]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: Fix over-scheduling bug
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
e05606d3
IM
123static inline int rt_policy(int policy)
124{
3f33a7ce 125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
126 return 1;
127 return 0;
128}
129
130static inline int task_has_rt_policy(struct task_struct *p)
131{
132 return rt_policy(p->policy);
133}
134
1da177e4 135/*
6aa645ea 136 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 137 */
6aa645ea
IM
138struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141};
142
d0b27fa7 143struct rt_bandwidth {
ea736ed5 144 /* nests inside the rq lock: */
0986b11b 145 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
d0b27fa7
PZ
149};
150
151static struct rt_bandwidth def_rt_bandwidth;
152
153static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156{
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174}
175
176static
177void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178{
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
0986b11b 182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 183
d0b27fa7
PZ
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
187}
188
c8bfff6d
KH
189static inline int rt_bandwidth_enabled(void)
190{
191 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
192}
193
194static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195{
196 ktime_t now;
197
cac64d00 198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
0986b11b 204 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 205 for (;;) {
7f1e2ca9
PZ
206 unsigned long delta;
207 ktime_t soft, hard;
208
d0b27fa7
PZ
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 219 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 220 }
0986b11b 221 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
222}
223
224#ifdef CONFIG_RT_GROUP_SCHED
225static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226{
227 hrtimer_cancel(&rt_b->rt_period_timer);
228}
229#endif
230
712555ee
HC
231/*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235static DEFINE_MUTEX(sched_domains_mutex);
236
7c941438 237#ifdef CONFIG_CGROUP_SCHED
29f59db3 238
68318b8e
SV
239#include <linux/cgroup.h>
240
29f59db3
SV
241struct cfs_rq;
242
6f505b16
PZ
243static LIST_HEAD(task_groups);
244
29f59db3 245/* task group related information */
4cf86d77 246struct task_group {
68318b8e 247 struct cgroup_subsys_state css;
6c415b92 248
052f1dc7 249#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
052f1dc7
PZ
255#endif
256
257#ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
d0b27fa7 261 struct rt_bandwidth rt_bandwidth;
052f1dc7 262#endif
6b2d7700 263
ae8393e5 264 struct rcu_head rcu;
6f505b16 265 struct list_head list;
f473aa5e
PZ
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
29f59db3
SV
270};
271
eff766a6 272#define root_task_group init_task_group
6f505b16 273
8ed36996 274/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
275 * a task group's cpu shares.
276 */
8ed36996 277static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 278
e9036b36
CG
279#ifdef CONFIG_FAIR_GROUP_SCHED
280
57310a98
PZ
281#ifdef CONFIG_SMP
282static int root_task_group_empty(void)
283{
284 return list_empty(&root_task_group.children);
285}
286#endif
287
052f1dc7 288# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 289
cb4ad1ff 290/*
2e084786
LJ
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
cb4ad1ff
MX
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
18d95a28 298#define MIN_SHARES 2
2e084786 299#define MAX_SHARES (1UL << 18)
18d95a28 300
052f1dc7
PZ
301static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302#endif
303
29f59db3 304/* Default task group.
3a252015 305 * Every task in system belong to this group at bootup.
29f59db3 306 */
434d53b0 307struct task_group init_task_group;
29f59db3 308
7c941438 309#endif /* CONFIG_CGROUP_SCHED */
29f59db3 310
6aa645ea
IM
311/* CFS-related fields in a runqueue */
312struct cfs_rq {
313 struct load_weight load;
314 unsigned long nr_running;
315
6aa645ea 316 u64 exec_clock;
e9acbff6 317 u64 min_vruntime;
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
4793241b 329 struct sched_entity *curr, *next, *last;
ddc97297 330
5ac5c4d6 331 unsigned int nr_spread_over;
ddc97297 332
62160e3f 333#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
335
41a2d6cf
IM
336 /*
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
340 *
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
343 */
41a2d6cf
IM
344 struct list_head leaf_cfs_rq_list;
345 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
346
347#ifdef CONFIG_SMP
c09595f6 348 /*
c8cba857 349 * the part of load.weight contributed by tasks
c09595f6 350 */
c8cba857 351 unsigned long task_weight;
c09595f6 352
c8cba857
PZ
353 /*
354 * h_load = weight * f(tg)
355 *
356 * Where f(tg) is the recursive weight fraction assigned to
357 * this group.
358 */
359 unsigned long h_load;
c09595f6 360
c8cba857
PZ
361 /*
362 * this cpu's part of tg->shares
363 */
364 unsigned long shares;
f1d239f7
PZ
365
366 /*
367 * load.weight at the time we set shares
368 */
369 unsigned long rq_weight;
c09595f6 370#endif
6aa645ea
IM
371#endif
372};
1da177e4 373
6aa645ea
IM
374/* Real-Time classes' related field in a runqueue: */
375struct rt_rq {
376 struct rt_prio_array active;
63489e45 377 unsigned long rt_nr_running;
052f1dc7 378#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
379 struct {
380 int curr; /* highest queued rt task prio */
398a153b 381#ifdef CONFIG_SMP
e864c499 382 int next; /* next highest */
398a153b 383#endif
e864c499 384 } highest_prio;
6f505b16 385#endif
fa85ae24 386#ifdef CONFIG_SMP
73fe6aae 387 unsigned long rt_nr_migratory;
a1ba4d8b 388 unsigned long rt_nr_total;
a22d7fc1 389 int overloaded;
917b627d 390 struct plist_head pushable_tasks;
fa85ae24 391#endif
6f505b16 392 int rt_throttled;
fa85ae24 393 u64 rt_time;
ac086bc2 394 u64 rt_runtime;
ea736ed5 395 /* Nests inside the rq lock: */
0986b11b 396 raw_spinlock_t rt_runtime_lock;
6f505b16 397
052f1dc7 398#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
399 unsigned long rt_nr_boosted;
400
6f505b16
PZ
401 struct rq *rq;
402 struct list_head leaf_rt_rq_list;
403 struct task_group *tg;
6f505b16 404#endif
6aa645ea
IM
405};
406
57d885fe
GH
407#ifdef CONFIG_SMP
408
409/*
410 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
411 * variables. Each exclusive cpuset essentially defines an island domain by
412 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
413 * exclusive cpuset is created, we also create and attach a new root-domain
414 * object.
415 *
57d885fe
GH
416 */
417struct root_domain {
418 atomic_t refcount;
c6c4927b
RR
419 cpumask_var_t span;
420 cpumask_var_t online;
637f5085 421
0eab9146 422 /*
637f5085
GH
423 * The "RT overload" flag: it gets set if a CPU has more than
424 * one runnable RT task.
425 */
c6c4927b 426 cpumask_var_t rto_mask;
0eab9146 427 atomic_t rto_count;
6e0534f2
GH
428#ifdef CONFIG_SMP
429 struct cpupri cpupri;
430#endif
57d885fe
GH
431};
432
dc938520
GH
433/*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
57d885fe
GH
437static struct root_domain def_root_domain;
438
439#endif
440
1da177e4
LT
441/*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
70b97a7f 448struct rq {
d8016491 449 /* runqueue lock: */
05fa785c 450 raw_spinlock_t lock;
1da177e4
LT
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
6aa645ea
IM
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
46cb4b7c
SS
461 unsigned char in_nohz_recently;
462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
36c8b586 489 struct task_struct *curr, *idle;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
6aa645ea 494
1da177e4
LT
495 atomic_t nr_iowait;
496
497#ifdef CONFIG_SMP
0eab9146 498 struct root_domain *rd;
1da177e4
LT
499 struct sched_domain *sd;
500
e51fd5e2
PZ
501 unsigned long cpu_power;
502
a0a522ce 503 unsigned char idle_at_tick;
1da177e4 504 /* For active balancing */
3f029d3c 505 int post_schedule;
1da177e4
LT
506 int active_balance;
507 int push_cpu;
969c7921 508 struct cpu_stop_work active_balance_work;
d8016491
IM
509 /* cpu of this runqueue: */
510 int cpu;
1f11eb6a 511 int online;
1da177e4 512
a8a51d5e 513 unsigned long avg_load_per_task;
1da177e4 514
e9e9250b
PZ
515 u64 rt_avg;
516 u64 age_stamp;
1b9508f6
MG
517 u64 idle_stamp;
518 u64 avg_idle;
1da177e4
LT
519#endif
520
dce48a84
TG
521 /* calc_load related fields */
522 unsigned long calc_load_update;
523 long calc_load_active;
524
8f4d37ec 525#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
526#ifdef CONFIG_SMP
527 int hrtick_csd_pending;
528 struct call_single_data hrtick_csd;
529#endif
8f4d37ec
PZ
530 struct hrtimer hrtick_timer;
531#endif
532
1da177e4
LT
533#ifdef CONFIG_SCHEDSTATS
534 /* latency stats */
535 struct sched_info rq_sched_info;
9c2c4802
KC
536 unsigned long long rq_cpu_time;
537 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
538
539 /* sys_sched_yield() stats */
480b9434 540 unsigned int yld_count;
1da177e4
LT
541
542 /* schedule() stats */
480b9434
KC
543 unsigned int sched_switch;
544 unsigned int sched_count;
545 unsigned int sched_goidle;
1da177e4
LT
546
547 /* try_to_wake_up() stats */
480b9434
KC
548 unsigned int ttwu_count;
549 unsigned int ttwu_local;
b8efb561
IM
550
551 /* BKL stats */
480b9434 552 unsigned int bkl_count;
1da177e4
LT
553#endif
554};
555
f34e3b61 556static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 557
7d478721
PZ
558static inline
559void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 560{
7d478721 561 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
562
563 /*
564 * A queue event has occurred, and we're going to schedule. In
565 * this case, we can save a useless back to back clock update.
566 */
567 if (test_tsk_need_resched(p))
568 rq->skip_clock_update = 1;
dd41f596
IM
569}
570
0a2966b4
CL
571static inline int cpu_of(struct rq *rq)
572{
573#ifdef CONFIG_SMP
574 return rq->cpu;
575#else
576 return 0;
577#endif
578}
579
497f0ab3 580#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
581 rcu_dereference_check((p), \
582 rcu_read_lock_sched_held() || \
583 lockdep_is_held(&sched_domains_mutex))
584
674311d5
NP
585/*
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 587 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
588 *
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
591 */
48f24c4d 592#define for_each_domain(cpu, __sd) \
497f0ab3 593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
594
595#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596#define this_rq() (&__get_cpu_var(runqueues))
597#define task_rq(p) cpu_rq(task_cpu(p))
598#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 599#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 600
dc61b1d6
PZ
601#ifdef CONFIG_CGROUP_SCHED
602
603/*
604 * Return the group to which this tasks belongs.
605 *
606 * We use task_subsys_state_check() and extend the RCU verification
607 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
610 */
611static inline struct task_group *task_group(struct task_struct *p)
612{
613 struct cgroup_subsys_state *css;
614
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
616 lockdep_is_held(&task_rq(p)->lock));
617 return container_of(css, struct task_group, css);
618}
619
620/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
621static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
622{
623#ifdef CONFIG_FAIR_GROUP_SCHED
624 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
625 p->se.parent = task_group(p)->se[cpu];
626#endif
627
628#ifdef CONFIG_RT_GROUP_SCHED
629 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
630 p->rt.parent = task_group(p)->rt_se[cpu];
631#endif
632}
633
634#else /* CONFIG_CGROUP_SCHED */
635
636static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
637static inline struct task_group *task_group(struct task_struct *p)
638{
639 return NULL;
640}
641
642#endif /* CONFIG_CGROUP_SCHED */
643
aa9c4c0f 644inline void update_rq_clock(struct rq *rq)
3e51f33f 645{
a64692a3
MG
646 if (!rq->skip_clock_update)
647 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
648}
649
bf5c91ba
IM
650/*
651 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
652 */
653#ifdef CONFIG_SCHED_DEBUG
654# define const_debug __read_mostly
655#else
656# define const_debug static const
657#endif
658
017730c1
IM
659/**
660 * runqueue_is_locked
e17b38bf 661 * @cpu: the processor in question.
017730c1
IM
662 *
663 * Returns true if the current cpu runqueue is locked.
664 * This interface allows printk to be called with the runqueue lock
665 * held and know whether or not it is OK to wake up the klogd.
666 */
89f19f04 667int runqueue_is_locked(int cpu)
017730c1 668{
05fa785c 669 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
670}
671
bf5c91ba
IM
672/*
673 * Debugging: various feature bits
674 */
f00b45c1
PZ
675
676#define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
678
bf5c91ba 679enum {
f00b45c1 680#include "sched_features.h"
bf5c91ba
IM
681};
682
f00b45c1
PZ
683#undef SCHED_FEAT
684
685#define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
687
bf5c91ba 688const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
689#include "sched_features.h"
690 0;
691
692#undef SCHED_FEAT
693
694#ifdef CONFIG_SCHED_DEBUG
695#define SCHED_FEAT(name, enabled) \
696 #name ,
697
983ed7a6 698static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
699#include "sched_features.h"
700 NULL
701};
702
703#undef SCHED_FEAT
704
34f3a814 705static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 706{
f00b45c1
PZ
707 int i;
708
709 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
710 if (!(sysctl_sched_features & (1UL << i)))
711 seq_puts(m, "NO_");
712 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 713 }
34f3a814 714 seq_puts(m, "\n");
f00b45c1 715
34f3a814 716 return 0;
f00b45c1
PZ
717}
718
719static ssize_t
720sched_feat_write(struct file *filp, const char __user *ubuf,
721 size_t cnt, loff_t *ppos)
722{
723 char buf[64];
724 char *cmp = buf;
725 int neg = 0;
726 int i;
727
728 if (cnt > 63)
729 cnt = 63;
730
731 if (copy_from_user(&buf, ubuf, cnt))
732 return -EFAULT;
733
734 buf[cnt] = 0;
735
c24b7c52 736 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
737 neg = 1;
738 cmp += 3;
739 }
740
741 for (i = 0; sched_feat_names[i]; i++) {
742 int len = strlen(sched_feat_names[i]);
743
744 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
745 if (neg)
746 sysctl_sched_features &= ~(1UL << i);
747 else
748 sysctl_sched_features |= (1UL << i);
749 break;
750 }
751 }
752
753 if (!sched_feat_names[i])
754 return -EINVAL;
755
42994724 756 *ppos += cnt;
f00b45c1
PZ
757
758 return cnt;
759}
760
34f3a814
LZ
761static int sched_feat_open(struct inode *inode, struct file *filp)
762{
763 return single_open(filp, sched_feat_show, NULL);
764}
765
828c0950 766static const struct file_operations sched_feat_fops = {
34f3a814
LZ
767 .open = sched_feat_open,
768 .write = sched_feat_write,
769 .read = seq_read,
770 .llseek = seq_lseek,
771 .release = single_release,
f00b45c1
PZ
772};
773
774static __init int sched_init_debug(void)
775{
f00b45c1
PZ
776 debugfs_create_file("sched_features", 0644, NULL, NULL,
777 &sched_feat_fops);
778
779 return 0;
780}
781late_initcall(sched_init_debug);
782
783#endif
784
785#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 786
b82d9fdd
PZ
787/*
788 * Number of tasks to iterate in a single balance run.
789 * Limited because this is done with IRQs disabled.
790 */
791const_debug unsigned int sysctl_sched_nr_migrate = 32;
792
2398f2c6
PZ
793/*
794 * ratelimit for updating the group shares.
55cd5340 795 * default: 0.25ms
2398f2c6 796 */
55cd5340 797unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 798unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 799
ffda12a1
PZ
800/*
801 * Inject some fuzzyness into changing the per-cpu group shares
802 * this avoids remote rq-locks at the expense of fairness.
803 * default: 4
804 */
805unsigned int sysctl_sched_shares_thresh = 4;
806
e9e9250b
PZ
807/*
808 * period over which we average the RT time consumption, measured
809 * in ms.
810 *
811 * default: 1s
812 */
813const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
814
fa85ae24 815/*
9f0c1e56 816 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
817 * default: 1s
818 */
9f0c1e56 819unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 820
6892b75e
IM
821static __read_mostly int scheduler_running;
822
9f0c1e56
PZ
823/*
824 * part of the period that we allow rt tasks to run in us.
825 * default: 0.95s
826 */
827int sysctl_sched_rt_runtime = 950000;
fa85ae24 828
d0b27fa7
PZ
829static inline u64 global_rt_period(void)
830{
831 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
832}
833
834static inline u64 global_rt_runtime(void)
835{
e26873bb 836 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
837 return RUNTIME_INF;
838
839 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
840}
fa85ae24 841
1da177e4 842#ifndef prepare_arch_switch
4866cde0
NP
843# define prepare_arch_switch(next) do { } while (0)
844#endif
845#ifndef finish_arch_switch
846# define finish_arch_switch(prev) do { } while (0)
847#endif
848
051a1d1a
DA
849static inline int task_current(struct rq *rq, struct task_struct *p)
850{
851 return rq->curr == p;
852}
853
4866cde0 854#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 855static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 856{
051a1d1a 857 return task_current(rq, p);
4866cde0
NP
858}
859
70b97a7f 860static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
861{
862}
863
70b97a7f 864static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 865{
da04c035
IM
866#ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
869#endif
8a25d5de
IM
870 /*
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
873 * prev into current:
874 */
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
876
05fa785c 877 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
878}
879
880#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 881static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
882{
883#ifdef CONFIG_SMP
884 return p->oncpu;
885#else
051a1d1a 886 return task_current(rq, p);
4866cde0
NP
887#endif
888}
889
70b97a7f 890static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
891{
892#ifdef CONFIG_SMP
893 /*
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
896 * here.
897 */
898 next->oncpu = 1;
899#endif
900#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 901 raw_spin_unlock_irq(&rq->lock);
4866cde0 902#else
05fa785c 903 raw_spin_unlock(&rq->lock);
4866cde0
NP
904#endif
905}
906
70b97a7f 907static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
908{
909#ifdef CONFIG_SMP
910 /*
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
913 * finished.
914 */
915 smp_wmb();
916 prev->oncpu = 0;
917#endif
918#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 local_irq_enable();
1da177e4 920#endif
4866cde0
NP
921}
922#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 923
0970d299 924/*
65cc8e48
PZ
925 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
926 * against ttwu().
0970d299
PZ
927 */
928static inline int task_is_waking(struct task_struct *p)
929{
0017d735 930 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
931}
932
b29739f9
IM
933/*
934 * __task_rq_lock - lock the runqueue a given task resides on.
935 * Must be called interrupts disabled.
936 */
70b97a7f 937static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
938 __acquires(rq->lock)
939{
0970d299
PZ
940 struct rq *rq;
941
3a5c359a 942 for (;;) {
0970d299 943 rq = task_rq(p);
05fa785c 944 raw_spin_lock(&rq->lock);
65cc8e48 945 if (likely(rq == task_rq(p)))
3a5c359a 946 return rq;
05fa785c 947 raw_spin_unlock(&rq->lock);
b29739f9 948 }
b29739f9
IM
949}
950
1da177e4
LT
951/*
952 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 953 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
954 * explicitly disabling preemption.
955 */
70b97a7f 956static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
957 __acquires(rq->lock)
958{
70b97a7f 959 struct rq *rq;
1da177e4 960
3a5c359a
AK
961 for (;;) {
962 local_irq_save(*flags);
963 rq = task_rq(p);
05fa785c 964 raw_spin_lock(&rq->lock);
65cc8e48 965 if (likely(rq == task_rq(p)))
3a5c359a 966 return rq;
05fa785c 967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 968 }
1da177e4
LT
969}
970
a9957449 971static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
972 __releases(rq->lock)
973{
05fa785c 974 raw_spin_unlock(&rq->lock);
b29739f9
IM
975}
976
70b97a7f 977static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
978 __releases(rq->lock)
979{
05fa785c 980 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
981}
982
1da177e4 983/*
cc2a73b5 984 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 985 */
a9957449 986static struct rq *this_rq_lock(void)
1da177e4
LT
987 __acquires(rq->lock)
988{
70b97a7f 989 struct rq *rq;
1da177e4
LT
990
991 local_irq_disable();
992 rq = this_rq();
05fa785c 993 raw_spin_lock(&rq->lock);
1da177e4
LT
994
995 return rq;
996}
997
8f4d37ec
PZ
998#ifdef CONFIG_SCHED_HRTICK
999/*
1000 * Use HR-timers to deliver accurate preemption points.
1001 *
1002 * Its all a bit involved since we cannot program an hrt while holding the
1003 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1004 * reschedule event.
1005 *
1006 * When we get rescheduled we reprogram the hrtick_timer outside of the
1007 * rq->lock.
1008 */
8f4d37ec
PZ
1009
1010/*
1011 * Use hrtick when:
1012 * - enabled by features
1013 * - hrtimer is actually high res
1014 */
1015static inline int hrtick_enabled(struct rq *rq)
1016{
1017 if (!sched_feat(HRTICK))
1018 return 0;
ba42059f 1019 if (!cpu_active(cpu_of(rq)))
b328ca18 1020 return 0;
8f4d37ec
PZ
1021 return hrtimer_is_hres_active(&rq->hrtick_timer);
1022}
1023
8f4d37ec
PZ
1024static void hrtick_clear(struct rq *rq)
1025{
1026 if (hrtimer_active(&rq->hrtick_timer))
1027 hrtimer_cancel(&rq->hrtick_timer);
1028}
1029
8f4d37ec
PZ
1030/*
1031 * High-resolution timer tick.
1032 * Runs from hardirq context with interrupts disabled.
1033 */
1034static enum hrtimer_restart hrtick(struct hrtimer *timer)
1035{
1036 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1037
1038 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1039
05fa785c 1040 raw_spin_lock(&rq->lock);
3e51f33f 1041 update_rq_clock(rq);
8f4d37ec 1042 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1043 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1044
1045 return HRTIMER_NORESTART;
1046}
1047
95e904c7 1048#ifdef CONFIG_SMP
31656519
PZ
1049/*
1050 * called from hardirq (IPI) context
1051 */
1052static void __hrtick_start(void *arg)
b328ca18 1053{
31656519 1054 struct rq *rq = arg;
b328ca18 1055
05fa785c 1056 raw_spin_lock(&rq->lock);
31656519
PZ
1057 hrtimer_restart(&rq->hrtick_timer);
1058 rq->hrtick_csd_pending = 0;
05fa785c 1059 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1060}
1061
31656519
PZ
1062/*
1063 * Called to set the hrtick timer state.
1064 *
1065 * called with rq->lock held and irqs disabled
1066 */
1067static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1068{
31656519
PZ
1069 struct hrtimer *timer = &rq->hrtick_timer;
1070 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1071
cc584b21 1072 hrtimer_set_expires(timer, time);
31656519
PZ
1073
1074 if (rq == this_rq()) {
1075 hrtimer_restart(timer);
1076 } else if (!rq->hrtick_csd_pending) {
6e275637 1077 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1078 rq->hrtick_csd_pending = 1;
1079 }
b328ca18
PZ
1080}
1081
1082static int
1083hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1084{
1085 int cpu = (int)(long)hcpu;
1086
1087 switch (action) {
1088 case CPU_UP_CANCELED:
1089 case CPU_UP_CANCELED_FROZEN:
1090 case CPU_DOWN_PREPARE:
1091 case CPU_DOWN_PREPARE_FROZEN:
1092 case CPU_DEAD:
1093 case CPU_DEAD_FROZEN:
31656519 1094 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1095 return NOTIFY_OK;
1096 }
1097
1098 return NOTIFY_DONE;
1099}
1100
fa748203 1101static __init void init_hrtick(void)
b328ca18
PZ
1102{
1103 hotcpu_notifier(hotplug_hrtick, 0);
1104}
31656519
PZ
1105#else
1106/*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111static void hrtick_start(struct rq *rq, u64 delay)
1112{
7f1e2ca9 1113 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1114 HRTIMER_MODE_REL_PINNED, 0);
31656519 1115}
b328ca18 1116
006c75f1 1117static inline void init_hrtick(void)
8f4d37ec 1118{
8f4d37ec 1119}
31656519 1120#endif /* CONFIG_SMP */
8f4d37ec 1121
31656519 1122static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1123{
31656519
PZ
1124#ifdef CONFIG_SMP
1125 rq->hrtick_csd_pending = 0;
8f4d37ec 1126
31656519
PZ
1127 rq->hrtick_csd.flags = 0;
1128 rq->hrtick_csd.func = __hrtick_start;
1129 rq->hrtick_csd.info = rq;
1130#endif
8f4d37ec 1131
31656519
PZ
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
8f4d37ec 1134}
006c75f1 1135#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1136static inline void hrtick_clear(struct rq *rq)
1137{
1138}
1139
8f4d37ec
PZ
1140static inline void init_rq_hrtick(struct rq *rq)
1141{
1142}
1143
b328ca18
PZ
1144static inline void init_hrtick(void)
1145{
1146}
006c75f1 1147#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1148
c24d20db
IM
1149/*
1150 * resched_task - mark a task 'to be rescheduled now'.
1151 *
1152 * On UP this means the setting of the need_resched flag, on SMP it
1153 * might also involve a cross-CPU call to trigger the scheduler on
1154 * the target CPU.
1155 */
1156#ifdef CONFIG_SMP
1157
1158#ifndef tsk_is_polling
1159#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1160#endif
1161
31656519 1162static void resched_task(struct task_struct *p)
c24d20db
IM
1163{
1164 int cpu;
1165
05fa785c 1166 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1167
5ed0cec0 1168 if (test_tsk_need_resched(p))
c24d20db
IM
1169 return;
1170
5ed0cec0 1171 set_tsk_need_resched(p);
c24d20db
IM
1172
1173 cpu = task_cpu(p);
1174 if (cpu == smp_processor_id())
1175 return;
1176
1177 /* NEED_RESCHED must be visible before we test polling */
1178 smp_mb();
1179 if (!tsk_is_polling(p))
1180 smp_send_reschedule(cpu);
1181}
1182
1183static void resched_cpu(int cpu)
1184{
1185 struct rq *rq = cpu_rq(cpu);
1186 unsigned long flags;
1187
05fa785c 1188 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1189 return;
1190 resched_task(cpu_curr(cpu));
05fa785c 1191 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1192}
06d8308c
TG
1193
1194#ifdef CONFIG_NO_HZ
1195/*
1196 * When add_timer_on() enqueues a timer into the timer wheel of an
1197 * idle CPU then this timer might expire before the next timer event
1198 * which is scheduled to wake up that CPU. In case of a completely
1199 * idle system the next event might even be infinite time into the
1200 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1201 * leaves the inner idle loop so the newly added timer is taken into
1202 * account when the CPU goes back to idle and evaluates the timer
1203 * wheel for the next timer event.
1204 */
1205void wake_up_idle_cpu(int cpu)
1206{
1207 struct rq *rq = cpu_rq(cpu);
1208
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /*
1213 * This is safe, as this function is called with the timer
1214 * wheel base lock of (cpu) held. When the CPU is on the way
1215 * to idle and has not yet set rq->curr to idle then it will
1216 * be serialized on the timer wheel base lock and take the new
1217 * timer into account automatically.
1218 */
1219 if (rq->curr != rq->idle)
1220 return;
1221
1222 /*
1223 * We can set TIF_RESCHED on the idle task of the other CPU
1224 * lockless. The worst case is that the other CPU runs the
1225 * idle task through an additional NOOP schedule()
1226 */
5ed0cec0 1227 set_tsk_need_resched(rq->idle);
06d8308c
TG
1228
1229 /* NEED_RESCHED must be visible before we test polling */
1230 smp_mb();
1231 if (!tsk_is_polling(rq->idle))
1232 smp_send_reschedule(cpu);
1233}
39c0cbe2
MG
1234
1235int nohz_ratelimit(int cpu)
1236{
1237 struct rq *rq = cpu_rq(cpu);
1238 u64 diff = rq->clock - rq->nohz_stamp;
1239
1240 rq->nohz_stamp = rq->clock;
1241
1242 return diff < (NSEC_PER_SEC / HZ) >> 1;
1243}
1244
6d6bc0ad 1245#endif /* CONFIG_NO_HZ */
06d8308c 1246
e9e9250b
PZ
1247static u64 sched_avg_period(void)
1248{
1249 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1250}
1251
1252static void sched_avg_update(struct rq *rq)
1253{
1254 s64 period = sched_avg_period();
1255
1256 while ((s64)(rq->clock - rq->age_stamp) > period) {
1257 rq->age_stamp += period;
1258 rq->rt_avg /= 2;
1259 }
1260}
1261
1262static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1263{
1264 rq->rt_avg += rt_delta;
1265 sched_avg_update(rq);
1266}
1267
6d6bc0ad 1268#else /* !CONFIG_SMP */
31656519 1269static void resched_task(struct task_struct *p)
c24d20db 1270{
05fa785c 1271 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1272 set_tsk_need_resched(p);
c24d20db 1273}
e9e9250b
PZ
1274
1275static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1276{
1277}
6d6bc0ad 1278#endif /* CONFIG_SMP */
c24d20db 1279
45bf76df
IM
1280#if BITS_PER_LONG == 32
1281# define WMULT_CONST (~0UL)
1282#else
1283# define WMULT_CONST (1UL << 32)
1284#endif
1285
1286#define WMULT_SHIFT 32
1287
194081eb
IM
1288/*
1289 * Shift right and round:
1290 */
cf2ab469 1291#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1292
a7be37ac
PZ
1293/*
1294 * delta *= weight / lw
1295 */
cb1c4fc9 1296static unsigned long
45bf76df
IM
1297calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1298 struct load_weight *lw)
1299{
1300 u64 tmp;
1301
7a232e03
LJ
1302 if (!lw->inv_weight) {
1303 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1304 lw->inv_weight = 1;
1305 else
1306 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1307 / (lw->weight+1);
1308 }
45bf76df
IM
1309
1310 tmp = (u64)delta_exec * weight;
1311 /*
1312 * Check whether we'd overflow the 64-bit multiplication:
1313 */
194081eb 1314 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1315 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1316 WMULT_SHIFT/2);
1317 else
cf2ab469 1318 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1319
ecf691da 1320 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1321}
1322
1091985b 1323static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1324{
1325 lw->weight += inc;
e89996ae 1326 lw->inv_weight = 0;
45bf76df
IM
1327}
1328
1091985b 1329static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1330{
1331 lw->weight -= dec;
e89996ae 1332 lw->inv_weight = 0;
45bf76df
IM
1333}
1334
2dd73a4f
PW
1335/*
1336 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1337 * of tasks with abnormal "nice" values across CPUs the contribution that
1338 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1339 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1340 * scaled version of the new time slice allocation that they receive on time
1341 * slice expiry etc.
1342 */
1343
cce7ade8
PZ
1344#define WEIGHT_IDLEPRIO 3
1345#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1346
1347/*
1348 * Nice levels are multiplicative, with a gentle 10% change for every
1349 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1350 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1351 * that remained on nice 0.
1352 *
1353 * The "10% effect" is relative and cumulative: from _any_ nice level,
1354 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1355 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1356 * If a task goes up by ~10% and another task goes down by ~10% then
1357 * the relative distance between them is ~25%.)
dd41f596
IM
1358 */
1359static const int prio_to_weight[40] = {
254753dc
IM
1360 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1361 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1362 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1363 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1364 /* 0 */ 1024, 820, 655, 526, 423,
1365 /* 5 */ 335, 272, 215, 172, 137,
1366 /* 10 */ 110, 87, 70, 56, 45,
1367 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1368};
1369
5714d2de
IM
1370/*
1371 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1372 *
1373 * In cases where the weight does not change often, we can use the
1374 * precalculated inverse to speed up arithmetics by turning divisions
1375 * into multiplications:
1376 */
dd41f596 1377static const u32 prio_to_wmult[40] = {
254753dc
IM
1378 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1379 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1380 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1381 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1382 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1383 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1384 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1385 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1386};
2dd73a4f 1387
ef12fefa
BR
1388/* Time spent by the tasks of the cpu accounting group executing in ... */
1389enum cpuacct_stat_index {
1390 CPUACCT_STAT_USER, /* ... user mode */
1391 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1392
1393 CPUACCT_STAT_NSTATS,
1394};
1395
d842de87
SV
1396#ifdef CONFIG_CGROUP_CPUACCT
1397static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1398static void cpuacct_update_stats(struct task_struct *tsk,
1399 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1400#else
1401static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1402static inline void cpuacct_update_stats(struct task_struct *tsk,
1403 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1404#endif
1405
18d95a28
PZ
1406static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1407{
1408 update_load_add(&rq->load, load);
1409}
1410
1411static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1412{
1413 update_load_sub(&rq->load, load);
1414}
1415
7940ca36 1416#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1417typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1418
1419/*
1420 * Iterate the full tree, calling @down when first entering a node and @up when
1421 * leaving it for the final time.
1422 */
eb755805 1423static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1424{
1425 struct task_group *parent, *child;
eb755805 1426 int ret;
c09595f6
PZ
1427
1428 rcu_read_lock();
1429 parent = &root_task_group;
1430down:
eb755805
PZ
1431 ret = (*down)(parent, data);
1432 if (ret)
1433 goto out_unlock;
c09595f6
PZ
1434 list_for_each_entry_rcu(child, &parent->children, siblings) {
1435 parent = child;
1436 goto down;
1437
1438up:
1439 continue;
1440 }
eb755805
PZ
1441 ret = (*up)(parent, data);
1442 if (ret)
1443 goto out_unlock;
c09595f6
PZ
1444
1445 child = parent;
1446 parent = parent->parent;
1447 if (parent)
1448 goto up;
eb755805 1449out_unlock:
c09595f6 1450 rcu_read_unlock();
eb755805
PZ
1451
1452 return ret;
c09595f6
PZ
1453}
1454
eb755805
PZ
1455static int tg_nop(struct task_group *tg, void *data)
1456{
1457 return 0;
c09595f6 1458}
eb755805
PZ
1459#endif
1460
1461#ifdef CONFIG_SMP
f5f08f39
PZ
1462/* Used instead of source_load when we know the type == 0 */
1463static unsigned long weighted_cpuload(const int cpu)
1464{
1465 return cpu_rq(cpu)->load.weight;
1466}
1467
1468/*
1469 * Return a low guess at the load of a migration-source cpu weighted
1470 * according to the scheduling class and "nice" value.
1471 *
1472 * We want to under-estimate the load of migration sources, to
1473 * balance conservatively.
1474 */
1475static unsigned long source_load(int cpu, int type)
1476{
1477 struct rq *rq = cpu_rq(cpu);
1478 unsigned long total = weighted_cpuload(cpu);
1479
1480 if (type == 0 || !sched_feat(LB_BIAS))
1481 return total;
1482
1483 return min(rq->cpu_load[type-1], total);
1484}
1485
1486/*
1487 * Return a high guess at the load of a migration-target cpu weighted
1488 * according to the scheduling class and "nice" value.
1489 */
1490static unsigned long target_load(int cpu, int type)
1491{
1492 struct rq *rq = cpu_rq(cpu);
1493 unsigned long total = weighted_cpuload(cpu);
1494
1495 if (type == 0 || !sched_feat(LB_BIAS))
1496 return total;
1497
1498 return max(rq->cpu_load[type-1], total);
1499}
1500
ae154be1
PZ
1501static unsigned long power_of(int cpu)
1502{
e51fd5e2 1503 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1504}
1505
eb755805
PZ
1506static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1507
1508static unsigned long cpu_avg_load_per_task(int cpu)
1509{
1510 struct rq *rq = cpu_rq(cpu);
af6d596f 1511 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1512
4cd42620
SR
1513 if (nr_running)
1514 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1515 else
1516 rq->avg_load_per_task = 0;
eb755805
PZ
1517
1518 return rq->avg_load_per_task;
1519}
1520
1521#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1522
43cf38eb 1523static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1524
c09595f6
PZ
1525static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1526
1527/*
1528 * Calculate and set the cpu's group shares.
1529 */
34d76c41
PZ
1530static void update_group_shares_cpu(struct task_group *tg, int cpu,
1531 unsigned long sd_shares,
1532 unsigned long sd_rq_weight,
4a6cc4bd 1533 unsigned long *usd_rq_weight)
18d95a28 1534{
34d76c41 1535 unsigned long shares, rq_weight;
a5004278 1536 int boost = 0;
c09595f6 1537
4a6cc4bd 1538 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1539 if (!rq_weight) {
1540 boost = 1;
1541 rq_weight = NICE_0_LOAD;
1542 }
c8cba857 1543
c09595f6 1544 /*
a8af7246
PZ
1545 * \Sum_j shares_j * rq_weight_i
1546 * shares_i = -----------------------------
1547 * \Sum_j rq_weight_j
c09595f6 1548 */
ec4e0e2f 1549 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1550 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1551
ffda12a1
PZ
1552 if (abs(shares - tg->se[cpu]->load.weight) >
1553 sysctl_sched_shares_thresh) {
1554 struct rq *rq = cpu_rq(cpu);
1555 unsigned long flags;
c09595f6 1556
05fa785c 1557 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1558 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1559 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1560 __set_se_shares(tg->se[cpu], shares);
05fa785c 1561 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1562 }
18d95a28 1563}
c09595f6
PZ
1564
1565/*
c8cba857
PZ
1566 * Re-compute the task group their per cpu shares over the given domain.
1567 * This needs to be done in a bottom-up fashion because the rq weight of a
1568 * parent group depends on the shares of its child groups.
c09595f6 1569 */
eb755805 1570static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1571{
cd8ad40d 1572 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1573 unsigned long *usd_rq_weight;
eb755805 1574 struct sched_domain *sd = data;
34d76c41 1575 unsigned long flags;
c8cba857 1576 int i;
c09595f6 1577
34d76c41
PZ
1578 if (!tg->se[0])
1579 return 0;
1580
1581 local_irq_save(flags);
4a6cc4bd 1582 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1583
758b2cdc 1584 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1585 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1586 usd_rq_weight[i] = weight;
34d76c41 1587
cd8ad40d 1588 rq_weight += weight;
ec4e0e2f
KC
1589 /*
1590 * If there are currently no tasks on the cpu pretend there
1591 * is one of average load so that when a new task gets to
1592 * run here it will not get delayed by group starvation.
1593 */
ec4e0e2f
KC
1594 if (!weight)
1595 weight = NICE_0_LOAD;
1596
cd8ad40d 1597 sum_weight += weight;
c8cba857 1598 shares += tg->cfs_rq[i]->shares;
c09595f6 1599 }
c09595f6 1600
cd8ad40d
PZ
1601 if (!rq_weight)
1602 rq_weight = sum_weight;
1603
c8cba857
PZ
1604 if ((!shares && rq_weight) || shares > tg->shares)
1605 shares = tg->shares;
1606
1607 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1608 shares = tg->shares;
c09595f6 1609
758b2cdc 1610 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1611 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1612
1613 local_irq_restore(flags);
eb755805
PZ
1614
1615 return 0;
c09595f6
PZ
1616}
1617
1618/*
c8cba857
PZ
1619 * Compute the cpu's hierarchical load factor for each task group.
1620 * This needs to be done in a top-down fashion because the load of a child
1621 * group is a fraction of its parents load.
c09595f6 1622 */
eb755805 1623static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1624{
c8cba857 1625 unsigned long load;
eb755805 1626 long cpu = (long)data;
c09595f6 1627
c8cba857
PZ
1628 if (!tg->parent) {
1629 load = cpu_rq(cpu)->load.weight;
1630 } else {
1631 load = tg->parent->cfs_rq[cpu]->h_load;
1632 load *= tg->cfs_rq[cpu]->shares;
1633 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1634 }
c09595f6 1635
c8cba857 1636 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1637
eb755805 1638 return 0;
c09595f6
PZ
1639}
1640
c8cba857 1641static void update_shares(struct sched_domain *sd)
4d8d595d 1642{
e7097159
PZ
1643 s64 elapsed;
1644 u64 now;
1645
1646 if (root_task_group_empty())
1647 return;
1648
1649 now = cpu_clock(raw_smp_processor_id());
1650 elapsed = now - sd->last_update;
2398f2c6
PZ
1651
1652 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1653 sd->last_update = now;
eb755805 1654 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1655 }
4d8d595d
PZ
1656}
1657
eb755805 1658static void update_h_load(long cpu)
c09595f6 1659{
eb755805 1660 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1661}
1662
c09595f6
PZ
1663#else
1664
c8cba857 1665static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1666{
1667}
1668
18d95a28
PZ
1669#endif
1670
8f45e2b5
GH
1671#ifdef CONFIG_PREEMPT
1672
b78bb868
PZ
1673static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1674
70574a99 1675/*
8f45e2b5
GH
1676 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1677 * way at the expense of forcing extra atomic operations in all
1678 * invocations. This assures that the double_lock is acquired using the
1679 * same underlying policy as the spinlock_t on this architecture, which
1680 * reduces latency compared to the unfair variant below. However, it
1681 * also adds more overhead and therefore may reduce throughput.
70574a99 1682 */
8f45e2b5
GH
1683static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1684 __releases(this_rq->lock)
1685 __acquires(busiest->lock)
1686 __acquires(this_rq->lock)
1687{
05fa785c 1688 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1689 double_rq_lock(this_rq, busiest);
1690
1691 return 1;
1692}
1693
1694#else
1695/*
1696 * Unfair double_lock_balance: Optimizes throughput at the expense of
1697 * latency by eliminating extra atomic operations when the locks are
1698 * already in proper order on entry. This favors lower cpu-ids and will
1699 * grant the double lock to lower cpus over higher ids under contention,
1700 * regardless of entry order into the function.
1701 */
1702static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1703 __releases(this_rq->lock)
1704 __acquires(busiest->lock)
1705 __acquires(this_rq->lock)
1706{
1707 int ret = 0;
1708
05fa785c 1709 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1710 if (busiest < this_rq) {
05fa785c
TG
1711 raw_spin_unlock(&this_rq->lock);
1712 raw_spin_lock(&busiest->lock);
1713 raw_spin_lock_nested(&this_rq->lock,
1714 SINGLE_DEPTH_NESTING);
70574a99
AD
1715 ret = 1;
1716 } else
05fa785c
TG
1717 raw_spin_lock_nested(&busiest->lock,
1718 SINGLE_DEPTH_NESTING);
70574a99
AD
1719 }
1720 return ret;
1721}
1722
8f45e2b5
GH
1723#endif /* CONFIG_PREEMPT */
1724
1725/*
1726 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1727 */
1728static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1729{
1730 if (unlikely(!irqs_disabled())) {
1731 /* printk() doesn't work good under rq->lock */
05fa785c 1732 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1733 BUG_ON(1);
1734 }
1735
1736 return _double_lock_balance(this_rq, busiest);
1737}
1738
70574a99
AD
1739static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1740 __releases(busiest->lock)
1741{
05fa785c 1742 raw_spin_unlock(&busiest->lock);
70574a99
AD
1743 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1744}
1e3c88bd
PZ
1745
1746/*
1747 * double_rq_lock - safely lock two runqueues
1748 *
1749 * Note this does not disable interrupts like task_rq_lock,
1750 * you need to do so manually before calling.
1751 */
1752static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1753 __acquires(rq1->lock)
1754 __acquires(rq2->lock)
1755{
1756 BUG_ON(!irqs_disabled());
1757 if (rq1 == rq2) {
1758 raw_spin_lock(&rq1->lock);
1759 __acquire(rq2->lock); /* Fake it out ;) */
1760 } else {
1761 if (rq1 < rq2) {
1762 raw_spin_lock(&rq1->lock);
1763 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1764 } else {
1765 raw_spin_lock(&rq2->lock);
1766 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1767 }
1768 }
1e3c88bd
PZ
1769}
1770
1771/*
1772 * double_rq_unlock - safely unlock two runqueues
1773 *
1774 * Note this does not restore interrupts like task_rq_unlock,
1775 * you need to do so manually after calling.
1776 */
1777static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1778 __releases(rq1->lock)
1779 __releases(rq2->lock)
1780{
1781 raw_spin_unlock(&rq1->lock);
1782 if (rq1 != rq2)
1783 raw_spin_unlock(&rq2->lock);
1784 else
1785 __release(rq2->lock);
1786}
1787
18d95a28
PZ
1788#endif
1789
30432094 1790#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1791static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1792{
30432094 1793#ifdef CONFIG_SMP
34e83e85
IM
1794 cfs_rq->shares = shares;
1795#endif
1796}
30432094 1797#endif
e7693a36 1798
74f5187a 1799static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1800static void update_sysctl(void);
acb4a848 1801static int get_update_sysctl_factor(void);
dce48a84 1802
cd29fe6f
PZ
1803static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1804{
1805 set_task_rq(p, cpu);
1806#ifdef CONFIG_SMP
1807 /*
1808 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1809 * successfuly executed on another CPU. We must ensure that updates of
1810 * per-task data have been completed by this moment.
1811 */
1812 smp_wmb();
1813 task_thread_info(p)->cpu = cpu;
1814#endif
1815}
dce48a84 1816
1e3c88bd 1817static const struct sched_class rt_sched_class;
dd41f596
IM
1818
1819#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1820#define for_each_class(class) \
1821 for (class = sched_class_highest; class; class = class->next)
dd41f596 1822
1e3c88bd
PZ
1823#include "sched_stats.h"
1824
c09595f6 1825static void inc_nr_running(struct rq *rq)
9c217245
IM
1826{
1827 rq->nr_running++;
9c217245
IM
1828}
1829
c09595f6 1830static void dec_nr_running(struct rq *rq)
9c217245
IM
1831{
1832 rq->nr_running--;
9c217245
IM
1833}
1834
45bf76df
IM
1835static void set_load_weight(struct task_struct *p)
1836{
1837 if (task_has_rt_policy(p)) {
e51fd5e2
PZ
1838 p->se.load.weight = 0;
1839 p->se.load.inv_weight = WMULT_CONST;
dd41f596
IM
1840 return;
1841 }
45bf76df 1842
dd41f596
IM
1843 /*
1844 * SCHED_IDLE tasks get minimal weight:
1845 */
1846 if (p->policy == SCHED_IDLE) {
1847 p->se.load.weight = WEIGHT_IDLEPRIO;
1848 p->se.load.inv_weight = WMULT_IDLEPRIO;
1849 return;
1850 }
71f8bd46 1851
dd41f596
IM
1852 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1853 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1854}
1855
371fd7e7 1856static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1857{
a64692a3 1858 update_rq_clock(rq);
dd41f596 1859 sched_info_queued(p);
371fd7e7 1860 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1861 p->se.on_rq = 1;
71f8bd46
IM
1862}
1863
371fd7e7 1864static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1865{
a64692a3 1866 update_rq_clock(rq);
46ac22ba 1867 sched_info_dequeued(p);
371fd7e7 1868 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1869 p->se.on_rq = 0;
71f8bd46
IM
1870}
1871
1e3c88bd
PZ
1872/*
1873 * activate_task - move a task to the runqueue.
1874 */
371fd7e7 1875static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1876{
1877 if (task_contributes_to_load(p))
1878 rq->nr_uninterruptible--;
1879
371fd7e7 1880 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1881 inc_nr_running(rq);
1882}
1883
1884/*
1885 * deactivate_task - remove a task from the runqueue.
1886 */
371fd7e7 1887static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1888{
1889 if (task_contributes_to_load(p))
1890 rq->nr_uninterruptible++;
1891
371fd7e7 1892 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1893 dec_nr_running(rq);
1894}
1895
1896#include "sched_idletask.c"
1897#include "sched_fair.c"
1898#include "sched_rt.c"
1899#ifdef CONFIG_SCHED_DEBUG
1900# include "sched_debug.c"
1901#endif
1902
14531189 1903/*
dd41f596 1904 * __normal_prio - return the priority that is based on the static prio
14531189 1905 */
14531189
IM
1906static inline int __normal_prio(struct task_struct *p)
1907{
dd41f596 1908 return p->static_prio;
14531189
IM
1909}
1910
b29739f9
IM
1911/*
1912 * Calculate the expected normal priority: i.e. priority
1913 * without taking RT-inheritance into account. Might be
1914 * boosted by interactivity modifiers. Changes upon fork,
1915 * setprio syscalls, and whenever the interactivity
1916 * estimator recalculates.
1917 */
36c8b586 1918static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1919{
1920 int prio;
1921
e05606d3 1922 if (task_has_rt_policy(p))
b29739f9
IM
1923 prio = MAX_RT_PRIO-1 - p->rt_priority;
1924 else
1925 prio = __normal_prio(p);
1926 return prio;
1927}
1928
1929/*
1930 * Calculate the current priority, i.e. the priority
1931 * taken into account by the scheduler. This value might
1932 * be boosted by RT tasks, or might be boosted by
1933 * interactivity modifiers. Will be RT if the task got
1934 * RT-boosted. If not then it returns p->normal_prio.
1935 */
36c8b586 1936static int effective_prio(struct task_struct *p)
b29739f9
IM
1937{
1938 p->normal_prio = normal_prio(p);
1939 /*
1940 * If we are RT tasks or we were boosted to RT priority,
1941 * keep the priority unchanged. Otherwise, update priority
1942 * to the normal priority:
1943 */
1944 if (!rt_prio(p->prio))
1945 return p->normal_prio;
1946 return p->prio;
1947}
1948
1da177e4
LT
1949/**
1950 * task_curr - is this task currently executing on a CPU?
1951 * @p: the task in question.
1952 */
36c8b586 1953inline int task_curr(const struct task_struct *p)
1da177e4
LT
1954{
1955 return cpu_curr(task_cpu(p)) == p;
1956}
1957
cb469845
SR
1958static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1959 const struct sched_class *prev_class,
1960 int oldprio, int running)
1961{
1962 if (prev_class != p->sched_class) {
1963 if (prev_class->switched_from)
1964 prev_class->switched_from(rq, p, running);
1965 p->sched_class->switched_to(rq, p, running);
1966 } else
1967 p->sched_class->prio_changed(rq, p, oldprio, running);
1968}
1969
1da177e4 1970#ifdef CONFIG_SMP
cc367732
IM
1971/*
1972 * Is this task likely cache-hot:
1973 */
e7693a36 1974static int
cc367732
IM
1975task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1976{
1977 s64 delta;
1978
e6c8fba7
PZ
1979 if (p->sched_class != &fair_sched_class)
1980 return 0;
1981
f540a608
IM
1982 /*
1983 * Buddy candidates are cache hot:
1984 */
f685ceac 1985 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
1986 (&p->se == cfs_rq_of(&p->se)->next ||
1987 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1988 return 1;
1989
6bc1665b
IM
1990 if (sysctl_sched_migration_cost == -1)
1991 return 1;
1992 if (sysctl_sched_migration_cost == 0)
1993 return 0;
1994
cc367732
IM
1995 delta = now - p->se.exec_start;
1996
1997 return delta < (s64)sysctl_sched_migration_cost;
1998}
1999
dd41f596 2000void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2001{
e2912009
PZ
2002#ifdef CONFIG_SCHED_DEBUG
2003 /*
2004 * We should never call set_task_cpu() on a blocked task,
2005 * ttwu() will sort out the placement.
2006 */
077614ee
PZ
2007 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2008 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2009#endif
2010
de1d7286 2011 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2012
0c69774e
PZ
2013 if (task_cpu(p) != new_cpu) {
2014 p->se.nr_migrations++;
2015 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2016 }
dd41f596
IM
2017
2018 __set_task_cpu(p, new_cpu);
c65cc870
IM
2019}
2020
969c7921 2021struct migration_arg {
36c8b586 2022 struct task_struct *task;
1da177e4 2023 int dest_cpu;
70b97a7f 2024};
1da177e4 2025
969c7921
TH
2026static int migration_cpu_stop(void *data);
2027
1da177e4
LT
2028/*
2029 * The task's runqueue lock must be held.
2030 * Returns true if you have to wait for migration thread.
2031 */
969c7921 2032static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2033{
70b97a7f 2034 struct rq *rq = task_rq(p);
1da177e4
LT
2035
2036 /*
2037 * If the task is not on a runqueue (and not running), then
e2912009 2038 * the next wake-up will properly place the task.
1da177e4 2039 */
969c7921 2040 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2041}
2042
2043/*
2044 * wait_task_inactive - wait for a thread to unschedule.
2045 *
85ba2d86
RM
2046 * If @match_state is nonzero, it's the @p->state value just checked and
2047 * not expected to change. If it changes, i.e. @p might have woken up,
2048 * then return zero. When we succeed in waiting for @p to be off its CPU,
2049 * we return a positive number (its total switch count). If a second call
2050 * a short while later returns the same number, the caller can be sure that
2051 * @p has remained unscheduled the whole time.
2052 *
1da177e4
LT
2053 * The caller must ensure that the task *will* unschedule sometime soon,
2054 * else this function might spin for a *long* time. This function can't
2055 * be called with interrupts off, or it may introduce deadlock with
2056 * smp_call_function() if an IPI is sent by the same process we are
2057 * waiting to become inactive.
2058 */
85ba2d86 2059unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2060{
2061 unsigned long flags;
dd41f596 2062 int running, on_rq;
85ba2d86 2063 unsigned long ncsw;
70b97a7f 2064 struct rq *rq;
1da177e4 2065
3a5c359a
AK
2066 for (;;) {
2067 /*
2068 * We do the initial early heuristics without holding
2069 * any task-queue locks at all. We'll only try to get
2070 * the runqueue lock when things look like they will
2071 * work out!
2072 */
2073 rq = task_rq(p);
fa490cfd 2074
3a5c359a
AK
2075 /*
2076 * If the task is actively running on another CPU
2077 * still, just relax and busy-wait without holding
2078 * any locks.
2079 *
2080 * NOTE! Since we don't hold any locks, it's not
2081 * even sure that "rq" stays as the right runqueue!
2082 * But we don't care, since "task_running()" will
2083 * return false if the runqueue has changed and p
2084 * is actually now running somewhere else!
2085 */
85ba2d86
RM
2086 while (task_running(rq, p)) {
2087 if (match_state && unlikely(p->state != match_state))
2088 return 0;
3a5c359a 2089 cpu_relax();
85ba2d86 2090 }
fa490cfd 2091
3a5c359a
AK
2092 /*
2093 * Ok, time to look more closely! We need the rq
2094 * lock now, to be *sure*. If we're wrong, we'll
2095 * just go back and repeat.
2096 */
2097 rq = task_rq_lock(p, &flags);
27a9da65 2098 trace_sched_wait_task(p);
3a5c359a
AK
2099 running = task_running(rq, p);
2100 on_rq = p->se.on_rq;
85ba2d86 2101 ncsw = 0;
f31e11d8 2102 if (!match_state || p->state == match_state)
93dcf55f 2103 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2104 task_rq_unlock(rq, &flags);
fa490cfd 2105
85ba2d86
RM
2106 /*
2107 * If it changed from the expected state, bail out now.
2108 */
2109 if (unlikely(!ncsw))
2110 break;
2111
3a5c359a
AK
2112 /*
2113 * Was it really running after all now that we
2114 * checked with the proper locks actually held?
2115 *
2116 * Oops. Go back and try again..
2117 */
2118 if (unlikely(running)) {
2119 cpu_relax();
2120 continue;
2121 }
fa490cfd 2122
3a5c359a
AK
2123 /*
2124 * It's not enough that it's not actively running,
2125 * it must be off the runqueue _entirely_, and not
2126 * preempted!
2127 *
80dd99b3 2128 * So if it was still runnable (but just not actively
3a5c359a
AK
2129 * running right now), it's preempted, and we should
2130 * yield - it could be a while.
2131 */
2132 if (unlikely(on_rq)) {
2133 schedule_timeout_uninterruptible(1);
2134 continue;
2135 }
fa490cfd 2136
3a5c359a
AK
2137 /*
2138 * Ahh, all good. It wasn't running, and it wasn't
2139 * runnable, which means that it will never become
2140 * running in the future either. We're all done!
2141 */
2142 break;
2143 }
85ba2d86
RM
2144
2145 return ncsw;
1da177e4
LT
2146}
2147
2148/***
2149 * kick_process - kick a running thread to enter/exit the kernel
2150 * @p: the to-be-kicked thread
2151 *
2152 * Cause a process which is running on another CPU to enter
2153 * kernel-mode, without any delay. (to get signals handled.)
2154 *
2155 * NOTE: this function doesnt have to take the runqueue lock,
2156 * because all it wants to ensure is that the remote task enters
2157 * the kernel. If the IPI races and the task has been migrated
2158 * to another CPU then no harm is done and the purpose has been
2159 * achieved as well.
2160 */
36c8b586 2161void kick_process(struct task_struct *p)
1da177e4
LT
2162{
2163 int cpu;
2164
2165 preempt_disable();
2166 cpu = task_cpu(p);
2167 if ((cpu != smp_processor_id()) && task_curr(p))
2168 smp_send_reschedule(cpu);
2169 preempt_enable();
2170}
b43e3521 2171EXPORT_SYMBOL_GPL(kick_process);
476d139c 2172#endif /* CONFIG_SMP */
1da177e4 2173
0793a61d
TG
2174/**
2175 * task_oncpu_function_call - call a function on the cpu on which a task runs
2176 * @p: the task to evaluate
2177 * @func: the function to be called
2178 * @info: the function call argument
2179 *
2180 * Calls the function @func when the task is currently running. This might
2181 * be on the current CPU, which just calls the function directly
2182 */
2183void task_oncpu_function_call(struct task_struct *p,
2184 void (*func) (void *info), void *info)
2185{
2186 int cpu;
2187
2188 preempt_disable();
2189 cpu = task_cpu(p);
2190 if (task_curr(p))
2191 smp_call_function_single(cpu, func, info, 1);
2192 preempt_enable();
2193}
2194
970b13ba 2195#ifdef CONFIG_SMP
30da688e
ON
2196/*
2197 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2198 */
5da9a0fb
PZ
2199static int select_fallback_rq(int cpu, struct task_struct *p)
2200{
2201 int dest_cpu;
2202 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2203
2204 /* Look for allowed, online CPU in same node. */
2205 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2206 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2207 return dest_cpu;
2208
2209 /* Any allowed, online CPU? */
2210 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2211 if (dest_cpu < nr_cpu_ids)
2212 return dest_cpu;
2213
2214 /* No more Mr. Nice Guy. */
897f0b3c 2215 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2216 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2217 /*
2218 * Don't tell them about moving exiting tasks or
2219 * kernel threads (both mm NULL), since they never
2220 * leave kernel.
2221 */
2222 if (p->mm && printk_ratelimit()) {
2223 printk(KERN_INFO "process %d (%s) no "
2224 "longer affine to cpu%d\n",
2225 task_pid_nr(p), p->comm, cpu);
2226 }
2227 }
2228
2229 return dest_cpu;
2230}
2231
e2912009 2232/*
30da688e 2233 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2234 */
970b13ba 2235static inline
0017d735 2236int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2237{
0017d735 2238 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2239
2240 /*
2241 * In order not to call set_task_cpu() on a blocking task we need
2242 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2243 * cpu.
2244 *
2245 * Since this is common to all placement strategies, this lives here.
2246 *
2247 * [ this allows ->select_task() to simply return task_cpu(p) and
2248 * not worry about this generic constraint ]
2249 */
2250 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2251 !cpu_online(cpu)))
5da9a0fb 2252 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2253
2254 return cpu;
970b13ba 2255}
09a40af5
MG
2256
2257static void update_avg(u64 *avg, u64 sample)
2258{
2259 s64 diff = sample - *avg;
2260 *avg += diff >> 3;
2261}
970b13ba
PZ
2262#endif
2263
1da177e4
LT
2264/***
2265 * try_to_wake_up - wake up a thread
2266 * @p: the to-be-woken-up thread
2267 * @state: the mask of task states that can be woken
2268 * @sync: do a synchronous wakeup?
2269 *
2270 * Put it on the run-queue if it's not already there. The "current"
2271 * thread is always on the run-queue (except when the actual
2272 * re-schedule is in progress), and as such you're allowed to do
2273 * the simpler "current->state = TASK_RUNNING" to mark yourself
2274 * runnable without the overhead of this.
2275 *
2276 * returns failure only if the task is already active.
2277 */
7d478721
PZ
2278static int try_to_wake_up(struct task_struct *p, unsigned int state,
2279 int wake_flags)
1da177e4 2280{
cc367732 2281 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2282 unsigned long flags;
371fd7e7 2283 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2284 struct rq *rq;
1da177e4 2285
e9c84311 2286 this_cpu = get_cpu();
2398f2c6 2287
04e2f174 2288 smp_wmb();
ab3b3aa5 2289 rq = task_rq_lock(p, &flags);
e9c84311 2290 if (!(p->state & state))
1da177e4
LT
2291 goto out;
2292
dd41f596 2293 if (p->se.on_rq)
1da177e4
LT
2294 goto out_running;
2295
2296 cpu = task_cpu(p);
cc367732 2297 orig_cpu = cpu;
1da177e4
LT
2298
2299#ifdef CONFIG_SMP
2300 if (unlikely(task_running(rq, p)))
2301 goto out_activate;
2302
e9c84311
PZ
2303 /*
2304 * In order to handle concurrent wakeups and release the rq->lock
2305 * we put the task in TASK_WAKING state.
eb24073b
IM
2306 *
2307 * First fix up the nr_uninterruptible count:
e9c84311 2308 */
cc87f76a
PZ
2309 if (task_contributes_to_load(p)) {
2310 if (likely(cpu_online(orig_cpu)))
2311 rq->nr_uninterruptible--;
2312 else
2313 this_rq()->nr_uninterruptible--;
2314 }
e9c84311 2315 p->state = TASK_WAKING;
efbbd05a 2316
371fd7e7 2317 if (p->sched_class->task_waking) {
efbbd05a 2318 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2319 en_flags |= ENQUEUE_WAKING;
2320 }
efbbd05a 2321
0017d735
PZ
2322 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2323 if (cpu != orig_cpu)
5d2f5a61 2324 set_task_cpu(p, cpu);
0017d735 2325 __task_rq_unlock(rq);
ab19cb23 2326
0970d299
PZ
2327 rq = cpu_rq(cpu);
2328 raw_spin_lock(&rq->lock);
f5dc3753 2329
0970d299
PZ
2330 /*
2331 * We migrated the task without holding either rq->lock, however
2332 * since the task is not on the task list itself, nobody else
2333 * will try and migrate the task, hence the rq should match the
2334 * cpu we just moved it to.
2335 */
2336 WARN_ON(task_cpu(p) != cpu);
e9c84311 2337 WARN_ON(p->state != TASK_WAKING);
1da177e4 2338
e7693a36
GH
2339#ifdef CONFIG_SCHEDSTATS
2340 schedstat_inc(rq, ttwu_count);
2341 if (cpu == this_cpu)
2342 schedstat_inc(rq, ttwu_local);
2343 else {
2344 struct sched_domain *sd;
2345 for_each_domain(this_cpu, sd) {
758b2cdc 2346 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2347 schedstat_inc(sd, ttwu_wake_remote);
2348 break;
2349 }
2350 }
2351 }
6d6bc0ad 2352#endif /* CONFIG_SCHEDSTATS */
e7693a36 2353
1da177e4
LT
2354out_activate:
2355#endif /* CONFIG_SMP */
41acab88 2356 schedstat_inc(p, se.statistics.nr_wakeups);
7d478721 2357 if (wake_flags & WF_SYNC)
41acab88 2358 schedstat_inc(p, se.statistics.nr_wakeups_sync);
cc367732 2359 if (orig_cpu != cpu)
41acab88 2360 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
cc367732 2361 if (cpu == this_cpu)
41acab88 2362 schedstat_inc(p, se.statistics.nr_wakeups_local);
cc367732 2363 else
41acab88 2364 schedstat_inc(p, se.statistics.nr_wakeups_remote);
371fd7e7 2365 activate_task(rq, p, en_flags);
1da177e4
LT
2366 success = 1;
2367
2368out_running:
27a9da65 2369 trace_sched_wakeup(p, success);
7d478721 2370 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2371
1da177e4 2372 p->state = TASK_RUNNING;
9a897c5a 2373#ifdef CONFIG_SMP
efbbd05a
PZ
2374 if (p->sched_class->task_woken)
2375 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2376
2377 if (unlikely(rq->idle_stamp)) {
2378 u64 delta = rq->clock - rq->idle_stamp;
2379 u64 max = 2*sysctl_sched_migration_cost;
2380
2381 if (delta > max)
2382 rq->avg_idle = max;
2383 else
2384 update_avg(&rq->avg_idle, delta);
2385 rq->idle_stamp = 0;
2386 }
9a897c5a 2387#endif
1da177e4
LT
2388out:
2389 task_rq_unlock(rq, &flags);
e9c84311 2390 put_cpu();
1da177e4
LT
2391
2392 return success;
2393}
2394
50fa610a
DH
2395/**
2396 * wake_up_process - Wake up a specific process
2397 * @p: The process to be woken up.
2398 *
2399 * Attempt to wake up the nominated process and move it to the set of runnable
2400 * processes. Returns 1 if the process was woken up, 0 if it was already
2401 * running.
2402 *
2403 * It may be assumed that this function implies a write memory barrier before
2404 * changing the task state if and only if any tasks are woken up.
2405 */
7ad5b3a5 2406int wake_up_process(struct task_struct *p)
1da177e4 2407{
d9514f6c 2408 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2409}
1da177e4
LT
2410EXPORT_SYMBOL(wake_up_process);
2411
7ad5b3a5 2412int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2413{
2414 return try_to_wake_up(p, state, 0);
2415}
2416
1da177e4
LT
2417/*
2418 * Perform scheduler related setup for a newly forked process p.
2419 * p is forked by current.
dd41f596
IM
2420 *
2421 * __sched_fork() is basic setup used by init_idle() too:
2422 */
2423static void __sched_fork(struct task_struct *p)
2424{
dd41f596
IM
2425 p->se.exec_start = 0;
2426 p->se.sum_exec_runtime = 0;
f6cf891c 2427 p->se.prev_sum_exec_runtime = 0;
6c594c21 2428 p->se.nr_migrations = 0;
6cfb0d5d
IM
2429
2430#ifdef CONFIG_SCHEDSTATS
41acab88 2431 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2432#endif
476d139c 2433
fa717060 2434 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2435 p->se.on_rq = 0;
4a55bd5e 2436 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2437
e107be36
AK
2438#ifdef CONFIG_PREEMPT_NOTIFIERS
2439 INIT_HLIST_HEAD(&p->preempt_notifiers);
2440#endif
dd41f596
IM
2441}
2442
2443/*
2444 * fork()/clone()-time setup:
2445 */
2446void sched_fork(struct task_struct *p, int clone_flags)
2447{
2448 int cpu = get_cpu();
2449
2450 __sched_fork(p);
06b83b5f 2451 /*
0017d735 2452 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2453 * nobody will actually run it, and a signal or other external
2454 * event cannot wake it up and insert it on the runqueue either.
2455 */
0017d735 2456 p->state = TASK_RUNNING;
dd41f596 2457
b9dc29e7
MG
2458 /*
2459 * Revert to default priority/policy on fork if requested.
2460 */
2461 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2462 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2463 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2464 p->normal_prio = p->static_prio;
2465 }
b9dc29e7 2466
6c697bdf
MG
2467 if (PRIO_TO_NICE(p->static_prio) < 0) {
2468 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2469 p->normal_prio = p->static_prio;
6c697bdf
MG
2470 set_load_weight(p);
2471 }
2472
b9dc29e7
MG
2473 /*
2474 * We don't need the reset flag anymore after the fork. It has
2475 * fulfilled its duty:
2476 */
2477 p->sched_reset_on_fork = 0;
2478 }
ca94c442 2479
f83f9ac2
PW
2480 /*
2481 * Make sure we do not leak PI boosting priority to the child.
2482 */
2483 p->prio = current->normal_prio;
2484
2ddbf952
HS
2485 if (!rt_prio(p->prio))
2486 p->sched_class = &fair_sched_class;
b29739f9 2487
cd29fe6f
PZ
2488 if (p->sched_class->task_fork)
2489 p->sched_class->task_fork(p);
2490
5f3edc1b
PZ
2491 set_task_cpu(p, cpu);
2492
52f17b6c 2493#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2494 if (likely(sched_info_on()))
52f17b6c 2495 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2496#endif
d6077cb8 2497#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2498 p->oncpu = 0;
2499#endif
1da177e4 2500#ifdef CONFIG_PREEMPT
4866cde0 2501 /* Want to start with kernel preemption disabled. */
a1261f54 2502 task_thread_info(p)->preempt_count = 1;
1da177e4 2503#endif
917b627d
GH
2504 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2505
476d139c 2506 put_cpu();
1da177e4
LT
2507}
2508
2509/*
2510 * wake_up_new_task - wake up a newly created task for the first time.
2511 *
2512 * This function will do some initial scheduler statistics housekeeping
2513 * that must be done for every newly created context, then puts the task
2514 * on the runqueue and wakes it.
2515 */
7ad5b3a5 2516void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2517{
2518 unsigned long flags;
dd41f596 2519 struct rq *rq;
c890692b 2520 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2521
2522#ifdef CONFIG_SMP
0017d735
PZ
2523 rq = task_rq_lock(p, &flags);
2524 p->state = TASK_WAKING;
2525
fabf318e
PZ
2526 /*
2527 * Fork balancing, do it here and not earlier because:
2528 * - cpus_allowed can change in the fork path
2529 * - any previously selected cpu might disappear through hotplug
2530 *
0017d735
PZ
2531 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2532 * without people poking at ->cpus_allowed.
fabf318e 2533 */
0017d735 2534 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2535 set_task_cpu(p, cpu);
1da177e4 2536
06b83b5f 2537 p->state = TASK_RUNNING;
0017d735
PZ
2538 task_rq_unlock(rq, &flags);
2539#endif
2540
2541 rq = task_rq_lock(p, &flags);
cd29fe6f 2542 activate_task(rq, p, 0);
27a9da65 2543 trace_sched_wakeup_new(p, 1);
a7558e01 2544 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2545#ifdef CONFIG_SMP
efbbd05a
PZ
2546 if (p->sched_class->task_woken)
2547 p->sched_class->task_woken(rq, p);
9a897c5a 2548#endif
dd41f596 2549 task_rq_unlock(rq, &flags);
fabf318e 2550 put_cpu();
1da177e4
LT
2551}
2552
e107be36
AK
2553#ifdef CONFIG_PREEMPT_NOTIFIERS
2554
2555/**
80dd99b3 2556 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2557 * @notifier: notifier struct to register
e107be36
AK
2558 */
2559void preempt_notifier_register(struct preempt_notifier *notifier)
2560{
2561 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2562}
2563EXPORT_SYMBOL_GPL(preempt_notifier_register);
2564
2565/**
2566 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2567 * @notifier: notifier struct to unregister
e107be36
AK
2568 *
2569 * This is safe to call from within a preemption notifier.
2570 */
2571void preempt_notifier_unregister(struct preempt_notifier *notifier)
2572{
2573 hlist_del(&notifier->link);
2574}
2575EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2576
2577static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2578{
2579 struct preempt_notifier *notifier;
2580 struct hlist_node *node;
2581
2582 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2583 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2584}
2585
2586static void
2587fire_sched_out_preempt_notifiers(struct task_struct *curr,
2588 struct task_struct *next)
2589{
2590 struct preempt_notifier *notifier;
2591 struct hlist_node *node;
2592
2593 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2594 notifier->ops->sched_out(notifier, next);
2595}
2596
6d6bc0ad 2597#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2598
2599static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2600{
2601}
2602
2603static void
2604fire_sched_out_preempt_notifiers(struct task_struct *curr,
2605 struct task_struct *next)
2606{
2607}
2608
6d6bc0ad 2609#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2610
4866cde0
NP
2611/**
2612 * prepare_task_switch - prepare to switch tasks
2613 * @rq: the runqueue preparing to switch
421cee29 2614 * @prev: the current task that is being switched out
4866cde0
NP
2615 * @next: the task we are going to switch to.
2616 *
2617 * This is called with the rq lock held and interrupts off. It must
2618 * be paired with a subsequent finish_task_switch after the context
2619 * switch.
2620 *
2621 * prepare_task_switch sets up locking and calls architecture specific
2622 * hooks.
2623 */
e107be36
AK
2624static inline void
2625prepare_task_switch(struct rq *rq, struct task_struct *prev,
2626 struct task_struct *next)
4866cde0 2627{
e107be36 2628 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2629 prepare_lock_switch(rq, next);
2630 prepare_arch_switch(next);
2631}
2632
1da177e4
LT
2633/**
2634 * finish_task_switch - clean up after a task-switch
344babaa 2635 * @rq: runqueue associated with task-switch
1da177e4
LT
2636 * @prev: the thread we just switched away from.
2637 *
4866cde0
NP
2638 * finish_task_switch must be called after the context switch, paired
2639 * with a prepare_task_switch call before the context switch.
2640 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2641 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2642 *
2643 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2644 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2645 * with the lock held can cause deadlocks; see schedule() for
2646 * details.)
2647 */
a9957449 2648static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2649 __releases(rq->lock)
2650{
1da177e4 2651 struct mm_struct *mm = rq->prev_mm;
55a101f8 2652 long prev_state;
1da177e4
LT
2653
2654 rq->prev_mm = NULL;
2655
2656 /*
2657 * A task struct has one reference for the use as "current".
c394cc9f 2658 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2659 * schedule one last time. The schedule call will never return, and
2660 * the scheduled task must drop that reference.
c394cc9f 2661 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2662 * still held, otherwise prev could be scheduled on another cpu, die
2663 * there before we look at prev->state, and then the reference would
2664 * be dropped twice.
2665 * Manfred Spraul <manfred@colorfullife.com>
2666 */
55a101f8 2667 prev_state = prev->state;
4866cde0 2668 finish_arch_switch(prev);
8381f65d
JI
2669#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2670 local_irq_disable();
2671#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2672 perf_event_task_sched_in(current);
8381f65d
JI
2673#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2674 local_irq_enable();
2675#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2676 finish_lock_switch(rq, prev);
e8fa1362 2677
e107be36 2678 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2679 if (mm)
2680 mmdrop(mm);
c394cc9f 2681 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2682 /*
2683 * Remove function-return probe instances associated with this
2684 * task and put them back on the free list.
9761eea8 2685 */
c6fd91f0 2686 kprobe_flush_task(prev);
1da177e4 2687 put_task_struct(prev);
c6fd91f0 2688 }
1da177e4
LT
2689}
2690
3f029d3c
GH
2691#ifdef CONFIG_SMP
2692
2693/* assumes rq->lock is held */
2694static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2695{
2696 if (prev->sched_class->pre_schedule)
2697 prev->sched_class->pre_schedule(rq, prev);
2698}
2699
2700/* rq->lock is NOT held, but preemption is disabled */
2701static inline void post_schedule(struct rq *rq)
2702{
2703 if (rq->post_schedule) {
2704 unsigned long flags;
2705
05fa785c 2706 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2707 if (rq->curr->sched_class->post_schedule)
2708 rq->curr->sched_class->post_schedule(rq);
05fa785c 2709 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2710
2711 rq->post_schedule = 0;
2712 }
2713}
2714
2715#else
da19ab51 2716
3f029d3c
GH
2717static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2718{
2719}
2720
2721static inline void post_schedule(struct rq *rq)
2722{
1da177e4
LT
2723}
2724
3f029d3c
GH
2725#endif
2726
1da177e4
LT
2727/**
2728 * schedule_tail - first thing a freshly forked thread must call.
2729 * @prev: the thread we just switched away from.
2730 */
36c8b586 2731asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2732 __releases(rq->lock)
2733{
70b97a7f
IM
2734 struct rq *rq = this_rq();
2735
4866cde0 2736 finish_task_switch(rq, prev);
da19ab51 2737
3f029d3c
GH
2738 /*
2739 * FIXME: do we need to worry about rq being invalidated by the
2740 * task_switch?
2741 */
2742 post_schedule(rq);
70b97a7f 2743
4866cde0
NP
2744#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2745 /* In this case, finish_task_switch does not reenable preemption */
2746 preempt_enable();
2747#endif
1da177e4 2748 if (current->set_child_tid)
b488893a 2749 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2750}
2751
2752/*
2753 * context_switch - switch to the new MM and the new
2754 * thread's register state.
2755 */
dd41f596 2756static inline void
70b97a7f 2757context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2758 struct task_struct *next)
1da177e4 2759{
dd41f596 2760 struct mm_struct *mm, *oldmm;
1da177e4 2761
e107be36 2762 prepare_task_switch(rq, prev, next);
27a9da65 2763 trace_sched_switch(prev, next);
dd41f596
IM
2764 mm = next->mm;
2765 oldmm = prev->active_mm;
9226d125
ZA
2766 /*
2767 * For paravirt, this is coupled with an exit in switch_to to
2768 * combine the page table reload and the switch backend into
2769 * one hypercall.
2770 */
224101ed 2771 arch_start_context_switch(prev);
9226d125 2772
710390d9 2773 if (likely(!mm)) {
1da177e4
LT
2774 next->active_mm = oldmm;
2775 atomic_inc(&oldmm->mm_count);
2776 enter_lazy_tlb(oldmm, next);
2777 } else
2778 switch_mm(oldmm, mm, next);
2779
710390d9 2780 if (likely(!prev->mm)) {
1da177e4 2781 prev->active_mm = NULL;
1da177e4
LT
2782 rq->prev_mm = oldmm;
2783 }
3a5f5e48
IM
2784 /*
2785 * Since the runqueue lock will be released by the next
2786 * task (which is an invalid locking op but in the case
2787 * of the scheduler it's an obvious special-case), so we
2788 * do an early lockdep release here:
2789 */
2790#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2791 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2792#endif
1da177e4
LT
2793
2794 /* Here we just switch the register state and the stack. */
2795 switch_to(prev, next, prev);
2796
dd41f596
IM
2797 barrier();
2798 /*
2799 * this_rq must be evaluated again because prev may have moved
2800 * CPUs since it called schedule(), thus the 'rq' on its stack
2801 * frame will be invalid.
2802 */
2803 finish_task_switch(this_rq(), prev);
1da177e4
LT
2804}
2805
2806/*
2807 * nr_running, nr_uninterruptible and nr_context_switches:
2808 *
2809 * externally visible scheduler statistics: current number of runnable
2810 * threads, current number of uninterruptible-sleeping threads, total
2811 * number of context switches performed since bootup.
2812 */
2813unsigned long nr_running(void)
2814{
2815 unsigned long i, sum = 0;
2816
2817 for_each_online_cpu(i)
2818 sum += cpu_rq(i)->nr_running;
2819
2820 return sum;
f711f609 2821}
1da177e4
LT
2822
2823unsigned long nr_uninterruptible(void)
f711f609 2824{
1da177e4 2825 unsigned long i, sum = 0;
f711f609 2826
0a945022 2827 for_each_possible_cpu(i)
1da177e4 2828 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2829
2830 /*
1da177e4
LT
2831 * Since we read the counters lockless, it might be slightly
2832 * inaccurate. Do not allow it to go below zero though:
f711f609 2833 */
1da177e4
LT
2834 if (unlikely((long)sum < 0))
2835 sum = 0;
f711f609 2836
1da177e4 2837 return sum;
f711f609 2838}
f711f609 2839
1da177e4 2840unsigned long long nr_context_switches(void)
46cb4b7c 2841{
cc94abfc
SR
2842 int i;
2843 unsigned long long sum = 0;
46cb4b7c 2844
0a945022 2845 for_each_possible_cpu(i)
1da177e4 2846 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2847
1da177e4
LT
2848 return sum;
2849}
483b4ee6 2850
1da177e4
LT
2851unsigned long nr_iowait(void)
2852{
2853 unsigned long i, sum = 0;
483b4ee6 2854
0a945022 2855 for_each_possible_cpu(i)
1da177e4 2856 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2857
1da177e4
LT
2858 return sum;
2859}
483b4ee6 2860
69d25870
AV
2861unsigned long nr_iowait_cpu(void)
2862{
2863 struct rq *this = this_rq();
2864 return atomic_read(&this->nr_iowait);
2865}
46cb4b7c 2866
69d25870
AV
2867unsigned long this_cpu_load(void)
2868{
2869 struct rq *this = this_rq();
2870 return this->cpu_load[0];
2871}
e790fb0b 2872
46cb4b7c 2873
dce48a84
TG
2874/* Variables and functions for calc_load */
2875static atomic_long_t calc_load_tasks;
2876static unsigned long calc_load_update;
2877unsigned long avenrun[3];
2878EXPORT_SYMBOL(avenrun);
46cb4b7c 2879
74f5187a
PZ
2880static long calc_load_fold_active(struct rq *this_rq)
2881{
2882 long nr_active, delta = 0;
2883
2884 nr_active = this_rq->nr_running;
2885 nr_active += (long) this_rq->nr_uninterruptible;
2886
2887 if (nr_active != this_rq->calc_load_active) {
2888 delta = nr_active - this_rq->calc_load_active;
2889 this_rq->calc_load_active = nr_active;
2890 }
2891
2892 return delta;
2893}
2894
2895#ifdef CONFIG_NO_HZ
2896/*
2897 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2898 *
2899 * When making the ILB scale, we should try to pull this in as well.
2900 */
2901static atomic_long_t calc_load_tasks_idle;
2902
2903static void calc_load_account_idle(struct rq *this_rq)
2904{
2905 long delta;
2906
2907 delta = calc_load_fold_active(this_rq);
2908 if (delta)
2909 atomic_long_add(delta, &calc_load_tasks_idle);
2910}
2911
2912static long calc_load_fold_idle(void)
2913{
2914 long delta = 0;
2915
2916 /*
2917 * Its got a race, we don't care...
2918 */
2919 if (atomic_long_read(&calc_load_tasks_idle))
2920 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2921
2922 return delta;
2923}
2924#else
2925static void calc_load_account_idle(struct rq *this_rq)
2926{
2927}
2928
2929static inline long calc_load_fold_idle(void)
2930{
2931 return 0;
2932}
2933#endif
2934
2d02494f
TG
2935/**
2936 * get_avenrun - get the load average array
2937 * @loads: pointer to dest load array
2938 * @offset: offset to add
2939 * @shift: shift count to shift the result left
2940 *
2941 * These values are estimates at best, so no need for locking.
2942 */
2943void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2944{
2945 loads[0] = (avenrun[0] + offset) << shift;
2946 loads[1] = (avenrun[1] + offset) << shift;
2947 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2948}
46cb4b7c 2949
dce48a84
TG
2950static unsigned long
2951calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2952{
dce48a84
TG
2953 load *= exp;
2954 load += active * (FIXED_1 - exp);
2955 return load >> FSHIFT;
2956}
46cb4b7c
SS
2957
2958/*
dce48a84
TG
2959 * calc_load - update the avenrun load estimates 10 ticks after the
2960 * CPUs have updated calc_load_tasks.
7835b98b 2961 */
dce48a84 2962void calc_global_load(void)
7835b98b 2963{
dce48a84
TG
2964 unsigned long upd = calc_load_update + 10;
2965 long active;
1da177e4 2966
dce48a84
TG
2967 if (time_before(jiffies, upd))
2968 return;
1da177e4 2969
dce48a84
TG
2970 active = atomic_long_read(&calc_load_tasks);
2971 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2972
dce48a84
TG
2973 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2974 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2975 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2976
dce48a84
TG
2977 calc_load_update += LOAD_FREQ;
2978}
1da177e4 2979
dce48a84 2980/*
74f5187a
PZ
2981 * Called from update_cpu_load() to periodically update this CPU's
2982 * active count.
dce48a84
TG
2983 */
2984static void calc_load_account_active(struct rq *this_rq)
2985{
74f5187a 2986 long delta;
08c183f3 2987
74f5187a
PZ
2988 if (time_before(jiffies, this_rq->calc_load_update))
2989 return;
783609c6 2990
74f5187a
PZ
2991 delta = calc_load_fold_active(this_rq);
2992 delta += calc_load_fold_idle();
2993 if (delta)
dce48a84 2994 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2995
2996 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2997}
2998
2999/*
dd41f596
IM
3000 * Update rq->cpu_load[] statistics. This function is usually called every
3001 * scheduler tick (TICK_NSEC).
46cb4b7c 3002 */
dd41f596 3003static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3004{
495eca49 3005 unsigned long this_load = this_rq->load.weight;
dd41f596 3006 int i, scale;
46cb4b7c 3007
dd41f596 3008 this_rq->nr_load_updates++;
46cb4b7c 3009
dd41f596
IM
3010 /* Update our load: */
3011 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3012 unsigned long old_load, new_load;
7d1e6a9b 3013
dd41f596 3014 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3015
dd41f596
IM
3016 old_load = this_rq->cpu_load[i];
3017 new_load = this_load;
a25707f3
IM
3018 /*
3019 * Round up the averaging division if load is increasing. This
3020 * prevents us from getting stuck on 9 if the load is 10, for
3021 * example.
3022 */
3023 if (new_load > old_load)
3024 new_load += scale-1;
dd41f596
IM
3025 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3026 }
46cb4b7c 3027
74f5187a 3028 calc_load_account_active(this_rq);
46cb4b7c
SS
3029}
3030
dd41f596 3031#ifdef CONFIG_SMP
8a0be9ef 3032
46cb4b7c 3033/*
38022906
PZ
3034 * sched_exec - execve() is a valuable balancing opportunity, because at
3035 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3036 */
38022906 3037void sched_exec(void)
46cb4b7c 3038{
38022906 3039 struct task_struct *p = current;
1da177e4 3040 unsigned long flags;
70b97a7f 3041 struct rq *rq;
0017d735 3042 int dest_cpu;
46cb4b7c 3043
1da177e4 3044 rq = task_rq_lock(p, &flags);
0017d735
PZ
3045 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3046 if (dest_cpu == smp_processor_id())
3047 goto unlock;
38022906 3048
46cb4b7c 3049 /*
38022906 3050 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3051 */
30da688e 3052 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3053 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3054 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3055
1da177e4 3056 task_rq_unlock(rq, &flags);
969c7921 3057 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3058 return;
3059 }
0017d735 3060unlock:
1da177e4 3061 task_rq_unlock(rq, &flags);
1da177e4 3062}
dd41f596 3063
1da177e4
LT
3064#endif
3065
1da177e4
LT
3066DEFINE_PER_CPU(struct kernel_stat, kstat);
3067
3068EXPORT_PER_CPU_SYMBOL(kstat);
3069
3070/*
c5f8d995 3071 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3072 * @p in case that task is currently running.
c5f8d995
HS
3073 *
3074 * Called with task_rq_lock() held on @rq.
1da177e4 3075 */
c5f8d995
HS
3076static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3077{
3078 u64 ns = 0;
3079
3080 if (task_current(rq, p)) {
3081 update_rq_clock(rq);
3082 ns = rq->clock - p->se.exec_start;
3083 if ((s64)ns < 0)
3084 ns = 0;
3085 }
3086
3087 return ns;
3088}
3089
bb34d92f 3090unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3091{
1da177e4 3092 unsigned long flags;
41b86e9c 3093 struct rq *rq;
bb34d92f 3094 u64 ns = 0;
48f24c4d 3095
41b86e9c 3096 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3097 ns = do_task_delta_exec(p, rq);
3098 task_rq_unlock(rq, &flags);
1508487e 3099
c5f8d995
HS
3100 return ns;
3101}
f06febc9 3102
c5f8d995
HS
3103/*
3104 * Return accounted runtime for the task.
3105 * In case the task is currently running, return the runtime plus current's
3106 * pending runtime that have not been accounted yet.
3107 */
3108unsigned long long task_sched_runtime(struct task_struct *p)
3109{
3110 unsigned long flags;
3111 struct rq *rq;
3112 u64 ns = 0;
3113
3114 rq = task_rq_lock(p, &flags);
3115 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3116 task_rq_unlock(rq, &flags);
3117
3118 return ns;
3119}
48f24c4d 3120
c5f8d995
HS
3121/*
3122 * Return sum_exec_runtime for the thread group.
3123 * In case the task is currently running, return the sum plus current's
3124 * pending runtime that have not been accounted yet.
3125 *
3126 * Note that the thread group might have other running tasks as well,
3127 * so the return value not includes other pending runtime that other
3128 * running tasks might have.
3129 */
3130unsigned long long thread_group_sched_runtime(struct task_struct *p)
3131{
3132 struct task_cputime totals;
3133 unsigned long flags;
3134 struct rq *rq;
3135 u64 ns;
3136
3137 rq = task_rq_lock(p, &flags);
3138 thread_group_cputime(p, &totals);
3139 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3140 task_rq_unlock(rq, &flags);
48f24c4d 3141
1da177e4
LT
3142 return ns;
3143}
3144
1da177e4
LT
3145/*
3146 * Account user cpu time to a process.
3147 * @p: the process that the cpu time gets accounted to
1da177e4 3148 * @cputime: the cpu time spent in user space since the last update
457533a7 3149 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3150 */
457533a7
MS
3151void account_user_time(struct task_struct *p, cputime_t cputime,
3152 cputime_t cputime_scaled)
1da177e4
LT
3153{
3154 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3155 cputime64_t tmp;
3156
457533a7 3157 /* Add user time to process. */
1da177e4 3158 p->utime = cputime_add(p->utime, cputime);
457533a7 3159 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3160 account_group_user_time(p, cputime);
1da177e4
LT
3161
3162 /* Add user time to cpustat. */
3163 tmp = cputime_to_cputime64(cputime);
3164 if (TASK_NICE(p) > 0)
3165 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3166 else
3167 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3168
3169 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3170 /* Account for user time used */
3171 acct_update_integrals(p);
1da177e4
LT
3172}
3173
94886b84
LV
3174/*
3175 * Account guest cpu time to a process.
3176 * @p: the process that the cpu time gets accounted to
3177 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3178 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3179 */
457533a7
MS
3180static void account_guest_time(struct task_struct *p, cputime_t cputime,
3181 cputime_t cputime_scaled)
94886b84
LV
3182{
3183 cputime64_t tmp;
3184 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3185
3186 tmp = cputime_to_cputime64(cputime);
3187
457533a7 3188 /* Add guest time to process. */
94886b84 3189 p->utime = cputime_add(p->utime, cputime);
457533a7 3190 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3191 account_group_user_time(p, cputime);
94886b84
LV
3192 p->gtime = cputime_add(p->gtime, cputime);
3193
457533a7 3194 /* Add guest time to cpustat. */
ce0e7b28
RO
3195 if (TASK_NICE(p) > 0) {
3196 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3197 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3198 } else {
3199 cpustat->user = cputime64_add(cpustat->user, tmp);
3200 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3201 }
94886b84
LV
3202}
3203
1da177e4
LT
3204/*
3205 * Account system cpu time to a process.
3206 * @p: the process that the cpu time gets accounted to
3207 * @hardirq_offset: the offset to subtract from hardirq_count()
3208 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3209 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3210 */
3211void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3212 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3213{
3214 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3215 cputime64_t tmp;
3216
983ed7a6 3217 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3218 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3219 return;
3220 }
94886b84 3221
457533a7 3222 /* Add system time to process. */
1da177e4 3223 p->stime = cputime_add(p->stime, cputime);
457533a7 3224 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3225 account_group_system_time(p, cputime);
1da177e4
LT
3226
3227 /* Add system time to cpustat. */
3228 tmp = cputime_to_cputime64(cputime);
3229 if (hardirq_count() - hardirq_offset)
3230 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3231 else if (softirq_count())
3232 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3233 else
79741dd3
MS
3234 cpustat->system = cputime64_add(cpustat->system, tmp);
3235
ef12fefa
BR
3236 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3237
1da177e4
LT
3238 /* Account for system time used */
3239 acct_update_integrals(p);
1da177e4
LT
3240}
3241
c66f08be 3242/*
1da177e4 3243 * Account for involuntary wait time.
1da177e4 3244 * @steal: the cpu time spent in involuntary wait
c66f08be 3245 */
79741dd3 3246void account_steal_time(cputime_t cputime)
c66f08be 3247{
79741dd3
MS
3248 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3249 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3250
3251 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3252}
3253
1da177e4 3254/*
79741dd3
MS
3255 * Account for idle time.
3256 * @cputime: the cpu time spent in idle wait
1da177e4 3257 */
79741dd3 3258void account_idle_time(cputime_t cputime)
1da177e4
LT
3259{
3260 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3261 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3262 struct rq *rq = this_rq();
1da177e4 3263
79741dd3
MS
3264 if (atomic_read(&rq->nr_iowait) > 0)
3265 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3266 else
3267 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3268}
3269
79741dd3
MS
3270#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3271
3272/*
3273 * Account a single tick of cpu time.
3274 * @p: the process that the cpu time gets accounted to
3275 * @user_tick: indicates if the tick is a user or a system tick
3276 */
3277void account_process_tick(struct task_struct *p, int user_tick)
3278{
a42548a1 3279 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3280 struct rq *rq = this_rq();
3281
3282 if (user_tick)
a42548a1 3283 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3284 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3285 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3286 one_jiffy_scaled);
3287 else
a42548a1 3288 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3289}
3290
3291/*
3292 * Account multiple ticks of steal time.
3293 * @p: the process from which the cpu time has been stolen
3294 * @ticks: number of stolen ticks
3295 */
3296void account_steal_ticks(unsigned long ticks)
3297{
3298 account_steal_time(jiffies_to_cputime(ticks));
3299}
3300
3301/*
3302 * Account multiple ticks of idle time.
3303 * @ticks: number of stolen ticks
3304 */
3305void account_idle_ticks(unsigned long ticks)
3306{
3307 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3308}
3309
79741dd3
MS
3310#endif
3311
49048622
BS
3312/*
3313 * Use precise platform statistics if available:
3314 */
3315#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3316void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3317{
d99ca3b9
HS
3318 *ut = p->utime;
3319 *st = p->stime;
49048622
BS
3320}
3321
0cf55e1e 3322void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3323{
0cf55e1e
HS
3324 struct task_cputime cputime;
3325
3326 thread_group_cputime(p, &cputime);
3327
3328 *ut = cputime.utime;
3329 *st = cputime.stime;
49048622
BS
3330}
3331#else
761b1d26
HS
3332
3333#ifndef nsecs_to_cputime
b7b20df9 3334# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3335#endif
3336
d180c5bc 3337void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3338{
d99ca3b9 3339 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3340
3341 /*
3342 * Use CFS's precise accounting:
3343 */
d180c5bc 3344 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3345
3346 if (total) {
d180c5bc
HS
3347 u64 temp;
3348
3349 temp = (u64)(rtime * utime);
49048622 3350 do_div(temp, total);
d180c5bc
HS
3351 utime = (cputime_t)temp;
3352 } else
3353 utime = rtime;
49048622 3354
d180c5bc
HS
3355 /*
3356 * Compare with previous values, to keep monotonicity:
3357 */
761b1d26 3358 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3359 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3360
d99ca3b9
HS
3361 *ut = p->prev_utime;
3362 *st = p->prev_stime;
49048622
BS
3363}
3364
0cf55e1e
HS
3365/*
3366 * Must be called with siglock held.
3367 */
3368void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3369{
0cf55e1e
HS
3370 struct signal_struct *sig = p->signal;
3371 struct task_cputime cputime;
3372 cputime_t rtime, utime, total;
49048622 3373
0cf55e1e 3374 thread_group_cputime(p, &cputime);
49048622 3375
0cf55e1e
HS
3376 total = cputime_add(cputime.utime, cputime.stime);
3377 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3378
0cf55e1e
HS
3379 if (total) {
3380 u64 temp;
49048622 3381
0cf55e1e
HS
3382 temp = (u64)(rtime * cputime.utime);
3383 do_div(temp, total);
3384 utime = (cputime_t)temp;
3385 } else
3386 utime = rtime;
3387
3388 sig->prev_utime = max(sig->prev_utime, utime);
3389 sig->prev_stime = max(sig->prev_stime,
3390 cputime_sub(rtime, sig->prev_utime));
3391
3392 *ut = sig->prev_utime;
3393 *st = sig->prev_stime;
49048622 3394}
49048622 3395#endif
49048622 3396
7835b98b
CL
3397/*
3398 * This function gets called by the timer code, with HZ frequency.
3399 * We call it with interrupts disabled.
3400 *
3401 * It also gets called by the fork code, when changing the parent's
3402 * timeslices.
3403 */
3404void scheduler_tick(void)
3405{
7835b98b
CL
3406 int cpu = smp_processor_id();
3407 struct rq *rq = cpu_rq(cpu);
dd41f596 3408 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3409
3410 sched_clock_tick();
dd41f596 3411
05fa785c 3412 raw_spin_lock(&rq->lock);
3e51f33f 3413 update_rq_clock(rq);
f1a438d8 3414 update_cpu_load(rq);
fa85ae24 3415 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3416 raw_spin_unlock(&rq->lock);
7835b98b 3417
49f47433 3418 perf_event_task_tick(curr);
e220d2dc 3419
e418e1c2 3420#ifdef CONFIG_SMP
dd41f596
IM
3421 rq->idle_at_tick = idle_cpu(cpu);
3422 trigger_load_balance(rq, cpu);
e418e1c2 3423#endif
1da177e4
LT
3424}
3425
132380a0 3426notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3427{
3428 if (in_lock_functions(addr)) {
3429 addr = CALLER_ADDR2;
3430 if (in_lock_functions(addr))
3431 addr = CALLER_ADDR3;
3432 }
3433 return addr;
3434}
1da177e4 3435
7e49fcce
SR
3436#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3437 defined(CONFIG_PREEMPT_TRACER))
3438
43627582 3439void __kprobes add_preempt_count(int val)
1da177e4 3440{
6cd8a4bb 3441#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3442 /*
3443 * Underflow?
3444 */
9a11b49a
IM
3445 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3446 return;
6cd8a4bb 3447#endif
1da177e4 3448 preempt_count() += val;
6cd8a4bb 3449#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3450 /*
3451 * Spinlock count overflowing soon?
3452 */
33859f7f
MOS
3453 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3454 PREEMPT_MASK - 10);
6cd8a4bb
SR
3455#endif
3456 if (preempt_count() == val)
3457 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3458}
3459EXPORT_SYMBOL(add_preempt_count);
3460
43627582 3461void __kprobes sub_preempt_count(int val)
1da177e4 3462{
6cd8a4bb 3463#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3464 /*
3465 * Underflow?
3466 */
01e3eb82 3467 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3468 return;
1da177e4
LT
3469 /*
3470 * Is the spinlock portion underflowing?
3471 */
9a11b49a
IM
3472 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3473 !(preempt_count() & PREEMPT_MASK)))
3474 return;
6cd8a4bb 3475#endif
9a11b49a 3476
6cd8a4bb
SR
3477 if (preempt_count() == val)
3478 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3479 preempt_count() -= val;
3480}
3481EXPORT_SYMBOL(sub_preempt_count);
3482
3483#endif
3484
3485/*
dd41f596 3486 * Print scheduling while atomic bug:
1da177e4 3487 */
dd41f596 3488static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3489{
838225b4
SS
3490 struct pt_regs *regs = get_irq_regs();
3491
3df0fc5b
PZ
3492 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3493 prev->comm, prev->pid, preempt_count());
838225b4 3494
dd41f596 3495 debug_show_held_locks(prev);
e21f5b15 3496 print_modules();
dd41f596
IM
3497 if (irqs_disabled())
3498 print_irqtrace_events(prev);
838225b4
SS
3499
3500 if (regs)
3501 show_regs(regs);
3502 else
3503 dump_stack();
dd41f596 3504}
1da177e4 3505
dd41f596
IM
3506/*
3507 * Various schedule()-time debugging checks and statistics:
3508 */
3509static inline void schedule_debug(struct task_struct *prev)
3510{
1da177e4 3511 /*
41a2d6cf 3512 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3513 * schedule() atomically, we ignore that path for now.
3514 * Otherwise, whine if we are scheduling when we should not be.
3515 */
3f33a7ce 3516 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3517 __schedule_bug(prev);
3518
1da177e4
LT
3519 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3520
2d72376b 3521 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3522#ifdef CONFIG_SCHEDSTATS
3523 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3524 schedstat_inc(this_rq(), bkl_count);
3525 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3526 }
3527#endif
dd41f596
IM
3528}
3529
6cecd084 3530static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3531{
a64692a3
MG
3532 if (prev->se.on_rq)
3533 update_rq_clock(rq);
3534 rq->skip_clock_update = 0;
6cecd084 3535 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3536}
3537
dd41f596
IM
3538/*
3539 * Pick up the highest-prio task:
3540 */
3541static inline struct task_struct *
b67802ea 3542pick_next_task(struct rq *rq)
dd41f596 3543{
5522d5d5 3544 const struct sched_class *class;
dd41f596 3545 struct task_struct *p;
1da177e4
LT
3546
3547 /*
dd41f596
IM
3548 * Optimization: we know that if all tasks are in
3549 * the fair class we can call that function directly:
1da177e4 3550 */
dd41f596 3551 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3552 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3553 if (likely(p))
3554 return p;
1da177e4
LT
3555 }
3556
dd41f596
IM
3557 class = sched_class_highest;
3558 for ( ; ; ) {
fb8d4724 3559 p = class->pick_next_task(rq);
dd41f596
IM
3560 if (p)
3561 return p;
3562 /*
3563 * Will never be NULL as the idle class always
3564 * returns a non-NULL p:
3565 */
3566 class = class->next;
3567 }
3568}
1da177e4 3569
dd41f596
IM
3570/*
3571 * schedule() is the main scheduler function.
3572 */
ff743345 3573asmlinkage void __sched schedule(void)
dd41f596
IM
3574{
3575 struct task_struct *prev, *next;
67ca7bde 3576 unsigned long *switch_count;
dd41f596 3577 struct rq *rq;
31656519 3578 int cpu;
dd41f596 3579
ff743345
PZ
3580need_resched:
3581 preempt_disable();
dd41f596
IM
3582 cpu = smp_processor_id();
3583 rq = cpu_rq(cpu);
25502a6c 3584 rcu_note_context_switch(cpu);
dd41f596
IM
3585 prev = rq->curr;
3586 switch_count = &prev->nivcsw;
3587
3588 release_kernel_lock(prev);
3589need_resched_nonpreemptible:
3590
3591 schedule_debug(prev);
1da177e4 3592
31656519 3593 if (sched_feat(HRTICK))
f333fdc9 3594 hrtick_clear(rq);
8f4d37ec 3595
05fa785c 3596 raw_spin_lock_irq(&rq->lock);
1e819950 3597 clear_tsk_need_resched(prev);
1da177e4 3598
1da177e4 3599 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3600 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3601 prev->state = TASK_RUNNING;
16882c1e 3602 else
371fd7e7 3603 deactivate_task(rq, prev, DEQUEUE_SLEEP);
dd41f596 3604 switch_count = &prev->nvcsw;
1da177e4
LT
3605 }
3606
3f029d3c 3607 pre_schedule(rq, prev);
f65eda4f 3608
dd41f596 3609 if (unlikely(!rq->nr_running))
1da177e4 3610 idle_balance(cpu, rq);
1da177e4 3611
df1c99d4 3612 put_prev_task(rq, prev);
b67802ea 3613 next = pick_next_task(rq);
1da177e4 3614
1da177e4 3615 if (likely(prev != next)) {
673a90a1 3616 sched_info_switch(prev, next);
49f47433 3617 perf_event_task_sched_out(prev, next);
673a90a1 3618
1da177e4
LT
3619 rq->nr_switches++;
3620 rq->curr = next;
3621 ++*switch_count;
3622
dd41f596 3623 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3624 /*
3625 * the context switch might have flipped the stack from under
3626 * us, hence refresh the local variables.
3627 */
3628 cpu = smp_processor_id();
3629 rq = cpu_rq(cpu);
1da177e4 3630 } else
05fa785c 3631 raw_spin_unlock_irq(&rq->lock);
1da177e4 3632
3f029d3c 3633 post_schedule(rq);
1da177e4 3634
6d558c3a
YZ
3635 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3636 prev = rq->curr;
3637 switch_count = &prev->nivcsw;
1da177e4 3638 goto need_resched_nonpreemptible;
6d558c3a 3639 }
8f4d37ec 3640
1da177e4 3641 preempt_enable_no_resched();
ff743345 3642 if (need_resched())
1da177e4
LT
3643 goto need_resched;
3644}
1da177e4
LT
3645EXPORT_SYMBOL(schedule);
3646
c08f7829 3647#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3648/*
3649 * Look out! "owner" is an entirely speculative pointer
3650 * access and not reliable.
3651 */
3652int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3653{
3654 unsigned int cpu;
3655 struct rq *rq;
3656
3657 if (!sched_feat(OWNER_SPIN))
3658 return 0;
3659
3660#ifdef CONFIG_DEBUG_PAGEALLOC
3661 /*
3662 * Need to access the cpu field knowing that
3663 * DEBUG_PAGEALLOC could have unmapped it if
3664 * the mutex owner just released it and exited.
3665 */
3666 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3667 return 0;
0d66bf6d
PZ
3668#else
3669 cpu = owner->cpu;
3670#endif
3671
3672 /*
3673 * Even if the access succeeded (likely case),
3674 * the cpu field may no longer be valid.
3675 */
3676 if (cpu >= nr_cpumask_bits)
4b402210 3677 return 0;
0d66bf6d
PZ
3678
3679 /*
3680 * We need to validate that we can do a
3681 * get_cpu() and that we have the percpu area.
3682 */
3683 if (!cpu_online(cpu))
4b402210 3684 return 0;
0d66bf6d
PZ
3685
3686 rq = cpu_rq(cpu);
3687
3688 for (;;) {
3689 /*
3690 * Owner changed, break to re-assess state.
3691 */
3692 if (lock->owner != owner)
3693 break;
3694
3695 /*
3696 * Is that owner really running on that cpu?
3697 */
3698 if (task_thread_info(rq->curr) != owner || need_resched())
3699 return 0;
3700
3701 cpu_relax();
3702 }
4b402210 3703
0d66bf6d
PZ
3704 return 1;
3705}
3706#endif
3707
1da177e4
LT
3708#ifdef CONFIG_PREEMPT
3709/*
2ed6e34f 3710 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3711 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3712 * occur there and call schedule directly.
3713 */
3714asmlinkage void __sched preempt_schedule(void)
3715{
3716 struct thread_info *ti = current_thread_info();
6478d880 3717
1da177e4
LT
3718 /*
3719 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3720 * we do not want to preempt the current task. Just return..
1da177e4 3721 */
beed33a8 3722 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3723 return;
3724
3a5c359a
AK
3725 do {
3726 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3727 schedule();
3a5c359a 3728 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3729
3a5c359a
AK
3730 /*
3731 * Check again in case we missed a preemption opportunity
3732 * between schedule and now.
3733 */
3734 barrier();
5ed0cec0 3735 } while (need_resched());
1da177e4 3736}
1da177e4
LT
3737EXPORT_SYMBOL(preempt_schedule);
3738
3739/*
2ed6e34f 3740 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3741 * off of irq context.
3742 * Note, that this is called and return with irqs disabled. This will
3743 * protect us against recursive calling from irq.
3744 */
3745asmlinkage void __sched preempt_schedule_irq(void)
3746{
3747 struct thread_info *ti = current_thread_info();
6478d880 3748
2ed6e34f 3749 /* Catch callers which need to be fixed */
1da177e4
LT
3750 BUG_ON(ti->preempt_count || !irqs_disabled());
3751
3a5c359a
AK
3752 do {
3753 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3754 local_irq_enable();
3755 schedule();
3756 local_irq_disable();
3a5c359a 3757 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3758
3a5c359a
AK
3759 /*
3760 * Check again in case we missed a preemption opportunity
3761 * between schedule and now.
3762 */
3763 barrier();
5ed0cec0 3764 } while (need_resched());
1da177e4
LT
3765}
3766
3767#endif /* CONFIG_PREEMPT */
3768
63859d4f 3769int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3770 void *key)
1da177e4 3771{
63859d4f 3772 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3773}
1da177e4
LT
3774EXPORT_SYMBOL(default_wake_function);
3775
3776/*
41a2d6cf
IM
3777 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3778 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3779 * number) then we wake all the non-exclusive tasks and one exclusive task.
3780 *
3781 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3782 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3783 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3784 */
78ddb08f 3785static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3786 int nr_exclusive, int wake_flags, void *key)
1da177e4 3787{
2e45874c 3788 wait_queue_t *curr, *next;
1da177e4 3789
2e45874c 3790 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3791 unsigned flags = curr->flags;
3792
63859d4f 3793 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3794 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3795 break;
3796 }
3797}
3798
3799/**
3800 * __wake_up - wake up threads blocked on a waitqueue.
3801 * @q: the waitqueue
3802 * @mode: which threads
3803 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3804 * @key: is directly passed to the wakeup function
50fa610a
DH
3805 *
3806 * It may be assumed that this function implies a write memory barrier before
3807 * changing the task state if and only if any tasks are woken up.
1da177e4 3808 */
7ad5b3a5 3809void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3810 int nr_exclusive, void *key)
1da177e4
LT
3811{
3812 unsigned long flags;
3813
3814 spin_lock_irqsave(&q->lock, flags);
3815 __wake_up_common(q, mode, nr_exclusive, 0, key);
3816 spin_unlock_irqrestore(&q->lock, flags);
3817}
1da177e4
LT
3818EXPORT_SYMBOL(__wake_up);
3819
3820/*
3821 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3822 */
7ad5b3a5 3823void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3824{
3825 __wake_up_common(q, mode, 1, 0, NULL);
3826}
22c43c81 3827EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3828
4ede816a
DL
3829void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3830{
3831 __wake_up_common(q, mode, 1, 0, key);
3832}
3833
1da177e4 3834/**
4ede816a 3835 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3836 * @q: the waitqueue
3837 * @mode: which threads
3838 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3839 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3840 *
3841 * The sync wakeup differs that the waker knows that it will schedule
3842 * away soon, so while the target thread will be woken up, it will not
3843 * be migrated to another CPU - ie. the two threads are 'synchronized'
3844 * with each other. This can prevent needless bouncing between CPUs.
3845 *
3846 * On UP it can prevent extra preemption.
50fa610a
DH
3847 *
3848 * It may be assumed that this function implies a write memory barrier before
3849 * changing the task state if and only if any tasks are woken up.
1da177e4 3850 */
4ede816a
DL
3851void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3852 int nr_exclusive, void *key)
1da177e4
LT
3853{
3854 unsigned long flags;
7d478721 3855 int wake_flags = WF_SYNC;
1da177e4
LT
3856
3857 if (unlikely(!q))
3858 return;
3859
3860 if (unlikely(!nr_exclusive))
7d478721 3861 wake_flags = 0;
1da177e4
LT
3862
3863 spin_lock_irqsave(&q->lock, flags);
7d478721 3864 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3865 spin_unlock_irqrestore(&q->lock, flags);
3866}
4ede816a
DL
3867EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3868
3869/*
3870 * __wake_up_sync - see __wake_up_sync_key()
3871 */
3872void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3873{
3874 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3875}
1da177e4
LT
3876EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3877
65eb3dc6
KD
3878/**
3879 * complete: - signals a single thread waiting on this completion
3880 * @x: holds the state of this particular completion
3881 *
3882 * This will wake up a single thread waiting on this completion. Threads will be
3883 * awakened in the same order in which they were queued.
3884 *
3885 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3886 *
3887 * It may be assumed that this function implies a write memory barrier before
3888 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3889 */
b15136e9 3890void complete(struct completion *x)
1da177e4
LT
3891{
3892 unsigned long flags;
3893
3894 spin_lock_irqsave(&x->wait.lock, flags);
3895 x->done++;
d9514f6c 3896 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3897 spin_unlock_irqrestore(&x->wait.lock, flags);
3898}
3899EXPORT_SYMBOL(complete);
3900
65eb3dc6
KD
3901/**
3902 * complete_all: - signals all threads waiting on this completion
3903 * @x: holds the state of this particular completion
3904 *
3905 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3906 *
3907 * It may be assumed that this function implies a write memory barrier before
3908 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3909 */
b15136e9 3910void complete_all(struct completion *x)
1da177e4
LT
3911{
3912 unsigned long flags;
3913
3914 spin_lock_irqsave(&x->wait.lock, flags);
3915 x->done += UINT_MAX/2;
d9514f6c 3916 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3917 spin_unlock_irqrestore(&x->wait.lock, flags);
3918}
3919EXPORT_SYMBOL(complete_all);
3920
8cbbe86d
AK
3921static inline long __sched
3922do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3923{
1da177e4
LT
3924 if (!x->done) {
3925 DECLARE_WAITQUEUE(wait, current);
3926
a93d2f17 3927 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3928 do {
94d3d824 3929 if (signal_pending_state(state, current)) {
ea71a546
ON
3930 timeout = -ERESTARTSYS;
3931 break;
8cbbe86d
AK
3932 }
3933 __set_current_state(state);
1da177e4
LT
3934 spin_unlock_irq(&x->wait.lock);
3935 timeout = schedule_timeout(timeout);
3936 spin_lock_irq(&x->wait.lock);
ea71a546 3937 } while (!x->done && timeout);
1da177e4 3938 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3939 if (!x->done)
3940 return timeout;
1da177e4
LT
3941 }
3942 x->done--;
ea71a546 3943 return timeout ?: 1;
1da177e4 3944}
1da177e4 3945
8cbbe86d
AK
3946static long __sched
3947wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3948{
1da177e4
LT
3949 might_sleep();
3950
3951 spin_lock_irq(&x->wait.lock);
8cbbe86d 3952 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3953 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3954 return timeout;
3955}
1da177e4 3956
65eb3dc6
KD
3957/**
3958 * wait_for_completion: - waits for completion of a task
3959 * @x: holds the state of this particular completion
3960 *
3961 * This waits to be signaled for completion of a specific task. It is NOT
3962 * interruptible and there is no timeout.
3963 *
3964 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3965 * and interrupt capability. Also see complete().
3966 */
b15136e9 3967void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3968{
3969 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3970}
8cbbe86d 3971EXPORT_SYMBOL(wait_for_completion);
1da177e4 3972
65eb3dc6
KD
3973/**
3974 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3975 * @x: holds the state of this particular completion
3976 * @timeout: timeout value in jiffies
3977 *
3978 * This waits for either a completion of a specific task to be signaled or for a
3979 * specified timeout to expire. The timeout is in jiffies. It is not
3980 * interruptible.
3981 */
b15136e9 3982unsigned long __sched
8cbbe86d 3983wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3984{
8cbbe86d 3985 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3986}
8cbbe86d 3987EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3988
65eb3dc6
KD
3989/**
3990 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3991 * @x: holds the state of this particular completion
3992 *
3993 * This waits for completion of a specific task to be signaled. It is
3994 * interruptible.
3995 */
8cbbe86d 3996int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3997{
51e97990
AK
3998 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3999 if (t == -ERESTARTSYS)
4000 return t;
4001 return 0;
0fec171c 4002}
8cbbe86d 4003EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4004
65eb3dc6
KD
4005/**
4006 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4007 * @x: holds the state of this particular completion
4008 * @timeout: timeout value in jiffies
4009 *
4010 * This waits for either a completion of a specific task to be signaled or for a
4011 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4012 */
b15136e9 4013unsigned long __sched
8cbbe86d
AK
4014wait_for_completion_interruptible_timeout(struct completion *x,
4015 unsigned long timeout)
0fec171c 4016{
8cbbe86d 4017 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4018}
8cbbe86d 4019EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4020
65eb3dc6
KD
4021/**
4022 * wait_for_completion_killable: - waits for completion of a task (killable)
4023 * @x: holds the state of this particular completion
4024 *
4025 * This waits to be signaled for completion of a specific task. It can be
4026 * interrupted by a kill signal.
4027 */
009e577e
MW
4028int __sched wait_for_completion_killable(struct completion *x)
4029{
4030 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4031 if (t == -ERESTARTSYS)
4032 return t;
4033 return 0;
4034}
4035EXPORT_SYMBOL(wait_for_completion_killable);
4036
0aa12fb4
SW
4037/**
4038 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4039 * @x: holds the state of this particular completion
4040 * @timeout: timeout value in jiffies
4041 *
4042 * This waits for either a completion of a specific task to be
4043 * signaled or for a specified timeout to expire. It can be
4044 * interrupted by a kill signal. The timeout is in jiffies.
4045 */
4046unsigned long __sched
4047wait_for_completion_killable_timeout(struct completion *x,
4048 unsigned long timeout)
4049{
4050 return wait_for_common(x, timeout, TASK_KILLABLE);
4051}
4052EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4053
be4de352
DC
4054/**
4055 * try_wait_for_completion - try to decrement a completion without blocking
4056 * @x: completion structure
4057 *
4058 * Returns: 0 if a decrement cannot be done without blocking
4059 * 1 if a decrement succeeded.
4060 *
4061 * If a completion is being used as a counting completion,
4062 * attempt to decrement the counter without blocking. This
4063 * enables us to avoid waiting if the resource the completion
4064 * is protecting is not available.
4065 */
4066bool try_wait_for_completion(struct completion *x)
4067{
7539a3b3 4068 unsigned long flags;
be4de352
DC
4069 int ret = 1;
4070
7539a3b3 4071 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4072 if (!x->done)
4073 ret = 0;
4074 else
4075 x->done--;
7539a3b3 4076 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4077 return ret;
4078}
4079EXPORT_SYMBOL(try_wait_for_completion);
4080
4081/**
4082 * completion_done - Test to see if a completion has any waiters
4083 * @x: completion structure
4084 *
4085 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4086 * 1 if there are no waiters.
4087 *
4088 */
4089bool completion_done(struct completion *x)
4090{
7539a3b3 4091 unsigned long flags;
be4de352
DC
4092 int ret = 1;
4093
7539a3b3 4094 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4095 if (!x->done)
4096 ret = 0;
7539a3b3 4097 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4098 return ret;
4099}
4100EXPORT_SYMBOL(completion_done);
4101
8cbbe86d
AK
4102static long __sched
4103sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4104{
0fec171c
IM
4105 unsigned long flags;
4106 wait_queue_t wait;
4107
4108 init_waitqueue_entry(&wait, current);
1da177e4 4109
8cbbe86d 4110 __set_current_state(state);
1da177e4 4111
8cbbe86d
AK
4112 spin_lock_irqsave(&q->lock, flags);
4113 __add_wait_queue(q, &wait);
4114 spin_unlock(&q->lock);
4115 timeout = schedule_timeout(timeout);
4116 spin_lock_irq(&q->lock);
4117 __remove_wait_queue(q, &wait);
4118 spin_unlock_irqrestore(&q->lock, flags);
4119
4120 return timeout;
4121}
4122
4123void __sched interruptible_sleep_on(wait_queue_head_t *q)
4124{
4125 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4126}
1da177e4
LT
4127EXPORT_SYMBOL(interruptible_sleep_on);
4128
0fec171c 4129long __sched
95cdf3b7 4130interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4131{
8cbbe86d 4132 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4133}
1da177e4
LT
4134EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4135
0fec171c 4136void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4137{
8cbbe86d 4138 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4139}
1da177e4
LT
4140EXPORT_SYMBOL(sleep_on);
4141
0fec171c 4142long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4143{
8cbbe86d 4144 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4145}
1da177e4
LT
4146EXPORT_SYMBOL(sleep_on_timeout);
4147
b29739f9
IM
4148#ifdef CONFIG_RT_MUTEXES
4149
4150/*
4151 * rt_mutex_setprio - set the current priority of a task
4152 * @p: task
4153 * @prio: prio value (kernel-internal form)
4154 *
4155 * This function changes the 'effective' priority of a task. It does
4156 * not touch ->normal_prio like __setscheduler().
4157 *
4158 * Used by the rt_mutex code to implement priority inheritance logic.
4159 */
36c8b586 4160void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4161{
4162 unsigned long flags;
83b699ed 4163 int oldprio, on_rq, running;
70b97a7f 4164 struct rq *rq;
83ab0aa0 4165 const struct sched_class *prev_class;
b29739f9
IM
4166
4167 BUG_ON(prio < 0 || prio > MAX_PRIO);
4168
4169 rq = task_rq_lock(p, &flags);
4170
d5f9f942 4171 oldprio = p->prio;
83ab0aa0 4172 prev_class = p->sched_class;
dd41f596 4173 on_rq = p->se.on_rq;
051a1d1a 4174 running = task_current(rq, p);
0e1f3483 4175 if (on_rq)
69be72c1 4176 dequeue_task(rq, p, 0);
0e1f3483
HS
4177 if (running)
4178 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4179
4180 if (rt_prio(prio))
4181 p->sched_class = &rt_sched_class;
4182 else
4183 p->sched_class = &fair_sched_class;
4184
b29739f9
IM
4185 p->prio = prio;
4186
0e1f3483
HS
4187 if (running)
4188 p->sched_class->set_curr_task(rq);
dd41f596 4189 if (on_rq) {
371fd7e7 4190 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4191
4192 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4193 }
4194 task_rq_unlock(rq, &flags);
4195}
4196
4197#endif
4198
36c8b586 4199void set_user_nice(struct task_struct *p, long nice)
1da177e4 4200{
dd41f596 4201 int old_prio, delta, on_rq;
1da177e4 4202 unsigned long flags;
70b97a7f 4203 struct rq *rq;
1da177e4
LT
4204
4205 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4206 return;
4207 /*
4208 * We have to be careful, if called from sys_setpriority(),
4209 * the task might be in the middle of scheduling on another CPU.
4210 */
4211 rq = task_rq_lock(p, &flags);
4212 /*
4213 * The RT priorities are set via sched_setscheduler(), but we still
4214 * allow the 'normal' nice value to be set - but as expected
4215 * it wont have any effect on scheduling until the task is
dd41f596 4216 * SCHED_FIFO/SCHED_RR:
1da177e4 4217 */
e05606d3 4218 if (task_has_rt_policy(p)) {
1da177e4
LT
4219 p->static_prio = NICE_TO_PRIO(nice);
4220 goto out_unlock;
4221 }
dd41f596 4222 on_rq = p->se.on_rq;
c09595f6 4223 if (on_rq)
69be72c1 4224 dequeue_task(rq, p, 0);
1da177e4 4225
1da177e4 4226 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4227 set_load_weight(p);
b29739f9
IM
4228 old_prio = p->prio;
4229 p->prio = effective_prio(p);
4230 delta = p->prio - old_prio;
1da177e4 4231
dd41f596 4232 if (on_rq) {
371fd7e7 4233 enqueue_task(rq, p, 0);
1da177e4 4234 /*
d5f9f942
AM
4235 * If the task increased its priority or is running and
4236 * lowered its priority, then reschedule its CPU:
1da177e4 4237 */
d5f9f942 4238 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4239 resched_task(rq->curr);
4240 }
4241out_unlock:
4242 task_rq_unlock(rq, &flags);
4243}
1da177e4
LT
4244EXPORT_SYMBOL(set_user_nice);
4245
e43379f1
MM
4246/*
4247 * can_nice - check if a task can reduce its nice value
4248 * @p: task
4249 * @nice: nice value
4250 */
36c8b586 4251int can_nice(const struct task_struct *p, const int nice)
e43379f1 4252{
024f4747
MM
4253 /* convert nice value [19,-20] to rlimit style value [1,40] */
4254 int nice_rlim = 20 - nice;
48f24c4d 4255
78d7d407 4256 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4257 capable(CAP_SYS_NICE));
4258}
4259
1da177e4
LT
4260#ifdef __ARCH_WANT_SYS_NICE
4261
4262/*
4263 * sys_nice - change the priority of the current process.
4264 * @increment: priority increment
4265 *
4266 * sys_setpriority is a more generic, but much slower function that
4267 * does similar things.
4268 */
5add95d4 4269SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4270{
48f24c4d 4271 long nice, retval;
1da177e4
LT
4272
4273 /*
4274 * Setpriority might change our priority at the same moment.
4275 * We don't have to worry. Conceptually one call occurs first
4276 * and we have a single winner.
4277 */
e43379f1
MM
4278 if (increment < -40)
4279 increment = -40;
1da177e4
LT
4280 if (increment > 40)
4281 increment = 40;
4282
2b8f836f 4283 nice = TASK_NICE(current) + increment;
1da177e4
LT
4284 if (nice < -20)
4285 nice = -20;
4286 if (nice > 19)
4287 nice = 19;
4288
e43379f1
MM
4289 if (increment < 0 && !can_nice(current, nice))
4290 return -EPERM;
4291
1da177e4
LT
4292 retval = security_task_setnice(current, nice);
4293 if (retval)
4294 return retval;
4295
4296 set_user_nice(current, nice);
4297 return 0;
4298}
4299
4300#endif
4301
4302/**
4303 * task_prio - return the priority value of a given task.
4304 * @p: the task in question.
4305 *
4306 * This is the priority value as seen by users in /proc.
4307 * RT tasks are offset by -200. Normal tasks are centered
4308 * around 0, value goes from -16 to +15.
4309 */
36c8b586 4310int task_prio(const struct task_struct *p)
1da177e4
LT
4311{
4312 return p->prio - MAX_RT_PRIO;
4313}
4314
4315/**
4316 * task_nice - return the nice value of a given task.
4317 * @p: the task in question.
4318 */
36c8b586 4319int task_nice(const struct task_struct *p)
1da177e4
LT
4320{
4321 return TASK_NICE(p);
4322}
150d8bed 4323EXPORT_SYMBOL(task_nice);
1da177e4
LT
4324
4325/**
4326 * idle_cpu - is a given cpu idle currently?
4327 * @cpu: the processor in question.
4328 */
4329int idle_cpu(int cpu)
4330{
4331 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4332}
4333
1da177e4
LT
4334/**
4335 * idle_task - return the idle task for a given cpu.
4336 * @cpu: the processor in question.
4337 */
36c8b586 4338struct task_struct *idle_task(int cpu)
1da177e4
LT
4339{
4340 return cpu_rq(cpu)->idle;
4341}
4342
4343/**
4344 * find_process_by_pid - find a process with a matching PID value.
4345 * @pid: the pid in question.
4346 */
a9957449 4347static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4348{
228ebcbe 4349 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4350}
4351
4352/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4353static void
4354__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4355{
dd41f596 4356 BUG_ON(p->se.on_rq);
48f24c4d 4357
1da177e4
LT
4358 p->policy = policy;
4359 p->rt_priority = prio;
b29739f9
IM
4360 p->normal_prio = normal_prio(p);
4361 /* we are holding p->pi_lock already */
4362 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4363 if (rt_prio(p->prio))
4364 p->sched_class = &rt_sched_class;
4365 else
4366 p->sched_class = &fair_sched_class;
2dd73a4f 4367 set_load_weight(p);
1da177e4
LT
4368}
4369
c69e8d9c
DH
4370/*
4371 * check the target process has a UID that matches the current process's
4372 */
4373static bool check_same_owner(struct task_struct *p)
4374{
4375 const struct cred *cred = current_cred(), *pcred;
4376 bool match;
4377
4378 rcu_read_lock();
4379 pcred = __task_cred(p);
4380 match = (cred->euid == pcred->euid ||
4381 cred->euid == pcred->uid);
4382 rcu_read_unlock();
4383 return match;
4384}
4385
961ccddd
RR
4386static int __sched_setscheduler(struct task_struct *p, int policy,
4387 struct sched_param *param, bool user)
1da177e4 4388{
83b699ed 4389 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4390 unsigned long flags;
83ab0aa0 4391 const struct sched_class *prev_class;
70b97a7f 4392 struct rq *rq;
ca94c442 4393 int reset_on_fork;
1da177e4 4394
66e5393a
SR
4395 /* may grab non-irq protected spin_locks */
4396 BUG_ON(in_interrupt());
1da177e4
LT
4397recheck:
4398 /* double check policy once rq lock held */
ca94c442
LP
4399 if (policy < 0) {
4400 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4401 policy = oldpolicy = p->policy;
ca94c442
LP
4402 } else {
4403 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4404 policy &= ~SCHED_RESET_ON_FORK;
4405
4406 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4407 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4408 policy != SCHED_IDLE)
4409 return -EINVAL;
4410 }
4411
1da177e4
LT
4412 /*
4413 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4414 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4415 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4416 */
4417 if (param->sched_priority < 0 ||
95cdf3b7 4418 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4419 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4420 return -EINVAL;
e05606d3 4421 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4422 return -EINVAL;
4423
37e4ab3f
OC
4424 /*
4425 * Allow unprivileged RT tasks to decrease priority:
4426 */
961ccddd 4427 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4428 if (rt_policy(policy)) {
8dc3e909 4429 unsigned long rlim_rtprio;
8dc3e909
ON
4430
4431 if (!lock_task_sighand(p, &flags))
4432 return -ESRCH;
78d7d407 4433 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4434 unlock_task_sighand(p, &flags);
4435
4436 /* can't set/change the rt policy */
4437 if (policy != p->policy && !rlim_rtprio)
4438 return -EPERM;
4439
4440 /* can't increase priority */
4441 if (param->sched_priority > p->rt_priority &&
4442 param->sched_priority > rlim_rtprio)
4443 return -EPERM;
4444 }
dd41f596
IM
4445 /*
4446 * Like positive nice levels, dont allow tasks to
4447 * move out of SCHED_IDLE either:
4448 */
4449 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4450 return -EPERM;
5fe1d75f 4451
37e4ab3f 4452 /* can't change other user's priorities */
c69e8d9c 4453 if (!check_same_owner(p))
37e4ab3f 4454 return -EPERM;
ca94c442
LP
4455
4456 /* Normal users shall not reset the sched_reset_on_fork flag */
4457 if (p->sched_reset_on_fork && !reset_on_fork)
4458 return -EPERM;
37e4ab3f 4459 }
1da177e4 4460
725aad24 4461 if (user) {
725aad24
JF
4462 retval = security_task_setscheduler(p, policy, param);
4463 if (retval)
4464 return retval;
4465 }
4466
b29739f9
IM
4467 /*
4468 * make sure no PI-waiters arrive (or leave) while we are
4469 * changing the priority of the task:
4470 */
1d615482 4471 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4472 /*
4473 * To be able to change p->policy safely, the apropriate
4474 * runqueue lock must be held.
4475 */
b29739f9 4476 rq = __task_rq_lock(p);
dc61b1d6
PZ
4477
4478#ifdef CONFIG_RT_GROUP_SCHED
4479 if (user) {
4480 /*
4481 * Do not allow realtime tasks into groups that have no runtime
4482 * assigned.
4483 */
4484 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4485 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4486 __task_rq_unlock(rq);
4487 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4488 return -EPERM;
4489 }
4490 }
4491#endif
4492
1da177e4
LT
4493 /* recheck policy now with rq lock held */
4494 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4495 policy = oldpolicy = -1;
b29739f9 4496 __task_rq_unlock(rq);
1d615482 4497 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4498 goto recheck;
4499 }
dd41f596 4500 on_rq = p->se.on_rq;
051a1d1a 4501 running = task_current(rq, p);
0e1f3483 4502 if (on_rq)
2e1cb74a 4503 deactivate_task(rq, p, 0);
0e1f3483
HS
4504 if (running)
4505 p->sched_class->put_prev_task(rq, p);
f6b53205 4506
ca94c442
LP
4507 p->sched_reset_on_fork = reset_on_fork;
4508
1da177e4 4509 oldprio = p->prio;
83ab0aa0 4510 prev_class = p->sched_class;
dd41f596 4511 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4512
0e1f3483
HS
4513 if (running)
4514 p->sched_class->set_curr_task(rq);
dd41f596
IM
4515 if (on_rq) {
4516 activate_task(rq, p, 0);
cb469845
SR
4517
4518 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4519 }
b29739f9 4520 __task_rq_unlock(rq);
1d615482 4521 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4522
95e02ca9
TG
4523 rt_mutex_adjust_pi(p);
4524
1da177e4
LT
4525 return 0;
4526}
961ccddd
RR
4527
4528/**
4529 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4530 * @p: the task in question.
4531 * @policy: new policy.
4532 * @param: structure containing the new RT priority.
4533 *
4534 * NOTE that the task may be already dead.
4535 */
4536int sched_setscheduler(struct task_struct *p, int policy,
4537 struct sched_param *param)
4538{
4539 return __sched_setscheduler(p, policy, param, true);
4540}
1da177e4
LT
4541EXPORT_SYMBOL_GPL(sched_setscheduler);
4542
961ccddd
RR
4543/**
4544 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4545 * @p: the task in question.
4546 * @policy: new policy.
4547 * @param: structure containing the new RT priority.
4548 *
4549 * Just like sched_setscheduler, only don't bother checking if the
4550 * current context has permission. For example, this is needed in
4551 * stop_machine(): we create temporary high priority worker threads,
4552 * but our caller might not have that capability.
4553 */
4554int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4555 struct sched_param *param)
4556{
4557 return __sched_setscheduler(p, policy, param, false);
4558}
4559
95cdf3b7
IM
4560static int
4561do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4562{
1da177e4
LT
4563 struct sched_param lparam;
4564 struct task_struct *p;
36c8b586 4565 int retval;
1da177e4
LT
4566
4567 if (!param || pid < 0)
4568 return -EINVAL;
4569 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4570 return -EFAULT;
5fe1d75f
ON
4571
4572 rcu_read_lock();
4573 retval = -ESRCH;
1da177e4 4574 p = find_process_by_pid(pid);
5fe1d75f
ON
4575 if (p != NULL)
4576 retval = sched_setscheduler(p, policy, &lparam);
4577 rcu_read_unlock();
36c8b586 4578
1da177e4
LT
4579 return retval;
4580}
4581
4582/**
4583 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4584 * @pid: the pid in question.
4585 * @policy: new policy.
4586 * @param: structure containing the new RT priority.
4587 */
5add95d4
HC
4588SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4589 struct sched_param __user *, param)
1da177e4 4590{
c21761f1
JB
4591 /* negative values for policy are not valid */
4592 if (policy < 0)
4593 return -EINVAL;
4594
1da177e4
LT
4595 return do_sched_setscheduler(pid, policy, param);
4596}
4597
4598/**
4599 * sys_sched_setparam - set/change the RT priority of a thread
4600 * @pid: the pid in question.
4601 * @param: structure containing the new RT priority.
4602 */
5add95d4 4603SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4604{
4605 return do_sched_setscheduler(pid, -1, param);
4606}
4607
4608/**
4609 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4610 * @pid: the pid in question.
4611 */
5add95d4 4612SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4613{
36c8b586 4614 struct task_struct *p;
3a5c359a 4615 int retval;
1da177e4
LT
4616
4617 if (pid < 0)
3a5c359a 4618 return -EINVAL;
1da177e4
LT
4619
4620 retval = -ESRCH;
5fe85be0 4621 rcu_read_lock();
1da177e4
LT
4622 p = find_process_by_pid(pid);
4623 if (p) {
4624 retval = security_task_getscheduler(p);
4625 if (!retval)
ca94c442
LP
4626 retval = p->policy
4627 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4628 }
5fe85be0 4629 rcu_read_unlock();
1da177e4
LT
4630 return retval;
4631}
4632
4633/**
ca94c442 4634 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4635 * @pid: the pid in question.
4636 * @param: structure containing the RT priority.
4637 */
5add95d4 4638SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4639{
4640 struct sched_param lp;
36c8b586 4641 struct task_struct *p;
3a5c359a 4642 int retval;
1da177e4
LT
4643
4644 if (!param || pid < 0)
3a5c359a 4645 return -EINVAL;
1da177e4 4646
5fe85be0 4647 rcu_read_lock();
1da177e4
LT
4648 p = find_process_by_pid(pid);
4649 retval = -ESRCH;
4650 if (!p)
4651 goto out_unlock;
4652
4653 retval = security_task_getscheduler(p);
4654 if (retval)
4655 goto out_unlock;
4656
4657 lp.sched_priority = p->rt_priority;
5fe85be0 4658 rcu_read_unlock();
1da177e4
LT
4659
4660 /*
4661 * This one might sleep, we cannot do it with a spinlock held ...
4662 */
4663 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4664
1da177e4
LT
4665 return retval;
4666
4667out_unlock:
5fe85be0 4668 rcu_read_unlock();
1da177e4
LT
4669 return retval;
4670}
4671
96f874e2 4672long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4673{
5a16f3d3 4674 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4675 struct task_struct *p;
4676 int retval;
1da177e4 4677
95402b38 4678 get_online_cpus();
23f5d142 4679 rcu_read_lock();
1da177e4
LT
4680
4681 p = find_process_by_pid(pid);
4682 if (!p) {
23f5d142 4683 rcu_read_unlock();
95402b38 4684 put_online_cpus();
1da177e4
LT
4685 return -ESRCH;
4686 }
4687
23f5d142 4688 /* Prevent p going away */
1da177e4 4689 get_task_struct(p);
23f5d142 4690 rcu_read_unlock();
1da177e4 4691
5a16f3d3
RR
4692 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4693 retval = -ENOMEM;
4694 goto out_put_task;
4695 }
4696 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4697 retval = -ENOMEM;
4698 goto out_free_cpus_allowed;
4699 }
1da177e4 4700 retval = -EPERM;
c69e8d9c 4701 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4702 goto out_unlock;
4703
e7834f8f
DQ
4704 retval = security_task_setscheduler(p, 0, NULL);
4705 if (retval)
4706 goto out_unlock;
4707
5a16f3d3
RR
4708 cpuset_cpus_allowed(p, cpus_allowed);
4709 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4710 again:
5a16f3d3 4711 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4712
8707d8b8 4713 if (!retval) {
5a16f3d3
RR
4714 cpuset_cpus_allowed(p, cpus_allowed);
4715 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4716 /*
4717 * We must have raced with a concurrent cpuset
4718 * update. Just reset the cpus_allowed to the
4719 * cpuset's cpus_allowed
4720 */
5a16f3d3 4721 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4722 goto again;
4723 }
4724 }
1da177e4 4725out_unlock:
5a16f3d3
RR
4726 free_cpumask_var(new_mask);
4727out_free_cpus_allowed:
4728 free_cpumask_var(cpus_allowed);
4729out_put_task:
1da177e4 4730 put_task_struct(p);
95402b38 4731 put_online_cpus();
1da177e4
LT
4732 return retval;
4733}
4734
4735static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4736 struct cpumask *new_mask)
1da177e4 4737{
96f874e2
RR
4738 if (len < cpumask_size())
4739 cpumask_clear(new_mask);
4740 else if (len > cpumask_size())
4741 len = cpumask_size();
4742
1da177e4
LT
4743 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4744}
4745
4746/**
4747 * sys_sched_setaffinity - set the cpu affinity of a process
4748 * @pid: pid of the process
4749 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4750 * @user_mask_ptr: user-space pointer to the new cpu mask
4751 */
5add95d4
HC
4752SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4753 unsigned long __user *, user_mask_ptr)
1da177e4 4754{
5a16f3d3 4755 cpumask_var_t new_mask;
1da177e4
LT
4756 int retval;
4757
5a16f3d3
RR
4758 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4759 return -ENOMEM;
1da177e4 4760
5a16f3d3
RR
4761 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4762 if (retval == 0)
4763 retval = sched_setaffinity(pid, new_mask);
4764 free_cpumask_var(new_mask);
4765 return retval;
1da177e4
LT
4766}
4767
96f874e2 4768long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4769{
36c8b586 4770 struct task_struct *p;
31605683
TG
4771 unsigned long flags;
4772 struct rq *rq;
1da177e4 4773 int retval;
1da177e4 4774
95402b38 4775 get_online_cpus();
23f5d142 4776 rcu_read_lock();
1da177e4
LT
4777
4778 retval = -ESRCH;
4779 p = find_process_by_pid(pid);
4780 if (!p)
4781 goto out_unlock;
4782
e7834f8f
DQ
4783 retval = security_task_getscheduler(p);
4784 if (retval)
4785 goto out_unlock;
4786
31605683 4787 rq = task_rq_lock(p, &flags);
96f874e2 4788 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4789 task_rq_unlock(rq, &flags);
1da177e4
LT
4790
4791out_unlock:
23f5d142 4792 rcu_read_unlock();
95402b38 4793 put_online_cpus();
1da177e4 4794
9531b62f 4795 return retval;
1da177e4
LT
4796}
4797
4798/**
4799 * sys_sched_getaffinity - get the cpu affinity of a process
4800 * @pid: pid of the process
4801 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4802 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4803 */
5add95d4
HC
4804SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4805 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4806{
4807 int ret;
f17c8607 4808 cpumask_var_t mask;
1da177e4 4809
84fba5ec 4810 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4811 return -EINVAL;
4812 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4813 return -EINVAL;
4814
f17c8607
RR
4815 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4816 return -ENOMEM;
1da177e4 4817
f17c8607
RR
4818 ret = sched_getaffinity(pid, mask);
4819 if (ret == 0) {
8bc037fb 4820 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4821
4822 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4823 ret = -EFAULT;
4824 else
cd3d8031 4825 ret = retlen;
f17c8607
RR
4826 }
4827 free_cpumask_var(mask);
1da177e4 4828
f17c8607 4829 return ret;
1da177e4
LT
4830}
4831
4832/**
4833 * sys_sched_yield - yield the current processor to other threads.
4834 *
dd41f596
IM
4835 * This function yields the current CPU to other tasks. If there are no
4836 * other threads running on this CPU then this function will return.
1da177e4 4837 */
5add95d4 4838SYSCALL_DEFINE0(sched_yield)
1da177e4 4839{
70b97a7f 4840 struct rq *rq = this_rq_lock();
1da177e4 4841
2d72376b 4842 schedstat_inc(rq, yld_count);
4530d7ab 4843 current->sched_class->yield_task(rq);
1da177e4
LT
4844
4845 /*
4846 * Since we are going to call schedule() anyway, there's
4847 * no need to preempt or enable interrupts:
4848 */
4849 __release(rq->lock);
8a25d5de 4850 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4851 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4852 preempt_enable_no_resched();
4853
4854 schedule();
4855
4856 return 0;
4857}
4858
d86ee480
PZ
4859static inline int should_resched(void)
4860{
4861 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4862}
4863
e7b38404 4864static void __cond_resched(void)
1da177e4 4865{
e7aaaa69
FW
4866 add_preempt_count(PREEMPT_ACTIVE);
4867 schedule();
4868 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4869}
4870
02b67cc3 4871int __sched _cond_resched(void)
1da177e4 4872{
d86ee480 4873 if (should_resched()) {
1da177e4
LT
4874 __cond_resched();
4875 return 1;
4876 }
4877 return 0;
4878}
02b67cc3 4879EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4880
4881/*
613afbf8 4882 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4883 * call schedule, and on return reacquire the lock.
4884 *
41a2d6cf 4885 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4886 * operations here to prevent schedule() from being called twice (once via
4887 * spin_unlock(), once by hand).
4888 */
613afbf8 4889int __cond_resched_lock(spinlock_t *lock)
1da177e4 4890{
d86ee480 4891 int resched = should_resched();
6df3cecb
JK
4892 int ret = 0;
4893
f607c668
PZ
4894 lockdep_assert_held(lock);
4895
95c354fe 4896 if (spin_needbreak(lock) || resched) {
1da177e4 4897 spin_unlock(lock);
d86ee480 4898 if (resched)
95c354fe
NP
4899 __cond_resched();
4900 else
4901 cpu_relax();
6df3cecb 4902 ret = 1;
1da177e4 4903 spin_lock(lock);
1da177e4 4904 }
6df3cecb 4905 return ret;
1da177e4 4906}
613afbf8 4907EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4908
613afbf8 4909int __sched __cond_resched_softirq(void)
1da177e4
LT
4910{
4911 BUG_ON(!in_softirq());
4912
d86ee480 4913 if (should_resched()) {
98d82567 4914 local_bh_enable();
1da177e4
LT
4915 __cond_resched();
4916 local_bh_disable();
4917 return 1;
4918 }
4919 return 0;
4920}
613afbf8 4921EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4922
1da177e4
LT
4923/**
4924 * yield - yield the current processor to other threads.
4925 *
72fd4a35 4926 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4927 * thread runnable and calls sys_sched_yield().
4928 */
4929void __sched yield(void)
4930{
4931 set_current_state(TASK_RUNNING);
4932 sys_sched_yield();
4933}
1da177e4
LT
4934EXPORT_SYMBOL(yield);
4935
4936/*
41a2d6cf 4937 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4938 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4939 */
4940void __sched io_schedule(void)
4941{
54d35f29 4942 struct rq *rq = raw_rq();
1da177e4 4943
0ff92245 4944 delayacct_blkio_start();
1da177e4 4945 atomic_inc(&rq->nr_iowait);
8f0dfc34 4946 current->in_iowait = 1;
1da177e4 4947 schedule();
8f0dfc34 4948 current->in_iowait = 0;
1da177e4 4949 atomic_dec(&rq->nr_iowait);
0ff92245 4950 delayacct_blkio_end();
1da177e4 4951}
1da177e4
LT
4952EXPORT_SYMBOL(io_schedule);
4953
4954long __sched io_schedule_timeout(long timeout)
4955{
54d35f29 4956 struct rq *rq = raw_rq();
1da177e4
LT
4957 long ret;
4958
0ff92245 4959 delayacct_blkio_start();
1da177e4 4960 atomic_inc(&rq->nr_iowait);
8f0dfc34 4961 current->in_iowait = 1;
1da177e4 4962 ret = schedule_timeout(timeout);
8f0dfc34 4963 current->in_iowait = 0;
1da177e4 4964 atomic_dec(&rq->nr_iowait);
0ff92245 4965 delayacct_blkio_end();
1da177e4
LT
4966 return ret;
4967}
4968
4969/**
4970 * sys_sched_get_priority_max - return maximum RT priority.
4971 * @policy: scheduling class.
4972 *
4973 * this syscall returns the maximum rt_priority that can be used
4974 * by a given scheduling class.
4975 */
5add95d4 4976SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4977{
4978 int ret = -EINVAL;
4979
4980 switch (policy) {
4981 case SCHED_FIFO:
4982 case SCHED_RR:
4983 ret = MAX_USER_RT_PRIO-1;
4984 break;
4985 case SCHED_NORMAL:
b0a9499c 4986 case SCHED_BATCH:
dd41f596 4987 case SCHED_IDLE:
1da177e4
LT
4988 ret = 0;
4989 break;
4990 }
4991 return ret;
4992}
4993
4994/**
4995 * sys_sched_get_priority_min - return minimum RT priority.
4996 * @policy: scheduling class.
4997 *
4998 * this syscall returns the minimum rt_priority that can be used
4999 * by a given scheduling class.
5000 */
5add95d4 5001SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5002{
5003 int ret = -EINVAL;
5004
5005 switch (policy) {
5006 case SCHED_FIFO:
5007 case SCHED_RR:
5008 ret = 1;
5009 break;
5010 case SCHED_NORMAL:
b0a9499c 5011 case SCHED_BATCH:
dd41f596 5012 case SCHED_IDLE:
1da177e4
LT
5013 ret = 0;
5014 }
5015 return ret;
5016}
5017
5018/**
5019 * sys_sched_rr_get_interval - return the default timeslice of a process.
5020 * @pid: pid of the process.
5021 * @interval: userspace pointer to the timeslice value.
5022 *
5023 * this syscall writes the default timeslice value of a given process
5024 * into the user-space timespec buffer. A value of '0' means infinity.
5025 */
17da2bd9 5026SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5027 struct timespec __user *, interval)
1da177e4 5028{
36c8b586 5029 struct task_struct *p;
a4ec24b4 5030 unsigned int time_slice;
dba091b9
TG
5031 unsigned long flags;
5032 struct rq *rq;
3a5c359a 5033 int retval;
1da177e4 5034 struct timespec t;
1da177e4
LT
5035
5036 if (pid < 0)
3a5c359a 5037 return -EINVAL;
1da177e4
LT
5038
5039 retval = -ESRCH;
1a551ae7 5040 rcu_read_lock();
1da177e4
LT
5041 p = find_process_by_pid(pid);
5042 if (!p)
5043 goto out_unlock;
5044
5045 retval = security_task_getscheduler(p);
5046 if (retval)
5047 goto out_unlock;
5048
dba091b9
TG
5049 rq = task_rq_lock(p, &flags);
5050 time_slice = p->sched_class->get_rr_interval(rq, p);
5051 task_rq_unlock(rq, &flags);
a4ec24b4 5052
1a551ae7 5053 rcu_read_unlock();
a4ec24b4 5054 jiffies_to_timespec(time_slice, &t);
1da177e4 5055 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5056 return retval;
3a5c359a 5057
1da177e4 5058out_unlock:
1a551ae7 5059 rcu_read_unlock();
1da177e4
LT
5060 return retval;
5061}
5062
7c731e0a 5063static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5064
82a1fcb9 5065void sched_show_task(struct task_struct *p)
1da177e4 5066{
1da177e4 5067 unsigned long free = 0;
36c8b586 5068 unsigned state;
1da177e4 5069
1da177e4 5070 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5071 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5072 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5073#if BITS_PER_LONG == 32
1da177e4 5074 if (state == TASK_RUNNING)
3df0fc5b 5075 printk(KERN_CONT " running ");
1da177e4 5076 else
3df0fc5b 5077 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5078#else
5079 if (state == TASK_RUNNING)
3df0fc5b 5080 printk(KERN_CONT " running task ");
1da177e4 5081 else
3df0fc5b 5082 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5083#endif
5084#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5085 free = stack_not_used(p);
1da177e4 5086#endif
3df0fc5b 5087 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5088 task_pid_nr(p), task_pid_nr(p->real_parent),
5089 (unsigned long)task_thread_info(p)->flags);
1da177e4 5090
5fb5e6de 5091 show_stack(p, NULL);
1da177e4
LT
5092}
5093
e59e2ae2 5094void show_state_filter(unsigned long state_filter)
1da177e4 5095{
36c8b586 5096 struct task_struct *g, *p;
1da177e4 5097
4bd77321 5098#if BITS_PER_LONG == 32
3df0fc5b
PZ
5099 printk(KERN_INFO
5100 " task PC stack pid father\n");
1da177e4 5101#else
3df0fc5b
PZ
5102 printk(KERN_INFO
5103 " task PC stack pid father\n");
1da177e4
LT
5104#endif
5105 read_lock(&tasklist_lock);
5106 do_each_thread(g, p) {
5107 /*
5108 * reset the NMI-timeout, listing all files on a slow
5109 * console might take alot of time:
5110 */
5111 touch_nmi_watchdog();
39bc89fd 5112 if (!state_filter || (p->state & state_filter))
82a1fcb9 5113 sched_show_task(p);
1da177e4
LT
5114 } while_each_thread(g, p);
5115
04c9167f
JF
5116 touch_all_softlockup_watchdogs();
5117
dd41f596
IM
5118#ifdef CONFIG_SCHED_DEBUG
5119 sysrq_sched_debug_show();
5120#endif
1da177e4 5121 read_unlock(&tasklist_lock);
e59e2ae2
IM
5122 /*
5123 * Only show locks if all tasks are dumped:
5124 */
93335a21 5125 if (!state_filter)
e59e2ae2 5126 debug_show_all_locks();
1da177e4
LT
5127}
5128
1df21055
IM
5129void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5130{
dd41f596 5131 idle->sched_class = &idle_sched_class;
1df21055
IM
5132}
5133
f340c0d1
IM
5134/**
5135 * init_idle - set up an idle thread for a given CPU
5136 * @idle: task in question
5137 * @cpu: cpu the idle task belongs to
5138 *
5139 * NOTE: this function does not set the idle thread's NEED_RESCHED
5140 * flag, to make booting more robust.
5141 */
5c1e1767 5142void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5143{
70b97a7f 5144 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5145 unsigned long flags;
5146
05fa785c 5147 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5148
dd41f596 5149 __sched_fork(idle);
06b83b5f 5150 idle->state = TASK_RUNNING;
dd41f596
IM
5151 idle->se.exec_start = sched_clock();
5152
96f874e2 5153 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5154 __set_task_cpu(idle, cpu);
1da177e4 5155
1da177e4 5156 rq->curr = rq->idle = idle;
4866cde0
NP
5157#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5158 idle->oncpu = 1;
5159#endif
05fa785c 5160 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5161
5162 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5163#if defined(CONFIG_PREEMPT)
5164 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5165#else
a1261f54 5166 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5167#endif
dd41f596
IM
5168 /*
5169 * The idle tasks have their own, simple scheduling class:
5170 */
5171 idle->sched_class = &idle_sched_class;
fb52607a 5172 ftrace_graph_init_task(idle);
1da177e4
LT
5173}
5174
5175/*
5176 * In a system that switches off the HZ timer nohz_cpu_mask
5177 * indicates which cpus entered this state. This is used
5178 * in the rcu update to wait only for active cpus. For system
5179 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5180 * always be CPU_BITS_NONE.
1da177e4 5181 */
6a7b3dc3 5182cpumask_var_t nohz_cpu_mask;
1da177e4 5183
19978ca6
IM
5184/*
5185 * Increase the granularity value when there are more CPUs,
5186 * because with more CPUs the 'effective latency' as visible
5187 * to users decreases. But the relationship is not linear,
5188 * so pick a second-best guess by going with the log2 of the
5189 * number of CPUs.
5190 *
5191 * This idea comes from the SD scheduler of Con Kolivas:
5192 */
acb4a848 5193static int get_update_sysctl_factor(void)
19978ca6 5194{
4ca3ef71 5195 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5196 unsigned int factor;
5197
5198 switch (sysctl_sched_tunable_scaling) {
5199 case SCHED_TUNABLESCALING_NONE:
5200 factor = 1;
5201 break;
5202 case SCHED_TUNABLESCALING_LINEAR:
5203 factor = cpus;
5204 break;
5205 case SCHED_TUNABLESCALING_LOG:
5206 default:
5207 factor = 1 + ilog2(cpus);
5208 break;
5209 }
19978ca6 5210
acb4a848
CE
5211 return factor;
5212}
19978ca6 5213
acb4a848
CE
5214static void update_sysctl(void)
5215{
5216 unsigned int factor = get_update_sysctl_factor();
19978ca6 5217
0bcdcf28
CE
5218#define SET_SYSCTL(name) \
5219 (sysctl_##name = (factor) * normalized_sysctl_##name)
5220 SET_SYSCTL(sched_min_granularity);
5221 SET_SYSCTL(sched_latency);
5222 SET_SYSCTL(sched_wakeup_granularity);
5223 SET_SYSCTL(sched_shares_ratelimit);
5224#undef SET_SYSCTL
5225}
55cd5340 5226
0bcdcf28
CE
5227static inline void sched_init_granularity(void)
5228{
5229 update_sysctl();
19978ca6
IM
5230}
5231
1da177e4
LT
5232#ifdef CONFIG_SMP
5233/*
5234 * This is how migration works:
5235 *
969c7921
TH
5236 * 1) we invoke migration_cpu_stop() on the target CPU using
5237 * stop_one_cpu().
5238 * 2) stopper starts to run (implicitly forcing the migrated thread
5239 * off the CPU)
5240 * 3) it checks whether the migrated task is still in the wrong runqueue.
5241 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5242 * it and puts it into the right queue.
969c7921
TH
5243 * 5) stopper completes and stop_one_cpu() returns and the migration
5244 * is done.
1da177e4
LT
5245 */
5246
5247/*
5248 * Change a given task's CPU affinity. Migrate the thread to a
5249 * proper CPU and schedule it away if the CPU it's executing on
5250 * is removed from the allowed bitmask.
5251 *
5252 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5253 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5254 * call is not atomic; no spinlocks may be held.
5255 */
96f874e2 5256int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5257{
5258 unsigned long flags;
70b97a7f 5259 struct rq *rq;
969c7921 5260 unsigned int dest_cpu;
48f24c4d 5261 int ret = 0;
1da177e4 5262
65cc8e48
PZ
5263 /*
5264 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5265 * drop the rq->lock and still rely on ->cpus_allowed.
5266 */
5267again:
5268 while (task_is_waking(p))
5269 cpu_relax();
1da177e4 5270 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5271 if (task_is_waking(p)) {
5272 task_rq_unlock(rq, &flags);
5273 goto again;
5274 }
e2912009 5275
6ad4c188 5276 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5277 ret = -EINVAL;
5278 goto out;
5279 }
5280
9985b0ba 5281 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5282 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5283 ret = -EINVAL;
5284 goto out;
5285 }
5286
73fe6aae 5287 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5288 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5289 else {
96f874e2
RR
5290 cpumask_copy(&p->cpus_allowed, new_mask);
5291 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5292 }
5293
1da177e4 5294 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5295 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5296 goto out;
5297
969c7921
TH
5298 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5299 if (migrate_task(p, dest_cpu)) {
5300 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5301 /* Need help from migration thread: drop lock and wait. */
5302 task_rq_unlock(rq, &flags);
969c7921 5303 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5304 tlb_migrate_finish(p->mm);
5305 return 0;
5306 }
5307out:
5308 task_rq_unlock(rq, &flags);
48f24c4d 5309
1da177e4
LT
5310 return ret;
5311}
cd8ba7cd 5312EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5313
5314/*
41a2d6cf 5315 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5316 * this because either it can't run here any more (set_cpus_allowed()
5317 * away from this CPU, or CPU going down), or because we're
5318 * attempting to rebalance this task on exec (sched_exec).
5319 *
5320 * So we race with normal scheduler movements, but that's OK, as long
5321 * as the task is no longer on this CPU.
efc30814
KK
5322 *
5323 * Returns non-zero if task was successfully migrated.
1da177e4 5324 */
efc30814 5325static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5326{
70b97a7f 5327 struct rq *rq_dest, *rq_src;
e2912009 5328 int ret = 0;
1da177e4 5329
e761b772 5330 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5331 return ret;
1da177e4
LT
5332
5333 rq_src = cpu_rq(src_cpu);
5334 rq_dest = cpu_rq(dest_cpu);
5335
5336 double_rq_lock(rq_src, rq_dest);
5337 /* Already moved. */
5338 if (task_cpu(p) != src_cpu)
b1e38734 5339 goto done;
1da177e4 5340 /* Affinity changed (again). */
96f874e2 5341 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5342 goto fail;
1da177e4 5343
e2912009
PZ
5344 /*
5345 * If we're not on a rq, the next wake-up will ensure we're
5346 * placed properly.
5347 */
5348 if (p->se.on_rq) {
2e1cb74a 5349 deactivate_task(rq_src, p, 0);
e2912009 5350 set_task_cpu(p, dest_cpu);
dd41f596 5351 activate_task(rq_dest, p, 0);
15afe09b 5352 check_preempt_curr(rq_dest, p, 0);
1da177e4 5353 }
b1e38734 5354done:
efc30814 5355 ret = 1;
b1e38734 5356fail:
1da177e4 5357 double_rq_unlock(rq_src, rq_dest);
efc30814 5358 return ret;
1da177e4
LT
5359}
5360
5361/*
969c7921
TH
5362 * migration_cpu_stop - this will be executed by a highprio stopper thread
5363 * and performs thread migration by bumping thread off CPU then
5364 * 'pushing' onto another runqueue.
1da177e4 5365 */
969c7921 5366static int migration_cpu_stop(void *data)
1da177e4 5367{
969c7921 5368 struct migration_arg *arg = data;
f7b4cddc 5369
969c7921
TH
5370 /*
5371 * The original target cpu might have gone down and we might
5372 * be on another cpu but it doesn't matter.
5373 */
f7b4cddc 5374 local_irq_disable();
969c7921 5375 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5376 local_irq_enable();
1da177e4 5377 return 0;
f7b4cddc
ON
5378}
5379
1da177e4 5380#ifdef CONFIG_HOTPLUG_CPU
054b9108 5381/*
3a4fa0a2 5382 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5383 */
6a1bdc1b 5384void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5385{
1445c08d
ON
5386 struct rq *rq = cpu_rq(dead_cpu);
5387 int needs_cpu, uninitialized_var(dest_cpu);
5388 unsigned long flags;
e76bd8d9 5389
1445c08d 5390 local_irq_save(flags);
e76bd8d9 5391
1445c08d
ON
5392 raw_spin_lock(&rq->lock);
5393 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5394 if (needs_cpu)
5395 dest_cpu = select_fallback_rq(dead_cpu, p);
5396 raw_spin_unlock(&rq->lock);
c1804d54
ON
5397 /*
5398 * It can only fail if we race with set_cpus_allowed(),
5399 * in the racer should migrate the task anyway.
5400 */
1445c08d 5401 if (needs_cpu)
c1804d54 5402 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5403 local_irq_restore(flags);
1da177e4
LT
5404}
5405
5406/*
5407 * While a dead CPU has no uninterruptible tasks queued at this point,
5408 * it might still have a nonzero ->nr_uninterruptible counter, because
5409 * for performance reasons the counter is not stricly tracking tasks to
5410 * their home CPUs. So we just add the counter to another CPU's counter,
5411 * to keep the global sum constant after CPU-down:
5412 */
70b97a7f 5413static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5414{
6ad4c188 5415 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5416 unsigned long flags;
5417
5418 local_irq_save(flags);
5419 double_rq_lock(rq_src, rq_dest);
5420 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5421 rq_src->nr_uninterruptible = 0;
5422 double_rq_unlock(rq_src, rq_dest);
5423 local_irq_restore(flags);
5424}
5425
5426/* Run through task list and migrate tasks from the dead cpu. */
5427static void migrate_live_tasks(int src_cpu)
5428{
48f24c4d 5429 struct task_struct *p, *t;
1da177e4 5430
f7b4cddc 5431 read_lock(&tasklist_lock);
1da177e4 5432
48f24c4d
IM
5433 do_each_thread(t, p) {
5434 if (p == current)
1da177e4
LT
5435 continue;
5436
48f24c4d
IM
5437 if (task_cpu(p) == src_cpu)
5438 move_task_off_dead_cpu(src_cpu, p);
5439 } while_each_thread(t, p);
1da177e4 5440
f7b4cddc 5441 read_unlock(&tasklist_lock);
1da177e4
LT
5442}
5443
dd41f596
IM
5444/*
5445 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5446 * It does so by boosting its priority to highest possible.
5447 * Used by CPU offline code.
1da177e4
LT
5448 */
5449void sched_idle_next(void)
5450{
48f24c4d 5451 int this_cpu = smp_processor_id();
70b97a7f 5452 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5453 struct task_struct *p = rq->idle;
5454 unsigned long flags;
5455
5456 /* cpu has to be offline */
48f24c4d 5457 BUG_ON(cpu_online(this_cpu));
1da177e4 5458
48f24c4d
IM
5459 /*
5460 * Strictly not necessary since rest of the CPUs are stopped by now
5461 * and interrupts disabled on the current cpu.
1da177e4 5462 */
05fa785c 5463 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5464
dd41f596 5465 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5466
94bc9a7b 5467 activate_task(rq, p, 0);
1da177e4 5468
05fa785c 5469 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5470}
5471
48f24c4d
IM
5472/*
5473 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5474 * offline.
5475 */
5476void idle_task_exit(void)
5477{
5478 struct mm_struct *mm = current->active_mm;
5479
5480 BUG_ON(cpu_online(smp_processor_id()));
5481
5482 if (mm != &init_mm)
5483 switch_mm(mm, &init_mm, current);
5484 mmdrop(mm);
5485}
5486
054b9108 5487/* called under rq->lock with disabled interrupts */
36c8b586 5488static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5489{
70b97a7f 5490 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5491
5492 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5493 BUG_ON(!p->exit_state);
1da177e4
LT
5494
5495 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5496 BUG_ON(p->state == TASK_DEAD);
1da177e4 5497
48f24c4d 5498 get_task_struct(p);
1da177e4
LT
5499
5500 /*
5501 * Drop lock around migration; if someone else moves it,
41a2d6cf 5502 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5503 * fine.
5504 */
05fa785c 5505 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5506 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5507 raw_spin_lock_irq(&rq->lock);
1da177e4 5508
48f24c4d 5509 put_task_struct(p);
1da177e4
LT
5510}
5511
5512/* release_task() removes task from tasklist, so we won't find dead tasks. */
5513static void migrate_dead_tasks(unsigned int dead_cpu)
5514{
70b97a7f 5515 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5516 struct task_struct *next;
48f24c4d 5517
dd41f596
IM
5518 for ( ; ; ) {
5519 if (!rq->nr_running)
5520 break;
b67802ea 5521 next = pick_next_task(rq);
dd41f596
IM
5522 if (!next)
5523 break;
79c53799 5524 next->sched_class->put_prev_task(rq, next);
dd41f596 5525 migrate_dead(dead_cpu, next);
e692ab53 5526
1da177e4
LT
5527 }
5528}
dce48a84
TG
5529
5530/*
5531 * remove the tasks which were accounted by rq from calc_load_tasks.
5532 */
5533static void calc_global_load_remove(struct rq *rq)
5534{
5535 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5536 rq->calc_load_active = 0;
dce48a84 5537}
1da177e4
LT
5538#endif /* CONFIG_HOTPLUG_CPU */
5539
e692ab53
NP
5540#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5541
5542static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5543 {
5544 .procname = "sched_domain",
c57baf1e 5545 .mode = 0555,
e0361851 5546 },
56992309 5547 {}
e692ab53
NP
5548};
5549
5550static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5551 {
5552 .procname = "kernel",
c57baf1e 5553 .mode = 0555,
e0361851
AD
5554 .child = sd_ctl_dir,
5555 },
56992309 5556 {}
e692ab53
NP
5557};
5558
5559static struct ctl_table *sd_alloc_ctl_entry(int n)
5560{
5561 struct ctl_table *entry =
5cf9f062 5562 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5563
e692ab53
NP
5564 return entry;
5565}
5566
6382bc90
MM
5567static void sd_free_ctl_entry(struct ctl_table **tablep)
5568{
cd790076 5569 struct ctl_table *entry;
6382bc90 5570
cd790076
MM
5571 /*
5572 * In the intermediate directories, both the child directory and
5573 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5574 * will always be set. In the lowest directory the names are
cd790076
MM
5575 * static strings and all have proc handlers.
5576 */
5577 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5578 if (entry->child)
5579 sd_free_ctl_entry(&entry->child);
cd790076
MM
5580 if (entry->proc_handler == NULL)
5581 kfree(entry->procname);
5582 }
6382bc90
MM
5583
5584 kfree(*tablep);
5585 *tablep = NULL;
5586}
5587
e692ab53 5588static void
e0361851 5589set_table_entry(struct ctl_table *entry,
e692ab53
NP
5590 const char *procname, void *data, int maxlen,
5591 mode_t mode, proc_handler *proc_handler)
5592{
e692ab53
NP
5593 entry->procname = procname;
5594 entry->data = data;
5595 entry->maxlen = maxlen;
5596 entry->mode = mode;
5597 entry->proc_handler = proc_handler;
5598}
5599
5600static struct ctl_table *
5601sd_alloc_ctl_domain_table(struct sched_domain *sd)
5602{
a5d8c348 5603 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5604
ad1cdc1d
MM
5605 if (table == NULL)
5606 return NULL;
5607
e0361851 5608 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5609 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5610 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5611 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5612 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5613 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5614 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5615 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5616 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5617 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5618 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5619 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5620 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5621 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5622 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5623 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5624 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5625 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5626 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5627 &sd->cache_nice_tries,
5628 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5629 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5630 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5631 set_table_entry(&table[11], "name", sd->name,
5632 CORENAME_MAX_SIZE, 0444, proc_dostring);
5633 /* &table[12] is terminator */
e692ab53
NP
5634
5635 return table;
5636}
5637
9a4e7159 5638static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5639{
5640 struct ctl_table *entry, *table;
5641 struct sched_domain *sd;
5642 int domain_num = 0, i;
5643 char buf[32];
5644
5645 for_each_domain(cpu, sd)
5646 domain_num++;
5647 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5648 if (table == NULL)
5649 return NULL;
e692ab53
NP
5650
5651 i = 0;
5652 for_each_domain(cpu, sd) {
5653 snprintf(buf, 32, "domain%d", i);
e692ab53 5654 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5655 entry->mode = 0555;
e692ab53
NP
5656 entry->child = sd_alloc_ctl_domain_table(sd);
5657 entry++;
5658 i++;
5659 }
5660 return table;
5661}
5662
5663static struct ctl_table_header *sd_sysctl_header;
6382bc90 5664static void register_sched_domain_sysctl(void)
e692ab53 5665{
6ad4c188 5666 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5667 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5668 char buf[32];
5669
7378547f
MM
5670 WARN_ON(sd_ctl_dir[0].child);
5671 sd_ctl_dir[0].child = entry;
5672
ad1cdc1d
MM
5673 if (entry == NULL)
5674 return;
5675
6ad4c188 5676 for_each_possible_cpu(i) {
e692ab53 5677 snprintf(buf, 32, "cpu%d", i);
e692ab53 5678 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5679 entry->mode = 0555;
e692ab53 5680 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5681 entry++;
e692ab53 5682 }
7378547f
MM
5683
5684 WARN_ON(sd_sysctl_header);
e692ab53
NP
5685 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5686}
6382bc90 5687
7378547f 5688/* may be called multiple times per register */
6382bc90
MM
5689static void unregister_sched_domain_sysctl(void)
5690{
7378547f
MM
5691 if (sd_sysctl_header)
5692 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5693 sd_sysctl_header = NULL;
7378547f
MM
5694 if (sd_ctl_dir[0].child)
5695 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5696}
e692ab53 5697#else
6382bc90
MM
5698static void register_sched_domain_sysctl(void)
5699{
5700}
5701static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5702{
5703}
5704#endif
5705
1f11eb6a
GH
5706static void set_rq_online(struct rq *rq)
5707{
5708 if (!rq->online) {
5709 const struct sched_class *class;
5710
c6c4927b 5711 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5712 rq->online = 1;
5713
5714 for_each_class(class) {
5715 if (class->rq_online)
5716 class->rq_online(rq);
5717 }
5718 }
5719}
5720
5721static void set_rq_offline(struct rq *rq)
5722{
5723 if (rq->online) {
5724 const struct sched_class *class;
5725
5726 for_each_class(class) {
5727 if (class->rq_offline)
5728 class->rq_offline(rq);
5729 }
5730
c6c4927b 5731 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5732 rq->online = 0;
5733 }
5734}
5735
1da177e4
LT
5736/*
5737 * migration_call - callback that gets triggered when a CPU is added.
5738 * Here we can start up the necessary migration thread for the new CPU.
5739 */
48f24c4d
IM
5740static int __cpuinit
5741migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5742{
48f24c4d 5743 int cpu = (long)hcpu;
1da177e4 5744 unsigned long flags;
969c7921 5745 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5746
5747 switch (action) {
5be9361c 5748
1da177e4 5749 case CPU_UP_PREPARE:
8bb78442 5750 case CPU_UP_PREPARE_FROZEN:
a468d389 5751 rq->calc_load_update = calc_load_update;
1da177e4 5752 break;
48f24c4d 5753
1da177e4 5754 case CPU_ONLINE:
8bb78442 5755 case CPU_ONLINE_FROZEN:
1f94ef59 5756 /* Update our root-domain */
05fa785c 5757 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5758 if (rq->rd) {
c6c4927b 5759 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5760
5761 set_rq_online(rq);
1f94ef59 5762 }
05fa785c 5763 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5764 break;
48f24c4d 5765
1da177e4 5766#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5767 case CPU_DEAD:
8bb78442 5768 case CPU_DEAD_FROZEN:
1da177e4 5769 migrate_live_tasks(cpu);
1da177e4 5770 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5771 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5772 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5773 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5774 rq->idle->sched_class = &idle_sched_class;
1da177e4 5775 migrate_dead_tasks(cpu);
05fa785c 5776 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5777 migrate_nr_uninterruptible(rq);
5778 BUG_ON(rq->nr_running != 0);
dce48a84 5779 calc_global_load_remove(rq);
1da177e4 5780 break;
57d885fe 5781
08f503b0
GH
5782 case CPU_DYING:
5783 case CPU_DYING_FROZEN:
57d885fe 5784 /* Update our root-domain */
05fa785c 5785 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5786 if (rq->rd) {
c6c4927b 5787 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5788 set_rq_offline(rq);
57d885fe 5789 }
05fa785c 5790 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5791 break;
1da177e4
LT
5792#endif
5793 }
5794 return NOTIFY_OK;
5795}
5796
f38b0820
PM
5797/*
5798 * Register at high priority so that task migration (migrate_all_tasks)
5799 * happens before everything else. This has to be lower priority than
cdd6c482 5800 * the notifier in the perf_event subsystem, though.
1da177e4 5801 */
26c2143b 5802static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5803 .notifier_call = migration_call,
5804 .priority = 10
5805};
5806
7babe8db 5807static int __init migration_init(void)
1da177e4
LT
5808{
5809 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5810 int err;
48f24c4d
IM
5811
5812 /* Start one for the boot CPU: */
07dccf33
AM
5813 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5814 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5815 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5816 register_cpu_notifier(&migration_notifier);
7babe8db 5817
a004cd42 5818 return 0;
1da177e4 5819}
7babe8db 5820early_initcall(migration_init);
1da177e4
LT
5821#endif
5822
5823#ifdef CONFIG_SMP
476f3534 5824
3e9830dc 5825#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5826
f6630114
MT
5827static __read_mostly int sched_domain_debug_enabled;
5828
5829static int __init sched_domain_debug_setup(char *str)
5830{
5831 sched_domain_debug_enabled = 1;
5832
5833 return 0;
5834}
5835early_param("sched_debug", sched_domain_debug_setup);
5836
7c16ec58 5837static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5838 struct cpumask *groupmask)
1da177e4 5839{
4dcf6aff 5840 struct sched_group *group = sd->groups;
434d53b0 5841 char str[256];
1da177e4 5842
968ea6d8 5843 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5844 cpumask_clear(groupmask);
4dcf6aff
IM
5845
5846 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5847
5848 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5849 printk("does not load-balance\n");
4dcf6aff 5850 if (sd->parent)
3df0fc5b
PZ
5851 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5852 " has parent");
4dcf6aff 5853 return -1;
41c7ce9a
NP
5854 }
5855
3df0fc5b 5856 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5857
758b2cdc 5858 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5859 printk(KERN_ERR "ERROR: domain->span does not contain "
5860 "CPU%d\n", cpu);
4dcf6aff 5861 }
758b2cdc 5862 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5863 printk(KERN_ERR "ERROR: domain->groups does not contain"
5864 " CPU%d\n", cpu);
4dcf6aff 5865 }
1da177e4 5866
4dcf6aff 5867 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5868 do {
4dcf6aff 5869 if (!group) {
3df0fc5b
PZ
5870 printk("\n");
5871 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5872 break;
5873 }
5874
18a3885f 5875 if (!group->cpu_power) {
3df0fc5b
PZ
5876 printk(KERN_CONT "\n");
5877 printk(KERN_ERR "ERROR: domain->cpu_power not "
5878 "set\n");
4dcf6aff
IM
5879 break;
5880 }
1da177e4 5881
758b2cdc 5882 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5883 printk(KERN_CONT "\n");
5884 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5885 break;
5886 }
1da177e4 5887
758b2cdc 5888 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5889 printk(KERN_CONT "\n");
5890 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5891 break;
5892 }
1da177e4 5893
758b2cdc 5894 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5895
968ea6d8 5896 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5897
3df0fc5b 5898 printk(KERN_CONT " %s", str);
18a3885f 5899 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
5900 printk(KERN_CONT " (cpu_power = %d)",
5901 group->cpu_power);
381512cf 5902 }
1da177e4 5903
4dcf6aff
IM
5904 group = group->next;
5905 } while (group != sd->groups);
3df0fc5b 5906 printk(KERN_CONT "\n");
1da177e4 5907
758b2cdc 5908 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5909 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5910
758b2cdc
RR
5911 if (sd->parent &&
5912 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5913 printk(KERN_ERR "ERROR: parent span is not a superset "
5914 "of domain->span\n");
4dcf6aff
IM
5915 return 0;
5916}
1da177e4 5917
4dcf6aff
IM
5918static void sched_domain_debug(struct sched_domain *sd, int cpu)
5919{
d5dd3db1 5920 cpumask_var_t groupmask;
4dcf6aff 5921 int level = 0;
1da177e4 5922
f6630114
MT
5923 if (!sched_domain_debug_enabled)
5924 return;
5925
4dcf6aff
IM
5926 if (!sd) {
5927 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5928 return;
5929 }
1da177e4 5930
4dcf6aff
IM
5931 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5932
d5dd3db1 5933 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
5934 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5935 return;
5936 }
5937
4dcf6aff 5938 for (;;) {
7c16ec58 5939 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 5940 break;
1da177e4
LT
5941 level++;
5942 sd = sd->parent;
33859f7f 5943 if (!sd)
4dcf6aff
IM
5944 break;
5945 }
d5dd3db1 5946 free_cpumask_var(groupmask);
1da177e4 5947}
6d6bc0ad 5948#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5949# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5950#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5951
1a20ff27 5952static int sd_degenerate(struct sched_domain *sd)
245af2c7 5953{
758b2cdc 5954 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5955 return 1;
5956
5957 /* Following flags need at least 2 groups */
5958 if (sd->flags & (SD_LOAD_BALANCE |
5959 SD_BALANCE_NEWIDLE |
5960 SD_BALANCE_FORK |
89c4710e
SS
5961 SD_BALANCE_EXEC |
5962 SD_SHARE_CPUPOWER |
5963 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5964 if (sd->groups != sd->groups->next)
5965 return 0;
5966 }
5967
5968 /* Following flags don't use groups */
c88d5910 5969 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5970 return 0;
5971
5972 return 1;
5973}
5974
48f24c4d
IM
5975static int
5976sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5977{
5978 unsigned long cflags = sd->flags, pflags = parent->flags;
5979
5980 if (sd_degenerate(parent))
5981 return 1;
5982
758b2cdc 5983 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5984 return 0;
5985
245af2c7
SS
5986 /* Flags needing groups don't count if only 1 group in parent */
5987 if (parent->groups == parent->groups->next) {
5988 pflags &= ~(SD_LOAD_BALANCE |
5989 SD_BALANCE_NEWIDLE |
5990 SD_BALANCE_FORK |
89c4710e
SS
5991 SD_BALANCE_EXEC |
5992 SD_SHARE_CPUPOWER |
5993 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5994 if (nr_node_ids == 1)
5995 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5996 }
5997 if (~cflags & pflags)
5998 return 0;
5999
6000 return 1;
6001}
6002
c6c4927b
RR
6003static void free_rootdomain(struct root_domain *rd)
6004{
047106ad
PZ
6005 synchronize_sched();
6006
68e74568
RR
6007 cpupri_cleanup(&rd->cpupri);
6008
c6c4927b
RR
6009 free_cpumask_var(rd->rto_mask);
6010 free_cpumask_var(rd->online);
6011 free_cpumask_var(rd->span);
6012 kfree(rd);
6013}
6014
57d885fe
GH
6015static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6016{
a0490fa3 6017 struct root_domain *old_rd = NULL;
57d885fe 6018 unsigned long flags;
57d885fe 6019
05fa785c 6020 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6021
6022 if (rq->rd) {
a0490fa3 6023 old_rd = rq->rd;
57d885fe 6024
c6c4927b 6025 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6026 set_rq_offline(rq);
57d885fe 6027
c6c4927b 6028 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6029
a0490fa3
IM
6030 /*
6031 * If we dont want to free the old_rt yet then
6032 * set old_rd to NULL to skip the freeing later
6033 * in this function:
6034 */
6035 if (!atomic_dec_and_test(&old_rd->refcount))
6036 old_rd = NULL;
57d885fe
GH
6037 }
6038
6039 atomic_inc(&rd->refcount);
6040 rq->rd = rd;
6041
c6c4927b 6042 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6043 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6044 set_rq_online(rq);
57d885fe 6045
05fa785c 6046 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6047
6048 if (old_rd)
6049 free_rootdomain(old_rd);
57d885fe
GH
6050}
6051
fd5e1b5d 6052static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6053{
36b7b6d4
PE
6054 gfp_t gfp = GFP_KERNEL;
6055
57d885fe
GH
6056 memset(rd, 0, sizeof(*rd));
6057
36b7b6d4
PE
6058 if (bootmem)
6059 gfp = GFP_NOWAIT;
c6c4927b 6060
36b7b6d4 6061 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6062 goto out;
36b7b6d4 6063 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6064 goto free_span;
36b7b6d4 6065 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6066 goto free_online;
6e0534f2 6067
0fb53029 6068 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6069 goto free_rto_mask;
c6c4927b 6070 return 0;
6e0534f2 6071
68e74568
RR
6072free_rto_mask:
6073 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6074free_online:
6075 free_cpumask_var(rd->online);
6076free_span:
6077 free_cpumask_var(rd->span);
0c910d28 6078out:
c6c4927b 6079 return -ENOMEM;
57d885fe
GH
6080}
6081
6082static void init_defrootdomain(void)
6083{
c6c4927b
RR
6084 init_rootdomain(&def_root_domain, true);
6085
57d885fe
GH
6086 atomic_set(&def_root_domain.refcount, 1);
6087}
6088
dc938520 6089static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6090{
6091 struct root_domain *rd;
6092
6093 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6094 if (!rd)
6095 return NULL;
6096
c6c4927b
RR
6097 if (init_rootdomain(rd, false) != 0) {
6098 kfree(rd);
6099 return NULL;
6100 }
57d885fe
GH
6101
6102 return rd;
6103}
6104
1da177e4 6105/*
0eab9146 6106 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6107 * hold the hotplug lock.
6108 */
0eab9146
IM
6109static void
6110cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6111{
70b97a7f 6112 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6113 struct sched_domain *tmp;
6114
669c55e9
PZ
6115 for (tmp = sd; tmp; tmp = tmp->parent)
6116 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6117
245af2c7 6118 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6119 for (tmp = sd; tmp; ) {
245af2c7
SS
6120 struct sched_domain *parent = tmp->parent;
6121 if (!parent)
6122 break;
f29c9b1c 6123
1a848870 6124 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6125 tmp->parent = parent->parent;
1a848870
SS
6126 if (parent->parent)
6127 parent->parent->child = tmp;
f29c9b1c
LZ
6128 } else
6129 tmp = tmp->parent;
245af2c7
SS
6130 }
6131
1a848870 6132 if (sd && sd_degenerate(sd)) {
245af2c7 6133 sd = sd->parent;
1a848870
SS
6134 if (sd)
6135 sd->child = NULL;
6136 }
1da177e4
LT
6137
6138 sched_domain_debug(sd, cpu);
6139
57d885fe 6140 rq_attach_root(rq, rd);
674311d5 6141 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6142}
6143
6144/* cpus with isolated domains */
dcc30a35 6145static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6146
6147/* Setup the mask of cpus configured for isolated domains */
6148static int __init isolated_cpu_setup(char *str)
6149{
bdddd296 6150 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6151 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6152 return 1;
6153}
6154
8927f494 6155__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6156
6157/*
6711cab4
SS
6158 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6159 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6160 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6161 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6162 *
6163 * init_sched_build_groups will build a circular linked list of the groups
6164 * covered by the given span, and will set each group's ->cpumask correctly,
6165 * and ->cpu_power to 0.
6166 */
a616058b 6167static void
96f874e2
RR
6168init_sched_build_groups(const struct cpumask *span,
6169 const struct cpumask *cpu_map,
6170 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6171 struct sched_group **sg,
96f874e2
RR
6172 struct cpumask *tmpmask),
6173 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6174{
6175 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6176 int i;
6177
96f874e2 6178 cpumask_clear(covered);
7c16ec58 6179
abcd083a 6180 for_each_cpu(i, span) {
6711cab4 6181 struct sched_group *sg;
7c16ec58 6182 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6183 int j;
6184
758b2cdc 6185 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6186 continue;
6187
758b2cdc 6188 cpumask_clear(sched_group_cpus(sg));
18a3885f 6189 sg->cpu_power = 0;
1da177e4 6190
abcd083a 6191 for_each_cpu(j, span) {
7c16ec58 6192 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6193 continue;
6194
96f874e2 6195 cpumask_set_cpu(j, covered);
758b2cdc 6196 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6197 }
6198 if (!first)
6199 first = sg;
6200 if (last)
6201 last->next = sg;
6202 last = sg;
6203 }
6204 last->next = first;
6205}
6206
9c1cfda2 6207#define SD_NODES_PER_DOMAIN 16
1da177e4 6208
9c1cfda2 6209#ifdef CONFIG_NUMA
198e2f18 6210
9c1cfda2
JH
6211/**
6212 * find_next_best_node - find the next node to include in a sched_domain
6213 * @node: node whose sched_domain we're building
6214 * @used_nodes: nodes already in the sched_domain
6215 *
41a2d6cf 6216 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6217 * finds the closest node not already in the @used_nodes map.
6218 *
6219 * Should use nodemask_t.
6220 */
c5f59f08 6221static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6222{
6223 int i, n, val, min_val, best_node = 0;
6224
6225 min_val = INT_MAX;
6226
076ac2af 6227 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6228 /* Start at @node */
076ac2af 6229 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6230
6231 if (!nr_cpus_node(n))
6232 continue;
6233
6234 /* Skip already used nodes */
c5f59f08 6235 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6236 continue;
6237
6238 /* Simple min distance search */
6239 val = node_distance(node, n);
6240
6241 if (val < min_val) {
6242 min_val = val;
6243 best_node = n;
6244 }
6245 }
6246
c5f59f08 6247 node_set(best_node, *used_nodes);
9c1cfda2
JH
6248 return best_node;
6249}
6250
6251/**
6252 * sched_domain_node_span - get a cpumask for a node's sched_domain
6253 * @node: node whose cpumask we're constructing
73486722 6254 * @span: resulting cpumask
9c1cfda2 6255 *
41a2d6cf 6256 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6257 * should be one that prevents unnecessary balancing, but also spreads tasks
6258 * out optimally.
6259 */
96f874e2 6260static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6261{
c5f59f08 6262 nodemask_t used_nodes;
48f24c4d 6263 int i;
9c1cfda2 6264
6ca09dfc 6265 cpumask_clear(span);
c5f59f08 6266 nodes_clear(used_nodes);
9c1cfda2 6267
6ca09dfc 6268 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6269 node_set(node, used_nodes);
9c1cfda2
JH
6270
6271 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6272 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6273
6ca09dfc 6274 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6275 }
9c1cfda2 6276}
6d6bc0ad 6277#endif /* CONFIG_NUMA */
9c1cfda2 6278
5c45bf27 6279int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6280
6c99e9ad
RR
6281/*
6282 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6283 *
6284 * ( See the the comments in include/linux/sched.h:struct sched_group
6285 * and struct sched_domain. )
6c99e9ad
RR
6286 */
6287struct static_sched_group {
6288 struct sched_group sg;
6289 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6290};
6291
6292struct static_sched_domain {
6293 struct sched_domain sd;
6294 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6295};
6296
49a02c51
AH
6297struct s_data {
6298#ifdef CONFIG_NUMA
6299 int sd_allnodes;
6300 cpumask_var_t domainspan;
6301 cpumask_var_t covered;
6302 cpumask_var_t notcovered;
6303#endif
6304 cpumask_var_t nodemask;
6305 cpumask_var_t this_sibling_map;
6306 cpumask_var_t this_core_map;
6307 cpumask_var_t send_covered;
6308 cpumask_var_t tmpmask;
6309 struct sched_group **sched_group_nodes;
6310 struct root_domain *rd;
6311};
6312
2109b99e
AH
6313enum s_alloc {
6314 sa_sched_groups = 0,
6315 sa_rootdomain,
6316 sa_tmpmask,
6317 sa_send_covered,
6318 sa_this_core_map,
6319 sa_this_sibling_map,
6320 sa_nodemask,
6321 sa_sched_group_nodes,
6322#ifdef CONFIG_NUMA
6323 sa_notcovered,
6324 sa_covered,
6325 sa_domainspan,
6326#endif
6327 sa_none,
6328};
6329
9c1cfda2 6330/*
48f24c4d 6331 * SMT sched-domains:
9c1cfda2 6332 */
1da177e4 6333#ifdef CONFIG_SCHED_SMT
6c99e9ad 6334static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6335static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6336
41a2d6cf 6337static int
96f874e2
RR
6338cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6339 struct sched_group **sg, struct cpumask *unused)
1da177e4 6340{
6711cab4 6341 if (sg)
1871e52c 6342 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6343 return cpu;
6344}
6d6bc0ad 6345#endif /* CONFIG_SCHED_SMT */
1da177e4 6346
48f24c4d
IM
6347/*
6348 * multi-core sched-domains:
6349 */
1e9f28fa 6350#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6351static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6352static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6353#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6354
6355#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6356static int
96f874e2
RR
6357cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6358 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6359{
6711cab4 6360 int group;
7c16ec58 6361
c69fc56d 6362 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6363 group = cpumask_first(mask);
6711cab4 6364 if (sg)
6c99e9ad 6365 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6366 return group;
1e9f28fa
SS
6367}
6368#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6369static int
96f874e2
RR
6370cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6371 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6372{
6711cab4 6373 if (sg)
6c99e9ad 6374 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6375 return cpu;
6376}
6377#endif
6378
6c99e9ad
RR
6379static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6380static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6381
41a2d6cf 6382static int
96f874e2
RR
6383cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6384 struct sched_group **sg, struct cpumask *mask)
1da177e4 6385{
6711cab4 6386 int group;
48f24c4d 6387#ifdef CONFIG_SCHED_MC
6ca09dfc 6388 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6389 group = cpumask_first(mask);
1e9f28fa 6390#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6391 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6392 group = cpumask_first(mask);
1da177e4 6393#else
6711cab4 6394 group = cpu;
1da177e4 6395#endif
6711cab4 6396 if (sg)
6c99e9ad 6397 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6398 return group;
1da177e4
LT
6399}
6400
6401#ifdef CONFIG_NUMA
1da177e4 6402/*
9c1cfda2
JH
6403 * The init_sched_build_groups can't handle what we want to do with node
6404 * groups, so roll our own. Now each node has its own list of groups which
6405 * gets dynamically allocated.
1da177e4 6406 */
62ea9ceb 6407static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6408static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6409
62ea9ceb 6410static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6411static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6412
96f874e2
RR
6413static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6414 struct sched_group **sg,
6415 struct cpumask *nodemask)
9c1cfda2 6416{
6711cab4
SS
6417 int group;
6418
6ca09dfc 6419 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6420 group = cpumask_first(nodemask);
6711cab4
SS
6421
6422 if (sg)
6c99e9ad 6423 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6424 return group;
1da177e4 6425}
6711cab4 6426
08069033
SS
6427static void init_numa_sched_groups_power(struct sched_group *group_head)
6428{
6429 struct sched_group *sg = group_head;
6430 int j;
6431
6432 if (!sg)
6433 return;
3a5c359a 6434 do {
758b2cdc 6435 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6436 struct sched_domain *sd;
08069033 6437
6c99e9ad 6438 sd = &per_cpu(phys_domains, j).sd;
13318a71 6439 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6440 /*
6441 * Only add "power" once for each
6442 * physical package.
6443 */
6444 continue;
6445 }
08069033 6446
18a3885f 6447 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6448 }
6449 sg = sg->next;
6450 } while (sg != group_head);
08069033 6451}
0601a88d
AH
6452
6453static int build_numa_sched_groups(struct s_data *d,
6454 const struct cpumask *cpu_map, int num)
6455{
6456 struct sched_domain *sd;
6457 struct sched_group *sg, *prev;
6458 int n, j;
6459
6460 cpumask_clear(d->covered);
6461 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6462 if (cpumask_empty(d->nodemask)) {
6463 d->sched_group_nodes[num] = NULL;
6464 goto out;
6465 }
6466
6467 sched_domain_node_span(num, d->domainspan);
6468 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6469
6470 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6471 GFP_KERNEL, num);
6472 if (!sg) {
3df0fc5b
PZ
6473 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6474 num);
0601a88d
AH
6475 return -ENOMEM;
6476 }
6477 d->sched_group_nodes[num] = sg;
6478
6479 for_each_cpu(j, d->nodemask) {
6480 sd = &per_cpu(node_domains, j).sd;
6481 sd->groups = sg;
6482 }
6483
18a3885f 6484 sg->cpu_power = 0;
0601a88d
AH
6485 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6486 sg->next = sg;
6487 cpumask_or(d->covered, d->covered, d->nodemask);
6488
6489 prev = sg;
6490 for (j = 0; j < nr_node_ids; j++) {
6491 n = (num + j) % nr_node_ids;
6492 cpumask_complement(d->notcovered, d->covered);
6493 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6494 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6495 if (cpumask_empty(d->tmpmask))
6496 break;
6497 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6498 if (cpumask_empty(d->tmpmask))
6499 continue;
6500 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6501 GFP_KERNEL, num);
6502 if (!sg) {
3df0fc5b
PZ
6503 printk(KERN_WARNING
6504 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6505 return -ENOMEM;
6506 }
18a3885f 6507 sg->cpu_power = 0;
0601a88d
AH
6508 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6509 sg->next = prev->next;
6510 cpumask_or(d->covered, d->covered, d->tmpmask);
6511 prev->next = sg;
6512 prev = sg;
6513 }
6514out:
6515 return 0;
6516}
6d6bc0ad 6517#endif /* CONFIG_NUMA */
1da177e4 6518
a616058b 6519#ifdef CONFIG_NUMA
51888ca2 6520/* Free memory allocated for various sched_group structures */
96f874e2
RR
6521static void free_sched_groups(const struct cpumask *cpu_map,
6522 struct cpumask *nodemask)
51888ca2 6523{
a616058b 6524 int cpu, i;
51888ca2 6525
abcd083a 6526 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6527 struct sched_group **sched_group_nodes
6528 = sched_group_nodes_bycpu[cpu];
6529
51888ca2
SV
6530 if (!sched_group_nodes)
6531 continue;
6532
076ac2af 6533 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6534 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6535
6ca09dfc 6536 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6537 if (cpumask_empty(nodemask))
51888ca2
SV
6538 continue;
6539
6540 if (sg == NULL)
6541 continue;
6542 sg = sg->next;
6543next_sg:
6544 oldsg = sg;
6545 sg = sg->next;
6546 kfree(oldsg);
6547 if (oldsg != sched_group_nodes[i])
6548 goto next_sg;
6549 }
6550 kfree(sched_group_nodes);
6551 sched_group_nodes_bycpu[cpu] = NULL;
6552 }
51888ca2 6553}
6d6bc0ad 6554#else /* !CONFIG_NUMA */
96f874e2
RR
6555static void free_sched_groups(const struct cpumask *cpu_map,
6556 struct cpumask *nodemask)
a616058b
SS
6557{
6558}
6d6bc0ad 6559#endif /* CONFIG_NUMA */
51888ca2 6560
89c4710e
SS
6561/*
6562 * Initialize sched groups cpu_power.
6563 *
6564 * cpu_power indicates the capacity of sched group, which is used while
6565 * distributing the load between different sched groups in a sched domain.
6566 * Typically cpu_power for all the groups in a sched domain will be same unless
6567 * there are asymmetries in the topology. If there are asymmetries, group
6568 * having more cpu_power will pickup more load compared to the group having
6569 * less cpu_power.
89c4710e
SS
6570 */
6571static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6572{
6573 struct sched_domain *child;
6574 struct sched_group *group;
f93e65c1
PZ
6575 long power;
6576 int weight;
89c4710e
SS
6577
6578 WARN_ON(!sd || !sd->groups);
6579
13318a71 6580 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6581 return;
6582
6583 child = sd->child;
6584
18a3885f 6585 sd->groups->cpu_power = 0;
5517d86b 6586
f93e65c1
PZ
6587 if (!child) {
6588 power = SCHED_LOAD_SCALE;
6589 weight = cpumask_weight(sched_domain_span(sd));
6590 /*
6591 * SMT siblings share the power of a single core.
a52bfd73
PZ
6592 * Usually multiple threads get a better yield out of
6593 * that one core than a single thread would have,
6594 * reflect that in sd->smt_gain.
f93e65c1 6595 */
a52bfd73
PZ
6596 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6597 power *= sd->smt_gain;
f93e65c1 6598 power /= weight;
a52bfd73
PZ
6599 power >>= SCHED_LOAD_SHIFT;
6600 }
18a3885f 6601 sd->groups->cpu_power += power;
89c4710e
SS
6602 return;
6603 }
6604
89c4710e 6605 /*
f93e65c1 6606 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6607 */
6608 group = child->groups;
6609 do {
18a3885f 6610 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6611 group = group->next;
6612 } while (group != child->groups);
6613}
6614
7c16ec58
MT
6615/*
6616 * Initializers for schedule domains
6617 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6618 */
6619
a5d8c348
IM
6620#ifdef CONFIG_SCHED_DEBUG
6621# define SD_INIT_NAME(sd, type) sd->name = #type
6622#else
6623# define SD_INIT_NAME(sd, type) do { } while (0)
6624#endif
6625
7c16ec58 6626#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6627
7c16ec58
MT
6628#define SD_INIT_FUNC(type) \
6629static noinline void sd_init_##type(struct sched_domain *sd) \
6630{ \
6631 memset(sd, 0, sizeof(*sd)); \
6632 *sd = SD_##type##_INIT; \
1d3504fc 6633 sd->level = SD_LV_##type; \
a5d8c348 6634 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6635}
6636
6637SD_INIT_FUNC(CPU)
6638#ifdef CONFIG_NUMA
6639 SD_INIT_FUNC(ALLNODES)
6640 SD_INIT_FUNC(NODE)
6641#endif
6642#ifdef CONFIG_SCHED_SMT
6643 SD_INIT_FUNC(SIBLING)
6644#endif
6645#ifdef CONFIG_SCHED_MC
6646 SD_INIT_FUNC(MC)
6647#endif
6648
1d3504fc
HS
6649static int default_relax_domain_level = -1;
6650
6651static int __init setup_relax_domain_level(char *str)
6652{
30e0e178
LZ
6653 unsigned long val;
6654
6655 val = simple_strtoul(str, NULL, 0);
6656 if (val < SD_LV_MAX)
6657 default_relax_domain_level = val;
6658
1d3504fc
HS
6659 return 1;
6660}
6661__setup("relax_domain_level=", setup_relax_domain_level);
6662
6663static void set_domain_attribute(struct sched_domain *sd,
6664 struct sched_domain_attr *attr)
6665{
6666 int request;
6667
6668 if (!attr || attr->relax_domain_level < 0) {
6669 if (default_relax_domain_level < 0)
6670 return;
6671 else
6672 request = default_relax_domain_level;
6673 } else
6674 request = attr->relax_domain_level;
6675 if (request < sd->level) {
6676 /* turn off idle balance on this domain */
c88d5910 6677 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6678 } else {
6679 /* turn on idle balance on this domain */
c88d5910 6680 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6681 }
6682}
6683
2109b99e
AH
6684static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6685 const struct cpumask *cpu_map)
6686{
6687 switch (what) {
6688 case sa_sched_groups:
6689 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6690 d->sched_group_nodes = NULL;
6691 case sa_rootdomain:
6692 free_rootdomain(d->rd); /* fall through */
6693 case sa_tmpmask:
6694 free_cpumask_var(d->tmpmask); /* fall through */
6695 case sa_send_covered:
6696 free_cpumask_var(d->send_covered); /* fall through */
6697 case sa_this_core_map:
6698 free_cpumask_var(d->this_core_map); /* fall through */
6699 case sa_this_sibling_map:
6700 free_cpumask_var(d->this_sibling_map); /* fall through */
6701 case sa_nodemask:
6702 free_cpumask_var(d->nodemask); /* fall through */
6703 case sa_sched_group_nodes:
d1b55138 6704#ifdef CONFIG_NUMA
2109b99e
AH
6705 kfree(d->sched_group_nodes); /* fall through */
6706 case sa_notcovered:
6707 free_cpumask_var(d->notcovered); /* fall through */
6708 case sa_covered:
6709 free_cpumask_var(d->covered); /* fall through */
6710 case sa_domainspan:
6711 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6712#endif
2109b99e
AH
6713 case sa_none:
6714 break;
6715 }
6716}
3404c8d9 6717
2109b99e
AH
6718static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6719 const struct cpumask *cpu_map)
6720{
3404c8d9 6721#ifdef CONFIG_NUMA
2109b99e
AH
6722 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6723 return sa_none;
6724 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6725 return sa_domainspan;
6726 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6727 return sa_covered;
6728 /* Allocate the per-node list of sched groups */
6729 d->sched_group_nodes = kcalloc(nr_node_ids,
6730 sizeof(struct sched_group *), GFP_KERNEL);
6731 if (!d->sched_group_nodes) {
3df0fc5b 6732 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6733 return sa_notcovered;
d1b55138 6734 }
2109b99e 6735 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6736#endif
2109b99e
AH
6737 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6738 return sa_sched_group_nodes;
6739 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6740 return sa_nodemask;
6741 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6742 return sa_this_sibling_map;
6743 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6744 return sa_this_core_map;
6745 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6746 return sa_send_covered;
6747 d->rd = alloc_rootdomain();
6748 if (!d->rd) {
3df0fc5b 6749 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6750 return sa_tmpmask;
57d885fe 6751 }
2109b99e
AH
6752 return sa_rootdomain;
6753}
57d885fe 6754
7f4588f3
AH
6755static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6756 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6757{
6758 struct sched_domain *sd = NULL;
7c16ec58 6759#ifdef CONFIG_NUMA
7f4588f3 6760 struct sched_domain *parent;
1da177e4 6761
7f4588f3
AH
6762 d->sd_allnodes = 0;
6763 if (cpumask_weight(cpu_map) >
6764 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6765 sd = &per_cpu(allnodes_domains, i).sd;
6766 SD_INIT(sd, ALLNODES);
1d3504fc 6767 set_domain_attribute(sd, attr);
7f4588f3
AH
6768 cpumask_copy(sched_domain_span(sd), cpu_map);
6769 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6770 d->sd_allnodes = 1;
6771 }
6772 parent = sd;
6773
6774 sd = &per_cpu(node_domains, i).sd;
6775 SD_INIT(sd, NODE);
6776 set_domain_attribute(sd, attr);
6777 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6778 sd->parent = parent;
6779 if (parent)
6780 parent->child = sd;
6781 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6782#endif
7f4588f3
AH
6783 return sd;
6784}
1da177e4 6785
87cce662
AH
6786static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6787 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6788 struct sched_domain *parent, int i)
6789{
6790 struct sched_domain *sd;
6791 sd = &per_cpu(phys_domains, i).sd;
6792 SD_INIT(sd, CPU);
6793 set_domain_attribute(sd, attr);
6794 cpumask_copy(sched_domain_span(sd), d->nodemask);
6795 sd->parent = parent;
6796 if (parent)
6797 parent->child = sd;
6798 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6799 return sd;
6800}
1da177e4 6801
410c4081
AH
6802static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6803 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6804 struct sched_domain *parent, int i)
6805{
6806 struct sched_domain *sd = parent;
1e9f28fa 6807#ifdef CONFIG_SCHED_MC
410c4081
AH
6808 sd = &per_cpu(core_domains, i).sd;
6809 SD_INIT(sd, MC);
6810 set_domain_attribute(sd, attr);
6811 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6812 sd->parent = parent;
6813 parent->child = sd;
6814 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6815#endif
410c4081
AH
6816 return sd;
6817}
1e9f28fa 6818
d8173535
AH
6819static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6820 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6821 struct sched_domain *parent, int i)
6822{
6823 struct sched_domain *sd = parent;
1da177e4 6824#ifdef CONFIG_SCHED_SMT
d8173535
AH
6825 sd = &per_cpu(cpu_domains, i).sd;
6826 SD_INIT(sd, SIBLING);
6827 set_domain_attribute(sd, attr);
6828 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6829 sd->parent = parent;
6830 parent->child = sd;
6831 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6832#endif
d8173535
AH
6833 return sd;
6834}
1da177e4 6835
0e8e85c9
AH
6836static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6837 const struct cpumask *cpu_map, int cpu)
6838{
6839 switch (l) {
1da177e4 6840#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6841 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6842 cpumask_and(d->this_sibling_map, cpu_map,
6843 topology_thread_cpumask(cpu));
6844 if (cpu == cpumask_first(d->this_sibling_map))
6845 init_sched_build_groups(d->this_sibling_map, cpu_map,
6846 &cpu_to_cpu_group,
6847 d->send_covered, d->tmpmask);
6848 break;
1da177e4 6849#endif
1e9f28fa 6850#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6851 case SD_LV_MC: /* set up multi-core groups */
6852 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6853 if (cpu == cpumask_first(d->this_core_map))
6854 init_sched_build_groups(d->this_core_map, cpu_map,
6855 &cpu_to_core_group,
6856 d->send_covered, d->tmpmask);
6857 break;
1e9f28fa 6858#endif
86548096
AH
6859 case SD_LV_CPU: /* set up physical groups */
6860 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6861 if (!cpumask_empty(d->nodemask))
6862 init_sched_build_groups(d->nodemask, cpu_map,
6863 &cpu_to_phys_group,
6864 d->send_covered, d->tmpmask);
6865 break;
1da177e4 6866#ifdef CONFIG_NUMA
de616e36
AH
6867 case SD_LV_ALLNODES:
6868 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6869 d->send_covered, d->tmpmask);
6870 break;
6871#endif
0e8e85c9
AH
6872 default:
6873 break;
7c16ec58 6874 }
0e8e85c9 6875}
9c1cfda2 6876
2109b99e
AH
6877/*
6878 * Build sched domains for a given set of cpus and attach the sched domains
6879 * to the individual cpus
6880 */
6881static int __build_sched_domains(const struct cpumask *cpu_map,
6882 struct sched_domain_attr *attr)
6883{
6884 enum s_alloc alloc_state = sa_none;
6885 struct s_data d;
294b0c96 6886 struct sched_domain *sd;
2109b99e 6887 int i;
7c16ec58 6888#ifdef CONFIG_NUMA
2109b99e 6889 d.sd_allnodes = 0;
7c16ec58 6890#endif
9c1cfda2 6891
2109b99e
AH
6892 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6893 if (alloc_state != sa_rootdomain)
6894 goto error;
6895 alloc_state = sa_sched_groups;
9c1cfda2 6896
1da177e4 6897 /*
1a20ff27 6898 * Set up domains for cpus specified by the cpu_map.
1da177e4 6899 */
abcd083a 6900 for_each_cpu(i, cpu_map) {
49a02c51
AH
6901 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6902 cpu_map);
9761eea8 6903
7f4588f3 6904 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 6905 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 6906 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 6907 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 6908 }
9c1cfda2 6909
abcd083a 6910 for_each_cpu(i, cpu_map) {
0e8e85c9 6911 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 6912 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 6913 }
9c1cfda2 6914
1da177e4 6915 /* Set up physical groups */
86548096
AH
6916 for (i = 0; i < nr_node_ids; i++)
6917 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 6918
1da177e4
LT
6919#ifdef CONFIG_NUMA
6920 /* Set up node groups */
de616e36
AH
6921 if (d.sd_allnodes)
6922 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 6923
0601a88d
AH
6924 for (i = 0; i < nr_node_ids; i++)
6925 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 6926 goto error;
1da177e4
LT
6927#endif
6928
6929 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6930#ifdef CONFIG_SCHED_SMT
abcd083a 6931 for_each_cpu(i, cpu_map) {
294b0c96 6932 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 6933 init_sched_groups_power(i, sd);
5c45bf27 6934 }
1da177e4 6935#endif
1e9f28fa 6936#ifdef CONFIG_SCHED_MC
abcd083a 6937 for_each_cpu(i, cpu_map) {
294b0c96 6938 sd = &per_cpu(core_domains, i).sd;
89c4710e 6939 init_sched_groups_power(i, sd);
5c45bf27
SS
6940 }
6941#endif
1e9f28fa 6942
abcd083a 6943 for_each_cpu(i, cpu_map) {
294b0c96 6944 sd = &per_cpu(phys_domains, i).sd;
89c4710e 6945 init_sched_groups_power(i, sd);
1da177e4
LT
6946 }
6947
9c1cfda2 6948#ifdef CONFIG_NUMA
076ac2af 6949 for (i = 0; i < nr_node_ids; i++)
49a02c51 6950 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 6951
49a02c51 6952 if (d.sd_allnodes) {
6711cab4 6953 struct sched_group *sg;
f712c0c7 6954
96f874e2 6955 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 6956 d.tmpmask);
f712c0c7
SS
6957 init_numa_sched_groups_power(sg);
6958 }
9c1cfda2
JH
6959#endif
6960
1da177e4 6961 /* Attach the domains */
abcd083a 6962 for_each_cpu(i, cpu_map) {
1da177e4 6963#ifdef CONFIG_SCHED_SMT
6c99e9ad 6964 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 6965#elif defined(CONFIG_SCHED_MC)
6c99e9ad 6966 sd = &per_cpu(core_domains, i).sd;
1da177e4 6967#else
6c99e9ad 6968 sd = &per_cpu(phys_domains, i).sd;
1da177e4 6969#endif
49a02c51 6970 cpu_attach_domain(sd, d.rd, i);
1da177e4 6971 }
51888ca2 6972
2109b99e
AH
6973 d.sched_group_nodes = NULL; /* don't free this we still need it */
6974 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
6975 return 0;
51888ca2 6976
51888ca2 6977error:
2109b99e
AH
6978 __free_domain_allocs(&d, alloc_state, cpu_map);
6979 return -ENOMEM;
1da177e4 6980}
029190c5 6981
96f874e2 6982static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
6983{
6984 return __build_sched_domains(cpu_map, NULL);
6985}
6986
acc3f5d7 6987static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6988static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6989static struct sched_domain_attr *dattr_cur;
6990 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6991
6992/*
6993 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6994 * cpumask) fails, then fallback to a single sched domain,
6995 * as determined by the single cpumask fallback_doms.
029190c5 6996 */
4212823f 6997static cpumask_var_t fallback_doms;
029190c5 6998
ee79d1bd
HC
6999/*
7000 * arch_update_cpu_topology lets virtualized architectures update the
7001 * cpu core maps. It is supposed to return 1 if the topology changed
7002 * or 0 if it stayed the same.
7003 */
7004int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7005{
ee79d1bd 7006 return 0;
22e52b07
HC
7007}
7008
acc3f5d7
RR
7009cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7010{
7011 int i;
7012 cpumask_var_t *doms;
7013
7014 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7015 if (!doms)
7016 return NULL;
7017 for (i = 0; i < ndoms; i++) {
7018 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7019 free_sched_domains(doms, i);
7020 return NULL;
7021 }
7022 }
7023 return doms;
7024}
7025
7026void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7027{
7028 unsigned int i;
7029 for (i = 0; i < ndoms; i++)
7030 free_cpumask_var(doms[i]);
7031 kfree(doms);
7032}
7033
1a20ff27 7034/*
41a2d6cf 7035 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7036 * For now this just excludes isolated cpus, but could be used to
7037 * exclude other special cases in the future.
1a20ff27 7038 */
96f874e2 7039static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7040{
7378547f
MM
7041 int err;
7042
22e52b07 7043 arch_update_cpu_topology();
029190c5 7044 ndoms_cur = 1;
acc3f5d7 7045 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7046 if (!doms_cur)
acc3f5d7
RR
7047 doms_cur = &fallback_doms;
7048 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7049 dattr_cur = NULL;
acc3f5d7 7050 err = build_sched_domains(doms_cur[0]);
6382bc90 7051 register_sched_domain_sysctl();
7378547f
MM
7052
7053 return err;
1a20ff27
DG
7054}
7055
96f874e2
RR
7056static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7057 struct cpumask *tmpmask)
1da177e4 7058{
7c16ec58 7059 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7060}
1da177e4 7061
1a20ff27
DG
7062/*
7063 * Detach sched domains from a group of cpus specified in cpu_map
7064 * These cpus will now be attached to the NULL domain
7065 */
96f874e2 7066static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7067{
96f874e2
RR
7068 /* Save because hotplug lock held. */
7069 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7070 int i;
7071
abcd083a 7072 for_each_cpu(i, cpu_map)
57d885fe 7073 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7074 synchronize_sched();
96f874e2 7075 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7076}
7077
1d3504fc
HS
7078/* handle null as "default" */
7079static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7080 struct sched_domain_attr *new, int idx_new)
7081{
7082 struct sched_domain_attr tmp;
7083
7084 /* fast path */
7085 if (!new && !cur)
7086 return 1;
7087
7088 tmp = SD_ATTR_INIT;
7089 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7090 new ? (new + idx_new) : &tmp,
7091 sizeof(struct sched_domain_attr));
7092}
7093
029190c5
PJ
7094/*
7095 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7096 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7097 * doms_new[] to the current sched domain partitioning, doms_cur[].
7098 * It destroys each deleted domain and builds each new domain.
7099 *
acc3f5d7 7100 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7101 * The masks don't intersect (don't overlap.) We should setup one
7102 * sched domain for each mask. CPUs not in any of the cpumasks will
7103 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7104 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7105 * it as it is.
7106 *
acc3f5d7
RR
7107 * The passed in 'doms_new' should be allocated using
7108 * alloc_sched_domains. This routine takes ownership of it and will
7109 * free_sched_domains it when done with it. If the caller failed the
7110 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7111 * and partition_sched_domains() will fallback to the single partition
7112 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7113 *
96f874e2 7114 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7115 * ndoms_new == 0 is a special case for destroying existing domains,
7116 * and it will not create the default domain.
dfb512ec 7117 *
029190c5
PJ
7118 * Call with hotplug lock held
7119 */
acc3f5d7 7120void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7121 struct sched_domain_attr *dattr_new)
029190c5 7122{
dfb512ec 7123 int i, j, n;
d65bd5ec 7124 int new_topology;
029190c5 7125
712555ee 7126 mutex_lock(&sched_domains_mutex);
a1835615 7127
7378547f
MM
7128 /* always unregister in case we don't destroy any domains */
7129 unregister_sched_domain_sysctl();
7130
d65bd5ec
HC
7131 /* Let architecture update cpu core mappings. */
7132 new_topology = arch_update_cpu_topology();
7133
dfb512ec 7134 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7135
7136 /* Destroy deleted domains */
7137 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7138 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7139 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7140 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7141 goto match1;
7142 }
7143 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7144 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7145match1:
7146 ;
7147 }
7148
e761b772
MK
7149 if (doms_new == NULL) {
7150 ndoms_cur = 0;
acc3f5d7 7151 doms_new = &fallback_doms;
6ad4c188 7152 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7153 WARN_ON_ONCE(dattr_new);
e761b772
MK
7154 }
7155
029190c5
PJ
7156 /* Build new domains */
7157 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7158 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7159 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7160 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7161 goto match2;
7162 }
7163 /* no match - add a new doms_new */
acc3f5d7 7164 __build_sched_domains(doms_new[i],
1d3504fc 7165 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7166match2:
7167 ;
7168 }
7169
7170 /* Remember the new sched domains */
acc3f5d7
RR
7171 if (doms_cur != &fallback_doms)
7172 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7173 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7174 doms_cur = doms_new;
1d3504fc 7175 dattr_cur = dattr_new;
029190c5 7176 ndoms_cur = ndoms_new;
7378547f
MM
7177
7178 register_sched_domain_sysctl();
a1835615 7179
712555ee 7180 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7181}
7182
5c45bf27 7183#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7184static void arch_reinit_sched_domains(void)
5c45bf27 7185{
95402b38 7186 get_online_cpus();
dfb512ec
MK
7187
7188 /* Destroy domains first to force the rebuild */
7189 partition_sched_domains(0, NULL, NULL);
7190
e761b772 7191 rebuild_sched_domains();
95402b38 7192 put_online_cpus();
5c45bf27
SS
7193}
7194
7195static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7196{
afb8a9b7 7197 unsigned int level = 0;
5c45bf27 7198
afb8a9b7
GS
7199 if (sscanf(buf, "%u", &level) != 1)
7200 return -EINVAL;
7201
7202 /*
7203 * level is always be positive so don't check for
7204 * level < POWERSAVINGS_BALANCE_NONE which is 0
7205 * What happens on 0 or 1 byte write,
7206 * need to check for count as well?
7207 */
7208
7209 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7210 return -EINVAL;
7211
7212 if (smt)
afb8a9b7 7213 sched_smt_power_savings = level;
5c45bf27 7214 else
afb8a9b7 7215 sched_mc_power_savings = level;
5c45bf27 7216
c70f22d2 7217 arch_reinit_sched_domains();
5c45bf27 7218
c70f22d2 7219 return count;
5c45bf27
SS
7220}
7221
5c45bf27 7222#ifdef CONFIG_SCHED_MC
f718cd4a 7223static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7224 struct sysdev_class_attribute *attr,
f718cd4a 7225 char *page)
5c45bf27
SS
7226{
7227 return sprintf(page, "%u\n", sched_mc_power_savings);
7228}
f718cd4a 7229static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7230 struct sysdev_class_attribute *attr,
48f24c4d 7231 const char *buf, size_t count)
5c45bf27
SS
7232{
7233 return sched_power_savings_store(buf, count, 0);
7234}
f718cd4a
AK
7235static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7236 sched_mc_power_savings_show,
7237 sched_mc_power_savings_store);
5c45bf27
SS
7238#endif
7239
7240#ifdef CONFIG_SCHED_SMT
f718cd4a 7241static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7242 struct sysdev_class_attribute *attr,
f718cd4a 7243 char *page)
5c45bf27
SS
7244{
7245 return sprintf(page, "%u\n", sched_smt_power_savings);
7246}
f718cd4a 7247static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7248 struct sysdev_class_attribute *attr,
48f24c4d 7249 const char *buf, size_t count)
5c45bf27
SS
7250{
7251 return sched_power_savings_store(buf, count, 1);
7252}
f718cd4a
AK
7253static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7254 sched_smt_power_savings_show,
6707de00
AB
7255 sched_smt_power_savings_store);
7256#endif
7257
39aac648 7258int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7259{
7260 int err = 0;
7261
7262#ifdef CONFIG_SCHED_SMT
7263 if (smt_capable())
7264 err = sysfs_create_file(&cls->kset.kobj,
7265 &attr_sched_smt_power_savings.attr);
7266#endif
7267#ifdef CONFIG_SCHED_MC
7268 if (!err && mc_capable())
7269 err = sysfs_create_file(&cls->kset.kobj,
7270 &attr_sched_mc_power_savings.attr);
7271#endif
7272 return err;
7273}
6d6bc0ad 7274#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7275
e761b772 7276#ifndef CONFIG_CPUSETS
1da177e4 7277/*
e761b772
MK
7278 * Add online and remove offline CPUs from the scheduler domains.
7279 * When cpusets are enabled they take over this function.
1da177e4
LT
7280 */
7281static int update_sched_domains(struct notifier_block *nfb,
7282 unsigned long action, void *hcpu)
e761b772
MK
7283{
7284 switch (action) {
7285 case CPU_ONLINE:
7286 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7287 case CPU_DOWN_PREPARE:
7288 case CPU_DOWN_PREPARE_FROZEN:
7289 case CPU_DOWN_FAILED:
7290 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7291 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7292 return NOTIFY_OK;
7293
7294 default:
7295 return NOTIFY_DONE;
7296 }
7297}
7298#endif
7299
7300static int update_runtime(struct notifier_block *nfb,
7301 unsigned long action, void *hcpu)
1da177e4 7302{
7def2be1
PZ
7303 int cpu = (int)(long)hcpu;
7304
1da177e4 7305 switch (action) {
1da177e4 7306 case CPU_DOWN_PREPARE:
8bb78442 7307 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7308 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7309 return NOTIFY_OK;
7310
1da177e4 7311 case CPU_DOWN_FAILED:
8bb78442 7312 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7313 case CPU_ONLINE:
8bb78442 7314 case CPU_ONLINE_FROZEN:
7def2be1 7315 enable_runtime(cpu_rq(cpu));
e761b772
MK
7316 return NOTIFY_OK;
7317
1da177e4
LT
7318 default:
7319 return NOTIFY_DONE;
7320 }
1da177e4 7321}
1da177e4
LT
7322
7323void __init sched_init_smp(void)
7324{
dcc30a35
RR
7325 cpumask_var_t non_isolated_cpus;
7326
7327 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7328 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7329
434d53b0
MT
7330#if defined(CONFIG_NUMA)
7331 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7332 GFP_KERNEL);
7333 BUG_ON(sched_group_nodes_bycpu == NULL);
7334#endif
95402b38 7335 get_online_cpus();
712555ee 7336 mutex_lock(&sched_domains_mutex);
6ad4c188 7337 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7338 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7339 if (cpumask_empty(non_isolated_cpus))
7340 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7341 mutex_unlock(&sched_domains_mutex);
95402b38 7342 put_online_cpus();
e761b772
MK
7343
7344#ifndef CONFIG_CPUSETS
1da177e4
LT
7345 /* XXX: Theoretical race here - CPU may be hotplugged now */
7346 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7347#endif
7348
7349 /* RT runtime code needs to handle some hotplug events */
7350 hotcpu_notifier(update_runtime, 0);
7351
b328ca18 7352 init_hrtick();
5c1e1767
NP
7353
7354 /* Move init over to a non-isolated CPU */
dcc30a35 7355 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7356 BUG();
19978ca6 7357 sched_init_granularity();
dcc30a35 7358 free_cpumask_var(non_isolated_cpus);
4212823f 7359
0e3900e6 7360 init_sched_rt_class();
1da177e4
LT
7361}
7362#else
7363void __init sched_init_smp(void)
7364{
19978ca6 7365 sched_init_granularity();
1da177e4
LT
7366}
7367#endif /* CONFIG_SMP */
7368
cd1bb94b
AB
7369const_debug unsigned int sysctl_timer_migration = 1;
7370
1da177e4
LT
7371int in_sched_functions(unsigned long addr)
7372{
1da177e4
LT
7373 return in_lock_functions(addr) ||
7374 (addr >= (unsigned long)__sched_text_start
7375 && addr < (unsigned long)__sched_text_end);
7376}
7377
a9957449 7378static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7379{
7380 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7381 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7382#ifdef CONFIG_FAIR_GROUP_SCHED
7383 cfs_rq->rq = rq;
7384#endif
67e9fb2a 7385 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7386}
7387
fa85ae24
PZ
7388static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7389{
7390 struct rt_prio_array *array;
7391 int i;
7392
7393 array = &rt_rq->active;
7394 for (i = 0; i < MAX_RT_PRIO; i++) {
7395 INIT_LIST_HEAD(array->queue + i);
7396 __clear_bit(i, array->bitmap);
7397 }
7398 /* delimiter for bitsearch: */
7399 __set_bit(MAX_RT_PRIO, array->bitmap);
7400
052f1dc7 7401#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7402 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7403#ifdef CONFIG_SMP
e864c499 7404 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7405#endif
48d5e258 7406#endif
fa85ae24
PZ
7407#ifdef CONFIG_SMP
7408 rt_rq->rt_nr_migratory = 0;
fa85ae24 7409 rt_rq->overloaded = 0;
05fa785c 7410 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7411#endif
7412
7413 rt_rq->rt_time = 0;
7414 rt_rq->rt_throttled = 0;
ac086bc2 7415 rt_rq->rt_runtime = 0;
0986b11b 7416 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7417
052f1dc7 7418#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7419 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7420 rt_rq->rq = rq;
7421#endif
fa85ae24
PZ
7422}
7423
6f505b16 7424#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7425static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7426 struct sched_entity *se, int cpu, int add,
7427 struct sched_entity *parent)
6f505b16 7428{
ec7dc8ac 7429 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7430 tg->cfs_rq[cpu] = cfs_rq;
7431 init_cfs_rq(cfs_rq, rq);
7432 cfs_rq->tg = tg;
7433 if (add)
7434 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7435
7436 tg->se[cpu] = se;
354d60c2
DG
7437 /* se could be NULL for init_task_group */
7438 if (!se)
7439 return;
7440
ec7dc8ac
DG
7441 if (!parent)
7442 se->cfs_rq = &rq->cfs;
7443 else
7444 se->cfs_rq = parent->my_q;
7445
6f505b16
PZ
7446 se->my_q = cfs_rq;
7447 se->load.weight = tg->shares;
e05510d0 7448 se->load.inv_weight = 0;
ec7dc8ac 7449 se->parent = parent;
6f505b16 7450}
052f1dc7 7451#endif
6f505b16 7452
052f1dc7 7453#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7454static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7455 struct sched_rt_entity *rt_se, int cpu, int add,
7456 struct sched_rt_entity *parent)
6f505b16 7457{
ec7dc8ac
DG
7458 struct rq *rq = cpu_rq(cpu);
7459
6f505b16
PZ
7460 tg->rt_rq[cpu] = rt_rq;
7461 init_rt_rq(rt_rq, rq);
7462 rt_rq->tg = tg;
ac086bc2 7463 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7464 if (add)
7465 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7466
7467 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7468 if (!rt_se)
7469 return;
7470
ec7dc8ac
DG
7471 if (!parent)
7472 rt_se->rt_rq = &rq->rt;
7473 else
7474 rt_se->rt_rq = parent->my_q;
7475
6f505b16 7476 rt_se->my_q = rt_rq;
ec7dc8ac 7477 rt_se->parent = parent;
6f505b16
PZ
7478 INIT_LIST_HEAD(&rt_se->run_list);
7479}
7480#endif
7481
1da177e4
LT
7482void __init sched_init(void)
7483{
dd41f596 7484 int i, j;
434d53b0
MT
7485 unsigned long alloc_size = 0, ptr;
7486
7487#ifdef CONFIG_FAIR_GROUP_SCHED
7488 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7489#endif
7490#ifdef CONFIG_RT_GROUP_SCHED
7491 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7492#endif
df7c8e84 7493#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7494 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7495#endif
434d53b0 7496 if (alloc_size) {
36b7b6d4 7497 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7498
7499#ifdef CONFIG_FAIR_GROUP_SCHED
7500 init_task_group.se = (struct sched_entity **)ptr;
7501 ptr += nr_cpu_ids * sizeof(void **);
7502
7503 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7504 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7505
6d6bc0ad 7506#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7507#ifdef CONFIG_RT_GROUP_SCHED
7508 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7509 ptr += nr_cpu_ids * sizeof(void **);
7510
7511 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7512 ptr += nr_cpu_ids * sizeof(void **);
7513
6d6bc0ad 7514#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7515#ifdef CONFIG_CPUMASK_OFFSTACK
7516 for_each_possible_cpu(i) {
7517 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7518 ptr += cpumask_size();
7519 }
7520#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7521 }
dd41f596 7522
57d885fe
GH
7523#ifdef CONFIG_SMP
7524 init_defrootdomain();
7525#endif
7526
d0b27fa7
PZ
7527 init_rt_bandwidth(&def_rt_bandwidth,
7528 global_rt_period(), global_rt_runtime());
7529
7530#ifdef CONFIG_RT_GROUP_SCHED
7531 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7532 global_rt_period(), global_rt_runtime());
6d6bc0ad 7533#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7534
7c941438 7535#ifdef CONFIG_CGROUP_SCHED
6f505b16 7536 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7537 INIT_LIST_HEAD(&init_task_group.children);
7538
7c941438 7539#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7540
4a6cc4bd
JK
7541#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7542 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7543 __alignof__(unsigned long));
7544#endif
0a945022 7545 for_each_possible_cpu(i) {
70b97a7f 7546 struct rq *rq;
1da177e4
LT
7547
7548 rq = cpu_rq(i);
05fa785c 7549 raw_spin_lock_init(&rq->lock);
7897986b 7550 rq->nr_running = 0;
dce48a84
TG
7551 rq->calc_load_active = 0;
7552 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7553 init_cfs_rq(&rq->cfs, rq);
6f505b16 7554 init_rt_rq(&rq->rt, rq);
dd41f596 7555#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7556 init_task_group.shares = init_task_group_load;
6f505b16 7557 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7558#ifdef CONFIG_CGROUP_SCHED
7559 /*
7560 * How much cpu bandwidth does init_task_group get?
7561 *
7562 * In case of task-groups formed thr' the cgroup filesystem, it
7563 * gets 100% of the cpu resources in the system. This overall
7564 * system cpu resource is divided among the tasks of
7565 * init_task_group and its child task-groups in a fair manner,
7566 * based on each entity's (task or task-group's) weight
7567 * (se->load.weight).
7568 *
7569 * In other words, if init_task_group has 10 tasks of weight
7570 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7571 * then A0's share of the cpu resource is:
7572 *
0d905bca 7573 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7574 *
7575 * We achieve this by letting init_task_group's tasks sit
7576 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7577 */
ec7dc8ac 7578 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7579#endif
354d60c2
DG
7580#endif /* CONFIG_FAIR_GROUP_SCHED */
7581
7582 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7583#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7584 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7585#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7586 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7587#endif
dd41f596 7588#endif
1da177e4 7589
dd41f596
IM
7590 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7591 rq->cpu_load[j] = 0;
1da177e4 7592#ifdef CONFIG_SMP
41c7ce9a 7593 rq->sd = NULL;
57d885fe 7594 rq->rd = NULL;
e51fd5e2 7595 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7596 rq->post_schedule = 0;
1da177e4 7597 rq->active_balance = 0;
dd41f596 7598 rq->next_balance = jiffies;
1da177e4 7599 rq->push_cpu = 0;
0a2966b4 7600 rq->cpu = i;
1f11eb6a 7601 rq->online = 0;
eae0c9df
MG
7602 rq->idle_stamp = 0;
7603 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7604 rq_attach_root(rq, &def_root_domain);
1da177e4 7605#endif
8f4d37ec 7606 init_rq_hrtick(rq);
1da177e4 7607 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7608 }
7609
2dd73a4f 7610 set_load_weight(&init_task);
b50f60ce 7611
e107be36
AK
7612#ifdef CONFIG_PREEMPT_NOTIFIERS
7613 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7614#endif
7615
c9819f45 7616#ifdef CONFIG_SMP
962cf36c 7617 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7618#endif
7619
b50f60ce 7620#ifdef CONFIG_RT_MUTEXES
1d615482 7621 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7622#endif
7623
1da177e4
LT
7624 /*
7625 * The boot idle thread does lazy MMU switching as well:
7626 */
7627 atomic_inc(&init_mm.mm_count);
7628 enter_lazy_tlb(&init_mm, current);
7629
7630 /*
7631 * Make us the idle thread. Technically, schedule() should not be
7632 * called from this thread, however somewhere below it might be,
7633 * but because we are the idle thread, we just pick up running again
7634 * when this runqueue becomes "idle".
7635 */
7636 init_idle(current, smp_processor_id());
dce48a84
TG
7637
7638 calc_load_update = jiffies + LOAD_FREQ;
7639
dd41f596
IM
7640 /*
7641 * During early bootup we pretend to be a normal task:
7642 */
7643 current->sched_class = &fair_sched_class;
6892b75e 7644
6a7b3dc3 7645 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7646 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7647#ifdef CONFIG_SMP
7d1e6a9b 7648#ifdef CONFIG_NO_HZ
49557e62 7649 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7650 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7651#endif
bdddd296
RR
7652 /* May be allocated at isolcpus cmdline parse time */
7653 if (cpu_isolated_map == NULL)
7654 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7655#endif /* SMP */
6a7b3dc3 7656
cdd6c482 7657 perf_event_init();
0d905bca 7658
6892b75e 7659 scheduler_running = 1;
1da177e4
LT
7660}
7661
7662#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7663static inline int preempt_count_equals(int preempt_offset)
7664{
234da7bc 7665 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7666
7667 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7668}
7669
d894837f 7670void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7671{
48f24c4d 7672#ifdef in_atomic
1da177e4
LT
7673 static unsigned long prev_jiffy; /* ratelimiting */
7674
e4aafea2
FW
7675 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7676 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7677 return;
7678 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7679 return;
7680 prev_jiffy = jiffies;
7681
3df0fc5b
PZ
7682 printk(KERN_ERR
7683 "BUG: sleeping function called from invalid context at %s:%d\n",
7684 file, line);
7685 printk(KERN_ERR
7686 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7687 in_atomic(), irqs_disabled(),
7688 current->pid, current->comm);
aef745fc
IM
7689
7690 debug_show_held_locks(current);
7691 if (irqs_disabled())
7692 print_irqtrace_events(current);
7693 dump_stack();
1da177e4
LT
7694#endif
7695}
7696EXPORT_SYMBOL(__might_sleep);
7697#endif
7698
7699#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7700static void normalize_task(struct rq *rq, struct task_struct *p)
7701{
7702 int on_rq;
3e51f33f 7703
3a5e4dc1
AK
7704 on_rq = p->se.on_rq;
7705 if (on_rq)
7706 deactivate_task(rq, p, 0);
7707 __setscheduler(rq, p, SCHED_NORMAL, 0);
7708 if (on_rq) {
7709 activate_task(rq, p, 0);
7710 resched_task(rq->curr);
7711 }
7712}
7713
1da177e4
LT
7714void normalize_rt_tasks(void)
7715{
a0f98a1c 7716 struct task_struct *g, *p;
1da177e4 7717 unsigned long flags;
70b97a7f 7718 struct rq *rq;
1da177e4 7719
4cf5d77a 7720 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7721 do_each_thread(g, p) {
178be793
IM
7722 /*
7723 * Only normalize user tasks:
7724 */
7725 if (!p->mm)
7726 continue;
7727
6cfb0d5d 7728 p->se.exec_start = 0;
6cfb0d5d 7729#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7730 p->se.statistics.wait_start = 0;
7731 p->se.statistics.sleep_start = 0;
7732 p->se.statistics.block_start = 0;
6cfb0d5d 7733#endif
dd41f596
IM
7734
7735 if (!rt_task(p)) {
7736 /*
7737 * Renice negative nice level userspace
7738 * tasks back to 0:
7739 */
7740 if (TASK_NICE(p) < 0 && p->mm)
7741 set_user_nice(p, 0);
1da177e4 7742 continue;
dd41f596 7743 }
1da177e4 7744
1d615482 7745 raw_spin_lock(&p->pi_lock);
b29739f9 7746 rq = __task_rq_lock(p);
1da177e4 7747
178be793 7748 normalize_task(rq, p);
3a5e4dc1 7749
b29739f9 7750 __task_rq_unlock(rq);
1d615482 7751 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7752 } while_each_thread(g, p);
7753
4cf5d77a 7754 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7755}
7756
7757#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7758
67fc4e0c 7759#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7760/*
67fc4e0c 7761 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7762 *
7763 * They can only be called when the whole system has been
7764 * stopped - every CPU needs to be quiescent, and no scheduling
7765 * activity can take place. Using them for anything else would
7766 * be a serious bug, and as a result, they aren't even visible
7767 * under any other configuration.
7768 */
7769
7770/**
7771 * curr_task - return the current task for a given cpu.
7772 * @cpu: the processor in question.
7773 *
7774 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7775 */
36c8b586 7776struct task_struct *curr_task(int cpu)
1df5c10a
LT
7777{
7778 return cpu_curr(cpu);
7779}
7780
67fc4e0c
JW
7781#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7782
7783#ifdef CONFIG_IA64
1df5c10a
LT
7784/**
7785 * set_curr_task - set the current task for a given cpu.
7786 * @cpu: the processor in question.
7787 * @p: the task pointer to set.
7788 *
7789 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7790 * are serviced on a separate stack. It allows the architecture to switch the
7791 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7792 * must be called with all CPU's synchronized, and interrupts disabled, the
7793 * and caller must save the original value of the current task (see
7794 * curr_task() above) and restore that value before reenabling interrupts and
7795 * re-starting the system.
7796 *
7797 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7798 */
36c8b586 7799void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7800{
7801 cpu_curr(cpu) = p;
7802}
7803
7804#endif
29f59db3 7805
bccbe08a
PZ
7806#ifdef CONFIG_FAIR_GROUP_SCHED
7807static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7808{
7809 int i;
7810
7811 for_each_possible_cpu(i) {
7812 if (tg->cfs_rq)
7813 kfree(tg->cfs_rq[i]);
7814 if (tg->se)
7815 kfree(tg->se[i]);
6f505b16
PZ
7816 }
7817
7818 kfree(tg->cfs_rq);
7819 kfree(tg->se);
6f505b16
PZ
7820}
7821
ec7dc8ac
DG
7822static
7823int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7824{
29f59db3 7825 struct cfs_rq *cfs_rq;
eab17229 7826 struct sched_entity *se;
9b5b7751 7827 struct rq *rq;
29f59db3
SV
7828 int i;
7829
434d53b0 7830 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7831 if (!tg->cfs_rq)
7832 goto err;
434d53b0 7833 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7834 if (!tg->se)
7835 goto err;
052f1dc7
PZ
7836
7837 tg->shares = NICE_0_LOAD;
29f59db3
SV
7838
7839 for_each_possible_cpu(i) {
9b5b7751 7840 rq = cpu_rq(i);
29f59db3 7841
eab17229
LZ
7842 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7843 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7844 if (!cfs_rq)
7845 goto err;
7846
eab17229
LZ
7847 se = kzalloc_node(sizeof(struct sched_entity),
7848 GFP_KERNEL, cpu_to_node(i));
29f59db3 7849 if (!se)
dfc12eb2 7850 goto err_free_rq;
29f59db3 7851
eab17229 7852 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7853 }
7854
7855 return 1;
7856
dfc12eb2
PC
7857 err_free_rq:
7858 kfree(cfs_rq);
bccbe08a
PZ
7859 err:
7860 return 0;
7861}
7862
7863static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7864{
7865 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7866 &cpu_rq(cpu)->leaf_cfs_rq_list);
7867}
7868
7869static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7870{
7871 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7872}
6d6bc0ad 7873#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
7874static inline void free_fair_sched_group(struct task_group *tg)
7875{
7876}
7877
ec7dc8ac
DG
7878static inline
7879int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7880{
7881 return 1;
7882}
7883
7884static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7885{
7886}
7887
7888static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7889{
7890}
6d6bc0ad 7891#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
7892
7893#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7894static void free_rt_sched_group(struct task_group *tg)
7895{
7896 int i;
7897
d0b27fa7
PZ
7898 destroy_rt_bandwidth(&tg->rt_bandwidth);
7899
bccbe08a
PZ
7900 for_each_possible_cpu(i) {
7901 if (tg->rt_rq)
7902 kfree(tg->rt_rq[i]);
7903 if (tg->rt_se)
7904 kfree(tg->rt_se[i]);
7905 }
7906
7907 kfree(tg->rt_rq);
7908 kfree(tg->rt_se);
7909}
7910
ec7dc8ac
DG
7911static
7912int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7913{
7914 struct rt_rq *rt_rq;
eab17229 7915 struct sched_rt_entity *rt_se;
bccbe08a
PZ
7916 struct rq *rq;
7917 int i;
7918
434d53b0 7919 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7920 if (!tg->rt_rq)
7921 goto err;
434d53b0 7922 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7923 if (!tg->rt_se)
7924 goto err;
7925
d0b27fa7
PZ
7926 init_rt_bandwidth(&tg->rt_bandwidth,
7927 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
7928
7929 for_each_possible_cpu(i) {
7930 rq = cpu_rq(i);
7931
eab17229
LZ
7932 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7933 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
7934 if (!rt_rq)
7935 goto err;
29f59db3 7936
eab17229
LZ
7937 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7938 GFP_KERNEL, cpu_to_node(i));
6f505b16 7939 if (!rt_se)
dfc12eb2 7940 goto err_free_rq;
29f59db3 7941
eab17229 7942 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
7943 }
7944
bccbe08a
PZ
7945 return 1;
7946
dfc12eb2
PC
7947 err_free_rq:
7948 kfree(rt_rq);
bccbe08a
PZ
7949 err:
7950 return 0;
7951}
7952
7953static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7954{
7955 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7956 &cpu_rq(cpu)->leaf_rt_rq_list);
7957}
7958
7959static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7960{
7961 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7962}
6d6bc0ad 7963#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
7964static inline void free_rt_sched_group(struct task_group *tg)
7965{
7966}
7967
ec7dc8ac
DG
7968static inline
7969int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7970{
7971 return 1;
7972}
7973
7974static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7975{
7976}
7977
7978static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7979{
7980}
6d6bc0ad 7981#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 7982
7c941438 7983#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
7984static void free_sched_group(struct task_group *tg)
7985{
7986 free_fair_sched_group(tg);
7987 free_rt_sched_group(tg);
7988 kfree(tg);
7989}
7990
7991/* allocate runqueue etc for a new task group */
ec7dc8ac 7992struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7993{
7994 struct task_group *tg;
7995 unsigned long flags;
7996 int i;
7997
7998 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7999 if (!tg)
8000 return ERR_PTR(-ENOMEM);
8001
ec7dc8ac 8002 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8003 goto err;
8004
ec7dc8ac 8005 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8006 goto err;
8007
8ed36996 8008 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8009 for_each_possible_cpu(i) {
bccbe08a
PZ
8010 register_fair_sched_group(tg, i);
8011 register_rt_sched_group(tg, i);
9b5b7751 8012 }
6f505b16 8013 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8014
8015 WARN_ON(!parent); /* root should already exist */
8016
8017 tg->parent = parent;
f473aa5e 8018 INIT_LIST_HEAD(&tg->children);
09f2724a 8019 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8020 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8021
9b5b7751 8022 return tg;
29f59db3
SV
8023
8024err:
6f505b16 8025 free_sched_group(tg);
29f59db3
SV
8026 return ERR_PTR(-ENOMEM);
8027}
8028
9b5b7751 8029/* rcu callback to free various structures associated with a task group */
6f505b16 8030static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8031{
29f59db3 8032 /* now it should be safe to free those cfs_rqs */
6f505b16 8033 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8034}
8035
9b5b7751 8036/* Destroy runqueue etc associated with a task group */
4cf86d77 8037void sched_destroy_group(struct task_group *tg)
29f59db3 8038{
8ed36996 8039 unsigned long flags;
9b5b7751 8040 int i;
29f59db3 8041
8ed36996 8042 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8043 for_each_possible_cpu(i) {
bccbe08a
PZ
8044 unregister_fair_sched_group(tg, i);
8045 unregister_rt_sched_group(tg, i);
9b5b7751 8046 }
6f505b16 8047 list_del_rcu(&tg->list);
f473aa5e 8048 list_del_rcu(&tg->siblings);
8ed36996 8049 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8050
9b5b7751 8051 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8052 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8053}
8054
9b5b7751 8055/* change task's runqueue when it moves between groups.
3a252015
IM
8056 * The caller of this function should have put the task in its new group
8057 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8058 * reflect its new group.
9b5b7751
SV
8059 */
8060void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8061{
8062 int on_rq, running;
8063 unsigned long flags;
8064 struct rq *rq;
8065
8066 rq = task_rq_lock(tsk, &flags);
8067
051a1d1a 8068 running = task_current(rq, tsk);
29f59db3
SV
8069 on_rq = tsk->se.on_rq;
8070
0e1f3483 8071 if (on_rq)
29f59db3 8072 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8073 if (unlikely(running))
8074 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8075
6f505b16 8076 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8077
810b3817
PZ
8078#ifdef CONFIG_FAIR_GROUP_SCHED
8079 if (tsk->sched_class->moved_group)
88ec22d3 8080 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8081#endif
8082
0e1f3483
HS
8083 if (unlikely(running))
8084 tsk->sched_class->set_curr_task(rq);
8085 if (on_rq)
371fd7e7 8086 enqueue_task(rq, tsk, 0);
29f59db3 8087
29f59db3
SV
8088 task_rq_unlock(rq, &flags);
8089}
7c941438 8090#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8091
052f1dc7 8092#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8093static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8094{
8095 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8096 int on_rq;
8097
29f59db3 8098 on_rq = se->on_rq;
62fb1851 8099 if (on_rq)
29f59db3
SV
8100 dequeue_entity(cfs_rq, se, 0);
8101
8102 se->load.weight = shares;
e05510d0 8103 se->load.inv_weight = 0;
29f59db3 8104
62fb1851 8105 if (on_rq)
29f59db3 8106 enqueue_entity(cfs_rq, se, 0);
c09595f6 8107}
62fb1851 8108
c09595f6
PZ
8109static void set_se_shares(struct sched_entity *se, unsigned long shares)
8110{
8111 struct cfs_rq *cfs_rq = se->cfs_rq;
8112 struct rq *rq = cfs_rq->rq;
8113 unsigned long flags;
8114
05fa785c 8115 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8116 __set_se_shares(se, shares);
05fa785c 8117 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8118}
8119
8ed36996
PZ
8120static DEFINE_MUTEX(shares_mutex);
8121
4cf86d77 8122int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8123{
8124 int i;
8ed36996 8125 unsigned long flags;
c61935fd 8126
ec7dc8ac
DG
8127 /*
8128 * We can't change the weight of the root cgroup.
8129 */
8130 if (!tg->se[0])
8131 return -EINVAL;
8132
18d95a28
PZ
8133 if (shares < MIN_SHARES)
8134 shares = MIN_SHARES;
cb4ad1ff
MX
8135 else if (shares > MAX_SHARES)
8136 shares = MAX_SHARES;
62fb1851 8137
8ed36996 8138 mutex_lock(&shares_mutex);
9b5b7751 8139 if (tg->shares == shares)
5cb350ba 8140 goto done;
29f59db3 8141
8ed36996 8142 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8143 for_each_possible_cpu(i)
8144 unregister_fair_sched_group(tg, i);
f473aa5e 8145 list_del_rcu(&tg->siblings);
8ed36996 8146 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8147
8148 /* wait for any ongoing reference to this group to finish */
8149 synchronize_sched();
8150
8151 /*
8152 * Now we are free to modify the group's share on each cpu
8153 * w/o tripping rebalance_share or load_balance_fair.
8154 */
9b5b7751 8155 tg->shares = shares;
c09595f6
PZ
8156 for_each_possible_cpu(i) {
8157 /*
8158 * force a rebalance
8159 */
8160 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8161 set_se_shares(tg->se[i], shares);
c09595f6 8162 }
29f59db3 8163
6b2d7700
SV
8164 /*
8165 * Enable load balance activity on this group, by inserting it back on
8166 * each cpu's rq->leaf_cfs_rq_list.
8167 */
8ed36996 8168 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8169 for_each_possible_cpu(i)
8170 register_fair_sched_group(tg, i);
f473aa5e 8171 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8172 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8173done:
8ed36996 8174 mutex_unlock(&shares_mutex);
9b5b7751 8175 return 0;
29f59db3
SV
8176}
8177
5cb350ba
DG
8178unsigned long sched_group_shares(struct task_group *tg)
8179{
8180 return tg->shares;
8181}
052f1dc7 8182#endif
5cb350ba 8183
052f1dc7 8184#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8185/*
9f0c1e56 8186 * Ensure that the real time constraints are schedulable.
6f505b16 8187 */
9f0c1e56
PZ
8188static DEFINE_MUTEX(rt_constraints_mutex);
8189
8190static unsigned long to_ratio(u64 period, u64 runtime)
8191{
8192 if (runtime == RUNTIME_INF)
9a7e0b18 8193 return 1ULL << 20;
9f0c1e56 8194
9a7e0b18 8195 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8196}
8197
9a7e0b18
PZ
8198/* Must be called with tasklist_lock held */
8199static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8200{
9a7e0b18 8201 struct task_struct *g, *p;
b40b2e8e 8202
9a7e0b18
PZ
8203 do_each_thread(g, p) {
8204 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8205 return 1;
8206 } while_each_thread(g, p);
b40b2e8e 8207
9a7e0b18
PZ
8208 return 0;
8209}
b40b2e8e 8210
9a7e0b18
PZ
8211struct rt_schedulable_data {
8212 struct task_group *tg;
8213 u64 rt_period;
8214 u64 rt_runtime;
8215};
b40b2e8e 8216
9a7e0b18
PZ
8217static int tg_schedulable(struct task_group *tg, void *data)
8218{
8219 struct rt_schedulable_data *d = data;
8220 struct task_group *child;
8221 unsigned long total, sum = 0;
8222 u64 period, runtime;
b40b2e8e 8223
9a7e0b18
PZ
8224 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8225 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8226
9a7e0b18
PZ
8227 if (tg == d->tg) {
8228 period = d->rt_period;
8229 runtime = d->rt_runtime;
b40b2e8e 8230 }
b40b2e8e 8231
4653f803
PZ
8232 /*
8233 * Cannot have more runtime than the period.
8234 */
8235 if (runtime > period && runtime != RUNTIME_INF)
8236 return -EINVAL;
6f505b16 8237
4653f803
PZ
8238 /*
8239 * Ensure we don't starve existing RT tasks.
8240 */
9a7e0b18
PZ
8241 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8242 return -EBUSY;
6f505b16 8243
9a7e0b18 8244 total = to_ratio(period, runtime);
6f505b16 8245
4653f803
PZ
8246 /*
8247 * Nobody can have more than the global setting allows.
8248 */
8249 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8250 return -EINVAL;
6f505b16 8251
4653f803
PZ
8252 /*
8253 * The sum of our children's runtime should not exceed our own.
8254 */
9a7e0b18
PZ
8255 list_for_each_entry_rcu(child, &tg->children, siblings) {
8256 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8257 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8258
9a7e0b18
PZ
8259 if (child == d->tg) {
8260 period = d->rt_period;
8261 runtime = d->rt_runtime;
8262 }
6f505b16 8263
9a7e0b18 8264 sum += to_ratio(period, runtime);
9f0c1e56 8265 }
6f505b16 8266
9a7e0b18
PZ
8267 if (sum > total)
8268 return -EINVAL;
8269
8270 return 0;
6f505b16
PZ
8271}
8272
9a7e0b18 8273static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8274{
9a7e0b18
PZ
8275 struct rt_schedulable_data data = {
8276 .tg = tg,
8277 .rt_period = period,
8278 .rt_runtime = runtime,
8279 };
8280
8281 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8282}
8283
d0b27fa7
PZ
8284static int tg_set_bandwidth(struct task_group *tg,
8285 u64 rt_period, u64 rt_runtime)
6f505b16 8286{
ac086bc2 8287 int i, err = 0;
9f0c1e56 8288
9f0c1e56 8289 mutex_lock(&rt_constraints_mutex);
521f1a24 8290 read_lock(&tasklist_lock);
9a7e0b18
PZ
8291 err = __rt_schedulable(tg, rt_period, rt_runtime);
8292 if (err)
9f0c1e56 8293 goto unlock;
ac086bc2 8294
0986b11b 8295 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8296 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8297 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8298
8299 for_each_possible_cpu(i) {
8300 struct rt_rq *rt_rq = tg->rt_rq[i];
8301
0986b11b 8302 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8303 rt_rq->rt_runtime = rt_runtime;
0986b11b 8304 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8305 }
0986b11b 8306 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8307 unlock:
521f1a24 8308 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8309 mutex_unlock(&rt_constraints_mutex);
8310
8311 return err;
6f505b16
PZ
8312}
8313
d0b27fa7
PZ
8314int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8315{
8316 u64 rt_runtime, rt_period;
8317
8318 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8319 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8320 if (rt_runtime_us < 0)
8321 rt_runtime = RUNTIME_INF;
8322
8323 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8324}
8325
9f0c1e56
PZ
8326long sched_group_rt_runtime(struct task_group *tg)
8327{
8328 u64 rt_runtime_us;
8329
d0b27fa7 8330 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8331 return -1;
8332
d0b27fa7 8333 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8334 do_div(rt_runtime_us, NSEC_PER_USEC);
8335 return rt_runtime_us;
8336}
d0b27fa7
PZ
8337
8338int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8339{
8340 u64 rt_runtime, rt_period;
8341
8342 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8343 rt_runtime = tg->rt_bandwidth.rt_runtime;
8344
619b0488
R
8345 if (rt_period == 0)
8346 return -EINVAL;
8347
d0b27fa7
PZ
8348 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8349}
8350
8351long sched_group_rt_period(struct task_group *tg)
8352{
8353 u64 rt_period_us;
8354
8355 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8356 do_div(rt_period_us, NSEC_PER_USEC);
8357 return rt_period_us;
8358}
8359
8360static int sched_rt_global_constraints(void)
8361{
4653f803 8362 u64 runtime, period;
d0b27fa7
PZ
8363 int ret = 0;
8364
ec5d4989
HS
8365 if (sysctl_sched_rt_period <= 0)
8366 return -EINVAL;
8367
4653f803
PZ
8368 runtime = global_rt_runtime();
8369 period = global_rt_period();
8370
8371 /*
8372 * Sanity check on the sysctl variables.
8373 */
8374 if (runtime > period && runtime != RUNTIME_INF)
8375 return -EINVAL;
10b612f4 8376
d0b27fa7 8377 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8378 read_lock(&tasklist_lock);
4653f803 8379 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8380 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8381 mutex_unlock(&rt_constraints_mutex);
8382
8383 return ret;
8384}
54e99124
DG
8385
8386int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8387{
8388 /* Don't accept realtime tasks when there is no way for them to run */
8389 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8390 return 0;
8391
8392 return 1;
8393}
8394
6d6bc0ad 8395#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8396static int sched_rt_global_constraints(void)
8397{
ac086bc2
PZ
8398 unsigned long flags;
8399 int i;
8400
ec5d4989
HS
8401 if (sysctl_sched_rt_period <= 0)
8402 return -EINVAL;
8403
60aa605d
PZ
8404 /*
8405 * There's always some RT tasks in the root group
8406 * -- migration, kstopmachine etc..
8407 */
8408 if (sysctl_sched_rt_runtime == 0)
8409 return -EBUSY;
8410
0986b11b 8411 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8412 for_each_possible_cpu(i) {
8413 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8414
0986b11b 8415 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8416 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8417 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8418 }
0986b11b 8419 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8420
d0b27fa7
PZ
8421 return 0;
8422}
6d6bc0ad 8423#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8424
8425int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8426 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8427 loff_t *ppos)
8428{
8429 int ret;
8430 int old_period, old_runtime;
8431 static DEFINE_MUTEX(mutex);
8432
8433 mutex_lock(&mutex);
8434 old_period = sysctl_sched_rt_period;
8435 old_runtime = sysctl_sched_rt_runtime;
8436
8d65af78 8437 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8438
8439 if (!ret && write) {
8440 ret = sched_rt_global_constraints();
8441 if (ret) {
8442 sysctl_sched_rt_period = old_period;
8443 sysctl_sched_rt_runtime = old_runtime;
8444 } else {
8445 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8446 def_rt_bandwidth.rt_period =
8447 ns_to_ktime(global_rt_period());
8448 }
8449 }
8450 mutex_unlock(&mutex);
8451
8452 return ret;
8453}
68318b8e 8454
052f1dc7 8455#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8456
8457/* return corresponding task_group object of a cgroup */
2b01dfe3 8458static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8459{
2b01dfe3
PM
8460 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8461 struct task_group, css);
68318b8e
SV
8462}
8463
8464static struct cgroup_subsys_state *
2b01dfe3 8465cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8466{
ec7dc8ac 8467 struct task_group *tg, *parent;
68318b8e 8468
2b01dfe3 8469 if (!cgrp->parent) {
68318b8e 8470 /* This is early initialization for the top cgroup */
68318b8e
SV
8471 return &init_task_group.css;
8472 }
8473
ec7dc8ac
DG
8474 parent = cgroup_tg(cgrp->parent);
8475 tg = sched_create_group(parent);
68318b8e
SV
8476 if (IS_ERR(tg))
8477 return ERR_PTR(-ENOMEM);
8478
68318b8e
SV
8479 return &tg->css;
8480}
8481
41a2d6cf
IM
8482static void
8483cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8484{
2b01dfe3 8485 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8486
8487 sched_destroy_group(tg);
8488}
8489
41a2d6cf 8490static int
be367d09 8491cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8492{
b68aa230 8493#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8494 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8495 return -EINVAL;
8496#else
68318b8e
SV
8497 /* We don't support RT-tasks being in separate groups */
8498 if (tsk->sched_class != &fair_sched_class)
8499 return -EINVAL;
b68aa230 8500#endif
be367d09
BB
8501 return 0;
8502}
68318b8e 8503
be367d09
BB
8504static int
8505cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8506 struct task_struct *tsk, bool threadgroup)
8507{
8508 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8509 if (retval)
8510 return retval;
8511 if (threadgroup) {
8512 struct task_struct *c;
8513 rcu_read_lock();
8514 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8515 retval = cpu_cgroup_can_attach_task(cgrp, c);
8516 if (retval) {
8517 rcu_read_unlock();
8518 return retval;
8519 }
8520 }
8521 rcu_read_unlock();
8522 }
68318b8e
SV
8523 return 0;
8524}
8525
8526static void
2b01dfe3 8527cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8528 struct cgroup *old_cont, struct task_struct *tsk,
8529 bool threadgroup)
68318b8e
SV
8530{
8531 sched_move_task(tsk);
be367d09
BB
8532 if (threadgroup) {
8533 struct task_struct *c;
8534 rcu_read_lock();
8535 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8536 sched_move_task(c);
8537 }
8538 rcu_read_unlock();
8539 }
68318b8e
SV
8540}
8541
052f1dc7 8542#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8543static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8544 u64 shareval)
68318b8e 8545{
2b01dfe3 8546 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8547}
8548
f4c753b7 8549static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8550{
2b01dfe3 8551 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8552
8553 return (u64) tg->shares;
8554}
6d6bc0ad 8555#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8556
052f1dc7 8557#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8558static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8559 s64 val)
6f505b16 8560{
06ecb27c 8561 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8562}
8563
06ecb27c 8564static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8565{
06ecb27c 8566 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8567}
d0b27fa7
PZ
8568
8569static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8570 u64 rt_period_us)
8571{
8572 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8573}
8574
8575static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8576{
8577 return sched_group_rt_period(cgroup_tg(cgrp));
8578}
6d6bc0ad 8579#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8580
fe5c7cc2 8581static struct cftype cpu_files[] = {
052f1dc7 8582#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8583 {
8584 .name = "shares",
f4c753b7
PM
8585 .read_u64 = cpu_shares_read_u64,
8586 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8587 },
052f1dc7
PZ
8588#endif
8589#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8590 {
9f0c1e56 8591 .name = "rt_runtime_us",
06ecb27c
PM
8592 .read_s64 = cpu_rt_runtime_read,
8593 .write_s64 = cpu_rt_runtime_write,
6f505b16 8594 },
d0b27fa7
PZ
8595 {
8596 .name = "rt_period_us",
f4c753b7
PM
8597 .read_u64 = cpu_rt_period_read_uint,
8598 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8599 },
052f1dc7 8600#endif
68318b8e
SV
8601};
8602
8603static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8604{
fe5c7cc2 8605 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8606}
8607
8608struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8609 .name = "cpu",
8610 .create = cpu_cgroup_create,
8611 .destroy = cpu_cgroup_destroy,
8612 .can_attach = cpu_cgroup_can_attach,
8613 .attach = cpu_cgroup_attach,
8614 .populate = cpu_cgroup_populate,
8615 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8616 .early_init = 1,
8617};
8618
052f1dc7 8619#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8620
8621#ifdef CONFIG_CGROUP_CPUACCT
8622
8623/*
8624 * CPU accounting code for task groups.
8625 *
8626 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8627 * (balbir@in.ibm.com).
8628 */
8629
934352f2 8630/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8631struct cpuacct {
8632 struct cgroup_subsys_state css;
8633 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8634 u64 __percpu *cpuusage;
ef12fefa 8635 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8636 struct cpuacct *parent;
d842de87
SV
8637};
8638
8639struct cgroup_subsys cpuacct_subsys;
8640
8641/* return cpu accounting group corresponding to this container */
32cd756a 8642static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8643{
32cd756a 8644 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8645 struct cpuacct, css);
8646}
8647
8648/* return cpu accounting group to which this task belongs */
8649static inline struct cpuacct *task_ca(struct task_struct *tsk)
8650{
8651 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8652 struct cpuacct, css);
8653}
8654
8655/* create a new cpu accounting group */
8656static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8657 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8658{
8659 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8660 int i;
d842de87
SV
8661
8662 if (!ca)
ef12fefa 8663 goto out;
d842de87
SV
8664
8665 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8666 if (!ca->cpuusage)
8667 goto out_free_ca;
8668
8669 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8670 if (percpu_counter_init(&ca->cpustat[i], 0))
8671 goto out_free_counters;
d842de87 8672
934352f2
BR
8673 if (cgrp->parent)
8674 ca->parent = cgroup_ca(cgrp->parent);
8675
d842de87 8676 return &ca->css;
ef12fefa
BR
8677
8678out_free_counters:
8679 while (--i >= 0)
8680 percpu_counter_destroy(&ca->cpustat[i]);
8681 free_percpu(ca->cpuusage);
8682out_free_ca:
8683 kfree(ca);
8684out:
8685 return ERR_PTR(-ENOMEM);
d842de87
SV
8686}
8687
8688/* destroy an existing cpu accounting group */
41a2d6cf 8689static void
32cd756a 8690cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8691{
32cd756a 8692 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8693 int i;
d842de87 8694
ef12fefa
BR
8695 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8696 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8697 free_percpu(ca->cpuusage);
8698 kfree(ca);
8699}
8700
720f5498
KC
8701static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8702{
b36128c8 8703 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8704 u64 data;
8705
8706#ifndef CONFIG_64BIT
8707 /*
8708 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8709 */
05fa785c 8710 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8711 data = *cpuusage;
05fa785c 8712 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8713#else
8714 data = *cpuusage;
8715#endif
8716
8717 return data;
8718}
8719
8720static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8721{
b36128c8 8722 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8723
8724#ifndef CONFIG_64BIT
8725 /*
8726 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8727 */
05fa785c 8728 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8729 *cpuusage = val;
05fa785c 8730 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8731#else
8732 *cpuusage = val;
8733#endif
8734}
8735
d842de87 8736/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8737static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8738{
32cd756a 8739 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8740 u64 totalcpuusage = 0;
8741 int i;
8742
720f5498
KC
8743 for_each_present_cpu(i)
8744 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8745
8746 return totalcpuusage;
8747}
8748
0297b803
DG
8749static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8750 u64 reset)
8751{
8752 struct cpuacct *ca = cgroup_ca(cgrp);
8753 int err = 0;
8754 int i;
8755
8756 if (reset) {
8757 err = -EINVAL;
8758 goto out;
8759 }
8760
720f5498
KC
8761 for_each_present_cpu(i)
8762 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8763
0297b803
DG
8764out:
8765 return err;
8766}
8767
e9515c3c
KC
8768static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8769 struct seq_file *m)
8770{
8771 struct cpuacct *ca = cgroup_ca(cgroup);
8772 u64 percpu;
8773 int i;
8774
8775 for_each_present_cpu(i) {
8776 percpu = cpuacct_cpuusage_read(ca, i);
8777 seq_printf(m, "%llu ", (unsigned long long) percpu);
8778 }
8779 seq_printf(m, "\n");
8780 return 0;
8781}
8782
ef12fefa
BR
8783static const char *cpuacct_stat_desc[] = {
8784 [CPUACCT_STAT_USER] = "user",
8785 [CPUACCT_STAT_SYSTEM] = "system",
8786};
8787
8788static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8789 struct cgroup_map_cb *cb)
8790{
8791 struct cpuacct *ca = cgroup_ca(cgrp);
8792 int i;
8793
8794 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8795 s64 val = percpu_counter_read(&ca->cpustat[i]);
8796 val = cputime64_to_clock_t(val);
8797 cb->fill(cb, cpuacct_stat_desc[i], val);
8798 }
8799 return 0;
8800}
8801
d842de87
SV
8802static struct cftype files[] = {
8803 {
8804 .name = "usage",
f4c753b7
PM
8805 .read_u64 = cpuusage_read,
8806 .write_u64 = cpuusage_write,
d842de87 8807 },
e9515c3c
KC
8808 {
8809 .name = "usage_percpu",
8810 .read_seq_string = cpuacct_percpu_seq_read,
8811 },
ef12fefa
BR
8812 {
8813 .name = "stat",
8814 .read_map = cpuacct_stats_show,
8815 },
d842de87
SV
8816};
8817
32cd756a 8818static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8819{
32cd756a 8820 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8821}
8822
8823/*
8824 * charge this task's execution time to its accounting group.
8825 *
8826 * called with rq->lock held.
8827 */
8828static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8829{
8830 struct cpuacct *ca;
934352f2 8831 int cpu;
d842de87 8832
c40c6f85 8833 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8834 return;
8835
934352f2 8836 cpu = task_cpu(tsk);
a18b83b7
BR
8837
8838 rcu_read_lock();
8839
d842de87 8840 ca = task_ca(tsk);
d842de87 8841
934352f2 8842 for (; ca; ca = ca->parent) {
b36128c8 8843 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8844 *cpuusage += cputime;
8845 }
a18b83b7
BR
8846
8847 rcu_read_unlock();
d842de87
SV
8848}
8849
fa535a77
AB
8850/*
8851 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8852 * in cputime_t units. As a result, cpuacct_update_stats calls
8853 * percpu_counter_add with values large enough to always overflow the
8854 * per cpu batch limit causing bad SMP scalability.
8855 *
8856 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8857 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8858 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8859 */
8860#ifdef CONFIG_SMP
8861#define CPUACCT_BATCH \
8862 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8863#else
8864#define CPUACCT_BATCH 0
8865#endif
8866
ef12fefa
BR
8867/*
8868 * Charge the system/user time to the task's accounting group.
8869 */
8870static void cpuacct_update_stats(struct task_struct *tsk,
8871 enum cpuacct_stat_index idx, cputime_t val)
8872{
8873 struct cpuacct *ca;
fa535a77 8874 int batch = CPUACCT_BATCH;
ef12fefa
BR
8875
8876 if (unlikely(!cpuacct_subsys.active))
8877 return;
8878
8879 rcu_read_lock();
8880 ca = task_ca(tsk);
8881
8882 do {
fa535a77 8883 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
8884 ca = ca->parent;
8885 } while (ca);
8886 rcu_read_unlock();
8887}
8888
d842de87
SV
8889struct cgroup_subsys cpuacct_subsys = {
8890 .name = "cpuacct",
8891 .create = cpuacct_create,
8892 .destroy = cpuacct_destroy,
8893 .populate = cpuacct_populate,
8894 .subsys_id = cpuacct_subsys_id,
8895};
8896#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
8897
8898#ifndef CONFIG_SMP
8899
03b042bf
PM
8900void synchronize_sched_expedited(void)
8901{
fc390cde 8902 barrier();
03b042bf
PM
8903}
8904EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8905
8906#else /* #ifndef CONFIG_SMP */
8907
cc631fb7 8908static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 8909
cc631fb7 8910static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 8911{
969c7921
TH
8912 /*
8913 * There must be a full memory barrier on each affected CPU
8914 * between the time that try_stop_cpus() is called and the
8915 * time that it returns.
8916 *
8917 * In the current initial implementation of cpu_stop, the
8918 * above condition is already met when the control reaches
8919 * this point and the following smp_mb() is not strictly
8920 * necessary. Do smp_mb() anyway for documentation and
8921 * robustness against future implementation changes.
8922 */
cc631fb7 8923 smp_mb(); /* See above comment block. */
969c7921 8924 return 0;
03b042bf 8925}
03b042bf
PM
8926
8927/*
8928 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8929 * approach to force grace period to end quickly. This consumes
8930 * significant time on all CPUs, and is thus not recommended for
8931 * any sort of common-case code.
8932 *
8933 * Note that it is illegal to call this function while holding any
8934 * lock that is acquired by a CPU-hotplug notifier. Failing to
8935 * observe this restriction will result in deadlock.
8936 */
8937void synchronize_sched_expedited(void)
8938{
969c7921 8939 int snap, trycount = 0;
03b042bf
PM
8940
8941 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 8942 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 8943 get_online_cpus();
969c7921
TH
8944 while (try_stop_cpus(cpu_online_mask,
8945 synchronize_sched_expedited_cpu_stop,
94458d5e 8946 NULL) == -EAGAIN) {
03b042bf
PM
8947 put_online_cpus();
8948 if (trycount++ < 10)
8949 udelay(trycount * num_online_cpus());
8950 else {
8951 synchronize_sched();
8952 return;
8953 }
969c7921 8954 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
8955 smp_mb(); /* ensure test happens before caller kfree */
8956 return;
8957 }
8958 get_online_cpus();
8959 }
969c7921 8960 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 8961 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 8962 put_online_cpus();
03b042bf
PM
8963}
8964EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8965
8966#endif /* #else #ifndef CONFIG_SMP */