]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/sched.c
Speed up divides by cpu_power in scheduler
[mirror_ubuntu-eoan-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
9a11b49a 33#include <linux/debug_locks.h>
1da177e4
LT
34#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
7dfb7103 37#include <linux/freezer.h>
198e2f18 38#include <linux/vmalloc.h>
1da177e4
LT
39#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
8f0ab514 52#include <linux/tsacct_kern.h>
c6fd91f0 53#include <linux/kprobes.h>
0ff92245 54#include <linux/delayacct.h>
5517d86b 55#include <linux/reciprocal_div.h>
1da177e4 56
5517d86b 57#include <asm/tlb.h>
1da177e4
LT
58#include <asm/unistd.h>
59
b035b6de
AD
60/*
61 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
64 */
65unsigned long long __attribute__((weak)) sched_clock(void)
66{
67 return (unsigned long long)jiffies * (1000000000 / HZ);
68}
69
1da177e4
LT
70/*
71 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
74 */
75#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
78
79/*
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
83 */
84#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
87
88/*
89 * Some helpers for converting nanosecond timing to jiffy resolution
90 */
91#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
93
94/*
95 * These are the 'tuning knobs' of the scheduler:
96 *
97 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
98 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
99 * Timeslices get refilled after they expire.
100 */
101#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
102#define DEF_TIMESLICE (100 * HZ / 1000)
103#define ON_RUNQUEUE_WEIGHT 30
104#define CHILD_PENALTY 95
105#define PARENT_PENALTY 100
106#define EXIT_WEIGHT 3
107#define PRIO_BONUS_RATIO 25
108#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
109#define INTERACTIVE_DELTA 2
110#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
111#define STARVATION_LIMIT (MAX_SLEEP_AVG)
112#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
113
114/*
115 * If a task is 'interactive' then we reinsert it in the active
116 * array after it has expired its current timeslice. (it will not
117 * continue to run immediately, it will still roundrobin with
118 * other interactive tasks.)
119 *
120 * This part scales the interactivity limit depending on niceness.
121 *
122 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
123 * Here are a few examples of different nice levels:
124 *
125 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
126 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
127 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
128 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
129 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
130 *
131 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
132 * priority range a task can explore, a value of '1' means the
133 * task is rated interactive.)
134 *
135 * Ie. nice +19 tasks can never get 'interactive' enough to be
136 * reinserted into the active array. And only heavily CPU-hog nice -20
137 * tasks will be expired. Default nice 0 tasks are somewhere between,
138 * it takes some effort for them to get interactive, but it's not
139 * too hard.
140 */
141
142#define CURRENT_BONUS(p) \
143 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
144 MAX_SLEEP_AVG)
145
146#define GRANULARITY (10 * HZ / 1000 ? : 1)
147
148#ifdef CONFIG_SMP
149#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
150 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
151 num_online_cpus())
152#else
153#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
154 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
155#endif
156
157#define SCALE(v1,v1_max,v2_max) \
158 (v1) * (v2_max) / (v1_max)
159
160#define DELTA(p) \
013d3868
MA
161 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
162 INTERACTIVE_DELTA)
1da177e4
LT
163
164#define TASK_INTERACTIVE(p) \
165 ((p)->prio <= (p)->static_prio - DELTA(p))
166
167#define INTERACTIVE_SLEEP(p) \
168 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
169 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
170
171#define TASK_PREEMPTS_CURR(p, rq) \
172 ((p)->prio < (rq)->curr->prio)
173
1da177e4 174#define SCALE_PRIO(x, prio) \
2dd73a4f 175 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
1da177e4 176
2dd73a4f 177static unsigned int static_prio_timeslice(int static_prio)
1da177e4 178{
2dd73a4f
PW
179 if (static_prio < NICE_TO_PRIO(0))
180 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
1da177e4 181 else
2dd73a4f 182 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
1da177e4 183}
2dd73a4f 184
5517d86b
ED
185#ifdef CONFIG_SMP
186/*
187 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
188 * Since cpu_power is a 'constant', we can use a reciprocal divide.
189 */
190static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
191{
192 return reciprocal_divide(load, sg->reciprocal_cpu_power);
193}
194
195/*
196 * Each time a sched group cpu_power is changed,
197 * we must compute its reciprocal value
198 */
199static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
200{
201 sg->__cpu_power += val;
202 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
203}
204#endif
205
91fcdd4e
BP
206/*
207 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
208 * to time slice values: [800ms ... 100ms ... 5ms]
209 *
210 * The higher a thread's priority, the bigger timeslices
211 * it gets during one round of execution. But even the lowest
212 * priority thread gets MIN_TIMESLICE worth of execution time.
213 */
214
36c8b586 215static inline unsigned int task_timeslice(struct task_struct *p)
2dd73a4f
PW
216{
217 return static_prio_timeslice(p->static_prio);
218}
219
1da177e4
LT
220/*
221 * These are the runqueue data structures:
222 */
223
1da177e4
LT
224struct prio_array {
225 unsigned int nr_active;
d444886e 226 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
1da177e4
LT
227 struct list_head queue[MAX_PRIO];
228};
229
230/*
231 * This is the main, per-CPU runqueue data structure.
232 *
233 * Locking rule: those places that want to lock multiple runqueues
234 * (such as the load balancing or the thread migration code), lock
235 * acquire operations must be ordered by ascending &runqueue.
236 */
70b97a7f 237struct rq {
1da177e4
LT
238 spinlock_t lock;
239
240 /*
241 * nr_running and cpu_load should be in the same cacheline because
242 * remote CPUs use both these fields when doing load calculation.
243 */
244 unsigned long nr_running;
2dd73a4f 245 unsigned long raw_weighted_load;
1da177e4 246#ifdef CONFIG_SMP
7897986b 247 unsigned long cpu_load[3];
bdecea3a 248 unsigned char idle_at_tick;
46cb4b7c
SS
249#ifdef CONFIG_NO_HZ
250 unsigned char in_nohz_recently;
251#endif
1da177e4
LT
252#endif
253 unsigned long long nr_switches;
254
255 /*
256 * This is part of a global counter where only the total sum
257 * over all CPUs matters. A task can increase this counter on
258 * one CPU and if it got migrated afterwards it may decrease
259 * it on another CPU. Always updated under the runqueue lock:
260 */
261 unsigned long nr_uninterruptible;
262
263 unsigned long expired_timestamp;
b18ec803
MG
264 /* Cached timestamp set by update_cpu_clock() */
265 unsigned long long most_recent_timestamp;
36c8b586 266 struct task_struct *curr, *idle;
c9819f45 267 unsigned long next_balance;
1da177e4 268 struct mm_struct *prev_mm;
70b97a7f 269 struct prio_array *active, *expired, arrays[2];
1da177e4
LT
270 int best_expired_prio;
271 atomic_t nr_iowait;
272
273#ifdef CONFIG_SMP
274 struct sched_domain *sd;
275
276 /* For active balancing */
277 int active_balance;
278 int push_cpu;
0a2966b4 279 int cpu; /* cpu of this runqueue */
1da177e4 280
36c8b586 281 struct task_struct *migration_thread;
1da177e4
LT
282 struct list_head migration_queue;
283#endif
284
285#ifdef CONFIG_SCHEDSTATS
286 /* latency stats */
287 struct sched_info rq_sched_info;
288
289 /* sys_sched_yield() stats */
290 unsigned long yld_exp_empty;
291 unsigned long yld_act_empty;
292 unsigned long yld_both_empty;
293 unsigned long yld_cnt;
294
295 /* schedule() stats */
296 unsigned long sched_switch;
297 unsigned long sched_cnt;
298 unsigned long sched_goidle;
299
300 /* try_to_wake_up() stats */
301 unsigned long ttwu_cnt;
302 unsigned long ttwu_local;
303#endif
fcb99371 304 struct lock_class_key rq_lock_key;
1da177e4
LT
305};
306
70b97a7f 307static DEFINE_PER_CPU(struct rq, runqueues);
1da177e4 308
0a2966b4
CL
309static inline int cpu_of(struct rq *rq)
310{
311#ifdef CONFIG_SMP
312 return rq->cpu;
313#else
314 return 0;
315#endif
316}
317
674311d5
NP
318/*
319 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 320 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
321 *
322 * The domain tree of any CPU may only be accessed from within
323 * preempt-disabled sections.
324 */
48f24c4d
IM
325#define for_each_domain(cpu, __sd) \
326 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
327
328#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
329#define this_rq() (&__get_cpu_var(runqueues))
330#define task_rq(p) cpu_rq(task_cpu(p))
331#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
332
1da177e4 333#ifndef prepare_arch_switch
4866cde0
NP
334# define prepare_arch_switch(next) do { } while (0)
335#endif
336#ifndef finish_arch_switch
337# define finish_arch_switch(prev) do { } while (0)
338#endif
339
340#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 341static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
342{
343 return rq->curr == p;
344}
345
70b97a7f 346static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
347{
348}
349
70b97a7f 350static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 351{
da04c035
IM
352#ifdef CONFIG_DEBUG_SPINLOCK
353 /* this is a valid case when another task releases the spinlock */
354 rq->lock.owner = current;
355#endif
8a25d5de
IM
356 /*
357 * If we are tracking spinlock dependencies then we have to
358 * fix up the runqueue lock - which gets 'carried over' from
359 * prev into current:
360 */
361 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
362
4866cde0
NP
363 spin_unlock_irq(&rq->lock);
364}
365
366#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 367static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
368{
369#ifdef CONFIG_SMP
370 return p->oncpu;
371#else
372 return rq->curr == p;
373#endif
374}
375
70b97a7f 376static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
377{
378#ifdef CONFIG_SMP
379 /*
380 * We can optimise this out completely for !SMP, because the
381 * SMP rebalancing from interrupt is the only thing that cares
382 * here.
383 */
384 next->oncpu = 1;
385#endif
386#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
387 spin_unlock_irq(&rq->lock);
388#else
389 spin_unlock(&rq->lock);
390#endif
391}
392
70b97a7f 393static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
394{
395#ifdef CONFIG_SMP
396 /*
397 * After ->oncpu is cleared, the task can be moved to a different CPU.
398 * We must ensure this doesn't happen until the switch is completely
399 * finished.
400 */
401 smp_wmb();
402 prev->oncpu = 0;
403#endif
404#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
405 local_irq_enable();
1da177e4 406#endif
4866cde0
NP
407}
408#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 409
b29739f9
IM
410/*
411 * __task_rq_lock - lock the runqueue a given task resides on.
412 * Must be called interrupts disabled.
413 */
70b97a7f 414static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
415 __acquires(rq->lock)
416{
70b97a7f 417 struct rq *rq;
b29739f9
IM
418
419repeat_lock_task:
420 rq = task_rq(p);
421 spin_lock(&rq->lock);
422 if (unlikely(rq != task_rq(p))) {
423 spin_unlock(&rq->lock);
424 goto repeat_lock_task;
425 }
426 return rq;
427}
428
1da177e4
LT
429/*
430 * task_rq_lock - lock the runqueue a given task resides on and disable
431 * interrupts. Note the ordering: we can safely lookup the task_rq without
432 * explicitly disabling preemption.
433 */
70b97a7f 434static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
435 __acquires(rq->lock)
436{
70b97a7f 437 struct rq *rq;
1da177e4
LT
438
439repeat_lock_task:
440 local_irq_save(*flags);
441 rq = task_rq(p);
442 spin_lock(&rq->lock);
443 if (unlikely(rq != task_rq(p))) {
444 spin_unlock_irqrestore(&rq->lock, *flags);
445 goto repeat_lock_task;
446 }
447 return rq;
448}
449
70b97a7f 450static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
451 __releases(rq->lock)
452{
453 spin_unlock(&rq->lock);
454}
455
70b97a7f 456static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
457 __releases(rq->lock)
458{
459 spin_unlock_irqrestore(&rq->lock, *flags);
460}
461
462#ifdef CONFIG_SCHEDSTATS
463/*
464 * bump this up when changing the output format or the meaning of an existing
465 * format, so that tools can adapt (or abort)
466 */
06066714 467#define SCHEDSTAT_VERSION 14
1da177e4
LT
468
469static int show_schedstat(struct seq_file *seq, void *v)
470{
471 int cpu;
472
473 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
474 seq_printf(seq, "timestamp %lu\n", jiffies);
475 for_each_online_cpu(cpu) {
70b97a7f 476 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
477#ifdef CONFIG_SMP
478 struct sched_domain *sd;
479 int dcnt = 0;
480#endif
481
482 /* runqueue-specific stats */
483 seq_printf(seq,
484 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
485 cpu, rq->yld_both_empty,
486 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
487 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
488 rq->ttwu_cnt, rq->ttwu_local,
489 rq->rq_sched_info.cpu_time,
490 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
491
492 seq_printf(seq, "\n");
493
494#ifdef CONFIG_SMP
495 /* domain-specific stats */
674311d5 496 preempt_disable();
1da177e4
LT
497 for_each_domain(cpu, sd) {
498 enum idle_type itype;
499 char mask_str[NR_CPUS];
500
501 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
502 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
503 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
504 itype++) {
33859f7f
MOS
505 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
506 "%lu",
1da177e4
LT
507 sd->lb_cnt[itype],
508 sd->lb_balanced[itype],
509 sd->lb_failed[itype],
510 sd->lb_imbalance[itype],
511 sd->lb_gained[itype],
512 sd->lb_hot_gained[itype],
513 sd->lb_nobusyq[itype],
06066714 514 sd->lb_nobusyg[itype]);
1da177e4 515 }
33859f7f
MOS
516 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
517 " %lu %lu %lu\n",
1da177e4 518 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
519 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
520 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
33859f7f
MOS
521 sd->ttwu_wake_remote, sd->ttwu_move_affine,
522 sd->ttwu_move_balance);
1da177e4 523 }
674311d5 524 preempt_enable();
1da177e4
LT
525#endif
526 }
527 return 0;
528}
529
530static int schedstat_open(struct inode *inode, struct file *file)
531{
532 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
533 char *buf = kmalloc(size, GFP_KERNEL);
534 struct seq_file *m;
535 int res;
536
537 if (!buf)
538 return -ENOMEM;
539 res = single_open(file, show_schedstat, NULL);
540 if (!res) {
541 m = file->private_data;
542 m->buf = buf;
543 m->size = size;
544 } else
545 kfree(buf);
546 return res;
547}
548
15ad7cdc 549const struct file_operations proc_schedstat_operations = {
1da177e4
LT
550 .open = schedstat_open,
551 .read = seq_read,
552 .llseek = seq_lseek,
553 .release = single_release,
554};
555
52f17b6c
CS
556/*
557 * Expects runqueue lock to be held for atomicity of update
558 */
559static inline void
560rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
561{
562 if (rq) {
563 rq->rq_sched_info.run_delay += delta_jiffies;
564 rq->rq_sched_info.pcnt++;
565 }
566}
567
568/*
569 * Expects runqueue lock to be held for atomicity of update
570 */
571static inline void
572rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
573{
574 if (rq)
575 rq->rq_sched_info.cpu_time += delta_jiffies;
576}
1da177e4
LT
577# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
578# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
579#else /* !CONFIG_SCHEDSTATS */
52f17b6c
CS
580static inline void
581rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
582{}
583static inline void
584rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
585{}
1da177e4
LT
586# define schedstat_inc(rq, field) do { } while (0)
587# define schedstat_add(rq, field, amt) do { } while (0)
588#endif
589
590/*
cc2a73b5 591 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 592 */
70b97a7f 593static inline struct rq *this_rq_lock(void)
1da177e4
LT
594 __acquires(rq->lock)
595{
70b97a7f 596 struct rq *rq;
1da177e4
LT
597
598 local_irq_disable();
599 rq = this_rq();
600 spin_lock(&rq->lock);
601
602 return rq;
603}
604
52f17b6c 605#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
606/*
607 * Called when a process is dequeued from the active array and given
608 * the cpu. We should note that with the exception of interactive
609 * tasks, the expired queue will become the active queue after the active
610 * queue is empty, without explicitly dequeuing and requeuing tasks in the
611 * expired queue. (Interactive tasks may be requeued directly to the
612 * active queue, thus delaying tasks in the expired queue from running;
613 * see scheduler_tick()).
614 *
615 * This function is only called from sched_info_arrive(), rather than
616 * dequeue_task(). Even though a task may be queued and dequeued multiple
617 * times as it is shuffled about, we're really interested in knowing how
618 * long it was from the *first* time it was queued to the time that it
619 * finally hit a cpu.
620 */
36c8b586 621static inline void sched_info_dequeued(struct task_struct *t)
1da177e4
LT
622{
623 t->sched_info.last_queued = 0;
624}
625
626/*
627 * Called when a task finally hits the cpu. We can now calculate how
628 * long it was waiting to run. We also note when it began so that we
629 * can keep stats on how long its timeslice is.
630 */
36c8b586 631static void sched_info_arrive(struct task_struct *t)
1da177e4 632{
52f17b6c 633 unsigned long now = jiffies, delta_jiffies = 0;
1da177e4
LT
634
635 if (t->sched_info.last_queued)
52f17b6c 636 delta_jiffies = now - t->sched_info.last_queued;
1da177e4 637 sched_info_dequeued(t);
52f17b6c 638 t->sched_info.run_delay += delta_jiffies;
1da177e4
LT
639 t->sched_info.last_arrival = now;
640 t->sched_info.pcnt++;
641
52f17b6c 642 rq_sched_info_arrive(task_rq(t), delta_jiffies);
1da177e4
LT
643}
644
645/*
646 * Called when a process is queued into either the active or expired
647 * array. The time is noted and later used to determine how long we
648 * had to wait for us to reach the cpu. Since the expired queue will
649 * become the active queue after active queue is empty, without dequeuing
650 * and requeuing any tasks, we are interested in queuing to either. It
651 * is unusual but not impossible for tasks to be dequeued and immediately
652 * requeued in the same or another array: this can happen in sched_yield(),
653 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
654 * to runqueue.
655 *
656 * This function is only called from enqueue_task(), but also only updates
657 * the timestamp if it is already not set. It's assumed that
658 * sched_info_dequeued() will clear that stamp when appropriate.
659 */
36c8b586 660static inline void sched_info_queued(struct task_struct *t)
1da177e4 661{
52f17b6c
CS
662 if (unlikely(sched_info_on()))
663 if (!t->sched_info.last_queued)
664 t->sched_info.last_queued = jiffies;
1da177e4
LT
665}
666
667/*
668 * Called when a process ceases being the active-running process, either
669 * voluntarily or involuntarily. Now we can calculate how long we ran.
670 */
36c8b586 671static inline void sched_info_depart(struct task_struct *t)
1da177e4 672{
52f17b6c 673 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
1da177e4 674
52f17b6c
CS
675 t->sched_info.cpu_time += delta_jiffies;
676 rq_sched_info_depart(task_rq(t), delta_jiffies);
1da177e4
LT
677}
678
679/*
680 * Called when tasks are switched involuntarily due, typically, to expiring
681 * their time slice. (This may also be called when switching to or from
682 * the idle task.) We are only called when prev != next.
683 */
36c8b586 684static inline void
52f17b6c 685__sched_info_switch(struct task_struct *prev, struct task_struct *next)
1da177e4 686{
70b97a7f 687 struct rq *rq = task_rq(prev);
1da177e4
LT
688
689 /*
690 * prev now departs the cpu. It's not interesting to record
691 * stats about how efficient we were at scheduling the idle
692 * process, however.
693 */
694 if (prev != rq->idle)
695 sched_info_depart(prev);
696
697 if (next != rq->idle)
698 sched_info_arrive(next);
699}
52f17b6c
CS
700static inline void
701sched_info_switch(struct task_struct *prev, struct task_struct *next)
702{
703 if (unlikely(sched_info_on()))
704 __sched_info_switch(prev, next);
705}
1da177e4
LT
706#else
707#define sched_info_queued(t) do { } while (0)
708#define sched_info_switch(t, next) do { } while (0)
52f17b6c 709#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
1da177e4
LT
710
711/*
712 * Adding/removing a task to/from a priority array:
713 */
70b97a7f 714static void dequeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
715{
716 array->nr_active--;
717 list_del(&p->run_list);
718 if (list_empty(array->queue + p->prio))
719 __clear_bit(p->prio, array->bitmap);
720}
721
70b97a7f 722static void enqueue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
723{
724 sched_info_queued(p);
725 list_add_tail(&p->run_list, array->queue + p->prio);
726 __set_bit(p->prio, array->bitmap);
727 array->nr_active++;
728 p->array = array;
729}
730
731/*
732 * Put task to the end of the run list without the overhead of dequeue
733 * followed by enqueue.
734 */
70b97a7f 735static void requeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
736{
737 list_move_tail(&p->run_list, array->queue + p->prio);
738}
739
70b97a7f
IM
740static inline void
741enqueue_task_head(struct task_struct *p, struct prio_array *array)
1da177e4
LT
742{
743 list_add(&p->run_list, array->queue + p->prio);
744 __set_bit(p->prio, array->bitmap);
745 array->nr_active++;
746 p->array = array;
747}
748
749/*
b29739f9 750 * __normal_prio - return the priority that is based on the static
1da177e4
LT
751 * priority but is modified by bonuses/penalties.
752 *
753 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
754 * into the -5 ... 0 ... +5 bonus/penalty range.
755 *
756 * We use 25% of the full 0...39 priority range so that:
757 *
758 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
759 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
760 *
761 * Both properties are important to certain workloads.
762 */
b29739f9 763
36c8b586 764static inline int __normal_prio(struct task_struct *p)
1da177e4
LT
765{
766 int bonus, prio;
767
1da177e4
LT
768 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
769
770 prio = p->static_prio - bonus;
771 if (prio < MAX_RT_PRIO)
772 prio = MAX_RT_PRIO;
773 if (prio > MAX_PRIO-1)
774 prio = MAX_PRIO-1;
775 return prio;
776}
777
2dd73a4f
PW
778/*
779 * To aid in avoiding the subversion of "niceness" due to uneven distribution
780 * of tasks with abnormal "nice" values across CPUs the contribution that
781 * each task makes to its run queue's load is weighted according to its
782 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
783 * scaled version of the new time slice allocation that they receive on time
784 * slice expiry etc.
785 */
786
787/*
788 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
789 * If static_prio_timeslice() is ever changed to break this assumption then
790 * this code will need modification
791 */
792#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
793#define LOAD_WEIGHT(lp) \
794 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
795#define PRIO_TO_LOAD_WEIGHT(prio) \
796 LOAD_WEIGHT(static_prio_timeslice(prio))
797#define RTPRIO_TO_LOAD_WEIGHT(rp) \
798 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
799
36c8b586 800static void set_load_weight(struct task_struct *p)
2dd73a4f 801{
b29739f9 802 if (has_rt_policy(p)) {
2dd73a4f
PW
803#ifdef CONFIG_SMP
804 if (p == task_rq(p)->migration_thread)
805 /*
806 * The migration thread does the actual balancing.
807 * Giving its load any weight will skew balancing
808 * adversely.
809 */
810 p->load_weight = 0;
811 else
812#endif
813 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
814 } else
815 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
816}
817
36c8b586 818static inline void
70b97a7f 819inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
820{
821 rq->raw_weighted_load += p->load_weight;
822}
823
36c8b586 824static inline void
70b97a7f 825dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
826{
827 rq->raw_weighted_load -= p->load_weight;
828}
829
70b97a7f 830static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
831{
832 rq->nr_running++;
833 inc_raw_weighted_load(rq, p);
834}
835
70b97a7f 836static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
837{
838 rq->nr_running--;
839 dec_raw_weighted_load(rq, p);
840}
841
b29739f9
IM
842/*
843 * Calculate the expected normal priority: i.e. priority
844 * without taking RT-inheritance into account. Might be
845 * boosted by interactivity modifiers. Changes upon fork,
846 * setprio syscalls, and whenever the interactivity
847 * estimator recalculates.
848 */
36c8b586 849static inline int normal_prio(struct task_struct *p)
b29739f9
IM
850{
851 int prio;
852
853 if (has_rt_policy(p))
854 prio = MAX_RT_PRIO-1 - p->rt_priority;
855 else
856 prio = __normal_prio(p);
857 return prio;
858}
859
860/*
861 * Calculate the current priority, i.e. the priority
862 * taken into account by the scheduler. This value might
863 * be boosted by RT tasks, or might be boosted by
864 * interactivity modifiers. Will be RT if the task got
865 * RT-boosted. If not then it returns p->normal_prio.
866 */
36c8b586 867static int effective_prio(struct task_struct *p)
b29739f9
IM
868{
869 p->normal_prio = normal_prio(p);
870 /*
871 * If we are RT tasks or we were boosted to RT priority,
872 * keep the priority unchanged. Otherwise, update priority
873 * to the normal priority:
874 */
875 if (!rt_prio(p->prio))
876 return p->normal_prio;
877 return p->prio;
878}
879
1da177e4
LT
880/*
881 * __activate_task - move a task to the runqueue.
882 */
70b97a7f 883static void __activate_task(struct task_struct *p, struct rq *rq)
1da177e4 884{
70b97a7f 885 struct prio_array *target = rq->active;
d425b274 886
f1adad78 887 if (batch_task(p))
d425b274
CK
888 target = rq->expired;
889 enqueue_task(p, target);
2dd73a4f 890 inc_nr_running(p, rq);
1da177e4
LT
891}
892
893/*
894 * __activate_idle_task - move idle task to the _front_ of runqueue.
895 */
70b97a7f 896static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4
LT
897{
898 enqueue_task_head(p, rq->active);
2dd73a4f 899 inc_nr_running(p, rq);
1da177e4
LT
900}
901
b29739f9
IM
902/*
903 * Recalculate p->normal_prio and p->prio after having slept,
904 * updating the sleep-average too:
905 */
36c8b586 906static int recalc_task_prio(struct task_struct *p, unsigned long long now)
1da177e4
LT
907{
908 /* Caller must always ensure 'now >= p->timestamp' */
72d2854d 909 unsigned long sleep_time = now - p->timestamp;
1da177e4 910
d425b274 911 if (batch_task(p))
b0a9499c 912 sleep_time = 0;
1da177e4
LT
913
914 if (likely(sleep_time > 0)) {
915 /*
72d2854d
CK
916 * This ceiling is set to the lowest priority that would allow
917 * a task to be reinserted into the active array on timeslice
918 * completion.
1da177e4 919 */
72d2854d 920 unsigned long ceiling = INTERACTIVE_SLEEP(p);
e72ff0bb 921
72d2854d
CK
922 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
923 /*
924 * Prevents user tasks from achieving best priority
925 * with one single large enough sleep.
926 */
927 p->sleep_avg = ceiling;
928 /*
929 * Using INTERACTIVE_SLEEP() as a ceiling places a
930 * nice(0) task 1ms sleep away from promotion, and
931 * gives it 700ms to round-robin with no chance of
932 * being demoted. This is more than generous, so
933 * mark this sleep as non-interactive to prevent the
934 * on-runqueue bonus logic from intervening should
935 * this task not receive cpu immediately.
936 */
937 p->sleep_type = SLEEP_NONINTERACTIVE;
1da177e4 938 } else {
1da177e4
LT
939 /*
940 * Tasks waking from uninterruptible sleep are
941 * limited in their sleep_avg rise as they
942 * are likely to be waiting on I/O
943 */
3dee386e 944 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
72d2854d 945 if (p->sleep_avg >= ceiling)
1da177e4
LT
946 sleep_time = 0;
947 else if (p->sleep_avg + sleep_time >=
72d2854d
CK
948 ceiling) {
949 p->sleep_avg = ceiling;
950 sleep_time = 0;
1da177e4
LT
951 }
952 }
953
954 /*
955 * This code gives a bonus to interactive tasks.
956 *
957 * The boost works by updating the 'average sleep time'
958 * value here, based on ->timestamp. The more time a
959 * task spends sleeping, the higher the average gets -
960 * and the higher the priority boost gets as well.
961 */
962 p->sleep_avg += sleep_time;
963
1da177e4 964 }
72d2854d
CK
965 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
966 p->sleep_avg = NS_MAX_SLEEP_AVG;
1da177e4
LT
967 }
968
a3464a10 969 return effective_prio(p);
1da177e4
LT
970}
971
972/*
973 * activate_task - move a task to the runqueue and do priority recalculation
974 *
975 * Update all the scheduling statistics stuff. (sleep average
976 * calculation, priority modifiers, etc.)
977 */
70b97a7f 978static void activate_task(struct task_struct *p, struct rq *rq, int local)
1da177e4
LT
979{
980 unsigned long long now;
981
62ab616d
KC
982 if (rt_task(p))
983 goto out;
984
1da177e4
LT
985 now = sched_clock();
986#ifdef CONFIG_SMP
987 if (!local) {
988 /* Compensate for drifting sched_clock */
70b97a7f 989 struct rq *this_rq = this_rq();
b18ec803
MG
990 now = (now - this_rq->most_recent_timestamp)
991 + rq->most_recent_timestamp;
1da177e4
LT
992 }
993#endif
994
ece8a684
IM
995 /*
996 * Sleep time is in units of nanosecs, so shift by 20 to get a
997 * milliseconds-range estimation of the amount of time that the task
998 * spent sleeping:
999 */
1000 if (unlikely(prof_on == SLEEP_PROFILING)) {
1001 if (p->state == TASK_UNINTERRUPTIBLE)
1002 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
1003 (now - p->timestamp) >> 20);
1004 }
1005
62ab616d 1006 p->prio = recalc_task_prio(p, now);
1da177e4
LT
1007
1008 /*
1009 * This checks to make sure it's not an uninterruptible task
1010 * that is now waking up.
1011 */
3dee386e 1012 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
1013 /*
1014 * Tasks which were woken up by interrupts (ie. hw events)
1015 * are most likely of interactive nature. So we give them
1016 * the credit of extending their sleep time to the period
1017 * of time they spend on the runqueue, waiting for execution
1018 * on a CPU, first time around:
1019 */
1020 if (in_interrupt())
3dee386e 1021 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
1022 else {
1023 /*
1024 * Normal first-time wakeups get a credit too for
1025 * on-runqueue time, but it will be weighted down:
1026 */
3dee386e 1027 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
1028 }
1029 }
1030 p->timestamp = now;
62ab616d 1031out:
1da177e4
LT
1032 __activate_task(p, rq);
1033}
1034
1035/*
1036 * deactivate_task - remove a task from the runqueue.
1037 */
70b97a7f 1038static void deactivate_task(struct task_struct *p, struct rq *rq)
1da177e4 1039{
2dd73a4f 1040 dec_nr_running(p, rq);
1da177e4
LT
1041 dequeue_task(p, p->array);
1042 p->array = NULL;
1043}
1044
1045/*
1046 * resched_task - mark a task 'to be rescheduled now'.
1047 *
1048 * On UP this means the setting of the need_resched flag, on SMP it
1049 * might also involve a cross-CPU call to trigger the scheduler on
1050 * the target CPU.
1051 */
1052#ifdef CONFIG_SMP
495ab9c0
AK
1053
1054#ifndef tsk_is_polling
1055#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1056#endif
1057
36c8b586 1058static void resched_task(struct task_struct *p)
1da177e4 1059{
64c7c8f8 1060 int cpu;
1da177e4
LT
1061
1062 assert_spin_locked(&task_rq(p)->lock);
1063
64c7c8f8
NP
1064 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1065 return;
1066
1067 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 1068
64c7c8f8
NP
1069 cpu = task_cpu(p);
1070 if (cpu == smp_processor_id())
1071 return;
1072
495ab9c0 1073 /* NEED_RESCHED must be visible before we test polling */
64c7c8f8 1074 smp_mb();
495ab9c0 1075 if (!tsk_is_polling(p))
64c7c8f8 1076 smp_send_reschedule(cpu);
1da177e4 1077}
46cb4b7c
SS
1078
1079static void resched_cpu(int cpu)
1080{
1081 struct rq *rq = cpu_rq(cpu);
1082 unsigned long flags;
1083
1084 if (!spin_trylock_irqsave(&rq->lock, flags))
1085 return;
1086 resched_task(cpu_curr(cpu));
1087 spin_unlock_irqrestore(&rq->lock, flags);
1088}
1da177e4 1089#else
36c8b586 1090static inline void resched_task(struct task_struct *p)
1da177e4 1091{
64c7c8f8 1092 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
1093 set_tsk_need_resched(p);
1094}
1095#endif
1096
1097/**
1098 * task_curr - is this task currently executing on a CPU?
1099 * @p: the task in question.
1100 */
36c8b586 1101inline int task_curr(const struct task_struct *p)
1da177e4
LT
1102{
1103 return cpu_curr(task_cpu(p)) == p;
1104}
1105
2dd73a4f
PW
1106/* Used instead of source_load when we know the type == 0 */
1107unsigned long weighted_cpuload(const int cpu)
1108{
1109 return cpu_rq(cpu)->raw_weighted_load;
1110}
1111
1da177e4 1112#ifdef CONFIG_SMP
70b97a7f 1113struct migration_req {
1da177e4 1114 struct list_head list;
1da177e4 1115
36c8b586 1116 struct task_struct *task;
1da177e4
LT
1117 int dest_cpu;
1118
1da177e4 1119 struct completion done;
70b97a7f 1120};
1da177e4
LT
1121
1122/*
1123 * The task's runqueue lock must be held.
1124 * Returns true if you have to wait for migration thread.
1125 */
36c8b586 1126static int
70b97a7f 1127migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1128{
70b97a7f 1129 struct rq *rq = task_rq(p);
1da177e4
LT
1130
1131 /*
1132 * If the task is not on a runqueue (and not running), then
1133 * it is sufficient to simply update the task's cpu field.
1134 */
1135 if (!p->array && !task_running(rq, p)) {
1136 set_task_cpu(p, dest_cpu);
1137 return 0;
1138 }
1139
1140 init_completion(&req->done);
1da177e4
LT
1141 req->task = p;
1142 req->dest_cpu = dest_cpu;
1143 list_add(&req->list, &rq->migration_queue);
48f24c4d 1144
1da177e4
LT
1145 return 1;
1146}
1147
1148/*
1149 * wait_task_inactive - wait for a thread to unschedule.
1150 *
1151 * The caller must ensure that the task *will* unschedule sometime soon,
1152 * else this function might spin for a *long* time. This function can't
1153 * be called with interrupts off, or it may introduce deadlock with
1154 * smp_call_function() if an IPI is sent by the same process we are
1155 * waiting to become inactive.
1156 */
36c8b586 1157void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1158{
1159 unsigned long flags;
70b97a7f 1160 struct rq *rq;
1da177e4
LT
1161 int preempted;
1162
1163repeat:
1164 rq = task_rq_lock(p, &flags);
1165 /* Must be off runqueue entirely, not preempted. */
1166 if (unlikely(p->array || task_running(rq, p))) {
1167 /* If it's preempted, we yield. It could be a while. */
1168 preempted = !task_running(rq, p);
1169 task_rq_unlock(rq, &flags);
1170 cpu_relax();
1171 if (preempted)
1172 yield();
1173 goto repeat;
1174 }
1175 task_rq_unlock(rq, &flags);
1176}
1177
1178/***
1179 * kick_process - kick a running thread to enter/exit the kernel
1180 * @p: the to-be-kicked thread
1181 *
1182 * Cause a process which is running on another CPU to enter
1183 * kernel-mode, without any delay. (to get signals handled.)
1184 *
1185 * NOTE: this function doesnt have to take the runqueue lock,
1186 * because all it wants to ensure is that the remote task enters
1187 * the kernel. If the IPI races and the task has been migrated
1188 * to another CPU then no harm is done and the purpose has been
1189 * achieved as well.
1190 */
36c8b586 1191void kick_process(struct task_struct *p)
1da177e4
LT
1192{
1193 int cpu;
1194
1195 preempt_disable();
1196 cpu = task_cpu(p);
1197 if ((cpu != smp_processor_id()) && task_curr(p))
1198 smp_send_reschedule(cpu);
1199 preempt_enable();
1200}
1201
1202/*
2dd73a4f
PW
1203 * Return a low guess at the load of a migration-source cpu weighted
1204 * according to the scheduling class and "nice" value.
1da177e4
LT
1205 *
1206 * We want to under-estimate the load of migration sources, to
1207 * balance conservatively.
1208 */
a2000572 1209static inline unsigned long source_load(int cpu, int type)
1da177e4 1210{
70b97a7f 1211 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1212
3b0bd9bc 1213 if (type == 0)
2dd73a4f 1214 return rq->raw_weighted_load;
b910472d 1215
2dd73a4f 1216 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1da177e4
LT
1217}
1218
1219/*
2dd73a4f
PW
1220 * Return a high guess at the load of a migration-target cpu weighted
1221 * according to the scheduling class and "nice" value.
1da177e4 1222 */
a2000572 1223static inline unsigned long target_load(int cpu, int type)
1da177e4 1224{
70b97a7f 1225 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1226
7897986b 1227 if (type == 0)
2dd73a4f 1228 return rq->raw_weighted_load;
3b0bd9bc 1229
2dd73a4f
PW
1230 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1231}
1232
1233/*
1234 * Return the average load per task on the cpu's run queue
1235 */
1236static inline unsigned long cpu_avg_load_per_task(int cpu)
1237{
70b97a7f 1238 struct rq *rq = cpu_rq(cpu);
2dd73a4f
PW
1239 unsigned long n = rq->nr_running;
1240
48f24c4d 1241 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1da177e4
LT
1242}
1243
147cbb4b
NP
1244/*
1245 * find_idlest_group finds and returns the least busy CPU group within the
1246 * domain.
1247 */
1248static struct sched_group *
1249find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1250{
1251 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1252 unsigned long min_load = ULONG_MAX, this_load = 0;
1253 int load_idx = sd->forkexec_idx;
1254 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1255
1256 do {
1257 unsigned long load, avg_load;
1258 int local_group;
1259 int i;
1260
da5a5522
BD
1261 /* Skip over this group if it has no CPUs allowed */
1262 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1263 goto nextgroup;
1264
147cbb4b 1265 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1266
1267 /* Tally up the load of all CPUs in the group */
1268 avg_load = 0;
1269
1270 for_each_cpu_mask(i, group->cpumask) {
1271 /* Bias balancing toward cpus of our domain */
1272 if (local_group)
1273 load = source_load(i, load_idx);
1274 else
1275 load = target_load(i, load_idx);
1276
1277 avg_load += load;
1278 }
1279
1280 /* Adjust by relative CPU power of the group */
5517d86b
ED
1281 avg_load = sg_div_cpu_power(group,
1282 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1283
1284 if (local_group) {
1285 this_load = avg_load;
1286 this = group;
1287 } else if (avg_load < min_load) {
1288 min_load = avg_load;
1289 idlest = group;
1290 }
da5a5522 1291nextgroup:
147cbb4b
NP
1292 group = group->next;
1293 } while (group != sd->groups);
1294
1295 if (!idlest || 100*this_load < imbalance*min_load)
1296 return NULL;
1297 return idlest;
1298}
1299
1300/*
0feaece9 1301 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1302 */
95cdf3b7
IM
1303static int
1304find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1305{
da5a5522 1306 cpumask_t tmp;
147cbb4b
NP
1307 unsigned long load, min_load = ULONG_MAX;
1308 int idlest = -1;
1309 int i;
1310
da5a5522
BD
1311 /* Traverse only the allowed CPUs */
1312 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1313
1314 for_each_cpu_mask(i, tmp) {
2dd73a4f 1315 load = weighted_cpuload(i);
147cbb4b
NP
1316
1317 if (load < min_load || (load == min_load && i == this_cpu)) {
1318 min_load = load;
1319 idlest = i;
1320 }
1321 }
1322
1323 return idlest;
1324}
1325
476d139c
NP
1326/*
1327 * sched_balance_self: balance the current task (running on cpu) in domains
1328 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1329 * SD_BALANCE_EXEC.
1330 *
1331 * Balance, ie. select the least loaded group.
1332 *
1333 * Returns the target CPU number, or the same CPU if no balancing is needed.
1334 *
1335 * preempt must be disabled.
1336 */
1337static int sched_balance_self(int cpu, int flag)
1338{
1339 struct task_struct *t = current;
1340 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1341
c96d145e 1342 for_each_domain(cpu, tmp) {
5c45bf27
SS
1343 /*
1344 * If power savings logic is enabled for a domain, stop there.
1345 */
1346 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1347 break;
476d139c
NP
1348 if (tmp->flags & flag)
1349 sd = tmp;
c96d145e 1350 }
476d139c
NP
1351
1352 while (sd) {
1353 cpumask_t span;
1354 struct sched_group *group;
1a848870
SS
1355 int new_cpu, weight;
1356
1357 if (!(sd->flags & flag)) {
1358 sd = sd->child;
1359 continue;
1360 }
476d139c
NP
1361
1362 span = sd->span;
1363 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1364 if (!group) {
1365 sd = sd->child;
1366 continue;
1367 }
476d139c 1368
da5a5522 1369 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1370 if (new_cpu == -1 || new_cpu == cpu) {
1371 /* Now try balancing at a lower domain level of cpu */
1372 sd = sd->child;
1373 continue;
1374 }
476d139c 1375
1a848870 1376 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1377 cpu = new_cpu;
476d139c
NP
1378 sd = NULL;
1379 weight = cpus_weight(span);
1380 for_each_domain(cpu, tmp) {
1381 if (weight <= cpus_weight(tmp->span))
1382 break;
1383 if (tmp->flags & flag)
1384 sd = tmp;
1385 }
1386 /* while loop will break here if sd == NULL */
1387 }
1388
1389 return cpu;
1390}
1391
1392#endif /* CONFIG_SMP */
1da177e4
LT
1393
1394/*
1395 * wake_idle() will wake a task on an idle cpu if task->cpu is
1396 * not idle and an idle cpu is available. The span of cpus to
1397 * search starts with cpus closest then further out as needed,
1398 * so we always favor a closer, idle cpu.
1399 *
1400 * Returns the CPU we should wake onto.
1401 */
1402#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1403static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1404{
1405 cpumask_t tmp;
1406 struct sched_domain *sd;
1407 int i;
1408
1409 if (idle_cpu(cpu))
1410 return cpu;
1411
1412 for_each_domain(cpu, sd) {
1413 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1414 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1415 for_each_cpu_mask(i, tmp) {
1416 if (idle_cpu(i))
1417 return i;
1418 }
1419 }
e0f364f4
NP
1420 else
1421 break;
1da177e4
LT
1422 }
1423 return cpu;
1424}
1425#else
36c8b586 1426static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1427{
1428 return cpu;
1429}
1430#endif
1431
1432/***
1433 * try_to_wake_up - wake up a thread
1434 * @p: the to-be-woken-up thread
1435 * @state: the mask of task states that can be woken
1436 * @sync: do a synchronous wakeup?
1437 *
1438 * Put it on the run-queue if it's not already there. The "current"
1439 * thread is always on the run-queue (except when the actual
1440 * re-schedule is in progress), and as such you're allowed to do
1441 * the simpler "current->state = TASK_RUNNING" to mark yourself
1442 * runnable without the overhead of this.
1443 *
1444 * returns failure only if the task is already active.
1445 */
36c8b586 1446static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1447{
1448 int cpu, this_cpu, success = 0;
1449 unsigned long flags;
1450 long old_state;
70b97a7f 1451 struct rq *rq;
1da177e4 1452#ifdef CONFIG_SMP
7897986b 1453 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1454 unsigned long load, this_load;
1da177e4
LT
1455 int new_cpu;
1456#endif
1457
1458 rq = task_rq_lock(p, &flags);
1459 old_state = p->state;
1460 if (!(old_state & state))
1461 goto out;
1462
1463 if (p->array)
1464 goto out_running;
1465
1466 cpu = task_cpu(p);
1467 this_cpu = smp_processor_id();
1468
1469#ifdef CONFIG_SMP
1470 if (unlikely(task_running(rq, p)))
1471 goto out_activate;
1472
7897986b
NP
1473 new_cpu = cpu;
1474
1da177e4
LT
1475 schedstat_inc(rq, ttwu_cnt);
1476 if (cpu == this_cpu) {
1477 schedstat_inc(rq, ttwu_local);
7897986b
NP
1478 goto out_set_cpu;
1479 }
1480
1481 for_each_domain(this_cpu, sd) {
1482 if (cpu_isset(cpu, sd->span)) {
1483 schedstat_inc(sd, ttwu_wake_remote);
1484 this_sd = sd;
1485 break;
1da177e4
LT
1486 }
1487 }
1da177e4 1488
7897986b 1489 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1490 goto out_set_cpu;
1491
1da177e4 1492 /*
7897986b 1493 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1494 */
7897986b
NP
1495 if (this_sd) {
1496 int idx = this_sd->wake_idx;
1497 unsigned int imbalance;
1da177e4 1498
a3f21bce
NP
1499 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1500
7897986b
NP
1501 load = source_load(cpu, idx);
1502 this_load = target_load(this_cpu, idx);
1da177e4 1503
7897986b
NP
1504 new_cpu = this_cpu; /* Wake to this CPU if we can */
1505
a3f21bce
NP
1506 if (this_sd->flags & SD_WAKE_AFFINE) {
1507 unsigned long tl = this_load;
33859f7f
MOS
1508 unsigned long tl_per_task;
1509
1510 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1511
1da177e4 1512 /*
a3f21bce
NP
1513 * If sync wakeup then subtract the (maximum possible)
1514 * effect of the currently running task from the load
1515 * of the current CPU:
1da177e4 1516 */
a3f21bce 1517 if (sync)
2dd73a4f 1518 tl -= current->load_weight;
a3f21bce
NP
1519
1520 if ((tl <= load &&
2dd73a4f
PW
1521 tl + target_load(cpu, idx) <= tl_per_task) ||
1522 100*(tl + p->load_weight) <= imbalance*load) {
a3f21bce
NP
1523 /*
1524 * This domain has SD_WAKE_AFFINE and
1525 * p is cache cold in this domain, and
1526 * there is no bad imbalance.
1527 */
1528 schedstat_inc(this_sd, ttwu_move_affine);
1529 goto out_set_cpu;
1530 }
1531 }
1532
1533 /*
1534 * Start passive balancing when half the imbalance_pct
1535 * limit is reached.
1536 */
1537 if (this_sd->flags & SD_WAKE_BALANCE) {
1538 if (imbalance*this_load <= 100*load) {
1539 schedstat_inc(this_sd, ttwu_move_balance);
1540 goto out_set_cpu;
1541 }
1da177e4
LT
1542 }
1543 }
1544
1545 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1546out_set_cpu:
1547 new_cpu = wake_idle(new_cpu, p);
1548 if (new_cpu != cpu) {
1549 set_task_cpu(p, new_cpu);
1550 task_rq_unlock(rq, &flags);
1551 /* might preempt at this point */
1552 rq = task_rq_lock(p, &flags);
1553 old_state = p->state;
1554 if (!(old_state & state))
1555 goto out;
1556 if (p->array)
1557 goto out_running;
1558
1559 this_cpu = smp_processor_id();
1560 cpu = task_cpu(p);
1561 }
1562
1563out_activate:
1564#endif /* CONFIG_SMP */
1565 if (old_state == TASK_UNINTERRUPTIBLE) {
1566 rq->nr_uninterruptible--;
1567 /*
1568 * Tasks on involuntary sleep don't earn
1569 * sleep_avg beyond just interactive state.
1570 */
3dee386e 1571 p->sleep_type = SLEEP_NONINTERACTIVE;
e7c38cb4 1572 } else
1da177e4 1573
d79fc0fc
IM
1574 /*
1575 * Tasks that have marked their sleep as noninteractive get
e7c38cb4
CK
1576 * woken up with their sleep average not weighted in an
1577 * interactive way.
d79fc0fc 1578 */
e7c38cb4
CK
1579 if (old_state & TASK_NONINTERACTIVE)
1580 p->sleep_type = SLEEP_NONINTERACTIVE;
1581
1582
1583 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1584 /*
1585 * Sync wakeups (i.e. those types of wakeups where the waker
1586 * has indicated that it will leave the CPU in short order)
1587 * don't trigger a preemption, if the woken up task will run on
1588 * this cpu. (in this case the 'I will reschedule' promise of
1589 * the waker guarantees that the freshly woken up task is going
1590 * to be considered on this CPU.)
1591 */
1da177e4
LT
1592 if (!sync || cpu != this_cpu) {
1593 if (TASK_PREEMPTS_CURR(p, rq))
1594 resched_task(rq->curr);
1595 }
1596 success = 1;
1597
1598out_running:
1599 p->state = TASK_RUNNING;
1600out:
1601 task_rq_unlock(rq, &flags);
1602
1603 return success;
1604}
1605
36c8b586 1606int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1607{
1608 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1609 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1610}
1da177e4
LT
1611EXPORT_SYMBOL(wake_up_process);
1612
36c8b586 1613int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1614{
1615 return try_to_wake_up(p, state, 0);
1616}
1617
bc947631 1618static void task_running_tick(struct rq *rq, struct task_struct *p);
1da177e4
LT
1619/*
1620 * Perform scheduler related setup for a newly forked process p.
1621 * p is forked by current.
1622 */
36c8b586 1623void fastcall sched_fork(struct task_struct *p, int clone_flags)
1da177e4 1624{
476d139c
NP
1625 int cpu = get_cpu();
1626
1627#ifdef CONFIG_SMP
1628 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1629#endif
1630 set_task_cpu(p, cpu);
1631
1da177e4
LT
1632 /*
1633 * We mark the process as running here, but have not actually
1634 * inserted it onto the runqueue yet. This guarantees that
1635 * nobody will actually run it, and a signal or other external
1636 * event cannot wake it up and insert it on the runqueue either.
1637 */
1638 p->state = TASK_RUNNING;
b29739f9
IM
1639
1640 /*
1641 * Make sure we do not leak PI boosting priority to the child:
1642 */
1643 p->prio = current->normal_prio;
1644
1da177e4
LT
1645 INIT_LIST_HEAD(&p->run_list);
1646 p->array = NULL;
52f17b6c
CS
1647#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1648 if (unlikely(sched_info_on()))
1649 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1650#endif
d6077cb8 1651#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1652 p->oncpu = 0;
1653#endif
1da177e4 1654#ifdef CONFIG_PREEMPT
4866cde0 1655 /* Want to start with kernel preemption disabled. */
a1261f54 1656 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1657#endif
1658 /*
1659 * Share the timeslice between parent and child, thus the
1660 * total amount of pending timeslices in the system doesn't change,
1661 * resulting in more scheduling fairness.
1662 */
1663 local_irq_disable();
1664 p->time_slice = (current->time_slice + 1) >> 1;
1665 /*
1666 * The remainder of the first timeslice might be recovered by
1667 * the parent if the child exits early enough.
1668 */
1669 p->first_time_slice = 1;
1670 current->time_slice >>= 1;
1671 p->timestamp = sched_clock();
1672 if (unlikely(!current->time_slice)) {
1673 /*
1674 * This case is rare, it happens when the parent has only
1675 * a single jiffy left from its timeslice. Taking the
1676 * runqueue lock is not a problem.
1677 */
1678 current->time_slice = 1;
bc947631 1679 task_running_tick(cpu_rq(cpu), current);
476d139c
NP
1680 }
1681 local_irq_enable();
1682 put_cpu();
1da177e4
LT
1683}
1684
1685/*
1686 * wake_up_new_task - wake up a newly created task for the first time.
1687 *
1688 * This function will do some initial scheduler statistics housekeeping
1689 * that must be done for every newly created context, then puts the task
1690 * on the runqueue and wakes it.
1691 */
36c8b586 1692void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4 1693{
70b97a7f 1694 struct rq *rq, *this_rq;
1da177e4
LT
1695 unsigned long flags;
1696 int this_cpu, cpu;
1da177e4
LT
1697
1698 rq = task_rq_lock(p, &flags);
147cbb4b 1699 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1700 this_cpu = smp_processor_id();
147cbb4b 1701 cpu = task_cpu(p);
1da177e4 1702
1da177e4
LT
1703 /*
1704 * We decrease the sleep average of forking parents
1705 * and children as well, to keep max-interactive tasks
1706 * from forking tasks that are max-interactive. The parent
1707 * (current) is done further down, under its lock.
1708 */
1709 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1710 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1711
1712 p->prio = effective_prio(p);
1713
1714 if (likely(cpu == this_cpu)) {
1715 if (!(clone_flags & CLONE_VM)) {
1716 /*
1717 * The VM isn't cloned, so we're in a good position to
1718 * do child-runs-first in anticipation of an exec. This
1719 * usually avoids a lot of COW overhead.
1720 */
1721 if (unlikely(!current->array))
1722 __activate_task(p, rq);
1723 else {
1724 p->prio = current->prio;
b29739f9 1725 p->normal_prio = current->normal_prio;
1da177e4
LT
1726 list_add_tail(&p->run_list, &current->run_list);
1727 p->array = current->array;
1728 p->array->nr_active++;
2dd73a4f 1729 inc_nr_running(p, rq);
1da177e4
LT
1730 }
1731 set_need_resched();
1732 } else
1733 /* Run child last */
1734 __activate_task(p, rq);
1735 /*
1736 * We skip the following code due to cpu == this_cpu
1737 *
1738 * task_rq_unlock(rq, &flags);
1739 * this_rq = task_rq_lock(current, &flags);
1740 */
1741 this_rq = rq;
1742 } else {
1743 this_rq = cpu_rq(this_cpu);
1744
1745 /*
1746 * Not the local CPU - must adjust timestamp. This should
1747 * get optimised away in the !CONFIG_SMP case.
1748 */
b18ec803
MG
1749 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1750 + rq->most_recent_timestamp;
1da177e4
LT
1751 __activate_task(p, rq);
1752 if (TASK_PREEMPTS_CURR(p, rq))
1753 resched_task(rq->curr);
1754
1755 /*
1756 * Parent and child are on different CPUs, now get the
1757 * parent runqueue to update the parent's ->sleep_avg:
1758 */
1759 task_rq_unlock(rq, &flags);
1760 this_rq = task_rq_lock(current, &flags);
1761 }
1762 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1763 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1764 task_rq_unlock(this_rq, &flags);
1765}
1766
1767/*
1768 * Potentially available exiting-child timeslices are
1769 * retrieved here - this way the parent does not get
1770 * penalized for creating too many threads.
1771 *
1772 * (this cannot be used to 'generate' timeslices
1773 * artificially, because any timeslice recovered here
1774 * was given away by the parent in the first place.)
1775 */
36c8b586 1776void fastcall sched_exit(struct task_struct *p)
1da177e4
LT
1777{
1778 unsigned long flags;
70b97a7f 1779 struct rq *rq;
1da177e4
LT
1780
1781 /*
1782 * If the child was a (relative-) CPU hog then decrease
1783 * the sleep_avg of the parent as well.
1784 */
1785 rq = task_rq_lock(p->parent, &flags);
889dfafe 1786 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1787 p->parent->time_slice += p->time_slice;
1788 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1789 p->parent->time_slice = task_timeslice(p);
1790 }
1791 if (p->sleep_avg < p->parent->sleep_avg)
1792 p->parent->sleep_avg = p->parent->sleep_avg /
1793 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1794 (EXIT_WEIGHT + 1);
1795 task_rq_unlock(rq, &flags);
1796}
1797
4866cde0
NP
1798/**
1799 * prepare_task_switch - prepare to switch tasks
1800 * @rq: the runqueue preparing to switch
1801 * @next: the task we are going to switch to.
1802 *
1803 * This is called with the rq lock held and interrupts off. It must
1804 * be paired with a subsequent finish_task_switch after the context
1805 * switch.
1806 *
1807 * prepare_task_switch sets up locking and calls architecture specific
1808 * hooks.
1809 */
70b97a7f 1810static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1811{
1812 prepare_lock_switch(rq, next);
1813 prepare_arch_switch(next);
1814}
1815
1da177e4
LT
1816/**
1817 * finish_task_switch - clean up after a task-switch
344babaa 1818 * @rq: runqueue associated with task-switch
1da177e4
LT
1819 * @prev: the thread we just switched away from.
1820 *
4866cde0
NP
1821 * finish_task_switch must be called after the context switch, paired
1822 * with a prepare_task_switch call before the context switch.
1823 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1824 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1825 *
1826 * Note that we may have delayed dropping an mm in context_switch(). If
1827 * so, we finish that here outside of the runqueue lock. (Doing it
1828 * with the lock held can cause deadlocks; see schedule() for
1829 * details.)
1830 */
70b97a7f 1831static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1832 __releases(rq->lock)
1833{
1da177e4 1834 struct mm_struct *mm = rq->prev_mm;
55a101f8 1835 long prev_state;
1da177e4
LT
1836
1837 rq->prev_mm = NULL;
1838
1839 /*
1840 * A task struct has one reference for the use as "current".
c394cc9f 1841 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1842 * schedule one last time. The schedule call will never return, and
1843 * the scheduled task must drop that reference.
c394cc9f 1844 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1845 * still held, otherwise prev could be scheduled on another cpu, die
1846 * there before we look at prev->state, and then the reference would
1847 * be dropped twice.
1848 * Manfred Spraul <manfred@colorfullife.com>
1849 */
55a101f8 1850 prev_state = prev->state;
4866cde0
NP
1851 finish_arch_switch(prev);
1852 finish_lock_switch(rq, prev);
1da177e4
LT
1853 if (mm)
1854 mmdrop(mm);
c394cc9f 1855 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1856 /*
1857 * Remove function-return probe instances associated with this
1858 * task and put them back on the free list.
1859 */
1860 kprobe_flush_task(prev);
1da177e4 1861 put_task_struct(prev);
c6fd91f0 1862 }
1da177e4
LT
1863}
1864
1865/**
1866 * schedule_tail - first thing a freshly forked thread must call.
1867 * @prev: the thread we just switched away from.
1868 */
36c8b586 1869asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1870 __releases(rq->lock)
1871{
70b97a7f
IM
1872 struct rq *rq = this_rq();
1873
4866cde0
NP
1874 finish_task_switch(rq, prev);
1875#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1876 /* In this case, finish_task_switch does not reenable preemption */
1877 preempt_enable();
1878#endif
1da177e4
LT
1879 if (current->set_child_tid)
1880 put_user(current->pid, current->set_child_tid);
1881}
1882
1883/*
1884 * context_switch - switch to the new MM and the new
1885 * thread's register state.
1886 */
36c8b586 1887static inline struct task_struct *
70b97a7f 1888context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1889 struct task_struct *next)
1da177e4
LT
1890{
1891 struct mm_struct *mm = next->mm;
1892 struct mm_struct *oldmm = prev->active_mm;
1893
9226d125
ZA
1894 /*
1895 * For paravirt, this is coupled with an exit in switch_to to
1896 * combine the page table reload and the switch backend into
1897 * one hypercall.
1898 */
1899 arch_enter_lazy_cpu_mode();
1900
beed33a8 1901 if (!mm) {
1da177e4
LT
1902 next->active_mm = oldmm;
1903 atomic_inc(&oldmm->mm_count);
1904 enter_lazy_tlb(oldmm, next);
1905 } else
1906 switch_mm(oldmm, mm, next);
1907
beed33a8 1908 if (!prev->mm) {
1da177e4
LT
1909 prev->active_mm = NULL;
1910 WARN_ON(rq->prev_mm);
1911 rq->prev_mm = oldmm;
1912 }
3a5f5e48
IM
1913 /*
1914 * Since the runqueue lock will be released by the next
1915 * task (which is an invalid locking op but in the case
1916 * of the scheduler it's an obvious special-case), so we
1917 * do an early lockdep release here:
1918 */
1919#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1920 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1921#endif
1da177e4
LT
1922
1923 /* Here we just switch the register state and the stack. */
1924 switch_to(prev, next, prev);
1925
1926 return prev;
1927}
1928
1929/*
1930 * nr_running, nr_uninterruptible and nr_context_switches:
1931 *
1932 * externally visible scheduler statistics: current number of runnable
1933 * threads, current number of uninterruptible-sleeping threads, total
1934 * number of context switches performed since bootup.
1935 */
1936unsigned long nr_running(void)
1937{
1938 unsigned long i, sum = 0;
1939
1940 for_each_online_cpu(i)
1941 sum += cpu_rq(i)->nr_running;
1942
1943 return sum;
1944}
1945
1946unsigned long nr_uninterruptible(void)
1947{
1948 unsigned long i, sum = 0;
1949
0a945022 1950 for_each_possible_cpu(i)
1da177e4
LT
1951 sum += cpu_rq(i)->nr_uninterruptible;
1952
1953 /*
1954 * Since we read the counters lockless, it might be slightly
1955 * inaccurate. Do not allow it to go below zero though:
1956 */
1957 if (unlikely((long)sum < 0))
1958 sum = 0;
1959
1960 return sum;
1961}
1962
1963unsigned long long nr_context_switches(void)
1964{
cc94abfc
SR
1965 int i;
1966 unsigned long long sum = 0;
1da177e4 1967
0a945022 1968 for_each_possible_cpu(i)
1da177e4
LT
1969 sum += cpu_rq(i)->nr_switches;
1970
1971 return sum;
1972}
1973
1974unsigned long nr_iowait(void)
1975{
1976 unsigned long i, sum = 0;
1977
0a945022 1978 for_each_possible_cpu(i)
1da177e4
LT
1979 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1980
1981 return sum;
1982}
1983
db1b1fef
JS
1984unsigned long nr_active(void)
1985{
1986 unsigned long i, running = 0, uninterruptible = 0;
1987
1988 for_each_online_cpu(i) {
1989 running += cpu_rq(i)->nr_running;
1990 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1991 }
1992
1993 if (unlikely((long)uninterruptible < 0))
1994 uninterruptible = 0;
1995
1996 return running + uninterruptible;
1997}
1998
1da177e4
LT
1999#ifdef CONFIG_SMP
2000
48f24c4d
IM
2001/*
2002 * Is this task likely cache-hot:
2003 */
2004static inline int
2005task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
2006{
2007 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
2008}
2009
1da177e4
LT
2010/*
2011 * double_rq_lock - safely lock two runqueues
2012 *
2013 * Note this does not disable interrupts like task_rq_lock,
2014 * you need to do so manually before calling.
2015 */
70b97a7f 2016static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2017 __acquires(rq1->lock)
2018 __acquires(rq2->lock)
2019{
054b9108 2020 BUG_ON(!irqs_disabled());
1da177e4
LT
2021 if (rq1 == rq2) {
2022 spin_lock(&rq1->lock);
2023 __acquire(rq2->lock); /* Fake it out ;) */
2024 } else {
c96d145e 2025 if (rq1 < rq2) {
1da177e4
LT
2026 spin_lock(&rq1->lock);
2027 spin_lock(&rq2->lock);
2028 } else {
2029 spin_lock(&rq2->lock);
2030 spin_lock(&rq1->lock);
2031 }
2032 }
2033}
2034
2035/*
2036 * double_rq_unlock - safely unlock two runqueues
2037 *
2038 * Note this does not restore interrupts like task_rq_unlock,
2039 * you need to do so manually after calling.
2040 */
70b97a7f 2041static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2042 __releases(rq1->lock)
2043 __releases(rq2->lock)
2044{
2045 spin_unlock(&rq1->lock);
2046 if (rq1 != rq2)
2047 spin_unlock(&rq2->lock);
2048 else
2049 __release(rq2->lock);
2050}
2051
2052/*
2053 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2054 */
70b97a7f 2055static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2056 __releases(this_rq->lock)
2057 __acquires(busiest->lock)
2058 __acquires(this_rq->lock)
2059{
054b9108
KK
2060 if (unlikely(!irqs_disabled())) {
2061 /* printk() doesn't work good under rq->lock */
2062 spin_unlock(&this_rq->lock);
2063 BUG_ON(1);
2064 }
1da177e4 2065 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2066 if (busiest < this_rq) {
1da177e4
LT
2067 spin_unlock(&this_rq->lock);
2068 spin_lock(&busiest->lock);
2069 spin_lock(&this_rq->lock);
2070 } else
2071 spin_lock(&busiest->lock);
2072 }
2073}
2074
1da177e4
LT
2075/*
2076 * If dest_cpu is allowed for this process, migrate the task to it.
2077 * This is accomplished by forcing the cpu_allowed mask to only
2078 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2079 * the cpu_allowed mask is restored.
2080 */
36c8b586 2081static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2082{
70b97a7f 2083 struct migration_req req;
1da177e4 2084 unsigned long flags;
70b97a7f 2085 struct rq *rq;
1da177e4
LT
2086
2087 rq = task_rq_lock(p, &flags);
2088 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2089 || unlikely(cpu_is_offline(dest_cpu)))
2090 goto out;
2091
2092 /* force the process onto the specified CPU */
2093 if (migrate_task(p, dest_cpu, &req)) {
2094 /* Need to wait for migration thread (might exit: take ref). */
2095 struct task_struct *mt = rq->migration_thread;
36c8b586 2096
1da177e4
LT
2097 get_task_struct(mt);
2098 task_rq_unlock(rq, &flags);
2099 wake_up_process(mt);
2100 put_task_struct(mt);
2101 wait_for_completion(&req.done);
36c8b586 2102
1da177e4
LT
2103 return;
2104 }
2105out:
2106 task_rq_unlock(rq, &flags);
2107}
2108
2109/*
476d139c
NP
2110 * sched_exec - execve() is a valuable balancing opportunity, because at
2111 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2112 */
2113void sched_exec(void)
2114{
1da177e4 2115 int new_cpu, this_cpu = get_cpu();
476d139c 2116 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2117 put_cpu();
476d139c
NP
2118 if (new_cpu != this_cpu)
2119 sched_migrate_task(current, new_cpu);
1da177e4
LT
2120}
2121
2122/*
2123 * pull_task - move a task from a remote runqueue to the local runqueue.
2124 * Both runqueues must be locked.
2125 */
70b97a7f
IM
2126static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2127 struct task_struct *p, struct rq *this_rq,
2128 struct prio_array *this_array, int this_cpu)
1da177e4
LT
2129{
2130 dequeue_task(p, src_array);
2dd73a4f 2131 dec_nr_running(p, src_rq);
1da177e4 2132 set_task_cpu(p, this_cpu);
2dd73a4f 2133 inc_nr_running(p, this_rq);
1da177e4 2134 enqueue_task(p, this_array);
b18ec803
MG
2135 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2136 + this_rq->most_recent_timestamp;
1da177e4
LT
2137 /*
2138 * Note that idle threads have a prio of MAX_PRIO, for this test
2139 * to be always true for them.
2140 */
2141 if (TASK_PREEMPTS_CURR(p, this_rq))
2142 resched_task(this_rq->curr);
2143}
2144
2145/*
2146 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2147 */
858119e1 2148static
70b97a7f 2149int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
95cdf3b7
IM
2150 struct sched_domain *sd, enum idle_type idle,
2151 int *all_pinned)
1da177e4
LT
2152{
2153 /*
2154 * We do not migrate tasks that are:
2155 * 1) running (obviously), or
2156 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2157 * 3) are cache-hot on their current CPU.
2158 */
1da177e4
LT
2159 if (!cpu_isset(this_cpu, p->cpus_allowed))
2160 return 0;
81026794
NP
2161 *all_pinned = 0;
2162
2163 if (task_running(rq, p))
2164 return 0;
1da177e4
LT
2165
2166 /*
2167 * Aggressive migration if:
cafb20c1 2168 * 1) task is cache cold, or
1da177e4
LT
2169 * 2) too many balance attempts have failed.
2170 */
2171
b18ec803
MG
2172 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2173#ifdef CONFIG_SCHEDSTATS
2174 if (task_hot(p, rq->most_recent_timestamp, sd))
2175 schedstat_inc(sd, lb_hot_gained[idle]);
2176#endif
1da177e4 2177 return 1;
b18ec803 2178 }
1da177e4 2179
b18ec803 2180 if (task_hot(p, rq->most_recent_timestamp, sd))
81026794 2181 return 0;
1da177e4
LT
2182 return 1;
2183}
2184
615052dc 2185#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
48f24c4d 2186
1da177e4 2187/*
2dd73a4f
PW
2188 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2189 * load from busiest to this_rq, as part of a balancing operation within
2190 * "domain". Returns the number of tasks moved.
1da177e4
LT
2191 *
2192 * Called with both runqueues locked.
2193 */
70b97a7f 2194static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f
PW
2195 unsigned long max_nr_move, unsigned long max_load_move,
2196 struct sched_domain *sd, enum idle_type idle,
2197 int *all_pinned)
1da177e4 2198{
48f24c4d
IM
2199 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2200 best_prio_seen, skip_for_load;
70b97a7f 2201 struct prio_array *array, *dst_array;
1da177e4 2202 struct list_head *head, *curr;
36c8b586 2203 struct task_struct *tmp;
2dd73a4f 2204 long rem_load_move;
1da177e4 2205
2dd73a4f 2206 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2207 goto out;
2208
2dd73a4f 2209 rem_load_move = max_load_move;
81026794 2210 pinned = 1;
615052dc 2211 this_best_prio = rq_best_prio(this_rq);
48f24c4d 2212 best_prio = rq_best_prio(busiest);
615052dc
PW
2213 /*
2214 * Enable handling of the case where there is more than one task
2215 * with the best priority. If the current running task is one
48f24c4d 2216 * of those with prio==best_prio we know it won't be moved
615052dc
PW
2217 * and therefore it's safe to override the skip (based on load) of
2218 * any task we find with that prio.
2219 */
48f24c4d 2220 best_prio_seen = best_prio == busiest->curr->prio;
81026794 2221
1da177e4
LT
2222 /*
2223 * We first consider expired tasks. Those will likely not be
2224 * executed in the near future, and they are most likely to
2225 * be cache-cold, thus switching CPUs has the least effect
2226 * on them.
2227 */
2228 if (busiest->expired->nr_active) {
2229 array = busiest->expired;
2230 dst_array = this_rq->expired;
2231 } else {
2232 array = busiest->active;
2233 dst_array = this_rq->active;
2234 }
2235
2236new_array:
2237 /* Start searching at priority 0: */
2238 idx = 0;
2239skip_bitmap:
2240 if (!idx)
2241 idx = sched_find_first_bit(array->bitmap);
2242 else
2243 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2244 if (idx >= MAX_PRIO) {
2245 if (array == busiest->expired && busiest->active->nr_active) {
2246 array = busiest->active;
2247 dst_array = this_rq->active;
2248 goto new_array;
2249 }
2250 goto out;
2251 }
2252
2253 head = array->queue + idx;
2254 curr = head->prev;
2255skip_queue:
36c8b586 2256 tmp = list_entry(curr, struct task_struct, run_list);
1da177e4
LT
2257
2258 curr = curr->prev;
2259
50ddd969
PW
2260 /*
2261 * To help distribute high priority tasks accross CPUs we don't
2262 * skip a task if it will be the highest priority task (i.e. smallest
2263 * prio value) on its new queue regardless of its load weight
2264 */
615052dc
PW
2265 skip_for_load = tmp->load_weight > rem_load_move;
2266 if (skip_for_load && idx < this_best_prio)
48f24c4d 2267 skip_for_load = !best_prio_seen && idx == best_prio;
615052dc 2268 if (skip_for_load ||
2dd73a4f 2269 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d
IM
2270
2271 best_prio_seen |= idx == best_prio;
1da177e4
LT
2272 if (curr != head)
2273 goto skip_queue;
2274 idx++;
2275 goto skip_bitmap;
2276 }
2277
1da177e4
LT
2278 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2279 pulled++;
2dd73a4f 2280 rem_load_move -= tmp->load_weight;
1da177e4 2281
2dd73a4f
PW
2282 /*
2283 * We only want to steal up to the prescribed number of tasks
2284 * and the prescribed amount of weighted load.
2285 */
2286 if (pulled < max_nr_move && rem_load_move > 0) {
615052dc
PW
2287 if (idx < this_best_prio)
2288 this_best_prio = idx;
1da177e4
LT
2289 if (curr != head)
2290 goto skip_queue;
2291 idx++;
2292 goto skip_bitmap;
2293 }
2294out:
2295 /*
2296 * Right now, this is the only place pull_task() is called,
2297 * so we can safely collect pull_task() stats here rather than
2298 * inside pull_task().
2299 */
2300 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2301
2302 if (all_pinned)
2303 *all_pinned = pinned;
1da177e4
LT
2304 return pulled;
2305}
2306
2307/*
2308 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2309 * domain. It calculates and returns the amount of weighted load which
2310 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2311 */
2312static struct sched_group *
2313find_busiest_group(struct sched_domain *sd, int this_cpu,
0a2966b4 2314 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
783609c6 2315 cpumask_t *cpus, int *balance)
1da177e4
LT
2316{
2317 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2318 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2319 unsigned long max_pull;
2dd73a4f
PW
2320 unsigned long busiest_load_per_task, busiest_nr_running;
2321 unsigned long this_load_per_task, this_nr_running;
7897986b 2322 int load_idx;
5c45bf27
SS
2323#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2324 int power_savings_balance = 1;
2325 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2326 unsigned long min_nr_running = ULONG_MAX;
2327 struct sched_group *group_min = NULL, *group_leader = NULL;
2328#endif
1da177e4
LT
2329
2330 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2331 busiest_load_per_task = busiest_nr_running = 0;
2332 this_load_per_task = this_nr_running = 0;
7897986b
NP
2333 if (idle == NOT_IDLE)
2334 load_idx = sd->busy_idx;
2335 else if (idle == NEWLY_IDLE)
2336 load_idx = sd->newidle_idx;
2337 else
2338 load_idx = sd->idle_idx;
1da177e4
LT
2339
2340 do {
5c45bf27 2341 unsigned long load, group_capacity;
1da177e4
LT
2342 int local_group;
2343 int i;
783609c6 2344 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2345 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2346
2347 local_group = cpu_isset(this_cpu, group->cpumask);
2348
783609c6
SS
2349 if (local_group)
2350 balance_cpu = first_cpu(group->cpumask);
2351
1da177e4 2352 /* Tally up the load of all CPUs in the group */
2dd73a4f 2353 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2354
2355 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2356 struct rq *rq;
2357
2358 if (!cpu_isset(i, *cpus))
2359 continue;
2360
2361 rq = cpu_rq(i);
2dd73a4f 2362
5969fe06
NP
2363 if (*sd_idle && !idle_cpu(i))
2364 *sd_idle = 0;
2365
1da177e4 2366 /* Bias balancing toward cpus of our domain */
783609c6
SS
2367 if (local_group) {
2368 if (idle_cpu(i) && !first_idle_cpu) {
2369 first_idle_cpu = 1;
2370 balance_cpu = i;
2371 }
2372
a2000572 2373 load = target_load(i, load_idx);
783609c6 2374 } else
a2000572 2375 load = source_load(i, load_idx);
1da177e4
LT
2376
2377 avg_load += load;
2dd73a4f
PW
2378 sum_nr_running += rq->nr_running;
2379 sum_weighted_load += rq->raw_weighted_load;
1da177e4
LT
2380 }
2381
783609c6
SS
2382 /*
2383 * First idle cpu or the first cpu(busiest) in this sched group
2384 * is eligible for doing load balancing at this and above
2385 * domains.
2386 */
2387 if (local_group && balance_cpu != this_cpu && balance) {
2388 *balance = 0;
2389 goto ret;
2390 }
2391
1da177e4 2392 total_load += avg_load;
5517d86b 2393 total_pwr += group->__cpu_power;
1da177e4
LT
2394
2395 /* Adjust by relative CPU power of the group */
5517d86b
ED
2396 avg_load = sg_div_cpu_power(group,
2397 avg_load * SCHED_LOAD_SCALE);
1da177e4 2398
5517d86b 2399 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2400
1da177e4
LT
2401 if (local_group) {
2402 this_load = avg_load;
2403 this = group;
2dd73a4f
PW
2404 this_nr_running = sum_nr_running;
2405 this_load_per_task = sum_weighted_load;
2406 } else if (avg_load > max_load &&
5c45bf27 2407 sum_nr_running > group_capacity) {
1da177e4
LT
2408 max_load = avg_load;
2409 busiest = group;
2dd73a4f
PW
2410 busiest_nr_running = sum_nr_running;
2411 busiest_load_per_task = sum_weighted_load;
1da177e4 2412 }
5c45bf27
SS
2413
2414#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2415 /*
2416 * Busy processors will not participate in power savings
2417 * balance.
2418 */
2419 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2420 goto group_next;
2421
2422 /*
2423 * If the local group is idle or completely loaded
2424 * no need to do power savings balance at this domain
2425 */
2426 if (local_group && (this_nr_running >= group_capacity ||
2427 !this_nr_running))
2428 power_savings_balance = 0;
2429
2430 /*
2431 * If a group is already running at full capacity or idle,
2432 * don't include that group in power savings calculations
2433 */
2434 if (!power_savings_balance || sum_nr_running >= group_capacity
2435 || !sum_nr_running)
2436 goto group_next;
2437
2438 /*
2439 * Calculate the group which has the least non-idle load.
2440 * This is the group from where we need to pick up the load
2441 * for saving power
2442 */
2443 if ((sum_nr_running < min_nr_running) ||
2444 (sum_nr_running == min_nr_running &&
2445 first_cpu(group->cpumask) <
2446 first_cpu(group_min->cpumask))) {
2447 group_min = group;
2448 min_nr_running = sum_nr_running;
2449 min_load_per_task = sum_weighted_load /
2450 sum_nr_running;
2451 }
2452
2453 /*
2454 * Calculate the group which is almost near its
2455 * capacity but still has some space to pick up some load
2456 * from other group and save more power
2457 */
48f24c4d 2458 if (sum_nr_running <= group_capacity - 1) {
5c45bf27
SS
2459 if (sum_nr_running > leader_nr_running ||
2460 (sum_nr_running == leader_nr_running &&
2461 first_cpu(group->cpumask) >
2462 first_cpu(group_leader->cpumask))) {
2463 group_leader = group;
2464 leader_nr_running = sum_nr_running;
2465 }
48f24c4d 2466 }
5c45bf27
SS
2467group_next:
2468#endif
1da177e4
LT
2469 group = group->next;
2470 } while (group != sd->groups);
2471
2dd73a4f 2472 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2473 goto out_balanced;
2474
2475 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2476
2477 if (this_load >= avg_load ||
2478 100*max_load <= sd->imbalance_pct*this_load)
2479 goto out_balanced;
2480
2dd73a4f 2481 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2482 /*
2483 * We're trying to get all the cpus to the average_load, so we don't
2484 * want to push ourselves above the average load, nor do we wish to
2485 * reduce the max loaded cpu below the average load, as either of these
2486 * actions would just result in more rebalancing later, and ping-pong
2487 * tasks around. Thus we look for the minimum possible imbalance.
2488 * Negative imbalances (*we* are more loaded than anyone else) will
2489 * be counted as no imbalance for these purposes -- we can't fix that
2490 * by pulling tasks to us. Be careful of negative numbers as they'll
2491 * appear as very large values with unsigned longs.
2492 */
2dd73a4f
PW
2493 if (max_load <= busiest_load_per_task)
2494 goto out_balanced;
2495
2496 /*
2497 * In the presence of smp nice balancing, certain scenarios can have
2498 * max load less than avg load(as we skip the groups at or below
2499 * its cpu_power, while calculating max_load..)
2500 */
2501 if (max_load < avg_load) {
2502 *imbalance = 0;
2503 goto small_imbalance;
2504 }
0c117f1b
SS
2505
2506 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2507 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2508
1da177e4 2509 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2510 *imbalance = min(max_pull * busiest->__cpu_power,
2511 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2512 / SCHED_LOAD_SCALE;
2513
2dd73a4f
PW
2514 /*
2515 * if *imbalance is less than the average load per runnable task
2516 * there is no gaurantee that any tasks will be moved so we'll have
2517 * a think about bumping its value to force at least one task to be
2518 * moved
2519 */
2520 if (*imbalance < busiest_load_per_task) {
48f24c4d 2521 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2522 unsigned int imbn;
2523
2524small_imbalance:
2525 pwr_move = pwr_now = 0;
2526 imbn = 2;
2527 if (this_nr_running) {
2528 this_load_per_task /= this_nr_running;
2529 if (busiest_load_per_task > this_load_per_task)
2530 imbn = 1;
2531 } else
2532 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2533
2dd73a4f
PW
2534 if (max_load - this_load >= busiest_load_per_task * imbn) {
2535 *imbalance = busiest_load_per_task;
1da177e4
LT
2536 return busiest;
2537 }
2538
2539 /*
2540 * OK, we don't have enough imbalance to justify moving tasks,
2541 * however we may be able to increase total CPU power used by
2542 * moving them.
2543 */
2544
5517d86b
ED
2545 pwr_now += busiest->__cpu_power *
2546 min(busiest_load_per_task, max_load);
2547 pwr_now += this->__cpu_power *
2548 min(this_load_per_task, this_load);
1da177e4
LT
2549 pwr_now /= SCHED_LOAD_SCALE;
2550
2551 /* Amount of load we'd subtract */
5517d86b
ED
2552 tmp = sg_div_cpu_power(busiest,
2553 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2554 if (max_load > tmp)
5517d86b 2555 pwr_move += busiest->__cpu_power *
2dd73a4f 2556 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2557
2558 /* Amount of load we'd add */
5517d86b 2559 if (max_load * busiest->__cpu_power <
33859f7f 2560 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2561 tmp = sg_div_cpu_power(this,
2562 max_load * busiest->__cpu_power);
1da177e4 2563 else
5517d86b
ED
2564 tmp = sg_div_cpu_power(this,
2565 busiest_load_per_task * SCHED_LOAD_SCALE);
2566 pwr_move += this->__cpu_power *
2567 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2568 pwr_move /= SCHED_LOAD_SCALE;
2569
2570 /* Move if we gain throughput */
2571 if (pwr_move <= pwr_now)
2572 goto out_balanced;
2573
2dd73a4f 2574 *imbalance = busiest_load_per_task;
1da177e4
LT
2575 }
2576
1da177e4
LT
2577 return busiest;
2578
2579out_balanced:
5c45bf27
SS
2580#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2581 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2582 goto ret;
1da177e4 2583
5c45bf27
SS
2584 if (this == group_leader && group_leader != group_min) {
2585 *imbalance = min_load_per_task;
2586 return group_min;
2587 }
5c45bf27 2588#endif
783609c6 2589ret:
1da177e4
LT
2590 *imbalance = 0;
2591 return NULL;
2592}
2593
2594/*
2595 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2596 */
70b97a7f 2597static struct rq *
48f24c4d 2598find_busiest_queue(struct sched_group *group, enum idle_type idle,
0a2966b4 2599 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2600{
70b97a7f 2601 struct rq *busiest = NULL, *rq;
2dd73a4f 2602 unsigned long max_load = 0;
1da177e4
LT
2603 int i;
2604
2605 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2606
2607 if (!cpu_isset(i, *cpus))
2608 continue;
2609
48f24c4d 2610 rq = cpu_rq(i);
2dd73a4f 2611
48f24c4d 2612 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2dd73a4f 2613 continue;
1da177e4 2614
48f24c4d
IM
2615 if (rq->raw_weighted_load > max_load) {
2616 max_load = rq->raw_weighted_load;
2617 busiest = rq;
1da177e4
LT
2618 }
2619 }
2620
2621 return busiest;
2622}
2623
77391d71
NP
2624/*
2625 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2626 * so long as it is large enough.
2627 */
2628#define MAX_PINNED_INTERVAL 512
2629
48f24c4d
IM
2630static inline unsigned long minus_1_or_zero(unsigned long n)
2631{
2632 return n > 0 ? n - 1 : 0;
2633}
2634
1da177e4
LT
2635/*
2636 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2637 * tasks if there is an imbalance.
1da177e4 2638 */
70b97a7f 2639static int load_balance(int this_cpu, struct rq *this_rq,
783609c6
SS
2640 struct sched_domain *sd, enum idle_type idle,
2641 int *balance)
1da177e4 2642{
48f24c4d 2643 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2644 struct sched_group *group;
1da177e4 2645 unsigned long imbalance;
70b97a7f 2646 struct rq *busiest;
0a2966b4 2647 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2648 unsigned long flags;
5969fe06 2649
89c4710e
SS
2650 /*
2651 * When power savings policy is enabled for the parent domain, idle
2652 * sibling can pick up load irrespective of busy siblings. In this case,
2653 * let the state of idle sibling percolate up as IDLE, instead of
2654 * portraying it as NOT_IDLE.
2655 */
5c45bf27 2656 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2657 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2658 sd_idle = 1;
1da177e4 2659
1da177e4
LT
2660 schedstat_inc(sd, lb_cnt[idle]);
2661
0a2966b4
CL
2662redo:
2663 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2664 &cpus, balance);
2665
06066714 2666 if (*balance == 0)
783609c6 2667 goto out_balanced;
783609c6 2668
1da177e4
LT
2669 if (!group) {
2670 schedstat_inc(sd, lb_nobusyg[idle]);
2671 goto out_balanced;
2672 }
2673
0a2966b4 2674 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2675 if (!busiest) {
2676 schedstat_inc(sd, lb_nobusyq[idle]);
2677 goto out_balanced;
2678 }
2679
db935dbd 2680 BUG_ON(busiest == this_rq);
1da177e4
LT
2681
2682 schedstat_add(sd, lb_imbalance[idle], imbalance);
2683
2684 nr_moved = 0;
2685 if (busiest->nr_running > 1) {
2686 /*
2687 * Attempt to move tasks. If find_busiest_group has found
2688 * an imbalance but busiest->nr_running <= 1, the group is
2689 * still unbalanced. nr_moved simply stays zero, so it is
2690 * correctly treated as an imbalance.
2691 */
fe2eea3f 2692 local_irq_save(flags);
e17224bf 2693 double_rq_lock(this_rq, busiest);
1da177e4 2694 nr_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d
IM
2695 minus_1_or_zero(busiest->nr_running),
2696 imbalance, sd, idle, &all_pinned);
e17224bf 2697 double_rq_unlock(this_rq, busiest);
fe2eea3f 2698 local_irq_restore(flags);
81026794 2699
46cb4b7c
SS
2700 /*
2701 * some other cpu did the load balance for us.
2702 */
2703 if (nr_moved && this_cpu != smp_processor_id())
2704 resched_cpu(this_cpu);
2705
81026794 2706 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2707 if (unlikely(all_pinned)) {
2708 cpu_clear(cpu_of(busiest), cpus);
2709 if (!cpus_empty(cpus))
2710 goto redo;
81026794 2711 goto out_balanced;
0a2966b4 2712 }
1da177e4 2713 }
81026794 2714
1da177e4
LT
2715 if (!nr_moved) {
2716 schedstat_inc(sd, lb_failed[idle]);
2717 sd->nr_balance_failed++;
2718
2719 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2720
fe2eea3f 2721 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2722
2723 /* don't kick the migration_thread, if the curr
2724 * task on busiest cpu can't be moved to this_cpu
2725 */
2726 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2727 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2728 all_pinned = 1;
2729 goto out_one_pinned;
2730 }
2731
1da177e4
LT
2732 if (!busiest->active_balance) {
2733 busiest->active_balance = 1;
2734 busiest->push_cpu = this_cpu;
81026794 2735 active_balance = 1;
1da177e4 2736 }
fe2eea3f 2737 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2738 if (active_balance)
1da177e4
LT
2739 wake_up_process(busiest->migration_thread);
2740
2741 /*
2742 * We've kicked active balancing, reset the failure
2743 * counter.
2744 */
39507451 2745 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2746 }
81026794 2747 } else
1da177e4
LT
2748 sd->nr_balance_failed = 0;
2749
81026794 2750 if (likely(!active_balance)) {
1da177e4
LT
2751 /* We were unbalanced, so reset the balancing interval */
2752 sd->balance_interval = sd->min_interval;
81026794
NP
2753 } else {
2754 /*
2755 * If we've begun active balancing, start to back off. This
2756 * case may not be covered by the all_pinned logic if there
2757 * is only 1 task on the busy runqueue (because we don't call
2758 * move_tasks).
2759 */
2760 if (sd->balance_interval < sd->max_interval)
2761 sd->balance_interval *= 2;
1da177e4
LT
2762 }
2763
5c45bf27 2764 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2765 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2766 return -1;
1da177e4
LT
2767 return nr_moved;
2768
2769out_balanced:
1da177e4
LT
2770 schedstat_inc(sd, lb_balanced[idle]);
2771
16cfb1c0 2772 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2773
2774out_one_pinned:
1da177e4 2775 /* tune up the balancing interval */
77391d71
NP
2776 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2777 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2778 sd->balance_interval *= 2;
2779
48f24c4d 2780 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2781 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2782 return -1;
1da177e4
LT
2783 return 0;
2784}
2785
2786/*
2787 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2788 * tasks if there is an imbalance.
2789 *
2790 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2791 * this_rq is locked.
2792 */
48f24c4d 2793static int
70b97a7f 2794load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2795{
2796 struct sched_group *group;
70b97a7f 2797 struct rq *busiest = NULL;
1da177e4
LT
2798 unsigned long imbalance;
2799 int nr_moved = 0;
5969fe06 2800 int sd_idle = 0;
0a2966b4 2801 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2802
89c4710e
SS
2803 /*
2804 * When power savings policy is enabled for the parent domain, idle
2805 * sibling can pick up load irrespective of busy siblings. In this case,
2806 * let the state of idle sibling percolate up as IDLE, instead of
2807 * portraying it as NOT_IDLE.
2808 */
2809 if (sd->flags & SD_SHARE_CPUPOWER &&
2810 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2811 sd_idle = 1;
1da177e4
LT
2812
2813 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
0a2966b4
CL
2814redo:
2815 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
783609c6 2816 &sd_idle, &cpus, NULL);
1da177e4 2817 if (!group) {
1da177e4 2818 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2819 goto out_balanced;
1da177e4
LT
2820 }
2821
0a2966b4
CL
2822 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2823 &cpus);
db935dbd 2824 if (!busiest) {
1da177e4 2825 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2826 goto out_balanced;
1da177e4
LT
2827 }
2828
db935dbd
NP
2829 BUG_ON(busiest == this_rq);
2830
1da177e4 2831 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2832
2833 nr_moved = 0;
2834 if (busiest->nr_running > 1) {
2835 /* Attempt to move tasks */
2836 double_lock_balance(this_rq, busiest);
2837 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2838 minus_1_or_zero(busiest->nr_running),
81026794 2839 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf 2840 spin_unlock(&busiest->lock);
0a2966b4
CL
2841
2842 if (!nr_moved) {
2843 cpu_clear(cpu_of(busiest), cpus);
2844 if (!cpus_empty(cpus))
2845 goto redo;
2846 }
d6d5cfaf
NP
2847 }
2848
5969fe06 2849 if (!nr_moved) {
1da177e4 2850 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
89c4710e
SS
2851 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2852 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2853 return -1;
2854 } else
16cfb1c0 2855 sd->nr_balance_failed = 0;
1da177e4 2856
1da177e4 2857 return nr_moved;
16cfb1c0
NP
2858
2859out_balanced:
2860 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
48f24c4d 2861 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2862 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2863 return -1;
16cfb1c0 2864 sd->nr_balance_failed = 0;
48f24c4d 2865
16cfb1c0 2866 return 0;
1da177e4
LT
2867}
2868
2869/*
2870 * idle_balance is called by schedule() if this_cpu is about to become
2871 * idle. Attempts to pull tasks from other CPUs.
2872 */
70b97a7f 2873static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2874{
2875 struct sched_domain *sd;
1bd77f2d
CL
2876 int pulled_task = 0;
2877 unsigned long next_balance = jiffies + 60 * HZ;
1da177e4
LT
2878
2879 for_each_domain(this_cpu, sd) {
2880 if (sd->flags & SD_BALANCE_NEWIDLE) {
48f24c4d 2881 /* If we've pulled tasks over stop searching: */
1bd77f2d
CL
2882 pulled_task = load_balance_newidle(this_cpu,
2883 this_rq, sd);
2884 if (time_after(next_balance,
2885 sd->last_balance + sd->balance_interval))
2886 next_balance = sd->last_balance
2887 + sd->balance_interval;
2888 if (pulled_task)
1da177e4 2889 break;
1da177e4
LT
2890 }
2891 }
1bd77f2d
CL
2892 if (!pulled_task)
2893 /*
2894 * We are going idle. next_balance may be set based on
2895 * a busy processor. So reset next_balance.
2896 */
2897 this_rq->next_balance = next_balance;
1da177e4
LT
2898}
2899
2900/*
2901 * active_load_balance is run by migration threads. It pushes running tasks
2902 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2903 * running on each physical CPU where possible, and avoids physical /
2904 * logical imbalances.
2905 *
2906 * Called with busiest_rq locked.
2907 */
70b97a7f 2908static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2909{
39507451 2910 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2911 struct sched_domain *sd;
2912 struct rq *target_rq;
39507451 2913
48f24c4d 2914 /* Is there any task to move? */
39507451 2915 if (busiest_rq->nr_running <= 1)
39507451
NP
2916 return;
2917
2918 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2919
2920 /*
39507451
NP
2921 * This condition is "impossible", if it occurs
2922 * we need to fix it. Originally reported by
2923 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2924 */
39507451 2925 BUG_ON(busiest_rq == target_rq);
1da177e4 2926
39507451
NP
2927 /* move a task from busiest_rq to target_rq */
2928 double_lock_balance(busiest_rq, target_rq);
2929
2930 /* Search for an sd spanning us and the target CPU. */
c96d145e 2931 for_each_domain(target_cpu, sd) {
39507451 2932 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2933 cpu_isset(busiest_cpu, sd->span))
39507451 2934 break;
c96d145e 2935 }
39507451 2936
48f24c4d
IM
2937 if (likely(sd)) {
2938 schedstat_inc(sd, alb_cnt);
39507451 2939
48f24c4d
IM
2940 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2941 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2942 NULL))
2943 schedstat_inc(sd, alb_pushed);
2944 else
2945 schedstat_inc(sd, alb_failed);
2946 }
39507451 2947 spin_unlock(&target_rq->lock);
1da177e4
LT
2948}
2949
7835b98b 2950static void update_load(struct rq *this_rq)
1da177e4 2951{
7835b98b 2952 unsigned long this_load;
ff91691b 2953 unsigned int i, scale;
1da177e4 2954
2dd73a4f 2955 this_load = this_rq->raw_weighted_load;
48f24c4d
IM
2956
2957 /* Update our load: */
ff91691b 2958 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
48f24c4d
IM
2959 unsigned long old_load, new_load;
2960
ff91691b
NP
2961 /* scale is effectively 1 << i now, and >> i divides by scale */
2962
7897986b 2963 old_load = this_rq->cpu_load[i];
48f24c4d 2964 new_load = this_load;
7897986b
NP
2965 /*
2966 * Round up the averaging division if load is increasing. This
2967 * prevents us from getting stuck on 9 if the load is 10, for
2968 * example.
2969 */
2970 if (new_load > old_load)
2971 new_load += scale-1;
ff91691b 2972 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
7897986b 2973 }
7835b98b
CL
2974}
2975
46cb4b7c
SS
2976#ifdef CONFIG_NO_HZ
2977static struct {
2978 atomic_t load_balancer;
2979 cpumask_t cpu_mask;
2980} nohz ____cacheline_aligned = {
2981 .load_balancer = ATOMIC_INIT(-1),
2982 .cpu_mask = CPU_MASK_NONE,
2983};
2984
7835b98b 2985/*
46cb4b7c
SS
2986 * This routine will try to nominate the ilb (idle load balancing)
2987 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2988 * load balancing on behalf of all those cpus. If all the cpus in the system
2989 * go into this tickless mode, then there will be no ilb owner (as there is
2990 * no need for one) and all the cpus will sleep till the next wakeup event
2991 * arrives...
2992 *
2993 * For the ilb owner, tick is not stopped. And this tick will be used
2994 * for idle load balancing. ilb owner will still be part of
2995 * nohz.cpu_mask..
7835b98b 2996 *
46cb4b7c
SS
2997 * While stopping the tick, this cpu will become the ilb owner if there
2998 * is no other owner. And will be the owner till that cpu becomes busy
2999 * or if all cpus in the system stop their ticks at which point
3000 * there is no need for ilb owner.
3001 *
3002 * When the ilb owner becomes busy, it nominates another owner, during the
3003 * next busy scheduler_tick()
3004 */
3005int select_nohz_load_balancer(int stop_tick)
3006{
3007 int cpu = smp_processor_id();
3008
3009 if (stop_tick) {
3010 cpu_set(cpu, nohz.cpu_mask);
3011 cpu_rq(cpu)->in_nohz_recently = 1;
3012
3013 /*
3014 * If we are going offline and still the leader, give up!
3015 */
3016 if (cpu_is_offline(cpu) &&
3017 atomic_read(&nohz.load_balancer) == cpu) {
3018 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3019 BUG();
3020 return 0;
3021 }
3022
3023 /* time for ilb owner also to sleep */
3024 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3025 if (atomic_read(&nohz.load_balancer) == cpu)
3026 atomic_set(&nohz.load_balancer, -1);
3027 return 0;
3028 }
3029
3030 if (atomic_read(&nohz.load_balancer) == -1) {
3031 /* make me the ilb owner */
3032 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3033 return 1;
3034 } else if (atomic_read(&nohz.load_balancer) == cpu)
3035 return 1;
3036 } else {
3037 if (!cpu_isset(cpu, nohz.cpu_mask))
3038 return 0;
3039
3040 cpu_clear(cpu, nohz.cpu_mask);
3041
3042 if (atomic_read(&nohz.load_balancer) == cpu)
3043 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3044 BUG();
3045 }
3046 return 0;
3047}
3048#endif
3049
3050static DEFINE_SPINLOCK(balancing);
3051
3052/*
7835b98b
CL
3053 * It checks each scheduling domain to see if it is due to be balanced,
3054 * and initiates a balancing operation if so.
3055 *
3056 * Balancing parameters are set up in arch_init_sched_domains.
3057 */
46cb4b7c 3058static inline void rebalance_domains(int cpu, enum idle_type idle)
7835b98b 3059{
46cb4b7c
SS
3060 int balance = 1;
3061 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3062 unsigned long interval;
3063 struct sched_domain *sd;
46cb4b7c 3064 /* Earliest time when we have to do rebalance again */
c9819f45 3065 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 3066
46cb4b7c 3067 for_each_domain(cpu, sd) {
1da177e4
LT
3068 if (!(sd->flags & SD_LOAD_BALANCE))
3069 continue;
3070
3071 interval = sd->balance_interval;
3072 if (idle != SCHED_IDLE)
3073 interval *= sd->busy_factor;
3074
3075 /* scale ms to jiffies */
3076 interval = msecs_to_jiffies(interval);
3077 if (unlikely(!interval))
3078 interval = 1;
3079
08c183f3
CL
3080 if (sd->flags & SD_SERIALIZE) {
3081 if (!spin_trylock(&balancing))
3082 goto out;
3083 }
3084
c9819f45 3085 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3086 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3087 /*
3088 * We've pulled tasks over so either we're no
5969fe06
NP
3089 * longer idle, or one of our SMT siblings is
3090 * not idle.
3091 */
1da177e4
LT
3092 idle = NOT_IDLE;
3093 }
1bd77f2d 3094 sd->last_balance = jiffies;
1da177e4 3095 }
08c183f3
CL
3096 if (sd->flags & SD_SERIALIZE)
3097 spin_unlock(&balancing);
3098out:
c9819f45
CL
3099 if (time_after(next_balance, sd->last_balance + interval))
3100 next_balance = sd->last_balance + interval;
783609c6
SS
3101
3102 /*
3103 * Stop the load balance at this level. There is another
3104 * CPU in our sched group which is doing load balancing more
3105 * actively.
3106 */
3107 if (!balance)
3108 break;
1da177e4 3109 }
46cb4b7c
SS
3110 rq->next_balance = next_balance;
3111}
3112
3113/*
3114 * run_rebalance_domains is triggered when needed from the scheduler tick.
3115 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3116 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3117 */
3118static void run_rebalance_domains(struct softirq_action *h)
3119{
3120 int local_cpu = smp_processor_id();
3121 struct rq *local_rq = cpu_rq(local_cpu);
3122 enum idle_type idle = local_rq->idle_at_tick ? SCHED_IDLE : NOT_IDLE;
3123
3124 rebalance_domains(local_cpu, idle);
3125
3126#ifdef CONFIG_NO_HZ
3127 /*
3128 * If this cpu is the owner for idle load balancing, then do the
3129 * balancing on behalf of the other idle cpus whose ticks are
3130 * stopped.
3131 */
3132 if (local_rq->idle_at_tick &&
3133 atomic_read(&nohz.load_balancer) == local_cpu) {
3134 cpumask_t cpus = nohz.cpu_mask;
3135 struct rq *rq;
3136 int balance_cpu;
3137
3138 cpu_clear(local_cpu, cpus);
3139 for_each_cpu_mask(balance_cpu, cpus) {
3140 /*
3141 * If this cpu gets work to do, stop the load balancing
3142 * work being done for other cpus. Next load
3143 * balancing owner will pick it up.
3144 */
3145 if (need_resched())
3146 break;
3147
3148 rebalance_domains(balance_cpu, SCHED_IDLE);
3149
3150 rq = cpu_rq(balance_cpu);
3151 if (time_after(local_rq->next_balance, rq->next_balance))
3152 local_rq->next_balance = rq->next_balance;
3153 }
3154 }
3155#endif
3156}
3157
3158/*
3159 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3160 *
3161 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3162 * idle load balancing owner or decide to stop the periodic load balancing,
3163 * if the whole system is idle.
3164 */
3165static inline void trigger_load_balance(int cpu)
3166{
3167 struct rq *rq = cpu_rq(cpu);
3168#ifdef CONFIG_NO_HZ
3169 /*
3170 * If we were in the nohz mode recently and busy at the current
3171 * scheduler tick, then check if we need to nominate new idle
3172 * load balancer.
3173 */
3174 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3175 rq->in_nohz_recently = 0;
3176
3177 if (atomic_read(&nohz.load_balancer) == cpu) {
3178 cpu_clear(cpu, nohz.cpu_mask);
3179 atomic_set(&nohz.load_balancer, -1);
3180 }
3181
3182 if (atomic_read(&nohz.load_balancer) == -1) {
3183 /*
3184 * simple selection for now: Nominate the
3185 * first cpu in the nohz list to be the next
3186 * ilb owner.
3187 *
3188 * TBD: Traverse the sched domains and nominate
3189 * the nearest cpu in the nohz.cpu_mask.
3190 */
3191 int ilb = first_cpu(nohz.cpu_mask);
3192
3193 if (ilb != NR_CPUS)
3194 resched_cpu(ilb);
3195 }
3196 }
3197
3198 /*
3199 * If this cpu is idle and doing idle load balancing for all the
3200 * cpus with ticks stopped, is it time for that to stop?
3201 */
3202 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3203 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3204 resched_cpu(cpu);
3205 return;
3206 }
3207
3208 /*
3209 * If this cpu is idle and the idle load balancing is done by
3210 * someone else, then no need raise the SCHED_SOFTIRQ
3211 */
3212 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3213 cpu_isset(cpu, nohz.cpu_mask))
3214 return;
3215#endif
3216 if (time_after_eq(jiffies, rq->next_balance))
3217 raise_softirq(SCHED_SOFTIRQ);
1da177e4
LT
3218}
3219#else
3220/*
3221 * on UP we do not need to balance between CPUs:
3222 */
70b97a7f 3223static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3224{
3225}
3226#endif
3227
1da177e4
LT
3228DEFINE_PER_CPU(struct kernel_stat, kstat);
3229
3230EXPORT_PER_CPU_SYMBOL(kstat);
3231
3232/*
3233 * This is called on clock ticks and on context switches.
3234 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3235 */
48f24c4d 3236static inline void
70b97a7f 3237update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
1da177e4 3238{
b18ec803
MG
3239 p->sched_time += now - p->last_ran;
3240 p->last_ran = rq->most_recent_timestamp = now;
1da177e4
LT
3241}
3242
3243/*
3244 * Return current->sched_time plus any more ns on the sched_clock
3245 * that have not yet been banked.
3246 */
36c8b586 3247unsigned long long current_sched_time(const struct task_struct *p)
1da177e4
LT
3248{
3249 unsigned long long ns;
3250 unsigned long flags;
48f24c4d 3251
1da177e4 3252 local_irq_save(flags);
b18ec803 3253 ns = p->sched_time + sched_clock() - p->last_ran;
1da177e4 3254 local_irq_restore(flags);
48f24c4d 3255
1da177e4
LT
3256 return ns;
3257}
3258
f1adad78
LT
3259/*
3260 * We place interactive tasks back into the active array, if possible.
3261 *
3262 * To guarantee that this does not starve expired tasks we ignore the
3263 * interactivity of a task if the first expired task had to wait more
3264 * than a 'reasonable' amount of time. This deadline timeout is
3265 * load-dependent, as the frequency of array switched decreases with
3266 * increasing number of running tasks. We also ignore the interactivity
3267 * if a better static_prio task has expired:
3268 */
70b97a7f 3269static inline int expired_starving(struct rq *rq)
48f24c4d
IM
3270{
3271 if (rq->curr->static_prio > rq->best_expired_prio)
3272 return 1;
3273 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3274 return 0;
3275 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3276 return 1;
3277 return 0;
3278}
f1adad78 3279
1da177e4
LT
3280/*
3281 * Account user cpu time to a process.
3282 * @p: the process that the cpu time gets accounted to
3283 * @hardirq_offset: the offset to subtract from hardirq_count()
3284 * @cputime: the cpu time spent in user space since the last update
3285 */
3286void account_user_time(struct task_struct *p, cputime_t cputime)
3287{
3288 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3289 cputime64_t tmp;
3290
3291 p->utime = cputime_add(p->utime, cputime);
3292
3293 /* Add user time to cpustat. */
3294 tmp = cputime_to_cputime64(cputime);
3295 if (TASK_NICE(p) > 0)
3296 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3297 else
3298 cpustat->user = cputime64_add(cpustat->user, tmp);
3299}
3300
3301/*
3302 * Account system cpu time to a process.
3303 * @p: the process that the cpu time gets accounted to
3304 * @hardirq_offset: the offset to subtract from hardirq_count()
3305 * @cputime: the cpu time spent in kernel space since the last update
3306 */
3307void account_system_time(struct task_struct *p, int hardirq_offset,
3308 cputime_t cputime)
3309{
3310 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3311 struct rq *rq = this_rq();
1da177e4
LT
3312 cputime64_t tmp;
3313
3314 p->stime = cputime_add(p->stime, cputime);
3315
3316 /* Add system time to cpustat. */
3317 tmp = cputime_to_cputime64(cputime);
3318 if (hardirq_count() - hardirq_offset)
3319 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3320 else if (softirq_count())
3321 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3322 else if (p != rq->idle)
3323 cpustat->system = cputime64_add(cpustat->system, tmp);
3324 else if (atomic_read(&rq->nr_iowait) > 0)
3325 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3326 else
3327 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3328 /* Account for system time used */
3329 acct_update_integrals(p);
1da177e4
LT
3330}
3331
3332/*
3333 * Account for involuntary wait time.
3334 * @p: the process from which the cpu time has been stolen
3335 * @steal: the cpu time spent in involuntary wait
3336 */
3337void account_steal_time(struct task_struct *p, cputime_t steal)
3338{
3339 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3340 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3341 struct rq *rq = this_rq();
1da177e4
LT
3342
3343 if (p == rq->idle) {
3344 p->stime = cputime_add(p->stime, steal);
3345 if (atomic_read(&rq->nr_iowait) > 0)
3346 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3347 else
3348 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3349 } else
3350 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3351}
3352
7835b98b 3353static void task_running_tick(struct rq *rq, struct task_struct *p)
1da177e4 3354{
1da177e4 3355 if (p->array != rq->active) {
7835b98b 3356 /* Task has expired but was not scheduled yet */
1da177e4 3357 set_tsk_need_resched(p);
7835b98b 3358 return;
1da177e4
LT
3359 }
3360 spin_lock(&rq->lock);
3361 /*
3362 * The task was running during this tick - update the
3363 * time slice counter. Note: we do not update a thread's
3364 * priority until it either goes to sleep or uses up its
3365 * timeslice. This makes it possible for interactive tasks
3366 * to use up their timeslices at their highest priority levels.
3367 */
3368 if (rt_task(p)) {
3369 /*
3370 * RR tasks need a special form of timeslice management.
3371 * FIFO tasks have no timeslices.
3372 */
3373 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3374 p->time_slice = task_timeslice(p);
3375 p->first_time_slice = 0;
3376 set_tsk_need_resched(p);
3377
3378 /* put it at the end of the queue: */
3379 requeue_task(p, rq->active);
3380 }
3381 goto out_unlock;
3382 }
3383 if (!--p->time_slice) {
3384 dequeue_task(p, rq->active);
3385 set_tsk_need_resched(p);
3386 p->prio = effective_prio(p);
3387 p->time_slice = task_timeslice(p);
3388 p->first_time_slice = 0;
3389
3390 if (!rq->expired_timestamp)
3391 rq->expired_timestamp = jiffies;
48f24c4d 3392 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
1da177e4
LT
3393 enqueue_task(p, rq->expired);
3394 if (p->static_prio < rq->best_expired_prio)
3395 rq->best_expired_prio = p->static_prio;
3396 } else
3397 enqueue_task(p, rq->active);
3398 } else {
3399 /*
3400 * Prevent a too long timeslice allowing a task to monopolize
3401 * the CPU. We do this by splitting up the timeslice into
3402 * smaller pieces.
3403 *
3404 * Note: this does not mean the task's timeslices expire or
3405 * get lost in any way, they just might be preempted by
3406 * another task of equal priority. (one with higher
3407 * priority would have preempted this task already.) We
3408 * requeue this task to the end of the list on this priority
3409 * level, which is in essence a round-robin of tasks with
3410 * equal priority.
3411 *
3412 * This only applies to tasks in the interactive
3413 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3414 */
3415 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3416 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3417 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3418 (p->array == rq->active)) {
3419
3420 requeue_task(p, rq->active);
3421 set_tsk_need_resched(p);
3422 }
3423 }
3424out_unlock:
3425 spin_unlock(&rq->lock);
7835b98b
CL
3426}
3427
3428/*
3429 * This function gets called by the timer code, with HZ frequency.
3430 * We call it with interrupts disabled.
3431 *
3432 * It also gets called by the fork code, when changing the parent's
3433 * timeslices.
3434 */
3435void scheduler_tick(void)
3436{
3437 unsigned long long now = sched_clock();
3438 struct task_struct *p = current;
3439 int cpu = smp_processor_id();
bdecea3a 3440 int idle_at_tick = idle_cpu(cpu);
7835b98b 3441 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3442
3443 update_cpu_clock(p, rq, now);
3444
bdecea3a 3445 if (!idle_at_tick)
7835b98b 3446 task_running_tick(rq, p);
e418e1c2 3447#ifdef CONFIG_SMP
7835b98b 3448 update_load(rq);
bdecea3a 3449 rq->idle_at_tick = idle_at_tick;
46cb4b7c 3450 trigger_load_balance(cpu);
e418e1c2 3451#endif
1da177e4
LT
3452}
3453
1da177e4
LT
3454#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3455
3456void fastcall add_preempt_count(int val)
3457{
3458 /*
3459 * Underflow?
3460 */
9a11b49a
IM
3461 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3462 return;
1da177e4
LT
3463 preempt_count() += val;
3464 /*
3465 * Spinlock count overflowing soon?
3466 */
33859f7f
MOS
3467 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3468 PREEMPT_MASK - 10);
1da177e4
LT
3469}
3470EXPORT_SYMBOL(add_preempt_count);
3471
3472void fastcall sub_preempt_count(int val)
3473{
3474 /*
3475 * Underflow?
3476 */
9a11b49a
IM
3477 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3478 return;
1da177e4
LT
3479 /*
3480 * Is the spinlock portion underflowing?
3481 */
9a11b49a
IM
3482 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3483 !(preempt_count() & PREEMPT_MASK)))
3484 return;
3485
1da177e4
LT
3486 preempt_count() -= val;
3487}
3488EXPORT_SYMBOL(sub_preempt_count);
3489
3490#endif
3491
3dee386e
CK
3492static inline int interactive_sleep(enum sleep_type sleep_type)
3493{
3494 return (sleep_type == SLEEP_INTERACTIVE ||
3495 sleep_type == SLEEP_INTERRUPTED);
3496}
3497
1da177e4
LT
3498/*
3499 * schedule() is the main scheduler function.
3500 */
3501asmlinkage void __sched schedule(void)
3502{
36c8b586 3503 struct task_struct *prev, *next;
70b97a7f 3504 struct prio_array *array;
1da177e4
LT
3505 struct list_head *queue;
3506 unsigned long long now;
3507 unsigned long run_time;
a3464a10 3508 int cpu, idx, new_prio;
48f24c4d 3509 long *switch_count;
70b97a7f 3510 struct rq *rq;
1da177e4
LT
3511
3512 /*
3513 * Test if we are atomic. Since do_exit() needs to call into
3514 * schedule() atomically, we ignore that path for now.
3515 * Otherwise, whine if we are scheduling when we should not be.
3516 */
77e4bfbc
AM
3517 if (unlikely(in_atomic() && !current->exit_state)) {
3518 printk(KERN_ERR "BUG: scheduling while atomic: "
3519 "%s/0x%08x/%d\n",
3520 current->comm, preempt_count(), current->pid);
a4c410f0 3521 debug_show_held_locks(current);
3117df04
IM
3522 if (irqs_disabled())
3523 print_irqtrace_events(current);
77e4bfbc 3524 dump_stack();
1da177e4
LT
3525 }
3526 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3527
3528need_resched:
3529 preempt_disable();
3530 prev = current;
3531 release_kernel_lock(prev);
3532need_resched_nonpreemptible:
3533 rq = this_rq();
3534
3535 /*
3536 * The idle thread is not allowed to schedule!
3537 * Remove this check after it has been exercised a bit.
3538 */
3539 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3540 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3541 dump_stack();
3542 }
3543
3544 schedstat_inc(rq, sched_cnt);
3545 now = sched_clock();
238628ed 3546 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 3547 run_time = now - prev->timestamp;
238628ed 3548 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
3549 run_time = 0;
3550 } else
3551 run_time = NS_MAX_SLEEP_AVG;
3552
3553 /*
3554 * Tasks charged proportionately less run_time at high sleep_avg to
3555 * delay them losing their interactive status
3556 */
3557 run_time /= (CURRENT_BONUS(prev) ? : 1);
3558
3559 spin_lock_irq(&rq->lock);
3560
1da177e4
LT
3561 switch_count = &prev->nivcsw;
3562 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3563 switch_count = &prev->nvcsw;
3564 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3565 unlikely(signal_pending(prev))))
3566 prev->state = TASK_RUNNING;
3567 else {
3568 if (prev->state == TASK_UNINTERRUPTIBLE)
3569 rq->nr_uninterruptible++;
3570 deactivate_task(prev, rq);
3571 }
3572 }
3573
3574 cpu = smp_processor_id();
3575 if (unlikely(!rq->nr_running)) {
1da177e4
LT
3576 idle_balance(cpu, rq);
3577 if (!rq->nr_running) {
3578 next = rq->idle;
3579 rq->expired_timestamp = 0;
1da177e4
LT
3580 goto switch_tasks;
3581 }
1da177e4
LT
3582 }
3583
3584 array = rq->active;
3585 if (unlikely(!array->nr_active)) {
3586 /*
3587 * Switch the active and expired arrays.
3588 */
3589 schedstat_inc(rq, sched_switch);
3590 rq->active = rq->expired;
3591 rq->expired = array;
3592 array = rq->active;
3593 rq->expired_timestamp = 0;
3594 rq->best_expired_prio = MAX_PRIO;
3595 }
3596
3597 idx = sched_find_first_bit(array->bitmap);
3598 queue = array->queue + idx;
36c8b586 3599 next = list_entry(queue->next, struct task_struct, run_list);
1da177e4 3600
3dee386e 3601 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3602 unsigned long long delta = now - next->timestamp;
238628ed 3603 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3604 delta = 0;
3605
3dee386e 3606 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3607 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3608
3609 array = next->array;
a3464a10
CS
3610 new_prio = recalc_task_prio(next, next->timestamp + delta);
3611
3612 if (unlikely(next->prio != new_prio)) {
3613 dequeue_task(next, array);
3614 next->prio = new_prio;
3615 enqueue_task(next, array);
7c4bb1f9 3616 }
1da177e4 3617 }
3dee386e 3618 next->sleep_type = SLEEP_NORMAL;
1da177e4
LT
3619switch_tasks:
3620 if (next == rq->idle)
3621 schedstat_inc(rq, sched_goidle);
3622 prefetch(next);
383f2835 3623 prefetch_stack(next);
1da177e4
LT
3624 clear_tsk_need_resched(prev);
3625 rcu_qsctr_inc(task_cpu(prev));
3626
3627 update_cpu_clock(prev, rq, now);
3628
3629 prev->sleep_avg -= run_time;
3630 if ((long)prev->sleep_avg <= 0)
3631 prev->sleep_avg = 0;
3632 prev->timestamp = prev->last_ran = now;
3633
3634 sched_info_switch(prev, next);
3635 if (likely(prev != next)) {
c1e16aa2 3636 next->timestamp = next->last_ran = now;
1da177e4
LT
3637 rq->nr_switches++;
3638 rq->curr = next;
3639 ++*switch_count;
3640
4866cde0 3641 prepare_task_switch(rq, next);
1da177e4
LT
3642 prev = context_switch(rq, prev, next);
3643 barrier();
4866cde0
NP
3644 /*
3645 * this_rq must be evaluated again because prev may have moved
3646 * CPUs since it called schedule(), thus the 'rq' on its stack
3647 * frame will be invalid.
3648 */
3649 finish_task_switch(this_rq(), prev);
1da177e4
LT
3650 } else
3651 spin_unlock_irq(&rq->lock);
3652
3653 prev = current;
3654 if (unlikely(reacquire_kernel_lock(prev) < 0))
3655 goto need_resched_nonpreemptible;
3656 preempt_enable_no_resched();
3657 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3658 goto need_resched;
3659}
1da177e4
LT
3660EXPORT_SYMBOL(schedule);
3661
3662#ifdef CONFIG_PREEMPT
3663/*
2ed6e34f 3664 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3665 * off of preempt_enable. Kernel preemptions off return from interrupt
3666 * occur there and call schedule directly.
3667 */
3668asmlinkage void __sched preempt_schedule(void)
3669{
3670 struct thread_info *ti = current_thread_info();
3671#ifdef CONFIG_PREEMPT_BKL
3672 struct task_struct *task = current;
3673 int saved_lock_depth;
3674#endif
3675 /*
3676 * If there is a non-zero preempt_count or interrupts are disabled,
3677 * we do not want to preempt the current task. Just return..
3678 */
beed33a8 3679 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3680 return;
3681
3682need_resched:
3683 add_preempt_count(PREEMPT_ACTIVE);
3684 /*
3685 * We keep the big kernel semaphore locked, but we
3686 * clear ->lock_depth so that schedule() doesnt
3687 * auto-release the semaphore:
3688 */
3689#ifdef CONFIG_PREEMPT_BKL
3690 saved_lock_depth = task->lock_depth;
3691 task->lock_depth = -1;
3692#endif
3693 schedule();
3694#ifdef CONFIG_PREEMPT_BKL
3695 task->lock_depth = saved_lock_depth;
3696#endif
3697 sub_preempt_count(PREEMPT_ACTIVE);
3698
3699 /* we could miss a preemption opportunity between schedule and now */
3700 barrier();
3701 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3702 goto need_resched;
3703}
1da177e4
LT
3704EXPORT_SYMBOL(preempt_schedule);
3705
3706/*
2ed6e34f 3707 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3708 * off of irq context.
3709 * Note, that this is called and return with irqs disabled. This will
3710 * protect us against recursive calling from irq.
3711 */
3712asmlinkage void __sched preempt_schedule_irq(void)
3713{
3714 struct thread_info *ti = current_thread_info();
3715#ifdef CONFIG_PREEMPT_BKL
3716 struct task_struct *task = current;
3717 int saved_lock_depth;
3718#endif
2ed6e34f 3719 /* Catch callers which need to be fixed */
1da177e4
LT
3720 BUG_ON(ti->preempt_count || !irqs_disabled());
3721
3722need_resched:
3723 add_preempt_count(PREEMPT_ACTIVE);
3724 /*
3725 * We keep the big kernel semaphore locked, but we
3726 * clear ->lock_depth so that schedule() doesnt
3727 * auto-release the semaphore:
3728 */
3729#ifdef CONFIG_PREEMPT_BKL
3730 saved_lock_depth = task->lock_depth;
3731 task->lock_depth = -1;
3732#endif
3733 local_irq_enable();
3734 schedule();
3735 local_irq_disable();
3736#ifdef CONFIG_PREEMPT_BKL
3737 task->lock_depth = saved_lock_depth;
3738#endif
3739 sub_preempt_count(PREEMPT_ACTIVE);
3740
3741 /* we could miss a preemption opportunity between schedule and now */
3742 barrier();
3743 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3744 goto need_resched;
3745}
3746
3747#endif /* CONFIG_PREEMPT */
3748
95cdf3b7
IM
3749int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3750 void *key)
1da177e4 3751{
48f24c4d 3752 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3753}
1da177e4
LT
3754EXPORT_SYMBOL(default_wake_function);
3755
3756/*
3757 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3758 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3759 * number) then we wake all the non-exclusive tasks and one exclusive task.
3760 *
3761 * There are circumstances in which we can try to wake a task which has already
3762 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3763 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3764 */
3765static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3766 int nr_exclusive, int sync, void *key)
3767{
3768 struct list_head *tmp, *next;
3769
3770 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3771 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3772 unsigned flags = curr->flags;
3773
1da177e4 3774 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3775 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3776 break;
3777 }
3778}
3779
3780/**
3781 * __wake_up - wake up threads blocked on a waitqueue.
3782 * @q: the waitqueue
3783 * @mode: which threads
3784 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3785 * @key: is directly passed to the wakeup function
1da177e4
LT
3786 */
3787void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3788 int nr_exclusive, void *key)
1da177e4
LT
3789{
3790 unsigned long flags;
3791
3792 spin_lock_irqsave(&q->lock, flags);
3793 __wake_up_common(q, mode, nr_exclusive, 0, key);
3794 spin_unlock_irqrestore(&q->lock, flags);
3795}
1da177e4
LT
3796EXPORT_SYMBOL(__wake_up);
3797
3798/*
3799 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3800 */
3801void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3802{
3803 __wake_up_common(q, mode, 1, 0, NULL);
3804}
3805
3806/**
67be2dd1 3807 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3808 * @q: the waitqueue
3809 * @mode: which threads
3810 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3811 *
3812 * The sync wakeup differs that the waker knows that it will schedule
3813 * away soon, so while the target thread will be woken up, it will not
3814 * be migrated to another CPU - ie. the two threads are 'synchronized'
3815 * with each other. This can prevent needless bouncing between CPUs.
3816 *
3817 * On UP it can prevent extra preemption.
3818 */
95cdf3b7
IM
3819void fastcall
3820__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3821{
3822 unsigned long flags;
3823 int sync = 1;
3824
3825 if (unlikely(!q))
3826 return;
3827
3828 if (unlikely(!nr_exclusive))
3829 sync = 0;
3830
3831 spin_lock_irqsave(&q->lock, flags);
3832 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3833 spin_unlock_irqrestore(&q->lock, flags);
3834}
3835EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3836
3837void fastcall complete(struct completion *x)
3838{
3839 unsigned long flags;
3840
3841 spin_lock_irqsave(&x->wait.lock, flags);
3842 x->done++;
3843 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3844 1, 0, NULL);
3845 spin_unlock_irqrestore(&x->wait.lock, flags);
3846}
3847EXPORT_SYMBOL(complete);
3848
3849void fastcall complete_all(struct completion *x)
3850{
3851 unsigned long flags;
3852
3853 spin_lock_irqsave(&x->wait.lock, flags);
3854 x->done += UINT_MAX/2;
3855 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3856 0, 0, NULL);
3857 spin_unlock_irqrestore(&x->wait.lock, flags);
3858}
3859EXPORT_SYMBOL(complete_all);
3860
3861void fastcall __sched wait_for_completion(struct completion *x)
3862{
3863 might_sleep();
48f24c4d 3864
1da177e4
LT
3865 spin_lock_irq(&x->wait.lock);
3866 if (!x->done) {
3867 DECLARE_WAITQUEUE(wait, current);
3868
3869 wait.flags |= WQ_FLAG_EXCLUSIVE;
3870 __add_wait_queue_tail(&x->wait, &wait);
3871 do {
3872 __set_current_state(TASK_UNINTERRUPTIBLE);
3873 spin_unlock_irq(&x->wait.lock);
3874 schedule();
3875 spin_lock_irq(&x->wait.lock);
3876 } while (!x->done);
3877 __remove_wait_queue(&x->wait, &wait);
3878 }
3879 x->done--;
3880 spin_unlock_irq(&x->wait.lock);
3881}
3882EXPORT_SYMBOL(wait_for_completion);
3883
3884unsigned long fastcall __sched
3885wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3886{
3887 might_sleep();
3888
3889 spin_lock_irq(&x->wait.lock);
3890 if (!x->done) {
3891 DECLARE_WAITQUEUE(wait, current);
3892
3893 wait.flags |= WQ_FLAG_EXCLUSIVE;
3894 __add_wait_queue_tail(&x->wait, &wait);
3895 do {
3896 __set_current_state(TASK_UNINTERRUPTIBLE);
3897 spin_unlock_irq(&x->wait.lock);
3898 timeout = schedule_timeout(timeout);
3899 spin_lock_irq(&x->wait.lock);
3900 if (!timeout) {
3901 __remove_wait_queue(&x->wait, &wait);
3902 goto out;
3903 }
3904 } while (!x->done);
3905 __remove_wait_queue(&x->wait, &wait);
3906 }
3907 x->done--;
3908out:
3909 spin_unlock_irq(&x->wait.lock);
3910 return timeout;
3911}
3912EXPORT_SYMBOL(wait_for_completion_timeout);
3913
3914int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3915{
3916 int ret = 0;
3917
3918 might_sleep();
3919
3920 spin_lock_irq(&x->wait.lock);
3921 if (!x->done) {
3922 DECLARE_WAITQUEUE(wait, current);
3923
3924 wait.flags |= WQ_FLAG_EXCLUSIVE;
3925 __add_wait_queue_tail(&x->wait, &wait);
3926 do {
3927 if (signal_pending(current)) {
3928 ret = -ERESTARTSYS;
3929 __remove_wait_queue(&x->wait, &wait);
3930 goto out;
3931 }
3932 __set_current_state(TASK_INTERRUPTIBLE);
3933 spin_unlock_irq(&x->wait.lock);
3934 schedule();
3935 spin_lock_irq(&x->wait.lock);
3936 } while (!x->done);
3937 __remove_wait_queue(&x->wait, &wait);
3938 }
3939 x->done--;
3940out:
3941 spin_unlock_irq(&x->wait.lock);
3942
3943 return ret;
3944}
3945EXPORT_SYMBOL(wait_for_completion_interruptible);
3946
3947unsigned long fastcall __sched
3948wait_for_completion_interruptible_timeout(struct completion *x,
3949 unsigned long timeout)
3950{
3951 might_sleep();
3952
3953 spin_lock_irq(&x->wait.lock);
3954 if (!x->done) {
3955 DECLARE_WAITQUEUE(wait, current);
3956
3957 wait.flags |= WQ_FLAG_EXCLUSIVE;
3958 __add_wait_queue_tail(&x->wait, &wait);
3959 do {
3960 if (signal_pending(current)) {
3961 timeout = -ERESTARTSYS;
3962 __remove_wait_queue(&x->wait, &wait);
3963 goto out;
3964 }
3965 __set_current_state(TASK_INTERRUPTIBLE);
3966 spin_unlock_irq(&x->wait.lock);
3967 timeout = schedule_timeout(timeout);
3968 spin_lock_irq(&x->wait.lock);
3969 if (!timeout) {
3970 __remove_wait_queue(&x->wait, &wait);
3971 goto out;
3972 }
3973 } while (!x->done);
3974 __remove_wait_queue(&x->wait, &wait);
3975 }
3976 x->done--;
3977out:
3978 spin_unlock_irq(&x->wait.lock);
3979 return timeout;
3980}
3981EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3982
3983
3984#define SLEEP_ON_VAR \
3985 unsigned long flags; \
3986 wait_queue_t wait; \
3987 init_waitqueue_entry(&wait, current);
3988
3989#define SLEEP_ON_HEAD \
3990 spin_lock_irqsave(&q->lock,flags); \
3991 __add_wait_queue(q, &wait); \
3992 spin_unlock(&q->lock);
3993
3994#define SLEEP_ON_TAIL \
3995 spin_lock_irq(&q->lock); \
3996 __remove_wait_queue(q, &wait); \
3997 spin_unlock_irqrestore(&q->lock, flags);
3998
3999void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
4000{
4001 SLEEP_ON_VAR
4002
4003 current->state = TASK_INTERRUPTIBLE;
4004
4005 SLEEP_ON_HEAD
4006 schedule();
4007 SLEEP_ON_TAIL
4008}
1da177e4
LT
4009EXPORT_SYMBOL(interruptible_sleep_on);
4010
95cdf3b7
IM
4011long fastcall __sched
4012interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
4013{
4014 SLEEP_ON_VAR
4015
4016 current->state = TASK_INTERRUPTIBLE;
4017
4018 SLEEP_ON_HEAD
4019 timeout = schedule_timeout(timeout);
4020 SLEEP_ON_TAIL
4021
4022 return timeout;
4023}
1da177e4
LT
4024EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4025
4026void fastcall __sched sleep_on(wait_queue_head_t *q)
4027{
4028 SLEEP_ON_VAR
4029
4030 current->state = TASK_UNINTERRUPTIBLE;
4031
4032 SLEEP_ON_HEAD
4033 schedule();
4034 SLEEP_ON_TAIL
4035}
1da177e4
LT
4036EXPORT_SYMBOL(sleep_on);
4037
4038long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4039{
4040 SLEEP_ON_VAR
4041
4042 current->state = TASK_UNINTERRUPTIBLE;
4043
4044 SLEEP_ON_HEAD
4045 timeout = schedule_timeout(timeout);
4046 SLEEP_ON_TAIL
4047
4048 return timeout;
4049}
4050
4051EXPORT_SYMBOL(sleep_on_timeout);
4052
b29739f9
IM
4053#ifdef CONFIG_RT_MUTEXES
4054
4055/*
4056 * rt_mutex_setprio - set the current priority of a task
4057 * @p: task
4058 * @prio: prio value (kernel-internal form)
4059 *
4060 * This function changes the 'effective' priority of a task. It does
4061 * not touch ->normal_prio like __setscheduler().
4062 *
4063 * Used by the rt_mutex code to implement priority inheritance logic.
4064 */
36c8b586 4065void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4066{
70b97a7f 4067 struct prio_array *array;
b29739f9 4068 unsigned long flags;
70b97a7f 4069 struct rq *rq;
b29739f9
IM
4070 int oldprio;
4071
4072 BUG_ON(prio < 0 || prio > MAX_PRIO);
4073
4074 rq = task_rq_lock(p, &flags);
4075
4076 oldprio = p->prio;
4077 array = p->array;
4078 if (array)
4079 dequeue_task(p, array);
4080 p->prio = prio;
4081
4082 if (array) {
4083 /*
4084 * If changing to an RT priority then queue it
4085 * in the active array!
4086 */
4087 if (rt_task(p))
4088 array = rq->active;
4089 enqueue_task(p, array);
4090 /*
4091 * Reschedule if we are currently running on this runqueue and
4092 * our priority decreased, or if we are not currently running on
4093 * this runqueue and our priority is higher than the current's
4094 */
4095 if (task_running(rq, p)) {
4096 if (p->prio > oldprio)
4097 resched_task(rq->curr);
4098 } else if (TASK_PREEMPTS_CURR(p, rq))
4099 resched_task(rq->curr);
4100 }
4101 task_rq_unlock(rq, &flags);
4102}
4103
4104#endif
4105
36c8b586 4106void set_user_nice(struct task_struct *p, long nice)
1da177e4 4107{
70b97a7f 4108 struct prio_array *array;
48f24c4d 4109 int old_prio, delta;
1da177e4 4110 unsigned long flags;
70b97a7f 4111 struct rq *rq;
1da177e4
LT
4112
4113 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4114 return;
4115 /*
4116 * We have to be careful, if called from sys_setpriority(),
4117 * the task might be in the middle of scheduling on another CPU.
4118 */
4119 rq = task_rq_lock(p, &flags);
4120 /*
4121 * The RT priorities are set via sched_setscheduler(), but we still
4122 * allow the 'normal' nice value to be set - but as expected
4123 * it wont have any effect on scheduling until the task is
b0a9499c 4124 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4 4125 */
b29739f9 4126 if (has_rt_policy(p)) {
1da177e4
LT
4127 p->static_prio = NICE_TO_PRIO(nice);
4128 goto out_unlock;
4129 }
4130 array = p->array;
2dd73a4f 4131 if (array) {
1da177e4 4132 dequeue_task(p, array);
2dd73a4f
PW
4133 dec_raw_weighted_load(rq, p);
4134 }
1da177e4 4135
1da177e4 4136 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4137 set_load_weight(p);
b29739f9
IM
4138 old_prio = p->prio;
4139 p->prio = effective_prio(p);
4140 delta = p->prio - old_prio;
1da177e4
LT
4141
4142 if (array) {
4143 enqueue_task(p, array);
2dd73a4f 4144 inc_raw_weighted_load(rq, p);
1da177e4
LT
4145 /*
4146 * If the task increased its priority or is running and
4147 * lowered its priority, then reschedule its CPU:
4148 */
4149 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4150 resched_task(rq->curr);
4151 }
4152out_unlock:
4153 task_rq_unlock(rq, &flags);
4154}
1da177e4
LT
4155EXPORT_SYMBOL(set_user_nice);
4156
e43379f1
MM
4157/*
4158 * can_nice - check if a task can reduce its nice value
4159 * @p: task
4160 * @nice: nice value
4161 */
36c8b586 4162int can_nice(const struct task_struct *p, const int nice)
e43379f1 4163{
024f4747
MM
4164 /* convert nice value [19,-20] to rlimit style value [1,40] */
4165 int nice_rlim = 20 - nice;
48f24c4d 4166
e43379f1
MM
4167 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4168 capable(CAP_SYS_NICE));
4169}
4170
1da177e4
LT
4171#ifdef __ARCH_WANT_SYS_NICE
4172
4173/*
4174 * sys_nice - change the priority of the current process.
4175 * @increment: priority increment
4176 *
4177 * sys_setpriority is a more generic, but much slower function that
4178 * does similar things.
4179 */
4180asmlinkage long sys_nice(int increment)
4181{
48f24c4d 4182 long nice, retval;
1da177e4
LT
4183
4184 /*
4185 * Setpriority might change our priority at the same moment.
4186 * We don't have to worry. Conceptually one call occurs first
4187 * and we have a single winner.
4188 */
e43379f1
MM
4189 if (increment < -40)
4190 increment = -40;
1da177e4
LT
4191 if (increment > 40)
4192 increment = 40;
4193
4194 nice = PRIO_TO_NICE(current->static_prio) + increment;
4195 if (nice < -20)
4196 nice = -20;
4197 if (nice > 19)
4198 nice = 19;
4199
e43379f1
MM
4200 if (increment < 0 && !can_nice(current, nice))
4201 return -EPERM;
4202
1da177e4
LT
4203 retval = security_task_setnice(current, nice);
4204 if (retval)
4205 return retval;
4206
4207 set_user_nice(current, nice);
4208 return 0;
4209}
4210
4211#endif
4212
4213/**
4214 * task_prio - return the priority value of a given task.
4215 * @p: the task in question.
4216 *
4217 * This is the priority value as seen by users in /proc.
4218 * RT tasks are offset by -200. Normal tasks are centered
4219 * around 0, value goes from -16 to +15.
4220 */
36c8b586 4221int task_prio(const struct task_struct *p)
1da177e4
LT
4222{
4223 return p->prio - MAX_RT_PRIO;
4224}
4225
4226/**
4227 * task_nice - return the nice value of a given task.
4228 * @p: the task in question.
4229 */
36c8b586 4230int task_nice(const struct task_struct *p)
1da177e4
LT
4231{
4232 return TASK_NICE(p);
4233}
1da177e4 4234EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4235
4236/**
4237 * idle_cpu - is a given cpu idle currently?
4238 * @cpu: the processor in question.
4239 */
4240int idle_cpu(int cpu)
4241{
4242 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4243}
4244
1da177e4
LT
4245/**
4246 * idle_task - return the idle task for a given cpu.
4247 * @cpu: the processor in question.
4248 */
36c8b586 4249struct task_struct *idle_task(int cpu)
1da177e4
LT
4250{
4251 return cpu_rq(cpu)->idle;
4252}
4253
4254/**
4255 * find_process_by_pid - find a process with a matching PID value.
4256 * @pid: the pid in question.
4257 */
36c8b586 4258static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4259{
4260 return pid ? find_task_by_pid(pid) : current;
4261}
4262
4263/* Actually do priority change: must hold rq lock. */
4264static void __setscheduler(struct task_struct *p, int policy, int prio)
4265{
4266 BUG_ON(p->array);
48f24c4d 4267
1da177e4
LT
4268 p->policy = policy;
4269 p->rt_priority = prio;
b29739f9
IM
4270 p->normal_prio = normal_prio(p);
4271 /* we are holding p->pi_lock already */
4272 p->prio = rt_mutex_getprio(p);
4273 /*
4274 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4275 */
4276 if (policy == SCHED_BATCH)
4277 p->sleep_avg = 0;
2dd73a4f 4278 set_load_weight(p);
1da177e4
LT
4279}
4280
4281/**
72fd4a35 4282 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4283 * @p: the task in question.
4284 * @policy: new policy.
4285 * @param: structure containing the new RT priority.
5fe1d75f 4286 *
72fd4a35 4287 * NOTE that the task may be already dead.
1da177e4 4288 */
95cdf3b7
IM
4289int sched_setscheduler(struct task_struct *p, int policy,
4290 struct sched_param *param)
1da177e4 4291{
48f24c4d 4292 int retval, oldprio, oldpolicy = -1;
70b97a7f 4293 struct prio_array *array;
1da177e4 4294 unsigned long flags;
70b97a7f 4295 struct rq *rq;
1da177e4 4296
66e5393a
SR
4297 /* may grab non-irq protected spin_locks */
4298 BUG_ON(in_interrupt());
1da177e4
LT
4299recheck:
4300 /* double check policy once rq lock held */
4301 if (policy < 0)
4302 policy = oldpolicy = p->policy;
4303 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
4304 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4305 return -EINVAL;
1da177e4
LT
4306 /*
4307 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
4308 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4309 * SCHED_BATCH is 0.
1da177e4
LT
4310 */
4311 if (param->sched_priority < 0 ||
95cdf3b7 4312 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4313 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4314 return -EINVAL;
57a6f51c 4315 if (is_rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4316 return -EINVAL;
4317
37e4ab3f
OC
4318 /*
4319 * Allow unprivileged RT tasks to decrease priority:
4320 */
4321 if (!capable(CAP_SYS_NICE)) {
8dc3e909
ON
4322 if (is_rt_policy(policy)) {
4323 unsigned long rlim_rtprio;
4324 unsigned long flags;
4325
4326 if (!lock_task_sighand(p, &flags))
4327 return -ESRCH;
4328 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4329 unlock_task_sighand(p, &flags);
4330
4331 /* can't set/change the rt policy */
4332 if (policy != p->policy && !rlim_rtprio)
4333 return -EPERM;
4334
4335 /* can't increase priority */
4336 if (param->sched_priority > p->rt_priority &&
4337 param->sched_priority > rlim_rtprio)
4338 return -EPERM;
4339 }
5fe1d75f 4340
37e4ab3f
OC
4341 /* can't change other user's priorities */
4342 if ((current->euid != p->euid) &&
4343 (current->euid != p->uid))
4344 return -EPERM;
4345 }
1da177e4
LT
4346
4347 retval = security_task_setscheduler(p, policy, param);
4348 if (retval)
4349 return retval;
b29739f9
IM
4350 /*
4351 * make sure no PI-waiters arrive (or leave) while we are
4352 * changing the priority of the task:
4353 */
4354 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4355 /*
4356 * To be able to change p->policy safely, the apropriate
4357 * runqueue lock must be held.
4358 */
b29739f9 4359 rq = __task_rq_lock(p);
1da177e4
LT
4360 /* recheck policy now with rq lock held */
4361 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4362 policy = oldpolicy = -1;
b29739f9
IM
4363 __task_rq_unlock(rq);
4364 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4365 goto recheck;
4366 }
4367 array = p->array;
4368 if (array)
4369 deactivate_task(p, rq);
4370 oldprio = p->prio;
4371 __setscheduler(p, policy, param->sched_priority);
4372 if (array) {
4373 __activate_task(p, rq);
4374 /*
4375 * Reschedule if we are currently running on this runqueue and
4376 * our priority decreased, or if we are not currently running on
4377 * this runqueue and our priority is higher than the current's
4378 */
4379 if (task_running(rq, p)) {
4380 if (p->prio > oldprio)
4381 resched_task(rq->curr);
4382 } else if (TASK_PREEMPTS_CURR(p, rq))
4383 resched_task(rq->curr);
4384 }
b29739f9
IM
4385 __task_rq_unlock(rq);
4386 spin_unlock_irqrestore(&p->pi_lock, flags);
4387
95e02ca9
TG
4388 rt_mutex_adjust_pi(p);
4389
1da177e4
LT
4390 return 0;
4391}
4392EXPORT_SYMBOL_GPL(sched_setscheduler);
4393
95cdf3b7
IM
4394static int
4395do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4396{
1da177e4
LT
4397 struct sched_param lparam;
4398 struct task_struct *p;
36c8b586 4399 int retval;
1da177e4
LT
4400
4401 if (!param || pid < 0)
4402 return -EINVAL;
4403 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4404 return -EFAULT;
5fe1d75f
ON
4405
4406 rcu_read_lock();
4407 retval = -ESRCH;
1da177e4 4408 p = find_process_by_pid(pid);
5fe1d75f
ON
4409 if (p != NULL)
4410 retval = sched_setscheduler(p, policy, &lparam);
4411 rcu_read_unlock();
36c8b586 4412
1da177e4
LT
4413 return retval;
4414}
4415
4416/**
4417 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4418 * @pid: the pid in question.
4419 * @policy: new policy.
4420 * @param: structure containing the new RT priority.
4421 */
4422asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4423 struct sched_param __user *param)
4424{
c21761f1
JB
4425 /* negative values for policy are not valid */
4426 if (policy < 0)
4427 return -EINVAL;
4428
1da177e4
LT
4429 return do_sched_setscheduler(pid, policy, param);
4430}
4431
4432/**
4433 * sys_sched_setparam - set/change the RT priority of a thread
4434 * @pid: the pid in question.
4435 * @param: structure containing the new RT priority.
4436 */
4437asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4438{
4439 return do_sched_setscheduler(pid, -1, param);
4440}
4441
4442/**
4443 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4444 * @pid: the pid in question.
4445 */
4446asmlinkage long sys_sched_getscheduler(pid_t pid)
4447{
36c8b586 4448 struct task_struct *p;
1da177e4 4449 int retval = -EINVAL;
1da177e4
LT
4450
4451 if (pid < 0)
4452 goto out_nounlock;
4453
4454 retval = -ESRCH;
4455 read_lock(&tasklist_lock);
4456 p = find_process_by_pid(pid);
4457 if (p) {
4458 retval = security_task_getscheduler(p);
4459 if (!retval)
4460 retval = p->policy;
4461 }
4462 read_unlock(&tasklist_lock);
4463
4464out_nounlock:
4465 return retval;
4466}
4467
4468/**
4469 * sys_sched_getscheduler - get the RT priority of a thread
4470 * @pid: the pid in question.
4471 * @param: structure containing the RT priority.
4472 */
4473asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4474{
4475 struct sched_param lp;
36c8b586 4476 struct task_struct *p;
1da177e4 4477 int retval = -EINVAL;
1da177e4
LT
4478
4479 if (!param || pid < 0)
4480 goto out_nounlock;
4481
4482 read_lock(&tasklist_lock);
4483 p = find_process_by_pid(pid);
4484 retval = -ESRCH;
4485 if (!p)
4486 goto out_unlock;
4487
4488 retval = security_task_getscheduler(p);
4489 if (retval)
4490 goto out_unlock;
4491
4492 lp.sched_priority = p->rt_priority;
4493 read_unlock(&tasklist_lock);
4494
4495 /*
4496 * This one might sleep, we cannot do it with a spinlock held ...
4497 */
4498 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4499
4500out_nounlock:
4501 return retval;
4502
4503out_unlock:
4504 read_unlock(&tasklist_lock);
4505 return retval;
4506}
4507
4508long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4509{
1da177e4 4510 cpumask_t cpus_allowed;
36c8b586
IM
4511 struct task_struct *p;
4512 int retval;
1da177e4
LT
4513
4514 lock_cpu_hotplug();
4515 read_lock(&tasklist_lock);
4516
4517 p = find_process_by_pid(pid);
4518 if (!p) {
4519 read_unlock(&tasklist_lock);
4520 unlock_cpu_hotplug();
4521 return -ESRCH;
4522 }
4523
4524 /*
4525 * It is not safe to call set_cpus_allowed with the
4526 * tasklist_lock held. We will bump the task_struct's
4527 * usage count and then drop tasklist_lock.
4528 */
4529 get_task_struct(p);
4530 read_unlock(&tasklist_lock);
4531
4532 retval = -EPERM;
4533 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4534 !capable(CAP_SYS_NICE))
4535 goto out_unlock;
4536
e7834f8f
DQ
4537 retval = security_task_setscheduler(p, 0, NULL);
4538 if (retval)
4539 goto out_unlock;
4540
1da177e4
LT
4541 cpus_allowed = cpuset_cpus_allowed(p);
4542 cpus_and(new_mask, new_mask, cpus_allowed);
4543 retval = set_cpus_allowed(p, new_mask);
4544
4545out_unlock:
4546 put_task_struct(p);
4547 unlock_cpu_hotplug();
4548 return retval;
4549}
4550
4551static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4552 cpumask_t *new_mask)
4553{
4554 if (len < sizeof(cpumask_t)) {
4555 memset(new_mask, 0, sizeof(cpumask_t));
4556 } else if (len > sizeof(cpumask_t)) {
4557 len = sizeof(cpumask_t);
4558 }
4559 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4560}
4561
4562/**
4563 * sys_sched_setaffinity - set the cpu affinity of a process
4564 * @pid: pid of the process
4565 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4566 * @user_mask_ptr: user-space pointer to the new cpu mask
4567 */
4568asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4569 unsigned long __user *user_mask_ptr)
4570{
4571 cpumask_t new_mask;
4572 int retval;
4573
4574 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4575 if (retval)
4576 return retval;
4577
4578 return sched_setaffinity(pid, new_mask);
4579}
4580
4581/*
4582 * Represents all cpu's present in the system
4583 * In systems capable of hotplug, this map could dynamically grow
4584 * as new cpu's are detected in the system via any platform specific
4585 * method, such as ACPI for e.g.
4586 */
4587
4cef0c61 4588cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4589EXPORT_SYMBOL(cpu_present_map);
4590
4591#ifndef CONFIG_SMP
4cef0c61 4592cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4593EXPORT_SYMBOL(cpu_online_map);
4594
4cef0c61 4595cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4596EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4597#endif
4598
4599long sched_getaffinity(pid_t pid, cpumask_t *mask)
4600{
36c8b586 4601 struct task_struct *p;
1da177e4 4602 int retval;
1da177e4
LT
4603
4604 lock_cpu_hotplug();
4605 read_lock(&tasklist_lock);
4606
4607 retval = -ESRCH;
4608 p = find_process_by_pid(pid);
4609 if (!p)
4610 goto out_unlock;
4611
e7834f8f
DQ
4612 retval = security_task_getscheduler(p);
4613 if (retval)
4614 goto out_unlock;
4615
2f7016d9 4616 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4617
4618out_unlock:
4619 read_unlock(&tasklist_lock);
4620 unlock_cpu_hotplug();
4621 if (retval)
4622 return retval;
4623
4624 return 0;
4625}
4626
4627/**
4628 * sys_sched_getaffinity - get the cpu affinity of a process
4629 * @pid: pid of the process
4630 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4631 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4632 */
4633asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4634 unsigned long __user *user_mask_ptr)
4635{
4636 int ret;
4637 cpumask_t mask;
4638
4639 if (len < sizeof(cpumask_t))
4640 return -EINVAL;
4641
4642 ret = sched_getaffinity(pid, &mask);
4643 if (ret < 0)
4644 return ret;
4645
4646 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4647 return -EFAULT;
4648
4649 return sizeof(cpumask_t);
4650}
4651
4652/**
4653 * sys_sched_yield - yield the current processor to other threads.
4654 *
72fd4a35 4655 * This function yields the current CPU by moving the calling thread
1da177e4
LT
4656 * to the expired array. If there are no other threads running on this
4657 * CPU then this function will return.
4658 */
4659asmlinkage long sys_sched_yield(void)
4660{
70b97a7f
IM
4661 struct rq *rq = this_rq_lock();
4662 struct prio_array *array = current->array, *target = rq->expired;
1da177e4
LT
4663
4664 schedstat_inc(rq, yld_cnt);
4665 /*
4666 * We implement yielding by moving the task into the expired
4667 * queue.
4668 *
4669 * (special rule: RT tasks will just roundrobin in the active
4670 * array.)
4671 */
4672 if (rt_task(current))
4673 target = rq->active;
4674
5927ad78 4675 if (array->nr_active == 1) {
1da177e4
LT
4676 schedstat_inc(rq, yld_act_empty);
4677 if (!rq->expired->nr_active)
4678 schedstat_inc(rq, yld_both_empty);
4679 } else if (!rq->expired->nr_active)
4680 schedstat_inc(rq, yld_exp_empty);
4681
4682 if (array != target) {
4683 dequeue_task(current, array);
4684 enqueue_task(current, target);
4685 } else
4686 /*
4687 * requeue_task is cheaper so perform that if possible.
4688 */
4689 requeue_task(current, array);
4690
4691 /*
4692 * Since we are going to call schedule() anyway, there's
4693 * no need to preempt or enable interrupts:
4694 */
4695 __release(rq->lock);
8a25d5de 4696 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4697 _raw_spin_unlock(&rq->lock);
4698 preempt_enable_no_resched();
4699
4700 schedule();
4701
4702 return 0;
4703}
4704
e7b38404 4705static void __cond_resched(void)
1da177e4 4706{
8e0a43d8
IM
4707#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4708 __might_sleep(__FILE__, __LINE__);
4709#endif
5bbcfd90
IM
4710 /*
4711 * The BKS might be reacquired before we have dropped
4712 * PREEMPT_ACTIVE, which could trigger a second
4713 * cond_resched() call.
4714 */
1da177e4
LT
4715 do {
4716 add_preempt_count(PREEMPT_ACTIVE);
4717 schedule();
4718 sub_preempt_count(PREEMPT_ACTIVE);
4719 } while (need_resched());
4720}
4721
4722int __sched cond_resched(void)
4723{
9414232f
IM
4724 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4725 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4726 __cond_resched();
4727 return 1;
4728 }
4729 return 0;
4730}
1da177e4
LT
4731EXPORT_SYMBOL(cond_resched);
4732
4733/*
4734 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4735 * call schedule, and on return reacquire the lock.
4736 *
4737 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4738 * operations here to prevent schedule() from being called twice (once via
4739 * spin_unlock(), once by hand).
4740 */
95cdf3b7 4741int cond_resched_lock(spinlock_t *lock)
1da177e4 4742{
6df3cecb
JK
4743 int ret = 0;
4744
1da177e4
LT
4745 if (need_lockbreak(lock)) {
4746 spin_unlock(lock);
4747 cpu_relax();
6df3cecb 4748 ret = 1;
1da177e4
LT
4749 spin_lock(lock);
4750 }
9414232f 4751 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4752 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4753 _raw_spin_unlock(lock);
4754 preempt_enable_no_resched();
4755 __cond_resched();
6df3cecb 4756 ret = 1;
1da177e4 4757 spin_lock(lock);
1da177e4 4758 }
6df3cecb 4759 return ret;
1da177e4 4760}
1da177e4
LT
4761EXPORT_SYMBOL(cond_resched_lock);
4762
4763int __sched cond_resched_softirq(void)
4764{
4765 BUG_ON(!in_softirq());
4766
9414232f 4767 if (need_resched() && system_state == SYSTEM_RUNNING) {
de30a2b3
IM
4768 raw_local_irq_disable();
4769 _local_bh_enable();
4770 raw_local_irq_enable();
1da177e4
LT
4771 __cond_resched();
4772 local_bh_disable();
4773 return 1;
4774 }
4775 return 0;
4776}
1da177e4
LT
4777EXPORT_SYMBOL(cond_resched_softirq);
4778
1da177e4
LT
4779/**
4780 * yield - yield the current processor to other threads.
4781 *
72fd4a35 4782 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4783 * thread runnable and calls sys_sched_yield().
4784 */
4785void __sched yield(void)
4786{
4787 set_current_state(TASK_RUNNING);
4788 sys_sched_yield();
4789}
1da177e4
LT
4790EXPORT_SYMBOL(yield);
4791
4792/*
4793 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4794 * that process accounting knows that this is a task in IO wait state.
4795 *
4796 * But don't do that if it is a deliberate, throttling IO wait (this task
4797 * has set its backing_dev_info: the queue against which it should throttle)
4798 */
4799void __sched io_schedule(void)
4800{
70b97a7f 4801 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4802
0ff92245 4803 delayacct_blkio_start();
1da177e4
LT
4804 atomic_inc(&rq->nr_iowait);
4805 schedule();
4806 atomic_dec(&rq->nr_iowait);
0ff92245 4807 delayacct_blkio_end();
1da177e4 4808}
1da177e4
LT
4809EXPORT_SYMBOL(io_schedule);
4810
4811long __sched io_schedule_timeout(long timeout)
4812{
70b97a7f 4813 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4814 long ret;
4815
0ff92245 4816 delayacct_blkio_start();
1da177e4
LT
4817 atomic_inc(&rq->nr_iowait);
4818 ret = schedule_timeout(timeout);
4819 atomic_dec(&rq->nr_iowait);
0ff92245 4820 delayacct_blkio_end();
1da177e4
LT
4821 return ret;
4822}
4823
4824/**
4825 * sys_sched_get_priority_max - return maximum RT priority.
4826 * @policy: scheduling class.
4827 *
4828 * this syscall returns the maximum rt_priority that can be used
4829 * by a given scheduling class.
4830 */
4831asmlinkage long sys_sched_get_priority_max(int policy)
4832{
4833 int ret = -EINVAL;
4834
4835 switch (policy) {
4836 case SCHED_FIFO:
4837 case SCHED_RR:
4838 ret = MAX_USER_RT_PRIO-1;
4839 break;
4840 case SCHED_NORMAL:
b0a9499c 4841 case SCHED_BATCH:
1da177e4
LT
4842 ret = 0;
4843 break;
4844 }
4845 return ret;
4846}
4847
4848/**
4849 * sys_sched_get_priority_min - return minimum RT priority.
4850 * @policy: scheduling class.
4851 *
4852 * this syscall returns the minimum rt_priority that can be used
4853 * by a given scheduling class.
4854 */
4855asmlinkage long sys_sched_get_priority_min(int policy)
4856{
4857 int ret = -EINVAL;
4858
4859 switch (policy) {
4860 case SCHED_FIFO:
4861 case SCHED_RR:
4862 ret = 1;
4863 break;
4864 case SCHED_NORMAL:
b0a9499c 4865 case SCHED_BATCH:
1da177e4
LT
4866 ret = 0;
4867 }
4868 return ret;
4869}
4870
4871/**
4872 * sys_sched_rr_get_interval - return the default timeslice of a process.
4873 * @pid: pid of the process.
4874 * @interval: userspace pointer to the timeslice value.
4875 *
4876 * this syscall writes the default timeslice value of a given process
4877 * into the user-space timespec buffer. A value of '0' means infinity.
4878 */
4879asmlinkage
4880long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4881{
36c8b586 4882 struct task_struct *p;
1da177e4
LT
4883 int retval = -EINVAL;
4884 struct timespec t;
1da177e4
LT
4885
4886 if (pid < 0)
4887 goto out_nounlock;
4888
4889 retval = -ESRCH;
4890 read_lock(&tasklist_lock);
4891 p = find_process_by_pid(pid);
4892 if (!p)
4893 goto out_unlock;
4894
4895 retval = security_task_getscheduler(p);
4896 if (retval)
4897 goto out_unlock;
4898
b78709cf 4899 jiffies_to_timespec(p->policy == SCHED_FIFO ?
1da177e4
LT
4900 0 : task_timeslice(p), &t);
4901 read_unlock(&tasklist_lock);
4902 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4903out_nounlock:
4904 return retval;
4905out_unlock:
4906 read_unlock(&tasklist_lock);
4907 return retval;
4908}
4909
2ed6e34f 4910static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4911
4912static void show_task(struct task_struct *p)
1da177e4 4913{
1da177e4 4914 unsigned long free = 0;
36c8b586 4915 unsigned state;
1da177e4 4916
1da177e4 4917 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4918 printk("%-13.13s %c", p->comm,
4919 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4
LT
4920#if (BITS_PER_LONG == 32)
4921 if (state == TASK_RUNNING)
4922 printk(" running ");
4923 else
4924 printk(" %08lX ", thread_saved_pc(p));
4925#else
4926 if (state == TASK_RUNNING)
4927 printk(" running task ");
4928 else
4929 printk(" %016lx ", thread_saved_pc(p));
4930#endif
4931#ifdef CONFIG_DEBUG_STACK_USAGE
4932 {
10ebffde 4933 unsigned long *n = end_of_stack(p);
1da177e4
LT
4934 while (!*n)
4935 n++;
10ebffde 4936 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4937 }
4938#endif
35f6f753 4939 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
1da177e4
LT
4940 if (!p->mm)
4941 printk(" (L-TLB)\n");
4942 else
4943 printk(" (NOTLB)\n");
4944
4945 if (state != TASK_RUNNING)
4946 show_stack(p, NULL);
4947}
4948
e59e2ae2 4949void show_state_filter(unsigned long state_filter)
1da177e4 4950{
36c8b586 4951 struct task_struct *g, *p;
1da177e4
LT
4952
4953#if (BITS_PER_LONG == 32)
4954 printk("\n"
301827ac
CC
4955 " free sibling\n");
4956 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4957#else
4958 printk("\n"
301827ac
CC
4959 " free sibling\n");
4960 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4961#endif
4962 read_lock(&tasklist_lock);
4963 do_each_thread(g, p) {
4964 /*
4965 * reset the NMI-timeout, listing all files on a slow
4966 * console might take alot of time:
4967 */
4968 touch_nmi_watchdog();
39bc89fd 4969 if (!state_filter || (p->state & state_filter))
e59e2ae2 4970 show_task(p);
1da177e4
LT
4971 } while_each_thread(g, p);
4972
04c9167f
JF
4973 touch_all_softlockup_watchdogs();
4974
1da177e4 4975 read_unlock(&tasklist_lock);
e59e2ae2
IM
4976 /*
4977 * Only show locks if all tasks are dumped:
4978 */
4979 if (state_filter == -1)
4980 debug_show_all_locks();
1da177e4
LT
4981}
4982
f340c0d1
IM
4983/**
4984 * init_idle - set up an idle thread for a given CPU
4985 * @idle: task in question
4986 * @cpu: cpu the idle task belongs to
4987 *
4988 * NOTE: this function does not set the idle thread's NEED_RESCHED
4989 * flag, to make booting more robust.
4990 */
5c1e1767 4991void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4992{
70b97a7f 4993 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4994 unsigned long flags;
4995
81c29a85 4996 idle->timestamp = sched_clock();
1da177e4
LT
4997 idle->sleep_avg = 0;
4998 idle->array = NULL;
b29739f9 4999 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4
LT
5000 idle->state = TASK_RUNNING;
5001 idle->cpus_allowed = cpumask_of_cpu(cpu);
5002 set_task_cpu(idle, cpu);
5003
5004 spin_lock_irqsave(&rq->lock, flags);
5005 rq->curr = rq->idle = idle;
4866cde0
NP
5006#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5007 idle->oncpu = 1;
5008#endif
1da177e4
LT
5009 spin_unlock_irqrestore(&rq->lock, flags);
5010
5011 /* Set the preempt count _outside_ the spinlocks! */
5012#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 5013 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 5014#else
a1261f54 5015 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
5016#endif
5017}
5018
5019/*
5020 * In a system that switches off the HZ timer nohz_cpu_mask
5021 * indicates which cpus entered this state. This is used
5022 * in the rcu update to wait only for active cpus. For system
5023 * which do not switch off the HZ timer nohz_cpu_mask should
5024 * always be CPU_MASK_NONE.
5025 */
5026cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5027
5028#ifdef CONFIG_SMP
5029/*
5030 * This is how migration works:
5031 *
70b97a7f 5032 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5033 * runqueue and wake up that CPU's migration thread.
5034 * 2) we down() the locked semaphore => thread blocks.
5035 * 3) migration thread wakes up (implicitly it forces the migrated
5036 * thread off the CPU)
5037 * 4) it gets the migration request and checks whether the migrated
5038 * task is still in the wrong runqueue.
5039 * 5) if it's in the wrong runqueue then the migration thread removes
5040 * it and puts it into the right queue.
5041 * 6) migration thread up()s the semaphore.
5042 * 7) we wake up and the migration is done.
5043 */
5044
5045/*
5046 * Change a given task's CPU affinity. Migrate the thread to a
5047 * proper CPU and schedule it away if the CPU it's executing on
5048 * is removed from the allowed bitmask.
5049 *
5050 * NOTE: the caller must have a valid reference to the task, the
5051 * task must not exit() & deallocate itself prematurely. The
5052 * call is not atomic; no spinlocks may be held.
5053 */
36c8b586 5054int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5055{
70b97a7f 5056 struct migration_req req;
1da177e4 5057 unsigned long flags;
70b97a7f 5058 struct rq *rq;
48f24c4d 5059 int ret = 0;
1da177e4
LT
5060
5061 rq = task_rq_lock(p, &flags);
5062 if (!cpus_intersects(new_mask, cpu_online_map)) {
5063 ret = -EINVAL;
5064 goto out;
5065 }
5066
5067 p->cpus_allowed = new_mask;
5068 /* Can the task run on the task's current CPU? If so, we're done */
5069 if (cpu_isset(task_cpu(p), new_mask))
5070 goto out;
5071
5072 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5073 /* Need help from migration thread: drop lock and wait. */
5074 task_rq_unlock(rq, &flags);
5075 wake_up_process(rq->migration_thread);
5076 wait_for_completion(&req.done);
5077 tlb_migrate_finish(p->mm);
5078 return 0;
5079 }
5080out:
5081 task_rq_unlock(rq, &flags);
48f24c4d 5082
1da177e4
LT
5083 return ret;
5084}
1da177e4
LT
5085EXPORT_SYMBOL_GPL(set_cpus_allowed);
5086
5087/*
5088 * Move (not current) task off this cpu, onto dest cpu. We're doing
5089 * this because either it can't run here any more (set_cpus_allowed()
5090 * away from this CPU, or CPU going down), or because we're
5091 * attempting to rebalance this task on exec (sched_exec).
5092 *
5093 * So we race with normal scheduler movements, but that's OK, as long
5094 * as the task is no longer on this CPU.
efc30814
KK
5095 *
5096 * Returns non-zero if task was successfully migrated.
1da177e4 5097 */
efc30814 5098static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5099{
70b97a7f 5100 struct rq *rq_dest, *rq_src;
efc30814 5101 int ret = 0;
1da177e4
LT
5102
5103 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5104 return ret;
1da177e4
LT
5105
5106 rq_src = cpu_rq(src_cpu);
5107 rq_dest = cpu_rq(dest_cpu);
5108
5109 double_rq_lock(rq_src, rq_dest);
5110 /* Already moved. */
5111 if (task_cpu(p) != src_cpu)
5112 goto out;
5113 /* Affinity changed (again). */
5114 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5115 goto out;
5116
5117 set_task_cpu(p, dest_cpu);
5118 if (p->array) {
5119 /*
5120 * Sync timestamp with rq_dest's before activating.
5121 * The same thing could be achieved by doing this step
5122 * afterwards, and pretending it was a local activate.
5123 * This way is cleaner and logically correct.
5124 */
b18ec803
MG
5125 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5126 + rq_dest->most_recent_timestamp;
1da177e4 5127 deactivate_task(p, rq_src);
0a565f79 5128 __activate_task(p, rq_dest);
1da177e4
LT
5129 if (TASK_PREEMPTS_CURR(p, rq_dest))
5130 resched_task(rq_dest->curr);
5131 }
efc30814 5132 ret = 1;
1da177e4
LT
5133out:
5134 double_rq_unlock(rq_src, rq_dest);
efc30814 5135 return ret;
1da177e4
LT
5136}
5137
5138/*
5139 * migration_thread - this is a highprio system thread that performs
5140 * thread migration by bumping thread off CPU then 'pushing' onto
5141 * another runqueue.
5142 */
95cdf3b7 5143static int migration_thread(void *data)
1da177e4 5144{
1da177e4 5145 int cpu = (long)data;
70b97a7f 5146 struct rq *rq;
1da177e4
LT
5147
5148 rq = cpu_rq(cpu);
5149 BUG_ON(rq->migration_thread != current);
5150
5151 set_current_state(TASK_INTERRUPTIBLE);
5152 while (!kthread_should_stop()) {
70b97a7f 5153 struct migration_req *req;
1da177e4 5154 struct list_head *head;
1da177e4 5155
3e1d1d28 5156 try_to_freeze();
1da177e4
LT
5157
5158 spin_lock_irq(&rq->lock);
5159
5160 if (cpu_is_offline(cpu)) {
5161 spin_unlock_irq(&rq->lock);
5162 goto wait_to_die;
5163 }
5164
5165 if (rq->active_balance) {
5166 active_load_balance(rq, cpu);
5167 rq->active_balance = 0;
5168 }
5169
5170 head = &rq->migration_queue;
5171
5172 if (list_empty(head)) {
5173 spin_unlock_irq(&rq->lock);
5174 schedule();
5175 set_current_state(TASK_INTERRUPTIBLE);
5176 continue;
5177 }
70b97a7f 5178 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5179 list_del_init(head->next);
5180
674311d5
NP
5181 spin_unlock(&rq->lock);
5182 __migrate_task(req->task, cpu, req->dest_cpu);
5183 local_irq_enable();
1da177e4
LT
5184
5185 complete(&req->done);
5186 }
5187 __set_current_state(TASK_RUNNING);
5188 return 0;
5189
5190wait_to_die:
5191 /* Wait for kthread_stop */
5192 set_current_state(TASK_INTERRUPTIBLE);
5193 while (!kthread_should_stop()) {
5194 schedule();
5195 set_current_state(TASK_INTERRUPTIBLE);
5196 }
5197 __set_current_state(TASK_RUNNING);
5198 return 0;
5199}
5200
5201#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5202/*
5203 * Figure out where task on dead CPU should go, use force if neccessary.
5204 * NOTE: interrupts should be disabled by the caller
5205 */
48f24c4d 5206static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5207{
efc30814 5208 unsigned long flags;
1da177e4 5209 cpumask_t mask;
70b97a7f
IM
5210 struct rq *rq;
5211 int dest_cpu;
1da177e4 5212
efc30814 5213restart:
1da177e4
LT
5214 /* On same node? */
5215 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5216 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5217 dest_cpu = any_online_cpu(mask);
5218
5219 /* On any allowed CPU? */
5220 if (dest_cpu == NR_CPUS)
48f24c4d 5221 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5222
5223 /* No more Mr. Nice Guy. */
5224 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5225 rq = task_rq_lock(p, &flags);
5226 cpus_setall(p->cpus_allowed);
5227 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5228 task_rq_unlock(rq, &flags);
1da177e4
LT
5229
5230 /*
5231 * Don't tell them about moving exiting tasks or
5232 * kernel threads (both mm NULL), since they never
5233 * leave kernel.
5234 */
48f24c4d 5235 if (p->mm && printk_ratelimit())
1da177e4
LT
5236 printk(KERN_INFO "process %d (%s) no "
5237 "longer affine to cpu%d\n",
48f24c4d 5238 p->pid, p->comm, dead_cpu);
1da177e4 5239 }
48f24c4d 5240 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5241 goto restart;
1da177e4
LT
5242}
5243
5244/*
5245 * While a dead CPU has no uninterruptible tasks queued at this point,
5246 * it might still have a nonzero ->nr_uninterruptible counter, because
5247 * for performance reasons the counter is not stricly tracking tasks to
5248 * their home CPUs. So we just add the counter to another CPU's counter,
5249 * to keep the global sum constant after CPU-down:
5250 */
70b97a7f 5251static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5252{
70b97a7f 5253 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5254 unsigned long flags;
5255
5256 local_irq_save(flags);
5257 double_rq_lock(rq_src, rq_dest);
5258 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5259 rq_src->nr_uninterruptible = 0;
5260 double_rq_unlock(rq_src, rq_dest);
5261 local_irq_restore(flags);
5262}
5263
5264/* Run through task list and migrate tasks from the dead cpu. */
5265static void migrate_live_tasks(int src_cpu)
5266{
48f24c4d 5267 struct task_struct *p, *t;
1da177e4
LT
5268
5269 write_lock_irq(&tasklist_lock);
5270
48f24c4d
IM
5271 do_each_thread(t, p) {
5272 if (p == current)
1da177e4
LT
5273 continue;
5274
48f24c4d
IM
5275 if (task_cpu(p) == src_cpu)
5276 move_task_off_dead_cpu(src_cpu, p);
5277 } while_each_thread(t, p);
1da177e4
LT
5278
5279 write_unlock_irq(&tasklist_lock);
5280}
5281
5282/* Schedules idle task to be the next runnable task on current CPU.
5283 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5284 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5285 */
5286void sched_idle_next(void)
5287{
48f24c4d 5288 int this_cpu = smp_processor_id();
70b97a7f 5289 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5290 struct task_struct *p = rq->idle;
5291 unsigned long flags;
5292
5293 /* cpu has to be offline */
48f24c4d 5294 BUG_ON(cpu_online(this_cpu));
1da177e4 5295
48f24c4d
IM
5296 /*
5297 * Strictly not necessary since rest of the CPUs are stopped by now
5298 * and interrupts disabled on the current cpu.
1da177e4
LT
5299 */
5300 spin_lock_irqsave(&rq->lock, flags);
5301
5302 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5303
5304 /* Add idle task to the _front_ of its priority queue: */
1da177e4
LT
5305 __activate_idle_task(p, rq);
5306
5307 spin_unlock_irqrestore(&rq->lock, flags);
5308}
5309
48f24c4d
IM
5310/*
5311 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5312 * offline.
5313 */
5314void idle_task_exit(void)
5315{
5316 struct mm_struct *mm = current->active_mm;
5317
5318 BUG_ON(cpu_online(smp_processor_id()));
5319
5320 if (mm != &init_mm)
5321 switch_mm(mm, &init_mm, current);
5322 mmdrop(mm);
5323}
5324
054b9108 5325/* called under rq->lock with disabled interrupts */
36c8b586 5326static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5327{
70b97a7f 5328 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5329
5330 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5331 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5332
5333 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5334 BUG_ON(p->state == TASK_DEAD);
1da177e4 5335
48f24c4d 5336 get_task_struct(p);
1da177e4
LT
5337
5338 /*
5339 * Drop lock around migration; if someone else moves it,
5340 * that's OK. No task can be added to this CPU, so iteration is
5341 * fine.
054b9108 5342 * NOTE: interrupts should be left disabled --dev@
1da177e4 5343 */
054b9108 5344 spin_unlock(&rq->lock);
48f24c4d 5345 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5346 spin_lock(&rq->lock);
1da177e4 5347
48f24c4d 5348 put_task_struct(p);
1da177e4
LT
5349}
5350
5351/* release_task() removes task from tasklist, so we won't find dead tasks. */
5352static void migrate_dead_tasks(unsigned int dead_cpu)
5353{
70b97a7f 5354 struct rq *rq = cpu_rq(dead_cpu);
48f24c4d 5355 unsigned int arr, i;
1da177e4
LT
5356
5357 for (arr = 0; arr < 2; arr++) {
5358 for (i = 0; i < MAX_PRIO; i++) {
5359 struct list_head *list = &rq->arrays[arr].queue[i];
48f24c4d 5360
1da177e4 5361 while (!list_empty(list))
36c8b586
IM
5362 migrate_dead(dead_cpu, list_entry(list->next,
5363 struct task_struct, run_list));
1da177e4
LT
5364 }
5365 }
5366}
5367#endif /* CONFIG_HOTPLUG_CPU */
5368
5369/*
5370 * migration_call - callback that gets triggered when a CPU is added.
5371 * Here we can start up the necessary migration thread for the new CPU.
5372 */
48f24c4d
IM
5373static int __cpuinit
5374migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5375{
1da177e4 5376 struct task_struct *p;
48f24c4d 5377 int cpu = (long)hcpu;
1da177e4 5378 unsigned long flags;
70b97a7f 5379 struct rq *rq;
1da177e4
LT
5380
5381 switch (action) {
5382 case CPU_UP_PREPARE:
5383 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5384 if (IS_ERR(p))
5385 return NOTIFY_BAD;
5386 p->flags |= PF_NOFREEZE;
5387 kthread_bind(p, cpu);
5388 /* Must be high prio: stop_machine expects to yield to it. */
5389 rq = task_rq_lock(p, &flags);
5390 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5391 task_rq_unlock(rq, &flags);
5392 cpu_rq(cpu)->migration_thread = p;
5393 break;
48f24c4d 5394
1da177e4
LT
5395 case CPU_ONLINE:
5396 /* Strictly unneccessary, as first user will wake it. */
5397 wake_up_process(cpu_rq(cpu)->migration_thread);
5398 break;
48f24c4d 5399
1da177e4
LT
5400#ifdef CONFIG_HOTPLUG_CPU
5401 case CPU_UP_CANCELED:
fc75cdfa
HC
5402 if (!cpu_rq(cpu)->migration_thread)
5403 break;
1da177e4 5404 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5405 kthread_bind(cpu_rq(cpu)->migration_thread,
5406 any_online_cpu(cpu_online_map));
1da177e4
LT
5407 kthread_stop(cpu_rq(cpu)->migration_thread);
5408 cpu_rq(cpu)->migration_thread = NULL;
5409 break;
48f24c4d 5410
1da177e4
LT
5411 case CPU_DEAD:
5412 migrate_live_tasks(cpu);
5413 rq = cpu_rq(cpu);
5414 kthread_stop(rq->migration_thread);
5415 rq->migration_thread = NULL;
5416 /* Idle task back to normal (off runqueue, low prio) */
5417 rq = task_rq_lock(rq->idle, &flags);
5418 deactivate_task(rq->idle, rq);
5419 rq->idle->static_prio = MAX_PRIO;
5420 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5421 migrate_dead_tasks(cpu);
5422 task_rq_unlock(rq, &flags);
5423 migrate_nr_uninterruptible(rq);
5424 BUG_ON(rq->nr_running != 0);
5425
5426 /* No need to migrate the tasks: it was best-effort if
5427 * they didn't do lock_cpu_hotplug(). Just wake up
5428 * the requestors. */
5429 spin_lock_irq(&rq->lock);
5430 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5431 struct migration_req *req;
5432
1da177e4 5433 req = list_entry(rq->migration_queue.next,
70b97a7f 5434 struct migration_req, list);
1da177e4
LT
5435 list_del_init(&req->list);
5436 complete(&req->done);
5437 }
5438 spin_unlock_irq(&rq->lock);
5439 break;
5440#endif
5441 }
5442 return NOTIFY_OK;
5443}
5444
5445/* Register at highest priority so that task migration (migrate_all_tasks)
5446 * happens before everything else.
5447 */
26c2143b 5448static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5449 .notifier_call = migration_call,
5450 .priority = 10
5451};
5452
5453int __init migration_init(void)
5454{
5455 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5456 int err;
48f24c4d
IM
5457
5458 /* Start one for the boot CPU: */
07dccf33
AM
5459 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5460 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5461 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5462 register_cpu_notifier(&migration_notifier);
48f24c4d 5463
1da177e4
LT
5464 return 0;
5465}
5466#endif
5467
5468#ifdef CONFIG_SMP
476f3534
CL
5469
5470/* Number of possible processor ids */
5471int nr_cpu_ids __read_mostly = NR_CPUS;
5472EXPORT_SYMBOL(nr_cpu_ids);
5473
1a20ff27 5474#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5475#ifdef SCHED_DOMAIN_DEBUG
5476static void sched_domain_debug(struct sched_domain *sd, int cpu)
5477{
5478 int level = 0;
5479
41c7ce9a
NP
5480 if (!sd) {
5481 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5482 return;
5483 }
5484
1da177e4
LT
5485 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5486
5487 do {
5488 int i;
5489 char str[NR_CPUS];
5490 struct sched_group *group = sd->groups;
5491 cpumask_t groupmask;
5492
5493 cpumask_scnprintf(str, NR_CPUS, sd->span);
5494 cpus_clear(groupmask);
5495
5496 printk(KERN_DEBUG);
5497 for (i = 0; i < level + 1; i++)
5498 printk(" ");
5499 printk("domain %d: ", level);
5500
5501 if (!(sd->flags & SD_LOAD_BALANCE)) {
5502 printk("does not load-balance\n");
5503 if (sd->parent)
33859f7f
MOS
5504 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5505 " has parent");
1da177e4
LT
5506 break;
5507 }
5508
5509 printk("span %s\n", str);
5510
5511 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5512 printk(KERN_ERR "ERROR: domain->span does not contain "
5513 "CPU%d\n", cpu);
1da177e4 5514 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5515 printk(KERN_ERR "ERROR: domain->groups does not contain"
5516 " CPU%d\n", cpu);
1da177e4
LT
5517
5518 printk(KERN_DEBUG);
5519 for (i = 0; i < level + 2; i++)
5520 printk(" ");
5521 printk("groups:");
5522 do {
5523 if (!group) {
5524 printk("\n");
5525 printk(KERN_ERR "ERROR: group is NULL\n");
5526 break;
5527 }
5528
5517d86b 5529 if (!group->__cpu_power) {
1da177e4 5530 printk("\n");
33859f7f
MOS
5531 printk(KERN_ERR "ERROR: domain->cpu_power not "
5532 "set\n");
1da177e4
LT
5533 }
5534
5535 if (!cpus_weight(group->cpumask)) {
5536 printk("\n");
5537 printk(KERN_ERR "ERROR: empty group\n");
5538 }
5539
5540 if (cpus_intersects(groupmask, group->cpumask)) {
5541 printk("\n");
5542 printk(KERN_ERR "ERROR: repeated CPUs\n");
5543 }
5544
5545 cpus_or(groupmask, groupmask, group->cpumask);
5546
5547 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5548 printk(" %s", str);
5549
5550 group = group->next;
5551 } while (group != sd->groups);
5552 printk("\n");
5553
5554 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5555 printk(KERN_ERR "ERROR: groups don't span "
5556 "domain->span\n");
1da177e4
LT
5557
5558 level++;
5559 sd = sd->parent;
33859f7f
MOS
5560 if (!sd)
5561 continue;
1da177e4 5562
33859f7f
MOS
5563 if (!cpus_subset(groupmask, sd->span))
5564 printk(KERN_ERR "ERROR: parent span is not a superset "
5565 "of domain->span\n");
1da177e4
LT
5566
5567 } while (sd);
5568}
5569#else
48f24c4d 5570# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5571#endif
5572
1a20ff27 5573static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5574{
5575 if (cpus_weight(sd->span) == 1)
5576 return 1;
5577
5578 /* Following flags need at least 2 groups */
5579 if (sd->flags & (SD_LOAD_BALANCE |
5580 SD_BALANCE_NEWIDLE |
5581 SD_BALANCE_FORK |
89c4710e
SS
5582 SD_BALANCE_EXEC |
5583 SD_SHARE_CPUPOWER |
5584 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5585 if (sd->groups != sd->groups->next)
5586 return 0;
5587 }
5588
5589 /* Following flags don't use groups */
5590 if (sd->flags & (SD_WAKE_IDLE |
5591 SD_WAKE_AFFINE |
5592 SD_WAKE_BALANCE))
5593 return 0;
5594
5595 return 1;
5596}
5597
48f24c4d
IM
5598static int
5599sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5600{
5601 unsigned long cflags = sd->flags, pflags = parent->flags;
5602
5603 if (sd_degenerate(parent))
5604 return 1;
5605
5606 if (!cpus_equal(sd->span, parent->span))
5607 return 0;
5608
5609 /* Does parent contain flags not in child? */
5610 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5611 if (cflags & SD_WAKE_AFFINE)
5612 pflags &= ~SD_WAKE_BALANCE;
5613 /* Flags needing groups don't count if only 1 group in parent */
5614 if (parent->groups == parent->groups->next) {
5615 pflags &= ~(SD_LOAD_BALANCE |
5616 SD_BALANCE_NEWIDLE |
5617 SD_BALANCE_FORK |
89c4710e
SS
5618 SD_BALANCE_EXEC |
5619 SD_SHARE_CPUPOWER |
5620 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5621 }
5622 if (~cflags & pflags)
5623 return 0;
5624
5625 return 1;
5626}
5627
1da177e4
LT
5628/*
5629 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5630 * hold the hotplug lock.
5631 */
9c1cfda2 5632static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5633{
70b97a7f 5634 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5635 struct sched_domain *tmp;
5636
5637 /* Remove the sched domains which do not contribute to scheduling. */
5638 for (tmp = sd; tmp; tmp = tmp->parent) {
5639 struct sched_domain *parent = tmp->parent;
5640 if (!parent)
5641 break;
1a848870 5642 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5643 tmp->parent = parent->parent;
1a848870
SS
5644 if (parent->parent)
5645 parent->parent->child = tmp;
5646 }
245af2c7
SS
5647 }
5648
1a848870 5649 if (sd && sd_degenerate(sd)) {
245af2c7 5650 sd = sd->parent;
1a848870
SS
5651 if (sd)
5652 sd->child = NULL;
5653 }
1da177e4
LT
5654
5655 sched_domain_debug(sd, cpu);
5656
674311d5 5657 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5658}
5659
5660/* cpus with isolated domains */
67af63a6 5661static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5662
5663/* Setup the mask of cpus configured for isolated domains */
5664static int __init isolated_cpu_setup(char *str)
5665{
5666 int ints[NR_CPUS], i;
5667
5668 str = get_options(str, ARRAY_SIZE(ints), ints);
5669 cpus_clear(cpu_isolated_map);
5670 for (i = 1; i <= ints[0]; i++)
5671 if (ints[i] < NR_CPUS)
5672 cpu_set(ints[i], cpu_isolated_map);
5673 return 1;
5674}
5675
5676__setup ("isolcpus=", isolated_cpu_setup);
5677
5678/*
6711cab4
SS
5679 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5680 * to a function which identifies what group(along with sched group) a CPU
5681 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5682 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5683 *
5684 * init_sched_build_groups will build a circular linked list of the groups
5685 * covered by the given span, and will set each group's ->cpumask correctly,
5686 * and ->cpu_power to 0.
5687 */
a616058b 5688static void
6711cab4
SS
5689init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5690 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5691 struct sched_group **sg))
1da177e4
LT
5692{
5693 struct sched_group *first = NULL, *last = NULL;
5694 cpumask_t covered = CPU_MASK_NONE;
5695 int i;
5696
5697 for_each_cpu_mask(i, span) {
6711cab4
SS
5698 struct sched_group *sg;
5699 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5700 int j;
5701
5702 if (cpu_isset(i, covered))
5703 continue;
5704
5705 sg->cpumask = CPU_MASK_NONE;
5517d86b 5706 sg->__cpu_power = 0;
1da177e4
LT
5707
5708 for_each_cpu_mask(j, span) {
6711cab4 5709 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5710 continue;
5711
5712 cpu_set(j, covered);
5713 cpu_set(j, sg->cpumask);
5714 }
5715 if (!first)
5716 first = sg;
5717 if (last)
5718 last->next = sg;
5719 last = sg;
5720 }
5721 last->next = first;
5722}
5723
9c1cfda2 5724#define SD_NODES_PER_DOMAIN 16
1da177e4 5725
198e2f18 5726/*
5727 * Self-tuning task migration cost measurement between source and target CPUs.
5728 *
5729 * This is done by measuring the cost of manipulating buffers of varying
5730 * sizes. For a given buffer-size here are the steps that are taken:
5731 *
5732 * 1) the source CPU reads+dirties a shared buffer
5733 * 2) the target CPU reads+dirties the same shared buffer
5734 *
5735 * We measure how long they take, in the following 4 scenarios:
5736 *
5737 * - source: CPU1, target: CPU2 | cost1
5738 * - source: CPU2, target: CPU1 | cost2
5739 * - source: CPU1, target: CPU1 | cost3
5740 * - source: CPU2, target: CPU2 | cost4
5741 *
5742 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5743 * the cost of migration.
5744 *
5745 * We then start off from a small buffer-size and iterate up to larger
5746 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5747 * doing a maximum search for the cost. (The maximum cost for a migration
5748 * normally occurs when the working set size is around the effective cache
5749 * size.)
5750 */
5751#define SEARCH_SCOPE 2
5752#define MIN_CACHE_SIZE (64*1024U)
5753#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5754#define ITERATIONS 1
198e2f18 5755#define SIZE_THRESH 130
5756#define COST_THRESH 130
5757
5758/*
5759 * The migration cost is a function of 'domain distance'. Domain
5760 * distance is the number of steps a CPU has to iterate down its
5761 * domain tree to share a domain with the other CPU. The farther
5762 * two CPUs are from each other, the larger the distance gets.
5763 *
5764 * Note that we use the distance only to cache measurement results,
5765 * the distance value is not used numerically otherwise. When two
5766 * CPUs have the same distance it is assumed that the migration
5767 * cost is the same. (this is a simplification but quite practical)
5768 */
5769#define MAX_DOMAIN_DISTANCE 32
5770
5771static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5772 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5773/*
5774 * Architectures may override the migration cost and thus avoid
5775 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5776 * virtualized hardware:
5777 */
5778#ifdef CONFIG_DEFAULT_MIGRATION_COST
5779 CONFIG_DEFAULT_MIGRATION_COST
5780#else
5781 -1LL
5782#endif
5783};
198e2f18 5784
5785/*
5786 * Allow override of migration cost - in units of microseconds.
5787 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5788 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5789 */
5790static int __init migration_cost_setup(char *str)
5791{
5792 int ints[MAX_DOMAIN_DISTANCE+1], i;
5793
5794 str = get_options(str, ARRAY_SIZE(ints), ints);
5795
5796 printk("#ints: %d\n", ints[0]);
5797 for (i = 1; i <= ints[0]; i++) {
5798 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5799 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5800 }
5801 return 1;
5802}
5803
5804__setup ("migration_cost=", migration_cost_setup);
5805
5806/*
5807 * Global multiplier (divisor) for migration-cutoff values,
5808 * in percentiles. E.g. use a value of 150 to get 1.5 times
5809 * longer cache-hot cutoff times.
5810 *
5811 * (We scale it from 100 to 128 to long long handling easier.)
5812 */
5813
5814#define MIGRATION_FACTOR_SCALE 128
5815
5816static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5817
5818static int __init setup_migration_factor(char *str)
5819{
5820 get_option(&str, &migration_factor);
5821 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5822 return 1;
5823}
5824
5825__setup("migration_factor=", setup_migration_factor);
5826
5827/*
5828 * Estimated distance of two CPUs, measured via the number of domains
5829 * we have to pass for the two CPUs to be in the same span:
5830 */
5831static unsigned long domain_distance(int cpu1, int cpu2)
5832{
5833 unsigned long distance = 0;
5834 struct sched_domain *sd;
5835
5836 for_each_domain(cpu1, sd) {
5837 WARN_ON(!cpu_isset(cpu1, sd->span));
5838 if (cpu_isset(cpu2, sd->span))
5839 return distance;
5840 distance++;
5841 }
5842 if (distance >= MAX_DOMAIN_DISTANCE) {
5843 WARN_ON(1);
5844 distance = MAX_DOMAIN_DISTANCE-1;
5845 }
5846
5847 return distance;
5848}
5849
5850static unsigned int migration_debug;
5851
5852static int __init setup_migration_debug(char *str)
5853{
5854 get_option(&str, &migration_debug);
5855 return 1;
5856}
5857
5858__setup("migration_debug=", setup_migration_debug);
5859
5860/*
5861 * Maximum cache-size that the scheduler should try to measure.
5862 * Architectures with larger caches should tune this up during
5863 * bootup. Gets used in the domain-setup code (i.e. during SMP
5864 * bootup).
5865 */
5866unsigned int max_cache_size;
5867
5868static int __init setup_max_cache_size(char *str)
5869{
5870 get_option(&str, &max_cache_size);
5871 return 1;
5872}
5873
5874__setup("max_cache_size=", setup_max_cache_size);
5875
5876/*
5877 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5878 * is the operation that is timed, so we try to generate unpredictable
5879 * cachemisses that still end up filling the L2 cache:
5880 */
5881static void touch_cache(void *__cache, unsigned long __size)
5882{
33859f7f
MOS
5883 unsigned long size = __size / sizeof(long);
5884 unsigned long chunk1 = size / 3;
5885 unsigned long chunk2 = 2 * size / 3;
198e2f18 5886 unsigned long *cache = __cache;
5887 int i;
5888
5889 for (i = 0; i < size/6; i += 8) {
5890 switch (i % 6) {
5891 case 0: cache[i]++;
5892 case 1: cache[size-1-i]++;
5893 case 2: cache[chunk1-i]++;
5894 case 3: cache[chunk1+i]++;
5895 case 4: cache[chunk2-i]++;
5896 case 5: cache[chunk2+i]++;
5897 }
5898 }
5899}
5900
5901/*
5902 * Measure the cache-cost of one task migration. Returns in units of nsec.
5903 */
48f24c4d
IM
5904static unsigned long long
5905measure_one(void *cache, unsigned long size, int source, int target)
198e2f18 5906{
5907 cpumask_t mask, saved_mask;
5908 unsigned long long t0, t1, t2, t3, cost;
5909
5910 saved_mask = current->cpus_allowed;
5911
5912 /*
5913 * Flush source caches to RAM and invalidate them:
5914 */
5915 sched_cacheflush();
5916
5917 /*
5918 * Migrate to the source CPU:
5919 */
5920 mask = cpumask_of_cpu(source);
5921 set_cpus_allowed(current, mask);
5922 WARN_ON(smp_processor_id() != source);
5923
5924 /*
5925 * Dirty the working set:
5926 */
5927 t0 = sched_clock();
5928 touch_cache(cache, size);
5929 t1 = sched_clock();
5930
5931 /*
5932 * Migrate to the target CPU, dirty the L2 cache and access
5933 * the shared buffer. (which represents the working set
5934 * of a migrated task.)
5935 */
5936 mask = cpumask_of_cpu(target);
5937 set_cpus_allowed(current, mask);
5938 WARN_ON(smp_processor_id() != target);
5939
5940 t2 = sched_clock();
5941 touch_cache(cache, size);
5942 t3 = sched_clock();
5943
5944 cost = t1-t0 + t3-t2;
5945
5946 if (migration_debug >= 2)
5947 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5948 source, target, t1-t0, t1-t0, t3-t2, cost);
5949 /*
5950 * Flush target caches to RAM and invalidate them:
5951 */
5952 sched_cacheflush();
5953
5954 set_cpus_allowed(current, saved_mask);
5955
5956 return cost;
5957}
5958
5959/*
5960 * Measure a series of task migrations and return the average
5961 * result. Since this code runs early during bootup the system
5962 * is 'undisturbed' and the average latency makes sense.
5963 *
5964 * The algorithm in essence auto-detects the relevant cache-size,
5965 * so it will properly detect different cachesizes for different
5966 * cache-hierarchies, depending on how the CPUs are connected.
5967 *
5968 * Architectures can prime the upper limit of the search range via
5969 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5970 */
5971static unsigned long long
5972measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5973{
5974 unsigned long long cost1, cost2;
5975 int i;
5976
5977 /*
5978 * Measure the migration cost of 'size' bytes, over an
5979 * average of 10 runs:
5980 *
5981 * (We perturb the cache size by a small (0..4k)
5982 * value to compensate size/alignment related artifacts.
5983 * We also subtract the cost of the operation done on
5984 * the same CPU.)
5985 */
5986 cost1 = 0;
5987
5988 /*
5989 * dry run, to make sure we start off cache-cold on cpu1,
5990 * and to get any vmalloc pagefaults in advance:
5991 */
5992 measure_one(cache, size, cpu1, cpu2);
5993 for (i = 0; i < ITERATIONS; i++)
33859f7f 5994 cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
198e2f18 5995
5996 measure_one(cache, size, cpu2, cpu1);
5997 for (i = 0; i < ITERATIONS; i++)
33859f7f 5998 cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
198e2f18 5999
6000 /*
6001 * (We measure the non-migrating [cached] cost on both
6002 * cpu1 and cpu2, to handle CPUs with different speeds)
6003 */
6004 cost2 = 0;
6005
6006 measure_one(cache, size, cpu1, cpu1);
6007 for (i = 0; i < ITERATIONS; i++)
33859f7f 6008 cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
198e2f18 6009
6010 measure_one(cache, size, cpu2, cpu2);
6011 for (i = 0; i < ITERATIONS; i++)
33859f7f 6012 cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
198e2f18 6013
6014 /*
6015 * Get the per-iteration migration cost:
6016 */
33859f7f
MOS
6017 do_div(cost1, 2 * ITERATIONS);
6018 do_div(cost2, 2 * ITERATIONS);
198e2f18 6019
6020 return cost1 - cost2;
6021}
6022
6023static unsigned long long measure_migration_cost(int cpu1, int cpu2)
6024{
6025 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
6026 unsigned int max_size, size, size_found = 0;
6027 long long cost = 0, prev_cost;
6028 void *cache;
6029
6030 /*
6031 * Search from max_cache_size*5 down to 64K - the real relevant
6032 * cachesize has to lie somewhere inbetween.
6033 */
6034 if (max_cache_size) {
6035 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
6036 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
6037 } else {
6038 /*
6039 * Since we have no estimation about the relevant
6040 * search range
6041 */
6042 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
6043 size = MIN_CACHE_SIZE;
6044 }
6045
6046 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
6047 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
6048 return 0;
6049 }
6050
6051 /*
6052 * Allocate the working set:
6053 */
6054 cache = vmalloc(max_size);
6055 if (!cache) {
33859f7f 6056 printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
2ed6e34f 6057 return 1000000; /* return 1 msec on very small boxen */
198e2f18 6058 }
6059
6060 while (size <= max_size) {
6061 prev_cost = cost;
6062 cost = measure_cost(cpu1, cpu2, cache, size);
6063
6064 /*
6065 * Update the max:
6066 */
6067 if (cost > 0) {
6068 if (max_cost < cost) {
6069 max_cost = cost;
6070 size_found = size;
6071 }
6072 }
6073 /*
6074 * Calculate average fluctuation, we use this to prevent
6075 * noise from triggering an early break out of the loop:
6076 */
6077 fluct = abs(cost - prev_cost);
6078 avg_fluct = (avg_fluct + fluct)/2;
6079
6080 if (migration_debug)
33859f7f
MOS
6081 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
6082 "(%8Ld %8Ld)\n",
198e2f18 6083 cpu1, cpu2, size,
6084 (long)cost / 1000000,
6085 ((long)cost / 100000) % 10,
6086 (long)max_cost / 1000000,
6087 ((long)max_cost / 100000) % 10,
6088 domain_distance(cpu1, cpu2),
6089 cost, avg_fluct);
6090
6091 /*
6092 * If we iterated at least 20% past the previous maximum,
6093 * and the cost has dropped by more than 20% already,
6094 * (taking fluctuations into account) then we assume to
6095 * have found the maximum and break out of the loop early:
6096 */
6097 if (size_found && (size*100 > size_found*SIZE_THRESH))
6098 if (cost+avg_fluct <= 0 ||
6099 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
6100
6101 if (migration_debug)
6102 printk("-> found max.\n");
6103 break;
6104 }
6105 /*
70b4d63e 6106 * Increase the cachesize in 10% steps:
198e2f18 6107 */
70b4d63e 6108 size = size * 10 / 9;
198e2f18 6109 }
6110
6111 if (migration_debug)
6112 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6113 cpu1, cpu2, size_found, max_cost);
6114
6115 vfree(cache);
6116
6117 /*
6118 * A task is considered 'cache cold' if at least 2 times
6119 * the worst-case cost of migration has passed.
6120 *
6121 * (this limit is only listened to if the load-balancing
6122 * situation is 'nice' - if there is a large imbalance we
6123 * ignore it for the sake of CPU utilization and
6124 * processing fairness.)
6125 */
6126 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6127}
6128
6129static void calibrate_migration_costs(const cpumask_t *cpu_map)
6130{
6131 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6132 unsigned long j0, j1, distance, max_distance = 0;
6133 struct sched_domain *sd;
6134
6135 j0 = jiffies;
6136
6137 /*
6138 * First pass - calculate the cacheflush times:
6139 */
6140 for_each_cpu_mask(cpu1, *cpu_map) {
6141 for_each_cpu_mask(cpu2, *cpu_map) {
6142 if (cpu1 == cpu2)
6143 continue;
6144 distance = domain_distance(cpu1, cpu2);
6145 max_distance = max(max_distance, distance);
6146 /*
6147 * No result cached yet?
6148 */
6149 if (migration_cost[distance] == -1LL)
6150 migration_cost[distance] =
6151 measure_migration_cost(cpu1, cpu2);
6152 }
6153 }
6154 /*
6155 * Second pass - update the sched domain hierarchy with
6156 * the new cache-hot-time estimations:
6157 */
6158 for_each_cpu_mask(cpu, *cpu_map) {
6159 distance = 0;
6160 for_each_domain(cpu, sd) {
6161 sd->cache_hot_time = migration_cost[distance];
6162 distance++;
6163 }
6164 }
6165 /*
6166 * Print the matrix:
6167 */
6168 if (migration_debug)
6169 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6170 max_cache_size,
6171#ifdef CONFIG_X86
6172 cpu_khz/1000
6173#else
6174 -1
6175#endif
6176 );
33859f7f
MOS
6177 if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
6178 printk("migration_cost=");
6179 for (distance = 0; distance <= max_distance; distance++) {
6180 if (distance)
6181 printk(",");
6182 printk("%ld", (long)migration_cost[distance] / 1000);
bd576c95 6183 }
33859f7f 6184 printk("\n");
198e2f18 6185 }
198e2f18 6186 j1 = jiffies;
6187 if (migration_debug)
33859f7f 6188 printk("migration: %ld seconds\n", (j1-j0) / HZ);
198e2f18 6189
6190 /*
6191 * Move back to the original CPU. NUMA-Q gets confused
6192 * if we migrate to another quad during bootup.
6193 */
6194 if (raw_smp_processor_id() != orig_cpu) {
6195 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6196 saved_mask = current->cpus_allowed;
6197
6198 set_cpus_allowed(current, mask);
6199 set_cpus_allowed(current, saved_mask);
6200 }
6201}
6202
9c1cfda2 6203#ifdef CONFIG_NUMA
198e2f18 6204
9c1cfda2
JH
6205/**
6206 * find_next_best_node - find the next node to include in a sched_domain
6207 * @node: node whose sched_domain we're building
6208 * @used_nodes: nodes already in the sched_domain
6209 *
6210 * Find the next node to include in a given scheduling domain. Simply
6211 * finds the closest node not already in the @used_nodes map.
6212 *
6213 * Should use nodemask_t.
6214 */
6215static int find_next_best_node(int node, unsigned long *used_nodes)
6216{
6217 int i, n, val, min_val, best_node = 0;
6218
6219 min_val = INT_MAX;
6220
6221 for (i = 0; i < MAX_NUMNODES; i++) {
6222 /* Start at @node */
6223 n = (node + i) % MAX_NUMNODES;
6224
6225 if (!nr_cpus_node(n))
6226 continue;
6227
6228 /* Skip already used nodes */
6229 if (test_bit(n, used_nodes))
6230 continue;
6231
6232 /* Simple min distance search */
6233 val = node_distance(node, n);
6234
6235 if (val < min_val) {
6236 min_val = val;
6237 best_node = n;
6238 }
6239 }
6240
6241 set_bit(best_node, used_nodes);
6242 return best_node;
6243}
6244
6245/**
6246 * sched_domain_node_span - get a cpumask for a node's sched_domain
6247 * @node: node whose cpumask we're constructing
6248 * @size: number of nodes to include in this span
6249 *
6250 * Given a node, construct a good cpumask for its sched_domain to span. It
6251 * should be one that prevents unnecessary balancing, but also spreads tasks
6252 * out optimally.
6253 */
6254static cpumask_t sched_domain_node_span(int node)
6255{
9c1cfda2 6256 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6257 cpumask_t span, nodemask;
6258 int i;
9c1cfda2
JH
6259
6260 cpus_clear(span);
6261 bitmap_zero(used_nodes, MAX_NUMNODES);
6262
6263 nodemask = node_to_cpumask(node);
6264 cpus_or(span, span, nodemask);
6265 set_bit(node, used_nodes);
6266
6267 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6268 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6269
9c1cfda2
JH
6270 nodemask = node_to_cpumask(next_node);
6271 cpus_or(span, span, nodemask);
6272 }
6273
6274 return span;
6275}
6276#endif
6277
5c45bf27 6278int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6279
9c1cfda2 6280/*
48f24c4d 6281 * SMT sched-domains:
9c1cfda2 6282 */
1da177e4
LT
6283#ifdef CONFIG_SCHED_SMT
6284static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6285static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6286
6711cab4
SS
6287static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6288 struct sched_group **sg)
1da177e4 6289{
6711cab4
SS
6290 if (sg)
6291 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6292 return cpu;
6293}
6294#endif
6295
48f24c4d
IM
6296/*
6297 * multi-core sched-domains:
6298 */
1e9f28fa
SS
6299#ifdef CONFIG_SCHED_MC
6300static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6301static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6302#endif
6303
6304#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
6305static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6306 struct sched_group **sg)
1e9f28fa 6307{
6711cab4 6308 int group;
a616058b
SS
6309 cpumask_t mask = cpu_sibling_map[cpu];
6310 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6311 group = first_cpu(mask);
6312 if (sg)
6313 *sg = &per_cpu(sched_group_core, group);
6314 return group;
1e9f28fa
SS
6315}
6316#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
6317static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6318 struct sched_group **sg)
1e9f28fa 6319{
6711cab4
SS
6320 if (sg)
6321 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6322 return cpu;
6323}
6324#endif
6325
1da177e4 6326static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6327static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6328
6711cab4
SS
6329static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6330 struct sched_group **sg)
1da177e4 6331{
6711cab4 6332 int group;
48f24c4d 6333#ifdef CONFIG_SCHED_MC
1e9f28fa 6334 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6335 cpus_and(mask, mask, *cpu_map);
6711cab4 6336 group = first_cpu(mask);
1e9f28fa 6337#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
6338 cpumask_t mask = cpu_sibling_map[cpu];
6339 cpus_and(mask, mask, *cpu_map);
6711cab4 6340 group = first_cpu(mask);
1da177e4 6341#else
6711cab4 6342 group = cpu;
1da177e4 6343#endif
6711cab4
SS
6344 if (sg)
6345 *sg = &per_cpu(sched_group_phys, group);
6346 return group;
1da177e4
LT
6347}
6348
6349#ifdef CONFIG_NUMA
1da177e4 6350/*
9c1cfda2
JH
6351 * The init_sched_build_groups can't handle what we want to do with node
6352 * groups, so roll our own. Now each node has its own list of groups which
6353 * gets dynamically allocated.
1da177e4 6354 */
9c1cfda2 6355static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6356static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6357
9c1cfda2 6358static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6359static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6360
6711cab4
SS
6361static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6362 struct sched_group **sg)
9c1cfda2 6363{
6711cab4
SS
6364 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6365 int group;
6366
6367 cpus_and(nodemask, nodemask, *cpu_map);
6368 group = first_cpu(nodemask);
6369
6370 if (sg)
6371 *sg = &per_cpu(sched_group_allnodes, group);
6372 return group;
1da177e4 6373}
6711cab4 6374
08069033
SS
6375static void init_numa_sched_groups_power(struct sched_group *group_head)
6376{
6377 struct sched_group *sg = group_head;
6378 int j;
6379
6380 if (!sg)
6381 return;
6382next_sg:
6383 for_each_cpu_mask(j, sg->cpumask) {
6384 struct sched_domain *sd;
6385
6386 sd = &per_cpu(phys_domains, j);
6387 if (j != first_cpu(sd->groups->cpumask)) {
6388 /*
6389 * Only add "power" once for each
6390 * physical package.
6391 */
6392 continue;
6393 }
6394
5517d86b 6395 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
6396 }
6397 sg = sg->next;
6398 if (sg != group_head)
6399 goto next_sg;
6400}
1da177e4
LT
6401#endif
6402
a616058b 6403#ifdef CONFIG_NUMA
51888ca2
SV
6404/* Free memory allocated for various sched_group structures */
6405static void free_sched_groups(const cpumask_t *cpu_map)
6406{
a616058b 6407 int cpu, i;
51888ca2
SV
6408
6409 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6410 struct sched_group **sched_group_nodes
6411 = sched_group_nodes_bycpu[cpu];
6412
51888ca2
SV
6413 if (!sched_group_nodes)
6414 continue;
6415
6416 for (i = 0; i < MAX_NUMNODES; i++) {
6417 cpumask_t nodemask = node_to_cpumask(i);
6418 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6419
6420 cpus_and(nodemask, nodemask, *cpu_map);
6421 if (cpus_empty(nodemask))
6422 continue;
6423
6424 if (sg == NULL)
6425 continue;
6426 sg = sg->next;
6427next_sg:
6428 oldsg = sg;
6429 sg = sg->next;
6430 kfree(oldsg);
6431 if (oldsg != sched_group_nodes[i])
6432 goto next_sg;
6433 }
6434 kfree(sched_group_nodes);
6435 sched_group_nodes_bycpu[cpu] = NULL;
6436 }
51888ca2 6437}
a616058b
SS
6438#else
6439static void free_sched_groups(const cpumask_t *cpu_map)
6440{
6441}
6442#endif
51888ca2 6443
89c4710e
SS
6444/*
6445 * Initialize sched groups cpu_power.
6446 *
6447 * cpu_power indicates the capacity of sched group, which is used while
6448 * distributing the load between different sched groups in a sched domain.
6449 * Typically cpu_power for all the groups in a sched domain will be same unless
6450 * there are asymmetries in the topology. If there are asymmetries, group
6451 * having more cpu_power will pickup more load compared to the group having
6452 * less cpu_power.
6453 *
6454 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6455 * the maximum number of tasks a group can handle in the presence of other idle
6456 * or lightly loaded groups in the same sched domain.
6457 */
6458static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6459{
6460 struct sched_domain *child;
6461 struct sched_group *group;
6462
6463 WARN_ON(!sd || !sd->groups);
6464
6465 if (cpu != first_cpu(sd->groups->cpumask))
6466 return;
6467
6468 child = sd->child;
6469
5517d86b
ED
6470 sd->groups->__cpu_power = 0;
6471
89c4710e
SS
6472 /*
6473 * For perf policy, if the groups in child domain share resources
6474 * (for example cores sharing some portions of the cache hierarchy
6475 * or SMT), then set this domain groups cpu_power such that each group
6476 * can handle only one task, when there are other idle groups in the
6477 * same sched domain.
6478 */
6479 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6480 (child->flags &
6481 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6482 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6483 return;
6484 }
6485
89c4710e
SS
6486 /*
6487 * add cpu_power of each child group to this groups cpu_power
6488 */
6489 group = child->groups;
6490 do {
5517d86b 6491 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6492 group = group->next;
6493 } while (group != child->groups);
6494}
6495
1da177e4 6496/*
1a20ff27
DG
6497 * Build sched domains for a given set of cpus and attach the sched domains
6498 * to the individual cpus
1da177e4 6499 */
51888ca2 6500static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6501{
6502 int i;
89c4710e 6503 struct sched_domain *sd;
d1b55138
JH
6504#ifdef CONFIG_NUMA
6505 struct sched_group **sched_group_nodes = NULL;
6711cab4 6506 int sd_allnodes = 0;
d1b55138
JH
6507
6508 /*
6509 * Allocate the per-node list of sched groups
6510 */
51888ca2 6511 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
d3a5aa98 6512 GFP_KERNEL);
d1b55138
JH
6513 if (!sched_group_nodes) {
6514 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6515 return -ENOMEM;
d1b55138
JH
6516 }
6517 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6518#endif
1da177e4
LT
6519
6520 /*
1a20ff27 6521 * Set up domains for cpus specified by the cpu_map.
1da177e4 6522 */
1a20ff27 6523 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6524 struct sched_domain *sd = NULL, *p;
6525 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6526
1a20ff27 6527 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6528
6529#ifdef CONFIG_NUMA
d1b55138 6530 if (cpus_weight(*cpu_map)
9c1cfda2
JH
6531 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6532 sd = &per_cpu(allnodes_domains, i);
6533 *sd = SD_ALLNODES_INIT;
6534 sd->span = *cpu_map;
6711cab4 6535 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6536 p = sd;
6711cab4 6537 sd_allnodes = 1;
9c1cfda2
JH
6538 } else
6539 p = NULL;
6540
1da177e4 6541 sd = &per_cpu(node_domains, i);
1da177e4 6542 *sd = SD_NODE_INIT;
9c1cfda2
JH
6543 sd->span = sched_domain_node_span(cpu_to_node(i));
6544 sd->parent = p;
1a848870
SS
6545 if (p)
6546 p->child = sd;
9c1cfda2 6547 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6548#endif
6549
6550 p = sd;
6551 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6552 *sd = SD_CPU_INIT;
6553 sd->span = nodemask;
6554 sd->parent = p;
1a848870
SS
6555 if (p)
6556 p->child = sd;
6711cab4 6557 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6558
1e9f28fa
SS
6559#ifdef CONFIG_SCHED_MC
6560 p = sd;
6561 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6562 *sd = SD_MC_INIT;
6563 sd->span = cpu_coregroup_map(i);
6564 cpus_and(sd->span, sd->span, *cpu_map);
6565 sd->parent = p;
1a848870 6566 p->child = sd;
6711cab4 6567 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6568#endif
6569
1da177e4
LT
6570#ifdef CONFIG_SCHED_SMT
6571 p = sd;
6572 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6573 *sd = SD_SIBLING_INIT;
6574 sd->span = cpu_sibling_map[i];
1a20ff27 6575 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6576 sd->parent = p;
1a848870 6577 p->child = sd;
6711cab4 6578 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6579#endif
6580 }
6581
6582#ifdef CONFIG_SCHED_SMT
6583 /* Set up CPU (sibling) groups */
9c1cfda2 6584 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6585 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6586 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6587 if (i != first_cpu(this_sibling_map))
6588 continue;
6589
6711cab4 6590 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
1da177e4
LT
6591 }
6592#endif
6593
1e9f28fa
SS
6594#ifdef CONFIG_SCHED_MC
6595 /* Set up multi-core groups */
6596 for_each_cpu_mask(i, *cpu_map) {
6597 cpumask_t this_core_map = cpu_coregroup_map(i);
6598 cpus_and(this_core_map, this_core_map, *cpu_map);
6599 if (i != first_cpu(this_core_map))
6600 continue;
6711cab4 6601 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
1e9f28fa
SS
6602 }
6603#endif
6604
6605
1da177e4
LT
6606 /* Set up physical groups */
6607 for (i = 0; i < MAX_NUMNODES; i++) {
6608 cpumask_t nodemask = node_to_cpumask(i);
6609
1a20ff27 6610 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6611 if (cpus_empty(nodemask))
6612 continue;
6613
6711cab4 6614 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6615 }
6616
6617#ifdef CONFIG_NUMA
6618 /* Set up node groups */
6711cab4
SS
6619 if (sd_allnodes)
6620 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
9c1cfda2
JH
6621
6622 for (i = 0; i < MAX_NUMNODES; i++) {
6623 /* Set up node groups */
6624 struct sched_group *sg, *prev;
6625 cpumask_t nodemask = node_to_cpumask(i);
6626 cpumask_t domainspan;
6627 cpumask_t covered = CPU_MASK_NONE;
6628 int j;
6629
6630 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6631 if (cpus_empty(nodemask)) {
6632 sched_group_nodes[i] = NULL;
9c1cfda2 6633 continue;
d1b55138 6634 }
9c1cfda2
JH
6635
6636 domainspan = sched_domain_node_span(i);
6637 cpus_and(domainspan, domainspan, *cpu_map);
6638
15f0b676 6639 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6640 if (!sg) {
6641 printk(KERN_WARNING "Can not alloc domain group for "
6642 "node %d\n", i);
6643 goto error;
6644 }
9c1cfda2
JH
6645 sched_group_nodes[i] = sg;
6646 for_each_cpu_mask(j, nodemask) {
6647 struct sched_domain *sd;
6648 sd = &per_cpu(node_domains, j);
6649 sd->groups = sg;
9c1cfda2 6650 }
5517d86b 6651 sg->__cpu_power = 0;
9c1cfda2 6652 sg->cpumask = nodemask;
51888ca2 6653 sg->next = sg;
9c1cfda2
JH
6654 cpus_or(covered, covered, nodemask);
6655 prev = sg;
6656
6657 for (j = 0; j < MAX_NUMNODES; j++) {
6658 cpumask_t tmp, notcovered;
6659 int n = (i + j) % MAX_NUMNODES;
6660
6661 cpus_complement(notcovered, covered);
6662 cpus_and(tmp, notcovered, *cpu_map);
6663 cpus_and(tmp, tmp, domainspan);
6664 if (cpus_empty(tmp))
6665 break;
6666
6667 nodemask = node_to_cpumask(n);
6668 cpus_and(tmp, tmp, nodemask);
6669 if (cpus_empty(tmp))
6670 continue;
6671
15f0b676
SV
6672 sg = kmalloc_node(sizeof(struct sched_group),
6673 GFP_KERNEL, i);
9c1cfda2
JH
6674 if (!sg) {
6675 printk(KERN_WARNING
6676 "Can not alloc domain group for node %d\n", j);
51888ca2 6677 goto error;
9c1cfda2 6678 }
5517d86b 6679 sg->__cpu_power = 0;
9c1cfda2 6680 sg->cpumask = tmp;
51888ca2 6681 sg->next = prev->next;
9c1cfda2
JH
6682 cpus_or(covered, covered, tmp);
6683 prev->next = sg;
6684 prev = sg;
6685 }
9c1cfda2 6686 }
1da177e4
LT
6687#endif
6688
6689 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6690#ifdef CONFIG_SCHED_SMT
1a20ff27 6691 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6692 sd = &per_cpu(cpu_domains, i);
89c4710e 6693 init_sched_groups_power(i, sd);
5c45bf27 6694 }
1da177e4 6695#endif
1e9f28fa 6696#ifdef CONFIG_SCHED_MC
5c45bf27 6697 for_each_cpu_mask(i, *cpu_map) {
1e9f28fa 6698 sd = &per_cpu(core_domains, i);
89c4710e 6699 init_sched_groups_power(i, sd);
5c45bf27
SS
6700 }
6701#endif
1e9f28fa 6702
5c45bf27 6703 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6704 sd = &per_cpu(phys_domains, i);
89c4710e 6705 init_sched_groups_power(i, sd);
1da177e4
LT
6706 }
6707
9c1cfda2 6708#ifdef CONFIG_NUMA
08069033
SS
6709 for (i = 0; i < MAX_NUMNODES; i++)
6710 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6711
6711cab4
SS
6712 if (sd_allnodes) {
6713 struct sched_group *sg;
f712c0c7 6714
6711cab4 6715 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6716 init_numa_sched_groups_power(sg);
6717 }
9c1cfda2
JH
6718#endif
6719
1da177e4 6720 /* Attach the domains */
1a20ff27 6721 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6722 struct sched_domain *sd;
6723#ifdef CONFIG_SCHED_SMT
6724 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6725#elif defined(CONFIG_SCHED_MC)
6726 sd = &per_cpu(core_domains, i);
1da177e4
LT
6727#else
6728 sd = &per_cpu(phys_domains, i);
6729#endif
6730 cpu_attach_domain(sd, i);
6731 }
198e2f18 6732 /*
6733 * Tune cache-hot values:
6734 */
6735 calibrate_migration_costs(cpu_map);
51888ca2
SV
6736
6737 return 0;
6738
a616058b 6739#ifdef CONFIG_NUMA
51888ca2
SV
6740error:
6741 free_sched_groups(cpu_map);
6742 return -ENOMEM;
a616058b 6743#endif
1da177e4 6744}
1a20ff27
DG
6745/*
6746 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6747 */
51888ca2 6748static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6749{
6750 cpumask_t cpu_default_map;
51888ca2 6751 int err;
1da177e4 6752
1a20ff27
DG
6753 /*
6754 * Setup mask for cpus without special case scheduling requirements.
6755 * For now this just excludes isolated cpus, but could be used to
6756 * exclude other special cases in the future.
6757 */
6758 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6759
51888ca2
SV
6760 err = build_sched_domains(&cpu_default_map);
6761
6762 return err;
1a20ff27
DG
6763}
6764
6765static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6766{
51888ca2 6767 free_sched_groups(cpu_map);
9c1cfda2 6768}
1da177e4 6769
1a20ff27
DG
6770/*
6771 * Detach sched domains from a group of cpus specified in cpu_map
6772 * These cpus will now be attached to the NULL domain
6773 */
858119e1 6774static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6775{
6776 int i;
6777
6778 for_each_cpu_mask(i, *cpu_map)
6779 cpu_attach_domain(NULL, i);
6780 synchronize_sched();
6781 arch_destroy_sched_domains(cpu_map);
6782}
6783
6784/*
6785 * Partition sched domains as specified by the cpumasks below.
6786 * This attaches all cpus from the cpumasks to the NULL domain,
6787 * waits for a RCU quiescent period, recalculates sched
6788 * domain information and then attaches them back to the
6789 * correct sched domains
6790 * Call with hotplug lock held
6791 */
51888ca2 6792int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6793{
6794 cpumask_t change_map;
51888ca2 6795 int err = 0;
1a20ff27
DG
6796
6797 cpus_and(*partition1, *partition1, cpu_online_map);
6798 cpus_and(*partition2, *partition2, cpu_online_map);
6799 cpus_or(change_map, *partition1, *partition2);
6800
6801 /* Detach sched domains from all of the affected cpus */
6802 detach_destroy_domains(&change_map);
6803 if (!cpus_empty(*partition1))
51888ca2
SV
6804 err = build_sched_domains(partition1);
6805 if (!err && !cpus_empty(*partition2))
6806 err = build_sched_domains(partition2);
6807
6808 return err;
1a20ff27
DG
6809}
6810
5c45bf27
SS
6811#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6812int arch_reinit_sched_domains(void)
6813{
6814 int err;
6815
6816 lock_cpu_hotplug();
6817 detach_destroy_domains(&cpu_online_map);
6818 err = arch_init_sched_domains(&cpu_online_map);
6819 unlock_cpu_hotplug();
6820
6821 return err;
6822}
6823
6824static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6825{
6826 int ret;
6827
6828 if (buf[0] != '0' && buf[0] != '1')
6829 return -EINVAL;
6830
6831 if (smt)
6832 sched_smt_power_savings = (buf[0] == '1');
6833 else
6834 sched_mc_power_savings = (buf[0] == '1');
6835
6836 ret = arch_reinit_sched_domains();
6837
6838 return ret ? ret : count;
6839}
6840
6841int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6842{
6843 int err = 0;
48f24c4d 6844
5c45bf27
SS
6845#ifdef CONFIG_SCHED_SMT
6846 if (smt_capable())
6847 err = sysfs_create_file(&cls->kset.kobj,
6848 &attr_sched_smt_power_savings.attr);
6849#endif
6850#ifdef CONFIG_SCHED_MC
6851 if (!err && mc_capable())
6852 err = sysfs_create_file(&cls->kset.kobj,
6853 &attr_sched_mc_power_savings.attr);
6854#endif
6855 return err;
6856}
6857#endif
6858
6859#ifdef CONFIG_SCHED_MC
6860static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6861{
6862 return sprintf(page, "%u\n", sched_mc_power_savings);
6863}
48f24c4d
IM
6864static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6865 const char *buf, size_t count)
5c45bf27
SS
6866{
6867 return sched_power_savings_store(buf, count, 0);
6868}
6869SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6870 sched_mc_power_savings_store);
6871#endif
6872
6873#ifdef CONFIG_SCHED_SMT
6874static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6875{
6876 return sprintf(page, "%u\n", sched_smt_power_savings);
6877}
48f24c4d
IM
6878static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6879 const char *buf, size_t count)
5c45bf27
SS
6880{
6881 return sched_power_savings_store(buf, count, 1);
6882}
6883SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6884 sched_smt_power_savings_store);
6885#endif
6886
1da177e4
LT
6887/*
6888 * Force a reinitialization of the sched domains hierarchy. The domains
6889 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6890 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6891 * which will prevent rebalancing while the sched domains are recalculated.
6892 */
6893static int update_sched_domains(struct notifier_block *nfb,
6894 unsigned long action, void *hcpu)
6895{
1da177e4
LT
6896 switch (action) {
6897 case CPU_UP_PREPARE:
6898 case CPU_DOWN_PREPARE:
1a20ff27 6899 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6900 return NOTIFY_OK;
6901
6902 case CPU_UP_CANCELED:
6903 case CPU_DOWN_FAILED:
6904 case CPU_ONLINE:
6905 case CPU_DEAD:
6906 /*
6907 * Fall through and re-initialise the domains.
6908 */
6909 break;
6910 default:
6911 return NOTIFY_DONE;
6912 }
6913
6914 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6915 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6916
6917 return NOTIFY_OK;
6918}
1da177e4
LT
6919
6920void __init sched_init_smp(void)
6921{
5c1e1767
NP
6922 cpumask_t non_isolated_cpus;
6923
1da177e4 6924 lock_cpu_hotplug();
1a20ff27 6925 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6926 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6927 if (cpus_empty(non_isolated_cpus))
6928 cpu_set(smp_processor_id(), non_isolated_cpus);
1da177e4
LT
6929 unlock_cpu_hotplug();
6930 /* XXX: Theoretical race here - CPU may be hotplugged now */
6931 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6932
6933 /* Move init over to a non-isolated CPU */
6934 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6935 BUG();
1da177e4
LT
6936}
6937#else
6938void __init sched_init_smp(void)
6939{
6940}
6941#endif /* CONFIG_SMP */
6942
6943int in_sched_functions(unsigned long addr)
6944{
6945 /* Linker adds these: start and end of __sched functions */
6946 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6947
1da177e4
LT
6948 return in_lock_functions(addr) ||
6949 (addr >= (unsigned long)__sched_text_start
6950 && addr < (unsigned long)__sched_text_end);
6951}
6952
6953void __init sched_init(void)
6954{
1da177e4 6955 int i, j, k;
476f3534 6956 int highest_cpu = 0;
1da177e4 6957
0a945022 6958 for_each_possible_cpu(i) {
70b97a7f
IM
6959 struct prio_array *array;
6960 struct rq *rq;
1da177e4
LT
6961
6962 rq = cpu_rq(i);
6963 spin_lock_init(&rq->lock);
fcb99371 6964 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6965 rq->nr_running = 0;
1da177e4
LT
6966 rq->active = rq->arrays;
6967 rq->expired = rq->arrays + 1;
6968 rq->best_expired_prio = MAX_PRIO;
6969
6970#ifdef CONFIG_SMP
41c7ce9a 6971 rq->sd = NULL;
7897986b
NP
6972 for (j = 1; j < 3; j++)
6973 rq->cpu_load[j] = 0;
1da177e4
LT
6974 rq->active_balance = 0;
6975 rq->push_cpu = 0;
0a2966b4 6976 rq->cpu = i;
1da177e4
LT
6977 rq->migration_thread = NULL;
6978 INIT_LIST_HEAD(&rq->migration_queue);
6979#endif
6980 atomic_set(&rq->nr_iowait, 0);
6981
6982 for (j = 0; j < 2; j++) {
6983 array = rq->arrays + j;
6984 for (k = 0; k < MAX_PRIO; k++) {
6985 INIT_LIST_HEAD(array->queue + k);
6986 __clear_bit(k, array->bitmap);
6987 }
6988 // delimiter for bitsearch
6989 __set_bit(MAX_PRIO, array->bitmap);
6990 }
476f3534 6991 highest_cpu = i;
1da177e4
LT
6992 }
6993
2dd73a4f 6994 set_load_weight(&init_task);
b50f60ce 6995
c9819f45 6996#ifdef CONFIG_SMP
476f3534 6997 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6998 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6999#endif
7000
b50f60ce
HC
7001#ifdef CONFIG_RT_MUTEXES
7002 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7003#endif
7004
1da177e4
LT
7005 /*
7006 * The boot idle thread does lazy MMU switching as well:
7007 */
7008 atomic_inc(&init_mm.mm_count);
7009 enter_lazy_tlb(&init_mm, current);
7010
7011 /*
7012 * Make us the idle thread. Technically, schedule() should not be
7013 * called from this thread, however somewhere below it might be,
7014 * but because we are the idle thread, we just pick up running again
7015 * when this runqueue becomes "idle".
7016 */
7017 init_idle(current, smp_processor_id());
7018}
7019
7020#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7021void __might_sleep(char *file, int line)
7022{
48f24c4d 7023#ifdef in_atomic
1da177e4
LT
7024 static unsigned long prev_jiffy; /* ratelimiting */
7025
7026 if ((in_atomic() || irqs_disabled()) &&
7027 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7028 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7029 return;
7030 prev_jiffy = jiffies;
91368d73 7031 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7032 " context at %s:%d\n", file, line);
7033 printk("in_atomic():%d, irqs_disabled():%d\n",
7034 in_atomic(), irqs_disabled());
a4c410f0 7035 debug_show_held_locks(current);
3117df04
IM
7036 if (irqs_disabled())
7037 print_irqtrace_events(current);
1da177e4
LT
7038 dump_stack();
7039 }
7040#endif
7041}
7042EXPORT_SYMBOL(__might_sleep);
7043#endif
7044
7045#ifdef CONFIG_MAGIC_SYSRQ
7046void normalize_rt_tasks(void)
7047{
70b97a7f 7048 struct prio_array *array;
1da177e4 7049 struct task_struct *p;
1da177e4 7050 unsigned long flags;
70b97a7f 7051 struct rq *rq;
1da177e4
LT
7052
7053 read_lock_irq(&tasklist_lock);
c96d145e 7054 for_each_process(p) {
1da177e4
LT
7055 if (!rt_task(p))
7056 continue;
7057
b29739f9
IM
7058 spin_lock_irqsave(&p->pi_lock, flags);
7059 rq = __task_rq_lock(p);
1da177e4
LT
7060
7061 array = p->array;
7062 if (array)
7063 deactivate_task(p, task_rq(p));
7064 __setscheduler(p, SCHED_NORMAL, 0);
7065 if (array) {
7066 __activate_task(p, task_rq(p));
7067 resched_task(rq->curr);
7068 }
7069
b29739f9
IM
7070 __task_rq_unlock(rq);
7071 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
7072 }
7073 read_unlock_irq(&tasklist_lock);
7074}
7075
7076#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7077
7078#ifdef CONFIG_IA64
7079/*
7080 * These functions are only useful for the IA64 MCA handling.
7081 *
7082 * They can only be called when the whole system has been
7083 * stopped - every CPU needs to be quiescent, and no scheduling
7084 * activity can take place. Using them for anything else would
7085 * be a serious bug, and as a result, they aren't even visible
7086 * under any other configuration.
7087 */
7088
7089/**
7090 * curr_task - return the current task for a given cpu.
7091 * @cpu: the processor in question.
7092 *
7093 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7094 */
36c8b586 7095struct task_struct *curr_task(int cpu)
1df5c10a
LT
7096{
7097 return cpu_curr(cpu);
7098}
7099
7100/**
7101 * set_curr_task - set the current task for a given cpu.
7102 * @cpu: the processor in question.
7103 * @p: the task pointer to set.
7104 *
7105 * Description: This function must only be used when non-maskable interrupts
7106 * are serviced on a separate stack. It allows the architecture to switch the
7107 * notion of the current task on a cpu in a non-blocking manner. This function
7108 * must be called with all CPU's synchronized, and interrupts disabled, the
7109 * and caller must save the original value of the current task (see
7110 * curr_task() above) and restore that value before reenabling interrupts and
7111 * re-starting the system.
7112 *
7113 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7114 */
36c8b586 7115void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7116{
7117 cpu_curr(cpu) = p;
7118}
7119
7120#endif