]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched.c
Merge master.kernel.org:/home/rmk/linux-2.6-arm
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4
LT
76
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
d7876a08 96 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 97 */
d6322faf 98#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 99
6aa645ea
IM
100#define NICE_0_LOAD SCHED_LOAD_SCALE
101#define NICE_0_SHIFT SCHED_LOAD_SHIFT
102
1da177e4
LT
103/*
104 * These are the 'tuning knobs' of the scheduler:
105 *
a4ec24b4 106 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
107 * Timeslices get refilled after they expire.
108 */
1da177e4 109#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 110
d0b27fa7
PZ
111/*
112 * single value that denotes runtime == period, ie unlimited time.
113 */
114#define RUNTIME_INF ((u64)~0ULL)
115
5517d86b
ED
116#ifdef CONFIG_SMP
117/*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122{
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124}
125
126/*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131{
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134}
135#endif
136
e05606d3
IM
137static inline int rt_policy(int policy)
138{
3f33a7ce 139 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
140 return 1;
141 return 0;
142}
143
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
1da177e4 149/*
6aa645ea 150 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 151 */
6aa645ea
IM
152struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155};
156
d0b27fa7 157struct rt_bandwidth {
ea736ed5
IM
158 /* nests inside the rq lock: */
159 spinlock_t rt_runtime_lock;
160 ktime_t rt_period;
161 u64 rt_runtime;
162 struct hrtimer rt_period_timer;
d0b27fa7
PZ
163};
164
165static struct rt_bandwidth def_rt_bandwidth;
166
167static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
168
169static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
170{
171 struct rt_bandwidth *rt_b =
172 container_of(timer, struct rt_bandwidth, rt_period_timer);
173 ktime_t now;
174 int overrun;
175 int idle = 0;
176
177 for (;;) {
178 now = hrtimer_cb_get_time(timer);
179 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
180
181 if (!overrun)
182 break;
183
184 idle = do_sched_rt_period_timer(rt_b, overrun);
185 }
186
187 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
188}
189
190static
191void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
192{
193 rt_b->rt_period = ns_to_ktime(period);
194 rt_b->rt_runtime = runtime;
195
ac086bc2
PZ
196 spin_lock_init(&rt_b->rt_runtime_lock);
197
d0b27fa7
PZ
198 hrtimer_init(&rt_b->rt_period_timer,
199 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
200 rt_b->rt_period_timer.function = sched_rt_period_timer;
201 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
202}
203
204static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
205{
206 ktime_t now;
207
208 if (rt_b->rt_runtime == RUNTIME_INF)
209 return;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 return;
213
214 spin_lock(&rt_b->rt_runtime_lock);
215 for (;;) {
216 if (hrtimer_active(&rt_b->rt_period_timer))
217 break;
218
219 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
220 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
221 hrtimer_start(&rt_b->rt_period_timer,
222 rt_b->rt_period_timer.expires,
223 HRTIMER_MODE_ABS);
224 }
225 spin_unlock(&rt_b->rt_runtime_lock);
226}
227
228#ifdef CONFIG_RT_GROUP_SCHED
229static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
230{
231 hrtimer_cancel(&rt_b->rt_period_timer);
232}
233#endif
234
712555ee
HC
235/*
236 * sched_domains_mutex serializes calls to arch_init_sched_domains,
237 * detach_destroy_domains and partition_sched_domains.
238 */
239static DEFINE_MUTEX(sched_domains_mutex);
240
052f1dc7 241#ifdef CONFIG_GROUP_SCHED
29f59db3 242
68318b8e
SV
243#include <linux/cgroup.h>
244
29f59db3
SV
245struct cfs_rq;
246
6f505b16
PZ
247static LIST_HEAD(task_groups);
248
29f59db3 249/* task group related information */
4cf86d77 250struct task_group {
052f1dc7 251#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
252 struct cgroup_subsys_state css;
253#endif
052f1dc7
PZ
254
255#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity **se;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq **cfs_rq;
260 unsigned long shares;
052f1dc7
PZ
261#endif
262
263#ifdef CONFIG_RT_GROUP_SCHED
264 struct sched_rt_entity **rt_se;
265 struct rt_rq **rt_rq;
266
d0b27fa7 267 struct rt_bandwidth rt_bandwidth;
052f1dc7 268#endif
6b2d7700 269
ae8393e5 270 struct rcu_head rcu;
6f505b16 271 struct list_head list;
f473aa5e
PZ
272
273 struct task_group *parent;
274 struct list_head siblings;
275 struct list_head children;
29f59db3
SV
276};
277
354d60c2 278#ifdef CONFIG_USER_SCHED
eff766a6
PZ
279
280/*
281 * Root task group.
282 * Every UID task group (including init_task_group aka UID-0) will
283 * be a child to this group.
284 */
285struct task_group root_task_group;
286
052f1dc7 287#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
288/* Default task group's sched entity on each cpu */
289static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
290/* Default task group's cfs_rq on each cpu */
291static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
292#endif
293
294#ifdef CONFIG_RT_GROUP_SCHED
295static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
296static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 297#endif
eff766a6
PZ
298#else
299#define root_task_group init_task_group
354d60c2 300#endif
6f505b16 301
8ed36996 302/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
303 * a task group's cpu shares.
304 */
8ed36996 305static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 306
052f1dc7 307#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
308#ifdef CONFIG_USER_SCHED
309# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
310#else
311# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
312#endif
313
cb4ad1ff
MX
314/*
315 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
316 * (The default weight is 1024 - so there's no practical
317 * limitation from this.)
318 */
18d95a28 319#define MIN_SHARES 2
cb4ad1ff 320#define MAX_SHARES (ULONG_MAX - 1)
18d95a28 321
052f1dc7
PZ
322static int init_task_group_load = INIT_TASK_GROUP_LOAD;
323#endif
324
29f59db3 325/* Default task group.
3a252015 326 * Every task in system belong to this group at bootup.
29f59db3 327 */
434d53b0 328struct task_group init_task_group;
29f59db3
SV
329
330/* return group to which a task belongs */
4cf86d77 331static inline struct task_group *task_group(struct task_struct *p)
29f59db3 332{
4cf86d77 333 struct task_group *tg;
9b5b7751 334
052f1dc7 335#ifdef CONFIG_USER_SCHED
24e377a8 336 tg = p->user->tg;
052f1dc7 337#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
338 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
339 struct task_group, css);
24e377a8 340#else
41a2d6cf 341 tg = &init_task_group;
24e377a8 342#endif
9b5b7751 343 return tg;
29f59db3
SV
344}
345
346/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 347static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 348{
052f1dc7 349#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
350 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
351 p->se.parent = task_group(p)->se[cpu];
052f1dc7 352#endif
6f505b16 353
052f1dc7 354#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
355 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
356 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 357#endif
29f59db3
SV
358}
359
360#else
361
6f505b16 362static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 363
052f1dc7 364#endif /* CONFIG_GROUP_SCHED */
29f59db3 365
6aa645ea
IM
366/* CFS-related fields in a runqueue */
367struct cfs_rq {
368 struct load_weight load;
369 unsigned long nr_running;
370
6aa645ea 371 u64 exec_clock;
e9acbff6 372 u64 min_vruntime;
6aa645ea
IM
373
374 struct rb_root tasks_timeline;
375 struct rb_node *rb_leftmost;
4a55bd5e
PZ
376
377 struct list_head tasks;
378 struct list_head *balance_iterator;
379
380 /*
381 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
382 * It is set to NULL otherwise (i.e when none are currently running).
383 */
aa2ac252 384 struct sched_entity *curr, *next;
ddc97297
PZ
385
386 unsigned long nr_spread_over;
387
62160e3f 388#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
389 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
390
41a2d6cf
IM
391 /*
392 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
393 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
394 * (like users, containers etc.)
395 *
396 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
397 * list is used during load balance.
398 */
41a2d6cf
IM
399 struct list_head leaf_cfs_rq_list;
400 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
401#endif
402};
1da177e4 403
6aa645ea
IM
404/* Real-Time classes' related field in a runqueue: */
405struct rt_rq {
406 struct rt_prio_array active;
63489e45 407 unsigned long rt_nr_running;
052f1dc7 408#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
409 int highest_prio; /* highest queued rt task prio */
410#endif
fa85ae24 411#ifdef CONFIG_SMP
73fe6aae 412 unsigned long rt_nr_migratory;
a22d7fc1 413 int overloaded;
fa85ae24 414#endif
6f505b16 415 int rt_throttled;
fa85ae24 416 u64 rt_time;
ac086bc2 417 u64 rt_runtime;
ea736ed5 418 /* Nests inside the rq lock: */
ac086bc2 419 spinlock_t rt_runtime_lock;
6f505b16 420
052f1dc7 421#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
422 unsigned long rt_nr_boosted;
423
6f505b16
PZ
424 struct rq *rq;
425 struct list_head leaf_rt_rq_list;
426 struct task_group *tg;
427 struct sched_rt_entity *rt_se;
428#endif
6aa645ea
IM
429};
430
57d885fe
GH
431#ifdef CONFIG_SMP
432
433/*
434 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
435 * variables. Each exclusive cpuset essentially defines an island domain by
436 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
437 * exclusive cpuset is created, we also create and attach a new root-domain
438 * object.
439 *
57d885fe
GH
440 */
441struct root_domain {
442 atomic_t refcount;
443 cpumask_t span;
444 cpumask_t online;
637f5085 445
0eab9146 446 /*
637f5085
GH
447 * The "RT overload" flag: it gets set if a CPU has more than
448 * one runnable RT task.
449 */
450 cpumask_t rto_mask;
0eab9146 451 atomic_t rto_count;
57d885fe
GH
452};
453
dc938520
GH
454/*
455 * By default the system creates a single root-domain with all cpus as
456 * members (mimicking the global state we have today).
457 */
57d885fe
GH
458static struct root_domain def_root_domain;
459
460#endif
461
1da177e4
LT
462/*
463 * This is the main, per-CPU runqueue data structure.
464 *
465 * Locking rule: those places that want to lock multiple runqueues
466 * (such as the load balancing or the thread migration code), lock
467 * acquire operations must be ordered by ascending &runqueue.
468 */
70b97a7f 469struct rq {
d8016491
IM
470 /* runqueue lock: */
471 spinlock_t lock;
1da177e4
LT
472
473 /*
474 * nr_running and cpu_load should be in the same cacheline because
475 * remote CPUs use both these fields when doing load calculation.
476 */
477 unsigned long nr_running;
6aa645ea
IM
478 #define CPU_LOAD_IDX_MAX 5
479 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 480 unsigned char idle_at_tick;
46cb4b7c 481#ifdef CONFIG_NO_HZ
15934a37 482 unsigned long last_tick_seen;
46cb4b7c
SS
483 unsigned char in_nohz_recently;
484#endif
d8016491
IM
485 /* capture load from *all* tasks on this cpu: */
486 struct load_weight load;
6aa645ea
IM
487 unsigned long nr_load_updates;
488 u64 nr_switches;
489
490 struct cfs_rq cfs;
6f505b16 491 struct rt_rq rt;
6f505b16 492
6aa645ea 493#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
494 /* list of leaf cfs_rq on this cpu: */
495 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
496#endif
497#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 498 struct list_head leaf_rt_rq_list;
1da177e4 499#endif
1da177e4
LT
500
501 /*
502 * This is part of a global counter where only the total sum
503 * over all CPUs matters. A task can increase this counter on
504 * one CPU and if it got migrated afterwards it may decrease
505 * it on another CPU. Always updated under the runqueue lock:
506 */
507 unsigned long nr_uninterruptible;
508
36c8b586 509 struct task_struct *curr, *idle;
c9819f45 510 unsigned long next_balance;
1da177e4 511 struct mm_struct *prev_mm;
6aa645ea 512
3e51f33f 513 u64 clock;
6aa645ea 514
1da177e4
LT
515 atomic_t nr_iowait;
516
517#ifdef CONFIG_SMP
0eab9146 518 struct root_domain *rd;
1da177e4
LT
519 struct sched_domain *sd;
520
521 /* For active balancing */
522 int active_balance;
523 int push_cpu;
d8016491
IM
524 /* cpu of this runqueue: */
525 int cpu;
1da177e4 526
36c8b586 527 struct task_struct *migration_thread;
1da177e4
LT
528 struct list_head migration_queue;
529#endif
530
8f4d37ec
PZ
531#ifdef CONFIG_SCHED_HRTICK
532 unsigned long hrtick_flags;
533 ktime_t hrtick_expire;
534 struct hrtimer hrtick_timer;
535#endif
536
1da177e4
LT
537#ifdef CONFIG_SCHEDSTATS
538 /* latency stats */
539 struct sched_info rq_sched_info;
540
541 /* sys_sched_yield() stats */
480b9434
KC
542 unsigned int yld_exp_empty;
543 unsigned int yld_act_empty;
544 unsigned int yld_both_empty;
545 unsigned int yld_count;
1da177e4
LT
546
547 /* schedule() stats */
480b9434
KC
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
1da177e4
LT
551
552 /* try_to_wake_up() stats */
480b9434
KC
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
b8efb561
IM
555
556 /* BKL stats */
480b9434 557 unsigned int bkl_count;
1da177e4 558#endif
fcb99371 559 struct lock_class_key rq_lock_key;
1da177e4
LT
560};
561
f34e3b61 562static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 563
dd41f596
IM
564static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
565{
566 rq->curr->sched_class->check_preempt_curr(rq, p);
567}
568
0a2966b4
CL
569static inline int cpu_of(struct rq *rq)
570{
571#ifdef CONFIG_SMP
572 return rq->cpu;
573#else
574 return 0;
575#endif
576}
577
674311d5
NP
578/*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 580 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
48f24c4d
IM
585#define for_each_domain(cpu, __sd) \
586 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
587
588#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589#define this_rq() (&__get_cpu_var(runqueues))
590#define task_rq(p) cpu_rq(task_cpu(p))
591#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
592
3e51f33f
PZ
593static inline void update_rq_clock(struct rq *rq)
594{
595 rq->clock = sched_clock_cpu(cpu_of(rq));
596}
597
bf5c91ba
IM
598/*
599 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
600 */
601#ifdef CONFIG_SCHED_DEBUG
602# define const_debug __read_mostly
603#else
604# define const_debug static const
605#endif
606
607/*
608 * Debugging: various feature bits
609 */
f00b45c1
PZ
610
611#define SCHED_FEAT(name, enabled) \
612 __SCHED_FEAT_##name ,
613
bf5c91ba 614enum {
f00b45c1 615#include "sched_features.h"
bf5c91ba
IM
616};
617
f00b45c1
PZ
618#undef SCHED_FEAT
619
620#define SCHED_FEAT(name, enabled) \
621 (1UL << __SCHED_FEAT_##name) * enabled |
622
bf5c91ba 623const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
624#include "sched_features.h"
625 0;
626
627#undef SCHED_FEAT
628
629#ifdef CONFIG_SCHED_DEBUG
630#define SCHED_FEAT(name, enabled) \
631 #name ,
632
983ed7a6 633static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
634#include "sched_features.h"
635 NULL
636};
637
638#undef SCHED_FEAT
639
983ed7a6 640static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
641{
642 filp->private_data = inode->i_private;
643 return 0;
644}
645
646static ssize_t
647sched_feat_read(struct file *filp, char __user *ubuf,
648 size_t cnt, loff_t *ppos)
649{
650 char *buf;
651 int r = 0;
652 int len = 0;
653 int i;
654
655 for (i = 0; sched_feat_names[i]; i++) {
656 len += strlen(sched_feat_names[i]);
657 len += 4;
658 }
659
660 buf = kmalloc(len + 2, GFP_KERNEL);
661 if (!buf)
662 return -ENOMEM;
663
664 for (i = 0; sched_feat_names[i]; i++) {
665 if (sysctl_sched_features & (1UL << i))
666 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
667 else
c24b7c52 668 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
669 }
670
671 r += sprintf(buf + r, "\n");
672 WARN_ON(r >= len + 2);
673
674 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
675
676 kfree(buf);
677
678 return r;
679}
680
681static ssize_t
682sched_feat_write(struct file *filp, const char __user *ubuf,
683 size_t cnt, loff_t *ppos)
684{
685 char buf[64];
686 char *cmp = buf;
687 int neg = 0;
688 int i;
689
690 if (cnt > 63)
691 cnt = 63;
692
693 if (copy_from_user(&buf, ubuf, cnt))
694 return -EFAULT;
695
696 buf[cnt] = 0;
697
c24b7c52 698 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
699 neg = 1;
700 cmp += 3;
701 }
702
703 for (i = 0; sched_feat_names[i]; i++) {
704 int len = strlen(sched_feat_names[i]);
705
706 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
707 if (neg)
708 sysctl_sched_features &= ~(1UL << i);
709 else
710 sysctl_sched_features |= (1UL << i);
711 break;
712 }
713 }
714
715 if (!sched_feat_names[i])
716 return -EINVAL;
717
718 filp->f_pos += cnt;
719
720 return cnt;
721}
722
723static struct file_operations sched_feat_fops = {
724 .open = sched_feat_open,
725 .read = sched_feat_read,
726 .write = sched_feat_write,
727};
728
729static __init int sched_init_debug(void)
730{
f00b45c1
PZ
731 debugfs_create_file("sched_features", 0644, NULL, NULL,
732 &sched_feat_fops);
733
734 return 0;
735}
736late_initcall(sched_init_debug);
737
738#endif
739
740#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 741
b82d9fdd
PZ
742/*
743 * Number of tasks to iterate in a single balance run.
744 * Limited because this is done with IRQs disabled.
745 */
746const_debug unsigned int sysctl_sched_nr_migrate = 32;
747
fa85ae24 748/*
9f0c1e56 749 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
750 * default: 1s
751 */
9f0c1e56 752unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 753
6892b75e
IM
754static __read_mostly int scheduler_running;
755
9f0c1e56
PZ
756/*
757 * part of the period that we allow rt tasks to run in us.
758 * default: 0.95s
759 */
760int sysctl_sched_rt_runtime = 950000;
fa85ae24 761
d0b27fa7
PZ
762static inline u64 global_rt_period(void)
763{
764 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
765}
766
767static inline u64 global_rt_runtime(void)
768{
769 if (sysctl_sched_rt_period < 0)
770 return RUNTIME_INF;
771
772 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
773}
fa85ae24 774
690229a0 775unsigned long long time_sync_thresh = 100000;
27ec4407
IM
776
777static DEFINE_PER_CPU(unsigned long long, time_offset);
778static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
779
e436d800 780/*
27ec4407
IM
781 * Global lock which we take every now and then to synchronize
782 * the CPUs time. This method is not warp-safe, but it's good
783 * enough to synchronize slowly diverging time sources and thus
784 * it's good enough for tracing:
e436d800 785 */
27ec4407
IM
786static DEFINE_SPINLOCK(time_sync_lock);
787static unsigned long long prev_global_time;
788
dfbf4a1b 789static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
27ec4407 790{
dfbf4a1b
IM
791 /*
792 * We want this inlined, to not get tracer function calls
793 * in this critical section:
794 */
795 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
796 __raw_spin_lock(&time_sync_lock.raw_lock);
27ec4407
IM
797
798 if (time < prev_global_time) {
799 per_cpu(time_offset, cpu) += prev_global_time - time;
800 time = prev_global_time;
801 } else {
802 prev_global_time = time;
803 }
804
dfbf4a1b
IM
805 __raw_spin_unlock(&time_sync_lock.raw_lock);
806 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
27ec4407
IM
807
808 return time;
809}
810
811static unsigned long long __cpu_clock(int cpu)
e436d800 812{
e436d800 813 unsigned long long now;
e436d800 814
8ced5f69
IM
815 /*
816 * Only call sched_clock() if the scheduler has already been
817 * initialized (some code might call cpu_clock() very early):
818 */
6892b75e
IM
819 if (unlikely(!scheduler_running))
820 return 0;
821
3e51f33f 822 now = sched_clock_cpu(cpu);
e436d800
IM
823
824 return now;
825}
27ec4407
IM
826
827/*
828 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
829 * clock constructed from sched_clock():
830 */
831unsigned long long cpu_clock(int cpu)
832{
833 unsigned long long prev_cpu_time, time, delta_time;
dfbf4a1b 834 unsigned long flags;
27ec4407 835
dfbf4a1b 836 local_irq_save(flags);
27ec4407
IM
837 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
838 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
839 delta_time = time-prev_cpu_time;
840
dfbf4a1b 841 if (unlikely(delta_time > time_sync_thresh)) {
27ec4407 842 time = __sync_cpu_clock(time, cpu);
dfbf4a1b
IM
843 per_cpu(prev_cpu_time, cpu) = time;
844 }
845 local_irq_restore(flags);
27ec4407
IM
846
847 return time;
848}
a58f6f25 849EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 850
1da177e4 851#ifndef prepare_arch_switch
4866cde0
NP
852# define prepare_arch_switch(next) do { } while (0)
853#endif
854#ifndef finish_arch_switch
855# define finish_arch_switch(prev) do { } while (0)
856#endif
857
051a1d1a
DA
858static inline int task_current(struct rq *rq, struct task_struct *p)
859{
860 return rq->curr == p;
861}
862
4866cde0 863#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 864static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 865{
051a1d1a 866 return task_current(rq, p);
4866cde0
NP
867}
868
70b97a7f 869static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
870{
871}
872
70b97a7f 873static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 874{
da04c035
IM
875#ifdef CONFIG_DEBUG_SPINLOCK
876 /* this is a valid case when another task releases the spinlock */
877 rq->lock.owner = current;
878#endif
8a25d5de
IM
879 /*
880 * If we are tracking spinlock dependencies then we have to
881 * fix up the runqueue lock - which gets 'carried over' from
882 * prev into current:
883 */
884 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
885
4866cde0
NP
886 spin_unlock_irq(&rq->lock);
887}
888
889#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 890static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
891{
892#ifdef CONFIG_SMP
893 return p->oncpu;
894#else
051a1d1a 895 return task_current(rq, p);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
905 * here.
906 */
907 next->oncpu = 1;
908#endif
909#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910 spin_unlock_irq(&rq->lock);
911#else
912 spin_unlock(&rq->lock);
913#endif
914}
915
70b97a7f 916static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
917{
918#ifdef CONFIG_SMP
919 /*
920 * After ->oncpu is cleared, the task can be moved to a different CPU.
921 * We must ensure this doesn't happen until the switch is completely
922 * finished.
923 */
924 smp_wmb();
925 prev->oncpu = 0;
926#endif
927#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
928 local_irq_enable();
1da177e4 929#endif
4866cde0
NP
930}
931#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 932
b29739f9
IM
933/*
934 * __task_rq_lock - lock the runqueue a given task resides on.
935 * Must be called interrupts disabled.
936 */
70b97a7f 937static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
938 __acquires(rq->lock)
939{
3a5c359a
AK
940 for (;;) {
941 struct rq *rq = task_rq(p);
942 spin_lock(&rq->lock);
943 if (likely(rq == task_rq(p)))
944 return rq;
b29739f9 945 spin_unlock(&rq->lock);
b29739f9 946 }
b29739f9
IM
947}
948
1da177e4
LT
949/*
950 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 951 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
952 * explicitly disabling preemption.
953 */
70b97a7f 954static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
955 __acquires(rq->lock)
956{
70b97a7f 957 struct rq *rq;
1da177e4 958
3a5c359a
AK
959 for (;;) {
960 local_irq_save(*flags);
961 rq = task_rq(p);
962 spin_lock(&rq->lock);
963 if (likely(rq == task_rq(p)))
964 return rq;
1da177e4 965 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 966 }
1da177e4
LT
967}
968
a9957449 969static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
970 __releases(rq->lock)
971{
972 spin_unlock(&rq->lock);
973}
974
70b97a7f 975static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
976 __releases(rq->lock)
977{
978 spin_unlock_irqrestore(&rq->lock, *flags);
979}
980
1da177e4 981/*
cc2a73b5 982 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 983 */
a9957449 984static struct rq *this_rq_lock(void)
1da177e4
LT
985 __acquires(rq->lock)
986{
70b97a7f 987 struct rq *rq;
1da177e4
LT
988
989 local_irq_disable();
990 rq = this_rq();
991 spin_lock(&rq->lock);
992
993 return rq;
994}
995
8f4d37ec
PZ
996static void __resched_task(struct task_struct *p, int tif_bit);
997
998static inline void resched_task(struct task_struct *p)
999{
1000 __resched_task(p, TIF_NEED_RESCHED);
1001}
1002
1003#ifdef CONFIG_SCHED_HRTICK
1004/*
1005 * Use HR-timers to deliver accurate preemption points.
1006 *
1007 * Its all a bit involved since we cannot program an hrt while holding the
1008 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1009 * reschedule event.
1010 *
1011 * When we get rescheduled we reprogram the hrtick_timer outside of the
1012 * rq->lock.
1013 */
1014static inline void resched_hrt(struct task_struct *p)
1015{
1016 __resched_task(p, TIF_HRTICK_RESCHED);
1017}
1018
1019static inline void resched_rq(struct rq *rq)
1020{
1021 unsigned long flags;
1022
1023 spin_lock_irqsave(&rq->lock, flags);
1024 resched_task(rq->curr);
1025 spin_unlock_irqrestore(&rq->lock, flags);
1026}
1027
1028enum {
1029 HRTICK_SET, /* re-programm hrtick_timer */
1030 HRTICK_RESET, /* not a new slice */
b328ca18 1031 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1032};
1033
1034/*
1035 * Use hrtick when:
1036 * - enabled by features
1037 * - hrtimer is actually high res
1038 */
1039static inline int hrtick_enabled(struct rq *rq)
1040{
1041 if (!sched_feat(HRTICK))
1042 return 0;
b328ca18
PZ
1043 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1044 return 0;
8f4d37ec
PZ
1045 return hrtimer_is_hres_active(&rq->hrtick_timer);
1046}
1047
1048/*
1049 * Called to set the hrtick timer state.
1050 *
1051 * called with rq->lock held and irqs disabled
1052 */
1053static void hrtick_start(struct rq *rq, u64 delay, int reset)
1054{
1055 assert_spin_locked(&rq->lock);
1056
1057 /*
1058 * preempt at: now + delay
1059 */
1060 rq->hrtick_expire =
1061 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1062 /*
1063 * indicate we need to program the timer
1064 */
1065 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1066 if (reset)
1067 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1068
1069 /*
1070 * New slices are called from the schedule path and don't need a
1071 * forced reschedule.
1072 */
1073 if (reset)
1074 resched_hrt(rq->curr);
1075}
1076
1077static void hrtick_clear(struct rq *rq)
1078{
1079 if (hrtimer_active(&rq->hrtick_timer))
1080 hrtimer_cancel(&rq->hrtick_timer);
1081}
1082
1083/*
1084 * Update the timer from the possible pending state.
1085 */
1086static void hrtick_set(struct rq *rq)
1087{
1088 ktime_t time;
1089 int set, reset;
1090 unsigned long flags;
1091
1092 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1093
1094 spin_lock_irqsave(&rq->lock, flags);
1095 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1096 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1097 time = rq->hrtick_expire;
1098 clear_thread_flag(TIF_HRTICK_RESCHED);
1099 spin_unlock_irqrestore(&rq->lock, flags);
1100
1101 if (set) {
1102 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1103 if (reset && !hrtimer_active(&rq->hrtick_timer))
1104 resched_rq(rq);
1105 } else
1106 hrtick_clear(rq);
1107}
1108
1109/*
1110 * High-resolution timer tick.
1111 * Runs from hardirq context with interrupts disabled.
1112 */
1113static enum hrtimer_restart hrtick(struct hrtimer *timer)
1114{
1115 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1116
1117 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1118
1119 spin_lock(&rq->lock);
3e51f33f 1120 update_rq_clock(rq);
8f4d37ec
PZ
1121 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1122 spin_unlock(&rq->lock);
1123
1124 return HRTIMER_NORESTART;
1125}
1126
b328ca18
PZ
1127static void hotplug_hrtick_disable(int cpu)
1128{
1129 struct rq *rq = cpu_rq(cpu);
1130 unsigned long flags;
1131
1132 spin_lock_irqsave(&rq->lock, flags);
1133 rq->hrtick_flags = 0;
1134 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1135 spin_unlock_irqrestore(&rq->lock, flags);
1136
1137 hrtick_clear(rq);
1138}
1139
1140static void hotplug_hrtick_enable(int cpu)
1141{
1142 struct rq *rq = cpu_rq(cpu);
1143 unsigned long flags;
1144
1145 spin_lock_irqsave(&rq->lock, flags);
1146 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1147 spin_unlock_irqrestore(&rq->lock, flags);
1148}
1149
1150static int
1151hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1152{
1153 int cpu = (int)(long)hcpu;
1154
1155 switch (action) {
1156 case CPU_UP_CANCELED:
1157 case CPU_UP_CANCELED_FROZEN:
1158 case CPU_DOWN_PREPARE:
1159 case CPU_DOWN_PREPARE_FROZEN:
1160 case CPU_DEAD:
1161 case CPU_DEAD_FROZEN:
1162 hotplug_hrtick_disable(cpu);
1163 return NOTIFY_OK;
1164
1165 case CPU_UP_PREPARE:
1166 case CPU_UP_PREPARE_FROZEN:
1167 case CPU_DOWN_FAILED:
1168 case CPU_DOWN_FAILED_FROZEN:
1169 case CPU_ONLINE:
1170 case CPU_ONLINE_FROZEN:
1171 hotplug_hrtick_enable(cpu);
1172 return NOTIFY_OK;
1173 }
1174
1175 return NOTIFY_DONE;
1176}
1177
1178static void init_hrtick(void)
1179{
1180 hotcpu_notifier(hotplug_hrtick, 0);
1181}
1182
1183static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1184{
1185 rq->hrtick_flags = 0;
1186 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1187 rq->hrtick_timer.function = hrtick;
1188 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1189}
1190
1191void hrtick_resched(void)
1192{
1193 struct rq *rq;
1194 unsigned long flags;
1195
1196 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1197 return;
1198
1199 local_irq_save(flags);
1200 rq = cpu_rq(smp_processor_id());
1201 hrtick_set(rq);
1202 local_irq_restore(flags);
1203}
1204#else
1205static inline void hrtick_clear(struct rq *rq)
1206{
1207}
1208
1209static inline void hrtick_set(struct rq *rq)
1210{
1211}
1212
1213static inline void init_rq_hrtick(struct rq *rq)
1214{
1215}
1216
1217void hrtick_resched(void)
1218{
1219}
b328ca18
PZ
1220
1221static inline void init_hrtick(void)
1222{
1223}
8f4d37ec
PZ
1224#endif
1225
c24d20db
IM
1226/*
1227 * resched_task - mark a task 'to be rescheduled now'.
1228 *
1229 * On UP this means the setting of the need_resched flag, on SMP it
1230 * might also involve a cross-CPU call to trigger the scheduler on
1231 * the target CPU.
1232 */
1233#ifdef CONFIG_SMP
1234
1235#ifndef tsk_is_polling
1236#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1237#endif
1238
8f4d37ec 1239static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1240{
1241 int cpu;
1242
1243 assert_spin_locked(&task_rq(p)->lock);
1244
8f4d37ec 1245 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1246 return;
1247
8f4d37ec 1248 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1249
1250 cpu = task_cpu(p);
1251 if (cpu == smp_processor_id())
1252 return;
1253
1254 /* NEED_RESCHED must be visible before we test polling */
1255 smp_mb();
1256 if (!tsk_is_polling(p))
1257 smp_send_reschedule(cpu);
1258}
1259
1260static void resched_cpu(int cpu)
1261{
1262 struct rq *rq = cpu_rq(cpu);
1263 unsigned long flags;
1264
1265 if (!spin_trylock_irqsave(&rq->lock, flags))
1266 return;
1267 resched_task(cpu_curr(cpu));
1268 spin_unlock_irqrestore(&rq->lock, flags);
1269}
06d8308c
TG
1270
1271#ifdef CONFIG_NO_HZ
1272/*
1273 * When add_timer_on() enqueues a timer into the timer wheel of an
1274 * idle CPU then this timer might expire before the next timer event
1275 * which is scheduled to wake up that CPU. In case of a completely
1276 * idle system the next event might even be infinite time into the
1277 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1278 * leaves the inner idle loop so the newly added timer is taken into
1279 * account when the CPU goes back to idle and evaluates the timer
1280 * wheel for the next timer event.
1281 */
1282void wake_up_idle_cpu(int cpu)
1283{
1284 struct rq *rq = cpu_rq(cpu);
1285
1286 if (cpu == smp_processor_id())
1287 return;
1288
1289 /*
1290 * This is safe, as this function is called with the timer
1291 * wheel base lock of (cpu) held. When the CPU is on the way
1292 * to idle and has not yet set rq->curr to idle then it will
1293 * be serialized on the timer wheel base lock and take the new
1294 * timer into account automatically.
1295 */
1296 if (rq->curr != rq->idle)
1297 return;
1298
1299 /*
1300 * We can set TIF_RESCHED on the idle task of the other CPU
1301 * lockless. The worst case is that the other CPU runs the
1302 * idle task through an additional NOOP schedule()
1303 */
1304 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1305
1306 /* NEED_RESCHED must be visible before we test polling */
1307 smp_mb();
1308 if (!tsk_is_polling(rq->idle))
1309 smp_send_reschedule(cpu);
1310}
1311#endif
1312
c24d20db 1313#else
8f4d37ec 1314static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1315{
1316 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1317 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1318}
1319#endif
1320
45bf76df
IM
1321#if BITS_PER_LONG == 32
1322# define WMULT_CONST (~0UL)
1323#else
1324# define WMULT_CONST (1UL << 32)
1325#endif
1326
1327#define WMULT_SHIFT 32
1328
194081eb
IM
1329/*
1330 * Shift right and round:
1331 */
cf2ab469 1332#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1333
cb1c4fc9 1334static unsigned long
45bf76df
IM
1335calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1336 struct load_weight *lw)
1337{
1338 u64 tmp;
1339
e05510d0
PZ
1340 if (!lw->inv_weight)
1341 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
45bf76df
IM
1342
1343 tmp = (u64)delta_exec * weight;
1344 /*
1345 * Check whether we'd overflow the 64-bit multiplication:
1346 */
194081eb 1347 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1348 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1349 WMULT_SHIFT/2);
1350 else
cf2ab469 1351 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1352
ecf691da 1353 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1354}
1355
f9305d4a
IM
1356static inline unsigned long
1357calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1358{
1359 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1360}
1361
1091985b 1362static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1363{
1364 lw->weight += inc;
e89996ae 1365 lw->inv_weight = 0;
45bf76df
IM
1366}
1367
1091985b 1368static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1369{
1370 lw->weight -= dec;
e89996ae 1371 lw->inv_weight = 0;
45bf76df
IM
1372}
1373
2dd73a4f
PW
1374/*
1375 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1376 * of tasks with abnormal "nice" values across CPUs the contribution that
1377 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1378 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1379 * scaled version of the new time slice allocation that they receive on time
1380 * slice expiry etc.
1381 */
1382
dd41f596
IM
1383#define WEIGHT_IDLEPRIO 2
1384#define WMULT_IDLEPRIO (1 << 31)
1385
1386/*
1387 * Nice levels are multiplicative, with a gentle 10% change for every
1388 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1389 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1390 * that remained on nice 0.
1391 *
1392 * The "10% effect" is relative and cumulative: from _any_ nice level,
1393 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1394 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1395 * If a task goes up by ~10% and another task goes down by ~10% then
1396 * the relative distance between them is ~25%.)
dd41f596
IM
1397 */
1398static const int prio_to_weight[40] = {
254753dc
IM
1399 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1400 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1401 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1402 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1403 /* 0 */ 1024, 820, 655, 526, 423,
1404 /* 5 */ 335, 272, 215, 172, 137,
1405 /* 10 */ 110, 87, 70, 56, 45,
1406 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1407};
1408
5714d2de
IM
1409/*
1410 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1411 *
1412 * In cases where the weight does not change often, we can use the
1413 * precalculated inverse to speed up arithmetics by turning divisions
1414 * into multiplications:
1415 */
dd41f596 1416static const u32 prio_to_wmult[40] = {
254753dc
IM
1417 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1418 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1419 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1420 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1421 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1422 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1423 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1424 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1425};
2dd73a4f 1426
dd41f596
IM
1427static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1428
1429/*
1430 * runqueue iterator, to support SMP load-balancing between different
1431 * scheduling classes, without having to expose their internal data
1432 * structures to the load-balancing proper:
1433 */
1434struct rq_iterator {
1435 void *arg;
1436 struct task_struct *(*start)(void *);
1437 struct task_struct *(*next)(void *);
1438};
1439
e1d1484f
PW
1440#ifdef CONFIG_SMP
1441static unsigned long
1442balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1443 unsigned long max_load_move, struct sched_domain *sd,
1444 enum cpu_idle_type idle, int *all_pinned,
1445 int *this_best_prio, struct rq_iterator *iterator);
1446
1447static int
1448iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1449 struct sched_domain *sd, enum cpu_idle_type idle,
1450 struct rq_iterator *iterator);
e1d1484f 1451#endif
dd41f596 1452
d842de87
SV
1453#ifdef CONFIG_CGROUP_CPUACCT
1454static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1455#else
1456static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1457#endif
1458
18d95a28
PZ
1459static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1460{
1461 update_load_add(&rq->load, load);
1462}
1463
1464static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1465{
1466 update_load_sub(&rq->load, load);
1467}
1468
e7693a36
GH
1469#ifdef CONFIG_SMP
1470static unsigned long source_load(int cpu, int type);
1471static unsigned long target_load(int cpu, int type);
1472static unsigned long cpu_avg_load_per_task(int cpu);
1473static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1474#else /* CONFIG_SMP */
1475
1476#ifdef CONFIG_FAIR_GROUP_SCHED
1477static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1478{
1479}
1480#endif
1481
e7693a36
GH
1482#endif /* CONFIG_SMP */
1483
dd41f596 1484#include "sched_stats.h"
dd41f596 1485#include "sched_idletask.c"
5522d5d5
IM
1486#include "sched_fair.c"
1487#include "sched_rt.c"
dd41f596
IM
1488#ifdef CONFIG_SCHED_DEBUG
1489# include "sched_debug.c"
1490#endif
1491
1492#define sched_class_highest (&rt_sched_class)
1493
6363ca57
IM
1494static inline void inc_load(struct rq *rq, const struct task_struct *p)
1495{
1496 update_load_add(&rq->load, p->se.load.weight);
1497}
1498
1499static inline void dec_load(struct rq *rq, const struct task_struct *p)
1500{
1501 update_load_sub(&rq->load, p->se.load.weight);
1502}
1503
1504static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1505{
1506 rq->nr_running++;
6363ca57 1507 inc_load(rq, p);
9c217245
IM
1508}
1509
6363ca57 1510static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1511{
1512 rq->nr_running--;
6363ca57 1513 dec_load(rq, p);
9c217245
IM
1514}
1515
45bf76df
IM
1516static void set_load_weight(struct task_struct *p)
1517{
1518 if (task_has_rt_policy(p)) {
dd41f596
IM
1519 p->se.load.weight = prio_to_weight[0] * 2;
1520 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1521 return;
1522 }
45bf76df 1523
dd41f596
IM
1524 /*
1525 * SCHED_IDLE tasks get minimal weight:
1526 */
1527 if (p->policy == SCHED_IDLE) {
1528 p->se.load.weight = WEIGHT_IDLEPRIO;
1529 p->se.load.inv_weight = WMULT_IDLEPRIO;
1530 return;
1531 }
71f8bd46 1532
dd41f596
IM
1533 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1534 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1535}
1536
8159f87e 1537static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1538{
dd41f596 1539 sched_info_queued(p);
fd390f6a 1540 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1541 p->se.on_rq = 1;
71f8bd46
IM
1542}
1543
69be72c1 1544static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1545{
f02231e5 1546 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1547 p->se.on_rq = 0;
71f8bd46
IM
1548}
1549
14531189 1550/*
dd41f596 1551 * __normal_prio - return the priority that is based on the static prio
14531189 1552 */
14531189
IM
1553static inline int __normal_prio(struct task_struct *p)
1554{
dd41f596 1555 return p->static_prio;
14531189
IM
1556}
1557
b29739f9
IM
1558/*
1559 * Calculate the expected normal priority: i.e. priority
1560 * without taking RT-inheritance into account. Might be
1561 * boosted by interactivity modifiers. Changes upon fork,
1562 * setprio syscalls, and whenever the interactivity
1563 * estimator recalculates.
1564 */
36c8b586 1565static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1566{
1567 int prio;
1568
e05606d3 1569 if (task_has_rt_policy(p))
b29739f9
IM
1570 prio = MAX_RT_PRIO-1 - p->rt_priority;
1571 else
1572 prio = __normal_prio(p);
1573 return prio;
1574}
1575
1576/*
1577 * Calculate the current priority, i.e. the priority
1578 * taken into account by the scheduler. This value might
1579 * be boosted by RT tasks, or might be boosted by
1580 * interactivity modifiers. Will be RT if the task got
1581 * RT-boosted. If not then it returns p->normal_prio.
1582 */
36c8b586 1583static int effective_prio(struct task_struct *p)
b29739f9
IM
1584{
1585 p->normal_prio = normal_prio(p);
1586 /*
1587 * If we are RT tasks or we were boosted to RT priority,
1588 * keep the priority unchanged. Otherwise, update priority
1589 * to the normal priority:
1590 */
1591 if (!rt_prio(p->prio))
1592 return p->normal_prio;
1593 return p->prio;
1594}
1595
1da177e4 1596/*
dd41f596 1597 * activate_task - move a task to the runqueue.
1da177e4 1598 */
dd41f596 1599static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1600{
d9514f6c 1601 if (task_contributes_to_load(p))
dd41f596 1602 rq->nr_uninterruptible--;
1da177e4 1603
8159f87e 1604 enqueue_task(rq, p, wakeup);
6363ca57 1605 inc_nr_running(p, rq);
1da177e4
LT
1606}
1607
1da177e4
LT
1608/*
1609 * deactivate_task - remove a task from the runqueue.
1610 */
2e1cb74a 1611static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1612{
d9514f6c 1613 if (task_contributes_to_load(p))
dd41f596
IM
1614 rq->nr_uninterruptible++;
1615
69be72c1 1616 dequeue_task(rq, p, sleep);
6363ca57 1617 dec_nr_running(p, rq);
1da177e4
LT
1618}
1619
1da177e4
LT
1620/**
1621 * task_curr - is this task currently executing on a CPU?
1622 * @p: the task in question.
1623 */
36c8b586 1624inline int task_curr(const struct task_struct *p)
1da177e4
LT
1625{
1626 return cpu_curr(task_cpu(p)) == p;
1627}
1628
2dd73a4f
PW
1629/* Used instead of source_load when we know the type == 0 */
1630unsigned long weighted_cpuload(const int cpu)
1631{
495eca49 1632 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1633}
1634
1635static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1636{
6f505b16 1637 set_task_rq(p, cpu);
dd41f596 1638#ifdef CONFIG_SMP
ce96b5ac
DA
1639 /*
1640 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1641 * successfuly executed on another CPU. We must ensure that updates of
1642 * per-task data have been completed by this moment.
1643 */
1644 smp_wmb();
dd41f596 1645 task_thread_info(p)->cpu = cpu;
dd41f596 1646#endif
2dd73a4f
PW
1647}
1648
cb469845
SR
1649static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1650 const struct sched_class *prev_class,
1651 int oldprio, int running)
1652{
1653 if (prev_class != p->sched_class) {
1654 if (prev_class->switched_from)
1655 prev_class->switched_from(rq, p, running);
1656 p->sched_class->switched_to(rq, p, running);
1657 } else
1658 p->sched_class->prio_changed(rq, p, oldprio, running);
1659}
1660
1da177e4 1661#ifdef CONFIG_SMP
c65cc870 1662
cc367732
IM
1663/*
1664 * Is this task likely cache-hot:
1665 */
e7693a36 1666static int
cc367732
IM
1667task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1668{
1669 s64 delta;
1670
f540a608
IM
1671 /*
1672 * Buddy candidates are cache hot:
1673 */
d25ce4cd 1674 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1675 return 1;
1676
cc367732
IM
1677 if (p->sched_class != &fair_sched_class)
1678 return 0;
1679
6bc1665b
IM
1680 if (sysctl_sched_migration_cost == -1)
1681 return 1;
1682 if (sysctl_sched_migration_cost == 0)
1683 return 0;
1684
cc367732
IM
1685 delta = now - p->se.exec_start;
1686
1687 return delta < (s64)sysctl_sched_migration_cost;
1688}
1689
1690
dd41f596 1691void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1692{
dd41f596
IM
1693 int old_cpu = task_cpu(p);
1694 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1695 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1696 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1697 u64 clock_offset;
dd41f596
IM
1698
1699 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1700
1701#ifdef CONFIG_SCHEDSTATS
1702 if (p->se.wait_start)
1703 p->se.wait_start -= clock_offset;
dd41f596
IM
1704 if (p->se.sleep_start)
1705 p->se.sleep_start -= clock_offset;
1706 if (p->se.block_start)
1707 p->se.block_start -= clock_offset;
cc367732
IM
1708 if (old_cpu != new_cpu) {
1709 schedstat_inc(p, se.nr_migrations);
1710 if (task_hot(p, old_rq->clock, NULL))
1711 schedstat_inc(p, se.nr_forced2_migrations);
1712 }
6cfb0d5d 1713#endif
2830cf8c
SV
1714 p->se.vruntime -= old_cfsrq->min_vruntime -
1715 new_cfsrq->min_vruntime;
dd41f596
IM
1716
1717 __set_task_cpu(p, new_cpu);
c65cc870
IM
1718}
1719
70b97a7f 1720struct migration_req {
1da177e4 1721 struct list_head list;
1da177e4 1722
36c8b586 1723 struct task_struct *task;
1da177e4
LT
1724 int dest_cpu;
1725
1da177e4 1726 struct completion done;
70b97a7f 1727};
1da177e4
LT
1728
1729/*
1730 * The task's runqueue lock must be held.
1731 * Returns true if you have to wait for migration thread.
1732 */
36c8b586 1733static int
70b97a7f 1734migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1735{
70b97a7f 1736 struct rq *rq = task_rq(p);
1da177e4
LT
1737
1738 /*
1739 * If the task is not on a runqueue (and not running), then
1740 * it is sufficient to simply update the task's cpu field.
1741 */
dd41f596 1742 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1743 set_task_cpu(p, dest_cpu);
1744 return 0;
1745 }
1746
1747 init_completion(&req->done);
1da177e4
LT
1748 req->task = p;
1749 req->dest_cpu = dest_cpu;
1750 list_add(&req->list, &rq->migration_queue);
48f24c4d 1751
1da177e4
LT
1752 return 1;
1753}
1754
1755/*
1756 * wait_task_inactive - wait for a thread to unschedule.
1757 *
1758 * The caller must ensure that the task *will* unschedule sometime soon,
1759 * else this function might spin for a *long* time. This function can't
1760 * be called with interrupts off, or it may introduce deadlock with
1761 * smp_call_function() if an IPI is sent by the same process we are
1762 * waiting to become inactive.
1763 */
36c8b586 1764void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1765{
1766 unsigned long flags;
dd41f596 1767 int running, on_rq;
70b97a7f 1768 struct rq *rq;
1da177e4 1769
3a5c359a
AK
1770 for (;;) {
1771 /*
1772 * We do the initial early heuristics without holding
1773 * any task-queue locks at all. We'll only try to get
1774 * the runqueue lock when things look like they will
1775 * work out!
1776 */
1777 rq = task_rq(p);
fa490cfd 1778
3a5c359a
AK
1779 /*
1780 * If the task is actively running on another CPU
1781 * still, just relax and busy-wait without holding
1782 * any locks.
1783 *
1784 * NOTE! Since we don't hold any locks, it's not
1785 * even sure that "rq" stays as the right runqueue!
1786 * But we don't care, since "task_running()" will
1787 * return false if the runqueue has changed and p
1788 * is actually now running somewhere else!
1789 */
1790 while (task_running(rq, p))
1791 cpu_relax();
fa490cfd 1792
3a5c359a
AK
1793 /*
1794 * Ok, time to look more closely! We need the rq
1795 * lock now, to be *sure*. If we're wrong, we'll
1796 * just go back and repeat.
1797 */
1798 rq = task_rq_lock(p, &flags);
1799 running = task_running(rq, p);
1800 on_rq = p->se.on_rq;
1801 task_rq_unlock(rq, &flags);
fa490cfd 1802
3a5c359a
AK
1803 /*
1804 * Was it really running after all now that we
1805 * checked with the proper locks actually held?
1806 *
1807 * Oops. Go back and try again..
1808 */
1809 if (unlikely(running)) {
1810 cpu_relax();
1811 continue;
1812 }
fa490cfd 1813
3a5c359a
AK
1814 /*
1815 * It's not enough that it's not actively running,
1816 * it must be off the runqueue _entirely_, and not
1817 * preempted!
1818 *
1819 * So if it wa still runnable (but just not actively
1820 * running right now), it's preempted, and we should
1821 * yield - it could be a while.
1822 */
1823 if (unlikely(on_rq)) {
1824 schedule_timeout_uninterruptible(1);
1825 continue;
1826 }
fa490cfd 1827
3a5c359a
AK
1828 /*
1829 * Ahh, all good. It wasn't running, and it wasn't
1830 * runnable, which means that it will never become
1831 * running in the future either. We're all done!
1832 */
1833 break;
1834 }
1da177e4
LT
1835}
1836
1837/***
1838 * kick_process - kick a running thread to enter/exit the kernel
1839 * @p: the to-be-kicked thread
1840 *
1841 * Cause a process which is running on another CPU to enter
1842 * kernel-mode, without any delay. (to get signals handled.)
1843 *
1844 * NOTE: this function doesnt have to take the runqueue lock,
1845 * because all it wants to ensure is that the remote task enters
1846 * the kernel. If the IPI races and the task has been migrated
1847 * to another CPU then no harm is done and the purpose has been
1848 * achieved as well.
1849 */
36c8b586 1850void kick_process(struct task_struct *p)
1da177e4
LT
1851{
1852 int cpu;
1853
1854 preempt_disable();
1855 cpu = task_cpu(p);
1856 if ((cpu != smp_processor_id()) && task_curr(p))
1857 smp_send_reschedule(cpu);
1858 preempt_enable();
1859}
1860
1861/*
2dd73a4f
PW
1862 * Return a low guess at the load of a migration-source cpu weighted
1863 * according to the scheduling class and "nice" value.
1da177e4
LT
1864 *
1865 * We want to under-estimate the load of migration sources, to
1866 * balance conservatively.
1867 */
a9957449 1868static unsigned long source_load(int cpu, int type)
1da177e4 1869{
70b97a7f 1870 struct rq *rq = cpu_rq(cpu);
dd41f596 1871 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1872
3b0bd9bc 1873 if (type == 0)
dd41f596 1874 return total;
b910472d 1875
dd41f596 1876 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1877}
1878
1879/*
2dd73a4f
PW
1880 * Return a high guess at the load of a migration-target cpu weighted
1881 * according to the scheduling class and "nice" value.
1da177e4 1882 */
a9957449 1883static unsigned long target_load(int cpu, int type)
1da177e4 1884{
70b97a7f 1885 struct rq *rq = cpu_rq(cpu);
dd41f596 1886 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1887
7897986b 1888 if (type == 0)
dd41f596 1889 return total;
3b0bd9bc 1890
dd41f596 1891 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1892}
1893
1894/*
1895 * Return the average load per task on the cpu's run queue
1896 */
e7693a36 1897static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1898{
70b97a7f 1899 struct rq *rq = cpu_rq(cpu);
dd41f596 1900 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1901 unsigned long n = rq->nr_running;
1902
dd41f596 1903 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1904}
1905
147cbb4b
NP
1906/*
1907 * find_idlest_group finds and returns the least busy CPU group within the
1908 * domain.
1909 */
1910static struct sched_group *
1911find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1912{
1913 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1914 unsigned long min_load = ULONG_MAX, this_load = 0;
1915 int load_idx = sd->forkexec_idx;
1916 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1917
1918 do {
1919 unsigned long load, avg_load;
1920 int local_group;
1921 int i;
1922
da5a5522
BD
1923 /* Skip over this group if it has no CPUs allowed */
1924 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1925 continue;
da5a5522 1926
147cbb4b 1927 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1928
1929 /* Tally up the load of all CPUs in the group */
1930 avg_load = 0;
1931
1932 for_each_cpu_mask(i, group->cpumask) {
1933 /* Bias balancing toward cpus of our domain */
1934 if (local_group)
1935 load = source_load(i, load_idx);
1936 else
1937 load = target_load(i, load_idx);
1938
1939 avg_load += load;
1940 }
1941
1942 /* Adjust by relative CPU power of the group */
5517d86b
ED
1943 avg_load = sg_div_cpu_power(group,
1944 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1945
1946 if (local_group) {
1947 this_load = avg_load;
1948 this = group;
1949 } else if (avg_load < min_load) {
1950 min_load = avg_load;
1951 idlest = group;
1952 }
3a5c359a 1953 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1954
1955 if (!idlest || 100*this_load < imbalance*min_load)
1956 return NULL;
1957 return idlest;
1958}
1959
1960/*
0feaece9 1961 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1962 */
95cdf3b7 1963static int
7c16ec58
MT
1964find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1965 cpumask_t *tmp)
147cbb4b
NP
1966{
1967 unsigned long load, min_load = ULONG_MAX;
1968 int idlest = -1;
1969 int i;
1970
da5a5522 1971 /* Traverse only the allowed CPUs */
7c16ec58 1972 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 1973
7c16ec58 1974 for_each_cpu_mask(i, *tmp) {
2dd73a4f 1975 load = weighted_cpuload(i);
147cbb4b
NP
1976
1977 if (load < min_load || (load == min_load && i == this_cpu)) {
1978 min_load = load;
1979 idlest = i;
1980 }
1981 }
1982
1983 return idlest;
1984}
1985
476d139c
NP
1986/*
1987 * sched_balance_self: balance the current task (running on cpu) in domains
1988 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1989 * SD_BALANCE_EXEC.
1990 *
1991 * Balance, ie. select the least loaded group.
1992 *
1993 * Returns the target CPU number, or the same CPU if no balancing is needed.
1994 *
1995 * preempt must be disabled.
1996 */
1997static int sched_balance_self(int cpu, int flag)
1998{
1999 struct task_struct *t = current;
2000 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2001
c96d145e 2002 for_each_domain(cpu, tmp) {
9761eea8
IM
2003 /*
2004 * If power savings logic is enabled for a domain, stop there.
2005 */
5c45bf27
SS
2006 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2007 break;
476d139c
NP
2008 if (tmp->flags & flag)
2009 sd = tmp;
c96d145e 2010 }
476d139c
NP
2011
2012 while (sd) {
7c16ec58 2013 cpumask_t span, tmpmask;
476d139c 2014 struct sched_group *group;
1a848870
SS
2015 int new_cpu, weight;
2016
2017 if (!(sd->flags & flag)) {
2018 sd = sd->child;
2019 continue;
2020 }
476d139c
NP
2021
2022 span = sd->span;
2023 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2024 if (!group) {
2025 sd = sd->child;
2026 continue;
2027 }
476d139c 2028
7c16ec58 2029 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2030 if (new_cpu == -1 || new_cpu == cpu) {
2031 /* Now try balancing at a lower domain level of cpu */
2032 sd = sd->child;
2033 continue;
2034 }
476d139c 2035
1a848870 2036 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2037 cpu = new_cpu;
476d139c
NP
2038 sd = NULL;
2039 weight = cpus_weight(span);
2040 for_each_domain(cpu, tmp) {
2041 if (weight <= cpus_weight(tmp->span))
2042 break;
2043 if (tmp->flags & flag)
2044 sd = tmp;
2045 }
2046 /* while loop will break here if sd == NULL */
2047 }
2048
2049 return cpu;
2050}
2051
2052#endif /* CONFIG_SMP */
1da177e4 2053
1da177e4
LT
2054/***
2055 * try_to_wake_up - wake up a thread
2056 * @p: the to-be-woken-up thread
2057 * @state: the mask of task states that can be woken
2058 * @sync: do a synchronous wakeup?
2059 *
2060 * Put it on the run-queue if it's not already there. The "current"
2061 * thread is always on the run-queue (except when the actual
2062 * re-schedule is in progress), and as such you're allowed to do
2063 * the simpler "current->state = TASK_RUNNING" to mark yourself
2064 * runnable without the overhead of this.
2065 *
2066 * returns failure only if the task is already active.
2067 */
36c8b586 2068static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2069{
cc367732 2070 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2071 unsigned long flags;
2072 long old_state;
70b97a7f 2073 struct rq *rq;
1da177e4 2074
b85d0667
IM
2075 if (!sched_feat(SYNC_WAKEUPS))
2076 sync = 0;
2077
04e2f174 2078 smp_wmb();
1da177e4
LT
2079 rq = task_rq_lock(p, &flags);
2080 old_state = p->state;
2081 if (!(old_state & state))
2082 goto out;
2083
dd41f596 2084 if (p->se.on_rq)
1da177e4
LT
2085 goto out_running;
2086
2087 cpu = task_cpu(p);
cc367732 2088 orig_cpu = cpu;
1da177e4
LT
2089 this_cpu = smp_processor_id();
2090
2091#ifdef CONFIG_SMP
2092 if (unlikely(task_running(rq, p)))
2093 goto out_activate;
2094
5d2f5a61
DA
2095 cpu = p->sched_class->select_task_rq(p, sync);
2096 if (cpu != orig_cpu) {
2097 set_task_cpu(p, cpu);
1da177e4
LT
2098 task_rq_unlock(rq, &flags);
2099 /* might preempt at this point */
2100 rq = task_rq_lock(p, &flags);
2101 old_state = p->state;
2102 if (!(old_state & state))
2103 goto out;
dd41f596 2104 if (p->se.on_rq)
1da177e4
LT
2105 goto out_running;
2106
2107 this_cpu = smp_processor_id();
2108 cpu = task_cpu(p);
2109 }
2110
e7693a36
GH
2111#ifdef CONFIG_SCHEDSTATS
2112 schedstat_inc(rq, ttwu_count);
2113 if (cpu == this_cpu)
2114 schedstat_inc(rq, ttwu_local);
2115 else {
2116 struct sched_domain *sd;
2117 for_each_domain(this_cpu, sd) {
2118 if (cpu_isset(cpu, sd->span)) {
2119 schedstat_inc(sd, ttwu_wake_remote);
2120 break;
2121 }
2122 }
2123 }
e7693a36
GH
2124#endif
2125
1da177e4
LT
2126out_activate:
2127#endif /* CONFIG_SMP */
cc367732
IM
2128 schedstat_inc(p, se.nr_wakeups);
2129 if (sync)
2130 schedstat_inc(p, se.nr_wakeups_sync);
2131 if (orig_cpu != cpu)
2132 schedstat_inc(p, se.nr_wakeups_migrate);
2133 if (cpu == this_cpu)
2134 schedstat_inc(p, se.nr_wakeups_local);
2135 else
2136 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2137 update_rq_clock(rq);
dd41f596 2138 activate_task(rq, p, 1);
1da177e4
LT
2139 success = 1;
2140
2141out_running:
4ae7d5ce
IM
2142 check_preempt_curr(rq, p);
2143
1da177e4 2144 p->state = TASK_RUNNING;
9a897c5a
SR
2145#ifdef CONFIG_SMP
2146 if (p->sched_class->task_wake_up)
2147 p->sched_class->task_wake_up(rq, p);
2148#endif
1da177e4
LT
2149out:
2150 task_rq_unlock(rq, &flags);
2151
2152 return success;
2153}
2154
7ad5b3a5 2155int wake_up_process(struct task_struct *p)
1da177e4 2156{
d9514f6c 2157 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2158}
1da177e4
LT
2159EXPORT_SYMBOL(wake_up_process);
2160
7ad5b3a5 2161int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2162{
2163 return try_to_wake_up(p, state, 0);
2164}
2165
1da177e4
LT
2166/*
2167 * Perform scheduler related setup for a newly forked process p.
2168 * p is forked by current.
dd41f596
IM
2169 *
2170 * __sched_fork() is basic setup used by init_idle() too:
2171 */
2172static void __sched_fork(struct task_struct *p)
2173{
dd41f596
IM
2174 p->se.exec_start = 0;
2175 p->se.sum_exec_runtime = 0;
f6cf891c 2176 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2177 p->se.last_wakeup = 0;
2178 p->se.avg_overlap = 0;
6cfb0d5d
IM
2179
2180#ifdef CONFIG_SCHEDSTATS
2181 p->se.wait_start = 0;
dd41f596
IM
2182 p->se.sum_sleep_runtime = 0;
2183 p->se.sleep_start = 0;
dd41f596
IM
2184 p->se.block_start = 0;
2185 p->se.sleep_max = 0;
2186 p->se.block_max = 0;
2187 p->se.exec_max = 0;
eba1ed4b 2188 p->se.slice_max = 0;
dd41f596 2189 p->se.wait_max = 0;
6cfb0d5d 2190#endif
476d139c 2191
fa717060 2192 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2193 p->se.on_rq = 0;
4a55bd5e 2194 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2195
e107be36
AK
2196#ifdef CONFIG_PREEMPT_NOTIFIERS
2197 INIT_HLIST_HEAD(&p->preempt_notifiers);
2198#endif
2199
1da177e4
LT
2200 /*
2201 * We mark the process as running here, but have not actually
2202 * inserted it onto the runqueue yet. This guarantees that
2203 * nobody will actually run it, and a signal or other external
2204 * event cannot wake it up and insert it on the runqueue either.
2205 */
2206 p->state = TASK_RUNNING;
dd41f596
IM
2207}
2208
2209/*
2210 * fork()/clone()-time setup:
2211 */
2212void sched_fork(struct task_struct *p, int clone_flags)
2213{
2214 int cpu = get_cpu();
2215
2216 __sched_fork(p);
2217
2218#ifdef CONFIG_SMP
2219 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2220#endif
02e4bac2 2221 set_task_cpu(p, cpu);
b29739f9
IM
2222
2223 /*
2224 * Make sure we do not leak PI boosting priority to the child:
2225 */
2226 p->prio = current->normal_prio;
2ddbf952
HS
2227 if (!rt_prio(p->prio))
2228 p->sched_class = &fair_sched_class;
b29739f9 2229
52f17b6c 2230#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2231 if (likely(sched_info_on()))
52f17b6c 2232 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2233#endif
d6077cb8 2234#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2235 p->oncpu = 0;
2236#endif
1da177e4 2237#ifdef CONFIG_PREEMPT
4866cde0 2238 /* Want to start with kernel preemption disabled. */
a1261f54 2239 task_thread_info(p)->preempt_count = 1;
1da177e4 2240#endif
476d139c 2241 put_cpu();
1da177e4
LT
2242}
2243
2244/*
2245 * wake_up_new_task - wake up a newly created task for the first time.
2246 *
2247 * This function will do some initial scheduler statistics housekeeping
2248 * that must be done for every newly created context, then puts the task
2249 * on the runqueue and wakes it.
2250 */
7ad5b3a5 2251void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2252{
2253 unsigned long flags;
dd41f596 2254 struct rq *rq;
1da177e4
LT
2255
2256 rq = task_rq_lock(p, &flags);
147cbb4b 2257 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2258 update_rq_clock(rq);
1da177e4
LT
2259
2260 p->prio = effective_prio(p);
2261
b9dca1e0 2262 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2263 activate_task(rq, p, 0);
1da177e4 2264 } else {
1da177e4 2265 /*
dd41f596
IM
2266 * Let the scheduling class do new task startup
2267 * management (if any):
1da177e4 2268 */
ee0827d8 2269 p->sched_class->task_new(rq, p);
6363ca57 2270 inc_nr_running(p, rq);
1da177e4 2271 }
dd41f596 2272 check_preempt_curr(rq, p);
9a897c5a
SR
2273#ifdef CONFIG_SMP
2274 if (p->sched_class->task_wake_up)
2275 p->sched_class->task_wake_up(rq, p);
2276#endif
dd41f596 2277 task_rq_unlock(rq, &flags);
1da177e4
LT
2278}
2279
e107be36
AK
2280#ifdef CONFIG_PREEMPT_NOTIFIERS
2281
2282/**
421cee29
RD
2283 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2284 * @notifier: notifier struct to register
e107be36
AK
2285 */
2286void preempt_notifier_register(struct preempt_notifier *notifier)
2287{
2288 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2289}
2290EXPORT_SYMBOL_GPL(preempt_notifier_register);
2291
2292/**
2293 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2294 * @notifier: notifier struct to unregister
e107be36
AK
2295 *
2296 * This is safe to call from within a preemption notifier.
2297 */
2298void preempt_notifier_unregister(struct preempt_notifier *notifier)
2299{
2300 hlist_del(&notifier->link);
2301}
2302EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2303
2304static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2305{
2306 struct preempt_notifier *notifier;
2307 struct hlist_node *node;
2308
2309 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2310 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2311}
2312
2313static void
2314fire_sched_out_preempt_notifiers(struct task_struct *curr,
2315 struct task_struct *next)
2316{
2317 struct preempt_notifier *notifier;
2318 struct hlist_node *node;
2319
2320 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2321 notifier->ops->sched_out(notifier, next);
2322}
2323
2324#else
2325
2326static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2327{
2328}
2329
2330static void
2331fire_sched_out_preempt_notifiers(struct task_struct *curr,
2332 struct task_struct *next)
2333{
2334}
2335
2336#endif
2337
4866cde0
NP
2338/**
2339 * prepare_task_switch - prepare to switch tasks
2340 * @rq: the runqueue preparing to switch
421cee29 2341 * @prev: the current task that is being switched out
4866cde0
NP
2342 * @next: the task we are going to switch to.
2343 *
2344 * This is called with the rq lock held and interrupts off. It must
2345 * be paired with a subsequent finish_task_switch after the context
2346 * switch.
2347 *
2348 * prepare_task_switch sets up locking and calls architecture specific
2349 * hooks.
2350 */
e107be36
AK
2351static inline void
2352prepare_task_switch(struct rq *rq, struct task_struct *prev,
2353 struct task_struct *next)
4866cde0 2354{
e107be36 2355 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2356 prepare_lock_switch(rq, next);
2357 prepare_arch_switch(next);
2358}
2359
1da177e4
LT
2360/**
2361 * finish_task_switch - clean up after a task-switch
344babaa 2362 * @rq: runqueue associated with task-switch
1da177e4
LT
2363 * @prev: the thread we just switched away from.
2364 *
4866cde0
NP
2365 * finish_task_switch must be called after the context switch, paired
2366 * with a prepare_task_switch call before the context switch.
2367 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2368 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2369 *
2370 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2371 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2372 * with the lock held can cause deadlocks; see schedule() for
2373 * details.)
2374 */
a9957449 2375static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2376 __releases(rq->lock)
2377{
1da177e4 2378 struct mm_struct *mm = rq->prev_mm;
55a101f8 2379 long prev_state;
1da177e4
LT
2380
2381 rq->prev_mm = NULL;
2382
2383 /*
2384 * A task struct has one reference for the use as "current".
c394cc9f 2385 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2386 * schedule one last time. The schedule call will never return, and
2387 * the scheduled task must drop that reference.
c394cc9f 2388 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2389 * still held, otherwise prev could be scheduled on another cpu, die
2390 * there before we look at prev->state, and then the reference would
2391 * be dropped twice.
2392 * Manfred Spraul <manfred@colorfullife.com>
2393 */
55a101f8 2394 prev_state = prev->state;
4866cde0
NP
2395 finish_arch_switch(prev);
2396 finish_lock_switch(rq, prev);
9a897c5a
SR
2397#ifdef CONFIG_SMP
2398 if (current->sched_class->post_schedule)
2399 current->sched_class->post_schedule(rq);
2400#endif
e8fa1362 2401
e107be36 2402 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2403 if (mm)
2404 mmdrop(mm);
c394cc9f 2405 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2406 /*
2407 * Remove function-return probe instances associated with this
2408 * task and put them back on the free list.
9761eea8 2409 */
c6fd91f0 2410 kprobe_flush_task(prev);
1da177e4 2411 put_task_struct(prev);
c6fd91f0 2412 }
1da177e4
LT
2413}
2414
2415/**
2416 * schedule_tail - first thing a freshly forked thread must call.
2417 * @prev: the thread we just switched away from.
2418 */
36c8b586 2419asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2420 __releases(rq->lock)
2421{
70b97a7f
IM
2422 struct rq *rq = this_rq();
2423
4866cde0
NP
2424 finish_task_switch(rq, prev);
2425#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2426 /* In this case, finish_task_switch does not reenable preemption */
2427 preempt_enable();
2428#endif
1da177e4 2429 if (current->set_child_tid)
b488893a 2430 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2431}
2432
2433/*
2434 * context_switch - switch to the new MM and the new
2435 * thread's register state.
2436 */
dd41f596 2437static inline void
70b97a7f 2438context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2439 struct task_struct *next)
1da177e4 2440{
dd41f596 2441 struct mm_struct *mm, *oldmm;
1da177e4 2442
e107be36 2443 prepare_task_switch(rq, prev, next);
dd41f596
IM
2444 mm = next->mm;
2445 oldmm = prev->active_mm;
9226d125
ZA
2446 /*
2447 * For paravirt, this is coupled with an exit in switch_to to
2448 * combine the page table reload and the switch backend into
2449 * one hypercall.
2450 */
2451 arch_enter_lazy_cpu_mode();
2452
dd41f596 2453 if (unlikely(!mm)) {
1da177e4
LT
2454 next->active_mm = oldmm;
2455 atomic_inc(&oldmm->mm_count);
2456 enter_lazy_tlb(oldmm, next);
2457 } else
2458 switch_mm(oldmm, mm, next);
2459
dd41f596 2460 if (unlikely(!prev->mm)) {
1da177e4 2461 prev->active_mm = NULL;
1da177e4
LT
2462 rq->prev_mm = oldmm;
2463 }
3a5f5e48
IM
2464 /*
2465 * Since the runqueue lock will be released by the next
2466 * task (which is an invalid locking op but in the case
2467 * of the scheduler it's an obvious special-case), so we
2468 * do an early lockdep release here:
2469 */
2470#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2471 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2472#endif
1da177e4
LT
2473
2474 /* Here we just switch the register state and the stack. */
2475 switch_to(prev, next, prev);
2476
dd41f596
IM
2477 barrier();
2478 /*
2479 * this_rq must be evaluated again because prev may have moved
2480 * CPUs since it called schedule(), thus the 'rq' on its stack
2481 * frame will be invalid.
2482 */
2483 finish_task_switch(this_rq(), prev);
1da177e4
LT
2484}
2485
2486/*
2487 * nr_running, nr_uninterruptible and nr_context_switches:
2488 *
2489 * externally visible scheduler statistics: current number of runnable
2490 * threads, current number of uninterruptible-sleeping threads, total
2491 * number of context switches performed since bootup.
2492 */
2493unsigned long nr_running(void)
2494{
2495 unsigned long i, sum = 0;
2496
2497 for_each_online_cpu(i)
2498 sum += cpu_rq(i)->nr_running;
2499
2500 return sum;
2501}
2502
2503unsigned long nr_uninterruptible(void)
2504{
2505 unsigned long i, sum = 0;
2506
0a945022 2507 for_each_possible_cpu(i)
1da177e4
LT
2508 sum += cpu_rq(i)->nr_uninterruptible;
2509
2510 /*
2511 * Since we read the counters lockless, it might be slightly
2512 * inaccurate. Do not allow it to go below zero though:
2513 */
2514 if (unlikely((long)sum < 0))
2515 sum = 0;
2516
2517 return sum;
2518}
2519
2520unsigned long long nr_context_switches(void)
2521{
cc94abfc
SR
2522 int i;
2523 unsigned long long sum = 0;
1da177e4 2524
0a945022 2525 for_each_possible_cpu(i)
1da177e4
LT
2526 sum += cpu_rq(i)->nr_switches;
2527
2528 return sum;
2529}
2530
2531unsigned long nr_iowait(void)
2532{
2533 unsigned long i, sum = 0;
2534
0a945022 2535 for_each_possible_cpu(i)
1da177e4
LT
2536 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2537
2538 return sum;
2539}
2540
db1b1fef
JS
2541unsigned long nr_active(void)
2542{
2543 unsigned long i, running = 0, uninterruptible = 0;
2544
2545 for_each_online_cpu(i) {
2546 running += cpu_rq(i)->nr_running;
2547 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2548 }
2549
2550 if (unlikely((long)uninterruptible < 0))
2551 uninterruptible = 0;
2552
2553 return running + uninterruptible;
2554}
2555
48f24c4d 2556/*
dd41f596
IM
2557 * Update rq->cpu_load[] statistics. This function is usually called every
2558 * scheduler tick (TICK_NSEC).
48f24c4d 2559 */
dd41f596 2560static void update_cpu_load(struct rq *this_rq)
48f24c4d 2561{
495eca49 2562 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2563 int i, scale;
2564
2565 this_rq->nr_load_updates++;
dd41f596
IM
2566
2567 /* Update our load: */
2568 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2569 unsigned long old_load, new_load;
2570
2571 /* scale is effectively 1 << i now, and >> i divides by scale */
2572
2573 old_load = this_rq->cpu_load[i];
2574 new_load = this_load;
a25707f3
IM
2575 /*
2576 * Round up the averaging division if load is increasing. This
2577 * prevents us from getting stuck on 9 if the load is 10, for
2578 * example.
2579 */
2580 if (new_load > old_load)
2581 new_load += scale-1;
dd41f596
IM
2582 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2583 }
48f24c4d
IM
2584}
2585
dd41f596
IM
2586#ifdef CONFIG_SMP
2587
1da177e4
LT
2588/*
2589 * double_rq_lock - safely lock two runqueues
2590 *
2591 * Note this does not disable interrupts like task_rq_lock,
2592 * you need to do so manually before calling.
2593 */
70b97a7f 2594static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2595 __acquires(rq1->lock)
2596 __acquires(rq2->lock)
2597{
054b9108 2598 BUG_ON(!irqs_disabled());
1da177e4
LT
2599 if (rq1 == rq2) {
2600 spin_lock(&rq1->lock);
2601 __acquire(rq2->lock); /* Fake it out ;) */
2602 } else {
c96d145e 2603 if (rq1 < rq2) {
1da177e4
LT
2604 spin_lock(&rq1->lock);
2605 spin_lock(&rq2->lock);
2606 } else {
2607 spin_lock(&rq2->lock);
2608 spin_lock(&rq1->lock);
2609 }
2610 }
6e82a3be
IM
2611 update_rq_clock(rq1);
2612 update_rq_clock(rq2);
1da177e4
LT
2613}
2614
2615/*
2616 * double_rq_unlock - safely unlock two runqueues
2617 *
2618 * Note this does not restore interrupts like task_rq_unlock,
2619 * you need to do so manually after calling.
2620 */
70b97a7f 2621static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2622 __releases(rq1->lock)
2623 __releases(rq2->lock)
2624{
2625 spin_unlock(&rq1->lock);
2626 if (rq1 != rq2)
2627 spin_unlock(&rq2->lock);
2628 else
2629 __release(rq2->lock);
2630}
2631
2632/*
2633 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2634 */
e8fa1362 2635static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2636 __releases(this_rq->lock)
2637 __acquires(busiest->lock)
2638 __acquires(this_rq->lock)
2639{
e8fa1362
SR
2640 int ret = 0;
2641
054b9108
KK
2642 if (unlikely(!irqs_disabled())) {
2643 /* printk() doesn't work good under rq->lock */
2644 spin_unlock(&this_rq->lock);
2645 BUG_ON(1);
2646 }
1da177e4 2647 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2648 if (busiest < this_rq) {
1da177e4
LT
2649 spin_unlock(&this_rq->lock);
2650 spin_lock(&busiest->lock);
2651 spin_lock(&this_rq->lock);
e8fa1362 2652 ret = 1;
1da177e4
LT
2653 } else
2654 spin_lock(&busiest->lock);
2655 }
e8fa1362 2656 return ret;
1da177e4
LT
2657}
2658
1da177e4
LT
2659/*
2660 * If dest_cpu is allowed for this process, migrate the task to it.
2661 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2662 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2663 * the cpu_allowed mask is restored.
2664 */
36c8b586 2665static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2666{
70b97a7f 2667 struct migration_req req;
1da177e4 2668 unsigned long flags;
70b97a7f 2669 struct rq *rq;
1da177e4
LT
2670
2671 rq = task_rq_lock(p, &flags);
2672 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2673 || unlikely(cpu_is_offline(dest_cpu)))
2674 goto out;
2675
2676 /* force the process onto the specified CPU */
2677 if (migrate_task(p, dest_cpu, &req)) {
2678 /* Need to wait for migration thread (might exit: take ref). */
2679 struct task_struct *mt = rq->migration_thread;
36c8b586 2680
1da177e4
LT
2681 get_task_struct(mt);
2682 task_rq_unlock(rq, &flags);
2683 wake_up_process(mt);
2684 put_task_struct(mt);
2685 wait_for_completion(&req.done);
36c8b586 2686
1da177e4
LT
2687 return;
2688 }
2689out:
2690 task_rq_unlock(rq, &flags);
2691}
2692
2693/*
476d139c
NP
2694 * sched_exec - execve() is a valuable balancing opportunity, because at
2695 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2696 */
2697void sched_exec(void)
2698{
1da177e4 2699 int new_cpu, this_cpu = get_cpu();
476d139c 2700 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2701 put_cpu();
476d139c
NP
2702 if (new_cpu != this_cpu)
2703 sched_migrate_task(current, new_cpu);
1da177e4
LT
2704}
2705
2706/*
2707 * pull_task - move a task from a remote runqueue to the local runqueue.
2708 * Both runqueues must be locked.
2709 */
dd41f596
IM
2710static void pull_task(struct rq *src_rq, struct task_struct *p,
2711 struct rq *this_rq, int this_cpu)
1da177e4 2712{
2e1cb74a 2713 deactivate_task(src_rq, p, 0);
1da177e4 2714 set_task_cpu(p, this_cpu);
dd41f596 2715 activate_task(this_rq, p, 0);
1da177e4
LT
2716 /*
2717 * Note that idle threads have a prio of MAX_PRIO, for this test
2718 * to be always true for them.
2719 */
dd41f596 2720 check_preempt_curr(this_rq, p);
1da177e4
LT
2721}
2722
2723/*
2724 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2725 */
858119e1 2726static
70b97a7f 2727int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2728 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2729 int *all_pinned)
1da177e4
LT
2730{
2731 /*
2732 * We do not migrate tasks that are:
2733 * 1) running (obviously), or
2734 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2735 * 3) are cache-hot on their current CPU.
2736 */
cc367732
IM
2737 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2738 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2739 return 0;
cc367732 2740 }
81026794
NP
2741 *all_pinned = 0;
2742
cc367732
IM
2743 if (task_running(rq, p)) {
2744 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2745 return 0;
cc367732 2746 }
1da177e4 2747
da84d961
IM
2748 /*
2749 * Aggressive migration if:
2750 * 1) task is cache cold, or
2751 * 2) too many balance attempts have failed.
2752 */
2753
6bc1665b
IM
2754 if (!task_hot(p, rq->clock, sd) ||
2755 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2756#ifdef CONFIG_SCHEDSTATS
cc367732 2757 if (task_hot(p, rq->clock, sd)) {
da84d961 2758 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2759 schedstat_inc(p, se.nr_forced_migrations);
2760 }
da84d961
IM
2761#endif
2762 return 1;
2763 }
2764
cc367732
IM
2765 if (task_hot(p, rq->clock, sd)) {
2766 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2767 return 0;
cc367732 2768 }
1da177e4
LT
2769 return 1;
2770}
2771
e1d1484f
PW
2772static unsigned long
2773balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2774 unsigned long max_load_move, struct sched_domain *sd,
2775 enum cpu_idle_type idle, int *all_pinned,
2776 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2777{
b82d9fdd 2778 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2779 struct task_struct *p;
2780 long rem_load_move = max_load_move;
1da177e4 2781
e1d1484f 2782 if (max_load_move == 0)
1da177e4
LT
2783 goto out;
2784
81026794
NP
2785 pinned = 1;
2786
1da177e4 2787 /*
dd41f596 2788 * Start the load-balancing iterator:
1da177e4 2789 */
dd41f596
IM
2790 p = iterator->start(iterator->arg);
2791next:
b82d9fdd 2792 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2793 goto out;
50ddd969 2794 /*
b82d9fdd 2795 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2796 * skip a task if it will be the highest priority task (i.e. smallest
2797 * prio value) on its new queue regardless of its load weight
2798 */
dd41f596
IM
2799 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2800 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2801 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2802 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2803 p = iterator->next(iterator->arg);
2804 goto next;
1da177e4
LT
2805 }
2806
dd41f596 2807 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2808 pulled++;
dd41f596 2809 rem_load_move -= p->se.load.weight;
1da177e4 2810
2dd73a4f 2811 /*
b82d9fdd 2812 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2813 */
e1d1484f 2814 if (rem_load_move > 0) {
a4ac01c3
PW
2815 if (p->prio < *this_best_prio)
2816 *this_best_prio = p->prio;
dd41f596
IM
2817 p = iterator->next(iterator->arg);
2818 goto next;
1da177e4
LT
2819 }
2820out:
2821 /*
e1d1484f 2822 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2823 * so we can safely collect pull_task() stats here rather than
2824 * inside pull_task().
2825 */
2826 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2827
2828 if (all_pinned)
2829 *all_pinned = pinned;
e1d1484f
PW
2830
2831 return max_load_move - rem_load_move;
1da177e4
LT
2832}
2833
dd41f596 2834/*
43010659
PW
2835 * move_tasks tries to move up to max_load_move weighted load from busiest to
2836 * this_rq, as part of a balancing operation within domain "sd".
2837 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2838 *
2839 * Called with both runqueues locked.
2840 */
2841static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2842 unsigned long max_load_move,
dd41f596
IM
2843 struct sched_domain *sd, enum cpu_idle_type idle,
2844 int *all_pinned)
2845{
5522d5d5 2846 const struct sched_class *class = sched_class_highest;
43010659 2847 unsigned long total_load_moved = 0;
a4ac01c3 2848 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2849
2850 do {
43010659
PW
2851 total_load_moved +=
2852 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2853 max_load_move - total_load_moved,
a4ac01c3 2854 sd, idle, all_pinned, &this_best_prio);
dd41f596 2855 class = class->next;
43010659 2856 } while (class && max_load_move > total_load_moved);
dd41f596 2857
43010659
PW
2858 return total_load_moved > 0;
2859}
2860
e1d1484f
PW
2861static int
2862iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2863 struct sched_domain *sd, enum cpu_idle_type idle,
2864 struct rq_iterator *iterator)
2865{
2866 struct task_struct *p = iterator->start(iterator->arg);
2867 int pinned = 0;
2868
2869 while (p) {
2870 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2871 pull_task(busiest, p, this_rq, this_cpu);
2872 /*
2873 * Right now, this is only the second place pull_task()
2874 * is called, so we can safely collect pull_task()
2875 * stats here rather than inside pull_task().
2876 */
2877 schedstat_inc(sd, lb_gained[idle]);
2878
2879 return 1;
2880 }
2881 p = iterator->next(iterator->arg);
2882 }
2883
2884 return 0;
2885}
2886
43010659
PW
2887/*
2888 * move_one_task tries to move exactly one task from busiest to this_rq, as
2889 * part of active balancing operations within "domain".
2890 * Returns 1 if successful and 0 otherwise.
2891 *
2892 * Called with both runqueues locked.
2893 */
2894static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2895 struct sched_domain *sd, enum cpu_idle_type idle)
2896{
5522d5d5 2897 const struct sched_class *class;
43010659
PW
2898
2899 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2900 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2901 return 1;
2902
2903 return 0;
dd41f596
IM
2904}
2905
1da177e4
LT
2906/*
2907 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2908 * domain. It calculates and returns the amount of weighted load which
2909 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2910 */
2911static struct sched_group *
2912find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 2913 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 2914 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
2915{
2916 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2917 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2918 unsigned long max_pull;
2dd73a4f
PW
2919 unsigned long busiest_load_per_task, busiest_nr_running;
2920 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2921 int load_idx, group_imb = 0;
5c45bf27
SS
2922#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2923 int power_savings_balance = 1;
2924 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2925 unsigned long min_nr_running = ULONG_MAX;
2926 struct sched_group *group_min = NULL, *group_leader = NULL;
2927#endif
1da177e4
LT
2928
2929 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2930 busiest_load_per_task = busiest_nr_running = 0;
2931 this_load_per_task = this_nr_running = 0;
d15bcfdb 2932 if (idle == CPU_NOT_IDLE)
7897986b 2933 load_idx = sd->busy_idx;
d15bcfdb 2934 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2935 load_idx = sd->newidle_idx;
2936 else
2937 load_idx = sd->idle_idx;
1da177e4
LT
2938
2939 do {
908a7c1b 2940 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2941 int local_group;
2942 int i;
908a7c1b 2943 int __group_imb = 0;
783609c6 2944 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2945 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2946
2947 local_group = cpu_isset(this_cpu, group->cpumask);
2948
783609c6
SS
2949 if (local_group)
2950 balance_cpu = first_cpu(group->cpumask);
2951
1da177e4 2952 /* Tally up the load of all CPUs in the group */
2dd73a4f 2953 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2954 max_cpu_load = 0;
2955 min_cpu_load = ~0UL;
1da177e4
LT
2956
2957 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2958 struct rq *rq;
2959
2960 if (!cpu_isset(i, *cpus))
2961 continue;
2962
2963 rq = cpu_rq(i);
2dd73a4f 2964
9439aab8 2965 if (*sd_idle && rq->nr_running)
5969fe06
NP
2966 *sd_idle = 0;
2967
1da177e4 2968 /* Bias balancing toward cpus of our domain */
783609c6
SS
2969 if (local_group) {
2970 if (idle_cpu(i) && !first_idle_cpu) {
2971 first_idle_cpu = 1;
2972 balance_cpu = i;
2973 }
2974
a2000572 2975 load = target_load(i, load_idx);
908a7c1b 2976 } else {
a2000572 2977 load = source_load(i, load_idx);
908a7c1b
KC
2978 if (load > max_cpu_load)
2979 max_cpu_load = load;
2980 if (min_cpu_load > load)
2981 min_cpu_load = load;
2982 }
1da177e4
LT
2983
2984 avg_load += load;
2dd73a4f 2985 sum_nr_running += rq->nr_running;
dd41f596 2986 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2987 }
2988
783609c6
SS
2989 /*
2990 * First idle cpu or the first cpu(busiest) in this sched group
2991 * is eligible for doing load balancing at this and above
9439aab8
SS
2992 * domains. In the newly idle case, we will allow all the cpu's
2993 * to do the newly idle load balance.
783609c6 2994 */
9439aab8
SS
2995 if (idle != CPU_NEWLY_IDLE && local_group &&
2996 balance_cpu != this_cpu && balance) {
783609c6
SS
2997 *balance = 0;
2998 goto ret;
2999 }
3000
1da177e4 3001 total_load += avg_load;
5517d86b 3002 total_pwr += group->__cpu_power;
1da177e4
LT
3003
3004 /* Adjust by relative CPU power of the group */
5517d86b
ED
3005 avg_load = sg_div_cpu_power(group,
3006 avg_load * SCHED_LOAD_SCALE);
1da177e4 3007
908a7c1b
KC
3008 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3009 __group_imb = 1;
3010
5517d86b 3011 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3012
1da177e4
LT
3013 if (local_group) {
3014 this_load = avg_load;
3015 this = group;
2dd73a4f
PW
3016 this_nr_running = sum_nr_running;
3017 this_load_per_task = sum_weighted_load;
3018 } else if (avg_load > max_load &&
908a7c1b 3019 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3020 max_load = avg_load;
3021 busiest = group;
2dd73a4f
PW
3022 busiest_nr_running = sum_nr_running;
3023 busiest_load_per_task = sum_weighted_load;
908a7c1b 3024 group_imb = __group_imb;
1da177e4 3025 }
5c45bf27
SS
3026
3027#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3028 /*
3029 * Busy processors will not participate in power savings
3030 * balance.
3031 */
dd41f596
IM
3032 if (idle == CPU_NOT_IDLE ||
3033 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3034 goto group_next;
5c45bf27
SS
3035
3036 /*
3037 * If the local group is idle or completely loaded
3038 * no need to do power savings balance at this domain
3039 */
3040 if (local_group && (this_nr_running >= group_capacity ||
3041 !this_nr_running))
3042 power_savings_balance = 0;
3043
dd41f596 3044 /*
5c45bf27
SS
3045 * If a group is already running at full capacity or idle,
3046 * don't include that group in power savings calculations
dd41f596
IM
3047 */
3048 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3049 || !sum_nr_running)
dd41f596 3050 goto group_next;
5c45bf27 3051
dd41f596 3052 /*
5c45bf27 3053 * Calculate the group which has the least non-idle load.
dd41f596
IM
3054 * This is the group from where we need to pick up the load
3055 * for saving power
3056 */
3057 if ((sum_nr_running < min_nr_running) ||
3058 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3059 first_cpu(group->cpumask) <
3060 first_cpu(group_min->cpumask))) {
dd41f596
IM
3061 group_min = group;
3062 min_nr_running = sum_nr_running;
5c45bf27
SS
3063 min_load_per_task = sum_weighted_load /
3064 sum_nr_running;
dd41f596 3065 }
5c45bf27 3066
dd41f596 3067 /*
5c45bf27 3068 * Calculate the group which is almost near its
dd41f596
IM
3069 * capacity but still has some space to pick up some load
3070 * from other group and save more power
3071 */
3072 if (sum_nr_running <= group_capacity - 1) {
3073 if (sum_nr_running > leader_nr_running ||
3074 (sum_nr_running == leader_nr_running &&
3075 first_cpu(group->cpumask) >
3076 first_cpu(group_leader->cpumask))) {
3077 group_leader = group;
3078 leader_nr_running = sum_nr_running;
3079 }
48f24c4d 3080 }
5c45bf27
SS
3081group_next:
3082#endif
1da177e4
LT
3083 group = group->next;
3084 } while (group != sd->groups);
3085
2dd73a4f 3086 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3087 goto out_balanced;
3088
3089 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3090
3091 if (this_load >= avg_load ||
3092 100*max_load <= sd->imbalance_pct*this_load)
3093 goto out_balanced;
3094
2dd73a4f 3095 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3096 if (group_imb)
3097 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3098
1da177e4
LT
3099 /*
3100 * We're trying to get all the cpus to the average_load, so we don't
3101 * want to push ourselves above the average load, nor do we wish to
3102 * reduce the max loaded cpu below the average load, as either of these
3103 * actions would just result in more rebalancing later, and ping-pong
3104 * tasks around. Thus we look for the minimum possible imbalance.
3105 * Negative imbalances (*we* are more loaded than anyone else) will
3106 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3107 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3108 * appear as very large values with unsigned longs.
3109 */
2dd73a4f
PW
3110 if (max_load <= busiest_load_per_task)
3111 goto out_balanced;
3112
3113 /*
3114 * In the presence of smp nice balancing, certain scenarios can have
3115 * max load less than avg load(as we skip the groups at or below
3116 * its cpu_power, while calculating max_load..)
3117 */
3118 if (max_load < avg_load) {
3119 *imbalance = 0;
3120 goto small_imbalance;
3121 }
0c117f1b
SS
3122
3123 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3124 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3125
1da177e4 3126 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3127 *imbalance = min(max_pull * busiest->__cpu_power,
3128 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3129 / SCHED_LOAD_SCALE;
3130
2dd73a4f
PW
3131 /*
3132 * if *imbalance is less than the average load per runnable task
3133 * there is no gaurantee that any tasks will be moved so we'll have
3134 * a think about bumping its value to force at least one task to be
3135 * moved
3136 */
7fd0d2dd 3137 if (*imbalance < busiest_load_per_task) {
48f24c4d 3138 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3139 unsigned int imbn;
3140
3141small_imbalance:
3142 pwr_move = pwr_now = 0;
3143 imbn = 2;
3144 if (this_nr_running) {
3145 this_load_per_task /= this_nr_running;
3146 if (busiest_load_per_task > this_load_per_task)
3147 imbn = 1;
3148 } else
3149 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3150
dd41f596
IM
3151 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3152 busiest_load_per_task * imbn) {
2dd73a4f 3153 *imbalance = busiest_load_per_task;
1da177e4
LT
3154 return busiest;
3155 }
3156
3157 /*
3158 * OK, we don't have enough imbalance to justify moving tasks,
3159 * however we may be able to increase total CPU power used by
3160 * moving them.
3161 */
3162
5517d86b
ED
3163 pwr_now += busiest->__cpu_power *
3164 min(busiest_load_per_task, max_load);
3165 pwr_now += this->__cpu_power *
3166 min(this_load_per_task, this_load);
1da177e4
LT
3167 pwr_now /= SCHED_LOAD_SCALE;
3168
3169 /* Amount of load we'd subtract */
5517d86b
ED
3170 tmp = sg_div_cpu_power(busiest,
3171 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3172 if (max_load > tmp)
5517d86b 3173 pwr_move += busiest->__cpu_power *
2dd73a4f 3174 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3175
3176 /* Amount of load we'd add */
5517d86b 3177 if (max_load * busiest->__cpu_power <
33859f7f 3178 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3179 tmp = sg_div_cpu_power(this,
3180 max_load * busiest->__cpu_power);
1da177e4 3181 else
5517d86b
ED
3182 tmp = sg_div_cpu_power(this,
3183 busiest_load_per_task * SCHED_LOAD_SCALE);
3184 pwr_move += this->__cpu_power *
3185 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3186 pwr_move /= SCHED_LOAD_SCALE;
3187
3188 /* Move if we gain throughput */
7fd0d2dd
SS
3189 if (pwr_move > pwr_now)
3190 *imbalance = busiest_load_per_task;
1da177e4
LT
3191 }
3192
1da177e4
LT
3193 return busiest;
3194
3195out_balanced:
5c45bf27 3196#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3197 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3198 goto ret;
1da177e4 3199
5c45bf27
SS
3200 if (this == group_leader && group_leader != group_min) {
3201 *imbalance = min_load_per_task;
3202 return group_min;
3203 }
5c45bf27 3204#endif
783609c6 3205ret:
1da177e4
LT
3206 *imbalance = 0;
3207 return NULL;
3208}
3209
3210/*
3211 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3212 */
70b97a7f 3213static struct rq *
d15bcfdb 3214find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3215 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3216{
70b97a7f 3217 struct rq *busiest = NULL, *rq;
2dd73a4f 3218 unsigned long max_load = 0;
1da177e4
LT
3219 int i;
3220
3221 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3222 unsigned long wl;
0a2966b4
CL
3223
3224 if (!cpu_isset(i, *cpus))
3225 continue;
3226
48f24c4d 3227 rq = cpu_rq(i);
dd41f596 3228 wl = weighted_cpuload(i);
2dd73a4f 3229
dd41f596 3230 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3231 continue;
1da177e4 3232
dd41f596
IM
3233 if (wl > max_load) {
3234 max_load = wl;
48f24c4d 3235 busiest = rq;
1da177e4
LT
3236 }
3237 }
3238
3239 return busiest;
3240}
3241
77391d71
NP
3242/*
3243 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3244 * so long as it is large enough.
3245 */
3246#define MAX_PINNED_INTERVAL 512
3247
1da177e4
LT
3248/*
3249 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3250 * tasks if there is an imbalance.
1da177e4 3251 */
70b97a7f 3252static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3253 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3254 int *balance, cpumask_t *cpus)
1da177e4 3255{
43010659 3256 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3257 struct sched_group *group;
1da177e4 3258 unsigned long imbalance;
70b97a7f 3259 struct rq *busiest;
fe2eea3f 3260 unsigned long flags;
5969fe06 3261
7c16ec58
MT
3262 cpus_setall(*cpus);
3263
89c4710e
SS
3264 /*
3265 * When power savings policy is enabled for the parent domain, idle
3266 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3267 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3268 * portraying it as CPU_NOT_IDLE.
89c4710e 3269 */
d15bcfdb 3270 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3271 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3272 sd_idle = 1;
1da177e4 3273
2d72376b 3274 schedstat_inc(sd, lb_count[idle]);
1da177e4 3275
0a2966b4
CL
3276redo:
3277 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3278 cpus, balance);
783609c6 3279
06066714 3280 if (*balance == 0)
783609c6 3281 goto out_balanced;
783609c6 3282
1da177e4
LT
3283 if (!group) {
3284 schedstat_inc(sd, lb_nobusyg[idle]);
3285 goto out_balanced;
3286 }
3287
7c16ec58 3288 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3289 if (!busiest) {
3290 schedstat_inc(sd, lb_nobusyq[idle]);
3291 goto out_balanced;
3292 }
3293
db935dbd 3294 BUG_ON(busiest == this_rq);
1da177e4
LT
3295
3296 schedstat_add(sd, lb_imbalance[idle], imbalance);
3297
43010659 3298 ld_moved = 0;
1da177e4
LT
3299 if (busiest->nr_running > 1) {
3300 /*
3301 * Attempt to move tasks. If find_busiest_group has found
3302 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3303 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3304 * correctly treated as an imbalance.
3305 */
fe2eea3f 3306 local_irq_save(flags);
e17224bf 3307 double_rq_lock(this_rq, busiest);
43010659 3308 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3309 imbalance, sd, idle, &all_pinned);
e17224bf 3310 double_rq_unlock(this_rq, busiest);
fe2eea3f 3311 local_irq_restore(flags);
81026794 3312
46cb4b7c
SS
3313 /*
3314 * some other cpu did the load balance for us.
3315 */
43010659 3316 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3317 resched_cpu(this_cpu);
3318
81026794 3319 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3320 if (unlikely(all_pinned)) {
7c16ec58
MT
3321 cpu_clear(cpu_of(busiest), *cpus);
3322 if (!cpus_empty(*cpus))
0a2966b4 3323 goto redo;
81026794 3324 goto out_balanced;
0a2966b4 3325 }
1da177e4 3326 }
81026794 3327
43010659 3328 if (!ld_moved) {
1da177e4
LT
3329 schedstat_inc(sd, lb_failed[idle]);
3330 sd->nr_balance_failed++;
3331
3332 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3333
fe2eea3f 3334 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3335
3336 /* don't kick the migration_thread, if the curr
3337 * task on busiest cpu can't be moved to this_cpu
3338 */
3339 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3340 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3341 all_pinned = 1;
3342 goto out_one_pinned;
3343 }
3344
1da177e4
LT
3345 if (!busiest->active_balance) {
3346 busiest->active_balance = 1;
3347 busiest->push_cpu = this_cpu;
81026794 3348 active_balance = 1;
1da177e4 3349 }
fe2eea3f 3350 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3351 if (active_balance)
1da177e4
LT
3352 wake_up_process(busiest->migration_thread);
3353
3354 /*
3355 * We've kicked active balancing, reset the failure
3356 * counter.
3357 */
39507451 3358 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3359 }
81026794 3360 } else
1da177e4
LT
3361 sd->nr_balance_failed = 0;
3362
81026794 3363 if (likely(!active_balance)) {
1da177e4
LT
3364 /* We were unbalanced, so reset the balancing interval */
3365 sd->balance_interval = sd->min_interval;
81026794
NP
3366 } else {
3367 /*
3368 * If we've begun active balancing, start to back off. This
3369 * case may not be covered by the all_pinned logic if there
3370 * is only 1 task on the busy runqueue (because we don't call
3371 * move_tasks).
3372 */
3373 if (sd->balance_interval < sd->max_interval)
3374 sd->balance_interval *= 2;
1da177e4
LT
3375 }
3376
43010659 3377 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3378 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3379 return -1;
3380 return ld_moved;
1da177e4
LT
3381
3382out_balanced:
1da177e4
LT
3383 schedstat_inc(sd, lb_balanced[idle]);
3384
16cfb1c0 3385 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3386
3387out_one_pinned:
1da177e4 3388 /* tune up the balancing interval */
77391d71
NP
3389 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3390 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3391 sd->balance_interval *= 2;
3392
48f24c4d 3393 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3394 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3395 return -1;
3396 return 0;
1da177e4
LT
3397}
3398
3399/*
3400 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3401 * tasks if there is an imbalance.
3402 *
d15bcfdb 3403 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3404 * this_rq is locked.
3405 */
48f24c4d 3406static int
7c16ec58
MT
3407load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3408 cpumask_t *cpus)
1da177e4
LT
3409{
3410 struct sched_group *group;
70b97a7f 3411 struct rq *busiest = NULL;
1da177e4 3412 unsigned long imbalance;
43010659 3413 int ld_moved = 0;
5969fe06 3414 int sd_idle = 0;
969bb4e4 3415 int all_pinned = 0;
7c16ec58
MT
3416
3417 cpus_setall(*cpus);
5969fe06 3418
89c4710e
SS
3419 /*
3420 * When power savings policy is enabled for the parent domain, idle
3421 * sibling can pick up load irrespective of busy siblings. In this case,
3422 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3423 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3424 */
3425 if (sd->flags & SD_SHARE_CPUPOWER &&
3426 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3427 sd_idle = 1;
1da177e4 3428
2d72376b 3429 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3430redo:
d15bcfdb 3431 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3432 &sd_idle, cpus, NULL);
1da177e4 3433 if (!group) {
d15bcfdb 3434 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3435 goto out_balanced;
1da177e4
LT
3436 }
3437
7c16ec58 3438 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3439 if (!busiest) {
d15bcfdb 3440 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3441 goto out_balanced;
1da177e4
LT
3442 }
3443
db935dbd
NP
3444 BUG_ON(busiest == this_rq);
3445
d15bcfdb 3446 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3447
43010659 3448 ld_moved = 0;
d6d5cfaf
NP
3449 if (busiest->nr_running > 1) {
3450 /* Attempt to move tasks */
3451 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3452 /* this_rq->clock is already updated */
3453 update_rq_clock(busiest);
43010659 3454 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3455 imbalance, sd, CPU_NEWLY_IDLE,
3456 &all_pinned);
d6d5cfaf 3457 spin_unlock(&busiest->lock);
0a2966b4 3458
969bb4e4 3459 if (unlikely(all_pinned)) {
7c16ec58
MT
3460 cpu_clear(cpu_of(busiest), *cpus);
3461 if (!cpus_empty(*cpus))
0a2966b4
CL
3462 goto redo;
3463 }
d6d5cfaf
NP
3464 }
3465
43010659 3466 if (!ld_moved) {
d15bcfdb 3467 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3468 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3469 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3470 return -1;
3471 } else
16cfb1c0 3472 sd->nr_balance_failed = 0;
1da177e4 3473
43010659 3474 return ld_moved;
16cfb1c0
NP
3475
3476out_balanced:
d15bcfdb 3477 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3478 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3479 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3480 return -1;
16cfb1c0 3481 sd->nr_balance_failed = 0;
48f24c4d 3482
16cfb1c0 3483 return 0;
1da177e4
LT
3484}
3485
3486/*
3487 * idle_balance is called by schedule() if this_cpu is about to become
3488 * idle. Attempts to pull tasks from other CPUs.
3489 */
70b97a7f 3490static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3491{
3492 struct sched_domain *sd;
dd41f596
IM
3493 int pulled_task = -1;
3494 unsigned long next_balance = jiffies + HZ;
7c16ec58 3495 cpumask_t tmpmask;
1da177e4
LT
3496
3497 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3498 unsigned long interval;
3499
3500 if (!(sd->flags & SD_LOAD_BALANCE))
3501 continue;
3502
3503 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3504 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3505 pulled_task = load_balance_newidle(this_cpu, this_rq,
3506 sd, &tmpmask);
92c4ca5c
CL
3507
3508 interval = msecs_to_jiffies(sd->balance_interval);
3509 if (time_after(next_balance, sd->last_balance + interval))
3510 next_balance = sd->last_balance + interval;
3511 if (pulled_task)
3512 break;
1da177e4 3513 }
dd41f596 3514 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3515 /*
3516 * We are going idle. next_balance may be set based on
3517 * a busy processor. So reset next_balance.
3518 */
3519 this_rq->next_balance = next_balance;
dd41f596 3520 }
1da177e4
LT
3521}
3522
3523/*
3524 * active_load_balance is run by migration threads. It pushes running tasks
3525 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3526 * running on each physical CPU where possible, and avoids physical /
3527 * logical imbalances.
3528 *
3529 * Called with busiest_rq locked.
3530 */
70b97a7f 3531static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3532{
39507451 3533 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3534 struct sched_domain *sd;
3535 struct rq *target_rq;
39507451 3536
48f24c4d 3537 /* Is there any task to move? */
39507451 3538 if (busiest_rq->nr_running <= 1)
39507451
NP
3539 return;
3540
3541 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3542
3543 /*
39507451 3544 * This condition is "impossible", if it occurs
41a2d6cf 3545 * we need to fix it. Originally reported by
39507451 3546 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3547 */
39507451 3548 BUG_ON(busiest_rq == target_rq);
1da177e4 3549
39507451
NP
3550 /* move a task from busiest_rq to target_rq */
3551 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3552 update_rq_clock(busiest_rq);
3553 update_rq_clock(target_rq);
39507451
NP
3554
3555 /* Search for an sd spanning us and the target CPU. */
c96d145e 3556 for_each_domain(target_cpu, sd) {
39507451 3557 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3558 cpu_isset(busiest_cpu, sd->span))
39507451 3559 break;
c96d145e 3560 }
39507451 3561
48f24c4d 3562 if (likely(sd)) {
2d72376b 3563 schedstat_inc(sd, alb_count);
39507451 3564
43010659
PW
3565 if (move_one_task(target_rq, target_cpu, busiest_rq,
3566 sd, CPU_IDLE))
48f24c4d
IM
3567 schedstat_inc(sd, alb_pushed);
3568 else
3569 schedstat_inc(sd, alb_failed);
3570 }
39507451 3571 spin_unlock(&target_rq->lock);
1da177e4
LT
3572}
3573
46cb4b7c
SS
3574#ifdef CONFIG_NO_HZ
3575static struct {
3576 atomic_t load_balancer;
41a2d6cf 3577 cpumask_t cpu_mask;
46cb4b7c
SS
3578} nohz ____cacheline_aligned = {
3579 .load_balancer = ATOMIC_INIT(-1),
3580 .cpu_mask = CPU_MASK_NONE,
3581};
3582
7835b98b 3583/*
46cb4b7c
SS
3584 * This routine will try to nominate the ilb (idle load balancing)
3585 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3586 * load balancing on behalf of all those cpus. If all the cpus in the system
3587 * go into this tickless mode, then there will be no ilb owner (as there is
3588 * no need for one) and all the cpus will sleep till the next wakeup event
3589 * arrives...
3590 *
3591 * For the ilb owner, tick is not stopped. And this tick will be used
3592 * for idle load balancing. ilb owner will still be part of
3593 * nohz.cpu_mask..
7835b98b 3594 *
46cb4b7c
SS
3595 * While stopping the tick, this cpu will become the ilb owner if there
3596 * is no other owner. And will be the owner till that cpu becomes busy
3597 * or if all cpus in the system stop their ticks at which point
3598 * there is no need for ilb owner.
3599 *
3600 * When the ilb owner becomes busy, it nominates another owner, during the
3601 * next busy scheduler_tick()
3602 */
3603int select_nohz_load_balancer(int stop_tick)
3604{
3605 int cpu = smp_processor_id();
3606
3607 if (stop_tick) {
3608 cpu_set(cpu, nohz.cpu_mask);
3609 cpu_rq(cpu)->in_nohz_recently = 1;
3610
3611 /*
3612 * If we are going offline and still the leader, give up!
3613 */
3614 if (cpu_is_offline(cpu) &&
3615 atomic_read(&nohz.load_balancer) == cpu) {
3616 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3617 BUG();
3618 return 0;
3619 }
3620
3621 /* time for ilb owner also to sleep */
3622 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3623 if (atomic_read(&nohz.load_balancer) == cpu)
3624 atomic_set(&nohz.load_balancer, -1);
3625 return 0;
3626 }
3627
3628 if (atomic_read(&nohz.load_balancer) == -1) {
3629 /* make me the ilb owner */
3630 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3631 return 1;
3632 } else if (atomic_read(&nohz.load_balancer) == cpu)
3633 return 1;
3634 } else {
3635 if (!cpu_isset(cpu, nohz.cpu_mask))
3636 return 0;
3637
3638 cpu_clear(cpu, nohz.cpu_mask);
3639
3640 if (atomic_read(&nohz.load_balancer) == cpu)
3641 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3642 BUG();
3643 }
3644 return 0;
3645}
3646#endif
3647
3648static DEFINE_SPINLOCK(balancing);
3649
3650/*
7835b98b
CL
3651 * It checks each scheduling domain to see if it is due to be balanced,
3652 * and initiates a balancing operation if so.
3653 *
3654 * Balancing parameters are set up in arch_init_sched_domains.
3655 */
a9957449 3656static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3657{
46cb4b7c
SS
3658 int balance = 1;
3659 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3660 unsigned long interval;
3661 struct sched_domain *sd;
46cb4b7c 3662 /* Earliest time when we have to do rebalance again */
c9819f45 3663 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3664 int update_next_balance = 0;
7c16ec58 3665 cpumask_t tmp;
1da177e4 3666
46cb4b7c 3667 for_each_domain(cpu, sd) {
1da177e4
LT
3668 if (!(sd->flags & SD_LOAD_BALANCE))
3669 continue;
3670
3671 interval = sd->balance_interval;
d15bcfdb 3672 if (idle != CPU_IDLE)
1da177e4
LT
3673 interval *= sd->busy_factor;
3674
3675 /* scale ms to jiffies */
3676 interval = msecs_to_jiffies(interval);
3677 if (unlikely(!interval))
3678 interval = 1;
dd41f596
IM
3679 if (interval > HZ*NR_CPUS/10)
3680 interval = HZ*NR_CPUS/10;
3681
1da177e4 3682
08c183f3
CL
3683 if (sd->flags & SD_SERIALIZE) {
3684 if (!spin_trylock(&balancing))
3685 goto out;
3686 }
3687
c9819f45 3688 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3689 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3690 /*
3691 * We've pulled tasks over so either we're no
5969fe06
NP
3692 * longer idle, or one of our SMT siblings is
3693 * not idle.
3694 */
d15bcfdb 3695 idle = CPU_NOT_IDLE;
1da177e4 3696 }
1bd77f2d 3697 sd->last_balance = jiffies;
1da177e4 3698 }
08c183f3
CL
3699 if (sd->flags & SD_SERIALIZE)
3700 spin_unlock(&balancing);
3701out:
f549da84 3702 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3703 next_balance = sd->last_balance + interval;
f549da84
SS
3704 update_next_balance = 1;
3705 }
783609c6
SS
3706
3707 /*
3708 * Stop the load balance at this level. There is another
3709 * CPU in our sched group which is doing load balancing more
3710 * actively.
3711 */
3712 if (!balance)
3713 break;
1da177e4 3714 }
f549da84
SS
3715
3716 /*
3717 * next_balance will be updated only when there is a need.
3718 * When the cpu is attached to null domain for ex, it will not be
3719 * updated.
3720 */
3721 if (likely(update_next_balance))
3722 rq->next_balance = next_balance;
46cb4b7c
SS
3723}
3724
3725/*
3726 * run_rebalance_domains is triggered when needed from the scheduler tick.
3727 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3728 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3729 */
3730static void run_rebalance_domains(struct softirq_action *h)
3731{
dd41f596
IM
3732 int this_cpu = smp_processor_id();
3733 struct rq *this_rq = cpu_rq(this_cpu);
3734 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3735 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3736
dd41f596 3737 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3738
3739#ifdef CONFIG_NO_HZ
3740 /*
3741 * If this cpu is the owner for idle load balancing, then do the
3742 * balancing on behalf of the other idle cpus whose ticks are
3743 * stopped.
3744 */
dd41f596
IM
3745 if (this_rq->idle_at_tick &&
3746 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3747 cpumask_t cpus = nohz.cpu_mask;
3748 struct rq *rq;
3749 int balance_cpu;
3750
dd41f596 3751 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3752 for_each_cpu_mask(balance_cpu, cpus) {
3753 /*
3754 * If this cpu gets work to do, stop the load balancing
3755 * work being done for other cpus. Next load
3756 * balancing owner will pick it up.
3757 */
3758 if (need_resched())
3759 break;
3760
de0cf899 3761 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3762
3763 rq = cpu_rq(balance_cpu);
dd41f596
IM
3764 if (time_after(this_rq->next_balance, rq->next_balance))
3765 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3766 }
3767 }
3768#endif
3769}
3770
3771/*
3772 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3773 *
3774 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3775 * idle load balancing owner or decide to stop the periodic load balancing,
3776 * if the whole system is idle.
3777 */
dd41f596 3778static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3779{
46cb4b7c
SS
3780#ifdef CONFIG_NO_HZ
3781 /*
3782 * If we were in the nohz mode recently and busy at the current
3783 * scheduler tick, then check if we need to nominate new idle
3784 * load balancer.
3785 */
3786 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3787 rq->in_nohz_recently = 0;
3788
3789 if (atomic_read(&nohz.load_balancer) == cpu) {
3790 cpu_clear(cpu, nohz.cpu_mask);
3791 atomic_set(&nohz.load_balancer, -1);
3792 }
3793
3794 if (atomic_read(&nohz.load_balancer) == -1) {
3795 /*
3796 * simple selection for now: Nominate the
3797 * first cpu in the nohz list to be the next
3798 * ilb owner.
3799 *
3800 * TBD: Traverse the sched domains and nominate
3801 * the nearest cpu in the nohz.cpu_mask.
3802 */
3803 int ilb = first_cpu(nohz.cpu_mask);
3804
434d53b0 3805 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3806 resched_cpu(ilb);
3807 }
3808 }
3809
3810 /*
3811 * If this cpu is idle and doing idle load balancing for all the
3812 * cpus with ticks stopped, is it time for that to stop?
3813 */
3814 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3815 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3816 resched_cpu(cpu);
3817 return;
3818 }
3819
3820 /*
3821 * If this cpu is idle and the idle load balancing is done by
3822 * someone else, then no need raise the SCHED_SOFTIRQ
3823 */
3824 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3825 cpu_isset(cpu, nohz.cpu_mask))
3826 return;
3827#endif
3828 if (time_after_eq(jiffies, rq->next_balance))
3829 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3830}
dd41f596
IM
3831
3832#else /* CONFIG_SMP */
3833
1da177e4
LT
3834/*
3835 * on UP we do not need to balance between CPUs:
3836 */
70b97a7f 3837static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3838{
3839}
dd41f596 3840
1da177e4
LT
3841#endif
3842
1da177e4
LT
3843DEFINE_PER_CPU(struct kernel_stat, kstat);
3844
3845EXPORT_PER_CPU_SYMBOL(kstat);
3846
3847/*
41b86e9c
IM
3848 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3849 * that have not yet been banked in case the task is currently running.
1da177e4 3850 */
41b86e9c 3851unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3852{
1da177e4 3853 unsigned long flags;
41b86e9c
IM
3854 u64 ns, delta_exec;
3855 struct rq *rq;
48f24c4d 3856
41b86e9c
IM
3857 rq = task_rq_lock(p, &flags);
3858 ns = p->se.sum_exec_runtime;
051a1d1a 3859 if (task_current(rq, p)) {
a8e504d2
IM
3860 update_rq_clock(rq);
3861 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3862 if ((s64)delta_exec > 0)
3863 ns += delta_exec;
3864 }
3865 task_rq_unlock(rq, &flags);
48f24c4d 3866
1da177e4
LT
3867 return ns;
3868}
3869
1da177e4
LT
3870/*
3871 * Account user cpu time to a process.
3872 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3873 * @cputime: the cpu time spent in user space since the last update
3874 */
3875void account_user_time(struct task_struct *p, cputime_t cputime)
3876{
3877 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3878 cputime64_t tmp;
3879
3880 p->utime = cputime_add(p->utime, cputime);
3881
3882 /* Add user time to cpustat. */
3883 tmp = cputime_to_cputime64(cputime);
3884 if (TASK_NICE(p) > 0)
3885 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3886 else
3887 cpustat->user = cputime64_add(cpustat->user, tmp);
3888}
3889
94886b84
LV
3890/*
3891 * Account guest cpu time to a process.
3892 * @p: the process that the cpu time gets accounted to
3893 * @cputime: the cpu time spent in virtual machine since the last update
3894 */
f7402e03 3895static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3896{
3897 cputime64_t tmp;
3898 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3899
3900 tmp = cputime_to_cputime64(cputime);
3901
3902 p->utime = cputime_add(p->utime, cputime);
3903 p->gtime = cputime_add(p->gtime, cputime);
3904
3905 cpustat->user = cputime64_add(cpustat->user, tmp);
3906 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3907}
3908
c66f08be
MN
3909/*
3910 * Account scaled user cpu time to a process.
3911 * @p: the process that the cpu time gets accounted to
3912 * @cputime: the cpu time spent in user space since the last update
3913 */
3914void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3915{
3916 p->utimescaled = cputime_add(p->utimescaled, cputime);
3917}
3918
1da177e4
LT
3919/*
3920 * Account system cpu time to a process.
3921 * @p: the process that the cpu time gets accounted to
3922 * @hardirq_offset: the offset to subtract from hardirq_count()
3923 * @cputime: the cpu time spent in kernel space since the last update
3924 */
3925void account_system_time(struct task_struct *p, int hardirq_offset,
3926 cputime_t cputime)
3927{
3928 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3929 struct rq *rq = this_rq();
1da177e4
LT
3930 cputime64_t tmp;
3931
983ed7a6
HH
3932 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3933 account_guest_time(p, cputime);
3934 return;
3935 }
94886b84 3936
1da177e4
LT
3937 p->stime = cputime_add(p->stime, cputime);
3938
3939 /* Add system time to cpustat. */
3940 tmp = cputime_to_cputime64(cputime);
3941 if (hardirq_count() - hardirq_offset)
3942 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3943 else if (softirq_count())
3944 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3945 else if (p != rq->idle)
1da177e4 3946 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3947 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3948 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3949 else
3950 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3951 /* Account for system time used */
3952 acct_update_integrals(p);
1da177e4
LT
3953}
3954
c66f08be
MN
3955/*
3956 * Account scaled system cpu time to a process.
3957 * @p: the process that the cpu time gets accounted to
3958 * @hardirq_offset: the offset to subtract from hardirq_count()
3959 * @cputime: the cpu time spent in kernel space since the last update
3960 */
3961void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3962{
3963 p->stimescaled = cputime_add(p->stimescaled, cputime);
3964}
3965
1da177e4
LT
3966/*
3967 * Account for involuntary wait time.
3968 * @p: the process from which the cpu time has been stolen
3969 * @steal: the cpu time spent in involuntary wait
3970 */
3971void account_steal_time(struct task_struct *p, cputime_t steal)
3972{
3973 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3974 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3975 struct rq *rq = this_rq();
1da177e4
LT
3976
3977 if (p == rq->idle) {
3978 p->stime = cputime_add(p->stime, steal);
3979 if (atomic_read(&rq->nr_iowait) > 0)
3980 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3981 else
3982 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3983 } else
1da177e4
LT
3984 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3985}
3986
7835b98b
CL
3987/*
3988 * This function gets called by the timer code, with HZ frequency.
3989 * We call it with interrupts disabled.
3990 *
3991 * It also gets called by the fork code, when changing the parent's
3992 * timeslices.
3993 */
3994void scheduler_tick(void)
3995{
7835b98b
CL
3996 int cpu = smp_processor_id();
3997 struct rq *rq = cpu_rq(cpu);
dd41f596 3998 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3999
4000 sched_clock_tick();
dd41f596
IM
4001
4002 spin_lock(&rq->lock);
3e51f33f 4003 update_rq_clock(rq);
f1a438d8 4004 update_cpu_load(rq);
fa85ae24 4005 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4006 spin_unlock(&rq->lock);
7835b98b 4007
e418e1c2 4008#ifdef CONFIG_SMP
dd41f596
IM
4009 rq->idle_at_tick = idle_cpu(cpu);
4010 trigger_load_balance(rq, cpu);
e418e1c2 4011#endif
1da177e4
LT
4012}
4013
1da177e4
LT
4014#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4015
43627582 4016void __kprobes add_preempt_count(int val)
1da177e4
LT
4017{
4018 /*
4019 * Underflow?
4020 */
9a11b49a
IM
4021 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4022 return;
1da177e4
LT
4023 preempt_count() += val;
4024 /*
4025 * Spinlock count overflowing soon?
4026 */
33859f7f
MOS
4027 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4028 PREEMPT_MASK - 10);
1da177e4
LT
4029}
4030EXPORT_SYMBOL(add_preempt_count);
4031
43627582 4032void __kprobes sub_preempt_count(int val)
1da177e4
LT
4033{
4034 /*
4035 * Underflow?
4036 */
9a11b49a
IM
4037 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4038 return;
1da177e4
LT
4039 /*
4040 * Is the spinlock portion underflowing?
4041 */
9a11b49a
IM
4042 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4043 !(preempt_count() & PREEMPT_MASK)))
4044 return;
4045
1da177e4
LT
4046 preempt_count() -= val;
4047}
4048EXPORT_SYMBOL(sub_preempt_count);
4049
4050#endif
4051
4052/*
dd41f596 4053 * Print scheduling while atomic bug:
1da177e4 4054 */
dd41f596 4055static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4056{
838225b4
SS
4057 struct pt_regs *regs = get_irq_regs();
4058
4059 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4060 prev->comm, prev->pid, preempt_count());
4061
dd41f596
IM
4062 debug_show_held_locks(prev);
4063 if (irqs_disabled())
4064 print_irqtrace_events(prev);
838225b4
SS
4065
4066 if (regs)
4067 show_regs(regs);
4068 else
4069 dump_stack();
dd41f596 4070}
1da177e4 4071
dd41f596
IM
4072/*
4073 * Various schedule()-time debugging checks and statistics:
4074 */
4075static inline void schedule_debug(struct task_struct *prev)
4076{
1da177e4 4077 /*
41a2d6cf 4078 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4079 * schedule() atomically, we ignore that path for now.
4080 * Otherwise, whine if we are scheduling when we should not be.
4081 */
3f33a7ce 4082 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4083 __schedule_bug(prev);
4084
1da177e4
LT
4085 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4086
2d72376b 4087 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4088#ifdef CONFIG_SCHEDSTATS
4089 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4090 schedstat_inc(this_rq(), bkl_count);
4091 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4092 }
4093#endif
dd41f596
IM
4094}
4095
4096/*
4097 * Pick up the highest-prio task:
4098 */
4099static inline struct task_struct *
ff95f3df 4100pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4101{
5522d5d5 4102 const struct sched_class *class;
dd41f596 4103 struct task_struct *p;
1da177e4
LT
4104
4105 /*
dd41f596
IM
4106 * Optimization: we know that if all tasks are in
4107 * the fair class we can call that function directly:
1da177e4 4108 */
dd41f596 4109 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4110 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4111 if (likely(p))
4112 return p;
1da177e4
LT
4113 }
4114
dd41f596
IM
4115 class = sched_class_highest;
4116 for ( ; ; ) {
fb8d4724 4117 p = class->pick_next_task(rq);
dd41f596
IM
4118 if (p)
4119 return p;
4120 /*
4121 * Will never be NULL as the idle class always
4122 * returns a non-NULL p:
4123 */
4124 class = class->next;
4125 }
4126}
1da177e4 4127
dd41f596
IM
4128/*
4129 * schedule() is the main scheduler function.
4130 */
4131asmlinkage void __sched schedule(void)
4132{
4133 struct task_struct *prev, *next;
67ca7bde 4134 unsigned long *switch_count;
dd41f596 4135 struct rq *rq;
dd41f596
IM
4136 int cpu;
4137
4138need_resched:
4139 preempt_disable();
4140 cpu = smp_processor_id();
4141 rq = cpu_rq(cpu);
4142 rcu_qsctr_inc(cpu);
4143 prev = rq->curr;
4144 switch_count = &prev->nivcsw;
4145
4146 release_kernel_lock(prev);
4147need_resched_nonpreemptible:
4148
4149 schedule_debug(prev);
1da177e4 4150
8f4d37ec
PZ
4151 hrtick_clear(rq);
4152
1e819950
IM
4153 /*
4154 * Do the rq-clock update outside the rq lock:
4155 */
4156 local_irq_disable();
3e51f33f 4157 update_rq_clock(rq);
1e819950
IM
4158 spin_lock(&rq->lock);
4159 clear_tsk_need_resched(prev);
1da177e4 4160
1da177e4 4161 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4162 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4163 signal_pending(prev))) {
1da177e4 4164 prev->state = TASK_RUNNING;
dd41f596 4165 } else {
2e1cb74a 4166 deactivate_task(rq, prev, 1);
1da177e4 4167 }
dd41f596 4168 switch_count = &prev->nvcsw;
1da177e4
LT
4169 }
4170
9a897c5a
SR
4171#ifdef CONFIG_SMP
4172 if (prev->sched_class->pre_schedule)
4173 prev->sched_class->pre_schedule(rq, prev);
4174#endif
f65eda4f 4175
dd41f596 4176 if (unlikely(!rq->nr_running))
1da177e4 4177 idle_balance(cpu, rq);
1da177e4 4178
31ee529c 4179 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4180 next = pick_next_task(rq, prev);
1da177e4 4181
1da177e4 4182 if (likely(prev != next)) {
673a90a1
DS
4183 sched_info_switch(prev, next);
4184
1da177e4
LT
4185 rq->nr_switches++;
4186 rq->curr = next;
4187 ++*switch_count;
4188
dd41f596 4189 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4190 /*
4191 * the context switch might have flipped the stack from under
4192 * us, hence refresh the local variables.
4193 */
4194 cpu = smp_processor_id();
4195 rq = cpu_rq(cpu);
1da177e4
LT
4196 } else
4197 spin_unlock_irq(&rq->lock);
4198
8f4d37ec
PZ
4199 hrtick_set(rq);
4200
4201 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4202 goto need_resched_nonpreemptible;
8f4d37ec 4203
1da177e4
LT
4204 preempt_enable_no_resched();
4205 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4206 goto need_resched;
4207}
1da177e4
LT
4208EXPORT_SYMBOL(schedule);
4209
4210#ifdef CONFIG_PREEMPT
4211/*
2ed6e34f 4212 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4213 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4214 * occur there and call schedule directly.
4215 */
4216asmlinkage void __sched preempt_schedule(void)
4217{
4218 struct thread_info *ti = current_thread_info();
6478d880 4219
1da177e4
LT
4220 /*
4221 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4222 * we do not want to preempt the current task. Just return..
1da177e4 4223 */
beed33a8 4224 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4225 return;
4226
3a5c359a
AK
4227 do {
4228 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4229 schedule();
3a5c359a 4230 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4231
3a5c359a
AK
4232 /*
4233 * Check again in case we missed a preemption opportunity
4234 * between schedule and now.
4235 */
4236 barrier();
4237 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4238}
1da177e4
LT
4239EXPORT_SYMBOL(preempt_schedule);
4240
4241/*
2ed6e34f 4242 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4243 * off of irq context.
4244 * Note, that this is called and return with irqs disabled. This will
4245 * protect us against recursive calling from irq.
4246 */
4247asmlinkage void __sched preempt_schedule_irq(void)
4248{
4249 struct thread_info *ti = current_thread_info();
6478d880 4250
2ed6e34f 4251 /* Catch callers which need to be fixed */
1da177e4
LT
4252 BUG_ON(ti->preempt_count || !irqs_disabled());
4253
3a5c359a
AK
4254 do {
4255 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4256 local_irq_enable();
4257 schedule();
4258 local_irq_disable();
3a5c359a 4259 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4260
3a5c359a
AK
4261 /*
4262 * Check again in case we missed a preemption opportunity
4263 * between schedule and now.
4264 */
4265 barrier();
4266 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4267}
4268
4269#endif /* CONFIG_PREEMPT */
4270
95cdf3b7
IM
4271int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4272 void *key)
1da177e4 4273{
48f24c4d 4274 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4275}
1da177e4
LT
4276EXPORT_SYMBOL(default_wake_function);
4277
4278/*
41a2d6cf
IM
4279 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4280 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4281 * number) then we wake all the non-exclusive tasks and one exclusive task.
4282 *
4283 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4284 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4285 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4286 */
4287static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4288 int nr_exclusive, int sync, void *key)
4289{
2e45874c 4290 wait_queue_t *curr, *next;
1da177e4 4291
2e45874c 4292 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4293 unsigned flags = curr->flags;
4294
1da177e4 4295 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4296 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4297 break;
4298 }
4299}
4300
4301/**
4302 * __wake_up - wake up threads blocked on a waitqueue.
4303 * @q: the waitqueue
4304 * @mode: which threads
4305 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4306 * @key: is directly passed to the wakeup function
1da177e4 4307 */
7ad5b3a5 4308void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4309 int nr_exclusive, void *key)
1da177e4
LT
4310{
4311 unsigned long flags;
4312
4313 spin_lock_irqsave(&q->lock, flags);
4314 __wake_up_common(q, mode, nr_exclusive, 0, key);
4315 spin_unlock_irqrestore(&q->lock, flags);
4316}
1da177e4
LT
4317EXPORT_SYMBOL(__wake_up);
4318
4319/*
4320 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4321 */
7ad5b3a5 4322void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4323{
4324 __wake_up_common(q, mode, 1, 0, NULL);
4325}
4326
4327/**
67be2dd1 4328 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4329 * @q: the waitqueue
4330 * @mode: which threads
4331 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4332 *
4333 * The sync wakeup differs that the waker knows that it will schedule
4334 * away soon, so while the target thread will be woken up, it will not
4335 * be migrated to another CPU - ie. the two threads are 'synchronized'
4336 * with each other. This can prevent needless bouncing between CPUs.
4337 *
4338 * On UP it can prevent extra preemption.
4339 */
7ad5b3a5 4340void
95cdf3b7 4341__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4342{
4343 unsigned long flags;
4344 int sync = 1;
4345
4346 if (unlikely(!q))
4347 return;
4348
4349 if (unlikely(!nr_exclusive))
4350 sync = 0;
4351
4352 spin_lock_irqsave(&q->lock, flags);
4353 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4354 spin_unlock_irqrestore(&q->lock, flags);
4355}
4356EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4357
b15136e9 4358void complete(struct completion *x)
1da177e4
LT
4359{
4360 unsigned long flags;
4361
4362 spin_lock_irqsave(&x->wait.lock, flags);
4363 x->done++;
d9514f6c 4364 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4365 spin_unlock_irqrestore(&x->wait.lock, flags);
4366}
4367EXPORT_SYMBOL(complete);
4368
b15136e9 4369void complete_all(struct completion *x)
1da177e4
LT
4370{
4371 unsigned long flags;
4372
4373 spin_lock_irqsave(&x->wait.lock, flags);
4374 x->done += UINT_MAX/2;
d9514f6c 4375 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4376 spin_unlock_irqrestore(&x->wait.lock, flags);
4377}
4378EXPORT_SYMBOL(complete_all);
4379
8cbbe86d
AK
4380static inline long __sched
4381do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4382{
1da177e4
LT
4383 if (!x->done) {
4384 DECLARE_WAITQUEUE(wait, current);
4385
4386 wait.flags |= WQ_FLAG_EXCLUSIVE;
4387 __add_wait_queue_tail(&x->wait, &wait);
4388 do {
009e577e
MW
4389 if ((state == TASK_INTERRUPTIBLE &&
4390 signal_pending(current)) ||
4391 (state == TASK_KILLABLE &&
4392 fatal_signal_pending(current))) {
8cbbe86d
AK
4393 __remove_wait_queue(&x->wait, &wait);
4394 return -ERESTARTSYS;
4395 }
4396 __set_current_state(state);
1da177e4
LT
4397 spin_unlock_irq(&x->wait.lock);
4398 timeout = schedule_timeout(timeout);
4399 spin_lock_irq(&x->wait.lock);
4400 if (!timeout) {
4401 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4402 return timeout;
1da177e4
LT
4403 }
4404 } while (!x->done);
4405 __remove_wait_queue(&x->wait, &wait);
4406 }
4407 x->done--;
1da177e4
LT
4408 return timeout;
4409}
1da177e4 4410
8cbbe86d
AK
4411static long __sched
4412wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4413{
1da177e4
LT
4414 might_sleep();
4415
4416 spin_lock_irq(&x->wait.lock);
8cbbe86d 4417 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4418 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4419 return timeout;
4420}
1da177e4 4421
b15136e9 4422void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4423{
4424 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4425}
8cbbe86d 4426EXPORT_SYMBOL(wait_for_completion);
1da177e4 4427
b15136e9 4428unsigned long __sched
8cbbe86d 4429wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4430{
8cbbe86d 4431 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4432}
8cbbe86d 4433EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4434
8cbbe86d 4435int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4436{
51e97990
AK
4437 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4438 if (t == -ERESTARTSYS)
4439 return t;
4440 return 0;
0fec171c 4441}
8cbbe86d 4442EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4443
b15136e9 4444unsigned long __sched
8cbbe86d
AK
4445wait_for_completion_interruptible_timeout(struct completion *x,
4446 unsigned long timeout)
0fec171c 4447{
8cbbe86d 4448 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4449}
8cbbe86d 4450EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4451
009e577e
MW
4452int __sched wait_for_completion_killable(struct completion *x)
4453{
4454 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4455 if (t == -ERESTARTSYS)
4456 return t;
4457 return 0;
4458}
4459EXPORT_SYMBOL(wait_for_completion_killable);
4460
8cbbe86d
AK
4461static long __sched
4462sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4463{
0fec171c
IM
4464 unsigned long flags;
4465 wait_queue_t wait;
4466
4467 init_waitqueue_entry(&wait, current);
1da177e4 4468
8cbbe86d 4469 __set_current_state(state);
1da177e4 4470
8cbbe86d
AK
4471 spin_lock_irqsave(&q->lock, flags);
4472 __add_wait_queue(q, &wait);
4473 spin_unlock(&q->lock);
4474 timeout = schedule_timeout(timeout);
4475 spin_lock_irq(&q->lock);
4476 __remove_wait_queue(q, &wait);
4477 spin_unlock_irqrestore(&q->lock, flags);
4478
4479 return timeout;
4480}
4481
4482void __sched interruptible_sleep_on(wait_queue_head_t *q)
4483{
4484 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4485}
1da177e4
LT
4486EXPORT_SYMBOL(interruptible_sleep_on);
4487
0fec171c 4488long __sched
95cdf3b7 4489interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4490{
8cbbe86d 4491 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4492}
1da177e4
LT
4493EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4494
0fec171c 4495void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4496{
8cbbe86d 4497 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4498}
1da177e4
LT
4499EXPORT_SYMBOL(sleep_on);
4500
0fec171c 4501long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4502{
8cbbe86d 4503 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4504}
1da177e4
LT
4505EXPORT_SYMBOL(sleep_on_timeout);
4506
b29739f9
IM
4507#ifdef CONFIG_RT_MUTEXES
4508
4509/*
4510 * rt_mutex_setprio - set the current priority of a task
4511 * @p: task
4512 * @prio: prio value (kernel-internal form)
4513 *
4514 * This function changes the 'effective' priority of a task. It does
4515 * not touch ->normal_prio like __setscheduler().
4516 *
4517 * Used by the rt_mutex code to implement priority inheritance logic.
4518 */
36c8b586 4519void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4520{
4521 unsigned long flags;
83b699ed 4522 int oldprio, on_rq, running;
70b97a7f 4523 struct rq *rq;
cb469845 4524 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4525
4526 BUG_ON(prio < 0 || prio > MAX_PRIO);
4527
4528 rq = task_rq_lock(p, &flags);
a8e504d2 4529 update_rq_clock(rq);
b29739f9 4530
d5f9f942 4531 oldprio = p->prio;
dd41f596 4532 on_rq = p->se.on_rq;
051a1d1a 4533 running = task_current(rq, p);
0e1f3483 4534 if (on_rq)
69be72c1 4535 dequeue_task(rq, p, 0);
0e1f3483
HS
4536 if (running)
4537 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4538
4539 if (rt_prio(prio))
4540 p->sched_class = &rt_sched_class;
4541 else
4542 p->sched_class = &fair_sched_class;
4543
b29739f9
IM
4544 p->prio = prio;
4545
0e1f3483
HS
4546 if (running)
4547 p->sched_class->set_curr_task(rq);
dd41f596 4548 if (on_rq) {
8159f87e 4549 enqueue_task(rq, p, 0);
cb469845
SR
4550
4551 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4552 }
4553 task_rq_unlock(rq, &flags);
4554}
4555
4556#endif
4557
36c8b586 4558void set_user_nice(struct task_struct *p, long nice)
1da177e4 4559{
dd41f596 4560 int old_prio, delta, on_rq;
1da177e4 4561 unsigned long flags;
70b97a7f 4562 struct rq *rq;
1da177e4
LT
4563
4564 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4565 return;
4566 /*
4567 * We have to be careful, if called from sys_setpriority(),
4568 * the task might be in the middle of scheduling on another CPU.
4569 */
4570 rq = task_rq_lock(p, &flags);
a8e504d2 4571 update_rq_clock(rq);
1da177e4
LT
4572 /*
4573 * The RT priorities are set via sched_setscheduler(), but we still
4574 * allow the 'normal' nice value to be set - but as expected
4575 * it wont have any effect on scheduling until the task is
dd41f596 4576 * SCHED_FIFO/SCHED_RR:
1da177e4 4577 */
e05606d3 4578 if (task_has_rt_policy(p)) {
1da177e4
LT
4579 p->static_prio = NICE_TO_PRIO(nice);
4580 goto out_unlock;
4581 }
dd41f596 4582 on_rq = p->se.on_rq;
6363ca57 4583 if (on_rq) {
69be72c1 4584 dequeue_task(rq, p, 0);
6363ca57
IM
4585 dec_load(rq, p);
4586 }
1da177e4 4587
1da177e4 4588 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4589 set_load_weight(p);
b29739f9
IM
4590 old_prio = p->prio;
4591 p->prio = effective_prio(p);
4592 delta = p->prio - old_prio;
1da177e4 4593
dd41f596 4594 if (on_rq) {
8159f87e 4595 enqueue_task(rq, p, 0);
6363ca57 4596 inc_load(rq, p);
1da177e4 4597 /*
d5f9f942
AM
4598 * If the task increased its priority or is running and
4599 * lowered its priority, then reschedule its CPU:
1da177e4 4600 */
d5f9f942 4601 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4602 resched_task(rq->curr);
4603 }
4604out_unlock:
4605 task_rq_unlock(rq, &flags);
4606}
1da177e4
LT
4607EXPORT_SYMBOL(set_user_nice);
4608
e43379f1
MM
4609/*
4610 * can_nice - check if a task can reduce its nice value
4611 * @p: task
4612 * @nice: nice value
4613 */
36c8b586 4614int can_nice(const struct task_struct *p, const int nice)
e43379f1 4615{
024f4747
MM
4616 /* convert nice value [19,-20] to rlimit style value [1,40] */
4617 int nice_rlim = 20 - nice;
48f24c4d 4618
e43379f1
MM
4619 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4620 capable(CAP_SYS_NICE));
4621}
4622
1da177e4
LT
4623#ifdef __ARCH_WANT_SYS_NICE
4624
4625/*
4626 * sys_nice - change the priority of the current process.
4627 * @increment: priority increment
4628 *
4629 * sys_setpriority is a more generic, but much slower function that
4630 * does similar things.
4631 */
4632asmlinkage long sys_nice(int increment)
4633{
48f24c4d 4634 long nice, retval;
1da177e4
LT
4635
4636 /*
4637 * Setpriority might change our priority at the same moment.
4638 * We don't have to worry. Conceptually one call occurs first
4639 * and we have a single winner.
4640 */
e43379f1
MM
4641 if (increment < -40)
4642 increment = -40;
1da177e4
LT
4643 if (increment > 40)
4644 increment = 40;
4645
4646 nice = PRIO_TO_NICE(current->static_prio) + increment;
4647 if (nice < -20)
4648 nice = -20;
4649 if (nice > 19)
4650 nice = 19;
4651
e43379f1
MM
4652 if (increment < 0 && !can_nice(current, nice))
4653 return -EPERM;
4654
1da177e4
LT
4655 retval = security_task_setnice(current, nice);
4656 if (retval)
4657 return retval;
4658
4659 set_user_nice(current, nice);
4660 return 0;
4661}
4662
4663#endif
4664
4665/**
4666 * task_prio - return the priority value of a given task.
4667 * @p: the task in question.
4668 *
4669 * This is the priority value as seen by users in /proc.
4670 * RT tasks are offset by -200. Normal tasks are centered
4671 * around 0, value goes from -16 to +15.
4672 */
36c8b586 4673int task_prio(const struct task_struct *p)
1da177e4
LT
4674{
4675 return p->prio - MAX_RT_PRIO;
4676}
4677
4678/**
4679 * task_nice - return the nice value of a given task.
4680 * @p: the task in question.
4681 */
36c8b586 4682int task_nice(const struct task_struct *p)
1da177e4
LT
4683{
4684 return TASK_NICE(p);
4685}
150d8bed 4686EXPORT_SYMBOL(task_nice);
1da177e4
LT
4687
4688/**
4689 * idle_cpu - is a given cpu idle currently?
4690 * @cpu: the processor in question.
4691 */
4692int idle_cpu(int cpu)
4693{
4694 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4695}
4696
1da177e4
LT
4697/**
4698 * idle_task - return the idle task for a given cpu.
4699 * @cpu: the processor in question.
4700 */
36c8b586 4701struct task_struct *idle_task(int cpu)
1da177e4
LT
4702{
4703 return cpu_rq(cpu)->idle;
4704}
4705
4706/**
4707 * find_process_by_pid - find a process with a matching PID value.
4708 * @pid: the pid in question.
4709 */
a9957449 4710static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4711{
228ebcbe 4712 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4713}
4714
4715/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4716static void
4717__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4718{
dd41f596 4719 BUG_ON(p->se.on_rq);
48f24c4d 4720
1da177e4 4721 p->policy = policy;
dd41f596
IM
4722 switch (p->policy) {
4723 case SCHED_NORMAL:
4724 case SCHED_BATCH:
4725 case SCHED_IDLE:
4726 p->sched_class = &fair_sched_class;
4727 break;
4728 case SCHED_FIFO:
4729 case SCHED_RR:
4730 p->sched_class = &rt_sched_class;
4731 break;
4732 }
4733
1da177e4 4734 p->rt_priority = prio;
b29739f9
IM
4735 p->normal_prio = normal_prio(p);
4736 /* we are holding p->pi_lock already */
4737 p->prio = rt_mutex_getprio(p);
2dd73a4f 4738 set_load_weight(p);
1da177e4
LT
4739}
4740
4741/**
72fd4a35 4742 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4743 * @p: the task in question.
4744 * @policy: new policy.
4745 * @param: structure containing the new RT priority.
5fe1d75f 4746 *
72fd4a35 4747 * NOTE that the task may be already dead.
1da177e4 4748 */
95cdf3b7
IM
4749int sched_setscheduler(struct task_struct *p, int policy,
4750 struct sched_param *param)
1da177e4 4751{
83b699ed 4752 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4753 unsigned long flags;
cb469845 4754 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4755 struct rq *rq;
1da177e4 4756
66e5393a
SR
4757 /* may grab non-irq protected spin_locks */
4758 BUG_ON(in_interrupt());
1da177e4
LT
4759recheck:
4760 /* double check policy once rq lock held */
4761 if (policy < 0)
4762 policy = oldpolicy = p->policy;
4763 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4764 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4765 policy != SCHED_IDLE)
b0a9499c 4766 return -EINVAL;
1da177e4
LT
4767 /*
4768 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4769 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4770 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4771 */
4772 if (param->sched_priority < 0 ||
95cdf3b7 4773 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4774 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4775 return -EINVAL;
e05606d3 4776 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4777 return -EINVAL;
4778
37e4ab3f
OC
4779 /*
4780 * Allow unprivileged RT tasks to decrease priority:
4781 */
4782 if (!capable(CAP_SYS_NICE)) {
e05606d3 4783 if (rt_policy(policy)) {
8dc3e909 4784 unsigned long rlim_rtprio;
8dc3e909
ON
4785
4786 if (!lock_task_sighand(p, &flags))
4787 return -ESRCH;
4788 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4789 unlock_task_sighand(p, &flags);
4790
4791 /* can't set/change the rt policy */
4792 if (policy != p->policy && !rlim_rtprio)
4793 return -EPERM;
4794
4795 /* can't increase priority */
4796 if (param->sched_priority > p->rt_priority &&
4797 param->sched_priority > rlim_rtprio)
4798 return -EPERM;
4799 }
dd41f596
IM
4800 /*
4801 * Like positive nice levels, dont allow tasks to
4802 * move out of SCHED_IDLE either:
4803 */
4804 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4805 return -EPERM;
5fe1d75f 4806
37e4ab3f
OC
4807 /* can't change other user's priorities */
4808 if ((current->euid != p->euid) &&
4809 (current->euid != p->uid))
4810 return -EPERM;
4811 }
1da177e4 4812
b68aa230
PZ
4813#ifdef CONFIG_RT_GROUP_SCHED
4814 /*
4815 * Do not allow realtime tasks into groups that have no runtime
4816 * assigned.
4817 */
d0b27fa7 4818 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4819 return -EPERM;
4820#endif
4821
1da177e4
LT
4822 retval = security_task_setscheduler(p, policy, param);
4823 if (retval)
4824 return retval;
b29739f9
IM
4825 /*
4826 * make sure no PI-waiters arrive (or leave) while we are
4827 * changing the priority of the task:
4828 */
4829 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4830 /*
4831 * To be able to change p->policy safely, the apropriate
4832 * runqueue lock must be held.
4833 */
b29739f9 4834 rq = __task_rq_lock(p);
1da177e4
LT
4835 /* recheck policy now with rq lock held */
4836 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4837 policy = oldpolicy = -1;
b29739f9
IM
4838 __task_rq_unlock(rq);
4839 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4840 goto recheck;
4841 }
2daa3577 4842 update_rq_clock(rq);
dd41f596 4843 on_rq = p->se.on_rq;
051a1d1a 4844 running = task_current(rq, p);
0e1f3483 4845 if (on_rq)
2e1cb74a 4846 deactivate_task(rq, p, 0);
0e1f3483
HS
4847 if (running)
4848 p->sched_class->put_prev_task(rq, p);
f6b53205 4849
1da177e4 4850 oldprio = p->prio;
dd41f596 4851 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4852
0e1f3483
HS
4853 if (running)
4854 p->sched_class->set_curr_task(rq);
dd41f596
IM
4855 if (on_rq) {
4856 activate_task(rq, p, 0);
cb469845
SR
4857
4858 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4859 }
b29739f9
IM
4860 __task_rq_unlock(rq);
4861 spin_unlock_irqrestore(&p->pi_lock, flags);
4862
95e02ca9
TG
4863 rt_mutex_adjust_pi(p);
4864
1da177e4
LT
4865 return 0;
4866}
4867EXPORT_SYMBOL_GPL(sched_setscheduler);
4868
95cdf3b7
IM
4869static int
4870do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4871{
1da177e4
LT
4872 struct sched_param lparam;
4873 struct task_struct *p;
36c8b586 4874 int retval;
1da177e4
LT
4875
4876 if (!param || pid < 0)
4877 return -EINVAL;
4878 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4879 return -EFAULT;
5fe1d75f
ON
4880
4881 rcu_read_lock();
4882 retval = -ESRCH;
1da177e4 4883 p = find_process_by_pid(pid);
5fe1d75f
ON
4884 if (p != NULL)
4885 retval = sched_setscheduler(p, policy, &lparam);
4886 rcu_read_unlock();
36c8b586 4887
1da177e4
LT
4888 return retval;
4889}
4890
4891/**
4892 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4893 * @pid: the pid in question.
4894 * @policy: new policy.
4895 * @param: structure containing the new RT priority.
4896 */
41a2d6cf
IM
4897asmlinkage long
4898sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4899{
c21761f1
JB
4900 /* negative values for policy are not valid */
4901 if (policy < 0)
4902 return -EINVAL;
4903
1da177e4
LT
4904 return do_sched_setscheduler(pid, policy, param);
4905}
4906
4907/**
4908 * sys_sched_setparam - set/change the RT priority of a thread
4909 * @pid: the pid in question.
4910 * @param: structure containing the new RT priority.
4911 */
4912asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4913{
4914 return do_sched_setscheduler(pid, -1, param);
4915}
4916
4917/**
4918 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4919 * @pid: the pid in question.
4920 */
4921asmlinkage long sys_sched_getscheduler(pid_t pid)
4922{
36c8b586 4923 struct task_struct *p;
3a5c359a 4924 int retval;
1da177e4
LT
4925
4926 if (pid < 0)
3a5c359a 4927 return -EINVAL;
1da177e4
LT
4928
4929 retval = -ESRCH;
4930 read_lock(&tasklist_lock);
4931 p = find_process_by_pid(pid);
4932 if (p) {
4933 retval = security_task_getscheduler(p);
4934 if (!retval)
4935 retval = p->policy;
4936 }
4937 read_unlock(&tasklist_lock);
1da177e4
LT
4938 return retval;
4939}
4940
4941/**
4942 * sys_sched_getscheduler - get the RT priority of a thread
4943 * @pid: the pid in question.
4944 * @param: structure containing the RT priority.
4945 */
4946asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4947{
4948 struct sched_param lp;
36c8b586 4949 struct task_struct *p;
3a5c359a 4950 int retval;
1da177e4
LT
4951
4952 if (!param || pid < 0)
3a5c359a 4953 return -EINVAL;
1da177e4
LT
4954
4955 read_lock(&tasklist_lock);
4956 p = find_process_by_pid(pid);
4957 retval = -ESRCH;
4958 if (!p)
4959 goto out_unlock;
4960
4961 retval = security_task_getscheduler(p);
4962 if (retval)
4963 goto out_unlock;
4964
4965 lp.sched_priority = p->rt_priority;
4966 read_unlock(&tasklist_lock);
4967
4968 /*
4969 * This one might sleep, we cannot do it with a spinlock held ...
4970 */
4971 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4972
1da177e4
LT
4973 return retval;
4974
4975out_unlock:
4976 read_unlock(&tasklist_lock);
4977 return retval;
4978}
4979
b53e921b 4980long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 4981{
1da177e4 4982 cpumask_t cpus_allowed;
b53e921b 4983 cpumask_t new_mask = *in_mask;
36c8b586
IM
4984 struct task_struct *p;
4985 int retval;
1da177e4 4986
95402b38 4987 get_online_cpus();
1da177e4
LT
4988 read_lock(&tasklist_lock);
4989
4990 p = find_process_by_pid(pid);
4991 if (!p) {
4992 read_unlock(&tasklist_lock);
95402b38 4993 put_online_cpus();
1da177e4
LT
4994 return -ESRCH;
4995 }
4996
4997 /*
4998 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4999 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5000 * usage count and then drop tasklist_lock.
5001 */
5002 get_task_struct(p);
5003 read_unlock(&tasklist_lock);
5004
5005 retval = -EPERM;
5006 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5007 !capable(CAP_SYS_NICE))
5008 goto out_unlock;
5009
e7834f8f
DQ
5010 retval = security_task_setscheduler(p, 0, NULL);
5011 if (retval)
5012 goto out_unlock;
5013
f9a86fcb 5014 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5015 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5016 again:
7c16ec58 5017 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5018
8707d8b8 5019 if (!retval) {
f9a86fcb 5020 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5021 if (!cpus_subset(new_mask, cpus_allowed)) {
5022 /*
5023 * We must have raced with a concurrent cpuset
5024 * update. Just reset the cpus_allowed to the
5025 * cpuset's cpus_allowed
5026 */
5027 new_mask = cpus_allowed;
5028 goto again;
5029 }
5030 }
1da177e4
LT
5031out_unlock:
5032 put_task_struct(p);
95402b38 5033 put_online_cpus();
1da177e4
LT
5034 return retval;
5035}
5036
5037static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5038 cpumask_t *new_mask)
5039{
5040 if (len < sizeof(cpumask_t)) {
5041 memset(new_mask, 0, sizeof(cpumask_t));
5042 } else if (len > sizeof(cpumask_t)) {
5043 len = sizeof(cpumask_t);
5044 }
5045 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5046}
5047
5048/**
5049 * sys_sched_setaffinity - set the cpu affinity of a process
5050 * @pid: pid of the process
5051 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5052 * @user_mask_ptr: user-space pointer to the new cpu mask
5053 */
5054asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5055 unsigned long __user *user_mask_ptr)
5056{
5057 cpumask_t new_mask;
5058 int retval;
5059
5060 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5061 if (retval)
5062 return retval;
5063
b53e921b 5064 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5065}
5066
5067/*
5068 * Represents all cpu's present in the system
5069 * In systems capable of hotplug, this map could dynamically grow
5070 * as new cpu's are detected in the system via any platform specific
5071 * method, such as ACPI for e.g.
5072 */
5073
4cef0c61 5074cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5075EXPORT_SYMBOL(cpu_present_map);
5076
5077#ifndef CONFIG_SMP
4cef0c61 5078cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5079EXPORT_SYMBOL(cpu_online_map);
5080
4cef0c61 5081cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5082EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5083#endif
5084
5085long sched_getaffinity(pid_t pid, cpumask_t *mask)
5086{
36c8b586 5087 struct task_struct *p;
1da177e4 5088 int retval;
1da177e4 5089
95402b38 5090 get_online_cpus();
1da177e4
LT
5091 read_lock(&tasklist_lock);
5092
5093 retval = -ESRCH;
5094 p = find_process_by_pid(pid);
5095 if (!p)
5096 goto out_unlock;
5097
e7834f8f
DQ
5098 retval = security_task_getscheduler(p);
5099 if (retval)
5100 goto out_unlock;
5101
2f7016d9 5102 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5103
5104out_unlock:
5105 read_unlock(&tasklist_lock);
95402b38 5106 put_online_cpus();
1da177e4 5107
9531b62f 5108 return retval;
1da177e4
LT
5109}
5110
5111/**
5112 * sys_sched_getaffinity - get the cpu affinity of a process
5113 * @pid: pid of the process
5114 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5115 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5116 */
5117asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5118 unsigned long __user *user_mask_ptr)
5119{
5120 int ret;
5121 cpumask_t mask;
5122
5123 if (len < sizeof(cpumask_t))
5124 return -EINVAL;
5125
5126 ret = sched_getaffinity(pid, &mask);
5127 if (ret < 0)
5128 return ret;
5129
5130 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5131 return -EFAULT;
5132
5133 return sizeof(cpumask_t);
5134}
5135
5136/**
5137 * sys_sched_yield - yield the current processor to other threads.
5138 *
dd41f596
IM
5139 * This function yields the current CPU to other tasks. If there are no
5140 * other threads running on this CPU then this function will return.
1da177e4
LT
5141 */
5142asmlinkage long sys_sched_yield(void)
5143{
70b97a7f 5144 struct rq *rq = this_rq_lock();
1da177e4 5145
2d72376b 5146 schedstat_inc(rq, yld_count);
4530d7ab 5147 current->sched_class->yield_task(rq);
1da177e4
LT
5148
5149 /*
5150 * Since we are going to call schedule() anyway, there's
5151 * no need to preempt or enable interrupts:
5152 */
5153 __release(rq->lock);
8a25d5de 5154 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5155 _raw_spin_unlock(&rq->lock);
5156 preempt_enable_no_resched();
5157
5158 schedule();
5159
5160 return 0;
5161}
5162
e7b38404 5163static void __cond_resched(void)
1da177e4 5164{
8e0a43d8
IM
5165#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5166 __might_sleep(__FILE__, __LINE__);
5167#endif
5bbcfd90
IM
5168 /*
5169 * The BKS might be reacquired before we have dropped
5170 * PREEMPT_ACTIVE, which could trigger a second
5171 * cond_resched() call.
5172 */
1da177e4
LT
5173 do {
5174 add_preempt_count(PREEMPT_ACTIVE);
5175 schedule();
5176 sub_preempt_count(PREEMPT_ACTIVE);
5177 } while (need_resched());
5178}
5179
02b67cc3 5180int __sched _cond_resched(void)
1da177e4 5181{
9414232f
IM
5182 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5183 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5184 __cond_resched();
5185 return 1;
5186 }
5187 return 0;
5188}
02b67cc3 5189EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5190
5191/*
5192 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5193 * call schedule, and on return reacquire the lock.
5194 *
41a2d6cf 5195 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5196 * operations here to prevent schedule() from being called twice (once via
5197 * spin_unlock(), once by hand).
5198 */
95cdf3b7 5199int cond_resched_lock(spinlock_t *lock)
1da177e4 5200{
95c354fe 5201 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5202 int ret = 0;
5203
95c354fe 5204 if (spin_needbreak(lock) || resched) {
1da177e4 5205 spin_unlock(lock);
95c354fe
NP
5206 if (resched && need_resched())
5207 __cond_resched();
5208 else
5209 cpu_relax();
6df3cecb 5210 ret = 1;
1da177e4 5211 spin_lock(lock);
1da177e4 5212 }
6df3cecb 5213 return ret;
1da177e4 5214}
1da177e4
LT
5215EXPORT_SYMBOL(cond_resched_lock);
5216
5217int __sched cond_resched_softirq(void)
5218{
5219 BUG_ON(!in_softirq());
5220
9414232f 5221 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5222 local_bh_enable();
1da177e4
LT
5223 __cond_resched();
5224 local_bh_disable();
5225 return 1;
5226 }
5227 return 0;
5228}
1da177e4
LT
5229EXPORT_SYMBOL(cond_resched_softirq);
5230
1da177e4
LT
5231/**
5232 * yield - yield the current processor to other threads.
5233 *
72fd4a35 5234 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5235 * thread runnable and calls sys_sched_yield().
5236 */
5237void __sched yield(void)
5238{
5239 set_current_state(TASK_RUNNING);
5240 sys_sched_yield();
5241}
1da177e4
LT
5242EXPORT_SYMBOL(yield);
5243
5244/*
41a2d6cf 5245 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5246 * that process accounting knows that this is a task in IO wait state.
5247 *
5248 * But don't do that if it is a deliberate, throttling IO wait (this task
5249 * has set its backing_dev_info: the queue against which it should throttle)
5250 */
5251void __sched io_schedule(void)
5252{
70b97a7f 5253 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5254
0ff92245 5255 delayacct_blkio_start();
1da177e4
LT
5256 atomic_inc(&rq->nr_iowait);
5257 schedule();
5258 atomic_dec(&rq->nr_iowait);
0ff92245 5259 delayacct_blkio_end();
1da177e4 5260}
1da177e4
LT
5261EXPORT_SYMBOL(io_schedule);
5262
5263long __sched io_schedule_timeout(long timeout)
5264{
70b97a7f 5265 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5266 long ret;
5267
0ff92245 5268 delayacct_blkio_start();
1da177e4
LT
5269 atomic_inc(&rq->nr_iowait);
5270 ret = schedule_timeout(timeout);
5271 atomic_dec(&rq->nr_iowait);
0ff92245 5272 delayacct_blkio_end();
1da177e4
LT
5273 return ret;
5274}
5275
5276/**
5277 * sys_sched_get_priority_max - return maximum RT priority.
5278 * @policy: scheduling class.
5279 *
5280 * this syscall returns the maximum rt_priority that can be used
5281 * by a given scheduling class.
5282 */
5283asmlinkage long sys_sched_get_priority_max(int policy)
5284{
5285 int ret = -EINVAL;
5286
5287 switch (policy) {
5288 case SCHED_FIFO:
5289 case SCHED_RR:
5290 ret = MAX_USER_RT_PRIO-1;
5291 break;
5292 case SCHED_NORMAL:
b0a9499c 5293 case SCHED_BATCH:
dd41f596 5294 case SCHED_IDLE:
1da177e4
LT
5295 ret = 0;
5296 break;
5297 }
5298 return ret;
5299}
5300
5301/**
5302 * sys_sched_get_priority_min - return minimum RT priority.
5303 * @policy: scheduling class.
5304 *
5305 * this syscall returns the minimum rt_priority that can be used
5306 * by a given scheduling class.
5307 */
5308asmlinkage long sys_sched_get_priority_min(int policy)
5309{
5310 int ret = -EINVAL;
5311
5312 switch (policy) {
5313 case SCHED_FIFO:
5314 case SCHED_RR:
5315 ret = 1;
5316 break;
5317 case SCHED_NORMAL:
b0a9499c 5318 case SCHED_BATCH:
dd41f596 5319 case SCHED_IDLE:
1da177e4
LT
5320 ret = 0;
5321 }
5322 return ret;
5323}
5324
5325/**
5326 * sys_sched_rr_get_interval - return the default timeslice of a process.
5327 * @pid: pid of the process.
5328 * @interval: userspace pointer to the timeslice value.
5329 *
5330 * this syscall writes the default timeslice value of a given process
5331 * into the user-space timespec buffer. A value of '0' means infinity.
5332 */
5333asmlinkage
5334long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5335{
36c8b586 5336 struct task_struct *p;
a4ec24b4 5337 unsigned int time_slice;
3a5c359a 5338 int retval;
1da177e4 5339 struct timespec t;
1da177e4
LT
5340
5341 if (pid < 0)
3a5c359a 5342 return -EINVAL;
1da177e4
LT
5343
5344 retval = -ESRCH;
5345 read_lock(&tasklist_lock);
5346 p = find_process_by_pid(pid);
5347 if (!p)
5348 goto out_unlock;
5349
5350 retval = security_task_getscheduler(p);
5351 if (retval)
5352 goto out_unlock;
5353
77034937
IM
5354 /*
5355 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5356 * tasks that are on an otherwise idle runqueue:
5357 */
5358 time_slice = 0;
5359 if (p->policy == SCHED_RR) {
a4ec24b4 5360 time_slice = DEF_TIMESLICE;
1868f958 5361 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5362 struct sched_entity *se = &p->se;
5363 unsigned long flags;
5364 struct rq *rq;
5365
5366 rq = task_rq_lock(p, &flags);
77034937
IM
5367 if (rq->cfs.load.weight)
5368 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5369 task_rq_unlock(rq, &flags);
5370 }
1da177e4 5371 read_unlock(&tasklist_lock);
a4ec24b4 5372 jiffies_to_timespec(time_slice, &t);
1da177e4 5373 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5374 return retval;
3a5c359a 5375
1da177e4
LT
5376out_unlock:
5377 read_unlock(&tasklist_lock);
5378 return retval;
5379}
5380
2ed6e34f 5381static const char stat_nam[] = "RSDTtZX";
36c8b586 5382
82a1fcb9 5383void sched_show_task(struct task_struct *p)
1da177e4 5384{
1da177e4 5385 unsigned long free = 0;
36c8b586 5386 unsigned state;
1da177e4 5387
1da177e4 5388 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5389 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5390 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5391#if BITS_PER_LONG == 32
1da177e4 5392 if (state == TASK_RUNNING)
cc4ea795 5393 printk(KERN_CONT " running ");
1da177e4 5394 else
cc4ea795 5395 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5396#else
5397 if (state == TASK_RUNNING)
cc4ea795 5398 printk(KERN_CONT " running task ");
1da177e4 5399 else
cc4ea795 5400 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5401#endif
5402#ifdef CONFIG_DEBUG_STACK_USAGE
5403 {
10ebffde 5404 unsigned long *n = end_of_stack(p);
1da177e4
LT
5405 while (!*n)
5406 n++;
10ebffde 5407 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5408 }
5409#endif
ba25f9dc 5410 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5411 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5412
5fb5e6de 5413 show_stack(p, NULL);
1da177e4
LT
5414}
5415
e59e2ae2 5416void show_state_filter(unsigned long state_filter)
1da177e4 5417{
36c8b586 5418 struct task_struct *g, *p;
1da177e4 5419
4bd77321
IM
5420#if BITS_PER_LONG == 32
5421 printk(KERN_INFO
5422 " task PC stack pid father\n");
1da177e4 5423#else
4bd77321
IM
5424 printk(KERN_INFO
5425 " task PC stack pid father\n");
1da177e4
LT
5426#endif
5427 read_lock(&tasklist_lock);
5428 do_each_thread(g, p) {
5429 /*
5430 * reset the NMI-timeout, listing all files on a slow
5431 * console might take alot of time:
5432 */
5433 touch_nmi_watchdog();
39bc89fd 5434 if (!state_filter || (p->state & state_filter))
82a1fcb9 5435 sched_show_task(p);
1da177e4
LT
5436 } while_each_thread(g, p);
5437
04c9167f
JF
5438 touch_all_softlockup_watchdogs();
5439
dd41f596
IM
5440#ifdef CONFIG_SCHED_DEBUG
5441 sysrq_sched_debug_show();
5442#endif
1da177e4 5443 read_unlock(&tasklist_lock);
e59e2ae2
IM
5444 /*
5445 * Only show locks if all tasks are dumped:
5446 */
5447 if (state_filter == -1)
5448 debug_show_all_locks();
1da177e4
LT
5449}
5450
1df21055
IM
5451void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5452{
dd41f596 5453 idle->sched_class = &idle_sched_class;
1df21055
IM
5454}
5455
f340c0d1
IM
5456/**
5457 * init_idle - set up an idle thread for a given CPU
5458 * @idle: task in question
5459 * @cpu: cpu the idle task belongs to
5460 *
5461 * NOTE: this function does not set the idle thread's NEED_RESCHED
5462 * flag, to make booting more robust.
5463 */
5c1e1767 5464void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5465{
70b97a7f 5466 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5467 unsigned long flags;
5468
dd41f596
IM
5469 __sched_fork(idle);
5470 idle->se.exec_start = sched_clock();
5471
b29739f9 5472 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5473 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5474 __set_task_cpu(idle, cpu);
1da177e4
LT
5475
5476 spin_lock_irqsave(&rq->lock, flags);
5477 rq->curr = rq->idle = idle;
4866cde0
NP
5478#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5479 idle->oncpu = 1;
5480#endif
1da177e4
LT
5481 spin_unlock_irqrestore(&rq->lock, flags);
5482
5483 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5484#if defined(CONFIG_PREEMPT)
5485 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5486#else
a1261f54 5487 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5488#endif
dd41f596
IM
5489 /*
5490 * The idle tasks have their own, simple scheduling class:
5491 */
5492 idle->sched_class = &idle_sched_class;
1da177e4
LT
5493}
5494
5495/*
5496 * In a system that switches off the HZ timer nohz_cpu_mask
5497 * indicates which cpus entered this state. This is used
5498 * in the rcu update to wait only for active cpus. For system
5499 * which do not switch off the HZ timer nohz_cpu_mask should
5500 * always be CPU_MASK_NONE.
5501 */
5502cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5503
19978ca6
IM
5504/*
5505 * Increase the granularity value when there are more CPUs,
5506 * because with more CPUs the 'effective latency' as visible
5507 * to users decreases. But the relationship is not linear,
5508 * so pick a second-best guess by going with the log2 of the
5509 * number of CPUs.
5510 *
5511 * This idea comes from the SD scheduler of Con Kolivas:
5512 */
5513static inline void sched_init_granularity(void)
5514{
5515 unsigned int factor = 1 + ilog2(num_online_cpus());
5516 const unsigned long limit = 200000000;
5517
5518 sysctl_sched_min_granularity *= factor;
5519 if (sysctl_sched_min_granularity > limit)
5520 sysctl_sched_min_granularity = limit;
5521
5522 sysctl_sched_latency *= factor;
5523 if (sysctl_sched_latency > limit)
5524 sysctl_sched_latency = limit;
5525
5526 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5527}
5528
1da177e4
LT
5529#ifdef CONFIG_SMP
5530/*
5531 * This is how migration works:
5532 *
70b97a7f 5533 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5534 * runqueue and wake up that CPU's migration thread.
5535 * 2) we down() the locked semaphore => thread blocks.
5536 * 3) migration thread wakes up (implicitly it forces the migrated
5537 * thread off the CPU)
5538 * 4) it gets the migration request and checks whether the migrated
5539 * task is still in the wrong runqueue.
5540 * 5) if it's in the wrong runqueue then the migration thread removes
5541 * it and puts it into the right queue.
5542 * 6) migration thread up()s the semaphore.
5543 * 7) we wake up and the migration is done.
5544 */
5545
5546/*
5547 * Change a given task's CPU affinity. Migrate the thread to a
5548 * proper CPU and schedule it away if the CPU it's executing on
5549 * is removed from the allowed bitmask.
5550 *
5551 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5552 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5553 * call is not atomic; no spinlocks may be held.
5554 */
cd8ba7cd 5555int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5556{
70b97a7f 5557 struct migration_req req;
1da177e4 5558 unsigned long flags;
70b97a7f 5559 struct rq *rq;
48f24c4d 5560 int ret = 0;
1da177e4
LT
5561
5562 rq = task_rq_lock(p, &flags);
cd8ba7cd 5563 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5564 ret = -EINVAL;
5565 goto out;
5566 }
5567
73fe6aae 5568 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5569 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5570 else {
cd8ba7cd
MT
5571 p->cpus_allowed = *new_mask;
5572 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5573 }
5574
1da177e4 5575 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5576 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5577 goto out;
5578
cd8ba7cd 5579 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5580 /* Need help from migration thread: drop lock and wait. */
5581 task_rq_unlock(rq, &flags);
5582 wake_up_process(rq->migration_thread);
5583 wait_for_completion(&req.done);
5584 tlb_migrate_finish(p->mm);
5585 return 0;
5586 }
5587out:
5588 task_rq_unlock(rq, &flags);
48f24c4d 5589
1da177e4
LT
5590 return ret;
5591}
cd8ba7cd 5592EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5593
5594/*
41a2d6cf 5595 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5596 * this because either it can't run here any more (set_cpus_allowed()
5597 * away from this CPU, or CPU going down), or because we're
5598 * attempting to rebalance this task on exec (sched_exec).
5599 *
5600 * So we race with normal scheduler movements, but that's OK, as long
5601 * as the task is no longer on this CPU.
efc30814
KK
5602 *
5603 * Returns non-zero if task was successfully migrated.
1da177e4 5604 */
efc30814 5605static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5606{
70b97a7f 5607 struct rq *rq_dest, *rq_src;
dd41f596 5608 int ret = 0, on_rq;
1da177e4
LT
5609
5610 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5611 return ret;
1da177e4
LT
5612
5613 rq_src = cpu_rq(src_cpu);
5614 rq_dest = cpu_rq(dest_cpu);
5615
5616 double_rq_lock(rq_src, rq_dest);
5617 /* Already moved. */
5618 if (task_cpu(p) != src_cpu)
5619 goto out;
5620 /* Affinity changed (again). */
5621 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5622 goto out;
5623
dd41f596 5624 on_rq = p->se.on_rq;
6e82a3be 5625 if (on_rq)
2e1cb74a 5626 deactivate_task(rq_src, p, 0);
6e82a3be 5627
1da177e4 5628 set_task_cpu(p, dest_cpu);
dd41f596
IM
5629 if (on_rq) {
5630 activate_task(rq_dest, p, 0);
5631 check_preempt_curr(rq_dest, p);
1da177e4 5632 }
efc30814 5633 ret = 1;
1da177e4
LT
5634out:
5635 double_rq_unlock(rq_src, rq_dest);
efc30814 5636 return ret;
1da177e4
LT
5637}
5638
5639/*
5640 * migration_thread - this is a highprio system thread that performs
5641 * thread migration by bumping thread off CPU then 'pushing' onto
5642 * another runqueue.
5643 */
95cdf3b7 5644static int migration_thread(void *data)
1da177e4 5645{
1da177e4 5646 int cpu = (long)data;
70b97a7f 5647 struct rq *rq;
1da177e4
LT
5648
5649 rq = cpu_rq(cpu);
5650 BUG_ON(rq->migration_thread != current);
5651
5652 set_current_state(TASK_INTERRUPTIBLE);
5653 while (!kthread_should_stop()) {
70b97a7f 5654 struct migration_req *req;
1da177e4 5655 struct list_head *head;
1da177e4 5656
1da177e4
LT
5657 spin_lock_irq(&rq->lock);
5658
5659 if (cpu_is_offline(cpu)) {
5660 spin_unlock_irq(&rq->lock);
5661 goto wait_to_die;
5662 }
5663
5664 if (rq->active_balance) {
5665 active_load_balance(rq, cpu);
5666 rq->active_balance = 0;
5667 }
5668
5669 head = &rq->migration_queue;
5670
5671 if (list_empty(head)) {
5672 spin_unlock_irq(&rq->lock);
5673 schedule();
5674 set_current_state(TASK_INTERRUPTIBLE);
5675 continue;
5676 }
70b97a7f 5677 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5678 list_del_init(head->next);
5679
674311d5
NP
5680 spin_unlock(&rq->lock);
5681 __migrate_task(req->task, cpu, req->dest_cpu);
5682 local_irq_enable();
1da177e4
LT
5683
5684 complete(&req->done);
5685 }
5686 __set_current_state(TASK_RUNNING);
5687 return 0;
5688
5689wait_to_die:
5690 /* Wait for kthread_stop */
5691 set_current_state(TASK_INTERRUPTIBLE);
5692 while (!kthread_should_stop()) {
5693 schedule();
5694 set_current_state(TASK_INTERRUPTIBLE);
5695 }
5696 __set_current_state(TASK_RUNNING);
5697 return 0;
5698}
5699
5700#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5701
5702static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5703{
5704 int ret;
5705
5706 local_irq_disable();
5707 ret = __migrate_task(p, src_cpu, dest_cpu);
5708 local_irq_enable();
5709 return ret;
5710}
5711
054b9108 5712/*
3a4fa0a2 5713 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5714 * NOTE: interrupts should be disabled by the caller
5715 */
48f24c4d 5716static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5717{
efc30814 5718 unsigned long flags;
1da177e4 5719 cpumask_t mask;
70b97a7f
IM
5720 struct rq *rq;
5721 int dest_cpu;
1da177e4 5722
3a5c359a
AK
5723 do {
5724 /* On same node? */
5725 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5726 cpus_and(mask, mask, p->cpus_allowed);
5727 dest_cpu = any_online_cpu(mask);
5728
5729 /* On any allowed CPU? */
434d53b0 5730 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5731 dest_cpu = any_online_cpu(p->cpus_allowed);
5732
5733 /* No more Mr. Nice Guy. */
434d53b0 5734 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5735 cpumask_t cpus_allowed;
5736
5737 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5738 /*
5739 * Try to stay on the same cpuset, where the
5740 * current cpuset may be a subset of all cpus.
5741 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5742 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5743 * called within calls to cpuset_lock/cpuset_unlock.
5744 */
3a5c359a 5745 rq = task_rq_lock(p, &flags);
470fd646 5746 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5747 dest_cpu = any_online_cpu(p->cpus_allowed);
5748 task_rq_unlock(rq, &flags);
1da177e4 5749
3a5c359a
AK
5750 /*
5751 * Don't tell them about moving exiting tasks or
5752 * kernel threads (both mm NULL), since they never
5753 * leave kernel.
5754 */
41a2d6cf 5755 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5756 printk(KERN_INFO "process %d (%s) no "
5757 "longer affine to cpu%d\n",
41a2d6cf
IM
5758 task_pid_nr(p), p->comm, dead_cpu);
5759 }
3a5c359a 5760 }
f7b4cddc 5761 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5762}
5763
5764/*
5765 * While a dead CPU has no uninterruptible tasks queued at this point,
5766 * it might still have a nonzero ->nr_uninterruptible counter, because
5767 * for performance reasons the counter is not stricly tracking tasks to
5768 * their home CPUs. So we just add the counter to another CPU's counter,
5769 * to keep the global sum constant after CPU-down:
5770 */
70b97a7f 5771static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5772{
7c16ec58 5773 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5774 unsigned long flags;
5775
5776 local_irq_save(flags);
5777 double_rq_lock(rq_src, rq_dest);
5778 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5779 rq_src->nr_uninterruptible = 0;
5780 double_rq_unlock(rq_src, rq_dest);
5781 local_irq_restore(flags);
5782}
5783
5784/* Run through task list and migrate tasks from the dead cpu. */
5785static void migrate_live_tasks(int src_cpu)
5786{
48f24c4d 5787 struct task_struct *p, *t;
1da177e4 5788
f7b4cddc 5789 read_lock(&tasklist_lock);
1da177e4 5790
48f24c4d
IM
5791 do_each_thread(t, p) {
5792 if (p == current)
1da177e4
LT
5793 continue;
5794
48f24c4d
IM
5795 if (task_cpu(p) == src_cpu)
5796 move_task_off_dead_cpu(src_cpu, p);
5797 } while_each_thread(t, p);
1da177e4 5798
f7b4cddc 5799 read_unlock(&tasklist_lock);
1da177e4
LT
5800}
5801
dd41f596
IM
5802/*
5803 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5804 * It does so by boosting its priority to highest possible.
5805 * Used by CPU offline code.
1da177e4
LT
5806 */
5807void sched_idle_next(void)
5808{
48f24c4d 5809 int this_cpu = smp_processor_id();
70b97a7f 5810 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5811 struct task_struct *p = rq->idle;
5812 unsigned long flags;
5813
5814 /* cpu has to be offline */
48f24c4d 5815 BUG_ON(cpu_online(this_cpu));
1da177e4 5816
48f24c4d
IM
5817 /*
5818 * Strictly not necessary since rest of the CPUs are stopped by now
5819 * and interrupts disabled on the current cpu.
1da177e4
LT
5820 */
5821 spin_lock_irqsave(&rq->lock, flags);
5822
dd41f596 5823 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5824
94bc9a7b
DA
5825 update_rq_clock(rq);
5826 activate_task(rq, p, 0);
1da177e4
LT
5827
5828 spin_unlock_irqrestore(&rq->lock, flags);
5829}
5830
48f24c4d
IM
5831/*
5832 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5833 * offline.
5834 */
5835void idle_task_exit(void)
5836{
5837 struct mm_struct *mm = current->active_mm;
5838
5839 BUG_ON(cpu_online(smp_processor_id()));
5840
5841 if (mm != &init_mm)
5842 switch_mm(mm, &init_mm, current);
5843 mmdrop(mm);
5844}
5845
054b9108 5846/* called under rq->lock with disabled interrupts */
36c8b586 5847static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5848{
70b97a7f 5849 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5850
5851 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5852 BUG_ON(!p->exit_state);
1da177e4
LT
5853
5854 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5855 BUG_ON(p->state == TASK_DEAD);
1da177e4 5856
48f24c4d 5857 get_task_struct(p);
1da177e4
LT
5858
5859 /*
5860 * Drop lock around migration; if someone else moves it,
41a2d6cf 5861 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5862 * fine.
5863 */
f7b4cddc 5864 spin_unlock_irq(&rq->lock);
48f24c4d 5865 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5866 spin_lock_irq(&rq->lock);
1da177e4 5867
48f24c4d 5868 put_task_struct(p);
1da177e4
LT
5869}
5870
5871/* release_task() removes task from tasklist, so we won't find dead tasks. */
5872static void migrate_dead_tasks(unsigned int dead_cpu)
5873{
70b97a7f 5874 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5875 struct task_struct *next;
48f24c4d 5876
dd41f596
IM
5877 for ( ; ; ) {
5878 if (!rq->nr_running)
5879 break;
a8e504d2 5880 update_rq_clock(rq);
ff95f3df 5881 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5882 if (!next)
5883 break;
5884 migrate_dead(dead_cpu, next);
e692ab53 5885
1da177e4
LT
5886 }
5887}
5888#endif /* CONFIG_HOTPLUG_CPU */
5889
e692ab53
NP
5890#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5891
5892static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5893 {
5894 .procname = "sched_domain",
c57baf1e 5895 .mode = 0555,
e0361851 5896 },
38605cae 5897 {0, },
e692ab53
NP
5898};
5899
5900static struct ctl_table sd_ctl_root[] = {
e0361851 5901 {
c57baf1e 5902 .ctl_name = CTL_KERN,
e0361851 5903 .procname = "kernel",
c57baf1e 5904 .mode = 0555,
e0361851
AD
5905 .child = sd_ctl_dir,
5906 },
38605cae 5907 {0, },
e692ab53
NP
5908};
5909
5910static struct ctl_table *sd_alloc_ctl_entry(int n)
5911{
5912 struct ctl_table *entry =
5cf9f062 5913 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5914
e692ab53
NP
5915 return entry;
5916}
5917
6382bc90
MM
5918static void sd_free_ctl_entry(struct ctl_table **tablep)
5919{
cd790076 5920 struct ctl_table *entry;
6382bc90 5921
cd790076
MM
5922 /*
5923 * In the intermediate directories, both the child directory and
5924 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5925 * will always be set. In the lowest directory the names are
cd790076
MM
5926 * static strings and all have proc handlers.
5927 */
5928 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5929 if (entry->child)
5930 sd_free_ctl_entry(&entry->child);
cd790076
MM
5931 if (entry->proc_handler == NULL)
5932 kfree(entry->procname);
5933 }
6382bc90
MM
5934
5935 kfree(*tablep);
5936 *tablep = NULL;
5937}
5938
e692ab53 5939static void
e0361851 5940set_table_entry(struct ctl_table *entry,
e692ab53
NP
5941 const char *procname, void *data, int maxlen,
5942 mode_t mode, proc_handler *proc_handler)
5943{
e692ab53
NP
5944 entry->procname = procname;
5945 entry->data = data;
5946 entry->maxlen = maxlen;
5947 entry->mode = mode;
5948 entry->proc_handler = proc_handler;
5949}
5950
5951static struct ctl_table *
5952sd_alloc_ctl_domain_table(struct sched_domain *sd)
5953{
ace8b3d6 5954 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5955
ad1cdc1d
MM
5956 if (table == NULL)
5957 return NULL;
5958
e0361851 5959 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5960 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5961 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5962 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5963 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5964 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5965 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5966 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5967 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5968 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5969 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5970 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5971 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5972 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5973 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5974 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5975 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5976 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5977 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5978 &sd->cache_nice_tries,
5979 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5980 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5981 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5982 /* &table[11] is terminator */
e692ab53
NP
5983
5984 return table;
5985}
5986
9a4e7159 5987static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5988{
5989 struct ctl_table *entry, *table;
5990 struct sched_domain *sd;
5991 int domain_num = 0, i;
5992 char buf[32];
5993
5994 for_each_domain(cpu, sd)
5995 domain_num++;
5996 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5997 if (table == NULL)
5998 return NULL;
e692ab53
NP
5999
6000 i = 0;
6001 for_each_domain(cpu, sd) {
6002 snprintf(buf, 32, "domain%d", i);
e692ab53 6003 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6004 entry->mode = 0555;
e692ab53
NP
6005 entry->child = sd_alloc_ctl_domain_table(sd);
6006 entry++;
6007 i++;
6008 }
6009 return table;
6010}
6011
6012static struct ctl_table_header *sd_sysctl_header;
6382bc90 6013static void register_sched_domain_sysctl(void)
e692ab53
NP
6014{
6015 int i, cpu_num = num_online_cpus();
6016 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6017 char buf[32];
6018
7378547f
MM
6019 WARN_ON(sd_ctl_dir[0].child);
6020 sd_ctl_dir[0].child = entry;
6021
ad1cdc1d
MM
6022 if (entry == NULL)
6023 return;
6024
97b6ea7b 6025 for_each_online_cpu(i) {
e692ab53 6026 snprintf(buf, 32, "cpu%d", i);
e692ab53 6027 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6028 entry->mode = 0555;
e692ab53 6029 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6030 entry++;
e692ab53 6031 }
7378547f
MM
6032
6033 WARN_ON(sd_sysctl_header);
e692ab53
NP
6034 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6035}
6382bc90 6036
7378547f 6037/* may be called multiple times per register */
6382bc90
MM
6038static void unregister_sched_domain_sysctl(void)
6039{
7378547f
MM
6040 if (sd_sysctl_header)
6041 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6042 sd_sysctl_header = NULL;
7378547f
MM
6043 if (sd_ctl_dir[0].child)
6044 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6045}
e692ab53 6046#else
6382bc90
MM
6047static void register_sched_domain_sysctl(void)
6048{
6049}
6050static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6051{
6052}
6053#endif
6054
1da177e4
LT
6055/*
6056 * migration_call - callback that gets triggered when a CPU is added.
6057 * Here we can start up the necessary migration thread for the new CPU.
6058 */
48f24c4d
IM
6059static int __cpuinit
6060migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6061{
1da177e4 6062 struct task_struct *p;
48f24c4d 6063 int cpu = (long)hcpu;
1da177e4 6064 unsigned long flags;
70b97a7f 6065 struct rq *rq;
1da177e4
LT
6066
6067 switch (action) {
5be9361c 6068
1da177e4 6069 case CPU_UP_PREPARE:
8bb78442 6070 case CPU_UP_PREPARE_FROZEN:
dd41f596 6071 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6072 if (IS_ERR(p))
6073 return NOTIFY_BAD;
1da177e4
LT
6074 kthread_bind(p, cpu);
6075 /* Must be high prio: stop_machine expects to yield to it. */
6076 rq = task_rq_lock(p, &flags);
dd41f596 6077 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6078 task_rq_unlock(rq, &flags);
6079 cpu_rq(cpu)->migration_thread = p;
6080 break;
48f24c4d 6081
1da177e4 6082 case CPU_ONLINE:
8bb78442 6083 case CPU_ONLINE_FROZEN:
3a4fa0a2 6084 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6085 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6086
6087 /* Update our root-domain */
6088 rq = cpu_rq(cpu);
6089 spin_lock_irqsave(&rq->lock, flags);
6090 if (rq->rd) {
6091 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6092 cpu_set(cpu, rq->rd->online);
6093 }
6094 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6095 break;
48f24c4d 6096
1da177e4
LT
6097#ifdef CONFIG_HOTPLUG_CPU
6098 case CPU_UP_CANCELED:
8bb78442 6099 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6100 if (!cpu_rq(cpu)->migration_thread)
6101 break;
41a2d6cf 6102 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6103 kthread_bind(cpu_rq(cpu)->migration_thread,
6104 any_online_cpu(cpu_online_map));
1da177e4
LT
6105 kthread_stop(cpu_rq(cpu)->migration_thread);
6106 cpu_rq(cpu)->migration_thread = NULL;
6107 break;
48f24c4d 6108
1da177e4 6109 case CPU_DEAD:
8bb78442 6110 case CPU_DEAD_FROZEN:
470fd646 6111 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6112 migrate_live_tasks(cpu);
6113 rq = cpu_rq(cpu);
6114 kthread_stop(rq->migration_thread);
6115 rq->migration_thread = NULL;
6116 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6117 spin_lock_irq(&rq->lock);
a8e504d2 6118 update_rq_clock(rq);
2e1cb74a 6119 deactivate_task(rq, rq->idle, 0);
1da177e4 6120 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6121 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6122 rq->idle->sched_class = &idle_sched_class;
1da177e4 6123 migrate_dead_tasks(cpu);
d2da272a 6124 spin_unlock_irq(&rq->lock);
470fd646 6125 cpuset_unlock();
1da177e4
LT
6126 migrate_nr_uninterruptible(rq);
6127 BUG_ON(rq->nr_running != 0);
6128
41a2d6cf
IM
6129 /*
6130 * No need to migrate the tasks: it was best-effort if
6131 * they didn't take sched_hotcpu_mutex. Just wake up
6132 * the requestors.
6133 */
1da177e4
LT
6134 spin_lock_irq(&rq->lock);
6135 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6136 struct migration_req *req;
6137
1da177e4 6138 req = list_entry(rq->migration_queue.next,
70b97a7f 6139 struct migration_req, list);
1da177e4
LT
6140 list_del_init(&req->list);
6141 complete(&req->done);
6142 }
6143 spin_unlock_irq(&rq->lock);
6144 break;
57d885fe 6145
08f503b0
GH
6146 case CPU_DYING:
6147 case CPU_DYING_FROZEN:
57d885fe
GH
6148 /* Update our root-domain */
6149 rq = cpu_rq(cpu);
6150 spin_lock_irqsave(&rq->lock, flags);
6151 if (rq->rd) {
6152 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6153 cpu_clear(cpu, rq->rd->online);
6154 }
6155 spin_unlock_irqrestore(&rq->lock, flags);
6156 break;
1da177e4
LT
6157#endif
6158 }
6159 return NOTIFY_OK;
6160}
6161
6162/* Register at highest priority so that task migration (migrate_all_tasks)
6163 * happens before everything else.
6164 */
26c2143b 6165static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6166 .notifier_call = migration_call,
6167 .priority = 10
6168};
6169
e6fe6649 6170void __init migration_init(void)
1da177e4
LT
6171{
6172 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6173 int err;
48f24c4d
IM
6174
6175 /* Start one for the boot CPU: */
07dccf33
AM
6176 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6177 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6178 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6179 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6180}
6181#endif
6182
6183#ifdef CONFIG_SMP
476f3534 6184
3e9830dc 6185#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6186
7c16ec58
MT
6187static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6188 cpumask_t *groupmask)
1da177e4 6189{
4dcf6aff 6190 struct sched_group *group = sd->groups;
434d53b0 6191 char str[256];
1da177e4 6192
434d53b0 6193 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6194 cpus_clear(*groupmask);
4dcf6aff
IM
6195
6196 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6197
6198 if (!(sd->flags & SD_LOAD_BALANCE)) {
6199 printk("does not load-balance\n");
6200 if (sd->parent)
6201 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6202 " has parent");
6203 return -1;
41c7ce9a
NP
6204 }
6205
4dcf6aff
IM
6206 printk(KERN_CONT "span %s\n", str);
6207
6208 if (!cpu_isset(cpu, sd->span)) {
6209 printk(KERN_ERR "ERROR: domain->span does not contain "
6210 "CPU%d\n", cpu);
6211 }
6212 if (!cpu_isset(cpu, group->cpumask)) {
6213 printk(KERN_ERR "ERROR: domain->groups does not contain"
6214 " CPU%d\n", cpu);
6215 }
1da177e4 6216
4dcf6aff 6217 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6218 do {
4dcf6aff
IM
6219 if (!group) {
6220 printk("\n");
6221 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6222 break;
6223 }
6224
4dcf6aff
IM
6225 if (!group->__cpu_power) {
6226 printk(KERN_CONT "\n");
6227 printk(KERN_ERR "ERROR: domain->cpu_power not "
6228 "set\n");
6229 break;
6230 }
1da177e4 6231
4dcf6aff
IM
6232 if (!cpus_weight(group->cpumask)) {
6233 printk(KERN_CONT "\n");
6234 printk(KERN_ERR "ERROR: empty group\n");
6235 break;
6236 }
1da177e4 6237
7c16ec58 6238 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6239 printk(KERN_CONT "\n");
6240 printk(KERN_ERR "ERROR: repeated CPUs\n");
6241 break;
6242 }
1da177e4 6243
7c16ec58 6244 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6245
434d53b0 6246 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6247 printk(KERN_CONT " %s", str);
1da177e4 6248
4dcf6aff
IM
6249 group = group->next;
6250 } while (group != sd->groups);
6251 printk(KERN_CONT "\n");
1da177e4 6252
7c16ec58 6253 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6254 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6255
7c16ec58 6256 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6257 printk(KERN_ERR "ERROR: parent span is not a superset "
6258 "of domain->span\n");
6259 return 0;
6260}
1da177e4 6261
4dcf6aff
IM
6262static void sched_domain_debug(struct sched_domain *sd, int cpu)
6263{
7c16ec58 6264 cpumask_t *groupmask;
4dcf6aff 6265 int level = 0;
1da177e4 6266
4dcf6aff
IM
6267 if (!sd) {
6268 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6269 return;
6270 }
1da177e4 6271
4dcf6aff
IM
6272 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6273
7c16ec58
MT
6274 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6275 if (!groupmask) {
6276 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6277 return;
6278 }
6279
4dcf6aff 6280 for (;;) {
7c16ec58 6281 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6282 break;
1da177e4
LT
6283 level++;
6284 sd = sd->parent;
33859f7f 6285 if (!sd)
4dcf6aff
IM
6286 break;
6287 }
7c16ec58 6288 kfree(groupmask);
1da177e4
LT
6289}
6290#else
48f24c4d 6291# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6292#endif
6293
1a20ff27 6294static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6295{
6296 if (cpus_weight(sd->span) == 1)
6297 return 1;
6298
6299 /* Following flags need at least 2 groups */
6300 if (sd->flags & (SD_LOAD_BALANCE |
6301 SD_BALANCE_NEWIDLE |
6302 SD_BALANCE_FORK |
89c4710e
SS
6303 SD_BALANCE_EXEC |
6304 SD_SHARE_CPUPOWER |
6305 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6306 if (sd->groups != sd->groups->next)
6307 return 0;
6308 }
6309
6310 /* Following flags don't use groups */
6311 if (sd->flags & (SD_WAKE_IDLE |
6312 SD_WAKE_AFFINE |
6313 SD_WAKE_BALANCE))
6314 return 0;
6315
6316 return 1;
6317}
6318
48f24c4d
IM
6319static int
6320sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6321{
6322 unsigned long cflags = sd->flags, pflags = parent->flags;
6323
6324 if (sd_degenerate(parent))
6325 return 1;
6326
6327 if (!cpus_equal(sd->span, parent->span))
6328 return 0;
6329
6330 /* Does parent contain flags not in child? */
6331 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6332 if (cflags & SD_WAKE_AFFINE)
6333 pflags &= ~SD_WAKE_BALANCE;
6334 /* Flags needing groups don't count if only 1 group in parent */
6335 if (parent->groups == parent->groups->next) {
6336 pflags &= ~(SD_LOAD_BALANCE |
6337 SD_BALANCE_NEWIDLE |
6338 SD_BALANCE_FORK |
89c4710e
SS
6339 SD_BALANCE_EXEC |
6340 SD_SHARE_CPUPOWER |
6341 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6342 }
6343 if (~cflags & pflags)
6344 return 0;
6345
6346 return 1;
6347}
6348
57d885fe
GH
6349static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6350{
6351 unsigned long flags;
6352 const struct sched_class *class;
6353
6354 spin_lock_irqsave(&rq->lock, flags);
6355
6356 if (rq->rd) {
6357 struct root_domain *old_rd = rq->rd;
6358
0eab9146 6359 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6360 if (class->leave_domain)
6361 class->leave_domain(rq);
0eab9146 6362 }
57d885fe 6363
dc938520
GH
6364 cpu_clear(rq->cpu, old_rd->span);
6365 cpu_clear(rq->cpu, old_rd->online);
6366
57d885fe
GH
6367 if (atomic_dec_and_test(&old_rd->refcount))
6368 kfree(old_rd);
6369 }
6370
6371 atomic_inc(&rd->refcount);
6372 rq->rd = rd;
6373
dc938520 6374 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6375 if (cpu_isset(rq->cpu, cpu_online_map))
6376 cpu_set(rq->cpu, rd->online);
dc938520 6377
0eab9146 6378 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6379 if (class->join_domain)
6380 class->join_domain(rq);
0eab9146 6381 }
57d885fe
GH
6382
6383 spin_unlock_irqrestore(&rq->lock, flags);
6384}
6385
dc938520 6386static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6387{
6388 memset(rd, 0, sizeof(*rd));
6389
dc938520
GH
6390 cpus_clear(rd->span);
6391 cpus_clear(rd->online);
57d885fe
GH
6392}
6393
6394static void init_defrootdomain(void)
6395{
dc938520 6396 init_rootdomain(&def_root_domain);
57d885fe
GH
6397 atomic_set(&def_root_domain.refcount, 1);
6398}
6399
dc938520 6400static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6401{
6402 struct root_domain *rd;
6403
6404 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6405 if (!rd)
6406 return NULL;
6407
dc938520 6408 init_rootdomain(rd);
57d885fe
GH
6409
6410 return rd;
6411}
6412
1da177e4 6413/*
0eab9146 6414 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6415 * hold the hotplug lock.
6416 */
0eab9146
IM
6417static void
6418cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6419{
70b97a7f 6420 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6421 struct sched_domain *tmp;
6422
6423 /* Remove the sched domains which do not contribute to scheduling. */
6424 for (tmp = sd; tmp; tmp = tmp->parent) {
6425 struct sched_domain *parent = tmp->parent;
6426 if (!parent)
6427 break;
1a848870 6428 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6429 tmp->parent = parent->parent;
1a848870
SS
6430 if (parent->parent)
6431 parent->parent->child = tmp;
6432 }
245af2c7
SS
6433 }
6434
1a848870 6435 if (sd && sd_degenerate(sd)) {
245af2c7 6436 sd = sd->parent;
1a848870
SS
6437 if (sd)
6438 sd->child = NULL;
6439 }
1da177e4
LT
6440
6441 sched_domain_debug(sd, cpu);
6442
57d885fe 6443 rq_attach_root(rq, rd);
674311d5 6444 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6445}
6446
6447/* cpus with isolated domains */
67af63a6 6448static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6449
6450/* Setup the mask of cpus configured for isolated domains */
6451static int __init isolated_cpu_setup(char *str)
6452{
6453 int ints[NR_CPUS], i;
6454
6455 str = get_options(str, ARRAY_SIZE(ints), ints);
6456 cpus_clear(cpu_isolated_map);
6457 for (i = 1; i <= ints[0]; i++)
6458 if (ints[i] < NR_CPUS)
6459 cpu_set(ints[i], cpu_isolated_map);
6460 return 1;
6461}
6462
8927f494 6463__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6464
6465/*
6711cab4
SS
6466 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6467 * to a function which identifies what group(along with sched group) a CPU
6468 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6469 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6470 *
6471 * init_sched_build_groups will build a circular linked list of the groups
6472 * covered by the given span, and will set each group's ->cpumask correctly,
6473 * and ->cpu_power to 0.
6474 */
a616058b 6475static void
7c16ec58 6476init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6477 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6478 struct sched_group **sg,
6479 cpumask_t *tmpmask),
6480 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6481{
6482 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6483 int i;
6484
7c16ec58
MT
6485 cpus_clear(*covered);
6486
6487 for_each_cpu_mask(i, *span) {
6711cab4 6488 struct sched_group *sg;
7c16ec58 6489 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6490 int j;
6491
7c16ec58 6492 if (cpu_isset(i, *covered))
1da177e4
LT
6493 continue;
6494
7c16ec58 6495 cpus_clear(sg->cpumask);
5517d86b 6496 sg->__cpu_power = 0;
1da177e4 6497
7c16ec58
MT
6498 for_each_cpu_mask(j, *span) {
6499 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6500 continue;
6501
7c16ec58 6502 cpu_set(j, *covered);
1da177e4
LT
6503 cpu_set(j, sg->cpumask);
6504 }
6505 if (!first)
6506 first = sg;
6507 if (last)
6508 last->next = sg;
6509 last = sg;
6510 }
6511 last->next = first;
6512}
6513
9c1cfda2 6514#define SD_NODES_PER_DOMAIN 16
1da177e4 6515
9c1cfda2 6516#ifdef CONFIG_NUMA
198e2f18 6517
9c1cfda2
JH
6518/**
6519 * find_next_best_node - find the next node to include in a sched_domain
6520 * @node: node whose sched_domain we're building
6521 * @used_nodes: nodes already in the sched_domain
6522 *
41a2d6cf 6523 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6524 * finds the closest node not already in the @used_nodes map.
6525 *
6526 * Should use nodemask_t.
6527 */
c5f59f08 6528static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6529{
6530 int i, n, val, min_val, best_node = 0;
6531
6532 min_val = INT_MAX;
6533
6534 for (i = 0; i < MAX_NUMNODES; i++) {
6535 /* Start at @node */
6536 n = (node + i) % MAX_NUMNODES;
6537
6538 if (!nr_cpus_node(n))
6539 continue;
6540
6541 /* Skip already used nodes */
c5f59f08 6542 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6543 continue;
6544
6545 /* Simple min distance search */
6546 val = node_distance(node, n);
6547
6548 if (val < min_val) {
6549 min_val = val;
6550 best_node = n;
6551 }
6552 }
6553
c5f59f08 6554 node_set(best_node, *used_nodes);
9c1cfda2
JH
6555 return best_node;
6556}
6557
6558/**
6559 * sched_domain_node_span - get a cpumask for a node's sched_domain
6560 * @node: node whose cpumask we're constructing
73486722 6561 * @span: resulting cpumask
9c1cfda2 6562 *
41a2d6cf 6563 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6564 * should be one that prevents unnecessary balancing, but also spreads tasks
6565 * out optimally.
6566 */
4bdbaad3 6567static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6568{
c5f59f08 6569 nodemask_t used_nodes;
c5f59f08 6570 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6571 int i;
9c1cfda2 6572
4bdbaad3 6573 cpus_clear(*span);
c5f59f08 6574 nodes_clear(used_nodes);
9c1cfda2 6575
4bdbaad3 6576 cpus_or(*span, *span, *nodemask);
c5f59f08 6577 node_set(node, used_nodes);
9c1cfda2
JH
6578
6579 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6580 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6581
c5f59f08 6582 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6583 cpus_or(*span, *span, *nodemask);
9c1cfda2 6584 }
9c1cfda2
JH
6585}
6586#endif
6587
5c45bf27 6588int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6589
9c1cfda2 6590/*
48f24c4d 6591 * SMT sched-domains:
9c1cfda2 6592 */
1da177e4
LT
6593#ifdef CONFIG_SCHED_SMT
6594static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6595static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6596
41a2d6cf 6597static int
7c16ec58
MT
6598cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6599 cpumask_t *unused)
1da177e4 6600{
6711cab4
SS
6601 if (sg)
6602 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6603 return cpu;
6604}
6605#endif
6606
48f24c4d
IM
6607/*
6608 * multi-core sched-domains:
6609 */
1e9f28fa
SS
6610#ifdef CONFIG_SCHED_MC
6611static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6612static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6613#endif
6614
6615#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6616static int
7c16ec58
MT
6617cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6618 cpumask_t *mask)
1e9f28fa 6619{
6711cab4 6620 int group;
7c16ec58
MT
6621
6622 *mask = per_cpu(cpu_sibling_map, cpu);
6623 cpus_and(*mask, *mask, *cpu_map);
6624 group = first_cpu(*mask);
6711cab4
SS
6625 if (sg)
6626 *sg = &per_cpu(sched_group_core, group);
6627 return group;
1e9f28fa
SS
6628}
6629#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6630static int
7c16ec58
MT
6631cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6632 cpumask_t *unused)
1e9f28fa 6633{
6711cab4
SS
6634 if (sg)
6635 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6636 return cpu;
6637}
6638#endif
6639
1da177e4 6640static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6641static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6642
41a2d6cf 6643static int
7c16ec58
MT
6644cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6645 cpumask_t *mask)
1da177e4 6646{
6711cab4 6647 int group;
48f24c4d 6648#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6649 *mask = cpu_coregroup_map(cpu);
6650 cpus_and(*mask, *mask, *cpu_map);
6651 group = first_cpu(*mask);
1e9f28fa 6652#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6653 *mask = per_cpu(cpu_sibling_map, cpu);
6654 cpus_and(*mask, *mask, *cpu_map);
6655 group = first_cpu(*mask);
1da177e4 6656#else
6711cab4 6657 group = cpu;
1da177e4 6658#endif
6711cab4
SS
6659 if (sg)
6660 *sg = &per_cpu(sched_group_phys, group);
6661 return group;
1da177e4
LT
6662}
6663
6664#ifdef CONFIG_NUMA
1da177e4 6665/*
9c1cfda2
JH
6666 * The init_sched_build_groups can't handle what we want to do with node
6667 * groups, so roll our own. Now each node has its own list of groups which
6668 * gets dynamically allocated.
1da177e4 6669 */
9c1cfda2 6670static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6671static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6672
9c1cfda2 6673static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6674static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6675
6711cab4 6676static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6677 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6678{
6711cab4
SS
6679 int group;
6680
7c16ec58
MT
6681 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6682 cpus_and(*nodemask, *nodemask, *cpu_map);
6683 group = first_cpu(*nodemask);
6711cab4
SS
6684
6685 if (sg)
6686 *sg = &per_cpu(sched_group_allnodes, group);
6687 return group;
1da177e4 6688}
6711cab4 6689
08069033
SS
6690static void init_numa_sched_groups_power(struct sched_group *group_head)
6691{
6692 struct sched_group *sg = group_head;
6693 int j;
6694
6695 if (!sg)
6696 return;
3a5c359a
AK
6697 do {
6698 for_each_cpu_mask(j, sg->cpumask) {
6699 struct sched_domain *sd;
08069033 6700
3a5c359a
AK
6701 sd = &per_cpu(phys_domains, j);
6702 if (j != first_cpu(sd->groups->cpumask)) {
6703 /*
6704 * Only add "power" once for each
6705 * physical package.
6706 */
6707 continue;
6708 }
08069033 6709
3a5c359a
AK
6710 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6711 }
6712 sg = sg->next;
6713 } while (sg != group_head);
08069033 6714}
1da177e4
LT
6715#endif
6716
a616058b 6717#ifdef CONFIG_NUMA
51888ca2 6718/* Free memory allocated for various sched_group structures */
7c16ec58 6719static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6720{
a616058b 6721 int cpu, i;
51888ca2
SV
6722
6723 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6724 struct sched_group **sched_group_nodes
6725 = sched_group_nodes_bycpu[cpu];
6726
51888ca2
SV
6727 if (!sched_group_nodes)
6728 continue;
6729
6730 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6731 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6732
7c16ec58
MT
6733 *nodemask = node_to_cpumask(i);
6734 cpus_and(*nodemask, *nodemask, *cpu_map);
6735 if (cpus_empty(*nodemask))
51888ca2
SV
6736 continue;
6737
6738 if (sg == NULL)
6739 continue;
6740 sg = sg->next;
6741next_sg:
6742 oldsg = sg;
6743 sg = sg->next;
6744 kfree(oldsg);
6745 if (oldsg != sched_group_nodes[i])
6746 goto next_sg;
6747 }
6748 kfree(sched_group_nodes);
6749 sched_group_nodes_bycpu[cpu] = NULL;
6750 }
51888ca2 6751}
a616058b 6752#else
7c16ec58 6753static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6754{
6755}
6756#endif
51888ca2 6757
89c4710e
SS
6758/*
6759 * Initialize sched groups cpu_power.
6760 *
6761 * cpu_power indicates the capacity of sched group, which is used while
6762 * distributing the load between different sched groups in a sched domain.
6763 * Typically cpu_power for all the groups in a sched domain will be same unless
6764 * there are asymmetries in the topology. If there are asymmetries, group
6765 * having more cpu_power will pickup more load compared to the group having
6766 * less cpu_power.
6767 *
6768 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6769 * the maximum number of tasks a group can handle in the presence of other idle
6770 * or lightly loaded groups in the same sched domain.
6771 */
6772static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6773{
6774 struct sched_domain *child;
6775 struct sched_group *group;
6776
6777 WARN_ON(!sd || !sd->groups);
6778
6779 if (cpu != first_cpu(sd->groups->cpumask))
6780 return;
6781
6782 child = sd->child;
6783
5517d86b
ED
6784 sd->groups->__cpu_power = 0;
6785
89c4710e
SS
6786 /*
6787 * For perf policy, if the groups in child domain share resources
6788 * (for example cores sharing some portions of the cache hierarchy
6789 * or SMT), then set this domain groups cpu_power such that each group
6790 * can handle only one task, when there are other idle groups in the
6791 * same sched domain.
6792 */
6793 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6794 (child->flags &
6795 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6796 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6797 return;
6798 }
6799
89c4710e
SS
6800 /*
6801 * add cpu_power of each child group to this groups cpu_power
6802 */
6803 group = child->groups;
6804 do {
5517d86b 6805 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6806 group = group->next;
6807 } while (group != child->groups);
6808}
6809
7c16ec58
MT
6810/*
6811 * Initializers for schedule domains
6812 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6813 */
6814
6815#define SD_INIT(sd, type) sd_init_##type(sd)
6816#define SD_INIT_FUNC(type) \
6817static noinline void sd_init_##type(struct sched_domain *sd) \
6818{ \
6819 memset(sd, 0, sizeof(*sd)); \
6820 *sd = SD_##type##_INIT; \
1d3504fc 6821 sd->level = SD_LV_##type; \
7c16ec58
MT
6822}
6823
6824SD_INIT_FUNC(CPU)
6825#ifdef CONFIG_NUMA
6826 SD_INIT_FUNC(ALLNODES)
6827 SD_INIT_FUNC(NODE)
6828#endif
6829#ifdef CONFIG_SCHED_SMT
6830 SD_INIT_FUNC(SIBLING)
6831#endif
6832#ifdef CONFIG_SCHED_MC
6833 SD_INIT_FUNC(MC)
6834#endif
6835
6836/*
6837 * To minimize stack usage kmalloc room for cpumasks and share the
6838 * space as the usage in build_sched_domains() dictates. Used only
6839 * if the amount of space is significant.
6840 */
6841struct allmasks {
6842 cpumask_t tmpmask; /* make this one first */
6843 union {
6844 cpumask_t nodemask;
6845 cpumask_t this_sibling_map;
6846 cpumask_t this_core_map;
6847 };
6848 cpumask_t send_covered;
6849
6850#ifdef CONFIG_NUMA
6851 cpumask_t domainspan;
6852 cpumask_t covered;
6853 cpumask_t notcovered;
6854#endif
6855};
6856
6857#if NR_CPUS > 128
6858#define SCHED_CPUMASK_ALLOC 1
6859#define SCHED_CPUMASK_FREE(v) kfree(v)
6860#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6861#else
6862#define SCHED_CPUMASK_ALLOC 0
6863#define SCHED_CPUMASK_FREE(v)
6864#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6865#endif
6866
6867#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6868 ((unsigned long)(a) + offsetof(struct allmasks, v))
6869
1d3504fc
HS
6870static int default_relax_domain_level = -1;
6871
6872static int __init setup_relax_domain_level(char *str)
6873{
6874 default_relax_domain_level = simple_strtoul(str, NULL, 0);
6875 return 1;
6876}
6877__setup("relax_domain_level=", setup_relax_domain_level);
6878
6879static void set_domain_attribute(struct sched_domain *sd,
6880 struct sched_domain_attr *attr)
6881{
6882 int request;
6883
6884 if (!attr || attr->relax_domain_level < 0) {
6885 if (default_relax_domain_level < 0)
6886 return;
6887 else
6888 request = default_relax_domain_level;
6889 } else
6890 request = attr->relax_domain_level;
6891 if (request < sd->level) {
6892 /* turn off idle balance on this domain */
6893 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6894 } else {
6895 /* turn on idle balance on this domain */
6896 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6897 }
6898}
6899
1da177e4 6900/*
1a20ff27
DG
6901 * Build sched domains for a given set of cpus and attach the sched domains
6902 * to the individual cpus
1da177e4 6903 */
1d3504fc
HS
6904static int __build_sched_domains(const cpumask_t *cpu_map,
6905 struct sched_domain_attr *attr)
1da177e4
LT
6906{
6907 int i;
57d885fe 6908 struct root_domain *rd;
7c16ec58
MT
6909 SCHED_CPUMASK_DECLARE(allmasks);
6910 cpumask_t *tmpmask;
d1b55138
JH
6911#ifdef CONFIG_NUMA
6912 struct sched_group **sched_group_nodes = NULL;
6711cab4 6913 int sd_allnodes = 0;
d1b55138
JH
6914
6915 /*
6916 * Allocate the per-node list of sched groups
6917 */
5cf9f062 6918 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6919 GFP_KERNEL);
d1b55138
JH
6920 if (!sched_group_nodes) {
6921 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6922 return -ENOMEM;
d1b55138 6923 }
d1b55138 6924#endif
1da177e4 6925
dc938520 6926 rd = alloc_rootdomain();
57d885fe
GH
6927 if (!rd) {
6928 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
6929#ifdef CONFIG_NUMA
6930 kfree(sched_group_nodes);
6931#endif
57d885fe
GH
6932 return -ENOMEM;
6933 }
6934
7c16ec58
MT
6935#if SCHED_CPUMASK_ALLOC
6936 /* get space for all scratch cpumask variables */
6937 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6938 if (!allmasks) {
6939 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6940 kfree(rd);
6941#ifdef CONFIG_NUMA
6942 kfree(sched_group_nodes);
6943#endif
6944 return -ENOMEM;
6945 }
6946#endif
6947 tmpmask = (cpumask_t *)allmasks;
6948
6949
6950#ifdef CONFIG_NUMA
6951 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6952#endif
6953
1da177e4 6954 /*
1a20ff27 6955 * Set up domains for cpus specified by the cpu_map.
1da177e4 6956 */
1a20ff27 6957 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6958 struct sched_domain *sd = NULL, *p;
7c16ec58 6959 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 6960
7c16ec58
MT
6961 *nodemask = node_to_cpumask(cpu_to_node(i));
6962 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
6963
6964#ifdef CONFIG_NUMA
dd41f596 6965 if (cpus_weight(*cpu_map) >
7c16ec58 6966 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 6967 sd = &per_cpu(allnodes_domains, i);
7c16ec58 6968 SD_INIT(sd, ALLNODES);
1d3504fc 6969 set_domain_attribute(sd, attr);
9c1cfda2 6970 sd->span = *cpu_map;
7c16ec58 6971 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 6972 p = sd;
6711cab4 6973 sd_allnodes = 1;
9c1cfda2
JH
6974 } else
6975 p = NULL;
6976
1da177e4 6977 sd = &per_cpu(node_domains, i);
7c16ec58 6978 SD_INIT(sd, NODE);
1d3504fc 6979 set_domain_attribute(sd, attr);
4bdbaad3 6980 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 6981 sd->parent = p;
1a848870
SS
6982 if (p)
6983 p->child = sd;
9c1cfda2 6984 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6985#endif
6986
6987 p = sd;
6988 sd = &per_cpu(phys_domains, i);
7c16ec58 6989 SD_INIT(sd, CPU);
1d3504fc 6990 set_domain_attribute(sd, attr);
7c16ec58 6991 sd->span = *nodemask;
1da177e4 6992 sd->parent = p;
1a848870
SS
6993 if (p)
6994 p->child = sd;
7c16ec58 6995 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 6996
1e9f28fa
SS
6997#ifdef CONFIG_SCHED_MC
6998 p = sd;
6999 sd = &per_cpu(core_domains, i);
7c16ec58 7000 SD_INIT(sd, MC);
1d3504fc 7001 set_domain_attribute(sd, attr);
1e9f28fa
SS
7002 sd->span = cpu_coregroup_map(i);
7003 cpus_and(sd->span, sd->span, *cpu_map);
7004 sd->parent = p;
1a848870 7005 p->child = sd;
7c16ec58 7006 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7007#endif
7008
1da177e4
LT
7009#ifdef CONFIG_SCHED_SMT
7010 p = sd;
7011 sd = &per_cpu(cpu_domains, i);
7c16ec58 7012 SD_INIT(sd, SIBLING);
1d3504fc 7013 set_domain_attribute(sd, attr);
d5a7430d 7014 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7015 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7016 sd->parent = p;
1a848870 7017 p->child = sd;
7c16ec58 7018 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7019#endif
7020 }
7021
7022#ifdef CONFIG_SCHED_SMT
7023 /* Set up CPU (sibling) groups */
9c1cfda2 7024 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7025 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7026 SCHED_CPUMASK_VAR(send_covered, allmasks);
7027
7028 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7029 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7030 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7031 continue;
7032
dd41f596 7033 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7034 &cpu_to_cpu_group,
7035 send_covered, tmpmask);
1da177e4
LT
7036 }
7037#endif
7038
1e9f28fa
SS
7039#ifdef CONFIG_SCHED_MC
7040 /* Set up multi-core groups */
7041 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7042 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7043 SCHED_CPUMASK_VAR(send_covered, allmasks);
7044
7045 *this_core_map = cpu_coregroup_map(i);
7046 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7047 if (i != first_cpu(*this_core_map))
1e9f28fa 7048 continue;
7c16ec58 7049
dd41f596 7050 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7051 &cpu_to_core_group,
7052 send_covered, tmpmask);
1e9f28fa
SS
7053 }
7054#endif
7055
1da177e4
LT
7056 /* Set up physical groups */
7057 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7058 SCHED_CPUMASK_VAR(nodemask, allmasks);
7059 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7060
7c16ec58
MT
7061 *nodemask = node_to_cpumask(i);
7062 cpus_and(*nodemask, *nodemask, *cpu_map);
7063 if (cpus_empty(*nodemask))
1da177e4
LT
7064 continue;
7065
7c16ec58
MT
7066 init_sched_build_groups(nodemask, cpu_map,
7067 &cpu_to_phys_group,
7068 send_covered, tmpmask);
1da177e4
LT
7069 }
7070
7071#ifdef CONFIG_NUMA
7072 /* Set up node groups */
7c16ec58
MT
7073 if (sd_allnodes) {
7074 SCHED_CPUMASK_VAR(send_covered, allmasks);
7075
7076 init_sched_build_groups(cpu_map, cpu_map,
7077 &cpu_to_allnodes_group,
7078 send_covered, tmpmask);
7079 }
9c1cfda2
JH
7080
7081 for (i = 0; i < MAX_NUMNODES; i++) {
7082 /* Set up node groups */
7083 struct sched_group *sg, *prev;
7c16ec58
MT
7084 SCHED_CPUMASK_VAR(nodemask, allmasks);
7085 SCHED_CPUMASK_VAR(domainspan, allmasks);
7086 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7087 int j;
7088
7c16ec58
MT
7089 *nodemask = node_to_cpumask(i);
7090 cpus_clear(*covered);
7091
7092 cpus_and(*nodemask, *nodemask, *cpu_map);
7093 if (cpus_empty(*nodemask)) {
d1b55138 7094 sched_group_nodes[i] = NULL;
9c1cfda2 7095 continue;
d1b55138 7096 }
9c1cfda2 7097
4bdbaad3 7098 sched_domain_node_span(i, domainspan);
7c16ec58 7099 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7100
15f0b676 7101 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7102 if (!sg) {
7103 printk(KERN_WARNING "Can not alloc domain group for "
7104 "node %d\n", i);
7105 goto error;
7106 }
9c1cfda2 7107 sched_group_nodes[i] = sg;
7c16ec58 7108 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7109 struct sched_domain *sd;
9761eea8 7110
9c1cfda2
JH
7111 sd = &per_cpu(node_domains, j);
7112 sd->groups = sg;
9c1cfda2 7113 }
5517d86b 7114 sg->__cpu_power = 0;
7c16ec58 7115 sg->cpumask = *nodemask;
51888ca2 7116 sg->next = sg;
7c16ec58 7117 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7118 prev = sg;
7119
7120 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7121 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7122 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7123 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7124
7c16ec58
MT
7125 cpus_complement(*notcovered, *covered);
7126 cpus_and(*tmpmask, *notcovered, *cpu_map);
7127 cpus_and(*tmpmask, *tmpmask, *domainspan);
7128 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7129 break;
7130
7c16ec58
MT
7131 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7132 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7133 continue;
7134
15f0b676
SV
7135 sg = kmalloc_node(sizeof(struct sched_group),
7136 GFP_KERNEL, i);
9c1cfda2
JH
7137 if (!sg) {
7138 printk(KERN_WARNING
7139 "Can not alloc domain group for node %d\n", j);
51888ca2 7140 goto error;
9c1cfda2 7141 }
5517d86b 7142 sg->__cpu_power = 0;
7c16ec58 7143 sg->cpumask = *tmpmask;
51888ca2 7144 sg->next = prev->next;
7c16ec58 7145 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7146 prev->next = sg;
7147 prev = sg;
7148 }
9c1cfda2 7149 }
1da177e4
LT
7150#endif
7151
7152 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7153#ifdef CONFIG_SCHED_SMT
1a20ff27 7154 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7155 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7156
89c4710e 7157 init_sched_groups_power(i, sd);
5c45bf27 7158 }
1da177e4 7159#endif
1e9f28fa 7160#ifdef CONFIG_SCHED_MC
5c45bf27 7161 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7162 struct sched_domain *sd = &per_cpu(core_domains, i);
7163
89c4710e 7164 init_sched_groups_power(i, sd);
5c45bf27
SS
7165 }
7166#endif
1e9f28fa 7167
5c45bf27 7168 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7169 struct sched_domain *sd = &per_cpu(phys_domains, i);
7170
89c4710e 7171 init_sched_groups_power(i, sd);
1da177e4
LT
7172 }
7173
9c1cfda2 7174#ifdef CONFIG_NUMA
08069033
SS
7175 for (i = 0; i < MAX_NUMNODES; i++)
7176 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7177
6711cab4
SS
7178 if (sd_allnodes) {
7179 struct sched_group *sg;
f712c0c7 7180
7c16ec58
MT
7181 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7182 tmpmask);
f712c0c7
SS
7183 init_numa_sched_groups_power(sg);
7184 }
9c1cfda2
JH
7185#endif
7186
1da177e4 7187 /* Attach the domains */
1a20ff27 7188 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7189 struct sched_domain *sd;
7190#ifdef CONFIG_SCHED_SMT
7191 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7192#elif defined(CONFIG_SCHED_MC)
7193 sd = &per_cpu(core_domains, i);
1da177e4
LT
7194#else
7195 sd = &per_cpu(phys_domains, i);
7196#endif
57d885fe 7197 cpu_attach_domain(sd, rd, i);
1da177e4 7198 }
51888ca2 7199
7c16ec58 7200 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7201 return 0;
7202
a616058b 7203#ifdef CONFIG_NUMA
51888ca2 7204error:
7c16ec58
MT
7205 free_sched_groups(cpu_map, tmpmask);
7206 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7207 return -ENOMEM;
a616058b 7208#endif
1da177e4 7209}
029190c5 7210
1d3504fc
HS
7211static int build_sched_domains(const cpumask_t *cpu_map)
7212{
7213 return __build_sched_domains(cpu_map, NULL);
7214}
7215
029190c5
PJ
7216static cpumask_t *doms_cur; /* current sched domains */
7217static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7218static struct sched_domain_attr *dattr_cur;
7219 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7220
7221/*
7222 * Special case: If a kmalloc of a doms_cur partition (array of
7223 * cpumask_t) fails, then fallback to a single sched domain,
7224 * as determined by the single cpumask_t fallback_doms.
7225 */
7226static cpumask_t fallback_doms;
7227
22e52b07
HC
7228void __attribute__((weak)) arch_update_cpu_topology(void)
7229{
7230}
7231
1a20ff27 7232/*
41a2d6cf 7233 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7234 * For now this just excludes isolated cpus, but could be used to
7235 * exclude other special cases in the future.
1a20ff27 7236 */
51888ca2 7237static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7238{
7378547f
MM
7239 int err;
7240
22e52b07 7241 arch_update_cpu_topology();
029190c5
PJ
7242 ndoms_cur = 1;
7243 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7244 if (!doms_cur)
7245 doms_cur = &fallback_doms;
7246 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7247 dattr_cur = NULL;
7378547f 7248 err = build_sched_domains(doms_cur);
6382bc90 7249 register_sched_domain_sysctl();
7378547f
MM
7250
7251 return err;
1a20ff27
DG
7252}
7253
7c16ec58
MT
7254static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7255 cpumask_t *tmpmask)
1da177e4 7256{
7c16ec58 7257 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7258}
1da177e4 7259
1a20ff27
DG
7260/*
7261 * Detach sched domains from a group of cpus specified in cpu_map
7262 * These cpus will now be attached to the NULL domain
7263 */
858119e1 7264static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7265{
7c16ec58 7266 cpumask_t tmpmask;
1a20ff27
DG
7267 int i;
7268
6382bc90
MM
7269 unregister_sched_domain_sysctl();
7270
1a20ff27 7271 for_each_cpu_mask(i, *cpu_map)
57d885fe 7272 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7273 synchronize_sched();
7c16ec58 7274 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7275}
7276
1d3504fc
HS
7277/* handle null as "default" */
7278static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7279 struct sched_domain_attr *new, int idx_new)
7280{
7281 struct sched_domain_attr tmp;
7282
7283 /* fast path */
7284 if (!new && !cur)
7285 return 1;
7286
7287 tmp = SD_ATTR_INIT;
7288 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7289 new ? (new + idx_new) : &tmp,
7290 sizeof(struct sched_domain_attr));
7291}
7292
029190c5
PJ
7293/*
7294 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7295 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7296 * doms_new[] to the current sched domain partitioning, doms_cur[].
7297 * It destroys each deleted domain and builds each new domain.
7298 *
7299 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7300 * The masks don't intersect (don't overlap.) We should setup one
7301 * sched domain for each mask. CPUs not in any of the cpumasks will
7302 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7303 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7304 * it as it is.
7305 *
41a2d6cf
IM
7306 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7307 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7308 * failed the kmalloc call, then it can pass in doms_new == NULL,
7309 * and partition_sched_domains() will fallback to the single partition
7310 * 'fallback_doms'.
7311 *
7312 * Call with hotplug lock held
7313 */
1d3504fc
HS
7314void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7315 struct sched_domain_attr *dattr_new)
029190c5
PJ
7316{
7317 int i, j;
7318
712555ee 7319 mutex_lock(&sched_domains_mutex);
a1835615 7320
7378547f
MM
7321 /* always unregister in case we don't destroy any domains */
7322 unregister_sched_domain_sysctl();
7323
029190c5
PJ
7324 if (doms_new == NULL) {
7325 ndoms_new = 1;
7326 doms_new = &fallback_doms;
7327 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7328 dattr_new = NULL;
029190c5
PJ
7329 }
7330
7331 /* Destroy deleted domains */
7332 for (i = 0; i < ndoms_cur; i++) {
7333 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7334 if (cpus_equal(doms_cur[i], doms_new[j])
7335 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7336 goto match1;
7337 }
7338 /* no match - a current sched domain not in new doms_new[] */
7339 detach_destroy_domains(doms_cur + i);
7340match1:
7341 ;
7342 }
7343
7344 /* Build new domains */
7345 for (i = 0; i < ndoms_new; i++) {
7346 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7347 if (cpus_equal(doms_new[i], doms_cur[j])
7348 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7349 goto match2;
7350 }
7351 /* no match - add a new doms_new */
1d3504fc
HS
7352 __build_sched_domains(doms_new + i,
7353 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7354match2:
7355 ;
7356 }
7357
7358 /* Remember the new sched domains */
7359 if (doms_cur != &fallback_doms)
7360 kfree(doms_cur);
1d3504fc 7361 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7362 doms_cur = doms_new;
1d3504fc 7363 dattr_cur = dattr_new;
029190c5 7364 ndoms_cur = ndoms_new;
7378547f
MM
7365
7366 register_sched_domain_sysctl();
a1835615 7367
712555ee 7368 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7369}
7370
5c45bf27 7371#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7372int arch_reinit_sched_domains(void)
5c45bf27
SS
7373{
7374 int err;
7375
95402b38 7376 get_online_cpus();
712555ee 7377 mutex_lock(&sched_domains_mutex);
5c45bf27
SS
7378 detach_destroy_domains(&cpu_online_map);
7379 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7380 mutex_unlock(&sched_domains_mutex);
95402b38 7381 put_online_cpus();
5c45bf27
SS
7382
7383 return err;
7384}
7385
7386static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7387{
7388 int ret;
7389
7390 if (buf[0] != '0' && buf[0] != '1')
7391 return -EINVAL;
7392
7393 if (smt)
7394 sched_smt_power_savings = (buf[0] == '1');
7395 else
7396 sched_mc_power_savings = (buf[0] == '1');
7397
7398 ret = arch_reinit_sched_domains();
7399
7400 return ret ? ret : count;
7401}
7402
5c45bf27
SS
7403#ifdef CONFIG_SCHED_MC
7404static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7405{
7406 return sprintf(page, "%u\n", sched_mc_power_savings);
7407}
48f24c4d
IM
7408static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7409 const char *buf, size_t count)
5c45bf27
SS
7410{
7411 return sched_power_savings_store(buf, count, 0);
7412}
6707de00
AB
7413static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7414 sched_mc_power_savings_store);
5c45bf27
SS
7415#endif
7416
7417#ifdef CONFIG_SCHED_SMT
7418static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7419{
7420 return sprintf(page, "%u\n", sched_smt_power_savings);
7421}
48f24c4d
IM
7422static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7423 const char *buf, size_t count)
5c45bf27
SS
7424{
7425 return sched_power_savings_store(buf, count, 1);
7426}
6707de00
AB
7427static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7428 sched_smt_power_savings_store);
7429#endif
7430
7431int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7432{
7433 int err = 0;
7434
7435#ifdef CONFIG_SCHED_SMT
7436 if (smt_capable())
7437 err = sysfs_create_file(&cls->kset.kobj,
7438 &attr_sched_smt_power_savings.attr);
7439#endif
7440#ifdef CONFIG_SCHED_MC
7441 if (!err && mc_capable())
7442 err = sysfs_create_file(&cls->kset.kobj,
7443 &attr_sched_mc_power_savings.attr);
7444#endif
7445 return err;
7446}
5c45bf27
SS
7447#endif
7448
1da177e4 7449/*
41a2d6cf 7450 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7451 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7452 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7453 * which will prevent rebalancing while the sched domains are recalculated.
7454 */
7455static int update_sched_domains(struct notifier_block *nfb,
7456 unsigned long action, void *hcpu)
7457{
1da177e4
LT
7458 switch (action) {
7459 case CPU_UP_PREPARE:
8bb78442 7460 case CPU_UP_PREPARE_FROZEN:
1da177e4 7461 case CPU_DOWN_PREPARE:
8bb78442 7462 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7463 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7464 return NOTIFY_OK;
7465
7466 case CPU_UP_CANCELED:
8bb78442 7467 case CPU_UP_CANCELED_FROZEN:
1da177e4 7468 case CPU_DOWN_FAILED:
8bb78442 7469 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7470 case CPU_ONLINE:
8bb78442 7471 case CPU_ONLINE_FROZEN:
1da177e4 7472 case CPU_DEAD:
8bb78442 7473 case CPU_DEAD_FROZEN:
1da177e4
LT
7474 /*
7475 * Fall through and re-initialise the domains.
7476 */
7477 break;
7478 default:
7479 return NOTIFY_DONE;
7480 }
7481
7482 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7483 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7484
7485 return NOTIFY_OK;
7486}
1da177e4
LT
7487
7488void __init sched_init_smp(void)
7489{
5c1e1767
NP
7490 cpumask_t non_isolated_cpus;
7491
434d53b0
MT
7492#if defined(CONFIG_NUMA)
7493 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7494 GFP_KERNEL);
7495 BUG_ON(sched_group_nodes_bycpu == NULL);
7496#endif
95402b38 7497 get_online_cpus();
712555ee 7498 mutex_lock(&sched_domains_mutex);
1a20ff27 7499 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7500 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7501 if (cpus_empty(non_isolated_cpus))
7502 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7503 mutex_unlock(&sched_domains_mutex);
95402b38 7504 put_online_cpus();
1da177e4
LT
7505 /* XXX: Theoretical race here - CPU may be hotplugged now */
7506 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7507 init_hrtick();
5c1e1767
NP
7508
7509 /* Move init over to a non-isolated CPU */
7c16ec58 7510 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7511 BUG();
19978ca6 7512 sched_init_granularity();
1da177e4
LT
7513}
7514#else
7515void __init sched_init_smp(void)
7516{
19978ca6 7517 sched_init_granularity();
1da177e4
LT
7518}
7519#endif /* CONFIG_SMP */
7520
7521int in_sched_functions(unsigned long addr)
7522{
1da177e4
LT
7523 return in_lock_functions(addr) ||
7524 (addr >= (unsigned long)__sched_text_start
7525 && addr < (unsigned long)__sched_text_end);
7526}
7527
a9957449 7528static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7529{
7530 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7531 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7532#ifdef CONFIG_FAIR_GROUP_SCHED
7533 cfs_rq->rq = rq;
7534#endif
67e9fb2a 7535 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7536}
7537
fa85ae24
PZ
7538static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7539{
7540 struct rt_prio_array *array;
7541 int i;
7542
7543 array = &rt_rq->active;
7544 for (i = 0; i < MAX_RT_PRIO; i++) {
7545 INIT_LIST_HEAD(array->queue + i);
7546 __clear_bit(i, array->bitmap);
7547 }
7548 /* delimiter for bitsearch: */
7549 __set_bit(MAX_RT_PRIO, array->bitmap);
7550
052f1dc7 7551#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7552 rt_rq->highest_prio = MAX_RT_PRIO;
7553#endif
fa85ae24
PZ
7554#ifdef CONFIG_SMP
7555 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7556 rt_rq->overloaded = 0;
7557#endif
7558
7559 rt_rq->rt_time = 0;
7560 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7561 rt_rq->rt_runtime = 0;
7562 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7563
052f1dc7 7564#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7565 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7566 rt_rq->rq = rq;
7567#endif
fa85ae24
PZ
7568}
7569
6f505b16 7570#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7571static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7572 struct sched_entity *se, int cpu, int add,
7573 struct sched_entity *parent)
6f505b16 7574{
ec7dc8ac 7575 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7576 tg->cfs_rq[cpu] = cfs_rq;
7577 init_cfs_rq(cfs_rq, rq);
7578 cfs_rq->tg = tg;
7579 if (add)
7580 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7581
7582 tg->se[cpu] = se;
354d60c2
DG
7583 /* se could be NULL for init_task_group */
7584 if (!se)
7585 return;
7586
ec7dc8ac
DG
7587 if (!parent)
7588 se->cfs_rq = &rq->cfs;
7589 else
7590 se->cfs_rq = parent->my_q;
7591
6f505b16
PZ
7592 se->my_q = cfs_rq;
7593 se->load.weight = tg->shares;
e05510d0 7594 se->load.inv_weight = 0;
ec7dc8ac 7595 se->parent = parent;
6f505b16 7596}
052f1dc7 7597#endif
6f505b16 7598
052f1dc7 7599#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7600static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7601 struct sched_rt_entity *rt_se, int cpu, int add,
7602 struct sched_rt_entity *parent)
6f505b16 7603{
ec7dc8ac
DG
7604 struct rq *rq = cpu_rq(cpu);
7605
6f505b16
PZ
7606 tg->rt_rq[cpu] = rt_rq;
7607 init_rt_rq(rt_rq, rq);
7608 rt_rq->tg = tg;
7609 rt_rq->rt_se = rt_se;
ac086bc2 7610 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7611 if (add)
7612 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7613
7614 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7615 if (!rt_se)
7616 return;
7617
ec7dc8ac
DG
7618 if (!parent)
7619 rt_se->rt_rq = &rq->rt;
7620 else
7621 rt_se->rt_rq = parent->my_q;
7622
6f505b16
PZ
7623 rt_se->rt_rq = &rq->rt;
7624 rt_se->my_q = rt_rq;
ec7dc8ac 7625 rt_se->parent = parent;
6f505b16
PZ
7626 INIT_LIST_HEAD(&rt_se->run_list);
7627}
7628#endif
7629
1da177e4
LT
7630void __init sched_init(void)
7631{
dd41f596 7632 int i, j;
434d53b0
MT
7633 unsigned long alloc_size = 0, ptr;
7634
7635#ifdef CONFIG_FAIR_GROUP_SCHED
7636 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7637#endif
7638#ifdef CONFIG_RT_GROUP_SCHED
7639 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7640#endif
7641#ifdef CONFIG_USER_SCHED
7642 alloc_size *= 2;
434d53b0
MT
7643#endif
7644 /*
7645 * As sched_init() is called before page_alloc is setup,
7646 * we use alloc_bootmem().
7647 */
7648 if (alloc_size) {
5a9d3225 7649 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7650
7651#ifdef CONFIG_FAIR_GROUP_SCHED
7652 init_task_group.se = (struct sched_entity **)ptr;
7653 ptr += nr_cpu_ids * sizeof(void **);
7654
7655 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7656 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7657
7658#ifdef CONFIG_USER_SCHED
7659 root_task_group.se = (struct sched_entity **)ptr;
7660 ptr += nr_cpu_ids * sizeof(void **);
7661
7662 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7663 ptr += nr_cpu_ids * sizeof(void **);
7664#endif
434d53b0
MT
7665#endif
7666#ifdef CONFIG_RT_GROUP_SCHED
7667 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7668 ptr += nr_cpu_ids * sizeof(void **);
7669
7670 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7671 ptr += nr_cpu_ids * sizeof(void **);
7672
7673#ifdef CONFIG_USER_SCHED
7674 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7675 ptr += nr_cpu_ids * sizeof(void **);
7676
7677 root_task_group.rt_rq = (struct rt_rq **)ptr;
7678 ptr += nr_cpu_ids * sizeof(void **);
7679#endif
434d53b0
MT
7680#endif
7681 }
dd41f596 7682
57d885fe
GH
7683#ifdef CONFIG_SMP
7684 init_defrootdomain();
7685#endif
7686
d0b27fa7
PZ
7687 init_rt_bandwidth(&def_rt_bandwidth,
7688 global_rt_period(), global_rt_runtime());
7689
7690#ifdef CONFIG_RT_GROUP_SCHED
7691 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7692 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7693#ifdef CONFIG_USER_SCHED
7694 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7695 global_rt_period(), RUNTIME_INF);
7696#endif
d0b27fa7
PZ
7697#endif
7698
052f1dc7 7699#ifdef CONFIG_GROUP_SCHED
6f505b16 7700 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7701 INIT_LIST_HEAD(&init_task_group.children);
7702
7703#ifdef CONFIG_USER_SCHED
7704 INIT_LIST_HEAD(&root_task_group.children);
7705 init_task_group.parent = &root_task_group;
7706 list_add(&init_task_group.siblings, &root_task_group.children);
7707#endif
6f505b16
PZ
7708#endif
7709
0a945022 7710 for_each_possible_cpu(i) {
70b97a7f 7711 struct rq *rq;
1da177e4
LT
7712
7713 rq = cpu_rq(i);
7714 spin_lock_init(&rq->lock);
fcb99371 7715 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7716 rq->nr_running = 0;
dd41f596 7717 init_cfs_rq(&rq->cfs, rq);
6f505b16 7718 init_rt_rq(&rq->rt, rq);
dd41f596 7719#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7720 init_task_group.shares = init_task_group_load;
6f505b16 7721 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7722#ifdef CONFIG_CGROUP_SCHED
7723 /*
7724 * How much cpu bandwidth does init_task_group get?
7725 *
7726 * In case of task-groups formed thr' the cgroup filesystem, it
7727 * gets 100% of the cpu resources in the system. This overall
7728 * system cpu resource is divided among the tasks of
7729 * init_task_group and its child task-groups in a fair manner,
7730 * based on each entity's (task or task-group's) weight
7731 * (se->load.weight).
7732 *
7733 * In other words, if init_task_group has 10 tasks of weight
7734 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7735 * then A0's share of the cpu resource is:
7736 *
7737 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7738 *
7739 * We achieve this by letting init_task_group's tasks sit
7740 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7741 */
ec7dc8ac 7742 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7743#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7744 root_task_group.shares = NICE_0_LOAD;
7745 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7746 /*
7747 * In case of task-groups formed thr' the user id of tasks,
7748 * init_task_group represents tasks belonging to root user.
7749 * Hence it forms a sibling of all subsequent groups formed.
7750 * In this case, init_task_group gets only a fraction of overall
7751 * system cpu resource, based on the weight assigned to root
7752 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7753 * by letting tasks of init_task_group sit in a separate cfs_rq
7754 * (init_cfs_rq) and having one entity represent this group of
7755 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7756 */
ec7dc8ac 7757 init_tg_cfs_entry(&init_task_group,
6f505b16 7758 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7759 &per_cpu(init_sched_entity, i), i, 1,
7760 root_task_group.se[i]);
6f505b16 7761
052f1dc7 7762#endif
354d60c2
DG
7763#endif /* CONFIG_FAIR_GROUP_SCHED */
7764
7765 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7766#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7767 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7768#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7769 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7770#elif defined CONFIG_USER_SCHED
eff766a6 7771 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7772 init_tg_rt_entry(&init_task_group,
6f505b16 7773 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7774 &per_cpu(init_sched_rt_entity, i), i, 1,
7775 root_task_group.rt_se[i]);
354d60c2 7776#endif
dd41f596 7777#endif
1da177e4 7778
dd41f596
IM
7779 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7780 rq->cpu_load[j] = 0;
1da177e4 7781#ifdef CONFIG_SMP
41c7ce9a 7782 rq->sd = NULL;
57d885fe 7783 rq->rd = NULL;
1da177e4 7784 rq->active_balance = 0;
dd41f596 7785 rq->next_balance = jiffies;
1da177e4 7786 rq->push_cpu = 0;
0a2966b4 7787 rq->cpu = i;
1da177e4
LT
7788 rq->migration_thread = NULL;
7789 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7790 rq_attach_root(rq, &def_root_domain);
1da177e4 7791#endif
8f4d37ec 7792 init_rq_hrtick(rq);
1da177e4 7793 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7794 }
7795
2dd73a4f 7796 set_load_weight(&init_task);
b50f60ce 7797
e107be36
AK
7798#ifdef CONFIG_PREEMPT_NOTIFIERS
7799 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7800#endif
7801
c9819f45
CL
7802#ifdef CONFIG_SMP
7803 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7804#endif
7805
b50f60ce
HC
7806#ifdef CONFIG_RT_MUTEXES
7807 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7808#endif
7809
1da177e4
LT
7810 /*
7811 * The boot idle thread does lazy MMU switching as well:
7812 */
7813 atomic_inc(&init_mm.mm_count);
7814 enter_lazy_tlb(&init_mm, current);
7815
7816 /*
7817 * Make us the idle thread. Technically, schedule() should not be
7818 * called from this thread, however somewhere below it might be,
7819 * but because we are the idle thread, we just pick up running again
7820 * when this runqueue becomes "idle".
7821 */
7822 init_idle(current, smp_processor_id());
dd41f596
IM
7823 /*
7824 * During early bootup we pretend to be a normal task:
7825 */
7826 current->sched_class = &fair_sched_class;
6892b75e
IM
7827
7828 scheduler_running = 1;
1da177e4
LT
7829}
7830
7831#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7832void __might_sleep(char *file, int line)
7833{
48f24c4d 7834#ifdef in_atomic
1da177e4
LT
7835 static unsigned long prev_jiffy; /* ratelimiting */
7836
7837 if ((in_atomic() || irqs_disabled()) &&
7838 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7839 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7840 return;
7841 prev_jiffy = jiffies;
91368d73 7842 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7843 " context at %s:%d\n", file, line);
7844 printk("in_atomic():%d, irqs_disabled():%d\n",
7845 in_atomic(), irqs_disabled());
a4c410f0 7846 debug_show_held_locks(current);
3117df04
IM
7847 if (irqs_disabled())
7848 print_irqtrace_events(current);
1da177e4
LT
7849 dump_stack();
7850 }
7851#endif
7852}
7853EXPORT_SYMBOL(__might_sleep);
7854#endif
7855
7856#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7857static void normalize_task(struct rq *rq, struct task_struct *p)
7858{
7859 int on_rq;
3e51f33f 7860
3a5e4dc1
AK
7861 update_rq_clock(rq);
7862 on_rq = p->se.on_rq;
7863 if (on_rq)
7864 deactivate_task(rq, p, 0);
7865 __setscheduler(rq, p, SCHED_NORMAL, 0);
7866 if (on_rq) {
7867 activate_task(rq, p, 0);
7868 resched_task(rq->curr);
7869 }
7870}
7871
1da177e4
LT
7872void normalize_rt_tasks(void)
7873{
a0f98a1c 7874 struct task_struct *g, *p;
1da177e4 7875 unsigned long flags;
70b97a7f 7876 struct rq *rq;
1da177e4 7877
4cf5d77a 7878 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7879 do_each_thread(g, p) {
178be793
IM
7880 /*
7881 * Only normalize user tasks:
7882 */
7883 if (!p->mm)
7884 continue;
7885
6cfb0d5d 7886 p->se.exec_start = 0;
6cfb0d5d 7887#ifdef CONFIG_SCHEDSTATS
dd41f596 7888 p->se.wait_start = 0;
dd41f596 7889 p->se.sleep_start = 0;
dd41f596 7890 p->se.block_start = 0;
6cfb0d5d 7891#endif
dd41f596
IM
7892
7893 if (!rt_task(p)) {
7894 /*
7895 * Renice negative nice level userspace
7896 * tasks back to 0:
7897 */
7898 if (TASK_NICE(p) < 0 && p->mm)
7899 set_user_nice(p, 0);
1da177e4 7900 continue;
dd41f596 7901 }
1da177e4 7902
4cf5d77a 7903 spin_lock(&p->pi_lock);
b29739f9 7904 rq = __task_rq_lock(p);
1da177e4 7905
178be793 7906 normalize_task(rq, p);
3a5e4dc1 7907
b29739f9 7908 __task_rq_unlock(rq);
4cf5d77a 7909 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7910 } while_each_thread(g, p);
7911
4cf5d77a 7912 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7913}
7914
7915#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7916
7917#ifdef CONFIG_IA64
7918/*
7919 * These functions are only useful for the IA64 MCA handling.
7920 *
7921 * They can only be called when the whole system has been
7922 * stopped - every CPU needs to be quiescent, and no scheduling
7923 * activity can take place. Using them for anything else would
7924 * be a serious bug, and as a result, they aren't even visible
7925 * under any other configuration.
7926 */
7927
7928/**
7929 * curr_task - return the current task for a given cpu.
7930 * @cpu: the processor in question.
7931 *
7932 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7933 */
36c8b586 7934struct task_struct *curr_task(int cpu)
1df5c10a
LT
7935{
7936 return cpu_curr(cpu);
7937}
7938
7939/**
7940 * set_curr_task - set the current task for a given cpu.
7941 * @cpu: the processor in question.
7942 * @p: the task pointer to set.
7943 *
7944 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7945 * are serviced on a separate stack. It allows the architecture to switch the
7946 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7947 * must be called with all CPU's synchronized, and interrupts disabled, the
7948 * and caller must save the original value of the current task (see
7949 * curr_task() above) and restore that value before reenabling interrupts and
7950 * re-starting the system.
7951 *
7952 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7953 */
36c8b586 7954void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7955{
7956 cpu_curr(cpu) = p;
7957}
7958
7959#endif
29f59db3 7960
bccbe08a
PZ
7961#ifdef CONFIG_FAIR_GROUP_SCHED
7962static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7963{
7964 int i;
7965
7966 for_each_possible_cpu(i) {
7967 if (tg->cfs_rq)
7968 kfree(tg->cfs_rq[i]);
7969 if (tg->se)
7970 kfree(tg->se[i]);
6f505b16
PZ
7971 }
7972
7973 kfree(tg->cfs_rq);
7974 kfree(tg->se);
6f505b16
PZ
7975}
7976
ec7dc8ac
DG
7977static
7978int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7979{
29f59db3 7980 struct cfs_rq *cfs_rq;
ec7dc8ac 7981 struct sched_entity *se, *parent_se;
9b5b7751 7982 struct rq *rq;
29f59db3
SV
7983 int i;
7984
434d53b0 7985 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7986 if (!tg->cfs_rq)
7987 goto err;
434d53b0 7988 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7989 if (!tg->se)
7990 goto err;
052f1dc7
PZ
7991
7992 tg->shares = NICE_0_LOAD;
29f59db3
SV
7993
7994 for_each_possible_cpu(i) {
9b5b7751 7995 rq = cpu_rq(i);
29f59db3 7996
6f505b16
PZ
7997 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7998 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7999 if (!cfs_rq)
8000 goto err;
8001
6f505b16
PZ
8002 se = kmalloc_node(sizeof(struct sched_entity),
8003 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8004 if (!se)
8005 goto err;
8006
ec7dc8ac
DG
8007 parent_se = parent ? parent->se[i] : NULL;
8008 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8009 }
8010
8011 return 1;
8012
8013 err:
8014 return 0;
8015}
8016
8017static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8018{
8019 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8020 &cpu_rq(cpu)->leaf_cfs_rq_list);
8021}
8022
8023static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8024{
8025 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8026}
8027#else
8028static inline void free_fair_sched_group(struct task_group *tg)
8029{
8030}
8031
ec7dc8ac
DG
8032static inline
8033int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8034{
8035 return 1;
8036}
8037
8038static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8039{
8040}
8041
8042static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8043{
8044}
052f1dc7
PZ
8045#endif
8046
8047#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8048static void free_rt_sched_group(struct task_group *tg)
8049{
8050 int i;
8051
d0b27fa7
PZ
8052 destroy_rt_bandwidth(&tg->rt_bandwidth);
8053
bccbe08a
PZ
8054 for_each_possible_cpu(i) {
8055 if (tg->rt_rq)
8056 kfree(tg->rt_rq[i]);
8057 if (tg->rt_se)
8058 kfree(tg->rt_se[i]);
8059 }
8060
8061 kfree(tg->rt_rq);
8062 kfree(tg->rt_se);
8063}
8064
ec7dc8ac
DG
8065static
8066int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8067{
8068 struct rt_rq *rt_rq;
ec7dc8ac 8069 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8070 struct rq *rq;
8071 int i;
8072
434d53b0 8073 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8074 if (!tg->rt_rq)
8075 goto err;
434d53b0 8076 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8077 if (!tg->rt_se)
8078 goto err;
8079
d0b27fa7
PZ
8080 init_rt_bandwidth(&tg->rt_bandwidth,
8081 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8082
8083 for_each_possible_cpu(i) {
8084 rq = cpu_rq(i);
8085
6f505b16
PZ
8086 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8087 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8088 if (!rt_rq)
8089 goto err;
29f59db3 8090
6f505b16
PZ
8091 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8092 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8093 if (!rt_se)
8094 goto err;
29f59db3 8095
ec7dc8ac
DG
8096 parent_se = parent ? parent->rt_se[i] : NULL;
8097 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8098 }
8099
bccbe08a
PZ
8100 return 1;
8101
8102 err:
8103 return 0;
8104}
8105
8106static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8107{
8108 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8109 &cpu_rq(cpu)->leaf_rt_rq_list);
8110}
8111
8112static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8113{
8114 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8115}
8116#else
8117static inline void free_rt_sched_group(struct task_group *tg)
8118{
8119}
8120
ec7dc8ac
DG
8121static inline
8122int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8123{
8124 return 1;
8125}
8126
8127static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8128{
8129}
8130
8131static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8132{
8133}
8134#endif
8135
d0b27fa7 8136#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8137static void free_sched_group(struct task_group *tg)
8138{
8139 free_fair_sched_group(tg);
8140 free_rt_sched_group(tg);
8141 kfree(tg);
8142}
8143
8144/* allocate runqueue etc for a new task group */
ec7dc8ac 8145struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8146{
8147 struct task_group *tg;
8148 unsigned long flags;
8149 int i;
8150
8151 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8152 if (!tg)
8153 return ERR_PTR(-ENOMEM);
8154
ec7dc8ac 8155 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8156 goto err;
8157
ec7dc8ac 8158 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8159 goto err;
8160
8ed36996 8161 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8162 for_each_possible_cpu(i) {
bccbe08a
PZ
8163 register_fair_sched_group(tg, i);
8164 register_rt_sched_group(tg, i);
9b5b7751 8165 }
6f505b16 8166 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8167
8168 WARN_ON(!parent); /* root should already exist */
8169
8170 tg->parent = parent;
8171 list_add_rcu(&tg->siblings, &parent->children);
8172 INIT_LIST_HEAD(&tg->children);
8ed36996 8173 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8174
9b5b7751 8175 return tg;
29f59db3
SV
8176
8177err:
6f505b16 8178 free_sched_group(tg);
29f59db3
SV
8179 return ERR_PTR(-ENOMEM);
8180}
8181
9b5b7751 8182/* rcu callback to free various structures associated with a task group */
6f505b16 8183static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8184{
29f59db3 8185 /* now it should be safe to free those cfs_rqs */
6f505b16 8186 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8187}
8188
9b5b7751 8189/* Destroy runqueue etc associated with a task group */
4cf86d77 8190void sched_destroy_group(struct task_group *tg)
29f59db3 8191{
8ed36996 8192 unsigned long flags;
9b5b7751 8193 int i;
29f59db3 8194
8ed36996 8195 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8196 for_each_possible_cpu(i) {
bccbe08a
PZ
8197 unregister_fair_sched_group(tg, i);
8198 unregister_rt_sched_group(tg, i);
9b5b7751 8199 }
6f505b16 8200 list_del_rcu(&tg->list);
f473aa5e 8201 list_del_rcu(&tg->siblings);
8ed36996 8202 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8203
9b5b7751 8204 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8205 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8206}
8207
9b5b7751 8208/* change task's runqueue when it moves between groups.
3a252015
IM
8209 * The caller of this function should have put the task in its new group
8210 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8211 * reflect its new group.
9b5b7751
SV
8212 */
8213void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8214{
8215 int on_rq, running;
8216 unsigned long flags;
8217 struct rq *rq;
8218
8219 rq = task_rq_lock(tsk, &flags);
8220
29f59db3
SV
8221 update_rq_clock(rq);
8222
051a1d1a 8223 running = task_current(rq, tsk);
29f59db3
SV
8224 on_rq = tsk->se.on_rq;
8225
0e1f3483 8226 if (on_rq)
29f59db3 8227 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8228 if (unlikely(running))
8229 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8230
6f505b16 8231 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8232
810b3817
PZ
8233#ifdef CONFIG_FAIR_GROUP_SCHED
8234 if (tsk->sched_class->moved_group)
8235 tsk->sched_class->moved_group(tsk);
8236#endif
8237
0e1f3483
HS
8238 if (unlikely(running))
8239 tsk->sched_class->set_curr_task(rq);
8240 if (on_rq)
7074badb 8241 enqueue_task(rq, tsk, 0);
29f59db3 8242
29f59db3
SV
8243 task_rq_unlock(rq, &flags);
8244}
d0b27fa7 8245#endif
29f59db3 8246
052f1dc7 8247#ifdef CONFIG_FAIR_GROUP_SCHED
6363ca57 8248static void set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8249{
8250 struct cfs_rq *cfs_rq = se->cfs_rq;
6363ca57 8251 struct rq *rq = cfs_rq->rq;
29f59db3
SV
8252 int on_rq;
8253
6363ca57
IM
8254 spin_lock_irq(&rq->lock);
8255
29f59db3 8256 on_rq = se->on_rq;
62fb1851 8257 if (on_rq)
29f59db3
SV
8258 dequeue_entity(cfs_rq, se, 0);
8259
8260 se->load.weight = shares;
e05510d0 8261 se->load.inv_weight = 0;
29f59db3 8262
62fb1851 8263 if (on_rq)
29f59db3 8264 enqueue_entity(cfs_rq, se, 0);
62fb1851 8265
6363ca57 8266 spin_unlock_irq(&rq->lock);
29f59db3
SV
8267}
8268
8ed36996
PZ
8269static DEFINE_MUTEX(shares_mutex);
8270
4cf86d77 8271int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8272{
8273 int i;
8ed36996 8274 unsigned long flags;
c61935fd 8275
ec7dc8ac
DG
8276 /*
8277 * We can't change the weight of the root cgroup.
8278 */
8279 if (!tg->se[0])
8280 return -EINVAL;
8281
18d95a28
PZ
8282 if (shares < MIN_SHARES)
8283 shares = MIN_SHARES;
cb4ad1ff
MX
8284 else if (shares > MAX_SHARES)
8285 shares = MAX_SHARES;
62fb1851 8286
8ed36996 8287 mutex_lock(&shares_mutex);
9b5b7751 8288 if (tg->shares == shares)
5cb350ba 8289 goto done;
29f59db3 8290
8ed36996 8291 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8292 for_each_possible_cpu(i)
8293 unregister_fair_sched_group(tg, i);
f473aa5e 8294 list_del_rcu(&tg->siblings);
8ed36996 8295 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8296
8297 /* wait for any ongoing reference to this group to finish */
8298 synchronize_sched();
8299
8300 /*
8301 * Now we are free to modify the group's share on each cpu
8302 * w/o tripping rebalance_share or load_balance_fair.
8303 */
9b5b7751 8304 tg->shares = shares;
6363ca57 8305 for_each_possible_cpu(i)
cb4ad1ff 8306 set_se_shares(tg->se[i], shares);
29f59db3 8307
6b2d7700
SV
8308 /*
8309 * Enable load balance activity on this group, by inserting it back on
8310 * each cpu's rq->leaf_cfs_rq_list.
8311 */
8ed36996 8312 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8313 for_each_possible_cpu(i)
8314 register_fair_sched_group(tg, i);
f473aa5e 8315 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8316 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8317done:
8ed36996 8318 mutex_unlock(&shares_mutex);
9b5b7751 8319 return 0;
29f59db3
SV
8320}
8321
5cb350ba
DG
8322unsigned long sched_group_shares(struct task_group *tg)
8323{
8324 return tg->shares;
8325}
052f1dc7 8326#endif
5cb350ba 8327
052f1dc7 8328#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8329/*
9f0c1e56 8330 * Ensure that the real time constraints are schedulable.
6f505b16 8331 */
9f0c1e56
PZ
8332static DEFINE_MUTEX(rt_constraints_mutex);
8333
8334static unsigned long to_ratio(u64 period, u64 runtime)
8335{
8336 if (runtime == RUNTIME_INF)
8337 return 1ULL << 16;
8338
6f6d6a1a 8339 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8340}
8341
b40b2e8e
PZ
8342#ifdef CONFIG_CGROUP_SCHED
8343static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8344{
8345 struct task_group *tgi, *parent = tg->parent;
8346 unsigned long total = 0;
8347
8348 if (!parent) {
8349 if (global_rt_period() < period)
8350 return 0;
8351
8352 return to_ratio(period, runtime) <
8353 to_ratio(global_rt_period(), global_rt_runtime());
8354 }
8355
8356 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8357 return 0;
8358
8359 rcu_read_lock();
8360 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8361 if (tgi == tg)
8362 continue;
8363
8364 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8365 tgi->rt_bandwidth.rt_runtime);
8366 }
8367 rcu_read_unlock();
8368
8369 return total + to_ratio(period, runtime) <
8370 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8371 parent->rt_bandwidth.rt_runtime);
8372}
8373#elif defined CONFIG_USER_SCHED
9f0c1e56 8374static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8375{
8376 struct task_group *tgi;
8377 unsigned long total = 0;
9f0c1e56 8378 unsigned long global_ratio =
d0b27fa7 8379 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8380
8381 rcu_read_lock();
9f0c1e56
PZ
8382 list_for_each_entry_rcu(tgi, &task_groups, list) {
8383 if (tgi == tg)
8384 continue;
6f505b16 8385
d0b27fa7
PZ
8386 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8387 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8388 }
8389 rcu_read_unlock();
6f505b16 8390
9f0c1e56 8391 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8392}
b40b2e8e 8393#endif
6f505b16 8394
521f1a24
DG
8395/* Must be called with tasklist_lock held */
8396static inline int tg_has_rt_tasks(struct task_group *tg)
8397{
8398 struct task_struct *g, *p;
8399 do_each_thread(g, p) {
8400 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8401 return 1;
8402 } while_each_thread(g, p);
8403 return 0;
8404}
8405
d0b27fa7
PZ
8406static int tg_set_bandwidth(struct task_group *tg,
8407 u64 rt_period, u64 rt_runtime)
6f505b16 8408{
ac086bc2 8409 int i, err = 0;
9f0c1e56 8410
9f0c1e56 8411 mutex_lock(&rt_constraints_mutex);
521f1a24 8412 read_lock(&tasklist_lock);
ac086bc2 8413 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8414 err = -EBUSY;
8415 goto unlock;
8416 }
9f0c1e56
PZ
8417 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8418 err = -EINVAL;
8419 goto unlock;
8420 }
ac086bc2
PZ
8421
8422 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8423 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8424 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8425
8426 for_each_possible_cpu(i) {
8427 struct rt_rq *rt_rq = tg->rt_rq[i];
8428
8429 spin_lock(&rt_rq->rt_runtime_lock);
8430 rt_rq->rt_runtime = rt_runtime;
8431 spin_unlock(&rt_rq->rt_runtime_lock);
8432 }
8433 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8434 unlock:
521f1a24 8435 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8436 mutex_unlock(&rt_constraints_mutex);
8437
8438 return err;
6f505b16
PZ
8439}
8440
d0b27fa7
PZ
8441int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8442{
8443 u64 rt_runtime, rt_period;
8444
8445 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8446 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8447 if (rt_runtime_us < 0)
8448 rt_runtime = RUNTIME_INF;
8449
8450 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8451}
8452
9f0c1e56
PZ
8453long sched_group_rt_runtime(struct task_group *tg)
8454{
8455 u64 rt_runtime_us;
8456
d0b27fa7 8457 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8458 return -1;
8459
d0b27fa7 8460 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8461 do_div(rt_runtime_us, NSEC_PER_USEC);
8462 return rt_runtime_us;
8463}
d0b27fa7
PZ
8464
8465int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8466{
8467 u64 rt_runtime, rt_period;
8468
8469 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8470 rt_runtime = tg->rt_bandwidth.rt_runtime;
8471
8472 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8473}
8474
8475long sched_group_rt_period(struct task_group *tg)
8476{
8477 u64 rt_period_us;
8478
8479 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8480 do_div(rt_period_us, NSEC_PER_USEC);
8481 return rt_period_us;
8482}
8483
8484static int sched_rt_global_constraints(void)
8485{
8486 int ret = 0;
8487
8488 mutex_lock(&rt_constraints_mutex);
8489 if (!__rt_schedulable(NULL, 1, 0))
8490 ret = -EINVAL;
8491 mutex_unlock(&rt_constraints_mutex);
8492
8493 return ret;
8494}
8495#else
8496static int sched_rt_global_constraints(void)
8497{
ac086bc2
PZ
8498 unsigned long flags;
8499 int i;
8500
8501 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8502 for_each_possible_cpu(i) {
8503 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8504
8505 spin_lock(&rt_rq->rt_runtime_lock);
8506 rt_rq->rt_runtime = global_rt_runtime();
8507 spin_unlock(&rt_rq->rt_runtime_lock);
8508 }
8509 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8510
d0b27fa7
PZ
8511 return 0;
8512}
052f1dc7 8513#endif
d0b27fa7
PZ
8514
8515int sched_rt_handler(struct ctl_table *table, int write,
8516 struct file *filp, void __user *buffer, size_t *lenp,
8517 loff_t *ppos)
8518{
8519 int ret;
8520 int old_period, old_runtime;
8521 static DEFINE_MUTEX(mutex);
8522
8523 mutex_lock(&mutex);
8524 old_period = sysctl_sched_rt_period;
8525 old_runtime = sysctl_sched_rt_runtime;
8526
8527 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8528
8529 if (!ret && write) {
8530 ret = sched_rt_global_constraints();
8531 if (ret) {
8532 sysctl_sched_rt_period = old_period;
8533 sysctl_sched_rt_runtime = old_runtime;
8534 } else {
8535 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8536 def_rt_bandwidth.rt_period =
8537 ns_to_ktime(global_rt_period());
8538 }
8539 }
8540 mutex_unlock(&mutex);
8541
8542 return ret;
8543}
68318b8e 8544
052f1dc7 8545#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8546
8547/* return corresponding task_group object of a cgroup */
2b01dfe3 8548static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8549{
2b01dfe3
PM
8550 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8551 struct task_group, css);
68318b8e
SV
8552}
8553
8554static struct cgroup_subsys_state *
2b01dfe3 8555cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8556{
ec7dc8ac 8557 struct task_group *tg, *parent;
68318b8e 8558
2b01dfe3 8559 if (!cgrp->parent) {
68318b8e 8560 /* This is early initialization for the top cgroup */
2b01dfe3 8561 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8562 return &init_task_group.css;
8563 }
8564
ec7dc8ac
DG
8565 parent = cgroup_tg(cgrp->parent);
8566 tg = sched_create_group(parent);
68318b8e
SV
8567 if (IS_ERR(tg))
8568 return ERR_PTR(-ENOMEM);
8569
8570 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8571 tg->css.cgroup = cgrp;
68318b8e
SV
8572
8573 return &tg->css;
8574}
8575
41a2d6cf
IM
8576static void
8577cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8578{
2b01dfe3 8579 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8580
8581 sched_destroy_group(tg);
8582}
8583
41a2d6cf
IM
8584static int
8585cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8586 struct task_struct *tsk)
68318b8e 8587{
b68aa230
PZ
8588#ifdef CONFIG_RT_GROUP_SCHED
8589 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8590 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8591 return -EINVAL;
8592#else
68318b8e
SV
8593 /* We don't support RT-tasks being in separate groups */
8594 if (tsk->sched_class != &fair_sched_class)
8595 return -EINVAL;
b68aa230 8596#endif
68318b8e
SV
8597
8598 return 0;
8599}
8600
8601static void
2b01dfe3 8602cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8603 struct cgroup *old_cont, struct task_struct *tsk)
8604{
8605 sched_move_task(tsk);
8606}
8607
052f1dc7 8608#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8609static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8610 u64 shareval)
68318b8e 8611{
2b01dfe3 8612 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8613}
8614
f4c753b7 8615static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8616{
2b01dfe3 8617 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8618
8619 return (u64) tg->shares;
8620}
052f1dc7 8621#endif
68318b8e 8622
052f1dc7 8623#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8624static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8625 s64 val)
6f505b16 8626{
06ecb27c 8627 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8628}
8629
06ecb27c 8630static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8631{
06ecb27c 8632 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8633}
d0b27fa7
PZ
8634
8635static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8636 u64 rt_period_us)
8637{
8638 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8639}
8640
8641static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8642{
8643 return sched_group_rt_period(cgroup_tg(cgrp));
8644}
052f1dc7 8645#endif
6f505b16 8646
fe5c7cc2 8647static struct cftype cpu_files[] = {
052f1dc7 8648#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8649 {
8650 .name = "shares",
f4c753b7
PM
8651 .read_u64 = cpu_shares_read_u64,
8652 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8653 },
052f1dc7
PZ
8654#endif
8655#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8656 {
9f0c1e56 8657 .name = "rt_runtime_us",
06ecb27c
PM
8658 .read_s64 = cpu_rt_runtime_read,
8659 .write_s64 = cpu_rt_runtime_write,
6f505b16 8660 },
d0b27fa7
PZ
8661 {
8662 .name = "rt_period_us",
f4c753b7
PM
8663 .read_u64 = cpu_rt_period_read_uint,
8664 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8665 },
052f1dc7 8666#endif
68318b8e
SV
8667};
8668
8669static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8670{
fe5c7cc2 8671 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8672}
8673
8674struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8675 .name = "cpu",
8676 .create = cpu_cgroup_create,
8677 .destroy = cpu_cgroup_destroy,
8678 .can_attach = cpu_cgroup_can_attach,
8679 .attach = cpu_cgroup_attach,
8680 .populate = cpu_cgroup_populate,
8681 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8682 .early_init = 1,
8683};
8684
052f1dc7 8685#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8686
8687#ifdef CONFIG_CGROUP_CPUACCT
8688
8689/*
8690 * CPU accounting code for task groups.
8691 *
8692 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8693 * (balbir@in.ibm.com).
8694 */
8695
8696/* track cpu usage of a group of tasks */
8697struct cpuacct {
8698 struct cgroup_subsys_state css;
8699 /* cpuusage holds pointer to a u64-type object on every cpu */
8700 u64 *cpuusage;
8701};
8702
8703struct cgroup_subsys cpuacct_subsys;
8704
8705/* return cpu accounting group corresponding to this container */
32cd756a 8706static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8707{
32cd756a 8708 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8709 struct cpuacct, css);
8710}
8711
8712/* return cpu accounting group to which this task belongs */
8713static inline struct cpuacct *task_ca(struct task_struct *tsk)
8714{
8715 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8716 struct cpuacct, css);
8717}
8718
8719/* create a new cpu accounting group */
8720static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8721 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8722{
8723 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8724
8725 if (!ca)
8726 return ERR_PTR(-ENOMEM);
8727
8728 ca->cpuusage = alloc_percpu(u64);
8729 if (!ca->cpuusage) {
8730 kfree(ca);
8731 return ERR_PTR(-ENOMEM);
8732 }
8733
8734 return &ca->css;
8735}
8736
8737/* destroy an existing cpu accounting group */
41a2d6cf 8738static void
32cd756a 8739cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8740{
32cd756a 8741 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8742
8743 free_percpu(ca->cpuusage);
8744 kfree(ca);
8745}
8746
8747/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8748static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8749{
32cd756a 8750 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8751 u64 totalcpuusage = 0;
8752 int i;
8753
8754 for_each_possible_cpu(i) {
8755 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8756
8757 /*
8758 * Take rq->lock to make 64-bit addition safe on 32-bit
8759 * platforms.
8760 */
8761 spin_lock_irq(&cpu_rq(i)->lock);
8762 totalcpuusage += *cpuusage;
8763 spin_unlock_irq(&cpu_rq(i)->lock);
8764 }
8765
8766 return totalcpuusage;
8767}
8768
0297b803
DG
8769static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8770 u64 reset)
8771{
8772 struct cpuacct *ca = cgroup_ca(cgrp);
8773 int err = 0;
8774 int i;
8775
8776 if (reset) {
8777 err = -EINVAL;
8778 goto out;
8779 }
8780
8781 for_each_possible_cpu(i) {
8782 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8783
8784 spin_lock_irq(&cpu_rq(i)->lock);
8785 *cpuusage = 0;
8786 spin_unlock_irq(&cpu_rq(i)->lock);
8787 }
8788out:
8789 return err;
8790}
8791
d842de87
SV
8792static struct cftype files[] = {
8793 {
8794 .name = "usage",
f4c753b7
PM
8795 .read_u64 = cpuusage_read,
8796 .write_u64 = cpuusage_write,
d842de87
SV
8797 },
8798};
8799
32cd756a 8800static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8801{
32cd756a 8802 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8803}
8804
8805/*
8806 * charge this task's execution time to its accounting group.
8807 *
8808 * called with rq->lock held.
8809 */
8810static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8811{
8812 struct cpuacct *ca;
8813
8814 if (!cpuacct_subsys.active)
8815 return;
8816
8817 ca = task_ca(tsk);
8818 if (ca) {
8819 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8820
8821 *cpuusage += cputime;
8822 }
8823}
8824
8825struct cgroup_subsys cpuacct_subsys = {
8826 .name = "cpuacct",
8827 .create = cpuacct_create,
8828 .destroy = cpuacct_destroy,
8829 .populate = cpuacct_populate,
8830 .subsys_id = cpuacct_subsys_id,
8831};
8832#endif /* CONFIG_CGROUP_CPUACCT */