]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild...
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
321static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a22d7fc1 496 int overloaded;
917b627d 497 struct plist_head pushable_tasks;
fa85ae24 498#endif
6f505b16 499 int rt_throttled;
fa85ae24 500 u64 rt_time;
ac086bc2 501 u64 rt_runtime;
ea736ed5 502 /* Nests inside the rq lock: */
ac086bc2 503 spinlock_t rt_runtime_lock;
6f505b16 504
052f1dc7 505#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
506 unsigned long rt_nr_boosted;
507
6f505b16
PZ
508 struct rq *rq;
509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg;
511 struct sched_rt_entity *rt_se;
512#endif
6aa645ea
IM
513};
514
57d885fe
GH
515#ifdef CONFIG_SMP
516
517/*
518 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
523 *
57d885fe
GH
524 */
525struct root_domain {
526 atomic_t refcount;
c6c4927b
RR
527 cpumask_var_t span;
528 cpumask_var_t online;
637f5085 529
0eab9146 530 /*
637f5085
GH
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
533 */
c6c4927b 534 cpumask_var_t rto_mask;
0eab9146 535 atomic_t rto_count;
6e0534f2
GH
536#ifdef CONFIG_SMP
537 struct cpupri cpupri;
538#endif
7a09b1a2
VS
539#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
540 /*
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
544 */
545 unsigned int sched_mc_preferred_wakeup_cpu;
546#endif
57d885fe
GH
547};
548
dc938520
GH
549/*
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
552 */
57d885fe
GH
553static struct root_domain def_root_domain;
554
555#endif
556
1da177e4
LT
557/*
558 * This is the main, per-CPU runqueue data structure.
559 *
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
563 */
70b97a7f 564struct rq {
d8016491
IM
565 /* runqueue lock: */
566 spinlock_t lock;
1da177e4
LT
567
568 /*
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
571 */
572 unsigned long nr_running;
6aa645ea
IM
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 575#ifdef CONFIG_NO_HZ
15934a37 576 unsigned long last_tick_seen;
46cb4b7c
SS
577 unsigned char in_nohz_recently;
578#endif
d8016491
IM
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
6aa645ea
IM
581 unsigned long nr_load_updates;
582 u64 nr_switches;
23a185ca 583 u64 nr_migrations_in;
6aa645ea
IM
584
585 struct cfs_rq cfs;
6f505b16 586 struct rt_rq rt;
6f505b16 587
6aa645ea 588#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
591#endif
592#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 593 struct list_head leaf_rt_rq_list;
1da177e4 594#endif
1da177e4
LT
595
596 /*
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
601 */
602 unsigned long nr_uninterruptible;
603
36c8b586 604 struct task_struct *curr, *idle;
c9819f45 605 unsigned long next_balance;
1da177e4 606 struct mm_struct *prev_mm;
6aa645ea 607
3e51f33f 608 u64 clock;
6aa645ea 609
1da177e4
LT
610 atomic_t nr_iowait;
611
612#ifdef CONFIG_SMP
0eab9146 613 struct root_domain *rd;
1da177e4
LT
614 struct sched_domain *sd;
615
a0a522ce 616 unsigned char idle_at_tick;
1da177e4
LT
617 /* For active balancing */
618 int active_balance;
619 int push_cpu;
d8016491
IM
620 /* cpu of this runqueue: */
621 int cpu;
1f11eb6a 622 int online;
1da177e4 623
a8a51d5e 624 unsigned long avg_load_per_task;
1da177e4 625
36c8b586 626 struct task_struct *migration_thread;
1da177e4
LT
627 struct list_head migration_queue;
628#endif
629
dce48a84
TG
630 /* calc_load related fields */
631 unsigned long calc_load_update;
632 long calc_load_active;
633
8f4d37ec 634#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
635#ifdef CONFIG_SMP
636 int hrtick_csd_pending;
637 struct call_single_data hrtick_csd;
638#endif
8f4d37ec
PZ
639 struct hrtimer hrtick_timer;
640#endif
641
1da177e4
LT
642#ifdef CONFIG_SCHEDSTATS
643 /* latency stats */
644 struct sched_info rq_sched_info;
9c2c4802
KC
645 unsigned long long rq_cpu_time;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
647
648 /* sys_sched_yield() stats */
480b9434 649 unsigned int yld_count;
1da177e4
LT
650
651 /* schedule() stats */
480b9434
KC
652 unsigned int sched_switch;
653 unsigned int sched_count;
654 unsigned int sched_goidle;
1da177e4
LT
655
656 /* try_to_wake_up() stats */
480b9434
KC
657 unsigned int ttwu_count;
658 unsigned int ttwu_local;
b8efb561
IM
659
660 /* BKL stats */
480b9434 661 unsigned int bkl_count;
1da177e4
LT
662#endif
663};
664
f34e3b61 665static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 666
15afe09b 667static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 668{
15afe09b 669 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
670}
671
0a2966b4
CL
672static inline int cpu_of(struct rq *rq)
673{
674#ifdef CONFIG_SMP
675 return rq->cpu;
676#else
677 return 0;
678#endif
679}
680
674311d5
NP
681/*
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 683 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
684 *
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
687 */
48f24c4d
IM
688#define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
690
691#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692#define this_rq() (&__get_cpu_var(runqueues))
693#define task_rq(p) cpu_rq(task_cpu(p))
694#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
695
aa9c4c0f 696inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
697{
698 rq->clock = sched_clock_cpu(cpu_of(rq));
699}
700
bf5c91ba
IM
701/*
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703 */
704#ifdef CONFIG_SCHED_DEBUG
705# define const_debug __read_mostly
706#else
707# define const_debug static const
708#endif
709
017730c1
IM
710/**
711 * runqueue_is_locked
712 *
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
716 */
717int runqueue_is_locked(void)
718{
719 int cpu = get_cpu();
720 struct rq *rq = cpu_rq(cpu);
721 int ret;
722
723 ret = spin_is_locked(&rq->lock);
724 put_cpu();
725 return ret;
726}
727
bf5c91ba
IM
728/*
729 * Debugging: various feature bits
730 */
f00b45c1
PZ
731
732#define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
734
bf5c91ba 735enum {
f00b45c1 736#include "sched_features.h"
bf5c91ba
IM
737};
738
f00b45c1
PZ
739#undef SCHED_FEAT
740
741#define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
743
bf5c91ba 744const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
745#include "sched_features.h"
746 0;
747
748#undef SCHED_FEAT
749
750#ifdef CONFIG_SCHED_DEBUG
751#define SCHED_FEAT(name, enabled) \
752 #name ,
753
983ed7a6 754static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
755#include "sched_features.h"
756 NULL
757};
758
759#undef SCHED_FEAT
760
34f3a814 761static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 762{
f00b45c1
PZ
763 int i;
764
765 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
766 if (!(sysctl_sched_features & (1UL << i)))
767 seq_puts(m, "NO_");
768 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 769 }
34f3a814 770 seq_puts(m, "\n");
f00b45c1 771
34f3a814 772 return 0;
f00b45c1
PZ
773}
774
775static ssize_t
776sched_feat_write(struct file *filp, const char __user *ubuf,
777 size_t cnt, loff_t *ppos)
778{
779 char buf[64];
780 char *cmp = buf;
781 int neg = 0;
782 int i;
783
784 if (cnt > 63)
785 cnt = 63;
786
787 if (copy_from_user(&buf, ubuf, cnt))
788 return -EFAULT;
789
790 buf[cnt] = 0;
791
c24b7c52 792 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
793 neg = 1;
794 cmp += 3;
795 }
796
797 for (i = 0; sched_feat_names[i]; i++) {
798 int len = strlen(sched_feat_names[i]);
799
800 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 if (neg)
802 sysctl_sched_features &= ~(1UL << i);
803 else
804 sysctl_sched_features |= (1UL << i);
805 break;
806 }
807 }
808
809 if (!sched_feat_names[i])
810 return -EINVAL;
811
812 filp->f_pos += cnt;
813
814 return cnt;
815}
816
34f3a814
LZ
817static int sched_feat_open(struct inode *inode, struct file *filp)
818{
819 return single_open(filp, sched_feat_show, NULL);
820}
821
f00b45c1 822static struct file_operations sched_feat_fops = {
34f3a814
LZ
823 .open = sched_feat_open,
824 .write = sched_feat_write,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
f00b45c1
PZ
828};
829
830static __init int sched_init_debug(void)
831{
f00b45c1
PZ
832 debugfs_create_file("sched_features", 0644, NULL, NULL,
833 &sched_feat_fops);
834
835 return 0;
836}
837late_initcall(sched_init_debug);
838
839#endif
840
841#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 842
b82d9fdd
PZ
843/*
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
846 */
847const_debug unsigned int sysctl_sched_nr_migrate = 32;
848
2398f2c6
PZ
849/*
850 * ratelimit for updating the group shares.
55cd5340 851 * default: 0.25ms
2398f2c6 852 */
55cd5340 853unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 854
ffda12a1
PZ
855/*
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
858 * default: 4
859 */
860unsigned int sysctl_sched_shares_thresh = 4;
861
fa85ae24 862/*
9f0c1e56 863 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
864 * default: 1s
865 */
9f0c1e56 866unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 867
6892b75e
IM
868static __read_mostly int scheduler_running;
869
9f0c1e56
PZ
870/*
871 * part of the period that we allow rt tasks to run in us.
872 * default: 0.95s
873 */
874int sysctl_sched_rt_runtime = 950000;
fa85ae24 875
d0b27fa7
PZ
876static inline u64 global_rt_period(void)
877{
878 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
879}
880
881static inline u64 global_rt_runtime(void)
882{
e26873bb 883 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
884 return RUNTIME_INF;
885
886 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
887}
fa85ae24 888
1da177e4 889#ifndef prepare_arch_switch
4866cde0
NP
890# define prepare_arch_switch(next) do { } while (0)
891#endif
892#ifndef finish_arch_switch
893# define finish_arch_switch(prev) do { } while (0)
894#endif
895
051a1d1a
DA
896static inline int task_current(struct rq *rq, struct task_struct *p)
897{
898 return rq->curr == p;
899}
900
4866cde0 901#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 902static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 903{
051a1d1a 904 return task_current(rq, p);
4866cde0
NP
905}
906
70b97a7f 907static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
908{
909}
910
70b97a7f 911static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 912{
da04c035
IM
913#ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq->lock.owner = current;
916#endif
8a25d5de
IM
917 /*
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
920 * prev into current:
921 */
922 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923
4866cde0
NP
924 spin_unlock_irq(&rq->lock);
925}
926
927#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 928static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
929{
930#ifdef CONFIG_SMP
931 return p->oncpu;
932#else
051a1d1a 933 return task_current(rq, p);
4866cde0
NP
934#endif
935}
936
70b97a7f 937static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
938{
939#ifdef CONFIG_SMP
940 /*
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
943 * here.
944 */
945 next->oncpu = 1;
946#endif
947#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq->lock);
949#else
950 spin_unlock(&rq->lock);
951#endif
952}
953
70b97a7f 954static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
955{
956#ifdef CONFIG_SMP
957 /*
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
960 * finished.
961 */
962 smp_wmb();
963 prev->oncpu = 0;
964#endif
965#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966 local_irq_enable();
1da177e4 967#endif
4866cde0
NP
968}
969#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 970
b29739f9
IM
971/*
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
974 */
70b97a7f 975static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
976 __acquires(rq->lock)
977{
3a5c359a
AK
978 for (;;) {
979 struct rq *rq = task_rq(p);
980 spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p)))
982 return rq;
b29739f9 983 spin_unlock(&rq->lock);
b29739f9 984 }
b29739f9
IM
985}
986
1da177e4
LT
987/*
988 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 989 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
990 * explicitly disabling preemption.
991 */
70b97a7f 992static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
993 __acquires(rq->lock)
994{
70b97a7f 995 struct rq *rq;
1da177e4 996
3a5c359a
AK
997 for (;;) {
998 local_irq_save(*flags);
999 rq = task_rq(p);
1000 spin_lock(&rq->lock);
1001 if (likely(rq == task_rq(p)))
1002 return rq;
1da177e4 1003 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1004 }
1da177e4
LT
1005}
1006
ad474cac
ON
1007void task_rq_unlock_wait(struct task_struct *p)
1008{
1009 struct rq *rq = task_rq(p);
1010
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq->lock);
1013}
1014
a9957449 1015static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1016 __releases(rq->lock)
1017{
1018 spin_unlock(&rq->lock);
1019}
1020
70b97a7f 1021static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1022 __releases(rq->lock)
1023{
1024 spin_unlock_irqrestore(&rq->lock, *flags);
1025}
1026
1da177e4 1027/*
cc2a73b5 1028 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1029 */
a9957449 1030static struct rq *this_rq_lock(void)
1da177e4
LT
1031 __acquires(rq->lock)
1032{
70b97a7f 1033 struct rq *rq;
1da177e4
LT
1034
1035 local_irq_disable();
1036 rq = this_rq();
1037 spin_lock(&rq->lock);
1038
1039 return rq;
1040}
1041
8f4d37ec
PZ
1042#ifdef CONFIG_SCHED_HRTICK
1043/*
1044 * Use HR-timers to deliver accurate preemption points.
1045 *
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * reschedule event.
1049 *
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 * rq->lock.
1052 */
8f4d37ec
PZ
1053
1054/*
1055 * Use hrtick when:
1056 * - enabled by features
1057 * - hrtimer is actually high res
1058 */
1059static inline int hrtick_enabled(struct rq *rq)
1060{
1061 if (!sched_feat(HRTICK))
1062 return 0;
ba42059f 1063 if (!cpu_active(cpu_of(rq)))
b328ca18 1064 return 0;
8f4d37ec
PZ
1065 return hrtimer_is_hres_active(&rq->hrtick_timer);
1066}
1067
8f4d37ec
PZ
1068static void hrtick_clear(struct rq *rq)
1069{
1070 if (hrtimer_active(&rq->hrtick_timer))
1071 hrtimer_cancel(&rq->hrtick_timer);
1072}
1073
8f4d37ec
PZ
1074/*
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1077 */
1078static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079{
1080 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083
1084 spin_lock(&rq->lock);
3e51f33f 1085 update_rq_clock(rq);
8f4d37ec
PZ
1086 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1087 spin_unlock(&rq->lock);
1088
1089 return HRTIMER_NORESTART;
1090}
1091
95e904c7 1092#ifdef CONFIG_SMP
31656519
PZ
1093/*
1094 * called from hardirq (IPI) context
1095 */
1096static void __hrtick_start(void *arg)
b328ca18 1097{
31656519 1098 struct rq *rq = arg;
b328ca18 1099
31656519
PZ
1100 spin_lock(&rq->lock);
1101 hrtimer_restart(&rq->hrtick_timer);
1102 rq->hrtick_csd_pending = 0;
1103 spin_unlock(&rq->lock);
b328ca18
PZ
1104}
1105
31656519
PZ
1106/*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1112{
31656519
PZ
1113 struct hrtimer *timer = &rq->hrtick_timer;
1114 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1115
cc584b21 1116 hrtimer_set_expires(timer, time);
31656519
PZ
1117
1118 if (rq == this_rq()) {
1119 hrtimer_restart(timer);
1120 } else if (!rq->hrtick_csd_pending) {
6e275637 1121 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1122 rq->hrtick_csd_pending = 1;
1123 }
b328ca18
PZ
1124}
1125
1126static int
1127hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128{
1129 int cpu = (int)(long)hcpu;
1130
1131 switch (action) {
1132 case CPU_UP_CANCELED:
1133 case CPU_UP_CANCELED_FROZEN:
1134 case CPU_DOWN_PREPARE:
1135 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD:
1137 case CPU_DEAD_FROZEN:
31656519 1138 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1139 return NOTIFY_OK;
1140 }
1141
1142 return NOTIFY_DONE;
1143}
1144
fa748203 1145static __init void init_hrtick(void)
b328ca18
PZ
1146{
1147 hotcpu_notifier(hotplug_hrtick, 0);
1148}
31656519
PZ
1149#else
1150/*
1151 * Called to set the hrtick timer state.
1152 *
1153 * called with rq->lock held and irqs disabled
1154 */
1155static void hrtick_start(struct rq *rq, u64 delay)
1156{
7f1e2ca9
PZ
1157 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158 HRTIMER_MODE_REL, 0);
31656519 1159}
b328ca18 1160
006c75f1 1161static inline void init_hrtick(void)
8f4d37ec 1162{
8f4d37ec 1163}
31656519 1164#endif /* CONFIG_SMP */
8f4d37ec 1165
31656519 1166static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1167{
31656519
PZ
1168#ifdef CONFIG_SMP
1169 rq->hrtick_csd_pending = 0;
8f4d37ec 1170
31656519
PZ
1171 rq->hrtick_csd.flags = 0;
1172 rq->hrtick_csd.func = __hrtick_start;
1173 rq->hrtick_csd.info = rq;
1174#endif
8f4d37ec 1175
31656519
PZ
1176 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 rq->hrtick_timer.function = hrtick;
8f4d37ec 1178}
006c75f1 1179#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1180static inline void hrtick_clear(struct rq *rq)
1181{
1182}
1183
8f4d37ec
PZ
1184static inline void init_rq_hrtick(struct rq *rq)
1185{
1186}
1187
b328ca18
PZ
1188static inline void init_hrtick(void)
1189{
1190}
006c75f1 1191#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1192
c24d20db
IM
1193/*
1194 * resched_task - mark a task 'to be rescheduled now'.
1195 *
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1198 * the target CPU.
1199 */
1200#ifdef CONFIG_SMP
1201
1202#ifndef tsk_is_polling
1203#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1204#endif
1205
31656519 1206static void resched_task(struct task_struct *p)
c24d20db
IM
1207{
1208 int cpu;
1209
1210 assert_spin_locked(&task_rq(p)->lock);
1211
5ed0cec0 1212 if (test_tsk_need_resched(p))
c24d20db
IM
1213 return;
1214
5ed0cec0 1215 set_tsk_need_resched(p);
c24d20db
IM
1216
1217 cpu = task_cpu(p);
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /* NEED_RESCHED must be visible before we test polling */
1222 smp_mb();
1223 if (!tsk_is_polling(p))
1224 smp_send_reschedule(cpu);
1225}
1226
1227static void resched_cpu(int cpu)
1228{
1229 struct rq *rq = cpu_rq(cpu);
1230 unsigned long flags;
1231
1232 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 return;
1234 resched_task(cpu_curr(cpu));
1235 spin_unlock_irqrestore(&rq->lock, flags);
1236}
06d8308c
TG
1237
1238#ifdef CONFIG_NO_HZ
1239/*
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1248 */
1249void wake_up_idle_cpu(int cpu)
1250{
1251 struct rq *rq = cpu_rq(cpu);
1252
1253 if (cpu == smp_processor_id())
1254 return;
1255
1256 /*
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1262 */
1263 if (rq->curr != rq->idle)
1264 return;
1265
1266 /*
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1270 */
5ed0cec0 1271 set_tsk_need_resched(rq->idle);
06d8308c
TG
1272
1273 /* NEED_RESCHED must be visible before we test polling */
1274 smp_mb();
1275 if (!tsk_is_polling(rq->idle))
1276 smp_send_reschedule(cpu);
1277}
6d6bc0ad 1278#endif /* CONFIG_NO_HZ */
06d8308c 1279
6d6bc0ad 1280#else /* !CONFIG_SMP */
31656519 1281static void resched_task(struct task_struct *p)
c24d20db
IM
1282{
1283 assert_spin_locked(&task_rq(p)->lock);
31656519 1284 set_tsk_need_resched(p);
c24d20db 1285}
6d6bc0ad 1286#endif /* CONFIG_SMP */
c24d20db 1287
45bf76df
IM
1288#if BITS_PER_LONG == 32
1289# define WMULT_CONST (~0UL)
1290#else
1291# define WMULT_CONST (1UL << 32)
1292#endif
1293
1294#define WMULT_SHIFT 32
1295
194081eb
IM
1296/*
1297 * Shift right and round:
1298 */
cf2ab469 1299#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1300
a7be37ac
PZ
1301/*
1302 * delta *= weight / lw
1303 */
cb1c4fc9 1304static unsigned long
45bf76df
IM
1305calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307{
1308 u64 tmp;
1309
7a232e03
LJ
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
45bf76df
IM
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
194081eb 1322 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1324 WMULT_SHIFT/2);
1325 else
cf2ab469 1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1327
ecf691da 1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1332{
1333 lw->weight += inc;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
1091985b 1337static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1338{
1339 lw->weight -= dec;
e89996ae 1340 lw->inv_weight = 0;
45bf76df
IM
1341}
1342
2dd73a4f
PW
1343/*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
cce7ade8
PZ
1352#define WEIGHT_IDLEPRIO 3
1353#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1354
1355/*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
dd41f596
IM
1366 */
1367static const int prio_to_weight[40] = {
254753dc
IM
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1376};
1377
5714d2de
IM
1378/*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
dd41f596 1385static const u32 prio_to_wmult[40] = {
254753dc
IM
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1394};
2dd73a4f 1395
dd41f596
IM
1396static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397
1398/*
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1402 */
1403struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1407};
1408
e1d1484f
PW
1409#ifdef CONFIG_SMP
1410static unsigned long
1411balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1415
1416static int
1417iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
e1d1484f 1420#endif
dd41f596 1421
ef12fefa
BR
1422/* Time spent by the tasks of the cpu accounting group executing in ... */
1423enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426
1427 CPUACCT_STAT_NSTATS,
1428};
1429
d842de87
SV
1430#ifdef CONFIG_CGROUP_CPUACCT
1431static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1432static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1434#else
1435static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1436static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1438#endif
1439
18d95a28
PZ
1440static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441{
1442 update_load_add(&rq->load, load);
1443}
1444
1445static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446{
1447 update_load_sub(&rq->load, load);
1448}
1449
7940ca36 1450#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1451typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1452
1453/*
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1456 */
eb755805 1457static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1458{
1459 struct task_group *parent, *child;
eb755805 1460 int ret;
c09595f6
PZ
1461
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464down:
eb755805
PZ
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
c09595f6
PZ
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1471
1472up:
1473 continue;
1474 }
eb755805
PZ
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
c09595f6
PZ
1478
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
eb755805 1483out_unlock:
c09595f6 1484 rcu_read_unlock();
eb755805
PZ
1485
1486 return ret;
c09595f6
PZ
1487}
1488
eb755805
PZ
1489static int tg_nop(struct task_group *tg, void *data)
1490{
1491 return 0;
c09595f6 1492}
eb755805
PZ
1493#endif
1494
1495#ifdef CONFIG_SMP
1496static unsigned long source_load(int cpu, int type);
1497static unsigned long target_load(int cpu, int type);
1498static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1499
1500static unsigned long cpu_avg_load_per_task(int cpu)
1501{
1502 struct rq *rq = cpu_rq(cpu);
af6d596f 1503 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1504
4cd42620
SR
1505 if (nr_running)
1506 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1507 else
1508 rq->avg_load_per_task = 0;
eb755805
PZ
1509
1510 return rq->avg_load_per_task;
1511}
1512
1513#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1514
c09595f6
PZ
1515static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1516
1517/*
1518 * Calculate and set the cpu's group shares.
1519 */
1520static void
ffda12a1
PZ
1521update_group_shares_cpu(struct task_group *tg, int cpu,
1522 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1523{
c09595f6
PZ
1524 unsigned long shares;
1525 unsigned long rq_weight;
1526
c8cba857 1527 if (!tg->se[cpu])
c09595f6
PZ
1528 return;
1529
ec4e0e2f 1530 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1531
c09595f6
PZ
1532 /*
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1535 * \Sum rq_weight
1536 *
1537 */
ec4e0e2f 1538 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1539 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1540
ffda12a1
PZ
1541 if (abs(shares - tg->se[cpu]->load.weight) >
1542 sysctl_sched_shares_thresh) {
1543 struct rq *rq = cpu_rq(cpu);
1544 unsigned long flags;
c09595f6 1545
ffda12a1 1546 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1547 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1548
ffda12a1
PZ
1549 __set_se_shares(tg->se[cpu], shares);
1550 spin_unlock_irqrestore(&rq->lock, flags);
1551 }
18d95a28 1552}
c09595f6
PZ
1553
1554/*
c8cba857
PZ
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
c09595f6 1558 */
eb755805 1559static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1560{
ec4e0e2f 1561 unsigned long weight, rq_weight = 0;
c8cba857 1562 unsigned long shares = 0;
eb755805 1563 struct sched_domain *sd = data;
c8cba857 1564 int i;
c09595f6 1565
758b2cdc 1566 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1567 /*
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1571 */
1572 weight = tg->cfs_rq[i]->load.weight;
1573 if (!weight)
1574 weight = NICE_0_LOAD;
1575
1576 tg->cfs_rq[i]->rq_weight = weight;
1577 rq_weight += weight;
c8cba857 1578 shares += tg->cfs_rq[i]->shares;
c09595f6 1579 }
c09595f6 1580
c8cba857
PZ
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1583
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
c09595f6 1586
758b2cdc 1587 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1588 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1589
1590 return 0;
c09595f6
PZ
1591}
1592
1593/*
c8cba857
PZ
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
c09595f6 1597 */
eb755805 1598static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1599{
c8cba857 1600 unsigned long load;
eb755805 1601 long cpu = (long)data;
c09595f6 1602
c8cba857
PZ
1603 if (!tg->parent) {
1604 load = cpu_rq(cpu)->load.weight;
1605 } else {
1606 load = tg->parent->cfs_rq[cpu]->h_load;
1607 load *= tg->cfs_rq[cpu]->shares;
1608 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1609 }
c09595f6 1610
c8cba857 1611 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1612
eb755805 1613 return 0;
c09595f6
PZ
1614}
1615
c8cba857 1616static void update_shares(struct sched_domain *sd)
4d8d595d 1617{
2398f2c6
PZ
1618 u64 now = cpu_clock(raw_smp_processor_id());
1619 s64 elapsed = now - sd->last_update;
1620
1621 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1622 sd->last_update = now;
eb755805 1623 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1624 }
4d8d595d
PZ
1625}
1626
3e5459b4
PZ
1627static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628{
1629 spin_unlock(&rq->lock);
1630 update_shares(sd);
1631 spin_lock(&rq->lock);
1632}
1633
eb755805 1634static void update_h_load(long cpu)
c09595f6 1635{
eb755805 1636 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1637}
1638
c09595f6
PZ
1639#else
1640
c8cba857 1641static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1642{
1643}
1644
3e5459b4
PZ
1645static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1646{
1647}
1648
18d95a28
PZ
1649#endif
1650
8f45e2b5
GH
1651#ifdef CONFIG_PREEMPT
1652
70574a99 1653/*
8f45e2b5
GH
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
70574a99 1660 */
8f45e2b5
GH
1661static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock)
1665{
1666 spin_unlock(&this_rq->lock);
1667 double_rq_lock(this_rq, busiest);
1668
1669 return 1;
1670}
1671
1672#else
1673/*
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1679 */
1680static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1681 __releases(this_rq->lock)
1682 __acquires(busiest->lock)
1683 __acquires(this_rq->lock)
1684{
1685 int ret = 0;
1686
70574a99
AD
1687 if (unlikely(!spin_trylock(&busiest->lock))) {
1688 if (busiest < this_rq) {
1689 spin_unlock(&this_rq->lock);
1690 spin_lock(&busiest->lock);
1691 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1692 ret = 1;
1693 } else
1694 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1695 }
1696 return ret;
1697}
1698
8f45e2b5
GH
1699#endif /* CONFIG_PREEMPT */
1700
1701/*
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1703 */
1704static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1705{
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq->lock);
1709 BUG_ON(1);
1710 }
1711
1712 return _double_lock_balance(this_rq, busiest);
1713}
1714
70574a99
AD
1715static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1716 __releases(busiest->lock)
1717{
1718 spin_unlock(&busiest->lock);
1719 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1720}
18d95a28
PZ
1721#endif
1722
30432094 1723#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1724static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1725{
30432094 1726#ifdef CONFIG_SMP
34e83e85
IM
1727 cfs_rq->shares = shares;
1728#endif
1729}
30432094 1730#endif
e7693a36 1731
dce48a84
TG
1732static void calc_load_account_active(struct rq *this_rq);
1733
dd41f596 1734#include "sched_stats.h"
dd41f596 1735#include "sched_idletask.c"
5522d5d5
IM
1736#include "sched_fair.c"
1737#include "sched_rt.c"
dd41f596
IM
1738#ifdef CONFIG_SCHED_DEBUG
1739# include "sched_debug.c"
1740#endif
1741
1742#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1743#define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next)
dd41f596 1745
c09595f6 1746static void inc_nr_running(struct rq *rq)
9c217245
IM
1747{
1748 rq->nr_running++;
9c217245
IM
1749}
1750
c09595f6 1751static void dec_nr_running(struct rq *rq)
9c217245
IM
1752{
1753 rq->nr_running--;
9c217245
IM
1754}
1755
45bf76df
IM
1756static void set_load_weight(struct task_struct *p)
1757{
1758 if (task_has_rt_policy(p)) {
dd41f596
IM
1759 p->se.load.weight = prio_to_weight[0] * 2;
1760 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1761 return;
1762 }
45bf76df 1763
dd41f596
IM
1764 /*
1765 * SCHED_IDLE tasks get minimal weight:
1766 */
1767 if (p->policy == SCHED_IDLE) {
1768 p->se.load.weight = WEIGHT_IDLEPRIO;
1769 p->se.load.inv_weight = WMULT_IDLEPRIO;
1770 return;
1771 }
71f8bd46 1772
dd41f596
IM
1773 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1774 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1775}
1776
2087a1ad
GH
1777static void update_avg(u64 *avg, u64 sample)
1778{
1779 s64 diff = sample - *avg;
1780 *avg += diff >> 3;
1781}
1782
8159f87e 1783static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1784{
831451ac
PZ
1785 if (wakeup)
1786 p->se.start_runtime = p->se.sum_exec_runtime;
1787
dd41f596 1788 sched_info_queued(p);
fd390f6a 1789 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1790 p->se.on_rq = 1;
71f8bd46
IM
1791}
1792
69be72c1 1793static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1794{
831451ac
PZ
1795 if (sleep) {
1796 if (p->se.last_wakeup) {
1797 update_avg(&p->se.avg_overlap,
1798 p->se.sum_exec_runtime - p->se.last_wakeup);
1799 p->se.last_wakeup = 0;
1800 } else {
1801 update_avg(&p->se.avg_wakeup,
1802 sysctl_sched_wakeup_granularity);
1803 }
2087a1ad
GH
1804 }
1805
46ac22ba 1806 sched_info_dequeued(p);
f02231e5 1807 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1808 p->se.on_rq = 0;
71f8bd46
IM
1809}
1810
14531189 1811/*
dd41f596 1812 * __normal_prio - return the priority that is based on the static prio
14531189 1813 */
14531189
IM
1814static inline int __normal_prio(struct task_struct *p)
1815{
dd41f596 1816 return p->static_prio;
14531189
IM
1817}
1818
b29739f9
IM
1819/*
1820 * Calculate the expected normal priority: i.e. priority
1821 * without taking RT-inheritance into account. Might be
1822 * boosted by interactivity modifiers. Changes upon fork,
1823 * setprio syscalls, and whenever the interactivity
1824 * estimator recalculates.
1825 */
36c8b586 1826static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1827{
1828 int prio;
1829
e05606d3 1830 if (task_has_rt_policy(p))
b29739f9
IM
1831 prio = MAX_RT_PRIO-1 - p->rt_priority;
1832 else
1833 prio = __normal_prio(p);
1834 return prio;
1835}
1836
1837/*
1838 * Calculate the current priority, i.e. the priority
1839 * taken into account by the scheduler. This value might
1840 * be boosted by RT tasks, or might be boosted by
1841 * interactivity modifiers. Will be RT if the task got
1842 * RT-boosted. If not then it returns p->normal_prio.
1843 */
36c8b586 1844static int effective_prio(struct task_struct *p)
b29739f9
IM
1845{
1846 p->normal_prio = normal_prio(p);
1847 /*
1848 * If we are RT tasks or we were boosted to RT priority,
1849 * keep the priority unchanged. Otherwise, update priority
1850 * to the normal priority:
1851 */
1852 if (!rt_prio(p->prio))
1853 return p->normal_prio;
1854 return p->prio;
1855}
1856
1da177e4 1857/*
dd41f596 1858 * activate_task - move a task to the runqueue.
1da177e4 1859 */
dd41f596 1860static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1861{
d9514f6c 1862 if (task_contributes_to_load(p))
dd41f596 1863 rq->nr_uninterruptible--;
1da177e4 1864
8159f87e 1865 enqueue_task(rq, p, wakeup);
c09595f6 1866 inc_nr_running(rq);
1da177e4
LT
1867}
1868
1da177e4
LT
1869/*
1870 * deactivate_task - remove a task from the runqueue.
1871 */
2e1cb74a 1872static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1873{
d9514f6c 1874 if (task_contributes_to_load(p))
dd41f596
IM
1875 rq->nr_uninterruptible++;
1876
69be72c1 1877 dequeue_task(rq, p, sleep);
c09595f6 1878 dec_nr_running(rq);
1da177e4
LT
1879}
1880
1da177e4
LT
1881/**
1882 * task_curr - is this task currently executing on a CPU?
1883 * @p: the task in question.
1884 */
36c8b586 1885inline int task_curr(const struct task_struct *p)
1da177e4
LT
1886{
1887 return cpu_curr(task_cpu(p)) == p;
1888}
1889
dd41f596
IM
1890static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1891{
6f505b16 1892 set_task_rq(p, cpu);
dd41f596 1893#ifdef CONFIG_SMP
ce96b5ac
DA
1894 /*
1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896 * successfuly executed on another CPU. We must ensure that updates of
1897 * per-task data have been completed by this moment.
1898 */
1899 smp_wmb();
dd41f596 1900 task_thread_info(p)->cpu = cpu;
dd41f596 1901#endif
2dd73a4f
PW
1902}
1903
cb469845
SR
1904static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1905 const struct sched_class *prev_class,
1906 int oldprio, int running)
1907{
1908 if (prev_class != p->sched_class) {
1909 if (prev_class->switched_from)
1910 prev_class->switched_from(rq, p, running);
1911 p->sched_class->switched_to(rq, p, running);
1912 } else
1913 p->sched_class->prio_changed(rq, p, oldprio, running);
1914}
1915
1da177e4 1916#ifdef CONFIG_SMP
c65cc870 1917
e958b360
TG
1918/* Used instead of source_load when we know the type == 0 */
1919static unsigned long weighted_cpuload(const int cpu)
1920{
1921 return cpu_rq(cpu)->load.weight;
1922}
1923
cc367732
IM
1924/*
1925 * Is this task likely cache-hot:
1926 */
e7693a36 1927static int
cc367732
IM
1928task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1929{
1930 s64 delta;
1931
f540a608
IM
1932 /*
1933 * Buddy candidates are cache hot:
1934 */
4793241b
PZ
1935 if (sched_feat(CACHE_HOT_BUDDY) &&
1936 (&p->se == cfs_rq_of(&p->se)->next ||
1937 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1938 return 1;
1939
cc367732
IM
1940 if (p->sched_class != &fair_sched_class)
1941 return 0;
1942
6bc1665b
IM
1943 if (sysctl_sched_migration_cost == -1)
1944 return 1;
1945 if (sysctl_sched_migration_cost == 0)
1946 return 0;
1947
cc367732
IM
1948 delta = now - p->se.exec_start;
1949
1950 return delta < (s64)sysctl_sched_migration_cost;
1951}
1952
1953
dd41f596 1954void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1955{
dd41f596
IM
1956 int old_cpu = task_cpu(p);
1957 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1958 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1959 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1960 u64 clock_offset;
dd41f596
IM
1961
1962 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1963
de1d7286 1964 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1965
6cfb0d5d
IM
1966#ifdef CONFIG_SCHEDSTATS
1967 if (p->se.wait_start)
1968 p->se.wait_start -= clock_offset;
dd41f596
IM
1969 if (p->se.sleep_start)
1970 p->se.sleep_start -= clock_offset;
1971 if (p->se.block_start)
1972 p->se.block_start -= clock_offset;
6c594c21 1973#endif
cc367732 1974 if (old_cpu != new_cpu) {
6c594c21 1975 p->se.nr_migrations++;
23a185ca 1976 new_rq->nr_migrations_in++;
6c594c21 1977#ifdef CONFIG_SCHEDSTATS
cc367732
IM
1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 1980#endif
3f731ca6 1981 perf_counter_task_migration(p, new_cpu);
6c594c21 1982 }
2830cf8c
SV
1983 p->se.vruntime -= old_cfsrq->min_vruntime -
1984 new_cfsrq->min_vruntime;
dd41f596
IM
1985
1986 __set_task_cpu(p, new_cpu);
c65cc870
IM
1987}
1988
70b97a7f 1989struct migration_req {
1da177e4 1990 struct list_head list;
1da177e4 1991
36c8b586 1992 struct task_struct *task;
1da177e4
LT
1993 int dest_cpu;
1994
1da177e4 1995 struct completion done;
70b97a7f 1996};
1da177e4
LT
1997
1998/*
1999 * The task's runqueue lock must be held.
2000 * Returns true if you have to wait for migration thread.
2001 */
36c8b586 2002static int
70b97a7f 2003migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2004{
70b97a7f 2005 struct rq *rq = task_rq(p);
1da177e4
LT
2006
2007 /*
2008 * If the task is not on a runqueue (and not running), then
2009 * it is sufficient to simply update the task's cpu field.
2010 */
dd41f596 2011 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2012 set_task_cpu(p, dest_cpu);
2013 return 0;
2014 }
2015
2016 init_completion(&req->done);
1da177e4
LT
2017 req->task = p;
2018 req->dest_cpu = dest_cpu;
2019 list_add(&req->list, &rq->migration_queue);
48f24c4d 2020
1da177e4
LT
2021 return 1;
2022}
2023
a26b89f0
MM
2024/*
2025 * wait_task_context_switch - wait for a thread to complete at least one
2026 * context switch.
2027 *
2028 * @p must not be current.
2029 */
2030void wait_task_context_switch(struct task_struct *p)
2031{
2032 unsigned long nvcsw, nivcsw, flags;
2033 int running;
2034 struct rq *rq;
2035
2036 nvcsw = p->nvcsw;
2037 nivcsw = p->nivcsw;
2038 for (;;) {
2039 /*
2040 * The runqueue is assigned before the actual context
2041 * switch. We need to take the runqueue lock.
2042 *
2043 * We could check initially without the lock but it is
2044 * very likely that we need to take the lock in every
2045 * iteration.
2046 */
2047 rq = task_rq_lock(p, &flags);
2048 running = task_running(rq, p);
2049 task_rq_unlock(rq, &flags);
2050
2051 if (likely(!running))
2052 break;
2053 /*
2054 * The switch count is incremented before the actual
2055 * context switch. We thus wait for two switches to be
2056 * sure at least one completed.
2057 */
2058 if ((p->nvcsw - nvcsw) > 1)
2059 break;
2060 if ((p->nivcsw - nivcsw) > 1)
2061 break;
2062
2063 cpu_relax();
2064 }
2065}
2066
1da177e4
LT
2067/*
2068 * wait_task_inactive - wait for a thread to unschedule.
2069 *
85ba2d86
RM
2070 * If @match_state is nonzero, it's the @p->state value just checked and
2071 * not expected to change. If it changes, i.e. @p might have woken up,
2072 * then return zero. When we succeed in waiting for @p to be off its CPU,
2073 * we return a positive number (its total switch count). If a second call
2074 * a short while later returns the same number, the caller can be sure that
2075 * @p has remained unscheduled the whole time.
2076 *
1da177e4
LT
2077 * The caller must ensure that the task *will* unschedule sometime soon,
2078 * else this function might spin for a *long* time. This function can't
2079 * be called with interrupts off, or it may introduce deadlock with
2080 * smp_call_function() if an IPI is sent by the same process we are
2081 * waiting to become inactive.
2082 */
85ba2d86 2083unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2084{
2085 unsigned long flags;
dd41f596 2086 int running, on_rq;
85ba2d86 2087 unsigned long ncsw;
70b97a7f 2088 struct rq *rq;
1da177e4 2089
3a5c359a
AK
2090 for (;;) {
2091 /*
2092 * We do the initial early heuristics without holding
2093 * any task-queue locks at all. We'll only try to get
2094 * the runqueue lock when things look like they will
2095 * work out!
2096 */
2097 rq = task_rq(p);
fa490cfd 2098
3a5c359a
AK
2099 /*
2100 * If the task is actively running on another CPU
2101 * still, just relax and busy-wait without holding
2102 * any locks.
2103 *
2104 * NOTE! Since we don't hold any locks, it's not
2105 * even sure that "rq" stays as the right runqueue!
2106 * But we don't care, since "task_running()" will
2107 * return false if the runqueue has changed and p
2108 * is actually now running somewhere else!
2109 */
85ba2d86
RM
2110 while (task_running(rq, p)) {
2111 if (match_state && unlikely(p->state != match_state))
2112 return 0;
3a5c359a 2113 cpu_relax();
85ba2d86 2114 }
fa490cfd 2115
3a5c359a
AK
2116 /*
2117 * Ok, time to look more closely! We need the rq
2118 * lock now, to be *sure*. If we're wrong, we'll
2119 * just go back and repeat.
2120 */
2121 rq = task_rq_lock(p, &flags);
0a16b607 2122 trace_sched_wait_task(rq, p);
3a5c359a
AK
2123 running = task_running(rq, p);
2124 on_rq = p->se.on_rq;
85ba2d86 2125 ncsw = 0;
f31e11d8 2126 if (!match_state || p->state == match_state)
93dcf55f 2127 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2128 task_rq_unlock(rq, &flags);
fa490cfd 2129
85ba2d86
RM
2130 /*
2131 * If it changed from the expected state, bail out now.
2132 */
2133 if (unlikely(!ncsw))
2134 break;
2135
3a5c359a
AK
2136 /*
2137 * Was it really running after all now that we
2138 * checked with the proper locks actually held?
2139 *
2140 * Oops. Go back and try again..
2141 */
2142 if (unlikely(running)) {
2143 cpu_relax();
2144 continue;
2145 }
fa490cfd 2146
3a5c359a
AK
2147 /*
2148 * It's not enough that it's not actively running,
2149 * it must be off the runqueue _entirely_, and not
2150 * preempted!
2151 *
80dd99b3 2152 * So if it was still runnable (but just not actively
3a5c359a
AK
2153 * running right now), it's preempted, and we should
2154 * yield - it could be a while.
2155 */
2156 if (unlikely(on_rq)) {
2157 schedule_timeout_uninterruptible(1);
2158 continue;
2159 }
fa490cfd 2160
3a5c359a
AK
2161 /*
2162 * Ahh, all good. It wasn't running, and it wasn't
2163 * runnable, which means that it will never become
2164 * running in the future either. We're all done!
2165 */
2166 break;
2167 }
85ba2d86
RM
2168
2169 return ncsw;
1da177e4
LT
2170}
2171
2172/***
2173 * kick_process - kick a running thread to enter/exit the kernel
2174 * @p: the to-be-kicked thread
2175 *
2176 * Cause a process which is running on another CPU to enter
2177 * kernel-mode, without any delay. (to get signals handled.)
2178 *
2179 * NOTE: this function doesnt have to take the runqueue lock,
2180 * because all it wants to ensure is that the remote task enters
2181 * the kernel. If the IPI races and the task has been migrated
2182 * to another CPU then no harm is done and the purpose has been
2183 * achieved as well.
2184 */
36c8b586 2185void kick_process(struct task_struct *p)
1da177e4
LT
2186{
2187 int cpu;
2188
2189 preempt_disable();
2190 cpu = task_cpu(p);
2191 if ((cpu != smp_processor_id()) && task_curr(p))
2192 smp_send_reschedule(cpu);
2193 preempt_enable();
2194}
b43e3521 2195EXPORT_SYMBOL_GPL(kick_process);
1da177e4
LT
2196
2197/*
2dd73a4f
PW
2198 * Return a low guess at the load of a migration-source cpu weighted
2199 * according to the scheduling class and "nice" value.
1da177e4
LT
2200 *
2201 * We want to under-estimate the load of migration sources, to
2202 * balance conservatively.
2203 */
a9957449 2204static unsigned long source_load(int cpu, int type)
1da177e4 2205{
70b97a7f 2206 struct rq *rq = cpu_rq(cpu);
dd41f596 2207 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2208
93b75217 2209 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2210 return total;
b910472d 2211
dd41f596 2212 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2213}
2214
2215/*
2dd73a4f
PW
2216 * Return a high guess at the load of a migration-target cpu weighted
2217 * according to the scheduling class and "nice" value.
1da177e4 2218 */
a9957449 2219static unsigned long target_load(int cpu, int type)
1da177e4 2220{
70b97a7f 2221 struct rq *rq = cpu_rq(cpu);
dd41f596 2222 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2223
93b75217 2224 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2225 return total;
3b0bd9bc 2226
dd41f596 2227 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2228}
2229
147cbb4b
NP
2230/*
2231 * find_idlest_group finds and returns the least busy CPU group within the
2232 * domain.
2233 */
2234static struct sched_group *
2235find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2236{
2237 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2238 unsigned long min_load = ULONG_MAX, this_load = 0;
2239 int load_idx = sd->forkexec_idx;
2240 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2241
2242 do {
2243 unsigned long load, avg_load;
2244 int local_group;
2245 int i;
2246
da5a5522 2247 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2248 if (!cpumask_intersects(sched_group_cpus(group),
2249 &p->cpus_allowed))
3a5c359a 2250 continue;
da5a5522 2251
758b2cdc
RR
2252 local_group = cpumask_test_cpu(this_cpu,
2253 sched_group_cpus(group));
147cbb4b
NP
2254
2255 /* Tally up the load of all CPUs in the group */
2256 avg_load = 0;
2257
758b2cdc 2258 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2259 /* Bias balancing toward cpus of our domain */
2260 if (local_group)
2261 load = source_load(i, load_idx);
2262 else
2263 load = target_load(i, load_idx);
2264
2265 avg_load += load;
2266 }
2267
2268 /* Adjust by relative CPU power of the group */
5517d86b
ED
2269 avg_load = sg_div_cpu_power(group,
2270 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2271
2272 if (local_group) {
2273 this_load = avg_load;
2274 this = group;
2275 } else if (avg_load < min_load) {
2276 min_load = avg_load;
2277 idlest = group;
2278 }
3a5c359a 2279 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2280
2281 if (!idlest || 100*this_load < imbalance*min_load)
2282 return NULL;
2283 return idlest;
2284}
2285
2286/*
0feaece9 2287 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2288 */
95cdf3b7 2289static int
758b2cdc 2290find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2291{
2292 unsigned long load, min_load = ULONG_MAX;
2293 int idlest = -1;
2294 int i;
2295
da5a5522 2296 /* Traverse only the allowed CPUs */
758b2cdc 2297 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2298 load = weighted_cpuload(i);
147cbb4b
NP
2299
2300 if (load < min_load || (load == min_load && i == this_cpu)) {
2301 min_load = load;
2302 idlest = i;
2303 }
2304 }
2305
2306 return idlest;
2307}
2308
476d139c
NP
2309/*
2310 * sched_balance_self: balance the current task (running on cpu) in domains
2311 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2312 * SD_BALANCE_EXEC.
2313 *
2314 * Balance, ie. select the least loaded group.
2315 *
2316 * Returns the target CPU number, or the same CPU if no balancing is needed.
2317 *
2318 * preempt must be disabled.
2319 */
2320static int sched_balance_self(int cpu, int flag)
2321{
2322 struct task_struct *t = current;
2323 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2324
c96d145e 2325 for_each_domain(cpu, tmp) {
9761eea8
IM
2326 /*
2327 * If power savings logic is enabled for a domain, stop there.
2328 */
5c45bf27
SS
2329 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2330 break;
476d139c
NP
2331 if (tmp->flags & flag)
2332 sd = tmp;
c96d145e 2333 }
476d139c 2334
039a1c41
PZ
2335 if (sd)
2336 update_shares(sd);
2337
476d139c 2338 while (sd) {
476d139c 2339 struct sched_group *group;
1a848870
SS
2340 int new_cpu, weight;
2341
2342 if (!(sd->flags & flag)) {
2343 sd = sd->child;
2344 continue;
2345 }
476d139c 2346
476d139c 2347 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2348 if (!group) {
2349 sd = sd->child;
2350 continue;
2351 }
476d139c 2352
758b2cdc 2353 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2354 if (new_cpu == -1 || new_cpu == cpu) {
2355 /* Now try balancing at a lower domain level of cpu */
2356 sd = sd->child;
2357 continue;
2358 }
476d139c 2359
1a848870 2360 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2361 cpu = new_cpu;
758b2cdc 2362 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2363 sd = NULL;
476d139c 2364 for_each_domain(cpu, tmp) {
758b2cdc 2365 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2366 break;
2367 if (tmp->flags & flag)
2368 sd = tmp;
2369 }
2370 /* while loop will break here if sd == NULL */
2371 }
2372
2373 return cpu;
2374}
2375
2376#endif /* CONFIG_SMP */
1da177e4 2377
0793a61d
TG
2378/**
2379 * task_oncpu_function_call - call a function on the cpu on which a task runs
2380 * @p: the task to evaluate
2381 * @func: the function to be called
2382 * @info: the function call argument
2383 *
2384 * Calls the function @func when the task is currently running. This might
2385 * be on the current CPU, which just calls the function directly
2386 */
2387void task_oncpu_function_call(struct task_struct *p,
2388 void (*func) (void *info), void *info)
2389{
2390 int cpu;
2391
2392 preempt_disable();
2393 cpu = task_cpu(p);
2394 if (task_curr(p))
2395 smp_call_function_single(cpu, func, info, 1);
2396 preempt_enable();
2397}
2398
1da177e4
LT
2399/***
2400 * try_to_wake_up - wake up a thread
2401 * @p: the to-be-woken-up thread
2402 * @state: the mask of task states that can be woken
2403 * @sync: do a synchronous wakeup?
2404 *
2405 * Put it on the run-queue if it's not already there. The "current"
2406 * thread is always on the run-queue (except when the actual
2407 * re-schedule is in progress), and as such you're allowed to do
2408 * the simpler "current->state = TASK_RUNNING" to mark yourself
2409 * runnable without the overhead of this.
2410 *
2411 * returns failure only if the task is already active.
2412 */
36c8b586 2413static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2414{
cc367732 2415 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2416 unsigned long flags;
2417 long old_state;
70b97a7f 2418 struct rq *rq;
1da177e4 2419
b85d0667
IM
2420 if (!sched_feat(SYNC_WAKEUPS))
2421 sync = 0;
2422
2398f2c6 2423#ifdef CONFIG_SMP
57310a98 2424 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2425 struct sched_domain *sd;
2426
2427 this_cpu = raw_smp_processor_id();
2428 cpu = task_cpu(p);
2429
2430 for_each_domain(this_cpu, sd) {
758b2cdc 2431 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2432 update_shares(sd);
2433 break;
2434 }
2435 }
2436 }
2437#endif
2438
04e2f174 2439 smp_wmb();
1da177e4 2440 rq = task_rq_lock(p, &flags);
03e89e45 2441 update_rq_clock(rq);
1da177e4
LT
2442 old_state = p->state;
2443 if (!(old_state & state))
2444 goto out;
2445
dd41f596 2446 if (p->se.on_rq)
1da177e4
LT
2447 goto out_running;
2448
2449 cpu = task_cpu(p);
cc367732 2450 orig_cpu = cpu;
1da177e4
LT
2451 this_cpu = smp_processor_id();
2452
2453#ifdef CONFIG_SMP
2454 if (unlikely(task_running(rq, p)))
2455 goto out_activate;
2456
5d2f5a61
DA
2457 cpu = p->sched_class->select_task_rq(p, sync);
2458 if (cpu != orig_cpu) {
2459 set_task_cpu(p, cpu);
1da177e4
LT
2460 task_rq_unlock(rq, &flags);
2461 /* might preempt at this point */
2462 rq = task_rq_lock(p, &flags);
2463 old_state = p->state;
2464 if (!(old_state & state))
2465 goto out;
dd41f596 2466 if (p->se.on_rq)
1da177e4
LT
2467 goto out_running;
2468
2469 this_cpu = smp_processor_id();
2470 cpu = task_cpu(p);
2471 }
2472
e7693a36
GH
2473#ifdef CONFIG_SCHEDSTATS
2474 schedstat_inc(rq, ttwu_count);
2475 if (cpu == this_cpu)
2476 schedstat_inc(rq, ttwu_local);
2477 else {
2478 struct sched_domain *sd;
2479 for_each_domain(this_cpu, sd) {
758b2cdc 2480 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2481 schedstat_inc(sd, ttwu_wake_remote);
2482 break;
2483 }
2484 }
2485 }
6d6bc0ad 2486#endif /* CONFIG_SCHEDSTATS */
e7693a36 2487
1da177e4
LT
2488out_activate:
2489#endif /* CONFIG_SMP */
cc367732
IM
2490 schedstat_inc(p, se.nr_wakeups);
2491 if (sync)
2492 schedstat_inc(p, se.nr_wakeups_sync);
2493 if (orig_cpu != cpu)
2494 schedstat_inc(p, se.nr_wakeups_migrate);
2495 if (cpu == this_cpu)
2496 schedstat_inc(p, se.nr_wakeups_local);
2497 else
2498 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2499 activate_task(rq, p, 1);
1da177e4
LT
2500 success = 1;
2501
831451ac
PZ
2502 /*
2503 * Only attribute actual wakeups done by this task.
2504 */
2505 if (!in_interrupt()) {
2506 struct sched_entity *se = &current->se;
2507 u64 sample = se->sum_exec_runtime;
2508
2509 if (se->last_wakeup)
2510 sample -= se->last_wakeup;
2511 else
2512 sample -= se->start_runtime;
2513 update_avg(&se->avg_wakeup, sample);
2514
2515 se->last_wakeup = se->sum_exec_runtime;
2516 }
2517
1da177e4 2518out_running:
468a15bb 2519 trace_sched_wakeup(rq, p, success);
15afe09b 2520 check_preempt_curr(rq, p, sync);
4ae7d5ce 2521
1da177e4 2522 p->state = TASK_RUNNING;
9a897c5a
SR
2523#ifdef CONFIG_SMP
2524 if (p->sched_class->task_wake_up)
2525 p->sched_class->task_wake_up(rq, p);
2526#endif
1da177e4
LT
2527out:
2528 task_rq_unlock(rq, &flags);
2529
2530 return success;
2531}
2532
50fa610a
DH
2533/**
2534 * wake_up_process - Wake up a specific process
2535 * @p: The process to be woken up.
2536 *
2537 * Attempt to wake up the nominated process and move it to the set of runnable
2538 * processes. Returns 1 if the process was woken up, 0 if it was already
2539 * running.
2540 *
2541 * It may be assumed that this function implies a write memory barrier before
2542 * changing the task state if and only if any tasks are woken up.
2543 */
7ad5b3a5 2544int wake_up_process(struct task_struct *p)
1da177e4 2545{
d9514f6c 2546 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2547}
1da177e4
LT
2548EXPORT_SYMBOL(wake_up_process);
2549
7ad5b3a5 2550int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2551{
2552 return try_to_wake_up(p, state, 0);
2553}
2554
1da177e4
LT
2555/*
2556 * Perform scheduler related setup for a newly forked process p.
2557 * p is forked by current.
dd41f596
IM
2558 *
2559 * __sched_fork() is basic setup used by init_idle() too:
2560 */
2561static void __sched_fork(struct task_struct *p)
2562{
dd41f596
IM
2563 p->se.exec_start = 0;
2564 p->se.sum_exec_runtime = 0;
f6cf891c 2565 p->se.prev_sum_exec_runtime = 0;
6c594c21 2566 p->se.nr_migrations = 0;
4ae7d5ce
IM
2567 p->se.last_wakeup = 0;
2568 p->se.avg_overlap = 0;
831451ac
PZ
2569 p->se.start_runtime = 0;
2570 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2571
2572#ifdef CONFIG_SCHEDSTATS
2573 p->se.wait_start = 0;
dd41f596
IM
2574 p->se.sum_sleep_runtime = 0;
2575 p->se.sleep_start = 0;
dd41f596
IM
2576 p->se.block_start = 0;
2577 p->se.sleep_max = 0;
2578 p->se.block_max = 0;
2579 p->se.exec_max = 0;
eba1ed4b 2580 p->se.slice_max = 0;
dd41f596 2581 p->se.wait_max = 0;
6cfb0d5d 2582#endif
476d139c 2583
fa717060 2584 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2585 p->se.on_rq = 0;
4a55bd5e 2586 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2587
e107be36
AK
2588#ifdef CONFIG_PREEMPT_NOTIFIERS
2589 INIT_HLIST_HEAD(&p->preempt_notifiers);
2590#endif
2591
1da177e4
LT
2592 /*
2593 * We mark the process as running here, but have not actually
2594 * inserted it onto the runqueue yet. This guarantees that
2595 * nobody will actually run it, and a signal or other external
2596 * event cannot wake it up and insert it on the runqueue either.
2597 */
2598 p->state = TASK_RUNNING;
dd41f596
IM
2599}
2600
2601/*
2602 * fork()/clone()-time setup:
2603 */
2604void sched_fork(struct task_struct *p, int clone_flags)
2605{
2606 int cpu = get_cpu();
2607
2608 __sched_fork(p);
2609
2610#ifdef CONFIG_SMP
2611 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2612#endif
02e4bac2 2613 set_task_cpu(p, cpu);
b29739f9
IM
2614
2615 /*
2616 * Make sure we do not leak PI boosting priority to the child:
2617 */
2618 p->prio = current->normal_prio;
2ddbf952
HS
2619 if (!rt_prio(p->prio))
2620 p->sched_class = &fair_sched_class;
b29739f9 2621
52f17b6c 2622#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2623 if (likely(sched_info_on()))
52f17b6c 2624 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2625#endif
d6077cb8 2626#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2627 p->oncpu = 0;
2628#endif
1da177e4 2629#ifdef CONFIG_PREEMPT
4866cde0 2630 /* Want to start with kernel preemption disabled. */
a1261f54 2631 task_thread_info(p)->preempt_count = 1;
1da177e4 2632#endif
917b627d
GH
2633 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2634
476d139c 2635 put_cpu();
1da177e4
LT
2636}
2637
2638/*
2639 * wake_up_new_task - wake up a newly created task for the first time.
2640 *
2641 * This function will do some initial scheduler statistics housekeeping
2642 * that must be done for every newly created context, then puts the task
2643 * on the runqueue and wakes it.
2644 */
7ad5b3a5 2645void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2646{
2647 unsigned long flags;
dd41f596 2648 struct rq *rq;
1da177e4
LT
2649
2650 rq = task_rq_lock(p, &flags);
147cbb4b 2651 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2652 update_rq_clock(rq);
1da177e4
LT
2653
2654 p->prio = effective_prio(p);
2655
b9dca1e0 2656 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2657 activate_task(rq, p, 0);
1da177e4 2658 } else {
1da177e4 2659 /*
dd41f596
IM
2660 * Let the scheduling class do new task startup
2661 * management (if any):
1da177e4 2662 */
ee0827d8 2663 p->sched_class->task_new(rq, p);
c09595f6 2664 inc_nr_running(rq);
1da177e4 2665 }
c71dd42d 2666 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2667 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2668#ifdef CONFIG_SMP
2669 if (p->sched_class->task_wake_up)
2670 p->sched_class->task_wake_up(rq, p);
2671#endif
dd41f596 2672 task_rq_unlock(rq, &flags);
1da177e4
LT
2673}
2674
e107be36
AK
2675#ifdef CONFIG_PREEMPT_NOTIFIERS
2676
2677/**
80dd99b3 2678 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2679 * @notifier: notifier struct to register
e107be36
AK
2680 */
2681void preempt_notifier_register(struct preempt_notifier *notifier)
2682{
2683 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2684}
2685EXPORT_SYMBOL_GPL(preempt_notifier_register);
2686
2687/**
2688 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2689 * @notifier: notifier struct to unregister
e107be36
AK
2690 *
2691 * This is safe to call from within a preemption notifier.
2692 */
2693void preempt_notifier_unregister(struct preempt_notifier *notifier)
2694{
2695 hlist_del(&notifier->link);
2696}
2697EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2698
2699static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2700{
2701 struct preempt_notifier *notifier;
2702 struct hlist_node *node;
2703
2704 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2705 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2706}
2707
2708static void
2709fire_sched_out_preempt_notifiers(struct task_struct *curr,
2710 struct task_struct *next)
2711{
2712 struct preempt_notifier *notifier;
2713 struct hlist_node *node;
2714
2715 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2716 notifier->ops->sched_out(notifier, next);
2717}
2718
6d6bc0ad 2719#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2720
2721static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2722{
2723}
2724
2725static void
2726fire_sched_out_preempt_notifiers(struct task_struct *curr,
2727 struct task_struct *next)
2728{
2729}
2730
6d6bc0ad 2731#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2732
4866cde0
NP
2733/**
2734 * prepare_task_switch - prepare to switch tasks
2735 * @rq: the runqueue preparing to switch
421cee29 2736 * @prev: the current task that is being switched out
4866cde0
NP
2737 * @next: the task we are going to switch to.
2738 *
2739 * This is called with the rq lock held and interrupts off. It must
2740 * be paired with a subsequent finish_task_switch after the context
2741 * switch.
2742 *
2743 * prepare_task_switch sets up locking and calls architecture specific
2744 * hooks.
2745 */
e107be36
AK
2746static inline void
2747prepare_task_switch(struct rq *rq, struct task_struct *prev,
2748 struct task_struct *next)
4866cde0 2749{
e107be36 2750 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2751 prepare_lock_switch(rq, next);
2752 prepare_arch_switch(next);
2753}
2754
1da177e4
LT
2755/**
2756 * finish_task_switch - clean up after a task-switch
344babaa 2757 * @rq: runqueue associated with task-switch
1da177e4
LT
2758 * @prev: the thread we just switched away from.
2759 *
4866cde0
NP
2760 * finish_task_switch must be called after the context switch, paired
2761 * with a prepare_task_switch call before the context switch.
2762 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2763 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2764 *
2765 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2766 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2767 * with the lock held can cause deadlocks; see schedule() for
2768 * details.)
2769 */
a9957449 2770static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2771 __releases(rq->lock)
2772{
1da177e4 2773 struct mm_struct *mm = rq->prev_mm;
55a101f8 2774 long prev_state;
967fc046
GH
2775#ifdef CONFIG_SMP
2776 int post_schedule = 0;
2777
2778 if (current->sched_class->needs_post_schedule)
2779 post_schedule = current->sched_class->needs_post_schedule(rq);
2780#endif
1da177e4
LT
2781
2782 rq->prev_mm = NULL;
2783
2784 /*
2785 * A task struct has one reference for the use as "current".
c394cc9f 2786 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2787 * schedule one last time. The schedule call will never return, and
2788 * the scheduled task must drop that reference.
c394cc9f 2789 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2790 * still held, otherwise prev could be scheduled on another cpu, die
2791 * there before we look at prev->state, and then the reference would
2792 * be dropped twice.
2793 * Manfred Spraul <manfred@colorfullife.com>
2794 */
55a101f8 2795 prev_state = prev->state;
4866cde0 2796 finish_arch_switch(prev);
0793a61d 2797 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2798 finish_lock_switch(rq, prev);
9a897c5a 2799#ifdef CONFIG_SMP
967fc046 2800 if (post_schedule)
9a897c5a
SR
2801 current->sched_class->post_schedule(rq);
2802#endif
e8fa1362 2803
e107be36 2804 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2805 if (mm)
2806 mmdrop(mm);
c394cc9f 2807 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2808 /*
2809 * Remove function-return probe instances associated with this
2810 * task and put them back on the free list.
9761eea8 2811 */
c6fd91f0 2812 kprobe_flush_task(prev);
1da177e4 2813 put_task_struct(prev);
c6fd91f0 2814 }
1da177e4
LT
2815}
2816
2817/**
2818 * schedule_tail - first thing a freshly forked thread must call.
2819 * @prev: the thread we just switched away from.
2820 */
36c8b586 2821asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2822 __releases(rq->lock)
2823{
70b97a7f
IM
2824 struct rq *rq = this_rq();
2825
4866cde0
NP
2826 finish_task_switch(rq, prev);
2827#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2828 /* In this case, finish_task_switch does not reenable preemption */
2829 preempt_enable();
2830#endif
1da177e4 2831 if (current->set_child_tid)
b488893a 2832 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2833}
2834
2835/*
2836 * context_switch - switch to the new MM and the new
2837 * thread's register state.
2838 */
dd41f596 2839static inline void
70b97a7f 2840context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2841 struct task_struct *next)
1da177e4 2842{
dd41f596 2843 struct mm_struct *mm, *oldmm;
1da177e4 2844
e107be36 2845 prepare_task_switch(rq, prev, next);
0a16b607 2846 trace_sched_switch(rq, prev, next);
dd41f596
IM
2847 mm = next->mm;
2848 oldmm = prev->active_mm;
9226d125
ZA
2849 /*
2850 * For paravirt, this is coupled with an exit in switch_to to
2851 * combine the page table reload and the switch backend into
2852 * one hypercall.
2853 */
224101ed 2854 arch_start_context_switch(prev);
9226d125 2855
dd41f596 2856 if (unlikely(!mm)) {
1da177e4
LT
2857 next->active_mm = oldmm;
2858 atomic_inc(&oldmm->mm_count);
2859 enter_lazy_tlb(oldmm, next);
2860 } else
2861 switch_mm(oldmm, mm, next);
2862
dd41f596 2863 if (unlikely(!prev->mm)) {
1da177e4 2864 prev->active_mm = NULL;
1da177e4
LT
2865 rq->prev_mm = oldmm;
2866 }
3a5f5e48
IM
2867 /*
2868 * Since the runqueue lock will be released by the next
2869 * task (which is an invalid locking op but in the case
2870 * of the scheduler it's an obvious special-case), so we
2871 * do an early lockdep release here:
2872 */
2873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2874 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2875#endif
1da177e4
LT
2876
2877 /* Here we just switch the register state and the stack. */
2878 switch_to(prev, next, prev);
2879
dd41f596
IM
2880 barrier();
2881 /*
2882 * this_rq must be evaluated again because prev may have moved
2883 * CPUs since it called schedule(), thus the 'rq' on its stack
2884 * frame will be invalid.
2885 */
2886 finish_task_switch(this_rq(), prev);
1da177e4
LT
2887}
2888
2889/*
2890 * nr_running, nr_uninterruptible and nr_context_switches:
2891 *
2892 * externally visible scheduler statistics: current number of runnable
2893 * threads, current number of uninterruptible-sleeping threads, total
2894 * number of context switches performed since bootup.
2895 */
2896unsigned long nr_running(void)
2897{
2898 unsigned long i, sum = 0;
2899
2900 for_each_online_cpu(i)
2901 sum += cpu_rq(i)->nr_running;
2902
2903 return sum;
2904}
2905
2906unsigned long nr_uninterruptible(void)
2907{
2908 unsigned long i, sum = 0;
2909
0a945022 2910 for_each_possible_cpu(i)
1da177e4
LT
2911 sum += cpu_rq(i)->nr_uninterruptible;
2912
2913 /*
2914 * Since we read the counters lockless, it might be slightly
2915 * inaccurate. Do not allow it to go below zero though:
2916 */
2917 if (unlikely((long)sum < 0))
2918 sum = 0;
2919
2920 return sum;
2921}
2922
2923unsigned long long nr_context_switches(void)
2924{
cc94abfc
SR
2925 int i;
2926 unsigned long long sum = 0;
1da177e4 2927
0a945022 2928 for_each_possible_cpu(i)
1da177e4
LT
2929 sum += cpu_rq(i)->nr_switches;
2930
2931 return sum;
2932}
2933
2934unsigned long nr_iowait(void)
2935{
2936 unsigned long i, sum = 0;
2937
0a945022 2938 for_each_possible_cpu(i)
1da177e4
LT
2939 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2940
2941 return sum;
2942}
2943
dce48a84
TG
2944/* Variables and functions for calc_load */
2945static atomic_long_t calc_load_tasks;
2946static unsigned long calc_load_update;
2947unsigned long avenrun[3];
2948EXPORT_SYMBOL(avenrun);
2949
2d02494f
TG
2950/**
2951 * get_avenrun - get the load average array
2952 * @loads: pointer to dest load array
2953 * @offset: offset to add
2954 * @shift: shift count to shift the result left
2955 *
2956 * These values are estimates at best, so no need for locking.
2957 */
2958void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2959{
2960 loads[0] = (avenrun[0] + offset) << shift;
2961 loads[1] = (avenrun[1] + offset) << shift;
2962 loads[2] = (avenrun[2] + offset) << shift;
2963}
2964
dce48a84
TG
2965static unsigned long
2966calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2967{
dce48a84
TG
2968 load *= exp;
2969 load += active * (FIXED_1 - exp);
2970 return load >> FSHIFT;
2971}
db1b1fef 2972
dce48a84
TG
2973/*
2974 * calc_load - update the avenrun load estimates 10 ticks after the
2975 * CPUs have updated calc_load_tasks.
2976 */
2977void calc_global_load(void)
2978{
2979 unsigned long upd = calc_load_update + 10;
2980 long active;
2981
2982 if (time_before(jiffies, upd))
2983 return;
db1b1fef 2984
dce48a84
TG
2985 active = atomic_long_read(&calc_load_tasks);
2986 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2987
dce48a84
TG
2988 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2989 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2990 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2991
2992 calc_load_update += LOAD_FREQ;
2993}
2994
2995/*
2996 * Either called from update_cpu_load() or from a cpu going idle
2997 */
2998static void calc_load_account_active(struct rq *this_rq)
2999{
3000 long nr_active, delta;
3001
3002 nr_active = this_rq->nr_running;
3003 nr_active += (long) this_rq->nr_uninterruptible;
3004
3005 if (nr_active != this_rq->calc_load_active) {
3006 delta = nr_active - this_rq->calc_load_active;
3007 this_rq->calc_load_active = nr_active;
3008 atomic_long_add(delta, &calc_load_tasks);
3009 }
db1b1fef
JS
3010}
3011
23a185ca
PM
3012/*
3013 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3014 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3015 */
23a185ca
PM
3016u64 cpu_nr_migrations(int cpu)
3017{
3018 return cpu_rq(cpu)->nr_migrations_in;
3019}
3020
48f24c4d 3021/*
dd41f596
IM
3022 * Update rq->cpu_load[] statistics. This function is usually called every
3023 * scheduler tick (TICK_NSEC).
48f24c4d 3024 */
dd41f596 3025static void update_cpu_load(struct rq *this_rq)
48f24c4d 3026{
495eca49 3027 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3028 int i, scale;
3029
3030 this_rq->nr_load_updates++;
dd41f596
IM
3031
3032 /* Update our load: */
3033 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3034 unsigned long old_load, new_load;
3035
3036 /* scale is effectively 1 << i now, and >> i divides by scale */
3037
3038 old_load = this_rq->cpu_load[i];
3039 new_load = this_load;
a25707f3
IM
3040 /*
3041 * Round up the averaging division if load is increasing. This
3042 * prevents us from getting stuck on 9 if the load is 10, for
3043 * example.
3044 */
3045 if (new_load > old_load)
3046 new_load += scale-1;
dd41f596
IM
3047 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3048 }
dce48a84
TG
3049
3050 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3051 this_rq->calc_load_update += LOAD_FREQ;
3052 calc_load_account_active(this_rq);
3053 }
48f24c4d
IM
3054}
3055
dd41f596
IM
3056#ifdef CONFIG_SMP
3057
1da177e4
LT
3058/*
3059 * double_rq_lock - safely lock two runqueues
3060 *
3061 * Note this does not disable interrupts like task_rq_lock,
3062 * you need to do so manually before calling.
3063 */
70b97a7f 3064static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3065 __acquires(rq1->lock)
3066 __acquires(rq2->lock)
3067{
054b9108 3068 BUG_ON(!irqs_disabled());
1da177e4
LT
3069 if (rq1 == rq2) {
3070 spin_lock(&rq1->lock);
3071 __acquire(rq2->lock); /* Fake it out ;) */
3072 } else {
c96d145e 3073 if (rq1 < rq2) {
1da177e4 3074 spin_lock(&rq1->lock);
5e710e37 3075 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3076 } else {
3077 spin_lock(&rq2->lock);
5e710e37 3078 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3079 }
3080 }
6e82a3be
IM
3081 update_rq_clock(rq1);
3082 update_rq_clock(rq2);
1da177e4
LT
3083}
3084
3085/*
3086 * double_rq_unlock - safely unlock two runqueues
3087 *
3088 * Note this does not restore interrupts like task_rq_unlock,
3089 * you need to do so manually after calling.
3090 */
70b97a7f 3091static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3092 __releases(rq1->lock)
3093 __releases(rq2->lock)
3094{
3095 spin_unlock(&rq1->lock);
3096 if (rq1 != rq2)
3097 spin_unlock(&rq2->lock);
3098 else
3099 __release(rq2->lock);
3100}
3101
1da177e4
LT
3102/*
3103 * If dest_cpu is allowed for this process, migrate the task to it.
3104 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3105 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3106 * the cpu_allowed mask is restored.
3107 */
36c8b586 3108static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3109{
70b97a7f 3110 struct migration_req req;
1da177e4 3111 unsigned long flags;
70b97a7f 3112 struct rq *rq;
1da177e4
LT
3113
3114 rq = task_rq_lock(p, &flags);
96f874e2 3115 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3116 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3117 goto out;
3118
3119 /* force the process onto the specified CPU */
3120 if (migrate_task(p, dest_cpu, &req)) {
3121 /* Need to wait for migration thread (might exit: take ref). */
3122 struct task_struct *mt = rq->migration_thread;
36c8b586 3123
1da177e4
LT
3124 get_task_struct(mt);
3125 task_rq_unlock(rq, &flags);
3126 wake_up_process(mt);
3127 put_task_struct(mt);
3128 wait_for_completion(&req.done);
36c8b586 3129
1da177e4
LT
3130 return;
3131 }
3132out:
3133 task_rq_unlock(rq, &flags);
3134}
3135
3136/*
476d139c
NP
3137 * sched_exec - execve() is a valuable balancing opportunity, because at
3138 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3139 */
3140void sched_exec(void)
3141{
1da177e4 3142 int new_cpu, this_cpu = get_cpu();
476d139c 3143 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3144 put_cpu();
476d139c
NP
3145 if (new_cpu != this_cpu)
3146 sched_migrate_task(current, new_cpu);
1da177e4
LT
3147}
3148
3149/*
3150 * pull_task - move a task from a remote runqueue to the local runqueue.
3151 * Both runqueues must be locked.
3152 */
dd41f596
IM
3153static void pull_task(struct rq *src_rq, struct task_struct *p,
3154 struct rq *this_rq, int this_cpu)
1da177e4 3155{
2e1cb74a 3156 deactivate_task(src_rq, p, 0);
1da177e4 3157 set_task_cpu(p, this_cpu);
dd41f596 3158 activate_task(this_rq, p, 0);
1da177e4
LT
3159 /*
3160 * Note that idle threads have a prio of MAX_PRIO, for this test
3161 * to be always true for them.
3162 */
15afe09b 3163 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3164}
3165
3166/*
3167 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3168 */
858119e1 3169static
70b97a7f 3170int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3171 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3172 int *all_pinned)
1da177e4 3173{
708dc512 3174 int tsk_cache_hot = 0;
1da177e4
LT
3175 /*
3176 * We do not migrate tasks that are:
3177 * 1) running (obviously), or
3178 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3179 * 3) are cache-hot on their current CPU.
3180 */
96f874e2 3181 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3182 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3183 return 0;
cc367732 3184 }
81026794
NP
3185 *all_pinned = 0;
3186
cc367732
IM
3187 if (task_running(rq, p)) {
3188 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3189 return 0;
cc367732 3190 }
1da177e4 3191
da84d961
IM
3192 /*
3193 * Aggressive migration if:
3194 * 1) task is cache cold, or
3195 * 2) too many balance attempts have failed.
3196 */
3197
708dc512
LH
3198 tsk_cache_hot = task_hot(p, rq->clock, sd);
3199 if (!tsk_cache_hot ||
3200 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3201#ifdef CONFIG_SCHEDSTATS
708dc512 3202 if (tsk_cache_hot) {
da84d961 3203 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3204 schedstat_inc(p, se.nr_forced_migrations);
3205 }
da84d961
IM
3206#endif
3207 return 1;
3208 }
3209
708dc512 3210 if (tsk_cache_hot) {
cc367732 3211 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3212 return 0;
cc367732 3213 }
1da177e4
LT
3214 return 1;
3215}
3216
e1d1484f
PW
3217static unsigned long
3218balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3219 unsigned long max_load_move, struct sched_domain *sd,
3220 enum cpu_idle_type idle, int *all_pinned,
3221 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3222{
051c6764 3223 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3224 struct task_struct *p;
3225 long rem_load_move = max_load_move;
1da177e4 3226
e1d1484f 3227 if (max_load_move == 0)
1da177e4
LT
3228 goto out;
3229
81026794
NP
3230 pinned = 1;
3231
1da177e4 3232 /*
dd41f596 3233 * Start the load-balancing iterator:
1da177e4 3234 */
dd41f596
IM
3235 p = iterator->start(iterator->arg);
3236next:
b82d9fdd 3237 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3238 goto out;
051c6764
PZ
3239
3240 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3241 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3242 p = iterator->next(iterator->arg);
3243 goto next;
1da177e4
LT
3244 }
3245
dd41f596 3246 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3247 pulled++;
dd41f596 3248 rem_load_move -= p->se.load.weight;
1da177e4 3249
7e96fa58
GH
3250#ifdef CONFIG_PREEMPT
3251 /*
3252 * NEWIDLE balancing is a source of latency, so preemptible kernels
3253 * will stop after the first task is pulled to minimize the critical
3254 * section.
3255 */
3256 if (idle == CPU_NEWLY_IDLE)
3257 goto out;
3258#endif
3259
2dd73a4f 3260 /*
b82d9fdd 3261 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3262 */
e1d1484f 3263 if (rem_load_move > 0) {
a4ac01c3
PW
3264 if (p->prio < *this_best_prio)
3265 *this_best_prio = p->prio;
dd41f596
IM
3266 p = iterator->next(iterator->arg);
3267 goto next;
1da177e4
LT
3268 }
3269out:
3270 /*
e1d1484f 3271 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3272 * so we can safely collect pull_task() stats here rather than
3273 * inside pull_task().
3274 */
3275 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3276
3277 if (all_pinned)
3278 *all_pinned = pinned;
e1d1484f
PW
3279
3280 return max_load_move - rem_load_move;
1da177e4
LT
3281}
3282
dd41f596 3283/*
43010659
PW
3284 * move_tasks tries to move up to max_load_move weighted load from busiest to
3285 * this_rq, as part of a balancing operation within domain "sd".
3286 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3287 *
3288 * Called with both runqueues locked.
3289 */
3290static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3291 unsigned long max_load_move,
dd41f596
IM
3292 struct sched_domain *sd, enum cpu_idle_type idle,
3293 int *all_pinned)
3294{
5522d5d5 3295 const struct sched_class *class = sched_class_highest;
43010659 3296 unsigned long total_load_moved = 0;
a4ac01c3 3297 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3298
3299 do {
43010659
PW
3300 total_load_moved +=
3301 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3302 max_load_move - total_load_moved,
a4ac01c3 3303 sd, idle, all_pinned, &this_best_prio);
dd41f596 3304 class = class->next;
c4acb2c0 3305
7e96fa58
GH
3306#ifdef CONFIG_PREEMPT
3307 /*
3308 * NEWIDLE balancing is a source of latency, so preemptible
3309 * kernels will stop after the first task is pulled to minimize
3310 * the critical section.
3311 */
c4acb2c0
GH
3312 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3313 break;
7e96fa58 3314#endif
43010659 3315 } while (class && max_load_move > total_load_moved);
dd41f596 3316
43010659
PW
3317 return total_load_moved > 0;
3318}
3319
e1d1484f
PW
3320static int
3321iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3322 struct sched_domain *sd, enum cpu_idle_type idle,
3323 struct rq_iterator *iterator)
3324{
3325 struct task_struct *p = iterator->start(iterator->arg);
3326 int pinned = 0;
3327
3328 while (p) {
3329 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3330 pull_task(busiest, p, this_rq, this_cpu);
3331 /*
3332 * Right now, this is only the second place pull_task()
3333 * is called, so we can safely collect pull_task()
3334 * stats here rather than inside pull_task().
3335 */
3336 schedstat_inc(sd, lb_gained[idle]);
3337
3338 return 1;
3339 }
3340 p = iterator->next(iterator->arg);
3341 }
3342
3343 return 0;
3344}
3345
43010659
PW
3346/*
3347 * move_one_task tries to move exactly one task from busiest to this_rq, as
3348 * part of active balancing operations within "domain".
3349 * Returns 1 if successful and 0 otherwise.
3350 *
3351 * Called with both runqueues locked.
3352 */
3353static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3354 struct sched_domain *sd, enum cpu_idle_type idle)
3355{
5522d5d5 3356 const struct sched_class *class;
43010659
PW
3357
3358 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3359 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3360 return 1;
3361
3362 return 0;
dd41f596 3363}
67bb6c03 3364/********** Helpers for find_busiest_group ************************/
1da177e4 3365/*
222d656d
GS
3366 * sd_lb_stats - Structure to store the statistics of a sched_domain
3367 * during load balancing.
1da177e4 3368 */
222d656d
GS
3369struct sd_lb_stats {
3370 struct sched_group *busiest; /* Busiest group in this sd */
3371 struct sched_group *this; /* Local group in this sd */
3372 unsigned long total_load; /* Total load of all groups in sd */
3373 unsigned long total_pwr; /* Total power of all groups in sd */
3374 unsigned long avg_load; /* Average load across all groups in sd */
3375
3376 /** Statistics of this group */
3377 unsigned long this_load;
3378 unsigned long this_load_per_task;
3379 unsigned long this_nr_running;
3380
3381 /* Statistics of the busiest group */
3382 unsigned long max_load;
3383 unsigned long busiest_load_per_task;
3384 unsigned long busiest_nr_running;
3385
3386 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3387#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3388 int power_savings_balance; /* Is powersave balance needed for this sd */
3389 struct sched_group *group_min; /* Least loaded group in sd */
3390 struct sched_group *group_leader; /* Group which relieves group_min */
3391 unsigned long min_load_per_task; /* load_per_task in group_min */
3392 unsigned long leader_nr_running; /* Nr running of group_leader */
3393 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3394#endif
222d656d 3395};
1da177e4 3396
d5ac537e 3397/*
381be78f
GS
3398 * sg_lb_stats - stats of a sched_group required for load_balancing
3399 */
3400struct sg_lb_stats {
3401 unsigned long avg_load; /*Avg load across the CPUs of the group */
3402 unsigned long group_load; /* Total load over the CPUs of the group */
3403 unsigned long sum_nr_running; /* Nr tasks running in the group */
3404 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3405 unsigned long group_capacity;
3406 int group_imb; /* Is there an imbalance in the group ? */
3407};
408ed066 3408
67bb6c03
GS
3409/**
3410 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3411 * @group: The group whose first cpu is to be returned.
3412 */
3413static inline unsigned int group_first_cpu(struct sched_group *group)
3414{
3415 return cpumask_first(sched_group_cpus(group));
3416}
3417
3418/**
3419 * get_sd_load_idx - Obtain the load index for a given sched domain.
3420 * @sd: The sched_domain whose load_idx is to be obtained.
3421 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3422 */
3423static inline int get_sd_load_idx(struct sched_domain *sd,
3424 enum cpu_idle_type idle)
3425{
3426 int load_idx;
3427
3428 switch (idle) {
3429 case CPU_NOT_IDLE:
7897986b 3430 load_idx = sd->busy_idx;
67bb6c03
GS
3431 break;
3432
3433 case CPU_NEWLY_IDLE:
7897986b 3434 load_idx = sd->newidle_idx;
67bb6c03
GS
3435 break;
3436 default:
7897986b 3437 load_idx = sd->idle_idx;
67bb6c03
GS
3438 break;
3439 }
1da177e4 3440
67bb6c03
GS
3441 return load_idx;
3442}
1da177e4 3443
1da177e4 3444
c071df18
GS
3445#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3446/**
3447 * init_sd_power_savings_stats - Initialize power savings statistics for
3448 * the given sched_domain, during load balancing.
3449 *
3450 * @sd: Sched domain whose power-savings statistics are to be initialized.
3451 * @sds: Variable containing the statistics for sd.
3452 * @idle: Idle status of the CPU at which we're performing load-balancing.
3453 */
3454static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3455 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3456{
3457 /*
3458 * Busy processors will not participate in power savings
3459 * balance.
3460 */
3461 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3462 sds->power_savings_balance = 0;
3463 else {
3464 sds->power_savings_balance = 1;
3465 sds->min_nr_running = ULONG_MAX;
3466 sds->leader_nr_running = 0;
3467 }
3468}
783609c6 3469
c071df18
GS
3470/**
3471 * update_sd_power_savings_stats - Update the power saving stats for a
3472 * sched_domain while performing load balancing.
3473 *
3474 * @group: sched_group belonging to the sched_domain under consideration.
3475 * @sds: Variable containing the statistics of the sched_domain
3476 * @local_group: Does group contain the CPU for which we're performing
3477 * load balancing ?
3478 * @sgs: Variable containing the statistics of the group.
3479 */
3480static inline void update_sd_power_savings_stats(struct sched_group *group,
3481 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3482{
408ed066 3483
c071df18
GS
3484 if (!sds->power_savings_balance)
3485 return;
1da177e4 3486
c071df18
GS
3487 /*
3488 * If the local group is idle or completely loaded
3489 * no need to do power savings balance at this domain
3490 */
3491 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3492 !sds->this_nr_running))
3493 sds->power_savings_balance = 0;
2dd73a4f 3494
c071df18
GS
3495 /*
3496 * If a group is already running at full capacity or idle,
3497 * don't include that group in power savings calculations
3498 */
3499 if (!sds->power_savings_balance ||
3500 sgs->sum_nr_running >= sgs->group_capacity ||
3501 !sgs->sum_nr_running)
3502 return;
5969fe06 3503
c071df18
GS
3504 /*
3505 * Calculate the group which has the least non-idle load.
3506 * This is the group from where we need to pick up the load
3507 * for saving power
3508 */
3509 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3510 (sgs->sum_nr_running == sds->min_nr_running &&
3511 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3512 sds->group_min = group;
3513 sds->min_nr_running = sgs->sum_nr_running;
3514 sds->min_load_per_task = sgs->sum_weighted_load /
3515 sgs->sum_nr_running;
3516 }
783609c6 3517
c071df18
GS
3518 /*
3519 * Calculate the group which is almost near its
3520 * capacity but still has some space to pick up some load
3521 * from other group and save more power
3522 */
3523 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3524 return;
1da177e4 3525
c071df18
GS
3526 if (sgs->sum_nr_running > sds->leader_nr_running ||
3527 (sgs->sum_nr_running == sds->leader_nr_running &&
3528 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3529 sds->group_leader = group;
3530 sds->leader_nr_running = sgs->sum_nr_running;
3531 }
3532}
408ed066 3533
c071df18 3534/**
d5ac537e 3535 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3536 * @sds: Variable containing the statistics of the sched_domain
3537 * under consideration.
3538 * @this_cpu: Cpu at which we're currently performing load-balancing.
3539 * @imbalance: Variable to store the imbalance.
3540 *
d5ac537e
RD
3541 * Description:
3542 * Check if we have potential to perform some power-savings balance.
3543 * If yes, set the busiest group to be the least loaded group in the
3544 * sched_domain, so that it's CPUs can be put to idle.
3545 *
c071df18
GS
3546 * Returns 1 if there is potential to perform power-savings balance.
3547 * Else returns 0.
3548 */
3549static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3550 int this_cpu, unsigned long *imbalance)
3551{
3552 if (!sds->power_savings_balance)
3553 return 0;
1da177e4 3554
c071df18
GS
3555 if (sds->this != sds->group_leader ||
3556 sds->group_leader == sds->group_min)
3557 return 0;
783609c6 3558
c071df18
GS
3559 *imbalance = sds->min_load_per_task;
3560 sds->busiest = sds->group_min;
1da177e4 3561
c071df18
GS
3562 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3563 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3564 group_first_cpu(sds->group_leader);
3565 }
3566
3567 return 1;
1da177e4 3568
c071df18
GS
3569}
3570#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3571static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3572 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3573{
3574 return;
3575}
408ed066 3576
c071df18
GS
3577static inline void update_sd_power_savings_stats(struct sched_group *group,
3578 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3579{
3580 return;
3581}
3582
3583static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3584 int this_cpu, unsigned long *imbalance)
3585{
3586 return 0;
3587}
3588#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3589
3590
1f8c553d
GS
3591/**
3592 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3593 * @group: sched_group whose statistics are to be updated.
3594 * @this_cpu: Cpu for which load balance is currently performed.
3595 * @idle: Idle status of this_cpu
3596 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3597 * @sd_idle: Idle status of the sched_domain containing group.
3598 * @local_group: Does group contain this_cpu.
3599 * @cpus: Set of cpus considered for load balancing.
3600 * @balance: Should we balance.
3601 * @sgs: variable to hold the statistics for this group.
3602 */
3603static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3604 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3605 int local_group, const struct cpumask *cpus,
3606 int *balance, struct sg_lb_stats *sgs)
3607{
3608 unsigned long load, max_cpu_load, min_cpu_load;
3609 int i;
3610 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3611 unsigned long sum_avg_load_per_task;
3612 unsigned long avg_load_per_task;
3613
3614 if (local_group)
3615 balance_cpu = group_first_cpu(group);
3616
3617 /* Tally up the load of all CPUs in the group */
3618 sum_avg_load_per_task = avg_load_per_task = 0;
3619 max_cpu_load = 0;
3620 min_cpu_load = ~0UL;
408ed066 3621
1f8c553d
GS
3622 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3623 struct rq *rq = cpu_rq(i);
908a7c1b 3624
1f8c553d
GS
3625 if (*sd_idle && rq->nr_running)
3626 *sd_idle = 0;
5c45bf27 3627
1f8c553d 3628 /* Bias balancing toward cpus of our domain */
1da177e4 3629 if (local_group) {
1f8c553d
GS
3630 if (idle_cpu(i) && !first_idle_cpu) {
3631 first_idle_cpu = 1;
3632 balance_cpu = i;
3633 }
3634
3635 load = target_load(i, load_idx);
3636 } else {
3637 load = source_load(i, load_idx);
3638 if (load > max_cpu_load)
3639 max_cpu_load = load;
3640 if (min_cpu_load > load)
3641 min_cpu_load = load;
1da177e4 3642 }
5c45bf27 3643
1f8c553d
GS
3644 sgs->group_load += load;
3645 sgs->sum_nr_running += rq->nr_running;
3646 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3647
1f8c553d
GS
3648 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3649 }
5c45bf27 3650
1f8c553d
GS
3651 /*
3652 * First idle cpu or the first cpu(busiest) in this sched group
3653 * is eligible for doing load balancing at this and above
3654 * domains. In the newly idle case, we will allow all the cpu's
3655 * to do the newly idle load balance.
3656 */
3657 if (idle != CPU_NEWLY_IDLE && local_group &&
3658 balance_cpu != this_cpu && balance) {
3659 *balance = 0;
3660 return;
3661 }
5c45bf27 3662
1f8c553d
GS
3663 /* Adjust by relative CPU power of the group */
3664 sgs->avg_load = sg_div_cpu_power(group,
3665 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3666
1f8c553d
GS
3667
3668 /*
3669 * Consider the group unbalanced when the imbalance is larger
3670 * than the average weight of two tasks.
3671 *
3672 * APZ: with cgroup the avg task weight can vary wildly and
3673 * might not be a suitable number - should we keep a
3674 * normalized nr_running number somewhere that negates
3675 * the hierarchy?
3676 */
3677 avg_load_per_task = sg_div_cpu_power(group,
3678 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3679
3680 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3681 sgs->group_imb = 1;
3682
3683 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3684
3685}
dd41f596 3686
37abe198
GS
3687/**
3688 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3689 * @sd: sched_domain whose statistics are to be updated.
3690 * @this_cpu: Cpu for which load balance is currently performed.
3691 * @idle: Idle status of this_cpu
3692 * @sd_idle: Idle status of the sched_domain containing group.
3693 * @cpus: Set of cpus considered for load balancing.
3694 * @balance: Should we balance.
3695 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3696 */
37abe198
GS
3697static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3698 enum cpu_idle_type idle, int *sd_idle,
3699 const struct cpumask *cpus, int *balance,
3700 struct sd_lb_stats *sds)
1da177e4 3701{
222d656d 3702 struct sched_group *group = sd->groups;
37abe198 3703 struct sg_lb_stats sgs;
222d656d
GS
3704 int load_idx;
3705
c071df18 3706 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3707 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3708
3709 do {
1da177e4 3710 int local_group;
1da177e4 3711
758b2cdc
RR
3712 local_group = cpumask_test_cpu(this_cpu,
3713 sched_group_cpus(group));
381be78f 3714 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3715 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3716 local_group, cpus, balance, &sgs);
1da177e4 3717
37abe198
GS
3718 if (local_group && balance && !(*balance))
3719 return;
783609c6 3720
37abe198
GS
3721 sds->total_load += sgs.group_load;
3722 sds->total_pwr += group->__cpu_power;
1da177e4 3723
1da177e4 3724 if (local_group) {
37abe198
GS
3725 sds->this_load = sgs.avg_load;
3726 sds->this = group;
3727 sds->this_nr_running = sgs.sum_nr_running;
3728 sds->this_load_per_task = sgs.sum_weighted_load;
3729 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3730 (sgs.sum_nr_running > sgs.group_capacity ||
3731 sgs.group_imb)) {
37abe198
GS
3732 sds->max_load = sgs.avg_load;
3733 sds->busiest = group;
3734 sds->busiest_nr_running = sgs.sum_nr_running;
3735 sds->busiest_load_per_task = sgs.sum_weighted_load;
3736 sds->group_imb = sgs.group_imb;
48f24c4d 3737 }
5c45bf27 3738
c071df18 3739 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3740 group = group->next;
3741 } while (group != sd->groups);
3742
37abe198 3743}
1da177e4 3744
2e6f44ae
GS
3745/**
3746 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3747 * amongst the groups of a sched_domain, during
3748 * load balancing.
2e6f44ae
GS
3749 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3750 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3751 * @imbalance: Variable to store the imbalance.
3752 */
3753static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3754 int this_cpu, unsigned long *imbalance)
3755{
3756 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3757 unsigned int imbn = 2;
3758
3759 if (sds->this_nr_running) {
3760 sds->this_load_per_task /= sds->this_nr_running;
3761 if (sds->busiest_load_per_task >
3762 sds->this_load_per_task)
3763 imbn = 1;
3764 } else
3765 sds->this_load_per_task =
3766 cpu_avg_load_per_task(this_cpu);
1da177e4 3767
2e6f44ae
GS
3768 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3769 sds->busiest_load_per_task * imbn) {
3770 *imbalance = sds->busiest_load_per_task;
3771 return;
3772 }
908a7c1b 3773
1da177e4 3774 /*
2e6f44ae
GS
3775 * OK, we don't have enough imbalance to justify moving tasks,
3776 * however we may be able to increase total CPU power used by
3777 * moving them.
1da177e4 3778 */
2dd73a4f 3779
2e6f44ae
GS
3780 pwr_now += sds->busiest->__cpu_power *
3781 min(sds->busiest_load_per_task, sds->max_load);
3782 pwr_now += sds->this->__cpu_power *
3783 min(sds->this_load_per_task, sds->this_load);
3784 pwr_now /= SCHED_LOAD_SCALE;
3785
3786 /* Amount of load we'd subtract */
3787 tmp = sg_div_cpu_power(sds->busiest,
3788 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3789 if (sds->max_load > tmp)
3790 pwr_move += sds->busiest->__cpu_power *
3791 min(sds->busiest_load_per_task, sds->max_load - tmp);
3792
3793 /* Amount of load we'd add */
3794 if (sds->max_load * sds->busiest->__cpu_power <
3795 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3796 tmp = sg_div_cpu_power(sds->this,
3797 sds->max_load * sds->busiest->__cpu_power);
3798 else
3799 tmp = sg_div_cpu_power(sds->this,
3800 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3801 pwr_move += sds->this->__cpu_power *
3802 min(sds->this_load_per_task, sds->this_load + tmp);
3803 pwr_move /= SCHED_LOAD_SCALE;
3804
3805 /* Move if we gain throughput */
3806 if (pwr_move > pwr_now)
3807 *imbalance = sds->busiest_load_per_task;
3808}
dbc523a3
GS
3809
3810/**
3811 * calculate_imbalance - Calculate the amount of imbalance present within the
3812 * groups of a given sched_domain during load balance.
3813 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3814 * @this_cpu: Cpu for which currently load balance is being performed.
3815 * @imbalance: The variable to store the imbalance.
3816 */
3817static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3818 unsigned long *imbalance)
3819{
3820 unsigned long max_pull;
2dd73a4f
PW
3821 /*
3822 * In the presence of smp nice balancing, certain scenarios can have
3823 * max load less than avg load(as we skip the groups at or below
3824 * its cpu_power, while calculating max_load..)
3825 */
dbc523a3 3826 if (sds->max_load < sds->avg_load) {
2dd73a4f 3827 *imbalance = 0;
dbc523a3 3828 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3829 }
0c117f1b
SS
3830
3831 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3832 max_pull = min(sds->max_load - sds->avg_load,
3833 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3834
1da177e4 3835 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3836 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3837 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3838 / SCHED_LOAD_SCALE;
3839
2dd73a4f
PW
3840 /*
3841 * if *imbalance is less than the average load per runnable task
3842 * there is no gaurantee that any tasks will be moved so we'll have
3843 * a think about bumping its value to force at least one task to be
3844 * moved
3845 */
dbc523a3
GS
3846 if (*imbalance < sds->busiest_load_per_task)
3847 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3848
dbc523a3 3849}
37abe198 3850/******* find_busiest_group() helpers end here *********************/
1da177e4 3851
b7bb4c9b
GS
3852/**
3853 * find_busiest_group - Returns the busiest group within the sched_domain
3854 * if there is an imbalance. If there isn't an imbalance, and
3855 * the user has opted for power-savings, it returns a group whose
3856 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3857 * such a group exists.
3858 *
3859 * Also calculates the amount of weighted load which should be moved
3860 * to restore balance.
3861 *
3862 * @sd: The sched_domain whose busiest group is to be returned.
3863 * @this_cpu: The cpu for which load balancing is currently being performed.
3864 * @imbalance: Variable which stores amount of weighted load which should
3865 * be moved to restore balance/put a group to idle.
3866 * @idle: The idle status of this_cpu.
3867 * @sd_idle: The idleness of sd
3868 * @cpus: The set of CPUs under consideration for load-balancing.
3869 * @balance: Pointer to a variable indicating if this_cpu
3870 * is the appropriate cpu to perform load balancing at this_level.
3871 *
3872 * Returns: - the busiest group if imbalance exists.
3873 * - If no imbalance and user has opted for power-savings balance,
3874 * return the least loaded group whose CPUs can be
3875 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3876 */
3877static struct sched_group *
3878find_busiest_group(struct sched_domain *sd, int this_cpu,
3879 unsigned long *imbalance, enum cpu_idle_type idle,
3880 int *sd_idle, const struct cpumask *cpus, int *balance)
3881{
3882 struct sd_lb_stats sds;
1da177e4 3883
37abe198 3884 memset(&sds, 0, sizeof(sds));
1da177e4 3885
37abe198
GS
3886 /*
3887 * Compute the various statistics relavent for load balancing at
3888 * this level.
3889 */
3890 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3891 balance, &sds);
3892
b7bb4c9b
GS
3893 /* Cases where imbalance does not exist from POV of this_cpu */
3894 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3895 * at this level.
3896 * 2) There is no busy sibling group to pull from.
3897 * 3) This group is the busiest group.
3898 * 4) This group is more busy than the avg busieness at this
3899 * sched_domain.
3900 * 5) The imbalance is within the specified limit.
3901 * 6) Any rebalance would lead to ping-pong
3902 */
37abe198
GS
3903 if (balance && !(*balance))
3904 goto ret;
1da177e4 3905
b7bb4c9b
GS
3906 if (!sds.busiest || sds.busiest_nr_running == 0)
3907 goto out_balanced;
1da177e4 3908
b7bb4c9b 3909 if (sds.this_load >= sds.max_load)
1da177e4 3910 goto out_balanced;
1da177e4 3911
222d656d 3912 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3913
b7bb4c9b
GS
3914 if (sds.this_load >= sds.avg_load)
3915 goto out_balanced;
3916
3917 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3918 goto out_balanced;
3919
222d656d
GS
3920 sds.busiest_load_per_task /= sds.busiest_nr_running;
3921 if (sds.group_imb)
3922 sds.busiest_load_per_task =
3923 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3924
1da177e4
LT
3925 /*
3926 * We're trying to get all the cpus to the average_load, so we don't
3927 * want to push ourselves above the average load, nor do we wish to
3928 * reduce the max loaded cpu below the average load, as either of these
3929 * actions would just result in more rebalancing later, and ping-pong
3930 * tasks around. Thus we look for the minimum possible imbalance.
3931 * Negative imbalances (*we* are more loaded than anyone else) will
3932 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3933 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3934 * appear as very large values with unsigned longs.
3935 */
222d656d 3936 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3937 goto out_balanced;
3938
dbc523a3
GS
3939 /* Looks like there is an imbalance. Compute it */
3940 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3941 return sds.busiest;
1da177e4
LT
3942
3943out_balanced:
c071df18
GS
3944 /*
3945 * There is no obvious imbalance. But check if we can do some balancing
3946 * to save power.
3947 */
3948 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3949 return sds.busiest;
783609c6 3950ret:
1da177e4
LT
3951 *imbalance = 0;
3952 return NULL;
3953}
3954
3955/*
3956 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3957 */
70b97a7f 3958static struct rq *
d15bcfdb 3959find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3960 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3961{
70b97a7f 3962 struct rq *busiest = NULL, *rq;
2dd73a4f 3963 unsigned long max_load = 0;
1da177e4
LT
3964 int i;
3965
758b2cdc 3966 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3967 unsigned long wl;
0a2966b4 3968
96f874e2 3969 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3970 continue;
3971
48f24c4d 3972 rq = cpu_rq(i);
dd41f596 3973 wl = weighted_cpuload(i);
2dd73a4f 3974
dd41f596 3975 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3976 continue;
1da177e4 3977
dd41f596
IM
3978 if (wl > max_load) {
3979 max_load = wl;
48f24c4d 3980 busiest = rq;
1da177e4
LT
3981 }
3982 }
3983
3984 return busiest;
3985}
3986
77391d71
NP
3987/*
3988 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3989 * so long as it is large enough.
3990 */
3991#define MAX_PINNED_INTERVAL 512
3992
df7c8e84
RR
3993/* Working cpumask for load_balance and load_balance_newidle. */
3994static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3995
1da177e4
LT
3996/*
3997 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3998 * tasks if there is an imbalance.
1da177e4 3999 */
70b97a7f 4000static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4001 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4002 int *balance)
1da177e4 4003{
43010659 4004 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4005 struct sched_group *group;
1da177e4 4006 unsigned long imbalance;
70b97a7f 4007 struct rq *busiest;
fe2eea3f 4008 unsigned long flags;
df7c8e84 4009 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4010
96f874e2 4011 cpumask_setall(cpus);
7c16ec58 4012
89c4710e
SS
4013 /*
4014 * When power savings policy is enabled for the parent domain, idle
4015 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4016 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4017 * portraying it as CPU_NOT_IDLE.
89c4710e 4018 */
d15bcfdb 4019 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4020 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4021 sd_idle = 1;
1da177e4 4022
2d72376b 4023 schedstat_inc(sd, lb_count[idle]);
1da177e4 4024
0a2966b4 4025redo:
c8cba857 4026 update_shares(sd);
0a2966b4 4027 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4028 cpus, balance);
783609c6 4029
06066714 4030 if (*balance == 0)
783609c6 4031 goto out_balanced;
783609c6 4032
1da177e4
LT
4033 if (!group) {
4034 schedstat_inc(sd, lb_nobusyg[idle]);
4035 goto out_balanced;
4036 }
4037
7c16ec58 4038 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4039 if (!busiest) {
4040 schedstat_inc(sd, lb_nobusyq[idle]);
4041 goto out_balanced;
4042 }
4043
db935dbd 4044 BUG_ON(busiest == this_rq);
1da177e4
LT
4045
4046 schedstat_add(sd, lb_imbalance[idle], imbalance);
4047
43010659 4048 ld_moved = 0;
1da177e4
LT
4049 if (busiest->nr_running > 1) {
4050 /*
4051 * Attempt to move tasks. If find_busiest_group has found
4052 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4053 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4054 * correctly treated as an imbalance.
4055 */
fe2eea3f 4056 local_irq_save(flags);
e17224bf 4057 double_rq_lock(this_rq, busiest);
43010659 4058 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4059 imbalance, sd, idle, &all_pinned);
e17224bf 4060 double_rq_unlock(this_rq, busiest);
fe2eea3f 4061 local_irq_restore(flags);
81026794 4062
46cb4b7c
SS
4063 /*
4064 * some other cpu did the load balance for us.
4065 */
43010659 4066 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4067 resched_cpu(this_cpu);
4068
81026794 4069 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4070 if (unlikely(all_pinned)) {
96f874e2
RR
4071 cpumask_clear_cpu(cpu_of(busiest), cpus);
4072 if (!cpumask_empty(cpus))
0a2966b4 4073 goto redo;
81026794 4074 goto out_balanced;
0a2966b4 4075 }
1da177e4 4076 }
81026794 4077
43010659 4078 if (!ld_moved) {
1da177e4
LT
4079 schedstat_inc(sd, lb_failed[idle]);
4080 sd->nr_balance_failed++;
4081
4082 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4083
fe2eea3f 4084 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4085
4086 /* don't kick the migration_thread, if the curr
4087 * task on busiest cpu can't be moved to this_cpu
4088 */
96f874e2
RR
4089 if (!cpumask_test_cpu(this_cpu,
4090 &busiest->curr->cpus_allowed)) {
fe2eea3f 4091 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4092 all_pinned = 1;
4093 goto out_one_pinned;
4094 }
4095
1da177e4
LT
4096 if (!busiest->active_balance) {
4097 busiest->active_balance = 1;
4098 busiest->push_cpu = this_cpu;
81026794 4099 active_balance = 1;
1da177e4 4100 }
fe2eea3f 4101 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4102 if (active_balance)
1da177e4
LT
4103 wake_up_process(busiest->migration_thread);
4104
4105 /*
4106 * We've kicked active balancing, reset the failure
4107 * counter.
4108 */
39507451 4109 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4110 }
81026794 4111 } else
1da177e4
LT
4112 sd->nr_balance_failed = 0;
4113
81026794 4114 if (likely(!active_balance)) {
1da177e4
LT
4115 /* We were unbalanced, so reset the balancing interval */
4116 sd->balance_interval = sd->min_interval;
81026794
NP
4117 } else {
4118 /*
4119 * If we've begun active balancing, start to back off. This
4120 * case may not be covered by the all_pinned logic if there
4121 * is only 1 task on the busy runqueue (because we don't call
4122 * move_tasks).
4123 */
4124 if (sd->balance_interval < sd->max_interval)
4125 sd->balance_interval *= 2;
1da177e4
LT
4126 }
4127
43010659 4128 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4129 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4130 ld_moved = -1;
4131
4132 goto out;
1da177e4
LT
4133
4134out_balanced:
1da177e4
LT
4135 schedstat_inc(sd, lb_balanced[idle]);
4136
16cfb1c0 4137 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4138
4139out_one_pinned:
1da177e4 4140 /* tune up the balancing interval */
77391d71
NP
4141 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4142 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4143 sd->balance_interval *= 2;
4144
48f24c4d 4145 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4146 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4147 ld_moved = -1;
4148 else
4149 ld_moved = 0;
4150out:
c8cba857
PZ
4151 if (ld_moved)
4152 update_shares(sd);
c09595f6 4153 return ld_moved;
1da177e4
LT
4154}
4155
4156/*
4157 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4158 * tasks if there is an imbalance.
4159 *
d15bcfdb 4160 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4161 * this_rq is locked.
4162 */
48f24c4d 4163static int
df7c8e84 4164load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4165{
4166 struct sched_group *group;
70b97a7f 4167 struct rq *busiest = NULL;
1da177e4 4168 unsigned long imbalance;
43010659 4169 int ld_moved = 0;
5969fe06 4170 int sd_idle = 0;
969bb4e4 4171 int all_pinned = 0;
df7c8e84 4172 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4173
96f874e2 4174 cpumask_setall(cpus);
5969fe06 4175
89c4710e
SS
4176 /*
4177 * When power savings policy is enabled for the parent domain, idle
4178 * sibling can pick up load irrespective of busy siblings. In this case,
4179 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4180 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4181 */
4182 if (sd->flags & SD_SHARE_CPUPOWER &&
4183 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4184 sd_idle = 1;
1da177e4 4185
2d72376b 4186 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4187redo:
3e5459b4 4188 update_shares_locked(this_rq, sd);
d15bcfdb 4189 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4190 &sd_idle, cpus, NULL);
1da177e4 4191 if (!group) {
d15bcfdb 4192 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4193 goto out_balanced;
1da177e4
LT
4194 }
4195
7c16ec58 4196 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4197 if (!busiest) {
d15bcfdb 4198 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4199 goto out_balanced;
1da177e4
LT
4200 }
4201
db935dbd
NP
4202 BUG_ON(busiest == this_rq);
4203
d15bcfdb 4204 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4205
43010659 4206 ld_moved = 0;
d6d5cfaf
NP
4207 if (busiest->nr_running > 1) {
4208 /* Attempt to move tasks */
4209 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4210 /* this_rq->clock is already updated */
4211 update_rq_clock(busiest);
43010659 4212 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4213 imbalance, sd, CPU_NEWLY_IDLE,
4214 &all_pinned);
1b12bbc7 4215 double_unlock_balance(this_rq, busiest);
0a2966b4 4216
969bb4e4 4217 if (unlikely(all_pinned)) {
96f874e2
RR
4218 cpumask_clear_cpu(cpu_of(busiest), cpus);
4219 if (!cpumask_empty(cpus))
0a2966b4
CL
4220 goto redo;
4221 }
d6d5cfaf
NP
4222 }
4223
43010659 4224 if (!ld_moved) {
36dffab6 4225 int active_balance = 0;
ad273b32 4226
d15bcfdb 4227 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4228 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4229 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4230 return -1;
ad273b32
VS
4231
4232 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4233 return -1;
4234
4235 if (sd->nr_balance_failed++ < 2)
4236 return -1;
4237
4238 /*
4239 * The only task running in a non-idle cpu can be moved to this
4240 * cpu in an attempt to completely freeup the other CPU
4241 * package. The same method used to move task in load_balance()
4242 * have been extended for load_balance_newidle() to speedup
4243 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4244 *
4245 * The package power saving logic comes from
4246 * find_busiest_group(). If there are no imbalance, then
4247 * f_b_g() will return NULL. However when sched_mc={1,2} then
4248 * f_b_g() will select a group from which a running task may be
4249 * pulled to this cpu in order to make the other package idle.
4250 * If there is no opportunity to make a package idle and if
4251 * there are no imbalance, then f_b_g() will return NULL and no
4252 * action will be taken in load_balance_newidle().
4253 *
4254 * Under normal task pull operation due to imbalance, there
4255 * will be more than one task in the source run queue and
4256 * move_tasks() will succeed. ld_moved will be true and this
4257 * active balance code will not be triggered.
4258 */
4259
4260 /* Lock busiest in correct order while this_rq is held */
4261 double_lock_balance(this_rq, busiest);
4262
4263 /*
4264 * don't kick the migration_thread, if the curr
4265 * task on busiest cpu can't be moved to this_cpu
4266 */
6ca09dfc 4267 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4268 double_unlock_balance(this_rq, busiest);
4269 all_pinned = 1;
4270 return ld_moved;
4271 }
4272
4273 if (!busiest->active_balance) {
4274 busiest->active_balance = 1;
4275 busiest->push_cpu = this_cpu;
4276 active_balance = 1;
4277 }
4278
4279 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4280 /*
4281 * Should not call ttwu while holding a rq->lock
4282 */
4283 spin_unlock(&this_rq->lock);
ad273b32
VS
4284 if (active_balance)
4285 wake_up_process(busiest->migration_thread);
da8d5089 4286 spin_lock(&this_rq->lock);
ad273b32 4287
5969fe06 4288 } else
16cfb1c0 4289 sd->nr_balance_failed = 0;
1da177e4 4290
3e5459b4 4291 update_shares_locked(this_rq, sd);
43010659 4292 return ld_moved;
16cfb1c0
NP
4293
4294out_balanced:
d15bcfdb 4295 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4296 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4297 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4298 return -1;
16cfb1c0 4299 sd->nr_balance_failed = 0;
48f24c4d 4300
16cfb1c0 4301 return 0;
1da177e4
LT
4302}
4303
4304/*
4305 * idle_balance is called by schedule() if this_cpu is about to become
4306 * idle. Attempts to pull tasks from other CPUs.
4307 */
70b97a7f 4308static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4309{
4310 struct sched_domain *sd;
efbe027e 4311 int pulled_task = 0;
dd41f596 4312 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4313
4314 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4315 unsigned long interval;
4316
4317 if (!(sd->flags & SD_LOAD_BALANCE))
4318 continue;
4319
4320 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4321 /* If we've pulled tasks over stop searching: */
7c16ec58 4322 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4323 sd);
92c4ca5c
CL
4324
4325 interval = msecs_to_jiffies(sd->balance_interval);
4326 if (time_after(next_balance, sd->last_balance + interval))
4327 next_balance = sd->last_balance + interval;
4328 if (pulled_task)
4329 break;
1da177e4 4330 }
dd41f596 4331 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4332 /*
4333 * We are going idle. next_balance may be set based on
4334 * a busy processor. So reset next_balance.
4335 */
4336 this_rq->next_balance = next_balance;
dd41f596 4337 }
1da177e4
LT
4338}
4339
4340/*
4341 * active_load_balance is run by migration threads. It pushes running tasks
4342 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4343 * running on each physical CPU where possible, and avoids physical /
4344 * logical imbalances.
4345 *
4346 * Called with busiest_rq locked.
4347 */
70b97a7f 4348static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4349{
39507451 4350 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4351 struct sched_domain *sd;
4352 struct rq *target_rq;
39507451 4353
48f24c4d 4354 /* Is there any task to move? */
39507451 4355 if (busiest_rq->nr_running <= 1)
39507451
NP
4356 return;
4357
4358 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4359
4360 /*
39507451 4361 * This condition is "impossible", if it occurs
41a2d6cf 4362 * we need to fix it. Originally reported by
39507451 4363 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4364 */
39507451 4365 BUG_ON(busiest_rq == target_rq);
1da177e4 4366
39507451
NP
4367 /* move a task from busiest_rq to target_rq */
4368 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4369 update_rq_clock(busiest_rq);
4370 update_rq_clock(target_rq);
39507451
NP
4371
4372 /* Search for an sd spanning us and the target CPU. */
c96d145e 4373 for_each_domain(target_cpu, sd) {
39507451 4374 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4375 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4376 break;
c96d145e 4377 }
39507451 4378
48f24c4d 4379 if (likely(sd)) {
2d72376b 4380 schedstat_inc(sd, alb_count);
39507451 4381
43010659
PW
4382 if (move_one_task(target_rq, target_cpu, busiest_rq,
4383 sd, CPU_IDLE))
48f24c4d
IM
4384 schedstat_inc(sd, alb_pushed);
4385 else
4386 schedstat_inc(sd, alb_failed);
4387 }
1b12bbc7 4388 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4389}
4390
46cb4b7c
SS
4391#ifdef CONFIG_NO_HZ
4392static struct {
4393 atomic_t load_balancer;
7d1e6a9b 4394 cpumask_var_t cpu_mask;
f711f609 4395 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4396} nohz ____cacheline_aligned = {
4397 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4398};
4399
f711f609
GS
4400#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4401/**
4402 * lowest_flag_domain - Return lowest sched_domain containing flag.
4403 * @cpu: The cpu whose lowest level of sched domain is to
4404 * be returned.
4405 * @flag: The flag to check for the lowest sched_domain
4406 * for the given cpu.
4407 *
4408 * Returns the lowest sched_domain of a cpu which contains the given flag.
4409 */
4410static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4411{
4412 struct sched_domain *sd;
4413
4414 for_each_domain(cpu, sd)
4415 if (sd && (sd->flags & flag))
4416 break;
4417
4418 return sd;
4419}
4420
4421/**
4422 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4423 * @cpu: The cpu whose domains we're iterating over.
4424 * @sd: variable holding the value of the power_savings_sd
4425 * for cpu.
4426 * @flag: The flag to filter the sched_domains to be iterated.
4427 *
4428 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4429 * set, starting from the lowest sched_domain to the highest.
4430 */
4431#define for_each_flag_domain(cpu, sd, flag) \
4432 for (sd = lowest_flag_domain(cpu, flag); \
4433 (sd && (sd->flags & flag)); sd = sd->parent)
4434
4435/**
4436 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4437 * @ilb_group: group to be checked for semi-idleness
4438 *
4439 * Returns: 1 if the group is semi-idle. 0 otherwise.
4440 *
4441 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4442 * and atleast one non-idle CPU. This helper function checks if the given
4443 * sched_group is semi-idle or not.
4444 */
4445static inline int is_semi_idle_group(struct sched_group *ilb_group)
4446{
4447 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4448 sched_group_cpus(ilb_group));
4449
4450 /*
4451 * A sched_group is semi-idle when it has atleast one busy cpu
4452 * and atleast one idle cpu.
4453 */
4454 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4455 return 0;
4456
4457 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4458 return 0;
4459
4460 return 1;
4461}
4462/**
4463 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4464 * @cpu: The cpu which is nominating a new idle_load_balancer.
4465 *
4466 * Returns: Returns the id of the idle load balancer if it exists,
4467 * Else, returns >= nr_cpu_ids.
4468 *
4469 * This algorithm picks the idle load balancer such that it belongs to a
4470 * semi-idle powersavings sched_domain. The idea is to try and avoid
4471 * completely idle packages/cores just for the purpose of idle load balancing
4472 * when there are other idle cpu's which are better suited for that job.
4473 */
4474static int find_new_ilb(int cpu)
4475{
4476 struct sched_domain *sd;
4477 struct sched_group *ilb_group;
4478
4479 /*
4480 * Have idle load balancer selection from semi-idle packages only
4481 * when power-aware load balancing is enabled
4482 */
4483 if (!(sched_smt_power_savings || sched_mc_power_savings))
4484 goto out_done;
4485
4486 /*
4487 * Optimize for the case when we have no idle CPUs or only one
4488 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4489 */
4490 if (cpumask_weight(nohz.cpu_mask) < 2)
4491 goto out_done;
4492
4493 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4494 ilb_group = sd->groups;
4495
4496 do {
4497 if (is_semi_idle_group(ilb_group))
4498 return cpumask_first(nohz.ilb_grp_nohz_mask);
4499
4500 ilb_group = ilb_group->next;
4501
4502 } while (ilb_group != sd->groups);
4503 }
4504
4505out_done:
4506 return cpumask_first(nohz.cpu_mask);
4507}
4508#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4509static inline int find_new_ilb(int call_cpu)
4510{
6e29ec57 4511 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4512}
4513#endif
4514
7835b98b 4515/*
46cb4b7c
SS
4516 * This routine will try to nominate the ilb (idle load balancing)
4517 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4518 * load balancing on behalf of all those cpus. If all the cpus in the system
4519 * go into this tickless mode, then there will be no ilb owner (as there is
4520 * no need for one) and all the cpus will sleep till the next wakeup event
4521 * arrives...
4522 *
4523 * For the ilb owner, tick is not stopped. And this tick will be used
4524 * for idle load balancing. ilb owner will still be part of
4525 * nohz.cpu_mask..
7835b98b 4526 *
46cb4b7c
SS
4527 * While stopping the tick, this cpu will become the ilb owner if there
4528 * is no other owner. And will be the owner till that cpu becomes busy
4529 * or if all cpus in the system stop their ticks at which point
4530 * there is no need for ilb owner.
4531 *
4532 * When the ilb owner becomes busy, it nominates another owner, during the
4533 * next busy scheduler_tick()
4534 */
4535int select_nohz_load_balancer(int stop_tick)
4536{
4537 int cpu = smp_processor_id();
4538
4539 if (stop_tick) {
46cb4b7c
SS
4540 cpu_rq(cpu)->in_nohz_recently = 1;
4541
483b4ee6
SS
4542 if (!cpu_active(cpu)) {
4543 if (atomic_read(&nohz.load_balancer) != cpu)
4544 return 0;
4545
4546 /*
4547 * If we are going offline and still the leader,
4548 * give up!
4549 */
46cb4b7c
SS
4550 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4551 BUG();
483b4ee6 4552
46cb4b7c
SS
4553 return 0;
4554 }
4555
483b4ee6
SS
4556 cpumask_set_cpu(cpu, nohz.cpu_mask);
4557
46cb4b7c 4558 /* time for ilb owner also to sleep */
7d1e6a9b 4559 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4560 if (atomic_read(&nohz.load_balancer) == cpu)
4561 atomic_set(&nohz.load_balancer, -1);
4562 return 0;
4563 }
4564
4565 if (atomic_read(&nohz.load_balancer) == -1) {
4566 /* make me the ilb owner */
4567 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4568 return 1;
e790fb0b
GS
4569 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4570 int new_ilb;
4571
4572 if (!(sched_smt_power_savings ||
4573 sched_mc_power_savings))
4574 return 1;
4575 /*
4576 * Check to see if there is a more power-efficient
4577 * ilb.
4578 */
4579 new_ilb = find_new_ilb(cpu);
4580 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4581 atomic_set(&nohz.load_balancer, -1);
4582 resched_cpu(new_ilb);
4583 return 0;
4584 }
46cb4b7c 4585 return 1;
e790fb0b 4586 }
46cb4b7c 4587 } else {
7d1e6a9b 4588 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4589 return 0;
4590
7d1e6a9b 4591 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4592
4593 if (atomic_read(&nohz.load_balancer) == cpu)
4594 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4595 BUG();
4596 }
4597 return 0;
4598}
4599#endif
4600
4601static DEFINE_SPINLOCK(balancing);
4602
4603/*
7835b98b
CL
4604 * It checks each scheduling domain to see if it is due to be balanced,
4605 * and initiates a balancing operation if so.
4606 *
4607 * Balancing parameters are set up in arch_init_sched_domains.
4608 */
a9957449 4609static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4610{
46cb4b7c
SS
4611 int balance = 1;
4612 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4613 unsigned long interval;
4614 struct sched_domain *sd;
46cb4b7c 4615 /* Earliest time when we have to do rebalance again */
c9819f45 4616 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4617 int update_next_balance = 0;
d07355f5 4618 int need_serialize;
1da177e4 4619
46cb4b7c 4620 for_each_domain(cpu, sd) {
1da177e4
LT
4621 if (!(sd->flags & SD_LOAD_BALANCE))
4622 continue;
4623
4624 interval = sd->balance_interval;
d15bcfdb 4625 if (idle != CPU_IDLE)
1da177e4
LT
4626 interval *= sd->busy_factor;
4627
4628 /* scale ms to jiffies */
4629 interval = msecs_to_jiffies(interval);
4630 if (unlikely(!interval))
4631 interval = 1;
dd41f596
IM
4632 if (interval > HZ*NR_CPUS/10)
4633 interval = HZ*NR_CPUS/10;
4634
d07355f5 4635 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4636
d07355f5 4637 if (need_serialize) {
08c183f3
CL
4638 if (!spin_trylock(&balancing))
4639 goto out;
4640 }
4641
c9819f45 4642 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4643 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4644 /*
4645 * We've pulled tasks over so either we're no
5969fe06
NP
4646 * longer idle, or one of our SMT siblings is
4647 * not idle.
4648 */
d15bcfdb 4649 idle = CPU_NOT_IDLE;
1da177e4 4650 }
1bd77f2d 4651 sd->last_balance = jiffies;
1da177e4 4652 }
d07355f5 4653 if (need_serialize)
08c183f3
CL
4654 spin_unlock(&balancing);
4655out:
f549da84 4656 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4657 next_balance = sd->last_balance + interval;
f549da84
SS
4658 update_next_balance = 1;
4659 }
783609c6
SS
4660
4661 /*
4662 * Stop the load balance at this level. There is another
4663 * CPU in our sched group which is doing load balancing more
4664 * actively.
4665 */
4666 if (!balance)
4667 break;
1da177e4 4668 }
f549da84
SS
4669
4670 /*
4671 * next_balance will be updated only when there is a need.
4672 * When the cpu is attached to null domain for ex, it will not be
4673 * updated.
4674 */
4675 if (likely(update_next_balance))
4676 rq->next_balance = next_balance;
46cb4b7c
SS
4677}
4678
4679/*
4680 * run_rebalance_domains is triggered when needed from the scheduler tick.
4681 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4682 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4683 */
4684static void run_rebalance_domains(struct softirq_action *h)
4685{
dd41f596
IM
4686 int this_cpu = smp_processor_id();
4687 struct rq *this_rq = cpu_rq(this_cpu);
4688 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4689 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4690
dd41f596 4691 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4692
4693#ifdef CONFIG_NO_HZ
4694 /*
4695 * If this cpu is the owner for idle load balancing, then do the
4696 * balancing on behalf of the other idle cpus whose ticks are
4697 * stopped.
4698 */
dd41f596
IM
4699 if (this_rq->idle_at_tick &&
4700 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4701 struct rq *rq;
4702 int balance_cpu;
4703
7d1e6a9b
RR
4704 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4705 if (balance_cpu == this_cpu)
4706 continue;
4707
46cb4b7c
SS
4708 /*
4709 * If this cpu gets work to do, stop the load balancing
4710 * work being done for other cpus. Next load
4711 * balancing owner will pick it up.
4712 */
4713 if (need_resched())
4714 break;
4715
de0cf899 4716 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4717
4718 rq = cpu_rq(balance_cpu);
dd41f596
IM
4719 if (time_after(this_rq->next_balance, rq->next_balance))
4720 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4721 }
4722 }
4723#endif
4724}
4725
8a0be9ef
FW
4726static inline int on_null_domain(int cpu)
4727{
4728 return !rcu_dereference(cpu_rq(cpu)->sd);
4729}
4730
46cb4b7c
SS
4731/*
4732 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4733 *
4734 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4735 * idle load balancing owner or decide to stop the periodic load balancing,
4736 * if the whole system is idle.
4737 */
dd41f596 4738static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4739{
46cb4b7c
SS
4740#ifdef CONFIG_NO_HZ
4741 /*
4742 * If we were in the nohz mode recently and busy at the current
4743 * scheduler tick, then check if we need to nominate new idle
4744 * load balancer.
4745 */
4746 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4747 rq->in_nohz_recently = 0;
4748
4749 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4750 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4751 atomic_set(&nohz.load_balancer, -1);
4752 }
4753
4754 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4755 int ilb = find_new_ilb(cpu);
46cb4b7c 4756
434d53b0 4757 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4758 resched_cpu(ilb);
4759 }
4760 }
4761
4762 /*
4763 * If this cpu is idle and doing idle load balancing for all the
4764 * cpus with ticks stopped, is it time for that to stop?
4765 */
4766 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4767 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4768 resched_cpu(cpu);
4769 return;
4770 }
4771
4772 /*
4773 * If this cpu is idle and the idle load balancing is done by
4774 * someone else, then no need raise the SCHED_SOFTIRQ
4775 */
4776 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4777 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4778 return;
4779#endif
8a0be9ef
FW
4780 /* Don't need to rebalance while attached to NULL domain */
4781 if (time_after_eq(jiffies, rq->next_balance) &&
4782 likely(!on_null_domain(cpu)))
46cb4b7c 4783 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4784}
dd41f596
IM
4785
4786#else /* CONFIG_SMP */
4787
1da177e4
LT
4788/*
4789 * on UP we do not need to balance between CPUs:
4790 */
70b97a7f 4791static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4792{
4793}
dd41f596 4794
1da177e4
LT
4795#endif
4796
1da177e4
LT
4797DEFINE_PER_CPU(struct kernel_stat, kstat);
4798
4799EXPORT_PER_CPU_SYMBOL(kstat);
4800
4801/*
c5f8d995 4802 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4803 * @p in case that task is currently running.
c5f8d995
HS
4804 *
4805 * Called with task_rq_lock() held on @rq.
1da177e4 4806 */
c5f8d995
HS
4807static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4808{
4809 u64 ns = 0;
4810
4811 if (task_current(rq, p)) {
4812 update_rq_clock(rq);
4813 ns = rq->clock - p->se.exec_start;
4814 if ((s64)ns < 0)
4815 ns = 0;
4816 }
4817
4818 return ns;
4819}
4820
bb34d92f 4821unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4822{
1da177e4 4823 unsigned long flags;
41b86e9c 4824 struct rq *rq;
bb34d92f 4825 u64 ns = 0;
48f24c4d 4826
41b86e9c 4827 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4828 ns = do_task_delta_exec(p, rq);
4829 task_rq_unlock(rq, &flags);
1508487e 4830
c5f8d995
HS
4831 return ns;
4832}
f06febc9 4833
c5f8d995
HS
4834/*
4835 * Return accounted runtime for the task.
4836 * In case the task is currently running, return the runtime plus current's
4837 * pending runtime that have not been accounted yet.
4838 */
4839unsigned long long task_sched_runtime(struct task_struct *p)
4840{
4841 unsigned long flags;
4842 struct rq *rq;
4843 u64 ns = 0;
4844
4845 rq = task_rq_lock(p, &flags);
4846 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4847 task_rq_unlock(rq, &flags);
4848
4849 return ns;
4850}
48f24c4d 4851
c5f8d995
HS
4852/*
4853 * Return sum_exec_runtime for the thread group.
4854 * In case the task is currently running, return the sum plus current's
4855 * pending runtime that have not been accounted yet.
4856 *
4857 * Note that the thread group might have other running tasks as well,
4858 * so the return value not includes other pending runtime that other
4859 * running tasks might have.
4860 */
4861unsigned long long thread_group_sched_runtime(struct task_struct *p)
4862{
4863 struct task_cputime totals;
4864 unsigned long flags;
4865 struct rq *rq;
4866 u64 ns;
4867
4868 rq = task_rq_lock(p, &flags);
4869 thread_group_cputime(p, &totals);
4870 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4871 task_rq_unlock(rq, &flags);
48f24c4d 4872
1da177e4
LT
4873 return ns;
4874}
4875
1da177e4
LT
4876/*
4877 * Account user cpu time to a process.
4878 * @p: the process that the cpu time gets accounted to
1da177e4 4879 * @cputime: the cpu time spent in user space since the last update
457533a7 4880 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4881 */
457533a7
MS
4882void account_user_time(struct task_struct *p, cputime_t cputime,
4883 cputime_t cputime_scaled)
1da177e4
LT
4884{
4885 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4886 cputime64_t tmp;
4887
457533a7 4888 /* Add user time to process. */
1da177e4 4889 p->utime = cputime_add(p->utime, cputime);
457533a7 4890 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4891 account_group_user_time(p, cputime);
1da177e4
LT
4892
4893 /* Add user time to cpustat. */
4894 tmp = cputime_to_cputime64(cputime);
4895 if (TASK_NICE(p) > 0)
4896 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4897 else
4898 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4899
4900 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4901 /* Account for user time used */
4902 acct_update_integrals(p);
1da177e4
LT
4903}
4904
94886b84
LV
4905/*
4906 * Account guest cpu time to a process.
4907 * @p: the process that the cpu time gets accounted to
4908 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4909 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4910 */
457533a7
MS
4911static void account_guest_time(struct task_struct *p, cputime_t cputime,
4912 cputime_t cputime_scaled)
94886b84
LV
4913{
4914 cputime64_t tmp;
4915 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4916
4917 tmp = cputime_to_cputime64(cputime);
4918
457533a7 4919 /* Add guest time to process. */
94886b84 4920 p->utime = cputime_add(p->utime, cputime);
457533a7 4921 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4922 account_group_user_time(p, cputime);
94886b84
LV
4923 p->gtime = cputime_add(p->gtime, cputime);
4924
457533a7 4925 /* Add guest time to cpustat. */
94886b84
LV
4926 cpustat->user = cputime64_add(cpustat->user, tmp);
4927 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4928}
4929
1da177e4
LT
4930/*
4931 * Account system cpu time to a process.
4932 * @p: the process that the cpu time gets accounted to
4933 * @hardirq_offset: the offset to subtract from hardirq_count()
4934 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4935 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4936 */
4937void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4938 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4939{
4940 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4941 cputime64_t tmp;
4942
983ed7a6 4943 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4944 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4945 return;
4946 }
94886b84 4947
457533a7 4948 /* Add system time to process. */
1da177e4 4949 p->stime = cputime_add(p->stime, cputime);
457533a7 4950 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4951 account_group_system_time(p, cputime);
1da177e4
LT
4952
4953 /* Add system time to cpustat. */
4954 tmp = cputime_to_cputime64(cputime);
4955 if (hardirq_count() - hardirq_offset)
4956 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4957 else if (softirq_count())
4958 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4959 else
79741dd3
MS
4960 cpustat->system = cputime64_add(cpustat->system, tmp);
4961
ef12fefa
BR
4962 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4963
1da177e4
LT
4964 /* Account for system time used */
4965 acct_update_integrals(p);
1da177e4
LT
4966}
4967
c66f08be 4968/*
1da177e4 4969 * Account for involuntary wait time.
1da177e4 4970 * @steal: the cpu time spent in involuntary wait
c66f08be 4971 */
79741dd3 4972void account_steal_time(cputime_t cputime)
c66f08be 4973{
79741dd3
MS
4974 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4975 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4976
4977 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4978}
4979
1da177e4 4980/*
79741dd3
MS
4981 * Account for idle time.
4982 * @cputime: the cpu time spent in idle wait
1da177e4 4983 */
79741dd3 4984void account_idle_time(cputime_t cputime)
1da177e4
LT
4985{
4986 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4987 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4988 struct rq *rq = this_rq();
1da177e4 4989
79741dd3
MS
4990 if (atomic_read(&rq->nr_iowait) > 0)
4991 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4992 else
4993 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4994}
4995
79741dd3
MS
4996#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4997
4998/*
4999 * Account a single tick of cpu time.
5000 * @p: the process that the cpu time gets accounted to
5001 * @user_tick: indicates if the tick is a user or a system tick
5002 */
5003void account_process_tick(struct task_struct *p, int user_tick)
5004{
5005 cputime_t one_jiffy = jiffies_to_cputime(1);
5006 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5007 struct rq *rq = this_rq();
5008
5009 if (user_tick)
5010 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5011 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5012 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5013 one_jiffy_scaled);
5014 else
5015 account_idle_time(one_jiffy);
5016}
5017
5018/*
5019 * Account multiple ticks of steal time.
5020 * @p: the process from which the cpu time has been stolen
5021 * @ticks: number of stolen ticks
5022 */
5023void account_steal_ticks(unsigned long ticks)
5024{
5025 account_steal_time(jiffies_to_cputime(ticks));
5026}
5027
5028/*
5029 * Account multiple ticks of idle time.
5030 * @ticks: number of stolen ticks
5031 */
5032void account_idle_ticks(unsigned long ticks)
5033{
5034 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5035}
5036
79741dd3
MS
5037#endif
5038
49048622
BS
5039/*
5040 * Use precise platform statistics if available:
5041 */
5042#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5043cputime_t task_utime(struct task_struct *p)
5044{
5045 return p->utime;
5046}
5047
5048cputime_t task_stime(struct task_struct *p)
5049{
5050 return p->stime;
5051}
5052#else
5053cputime_t task_utime(struct task_struct *p)
5054{
5055 clock_t utime = cputime_to_clock_t(p->utime),
5056 total = utime + cputime_to_clock_t(p->stime);
5057 u64 temp;
5058
5059 /*
5060 * Use CFS's precise accounting:
5061 */
5062 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5063
5064 if (total) {
5065 temp *= utime;
5066 do_div(temp, total);
5067 }
5068 utime = (clock_t)temp;
5069
5070 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5071 return p->prev_utime;
5072}
5073
5074cputime_t task_stime(struct task_struct *p)
5075{
5076 clock_t stime;
5077
5078 /*
5079 * Use CFS's precise accounting. (we subtract utime from
5080 * the total, to make sure the total observed by userspace
5081 * grows monotonically - apps rely on that):
5082 */
5083 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5084 cputime_to_clock_t(task_utime(p));
5085
5086 if (stime >= 0)
5087 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5088
5089 return p->prev_stime;
5090}
5091#endif
5092
5093inline cputime_t task_gtime(struct task_struct *p)
5094{
5095 return p->gtime;
5096}
5097
7835b98b
CL
5098/*
5099 * This function gets called by the timer code, with HZ frequency.
5100 * We call it with interrupts disabled.
5101 *
5102 * It also gets called by the fork code, when changing the parent's
5103 * timeslices.
5104 */
5105void scheduler_tick(void)
5106{
7835b98b
CL
5107 int cpu = smp_processor_id();
5108 struct rq *rq = cpu_rq(cpu);
dd41f596 5109 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5110
5111 sched_clock_tick();
dd41f596
IM
5112
5113 spin_lock(&rq->lock);
3e51f33f 5114 update_rq_clock(rq);
f1a438d8 5115 update_cpu_load(rq);
fa85ae24 5116 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5117 spin_unlock(&rq->lock);
7835b98b 5118
e220d2dc
PZ
5119 perf_counter_task_tick(curr, cpu);
5120
e418e1c2 5121#ifdef CONFIG_SMP
dd41f596
IM
5122 rq->idle_at_tick = idle_cpu(cpu);
5123 trigger_load_balance(rq, cpu);
e418e1c2 5124#endif
1da177e4
LT
5125}
5126
132380a0 5127notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5128{
5129 if (in_lock_functions(addr)) {
5130 addr = CALLER_ADDR2;
5131 if (in_lock_functions(addr))
5132 addr = CALLER_ADDR3;
5133 }
5134 return addr;
5135}
1da177e4 5136
7e49fcce
SR
5137#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5138 defined(CONFIG_PREEMPT_TRACER))
5139
43627582 5140void __kprobes add_preempt_count(int val)
1da177e4 5141{
6cd8a4bb 5142#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5143 /*
5144 * Underflow?
5145 */
9a11b49a
IM
5146 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5147 return;
6cd8a4bb 5148#endif
1da177e4 5149 preempt_count() += val;
6cd8a4bb 5150#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5151 /*
5152 * Spinlock count overflowing soon?
5153 */
33859f7f
MOS
5154 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5155 PREEMPT_MASK - 10);
6cd8a4bb
SR
5156#endif
5157 if (preempt_count() == val)
5158 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5159}
5160EXPORT_SYMBOL(add_preempt_count);
5161
43627582 5162void __kprobes sub_preempt_count(int val)
1da177e4 5163{
6cd8a4bb 5164#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5165 /*
5166 * Underflow?
5167 */
01e3eb82 5168 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5169 return;
1da177e4
LT
5170 /*
5171 * Is the spinlock portion underflowing?
5172 */
9a11b49a
IM
5173 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5174 !(preempt_count() & PREEMPT_MASK)))
5175 return;
6cd8a4bb 5176#endif
9a11b49a 5177
6cd8a4bb
SR
5178 if (preempt_count() == val)
5179 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5180 preempt_count() -= val;
5181}
5182EXPORT_SYMBOL(sub_preempt_count);
5183
5184#endif
5185
5186/*
dd41f596 5187 * Print scheduling while atomic bug:
1da177e4 5188 */
dd41f596 5189static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5190{
838225b4
SS
5191 struct pt_regs *regs = get_irq_regs();
5192
5193 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5194 prev->comm, prev->pid, preempt_count());
5195
dd41f596 5196 debug_show_held_locks(prev);
e21f5b15 5197 print_modules();
dd41f596
IM
5198 if (irqs_disabled())
5199 print_irqtrace_events(prev);
838225b4
SS
5200
5201 if (regs)
5202 show_regs(regs);
5203 else
5204 dump_stack();
dd41f596 5205}
1da177e4 5206
dd41f596
IM
5207/*
5208 * Various schedule()-time debugging checks and statistics:
5209 */
5210static inline void schedule_debug(struct task_struct *prev)
5211{
1da177e4 5212 /*
41a2d6cf 5213 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5214 * schedule() atomically, we ignore that path for now.
5215 * Otherwise, whine if we are scheduling when we should not be.
5216 */
3f33a7ce 5217 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5218 __schedule_bug(prev);
5219
1da177e4
LT
5220 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5221
2d72376b 5222 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5223#ifdef CONFIG_SCHEDSTATS
5224 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5225 schedstat_inc(this_rq(), bkl_count);
5226 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5227 }
5228#endif
dd41f596
IM
5229}
5230
df1c99d4
MG
5231static void put_prev_task(struct rq *rq, struct task_struct *prev)
5232{
5233 if (prev->state == TASK_RUNNING) {
5234 u64 runtime = prev->se.sum_exec_runtime;
5235
5236 runtime -= prev->se.prev_sum_exec_runtime;
5237 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5238
5239 /*
5240 * In order to avoid avg_overlap growing stale when we are
5241 * indeed overlapping and hence not getting put to sleep, grow
5242 * the avg_overlap on preemption.
5243 *
5244 * We use the average preemption runtime because that
5245 * correlates to the amount of cache footprint a task can
5246 * build up.
5247 */
5248 update_avg(&prev->se.avg_overlap, runtime);
5249 }
5250 prev->sched_class->put_prev_task(rq, prev);
5251}
5252
dd41f596
IM
5253/*
5254 * Pick up the highest-prio task:
5255 */
5256static inline struct task_struct *
b67802ea 5257pick_next_task(struct rq *rq)
dd41f596 5258{
5522d5d5 5259 const struct sched_class *class;
dd41f596 5260 struct task_struct *p;
1da177e4
LT
5261
5262 /*
dd41f596
IM
5263 * Optimization: we know that if all tasks are in
5264 * the fair class we can call that function directly:
1da177e4 5265 */
dd41f596 5266 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5267 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5268 if (likely(p))
5269 return p;
1da177e4
LT
5270 }
5271
dd41f596
IM
5272 class = sched_class_highest;
5273 for ( ; ; ) {
fb8d4724 5274 p = class->pick_next_task(rq);
dd41f596
IM
5275 if (p)
5276 return p;
5277 /*
5278 * Will never be NULL as the idle class always
5279 * returns a non-NULL p:
5280 */
5281 class = class->next;
5282 }
5283}
1da177e4 5284
dd41f596
IM
5285/*
5286 * schedule() is the main scheduler function.
5287 */
ff743345 5288asmlinkage void __sched schedule(void)
dd41f596
IM
5289{
5290 struct task_struct *prev, *next;
67ca7bde 5291 unsigned long *switch_count;
dd41f596 5292 struct rq *rq;
31656519 5293 int cpu;
dd41f596 5294
ff743345
PZ
5295need_resched:
5296 preempt_disable();
dd41f596
IM
5297 cpu = smp_processor_id();
5298 rq = cpu_rq(cpu);
5299 rcu_qsctr_inc(cpu);
5300 prev = rq->curr;
5301 switch_count = &prev->nivcsw;
5302
5303 release_kernel_lock(prev);
5304need_resched_nonpreemptible:
5305
5306 schedule_debug(prev);
1da177e4 5307
31656519 5308 if (sched_feat(HRTICK))
f333fdc9 5309 hrtick_clear(rq);
8f4d37ec 5310
8cd162ce 5311 spin_lock_irq(&rq->lock);
3e51f33f 5312 update_rq_clock(rq);
1e819950 5313 clear_tsk_need_resched(prev);
1da177e4 5314
1da177e4 5315 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5316 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5317 prev->state = TASK_RUNNING;
16882c1e 5318 else
2e1cb74a 5319 deactivate_task(rq, prev, 1);
dd41f596 5320 switch_count = &prev->nvcsw;
1da177e4
LT
5321 }
5322
9a897c5a
SR
5323#ifdef CONFIG_SMP
5324 if (prev->sched_class->pre_schedule)
5325 prev->sched_class->pre_schedule(rq, prev);
5326#endif
f65eda4f 5327
dd41f596 5328 if (unlikely(!rq->nr_running))
1da177e4 5329 idle_balance(cpu, rq);
1da177e4 5330
df1c99d4 5331 put_prev_task(rq, prev);
b67802ea 5332 next = pick_next_task(rq);
1da177e4 5333
1da177e4 5334 if (likely(prev != next)) {
673a90a1 5335 sched_info_switch(prev, next);
564c2b21 5336 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5337
1da177e4
LT
5338 rq->nr_switches++;
5339 rq->curr = next;
5340 ++*switch_count;
5341
dd41f596 5342 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5343 /*
5344 * the context switch might have flipped the stack from under
5345 * us, hence refresh the local variables.
5346 */
5347 cpu = smp_processor_id();
5348 rq = cpu_rq(cpu);
1da177e4
LT
5349 } else
5350 spin_unlock_irq(&rq->lock);
5351
8f4d37ec 5352 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5353 goto need_resched_nonpreemptible;
8f4d37ec 5354
1da177e4 5355 preempt_enable_no_resched();
ff743345 5356 if (need_resched())
1da177e4
LT
5357 goto need_resched;
5358}
1da177e4
LT
5359EXPORT_SYMBOL(schedule);
5360
0d66bf6d
PZ
5361#ifdef CONFIG_SMP
5362/*
5363 * Look out! "owner" is an entirely speculative pointer
5364 * access and not reliable.
5365 */
5366int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5367{
5368 unsigned int cpu;
5369 struct rq *rq;
5370
5371 if (!sched_feat(OWNER_SPIN))
5372 return 0;
5373
5374#ifdef CONFIG_DEBUG_PAGEALLOC
5375 /*
5376 * Need to access the cpu field knowing that
5377 * DEBUG_PAGEALLOC could have unmapped it if
5378 * the mutex owner just released it and exited.
5379 */
5380 if (probe_kernel_address(&owner->cpu, cpu))
5381 goto out;
5382#else
5383 cpu = owner->cpu;
5384#endif
5385
5386 /*
5387 * Even if the access succeeded (likely case),
5388 * the cpu field may no longer be valid.
5389 */
5390 if (cpu >= nr_cpumask_bits)
5391 goto out;
5392
5393 /*
5394 * We need to validate that we can do a
5395 * get_cpu() and that we have the percpu area.
5396 */
5397 if (!cpu_online(cpu))
5398 goto out;
5399
5400 rq = cpu_rq(cpu);
5401
5402 for (;;) {
5403 /*
5404 * Owner changed, break to re-assess state.
5405 */
5406 if (lock->owner != owner)
5407 break;
5408
5409 /*
5410 * Is that owner really running on that cpu?
5411 */
5412 if (task_thread_info(rq->curr) != owner || need_resched())
5413 return 0;
5414
5415 cpu_relax();
5416 }
5417out:
5418 return 1;
5419}
5420#endif
5421
1da177e4
LT
5422#ifdef CONFIG_PREEMPT
5423/*
2ed6e34f 5424 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5425 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5426 * occur there and call schedule directly.
5427 */
5428asmlinkage void __sched preempt_schedule(void)
5429{
5430 struct thread_info *ti = current_thread_info();
6478d880 5431
1da177e4
LT
5432 /*
5433 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5434 * we do not want to preempt the current task. Just return..
1da177e4 5435 */
beed33a8 5436 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5437 return;
5438
3a5c359a
AK
5439 do {
5440 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5441 schedule();
3a5c359a 5442 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5443
3a5c359a
AK
5444 /*
5445 * Check again in case we missed a preemption opportunity
5446 * between schedule and now.
5447 */
5448 barrier();
5ed0cec0 5449 } while (need_resched());
1da177e4 5450}
1da177e4
LT
5451EXPORT_SYMBOL(preempt_schedule);
5452
5453/*
2ed6e34f 5454 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5455 * off of irq context.
5456 * Note, that this is called and return with irqs disabled. This will
5457 * protect us against recursive calling from irq.
5458 */
5459asmlinkage void __sched preempt_schedule_irq(void)
5460{
5461 struct thread_info *ti = current_thread_info();
6478d880 5462
2ed6e34f 5463 /* Catch callers which need to be fixed */
1da177e4
LT
5464 BUG_ON(ti->preempt_count || !irqs_disabled());
5465
3a5c359a
AK
5466 do {
5467 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5468 local_irq_enable();
5469 schedule();
5470 local_irq_disable();
3a5c359a 5471 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5472
3a5c359a
AK
5473 /*
5474 * Check again in case we missed a preemption opportunity
5475 * between schedule and now.
5476 */
5477 barrier();
5ed0cec0 5478 } while (need_resched());
1da177e4
LT
5479}
5480
5481#endif /* CONFIG_PREEMPT */
5482
95cdf3b7
IM
5483int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5484 void *key)
1da177e4 5485{
48f24c4d 5486 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5487}
1da177e4
LT
5488EXPORT_SYMBOL(default_wake_function);
5489
5490/*
41a2d6cf
IM
5491 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5492 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5493 * number) then we wake all the non-exclusive tasks and one exclusive task.
5494 *
5495 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5496 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5497 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5498 */
78ddb08f 5499static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5500 int nr_exclusive, int sync, void *key)
1da177e4 5501{
2e45874c 5502 wait_queue_t *curr, *next;
1da177e4 5503
2e45874c 5504 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5505 unsigned flags = curr->flags;
5506
1da177e4 5507 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5508 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5509 break;
5510 }
5511}
5512
5513/**
5514 * __wake_up - wake up threads blocked on a waitqueue.
5515 * @q: the waitqueue
5516 * @mode: which threads
5517 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5518 * @key: is directly passed to the wakeup function
50fa610a
DH
5519 *
5520 * It may be assumed that this function implies a write memory barrier before
5521 * changing the task state if and only if any tasks are woken up.
1da177e4 5522 */
7ad5b3a5 5523void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5524 int nr_exclusive, void *key)
1da177e4
LT
5525{
5526 unsigned long flags;
5527
5528 spin_lock_irqsave(&q->lock, flags);
5529 __wake_up_common(q, mode, nr_exclusive, 0, key);
5530 spin_unlock_irqrestore(&q->lock, flags);
5531}
1da177e4
LT
5532EXPORT_SYMBOL(__wake_up);
5533
5534/*
5535 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5536 */
7ad5b3a5 5537void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5538{
5539 __wake_up_common(q, mode, 1, 0, NULL);
5540}
5541
4ede816a
DL
5542void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5543{
5544 __wake_up_common(q, mode, 1, 0, key);
5545}
5546
1da177e4 5547/**
4ede816a 5548 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5549 * @q: the waitqueue
5550 * @mode: which threads
5551 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5552 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5553 *
5554 * The sync wakeup differs that the waker knows that it will schedule
5555 * away soon, so while the target thread will be woken up, it will not
5556 * be migrated to another CPU - ie. the two threads are 'synchronized'
5557 * with each other. This can prevent needless bouncing between CPUs.
5558 *
5559 * On UP it can prevent extra preemption.
50fa610a
DH
5560 *
5561 * It may be assumed that this function implies a write memory barrier before
5562 * changing the task state if and only if any tasks are woken up.
1da177e4 5563 */
4ede816a
DL
5564void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5565 int nr_exclusive, void *key)
1da177e4
LT
5566{
5567 unsigned long flags;
5568 int sync = 1;
5569
5570 if (unlikely(!q))
5571 return;
5572
5573 if (unlikely(!nr_exclusive))
5574 sync = 0;
5575
5576 spin_lock_irqsave(&q->lock, flags);
4ede816a 5577 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5578 spin_unlock_irqrestore(&q->lock, flags);
5579}
4ede816a
DL
5580EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5581
5582/*
5583 * __wake_up_sync - see __wake_up_sync_key()
5584 */
5585void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5586{
5587 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5588}
1da177e4
LT
5589EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5590
65eb3dc6
KD
5591/**
5592 * complete: - signals a single thread waiting on this completion
5593 * @x: holds the state of this particular completion
5594 *
5595 * This will wake up a single thread waiting on this completion. Threads will be
5596 * awakened in the same order in which they were queued.
5597 *
5598 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5599 *
5600 * It may be assumed that this function implies a write memory barrier before
5601 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5602 */
b15136e9 5603void complete(struct completion *x)
1da177e4
LT
5604{
5605 unsigned long flags;
5606
5607 spin_lock_irqsave(&x->wait.lock, flags);
5608 x->done++;
d9514f6c 5609 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5610 spin_unlock_irqrestore(&x->wait.lock, flags);
5611}
5612EXPORT_SYMBOL(complete);
5613
65eb3dc6
KD
5614/**
5615 * complete_all: - signals all threads waiting on this completion
5616 * @x: holds the state of this particular completion
5617 *
5618 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5619 *
5620 * It may be assumed that this function implies a write memory barrier before
5621 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5622 */
b15136e9 5623void complete_all(struct completion *x)
1da177e4
LT
5624{
5625 unsigned long flags;
5626
5627 spin_lock_irqsave(&x->wait.lock, flags);
5628 x->done += UINT_MAX/2;
d9514f6c 5629 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5630 spin_unlock_irqrestore(&x->wait.lock, flags);
5631}
5632EXPORT_SYMBOL(complete_all);
5633
8cbbe86d
AK
5634static inline long __sched
5635do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5636{
1da177e4
LT
5637 if (!x->done) {
5638 DECLARE_WAITQUEUE(wait, current);
5639
5640 wait.flags |= WQ_FLAG_EXCLUSIVE;
5641 __add_wait_queue_tail(&x->wait, &wait);
5642 do {
94d3d824 5643 if (signal_pending_state(state, current)) {
ea71a546
ON
5644 timeout = -ERESTARTSYS;
5645 break;
8cbbe86d
AK
5646 }
5647 __set_current_state(state);
1da177e4
LT
5648 spin_unlock_irq(&x->wait.lock);
5649 timeout = schedule_timeout(timeout);
5650 spin_lock_irq(&x->wait.lock);
ea71a546 5651 } while (!x->done && timeout);
1da177e4 5652 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5653 if (!x->done)
5654 return timeout;
1da177e4
LT
5655 }
5656 x->done--;
ea71a546 5657 return timeout ?: 1;
1da177e4 5658}
1da177e4 5659
8cbbe86d
AK
5660static long __sched
5661wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5662{
1da177e4
LT
5663 might_sleep();
5664
5665 spin_lock_irq(&x->wait.lock);
8cbbe86d 5666 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5667 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5668 return timeout;
5669}
1da177e4 5670
65eb3dc6
KD
5671/**
5672 * wait_for_completion: - waits for completion of a task
5673 * @x: holds the state of this particular completion
5674 *
5675 * This waits to be signaled for completion of a specific task. It is NOT
5676 * interruptible and there is no timeout.
5677 *
5678 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5679 * and interrupt capability. Also see complete().
5680 */
b15136e9 5681void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5682{
5683 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5684}
8cbbe86d 5685EXPORT_SYMBOL(wait_for_completion);
1da177e4 5686
65eb3dc6
KD
5687/**
5688 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5689 * @x: holds the state of this particular completion
5690 * @timeout: timeout value in jiffies
5691 *
5692 * This waits for either a completion of a specific task to be signaled or for a
5693 * specified timeout to expire. The timeout is in jiffies. It is not
5694 * interruptible.
5695 */
b15136e9 5696unsigned long __sched
8cbbe86d 5697wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5698{
8cbbe86d 5699 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5700}
8cbbe86d 5701EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5702
65eb3dc6
KD
5703/**
5704 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5705 * @x: holds the state of this particular completion
5706 *
5707 * This waits for completion of a specific task to be signaled. It is
5708 * interruptible.
5709 */
8cbbe86d 5710int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5711{
51e97990
AK
5712 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5713 if (t == -ERESTARTSYS)
5714 return t;
5715 return 0;
0fec171c 5716}
8cbbe86d 5717EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5718
65eb3dc6
KD
5719/**
5720 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5721 * @x: holds the state of this particular completion
5722 * @timeout: timeout value in jiffies
5723 *
5724 * This waits for either a completion of a specific task to be signaled or for a
5725 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5726 */
b15136e9 5727unsigned long __sched
8cbbe86d
AK
5728wait_for_completion_interruptible_timeout(struct completion *x,
5729 unsigned long timeout)
0fec171c 5730{
8cbbe86d 5731 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5732}
8cbbe86d 5733EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5734
65eb3dc6
KD
5735/**
5736 * wait_for_completion_killable: - waits for completion of a task (killable)
5737 * @x: holds the state of this particular completion
5738 *
5739 * This waits to be signaled for completion of a specific task. It can be
5740 * interrupted by a kill signal.
5741 */
009e577e
MW
5742int __sched wait_for_completion_killable(struct completion *x)
5743{
5744 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5745 if (t == -ERESTARTSYS)
5746 return t;
5747 return 0;
5748}
5749EXPORT_SYMBOL(wait_for_completion_killable);
5750
be4de352
DC
5751/**
5752 * try_wait_for_completion - try to decrement a completion without blocking
5753 * @x: completion structure
5754 *
5755 * Returns: 0 if a decrement cannot be done without blocking
5756 * 1 if a decrement succeeded.
5757 *
5758 * If a completion is being used as a counting completion,
5759 * attempt to decrement the counter without blocking. This
5760 * enables us to avoid waiting if the resource the completion
5761 * is protecting is not available.
5762 */
5763bool try_wait_for_completion(struct completion *x)
5764{
5765 int ret = 1;
5766
5767 spin_lock_irq(&x->wait.lock);
5768 if (!x->done)
5769 ret = 0;
5770 else
5771 x->done--;
5772 spin_unlock_irq(&x->wait.lock);
5773 return ret;
5774}
5775EXPORT_SYMBOL(try_wait_for_completion);
5776
5777/**
5778 * completion_done - Test to see if a completion has any waiters
5779 * @x: completion structure
5780 *
5781 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5782 * 1 if there are no waiters.
5783 *
5784 */
5785bool completion_done(struct completion *x)
5786{
5787 int ret = 1;
5788
5789 spin_lock_irq(&x->wait.lock);
5790 if (!x->done)
5791 ret = 0;
5792 spin_unlock_irq(&x->wait.lock);
5793 return ret;
5794}
5795EXPORT_SYMBOL(completion_done);
5796
8cbbe86d
AK
5797static long __sched
5798sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5799{
0fec171c
IM
5800 unsigned long flags;
5801 wait_queue_t wait;
5802
5803 init_waitqueue_entry(&wait, current);
1da177e4 5804
8cbbe86d 5805 __set_current_state(state);
1da177e4 5806
8cbbe86d
AK
5807 spin_lock_irqsave(&q->lock, flags);
5808 __add_wait_queue(q, &wait);
5809 spin_unlock(&q->lock);
5810 timeout = schedule_timeout(timeout);
5811 spin_lock_irq(&q->lock);
5812 __remove_wait_queue(q, &wait);
5813 spin_unlock_irqrestore(&q->lock, flags);
5814
5815 return timeout;
5816}
5817
5818void __sched interruptible_sleep_on(wait_queue_head_t *q)
5819{
5820 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5821}
1da177e4
LT
5822EXPORT_SYMBOL(interruptible_sleep_on);
5823
0fec171c 5824long __sched
95cdf3b7 5825interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5826{
8cbbe86d 5827 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5828}
1da177e4
LT
5829EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5830
0fec171c 5831void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5832{
8cbbe86d 5833 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5834}
1da177e4
LT
5835EXPORT_SYMBOL(sleep_on);
5836
0fec171c 5837long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5838{
8cbbe86d 5839 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5840}
1da177e4
LT
5841EXPORT_SYMBOL(sleep_on_timeout);
5842
b29739f9
IM
5843#ifdef CONFIG_RT_MUTEXES
5844
5845/*
5846 * rt_mutex_setprio - set the current priority of a task
5847 * @p: task
5848 * @prio: prio value (kernel-internal form)
5849 *
5850 * This function changes the 'effective' priority of a task. It does
5851 * not touch ->normal_prio like __setscheduler().
5852 *
5853 * Used by the rt_mutex code to implement priority inheritance logic.
5854 */
36c8b586 5855void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5856{
5857 unsigned long flags;
83b699ed 5858 int oldprio, on_rq, running;
70b97a7f 5859 struct rq *rq;
cb469845 5860 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5861
5862 BUG_ON(prio < 0 || prio > MAX_PRIO);
5863
5864 rq = task_rq_lock(p, &flags);
a8e504d2 5865 update_rq_clock(rq);
b29739f9 5866
d5f9f942 5867 oldprio = p->prio;
dd41f596 5868 on_rq = p->se.on_rq;
051a1d1a 5869 running = task_current(rq, p);
0e1f3483 5870 if (on_rq)
69be72c1 5871 dequeue_task(rq, p, 0);
0e1f3483
HS
5872 if (running)
5873 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5874
5875 if (rt_prio(prio))
5876 p->sched_class = &rt_sched_class;
5877 else
5878 p->sched_class = &fair_sched_class;
5879
b29739f9
IM
5880 p->prio = prio;
5881
0e1f3483
HS
5882 if (running)
5883 p->sched_class->set_curr_task(rq);
dd41f596 5884 if (on_rq) {
8159f87e 5885 enqueue_task(rq, p, 0);
cb469845
SR
5886
5887 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5888 }
5889 task_rq_unlock(rq, &flags);
5890}
5891
5892#endif
5893
36c8b586 5894void set_user_nice(struct task_struct *p, long nice)
1da177e4 5895{
dd41f596 5896 int old_prio, delta, on_rq;
1da177e4 5897 unsigned long flags;
70b97a7f 5898 struct rq *rq;
1da177e4
LT
5899
5900 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5901 return;
5902 /*
5903 * We have to be careful, if called from sys_setpriority(),
5904 * the task might be in the middle of scheduling on another CPU.
5905 */
5906 rq = task_rq_lock(p, &flags);
a8e504d2 5907 update_rq_clock(rq);
1da177e4
LT
5908 /*
5909 * The RT priorities are set via sched_setscheduler(), but we still
5910 * allow the 'normal' nice value to be set - but as expected
5911 * it wont have any effect on scheduling until the task is
dd41f596 5912 * SCHED_FIFO/SCHED_RR:
1da177e4 5913 */
e05606d3 5914 if (task_has_rt_policy(p)) {
1da177e4
LT
5915 p->static_prio = NICE_TO_PRIO(nice);
5916 goto out_unlock;
5917 }
dd41f596 5918 on_rq = p->se.on_rq;
c09595f6 5919 if (on_rq)
69be72c1 5920 dequeue_task(rq, p, 0);
1da177e4 5921
1da177e4 5922 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5923 set_load_weight(p);
b29739f9
IM
5924 old_prio = p->prio;
5925 p->prio = effective_prio(p);
5926 delta = p->prio - old_prio;
1da177e4 5927
dd41f596 5928 if (on_rq) {
8159f87e 5929 enqueue_task(rq, p, 0);
1da177e4 5930 /*
d5f9f942
AM
5931 * If the task increased its priority or is running and
5932 * lowered its priority, then reschedule its CPU:
1da177e4 5933 */
d5f9f942 5934 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5935 resched_task(rq->curr);
5936 }
5937out_unlock:
5938 task_rq_unlock(rq, &flags);
5939}
1da177e4
LT
5940EXPORT_SYMBOL(set_user_nice);
5941
e43379f1
MM
5942/*
5943 * can_nice - check if a task can reduce its nice value
5944 * @p: task
5945 * @nice: nice value
5946 */
36c8b586 5947int can_nice(const struct task_struct *p, const int nice)
e43379f1 5948{
024f4747
MM
5949 /* convert nice value [19,-20] to rlimit style value [1,40] */
5950 int nice_rlim = 20 - nice;
48f24c4d 5951
e43379f1
MM
5952 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5953 capable(CAP_SYS_NICE));
5954}
5955
1da177e4
LT
5956#ifdef __ARCH_WANT_SYS_NICE
5957
5958/*
5959 * sys_nice - change the priority of the current process.
5960 * @increment: priority increment
5961 *
5962 * sys_setpriority is a more generic, but much slower function that
5963 * does similar things.
5964 */
5add95d4 5965SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5966{
48f24c4d 5967 long nice, retval;
1da177e4
LT
5968
5969 /*
5970 * Setpriority might change our priority at the same moment.
5971 * We don't have to worry. Conceptually one call occurs first
5972 * and we have a single winner.
5973 */
e43379f1
MM
5974 if (increment < -40)
5975 increment = -40;
1da177e4
LT
5976 if (increment > 40)
5977 increment = 40;
5978
2b8f836f 5979 nice = TASK_NICE(current) + increment;
1da177e4
LT
5980 if (nice < -20)
5981 nice = -20;
5982 if (nice > 19)
5983 nice = 19;
5984
e43379f1
MM
5985 if (increment < 0 && !can_nice(current, nice))
5986 return -EPERM;
5987
1da177e4
LT
5988 retval = security_task_setnice(current, nice);
5989 if (retval)
5990 return retval;
5991
5992 set_user_nice(current, nice);
5993 return 0;
5994}
5995
5996#endif
5997
5998/**
5999 * task_prio - return the priority value of a given task.
6000 * @p: the task in question.
6001 *
6002 * This is the priority value as seen by users in /proc.
6003 * RT tasks are offset by -200. Normal tasks are centered
6004 * around 0, value goes from -16 to +15.
6005 */
36c8b586 6006int task_prio(const struct task_struct *p)
1da177e4
LT
6007{
6008 return p->prio - MAX_RT_PRIO;
6009}
6010
6011/**
6012 * task_nice - return the nice value of a given task.
6013 * @p: the task in question.
6014 */
36c8b586 6015int task_nice(const struct task_struct *p)
1da177e4
LT
6016{
6017 return TASK_NICE(p);
6018}
150d8bed 6019EXPORT_SYMBOL(task_nice);
1da177e4
LT
6020
6021/**
6022 * idle_cpu - is a given cpu idle currently?
6023 * @cpu: the processor in question.
6024 */
6025int idle_cpu(int cpu)
6026{
6027 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6028}
6029
1da177e4
LT
6030/**
6031 * idle_task - return the idle task for a given cpu.
6032 * @cpu: the processor in question.
6033 */
36c8b586 6034struct task_struct *idle_task(int cpu)
1da177e4
LT
6035{
6036 return cpu_rq(cpu)->idle;
6037}
6038
6039/**
6040 * find_process_by_pid - find a process with a matching PID value.
6041 * @pid: the pid in question.
6042 */
a9957449 6043static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6044{
228ebcbe 6045 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6046}
6047
6048/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6049static void
6050__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6051{
dd41f596 6052 BUG_ON(p->se.on_rq);
48f24c4d 6053
1da177e4 6054 p->policy = policy;
dd41f596
IM
6055 switch (p->policy) {
6056 case SCHED_NORMAL:
6057 case SCHED_BATCH:
6058 case SCHED_IDLE:
6059 p->sched_class = &fair_sched_class;
6060 break;
6061 case SCHED_FIFO:
6062 case SCHED_RR:
6063 p->sched_class = &rt_sched_class;
6064 break;
6065 }
6066
1da177e4 6067 p->rt_priority = prio;
b29739f9
IM
6068 p->normal_prio = normal_prio(p);
6069 /* we are holding p->pi_lock already */
6070 p->prio = rt_mutex_getprio(p);
2dd73a4f 6071 set_load_weight(p);
1da177e4
LT
6072}
6073
c69e8d9c
DH
6074/*
6075 * check the target process has a UID that matches the current process's
6076 */
6077static bool check_same_owner(struct task_struct *p)
6078{
6079 const struct cred *cred = current_cred(), *pcred;
6080 bool match;
6081
6082 rcu_read_lock();
6083 pcred = __task_cred(p);
6084 match = (cred->euid == pcred->euid ||
6085 cred->euid == pcred->uid);
6086 rcu_read_unlock();
6087 return match;
6088}
6089
961ccddd
RR
6090static int __sched_setscheduler(struct task_struct *p, int policy,
6091 struct sched_param *param, bool user)
1da177e4 6092{
83b699ed 6093 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6094 unsigned long flags;
cb469845 6095 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6096 struct rq *rq;
1da177e4 6097
66e5393a
SR
6098 /* may grab non-irq protected spin_locks */
6099 BUG_ON(in_interrupt());
1da177e4
LT
6100recheck:
6101 /* double check policy once rq lock held */
6102 if (policy < 0)
6103 policy = oldpolicy = p->policy;
6104 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
6105 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6106 policy != SCHED_IDLE)
b0a9499c 6107 return -EINVAL;
1da177e4
LT
6108 /*
6109 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6110 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6111 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6112 */
6113 if (param->sched_priority < 0 ||
95cdf3b7 6114 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6115 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6116 return -EINVAL;
e05606d3 6117 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6118 return -EINVAL;
6119
37e4ab3f
OC
6120 /*
6121 * Allow unprivileged RT tasks to decrease priority:
6122 */
961ccddd 6123 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6124 if (rt_policy(policy)) {
8dc3e909 6125 unsigned long rlim_rtprio;
8dc3e909
ON
6126
6127 if (!lock_task_sighand(p, &flags))
6128 return -ESRCH;
6129 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6130 unlock_task_sighand(p, &flags);
6131
6132 /* can't set/change the rt policy */
6133 if (policy != p->policy && !rlim_rtprio)
6134 return -EPERM;
6135
6136 /* can't increase priority */
6137 if (param->sched_priority > p->rt_priority &&
6138 param->sched_priority > rlim_rtprio)
6139 return -EPERM;
6140 }
dd41f596
IM
6141 /*
6142 * Like positive nice levels, dont allow tasks to
6143 * move out of SCHED_IDLE either:
6144 */
6145 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6146 return -EPERM;
5fe1d75f 6147
37e4ab3f 6148 /* can't change other user's priorities */
c69e8d9c 6149 if (!check_same_owner(p))
37e4ab3f
OC
6150 return -EPERM;
6151 }
1da177e4 6152
725aad24 6153 if (user) {
b68aa230 6154#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6155 /*
6156 * Do not allow realtime tasks into groups that have no runtime
6157 * assigned.
6158 */
9a7e0b18
PZ
6159 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6160 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6161 return -EPERM;
b68aa230
PZ
6162#endif
6163
725aad24
JF
6164 retval = security_task_setscheduler(p, policy, param);
6165 if (retval)
6166 return retval;
6167 }
6168
b29739f9
IM
6169 /*
6170 * make sure no PI-waiters arrive (or leave) while we are
6171 * changing the priority of the task:
6172 */
6173 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6174 /*
6175 * To be able to change p->policy safely, the apropriate
6176 * runqueue lock must be held.
6177 */
b29739f9 6178 rq = __task_rq_lock(p);
1da177e4
LT
6179 /* recheck policy now with rq lock held */
6180 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6181 policy = oldpolicy = -1;
b29739f9
IM
6182 __task_rq_unlock(rq);
6183 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6184 goto recheck;
6185 }
2daa3577 6186 update_rq_clock(rq);
dd41f596 6187 on_rq = p->se.on_rq;
051a1d1a 6188 running = task_current(rq, p);
0e1f3483 6189 if (on_rq)
2e1cb74a 6190 deactivate_task(rq, p, 0);
0e1f3483
HS
6191 if (running)
6192 p->sched_class->put_prev_task(rq, p);
f6b53205 6193
1da177e4 6194 oldprio = p->prio;
dd41f596 6195 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6196
0e1f3483
HS
6197 if (running)
6198 p->sched_class->set_curr_task(rq);
dd41f596
IM
6199 if (on_rq) {
6200 activate_task(rq, p, 0);
cb469845
SR
6201
6202 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6203 }
b29739f9
IM
6204 __task_rq_unlock(rq);
6205 spin_unlock_irqrestore(&p->pi_lock, flags);
6206
95e02ca9
TG
6207 rt_mutex_adjust_pi(p);
6208
1da177e4
LT
6209 return 0;
6210}
961ccddd
RR
6211
6212/**
6213 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6214 * @p: the task in question.
6215 * @policy: new policy.
6216 * @param: structure containing the new RT priority.
6217 *
6218 * NOTE that the task may be already dead.
6219 */
6220int sched_setscheduler(struct task_struct *p, int policy,
6221 struct sched_param *param)
6222{
6223 return __sched_setscheduler(p, policy, param, true);
6224}
1da177e4
LT
6225EXPORT_SYMBOL_GPL(sched_setscheduler);
6226
961ccddd
RR
6227/**
6228 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6229 * @p: the task in question.
6230 * @policy: new policy.
6231 * @param: structure containing the new RT priority.
6232 *
6233 * Just like sched_setscheduler, only don't bother checking if the
6234 * current context has permission. For example, this is needed in
6235 * stop_machine(): we create temporary high priority worker threads,
6236 * but our caller might not have that capability.
6237 */
6238int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6239 struct sched_param *param)
6240{
6241 return __sched_setscheduler(p, policy, param, false);
6242}
6243
95cdf3b7
IM
6244static int
6245do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6246{
1da177e4
LT
6247 struct sched_param lparam;
6248 struct task_struct *p;
36c8b586 6249 int retval;
1da177e4
LT
6250
6251 if (!param || pid < 0)
6252 return -EINVAL;
6253 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6254 return -EFAULT;
5fe1d75f
ON
6255
6256 rcu_read_lock();
6257 retval = -ESRCH;
1da177e4 6258 p = find_process_by_pid(pid);
5fe1d75f
ON
6259 if (p != NULL)
6260 retval = sched_setscheduler(p, policy, &lparam);
6261 rcu_read_unlock();
36c8b586 6262
1da177e4
LT
6263 return retval;
6264}
6265
6266/**
6267 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6268 * @pid: the pid in question.
6269 * @policy: new policy.
6270 * @param: structure containing the new RT priority.
6271 */
5add95d4
HC
6272SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6273 struct sched_param __user *, param)
1da177e4 6274{
c21761f1
JB
6275 /* negative values for policy are not valid */
6276 if (policy < 0)
6277 return -EINVAL;
6278
1da177e4
LT
6279 return do_sched_setscheduler(pid, policy, param);
6280}
6281
6282/**
6283 * sys_sched_setparam - set/change the RT priority of a thread
6284 * @pid: the pid in question.
6285 * @param: structure containing the new RT priority.
6286 */
5add95d4 6287SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6288{
6289 return do_sched_setscheduler(pid, -1, param);
6290}
6291
6292/**
6293 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6294 * @pid: the pid in question.
6295 */
5add95d4 6296SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6297{
36c8b586 6298 struct task_struct *p;
3a5c359a 6299 int retval;
1da177e4
LT
6300
6301 if (pid < 0)
3a5c359a 6302 return -EINVAL;
1da177e4
LT
6303
6304 retval = -ESRCH;
6305 read_lock(&tasklist_lock);
6306 p = find_process_by_pid(pid);
6307 if (p) {
6308 retval = security_task_getscheduler(p);
6309 if (!retval)
6310 retval = p->policy;
6311 }
6312 read_unlock(&tasklist_lock);
1da177e4
LT
6313 return retval;
6314}
6315
6316/**
6317 * sys_sched_getscheduler - get the RT priority of a thread
6318 * @pid: the pid in question.
6319 * @param: structure containing the RT priority.
6320 */
5add95d4 6321SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6322{
6323 struct sched_param lp;
36c8b586 6324 struct task_struct *p;
3a5c359a 6325 int retval;
1da177e4
LT
6326
6327 if (!param || pid < 0)
3a5c359a 6328 return -EINVAL;
1da177e4
LT
6329
6330 read_lock(&tasklist_lock);
6331 p = find_process_by_pid(pid);
6332 retval = -ESRCH;
6333 if (!p)
6334 goto out_unlock;
6335
6336 retval = security_task_getscheduler(p);
6337 if (retval)
6338 goto out_unlock;
6339
6340 lp.sched_priority = p->rt_priority;
6341 read_unlock(&tasklist_lock);
6342
6343 /*
6344 * This one might sleep, we cannot do it with a spinlock held ...
6345 */
6346 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6347
1da177e4
LT
6348 return retval;
6349
6350out_unlock:
6351 read_unlock(&tasklist_lock);
6352 return retval;
6353}
6354
96f874e2 6355long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6356{
5a16f3d3 6357 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6358 struct task_struct *p;
6359 int retval;
1da177e4 6360
95402b38 6361 get_online_cpus();
1da177e4
LT
6362 read_lock(&tasklist_lock);
6363
6364 p = find_process_by_pid(pid);
6365 if (!p) {
6366 read_unlock(&tasklist_lock);
95402b38 6367 put_online_cpus();
1da177e4
LT
6368 return -ESRCH;
6369 }
6370
6371 /*
6372 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6373 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6374 * usage count and then drop tasklist_lock.
6375 */
6376 get_task_struct(p);
6377 read_unlock(&tasklist_lock);
6378
5a16f3d3
RR
6379 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6380 retval = -ENOMEM;
6381 goto out_put_task;
6382 }
6383 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6384 retval = -ENOMEM;
6385 goto out_free_cpus_allowed;
6386 }
1da177e4 6387 retval = -EPERM;
c69e8d9c 6388 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6389 goto out_unlock;
6390
e7834f8f
DQ
6391 retval = security_task_setscheduler(p, 0, NULL);
6392 if (retval)
6393 goto out_unlock;
6394
5a16f3d3
RR
6395 cpuset_cpus_allowed(p, cpus_allowed);
6396 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6397 again:
5a16f3d3 6398 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6399
8707d8b8 6400 if (!retval) {
5a16f3d3
RR
6401 cpuset_cpus_allowed(p, cpus_allowed);
6402 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6403 /*
6404 * We must have raced with a concurrent cpuset
6405 * update. Just reset the cpus_allowed to the
6406 * cpuset's cpus_allowed
6407 */
5a16f3d3 6408 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6409 goto again;
6410 }
6411 }
1da177e4 6412out_unlock:
5a16f3d3
RR
6413 free_cpumask_var(new_mask);
6414out_free_cpus_allowed:
6415 free_cpumask_var(cpus_allowed);
6416out_put_task:
1da177e4 6417 put_task_struct(p);
95402b38 6418 put_online_cpus();
1da177e4
LT
6419 return retval;
6420}
6421
6422static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6423 struct cpumask *new_mask)
1da177e4 6424{
96f874e2
RR
6425 if (len < cpumask_size())
6426 cpumask_clear(new_mask);
6427 else if (len > cpumask_size())
6428 len = cpumask_size();
6429
1da177e4
LT
6430 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6431}
6432
6433/**
6434 * sys_sched_setaffinity - set the cpu affinity of a process
6435 * @pid: pid of the process
6436 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6437 * @user_mask_ptr: user-space pointer to the new cpu mask
6438 */
5add95d4
HC
6439SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6440 unsigned long __user *, user_mask_ptr)
1da177e4 6441{
5a16f3d3 6442 cpumask_var_t new_mask;
1da177e4
LT
6443 int retval;
6444
5a16f3d3
RR
6445 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6446 return -ENOMEM;
1da177e4 6447
5a16f3d3
RR
6448 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6449 if (retval == 0)
6450 retval = sched_setaffinity(pid, new_mask);
6451 free_cpumask_var(new_mask);
6452 return retval;
1da177e4
LT
6453}
6454
96f874e2 6455long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6456{
36c8b586 6457 struct task_struct *p;
1da177e4 6458 int retval;
1da177e4 6459
95402b38 6460 get_online_cpus();
1da177e4
LT
6461 read_lock(&tasklist_lock);
6462
6463 retval = -ESRCH;
6464 p = find_process_by_pid(pid);
6465 if (!p)
6466 goto out_unlock;
6467
e7834f8f
DQ
6468 retval = security_task_getscheduler(p);
6469 if (retval)
6470 goto out_unlock;
6471
96f874e2 6472 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6473
6474out_unlock:
6475 read_unlock(&tasklist_lock);
95402b38 6476 put_online_cpus();
1da177e4 6477
9531b62f 6478 return retval;
1da177e4
LT
6479}
6480
6481/**
6482 * sys_sched_getaffinity - get the cpu affinity of a process
6483 * @pid: pid of the process
6484 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6485 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6486 */
5add95d4
HC
6487SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6488 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6489{
6490 int ret;
f17c8607 6491 cpumask_var_t mask;
1da177e4 6492
f17c8607 6493 if (len < cpumask_size())
1da177e4
LT
6494 return -EINVAL;
6495
f17c8607
RR
6496 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6497 return -ENOMEM;
1da177e4 6498
f17c8607
RR
6499 ret = sched_getaffinity(pid, mask);
6500 if (ret == 0) {
6501 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6502 ret = -EFAULT;
6503 else
6504 ret = cpumask_size();
6505 }
6506 free_cpumask_var(mask);
1da177e4 6507
f17c8607 6508 return ret;
1da177e4
LT
6509}
6510
6511/**
6512 * sys_sched_yield - yield the current processor to other threads.
6513 *
dd41f596
IM
6514 * This function yields the current CPU to other tasks. If there are no
6515 * other threads running on this CPU then this function will return.
1da177e4 6516 */
5add95d4 6517SYSCALL_DEFINE0(sched_yield)
1da177e4 6518{
70b97a7f 6519 struct rq *rq = this_rq_lock();
1da177e4 6520
2d72376b 6521 schedstat_inc(rq, yld_count);
4530d7ab 6522 current->sched_class->yield_task(rq);
1da177e4
LT
6523
6524 /*
6525 * Since we are going to call schedule() anyway, there's
6526 * no need to preempt or enable interrupts:
6527 */
6528 __release(rq->lock);
8a25d5de 6529 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6530 _raw_spin_unlock(&rq->lock);
6531 preempt_enable_no_resched();
6532
6533 schedule();
6534
6535 return 0;
6536}
6537
e7b38404 6538static void __cond_resched(void)
1da177e4 6539{
8e0a43d8
IM
6540#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6541 __might_sleep(__FILE__, __LINE__);
6542#endif
5bbcfd90
IM
6543 /*
6544 * The BKS might be reacquired before we have dropped
6545 * PREEMPT_ACTIVE, which could trigger a second
6546 * cond_resched() call.
6547 */
1da177e4
LT
6548 do {
6549 add_preempt_count(PREEMPT_ACTIVE);
6550 schedule();
6551 sub_preempt_count(PREEMPT_ACTIVE);
6552 } while (need_resched());
6553}
6554
02b67cc3 6555int __sched _cond_resched(void)
1da177e4 6556{
9414232f
IM
6557 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6558 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6559 __cond_resched();
6560 return 1;
6561 }
6562 return 0;
6563}
02b67cc3 6564EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6565
6566/*
6567 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6568 * call schedule, and on return reacquire the lock.
6569 *
41a2d6cf 6570 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6571 * operations here to prevent schedule() from being called twice (once via
6572 * spin_unlock(), once by hand).
6573 */
95cdf3b7 6574int cond_resched_lock(spinlock_t *lock)
1da177e4 6575{
95c354fe 6576 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6577 int ret = 0;
6578
95c354fe 6579 if (spin_needbreak(lock) || resched) {
1da177e4 6580 spin_unlock(lock);
95c354fe
NP
6581 if (resched && need_resched())
6582 __cond_resched();
6583 else
6584 cpu_relax();
6df3cecb 6585 ret = 1;
1da177e4 6586 spin_lock(lock);
1da177e4 6587 }
6df3cecb 6588 return ret;
1da177e4 6589}
1da177e4
LT
6590EXPORT_SYMBOL(cond_resched_lock);
6591
6592int __sched cond_resched_softirq(void)
6593{
6594 BUG_ON(!in_softirq());
6595
9414232f 6596 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6597 local_bh_enable();
1da177e4
LT
6598 __cond_resched();
6599 local_bh_disable();
6600 return 1;
6601 }
6602 return 0;
6603}
1da177e4
LT
6604EXPORT_SYMBOL(cond_resched_softirq);
6605
1da177e4
LT
6606/**
6607 * yield - yield the current processor to other threads.
6608 *
72fd4a35 6609 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6610 * thread runnable and calls sys_sched_yield().
6611 */
6612void __sched yield(void)
6613{
6614 set_current_state(TASK_RUNNING);
6615 sys_sched_yield();
6616}
1da177e4
LT
6617EXPORT_SYMBOL(yield);
6618
6619/*
41a2d6cf 6620 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6621 * that process accounting knows that this is a task in IO wait state.
6622 *
6623 * But don't do that if it is a deliberate, throttling IO wait (this task
6624 * has set its backing_dev_info: the queue against which it should throttle)
6625 */
6626void __sched io_schedule(void)
6627{
70b97a7f 6628 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6629
0ff92245 6630 delayacct_blkio_start();
1da177e4
LT
6631 atomic_inc(&rq->nr_iowait);
6632 schedule();
6633 atomic_dec(&rq->nr_iowait);
0ff92245 6634 delayacct_blkio_end();
1da177e4 6635}
1da177e4
LT
6636EXPORT_SYMBOL(io_schedule);
6637
6638long __sched io_schedule_timeout(long timeout)
6639{
70b97a7f 6640 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6641 long ret;
6642
0ff92245 6643 delayacct_blkio_start();
1da177e4
LT
6644 atomic_inc(&rq->nr_iowait);
6645 ret = schedule_timeout(timeout);
6646 atomic_dec(&rq->nr_iowait);
0ff92245 6647 delayacct_blkio_end();
1da177e4
LT
6648 return ret;
6649}
6650
6651/**
6652 * sys_sched_get_priority_max - return maximum RT priority.
6653 * @policy: scheduling class.
6654 *
6655 * this syscall returns the maximum rt_priority that can be used
6656 * by a given scheduling class.
6657 */
5add95d4 6658SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6659{
6660 int ret = -EINVAL;
6661
6662 switch (policy) {
6663 case SCHED_FIFO:
6664 case SCHED_RR:
6665 ret = MAX_USER_RT_PRIO-1;
6666 break;
6667 case SCHED_NORMAL:
b0a9499c 6668 case SCHED_BATCH:
dd41f596 6669 case SCHED_IDLE:
1da177e4
LT
6670 ret = 0;
6671 break;
6672 }
6673 return ret;
6674}
6675
6676/**
6677 * sys_sched_get_priority_min - return minimum RT priority.
6678 * @policy: scheduling class.
6679 *
6680 * this syscall returns the minimum rt_priority that can be used
6681 * by a given scheduling class.
6682 */
5add95d4 6683SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6684{
6685 int ret = -EINVAL;
6686
6687 switch (policy) {
6688 case SCHED_FIFO:
6689 case SCHED_RR:
6690 ret = 1;
6691 break;
6692 case SCHED_NORMAL:
b0a9499c 6693 case SCHED_BATCH:
dd41f596 6694 case SCHED_IDLE:
1da177e4
LT
6695 ret = 0;
6696 }
6697 return ret;
6698}
6699
6700/**
6701 * sys_sched_rr_get_interval - return the default timeslice of a process.
6702 * @pid: pid of the process.
6703 * @interval: userspace pointer to the timeslice value.
6704 *
6705 * this syscall writes the default timeslice value of a given process
6706 * into the user-space timespec buffer. A value of '0' means infinity.
6707 */
17da2bd9 6708SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6709 struct timespec __user *, interval)
1da177e4 6710{
36c8b586 6711 struct task_struct *p;
a4ec24b4 6712 unsigned int time_slice;
3a5c359a 6713 int retval;
1da177e4 6714 struct timespec t;
1da177e4
LT
6715
6716 if (pid < 0)
3a5c359a 6717 return -EINVAL;
1da177e4
LT
6718
6719 retval = -ESRCH;
6720 read_lock(&tasklist_lock);
6721 p = find_process_by_pid(pid);
6722 if (!p)
6723 goto out_unlock;
6724
6725 retval = security_task_getscheduler(p);
6726 if (retval)
6727 goto out_unlock;
6728
77034937
IM
6729 /*
6730 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6731 * tasks that are on an otherwise idle runqueue:
6732 */
6733 time_slice = 0;
6734 if (p->policy == SCHED_RR) {
a4ec24b4 6735 time_slice = DEF_TIMESLICE;
1868f958 6736 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6737 struct sched_entity *se = &p->se;
6738 unsigned long flags;
6739 struct rq *rq;
6740
6741 rq = task_rq_lock(p, &flags);
77034937
IM
6742 if (rq->cfs.load.weight)
6743 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6744 task_rq_unlock(rq, &flags);
6745 }
1da177e4 6746 read_unlock(&tasklist_lock);
a4ec24b4 6747 jiffies_to_timespec(time_slice, &t);
1da177e4 6748 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6749 return retval;
3a5c359a 6750
1da177e4
LT
6751out_unlock:
6752 read_unlock(&tasklist_lock);
6753 return retval;
6754}
6755
7c731e0a 6756static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6757
82a1fcb9 6758void sched_show_task(struct task_struct *p)
1da177e4 6759{
1da177e4 6760 unsigned long free = 0;
36c8b586 6761 unsigned state;
1da177e4 6762
1da177e4 6763 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6764 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6765 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6766#if BITS_PER_LONG == 32
1da177e4 6767 if (state == TASK_RUNNING)
cc4ea795 6768 printk(KERN_CONT " running ");
1da177e4 6769 else
cc4ea795 6770 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6771#else
6772 if (state == TASK_RUNNING)
cc4ea795 6773 printk(KERN_CONT " running task ");
1da177e4 6774 else
cc4ea795 6775 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6776#endif
6777#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6778 free = stack_not_used(p);
1da177e4 6779#endif
aa47b7e0
DR
6780 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6781 task_pid_nr(p), task_pid_nr(p->real_parent),
6782 (unsigned long)task_thread_info(p)->flags);
1da177e4 6783
5fb5e6de 6784 show_stack(p, NULL);
1da177e4
LT
6785}
6786
e59e2ae2 6787void show_state_filter(unsigned long state_filter)
1da177e4 6788{
36c8b586 6789 struct task_struct *g, *p;
1da177e4 6790
4bd77321
IM
6791#if BITS_PER_LONG == 32
6792 printk(KERN_INFO
6793 " task PC stack pid father\n");
1da177e4 6794#else
4bd77321
IM
6795 printk(KERN_INFO
6796 " task PC stack pid father\n");
1da177e4
LT
6797#endif
6798 read_lock(&tasklist_lock);
6799 do_each_thread(g, p) {
6800 /*
6801 * reset the NMI-timeout, listing all files on a slow
6802 * console might take alot of time:
6803 */
6804 touch_nmi_watchdog();
39bc89fd 6805 if (!state_filter || (p->state & state_filter))
82a1fcb9 6806 sched_show_task(p);
1da177e4
LT
6807 } while_each_thread(g, p);
6808
04c9167f
JF
6809 touch_all_softlockup_watchdogs();
6810
dd41f596
IM
6811#ifdef CONFIG_SCHED_DEBUG
6812 sysrq_sched_debug_show();
6813#endif
1da177e4 6814 read_unlock(&tasklist_lock);
e59e2ae2
IM
6815 /*
6816 * Only show locks if all tasks are dumped:
6817 */
6818 if (state_filter == -1)
6819 debug_show_all_locks();
1da177e4
LT
6820}
6821
1df21055
IM
6822void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6823{
dd41f596 6824 idle->sched_class = &idle_sched_class;
1df21055
IM
6825}
6826
f340c0d1
IM
6827/**
6828 * init_idle - set up an idle thread for a given CPU
6829 * @idle: task in question
6830 * @cpu: cpu the idle task belongs to
6831 *
6832 * NOTE: this function does not set the idle thread's NEED_RESCHED
6833 * flag, to make booting more robust.
6834 */
5c1e1767 6835void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6836{
70b97a7f 6837 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6838 unsigned long flags;
6839
5cbd54ef
IM
6840 spin_lock_irqsave(&rq->lock, flags);
6841
dd41f596
IM
6842 __sched_fork(idle);
6843 idle->se.exec_start = sched_clock();
6844
b29739f9 6845 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6846 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6847 __set_task_cpu(idle, cpu);
1da177e4 6848
1da177e4 6849 rq->curr = rq->idle = idle;
4866cde0
NP
6850#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6851 idle->oncpu = 1;
6852#endif
1da177e4
LT
6853 spin_unlock_irqrestore(&rq->lock, flags);
6854
6855 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6856#if defined(CONFIG_PREEMPT)
6857 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6858#else
a1261f54 6859 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6860#endif
dd41f596
IM
6861 /*
6862 * The idle tasks have their own, simple scheduling class:
6863 */
6864 idle->sched_class = &idle_sched_class;
fb52607a 6865 ftrace_graph_init_task(idle);
1da177e4
LT
6866}
6867
6868/*
6869 * In a system that switches off the HZ timer nohz_cpu_mask
6870 * indicates which cpus entered this state. This is used
6871 * in the rcu update to wait only for active cpus. For system
6872 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6873 * always be CPU_BITS_NONE.
1da177e4 6874 */
6a7b3dc3 6875cpumask_var_t nohz_cpu_mask;
1da177e4 6876
19978ca6
IM
6877/*
6878 * Increase the granularity value when there are more CPUs,
6879 * because with more CPUs the 'effective latency' as visible
6880 * to users decreases. But the relationship is not linear,
6881 * so pick a second-best guess by going with the log2 of the
6882 * number of CPUs.
6883 *
6884 * This idea comes from the SD scheduler of Con Kolivas:
6885 */
6886static inline void sched_init_granularity(void)
6887{
6888 unsigned int factor = 1 + ilog2(num_online_cpus());
6889 const unsigned long limit = 200000000;
6890
6891 sysctl_sched_min_granularity *= factor;
6892 if (sysctl_sched_min_granularity > limit)
6893 sysctl_sched_min_granularity = limit;
6894
6895 sysctl_sched_latency *= factor;
6896 if (sysctl_sched_latency > limit)
6897 sysctl_sched_latency = limit;
6898
6899 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6900
6901 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6902}
6903
1da177e4
LT
6904#ifdef CONFIG_SMP
6905/*
6906 * This is how migration works:
6907 *
70b97a7f 6908 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6909 * runqueue and wake up that CPU's migration thread.
6910 * 2) we down() the locked semaphore => thread blocks.
6911 * 3) migration thread wakes up (implicitly it forces the migrated
6912 * thread off the CPU)
6913 * 4) it gets the migration request and checks whether the migrated
6914 * task is still in the wrong runqueue.
6915 * 5) if it's in the wrong runqueue then the migration thread removes
6916 * it and puts it into the right queue.
6917 * 6) migration thread up()s the semaphore.
6918 * 7) we wake up and the migration is done.
6919 */
6920
6921/*
6922 * Change a given task's CPU affinity. Migrate the thread to a
6923 * proper CPU and schedule it away if the CPU it's executing on
6924 * is removed from the allowed bitmask.
6925 *
6926 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6927 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6928 * call is not atomic; no spinlocks may be held.
6929 */
96f874e2 6930int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6931{
70b97a7f 6932 struct migration_req req;
1da177e4 6933 unsigned long flags;
70b97a7f 6934 struct rq *rq;
48f24c4d 6935 int ret = 0;
1da177e4
LT
6936
6937 rq = task_rq_lock(p, &flags);
96f874e2 6938 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6939 ret = -EINVAL;
6940 goto out;
6941 }
6942
9985b0ba 6943 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6944 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6945 ret = -EINVAL;
6946 goto out;
6947 }
6948
73fe6aae 6949 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6950 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6951 else {
96f874e2
RR
6952 cpumask_copy(&p->cpus_allowed, new_mask);
6953 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6954 }
6955
1da177e4 6956 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6957 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6958 goto out;
6959
1e5ce4f4 6960 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6961 /* Need help from migration thread: drop lock and wait. */
6962 task_rq_unlock(rq, &flags);
6963 wake_up_process(rq->migration_thread);
6964 wait_for_completion(&req.done);
6965 tlb_migrate_finish(p->mm);
6966 return 0;
6967 }
6968out:
6969 task_rq_unlock(rq, &flags);
48f24c4d 6970
1da177e4
LT
6971 return ret;
6972}
cd8ba7cd 6973EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6974
6975/*
41a2d6cf 6976 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6977 * this because either it can't run here any more (set_cpus_allowed()
6978 * away from this CPU, or CPU going down), or because we're
6979 * attempting to rebalance this task on exec (sched_exec).
6980 *
6981 * So we race with normal scheduler movements, but that's OK, as long
6982 * as the task is no longer on this CPU.
efc30814
KK
6983 *
6984 * Returns non-zero if task was successfully migrated.
1da177e4 6985 */
efc30814 6986static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6987{
70b97a7f 6988 struct rq *rq_dest, *rq_src;
dd41f596 6989 int ret = 0, on_rq;
1da177e4 6990
e761b772 6991 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6992 return ret;
1da177e4
LT
6993
6994 rq_src = cpu_rq(src_cpu);
6995 rq_dest = cpu_rq(dest_cpu);
6996
6997 double_rq_lock(rq_src, rq_dest);
6998 /* Already moved. */
6999 if (task_cpu(p) != src_cpu)
b1e38734 7000 goto done;
1da177e4 7001 /* Affinity changed (again). */
96f874e2 7002 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7003 goto fail;
1da177e4 7004
dd41f596 7005 on_rq = p->se.on_rq;
6e82a3be 7006 if (on_rq)
2e1cb74a 7007 deactivate_task(rq_src, p, 0);
6e82a3be 7008
1da177e4 7009 set_task_cpu(p, dest_cpu);
dd41f596
IM
7010 if (on_rq) {
7011 activate_task(rq_dest, p, 0);
15afe09b 7012 check_preempt_curr(rq_dest, p, 0);
1da177e4 7013 }
b1e38734 7014done:
efc30814 7015 ret = 1;
b1e38734 7016fail:
1da177e4 7017 double_rq_unlock(rq_src, rq_dest);
efc30814 7018 return ret;
1da177e4
LT
7019}
7020
7021/*
7022 * migration_thread - this is a highprio system thread that performs
7023 * thread migration by bumping thread off CPU then 'pushing' onto
7024 * another runqueue.
7025 */
95cdf3b7 7026static int migration_thread(void *data)
1da177e4 7027{
1da177e4 7028 int cpu = (long)data;
70b97a7f 7029 struct rq *rq;
1da177e4
LT
7030
7031 rq = cpu_rq(cpu);
7032 BUG_ON(rq->migration_thread != current);
7033
7034 set_current_state(TASK_INTERRUPTIBLE);
7035 while (!kthread_should_stop()) {
70b97a7f 7036 struct migration_req *req;
1da177e4 7037 struct list_head *head;
1da177e4 7038
1da177e4
LT
7039 spin_lock_irq(&rq->lock);
7040
7041 if (cpu_is_offline(cpu)) {
7042 spin_unlock_irq(&rq->lock);
7043 goto wait_to_die;
7044 }
7045
7046 if (rq->active_balance) {
7047 active_load_balance(rq, cpu);
7048 rq->active_balance = 0;
7049 }
7050
7051 head = &rq->migration_queue;
7052
7053 if (list_empty(head)) {
7054 spin_unlock_irq(&rq->lock);
7055 schedule();
7056 set_current_state(TASK_INTERRUPTIBLE);
7057 continue;
7058 }
70b97a7f 7059 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7060 list_del_init(head->next);
7061
674311d5
NP
7062 spin_unlock(&rq->lock);
7063 __migrate_task(req->task, cpu, req->dest_cpu);
7064 local_irq_enable();
1da177e4
LT
7065
7066 complete(&req->done);
7067 }
7068 __set_current_state(TASK_RUNNING);
7069 return 0;
7070
7071wait_to_die:
7072 /* Wait for kthread_stop */
7073 set_current_state(TASK_INTERRUPTIBLE);
7074 while (!kthread_should_stop()) {
7075 schedule();
7076 set_current_state(TASK_INTERRUPTIBLE);
7077 }
7078 __set_current_state(TASK_RUNNING);
7079 return 0;
7080}
7081
7082#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7083
7084static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7085{
7086 int ret;
7087
7088 local_irq_disable();
7089 ret = __migrate_task(p, src_cpu, dest_cpu);
7090 local_irq_enable();
7091 return ret;
7092}
7093
054b9108 7094/*
3a4fa0a2 7095 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7096 */
48f24c4d 7097static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7098{
70b97a7f 7099 int dest_cpu;
6ca09dfc 7100 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7101
7102again:
7103 /* Look for allowed, online CPU in same node. */
7104 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7105 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7106 goto move;
7107
7108 /* Any allowed, online CPU? */
7109 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7110 if (dest_cpu < nr_cpu_ids)
7111 goto move;
7112
7113 /* No more Mr. Nice Guy. */
7114 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7115 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7116 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7117
e76bd8d9
RR
7118 /*
7119 * Don't tell them about moving exiting tasks or
7120 * kernel threads (both mm NULL), since they never
7121 * leave kernel.
7122 */
7123 if (p->mm && printk_ratelimit()) {
7124 printk(KERN_INFO "process %d (%s) no "
7125 "longer affine to cpu%d\n",
7126 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7127 }
e76bd8d9
RR
7128 }
7129
7130move:
7131 /* It can have affinity changed while we were choosing. */
7132 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7133 goto again;
1da177e4
LT
7134}
7135
7136/*
7137 * While a dead CPU has no uninterruptible tasks queued at this point,
7138 * it might still have a nonzero ->nr_uninterruptible counter, because
7139 * for performance reasons the counter is not stricly tracking tasks to
7140 * their home CPUs. So we just add the counter to another CPU's counter,
7141 * to keep the global sum constant after CPU-down:
7142 */
70b97a7f 7143static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7144{
1e5ce4f4 7145 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7146 unsigned long flags;
7147
7148 local_irq_save(flags);
7149 double_rq_lock(rq_src, rq_dest);
7150 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7151 rq_src->nr_uninterruptible = 0;
7152 double_rq_unlock(rq_src, rq_dest);
7153 local_irq_restore(flags);
7154}
7155
7156/* Run through task list and migrate tasks from the dead cpu. */
7157static void migrate_live_tasks(int src_cpu)
7158{
48f24c4d 7159 struct task_struct *p, *t;
1da177e4 7160
f7b4cddc 7161 read_lock(&tasklist_lock);
1da177e4 7162
48f24c4d
IM
7163 do_each_thread(t, p) {
7164 if (p == current)
1da177e4
LT
7165 continue;
7166
48f24c4d
IM
7167 if (task_cpu(p) == src_cpu)
7168 move_task_off_dead_cpu(src_cpu, p);
7169 } while_each_thread(t, p);
1da177e4 7170
f7b4cddc 7171 read_unlock(&tasklist_lock);
1da177e4
LT
7172}
7173
dd41f596
IM
7174/*
7175 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7176 * It does so by boosting its priority to highest possible.
7177 * Used by CPU offline code.
1da177e4
LT
7178 */
7179void sched_idle_next(void)
7180{
48f24c4d 7181 int this_cpu = smp_processor_id();
70b97a7f 7182 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7183 struct task_struct *p = rq->idle;
7184 unsigned long flags;
7185
7186 /* cpu has to be offline */
48f24c4d 7187 BUG_ON(cpu_online(this_cpu));
1da177e4 7188
48f24c4d
IM
7189 /*
7190 * Strictly not necessary since rest of the CPUs are stopped by now
7191 * and interrupts disabled on the current cpu.
1da177e4
LT
7192 */
7193 spin_lock_irqsave(&rq->lock, flags);
7194
dd41f596 7195 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7196
94bc9a7b
DA
7197 update_rq_clock(rq);
7198 activate_task(rq, p, 0);
1da177e4
LT
7199
7200 spin_unlock_irqrestore(&rq->lock, flags);
7201}
7202
48f24c4d
IM
7203/*
7204 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7205 * offline.
7206 */
7207void idle_task_exit(void)
7208{
7209 struct mm_struct *mm = current->active_mm;
7210
7211 BUG_ON(cpu_online(smp_processor_id()));
7212
7213 if (mm != &init_mm)
7214 switch_mm(mm, &init_mm, current);
7215 mmdrop(mm);
7216}
7217
054b9108 7218/* called under rq->lock with disabled interrupts */
36c8b586 7219static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7220{
70b97a7f 7221 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7222
7223 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7224 BUG_ON(!p->exit_state);
1da177e4
LT
7225
7226 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7227 BUG_ON(p->state == TASK_DEAD);
1da177e4 7228
48f24c4d 7229 get_task_struct(p);
1da177e4
LT
7230
7231 /*
7232 * Drop lock around migration; if someone else moves it,
41a2d6cf 7233 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7234 * fine.
7235 */
f7b4cddc 7236 spin_unlock_irq(&rq->lock);
48f24c4d 7237 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7238 spin_lock_irq(&rq->lock);
1da177e4 7239
48f24c4d 7240 put_task_struct(p);
1da177e4
LT
7241}
7242
7243/* release_task() removes task from tasklist, so we won't find dead tasks. */
7244static void migrate_dead_tasks(unsigned int dead_cpu)
7245{
70b97a7f 7246 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7247 struct task_struct *next;
48f24c4d 7248
dd41f596
IM
7249 for ( ; ; ) {
7250 if (!rq->nr_running)
7251 break;
a8e504d2 7252 update_rq_clock(rq);
b67802ea 7253 next = pick_next_task(rq);
dd41f596
IM
7254 if (!next)
7255 break;
79c53799 7256 next->sched_class->put_prev_task(rq, next);
dd41f596 7257 migrate_dead(dead_cpu, next);
e692ab53 7258
1da177e4
LT
7259 }
7260}
dce48a84
TG
7261
7262/*
7263 * remove the tasks which were accounted by rq from calc_load_tasks.
7264 */
7265static void calc_global_load_remove(struct rq *rq)
7266{
7267 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7268}
1da177e4
LT
7269#endif /* CONFIG_HOTPLUG_CPU */
7270
e692ab53
NP
7271#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7272
7273static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7274 {
7275 .procname = "sched_domain",
c57baf1e 7276 .mode = 0555,
e0361851 7277 },
38605cae 7278 {0, },
e692ab53
NP
7279};
7280
7281static struct ctl_table sd_ctl_root[] = {
e0361851 7282 {
c57baf1e 7283 .ctl_name = CTL_KERN,
e0361851 7284 .procname = "kernel",
c57baf1e 7285 .mode = 0555,
e0361851
AD
7286 .child = sd_ctl_dir,
7287 },
38605cae 7288 {0, },
e692ab53
NP
7289};
7290
7291static struct ctl_table *sd_alloc_ctl_entry(int n)
7292{
7293 struct ctl_table *entry =
5cf9f062 7294 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7295
e692ab53
NP
7296 return entry;
7297}
7298
6382bc90
MM
7299static void sd_free_ctl_entry(struct ctl_table **tablep)
7300{
cd790076 7301 struct ctl_table *entry;
6382bc90 7302
cd790076
MM
7303 /*
7304 * In the intermediate directories, both the child directory and
7305 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7306 * will always be set. In the lowest directory the names are
cd790076
MM
7307 * static strings and all have proc handlers.
7308 */
7309 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7310 if (entry->child)
7311 sd_free_ctl_entry(&entry->child);
cd790076
MM
7312 if (entry->proc_handler == NULL)
7313 kfree(entry->procname);
7314 }
6382bc90
MM
7315
7316 kfree(*tablep);
7317 *tablep = NULL;
7318}
7319
e692ab53 7320static void
e0361851 7321set_table_entry(struct ctl_table *entry,
e692ab53
NP
7322 const char *procname, void *data, int maxlen,
7323 mode_t mode, proc_handler *proc_handler)
7324{
e692ab53
NP
7325 entry->procname = procname;
7326 entry->data = data;
7327 entry->maxlen = maxlen;
7328 entry->mode = mode;
7329 entry->proc_handler = proc_handler;
7330}
7331
7332static struct ctl_table *
7333sd_alloc_ctl_domain_table(struct sched_domain *sd)
7334{
a5d8c348 7335 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7336
ad1cdc1d
MM
7337 if (table == NULL)
7338 return NULL;
7339
e0361851 7340 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7341 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7342 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7343 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7344 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7345 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7346 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7347 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7348 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7349 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7350 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7351 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7352 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7353 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7354 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7355 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7356 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7357 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7358 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7359 &sd->cache_nice_tries,
7360 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7361 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7362 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7363 set_table_entry(&table[11], "name", sd->name,
7364 CORENAME_MAX_SIZE, 0444, proc_dostring);
7365 /* &table[12] is terminator */
e692ab53
NP
7366
7367 return table;
7368}
7369
9a4e7159 7370static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7371{
7372 struct ctl_table *entry, *table;
7373 struct sched_domain *sd;
7374 int domain_num = 0, i;
7375 char buf[32];
7376
7377 for_each_domain(cpu, sd)
7378 domain_num++;
7379 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7380 if (table == NULL)
7381 return NULL;
e692ab53
NP
7382
7383 i = 0;
7384 for_each_domain(cpu, sd) {
7385 snprintf(buf, 32, "domain%d", i);
e692ab53 7386 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7387 entry->mode = 0555;
e692ab53
NP
7388 entry->child = sd_alloc_ctl_domain_table(sd);
7389 entry++;
7390 i++;
7391 }
7392 return table;
7393}
7394
7395static struct ctl_table_header *sd_sysctl_header;
6382bc90 7396static void register_sched_domain_sysctl(void)
e692ab53
NP
7397{
7398 int i, cpu_num = num_online_cpus();
7399 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7400 char buf[32];
7401
7378547f
MM
7402 WARN_ON(sd_ctl_dir[0].child);
7403 sd_ctl_dir[0].child = entry;
7404
ad1cdc1d
MM
7405 if (entry == NULL)
7406 return;
7407
97b6ea7b 7408 for_each_online_cpu(i) {
e692ab53 7409 snprintf(buf, 32, "cpu%d", i);
e692ab53 7410 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7411 entry->mode = 0555;
e692ab53 7412 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7413 entry++;
e692ab53 7414 }
7378547f
MM
7415
7416 WARN_ON(sd_sysctl_header);
e692ab53
NP
7417 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7418}
6382bc90 7419
7378547f 7420/* may be called multiple times per register */
6382bc90
MM
7421static void unregister_sched_domain_sysctl(void)
7422{
7378547f
MM
7423 if (sd_sysctl_header)
7424 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7425 sd_sysctl_header = NULL;
7378547f
MM
7426 if (sd_ctl_dir[0].child)
7427 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7428}
e692ab53 7429#else
6382bc90
MM
7430static void register_sched_domain_sysctl(void)
7431{
7432}
7433static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7434{
7435}
7436#endif
7437
1f11eb6a
GH
7438static void set_rq_online(struct rq *rq)
7439{
7440 if (!rq->online) {
7441 const struct sched_class *class;
7442
c6c4927b 7443 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7444 rq->online = 1;
7445
7446 for_each_class(class) {
7447 if (class->rq_online)
7448 class->rq_online(rq);
7449 }
7450 }
7451}
7452
7453static void set_rq_offline(struct rq *rq)
7454{
7455 if (rq->online) {
7456 const struct sched_class *class;
7457
7458 for_each_class(class) {
7459 if (class->rq_offline)
7460 class->rq_offline(rq);
7461 }
7462
c6c4927b 7463 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7464 rq->online = 0;
7465 }
7466}
7467
1da177e4
LT
7468/*
7469 * migration_call - callback that gets triggered when a CPU is added.
7470 * Here we can start up the necessary migration thread for the new CPU.
7471 */
48f24c4d
IM
7472static int __cpuinit
7473migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7474{
1da177e4 7475 struct task_struct *p;
48f24c4d 7476 int cpu = (long)hcpu;
1da177e4 7477 unsigned long flags;
70b97a7f 7478 struct rq *rq;
1da177e4
LT
7479
7480 switch (action) {
5be9361c 7481
1da177e4 7482 case CPU_UP_PREPARE:
8bb78442 7483 case CPU_UP_PREPARE_FROZEN:
dd41f596 7484 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7485 if (IS_ERR(p))
7486 return NOTIFY_BAD;
1da177e4
LT
7487 kthread_bind(p, cpu);
7488 /* Must be high prio: stop_machine expects to yield to it. */
7489 rq = task_rq_lock(p, &flags);
dd41f596 7490 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
7491 task_rq_unlock(rq, &flags);
7492 cpu_rq(cpu)->migration_thread = p;
7493 break;
48f24c4d 7494
1da177e4 7495 case CPU_ONLINE:
8bb78442 7496 case CPU_ONLINE_FROZEN:
3a4fa0a2 7497 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7498 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7499
7500 /* Update our root-domain */
7501 rq = cpu_rq(cpu);
7502 spin_lock_irqsave(&rq->lock, flags);
dce48a84
TG
7503 rq->calc_load_update = calc_load_update;
7504 rq->calc_load_active = 0;
1f94ef59 7505 if (rq->rd) {
c6c4927b 7506 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7507
7508 set_rq_online(rq);
1f94ef59
GH
7509 }
7510 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7511 break;
48f24c4d 7512
1da177e4
LT
7513#ifdef CONFIG_HOTPLUG_CPU
7514 case CPU_UP_CANCELED:
8bb78442 7515 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7516 if (!cpu_rq(cpu)->migration_thread)
7517 break;
41a2d6cf 7518 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7519 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7520 cpumask_any(cpu_online_mask));
1da177e4
LT
7521 kthread_stop(cpu_rq(cpu)->migration_thread);
7522 cpu_rq(cpu)->migration_thread = NULL;
7523 break;
48f24c4d 7524
1da177e4 7525 case CPU_DEAD:
8bb78442 7526 case CPU_DEAD_FROZEN:
470fd646 7527 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7528 migrate_live_tasks(cpu);
7529 rq = cpu_rq(cpu);
7530 kthread_stop(rq->migration_thread);
7531 rq->migration_thread = NULL;
7532 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7533 spin_lock_irq(&rq->lock);
a8e504d2 7534 update_rq_clock(rq);
2e1cb74a 7535 deactivate_task(rq, rq->idle, 0);
1da177e4 7536 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7537 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7538 rq->idle->sched_class = &idle_sched_class;
1da177e4 7539 migrate_dead_tasks(cpu);
d2da272a 7540 spin_unlock_irq(&rq->lock);
470fd646 7541 cpuset_unlock();
1da177e4
LT
7542 migrate_nr_uninterruptible(rq);
7543 BUG_ON(rq->nr_running != 0);
dce48a84 7544 calc_global_load_remove(rq);
41a2d6cf
IM
7545 /*
7546 * No need to migrate the tasks: it was best-effort if
7547 * they didn't take sched_hotcpu_mutex. Just wake up
7548 * the requestors.
7549 */
1da177e4
LT
7550 spin_lock_irq(&rq->lock);
7551 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7552 struct migration_req *req;
7553
1da177e4 7554 req = list_entry(rq->migration_queue.next,
70b97a7f 7555 struct migration_req, list);
1da177e4 7556 list_del_init(&req->list);
9a2bd244 7557 spin_unlock_irq(&rq->lock);
1da177e4 7558 complete(&req->done);
9a2bd244 7559 spin_lock_irq(&rq->lock);
1da177e4
LT
7560 }
7561 spin_unlock_irq(&rq->lock);
7562 break;
57d885fe 7563
08f503b0
GH
7564 case CPU_DYING:
7565 case CPU_DYING_FROZEN:
57d885fe
GH
7566 /* Update our root-domain */
7567 rq = cpu_rq(cpu);
7568 spin_lock_irqsave(&rq->lock, flags);
7569 if (rq->rd) {
c6c4927b 7570 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7571 set_rq_offline(rq);
57d885fe
GH
7572 }
7573 spin_unlock_irqrestore(&rq->lock, flags);
7574 break;
1da177e4
LT
7575#endif
7576 }
7577 return NOTIFY_OK;
7578}
7579
f38b0820
PM
7580/*
7581 * Register at high priority so that task migration (migrate_all_tasks)
7582 * happens before everything else. This has to be lower priority than
7583 * the notifier in the perf_counter subsystem, though.
1da177e4 7584 */
26c2143b 7585static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7586 .notifier_call = migration_call,
7587 .priority = 10
7588};
7589
7babe8db 7590static int __init migration_init(void)
1da177e4
LT
7591{
7592 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7593 int err;
48f24c4d
IM
7594
7595 /* Start one for the boot CPU: */
07dccf33
AM
7596 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7597 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7598 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7599 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7600
7601 return err;
1da177e4 7602}
7babe8db 7603early_initcall(migration_init);
1da177e4
LT
7604#endif
7605
7606#ifdef CONFIG_SMP
476f3534 7607
3e9830dc 7608#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7609
7c16ec58 7610static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7611 struct cpumask *groupmask)
1da177e4 7612{
4dcf6aff 7613 struct sched_group *group = sd->groups;
434d53b0 7614 char str[256];
1da177e4 7615
968ea6d8 7616 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7617 cpumask_clear(groupmask);
4dcf6aff
IM
7618
7619 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7620
7621 if (!(sd->flags & SD_LOAD_BALANCE)) {
7622 printk("does not load-balance\n");
7623 if (sd->parent)
7624 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7625 " has parent");
7626 return -1;
41c7ce9a
NP
7627 }
7628
eefd796a 7629 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7630
758b2cdc 7631 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7632 printk(KERN_ERR "ERROR: domain->span does not contain "
7633 "CPU%d\n", cpu);
7634 }
758b2cdc 7635 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7636 printk(KERN_ERR "ERROR: domain->groups does not contain"
7637 " CPU%d\n", cpu);
7638 }
1da177e4 7639
4dcf6aff 7640 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7641 do {
4dcf6aff
IM
7642 if (!group) {
7643 printk("\n");
7644 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7645 break;
7646 }
7647
4dcf6aff
IM
7648 if (!group->__cpu_power) {
7649 printk(KERN_CONT "\n");
7650 printk(KERN_ERR "ERROR: domain->cpu_power not "
7651 "set\n");
7652 break;
7653 }
1da177e4 7654
758b2cdc 7655 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7656 printk(KERN_CONT "\n");
7657 printk(KERN_ERR "ERROR: empty group\n");
7658 break;
7659 }
1da177e4 7660
758b2cdc 7661 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7662 printk(KERN_CONT "\n");
7663 printk(KERN_ERR "ERROR: repeated CPUs\n");
7664 break;
7665 }
1da177e4 7666
758b2cdc 7667 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7668
968ea6d8 7669 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7670
7671 printk(KERN_CONT " %s", str);
7672 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7673 printk(KERN_CONT " (__cpu_power = %d)",
7674 group->__cpu_power);
7675 }
1da177e4 7676
4dcf6aff
IM
7677 group = group->next;
7678 } while (group != sd->groups);
7679 printk(KERN_CONT "\n");
1da177e4 7680
758b2cdc 7681 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7682 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7683
758b2cdc
RR
7684 if (sd->parent &&
7685 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7686 printk(KERN_ERR "ERROR: parent span is not a superset "
7687 "of domain->span\n");
7688 return 0;
7689}
1da177e4 7690
4dcf6aff
IM
7691static void sched_domain_debug(struct sched_domain *sd, int cpu)
7692{
d5dd3db1 7693 cpumask_var_t groupmask;
4dcf6aff 7694 int level = 0;
1da177e4 7695
4dcf6aff
IM
7696 if (!sd) {
7697 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7698 return;
7699 }
1da177e4 7700
4dcf6aff
IM
7701 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7702
d5dd3db1 7703 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7704 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7705 return;
7706 }
7707
4dcf6aff 7708 for (;;) {
7c16ec58 7709 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7710 break;
1da177e4
LT
7711 level++;
7712 sd = sd->parent;
33859f7f 7713 if (!sd)
4dcf6aff
IM
7714 break;
7715 }
d5dd3db1 7716 free_cpumask_var(groupmask);
1da177e4 7717}
6d6bc0ad 7718#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7719# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7720#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7721
1a20ff27 7722static int sd_degenerate(struct sched_domain *sd)
245af2c7 7723{
758b2cdc 7724 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7725 return 1;
7726
7727 /* Following flags need at least 2 groups */
7728 if (sd->flags & (SD_LOAD_BALANCE |
7729 SD_BALANCE_NEWIDLE |
7730 SD_BALANCE_FORK |
89c4710e
SS
7731 SD_BALANCE_EXEC |
7732 SD_SHARE_CPUPOWER |
7733 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7734 if (sd->groups != sd->groups->next)
7735 return 0;
7736 }
7737
7738 /* Following flags don't use groups */
7739 if (sd->flags & (SD_WAKE_IDLE |
7740 SD_WAKE_AFFINE |
7741 SD_WAKE_BALANCE))
7742 return 0;
7743
7744 return 1;
7745}
7746
48f24c4d
IM
7747static int
7748sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7749{
7750 unsigned long cflags = sd->flags, pflags = parent->flags;
7751
7752 if (sd_degenerate(parent))
7753 return 1;
7754
758b2cdc 7755 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7756 return 0;
7757
7758 /* Does parent contain flags not in child? */
7759 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7760 if (cflags & SD_WAKE_AFFINE)
7761 pflags &= ~SD_WAKE_BALANCE;
7762 /* Flags needing groups don't count if only 1 group in parent */
7763 if (parent->groups == parent->groups->next) {
7764 pflags &= ~(SD_LOAD_BALANCE |
7765 SD_BALANCE_NEWIDLE |
7766 SD_BALANCE_FORK |
89c4710e
SS
7767 SD_BALANCE_EXEC |
7768 SD_SHARE_CPUPOWER |
7769 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7770 if (nr_node_ids == 1)
7771 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7772 }
7773 if (~cflags & pflags)
7774 return 0;
7775
7776 return 1;
7777}
7778
c6c4927b
RR
7779static void free_rootdomain(struct root_domain *rd)
7780{
68e74568
RR
7781 cpupri_cleanup(&rd->cpupri);
7782
c6c4927b
RR
7783 free_cpumask_var(rd->rto_mask);
7784 free_cpumask_var(rd->online);
7785 free_cpumask_var(rd->span);
7786 kfree(rd);
7787}
7788
57d885fe
GH
7789static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7790{
a0490fa3 7791 struct root_domain *old_rd = NULL;
57d885fe 7792 unsigned long flags;
57d885fe
GH
7793
7794 spin_lock_irqsave(&rq->lock, flags);
7795
7796 if (rq->rd) {
a0490fa3 7797 old_rd = rq->rd;
57d885fe 7798
c6c4927b 7799 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7800 set_rq_offline(rq);
57d885fe 7801
c6c4927b 7802 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7803
a0490fa3
IM
7804 /*
7805 * If we dont want to free the old_rt yet then
7806 * set old_rd to NULL to skip the freeing later
7807 * in this function:
7808 */
7809 if (!atomic_dec_and_test(&old_rd->refcount))
7810 old_rd = NULL;
57d885fe
GH
7811 }
7812
7813 atomic_inc(&rd->refcount);
7814 rq->rd = rd;
7815
c6c4927b
RR
7816 cpumask_set_cpu(rq->cpu, rd->span);
7817 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7818 set_rq_online(rq);
57d885fe
GH
7819
7820 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7821
7822 if (old_rd)
7823 free_rootdomain(old_rd);
57d885fe
GH
7824}
7825
db2f59c8 7826static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7827{
36b7b6d4
PE
7828 gfp_t gfp = GFP_KERNEL;
7829
57d885fe
GH
7830 memset(rd, 0, sizeof(*rd));
7831
36b7b6d4
PE
7832 if (bootmem)
7833 gfp = GFP_NOWAIT;
c6c4927b 7834
36b7b6d4 7835 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7836 goto out;
36b7b6d4 7837 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7838 goto free_span;
36b7b6d4 7839 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7840 goto free_online;
6e0534f2 7841
0fb53029 7842 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7843 goto free_rto_mask;
c6c4927b 7844 return 0;
6e0534f2 7845
68e74568
RR
7846free_rto_mask:
7847 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7848free_online:
7849 free_cpumask_var(rd->online);
7850free_span:
7851 free_cpumask_var(rd->span);
0c910d28 7852out:
c6c4927b 7853 return -ENOMEM;
57d885fe
GH
7854}
7855
7856static void init_defrootdomain(void)
7857{
c6c4927b
RR
7858 init_rootdomain(&def_root_domain, true);
7859
57d885fe
GH
7860 atomic_set(&def_root_domain.refcount, 1);
7861}
7862
dc938520 7863static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7864{
7865 struct root_domain *rd;
7866
7867 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7868 if (!rd)
7869 return NULL;
7870
c6c4927b
RR
7871 if (init_rootdomain(rd, false) != 0) {
7872 kfree(rd);
7873 return NULL;
7874 }
57d885fe
GH
7875
7876 return rd;
7877}
7878
1da177e4 7879/*
0eab9146 7880 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7881 * hold the hotplug lock.
7882 */
0eab9146
IM
7883static void
7884cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7885{
70b97a7f 7886 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7887 struct sched_domain *tmp;
7888
7889 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7890 for (tmp = sd; tmp; ) {
245af2c7
SS
7891 struct sched_domain *parent = tmp->parent;
7892 if (!parent)
7893 break;
f29c9b1c 7894
1a848870 7895 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7896 tmp->parent = parent->parent;
1a848870
SS
7897 if (parent->parent)
7898 parent->parent->child = tmp;
f29c9b1c
LZ
7899 } else
7900 tmp = tmp->parent;
245af2c7
SS
7901 }
7902
1a848870 7903 if (sd && sd_degenerate(sd)) {
245af2c7 7904 sd = sd->parent;
1a848870
SS
7905 if (sd)
7906 sd->child = NULL;
7907 }
1da177e4
LT
7908
7909 sched_domain_debug(sd, cpu);
7910
57d885fe 7911 rq_attach_root(rq, rd);
674311d5 7912 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7913}
7914
7915/* cpus with isolated domains */
dcc30a35 7916static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7917
7918/* Setup the mask of cpus configured for isolated domains */
7919static int __init isolated_cpu_setup(char *str)
7920{
968ea6d8 7921 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7922 return 1;
7923}
7924
8927f494 7925__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7926
7927/*
6711cab4
SS
7928 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7929 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7930 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7931 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7932 *
7933 * init_sched_build_groups will build a circular linked list of the groups
7934 * covered by the given span, and will set each group's ->cpumask correctly,
7935 * and ->cpu_power to 0.
7936 */
a616058b 7937static void
96f874e2
RR
7938init_sched_build_groups(const struct cpumask *span,
7939 const struct cpumask *cpu_map,
7940 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7941 struct sched_group **sg,
96f874e2
RR
7942 struct cpumask *tmpmask),
7943 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7944{
7945 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7946 int i;
7947
96f874e2 7948 cpumask_clear(covered);
7c16ec58 7949
abcd083a 7950 for_each_cpu(i, span) {
6711cab4 7951 struct sched_group *sg;
7c16ec58 7952 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7953 int j;
7954
758b2cdc 7955 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7956 continue;
7957
758b2cdc 7958 cpumask_clear(sched_group_cpus(sg));
5517d86b 7959 sg->__cpu_power = 0;
1da177e4 7960
abcd083a 7961 for_each_cpu(j, span) {
7c16ec58 7962 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7963 continue;
7964
96f874e2 7965 cpumask_set_cpu(j, covered);
758b2cdc 7966 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7967 }
7968 if (!first)
7969 first = sg;
7970 if (last)
7971 last->next = sg;
7972 last = sg;
7973 }
7974 last->next = first;
7975}
7976
9c1cfda2 7977#define SD_NODES_PER_DOMAIN 16
1da177e4 7978
9c1cfda2 7979#ifdef CONFIG_NUMA
198e2f18 7980
9c1cfda2
JH
7981/**
7982 * find_next_best_node - find the next node to include in a sched_domain
7983 * @node: node whose sched_domain we're building
7984 * @used_nodes: nodes already in the sched_domain
7985 *
41a2d6cf 7986 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7987 * finds the closest node not already in the @used_nodes map.
7988 *
7989 * Should use nodemask_t.
7990 */
c5f59f08 7991static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7992{
7993 int i, n, val, min_val, best_node = 0;
7994
7995 min_val = INT_MAX;
7996
076ac2af 7997 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7998 /* Start at @node */
076ac2af 7999 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8000
8001 if (!nr_cpus_node(n))
8002 continue;
8003
8004 /* Skip already used nodes */
c5f59f08 8005 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8006 continue;
8007
8008 /* Simple min distance search */
8009 val = node_distance(node, n);
8010
8011 if (val < min_val) {
8012 min_val = val;
8013 best_node = n;
8014 }
8015 }
8016
c5f59f08 8017 node_set(best_node, *used_nodes);
9c1cfda2
JH
8018 return best_node;
8019}
8020
8021/**
8022 * sched_domain_node_span - get a cpumask for a node's sched_domain
8023 * @node: node whose cpumask we're constructing
73486722 8024 * @span: resulting cpumask
9c1cfda2 8025 *
41a2d6cf 8026 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8027 * should be one that prevents unnecessary balancing, but also spreads tasks
8028 * out optimally.
8029 */
96f874e2 8030static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8031{
c5f59f08 8032 nodemask_t used_nodes;
48f24c4d 8033 int i;
9c1cfda2 8034
6ca09dfc 8035 cpumask_clear(span);
c5f59f08 8036 nodes_clear(used_nodes);
9c1cfda2 8037
6ca09dfc 8038 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8039 node_set(node, used_nodes);
9c1cfda2
JH
8040
8041 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8042 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8043
6ca09dfc 8044 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8045 }
9c1cfda2 8046}
6d6bc0ad 8047#endif /* CONFIG_NUMA */
9c1cfda2 8048
5c45bf27 8049int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8050
6c99e9ad
RR
8051/*
8052 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8053 *
8054 * ( See the the comments in include/linux/sched.h:struct sched_group
8055 * and struct sched_domain. )
6c99e9ad
RR
8056 */
8057struct static_sched_group {
8058 struct sched_group sg;
8059 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8060};
8061
8062struct static_sched_domain {
8063 struct sched_domain sd;
8064 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8065};
8066
9c1cfda2 8067/*
48f24c4d 8068 * SMT sched-domains:
9c1cfda2 8069 */
1da177e4 8070#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8071static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8072static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8073
41a2d6cf 8074static int
96f874e2
RR
8075cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8076 struct sched_group **sg, struct cpumask *unused)
1da177e4 8077{
6711cab4 8078 if (sg)
6c99e9ad 8079 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8080 return cpu;
8081}
6d6bc0ad 8082#endif /* CONFIG_SCHED_SMT */
1da177e4 8083
48f24c4d
IM
8084/*
8085 * multi-core sched-domains:
8086 */
1e9f28fa 8087#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8088static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8089static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8090#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8091
8092#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8093static int
96f874e2
RR
8094cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8095 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8096{
6711cab4 8097 int group;
7c16ec58 8098
c69fc56d 8099 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8100 group = cpumask_first(mask);
6711cab4 8101 if (sg)
6c99e9ad 8102 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8103 return group;
1e9f28fa
SS
8104}
8105#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8106static int
96f874e2
RR
8107cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8108 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8109{
6711cab4 8110 if (sg)
6c99e9ad 8111 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8112 return cpu;
8113}
8114#endif
8115
6c99e9ad
RR
8116static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8117static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8118
41a2d6cf 8119static int
96f874e2
RR
8120cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8121 struct sched_group **sg, struct cpumask *mask)
1da177e4 8122{
6711cab4 8123 int group;
48f24c4d 8124#ifdef CONFIG_SCHED_MC
6ca09dfc 8125 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8126 group = cpumask_first(mask);
1e9f28fa 8127#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8128 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8129 group = cpumask_first(mask);
1da177e4 8130#else
6711cab4 8131 group = cpu;
1da177e4 8132#endif
6711cab4 8133 if (sg)
6c99e9ad 8134 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8135 return group;
1da177e4
LT
8136}
8137
8138#ifdef CONFIG_NUMA
1da177e4 8139/*
9c1cfda2
JH
8140 * The init_sched_build_groups can't handle what we want to do with node
8141 * groups, so roll our own. Now each node has its own list of groups which
8142 * gets dynamically allocated.
1da177e4 8143 */
62ea9ceb 8144static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8145static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8146
62ea9ceb 8147static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8148static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8149
96f874e2
RR
8150static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8151 struct sched_group **sg,
8152 struct cpumask *nodemask)
9c1cfda2 8153{
6711cab4
SS
8154 int group;
8155
6ca09dfc 8156 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8157 group = cpumask_first(nodemask);
6711cab4
SS
8158
8159 if (sg)
6c99e9ad 8160 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8161 return group;
1da177e4 8162}
6711cab4 8163
08069033
SS
8164static void init_numa_sched_groups_power(struct sched_group *group_head)
8165{
8166 struct sched_group *sg = group_head;
8167 int j;
8168
8169 if (!sg)
8170 return;
3a5c359a 8171 do {
758b2cdc 8172 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8173 struct sched_domain *sd;
08069033 8174
6c99e9ad 8175 sd = &per_cpu(phys_domains, j).sd;
13318a71 8176 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8177 /*
8178 * Only add "power" once for each
8179 * physical package.
8180 */
8181 continue;
8182 }
08069033 8183
3a5c359a
AK
8184 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8185 }
8186 sg = sg->next;
8187 } while (sg != group_head);
08069033 8188}
6d6bc0ad 8189#endif /* CONFIG_NUMA */
1da177e4 8190
a616058b 8191#ifdef CONFIG_NUMA
51888ca2 8192/* Free memory allocated for various sched_group structures */
96f874e2
RR
8193static void free_sched_groups(const struct cpumask *cpu_map,
8194 struct cpumask *nodemask)
51888ca2 8195{
a616058b 8196 int cpu, i;
51888ca2 8197
abcd083a 8198 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8199 struct sched_group **sched_group_nodes
8200 = sched_group_nodes_bycpu[cpu];
8201
51888ca2
SV
8202 if (!sched_group_nodes)
8203 continue;
8204
076ac2af 8205 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8206 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8207
6ca09dfc 8208 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8209 if (cpumask_empty(nodemask))
51888ca2
SV
8210 continue;
8211
8212 if (sg == NULL)
8213 continue;
8214 sg = sg->next;
8215next_sg:
8216 oldsg = sg;
8217 sg = sg->next;
8218 kfree(oldsg);
8219 if (oldsg != sched_group_nodes[i])
8220 goto next_sg;
8221 }
8222 kfree(sched_group_nodes);
8223 sched_group_nodes_bycpu[cpu] = NULL;
8224 }
51888ca2 8225}
6d6bc0ad 8226#else /* !CONFIG_NUMA */
96f874e2
RR
8227static void free_sched_groups(const struct cpumask *cpu_map,
8228 struct cpumask *nodemask)
a616058b
SS
8229{
8230}
6d6bc0ad 8231#endif /* CONFIG_NUMA */
51888ca2 8232
89c4710e
SS
8233/*
8234 * Initialize sched groups cpu_power.
8235 *
8236 * cpu_power indicates the capacity of sched group, which is used while
8237 * distributing the load between different sched groups in a sched domain.
8238 * Typically cpu_power for all the groups in a sched domain will be same unless
8239 * there are asymmetries in the topology. If there are asymmetries, group
8240 * having more cpu_power will pickup more load compared to the group having
8241 * less cpu_power.
8242 *
8243 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8244 * the maximum number of tasks a group can handle in the presence of other idle
8245 * or lightly loaded groups in the same sched domain.
8246 */
8247static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8248{
8249 struct sched_domain *child;
8250 struct sched_group *group;
8251
8252 WARN_ON(!sd || !sd->groups);
8253
13318a71 8254 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8255 return;
8256
8257 child = sd->child;
8258
5517d86b
ED
8259 sd->groups->__cpu_power = 0;
8260
89c4710e
SS
8261 /*
8262 * For perf policy, if the groups in child domain share resources
8263 * (for example cores sharing some portions of the cache hierarchy
8264 * or SMT), then set this domain groups cpu_power such that each group
8265 * can handle only one task, when there are other idle groups in the
8266 * same sched domain.
8267 */
8268 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8269 (child->flags &
8270 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8271 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8272 return;
8273 }
8274
89c4710e
SS
8275 /*
8276 * add cpu_power of each child group to this groups cpu_power
8277 */
8278 group = child->groups;
8279 do {
5517d86b 8280 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8281 group = group->next;
8282 } while (group != child->groups);
8283}
8284
7c16ec58
MT
8285/*
8286 * Initializers for schedule domains
8287 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8288 */
8289
a5d8c348
IM
8290#ifdef CONFIG_SCHED_DEBUG
8291# define SD_INIT_NAME(sd, type) sd->name = #type
8292#else
8293# define SD_INIT_NAME(sd, type) do { } while (0)
8294#endif
8295
7c16ec58 8296#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8297
7c16ec58
MT
8298#define SD_INIT_FUNC(type) \
8299static noinline void sd_init_##type(struct sched_domain *sd) \
8300{ \
8301 memset(sd, 0, sizeof(*sd)); \
8302 *sd = SD_##type##_INIT; \
1d3504fc 8303 sd->level = SD_LV_##type; \
a5d8c348 8304 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8305}
8306
8307SD_INIT_FUNC(CPU)
8308#ifdef CONFIG_NUMA
8309 SD_INIT_FUNC(ALLNODES)
8310 SD_INIT_FUNC(NODE)
8311#endif
8312#ifdef CONFIG_SCHED_SMT
8313 SD_INIT_FUNC(SIBLING)
8314#endif
8315#ifdef CONFIG_SCHED_MC
8316 SD_INIT_FUNC(MC)
8317#endif
8318
1d3504fc
HS
8319static int default_relax_domain_level = -1;
8320
8321static int __init setup_relax_domain_level(char *str)
8322{
30e0e178
LZ
8323 unsigned long val;
8324
8325 val = simple_strtoul(str, NULL, 0);
8326 if (val < SD_LV_MAX)
8327 default_relax_domain_level = val;
8328
1d3504fc
HS
8329 return 1;
8330}
8331__setup("relax_domain_level=", setup_relax_domain_level);
8332
8333static void set_domain_attribute(struct sched_domain *sd,
8334 struct sched_domain_attr *attr)
8335{
8336 int request;
8337
8338 if (!attr || attr->relax_domain_level < 0) {
8339 if (default_relax_domain_level < 0)
8340 return;
8341 else
8342 request = default_relax_domain_level;
8343 } else
8344 request = attr->relax_domain_level;
8345 if (request < sd->level) {
8346 /* turn off idle balance on this domain */
8347 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8348 } else {
8349 /* turn on idle balance on this domain */
8350 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8351 }
8352}
8353
1da177e4 8354/*
1a20ff27
DG
8355 * Build sched domains for a given set of cpus and attach the sched domains
8356 * to the individual cpus
1da177e4 8357 */
96f874e2 8358static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8359 struct sched_domain_attr *attr)
1da177e4 8360{
3404c8d9 8361 int i, err = -ENOMEM;
57d885fe 8362 struct root_domain *rd;
3404c8d9
RR
8363 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8364 tmpmask;
d1b55138 8365#ifdef CONFIG_NUMA
3404c8d9 8366 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8367 struct sched_group **sched_group_nodes = NULL;
6711cab4 8368 int sd_allnodes = 0;
d1b55138 8369
3404c8d9
RR
8370 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8371 goto out;
8372 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8373 goto free_domainspan;
8374 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8375 goto free_covered;
8376#endif
8377
8378 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8379 goto free_notcovered;
8380 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8381 goto free_nodemask;
8382 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8383 goto free_this_sibling_map;
8384 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8385 goto free_this_core_map;
8386 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8387 goto free_send_covered;
8388
8389#ifdef CONFIG_NUMA
d1b55138
JH
8390 /*
8391 * Allocate the per-node list of sched groups
8392 */
076ac2af 8393 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8394 GFP_KERNEL);
d1b55138
JH
8395 if (!sched_group_nodes) {
8396 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8397 goto free_tmpmask;
d1b55138 8398 }
d1b55138 8399#endif
1da177e4 8400
dc938520 8401 rd = alloc_rootdomain();
57d885fe
GH
8402 if (!rd) {
8403 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8404 goto free_sched_groups;
57d885fe
GH
8405 }
8406
7c16ec58 8407#ifdef CONFIG_NUMA
96f874e2 8408 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8409#endif
8410
1da177e4 8411 /*
1a20ff27 8412 * Set up domains for cpus specified by the cpu_map.
1da177e4 8413 */
abcd083a 8414 for_each_cpu(i, cpu_map) {
1da177e4 8415 struct sched_domain *sd = NULL, *p;
1da177e4 8416
6ca09dfc 8417 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8418
8419#ifdef CONFIG_NUMA
96f874e2
RR
8420 if (cpumask_weight(cpu_map) >
8421 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8422 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8423 SD_INIT(sd, ALLNODES);
1d3504fc 8424 set_domain_attribute(sd, attr);
758b2cdc 8425 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8426 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8427 p = sd;
6711cab4 8428 sd_allnodes = 1;
9c1cfda2
JH
8429 } else
8430 p = NULL;
8431
62ea9ceb 8432 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8433 SD_INIT(sd, NODE);
1d3504fc 8434 set_domain_attribute(sd, attr);
758b2cdc 8435 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8436 sd->parent = p;
1a848870
SS
8437 if (p)
8438 p->child = sd;
758b2cdc
RR
8439 cpumask_and(sched_domain_span(sd),
8440 sched_domain_span(sd), cpu_map);
1da177e4
LT
8441#endif
8442
8443 p = sd;
6c99e9ad 8444 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8445 SD_INIT(sd, CPU);
1d3504fc 8446 set_domain_attribute(sd, attr);
758b2cdc 8447 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8448 sd->parent = p;
1a848870
SS
8449 if (p)
8450 p->child = sd;
7c16ec58 8451 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8452
1e9f28fa
SS
8453#ifdef CONFIG_SCHED_MC
8454 p = sd;
6c99e9ad 8455 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8456 SD_INIT(sd, MC);
1d3504fc 8457 set_domain_attribute(sd, attr);
6ca09dfc
MT
8458 cpumask_and(sched_domain_span(sd), cpu_map,
8459 cpu_coregroup_mask(i));
1e9f28fa 8460 sd->parent = p;
1a848870 8461 p->child = sd;
7c16ec58 8462 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8463#endif
8464
1da177e4
LT
8465#ifdef CONFIG_SCHED_SMT
8466 p = sd;
6c99e9ad 8467 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8468 SD_INIT(sd, SIBLING);
1d3504fc 8469 set_domain_attribute(sd, attr);
758b2cdc 8470 cpumask_and(sched_domain_span(sd),
c69fc56d 8471 topology_thread_cpumask(i), cpu_map);
1da177e4 8472 sd->parent = p;
1a848870 8473 p->child = sd;
7c16ec58 8474 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8475#endif
8476 }
8477
8478#ifdef CONFIG_SCHED_SMT
8479 /* Set up CPU (sibling) groups */
abcd083a 8480 for_each_cpu(i, cpu_map) {
96f874e2 8481 cpumask_and(this_sibling_map,
c69fc56d 8482 topology_thread_cpumask(i), cpu_map);
96f874e2 8483 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8484 continue;
8485
dd41f596 8486 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8487 &cpu_to_cpu_group,
8488 send_covered, tmpmask);
1da177e4
LT
8489 }
8490#endif
8491
1e9f28fa
SS
8492#ifdef CONFIG_SCHED_MC
8493 /* Set up multi-core groups */
abcd083a 8494 for_each_cpu(i, cpu_map) {
6ca09dfc 8495 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8496 if (i != cpumask_first(this_core_map))
1e9f28fa 8497 continue;
7c16ec58 8498
dd41f596 8499 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8500 &cpu_to_core_group,
8501 send_covered, tmpmask);
1e9f28fa
SS
8502 }
8503#endif
8504
1da177e4 8505 /* Set up physical groups */
076ac2af 8506 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8507 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8508 if (cpumask_empty(nodemask))
1da177e4
LT
8509 continue;
8510
7c16ec58
MT
8511 init_sched_build_groups(nodemask, cpu_map,
8512 &cpu_to_phys_group,
8513 send_covered, tmpmask);
1da177e4
LT
8514 }
8515
8516#ifdef CONFIG_NUMA
8517 /* Set up node groups */
7c16ec58 8518 if (sd_allnodes) {
7c16ec58
MT
8519 init_sched_build_groups(cpu_map, cpu_map,
8520 &cpu_to_allnodes_group,
8521 send_covered, tmpmask);
8522 }
9c1cfda2 8523
076ac2af 8524 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8525 /* Set up node groups */
8526 struct sched_group *sg, *prev;
9c1cfda2
JH
8527 int j;
8528
96f874e2 8529 cpumask_clear(covered);
6ca09dfc 8530 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8531 if (cpumask_empty(nodemask)) {
d1b55138 8532 sched_group_nodes[i] = NULL;
9c1cfda2 8533 continue;
d1b55138 8534 }
9c1cfda2 8535
4bdbaad3 8536 sched_domain_node_span(i, domainspan);
96f874e2 8537 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8538
6c99e9ad
RR
8539 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8540 GFP_KERNEL, i);
51888ca2
SV
8541 if (!sg) {
8542 printk(KERN_WARNING "Can not alloc domain group for "
8543 "node %d\n", i);
8544 goto error;
8545 }
9c1cfda2 8546 sched_group_nodes[i] = sg;
abcd083a 8547 for_each_cpu(j, nodemask) {
9c1cfda2 8548 struct sched_domain *sd;
9761eea8 8549
62ea9ceb 8550 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8551 sd->groups = sg;
9c1cfda2 8552 }
5517d86b 8553 sg->__cpu_power = 0;
758b2cdc 8554 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8555 sg->next = sg;
96f874e2 8556 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8557 prev = sg;
8558
076ac2af 8559 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8560 int n = (i + j) % nr_node_ids;
9c1cfda2 8561
96f874e2
RR
8562 cpumask_complement(notcovered, covered);
8563 cpumask_and(tmpmask, notcovered, cpu_map);
8564 cpumask_and(tmpmask, tmpmask, domainspan);
8565 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8566 break;
8567
6ca09dfc 8568 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8569 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8570 continue;
8571
6c99e9ad
RR
8572 sg = kmalloc_node(sizeof(struct sched_group) +
8573 cpumask_size(),
15f0b676 8574 GFP_KERNEL, i);
9c1cfda2
JH
8575 if (!sg) {
8576 printk(KERN_WARNING
8577 "Can not alloc domain group for node %d\n", j);
51888ca2 8578 goto error;
9c1cfda2 8579 }
5517d86b 8580 sg->__cpu_power = 0;
758b2cdc 8581 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8582 sg->next = prev->next;
96f874e2 8583 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8584 prev->next = sg;
8585 prev = sg;
8586 }
9c1cfda2 8587 }
1da177e4
LT
8588#endif
8589
8590 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8591#ifdef CONFIG_SCHED_SMT
abcd083a 8592 for_each_cpu(i, cpu_map) {
6c99e9ad 8593 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8594
89c4710e 8595 init_sched_groups_power(i, sd);
5c45bf27 8596 }
1da177e4 8597#endif
1e9f28fa 8598#ifdef CONFIG_SCHED_MC
abcd083a 8599 for_each_cpu(i, cpu_map) {
6c99e9ad 8600 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8601
89c4710e 8602 init_sched_groups_power(i, sd);
5c45bf27
SS
8603 }
8604#endif
1e9f28fa 8605
abcd083a 8606 for_each_cpu(i, cpu_map) {
6c99e9ad 8607 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8608
89c4710e 8609 init_sched_groups_power(i, sd);
1da177e4
LT
8610 }
8611
9c1cfda2 8612#ifdef CONFIG_NUMA
076ac2af 8613 for (i = 0; i < nr_node_ids; i++)
08069033 8614 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8615
6711cab4
SS
8616 if (sd_allnodes) {
8617 struct sched_group *sg;
f712c0c7 8618
96f874e2 8619 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8620 tmpmask);
f712c0c7
SS
8621 init_numa_sched_groups_power(sg);
8622 }
9c1cfda2
JH
8623#endif
8624
1da177e4 8625 /* Attach the domains */
abcd083a 8626 for_each_cpu(i, cpu_map) {
1da177e4
LT
8627 struct sched_domain *sd;
8628#ifdef CONFIG_SCHED_SMT
6c99e9ad 8629 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8630#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8631 sd = &per_cpu(core_domains, i).sd;
1da177e4 8632#else
6c99e9ad 8633 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8634#endif
57d885fe 8635 cpu_attach_domain(sd, rd, i);
1da177e4 8636 }
51888ca2 8637
3404c8d9
RR
8638 err = 0;
8639
8640free_tmpmask:
8641 free_cpumask_var(tmpmask);
8642free_send_covered:
8643 free_cpumask_var(send_covered);
8644free_this_core_map:
8645 free_cpumask_var(this_core_map);
8646free_this_sibling_map:
8647 free_cpumask_var(this_sibling_map);
8648free_nodemask:
8649 free_cpumask_var(nodemask);
8650free_notcovered:
8651#ifdef CONFIG_NUMA
8652 free_cpumask_var(notcovered);
8653free_covered:
8654 free_cpumask_var(covered);
8655free_domainspan:
8656 free_cpumask_var(domainspan);
8657out:
8658#endif
8659 return err;
8660
8661free_sched_groups:
8662#ifdef CONFIG_NUMA
8663 kfree(sched_group_nodes);
8664#endif
8665 goto free_tmpmask;
51888ca2 8666
a616058b 8667#ifdef CONFIG_NUMA
51888ca2 8668error:
7c16ec58 8669 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8670 free_rootdomain(rd);
3404c8d9 8671 goto free_tmpmask;
a616058b 8672#endif
1da177e4 8673}
029190c5 8674
96f874e2 8675static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8676{
8677 return __build_sched_domains(cpu_map, NULL);
8678}
8679
96f874e2 8680static struct cpumask *doms_cur; /* current sched domains */
029190c5 8681static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8682static struct sched_domain_attr *dattr_cur;
8683 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8684
8685/*
8686 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8687 * cpumask) fails, then fallback to a single sched domain,
8688 * as determined by the single cpumask fallback_doms.
029190c5 8689 */
4212823f 8690static cpumask_var_t fallback_doms;
029190c5 8691
ee79d1bd
HC
8692/*
8693 * arch_update_cpu_topology lets virtualized architectures update the
8694 * cpu core maps. It is supposed to return 1 if the topology changed
8695 * or 0 if it stayed the same.
8696 */
8697int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8698{
ee79d1bd 8699 return 0;
22e52b07
HC
8700}
8701
1a20ff27 8702/*
41a2d6cf 8703 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8704 * For now this just excludes isolated cpus, but could be used to
8705 * exclude other special cases in the future.
1a20ff27 8706 */
96f874e2 8707static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8708{
7378547f
MM
8709 int err;
8710
22e52b07 8711 arch_update_cpu_topology();
029190c5 8712 ndoms_cur = 1;
96f874e2 8713 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8714 if (!doms_cur)
4212823f 8715 doms_cur = fallback_doms;
dcc30a35 8716 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8717 dattr_cur = NULL;
7378547f 8718 err = build_sched_domains(doms_cur);
6382bc90 8719 register_sched_domain_sysctl();
7378547f
MM
8720
8721 return err;
1a20ff27
DG
8722}
8723
96f874e2
RR
8724static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8725 struct cpumask *tmpmask)
1da177e4 8726{
7c16ec58 8727 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8728}
1da177e4 8729
1a20ff27
DG
8730/*
8731 * Detach sched domains from a group of cpus specified in cpu_map
8732 * These cpus will now be attached to the NULL domain
8733 */
96f874e2 8734static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8735{
96f874e2
RR
8736 /* Save because hotplug lock held. */
8737 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8738 int i;
8739
abcd083a 8740 for_each_cpu(i, cpu_map)
57d885fe 8741 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8742 synchronize_sched();
96f874e2 8743 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8744}
8745
1d3504fc
HS
8746/* handle null as "default" */
8747static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8748 struct sched_domain_attr *new, int idx_new)
8749{
8750 struct sched_domain_attr tmp;
8751
8752 /* fast path */
8753 if (!new && !cur)
8754 return 1;
8755
8756 tmp = SD_ATTR_INIT;
8757 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8758 new ? (new + idx_new) : &tmp,
8759 sizeof(struct sched_domain_attr));
8760}
8761
029190c5
PJ
8762/*
8763 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8764 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8765 * doms_new[] to the current sched domain partitioning, doms_cur[].
8766 * It destroys each deleted domain and builds each new domain.
8767 *
96f874e2 8768 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8769 * The masks don't intersect (don't overlap.) We should setup one
8770 * sched domain for each mask. CPUs not in any of the cpumasks will
8771 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8772 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8773 * it as it is.
8774 *
41a2d6cf
IM
8775 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8776 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8777 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8778 * ndoms_new == 1, and partition_sched_domains() will fallback to
8779 * the single partition 'fallback_doms', it also forces the domains
8780 * to be rebuilt.
029190c5 8781 *
96f874e2 8782 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8783 * ndoms_new == 0 is a special case for destroying existing domains,
8784 * and it will not create the default domain.
dfb512ec 8785 *
029190c5
PJ
8786 * Call with hotplug lock held
8787 */
96f874e2
RR
8788/* FIXME: Change to struct cpumask *doms_new[] */
8789void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8790 struct sched_domain_attr *dattr_new)
029190c5 8791{
dfb512ec 8792 int i, j, n;
d65bd5ec 8793 int new_topology;
029190c5 8794
712555ee 8795 mutex_lock(&sched_domains_mutex);
a1835615 8796
7378547f
MM
8797 /* always unregister in case we don't destroy any domains */
8798 unregister_sched_domain_sysctl();
8799
d65bd5ec
HC
8800 /* Let architecture update cpu core mappings. */
8801 new_topology = arch_update_cpu_topology();
8802
dfb512ec 8803 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8804
8805 /* Destroy deleted domains */
8806 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8807 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8808 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8809 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8810 goto match1;
8811 }
8812 /* no match - a current sched domain not in new doms_new[] */
8813 detach_destroy_domains(doms_cur + i);
8814match1:
8815 ;
8816 }
8817
e761b772
MK
8818 if (doms_new == NULL) {
8819 ndoms_cur = 0;
4212823f 8820 doms_new = fallback_doms;
dcc30a35 8821 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8822 WARN_ON_ONCE(dattr_new);
e761b772
MK
8823 }
8824
029190c5
PJ
8825 /* Build new domains */
8826 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8827 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8828 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8829 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8830 goto match2;
8831 }
8832 /* no match - add a new doms_new */
1d3504fc
HS
8833 __build_sched_domains(doms_new + i,
8834 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8835match2:
8836 ;
8837 }
8838
8839 /* Remember the new sched domains */
4212823f 8840 if (doms_cur != fallback_doms)
029190c5 8841 kfree(doms_cur);
1d3504fc 8842 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8843 doms_cur = doms_new;
1d3504fc 8844 dattr_cur = dattr_new;
029190c5 8845 ndoms_cur = ndoms_new;
7378547f
MM
8846
8847 register_sched_domain_sysctl();
a1835615 8848
712555ee 8849 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8850}
8851
5c45bf27 8852#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8853static void arch_reinit_sched_domains(void)
5c45bf27 8854{
95402b38 8855 get_online_cpus();
dfb512ec
MK
8856
8857 /* Destroy domains first to force the rebuild */
8858 partition_sched_domains(0, NULL, NULL);
8859
e761b772 8860 rebuild_sched_domains();
95402b38 8861 put_online_cpus();
5c45bf27
SS
8862}
8863
8864static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8865{
afb8a9b7 8866 unsigned int level = 0;
5c45bf27 8867
afb8a9b7
GS
8868 if (sscanf(buf, "%u", &level) != 1)
8869 return -EINVAL;
8870
8871 /*
8872 * level is always be positive so don't check for
8873 * level < POWERSAVINGS_BALANCE_NONE which is 0
8874 * What happens on 0 or 1 byte write,
8875 * need to check for count as well?
8876 */
8877
8878 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8879 return -EINVAL;
8880
8881 if (smt)
afb8a9b7 8882 sched_smt_power_savings = level;
5c45bf27 8883 else
afb8a9b7 8884 sched_mc_power_savings = level;
5c45bf27 8885
c70f22d2 8886 arch_reinit_sched_domains();
5c45bf27 8887
c70f22d2 8888 return count;
5c45bf27
SS
8889}
8890
5c45bf27 8891#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8892static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8893 char *page)
5c45bf27
SS
8894{
8895 return sprintf(page, "%u\n", sched_mc_power_savings);
8896}
f718cd4a 8897static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8898 const char *buf, size_t count)
5c45bf27
SS
8899{
8900 return sched_power_savings_store(buf, count, 0);
8901}
f718cd4a
AK
8902static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8903 sched_mc_power_savings_show,
8904 sched_mc_power_savings_store);
5c45bf27
SS
8905#endif
8906
8907#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8908static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8909 char *page)
5c45bf27
SS
8910{
8911 return sprintf(page, "%u\n", sched_smt_power_savings);
8912}
f718cd4a 8913static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8914 const char *buf, size_t count)
5c45bf27
SS
8915{
8916 return sched_power_savings_store(buf, count, 1);
8917}
f718cd4a
AK
8918static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8919 sched_smt_power_savings_show,
6707de00
AB
8920 sched_smt_power_savings_store);
8921#endif
8922
39aac648 8923int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8924{
8925 int err = 0;
8926
8927#ifdef CONFIG_SCHED_SMT
8928 if (smt_capable())
8929 err = sysfs_create_file(&cls->kset.kobj,
8930 &attr_sched_smt_power_savings.attr);
8931#endif
8932#ifdef CONFIG_SCHED_MC
8933 if (!err && mc_capable())
8934 err = sysfs_create_file(&cls->kset.kobj,
8935 &attr_sched_mc_power_savings.attr);
8936#endif
8937 return err;
8938}
6d6bc0ad 8939#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8940
e761b772 8941#ifndef CONFIG_CPUSETS
1da177e4 8942/*
e761b772
MK
8943 * Add online and remove offline CPUs from the scheduler domains.
8944 * When cpusets are enabled they take over this function.
1da177e4
LT
8945 */
8946static int update_sched_domains(struct notifier_block *nfb,
8947 unsigned long action, void *hcpu)
e761b772
MK
8948{
8949 switch (action) {
8950 case CPU_ONLINE:
8951 case CPU_ONLINE_FROZEN:
8952 case CPU_DEAD:
8953 case CPU_DEAD_FROZEN:
dfb512ec 8954 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8955 return NOTIFY_OK;
8956
8957 default:
8958 return NOTIFY_DONE;
8959 }
8960}
8961#endif
8962
8963static int update_runtime(struct notifier_block *nfb,
8964 unsigned long action, void *hcpu)
1da177e4 8965{
7def2be1
PZ
8966 int cpu = (int)(long)hcpu;
8967
1da177e4 8968 switch (action) {
1da177e4 8969 case CPU_DOWN_PREPARE:
8bb78442 8970 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8971 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8972 return NOTIFY_OK;
8973
1da177e4 8974 case CPU_DOWN_FAILED:
8bb78442 8975 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8976 case CPU_ONLINE:
8bb78442 8977 case CPU_ONLINE_FROZEN:
7def2be1 8978 enable_runtime(cpu_rq(cpu));
e761b772
MK
8979 return NOTIFY_OK;
8980
1da177e4
LT
8981 default:
8982 return NOTIFY_DONE;
8983 }
1da177e4 8984}
1da177e4
LT
8985
8986void __init sched_init_smp(void)
8987{
dcc30a35
RR
8988 cpumask_var_t non_isolated_cpus;
8989
8990 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8991
434d53b0
MT
8992#if defined(CONFIG_NUMA)
8993 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8994 GFP_KERNEL);
8995 BUG_ON(sched_group_nodes_bycpu == NULL);
8996#endif
95402b38 8997 get_online_cpus();
712555ee 8998 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8999 arch_init_sched_domains(cpu_online_mask);
9000 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9001 if (cpumask_empty(non_isolated_cpus))
9002 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9003 mutex_unlock(&sched_domains_mutex);
95402b38 9004 put_online_cpus();
e761b772
MK
9005
9006#ifndef CONFIG_CPUSETS
1da177e4
LT
9007 /* XXX: Theoretical race here - CPU may be hotplugged now */
9008 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9009#endif
9010
9011 /* RT runtime code needs to handle some hotplug events */
9012 hotcpu_notifier(update_runtime, 0);
9013
b328ca18 9014 init_hrtick();
5c1e1767
NP
9015
9016 /* Move init over to a non-isolated CPU */
dcc30a35 9017 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9018 BUG();
19978ca6 9019 sched_init_granularity();
dcc30a35 9020 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9021
9022 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9023 init_sched_rt_class();
1da177e4
LT
9024}
9025#else
9026void __init sched_init_smp(void)
9027{
19978ca6 9028 sched_init_granularity();
1da177e4
LT
9029}
9030#endif /* CONFIG_SMP */
9031
9032int in_sched_functions(unsigned long addr)
9033{
1da177e4
LT
9034 return in_lock_functions(addr) ||
9035 (addr >= (unsigned long)__sched_text_start
9036 && addr < (unsigned long)__sched_text_end);
9037}
9038
a9957449 9039static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9040{
9041 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9042 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9043#ifdef CONFIG_FAIR_GROUP_SCHED
9044 cfs_rq->rq = rq;
9045#endif
67e9fb2a 9046 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9047}
9048
fa85ae24
PZ
9049static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9050{
9051 struct rt_prio_array *array;
9052 int i;
9053
9054 array = &rt_rq->active;
9055 for (i = 0; i < MAX_RT_PRIO; i++) {
9056 INIT_LIST_HEAD(array->queue + i);
9057 __clear_bit(i, array->bitmap);
9058 }
9059 /* delimiter for bitsearch: */
9060 __set_bit(MAX_RT_PRIO, array->bitmap);
9061
052f1dc7 9062#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9063 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9064#ifdef CONFIG_SMP
e864c499 9065 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9066#endif
48d5e258 9067#endif
fa85ae24
PZ
9068#ifdef CONFIG_SMP
9069 rt_rq->rt_nr_migratory = 0;
fa85ae24 9070 rt_rq->overloaded = 0;
917b627d 9071 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
9072#endif
9073
9074 rt_rq->rt_time = 0;
9075 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9076 rt_rq->rt_runtime = 0;
9077 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9078
052f1dc7 9079#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9080 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9081 rt_rq->rq = rq;
9082#endif
fa85ae24
PZ
9083}
9084
6f505b16 9085#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9086static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9087 struct sched_entity *se, int cpu, int add,
9088 struct sched_entity *parent)
6f505b16 9089{
ec7dc8ac 9090 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9091 tg->cfs_rq[cpu] = cfs_rq;
9092 init_cfs_rq(cfs_rq, rq);
9093 cfs_rq->tg = tg;
9094 if (add)
9095 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9096
9097 tg->se[cpu] = se;
354d60c2
DG
9098 /* se could be NULL for init_task_group */
9099 if (!se)
9100 return;
9101
ec7dc8ac
DG
9102 if (!parent)
9103 se->cfs_rq = &rq->cfs;
9104 else
9105 se->cfs_rq = parent->my_q;
9106
6f505b16
PZ
9107 se->my_q = cfs_rq;
9108 se->load.weight = tg->shares;
e05510d0 9109 se->load.inv_weight = 0;
ec7dc8ac 9110 se->parent = parent;
6f505b16 9111}
052f1dc7 9112#endif
6f505b16 9113
052f1dc7 9114#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9115static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9116 struct sched_rt_entity *rt_se, int cpu, int add,
9117 struct sched_rt_entity *parent)
6f505b16 9118{
ec7dc8ac
DG
9119 struct rq *rq = cpu_rq(cpu);
9120
6f505b16
PZ
9121 tg->rt_rq[cpu] = rt_rq;
9122 init_rt_rq(rt_rq, rq);
9123 rt_rq->tg = tg;
9124 rt_rq->rt_se = rt_se;
ac086bc2 9125 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9126 if (add)
9127 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9128
9129 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9130 if (!rt_se)
9131 return;
9132
ec7dc8ac
DG
9133 if (!parent)
9134 rt_se->rt_rq = &rq->rt;
9135 else
9136 rt_se->rt_rq = parent->my_q;
9137
6f505b16 9138 rt_se->my_q = rt_rq;
ec7dc8ac 9139 rt_se->parent = parent;
6f505b16
PZ
9140 INIT_LIST_HEAD(&rt_se->run_list);
9141}
9142#endif
9143
1da177e4
LT
9144void __init sched_init(void)
9145{
dd41f596 9146 int i, j;
434d53b0
MT
9147 unsigned long alloc_size = 0, ptr;
9148
9149#ifdef CONFIG_FAIR_GROUP_SCHED
9150 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9151#endif
9152#ifdef CONFIG_RT_GROUP_SCHED
9153 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9154#endif
9155#ifdef CONFIG_USER_SCHED
9156 alloc_size *= 2;
df7c8e84
RR
9157#endif
9158#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9159 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9160#endif
9161 /*
9162 * As sched_init() is called before page_alloc is setup,
9163 * we use alloc_bootmem().
9164 */
9165 if (alloc_size) {
36b7b6d4 9166 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9167
9168#ifdef CONFIG_FAIR_GROUP_SCHED
9169 init_task_group.se = (struct sched_entity **)ptr;
9170 ptr += nr_cpu_ids * sizeof(void **);
9171
9172 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9173 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9174
9175#ifdef CONFIG_USER_SCHED
9176 root_task_group.se = (struct sched_entity **)ptr;
9177 ptr += nr_cpu_ids * sizeof(void **);
9178
9179 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9180 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9181#endif /* CONFIG_USER_SCHED */
9182#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9183#ifdef CONFIG_RT_GROUP_SCHED
9184 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9185 ptr += nr_cpu_ids * sizeof(void **);
9186
9187 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9188 ptr += nr_cpu_ids * sizeof(void **);
9189
9190#ifdef CONFIG_USER_SCHED
9191 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9192 ptr += nr_cpu_ids * sizeof(void **);
9193
9194 root_task_group.rt_rq = (struct rt_rq **)ptr;
9195 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9196#endif /* CONFIG_USER_SCHED */
9197#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9198#ifdef CONFIG_CPUMASK_OFFSTACK
9199 for_each_possible_cpu(i) {
9200 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9201 ptr += cpumask_size();
9202 }
9203#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9204 }
dd41f596 9205
57d885fe
GH
9206#ifdef CONFIG_SMP
9207 init_defrootdomain();
9208#endif
9209
d0b27fa7
PZ
9210 init_rt_bandwidth(&def_rt_bandwidth,
9211 global_rt_period(), global_rt_runtime());
9212
9213#ifdef CONFIG_RT_GROUP_SCHED
9214 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9215 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9216#ifdef CONFIG_USER_SCHED
9217 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9218 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9219#endif /* CONFIG_USER_SCHED */
9220#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9221
052f1dc7 9222#ifdef CONFIG_GROUP_SCHED
6f505b16 9223 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9224 INIT_LIST_HEAD(&init_task_group.children);
9225
9226#ifdef CONFIG_USER_SCHED
9227 INIT_LIST_HEAD(&root_task_group.children);
9228 init_task_group.parent = &root_task_group;
9229 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9230#endif /* CONFIG_USER_SCHED */
9231#endif /* CONFIG_GROUP_SCHED */
6f505b16 9232
0a945022 9233 for_each_possible_cpu(i) {
70b97a7f 9234 struct rq *rq;
1da177e4
LT
9235
9236 rq = cpu_rq(i);
9237 spin_lock_init(&rq->lock);
7897986b 9238 rq->nr_running = 0;
dce48a84
TG
9239 rq->calc_load_active = 0;
9240 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9241 init_cfs_rq(&rq->cfs, rq);
6f505b16 9242 init_rt_rq(&rq->rt, rq);
dd41f596 9243#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9244 init_task_group.shares = init_task_group_load;
6f505b16 9245 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9246#ifdef CONFIG_CGROUP_SCHED
9247 /*
9248 * How much cpu bandwidth does init_task_group get?
9249 *
9250 * In case of task-groups formed thr' the cgroup filesystem, it
9251 * gets 100% of the cpu resources in the system. This overall
9252 * system cpu resource is divided among the tasks of
9253 * init_task_group and its child task-groups in a fair manner,
9254 * based on each entity's (task or task-group's) weight
9255 * (se->load.weight).
9256 *
9257 * In other words, if init_task_group has 10 tasks of weight
9258 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9259 * then A0's share of the cpu resource is:
9260 *
0d905bca 9261 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9262 *
9263 * We achieve this by letting init_task_group's tasks sit
9264 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9265 */
ec7dc8ac 9266 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9267#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9268 root_task_group.shares = NICE_0_LOAD;
9269 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9270 /*
9271 * In case of task-groups formed thr' the user id of tasks,
9272 * init_task_group represents tasks belonging to root user.
9273 * Hence it forms a sibling of all subsequent groups formed.
9274 * In this case, init_task_group gets only a fraction of overall
9275 * system cpu resource, based on the weight assigned to root
9276 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9277 * by letting tasks of init_task_group sit in a separate cfs_rq
9278 * (init_cfs_rq) and having one entity represent this group of
9279 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9280 */
ec7dc8ac 9281 init_tg_cfs_entry(&init_task_group,
6f505b16 9282 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9283 &per_cpu(init_sched_entity, i), i, 1,
9284 root_task_group.se[i]);
6f505b16 9285
052f1dc7 9286#endif
354d60c2
DG
9287#endif /* CONFIG_FAIR_GROUP_SCHED */
9288
9289 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9290#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9291 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9292#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9293 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9294#elif defined CONFIG_USER_SCHED
eff766a6 9295 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9296 init_tg_rt_entry(&init_task_group,
6f505b16 9297 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9298 &per_cpu(init_sched_rt_entity, i), i, 1,
9299 root_task_group.rt_se[i]);
354d60c2 9300#endif
dd41f596 9301#endif
1da177e4 9302
dd41f596
IM
9303 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9304 rq->cpu_load[j] = 0;
1da177e4 9305#ifdef CONFIG_SMP
41c7ce9a 9306 rq->sd = NULL;
57d885fe 9307 rq->rd = NULL;
1da177e4 9308 rq->active_balance = 0;
dd41f596 9309 rq->next_balance = jiffies;
1da177e4 9310 rq->push_cpu = 0;
0a2966b4 9311 rq->cpu = i;
1f11eb6a 9312 rq->online = 0;
1da177e4
LT
9313 rq->migration_thread = NULL;
9314 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9315 rq_attach_root(rq, &def_root_domain);
1da177e4 9316#endif
8f4d37ec 9317 init_rq_hrtick(rq);
1da177e4 9318 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9319 }
9320
2dd73a4f 9321 set_load_weight(&init_task);
b50f60ce 9322
e107be36
AK
9323#ifdef CONFIG_PREEMPT_NOTIFIERS
9324 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9325#endif
9326
c9819f45 9327#ifdef CONFIG_SMP
962cf36c 9328 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9329#endif
9330
b50f60ce
HC
9331#ifdef CONFIG_RT_MUTEXES
9332 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9333#endif
9334
1da177e4
LT
9335 /*
9336 * The boot idle thread does lazy MMU switching as well:
9337 */
9338 atomic_inc(&init_mm.mm_count);
9339 enter_lazy_tlb(&init_mm, current);
9340
9341 /*
9342 * Make us the idle thread. Technically, schedule() should not be
9343 * called from this thread, however somewhere below it might be,
9344 * but because we are the idle thread, we just pick up running again
9345 * when this runqueue becomes "idle".
9346 */
9347 init_idle(current, smp_processor_id());
dce48a84
TG
9348
9349 calc_load_update = jiffies + LOAD_FREQ;
9350
dd41f596
IM
9351 /*
9352 * During early bootup we pretend to be a normal task:
9353 */
9354 current->sched_class = &fair_sched_class;
6892b75e 9355
6a7b3dc3 9356 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9357 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9358#ifdef CONFIG_SMP
7d1e6a9b 9359#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9360 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9361 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9362#endif
4bdddf8f 9363 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9364#endif /* SMP */
6a7b3dc3 9365
0d905bca
IM
9366 perf_counter_init();
9367
6892b75e 9368 scheduler_running = 1;
1da177e4
LT
9369}
9370
9371#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9372void __might_sleep(char *file, int line)
9373{
48f24c4d 9374#ifdef in_atomic
1da177e4
LT
9375 static unsigned long prev_jiffy; /* ratelimiting */
9376
aef745fc
IM
9377 if ((!in_atomic() && !irqs_disabled()) ||
9378 system_state != SYSTEM_RUNNING || oops_in_progress)
9379 return;
9380 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9381 return;
9382 prev_jiffy = jiffies;
9383
9384 printk(KERN_ERR
9385 "BUG: sleeping function called from invalid context at %s:%d\n",
9386 file, line);
9387 printk(KERN_ERR
9388 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9389 in_atomic(), irqs_disabled(),
9390 current->pid, current->comm);
9391
9392 debug_show_held_locks(current);
9393 if (irqs_disabled())
9394 print_irqtrace_events(current);
9395 dump_stack();
1da177e4
LT
9396#endif
9397}
9398EXPORT_SYMBOL(__might_sleep);
9399#endif
9400
9401#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9402static void normalize_task(struct rq *rq, struct task_struct *p)
9403{
9404 int on_rq;
3e51f33f 9405
3a5e4dc1
AK
9406 update_rq_clock(rq);
9407 on_rq = p->se.on_rq;
9408 if (on_rq)
9409 deactivate_task(rq, p, 0);
9410 __setscheduler(rq, p, SCHED_NORMAL, 0);
9411 if (on_rq) {
9412 activate_task(rq, p, 0);
9413 resched_task(rq->curr);
9414 }
9415}
9416
1da177e4
LT
9417void normalize_rt_tasks(void)
9418{
a0f98a1c 9419 struct task_struct *g, *p;
1da177e4 9420 unsigned long flags;
70b97a7f 9421 struct rq *rq;
1da177e4 9422
4cf5d77a 9423 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9424 do_each_thread(g, p) {
178be793
IM
9425 /*
9426 * Only normalize user tasks:
9427 */
9428 if (!p->mm)
9429 continue;
9430
6cfb0d5d 9431 p->se.exec_start = 0;
6cfb0d5d 9432#ifdef CONFIG_SCHEDSTATS
dd41f596 9433 p->se.wait_start = 0;
dd41f596 9434 p->se.sleep_start = 0;
dd41f596 9435 p->se.block_start = 0;
6cfb0d5d 9436#endif
dd41f596
IM
9437
9438 if (!rt_task(p)) {
9439 /*
9440 * Renice negative nice level userspace
9441 * tasks back to 0:
9442 */
9443 if (TASK_NICE(p) < 0 && p->mm)
9444 set_user_nice(p, 0);
1da177e4 9445 continue;
dd41f596 9446 }
1da177e4 9447
4cf5d77a 9448 spin_lock(&p->pi_lock);
b29739f9 9449 rq = __task_rq_lock(p);
1da177e4 9450
178be793 9451 normalize_task(rq, p);
3a5e4dc1 9452
b29739f9 9453 __task_rq_unlock(rq);
4cf5d77a 9454 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9455 } while_each_thread(g, p);
9456
4cf5d77a 9457 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9458}
9459
9460#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9461
9462#ifdef CONFIG_IA64
9463/*
9464 * These functions are only useful for the IA64 MCA handling.
9465 *
9466 * They can only be called when the whole system has been
9467 * stopped - every CPU needs to be quiescent, and no scheduling
9468 * activity can take place. Using them for anything else would
9469 * be a serious bug, and as a result, they aren't even visible
9470 * under any other configuration.
9471 */
9472
9473/**
9474 * curr_task - return the current task for a given cpu.
9475 * @cpu: the processor in question.
9476 *
9477 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9478 */
36c8b586 9479struct task_struct *curr_task(int cpu)
1df5c10a
LT
9480{
9481 return cpu_curr(cpu);
9482}
9483
9484/**
9485 * set_curr_task - set the current task for a given cpu.
9486 * @cpu: the processor in question.
9487 * @p: the task pointer to set.
9488 *
9489 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9490 * are serviced on a separate stack. It allows the architecture to switch the
9491 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9492 * must be called with all CPU's synchronized, and interrupts disabled, the
9493 * and caller must save the original value of the current task (see
9494 * curr_task() above) and restore that value before reenabling interrupts and
9495 * re-starting the system.
9496 *
9497 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9498 */
36c8b586 9499void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9500{
9501 cpu_curr(cpu) = p;
9502}
9503
9504#endif
29f59db3 9505
bccbe08a
PZ
9506#ifdef CONFIG_FAIR_GROUP_SCHED
9507static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9508{
9509 int i;
9510
9511 for_each_possible_cpu(i) {
9512 if (tg->cfs_rq)
9513 kfree(tg->cfs_rq[i]);
9514 if (tg->se)
9515 kfree(tg->se[i]);
6f505b16
PZ
9516 }
9517
9518 kfree(tg->cfs_rq);
9519 kfree(tg->se);
6f505b16
PZ
9520}
9521
ec7dc8ac
DG
9522static
9523int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9524{
29f59db3 9525 struct cfs_rq *cfs_rq;
eab17229 9526 struct sched_entity *se;
9b5b7751 9527 struct rq *rq;
29f59db3
SV
9528 int i;
9529
434d53b0 9530 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9531 if (!tg->cfs_rq)
9532 goto err;
434d53b0 9533 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9534 if (!tg->se)
9535 goto err;
052f1dc7
PZ
9536
9537 tg->shares = NICE_0_LOAD;
29f59db3
SV
9538
9539 for_each_possible_cpu(i) {
9b5b7751 9540 rq = cpu_rq(i);
29f59db3 9541
eab17229
LZ
9542 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9543 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9544 if (!cfs_rq)
9545 goto err;
9546
eab17229
LZ
9547 se = kzalloc_node(sizeof(struct sched_entity),
9548 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9549 if (!se)
9550 goto err;
9551
eab17229 9552 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9553 }
9554
9555 return 1;
9556
9557 err:
9558 return 0;
9559}
9560
9561static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9562{
9563 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9564 &cpu_rq(cpu)->leaf_cfs_rq_list);
9565}
9566
9567static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9568{
9569 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9570}
6d6bc0ad 9571#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9572static inline void free_fair_sched_group(struct task_group *tg)
9573{
9574}
9575
ec7dc8ac
DG
9576static inline
9577int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9578{
9579 return 1;
9580}
9581
9582static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9583{
9584}
9585
9586static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9587{
9588}
6d6bc0ad 9589#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9590
9591#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9592static void free_rt_sched_group(struct task_group *tg)
9593{
9594 int i;
9595
d0b27fa7
PZ
9596 destroy_rt_bandwidth(&tg->rt_bandwidth);
9597
bccbe08a
PZ
9598 for_each_possible_cpu(i) {
9599 if (tg->rt_rq)
9600 kfree(tg->rt_rq[i]);
9601 if (tg->rt_se)
9602 kfree(tg->rt_se[i]);
9603 }
9604
9605 kfree(tg->rt_rq);
9606 kfree(tg->rt_se);
9607}
9608
ec7dc8ac
DG
9609static
9610int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9611{
9612 struct rt_rq *rt_rq;
eab17229 9613 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9614 struct rq *rq;
9615 int i;
9616
434d53b0 9617 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9618 if (!tg->rt_rq)
9619 goto err;
434d53b0 9620 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9621 if (!tg->rt_se)
9622 goto err;
9623
d0b27fa7
PZ
9624 init_rt_bandwidth(&tg->rt_bandwidth,
9625 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9626
9627 for_each_possible_cpu(i) {
9628 rq = cpu_rq(i);
9629
eab17229
LZ
9630 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9631 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9632 if (!rt_rq)
9633 goto err;
29f59db3 9634
eab17229
LZ
9635 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9636 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9637 if (!rt_se)
9638 goto err;
29f59db3 9639
eab17229 9640 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9641 }
9642
bccbe08a
PZ
9643 return 1;
9644
9645 err:
9646 return 0;
9647}
9648
9649static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9650{
9651 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9652 &cpu_rq(cpu)->leaf_rt_rq_list);
9653}
9654
9655static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9656{
9657 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9658}
6d6bc0ad 9659#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9660static inline void free_rt_sched_group(struct task_group *tg)
9661{
9662}
9663
ec7dc8ac
DG
9664static inline
9665int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9666{
9667 return 1;
9668}
9669
9670static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9671{
9672}
9673
9674static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9675{
9676}
6d6bc0ad 9677#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9678
d0b27fa7 9679#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9680static void free_sched_group(struct task_group *tg)
9681{
9682 free_fair_sched_group(tg);
9683 free_rt_sched_group(tg);
9684 kfree(tg);
9685}
9686
9687/* allocate runqueue etc for a new task group */
ec7dc8ac 9688struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9689{
9690 struct task_group *tg;
9691 unsigned long flags;
9692 int i;
9693
9694 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9695 if (!tg)
9696 return ERR_PTR(-ENOMEM);
9697
ec7dc8ac 9698 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9699 goto err;
9700
ec7dc8ac 9701 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9702 goto err;
9703
8ed36996 9704 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9705 for_each_possible_cpu(i) {
bccbe08a
PZ
9706 register_fair_sched_group(tg, i);
9707 register_rt_sched_group(tg, i);
9b5b7751 9708 }
6f505b16 9709 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9710
9711 WARN_ON(!parent); /* root should already exist */
9712
9713 tg->parent = parent;
f473aa5e 9714 INIT_LIST_HEAD(&tg->children);
09f2724a 9715 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9716 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9717
9b5b7751 9718 return tg;
29f59db3
SV
9719
9720err:
6f505b16 9721 free_sched_group(tg);
29f59db3
SV
9722 return ERR_PTR(-ENOMEM);
9723}
9724
9b5b7751 9725/* rcu callback to free various structures associated with a task group */
6f505b16 9726static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9727{
29f59db3 9728 /* now it should be safe to free those cfs_rqs */
6f505b16 9729 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9730}
9731
9b5b7751 9732/* Destroy runqueue etc associated with a task group */
4cf86d77 9733void sched_destroy_group(struct task_group *tg)
29f59db3 9734{
8ed36996 9735 unsigned long flags;
9b5b7751 9736 int i;
29f59db3 9737
8ed36996 9738 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9739 for_each_possible_cpu(i) {
bccbe08a
PZ
9740 unregister_fair_sched_group(tg, i);
9741 unregister_rt_sched_group(tg, i);
9b5b7751 9742 }
6f505b16 9743 list_del_rcu(&tg->list);
f473aa5e 9744 list_del_rcu(&tg->siblings);
8ed36996 9745 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9746
9b5b7751 9747 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9748 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9749}
9750
9b5b7751 9751/* change task's runqueue when it moves between groups.
3a252015
IM
9752 * The caller of this function should have put the task in its new group
9753 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9754 * reflect its new group.
9b5b7751
SV
9755 */
9756void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9757{
9758 int on_rq, running;
9759 unsigned long flags;
9760 struct rq *rq;
9761
9762 rq = task_rq_lock(tsk, &flags);
9763
29f59db3
SV
9764 update_rq_clock(rq);
9765
051a1d1a 9766 running = task_current(rq, tsk);
29f59db3
SV
9767 on_rq = tsk->se.on_rq;
9768
0e1f3483 9769 if (on_rq)
29f59db3 9770 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9771 if (unlikely(running))
9772 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9773
6f505b16 9774 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9775
810b3817
PZ
9776#ifdef CONFIG_FAIR_GROUP_SCHED
9777 if (tsk->sched_class->moved_group)
9778 tsk->sched_class->moved_group(tsk);
9779#endif
9780
0e1f3483
HS
9781 if (unlikely(running))
9782 tsk->sched_class->set_curr_task(rq);
9783 if (on_rq)
7074badb 9784 enqueue_task(rq, tsk, 0);
29f59db3 9785
29f59db3
SV
9786 task_rq_unlock(rq, &flags);
9787}
6d6bc0ad 9788#endif /* CONFIG_GROUP_SCHED */
29f59db3 9789
052f1dc7 9790#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9791static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9792{
9793 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9794 int on_rq;
9795
29f59db3 9796 on_rq = se->on_rq;
62fb1851 9797 if (on_rq)
29f59db3
SV
9798 dequeue_entity(cfs_rq, se, 0);
9799
9800 se->load.weight = shares;
e05510d0 9801 se->load.inv_weight = 0;
29f59db3 9802
62fb1851 9803 if (on_rq)
29f59db3 9804 enqueue_entity(cfs_rq, se, 0);
c09595f6 9805}
62fb1851 9806
c09595f6
PZ
9807static void set_se_shares(struct sched_entity *se, unsigned long shares)
9808{
9809 struct cfs_rq *cfs_rq = se->cfs_rq;
9810 struct rq *rq = cfs_rq->rq;
9811 unsigned long flags;
9812
9813 spin_lock_irqsave(&rq->lock, flags);
9814 __set_se_shares(se, shares);
9815 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9816}
9817
8ed36996
PZ
9818static DEFINE_MUTEX(shares_mutex);
9819
4cf86d77 9820int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9821{
9822 int i;
8ed36996 9823 unsigned long flags;
c61935fd 9824
ec7dc8ac
DG
9825 /*
9826 * We can't change the weight of the root cgroup.
9827 */
9828 if (!tg->se[0])
9829 return -EINVAL;
9830
18d95a28
PZ
9831 if (shares < MIN_SHARES)
9832 shares = MIN_SHARES;
cb4ad1ff
MX
9833 else if (shares > MAX_SHARES)
9834 shares = MAX_SHARES;
62fb1851 9835
8ed36996 9836 mutex_lock(&shares_mutex);
9b5b7751 9837 if (tg->shares == shares)
5cb350ba 9838 goto done;
29f59db3 9839
8ed36996 9840 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9841 for_each_possible_cpu(i)
9842 unregister_fair_sched_group(tg, i);
f473aa5e 9843 list_del_rcu(&tg->siblings);
8ed36996 9844 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9845
9846 /* wait for any ongoing reference to this group to finish */
9847 synchronize_sched();
9848
9849 /*
9850 * Now we are free to modify the group's share on each cpu
9851 * w/o tripping rebalance_share or load_balance_fair.
9852 */
9b5b7751 9853 tg->shares = shares;
c09595f6
PZ
9854 for_each_possible_cpu(i) {
9855 /*
9856 * force a rebalance
9857 */
9858 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9859 set_se_shares(tg->se[i], shares);
c09595f6 9860 }
29f59db3 9861
6b2d7700
SV
9862 /*
9863 * Enable load balance activity on this group, by inserting it back on
9864 * each cpu's rq->leaf_cfs_rq_list.
9865 */
8ed36996 9866 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9867 for_each_possible_cpu(i)
9868 register_fair_sched_group(tg, i);
f473aa5e 9869 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9870 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9871done:
8ed36996 9872 mutex_unlock(&shares_mutex);
9b5b7751 9873 return 0;
29f59db3
SV
9874}
9875
5cb350ba
DG
9876unsigned long sched_group_shares(struct task_group *tg)
9877{
9878 return tg->shares;
9879}
052f1dc7 9880#endif
5cb350ba 9881
052f1dc7 9882#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9883/*
9f0c1e56 9884 * Ensure that the real time constraints are schedulable.
6f505b16 9885 */
9f0c1e56
PZ
9886static DEFINE_MUTEX(rt_constraints_mutex);
9887
9888static unsigned long to_ratio(u64 period, u64 runtime)
9889{
9890 if (runtime == RUNTIME_INF)
9a7e0b18 9891 return 1ULL << 20;
9f0c1e56 9892
9a7e0b18 9893 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9894}
9895
9a7e0b18
PZ
9896/* Must be called with tasklist_lock held */
9897static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9898{
9a7e0b18 9899 struct task_struct *g, *p;
b40b2e8e 9900
9a7e0b18
PZ
9901 do_each_thread(g, p) {
9902 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9903 return 1;
9904 } while_each_thread(g, p);
b40b2e8e 9905
9a7e0b18
PZ
9906 return 0;
9907}
b40b2e8e 9908
9a7e0b18
PZ
9909struct rt_schedulable_data {
9910 struct task_group *tg;
9911 u64 rt_period;
9912 u64 rt_runtime;
9913};
b40b2e8e 9914
9a7e0b18
PZ
9915static int tg_schedulable(struct task_group *tg, void *data)
9916{
9917 struct rt_schedulable_data *d = data;
9918 struct task_group *child;
9919 unsigned long total, sum = 0;
9920 u64 period, runtime;
b40b2e8e 9921
9a7e0b18
PZ
9922 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9923 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9924
9a7e0b18
PZ
9925 if (tg == d->tg) {
9926 period = d->rt_period;
9927 runtime = d->rt_runtime;
b40b2e8e 9928 }
b40b2e8e 9929
98a4826b
PZ
9930#ifdef CONFIG_USER_SCHED
9931 if (tg == &root_task_group) {
9932 period = global_rt_period();
9933 runtime = global_rt_runtime();
9934 }
9935#endif
9936
4653f803
PZ
9937 /*
9938 * Cannot have more runtime than the period.
9939 */
9940 if (runtime > period && runtime != RUNTIME_INF)
9941 return -EINVAL;
6f505b16 9942
4653f803
PZ
9943 /*
9944 * Ensure we don't starve existing RT tasks.
9945 */
9a7e0b18
PZ
9946 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9947 return -EBUSY;
6f505b16 9948
9a7e0b18 9949 total = to_ratio(period, runtime);
6f505b16 9950
4653f803
PZ
9951 /*
9952 * Nobody can have more than the global setting allows.
9953 */
9954 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9955 return -EINVAL;
6f505b16 9956
4653f803
PZ
9957 /*
9958 * The sum of our children's runtime should not exceed our own.
9959 */
9a7e0b18
PZ
9960 list_for_each_entry_rcu(child, &tg->children, siblings) {
9961 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9962 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9963
9a7e0b18
PZ
9964 if (child == d->tg) {
9965 period = d->rt_period;
9966 runtime = d->rt_runtime;
9967 }
6f505b16 9968
9a7e0b18 9969 sum += to_ratio(period, runtime);
9f0c1e56 9970 }
6f505b16 9971
9a7e0b18
PZ
9972 if (sum > total)
9973 return -EINVAL;
9974
9975 return 0;
6f505b16
PZ
9976}
9977
9a7e0b18 9978static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9979{
9a7e0b18
PZ
9980 struct rt_schedulable_data data = {
9981 .tg = tg,
9982 .rt_period = period,
9983 .rt_runtime = runtime,
9984 };
9985
9986 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9987}
9988
d0b27fa7
PZ
9989static int tg_set_bandwidth(struct task_group *tg,
9990 u64 rt_period, u64 rt_runtime)
6f505b16 9991{
ac086bc2 9992 int i, err = 0;
9f0c1e56 9993
9f0c1e56 9994 mutex_lock(&rt_constraints_mutex);
521f1a24 9995 read_lock(&tasklist_lock);
9a7e0b18
PZ
9996 err = __rt_schedulable(tg, rt_period, rt_runtime);
9997 if (err)
9f0c1e56 9998 goto unlock;
ac086bc2
PZ
9999
10000 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10001 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10002 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10003
10004 for_each_possible_cpu(i) {
10005 struct rt_rq *rt_rq = tg->rt_rq[i];
10006
10007 spin_lock(&rt_rq->rt_runtime_lock);
10008 rt_rq->rt_runtime = rt_runtime;
10009 spin_unlock(&rt_rq->rt_runtime_lock);
10010 }
10011 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10012 unlock:
521f1a24 10013 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10014 mutex_unlock(&rt_constraints_mutex);
10015
10016 return err;
6f505b16
PZ
10017}
10018
d0b27fa7
PZ
10019int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10020{
10021 u64 rt_runtime, rt_period;
10022
10023 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10024 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10025 if (rt_runtime_us < 0)
10026 rt_runtime = RUNTIME_INF;
10027
10028 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10029}
10030
9f0c1e56
PZ
10031long sched_group_rt_runtime(struct task_group *tg)
10032{
10033 u64 rt_runtime_us;
10034
d0b27fa7 10035 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10036 return -1;
10037
d0b27fa7 10038 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10039 do_div(rt_runtime_us, NSEC_PER_USEC);
10040 return rt_runtime_us;
10041}
d0b27fa7
PZ
10042
10043int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10044{
10045 u64 rt_runtime, rt_period;
10046
10047 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10048 rt_runtime = tg->rt_bandwidth.rt_runtime;
10049
619b0488
R
10050 if (rt_period == 0)
10051 return -EINVAL;
10052
d0b27fa7
PZ
10053 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10054}
10055
10056long sched_group_rt_period(struct task_group *tg)
10057{
10058 u64 rt_period_us;
10059
10060 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10061 do_div(rt_period_us, NSEC_PER_USEC);
10062 return rt_period_us;
10063}
10064
10065static int sched_rt_global_constraints(void)
10066{
4653f803 10067 u64 runtime, period;
d0b27fa7
PZ
10068 int ret = 0;
10069
ec5d4989
HS
10070 if (sysctl_sched_rt_period <= 0)
10071 return -EINVAL;
10072
4653f803
PZ
10073 runtime = global_rt_runtime();
10074 period = global_rt_period();
10075
10076 /*
10077 * Sanity check on the sysctl variables.
10078 */
10079 if (runtime > period && runtime != RUNTIME_INF)
10080 return -EINVAL;
10b612f4 10081
d0b27fa7 10082 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10083 read_lock(&tasklist_lock);
4653f803 10084 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10085 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10086 mutex_unlock(&rt_constraints_mutex);
10087
10088 return ret;
10089}
54e99124
DG
10090
10091int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10092{
10093 /* Don't accept realtime tasks when there is no way for them to run */
10094 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10095 return 0;
10096
10097 return 1;
10098}
10099
6d6bc0ad 10100#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10101static int sched_rt_global_constraints(void)
10102{
ac086bc2
PZ
10103 unsigned long flags;
10104 int i;
10105
ec5d4989
HS
10106 if (sysctl_sched_rt_period <= 0)
10107 return -EINVAL;
10108
60aa605d
PZ
10109 /*
10110 * There's always some RT tasks in the root group
10111 * -- migration, kstopmachine etc..
10112 */
10113 if (sysctl_sched_rt_runtime == 0)
10114 return -EBUSY;
10115
ac086bc2
PZ
10116 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10117 for_each_possible_cpu(i) {
10118 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10119
10120 spin_lock(&rt_rq->rt_runtime_lock);
10121 rt_rq->rt_runtime = global_rt_runtime();
10122 spin_unlock(&rt_rq->rt_runtime_lock);
10123 }
10124 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10125
d0b27fa7
PZ
10126 return 0;
10127}
6d6bc0ad 10128#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10129
10130int sched_rt_handler(struct ctl_table *table, int write,
10131 struct file *filp, void __user *buffer, size_t *lenp,
10132 loff_t *ppos)
10133{
10134 int ret;
10135 int old_period, old_runtime;
10136 static DEFINE_MUTEX(mutex);
10137
10138 mutex_lock(&mutex);
10139 old_period = sysctl_sched_rt_period;
10140 old_runtime = sysctl_sched_rt_runtime;
10141
10142 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10143
10144 if (!ret && write) {
10145 ret = sched_rt_global_constraints();
10146 if (ret) {
10147 sysctl_sched_rt_period = old_period;
10148 sysctl_sched_rt_runtime = old_runtime;
10149 } else {
10150 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10151 def_rt_bandwidth.rt_period =
10152 ns_to_ktime(global_rt_period());
10153 }
10154 }
10155 mutex_unlock(&mutex);
10156
10157 return ret;
10158}
68318b8e 10159
052f1dc7 10160#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10161
10162/* return corresponding task_group object of a cgroup */
2b01dfe3 10163static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10164{
2b01dfe3
PM
10165 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10166 struct task_group, css);
68318b8e
SV
10167}
10168
10169static struct cgroup_subsys_state *
2b01dfe3 10170cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10171{
ec7dc8ac 10172 struct task_group *tg, *parent;
68318b8e 10173
2b01dfe3 10174 if (!cgrp->parent) {
68318b8e 10175 /* This is early initialization for the top cgroup */
68318b8e
SV
10176 return &init_task_group.css;
10177 }
10178
ec7dc8ac
DG
10179 parent = cgroup_tg(cgrp->parent);
10180 tg = sched_create_group(parent);
68318b8e
SV
10181 if (IS_ERR(tg))
10182 return ERR_PTR(-ENOMEM);
10183
68318b8e
SV
10184 return &tg->css;
10185}
10186
41a2d6cf
IM
10187static void
10188cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10189{
2b01dfe3 10190 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10191
10192 sched_destroy_group(tg);
10193}
10194
41a2d6cf
IM
10195static int
10196cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10197 struct task_struct *tsk)
68318b8e 10198{
b68aa230 10199#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10200 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10201 return -EINVAL;
10202#else
68318b8e
SV
10203 /* We don't support RT-tasks being in separate groups */
10204 if (tsk->sched_class != &fair_sched_class)
10205 return -EINVAL;
b68aa230 10206#endif
68318b8e
SV
10207
10208 return 0;
10209}
10210
10211static void
2b01dfe3 10212cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10213 struct cgroup *old_cont, struct task_struct *tsk)
10214{
10215 sched_move_task(tsk);
10216}
10217
052f1dc7 10218#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10219static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10220 u64 shareval)
68318b8e 10221{
2b01dfe3 10222 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10223}
10224
f4c753b7 10225static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10226{
2b01dfe3 10227 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10228
10229 return (u64) tg->shares;
10230}
6d6bc0ad 10231#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10232
052f1dc7 10233#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10234static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10235 s64 val)
6f505b16 10236{
06ecb27c 10237 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10238}
10239
06ecb27c 10240static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10241{
06ecb27c 10242 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10243}
d0b27fa7
PZ
10244
10245static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10246 u64 rt_period_us)
10247{
10248 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10249}
10250
10251static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10252{
10253 return sched_group_rt_period(cgroup_tg(cgrp));
10254}
6d6bc0ad 10255#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10256
fe5c7cc2 10257static struct cftype cpu_files[] = {
052f1dc7 10258#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10259 {
10260 .name = "shares",
f4c753b7
PM
10261 .read_u64 = cpu_shares_read_u64,
10262 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10263 },
052f1dc7
PZ
10264#endif
10265#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10266 {
9f0c1e56 10267 .name = "rt_runtime_us",
06ecb27c
PM
10268 .read_s64 = cpu_rt_runtime_read,
10269 .write_s64 = cpu_rt_runtime_write,
6f505b16 10270 },
d0b27fa7
PZ
10271 {
10272 .name = "rt_period_us",
f4c753b7
PM
10273 .read_u64 = cpu_rt_period_read_uint,
10274 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10275 },
052f1dc7 10276#endif
68318b8e
SV
10277};
10278
10279static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10280{
fe5c7cc2 10281 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10282}
10283
10284struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10285 .name = "cpu",
10286 .create = cpu_cgroup_create,
10287 .destroy = cpu_cgroup_destroy,
10288 .can_attach = cpu_cgroup_can_attach,
10289 .attach = cpu_cgroup_attach,
10290 .populate = cpu_cgroup_populate,
10291 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10292 .early_init = 1,
10293};
10294
052f1dc7 10295#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10296
10297#ifdef CONFIG_CGROUP_CPUACCT
10298
10299/*
10300 * CPU accounting code for task groups.
10301 *
10302 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10303 * (balbir@in.ibm.com).
10304 */
10305
934352f2 10306/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10307struct cpuacct {
10308 struct cgroup_subsys_state css;
10309 /* cpuusage holds pointer to a u64-type object on every cpu */
10310 u64 *cpuusage;
ef12fefa 10311 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10312 struct cpuacct *parent;
d842de87
SV
10313};
10314
10315struct cgroup_subsys cpuacct_subsys;
10316
10317/* return cpu accounting group corresponding to this container */
32cd756a 10318static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10319{
32cd756a 10320 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10321 struct cpuacct, css);
10322}
10323
10324/* return cpu accounting group to which this task belongs */
10325static inline struct cpuacct *task_ca(struct task_struct *tsk)
10326{
10327 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10328 struct cpuacct, css);
10329}
10330
10331/* create a new cpu accounting group */
10332static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10333 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10334{
10335 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10336 int i;
d842de87
SV
10337
10338 if (!ca)
ef12fefa 10339 goto out;
d842de87
SV
10340
10341 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10342 if (!ca->cpuusage)
10343 goto out_free_ca;
10344
10345 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10346 if (percpu_counter_init(&ca->cpustat[i], 0))
10347 goto out_free_counters;
d842de87 10348
934352f2
BR
10349 if (cgrp->parent)
10350 ca->parent = cgroup_ca(cgrp->parent);
10351
d842de87 10352 return &ca->css;
ef12fefa
BR
10353
10354out_free_counters:
10355 while (--i >= 0)
10356 percpu_counter_destroy(&ca->cpustat[i]);
10357 free_percpu(ca->cpuusage);
10358out_free_ca:
10359 kfree(ca);
10360out:
10361 return ERR_PTR(-ENOMEM);
d842de87
SV
10362}
10363
10364/* destroy an existing cpu accounting group */
41a2d6cf 10365static void
32cd756a 10366cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10367{
32cd756a 10368 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10369 int i;
d842de87 10370
ef12fefa
BR
10371 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10372 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10373 free_percpu(ca->cpuusage);
10374 kfree(ca);
10375}
10376
720f5498
KC
10377static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10378{
b36128c8 10379 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10380 u64 data;
10381
10382#ifndef CONFIG_64BIT
10383 /*
10384 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10385 */
10386 spin_lock_irq(&cpu_rq(cpu)->lock);
10387 data = *cpuusage;
10388 spin_unlock_irq(&cpu_rq(cpu)->lock);
10389#else
10390 data = *cpuusage;
10391#endif
10392
10393 return data;
10394}
10395
10396static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10397{
b36128c8 10398 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10399
10400#ifndef CONFIG_64BIT
10401 /*
10402 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10403 */
10404 spin_lock_irq(&cpu_rq(cpu)->lock);
10405 *cpuusage = val;
10406 spin_unlock_irq(&cpu_rq(cpu)->lock);
10407#else
10408 *cpuusage = val;
10409#endif
10410}
10411
d842de87 10412/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10413static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10414{
32cd756a 10415 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10416 u64 totalcpuusage = 0;
10417 int i;
10418
720f5498
KC
10419 for_each_present_cpu(i)
10420 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10421
10422 return totalcpuusage;
10423}
10424
0297b803
DG
10425static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10426 u64 reset)
10427{
10428 struct cpuacct *ca = cgroup_ca(cgrp);
10429 int err = 0;
10430 int i;
10431
10432 if (reset) {
10433 err = -EINVAL;
10434 goto out;
10435 }
10436
720f5498
KC
10437 for_each_present_cpu(i)
10438 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10439
0297b803
DG
10440out:
10441 return err;
10442}
10443
e9515c3c
KC
10444static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10445 struct seq_file *m)
10446{
10447 struct cpuacct *ca = cgroup_ca(cgroup);
10448 u64 percpu;
10449 int i;
10450
10451 for_each_present_cpu(i) {
10452 percpu = cpuacct_cpuusage_read(ca, i);
10453 seq_printf(m, "%llu ", (unsigned long long) percpu);
10454 }
10455 seq_printf(m, "\n");
10456 return 0;
10457}
10458
ef12fefa
BR
10459static const char *cpuacct_stat_desc[] = {
10460 [CPUACCT_STAT_USER] = "user",
10461 [CPUACCT_STAT_SYSTEM] = "system",
10462};
10463
10464static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10465 struct cgroup_map_cb *cb)
10466{
10467 struct cpuacct *ca = cgroup_ca(cgrp);
10468 int i;
10469
10470 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10471 s64 val = percpu_counter_read(&ca->cpustat[i]);
10472 val = cputime64_to_clock_t(val);
10473 cb->fill(cb, cpuacct_stat_desc[i], val);
10474 }
10475 return 0;
10476}
10477
d842de87
SV
10478static struct cftype files[] = {
10479 {
10480 .name = "usage",
f4c753b7
PM
10481 .read_u64 = cpuusage_read,
10482 .write_u64 = cpuusage_write,
d842de87 10483 },
e9515c3c
KC
10484 {
10485 .name = "usage_percpu",
10486 .read_seq_string = cpuacct_percpu_seq_read,
10487 },
ef12fefa
BR
10488 {
10489 .name = "stat",
10490 .read_map = cpuacct_stats_show,
10491 },
d842de87
SV
10492};
10493
32cd756a 10494static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10495{
32cd756a 10496 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10497}
10498
10499/*
10500 * charge this task's execution time to its accounting group.
10501 *
10502 * called with rq->lock held.
10503 */
10504static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10505{
10506 struct cpuacct *ca;
934352f2 10507 int cpu;
d842de87 10508
c40c6f85 10509 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10510 return;
10511
934352f2 10512 cpu = task_cpu(tsk);
a18b83b7
BR
10513
10514 rcu_read_lock();
10515
d842de87 10516 ca = task_ca(tsk);
d842de87 10517
934352f2 10518 for (; ca; ca = ca->parent) {
b36128c8 10519 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10520 *cpuusage += cputime;
10521 }
a18b83b7
BR
10522
10523 rcu_read_unlock();
d842de87
SV
10524}
10525
ef12fefa
BR
10526/*
10527 * Charge the system/user time to the task's accounting group.
10528 */
10529static void cpuacct_update_stats(struct task_struct *tsk,
10530 enum cpuacct_stat_index idx, cputime_t val)
10531{
10532 struct cpuacct *ca;
10533
10534 if (unlikely(!cpuacct_subsys.active))
10535 return;
10536
10537 rcu_read_lock();
10538 ca = task_ca(tsk);
10539
10540 do {
10541 percpu_counter_add(&ca->cpustat[idx], val);
10542 ca = ca->parent;
10543 } while (ca);
10544 rcu_read_unlock();
10545}
10546
d842de87
SV
10547struct cgroup_subsys cpuacct_subsys = {
10548 .name = "cpuacct",
10549 .create = cpuacct_create,
10550 .destroy = cpuacct_destroy,
10551 .populate = cpuacct_populate,
10552 .subsys_id = cpuacct_subsys_id,
10553};
10554#endif /* CONFIG_CGROUP_CPUACCT */