]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: Always provide p->on_cpu
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee
HC
233/*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
6aa645ea
IM
315
316 struct rb_root tasks_timeline;
317 struct rb_node *rb_leftmost;
4a55bd5e
PZ
318
319 struct list_head tasks;
320 struct list_head *balance_iterator;
321
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
ac53db59 326 struct sched_entity *curr, *next, *last, *skip;
ddc97297 327
5ac5c4d6 328 unsigned int nr_spread_over;
ddc97297 329
62160e3f 330#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
331 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
332
41a2d6cf
IM
333 /*
334 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
335 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
336 * (like users, containers etc.)
337 *
338 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
339 * list is used during load balance.
340 */
3d4b47b4 341 int on_list;
41a2d6cf
IM
342 struct list_head leaf_cfs_rq_list;
343 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
344
345#ifdef CONFIG_SMP
c09595f6 346 /*
c8cba857 347 * the part of load.weight contributed by tasks
c09595f6 348 */
c8cba857 349 unsigned long task_weight;
c09595f6 350
c8cba857
PZ
351 /*
352 * h_load = weight * f(tg)
353 *
354 * Where f(tg) is the recursive weight fraction assigned to
355 * this group.
356 */
357 unsigned long h_load;
c09595f6 358
c8cba857 359 /*
3b3d190e
PT
360 * Maintaining per-cpu shares distribution for group scheduling
361 *
362 * load_stamp is the last time we updated the load average
363 * load_last is the last time we updated the load average and saw load
364 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 365 */
2069dd75
PZ
366 u64 load_avg;
367 u64 load_period;
3b3d190e 368 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 369
2069dd75 370 unsigned long load_contribution;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2 429 struct cpupri cpupri;
57d885fe
GH
430};
431
dc938520
GH
432/*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
57d885fe
GH
436static struct root_domain def_root_domain;
437
ed2d372c 438#endif /* CONFIG_SMP */
57d885fe 439
1da177e4
LT
440/*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
70b97a7f 447struct rq {
d8016491 448 /* runqueue lock: */
05fa785c 449 raw_spinlock_t lock;
1da177e4
LT
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
6aa645ea
IM
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 458 unsigned long last_load_update_tick;
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
83cd4fe2 461 unsigned char nohz_balance_kick;
46cb4b7c 462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
34f971f6 489 struct task_struct *curr, *idle, *stop;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
305e6835 494 u64 clock_task;
6aa645ea 495
1da177e4
LT
496 atomic_t nr_iowait;
497
498#ifdef CONFIG_SMP
0eab9146 499 struct root_domain *rd;
1da177e4
LT
500 struct sched_domain *sd;
501
e51fd5e2
PZ
502 unsigned long cpu_power;
503
a0a522ce 504 unsigned char idle_at_tick;
1da177e4 505 /* For active balancing */
3f029d3c 506 int post_schedule;
1da177e4
LT
507 int active_balance;
508 int push_cpu;
969c7921 509 struct cpu_stop_work active_balance_work;
d8016491
IM
510 /* cpu of this runqueue: */
511 int cpu;
1f11eb6a 512 int online;
1da177e4 513
a8a51d5e 514 unsigned long avg_load_per_task;
1da177e4 515
e9e9250b
PZ
516 u64 rt_avg;
517 u64 age_stamp;
1b9508f6
MG
518 u64 idle_stamp;
519 u64 avg_idle;
1da177e4
LT
520#endif
521
aa483808
VP
522#ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524#endif
525
dce48a84
TG
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
8f4d37ec 530#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
531#ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534#endif
8f4d37ec
PZ
535 struct hrtimer hrtick_timer;
536#endif
537
1da177e4
LT
538#ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
9c2c4802
KC
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
543
544 /* sys_sched_yield() stats */
480b9434 545 unsigned int yld_count;
1da177e4
LT
546
547 /* schedule() stats */
480b9434
KC
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
1da177e4
LT
551
552 /* try_to_wake_up() stats */
480b9434
KC
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
1da177e4
LT
555#endif
556};
557
f34e3b61 558static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 559
a64692a3 560
1e5a7405 561static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 562
0a2966b4
CL
563static inline int cpu_of(struct rq *rq)
564{
565#ifdef CONFIG_SMP
566 return rq->cpu;
567#else
568 return 0;
569#endif
570}
571
497f0ab3 572#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
573 rcu_dereference_check((p), \
574 rcu_read_lock_sched_held() || \
575 lockdep_is_held(&sched_domains_mutex))
576
674311d5
NP
577/*
578 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 579 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
580 *
581 * The domain tree of any CPU may only be accessed from within
582 * preempt-disabled sections.
583 */
48f24c4d 584#define for_each_domain(cpu, __sd) \
497f0ab3 585 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
586
587#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
588#define this_rq() (&__get_cpu_var(runqueues))
589#define task_rq(p) cpu_rq(task_cpu(p))
590#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 591#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 592
dc61b1d6
PZ
593#ifdef CONFIG_CGROUP_SCHED
594
595/*
596 * Return the group to which this tasks belongs.
597 *
598 * We use task_subsys_state_check() and extend the RCU verification
599 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
600 * holds that lock for each task it moves into the cgroup. Therefore
601 * by holding that lock, we pin the task to the current cgroup.
602 */
603static inline struct task_group *task_group(struct task_struct *p)
604{
5091faa4 605 struct task_group *tg;
dc61b1d6
PZ
606 struct cgroup_subsys_state *css;
607
608 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
609 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
610 tg = container_of(css, struct task_group, css);
611
612 return autogroup_task_group(p, tg);
dc61b1d6
PZ
613}
614
615/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617{
618#ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621#endif
622
623#ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626#endif
627}
628
629#else /* CONFIG_CGROUP_SCHED */
630
631static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632static inline struct task_group *task_group(struct task_struct *p)
633{
634 return NULL;
635}
636
637#endif /* CONFIG_CGROUP_SCHED */
638
fe44d621 639static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 640
fe44d621 641static void update_rq_clock(struct rq *rq)
3e51f33f 642{
fe44d621 643 s64 delta;
305e6835 644
f26f9aff
MG
645 if (rq->skip_clock_update)
646 return;
aa483808 647
fe44d621
PZ
648 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
649 rq->clock += delta;
650 update_rq_clock_task(rq, delta);
3e51f33f
PZ
651}
652
bf5c91ba
IM
653/*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656#ifdef CONFIG_SCHED_DEBUG
657# define const_debug __read_mostly
658#else
659# define const_debug static const
660#endif
661
017730c1 662/**
1fd06bb1 663 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 664 * @cpu: the processor in question.
017730c1 665 *
017730c1
IM
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
89f19f04 669int runqueue_is_locked(int cpu)
017730c1 670{
05fa785c 671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
672}
673
bf5c91ba
IM
674/*
675 * Debugging: various feature bits
676 */
f00b45c1
PZ
677
678#define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
bf5c91ba 681enum {
f00b45c1 682#include "sched_features.h"
bf5c91ba
IM
683};
684
f00b45c1
PZ
685#undef SCHED_FEAT
686
687#define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
bf5c91ba 690const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
691#include "sched_features.h"
692 0;
693
694#undef SCHED_FEAT
695
696#ifdef CONFIG_SCHED_DEBUG
697#define SCHED_FEAT(name, enabled) \
698 #name ,
699
983ed7a6 700static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
701#include "sched_features.h"
702 NULL
703};
704
705#undef SCHED_FEAT
706
34f3a814 707static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 708{
f00b45c1
PZ
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 715 }
34f3a814 716 seq_puts(m, "\n");
f00b45c1 717
34f3a814 718 return 0;
f00b45c1
PZ
719}
720
721static ssize_t
722sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724{
725 char buf[64];
7740191c 726 char *cmp;
f00b45c1
PZ
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
7740191c 737 cmp = strstrip(buf);
f00b45c1 738
524429c3 739 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
7740191c 745 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
42994724 757 *ppos += cnt;
f00b45c1
PZ
758
759 return cnt;
760}
761
34f3a814
LZ
762static int sched_feat_open(struct inode *inode, struct file *filp)
763{
764 return single_open(filp, sched_feat_show, NULL);
765}
766
828c0950 767static const struct file_operations sched_feat_fops = {
34f3a814
LZ
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
f00b45c1
PZ
773};
774
775static __init int sched_init_debug(void)
776{
f00b45c1
PZ
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781}
782late_initcall(sched_init_debug);
783
784#endif
785
786#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 787
b82d9fdd
PZ
788/*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
e9e9250b
PZ
794/*
795 * period over which we average the RT time consumption, measured
796 * in ms.
797 *
798 * default: 1s
799 */
800const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
801
fa85ae24 802/*
9f0c1e56 803 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
804 * default: 1s
805 */
9f0c1e56 806unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 807
6892b75e
IM
808static __read_mostly int scheduler_running;
809
9f0c1e56
PZ
810/*
811 * part of the period that we allow rt tasks to run in us.
812 * default: 0.95s
813 */
814int sysctl_sched_rt_runtime = 950000;
fa85ae24 815
d0b27fa7
PZ
816static inline u64 global_rt_period(void)
817{
818 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
819}
820
821static inline u64 global_rt_runtime(void)
822{
e26873bb 823 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
824 return RUNTIME_INF;
825
826 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
827}
fa85ae24 828
1da177e4 829#ifndef prepare_arch_switch
4866cde0
NP
830# define prepare_arch_switch(next) do { } while (0)
831#endif
832#ifndef finish_arch_switch
833# define finish_arch_switch(prev) do { } while (0)
834#endif
835
051a1d1a
DA
836static inline int task_current(struct rq *rq, struct task_struct *p)
837{
838 return rq->curr == p;
839}
840
70b97a7f 841static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 842{
3ca7a440
PZ
843#ifdef CONFIG_SMP
844 return p->on_cpu;
845#else
051a1d1a 846 return task_current(rq, p);
3ca7a440 847#endif
4866cde0
NP
848}
849
3ca7a440 850#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 851static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 852{
3ca7a440
PZ
853#ifdef CONFIG_SMP
854 /*
855 * We can optimise this out completely for !SMP, because the
856 * SMP rebalancing from interrupt is the only thing that cares
857 * here.
858 */
859 next->on_cpu = 1;
860#endif
4866cde0
NP
861}
862
70b97a7f 863static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 864{
3ca7a440
PZ
865#ifdef CONFIG_SMP
866 /*
867 * After ->on_cpu is cleared, the task can be moved to a different CPU.
868 * We must ensure this doesn't happen until the switch is completely
869 * finished.
870 */
871 smp_wmb();
872 prev->on_cpu = 0;
873#endif
da04c035
IM
874#ifdef CONFIG_DEBUG_SPINLOCK
875 /* this is a valid case when another task releases the spinlock */
876 rq->lock.owner = current;
877#endif
8a25d5de
IM
878 /*
879 * If we are tracking spinlock dependencies then we have to
880 * fix up the runqueue lock - which gets 'carried over' from
881 * prev into current:
882 */
883 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
884
05fa785c 885 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
886}
887
888#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 889static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
890{
891#ifdef CONFIG_SMP
892 /*
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
896 */
3ca7a440 897 next->on_cpu = 1;
4866cde0
NP
898#endif
899#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 900 raw_spin_unlock_irq(&rq->lock);
4866cde0 901#else
05fa785c 902 raw_spin_unlock(&rq->lock);
4866cde0
NP
903#endif
904}
905
70b97a7f 906static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
3ca7a440 910 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
913 */
914 smp_wmb();
3ca7a440 915 prev->on_cpu = 0;
4866cde0
NP
916#endif
917#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
1da177e4 919#endif
4866cde0
NP
920}
921#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 922
0970d299 923/*
65cc8e48
PZ
924 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
925 * against ttwu().
0970d299
PZ
926 */
927static inline int task_is_waking(struct task_struct *p)
928{
0017d735 929 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
930}
931
b29739f9
IM
932/*
933 * __task_rq_lock - lock the runqueue a given task resides on.
934 * Must be called interrupts disabled.
935 */
70b97a7f 936static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
937 __acquires(rq->lock)
938{
0970d299
PZ
939 struct rq *rq;
940
3a5c359a 941 for (;;) {
0970d299 942 rq = task_rq(p);
05fa785c 943 raw_spin_lock(&rq->lock);
65cc8e48 944 if (likely(rq == task_rq(p)))
3a5c359a 945 return rq;
05fa785c 946 raw_spin_unlock(&rq->lock);
b29739f9 947 }
b29739f9
IM
948}
949
1da177e4
LT
950/*
951 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 952 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
953 * explicitly disabling preemption.
954 */
70b97a7f 955static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
956 __acquires(rq->lock)
957{
70b97a7f 958 struct rq *rq;
1da177e4 959
3a5c359a
AK
960 for (;;) {
961 local_irq_save(*flags);
962 rq = task_rq(p);
05fa785c 963 raw_spin_lock(&rq->lock);
65cc8e48 964 if (likely(rq == task_rq(p)))
3a5c359a 965 return rq;
05fa785c 966 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 967 }
1da177e4
LT
968}
969
a9957449 970static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
971 __releases(rq->lock)
972{
05fa785c 973 raw_spin_unlock(&rq->lock);
b29739f9
IM
974}
975
70b97a7f 976static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
977 __releases(rq->lock)
978{
05fa785c 979 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
980}
981
1da177e4 982/*
cc2a73b5 983 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 984 */
a9957449 985static struct rq *this_rq_lock(void)
1da177e4
LT
986 __acquires(rq->lock)
987{
70b97a7f 988 struct rq *rq;
1da177e4
LT
989
990 local_irq_disable();
991 rq = this_rq();
05fa785c 992 raw_spin_lock(&rq->lock);
1da177e4
LT
993
994 return rq;
995}
996
8f4d37ec
PZ
997#ifdef CONFIG_SCHED_HRTICK
998/*
999 * Use HR-timers to deliver accurate preemption points.
1000 *
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1004 *
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1007 */
8f4d37ec
PZ
1008
1009/*
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1013 */
1014static inline int hrtick_enabled(struct rq *rq)
1015{
1016 if (!sched_feat(HRTICK))
1017 return 0;
ba42059f 1018 if (!cpu_active(cpu_of(rq)))
b328ca18 1019 return 0;
8f4d37ec
PZ
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021}
1022
8f4d37ec
PZ
1023static void hrtick_clear(struct rq *rq)
1024{
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1027}
1028
8f4d37ec
PZ
1029/*
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1032 */
1033static enum hrtimer_restart hrtick(struct hrtimer *timer)
1034{
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1036
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1038
05fa785c 1039 raw_spin_lock(&rq->lock);
3e51f33f 1040 update_rq_clock(rq);
8f4d37ec 1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1042 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1043
1044 return HRTIMER_NORESTART;
1045}
1046
95e904c7 1047#ifdef CONFIG_SMP
31656519
PZ
1048/*
1049 * called from hardirq (IPI) context
1050 */
1051static void __hrtick_start(void *arg)
b328ca18 1052{
31656519 1053 struct rq *rq = arg;
b328ca18 1054
05fa785c 1055 raw_spin_lock(&rq->lock);
31656519
PZ
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
05fa785c 1058 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1059}
1060
31656519
PZ
1061/*
1062 * Called to set the hrtick timer state.
1063 *
1064 * called with rq->lock held and irqs disabled
1065 */
1066static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1067{
31656519
PZ
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1070
cc584b21 1071 hrtimer_set_expires(timer, time);
31656519
PZ
1072
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
6e275637 1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1077 rq->hrtick_csd_pending = 1;
1078 }
b328ca18
PZ
1079}
1080
1081static int
1082hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1083{
1084 int cpu = (int)(long)hcpu;
1085
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
31656519 1093 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1094 return NOTIFY_OK;
1095 }
1096
1097 return NOTIFY_DONE;
1098}
1099
fa748203 1100static __init void init_hrtick(void)
b328ca18
PZ
1101{
1102 hotcpu_notifier(hotplug_hrtick, 0);
1103}
31656519
PZ
1104#else
1105/*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110static void hrtick_start(struct rq *rq, u64 delay)
1111{
7f1e2ca9 1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1113 HRTIMER_MODE_REL_PINNED, 0);
31656519 1114}
b328ca18 1115
006c75f1 1116static inline void init_hrtick(void)
8f4d37ec 1117{
8f4d37ec 1118}
31656519 1119#endif /* CONFIG_SMP */
8f4d37ec 1120
31656519 1121static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1122{
31656519
PZ
1123#ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
8f4d37ec 1125
31656519
PZ
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129#endif
8f4d37ec 1130
31656519
PZ
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
8f4d37ec 1133}
006c75f1 1134#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1135static inline void hrtick_clear(struct rq *rq)
1136{
1137}
1138
8f4d37ec
PZ
1139static inline void init_rq_hrtick(struct rq *rq)
1140{
1141}
1142
b328ca18
PZ
1143static inline void init_hrtick(void)
1144{
1145}
006c75f1 1146#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1147
c24d20db
IM
1148/*
1149 * resched_task - mark a task 'to be rescheduled now'.
1150 *
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1154 */
1155#ifdef CONFIG_SMP
1156
1157#ifndef tsk_is_polling
1158#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159#endif
1160
31656519 1161static void resched_task(struct task_struct *p)
c24d20db
IM
1162{
1163 int cpu;
1164
05fa785c 1165 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1166
5ed0cec0 1167 if (test_tsk_need_resched(p))
c24d20db
IM
1168 return;
1169
5ed0cec0 1170 set_tsk_need_resched(p);
c24d20db
IM
1171
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1175
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1180}
1181
1182static void resched_cpu(int cpu)
1183{
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1186
05fa785c 1187 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1188 return;
1189 resched_task(cpu_curr(cpu));
05fa785c 1190 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1191}
06d8308c
TG
1192
1193#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1194/*
1195 * In the semi idle case, use the nearest busy cpu for migrating timers
1196 * from an idle cpu. This is good for power-savings.
1197 *
1198 * We don't do similar optimization for completely idle system, as
1199 * selecting an idle cpu will add more delays to the timers than intended
1200 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1201 */
1202int get_nohz_timer_target(void)
1203{
1204 int cpu = smp_processor_id();
1205 int i;
1206 struct sched_domain *sd;
1207
1208 for_each_domain(cpu, sd) {
1209 for_each_cpu(i, sched_domain_span(sd))
1210 if (!idle_cpu(i))
1211 return i;
1212 }
1213 return cpu;
1214}
06d8308c
TG
1215/*
1216 * When add_timer_on() enqueues a timer into the timer wheel of an
1217 * idle CPU then this timer might expire before the next timer event
1218 * which is scheduled to wake up that CPU. In case of a completely
1219 * idle system the next event might even be infinite time into the
1220 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1221 * leaves the inner idle loop so the newly added timer is taken into
1222 * account when the CPU goes back to idle and evaluates the timer
1223 * wheel for the next timer event.
1224 */
1225void wake_up_idle_cpu(int cpu)
1226{
1227 struct rq *rq = cpu_rq(cpu);
1228
1229 if (cpu == smp_processor_id())
1230 return;
1231
1232 /*
1233 * This is safe, as this function is called with the timer
1234 * wheel base lock of (cpu) held. When the CPU is on the way
1235 * to idle and has not yet set rq->curr to idle then it will
1236 * be serialized on the timer wheel base lock and take the new
1237 * timer into account automatically.
1238 */
1239 if (rq->curr != rq->idle)
1240 return;
1241
1242 /*
1243 * We can set TIF_RESCHED on the idle task of the other CPU
1244 * lockless. The worst case is that the other CPU runs the
1245 * idle task through an additional NOOP schedule()
1246 */
5ed0cec0 1247 set_tsk_need_resched(rq->idle);
06d8308c
TG
1248
1249 /* NEED_RESCHED must be visible before we test polling */
1250 smp_mb();
1251 if (!tsk_is_polling(rq->idle))
1252 smp_send_reschedule(cpu);
1253}
39c0cbe2 1254
6d6bc0ad 1255#endif /* CONFIG_NO_HZ */
06d8308c 1256
e9e9250b
PZ
1257static u64 sched_avg_period(void)
1258{
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260}
1261
1262static void sched_avg_update(struct rq *rq)
1263{
1264 s64 period = sched_avg_period();
1265
1266 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1267 /*
1268 * Inline assembly required to prevent the compiler
1269 * optimising this loop into a divmod call.
1270 * See __iter_div_u64_rem() for another example of this.
1271 */
1272 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1273 rq->age_stamp += period;
1274 rq->rt_avg /= 2;
1275 }
1276}
1277
1278static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279{
1280 rq->rt_avg += rt_delta;
1281 sched_avg_update(rq);
1282}
1283
6d6bc0ad 1284#else /* !CONFIG_SMP */
31656519 1285static void resched_task(struct task_struct *p)
c24d20db 1286{
05fa785c 1287 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1288 set_tsk_need_resched(p);
c24d20db 1289}
e9e9250b
PZ
1290
1291static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292{
1293}
da2b71ed
SS
1294
1295static void sched_avg_update(struct rq *rq)
1296{
1297}
6d6bc0ad 1298#endif /* CONFIG_SMP */
c24d20db 1299
45bf76df
IM
1300#if BITS_PER_LONG == 32
1301# define WMULT_CONST (~0UL)
1302#else
1303# define WMULT_CONST (1UL << 32)
1304#endif
1305
1306#define WMULT_SHIFT 32
1307
194081eb
IM
1308/*
1309 * Shift right and round:
1310 */
cf2ab469 1311#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1312
a7be37ac
PZ
1313/*
1314 * delta *= weight / lw
1315 */
cb1c4fc9 1316static unsigned long
45bf76df
IM
1317calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1318 struct load_weight *lw)
1319{
1320 u64 tmp;
1321
7a232e03
LJ
1322 if (!lw->inv_weight) {
1323 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1324 lw->inv_weight = 1;
1325 else
1326 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1327 / (lw->weight+1);
1328 }
45bf76df
IM
1329
1330 tmp = (u64)delta_exec * weight;
1331 /*
1332 * Check whether we'd overflow the 64-bit multiplication:
1333 */
194081eb 1334 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1335 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1336 WMULT_SHIFT/2);
1337 else
cf2ab469 1338 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1339
ecf691da 1340 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1341}
1342
1091985b 1343static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1344{
1345 lw->weight += inc;
e89996ae 1346 lw->inv_weight = 0;
45bf76df
IM
1347}
1348
1091985b 1349static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1350{
1351 lw->weight -= dec;
e89996ae 1352 lw->inv_weight = 0;
45bf76df
IM
1353}
1354
2069dd75
PZ
1355static inline void update_load_set(struct load_weight *lw, unsigned long w)
1356{
1357 lw->weight = w;
1358 lw->inv_weight = 0;
1359}
1360
2dd73a4f
PW
1361/*
1362 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1363 * of tasks with abnormal "nice" values across CPUs the contribution that
1364 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1365 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1366 * scaled version of the new time slice allocation that they receive on time
1367 * slice expiry etc.
1368 */
1369
cce7ade8
PZ
1370#define WEIGHT_IDLEPRIO 3
1371#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1372
1373/*
1374 * Nice levels are multiplicative, with a gentle 10% change for every
1375 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1376 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1377 * that remained on nice 0.
1378 *
1379 * The "10% effect" is relative and cumulative: from _any_ nice level,
1380 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1381 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1382 * If a task goes up by ~10% and another task goes down by ~10% then
1383 * the relative distance between them is ~25%.)
dd41f596
IM
1384 */
1385static const int prio_to_weight[40] = {
254753dc
IM
1386 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1387 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1388 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1389 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1390 /* 0 */ 1024, 820, 655, 526, 423,
1391 /* 5 */ 335, 272, 215, 172, 137,
1392 /* 10 */ 110, 87, 70, 56, 45,
1393 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1394};
1395
5714d2de
IM
1396/*
1397 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1398 *
1399 * In cases where the weight does not change often, we can use the
1400 * precalculated inverse to speed up arithmetics by turning divisions
1401 * into multiplications:
1402 */
dd41f596 1403static const u32 prio_to_wmult[40] = {
254753dc
IM
1404 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1405 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1406 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1407 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1408 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1409 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1410 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1411 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1412};
2dd73a4f 1413
ef12fefa
BR
1414/* Time spent by the tasks of the cpu accounting group executing in ... */
1415enum cpuacct_stat_index {
1416 CPUACCT_STAT_USER, /* ... user mode */
1417 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1418
1419 CPUACCT_STAT_NSTATS,
1420};
1421
d842de87
SV
1422#ifdef CONFIG_CGROUP_CPUACCT
1423static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1424static void cpuacct_update_stats(struct task_struct *tsk,
1425 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1426#else
1427static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1428static inline void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1430#endif
1431
18d95a28
PZ
1432static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1433{
1434 update_load_add(&rq->load, load);
1435}
1436
1437static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1438{
1439 update_load_sub(&rq->load, load);
1440}
1441
7940ca36 1442#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1443typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1444
1445/*
1446 * Iterate the full tree, calling @down when first entering a node and @up when
1447 * leaving it for the final time.
1448 */
eb755805 1449static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1450{
1451 struct task_group *parent, *child;
eb755805 1452 int ret;
c09595f6
PZ
1453
1454 rcu_read_lock();
1455 parent = &root_task_group;
1456down:
eb755805
PZ
1457 ret = (*down)(parent, data);
1458 if (ret)
1459 goto out_unlock;
c09595f6
PZ
1460 list_for_each_entry_rcu(child, &parent->children, siblings) {
1461 parent = child;
1462 goto down;
1463
1464up:
1465 continue;
1466 }
eb755805
PZ
1467 ret = (*up)(parent, data);
1468 if (ret)
1469 goto out_unlock;
c09595f6
PZ
1470
1471 child = parent;
1472 parent = parent->parent;
1473 if (parent)
1474 goto up;
eb755805 1475out_unlock:
c09595f6 1476 rcu_read_unlock();
eb755805
PZ
1477
1478 return ret;
c09595f6
PZ
1479}
1480
eb755805
PZ
1481static int tg_nop(struct task_group *tg, void *data)
1482{
1483 return 0;
c09595f6 1484}
eb755805
PZ
1485#endif
1486
1487#ifdef CONFIG_SMP
f5f08f39
PZ
1488/* Used instead of source_load when we know the type == 0 */
1489static unsigned long weighted_cpuload(const int cpu)
1490{
1491 return cpu_rq(cpu)->load.weight;
1492}
1493
1494/*
1495 * Return a low guess at the load of a migration-source cpu weighted
1496 * according to the scheduling class and "nice" value.
1497 *
1498 * We want to under-estimate the load of migration sources, to
1499 * balance conservatively.
1500 */
1501static unsigned long source_load(int cpu, int type)
1502{
1503 struct rq *rq = cpu_rq(cpu);
1504 unsigned long total = weighted_cpuload(cpu);
1505
1506 if (type == 0 || !sched_feat(LB_BIAS))
1507 return total;
1508
1509 return min(rq->cpu_load[type-1], total);
1510}
1511
1512/*
1513 * Return a high guess at the load of a migration-target cpu weighted
1514 * according to the scheduling class and "nice" value.
1515 */
1516static unsigned long target_load(int cpu, int type)
1517{
1518 struct rq *rq = cpu_rq(cpu);
1519 unsigned long total = weighted_cpuload(cpu);
1520
1521 if (type == 0 || !sched_feat(LB_BIAS))
1522 return total;
1523
1524 return max(rq->cpu_load[type-1], total);
1525}
1526
ae154be1
PZ
1527static unsigned long power_of(int cpu)
1528{
e51fd5e2 1529 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1530}
1531
eb755805
PZ
1532static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1533
1534static unsigned long cpu_avg_load_per_task(int cpu)
1535{
1536 struct rq *rq = cpu_rq(cpu);
af6d596f 1537 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1538
4cd42620
SR
1539 if (nr_running)
1540 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1541 else
1542 rq->avg_load_per_task = 0;
eb755805
PZ
1543
1544 return rq->avg_load_per_task;
1545}
1546
1547#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1548
c09595f6 1549/*
c8cba857
PZ
1550 * Compute the cpu's hierarchical load factor for each task group.
1551 * This needs to be done in a top-down fashion because the load of a child
1552 * group is a fraction of its parents load.
c09595f6 1553 */
eb755805 1554static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1555{
c8cba857 1556 unsigned long load;
eb755805 1557 long cpu = (long)data;
c09595f6 1558
c8cba857
PZ
1559 if (!tg->parent) {
1560 load = cpu_rq(cpu)->load.weight;
1561 } else {
1562 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1563 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1564 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1565 }
c09595f6 1566
c8cba857 1567 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1568
eb755805 1569 return 0;
c09595f6
PZ
1570}
1571
eb755805 1572static void update_h_load(long cpu)
c09595f6 1573{
eb755805 1574 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1575}
1576
18d95a28
PZ
1577#endif
1578
8f45e2b5
GH
1579#ifdef CONFIG_PREEMPT
1580
b78bb868
PZ
1581static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1582
70574a99 1583/*
8f45e2b5
GH
1584 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1585 * way at the expense of forcing extra atomic operations in all
1586 * invocations. This assures that the double_lock is acquired using the
1587 * same underlying policy as the spinlock_t on this architecture, which
1588 * reduces latency compared to the unfair variant below. However, it
1589 * also adds more overhead and therefore may reduce throughput.
70574a99 1590 */
8f45e2b5
GH
1591static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592 __releases(this_rq->lock)
1593 __acquires(busiest->lock)
1594 __acquires(this_rq->lock)
1595{
05fa785c 1596 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1597 double_rq_lock(this_rq, busiest);
1598
1599 return 1;
1600}
1601
1602#else
1603/*
1604 * Unfair double_lock_balance: Optimizes throughput at the expense of
1605 * latency by eliminating extra atomic operations when the locks are
1606 * already in proper order on entry. This favors lower cpu-ids and will
1607 * grant the double lock to lower cpus over higher ids under contention,
1608 * regardless of entry order into the function.
1609 */
1610static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1611 __releases(this_rq->lock)
1612 __acquires(busiest->lock)
1613 __acquires(this_rq->lock)
1614{
1615 int ret = 0;
1616
05fa785c 1617 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1618 if (busiest < this_rq) {
05fa785c
TG
1619 raw_spin_unlock(&this_rq->lock);
1620 raw_spin_lock(&busiest->lock);
1621 raw_spin_lock_nested(&this_rq->lock,
1622 SINGLE_DEPTH_NESTING);
70574a99
AD
1623 ret = 1;
1624 } else
05fa785c
TG
1625 raw_spin_lock_nested(&busiest->lock,
1626 SINGLE_DEPTH_NESTING);
70574a99
AD
1627 }
1628 return ret;
1629}
1630
8f45e2b5
GH
1631#endif /* CONFIG_PREEMPT */
1632
1633/*
1634 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1635 */
1636static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1637{
1638 if (unlikely(!irqs_disabled())) {
1639 /* printk() doesn't work good under rq->lock */
05fa785c 1640 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1641 BUG_ON(1);
1642 }
1643
1644 return _double_lock_balance(this_rq, busiest);
1645}
1646
70574a99
AD
1647static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1648 __releases(busiest->lock)
1649{
05fa785c 1650 raw_spin_unlock(&busiest->lock);
70574a99
AD
1651 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1652}
1e3c88bd
PZ
1653
1654/*
1655 * double_rq_lock - safely lock two runqueues
1656 *
1657 * Note this does not disable interrupts like task_rq_lock,
1658 * you need to do so manually before calling.
1659 */
1660static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1661 __acquires(rq1->lock)
1662 __acquires(rq2->lock)
1663{
1664 BUG_ON(!irqs_disabled());
1665 if (rq1 == rq2) {
1666 raw_spin_lock(&rq1->lock);
1667 __acquire(rq2->lock); /* Fake it out ;) */
1668 } else {
1669 if (rq1 < rq2) {
1670 raw_spin_lock(&rq1->lock);
1671 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1672 } else {
1673 raw_spin_lock(&rq2->lock);
1674 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1675 }
1676 }
1e3c88bd
PZ
1677}
1678
1679/*
1680 * double_rq_unlock - safely unlock two runqueues
1681 *
1682 * Note this does not restore interrupts like task_rq_unlock,
1683 * you need to do so manually after calling.
1684 */
1685static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1686 __releases(rq1->lock)
1687 __releases(rq2->lock)
1688{
1689 raw_spin_unlock(&rq1->lock);
1690 if (rq1 != rq2)
1691 raw_spin_unlock(&rq2->lock);
1692 else
1693 __release(rq2->lock);
1694}
1695
d95f4122
MG
1696#else /* CONFIG_SMP */
1697
1698/*
1699 * double_rq_lock - safely lock two runqueues
1700 *
1701 * Note this does not disable interrupts like task_rq_lock,
1702 * you need to do so manually before calling.
1703 */
1704static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1705 __acquires(rq1->lock)
1706 __acquires(rq2->lock)
1707{
1708 BUG_ON(!irqs_disabled());
1709 BUG_ON(rq1 != rq2);
1710 raw_spin_lock(&rq1->lock);
1711 __acquire(rq2->lock); /* Fake it out ;) */
1712}
1713
1714/*
1715 * double_rq_unlock - safely unlock two runqueues
1716 *
1717 * Note this does not restore interrupts like task_rq_unlock,
1718 * you need to do so manually after calling.
1719 */
1720static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1721 __releases(rq1->lock)
1722 __releases(rq2->lock)
1723{
1724 BUG_ON(rq1 != rq2);
1725 raw_spin_unlock(&rq1->lock);
1726 __release(rq2->lock);
1727}
1728
18d95a28
PZ
1729#endif
1730
74f5187a 1731static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1732static void update_sysctl(void);
acb4a848 1733static int get_update_sysctl_factor(void);
fdf3e95d 1734static void update_cpu_load(struct rq *this_rq);
dce48a84 1735
cd29fe6f
PZ
1736static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1737{
1738 set_task_rq(p, cpu);
1739#ifdef CONFIG_SMP
1740 /*
1741 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1742 * successfuly executed on another CPU. We must ensure that updates of
1743 * per-task data have been completed by this moment.
1744 */
1745 smp_wmb();
1746 task_thread_info(p)->cpu = cpu;
1747#endif
1748}
dce48a84 1749
1e3c88bd 1750static const struct sched_class rt_sched_class;
dd41f596 1751
34f971f6 1752#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1753#define for_each_class(class) \
1754 for (class = sched_class_highest; class; class = class->next)
dd41f596 1755
1e3c88bd
PZ
1756#include "sched_stats.h"
1757
c09595f6 1758static void inc_nr_running(struct rq *rq)
9c217245
IM
1759{
1760 rq->nr_running++;
9c217245
IM
1761}
1762
c09595f6 1763static void dec_nr_running(struct rq *rq)
9c217245
IM
1764{
1765 rq->nr_running--;
9c217245
IM
1766}
1767
45bf76df
IM
1768static void set_load_weight(struct task_struct *p)
1769{
dd41f596
IM
1770 /*
1771 * SCHED_IDLE tasks get minimal weight:
1772 */
1773 if (p->policy == SCHED_IDLE) {
1774 p->se.load.weight = WEIGHT_IDLEPRIO;
1775 p->se.load.inv_weight = WMULT_IDLEPRIO;
1776 return;
1777 }
71f8bd46 1778
dd41f596
IM
1779 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1780 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1781}
1782
371fd7e7 1783static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1784{
a64692a3 1785 update_rq_clock(rq);
dd41f596 1786 sched_info_queued(p);
371fd7e7 1787 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1788 p->se.on_rq = 1;
71f8bd46
IM
1789}
1790
371fd7e7 1791static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1792{
a64692a3 1793 update_rq_clock(rq);
46ac22ba 1794 sched_info_dequeued(p);
371fd7e7 1795 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1796 p->se.on_rq = 0;
71f8bd46
IM
1797}
1798
1e3c88bd
PZ
1799/*
1800 * activate_task - move a task to the runqueue.
1801 */
371fd7e7 1802static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1803{
1804 if (task_contributes_to_load(p))
1805 rq->nr_uninterruptible--;
1806
371fd7e7 1807 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1808 inc_nr_running(rq);
1809}
1810
1811/*
1812 * deactivate_task - remove a task from the runqueue.
1813 */
371fd7e7 1814static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1815{
1816 if (task_contributes_to_load(p))
1817 rq->nr_uninterruptible++;
1818
371fd7e7 1819 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1820 dec_nr_running(rq);
1821}
1822
b52bfee4
VP
1823#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1824
305e6835
VP
1825/*
1826 * There are no locks covering percpu hardirq/softirq time.
1827 * They are only modified in account_system_vtime, on corresponding CPU
1828 * with interrupts disabled. So, writes are safe.
1829 * They are read and saved off onto struct rq in update_rq_clock().
1830 * This may result in other CPU reading this CPU's irq time and can
1831 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1832 * or new value with a side effect of accounting a slice of irq time to wrong
1833 * task when irq is in progress while we read rq->clock. That is a worthy
1834 * compromise in place of having locks on each irq in account_system_time.
305e6835 1835 */
b52bfee4
VP
1836static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1837static DEFINE_PER_CPU(u64, cpu_softirq_time);
1838
1839static DEFINE_PER_CPU(u64, irq_start_time);
1840static int sched_clock_irqtime;
1841
1842void enable_sched_clock_irqtime(void)
1843{
1844 sched_clock_irqtime = 1;
1845}
1846
1847void disable_sched_clock_irqtime(void)
1848{
1849 sched_clock_irqtime = 0;
1850}
1851
8e92c201
PZ
1852#ifndef CONFIG_64BIT
1853static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1854
1855static inline void irq_time_write_begin(void)
1856{
1857 __this_cpu_inc(irq_time_seq.sequence);
1858 smp_wmb();
1859}
1860
1861static inline void irq_time_write_end(void)
1862{
1863 smp_wmb();
1864 __this_cpu_inc(irq_time_seq.sequence);
1865}
1866
1867static inline u64 irq_time_read(int cpu)
1868{
1869 u64 irq_time;
1870 unsigned seq;
1871
1872 do {
1873 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1874 irq_time = per_cpu(cpu_softirq_time, cpu) +
1875 per_cpu(cpu_hardirq_time, cpu);
1876 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1877
1878 return irq_time;
1879}
1880#else /* CONFIG_64BIT */
1881static inline void irq_time_write_begin(void)
1882{
1883}
1884
1885static inline void irq_time_write_end(void)
1886{
1887}
1888
1889static inline u64 irq_time_read(int cpu)
305e6835 1890{
305e6835
VP
1891 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1892}
8e92c201 1893#endif /* CONFIG_64BIT */
305e6835 1894
fe44d621
PZ
1895/*
1896 * Called before incrementing preempt_count on {soft,}irq_enter
1897 * and before decrementing preempt_count on {soft,}irq_exit.
1898 */
b52bfee4
VP
1899void account_system_vtime(struct task_struct *curr)
1900{
1901 unsigned long flags;
fe44d621 1902 s64 delta;
b52bfee4 1903 int cpu;
b52bfee4
VP
1904
1905 if (!sched_clock_irqtime)
1906 return;
1907
1908 local_irq_save(flags);
1909
b52bfee4 1910 cpu = smp_processor_id();
fe44d621
PZ
1911 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1912 __this_cpu_add(irq_start_time, delta);
1913
8e92c201 1914 irq_time_write_begin();
b52bfee4
VP
1915 /*
1916 * We do not account for softirq time from ksoftirqd here.
1917 * We want to continue accounting softirq time to ksoftirqd thread
1918 * in that case, so as not to confuse scheduler with a special task
1919 * that do not consume any time, but still wants to run.
1920 */
1921 if (hardirq_count())
fe44d621 1922 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1923 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1924 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1925
8e92c201 1926 irq_time_write_end();
b52bfee4
VP
1927 local_irq_restore(flags);
1928}
b7dadc38 1929EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1930
fe44d621 1931static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1932{
fe44d621
PZ
1933 s64 irq_delta;
1934
8e92c201 1935 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1936
1937 /*
1938 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1939 * this case when a previous update_rq_clock() happened inside a
1940 * {soft,}irq region.
1941 *
1942 * When this happens, we stop ->clock_task and only update the
1943 * prev_irq_time stamp to account for the part that fit, so that a next
1944 * update will consume the rest. This ensures ->clock_task is
1945 * monotonic.
1946 *
1947 * It does however cause some slight miss-attribution of {soft,}irq
1948 * time, a more accurate solution would be to update the irq_time using
1949 * the current rq->clock timestamp, except that would require using
1950 * atomic ops.
1951 */
1952 if (irq_delta > delta)
1953 irq_delta = delta;
1954
1955 rq->prev_irq_time += irq_delta;
1956 delta -= irq_delta;
1957 rq->clock_task += delta;
1958
1959 if (irq_delta && sched_feat(NONIRQ_POWER))
1960 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1961}
1962
abb74cef
VP
1963static int irqtime_account_hi_update(void)
1964{
1965 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1966 unsigned long flags;
1967 u64 latest_ns;
1968 int ret = 0;
1969
1970 local_irq_save(flags);
1971 latest_ns = this_cpu_read(cpu_hardirq_time);
1972 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1973 ret = 1;
1974 local_irq_restore(flags);
1975 return ret;
1976}
1977
1978static int irqtime_account_si_update(void)
1979{
1980 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1981 unsigned long flags;
1982 u64 latest_ns;
1983 int ret = 0;
1984
1985 local_irq_save(flags);
1986 latest_ns = this_cpu_read(cpu_softirq_time);
1987 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1988 ret = 1;
1989 local_irq_restore(flags);
1990 return ret;
1991}
1992
fe44d621 1993#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1994
abb74cef
VP
1995#define sched_clock_irqtime (0)
1996
fe44d621 1997static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1998{
fe44d621 1999 rq->clock_task += delta;
305e6835
VP
2000}
2001
fe44d621 2002#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2003
1e3c88bd
PZ
2004#include "sched_idletask.c"
2005#include "sched_fair.c"
2006#include "sched_rt.c"
5091faa4 2007#include "sched_autogroup.c"
34f971f6 2008#include "sched_stoptask.c"
1e3c88bd
PZ
2009#ifdef CONFIG_SCHED_DEBUG
2010# include "sched_debug.c"
2011#endif
2012
34f971f6
PZ
2013void sched_set_stop_task(int cpu, struct task_struct *stop)
2014{
2015 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2016 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2017
2018 if (stop) {
2019 /*
2020 * Make it appear like a SCHED_FIFO task, its something
2021 * userspace knows about and won't get confused about.
2022 *
2023 * Also, it will make PI more or less work without too
2024 * much confusion -- but then, stop work should not
2025 * rely on PI working anyway.
2026 */
2027 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2028
2029 stop->sched_class = &stop_sched_class;
2030 }
2031
2032 cpu_rq(cpu)->stop = stop;
2033
2034 if (old_stop) {
2035 /*
2036 * Reset it back to a normal scheduling class so that
2037 * it can die in pieces.
2038 */
2039 old_stop->sched_class = &rt_sched_class;
2040 }
2041}
2042
14531189 2043/*
dd41f596 2044 * __normal_prio - return the priority that is based on the static prio
14531189 2045 */
14531189
IM
2046static inline int __normal_prio(struct task_struct *p)
2047{
dd41f596 2048 return p->static_prio;
14531189
IM
2049}
2050
b29739f9
IM
2051/*
2052 * Calculate the expected normal priority: i.e. priority
2053 * without taking RT-inheritance into account. Might be
2054 * boosted by interactivity modifiers. Changes upon fork,
2055 * setprio syscalls, and whenever the interactivity
2056 * estimator recalculates.
2057 */
36c8b586 2058static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2059{
2060 int prio;
2061
e05606d3 2062 if (task_has_rt_policy(p))
b29739f9
IM
2063 prio = MAX_RT_PRIO-1 - p->rt_priority;
2064 else
2065 prio = __normal_prio(p);
2066 return prio;
2067}
2068
2069/*
2070 * Calculate the current priority, i.e. the priority
2071 * taken into account by the scheduler. This value might
2072 * be boosted by RT tasks, or might be boosted by
2073 * interactivity modifiers. Will be RT if the task got
2074 * RT-boosted. If not then it returns p->normal_prio.
2075 */
36c8b586 2076static int effective_prio(struct task_struct *p)
b29739f9
IM
2077{
2078 p->normal_prio = normal_prio(p);
2079 /*
2080 * If we are RT tasks or we were boosted to RT priority,
2081 * keep the priority unchanged. Otherwise, update priority
2082 * to the normal priority:
2083 */
2084 if (!rt_prio(p->prio))
2085 return p->normal_prio;
2086 return p->prio;
2087}
2088
1da177e4
LT
2089/**
2090 * task_curr - is this task currently executing on a CPU?
2091 * @p: the task in question.
2092 */
36c8b586 2093inline int task_curr(const struct task_struct *p)
1da177e4
LT
2094{
2095 return cpu_curr(task_cpu(p)) == p;
2096}
2097
cb469845
SR
2098static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2099 const struct sched_class *prev_class,
da7a735e 2100 int oldprio)
cb469845
SR
2101{
2102 if (prev_class != p->sched_class) {
2103 if (prev_class->switched_from)
da7a735e
PZ
2104 prev_class->switched_from(rq, p);
2105 p->sched_class->switched_to(rq, p);
2106 } else if (oldprio != p->prio)
2107 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2108}
2109
1e5a7405
PZ
2110static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2111{
2112 const struct sched_class *class;
2113
2114 if (p->sched_class == rq->curr->sched_class) {
2115 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2116 } else {
2117 for_each_class(class) {
2118 if (class == rq->curr->sched_class)
2119 break;
2120 if (class == p->sched_class) {
2121 resched_task(rq->curr);
2122 break;
2123 }
2124 }
2125 }
2126
2127 /*
2128 * A queue event has occurred, and we're going to schedule. In
2129 * this case, we can save a useless back to back clock update.
2130 */
f26f9aff 2131 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2132 rq->skip_clock_update = 1;
2133}
2134
1da177e4 2135#ifdef CONFIG_SMP
cc367732
IM
2136/*
2137 * Is this task likely cache-hot:
2138 */
e7693a36 2139static int
cc367732
IM
2140task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2141{
2142 s64 delta;
2143
e6c8fba7
PZ
2144 if (p->sched_class != &fair_sched_class)
2145 return 0;
2146
ef8002f6
NR
2147 if (unlikely(p->policy == SCHED_IDLE))
2148 return 0;
2149
f540a608
IM
2150 /*
2151 * Buddy candidates are cache hot:
2152 */
f685ceac 2153 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2154 (&p->se == cfs_rq_of(&p->se)->next ||
2155 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2156 return 1;
2157
6bc1665b
IM
2158 if (sysctl_sched_migration_cost == -1)
2159 return 1;
2160 if (sysctl_sched_migration_cost == 0)
2161 return 0;
2162
cc367732
IM
2163 delta = now - p->se.exec_start;
2164
2165 return delta < (s64)sysctl_sched_migration_cost;
2166}
2167
dd41f596 2168void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2169{
e2912009
PZ
2170#ifdef CONFIG_SCHED_DEBUG
2171 /*
2172 * We should never call set_task_cpu() on a blocked task,
2173 * ttwu() will sort out the placement.
2174 */
077614ee
PZ
2175 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2176 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2177#endif
2178
de1d7286 2179 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2180
0c69774e
PZ
2181 if (task_cpu(p) != new_cpu) {
2182 p->se.nr_migrations++;
2183 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2184 }
dd41f596
IM
2185
2186 __set_task_cpu(p, new_cpu);
c65cc870
IM
2187}
2188
969c7921 2189struct migration_arg {
36c8b586 2190 struct task_struct *task;
1da177e4 2191 int dest_cpu;
70b97a7f 2192};
1da177e4 2193
969c7921
TH
2194static int migration_cpu_stop(void *data);
2195
1da177e4
LT
2196/*
2197 * The task's runqueue lock must be held.
2198 * Returns true if you have to wait for migration thread.
2199 */
b7a2b39d 2200static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2201{
1da177e4
LT
2202 /*
2203 * If the task is not on a runqueue (and not running), then
e2912009 2204 * the next wake-up will properly place the task.
1da177e4 2205 */
969c7921 2206 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2207}
2208
2209/*
2210 * wait_task_inactive - wait for a thread to unschedule.
2211 *
85ba2d86
RM
2212 * If @match_state is nonzero, it's the @p->state value just checked and
2213 * not expected to change. If it changes, i.e. @p might have woken up,
2214 * then return zero. When we succeed in waiting for @p to be off its CPU,
2215 * we return a positive number (its total switch count). If a second call
2216 * a short while later returns the same number, the caller can be sure that
2217 * @p has remained unscheduled the whole time.
2218 *
1da177e4
LT
2219 * The caller must ensure that the task *will* unschedule sometime soon,
2220 * else this function might spin for a *long* time. This function can't
2221 * be called with interrupts off, or it may introduce deadlock with
2222 * smp_call_function() if an IPI is sent by the same process we are
2223 * waiting to become inactive.
2224 */
85ba2d86 2225unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2226{
2227 unsigned long flags;
dd41f596 2228 int running, on_rq;
85ba2d86 2229 unsigned long ncsw;
70b97a7f 2230 struct rq *rq;
1da177e4 2231
3a5c359a
AK
2232 for (;;) {
2233 /*
2234 * We do the initial early heuristics without holding
2235 * any task-queue locks at all. We'll only try to get
2236 * the runqueue lock when things look like they will
2237 * work out!
2238 */
2239 rq = task_rq(p);
fa490cfd 2240
3a5c359a
AK
2241 /*
2242 * If the task is actively running on another CPU
2243 * still, just relax and busy-wait without holding
2244 * any locks.
2245 *
2246 * NOTE! Since we don't hold any locks, it's not
2247 * even sure that "rq" stays as the right runqueue!
2248 * But we don't care, since "task_running()" will
2249 * return false if the runqueue has changed and p
2250 * is actually now running somewhere else!
2251 */
85ba2d86
RM
2252 while (task_running(rq, p)) {
2253 if (match_state && unlikely(p->state != match_state))
2254 return 0;
3a5c359a 2255 cpu_relax();
85ba2d86 2256 }
fa490cfd 2257
3a5c359a
AK
2258 /*
2259 * Ok, time to look more closely! We need the rq
2260 * lock now, to be *sure*. If we're wrong, we'll
2261 * just go back and repeat.
2262 */
2263 rq = task_rq_lock(p, &flags);
27a9da65 2264 trace_sched_wait_task(p);
3a5c359a
AK
2265 running = task_running(rq, p);
2266 on_rq = p->se.on_rq;
85ba2d86 2267 ncsw = 0;
f31e11d8 2268 if (!match_state || p->state == match_state)
93dcf55f 2269 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2270 task_rq_unlock(rq, &flags);
fa490cfd 2271
85ba2d86
RM
2272 /*
2273 * If it changed from the expected state, bail out now.
2274 */
2275 if (unlikely(!ncsw))
2276 break;
2277
3a5c359a
AK
2278 /*
2279 * Was it really running after all now that we
2280 * checked with the proper locks actually held?
2281 *
2282 * Oops. Go back and try again..
2283 */
2284 if (unlikely(running)) {
2285 cpu_relax();
2286 continue;
2287 }
fa490cfd 2288
3a5c359a
AK
2289 /*
2290 * It's not enough that it's not actively running,
2291 * it must be off the runqueue _entirely_, and not
2292 * preempted!
2293 *
80dd99b3 2294 * So if it was still runnable (but just not actively
3a5c359a
AK
2295 * running right now), it's preempted, and we should
2296 * yield - it could be a while.
2297 */
2298 if (unlikely(on_rq)) {
8eb90c30
TG
2299 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2300
2301 set_current_state(TASK_UNINTERRUPTIBLE);
2302 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2303 continue;
2304 }
fa490cfd 2305
3a5c359a
AK
2306 /*
2307 * Ahh, all good. It wasn't running, and it wasn't
2308 * runnable, which means that it will never become
2309 * running in the future either. We're all done!
2310 */
2311 break;
2312 }
85ba2d86
RM
2313
2314 return ncsw;
1da177e4
LT
2315}
2316
2317/***
2318 * kick_process - kick a running thread to enter/exit the kernel
2319 * @p: the to-be-kicked thread
2320 *
2321 * Cause a process which is running on another CPU to enter
2322 * kernel-mode, without any delay. (to get signals handled.)
2323 *
25985edc 2324 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2325 * because all it wants to ensure is that the remote task enters
2326 * the kernel. If the IPI races and the task has been migrated
2327 * to another CPU then no harm is done and the purpose has been
2328 * achieved as well.
2329 */
36c8b586 2330void kick_process(struct task_struct *p)
1da177e4
LT
2331{
2332 int cpu;
2333
2334 preempt_disable();
2335 cpu = task_cpu(p);
2336 if ((cpu != smp_processor_id()) && task_curr(p))
2337 smp_send_reschedule(cpu);
2338 preempt_enable();
2339}
b43e3521 2340EXPORT_SYMBOL_GPL(kick_process);
476d139c 2341#endif /* CONFIG_SMP */
1da177e4 2342
970b13ba 2343#ifdef CONFIG_SMP
30da688e
ON
2344/*
2345 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2346 */
5da9a0fb
PZ
2347static int select_fallback_rq(int cpu, struct task_struct *p)
2348{
2349 int dest_cpu;
2350 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2351
2352 /* Look for allowed, online CPU in same node. */
2353 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2354 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2355 return dest_cpu;
2356
2357 /* Any allowed, online CPU? */
2358 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2359 if (dest_cpu < nr_cpu_ids)
2360 return dest_cpu;
2361
2362 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2363 dest_cpu = cpuset_cpus_allowed_fallback(p);
2364 /*
2365 * Don't tell them about moving exiting tasks or
2366 * kernel threads (both mm NULL), since they never
2367 * leave kernel.
2368 */
2369 if (p->mm && printk_ratelimit()) {
2370 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2371 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2372 }
2373
2374 return dest_cpu;
2375}
2376
e2912009 2377/*
30da688e 2378 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2379 */
970b13ba 2380static inline
0017d735 2381int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2382{
0017d735 2383 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2384
2385 /*
2386 * In order not to call set_task_cpu() on a blocking task we need
2387 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2388 * cpu.
2389 *
2390 * Since this is common to all placement strategies, this lives here.
2391 *
2392 * [ this allows ->select_task() to simply return task_cpu(p) and
2393 * not worry about this generic constraint ]
2394 */
2395 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2396 !cpu_online(cpu)))
5da9a0fb 2397 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2398
2399 return cpu;
970b13ba 2400}
09a40af5
MG
2401
2402static void update_avg(u64 *avg, u64 sample)
2403{
2404 s64 diff = sample - *avg;
2405 *avg += diff >> 3;
2406}
970b13ba
PZ
2407#endif
2408
9ed3811a
TH
2409static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2410 bool is_sync, bool is_migrate, bool is_local,
2411 unsigned long en_flags)
2412{
2413 schedstat_inc(p, se.statistics.nr_wakeups);
2414 if (is_sync)
2415 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2416 if (is_migrate)
2417 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2418 if (is_local)
2419 schedstat_inc(p, se.statistics.nr_wakeups_local);
2420 else
2421 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2422
2423 activate_task(rq, p, en_flags);
2424}
2425
2426static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2427 int wake_flags, bool success)
2428{
2429 trace_sched_wakeup(p, success);
2430 check_preempt_curr(rq, p, wake_flags);
2431
2432 p->state = TASK_RUNNING;
2433#ifdef CONFIG_SMP
2434 if (p->sched_class->task_woken)
2435 p->sched_class->task_woken(rq, p);
2436
2437 if (unlikely(rq->idle_stamp)) {
2438 u64 delta = rq->clock - rq->idle_stamp;
2439 u64 max = 2*sysctl_sched_migration_cost;
2440
2441 if (delta > max)
2442 rq->avg_idle = max;
2443 else
2444 update_avg(&rq->avg_idle, delta);
2445 rq->idle_stamp = 0;
2446 }
2447#endif
21aa9af0
TH
2448 /* if a worker is waking up, notify workqueue */
2449 if ((p->flags & PF_WQ_WORKER) && success)
2450 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2451}
2452
2453/**
1da177e4 2454 * try_to_wake_up - wake up a thread
9ed3811a 2455 * @p: the thread to be awakened
1da177e4 2456 * @state: the mask of task states that can be woken
9ed3811a 2457 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2458 *
2459 * Put it on the run-queue if it's not already there. The "current"
2460 * thread is always on the run-queue (except when the actual
2461 * re-schedule is in progress), and as such you're allowed to do
2462 * the simpler "current->state = TASK_RUNNING" to mark yourself
2463 * runnable without the overhead of this.
2464 *
9ed3811a
TH
2465 * Returns %true if @p was woken up, %false if it was already running
2466 * or @state didn't match @p's state.
1da177e4 2467 */
7d478721
PZ
2468static int try_to_wake_up(struct task_struct *p, unsigned int state,
2469 int wake_flags)
1da177e4 2470{
cc367732 2471 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2472 unsigned long flags;
371fd7e7 2473 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2474 struct rq *rq;
1da177e4 2475
e9c84311 2476 this_cpu = get_cpu();
2398f2c6 2477
04e2f174 2478 smp_wmb();
ab3b3aa5 2479 rq = task_rq_lock(p, &flags);
e9c84311 2480 if (!(p->state & state))
1da177e4
LT
2481 goto out;
2482
dd41f596 2483 if (p->se.on_rq)
1da177e4
LT
2484 goto out_running;
2485
2486 cpu = task_cpu(p);
cc367732 2487 orig_cpu = cpu;
1da177e4
LT
2488
2489#ifdef CONFIG_SMP
2490 if (unlikely(task_running(rq, p)))
2491 goto out_activate;
2492
e9c84311
PZ
2493 /*
2494 * In order to handle concurrent wakeups and release the rq->lock
2495 * we put the task in TASK_WAKING state.
eb24073b
IM
2496 *
2497 * First fix up the nr_uninterruptible count:
e9c84311 2498 */
cc87f76a
PZ
2499 if (task_contributes_to_load(p)) {
2500 if (likely(cpu_online(orig_cpu)))
2501 rq->nr_uninterruptible--;
2502 else
2503 this_rq()->nr_uninterruptible--;
2504 }
e9c84311 2505 p->state = TASK_WAKING;
efbbd05a 2506
371fd7e7 2507 if (p->sched_class->task_waking) {
efbbd05a 2508 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2509 en_flags |= ENQUEUE_WAKING;
2510 }
efbbd05a 2511
0017d735
PZ
2512 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2513 if (cpu != orig_cpu)
5d2f5a61 2514 set_task_cpu(p, cpu);
0017d735 2515 __task_rq_unlock(rq);
ab19cb23 2516
0970d299
PZ
2517 rq = cpu_rq(cpu);
2518 raw_spin_lock(&rq->lock);
f5dc3753 2519
0970d299
PZ
2520 /*
2521 * We migrated the task without holding either rq->lock, however
2522 * since the task is not on the task list itself, nobody else
2523 * will try and migrate the task, hence the rq should match the
2524 * cpu we just moved it to.
2525 */
2526 WARN_ON(task_cpu(p) != cpu);
e9c84311 2527 WARN_ON(p->state != TASK_WAKING);
1da177e4 2528
e7693a36
GH
2529#ifdef CONFIG_SCHEDSTATS
2530 schedstat_inc(rq, ttwu_count);
2531 if (cpu == this_cpu)
2532 schedstat_inc(rq, ttwu_local);
2533 else {
2534 struct sched_domain *sd;
2535 for_each_domain(this_cpu, sd) {
758b2cdc 2536 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2537 schedstat_inc(sd, ttwu_wake_remote);
2538 break;
2539 }
2540 }
2541 }
6d6bc0ad 2542#endif /* CONFIG_SCHEDSTATS */
e7693a36 2543
1da177e4
LT
2544out_activate:
2545#endif /* CONFIG_SMP */
9ed3811a
TH
2546 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2547 cpu == this_cpu, en_flags);
1da177e4 2548 success = 1;
1da177e4 2549out_running:
9ed3811a 2550 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2551out:
2552 task_rq_unlock(rq, &flags);
e9c84311 2553 put_cpu();
1da177e4
LT
2554
2555 return success;
2556}
2557
21aa9af0
TH
2558/**
2559 * try_to_wake_up_local - try to wake up a local task with rq lock held
2560 * @p: the thread to be awakened
2561 *
b595076a 2562 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2563 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2564 * the current task. this_rq() stays locked over invocation.
2565 */
2566static void try_to_wake_up_local(struct task_struct *p)
2567{
2568 struct rq *rq = task_rq(p);
2569 bool success = false;
2570
2571 BUG_ON(rq != this_rq());
2572 BUG_ON(p == current);
2573 lockdep_assert_held(&rq->lock);
2574
2575 if (!(p->state & TASK_NORMAL))
2576 return;
2577
2578 if (!p->se.on_rq) {
2579 if (likely(!task_running(rq, p))) {
2580 schedstat_inc(rq, ttwu_count);
2581 schedstat_inc(rq, ttwu_local);
2582 }
2583 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2584 success = true;
2585 }
2586 ttwu_post_activation(p, rq, 0, success);
2587}
2588
50fa610a
DH
2589/**
2590 * wake_up_process - Wake up a specific process
2591 * @p: The process to be woken up.
2592 *
2593 * Attempt to wake up the nominated process and move it to the set of runnable
2594 * processes. Returns 1 if the process was woken up, 0 if it was already
2595 * running.
2596 *
2597 * It may be assumed that this function implies a write memory barrier before
2598 * changing the task state if and only if any tasks are woken up.
2599 */
7ad5b3a5 2600int wake_up_process(struct task_struct *p)
1da177e4 2601{
d9514f6c 2602 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2603}
1da177e4
LT
2604EXPORT_SYMBOL(wake_up_process);
2605
7ad5b3a5 2606int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2607{
2608 return try_to_wake_up(p, state, 0);
2609}
2610
1da177e4
LT
2611/*
2612 * Perform scheduler related setup for a newly forked process p.
2613 * p is forked by current.
dd41f596
IM
2614 *
2615 * __sched_fork() is basic setup used by init_idle() too:
2616 */
2617static void __sched_fork(struct task_struct *p)
2618{
dd41f596
IM
2619 p->se.exec_start = 0;
2620 p->se.sum_exec_runtime = 0;
f6cf891c 2621 p->se.prev_sum_exec_runtime = 0;
6c594c21 2622 p->se.nr_migrations = 0;
da7a735e 2623 p->se.vruntime = 0;
6cfb0d5d
IM
2624
2625#ifdef CONFIG_SCHEDSTATS
41acab88 2626 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2627#endif
476d139c 2628
fa717060 2629 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2630 p->se.on_rq = 0;
4a55bd5e 2631 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2632
e107be36
AK
2633#ifdef CONFIG_PREEMPT_NOTIFIERS
2634 INIT_HLIST_HEAD(&p->preempt_notifiers);
2635#endif
dd41f596
IM
2636}
2637
2638/*
2639 * fork()/clone()-time setup:
2640 */
2641void sched_fork(struct task_struct *p, int clone_flags)
2642{
2643 int cpu = get_cpu();
2644
2645 __sched_fork(p);
06b83b5f 2646 /*
0017d735 2647 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2648 * nobody will actually run it, and a signal or other external
2649 * event cannot wake it up and insert it on the runqueue either.
2650 */
0017d735 2651 p->state = TASK_RUNNING;
dd41f596 2652
b9dc29e7
MG
2653 /*
2654 * Revert to default priority/policy on fork if requested.
2655 */
2656 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2657 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2658 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2659 p->normal_prio = p->static_prio;
2660 }
b9dc29e7 2661
6c697bdf
MG
2662 if (PRIO_TO_NICE(p->static_prio) < 0) {
2663 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2664 p->normal_prio = p->static_prio;
6c697bdf
MG
2665 set_load_weight(p);
2666 }
2667
b9dc29e7
MG
2668 /*
2669 * We don't need the reset flag anymore after the fork. It has
2670 * fulfilled its duty:
2671 */
2672 p->sched_reset_on_fork = 0;
2673 }
ca94c442 2674
f83f9ac2
PW
2675 /*
2676 * Make sure we do not leak PI boosting priority to the child.
2677 */
2678 p->prio = current->normal_prio;
2679
2ddbf952
HS
2680 if (!rt_prio(p->prio))
2681 p->sched_class = &fair_sched_class;
b29739f9 2682
cd29fe6f
PZ
2683 if (p->sched_class->task_fork)
2684 p->sched_class->task_fork(p);
2685
86951599
PZ
2686 /*
2687 * The child is not yet in the pid-hash so no cgroup attach races,
2688 * and the cgroup is pinned to this child due to cgroup_fork()
2689 * is ran before sched_fork().
2690 *
2691 * Silence PROVE_RCU.
2692 */
2693 rcu_read_lock();
5f3edc1b 2694 set_task_cpu(p, cpu);
86951599 2695 rcu_read_unlock();
5f3edc1b 2696
52f17b6c 2697#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2698 if (likely(sched_info_on()))
52f17b6c 2699 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2700#endif
3ca7a440
PZ
2701#if defined(CONFIG_SMP)
2702 p->on_cpu = 0;
4866cde0 2703#endif
1da177e4 2704#ifdef CONFIG_PREEMPT
4866cde0 2705 /* Want to start with kernel preemption disabled. */
a1261f54 2706 task_thread_info(p)->preempt_count = 1;
1da177e4 2707#endif
806c09a7 2708#ifdef CONFIG_SMP
917b627d 2709 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2710#endif
917b627d 2711
476d139c 2712 put_cpu();
1da177e4
LT
2713}
2714
2715/*
2716 * wake_up_new_task - wake up a newly created task for the first time.
2717 *
2718 * This function will do some initial scheduler statistics housekeeping
2719 * that must be done for every newly created context, then puts the task
2720 * on the runqueue and wakes it.
2721 */
7ad5b3a5 2722void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2723{
2724 unsigned long flags;
dd41f596 2725 struct rq *rq;
c890692b 2726 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2727
2728#ifdef CONFIG_SMP
0017d735
PZ
2729 rq = task_rq_lock(p, &flags);
2730 p->state = TASK_WAKING;
2731
fabf318e
PZ
2732 /*
2733 * Fork balancing, do it here and not earlier because:
2734 * - cpus_allowed can change in the fork path
2735 * - any previously selected cpu might disappear through hotplug
2736 *
0017d735
PZ
2737 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2738 * without people poking at ->cpus_allowed.
fabf318e 2739 */
0017d735 2740 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2741 set_task_cpu(p, cpu);
1da177e4 2742
06b83b5f 2743 p->state = TASK_RUNNING;
0017d735
PZ
2744 task_rq_unlock(rq, &flags);
2745#endif
2746
2747 rq = task_rq_lock(p, &flags);
cd29fe6f 2748 activate_task(rq, p, 0);
27a9da65 2749 trace_sched_wakeup_new(p, 1);
a7558e01 2750 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2751#ifdef CONFIG_SMP
efbbd05a
PZ
2752 if (p->sched_class->task_woken)
2753 p->sched_class->task_woken(rq, p);
9a897c5a 2754#endif
dd41f596 2755 task_rq_unlock(rq, &flags);
fabf318e 2756 put_cpu();
1da177e4
LT
2757}
2758
e107be36
AK
2759#ifdef CONFIG_PREEMPT_NOTIFIERS
2760
2761/**
80dd99b3 2762 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2763 * @notifier: notifier struct to register
e107be36
AK
2764 */
2765void preempt_notifier_register(struct preempt_notifier *notifier)
2766{
2767 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2768}
2769EXPORT_SYMBOL_GPL(preempt_notifier_register);
2770
2771/**
2772 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2773 * @notifier: notifier struct to unregister
e107be36
AK
2774 *
2775 * This is safe to call from within a preemption notifier.
2776 */
2777void preempt_notifier_unregister(struct preempt_notifier *notifier)
2778{
2779 hlist_del(&notifier->link);
2780}
2781EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2782
2783static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2784{
2785 struct preempt_notifier *notifier;
2786 struct hlist_node *node;
2787
2788 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2789 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2790}
2791
2792static void
2793fire_sched_out_preempt_notifiers(struct task_struct *curr,
2794 struct task_struct *next)
2795{
2796 struct preempt_notifier *notifier;
2797 struct hlist_node *node;
2798
2799 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2800 notifier->ops->sched_out(notifier, next);
2801}
2802
6d6bc0ad 2803#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2804
2805static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2806{
2807}
2808
2809static void
2810fire_sched_out_preempt_notifiers(struct task_struct *curr,
2811 struct task_struct *next)
2812{
2813}
2814
6d6bc0ad 2815#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2816
4866cde0
NP
2817/**
2818 * prepare_task_switch - prepare to switch tasks
2819 * @rq: the runqueue preparing to switch
421cee29 2820 * @prev: the current task that is being switched out
4866cde0
NP
2821 * @next: the task we are going to switch to.
2822 *
2823 * This is called with the rq lock held and interrupts off. It must
2824 * be paired with a subsequent finish_task_switch after the context
2825 * switch.
2826 *
2827 * prepare_task_switch sets up locking and calls architecture specific
2828 * hooks.
2829 */
e107be36
AK
2830static inline void
2831prepare_task_switch(struct rq *rq, struct task_struct *prev,
2832 struct task_struct *next)
4866cde0 2833{
fe4b04fa
PZ
2834 sched_info_switch(prev, next);
2835 perf_event_task_sched_out(prev, next);
e107be36 2836 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2837 prepare_lock_switch(rq, next);
2838 prepare_arch_switch(next);
fe4b04fa 2839 trace_sched_switch(prev, next);
4866cde0
NP
2840}
2841
1da177e4
LT
2842/**
2843 * finish_task_switch - clean up after a task-switch
344babaa 2844 * @rq: runqueue associated with task-switch
1da177e4
LT
2845 * @prev: the thread we just switched away from.
2846 *
4866cde0
NP
2847 * finish_task_switch must be called after the context switch, paired
2848 * with a prepare_task_switch call before the context switch.
2849 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2850 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2851 *
2852 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2853 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2854 * with the lock held can cause deadlocks; see schedule() for
2855 * details.)
2856 */
a9957449 2857static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2858 __releases(rq->lock)
2859{
1da177e4 2860 struct mm_struct *mm = rq->prev_mm;
55a101f8 2861 long prev_state;
1da177e4
LT
2862
2863 rq->prev_mm = NULL;
2864
2865 /*
2866 * A task struct has one reference for the use as "current".
c394cc9f 2867 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2868 * schedule one last time. The schedule call will never return, and
2869 * the scheduled task must drop that reference.
c394cc9f 2870 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2871 * still held, otherwise prev could be scheduled on another cpu, die
2872 * there before we look at prev->state, and then the reference would
2873 * be dropped twice.
2874 * Manfred Spraul <manfred@colorfullife.com>
2875 */
55a101f8 2876 prev_state = prev->state;
4866cde0 2877 finish_arch_switch(prev);
8381f65d
JI
2878#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2879 local_irq_disable();
2880#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2881 perf_event_task_sched_in(current);
8381f65d
JI
2882#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2883 local_irq_enable();
2884#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2885 finish_lock_switch(rq, prev);
e8fa1362 2886
e107be36 2887 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2888 if (mm)
2889 mmdrop(mm);
c394cc9f 2890 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2891 /*
2892 * Remove function-return probe instances associated with this
2893 * task and put them back on the free list.
9761eea8 2894 */
c6fd91f0 2895 kprobe_flush_task(prev);
1da177e4 2896 put_task_struct(prev);
c6fd91f0 2897 }
1da177e4
LT
2898}
2899
3f029d3c
GH
2900#ifdef CONFIG_SMP
2901
2902/* assumes rq->lock is held */
2903static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2904{
2905 if (prev->sched_class->pre_schedule)
2906 prev->sched_class->pre_schedule(rq, prev);
2907}
2908
2909/* rq->lock is NOT held, but preemption is disabled */
2910static inline void post_schedule(struct rq *rq)
2911{
2912 if (rq->post_schedule) {
2913 unsigned long flags;
2914
05fa785c 2915 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2916 if (rq->curr->sched_class->post_schedule)
2917 rq->curr->sched_class->post_schedule(rq);
05fa785c 2918 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2919
2920 rq->post_schedule = 0;
2921 }
2922}
2923
2924#else
da19ab51 2925
3f029d3c
GH
2926static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2927{
2928}
2929
2930static inline void post_schedule(struct rq *rq)
2931{
1da177e4
LT
2932}
2933
3f029d3c
GH
2934#endif
2935
1da177e4
LT
2936/**
2937 * schedule_tail - first thing a freshly forked thread must call.
2938 * @prev: the thread we just switched away from.
2939 */
36c8b586 2940asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2941 __releases(rq->lock)
2942{
70b97a7f
IM
2943 struct rq *rq = this_rq();
2944
4866cde0 2945 finish_task_switch(rq, prev);
da19ab51 2946
3f029d3c
GH
2947 /*
2948 * FIXME: do we need to worry about rq being invalidated by the
2949 * task_switch?
2950 */
2951 post_schedule(rq);
70b97a7f 2952
4866cde0
NP
2953#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2954 /* In this case, finish_task_switch does not reenable preemption */
2955 preempt_enable();
2956#endif
1da177e4 2957 if (current->set_child_tid)
b488893a 2958 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2959}
2960
2961/*
2962 * context_switch - switch to the new MM and the new
2963 * thread's register state.
2964 */
dd41f596 2965static inline void
70b97a7f 2966context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2967 struct task_struct *next)
1da177e4 2968{
dd41f596 2969 struct mm_struct *mm, *oldmm;
1da177e4 2970
e107be36 2971 prepare_task_switch(rq, prev, next);
fe4b04fa 2972
dd41f596
IM
2973 mm = next->mm;
2974 oldmm = prev->active_mm;
9226d125
ZA
2975 /*
2976 * For paravirt, this is coupled with an exit in switch_to to
2977 * combine the page table reload and the switch backend into
2978 * one hypercall.
2979 */
224101ed 2980 arch_start_context_switch(prev);
9226d125 2981
31915ab4 2982 if (!mm) {
1da177e4
LT
2983 next->active_mm = oldmm;
2984 atomic_inc(&oldmm->mm_count);
2985 enter_lazy_tlb(oldmm, next);
2986 } else
2987 switch_mm(oldmm, mm, next);
2988
31915ab4 2989 if (!prev->mm) {
1da177e4 2990 prev->active_mm = NULL;
1da177e4
LT
2991 rq->prev_mm = oldmm;
2992 }
3a5f5e48
IM
2993 /*
2994 * Since the runqueue lock will be released by the next
2995 * task (which is an invalid locking op but in the case
2996 * of the scheduler it's an obvious special-case), so we
2997 * do an early lockdep release here:
2998 */
2999#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3000 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3001#endif
1da177e4
LT
3002
3003 /* Here we just switch the register state and the stack. */
3004 switch_to(prev, next, prev);
3005
dd41f596
IM
3006 barrier();
3007 /*
3008 * this_rq must be evaluated again because prev may have moved
3009 * CPUs since it called schedule(), thus the 'rq' on its stack
3010 * frame will be invalid.
3011 */
3012 finish_task_switch(this_rq(), prev);
1da177e4
LT
3013}
3014
3015/*
3016 * nr_running, nr_uninterruptible and nr_context_switches:
3017 *
3018 * externally visible scheduler statistics: current number of runnable
3019 * threads, current number of uninterruptible-sleeping threads, total
3020 * number of context switches performed since bootup.
3021 */
3022unsigned long nr_running(void)
3023{
3024 unsigned long i, sum = 0;
3025
3026 for_each_online_cpu(i)
3027 sum += cpu_rq(i)->nr_running;
3028
3029 return sum;
f711f609 3030}
1da177e4
LT
3031
3032unsigned long nr_uninterruptible(void)
f711f609 3033{
1da177e4 3034 unsigned long i, sum = 0;
f711f609 3035
0a945022 3036 for_each_possible_cpu(i)
1da177e4 3037 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3038
3039 /*
1da177e4
LT
3040 * Since we read the counters lockless, it might be slightly
3041 * inaccurate. Do not allow it to go below zero though:
f711f609 3042 */
1da177e4
LT
3043 if (unlikely((long)sum < 0))
3044 sum = 0;
f711f609 3045
1da177e4 3046 return sum;
f711f609 3047}
f711f609 3048
1da177e4 3049unsigned long long nr_context_switches(void)
46cb4b7c 3050{
cc94abfc
SR
3051 int i;
3052 unsigned long long sum = 0;
46cb4b7c 3053
0a945022 3054 for_each_possible_cpu(i)
1da177e4 3055 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3056
1da177e4
LT
3057 return sum;
3058}
483b4ee6 3059
1da177e4
LT
3060unsigned long nr_iowait(void)
3061{
3062 unsigned long i, sum = 0;
483b4ee6 3063
0a945022 3064 for_each_possible_cpu(i)
1da177e4 3065 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3066
1da177e4
LT
3067 return sum;
3068}
483b4ee6 3069
8c215bd3 3070unsigned long nr_iowait_cpu(int cpu)
69d25870 3071{
8c215bd3 3072 struct rq *this = cpu_rq(cpu);
69d25870
AV
3073 return atomic_read(&this->nr_iowait);
3074}
46cb4b7c 3075
69d25870
AV
3076unsigned long this_cpu_load(void)
3077{
3078 struct rq *this = this_rq();
3079 return this->cpu_load[0];
3080}
e790fb0b 3081
46cb4b7c 3082
dce48a84
TG
3083/* Variables and functions for calc_load */
3084static atomic_long_t calc_load_tasks;
3085static unsigned long calc_load_update;
3086unsigned long avenrun[3];
3087EXPORT_SYMBOL(avenrun);
46cb4b7c 3088
74f5187a
PZ
3089static long calc_load_fold_active(struct rq *this_rq)
3090{
3091 long nr_active, delta = 0;
3092
3093 nr_active = this_rq->nr_running;
3094 nr_active += (long) this_rq->nr_uninterruptible;
3095
3096 if (nr_active != this_rq->calc_load_active) {
3097 delta = nr_active - this_rq->calc_load_active;
3098 this_rq->calc_load_active = nr_active;
3099 }
3100
3101 return delta;
3102}
3103
0f004f5a
PZ
3104static unsigned long
3105calc_load(unsigned long load, unsigned long exp, unsigned long active)
3106{
3107 load *= exp;
3108 load += active * (FIXED_1 - exp);
3109 load += 1UL << (FSHIFT - 1);
3110 return load >> FSHIFT;
3111}
3112
74f5187a
PZ
3113#ifdef CONFIG_NO_HZ
3114/*
3115 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3116 *
3117 * When making the ILB scale, we should try to pull this in as well.
3118 */
3119static atomic_long_t calc_load_tasks_idle;
3120
3121static void calc_load_account_idle(struct rq *this_rq)
3122{
3123 long delta;
3124
3125 delta = calc_load_fold_active(this_rq);
3126 if (delta)
3127 atomic_long_add(delta, &calc_load_tasks_idle);
3128}
3129
3130static long calc_load_fold_idle(void)
3131{
3132 long delta = 0;
3133
3134 /*
3135 * Its got a race, we don't care...
3136 */
3137 if (atomic_long_read(&calc_load_tasks_idle))
3138 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3139
3140 return delta;
3141}
0f004f5a
PZ
3142
3143/**
3144 * fixed_power_int - compute: x^n, in O(log n) time
3145 *
3146 * @x: base of the power
3147 * @frac_bits: fractional bits of @x
3148 * @n: power to raise @x to.
3149 *
3150 * By exploiting the relation between the definition of the natural power
3151 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3152 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3153 * (where: n_i \elem {0, 1}, the binary vector representing n),
3154 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3155 * of course trivially computable in O(log_2 n), the length of our binary
3156 * vector.
3157 */
3158static unsigned long
3159fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3160{
3161 unsigned long result = 1UL << frac_bits;
3162
3163 if (n) for (;;) {
3164 if (n & 1) {
3165 result *= x;
3166 result += 1UL << (frac_bits - 1);
3167 result >>= frac_bits;
3168 }
3169 n >>= 1;
3170 if (!n)
3171 break;
3172 x *= x;
3173 x += 1UL << (frac_bits - 1);
3174 x >>= frac_bits;
3175 }
3176
3177 return result;
3178}
3179
3180/*
3181 * a1 = a0 * e + a * (1 - e)
3182 *
3183 * a2 = a1 * e + a * (1 - e)
3184 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3185 * = a0 * e^2 + a * (1 - e) * (1 + e)
3186 *
3187 * a3 = a2 * e + a * (1 - e)
3188 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3189 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3190 *
3191 * ...
3192 *
3193 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3194 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3195 * = a0 * e^n + a * (1 - e^n)
3196 *
3197 * [1] application of the geometric series:
3198 *
3199 * n 1 - x^(n+1)
3200 * S_n := \Sum x^i = -------------
3201 * i=0 1 - x
3202 */
3203static unsigned long
3204calc_load_n(unsigned long load, unsigned long exp,
3205 unsigned long active, unsigned int n)
3206{
3207
3208 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3209}
3210
3211/*
3212 * NO_HZ can leave us missing all per-cpu ticks calling
3213 * calc_load_account_active(), but since an idle CPU folds its delta into
3214 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3215 * in the pending idle delta if our idle period crossed a load cycle boundary.
3216 *
3217 * Once we've updated the global active value, we need to apply the exponential
3218 * weights adjusted to the number of cycles missed.
3219 */
3220static void calc_global_nohz(unsigned long ticks)
3221{
3222 long delta, active, n;
3223
3224 if (time_before(jiffies, calc_load_update))
3225 return;
3226
3227 /*
3228 * If we crossed a calc_load_update boundary, make sure to fold
3229 * any pending idle changes, the respective CPUs might have
3230 * missed the tick driven calc_load_account_active() update
3231 * due to NO_HZ.
3232 */
3233 delta = calc_load_fold_idle();
3234 if (delta)
3235 atomic_long_add(delta, &calc_load_tasks);
3236
3237 /*
3238 * If we were idle for multiple load cycles, apply them.
3239 */
3240 if (ticks >= LOAD_FREQ) {
3241 n = ticks / LOAD_FREQ;
3242
3243 active = atomic_long_read(&calc_load_tasks);
3244 active = active > 0 ? active * FIXED_1 : 0;
3245
3246 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3247 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3248 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3249
3250 calc_load_update += n * LOAD_FREQ;
3251 }
3252
3253 /*
3254 * Its possible the remainder of the above division also crosses
3255 * a LOAD_FREQ period, the regular check in calc_global_load()
3256 * which comes after this will take care of that.
3257 *
3258 * Consider us being 11 ticks before a cycle completion, and us
3259 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3260 * age us 4 cycles, and the test in calc_global_load() will
3261 * pick up the final one.
3262 */
3263}
74f5187a
PZ
3264#else
3265static void calc_load_account_idle(struct rq *this_rq)
3266{
3267}
3268
3269static inline long calc_load_fold_idle(void)
3270{
3271 return 0;
3272}
0f004f5a
PZ
3273
3274static void calc_global_nohz(unsigned long ticks)
3275{
3276}
74f5187a
PZ
3277#endif
3278
2d02494f
TG
3279/**
3280 * get_avenrun - get the load average array
3281 * @loads: pointer to dest load array
3282 * @offset: offset to add
3283 * @shift: shift count to shift the result left
3284 *
3285 * These values are estimates at best, so no need for locking.
3286 */
3287void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3288{
3289 loads[0] = (avenrun[0] + offset) << shift;
3290 loads[1] = (avenrun[1] + offset) << shift;
3291 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3292}
46cb4b7c 3293
46cb4b7c 3294/*
dce48a84
TG
3295 * calc_load - update the avenrun load estimates 10 ticks after the
3296 * CPUs have updated calc_load_tasks.
7835b98b 3297 */
0f004f5a 3298void calc_global_load(unsigned long ticks)
7835b98b 3299{
dce48a84 3300 long active;
1da177e4 3301
0f004f5a
PZ
3302 calc_global_nohz(ticks);
3303
3304 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3305 return;
1da177e4 3306
dce48a84
TG
3307 active = atomic_long_read(&calc_load_tasks);
3308 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3309
dce48a84
TG
3310 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3311 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3312 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3313
dce48a84
TG
3314 calc_load_update += LOAD_FREQ;
3315}
1da177e4 3316
dce48a84 3317/*
74f5187a
PZ
3318 * Called from update_cpu_load() to periodically update this CPU's
3319 * active count.
dce48a84
TG
3320 */
3321static void calc_load_account_active(struct rq *this_rq)
3322{
74f5187a 3323 long delta;
08c183f3 3324
74f5187a
PZ
3325 if (time_before(jiffies, this_rq->calc_load_update))
3326 return;
783609c6 3327
74f5187a
PZ
3328 delta = calc_load_fold_active(this_rq);
3329 delta += calc_load_fold_idle();
3330 if (delta)
dce48a84 3331 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3332
3333 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3334}
3335
fdf3e95d
VP
3336/*
3337 * The exact cpuload at various idx values, calculated at every tick would be
3338 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3339 *
3340 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3341 * on nth tick when cpu may be busy, then we have:
3342 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3343 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3344 *
3345 * decay_load_missed() below does efficient calculation of
3346 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3347 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3348 *
3349 * The calculation is approximated on a 128 point scale.
3350 * degrade_zero_ticks is the number of ticks after which load at any
3351 * particular idx is approximated to be zero.
3352 * degrade_factor is a precomputed table, a row for each load idx.
3353 * Each column corresponds to degradation factor for a power of two ticks,
3354 * based on 128 point scale.
3355 * Example:
3356 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3357 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3358 *
3359 * With this power of 2 load factors, we can degrade the load n times
3360 * by looking at 1 bits in n and doing as many mult/shift instead of
3361 * n mult/shifts needed by the exact degradation.
3362 */
3363#define DEGRADE_SHIFT 7
3364static const unsigned char
3365 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3366static const unsigned char
3367 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3368 {0, 0, 0, 0, 0, 0, 0, 0},
3369 {64, 32, 8, 0, 0, 0, 0, 0},
3370 {96, 72, 40, 12, 1, 0, 0},
3371 {112, 98, 75, 43, 15, 1, 0},
3372 {120, 112, 98, 76, 45, 16, 2} };
3373
3374/*
3375 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3376 * would be when CPU is idle and so we just decay the old load without
3377 * adding any new load.
3378 */
3379static unsigned long
3380decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3381{
3382 int j = 0;
3383
3384 if (!missed_updates)
3385 return load;
3386
3387 if (missed_updates >= degrade_zero_ticks[idx])
3388 return 0;
3389
3390 if (idx == 1)
3391 return load >> missed_updates;
3392
3393 while (missed_updates) {
3394 if (missed_updates % 2)
3395 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3396
3397 missed_updates >>= 1;
3398 j++;
3399 }
3400 return load;
3401}
3402
46cb4b7c 3403/*
dd41f596 3404 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3405 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3406 * every tick. We fix it up based on jiffies.
46cb4b7c 3407 */
dd41f596 3408static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3409{
495eca49 3410 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3411 unsigned long curr_jiffies = jiffies;
3412 unsigned long pending_updates;
dd41f596 3413 int i, scale;
46cb4b7c 3414
dd41f596 3415 this_rq->nr_load_updates++;
46cb4b7c 3416
fdf3e95d
VP
3417 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3418 if (curr_jiffies == this_rq->last_load_update_tick)
3419 return;
3420
3421 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3422 this_rq->last_load_update_tick = curr_jiffies;
3423
dd41f596 3424 /* Update our load: */
fdf3e95d
VP
3425 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3426 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3427 unsigned long old_load, new_load;
7d1e6a9b 3428
dd41f596 3429 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3430
dd41f596 3431 old_load = this_rq->cpu_load[i];
fdf3e95d 3432 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3433 new_load = this_load;
a25707f3
IM
3434 /*
3435 * Round up the averaging division if load is increasing. This
3436 * prevents us from getting stuck on 9 if the load is 10, for
3437 * example.
3438 */
3439 if (new_load > old_load)
fdf3e95d
VP
3440 new_load += scale - 1;
3441
3442 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3443 }
da2b71ed
SS
3444
3445 sched_avg_update(this_rq);
fdf3e95d
VP
3446}
3447
3448static void update_cpu_load_active(struct rq *this_rq)
3449{
3450 update_cpu_load(this_rq);
46cb4b7c 3451
74f5187a 3452 calc_load_account_active(this_rq);
46cb4b7c
SS
3453}
3454
dd41f596 3455#ifdef CONFIG_SMP
8a0be9ef 3456
46cb4b7c 3457/*
38022906
PZ
3458 * sched_exec - execve() is a valuable balancing opportunity, because at
3459 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3460 */
38022906 3461void sched_exec(void)
46cb4b7c 3462{
38022906 3463 struct task_struct *p = current;
1da177e4 3464 unsigned long flags;
70b97a7f 3465 struct rq *rq;
0017d735 3466 int dest_cpu;
46cb4b7c 3467
1da177e4 3468 rq = task_rq_lock(p, &flags);
0017d735
PZ
3469 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3470 if (dest_cpu == smp_processor_id())
3471 goto unlock;
38022906 3472
46cb4b7c 3473 /*
38022906 3474 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3475 */
30da688e 3476 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3477 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3478 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3479
1da177e4 3480 task_rq_unlock(rq, &flags);
969c7921 3481 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3482 return;
3483 }
0017d735 3484unlock:
1da177e4 3485 task_rq_unlock(rq, &flags);
1da177e4 3486}
dd41f596 3487
1da177e4
LT
3488#endif
3489
1da177e4
LT
3490DEFINE_PER_CPU(struct kernel_stat, kstat);
3491
3492EXPORT_PER_CPU_SYMBOL(kstat);
3493
3494/*
c5f8d995 3495 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3496 * @p in case that task is currently running.
c5f8d995
HS
3497 *
3498 * Called with task_rq_lock() held on @rq.
1da177e4 3499 */
c5f8d995
HS
3500static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3501{
3502 u64 ns = 0;
3503
3504 if (task_current(rq, p)) {
3505 update_rq_clock(rq);
305e6835 3506 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3507 if ((s64)ns < 0)
3508 ns = 0;
3509 }
3510
3511 return ns;
3512}
3513
bb34d92f 3514unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3515{
1da177e4 3516 unsigned long flags;
41b86e9c 3517 struct rq *rq;
bb34d92f 3518 u64 ns = 0;
48f24c4d 3519
41b86e9c 3520 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3521 ns = do_task_delta_exec(p, rq);
3522 task_rq_unlock(rq, &flags);
1508487e 3523
c5f8d995
HS
3524 return ns;
3525}
f06febc9 3526
c5f8d995
HS
3527/*
3528 * Return accounted runtime for the task.
3529 * In case the task is currently running, return the runtime plus current's
3530 * pending runtime that have not been accounted yet.
3531 */
3532unsigned long long task_sched_runtime(struct task_struct *p)
3533{
3534 unsigned long flags;
3535 struct rq *rq;
3536 u64 ns = 0;
3537
3538 rq = task_rq_lock(p, &flags);
3539 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3540 task_rq_unlock(rq, &flags);
3541
3542 return ns;
3543}
48f24c4d 3544
c5f8d995
HS
3545/*
3546 * Return sum_exec_runtime for the thread group.
3547 * In case the task is currently running, return the sum plus current's
3548 * pending runtime that have not been accounted yet.
3549 *
3550 * Note that the thread group might have other running tasks as well,
3551 * so the return value not includes other pending runtime that other
3552 * running tasks might have.
3553 */
3554unsigned long long thread_group_sched_runtime(struct task_struct *p)
3555{
3556 struct task_cputime totals;
3557 unsigned long flags;
3558 struct rq *rq;
3559 u64 ns;
3560
3561 rq = task_rq_lock(p, &flags);
3562 thread_group_cputime(p, &totals);
3563 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3564 task_rq_unlock(rq, &flags);
48f24c4d 3565
1da177e4
LT
3566 return ns;
3567}
3568
1da177e4
LT
3569/*
3570 * Account user cpu time to a process.
3571 * @p: the process that the cpu time gets accounted to
1da177e4 3572 * @cputime: the cpu time spent in user space since the last update
457533a7 3573 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3574 */
457533a7
MS
3575void account_user_time(struct task_struct *p, cputime_t cputime,
3576 cputime_t cputime_scaled)
1da177e4
LT
3577{
3578 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3579 cputime64_t tmp;
3580
457533a7 3581 /* Add user time to process. */
1da177e4 3582 p->utime = cputime_add(p->utime, cputime);
457533a7 3583 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3584 account_group_user_time(p, cputime);
1da177e4
LT
3585
3586 /* Add user time to cpustat. */
3587 tmp = cputime_to_cputime64(cputime);
3588 if (TASK_NICE(p) > 0)
3589 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3590 else
3591 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3592
3593 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3594 /* Account for user time used */
3595 acct_update_integrals(p);
1da177e4
LT
3596}
3597
94886b84
LV
3598/*
3599 * Account guest cpu time to a process.
3600 * @p: the process that the cpu time gets accounted to
3601 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3602 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3603 */
457533a7
MS
3604static void account_guest_time(struct task_struct *p, cputime_t cputime,
3605 cputime_t cputime_scaled)
94886b84
LV
3606{
3607 cputime64_t tmp;
3608 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3609
3610 tmp = cputime_to_cputime64(cputime);
3611
457533a7 3612 /* Add guest time to process. */
94886b84 3613 p->utime = cputime_add(p->utime, cputime);
457533a7 3614 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3615 account_group_user_time(p, cputime);
94886b84
LV
3616 p->gtime = cputime_add(p->gtime, cputime);
3617
457533a7 3618 /* Add guest time to cpustat. */
ce0e7b28
RO
3619 if (TASK_NICE(p) > 0) {
3620 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3621 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3622 } else {
3623 cpustat->user = cputime64_add(cpustat->user, tmp);
3624 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3625 }
94886b84
LV
3626}
3627
70a89a66
VP
3628/*
3629 * Account system cpu time to a process and desired cpustat field
3630 * @p: the process that the cpu time gets accounted to
3631 * @cputime: the cpu time spent in kernel space since the last update
3632 * @cputime_scaled: cputime scaled by cpu frequency
3633 * @target_cputime64: pointer to cpustat field that has to be updated
3634 */
3635static inline
3636void __account_system_time(struct task_struct *p, cputime_t cputime,
3637 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3638{
3639 cputime64_t tmp = cputime_to_cputime64(cputime);
3640
3641 /* Add system time to process. */
3642 p->stime = cputime_add(p->stime, cputime);
3643 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3644 account_group_system_time(p, cputime);
3645
3646 /* Add system time to cpustat. */
3647 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3648 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3649
3650 /* Account for system time used */
3651 acct_update_integrals(p);
3652}
3653
1da177e4
LT
3654/*
3655 * Account system cpu time to a process.
3656 * @p: the process that the cpu time gets accounted to
3657 * @hardirq_offset: the offset to subtract from hardirq_count()
3658 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3659 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3660 */
3661void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3662 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3663{
3664 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3665 cputime64_t *target_cputime64;
1da177e4 3666
983ed7a6 3667 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3668 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3669 return;
3670 }
94886b84 3671
1da177e4 3672 if (hardirq_count() - hardirq_offset)
70a89a66 3673 target_cputime64 = &cpustat->irq;
75e1056f 3674 else if (in_serving_softirq())
70a89a66 3675 target_cputime64 = &cpustat->softirq;
1da177e4 3676 else
70a89a66 3677 target_cputime64 = &cpustat->system;
ef12fefa 3678
70a89a66 3679 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3680}
3681
c66f08be 3682/*
1da177e4 3683 * Account for involuntary wait time.
544b4a1f 3684 * @cputime: the cpu time spent in involuntary wait
c66f08be 3685 */
79741dd3 3686void account_steal_time(cputime_t cputime)
c66f08be 3687{
79741dd3
MS
3688 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3689 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3690
3691 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3692}
3693
1da177e4 3694/*
79741dd3
MS
3695 * Account for idle time.
3696 * @cputime: the cpu time spent in idle wait
1da177e4 3697 */
79741dd3 3698void account_idle_time(cputime_t cputime)
1da177e4
LT
3699{
3700 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3701 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3702 struct rq *rq = this_rq();
1da177e4 3703
79741dd3
MS
3704 if (atomic_read(&rq->nr_iowait) > 0)
3705 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3706 else
3707 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3708}
3709
79741dd3
MS
3710#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3711
abb74cef
VP
3712#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3713/*
3714 * Account a tick to a process and cpustat
3715 * @p: the process that the cpu time gets accounted to
3716 * @user_tick: is the tick from userspace
3717 * @rq: the pointer to rq
3718 *
3719 * Tick demultiplexing follows the order
3720 * - pending hardirq update
3721 * - pending softirq update
3722 * - user_time
3723 * - idle_time
3724 * - system time
3725 * - check for guest_time
3726 * - else account as system_time
3727 *
3728 * Check for hardirq is done both for system and user time as there is
3729 * no timer going off while we are on hardirq and hence we may never get an
3730 * opportunity to update it solely in system time.
3731 * p->stime and friends are only updated on system time and not on irq
3732 * softirq as those do not count in task exec_runtime any more.
3733 */
3734static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3735 struct rq *rq)
3736{
3737 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3738 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3739 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3740
3741 if (irqtime_account_hi_update()) {
3742 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3743 } else if (irqtime_account_si_update()) {
3744 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3745 } else if (this_cpu_ksoftirqd() == p) {
3746 /*
3747 * ksoftirqd time do not get accounted in cpu_softirq_time.
3748 * So, we have to handle it separately here.
3749 * Also, p->stime needs to be updated for ksoftirqd.
3750 */
3751 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3752 &cpustat->softirq);
abb74cef
VP
3753 } else if (user_tick) {
3754 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3755 } else if (p == rq->idle) {
3756 account_idle_time(cputime_one_jiffy);
3757 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3758 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3759 } else {
3760 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3761 &cpustat->system);
3762 }
3763}
3764
3765static void irqtime_account_idle_ticks(int ticks)
3766{
3767 int i;
3768 struct rq *rq = this_rq();
3769
3770 for (i = 0; i < ticks; i++)
3771 irqtime_account_process_tick(current, 0, rq);
3772}
544b4a1f 3773#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3774static void irqtime_account_idle_ticks(int ticks) {}
3775static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3776 struct rq *rq) {}
544b4a1f 3777#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3778
3779/*
3780 * Account a single tick of cpu time.
3781 * @p: the process that the cpu time gets accounted to
3782 * @user_tick: indicates if the tick is a user or a system tick
3783 */
3784void account_process_tick(struct task_struct *p, int user_tick)
3785{
a42548a1 3786 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3787 struct rq *rq = this_rq();
3788
abb74cef
VP
3789 if (sched_clock_irqtime) {
3790 irqtime_account_process_tick(p, user_tick, rq);
3791 return;
3792 }
3793
79741dd3 3794 if (user_tick)
a42548a1 3795 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3796 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3797 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3798 one_jiffy_scaled);
3799 else
a42548a1 3800 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3801}
3802
3803/*
3804 * Account multiple ticks of steal time.
3805 * @p: the process from which the cpu time has been stolen
3806 * @ticks: number of stolen ticks
3807 */
3808void account_steal_ticks(unsigned long ticks)
3809{
3810 account_steal_time(jiffies_to_cputime(ticks));
3811}
3812
3813/*
3814 * Account multiple ticks of idle time.
3815 * @ticks: number of stolen ticks
3816 */
3817void account_idle_ticks(unsigned long ticks)
3818{
abb74cef
VP
3819
3820 if (sched_clock_irqtime) {
3821 irqtime_account_idle_ticks(ticks);
3822 return;
3823 }
3824
79741dd3 3825 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3826}
3827
79741dd3
MS
3828#endif
3829
49048622
BS
3830/*
3831 * Use precise platform statistics if available:
3832 */
3833#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3834void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3835{
d99ca3b9
HS
3836 *ut = p->utime;
3837 *st = p->stime;
49048622
BS
3838}
3839
0cf55e1e 3840void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3841{
0cf55e1e
HS
3842 struct task_cputime cputime;
3843
3844 thread_group_cputime(p, &cputime);
3845
3846 *ut = cputime.utime;
3847 *st = cputime.stime;
49048622
BS
3848}
3849#else
761b1d26
HS
3850
3851#ifndef nsecs_to_cputime
b7b20df9 3852# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3853#endif
3854
d180c5bc 3855void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3856{
d99ca3b9 3857 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3858
3859 /*
3860 * Use CFS's precise accounting:
3861 */
d180c5bc 3862 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3863
3864 if (total) {
e75e863d 3865 u64 temp = rtime;
d180c5bc 3866
e75e863d 3867 temp *= utime;
49048622 3868 do_div(temp, total);
d180c5bc
HS
3869 utime = (cputime_t)temp;
3870 } else
3871 utime = rtime;
49048622 3872
d180c5bc
HS
3873 /*
3874 * Compare with previous values, to keep monotonicity:
3875 */
761b1d26 3876 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3877 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3878
d99ca3b9
HS
3879 *ut = p->prev_utime;
3880 *st = p->prev_stime;
49048622
BS
3881}
3882
0cf55e1e
HS
3883/*
3884 * Must be called with siglock held.
3885 */
3886void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3887{
0cf55e1e
HS
3888 struct signal_struct *sig = p->signal;
3889 struct task_cputime cputime;
3890 cputime_t rtime, utime, total;
49048622 3891
0cf55e1e 3892 thread_group_cputime(p, &cputime);
49048622 3893
0cf55e1e
HS
3894 total = cputime_add(cputime.utime, cputime.stime);
3895 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3896
0cf55e1e 3897 if (total) {
e75e863d 3898 u64 temp = rtime;
49048622 3899
e75e863d 3900 temp *= cputime.utime;
0cf55e1e
HS
3901 do_div(temp, total);
3902 utime = (cputime_t)temp;
3903 } else
3904 utime = rtime;
3905
3906 sig->prev_utime = max(sig->prev_utime, utime);
3907 sig->prev_stime = max(sig->prev_stime,
3908 cputime_sub(rtime, sig->prev_utime));
3909
3910 *ut = sig->prev_utime;
3911 *st = sig->prev_stime;
49048622 3912}
49048622 3913#endif
49048622 3914
7835b98b
CL
3915/*
3916 * This function gets called by the timer code, with HZ frequency.
3917 * We call it with interrupts disabled.
3918 *
3919 * It also gets called by the fork code, when changing the parent's
3920 * timeslices.
3921 */
3922void scheduler_tick(void)
3923{
7835b98b
CL
3924 int cpu = smp_processor_id();
3925 struct rq *rq = cpu_rq(cpu);
dd41f596 3926 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3927
3928 sched_clock_tick();
dd41f596 3929
05fa785c 3930 raw_spin_lock(&rq->lock);
3e51f33f 3931 update_rq_clock(rq);
fdf3e95d 3932 update_cpu_load_active(rq);
fa85ae24 3933 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3934 raw_spin_unlock(&rq->lock);
7835b98b 3935
e9d2b064 3936 perf_event_task_tick();
e220d2dc 3937
e418e1c2 3938#ifdef CONFIG_SMP
dd41f596
IM
3939 rq->idle_at_tick = idle_cpu(cpu);
3940 trigger_load_balance(rq, cpu);
e418e1c2 3941#endif
1da177e4
LT
3942}
3943
132380a0 3944notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3945{
3946 if (in_lock_functions(addr)) {
3947 addr = CALLER_ADDR2;
3948 if (in_lock_functions(addr))
3949 addr = CALLER_ADDR3;
3950 }
3951 return addr;
3952}
1da177e4 3953
7e49fcce
SR
3954#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3955 defined(CONFIG_PREEMPT_TRACER))
3956
43627582 3957void __kprobes add_preempt_count(int val)
1da177e4 3958{
6cd8a4bb 3959#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3960 /*
3961 * Underflow?
3962 */
9a11b49a
IM
3963 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3964 return;
6cd8a4bb 3965#endif
1da177e4 3966 preempt_count() += val;
6cd8a4bb 3967#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3968 /*
3969 * Spinlock count overflowing soon?
3970 */
33859f7f
MOS
3971 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3972 PREEMPT_MASK - 10);
6cd8a4bb
SR
3973#endif
3974 if (preempt_count() == val)
3975 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3976}
3977EXPORT_SYMBOL(add_preempt_count);
3978
43627582 3979void __kprobes sub_preempt_count(int val)
1da177e4 3980{
6cd8a4bb 3981#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3982 /*
3983 * Underflow?
3984 */
01e3eb82 3985 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3986 return;
1da177e4
LT
3987 /*
3988 * Is the spinlock portion underflowing?
3989 */
9a11b49a
IM
3990 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3991 !(preempt_count() & PREEMPT_MASK)))
3992 return;
6cd8a4bb 3993#endif
9a11b49a 3994
6cd8a4bb
SR
3995 if (preempt_count() == val)
3996 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3997 preempt_count() -= val;
3998}
3999EXPORT_SYMBOL(sub_preempt_count);
4000
4001#endif
4002
4003/*
dd41f596 4004 * Print scheduling while atomic bug:
1da177e4 4005 */
dd41f596 4006static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4007{
838225b4
SS
4008 struct pt_regs *regs = get_irq_regs();
4009
3df0fc5b
PZ
4010 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4011 prev->comm, prev->pid, preempt_count());
838225b4 4012
dd41f596 4013 debug_show_held_locks(prev);
e21f5b15 4014 print_modules();
dd41f596
IM
4015 if (irqs_disabled())
4016 print_irqtrace_events(prev);
838225b4
SS
4017
4018 if (regs)
4019 show_regs(regs);
4020 else
4021 dump_stack();
dd41f596 4022}
1da177e4 4023
dd41f596
IM
4024/*
4025 * Various schedule()-time debugging checks and statistics:
4026 */
4027static inline void schedule_debug(struct task_struct *prev)
4028{
1da177e4 4029 /*
41a2d6cf 4030 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4031 * schedule() atomically, we ignore that path for now.
4032 * Otherwise, whine if we are scheduling when we should not be.
4033 */
3f33a7ce 4034 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4035 __schedule_bug(prev);
4036
1da177e4
LT
4037 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4038
2d72376b 4039 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4040#ifdef CONFIG_SCHEDSTATS
4041 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4042 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4043 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4044 }
4045#endif
dd41f596
IM
4046}
4047
6cecd084 4048static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4049{
a64692a3
MG
4050 if (prev->se.on_rq)
4051 update_rq_clock(rq);
6cecd084 4052 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4053}
4054
dd41f596
IM
4055/*
4056 * Pick up the highest-prio task:
4057 */
4058static inline struct task_struct *
b67802ea 4059pick_next_task(struct rq *rq)
dd41f596 4060{
5522d5d5 4061 const struct sched_class *class;
dd41f596 4062 struct task_struct *p;
1da177e4
LT
4063
4064 /*
dd41f596
IM
4065 * Optimization: we know that if all tasks are in
4066 * the fair class we can call that function directly:
1da177e4 4067 */
dd41f596 4068 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4069 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4070 if (likely(p))
4071 return p;
1da177e4
LT
4072 }
4073
34f971f6 4074 for_each_class(class) {
fb8d4724 4075 p = class->pick_next_task(rq);
dd41f596
IM
4076 if (p)
4077 return p;
dd41f596 4078 }
34f971f6
PZ
4079
4080 BUG(); /* the idle class will always have a runnable task */
dd41f596 4081}
1da177e4 4082
dd41f596
IM
4083/*
4084 * schedule() is the main scheduler function.
4085 */
ff743345 4086asmlinkage void __sched schedule(void)
dd41f596
IM
4087{
4088 struct task_struct *prev, *next;
67ca7bde 4089 unsigned long *switch_count;
dd41f596 4090 struct rq *rq;
31656519 4091 int cpu;
dd41f596 4092
ff743345
PZ
4093need_resched:
4094 preempt_disable();
dd41f596
IM
4095 cpu = smp_processor_id();
4096 rq = cpu_rq(cpu);
25502a6c 4097 rcu_note_context_switch(cpu);
dd41f596 4098 prev = rq->curr;
dd41f596 4099
dd41f596 4100 schedule_debug(prev);
1da177e4 4101
31656519 4102 if (sched_feat(HRTICK))
f333fdc9 4103 hrtick_clear(rq);
8f4d37ec 4104
05fa785c 4105 raw_spin_lock_irq(&rq->lock);
1da177e4 4106
246d86b5 4107 switch_count = &prev->nivcsw;
1da177e4 4108 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4109 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4110 prev->state = TASK_RUNNING;
21aa9af0
TH
4111 } else {
4112 /*
4113 * If a worker is going to sleep, notify and
4114 * ask workqueue whether it wants to wake up a
4115 * task to maintain concurrency. If so, wake
4116 * up the task.
4117 */
4118 if (prev->flags & PF_WQ_WORKER) {
4119 struct task_struct *to_wakeup;
4120
4121 to_wakeup = wq_worker_sleeping(prev, cpu);
4122 if (to_wakeup)
4123 try_to_wake_up_local(to_wakeup);
4124 }
371fd7e7 4125 deactivate_task(rq, prev, DEQUEUE_SLEEP);
6631e635
LT
4126
4127 /*
4128 * If we are going to sleep and we have plugged IO queued, make
4129 * sure to submit it to avoid deadlocks.
4130 */
4131 if (blk_needs_flush_plug(prev)) {
4132 raw_spin_unlock(&rq->lock);
4133 blk_flush_plug(prev);
4134 raw_spin_lock(&rq->lock);
4135 }
21aa9af0 4136 }
dd41f596 4137 switch_count = &prev->nvcsw;
1da177e4
LT
4138 }
4139
3f029d3c 4140 pre_schedule(rq, prev);
f65eda4f 4141
dd41f596 4142 if (unlikely(!rq->nr_running))
1da177e4 4143 idle_balance(cpu, rq);
1da177e4 4144
df1c99d4 4145 put_prev_task(rq, prev);
b67802ea 4146 next = pick_next_task(rq);
f26f9aff
MG
4147 clear_tsk_need_resched(prev);
4148 rq->skip_clock_update = 0;
1da177e4 4149
1da177e4 4150 if (likely(prev != next)) {
1da177e4
LT
4151 rq->nr_switches++;
4152 rq->curr = next;
4153 ++*switch_count;
4154
dd41f596 4155 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4156 /*
246d86b5
ON
4157 * The context switch have flipped the stack from under us
4158 * and restored the local variables which were saved when
4159 * this task called schedule() in the past. prev == current
4160 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4161 */
4162 cpu = smp_processor_id();
4163 rq = cpu_rq(cpu);
1da177e4 4164 } else
05fa785c 4165 raw_spin_unlock_irq(&rq->lock);
1da177e4 4166
3f029d3c 4167 post_schedule(rq);
1da177e4 4168
1da177e4 4169 preempt_enable_no_resched();
ff743345 4170 if (need_resched())
1da177e4
LT
4171 goto need_resched;
4172}
1da177e4
LT
4173EXPORT_SYMBOL(schedule);
4174
c08f7829 4175#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4176/*
4177 * Look out! "owner" is an entirely speculative pointer
4178 * access and not reliable.
4179 */
4180int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4181{
4182 unsigned int cpu;
4183 struct rq *rq;
4184
4185 if (!sched_feat(OWNER_SPIN))
4186 return 0;
4187
4188#ifdef CONFIG_DEBUG_PAGEALLOC
4189 /*
4190 * Need to access the cpu field knowing that
4191 * DEBUG_PAGEALLOC could have unmapped it if
4192 * the mutex owner just released it and exited.
4193 */
4194 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4195 return 0;
0d66bf6d
PZ
4196#else
4197 cpu = owner->cpu;
4198#endif
4199
4200 /*
4201 * Even if the access succeeded (likely case),
4202 * the cpu field may no longer be valid.
4203 */
4204 if (cpu >= nr_cpumask_bits)
4b402210 4205 return 0;
0d66bf6d
PZ
4206
4207 /*
4208 * We need to validate that we can do a
4209 * get_cpu() and that we have the percpu area.
4210 */
4211 if (!cpu_online(cpu))
4b402210 4212 return 0;
0d66bf6d
PZ
4213
4214 rq = cpu_rq(cpu);
4215
4216 for (;;) {
4217 /*
4218 * Owner changed, break to re-assess state.
4219 */
9d0f4dcc
TC
4220 if (lock->owner != owner) {
4221 /*
4222 * If the lock has switched to a different owner,
4223 * we likely have heavy contention. Return 0 to quit
4224 * optimistic spinning and not contend further:
4225 */
4226 if (lock->owner)
4227 return 0;
0d66bf6d 4228 break;
9d0f4dcc 4229 }
0d66bf6d
PZ
4230
4231 /*
4232 * Is that owner really running on that cpu?
4233 */
4234 if (task_thread_info(rq->curr) != owner || need_resched())
4235 return 0;
4236
335d7afb 4237 arch_mutex_cpu_relax();
0d66bf6d 4238 }
4b402210 4239
0d66bf6d
PZ
4240 return 1;
4241}
4242#endif
4243
1da177e4
LT
4244#ifdef CONFIG_PREEMPT
4245/*
2ed6e34f 4246 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4247 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4248 * occur there and call schedule directly.
4249 */
d1f74e20 4250asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4251{
4252 struct thread_info *ti = current_thread_info();
6478d880 4253
1da177e4
LT
4254 /*
4255 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4256 * we do not want to preempt the current task. Just return..
1da177e4 4257 */
beed33a8 4258 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4259 return;
4260
3a5c359a 4261 do {
d1f74e20 4262 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4263 schedule();
d1f74e20 4264 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4265
3a5c359a
AK
4266 /*
4267 * Check again in case we missed a preemption opportunity
4268 * between schedule and now.
4269 */
4270 barrier();
5ed0cec0 4271 } while (need_resched());
1da177e4 4272}
1da177e4
LT
4273EXPORT_SYMBOL(preempt_schedule);
4274
4275/*
2ed6e34f 4276 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4277 * off of irq context.
4278 * Note, that this is called and return with irqs disabled. This will
4279 * protect us against recursive calling from irq.
4280 */
4281asmlinkage void __sched preempt_schedule_irq(void)
4282{
4283 struct thread_info *ti = current_thread_info();
6478d880 4284
2ed6e34f 4285 /* Catch callers which need to be fixed */
1da177e4
LT
4286 BUG_ON(ti->preempt_count || !irqs_disabled());
4287
3a5c359a
AK
4288 do {
4289 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4290 local_irq_enable();
4291 schedule();
4292 local_irq_disable();
3a5c359a 4293 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4294
3a5c359a
AK
4295 /*
4296 * Check again in case we missed a preemption opportunity
4297 * between schedule and now.
4298 */
4299 barrier();
5ed0cec0 4300 } while (need_resched());
1da177e4
LT
4301}
4302
4303#endif /* CONFIG_PREEMPT */
4304
63859d4f 4305int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4306 void *key)
1da177e4 4307{
63859d4f 4308 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4309}
1da177e4
LT
4310EXPORT_SYMBOL(default_wake_function);
4311
4312/*
41a2d6cf
IM
4313 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4314 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4315 * number) then we wake all the non-exclusive tasks and one exclusive task.
4316 *
4317 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4318 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4319 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4320 */
78ddb08f 4321static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4322 int nr_exclusive, int wake_flags, void *key)
1da177e4 4323{
2e45874c 4324 wait_queue_t *curr, *next;
1da177e4 4325
2e45874c 4326 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4327 unsigned flags = curr->flags;
4328
63859d4f 4329 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4330 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4331 break;
4332 }
4333}
4334
4335/**
4336 * __wake_up - wake up threads blocked on a waitqueue.
4337 * @q: the waitqueue
4338 * @mode: which threads
4339 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4340 * @key: is directly passed to the wakeup function
50fa610a
DH
4341 *
4342 * It may be assumed that this function implies a write memory barrier before
4343 * changing the task state if and only if any tasks are woken up.
1da177e4 4344 */
7ad5b3a5 4345void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4346 int nr_exclusive, void *key)
1da177e4
LT
4347{
4348 unsigned long flags;
4349
4350 spin_lock_irqsave(&q->lock, flags);
4351 __wake_up_common(q, mode, nr_exclusive, 0, key);
4352 spin_unlock_irqrestore(&q->lock, flags);
4353}
1da177e4
LT
4354EXPORT_SYMBOL(__wake_up);
4355
4356/*
4357 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4358 */
7ad5b3a5 4359void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4360{
4361 __wake_up_common(q, mode, 1, 0, NULL);
4362}
22c43c81 4363EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4364
4ede816a
DL
4365void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4366{
4367 __wake_up_common(q, mode, 1, 0, key);
4368}
bf294b41 4369EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4370
1da177e4 4371/**
4ede816a 4372 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4373 * @q: the waitqueue
4374 * @mode: which threads
4375 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4376 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4377 *
4378 * The sync wakeup differs that the waker knows that it will schedule
4379 * away soon, so while the target thread will be woken up, it will not
4380 * be migrated to another CPU - ie. the two threads are 'synchronized'
4381 * with each other. This can prevent needless bouncing between CPUs.
4382 *
4383 * On UP it can prevent extra preemption.
50fa610a
DH
4384 *
4385 * It may be assumed that this function implies a write memory barrier before
4386 * changing the task state if and only if any tasks are woken up.
1da177e4 4387 */
4ede816a
DL
4388void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4389 int nr_exclusive, void *key)
1da177e4
LT
4390{
4391 unsigned long flags;
7d478721 4392 int wake_flags = WF_SYNC;
1da177e4
LT
4393
4394 if (unlikely(!q))
4395 return;
4396
4397 if (unlikely(!nr_exclusive))
7d478721 4398 wake_flags = 0;
1da177e4
LT
4399
4400 spin_lock_irqsave(&q->lock, flags);
7d478721 4401 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4402 spin_unlock_irqrestore(&q->lock, flags);
4403}
4ede816a
DL
4404EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4405
4406/*
4407 * __wake_up_sync - see __wake_up_sync_key()
4408 */
4409void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4410{
4411 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4412}
1da177e4
LT
4413EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4414
65eb3dc6
KD
4415/**
4416 * complete: - signals a single thread waiting on this completion
4417 * @x: holds the state of this particular completion
4418 *
4419 * This will wake up a single thread waiting on this completion. Threads will be
4420 * awakened in the same order in which they were queued.
4421 *
4422 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4423 *
4424 * It may be assumed that this function implies a write memory barrier before
4425 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4426 */
b15136e9 4427void complete(struct completion *x)
1da177e4
LT
4428{
4429 unsigned long flags;
4430
4431 spin_lock_irqsave(&x->wait.lock, flags);
4432 x->done++;
d9514f6c 4433 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4434 spin_unlock_irqrestore(&x->wait.lock, flags);
4435}
4436EXPORT_SYMBOL(complete);
4437
65eb3dc6
KD
4438/**
4439 * complete_all: - signals all threads waiting on this completion
4440 * @x: holds the state of this particular completion
4441 *
4442 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4443 *
4444 * It may be assumed that this function implies a write memory barrier before
4445 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4446 */
b15136e9 4447void complete_all(struct completion *x)
1da177e4
LT
4448{
4449 unsigned long flags;
4450
4451 spin_lock_irqsave(&x->wait.lock, flags);
4452 x->done += UINT_MAX/2;
d9514f6c 4453 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4454 spin_unlock_irqrestore(&x->wait.lock, flags);
4455}
4456EXPORT_SYMBOL(complete_all);
4457
8cbbe86d
AK
4458static inline long __sched
4459do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4460{
1da177e4
LT
4461 if (!x->done) {
4462 DECLARE_WAITQUEUE(wait, current);
4463
a93d2f17 4464 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4465 do {
94d3d824 4466 if (signal_pending_state(state, current)) {
ea71a546
ON
4467 timeout = -ERESTARTSYS;
4468 break;
8cbbe86d
AK
4469 }
4470 __set_current_state(state);
1da177e4
LT
4471 spin_unlock_irq(&x->wait.lock);
4472 timeout = schedule_timeout(timeout);
4473 spin_lock_irq(&x->wait.lock);
ea71a546 4474 } while (!x->done && timeout);
1da177e4 4475 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4476 if (!x->done)
4477 return timeout;
1da177e4
LT
4478 }
4479 x->done--;
ea71a546 4480 return timeout ?: 1;
1da177e4 4481}
1da177e4 4482
8cbbe86d
AK
4483static long __sched
4484wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4485{
1da177e4
LT
4486 might_sleep();
4487
4488 spin_lock_irq(&x->wait.lock);
8cbbe86d 4489 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4490 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4491 return timeout;
4492}
1da177e4 4493
65eb3dc6
KD
4494/**
4495 * wait_for_completion: - waits for completion of a task
4496 * @x: holds the state of this particular completion
4497 *
4498 * This waits to be signaled for completion of a specific task. It is NOT
4499 * interruptible and there is no timeout.
4500 *
4501 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4502 * and interrupt capability. Also see complete().
4503 */
b15136e9 4504void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4505{
4506 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4507}
8cbbe86d 4508EXPORT_SYMBOL(wait_for_completion);
1da177e4 4509
65eb3dc6
KD
4510/**
4511 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4512 * @x: holds the state of this particular completion
4513 * @timeout: timeout value in jiffies
4514 *
4515 * This waits for either a completion of a specific task to be signaled or for a
4516 * specified timeout to expire. The timeout is in jiffies. It is not
4517 * interruptible.
4518 */
b15136e9 4519unsigned long __sched
8cbbe86d 4520wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4521{
8cbbe86d 4522 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4523}
8cbbe86d 4524EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4525
65eb3dc6
KD
4526/**
4527 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4528 * @x: holds the state of this particular completion
4529 *
4530 * This waits for completion of a specific task to be signaled. It is
4531 * interruptible.
4532 */
8cbbe86d 4533int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4534{
51e97990
AK
4535 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4536 if (t == -ERESTARTSYS)
4537 return t;
4538 return 0;
0fec171c 4539}
8cbbe86d 4540EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4541
65eb3dc6
KD
4542/**
4543 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4544 * @x: holds the state of this particular completion
4545 * @timeout: timeout value in jiffies
4546 *
4547 * This waits for either a completion of a specific task to be signaled or for a
4548 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4549 */
6bf41237 4550long __sched
8cbbe86d
AK
4551wait_for_completion_interruptible_timeout(struct completion *x,
4552 unsigned long timeout)
0fec171c 4553{
8cbbe86d 4554 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4555}
8cbbe86d 4556EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4557
65eb3dc6
KD
4558/**
4559 * wait_for_completion_killable: - waits for completion of a task (killable)
4560 * @x: holds the state of this particular completion
4561 *
4562 * This waits to be signaled for completion of a specific task. It can be
4563 * interrupted by a kill signal.
4564 */
009e577e
MW
4565int __sched wait_for_completion_killable(struct completion *x)
4566{
4567 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4568 if (t == -ERESTARTSYS)
4569 return t;
4570 return 0;
4571}
4572EXPORT_SYMBOL(wait_for_completion_killable);
4573
0aa12fb4
SW
4574/**
4575 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4576 * @x: holds the state of this particular completion
4577 * @timeout: timeout value in jiffies
4578 *
4579 * This waits for either a completion of a specific task to be
4580 * signaled or for a specified timeout to expire. It can be
4581 * interrupted by a kill signal. The timeout is in jiffies.
4582 */
6bf41237 4583long __sched
0aa12fb4
SW
4584wait_for_completion_killable_timeout(struct completion *x,
4585 unsigned long timeout)
4586{
4587 return wait_for_common(x, timeout, TASK_KILLABLE);
4588}
4589EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4590
be4de352
DC
4591/**
4592 * try_wait_for_completion - try to decrement a completion without blocking
4593 * @x: completion structure
4594 *
4595 * Returns: 0 if a decrement cannot be done without blocking
4596 * 1 if a decrement succeeded.
4597 *
4598 * If a completion is being used as a counting completion,
4599 * attempt to decrement the counter without blocking. This
4600 * enables us to avoid waiting if the resource the completion
4601 * is protecting is not available.
4602 */
4603bool try_wait_for_completion(struct completion *x)
4604{
7539a3b3 4605 unsigned long flags;
be4de352
DC
4606 int ret = 1;
4607
7539a3b3 4608 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4609 if (!x->done)
4610 ret = 0;
4611 else
4612 x->done--;
7539a3b3 4613 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4614 return ret;
4615}
4616EXPORT_SYMBOL(try_wait_for_completion);
4617
4618/**
4619 * completion_done - Test to see if a completion has any waiters
4620 * @x: completion structure
4621 *
4622 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4623 * 1 if there are no waiters.
4624 *
4625 */
4626bool completion_done(struct completion *x)
4627{
7539a3b3 4628 unsigned long flags;
be4de352
DC
4629 int ret = 1;
4630
7539a3b3 4631 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4632 if (!x->done)
4633 ret = 0;
7539a3b3 4634 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4635 return ret;
4636}
4637EXPORT_SYMBOL(completion_done);
4638
8cbbe86d
AK
4639static long __sched
4640sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4641{
0fec171c
IM
4642 unsigned long flags;
4643 wait_queue_t wait;
4644
4645 init_waitqueue_entry(&wait, current);
1da177e4 4646
8cbbe86d 4647 __set_current_state(state);
1da177e4 4648
8cbbe86d
AK
4649 spin_lock_irqsave(&q->lock, flags);
4650 __add_wait_queue(q, &wait);
4651 spin_unlock(&q->lock);
4652 timeout = schedule_timeout(timeout);
4653 spin_lock_irq(&q->lock);
4654 __remove_wait_queue(q, &wait);
4655 spin_unlock_irqrestore(&q->lock, flags);
4656
4657 return timeout;
4658}
4659
4660void __sched interruptible_sleep_on(wait_queue_head_t *q)
4661{
4662 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4663}
1da177e4
LT
4664EXPORT_SYMBOL(interruptible_sleep_on);
4665
0fec171c 4666long __sched
95cdf3b7 4667interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4668{
8cbbe86d 4669 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4670}
1da177e4
LT
4671EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4672
0fec171c 4673void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4674{
8cbbe86d 4675 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4676}
1da177e4
LT
4677EXPORT_SYMBOL(sleep_on);
4678
0fec171c 4679long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4680{
8cbbe86d 4681 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4682}
1da177e4
LT
4683EXPORT_SYMBOL(sleep_on_timeout);
4684
b29739f9
IM
4685#ifdef CONFIG_RT_MUTEXES
4686
4687/*
4688 * rt_mutex_setprio - set the current priority of a task
4689 * @p: task
4690 * @prio: prio value (kernel-internal form)
4691 *
4692 * This function changes the 'effective' priority of a task. It does
4693 * not touch ->normal_prio like __setscheduler().
4694 *
4695 * Used by the rt_mutex code to implement priority inheritance logic.
4696 */
36c8b586 4697void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4698{
4699 unsigned long flags;
83b699ed 4700 int oldprio, on_rq, running;
70b97a7f 4701 struct rq *rq;
83ab0aa0 4702 const struct sched_class *prev_class;
b29739f9
IM
4703
4704 BUG_ON(prio < 0 || prio > MAX_PRIO);
4705
4706 rq = task_rq_lock(p, &flags);
4707
a8027073 4708 trace_sched_pi_setprio(p, prio);
d5f9f942 4709 oldprio = p->prio;
83ab0aa0 4710 prev_class = p->sched_class;
dd41f596 4711 on_rq = p->se.on_rq;
051a1d1a 4712 running = task_current(rq, p);
0e1f3483 4713 if (on_rq)
69be72c1 4714 dequeue_task(rq, p, 0);
0e1f3483
HS
4715 if (running)
4716 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4717
4718 if (rt_prio(prio))
4719 p->sched_class = &rt_sched_class;
4720 else
4721 p->sched_class = &fair_sched_class;
4722
b29739f9
IM
4723 p->prio = prio;
4724
0e1f3483
HS
4725 if (running)
4726 p->sched_class->set_curr_task(rq);
da7a735e 4727 if (on_rq)
371fd7e7 4728 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4729
da7a735e 4730 check_class_changed(rq, p, prev_class, oldprio);
b29739f9
IM
4731 task_rq_unlock(rq, &flags);
4732}
4733
4734#endif
4735
36c8b586 4736void set_user_nice(struct task_struct *p, long nice)
1da177e4 4737{
dd41f596 4738 int old_prio, delta, on_rq;
1da177e4 4739 unsigned long flags;
70b97a7f 4740 struct rq *rq;
1da177e4
LT
4741
4742 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4743 return;
4744 /*
4745 * We have to be careful, if called from sys_setpriority(),
4746 * the task might be in the middle of scheduling on another CPU.
4747 */
4748 rq = task_rq_lock(p, &flags);
4749 /*
4750 * The RT priorities are set via sched_setscheduler(), but we still
4751 * allow the 'normal' nice value to be set - but as expected
4752 * it wont have any effect on scheduling until the task is
dd41f596 4753 * SCHED_FIFO/SCHED_RR:
1da177e4 4754 */
e05606d3 4755 if (task_has_rt_policy(p)) {
1da177e4
LT
4756 p->static_prio = NICE_TO_PRIO(nice);
4757 goto out_unlock;
4758 }
dd41f596 4759 on_rq = p->se.on_rq;
c09595f6 4760 if (on_rq)
69be72c1 4761 dequeue_task(rq, p, 0);
1da177e4 4762
1da177e4 4763 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4764 set_load_weight(p);
b29739f9
IM
4765 old_prio = p->prio;
4766 p->prio = effective_prio(p);
4767 delta = p->prio - old_prio;
1da177e4 4768
dd41f596 4769 if (on_rq) {
371fd7e7 4770 enqueue_task(rq, p, 0);
1da177e4 4771 /*
d5f9f942
AM
4772 * If the task increased its priority or is running and
4773 * lowered its priority, then reschedule its CPU:
1da177e4 4774 */
d5f9f942 4775 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4776 resched_task(rq->curr);
4777 }
4778out_unlock:
4779 task_rq_unlock(rq, &flags);
4780}
1da177e4
LT
4781EXPORT_SYMBOL(set_user_nice);
4782
e43379f1
MM
4783/*
4784 * can_nice - check if a task can reduce its nice value
4785 * @p: task
4786 * @nice: nice value
4787 */
36c8b586 4788int can_nice(const struct task_struct *p, const int nice)
e43379f1 4789{
024f4747
MM
4790 /* convert nice value [19,-20] to rlimit style value [1,40] */
4791 int nice_rlim = 20 - nice;
48f24c4d 4792
78d7d407 4793 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4794 capable(CAP_SYS_NICE));
4795}
4796
1da177e4
LT
4797#ifdef __ARCH_WANT_SYS_NICE
4798
4799/*
4800 * sys_nice - change the priority of the current process.
4801 * @increment: priority increment
4802 *
4803 * sys_setpriority is a more generic, but much slower function that
4804 * does similar things.
4805 */
5add95d4 4806SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4807{
48f24c4d 4808 long nice, retval;
1da177e4
LT
4809
4810 /*
4811 * Setpriority might change our priority at the same moment.
4812 * We don't have to worry. Conceptually one call occurs first
4813 * and we have a single winner.
4814 */
e43379f1
MM
4815 if (increment < -40)
4816 increment = -40;
1da177e4
LT
4817 if (increment > 40)
4818 increment = 40;
4819
2b8f836f 4820 nice = TASK_NICE(current) + increment;
1da177e4
LT
4821 if (nice < -20)
4822 nice = -20;
4823 if (nice > 19)
4824 nice = 19;
4825
e43379f1
MM
4826 if (increment < 0 && !can_nice(current, nice))
4827 return -EPERM;
4828
1da177e4
LT
4829 retval = security_task_setnice(current, nice);
4830 if (retval)
4831 return retval;
4832
4833 set_user_nice(current, nice);
4834 return 0;
4835}
4836
4837#endif
4838
4839/**
4840 * task_prio - return the priority value of a given task.
4841 * @p: the task in question.
4842 *
4843 * This is the priority value as seen by users in /proc.
4844 * RT tasks are offset by -200. Normal tasks are centered
4845 * around 0, value goes from -16 to +15.
4846 */
36c8b586 4847int task_prio(const struct task_struct *p)
1da177e4
LT
4848{
4849 return p->prio - MAX_RT_PRIO;
4850}
4851
4852/**
4853 * task_nice - return the nice value of a given task.
4854 * @p: the task in question.
4855 */
36c8b586 4856int task_nice(const struct task_struct *p)
1da177e4
LT
4857{
4858 return TASK_NICE(p);
4859}
150d8bed 4860EXPORT_SYMBOL(task_nice);
1da177e4
LT
4861
4862/**
4863 * idle_cpu - is a given cpu idle currently?
4864 * @cpu: the processor in question.
4865 */
4866int idle_cpu(int cpu)
4867{
4868 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4869}
4870
1da177e4
LT
4871/**
4872 * idle_task - return the idle task for a given cpu.
4873 * @cpu: the processor in question.
4874 */
36c8b586 4875struct task_struct *idle_task(int cpu)
1da177e4
LT
4876{
4877 return cpu_rq(cpu)->idle;
4878}
4879
4880/**
4881 * find_process_by_pid - find a process with a matching PID value.
4882 * @pid: the pid in question.
4883 */
a9957449 4884static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4885{
228ebcbe 4886 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4887}
4888
4889/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4890static void
4891__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4892{
dd41f596 4893 BUG_ON(p->se.on_rq);
48f24c4d 4894
1da177e4
LT
4895 p->policy = policy;
4896 p->rt_priority = prio;
b29739f9
IM
4897 p->normal_prio = normal_prio(p);
4898 /* we are holding p->pi_lock already */
4899 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4900 if (rt_prio(p->prio))
4901 p->sched_class = &rt_sched_class;
4902 else
4903 p->sched_class = &fair_sched_class;
2dd73a4f 4904 set_load_weight(p);
1da177e4
LT
4905}
4906
c69e8d9c
DH
4907/*
4908 * check the target process has a UID that matches the current process's
4909 */
4910static bool check_same_owner(struct task_struct *p)
4911{
4912 const struct cred *cred = current_cred(), *pcred;
4913 bool match;
4914
4915 rcu_read_lock();
4916 pcred = __task_cred(p);
b0e77598
SH
4917 if (cred->user->user_ns == pcred->user->user_ns)
4918 match = (cred->euid == pcred->euid ||
4919 cred->euid == pcred->uid);
4920 else
4921 match = false;
c69e8d9c
DH
4922 rcu_read_unlock();
4923 return match;
4924}
4925
961ccddd 4926static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4927 const struct sched_param *param, bool user)
1da177e4 4928{
83b699ed 4929 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4930 unsigned long flags;
83ab0aa0 4931 const struct sched_class *prev_class;
70b97a7f 4932 struct rq *rq;
ca94c442 4933 int reset_on_fork;
1da177e4 4934
66e5393a
SR
4935 /* may grab non-irq protected spin_locks */
4936 BUG_ON(in_interrupt());
1da177e4
LT
4937recheck:
4938 /* double check policy once rq lock held */
ca94c442
LP
4939 if (policy < 0) {
4940 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4941 policy = oldpolicy = p->policy;
ca94c442
LP
4942 } else {
4943 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4944 policy &= ~SCHED_RESET_ON_FORK;
4945
4946 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4947 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4948 policy != SCHED_IDLE)
4949 return -EINVAL;
4950 }
4951
1da177e4
LT
4952 /*
4953 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4954 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4955 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4956 */
4957 if (param->sched_priority < 0 ||
95cdf3b7 4958 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4959 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4960 return -EINVAL;
e05606d3 4961 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4962 return -EINVAL;
4963
37e4ab3f
OC
4964 /*
4965 * Allow unprivileged RT tasks to decrease priority:
4966 */
961ccddd 4967 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4968 if (rt_policy(policy)) {
a44702e8
ON
4969 unsigned long rlim_rtprio =
4970 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4971
4972 /* can't set/change the rt policy */
4973 if (policy != p->policy && !rlim_rtprio)
4974 return -EPERM;
4975
4976 /* can't increase priority */
4977 if (param->sched_priority > p->rt_priority &&
4978 param->sched_priority > rlim_rtprio)
4979 return -EPERM;
4980 }
c02aa73b 4981
dd41f596 4982 /*
c02aa73b
DH
4983 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4984 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4985 */
c02aa73b
DH
4986 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4987 if (!can_nice(p, TASK_NICE(p)))
4988 return -EPERM;
4989 }
5fe1d75f 4990
37e4ab3f 4991 /* can't change other user's priorities */
c69e8d9c 4992 if (!check_same_owner(p))
37e4ab3f 4993 return -EPERM;
ca94c442
LP
4994
4995 /* Normal users shall not reset the sched_reset_on_fork flag */
4996 if (p->sched_reset_on_fork && !reset_on_fork)
4997 return -EPERM;
37e4ab3f 4998 }
1da177e4 4999
725aad24 5000 if (user) {
b0ae1981 5001 retval = security_task_setscheduler(p);
725aad24
JF
5002 if (retval)
5003 return retval;
5004 }
5005
b29739f9
IM
5006 /*
5007 * make sure no PI-waiters arrive (or leave) while we are
5008 * changing the priority of the task:
5009 */
1d615482 5010 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4 5011 /*
25985edc 5012 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5013 * runqueue lock must be held.
5014 */
b29739f9 5015 rq = __task_rq_lock(p);
dc61b1d6 5016
34f971f6
PZ
5017 /*
5018 * Changing the policy of the stop threads its a very bad idea
5019 */
5020 if (p == rq->stop) {
5021 __task_rq_unlock(rq);
5022 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5023 return -EINVAL;
5024 }
5025
a51e9198
DF
5026 /*
5027 * If not changing anything there's no need to proceed further:
5028 */
5029 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5030 param->sched_priority == p->rt_priority))) {
5031
5032 __task_rq_unlock(rq);
5033 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5034 return 0;
5035 }
5036
dc61b1d6
PZ
5037#ifdef CONFIG_RT_GROUP_SCHED
5038 if (user) {
5039 /*
5040 * Do not allow realtime tasks into groups that have no runtime
5041 * assigned.
5042 */
5043 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5044 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5045 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
5046 __task_rq_unlock(rq);
5047 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5048 return -EPERM;
5049 }
5050 }
5051#endif
5052
1da177e4
LT
5053 /* recheck policy now with rq lock held */
5054 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5055 policy = oldpolicy = -1;
b29739f9 5056 __task_rq_unlock(rq);
1d615482 5057 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5058 goto recheck;
5059 }
dd41f596 5060 on_rq = p->se.on_rq;
051a1d1a 5061 running = task_current(rq, p);
0e1f3483 5062 if (on_rq)
2e1cb74a 5063 deactivate_task(rq, p, 0);
0e1f3483
HS
5064 if (running)
5065 p->sched_class->put_prev_task(rq, p);
f6b53205 5066
ca94c442
LP
5067 p->sched_reset_on_fork = reset_on_fork;
5068
1da177e4 5069 oldprio = p->prio;
83ab0aa0 5070 prev_class = p->sched_class;
dd41f596 5071 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5072
0e1f3483
HS
5073 if (running)
5074 p->sched_class->set_curr_task(rq);
da7a735e 5075 if (on_rq)
dd41f596 5076 activate_task(rq, p, 0);
cb469845 5077
da7a735e 5078 check_class_changed(rq, p, prev_class, oldprio);
b29739f9 5079 __task_rq_unlock(rq);
1d615482 5080 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5081
95e02ca9
TG
5082 rt_mutex_adjust_pi(p);
5083
1da177e4
LT
5084 return 0;
5085}
961ccddd
RR
5086
5087/**
5088 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5089 * @p: the task in question.
5090 * @policy: new policy.
5091 * @param: structure containing the new RT priority.
5092 *
5093 * NOTE that the task may be already dead.
5094 */
5095int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5096 const struct sched_param *param)
961ccddd
RR
5097{
5098 return __sched_setscheduler(p, policy, param, true);
5099}
1da177e4
LT
5100EXPORT_SYMBOL_GPL(sched_setscheduler);
5101
961ccddd
RR
5102/**
5103 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5104 * @p: the task in question.
5105 * @policy: new policy.
5106 * @param: structure containing the new RT priority.
5107 *
5108 * Just like sched_setscheduler, only don't bother checking if the
5109 * current context has permission. For example, this is needed in
5110 * stop_machine(): we create temporary high priority worker threads,
5111 * but our caller might not have that capability.
5112 */
5113int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5114 const struct sched_param *param)
961ccddd
RR
5115{
5116 return __sched_setscheduler(p, policy, param, false);
5117}
5118
95cdf3b7
IM
5119static int
5120do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5121{
1da177e4
LT
5122 struct sched_param lparam;
5123 struct task_struct *p;
36c8b586 5124 int retval;
1da177e4
LT
5125
5126 if (!param || pid < 0)
5127 return -EINVAL;
5128 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5129 return -EFAULT;
5fe1d75f
ON
5130
5131 rcu_read_lock();
5132 retval = -ESRCH;
1da177e4 5133 p = find_process_by_pid(pid);
5fe1d75f
ON
5134 if (p != NULL)
5135 retval = sched_setscheduler(p, policy, &lparam);
5136 rcu_read_unlock();
36c8b586 5137
1da177e4
LT
5138 return retval;
5139}
5140
5141/**
5142 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5143 * @pid: the pid in question.
5144 * @policy: new policy.
5145 * @param: structure containing the new RT priority.
5146 */
5add95d4
HC
5147SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5148 struct sched_param __user *, param)
1da177e4 5149{
c21761f1
JB
5150 /* negative values for policy are not valid */
5151 if (policy < 0)
5152 return -EINVAL;
5153
1da177e4
LT
5154 return do_sched_setscheduler(pid, policy, param);
5155}
5156
5157/**
5158 * sys_sched_setparam - set/change the RT priority of a thread
5159 * @pid: the pid in question.
5160 * @param: structure containing the new RT priority.
5161 */
5add95d4 5162SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5163{
5164 return do_sched_setscheduler(pid, -1, param);
5165}
5166
5167/**
5168 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5169 * @pid: the pid in question.
5170 */
5add95d4 5171SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5172{
36c8b586 5173 struct task_struct *p;
3a5c359a 5174 int retval;
1da177e4
LT
5175
5176 if (pid < 0)
3a5c359a 5177 return -EINVAL;
1da177e4
LT
5178
5179 retval = -ESRCH;
5fe85be0 5180 rcu_read_lock();
1da177e4
LT
5181 p = find_process_by_pid(pid);
5182 if (p) {
5183 retval = security_task_getscheduler(p);
5184 if (!retval)
ca94c442
LP
5185 retval = p->policy
5186 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5187 }
5fe85be0 5188 rcu_read_unlock();
1da177e4
LT
5189 return retval;
5190}
5191
5192/**
ca94c442 5193 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5194 * @pid: the pid in question.
5195 * @param: structure containing the RT priority.
5196 */
5add95d4 5197SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5198{
5199 struct sched_param lp;
36c8b586 5200 struct task_struct *p;
3a5c359a 5201 int retval;
1da177e4
LT
5202
5203 if (!param || pid < 0)
3a5c359a 5204 return -EINVAL;
1da177e4 5205
5fe85be0 5206 rcu_read_lock();
1da177e4
LT
5207 p = find_process_by_pid(pid);
5208 retval = -ESRCH;
5209 if (!p)
5210 goto out_unlock;
5211
5212 retval = security_task_getscheduler(p);
5213 if (retval)
5214 goto out_unlock;
5215
5216 lp.sched_priority = p->rt_priority;
5fe85be0 5217 rcu_read_unlock();
1da177e4
LT
5218
5219 /*
5220 * This one might sleep, we cannot do it with a spinlock held ...
5221 */
5222 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5223
1da177e4
LT
5224 return retval;
5225
5226out_unlock:
5fe85be0 5227 rcu_read_unlock();
1da177e4
LT
5228 return retval;
5229}
5230
96f874e2 5231long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5232{
5a16f3d3 5233 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5234 struct task_struct *p;
5235 int retval;
1da177e4 5236
95402b38 5237 get_online_cpus();
23f5d142 5238 rcu_read_lock();
1da177e4
LT
5239
5240 p = find_process_by_pid(pid);
5241 if (!p) {
23f5d142 5242 rcu_read_unlock();
95402b38 5243 put_online_cpus();
1da177e4
LT
5244 return -ESRCH;
5245 }
5246
23f5d142 5247 /* Prevent p going away */
1da177e4 5248 get_task_struct(p);
23f5d142 5249 rcu_read_unlock();
1da177e4 5250
5a16f3d3
RR
5251 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5252 retval = -ENOMEM;
5253 goto out_put_task;
5254 }
5255 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5256 retval = -ENOMEM;
5257 goto out_free_cpus_allowed;
5258 }
1da177e4 5259 retval = -EPERM;
b0e77598 5260 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5261 goto out_unlock;
5262
b0ae1981 5263 retval = security_task_setscheduler(p);
e7834f8f
DQ
5264 if (retval)
5265 goto out_unlock;
5266
5a16f3d3
RR
5267 cpuset_cpus_allowed(p, cpus_allowed);
5268 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5269again:
5a16f3d3 5270 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5271
8707d8b8 5272 if (!retval) {
5a16f3d3
RR
5273 cpuset_cpus_allowed(p, cpus_allowed);
5274 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5275 /*
5276 * We must have raced with a concurrent cpuset
5277 * update. Just reset the cpus_allowed to the
5278 * cpuset's cpus_allowed
5279 */
5a16f3d3 5280 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5281 goto again;
5282 }
5283 }
1da177e4 5284out_unlock:
5a16f3d3
RR
5285 free_cpumask_var(new_mask);
5286out_free_cpus_allowed:
5287 free_cpumask_var(cpus_allowed);
5288out_put_task:
1da177e4 5289 put_task_struct(p);
95402b38 5290 put_online_cpus();
1da177e4
LT
5291 return retval;
5292}
5293
5294static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5295 struct cpumask *new_mask)
1da177e4 5296{
96f874e2
RR
5297 if (len < cpumask_size())
5298 cpumask_clear(new_mask);
5299 else if (len > cpumask_size())
5300 len = cpumask_size();
5301
1da177e4
LT
5302 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5303}
5304
5305/**
5306 * sys_sched_setaffinity - set the cpu affinity of a process
5307 * @pid: pid of the process
5308 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5309 * @user_mask_ptr: user-space pointer to the new cpu mask
5310 */
5add95d4
HC
5311SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5312 unsigned long __user *, user_mask_ptr)
1da177e4 5313{
5a16f3d3 5314 cpumask_var_t new_mask;
1da177e4
LT
5315 int retval;
5316
5a16f3d3
RR
5317 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5318 return -ENOMEM;
1da177e4 5319
5a16f3d3
RR
5320 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5321 if (retval == 0)
5322 retval = sched_setaffinity(pid, new_mask);
5323 free_cpumask_var(new_mask);
5324 return retval;
1da177e4
LT
5325}
5326
96f874e2 5327long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5328{
36c8b586 5329 struct task_struct *p;
31605683
TG
5330 unsigned long flags;
5331 struct rq *rq;
1da177e4 5332 int retval;
1da177e4 5333
95402b38 5334 get_online_cpus();
23f5d142 5335 rcu_read_lock();
1da177e4
LT
5336
5337 retval = -ESRCH;
5338 p = find_process_by_pid(pid);
5339 if (!p)
5340 goto out_unlock;
5341
e7834f8f
DQ
5342 retval = security_task_getscheduler(p);
5343 if (retval)
5344 goto out_unlock;
5345
31605683 5346 rq = task_rq_lock(p, &flags);
96f874e2 5347 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5348 task_rq_unlock(rq, &flags);
1da177e4
LT
5349
5350out_unlock:
23f5d142 5351 rcu_read_unlock();
95402b38 5352 put_online_cpus();
1da177e4 5353
9531b62f 5354 return retval;
1da177e4
LT
5355}
5356
5357/**
5358 * sys_sched_getaffinity - get the cpu affinity of a process
5359 * @pid: pid of the process
5360 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5361 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5362 */
5add95d4
HC
5363SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5364 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5365{
5366 int ret;
f17c8607 5367 cpumask_var_t mask;
1da177e4 5368
84fba5ec 5369 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5370 return -EINVAL;
5371 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5372 return -EINVAL;
5373
f17c8607
RR
5374 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5375 return -ENOMEM;
1da177e4 5376
f17c8607
RR
5377 ret = sched_getaffinity(pid, mask);
5378 if (ret == 0) {
8bc037fb 5379 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5380
5381 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5382 ret = -EFAULT;
5383 else
cd3d8031 5384 ret = retlen;
f17c8607
RR
5385 }
5386 free_cpumask_var(mask);
1da177e4 5387
f17c8607 5388 return ret;
1da177e4
LT
5389}
5390
5391/**
5392 * sys_sched_yield - yield the current processor to other threads.
5393 *
dd41f596
IM
5394 * This function yields the current CPU to other tasks. If there are no
5395 * other threads running on this CPU then this function will return.
1da177e4 5396 */
5add95d4 5397SYSCALL_DEFINE0(sched_yield)
1da177e4 5398{
70b97a7f 5399 struct rq *rq = this_rq_lock();
1da177e4 5400
2d72376b 5401 schedstat_inc(rq, yld_count);
4530d7ab 5402 current->sched_class->yield_task(rq);
1da177e4
LT
5403
5404 /*
5405 * Since we are going to call schedule() anyway, there's
5406 * no need to preempt or enable interrupts:
5407 */
5408 __release(rq->lock);
8a25d5de 5409 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5410 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5411 preempt_enable_no_resched();
5412
5413 schedule();
5414
5415 return 0;
5416}
5417
d86ee480
PZ
5418static inline int should_resched(void)
5419{
5420 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5421}
5422
e7b38404 5423static void __cond_resched(void)
1da177e4 5424{
e7aaaa69
FW
5425 add_preempt_count(PREEMPT_ACTIVE);
5426 schedule();
5427 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5428}
5429
02b67cc3 5430int __sched _cond_resched(void)
1da177e4 5431{
d86ee480 5432 if (should_resched()) {
1da177e4
LT
5433 __cond_resched();
5434 return 1;
5435 }
5436 return 0;
5437}
02b67cc3 5438EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5439
5440/*
613afbf8 5441 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5442 * call schedule, and on return reacquire the lock.
5443 *
41a2d6cf 5444 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5445 * operations here to prevent schedule() from being called twice (once via
5446 * spin_unlock(), once by hand).
5447 */
613afbf8 5448int __cond_resched_lock(spinlock_t *lock)
1da177e4 5449{
d86ee480 5450 int resched = should_resched();
6df3cecb
JK
5451 int ret = 0;
5452
f607c668
PZ
5453 lockdep_assert_held(lock);
5454
95c354fe 5455 if (spin_needbreak(lock) || resched) {
1da177e4 5456 spin_unlock(lock);
d86ee480 5457 if (resched)
95c354fe
NP
5458 __cond_resched();
5459 else
5460 cpu_relax();
6df3cecb 5461 ret = 1;
1da177e4 5462 spin_lock(lock);
1da177e4 5463 }
6df3cecb 5464 return ret;
1da177e4 5465}
613afbf8 5466EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5467
613afbf8 5468int __sched __cond_resched_softirq(void)
1da177e4
LT
5469{
5470 BUG_ON(!in_softirq());
5471
d86ee480 5472 if (should_resched()) {
98d82567 5473 local_bh_enable();
1da177e4
LT
5474 __cond_resched();
5475 local_bh_disable();
5476 return 1;
5477 }
5478 return 0;
5479}
613afbf8 5480EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5481
1da177e4
LT
5482/**
5483 * yield - yield the current processor to other threads.
5484 *
72fd4a35 5485 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5486 * thread runnable and calls sys_sched_yield().
5487 */
5488void __sched yield(void)
5489{
5490 set_current_state(TASK_RUNNING);
5491 sys_sched_yield();
5492}
1da177e4
LT
5493EXPORT_SYMBOL(yield);
5494
d95f4122
MG
5495/**
5496 * yield_to - yield the current processor to another thread in
5497 * your thread group, or accelerate that thread toward the
5498 * processor it's on.
16addf95
RD
5499 * @p: target task
5500 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5501 *
5502 * It's the caller's job to ensure that the target task struct
5503 * can't go away on us before we can do any checks.
5504 *
5505 * Returns true if we indeed boosted the target task.
5506 */
5507bool __sched yield_to(struct task_struct *p, bool preempt)
5508{
5509 struct task_struct *curr = current;
5510 struct rq *rq, *p_rq;
5511 unsigned long flags;
5512 bool yielded = 0;
5513
5514 local_irq_save(flags);
5515 rq = this_rq();
5516
5517again:
5518 p_rq = task_rq(p);
5519 double_rq_lock(rq, p_rq);
5520 while (task_rq(p) != p_rq) {
5521 double_rq_unlock(rq, p_rq);
5522 goto again;
5523 }
5524
5525 if (!curr->sched_class->yield_to_task)
5526 goto out;
5527
5528 if (curr->sched_class != p->sched_class)
5529 goto out;
5530
5531 if (task_running(p_rq, p) || p->state)
5532 goto out;
5533
5534 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5535 if (yielded) {
d95f4122 5536 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5537 /*
5538 * Make p's CPU reschedule; pick_next_entity takes care of
5539 * fairness.
5540 */
5541 if (preempt && rq != p_rq)
5542 resched_task(p_rq->curr);
5543 }
d95f4122
MG
5544
5545out:
5546 double_rq_unlock(rq, p_rq);
5547 local_irq_restore(flags);
5548
5549 if (yielded)
5550 schedule();
5551
5552 return yielded;
5553}
5554EXPORT_SYMBOL_GPL(yield_to);
5555
1da177e4 5556/*
41a2d6cf 5557 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5558 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5559 */
5560void __sched io_schedule(void)
5561{
54d35f29 5562 struct rq *rq = raw_rq();
1da177e4 5563
0ff92245 5564 delayacct_blkio_start();
1da177e4 5565 atomic_inc(&rq->nr_iowait);
73c10101 5566 blk_flush_plug(current);
8f0dfc34 5567 current->in_iowait = 1;
1da177e4 5568 schedule();
8f0dfc34 5569 current->in_iowait = 0;
1da177e4 5570 atomic_dec(&rq->nr_iowait);
0ff92245 5571 delayacct_blkio_end();
1da177e4 5572}
1da177e4
LT
5573EXPORT_SYMBOL(io_schedule);
5574
5575long __sched io_schedule_timeout(long timeout)
5576{
54d35f29 5577 struct rq *rq = raw_rq();
1da177e4
LT
5578 long ret;
5579
0ff92245 5580 delayacct_blkio_start();
1da177e4 5581 atomic_inc(&rq->nr_iowait);
73c10101 5582 blk_flush_plug(current);
8f0dfc34 5583 current->in_iowait = 1;
1da177e4 5584 ret = schedule_timeout(timeout);
8f0dfc34 5585 current->in_iowait = 0;
1da177e4 5586 atomic_dec(&rq->nr_iowait);
0ff92245 5587 delayacct_blkio_end();
1da177e4
LT
5588 return ret;
5589}
5590
5591/**
5592 * sys_sched_get_priority_max - return maximum RT priority.
5593 * @policy: scheduling class.
5594 *
5595 * this syscall returns the maximum rt_priority that can be used
5596 * by a given scheduling class.
5597 */
5add95d4 5598SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5599{
5600 int ret = -EINVAL;
5601
5602 switch (policy) {
5603 case SCHED_FIFO:
5604 case SCHED_RR:
5605 ret = MAX_USER_RT_PRIO-1;
5606 break;
5607 case SCHED_NORMAL:
b0a9499c 5608 case SCHED_BATCH:
dd41f596 5609 case SCHED_IDLE:
1da177e4
LT
5610 ret = 0;
5611 break;
5612 }
5613 return ret;
5614}
5615
5616/**
5617 * sys_sched_get_priority_min - return minimum RT priority.
5618 * @policy: scheduling class.
5619 *
5620 * this syscall returns the minimum rt_priority that can be used
5621 * by a given scheduling class.
5622 */
5add95d4 5623SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5624{
5625 int ret = -EINVAL;
5626
5627 switch (policy) {
5628 case SCHED_FIFO:
5629 case SCHED_RR:
5630 ret = 1;
5631 break;
5632 case SCHED_NORMAL:
b0a9499c 5633 case SCHED_BATCH:
dd41f596 5634 case SCHED_IDLE:
1da177e4
LT
5635 ret = 0;
5636 }
5637 return ret;
5638}
5639
5640/**
5641 * sys_sched_rr_get_interval - return the default timeslice of a process.
5642 * @pid: pid of the process.
5643 * @interval: userspace pointer to the timeslice value.
5644 *
5645 * this syscall writes the default timeslice value of a given process
5646 * into the user-space timespec buffer. A value of '0' means infinity.
5647 */
17da2bd9 5648SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5649 struct timespec __user *, interval)
1da177e4 5650{
36c8b586 5651 struct task_struct *p;
a4ec24b4 5652 unsigned int time_slice;
dba091b9
TG
5653 unsigned long flags;
5654 struct rq *rq;
3a5c359a 5655 int retval;
1da177e4 5656 struct timespec t;
1da177e4
LT
5657
5658 if (pid < 0)
3a5c359a 5659 return -EINVAL;
1da177e4
LT
5660
5661 retval = -ESRCH;
1a551ae7 5662 rcu_read_lock();
1da177e4
LT
5663 p = find_process_by_pid(pid);
5664 if (!p)
5665 goto out_unlock;
5666
5667 retval = security_task_getscheduler(p);
5668 if (retval)
5669 goto out_unlock;
5670
dba091b9
TG
5671 rq = task_rq_lock(p, &flags);
5672 time_slice = p->sched_class->get_rr_interval(rq, p);
5673 task_rq_unlock(rq, &flags);
a4ec24b4 5674
1a551ae7 5675 rcu_read_unlock();
a4ec24b4 5676 jiffies_to_timespec(time_slice, &t);
1da177e4 5677 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5678 return retval;
3a5c359a 5679
1da177e4 5680out_unlock:
1a551ae7 5681 rcu_read_unlock();
1da177e4
LT
5682 return retval;
5683}
5684
7c731e0a 5685static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5686
82a1fcb9 5687void sched_show_task(struct task_struct *p)
1da177e4 5688{
1da177e4 5689 unsigned long free = 0;
36c8b586 5690 unsigned state;
1da177e4 5691
1da177e4 5692 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5693 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5694 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5695#if BITS_PER_LONG == 32
1da177e4 5696 if (state == TASK_RUNNING)
3df0fc5b 5697 printk(KERN_CONT " running ");
1da177e4 5698 else
3df0fc5b 5699 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5700#else
5701 if (state == TASK_RUNNING)
3df0fc5b 5702 printk(KERN_CONT " running task ");
1da177e4 5703 else
3df0fc5b 5704 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5705#endif
5706#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5707 free = stack_not_used(p);
1da177e4 5708#endif
3df0fc5b 5709 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5710 task_pid_nr(p), task_pid_nr(p->real_parent),
5711 (unsigned long)task_thread_info(p)->flags);
1da177e4 5712
5fb5e6de 5713 show_stack(p, NULL);
1da177e4
LT
5714}
5715
e59e2ae2 5716void show_state_filter(unsigned long state_filter)
1da177e4 5717{
36c8b586 5718 struct task_struct *g, *p;
1da177e4 5719
4bd77321 5720#if BITS_PER_LONG == 32
3df0fc5b
PZ
5721 printk(KERN_INFO
5722 " task PC stack pid father\n");
1da177e4 5723#else
3df0fc5b
PZ
5724 printk(KERN_INFO
5725 " task PC stack pid father\n");
1da177e4
LT
5726#endif
5727 read_lock(&tasklist_lock);
5728 do_each_thread(g, p) {
5729 /*
5730 * reset the NMI-timeout, listing all files on a slow
25985edc 5731 * console might take a lot of time:
1da177e4
LT
5732 */
5733 touch_nmi_watchdog();
39bc89fd 5734 if (!state_filter || (p->state & state_filter))
82a1fcb9 5735 sched_show_task(p);
1da177e4
LT
5736 } while_each_thread(g, p);
5737
04c9167f
JF
5738 touch_all_softlockup_watchdogs();
5739
dd41f596
IM
5740#ifdef CONFIG_SCHED_DEBUG
5741 sysrq_sched_debug_show();
5742#endif
1da177e4 5743 read_unlock(&tasklist_lock);
e59e2ae2
IM
5744 /*
5745 * Only show locks if all tasks are dumped:
5746 */
93335a21 5747 if (!state_filter)
e59e2ae2 5748 debug_show_all_locks();
1da177e4
LT
5749}
5750
1df21055
IM
5751void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5752{
dd41f596 5753 idle->sched_class = &idle_sched_class;
1df21055
IM
5754}
5755
f340c0d1
IM
5756/**
5757 * init_idle - set up an idle thread for a given CPU
5758 * @idle: task in question
5759 * @cpu: cpu the idle task belongs to
5760 *
5761 * NOTE: this function does not set the idle thread's NEED_RESCHED
5762 * flag, to make booting more robust.
5763 */
5c1e1767 5764void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5765{
70b97a7f 5766 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5767 unsigned long flags;
5768
05fa785c 5769 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5770
dd41f596 5771 __sched_fork(idle);
06b83b5f 5772 idle->state = TASK_RUNNING;
dd41f596
IM
5773 idle->se.exec_start = sched_clock();
5774
96f874e2 5775 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5776 /*
5777 * We're having a chicken and egg problem, even though we are
5778 * holding rq->lock, the cpu isn't yet set to this cpu so the
5779 * lockdep check in task_group() will fail.
5780 *
5781 * Similar case to sched_fork(). / Alternatively we could
5782 * use task_rq_lock() here and obtain the other rq->lock.
5783 *
5784 * Silence PROVE_RCU
5785 */
5786 rcu_read_lock();
dd41f596 5787 __set_task_cpu(idle, cpu);
6506cf6c 5788 rcu_read_unlock();
1da177e4 5789
1da177e4 5790 rq->curr = rq->idle = idle;
3ca7a440
PZ
5791#if defined(CONFIG_SMP)
5792 idle->on_cpu = 1;
4866cde0 5793#endif
05fa785c 5794 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5795
5796 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5797#if defined(CONFIG_PREEMPT)
5798 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5799#else
a1261f54 5800 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5801#endif
dd41f596
IM
5802 /*
5803 * The idle tasks have their own, simple scheduling class:
5804 */
5805 idle->sched_class = &idle_sched_class;
868baf07 5806 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5807}
5808
5809/*
5810 * In a system that switches off the HZ timer nohz_cpu_mask
5811 * indicates which cpus entered this state. This is used
5812 * in the rcu update to wait only for active cpus. For system
5813 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5814 * always be CPU_BITS_NONE.
1da177e4 5815 */
6a7b3dc3 5816cpumask_var_t nohz_cpu_mask;
1da177e4 5817
19978ca6
IM
5818/*
5819 * Increase the granularity value when there are more CPUs,
5820 * because with more CPUs the 'effective latency' as visible
5821 * to users decreases. But the relationship is not linear,
5822 * so pick a second-best guess by going with the log2 of the
5823 * number of CPUs.
5824 *
5825 * This idea comes from the SD scheduler of Con Kolivas:
5826 */
acb4a848 5827static int get_update_sysctl_factor(void)
19978ca6 5828{
4ca3ef71 5829 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5830 unsigned int factor;
5831
5832 switch (sysctl_sched_tunable_scaling) {
5833 case SCHED_TUNABLESCALING_NONE:
5834 factor = 1;
5835 break;
5836 case SCHED_TUNABLESCALING_LINEAR:
5837 factor = cpus;
5838 break;
5839 case SCHED_TUNABLESCALING_LOG:
5840 default:
5841 factor = 1 + ilog2(cpus);
5842 break;
5843 }
19978ca6 5844
acb4a848
CE
5845 return factor;
5846}
19978ca6 5847
acb4a848
CE
5848static void update_sysctl(void)
5849{
5850 unsigned int factor = get_update_sysctl_factor();
19978ca6 5851
0bcdcf28
CE
5852#define SET_SYSCTL(name) \
5853 (sysctl_##name = (factor) * normalized_sysctl_##name)
5854 SET_SYSCTL(sched_min_granularity);
5855 SET_SYSCTL(sched_latency);
5856 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5857#undef SET_SYSCTL
5858}
55cd5340 5859
0bcdcf28
CE
5860static inline void sched_init_granularity(void)
5861{
5862 update_sysctl();
19978ca6
IM
5863}
5864
1da177e4
LT
5865#ifdef CONFIG_SMP
5866/*
5867 * This is how migration works:
5868 *
969c7921
TH
5869 * 1) we invoke migration_cpu_stop() on the target CPU using
5870 * stop_one_cpu().
5871 * 2) stopper starts to run (implicitly forcing the migrated thread
5872 * off the CPU)
5873 * 3) it checks whether the migrated task is still in the wrong runqueue.
5874 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5875 * it and puts it into the right queue.
969c7921
TH
5876 * 5) stopper completes and stop_one_cpu() returns and the migration
5877 * is done.
1da177e4
LT
5878 */
5879
5880/*
5881 * Change a given task's CPU affinity. Migrate the thread to a
5882 * proper CPU and schedule it away if the CPU it's executing on
5883 * is removed from the allowed bitmask.
5884 *
5885 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5886 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5887 * call is not atomic; no spinlocks may be held.
5888 */
96f874e2 5889int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5890{
5891 unsigned long flags;
70b97a7f 5892 struct rq *rq;
969c7921 5893 unsigned int dest_cpu;
48f24c4d 5894 int ret = 0;
1da177e4 5895
65cc8e48
PZ
5896 /*
5897 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5898 * drop the rq->lock and still rely on ->cpus_allowed.
5899 */
5900again:
5901 while (task_is_waking(p))
5902 cpu_relax();
1da177e4 5903 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5904 if (task_is_waking(p)) {
5905 task_rq_unlock(rq, &flags);
5906 goto again;
5907 }
e2912009 5908
6ad4c188 5909 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5910 ret = -EINVAL;
5911 goto out;
5912 }
5913
9985b0ba 5914 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5915 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5916 ret = -EINVAL;
5917 goto out;
5918 }
5919
73fe6aae 5920 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5921 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5922 else {
96f874e2
RR
5923 cpumask_copy(&p->cpus_allowed, new_mask);
5924 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5925 }
5926
1da177e4 5927 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5928 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5929 goto out;
5930
969c7921 5931 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5932 if (migrate_task(p, rq)) {
969c7921 5933 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5934 /* Need help from migration thread: drop lock and wait. */
5935 task_rq_unlock(rq, &flags);
969c7921 5936 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5937 tlb_migrate_finish(p->mm);
5938 return 0;
5939 }
5940out:
5941 task_rq_unlock(rq, &flags);
48f24c4d 5942
1da177e4
LT
5943 return ret;
5944}
cd8ba7cd 5945EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5946
5947/*
41a2d6cf 5948 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5949 * this because either it can't run here any more (set_cpus_allowed()
5950 * away from this CPU, or CPU going down), or because we're
5951 * attempting to rebalance this task on exec (sched_exec).
5952 *
5953 * So we race with normal scheduler movements, but that's OK, as long
5954 * as the task is no longer on this CPU.
efc30814
KK
5955 *
5956 * Returns non-zero if task was successfully migrated.
1da177e4 5957 */
efc30814 5958static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5959{
70b97a7f 5960 struct rq *rq_dest, *rq_src;
e2912009 5961 int ret = 0;
1da177e4 5962
e761b772 5963 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5964 return ret;
1da177e4
LT
5965
5966 rq_src = cpu_rq(src_cpu);
5967 rq_dest = cpu_rq(dest_cpu);
5968
5969 double_rq_lock(rq_src, rq_dest);
5970 /* Already moved. */
5971 if (task_cpu(p) != src_cpu)
b1e38734 5972 goto done;
1da177e4 5973 /* Affinity changed (again). */
96f874e2 5974 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5975 goto fail;
1da177e4 5976
e2912009
PZ
5977 /*
5978 * If we're not on a rq, the next wake-up will ensure we're
5979 * placed properly.
5980 */
5981 if (p->se.on_rq) {
2e1cb74a 5982 deactivate_task(rq_src, p, 0);
e2912009 5983 set_task_cpu(p, dest_cpu);
dd41f596 5984 activate_task(rq_dest, p, 0);
15afe09b 5985 check_preempt_curr(rq_dest, p, 0);
1da177e4 5986 }
b1e38734 5987done:
efc30814 5988 ret = 1;
b1e38734 5989fail:
1da177e4 5990 double_rq_unlock(rq_src, rq_dest);
efc30814 5991 return ret;
1da177e4
LT
5992}
5993
5994/*
969c7921
TH
5995 * migration_cpu_stop - this will be executed by a highprio stopper thread
5996 * and performs thread migration by bumping thread off CPU then
5997 * 'pushing' onto another runqueue.
1da177e4 5998 */
969c7921 5999static int migration_cpu_stop(void *data)
1da177e4 6000{
969c7921 6001 struct migration_arg *arg = data;
f7b4cddc 6002
969c7921
TH
6003 /*
6004 * The original target cpu might have gone down and we might
6005 * be on another cpu but it doesn't matter.
6006 */
f7b4cddc 6007 local_irq_disable();
969c7921 6008 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6009 local_irq_enable();
1da177e4 6010 return 0;
f7b4cddc
ON
6011}
6012
1da177e4 6013#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6014
054b9108 6015/*
48c5ccae
PZ
6016 * Ensures that the idle task is using init_mm right before its cpu goes
6017 * offline.
054b9108 6018 */
48c5ccae 6019void idle_task_exit(void)
1da177e4 6020{
48c5ccae 6021 struct mm_struct *mm = current->active_mm;
e76bd8d9 6022
48c5ccae 6023 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6024
48c5ccae
PZ
6025 if (mm != &init_mm)
6026 switch_mm(mm, &init_mm, current);
6027 mmdrop(mm);
1da177e4
LT
6028}
6029
6030/*
6031 * While a dead CPU has no uninterruptible tasks queued at this point,
6032 * it might still have a nonzero ->nr_uninterruptible counter, because
6033 * for performance reasons the counter is not stricly tracking tasks to
6034 * their home CPUs. So we just add the counter to another CPU's counter,
6035 * to keep the global sum constant after CPU-down:
6036 */
70b97a7f 6037static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6038{
6ad4c188 6039 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6040
1da177e4
LT
6041 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6042 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6043}
6044
dd41f596 6045/*
48c5ccae 6046 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6047 */
48c5ccae 6048static void calc_global_load_remove(struct rq *rq)
1da177e4 6049{
48c5ccae
PZ
6050 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6051 rq->calc_load_active = 0;
1da177e4
LT
6052}
6053
48f24c4d 6054/*
48c5ccae
PZ
6055 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6056 * try_to_wake_up()->select_task_rq().
6057 *
6058 * Called with rq->lock held even though we'er in stop_machine() and
6059 * there's no concurrency possible, we hold the required locks anyway
6060 * because of lock validation efforts.
1da177e4 6061 */
48c5ccae 6062static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6063{
70b97a7f 6064 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6065 struct task_struct *next, *stop = rq->stop;
6066 int dest_cpu;
1da177e4
LT
6067
6068 /*
48c5ccae
PZ
6069 * Fudge the rq selection such that the below task selection loop
6070 * doesn't get stuck on the currently eligible stop task.
6071 *
6072 * We're currently inside stop_machine() and the rq is either stuck
6073 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6074 * either way we should never end up calling schedule() until we're
6075 * done here.
1da177e4 6076 */
48c5ccae 6077 rq->stop = NULL;
48f24c4d 6078
dd41f596 6079 for ( ; ; ) {
48c5ccae
PZ
6080 /*
6081 * There's this thread running, bail when that's the only
6082 * remaining thread.
6083 */
6084 if (rq->nr_running == 1)
dd41f596 6085 break;
48c5ccae 6086
b67802ea 6087 next = pick_next_task(rq);
48c5ccae 6088 BUG_ON(!next);
79c53799 6089 next->sched_class->put_prev_task(rq, next);
e692ab53 6090
48c5ccae
PZ
6091 /* Find suitable destination for @next, with force if needed. */
6092 dest_cpu = select_fallback_rq(dead_cpu, next);
6093 raw_spin_unlock(&rq->lock);
6094
6095 __migrate_task(next, dead_cpu, dest_cpu);
6096
6097 raw_spin_lock(&rq->lock);
1da177e4 6098 }
dce48a84 6099
48c5ccae 6100 rq->stop = stop;
dce48a84 6101}
48c5ccae 6102
1da177e4
LT
6103#endif /* CONFIG_HOTPLUG_CPU */
6104
e692ab53
NP
6105#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6106
6107static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6108 {
6109 .procname = "sched_domain",
c57baf1e 6110 .mode = 0555,
e0361851 6111 },
56992309 6112 {}
e692ab53
NP
6113};
6114
6115static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6116 {
6117 .procname = "kernel",
c57baf1e 6118 .mode = 0555,
e0361851
AD
6119 .child = sd_ctl_dir,
6120 },
56992309 6121 {}
e692ab53
NP
6122};
6123
6124static struct ctl_table *sd_alloc_ctl_entry(int n)
6125{
6126 struct ctl_table *entry =
5cf9f062 6127 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6128
e692ab53
NP
6129 return entry;
6130}
6131
6382bc90
MM
6132static void sd_free_ctl_entry(struct ctl_table **tablep)
6133{
cd790076 6134 struct ctl_table *entry;
6382bc90 6135
cd790076
MM
6136 /*
6137 * In the intermediate directories, both the child directory and
6138 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6139 * will always be set. In the lowest directory the names are
cd790076
MM
6140 * static strings and all have proc handlers.
6141 */
6142 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6143 if (entry->child)
6144 sd_free_ctl_entry(&entry->child);
cd790076
MM
6145 if (entry->proc_handler == NULL)
6146 kfree(entry->procname);
6147 }
6382bc90
MM
6148
6149 kfree(*tablep);
6150 *tablep = NULL;
6151}
6152
e692ab53 6153static void
e0361851 6154set_table_entry(struct ctl_table *entry,
e692ab53
NP
6155 const char *procname, void *data, int maxlen,
6156 mode_t mode, proc_handler *proc_handler)
6157{
e692ab53
NP
6158 entry->procname = procname;
6159 entry->data = data;
6160 entry->maxlen = maxlen;
6161 entry->mode = mode;
6162 entry->proc_handler = proc_handler;
6163}
6164
6165static struct ctl_table *
6166sd_alloc_ctl_domain_table(struct sched_domain *sd)
6167{
a5d8c348 6168 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6169
ad1cdc1d
MM
6170 if (table == NULL)
6171 return NULL;
6172
e0361851 6173 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6174 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6175 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6176 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6177 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6178 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6179 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6180 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6181 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6182 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6183 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6184 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6185 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6186 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6187 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6188 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6189 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6190 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6191 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6192 &sd->cache_nice_tries,
6193 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6194 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6195 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6196 set_table_entry(&table[11], "name", sd->name,
6197 CORENAME_MAX_SIZE, 0444, proc_dostring);
6198 /* &table[12] is terminator */
e692ab53
NP
6199
6200 return table;
6201}
6202
9a4e7159 6203static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6204{
6205 struct ctl_table *entry, *table;
6206 struct sched_domain *sd;
6207 int domain_num = 0, i;
6208 char buf[32];
6209
6210 for_each_domain(cpu, sd)
6211 domain_num++;
6212 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6213 if (table == NULL)
6214 return NULL;
e692ab53
NP
6215
6216 i = 0;
6217 for_each_domain(cpu, sd) {
6218 snprintf(buf, 32, "domain%d", i);
e692ab53 6219 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6220 entry->mode = 0555;
e692ab53
NP
6221 entry->child = sd_alloc_ctl_domain_table(sd);
6222 entry++;
6223 i++;
6224 }
6225 return table;
6226}
6227
6228static struct ctl_table_header *sd_sysctl_header;
6382bc90 6229static void register_sched_domain_sysctl(void)
e692ab53 6230{
6ad4c188 6231 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6232 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6233 char buf[32];
6234
7378547f
MM
6235 WARN_ON(sd_ctl_dir[0].child);
6236 sd_ctl_dir[0].child = entry;
6237
ad1cdc1d
MM
6238 if (entry == NULL)
6239 return;
6240
6ad4c188 6241 for_each_possible_cpu(i) {
e692ab53 6242 snprintf(buf, 32, "cpu%d", i);
e692ab53 6243 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6244 entry->mode = 0555;
e692ab53 6245 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6246 entry++;
e692ab53 6247 }
7378547f
MM
6248
6249 WARN_ON(sd_sysctl_header);
e692ab53
NP
6250 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6251}
6382bc90 6252
7378547f 6253/* may be called multiple times per register */
6382bc90
MM
6254static void unregister_sched_domain_sysctl(void)
6255{
7378547f
MM
6256 if (sd_sysctl_header)
6257 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6258 sd_sysctl_header = NULL;
7378547f
MM
6259 if (sd_ctl_dir[0].child)
6260 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6261}
e692ab53 6262#else
6382bc90
MM
6263static void register_sched_domain_sysctl(void)
6264{
6265}
6266static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6267{
6268}
6269#endif
6270
1f11eb6a
GH
6271static void set_rq_online(struct rq *rq)
6272{
6273 if (!rq->online) {
6274 const struct sched_class *class;
6275
c6c4927b 6276 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6277 rq->online = 1;
6278
6279 for_each_class(class) {
6280 if (class->rq_online)
6281 class->rq_online(rq);
6282 }
6283 }
6284}
6285
6286static void set_rq_offline(struct rq *rq)
6287{
6288 if (rq->online) {
6289 const struct sched_class *class;
6290
6291 for_each_class(class) {
6292 if (class->rq_offline)
6293 class->rq_offline(rq);
6294 }
6295
c6c4927b 6296 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6297 rq->online = 0;
6298 }
6299}
6300
1da177e4
LT
6301/*
6302 * migration_call - callback that gets triggered when a CPU is added.
6303 * Here we can start up the necessary migration thread for the new CPU.
6304 */
48f24c4d
IM
6305static int __cpuinit
6306migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6307{
48f24c4d 6308 int cpu = (long)hcpu;
1da177e4 6309 unsigned long flags;
969c7921 6310 struct rq *rq = cpu_rq(cpu);
1da177e4 6311
48c5ccae 6312 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6313
1da177e4 6314 case CPU_UP_PREPARE:
a468d389 6315 rq->calc_load_update = calc_load_update;
1da177e4 6316 break;
48f24c4d 6317
1da177e4 6318 case CPU_ONLINE:
1f94ef59 6319 /* Update our root-domain */
05fa785c 6320 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6321 if (rq->rd) {
c6c4927b 6322 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6323
6324 set_rq_online(rq);
1f94ef59 6325 }
05fa785c 6326 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6327 break;
48f24c4d 6328
1da177e4 6329#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6330 case CPU_DYING:
57d885fe 6331 /* Update our root-domain */
05fa785c 6332 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6333 if (rq->rd) {
c6c4927b 6334 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6335 set_rq_offline(rq);
57d885fe 6336 }
48c5ccae
PZ
6337 migrate_tasks(cpu);
6338 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6339 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6340
6341 migrate_nr_uninterruptible(rq);
6342 calc_global_load_remove(rq);
57d885fe 6343 break;
1da177e4
LT
6344#endif
6345 }
49c022e6
PZ
6346
6347 update_max_interval();
6348
1da177e4
LT
6349 return NOTIFY_OK;
6350}
6351
f38b0820
PM
6352/*
6353 * Register at high priority so that task migration (migrate_all_tasks)
6354 * happens before everything else. This has to be lower priority than
cdd6c482 6355 * the notifier in the perf_event subsystem, though.
1da177e4 6356 */
26c2143b 6357static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6358 .notifier_call = migration_call,
50a323b7 6359 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6360};
6361
3a101d05
TH
6362static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6363 unsigned long action, void *hcpu)
6364{
6365 switch (action & ~CPU_TASKS_FROZEN) {
6366 case CPU_ONLINE:
6367 case CPU_DOWN_FAILED:
6368 set_cpu_active((long)hcpu, true);
6369 return NOTIFY_OK;
6370 default:
6371 return NOTIFY_DONE;
6372 }
6373}
6374
6375static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6376 unsigned long action, void *hcpu)
6377{
6378 switch (action & ~CPU_TASKS_FROZEN) {
6379 case CPU_DOWN_PREPARE:
6380 set_cpu_active((long)hcpu, false);
6381 return NOTIFY_OK;
6382 default:
6383 return NOTIFY_DONE;
6384 }
6385}
6386
7babe8db 6387static int __init migration_init(void)
1da177e4
LT
6388{
6389 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6390 int err;
48f24c4d 6391
3a101d05 6392 /* Initialize migration for the boot CPU */
07dccf33
AM
6393 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6394 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6395 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6396 register_cpu_notifier(&migration_notifier);
7babe8db 6397
3a101d05
TH
6398 /* Register cpu active notifiers */
6399 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6400 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6401
a004cd42 6402 return 0;
1da177e4 6403}
7babe8db 6404early_initcall(migration_init);
1da177e4
LT
6405#endif
6406
6407#ifdef CONFIG_SMP
476f3534 6408
3e9830dc 6409#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6410
f6630114
MT
6411static __read_mostly int sched_domain_debug_enabled;
6412
6413static int __init sched_domain_debug_setup(char *str)
6414{
6415 sched_domain_debug_enabled = 1;
6416
6417 return 0;
6418}
6419early_param("sched_debug", sched_domain_debug_setup);
6420
7c16ec58 6421static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6422 struct cpumask *groupmask)
1da177e4 6423{
4dcf6aff 6424 struct sched_group *group = sd->groups;
434d53b0 6425 char str[256];
1da177e4 6426
968ea6d8 6427 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6428 cpumask_clear(groupmask);
4dcf6aff
IM
6429
6430 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6431
6432 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6433 printk("does not load-balance\n");
4dcf6aff 6434 if (sd->parent)
3df0fc5b
PZ
6435 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6436 " has parent");
4dcf6aff 6437 return -1;
41c7ce9a
NP
6438 }
6439
3df0fc5b 6440 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6441
758b2cdc 6442 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6443 printk(KERN_ERR "ERROR: domain->span does not contain "
6444 "CPU%d\n", cpu);
4dcf6aff 6445 }
758b2cdc 6446 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6447 printk(KERN_ERR "ERROR: domain->groups does not contain"
6448 " CPU%d\n", cpu);
4dcf6aff 6449 }
1da177e4 6450
4dcf6aff 6451 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6452 do {
4dcf6aff 6453 if (!group) {
3df0fc5b
PZ
6454 printk("\n");
6455 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6456 break;
6457 }
6458
18a3885f 6459 if (!group->cpu_power) {
3df0fc5b
PZ
6460 printk(KERN_CONT "\n");
6461 printk(KERN_ERR "ERROR: domain->cpu_power not "
6462 "set\n");
4dcf6aff
IM
6463 break;
6464 }
1da177e4 6465
758b2cdc 6466 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6467 printk(KERN_CONT "\n");
6468 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6469 break;
6470 }
1da177e4 6471
758b2cdc 6472 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6473 printk(KERN_CONT "\n");
6474 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6475 break;
6476 }
1da177e4 6477
758b2cdc 6478 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6479
968ea6d8 6480 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6481
3df0fc5b 6482 printk(KERN_CONT " %s", str);
18a3885f 6483 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6484 printk(KERN_CONT " (cpu_power = %d)",
6485 group->cpu_power);
381512cf 6486 }
1da177e4 6487
4dcf6aff
IM
6488 group = group->next;
6489 } while (group != sd->groups);
3df0fc5b 6490 printk(KERN_CONT "\n");
1da177e4 6491
758b2cdc 6492 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6493 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6494
758b2cdc
RR
6495 if (sd->parent &&
6496 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6497 printk(KERN_ERR "ERROR: parent span is not a superset "
6498 "of domain->span\n");
4dcf6aff
IM
6499 return 0;
6500}
1da177e4 6501
4dcf6aff
IM
6502static void sched_domain_debug(struct sched_domain *sd, int cpu)
6503{
d5dd3db1 6504 cpumask_var_t groupmask;
4dcf6aff 6505 int level = 0;
1da177e4 6506
f6630114
MT
6507 if (!sched_domain_debug_enabled)
6508 return;
6509
4dcf6aff
IM
6510 if (!sd) {
6511 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6512 return;
6513 }
1da177e4 6514
4dcf6aff
IM
6515 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6516
d5dd3db1 6517 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6518 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6519 return;
6520 }
6521
4dcf6aff 6522 for (;;) {
7c16ec58 6523 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6524 break;
1da177e4
LT
6525 level++;
6526 sd = sd->parent;
33859f7f 6527 if (!sd)
4dcf6aff
IM
6528 break;
6529 }
d5dd3db1 6530 free_cpumask_var(groupmask);
1da177e4 6531}
6d6bc0ad 6532#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6533# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6534#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6535
1a20ff27 6536static int sd_degenerate(struct sched_domain *sd)
245af2c7 6537{
758b2cdc 6538 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6539 return 1;
6540
6541 /* Following flags need at least 2 groups */
6542 if (sd->flags & (SD_LOAD_BALANCE |
6543 SD_BALANCE_NEWIDLE |
6544 SD_BALANCE_FORK |
89c4710e
SS
6545 SD_BALANCE_EXEC |
6546 SD_SHARE_CPUPOWER |
6547 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6548 if (sd->groups != sd->groups->next)
6549 return 0;
6550 }
6551
6552 /* Following flags don't use groups */
c88d5910 6553 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6554 return 0;
6555
6556 return 1;
6557}
6558
48f24c4d
IM
6559static int
6560sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6561{
6562 unsigned long cflags = sd->flags, pflags = parent->flags;
6563
6564 if (sd_degenerate(parent))
6565 return 1;
6566
758b2cdc 6567 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6568 return 0;
6569
245af2c7
SS
6570 /* Flags needing groups don't count if only 1 group in parent */
6571 if (parent->groups == parent->groups->next) {
6572 pflags &= ~(SD_LOAD_BALANCE |
6573 SD_BALANCE_NEWIDLE |
6574 SD_BALANCE_FORK |
89c4710e
SS
6575 SD_BALANCE_EXEC |
6576 SD_SHARE_CPUPOWER |
6577 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6578 if (nr_node_ids == 1)
6579 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6580 }
6581 if (~cflags & pflags)
6582 return 0;
6583
6584 return 1;
6585}
6586
c6c4927b
RR
6587static void free_rootdomain(struct root_domain *rd)
6588{
047106ad
PZ
6589 synchronize_sched();
6590
68e74568
RR
6591 cpupri_cleanup(&rd->cpupri);
6592
c6c4927b
RR
6593 free_cpumask_var(rd->rto_mask);
6594 free_cpumask_var(rd->online);
6595 free_cpumask_var(rd->span);
6596 kfree(rd);
6597}
6598
57d885fe
GH
6599static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6600{
a0490fa3 6601 struct root_domain *old_rd = NULL;
57d885fe 6602 unsigned long flags;
57d885fe 6603
05fa785c 6604 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6605
6606 if (rq->rd) {
a0490fa3 6607 old_rd = rq->rd;
57d885fe 6608
c6c4927b 6609 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6610 set_rq_offline(rq);
57d885fe 6611
c6c4927b 6612 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6613
a0490fa3
IM
6614 /*
6615 * If we dont want to free the old_rt yet then
6616 * set old_rd to NULL to skip the freeing later
6617 * in this function:
6618 */
6619 if (!atomic_dec_and_test(&old_rd->refcount))
6620 old_rd = NULL;
57d885fe
GH
6621 }
6622
6623 atomic_inc(&rd->refcount);
6624 rq->rd = rd;
6625
c6c4927b 6626 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6627 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6628 set_rq_online(rq);
57d885fe 6629
05fa785c 6630 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6631
6632 if (old_rd)
6633 free_rootdomain(old_rd);
57d885fe
GH
6634}
6635
68c38fc3 6636static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6637{
6638 memset(rd, 0, sizeof(*rd));
6639
68c38fc3 6640 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6641 goto out;
68c38fc3 6642 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6643 goto free_span;
68c38fc3 6644 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6645 goto free_online;
6e0534f2 6646
68c38fc3 6647 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6648 goto free_rto_mask;
c6c4927b 6649 return 0;
6e0534f2 6650
68e74568
RR
6651free_rto_mask:
6652 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6653free_online:
6654 free_cpumask_var(rd->online);
6655free_span:
6656 free_cpumask_var(rd->span);
0c910d28 6657out:
c6c4927b 6658 return -ENOMEM;
57d885fe
GH
6659}
6660
6661static void init_defrootdomain(void)
6662{
68c38fc3 6663 init_rootdomain(&def_root_domain);
c6c4927b 6664
57d885fe
GH
6665 atomic_set(&def_root_domain.refcount, 1);
6666}
6667
dc938520 6668static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6669{
6670 struct root_domain *rd;
6671
6672 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6673 if (!rd)
6674 return NULL;
6675
68c38fc3 6676 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6677 kfree(rd);
6678 return NULL;
6679 }
57d885fe
GH
6680
6681 return rd;
6682}
6683
1da177e4 6684/*
0eab9146 6685 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6686 * hold the hotplug lock.
6687 */
0eab9146
IM
6688static void
6689cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6690{
70b97a7f 6691 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6692 struct sched_domain *tmp;
6693
669c55e9
PZ
6694 for (tmp = sd; tmp; tmp = tmp->parent)
6695 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6696
245af2c7 6697 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6698 for (tmp = sd; tmp; ) {
245af2c7
SS
6699 struct sched_domain *parent = tmp->parent;
6700 if (!parent)
6701 break;
f29c9b1c 6702
1a848870 6703 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6704 tmp->parent = parent->parent;
1a848870
SS
6705 if (parent->parent)
6706 parent->parent->child = tmp;
f29c9b1c
LZ
6707 } else
6708 tmp = tmp->parent;
245af2c7
SS
6709 }
6710
1a848870 6711 if (sd && sd_degenerate(sd)) {
245af2c7 6712 sd = sd->parent;
1a848870
SS
6713 if (sd)
6714 sd->child = NULL;
6715 }
1da177e4
LT
6716
6717 sched_domain_debug(sd, cpu);
6718
57d885fe 6719 rq_attach_root(rq, rd);
674311d5 6720 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6721}
6722
6723/* cpus with isolated domains */
dcc30a35 6724static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6725
6726/* Setup the mask of cpus configured for isolated domains */
6727static int __init isolated_cpu_setup(char *str)
6728{
bdddd296 6729 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6730 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6731 return 1;
6732}
6733
8927f494 6734__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6735
6736/*
6711cab4
SS
6737 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6738 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6739 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6740 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6741 *
6742 * init_sched_build_groups will build a circular linked list of the groups
6743 * covered by the given span, and will set each group's ->cpumask correctly,
6744 * and ->cpu_power to 0.
6745 */
a616058b 6746static void
96f874e2
RR
6747init_sched_build_groups(const struct cpumask *span,
6748 const struct cpumask *cpu_map,
6749 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6750 struct sched_group **sg,
96f874e2
RR
6751 struct cpumask *tmpmask),
6752 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6753{
6754 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6755 int i;
6756
96f874e2 6757 cpumask_clear(covered);
7c16ec58 6758
abcd083a 6759 for_each_cpu(i, span) {
6711cab4 6760 struct sched_group *sg;
7c16ec58 6761 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6762 int j;
6763
758b2cdc 6764 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6765 continue;
6766
758b2cdc 6767 cpumask_clear(sched_group_cpus(sg));
18a3885f 6768 sg->cpu_power = 0;
1da177e4 6769
abcd083a 6770 for_each_cpu(j, span) {
7c16ec58 6771 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6772 continue;
6773
96f874e2 6774 cpumask_set_cpu(j, covered);
758b2cdc 6775 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6776 }
6777 if (!first)
6778 first = sg;
6779 if (last)
6780 last->next = sg;
6781 last = sg;
6782 }
6783 last->next = first;
6784}
6785
9c1cfda2 6786#define SD_NODES_PER_DOMAIN 16
1da177e4 6787
9c1cfda2 6788#ifdef CONFIG_NUMA
198e2f18 6789
9c1cfda2
JH
6790/**
6791 * find_next_best_node - find the next node to include in a sched_domain
6792 * @node: node whose sched_domain we're building
6793 * @used_nodes: nodes already in the sched_domain
6794 *
41a2d6cf 6795 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6796 * finds the closest node not already in the @used_nodes map.
6797 *
6798 * Should use nodemask_t.
6799 */
c5f59f08 6800static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6801{
6802 int i, n, val, min_val, best_node = 0;
6803
6804 min_val = INT_MAX;
6805
076ac2af 6806 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6807 /* Start at @node */
076ac2af 6808 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6809
6810 if (!nr_cpus_node(n))
6811 continue;
6812
6813 /* Skip already used nodes */
c5f59f08 6814 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6815 continue;
6816
6817 /* Simple min distance search */
6818 val = node_distance(node, n);
6819
6820 if (val < min_val) {
6821 min_val = val;
6822 best_node = n;
6823 }
6824 }
6825
c5f59f08 6826 node_set(best_node, *used_nodes);
9c1cfda2
JH
6827 return best_node;
6828}
6829
6830/**
6831 * sched_domain_node_span - get a cpumask for a node's sched_domain
6832 * @node: node whose cpumask we're constructing
73486722 6833 * @span: resulting cpumask
9c1cfda2 6834 *
41a2d6cf 6835 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6836 * should be one that prevents unnecessary balancing, but also spreads tasks
6837 * out optimally.
6838 */
96f874e2 6839static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6840{
c5f59f08 6841 nodemask_t used_nodes;
48f24c4d 6842 int i;
9c1cfda2 6843
6ca09dfc 6844 cpumask_clear(span);
c5f59f08 6845 nodes_clear(used_nodes);
9c1cfda2 6846
6ca09dfc 6847 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6848 node_set(node, used_nodes);
9c1cfda2
JH
6849
6850 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6851 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6852
6ca09dfc 6853 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6854 }
9c1cfda2 6855}
6d6bc0ad 6856#endif /* CONFIG_NUMA */
9c1cfda2 6857
5c45bf27 6858int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6859
6c99e9ad
RR
6860/*
6861 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6862 *
6863 * ( See the the comments in include/linux/sched.h:struct sched_group
6864 * and struct sched_domain. )
6c99e9ad
RR
6865 */
6866struct static_sched_group {
6867 struct sched_group sg;
6868 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6869};
6870
6871struct static_sched_domain {
6872 struct sched_domain sd;
6873 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6874};
6875
49a02c51
AH
6876struct s_data {
6877#ifdef CONFIG_NUMA
6878 int sd_allnodes;
6879 cpumask_var_t domainspan;
6880 cpumask_var_t covered;
6881 cpumask_var_t notcovered;
6882#endif
6883 cpumask_var_t nodemask;
6884 cpumask_var_t this_sibling_map;
6885 cpumask_var_t this_core_map;
01a08546 6886 cpumask_var_t this_book_map;
49a02c51
AH
6887 cpumask_var_t send_covered;
6888 cpumask_var_t tmpmask;
6889 struct sched_group **sched_group_nodes;
6890 struct root_domain *rd;
6891};
6892
2109b99e
AH
6893enum s_alloc {
6894 sa_sched_groups = 0,
6895 sa_rootdomain,
6896 sa_tmpmask,
6897 sa_send_covered,
01a08546 6898 sa_this_book_map,
2109b99e
AH
6899 sa_this_core_map,
6900 sa_this_sibling_map,
6901 sa_nodemask,
6902 sa_sched_group_nodes,
6903#ifdef CONFIG_NUMA
6904 sa_notcovered,
6905 sa_covered,
6906 sa_domainspan,
6907#endif
6908 sa_none,
6909};
6910
9c1cfda2 6911/*
48f24c4d 6912 * SMT sched-domains:
9c1cfda2 6913 */
1da177e4 6914#ifdef CONFIG_SCHED_SMT
6c99e9ad 6915static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6916static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6917
41a2d6cf 6918static int
96f874e2
RR
6919cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6920 struct sched_group **sg, struct cpumask *unused)
1da177e4 6921{
6711cab4 6922 if (sg)
1871e52c 6923 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6924 return cpu;
6925}
6d6bc0ad 6926#endif /* CONFIG_SCHED_SMT */
1da177e4 6927
48f24c4d
IM
6928/*
6929 * multi-core sched-domains:
6930 */
1e9f28fa 6931#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6932static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6933static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6934
41a2d6cf 6935static int
96f874e2
RR
6936cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6937 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6938{
6711cab4 6939 int group;
f269893c 6940#ifdef CONFIG_SCHED_SMT
c69fc56d 6941 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6942 group = cpumask_first(mask);
f269893c
HC
6943#else
6944 group = cpu;
6945#endif
6711cab4 6946 if (sg)
6c99e9ad 6947 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6948 return group;
1e9f28fa 6949}
f269893c 6950#endif /* CONFIG_SCHED_MC */
1e9f28fa 6951
01a08546
HC
6952/*
6953 * book sched-domains:
6954 */
6955#ifdef CONFIG_SCHED_BOOK
6956static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6957static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6958
41a2d6cf 6959static int
01a08546
HC
6960cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6961 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6962{
01a08546
HC
6963 int group = cpu;
6964#ifdef CONFIG_SCHED_MC
6965 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6966 group = cpumask_first(mask);
6967#elif defined(CONFIG_SCHED_SMT)
6968 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6969 group = cpumask_first(mask);
6970#endif
6711cab4 6971 if (sg)
01a08546
HC
6972 *sg = &per_cpu(sched_group_book, group).sg;
6973 return group;
1e9f28fa 6974}
01a08546 6975#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6976
6c99e9ad
RR
6977static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6978static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6979
41a2d6cf 6980static int
96f874e2
RR
6981cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6982 struct sched_group **sg, struct cpumask *mask)
1da177e4 6983{
6711cab4 6984 int group;
01a08546
HC
6985#ifdef CONFIG_SCHED_BOOK
6986 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6987 group = cpumask_first(mask);
6988#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6989 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6990 group = cpumask_first(mask);
1e9f28fa 6991#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6992 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6993 group = cpumask_first(mask);
1da177e4 6994#else
6711cab4 6995 group = cpu;
1da177e4 6996#endif
6711cab4 6997 if (sg)
6c99e9ad 6998 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6999 return group;
1da177e4
LT
7000}
7001
7002#ifdef CONFIG_NUMA
1da177e4 7003/*
9c1cfda2
JH
7004 * The init_sched_build_groups can't handle what we want to do with node
7005 * groups, so roll our own. Now each node has its own list of groups which
7006 * gets dynamically allocated.
1da177e4 7007 */
62ea9ceb 7008static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7009static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7010
62ea9ceb 7011static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7012static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7013
96f874e2
RR
7014static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7015 struct sched_group **sg,
7016 struct cpumask *nodemask)
9c1cfda2 7017{
6711cab4
SS
7018 int group;
7019
6ca09dfc 7020 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7021 group = cpumask_first(nodemask);
6711cab4
SS
7022
7023 if (sg)
6c99e9ad 7024 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7025 return group;
1da177e4 7026}
6711cab4 7027
08069033
SS
7028static void init_numa_sched_groups_power(struct sched_group *group_head)
7029{
7030 struct sched_group *sg = group_head;
7031 int j;
7032
7033 if (!sg)
7034 return;
3a5c359a 7035 do {
758b2cdc 7036 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7037 struct sched_domain *sd;
08069033 7038
6c99e9ad 7039 sd = &per_cpu(phys_domains, j).sd;
13318a71 7040 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
7041 /*
7042 * Only add "power" once for each
7043 * physical package.
7044 */
7045 continue;
7046 }
08069033 7047
18a3885f 7048 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
7049 }
7050 sg = sg->next;
7051 } while (sg != group_head);
08069033 7052}
0601a88d
AH
7053
7054static int build_numa_sched_groups(struct s_data *d,
7055 const struct cpumask *cpu_map, int num)
7056{
7057 struct sched_domain *sd;
7058 struct sched_group *sg, *prev;
7059 int n, j;
7060
7061 cpumask_clear(d->covered);
7062 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7063 if (cpumask_empty(d->nodemask)) {
7064 d->sched_group_nodes[num] = NULL;
7065 goto out;
7066 }
7067
7068 sched_domain_node_span(num, d->domainspan);
7069 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7070
7071 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7072 GFP_KERNEL, num);
7073 if (!sg) {
3df0fc5b
PZ
7074 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7075 num);
0601a88d
AH
7076 return -ENOMEM;
7077 }
7078 d->sched_group_nodes[num] = sg;
7079
7080 for_each_cpu(j, d->nodemask) {
7081 sd = &per_cpu(node_domains, j).sd;
7082 sd->groups = sg;
7083 }
7084
18a3885f 7085 sg->cpu_power = 0;
0601a88d
AH
7086 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7087 sg->next = sg;
7088 cpumask_or(d->covered, d->covered, d->nodemask);
7089
7090 prev = sg;
7091 for (j = 0; j < nr_node_ids; j++) {
7092 n = (num + j) % nr_node_ids;
7093 cpumask_complement(d->notcovered, d->covered);
7094 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7095 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7096 if (cpumask_empty(d->tmpmask))
7097 break;
7098 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7099 if (cpumask_empty(d->tmpmask))
7100 continue;
7101 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7102 GFP_KERNEL, num);
7103 if (!sg) {
3df0fc5b
PZ
7104 printk(KERN_WARNING
7105 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7106 return -ENOMEM;
7107 }
18a3885f 7108 sg->cpu_power = 0;
0601a88d
AH
7109 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7110 sg->next = prev->next;
7111 cpumask_or(d->covered, d->covered, d->tmpmask);
7112 prev->next = sg;
7113 prev = sg;
7114 }
7115out:
7116 return 0;
7117}
6d6bc0ad 7118#endif /* CONFIG_NUMA */
1da177e4 7119
a616058b 7120#ifdef CONFIG_NUMA
51888ca2 7121/* Free memory allocated for various sched_group structures */
96f874e2
RR
7122static void free_sched_groups(const struct cpumask *cpu_map,
7123 struct cpumask *nodemask)
51888ca2 7124{
a616058b 7125 int cpu, i;
51888ca2 7126
abcd083a 7127 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7128 struct sched_group **sched_group_nodes
7129 = sched_group_nodes_bycpu[cpu];
7130
51888ca2
SV
7131 if (!sched_group_nodes)
7132 continue;
7133
076ac2af 7134 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7135 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7136
6ca09dfc 7137 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7138 if (cpumask_empty(nodemask))
51888ca2
SV
7139 continue;
7140
7141 if (sg == NULL)
7142 continue;
7143 sg = sg->next;
7144next_sg:
7145 oldsg = sg;
7146 sg = sg->next;
7147 kfree(oldsg);
7148 if (oldsg != sched_group_nodes[i])
7149 goto next_sg;
7150 }
7151 kfree(sched_group_nodes);
7152 sched_group_nodes_bycpu[cpu] = NULL;
7153 }
51888ca2 7154}
6d6bc0ad 7155#else /* !CONFIG_NUMA */
96f874e2
RR
7156static void free_sched_groups(const struct cpumask *cpu_map,
7157 struct cpumask *nodemask)
a616058b
SS
7158{
7159}
6d6bc0ad 7160#endif /* CONFIG_NUMA */
51888ca2 7161
89c4710e
SS
7162/*
7163 * Initialize sched groups cpu_power.
7164 *
7165 * cpu_power indicates the capacity of sched group, which is used while
7166 * distributing the load between different sched groups in a sched domain.
7167 * Typically cpu_power for all the groups in a sched domain will be same unless
7168 * there are asymmetries in the topology. If there are asymmetries, group
7169 * having more cpu_power will pickup more load compared to the group having
7170 * less cpu_power.
89c4710e
SS
7171 */
7172static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7173{
7174 struct sched_domain *child;
7175 struct sched_group *group;
f93e65c1
PZ
7176 long power;
7177 int weight;
89c4710e
SS
7178
7179 WARN_ON(!sd || !sd->groups);
7180
13318a71 7181 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7182 return;
7183
aae6d3dd
SS
7184 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7185
89c4710e
SS
7186 child = sd->child;
7187
18a3885f 7188 sd->groups->cpu_power = 0;
5517d86b 7189
f93e65c1
PZ
7190 if (!child) {
7191 power = SCHED_LOAD_SCALE;
7192 weight = cpumask_weight(sched_domain_span(sd));
7193 /*
7194 * SMT siblings share the power of a single core.
a52bfd73
PZ
7195 * Usually multiple threads get a better yield out of
7196 * that one core than a single thread would have,
7197 * reflect that in sd->smt_gain.
f93e65c1 7198 */
a52bfd73
PZ
7199 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7200 power *= sd->smt_gain;
f93e65c1 7201 power /= weight;
a52bfd73
PZ
7202 power >>= SCHED_LOAD_SHIFT;
7203 }
18a3885f 7204 sd->groups->cpu_power += power;
89c4710e
SS
7205 return;
7206 }
7207
89c4710e 7208 /*
f93e65c1 7209 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7210 */
7211 group = child->groups;
7212 do {
18a3885f 7213 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7214 group = group->next;
7215 } while (group != child->groups);
7216}
7217
7c16ec58
MT
7218/*
7219 * Initializers for schedule domains
7220 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7221 */
7222
a5d8c348
IM
7223#ifdef CONFIG_SCHED_DEBUG
7224# define SD_INIT_NAME(sd, type) sd->name = #type
7225#else
7226# define SD_INIT_NAME(sd, type) do { } while (0)
7227#endif
7228
7c16ec58 7229#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7230
7c16ec58
MT
7231#define SD_INIT_FUNC(type) \
7232static noinline void sd_init_##type(struct sched_domain *sd) \
7233{ \
7234 memset(sd, 0, sizeof(*sd)); \
7235 *sd = SD_##type##_INIT; \
1d3504fc 7236 sd->level = SD_LV_##type; \
a5d8c348 7237 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7238}
7239
7240SD_INIT_FUNC(CPU)
7241#ifdef CONFIG_NUMA
7242 SD_INIT_FUNC(ALLNODES)
7243 SD_INIT_FUNC(NODE)
7244#endif
7245#ifdef CONFIG_SCHED_SMT
7246 SD_INIT_FUNC(SIBLING)
7247#endif
7248#ifdef CONFIG_SCHED_MC
7249 SD_INIT_FUNC(MC)
7250#endif
01a08546
HC
7251#ifdef CONFIG_SCHED_BOOK
7252 SD_INIT_FUNC(BOOK)
7253#endif
7c16ec58 7254
1d3504fc
HS
7255static int default_relax_domain_level = -1;
7256
7257static int __init setup_relax_domain_level(char *str)
7258{
30e0e178
LZ
7259 unsigned long val;
7260
7261 val = simple_strtoul(str, NULL, 0);
7262 if (val < SD_LV_MAX)
7263 default_relax_domain_level = val;
7264
1d3504fc
HS
7265 return 1;
7266}
7267__setup("relax_domain_level=", setup_relax_domain_level);
7268
7269static void set_domain_attribute(struct sched_domain *sd,
7270 struct sched_domain_attr *attr)
7271{
7272 int request;
7273
7274 if (!attr || attr->relax_domain_level < 0) {
7275 if (default_relax_domain_level < 0)
7276 return;
7277 else
7278 request = default_relax_domain_level;
7279 } else
7280 request = attr->relax_domain_level;
7281 if (request < sd->level) {
7282 /* turn off idle balance on this domain */
c88d5910 7283 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7284 } else {
7285 /* turn on idle balance on this domain */
c88d5910 7286 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7287 }
7288}
7289
2109b99e
AH
7290static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7291 const struct cpumask *cpu_map)
7292{
7293 switch (what) {
7294 case sa_sched_groups:
7295 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7296 d->sched_group_nodes = NULL;
7297 case sa_rootdomain:
7298 free_rootdomain(d->rd); /* fall through */
7299 case sa_tmpmask:
7300 free_cpumask_var(d->tmpmask); /* fall through */
7301 case sa_send_covered:
7302 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7303 case sa_this_book_map:
7304 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7305 case sa_this_core_map:
7306 free_cpumask_var(d->this_core_map); /* fall through */
7307 case sa_this_sibling_map:
7308 free_cpumask_var(d->this_sibling_map); /* fall through */
7309 case sa_nodemask:
7310 free_cpumask_var(d->nodemask); /* fall through */
7311 case sa_sched_group_nodes:
d1b55138 7312#ifdef CONFIG_NUMA
2109b99e
AH
7313 kfree(d->sched_group_nodes); /* fall through */
7314 case sa_notcovered:
7315 free_cpumask_var(d->notcovered); /* fall through */
7316 case sa_covered:
7317 free_cpumask_var(d->covered); /* fall through */
7318 case sa_domainspan:
7319 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7320#endif
2109b99e
AH
7321 case sa_none:
7322 break;
7323 }
7324}
3404c8d9 7325
2109b99e
AH
7326static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7327 const struct cpumask *cpu_map)
7328{
3404c8d9 7329#ifdef CONFIG_NUMA
2109b99e
AH
7330 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7331 return sa_none;
7332 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7333 return sa_domainspan;
7334 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7335 return sa_covered;
7336 /* Allocate the per-node list of sched groups */
7337 d->sched_group_nodes = kcalloc(nr_node_ids,
7338 sizeof(struct sched_group *), GFP_KERNEL);
7339 if (!d->sched_group_nodes) {
3df0fc5b 7340 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7341 return sa_notcovered;
d1b55138 7342 }
2109b99e 7343 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7344#endif
2109b99e
AH
7345 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7346 return sa_sched_group_nodes;
7347 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7348 return sa_nodemask;
7349 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7350 return sa_this_sibling_map;
01a08546 7351 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7352 return sa_this_core_map;
01a08546
HC
7353 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7354 return sa_this_book_map;
2109b99e
AH
7355 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7356 return sa_send_covered;
7357 d->rd = alloc_rootdomain();
7358 if (!d->rd) {
3df0fc5b 7359 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7360 return sa_tmpmask;
57d885fe 7361 }
2109b99e
AH
7362 return sa_rootdomain;
7363}
57d885fe 7364
7f4588f3
AH
7365static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7366 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7367{
7368 struct sched_domain *sd = NULL;
7c16ec58 7369#ifdef CONFIG_NUMA
7f4588f3 7370 struct sched_domain *parent;
1da177e4 7371
7f4588f3
AH
7372 d->sd_allnodes = 0;
7373 if (cpumask_weight(cpu_map) >
7374 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7375 sd = &per_cpu(allnodes_domains, i).sd;
7376 SD_INIT(sd, ALLNODES);
1d3504fc 7377 set_domain_attribute(sd, attr);
7f4588f3
AH
7378 cpumask_copy(sched_domain_span(sd), cpu_map);
7379 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7380 d->sd_allnodes = 1;
7381 }
7382 parent = sd;
7383
7384 sd = &per_cpu(node_domains, i).sd;
7385 SD_INIT(sd, NODE);
7386 set_domain_attribute(sd, attr);
7387 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7388 sd->parent = parent;
7389 if (parent)
7390 parent->child = sd;
7391 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7392#endif
7f4588f3
AH
7393 return sd;
7394}
1da177e4 7395
87cce662
AH
7396static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7397 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7398 struct sched_domain *parent, int i)
7399{
7400 struct sched_domain *sd;
7401 sd = &per_cpu(phys_domains, i).sd;
7402 SD_INIT(sd, CPU);
7403 set_domain_attribute(sd, attr);
7404 cpumask_copy(sched_domain_span(sd), d->nodemask);
7405 sd->parent = parent;
7406 if (parent)
7407 parent->child = sd;
7408 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7409 return sd;
7410}
1da177e4 7411
01a08546
HC
7412static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7413 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7414 struct sched_domain *parent, int i)
7415{
7416 struct sched_domain *sd = parent;
7417#ifdef CONFIG_SCHED_BOOK
7418 sd = &per_cpu(book_domains, i).sd;
7419 SD_INIT(sd, BOOK);
7420 set_domain_attribute(sd, attr);
7421 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7422 sd->parent = parent;
7423 parent->child = sd;
7424 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7425#endif
7426 return sd;
7427}
7428
410c4081
AH
7429static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7430 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7431 struct sched_domain *parent, int i)
7432{
7433 struct sched_domain *sd = parent;
1e9f28fa 7434#ifdef CONFIG_SCHED_MC
410c4081
AH
7435 sd = &per_cpu(core_domains, i).sd;
7436 SD_INIT(sd, MC);
7437 set_domain_attribute(sd, attr);
7438 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7439 sd->parent = parent;
7440 parent->child = sd;
7441 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7442#endif
410c4081
AH
7443 return sd;
7444}
1e9f28fa 7445
d8173535
AH
7446static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7447 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7448 struct sched_domain *parent, int i)
7449{
7450 struct sched_domain *sd = parent;
1da177e4 7451#ifdef CONFIG_SCHED_SMT
d8173535
AH
7452 sd = &per_cpu(cpu_domains, i).sd;
7453 SD_INIT(sd, SIBLING);
7454 set_domain_attribute(sd, attr);
7455 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7456 sd->parent = parent;
7457 parent->child = sd;
7458 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7459#endif
d8173535
AH
7460 return sd;
7461}
1da177e4 7462
0e8e85c9
AH
7463static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7464 const struct cpumask *cpu_map, int cpu)
7465{
7466 switch (l) {
1da177e4 7467#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7468 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7469 cpumask_and(d->this_sibling_map, cpu_map,
7470 topology_thread_cpumask(cpu));
7471 if (cpu == cpumask_first(d->this_sibling_map))
7472 init_sched_build_groups(d->this_sibling_map, cpu_map,
7473 &cpu_to_cpu_group,
7474 d->send_covered, d->tmpmask);
7475 break;
1da177e4 7476#endif
1e9f28fa 7477#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7478 case SD_LV_MC: /* set up multi-core groups */
7479 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7480 if (cpu == cpumask_first(d->this_core_map))
7481 init_sched_build_groups(d->this_core_map, cpu_map,
7482 &cpu_to_core_group,
7483 d->send_covered, d->tmpmask);
7484 break;
01a08546
HC
7485#endif
7486#ifdef CONFIG_SCHED_BOOK
7487 case SD_LV_BOOK: /* set up book groups */
7488 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7489 if (cpu == cpumask_first(d->this_book_map))
7490 init_sched_build_groups(d->this_book_map, cpu_map,
7491 &cpu_to_book_group,
7492 d->send_covered, d->tmpmask);
7493 break;
1e9f28fa 7494#endif
86548096
AH
7495 case SD_LV_CPU: /* set up physical groups */
7496 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7497 if (!cpumask_empty(d->nodemask))
7498 init_sched_build_groups(d->nodemask, cpu_map,
7499 &cpu_to_phys_group,
7500 d->send_covered, d->tmpmask);
7501 break;
1da177e4 7502#ifdef CONFIG_NUMA
de616e36
AH
7503 case SD_LV_ALLNODES:
7504 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7505 d->send_covered, d->tmpmask);
7506 break;
7507#endif
0e8e85c9
AH
7508 default:
7509 break;
7c16ec58 7510 }
0e8e85c9 7511}
9c1cfda2 7512
2109b99e
AH
7513/*
7514 * Build sched domains for a given set of cpus and attach the sched domains
7515 * to the individual cpus
7516 */
7517static int __build_sched_domains(const struct cpumask *cpu_map,
7518 struct sched_domain_attr *attr)
7519{
7520 enum s_alloc alloc_state = sa_none;
7521 struct s_data d;
294b0c96 7522 struct sched_domain *sd;
2109b99e 7523 int i;
7c16ec58 7524#ifdef CONFIG_NUMA
2109b99e 7525 d.sd_allnodes = 0;
7c16ec58 7526#endif
9c1cfda2 7527
2109b99e
AH
7528 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7529 if (alloc_state != sa_rootdomain)
7530 goto error;
7531 alloc_state = sa_sched_groups;
9c1cfda2 7532
1da177e4 7533 /*
1a20ff27 7534 * Set up domains for cpus specified by the cpu_map.
1da177e4 7535 */
abcd083a 7536 for_each_cpu(i, cpu_map) {
49a02c51
AH
7537 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7538 cpu_map);
9761eea8 7539
7f4588f3 7540 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7541 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7542 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7543 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7544 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7545 }
9c1cfda2 7546
abcd083a 7547 for_each_cpu(i, cpu_map) {
0e8e85c9 7548 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7549 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7550 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7551 }
9c1cfda2 7552
1da177e4 7553 /* Set up physical groups */
86548096
AH
7554 for (i = 0; i < nr_node_ids; i++)
7555 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7556
1da177e4
LT
7557#ifdef CONFIG_NUMA
7558 /* Set up node groups */
de616e36
AH
7559 if (d.sd_allnodes)
7560 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7561
0601a88d
AH
7562 for (i = 0; i < nr_node_ids; i++)
7563 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7564 goto error;
1da177e4
LT
7565#endif
7566
7567 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7568#ifdef CONFIG_SCHED_SMT
abcd083a 7569 for_each_cpu(i, cpu_map) {
294b0c96 7570 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7571 init_sched_groups_power(i, sd);
5c45bf27 7572 }
1da177e4 7573#endif
1e9f28fa 7574#ifdef CONFIG_SCHED_MC
abcd083a 7575 for_each_cpu(i, cpu_map) {
294b0c96 7576 sd = &per_cpu(core_domains, i).sd;
89c4710e 7577 init_sched_groups_power(i, sd);
5c45bf27
SS
7578 }
7579#endif
01a08546
HC
7580#ifdef CONFIG_SCHED_BOOK
7581 for_each_cpu(i, cpu_map) {
7582 sd = &per_cpu(book_domains, i).sd;
7583 init_sched_groups_power(i, sd);
7584 }
7585#endif
1e9f28fa 7586
abcd083a 7587 for_each_cpu(i, cpu_map) {
294b0c96 7588 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7589 init_sched_groups_power(i, sd);
1da177e4
LT
7590 }
7591
9c1cfda2 7592#ifdef CONFIG_NUMA
076ac2af 7593 for (i = 0; i < nr_node_ids; i++)
49a02c51 7594 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7595
49a02c51 7596 if (d.sd_allnodes) {
6711cab4 7597 struct sched_group *sg;
f712c0c7 7598
96f874e2 7599 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7600 d.tmpmask);
f712c0c7
SS
7601 init_numa_sched_groups_power(sg);
7602 }
9c1cfda2
JH
7603#endif
7604
1da177e4 7605 /* Attach the domains */
abcd083a 7606 for_each_cpu(i, cpu_map) {
1da177e4 7607#ifdef CONFIG_SCHED_SMT
6c99e9ad 7608 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7609#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7610 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7611#elif defined(CONFIG_SCHED_BOOK)
7612 sd = &per_cpu(book_domains, i).sd;
1da177e4 7613#else
6c99e9ad 7614 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7615#endif
49a02c51 7616 cpu_attach_domain(sd, d.rd, i);
1da177e4 7617 }
51888ca2 7618
2109b99e
AH
7619 d.sched_group_nodes = NULL; /* don't free this we still need it */
7620 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7621 return 0;
51888ca2 7622
51888ca2 7623error:
2109b99e
AH
7624 __free_domain_allocs(&d, alloc_state, cpu_map);
7625 return -ENOMEM;
1da177e4 7626}
029190c5 7627
96f874e2 7628static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7629{
7630 return __build_sched_domains(cpu_map, NULL);
7631}
7632
acc3f5d7 7633static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7634static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7635static struct sched_domain_attr *dattr_cur;
7636 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7637
7638/*
7639 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7640 * cpumask) fails, then fallback to a single sched domain,
7641 * as determined by the single cpumask fallback_doms.
029190c5 7642 */
4212823f 7643static cpumask_var_t fallback_doms;
029190c5 7644
ee79d1bd
HC
7645/*
7646 * arch_update_cpu_topology lets virtualized architectures update the
7647 * cpu core maps. It is supposed to return 1 if the topology changed
7648 * or 0 if it stayed the same.
7649 */
7650int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7651{
ee79d1bd 7652 return 0;
22e52b07
HC
7653}
7654
acc3f5d7
RR
7655cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7656{
7657 int i;
7658 cpumask_var_t *doms;
7659
7660 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7661 if (!doms)
7662 return NULL;
7663 for (i = 0; i < ndoms; i++) {
7664 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7665 free_sched_domains(doms, i);
7666 return NULL;
7667 }
7668 }
7669 return doms;
7670}
7671
7672void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7673{
7674 unsigned int i;
7675 for (i = 0; i < ndoms; i++)
7676 free_cpumask_var(doms[i]);
7677 kfree(doms);
7678}
7679
1a20ff27 7680/*
41a2d6cf 7681 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7682 * For now this just excludes isolated cpus, but could be used to
7683 * exclude other special cases in the future.
1a20ff27 7684 */
96f874e2 7685static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7686{
7378547f
MM
7687 int err;
7688
22e52b07 7689 arch_update_cpu_topology();
029190c5 7690 ndoms_cur = 1;
acc3f5d7 7691 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7692 if (!doms_cur)
acc3f5d7
RR
7693 doms_cur = &fallback_doms;
7694 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7695 dattr_cur = NULL;
acc3f5d7 7696 err = build_sched_domains(doms_cur[0]);
6382bc90 7697 register_sched_domain_sysctl();
7378547f
MM
7698
7699 return err;
1a20ff27
DG
7700}
7701
96f874e2
RR
7702static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7703 struct cpumask *tmpmask)
1da177e4 7704{
7c16ec58 7705 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7706}
1da177e4 7707
1a20ff27
DG
7708/*
7709 * Detach sched domains from a group of cpus specified in cpu_map
7710 * These cpus will now be attached to the NULL domain
7711 */
96f874e2 7712static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7713{
96f874e2
RR
7714 /* Save because hotplug lock held. */
7715 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7716 int i;
7717
abcd083a 7718 for_each_cpu(i, cpu_map)
57d885fe 7719 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7720 synchronize_sched();
96f874e2 7721 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7722}
7723
1d3504fc
HS
7724/* handle null as "default" */
7725static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7726 struct sched_domain_attr *new, int idx_new)
7727{
7728 struct sched_domain_attr tmp;
7729
7730 /* fast path */
7731 if (!new && !cur)
7732 return 1;
7733
7734 tmp = SD_ATTR_INIT;
7735 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7736 new ? (new + idx_new) : &tmp,
7737 sizeof(struct sched_domain_attr));
7738}
7739
029190c5
PJ
7740/*
7741 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7742 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7743 * doms_new[] to the current sched domain partitioning, doms_cur[].
7744 * It destroys each deleted domain and builds each new domain.
7745 *
acc3f5d7 7746 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7747 * The masks don't intersect (don't overlap.) We should setup one
7748 * sched domain for each mask. CPUs not in any of the cpumasks will
7749 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7750 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7751 * it as it is.
7752 *
acc3f5d7
RR
7753 * The passed in 'doms_new' should be allocated using
7754 * alloc_sched_domains. This routine takes ownership of it and will
7755 * free_sched_domains it when done with it. If the caller failed the
7756 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7757 * and partition_sched_domains() will fallback to the single partition
7758 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7759 *
96f874e2 7760 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7761 * ndoms_new == 0 is a special case for destroying existing domains,
7762 * and it will not create the default domain.
dfb512ec 7763 *
029190c5
PJ
7764 * Call with hotplug lock held
7765 */
acc3f5d7 7766void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7767 struct sched_domain_attr *dattr_new)
029190c5 7768{
dfb512ec 7769 int i, j, n;
d65bd5ec 7770 int new_topology;
029190c5 7771
712555ee 7772 mutex_lock(&sched_domains_mutex);
a1835615 7773
7378547f
MM
7774 /* always unregister in case we don't destroy any domains */
7775 unregister_sched_domain_sysctl();
7776
d65bd5ec
HC
7777 /* Let architecture update cpu core mappings. */
7778 new_topology = arch_update_cpu_topology();
7779
dfb512ec 7780 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7781
7782 /* Destroy deleted domains */
7783 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7784 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7785 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7786 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7787 goto match1;
7788 }
7789 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7790 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7791match1:
7792 ;
7793 }
7794
e761b772
MK
7795 if (doms_new == NULL) {
7796 ndoms_cur = 0;
acc3f5d7 7797 doms_new = &fallback_doms;
6ad4c188 7798 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7799 WARN_ON_ONCE(dattr_new);
e761b772
MK
7800 }
7801
029190c5
PJ
7802 /* Build new domains */
7803 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7804 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7805 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7806 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7807 goto match2;
7808 }
7809 /* no match - add a new doms_new */
acc3f5d7 7810 __build_sched_domains(doms_new[i],
1d3504fc 7811 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7812match2:
7813 ;
7814 }
7815
7816 /* Remember the new sched domains */
acc3f5d7
RR
7817 if (doms_cur != &fallback_doms)
7818 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7819 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7820 doms_cur = doms_new;
1d3504fc 7821 dattr_cur = dattr_new;
029190c5 7822 ndoms_cur = ndoms_new;
7378547f
MM
7823
7824 register_sched_domain_sysctl();
a1835615 7825
712555ee 7826 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7827}
7828
5c45bf27 7829#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7830static void arch_reinit_sched_domains(void)
5c45bf27 7831{
95402b38 7832 get_online_cpus();
dfb512ec
MK
7833
7834 /* Destroy domains first to force the rebuild */
7835 partition_sched_domains(0, NULL, NULL);
7836
e761b772 7837 rebuild_sched_domains();
95402b38 7838 put_online_cpus();
5c45bf27
SS
7839}
7840
7841static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7842{
afb8a9b7 7843 unsigned int level = 0;
5c45bf27 7844
afb8a9b7
GS
7845 if (sscanf(buf, "%u", &level) != 1)
7846 return -EINVAL;
7847
7848 /*
7849 * level is always be positive so don't check for
7850 * level < POWERSAVINGS_BALANCE_NONE which is 0
7851 * What happens on 0 or 1 byte write,
7852 * need to check for count as well?
7853 */
7854
7855 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7856 return -EINVAL;
7857
7858 if (smt)
afb8a9b7 7859 sched_smt_power_savings = level;
5c45bf27 7860 else
afb8a9b7 7861 sched_mc_power_savings = level;
5c45bf27 7862
c70f22d2 7863 arch_reinit_sched_domains();
5c45bf27 7864
c70f22d2 7865 return count;
5c45bf27
SS
7866}
7867
5c45bf27 7868#ifdef CONFIG_SCHED_MC
f718cd4a 7869static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7870 struct sysdev_class_attribute *attr,
f718cd4a 7871 char *page)
5c45bf27
SS
7872{
7873 return sprintf(page, "%u\n", sched_mc_power_savings);
7874}
f718cd4a 7875static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7876 struct sysdev_class_attribute *attr,
48f24c4d 7877 const char *buf, size_t count)
5c45bf27
SS
7878{
7879 return sched_power_savings_store(buf, count, 0);
7880}
f718cd4a
AK
7881static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7882 sched_mc_power_savings_show,
7883 sched_mc_power_savings_store);
5c45bf27
SS
7884#endif
7885
7886#ifdef CONFIG_SCHED_SMT
f718cd4a 7887static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7888 struct sysdev_class_attribute *attr,
f718cd4a 7889 char *page)
5c45bf27
SS
7890{
7891 return sprintf(page, "%u\n", sched_smt_power_savings);
7892}
f718cd4a 7893static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7894 struct sysdev_class_attribute *attr,
48f24c4d 7895 const char *buf, size_t count)
5c45bf27
SS
7896{
7897 return sched_power_savings_store(buf, count, 1);
7898}
f718cd4a
AK
7899static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7900 sched_smt_power_savings_show,
6707de00
AB
7901 sched_smt_power_savings_store);
7902#endif
7903
39aac648 7904int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7905{
7906 int err = 0;
7907
7908#ifdef CONFIG_SCHED_SMT
7909 if (smt_capable())
7910 err = sysfs_create_file(&cls->kset.kobj,
7911 &attr_sched_smt_power_savings.attr);
7912#endif
7913#ifdef CONFIG_SCHED_MC
7914 if (!err && mc_capable())
7915 err = sysfs_create_file(&cls->kset.kobj,
7916 &attr_sched_mc_power_savings.attr);
7917#endif
7918 return err;
7919}
6d6bc0ad 7920#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7921
1da177e4 7922/*
3a101d05
TH
7923 * Update cpusets according to cpu_active mask. If cpusets are
7924 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7925 * around partition_sched_domains().
1da177e4 7926 */
0b2e918a
TH
7927static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7928 void *hcpu)
e761b772 7929{
3a101d05 7930 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7931 case CPU_ONLINE:
6ad4c188 7932 case CPU_DOWN_FAILED:
3a101d05 7933 cpuset_update_active_cpus();
e761b772 7934 return NOTIFY_OK;
3a101d05
TH
7935 default:
7936 return NOTIFY_DONE;
7937 }
7938}
e761b772 7939
0b2e918a
TH
7940static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7941 void *hcpu)
3a101d05
TH
7942{
7943 switch (action & ~CPU_TASKS_FROZEN) {
7944 case CPU_DOWN_PREPARE:
7945 cpuset_update_active_cpus();
7946 return NOTIFY_OK;
e761b772
MK
7947 default:
7948 return NOTIFY_DONE;
7949 }
7950}
e761b772
MK
7951
7952static int update_runtime(struct notifier_block *nfb,
7953 unsigned long action, void *hcpu)
1da177e4 7954{
7def2be1
PZ
7955 int cpu = (int)(long)hcpu;
7956
1da177e4 7957 switch (action) {
1da177e4 7958 case CPU_DOWN_PREPARE:
8bb78442 7959 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7960 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7961 return NOTIFY_OK;
7962
1da177e4 7963 case CPU_DOWN_FAILED:
8bb78442 7964 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7965 case CPU_ONLINE:
8bb78442 7966 case CPU_ONLINE_FROZEN:
7def2be1 7967 enable_runtime(cpu_rq(cpu));
e761b772
MK
7968 return NOTIFY_OK;
7969
1da177e4
LT
7970 default:
7971 return NOTIFY_DONE;
7972 }
1da177e4 7973}
1da177e4
LT
7974
7975void __init sched_init_smp(void)
7976{
dcc30a35
RR
7977 cpumask_var_t non_isolated_cpus;
7978
7979 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7980 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7981
434d53b0
MT
7982#if defined(CONFIG_NUMA)
7983 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7984 GFP_KERNEL);
7985 BUG_ON(sched_group_nodes_bycpu == NULL);
7986#endif
95402b38 7987 get_online_cpus();
712555ee 7988 mutex_lock(&sched_domains_mutex);
6ad4c188 7989 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7990 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7991 if (cpumask_empty(non_isolated_cpus))
7992 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7993 mutex_unlock(&sched_domains_mutex);
95402b38 7994 put_online_cpus();
e761b772 7995
3a101d05
TH
7996 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7997 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7998
7999 /* RT runtime code needs to handle some hotplug events */
8000 hotcpu_notifier(update_runtime, 0);
8001
b328ca18 8002 init_hrtick();
5c1e1767
NP
8003
8004 /* Move init over to a non-isolated CPU */
dcc30a35 8005 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8006 BUG();
19978ca6 8007 sched_init_granularity();
dcc30a35 8008 free_cpumask_var(non_isolated_cpus);
4212823f 8009
0e3900e6 8010 init_sched_rt_class();
1da177e4
LT
8011}
8012#else
8013void __init sched_init_smp(void)
8014{
19978ca6 8015 sched_init_granularity();
1da177e4
LT
8016}
8017#endif /* CONFIG_SMP */
8018
cd1bb94b
AB
8019const_debug unsigned int sysctl_timer_migration = 1;
8020
1da177e4
LT
8021int in_sched_functions(unsigned long addr)
8022{
1da177e4
LT
8023 return in_lock_functions(addr) ||
8024 (addr >= (unsigned long)__sched_text_start
8025 && addr < (unsigned long)__sched_text_end);
8026}
8027
a9957449 8028static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8029{
8030 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8031 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8032#ifdef CONFIG_FAIR_GROUP_SCHED
8033 cfs_rq->rq = rq;
f07333bf 8034 /* allow initial update_cfs_load() to truncate */
6ea72f12 8035#ifdef CONFIG_SMP
f07333bf 8036 cfs_rq->load_stamp = 1;
6ea72f12 8037#endif
dd41f596 8038#endif
67e9fb2a 8039 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8040}
8041
fa85ae24
PZ
8042static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8043{
8044 struct rt_prio_array *array;
8045 int i;
8046
8047 array = &rt_rq->active;
8048 for (i = 0; i < MAX_RT_PRIO; i++) {
8049 INIT_LIST_HEAD(array->queue + i);
8050 __clear_bit(i, array->bitmap);
8051 }
8052 /* delimiter for bitsearch: */
8053 __set_bit(MAX_RT_PRIO, array->bitmap);
8054
052f1dc7 8055#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8056 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8057#ifdef CONFIG_SMP
e864c499 8058 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8059#endif
48d5e258 8060#endif
fa85ae24
PZ
8061#ifdef CONFIG_SMP
8062 rt_rq->rt_nr_migratory = 0;
fa85ae24 8063 rt_rq->overloaded = 0;
05fa785c 8064 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
8065#endif
8066
8067 rt_rq->rt_time = 0;
8068 rt_rq->rt_throttled = 0;
ac086bc2 8069 rt_rq->rt_runtime = 0;
0986b11b 8070 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8071
052f1dc7 8072#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8073 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8074 rt_rq->rq = rq;
8075#endif
fa85ae24
PZ
8076}
8077
6f505b16 8078#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8079static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8080 struct sched_entity *se, int cpu,
ec7dc8ac 8081 struct sched_entity *parent)
6f505b16 8082{
ec7dc8ac 8083 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8084 tg->cfs_rq[cpu] = cfs_rq;
8085 init_cfs_rq(cfs_rq, rq);
8086 cfs_rq->tg = tg;
6f505b16
PZ
8087
8088 tg->se[cpu] = se;
07e06b01 8089 /* se could be NULL for root_task_group */
354d60c2
DG
8090 if (!se)
8091 return;
8092
ec7dc8ac
DG
8093 if (!parent)
8094 se->cfs_rq = &rq->cfs;
8095 else
8096 se->cfs_rq = parent->my_q;
8097
6f505b16 8098 se->my_q = cfs_rq;
9437178f 8099 update_load_set(&se->load, 0);
ec7dc8ac 8100 se->parent = parent;
6f505b16 8101}
052f1dc7 8102#endif
6f505b16 8103
052f1dc7 8104#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8105static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8106 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8107 struct sched_rt_entity *parent)
6f505b16 8108{
ec7dc8ac
DG
8109 struct rq *rq = cpu_rq(cpu);
8110
6f505b16
PZ
8111 tg->rt_rq[cpu] = rt_rq;
8112 init_rt_rq(rt_rq, rq);
8113 rt_rq->tg = tg;
ac086bc2 8114 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8115
8116 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8117 if (!rt_se)
8118 return;
8119
ec7dc8ac
DG
8120 if (!parent)
8121 rt_se->rt_rq = &rq->rt;
8122 else
8123 rt_se->rt_rq = parent->my_q;
8124
6f505b16 8125 rt_se->my_q = rt_rq;
ec7dc8ac 8126 rt_se->parent = parent;
6f505b16
PZ
8127 INIT_LIST_HEAD(&rt_se->run_list);
8128}
8129#endif
8130
1da177e4
LT
8131void __init sched_init(void)
8132{
dd41f596 8133 int i, j;
434d53b0
MT
8134 unsigned long alloc_size = 0, ptr;
8135
8136#ifdef CONFIG_FAIR_GROUP_SCHED
8137 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8138#endif
8139#ifdef CONFIG_RT_GROUP_SCHED
8140 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8141#endif
df7c8e84 8142#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8143 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8144#endif
434d53b0 8145 if (alloc_size) {
36b7b6d4 8146 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8147
8148#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8149 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8150 ptr += nr_cpu_ids * sizeof(void **);
8151
07e06b01 8152 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8153 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8154
6d6bc0ad 8155#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8156#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8157 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8158 ptr += nr_cpu_ids * sizeof(void **);
8159
07e06b01 8160 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8161 ptr += nr_cpu_ids * sizeof(void **);
8162
6d6bc0ad 8163#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8164#ifdef CONFIG_CPUMASK_OFFSTACK
8165 for_each_possible_cpu(i) {
8166 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8167 ptr += cpumask_size();
8168 }
8169#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8170 }
dd41f596 8171
57d885fe
GH
8172#ifdef CONFIG_SMP
8173 init_defrootdomain();
8174#endif
8175
d0b27fa7
PZ
8176 init_rt_bandwidth(&def_rt_bandwidth,
8177 global_rt_period(), global_rt_runtime());
8178
8179#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8180 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8181 global_rt_period(), global_rt_runtime());
6d6bc0ad 8182#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8183
7c941438 8184#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8185 list_add(&root_task_group.list, &task_groups);
8186 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8187 autogroup_init(&init_task);
7c941438 8188#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8189
0a945022 8190 for_each_possible_cpu(i) {
70b97a7f 8191 struct rq *rq;
1da177e4
LT
8192
8193 rq = cpu_rq(i);
05fa785c 8194 raw_spin_lock_init(&rq->lock);
7897986b 8195 rq->nr_running = 0;
dce48a84
TG
8196 rq->calc_load_active = 0;
8197 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8198 init_cfs_rq(&rq->cfs, rq);
6f505b16 8199 init_rt_rq(&rq->rt, rq);
dd41f596 8200#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8201 root_task_group.shares = root_task_group_load;
6f505b16 8202 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8203 /*
07e06b01 8204 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8205 *
8206 * In case of task-groups formed thr' the cgroup filesystem, it
8207 * gets 100% of the cpu resources in the system. This overall
8208 * system cpu resource is divided among the tasks of
07e06b01 8209 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8210 * based on each entity's (task or task-group's) weight
8211 * (se->load.weight).
8212 *
07e06b01 8213 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8214 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8215 * then A0's share of the cpu resource is:
8216 *
0d905bca 8217 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8218 *
07e06b01
YZ
8219 * We achieve this by letting root_task_group's tasks sit
8220 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8221 */
07e06b01 8222 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8223#endif /* CONFIG_FAIR_GROUP_SCHED */
8224
8225 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8226#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8227 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8228 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8229#endif
1da177e4 8230
dd41f596
IM
8231 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8232 rq->cpu_load[j] = 0;
fdf3e95d
VP
8233
8234 rq->last_load_update_tick = jiffies;
8235
1da177e4 8236#ifdef CONFIG_SMP
41c7ce9a 8237 rq->sd = NULL;
57d885fe 8238 rq->rd = NULL;
e51fd5e2 8239 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8240 rq->post_schedule = 0;
1da177e4 8241 rq->active_balance = 0;
dd41f596 8242 rq->next_balance = jiffies;
1da177e4 8243 rq->push_cpu = 0;
0a2966b4 8244 rq->cpu = i;
1f11eb6a 8245 rq->online = 0;
eae0c9df
MG
8246 rq->idle_stamp = 0;
8247 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8248 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8249#ifdef CONFIG_NO_HZ
8250 rq->nohz_balance_kick = 0;
8251 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8252#endif
1da177e4 8253#endif
8f4d37ec 8254 init_rq_hrtick(rq);
1da177e4 8255 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8256 }
8257
2dd73a4f 8258 set_load_weight(&init_task);
b50f60ce 8259
e107be36
AK
8260#ifdef CONFIG_PREEMPT_NOTIFIERS
8261 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8262#endif
8263
c9819f45 8264#ifdef CONFIG_SMP
962cf36c 8265 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8266#endif
8267
b50f60ce 8268#ifdef CONFIG_RT_MUTEXES
1d615482 8269 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8270#endif
8271
1da177e4
LT
8272 /*
8273 * The boot idle thread does lazy MMU switching as well:
8274 */
8275 atomic_inc(&init_mm.mm_count);
8276 enter_lazy_tlb(&init_mm, current);
8277
8278 /*
8279 * Make us the idle thread. Technically, schedule() should not be
8280 * called from this thread, however somewhere below it might be,
8281 * but because we are the idle thread, we just pick up running again
8282 * when this runqueue becomes "idle".
8283 */
8284 init_idle(current, smp_processor_id());
dce48a84
TG
8285
8286 calc_load_update = jiffies + LOAD_FREQ;
8287
dd41f596
IM
8288 /*
8289 * During early bootup we pretend to be a normal task:
8290 */
8291 current->sched_class = &fair_sched_class;
6892b75e 8292
6a7b3dc3 8293 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8294 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8295#ifdef CONFIG_SMP
7d1e6a9b 8296#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8297 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8298 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8299 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8300 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8301 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8302#endif
bdddd296
RR
8303 /* May be allocated at isolcpus cmdline parse time */
8304 if (cpu_isolated_map == NULL)
8305 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8306#endif /* SMP */
6a7b3dc3 8307
6892b75e 8308 scheduler_running = 1;
1da177e4
LT
8309}
8310
8311#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8312static inline int preempt_count_equals(int preempt_offset)
8313{
234da7bc 8314 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8315
4ba8216c 8316 return (nested == preempt_offset);
e4aafea2
FW
8317}
8318
d894837f 8319void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8320{
48f24c4d 8321#ifdef in_atomic
1da177e4
LT
8322 static unsigned long prev_jiffy; /* ratelimiting */
8323
e4aafea2
FW
8324 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8325 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8326 return;
8327 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8328 return;
8329 prev_jiffy = jiffies;
8330
3df0fc5b
PZ
8331 printk(KERN_ERR
8332 "BUG: sleeping function called from invalid context at %s:%d\n",
8333 file, line);
8334 printk(KERN_ERR
8335 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8336 in_atomic(), irqs_disabled(),
8337 current->pid, current->comm);
aef745fc
IM
8338
8339 debug_show_held_locks(current);
8340 if (irqs_disabled())
8341 print_irqtrace_events(current);
8342 dump_stack();
1da177e4
LT
8343#endif
8344}
8345EXPORT_SYMBOL(__might_sleep);
8346#endif
8347
8348#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8349static void normalize_task(struct rq *rq, struct task_struct *p)
8350{
da7a735e
PZ
8351 const struct sched_class *prev_class = p->sched_class;
8352 int old_prio = p->prio;
3a5e4dc1 8353 int on_rq;
3e51f33f 8354
3a5e4dc1
AK
8355 on_rq = p->se.on_rq;
8356 if (on_rq)
8357 deactivate_task(rq, p, 0);
8358 __setscheduler(rq, p, SCHED_NORMAL, 0);
8359 if (on_rq) {
8360 activate_task(rq, p, 0);
8361 resched_task(rq->curr);
8362 }
da7a735e
PZ
8363
8364 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8365}
8366
1da177e4
LT
8367void normalize_rt_tasks(void)
8368{
a0f98a1c 8369 struct task_struct *g, *p;
1da177e4 8370 unsigned long flags;
70b97a7f 8371 struct rq *rq;
1da177e4 8372
4cf5d77a 8373 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8374 do_each_thread(g, p) {
178be793
IM
8375 /*
8376 * Only normalize user tasks:
8377 */
8378 if (!p->mm)
8379 continue;
8380
6cfb0d5d 8381 p->se.exec_start = 0;
6cfb0d5d 8382#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8383 p->se.statistics.wait_start = 0;
8384 p->se.statistics.sleep_start = 0;
8385 p->se.statistics.block_start = 0;
6cfb0d5d 8386#endif
dd41f596
IM
8387
8388 if (!rt_task(p)) {
8389 /*
8390 * Renice negative nice level userspace
8391 * tasks back to 0:
8392 */
8393 if (TASK_NICE(p) < 0 && p->mm)
8394 set_user_nice(p, 0);
1da177e4 8395 continue;
dd41f596 8396 }
1da177e4 8397
1d615482 8398 raw_spin_lock(&p->pi_lock);
b29739f9 8399 rq = __task_rq_lock(p);
1da177e4 8400
178be793 8401 normalize_task(rq, p);
3a5e4dc1 8402
b29739f9 8403 __task_rq_unlock(rq);
1d615482 8404 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8405 } while_each_thread(g, p);
8406
4cf5d77a 8407 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8408}
8409
8410#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8411
67fc4e0c 8412#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8413/*
67fc4e0c 8414 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8415 *
8416 * They can only be called when the whole system has been
8417 * stopped - every CPU needs to be quiescent, and no scheduling
8418 * activity can take place. Using them for anything else would
8419 * be a serious bug, and as a result, they aren't even visible
8420 * under any other configuration.
8421 */
8422
8423/**
8424 * curr_task - return the current task for a given cpu.
8425 * @cpu: the processor in question.
8426 *
8427 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8428 */
36c8b586 8429struct task_struct *curr_task(int cpu)
1df5c10a
LT
8430{
8431 return cpu_curr(cpu);
8432}
8433
67fc4e0c
JW
8434#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8435
8436#ifdef CONFIG_IA64
1df5c10a
LT
8437/**
8438 * set_curr_task - set the current task for a given cpu.
8439 * @cpu: the processor in question.
8440 * @p: the task pointer to set.
8441 *
8442 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8443 * are serviced on a separate stack. It allows the architecture to switch the
8444 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8445 * must be called with all CPU's synchronized, and interrupts disabled, the
8446 * and caller must save the original value of the current task (see
8447 * curr_task() above) and restore that value before reenabling interrupts and
8448 * re-starting the system.
8449 *
8450 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8451 */
36c8b586 8452void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8453{
8454 cpu_curr(cpu) = p;
8455}
8456
8457#endif
29f59db3 8458
bccbe08a
PZ
8459#ifdef CONFIG_FAIR_GROUP_SCHED
8460static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8461{
8462 int i;
8463
8464 for_each_possible_cpu(i) {
8465 if (tg->cfs_rq)
8466 kfree(tg->cfs_rq[i]);
8467 if (tg->se)
8468 kfree(tg->se[i]);
6f505b16
PZ
8469 }
8470
8471 kfree(tg->cfs_rq);
8472 kfree(tg->se);
6f505b16
PZ
8473}
8474
ec7dc8ac
DG
8475static
8476int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8477{
29f59db3 8478 struct cfs_rq *cfs_rq;
eab17229 8479 struct sched_entity *se;
29f59db3
SV
8480 int i;
8481
434d53b0 8482 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8483 if (!tg->cfs_rq)
8484 goto err;
434d53b0 8485 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8486 if (!tg->se)
8487 goto err;
052f1dc7
PZ
8488
8489 tg->shares = NICE_0_LOAD;
29f59db3
SV
8490
8491 for_each_possible_cpu(i) {
eab17229
LZ
8492 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8493 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8494 if (!cfs_rq)
8495 goto err;
8496
eab17229
LZ
8497 se = kzalloc_node(sizeof(struct sched_entity),
8498 GFP_KERNEL, cpu_to_node(i));
29f59db3 8499 if (!se)
dfc12eb2 8500 goto err_free_rq;
29f59db3 8501
3d4b47b4 8502 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8503 }
8504
8505 return 1;
8506
49246274 8507err_free_rq:
dfc12eb2 8508 kfree(cfs_rq);
49246274 8509err:
bccbe08a
PZ
8510 return 0;
8511}
8512
bccbe08a
PZ
8513static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8514{
3d4b47b4
PZ
8515 struct rq *rq = cpu_rq(cpu);
8516 unsigned long flags;
3d4b47b4
PZ
8517
8518 /*
8519 * Only empty task groups can be destroyed; so we can speculatively
8520 * check on_list without danger of it being re-added.
8521 */
8522 if (!tg->cfs_rq[cpu]->on_list)
8523 return;
8524
8525 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8526 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8527 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8528}
6d6bc0ad 8529#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8530static inline void free_fair_sched_group(struct task_group *tg)
8531{
8532}
8533
ec7dc8ac
DG
8534static inline
8535int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8536{
8537 return 1;
8538}
8539
bccbe08a
PZ
8540static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8541{
8542}
6d6bc0ad 8543#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8544
8545#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8546static void free_rt_sched_group(struct task_group *tg)
8547{
8548 int i;
8549
d0b27fa7
PZ
8550 destroy_rt_bandwidth(&tg->rt_bandwidth);
8551
bccbe08a
PZ
8552 for_each_possible_cpu(i) {
8553 if (tg->rt_rq)
8554 kfree(tg->rt_rq[i]);
8555 if (tg->rt_se)
8556 kfree(tg->rt_se[i]);
8557 }
8558
8559 kfree(tg->rt_rq);
8560 kfree(tg->rt_se);
8561}
8562
ec7dc8ac
DG
8563static
8564int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8565{
8566 struct rt_rq *rt_rq;
eab17229 8567 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8568 struct rq *rq;
8569 int i;
8570
434d53b0 8571 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8572 if (!tg->rt_rq)
8573 goto err;
434d53b0 8574 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8575 if (!tg->rt_se)
8576 goto err;
8577
d0b27fa7
PZ
8578 init_rt_bandwidth(&tg->rt_bandwidth,
8579 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8580
8581 for_each_possible_cpu(i) {
8582 rq = cpu_rq(i);
8583
eab17229
LZ
8584 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8585 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8586 if (!rt_rq)
8587 goto err;
29f59db3 8588
eab17229
LZ
8589 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8590 GFP_KERNEL, cpu_to_node(i));
6f505b16 8591 if (!rt_se)
dfc12eb2 8592 goto err_free_rq;
29f59db3 8593
3d4b47b4 8594 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8595 }
8596
bccbe08a
PZ
8597 return 1;
8598
49246274 8599err_free_rq:
dfc12eb2 8600 kfree(rt_rq);
49246274 8601err:
bccbe08a
PZ
8602 return 0;
8603}
6d6bc0ad 8604#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8605static inline void free_rt_sched_group(struct task_group *tg)
8606{
8607}
8608
ec7dc8ac
DG
8609static inline
8610int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8611{
8612 return 1;
8613}
6d6bc0ad 8614#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8615
7c941438 8616#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8617static void free_sched_group(struct task_group *tg)
8618{
8619 free_fair_sched_group(tg);
8620 free_rt_sched_group(tg);
e9aa1dd1 8621 autogroup_free(tg);
bccbe08a
PZ
8622 kfree(tg);
8623}
8624
8625/* allocate runqueue etc for a new task group */
ec7dc8ac 8626struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8627{
8628 struct task_group *tg;
8629 unsigned long flags;
bccbe08a
PZ
8630
8631 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8632 if (!tg)
8633 return ERR_PTR(-ENOMEM);
8634
ec7dc8ac 8635 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8636 goto err;
8637
ec7dc8ac 8638 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8639 goto err;
8640
8ed36996 8641 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8642 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8643
8644 WARN_ON(!parent); /* root should already exist */
8645
8646 tg->parent = parent;
f473aa5e 8647 INIT_LIST_HEAD(&tg->children);
09f2724a 8648 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8649 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8650
9b5b7751 8651 return tg;
29f59db3
SV
8652
8653err:
6f505b16 8654 free_sched_group(tg);
29f59db3
SV
8655 return ERR_PTR(-ENOMEM);
8656}
8657
9b5b7751 8658/* rcu callback to free various structures associated with a task group */
6f505b16 8659static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8660{
29f59db3 8661 /* now it should be safe to free those cfs_rqs */
6f505b16 8662 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8663}
8664
9b5b7751 8665/* Destroy runqueue etc associated with a task group */
4cf86d77 8666void sched_destroy_group(struct task_group *tg)
29f59db3 8667{
8ed36996 8668 unsigned long flags;
9b5b7751 8669 int i;
29f59db3 8670
3d4b47b4
PZ
8671 /* end participation in shares distribution */
8672 for_each_possible_cpu(i)
bccbe08a 8673 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8674
8675 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8676 list_del_rcu(&tg->list);
f473aa5e 8677 list_del_rcu(&tg->siblings);
8ed36996 8678 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8679
9b5b7751 8680 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8681 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8682}
8683
9b5b7751 8684/* change task's runqueue when it moves between groups.
3a252015
IM
8685 * The caller of this function should have put the task in its new group
8686 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8687 * reflect its new group.
9b5b7751
SV
8688 */
8689void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8690{
8691 int on_rq, running;
8692 unsigned long flags;
8693 struct rq *rq;
8694
8695 rq = task_rq_lock(tsk, &flags);
8696
051a1d1a 8697 running = task_current(rq, tsk);
29f59db3
SV
8698 on_rq = tsk->se.on_rq;
8699
0e1f3483 8700 if (on_rq)
29f59db3 8701 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8702 if (unlikely(running))
8703 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8704
810b3817 8705#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8706 if (tsk->sched_class->task_move_group)
8707 tsk->sched_class->task_move_group(tsk, on_rq);
8708 else
810b3817 8709#endif
b2b5ce02 8710 set_task_rq(tsk, task_cpu(tsk));
810b3817 8711
0e1f3483
HS
8712 if (unlikely(running))
8713 tsk->sched_class->set_curr_task(rq);
8714 if (on_rq)
371fd7e7 8715 enqueue_task(rq, tsk, 0);
29f59db3 8716
29f59db3
SV
8717 task_rq_unlock(rq, &flags);
8718}
7c941438 8719#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8720
052f1dc7 8721#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8722static DEFINE_MUTEX(shares_mutex);
8723
4cf86d77 8724int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8725{
8726 int i;
8ed36996 8727 unsigned long flags;
c61935fd 8728
ec7dc8ac
DG
8729 /*
8730 * We can't change the weight of the root cgroup.
8731 */
8732 if (!tg->se[0])
8733 return -EINVAL;
8734
18d95a28
PZ
8735 if (shares < MIN_SHARES)
8736 shares = MIN_SHARES;
cb4ad1ff
MX
8737 else if (shares > MAX_SHARES)
8738 shares = MAX_SHARES;
62fb1851 8739
8ed36996 8740 mutex_lock(&shares_mutex);
9b5b7751 8741 if (tg->shares == shares)
5cb350ba 8742 goto done;
29f59db3 8743
9b5b7751 8744 tg->shares = shares;
c09595f6 8745 for_each_possible_cpu(i) {
9437178f
PT
8746 struct rq *rq = cpu_rq(i);
8747 struct sched_entity *se;
8748
8749 se = tg->se[i];
8750 /* Propagate contribution to hierarchy */
8751 raw_spin_lock_irqsave(&rq->lock, flags);
8752 for_each_sched_entity(se)
6d5ab293 8753 update_cfs_shares(group_cfs_rq(se));
9437178f 8754 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8755 }
29f59db3 8756
5cb350ba 8757done:
8ed36996 8758 mutex_unlock(&shares_mutex);
9b5b7751 8759 return 0;
29f59db3
SV
8760}
8761
5cb350ba
DG
8762unsigned long sched_group_shares(struct task_group *tg)
8763{
8764 return tg->shares;
8765}
052f1dc7 8766#endif
5cb350ba 8767
052f1dc7 8768#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8769/*
9f0c1e56 8770 * Ensure that the real time constraints are schedulable.
6f505b16 8771 */
9f0c1e56
PZ
8772static DEFINE_MUTEX(rt_constraints_mutex);
8773
8774static unsigned long to_ratio(u64 period, u64 runtime)
8775{
8776 if (runtime == RUNTIME_INF)
9a7e0b18 8777 return 1ULL << 20;
9f0c1e56 8778
9a7e0b18 8779 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8780}
8781
9a7e0b18
PZ
8782/* Must be called with tasklist_lock held */
8783static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8784{
9a7e0b18 8785 struct task_struct *g, *p;
b40b2e8e 8786
9a7e0b18
PZ
8787 do_each_thread(g, p) {
8788 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8789 return 1;
8790 } while_each_thread(g, p);
b40b2e8e 8791
9a7e0b18
PZ
8792 return 0;
8793}
b40b2e8e 8794
9a7e0b18
PZ
8795struct rt_schedulable_data {
8796 struct task_group *tg;
8797 u64 rt_period;
8798 u64 rt_runtime;
8799};
b40b2e8e 8800
9a7e0b18
PZ
8801static int tg_schedulable(struct task_group *tg, void *data)
8802{
8803 struct rt_schedulable_data *d = data;
8804 struct task_group *child;
8805 unsigned long total, sum = 0;
8806 u64 period, runtime;
b40b2e8e 8807
9a7e0b18
PZ
8808 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8809 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8810
9a7e0b18
PZ
8811 if (tg == d->tg) {
8812 period = d->rt_period;
8813 runtime = d->rt_runtime;
b40b2e8e 8814 }
b40b2e8e 8815
4653f803
PZ
8816 /*
8817 * Cannot have more runtime than the period.
8818 */
8819 if (runtime > period && runtime != RUNTIME_INF)
8820 return -EINVAL;
6f505b16 8821
4653f803
PZ
8822 /*
8823 * Ensure we don't starve existing RT tasks.
8824 */
9a7e0b18
PZ
8825 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8826 return -EBUSY;
6f505b16 8827
9a7e0b18 8828 total = to_ratio(period, runtime);
6f505b16 8829
4653f803
PZ
8830 /*
8831 * Nobody can have more than the global setting allows.
8832 */
8833 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8834 return -EINVAL;
6f505b16 8835
4653f803
PZ
8836 /*
8837 * The sum of our children's runtime should not exceed our own.
8838 */
9a7e0b18
PZ
8839 list_for_each_entry_rcu(child, &tg->children, siblings) {
8840 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8841 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8842
9a7e0b18
PZ
8843 if (child == d->tg) {
8844 period = d->rt_period;
8845 runtime = d->rt_runtime;
8846 }
6f505b16 8847
9a7e0b18 8848 sum += to_ratio(period, runtime);
9f0c1e56 8849 }
6f505b16 8850
9a7e0b18
PZ
8851 if (sum > total)
8852 return -EINVAL;
8853
8854 return 0;
6f505b16
PZ
8855}
8856
9a7e0b18 8857static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8858{
9a7e0b18
PZ
8859 struct rt_schedulable_data data = {
8860 .tg = tg,
8861 .rt_period = period,
8862 .rt_runtime = runtime,
8863 };
8864
8865 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8866}
8867
d0b27fa7
PZ
8868static int tg_set_bandwidth(struct task_group *tg,
8869 u64 rt_period, u64 rt_runtime)
6f505b16 8870{
ac086bc2 8871 int i, err = 0;
9f0c1e56 8872
9f0c1e56 8873 mutex_lock(&rt_constraints_mutex);
521f1a24 8874 read_lock(&tasklist_lock);
9a7e0b18
PZ
8875 err = __rt_schedulable(tg, rt_period, rt_runtime);
8876 if (err)
9f0c1e56 8877 goto unlock;
ac086bc2 8878
0986b11b 8879 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8880 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8881 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8882
8883 for_each_possible_cpu(i) {
8884 struct rt_rq *rt_rq = tg->rt_rq[i];
8885
0986b11b 8886 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8887 rt_rq->rt_runtime = rt_runtime;
0986b11b 8888 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8889 }
0986b11b 8890 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8891unlock:
521f1a24 8892 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8893 mutex_unlock(&rt_constraints_mutex);
8894
8895 return err;
6f505b16
PZ
8896}
8897
d0b27fa7
PZ
8898int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8899{
8900 u64 rt_runtime, rt_period;
8901
8902 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8903 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8904 if (rt_runtime_us < 0)
8905 rt_runtime = RUNTIME_INF;
8906
8907 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8908}
8909
9f0c1e56
PZ
8910long sched_group_rt_runtime(struct task_group *tg)
8911{
8912 u64 rt_runtime_us;
8913
d0b27fa7 8914 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8915 return -1;
8916
d0b27fa7 8917 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8918 do_div(rt_runtime_us, NSEC_PER_USEC);
8919 return rt_runtime_us;
8920}
d0b27fa7
PZ
8921
8922int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8923{
8924 u64 rt_runtime, rt_period;
8925
8926 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8927 rt_runtime = tg->rt_bandwidth.rt_runtime;
8928
619b0488
R
8929 if (rt_period == 0)
8930 return -EINVAL;
8931
d0b27fa7
PZ
8932 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8933}
8934
8935long sched_group_rt_period(struct task_group *tg)
8936{
8937 u64 rt_period_us;
8938
8939 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8940 do_div(rt_period_us, NSEC_PER_USEC);
8941 return rt_period_us;
8942}
8943
8944static int sched_rt_global_constraints(void)
8945{
4653f803 8946 u64 runtime, period;
d0b27fa7
PZ
8947 int ret = 0;
8948
ec5d4989
HS
8949 if (sysctl_sched_rt_period <= 0)
8950 return -EINVAL;
8951
4653f803
PZ
8952 runtime = global_rt_runtime();
8953 period = global_rt_period();
8954
8955 /*
8956 * Sanity check on the sysctl variables.
8957 */
8958 if (runtime > period && runtime != RUNTIME_INF)
8959 return -EINVAL;
10b612f4 8960
d0b27fa7 8961 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8962 read_lock(&tasklist_lock);
4653f803 8963 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8964 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8965 mutex_unlock(&rt_constraints_mutex);
8966
8967 return ret;
8968}
54e99124
DG
8969
8970int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8971{
8972 /* Don't accept realtime tasks when there is no way for them to run */
8973 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8974 return 0;
8975
8976 return 1;
8977}
8978
6d6bc0ad 8979#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8980static int sched_rt_global_constraints(void)
8981{
ac086bc2
PZ
8982 unsigned long flags;
8983 int i;
8984
ec5d4989
HS
8985 if (sysctl_sched_rt_period <= 0)
8986 return -EINVAL;
8987
60aa605d
PZ
8988 /*
8989 * There's always some RT tasks in the root group
8990 * -- migration, kstopmachine etc..
8991 */
8992 if (sysctl_sched_rt_runtime == 0)
8993 return -EBUSY;
8994
0986b11b 8995 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8996 for_each_possible_cpu(i) {
8997 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8998
0986b11b 8999 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 9000 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 9001 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 9002 }
0986b11b 9003 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 9004
d0b27fa7
PZ
9005 return 0;
9006}
6d6bc0ad 9007#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9008
9009int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 9010 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9011 loff_t *ppos)
9012{
9013 int ret;
9014 int old_period, old_runtime;
9015 static DEFINE_MUTEX(mutex);
9016
9017 mutex_lock(&mutex);
9018 old_period = sysctl_sched_rt_period;
9019 old_runtime = sysctl_sched_rt_runtime;
9020
8d65af78 9021 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9022
9023 if (!ret && write) {
9024 ret = sched_rt_global_constraints();
9025 if (ret) {
9026 sysctl_sched_rt_period = old_period;
9027 sysctl_sched_rt_runtime = old_runtime;
9028 } else {
9029 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9030 def_rt_bandwidth.rt_period =
9031 ns_to_ktime(global_rt_period());
9032 }
9033 }
9034 mutex_unlock(&mutex);
9035
9036 return ret;
9037}
68318b8e 9038
052f1dc7 9039#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9040
9041/* return corresponding task_group object of a cgroup */
2b01dfe3 9042static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9043{
2b01dfe3
PM
9044 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9045 struct task_group, css);
68318b8e
SV
9046}
9047
9048static struct cgroup_subsys_state *
2b01dfe3 9049cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9050{
ec7dc8ac 9051 struct task_group *tg, *parent;
68318b8e 9052
2b01dfe3 9053 if (!cgrp->parent) {
68318b8e 9054 /* This is early initialization for the top cgroup */
07e06b01 9055 return &root_task_group.css;
68318b8e
SV
9056 }
9057
ec7dc8ac
DG
9058 parent = cgroup_tg(cgrp->parent);
9059 tg = sched_create_group(parent);
68318b8e
SV
9060 if (IS_ERR(tg))
9061 return ERR_PTR(-ENOMEM);
9062
68318b8e
SV
9063 return &tg->css;
9064}
9065
41a2d6cf
IM
9066static void
9067cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9068{
2b01dfe3 9069 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9070
9071 sched_destroy_group(tg);
9072}
9073
41a2d6cf 9074static int
be367d09 9075cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9076{
b68aa230 9077#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9078 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9079 return -EINVAL;
9080#else
68318b8e
SV
9081 /* We don't support RT-tasks being in separate groups */
9082 if (tsk->sched_class != &fair_sched_class)
9083 return -EINVAL;
b68aa230 9084#endif
be367d09
BB
9085 return 0;
9086}
68318b8e 9087
be367d09
BB
9088static int
9089cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9090 struct task_struct *tsk, bool threadgroup)
9091{
9092 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9093 if (retval)
9094 return retval;
9095 if (threadgroup) {
9096 struct task_struct *c;
9097 rcu_read_lock();
9098 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9099 retval = cpu_cgroup_can_attach_task(cgrp, c);
9100 if (retval) {
9101 rcu_read_unlock();
9102 return retval;
9103 }
9104 }
9105 rcu_read_unlock();
9106 }
68318b8e
SV
9107 return 0;
9108}
9109
9110static void
2b01dfe3 9111cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9112 struct cgroup *old_cont, struct task_struct *tsk,
9113 bool threadgroup)
68318b8e
SV
9114{
9115 sched_move_task(tsk);
be367d09
BB
9116 if (threadgroup) {
9117 struct task_struct *c;
9118 rcu_read_lock();
9119 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9120 sched_move_task(c);
9121 }
9122 rcu_read_unlock();
9123 }
68318b8e
SV
9124}
9125
068c5cc5 9126static void
d41d5a01
PZ
9127cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9128 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9129{
9130 /*
9131 * cgroup_exit() is called in the copy_process() failure path.
9132 * Ignore this case since the task hasn't ran yet, this avoids
9133 * trying to poke a half freed task state from generic code.
9134 */
9135 if (!(task->flags & PF_EXITING))
9136 return;
9137
9138 sched_move_task(task);
9139}
9140
052f1dc7 9141#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9142static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9143 u64 shareval)
68318b8e 9144{
2b01dfe3 9145 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9146}
9147
f4c753b7 9148static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9149{
2b01dfe3 9150 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9151
9152 return (u64) tg->shares;
9153}
6d6bc0ad 9154#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9155
052f1dc7 9156#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9157static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9158 s64 val)
6f505b16 9159{
06ecb27c 9160 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9161}
9162
06ecb27c 9163static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9164{
06ecb27c 9165 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9166}
d0b27fa7
PZ
9167
9168static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9169 u64 rt_period_us)
9170{
9171 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9172}
9173
9174static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9175{
9176 return sched_group_rt_period(cgroup_tg(cgrp));
9177}
6d6bc0ad 9178#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9179
fe5c7cc2 9180static struct cftype cpu_files[] = {
052f1dc7 9181#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9182 {
9183 .name = "shares",
f4c753b7
PM
9184 .read_u64 = cpu_shares_read_u64,
9185 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9186 },
052f1dc7
PZ
9187#endif
9188#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9189 {
9f0c1e56 9190 .name = "rt_runtime_us",
06ecb27c
PM
9191 .read_s64 = cpu_rt_runtime_read,
9192 .write_s64 = cpu_rt_runtime_write,
6f505b16 9193 },
d0b27fa7
PZ
9194 {
9195 .name = "rt_period_us",
f4c753b7
PM
9196 .read_u64 = cpu_rt_period_read_uint,
9197 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9198 },
052f1dc7 9199#endif
68318b8e
SV
9200};
9201
9202static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9203{
fe5c7cc2 9204 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9205}
9206
9207struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9208 .name = "cpu",
9209 .create = cpu_cgroup_create,
9210 .destroy = cpu_cgroup_destroy,
9211 .can_attach = cpu_cgroup_can_attach,
9212 .attach = cpu_cgroup_attach,
068c5cc5 9213 .exit = cpu_cgroup_exit,
38605cae
IM
9214 .populate = cpu_cgroup_populate,
9215 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9216 .early_init = 1,
9217};
9218
052f1dc7 9219#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9220
9221#ifdef CONFIG_CGROUP_CPUACCT
9222
9223/*
9224 * CPU accounting code for task groups.
9225 *
9226 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9227 * (balbir@in.ibm.com).
9228 */
9229
934352f2 9230/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9231struct cpuacct {
9232 struct cgroup_subsys_state css;
9233 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9234 u64 __percpu *cpuusage;
ef12fefa 9235 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9236 struct cpuacct *parent;
d842de87
SV
9237};
9238
9239struct cgroup_subsys cpuacct_subsys;
9240
9241/* return cpu accounting group corresponding to this container */
32cd756a 9242static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9243{
32cd756a 9244 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9245 struct cpuacct, css);
9246}
9247
9248/* return cpu accounting group to which this task belongs */
9249static inline struct cpuacct *task_ca(struct task_struct *tsk)
9250{
9251 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9252 struct cpuacct, css);
9253}
9254
9255/* create a new cpu accounting group */
9256static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9257 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9258{
9259 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9260 int i;
d842de87
SV
9261
9262 if (!ca)
ef12fefa 9263 goto out;
d842de87
SV
9264
9265 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9266 if (!ca->cpuusage)
9267 goto out_free_ca;
9268
9269 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9270 if (percpu_counter_init(&ca->cpustat[i], 0))
9271 goto out_free_counters;
d842de87 9272
934352f2
BR
9273 if (cgrp->parent)
9274 ca->parent = cgroup_ca(cgrp->parent);
9275
d842de87 9276 return &ca->css;
ef12fefa
BR
9277
9278out_free_counters:
9279 while (--i >= 0)
9280 percpu_counter_destroy(&ca->cpustat[i]);
9281 free_percpu(ca->cpuusage);
9282out_free_ca:
9283 kfree(ca);
9284out:
9285 return ERR_PTR(-ENOMEM);
d842de87
SV
9286}
9287
9288/* destroy an existing cpu accounting group */
41a2d6cf 9289static void
32cd756a 9290cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9291{
32cd756a 9292 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9293 int i;
d842de87 9294
ef12fefa
BR
9295 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9296 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9297 free_percpu(ca->cpuusage);
9298 kfree(ca);
9299}
9300
720f5498
KC
9301static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9302{
b36128c8 9303 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9304 u64 data;
9305
9306#ifndef CONFIG_64BIT
9307 /*
9308 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9309 */
05fa785c 9310 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9311 data = *cpuusage;
05fa785c 9312 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9313#else
9314 data = *cpuusage;
9315#endif
9316
9317 return data;
9318}
9319
9320static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9321{
b36128c8 9322 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9323
9324#ifndef CONFIG_64BIT
9325 /*
9326 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9327 */
05fa785c 9328 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9329 *cpuusage = val;
05fa785c 9330 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9331#else
9332 *cpuusage = val;
9333#endif
9334}
9335
d842de87 9336/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9337static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9338{
32cd756a 9339 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9340 u64 totalcpuusage = 0;
9341 int i;
9342
720f5498
KC
9343 for_each_present_cpu(i)
9344 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9345
9346 return totalcpuusage;
9347}
9348
0297b803
DG
9349static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9350 u64 reset)
9351{
9352 struct cpuacct *ca = cgroup_ca(cgrp);
9353 int err = 0;
9354 int i;
9355
9356 if (reset) {
9357 err = -EINVAL;
9358 goto out;
9359 }
9360
720f5498
KC
9361 for_each_present_cpu(i)
9362 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9363
0297b803
DG
9364out:
9365 return err;
9366}
9367
e9515c3c
KC
9368static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9369 struct seq_file *m)
9370{
9371 struct cpuacct *ca = cgroup_ca(cgroup);
9372 u64 percpu;
9373 int i;
9374
9375 for_each_present_cpu(i) {
9376 percpu = cpuacct_cpuusage_read(ca, i);
9377 seq_printf(m, "%llu ", (unsigned long long) percpu);
9378 }
9379 seq_printf(m, "\n");
9380 return 0;
9381}
9382
ef12fefa
BR
9383static const char *cpuacct_stat_desc[] = {
9384 [CPUACCT_STAT_USER] = "user",
9385 [CPUACCT_STAT_SYSTEM] = "system",
9386};
9387
9388static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9389 struct cgroup_map_cb *cb)
9390{
9391 struct cpuacct *ca = cgroup_ca(cgrp);
9392 int i;
9393
9394 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9395 s64 val = percpu_counter_read(&ca->cpustat[i]);
9396 val = cputime64_to_clock_t(val);
9397 cb->fill(cb, cpuacct_stat_desc[i], val);
9398 }
9399 return 0;
9400}
9401
d842de87
SV
9402static struct cftype files[] = {
9403 {
9404 .name = "usage",
f4c753b7
PM
9405 .read_u64 = cpuusage_read,
9406 .write_u64 = cpuusage_write,
d842de87 9407 },
e9515c3c
KC
9408 {
9409 .name = "usage_percpu",
9410 .read_seq_string = cpuacct_percpu_seq_read,
9411 },
ef12fefa
BR
9412 {
9413 .name = "stat",
9414 .read_map = cpuacct_stats_show,
9415 },
d842de87
SV
9416};
9417
32cd756a 9418static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9419{
32cd756a 9420 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9421}
9422
9423/*
9424 * charge this task's execution time to its accounting group.
9425 *
9426 * called with rq->lock held.
9427 */
9428static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9429{
9430 struct cpuacct *ca;
934352f2 9431 int cpu;
d842de87 9432
c40c6f85 9433 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9434 return;
9435
934352f2 9436 cpu = task_cpu(tsk);
a18b83b7
BR
9437
9438 rcu_read_lock();
9439
d842de87 9440 ca = task_ca(tsk);
d842de87 9441
934352f2 9442 for (; ca; ca = ca->parent) {
b36128c8 9443 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9444 *cpuusage += cputime;
9445 }
a18b83b7
BR
9446
9447 rcu_read_unlock();
d842de87
SV
9448}
9449
fa535a77
AB
9450/*
9451 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9452 * in cputime_t units. As a result, cpuacct_update_stats calls
9453 * percpu_counter_add with values large enough to always overflow the
9454 * per cpu batch limit causing bad SMP scalability.
9455 *
9456 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9457 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9458 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9459 */
9460#ifdef CONFIG_SMP
9461#define CPUACCT_BATCH \
9462 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9463#else
9464#define CPUACCT_BATCH 0
9465#endif
9466
ef12fefa
BR
9467/*
9468 * Charge the system/user time to the task's accounting group.
9469 */
9470static void cpuacct_update_stats(struct task_struct *tsk,
9471 enum cpuacct_stat_index idx, cputime_t val)
9472{
9473 struct cpuacct *ca;
fa535a77 9474 int batch = CPUACCT_BATCH;
ef12fefa
BR
9475
9476 if (unlikely(!cpuacct_subsys.active))
9477 return;
9478
9479 rcu_read_lock();
9480 ca = task_ca(tsk);
9481
9482 do {
fa535a77 9483 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9484 ca = ca->parent;
9485 } while (ca);
9486 rcu_read_unlock();
9487}
9488
d842de87
SV
9489struct cgroup_subsys cpuacct_subsys = {
9490 .name = "cpuacct",
9491 .create = cpuacct_create,
9492 .destroy = cpuacct_destroy,
9493 .populate = cpuacct_populate,
9494 .subsys_id = cpuacct_subsys_id,
9495};
9496#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9497