]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched.c
plist: fix PLIST_NODE_INIT to work with debug enabled
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b
ED
127#ifdef CONFIG_SMP
128/*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133{
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135}
136
137/*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142{
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145}
146#endif
147
e05606d3
IM
148static inline int rt_policy(int policy)
149{
3f33a7ce 150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
151 return 1;
152 return 0;
153}
154
155static inline int task_has_rt_policy(struct task_struct *p)
156{
157 return rt_policy(p->policy);
158}
159
1da177e4 160/*
6aa645ea 161 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 162 */
6aa645ea
IM
163struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166};
167
d0b27fa7 168struct rt_bandwidth {
ea736ed5
IM
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
d0b27fa7
PZ
174};
175
176static struct rt_bandwidth def_rt_bandwidth;
177
178static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181{
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199}
200
201static
202void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203{
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
ac086bc2
PZ
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
d0b27fa7
PZ
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 212 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
213}
214
c8bfff6d
KH
215static inline int rt_bandwidth_enabled(void)
216{
217 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
218}
219
220static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221{
222 ktime_t now;
223
0b148fa0 224 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
225 return;
226
227 if (hrtimer_active(&rt_b->rt_period_timer))
228 return;
229
230 spin_lock(&rt_b->rt_runtime_lock);
231 for (;;) {
232 if (hrtimer_active(&rt_b->rt_period_timer))
233 break;
234
235 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
236 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
237 hrtimer_start_expires(&rt_b->rt_period_timer,
238 HRTIMER_MODE_ABS);
d0b27fa7
PZ
239 }
240 spin_unlock(&rt_b->rt_runtime_lock);
241}
242
243#ifdef CONFIG_RT_GROUP_SCHED
244static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
245{
246 hrtimer_cancel(&rt_b->rt_period_timer);
247}
248#endif
249
712555ee
HC
250/*
251 * sched_domains_mutex serializes calls to arch_init_sched_domains,
252 * detach_destroy_domains and partition_sched_domains.
253 */
254static DEFINE_MUTEX(sched_domains_mutex);
255
052f1dc7 256#ifdef CONFIG_GROUP_SCHED
29f59db3 257
68318b8e
SV
258#include <linux/cgroup.h>
259
29f59db3
SV
260struct cfs_rq;
261
6f505b16
PZ
262static LIST_HEAD(task_groups);
263
29f59db3 264/* task group related information */
4cf86d77 265struct task_group {
052f1dc7 266#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
267 struct cgroup_subsys_state css;
268#endif
052f1dc7 269
6c415b92
AB
270#ifdef CONFIG_USER_SCHED
271 uid_t uid;
272#endif
273
052f1dc7 274#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
275 /* schedulable entities of this group on each cpu */
276 struct sched_entity **se;
277 /* runqueue "owned" by this group on each cpu */
278 struct cfs_rq **cfs_rq;
279 unsigned long shares;
052f1dc7
PZ
280#endif
281
282#ifdef CONFIG_RT_GROUP_SCHED
283 struct sched_rt_entity **rt_se;
284 struct rt_rq **rt_rq;
285
d0b27fa7 286 struct rt_bandwidth rt_bandwidth;
052f1dc7 287#endif
6b2d7700 288
ae8393e5 289 struct rcu_head rcu;
6f505b16 290 struct list_head list;
f473aa5e
PZ
291
292 struct task_group *parent;
293 struct list_head siblings;
294 struct list_head children;
29f59db3
SV
295};
296
354d60c2 297#ifdef CONFIG_USER_SCHED
eff766a6 298
6c415b92
AB
299/* Helper function to pass uid information to create_sched_user() */
300void set_tg_uid(struct user_struct *user)
301{
302 user->tg->uid = user->uid;
303}
304
eff766a6
PZ
305/*
306 * Root task group.
307 * Every UID task group (including init_task_group aka UID-0) will
308 * be a child to this group.
309 */
310struct task_group root_task_group;
311
052f1dc7 312#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
313/* Default task group's sched entity on each cpu */
314static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
315/* Default task group's cfs_rq on each cpu */
316static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 317#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
318
319#ifdef CONFIG_RT_GROUP_SCHED
320static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
321static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 323#else /* !CONFIG_USER_SCHED */
eff766a6 324#define root_task_group init_task_group
9a7e0b18 325#endif /* CONFIG_USER_SCHED */
6f505b16 326
8ed36996 327/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
328 * a task group's cpu shares.
329 */
8ed36996 330static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 331
052f1dc7 332#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
333#ifdef CONFIG_USER_SCHED
334# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 335#else /* !CONFIG_USER_SCHED */
052f1dc7 336# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 337#endif /* CONFIG_USER_SCHED */
052f1dc7 338
cb4ad1ff 339/*
2e084786
LJ
340 * A weight of 0 or 1 can cause arithmetics problems.
341 * A weight of a cfs_rq is the sum of weights of which entities
342 * are queued on this cfs_rq, so a weight of a entity should not be
343 * too large, so as the shares value of a task group.
cb4ad1ff
MX
344 * (The default weight is 1024 - so there's no practical
345 * limitation from this.)
346 */
18d95a28 347#define MIN_SHARES 2
2e084786 348#define MAX_SHARES (1UL << 18)
18d95a28 349
052f1dc7
PZ
350static int init_task_group_load = INIT_TASK_GROUP_LOAD;
351#endif
352
29f59db3 353/* Default task group.
3a252015 354 * Every task in system belong to this group at bootup.
29f59db3 355 */
434d53b0 356struct task_group init_task_group;
29f59db3
SV
357
358/* return group to which a task belongs */
4cf86d77 359static inline struct task_group *task_group(struct task_struct *p)
29f59db3 360{
4cf86d77 361 struct task_group *tg;
9b5b7751 362
052f1dc7 363#ifdef CONFIG_USER_SCHED
24e377a8 364 tg = p->user->tg;
052f1dc7 365#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
366 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
367 struct task_group, css);
24e377a8 368#else
41a2d6cf 369 tg = &init_task_group;
24e377a8 370#endif
9b5b7751 371 return tg;
29f59db3
SV
372}
373
374/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 375static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 376{
052f1dc7 377#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
378 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
379 p->se.parent = task_group(p)->se[cpu];
052f1dc7 380#endif
6f505b16 381
052f1dc7 382#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
383 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
384 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 385#endif
29f59db3
SV
386}
387
388#else
389
6f505b16 390static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
391static inline struct task_group *task_group(struct task_struct *p)
392{
393 return NULL;
394}
29f59db3 395
052f1dc7 396#endif /* CONFIG_GROUP_SCHED */
29f59db3 397
6aa645ea
IM
398/* CFS-related fields in a runqueue */
399struct cfs_rq {
400 struct load_weight load;
401 unsigned long nr_running;
402
6aa645ea 403 u64 exec_clock;
e9acbff6 404 u64 min_vruntime;
6aa645ea
IM
405
406 struct rb_root tasks_timeline;
407 struct rb_node *rb_leftmost;
4a55bd5e
PZ
408
409 struct list_head tasks;
410 struct list_head *balance_iterator;
411
412 /*
413 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
414 * It is set to NULL otherwise (i.e when none are currently running).
415 */
4793241b 416 struct sched_entity *curr, *next, *last;
ddc97297 417
5ac5c4d6 418 unsigned int nr_spread_over;
ddc97297 419
62160e3f 420#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
421 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
422
41a2d6cf
IM
423 /*
424 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
425 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
426 * (like users, containers etc.)
427 *
428 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
429 * list is used during load balance.
430 */
41a2d6cf
IM
431 struct list_head leaf_cfs_rq_list;
432 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
433
434#ifdef CONFIG_SMP
c09595f6 435 /*
c8cba857 436 * the part of load.weight contributed by tasks
c09595f6 437 */
c8cba857 438 unsigned long task_weight;
c09595f6 439
c8cba857
PZ
440 /*
441 * h_load = weight * f(tg)
442 *
443 * Where f(tg) is the recursive weight fraction assigned to
444 * this group.
445 */
446 unsigned long h_load;
c09595f6 447
c8cba857
PZ
448 /*
449 * this cpu's part of tg->shares
450 */
451 unsigned long shares;
f1d239f7
PZ
452
453 /*
454 * load.weight at the time we set shares
455 */
456 unsigned long rq_weight;
c09595f6 457#endif
6aa645ea
IM
458#endif
459};
1da177e4 460
6aa645ea
IM
461/* Real-Time classes' related field in a runqueue: */
462struct rt_rq {
463 struct rt_prio_array active;
63489e45 464 unsigned long rt_nr_running;
052f1dc7 465#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
466 struct {
467 int curr; /* highest queued rt task prio */
468 int next; /* next highest */
469 } highest_prio;
6f505b16 470#endif
fa85ae24 471#ifdef CONFIG_SMP
73fe6aae 472 unsigned long rt_nr_migratory;
a22d7fc1 473 int overloaded;
fa85ae24 474#endif
6f505b16 475 int rt_throttled;
fa85ae24 476 u64 rt_time;
ac086bc2 477 u64 rt_runtime;
ea736ed5 478 /* Nests inside the rq lock: */
ac086bc2 479 spinlock_t rt_runtime_lock;
6f505b16 480
052f1dc7 481#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
482 unsigned long rt_nr_boosted;
483
6f505b16
PZ
484 struct rq *rq;
485 struct list_head leaf_rt_rq_list;
486 struct task_group *tg;
487 struct sched_rt_entity *rt_se;
488#endif
6aa645ea
IM
489};
490
57d885fe
GH
491#ifdef CONFIG_SMP
492
493/*
494 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
495 * variables. Each exclusive cpuset essentially defines an island domain by
496 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
497 * exclusive cpuset is created, we also create and attach a new root-domain
498 * object.
499 *
57d885fe
GH
500 */
501struct root_domain {
502 atomic_t refcount;
c6c4927b
RR
503 cpumask_var_t span;
504 cpumask_var_t online;
637f5085 505
0eab9146 506 /*
637f5085
GH
507 * The "RT overload" flag: it gets set if a CPU has more than
508 * one runnable RT task.
509 */
c6c4927b 510 cpumask_var_t rto_mask;
0eab9146 511 atomic_t rto_count;
6e0534f2
GH
512#ifdef CONFIG_SMP
513 struct cpupri cpupri;
514#endif
7a09b1a2
VS
515#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
516 /*
517 * Preferred wake up cpu nominated by sched_mc balance that will be
518 * used when most cpus are idle in the system indicating overall very
519 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
520 */
521 unsigned int sched_mc_preferred_wakeup_cpu;
522#endif
57d885fe
GH
523};
524
dc938520
GH
525/*
526 * By default the system creates a single root-domain with all cpus as
527 * members (mimicking the global state we have today).
528 */
57d885fe
GH
529static struct root_domain def_root_domain;
530
531#endif
532
1da177e4
LT
533/*
534 * This is the main, per-CPU runqueue data structure.
535 *
536 * Locking rule: those places that want to lock multiple runqueues
537 * (such as the load balancing or the thread migration code), lock
538 * acquire operations must be ordered by ascending &runqueue.
539 */
70b97a7f 540struct rq {
d8016491
IM
541 /* runqueue lock: */
542 spinlock_t lock;
1da177e4
LT
543
544 /*
545 * nr_running and cpu_load should be in the same cacheline because
546 * remote CPUs use both these fields when doing load calculation.
547 */
548 unsigned long nr_running;
6aa645ea
IM
549 #define CPU_LOAD_IDX_MAX 5
550 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 551 unsigned char idle_at_tick;
46cb4b7c 552#ifdef CONFIG_NO_HZ
15934a37 553 unsigned long last_tick_seen;
46cb4b7c
SS
554 unsigned char in_nohz_recently;
555#endif
d8016491
IM
556 /* capture load from *all* tasks on this cpu: */
557 struct load_weight load;
6aa645ea
IM
558 unsigned long nr_load_updates;
559 u64 nr_switches;
560
561 struct cfs_rq cfs;
6f505b16 562 struct rt_rq rt;
6f505b16 563
6aa645ea 564#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
565 /* list of leaf cfs_rq on this cpu: */
566 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
567#endif
568#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 569 struct list_head leaf_rt_rq_list;
1da177e4 570#endif
1da177e4
LT
571
572 /*
573 * This is part of a global counter where only the total sum
574 * over all CPUs matters. A task can increase this counter on
575 * one CPU and if it got migrated afterwards it may decrease
576 * it on another CPU. Always updated under the runqueue lock:
577 */
578 unsigned long nr_uninterruptible;
579
36c8b586 580 struct task_struct *curr, *idle;
c9819f45 581 unsigned long next_balance;
1da177e4 582 struct mm_struct *prev_mm;
6aa645ea 583
3e51f33f 584 u64 clock;
6aa645ea 585
1da177e4
LT
586 atomic_t nr_iowait;
587
588#ifdef CONFIG_SMP
0eab9146 589 struct root_domain *rd;
1da177e4
LT
590 struct sched_domain *sd;
591
592 /* For active balancing */
593 int active_balance;
594 int push_cpu;
d8016491
IM
595 /* cpu of this runqueue: */
596 int cpu;
1f11eb6a 597 int online;
1da177e4 598
a8a51d5e 599 unsigned long avg_load_per_task;
1da177e4 600
36c8b586 601 struct task_struct *migration_thread;
1da177e4
LT
602 struct list_head migration_queue;
603#endif
604
8f4d37ec 605#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
606#ifdef CONFIG_SMP
607 int hrtick_csd_pending;
608 struct call_single_data hrtick_csd;
609#endif
8f4d37ec
PZ
610 struct hrtimer hrtick_timer;
611#endif
612
1da177e4
LT
613#ifdef CONFIG_SCHEDSTATS
614 /* latency stats */
615 struct sched_info rq_sched_info;
616
617 /* sys_sched_yield() stats */
480b9434
KC
618 unsigned int yld_exp_empty;
619 unsigned int yld_act_empty;
620 unsigned int yld_both_empty;
621 unsigned int yld_count;
1da177e4
LT
622
623 /* schedule() stats */
480b9434
KC
624 unsigned int sched_switch;
625 unsigned int sched_count;
626 unsigned int sched_goidle;
1da177e4
LT
627
628 /* try_to_wake_up() stats */
480b9434
KC
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
b8efb561
IM
631
632 /* BKL stats */
480b9434 633 unsigned int bkl_count;
1da177e4
LT
634#endif
635};
636
f34e3b61 637static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 638
15afe09b 639static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 640{
15afe09b 641 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
642}
643
0a2966b4
CL
644static inline int cpu_of(struct rq *rq)
645{
646#ifdef CONFIG_SMP
647 return rq->cpu;
648#else
649 return 0;
650#endif
651}
652
674311d5
NP
653/*
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 655 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
656 *
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
659 */
48f24c4d
IM
660#define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
662
663#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664#define this_rq() (&__get_cpu_var(runqueues))
665#define task_rq(p) cpu_rq(task_cpu(p))
666#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
667
3e51f33f
PZ
668static inline void update_rq_clock(struct rq *rq)
669{
670 rq->clock = sched_clock_cpu(cpu_of(rq));
671}
672
bf5c91ba
IM
673/*
674 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
675 */
676#ifdef CONFIG_SCHED_DEBUG
677# define const_debug __read_mostly
678#else
679# define const_debug static const
680#endif
681
017730c1
IM
682/**
683 * runqueue_is_locked
684 *
685 * Returns true if the current cpu runqueue is locked.
686 * This interface allows printk to be called with the runqueue lock
687 * held and know whether or not it is OK to wake up the klogd.
688 */
689int runqueue_is_locked(void)
690{
691 int cpu = get_cpu();
692 struct rq *rq = cpu_rq(cpu);
693 int ret;
694
695 ret = spin_is_locked(&rq->lock);
696 put_cpu();
697 return ret;
698}
699
bf5c91ba
IM
700/*
701 * Debugging: various feature bits
702 */
f00b45c1
PZ
703
704#define SCHED_FEAT(name, enabled) \
705 __SCHED_FEAT_##name ,
706
bf5c91ba 707enum {
f00b45c1 708#include "sched_features.h"
bf5c91ba
IM
709};
710
f00b45c1
PZ
711#undef SCHED_FEAT
712
713#define SCHED_FEAT(name, enabled) \
714 (1UL << __SCHED_FEAT_##name) * enabled |
715
bf5c91ba 716const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
717#include "sched_features.h"
718 0;
719
720#undef SCHED_FEAT
721
722#ifdef CONFIG_SCHED_DEBUG
723#define SCHED_FEAT(name, enabled) \
724 #name ,
725
983ed7a6 726static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
727#include "sched_features.h"
728 NULL
729};
730
731#undef SCHED_FEAT
732
34f3a814 733static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 734{
f00b45c1
PZ
735 int i;
736
737 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
738 if (!(sysctl_sched_features & (1UL << i)))
739 seq_puts(m, "NO_");
740 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 741 }
34f3a814 742 seq_puts(m, "\n");
f00b45c1 743
34f3a814 744 return 0;
f00b45c1
PZ
745}
746
747static ssize_t
748sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750{
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
c24b7c52 764 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787}
788
34f3a814
LZ
789static int sched_feat_open(struct inode *inode, struct file *filp)
790{
791 return single_open(filp, sched_feat_show, NULL);
792}
793
f00b45c1 794static struct file_operations sched_feat_fops = {
34f3a814
LZ
795 .open = sched_feat_open,
796 .write = sched_feat_write,
797 .read = seq_read,
798 .llseek = seq_lseek,
799 .release = single_release,
f00b45c1
PZ
800};
801
802static __init int sched_init_debug(void)
803{
f00b45c1
PZ
804 debugfs_create_file("sched_features", 0644, NULL, NULL,
805 &sched_feat_fops);
806
807 return 0;
808}
809late_initcall(sched_init_debug);
810
811#endif
812
813#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 814
b82d9fdd
PZ
815/*
816 * Number of tasks to iterate in a single balance run.
817 * Limited because this is done with IRQs disabled.
818 */
819const_debug unsigned int sysctl_sched_nr_migrate = 32;
820
2398f2c6
PZ
821/*
822 * ratelimit for updating the group shares.
55cd5340 823 * default: 0.25ms
2398f2c6 824 */
55cd5340 825unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 826
ffda12a1
PZ
827/*
828 * Inject some fuzzyness into changing the per-cpu group shares
829 * this avoids remote rq-locks at the expense of fairness.
830 * default: 4
831 */
832unsigned int sysctl_sched_shares_thresh = 4;
833
fa85ae24 834/*
9f0c1e56 835 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
836 * default: 1s
837 */
9f0c1e56 838unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 839
6892b75e
IM
840static __read_mostly int scheduler_running;
841
9f0c1e56
PZ
842/*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846int sysctl_sched_rt_runtime = 950000;
fa85ae24 847
d0b27fa7
PZ
848static inline u64 global_rt_period(void)
849{
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851}
852
853static inline u64 global_rt_runtime(void)
854{
e26873bb 855 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859}
fa85ae24 860
1da177e4 861#ifndef prepare_arch_switch
4866cde0
NP
862# define prepare_arch_switch(next) do { } while (0)
863#endif
864#ifndef finish_arch_switch
865# define finish_arch_switch(prev) do { } while (0)
866#endif
867
051a1d1a
DA
868static inline int task_current(struct rq *rq, struct task_struct *p)
869{
870 return rq->curr == p;
871}
872
4866cde0 873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 875{
051a1d1a 876 return task_current(rq, p);
4866cde0
NP
877}
878
70b97a7f 879static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
880{
881}
882
70b97a7f 883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 884{
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
4866cde0
NP
896 spin_unlock_irq(&rq->lock);
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 return p->oncpu;
904#else
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918#endif
919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq->lock);
921#else
922 spin_unlock(&rq->lock);
923#endif
924}
925
70b97a7f 926static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
927{
928#ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936#endif
937#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
1da177e4 939#endif
4866cde0
NP
940}
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 942
b29739f9
IM
943/*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
70b97a7f 947static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
948 __acquires(rq->lock)
949{
3a5c359a
AK
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
b29739f9 955 spin_unlock(&rq->lock);
b29739f9 956 }
b29739f9
IM
957}
958
1da177e4
LT
959/*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 961 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
962 * explicitly disabling preemption.
963 */
70b97a7f 964static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
965 __acquires(rq->lock)
966{
70b97a7f 967 struct rq *rq;
1da177e4 968
3a5c359a
AK
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
1da177e4 975 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 976 }
1da177e4
LT
977}
978
ad474cac
ON
979void task_rq_unlock_wait(struct task_struct *p)
980{
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq->lock);
985}
986
a9957449 987static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
988 __releases(rq->lock)
989{
990 spin_unlock(&rq->lock);
991}
992
70b97a7f 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
994 __releases(rq->lock)
995{
996 spin_unlock_irqrestore(&rq->lock, *flags);
997}
998
1da177e4 999/*
cc2a73b5 1000 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1001 */
a9957449 1002static struct rq *this_rq_lock(void)
1da177e4
LT
1003 __acquires(rq->lock)
1004{
70b97a7f 1005 struct rq *rq;
1da177e4
LT
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 spin_lock(&rq->lock);
1010
1011 return rq;
1012}
1013
8f4d37ec
PZ
1014#ifdef CONFIG_SCHED_HRTICK
1015/*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
8f4d37ec
PZ
1025
1026/*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031static inline int hrtick_enabled(struct rq *rq)
1032{
1033 if (!sched_feat(HRTICK))
1034 return 0;
ba42059f 1035 if (!cpu_active(cpu_of(rq)))
b328ca18 1036 return 0;
8f4d37ec
PZ
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
8f4d37ec
PZ
1040static void hrtick_clear(struct rq *rq)
1041{
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044}
1045
8f4d37ec
PZ
1046/*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051{
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 spin_lock(&rq->lock);
3e51f33f 1057 update_rq_clock(rq);
8f4d37ec
PZ
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062}
1063
95e904c7 1064#ifdef CONFIG_SMP
31656519
PZ
1065/*
1066 * called from hardirq (IPI) context
1067 */
1068static void __hrtick_start(void *arg)
b328ca18 1069{
31656519 1070 struct rq *rq = arg;
b328ca18 1071
31656519
PZ
1072 spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 spin_unlock(&rq->lock);
b328ca18
PZ
1076}
1077
31656519
PZ
1078/*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1084{
31656519
PZ
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1087
cc584b21 1088 hrtimer_set_expires(timer, time);
31656519
PZ
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1094 rq->hrtick_csd_pending = 1;
1095 }
b328ca18
PZ
1096}
1097
1098static int
1099hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100{
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
31656519 1110 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115}
1116
fa748203 1117static __init void init_hrtick(void)
b328ca18
PZ
1118{
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120}
31656519
PZ
1121#else
1122/*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127static void hrtick_start(struct rq *rq, u64 delay)
1128{
1129 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1130}
b328ca18 1131
006c75f1 1132static inline void init_hrtick(void)
8f4d37ec 1133{
8f4d37ec 1134}
31656519 1135#endif /* CONFIG_SMP */
8f4d37ec 1136
31656519 1137static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1138{
31656519
PZ
1139#ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
8f4d37ec 1141
31656519
PZ
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145#endif
8f4d37ec 1146
31656519
PZ
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
ccc7dadf 1149 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1150}
006c75f1 1151#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1152static inline void hrtick_clear(struct rq *rq)
1153{
1154}
1155
8f4d37ec
PZ
1156static inline void init_rq_hrtick(struct rq *rq)
1157{
1158}
1159
b328ca18
PZ
1160static inline void init_hrtick(void)
1161{
1162}
006c75f1 1163#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1164
c24d20db
IM
1165/*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172#ifdef CONFIG_SMP
1173
1174#ifndef tsk_is_polling
1175#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176#endif
1177
31656519 1178static void resched_task(struct task_struct *p)
c24d20db
IM
1179{
1180 int cpu;
1181
1182 assert_spin_locked(&task_rq(p)->lock);
1183
31656519 1184 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1185 return;
1186
31656519 1187 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197}
1198
1199static void resched_cpu(int cpu)
1200{
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
1204 if (!spin_trylock_irqsave(&rq->lock, flags))
1205 return;
1206 resched_task(cpu_curr(cpu));
1207 spin_unlock_irqrestore(&rq->lock, flags);
1208}
06d8308c
TG
1209
1210#ifdef CONFIG_NO_HZ
1211/*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221void wake_up_idle_cpu(int cpu)
1222{
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
1243 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249}
6d6bc0ad 1250#endif /* CONFIG_NO_HZ */
06d8308c 1251
6d6bc0ad 1252#else /* !CONFIG_SMP */
31656519 1253static void resched_task(struct task_struct *p)
c24d20db
IM
1254{
1255 assert_spin_locked(&task_rq(p)->lock);
31656519 1256 set_tsk_need_resched(p);
c24d20db 1257}
6d6bc0ad 1258#endif /* CONFIG_SMP */
c24d20db 1259
45bf76df
IM
1260#if BITS_PER_LONG == 32
1261# define WMULT_CONST (~0UL)
1262#else
1263# define WMULT_CONST (1UL << 32)
1264#endif
1265
1266#define WMULT_SHIFT 32
1267
194081eb
IM
1268/*
1269 * Shift right and round:
1270 */
cf2ab469 1271#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1272
a7be37ac
PZ
1273/*
1274 * delta *= weight / lw
1275 */
cb1c4fc9 1276static unsigned long
45bf76df
IM
1277calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1278 struct load_weight *lw)
1279{
1280 u64 tmp;
1281
7a232e03
LJ
1282 if (!lw->inv_weight) {
1283 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1284 lw->inv_weight = 1;
1285 else
1286 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1287 / (lw->weight+1);
1288 }
45bf76df
IM
1289
1290 tmp = (u64)delta_exec * weight;
1291 /*
1292 * Check whether we'd overflow the 64-bit multiplication:
1293 */
194081eb 1294 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1295 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1296 WMULT_SHIFT/2);
1297 else
cf2ab469 1298 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1299
ecf691da 1300 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1301}
1302
1091985b 1303static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1304{
1305 lw->weight += inc;
e89996ae 1306 lw->inv_weight = 0;
45bf76df
IM
1307}
1308
1091985b 1309static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1310{
1311 lw->weight -= dec;
e89996ae 1312 lw->inv_weight = 0;
45bf76df
IM
1313}
1314
2dd73a4f
PW
1315/*
1316 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1317 * of tasks with abnormal "nice" values across CPUs the contribution that
1318 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1319 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1320 * scaled version of the new time slice allocation that they receive on time
1321 * slice expiry etc.
1322 */
1323
dd41f596
IM
1324#define WEIGHT_IDLEPRIO 2
1325#define WMULT_IDLEPRIO (1 << 31)
1326
1327/*
1328 * Nice levels are multiplicative, with a gentle 10% change for every
1329 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1330 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1331 * that remained on nice 0.
1332 *
1333 * The "10% effect" is relative and cumulative: from _any_ nice level,
1334 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1335 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1336 * If a task goes up by ~10% and another task goes down by ~10% then
1337 * the relative distance between them is ~25%.)
dd41f596
IM
1338 */
1339static const int prio_to_weight[40] = {
254753dc
IM
1340 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1341 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1342 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1343 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1344 /* 0 */ 1024, 820, 655, 526, 423,
1345 /* 5 */ 335, 272, 215, 172, 137,
1346 /* 10 */ 110, 87, 70, 56, 45,
1347 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1348};
1349
5714d2de
IM
1350/*
1351 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1352 *
1353 * In cases where the weight does not change often, we can use the
1354 * precalculated inverse to speed up arithmetics by turning divisions
1355 * into multiplications:
1356 */
dd41f596 1357static const u32 prio_to_wmult[40] = {
254753dc
IM
1358 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1359 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1360 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1361 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1362 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1363 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1364 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1365 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1366};
2dd73a4f 1367
dd41f596
IM
1368static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1369
1370/*
1371 * runqueue iterator, to support SMP load-balancing between different
1372 * scheduling classes, without having to expose their internal data
1373 * structures to the load-balancing proper:
1374 */
1375struct rq_iterator {
1376 void *arg;
1377 struct task_struct *(*start)(void *);
1378 struct task_struct *(*next)(void *);
1379};
1380
e1d1484f
PW
1381#ifdef CONFIG_SMP
1382static unsigned long
1383balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1384 unsigned long max_load_move, struct sched_domain *sd,
1385 enum cpu_idle_type idle, int *all_pinned,
1386 int *this_best_prio, struct rq_iterator *iterator);
1387
1388static int
1389iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1390 struct sched_domain *sd, enum cpu_idle_type idle,
1391 struct rq_iterator *iterator);
e1d1484f 1392#endif
dd41f596 1393
d842de87
SV
1394#ifdef CONFIG_CGROUP_CPUACCT
1395static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1396#else
1397static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1398#endif
1399
18d95a28
PZ
1400static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1401{
1402 update_load_add(&rq->load, load);
1403}
1404
1405static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1406{
1407 update_load_sub(&rq->load, load);
1408}
1409
7940ca36 1410#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1411typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1412
1413/*
1414 * Iterate the full tree, calling @down when first entering a node and @up when
1415 * leaving it for the final time.
1416 */
eb755805 1417static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1418{
1419 struct task_group *parent, *child;
eb755805 1420 int ret;
c09595f6
PZ
1421
1422 rcu_read_lock();
1423 parent = &root_task_group;
1424down:
eb755805
PZ
1425 ret = (*down)(parent, data);
1426 if (ret)
1427 goto out_unlock;
c09595f6
PZ
1428 list_for_each_entry_rcu(child, &parent->children, siblings) {
1429 parent = child;
1430 goto down;
1431
1432up:
1433 continue;
1434 }
eb755805
PZ
1435 ret = (*up)(parent, data);
1436 if (ret)
1437 goto out_unlock;
c09595f6
PZ
1438
1439 child = parent;
1440 parent = parent->parent;
1441 if (parent)
1442 goto up;
eb755805 1443out_unlock:
c09595f6 1444 rcu_read_unlock();
eb755805
PZ
1445
1446 return ret;
c09595f6
PZ
1447}
1448
eb755805
PZ
1449static int tg_nop(struct task_group *tg, void *data)
1450{
1451 return 0;
c09595f6 1452}
eb755805
PZ
1453#endif
1454
1455#ifdef CONFIG_SMP
1456static unsigned long source_load(int cpu, int type);
1457static unsigned long target_load(int cpu, int type);
1458static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1459
1460static unsigned long cpu_avg_load_per_task(int cpu)
1461{
1462 struct rq *rq = cpu_rq(cpu);
af6d596f 1463 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1464
4cd42620
SR
1465 if (nr_running)
1466 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1467 else
1468 rq->avg_load_per_task = 0;
eb755805
PZ
1469
1470 return rq->avg_load_per_task;
1471}
1472
1473#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1474
c09595f6
PZ
1475static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1476
1477/*
1478 * Calculate and set the cpu's group shares.
1479 */
1480static void
ffda12a1
PZ
1481update_group_shares_cpu(struct task_group *tg, int cpu,
1482 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1483{
c09595f6
PZ
1484 unsigned long shares;
1485 unsigned long rq_weight;
1486
c8cba857 1487 if (!tg->se[cpu])
c09595f6
PZ
1488 return;
1489
ec4e0e2f 1490 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1491
c09595f6
PZ
1492 /*
1493 * \Sum shares * rq_weight
1494 * shares = -----------------------
1495 * \Sum rq_weight
1496 *
1497 */
ec4e0e2f 1498 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1499 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1500
ffda12a1
PZ
1501 if (abs(shares - tg->se[cpu]->load.weight) >
1502 sysctl_sched_shares_thresh) {
1503 struct rq *rq = cpu_rq(cpu);
1504 unsigned long flags;
c09595f6 1505
ffda12a1 1506 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1507 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1508
ffda12a1
PZ
1509 __set_se_shares(tg->se[cpu], shares);
1510 spin_unlock_irqrestore(&rq->lock, flags);
1511 }
18d95a28 1512}
c09595f6
PZ
1513
1514/*
c8cba857
PZ
1515 * Re-compute the task group their per cpu shares over the given domain.
1516 * This needs to be done in a bottom-up fashion because the rq weight of a
1517 * parent group depends on the shares of its child groups.
c09595f6 1518 */
eb755805 1519static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1520{
ec4e0e2f 1521 unsigned long weight, rq_weight = 0;
c8cba857 1522 unsigned long shares = 0;
eb755805 1523 struct sched_domain *sd = data;
c8cba857 1524 int i;
c09595f6 1525
758b2cdc 1526 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1527 /*
1528 * If there are currently no tasks on the cpu pretend there
1529 * is one of average load so that when a new task gets to
1530 * run here it will not get delayed by group starvation.
1531 */
1532 weight = tg->cfs_rq[i]->load.weight;
1533 if (!weight)
1534 weight = NICE_0_LOAD;
1535
1536 tg->cfs_rq[i]->rq_weight = weight;
1537 rq_weight += weight;
c8cba857 1538 shares += tg->cfs_rq[i]->shares;
c09595f6 1539 }
c09595f6 1540
c8cba857
PZ
1541 if ((!shares && rq_weight) || shares > tg->shares)
1542 shares = tg->shares;
1543
1544 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1545 shares = tg->shares;
c09595f6 1546
758b2cdc 1547 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1548 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1549
1550 return 0;
c09595f6
PZ
1551}
1552
1553/*
c8cba857
PZ
1554 * Compute the cpu's hierarchical load factor for each task group.
1555 * This needs to be done in a top-down fashion because the load of a child
1556 * group is a fraction of its parents load.
c09595f6 1557 */
eb755805 1558static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1559{
c8cba857 1560 unsigned long load;
eb755805 1561 long cpu = (long)data;
c09595f6 1562
c8cba857
PZ
1563 if (!tg->parent) {
1564 load = cpu_rq(cpu)->load.weight;
1565 } else {
1566 load = tg->parent->cfs_rq[cpu]->h_load;
1567 load *= tg->cfs_rq[cpu]->shares;
1568 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1569 }
c09595f6 1570
c8cba857 1571 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1572
eb755805 1573 return 0;
c09595f6
PZ
1574}
1575
c8cba857 1576static void update_shares(struct sched_domain *sd)
4d8d595d 1577{
2398f2c6
PZ
1578 u64 now = cpu_clock(raw_smp_processor_id());
1579 s64 elapsed = now - sd->last_update;
1580
1581 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1582 sd->last_update = now;
eb755805 1583 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1584 }
4d8d595d
PZ
1585}
1586
3e5459b4
PZ
1587static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1588{
1589 spin_unlock(&rq->lock);
1590 update_shares(sd);
1591 spin_lock(&rq->lock);
1592}
1593
eb755805 1594static void update_h_load(long cpu)
c09595f6 1595{
eb755805 1596 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1597}
1598
c09595f6
PZ
1599#else
1600
c8cba857 1601static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1602{
1603}
1604
3e5459b4
PZ
1605static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1606{
1607}
1608
18d95a28
PZ
1609#endif
1610
8f45e2b5
GH
1611#ifdef CONFIG_PREEMPT
1612
70574a99 1613/*
8f45e2b5
GH
1614 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1615 * way at the expense of forcing extra atomic operations in all
1616 * invocations. This assures that the double_lock is acquired using the
1617 * same underlying policy as the spinlock_t on this architecture, which
1618 * reduces latency compared to the unfair variant below. However, it
1619 * also adds more overhead and therefore may reduce throughput.
70574a99 1620 */
8f45e2b5
GH
1621static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1622 __releases(this_rq->lock)
1623 __acquires(busiest->lock)
1624 __acquires(this_rq->lock)
1625{
1626 spin_unlock(&this_rq->lock);
1627 double_rq_lock(this_rq, busiest);
1628
1629 return 1;
1630}
1631
1632#else
1633/*
1634 * Unfair double_lock_balance: Optimizes throughput at the expense of
1635 * latency by eliminating extra atomic operations when the locks are
1636 * already in proper order on entry. This favors lower cpu-ids and will
1637 * grant the double lock to lower cpus over higher ids under contention,
1638 * regardless of entry order into the function.
1639 */
1640static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1641 __releases(this_rq->lock)
1642 __acquires(busiest->lock)
1643 __acquires(this_rq->lock)
1644{
1645 int ret = 0;
1646
70574a99
AD
1647 if (unlikely(!spin_trylock(&busiest->lock))) {
1648 if (busiest < this_rq) {
1649 spin_unlock(&this_rq->lock);
1650 spin_lock(&busiest->lock);
1651 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1652 ret = 1;
1653 } else
1654 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1655 }
1656 return ret;
1657}
1658
8f45e2b5
GH
1659#endif /* CONFIG_PREEMPT */
1660
1661/*
1662 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1663 */
1664static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1665{
1666 if (unlikely(!irqs_disabled())) {
1667 /* printk() doesn't work good under rq->lock */
1668 spin_unlock(&this_rq->lock);
1669 BUG_ON(1);
1670 }
1671
1672 return _double_lock_balance(this_rq, busiest);
1673}
1674
70574a99
AD
1675static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1676 __releases(busiest->lock)
1677{
1678 spin_unlock(&busiest->lock);
1679 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1680}
18d95a28
PZ
1681#endif
1682
30432094 1683#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1684static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1685{
30432094 1686#ifdef CONFIG_SMP
34e83e85
IM
1687 cfs_rq->shares = shares;
1688#endif
1689}
30432094 1690#endif
e7693a36 1691
dd41f596 1692#include "sched_stats.h"
dd41f596 1693#include "sched_idletask.c"
5522d5d5
IM
1694#include "sched_fair.c"
1695#include "sched_rt.c"
dd41f596
IM
1696#ifdef CONFIG_SCHED_DEBUG
1697# include "sched_debug.c"
1698#endif
1699
1700#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1701#define for_each_class(class) \
1702 for (class = sched_class_highest; class; class = class->next)
dd41f596 1703
c09595f6 1704static void inc_nr_running(struct rq *rq)
9c217245
IM
1705{
1706 rq->nr_running++;
9c217245
IM
1707}
1708
c09595f6 1709static void dec_nr_running(struct rq *rq)
9c217245
IM
1710{
1711 rq->nr_running--;
9c217245
IM
1712}
1713
45bf76df
IM
1714static void set_load_weight(struct task_struct *p)
1715{
1716 if (task_has_rt_policy(p)) {
dd41f596
IM
1717 p->se.load.weight = prio_to_weight[0] * 2;
1718 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1719 return;
1720 }
45bf76df 1721
dd41f596
IM
1722 /*
1723 * SCHED_IDLE tasks get minimal weight:
1724 */
1725 if (p->policy == SCHED_IDLE) {
1726 p->se.load.weight = WEIGHT_IDLEPRIO;
1727 p->se.load.inv_weight = WMULT_IDLEPRIO;
1728 return;
1729 }
71f8bd46 1730
dd41f596
IM
1731 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1732 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1733}
1734
2087a1ad
GH
1735static void update_avg(u64 *avg, u64 sample)
1736{
1737 s64 diff = sample - *avg;
1738 *avg += diff >> 3;
1739}
1740
8159f87e 1741static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1742{
dd41f596 1743 sched_info_queued(p);
fd390f6a 1744 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1745 p->se.on_rq = 1;
71f8bd46
IM
1746}
1747
69be72c1 1748static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1749{
2087a1ad
GH
1750 if (sleep && p->se.last_wakeup) {
1751 update_avg(&p->se.avg_overlap,
1752 p->se.sum_exec_runtime - p->se.last_wakeup);
1753 p->se.last_wakeup = 0;
1754 }
1755
46ac22ba 1756 sched_info_dequeued(p);
f02231e5 1757 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1758 p->se.on_rq = 0;
71f8bd46
IM
1759}
1760
14531189 1761/*
dd41f596 1762 * __normal_prio - return the priority that is based on the static prio
14531189 1763 */
14531189
IM
1764static inline int __normal_prio(struct task_struct *p)
1765{
dd41f596 1766 return p->static_prio;
14531189
IM
1767}
1768
b29739f9
IM
1769/*
1770 * Calculate the expected normal priority: i.e. priority
1771 * without taking RT-inheritance into account. Might be
1772 * boosted by interactivity modifiers. Changes upon fork,
1773 * setprio syscalls, and whenever the interactivity
1774 * estimator recalculates.
1775 */
36c8b586 1776static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1777{
1778 int prio;
1779
e05606d3 1780 if (task_has_rt_policy(p))
b29739f9
IM
1781 prio = MAX_RT_PRIO-1 - p->rt_priority;
1782 else
1783 prio = __normal_prio(p);
1784 return prio;
1785}
1786
1787/*
1788 * Calculate the current priority, i.e. the priority
1789 * taken into account by the scheduler. This value might
1790 * be boosted by RT tasks, or might be boosted by
1791 * interactivity modifiers. Will be RT if the task got
1792 * RT-boosted. If not then it returns p->normal_prio.
1793 */
36c8b586 1794static int effective_prio(struct task_struct *p)
b29739f9
IM
1795{
1796 p->normal_prio = normal_prio(p);
1797 /*
1798 * If we are RT tasks or we were boosted to RT priority,
1799 * keep the priority unchanged. Otherwise, update priority
1800 * to the normal priority:
1801 */
1802 if (!rt_prio(p->prio))
1803 return p->normal_prio;
1804 return p->prio;
1805}
1806
1da177e4 1807/*
dd41f596 1808 * activate_task - move a task to the runqueue.
1da177e4 1809 */
dd41f596 1810static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1811{
d9514f6c 1812 if (task_contributes_to_load(p))
dd41f596 1813 rq->nr_uninterruptible--;
1da177e4 1814
8159f87e 1815 enqueue_task(rq, p, wakeup);
c09595f6 1816 inc_nr_running(rq);
1da177e4
LT
1817}
1818
1da177e4
LT
1819/*
1820 * deactivate_task - remove a task from the runqueue.
1821 */
2e1cb74a 1822static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1823{
d9514f6c 1824 if (task_contributes_to_load(p))
dd41f596
IM
1825 rq->nr_uninterruptible++;
1826
69be72c1 1827 dequeue_task(rq, p, sleep);
c09595f6 1828 dec_nr_running(rq);
1da177e4
LT
1829}
1830
1da177e4
LT
1831/**
1832 * task_curr - is this task currently executing on a CPU?
1833 * @p: the task in question.
1834 */
36c8b586 1835inline int task_curr(const struct task_struct *p)
1da177e4
LT
1836{
1837 return cpu_curr(task_cpu(p)) == p;
1838}
1839
dd41f596
IM
1840static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1841{
6f505b16 1842 set_task_rq(p, cpu);
dd41f596 1843#ifdef CONFIG_SMP
ce96b5ac
DA
1844 /*
1845 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1846 * successfuly executed on another CPU. We must ensure that updates of
1847 * per-task data have been completed by this moment.
1848 */
1849 smp_wmb();
dd41f596 1850 task_thread_info(p)->cpu = cpu;
dd41f596 1851#endif
2dd73a4f
PW
1852}
1853
cb469845
SR
1854static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1855 const struct sched_class *prev_class,
1856 int oldprio, int running)
1857{
1858 if (prev_class != p->sched_class) {
1859 if (prev_class->switched_from)
1860 prev_class->switched_from(rq, p, running);
1861 p->sched_class->switched_to(rq, p, running);
1862 } else
1863 p->sched_class->prio_changed(rq, p, oldprio, running);
1864}
1865
1da177e4 1866#ifdef CONFIG_SMP
c65cc870 1867
e958b360
TG
1868/* Used instead of source_load when we know the type == 0 */
1869static unsigned long weighted_cpuload(const int cpu)
1870{
1871 return cpu_rq(cpu)->load.weight;
1872}
1873
cc367732
IM
1874/*
1875 * Is this task likely cache-hot:
1876 */
e7693a36 1877static int
cc367732
IM
1878task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1879{
1880 s64 delta;
1881
f540a608
IM
1882 /*
1883 * Buddy candidates are cache hot:
1884 */
4793241b
PZ
1885 if (sched_feat(CACHE_HOT_BUDDY) &&
1886 (&p->se == cfs_rq_of(&p->se)->next ||
1887 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1888 return 1;
1889
cc367732
IM
1890 if (p->sched_class != &fair_sched_class)
1891 return 0;
1892
6bc1665b
IM
1893 if (sysctl_sched_migration_cost == -1)
1894 return 1;
1895 if (sysctl_sched_migration_cost == 0)
1896 return 0;
1897
cc367732
IM
1898 delta = now - p->se.exec_start;
1899
1900 return delta < (s64)sysctl_sched_migration_cost;
1901}
1902
1903
dd41f596 1904void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1905{
dd41f596
IM
1906 int old_cpu = task_cpu(p);
1907 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1908 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1909 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1910 u64 clock_offset;
dd41f596
IM
1911
1912 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1913
1914#ifdef CONFIG_SCHEDSTATS
1915 if (p->se.wait_start)
1916 p->se.wait_start -= clock_offset;
dd41f596
IM
1917 if (p->se.sleep_start)
1918 p->se.sleep_start -= clock_offset;
1919 if (p->se.block_start)
1920 p->se.block_start -= clock_offset;
cc367732
IM
1921 if (old_cpu != new_cpu) {
1922 schedstat_inc(p, se.nr_migrations);
1923 if (task_hot(p, old_rq->clock, NULL))
1924 schedstat_inc(p, se.nr_forced2_migrations);
1925 }
6cfb0d5d 1926#endif
2830cf8c
SV
1927 p->se.vruntime -= old_cfsrq->min_vruntime -
1928 new_cfsrq->min_vruntime;
dd41f596
IM
1929
1930 __set_task_cpu(p, new_cpu);
c65cc870
IM
1931}
1932
70b97a7f 1933struct migration_req {
1da177e4 1934 struct list_head list;
1da177e4 1935
36c8b586 1936 struct task_struct *task;
1da177e4
LT
1937 int dest_cpu;
1938
1da177e4 1939 struct completion done;
70b97a7f 1940};
1da177e4
LT
1941
1942/*
1943 * The task's runqueue lock must be held.
1944 * Returns true if you have to wait for migration thread.
1945 */
36c8b586 1946static int
70b97a7f 1947migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1948{
70b97a7f 1949 struct rq *rq = task_rq(p);
1da177e4
LT
1950
1951 /*
1952 * If the task is not on a runqueue (and not running), then
1953 * it is sufficient to simply update the task's cpu field.
1954 */
dd41f596 1955 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1956 set_task_cpu(p, dest_cpu);
1957 return 0;
1958 }
1959
1960 init_completion(&req->done);
1da177e4
LT
1961 req->task = p;
1962 req->dest_cpu = dest_cpu;
1963 list_add(&req->list, &rq->migration_queue);
48f24c4d 1964
1da177e4
LT
1965 return 1;
1966}
1967
1968/*
1969 * wait_task_inactive - wait for a thread to unschedule.
1970 *
85ba2d86
RM
1971 * If @match_state is nonzero, it's the @p->state value just checked and
1972 * not expected to change. If it changes, i.e. @p might have woken up,
1973 * then return zero. When we succeed in waiting for @p to be off its CPU,
1974 * we return a positive number (its total switch count). If a second call
1975 * a short while later returns the same number, the caller can be sure that
1976 * @p has remained unscheduled the whole time.
1977 *
1da177e4
LT
1978 * The caller must ensure that the task *will* unschedule sometime soon,
1979 * else this function might spin for a *long* time. This function can't
1980 * be called with interrupts off, or it may introduce deadlock with
1981 * smp_call_function() if an IPI is sent by the same process we are
1982 * waiting to become inactive.
1983 */
85ba2d86 1984unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1985{
1986 unsigned long flags;
dd41f596 1987 int running, on_rq;
85ba2d86 1988 unsigned long ncsw;
70b97a7f 1989 struct rq *rq;
1da177e4 1990
3a5c359a
AK
1991 for (;;) {
1992 /*
1993 * We do the initial early heuristics without holding
1994 * any task-queue locks at all. We'll only try to get
1995 * the runqueue lock when things look like they will
1996 * work out!
1997 */
1998 rq = task_rq(p);
fa490cfd 1999
3a5c359a
AK
2000 /*
2001 * If the task is actively running on another CPU
2002 * still, just relax and busy-wait without holding
2003 * any locks.
2004 *
2005 * NOTE! Since we don't hold any locks, it's not
2006 * even sure that "rq" stays as the right runqueue!
2007 * But we don't care, since "task_running()" will
2008 * return false if the runqueue has changed and p
2009 * is actually now running somewhere else!
2010 */
85ba2d86
RM
2011 while (task_running(rq, p)) {
2012 if (match_state && unlikely(p->state != match_state))
2013 return 0;
3a5c359a 2014 cpu_relax();
85ba2d86 2015 }
fa490cfd 2016
3a5c359a
AK
2017 /*
2018 * Ok, time to look more closely! We need the rq
2019 * lock now, to be *sure*. If we're wrong, we'll
2020 * just go back and repeat.
2021 */
2022 rq = task_rq_lock(p, &flags);
0a16b607 2023 trace_sched_wait_task(rq, p);
3a5c359a
AK
2024 running = task_running(rq, p);
2025 on_rq = p->se.on_rq;
85ba2d86 2026 ncsw = 0;
f31e11d8 2027 if (!match_state || p->state == match_state)
93dcf55f 2028 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2029 task_rq_unlock(rq, &flags);
fa490cfd 2030
85ba2d86
RM
2031 /*
2032 * If it changed from the expected state, bail out now.
2033 */
2034 if (unlikely(!ncsw))
2035 break;
2036
3a5c359a
AK
2037 /*
2038 * Was it really running after all now that we
2039 * checked with the proper locks actually held?
2040 *
2041 * Oops. Go back and try again..
2042 */
2043 if (unlikely(running)) {
2044 cpu_relax();
2045 continue;
2046 }
fa490cfd 2047
3a5c359a
AK
2048 /*
2049 * It's not enough that it's not actively running,
2050 * it must be off the runqueue _entirely_, and not
2051 * preempted!
2052 *
2053 * So if it wa still runnable (but just not actively
2054 * running right now), it's preempted, and we should
2055 * yield - it could be a while.
2056 */
2057 if (unlikely(on_rq)) {
2058 schedule_timeout_uninterruptible(1);
2059 continue;
2060 }
fa490cfd 2061
3a5c359a
AK
2062 /*
2063 * Ahh, all good. It wasn't running, and it wasn't
2064 * runnable, which means that it will never become
2065 * running in the future either. We're all done!
2066 */
2067 break;
2068 }
85ba2d86
RM
2069
2070 return ncsw;
1da177e4
LT
2071}
2072
2073/***
2074 * kick_process - kick a running thread to enter/exit the kernel
2075 * @p: the to-be-kicked thread
2076 *
2077 * Cause a process which is running on another CPU to enter
2078 * kernel-mode, without any delay. (to get signals handled.)
2079 *
2080 * NOTE: this function doesnt have to take the runqueue lock,
2081 * because all it wants to ensure is that the remote task enters
2082 * the kernel. If the IPI races and the task has been migrated
2083 * to another CPU then no harm is done and the purpose has been
2084 * achieved as well.
2085 */
36c8b586 2086void kick_process(struct task_struct *p)
1da177e4
LT
2087{
2088 int cpu;
2089
2090 preempt_disable();
2091 cpu = task_cpu(p);
2092 if ((cpu != smp_processor_id()) && task_curr(p))
2093 smp_send_reschedule(cpu);
2094 preempt_enable();
2095}
2096
2097/*
2dd73a4f
PW
2098 * Return a low guess at the load of a migration-source cpu weighted
2099 * according to the scheduling class and "nice" value.
1da177e4
LT
2100 *
2101 * We want to under-estimate the load of migration sources, to
2102 * balance conservatively.
2103 */
a9957449 2104static unsigned long source_load(int cpu, int type)
1da177e4 2105{
70b97a7f 2106 struct rq *rq = cpu_rq(cpu);
dd41f596 2107 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2108
93b75217 2109 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2110 return total;
b910472d 2111
dd41f596 2112 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2113}
2114
2115/*
2dd73a4f
PW
2116 * Return a high guess at the load of a migration-target cpu weighted
2117 * according to the scheduling class and "nice" value.
1da177e4 2118 */
a9957449 2119static unsigned long target_load(int cpu, int type)
1da177e4 2120{
70b97a7f 2121 struct rq *rq = cpu_rq(cpu);
dd41f596 2122 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2123
93b75217 2124 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2125 return total;
3b0bd9bc 2126
dd41f596 2127 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2128}
2129
147cbb4b
NP
2130/*
2131 * find_idlest_group finds and returns the least busy CPU group within the
2132 * domain.
2133 */
2134static struct sched_group *
2135find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2136{
2137 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2138 unsigned long min_load = ULONG_MAX, this_load = 0;
2139 int load_idx = sd->forkexec_idx;
2140 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2141
2142 do {
2143 unsigned long load, avg_load;
2144 int local_group;
2145 int i;
2146
da5a5522 2147 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2148 if (!cpumask_intersects(sched_group_cpus(group),
2149 &p->cpus_allowed))
3a5c359a 2150 continue;
da5a5522 2151
758b2cdc
RR
2152 local_group = cpumask_test_cpu(this_cpu,
2153 sched_group_cpus(group));
147cbb4b
NP
2154
2155 /* Tally up the load of all CPUs in the group */
2156 avg_load = 0;
2157
758b2cdc 2158 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2159 /* Bias balancing toward cpus of our domain */
2160 if (local_group)
2161 load = source_load(i, load_idx);
2162 else
2163 load = target_load(i, load_idx);
2164
2165 avg_load += load;
2166 }
2167
2168 /* Adjust by relative CPU power of the group */
5517d86b
ED
2169 avg_load = sg_div_cpu_power(group,
2170 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2171
2172 if (local_group) {
2173 this_load = avg_load;
2174 this = group;
2175 } else if (avg_load < min_load) {
2176 min_load = avg_load;
2177 idlest = group;
2178 }
3a5c359a 2179 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2180
2181 if (!idlest || 100*this_load < imbalance*min_load)
2182 return NULL;
2183 return idlest;
2184}
2185
2186/*
0feaece9 2187 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2188 */
95cdf3b7 2189static int
758b2cdc 2190find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2191{
2192 unsigned long load, min_load = ULONG_MAX;
2193 int idlest = -1;
2194 int i;
2195
da5a5522 2196 /* Traverse only the allowed CPUs */
758b2cdc 2197 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2198 load = weighted_cpuload(i);
147cbb4b
NP
2199
2200 if (load < min_load || (load == min_load && i == this_cpu)) {
2201 min_load = load;
2202 idlest = i;
2203 }
2204 }
2205
2206 return idlest;
2207}
2208
476d139c
NP
2209/*
2210 * sched_balance_self: balance the current task (running on cpu) in domains
2211 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2212 * SD_BALANCE_EXEC.
2213 *
2214 * Balance, ie. select the least loaded group.
2215 *
2216 * Returns the target CPU number, or the same CPU if no balancing is needed.
2217 *
2218 * preempt must be disabled.
2219 */
2220static int sched_balance_self(int cpu, int flag)
2221{
2222 struct task_struct *t = current;
2223 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2224
c96d145e 2225 for_each_domain(cpu, tmp) {
9761eea8
IM
2226 /*
2227 * If power savings logic is enabled for a domain, stop there.
2228 */
5c45bf27
SS
2229 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2230 break;
476d139c
NP
2231 if (tmp->flags & flag)
2232 sd = tmp;
c96d145e 2233 }
476d139c 2234
039a1c41
PZ
2235 if (sd)
2236 update_shares(sd);
2237
476d139c 2238 while (sd) {
476d139c 2239 struct sched_group *group;
1a848870
SS
2240 int new_cpu, weight;
2241
2242 if (!(sd->flags & flag)) {
2243 sd = sd->child;
2244 continue;
2245 }
476d139c 2246
476d139c 2247 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2248 if (!group) {
2249 sd = sd->child;
2250 continue;
2251 }
476d139c 2252
758b2cdc 2253 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2254 if (new_cpu == -1 || new_cpu == cpu) {
2255 /* Now try balancing at a lower domain level of cpu */
2256 sd = sd->child;
2257 continue;
2258 }
476d139c 2259
1a848870 2260 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2261 cpu = new_cpu;
758b2cdc 2262 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2263 sd = NULL;
476d139c 2264 for_each_domain(cpu, tmp) {
758b2cdc 2265 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2266 break;
2267 if (tmp->flags & flag)
2268 sd = tmp;
2269 }
2270 /* while loop will break here if sd == NULL */
2271 }
2272
2273 return cpu;
2274}
2275
2276#endif /* CONFIG_SMP */
1da177e4 2277
1da177e4
LT
2278/***
2279 * try_to_wake_up - wake up a thread
2280 * @p: the to-be-woken-up thread
2281 * @state: the mask of task states that can be woken
2282 * @sync: do a synchronous wakeup?
2283 *
2284 * Put it on the run-queue if it's not already there. The "current"
2285 * thread is always on the run-queue (except when the actual
2286 * re-schedule is in progress), and as such you're allowed to do
2287 * the simpler "current->state = TASK_RUNNING" to mark yourself
2288 * runnable without the overhead of this.
2289 *
2290 * returns failure only if the task is already active.
2291 */
36c8b586 2292static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2293{
cc367732 2294 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2295 unsigned long flags;
2296 long old_state;
70b97a7f 2297 struct rq *rq;
1da177e4 2298
b85d0667
IM
2299 if (!sched_feat(SYNC_WAKEUPS))
2300 sync = 0;
2301
2398f2c6
PZ
2302#ifdef CONFIG_SMP
2303 if (sched_feat(LB_WAKEUP_UPDATE)) {
2304 struct sched_domain *sd;
2305
2306 this_cpu = raw_smp_processor_id();
2307 cpu = task_cpu(p);
2308
2309 for_each_domain(this_cpu, sd) {
758b2cdc 2310 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2311 update_shares(sd);
2312 break;
2313 }
2314 }
2315 }
2316#endif
2317
04e2f174 2318 smp_wmb();
1da177e4
LT
2319 rq = task_rq_lock(p, &flags);
2320 old_state = p->state;
2321 if (!(old_state & state))
2322 goto out;
2323
dd41f596 2324 if (p->se.on_rq)
1da177e4
LT
2325 goto out_running;
2326
2327 cpu = task_cpu(p);
cc367732 2328 orig_cpu = cpu;
1da177e4
LT
2329 this_cpu = smp_processor_id();
2330
2331#ifdef CONFIG_SMP
2332 if (unlikely(task_running(rq, p)))
2333 goto out_activate;
2334
5d2f5a61
DA
2335 cpu = p->sched_class->select_task_rq(p, sync);
2336 if (cpu != orig_cpu) {
2337 set_task_cpu(p, cpu);
1da177e4
LT
2338 task_rq_unlock(rq, &flags);
2339 /* might preempt at this point */
2340 rq = task_rq_lock(p, &flags);
2341 old_state = p->state;
2342 if (!(old_state & state))
2343 goto out;
dd41f596 2344 if (p->se.on_rq)
1da177e4
LT
2345 goto out_running;
2346
2347 this_cpu = smp_processor_id();
2348 cpu = task_cpu(p);
2349 }
2350
e7693a36
GH
2351#ifdef CONFIG_SCHEDSTATS
2352 schedstat_inc(rq, ttwu_count);
2353 if (cpu == this_cpu)
2354 schedstat_inc(rq, ttwu_local);
2355 else {
2356 struct sched_domain *sd;
2357 for_each_domain(this_cpu, sd) {
758b2cdc 2358 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2359 schedstat_inc(sd, ttwu_wake_remote);
2360 break;
2361 }
2362 }
2363 }
6d6bc0ad 2364#endif /* CONFIG_SCHEDSTATS */
e7693a36 2365
1da177e4
LT
2366out_activate:
2367#endif /* CONFIG_SMP */
cc367732
IM
2368 schedstat_inc(p, se.nr_wakeups);
2369 if (sync)
2370 schedstat_inc(p, se.nr_wakeups_sync);
2371 if (orig_cpu != cpu)
2372 schedstat_inc(p, se.nr_wakeups_migrate);
2373 if (cpu == this_cpu)
2374 schedstat_inc(p, se.nr_wakeups_local);
2375 else
2376 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2377 update_rq_clock(rq);
dd41f596 2378 activate_task(rq, p, 1);
1da177e4
LT
2379 success = 1;
2380
2381out_running:
0a16b607 2382 trace_sched_wakeup(rq, p);
15afe09b 2383 check_preempt_curr(rq, p, sync);
4ae7d5ce 2384
1da177e4 2385 p->state = TASK_RUNNING;
9a897c5a
SR
2386#ifdef CONFIG_SMP
2387 if (p->sched_class->task_wake_up)
2388 p->sched_class->task_wake_up(rq, p);
2389#endif
1da177e4 2390out:
2087a1ad
GH
2391 current->se.last_wakeup = current->se.sum_exec_runtime;
2392
1da177e4
LT
2393 task_rq_unlock(rq, &flags);
2394
2395 return success;
2396}
2397
7ad5b3a5 2398int wake_up_process(struct task_struct *p)
1da177e4 2399{
d9514f6c 2400 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2401}
1da177e4
LT
2402EXPORT_SYMBOL(wake_up_process);
2403
7ad5b3a5 2404int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2405{
2406 return try_to_wake_up(p, state, 0);
2407}
2408
1da177e4
LT
2409/*
2410 * Perform scheduler related setup for a newly forked process p.
2411 * p is forked by current.
dd41f596
IM
2412 *
2413 * __sched_fork() is basic setup used by init_idle() too:
2414 */
2415static void __sched_fork(struct task_struct *p)
2416{
dd41f596
IM
2417 p->se.exec_start = 0;
2418 p->se.sum_exec_runtime = 0;
f6cf891c 2419 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2420 p->se.last_wakeup = 0;
2421 p->se.avg_overlap = 0;
6cfb0d5d
IM
2422
2423#ifdef CONFIG_SCHEDSTATS
2424 p->se.wait_start = 0;
dd41f596
IM
2425 p->se.sum_sleep_runtime = 0;
2426 p->se.sleep_start = 0;
dd41f596
IM
2427 p->se.block_start = 0;
2428 p->se.sleep_max = 0;
2429 p->se.block_max = 0;
2430 p->se.exec_max = 0;
eba1ed4b 2431 p->se.slice_max = 0;
dd41f596 2432 p->se.wait_max = 0;
6cfb0d5d 2433#endif
476d139c 2434
fa717060 2435 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2436 p->se.on_rq = 0;
4a55bd5e 2437 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2438
e107be36
AK
2439#ifdef CONFIG_PREEMPT_NOTIFIERS
2440 INIT_HLIST_HEAD(&p->preempt_notifiers);
2441#endif
2442
1da177e4
LT
2443 /*
2444 * We mark the process as running here, but have not actually
2445 * inserted it onto the runqueue yet. This guarantees that
2446 * nobody will actually run it, and a signal or other external
2447 * event cannot wake it up and insert it on the runqueue either.
2448 */
2449 p->state = TASK_RUNNING;
dd41f596
IM
2450}
2451
2452/*
2453 * fork()/clone()-time setup:
2454 */
2455void sched_fork(struct task_struct *p, int clone_flags)
2456{
2457 int cpu = get_cpu();
2458
2459 __sched_fork(p);
2460
2461#ifdef CONFIG_SMP
2462 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2463#endif
02e4bac2 2464 set_task_cpu(p, cpu);
b29739f9
IM
2465
2466 /*
2467 * Make sure we do not leak PI boosting priority to the child:
2468 */
2469 p->prio = current->normal_prio;
2ddbf952
HS
2470 if (!rt_prio(p->prio))
2471 p->sched_class = &fair_sched_class;
b29739f9 2472
52f17b6c 2473#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2474 if (likely(sched_info_on()))
52f17b6c 2475 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2476#endif
d6077cb8 2477#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2478 p->oncpu = 0;
2479#endif
1da177e4 2480#ifdef CONFIG_PREEMPT
4866cde0 2481 /* Want to start with kernel preemption disabled. */
a1261f54 2482 task_thread_info(p)->preempt_count = 1;
1da177e4 2483#endif
476d139c 2484 put_cpu();
1da177e4
LT
2485}
2486
2487/*
2488 * wake_up_new_task - wake up a newly created task for the first time.
2489 *
2490 * This function will do some initial scheduler statistics housekeeping
2491 * that must be done for every newly created context, then puts the task
2492 * on the runqueue and wakes it.
2493 */
7ad5b3a5 2494void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2495{
2496 unsigned long flags;
dd41f596 2497 struct rq *rq;
1da177e4
LT
2498
2499 rq = task_rq_lock(p, &flags);
147cbb4b 2500 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2501 update_rq_clock(rq);
1da177e4
LT
2502
2503 p->prio = effective_prio(p);
2504
b9dca1e0 2505 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2506 activate_task(rq, p, 0);
1da177e4 2507 } else {
1da177e4 2508 /*
dd41f596
IM
2509 * Let the scheduling class do new task startup
2510 * management (if any):
1da177e4 2511 */
ee0827d8 2512 p->sched_class->task_new(rq, p);
c09595f6 2513 inc_nr_running(rq);
1da177e4 2514 }
0a16b607 2515 trace_sched_wakeup_new(rq, p);
15afe09b 2516 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2517#ifdef CONFIG_SMP
2518 if (p->sched_class->task_wake_up)
2519 p->sched_class->task_wake_up(rq, p);
2520#endif
dd41f596 2521 task_rq_unlock(rq, &flags);
1da177e4
LT
2522}
2523
e107be36
AK
2524#ifdef CONFIG_PREEMPT_NOTIFIERS
2525
2526/**
421cee29
RD
2527 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2528 * @notifier: notifier struct to register
e107be36
AK
2529 */
2530void preempt_notifier_register(struct preempt_notifier *notifier)
2531{
2532 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2533}
2534EXPORT_SYMBOL_GPL(preempt_notifier_register);
2535
2536/**
2537 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2538 * @notifier: notifier struct to unregister
e107be36
AK
2539 *
2540 * This is safe to call from within a preemption notifier.
2541 */
2542void preempt_notifier_unregister(struct preempt_notifier *notifier)
2543{
2544 hlist_del(&notifier->link);
2545}
2546EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2547
2548static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2549{
2550 struct preempt_notifier *notifier;
2551 struct hlist_node *node;
2552
2553 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2554 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2555}
2556
2557static void
2558fire_sched_out_preempt_notifiers(struct task_struct *curr,
2559 struct task_struct *next)
2560{
2561 struct preempt_notifier *notifier;
2562 struct hlist_node *node;
2563
2564 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2565 notifier->ops->sched_out(notifier, next);
2566}
2567
6d6bc0ad 2568#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2569
2570static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2571{
2572}
2573
2574static void
2575fire_sched_out_preempt_notifiers(struct task_struct *curr,
2576 struct task_struct *next)
2577{
2578}
2579
6d6bc0ad 2580#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2581
4866cde0
NP
2582/**
2583 * prepare_task_switch - prepare to switch tasks
2584 * @rq: the runqueue preparing to switch
421cee29 2585 * @prev: the current task that is being switched out
4866cde0
NP
2586 * @next: the task we are going to switch to.
2587 *
2588 * This is called with the rq lock held and interrupts off. It must
2589 * be paired with a subsequent finish_task_switch after the context
2590 * switch.
2591 *
2592 * prepare_task_switch sets up locking and calls architecture specific
2593 * hooks.
2594 */
e107be36
AK
2595static inline void
2596prepare_task_switch(struct rq *rq, struct task_struct *prev,
2597 struct task_struct *next)
4866cde0 2598{
e107be36 2599 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2600 prepare_lock_switch(rq, next);
2601 prepare_arch_switch(next);
2602}
2603
1da177e4
LT
2604/**
2605 * finish_task_switch - clean up after a task-switch
344babaa 2606 * @rq: runqueue associated with task-switch
1da177e4
LT
2607 * @prev: the thread we just switched away from.
2608 *
4866cde0
NP
2609 * finish_task_switch must be called after the context switch, paired
2610 * with a prepare_task_switch call before the context switch.
2611 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2612 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2613 *
2614 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2615 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2616 * with the lock held can cause deadlocks; see schedule() for
2617 * details.)
2618 */
a9957449 2619static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2620 __releases(rq->lock)
2621{
1da177e4 2622 struct mm_struct *mm = rq->prev_mm;
55a101f8 2623 long prev_state;
967fc046
GH
2624#ifdef CONFIG_SMP
2625 int post_schedule = 0;
2626
2627 if (current->sched_class->needs_post_schedule)
2628 post_schedule = current->sched_class->needs_post_schedule(rq);
2629#endif
1da177e4
LT
2630
2631 rq->prev_mm = NULL;
2632
2633 /*
2634 * A task struct has one reference for the use as "current".
c394cc9f 2635 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2636 * schedule one last time. The schedule call will never return, and
2637 * the scheduled task must drop that reference.
c394cc9f 2638 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2639 * still held, otherwise prev could be scheduled on another cpu, die
2640 * there before we look at prev->state, and then the reference would
2641 * be dropped twice.
2642 * Manfred Spraul <manfred@colorfullife.com>
2643 */
55a101f8 2644 prev_state = prev->state;
4866cde0
NP
2645 finish_arch_switch(prev);
2646 finish_lock_switch(rq, prev);
9a897c5a 2647#ifdef CONFIG_SMP
967fc046 2648 if (post_schedule)
9a897c5a
SR
2649 current->sched_class->post_schedule(rq);
2650#endif
e8fa1362 2651
e107be36 2652 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2653 if (mm)
2654 mmdrop(mm);
c394cc9f 2655 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2656 /*
2657 * Remove function-return probe instances associated with this
2658 * task and put them back on the free list.
9761eea8 2659 */
c6fd91f0 2660 kprobe_flush_task(prev);
1da177e4 2661 put_task_struct(prev);
c6fd91f0 2662 }
1da177e4
LT
2663}
2664
2665/**
2666 * schedule_tail - first thing a freshly forked thread must call.
2667 * @prev: the thread we just switched away from.
2668 */
36c8b586 2669asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2670 __releases(rq->lock)
2671{
70b97a7f
IM
2672 struct rq *rq = this_rq();
2673
4866cde0
NP
2674 finish_task_switch(rq, prev);
2675#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2676 /* In this case, finish_task_switch does not reenable preemption */
2677 preempt_enable();
2678#endif
1da177e4 2679 if (current->set_child_tid)
b488893a 2680 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2681}
2682
2683/*
2684 * context_switch - switch to the new MM and the new
2685 * thread's register state.
2686 */
dd41f596 2687static inline void
70b97a7f 2688context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2689 struct task_struct *next)
1da177e4 2690{
dd41f596 2691 struct mm_struct *mm, *oldmm;
1da177e4 2692
e107be36 2693 prepare_task_switch(rq, prev, next);
0a16b607 2694 trace_sched_switch(rq, prev, next);
dd41f596
IM
2695 mm = next->mm;
2696 oldmm = prev->active_mm;
9226d125
ZA
2697 /*
2698 * For paravirt, this is coupled with an exit in switch_to to
2699 * combine the page table reload and the switch backend into
2700 * one hypercall.
2701 */
2702 arch_enter_lazy_cpu_mode();
2703
dd41f596 2704 if (unlikely(!mm)) {
1da177e4
LT
2705 next->active_mm = oldmm;
2706 atomic_inc(&oldmm->mm_count);
2707 enter_lazy_tlb(oldmm, next);
2708 } else
2709 switch_mm(oldmm, mm, next);
2710
dd41f596 2711 if (unlikely(!prev->mm)) {
1da177e4 2712 prev->active_mm = NULL;
1da177e4
LT
2713 rq->prev_mm = oldmm;
2714 }
3a5f5e48
IM
2715 /*
2716 * Since the runqueue lock will be released by the next
2717 * task (which is an invalid locking op but in the case
2718 * of the scheduler it's an obvious special-case), so we
2719 * do an early lockdep release here:
2720 */
2721#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2722 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2723#endif
1da177e4
LT
2724
2725 /* Here we just switch the register state and the stack. */
2726 switch_to(prev, next, prev);
2727
dd41f596
IM
2728 barrier();
2729 /*
2730 * this_rq must be evaluated again because prev may have moved
2731 * CPUs since it called schedule(), thus the 'rq' on its stack
2732 * frame will be invalid.
2733 */
2734 finish_task_switch(this_rq(), prev);
1da177e4
LT
2735}
2736
2737/*
2738 * nr_running, nr_uninterruptible and nr_context_switches:
2739 *
2740 * externally visible scheduler statistics: current number of runnable
2741 * threads, current number of uninterruptible-sleeping threads, total
2742 * number of context switches performed since bootup.
2743 */
2744unsigned long nr_running(void)
2745{
2746 unsigned long i, sum = 0;
2747
2748 for_each_online_cpu(i)
2749 sum += cpu_rq(i)->nr_running;
2750
2751 return sum;
2752}
2753
2754unsigned long nr_uninterruptible(void)
2755{
2756 unsigned long i, sum = 0;
2757
0a945022 2758 for_each_possible_cpu(i)
1da177e4
LT
2759 sum += cpu_rq(i)->nr_uninterruptible;
2760
2761 /*
2762 * Since we read the counters lockless, it might be slightly
2763 * inaccurate. Do not allow it to go below zero though:
2764 */
2765 if (unlikely((long)sum < 0))
2766 sum = 0;
2767
2768 return sum;
2769}
2770
2771unsigned long long nr_context_switches(void)
2772{
cc94abfc
SR
2773 int i;
2774 unsigned long long sum = 0;
1da177e4 2775
0a945022 2776 for_each_possible_cpu(i)
1da177e4
LT
2777 sum += cpu_rq(i)->nr_switches;
2778
2779 return sum;
2780}
2781
2782unsigned long nr_iowait(void)
2783{
2784 unsigned long i, sum = 0;
2785
0a945022 2786 for_each_possible_cpu(i)
1da177e4
LT
2787 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2788
2789 return sum;
2790}
2791
db1b1fef
JS
2792unsigned long nr_active(void)
2793{
2794 unsigned long i, running = 0, uninterruptible = 0;
2795
2796 for_each_online_cpu(i) {
2797 running += cpu_rq(i)->nr_running;
2798 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2799 }
2800
2801 if (unlikely((long)uninterruptible < 0))
2802 uninterruptible = 0;
2803
2804 return running + uninterruptible;
2805}
2806
48f24c4d 2807/*
dd41f596
IM
2808 * Update rq->cpu_load[] statistics. This function is usually called every
2809 * scheduler tick (TICK_NSEC).
48f24c4d 2810 */
dd41f596 2811static void update_cpu_load(struct rq *this_rq)
48f24c4d 2812{
495eca49 2813 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2814 int i, scale;
2815
2816 this_rq->nr_load_updates++;
dd41f596
IM
2817
2818 /* Update our load: */
2819 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2820 unsigned long old_load, new_load;
2821
2822 /* scale is effectively 1 << i now, and >> i divides by scale */
2823
2824 old_load = this_rq->cpu_load[i];
2825 new_load = this_load;
a25707f3
IM
2826 /*
2827 * Round up the averaging division if load is increasing. This
2828 * prevents us from getting stuck on 9 if the load is 10, for
2829 * example.
2830 */
2831 if (new_load > old_load)
2832 new_load += scale-1;
dd41f596
IM
2833 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2834 }
48f24c4d
IM
2835}
2836
dd41f596
IM
2837#ifdef CONFIG_SMP
2838
1da177e4
LT
2839/*
2840 * double_rq_lock - safely lock two runqueues
2841 *
2842 * Note this does not disable interrupts like task_rq_lock,
2843 * you need to do so manually before calling.
2844 */
70b97a7f 2845static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2846 __acquires(rq1->lock)
2847 __acquires(rq2->lock)
2848{
054b9108 2849 BUG_ON(!irqs_disabled());
1da177e4
LT
2850 if (rq1 == rq2) {
2851 spin_lock(&rq1->lock);
2852 __acquire(rq2->lock); /* Fake it out ;) */
2853 } else {
c96d145e 2854 if (rq1 < rq2) {
1da177e4 2855 spin_lock(&rq1->lock);
5e710e37 2856 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2857 } else {
2858 spin_lock(&rq2->lock);
5e710e37 2859 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2860 }
2861 }
6e82a3be
IM
2862 update_rq_clock(rq1);
2863 update_rq_clock(rq2);
1da177e4
LT
2864}
2865
2866/*
2867 * double_rq_unlock - safely unlock two runqueues
2868 *
2869 * Note this does not restore interrupts like task_rq_unlock,
2870 * you need to do so manually after calling.
2871 */
70b97a7f 2872static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2873 __releases(rq1->lock)
2874 __releases(rq2->lock)
2875{
2876 spin_unlock(&rq1->lock);
2877 if (rq1 != rq2)
2878 spin_unlock(&rq2->lock);
2879 else
2880 __release(rq2->lock);
2881}
2882
1da177e4
LT
2883/*
2884 * If dest_cpu is allowed for this process, migrate the task to it.
2885 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2886 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2887 * the cpu_allowed mask is restored.
2888 */
36c8b586 2889static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2890{
70b97a7f 2891 struct migration_req req;
1da177e4 2892 unsigned long flags;
70b97a7f 2893 struct rq *rq;
1da177e4
LT
2894
2895 rq = task_rq_lock(p, &flags);
96f874e2 2896 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2897 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2898 goto out;
2899
0a16b607 2900 trace_sched_migrate_task(rq, p, dest_cpu);
1da177e4
LT
2901 /* force the process onto the specified CPU */
2902 if (migrate_task(p, dest_cpu, &req)) {
2903 /* Need to wait for migration thread (might exit: take ref). */
2904 struct task_struct *mt = rq->migration_thread;
36c8b586 2905
1da177e4
LT
2906 get_task_struct(mt);
2907 task_rq_unlock(rq, &flags);
2908 wake_up_process(mt);
2909 put_task_struct(mt);
2910 wait_for_completion(&req.done);
36c8b586 2911
1da177e4
LT
2912 return;
2913 }
2914out:
2915 task_rq_unlock(rq, &flags);
2916}
2917
2918/*
476d139c
NP
2919 * sched_exec - execve() is a valuable balancing opportunity, because at
2920 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2921 */
2922void sched_exec(void)
2923{
1da177e4 2924 int new_cpu, this_cpu = get_cpu();
476d139c 2925 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2926 put_cpu();
476d139c
NP
2927 if (new_cpu != this_cpu)
2928 sched_migrate_task(current, new_cpu);
1da177e4
LT
2929}
2930
2931/*
2932 * pull_task - move a task from a remote runqueue to the local runqueue.
2933 * Both runqueues must be locked.
2934 */
dd41f596
IM
2935static void pull_task(struct rq *src_rq, struct task_struct *p,
2936 struct rq *this_rq, int this_cpu)
1da177e4 2937{
2e1cb74a 2938 deactivate_task(src_rq, p, 0);
1da177e4 2939 set_task_cpu(p, this_cpu);
dd41f596 2940 activate_task(this_rq, p, 0);
1da177e4
LT
2941 /*
2942 * Note that idle threads have a prio of MAX_PRIO, for this test
2943 * to be always true for them.
2944 */
15afe09b 2945 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2946}
2947
2948/*
2949 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2950 */
858119e1 2951static
70b97a7f 2952int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2953 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2954 int *all_pinned)
1da177e4
LT
2955{
2956 /*
2957 * We do not migrate tasks that are:
2958 * 1) running (obviously), or
2959 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2960 * 3) are cache-hot on their current CPU.
2961 */
96f874e2 2962 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 2963 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2964 return 0;
cc367732 2965 }
81026794
NP
2966 *all_pinned = 0;
2967
cc367732
IM
2968 if (task_running(rq, p)) {
2969 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2970 return 0;
cc367732 2971 }
1da177e4 2972
da84d961
IM
2973 /*
2974 * Aggressive migration if:
2975 * 1) task is cache cold, or
2976 * 2) too many balance attempts have failed.
2977 */
2978
6bc1665b
IM
2979 if (!task_hot(p, rq->clock, sd) ||
2980 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2981#ifdef CONFIG_SCHEDSTATS
cc367732 2982 if (task_hot(p, rq->clock, sd)) {
da84d961 2983 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2984 schedstat_inc(p, se.nr_forced_migrations);
2985 }
da84d961
IM
2986#endif
2987 return 1;
2988 }
2989
cc367732
IM
2990 if (task_hot(p, rq->clock, sd)) {
2991 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2992 return 0;
cc367732 2993 }
1da177e4
LT
2994 return 1;
2995}
2996
e1d1484f
PW
2997static unsigned long
2998balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2999 unsigned long max_load_move, struct sched_domain *sd,
3000 enum cpu_idle_type idle, int *all_pinned,
3001 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3002{
051c6764 3003 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3004 struct task_struct *p;
3005 long rem_load_move = max_load_move;
1da177e4 3006
e1d1484f 3007 if (max_load_move == 0)
1da177e4
LT
3008 goto out;
3009
81026794
NP
3010 pinned = 1;
3011
1da177e4 3012 /*
dd41f596 3013 * Start the load-balancing iterator:
1da177e4 3014 */
dd41f596
IM
3015 p = iterator->start(iterator->arg);
3016next:
b82d9fdd 3017 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3018 goto out;
051c6764
PZ
3019
3020 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3021 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3022 p = iterator->next(iterator->arg);
3023 goto next;
1da177e4
LT
3024 }
3025
dd41f596 3026 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3027 pulled++;
dd41f596 3028 rem_load_move -= p->se.load.weight;
1da177e4 3029
7e96fa58
GH
3030#ifdef CONFIG_PREEMPT
3031 /*
3032 * NEWIDLE balancing is a source of latency, so preemptible kernels
3033 * will stop after the first task is pulled to minimize the critical
3034 * section.
3035 */
3036 if (idle == CPU_NEWLY_IDLE)
3037 goto out;
3038#endif
3039
2dd73a4f 3040 /*
b82d9fdd 3041 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3042 */
e1d1484f 3043 if (rem_load_move > 0) {
a4ac01c3
PW
3044 if (p->prio < *this_best_prio)
3045 *this_best_prio = p->prio;
dd41f596
IM
3046 p = iterator->next(iterator->arg);
3047 goto next;
1da177e4
LT
3048 }
3049out:
3050 /*
e1d1484f 3051 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3052 * so we can safely collect pull_task() stats here rather than
3053 * inside pull_task().
3054 */
3055 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3056
3057 if (all_pinned)
3058 *all_pinned = pinned;
e1d1484f
PW
3059
3060 return max_load_move - rem_load_move;
1da177e4
LT
3061}
3062
dd41f596 3063/*
43010659
PW
3064 * move_tasks tries to move up to max_load_move weighted load from busiest to
3065 * this_rq, as part of a balancing operation within domain "sd".
3066 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3067 *
3068 * Called with both runqueues locked.
3069 */
3070static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3071 unsigned long max_load_move,
dd41f596
IM
3072 struct sched_domain *sd, enum cpu_idle_type idle,
3073 int *all_pinned)
3074{
5522d5d5 3075 const struct sched_class *class = sched_class_highest;
43010659 3076 unsigned long total_load_moved = 0;
a4ac01c3 3077 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3078
3079 do {
43010659
PW
3080 total_load_moved +=
3081 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3082 max_load_move - total_load_moved,
a4ac01c3 3083 sd, idle, all_pinned, &this_best_prio);
dd41f596 3084 class = class->next;
c4acb2c0 3085
7e96fa58
GH
3086#ifdef CONFIG_PREEMPT
3087 /*
3088 * NEWIDLE balancing is a source of latency, so preemptible
3089 * kernels will stop after the first task is pulled to minimize
3090 * the critical section.
3091 */
c4acb2c0
GH
3092 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3093 break;
7e96fa58 3094#endif
43010659 3095 } while (class && max_load_move > total_load_moved);
dd41f596 3096
43010659
PW
3097 return total_load_moved > 0;
3098}
3099
e1d1484f
PW
3100static int
3101iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3102 struct sched_domain *sd, enum cpu_idle_type idle,
3103 struct rq_iterator *iterator)
3104{
3105 struct task_struct *p = iterator->start(iterator->arg);
3106 int pinned = 0;
3107
3108 while (p) {
3109 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3110 pull_task(busiest, p, this_rq, this_cpu);
3111 /*
3112 * Right now, this is only the second place pull_task()
3113 * is called, so we can safely collect pull_task()
3114 * stats here rather than inside pull_task().
3115 */
3116 schedstat_inc(sd, lb_gained[idle]);
3117
3118 return 1;
3119 }
3120 p = iterator->next(iterator->arg);
3121 }
3122
3123 return 0;
3124}
3125
43010659
PW
3126/*
3127 * move_one_task tries to move exactly one task from busiest to this_rq, as
3128 * part of active balancing operations within "domain".
3129 * Returns 1 if successful and 0 otherwise.
3130 *
3131 * Called with both runqueues locked.
3132 */
3133static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3134 struct sched_domain *sd, enum cpu_idle_type idle)
3135{
5522d5d5 3136 const struct sched_class *class;
43010659
PW
3137
3138 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3139 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3140 return 1;
3141
3142 return 0;
dd41f596
IM
3143}
3144
1da177e4
LT
3145/*
3146 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3147 * domain. It calculates and returns the amount of weighted load which
3148 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3149 */
3150static struct sched_group *
3151find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3152 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3153 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3154{
3155 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3156 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3157 unsigned long max_pull;
2dd73a4f
PW
3158 unsigned long busiest_load_per_task, busiest_nr_running;
3159 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3160 int load_idx, group_imb = 0;
5c45bf27
SS
3161#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3162 int power_savings_balance = 1;
3163 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3164 unsigned long min_nr_running = ULONG_MAX;
3165 struct sched_group *group_min = NULL, *group_leader = NULL;
3166#endif
1da177e4
LT
3167
3168 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3169 busiest_load_per_task = busiest_nr_running = 0;
3170 this_load_per_task = this_nr_running = 0;
408ed066 3171
d15bcfdb 3172 if (idle == CPU_NOT_IDLE)
7897986b 3173 load_idx = sd->busy_idx;
d15bcfdb 3174 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3175 load_idx = sd->newidle_idx;
3176 else
3177 load_idx = sd->idle_idx;
1da177e4
LT
3178
3179 do {
908a7c1b 3180 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3181 int local_group;
3182 int i;
908a7c1b 3183 int __group_imb = 0;
783609c6 3184 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3185 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3186 unsigned long sum_avg_load_per_task;
3187 unsigned long avg_load_per_task;
1da177e4 3188
758b2cdc
RR
3189 local_group = cpumask_test_cpu(this_cpu,
3190 sched_group_cpus(group));
1da177e4 3191
783609c6 3192 if (local_group)
758b2cdc 3193 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3194
1da177e4 3195 /* Tally up the load of all CPUs in the group */
2dd73a4f 3196 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3197 sum_avg_load_per_task = avg_load_per_task = 0;
3198
908a7c1b
KC
3199 max_cpu_load = 0;
3200 min_cpu_load = ~0UL;
1da177e4 3201
758b2cdc
RR
3202 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3203 struct rq *rq = cpu_rq(i);
2dd73a4f 3204
9439aab8 3205 if (*sd_idle && rq->nr_running)
5969fe06
NP
3206 *sd_idle = 0;
3207
1da177e4 3208 /* Bias balancing toward cpus of our domain */
783609c6
SS
3209 if (local_group) {
3210 if (idle_cpu(i) && !first_idle_cpu) {
3211 first_idle_cpu = 1;
3212 balance_cpu = i;
3213 }
3214
a2000572 3215 load = target_load(i, load_idx);
908a7c1b 3216 } else {
a2000572 3217 load = source_load(i, load_idx);
908a7c1b
KC
3218 if (load > max_cpu_load)
3219 max_cpu_load = load;
3220 if (min_cpu_load > load)
3221 min_cpu_load = load;
3222 }
1da177e4
LT
3223
3224 avg_load += load;
2dd73a4f 3225 sum_nr_running += rq->nr_running;
dd41f596 3226 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3227
3228 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3229 }
3230
783609c6
SS
3231 /*
3232 * First idle cpu or the first cpu(busiest) in this sched group
3233 * is eligible for doing load balancing at this and above
9439aab8
SS
3234 * domains. In the newly idle case, we will allow all the cpu's
3235 * to do the newly idle load balance.
783609c6 3236 */
9439aab8
SS
3237 if (idle != CPU_NEWLY_IDLE && local_group &&
3238 balance_cpu != this_cpu && balance) {
783609c6
SS
3239 *balance = 0;
3240 goto ret;
3241 }
3242
1da177e4 3243 total_load += avg_load;
5517d86b 3244 total_pwr += group->__cpu_power;
1da177e4
LT
3245
3246 /* Adjust by relative CPU power of the group */
5517d86b
ED
3247 avg_load = sg_div_cpu_power(group,
3248 avg_load * SCHED_LOAD_SCALE);
1da177e4 3249
408ed066
PZ
3250
3251 /*
3252 * Consider the group unbalanced when the imbalance is larger
3253 * than the average weight of two tasks.
3254 *
3255 * APZ: with cgroup the avg task weight can vary wildly and
3256 * might not be a suitable number - should we keep a
3257 * normalized nr_running number somewhere that negates
3258 * the hierarchy?
3259 */
3260 avg_load_per_task = sg_div_cpu_power(group,
3261 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3262
3263 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3264 __group_imb = 1;
3265
5517d86b 3266 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3267
1da177e4
LT
3268 if (local_group) {
3269 this_load = avg_load;
3270 this = group;
2dd73a4f
PW
3271 this_nr_running = sum_nr_running;
3272 this_load_per_task = sum_weighted_load;
3273 } else if (avg_load > max_load &&
908a7c1b 3274 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3275 max_load = avg_load;
3276 busiest = group;
2dd73a4f
PW
3277 busiest_nr_running = sum_nr_running;
3278 busiest_load_per_task = sum_weighted_load;
908a7c1b 3279 group_imb = __group_imb;
1da177e4 3280 }
5c45bf27
SS
3281
3282#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3283 /*
3284 * Busy processors will not participate in power savings
3285 * balance.
3286 */
dd41f596
IM
3287 if (idle == CPU_NOT_IDLE ||
3288 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3289 goto group_next;
5c45bf27
SS
3290
3291 /*
3292 * If the local group is idle or completely loaded
3293 * no need to do power savings balance at this domain
3294 */
3295 if (local_group && (this_nr_running >= group_capacity ||
3296 !this_nr_running))
3297 power_savings_balance = 0;
3298
dd41f596 3299 /*
5c45bf27
SS
3300 * If a group is already running at full capacity or idle,
3301 * don't include that group in power savings calculations
dd41f596
IM
3302 */
3303 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3304 || !sum_nr_running)
dd41f596 3305 goto group_next;
5c45bf27 3306
dd41f596 3307 /*
5c45bf27 3308 * Calculate the group which has the least non-idle load.
dd41f596
IM
3309 * This is the group from where we need to pick up the load
3310 * for saving power
3311 */
3312 if ((sum_nr_running < min_nr_running) ||
3313 (sum_nr_running == min_nr_running &&
d5679bd1 3314 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3315 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3316 group_min = group;
3317 min_nr_running = sum_nr_running;
5c45bf27
SS
3318 min_load_per_task = sum_weighted_load /
3319 sum_nr_running;
dd41f596 3320 }
5c45bf27 3321
dd41f596 3322 /*
5c45bf27 3323 * Calculate the group which is almost near its
dd41f596
IM
3324 * capacity but still has some space to pick up some load
3325 * from other group and save more power
3326 */
3327 if (sum_nr_running <= group_capacity - 1) {
3328 if (sum_nr_running > leader_nr_running ||
3329 (sum_nr_running == leader_nr_running &&
d5679bd1 3330 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3331 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3332 group_leader = group;
3333 leader_nr_running = sum_nr_running;
3334 }
48f24c4d 3335 }
5c45bf27
SS
3336group_next:
3337#endif
1da177e4
LT
3338 group = group->next;
3339 } while (group != sd->groups);
3340
2dd73a4f 3341 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3342 goto out_balanced;
3343
3344 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3345
3346 if (this_load >= avg_load ||
3347 100*max_load <= sd->imbalance_pct*this_load)
3348 goto out_balanced;
3349
2dd73a4f 3350 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3351 if (group_imb)
3352 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3353
1da177e4
LT
3354 /*
3355 * We're trying to get all the cpus to the average_load, so we don't
3356 * want to push ourselves above the average load, nor do we wish to
3357 * reduce the max loaded cpu below the average load, as either of these
3358 * actions would just result in more rebalancing later, and ping-pong
3359 * tasks around. Thus we look for the minimum possible imbalance.
3360 * Negative imbalances (*we* are more loaded than anyone else) will
3361 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3362 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3363 * appear as very large values with unsigned longs.
3364 */
2dd73a4f
PW
3365 if (max_load <= busiest_load_per_task)
3366 goto out_balanced;
3367
3368 /*
3369 * In the presence of smp nice balancing, certain scenarios can have
3370 * max load less than avg load(as we skip the groups at or below
3371 * its cpu_power, while calculating max_load..)
3372 */
3373 if (max_load < avg_load) {
3374 *imbalance = 0;
3375 goto small_imbalance;
3376 }
0c117f1b
SS
3377
3378 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3379 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3380
1da177e4 3381 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3382 *imbalance = min(max_pull * busiest->__cpu_power,
3383 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3384 / SCHED_LOAD_SCALE;
3385
2dd73a4f
PW
3386 /*
3387 * if *imbalance is less than the average load per runnable task
3388 * there is no gaurantee that any tasks will be moved so we'll have
3389 * a think about bumping its value to force at least one task to be
3390 * moved
3391 */
7fd0d2dd 3392 if (*imbalance < busiest_load_per_task) {
48f24c4d 3393 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3394 unsigned int imbn;
3395
3396small_imbalance:
3397 pwr_move = pwr_now = 0;
3398 imbn = 2;
3399 if (this_nr_running) {
3400 this_load_per_task /= this_nr_running;
3401 if (busiest_load_per_task > this_load_per_task)
3402 imbn = 1;
3403 } else
408ed066 3404 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3405
01c8c57d 3406 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3407 busiest_load_per_task * imbn) {
2dd73a4f 3408 *imbalance = busiest_load_per_task;
1da177e4
LT
3409 return busiest;
3410 }
3411
3412 /*
3413 * OK, we don't have enough imbalance to justify moving tasks,
3414 * however we may be able to increase total CPU power used by
3415 * moving them.
3416 */
3417
5517d86b
ED
3418 pwr_now += busiest->__cpu_power *
3419 min(busiest_load_per_task, max_load);
3420 pwr_now += this->__cpu_power *
3421 min(this_load_per_task, this_load);
1da177e4
LT
3422 pwr_now /= SCHED_LOAD_SCALE;
3423
3424 /* Amount of load we'd subtract */
5517d86b
ED
3425 tmp = sg_div_cpu_power(busiest,
3426 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3427 if (max_load > tmp)
5517d86b 3428 pwr_move += busiest->__cpu_power *
2dd73a4f 3429 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3430
3431 /* Amount of load we'd add */
5517d86b 3432 if (max_load * busiest->__cpu_power <
33859f7f 3433 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3434 tmp = sg_div_cpu_power(this,
3435 max_load * busiest->__cpu_power);
1da177e4 3436 else
5517d86b
ED
3437 tmp = sg_div_cpu_power(this,
3438 busiest_load_per_task * SCHED_LOAD_SCALE);
3439 pwr_move += this->__cpu_power *
3440 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3441 pwr_move /= SCHED_LOAD_SCALE;
3442
3443 /* Move if we gain throughput */
7fd0d2dd
SS
3444 if (pwr_move > pwr_now)
3445 *imbalance = busiest_load_per_task;
1da177e4
LT
3446 }
3447
1da177e4
LT
3448 return busiest;
3449
3450out_balanced:
5c45bf27 3451#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3452 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3453 goto ret;
1da177e4 3454
5c45bf27
SS
3455 if (this == group_leader && group_leader != group_min) {
3456 *imbalance = min_load_per_task;
7a09b1a2
VS
3457 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3458 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3459 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3460 }
5c45bf27
SS
3461 return group_min;
3462 }
5c45bf27 3463#endif
783609c6 3464ret:
1da177e4
LT
3465 *imbalance = 0;
3466 return NULL;
3467}
3468
3469/*
3470 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3471 */
70b97a7f 3472static struct rq *
d15bcfdb 3473find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3474 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3475{
70b97a7f 3476 struct rq *busiest = NULL, *rq;
2dd73a4f 3477 unsigned long max_load = 0;
1da177e4
LT
3478 int i;
3479
758b2cdc 3480 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3481 unsigned long wl;
0a2966b4 3482
96f874e2 3483 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3484 continue;
3485
48f24c4d 3486 rq = cpu_rq(i);
dd41f596 3487 wl = weighted_cpuload(i);
2dd73a4f 3488
dd41f596 3489 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3490 continue;
1da177e4 3491
dd41f596
IM
3492 if (wl > max_load) {
3493 max_load = wl;
48f24c4d 3494 busiest = rq;
1da177e4
LT
3495 }
3496 }
3497
3498 return busiest;
3499}
3500
77391d71
NP
3501/*
3502 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3503 * so long as it is large enough.
3504 */
3505#define MAX_PINNED_INTERVAL 512
3506
1da177e4
LT
3507/*
3508 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3509 * tasks if there is an imbalance.
1da177e4 3510 */
70b97a7f 3511static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3512 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3513 int *balance, struct cpumask *cpus)
1da177e4 3514{
43010659 3515 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3516 struct sched_group *group;
1da177e4 3517 unsigned long imbalance;
70b97a7f 3518 struct rq *busiest;
fe2eea3f 3519 unsigned long flags;
5969fe06 3520
96f874e2 3521 cpumask_setall(cpus);
7c16ec58 3522
89c4710e
SS
3523 /*
3524 * When power savings policy is enabled for the parent domain, idle
3525 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3526 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3527 * portraying it as CPU_NOT_IDLE.
89c4710e 3528 */
d15bcfdb 3529 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3530 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3531 sd_idle = 1;
1da177e4 3532
2d72376b 3533 schedstat_inc(sd, lb_count[idle]);
1da177e4 3534
0a2966b4 3535redo:
c8cba857 3536 update_shares(sd);
0a2966b4 3537 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3538 cpus, balance);
783609c6 3539
06066714 3540 if (*balance == 0)
783609c6 3541 goto out_balanced;
783609c6 3542
1da177e4
LT
3543 if (!group) {
3544 schedstat_inc(sd, lb_nobusyg[idle]);
3545 goto out_balanced;
3546 }
3547
7c16ec58 3548 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3549 if (!busiest) {
3550 schedstat_inc(sd, lb_nobusyq[idle]);
3551 goto out_balanced;
3552 }
3553
db935dbd 3554 BUG_ON(busiest == this_rq);
1da177e4
LT
3555
3556 schedstat_add(sd, lb_imbalance[idle], imbalance);
3557
43010659 3558 ld_moved = 0;
1da177e4
LT
3559 if (busiest->nr_running > 1) {
3560 /*
3561 * Attempt to move tasks. If find_busiest_group has found
3562 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3563 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3564 * correctly treated as an imbalance.
3565 */
fe2eea3f 3566 local_irq_save(flags);
e17224bf 3567 double_rq_lock(this_rq, busiest);
43010659 3568 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3569 imbalance, sd, idle, &all_pinned);
e17224bf 3570 double_rq_unlock(this_rq, busiest);
fe2eea3f 3571 local_irq_restore(flags);
81026794 3572
46cb4b7c
SS
3573 /*
3574 * some other cpu did the load balance for us.
3575 */
43010659 3576 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3577 resched_cpu(this_cpu);
3578
81026794 3579 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3580 if (unlikely(all_pinned)) {
96f874e2
RR
3581 cpumask_clear_cpu(cpu_of(busiest), cpus);
3582 if (!cpumask_empty(cpus))
0a2966b4 3583 goto redo;
81026794 3584 goto out_balanced;
0a2966b4 3585 }
1da177e4 3586 }
81026794 3587
43010659 3588 if (!ld_moved) {
1da177e4
LT
3589 schedstat_inc(sd, lb_failed[idle]);
3590 sd->nr_balance_failed++;
3591
3592 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3593
fe2eea3f 3594 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3595
3596 /* don't kick the migration_thread, if the curr
3597 * task on busiest cpu can't be moved to this_cpu
3598 */
96f874e2
RR
3599 if (!cpumask_test_cpu(this_cpu,
3600 &busiest->curr->cpus_allowed)) {
fe2eea3f 3601 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3602 all_pinned = 1;
3603 goto out_one_pinned;
3604 }
3605
1da177e4
LT
3606 if (!busiest->active_balance) {
3607 busiest->active_balance = 1;
3608 busiest->push_cpu = this_cpu;
81026794 3609 active_balance = 1;
1da177e4 3610 }
fe2eea3f 3611 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3612 if (active_balance)
1da177e4
LT
3613 wake_up_process(busiest->migration_thread);
3614
3615 /*
3616 * We've kicked active balancing, reset the failure
3617 * counter.
3618 */
39507451 3619 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3620 }
81026794 3621 } else
1da177e4
LT
3622 sd->nr_balance_failed = 0;
3623
81026794 3624 if (likely(!active_balance)) {
1da177e4
LT
3625 /* We were unbalanced, so reset the balancing interval */
3626 sd->balance_interval = sd->min_interval;
81026794
NP
3627 } else {
3628 /*
3629 * If we've begun active balancing, start to back off. This
3630 * case may not be covered by the all_pinned logic if there
3631 * is only 1 task on the busy runqueue (because we don't call
3632 * move_tasks).
3633 */
3634 if (sd->balance_interval < sd->max_interval)
3635 sd->balance_interval *= 2;
1da177e4
LT
3636 }
3637
43010659 3638 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3639 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3640 ld_moved = -1;
3641
3642 goto out;
1da177e4
LT
3643
3644out_balanced:
1da177e4
LT
3645 schedstat_inc(sd, lb_balanced[idle]);
3646
16cfb1c0 3647 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3648
3649out_one_pinned:
1da177e4 3650 /* tune up the balancing interval */
77391d71
NP
3651 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3652 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3653 sd->balance_interval *= 2;
3654
48f24c4d 3655 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3656 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3657 ld_moved = -1;
3658 else
3659 ld_moved = 0;
3660out:
c8cba857
PZ
3661 if (ld_moved)
3662 update_shares(sd);
c09595f6 3663 return ld_moved;
1da177e4
LT
3664}
3665
3666/*
3667 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3668 * tasks if there is an imbalance.
3669 *
d15bcfdb 3670 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3671 * this_rq is locked.
3672 */
48f24c4d 3673static int
7c16ec58 3674load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3675 struct cpumask *cpus)
1da177e4
LT
3676{
3677 struct sched_group *group;
70b97a7f 3678 struct rq *busiest = NULL;
1da177e4 3679 unsigned long imbalance;
43010659 3680 int ld_moved = 0;
5969fe06 3681 int sd_idle = 0;
969bb4e4 3682 int all_pinned = 0;
7c16ec58 3683
96f874e2 3684 cpumask_setall(cpus);
5969fe06 3685
89c4710e
SS
3686 /*
3687 * When power savings policy is enabled for the parent domain, idle
3688 * sibling can pick up load irrespective of busy siblings. In this case,
3689 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3690 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3691 */
3692 if (sd->flags & SD_SHARE_CPUPOWER &&
3693 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3694 sd_idle = 1;
1da177e4 3695
2d72376b 3696 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3697redo:
3e5459b4 3698 update_shares_locked(this_rq, sd);
d15bcfdb 3699 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3700 &sd_idle, cpus, NULL);
1da177e4 3701 if (!group) {
d15bcfdb 3702 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3703 goto out_balanced;
1da177e4
LT
3704 }
3705
7c16ec58 3706 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3707 if (!busiest) {
d15bcfdb 3708 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3709 goto out_balanced;
1da177e4
LT
3710 }
3711
db935dbd
NP
3712 BUG_ON(busiest == this_rq);
3713
d15bcfdb 3714 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3715
43010659 3716 ld_moved = 0;
d6d5cfaf
NP
3717 if (busiest->nr_running > 1) {
3718 /* Attempt to move tasks */
3719 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3720 /* this_rq->clock is already updated */
3721 update_rq_clock(busiest);
43010659 3722 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3723 imbalance, sd, CPU_NEWLY_IDLE,
3724 &all_pinned);
1b12bbc7 3725 double_unlock_balance(this_rq, busiest);
0a2966b4 3726
969bb4e4 3727 if (unlikely(all_pinned)) {
96f874e2
RR
3728 cpumask_clear_cpu(cpu_of(busiest), cpus);
3729 if (!cpumask_empty(cpus))
0a2966b4
CL
3730 goto redo;
3731 }
d6d5cfaf
NP
3732 }
3733
43010659 3734 if (!ld_moved) {
36dffab6 3735 int active_balance = 0;
ad273b32 3736
d15bcfdb 3737 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3738 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3739 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3740 return -1;
ad273b32
VS
3741
3742 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3743 return -1;
3744
3745 if (sd->nr_balance_failed++ < 2)
3746 return -1;
3747
3748 /*
3749 * The only task running in a non-idle cpu can be moved to this
3750 * cpu in an attempt to completely freeup the other CPU
3751 * package. The same method used to move task in load_balance()
3752 * have been extended for load_balance_newidle() to speedup
3753 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3754 *
3755 * The package power saving logic comes from
3756 * find_busiest_group(). If there are no imbalance, then
3757 * f_b_g() will return NULL. However when sched_mc={1,2} then
3758 * f_b_g() will select a group from which a running task may be
3759 * pulled to this cpu in order to make the other package idle.
3760 * If there is no opportunity to make a package idle and if
3761 * there are no imbalance, then f_b_g() will return NULL and no
3762 * action will be taken in load_balance_newidle().
3763 *
3764 * Under normal task pull operation due to imbalance, there
3765 * will be more than one task in the source run queue and
3766 * move_tasks() will succeed. ld_moved will be true and this
3767 * active balance code will not be triggered.
3768 */
3769
3770 /* Lock busiest in correct order while this_rq is held */
3771 double_lock_balance(this_rq, busiest);
3772
3773 /*
3774 * don't kick the migration_thread, if the curr
3775 * task on busiest cpu can't be moved to this_cpu
3776 */
3777 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3778 double_unlock_balance(this_rq, busiest);
3779 all_pinned = 1;
3780 return ld_moved;
3781 }
3782
3783 if (!busiest->active_balance) {
3784 busiest->active_balance = 1;
3785 busiest->push_cpu = this_cpu;
3786 active_balance = 1;
3787 }
3788
3789 double_unlock_balance(this_rq, busiest);
3790 if (active_balance)
3791 wake_up_process(busiest->migration_thread);
3792
5969fe06 3793 } else
16cfb1c0 3794 sd->nr_balance_failed = 0;
1da177e4 3795
3e5459b4 3796 update_shares_locked(this_rq, sd);
43010659 3797 return ld_moved;
16cfb1c0
NP
3798
3799out_balanced:
d15bcfdb 3800 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3801 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3802 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3803 return -1;
16cfb1c0 3804 sd->nr_balance_failed = 0;
48f24c4d 3805
16cfb1c0 3806 return 0;
1da177e4
LT
3807}
3808
3809/*
3810 * idle_balance is called by schedule() if this_cpu is about to become
3811 * idle. Attempts to pull tasks from other CPUs.
3812 */
70b97a7f 3813static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3814{
3815 struct sched_domain *sd;
efbe027e 3816 int pulled_task = 0;
dd41f596 3817 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3818 cpumask_var_t tmpmask;
3819
3820 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3821 return;
1da177e4
LT
3822
3823 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3824 unsigned long interval;
3825
3826 if (!(sd->flags & SD_LOAD_BALANCE))
3827 continue;
3828
3829 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3830 /* If we've pulled tasks over stop searching: */
7c16ec58 3831 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3832 sd, tmpmask);
92c4ca5c
CL
3833
3834 interval = msecs_to_jiffies(sd->balance_interval);
3835 if (time_after(next_balance, sd->last_balance + interval))
3836 next_balance = sd->last_balance + interval;
3837 if (pulled_task)
3838 break;
1da177e4 3839 }
dd41f596 3840 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3841 /*
3842 * We are going idle. next_balance may be set based on
3843 * a busy processor. So reset next_balance.
3844 */
3845 this_rq->next_balance = next_balance;
dd41f596 3846 }
4d2732c6 3847 free_cpumask_var(tmpmask);
1da177e4
LT
3848}
3849
3850/*
3851 * active_load_balance is run by migration threads. It pushes running tasks
3852 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3853 * running on each physical CPU where possible, and avoids physical /
3854 * logical imbalances.
3855 *
3856 * Called with busiest_rq locked.
3857 */
70b97a7f 3858static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3859{
39507451 3860 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3861 struct sched_domain *sd;
3862 struct rq *target_rq;
39507451 3863
48f24c4d 3864 /* Is there any task to move? */
39507451 3865 if (busiest_rq->nr_running <= 1)
39507451
NP
3866 return;
3867
3868 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3869
3870 /*
39507451 3871 * This condition is "impossible", if it occurs
41a2d6cf 3872 * we need to fix it. Originally reported by
39507451 3873 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3874 */
39507451 3875 BUG_ON(busiest_rq == target_rq);
1da177e4 3876
39507451
NP
3877 /* move a task from busiest_rq to target_rq */
3878 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3879 update_rq_clock(busiest_rq);
3880 update_rq_clock(target_rq);
39507451
NP
3881
3882 /* Search for an sd spanning us and the target CPU. */
c96d145e 3883 for_each_domain(target_cpu, sd) {
39507451 3884 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3885 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3886 break;
c96d145e 3887 }
39507451 3888
48f24c4d 3889 if (likely(sd)) {
2d72376b 3890 schedstat_inc(sd, alb_count);
39507451 3891
43010659
PW
3892 if (move_one_task(target_rq, target_cpu, busiest_rq,
3893 sd, CPU_IDLE))
48f24c4d
IM
3894 schedstat_inc(sd, alb_pushed);
3895 else
3896 schedstat_inc(sd, alb_failed);
3897 }
1b12bbc7 3898 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3899}
3900
46cb4b7c
SS
3901#ifdef CONFIG_NO_HZ
3902static struct {
3903 atomic_t load_balancer;
7d1e6a9b 3904 cpumask_var_t cpu_mask;
46cb4b7c
SS
3905} nohz ____cacheline_aligned = {
3906 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3907};
3908
7835b98b 3909/*
46cb4b7c
SS
3910 * This routine will try to nominate the ilb (idle load balancing)
3911 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3912 * load balancing on behalf of all those cpus. If all the cpus in the system
3913 * go into this tickless mode, then there will be no ilb owner (as there is
3914 * no need for one) and all the cpus will sleep till the next wakeup event
3915 * arrives...
3916 *
3917 * For the ilb owner, tick is not stopped. And this tick will be used
3918 * for idle load balancing. ilb owner will still be part of
3919 * nohz.cpu_mask..
7835b98b 3920 *
46cb4b7c
SS
3921 * While stopping the tick, this cpu will become the ilb owner if there
3922 * is no other owner. And will be the owner till that cpu becomes busy
3923 * or if all cpus in the system stop their ticks at which point
3924 * there is no need for ilb owner.
3925 *
3926 * When the ilb owner becomes busy, it nominates another owner, during the
3927 * next busy scheduler_tick()
3928 */
3929int select_nohz_load_balancer(int stop_tick)
3930{
3931 int cpu = smp_processor_id();
3932
3933 if (stop_tick) {
7d1e6a9b 3934 cpumask_set_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3935 cpu_rq(cpu)->in_nohz_recently = 1;
3936
3937 /*
3938 * If we are going offline and still the leader, give up!
3939 */
e761b772 3940 if (!cpu_active(cpu) &&
46cb4b7c
SS
3941 atomic_read(&nohz.load_balancer) == cpu) {
3942 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3943 BUG();
3944 return 0;
3945 }
3946
3947 /* time for ilb owner also to sleep */
7d1e6a9b 3948 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
3949 if (atomic_read(&nohz.load_balancer) == cpu)
3950 atomic_set(&nohz.load_balancer, -1);
3951 return 0;
3952 }
3953
3954 if (atomic_read(&nohz.load_balancer) == -1) {
3955 /* make me the ilb owner */
3956 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3957 return 1;
3958 } else if (atomic_read(&nohz.load_balancer) == cpu)
3959 return 1;
3960 } else {
7d1e6a9b 3961 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
3962 return 0;
3963
7d1e6a9b 3964 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3965
3966 if (atomic_read(&nohz.load_balancer) == cpu)
3967 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3968 BUG();
3969 }
3970 return 0;
3971}
3972#endif
3973
3974static DEFINE_SPINLOCK(balancing);
3975
3976/*
7835b98b
CL
3977 * It checks each scheduling domain to see if it is due to be balanced,
3978 * and initiates a balancing operation if so.
3979 *
3980 * Balancing parameters are set up in arch_init_sched_domains.
3981 */
a9957449 3982static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3983{
46cb4b7c
SS
3984 int balance = 1;
3985 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3986 unsigned long interval;
3987 struct sched_domain *sd;
46cb4b7c 3988 /* Earliest time when we have to do rebalance again */
c9819f45 3989 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3990 int update_next_balance = 0;
d07355f5 3991 int need_serialize;
a0e90245
RR
3992 cpumask_var_t tmp;
3993
3994 /* Fails alloc? Rebalancing probably not a priority right now. */
3995 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3996 return;
1da177e4 3997
46cb4b7c 3998 for_each_domain(cpu, sd) {
1da177e4
LT
3999 if (!(sd->flags & SD_LOAD_BALANCE))
4000 continue;
4001
4002 interval = sd->balance_interval;
d15bcfdb 4003 if (idle != CPU_IDLE)
1da177e4
LT
4004 interval *= sd->busy_factor;
4005
4006 /* scale ms to jiffies */
4007 interval = msecs_to_jiffies(interval);
4008 if (unlikely(!interval))
4009 interval = 1;
dd41f596
IM
4010 if (interval > HZ*NR_CPUS/10)
4011 interval = HZ*NR_CPUS/10;
4012
d07355f5 4013 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4014
d07355f5 4015 if (need_serialize) {
08c183f3
CL
4016 if (!spin_trylock(&balancing))
4017 goto out;
4018 }
4019
c9819f45 4020 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 4021 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
4022 /*
4023 * We've pulled tasks over so either we're no
5969fe06
NP
4024 * longer idle, or one of our SMT siblings is
4025 * not idle.
4026 */
d15bcfdb 4027 idle = CPU_NOT_IDLE;
1da177e4 4028 }
1bd77f2d 4029 sd->last_balance = jiffies;
1da177e4 4030 }
d07355f5 4031 if (need_serialize)
08c183f3
CL
4032 spin_unlock(&balancing);
4033out:
f549da84 4034 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4035 next_balance = sd->last_balance + interval;
f549da84
SS
4036 update_next_balance = 1;
4037 }
783609c6
SS
4038
4039 /*
4040 * Stop the load balance at this level. There is another
4041 * CPU in our sched group which is doing load balancing more
4042 * actively.
4043 */
4044 if (!balance)
4045 break;
1da177e4 4046 }
f549da84
SS
4047
4048 /*
4049 * next_balance will be updated only when there is a need.
4050 * When the cpu is attached to null domain for ex, it will not be
4051 * updated.
4052 */
4053 if (likely(update_next_balance))
4054 rq->next_balance = next_balance;
a0e90245
RR
4055
4056 free_cpumask_var(tmp);
46cb4b7c
SS
4057}
4058
4059/*
4060 * run_rebalance_domains is triggered when needed from the scheduler tick.
4061 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4062 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4063 */
4064static void run_rebalance_domains(struct softirq_action *h)
4065{
dd41f596
IM
4066 int this_cpu = smp_processor_id();
4067 struct rq *this_rq = cpu_rq(this_cpu);
4068 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4069 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4070
dd41f596 4071 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4072
4073#ifdef CONFIG_NO_HZ
4074 /*
4075 * If this cpu is the owner for idle load balancing, then do the
4076 * balancing on behalf of the other idle cpus whose ticks are
4077 * stopped.
4078 */
dd41f596
IM
4079 if (this_rq->idle_at_tick &&
4080 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4081 struct rq *rq;
4082 int balance_cpu;
4083
7d1e6a9b
RR
4084 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4085 if (balance_cpu == this_cpu)
4086 continue;
4087
46cb4b7c
SS
4088 /*
4089 * If this cpu gets work to do, stop the load balancing
4090 * work being done for other cpus. Next load
4091 * balancing owner will pick it up.
4092 */
4093 if (need_resched())
4094 break;
4095
de0cf899 4096 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4097
4098 rq = cpu_rq(balance_cpu);
dd41f596
IM
4099 if (time_after(this_rq->next_balance, rq->next_balance))
4100 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4101 }
4102 }
4103#endif
4104}
4105
4106/*
4107 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4108 *
4109 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4110 * idle load balancing owner or decide to stop the periodic load balancing,
4111 * if the whole system is idle.
4112 */
dd41f596 4113static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4114{
46cb4b7c
SS
4115#ifdef CONFIG_NO_HZ
4116 /*
4117 * If we were in the nohz mode recently and busy at the current
4118 * scheduler tick, then check if we need to nominate new idle
4119 * load balancer.
4120 */
4121 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4122 rq->in_nohz_recently = 0;
4123
4124 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4125 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4126 atomic_set(&nohz.load_balancer, -1);
4127 }
4128
4129 if (atomic_read(&nohz.load_balancer) == -1) {
4130 /*
4131 * simple selection for now: Nominate the
4132 * first cpu in the nohz list to be the next
4133 * ilb owner.
4134 *
4135 * TBD: Traverse the sched domains and nominate
4136 * the nearest cpu in the nohz.cpu_mask.
4137 */
7d1e6a9b 4138 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4139
434d53b0 4140 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4141 resched_cpu(ilb);
4142 }
4143 }
4144
4145 /*
4146 * If this cpu is idle and doing idle load balancing for all the
4147 * cpus with ticks stopped, is it time for that to stop?
4148 */
4149 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4150 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4151 resched_cpu(cpu);
4152 return;
4153 }
4154
4155 /*
4156 * If this cpu is idle and the idle load balancing is done by
4157 * someone else, then no need raise the SCHED_SOFTIRQ
4158 */
4159 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4160 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4161 return;
4162#endif
4163 if (time_after_eq(jiffies, rq->next_balance))
4164 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4165}
dd41f596
IM
4166
4167#else /* CONFIG_SMP */
4168
1da177e4
LT
4169/*
4170 * on UP we do not need to balance between CPUs:
4171 */
70b97a7f 4172static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4173{
4174}
dd41f596 4175
1da177e4
LT
4176#endif
4177
1da177e4
LT
4178DEFINE_PER_CPU(struct kernel_stat, kstat);
4179
4180EXPORT_PER_CPU_SYMBOL(kstat);
4181
4182/*
f06febc9
FM
4183 * Return any ns on the sched_clock that have not yet been banked in
4184 * @p in case that task is currently running.
1da177e4 4185 */
bb34d92f 4186unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4187{
1da177e4 4188 unsigned long flags;
41b86e9c 4189 struct rq *rq;
bb34d92f 4190 u64 ns = 0;
48f24c4d 4191
41b86e9c 4192 rq = task_rq_lock(p, &flags);
1508487e 4193
051a1d1a 4194 if (task_current(rq, p)) {
f06febc9
FM
4195 u64 delta_exec;
4196
a8e504d2
IM
4197 update_rq_clock(rq);
4198 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4199 if ((s64)delta_exec > 0)
bb34d92f 4200 ns = delta_exec;
41b86e9c 4201 }
48f24c4d 4202
41b86e9c 4203 task_rq_unlock(rq, &flags);
48f24c4d 4204
1da177e4
LT
4205 return ns;
4206}
4207
1da177e4
LT
4208/*
4209 * Account user cpu time to a process.
4210 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4211 * @cputime: the cpu time spent in user space since the last update
4212 */
4213void account_user_time(struct task_struct *p, cputime_t cputime)
4214{
4215 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4216 cputime64_t tmp;
4217
4218 p->utime = cputime_add(p->utime, cputime);
f06febc9 4219 account_group_user_time(p, cputime);
1da177e4
LT
4220
4221 /* Add user time to cpustat. */
4222 tmp = cputime_to_cputime64(cputime);
4223 if (TASK_NICE(p) > 0)
4224 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4225 else
4226 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4227 /* Account for user time used */
4228 acct_update_integrals(p);
1da177e4
LT
4229}
4230
94886b84
LV
4231/*
4232 * Account guest cpu time to a process.
4233 * @p: the process that the cpu time gets accounted to
4234 * @cputime: the cpu time spent in virtual machine since the last update
4235 */
f7402e03 4236static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4237{
4238 cputime64_t tmp;
4239 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4240
4241 tmp = cputime_to_cputime64(cputime);
4242
4243 p->utime = cputime_add(p->utime, cputime);
f06febc9 4244 account_group_user_time(p, cputime);
94886b84
LV
4245 p->gtime = cputime_add(p->gtime, cputime);
4246
4247 cpustat->user = cputime64_add(cpustat->user, tmp);
4248 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4249}
4250
c66f08be
MN
4251/*
4252 * Account scaled user cpu time to a process.
4253 * @p: the process that the cpu time gets accounted to
4254 * @cputime: the cpu time spent in user space since the last update
4255 */
4256void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4257{
4258 p->utimescaled = cputime_add(p->utimescaled, cputime);
4259}
4260
1da177e4
LT
4261/*
4262 * Account system cpu time to a process.
4263 * @p: the process that the cpu time gets accounted to
4264 * @hardirq_offset: the offset to subtract from hardirq_count()
4265 * @cputime: the cpu time spent in kernel space since the last update
4266 */
4267void account_system_time(struct task_struct *p, int hardirq_offset,
4268 cputime_t cputime)
4269{
4270 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4271 struct rq *rq = this_rq();
1da177e4
LT
4272 cputime64_t tmp;
4273
983ed7a6
HH
4274 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4275 account_guest_time(p, cputime);
4276 return;
4277 }
94886b84 4278
1da177e4 4279 p->stime = cputime_add(p->stime, cputime);
f06febc9 4280 account_group_system_time(p, cputime);
1da177e4
LT
4281
4282 /* Add system time to cpustat. */
4283 tmp = cputime_to_cputime64(cputime);
4284 if (hardirq_count() - hardirq_offset)
4285 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4286 else if (softirq_count())
4287 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4288 else if (p != rq->idle)
1da177e4 4289 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4290 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4291 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4292 else
4293 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4294 /* Account for system time used */
4295 acct_update_integrals(p);
1da177e4
LT
4296}
4297
c66f08be
MN
4298/*
4299 * Account scaled system cpu time to a process.
4300 * @p: the process that the cpu time gets accounted to
4301 * @hardirq_offset: the offset to subtract from hardirq_count()
4302 * @cputime: the cpu time spent in kernel space since the last update
4303 */
4304void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4305{
4306 p->stimescaled = cputime_add(p->stimescaled, cputime);
4307}
4308
1da177e4
LT
4309/*
4310 * Account for involuntary wait time.
4311 * @p: the process from which the cpu time has been stolen
4312 * @steal: the cpu time spent in involuntary wait
4313 */
4314void account_steal_time(struct task_struct *p, cputime_t steal)
4315{
4316 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4317 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4318 struct rq *rq = this_rq();
1da177e4
LT
4319
4320 if (p == rq->idle) {
4321 p->stime = cputime_add(p->stime, steal);
4322 if (atomic_read(&rq->nr_iowait) > 0)
4323 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4324 else
4325 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4326 } else
1da177e4
LT
4327 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4328}
4329
49048622
BS
4330/*
4331 * Use precise platform statistics if available:
4332 */
4333#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4334cputime_t task_utime(struct task_struct *p)
4335{
4336 return p->utime;
4337}
4338
4339cputime_t task_stime(struct task_struct *p)
4340{
4341 return p->stime;
4342}
4343#else
4344cputime_t task_utime(struct task_struct *p)
4345{
4346 clock_t utime = cputime_to_clock_t(p->utime),
4347 total = utime + cputime_to_clock_t(p->stime);
4348 u64 temp;
4349
4350 /*
4351 * Use CFS's precise accounting:
4352 */
4353 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4354
4355 if (total) {
4356 temp *= utime;
4357 do_div(temp, total);
4358 }
4359 utime = (clock_t)temp;
4360
4361 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4362 return p->prev_utime;
4363}
4364
4365cputime_t task_stime(struct task_struct *p)
4366{
4367 clock_t stime;
4368
4369 /*
4370 * Use CFS's precise accounting. (we subtract utime from
4371 * the total, to make sure the total observed by userspace
4372 * grows monotonically - apps rely on that):
4373 */
4374 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4375 cputime_to_clock_t(task_utime(p));
4376
4377 if (stime >= 0)
4378 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4379
4380 return p->prev_stime;
4381}
4382#endif
4383
4384inline cputime_t task_gtime(struct task_struct *p)
4385{
4386 return p->gtime;
4387}
4388
7835b98b
CL
4389/*
4390 * This function gets called by the timer code, with HZ frequency.
4391 * We call it with interrupts disabled.
4392 *
4393 * It also gets called by the fork code, when changing the parent's
4394 * timeslices.
4395 */
4396void scheduler_tick(void)
4397{
7835b98b
CL
4398 int cpu = smp_processor_id();
4399 struct rq *rq = cpu_rq(cpu);
dd41f596 4400 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4401
4402 sched_clock_tick();
dd41f596
IM
4403
4404 spin_lock(&rq->lock);
3e51f33f 4405 update_rq_clock(rq);
f1a438d8 4406 update_cpu_load(rq);
fa85ae24 4407 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4408 spin_unlock(&rq->lock);
7835b98b 4409
e418e1c2 4410#ifdef CONFIG_SMP
dd41f596
IM
4411 rq->idle_at_tick = idle_cpu(cpu);
4412 trigger_load_balance(rq, cpu);
e418e1c2 4413#endif
1da177e4
LT
4414}
4415
6cd8a4bb
SR
4416#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4417 defined(CONFIG_PREEMPT_TRACER))
4418
4419static inline unsigned long get_parent_ip(unsigned long addr)
4420{
4421 if (in_lock_functions(addr)) {
4422 addr = CALLER_ADDR2;
4423 if (in_lock_functions(addr))
4424 addr = CALLER_ADDR3;
4425 }
4426 return addr;
4427}
1da177e4 4428
43627582 4429void __kprobes add_preempt_count(int val)
1da177e4 4430{
6cd8a4bb 4431#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4432 /*
4433 * Underflow?
4434 */
9a11b49a
IM
4435 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4436 return;
6cd8a4bb 4437#endif
1da177e4 4438 preempt_count() += val;
6cd8a4bb 4439#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4440 /*
4441 * Spinlock count overflowing soon?
4442 */
33859f7f
MOS
4443 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4444 PREEMPT_MASK - 10);
6cd8a4bb
SR
4445#endif
4446 if (preempt_count() == val)
4447 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4448}
4449EXPORT_SYMBOL(add_preempt_count);
4450
43627582 4451void __kprobes sub_preempt_count(int val)
1da177e4 4452{
6cd8a4bb 4453#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4454 /*
4455 * Underflow?
4456 */
7317d7b8 4457 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
9a11b49a 4458 return;
1da177e4
LT
4459 /*
4460 * Is the spinlock portion underflowing?
4461 */
9a11b49a
IM
4462 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4463 !(preempt_count() & PREEMPT_MASK)))
4464 return;
6cd8a4bb 4465#endif
9a11b49a 4466
6cd8a4bb
SR
4467 if (preempt_count() == val)
4468 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4469 preempt_count() -= val;
4470}
4471EXPORT_SYMBOL(sub_preempt_count);
4472
4473#endif
4474
4475/*
dd41f596 4476 * Print scheduling while atomic bug:
1da177e4 4477 */
dd41f596 4478static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4479{
838225b4
SS
4480 struct pt_regs *regs = get_irq_regs();
4481
4482 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4483 prev->comm, prev->pid, preempt_count());
4484
dd41f596 4485 debug_show_held_locks(prev);
e21f5b15 4486 print_modules();
dd41f596
IM
4487 if (irqs_disabled())
4488 print_irqtrace_events(prev);
838225b4
SS
4489
4490 if (regs)
4491 show_regs(regs);
4492 else
4493 dump_stack();
dd41f596 4494}
1da177e4 4495
dd41f596
IM
4496/*
4497 * Various schedule()-time debugging checks and statistics:
4498 */
4499static inline void schedule_debug(struct task_struct *prev)
4500{
1da177e4 4501 /*
41a2d6cf 4502 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4503 * schedule() atomically, we ignore that path for now.
4504 * Otherwise, whine if we are scheduling when we should not be.
4505 */
3f33a7ce 4506 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4507 __schedule_bug(prev);
4508
1da177e4
LT
4509 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4510
2d72376b 4511 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4512#ifdef CONFIG_SCHEDSTATS
4513 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4514 schedstat_inc(this_rq(), bkl_count);
4515 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4516 }
4517#endif
dd41f596
IM
4518}
4519
4520/*
4521 * Pick up the highest-prio task:
4522 */
4523static inline struct task_struct *
ff95f3df 4524pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4525{
5522d5d5 4526 const struct sched_class *class;
dd41f596 4527 struct task_struct *p;
1da177e4
LT
4528
4529 /*
dd41f596
IM
4530 * Optimization: we know that if all tasks are in
4531 * the fair class we can call that function directly:
1da177e4 4532 */
dd41f596 4533 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4534 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4535 if (likely(p))
4536 return p;
1da177e4
LT
4537 }
4538
dd41f596
IM
4539 class = sched_class_highest;
4540 for ( ; ; ) {
fb8d4724 4541 p = class->pick_next_task(rq);
dd41f596
IM
4542 if (p)
4543 return p;
4544 /*
4545 * Will never be NULL as the idle class always
4546 * returns a non-NULL p:
4547 */
4548 class = class->next;
4549 }
4550}
1da177e4 4551
dd41f596
IM
4552/*
4553 * schedule() is the main scheduler function.
4554 */
4555asmlinkage void __sched schedule(void)
4556{
4557 struct task_struct *prev, *next;
67ca7bde 4558 unsigned long *switch_count;
dd41f596 4559 struct rq *rq;
31656519 4560 int cpu;
dd41f596
IM
4561
4562need_resched:
4563 preempt_disable();
4564 cpu = smp_processor_id();
4565 rq = cpu_rq(cpu);
4566 rcu_qsctr_inc(cpu);
4567 prev = rq->curr;
4568 switch_count = &prev->nivcsw;
4569
4570 release_kernel_lock(prev);
4571need_resched_nonpreemptible:
4572
4573 schedule_debug(prev);
1da177e4 4574
31656519 4575 if (sched_feat(HRTICK))
f333fdc9 4576 hrtick_clear(rq);
8f4d37ec 4577
8cd162ce 4578 spin_lock_irq(&rq->lock);
3e51f33f 4579 update_rq_clock(rq);
1e819950 4580 clear_tsk_need_resched(prev);
1da177e4 4581
1da177e4 4582 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4583 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4584 prev->state = TASK_RUNNING;
16882c1e 4585 else
2e1cb74a 4586 deactivate_task(rq, prev, 1);
dd41f596 4587 switch_count = &prev->nvcsw;
1da177e4
LT
4588 }
4589
9a897c5a
SR
4590#ifdef CONFIG_SMP
4591 if (prev->sched_class->pre_schedule)
4592 prev->sched_class->pre_schedule(rq, prev);
4593#endif
f65eda4f 4594
dd41f596 4595 if (unlikely(!rq->nr_running))
1da177e4 4596 idle_balance(cpu, rq);
1da177e4 4597
31ee529c 4598 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4599 next = pick_next_task(rq, prev);
1da177e4 4600
1da177e4 4601 if (likely(prev != next)) {
673a90a1
DS
4602 sched_info_switch(prev, next);
4603
1da177e4
LT
4604 rq->nr_switches++;
4605 rq->curr = next;
4606 ++*switch_count;
4607
dd41f596 4608 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4609 /*
4610 * the context switch might have flipped the stack from under
4611 * us, hence refresh the local variables.
4612 */
4613 cpu = smp_processor_id();
4614 rq = cpu_rq(cpu);
1da177e4
LT
4615 } else
4616 spin_unlock_irq(&rq->lock);
4617
8f4d37ec 4618 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4619 goto need_resched_nonpreemptible;
8f4d37ec 4620
1da177e4
LT
4621 preempt_enable_no_resched();
4622 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4623 goto need_resched;
4624}
1da177e4
LT
4625EXPORT_SYMBOL(schedule);
4626
4627#ifdef CONFIG_PREEMPT
4628/*
2ed6e34f 4629 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4630 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4631 * occur there and call schedule directly.
4632 */
4633asmlinkage void __sched preempt_schedule(void)
4634{
4635 struct thread_info *ti = current_thread_info();
6478d880 4636
1da177e4
LT
4637 /*
4638 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4639 * we do not want to preempt the current task. Just return..
1da177e4 4640 */
beed33a8 4641 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4642 return;
4643
3a5c359a
AK
4644 do {
4645 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4646 schedule();
3a5c359a 4647 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4648
3a5c359a
AK
4649 /*
4650 * Check again in case we missed a preemption opportunity
4651 * between schedule and now.
4652 */
4653 barrier();
4654 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4655}
1da177e4
LT
4656EXPORT_SYMBOL(preempt_schedule);
4657
4658/*
2ed6e34f 4659 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4660 * off of irq context.
4661 * Note, that this is called and return with irqs disabled. This will
4662 * protect us against recursive calling from irq.
4663 */
4664asmlinkage void __sched preempt_schedule_irq(void)
4665{
4666 struct thread_info *ti = current_thread_info();
6478d880 4667
2ed6e34f 4668 /* Catch callers which need to be fixed */
1da177e4
LT
4669 BUG_ON(ti->preempt_count || !irqs_disabled());
4670
3a5c359a
AK
4671 do {
4672 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4673 local_irq_enable();
4674 schedule();
4675 local_irq_disable();
3a5c359a 4676 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4677
3a5c359a
AK
4678 /*
4679 * Check again in case we missed a preemption opportunity
4680 * between schedule and now.
4681 */
4682 barrier();
4683 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4684}
4685
4686#endif /* CONFIG_PREEMPT */
4687
95cdf3b7
IM
4688int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4689 void *key)
1da177e4 4690{
48f24c4d 4691 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4692}
1da177e4
LT
4693EXPORT_SYMBOL(default_wake_function);
4694
4695/*
41a2d6cf
IM
4696 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4697 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4698 * number) then we wake all the non-exclusive tasks and one exclusive task.
4699 *
4700 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4701 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4702 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4703 */
4704static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4705 int nr_exclusive, int sync, void *key)
4706{
2e45874c 4707 wait_queue_t *curr, *next;
1da177e4 4708
2e45874c 4709 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4710 unsigned flags = curr->flags;
4711
1da177e4 4712 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4713 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4714 break;
4715 }
4716}
4717
4718/**
4719 * __wake_up - wake up threads blocked on a waitqueue.
4720 * @q: the waitqueue
4721 * @mode: which threads
4722 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4723 * @key: is directly passed to the wakeup function
1da177e4 4724 */
7ad5b3a5 4725void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4726 int nr_exclusive, void *key)
1da177e4
LT
4727{
4728 unsigned long flags;
4729
4730 spin_lock_irqsave(&q->lock, flags);
4731 __wake_up_common(q, mode, nr_exclusive, 0, key);
4732 spin_unlock_irqrestore(&q->lock, flags);
4733}
1da177e4
LT
4734EXPORT_SYMBOL(__wake_up);
4735
4736/*
4737 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4738 */
7ad5b3a5 4739void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4740{
4741 __wake_up_common(q, mode, 1, 0, NULL);
4742}
4743
4744/**
67be2dd1 4745 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4746 * @q: the waitqueue
4747 * @mode: which threads
4748 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4749 *
4750 * The sync wakeup differs that the waker knows that it will schedule
4751 * away soon, so while the target thread will be woken up, it will not
4752 * be migrated to another CPU - ie. the two threads are 'synchronized'
4753 * with each other. This can prevent needless bouncing between CPUs.
4754 *
4755 * On UP it can prevent extra preemption.
4756 */
7ad5b3a5 4757void
95cdf3b7 4758__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4759{
4760 unsigned long flags;
4761 int sync = 1;
4762
4763 if (unlikely(!q))
4764 return;
4765
4766 if (unlikely(!nr_exclusive))
4767 sync = 0;
4768
4769 spin_lock_irqsave(&q->lock, flags);
4770 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4771 spin_unlock_irqrestore(&q->lock, flags);
4772}
4773EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4774
65eb3dc6
KD
4775/**
4776 * complete: - signals a single thread waiting on this completion
4777 * @x: holds the state of this particular completion
4778 *
4779 * This will wake up a single thread waiting on this completion. Threads will be
4780 * awakened in the same order in which they were queued.
4781 *
4782 * See also complete_all(), wait_for_completion() and related routines.
4783 */
b15136e9 4784void complete(struct completion *x)
1da177e4
LT
4785{
4786 unsigned long flags;
4787
4788 spin_lock_irqsave(&x->wait.lock, flags);
4789 x->done++;
d9514f6c 4790 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4791 spin_unlock_irqrestore(&x->wait.lock, flags);
4792}
4793EXPORT_SYMBOL(complete);
4794
65eb3dc6
KD
4795/**
4796 * complete_all: - signals all threads waiting on this completion
4797 * @x: holds the state of this particular completion
4798 *
4799 * This will wake up all threads waiting on this particular completion event.
4800 */
b15136e9 4801void complete_all(struct completion *x)
1da177e4
LT
4802{
4803 unsigned long flags;
4804
4805 spin_lock_irqsave(&x->wait.lock, flags);
4806 x->done += UINT_MAX/2;
d9514f6c 4807 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4808 spin_unlock_irqrestore(&x->wait.lock, flags);
4809}
4810EXPORT_SYMBOL(complete_all);
4811
8cbbe86d
AK
4812static inline long __sched
4813do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4814{
1da177e4
LT
4815 if (!x->done) {
4816 DECLARE_WAITQUEUE(wait, current);
4817
4818 wait.flags |= WQ_FLAG_EXCLUSIVE;
4819 __add_wait_queue_tail(&x->wait, &wait);
4820 do {
94d3d824 4821 if (signal_pending_state(state, current)) {
ea71a546
ON
4822 timeout = -ERESTARTSYS;
4823 break;
8cbbe86d
AK
4824 }
4825 __set_current_state(state);
1da177e4
LT
4826 spin_unlock_irq(&x->wait.lock);
4827 timeout = schedule_timeout(timeout);
4828 spin_lock_irq(&x->wait.lock);
ea71a546 4829 } while (!x->done && timeout);
1da177e4 4830 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4831 if (!x->done)
4832 return timeout;
1da177e4
LT
4833 }
4834 x->done--;
ea71a546 4835 return timeout ?: 1;
1da177e4 4836}
1da177e4 4837
8cbbe86d
AK
4838static long __sched
4839wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4840{
1da177e4
LT
4841 might_sleep();
4842
4843 spin_lock_irq(&x->wait.lock);
8cbbe86d 4844 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4845 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4846 return timeout;
4847}
1da177e4 4848
65eb3dc6
KD
4849/**
4850 * wait_for_completion: - waits for completion of a task
4851 * @x: holds the state of this particular completion
4852 *
4853 * This waits to be signaled for completion of a specific task. It is NOT
4854 * interruptible and there is no timeout.
4855 *
4856 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4857 * and interrupt capability. Also see complete().
4858 */
b15136e9 4859void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4860{
4861 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4862}
8cbbe86d 4863EXPORT_SYMBOL(wait_for_completion);
1da177e4 4864
65eb3dc6
KD
4865/**
4866 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4867 * @x: holds the state of this particular completion
4868 * @timeout: timeout value in jiffies
4869 *
4870 * This waits for either a completion of a specific task to be signaled or for a
4871 * specified timeout to expire. The timeout is in jiffies. It is not
4872 * interruptible.
4873 */
b15136e9 4874unsigned long __sched
8cbbe86d 4875wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4876{
8cbbe86d 4877 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4878}
8cbbe86d 4879EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4880
65eb3dc6
KD
4881/**
4882 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4883 * @x: holds the state of this particular completion
4884 *
4885 * This waits for completion of a specific task to be signaled. It is
4886 * interruptible.
4887 */
8cbbe86d 4888int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4889{
51e97990
AK
4890 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4891 if (t == -ERESTARTSYS)
4892 return t;
4893 return 0;
0fec171c 4894}
8cbbe86d 4895EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4896
65eb3dc6
KD
4897/**
4898 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4899 * @x: holds the state of this particular completion
4900 * @timeout: timeout value in jiffies
4901 *
4902 * This waits for either a completion of a specific task to be signaled or for a
4903 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4904 */
b15136e9 4905unsigned long __sched
8cbbe86d
AK
4906wait_for_completion_interruptible_timeout(struct completion *x,
4907 unsigned long timeout)
0fec171c 4908{
8cbbe86d 4909 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4910}
8cbbe86d 4911EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4912
65eb3dc6
KD
4913/**
4914 * wait_for_completion_killable: - waits for completion of a task (killable)
4915 * @x: holds the state of this particular completion
4916 *
4917 * This waits to be signaled for completion of a specific task. It can be
4918 * interrupted by a kill signal.
4919 */
009e577e
MW
4920int __sched wait_for_completion_killable(struct completion *x)
4921{
4922 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4923 if (t == -ERESTARTSYS)
4924 return t;
4925 return 0;
4926}
4927EXPORT_SYMBOL(wait_for_completion_killable);
4928
be4de352
DC
4929/**
4930 * try_wait_for_completion - try to decrement a completion without blocking
4931 * @x: completion structure
4932 *
4933 * Returns: 0 if a decrement cannot be done without blocking
4934 * 1 if a decrement succeeded.
4935 *
4936 * If a completion is being used as a counting completion,
4937 * attempt to decrement the counter without blocking. This
4938 * enables us to avoid waiting if the resource the completion
4939 * is protecting is not available.
4940 */
4941bool try_wait_for_completion(struct completion *x)
4942{
4943 int ret = 1;
4944
4945 spin_lock_irq(&x->wait.lock);
4946 if (!x->done)
4947 ret = 0;
4948 else
4949 x->done--;
4950 spin_unlock_irq(&x->wait.lock);
4951 return ret;
4952}
4953EXPORT_SYMBOL(try_wait_for_completion);
4954
4955/**
4956 * completion_done - Test to see if a completion has any waiters
4957 * @x: completion structure
4958 *
4959 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4960 * 1 if there are no waiters.
4961 *
4962 */
4963bool completion_done(struct completion *x)
4964{
4965 int ret = 1;
4966
4967 spin_lock_irq(&x->wait.lock);
4968 if (!x->done)
4969 ret = 0;
4970 spin_unlock_irq(&x->wait.lock);
4971 return ret;
4972}
4973EXPORT_SYMBOL(completion_done);
4974
8cbbe86d
AK
4975static long __sched
4976sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4977{
0fec171c
IM
4978 unsigned long flags;
4979 wait_queue_t wait;
4980
4981 init_waitqueue_entry(&wait, current);
1da177e4 4982
8cbbe86d 4983 __set_current_state(state);
1da177e4 4984
8cbbe86d
AK
4985 spin_lock_irqsave(&q->lock, flags);
4986 __add_wait_queue(q, &wait);
4987 spin_unlock(&q->lock);
4988 timeout = schedule_timeout(timeout);
4989 spin_lock_irq(&q->lock);
4990 __remove_wait_queue(q, &wait);
4991 spin_unlock_irqrestore(&q->lock, flags);
4992
4993 return timeout;
4994}
4995
4996void __sched interruptible_sleep_on(wait_queue_head_t *q)
4997{
4998 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4999}
1da177e4
LT
5000EXPORT_SYMBOL(interruptible_sleep_on);
5001
0fec171c 5002long __sched
95cdf3b7 5003interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5004{
8cbbe86d 5005 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5006}
1da177e4
LT
5007EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5008
0fec171c 5009void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5010{
8cbbe86d 5011 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5012}
1da177e4
LT
5013EXPORT_SYMBOL(sleep_on);
5014
0fec171c 5015long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5016{
8cbbe86d 5017 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5018}
1da177e4
LT
5019EXPORT_SYMBOL(sleep_on_timeout);
5020
b29739f9
IM
5021#ifdef CONFIG_RT_MUTEXES
5022
5023/*
5024 * rt_mutex_setprio - set the current priority of a task
5025 * @p: task
5026 * @prio: prio value (kernel-internal form)
5027 *
5028 * This function changes the 'effective' priority of a task. It does
5029 * not touch ->normal_prio like __setscheduler().
5030 *
5031 * Used by the rt_mutex code to implement priority inheritance logic.
5032 */
36c8b586 5033void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5034{
5035 unsigned long flags;
83b699ed 5036 int oldprio, on_rq, running;
70b97a7f 5037 struct rq *rq;
cb469845 5038 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5039
5040 BUG_ON(prio < 0 || prio > MAX_PRIO);
5041
5042 rq = task_rq_lock(p, &flags);
a8e504d2 5043 update_rq_clock(rq);
b29739f9 5044
d5f9f942 5045 oldprio = p->prio;
dd41f596 5046 on_rq = p->se.on_rq;
051a1d1a 5047 running = task_current(rq, p);
0e1f3483 5048 if (on_rq)
69be72c1 5049 dequeue_task(rq, p, 0);
0e1f3483
HS
5050 if (running)
5051 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5052
5053 if (rt_prio(prio))
5054 p->sched_class = &rt_sched_class;
5055 else
5056 p->sched_class = &fair_sched_class;
5057
b29739f9
IM
5058 p->prio = prio;
5059
0e1f3483
HS
5060 if (running)
5061 p->sched_class->set_curr_task(rq);
dd41f596 5062 if (on_rq) {
8159f87e 5063 enqueue_task(rq, p, 0);
cb469845
SR
5064
5065 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5066 }
5067 task_rq_unlock(rq, &flags);
5068}
5069
5070#endif
5071
36c8b586 5072void set_user_nice(struct task_struct *p, long nice)
1da177e4 5073{
dd41f596 5074 int old_prio, delta, on_rq;
1da177e4 5075 unsigned long flags;
70b97a7f 5076 struct rq *rq;
1da177e4
LT
5077
5078 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5079 return;
5080 /*
5081 * We have to be careful, if called from sys_setpriority(),
5082 * the task might be in the middle of scheduling on another CPU.
5083 */
5084 rq = task_rq_lock(p, &flags);
a8e504d2 5085 update_rq_clock(rq);
1da177e4
LT
5086 /*
5087 * The RT priorities are set via sched_setscheduler(), but we still
5088 * allow the 'normal' nice value to be set - but as expected
5089 * it wont have any effect on scheduling until the task is
dd41f596 5090 * SCHED_FIFO/SCHED_RR:
1da177e4 5091 */
e05606d3 5092 if (task_has_rt_policy(p)) {
1da177e4
LT
5093 p->static_prio = NICE_TO_PRIO(nice);
5094 goto out_unlock;
5095 }
dd41f596 5096 on_rq = p->se.on_rq;
c09595f6 5097 if (on_rq)
69be72c1 5098 dequeue_task(rq, p, 0);
1da177e4 5099
1da177e4 5100 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5101 set_load_weight(p);
b29739f9
IM
5102 old_prio = p->prio;
5103 p->prio = effective_prio(p);
5104 delta = p->prio - old_prio;
1da177e4 5105
dd41f596 5106 if (on_rq) {
8159f87e 5107 enqueue_task(rq, p, 0);
1da177e4 5108 /*
d5f9f942
AM
5109 * If the task increased its priority or is running and
5110 * lowered its priority, then reschedule its CPU:
1da177e4 5111 */
d5f9f942 5112 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5113 resched_task(rq->curr);
5114 }
5115out_unlock:
5116 task_rq_unlock(rq, &flags);
5117}
1da177e4
LT
5118EXPORT_SYMBOL(set_user_nice);
5119
e43379f1
MM
5120/*
5121 * can_nice - check if a task can reduce its nice value
5122 * @p: task
5123 * @nice: nice value
5124 */
36c8b586 5125int can_nice(const struct task_struct *p, const int nice)
e43379f1 5126{
024f4747
MM
5127 /* convert nice value [19,-20] to rlimit style value [1,40] */
5128 int nice_rlim = 20 - nice;
48f24c4d 5129
e43379f1
MM
5130 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5131 capable(CAP_SYS_NICE));
5132}
5133
1da177e4
LT
5134#ifdef __ARCH_WANT_SYS_NICE
5135
5136/*
5137 * sys_nice - change the priority of the current process.
5138 * @increment: priority increment
5139 *
5140 * sys_setpriority is a more generic, but much slower function that
5141 * does similar things.
5142 */
5143asmlinkage long sys_nice(int increment)
5144{
48f24c4d 5145 long nice, retval;
1da177e4
LT
5146
5147 /*
5148 * Setpriority might change our priority at the same moment.
5149 * We don't have to worry. Conceptually one call occurs first
5150 * and we have a single winner.
5151 */
e43379f1
MM
5152 if (increment < -40)
5153 increment = -40;
1da177e4
LT
5154 if (increment > 40)
5155 increment = 40;
5156
5157 nice = PRIO_TO_NICE(current->static_prio) + increment;
5158 if (nice < -20)
5159 nice = -20;
5160 if (nice > 19)
5161 nice = 19;
5162
e43379f1
MM
5163 if (increment < 0 && !can_nice(current, nice))
5164 return -EPERM;
5165
1da177e4
LT
5166 retval = security_task_setnice(current, nice);
5167 if (retval)
5168 return retval;
5169
5170 set_user_nice(current, nice);
5171 return 0;
5172}
5173
5174#endif
5175
5176/**
5177 * task_prio - return the priority value of a given task.
5178 * @p: the task in question.
5179 *
5180 * This is the priority value as seen by users in /proc.
5181 * RT tasks are offset by -200. Normal tasks are centered
5182 * around 0, value goes from -16 to +15.
5183 */
36c8b586 5184int task_prio(const struct task_struct *p)
1da177e4
LT
5185{
5186 return p->prio - MAX_RT_PRIO;
5187}
5188
5189/**
5190 * task_nice - return the nice value of a given task.
5191 * @p: the task in question.
5192 */
36c8b586 5193int task_nice(const struct task_struct *p)
1da177e4
LT
5194{
5195 return TASK_NICE(p);
5196}
150d8bed 5197EXPORT_SYMBOL(task_nice);
1da177e4
LT
5198
5199/**
5200 * idle_cpu - is a given cpu idle currently?
5201 * @cpu: the processor in question.
5202 */
5203int idle_cpu(int cpu)
5204{
5205 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5206}
5207
1da177e4
LT
5208/**
5209 * idle_task - return the idle task for a given cpu.
5210 * @cpu: the processor in question.
5211 */
36c8b586 5212struct task_struct *idle_task(int cpu)
1da177e4
LT
5213{
5214 return cpu_rq(cpu)->idle;
5215}
5216
5217/**
5218 * find_process_by_pid - find a process with a matching PID value.
5219 * @pid: the pid in question.
5220 */
a9957449 5221static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5222{
228ebcbe 5223 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5224}
5225
5226/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5227static void
5228__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5229{
dd41f596 5230 BUG_ON(p->se.on_rq);
48f24c4d 5231
1da177e4 5232 p->policy = policy;
dd41f596
IM
5233 switch (p->policy) {
5234 case SCHED_NORMAL:
5235 case SCHED_BATCH:
5236 case SCHED_IDLE:
5237 p->sched_class = &fair_sched_class;
5238 break;
5239 case SCHED_FIFO:
5240 case SCHED_RR:
5241 p->sched_class = &rt_sched_class;
5242 break;
5243 }
5244
1da177e4 5245 p->rt_priority = prio;
b29739f9
IM
5246 p->normal_prio = normal_prio(p);
5247 /* we are holding p->pi_lock already */
5248 p->prio = rt_mutex_getprio(p);
2dd73a4f 5249 set_load_weight(p);
1da177e4
LT
5250}
5251
961ccddd
RR
5252static int __sched_setscheduler(struct task_struct *p, int policy,
5253 struct sched_param *param, bool user)
1da177e4 5254{
83b699ed 5255 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5256 unsigned long flags;
cb469845 5257 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5258 struct rq *rq;
1da177e4 5259
66e5393a
SR
5260 /* may grab non-irq protected spin_locks */
5261 BUG_ON(in_interrupt());
1da177e4
LT
5262recheck:
5263 /* double check policy once rq lock held */
5264 if (policy < 0)
5265 policy = oldpolicy = p->policy;
5266 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5267 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5268 policy != SCHED_IDLE)
b0a9499c 5269 return -EINVAL;
1da177e4
LT
5270 /*
5271 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5272 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5273 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5274 */
5275 if (param->sched_priority < 0 ||
95cdf3b7 5276 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5277 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5278 return -EINVAL;
e05606d3 5279 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5280 return -EINVAL;
5281
37e4ab3f
OC
5282 /*
5283 * Allow unprivileged RT tasks to decrease priority:
5284 */
961ccddd 5285 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5286 if (rt_policy(policy)) {
8dc3e909 5287 unsigned long rlim_rtprio;
8dc3e909
ON
5288
5289 if (!lock_task_sighand(p, &flags))
5290 return -ESRCH;
5291 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5292 unlock_task_sighand(p, &flags);
5293
5294 /* can't set/change the rt policy */
5295 if (policy != p->policy && !rlim_rtprio)
5296 return -EPERM;
5297
5298 /* can't increase priority */
5299 if (param->sched_priority > p->rt_priority &&
5300 param->sched_priority > rlim_rtprio)
5301 return -EPERM;
5302 }
dd41f596
IM
5303 /*
5304 * Like positive nice levels, dont allow tasks to
5305 * move out of SCHED_IDLE either:
5306 */
5307 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5308 return -EPERM;
5fe1d75f 5309
37e4ab3f
OC
5310 /* can't change other user's priorities */
5311 if ((current->euid != p->euid) &&
5312 (current->euid != p->uid))
5313 return -EPERM;
5314 }
1da177e4 5315
725aad24 5316 if (user) {
b68aa230 5317#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5318 /*
5319 * Do not allow realtime tasks into groups that have no runtime
5320 * assigned.
5321 */
9a7e0b18
PZ
5322 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5323 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5324 return -EPERM;
b68aa230
PZ
5325#endif
5326
725aad24
JF
5327 retval = security_task_setscheduler(p, policy, param);
5328 if (retval)
5329 return retval;
5330 }
5331
b29739f9
IM
5332 /*
5333 * make sure no PI-waiters arrive (or leave) while we are
5334 * changing the priority of the task:
5335 */
5336 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5337 /*
5338 * To be able to change p->policy safely, the apropriate
5339 * runqueue lock must be held.
5340 */
b29739f9 5341 rq = __task_rq_lock(p);
1da177e4
LT
5342 /* recheck policy now with rq lock held */
5343 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5344 policy = oldpolicy = -1;
b29739f9
IM
5345 __task_rq_unlock(rq);
5346 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5347 goto recheck;
5348 }
2daa3577 5349 update_rq_clock(rq);
dd41f596 5350 on_rq = p->se.on_rq;
051a1d1a 5351 running = task_current(rq, p);
0e1f3483 5352 if (on_rq)
2e1cb74a 5353 deactivate_task(rq, p, 0);
0e1f3483
HS
5354 if (running)
5355 p->sched_class->put_prev_task(rq, p);
f6b53205 5356
1da177e4 5357 oldprio = p->prio;
dd41f596 5358 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5359
0e1f3483
HS
5360 if (running)
5361 p->sched_class->set_curr_task(rq);
dd41f596
IM
5362 if (on_rq) {
5363 activate_task(rq, p, 0);
cb469845
SR
5364
5365 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5366 }
b29739f9
IM
5367 __task_rq_unlock(rq);
5368 spin_unlock_irqrestore(&p->pi_lock, flags);
5369
95e02ca9
TG
5370 rt_mutex_adjust_pi(p);
5371
1da177e4
LT
5372 return 0;
5373}
961ccddd
RR
5374
5375/**
5376 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5377 * @p: the task in question.
5378 * @policy: new policy.
5379 * @param: structure containing the new RT priority.
5380 *
5381 * NOTE that the task may be already dead.
5382 */
5383int sched_setscheduler(struct task_struct *p, int policy,
5384 struct sched_param *param)
5385{
5386 return __sched_setscheduler(p, policy, param, true);
5387}
1da177e4
LT
5388EXPORT_SYMBOL_GPL(sched_setscheduler);
5389
961ccddd
RR
5390/**
5391 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5392 * @p: the task in question.
5393 * @policy: new policy.
5394 * @param: structure containing the new RT priority.
5395 *
5396 * Just like sched_setscheduler, only don't bother checking if the
5397 * current context has permission. For example, this is needed in
5398 * stop_machine(): we create temporary high priority worker threads,
5399 * but our caller might not have that capability.
5400 */
5401int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5402 struct sched_param *param)
5403{
5404 return __sched_setscheduler(p, policy, param, false);
5405}
5406
95cdf3b7
IM
5407static int
5408do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5409{
1da177e4
LT
5410 struct sched_param lparam;
5411 struct task_struct *p;
36c8b586 5412 int retval;
1da177e4
LT
5413
5414 if (!param || pid < 0)
5415 return -EINVAL;
5416 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5417 return -EFAULT;
5fe1d75f
ON
5418
5419 rcu_read_lock();
5420 retval = -ESRCH;
1da177e4 5421 p = find_process_by_pid(pid);
5fe1d75f
ON
5422 if (p != NULL)
5423 retval = sched_setscheduler(p, policy, &lparam);
5424 rcu_read_unlock();
36c8b586 5425
1da177e4
LT
5426 return retval;
5427}
5428
5429/**
5430 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5431 * @pid: the pid in question.
5432 * @policy: new policy.
5433 * @param: structure containing the new RT priority.
5434 */
41a2d6cf
IM
5435asmlinkage long
5436sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5437{
c21761f1
JB
5438 /* negative values for policy are not valid */
5439 if (policy < 0)
5440 return -EINVAL;
5441
1da177e4
LT
5442 return do_sched_setscheduler(pid, policy, param);
5443}
5444
5445/**
5446 * sys_sched_setparam - set/change the RT priority of a thread
5447 * @pid: the pid in question.
5448 * @param: structure containing the new RT priority.
5449 */
5450asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5451{
5452 return do_sched_setscheduler(pid, -1, param);
5453}
5454
5455/**
5456 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5457 * @pid: the pid in question.
5458 */
5459asmlinkage long sys_sched_getscheduler(pid_t pid)
5460{
36c8b586 5461 struct task_struct *p;
3a5c359a 5462 int retval;
1da177e4
LT
5463
5464 if (pid < 0)
3a5c359a 5465 return -EINVAL;
1da177e4
LT
5466
5467 retval = -ESRCH;
5468 read_lock(&tasklist_lock);
5469 p = find_process_by_pid(pid);
5470 if (p) {
5471 retval = security_task_getscheduler(p);
5472 if (!retval)
5473 retval = p->policy;
5474 }
5475 read_unlock(&tasklist_lock);
1da177e4
LT
5476 return retval;
5477}
5478
5479/**
5480 * sys_sched_getscheduler - get the RT priority of a thread
5481 * @pid: the pid in question.
5482 * @param: structure containing the RT priority.
5483 */
5484asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5485{
5486 struct sched_param lp;
36c8b586 5487 struct task_struct *p;
3a5c359a 5488 int retval;
1da177e4
LT
5489
5490 if (!param || pid < 0)
3a5c359a 5491 return -EINVAL;
1da177e4
LT
5492
5493 read_lock(&tasklist_lock);
5494 p = find_process_by_pid(pid);
5495 retval = -ESRCH;
5496 if (!p)
5497 goto out_unlock;
5498
5499 retval = security_task_getscheduler(p);
5500 if (retval)
5501 goto out_unlock;
5502
5503 lp.sched_priority = p->rt_priority;
5504 read_unlock(&tasklist_lock);
5505
5506 /*
5507 * This one might sleep, we cannot do it with a spinlock held ...
5508 */
5509 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5510
1da177e4
LT
5511 return retval;
5512
5513out_unlock:
5514 read_unlock(&tasklist_lock);
5515 return retval;
5516}
5517
96f874e2 5518long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5519{
5a16f3d3 5520 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5521 struct task_struct *p;
5522 int retval;
1da177e4 5523
95402b38 5524 get_online_cpus();
1da177e4
LT
5525 read_lock(&tasklist_lock);
5526
5527 p = find_process_by_pid(pid);
5528 if (!p) {
5529 read_unlock(&tasklist_lock);
95402b38 5530 put_online_cpus();
1da177e4
LT
5531 return -ESRCH;
5532 }
5533
5534 /*
5535 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5536 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5537 * usage count and then drop tasklist_lock.
5538 */
5539 get_task_struct(p);
5540 read_unlock(&tasklist_lock);
5541
5a16f3d3
RR
5542 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5543 retval = -ENOMEM;
5544 goto out_put_task;
5545 }
5546 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5547 retval = -ENOMEM;
5548 goto out_free_cpus_allowed;
5549 }
1da177e4
LT
5550 retval = -EPERM;
5551 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5552 !capable(CAP_SYS_NICE))
5553 goto out_unlock;
5554
e7834f8f
DQ
5555 retval = security_task_setscheduler(p, 0, NULL);
5556 if (retval)
5557 goto out_unlock;
5558
5a16f3d3
RR
5559 cpuset_cpus_allowed(p, cpus_allowed);
5560 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5561 again:
5a16f3d3 5562 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5563
8707d8b8 5564 if (!retval) {
5a16f3d3
RR
5565 cpuset_cpus_allowed(p, cpus_allowed);
5566 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5567 /*
5568 * We must have raced with a concurrent cpuset
5569 * update. Just reset the cpus_allowed to the
5570 * cpuset's cpus_allowed
5571 */
5a16f3d3 5572 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5573 goto again;
5574 }
5575 }
1da177e4 5576out_unlock:
5a16f3d3
RR
5577 free_cpumask_var(new_mask);
5578out_free_cpus_allowed:
5579 free_cpumask_var(cpus_allowed);
5580out_put_task:
1da177e4 5581 put_task_struct(p);
95402b38 5582 put_online_cpus();
1da177e4
LT
5583 return retval;
5584}
5585
5586static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5587 struct cpumask *new_mask)
1da177e4 5588{
96f874e2
RR
5589 if (len < cpumask_size())
5590 cpumask_clear(new_mask);
5591 else if (len > cpumask_size())
5592 len = cpumask_size();
5593
1da177e4
LT
5594 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5595}
5596
5597/**
5598 * sys_sched_setaffinity - set the cpu affinity of a process
5599 * @pid: pid of the process
5600 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5601 * @user_mask_ptr: user-space pointer to the new cpu mask
5602 */
5603asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5604 unsigned long __user *user_mask_ptr)
5605{
5a16f3d3 5606 cpumask_var_t new_mask;
1da177e4
LT
5607 int retval;
5608
5a16f3d3
RR
5609 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5610 return -ENOMEM;
1da177e4 5611
5a16f3d3
RR
5612 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5613 if (retval == 0)
5614 retval = sched_setaffinity(pid, new_mask);
5615 free_cpumask_var(new_mask);
5616 return retval;
1da177e4
LT
5617}
5618
96f874e2 5619long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5620{
36c8b586 5621 struct task_struct *p;
1da177e4 5622 int retval;
1da177e4 5623
95402b38 5624 get_online_cpus();
1da177e4
LT
5625 read_lock(&tasklist_lock);
5626
5627 retval = -ESRCH;
5628 p = find_process_by_pid(pid);
5629 if (!p)
5630 goto out_unlock;
5631
e7834f8f
DQ
5632 retval = security_task_getscheduler(p);
5633 if (retval)
5634 goto out_unlock;
5635
96f874e2 5636 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5637
5638out_unlock:
5639 read_unlock(&tasklist_lock);
95402b38 5640 put_online_cpus();
1da177e4 5641
9531b62f 5642 return retval;
1da177e4
LT
5643}
5644
5645/**
5646 * sys_sched_getaffinity - get the cpu affinity of a process
5647 * @pid: pid of the process
5648 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5649 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5650 */
5651asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5652 unsigned long __user *user_mask_ptr)
5653{
5654 int ret;
f17c8607 5655 cpumask_var_t mask;
1da177e4 5656
f17c8607 5657 if (len < cpumask_size())
1da177e4
LT
5658 return -EINVAL;
5659
f17c8607
RR
5660 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5661 return -ENOMEM;
1da177e4 5662
f17c8607
RR
5663 ret = sched_getaffinity(pid, mask);
5664 if (ret == 0) {
5665 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5666 ret = -EFAULT;
5667 else
5668 ret = cpumask_size();
5669 }
5670 free_cpumask_var(mask);
1da177e4 5671
f17c8607 5672 return ret;
1da177e4
LT
5673}
5674
5675/**
5676 * sys_sched_yield - yield the current processor to other threads.
5677 *
dd41f596
IM
5678 * This function yields the current CPU to other tasks. If there are no
5679 * other threads running on this CPU then this function will return.
1da177e4
LT
5680 */
5681asmlinkage long sys_sched_yield(void)
5682{
70b97a7f 5683 struct rq *rq = this_rq_lock();
1da177e4 5684
2d72376b 5685 schedstat_inc(rq, yld_count);
4530d7ab 5686 current->sched_class->yield_task(rq);
1da177e4
LT
5687
5688 /*
5689 * Since we are going to call schedule() anyway, there's
5690 * no need to preempt or enable interrupts:
5691 */
5692 __release(rq->lock);
8a25d5de 5693 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5694 _raw_spin_unlock(&rq->lock);
5695 preempt_enable_no_resched();
5696
5697 schedule();
5698
5699 return 0;
5700}
5701
e7b38404 5702static void __cond_resched(void)
1da177e4 5703{
8e0a43d8
IM
5704#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5705 __might_sleep(__FILE__, __LINE__);
5706#endif
5bbcfd90
IM
5707 /*
5708 * The BKS might be reacquired before we have dropped
5709 * PREEMPT_ACTIVE, which could trigger a second
5710 * cond_resched() call.
5711 */
1da177e4
LT
5712 do {
5713 add_preempt_count(PREEMPT_ACTIVE);
5714 schedule();
5715 sub_preempt_count(PREEMPT_ACTIVE);
5716 } while (need_resched());
5717}
5718
02b67cc3 5719int __sched _cond_resched(void)
1da177e4 5720{
9414232f
IM
5721 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5722 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5723 __cond_resched();
5724 return 1;
5725 }
5726 return 0;
5727}
02b67cc3 5728EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5729
5730/*
5731 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5732 * call schedule, and on return reacquire the lock.
5733 *
41a2d6cf 5734 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5735 * operations here to prevent schedule() from being called twice (once via
5736 * spin_unlock(), once by hand).
5737 */
95cdf3b7 5738int cond_resched_lock(spinlock_t *lock)
1da177e4 5739{
95c354fe 5740 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5741 int ret = 0;
5742
95c354fe 5743 if (spin_needbreak(lock) || resched) {
1da177e4 5744 spin_unlock(lock);
95c354fe
NP
5745 if (resched && need_resched())
5746 __cond_resched();
5747 else
5748 cpu_relax();
6df3cecb 5749 ret = 1;
1da177e4 5750 spin_lock(lock);
1da177e4 5751 }
6df3cecb 5752 return ret;
1da177e4 5753}
1da177e4
LT
5754EXPORT_SYMBOL(cond_resched_lock);
5755
5756int __sched cond_resched_softirq(void)
5757{
5758 BUG_ON(!in_softirq());
5759
9414232f 5760 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5761 local_bh_enable();
1da177e4
LT
5762 __cond_resched();
5763 local_bh_disable();
5764 return 1;
5765 }
5766 return 0;
5767}
1da177e4
LT
5768EXPORT_SYMBOL(cond_resched_softirq);
5769
1da177e4
LT
5770/**
5771 * yield - yield the current processor to other threads.
5772 *
72fd4a35 5773 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5774 * thread runnable and calls sys_sched_yield().
5775 */
5776void __sched yield(void)
5777{
5778 set_current_state(TASK_RUNNING);
5779 sys_sched_yield();
5780}
1da177e4
LT
5781EXPORT_SYMBOL(yield);
5782
5783/*
41a2d6cf 5784 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5785 * that process accounting knows that this is a task in IO wait state.
5786 *
5787 * But don't do that if it is a deliberate, throttling IO wait (this task
5788 * has set its backing_dev_info: the queue against which it should throttle)
5789 */
5790void __sched io_schedule(void)
5791{
70b97a7f 5792 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5793
0ff92245 5794 delayacct_blkio_start();
1da177e4
LT
5795 atomic_inc(&rq->nr_iowait);
5796 schedule();
5797 atomic_dec(&rq->nr_iowait);
0ff92245 5798 delayacct_blkio_end();
1da177e4 5799}
1da177e4
LT
5800EXPORT_SYMBOL(io_schedule);
5801
5802long __sched io_schedule_timeout(long timeout)
5803{
70b97a7f 5804 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5805 long ret;
5806
0ff92245 5807 delayacct_blkio_start();
1da177e4
LT
5808 atomic_inc(&rq->nr_iowait);
5809 ret = schedule_timeout(timeout);
5810 atomic_dec(&rq->nr_iowait);
0ff92245 5811 delayacct_blkio_end();
1da177e4
LT
5812 return ret;
5813}
5814
5815/**
5816 * sys_sched_get_priority_max - return maximum RT priority.
5817 * @policy: scheduling class.
5818 *
5819 * this syscall returns the maximum rt_priority that can be used
5820 * by a given scheduling class.
5821 */
5822asmlinkage long sys_sched_get_priority_max(int policy)
5823{
5824 int ret = -EINVAL;
5825
5826 switch (policy) {
5827 case SCHED_FIFO:
5828 case SCHED_RR:
5829 ret = MAX_USER_RT_PRIO-1;
5830 break;
5831 case SCHED_NORMAL:
b0a9499c 5832 case SCHED_BATCH:
dd41f596 5833 case SCHED_IDLE:
1da177e4
LT
5834 ret = 0;
5835 break;
5836 }
5837 return ret;
5838}
5839
5840/**
5841 * sys_sched_get_priority_min - return minimum RT priority.
5842 * @policy: scheduling class.
5843 *
5844 * this syscall returns the minimum rt_priority that can be used
5845 * by a given scheduling class.
5846 */
5847asmlinkage long sys_sched_get_priority_min(int policy)
5848{
5849 int ret = -EINVAL;
5850
5851 switch (policy) {
5852 case SCHED_FIFO:
5853 case SCHED_RR:
5854 ret = 1;
5855 break;
5856 case SCHED_NORMAL:
b0a9499c 5857 case SCHED_BATCH:
dd41f596 5858 case SCHED_IDLE:
1da177e4
LT
5859 ret = 0;
5860 }
5861 return ret;
5862}
5863
5864/**
5865 * sys_sched_rr_get_interval - return the default timeslice of a process.
5866 * @pid: pid of the process.
5867 * @interval: userspace pointer to the timeslice value.
5868 *
5869 * this syscall writes the default timeslice value of a given process
5870 * into the user-space timespec buffer. A value of '0' means infinity.
5871 */
5872asmlinkage
5873long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5874{
36c8b586 5875 struct task_struct *p;
a4ec24b4 5876 unsigned int time_slice;
3a5c359a 5877 int retval;
1da177e4 5878 struct timespec t;
1da177e4
LT
5879
5880 if (pid < 0)
3a5c359a 5881 return -EINVAL;
1da177e4
LT
5882
5883 retval = -ESRCH;
5884 read_lock(&tasklist_lock);
5885 p = find_process_by_pid(pid);
5886 if (!p)
5887 goto out_unlock;
5888
5889 retval = security_task_getscheduler(p);
5890 if (retval)
5891 goto out_unlock;
5892
77034937
IM
5893 /*
5894 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5895 * tasks that are on an otherwise idle runqueue:
5896 */
5897 time_slice = 0;
5898 if (p->policy == SCHED_RR) {
a4ec24b4 5899 time_slice = DEF_TIMESLICE;
1868f958 5900 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5901 struct sched_entity *se = &p->se;
5902 unsigned long flags;
5903 struct rq *rq;
5904
5905 rq = task_rq_lock(p, &flags);
77034937
IM
5906 if (rq->cfs.load.weight)
5907 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5908 task_rq_unlock(rq, &flags);
5909 }
1da177e4 5910 read_unlock(&tasklist_lock);
a4ec24b4 5911 jiffies_to_timespec(time_slice, &t);
1da177e4 5912 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5913 return retval;
3a5c359a 5914
1da177e4
LT
5915out_unlock:
5916 read_unlock(&tasklist_lock);
5917 return retval;
5918}
5919
7c731e0a 5920static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5921
82a1fcb9 5922void sched_show_task(struct task_struct *p)
1da177e4 5923{
1da177e4 5924 unsigned long free = 0;
36c8b586 5925 unsigned state;
1da177e4 5926
1da177e4 5927 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5928 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5929 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5930#if BITS_PER_LONG == 32
1da177e4 5931 if (state == TASK_RUNNING)
cc4ea795 5932 printk(KERN_CONT " running ");
1da177e4 5933 else
cc4ea795 5934 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5935#else
5936 if (state == TASK_RUNNING)
cc4ea795 5937 printk(KERN_CONT " running task ");
1da177e4 5938 else
cc4ea795 5939 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5940#endif
5941#ifdef CONFIG_DEBUG_STACK_USAGE
5942 {
10ebffde 5943 unsigned long *n = end_of_stack(p);
1da177e4
LT
5944 while (!*n)
5945 n++;
10ebffde 5946 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5947 }
5948#endif
ba25f9dc 5949 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5950 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5951
5fb5e6de 5952 show_stack(p, NULL);
1da177e4
LT
5953}
5954
e59e2ae2 5955void show_state_filter(unsigned long state_filter)
1da177e4 5956{
36c8b586 5957 struct task_struct *g, *p;
1da177e4 5958
4bd77321
IM
5959#if BITS_PER_LONG == 32
5960 printk(KERN_INFO
5961 " task PC stack pid father\n");
1da177e4 5962#else
4bd77321
IM
5963 printk(KERN_INFO
5964 " task PC stack pid father\n");
1da177e4
LT
5965#endif
5966 read_lock(&tasklist_lock);
5967 do_each_thread(g, p) {
5968 /*
5969 * reset the NMI-timeout, listing all files on a slow
5970 * console might take alot of time:
5971 */
5972 touch_nmi_watchdog();
39bc89fd 5973 if (!state_filter || (p->state & state_filter))
82a1fcb9 5974 sched_show_task(p);
1da177e4
LT
5975 } while_each_thread(g, p);
5976
04c9167f
JF
5977 touch_all_softlockup_watchdogs();
5978
dd41f596
IM
5979#ifdef CONFIG_SCHED_DEBUG
5980 sysrq_sched_debug_show();
5981#endif
1da177e4 5982 read_unlock(&tasklist_lock);
e59e2ae2
IM
5983 /*
5984 * Only show locks if all tasks are dumped:
5985 */
5986 if (state_filter == -1)
5987 debug_show_all_locks();
1da177e4
LT
5988}
5989
1df21055
IM
5990void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5991{
dd41f596 5992 idle->sched_class = &idle_sched_class;
1df21055
IM
5993}
5994
f340c0d1
IM
5995/**
5996 * init_idle - set up an idle thread for a given CPU
5997 * @idle: task in question
5998 * @cpu: cpu the idle task belongs to
5999 *
6000 * NOTE: this function does not set the idle thread's NEED_RESCHED
6001 * flag, to make booting more robust.
6002 */
5c1e1767 6003void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6004{
70b97a7f 6005 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6006 unsigned long flags;
6007
5cbd54ef
IM
6008 spin_lock_irqsave(&rq->lock, flags);
6009
dd41f596
IM
6010 __sched_fork(idle);
6011 idle->se.exec_start = sched_clock();
6012
b29739f9 6013 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6014 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6015 __set_task_cpu(idle, cpu);
1da177e4 6016
1da177e4 6017 rq->curr = rq->idle = idle;
4866cde0
NP
6018#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6019 idle->oncpu = 1;
6020#endif
1da177e4
LT
6021 spin_unlock_irqrestore(&rq->lock, flags);
6022
6023 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6024#if defined(CONFIG_PREEMPT)
6025 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6026#else
a1261f54 6027 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6028#endif
dd41f596
IM
6029 /*
6030 * The idle tasks have their own, simple scheduling class:
6031 */
6032 idle->sched_class = &idle_sched_class;
fb52607a 6033 ftrace_graph_init_task(idle);
1da177e4
LT
6034}
6035
6036/*
6037 * In a system that switches off the HZ timer nohz_cpu_mask
6038 * indicates which cpus entered this state. This is used
6039 * in the rcu update to wait only for active cpus. For system
6040 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6041 * always be CPU_BITS_NONE.
1da177e4 6042 */
6a7b3dc3 6043cpumask_var_t nohz_cpu_mask;
1da177e4 6044
19978ca6
IM
6045/*
6046 * Increase the granularity value when there are more CPUs,
6047 * because with more CPUs the 'effective latency' as visible
6048 * to users decreases. But the relationship is not linear,
6049 * so pick a second-best guess by going with the log2 of the
6050 * number of CPUs.
6051 *
6052 * This idea comes from the SD scheduler of Con Kolivas:
6053 */
6054static inline void sched_init_granularity(void)
6055{
6056 unsigned int factor = 1 + ilog2(num_online_cpus());
6057 const unsigned long limit = 200000000;
6058
6059 sysctl_sched_min_granularity *= factor;
6060 if (sysctl_sched_min_granularity > limit)
6061 sysctl_sched_min_granularity = limit;
6062
6063 sysctl_sched_latency *= factor;
6064 if (sysctl_sched_latency > limit)
6065 sysctl_sched_latency = limit;
6066
6067 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6068
6069 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6070}
6071
1da177e4
LT
6072#ifdef CONFIG_SMP
6073/*
6074 * This is how migration works:
6075 *
70b97a7f 6076 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6077 * runqueue and wake up that CPU's migration thread.
6078 * 2) we down() the locked semaphore => thread blocks.
6079 * 3) migration thread wakes up (implicitly it forces the migrated
6080 * thread off the CPU)
6081 * 4) it gets the migration request and checks whether the migrated
6082 * task is still in the wrong runqueue.
6083 * 5) if it's in the wrong runqueue then the migration thread removes
6084 * it and puts it into the right queue.
6085 * 6) migration thread up()s the semaphore.
6086 * 7) we wake up and the migration is done.
6087 */
6088
6089/*
6090 * Change a given task's CPU affinity. Migrate the thread to a
6091 * proper CPU and schedule it away if the CPU it's executing on
6092 * is removed from the allowed bitmask.
6093 *
6094 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6095 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6096 * call is not atomic; no spinlocks may be held.
6097 */
96f874e2 6098int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6099{
70b97a7f 6100 struct migration_req req;
1da177e4 6101 unsigned long flags;
70b97a7f 6102 struct rq *rq;
48f24c4d 6103 int ret = 0;
1da177e4
LT
6104
6105 rq = task_rq_lock(p, &flags);
96f874e2 6106 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6107 ret = -EINVAL;
6108 goto out;
6109 }
6110
9985b0ba 6111 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6112 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6113 ret = -EINVAL;
6114 goto out;
6115 }
6116
73fe6aae 6117 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6118 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6119 else {
96f874e2
RR
6120 cpumask_copy(&p->cpus_allowed, new_mask);
6121 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6122 }
6123
1da177e4 6124 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6125 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6126 goto out;
6127
1e5ce4f4 6128 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6129 /* Need help from migration thread: drop lock and wait. */
6130 task_rq_unlock(rq, &flags);
6131 wake_up_process(rq->migration_thread);
6132 wait_for_completion(&req.done);
6133 tlb_migrate_finish(p->mm);
6134 return 0;
6135 }
6136out:
6137 task_rq_unlock(rq, &flags);
48f24c4d 6138
1da177e4
LT
6139 return ret;
6140}
cd8ba7cd 6141EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6142
6143/*
41a2d6cf 6144 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6145 * this because either it can't run here any more (set_cpus_allowed()
6146 * away from this CPU, or CPU going down), or because we're
6147 * attempting to rebalance this task on exec (sched_exec).
6148 *
6149 * So we race with normal scheduler movements, but that's OK, as long
6150 * as the task is no longer on this CPU.
efc30814
KK
6151 *
6152 * Returns non-zero if task was successfully migrated.
1da177e4 6153 */
efc30814 6154static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6155{
70b97a7f 6156 struct rq *rq_dest, *rq_src;
dd41f596 6157 int ret = 0, on_rq;
1da177e4 6158
e761b772 6159 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6160 return ret;
1da177e4
LT
6161
6162 rq_src = cpu_rq(src_cpu);
6163 rq_dest = cpu_rq(dest_cpu);
6164
6165 double_rq_lock(rq_src, rq_dest);
6166 /* Already moved. */
6167 if (task_cpu(p) != src_cpu)
b1e38734 6168 goto done;
1da177e4 6169 /* Affinity changed (again). */
96f874e2 6170 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6171 goto fail;
1da177e4 6172
dd41f596 6173 on_rq = p->se.on_rq;
6e82a3be 6174 if (on_rq)
2e1cb74a 6175 deactivate_task(rq_src, p, 0);
6e82a3be 6176
1da177e4 6177 set_task_cpu(p, dest_cpu);
dd41f596
IM
6178 if (on_rq) {
6179 activate_task(rq_dest, p, 0);
15afe09b 6180 check_preempt_curr(rq_dest, p, 0);
1da177e4 6181 }
b1e38734 6182done:
efc30814 6183 ret = 1;
b1e38734 6184fail:
1da177e4 6185 double_rq_unlock(rq_src, rq_dest);
efc30814 6186 return ret;
1da177e4
LT
6187}
6188
6189/*
6190 * migration_thread - this is a highprio system thread that performs
6191 * thread migration by bumping thread off CPU then 'pushing' onto
6192 * another runqueue.
6193 */
95cdf3b7 6194static int migration_thread(void *data)
1da177e4 6195{
1da177e4 6196 int cpu = (long)data;
70b97a7f 6197 struct rq *rq;
1da177e4
LT
6198
6199 rq = cpu_rq(cpu);
6200 BUG_ON(rq->migration_thread != current);
6201
6202 set_current_state(TASK_INTERRUPTIBLE);
6203 while (!kthread_should_stop()) {
70b97a7f 6204 struct migration_req *req;
1da177e4 6205 struct list_head *head;
1da177e4 6206
1da177e4
LT
6207 spin_lock_irq(&rq->lock);
6208
6209 if (cpu_is_offline(cpu)) {
6210 spin_unlock_irq(&rq->lock);
6211 goto wait_to_die;
6212 }
6213
6214 if (rq->active_balance) {
6215 active_load_balance(rq, cpu);
6216 rq->active_balance = 0;
6217 }
6218
6219 head = &rq->migration_queue;
6220
6221 if (list_empty(head)) {
6222 spin_unlock_irq(&rq->lock);
6223 schedule();
6224 set_current_state(TASK_INTERRUPTIBLE);
6225 continue;
6226 }
70b97a7f 6227 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6228 list_del_init(head->next);
6229
674311d5
NP
6230 spin_unlock(&rq->lock);
6231 __migrate_task(req->task, cpu, req->dest_cpu);
6232 local_irq_enable();
1da177e4
LT
6233
6234 complete(&req->done);
6235 }
6236 __set_current_state(TASK_RUNNING);
6237 return 0;
6238
6239wait_to_die:
6240 /* Wait for kthread_stop */
6241 set_current_state(TASK_INTERRUPTIBLE);
6242 while (!kthread_should_stop()) {
6243 schedule();
6244 set_current_state(TASK_INTERRUPTIBLE);
6245 }
6246 __set_current_state(TASK_RUNNING);
6247 return 0;
6248}
6249
6250#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6251
6252static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6253{
6254 int ret;
6255
6256 local_irq_disable();
6257 ret = __migrate_task(p, src_cpu, dest_cpu);
6258 local_irq_enable();
6259 return ret;
6260}
6261
054b9108 6262/*
3a4fa0a2 6263 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6264 */
48f24c4d 6265static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6266{
70b97a7f 6267 int dest_cpu;
e76bd8d9
RR
6268 /* FIXME: Use cpumask_of_node here. */
6269 cpumask_t _nodemask = node_to_cpumask(cpu_to_node(dead_cpu));
6270 const struct cpumask *nodemask = &_nodemask;
6271
6272again:
6273 /* Look for allowed, online CPU in same node. */
6274 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6275 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6276 goto move;
6277
6278 /* Any allowed, online CPU? */
6279 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6280 if (dest_cpu < nr_cpu_ids)
6281 goto move;
6282
6283 /* No more Mr. Nice Guy. */
6284 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6285 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6286 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6287
e76bd8d9
RR
6288 /*
6289 * Don't tell them about moving exiting tasks or
6290 * kernel threads (both mm NULL), since they never
6291 * leave kernel.
6292 */
6293 if (p->mm && printk_ratelimit()) {
6294 printk(KERN_INFO "process %d (%s) no "
6295 "longer affine to cpu%d\n",
6296 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6297 }
e76bd8d9
RR
6298 }
6299
6300move:
6301 /* It can have affinity changed while we were choosing. */
6302 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6303 goto again;
1da177e4
LT
6304}
6305
6306/*
6307 * While a dead CPU has no uninterruptible tasks queued at this point,
6308 * it might still have a nonzero ->nr_uninterruptible counter, because
6309 * for performance reasons the counter is not stricly tracking tasks to
6310 * their home CPUs. So we just add the counter to another CPU's counter,
6311 * to keep the global sum constant after CPU-down:
6312 */
70b97a7f 6313static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6314{
1e5ce4f4 6315 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6316 unsigned long flags;
6317
6318 local_irq_save(flags);
6319 double_rq_lock(rq_src, rq_dest);
6320 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6321 rq_src->nr_uninterruptible = 0;
6322 double_rq_unlock(rq_src, rq_dest);
6323 local_irq_restore(flags);
6324}
6325
6326/* Run through task list and migrate tasks from the dead cpu. */
6327static void migrate_live_tasks(int src_cpu)
6328{
48f24c4d 6329 struct task_struct *p, *t;
1da177e4 6330
f7b4cddc 6331 read_lock(&tasklist_lock);
1da177e4 6332
48f24c4d
IM
6333 do_each_thread(t, p) {
6334 if (p == current)
1da177e4
LT
6335 continue;
6336
48f24c4d
IM
6337 if (task_cpu(p) == src_cpu)
6338 move_task_off_dead_cpu(src_cpu, p);
6339 } while_each_thread(t, p);
1da177e4 6340
f7b4cddc 6341 read_unlock(&tasklist_lock);
1da177e4
LT
6342}
6343
dd41f596
IM
6344/*
6345 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6346 * It does so by boosting its priority to highest possible.
6347 * Used by CPU offline code.
1da177e4
LT
6348 */
6349void sched_idle_next(void)
6350{
48f24c4d 6351 int this_cpu = smp_processor_id();
70b97a7f 6352 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6353 struct task_struct *p = rq->idle;
6354 unsigned long flags;
6355
6356 /* cpu has to be offline */
48f24c4d 6357 BUG_ON(cpu_online(this_cpu));
1da177e4 6358
48f24c4d
IM
6359 /*
6360 * Strictly not necessary since rest of the CPUs are stopped by now
6361 * and interrupts disabled on the current cpu.
1da177e4
LT
6362 */
6363 spin_lock_irqsave(&rq->lock, flags);
6364
dd41f596 6365 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6366
94bc9a7b
DA
6367 update_rq_clock(rq);
6368 activate_task(rq, p, 0);
1da177e4
LT
6369
6370 spin_unlock_irqrestore(&rq->lock, flags);
6371}
6372
48f24c4d
IM
6373/*
6374 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6375 * offline.
6376 */
6377void idle_task_exit(void)
6378{
6379 struct mm_struct *mm = current->active_mm;
6380
6381 BUG_ON(cpu_online(smp_processor_id()));
6382
6383 if (mm != &init_mm)
6384 switch_mm(mm, &init_mm, current);
6385 mmdrop(mm);
6386}
6387
054b9108 6388/* called under rq->lock with disabled interrupts */
36c8b586 6389static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6390{
70b97a7f 6391 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6392
6393 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6394 BUG_ON(!p->exit_state);
1da177e4
LT
6395
6396 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6397 BUG_ON(p->state == TASK_DEAD);
1da177e4 6398
48f24c4d 6399 get_task_struct(p);
1da177e4
LT
6400
6401 /*
6402 * Drop lock around migration; if someone else moves it,
41a2d6cf 6403 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6404 * fine.
6405 */
f7b4cddc 6406 spin_unlock_irq(&rq->lock);
48f24c4d 6407 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6408 spin_lock_irq(&rq->lock);
1da177e4 6409
48f24c4d 6410 put_task_struct(p);
1da177e4
LT
6411}
6412
6413/* release_task() removes task from tasklist, so we won't find dead tasks. */
6414static void migrate_dead_tasks(unsigned int dead_cpu)
6415{
70b97a7f 6416 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6417 struct task_struct *next;
48f24c4d 6418
dd41f596
IM
6419 for ( ; ; ) {
6420 if (!rq->nr_running)
6421 break;
a8e504d2 6422 update_rq_clock(rq);
ff95f3df 6423 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6424 if (!next)
6425 break;
79c53799 6426 next->sched_class->put_prev_task(rq, next);
dd41f596 6427 migrate_dead(dead_cpu, next);
e692ab53 6428
1da177e4
LT
6429 }
6430}
6431#endif /* CONFIG_HOTPLUG_CPU */
6432
e692ab53
NP
6433#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6434
6435static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6436 {
6437 .procname = "sched_domain",
c57baf1e 6438 .mode = 0555,
e0361851 6439 },
38605cae 6440 {0, },
e692ab53
NP
6441};
6442
6443static struct ctl_table sd_ctl_root[] = {
e0361851 6444 {
c57baf1e 6445 .ctl_name = CTL_KERN,
e0361851 6446 .procname = "kernel",
c57baf1e 6447 .mode = 0555,
e0361851
AD
6448 .child = sd_ctl_dir,
6449 },
38605cae 6450 {0, },
e692ab53
NP
6451};
6452
6453static struct ctl_table *sd_alloc_ctl_entry(int n)
6454{
6455 struct ctl_table *entry =
5cf9f062 6456 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6457
e692ab53
NP
6458 return entry;
6459}
6460
6382bc90
MM
6461static void sd_free_ctl_entry(struct ctl_table **tablep)
6462{
cd790076 6463 struct ctl_table *entry;
6382bc90 6464
cd790076
MM
6465 /*
6466 * In the intermediate directories, both the child directory and
6467 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6468 * will always be set. In the lowest directory the names are
cd790076
MM
6469 * static strings and all have proc handlers.
6470 */
6471 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6472 if (entry->child)
6473 sd_free_ctl_entry(&entry->child);
cd790076
MM
6474 if (entry->proc_handler == NULL)
6475 kfree(entry->procname);
6476 }
6382bc90
MM
6477
6478 kfree(*tablep);
6479 *tablep = NULL;
6480}
6481
e692ab53 6482static void
e0361851 6483set_table_entry(struct ctl_table *entry,
e692ab53
NP
6484 const char *procname, void *data, int maxlen,
6485 mode_t mode, proc_handler *proc_handler)
6486{
e692ab53
NP
6487 entry->procname = procname;
6488 entry->data = data;
6489 entry->maxlen = maxlen;
6490 entry->mode = mode;
6491 entry->proc_handler = proc_handler;
6492}
6493
6494static struct ctl_table *
6495sd_alloc_ctl_domain_table(struct sched_domain *sd)
6496{
a5d8c348 6497 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6498
ad1cdc1d
MM
6499 if (table == NULL)
6500 return NULL;
6501
e0361851 6502 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6503 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6504 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6505 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6506 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6507 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6508 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6509 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6510 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6511 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6512 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6513 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6514 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6515 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6516 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6517 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6518 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6519 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6520 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6521 &sd->cache_nice_tries,
6522 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6523 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6524 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6525 set_table_entry(&table[11], "name", sd->name,
6526 CORENAME_MAX_SIZE, 0444, proc_dostring);
6527 /* &table[12] is terminator */
e692ab53
NP
6528
6529 return table;
6530}
6531
9a4e7159 6532static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6533{
6534 struct ctl_table *entry, *table;
6535 struct sched_domain *sd;
6536 int domain_num = 0, i;
6537 char buf[32];
6538
6539 for_each_domain(cpu, sd)
6540 domain_num++;
6541 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6542 if (table == NULL)
6543 return NULL;
e692ab53
NP
6544
6545 i = 0;
6546 for_each_domain(cpu, sd) {
6547 snprintf(buf, 32, "domain%d", i);
e692ab53 6548 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6549 entry->mode = 0555;
e692ab53
NP
6550 entry->child = sd_alloc_ctl_domain_table(sd);
6551 entry++;
6552 i++;
6553 }
6554 return table;
6555}
6556
6557static struct ctl_table_header *sd_sysctl_header;
6382bc90 6558static void register_sched_domain_sysctl(void)
e692ab53
NP
6559{
6560 int i, cpu_num = num_online_cpus();
6561 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6562 char buf[32];
6563
7378547f
MM
6564 WARN_ON(sd_ctl_dir[0].child);
6565 sd_ctl_dir[0].child = entry;
6566
ad1cdc1d
MM
6567 if (entry == NULL)
6568 return;
6569
97b6ea7b 6570 for_each_online_cpu(i) {
e692ab53 6571 snprintf(buf, 32, "cpu%d", i);
e692ab53 6572 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6573 entry->mode = 0555;
e692ab53 6574 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6575 entry++;
e692ab53 6576 }
7378547f
MM
6577
6578 WARN_ON(sd_sysctl_header);
e692ab53
NP
6579 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6580}
6382bc90 6581
7378547f 6582/* may be called multiple times per register */
6382bc90
MM
6583static void unregister_sched_domain_sysctl(void)
6584{
7378547f
MM
6585 if (sd_sysctl_header)
6586 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6587 sd_sysctl_header = NULL;
7378547f
MM
6588 if (sd_ctl_dir[0].child)
6589 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6590}
e692ab53 6591#else
6382bc90
MM
6592static void register_sched_domain_sysctl(void)
6593{
6594}
6595static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6596{
6597}
6598#endif
6599
1f11eb6a
GH
6600static void set_rq_online(struct rq *rq)
6601{
6602 if (!rq->online) {
6603 const struct sched_class *class;
6604
c6c4927b 6605 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6606 rq->online = 1;
6607
6608 for_each_class(class) {
6609 if (class->rq_online)
6610 class->rq_online(rq);
6611 }
6612 }
6613}
6614
6615static void set_rq_offline(struct rq *rq)
6616{
6617 if (rq->online) {
6618 const struct sched_class *class;
6619
6620 for_each_class(class) {
6621 if (class->rq_offline)
6622 class->rq_offline(rq);
6623 }
6624
c6c4927b 6625 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6626 rq->online = 0;
6627 }
6628}
6629
1da177e4
LT
6630/*
6631 * migration_call - callback that gets triggered when a CPU is added.
6632 * Here we can start up the necessary migration thread for the new CPU.
6633 */
48f24c4d
IM
6634static int __cpuinit
6635migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6636{
1da177e4 6637 struct task_struct *p;
48f24c4d 6638 int cpu = (long)hcpu;
1da177e4 6639 unsigned long flags;
70b97a7f 6640 struct rq *rq;
1da177e4
LT
6641
6642 switch (action) {
5be9361c 6643
1da177e4 6644 case CPU_UP_PREPARE:
8bb78442 6645 case CPU_UP_PREPARE_FROZEN:
dd41f596 6646 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6647 if (IS_ERR(p))
6648 return NOTIFY_BAD;
1da177e4
LT
6649 kthread_bind(p, cpu);
6650 /* Must be high prio: stop_machine expects to yield to it. */
6651 rq = task_rq_lock(p, &flags);
dd41f596 6652 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6653 task_rq_unlock(rq, &flags);
6654 cpu_rq(cpu)->migration_thread = p;
6655 break;
48f24c4d 6656
1da177e4 6657 case CPU_ONLINE:
8bb78442 6658 case CPU_ONLINE_FROZEN:
3a4fa0a2 6659 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6660 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6661
6662 /* Update our root-domain */
6663 rq = cpu_rq(cpu);
6664 spin_lock_irqsave(&rq->lock, flags);
6665 if (rq->rd) {
c6c4927b 6666 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6667
6668 set_rq_online(rq);
1f94ef59
GH
6669 }
6670 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6671 break;
48f24c4d 6672
1da177e4
LT
6673#ifdef CONFIG_HOTPLUG_CPU
6674 case CPU_UP_CANCELED:
8bb78442 6675 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6676 if (!cpu_rq(cpu)->migration_thread)
6677 break;
41a2d6cf 6678 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6679 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6680 cpumask_any(cpu_online_mask));
1da177e4
LT
6681 kthread_stop(cpu_rq(cpu)->migration_thread);
6682 cpu_rq(cpu)->migration_thread = NULL;
6683 break;
48f24c4d 6684
1da177e4 6685 case CPU_DEAD:
8bb78442 6686 case CPU_DEAD_FROZEN:
470fd646 6687 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6688 migrate_live_tasks(cpu);
6689 rq = cpu_rq(cpu);
6690 kthread_stop(rq->migration_thread);
6691 rq->migration_thread = NULL;
6692 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6693 spin_lock_irq(&rq->lock);
a8e504d2 6694 update_rq_clock(rq);
2e1cb74a 6695 deactivate_task(rq, rq->idle, 0);
1da177e4 6696 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6697 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6698 rq->idle->sched_class = &idle_sched_class;
1da177e4 6699 migrate_dead_tasks(cpu);
d2da272a 6700 spin_unlock_irq(&rq->lock);
470fd646 6701 cpuset_unlock();
1da177e4
LT
6702 migrate_nr_uninterruptible(rq);
6703 BUG_ON(rq->nr_running != 0);
6704
41a2d6cf
IM
6705 /*
6706 * No need to migrate the tasks: it was best-effort if
6707 * they didn't take sched_hotcpu_mutex. Just wake up
6708 * the requestors.
6709 */
1da177e4
LT
6710 spin_lock_irq(&rq->lock);
6711 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6712 struct migration_req *req;
6713
1da177e4 6714 req = list_entry(rq->migration_queue.next,
70b97a7f 6715 struct migration_req, list);
1da177e4 6716 list_del_init(&req->list);
9a2bd244 6717 spin_unlock_irq(&rq->lock);
1da177e4 6718 complete(&req->done);
9a2bd244 6719 spin_lock_irq(&rq->lock);
1da177e4
LT
6720 }
6721 spin_unlock_irq(&rq->lock);
6722 break;
57d885fe 6723
08f503b0
GH
6724 case CPU_DYING:
6725 case CPU_DYING_FROZEN:
57d885fe
GH
6726 /* Update our root-domain */
6727 rq = cpu_rq(cpu);
6728 spin_lock_irqsave(&rq->lock, flags);
6729 if (rq->rd) {
c6c4927b 6730 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6731 set_rq_offline(rq);
57d885fe
GH
6732 }
6733 spin_unlock_irqrestore(&rq->lock, flags);
6734 break;
1da177e4
LT
6735#endif
6736 }
6737 return NOTIFY_OK;
6738}
6739
6740/* Register at highest priority so that task migration (migrate_all_tasks)
6741 * happens before everything else.
6742 */
26c2143b 6743static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6744 .notifier_call = migration_call,
6745 .priority = 10
6746};
6747
7babe8db 6748static int __init migration_init(void)
1da177e4
LT
6749{
6750 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6751 int err;
48f24c4d
IM
6752
6753 /* Start one for the boot CPU: */
07dccf33
AM
6754 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6755 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6756 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6757 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6758
6759 return err;
1da177e4 6760}
7babe8db 6761early_initcall(migration_init);
1da177e4
LT
6762#endif
6763
6764#ifdef CONFIG_SMP
476f3534 6765
3e9830dc 6766#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6767
7c16ec58 6768static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6769 struct cpumask *groupmask)
1da177e4 6770{
4dcf6aff 6771 struct sched_group *group = sd->groups;
434d53b0 6772 char str[256];
1da177e4 6773
968ea6d8 6774 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6775 cpumask_clear(groupmask);
4dcf6aff
IM
6776
6777 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6778
6779 if (!(sd->flags & SD_LOAD_BALANCE)) {
6780 printk("does not load-balance\n");
6781 if (sd->parent)
6782 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6783 " has parent");
6784 return -1;
41c7ce9a
NP
6785 }
6786
eefd796a 6787 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6788
758b2cdc 6789 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6790 printk(KERN_ERR "ERROR: domain->span does not contain "
6791 "CPU%d\n", cpu);
6792 }
758b2cdc 6793 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6794 printk(KERN_ERR "ERROR: domain->groups does not contain"
6795 " CPU%d\n", cpu);
6796 }
1da177e4 6797
4dcf6aff 6798 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6799 do {
4dcf6aff
IM
6800 if (!group) {
6801 printk("\n");
6802 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6803 break;
6804 }
6805
4dcf6aff
IM
6806 if (!group->__cpu_power) {
6807 printk(KERN_CONT "\n");
6808 printk(KERN_ERR "ERROR: domain->cpu_power not "
6809 "set\n");
6810 break;
6811 }
1da177e4 6812
758b2cdc 6813 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6814 printk(KERN_CONT "\n");
6815 printk(KERN_ERR "ERROR: empty group\n");
6816 break;
6817 }
1da177e4 6818
758b2cdc 6819 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6820 printk(KERN_CONT "\n");
6821 printk(KERN_ERR "ERROR: repeated CPUs\n");
6822 break;
6823 }
1da177e4 6824
758b2cdc 6825 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6826
968ea6d8 6827 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6828 printk(KERN_CONT " %s", str);
1da177e4 6829
4dcf6aff
IM
6830 group = group->next;
6831 } while (group != sd->groups);
6832 printk(KERN_CONT "\n");
1da177e4 6833
758b2cdc 6834 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6835 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6836
758b2cdc
RR
6837 if (sd->parent &&
6838 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6839 printk(KERN_ERR "ERROR: parent span is not a superset "
6840 "of domain->span\n");
6841 return 0;
6842}
1da177e4 6843
4dcf6aff
IM
6844static void sched_domain_debug(struct sched_domain *sd, int cpu)
6845{
d5dd3db1 6846 cpumask_var_t groupmask;
4dcf6aff 6847 int level = 0;
1da177e4 6848
4dcf6aff
IM
6849 if (!sd) {
6850 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6851 return;
6852 }
1da177e4 6853
4dcf6aff
IM
6854 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6855
d5dd3db1 6856 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6857 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6858 return;
6859 }
6860
4dcf6aff 6861 for (;;) {
7c16ec58 6862 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6863 break;
1da177e4
LT
6864 level++;
6865 sd = sd->parent;
33859f7f 6866 if (!sd)
4dcf6aff
IM
6867 break;
6868 }
d5dd3db1 6869 free_cpumask_var(groupmask);
1da177e4 6870}
6d6bc0ad 6871#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6872# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6873#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6874
1a20ff27 6875static int sd_degenerate(struct sched_domain *sd)
245af2c7 6876{
758b2cdc 6877 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6878 return 1;
6879
6880 /* Following flags need at least 2 groups */
6881 if (sd->flags & (SD_LOAD_BALANCE |
6882 SD_BALANCE_NEWIDLE |
6883 SD_BALANCE_FORK |
89c4710e
SS
6884 SD_BALANCE_EXEC |
6885 SD_SHARE_CPUPOWER |
6886 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6887 if (sd->groups != sd->groups->next)
6888 return 0;
6889 }
6890
6891 /* Following flags don't use groups */
6892 if (sd->flags & (SD_WAKE_IDLE |
6893 SD_WAKE_AFFINE |
6894 SD_WAKE_BALANCE))
6895 return 0;
6896
6897 return 1;
6898}
6899
48f24c4d
IM
6900static int
6901sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6902{
6903 unsigned long cflags = sd->flags, pflags = parent->flags;
6904
6905 if (sd_degenerate(parent))
6906 return 1;
6907
758b2cdc 6908 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6909 return 0;
6910
6911 /* Does parent contain flags not in child? */
6912 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6913 if (cflags & SD_WAKE_AFFINE)
6914 pflags &= ~SD_WAKE_BALANCE;
6915 /* Flags needing groups don't count if only 1 group in parent */
6916 if (parent->groups == parent->groups->next) {
6917 pflags &= ~(SD_LOAD_BALANCE |
6918 SD_BALANCE_NEWIDLE |
6919 SD_BALANCE_FORK |
89c4710e
SS
6920 SD_BALANCE_EXEC |
6921 SD_SHARE_CPUPOWER |
6922 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6923 if (nr_node_ids == 1)
6924 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6925 }
6926 if (~cflags & pflags)
6927 return 0;
6928
6929 return 1;
6930}
6931
c6c4927b
RR
6932static void free_rootdomain(struct root_domain *rd)
6933{
68e74568
RR
6934 cpupri_cleanup(&rd->cpupri);
6935
c6c4927b
RR
6936 free_cpumask_var(rd->rto_mask);
6937 free_cpumask_var(rd->online);
6938 free_cpumask_var(rd->span);
6939 kfree(rd);
6940}
6941
57d885fe
GH
6942static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6943{
6944 unsigned long flags;
57d885fe
GH
6945
6946 spin_lock_irqsave(&rq->lock, flags);
6947
6948 if (rq->rd) {
6949 struct root_domain *old_rd = rq->rd;
6950
c6c4927b 6951 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6952 set_rq_offline(rq);
57d885fe 6953
c6c4927b 6954 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6955
57d885fe 6956 if (atomic_dec_and_test(&old_rd->refcount))
c6c4927b 6957 free_rootdomain(old_rd);
57d885fe
GH
6958 }
6959
6960 atomic_inc(&rd->refcount);
6961 rq->rd = rd;
6962
c6c4927b
RR
6963 cpumask_set_cpu(rq->cpu, rd->span);
6964 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 6965 set_rq_online(rq);
57d885fe
GH
6966
6967 spin_unlock_irqrestore(&rq->lock, flags);
6968}
6969
c6c4927b 6970static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
6971{
6972 memset(rd, 0, sizeof(*rd));
6973
c6c4927b
RR
6974 if (bootmem) {
6975 alloc_bootmem_cpumask_var(&def_root_domain.span);
6976 alloc_bootmem_cpumask_var(&def_root_domain.online);
6977 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 6978 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
6979 return 0;
6980 }
6981
6982 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6983 goto free_rd;
6984 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6985 goto free_span;
6986 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6987 goto free_online;
6e0534f2 6988
68e74568
RR
6989 if (cpupri_init(&rd->cpupri, false) != 0)
6990 goto free_rto_mask;
c6c4927b 6991 return 0;
6e0534f2 6992
68e74568
RR
6993free_rto_mask:
6994 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6995free_online:
6996 free_cpumask_var(rd->online);
6997free_span:
6998 free_cpumask_var(rd->span);
6999free_rd:
7000 kfree(rd);
7001 return -ENOMEM;
57d885fe
GH
7002}
7003
7004static void init_defrootdomain(void)
7005{
c6c4927b
RR
7006 init_rootdomain(&def_root_domain, true);
7007
57d885fe
GH
7008 atomic_set(&def_root_domain.refcount, 1);
7009}
7010
dc938520 7011static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7012{
7013 struct root_domain *rd;
7014
7015 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7016 if (!rd)
7017 return NULL;
7018
c6c4927b
RR
7019 if (init_rootdomain(rd, false) != 0) {
7020 kfree(rd);
7021 return NULL;
7022 }
57d885fe
GH
7023
7024 return rd;
7025}
7026
1da177e4 7027/*
0eab9146 7028 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7029 * hold the hotplug lock.
7030 */
0eab9146
IM
7031static void
7032cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7033{
70b97a7f 7034 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7035 struct sched_domain *tmp;
7036
7037 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7038 for (tmp = sd; tmp; ) {
245af2c7
SS
7039 struct sched_domain *parent = tmp->parent;
7040 if (!parent)
7041 break;
f29c9b1c 7042
1a848870 7043 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7044 tmp->parent = parent->parent;
1a848870
SS
7045 if (parent->parent)
7046 parent->parent->child = tmp;
f29c9b1c
LZ
7047 } else
7048 tmp = tmp->parent;
245af2c7
SS
7049 }
7050
1a848870 7051 if (sd && sd_degenerate(sd)) {
245af2c7 7052 sd = sd->parent;
1a848870
SS
7053 if (sd)
7054 sd->child = NULL;
7055 }
1da177e4
LT
7056
7057 sched_domain_debug(sd, cpu);
7058
57d885fe 7059 rq_attach_root(rq, rd);
674311d5 7060 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7061}
7062
7063/* cpus with isolated domains */
dcc30a35 7064static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7065
7066/* Setup the mask of cpus configured for isolated domains */
7067static int __init isolated_cpu_setup(char *str)
7068{
968ea6d8 7069 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7070 return 1;
7071}
7072
8927f494 7073__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7074
7075/*
6711cab4
SS
7076 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7077 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7078 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7079 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7080 *
7081 * init_sched_build_groups will build a circular linked list of the groups
7082 * covered by the given span, and will set each group's ->cpumask correctly,
7083 * and ->cpu_power to 0.
7084 */
a616058b 7085static void
96f874e2
RR
7086init_sched_build_groups(const struct cpumask *span,
7087 const struct cpumask *cpu_map,
7088 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7089 struct sched_group **sg,
96f874e2
RR
7090 struct cpumask *tmpmask),
7091 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7092{
7093 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7094 int i;
7095
96f874e2 7096 cpumask_clear(covered);
7c16ec58 7097
abcd083a 7098 for_each_cpu(i, span) {
6711cab4 7099 struct sched_group *sg;
7c16ec58 7100 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7101 int j;
7102
758b2cdc 7103 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7104 continue;
7105
758b2cdc 7106 cpumask_clear(sched_group_cpus(sg));
5517d86b 7107 sg->__cpu_power = 0;
1da177e4 7108
abcd083a 7109 for_each_cpu(j, span) {
7c16ec58 7110 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7111 continue;
7112
96f874e2 7113 cpumask_set_cpu(j, covered);
758b2cdc 7114 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7115 }
7116 if (!first)
7117 first = sg;
7118 if (last)
7119 last->next = sg;
7120 last = sg;
7121 }
7122 last->next = first;
7123}
7124
9c1cfda2 7125#define SD_NODES_PER_DOMAIN 16
1da177e4 7126
9c1cfda2 7127#ifdef CONFIG_NUMA
198e2f18 7128
9c1cfda2
JH
7129/**
7130 * find_next_best_node - find the next node to include in a sched_domain
7131 * @node: node whose sched_domain we're building
7132 * @used_nodes: nodes already in the sched_domain
7133 *
41a2d6cf 7134 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7135 * finds the closest node not already in the @used_nodes map.
7136 *
7137 * Should use nodemask_t.
7138 */
c5f59f08 7139static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7140{
7141 int i, n, val, min_val, best_node = 0;
7142
7143 min_val = INT_MAX;
7144
076ac2af 7145 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7146 /* Start at @node */
076ac2af 7147 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7148
7149 if (!nr_cpus_node(n))
7150 continue;
7151
7152 /* Skip already used nodes */
c5f59f08 7153 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7154 continue;
7155
7156 /* Simple min distance search */
7157 val = node_distance(node, n);
7158
7159 if (val < min_val) {
7160 min_val = val;
7161 best_node = n;
7162 }
7163 }
7164
c5f59f08 7165 node_set(best_node, *used_nodes);
9c1cfda2
JH
7166 return best_node;
7167}
7168
7169/**
7170 * sched_domain_node_span - get a cpumask for a node's sched_domain
7171 * @node: node whose cpumask we're constructing
73486722 7172 * @span: resulting cpumask
9c1cfda2 7173 *
41a2d6cf 7174 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7175 * should be one that prevents unnecessary balancing, but also spreads tasks
7176 * out optimally.
7177 */
96f874e2 7178static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7179{
c5f59f08 7180 nodemask_t used_nodes;
96f874e2 7181 /* FIXME: use cpumask_of_node() */
c5f59f08 7182 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7183 int i;
9c1cfda2 7184
4bdbaad3 7185 cpus_clear(*span);
c5f59f08 7186 nodes_clear(used_nodes);
9c1cfda2 7187
4bdbaad3 7188 cpus_or(*span, *span, *nodemask);
c5f59f08 7189 node_set(node, used_nodes);
9c1cfda2
JH
7190
7191 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7192 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7193
c5f59f08 7194 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7195 cpus_or(*span, *span, *nodemask);
9c1cfda2 7196 }
9c1cfda2 7197}
6d6bc0ad 7198#endif /* CONFIG_NUMA */
9c1cfda2 7199
5c45bf27 7200int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7201
6c99e9ad
RR
7202/*
7203 * The cpus mask in sched_group and sched_domain hangs off the end.
7204 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7205 * for nr_cpu_ids < CONFIG_NR_CPUS.
7206 */
7207struct static_sched_group {
7208 struct sched_group sg;
7209 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7210};
7211
7212struct static_sched_domain {
7213 struct sched_domain sd;
7214 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7215};
7216
9c1cfda2 7217/*
48f24c4d 7218 * SMT sched-domains:
9c1cfda2 7219 */
1da177e4 7220#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7221static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7222static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7223
41a2d6cf 7224static int
96f874e2
RR
7225cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7226 struct sched_group **sg, struct cpumask *unused)
1da177e4 7227{
6711cab4 7228 if (sg)
6c99e9ad 7229 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7230 return cpu;
7231}
6d6bc0ad 7232#endif /* CONFIG_SCHED_SMT */
1da177e4 7233
48f24c4d
IM
7234/*
7235 * multi-core sched-domains:
7236 */
1e9f28fa 7237#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7238static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7239static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7240#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7241
7242#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7243static int
96f874e2
RR
7244cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7245 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7246{
6711cab4 7247 int group;
7c16ec58 7248
96f874e2
RR
7249 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7250 group = cpumask_first(mask);
6711cab4 7251 if (sg)
6c99e9ad 7252 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7253 return group;
1e9f28fa
SS
7254}
7255#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7256static int
96f874e2
RR
7257cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7258 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7259{
6711cab4 7260 if (sg)
6c99e9ad 7261 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7262 return cpu;
7263}
7264#endif
7265
6c99e9ad
RR
7266static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7267static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7268
41a2d6cf 7269static int
96f874e2
RR
7270cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7271 struct sched_group **sg, struct cpumask *mask)
1da177e4 7272{
6711cab4 7273 int group;
48f24c4d 7274#ifdef CONFIG_SCHED_MC
96f874e2 7275 /* FIXME: Use cpu_coregroup_mask. */
7c16ec58
MT
7276 *mask = cpu_coregroup_map(cpu);
7277 cpus_and(*mask, *mask, *cpu_map);
96f874e2 7278 group = cpumask_first(mask);
1e9f28fa 7279#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7280 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7281 group = cpumask_first(mask);
1da177e4 7282#else
6711cab4 7283 group = cpu;
1da177e4 7284#endif
6711cab4 7285 if (sg)
6c99e9ad 7286 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7287 return group;
1da177e4
LT
7288}
7289
7290#ifdef CONFIG_NUMA
1da177e4 7291/*
9c1cfda2
JH
7292 * The init_sched_build_groups can't handle what we want to do with node
7293 * groups, so roll our own. Now each node has its own list of groups which
7294 * gets dynamically allocated.
1da177e4 7295 */
9c1cfda2 7296static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7297static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7298
9c1cfda2 7299static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6c99e9ad 7300static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7301
96f874e2
RR
7302static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7303 struct sched_group **sg,
7304 struct cpumask *nodemask)
9c1cfda2 7305{
6711cab4 7306 int group;
96f874e2 7307 /* FIXME: use cpumask_of_node */
ea6f18ed 7308 node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
6711cab4 7309
96f874e2
RR
7310 cpumask_and(nodemask, pnodemask, cpu_map);
7311 group = cpumask_first(nodemask);
6711cab4
SS
7312
7313 if (sg)
6c99e9ad 7314 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7315 return group;
1da177e4 7316}
6711cab4 7317
08069033
SS
7318static void init_numa_sched_groups_power(struct sched_group *group_head)
7319{
7320 struct sched_group *sg = group_head;
7321 int j;
7322
7323 if (!sg)
7324 return;
3a5c359a 7325 do {
758b2cdc 7326 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7327 struct sched_domain *sd;
08069033 7328
6c99e9ad 7329 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7330 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7331 /*
7332 * Only add "power" once for each
7333 * physical package.
7334 */
7335 continue;
7336 }
08069033 7337
3a5c359a
AK
7338 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7339 }
7340 sg = sg->next;
7341 } while (sg != group_head);
08069033 7342}
6d6bc0ad 7343#endif /* CONFIG_NUMA */
1da177e4 7344
a616058b 7345#ifdef CONFIG_NUMA
51888ca2 7346/* Free memory allocated for various sched_group structures */
96f874e2
RR
7347static void free_sched_groups(const struct cpumask *cpu_map,
7348 struct cpumask *nodemask)
51888ca2 7349{
a616058b 7350 int cpu, i;
51888ca2 7351
abcd083a 7352 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7353 struct sched_group **sched_group_nodes
7354 = sched_group_nodes_bycpu[cpu];
7355
51888ca2
SV
7356 if (!sched_group_nodes)
7357 continue;
7358
076ac2af 7359 for (i = 0; i < nr_node_ids; i++) {
51888ca2 7360 struct sched_group *oldsg, *sg = sched_group_nodes[i];
96f874e2 7361 /* FIXME: Use cpumask_of_node */
ea6f18ed 7362 node_to_cpumask_ptr(pnodemask, i);
51888ca2 7363
ea6f18ed 7364 cpus_and(*nodemask, *pnodemask, *cpu_map);
96f874e2 7365 if (cpumask_empty(nodemask))
51888ca2
SV
7366 continue;
7367
7368 if (sg == NULL)
7369 continue;
7370 sg = sg->next;
7371next_sg:
7372 oldsg = sg;
7373 sg = sg->next;
7374 kfree(oldsg);
7375 if (oldsg != sched_group_nodes[i])
7376 goto next_sg;
7377 }
7378 kfree(sched_group_nodes);
7379 sched_group_nodes_bycpu[cpu] = NULL;
7380 }
51888ca2 7381}
6d6bc0ad 7382#else /* !CONFIG_NUMA */
96f874e2
RR
7383static void free_sched_groups(const struct cpumask *cpu_map,
7384 struct cpumask *nodemask)
a616058b
SS
7385{
7386}
6d6bc0ad 7387#endif /* CONFIG_NUMA */
51888ca2 7388
89c4710e
SS
7389/*
7390 * Initialize sched groups cpu_power.
7391 *
7392 * cpu_power indicates the capacity of sched group, which is used while
7393 * distributing the load between different sched groups in a sched domain.
7394 * Typically cpu_power for all the groups in a sched domain will be same unless
7395 * there are asymmetries in the topology. If there are asymmetries, group
7396 * having more cpu_power will pickup more load compared to the group having
7397 * less cpu_power.
7398 *
7399 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7400 * the maximum number of tasks a group can handle in the presence of other idle
7401 * or lightly loaded groups in the same sched domain.
7402 */
7403static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7404{
7405 struct sched_domain *child;
7406 struct sched_group *group;
7407
7408 WARN_ON(!sd || !sd->groups);
7409
758b2cdc 7410 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7411 return;
7412
7413 child = sd->child;
7414
5517d86b
ED
7415 sd->groups->__cpu_power = 0;
7416
89c4710e
SS
7417 /*
7418 * For perf policy, if the groups in child domain share resources
7419 * (for example cores sharing some portions of the cache hierarchy
7420 * or SMT), then set this domain groups cpu_power such that each group
7421 * can handle only one task, when there are other idle groups in the
7422 * same sched domain.
7423 */
7424 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7425 (child->flags &
7426 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7427 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7428 return;
7429 }
7430
89c4710e
SS
7431 /*
7432 * add cpu_power of each child group to this groups cpu_power
7433 */
7434 group = child->groups;
7435 do {
5517d86b 7436 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7437 group = group->next;
7438 } while (group != child->groups);
7439}
7440
7c16ec58
MT
7441/*
7442 * Initializers for schedule domains
7443 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7444 */
7445
a5d8c348
IM
7446#ifdef CONFIG_SCHED_DEBUG
7447# define SD_INIT_NAME(sd, type) sd->name = #type
7448#else
7449# define SD_INIT_NAME(sd, type) do { } while (0)
7450#endif
7451
7c16ec58 7452#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7453
7c16ec58
MT
7454#define SD_INIT_FUNC(type) \
7455static noinline void sd_init_##type(struct sched_domain *sd) \
7456{ \
7457 memset(sd, 0, sizeof(*sd)); \
7458 *sd = SD_##type##_INIT; \
1d3504fc 7459 sd->level = SD_LV_##type; \
a5d8c348 7460 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7461}
7462
7463SD_INIT_FUNC(CPU)
7464#ifdef CONFIG_NUMA
7465 SD_INIT_FUNC(ALLNODES)
7466 SD_INIT_FUNC(NODE)
7467#endif
7468#ifdef CONFIG_SCHED_SMT
7469 SD_INIT_FUNC(SIBLING)
7470#endif
7471#ifdef CONFIG_SCHED_MC
7472 SD_INIT_FUNC(MC)
7473#endif
7474
1d3504fc
HS
7475static int default_relax_domain_level = -1;
7476
7477static int __init setup_relax_domain_level(char *str)
7478{
30e0e178
LZ
7479 unsigned long val;
7480
7481 val = simple_strtoul(str, NULL, 0);
7482 if (val < SD_LV_MAX)
7483 default_relax_domain_level = val;
7484
1d3504fc
HS
7485 return 1;
7486}
7487__setup("relax_domain_level=", setup_relax_domain_level);
7488
7489static void set_domain_attribute(struct sched_domain *sd,
7490 struct sched_domain_attr *attr)
7491{
7492 int request;
7493
7494 if (!attr || attr->relax_domain_level < 0) {
7495 if (default_relax_domain_level < 0)
7496 return;
7497 else
7498 request = default_relax_domain_level;
7499 } else
7500 request = attr->relax_domain_level;
7501 if (request < sd->level) {
7502 /* turn off idle balance on this domain */
7503 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7504 } else {
7505 /* turn on idle balance on this domain */
7506 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7507 }
7508}
7509
1da177e4 7510/*
1a20ff27
DG
7511 * Build sched domains for a given set of cpus and attach the sched domains
7512 * to the individual cpus
1da177e4 7513 */
96f874e2 7514static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7515 struct sched_domain_attr *attr)
1da177e4 7516{
3404c8d9 7517 int i, err = -ENOMEM;
57d885fe 7518 struct root_domain *rd;
3404c8d9
RR
7519 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7520 tmpmask;
d1b55138 7521#ifdef CONFIG_NUMA
3404c8d9 7522 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7523 struct sched_group **sched_group_nodes = NULL;
6711cab4 7524 int sd_allnodes = 0;
d1b55138 7525
3404c8d9
RR
7526 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7527 goto out;
7528 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7529 goto free_domainspan;
7530 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7531 goto free_covered;
7532#endif
7533
7534 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7535 goto free_notcovered;
7536 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7537 goto free_nodemask;
7538 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7539 goto free_this_sibling_map;
7540 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7541 goto free_this_core_map;
7542 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7543 goto free_send_covered;
7544
7545#ifdef CONFIG_NUMA
d1b55138
JH
7546 /*
7547 * Allocate the per-node list of sched groups
7548 */
076ac2af 7549 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7550 GFP_KERNEL);
d1b55138
JH
7551 if (!sched_group_nodes) {
7552 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7553 goto free_tmpmask;
d1b55138 7554 }
d1b55138 7555#endif
1da177e4 7556
dc938520 7557 rd = alloc_rootdomain();
57d885fe
GH
7558 if (!rd) {
7559 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7560 goto free_sched_groups;
57d885fe
GH
7561 }
7562
7c16ec58 7563#ifdef CONFIG_NUMA
96f874e2 7564 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7565#endif
7566
1da177e4 7567 /*
1a20ff27 7568 * Set up domains for cpus specified by the cpu_map.
1da177e4 7569 */
abcd083a 7570 for_each_cpu(i, cpu_map) {
1da177e4 7571 struct sched_domain *sd = NULL, *p;
1da177e4 7572
96f874e2 7573 /* FIXME: use cpumask_of_node */
7c16ec58
MT
7574 *nodemask = node_to_cpumask(cpu_to_node(i));
7575 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7576
7577#ifdef CONFIG_NUMA
96f874e2
RR
7578 if (cpumask_weight(cpu_map) >
7579 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
9c1cfda2 7580 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7581 SD_INIT(sd, ALLNODES);
1d3504fc 7582 set_domain_attribute(sd, attr);
758b2cdc 7583 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7584 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7585 p = sd;
6711cab4 7586 sd_allnodes = 1;
9c1cfda2
JH
7587 } else
7588 p = NULL;
7589
1da177e4 7590 sd = &per_cpu(node_domains, i);
7c16ec58 7591 SD_INIT(sd, NODE);
1d3504fc 7592 set_domain_attribute(sd, attr);
758b2cdc 7593 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7594 sd->parent = p;
1a848870
SS
7595 if (p)
7596 p->child = sd;
758b2cdc
RR
7597 cpumask_and(sched_domain_span(sd),
7598 sched_domain_span(sd), cpu_map);
1da177e4
LT
7599#endif
7600
7601 p = sd;
6c99e9ad 7602 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7603 SD_INIT(sd, CPU);
1d3504fc 7604 set_domain_attribute(sd, attr);
758b2cdc 7605 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7606 sd->parent = p;
1a848870
SS
7607 if (p)
7608 p->child = sd;
7c16ec58 7609 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7610
1e9f28fa
SS
7611#ifdef CONFIG_SCHED_MC
7612 p = sd;
6c99e9ad 7613 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7614 SD_INIT(sd, MC);
1d3504fc 7615 set_domain_attribute(sd, attr);
758b2cdc
RR
7616 *sched_domain_span(sd) = cpu_coregroup_map(i);
7617 cpumask_and(sched_domain_span(sd),
7618 sched_domain_span(sd), cpu_map);
1e9f28fa 7619 sd->parent = p;
1a848870 7620 p->child = sd;
7c16ec58 7621 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7622#endif
7623
1da177e4
LT
7624#ifdef CONFIG_SCHED_SMT
7625 p = sd;
6c99e9ad 7626 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7627 SD_INIT(sd, SIBLING);
1d3504fc 7628 set_domain_attribute(sd, attr);
758b2cdc
RR
7629 cpumask_and(sched_domain_span(sd),
7630 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7631 sd->parent = p;
1a848870 7632 p->child = sd;
7c16ec58 7633 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7634#endif
7635 }
7636
7637#ifdef CONFIG_SCHED_SMT
7638 /* Set up CPU (sibling) groups */
abcd083a 7639 for_each_cpu(i, cpu_map) {
96f874e2
RR
7640 cpumask_and(this_sibling_map,
7641 &per_cpu(cpu_sibling_map, i), cpu_map);
7642 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7643 continue;
7644
dd41f596 7645 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7646 &cpu_to_cpu_group,
7647 send_covered, tmpmask);
1da177e4
LT
7648 }
7649#endif
7650
1e9f28fa
SS
7651#ifdef CONFIG_SCHED_MC
7652 /* Set up multi-core groups */
abcd083a 7653 for_each_cpu(i, cpu_map) {
96f874e2 7654 /* FIXME: Use cpu_coregroup_mask */
7c16ec58
MT
7655 *this_core_map = cpu_coregroup_map(i);
7656 cpus_and(*this_core_map, *this_core_map, *cpu_map);
96f874e2 7657 if (i != cpumask_first(this_core_map))
1e9f28fa 7658 continue;
7c16ec58 7659
dd41f596 7660 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7661 &cpu_to_core_group,
7662 send_covered, tmpmask);
1e9f28fa
SS
7663 }
7664#endif
7665
1da177e4 7666 /* Set up physical groups */
076ac2af 7667 for (i = 0; i < nr_node_ids; i++) {
96f874e2 7668 /* FIXME: Use cpumask_of_node */
7c16ec58
MT
7669 *nodemask = node_to_cpumask(i);
7670 cpus_and(*nodemask, *nodemask, *cpu_map);
96f874e2 7671 if (cpumask_empty(nodemask))
1da177e4
LT
7672 continue;
7673
7c16ec58
MT
7674 init_sched_build_groups(nodemask, cpu_map,
7675 &cpu_to_phys_group,
7676 send_covered, tmpmask);
1da177e4
LT
7677 }
7678
7679#ifdef CONFIG_NUMA
7680 /* Set up node groups */
7c16ec58 7681 if (sd_allnodes) {
7c16ec58
MT
7682 init_sched_build_groups(cpu_map, cpu_map,
7683 &cpu_to_allnodes_group,
7684 send_covered, tmpmask);
7685 }
9c1cfda2 7686
076ac2af 7687 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7688 /* Set up node groups */
7689 struct sched_group *sg, *prev;
9c1cfda2
JH
7690 int j;
7691
96f874e2 7692 /* FIXME: Use cpumask_of_node */
7c16ec58 7693 *nodemask = node_to_cpumask(i);
96f874e2 7694 cpumask_clear(covered);
7c16ec58
MT
7695
7696 cpus_and(*nodemask, *nodemask, *cpu_map);
96f874e2 7697 if (cpumask_empty(nodemask)) {
d1b55138 7698 sched_group_nodes[i] = NULL;
9c1cfda2 7699 continue;
d1b55138 7700 }
9c1cfda2 7701
4bdbaad3 7702 sched_domain_node_span(i, domainspan);
96f874e2 7703 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7704
6c99e9ad
RR
7705 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7706 GFP_KERNEL, i);
51888ca2
SV
7707 if (!sg) {
7708 printk(KERN_WARNING "Can not alloc domain group for "
7709 "node %d\n", i);
7710 goto error;
7711 }
9c1cfda2 7712 sched_group_nodes[i] = sg;
abcd083a 7713 for_each_cpu(j, nodemask) {
9c1cfda2 7714 struct sched_domain *sd;
9761eea8 7715
9c1cfda2
JH
7716 sd = &per_cpu(node_domains, j);
7717 sd->groups = sg;
9c1cfda2 7718 }
5517d86b 7719 sg->__cpu_power = 0;
758b2cdc 7720 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7721 sg->next = sg;
96f874e2 7722 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7723 prev = sg;
7724
076ac2af 7725 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7726 int n = (i + j) % nr_node_ids;
96f874e2 7727 /* FIXME: Use cpumask_of_node */
c5f59f08 7728 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7729
96f874e2
RR
7730 cpumask_complement(notcovered, covered);
7731 cpumask_and(tmpmask, notcovered, cpu_map);
7732 cpumask_and(tmpmask, tmpmask, domainspan);
7733 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7734 break;
7735
96f874e2
RR
7736 cpumask_and(tmpmask, tmpmask, pnodemask);
7737 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7738 continue;
7739
6c99e9ad
RR
7740 sg = kmalloc_node(sizeof(struct sched_group) +
7741 cpumask_size(),
15f0b676 7742 GFP_KERNEL, i);
9c1cfda2
JH
7743 if (!sg) {
7744 printk(KERN_WARNING
7745 "Can not alloc domain group for node %d\n", j);
51888ca2 7746 goto error;
9c1cfda2 7747 }
5517d86b 7748 sg->__cpu_power = 0;
758b2cdc 7749 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7750 sg->next = prev->next;
96f874e2 7751 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7752 prev->next = sg;
7753 prev = sg;
7754 }
9c1cfda2 7755 }
1da177e4
LT
7756#endif
7757
7758 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7759#ifdef CONFIG_SCHED_SMT
abcd083a 7760 for_each_cpu(i, cpu_map) {
6c99e9ad 7761 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7762
89c4710e 7763 init_sched_groups_power(i, sd);
5c45bf27 7764 }
1da177e4 7765#endif
1e9f28fa 7766#ifdef CONFIG_SCHED_MC
abcd083a 7767 for_each_cpu(i, cpu_map) {
6c99e9ad 7768 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7769
89c4710e 7770 init_sched_groups_power(i, sd);
5c45bf27
SS
7771 }
7772#endif
1e9f28fa 7773
abcd083a 7774 for_each_cpu(i, cpu_map) {
6c99e9ad 7775 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7776
89c4710e 7777 init_sched_groups_power(i, sd);
1da177e4
LT
7778 }
7779
9c1cfda2 7780#ifdef CONFIG_NUMA
076ac2af 7781 for (i = 0; i < nr_node_ids; i++)
08069033 7782 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7783
6711cab4
SS
7784 if (sd_allnodes) {
7785 struct sched_group *sg;
f712c0c7 7786
96f874e2 7787 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7788 tmpmask);
f712c0c7
SS
7789 init_numa_sched_groups_power(sg);
7790 }
9c1cfda2
JH
7791#endif
7792
1da177e4 7793 /* Attach the domains */
abcd083a 7794 for_each_cpu(i, cpu_map) {
1da177e4
LT
7795 struct sched_domain *sd;
7796#ifdef CONFIG_SCHED_SMT
6c99e9ad 7797 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7798#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7799 sd = &per_cpu(core_domains, i).sd;
1da177e4 7800#else
6c99e9ad 7801 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7802#endif
57d885fe 7803 cpu_attach_domain(sd, rd, i);
1da177e4 7804 }
51888ca2 7805
3404c8d9
RR
7806 err = 0;
7807
7808free_tmpmask:
7809 free_cpumask_var(tmpmask);
7810free_send_covered:
7811 free_cpumask_var(send_covered);
7812free_this_core_map:
7813 free_cpumask_var(this_core_map);
7814free_this_sibling_map:
7815 free_cpumask_var(this_sibling_map);
7816free_nodemask:
7817 free_cpumask_var(nodemask);
7818free_notcovered:
7819#ifdef CONFIG_NUMA
7820 free_cpumask_var(notcovered);
7821free_covered:
7822 free_cpumask_var(covered);
7823free_domainspan:
7824 free_cpumask_var(domainspan);
7825out:
7826#endif
7827 return err;
7828
7829free_sched_groups:
7830#ifdef CONFIG_NUMA
7831 kfree(sched_group_nodes);
7832#endif
7833 goto free_tmpmask;
51888ca2 7834
a616058b 7835#ifdef CONFIG_NUMA
51888ca2 7836error:
7c16ec58 7837 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7838 free_rootdomain(rd);
3404c8d9 7839 goto free_tmpmask;
a616058b 7840#endif
1da177e4 7841}
029190c5 7842
96f874e2 7843static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7844{
7845 return __build_sched_domains(cpu_map, NULL);
7846}
7847
96f874e2 7848static struct cpumask *doms_cur; /* current sched domains */
029190c5 7849static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7850static struct sched_domain_attr *dattr_cur;
7851 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7852
7853/*
7854 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7855 * cpumask) fails, then fallback to a single sched domain,
7856 * as determined by the single cpumask fallback_doms.
029190c5 7857 */
4212823f 7858static cpumask_var_t fallback_doms;
029190c5 7859
ee79d1bd
HC
7860/*
7861 * arch_update_cpu_topology lets virtualized architectures update the
7862 * cpu core maps. It is supposed to return 1 if the topology changed
7863 * or 0 if it stayed the same.
7864 */
7865int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7866{
ee79d1bd 7867 return 0;
22e52b07
HC
7868}
7869
1a20ff27 7870/*
41a2d6cf 7871 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7872 * For now this just excludes isolated cpus, but could be used to
7873 * exclude other special cases in the future.
1a20ff27 7874 */
96f874e2 7875static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7876{
7378547f
MM
7877 int err;
7878
22e52b07 7879 arch_update_cpu_topology();
029190c5 7880 ndoms_cur = 1;
96f874e2 7881 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7882 if (!doms_cur)
4212823f 7883 doms_cur = fallback_doms;
dcc30a35 7884 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7885 dattr_cur = NULL;
7378547f 7886 err = build_sched_domains(doms_cur);
6382bc90 7887 register_sched_domain_sysctl();
7378547f
MM
7888
7889 return err;
1a20ff27
DG
7890}
7891
96f874e2
RR
7892static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7893 struct cpumask *tmpmask)
1da177e4 7894{
7c16ec58 7895 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7896}
1da177e4 7897
1a20ff27
DG
7898/*
7899 * Detach sched domains from a group of cpus specified in cpu_map
7900 * These cpus will now be attached to the NULL domain
7901 */
96f874e2 7902static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7903{
96f874e2
RR
7904 /* Save because hotplug lock held. */
7905 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7906 int i;
7907
abcd083a 7908 for_each_cpu(i, cpu_map)
57d885fe 7909 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7910 synchronize_sched();
96f874e2 7911 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7912}
7913
1d3504fc
HS
7914/* handle null as "default" */
7915static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7916 struct sched_domain_attr *new, int idx_new)
7917{
7918 struct sched_domain_attr tmp;
7919
7920 /* fast path */
7921 if (!new && !cur)
7922 return 1;
7923
7924 tmp = SD_ATTR_INIT;
7925 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7926 new ? (new + idx_new) : &tmp,
7927 sizeof(struct sched_domain_attr));
7928}
7929
029190c5
PJ
7930/*
7931 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7932 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7933 * doms_new[] to the current sched domain partitioning, doms_cur[].
7934 * It destroys each deleted domain and builds each new domain.
7935 *
96f874e2 7936 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
7937 * The masks don't intersect (don't overlap.) We should setup one
7938 * sched domain for each mask. CPUs not in any of the cpumasks will
7939 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7940 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7941 * it as it is.
7942 *
41a2d6cf
IM
7943 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7944 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7945 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7946 * ndoms_new == 1, and partition_sched_domains() will fallback to
7947 * the single partition 'fallback_doms', it also forces the domains
7948 * to be rebuilt.
029190c5 7949 *
96f874e2 7950 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7951 * ndoms_new == 0 is a special case for destroying existing domains,
7952 * and it will not create the default domain.
dfb512ec 7953 *
029190c5
PJ
7954 * Call with hotplug lock held
7955 */
96f874e2
RR
7956/* FIXME: Change to struct cpumask *doms_new[] */
7957void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 7958 struct sched_domain_attr *dattr_new)
029190c5 7959{
dfb512ec 7960 int i, j, n;
d65bd5ec 7961 int new_topology;
029190c5 7962
712555ee 7963 mutex_lock(&sched_domains_mutex);
a1835615 7964
7378547f
MM
7965 /* always unregister in case we don't destroy any domains */
7966 unregister_sched_domain_sysctl();
7967
d65bd5ec
HC
7968 /* Let architecture update cpu core mappings. */
7969 new_topology = arch_update_cpu_topology();
7970
dfb512ec 7971 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7972
7973 /* Destroy deleted domains */
7974 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7975 for (j = 0; j < n && !new_topology; j++) {
96f874e2 7976 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 7977 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7978 goto match1;
7979 }
7980 /* no match - a current sched domain not in new doms_new[] */
7981 detach_destroy_domains(doms_cur + i);
7982match1:
7983 ;
7984 }
7985
e761b772
MK
7986 if (doms_new == NULL) {
7987 ndoms_cur = 0;
4212823f 7988 doms_new = fallback_doms;
dcc30a35 7989 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 7990 WARN_ON_ONCE(dattr_new);
e761b772
MK
7991 }
7992
029190c5
PJ
7993 /* Build new domains */
7994 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7995 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 7996 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 7997 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7998 goto match2;
7999 }
8000 /* no match - add a new doms_new */
1d3504fc
HS
8001 __build_sched_domains(doms_new + i,
8002 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8003match2:
8004 ;
8005 }
8006
8007 /* Remember the new sched domains */
4212823f 8008 if (doms_cur != fallback_doms)
029190c5 8009 kfree(doms_cur);
1d3504fc 8010 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8011 doms_cur = doms_new;
1d3504fc 8012 dattr_cur = dattr_new;
029190c5 8013 ndoms_cur = ndoms_new;
7378547f
MM
8014
8015 register_sched_domain_sysctl();
a1835615 8016
712555ee 8017 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8018}
8019
5c45bf27 8020#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 8021int arch_reinit_sched_domains(void)
5c45bf27 8022{
95402b38 8023 get_online_cpus();
dfb512ec
MK
8024
8025 /* Destroy domains first to force the rebuild */
8026 partition_sched_domains(0, NULL, NULL);
8027
e761b772 8028 rebuild_sched_domains();
95402b38 8029 put_online_cpus();
dfb512ec 8030
e761b772 8031 return 0;
5c45bf27
SS
8032}
8033
8034static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8035{
8036 int ret;
afb8a9b7 8037 unsigned int level = 0;
5c45bf27 8038
afb8a9b7
GS
8039 if (sscanf(buf, "%u", &level) != 1)
8040 return -EINVAL;
8041
8042 /*
8043 * level is always be positive so don't check for
8044 * level < POWERSAVINGS_BALANCE_NONE which is 0
8045 * What happens on 0 or 1 byte write,
8046 * need to check for count as well?
8047 */
8048
8049 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8050 return -EINVAL;
8051
8052 if (smt)
afb8a9b7 8053 sched_smt_power_savings = level;
5c45bf27 8054 else
afb8a9b7 8055 sched_mc_power_savings = level;
5c45bf27
SS
8056
8057 ret = arch_reinit_sched_domains();
8058
8059 return ret ? ret : count;
8060}
8061
5c45bf27 8062#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8063static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8064 char *page)
5c45bf27
SS
8065{
8066 return sprintf(page, "%u\n", sched_mc_power_savings);
8067}
f718cd4a 8068static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8069 const char *buf, size_t count)
5c45bf27
SS
8070{
8071 return sched_power_savings_store(buf, count, 0);
8072}
f718cd4a
AK
8073static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8074 sched_mc_power_savings_show,
8075 sched_mc_power_savings_store);
5c45bf27
SS
8076#endif
8077
8078#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8079static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8080 char *page)
5c45bf27
SS
8081{
8082 return sprintf(page, "%u\n", sched_smt_power_savings);
8083}
f718cd4a 8084static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8085 const char *buf, size_t count)
5c45bf27
SS
8086{
8087 return sched_power_savings_store(buf, count, 1);
8088}
f718cd4a
AK
8089static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8090 sched_smt_power_savings_show,
6707de00
AB
8091 sched_smt_power_savings_store);
8092#endif
8093
8094int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8095{
8096 int err = 0;
8097
8098#ifdef CONFIG_SCHED_SMT
8099 if (smt_capable())
8100 err = sysfs_create_file(&cls->kset.kobj,
8101 &attr_sched_smt_power_savings.attr);
8102#endif
8103#ifdef CONFIG_SCHED_MC
8104 if (!err && mc_capable())
8105 err = sysfs_create_file(&cls->kset.kobj,
8106 &attr_sched_mc_power_savings.attr);
8107#endif
8108 return err;
8109}
6d6bc0ad 8110#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8111
e761b772 8112#ifndef CONFIG_CPUSETS
1da177e4 8113/*
e761b772
MK
8114 * Add online and remove offline CPUs from the scheduler domains.
8115 * When cpusets are enabled they take over this function.
1da177e4
LT
8116 */
8117static int update_sched_domains(struct notifier_block *nfb,
8118 unsigned long action, void *hcpu)
e761b772
MK
8119{
8120 switch (action) {
8121 case CPU_ONLINE:
8122 case CPU_ONLINE_FROZEN:
8123 case CPU_DEAD:
8124 case CPU_DEAD_FROZEN:
dfb512ec 8125 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8126 return NOTIFY_OK;
8127
8128 default:
8129 return NOTIFY_DONE;
8130 }
8131}
8132#endif
8133
8134static int update_runtime(struct notifier_block *nfb,
8135 unsigned long action, void *hcpu)
1da177e4 8136{
7def2be1
PZ
8137 int cpu = (int)(long)hcpu;
8138
1da177e4 8139 switch (action) {
1da177e4 8140 case CPU_DOWN_PREPARE:
8bb78442 8141 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8142 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8143 return NOTIFY_OK;
8144
1da177e4 8145 case CPU_DOWN_FAILED:
8bb78442 8146 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8147 case CPU_ONLINE:
8bb78442 8148 case CPU_ONLINE_FROZEN:
7def2be1 8149 enable_runtime(cpu_rq(cpu));
e761b772
MK
8150 return NOTIFY_OK;
8151
1da177e4
LT
8152 default:
8153 return NOTIFY_DONE;
8154 }
1da177e4 8155}
1da177e4
LT
8156
8157void __init sched_init_smp(void)
8158{
dcc30a35
RR
8159 cpumask_var_t non_isolated_cpus;
8160
8161 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8162
434d53b0
MT
8163#if defined(CONFIG_NUMA)
8164 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8165 GFP_KERNEL);
8166 BUG_ON(sched_group_nodes_bycpu == NULL);
8167#endif
95402b38 8168 get_online_cpus();
712555ee 8169 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8170 arch_init_sched_domains(cpu_online_mask);
8171 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8172 if (cpumask_empty(non_isolated_cpus))
8173 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8174 mutex_unlock(&sched_domains_mutex);
95402b38 8175 put_online_cpus();
e761b772
MK
8176
8177#ifndef CONFIG_CPUSETS
1da177e4
LT
8178 /* XXX: Theoretical race here - CPU may be hotplugged now */
8179 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8180#endif
8181
8182 /* RT runtime code needs to handle some hotplug events */
8183 hotcpu_notifier(update_runtime, 0);
8184
b328ca18 8185 init_hrtick();
5c1e1767
NP
8186
8187 /* Move init over to a non-isolated CPU */
dcc30a35 8188 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8189 BUG();
19978ca6 8190 sched_init_granularity();
dcc30a35 8191 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8192
8193 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8194 init_sched_rt_class();
1da177e4
LT
8195}
8196#else
8197void __init sched_init_smp(void)
8198{
19978ca6 8199 sched_init_granularity();
1da177e4
LT
8200}
8201#endif /* CONFIG_SMP */
8202
8203int in_sched_functions(unsigned long addr)
8204{
1da177e4
LT
8205 return in_lock_functions(addr) ||
8206 (addr >= (unsigned long)__sched_text_start
8207 && addr < (unsigned long)__sched_text_end);
8208}
8209
a9957449 8210static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8211{
8212 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8213 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8214#ifdef CONFIG_FAIR_GROUP_SCHED
8215 cfs_rq->rq = rq;
8216#endif
67e9fb2a 8217 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8218}
8219
fa85ae24
PZ
8220static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8221{
8222 struct rt_prio_array *array;
8223 int i;
8224
8225 array = &rt_rq->active;
8226 for (i = 0; i < MAX_RT_PRIO; i++) {
8227 INIT_LIST_HEAD(array->queue + i);
8228 __clear_bit(i, array->bitmap);
8229 }
8230 /* delimiter for bitsearch: */
8231 __set_bit(MAX_RT_PRIO, array->bitmap);
8232
052f1dc7 8233#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
8234 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8235 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8236#endif
fa85ae24
PZ
8237#ifdef CONFIG_SMP
8238 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8239 rt_rq->overloaded = 0;
8240#endif
8241
8242 rt_rq->rt_time = 0;
8243 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8244 rt_rq->rt_runtime = 0;
8245 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8246
052f1dc7 8247#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8248 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8249 rt_rq->rq = rq;
8250#endif
fa85ae24
PZ
8251}
8252
6f505b16 8253#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8254static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8255 struct sched_entity *se, int cpu, int add,
8256 struct sched_entity *parent)
6f505b16 8257{
ec7dc8ac 8258 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8259 tg->cfs_rq[cpu] = cfs_rq;
8260 init_cfs_rq(cfs_rq, rq);
8261 cfs_rq->tg = tg;
8262 if (add)
8263 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8264
8265 tg->se[cpu] = se;
354d60c2
DG
8266 /* se could be NULL for init_task_group */
8267 if (!se)
8268 return;
8269
ec7dc8ac
DG
8270 if (!parent)
8271 se->cfs_rq = &rq->cfs;
8272 else
8273 se->cfs_rq = parent->my_q;
8274
6f505b16
PZ
8275 se->my_q = cfs_rq;
8276 se->load.weight = tg->shares;
e05510d0 8277 se->load.inv_weight = 0;
ec7dc8ac 8278 se->parent = parent;
6f505b16 8279}
052f1dc7 8280#endif
6f505b16 8281
052f1dc7 8282#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8283static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8284 struct sched_rt_entity *rt_se, int cpu, int add,
8285 struct sched_rt_entity *parent)
6f505b16 8286{
ec7dc8ac
DG
8287 struct rq *rq = cpu_rq(cpu);
8288
6f505b16
PZ
8289 tg->rt_rq[cpu] = rt_rq;
8290 init_rt_rq(rt_rq, rq);
8291 rt_rq->tg = tg;
8292 rt_rq->rt_se = rt_se;
ac086bc2 8293 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8294 if (add)
8295 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8296
8297 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8298 if (!rt_se)
8299 return;
8300
ec7dc8ac
DG
8301 if (!parent)
8302 rt_se->rt_rq = &rq->rt;
8303 else
8304 rt_se->rt_rq = parent->my_q;
8305
6f505b16 8306 rt_se->my_q = rt_rq;
ec7dc8ac 8307 rt_se->parent = parent;
6f505b16
PZ
8308 INIT_LIST_HEAD(&rt_se->run_list);
8309}
8310#endif
8311
1da177e4
LT
8312void __init sched_init(void)
8313{
dd41f596 8314 int i, j;
434d53b0
MT
8315 unsigned long alloc_size = 0, ptr;
8316
8317#ifdef CONFIG_FAIR_GROUP_SCHED
8318 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8319#endif
8320#ifdef CONFIG_RT_GROUP_SCHED
8321 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8322#endif
8323#ifdef CONFIG_USER_SCHED
8324 alloc_size *= 2;
434d53b0
MT
8325#endif
8326 /*
8327 * As sched_init() is called before page_alloc is setup,
8328 * we use alloc_bootmem().
8329 */
8330 if (alloc_size) {
5a9d3225 8331 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8332
8333#ifdef CONFIG_FAIR_GROUP_SCHED
8334 init_task_group.se = (struct sched_entity **)ptr;
8335 ptr += nr_cpu_ids * sizeof(void **);
8336
8337 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8338 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8339
8340#ifdef CONFIG_USER_SCHED
8341 root_task_group.se = (struct sched_entity **)ptr;
8342 ptr += nr_cpu_ids * sizeof(void **);
8343
8344 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8345 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8346#endif /* CONFIG_USER_SCHED */
8347#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8348#ifdef CONFIG_RT_GROUP_SCHED
8349 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8350 ptr += nr_cpu_ids * sizeof(void **);
8351
8352 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8353 ptr += nr_cpu_ids * sizeof(void **);
8354
8355#ifdef CONFIG_USER_SCHED
8356 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8357 ptr += nr_cpu_ids * sizeof(void **);
8358
8359 root_task_group.rt_rq = (struct rt_rq **)ptr;
8360 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8361#endif /* CONFIG_USER_SCHED */
8362#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8363 }
dd41f596 8364
57d885fe
GH
8365#ifdef CONFIG_SMP
8366 init_defrootdomain();
8367#endif
8368
d0b27fa7
PZ
8369 init_rt_bandwidth(&def_rt_bandwidth,
8370 global_rt_period(), global_rt_runtime());
8371
8372#ifdef CONFIG_RT_GROUP_SCHED
8373 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8374 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8375#ifdef CONFIG_USER_SCHED
8376 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8377 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8378#endif /* CONFIG_USER_SCHED */
8379#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8380
052f1dc7 8381#ifdef CONFIG_GROUP_SCHED
6f505b16 8382 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8383 INIT_LIST_HEAD(&init_task_group.children);
8384
8385#ifdef CONFIG_USER_SCHED
8386 INIT_LIST_HEAD(&root_task_group.children);
8387 init_task_group.parent = &root_task_group;
8388 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8389#endif /* CONFIG_USER_SCHED */
8390#endif /* CONFIG_GROUP_SCHED */
6f505b16 8391
0a945022 8392 for_each_possible_cpu(i) {
70b97a7f 8393 struct rq *rq;
1da177e4
LT
8394
8395 rq = cpu_rq(i);
8396 spin_lock_init(&rq->lock);
7897986b 8397 rq->nr_running = 0;
dd41f596 8398 init_cfs_rq(&rq->cfs, rq);
6f505b16 8399 init_rt_rq(&rq->rt, rq);
dd41f596 8400#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8401 init_task_group.shares = init_task_group_load;
6f505b16 8402 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8403#ifdef CONFIG_CGROUP_SCHED
8404 /*
8405 * How much cpu bandwidth does init_task_group get?
8406 *
8407 * In case of task-groups formed thr' the cgroup filesystem, it
8408 * gets 100% of the cpu resources in the system. This overall
8409 * system cpu resource is divided among the tasks of
8410 * init_task_group and its child task-groups in a fair manner,
8411 * based on each entity's (task or task-group's) weight
8412 * (se->load.weight).
8413 *
8414 * In other words, if init_task_group has 10 tasks of weight
8415 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8416 * then A0's share of the cpu resource is:
8417 *
8418 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8419 *
8420 * We achieve this by letting init_task_group's tasks sit
8421 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8422 */
ec7dc8ac 8423 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8424#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8425 root_task_group.shares = NICE_0_LOAD;
8426 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8427 /*
8428 * In case of task-groups formed thr' the user id of tasks,
8429 * init_task_group represents tasks belonging to root user.
8430 * Hence it forms a sibling of all subsequent groups formed.
8431 * In this case, init_task_group gets only a fraction of overall
8432 * system cpu resource, based on the weight assigned to root
8433 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8434 * by letting tasks of init_task_group sit in a separate cfs_rq
8435 * (init_cfs_rq) and having one entity represent this group of
8436 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8437 */
ec7dc8ac 8438 init_tg_cfs_entry(&init_task_group,
6f505b16 8439 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8440 &per_cpu(init_sched_entity, i), i, 1,
8441 root_task_group.se[i]);
6f505b16 8442
052f1dc7 8443#endif
354d60c2
DG
8444#endif /* CONFIG_FAIR_GROUP_SCHED */
8445
8446 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8447#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8448 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8449#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8450 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8451#elif defined CONFIG_USER_SCHED
eff766a6 8452 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8453 init_tg_rt_entry(&init_task_group,
6f505b16 8454 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8455 &per_cpu(init_sched_rt_entity, i), i, 1,
8456 root_task_group.rt_se[i]);
354d60c2 8457#endif
dd41f596 8458#endif
1da177e4 8459
dd41f596
IM
8460 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8461 rq->cpu_load[j] = 0;
1da177e4 8462#ifdef CONFIG_SMP
41c7ce9a 8463 rq->sd = NULL;
57d885fe 8464 rq->rd = NULL;
1da177e4 8465 rq->active_balance = 0;
dd41f596 8466 rq->next_balance = jiffies;
1da177e4 8467 rq->push_cpu = 0;
0a2966b4 8468 rq->cpu = i;
1f11eb6a 8469 rq->online = 0;
1da177e4
LT
8470 rq->migration_thread = NULL;
8471 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8472 rq_attach_root(rq, &def_root_domain);
1da177e4 8473#endif
8f4d37ec 8474 init_rq_hrtick(rq);
1da177e4 8475 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8476 }
8477
2dd73a4f 8478 set_load_weight(&init_task);
b50f60ce 8479
e107be36
AK
8480#ifdef CONFIG_PREEMPT_NOTIFIERS
8481 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8482#endif
8483
c9819f45 8484#ifdef CONFIG_SMP
962cf36c 8485 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8486#endif
8487
b50f60ce
HC
8488#ifdef CONFIG_RT_MUTEXES
8489 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8490#endif
8491
1da177e4
LT
8492 /*
8493 * The boot idle thread does lazy MMU switching as well:
8494 */
8495 atomic_inc(&init_mm.mm_count);
8496 enter_lazy_tlb(&init_mm, current);
8497
8498 /*
8499 * Make us the idle thread. Technically, schedule() should not be
8500 * called from this thread, however somewhere below it might be,
8501 * but because we are the idle thread, we just pick up running again
8502 * when this runqueue becomes "idle".
8503 */
8504 init_idle(current, smp_processor_id());
dd41f596
IM
8505 /*
8506 * During early bootup we pretend to be a normal task:
8507 */
8508 current->sched_class = &fair_sched_class;
6892b75e 8509
6a7b3dc3
RR
8510 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8511 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8512#ifdef CONFIG_SMP
7d1e6a9b
RR
8513#ifdef CONFIG_NO_HZ
8514 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8515#endif
dcc30a35 8516 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8517#endif /* SMP */
6a7b3dc3 8518
6892b75e 8519 scheduler_running = 1;
1da177e4
LT
8520}
8521
8522#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8523void __might_sleep(char *file, int line)
8524{
48f24c4d 8525#ifdef in_atomic
1da177e4
LT
8526 static unsigned long prev_jiffy; /* ratelimiting */
8527
aef745fc
IM
8528 if ((!in_atomic() && !irqs_disabled()) ||
8529 system_state != SYSTEM_RUNNING || oops_in_progress)
8530 return;
8531 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8532 return;
8533 prev_jiffy = jiffies;
8534
8535 printk(KERN_ERR
8536 "BUG: sleeping function called from invalid context at %s:%d\n",
8537 file, line);
8538 printk(KERN_ERR
8539 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8540 in_atomic(), irqs_disabled(),
8541 current->pid, current->comm);
8542
8543 debug_show_held_locks(current);
8544 if (irqs_disabled())
8545 print_irqtrace_events(current);
8546 dump_stack();
1da177e4
LT
8547#endif
8548}
8549EXPORT_SYMBOL(__might_sleep);
8550#endif
8551
8552#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8553static void normalize_task(struct rq *rq, struct task_struct *p)
8554{
8555 int on_rq;
3e51f33f 8556
3a5e4dc1
AK
8557 update_rq_clock(rq);
8558 on_rq = p->se.on_rq;
8559 if (on_rq)
8560 deactivate_task(rq, p, 0);
8561 __setscheduler(rq, p, SCHED_NORMAL, 0);
8562 if (on_rq) {
8563 activate_task(rq, p, 0);
8564 resched_task(rq->curr);
8565 }
8566}
8567
1da177e4
LT
8568void normalize_rt_tasks(void)
8569{
a0f98a1c 8570 struct task_struct *g, *p;
1da177e4 8571 unsigned long flags;
70b97a7f 8572 struct rq *rq;
1da177e4 8573
4cf5d77a 8574 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8575 do_each_thread(g, p) {
178be793
IM
8576 /*
8577 * Only normalize user tasks:
8578 */
8579 if (!p->mm)
8580 continue;
8581
6cfb0d5d 8582 p->se.exec_start = 0;
6cfb0d5d 8583#ifdef CONFIG_SCHEDSTATS
dd41f596 8584 p->se.wait_start = 0;
dd41f596 8585 p->se.sleep_start = 0;
dd41f596 8586 p->se.block_start = 0;
6cfb0d5d 8587#endif
dd41f596
IM
8588
8589 if (!rt_task(p)) {
8590 /*
8591 * Renice negative nice level userspace
8592 * tasks back to 0:
8593 */
8594 if (TASK_NICE(p) < 0 && p->mm)
8595 set_user_nice(p, 0);
1da177e4 8596 continue;
dd41f596 8597 }
1da177e4 8598
4cf5d77a 8599 spin_lock(&p->pi_lock);
b29739f9 8600 rq = __task_rq_lock(p);
1da177e4 8601
178be793 8602 normalize_task(rq, p);
3a5e4dc1 8603
b29739f9 8604 __task_rq_unlock(rq);
4cf5d77a 8605 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8606 } while_each_thread(g, p);
8607
4cf5d77a 8608 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8609}
8610
8611#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8612
8613#ifdef CONFIG_IA64
8614/*
8615 * These functions are only useful for the IA64 MCA handling.
8616 *
8617 * They can only be called when the whole system has been
8618 * stopped - every CPU needs to be quiescent, and no scheduling
8619 * activity can take place. Using them for anything else would
8620 * be a serious bug, and as a result, they aren't even visible
8621 * under any other configuration.
8622 */
8623
8624/**
8625 * curr_task - return the current task for a given cpu.
8626 * @cpu: the processor in question.
8627 *
8628 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8629 */
36c8b586 8630struct task_struct *curr_task(int cpu)
1df5c10a
LT
8631{
8632 return cpu_curr(cpu);
8633}
8634
8635/**
8636 * set_curr_task - set the current task for a given cpu.
8637 * @cpu: the processor in question.
8638 * @p: the task pointer to set.
8639 *
8640 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8641 * are serviced on a separate stack. It allows the architecture to switch the
8642 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8643 * must be called with all CPU's synchronized, and interrupts disabled, the
8644 * and caller must save the original value of the current task (see
8645 * curr_task() above) and restore that value before reenabling interrupts and
8646 * re-starting the system.
8647 *
8648 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8649 */
36c8b586 8650void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8651{
8652 cpu_curr(cpu) = p;
8653}
8654
8655#endif
29f59db3 8656
bccbe08a
PZ
8657#ifdef CONFIG_FAIR_GROUP_SCHED
8658static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8659{
8660 int i;
8661
8662 for_each_possible_cpu(i) {
8663 if (tg->cfs_rq)
8664 kfree(tg->cfs_rq[i]);
8665 if (tg->se)
8666 kfree(tg->se[i]);
6f505b16
PZ
8667 }
8668
8669 kfree(tg->cfs_rq);
8670 kfree(tg->se);
6f505b16
PZ
8671}
8672
ec7dc8ac
DG
8673static
8674int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8675{
29f59db3 8676 struct cfs_rq *cfs_rq;
eab17229 8677 struct sched_entity *se;
9b5b7751 8678 struct rq *rq;
29f59db3
SV
8679 int i;
8680
434d53b0 8681 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8682 if (!tg->cfs_rq)
8683 goto err;
434d53b0 8684 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8685 if (!tg->se)
8686 goto err;
052f1dc7
PZ
8687
8688 tg->shares = NICE_0_LOAD;
29f59db3
SV
8689
8690 for_each_possible_cpu(i) {
9b5b7751 8691 rq = cpu_rq(i);
29f59db3 8692
eab17229
LZ
8693 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8694 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8695 if (!cfs_rq)
8696 goto err;
8697
eab17229
LZ
8698 se = kzalloc_node(sizeof(struct sched_entity),
8699 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8700 if (!se)
8701 goto err;
8702
eab17229 8703 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8704 }
8705
8706 return 1;
8707
8708 err:
8709 return 0;
8710}
8711
8712static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8713{
8714 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8715 &cpu_rq(cpu)->leaf_cfs_rq_list);
8716}
8717
8718static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8719{
8720 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8721}
6d6bc0ad 8722#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8723static inline void free_fair_sched_group(struct task_group *tg)
8724{
8725}
8726
ec7dc8ac
DG
8727static inline
8728int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8729{
8730 return 1;
8731}
8732
8733static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8734{
8735}
8736
8737static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8738{
8739}
6d6bc0ad 8740#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8741
8742#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8743static void free_rt_sched_group(struct task_group *tg)
8744{
8745 int i;
8746
d0b27fa7
PZ
8747 destroy_rt_bandwidth(&tg->rt_bandwidth);
8748
bccbe08a
PZ
8749 for_each_possible_cpu(i) {
8750 if (tg->rt_rq)
8751 kfree(tg->rt_rq[i]);
8752 if (tg->rt_se)
8753 kfree(tg->rt_se[i]);
8754 }
8755
8756 kfree(tg->rt_rq);
8757 kfree(tg->rt_se);
8758}
8759
ec7dc8ac
DG
8760static
8761int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8762{
8763 struct rt_rq *rt_rq;
eab17229 8764 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8765 struct rq *rq;
8766 int i;
8767
434d53b0 8768 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8769 if (!tg->rt_rq)
8770 goto err;
434d53b0 8771 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8772 if (!tg->rt_se)
8773 goto err;
8774
d0b27fa7
PZ
8775 init_rt_bandwidth(&tg->rt_bandwidth,
8776 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8777
8778 for_each_possible_cpu(i) {
8779 rq = cpu_rq(i);
8780
eab17229
LZ
8781 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8782 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8783 if (!rt_rq)
8784 goto err;
29f59db3 8785
eab17229
LZ
8786 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8787 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8788 if (!rt_se)
8789 goto err;
29f59db3 8790
eab17229 8791 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8792 }
8793
bccbe08a
PZ
8794 return 1;
8795
8796 err:
8797 return 0;
8798}
8799
8800static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8801{
8802 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8803 &cpu_rq(cpu)->leaf_rt_rq_list);
8804}
8805
8806static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8807{
8808 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8809}
6d6bc0ad 8810#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8811static inline void free_rt_sched_group(struct task_group *tg)
8812{
8813}
8814
ec7dc8ac
DG
8815static inline
8816int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8817{
8818 return 1;
8819}
8820
8821static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8822{
8823}
8824
8825static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8826{
8827}
6d6bc0ad 8828#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8829
d0b27fa7 8830#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8831static void free_sched_group(struct task_group *tg)
8832{
8833 free_fair_sched_group(tg);
8834 free_rt_sched_group(tg);
8835 kfree(tg);
8836}
8837
8838/* allocate runqueue etc for a new task group */
ec7dc8ac 8839struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8840{
8841 struct task_group *tg;
8842 unsigned long flags;
8843 int i;
8844
8845 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8846 if (!tg)
8847 return ERR_PTR(-ENOMEM);
8848
ec7dc8ac 8849 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8850 goto err;
8851
ec7dc8ac 8852 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8853 goto err;
8854
8ed36996 8855 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8856 for_each_possible_cpu(i) {
bccbe08a
PZ
8857 register_fair_sched_group(tg, i);
8858 register_rt_sched_group(tg, i);
9b5b7751 8859 }
6f505b16 8860 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8861
8862 WARN_ON(!parent); /* root should already exist */
8863
8864 tg->parent = parent;
f473aa5e 8865 INIT_LIST_HEAD(&tg->children);
09f2724a 8866 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8867 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8868
9b5b7751 8869 return tg;
29f59db3
SV
8870
8871err:
6f505b16 8872 free_sched_group(tg);
29f59db3
SV
8873 return ERR_PTR(-ENOMEM);
8874}
8875
9b5b7751 8876/* rcu callback to free various structures associated with a task group */
6f505b16 8877static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8878{
29f59db3 8879 /* now it should be safe to free those cfs_rqs */
6f505b16 8880 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8881}
8882
9b5b7751 8883/* Destroy runqueue etc associated with a task group */
4cf86d77 8884void sched_destroy_group(struct task_group *tg)
29f59db3 8885{
8ed36996 8886 unsigned long flags;
9b5b7751 8887 int i;
29f59db3 8888
8ed36996 8889 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8890 for_each_possible_cpu(i) {
bccbe08a
PZ
8891 unregister_fair_sched_group(tg, i);
8892 unregister_rt_sched_group(tg, i);
9b5b7751 8893 }
6f505b16 8894 list_del_rcu(&tg->list);
f473aa5e 8895 list_del_rcu(&tg->siblings);
8ed36996 8896 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8897
9b5b7751 8898 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8899 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8900}
8901
9b5b7751 8902/* change task's runqueue when it moves between groups.
3a252015
IM
8903 * The caller of this function should have put the task in its new group
8904 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8905 * reflect its new group.
9b5b7751
SV
8906 */
8907void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8908{
8909 int on_rq, running;
8910 unsigned long flags;
8911 struct rq *rq;
8912
8913 rq = task_rq_lock(tsk, &flags);
8914
29f59db3
SV
8915 update_rq_clock(rq);
8916
051a1d1a 8917 running = task_current(rq, tsk);
29f59db3
SV
8918 on_rq = tsk->se.on_rq;
8919
0e1f3483 8920 if (on_rq)
29f59db3 8921 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8922 if (unlikely(running))
8923 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8924
6f505b16 8925 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8926
810b3817
PZ
8927#ifdef CONFIG_FAIR_GROUP_SCHED
8928 if (tsk->sched_class->moved_group)
8929 tsk->sched_class->moved_group(tsk);
8930#endif
8931
0e1f3483
HS
8932 if (unlikely(running))
8933 tsk->sched_class->set_curr_task(rq);
8934 if (on_rq)
7074badb 8935 enqueue_task(rq, tsk, 0);
29f59db3 8936
29f59db3
SV
8937 task_rq_unlock(rq, &flags);
8938}
6d6bc0ad 8939#endif /* CONFIG_GROUP_SCHED */
29f59db3 8940
052f1dc7 8941#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8942static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8943{
8944 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8945 int on_rq;
8946
29f59db3 8947 on_rq = se->on_rq;
62fb1851 8948 if (on_rq)
29f59db3
SV
8949 dequeue_entity(cfs_rq, se, 0);
8950
8951 se->load.weight = shares;
e05510d0 8952 se->load.inv_weight = 0;
29f59db3 8953
62fb1851 8954 if (on_rq)
29f59db3 8955 enqueue_entity(cfs_rq, se, 0);
c09595f6 8956}
62fb1851 8957
c09595f6
PZ
8958static void set_se_shares(struct sched_entity *se, unsigned long shares)
8959{
8960 struct cfs_rq *cfs_rq = se->cfs_rq;
8961 struct rq *rq = cfs_rq->rq;
8962 unsigned long flags;
8963
8964 spin_lock_irqsave(&rq->lock, flags);
8965 __set_se_shares(se, shares);
8966 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8967}
8968
8ed36996
PZ
8969static DEFINE_MUTEX(shares_mutex);
8970
4cf86d77 8971int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8972{
8973 int i;
8ed36996 8974 unsigned long flags;
c61935fd 8975
ec7dc8ac
DG
8976 /*
8977 * We can't change the weight of the root cgroup.
8978 */
8979 if (!tg->se[0])
8980 return -EINVAL;
8981
18d95a28
PZ
8982 if (shares < MIN_SHARES)
8983 shares = MIN_SHARES;
cb4ad1ff
MX
8984 else if (shares > MAX_SHARES)
8985 shares = MAX_SHARES;
62fb1851 8986
8ed36996 8987 mutex_lock(&shares_mutex);
9b5b7751 8988 if (tg->shares == shares)
5cb350ba 8989 goto done;
29f59db3 8990
8ed36996 8991 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8992 for_each_possible_cpu(i)
8993 unregister_fair_sched_group(tg, i);
f473aa5e 8994 list_del_rcu(&tg->siblings);
8ed36996 8995 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8996
8997 /* wait for any ongoing reference to this group to finish */
8998 synchronize_sched();
8999
9000 /*
9001 * Now we are free to modify the group's share on each cpu
9002 * w/o tripping rebalance_share or load_balance_fair.
9003 */
9b5b7751 9004 tg->shares = shares;
c09595f6
PZ
9005 for_each_possible_cpu(i) {
9006 /*
9007 * force a rebalance
9008 */
9009 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9010 set_se_shares(tg->se[i], shares);
c09595f6 9011 }
29f59db3 9012
6b2d7700
SV
9013 /*
9014 * Enable load balance activity on this group, by inserting it back on
9015 * each cpu's rq->leaf_cfs_rq_list.
9016 */
8ed36996 9017 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9018 for_each_possible_cpu(i)
9019 register_fair_sched_group(tg, i);
f473aa5e 9020 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9021 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9022done:
8ed36996 9023 mutex_unlock(&shares_mutex);
9b5b7751 9024 return 0;
29f59db3
SV
9025}
9026
5cb350ba
DG
9027unsigned long sched_group_shares(struct task_group *tg)
9028{
9029 return tg->shares;
9030}
052f1dc7 9031#endif
5cb350ba 9032
052f1dc7 9033#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9034/*
9f0c1e56 9035 * Ensure that the real time constraints are schedulable.
6f505b16 9036 */
9f0c1e56
PZ
9037static DEFINE_MUTEX(rt_constraints_mutex);
9038
9039static unsigned long to_ratio(u64 period, u64 runtime)
9040{
9041 if (runtime == RUNTIME_INF)
9a7e0b18 9042 return 1ULL << 20;
9f0c1e56 9043
9a7e0b18 9044 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9045}
9046
9a7e0b18
PZ
9047/* Must be called with tasklist_lock held */
9048static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9049{
9a7e0b18 9050 struct task_struct *g, *p;
b40b2e8e 9051
9a7e0b18
PZ
9052 do_each_thread(g, p) {
9053 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9054 return 1;
9055 } while_each_thread(g, p);
b40b2e8e 9056
9a7e0b18
PZ
9057 return 0;
9058}
b40b2e8e 9059
9a7e0b18
PZ
9060struct rt_schedulable_data {
9061 struct task_group *tg;
9062 u64 rt_period;
9063 u64 rt_runtime;
9064};
b40b2e8e 9065
9a7e0b18
PZ
9066static int tg_schedulable(struct task_group *tg, void *data)
9067{
9068 struct rt_schedulable_data *d = data;
9069 struct task_group *child;
9070 unsigned long total, sum = 0;
9071 u64 period, runtime;
b40b2e8e 9072
9a7e0b18
PZ
9073 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9074 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9075
9a7e0b18
PZ
9076 if (tg == d->tg) {
9077 period = d->rt_period;
9078 runtime = d->rt_runtime;
b40b2e8e 9079 }
b40b2e8e 9080
4653f803
PZ
9081 /*
9082 * Cannot have more runtime than the period.
9083 */
9084 if (runtime > period && runtime != RUNTIME_INF)
9085 return -EINVAL;
6f505b16 9086
4653f803
PZ
9087 /*
9088 * Ensure we don't starve existing RT tasks.
9089 */
9a7e0b18
PZ
9090 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9091 return -EBUSY;
6f505b16 9092
9a7e0b18 9093 total = to_ratio(period, runtime);
6f505b16 9094
4653f803
PZ
9095 /*
9096 * Nobody can have more than the global setting allows.
9097 */
9098 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9099 return -EINVAL;
6f505b16 9100
4653f803
PZ
9101 /*
9102 * The sum of our children's runtime should not exceed our own.
9103 */
9a7e0b18
PZ
9104 list_for_each_entry_rcu(child, &tg->children, siblings) {
9105 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9106 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9107
9a7e0b18
PZ
9108 if (child == d->tg) {
9109 period = d->rt_period;
9110 runtime = d->rt_runtime;
9111 }
6f505b16 9112
9a7e0b18 9113 sum += to_ratio(period, runtime);
9f0c1e56 9114 }
6f505b16 9115
9a7e0b18
PZ
9116 if (sum > total)
9117 return -EINVAL;
9118
9119 return 0;
6f505b16
PZ
9120}
9121
9a7e0b18 9122static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9123{
9a7e0b18
PZ
9124 struct rt_schedulable_data data = {
9125 .tg = tg,
9126 .rt_period = period,
9127 .rt_runtime = runtime,
9128 };
9129
9130 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9131}
9132
d0b27fa7
PZ
9133static int tg_set_bandwidth(struct task_group *tg,
9134 u64 rt_period, u64 rt_runtime)
6f505b16 9135{
ac086bc2 9136 int i, err = 0;
9f0c1e56 9137
9f0c1e56 9138 mutex_lock(&rt_constraints_mutex);
521f1a24 9139 read_lock(&tasklist_lock);
9a7e0b18
PZ
9140 err = __rt_schedulable(tg, rt_period, rt_runtime);
9141 if (err)
9f0c1e56 9142 goto unlock;
ac086bc2
PZ
9143
9144 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9145 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9146 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9147
9148 for_each_possible_cpu(i) {
9149 struct rt_rq *rt_rq = tg->rt_rq[i];
9150
9151 spin_lock(&rt_rq->rt_runtime_lock);
9152 rt_rq->rt_runtime = rt_runtime;
9153 spin_unlock(&rt_rq->rt_runtime_lock);
9154 }
9155 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9156 unlock:
521f1a24 9157 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9158 mutex_unlock(&rt_constraints_mutex);
9159
9160 return err;
6f505b16
PZ
9161}
9162
d0b27fa7
PZ
9163int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9164{
9165 u64 rt_runtime, rt_period;
9166
9167 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9168 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9169 if (rt_runtime_us < 0)
9170 rt_runtime = RUNTIME_INF;
9171
9172 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9173}
9174
9f0c1e56
PZ
9175long sched_group_rt_runtime(struct task_group *tg)
9176{
9177 u64 rt_runtime_us;
9178
d0b27fa7 9179 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9180 return -1;
9181
d0b27fa7 9182 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9183 do_div(rt_runtime_us, NSEC_PER_USEC);
9184 return rt_runtime_us;
9185}
d0b27fa7
PZ
9186
9187int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9188{
9189 u64 rt_runtime, rt_period;
9190
9191 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9192 rt_runtime = tg->rt_bandwidth.rt_runtime;
9193
619b0488
R
9194 if (rt_period == 0)
9195 return -EINVAL;
9196
d0b27fa7
PZ
9197 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9198}
9199
9200long sched_group_rt_period(struct task_group *tg)
9201{
9202 u64 rt_period_us;
9203
9204 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9205 do_div(rt_period_us, NSEC_PER_USEC);
9206 return rt_period_us;
9207}
9208
9209static int sched_rt_global_constraints(void)
9210{
4653f803 9211 u64 runtime, period;
d0b27fa7
PZ
9212 int ret = 0;
9213
ec5d4989
HS
9214 if (sysctl_sched_rt_period <= 0)
9215 return -EINVAL;
9216
4653f803
PZ
9217 runtime = global_rt_runtime();
9218 period = global_rt_period();
9219
9220 /*
9221 * Sanity check on the sysctl variables.
9222 */
9223 if (runtime > period && runtime != RUNTIME_INF)
9224 return -EINVAL;
10b612f4 9225
d0b27fa7 9226 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9227 read_lock(&tasklist_lock);
4653f803 9228 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9229 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9230 mutex_unlock(&rt_constraints_mutex);
9231
9232 return ret;
9233}
6d6bc0ad 9234#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9235static int sched_rt_global_constraints(void)
9236{
ac086bc2
PZ
9237 unsigned long flags;
9238 int i;
9239
ec5d4989
HS
9240 if (sysctl_sched_rt_period <= 0)
9241 return -EINVAL;
9242
ac086bc2
PZ
9243 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9244 for_each_possible_cpu(i) {
9245 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9246
9247 spin_lock(&rt_rq->rt_runtime_lock);
9248 rt_rq->rt_runtime = global_rt_runtime();
9249 spin_unlock(&rt_rq->rt_runtime_lock);
9250 }
9251 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9252
d0b27fa7
PZ
9253 return 0;
9254}
6d6bc0ad 9255#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9256
9257int sched_rt_handler(struct ctl_table *table, int write,
9258 struct file *filp, void __user *buffer, size_t *lenp,
9259 loff_t *ppos)
9260{
9261 int ret;
9262 int old_period, old_runtime;
9263 static DEFINE_MUTEX(mutex);
9264
9265 mutex_lock(&mutex);
9266 old_period = sysctl_sched_rt_period;
9267 old_runtime = sysctl_sched_rt_runtime;
9268
9269 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9270
9271 if (!ret && write) {
9272 ret = sched_rt_global_constraints();
9273 if (ret) {
9274 sysctl_sched_rt_period = old_period;
9275 sysctl_sched_rt_runtime = old_runtime;
9276 } else {
9277 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9278 def_rt_bandwidth.rt_period =
9279 ns_to_ktime(global_rt_period());
9280 }
9281 }
9282 mutex_unlock(&mutex);
9283
9284 return ret;
9285}
68318b8e 9286
052f1dc7 9287#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9288
9289/* return corresponding task_group object of a cgroup */
2b01dfe3 9290static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9291{
2b01dfe3
PM
9292 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9293 struct task_group, css);
68318b8e
SV
9294}
9295
9296static struct cgroup_subsys_state *
2b01dfe3 9297cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9298{
ec7dc8ac 9299 struct task_group *tg, *parent;
68318b8e 9300
2b01dfe3 9301 if (!cgrp->parent) {
68318b8e 9302 /* This is early initialization for the top cgroup */
68318b8e
SV
9303 return &init_task_group.css;
9304 }
9305
ec7dc8ac
DG
9306 parent = cgroup_tg(cgrp->parent);
9307 tg = sched_create_group(parent);
68318b8e
SV
9308 if (IS_ERR(tg))
9309 return ERR_PTR(-ENOMEM);
9310
68318b8e
SV
9311 return &tg->css;
9312}
9313
41a2d6cf
IM
9314static void
9315cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9316{
2b01dfe3 9317 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9318
9319 sched_destroy_group(tg);
9320}
9321
41a2d6cf
IM
9322static int
9323cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9324 struct task_struct *tsk)
68318b8e 9325{
b68aa230
PZ
9326#ifdef CONFIG_RT_GROUP_SCHED
9327 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9328 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9329 return -EINVAL;
9330#else
68318b8e
SV
9331 /* We don't support RT-tasks being in separate groups */
9332 if (tsk->sched_class != &fair_sched_class)
9333 return -EINVAL;
b68aa230 9334#endif
68318b8e
SV
9335
9336 return 0;
9337}
9338
9339static void
2b01dfe3 9340cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9341 struct cgroup *old_cont, struct task_struct *tsk)
9342{
9343 sched_move_task(tsk);
9344}
9345
052f1dc7 9346#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9347static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9348 u64 shareval)
68318b8e 9349{
2b01dfe3 9350 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9351}
9352
f4c753b7 9353static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9354{
2b01dfe3 9355 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9356
9357 return (u64) tg->shares;
9358}
6d6bc0ad 9359#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9360
052f1dc7 9361#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9362static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9363 s64 val)
6f505b16 9364{
06ecb27c 9365 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9366}
9367
06ecb27c 9368static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9369{
06ecb27c 9370 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9371}
d0b27fa7
PZ
9372
9373static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9374 u64 rt_period_us)
9375{
9376 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9377}
9378
9379static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9380{
9381 return sched_group_rt_period(cgroup_tg(cgrp));
9382}
6d6bc0ad 9383#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9384
fe5c7cc2 9385static struct cftype cpu_files[] = {
052f1dc7 9386#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9387 {
9388 .name = "shares",
f4c753b7
PM
9389 .read_u64 = cpu_shares_read_u64,
9390 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9391 },
052f1dc7
PZ
9392#endif
9393#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9394 {
9f0c1e56 9395 .name = "rt_runtime_us",
06ecb27c
PM
9396 .read_s64 = cpu_rt_runtime_read,
9397 .write_s64 = cpu_rt_runtime_write,
6f505b16 9398 },
d0b27fa7
PZ
9399 {
9400 .name = "rt_period_us",
f4c753b7
PM
9401 .read_u64 = cpu_rt_period_read_uint,
9402 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9403 },
052f1dc7 9404#endif
68318b8e
SV
9405};
9406
9407static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9408{
fe5c7cc2 9409 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9410}
9411
9412struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9413 .name = "cpu",
9414 .create = cpu_cgroup_create,
9415 .destroy = cpu_cgroup_destroy,
9416 .can_attach = cpu_cgroup_can_attach,
9417 .attach = cpu_cgroup_attach,
9418 .populate = cpu_cgroup_populate,
9419 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9420 .early_init = 1,
9421};
9422
052f1dc7 9423#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9424
9425#ifdef CONFIG_CGROUP_CPUACCT
9426
9427/*
9428 * CPU accounting code for task groups.
9429 *
9430 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9431 * (balbir@in.ibm.com).
9432 */
9433
934352f2 9434/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9435struct cpuacct {
9436 struct cgroup_subsys_state css;
9437 /* cpuusage holds pointer to a u64-type object on every cpu */
9438 u64 *cpuusage;
934352f2 9439 struct cpuacct *parent;
d842de87
SV
9440};
9441
9442struct cgroup_subsys cpuacct_subsys;
9443
9444/* return cpu accounting group corresponding to this container */
32cd756a 9445static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9446{
32cd756a 9447 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9448 struct cpuacct, css);
9449}
9450
9451/* return cpu accounting group to which this task belongs */
9452static inline struct cpuacct *task_ca(struct task_struct *tsk)
9453{
9454 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9455 struct cpuacct, css);
9456}
9457
9458/* create a new cpu accounting group */
9459static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9460 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9461{
9462 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9463
9464 if (!ca)
9465 return ERR_PTR(-ENOMEM);
9466
9467 ca->cpuusage = alloc_percpu(u64);
9468 if (!ca->cpuusage) {
9469 kfree(ca);
9470 return ERR_PTR(-ENOMEM);
9471 }
9472
934352f2
BR
9473 if (cgrp->parent)
9474 ca->parent = cgroup_ca(cgrp->parent);
9475
d842de87
SV
9476 return &ca->css;
9477}
9478
9479/* destroy an existing cpu accounting group */
41a2d6cf 9480static void
32cd756a 9481cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9482{
32cd756a 9483 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9484
9485 free_percpu(ca->cpuusage);
9486 kfree(ca);
9487}
9488
9489/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9490static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9491{
32cd756a 9492 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9493 u64 totalcpuusage = 0;
9494 int i;
9495
9496 for_each_possible_cpu(i) {
9497 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9498
9499 /*
9500 * Take rq->lock to make 64-bit addition safe on 32-bit
9501 * platforms.
9502 */
9503 spin_lock_irq(&cpu_rq(i)->lock);
9504 totalcpuusage += *cpuusage;
9505 spin_unlock_irq(&cpu_rq(i)->lock);
9506 }
9507
9508 return totalcpuusage;
9509}
9510
0297b803
DG
9511static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9512 u64 reset)
9513{
9514 struct cpuacct *ca = cgroup_ca(cgrp);
9515 int err = 0;
9516 int i;
9517
9518 if (reset) {
9519 err = -EINVAL;
9520 goto out;
9521 }
9522
9523 for_each_possible_cpu(i) {
9524 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9525
9526 spin_lock_irq(&cpu_rq(i)->lock);
9527 *cpuusage = 0;
9528 spin_unlock_irq(&cpu_rq(i)->lock);
9529 }
9530out:
9531 return err;
9532}
9533
d842de87
SV
9534static struct cftype files[] = {
9535 {
9536 .name = "usage",
f4c753b7
PM
9537 .read_u64 = cpuusage_read,
9538 .write_u64 = cpuusage_write,
d842de87
SV
9539 },
9540};
9541
32cd756a 9542static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9543{
32cd756a 9544 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9545}
9546
9547/*
9548 * charge this task's execution time to its accounting group.
9549 *
9550 * called with rq->lock held.
9551 */
9552static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9553{
9554 struct cpuacct *ca;
934352f2 9555 int cpu;
d842de87
SV
9556
9557 if (!cpuacct_subsys.active)
9558 return;
9559
934352f2 9560 cpu = task_cpu(tsk);
d842de87 9561 ca = task_ca(tsk);
d842de87 9562
934352f2
BR
9563 for (; ca; ca = ca->parent) {
9564 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9565 *cpuusage += cputime;
9566 }
9567}
9568
9569struct cgroup_subsys cpuacct_subsys = {
9570 .name = "cpuacct",
9571 .create = cpuacct_create,
9572 .destroy = cpuacct_destroy,
9573 .populate = cpuacct_populate,
9574 .subsys_id = cpuacct_subsys_id,
9575};
9576#endif /* CONFIG_CGROUP_CPUACCT */