset(this_cpu, group->cpumask);
3225
783609c6
SS
3226 if (local_group)
3227 balance_cpu = first_cpu(group->cpumask);
3228
1da177e4 3229 /* Tally up the load of all CPUs in the group */
2dd73a4f 3230 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
3231 max_cpu_load = 0;
3232 min_cpu_load = ~0UL;
1da177e4
LT
3233
3234 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3235 struct rq *rq;
3236
3237 if (!cpu_isset(i, *cpus))
3238 continue;
3239
3240 rq = cpu_rq(i);
2dd73a4f 3241
9439aab8 3242 if (*sd_idle && rq->nr_running)
5969fe06
NP
3243 *sd_idle = 0;
3244
1da177e4 3245 /* Bias balancing toward cpus of our domain */
783609c6
SS
3246 if (local_group) {
3247 if (idle_cpu(i) && !first_idle_cpu) {
3248 first_idle_cpu = 1;
3249 balance_cpu = i;
3250 }
3251
a2000572 3252 load = target_load(i, load_idx);
908a7c1b 3253 } else {
a2000572 3254 load = source_load(i, load_idx);
908a7c1b
KC
3255 if (load > max_cpu_load)
3256 max_cpu_load = load;
3257 if (min_cpu_load > load)
3258 min_cpu_load = load;
3259 }
1da177e4
LT
3260
3261 avg_load += load;
2dd73a4f 3262 sum_nr_running += rq->nr_running;
dd41f596 3263 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
3264 }
3265
783609c6
SS
3266 /*
3267 * First idle cpu or the first cpu(busiest) in this sched group
3268 * is eligible for doing load balancing at this and above
9439aab8
SS
3269 * domains. In the newly idle case, we will allow all the cpu's
3270 * to do the newly idle load balance.
783609c6 3271 */
9439aab8
SS
3272 if (idle != CPU_NEWLY_IDLE && local_group &&
3273 balance_cpu != this_cpu && balance) {
783609c6
SS
3274 *balance = 0;
3275 goto ret;
3276 }
3277
1da177e4 3278 total_load += avg_load;
5517d86b 3279 total_pwr += group->__cpu_power;
1da177e4
LT
3280
3281 /* Adjust by relative CPU power of the group */
5517d86b
ED
3282 avg_load = sg_div_cpu_power(group,
3283 avg_load * SCHED_LOAD_SCALE);
1da177e4 3284
908a7c1b
KC
3285 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3286 __group_imb = 1;
3287
5517d86b 3288 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3289
1da177e4
LT
3290 if (local_group) {
3291 this_load = avg_load;
3292 this = group;
2dd73a4f
PW
3293 this_nr_running = sum_nr_running;
3294 this_load_per_task = sum_weighted_load;
3295 } else if (avg_load > max_load &&
908a7c1b 3296 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3297 max_load = avg_load;
3298 busiest = group;
2dd73a4f
PW
3299 busiest_nr_running = sum_nr_running;
3300 busiest_load_per_task = sum_weighted_load;
908a7c1b 3301 group_imb = __group_imb;
1da177e4 3302 }
5c45bf27
SS
3303
3304#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3305 /*
3306 * Busy processors will not participate in power savings
3307 * balance.
3308 */
dd41f596
IM
3309 if (idle == CPU_NOT_IDLE ||
3310 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3311 goto group_next;
5c45bf27
SS
3312
3313 /*
3314 * If the local group is idle or completely loaded
3315 * no need to do power savings balance at this domain
3316 */
3317 if (local_group && (this_nr_running >= group_capacity ||
3318 !this_nr_running))
3319 power_savings_balance = 0;
3320
dd41f596 3321 /*
5c45bf27
SS
3322 * If a group is already running at full capacity or idle,
3323 * don't include that group in power savings calculations
dd41f596
IM
3324 */
3325 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3326 || !sum_nr_running)
dd41f596 3327 goto group_next;
5c45bf27 3328
dd41f596 3329 /*
5c45bf27 3330 * Calculate the group which has the least non-idle load.
dd41f596
IM
3331 * This is the group from where we need to pick up the load
3332 * for saving power
3333 */
3334 if ((sum_nr_running < min_nr_running) ||
3335 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3336 first_cpu(group->cpumask) <
3337 first_cpu(group_min->cpumask))) {
dd41f596
IM
3338 group_min = group;
3339 min_nr_running = sum_nr_running;
5c45bf27
SS
3340 min_load_per_task = sum_weighted_load /
3341 sum_nr_running;
dd41f596 3342 }
5c45bf27 3343
dd41f596 3344 /*
5c45bf27 3345 * Calculate the group which is almost near its
dd41f596
IM
3346 * capacity but still has some space to pick up some load
3347 * from other group and save more power
3348 */
3349 if (sum_nr_running <= group_capacity - 1) {
3350 if (sum_nr_running > leader_nr_running ||
3351 (sum_nr_running == leader_nr_running &&
3352 first_cpu(group->cpumask) >
3353 first_cpu(group_leader->cpumask))) {
3354 group_leader = group;
3355 leader_nr_running = sum_nr_running;
3356 }
48f24c4d 3357 }
5c45bf27
SS
3358group_next:
3359#endif
1da177e4
LT
3360 group = group->next;
3361 } while (group != sd->groups);
3362
2dd73a4f 3363 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3364 goto out_balanced;
3365
3366 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3367
3368 if (this_load >= avg_load ||
3369 100*max_load <= sd->imbalance_pct*this_load)
3370 goto out_balanced;
3371
2dd73a4f 3372 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3373 if (group_imb)
3374 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3375
1da177e4
LT
3376 /*
3377 * We're trying to get all the cpus to the average_load, so we don't
3378 * want to push ourselves above the average load, nor do we wish to
3379 * reduce the max loaded cpu below the average load, as either of these
3380 * actions would just result in more rebalancing later, and ping-pong
3381 * tasks around. Thus we look for the minimum possible imbalance.
3382 * Negative imbalances (*we* are more loaded than anyone else) will
3383 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3384 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3385 * appear as very large values with unsigned longs.
3386 */
2dd73a4f
PW
3387 if (max_load <= busiest_load_per_task)
3388 goto out_balanced;
3389
3390 /*
3391 * In the presence of smp nice balancing, certain scenarios can have
3392 * max load less than avg load(as we skip the groups at or below
3393 * its cpu_power, while calculating max_load..)
3394 */
3395 if (max_load < avg_load) {
3396 *imbalance = 0;
3397 goto small_imbalance;
3398 }
0c117f1b
SS
3399
3400 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3401 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3402
1da177e4 3403 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3404 *imbalance = min(max_pull * busiest->__cpu_power,
3405 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3406 / SCHED_LOAD_SCALE;
3407
2dd73a4f
PW
3408 /*
3409 * if *imbalance is less than the average load per runnable task
3410 * there is no gaurantee that any tasks will be moved so we'll have
3411 * a think about bumping its value to force at least one task to be
3412 * moved
3413 */
7fd0d2dd 3414 if (*imbalance < busiest_load_per_task) {
48f24c4d 3415 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3416 unsigned int imbn;
3417
3418small_imbalance:
3419 pwr_move = pwr_now = 0;
3420 imbn = 2;
3421 if (this_nr_running) {
3422 this_load_per_task /= this_nr_running;
3423 if (busiest_load_per_task > this_load_per_task)
3424 imbn = 1;
3425 } else
3426 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3427
dd41f596
IM
3428 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3429 busiest_load_per_task * imbn) {
2dd73a4f 3430 *imbalance = busiest_load_per_task;
1da177e4
LT
3431 return busiest;
3432 }
3433
3434 /*
3435 * OK, we don't have enough imbalance to justify moving tasks,
3436 * however we may be able to increase total CPU power used by
3437 * moving them.
3438 */
3439
5517d86b
ED
3440 pwr_now += busiest->__cpu_power *
3441 min(busiest_load_per_task, max_load);
3442 pwr_now += this->__cpu_power *
3443 min(this_load_per_task, this_load);
1da177e4
LT
3444 pwr_now /= SCHED_LOAD_SCALE;
3445
3446 /* Amount of load we'd subtract */
5517d86b
ED
3447 tmp = sg_div_cpu_power(busiest,
3448 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3449 if (max_load > tmp)
5517d86b 3450 pwr_move += busiest->__cpu_power *
2dd73a4f 3451 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3452
3453 /* Amount of load we'd add */
5517d86b 3454 if (max_load * busiest->__cpu_power <
33859f7f 3455 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3456 tmp = sg_div_cpu_power(this,
3457 max_load * busiest->__cpu_power);
1da177e4 3458 else
5517d86b
ED
3459 tmp = sg_div_cpu_power(this,
3460 busiest_load_per_task * SCHED_LOAD_SCALE);
3461 pwr_move += this->__cpu_power *
3462 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3463 pwr_move /= SCHED_LOAD_SCALE;
3464
3465 /* Move if we gain throughput */
7fd0d2dd
SS
3466 if (pwr_move > pwr_now)
3467 *imbalance = busiest_load_per_task;
1da177e4
LT
3468 }
3469
1da177e4
LT
3470 return busiest;
3471
3472out_balanced:
5c45bf27 3473#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3474 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3475 goto ret;
1da177e4 3476
5c45bf27
SS
3477 if (this == group_leader && group_leader != group_min) {
3478 *imbalance = min_load_per_task;
3479 return group_min;
3480 }
5c45bf27 3481#endif
783609c6 3482ret:
1da177e4
LT
3483 *imbalance = 0;
3484 return NULL;
3485}
3486
3487/*
3488 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3489 */
70b97a7f 3490static struct rq *
d15bcfdb 3491find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3492 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3493{
70b97a7f 3494 struct rq *busiest = NULL, *rq;
2dd73a4f 3495 unsigned long max_load = 0;
1da177e4
LT
3496 int i;
3497
3498 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3499 unsigned long wl;
0a2966b4
CL
3500
3501 if (!cpu_isset(i, *cpus))
3502 continue;
3503
48f24c4d 3504 rq = cpu_rq(i);
dd41f596 3505 wl = weighted_cpuload(i);
2dd73a4f 3506
dd41f596 3507 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3508 continue;
1da177e4 3509
dd41f596
IM
3510 if (wl > max_load) {
3511 max_load = wl;
48f24c4d 3512 busiest = rq;
1da177e4
LT
3513 }
3514 }
3515
3516 return busiest;
3517}
3518
77391d71
NP
3519/*
3520 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3521 * so long as it is large enough.
3522 */
3523#define MAX_PINNED_INTERVAL 512
3524
1da177e4
LT
3525/*
3526 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3527 * tasks if there is an imbalance.
1da177e4 3528 */
70b97a7f 3529static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3530 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3531 int *balance, cpumask_t *cpus)
1da177e4 3532{
43010659 3533 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3534 struct sched_group *group;
1da177e4 3535 unsigned long imbalance;
70b97a7f 3536 struct rq *busiest;
fe2eea3f 3537 unsigned long flags;
c09595f6 3538 int unlock_aggregate;
5969fe06 3539
7c16ec58
MT
3540 cpus_setall(*cpus);
3541
c09595f6
PZ
3542 unlock_aggregate = get_aggregate(sd);
3543
89c4710e
SS
3544 /*
3545 * When power savings policy is enabled for the parent domain, idle
3546 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3547 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3548 * portraying it as CPU_NOT_IDLE.
89c4710e 3549 */
d15bcfdb 3550 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3551 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3552 sd_idle = 1;
1da177e4 3553
2d72376b 3554 schedstat_inc(sd, lb_count[idle]);
1da177e4 3555
0a2966b4
CL
3556redo:
3557 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3558 cpus, balance);
783609c6 3559
06066714 3560 if (*balance == 0)
783609c6 3561 goto out_balanced;
783609c6 3562
1da177e4
LT
3563 if (!group) {
3564 schedstat_inc(sd, lb_nobusyg[idle]);
3565 goto out_balanced;
3566 }
3567
7c16ec58 3568 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3569 if (!busiest) {
3570 schedstat_inc(sd, lb_nobusyq[idle]);
3571 goto out_balanced;
3572 }
3573
db935dbd 3574 BUG_ON(busiest == this_rq);
1da177e4
LT
3575
3576 schedstat_add(sd, lb_imbalance[idle], imbalance);
3577
43010659 3578 ld_moved = 0;
1da177e4
LT
3579 if (busiest->nr_running > 1) {
3580 /*
3581 * Attempt to move tasks. If find_busiest_group has found
3582 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3583 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3584 * correctly treated as an imbalance.
3585 */
fe2eea3f 3586 local_irq_save(flags);
e17224bf 3587 double_rq_lock(this_rq, busiest);
43010659 3588 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3589 imbalance, sd, idle, &all_pinned);
e17224bf 3590 double_rq_unlock(this_rq, busiest);
fe2eea3f 3591 local_irq_restore(flags);
81026794 3592
46cb4b7c
SS
3593 /*
3594 * some other cpu did the load balance for us.
3595 */
43010659 3596 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3597 resched_cpu(this_cpu);
3598
81026794 3599 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3600 if (unlikely(all_pinned)) {
7c16ec58
MT
3601 cpu_clear(cpu_of(busiest), *cpus);
3602 if (!cpus_empty(*cpus))
0a2966b4 3603 goto redo;
81026794 3604 goto out_balanced;
0a2966b4 3605 }
1da177e4 3606 }
81026794 3607
43010659 3608 if (!ld_moved) {
1da177e4
LT
3609 schedstat_inc(sd, lb_failed[idle]);
3610 sd->nr_balance_failed++;
3611
3612 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3613
fe2eea3f 3614 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3615
3616 /* don't kick the migration_thread, if the curr
3617 * task on busiest cpu can't be moved to this_cpu
3618 */
3619 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3620 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3621 all_pinned = 1;
3622 goto out_one_pinned;
3623 }
3624
1da177e4
LT
3625 if (!busiest->active_balance) {
3626 busiest->active_balance = 1;
3627 busiest->push_cpu = this_cpu;
81026794 3628 active_balance = 1;
1da177e4 3629 }
fe2eea3f 3630 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3631 if (active_balance)
1da177e4
LT
3632 wake_up_process(busiest->migration_thread);
3633
3634 /*
3635 * We've kicked active balancing, reset the failure
3636 * counter.
3637 */
39507451 3638 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3639 }
81026794 3640 } else
1da177e4
LT
3641 sd->nr_balance_failed = 0;
3642
81026794 3643 if (likely(!active_balance)) {
1da177e4
LT
3644 /* We were unbalanced, so reset the balancing interval */
3645 sd->balance_interval = sd->min_interval;
81026794
NP
3646 } else {
3647 /*
3648 * If we've begun active balancing, start to back off. This
3649 * case may not be covered by the all_pinned logic if there
3650 * is only 1 task on the busy runqueue (because we don't call
3651 * move_tasks).
3652 */
3653 if (sd->balance_interval < sd->max_interval)
3654 sd->balance_interval *= 2;
1da177e4
LT
3655 }
3656
43010659 3657 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3658 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3659 ld_moved = -1;
3660
3661 goto out;
1da177e4
LT
3662
3663out_balanced:
1da177e4
LT
3664 schedstat_inc(sd, lb_balanced[idle]);
3665
16cfb1c0 3666 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3667
3668out_one_pinned:
1da177e4 3669 /* tune up the balancing interval */
77391d71
NP
3670 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3671 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3672 sd->balance_interval *= 2;
3673
48f24c4d 3674 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3675 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3676 ld_moved = -1;
3677 else
3678 ld_moved = 0;
3679out:
3680 if (unlock_aggregate)
3681 put_aggregate(sd);
3682 return ld_moved;
1da177e4
LT
3683}
3684
3685/*
3686 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3687 * tasks if there is an imbalance.
3688 *
d15bcfdb 3689 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3690 * this_rq is locked.
3691 */
48f24c4d 3692static int
7c16ec58
MT
3693load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3694 cpumask_t *cpus)
1da177e4
LT
3695{
3696 struct sched_group *group;
70b97a7f 3697 struct rq *busiest = NULL;
1da177e4 3698 unsigned long imbalance;
43010659 3699 int ld_moved = 0;
5969fe06 3700 int sd_idle = 0;
969bb4e4 3701 int all_pinned = 0;
7c16ec58
MT
3702
3703 cpus_setall(*cpus);
5969fe06 3704
89c4710e
SS
3705 /*
3706 * When power savings policy is enabled for the parent domain, idle
3707 * sibling can pick up load irrespective of busy siblings. In this case,
3708 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3709 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3710 */
3711 if (sd->flags & SD_SHARE_CPUPOWER &&
3712 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3713 sd_idle = 1;
1da177e4 3714
2d72376b 3715 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3716redo:
d15bcfdb 3717 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3718 &sd_idle, cpus, NULL);
1da177e4 3719 if (!group) {
d15bcfdb 3720 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3721 goto out_balanced;
1da177e4
LT
3722 }
3723
7c16ec58 3724 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3725 if (!busiest) {
d15bcfdb 3726 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3727 goto out_balanced;
1da177e4
LT
3728 }
3729
db935dbd
NP
3730 BUG_ON(busiest == this_rq);
3731
d15bcfdb 3732 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3733
43010659 3734 ld_moved = 0;
d6d5cfaf
NP
3735 if (busiest->nr_running > 1) {
3736 /* Attempt to move tasks */
3737 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3738 /* this_rq->clock is already updated */
3739 update_rq_clock(busiest);
43010659 3740 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3741 imbalance, sd, CPU_NEWLY_IDLE,
3742 &all_pinned);
d6d5cfaf 3743 spin_unlock(&busiest->lock);
0a2966b4 3744
969bb4e4 3745 if (unlikely(all_pinned)) {
7c16ec58
MT
3746 cpu_clear(cpu_of(busiest), *cpus);
3747 if (!cpus_empty(*cpus))
0a2966b4
CL
3748 goto redo;
3749 }
d6d5cfaf
NP
3750 }
3751
43010659 3752 if (!ld_moved) {
d15bcfdb 3753 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3754 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3755 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3756 return -1;
3757 } else
16cfb1c0 3758 sd->nr_balance_failed = 0;
1da177e4 3759
43010659 3760 return ld_moved;
16cfb1c0
NP
3761
3762out_balanced:
d15bcfdb 3763 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3764 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3765 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3766 return -1;
16cfb1c0 3767 sd->nr_balance_failed = 0;
48f24c4d 3768
16cfb1c0 3769 return 0;
1da177e4
LT
3770}
3771
3772/*
3773 * idle_balance is called by schedule() if this_cpu is about to become
3774 * idle. Attempts to pull tasks from other CPUs.
3775 */
70b97a7f 3776static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3777{
3778 struct sched_domain *sd;
dd41f596
IM
3779 int pulled_task = -1;
3780 unsigned long next_balance = jiffies + HZ;
7c16ec58 3781 cpumask_t tmpmask;
1da177e4
LT
3782
3783 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3784 unsigned long interval;
3785
3786 if (!(sd->flags & SD_LOAD_BALANCE))
3787 continue;
3788
3789 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3790 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3791 pulled_task = load_balance_newidle(this_cpu, this_rq,
3792 sd, &tmpmask);
92c4ca5c
CL
3793
3794 interval = msecs_to_jiffies(sd->balance_interval);
3795 if (time_after(next_balance, sd->last_balance + interval))
3796 next_balance = sd->last_balance + interval;
3797 if (pulled_task)
3798 break;
1da177e4 3799 }
dd41f596 3800 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3801 /*
3802 * We are going idle. next_balance may be set based on
3803 * a busy processor. So reset next_balance.
3804 */
3805 this_rq->next_balance = next_balance;
dd41f596 3806 }
1da177e4
LT
3807}
3808
3809/*
3810 * active_load_balance is run by migration threads. It pushes running tasks
3811 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3812 * running on each physical CPU where possible, and avoids physical /
3813 * logical imbalances.
3814 *
3815 * Called with busiest_rq locked.
3816 */
70b97a7f 3817static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3818{
39507451 3819 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3820 struct sched_domain *sd;
3821 struct rq *target_rq;
39507451 3822
48f24c4d 3823 /* Is there any task to move? */
39507451 3824 if (busiest_rq->nr_running <= 1)
39507451
NP
3825 return;
3826
3827 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3828
3829 /*
39507451 3830 * This condition is "impossible", if it occurs
41a2d6cf 3831 * we need to fix it. Originally reported by
39507451 3832 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3833 */
39507451 3834 BUG_ON(busiest_rq == target_rq);
1da177e4 3835
39507451
NP
3836 /* move a task from busiest_rq to target_rq */
3837 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3838 update_rq_clock(busiest_rq);
3839 update_rq_clock(target_rq);
39507451
NP
3840
3841 /* Search for an sd spanning us and the target CPU. */
c96d145e 3842 for_each_domain(target_cpu, sd) {
39507451 3843 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3844 cpu_isset(busiest_cpu, sd->span))
39507451 3845 break;
c96d145e 3846 }
39507451 3847
48f24c4d 3848 if (likely(sd)) {
2d72376b 3849 schedstat_inc(sd, alb_count);
39507451 3850
43010659
PW
3851 if (move_one_task(target_rq, target_cpu, busiest_rq,
3852 sd, CPU_IDLE))
48f24c4d
IM
3853 schedstat_inc(sd, alb_pushed);
3854 else
3855 schedstat_inc(sd, alb_failed);
3856 }
39507451 3857 spin_unlock(&target_rq->lock);
1da177e4
LT
3858}
3859
46cb4b7c
SS
3860#ifdef CONFIG_NO_HZ
3861static struct {
3862 atomic_t load_balancer;
41a2d6cf 3863 cpumask_t cpu_mask;
46cb4b7c
SS
3864} nohz ____cacheline_aligned = {
3865 .load_balancer = ATOMIC_INIT(-1),
3866 .cpu_mask = CPU_MASK_NONE,
3867};
3868
7835b98b 3869/*
46cb4b7c
SS
3870 * This routine will try to nominate the ilb (idle load balancing)
3871 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3872 * load balancing on behalf of all those cpus. If all the cpus in the system
3873 * go into this tickless mode, then there will be no ilb owner (as there is
3874 * no need for one) and all the cpus will sleep till the next wakeup event
3875 * arrives...
3876 *
3877 * For the ilb owner, tick is not stopped. And this tick will be used
3878 * for idle load balancing. ilb owner will still be part of
3879 * nohz.cpu_mask..
7835b98b 3880 *
46cb4b7c
SS
3881 * While stopping the tick, this cpu will become the ilb owner if there
3882 * is no other owner. And will be the owner till that cpu becomes busy
3883 * or if all cpus in the system stop their ticks at which point
3884 * there is no need for ilb owner.
3885 *
3886 * When the ilb owner becomes busy, it nominates another owner, during the
3887 * next busy scheduler_tick()
3888 */
3889int select_nohz_load_balancer(int stop_tick)
3890{
3891 int cpu = smp_processor_id();
3892
3893 if (stop_tick) {
3894 cpu_set(cpu, nohz.cpu_mask);
3895 cpu_rq(cpu)->in_nohz_recently = 1;
3896
3897 /*
3898 * If we are going offline and still the leader, give up!
3899 */
3900 if (cpu_is_offline(cpu) &&
3901 atomic_read(&nohz.load_balancer) == cpu) {
3902 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3903 BUG();
3904 return 0;
3905 }
3906
3907 /* time for ilb owner also to sleep */
3908 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3909 if (atomic_read(&nohz.load_balancer) == cpu)
3910 atomic_set(&nohz.load_balancer, -1);
3911 return 0;
3912 }
3913
3914 if (atomic_read(&nohz.load_balancer) == -1) {
3915 /* make me the ilb owner */
3916 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3917 return 1;
3918 } else if (atomic_read(&nohz.load_balancer) == cpu)
3919 return 1;
3920 } else {
3921 if (!cpu_isset(cpu, nohz.cpu_mask))
3922 return 0;
3923
3924 cpu_clear(cpu, nohz.cpu_mask);
3925
3926 if (atomic_read(&nohz.load_balancer) == cpu)
3927 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3928 BUG();
3929 }
3930 return 0;
3931}
3932#endif
3933
3934static DEFINE_SPINLOCK(balancing);
3935
3936/*
7835b98b
CL
3937 * It checks each scheduling domain to see if it is due to be balanced,
3938 * and initiates a balancing operation if so.
3939 *
3940 * Balancing parameters are set up in arch_init_sched_domains.
3941 */
a9957449 3942static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3943{
46cb4b7c
SS
3944 int balance = 1;
3945 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3946 unsigned long interval;
3947 struct sched_domain *sd;
46cb4b7c 3948 /* Earliest time when we have to do rebalance again */
c9819f45 3949 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3950 int update_next_balance = 0;
d07355f5 3951 int need_serialize;
7c16ec58 3952 cpumask_t tmp;
1da177e4 3953
46cb4b7c 3954 for_each_domain(cpu, sd) {
1da177e4
LT
3955 if (!(sd->flags & SD_LOAD_BALANCE))
3956 continue;
3957
3958 interval = sd->balance_interval;
d15bcfdb 3959 if (idle != CPU_IDLE)
1da177e4
LT
3960 interval *= sd->busy_factor;
3961
3962 /* scale ms to jiffies */
3963 interval = msecs_to_jiffies(interval);
3964 if (unlikely(!interval))
3965 interval = 1;
dd41f596
IM
3966 if (interval > HZ*NR_CPUS/10)
3967 interval = HZ*NR_CPUS/10;
3968
d07355f5 3969 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3970
d07355f5 3971 if (need_serialize) {
08c183f3
CL
3972 if (!spin_trylock(&balancing))
3973 goto out;
3974 }
3975
c9819f45 3976 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3977 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3978 /*
3979 * We've pulled tasks over so either we're no
5969fe06
NP
3980 * longer idle, or one of our SMT siblings is
3981 * not idle.
3982 */
d15bcfdb 3983 idle = CPU_NOT_IDLE;
1da177e4 3984 }
1bd77f2d 3985 sd->last_balance = jiffies;
1da177e4 3986 }
d07355f5 3987 if (need_serialize)
08c183f3
CL
3988 spin_unlock(&balancing);
3989out:
f549da84 3990 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3991 next_balance = sd->last_balance + interval;
f549da84
SS
3992 update_next_balance = 1;
3993 }
783609c6
SS
3994
3995 /*
3996 * Stop the load balance at this level. There is another
3997 * CPU in our sched group which is doing load balancing more
3998 * actively.
3999 */
4000 if (!balance)
4001 break;
1da177e4 4002 }
f549da84
SS
4003
4004 /*
4005 * next_balance will be updated only when there is a need.
4006 * When the cpu is attached to null domain for ex, it will not be
4007 * updated.
4008 */
4009 if (likely(update_next_balance))
4010 rq->next_balance = next_balance;
46cb4b7c
SS
4011}
4012
4013/*
4014 * run_rebalance_domains is triggered when needed from the scheduler tick.
4015 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4016 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4017 */
4018static void run_rebalance_domains(struct softirq_action *h)
4019{
dd41f596
IM
4020 int this_cpu = smp_processor_id();
4021 struct rq *this_rq = cpu_rq(this_cpu);
4022 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4023 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4024
dd41f596 4025 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4026
4027#ifdef CONFIG_NO_HZ
4028 /*
4029 * If this cpu is the owner for idle load balancing, then do the
4030 * balancing on behalf of the other idle cpus whose ticks are
4031 * stopped.
4032 */
dd41f596
IM
4033 if (this_rq->idle_at_tick &&
4034 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4035 cpumask_t cpus = nohz.cpu_mask;
4036 struct rq *rq;
4037 int balance_cpu;
4038
dd41f596 4039 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
4040 for_each_cpu_mask(balance_cpu, cpus) {
4041 /*
4042 * If this cpu gets work to do, stop the load balancing
4043 * work being done for other cpus. Next load
4044 * balancing owner will pick it up.
4045 */
4046 if (need_resched())
4047 break;
4048
de0cf899 4049 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4050
4051 rq = cpu_rq(balance_cpu);
dd41f596
IM
4052 if (time_after(this_rq->next_balance, rq->next_balance))
4053 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4054 }
4055 }
4056#endif
4057}
4058
4059/*
4060 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4061 *
4062 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4063 * idle load balancing owner or decide to stop the periodic load balancing,
4064 * if the whole system is idle.
4065 */
dd41f596 4066static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4067{
46cb4b7c
SS
4068#ifdef CONFIG_NO_HZ
4069 /*
4070 * If we were in the nohz mode recently and busy at the current
4071 * scheduler tick, then check if we need to nominate new idle
4072 * load balancer.
4073 */
4074 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4075 rq->in_nohz_recently = 0;
4076
4077 if (atomic_read(&nohz.load_balancer) == cpu) {
4078 cpu_clear(cpu, nohz.cpu_mask);
4079 atomic_set(&nohz.load_balancer, -1);
4080 }
4081
4082 if (atomic_read(&nohz.load_balancer) == -1) {
4083 /*
4084 * simple selection for now: Nominate the
4085 * first cpu in the nohz list to be the next
4086 * ilb owner.
4087 *
4088 * TBD: Traverse the sched domains and nominate
4089 * the nearest cpu in the nohz.cpu_mask.
4090 */
4091 int ilb = first_cpu(nohz.cpu_mask);
4092
434d53b0 4093 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4094 resched_cpu(ilb);
4095 }
4096 }
4097
4098 /*
4099 * If this cpu is idle and doing idle load balancing for all the
4100 * cpus with ticks stopped, is it time for that to stop?
4101 */
4102 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4103 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4104 resched_cpu(cpu);
4105 return;
4106 }
4107
4108 /*
4109 * If this cpu is idle and the idle load balancing is done by
4110 * someone else, then no need raise the SCHED_SOFTIRQ
4111 */
4112 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4113 cpu_isset(cpu, nohz.cpu_mask))
4114 return;
4115#endif
4116 if (time_after_eq(jiffies, rq->next_balance))
4117 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4118}
dd41f596
IM
4119
4120#else /* CONFIG_SMP */
4121
1da177e4
LT
4122/*
4123 * on UP we do not need to balance between CPUs:
4124 */
70b97a7f 4125static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4126{
4127}
dd41f596 4128
1da177e4
LT
4129#endif
4130
1da177e4
LT
4131DEFINE_PER_CPU(struct kernel_stat, kstat);
4132
4133EXPORT_PER_CPU_SYMBOL(kstat);
4134
4135/*
41b86e9c
IM
4136 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4137 * that have not yet been banked in case the task is currently running.
1da177e4 4138 */
41b86e9c 4139unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4140{
1da177e4 4141 unsigned long flags;
41b86e9c
IM
4142 u64 ns, delta_exec;
4143 struct rq *rq;
48f24c4d 4144
41b86e9c
IM
4145 rq = task_rq_lock(p, &flags);
4146 ns = p->se.sum_exec_runtime;
051a1d1a 4147 if (task_current(rq, p)) {
a8e504d2
IM
4148 update_rq_clock(rq);
4149 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4150 if ((s64)delta_exec > 0)
4151 ns += delta_exec;
4152 }
4153 task_rq_unlock(rq, &flags);
48f24c4d 4154
1da177e4
LT
4155 return ns;
4156}
4157
1da177e4
LT
4158/*
4159 * Account user cpu time to a process.
4160 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4161 * @cputime: the cpu time spent in user space since the last update
4162 */
4163void account_user_time(struct task_struct *p, cputime_t cputime)
4164{
4165 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4166 cputime64_t tmp;
4167
4168 p->utime = cputime_add(p->utime, cputime);
4169
4170 /* Add user time to cpustat. */
4171 tmp = cputime_to_cputime64(cputime);
4172 if (TASK_NICE(p) > 0)
4173 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4174 else
4175 cpustat->user = cputime64_add(cpustat->user, tmp);
4176}
4177
94886b84
LV
4178/*
4179 * Account guest cpu time to a process.
4180 * @p: the process that the cpu time gets accounted to
4181 * @cputime: the cpu time spent in virtual machine since the last update
4182 */
f7402e03 4183static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4184{
4185 cputime64_t tmp;
4186 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4187
4188 tmp = cputime_to_cputime64(cputime);
4189
4190 p->utime = cputime_add(p->utime, cputime);
4191 p->gtime = cputime_add(p->gtime, cputime);
4192
4193 cpustat->user = cputime64_add(cpustat->user, tmp);
4194 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4195}
4196
c66f08be
MN
4197/*
4198 * Account scaled user cpu time to a process.
4199 * @p: the process that the cpu time gets accounted to
4200 * @cputime: the cpu time spent in user space since the last update
4201 */
4202void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4203{
4204 p->utimescaled = cputime_add(p->utimescaled, cputime);
4205}
4206
1da177e4
LT
4207/*
4208 * Account system cpu time to a process.
4209 * @p: the process that the cpu time gets accounted to
4210 * @hardirq_offset: the offset to subtract from hardirq_count()
4211 * @cputime: the cpu time spent in kernel space since the last update
4212 */
4213void account_system_time(struct task_struct *p, int hardirq_offset,
4214 cputime_t cputime)
4215{
4216 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4217 struct rq *rq = this_rq();
1da177e4
LT
4218 cputime64_t tmp;
4219
983ed7a6
HH
4220 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4221 account_guest_time(p, cputime);
4222 return;
4223 }
94886b84 4224
1da177e4
LT
4225 p->stime = cputime_add(p->stime, cputime);
4226
4227 /* Add system time to cpustat. */
4228 tmp = cputime_to_cputime64(cputime);
4229 if (hardirq_count() - hardirq_offset)
4230 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4231 else if (softirq_count())
4232 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4233 else if (p != rq->idle)
1da177e4 4234 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4235 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4236 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4237 else
4238 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4239 /* Account for system time used */
4240 acct_update_integrals(p);
1da177e4
LT
4241}
4242
c66f08be
MN
4243/*
4244 * Account scaled system cpu time to a process.
4245 * @p: the process that the cpu time gets accounted to
4246 * @hardirq_offset: the offset to subtract from hardirq_count()
4247 * @cputime: the cpu time spent in kernel space since the last update
4248 */
4249void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4250{
4251 p->stimescaled = cputime_add(p->stimescaled, cputime);
4252}
4253
1da177e4
LT
4254/*
4255 * Account for involuntary wait time.
4256 * @p: the process from which the cpu time has been stolen
4257 * @steal: the cpu time spent in involuntary wait
4258 */
4259void account_steal_time(struct task_struct *p, cputime_t steal)
4260{
4261 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4262 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4263 struct rq *rq = this_rq();
1da177e4
LT
4264
4265 if (p == rq->idle) {
4266 p->stime = cputime_add(p->stime, steal);
4267 if (atomic_read(&rq->nr_iowait) > 0)
4268 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4269 else
4270 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4271 } else
1da177e4
LT
4272 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4273}
4274
7835b98b
CL
4275/*
4276 * This function gets called by the timer code, with HZ frequency.
4277 * We call it with interrupts disabled.
4278 *
4279 * It also gets called by the fork code, when changing the parent's
4280 * timeslices.
4281 */
4282void scheduler_tick(void)
4283{
7835b98b
CL
4284 int cpu = smp_processor_id();
4285 struct rq *rq = cpu_rq(cpu);
dd41f596 4286 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4287
4288 sched_clock_tick();
dd41f596
IM
4289
4290 spin_lock(&rq->lock);
3e51f33f 4291 update_rq_clock(rq);
f1a438d8 4292 update_cpu_load(rq);
fa85ae24 4293 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4294 spin_unlock(&rq->lock);
7835b98b 4295
e418e1c2 4296#ifdef CONFIG_SMP
dd41f596
IM
4297 rq->idle_at_tick = idle_cpu(cpu);
4298 trigger_load_balance(rq, cpu);
e418e1c2 4299#endif
1da177e4
LT
4300}
4301
1da177e4
LT
4302#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4303
43627582 4304void __kprobes add_preempt_count(int val)
1da177e4
LT
4305{
4306 /*
4307 * Underflow?
4308 */
9a11b49a
IM
4309 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4310 return;
1da177e4
LT
4311 preempt_count() += val;
4312 /*
4313 * Spinlock count overflowing soon?
4314 */
33859f7f
MOS
4315 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4316 PREEMPT_MASK - 10);
1da177e4
LT
4317}
4318EXPORT_SYMBOL(add_preempt_count);
4319
43627582 4320void __kprobes sub_preempt_count(int val)
1da177e4
LT
4321{
4322 /*
4323 * Underflow?
4324 */
9a11b49a
IM
4325 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4326 return;
1da177e4
LT
4327 /*
4328 * Is the spinlock portion underflowing?
4329 */
9a11b49a
IM
4330 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4331 !(preempt_count() & PREEMPT_MASK)))
4332 return;
4333
1da177e4
LT
4334 preempt_count() -= val;
4335}
4336EXPORT_SYMBOL(sub_preempt_count);
4337
4338#endif
4339
4340/*
dd41f596 4341 * Print scheduling while atomic bug:
1da177e4 4342 */
dd41f596 4343static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4344{
838225b4
SS
4345 struct pt_regs *regs = get_irq_regs();
4346
4347 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4348 prev->comm, prev->pid, preempt_count());
4349
dd41f596 4350 debug_show_held_locks(prev);
e21f5b15 4351 print_modules();
dd41f596
IM
4352 if (irqs_disabled())
4353 print_irqtrace_events(prev);
838225b4
SS
4354
4355 if (regs)
4356 show_regs(regs);
4357 else
4358 dump_stack();
dd41f596 4359}
1da177e4 4360
dd41f596
IM
4361/*
4362 * Various schedule()-time debugging checks and statistics:
4363 */
4364static inline void schedule_debug(struct task_struct *prev)
4365{
1da177e4 4366 /*
41a2d6cf 4367 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4368 * schedule() atomically, we ignore that path for now.
4369 * Otherwise, whine if we are scheduling when we should not be.
4370 */
3f33a7ce 4371 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4372 __schedule_bug(prev);
4373
1da177e4
LT
4374 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4375
2d72376b 4376 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4377#ifdef CONFIG_SCHEDSTATS
4378 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4379 schedstat_inc(this_rq(), bkl_count);
4380 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4381 }
4382#endif
dd41f596
IM
4383}
4384
4385/*
4386 * Pick up the highest-prio task:
4387 */
4388static inline struct task_struct *
ff95f3df 4389pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4390{
5522d5d5 4391 const struct sched_class *class;
dd41f596 4392 struct task_struct *p;
1da177e4
LT
4393
4394 /*
dd41f596
IM
4395 * Optimization: we know that if all tasks are in
4396 * the fair class we can call that function directly:
1da177e4 4397 */
dd41f596 4398 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4399 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4400 if (likely(p))
4401 return p;
1da177e4
LT
4402 }
4403
dd41f596
IM
4404 class = sched_class_highest;
4405 for ( ; ; ) {
fb8d4724 4406 p = class->pick_next_task(rq);
dd41f596
IM
4407 if (p)
4408 return p;
4409 /*
4410 * Will never be NULL as the idle class always
4411 * returns a non-NULL p:
4412 */
4413 class = class->next;
4414 }
4415}
1da177e4 4416
dd41f596
IM
4417/*
4418 * schedule() is the main scheduler function.
4419 */
4420asmlinkage void __sched schedule(void)
4421{
4422 struct task_struct *prev, *next;
67ca7bde 4423 unsigned long *switch_count;
dd41f596 4424 struct rq *rq;
f333fdc9 4425 int cpu, hrtick = sched_feat(HRTICK);
dd41f596
IM
4426
4427need_resched:
4428 preempt_disable();
4429 cpu = smp_processor_id();
4430 rq = cpu_rq(cpu);
4431 rcu_qsctr_inc(cpu);
4432 prev = rq->curr;
4433 switch_count = &prev->nivcsw;
4434
4435 release_kernel_lock(prev);
4436need_resched_nonpreemptible:
4437
4438 schedule_debug(prev);
1da177e4 4439
f333fdc9
MG
4440 if (hrtick)
4441 hrtick_clear(rq);
8f4d37ec 4442
1e819950
IM
4443 /*
4444 * Do the rq-clock update outside the rq lock:
4445 */
4446 local_irq_disable();
3e51f33f 4447 update_rq_clock(rq);
1e819950
IM
4448 spin_lock(&rq->lock);
4449 clear_tsk_need_resched(prev);
1da177e4 4450
1da177e4 4451 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4452 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4453 prev->state = TASK_RUNNING;
16882c1e 4454 else
2e1cb74a 4455 deactivate_task(rq, prev, 1);
dd41f596 4456 switch_count = &prev->nvcsw;
1da177e4
LT
4457 }
4458
9a897c5a
SR
4459#ifdef CONFIG_SMP
4460 if (prev->sched_class->pre_schedule)
4461 prev->sched_class->pre_schedule(rq, prev);
4462#endif
f65eda4f 4463
dd41f596 4464 if (unlikely(!rq->nr_running))
1da177e4 4465 idle_balance(cpu, rq);
1da177e4 4466
31ee529c 4467 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4468 next = pick_next_task(rq, prev);
1da177e4 4469
1da177e4 4470 if (likely(prev != next)) {
673a90a1
DS
4471 sched_info_switch(prev, next);
4472
1da177e4
LT
4473 rq->nr_switches++;
4474 rq->curr = next;
4475 ++*switch_count;
4476
dd41f596 4477 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4478 /*
4479 * the context switch might have flipped the stack from under
4480 * us, hence refresh the local variables.
4481 */
4482 cpu = smp_processor_id();
4483 rq = cpu_rq(cpu);
1da177e4
LT
4484 } else
4485 spin_unlock_irq(&rq->lock);
4486
f333fdc9
MG
4487 if (hrtick)
4488 hrtick_set(rq);
8f4d37ec
PZ
4489
4490 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4491 goto need_resched_nonpreemptible;
8f4d37ec 4492
1da177e4
LT
4493 preempt_enable_no_resched();
4494 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4495 goto need_resched;
4496}
1da177e4
LT
4497EXPORT_SYMBOL(schedule);
4498
4499#ifdef CONFIG_PREEMPT
4500/*
2ed6e34f 4501 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4502 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4503 * occur there and call schedule directly.
4504 */
4505asmlinkage void __sched preempt_schedule(void)
4506{
4507 struct thread_info *ti = current_thread_info();
6478d880 4508
1da177e4
LT
4509 /*
4510 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4511 * we do not want to preempt the current task. Just return..
1da177e4 4512 */
beed33a8 4513 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4514 return;
4515
3a5c359a
AK
4516 do {
4517 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4518 schedule();
3a5c359a 4519 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4520
3a5c359a
AK
4521 /*
4522 * Check again in case we missed a preemption opportunity
4523 * between schedule and now.
4524 */
4525 barrier();
4526 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4527}
1da177e4
LT
4528EXPORT_SYMBOL(preempt_schedule);
4529
4530/*
2ed6e34f 4531 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4532 * off of irq context.
4533 * Note, that this is called and return with irqs disabled. This will
4534 * protect us against recursive calling from irq.
4535 */
4536asmlinkage void __sched preempt_schedule_irq(void)
4537{
4538 struct thread_info *ti = current_thread_info();
6478d880 4539
2ed6e34f 4540 /* Catch callers which need to be fixed */
1da177e4
LT
4541 BUG_ON(ti->preempt_count || !irqs_disabled());
4542
3a5c359a
AK
4543 do {
4544 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4545 local_irq_enable();
4546 schedule();
4547 local_irq_disable();
3a5c359a 4548 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4549
3a5c359a
AK
4550 /*
4551 * Check again in case we missed a preemption opportunity
4552 * between schedule and now.
4553 */
4554 barrier();
4555 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4556}
4557
4558#endif /* CONFIG_PREEMPT */
4559
95cdf3b7
IM
4560int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4561 void *key)
1da177e4 4562{
48f24c4d 4563 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4564}
1da177e4
LT
4565EXPORT_SYMBOL(default_wake_function);
4566
4567/*
41a2d6cf
IM
4568 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4569 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4570 * number) then we wake all the non-exclusive tasks and one exclusive task.
4571 *
4572 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4573 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4574 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4575 */
4576static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4577 int nr_exclusive, int sync, void *key)
4578{
2e45874c 4579 wait_queue_t *curr, *next;
1da177e4 4580
2e45874c 4581 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4582 unsigned flags = curr->flags;
4583
1da177e4 4584 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4585 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4586 break;
4587 }
4588}
4589
4590/**
4591 * __wake_up - wake up threads blocked on a waitqueue.
4592 * @q: the waitqueue
4593 * @mode: which threads
4594 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4595 * @key: is directly passed to the wakeup function
1da177e4 4596 */
7ad5b3a5 4597void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4598 int nr_exclusive, void *key)
1da177e4
LT
4599{
4600 unsigned long flags;
4601
4602 spin_lock_irqsave(&q->lock, flags);
4603 __wake_up_common(q, mode, nr_exclusive, 0, key);
4604 spin_unlock_irqrestore(&q->lock, flags);
4605}
1da177e4
LT
4606EXPORT_SYMBOL(__wake_up);
4607
4608/*
4609 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4610 */
7ad5b3a5 4611void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4612{
4613 __wake_up_common(q, mode, 1, 0, NULL);
4614}
4615
4616/**
67be2dd1 4617 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4618 * @q: the waitqueue
4619 * @mode: which threads
4620 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4621 *
4622 * The sync wakeup differs that the waker knows that it will schedule
4623 * away soon, so while the target thread will be woken up, it will not
4624 * be migrated to another CPU - ie. the two threads are 'synchronized'
4625 * with each other. This can prevent needless bouncing between CPUs.
4626 *
4627 * On UP it can prevent extra preemption.
4628 */
7ad5b3a5 4629void
95cdf3b7 4630__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4631{
4632 unsigned long flags;
4633 int sync = 1;
4634
4635 if (unlikely(!q))
4636 return;
4637
4638 if (unlikely(!nr_exclusive))
4639 sync = 0;
4640
4641 spin_lock_irqsave(&q->lock, flags);
4642 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4643 spin_unlock_irqrestore(&q->lock, flags);
4644}
4645EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4646
b15136e9 4647void complete(struct completion *x)
1da177e4
LT
4648{
4649 unsigned long flags;
4650
4651 spin_lock_irqsave(&x->wait.lock, flags);
4652 x->done++;
d9514f6c 4653 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4654 spin_unlock_irqrestore(&x->wait.lock, flags);
4655}
4656EXPORT_SYMBOL(complete);
4657
b15136e9 4658void complete_all(struct completion *x)
1da177e4
LT
4659{
4660 unsigned long flags;
4661
4662 spin_lock_irqsave(&x->wait.lock, flags);
4663 x->done += UINT_MAX/2;
d9514f6c 4664 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4665 spin_unlock_irqrestore(&x->wait.lock, flags);
4666}
4667EXPORT_SYMBOL(complete_all);
4668
8cbbe86d
AK
4669static inline long __sched
4670do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4671{
1da177e4
LT
4672 if (!x->done) {
4673 DECLARE_WAITQUEUE(wait, current);
4674
4675 wait.flags |= WQ_FLAG_EXCLUSIVE;
4676 __add_wait_queue_tail(&x->wait, &wait);
4677 do {
009e577e
MW
4678 if ((state == TASK_INTERRUPTIBLE &&
4679 signal_pending(current)) ||
4680 (state == TASK_KILLABLE &&
4681 fatal_signal_pending(current))) {
ea71a546
ON
4682 timeout = -ERESTARTSYS;
4683 break;
8cbbe86d
AK
4684 }
4685 __set_current_state(state);
1da177e4
LT
4686 spin_unlock_irq(&x->wait.lock);
4687 timeout = schedule_timeout(timeout);
4688 spin_lock_irq(&x->wait.lock);
ea71a546 4689 } while (!x->done && timeout);
1da177e4 4690 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4691 if (!x->done)
4692 return timeout;
1da177e4
LT
4693 }
4694 x->done--;
ea71a546 4695 return timeout ?: 1;
1da177e4 4696}
1da177e4 4697
8cbbe86d
AK
4698static long __sched
4699wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4700{
1da177e4
LT
4701 might_sleep();
4702
4703 spin_lock_irq(&x->wait.lock);
8cbbe86d 4704 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4705 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4706 return timeout;
4707}
1da177e4 4708
b15136e9 4709void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4710{
4711 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4712}
8cbbe86d 4713EXPORT_SYMBOL(wait_for_completion);
1da177e4 4714
b15136e9 4715unsigned long __sched
8cbbe86d 4716wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4717{
8cbbe86d 4718 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4719}
8cbbe86d 4720EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4721
8cbbe86d 4722int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4723{
51e97990
AK
4724 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4725 if (t == -ERESTARTSYS)
4726 return t;
4727 return 0;
0fec171c 4728}
8cbbe86d 4729EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4730
b15136e9 4731unsigned long __sched
8cbbe86d
AK
4732wait_for_completion_interruptible_timeout(struct completion *x,
4733 unsigned long timeout)
0fec171c 4734{
8cbbe86d 4735 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4736}
8cbbe86d 4737EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4738
009e577e
MW
4739int __sched wait_for_completion_killable(struct completion *x)
4740{
4741 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4742 if (t == -ERESTARTSYS)
4743 return t;
4744 return 0;
4745}
4746EXPORT_SYMBOL(wait_for_completion_killable);
4747
8cbbe86d
AK
4748static long __sched
4749sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4750{
0fec171c
IM
4751 unsigned long flags;
4752 wait_queue_t wait;
4753
4754 init_waitqueue_entry(&wait, current);
1da177e4 4755
8cbbe86d 4756 __set_current_state(state);
1da177e4 4757
8cbbe86d
AK
4758 spin_lock_irqsave(&q->lock, flags);
4759 __add_wait_queue(q, &wait);
4760 spin_unlock(&q->lock);
4761 timeout = schedule_timeout(timeout);
4762 spin_lock_irq(&q->lock);
4763 __remove_wait_queue(q, &wait);
4764 spin_unlock_irqrestore(&q->lock, flags);
4765
4766 return timeout;
4767}
4768
4769void __sched interruptible_sleep_on(wait_queue_head_t *q)
4770{
4771 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4772}
1da177e4
LT
4773EXPORT_SYMBOL(interruptible_sleep_on);
4774
0fec171c 4775long __sched
95cdf3b7 4776interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4777{
8cbbe86d 4778 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4779}
1da177e4
LT
4780EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4781
0fec171c 4782void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4783{
8cbbe86d 4784 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4785}
1da177e4
LT
4786EXPORT_SYMBOL(sleep_on);
4787
0fec171c 4788long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4789{
8cbbe86d 4790 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4791}
1da177e4
LT
4792EXPORT_SYMBOL(sleep_on_timeout);
4793
b29739f9
IM
4794#ifdef CONFIG_RT_MUTEXES
4795
4796/*
4797 * rt_mutex_setprio - set the current priority of a task
4798 * @p: task
4799 * @prio: prio value (kernel-internal form)
4800 *
4801 * This function changes the 'effective' priority of a task. It does
4802 * not touch ->normal_prio like __setscheduler().
4803 *
4804 * Used by the rt_mutex code to implement priority inheritance logic.
4805 */
36c8b586 4806void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4807{
4808 unsigned long flags;
83b699ed 4809 int oldprio, on_rq, running;
70b97a7f 4810 struct rq *rq;
cb469845 4811 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4812
4813 BUG_ON(prio < 0 || prio > MAX_PRIO);
4814
4815 rq = task_rq_lock(p, &flags);
a8e504d2 4816 update_rq_clock(rq);
b29739f9 4817
d5f9f942 4818 oldprio = p->prio;
dd41f596 4819 on_rq = p->se.on_rq;
051a1d1a 4820 running = task_current(rq, p);
0e1f3483 4821 if (on_rq)
69be72c1 4822 dequeue_task(rq, p, 0);
0e1f3483
HS
4823 if (running)
4824 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4825
4826 if (rt_prio(prio))
4827 p->sched_class = &rt_sched_class;
4828 else
4829 p->sched_class = &fair_sched_class;
4830
b29739f9
IM
4831 p->prio = prio;
4832
0e1f3483
HS
4833 if (running)
4834 p->sched_class->set_curr_task(rq);
dd41f596 4835 if (on_rq) {
8159f87e 4836 enqueue_task(rq, p, 0);
cb469845
SR
4837
4838 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4839 }
4840 task_rq_unlock(rq, &flags);
4841}
4842
4843#endif
4844
36c8b586 4845void set_user_nice(struct task_struct *p, long nice)
1da177e4 4846{
dd41f596 4847 int old_prio, delta, on_rq;
1da177e4 4848 unsigned long flags;
70b97a7f 4849 struct rq *rq;
1da177e4
LT
4850
4851 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4852 return;
4853 /*
4854 * We have to be careful, if called from sys_setpriority(),
4855 * the task might be in the middle of scheduling on another CPU.
4856 */
4857 rq = task_rq_lock(p, &flags);
a8e504d2 4858 update_rq_clock(rq);
1da177e4
LT
4859 /*
4860 * The RT priorities are set via sched_setscheduler(), but we still
4861 * allow the 'normal' nice value to be set - but as expected
4862 * it wont have any effect on scheduling until the task is
dd41f596 4863 * SCHED_FIFO/SCHED_RR:
1da177e4 4864 */
e05606d3 4865 if (task_has_rt_policy(p)) {
1da177e4
LT
4866 p->static_prio = NICE_TO_PRIO(nice);
4867 goto out_unlock;
4868 }
dd41f596 4869 on_rq = p->se.on_rq;
c09595f6 4870 if (on_rq)
69be72c1 4871 dequeue_task(rq, p, 0);
1da177e4 4872
1da177e4 4873 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4874 set_load_weight(p);
b29739f9
IM
4875 old_prio = p->prio;
4876 p->prio = effective_prio(p);
4877 delta = p->prio - old_prio;
1da177e4 4878
dd41f596 4879 if (on_rq) {
8159f87e 4880 enqueue_task(rq, p, 0);
1da177e4 4881 /*
d5f9f942
AM
4882 * If the task increased its priority or is running and
4883 * lowered its priority, then reschedule its CPU:
1da177e4 4884 */
d5f9f942 4885 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4886 resched_task(rq->curr);
4887 }
4888out_unlock:
4889 task_rq_unlock(rq, &flags);
4890}
1da177e4
LT
4891EXPORT_SYMBOL(set_user_nice);
4892
e43379f1
MM
4893/*
4894 * can_nice - check if a task can reduce its nice value
4895 * @p: task
4896 * @nice: nice value
4897 */
36c8b586 4898int can_nice(const struct task_struct *p, const int nice)
e43379f1 4899{
024f4747
MM
4900 /* convert nice value [19,-20] to rlimit style value [1,40] */
4901 int nice_rlim = 20 - nice;
48f24c4d 4902
e43379f1
MM
4903 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4904 capable(CAP_SYS_NICE));
4905}
4906
1da177e4
LT
4907#ifdef __ARCH_WANT_SYS_NICE
4908
4909/*
4910 * sys_nice - change the priority of the current process.
4911 * @increment: priority increment
4912 *
4913 * sys_setpriority is a more generic, but much slower function that
4914 * does similar things.
4915 */
4916asmlinkage long sys_nice(int increment)
4917{
48f24c4d 4918 long nice, retval;
1da177e4
LT
4919
4920 /*
4921 * Setpriority might change our priority at the same moment.
4922 * We don't have to worry. Conceptually one call occurs first
4923 * and we have a single winner.
4924 */
e43379f1
MM
4925 if (increment < -40)
4926 increment = -40;
1da177e4
LT
4927 if (increment > 40)
4928 increment = 40;
4929
4930 nice = PRIO_TO_NICE(current->static_prio) + increment;
4931 if (nice < -20)
4932 nice = -20;
4933 if (nice > 19)
4934 nice = 19;
4935
e43379f1
MM
4936 if (increment < 0 && !can_nice(current, nice))
4937 return -EPERM;
4938
1da177e4
LT
4939 retval = security_task_setnice(current, nice);
4940 if (retval)
4941 return retval;
4942
4943 set_user_nice(current, nice);
4944 return 0;
4945}
4946
4947#endif
4948
4949/**
4950 * task_prio - return the priority value of a given task.
4951 * @p: the task in question.
4952 *
4953 * This is the priority value as seen by users in /proc.
4954 * RT tasks are offset by -200. Normal tasks are centered
4955 * around 0, value goes from -16 to +15.
4956 */
36c8b586 4957int task_prio(const struct task_struct *p)
1da177e4
LT
4958{
4959 return p->prio - MAX_RT_PRIO;
4960}
4961
4962/**
4963 * task_nice - return the nice value of a given task.
4964 * @p: the task in question.
4965 */
36c8b586 4966int task_nice(const struct task_struct *p)
1da177e4
LT
4967{
4968 return TASK_NICE(p);
4969}
150d8bed 4970EXPORT_SYMBOL(task_nice);
1da177e4
LT
4971
4972/**
4973 * idle_cpu - is a given cpu idle currently?
4974 * @cpu: the processor in question.
4975 */
4976int idle_cpu(int cpu)
4977{
4978 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4979}
4980
1da177e4
LT
4981/**
4982 * idle_task - return the idle task for a given cpu.
4983 * @cpu: the processor in question.
4984 */
36c8b586 4985struct task_struct *idle_task(int cpu)
1da177e4
LT
4986{
4987 return cpu_rq(cpu)->idle;
4988}
4989
4990/**
4991 * find_process_by_pid - find a process with a matching PID value.
4992 * @pid: the pid in question.
4993 */
a9957449 4994static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4995{
228ebcbe 4996 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4997}
4998
4999/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5000static void
5001__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5002{
dd41f596 5003 BUG_ON(p->se.on_rq);
48f24c4d 5004
1da177e4 5005 p->policy = policy;
dd41f596
IM
5006 switch (p->policy) {
5007 case SCHED_NORMAL:
5008 case SCHED_BATCH:
5009 case SCHED_IDLE:
5010 p->sched_class = &fair_sched_class;
5011 break;
5012 case SCHED_FIFO:
5013 case SCHED_RR:
5014 p->sched_class = &rt_sched_class;
5015 break;
5016 }
5017
1da177e4 5018 p->rt_priority = prio;
b29739f9
IM
5019 p->normal_prio = normal_prio(p);
5020 /* we are holding p->pi_lock already */
5021 p->prio = rt_mutex_getprio(p);
2dd73a4f 5022 set_load_weight(p);
1da177e4
LT
5023}
5024
5025/**
72fd4a35 5026 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
5027 * @p: the task in question.
5028 * @policy: new policy.
5029 * @param: structure containing the new RT priority.
5fe1d75f 5030 *
72fd4a35 5031 * NOTE that the task may be already dead.
1da177e4 5032 */
95cdf3b7
IM
5033int sched_setscheduler(struct task_struct *p, int policy,
5034 struct sched_param *param)
1da177e4 5035{
83b699ed 5036 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5037 unsigned long flags;
cb469845 5038 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5039 struct rq *rq;
1da177e4 5040
66e5393a
SR
5041 /* may grab non-irq protected spin_locks */
5042 BUG_ON(in_interrupt());
1da177e4
LT
5043recheck:
5044 /* double check policy once rq lock held */
5045 if (policy < 0)
5046 policy = oldpolicy = p->policy;
5047 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5048 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5049 policy != SCHED_IDLE)
b0a9499c 5050 return -EINVAL;
1da177e4
LT
5051 /*
5052 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5053 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5054 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5055 */
5056 if (param->sched_priority < 0 ||
95cdf3b7 5057 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5058 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5059 return -EINVAL;
e05606d3 5060 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5061 return -EINVAL;
5062
37e4ab3f
OC
5063 /*
5064 * Allow unprivileged RT tasks to decrease priority:
5065 */
5066 if (!capable(CAP_SYS_NICE)) {
e05606d3 5067 if (rt_policy(policy)) {
8dc3e909 5068 unsigned long rlim_rtprio;
8dc3e909
ON
5069
5070 if (!lock_task_sighand(p, &flags))
5071 return -ESRCH;
5072 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5073 unlock_task_sighand(p, &flags);
5074
5075 /* can't set/change the rt policy */
5076 if (policy != p->policy && !rlim_rtprio)
5077 return -EPERM;
5078
5079 /* can't increase priority */
5080 if (param->sched_priority > p->rt_priority &&
5081 param->sched_priority > rlim_rtprio)
5082 return -EPERM;
5083 }
dd41f596
IM
5084 /*
5085 * Like positive nice levels, dont allow tasks to
5086 * move out of SCHED_IDLE either:
5087 */
5088 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5089 return -EPERM;
5fe1d75f 5090
37e4ab3f
OC
5091 /* can't change other user's priorities */
5092 if ((current->euid != p->euid) &&
5093 (current->euid != p->uid))
5094 return -EPERM;
5095 }
1da177e4 5096
b68aa230
PZ
5097#ifdef CONFIG_RT_GROUP_SCHED
5098 /*
5099 * Do not allow realtime tasks into groups that have no runtime
5100 * assigned.
5101 */
d0b27fa7 5102 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
5103 return -EPERM;
5104#endif
5105
1da177e4
LT
5106 retval = security_task_setscheduler(p, policy, param);
5107 if (retval)
5108 return retval;
b29739f9
IM
5109 /*
5110 * make sure no PI-waiters arrive (or leave) while we are
5111 * changing the priority of the task:
5112 */
5113 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5114 /*
5115 * To be able to change p->policy safely, the apropriate
5116 * runqueue lock must be held.
5117 */
b29739f9 5118 rq = __task_rq_lock(p);
1da177e4
LT
5119 /* recheck policy now with rq lock held */
5120 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5121 policy = oldpolicy = -1;
b29739f9
IM
5122 __task_rq_unlock(rq);
5123 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5124 goto recheck;
5125 }
2daa3577 5126 update_rq_clock(rq);
dd41f596 5127 on_rq = p->se.on_rq;
051a1d1a 5128 running = task_current(rq, p);
0e1f3483 5129 if (on_rq)
2e1cb74a 5130 deactivate_task(rq, p, 0);
0e1f3483
HS
5131 if (running)
5132 p->sched_class->put_prev_task(rq, p);
f6b53205 5133
1da177e4 5134 oldprio = p->prio;
dd41f596 5135 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5136
0e1f3483
HS
5137 if (running)
5138 p->sched_class->set_curr_task(rq);
dd41f596
IM
5139 if (on_rq) {
5140 activate_task(rq, p, 0);
cb469845
SR
5141
5142 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5143 }
b29739f9
IM
5144 __task_rq_unlock(rq);
5145 spin_unlock_irqrestore(&p->pi_lock, flags);
5146
95e02ca9
TG
5147 rt_mutex_adjust_pi(p);
5148
1da177e4
LT
5149 return 0;
5150}
5151EXPORT_SYMBOL_GPL(sched_setscheduler);
5152
95cdf3b7
IM
5153static int
5154do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5155{
1da177e4
LT
5156 struct sched_param lparam;
5157 struct task_struct *p;
36c8b586 5158 int retval;
1da177e4
LT
5159
5160 if (!param || pid < 0)
5161 return -EINVAL;
5162 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5163 return -EFAULT;
5fe1d75f
ON
5164
5165 rcu_read_lock();
5166 retval = -ESRCH;
1da177e4 5167 p = find_process_by_pid(pid);
5fe1d75f
ON
5168 if (p != NULL)
5169 retval = sched_setscheduler(p, policy, &lparam);
5170 rcu_read_unlock();
36c8b586 5171
1da177e4
LT
5172 return retval;
5173}
5174
5175/**
5176 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5177 * @pid: the pid in question.
5178 * @policy: new policy.
5179 * @param: structure containing the new RT priority.
5180 */
41a2d6cf
IM
5181asmlinkage long
5182sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5183{
c21761f1
JB
5184 /* negative values for policy are not valid */
5185 if (policy < 0)
5186 return -EINVAL;
5187
1da177e4
LT
5188 return do_sched_setscheduler(pid, policy, param);
5189}
5190
5191/**
5192 * sys_sched_setparam - set/change the RT priority of a thread
5193 * @pid: the pid in question.
5194 * @param: structure containing the new RT priority.
5195 */
5196asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5197{
5198 return do_sched_setscheduler(pid, -1, param);
5199}
5200
5201/**
5202 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5203 * @pid: the pid in question.
5204 */
5205asmlinkage long sys_sched_getscheduler(pid_t pid)
5206{
36c8b586 5207 struct task_struct *p;
3a5c359a 5208 int retval;
1da177e4
LT
5209
5210 if (pid < 0)
3a5c359a 5211 return -EINVAL;
1da177e4
LT
5212
5213 retval = -ESRCH;
5214 read_lock(&tasklist_lock);
5215 p = find_process_by_pid(pid);
5216 if (p) {
5217 retval = security_task_getscheduler(p);
5218 if (!retval)
5219 retval = p->policy;
5220 }
5221 read_unlock(&tasklist_lock);
1da177e4
LT
5222 return retval;
5223}
5224
5225/**
5226 * sys_sched_getscheduler - get the RT priority of a thread
5227 * @pid: the pid in question.
5228 * @param: structure containing the RT priority.
5229 */
5230asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5231{
5232 struct sched_param lp;
36c8b586 5233 struct task_struct *p;
3a5c359a 5234 int retval;
1da177e4
LT
5235
5236 if (!param || pid < 0)
3a5c359a 5237 return -EINVAL;
1da177e4
LT
5238
5239 read_lock(&tasklist_lock);
5240 p = find_process_by_pid(pid);
5241 retval = -ESRCH;
5242 if (!p)
5243 goto out_unlock;
5244
5245 retval = security_task_getscheduler(p);
5246 if (retval)
5247 goto out_unlock;
5248
5249 lp.sched_priority = p->rt_priority;
5250 read_unlock(&tasklist_lock);
5251
5252 /*
5253 * This one might sleep, we cannot do it with a spinlock held ...
5254 */
5255 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5256
1da177e4
LT
5257 return retval;
5258
5259out_unlock:
5260 read_unlock(&tasklist_lock);
5261 return retval;
5262}
5263
b53e921b 5264long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5265{
1da177e4 5266 cpumask_t cpus_allowed;
b53e921b 5267 cpumask_t new_mask = *in_mask;
36c8b586
IM
5268 struct task_struct *p;
5269 int retval;
1da177e4 5270
95402b38 5271 get_online_cpus();
1da177e4
LT
5272 read_lock(&tasklist_lock);
5273
5274 p = find_process_by_pid(pid);
5275 if (!p) {
5276 read_unlock(&tasklist_lock);
95402b38 5277 put_online_cpus();
1da177e4
LT
5278 return -ESRCH;
5279 }
5280
5281 /*
5282 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5283 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5284 * usage count and then drop tasklist_lock.
5285 */
5286 get_task_struct(p);
5287 read_unlock(&tasklist_lock);
5288
5289 retval = -EPERM;
5290 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5291 !capable(CAP_SYS_NICE))
5292 goto out_unlock;
5293
e7834f8f
DQ
5294 retval = security_task_setscheduler(p, 0, NULL);
5295 if (retval)
5296 goto out_unlock;
5297
f9a86fcb 5298 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5299 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5300 again:
7c16ec58 5301 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5302
8707d8b8 5303 if (!retval) {
f9a86fcb 5304 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5305 if (!cpus_subset(new_mask, cpus_allowed)) {
5306 /*
5307 * We must have raced with a concurrent cpuset
5308 * update. Just reset the cpus_allowed to the
5309 * cpuset's cpus_allowed
5310 */
5311 new_mask = cpus_allowed;
5312 goto again;
5313 }
5314 }
1da177e4
LT
5315out_unlock:
5316 put_task_struct(p);
95402b38 5317 put_online_cpus();
1da177e4
LT
5318 return retval;
5319}
5320
5321static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5322 cpumask_t *new_mask)
5323{
5324 if (len < sizeof(cpumask_t)) {
5325 memset(new_mask, 0, sizeof(cpumask_t));
5326 } else if (len > sizeof(cpumask_t)) {
5327 len = sizeof(cpumask_t);
5328 }
5329 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5330}
5331
5332/**
5333 * sys_sched_setaffinity - set the cpu affinity of a process
5334 * @pid: pid of the process
5335 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5336 * @user_mask_ptr: user-space pointer to the new cpu mask
5337 */
5338asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5339 unsigned long __user *user_mask_ptr)
5340{
5341 cpumask_t new_mask;
5342 int retval;
5343
5344 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5345 if (retval)
5346 return retval;
5347
b53e921b 5348 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5349}
5350
1da177e4
LT
5351long sched_getaffinity(pid_t pid, cpumask_t *mask)
5352{
36c8b586 5353 struct task_struct *p;
1da177e4 5354 int retval;
1da177e4 5355
95402b38 5356 get_online_cpus();
1da177e4
LT
5357 read_lock(&tasklist_lock);
5358
5359 retval = -ESRCH;
5360 p = find_process_by_pid(pid);
5361 if (!p)
5362 goto out_unlock;
5363
e7834f8f
DQ
5364 retval = security_task_getscheduler(p);
5365 if (retval)
5366 goto out_unlock;
5367
2f7016d9 5368 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5369
5370out_unlock:
5371 read_unlock(&tasklist_lock);
95402b38 5372 put_online_cpus();
1da177e4 5373
9531b62f 5374 return retval;
1da177e4
LT
5375}
5376
5377/**
5378 * sys_sched_getaffinity - get the cpu affinity of a process
5379 * @pid: pid of the process
5380 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5381 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5382 */
5383asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5384 unsigned long __user *user_mask_ptr)
5385{
5386 int ret;
5387 cpumask_t mask;
5388
5389 if (len < sizeof(cpumask_t))
5390 return -EINVAL;
5391
5392 ret = sched_getaffinity(pid, &mask);
5393 if (ret < 0)
5394 return ret;
5395
5396 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5397 return -EFAULT;
5398
5399 return sizeof(cpumask_t);
5400}
5401
5402/**
5403 * sys_sched_yield - yield the current processor to other threads.
5404 *
dd41f596
IM
5405 * This function yields the current CPU to other tasks. If there are no
5406 * other threads running on this CPU then this function will return.
1da177e4
LT
5407 */
5408asmlinkage long sys_sched_yield(void)
5409{
70b97a7f 5410 struct rq *rq = this_rq_lock();
1da177e4 5411
2d72376b 5412 schedstat_inc(rq, yld_count);
4530d7ab 5413 current->sched_class->yield_task(rq);
1da177e4
LT
5414
5415 /*
5416 * Since we are going to call schedule() anyway, there's
5417 * no need to preempt or enable interrupts:
5418 */
5419 __release(rq->lock);
8a25d5de 5420 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5421 _raw_spin_unlock(&rq->lock);
5422 preempt_enable_no_resched();
5423
5424 schedule();
5425
5426 return 0;
5427}
5428
e7b38404 5429static void __cond_resched(void)
1da177e4 5430{
8e0a43d8
IM
5431#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5432 __might_sleep(__FILE__, __LINE__);
5433#endif
5bbcfd90
IM
5434 /*
5435 * The BKS might be reacquired before we have dropped
5436 * PREEMPT_ACTIVE, which could trigger a second
5437 * cond_resched() call.
5438 */
1da177e4
LT
5439 do {
5440 add_preempt_count(PREEMPT_ACTIVE);
5441 schedule();
5442 sub_preempt_count(PREEMPT_ACTIVE);
5443 } while (need_resched());
5444}
5445
02b67cc3 5446int __sched _cond_resched(void)
1da177e4 5447{
9414232f
IM
5448 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5449 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5450 __cond_resched();
5451 return 1;
5452 }
5453 return 0;
5454}
02b67cc3 5455EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5456
5457/*
5458 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5459 * call schedule, and on return reacquire the lock.
5460 *
41a2d6cf 5461 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5462 * operations here to prevent schedule() from being called twice (once via
5463 * spin_unlock(), once by hand).
5464 */
95cdf3b7 5465int cond_resched_lock(spinlock_t *lock)
1da177e4 5466{
95c354fe 5467 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5468 int ret = 0;
5469
95c354fe 5470 if (spin_needbreak(lock) || resched) {
1da177e4 5471 spin_unlock(lock);
95c354fe
NP
5472 if (resched && need_resched())
5473 __cond_resched();
5474 else
5475 cpu_relax();
6df3cecb 5476 ret = 1;
1da177e4 5477 spin_lock(lock);
1da177e4 5478 }
6df3cecb 5479 return ret;
1da177e4 5480}
1da177e4
LT
5481EXPORT_SYMBOL(cond_resched_lock);
5482
5483int __sched cond_resched_softirq(void)
5484{
5485 BUG_ON(!in_softirq());
5486
9414232f 5487 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5488 local_bh_enable();
1da177e4
LT
5489 __cond_resched();
5490 local_bh_disable();
5491 return 1;
5492 }
5493 return 0;
5494}
1da177e4
LT
5495EXPORT_SYMBOL(cond_resched_softirq);
5496
1da177e4
LT
5497/**
5498 * yield - yield the current processor to other threads.
5499 *
72fd4a35 5500 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5501 * thread runnable and calls sys_sched_yield().
5502 */
5503void __sched yield(void)
5504{
5505 set_current_state(TASK_RUNNING);
5506 sys_sched_yield();
5507}
1da177e4
LT
5508EXPORT_SYMBOL(yield);
5509
5510/*
41a2d6cf 5511 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5512 * that process accounting knows that this is a task in IO wait state.
5513 *
5514 * But don't do that if it is a deliberate, throttling IO wait (this task
5515 * has set its backing_dev_info: the queue against which it should throttle)
5516 */
5517void __sched io_schedule(void)
5518{
70b97a7f 5519 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5520
0ff92245 5521 delayacct_blkio_start();
1da177e4
LT
5522 atomic_inc(&rq->nr_iowait);
5523 schedule();
5524 atomic_dec(&rq->nr_iowait);
0ff92245 5525 delayacct_blkio_end();
1da177e4 5526}
1da177e4
LT
5527EXPORT_SYMBOL(io_schedule);
5528
5529long __sched io_schedule_timeout(long timeout)
5530{
70b97a7f 5531 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5532 long ret;
5533
0ff92245 5534 delayacct_blkio_start();
1da177e4
LT
5535 atomic_inc(&rq->nr_iowait);
5536 ret = schedule_timeout(timeout);
5537 atomic_dec(&rq->nr_iowait);
0ff92245 5538 delayacct_blkio_end();
1da177e4
LT
5539 return ret;
5540}
5541
5542/**
5543 * sys_sched_get_priority_max - return maximum RT priority.
5544 * @policy: scheduling class.
5545 *
5546 * this syscall returns the maximum rt_priority that can be used
5547 * by a given scheduling class.
5548 */
5549asmlinkage long sys_sched_get_priority_max(int policy)
5550{
5551 int ret = -EINVAL;
5552
5553 switch (policy) {
5554 case SCHED_FIFO:
5555 case SCHED_RR:
5556 ret = MAX_USER_RT_PRIO-1;
5557 break;
5558 case SCHED_NORMAL:
b0a9499c 5559 case SCHED_BATCH:
dd41f596 5560 case SCHED_IDLE:
1da177e4
LT
5561 ret = 0;
5562 break;
5563 }
5564 return ret;
5565}
5566
5567/**
5568 * sys_sched_get_priority_min - return minimum RT priority.
5569 * @policy: scheduling class.
5570 *
5571 * this syscall returns the minimum rt_priority that can be used
5572 * by a given scheduling class.
5573 */
5574asmlinkage long sys_sched_get_priority_min(int policy)
5575{
5576 int ret = -EINVAL;
5577
5578 switch (policy) {
5579 case SCHED_FIFO:
5580 case SCHED_RR:
5581 ret = 1;
5582 break;
5583 case SCHED_NORMAL:
b0a9499c 5584 case SCHED_BATCH:
dd41f596 5585 case SCHED_IDLE:
1da177e4
LT
5586 ret = 0;
5587 }
5588 return ret;
5589}
5590
5591/**
5592 * sys_sched_rr_get_interval - return the default timeslice of a process.
5593 * @pid: pid of the process.
5594 * @interval: userspace pointer to the timeslice value.
5595 *
5596 * this syscall writes the default timeslice value of a given process
5597 * into the user-space timespec buffer. A value of '0' means infinity.
5598 */
5599asmlinkage
5600long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5601{
36c8b586 5602 struct task_struct *p;
a4ec24b4 5603 unsigned int time_slice;
3a5c359a 5604 int retval;
1da177e4 5605 struct timespec t;
1da177e4
LT
5606
5607 if (pid < 0)
3a5c359a 5608 return -EINVAL;
1da177e4
LT
5609
5610 retval = -ESRCH;
5611 read_lock(&tasklist_lock);
5612 p = find_process_by_pid(pid);
5613 if (!p)
5614 goto out_unlock;
5615
5616 retval = security_task_getscheduler(p);
5617 if (retval)
5618 goto out_unlock;
5619
77034937
IM
5620 /*
5621 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5622 * tasks that are on an otherwise idle runqueue:
5623 */
5624 time_slice = 0;
5625 if (p->policy == SCHED_RR) {
a4ec24b4 5626 time_slice = DEF_TIMESLICE;
1868f958 5627 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5628 struct sched_entity *se = &p->se;
5629 unsigned long flags;
5630 struct rq *rq;
5631
5632 rq = task_rq_lock(p, &flags);
77034937
IM
5633 if (rq->cfs.load.weight)
5634 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5635 task_rq_unlock(rq, &flags);
5636 }
1da177e4 5637 read_unlock(&tasklist_lock);
a4ec24b4 5638 jiffies_to_timespec(time_slice, &t);
1da177e4 5639 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5640 return retval;
3a5c359a 5641
1da177e4
LT
5642out_unlock:
5643 read_unlock(&tasklist_lock);
5644 return retval;
5645}
5646
2ed6e34f 5647static const char stat_nam[] = "RSDTtZX";
36c8b586 5648
82a1fcb9 5649void sched_show_task(struct task_struct *p)
1da177e4 5650{
1da177e4 5651 unsigned long free = 0;
36c8b586 5652 unsigned state;
1da177e4 5653
1da177e4 5654 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5655 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5656 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5657#if BITS_PER_LONG == 32
1da177e4 5658 if (state == TASK_RUNNING)
cc4ea795 5659 printk(KERN_CONT " running ");
1da177e4 5660 else
cc4ea795 5661 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5662#else
5663 if (state == TASK_RUNNING)
cc4ea795 5664 printk(KERN_CONT " running task ");
1da177e4 5665 else
cc4ea795 5666 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5667#endif
5668#ifdef CONFIG_DEBUG_STACK_USAGE
5669 {
10ebffde 5670 unsigned long *n = end_of_stack(p);
1da177e4
LT
5671 while (!*n)
5672 n++;
10ebffde 5673 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5674 }
5675#endif
ba25f9dc 5676 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5677 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5678
5fb5e6de 5679 show_stack(p, NULL);
1da177e4
LT
5680}
5681
e59e2ae2 5682void show_state_filter(unsigned long state_filter)
1da177e4 5683{
36c8b586 5684 struct task_struct *g, *p;
1da177e4 5685
4bd77321
IM
5686#if BITS_PER_LONG == 32
5687 printk(KERN_INFO
5688 " task PC stack pid father\n");
1da177e4 5689#else
4bd77321
IM
5690 printk(KERN_INFO
5691 " task PC stack pid father\n");
1da177e4
LT
5692#endif
5693 read_lock(&tasklist_lock);
5694 do_each_thread(g, p) {
5695 /*
5696 * reset the NMI-timeout, listing all files on a slow
5697 * console might take alot of time:
5698 */
5699 touch_nmi_watchdog();
39bc89fd 5700 if (!state_filter || (p->state & state_filter))
82a1fcb9 5701 sched_show_task(p);
1da177e4
LT
5702 } while_each_thread(g, p);
5703
04c9167f
JF
5704 touch_all_softlockup_watchdogs();
5705
dd41f596
IM
5706#ifdef CONFIG_SCHED_DEBUG
5707 sysrq_sched_debug_show();
5708#endif
1da177e4 5709 read_unlock(&tasklist_lock);
e59e2ae2
IM
5710 /*
5711 * Only show locks if all tasks are dumped:
5712 */
5713 if (state_filter == -1)
5714 debug_show_all_locks();
1da177e4
LT
5715}
5716
1df21055
IM
5717void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5718{
dd41f596 5719 idle->sched_class = &idle_sched_class;
1df21055
IM
5720}
5721
f340c0d1
IM
5722/**
5723 * init_idle - set up an idle thread for a given CPU
5724 * @idle: task in question
5725 * @cpu: cpu the idle task belongs to
5726 *
5727 * NOTE: this function does not set the idle thread's NEED_RESCHED
5728 * flag, to make booting more robust.
5729 */
5c1e1767 5730void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5731{
70b97a7f 5732 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5733 unsigned long flags;
5734
dd41f596
IM
5735 __sched_fork(idle);
5736 idle->se.exec_start = sched_clock();
5737
b29739f9 5738 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5739 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5740 __set_task_cpu(idle, cpu);
1da177e4
LT
5741
5742 spin_lock_irqsave(&rq->lock, flags);
5743 rq->curr = rq->idle = idle;
4866cde0
NP
5744#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5745 idle->oncpu = 1;
5746#endif
1da177e4
LT
5747 spin_unlock_irqrestore(&rq->lock, flags);
5748
5749 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5750#if defined(CONFIG_PREEMPT)
5751 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5752#else
a1261f54 5753 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5754#endif
dd41f596
IM
5755 /*
5756 * The idle tasks have their own, simple scheduling class:
5757 */
5758 idle->sched_class = &idle_sched_class;
1da177e4
LT
5759}
5760
5761/*
5762 * In a system that switches off the HZ timer nohz_cpu_mask
5763 * indicates which cpus entered this state. This is used
5764 * in the rcu update to wait only for active cpus. For system
5765 * which do not switch off the HZ timer nohz_cpu_mask should
5766 * always be CPU_MASK_NONE.
5767 */
5768cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5769
19978ca6
IM
5770/*
5771 * Increase the granularity value when there are more CPUs,
5772 * because with more CPUs the 'effective latency' as visible
5773 * to users decreases. But the relationship is not linear,
5774 * so pick a second-best guess by going with the log2 of the
5775 * number of CPUs.
5776 *
5777 * This idea comes from the SD scheduler of Con Kolivas:
5778 */
5779static inline void sched_init_granularity(void)
5780{
5781 unsigned int factor = 1 + ilog2(num_online_cpus());
5782 const unsigned long limit = 200000000;
5783
5784 sysctl_sched_min_granularity *= factor;
5785 if (sysctl_sched_min_granularity > limit)
5786 sysctl_sched_min_granularity = limit;
5787
5788 sysctl_sched_latency *= factor;
5789 if (sysctl_sched_latency > limit)
5790 sysctl_sched_latency = limit;
5791
5792 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5793}
5794
1da177e4
LT
5795#ifdef CONFIG_SMP
5796/*
5797 * This is how migration works:
5798 *
70b97a7f 5799 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5800 * runqueue and wake up that CPU's migration thread.
5801 * 2) we down() the locked semaphore => thread blocks.
5802 * 3) migration thread wakes up (implicitly it forces the migrated
5803 * thread off the CPU)
5804 * 4) it gets the migration request and checks whether the migrated
5805 * task is still in the wrong runqueue.
5806 * 5) if it's in the wrong runqueue then the migration thread removes
5807 * it and puts it into the right queue.
5808 * 6) migration thread up()s the semaphore.
5809 * 7) we wake up and the migration is done.
5810 */
5811
5812/*
5813 * Change a given task's CPU affinity. Migrate the thread to a
5814 * proper CPU and schedule it away if the CPU it's executing on
5815 * is removed from the allowed bitmask.
5816 *
5817 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5818 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5819 * call is not atomic; no spinlocks may be held.
5820 */
cd8ba7cd 5821int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5822{
70b97a7f 5823 struct migration_req req;
1da177e4 5824 unsigned long flags;
70b97a7f 5825 struct rq *rq;
48f24c4d 5826 int ret = 0;
1da177e4
LT
5827
5828 rq = task_rq_lock(p, &flags);
cd8ba7cd 5829 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5830 ret = -EINVAL;
5831 goto out;
5832 }
5833
9985b0ba
DR
5834 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5835 !cpus_equal(p->cpus_allowed, *new_mask))) {
5836 ret = -EINVAL;
5837 goto out;
5838 }
5839
73fe6aae 5840 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5841 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5842 else {
cd8ba7cd
MT
5843 p->cpus_allowed = *new_mask;
5844 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5845 }
5846
1da177e4 5847 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5848 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5849 goto out;
5850
cd8ba7cd 5851 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5852 /* Need help from migration thread: drop lock and wait. */
5853 task_rq_unlock(rq, &flags);
5854 wake_up_process(rq->migration_thread);
5855 wait_for_completion(&req.done);
5856 tlb_migrate_finish(p->mm);
5857 return 0;
5858 }
5859out:
5860 task_rq_unlock(rq, &flags);
48f24c4d 5861
1da177e4
LT
5862 return ret;
5863}
cd8ba7cd 5864EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5865
5866/*
41a2d6cf 5867 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5868 * this because either it can't run here any more (set_cpus_allowed()
5869 * away from this CPU, or CPU going down), or because we're
5870 * attempting to rebalance this task on exec (sched_exec).
5871 *
5872 * So we race with normal scheduler movements, but that's OK, as long
5873 * as the task is no longer on this CPU.
efc30814
KK
5874 *
5875 * Returns non-zero if task was successfully migrated.
1da177e4 5876 */
efc30814 5877static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5878{
70b97a7f 5879 struct rq *rq_dest, *rq_src;
dd41f596 5880 int ret = 0, on_rq;
1da177e4
LT
5881
5882 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5883 return ret;
1da177e4
LT
5884
5885 rq_src = cpu_rq(src_cpu);
5886 rq_dest = cpu_rq(dest_cpu);
5887
5888 double_rq_lock(rq_src, rq_dest);
5889 /* Already moved. */
5890 if (task_cpu(p) != src_cpu)
5891 goto out;
5892 /* Affinity changed (again). */
5893 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5894 goto out;
5895
dd41f596 5896 on_rq = p->se.on_rq;
6e82a3be 5897 if (on_rq)
2e1cb74a 5898 deactivate_task(rq_src, p, 0);
6e82a3be 5899
1da177e4 5900 set_task_cpu(p, dest_cpu);
dd41f596
IM
5901 if (on_rq) {
5902 activate_task(rq_dest, p, 0);
5903 check_preempt_curr(rq_dest, p);
1da177e4 5904 }
efc30814 5905 ret = 1;
1da177e4
LT
5906out:
5907 double_rq_unlock(rq_src, rq_dest);
efc30814 5908 return ret;
1da177e4
LT
5909}
5910
5911/*
5912 * migration_thread - this is a highprio system thread that performs
5913 * thread migration by bumping thread off CPU then 'pushing' onto
5914 * another runqueue.
5915 */
95cdf3b7 5916static int migration_thread(void *data)
1da177e4 5917{
1da177e4 5918 int cpu = (long)data;
70b97a7f 5919 struct rq *rq;
1da177e4
LT
5920
5921 rq = cpu_rq(cpu);
5922 BUG_ON(rq->migration_thread != current);
5923
5924 set_current_state(TASK_INTERRUPTIBLE);
5925 while (!kthread_should_stop()) {
70b97a7f 5926 struct migration_req *req;
1da177e4 5927 struct list_head *head;
1da177e4 5928
1da177e4
LT
5929 spin_lock_irq(&rq->lock);
5930
5931 if (cpu_is_offline(cpu)) {
5932 spin_unlock_irq(&rq->lock);
5933 goto wait_to_die;
5934 }
5935
5936 if (rq->active_balance) {
5937 active_load_balance(rq, cpu);
5938 rq->active_balance = 0;
5939 }
5940
5941 head = &rq->migration_queue;
5942
5943 if (list_empty(head)) {
5944 spin_unlock_irq(&rq->lock);
5945 schedule();
5946 set_current_state(TASK_INTERRUPTIBLE);
5947 continue;
5948 }
70b97a7f 5949 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5950 list_del_init(head->next);
5951
674311d5
NP
5952 spin_unlock(&rq->lock);
5953 __migrate_task(req->task, cpu, req->dest_cpu);
5954 local_irq_enable();
1da177e4
LT
5955
5956 complete(&req->done);
5957 }
5958 __set_current_state(TASK_RUNNING);
5959 return 0;
5960
5961wait_to_die:
5962 /* Wait for kthread_stop */
5963 set_current_state(TASK_INTERRUPTIBLE);
5964 while (!kthread_should_stop()) {
5965 schedule();
5966 set_current_state(TASK_INTERRUPTIBLE);
5967 }
5968 __set_current_state(TASK_RUNNING);
5969 return 0;
5970}
5971
5972#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5973
5974static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5975{
5976 int ret;
5977
5978 local_irq_disable();
5979 ret = __migrate_task(p, src_cpu, dest_cpu);
5980 local_irq_enable();
5981 return ret;
5982}
5983
054b9108 5984/*
3a4fa0a2 5985 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5986 * NOTE: interrupts should be disabled by the caller
5987 */
48f24c4d 5988static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5989{
efc30814 5990 unsigned long flags;
1da177e4 5991 cpumask_t mask;
70b97a7f
IM
5992 struct rq *rq;
5993 int dest_cpu;
1da177e4 5994
3a5c359a
AK
5995 do {
5996 /* On same node? */
5997 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5998 cpus_and(mask, mask, p->cpus_allowed);
5999 dest_cpu = any_online_cpu(mask);
6000
6001 /* On any allowed CPU? */
434d53b0 6002 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6003 dest_cpu = any_online_cpu(p->cpus_allowed);
6004
6005 /* No more Mr. Nice Guy. */
434d53b0 6006 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6007 cpumask_t cpus_allowed;
6008
6009 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6010 /*
6011 * Try to stay on the same cpuset, where the
6012 * current cpuset may be a subset of all cpus.
6013 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6014 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6015 * called within calls to cpuset_lock/cpuset_unlock.
6016 */
3a5c359a 6017 rq = task_rq_lock(p, &flags);
470fd646 6018 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6019 dest_cpu = any_online_cpu(p->cpus_allowed);
6020 task_rq_unlock(rq, &flags);
1da177e4 6021
3a5c359a
AK
6022 /*
6023 * Don't tell them about moving exiting tasks or
6024 * kernel threads (both mm NULL), since they never
6025 * leave kernel.
6026 */
41a2d6cf 6027 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6028 printk(KERN_INFO "process %d (%s) no "
6029 "longer affine to cpu%d\n",
41a2d6cf
IM
6030 task_pid_nr(p), p->comm, dead_cpu);
6031 }
3a5c359a 6032 }
f7b4cddc 6033 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6034}
6035
6036/*
6037 * While a dead CPU has no uninterruptible tasks queued at this point,
6038 * it might still have a nonzero ->nr_uninterruptible counter, because
6039 * for performance reasons the counter is not stricly tracking tasks to
6040 * their home CPUs. So we just add the counter to another CPU's counter,
6041 * to keep the global sum constant after CPU-down:
6042 */
70b97a7f 6043static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6044{
7c16ec58 6045 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6046 unsigned long flags;
6047
6048 local_irq_save(flags);
6049 double_rq_lock(rq_src, rq_dest);
6050 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6051 rq_src->nr_uninterruptible = 0;
6052 double_rq_unlock(rq_src, rq_dest);
6053 local_irq_restore(flags);
6054}
6055
6056/* Run through task list and migrate tasks from the dead cpu. */
6057static void migrate_live_tasks(int src_cpu)
6058{
48f24c4d 6059 struct task_struct *p, *t;
1da177e4 6060
f7b4cddc 6061 read_lock(&tasklist_lock);
1da177e4 6062
48f24c4d
IM
6063 do_each_thread(t, p) {
6064 if (p == current)
1da177e4
LT
6065 continue;
6066
48f24c4d
IM
6067 if (task_cpu(p) == src_cpu)
6068 move_task_off_dead_cpu(src_cpu, p);
6069 } while_each_thread(t, p);
1da177e4 6070
f7b4cddc 6071 read_unlock(&tasklist_lock);
1da177e4
LT
6072}
6073
dd41f596
IM
6074/*
6075 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6076 * It does so by boosting its priority to highest possible.
6077 * Used by CPU offline code.
1da177e4
LT
6078 */
6079void sched_idle_next(void)
6080{
48f24c4d 6081 int this_cpu = smp_processor_id();
70b97a7f 6082 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6083 struct task_struct *p = rq->idle;
6084 unsigned long flags;
6085
6086 /* cpu has to be offline */
48f24c4d 6087 BUG_ON(cpu_online(this_cpu));
1da177e4 6088
48f24c4d
IM
6089 /*
6090 * Strictly not necessary since rest of the CPUs are stopped by now
6091 * and interrupts disabled on the current cpu.
1da177e4
LT
6092 */
6093 spin_lock_irqsave(&rq->lock, flags);
6094
dd41f596 6095 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6096
94bc9a7b
DA
6097 update_rq_clock(rq);
6098 activate_task(rq, p, 0);
1da177e4
LT
6099
6100 spin_unlock_irqrestore(&rq->lock, flags);
6101}
6102
48f24c4d
IM
6103/*
6104 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6105 * offline.
6106 */
6107void idle_task_exit(void)
6108{
6109 struct mm_struct *mm = current->active_mm;
6110
6111 BUG_ON(cpu_online(smp_processor_id()));
6112
6113 if (mm != &init_mm)
6114 switch_mm(mm, &init_mm, current);
6115 mmdrop(mm);
6116}
6117
054b9108 6118/* called under rq->lock with disabled interrupts */
36c8b586 6119static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6120{
70b97a7f 6121 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6122
6123 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6124 BUG_ON(!p->exit_state);
1da177e4
LT
6125
6126 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6127 BUG_ON(p->state == TASK_DEAD);
1da177e4 6128
48f24c4d 6129 get_task_struct(p);
1da177e4
LT
6130
6131 /*
6132 * Drop lock around migration; if someone else moves it,
41a2d6cf 6133 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6134 * fine.
6135 */
f7b4cddc 6136 spin_unlock_irq(&rq->lock);
48f24c4d 6137 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6138 spin_lock_irq(&rq->lock);
1da177e4 6139
48f24c4d 6140 put_task_struct(p);
1da177e4
LT
6141}
6142
6143/* release_task() removes task from tasklist, so we won't find dead tasks. */
6144static void migrate_dead_tasks(unsigned int dead_cpu)
6145{
70b97a7f 6146 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6147 struct task_struct *next;
48f24c4d 6148
dd41f596
IM
6149 for ( ; ; ) {
6150 if (!rq->nr_running)
6151 break;
a8e504d2 6152 update_rq_clock(rq);
ff95f3df 6153 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6154 if (!next)
6155 break;
6156 migrate_dead(dead_cpu, next);
e692ab53 6157
1da177e4
LT
6158 }
6159}
6160#endif /* CONFIG_HOTPLUG_CPU */
6161
e692ab53
NP
6162#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6163
6164static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6165 {
6166 .procname = "sched_domain",
c57baf1e 6167 .mode = 0555,
e0361851 6168 },
38605cae 6169 {0, },
e692ab53
NP
6170};
6171
6172static struct ctl_table sd_ctl_root[] = {
e0361851 6173 {
c57baf1e 6174 .ctl_name = CTL_KERN,
e0361851 6175 .procname = "kernel",
c57baf1e 6176 .mode = 0555,
e0361851
AD
6177 .child = sd_ctl_dir,
6178 },
38605cae 6179 {0, },
e692ab53
NP
6180};
6181
6182static struct ctl_table *sd_alloc_ctl_entry(int n)
6183{
6184 struct ctl_table *entry =
5cf9f062 6185 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6186
e692ab53
NP
6187 return entry;
6188}
6189
6382bc90
MM
6190static void sd_free_ctl_entry(struct ctl_table **tablep)
6191{
cd790076 6192 struct ctl_table *entry;
6382bc90 6193
cd790076
MM
6194 /*
6195 * In the intermediate directories, both the child directory and
6196 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6197 * will always be set. In the lowest directory the names are
cd790076
MM
6198 * static strings and all have proc handlers.
6199 */
6200 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6201 if (entry->child)
6202 sd_free_ctl_entry(&entry->child);
cd790076
MM
6203 if (entry->proc_handler == NULL)
6204 kfree(entry->procname);
6205 }
6382bc90
MM
6206
6207 kfree(*tablep);
6208 *tablep = NULL;
6209}
6210
e692ab53 6211static void
e0361851 6212set_table_entry(struct ctl_table *entry,
e692ab53
NP
6213 const char *procname, void *data, int maxlen,
6214 mode_t mode, proc_handler *proc_handler)
6215{
e692ab53
NP
6216 entry->procname = procname;
6217 entry->data = data;
6218 entry->maxlen = maxlen;
6219 entry->mode = mode;
6220 entry->proc_handler = proc_handler;
6221}
6222
6223static struct ctl_table *
6224sd_alloc_ctl_domain_table(struct sched_domain *sd)
6225{
ace8b3d6 6226 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6227
ad1cdc1d
MM
6228 if (table == NULL)
6229 return NULL;
6230
e0361851 6231 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6232 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6233 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6234 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6235 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6236 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6237 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6238 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6239 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6240 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6241 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6242 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6243 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6244 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6245 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6246 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6247 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6248 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6249 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6250 &sd->cache_nice_tries,
6251 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6252 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6253 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6254 /* &table[11] is terminator */
e692ab53
NP
6255
6256 return table;
6257}
6258
9a4e7159 6259static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6260{
6261 struct ctl_table *entry, *table;
6262 struct sched_domain *sd;
6263 int domain_num = 0, i;
6264 char buf[32];
6265
6266 for_each_domain(cpu, sd)
6267 domain_num++;
6268 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6269 if (table == NULL)
6270 return NULL;
e692ab53
NP
6271
6272 i = 0;
6273 for_each_domain(cpu, sd) {
6274 snprintf(buf, 32, "domain%d", i);
e692ab53 6275 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6276 entry->mode = 0555;
e692ab53
NP
6277 entry->child = sd_alloc_ctl_domain_table(sd);
6278 entry++;
6279 i++;
6280 }
6281 return table;
6282}
6283
6284static struct ctl_table_header *sd_sysctl_header;
6382bc90 6285static void register_sched_domain_sysctl(void)
e692ab53
NP
6286{
6287 int i, cpu_num = num_online_cpus();
6288 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6289 char buf[32];
6290
7378547f
MM
6291 WARN_ON(sd_ctl_dir[0].child);
6292 sd_ctl_dir[0].child = entry;
6293
ad1cdc1d
MM
6294 if (entry == NULL)
6295 return;
6296
97b6ea7b 6297 for_each_online_cpu(i) {
e692ab53 6298 snprintf(buf, 32, "cpu%d", i);
e692ab53 6299 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6300 entry->mode = 0555;
e692ab53 6301 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6302 entry++;
e692ab53 6303 }
7378547f
MM
6304
6305 WARN_ON(sd_sysctl_header);
e692ab53
NP
6306 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6307}
6382bc90 6308
7378547f 6309/* may be called multiple times per register */
6382bc90
MM
6310static void unregister_sched_domain_sysctl(void)
6311{
7378547f
MM
6312 if (sd_sysctl_header)
6313 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6314 sd_sysctl_header = NULL;
7378547f
MM
6315 if (sd_ctl_dir[0].child)
6316 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6317}
e692ab53 6318#else
6382bc90
MM
6319static void register_sched_domain_sysctl(void)
6320{
6321}
6322static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6323{
6324}
6325#endif
6326
1f11eb6a
GH
6327static void set_rq_online(struct rq *rq)
6328{
6329 if (!rq->online) {
6330 const struct sched_class *class;
6331
6332 cpu_set(rq->cpu, rq->rd->online);
6333 rq->online = 1;
6334
6335 for_each_class(class) {
6336 if (class->rq_online)
6337 class->rq_online(rq);
6338 }
6339 }
6340}
6341
6342static void set_rq_offline(struct rq *rq)
6343{
6344 if (rq->online) {
6345 const struct sched_class *class;
6346
6347 for_each_class(class) {
6348 if (class->rq_offline)
6349 class->rq_offline(rq);
6350 }
6351
6352 cpu_clear(rq->cpu, rq->rd->online);
6353 rq->online = 0;
6354 }
6355}
6356
1da177e4
LT
6357/*
6358 * migration_call - callback that gets triggered when a CPU is added.
6359 * Here we can start up the necessary migration thread for the new CPU.
6360 */
48f24c4d
IM
6361static int __cpuinit
6362migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6363{
1da177e4 6364 struct task_struct *p;
48f24c4d 6365 int cpu = (long)hcpu;
1da177e4 6366 unsigned long flags;
70b97a7f 6367 struct rq *rq;
1da177e4
LT
6368
6369 switch (action) {
5be9361c 6370
1da177e4 6371 case CPU_UP_PREPARE:
8bb78442 6372 case CPU_UP_PREPARE_FROZEN:
dd41f596 6373 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6374 if (IS_ERR(p))
6375 return NOTIFY_BAD;
1da177e4
LT
6376 kthread_bind(p, cpu);
6377 /* Must be high prio: stop_machine expects to yield to it. */
6378 rq = task_rq_lock(p, &flags);
dd41f596 6379 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6380 task_rq_unlock(rq, &flags);
6381 cpu_rq(cpu)->migration_thread = p;
6382 break;
48f24c4d 6383
1da177e4 6384 case CPU_ONLINE:
8bb78442 6385 case CPU_ONLINE_FROZEN:
3a4fa0a2 6386 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6387 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6388
6389 /* Update our root-domain */
6390 rq = cpu_rq(cpu);
6391 spin_lock_irqsave(&rq->lock, flags);
6392 if (rq->rd) {
6393 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6394
6395 set_rq_online(rq);
1f94ef59
GH
6396 }
6397 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6398 break;
48f24c4d 6399
1da177e4
LT
6400#ifdef CONFIG_HOTPLUG_CPU
6401 case CPU_UP_CANCELED:
8bb78442 6402 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6403 if (!cpu_rq(cpu)->migration_thread)
6404 break;
41a2d6cf 6405 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6406 kthread_bind(cpu_rq(cpu)->migration_thread,
6407 any_online_cpu(cpu_online_map));
1da177e4
LT
6408 kthread_stop(cpu_rq(cpu)->migration_thread);
6409 cpu_rq(cpu)->migration_thread = NULL;
6410 break;
48f24c4d 6411
1da177e4 6412 case CPU_DEAD:
8bb78442 6413 case CPU_DEAD_FROZEN:
470fd646 6414 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6415 migrate_live_tasks(cpu);
6416 rq = cpu_rq(cpu);
6417 kthread_stop(rq->migration_thread);
6418 rq->migration_thread = NULL;
6419 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6420 spin_lock_irq(&rq->lock);
a8e504d2 6421 update_rq_clock(rq);
2e1cb74a 6422 deactivate_task(rq, rq->idle, 0);
1da177e4 6423 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6424 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6425 rq->idle->sched_class = &idle_sched_class;
1da177e4 6426 migrate_dead_tasks(cpu);
d2da272a 6427 spin_unlock_irq(&rq->lock);
470fd646 6428 cpuset_unlock();
1da177e4
LT
6429 migrate_nr_uninterruptible(rq);
6430 BUG_ON(rq->nr_running != 0);
6431
41a2d6cf
IM
6432 /*
6433 * No need to migrate the tasks: it was best-effort if
6434 * they didn't take sched_hotcpu_mutex. Just wake up
6435 * the requestors.
6436 */
1da177e4
LT
6437 spin_lock_irq(&rq->lock);
6438 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6439 struct migration_req *req;
6440
1da177e4 6441 req = list_entry(rq->migration_queue.next,
70b97a7f 6442 struct migration_req, list);
1da177e4
LT
6443 list_del_init(&req->list);
6444 complete(&req->done);
6445 }
6446 spin_unlock_irq(&rq->lock);
6447 break;
57d885fe 6448
08f503b0
GH
6449 case CPU_DYING:
6450 case CPU_DYING_FROZEN:
57d885fe
GH
6451 /* Update our root-domain */
6452 rq = cpu_rq(cpu);
6453 spin_lock_irqsave(&rq->lock, flags);
6454 if (rq->rd) {
6455 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6456 set_rq_offline(rq);
57d885fe
GH
6457 }
6458 spin_unlock_irqrestore(&rq->lock, flags);
6459 break;
1da177e4
LT
6460#endif
6461 }
6462 return NOTIFY_OK;
6463}
6464
6465/* Register at highest priority so that task migration (migrate_all_tasks)
6466 * happens before everything else.
6467 */
26c2143b 6468static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6469 .notifier_call = migration_call,
6470 .priority = 10
6471};
6472
e6fe6649 6473void __init migration_init(void)
1da177e4
LT
6474{
6475 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6476 int err;
48f24c4d
IM
6477
6478 /* Start one for the boot CPU: */
07dccf33
AM
6479 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6480 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6481 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6482 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6483}
6484#endif
6485
6486#ifdef CONFIG_SMP
476f3534 6487
3e9830dc 6488#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6489
099f98c8
GS
6490static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6491{
6492 switch (lvl) {
6493 case SD_LV_NONE:
6494 return "NONE";
6495 case SD_LV_SIBLING:
6496 return "SIBLING";
6497 case SD_LV_MC:
6498 return "MC";
6499 case SD_LV_CPU:
6500 return "CPU";
6501 case SD_LV_NODE:
6502 return "NODE";
6503 case SD_LV_ALLNODES:
6504 return "ALLNODES";
6505 case SD_LV_MAX:
6506 return "MAX";
6507
6508 }
6509 return "MAX";
6510}
6511
7c16ec58
MT
6512static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6513 cpumask_t *groupmask)
1da177e4 6514{
4dcf6aff 6515 struct sched_group *group = sd->groups;
434d53b0 6516 char str[256];
1da177e4 6517
434d53b0 6518 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6519 cpus_clear(*groupmask);
4dcf6aff
IM
6520
6521 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6522
6523 if (!(sd->flags & SD_LOAD_BALANCE)) {
6524 printk("does not load-balance\n");
6525 if (sd->parent)
6526 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6527 " has parent");
6528 return -1;
41c7ce9a
NP
6529 }
6530
099f98c8
GS
6531 printk(KERN_CONT "span %s level %s\n",
6532 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6533
6534 if (!cpu_isset(cpu, sd->span)) {
6535 printk(KERN_ERR "ERROR: domain->span does not contain "
6536 "CPU%d\n", cpu);
6537 }
6538 if (!cpu_isset(cpu, group->cpumask)) {
6539 printk(KERN_ERR "ERROR: domain->groups does not contain"
6540 " CPU%d\n", cpu);
6541 }
1da177e4 6542
4dcf6aff 6543 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6544 do {
4dcf6aff
IM
6545 if (!group) {
6546 printk("\n");
6547 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6548 break;
6549 }
6550
4dcf6aff
IM
6551 if (!group->__cpu_power) {
6552 printk(KERN_CONT "\n");
6553 printk(KERN_ERR "ERROR: domain->cpu_power not "
6554 "set\n");
6555 break;
6556 }
1da177e4 6557
4dcf6aff
IM
6558 if (!cpus_weight(group->cpumask)) {
6559 printk(KERN_CONT "\n");
6560 printk(KERN_ERR "ERROR: empty group\n");
6561 break;
6562 }
1da177e4 6563
7c16ec58 6564 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6565 printk(KERN_CONT "\n");
6566 printk(KERN_ERR "ERROR: repeated CPUs\n");
6567 break;
6568 }
1da177e4 6569
7c16ec58 6570 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6571
434d53b0 6572 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6573 printk(KERN_CONT " %s", str);
1da177e4 6574
4dcf6aff
IM
6575 group = group->next;
6576 } while (group != sd->groups);
6577 printk(KERN_CONT "\n");
1da177e4 6578
7c16ec58 6579 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6580 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6581
7c16ec58 6582 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6583 printk(KERN_ERR "ERROR: parent span is not a superset "
6584 "of domain->span\n");
6585 return 0;
6586}
1da177e4 6587
4dcf6aff
IM
6588static void sched_domain_debug(struct sched_domain *sd, int cpu)
6589{
7c16ec58 6590 cpumask_t *groupmask;
4dcf6aff 6591 int level = 0;
1da177e4 6592
4dcf6aff
IM
6593 if (!sd) {
6594 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6595 return;
6596 }
1da177e4 6597
4dcf6aff
IM
6598 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6599
7c16ec58
MT
6600 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6601 if (!groupmask) {
6602 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6603 return;
6604 }
6605
4dcf6aff 6606 for (;;) {
7c16ec58 6607 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6608 break;
1da177e4
LT
6609 level++;
6610 sd = sd->parent;
33859f7f 6611 if (!sd)
4dcf6aff
IM
6612 break;
6613 }
7c16ec58 6614 kfree(groupmask);
1da177e4 6615}
6d6bc0ad 6616#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6617# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6618#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6619
1a20ff27 6620static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6621{
6622 if (cpus_weight(sd->span) == 1)
6623 return 1;
6624
6625 /* Following flags need at least 2 groups */
6626 if (sd->flags & (SD_LOAD_BALANCE |
6627 SD_BALANCE_NEWIDLE |
6628 SD_BALANCE_FORK |
89c4710e
SS
6629 SD_BALANCE_EXEC |
6630 SD_SHARE_CPUPOWER |
6631 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6632 if (sd->groups != sd->groups->next)
6633 return 0;
6634 }
6635
6636 /* Following flags don't use groups */
6637 if (sd->flags & (SD_WAKE_IDLE |
6638 SD_WAKE_AFFINE |
6639 SD_WAKE_BALANCE))
6640 return 0;
6641
6642 return 1;
6643}
6644
48f24c4d
IM
6645static int
6646sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6647{
6648 unsigned long cflags = sd->flags, pflags = parent->flags;
6649
6650 if (sd_degenerate(parent))
6651 return 1;
6652
6653 if (!cpus_equal(sd->span, parent->span))
6654 return 0;
6655
6656 /* Does parent contain flags not in child? */
6657 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6658 if (cflags & SD_WAKE_AFFINE)
6659 pflags &= ~SD_WAKE_BALANCE;
6660 /* Flags needing groups don't count if only 1 group in parent */
6661 if (parent->groups == parent->groups->next) {
6662 pflags &= ~(SD_LOAD_BALANCE |
6663 SD_BALANCE_NEWIDLE |
6664 SD_BALANCE_FORK |
89c4710e
SS
6665 SD_BALANCE_EXEC |
6666 SD_SHARE_CPUPOWER |
6667 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6668 }
6669 if (~cflags & pflags)
6670 return 0;
6671
6672 return 1;
6673}
6674
57d885fe
GH
6675static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6676{
6677 unsigned long flags;
57d885fe
GH
6678
6679 spin_lock_irqsave(&rq->lock, flags);
6680
6681 if (rq->rd) {
6682 struct root_domain *old_rd = rq->rd;
6683
1f11eb6a
GH
6684 if (cpu_isset(rq->cpu, old_rd->online))
6685 set_rq_offline(rq);
57d885fe 6686
dc938520 6687 cpu_clear(rq->cpu, old_rd->span);
dc938520 6688
57d885fe
GH
6689 if (atomic_dec_and_test(&old_rd->refcount))
6690 kfree(old_rd);
6691 }
6692
6693 atomic_inc(&rd->refcount);
6694 rq->rd = rd;
6695
dc938520 6696 cpu_set(rq->cpu, rd->span);
1f94ef59 6697 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6698 set_rq_online(rq);
57d885fe
GH
6699
6700 spin_unlock_irqrestore(&rq->lock, flags);
6701}
6702
dc938520 6703static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6704{
6705 memset(rd, 0, sizeof(*rd));
6706
dc938520
GH
6707 cpus_clear(rd->span);
6708 cpus_clear(rd->online);
6e0534f2
GH
6709
6710 cpupri_init(&rd->cpupri);
57d885fe
GH
6711}
6712
6713static void init_defrootdomain(void)
6714{
dc938520 6715 init_rootdomain(&def_root_domain);
57d885fe
GH
6716 atomic_set(&def_root_domain.refcount, 1);
6717}
6718
dc938520 6719static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6720{
6721 struct root_domain *rd;
6722
6723 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6724 if (!rd)
6725 return NULL;
6726
dc938520 6727 init_rootdomain(rd);
57d885fe
GH
6728
6729 return rd;
6730}
6731
1da177e4 6732/*
0eab9146 6733 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6734 * hold the hotplug lock.
6735 */
0eab9146
IM
6736static void
6737cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6738{
70b97a7f 6739 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6740 struct sched_domain *tmp;
6741
6742 /* Remove the sched domains which do not contribute to scheduling. */
6743 for (tmp = sd; tmp; tmp = tmp->parent) {
6744 struct sched_domain *parent = tmp->parent;
6745 if (!parent)
6746 break;
1a848870 6747 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6748 tmp->parent = parent->parent;
1a848870
SS
6749 if (parent->parent)
6750 parent->parent->child = tmp;
6751 }
245af2c7
SS
6752 }
6753
1a848870 6754 if (sd && sd_degenerate(sd)) {
245af2c7 6755 sd = sd->parent;
1a848870
SS
6756 if (sd)
6757 sd->child = NULL;
6758 }
1da177e4
LT
6759
6760 sched_domain_debug(sd, cpu);
6761
57d885fe 6762 rq_attach_root(rq, rd);
674311d5 6763 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6764}
6765
6766/* cpus with isolated domains */
67af63a6 6767static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6768
6769/* Setup the mask of cpus configured for isolated domains */
6770static int __init isolated_cpu_setup(char *str)
6771{
6772 int ints[NR_CPUS], i;
6773
6774 str = get_options(str, ARRAY_SIZE(ints), ints);
6775 cpus_clear(cpu_isolated_map);
6776 for (i = 1; i <= ints[0]; i++)
6777 if (ints[i] < NR_CPUS)
6778 cpu_set(ints[i], cpu_isolated_map);
6779 return 1;
6780}
6781
8927f494 6782__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6783
6784/*
6711cab4
SS
6785 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6786 * to a function which identifies what group(along with sched group) a CPU
6787 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6788 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6789 *
6790 * init_sched_build_groups will build a circular linked list of the groups
6791 * covered by the given span, and will set each group's ->cpumask correctly,
6792 * and ->cpu_power to 0.
6793 */
a616058b 6794static void
7c16ec58 6795init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6796 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6797 struct sched_group **sg,
6798 cpumask_t *tmpmask),
6799 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6800{
6801 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6802 int i;
6803
7c16ec58
MT
6804 cpus_clear(*covered);
6805
6806 for_each_cpu_mask(i, *span) {
6711cab4 6807 struct sched_group *sg;
7c16ec58 6808 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6809 int j;
6810
7c16ec58 6811 if (cpu_isset(i, *covered))
1da177e4
LT
6812 continue;
6813
7c16ec58 6814 cpus_clear(sg->cpumask);
5517d86b 6815 sg->__cpu_power = 0;
1da177e4 6816
7c16ec58
MT
6817 for_each_cpu_mask(j, *span) {
6818 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6819 continue;
6820
7c16ec58 6821 cpu_set(j, *covered);
1da177e4
LT
6822 cpu_set(j, sg->cpumask);
6823 }
6824 if (!first)
6825 first = sg;
6826 if (last)
6827 last->next = sg;
6828 last = sg;
6829 }
6830 last->next = first;
6831}
6832
9c1cfda2 6833#define SD_NODES_PER_DOMAIN 16
1da177e4 6834
9c1cfda2 6835#ifdef CONFIG_NUMA
198e2f18 6836
9c1cfda2
JH
6837/**
6838 * find_next_best_node - find the next node to include in a sched_domain
6839 * @node: node whose sched_domain we're building
6840 * @used_nodes: nodes already in the sched_domain
6841 *
41a2d6cf 6842 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6843 * finds the closest node not already in the @used_nodes map.
6844 *
6845 * Should use nodemask_t.
6846 */
c5f59f08 6847static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6848{
6849 int i, n, val, min_val, best_node = 0;
6850
6851 min_val = INT_MAX;
6852
6853 for (i = 0; i < MAX_NUMNODES; i++) {
6854 /* Start at @node */
6855 n = (node + i) % MAX_NUMNODES;
6856
6857 if (!nr_cpus_node(n))
6858 continue;
6859
6860 /* Skip already used nodes */
c5f59f08 6861 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6862 continue;
6863
6864 /* Simple min distance search */
6865 val = node_distance(node, n);
6866
6867 if (val < min_val) {
6868 min_val = val;
6869 best_node = n;
6870 }
6871 }
6872
c5f59f08 6873 node_set(best_node, *used_nodes);
9c1cfda2
JH
6874 return best_node;
6875}
6876
6877/**
6878 * sched_domain_node_span - get a cpumask for a node's sched_domain
6879 * @node: node whose cpumask we're constructing
73486722 6880 * @span: resulting cpumask
9c1cfda2 6881 *
41a2d6cf 6882 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6883 * should be one that prevents unnecessary balancing, but also spreads tasks
6884 * out optimally.
6885 */
4bdbaad3 6886static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6887{
c5f59f08 6888 nodemask_t used_nodes;
c5f59f08 6889 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6890 int i;
9c1cfda2 6891
4bdbaad3 6892 cpus_clear(*span);
c5f59f08 6893 nodes_clear(used_nodes);
9c1cfda2 6894
4bdbaad3 6895 cpus_or(*span, *span, *nodemask);
c5f59f08 6896 node_set(node, used_nodes);
9c1cfda2
JH
6897
6898 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6899 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6900
c5f59f08 6901 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6902 cpus_or(*span, *span, *nodemask);
9c1cfda2 6903 }
9c1cfda2 6904}
6d6bc0ad 6905#endif /* CONFIG_NUMA */
9c1cfda2 6906
5c45bf27 6907int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6908
9c1cfda2 6909/*
48f24c4d 6910 * SMT sched-domains:
9c1cfda2 6911 */
1da177e4
LT
6912#ifdef CONFIG_SCHED_SMT
6913static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6914static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6915
41a2d6cf 6916static int
7c16ec58
MT
6917cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6918 cpumask_t *unused)
1da177e4 6919{
6711cab4
SS
6920 if (sg)
6921 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6922 return cpu;
6923}
6d6bc0ad 6924#endif /* CONFIG_SCHED_SMT */
1da177e4 6925
48f24c4d
IM
6926/*
6927 * multi-core sched-domains:
6928 */
1e9f28fa
SS
6929#ifdef CONFIG_SCHED_MC
6930static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6931static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6932#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6933
6934#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6935static int
7c16ec58
MT
6936cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6937 cpumask_t *mask)
1e9f28fa 6938{
6711cab4 6939 int group;
7c16ec58
MT
6940
6941 *mask = per_cpu(cpu_sibling_map, cpu);
6942 cpus_and(*mask, *mask, *cpu_map);
6943 group = first_cpu(*mask);
6711cab4
SS
6944 if (sg)
6945 *sg = &per_cpu(sched_group_core, group);
6946 return group;
1e9f28fa
SS
6947}
6948#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6949static int
7c16ec58
MT
6950cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6951 cpumask_t *unused)
1e9f28fa 6952{
6711cab4
SS
6953 if (sg)
6954 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6955 return cpu;
6956}
6957#endif
6958
1da177e4 6959static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6960static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6961
41a2d6cf 6962static int
7c16ec58
MT
6963cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6964 cpumask_t *mask)
1da177e4 6965{
6711cab4 6966 int group;
48f24c4d 6967#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6968 *mask = cpu_coregroup_map(cpu);
6969 cpus_and(*mask, *mask, *cpu_map);
6970 group = first_cpu(*mask);
1e9f28fa 6971#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6972 *mask = per_cpu(cpu_sibling_map, cpu);
6973 cpus_and(*mask, *mask, *cpu_map);
6974 group = first_cpu(*mask);
1da177e4 6975#else
6711cab4 6976 group = cpu;
1da177e4 6977#endif
6711cab4
SS
6978 if (sg)
6979 *sg = &per_cpu(sched_group_phys, group);
6980 return group;
1da177e4
LT
6981}
6982
6983#ifdef CONFIG_NUMA
1da177e4 6984/*
9c1cfda2
JH
6985 * The init_sched_build_groups can't handle what we want to do with node
6986 * groups, so roll our own. Now each node has its own list of groups which
6987 * gets dynamically allocated.
1da177e4 6988 */
9c1cfda2 6989static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6990static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6991
9c1cfda2 6992static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6993static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6994
6711cab4 6995static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6996 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6997{
6711cab4
SS
6998 int group;
6999
7c16ec58
MT
7000 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7001 cpus_and(*nodemask, *nodemask, *cpu_map);
7002 group = first_cpu(*nodemask);
6711cab4
SS
7003
7004 if (sg)
7005 *sg = &per_cpu(sched_group_allnodes, group);
7006 return group;
1da177e4 7007}
6711cab4 7008
08069033
SS
7009static void init_numa_sched_groups_power(struct sched_group *group_head)
7010{
7011 struct sched_group *sg = group_head;
7012 int j;
7013
7014 if (!sg)
7015 return;
3a5c359a
AK
7016 do {
7017 for_each_cpu_mask(j, sg->cpumask) {
7018 struct sched_domain *sd;
08069033 7019
3a5c359a
AK
7020 sd = &per_cpu(phys_domains, j);
7021 if (j != first_cpu(sd->groups->cpumask)) {
7022 /*
7023 * Only add "power" once for each
7024 * physical package.
7025 */
7026 continue;
7027 }
08069033 7028
3a5c359a
AK
7029 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7030 }
7031 sg = sg->next;
7032 } while (sg != group_head);
08069033 7033}
6d6bc0ad 7034#endif /* CONFIG_NUMA */
1da177e4 7035
a616058b 7036#ifdef CONFIG_NUMA
51888ca2 7037/* Free memory allocated for various sched_group structures */
7c16ec58 7038static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7039{
a616058b 7040 int cpu, i;
51888ca2
SV
7041
7042 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
7043 struct sched_group **sched_group_nodes
7044 = sched_group_nodes_bycpu[cpu];
7045
51888ca2
SV
7046 if (!sched_group_nodes)
7047 continue;
7048
7049 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
7050 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7051
7c16ec58
MT
7052 *nodemask = node_to_cpumask(i);
7053 cpus_and(*nodemask, *nodemask, *cpu_map);
7054 if (cpus_empty(*nodemask))
51888ca2
SV
7055 continue;
7056
7057 if (sg == NULL)
7058 continue;
7059 sg = sg->next;
7060next_sg:
7061 oldsg = sg;
7062 sg = sg->next;
7063 kfree(oldsg);
7064 if (oldsg != sched_group_nodes[i])
7065 goto next_sg;
7066 }
7067 kfree(sched_group_nodes);
7068 sched_group_nodes_bycpu[cpu] = NULL;
7069 }
51888ca2 7070}
6d6bc0ad 7071#else /* !CONFIG_NUMA */
7c16ec58 7072static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7073{
7074}
6d6bc0ad 7075#endif /* CONFIG_NUMA */
51888ca2 7076
89c4710e
SS
7077/*
7078 * Initialize sched groups cpu_power.
7079 *
7080 * cpu_power indicates the capacity of sched group, which is used while
7081 * distributing the load between different sched groups in a sched domain.
7082 * Typically cpu_power for all the groups in a sched domain will be same unless
7083 * there are asymmetries in the topology. If there are asymmetries, group
7084 * having more cpu_power will pickup more load compared to the group having
7085 * less cpu_power.
7086 *
7087 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7088 * the maximum number of tasks a group can handle in the presence of other idle
7089 * or lightly loaded groups in the same sched domain.
7090 */
7091static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7092{
7093 struct sched_domain *child;
7094 struct sched_group *group;
7095
7096 WARN_ON(!sd || !sd->groups);
7097
7098 if (cpu != first_cpu(sd->groups->cpumask))
7099 return;
7100
7101 child = sd->child;
7102
5517d86b
ED
7103 sd->groups->__cpu_power = 0;
7104
89c4710e
SS
7105 /*
7106 * For perf policy, if the groups in child domain share resources
7107 * (for example cores sharing some portions of the cache hierarchy
7108 * or SMT), then set this domain groups cpu_power such that each group
7109 * can handle only one task, when there are other idle groups in the
7110 * same sched domain.
7111 */
7112 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7113 (child->flags &
7114 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7115 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7116 return;
7117 }
7118
89c4710e
SS
7119 /*
7120 * add cpu_power of each child group to this groups cpu_power
7121 */
7122 group = child->groups;
7123 do {
5517d86b 7124 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7125 group = group->next;
7126 } while (group != child->groups);
7127}
7128
7c16ec58
MT
7129/*
7130 * Initializers for schedule domains
7131 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7132 */
7133
7134#define SD_INIT(sd, type) sd_init_##type(sd)
7135#define SD_INIT_FUNC(type) \
7136static noinline void sd_init_##type(struct sched_domain *sd) \
7137{ \
7138 memset(sd, 0, sizeof(*sd)); \
7139 *sd = SD_##type##_INIT; \
1d3504fc 7140 sd->level = SD_LV_##type; \
7c16ec58
MT
7141}
7142
7143SD_INIT_FUNC(CPU)
7144#ifdef CONFIG_NUMA
7145 SD_INIT_FUNC(ALLNODES)
7146 SD_INIT_FUNC(NODE)
7147#endif
7148#ifdef CONFIG_SCHED_SMT
7149 SD_INIT_FUNC(SIBLING)
7150#endif
7151#ifdef CONFIG_SCHED_MC
7152 SD_INIT_FUNC(MC)
7153#endif
7154
7155/*
7156 * To minimize stack usage kmalloc room for cpumasks and share the
7157 * space as the usage in build_sched_domains() dictates. Used only
7158 * if the amount of space is significant.
7159 */
7160struct allmasks {
7161 cpumask_t tmpmask; /* make this one first */
7162 union {
7163 cpumask_t nodemask;
7164 cpumask_t this_sibling_map;
7165 cpumask_t this_core_map;
7166 };
7167 cpumask_t send_covered;
7168
7169#ifdef CONFIG_NUMA
7170 cpumask_t domainspan;
7171 cpumask_t covered;
7172 cpumask_t notcovered;
7173#endif
7174};
7175
7176#if NR_CPUS > 128
7177#define SCHED_CPUMASK_ALLOC 1
7178#define SCHED_CPUMASK_FREE(v) kfree(v)
7179#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7180#else
7181#define SCHED_CPUMASK_ALLOC 0
7182#define SCHED_CPUMASK_FREE(v)
7183#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7184#endif
7185
7186#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7187 ((unsigned long)(a) + offsetof(struct allmasks, v))
7188
1d3504fc
HS
7189static int default_relax_domain_level = -1;
7190
7191static int __init setup_relax_domain_level(char *str)
7192{
30e0e178
LZ
7193 unsigned long val;
7194
7195 val = simple_strtoul(str, NULL, 0);
7196 if (val < SD_LV_MAX)
7197 default_relax_domain_level = val;
7198
1d3504fc
HS
7199 return 1;
7200}
7201__setup("relax_domain_level=", setup_relax_domain_level);
7202
7203static void set_domain_attribute(struct sched_domain *sd,
7204 struct sched_domain_attr *attr)
7205{
7206 int request;
7207
7208 if (!attr || attr->relax_domain_level < 0) {
7209 if (default_relax_domain_level < 0)
7210 return;
7211 else
7212 request = default_relax_domain_level;
7213 } else
7214 request = attr->relax_domain_level;
7215 if (request < sd->level) {
7216 /* turn off idle balance on this domain */
7217 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7218 } else {
7219 /* turn on idle balance on this domain */
7220 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7221 }
7222}
7223
1da177e4 7224/*
1a20ff27
DG
7225 * Build sched domains for a given set of cpus and attach the sched domains
7226 * to the individual cpus
1da177e4 7227 */
1d3504fc
HS
7228static int __build_sched_domains(const cpumask_t *cpu_map,
7229 struct sched_domain_attr *attr)
1da177e4
LT
7230{
7231 int i;
57d885fe 7232 struct root_domain *rd;
7c16ec58
MT
7233 SCHED_CPUMASK_DECLARE(allmasks);
7234 cpumask_t *tmpmask;
d1b55138
JH
7235#ifdef CONFIG_NUMA
7236 struct sched_group **sched_group_nodes = NULL;
6711cab4 7237 int sd_allnodes = 0;
d1b55138
JH
7238
7239 /*
7240 * Allocate the per-node list of sched groups
7241 */
5cf9f062 7242 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 7243 GFP_KERNEL);
d1b55138
JH
7244 if (!sched_group_nodes) {
7245 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7246 return -ENOMEM;
d1b55138 7247 }
d1b55138 7248#endif
1da177e4 7249
dc938520 7250 rd = alloc_rootdomain();
57d885fe
GH
7251 if (!rd) {
7252 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7253#ifdef CONFIG_NUMA
7254 kfree(sched_group_nodes);
7255#endif
57d885fe
GH
7256 return -ENOMEM;
7257 }
7258
7c16ec58
MT
7259#if SCHED_CPUMASK_ALLOC
7260 /* get space for all scratch cpumask variables */
7261 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7262 if (!allmasks) {
7263 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7264 kfree(rd);
7265#ifdef CONFIG_NUMA
7266 kfree(sched_group_nodes);
7267#endif
7268 return -ENOMEM;
7269 }
7270#endif
7271 tmpmask = (cpumask_t *)allmasks;
7272
7273
7274#ifdef CONFIG_NUMA
7275 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7276#endif
7277
1da177e4 7278 /*
1a20ff27 7279 * Set up domains for cpus specified by the cpu_map.
1da177e4 7280 */
1a20ff27 7281 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7282 struct sched_domain *sd = NULL, *p;
7c16ec58 7283 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7284
7c16ec58
MT
7285 *nodemask = node_to_cpumask(cpu_to_node(i));
7286 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7287
7288#ifdef CONFIG_NUMA
dd41f596 7289 if (cpus_weight(*cpu_map) >
7c16ec58 7290 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7291 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7292 SD_INIT(sd, ALLNODES);
1d3504fc 7293 set_domain_attribute(sd, attr);
9c1cfda2 7294 sd->span = *cpu_map;
c09595f6 7295 sd->first_cpu = first_cpu(sd->span);
7c16ec58 7296 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7297 p = sd;
6711cab4 7298 sd_allnodes = 1;
9c1cfda2
JH
7299 } else
7300 p = NULL;
7301
1da177e4 7302 sd = &per_cpu(node_domains, i);
7c16ec58 7303 SD_INIT(sd, NODE);
1d3504fc 7304 set_domain_attribute(sd, attr);
4bdbaad3 7305 sched_domain_node_span(cpu_to_node(i), &sd->span);
c09595f6 7306 sd->first_cpu = first_cpu(sd->span);
9c1cfda2 7307 sd->parent = p;
1a848870
SS
7308 if (p)
7309 p->child = sd;
9c1cfda2 7310 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7311#endif
7312
7313 p = sd;
7314 sd = &per_cpu(phys_domains, i);
7c16ec58 7315 SD_INIT(sd, CPU);
1d3504fc 7316 set_domain_attribute(sd, attr);
7c16ec58 7317 sd->span = *nodemask;
c09595f6 7318 sd->first_cpu = first_cpu(sd->span);
1da177e4 7319 sd->parent = p;
1a848870
SS
7320 if (p)
7321 p->child = sd;
7c16ec58 7322 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7323
1e9f28fa
SS
7324#ifdef CONFIG_SCHED_MC
7325 p = sd;
7326 sd = &per_cpu(core_domains, i);
7c16ec58 7327 SD_INIT(sd, MC);
1d3504fc 7328 set_domain_attribute(sd, attr);
1e9f28fa 7329 sd->span = cpu_coregroup_map(i);
c09595f6 7330 sd->first_cpu = first_cpu(sd->span);
1e9f28fa
SS
7331 cpus_and(sd->span, sd->span, *cpu_map);
7332 sd->parent = p;
1a848870 7333 p->child = sd;
7c16ec58 7334 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7335#endif
7336
1da177e4
LT
7337#ifdef CONFIG_SCHED_SMT
7338 p = sd;
7339 sd = &per_cpu(cpu_domains, i);
7c16ec58 7340 SD_INIT(sd, SIBLING);
1d3504fc 7341 set_domain_attribute(sd, attr);
d5a7430d 7342 sd->span = per_cpu(cpu_sibling_map, i);
c09595f6 7343 sd->first_cpu = first_cpu(sd->span);
1a20ff27 7344 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7345 sd->parent = p;
1a848870 7346 p->child = sd;
7c16ec58 7347 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7348#endif
7349 }
7350
7351#ifdef CONFIG_SCHED_SMT
7352 /* Set up CPU (sibling) groups */
9c1cfda2 7353 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7354 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7355 SCHED_CPUMASK_VAR(send_covered, allmasks);
7356
7357 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7358 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7359 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7360 continue;
7361
dd41f596 7362 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7363 &cpu_to_cpu_group,
7364 send_covered, tmpmask);
1da177e4
LT
7365 }
7366#endif
7367
1e9f28fa
SS
7368#ifdef CONFIG_SCHED_MC
7369 /* Set up multi-core groups */
7370 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7371 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7372 SCHED_CPUMASK_VAR(send_covered, allmasks);
7373
7374 *this_core_map = cpu_coregroup_map(i);
7375 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7376 if (i != first_cpu(*this_core_map))
1e9f28fa 7377 continue;
7c16ec58 7378
dd41f596 7379 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7380 &cpu_to_core_group,
7381 send_covered, tmpmask);
1e9f28fa
SS
7382 }
7383#endif
7384
1da177e4
LT
7385 /* Set up physical groups */
7386 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7387 SCHED_CPUMASK_VAR(nodemask, allmasks);
7388 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7389
7c16ec58
MT
7390 *nodemask = node_to_cpumask(i);
7391 cpus_and(*nodemask, *nodemask, *cpu_map);
7392 if (cpus_empty(*nodemask))
1da177e4
LT
7393 continue;
7394
7c16ec58
MT
7395 init_sched_build_groups(nodemask, cpu_map,
7396 &cpu_to_phys_group,
7397 send_covered, tmpmask);
1da177e4
LT
7398 }
7399
7400#ifdef CONFIG_NUMA
7401 /* Set up node groups */
7c16ec58
MT
7402 if (sd_allnodes) {
7403 SCHED_CPUMASK_VAR(send_covered, allmasks);
7404
7405 init_sched_build_groups(cpu_map, cpu_map,
7406 &cpu_to_allnodes_group,
7407 send_covered, tmpmask);
7408 }
9c1cfda2
JH
7409
7410 for (i = 0; i < MAX_NUMNODES; i++) {
7411 /* Set up node groups */
7412 struct sched_group *sg, *prev;
7c16ec58
MT
7413 SCHED_CPUMASK_VAR(nodemask, allmasks);
7414 SCHED_CPUMASK_VAR(domainspan, allmasks);
7415 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7416 int j;
7417
7c16ec58
MT
7418 *nodemask = node_to_cpumask(i);
7419 cpus_clear(*covered);
7420
7421 cpus_and(*nodemask, *nodemask, *cpu_map);
7422 if (cpus_empty(*nodemask)) {
d1b55138 7423 sched_group_nodes[i] = NULL;
9c1cfda2 7424 continue;
d1b55138 7425 }
9c1cfda2 7426
4bdbaad3 7427 sched_domain_node_span(i, domainspan);
7c16ec58 7428 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7429
15f0b676 7430 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7431 if (!sg) {
7432 printk(KERN_WARNING "Can not alloc domain group for "
7433 "node %d\n", i);
7434 goto error;
7435 }
9c1cfda2 7436 sched_group_nodes[i] = sg;
7c16ec58 7437 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7438 struct sched_domain *sd;
9761eea8 7439
9c1cfda2
JH
7440 sd = &per_cpu(node_domains, j);
7441 sd->groups = sg;
9c1cfda2 7442 }
5517d86b 7443 sg->__cpu_power = 0;
7c16ec58 7444 sg->cpumask = *nodemask;
51888ca2 7445 sg->next = sg;
7c16ec58 7446 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7447 prev = sg;
7448
7449 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7450 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7451 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7452 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7453
7c16ec58
MT
7454 cpus_complement(*notcovered, *covered);
7455 cpus_and(*tmpmask, *notcovered, *cpu_map);
7456 cpus_and(*tmpmask, *tmpmask, *domainspan);
7457 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7458 break;
7459
7c16ec58
MT
7460 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7461 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7462 continue;
7463
15f0b676
SV
7464 sg = kmalloc_node(sizeof(struct sched_group),
7465 GFP_KERNEL, i);
9c1cfda2
JH
7466 if (!sg) {
7467 printk(KERN_WARNING
7468 "Can not alloc domain group for node %d\n", j);
51888ca2 7469 goto error;
9c1cfda2 7470 }
5517d86b 7471 sg->__cpu_power = 0;
7c16ec58 7472 sg->cpumask = *tmpmask;
51888ca2 7473 sg->next = prev->next;
7c16ec58 7474 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7475 prev->next = sg;
7476 prev = sg;
7477 }
9c1cfda2 7478 }
1da177e4
LT
7479#endif
7480
7481 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7482#ifdef CONFIG_SCHED_SMT
1a20ff27 7483 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7484 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7485
89c4710e 7486 init_sched_groups_power(i, sd);
5c45bf27 7487 }
1da177e4 7488#endif
1e9f28fa 7489#ifdef CONFIG_SCHED_MC
5c45bf27 7490 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7491 struct sched_domain *sd = &per_cpu(core_domains, i);
7492
89c4710e 7493 init_sched_groups_power(i, sd);
5c45bf27
SS
7494 }
7495#endif
1e9f28fa 7496
5c45bf27 7497 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7498 struct sched_domain *sd = &per_cpu(phys_domains, i);
7499
89c4710e 7500 init_sched_groups_power(i, sd);
1da177e4
LT
7501 }
7502
9c1cfda2 7503#ifdef CONFIG_NUMA
08069033
SS
7504 for (i = 0; i < MAX_NUMNODES; i++)
7505 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7506
6711cab4
SS
7507 if (sd_allnodes) {
7508 struct sched_group *sg;
f712c0c7 7509
7c16ec58
MT
7510 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7511 tmpmask);
f712c0c7
SS
7512 init_numa_sched_groups_power(sg);
7513 }
9c1cfda2
JH
7514#endif
7515
1da177e4 7516 /* Attach the domains */
1a20ff27 7517 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7518 struct sched_domain *sd;
7519#ifdef CONFIG_SCHED_SMT
7520 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7521#elif defined(CONFIG_SCHED_MC)
7522 sd = &per_cpu(core_domains, i);
1da177e4
LT
7523#else
7524 sd = &per_cpu(phys_domains, i);
7525#endif
57d885fe 7526 cpu_attach_domain(sd, rd, i);
1da177e4 7527 }
51888ca2 7528
7c16ec58 7529 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7530 return 0;
7531
a616058b 7532#ifdef CONFIG_NUMA
51888ca2 7533error:
7c16ec58
MT
7534 free_sched_groups(cpu_map, tmpmask);
7535 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7536 return -ENOMEM;
a616058b 7537#endif
1da177e4 7538}
029190c5 7539
1d3504fc
HS
7540static int build_sched_domains(const cpumask_t *cpu_map)
7541{
7542 return __build_sched_domains(cpu_map, NULL);
7543}
7544
029190c5
PJ
7545static cpumask_t *doms_cur; /* current sched domains */
7546static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7547static struct sched_domain_attr *dattr_cur;
7548 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7549
7550/*
7551 * Special case: If a kmalloc of a doms_cur partition (array of
7552 * cpumask_t) fails, then fallback to a single sched domain,
7553 * as determined by the single cpumask_t fallback_doms.
7554 */
7555static cpumask_t fallback_doms;
7556
22e52b07
HC
7557void __attribute__((weak)) arch_update_cpu_topology(void)
7558{
7559}
7560
5c8e1ed1
MK
7561/*
7562 * Free current domain masks.
7563 * Called after all cpus are attached to NULL domain.
7564 */
7565static void free_sched_domains(void)
7566{
7567 ndoms_cur = 0;
7568 if (doms_cur != &fallback_doms)
7569 kfree(doms_cur);
7570 doms_cur = &fallback_doms;
7571}
7572
1a20ff27 7573/*
41a2d6cf 7574 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7575 * For now this just excludes isolated cpus, but could be used to
7576 * exclude other special cases in the future.
1a20ff27 7577 */
51888ca2 7578static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7579{
7378547f
MM
7580 int err;
7581
22e52b07 7582 arch_update_cpu_topology();
029190c5
PJ
7583 ndoms_cur = 1;
7584 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7585 if (!doms_cur)
7586 doms_cur = &fallback_doms;
7587 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7588 dattr_cur = NULL;
7378547f 7589 err = build_sched_domains(doms_cur);
6382bc90 7590 register_sched_domain_sysctl();
7378547f
MM
7591
7592 return err;
1a20ff27
DG
7593}
7594
7c16ec58
MT
7595static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7596 cpumask_t *tmpmask)
1da177e4 7597{
7c16ec58 7598 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7599}
1da177e4 7600
1a20ff27
DG
7601/*
7602 * Detach sched domains from a group of cpus specified in cpu_map
7603 * These cpus will now be attached to the NULL domain
7604 */
858119e1 7605static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7606{
7c16ec58 7607 cpumask_t tmpmask;
1a20ff27
DG
7608 int i;
7609
6382bc90
MM
7610 unregister_sched_domain_sysctl();
7611
1a20ff27 7612 for_each_cpu_mask(i, *cpu_map)
57d885fe 7613 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7614 synchronize_sched();
7c16ec58 7615 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7616}
7617
1d3504fc
HS
7618/* handle null as "default" */
7619static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7620 struct sched_domain_attr *new, int idx_new)
7621{
7622 struct sched_domain_attr tmp;
7623
7624 /* fast path */
7625 if (!new && !cur)
7626 return 1;
7627
7628 tmp = SD_ATTR_INIT;
7629 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7630 new ? (new + idx_new) : &tmp,
7631 sizeof(struct sched_domain_attr));
7632}
7633
029190c5
PJ
7634/*
7635 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7636 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7637 * doms_new[] to the current sched domain partitioning, doms_cur[].
7638 * It destroys each deleted domain and builds each new domain.
7639 *
7640 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7641 * The masks don't intersect (don't overlap.) We should setup one
7642 * sched domain for each mask. CPUs not in any of the cpumasks will
7643 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7644 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7645 * it as it is.
7646 *
41a2d6cf
IM
7647 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7648 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7649 * failed the kmalloc call, then it can pass in doms_new == NULL,
7650 * and partition_sched_domains() will fallback to the single partition
7651 * 'fallback_doms'.
7652 *
7653 * Call with hotplug lock held
7654 */
1d3504fc
HS
7655void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7656 struct sched_domain_attr *dattr_new)
029190c5
PJ
7657{
7658 int i, j;
7659
712555ee 7660 mutex_lock(&sched_domains_mutex);
a1835615 7661
7378547f
MM
7662 /* always unregister in case we don't destroy any domains */
7663 unregister_sched_domain_sysctl();
7664
029190c5
PJ
7665 if (doms_new == NULL) {
7666 ndoms_new = 1;
7667 doms_new = &fallback_doms;
7668 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7669 dattr_new = NULL;
029190c5
PJ
7670 }
7671
7672 /* Destroy deleted domains */
7673 for (i = 0; i < ndoms_cur; i++) {
7674 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7675 if (cpus_equal(doms_cur[i], doms_new[j])
7676 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7677 goto match1;
7678 }
7679 /* no match - a current sched domain not in new doms_new[] */
7680 detach_destroy_domains(doms_cur + i);
7681match1:
7682 ;
7683 }
7684
7685 /* Build new domains */
7686 for (i = 0; i < ndoms_new; i++) {
7687 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7688 if (cpus_equal(doms_new[i], doms_cur[j])
7689 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7690 goto match2;
7691 }
7692 /* no match - add a new doms_new */
1d3504fc
HS
7693 __build_sched_domains(doms_new + i,
7694 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7695match2:
7696 ;
7697 }
7698
7699 /* Remember the new sched domains */
7700 if (doms_cur != &fallback_doms)
7701 kfree(doms_cur);
1d3504fc 7702 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7703 doms_cur = doms_new;
1d3504fc 7704 dattr_cur = dattr_new;
029190c5 7705 ndoms_cur = ndoms_new;
7378547f
MM
7706
7707 register_sched_domain_sysctl();
a1835615 7708
712555ee 7709 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7710}
7711
5c45bf27 7712#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7713int arch_reinit_sched_domains(void)
5c45bf27
SS
7714{
7715 int err;
7716
95402b38 7717 get_online_cpus();
712555ee 7718 mutex_lock(&sched_domains_mutex);
5c45bf27 7719 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7720 free_sched_domains();
5c45bf27 7721 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7722 mutex_unlock(&sched_domains_mutex);
95402b38 7723 put_online_cpus();
5c45bf27
SS
7724
7725 return err;
7726}
7727
7728static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7729{
7730 int ret;
7731
7732 if (buf[0] != '0' && buf[0] != '1')
7733 return -EINVAL;
7734
7735 if (smt)
7736 sched_smt_power_savings = (buf[0] == '1');
7737 else
7738 sched_mc_power_savings = (buf[0] == '1');
7739
7740 ret = arch_reinit_sched_domains();
7741
7742 return ret ? ret : count;
7743}
7744
5c45bf27
SS
7745#ifdef CONFIG_SCHED_MC
7746static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7747{
7748 return sprintf(page, "%u\n", sched_mc_power_savings);
7749}
48f24c4d
IM
7750static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7751 const char *buf, size_t count)
5c45bf27
SS
7752{
7753 return sched_power_savings_store(buf, count, 0);
7754}
6707de00
AB
7755static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7756 sched_mc_power_savings_store);
5c45bf27
SS
7757#endif
7758
7759#ifdef CONFIG_SCHED_SMT
7760static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7761{
7762 return sprintf(page, "%u\n", sched_smt_power_savings);
7763}
48f24c4d
IM
7764static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7765 const char *buf, size_t count)
5c45bf27
SS
7766{
7767 return sched_power_savings_store(buf, count, 1);
7768}
6707de00
AB
7769static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7770 sched_smt_power_savings_store);
7771#endif
7772
7773int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7774{
7775 int err = 0;
7776
7777#ifdef CONFIG_SCHED_SMT
7778 if (smt_capable())
7779 err = sysfs_create_file(&cls->kset.kobj,
7780 &attr_sched_smt_power_savings.attr);
7781#endif
7782#ifdef CONFIG_SCHED_MC
7783 if (!err && mc_capable())
7784 err = sysfs_create_file(&cls->kset.kobj,
7785 &attr_sched_mc_power_savings.attr);
7786#endif
7787 return err;
7788}
6d6bc0ad 7789#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7790
1da177e4 7791/*
41a2d6cf 7792 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7793 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7794 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7795 * which will prevent rebalancing while the sched domains are recalculated.
7796 */
7797static int update_sched_domains(struct notifier_block *nfb,
7798 unsigned long action, void *hcpu)
7799{
7def2be1
PZ
7800 int cpu = (int)(long)hcpu;
7801
1da177e4 7802 switch (action) {
1da177e4 7803 case CPU_DOWN_PREPARE:
8bb78442 7804 case CPU_DOWN_PREPARE_FROZEN:
7def2be1
PZ
7805 disable_runtime(cpu_rq(cpu));
7806 /* fall-through */
7807 case CPU_UP_PREPARE:
7808 case CPU_UP_PREPARE_FROZEN:
1a20ff27 7809 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7810 free_sched_domains();
1da177e4
LT
7811 return NOTIFY_OK;
7812
7def2be1 7813
1da177e4 7814 case CPU_DOWN_FAILED:
8bb78442 7815 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7816 case CPU_ONLINE:
8bb78442 7817 case CPU_ONLINE_FROZEN:
7def2be1
PZ
7818 enable_runtime(cpu_rq(cpu));
7819 /* fall-through */
7820 case CPU_UP_CANCELED:
7821 case CPU_UP_CANCELED_FROZEN:
1da177e4 7822 case CPU_DEAD:
8bb78442 7823 case CPU_DEAD_FROZEN:
1da177e4
LT
7824 /*
7825 * Fall through and re-initialise the domains.
7826 */
7827 break;
7828 default:
7829 return NOTIFY_DONE;
7830 }
7831
5c8e1ed1
MK
7832#ifndef CONFIG_CPUSETS
7833 /*
7834 * Create default domain partitioning if cpusets are disabled.
7835 * Otherwise we let cpusets rebuild the domains based on the
7836 * current setup.
7837 */
7838
1da177e4 7839 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7840 arch_init_sched_domains(&cpu_online_map);
5c8e1ed1 7841#endif
1da177e4
LT
7842
7843 return NOTIFY_OK;
7844}
1da177e4
LT
7845
7846void __init sched_init_smp(void)
7847{
5c1e1767
NP
7848 cpumask_t non_isolated_cpus;
7849
434d53b0
MT
7850#if defined(CONFIG_NUMA)
7851 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7852 GFP_KERNEL);
7853 BUG_ON(sched_group_nodes_bycpu == NULL);
7854#endif
95402b38 7855 get_online_cpus();
712555ee 7856 mutex_lock(&sched_domains_mutex);
1a20ff27 7857 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7858 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7859 if (cpus_empty(non_isolated_cpus))
7860 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7861 mutex_unlock(&sched_domains_mutex);
95402b38 7862 put_online_cpus();
1da177e4
LT
7863 /* XXX: Theoretical race here - CPU may be hotplugged now */
7864 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7865 init_hrtick();
5c1e1767
NP
7866
7867 /* Move init over to a non-isolated CPU */
7c16ec58 7868 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7869 BUG();
19978ca6 7870 sched_init_granularity();
1da177e4
LT
7871}
7872#else
7873void __init sched_init_smp(void)
7874{
19978ca6 7875 sched_init_granularity();
1da177e4
LT
7876}
7877#endif /* CONFIG_SMP */
7878
7879int in_sched_functions(unsigned long addr)
7880{
1da177e4
LT
7881 return in_lock_functions(addr) ||
7882 (addr >= (unsigned long)__sched_text_start
7883 && addr < (unsigned long)__sched_text_end);
7884}
7885
a9957449 7886static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7887{
7888 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7889 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7890#ifdef CONFIG_FAIR_GROUP_SCHED
7891 cfs_rq->rq = rq;
7892#endif
67e9fb2a 7893 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7894}
7895
fa85ae24
PZ
7896static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7897{
7898 struct rt_prio_array *array;
7899 int i;
7900
7901 array = &rt_rq->active;
7902 for (i = 0; i < MAX_RT_PRIO; i++) {
20b6331b 7903 INIT_LIST_HEAD(array->queue + i);
fa85ae24
PZ
7904 __clear_bit(i, array->bitmap);
7905 }
7906 /* delimiter for bitsearch: */
7907 __set_bit(MAX_RT_PRIO, array->bitmap);
7908
052f1dc7 7909#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7910 rt_rq->highest_prio = MAX_RT_PRIO;
7911#endif
fa85ae24
PZ
7912#ifdef CONFIG_SMP
7913 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7914 rt_rq->overloaded = 0;
7915#endif
7916
7917 rt_rq->rt_time = 0;
7918 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7919 rt_rq->rt_runtime = 0;
7920 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7921
052f1dc7 7922#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7923 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7924 rt_rq->rq = rq;
7925#endif
fa85ae24
PZ
7926}
7927
6f505b16 7928#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7929static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7930 struct sched_entity *se, int cpu, int add,
7931 struct sched_entity *parent)
6f505b16 7932{
ec7dc8ac 7933 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7934 tg->cfs_rq[cpu] = cfs_rq;
7935 init_cfs_rq(cfs_rq, rq);
7936 cfs_rq->tg = tg;
7937 if (add)
7938 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7939
7940 tg->se[cpu] = se;
354d60c2
DG
7941 /* se could be NULL for init_task_group */
7942 if (!se)
7943 return;
7944
ec7dc8ac
DG
7945 if (!parent)
7946 se->cfs_rq = &rq->cfs;
7947 else
7948 se->cfs_rq = parent->my_q;
7949
6f505b16
PZ
7950 se->my_q = cfs_rq;
7951 se->load.weight = tg->shares;
e05510d0 7952 se->load.inv_weight = 0;
ec7dc8ac 7953 se->parent = parent;
6f505b16 7954}
052f1dc7 7955#endif
6f505b16 7956
052f1dc7 7957#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7958static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7959 struct sched_rt_entity *rt_se, int cpu, int add,
7960 struct sched_rt_entity *parent)
6f505b16 7961{
ec7dc8ac
DG
7962 struct rq *rq = cpu_rq(cpu);
7963
6f505b16
PZ
7964 tg->rt_rq[cpu] = rt_rq;
7965 init_rt_rq(rt_rq, rq);
7966 rt_rq->tg = tg;
7967 rt_rq->rt_se = rt_se;
ac086bc2 7968 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7969 if (add)
7970 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7971
7972 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7973 if (!rt_se)
7974 return;
7975
ec7dc8ac
DG
7976 if (!parent)
7977 rt_se->rt_rq = &rq->rt;
7978 else
7979 rt_se->rt_rq = parent->my_q;
7980
6f505b16 7981 rt_se->my_q = rt_rq;
ec7dc8ac 7982 rt_se->parent = parent;
6f505b16
PZ
7983 INIT_LIST_HEAD(&rt_se->run_list);
7984}
7985#endif
7986
1da177e4
LT
7987void __init sched_init(void)
7988{
dd41f596 7989 int i, j;
434d53b0
MT
7990 unsigned long alloc_size = 0, ptr;
7991
7992#ifdef CONFIG_FAIR_GROUP_SCHED
7993 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7994#endif
7995#ifdef CONFIG_RT_GROUP_SCHED
7996 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7997#endif
7998#ifdef CONFIG_USER_SCHED
7999 alloc_size *= 2;
434d53b0
MT
8000#endif
8001 /*
8002 * As sched_init() is called before page_alloc is setup,
8003 * we use alloc_bootmem().
8004 */
8005 if (alloc_size) {
5a9d3225 8006 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8007
8008#ifdef CONFIG_FAIR_GROUP_SCHED
8009 init_task_group.se = (struct sched_entity **)ptr;
8010 ptr += nr_cpu_ids * sizeof(void **);
8011
8012 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8013 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8014
8015#ifdef CONFIG_USER_SCHED
8016 root_task_group.se = (struct sched_entity **)ptr;
8017 ptr += nr_cpu_ids * sizeof(void **);
8018
8019 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8020 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8021#endif /* CONFIG_USER_SCHED */
8022#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8023#ifdef CONFIG_RT_GROUP_SCHED
8024 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8025 ptr += nr_cpu_ids * sizeof(void **);
8026
8027 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8028 ptr += nr_cpu_ids * sizeof(void **);
8029
8030#ifdef CONFIG_USER_SCHED
8031 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8032 ptr += nr_cpu_ids * sizeof(void **);
8033
8034 root_task_group.rt_rq = (struct rt_rq **)ptr;
8035 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8036#endif /* CONFIG_USER_SCHED */
8037#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8038 }
dd41f596 8039
57d885fe 8040#ifdef CONFIG_SMP
c09595f6 8041 init_aggregate();
57d885fe
GH
8042 init_defrootdomain();
8043#endif
8044
d0b27fa7
PZ
8045 init_rt_bandwidth(&def_rt_bandwidth,
8046 global_rt_period(), global_rt_runtime());
8047
8048#ifdef CONFIG_RT_GROUP_SCHED
8049 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8050 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8051#ifdef CONFIG_USER_SCHED
8052 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8053 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8054#endif /* CONFIG_USER_SCHED */
8055#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8056
052f1dc7 8057#ifdef CONFIG_GROUP_SCHED
6f505b16 8058 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8059 INIT_LIST_HEAD(&init_task_group.children);
8060
8061#ifdef CONFIG_USER_SCHED
8062 INIT_LIST_HEAD(&root_task_group.children);
8063 init_task_group.parent = &root_task_group;
8064 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8065#endif /* CONFIG_USER_SCHED */
8066#endif /* CONFIG_GROUP_SCHED */
6f505b16 8067
0a945022 8068 for_each_possible_cpu(i) {
70b97a7f 8069 struct rq *rq;
1da177e4
LT
8070
8071 rq = cpu_rq(i);
8072 spin_lock_init(&rq->lock);
fcb99371 8073 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 8074 rq->nr_running = 0;
dd41f596 8075 init_cfs_rq(&rq->cfs, rq);
6f505b16 8076 init_rt_rq(&rq->rt, rq);
dd41f596 8077#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8078 init_task_group.shares = init_task_group_load;
6f505b16 8079 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8080#ifdef CONFIG_CGROUP_SCHED
8081 /*
8082 * How much cpu bandwidth does init_task_group get?
8083 *
8084 * In case of task-groups formed thr' the cgroup filesystem, it
8085 * gets 100% of the cpu resources in the system. This overall
8086 * system cpu resource is divided among the tasks of
8087 * init_task_group and its child task-groups in a fair manner,
8088 * based on each entity's (task or task-group's) weight
8089 * (se->load.weight).
8090 *
8091 * In other words, if init_task_group has 10 tasks of weight
8092 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8093 * then A0's share of the cpu resource is:
8094 *
8095 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8096 *
8097 * We achieve this by letting init_task_group's tasks sit
8098 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8099 */
ec7dc8ac 8100 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8101#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8102 root_task_group.shares = NICE_0_LOAD;
8103 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8104 /*
8105 * In case of task-groups formed thr' the user id of tasks,
8106 * init_task_group represents tasks belonging to root user.
8107 * Hence it forms a sibling of all subsequent groups formed.
8108 * In this case, init_task_group gets only a fraction of overall
8109 * system cpu resource, based on the weight assigned to root
8110 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8111 * by letting tasks of init_task_group sit in a separate cfs_rq
8112 * (init_cfs_rq) and having one entity represent this group of
8113 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8114 */
ec7dc8ac 8115 init_tg_cfs_entry(&init_task_group,
6f505b16 8116 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8117 &per_cpu(init_sched_entity, i), i, 1,
8118 root_task_group.se[i]);
6f505b16 8119
052f1dc7 8120#endif
354d60c2
DG
8121#endif /* CONFIG_FAIR_GROUP_SCHED */
8122
8123 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8124#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8125 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8126#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8127 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8128#elif defined CONFIG_USER_SCHED
eff766a6 8129 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8130 init_tg_rt_entry(&init_task_group,
6f505b16 8131 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8132 &per_cpu(init_sched_rt_entity, i), i, 1,
8133 root_task_group.rt_se[i]);
354d60c2 8134#endif
dd41f596 8135#endif
1da177e4 8136
dd41f596
IM
8137 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8138 rq->cpu_load[j] = 0;
1da177e4 8139#ifdef CONFIG_SMP
41c7ce9a 8140 rq->sd = NULL;
57d885fe 8141 rq->rd = NULL;
1da177e4 8142 rq->active_balance = 0;
dd41f596 8143 rq->next_balance = jiffies;
1da177e4 8144 rq->push_cpu = 0;
0a2966b4 8145 rq->cpu = i;
1f11eb6a 8146 rq->online = 0;
1da177e4
LT
8147 rq->migration_thread = NULL;
8148 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8149 rq_attach_root(rq, &def_root_domain);
1da177e4 8150#endif
8f4d37ec 8151 init_rq_hrtick(rq);
1da177e4 8152 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8153 }
8154
2dd73a4f 8155 set_load_weight(&init_task);
b50f60ce 8156
e107be36
AK
8157#ifdef CONFIG_PREEMPT_NOTIFIERS
8158 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8159#endif
8160
c9819f45
CL
8161#ifdef CONFIG_SMP
8162 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8163#endif
8164
b50f60ce
HC
8165#ifdef CONFIG_RT_MUTEXES
8166 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8167#endif
8168
1da177e4
LT
8169 /*
8170 * The boot idle thread does lazy MMU switching as well:
8171 */
8172 atomic_inc(&init_mm.mm_count);
8173 enter_lazy_tlb(&init_mm, current);
8174
8175 /*
8176 * Make us the idle thread. Technically, schedule() should not be
8177 * called from this thread, however somewhere below it might be,
8178 * but because we are the idle thread, we just pick up running again
8179 * when this runqueue becomes "idle".
8180 */
8181 init_idle(current, smp_processor_id());
dd41f596
IM
8182 /*
8183 * During early bootup we pretend to be a normal task:
8184 */
8185 current->sched_class = &fair_sched_class;
6892b75e
IM
8186
8187 scheduler_running = 1;
1da177e4
LT
8188}
8189
8190#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8191void __might_sleep(char *file, int line)
8192{
48f24c4d 8193#ifdef in_atomic
1da177e4
LT
8194 static unsigned long prev_jiffy; /* ratelimiting */
8195
8196 if ((in_atomic() || irqs_disabled()) &&
8197 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8198 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8199 return;
8200 prev_jiffy = jiffies;
91368d73 8201 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8202 " context at %s:%d\n", file, line);
8203 printk("in_atomic():%d, irqs_disabled():%d\n",
8204 in_atomic(), irqs_disabled());
a4c410f0 8205 debug_show_held_locks(current);
3117df04
IM
8206 if (irqs_disabled())
8207 print_irqtrace_events(current);
1da177e4
LT
8208 dump_stack();
8209 }
8210#endif
8211}
8212EXPORT_SYMBOL(__might_sleep);
8213#endif
8214
8215#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8216static void normalize_task(struct rq *rq, struct task_struct *p)
8217{
8218 int on_rq;
3e51f33f 8219
3a5e4dc1
AK
8220 update_rq_clock(rq);
8221 on_rq = p->se.on_rq;
8222 if (on_rq)
8223 deactivate_task(rq, p, 0);
8224 __setscheduler(rq, p, SCHED_NORMAL, 0);
8225 if (on_rq) {
8226 activate_task(rq, p, 0);
8227 resched_task(rq->curr);
8228 }
8229}
8230
1da177e4
LT
8231void normalize_rt_tasks(void)
8232{
a0f98a1c 8233 struct task_struct *g, *p;
1da177e4 8234 unsigned long flags;
70b97a7f 8235 struct rq *rq;
1da177e4 8236
4cf5d77a 8237 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8238 do_each_thread(g, p) {
178be793
IM
8239 /*
8240 * Only normalize user tasks:
8241 */
8242 if (!p->mm)
8243 continue;
8244
6cfb0d5d 8245 p->se.exec_start = 0;
6cfb0d5d 8246#ifdef CONFIG_SCHEDSTATS
dd41f596 8247 p->se.wait_start = 0;
dd41f596 8248 p->se.sleep_start = 0;
dd41f596 8249 p->se.block_start = 0;
6cfb0d5d 8250#endif
dd41f596
IM
8251
8252 if (!rt_task(p)) {
8253 /*
8254 * Renice negative nice level userspace
8255 * tasks back to 0:
8256 */
8257 if (TASK_NICE(p) < 0 && p->mm)
8258 set_user_nice(p, 0);
1da177e4 8259 continue;
dd41f596 8260 }
1da177e4 8261
4cf5d77a 8262 spin_lock(&p->pi_lock);
b29739f9 8263 rq = __task_rq_lock(p);
1da177e4 8264
178be793 8265 normalize_task(rq, p);
3a5e4dc1 8266
b29739f9 8267 __task_rq_unlock(rq);
4cf5d77a 8268 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8269 } while_each_thread(g, p);
8270
4cf5d77a 8271 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8272}
8273
8274#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8275
8276#ifdef CONFIG_IA64
8277/*
8278 * These functions are only useful for the IA64 MCA handling.
8279 *
8280 * They can only be called when the whole system has been
8281 * stopped - every CPU needs to be quiescent, and no scheduling
8282 * activity can take place. Using them for anything else would
8283 * be a serious bug, and as a result, they aren't even visible
8284 * under any other configuration.
8285 */
8286
8287/**
8288 * curr_task - return the current task for a given cpu.
8289 * @cpu: the processor in question.
8290 *
8291 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8292 */
36c8b586 8293struct task_struct *curr_task(int cpu)
1df5c10a
LT
8294{
8295 return cpu_curr(cpu);
8296}
8297
8298/**
8299 * set_curr_task - set the current task for a given cpu.
8300 * @cpu: the processor in question.
8301 * @p: the task pointer to set.
8302 *
8303 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8304 * are serviced on a separate stack. It allows the architecture to switch the
8305 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8306 * must be called with all CPU's synchronized, and interrupts disabled, the
8307 * and caller must save the original value of the current task (see
8308 * curr_task() above) and restore that value before reenabling interrupts and
8309 * re-starting the system.
8310 *
8311 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8312 */
36c8b586 8313void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8314{
8315 cpu_curr(cpu) = p;
8316}
8317
8318#endif
29f59db3 8319
bccbe08a
PZ
8320#ifdef CONFIG_FAIR_GROUP_SCHED
8321static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8322{
8323 int i;
8324
8325 for_each_possible_cpu(i) {
8326 if (tg->cfs_rq)
8327 kfree(tg->cfs_rq[i]);
8328 if (tg->se)
8329 kfree(tg->se[i]);
6f505b16
PZ
8330 }
8331
8332 kfree(tg->cfs_rq);
8333 kfree(tg->se);
6f505b16
PZ
8334}
8335
ec7dc8ac
DG
8336static
8337int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8338{
29f59db3 8339 struct cfs_rq *cfs_rq;
ec7dc8ac 8340 struct sched_entity *se, *parent_se;
9b5b7751 8341 struct rq *rq;
29f59db3
SV
8342 int i;
8343
434d53b0 8344 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8345 if (!tg->cfs_rq)
8346 goto err;
434d53b0 8347 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8348 if (!tg->se)
8349 goto err;
052f1dc7
PZ
8350
8351 tg->shares = NICE_0_LOAD;
29f59db3
SV
8352
8353 for_each_possible_cpu(i) {
9b5b7751 8354 rq = cpu_rq(i);
29f59db3 8355
6f505b16
PZ
8356 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8357 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8358 if (!cfs_rq)
8359 goto err;
8360
6f505b16
PZ
8361 se = kmalloc_node(sizeof(struct sched_entity),
8362 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8363 if (!se)
8364 goto err;
8365
ec7dc8ac
DG
8366 parent_se = parent ? parent->se[i] : NULL;
8367 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8368 }
8369
8370 return 1;
8371
8372 err:
8373 return 0;
8374}
8375
8376static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8377{
8378 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8379 &cpu_rq(cpu)->leaf_cfs_rq_list);
8380}
8381
8382static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8383{
8384 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8385}
6d6bc0ad 8386#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8387static inline void free_fair_sched_group(struct task_group *tg)
8388{
8389}
8390
ec7dc8ac
DG
8391static inline
8392int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8393{
8394 return 1;
8395}
8396
8397static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8398{
8399}
8400
8401static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8402{
8403}
6d6bc0ad 8404#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8405
8406#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8407static void free_rt_sched_group(struct task_group *tg)
8408{
8409 int i;
8410
d0b27fa7
PZ
8411 destroy_rt_bandwidth(&tg->rt_bandwidth);
8412
bccbe08a
PZ
8413 for_each_possible_cpu(i) {
8414 if (tg->rt_rq)
8415 kfree(tg->rt_rq[i]);
8416 if (tg->rt_se)
8417 kfree(tg->rt_se[i]);
8418 }
8419
8420 kfree(tg->rt_rq);
8421 kfree(tg->rt_se);
8422}
8423
ec7dc8ac
DG
8424static
8425int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8426{
8427 struct rt_rq *rt_rq;
ec7dc8ac 8428 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8429 struct rq *rq;
8430 int i;
8431
434d53b0 8432 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8433 if (!tg->rt_rq)
8434 goto err;
434d53b0 8435 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8436 if (!tg->rt_se)
8437 goto err;
8438
d0b27fa7
PZ
8439 init_rt_bandwidth(&tg->rt_bandwidth,
8440 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8441
8442 for_each_possible_cpu(i) {
8443 rq = cpu_rq(i);
8444
6f505b16
PZ
8445 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8446 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8447 if (!rt_rq)
8448 goto err;
29f59db3 8449
6f505b16
PZ
8450 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8451 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8452 if (!rt_se)
8453 goto err;
29f59db3 8454
ec7dc8ac
DG
8455 parent_se = parent ? parent->rt_se[i] : NULL;
8456 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8457 }
8458
bccbe08a
PZ
8459 return 1;
8460
8461 err:
8462 return 0;
8463}
8464
8465static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8466{
8467 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8468 &cpu_rq(cpu)->leaf_rt_rq_list);
8469}
8470
8471static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8472{
8473 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8474}
6d6bc0ad 8475#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8476static inline void free_rt_sched_group(struct task_group *tg)
8477{
8478}
8479
ec7dc8ac
DG
8480static inline
8481int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8482{
8483 return 1;
8484}
8485
8486static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8487{
8488}
8489
8490static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8491{
8492}
6d6bc0ad 8493#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8494
d0b27fa7 8495#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8496static void free_sched_group(struct task_group *tg)
8497{
8498 free_fair_sched_group(tg);
8499 free_rt_sched_group(tg);
8500 kfree(tg);
8501}
8502
8503/* allocate runqueue etc for a new task group */
ec7dc8ac 8504struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8505{
8506 struct task_group *tg;
8507 unsigned long flags;
8508 int i;
8509
8510 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8511 if (!tg)
8512 return ERR_PTR(-ENOMEM);
8513
ec7dc8ac 8514 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8515 goto err;
8516
ec7dc8ac 8517 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8518 goto err;
8519
8ed36996 8520 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8521 for_each_possible_cpu(i) {
bccbe08a
PZ
8522 register_fair_sched_group(tg, i);
8523 register_rt_sched_group(tg, i);
9b5b7751 8524 }
6f505b16 8525 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8526
8527 WARN_ON(!parent); /* root should already exist */
8528
8529 tg->parent = parent;
8530 list_add_rcu(&tg->siblings, &parent->children);
8531 INIT_LIST_HEAD(&tg->children);
8ed36996 8532 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8533
9b5b7751 8534 return tg;
29f59db3
SV
8535
8536err:
6f505b16 8537 free_sched_group(tg);
29f59db3
SV
8538 return ERR_PTR(-ENOMEM);
8539}
8540
9b5b7751 8541/* rcu callback to free various structures associated with a task group */
6f505b16 8542static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8543{
29f59db3 8544 /* now it should be safe to free those cfs_rqs */
6f505b16 8545 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8546}
8547
9b5b7751 8548/* Destroy runqueue etc associated with a task group */
4cf86d77 8549void sched_destroy_group(struct task_group *tg)
29f59db3 8550{
8ed36996 8551 unsigned long flags;
9b5b7751 8552 int i;
29f59db3 8553
8ed36996 8554 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8555 for_each_possible_cpu(i) {
bccbe08a
PZ
8556 unregister_fair_sched_group(tg, i);
8557 unregister_rt_sched_group(tg, i);
9b5b7751 8558 }
6f505b16 8559 list_del_rcu(&tg->list);
f473aa5e 8560 list_del_rcu(&tg->siblings);
8ed36996 8561 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8562
9b5b7751 8563 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8564 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8565}
8566
9b5b7751 8567/* change task's runqueue when it moves between groups.
3a252015
IM
8568 * The caller of this function should have put the task in its new group
8569 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8570 * reflect its new group.
9b5b7751
SV
8571 */
8572void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8573{
8574 int on_rq, running;
8575 unsigned long flags;
8576 struct rq *rq;
8577
8578 rq = task_rq_lock(tsk, &flags);
8579
29f59db3
SV
8580 update_rq_clock(rq);
8581
051a1d1a 8582 running = task_current(rq, tsk);
29f59db3
SV
8583 on_rq = tsk->se.on_rq;
8584
0e1f3483 8585 if (on_rq)
29f59db3 8586 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8587 if (unlikely(running))
8588 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8589
6f505b16 8590 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8591
810b3817
PZ
8592#ifdef CONFIG_FAIR_GROUP_SCHED
8593 if (tsk->sched_class->moved_group)
8594 tsk->sched_class->moved_group(tsk);
8595#endif
8596
0e1f3483
HS
8597 if (unlikely(running))
8598 tsk->sched_class->set_curr_task(rq);
8599 if (on_rq)
7074badb 8600 enqueue_task(rq, tsk, 0);
29f59db3 8601
29f59db3
SV
8602 task_rq_unlock(rq, &flags);
8603}
6d6bc0ad 8604#endif /* CONFIG_GROUP_SCHED */
29f59db3 8605
052f1dc7 8606#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8607static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8608{
8609 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8610 int on_rq;
8611
29f59db3 8612 on_rq = se->on_rq;
62fb1851 8613 if (on_rq)
29f59db3
SV
8614 dequeue_entity(cfs_rq, se, 0);
8615
8616 se->load.weight = shares;
e05510d0 8617 se->load.inv_weight = 0;
29f59db3 8618
62fb1851 8619 if (on_rq)
29f59db3 8620 enqueue_entity(cfs_rq, se, 0);
c09595f6 8621}
62fb1851 8622
c09595f6
PZ
8623static void set_se_shares(struct sched_entity *se, unsigned long shares)
8624{
8625 struct cfs_rq *cfs_rq = se->cfs_rq;
8626 struct rq *rq = cfs_rq->rq;
8627 unsigned long flags;
8628
8629 spin_lock_irqsave(&rq->lock, flags);
8630 __set_se_shares(se, shares);
8631 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8632}
8633
8ed36996
PZ
8634static DEFINE_MUTEX(shares_mutex);
8635
4cf86d77 8636int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8637{
8638 int i;
8ed36996 8639 unsigned long flags;
c61935fd 8640
ec7dc8ac
DG
8641 /*
8642 * We can't change the weight of the root cgroup.
8643 */
8644 if (!tg->se[0])
8645 return -EINVAL;
8646
18d95a28
PZ
8647 if (shares < MIN_SHARES)
8648 shares = MIN_SHARES;
cb4ad1ff
MX
8649 else if (shares > MAX_SHARES)
8650 shares = MAX_SHARES;
62fb1851 8651
8ed36996 8652 mutex_lock(&shares_mutex);
9b5b7751 8653 if (tg->shares == shares)
5cb350ba 8654 goto done;
29f59db3 8655
8ed36996 8656 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8657 for_each_possible_cpu(i)
8658 unregister_fair_sched_group(tg, i);
f473aa5e 8659 list_del_rcu(&tg->siblings);
8ed36996 8660 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8661
8662 /* wait for any ongoing reference to this group to finish */
8663 synchronize_sched();
8664
8665 /*
8666 * Now we are free to modify the group's share on each cpu
8667 * w/o tripping rebalance_share or load_balance_fair.
8668 */
9b5b7751 8669 tg->shares = shares;
c09595f6
PZ
8670 for_each_possible_cpu(i) {
8671 /*
8672 * force a rebalance
8673 */
8674 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8675 set_se_shares(tg->se[i], shares);
c09595f6 8676 }
29f59db3 8677
6b2d7700
SV
8678 /*
8679 * Enable load balance activity on this group, by inserting it back on
8680 * each cpu's rq->leaf_cfs_rq_list.
8681 */
8ed36996 8682 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8683 for_each_possible_cpu(i)
8684 register_fair_sched_group(tg, i);
f473aa5e 8685 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8686 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8687done:
8ed36996 8688 mutex_unlock(&shares_mutex);
9b5b7751 8689 return 0;
29f59db3
SV
8690}
8691
5cb350ba
DG
8692unsigned long sched_group_shares(struct task_group *tg)
8693{
8694 return tg->shares;
8695}
052f1dc7 8696#endif
5cb350ba 8697
052f1dc7 8698#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8699/*
9f0c1e56 8700 * Ensure that the real time constraints are schedulable.
6f505b16 8701 */
9f0c1e56
PZ
8702static DEFINE_MUTEX(rt_constraints_mutex);
8703
8704static unsigned long to_ratio(u64 period, u64 runtime)
8705{
8706 if (runtime == RUNTIME_INF)
8707 return 1ULL << 16;
8708
6f6d6a1a 8709 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8710}
8711
b40b2e8e
PZ
8712#ifdef CONFIG_CGROUP_SCHED
8713static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8714{
10b612f4 8715 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8716 unsigned long total = 0;
8717
8718 if (!parent) {
8719 if (global_rt_period() < period)
8720 return 0;
8721
8722 return to_ratio(period, runtime) <
8723 to_ratio(global_rt_period(), global_rt_runtime());
8724 }
8725
8726 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8727 return 0;
8728
8729 rcu_read_lock();
8730 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8731 if (tgi == tg)
8732 continue;
8733
8734 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8735 tgi->rt_bandwidth.rt_runtime);
8736 }
8737 rcu_read_unlock();
8738
10b612f4 8739 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8740 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8741 parent->rt_bandwidth.rt_runtime);
8742}
8743#elif defined CONFIG_USER_SCHED
9f0c1e56 8744static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8745{
8746 struct task_group *tgi;
8747 unsigned long total = 0;
9f0c1e56 8748 unsigned long global_ratio =
d0b27fa7 8749 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8750
8751 rcu_read_lock();
9f0c1e56
PZ
8752 list_for_each_entry_rcu(tgi, &task_groups, list) {
8753 if (tgi == tg)
8754 continue;
6f505b16 8755
d0b27fa7
PZ
8756 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8757 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8758 }
8759 rcu_read_unlock();
6f505b16 8760
9f0c1e56 8761 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8762}
b40b2e8e 8763#endif
6f505b16 8764
521f1a24
DG
8765/* Must be called with tasklist_lock held */
8766static inline int tg_has_rt_tasks(struct task_group *tg)
8767{
8768 struct task_struct *g, *p;
8769 do_each_thread(g, p) {
8770 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8771 return 1;
8772 } while_each_thread(g, p);
8773 return 0;
8774}
8775
d0b27fa7
PZ
8776static int tg_set_bandwidth(struct task_group *tg,
8777 u64 rt_period, u64 rt_runtime)
6f505b16 8778{
ac086bc2 8779 int i, err = 0;
9f0c1e56 8780
9f0c1e56 8781 mutex_lock(&rt_constraints_mutex);
521f1a24 8782 read_lock(&tasklist_lock);
ac086bc2 8783 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8784 err = -EBUSY;
8785 goto unlock;
8786 }
9f0c1e56
PZ
8787 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8788 err = -EINVAL;
8789 goto unlock;
8790 }
ac086bc2
PZ
8791
8792 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8793 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8794 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8795
8796 for_each_possible_cpu(i) {
8797 struct rt_rq *rt_rq = tg->rt_rq[i];
8798
8799 spin_lock(&rt_rq->rt_runtime_lock);
8800 rt_rq->rt_runtime = rt_runtime;
8801 spin_unlock(&rt_rq->rt_runtime_lock);
8802 }
8803 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8804 unlock:
521f1a24 8805 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8806 mutex_unlock(&rt_constraints_mutex);
8807
8808 return err;
6f505b16
PZ
8809}
8810
d0b27fa7
PZ
8811int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8812{
8813 u64 rt_runtime, rt_period;
8814
8815 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8816 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8817 if (rt_runtime_us < 0)
8818 rt_runtime = RUNTIME_INF;
8819
8820 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8821}
8822
9f0c1e56
PZ
8823long sched_group_rt_runtime(struct task_group *tg)
8824{
8825 u64 rt_runtime_us;
8826
d0b27fa7 8827 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8828 return -1;
8829
d0b27fa7 8830 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8831 do_div(rt_runtime_us, NSEC_PER_USEC);
8832 return rt_runtime_us;
8833}
d0b27fa7
PZ
8834
8835int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8836{
8837 u64 rt_runtime, rt_period;
8838
8839 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8840 rt_runtime = tg->rt_bandwidth.rt_runtime;
8841
8842 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8843}
8844
8845long sched_group_rt_period(struct task_group *tg)
8846{
8847 u64 rt_period_us;
8848
8849 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8850 do_div(rt_period_us, NSEC_PER_USEC);
8851 return rt_period_us;
8852}
8853
8854static int sched_rt_global_constraints(void)
8855{
10b612f4
PZ
8856 struct task_group *tg = &root_task_group;
8857 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8858 int ret = 0;
8859
10b612f4
PZ
8860 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8861 rt_runtime = tg->rt_bandwidth.rt_runtime;
8862
d0b27fa7 8863 mutex_lock(&rt_constraints_mutex);
10b612f4 8864 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8865 ret = -EINVAL;
8866 mutex_unlock(&rt_constraints_mutex);
8867
8868 return ret;
8869}
6d6bc0ad 8870#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8871static int sched_rt_global_constraints(void)
8872{
ac086bc2
PZ
8873 unsigned long flags;
8874 int i;
8875
8876 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8877 for_each_possible_cpu(i) {
8878 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8879
8880 spin_lock(&rt_rq->rt_runtime_lock);
8881 rt_rq->rt_runtime = global_rt_runtime();
8882 spin_unlock(&rt_rq->rt_runtime_lock);
8883 }
8884 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8885
d0b27fa7
PZ
8886 return 0;
8887}
6d6bc0ad 8888#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8889
8890int sched_rt_handler(struct ctl_table *table, int write,
8891 struct file *filp, void __user *buffer, size_t *lenp,
8892 loff_t *ppos)
8893{
8894 int ret;
8895 int old_period, old_runtime;
8896 static DEFINE_MUTEX(mutex);
8897
8898 mutex_lock(&mutex);
8899 old_period = sysctl_sched_rt_period;
8900 old_runtime = sysctl_sched_rt_runtime;
8901
8902 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8903
8904 if (!ret && write) {
8905 ret = sched_rt_global_constraints();
8906 if (ret) {
8907 sysctl_sched_rt_period = old_period;
8908 sysctl_sched_rt_runtime = old_runtime;
8909 } else {
8910 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8911 def_rt_bandwidth.rt_period =
8912 ns_to_ktime(global_rt_period());
8913 }
8914 }
8915 mutex_unlock(&mutex);
8916
8917 return ret;
8918}
68318b8e 8919
052f1dc7 8920#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8921
8922/* return corresponding task_group object of a cgroup */
2b01dfe3 8923static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8924{
2b01dfe3
PM
8925 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8926 struct task_group, css);
68318b8e
SV
8927}
8928
8929static struct cgroup_subsys_state *
2b01dfe3 8930cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8931{
ec7dc8ac 8932 struct task_group *tg, *parent;
68318b8e 8933
2b01dfe3 8934 if (!cgrp->parent) {
68318b8e 8935 /* This is early initialization for the top cgroup */
2b01dfe3 8936 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8937 return &init_task_group.css;
8938 }
8939
ec7dc8ac
DG
8940 parent = cgroup_tg(cgrp->parent);
8941 tg = sched_create_group(parent);
68318b8e
SV
8942 if (IS_ERR(tg))
8943 return ERR_PTR(-ENOMEM);
8944
8945 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8946 tg->css.cgroup = cgrp;
68318b8e
SV
8947
8948 return &tg->css;
8949}
8950
41a2d6cf
IM
8951static void
8952cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8953{
2b01dfe3 8954 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8955
8956 sched_destroy_group(tg);
8957}
8958
41a2d6cf
IM
8959static int
8960cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8961 struct task_struct *tsk)
68318b8e 8962{
b68aa230
PZ
8963#ifdef CONFIG_RT_GROUP_SCHED
8964 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8965 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8966 return -EINVAL;
8967#else
68318b8e
SV
8968 /* We don't support RT-tasks being in separate groups */
8969 if (tsk->sched_class != &fair_sched_class)
8970 return -EINVAL;
b68aa230 8971#endif
68318b8e
SV
8972
8973 return 0;
8974}
8975
8976static void
2b01dfe3 8977cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8978 struct cgroup *old_cont, struct task_struct *tsk)
8979{
8980 sched_move_task(tsk);
8981}
8982
052f1dc7 8983#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8984static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8985 u64 shareval)
68318b8e 8986{
2b01dfe3 8987 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8988}
8989
f4c753b7 8990static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8991{
2b01dfe3 8992 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8993
8994 return (u64) tg->shares;
8995}
6d6bc0ad 8996#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8997
052f1dc7 8998#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8999static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9000 s64 val)
6f505b16 9001{
06ecb27c 9002 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9003}
9004
06ecb27c 9005static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9006{
06ecb27c 9007 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9008}
d0b27fa7
PZ
9009
9010static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9011 u64 rt_period_us)
9012{
9013 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9014}
9015
9016static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9017{
9018 return sched_group_rt_period(cgroup_tg(cgrp));
9019}
6d6bc0ad 9020#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9021
fe5c7cc2 9022static struct cftype cpu_files[] = {
052f1dc7 9023#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9024 {
9025 .name = "shares",
f4c753b7
PM
9026 .read_u64 = cpu_shares_read_u64,
9027 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9028 },
052f1dc7
PZ
9029#endif
9030#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9031 {
9f0c1e56 9032 .name = "rt_runtime_us",
06ecb27c
PM
9033 .read_s64 = cpu_rt_runtime_read,
9034 .write_s64 = cpu_rt_runtime_write,
6f505b16 9035 },
d0b27fa7
PZ
9036 {
9037 .name = "rt_period_us",
f4c753b7
PM
9038 .read_u64 = cpu_rt_period_read_uint,
9039 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9040 },
052f1dc7 9041#endif
68318b8e
SV
9042};
9043
9044static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9045{
fe5c7cc2 9046 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9047}
9048
9049struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9050 .name = "cpu",
9051 .create = cpu_cgroup_create,
9052 .destroy = cpu_cgroup_destroy,
9053 .can_attach = cpu_cgroup_can_attach,
9054 .attach = cpu_cgroup_attach,
9055 .populate = cpu_cgroup_populate,
9056 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9057 .early_init = 1,
9058};
9059
052f1dc7 9060#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9061
9062#ifdef CONFIG_CGROUP_CPUACCT
9063
9064/*
9065 * CPU accounting code for task groups.
9066 *
9067 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9068 * (balbir@in.ibm.com).
9069 */
9070
9071/* track cpu usage of a group of tasks */
9072struct cpuacct {
9073 struct cgroup_subsys_state css;
9074 /* cpuusage holds pointer to a u64-type object on every cpu */
9075 u64 *cpuusage;
9076};
9077
9078struct cgroup_subsys cpuacct_subsys;
9079
9080/* return cpu accounting group corresponding to this container */
32cd756a 9081static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9082{
32cd756a 9083 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9084 struct cpuacct, css);
9085}
9086
9087/* return cpu accounting group to which this task belongs */
9088static inline struct cpuacct *task_ca(struct task_struct *tsk)
9089{
9090 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9091 struct cpuacct, css);
9092}
9093
9094/* create a new cpu accounting group */
9095static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9096 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9097{
9098 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9099
9100 if (!ca)
9101 return ERR_PTR(-ENOMEM);
9102
9103 ca->cpuusage = alloc_percpu(u64);
9104 if (!ca->cpuusage) {
9105 kfree(ca);
9106 return ERR_PTR(-ENOMEM);
9107 }
9108
9109 return &ca->css;
9110}
9111
9112/* destroy an existing cpu accounting group */
41a2d6cf 9113static void
32cd756a 9114cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9115{
32cd756a 9116 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9117
9118 free_percpu(ca->cpuusage);
9119 kfree(ca);
9120}
9121
9122/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9123static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9124{
32cd756a 9125 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9126 u64 totalcpuusage = 0;
9127 int i;
9128
9129 for_each_possible_cpu(i) {
9130 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9131
9132 /*
9133 * Take rq->lock to make 64-bit addition safe on 32-bit
9134 * platforms.
9135 */
9136 spin_lock_irq(&cpu_rq(i)->lock);
9137 totalcpuusage += *cpuusage;
9138 spin_unlock_irq(&cpu_rq(i)->lock);
9139 }
9140
9141 return totalcpuusage;
9142}
9143
0297b803
DG
9144static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9145 u64 reset)
9146{
9147 struct cpuacct *ca = cgroup_ca(cgrp);
9148 int err = 0;
9149 int i;
9150
9151 if (reset) {
9152 err = -EINVAL;
9153 goto out;
9154 }
9155
9156 for_each_possible_cpu(i) {
9157 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9158
9159 spin_lock_irq(&cpu_rq(i)->lock);
9160 *cpuusage = 0;
9161 spin_unlock_irq(&cpu_rq(i)->lock);
9162 }
9163out:
9164 return err;
9165}
9166
d842de87
SV
9167static struct cftype files[] = {
9168 {
9169 .name = "usage",
f4c753b7
PM
9170 .read_u64 = cpuusage_read,
9171 .write_u64 = cpuusage_write,
d842de87
SV
9172 },
9173};
9174
32cd756a 9175static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9176{
32cd756a 9177 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9178}
9179
9180/*
9181 * charge this task's execution time to its accounting group.
9182 *
9183 * called with rq->lock held.
9184 */
9185static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9186{
9187 struct cpuacct *ca;
9188
9189 if (!cpuacct_subsys.active)
9190 return;
9191
9192 ca = task_ca(tsk);
9193 if (ca) {
9194 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9195
9196 *cpuusage += cputime;
9197 }
9198}
9199
9200struct cgroup_subsys cpuacct_subsys = {
9201 .name = "cpuacct",
9202 .create = cpuacct_create,
9203 .destroy = cpuacct_destroy,
9204 .populate = cpuacct_populate,
9205 .subsys_id = cpuacct_subsys_id,
9206};
9207#endif /* CONFIG_CGROUP_CPUACCT */