]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched/cpupri: Remove cpupri->pri_active
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
6e0534f2 82#include "sched_cpupri.h"
21aa9af0 83#include "workqueue_sched.h"
5091faa4 84#include "sched_autogroup.h"
6e0534f2 85
a8d154b0 86#define CREATE_TRACE_POINTS
ad8d75ff 87#include <trace/events/sched.h>
a8d154b0 88
1da177e4
LT
89/*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98/*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107/*
d7876a08 108 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 109 */
d6322faf 110#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 111
6aa645ea
IM
112#define NICE_0_LOAD SCHED_LOAD_SCALE
113#define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
1da177e4
LT
115/*
116 * These are the 'tuning knobs' of the scheduler:
117 *
a4ec24b4 118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
119 * Timeslices get refilled after they expire.
120 */
1da177e4 121#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 122
d0b27fa7
PZ
123/*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126#define RUNTIME_INF ((u64)~0ULL)
127
e05606d3
IM
128static inline int rt_policy(int policy)
129{
63f01241 130 if (policy == SCHED_FIFO || policy == SCHED_RR)
e05606d3
IM
131 return 1;
132 return 0;
133}
134
135static inline int task_has_rt_policy(struct task_struct *p)
136{
137 return rt_policy(p->policy);
138}
139
1da177e4 140/*
6aa645ea 141 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 142 */
6aa645ea
IM
143struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146};
147
d0b27fa7 148struct rt_bandwidth {
ea736ed5 149 /* nests inside the rq lock: */
0986b11b 150 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
d0b27fa7
PZ
154};
155
156static struct rt_bandwidth def_rt_bandwidth;
157
158static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161{
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179}
180
181static
182void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183{
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
0986b11b 187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 188
d0b27fa7
PZ
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
192}
193
c8bfff6d
KH
194static inline int rt_bandwidth_enabled(void)
195{
196 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
197}
198
199static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
200{
201 ktime_t now;
202
cac64d00 203 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
204 return;
205
206 if (hrtimer_active(&rt_b->rt_period_timer))
207 return;
208
0986b11b 209 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 210 for (;;) {
7f1e2ca9
PZ
211 unsigned long delta;
212 ktime_t soft, hard;
213
d0b27fa7
PZ
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 break;
216
217 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
218 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
219
220 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
221 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
222 delta = ktime_to_ns(ktime_sub(hard, soft));
223 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 224 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 225 }
0986b11b 226 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
227}
228
229#ifdef CONFIG_RT_GROUP_SCHED
230static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
231{
232 hrtimer_cancel(&rt_b->rt_period_timer);
233}
234#endif
235
712555ee 236/*
c4a8849a 237 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
238 * detach_destroy_domains and partition_sched_domains.
239 */
240static DEFINE_MUTEX(sched_domains_mutex);
241
7c941438 242#ifdef CONFIG_CGROUP_SCHED
29f59db3 243
68318b8e
SV
244#include <linux/cgroup.h>
245
29f59db3
SV
246struct cfs_rq;
247
6f505b16
PZ
248static LIST_HEAD(task_groups);
249
29f59db3 250/* task group related information */
4cf86d77 251struct task_group {
68318b8e 252 struct cgroup_subsys_state css;
6c415b92 253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
2069dd75
PZ
260
261 atomic_t load_weight;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
f473aa5e
PZ
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
5091faa4
MG
277
278#ifdef CONFIG_SCHED_AUTOGROUP
279 struct autogroup *autogroup;
280#endif
29f59db3
SV
281};
282
3d4b47b4 283/* task_group_lock serializes the addition/removal of task groups */
8ed36996 284static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 285
e9036b36
CG
286#ifdef CONFIG_FAIR_GROUP_SCHED
287
07e06b01 288# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 289
cb4ad1ff 290/*
2e084786
LJ
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
cb4ad1ff
MX
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
cd62287e
MG
298#define MIN_SHARES (1UL << 1)
299#define MAX_SHARES (1UL << 18)
18d95a28 300
07e06b01 301static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
302#endif
303
29f59db3 304/* Default task group.
3a252015 305 * Every task in system belong to this group at bootup.
29f59db3 306 */
07e06b01 307struct task_group root_task_group;
29f59db3 308
7c941438 309#endif /* CONFIG_CGROUP_SCHED */
29f59db3 310
6aa645ea
IM
311/* CFS-related fields in a runqueue */
312struct cfs_rq {
313 struct load_weight load;
314 unsigned long nr_running;
315
6aa645ea 316 u64 exec_clock;
e9acbff6 317 u64 min_vruntime;
3fe1698b
PZ
318#ifndef CONFIG_64BIT
319 u64 min_vruntime_copy;
320#endif
6aa645ea
IM
321
322 struct rb_root tasks_timeline;
323 struct rb_node *rb_leftmost;
4a55bd5e
PZ
324
325 struct list_head tasks;
326 struct list_head *balance_iterator;
327
328 /*
329 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
330 * It is set to NULL otherwise (i.e when none are currently running).
331 */
ac53db59 332 struct sched_entity *curr, *next, *last, *skip;
ddc97297 333
4934a4d3 334#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 335 unsigned int nr_spread_over;
4934a4d3 336#endif
ddc97297 337
62160e3f 338#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
339 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
340
41a2d6cf
IM
341 /*
342 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
343 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
344 * (like users, containers etc.)
345 *
346 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
347 * list is used during load balance.
348 */
3d4b47b4 349 int on_list;
41a2d6cf
IM
350 struct list_head leaf_cfs_rq_list;
351 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
352
353#ifdef CONFIG_SMP
c09595f6 354 /*
c8cba857 355 * the part of load.weight contributed by tasks
c09595f6 356 */
c8cba857 357 unsigned long task_weight;
c09595f6 358
c8cba857
PZ
359 /*
360 * h_load = weight * f(tg)
361 *
362 * Where f(tg) is the recursive weight fraction assigned to
363 * this group.
364 */
365 unsigned long h_load;
c09595f6 366
c8cba857 367 /*
3b3d190e
PT
368 * Maintaining per-cpu shares distribution for group scheduling
369 *
370 * load_stamp is the last time we updated the load average
371 * load_last is the last time we updated the load average and saw load
372 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 373 */
2069dd75
PZ
374 u64 load_avg;
375 u64 load_period;
3b3d190e 376 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 377
2069dd75 378 unsigned long load_contribution;
c09595f6 379#endif
6aa645ea
IM
380#endif
381};
1da177e4 382
6aa645ea
IM
383/* Real-Time classes' related field in a runqueue: */
384struct rt_rq {
385 struct rt_prio_array active;
63489e45 386 unsigned long rt_nr_running;
052f1dc7 387#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
388 struct {
389 int curr; /* highest queued rt task prio */
398a153b 390#ifdef CONFIG_SMP
e864c499 391 int next; /* next highest */
398a153b 392#endif
e864c499 393 } highest_prio;
6f505b16 394#endif
fa85ae24 395#ifdef CONFIG_SMP
73fe6aae 396 unsigned long rt_nr_migratory;
a1ba4d8b 397 unsigned long rt_nr_total;
a22d7fc1 398 int overloaded;
917b627d 399 struct plist_head pushable_tasks;
fa85ae24 400#endif
6f505b16 401 int rt_throttled;
fa85ae24 402 u64 rt_time;
ac086bc2 403 u64 rt_runtime;
ea736ed5 404 /* Nests inside the rq lock: */
0986b11b 405 raw_spinlock_t rt_runtime_lock;
6f505b16 406
052f1dc7 407#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
408 unsigned long rt_nr_boosted;
409
6f505b16
PZ
410 struct rq *rq;
411 struct list_head leaf_rt_rq_list;
412 struct task_group *tg;
6f505b16 413#endif
6aa645ea
IM
414};
415
57d885fe
GH
416#ifdef CONFIG_SMP
417
418/*
419 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
420 * variables. Each exclusive cpuset essentially defines an island domain by
421 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
422 * exclusive cpuset is created, we also create and attach a new root-domain
423 * object.
424 *
57d885fe
GH
425 */
426struct root_domain {
427 atomic_t refcount;
26a148eb 428 atomic_t rto_count;
dce840a0 429 struct rcu_head rcu;
c6c4927b
RR
430 cpumask_var_t span;
431 cpumask_var_t online;
637f5085 432
0eab9146 433 /*
637f5085
GH
434 * The "RT overload" flag: it gets set if a CPU has more than
435 * one runnable RT task.
436 */
c6c4927b 437 cpumask_var_t rto_mask;
6e0534f2 438 struct cpupri cpupri;
57d885fe
GH
439};
440
dc938520
GH
441/*
442 * By default the system creates a single root-domain with all cpus as
443 * members (mimicking the global state we have today).
444 */
57d885fe
GH
445static struct root_domain def_root_domain;
446
ed2d372c 447#endif /* CONFIG_SMP */
57d885fe 448
1da177e4
LT
449/*
450 * This is the main, per-CPU runqueue data structure.
451 *
452 * Locking rule: those places that want to lock multiple runqueues
453 * (such as the load balancing or the thread migration code), lock
454 * acquire operations must be ordered by ascending &runqueue.
455 */
70b97a7f 456struct rq {
d8016491 457 /* runqueue lock: */
05fa785c 458 raw_spinlock_t lock;
1da177e4
LT
459
460 /*
461 * nr_running and cpu_load should be in the same cacheline because
462 * remote CPUs use both these fields when doing load calculation.
463 */
464 unsigned long nr_running;
6aa645ea
IM
465 #define CPU_LOAD_IDX_MAX 5
466 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 467 unsigned long last_load_update_tick;
46cb4b7c 468#ifdef CONFIG_NO_HZ
39c0cbe2 469 u64 nohz_stamp;
83cd4fe2 470 unsigned char nohz_balance_kick;
46cb4b7c 471#endif
61eadef6 472 int skip_clock_update;
a64692a3 473
d8016491
IM
474 /* capture load from *all* tasks on this cpu: */
475 struct load_weight load;
6aa645ea
IM
476 unsigned long nr_load_updates;
477 u64 nr_switches;
478
479 struct cfs_rq cfs;
6f505b16 480 struct rt_rq rt;
6f505b16 481
6aa645ea 482#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
483 /* list of leaf cfs_rq on this cpu: */
484 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
485#endif
486#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 487 struct list_head leaf_rt_rq_list;
1da177e4 488#endif
1da177e4
LT
489
490 /*
491 * This is part of a global counter where only the total sum
492 * over all CPUs matters. A task can increase this counter on
493 * one CPU and if it got migrated afterwards it may decrease
494 * it on another CPU. Always updated under the runqueue lock:
495 */
496 unsigned long nr_uninterruptible;
497
34f971f6 498 struct task_struct *curr, *idle, *stop;
c9819f45 499 unsigned long next_balance;
1da177e4 500 struct mm_struct *prev_mm;
6aa645ea 501
3e51f33f 502 u64 clock;
305e6835 503 u64 clock_task;
6aa645ea 504
1da177e4
LT
505 atomic_t nr_iowait;
506
507#ifdef CONFIG_SMP
0eab9146 508 struct root_domain *rd;
1da177e4
LT
509 struct sched_domain *sd;
510
e51fd5e2
PZ
511 unsigned long cpu_power;
512
a0a522ce 513 unsigned char idle_at_tick;
1da177e4 514 /* For active balancing */
3f029d3c 515 int post_schedule;
1da177e4
LT
516 int active_balance;
517 int push_cpu;
969c7921 518 struct cpu_stop_work active_balance_work;
d8016491
IM
519 /* cpu of this runqueue: */
520 int cpu;
1f11eb6a 521 int online;
1da177e4 522
e9e9250b
PZ
523 u64 rt_avg;
524 u64 age_stamp;
1b9508f6
MG
525 u64 idle_stamp;
526 u64 avg_idle;
1da177e4
LT
527#endif
528
aa483808
VP
529#ifdef CONFIG_IRQ_TIME_ACCOUNTING
530 u64 prev_irq_time;
531#endif
e6e6685a
GC
532#ifdef CONFIG_PARAVIRT
533 u64 prev_steal_time;
534#endif
095c0aa8
GC
535#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
536 u64 prev_steal_time_rq;
537#endif
aa483808 538
dce48a84
TG
539 /* calc_load related fields */
540 unsigned long calc_load_update;
541 long calc_load_active;
542
8f4d37ec 543#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
544#ifdef CONFIG_SMP
545 int hrtick_csd_pending;
546 struct call_single_data hrtick_csd;
547#endif
8f4d37ec
PZ
548 struct hrtimer hrtick_timer;
549#endif
550
1da177e4
LT
551#ifdef CONFIG_SCHEDSTATS
552 /* latency stats */
553 struct sched_info rq_sched_info;
9c2c4802
KC
554 unsigned long long rq_cpu_time;
555 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
556
557 /* sys_sched_yield() stats */
480b9434 558 unsigned int yld_count;
1da177e4
LT
559
560 /* schedule() stats */
480b9434
KC
561 unsigned int sched_switch;
562 unsigned int sched_count;
563 unsigned int sched_goidle;
1da177e4
LT
564
565 /* try_to_wake_up() stats */
480b9434
KC
566 unsigned int ttwu_count;
567 unsigned int ttwu_local;
1da177e4 568#endif
317f3941
PZ
569
570#ifdef CONFIG_SMP
571 struct task_struct *wake_list;
572#endif
1da177e4
LT
573};
574
f34e3b61 575static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 576
a64692a3 577
1e5a7405 578static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 579
0a2966b4
CL
580static inline int cpu_of(struct rq *rq)
581{
582#ifdef CONFIG_SMP
583 return rq->cpu;
584#else
585 return 0;
586#endif
587}
588
497f0ab3 589#define rcu_dereference_check_sched_domain(p) \
d11c563d 590 rcu_dereference_check((p), \
d11c563d
PM
591 lockdep_is_held(&sched_domains_mutex))
592
674311d5
NP
593/*
594 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 595 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
596 *
597 * The domain tree of any CPU may only be accessed from within
598 * preempt-disabled sections.
599 */
48f24c4d 600#define for_each_domain(cpu, __sd) \
497f0ab3 601 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
602
603#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
604#define this_rq() (&__get_cpu_var(runqueues))
605#define task_rq(p) cpu_rq(task_cpu(p))
606#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 607#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 608
dc61b1d6
PZ
609#ifdef CONFIG_CGROUP_SCHED
610
611/*
612 * Return the group to which this tasks belongs.
613 *
6c6c54e1
PZ
614 * We use task_subsys_state_check() and extend the RCU verification with
615 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
616 * task it moves into the cgroup. Therefore by holding either of those locks,
617 * we pin the task to the current cgroup.
dc61b1d6
PZ
618 */
619static inline struct task_group *task_group(struct task_struct *p)
620{
5091faa4 621 struct task_group *tg;
dc61b1d6
PZ
622 struct cgroup_subsys_state *css;
623
624 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
6c6c54e1
PZ
625 lockdep_is_held(&p->pi_lock) ||
626 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
627 tg = container_of(css, struct task_group, css);
628
629 return autogroup_task_group(p, tg);
dc61b1d6
PZ
630}
631
632/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
633static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
634{
635#ifdef CONFIG_FAIR_GROUP_SCHED
636 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
637 p->se.parent = task_group(p)->se[cpu];
638#endif
639
640#ifdef CONFIG_RT_GROUP_SCHED
641 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
642 p->rt.parent = task_group(p)->rt_se[cpu];
643#endif
644}
645
646#else /* CONFIG_CGROUP_SCHED */
647
648static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
649static inline struct task_group *task_group(struct task_struct *p)
650{
651 return NULL;
652}
653
654#endif /* CONFIG_CGROUP_SCHED */
655
fe44d621 656static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 657
fe44d621 658static void update_rq_clock(struct rq *rq)
3e51f33f 659{
fe44d621 660 s64 delta;
305e6835 661
61eadef6 662 if (rq->skip_clock_update > 0)
f26f9aff 663 return;
aa483808 664
fe44d621
PZ
665 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
666 rq->clock += delta;
667 update_rq_clock_task(rq, delta);
3e51f33f
PZ
668}
669
bf5c91ba
IM
670/*
671 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
672 */
673#ifdef CONFIG_SCHED_DEBUG
674# define const_debug __read_mostly
675#else
676# define const_debug static const
677#endif
678
017730c1 679/**
1fd06bb1 680 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 681 * @cpu: the processor in question.
017730c1 682 *
017730c1
IM
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
05fa785c 688 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
7740191c 743 char *cmp;
f00b45c1
PZ
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
7740191c 754 cmp = strstrip(buf);
f00b45c1 755
524429c3 756 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
757 neg = 1;
758 cmp += 3;
759 }
760
761 for (i = 0; sched_feat_names[i]; i++) {
7740191c 762 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
763 if (neg)
764 sysctl_sched_features &= ~(1UL << i);
765 else
766 sysctl_sched_features |= (1UL << i);
767 break;
768 }
769 }
770
771 if (!sched_feat_names[i])
772 return -EINVAL;
773
42994724 774 *ppos += cnt;
f00b45c1
PZ
775
776 return cnt;
777}
778
34f3a814
LZ
779static int sched_feat_open(struct inode *inode, struct file *filp)
780{
781 return single_open(filp, sched_feat_show, NULL);
782}
783
828c0950 784static const struct file_operations sched_feat_fops = {
34f3a814
LZ
785 .open = sched_feat_open,
786 .write = sched_feat_write,
787 .read = seq_read,
788 .llseek = seq_lseek,
789 .release = single_release,
f00b45c1
PZ
790};
791
792static __init int sched_init_debug(void)
793{
f00b45c1
PZ
794 debugfs_create_file("sched_features", 0644, NULL, NULL,
795 &sched_feat_fops);
796
797 return 0;
798}
799late_initcall(sched_init_debug);
800
801#endif
802
803#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 804
b82d9fdd
PZ
805/*
806 * Number of tasks to iterate in a single balance run.
807 * Limited because this is done with IRQs disabled.
808 */
809const_debug unsigned int sysctl_sched_nr_migrate = 32;
810
e9e9250b
PZ
811/*
812 * period over which we average the RT time consumption, measured
813 * in ms.
814 *
815 * default: 1s
816 */
817const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
818
fa85ae24 819/*
9f0c1e56 820 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
821 * default: 1s
822 */
9f0c1e56 823unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 824
6892b75e
IM
825static __read_mostly int scheduler_running;
826
9f0c1e56
PZ
827/*
828 * part of the period that we allow rt tasks to run in us.
829 * default: 0.95s
830 */
831int sysctl_sched_rt_runtime = 950000;
fa85ae24 832
d0b27fa7
PZ
833static inline u64 global_rt_period(void)
834{
835 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
836}
837
838static inline u64 global_rt_runtime(void)
839{
e26873bb 840 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
841 return RUNTIME_INF;
842
843 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
844}
fa85ae24 845
1da177e4 846#ifndef prepare_arch_switch
4866cde0
NP
847# define prepare_arch_switch(next) do { } while (0)
848#endif
849#ifndef finish_arch_switch
850# define finish_arch_switch(prev) do { } while (0)
851#endif
852
051a1d1a
DA
853static inline int task_current(struct rq *rq, struct task_struct *p)
854{
855 return rq->curr == p;
856}
857
70b97a7f 858static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 859{
3ca7a440
PZ
860#ifdef CONFIG_SMP
861 return p->on_cpu;
862#else
051a1d1a 863 return task_current(rq, p);
3ca7a440 864#endif
4866cde0
NP
865}
866
3ca7a440 867#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 868static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 869{
3ca7a440
PZ
870#ifdef CONFIG_SMP
871 /*
872 * We can optimise this out completely for !SMP, because the
873 * SMP rebalancing from interrupt is the only thing that cares
874 * here.
875 */
876 next->on_cpu = 1;
877#endif
4866cde0
NP
878}
879
70b97a7f 880static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 881{
3ca7a440
PZ
882#ifdef CONFIG_SMP
883 /*
884 * After ->on_cpu is cleared, the task can be moved to a different CPU.
885 * We must ensure this doesn't happen until the switch is completely
886 * finished.
887 */
888 smp_wmb();
889 prev->on_cpu = 0;
890#endif
da04c035
IM
891#ifdef CONFIG_DEBUG_SPINLOCK
892 /* this is a valid case when another task releases the spinlock */
893 rq->lock.owner = current;
894#endif
8a25d5de
IM
895 /*
896 * If we are tracking spinlock dependencies then we have to
897 * fix up the runqueue lock - which gets 'carried over' from
898 * prev into current:
899 */
900 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
901
05fa785c 902 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
903}
904
905#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 906static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
912 * here.
913 */
3ca7a440 914 next->on_cpu = 1;
4866cde0
NP
915#endif
916#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 917 raw_spin_unlock_irq(&rq->lock);
4866cde0 918#else
05fa785c 919 raw_spin_unlock(&rq->lock);
4866cde0
NP
920#endif
921}
922
70b97a7f 923static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
924{
925#ifdef CONFIG_SMP
926 /*
3ca7a440 927 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
928 * We must ensure this doesn't happen until the switch is completely
929 * finished.
930 */
931 smp_wmb();
3ca7a440 932 prev->on_cpu = 0;
4866cde0
NP
933#endif
934#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
935 local_irq_enable();
1da177e4 936#endif
4866cde0
NP
937}
938#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 939
0970d299 940/*
0122ec5b 941 * __task_rq_lock - lock the rq @p resides on.
b29739f9 942 */
70b97a7f 943static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
944 __acquires(rq->lock)
945{
0970d299
PZ
946 struct rq *rq;
947
0122ec5b
PZ
948 lockdep_assert_held(&p->pi_lock);
949
3a5c359a 950 for (;;) {
0970d299 951 rq = task_rq(p);
05fa785c 952 raw_spin_lock(&rq->lock);
65cc8e48 953 if (likely(rq == task_rq(p)))
3a5c359a 954 return rq;
05fa785c 955 raw_spin_unlock(&rq->lock);
b29739f9 956 }
b29739f9
IM
957}
958
1da177e4 959/*
0122ec5b 960 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 961 */
70b97a7f 962static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 963 __acquires(p->pi_lock)
1da177e4
LT
964 __acquires(rq->lock)
965{
70b97a7f 966 struct rq *rq;
1da177e4 967
3a5c359a 968 for (;;) {
0122ec5b 969 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 970 rq = task_rq(p);
05fa785c 971 raw_spin_lock(&rq->lock);
65cc8e48 972 if (likely(rq == task_rq(p)))
3a5c359a 973 return rq;
0122ec5b
PZ
974 raw_spin_unlock(&rq->lock);
975 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 976 }
1da177e4
LT
977}
978
a9957449 979static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
980 __releases(rq->lock)
981{
05fa785c 982 raw_spin_unlock(&rq->lock);
b29739f9
IM
983}
984
0122ec5b
PZ
985static inline void
986task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 987 __releases(rq->lock)
0122ec5b 988 __releases(p->pi_lock)
1da177e4 989{
0122ec5b
PZ
990 raw_spin_unlock(&rq->lock);
991 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
992}
993
1da177e4 994/*
cc2a73b5 995 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 996 */
a9957449 997static struct rq *this_rq_lock(void)
1da177e4
LT
998 __acquires(rq->lock)
999{
70b97a7f 1000 struct rq *rq;
1da177e4
LT
1001
1002 local_irq_disable();
1003 rq = this_rq();
05fa785c 1004 raw_spin_lock(&rq->lock);
1da177e4
LT
1005
1006 return rq;
1007}
1008
8f4d37ec
PZ
1009#ifdef CONFIG_SCHED_HRTICK
1010/*
1011 * Use HR-timers to deliver accurate preemption points.
1012 *
1013 * Its all a bit involved since we cannot program an hrt while holding the
1014 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1015 * reschedule event.
1016 *
1017 * When we get rescheduled we reprogram the hrtick_timer outside of the
1018 * rq->lock.
1019 */
8f4d37ec
PZ
1020
1021/*
1022 * Use hrtick when:
1023 * - enabled by features
1024 * - hrtimer is actually high res
1025 */
1026static inline int hrtick_enabled(struct rq *rq)
1027{
1028 if (!sched_feat(HRTICK))
1029 return 0;
ba42059f 1030 if (!cpu_active(cpu_of(rq)))
b328ca18 1031 return 0;
8f4d37ec
PZ
1032 return hrtimer_is_hres_active(&rq->hrtick_timer);
1033}
1034
8f4d37ec
PZ
1035static void hrtick_clear(struct rq *rq)
1036{
1037 if (hrtimer_active(&rq->hrtick_timer))
1038 hrtimer_cancel(&rq->hrtick_timer);
1039}
1040
8f4d37ec
PZ
1041/*
1042 * High-resolution timer tick.
1043 * Runs from hardirq context with interrupts disabled.
1044 */
1045static enum hrtimer_restart hrtick(struct hrtimer *timer)
1046{
1047 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1048
1049 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1050
05fa785c 1051 raw_spin_lock(&rq->lock);
3e51f33f 1052 update_rq_clock(rq);
8f4d37ec 1053 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1054 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1055
1056 return HRTIMER_NORESTART;
1057}
1058
95e904c7 1059#ifdef CONFIG_SMP
31656519
PZ
1060/*
1061 * called from hardirq (IPI) context
1062 */
1063static void __hrtick_start(void *arg)
b328ca18 1064{
31656519 1065 struct rq *rq = arg;
b328ca18 1066
05fa785c 1067 raw_spin_lock(&rq->lock);
31656519
PZ
1068 hrtimer_restart(&rq->hrtick_timer);
1069 rq->hrtick_csd_pending = 0;
05fa785c 1070 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1071}
1072
31656519
PZ
1073/*
1074 * Called to set the hrtick timer state.
1075 *
1076 * called with rq->lock held and irqs disabled
1077 */
1078static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1079{
31656519
PZ
1080 struct hrtimer *timer = &rq->hrtick_timer;
1081 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1082
cc584b21 1083 hrtimer_set_expires(timer, time);
31656519
PZ
1084
1085 if (rq == this_rq()) {
1086 hrtimer_restart(timer);
1087 } else if (!rq->hrtick_csd_pending) {
6e275637 1088 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1089 rq->hrtick_csd_pending = 1;
1090 }
b328ca18
PZ
1091}
1092
1093static int
1094hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1095{
1096 int cpu = (int)(long)hcpu;
1097
1098 switch (action) {
1099 case CPU_UP_CANCELED:
1100 case CPU_UP_CANCELED_FROZEN:
1101 case CPU_DOWN_PREPARE:
1102 case CPU_DOWN_PREPARE_FROZEN:
1103 case CPU_DEAD:
1104 case CPU_DEAD_FROZEN:
31656519 1105 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1106 return NOTIFY_OK;
1107 }
1108
1109 return NOTIFY_DONE;
1110}
1111
fa748203 1112static __init void init_hrtick(void)
b328ca18
PZ
1113{
1114 hotcpu_notifier(hotplug_hrtick, 0);
1115}
31656519
PZ
1116#else
1117/*
1118 * Called to set the hrtick timer state.
1119 *
1120 * called with rq->lock held and irqs disabled
1121 */
1122static void hrtick_start(struct rq *rq, u64 delay)
1123{
7f1e2ca9 1124 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1125 HRTIMER_MODE_REL_PINNED, 0);
31656519 1126}
b328ca18 1127
006c75f1 1128static inline void init_hrtick(void)
8f4d37ec 1129{
8f4d37ec 1130}
31656519 1131#endif /* CONFIG_SMP */
8f4d37ec 1132
31656519 1133static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1134{
31656519
PZ
1135#ifdef CONFIG_SMP
1136 rq->hrtick_csd_pending = 0;
8f4d37ec 1137
31656519
PZ
1138 rq->hrtick_csd.flags = 0;
1139 rq->hrtick_csd.func = __hrtick_start;
1140 rq->hrtick_csd.info = rq;
1141#endif
8f4d37ec 1142
31656519
PZ
1143 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1144 rq->hrtick_timer.function = hrtick;
8f4d37ec 1145}
006c75f1 1146#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1147static inline void hrtick_clear(struct rq *rq)
1148{
1149}
1150
8f4d37ec
PZ
1151static inline void init_rq_hrtick(struct rq *rq)
1152{
1153}
1154
b328ca18
PZ
1155static inline void init_hrtick(void)
1156{
1157}
006c75f1 1158#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1159
c24d20db
IM
1160/*
1161 * resched_task - mark a task 'to be rescheduled now'.
1162 *
1163 * On UP this means the setting of the need_resched flag, on SMP it
1164 * might also involve a cross-CPU call to trigger the scheduler on
1165 * the target CPU.
1166 */
1167#ifdef CONFIG_SMP
1168
1169#ifndef tsk_is_polling
1170#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1171#endif
1172
31656519 1173static void resched_task(struct task_struct *p)
c24d20db
IM
1174{
1175 int cpu;
1176
05fa785c 1177 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1178
5ed0cec0 1179 if (test_tsk_need_resched(p))
c24d20db
IM
1180 return;
1181
5ed0cec0 1182 set_tsk_need_resched(p);
c24d20db
IM
1183
1184 cpu = task_cpu(p);
1185 if (cpu == smp_processor_id())
1186 return;
1187
1188 /* NEED_RESCHED must be visible before we test polling */
1189 smp_mb();
1190 if (!tsk_is_polling(p))
1191 smp_send_reschedule(cpu);
1192}
1193
1194static void resched_cpu(int cpu)
1195{
1196 struct rq *rq = cpu_rq(cpu);
1197 unsigned long flags;
1198
05fa785c 1199 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1200 return;
1201 resched_task(cpu_curr(cpu));
05fa785c 1202 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1203}
06d8308c
TG
1204
1205#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1206/*
1207 * In the semi idle case, use the nearest busy cpu for migrating timers
1208 * from an idle cpu. This is good for power-savings.
1209 *
1210 * We don't do similar optimization for completely idle system, as
1211 * selecting an idle cpu will add more delays to the timers than intended
1212 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1213 */
1214int get_nohz_timer_target(void)
1215{
1216 int cpu = smp_processor_id();
1217 int i;
1218 struct sched_domain *sd;
1219
057f3fad 1220 rcu_read_lock();
83cd4fe2 1221 for_each_domain(cpu, sd) {
057f3fad
PZ
1222 for_each_cpu(i, sched_domain_span(sd)) {
1223 if (!idle_cpu(i)) {
1224 cpu = i;
1225 goto unlock;
1226 }
1227 }
83cd4fe2 1228 }
057f3fad
PZ
1229unlock:
1230 rcu_read_unlock();
83cd4fe2
VP
1231 return cpu;
1232}
06d8308c
TG
1233/*
1234 * When add_timer_on() enqueues a timer into the timer wheel of an
1235 * idle CPU then this timer might expire before the next timer event
1236 * which is scheduled to wake up that CPU. In case of a completely
1237 * idle system the next event might even be infinite time into the
1238 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1239 * leaves the inner idle loop so the newly added timer is taken into
1240 * account when the CPU goes back to idle and evaluates the timer
1241 * wheel for the next timer event.
1242 */
1243void wake_up_idle_cpu(int cpu)
1244{
1245 struct rq *rq = cpu_rq(cpu);
1246
1247 if (cpu == smp_processor_id())
1248 return;
1249
1250 /*
1251 * This is safe, as this function is called with the timer
1252 * wheel base lock of (cpu) held. When the CPU is on the way
1253 * to idle and has not yet set rq->curr to idle then it will
1254 * be serialized on the timer wheel base lock and take the new
1255 * timer into account automatically.
1256 */
1257 if (rq->curr != rq->idle)
1258 return;
1259
1260 /*
1261 * We can set TIF_RESCHED on the idle task of the other CPU
1262 * lockless. The worst case is that the other CPU runs the
1263 * idle task through an additional NOOP schedule()
1264 */
5ed0cec0 1265 set_tsk_need_resched(rq->idle);
06d8308c
TG
1266
1267 /* NEED_RESCHED must be visible before we test polling */
1268 smp_mb();
1269 if (!tsk_is_polling(rq->idle))
1270 smp_send_reschedule(cpu);
1271}
39c0cbe2 1272
6d6bc0ad 1273#endif /* CONFIG_NO_HZ */
06d8308c 1274
e9e9250b
PZ
1275static u64 sched_avg_period(void)
1276{
1277 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1278}
1279
1280static void sched_avg_update(struct rq *rq)
1281{
1282 s64 period = sched_avg_period();
1283
1284 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1285 /*
1286 * Inline assembly required to prevent the compiler
1287 * optimising this loop into a divmod call.
1288 * See __iter_div_u64_rem() for another example of this.
1289 */
1290 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1291 rq->age_stamp += period;
1292 rq->rt_avg /= 2;
1293 }
1294}
1295
1296static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1297{
1298 rq->rt_avg += rt_delta;
1299 sched_avg_update(rq);
1300}
1301
6d6bc0ad 1302#else /* !CONFIG_SMP */
31656519 1303static void resched_task(struct task_struct *p)
c24d20db 1304{
05fa785c 1305 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1306 set_tsk_need_resched(p);
c24d20db 1307}
e9e9250b
PZ
1308
1309static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1310{
1311}
da2b71ed
SS
1312
1313static void sched_avg_update(struct rq *rq)
1314{
1315}
6d6bc0ad 1316#endif /* CONFIG_SMP */
c24d20db 1317
45bf76df
IM
1318#if BITS_PER_LONG == 32
1319# define WMULT_CONST (~0UL)
1320#else
1321# define WMULT_CONST (1UL << 32)
1322#endif
1323
1324#define WMULT_SHIFT 32
1325
194081eb
IM
1326/*
1327 * Shift right and round:
1328 */
cf2ab469 1329#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1330
a7be37ac
PZ
1331/*
1332 * delta *= weight / lw
1333 */
cb1c4fc9 1334static unsigned long
45bf76df
IM
1335calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1336 struct load_weight *lw)
1337{
1338 u64 tmp;
1339
c8b28116
NR
1340 /*
1341 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1342 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1343 * 2^SCHED_LOAD_RESOLUTION.
1344 */
1345 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1346 tmp = (u64)delta_exec * scale_load_down(weight);
1347 else
1348 tmp = (u64)delta_exec;
db670dac 1349
7a232e03 1350 if (!lw->inv_weight) {
c8b28116
NR
1351 unsigned long w = scale_load_down(lw->weight);
1352
1353 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1354 lw->inv_weight = 1;
c8b28116
NR
1355 else if (unlikely(!w))
1356 lw->inv_weight = WMULT_CONST;
7a232e03 1357 else
c8b28116 1358 lw->inv_weight = WMULT_CONST / w;
7a232e03 1359 }
45bf76df 1360
45bf76df
IM
1361 /*
1362 * Check whether we'd overflow the 64-bit multiplication:
1363 */
194081eb 1364 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1365 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1366 WMULT_SHIFT/2);
1367 else
cf2ab469 1368 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1369
ecf691da 1370 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1371}
1372
1091985b 1373static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1374{
1375 lw->weight += inc;
e89996ae 1376 lw->inv_weight = 0;
45bf76df
IM
1377}
1378
1091985b 1379static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1380{
1381 lw->weight -= dec;
e89996ae 1382 lw->inv_weight = 0;
45bf76df
IM
1383}
1384
2069dd75
PZ
1385static inline void update_load_set(struct load_weight *lw, unsigned long w)
1386{
1387 lw->weight = w;
1388 lw->inv_weight = 0;
1389}
1390
2dd73a4f
PW
1391/*
1392 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1393 * of tasks with abnormal "nice" values across CPUs the contribution that
1394 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1395 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1396 * scaled version of the new time slice allocation that they receive on time
1397 * slice expiry etc.
1398 */
1399
cce7ade8
PZ
1400#define WEIGHT_IDLEPRIO 3
1401#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1402
1403/*
1404 * Nice levels are multiplicative, with a gentle 10% change for every
1405 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1406 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1407 * that remained on nice 0.
1408 *
1409 * The "10% effect" is relative and cumulative: from _any_ nice level,
1410 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1411 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1412 * If a task goes up by ~10% and another task goes down by ~10% then
1413 * the relative distance between them is ~25%.)
dd41f596
IM
1414 */
1415static const int prio_to_weight[40] = {
254753dc
IM
1416 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1417 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1418 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1419 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1420 /* 0 */ 1024, 820, 655, 526, 423,
1421 /* 5 */ 335, 272, 215, 172, 137,
1422 /* 10 */ 110, 87, 70, 56, 45,
1423 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1424};
1425
5714d2de
IM
1426/*
1427 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1428 *
1429 * In cases where the weight does not change often, we can use the
1430 * precalculated inverse to speed up arithmetics by turning divisions
1431 * into multiplications:
1432 */
dd41f596 1433static const u32 prio_to_wmult[40] = {
254753dc
IM
1434 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1435 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1436 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1437 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1438 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1439 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1440 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1441 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1442};
2dd73a4f 1443
ef12fefa
BR
1444/* Time spent by the tasks of the cpu accounting group executing in ... */
1445enum cpuacct_stat_index {
1446 CPUACCT_STAT_USER, /* ... user mode */
1447 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1448
1449 CPUACCT_STAT_NSTATS,
1450};
1451
d842de87
SV
1452#ifdef CONFIG_CGROUP_CPUACCT
1453static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1454static void cpuacct_update_stats(struct task_struct *tsk,
1455 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1456#else
1457static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1458static inline void cpuacct_update_stats(struct task_struct *tsk,
1459 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1460#endif
1461
18d95a28
PZ
1462static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1463{
1464 update_load_add(&rq->load, load);
1465}
1466
1467static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1468{
1469 update_load_sub(&rq->load, load);
1470}
1471
7940ca36 1472#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1473typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1474
1475/*
1476 * Iterate the full tree, calling @down when first entering a node and @up when
1477 * leaving it for the final time.
1478 */
eb755805 1479static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1480{
1481 struct task_group *parent, *child;
eb755805 1482 int ret;
c09595f6
PZ
1483
1484 rcu_read_lock();
1485 parent = &root_task_group;
1486down:
eb755805
PZ
1487 ret = (*down)(parent, data);
1488 if (ret)
1489 goto out_unlock;
c09595f6
PZ
1490 list_for_each_entry_rcu(child, &parent->children, siblings) {
1491 parent = child;
1492 goto down;
1493
1494up:
1495 continue;
1496 }
eb755805
PZ
1497 ret = (*up)(parent, data);
1498 if (ret)
1499 goto out_unlock;
c09595f6
PZ
1500
1501 child = parent;
1502 parent = parent->parent;
1503 if (parent)
1504 goto up;
eb755805 1505out_unlock:
c09595f6 1506 rcu_read_unlock();
eb755805
PZ
1507
1508 return ret;
c09595f6
PZ
1509}
1510
eb755805
PZ
1511static int tg_nop(struct task_group *tg, void *data)
1512{
1513 return 0;
c09595f6 1514}
eb755805
PZ
1515#endif
1516
1517#ifdef CONFIG_SMP
f5f08f39
PZ
1518/* Used instead of source_load when we know the type == 0 */
1519static unsigned long weighted_cpuload(const int cpu)
1520{
1521 return cpu_rq(cpu)->load.weight;
1522}
1523
1524/*
1525 * Return a low guess at the load of a migration-source cpu weighted
1526 * according to the scheduling class and "nice" value.
1527 *
1528 * We want to under-estimate the load of migration sources, to
1529 * balance conservatively.
1530 */
1531static unsigned long source_load(int cpu, int type)
1532{
1533 struct rq *rq = cpu_rq(cpu);
1534 unsigned long total = weighted_cpuload(cpu);
1535
1536 if (type == 0 || !sched_feat(LB_BIAS))
1537 return total;
1538
1539 return min(rq->cpu_load[type-1], total);
1540}
1541
1542/*
1543 * Return a high guess at the load of a migration-target cpu weighted
1544 * according to the scheduling class and "nice" value.
1545 */
1546static unsigned long target_load(int cpu, int type)
1547{
1548 struct rq *rq = cpu_rq(cpu);
1549 unsigned long total = weighted_cpuload(cpu);
1550
1551 if (type == 0 || !sched_feat(LB_BIAS))
1552 return total;
1553
1554 return max(rq->cpu_load[type-1], total);
1555}
1556
ae154be1
PZ
1557static unsigned long power_of(int cpu)
1558{
e51fd5e2 1559 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1560}
1561
eb755805
PZ
1562static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1563
1564static unsigned long cpu_avg_load_per_task(int cpu)
1565{
1566 struct rq *rq = cpu_rq(cpu);
af6d596f 1567 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1568
4cd42620 1569 if (nr_running)
e2b245f8 1570 return rq->load.weight / nr_running;
eb755805 1571
e2b245f8 1572 return 0;
eb755805
PZ
1573}
1574
8f45e2b5
GH
1575#ifdef CONFIG_PREEMPT
1576
b78bb868
PZ
1577static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1578
70574a99 1579/*
8f45e2b5
GH
1580 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1581 * way at the expense of forcing extra atomic operations in all
1582 * invocations. This assures that the double_lock is acquired using the
1583 * same underlying policy as the spinlock_t on this architecture, which
1584 * reduces latency compared to the unfair variant below. However, it
1585 * also adds more overhead and therefore may reduce throughput.
70574a99 1586 */
8f45e2b5
GH
1587static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1588 __releases(this_rq->lock)
1589 __acquires(busiest->lock)
1590 __acquires(this_rq->lock)
1591{
05fa785c 1592 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1593 double_rq_lock(this_rq, busiest);
1594
1595 return 1;
1596}
1597
1598#else
1599/*
1600 * Unfair double_lock_balance: Optimizes throughput at the expense of
1601 * latency by eliminating extra atomic operations when the locks are
1602 * already in proper order on entry. This favors lower cpu-ids and will
1603 * grant the double lock to lower cpus over higher ids under contention,
1604 * regardless of entry order into the function.
1605 */
1606static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1607 __releases(this_rq->lock)
1608 __acquires(busiest->lock)
1609 __acquires(this_rq->lock)
1610{
1611 int ret = 0;
1612
05fa785c 1613 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1614 if (busiest < this_rq) {
05fa785c
TG
1615 raw_spin_unlock(&this_rq->lock);
1616 raw_spin_lock(&busiest->lock);
1617 raw_spin_lock_nested(&this_rq->lock,
1618 SINGLE_DEPTH_NESTING);
70574a99
AD
1619 ret = 1;
1620 } else
05fa785c
TG
1621 raw_spin_lock_nested(&busiest->lock,
1622 SINGLE_DEPTH_NESTING);
70574a99
AD
1623 }
1624 return ret;
1625}
1626
8f45e2b5
GH
1627#endif /* CONFIG_PREEMPT */
1628
1629/*
1630 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1631 */
1632static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1633{
1634 if (unlikely(!irqs_disabled())) {
1635 /* printk() doesn't work good under rq->lock */
05fa785c 1636 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1637 BUG_ON(1);
1638 }
1639
1640 return _double_lock_balance(this_rq, busiest);
1641}
1642
70574a99
AD
1643static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1644 __releases(busiest->lock)
1645{
05fa785c 1646 raw_spin_unlock(&busiest->lock);
70574a99
AD
1647 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1648}
1e3c88bd
PZ
1649
1650/*
1651 * double_rq_lock - safely lock two runqueues
1652 *
1653 * Note this does not disable interrupts like task_rq_lock,
1654 * you need to do so manually before calling.
1655 */
1656static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1657 __acquires(rq1->lock)
1658 __acquires(rq2->lock)
1659{
1660 BUG_ON(!irqs_disabled());
1661 if (rq1 == rq2) {
1662 raw_spin_lock(&rq1->lock);
1663 __acquire(rq2->lock); /* Fake it out ;) */
1664 } else {
1665 if (rq1 < rq2) {
1666 raw_spin_lock(&rq1->lock);
1667 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1668 } else {
1669 raw_spin_lock(&rq2->lock);
1670 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1671 }
1672 }
1e3c88bd
PZ
1673}
1674
1675/*
1676 * double_rq_unlock - safely unlock two runqueues
1677 *
1678 * Note this does not restore interrupts like task_rq_unlock,
1679 * you need to do so manually after calling.
1680 */
1681static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1682 __releases(rq1->lock)
1683 __releases(rq2->lock)
1684{
1685 raw_spin_unlock(&rq1->lock);
1686 if (rq1 != rq2)
1687 raw_spin_unlock(&rq2->lock);
1688 else
1689 __release(rq2->lock);
1690}
1691
d95f4122
MG
1692#else /* CONFIG_SMP */
1693
1694/*
1695 * double_rq_lock - safely lock two runqueues
1696 *
1697 * Note this does not disable interrupts like task_rq_lock,
1698 * you need to do so manually before calling.
1699 */
1700static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1701 __acquires(rq1->lock)
1702 __acquires(rq2->lock)
1703{
1704 BUG_ON(!irqs_disabled());
1705 BUG_ON(rq1 != rq2);
1706 raw_spin_lock(&rq1->lock);
1707 __acquire(rq2->lock); /* Fake it out ;) */
1708}
1709
1710/*
1711 * double_rq_unlock - safely unlock two runqueues
1712 *
1713 * Note this does not restore interrupts like task_rq_unlock,
1714 * you need to do so manually after calling.
1715 */
1716static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1717 __releases(rq1->lock)
1718 __releases(rq2->lock)
1719{
1720 BUG_ON(rq1 != rq2);
1721 raw_spin_unlock(&rq1->lock);
1722 __release(rq2->lock);
1723}
1724
18d95a28
PZ
1725#endif
1726
74f5187a 1727static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1728static void update_sysctl(void);
acb4a848 1729static int get_update_sysctl_factor(void);
fdf3e95d 1730static void update_cpu_load(struct rq *this_rq);
dce48a84 1731
cd29fe6f
PZ
1732static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1733{
1734 set_task_rq(p, cpu);
1735#ifdef CONFIG_SMP
1736 /*
1737 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1738 * successfuly executed on another CPU. We must ensure that updates of
1739 * per-task data have been completed by this moment.
1740 */
1741 smp_wmb();
1742 task_thread_info(p)->cpu = cpu;
1743#endif
1744}
dce48a84 1745
1e3c88bd 1746static const struct sched_class rt_sched_class;
dd41f596 1747
34f971f6 1748#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1749#define for_each_class(class) \
1750 for (class = sched_class_highest; class; class = class->next)
dd41f596 1751
1e3c88bd
PZ
1752#include "sched_stats.h"
1753
c09595f6 1754static void inc_nr_running(struct rq *rq)
9c217245
IM
1755{
1756 rq->nr_running++;
9c217245
IM
1757}
1758
c09595f6 1759static void dec_nr_running(struct rq *rq)
9c217245
IM
1760{
1761 rq->nr_running--;
9c217245
IM
1762}
1763
45bf76df
IM
1764static void set_load_weight(struct task_struct *p)
1765{
f05998d4
NR
1766 int prio = p->static_prio - MAX_RT_PRIO;
1767 struct load_weight *load = &p->se.load;
1768
dd41f596
IM
1769 /*
1770 * SCHED_IDLE tasks get minimal weight:
1771 */
1772 if (p->policy == SCHED_IDLE) {
c8b28116 1773 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1774 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1775 return;
1776 }
71f8bd46 1777
c8b28116 1778 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1779 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1780}
1781
371fd7e7 1782static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1783{
a64692a3 1784 update_rq_clock(rq);
dd41f596 1785 sched_info_queued(p);
371fd7e7 1786 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1787}
1788
371fd7e7 1789static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1790{
a64692a3 1791 update_rq_clock(rq);
46ac22ba 1792 sched_info_dequeued(p);
371fd7e7 1793 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1794}
1795
1e3c88bd
PZ
1796/*
1797 * activate_task - move a task to the runqueue.
1798 */
371fd7e7 1799static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1800{
1801 if (task_contributes_to_load(p))
1802 rq->nr_uninterruptible--;
1803
371fd7e7 1804 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1805 inc_nr_running(rq);
1806}
1807
1808/*
1809 * deactivate_task - remove a task from the runqueue.
1810 */
371fd7e7 1811static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1812{
1813 if (task_contributes_to_load(p))
1814 rq->nr_uninterruptible++;
1815
371fd7e7 1816 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1817 dec_nr_running(rq);
1818}
1819
b52bfee4
VP
1820#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1821
305e6835
VP
1822/*
1823 * There are no locks covering percpu hardirq/softirq time.
1824 * They are only modified in account_system_vtime, on corresponding CPU
1825 * with interrupts disabled. So, writes are safe.
1826 * They are read and saved off onto struct rq in update_rq_clock().
1827 * This may result in other CPU reading this CPU's irq time and can
1828 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1829 * or new value with a side effect of accounting a slice of irq time to wrong
1830 * task when irq is in progress while we read rq->clock. That is a worthy
1831 * compromise in place of having locks on each irq in account_system_time.
305e6835 1832 */
b52bfee4
VP
1833static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1834static DEFINE_PER_CPU(u64, cpu_softirq_time);
1835
1836static DEFINE_PER_CPU(u64, irq_start_time);
1837static int sched_clock_irqtime;
1838
1839void enable_sched_clock_irqtime(void)
1840{
1841 sched_clock_irqtime = 1;
1842}
1843
1844void disable_sched_clock_irqtime(void)
1845{
1846 sched_clock_irqtime = 0;
1847}
1848
8e92c201
PZ
1849#ifndef CONFIG_64BIT
1850static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1851
1852static inline void irq_time_write_begin(void)
1853{
1854 __this_cpu_inc(irq_time_seq.sequence);
1855 smp_wmb();
1856}
1857
1858static inline void irq_time_write_end(void)
1859{
1860 smp_wmb();
1861 __this_cpu_inc(irq_time_seq.sequence);
1862}
1863
1864static inline u64 irq_time_read(int cpu)
1865{
1866 u64 irq_time;
1867 unsigned seq;
1868
1869 do {
1870 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1871 irq_time = per_cpu(cpu_softirq_time, cpu) +
1872 per_cpu(cpu_hardirq_time, cpu);
1873 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1874
1875 return irq_time;
1876}
1877#else /* CONFIG_64BIT */
1878static inline void irq_time_write_begin(void)
1879{
1880}
1881
1882static inline void irq_time_write_end(void)
1883{
1884}
1885
1886static inline u64 irq_time_read(int cpu)
305e6835 1887{
305e6835
VP
1888 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1889}
8e92c201 1890#endif /* CONFIG_64BIT */
305e6835 1891
fe44d621
PZ
1892/*
1893 * Called before incrementing preempt_count on {soft,}irq_enter
1894 * and before decrementing preempt_count on {soft,}irq_exit.
1895 */
b52bfee4
VP
1896void account_system_vtime(struct task_struct *curr)
1897{
1898 unsigned long flags;
fe44d621 1899 s64 delta;
b52bfee4 1900 int cpu;
b52bfee4
VP
1901
1902 if (!sched_clock_irqtime)
1903 return;
1904
1905 local_irq_save(flags);
1906
b52bfee4 1907 cpu = smp_processor_id();
fe44d621
PZ
1908 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1909 __this_cpu_add(irq_start_time, delta);
1910
8e92c201 1911 irq_time_write_begin();
b52bfee4
VP
1912 /*
1913 * We do not account for softirq time from ksoftirqd here.
1914 * We want to continue accounting softirq time to ksoftirqd thread
1915 * in that case, so as not to confuse scheduler with a special task
1916 * that do not consume any time, but still wants to run.
1917 */
1918 if (hardirq_count())
fe44d621 1919 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1920 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1921 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1922
8e92c201 1923 irq_time_write_end();
b52bfee4
VP
1924 local_irq_restore(flags);
1925}
b7dadc38 1926EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1927
e6e6685a
GC
1928#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1929
1930#ifdef CONFIG_PARAVIRT
1931static inline u64 steal_ticks(u64 steal)
aa483808 1932{
e6e6685a
GC
1933 if (unlikely(steal > NSEC_PER_SEC))
1934 return div_u64(steal, TICK_NSEC);
fe44d621 1935
e6e6685a
GC
1936 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1937}
1938#endif
1939
fe44d621 1940static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1941{
095c0aa8
GC
1942/*
1943 * In theory, the compile should just see 0 here, and optimize out the call
1944 * to sched_rt_avg_update. But I don't trust it...
1945 */
1946#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
1947 s64 steal = 0, irq_delta = 0;
1948#endif
1949#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 1950 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1951
1952 /*
1953 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1954 * this case when a previous update_rq_clock() happened inside a
1955 * {soft,}irq region.
1956 *
1957 * When this happens, we stop ->clock_task and only update the
1958 * prev_irq_time stamp to account for the part that fit, so that a next
1959 * update will consume the rest. This ensures ->clock_task is
1960 * monotonic.
1961 *
1962 * It does however cause some slight miss-attribution of {soft,}irq
1963 * time, a more accurate solution would be to update the irq_time using
1964 * the current rq->clock timestamp, except that would require using
1965 * atomic ops.
1966 */
1967 if (irq_delta > delta)
1968 irq_delta = delta;
1969
1970 rq->prev_irq_time += irq_delta;
1971 delta -= irq_delta;
095c0aa8
GC
1972#endif
1973#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1974 if (static_branch((&paravirt_steal_rq_enabled))) {
1975 u64 st;
1976
1977 steal = paravirt_steal_clock(cpu_of(rq));
1978 steal -= rq->prev_steal_time_rq;
1979
1980 if (unlikely(steal > delta))
1981 steal = delta;
1982
1983 st = steal_ticks(steal);
1984 steal = st * TICK_NSEC;
1985
1986 rq->prev_steal_time_rq += steal;
1987
1988 delta -= steal;
1989 }
1990#endif
1991
fe44d621
PZ
1992 rq->clock_task += delta;
1993
095c0aa8
GC
1994#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
1995 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
1996 sched_rt_avg_update(rq, irq_delta + steal);
1997#endif
aa483808
VP
1998}
1999
095c0aa8 2000#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
2001static int irqtime_account_hi_update(void)
2002{
2003 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2004 unsigned long flags;
2005 u64 latest_ns;
2006 int ret = 0;
2007
2008 local_irq_save(flags);
2009 latest_ns = this_cpu_read(cpu_hardirq_time);
2010 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2011 ret = 1;
2012 local_irq_restore(flags);
2013 return ret;
2014}
2015
2016static int irqtime_account_si_update(void)
2017{
2018 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2019 unsigned long flags;
2020 u64 latest_ns;
2021 int ret = 0;
2022
2023 local_irq_save(flags);
2024 latest_ns = this_cpu_read(cpu_softirq_time);
2025 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2026 ret = 1;
2027 local_irq_restore(flags);
2028 return ret;
2029}
2030
fe44d621 2031#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2032
abb74cef
VP
2033#define sched_clock_irqtime (0)
2034
095c0aa8 2035#endif
b52bfee4 2036
1e3c88bd
PZ
2037#include "sched_idletask.c"
2038#include "sched_fair.c"
2039#include "sched_rt.c"
5091faa4 2040#include "sched_autogroup.c"
34f971f6 2041#include "sched_stoptask.c"
1e3c88bd
PZ
2042#ifdef CONFIG_SCHED_DEBUG
2043# include "sched_debug.c"
2044#endif
2045
34f971f6
PZ
2046void sched_set_stop_task(int cpu, struct task_struct *stop)
2047{
2048 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2049 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2050
2051 if (stop) {
2052 /*
2053 * Make it appear like a SCHED_FIFO task, its something
2054 * userspace knows about and won't get confused about.
2055 *
2056 * Also, it will make PI more or less work without too
2057 * much confusion -- but then, stop work should not
2058 * rely on PI working anyway.
2059 */
2060 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2061
2062 stop->sched_class = &stop_sched_class;
2063 }
2064
2065 cpu_rq(cpu)->stop = stop;
2066
2067 if (old_stop) {
2068 /*
2069 * Reset it back to a normal scheduling class so that
2070 * it can die in pieces.
2071 */
2072 old_stop->sched_class = &rt_sched_class;
2073 }
2074}
2075
14531189 2076/*
dd41f596 2077 * __normal_prio - return the priority that is based on the static prio
14531189 2078 */
14531189
IM
2079static inline int __normal_prio(struct task_struct *p)
2080{
dd41f596 2081 return p->static_prio;
14531189
IM
2082}
2083
b29739f9
IM
2084/*
2085 * Calculate the expected normal priority: i.e. priority
2086 * without taking RT-inheritance into account. Might be
2087 * boosted by interactivity modifiers. Changes upon fork,
2088 * setprio syscalls, and whenever the interactivity
2089 * estimator recalculates.
2090 */
36c8b586 2091static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2092{
2093 int prio;
2094
e05606d3 2095 if (task_has_rt_policy(p))
b29739f9
IM
2096 prio = MAX_RT_PRIO-1 - p->rt_priority;
2097 else
2098 prio = __normal_prio(p);
2099 return prio;
2100}
2101
2102/*
2103 * Calculate the current priority, i.e. the priority
2104 * taken into account by the scheduler. This value might
2105 * be boosted by RT tasks, or might be boosted by
2106 * interactivity modifiers. Will be RT if the task got
2107 * RT-boosted. If not then it returns p->normal_prio.
2108 */
36c8b586 2109static int effective_prio(struct task_struct *p)
b29739f9
IM
2110{
2111 p->normal_prio = normal_prio(p);
2112 /*
2113 * If we are RT tasks or we were boosted to RT priority,
2114 * keep the priority unchanged. Otherwise, update priority
2115 * to the normal priority:
2116 */
2117 if (!rt_prio(p->prio))
2118 return p->normal_prio;
2119 return p->prio;
2120}
2121
1da177e4
LT
2122/**
2123 * task_curr - is this task currently executing on a CPU?
2124 * @p: the task in question.
2125 */
36c8b586 2126inline int task_curr(const struct task_struct *p)
1da177e4
LT
2127{
2128 return cpu_curr(task_cpu(p)) == p;
2129}
2130
cb469845
SR
2131static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2132 const struct sched_class *prev_class,
da7a735e 2133 int oldprio)
cb469845
SR
2134{
2135 if (prev_class != p->sched_class) {
2136 if (prev_class->switched_from)
da7a735e
PZ
2137 prev_class->switched_from(rq, p);
2138 p->sched_class->switched_to(rq, p);
2139 } else if (oldprio != p->prio)
2140 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2141}
2142
1e5a7405
PZ
2143static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2144{
2145 const struct sched_class *class;
2146
2147 if (p->sched_class == rq->curr->sched_class) {
2148 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2149 } else {
2150 for_each_class(class) {
2151 if (class == rq->curr->sched_class)
2152 break;
2153 if (class == p->sched_class) {
2154 resched_task(rq->curr);
2155 break;
2156 }
2157 }
2158 }
2159
2160 /*
2161 * A queue event has occurred, and we're going to schedule. In
2162 * this case, we can save a useless back to back clock update.
2163 */
fd2f4419 2164 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2165 rq->skip_clock_update = 1;
2166}
2167
1da177e4 2168#ifdef CONFIG_SMP
cc367732
IM
2169/*
2170 * Is this task likely cache-hot:
2171 */
e7693a36 2172static int
cc367732
IM
2173task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2174{
2175 s64 delta;
2176
e6c8fba7
PZ
2177 if (p->sched_class != &fair_sched_class)
2178 return 0;
2179
ef8002f6
NR
2180 if (unlikely(p->policy == SCHED_IDLE))
2181 return 0;
2182
f540a608
IM
2183 /*
2184 * Buddy candidates are cache hot:
2185 */
f685ceac 2186 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2187 (&p->se == cfs_rq_of(&p->se)->next ||
2188 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2189 return 1;
2190
6bc1665b
IM
2191 if (sysctl_sched_migration_cost == -1)
2192 return 1;
2193 if (sysctl_sched_migration_cost == 0)
2194 return 0;
2195
cc367732
IM
2196 delta = now - p->se.exec_start;
2197
2198 return delta < (s64)sysctl_sched_migration_cost;
2199}
2200
dd41f596 2201void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2202{
e2912009
PZ
2203#ifdef CONFIG_SCHED_DEBUG
2204 /*
2205 * We should never call set_task_cpu() on a blocked task,
2206 * ttwu() will sort out the placement.
2207 */
077614ee
PZ
2208 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2209 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2210
2211#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2212 /*
2213 * The caller should hold either p->pi_lock or rq->lock, when changing
2214 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2215 *
2216 * sched_move_task() holds both and thus holding either pins the cgroup,
2217 * see set_task_rq().
2218 *
2219 * Furthermore, all task_rq users should acquire both locks, see
2220 * task_rq_lock().
2221 */
0122ec5b
PZ
2222 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2223 lockdep_is_held(&task_rq(p)->lock)));
2224#endif
e2912009
PZ
2225#endif
2226
de1d7286 2227 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2228
0c69774e
PZ
2229 if (task_cpu(p) != new_cpu) {
2230 p->se.nr_migrations++;
a8b0ca17 2231 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 2232 }
dd41f596
IM
2233
2234 __set_task_cpu(p, new_cpu);
c65cc870
IM
2235}
2236
969c7921 2237struct migration_arg {
36c8b586 2238 struct task_struct *task;
1da177e4 2239 int dest_cpu;
70b97a7f 2240};
1da177e4 2241
969c7921
TH
2242static int migration_cpu_stop(void *data);
2243
1da177e4
LT
2244/*
2245 * wait_task_inactive - wait for a thread to unschedule.
2246 *
85ba2d86
RM
2247 * If @match_state is nonzero, it's the @p->state value just checked and
2248 * not expected to change. If it changes, i.e. @p might have woken up,
2249 * then return zero. When we succeed in waiting for @p to be off its CPU,
2250 * we return a positive number (its total switch count). If a second call
2251 * a short while later returns the same number, the caller can be sure that
2252 * @p has remained unscheduled the whole time.
2253 *
1da177e4
LT
2254 * The caller must ensure that the task *will* unschedule sometime soon,
2255 * else this function might spin for a *long* time. This function can't
2256 * be called with interrupts off, or it may introduce deadlock with
2257 * smp_call_function() if an IPI is sent by the same process we are
2258 * waiting to become inactive.
2259 */
85ba2d86 2260unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2261{
2262 unsigned long flags;
dd41f596 2263 int running, on_rq;
85ba2d86 2264 unsigned long ncsw;
70b97a7f 2265 struct rq *rq;
1da177e4 2266
3a5c359a
AK
2267 for (;;) {
2268 /*
2269 * We do the initial early heuristics without holding
2270 * any task-queue locks at all. We'll only try to get
2271 * the runqueue lock when things look like they will
2272 * work out!
2273 */
2274 rq = task_rq(p);
fa490cfd 2275
3a5c359a
AK
2276 /*
2277 * If the task is actively running on another CPU
2278 * still, just relax and busy-wait without holding
2279 * any locks.
2280 *
2281 * NOTE! Since we don't hold any locks, it's not
2282 * even sure that "rq" stays as the right runqueue!
2283 * But we don't care, since "task_running()" will
2284 * return false if the runqueue has changed and p
2285 * is actually now running somewhere else!
2286 */
85ba2d86
RM
2287 while (task_running(rq, p)) {
2288 if (match_state && unlikely(p->state != match_state))
2289 return 0;
3a5c359a 2290 cpu_relax();
85ba2d86 2291 }
fa490cfd 2292
3a5c359a
AK
2293 /*
2294 * Ok, time to look more closely! We need the rq
2295 * lock now, to be *sure*. If we're wrong, we'll
2296 * just go back and repeat.
2297 */
2298 rq = task_rq_lock(p, &flags);
27a9da65 2299 trace_sched_wait_task(p);
3a5c359a 2300 running = task_running(rq, p);
fd2f4419 2301 on_rq = p->on_rq;
85ba2d86 2302 ncsw = 0;
f31e11d8 2303 if (!match_state || p->state == match_state)
93dcf55f 2304 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2305 task_rq_unlock(rq, p, &flags);
fa490cfd 2306
85ba2d86
RM
2307 /*
2308 * If it changed from the expected state, bail out now.
2309 */
2310 if (unlikely(!ncsw))
2311 break;
2312
3a5c359a
AK
2313 /*
2314 * Was it really running after all now that we
2315 * checked with the proper locks actually held?
2316 *
2317 * Oops. Go back and try again..
2318 */
2319 if (unlikely(running)) {
2320 cpu_relax();
2321 continue;
2322 }
fa490cfd 2323
3a5c359a
AK
2324 /*
2325 * It's not enough that it's not actively running,
2326 * it must be off the runqueue _entirely_, and not
2327 * preempted!
2328 *
80dd99b3 2329 * So if it was still runnable (but just not actively
3a5c359a
AK
2330 * running right now), it's preempted, and we should
2331 * yield - it could be a while.
2332 */
2333 if (unlikely(on_rq)) {
8eb90c30
TG
2334 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2335
2336 set_current_state(TASK_UNINTERRUPTIBLE);
2337 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2338 continue;
2339 }
fa490cfd 2340
3a5c359a
AK
2341 /*
2342 * Ahh, all good. It wasn't running, and it wasn't
2343 * runnable, which means that it will never become
2344 * running in the future either. We're all done!
2345 */
2346 break;
2347 }
85ba2d86
RM
2348
2349 return ncsw;
1da177e4
LT
2350}
2351
2352/***
2353 * kick_process - kick a running thread to enter/exit the kernel
2354 * @p: the to-be-kicked thread
2355 *
2356 * Cause a process which is running on another CPU to enter
2357 * kernel-mode, without any delay. (to get signals handled.)
2358 *
25985edc 2359 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2360 * because all it wants to ensure is that the remote task enters
2361 * the kernel. If the IPI races and the task has been migrated
2362 * to another CPU then no harm is done and the purpose has been
2363 * achieved as well.
2364 */
36c8b586 2365void kick_process(struct task_struct *p)
1da177e4
LT
2366{
2367 int cpu;
2368
2369 preempt_disable();
2370 cpu = task_cpu(p);
2371 if ((cpu != smp_processor_id()) && task_curr(p))
2372 smp_send_reschedule(cpu);
2373 preempt_enable();
2374}
b43e3521 2375EXPORT_SYMBOL_GPL(kick_process);
476d139c 2376#endif /* CONFIG_SMP */
1da177e4 2377
970b13ba 2378#ifdef CONFIG_SMP
30da688e 2379/*
013fdb80 2380 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2381 */
5da9a0fb
PZ
2382static int select_fallback_rq(int cpu, struct task_struct *p)
2383{
2384 int dest_cpu;
2385 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2386
2387 /* Look for allowed, online CPU in same node. */
2388 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2389 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2390 return dest_cpu;
2391
2392 /* Any allowed, online CPU? */
2393 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2394 if (dest_cpu < nr_cpu_ids)
2395 return dest_cpu;
2396
2397 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2398 dest_cpu = cpuset_cpus_allowed_fallback(p);
2399 /*
2400 * Don't tell them about moving exiting tasks or
2401 * kernel threads (both mm NULL), since they never
2402 * leave kernel.
2403 */
2404 if (p->mm && printk_ratelimit()) {
2405 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2406 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2407 }
2408
2409 return dest_cpu;
2410}
2411
e2912009 2412/*
013fdb80 2413 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2414 */
970b13ba 2415static inline
7608dec2 2416int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2417{
7608dec2 2418 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2419
2420 /*
2421 * In order not to call set_task_cpu() on a blocking task we need
2422 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2423 * cpu.
2424 *
2425 * Since this is common to all placement strategies, this lives here.
2426 *
2427 * [ this allows ->select_task() to simply return task_cpu(p) and
2428 * not worry about this generic constraint ]
2429 */
2430 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2431 !cpu_online(cpu)))
5da9a0fb 2432 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2433
2434 return cpu;
970b13ba 2435}
09a40af5
MG
2436
2437static void update_avg(u64 *avg, u64 sample)
2438{
2439 s64 diff = sample - *avg;
2440 *avg += diff >> 3;
2441}
970b13ba
PZ
2442#endif
2443
d7c01d27 2444static void
b84cb5df 2445ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2446{
d7c01d27 2447#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2448 struct rq *rq = this_rq();
2449
d7c01d27
PZ
2450#ifdef CONFIG_SMP
2451 int this_cpu = smp_processor_id();
2452
2453 if (cpu == this_cpu) {
2454 schedstat_inc(rq, ttwu_local);
2455 schedstat_inc(p, se.statistics.nr_wakeups_local);
2456 } else {
2457 struct sched_domain *sd;
2458
2459 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2460 rcu_read_lock();
d7c01d27
PZ
2461 for_each_domain(this_cpu, sd) {
2462 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2463 schedstat_inc(sd, ttwu_wake_remote);
2464 break;
2465 }
2466 }
057f3fad 2467 rcu_read_unlock();
d7c01d27 2468 }
f339b9dc
PZ
2469
2470 if (wake_flags & WF_MIGRATED)
2471 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2472
d7c01d27
PZ
2473#endif /* CONFIG_SMP */
2474
2475 schedstat_inc(rq, ttwu_count);
9ed3811a 2476 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2477
2478 if (wake_flags & WF_SYNC)
9ed3811a 2479 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 2480
d7c01d27
PZ
2481#endif /* CONFIG_SCHEDSTATS */
2482}
2483
2484static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2485{
9ed3811a 2486 activate_task(rq, p, en_flags);
fd2f4419 2487 p->on_rq = 1;
c2f7115e
PZ
2488
2489 /* if a worker is waking up, notify workqueue */
2490 if (p->flags & PF_WQ_WORKER)
2491 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2492}
2493
23f41eeb
PZ
2494/*
2495 * Mark the task runnable and perform wakeup-preemption.
2496 */
89363381 2497static void
23f41eeb 2498ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2499{
89363381 2500 trace_sched_wakeup(p, true);
9ed3811a
TH
2501 check_preempt_curr(rq, p, wake_flags);
2502
2503 p->state = TASK_RUNNING;
2504#ifdef CONFIG_SMP
2505 if (p->sched_class->task_woken)
2506 p->sched_class->task_woken(rq, p);
2507
e69c6341 2508 if (rq->idle_stamp) {
9ed3811a
TH
2509 u64 delta = rq->clock - rq->idle_stamp;
2510 u64 max = 2*sysctl_sched_migration_cost;
2511
2512 if (delta > max)
2513 rq->avg_idle = max;
2514 else
2515 update_avg(&rq->avg_idle, delta);
2516 rq->idle_stamp = 0;
2517 }
2518#endif
2519}
2520
c05fbafb
PZ
2521static void
2522ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2523{
2524#ifdef CONFIG_SMP
2525 if (p->sched_contributes_to_load)
2526 rq->nr_uninterruptible--;
2527#endif
2528
2529 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2530 ttwu_do_wakeup(rq, p, wake_flags);
2531}
2532
2533/*
2534 * Called in case the task @p isn't fully descheduled from its runqueue,
2535 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2536 * since all we need to do is flip p->state to TASK_RUNNING, since
2537 * the task is still ->on_rq.
2538 */
2539static int ttwu_remote(struct task_struct *p, int wake_flags)
2540{
2541 struct rq *rq;
2542 int ret = 0;
2543
2544 rq = __task_rq_lock(p);
2545 if (p->on_rq) {
2546 ttwu_do_wakeup(rq, p, wake_flags);
2547 ret = 1;
2548 }
2549 __task_rq_unlock(rq);
2550
2551 return ret;
2552}
2553
317f3941 2554#ifdef CONFIG_SMP
c5d753a5 2555static void sched_ttwu_do_pending(struct task_struct *list)
317f3941
PZ
2556{
2557 struct rq *rq = this_rq();
317f3941
PZ
2558
2559 raw_spin_lock(&rq->lock);
2560
2561 while (list) {
2562 struct task_struct *p = list;
2563 list = list->wake_entry;
2564 ttwu_do_activate(rq, p, 0);
2565 }
2566
2567 raw_spin_unlock(&rq->lock);
2568}
2569
c5d753a5
PZ
2570#ifdef CONFIG_HOTPLUG_CPU
2571
2572static void sched_ttwu_pending(void)
2573{
2574 struct rq *rq = this_rq();
2575 struct task_struct *list = xchg(&rq->wake_list, NULL);
2576
2577 if (!list)
2578 return;
2579
2580 sched_ttwu_do_pending(list);
2581}
2582
2583#endif /* CONFIG_HOTPLUG_CPU */
2584
317f3941
PZ
2585void scheduler_ipi(void)
2586{
c5d753a5
PZ
2587 struct rq *rq = this_rq();
2588 struct task_struct *list = xchg(&rq->wake_list, NULL);
2589
2590 if (!list)
2591 return;
2592
2593 /*
2594 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2595 * traditionally all their work was done from the interrupt return
2596 * path. Now that we actually do some work, we need to make sure
2597 * we do call them.
2598 *
2599 * Some archs already do call them, luckily irq_enter/exit nest
2600 * properly.
2601 *
2602 * Arguably we should visit all archs and update all handlers,
2603 * however a fair share of IPIs are still resched only so this would
2604 * somewhat pessimize the simple resched case.
2605 */
2606 irq_enter();
2607 sched_ttwu_do_pending(list);
2608 irq_exit();
317f3941
PZ
2609}
2610
2611static void ttwu_queue_remote(struct task_struct *p, int cpu)
2612{
2613 struct rq *rq = cpu_rq(cpu);
2614 struct task_struct *next = rq->wake_list;
2615
2616 for (;;) {
2617 struct task_struct *old = next;
2618
2619 p->wake_entry = next;
2620 next = cmpxchg(&rq->wake_list, old, p);
2621 if (next == old)
2622 break;
2623 }
2624
2625 if (!next)
2626 smp_send_reschedule(cpu);
2627}
d6aa8f85
PZ
2628
2629#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2630static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2631{
2632 struct rq *rq;
2633 int ret = 0;
2634
2635 rq = __task_rq_lock(p);
2636 if (p->on_cpu) {
2637 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2638 ttwu_do_wakeup(rq, p, wake_flags);
2639 ret = 1;
2640 }
2641 __task_rq_unlock(rq);
2642
2643 return ret;
2644
2645}
2646#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2647#endif /* CONFIG_SMP */
317f3941 2648
c05fbafb
PZ
2649static void ttwu_queue(struct task_struct *p, int cpu)
2650{
2651 struct rq *rq = cpu_rq(cpu);
2652
17d9f311 2653#if defined(CONFIG_SMP)
317f3941 2654 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 2655 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
2656 ttwu_queue_remote(p, cpu);
2657 return;
2658 }
2659#endif
2660
c05fbafb
PZ
2661 raw_spin_lock(&rq->lock);
2662 ttwu_do_activate(rq, p, 0);
2663 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2664}
2665
2666/**
1da177e4 2667 * try_to_wake_up - wake up a thread
9ed3811a 2668 * @p: the thread to be awakened
1da177e4 2669 * @state: the mask of task states that can be woken
9ed3811a 2670 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2671 *
2672 * Put it on the run-queue if it's not already there. The "current"
2673 * thread is always on the run-queue (except when the actual
2674 * re-schedule is in progress), and as such you're allowed to do
2675 * the simpler "current->state = TASK_RUNNING" to mark yourself
2676 * runnable without the overhead of this.
2677 *
9ed3811a
TH
2678 * Returns %true if @p was woken up, %false if it was already running
2679 * or @state didn't match @p's state.
1da177e4 2680 */
e4a52bcb
PZ
2681static int
2682try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2683{
1da177e4 2684 unsigned long flags;
c05fbafb 2685 int cpu, success = 0;
2398f2c6 2686
04e2f174 2687 smp_wmb();
013fdb80 2688 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2689 if (!(p->state & state))
1da177e4
LT
2690 goto out;
2691
c05fbafb 2692 success = 1; /* we're going to change ->state */
1da177e4 2693 cpu = task_cpu(p);
1da177e4 2694
c05fbafb
PZ
2695 if (p->on_rq && ttwu_remote(p, wake_flags))
2696 goto stat;
1da177e4 2697
1da177e4 2698#ifdef CONFIG_SMP
e9c84311 2699 /*
c05fbafb
PZ
2700 * If the owning (remote) cpu is still in the middle of schedule() with
2701 * this task as prev, wait until its done referencing the task.
e9c84311 2702 */
e4a52bcb
PZ
2703 while (p->on_cpu) {
2704#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2705 /*
d6aa8f85
PZ
2706 * In case the architecture enables interrupts in
2707 * context_switch(), we cannot busy wait, since that
2708 * would lead to deadlocks when an interrupt hits and
2709 * tries to wake up @prev. So bail and do a complete
2710 * remote wakeup.
e4a52bcb 2711 */
d6aa8f85 2712 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2713 goto stat;
d6aa8f85 2714#else
e4a52bcb 2715 cpu_relax();
d6aa8f85 2716#endif
371fd7e7 2717 }
0970d299 2718 /*
e4a52bcb 2719 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2720 */
e4a52bcb 2721 smp_rmb();
1da177e4 2722
a8e4f2ea 2723 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2724 p->state = TASK_WAKING;
e7693a36 2725
e4a52bcb 2726 if (p->sched_class->task_waking)
74f8e4b2 2727 p->sched_class->task_waking(p);
efbbd05a 2728
7608dec2 2729 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2730 if (task_cpu(p) != cpu) {
2731 wake_flags |= WF_MIGRATED;
e4a52bcb 2732 set_task_cpu(p, cpu);
f339b9dc 2733 }
1da177e4 2734#endif /* CONFIG_SMP */
1da177e4 2735
c05fbafb
PZ
2736 ttwu_queue(p, cpu);
2737stat:
b84cb5df 2738 ttwu_stat(p, cpu, wake_flags);
1da177e4 2739out:
013fdb80 2740 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2741
2742 return success;
2743}
2744
21aa9af0
TH
2745/**
2746 * try_to_wake_up_local - try to wake up a local task with rq lock held
2747 * @p: the thread to be awakened
2748 *
2acca55e 2749 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2750 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2751 * the current task.
21aa9af0
TH
2752 */
2753static void try_to_wake_up_local(struct task_struct *p)
2754{
2755 struct rq *rq = task_rq(p);
21aa9af0
TH
2756
2757 BUG_ON(rq != this_rq());
2758 BUG_ON(p == current);
2759 lockdep_assert_held(&rq->lock);
2760
2acca55e
PZ
2761 if (!raw_spin_trylock(&p->pi_lock)) {
2762 raw_spin_unlock(&rq->lock);
2763 raw_spin_lock(&p->pi_lock);
2764 raw_spin_lock(&rq->lock);
2765 }
2766
21aa9af0 2767 if (!(p->state & TASK_NORMAL))
2acca55e 2768 goto out;
21aa9af0 2769
fd2f4419 2770 if (!p->on_rq)
d7c01d27
PZ
2771 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2772
23f41eeb 2773 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2774 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2775out:
2776 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2777}
2778
50fa610a
DH
2779/**
2780 * wake_up_process - Wake up a specific process
2781 * @p: The process to be woken up.
2782 *
2783 * Attempt to wake up the nominated process and move it to the set of runnable
2784 * processes. Returns 1 if the process was woken up, 0 if it was already
2785 * running.
2786 *
2787 * It may be assumed that this function implies a write memory barrier before
2788 * changing the task state if and only if any tasks are woken up.
2789 */
7ad5b3a5 2790int wake_up_process(struct task_struct *p)
1da177e4 2791{
d9514f6c 2792 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2793}
1da177e4
LT
2794EXPORT_SYMBOL(wake_up_process);
2795
7ad5b3a5 2796int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2797{
2798 return try_to_wake_up(p, state, 0);
2799}
2800
1da177e4
LT
2801/*
2802 * Perform scheduler related setup for a newly forked process p.
2803 * p is forked by current.
dd41f596
IM
2804 *
2805 * __sched_fork() is basic setup used by init_idle() too:
2806 */
2807static void __sched_fork(struct task_struct *p)
2808{
fd2f4419
PZ
2809 p->on_rq = 0;
2810
2811 p->se.on_rq = 0;
dd41f596
IM
2812 p->se.exec_start = 0;
2813 p->se.sum_exec_runtime = 0;
f6cf891c 2814 p->se.prev_sum_exec_runtime = 0;
6c594c21 2815 p->se.nr_migrations = 0;
da7a735e 2816 p->se.vruntime = 0;
fd2f4419 2817 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2818
2819#ifdef CONFIG_SCHEDSTATS
41acab88 2820 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2821#endif
476d139c 2822
fa717060 2823 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2824
e107be36
AK
2825#ifdef CONFIG_PREEMPT_NOTIFIERS
2826 INIT_HLIST_HEAD(&p->preempt_notifiers);
2827#endif
dd41f596
IM
2828}
2829
2830/*
2831 * fork()/clone()-time setup:
2832 */
3e51e3ed 2833void sched_fork(struct task_struct *p)
dd41f596 2834{
0122ec5b 2835 unsigned long flags;
dd41f596
IM
2836 int cpu = get_cpu();
2837
2838 __sched_fork(p);
06b83b5f 2839 /*
0017d735 2840 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2841 * nobody will actually run it, and a signal or other external
2842 * event cannot wake it up and insert it on the runqueue either.
2843 */
0017d735 2844 p->state = TASK_RUNNING;
dd41f596 2845
c350a04e
MG
2846 /*
2847 * Make sure we do not leak PI boosting priority to the child.
2848 */
2849 p->prio = current->normal_prio;
2850
b9dc29e7
MG
2851 /*
2852 * Revert to default priority/policy on fork if requested.
2853 */
2854 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 2855 if (task_has_rt_policy(p)) {
b9dc29e7 2856 p->policy = SCHED_NORMAL;
6c697bdf 2857 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2858 p->rt_priority = 0;
2859 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2860 p->static_prio = NICE_TO_PRIO(0);
2861
2862 p->prio = p->normal_prio = __normal_prio(p);
2863 set_load_weight(p);
6c697bdf 2864
b9dc29e7
MG
2865 /*
2866 * We don't need the reset flag anymore after the fork. It has
2867 * fulfilled its duty:
2868 */
2869 p->sched_reset_on_fork = 0;
2870 }
ca94c442 2871
2ddbf952
HS
2872 if (!rt_prio(p->prio))
2873 p->sched_class = &fair_sched_class;
b29739f9 2874
cd29fe6f
PZ
2875 if (p->sched_class->task_fork)
2876 p->sched_class->task_fork(p);
2877
86951599
PZ
2878 /*
2879 * The child is not yet in the pid-hash so no cgroup attach races,
2880 * and the cgroup is pinned to this child due to cgroup_fork()
2881 * is ran before sched_fork().
2882 *
2883 * Silence PROVE_RCU.
2884 */
0122ec5b 2885 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2886 set_task_cpu(p, cpu);
0122ec5b 2887 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2888
52f17b6c 2889#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2890 if (likely(sched_info_on()))
52f17b6c 2891 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2892#endif
3ca7a440
PZ
2893#if defined(CONFIG_SMP)
2894 p->on_cpu = 0;
4866cde0 2895#endif
bdd4e85d 2896#ifdef CONFIG_PREEMPT_COUNT
4866cde0 2897 /* Want to start with kernel preemption disabled. */
a1261f54 2898 task_thread_info(p)->preempt_count = 1;
1da177e4 2899#endif
806c09a7 2900#ifdef CONFIG_SMP
917b627d 2901 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2902#endif
917b627d 2903
476d139c 2904 put_cpu();
1da177e4
LT
2905}
2906
2907/*
2908 * wake_up_new_task - wake up a newly created task for the first time.
2909 *
2910 * This function will do some initial scheduler statistics housekeeping
2911 * that must be done for every newly created context, then puts the task
2912 * on the runqueue and wakes it.
2913 */
3e51e3ed 2914void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2915{
2916 unsigned long flags;
dd41f596 2917 struct rq *rq;
fabf318e 2918
ab2515c4 2919 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2920#ifdef CONFIG_SMP
2921 /*
2922 * Fork balancing, do it here and not earlier because:
2923 * - cpus_allowed can change in the fork path
2924 * - any previously selected cpu might disappear through hotplug
fabf318e 2925 */
ab2515c4 2926 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
2927#endif
2928
ab2515c4 2929 rq = __task_rq_lock(p);
cd29fe6f 2930 activate_task(rq, p, 0);
fd2f4419 2931 p->on_rq = 1;
89363381 2932 trace_sched_wakeup_new(p, true);
a7558e01 2933 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2934#ifdef CONFIG_SMP
efbbd05a
PZ
2935 if (p->sched_class->task_woken)
2936 p->sched_class->task_woken(rq, p);
9a897c5a 2937#endif
0122ec5b 2938 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2939}
2940
e107be36
AK
2941#ifdef CONFIG_PREEMPT_NOTIFIERS
2942
2943/**
80dd99b3 2944 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2945 * @notifier: notifier struct to register
e107be36
AK
2946 */
2947void preempt_notifier_register(struct preempt_notifier *notifier)
2948{
2949 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2950}
2951EXPORT_SYMBOL_GPL(preempt_notifier_register);
2952
2953/**
2954 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2955 * @notifier: notifier struct to unregister
e107be36
AK
2956 *
2957 * This is safe to call from within a preemption notifier.
2958 */
2959void preempt_notifier_unregister(struct preempt_notifier *notifier)
2960{
2961 hlist_del(&notifier->link);
2962}
2963EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2964
2965static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2966{
2967 struct preempt_notifier *notifier;
2968 struct hlist_node *node;
2969
2970 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2971 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2972}
2973
2974static void
2975fire_sched_out_preempt_notifiers(struct task_struct *curr,
2976 struct task_struct *next)
2977{
2978 struct preempt_notifier *notifier;
2979 struct hlist_node *node;
2980
2981 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2982 notifier->ops->sched_out(notifier, next);
2983}
2984
6d6bc0ad 2985#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2986
2987static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2988{
2989}
2990
2991static void
2992fire_sched_out_preempt_notifiers(struct task_struct *curr,
2993 struct task_struct *next)
2994{
2995}
2996
6d6bc0ad 2997#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2998
4866cde0
NP
2999/**
3000 * prepare_task_switch - prepare to switch tasks
3001 * @rq: the runqueue preparing to switch
421cee29 3002 * @prev: the current task that is being switched out
4866cde0
NP
3003 * @next: the task we are going to switch to.
3004 *
3005 * This is called with the rq lock held and interrupts off. It must
3006 * be paired with a subsequent finish_task_switch after the context
3007 * switch.
3008 *
3009 * prepare_task_switch sets up locking and calls architecture specific
3010 * hooks.
3011 */
e107be36
AK
3012static inline void
3013prepare_task_switch(struct rq *rq, struct task_struct *prev,
3014 struct task_struct *next)
4866cde0 3015{
fe4b04fa
PZ
3016 sched_info_switch(prev, next);
3017 perf_event_task_sched_out(prev, next);
e107be36 3018 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
3019 prepare_lock_switch(rq, next);
3020 prepare_arch_switch(next);
fe4b04fa 3021 trace_sched_switch(prev, next);
4866cde0
NP
3022}
3023
1da177e4
LT
3024/**
3025 * finish_task_switch - clean up after a task-switch
344babaa 3026 * @rq: runqueue associated with task-switch
1da177e4
LT
3027 * @prev: the thread we just switched away from.
3028 *
4866cde0
NP
3029 * finish_task_switch must be called after the context switch, paired
3030 * with a prepare_task_switch call before the context switch.
3031 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3032 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3033 *
3034 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3035 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3036 * with the lock held can cause deadlocks; see schedule() for
3037 * details.)
3038 */
a9957449 3039static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
3040 __releases(rq->lock)
3041{
1da177e4 3042 struct mm_struct *mm = rq->prev_mm;
55a101f8 3043 long prev_state;
1da177e4
LT
3044
3045 rq->prev_mm = NULL;
3046
3047 /*
3048 * A task struct has one reference for the use as "current".
c394cc9f 3049 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3050 * schedule one last time. The schedule call will never return, and
3051 * the scheduled task must drop that reference.
c394cc9f 3052 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
3053 * still held, otherwise prev could be scheduled on another cpu, die
3054 * there before we look at prev->state, and then the reference would
3055 * be dropped twice.
3056 * Manfred Spraul <manfred@colorfullife.com>
3057 */
55a101f8 3058 prev_state = prev->state;
4866cde0 3059 finish_arch_switch(prev);
8381f65d
JI
3060#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3061 local_irq_disable();
3062#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 3063 perf_event_task_sched_in(current);
8381f65d
JI
3064#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3065 local_irq_enable();
3066#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3067 finish_lock_switch(rq, prev);
e8fa1362 3068
e107be36 3069 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3070 if (mm)
3071 mmdrop(mm);
c394cc9f 3072 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3073 /*
3074 * Remove function-return probe instances associated with this
3075 * task and put them back on the free list.
9761eea8 3076 */
c6fd91f0 3077 kprobe_flush_task(prev);
1da177e4 3078 put_task_struct(prev);
c6fd91f0 3079 }
1da177e4
LT
3080}
3081
3f029d3c
GH
3082#ifdef CONFIG_SMP
3083
3084/* assumes rq->lock is held */
3085static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3086{
3087 if (prev->sched_class->pre_schedule)
3088 prev->sched_class->pre_schedule(rq, prev);
3089}
3090
3091/* rq->lock is NOT held, but preemption is disabled */
3092static inline void post_schedule(struct rq *rq)
3093{
3094 if (rq->post_schedule) {
3095 unsigned long flags;
3096
05fa785c 3097 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3098 if (rq->curr->sched_class->post_schedule)
3099 rq->curr->sched_class->post_schedule(rq);
05fa785c 3100 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3101
3102 rq->post_schedule = 0;
3103 }
3104}
3105
3106#else
da19ab51 3107
3f029d3c
GH
3108static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3109{
3110}
3111
3112static inline void post_schedule(struct rq *rq)
3113{
1da177e4
LT
3114}
3115
3f029d3c
GH
3116#endif
3117
1da177e4
LT
3118/**
3119 * schedule_tail - first thing a freshly forked thread must call.
3120 * @prev: the thread we just switched away from.
3121 */
36c8b586 3122asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3123 __releases(rq->lock)
3124{
70b97a7f
IM
3125 struct rq *rq = this_rq();
3126
4866cde0 3127 finish_task_switch(rq, prev);
da19ab51 3128
3f029d3c
GH
3129 /*
3130 * FIXME: do we need to worry about rq being invalidated by the
3131 * task_switch?
3132 */
3133 post_schedule(rq);
70b97a7f 3134
4866cde0
NP
3135#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3136 /* In this case, finish_task_switch does not reenable preemption */
3137 preempt_enable();
3138#endif
1da177e4 3139 if (current->set_child_tid)
b488893a 3140 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3141}
3142
3143/*
3144 * context_switch - switch to the new MM and the new
3145 * thread's register state.
3146 */
dd41f596 3147static inline void
70b97a7f 3148context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3149 struct task_struct *next)
1da177e4 3150{
dd41f596 3151 struct mm_struct *mm, *oldmm;
1da177e4 3152
e107be36 3153 prepare_task_switch(rq, prev, next);
fe4b04fa 3154
dd41f596
IM
3155 mm = next->mm;
3156 oldmm = prev->active_mm;
9226d125
ZA
3157 /*
3158 * For paravirt, this is coupled with an exit in switch_to to
3159 * combine the page table reload and the switch backend into
3160 * one hypercall.
3161 */
224101ed 3162 arch_start_context_switch(prev);
9226d125 3163
31915ab4 3164 if (!mm) {
1da177e4
LT
3165 next->active_mm = oldmm;
3166 atomic_inc(&oldmm->mm_count);
3167 enter_lazy_tlb(oldmm, next);
3168 } else
3169 switch_mm(oldmm, mm, next);
3170
31915ab4 3171 if (!prev->mm) {
1da177e4 3172 prev->active_mm = NULL;
1da177e4
LT
3173 rq->prev_mm = oldmm;
3174 }
3a5f5e48
IM
3175 /*
3176 * Since the runqueue lock will be released by the next
3177 * task (which is an invalid locking op but in the case
3178 * of the scheduler it's an obvious special-case), so we
3179 * do an early lockdep release here:
3180 */
3181#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3182 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3183#endif
1da177e4
LT
3184
3185 /* Here we just switch the register state and the stack. */
3186 switch_to(prev, next, prev);
3187
dd41f596
IM
3188 barrier();
3189 /*
3190 * this_rq must be evaluated again because prev may have moved
3191 * CPUs since it called schedule(), thus the 'rq' on its stack
3192 * frame will be invalid.
3193 */
3194 finish_task_switch(this_rq(), prev);
1da177e4
LT
3195}
3196
3197/*
3198 * nr_running, nr_uninterruptible and nr_context_switches:
3199 *
3200 * externally visible scheduler statistics: current number of runnable
3201 * threads, current number of uninterruptible-sleeping threads, total
3202 * number of context switches performed since bootup.
3203 */
3204unsigned long nr_running(void)
3205{
3206 unsigned long i, sum = 0;
3207
3208 for_each_online_cpu(i)
3209 sum += cpu_rq(i)->nr_running;
3210
3211 return sum;
f711f609 3212}
1da177e4
LT
3213
3214unsigned long nr_uninterruptible(void)
f711f609 3215{
1da177e4 3216 unsigned long i, sum = 0;
f711f609 3217
0a945022 3218 for_each_possible_cpu(i)
1da177e4 3219 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3220
3221 /*
1da177e4
LT
3222 * Since we read the counters lockless, it might be slightly
3223 * inaccurate. Do not allow it to go below zero though:
f711f609 3224 */
1da177e4
LT
3225 if (unlikely((long)sum < 0))
3226 sum = 0;
f711f609 3227
1da177e4 3228 return sum;
f711f609 3229}
f711f609 3230
1da177e4 3231unsigned long long nr_context_switches(void)
46cb4b7c 3232{
cc94abfc
SR
3233 int i;
3234 unsigned long long sum = 0;
46cb4b7c 3235
0a945022 3236 for_each_possible_cpu(i)
1da177e4 3237 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3238
1da177e4
LT
3239 return sum;
3240}
483b4ee6 3241
1da177e4
LT
3242unsigned long nr_iowait(void)
3243{
3244 unsigned long i, sum = 0;
483b4ee6 3245
0a945022 3246 for_each_possible_cpu(i)
1da177e4 3247 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3248
1da177e4
LT
3249 return sum;
3250}
483b4ee6 3251
8c215bd3 3252unsigned long nr_iowait_cpu(int cpu)
69d25870 3253{
8c215bd3 3254 struct rq *this = cpu_rq(cpu);
69d25870
AV
3255 return atomic_read(&this->nr_iowait);
3256}
46cb4b7c 3257
69d25870
AV
3258unsigned long this_cpu_load(void)
3259{
3260 struct rq *this = this_rq();
3261 return this->cpu_load[0];
3262}
e790fb0b 3263
46cb4b7c 3264
dce48a84
TG
3265/* Variables and functions for calc_load */
3266static atomic_long_t calc_load_tasks;
3267static unsigned long calc_load_update;
3268unsigned long avenrun[3];
3269EXPORT_SYMBOL(avenrun);
46cb4b7c 3270
74f5187a
PZ
3271static long calc_load_fold_active(struct rq *this_rq)
3272{
3273 long nr_active, delta = 0;
3274
3275 nr_active = this_rq->nr_running;
3276 nr_active += (long) this_rq->nr_uninterruptible;
3277
3278 if (nr_active != this_rq->calc_load_active) {
3279 delta = nr_active - this_rq->calc_load_active;
3280 this_rq->calc_load_active = nr_active;
3281 }
3282
3283 return delta;
3284}
3285
0f004f5a
PZ
3286static unsigned long
3287calc_load(unsigned long load, unsigned long exp, unsigned long active)
3288{
3289 load *= exp;
3290 load += active * (FIXED_1 - exp);
3291 load += 1UL << (FSHIFT - 1);
3292 return load >> FSHIFT;
3293}
3294
74f5187a
PZ
3295#ifdef CONFIG_NO_HZ
3296/*
3297 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3298 *
3299 * When making the ILB scale, we should try to pull this in as well.
3300 */
3301static atomic_long_t calc_load_tasks_idle;
3302
3303static void calc_load_account_idle(struct rq *this_rq)
3304{
3305 long delta;
3306
3307 delta = calc_load_fold_active(this_rq);
3308 if (delta)
3309 atomic_long_add(delta, &calc_load_tasks_idle);
3310}
3311
3312static long calc_load_fold_idle(void)
3313{
3314 long delta = 0;
3315
3316 /*
3317 * Its got a race, we don't care...
3318 */
3319 if (atomic_long_read(&calc_load_tasks_idle))
3320 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3321
3322 return delta;
3323}
0f004f5a
PZ
3324
3325/**
3326 * fixed_power_int - compute: x^n, in O(log n) time
3327 *
3328 * @x: base of the power
3329 * @frac_bits: fractional bits of @x
3330 * @n: power to raise @x to.
3331 *
3332 * By exploiting the relation between the definition of the natural power
3333 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3334 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3335 * (where: n_i \elem {0, 1}, the binary vector representing n),
3336 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3337 * of course trivially computable in O(log_2 n), the length of our binary
3338 * vector.
3339 */
3340static unsigned long
3341fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3342{
3343 unsigned long result = 1UL << frac_bits;
3344
3345 if (n) for (;;) {
3346 if (n & 1) {
3347 result *= x;
3348 result += 1UL << (frac_bits - 1);
3349 result >>= frac_bits;
3350 }
3351 n >>= 1;
3352 if (!n)
3353 break;
3354 x *= x;
3355 x += 1UL << (frac_bits - 1);
3356 x >>= frac_bits;
3357 }
3358
3359 return result;
3360}
3361
3362/*
3363 * a1 = a0 * e + a * (1 - e)
3364 *
3365 * a2 = a1 * e + a * (1 - e)
3366 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3367 * = a0 * e^2 + a * (1 - e) * (1 + e)
3368 *
3369 * a3 = a2 * e + a * (1 - e)
3370 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3371 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3372 *
3373 * ...
3374 *
3375 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3376 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3377 * = a0 * e^n + a * (1 - e^n)
3378 *
3379 * [1] application of the geometric series:
3380 *
3381 * n 1 - x^(n+1)
3382 * S_n := \Sum x^i = -------------
3383 * i=0 1 - x
3384 */
3385static unsigned long
3386calc_load_n(unsigned long load, unsigned long exp,
3387 unsigned long active, unsigned int n)
3388{
3389
3390 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3391}
3392
3393/*
3394 * NO_HZ can leave us missing all per-cpu ticks calling
3395 * calc_load_account_active(), but since an idle CPU folds its delta into
3396 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3397 * in the pending idle delta if our idle period crossed a load cycle boundary.
3398 *
3399 * Once we've updated the global active value, we need to apply the exponential
3400 * weights adjusted to the number of cycles missed.
3401 */
3402static void calc_global_nohz(unsigned long ticks)
3403{
3404 long delta, active, n;
3405
3406 if (time_before(jiffies, calc_load_update))
3407 return;
3408
3409 /*
3410 * If we crossed a calc_load_update boundary, make sure to fold
3411 * any pending idle changes, the respective CPUs might have
3412 * missed the tick driven calc_load_account_active() update
3413 * due to NO_HZ.
3414 */
3415 delta = calc_load_fold_idle();
3416 if (delta)
3417 atomic_long_add(delta, &calc_load_tasks);
3418
3419 /*
3420 * If we were idle for multiple load cycles, apply them.
3421 */
3422 if (ticks >= LOAD_FREQ) {
3423 n = ticks / LOAD_FREQ;
3424
3425 active = atomic_long_read(&calc_load_tasks);
3426 active = active > 0 ? active * FIXED_1 : 0;
3427
3428 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3429 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3430 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3431
3432 calc_load_update += n * LOAD_FREQ;
3433 }
3434
3435 /*
3436 * Its possible the remainder of the above division also crosses
3437 * a LOAD_FREQ period, the regular check in calc_global_load()
3438 * which comes after this will take care of that.
3439 *
3440 * Consider us being 11 ticks before a cycle completion, and us
3441 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3442 * age us 4 cycles, and the test in calc_global_load() will
3443 * pick up the final one.
3444 */
3445}
74f5187a
PZ
3446#else
3447static void calc_load_account_idle(struct rq *this_rq)
3448{
3449}
3450
3451static inline long calc_load_fold_idle(void)
3452{
3453 return 0;
3454}
0f004f5a
PZ
3455
3456static void calc_global_nohz(unsigned long ticks)
3457{
3458}
74f5187a
PZ
3459#endif
3460
2d02494f
TG
3461/**
3462 * get_avenrun - get the load average array
3463 * @loads: pointer to dest load array
3464 * @offset: offset to add
3465 * @shift: shift count to shift the result left
3466 *
3467 * These values are estimates at best, so no need for locking.
3468 */
3469void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3470{
3471 loads[0] = (avenrun[0] + offset) << shift;
3472 loads[1] = (avenrun[1] + offset) << shift;
3473 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3474}
46cb4b7c 3475
46cb4b7c 3476/*
dce48a84
TG
3477 * calc_load - update the avenrun load estimates 10 ticks after the
3478 * CPUs have updated calc_load_tasks.
7835b98b 3479 */
0f004f5a 3480void calc_global_load(unsigned long ticks)
7835b98b 3481{
dce48a84 3482 long active;
1da177e4 3483
0f004f5a
PZ
3484 calc_global_nohz(ticks);
3485
3486 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3487 return;
1da177e4 3488
dce48a84
TG
3489 active = atomic_long_read(&calc_load_tasks);
3490 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3491
dce48a84
TG
3492 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3493 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3494 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3495
dce48a84
TG
3496 calc_load_update += LOAD_FREQ;
3497}
1da177e4 3498
dce48a84 3499/*
74f5187a
PZ
3500 * Called from update_cpu_load() to periodically update this CPU's
3501 * active count.
dce48a84
TG
3502 */
3503static void calc_load_account_active(struct rq *this_rq)
3504{
74f5187a 3505 long delta;
08c183f3 3506
74f5187a
PZ
3507 if (time_before(jiffies, this_rq->calc_load_update))
3508 return;
783609c6 3509
74f5187a
PZ
3510 delta = calc_load_fold_active(this_rq);
3511 delta += calc_load_fold_idle();
3512 if (delta)
dce48a84 3513 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3514
3515 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3516}
3517
fdf3e95d
VP
3518/*
3519 * The exact cpuload at various idx values, calculated at every tick would be
3520 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3521 *
3522 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3523 * on nth tick when cpu may be busy, then we have:
3524 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3525 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3526 *
3527 * decay_load_missed() below does efficient calculation of
3528 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3529 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3530 *
3531 * The calculation is approximated on a 128 point scale.
3532 * degrade_zero_ticks is the number of ticks after which load at any
3533 * particular idx is approximated to be zero.
3534 * degrade_factor is a precomputed table, a row for each load idx.
3535 * Each column corresponds to degradation factor for a power of two ticks,
3536 * based on 128 point scale.
3537 * Example:
3538 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3539 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3540 *
3541 * With this power of 2 load factors, we can degrade the load n times
3542 * by looking at 1 bits in n and doing as many mult/shift instead of
3543 * n mult/shifts needed by the exact degradation.
3544 */
3545#define DEGRADE_SHIFT 7
3546static const unsigned char
3547 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3548static const unsigned char
3549 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3550 {0, 0, 0, 0, 0, 0, 0, 0},
3551 {64, 32, 8, 0, 0, 0, 0, 0},
3552 {96, 72, 40, 12, 1, 0, 0},
3553 {112, 98, 75, 43, 15, 1, 0},
3554 {120, 112, 98, 76, 45, 16, 2} };
3555
3556/*
3557 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3558 * would be when CPU is idle and so we just decay the old load without
3559 * adding any new load.
3560 */
3561static unsigned long
3562decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3563{
3564 int j = 0;
3565
3566 if (!missed_updates)
3567 return load;
3568
3569 if (missed_updates >= degrade_zero_ticks[idx])
3570 return 0;
3571
3572 if (idx == 1)
3573 return load >> missed_updates;
3574
3575 while (missed_updates) {
3576 if (missed_updates % 2)
3577 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3578
3579 missed_updates >>= 1;
3580 j++;
3581 }
3582 return load;
3583}
3584
46cb4b7c 3585/*
dd41f596 3586 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3587 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3588 * every tick. We fix it up based on jiffies.
46cb4b7c 3589 */
dd41f596 3590static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3591{
495eca49 3592 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3593 unsigned long curr_jiffies = jiffies;
3594 unsigned long pending_updates;
dd41f596 3595 int i, scale;
46cb4b7c 3596
dd41f596 3597 this_rq->nr_load_updates++;
46cb4b7c 3598
fdf3e95d
VP
3599 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3600 if (curr_jiffies == this_rq->last_load_update_tick)
3601 return;
3602
3603 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3604 this_rq->last_load_update_tick = curr_jiffies;
3605
dd41f596 3606 /* Update our load: */
fdf3e95d
VP
3607 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3608 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3609 unsigned long old_load, new_load;
7d1e6a9b 3610
dd41f596 3611 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3612
dd41f596 3613 old_load = this_rq->cpu_load[i];
fdf3e95d 3614 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3615 new_load = this_load;
a25707f3
IM
3616 /*
3617 * Round up the averaging division if load is increasing. This
3618 * prevents us from getting stuck on 9 if the load is 10, for
3619 * example.
3620 */
3621 if (new_load > old_load)
fdf3e95d
VP
3622 new_load += scale - 1;
3623
3624 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3625 }
da2b71ed
SS
3626
3627 sched_avg_update(this_rq);
fdf3e95d
VP
3628}
3629
3630static void update_cpu_load_active(struct rq *this_rq)
3631{
3632 update_cpu_load(this_rq);
46cb4b7c 3633
74f5187a 3634 calc_load_account_active(this_rq);
46cb4b7c
SS
3635}
3636
dd41f596 3637#ifdef CONFIG_SMP
8a0be9ef 3638
46cb4b7c 3639/*
38022906
PZ
3640 * sched_exec - execve() is a valuable balancing opportunity, because at
3641 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3642 */
38022906 3643void sched_exec(void)
46cb4b7c 3644{
38022906 3645 struct task_struct *p = current;
1da177e4 3646 unsigned long flags;
0017d735 3647 int dest_cpu;
46cb4b7c 3648
8f42ced9 3649 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3650 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3651 if (dest_cpu == smp_processor_id())
3652 goto unlock;
38022906 3653
8f42ced9 3654 if (likely(cpu_active(dest_cpu))) {
969c7921 3655 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3656
8f42ced9
PZ
3657 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3658 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3659 return;
3660 }
0017d735 3661unlock:
8f42ced9 3662 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3663}
dd41f596 3664
1da177e4
LT
3665#endif
3666
1da177e4
LT
3667DEFINE_PER_CPU(struct kernel_stat, kstat);
3668
3669EXPORT_PER_CPU_SYMBOL(kstat);
3670
3671/*
c5f8d995 3672 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3673 * @p in case that task is currently running.
c5f8d995
HS
3674 *
3675 * Called with task_rq_lock() held on @rq.
1da177e4 3676 */
c5f8d995
HS
3677static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3678{
3679 u64 ns = 0;
3680
3681 if (task_current(rq, p)) {
3682 update_rq_clock(rq);
305e6835 3683 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3684 if ((s64)ns < 0)
3685 ns = 0;
3686 }
3687
3688 return ns;
3689}
3690
bb34d92f 3691unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3692{
1da177e4 3693 unsigned long flags;
41b86e9c 3694 struct rq *rq;
bb34d92f 3695 u64 ns = 0;
48f24c4d 3696
41b86e9c 3697 rq = task_rq_lock(p, &flags);
c5f8d995 3698 ns = do_task_delta_exec(p, rq);
0122ec5b 3699 task_rq_unlock(rq, p, &flags);
1508487e 3700
c5f8d995
HS
3701 return ns;
3702}
f06febc9 3703
c5f8d995
HS
3704/*
3705 * Return accounted runtime for the task.
3706 * In case the task is currently running, return the runtime plus current's
3707 * pending runtime that have not been accounted yet.
3708 */
3709unsigned long long task_sched_runtime(struct task_struct *p)
3710{
3711 unsigned long flags;
3712 struct rq *rq;
3713 u64 ns = 0;
3714
3715 rq = task_rq_lock(p, &flags);
3716 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3717 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3718
3719 return ns;
3720}
48f24c4d 3721
c5f8d995
HS
3722/*
3723 * Return sum_exec_runtime for the thread group.
3724 * In case the task is currently running, return the sum plus current's
3725 * pending runtime that have not been accounted yet.
3726 *
3727 * Note that the thread group might have other running tasks as well,
3728 * so the return value not includes other pending runtime that other
3729 * running tasks might have.
3730 */
3731unsigned long long thread_group_sched_runtime(struct task_struct *p)
3732{
3733 struct task_cputime totals;
3734 unsigned long flags;
3735 struct rq *rq;
3736 u64 ns;
3737
3738 rq = task_rq_lock(p, &flags);
3739 thread_group_cputime(p, &totals);
3740 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3741 task_rq_unlock(rq, p, &flags);
48f24c4d 3742
1da177e4
LT
3743 return ns;
3744}
3745
1da177e4
LT
3746/*
3747 * Account user cpu time to a process.
3748 * @p: the process that the cpu time gets accounted to
1da177e4 3749 * @cputime: the cpu time spent in user space since the last update
457533a7 3750 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3751 */
457533a7
MS
3752void account_user_time(struct task_struct *p, cputime_t cputime,
3753 cputime_t cputime_scaled)
1da177e4
LT
3754{
3755 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3756 cputime64_t tmp;
3757
457533a7 3758 /* Add user time to process. */
1da177e4 3759 p->utime = cputime_add(p->utime, cputime);
457533a7 3760 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3761 account_group_user_time(p, cputime);
1da177e4
LT
3762
3763 /* Add user time to cpustat. */
3764 tmp = cputime_to_cputime64(cputime);
3765 if (TASK_NICE(p) > 0)
3766 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3767 else
3768 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3769
3770 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3771 /* Account for user time used */
3772 acct_update_integrals(p);
1da177e4
LT
3773}
3774
94886b84
LV
3775/*
3776 * Account guest cpu time to a process.
3777 * @p: the process that the cpu time gets accounted to
3778 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3779 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3780 */
457533a7
MS
3781static void account_guest_time(struct task_struct *p, cputime_t cputime,
3782 cputime_t cputime_scaled)
94886b84
LV
3783{
3784 cputime64_t tmp;
3785 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3786
3787 tmp = cputime_to_cputime64(cputime);
3788
457533a7 3789 /* Add guest time to process. */
94886b84 3790 p->utime = cputime_add(p->utime, cputime);
457533a7 3791 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3792 account_group_user_time(p, cputime);
94886b84
LV
3793 p->gtime = cputime_add(p->gtime, cputime);
3794
457533a7 3795 /* Add guest time to cpustat. */
ce0e7b28
RO
3796 if (TASK_NICE(p) > 0) {
3797 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3798 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3799 } else {
3800 cpustat->user = cputime64_add(cpustat->user, tmp);
3801 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3802 }
94886b84
LV
3803}
3804
70a89a66
VP
3805/*
3806 * Account system cpu time to a process and desired cpustat field
3807 * @p: the process that the cpu time gets accounted to
3808 * @cputime: the cpu time spent in kernel space since the last update
3809 * @cputime_scaled: cputime scaled by cpu frequency
3810 * @target_cputime64: pointer to cpustat field that has to be updated
3811 */
3812static inline
3813void __account_system_time(struct task_struct *p, cputime_t cputime,
3814 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3815{
3816 cputime64_t tmp = cputime_to_cputime64(cputime);
3817
3818 /* Add system time to process. */
3819 p->stime = cputime_add(p->stime, cputime);
3820 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3821 account_group_system_time(p, cputime);
3822
3823 /* Add system time to cpustat. */
3824 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3825 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3826
3827 /* Account for system time used */
3828 acct_update_integrals(p);
3829}
3830
1da177e4
LT
3831/*
3832 * Account system cpu time to a process.
3833 * @p: the process that the cpu time gets accounted to
3834 * @hardirq_offset: the offset to subtract from hardirq_count()
3835 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3836 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3837 */
3838void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3839 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3840{
3841 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3842 cputime64_t *target_cputime64;
1da177e4 3843
983ed7a6 3844 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3845 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3846 return;
3847 }
94886b84 3848
1da177e4 3849 if (hardirq_count() - hardirq_offset)
70a89a66 3850 target_cputime64 = &cpustat->irq;
75e1056f 3851 else if (in_serving_softirq())
70a89a66 3852 target_cputime64 = &cpustat->softirq;
1da177e4 3853 else
70a89a66 3854 target_cputime64 = &cpustat->system;
ef12fefa 3855
70a89a66 3856 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3857}
3858
c66f08be 3859/*
1da177e4 3860 * Account for involuntary wait time.
544b4a1f 3861 * @cputime: the cpu time spent in involuntary wait
c66f08be 3862 */
79741dd3 3863void account_steal_time(cputime_t cputime)
c66f08be 3864{
79741dd3
MS
3865 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3866 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3867
3868 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3869}
3870
1da177e4 3871/*
79741dd3
MS
3872 * Account for idle time.
3873 * @cputime: the cpu time spent in idle wait
1da177e4 3874 */
79741dd3 3875void account_idle_time(cputime_t cputime)
1da177e4
LT
3876{
3877 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3878 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3879 struct rq *rq = this_rq();
1da177e4 3880
79741dd3
MS
3881 if (atomic_read(&rq->nr_iowait) > 0)
3882 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3883 else
3884 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3885}
3886
e6e6685a
GC
3887static __always_inline bool steal_account_process_tick(void)
3888{
3889#ifdef CONFIG_PARAVIRT
3890 if (static_branch(&paravirt_steal_enabled)) {
3891 u64 steal, st = 0;
3892
3893 steal = paravirt_steal_clock(smp_processor_id());
3894 steal -= this_rq()->prev_steal_time;
3895
3896 st = steal_ticks(steal);
3897 this_rq()->prev_steal_time += st * TICK_NSEC;
3898
3899 account_steal_time(st);
3900 return st;
3901 }
3902#endif
3903 return false;
3904}
3905
79741dd3
MS
3906#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3907
abb74cef
VP
3908#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3909/*
3910 * Account a tick to a process and cpustat
3911 * @p: the process that the cpu time gets accounted to
3912 * @user_tick: is the tick from userspace
3913 * @rq: the pointer to rq
3914 *
3915 * Tick demultiplexing follows the order
3916 * - pending hardirq update
3917 * - pending softirq update
3918 * - user_time
3919 * - idle_time
3920 * - system time
3921 * - check for guest_time
3922 * - else account as system_time
3923 *
3924 * Check for hardirq is done both for system and user time as there is
3925 * no timer going off while we are on hardirq and hence we may never get an
3926 * opportunity to update it solely in system time.
3927 * p->stime and friends are only updated on system time and not on irq
3928 * softirq as those do not count in task exec_runtime any more.
3929 */
3930static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3931 struct rq *rq)
3932{
3933 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3934 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3935 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3936
e6e6685a
GC
3937 if (steal_account_process_tick())
3938 return;
3939
abb74cef
VP
3940 if (irqtime_account_hi_update()) {
3941 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3942 } else if (irqtime_account_si_update()) {
3943 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3944 } else if (this_cpu_ksoftirqd() == p) {
3945 /*
3946 * ksoftirqd time do not get accounted in cpu_softirq_time.
3947 * So, we have to handle it separately here.
3948 * Also, p->stime needs to be updated for ksoftirqd.
3949 */
3950 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3951 &cpustat->softirq);
abb74cef
VP
3952 } else if (user_tick) {
3953 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3954 } else if (p == rq->idle) {
3955 account_idle_time(cputime_one_jiffy);
3956 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3957 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3958 } else {
3959 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3960 &cpustat->system);
3961 }
3962}
3963
3964static void irqtime_account_idle_ticks(int ticks)
3965{
3966 int i;
3967 struct rq *rq = this_rq();
3968
3969 for (i = 0; i < ticks; i++)
3970 irqtime_account_process_tick(current, 0, rq);
3971}
544b4a1f 3972#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3973static void irqtime_account_idle_ticks(int ticks) {}
3974static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3975 struct rq *rq) {}
544b4a1f 3976#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3977
3978/*
3979 * Account a single tick of cpu time.
3980 * @p: the process that the cpu time gets accounted to
3981 * @user_tick: indicates if the tick is a user or a system tick
3982 */
3983void account_process_tick(struct task_struct *p, int user_tick)
3984{
a42548a1 3985 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3986 struct rq *rq = this_rq();
3987
abb74cef
VP
3988 if (sched_clock_irqtime) {
3989 irqtime_account_process_tick(p, user_tick, rq);
3990 return;
3991 }
3992
e6e6685a
GC
3993 if (steal_account_process_tick())
3994 return;
3995
79741dd3 3996 if (user_tick)
a42548a1 3997 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3998 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3999 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
4000 one_jiffy_scaled);
4001 else
a42548a1 4002 account_idle_time(cputime_one_jiffy);
79741dd3
MS
4003}
4004
4005/*
4006 * Account multiple ticks of steal time.
4007 * @p: the process from which the cpu time has been stolen
4008 * @ticks: number of stolen ticks
4009 */
4010void account_steal_ticks(unsigned long ticks)
4011{
4012 account_steal_time(jiffies_to_cputime(ticks));
4013}
4014
4015/*
4016 * Account multiple ticks of idle time.
4017 * @ticks: number of stolen ticks
4018 */
4019void account_idle_ticks(unsigned long ticks)
4020{
abb74cef
VP
4021
4022 if (sched_clock_irqtime) {
4023 irqtime_account_idle_ticks(ticks);
4024 return;
4025 }
4026
79741dd3 4027 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4028}
4029
79741dd3
MS
4030#endif
4031
49048622
BS
4032/*
4033 * Use precise platform statistics if available:
4034 */
4035#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 4036void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4037{
d99ca3b9
HS
4038 *ut = p->utime;
4039 *st = p->stime;
49048622
BS
4040}
4041
0cf55e1e 4042void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4043{
0cf55e1e
HS
4044 struct task_cputime cputime;
4045
4046 thread_group_cputime(p, &cputime);
4047
4048 *ut = cputime.utime;
4049 *st = cputime.stime;
49048622
BS
4050}
4051#else
761b1d26
HS
4052
4053#ifndef nsecs_to_cputime
b7b20df9 4054# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
4055#endif
4056
d180c5bc 4057void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4058{
d99ca3b9 4059 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
4060
4061 /*
4062 * Use CFS's precise accounting:
4063 */
d180c5bc 4064 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
4065
4066 if (total) {
e75e863d 4067 u64 temp = rtime;
d180c5bc 4068
e75e863d 4069 temp *= utime;
49048622 4070 do_div(temp, total);
d180c5bc
HS
4071 utime = (cputime_t)temp;
4072 } else
4073 utime = rtime;
49048622 4074
d180c5bc
HS
4075 /*
4076 * Compare with previous values, to keep monotonicity:
4077 */
761b1d26 4078 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4079 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4080
d99ca3b9
HS
4081 *ut = p->prev_utime;
4082 *st = p->prev_stime;
49048622
BS
4083}
4084
0cf55e1e
HS
4085/*
4086 * Must be called with siglock held.
4087 */
4088void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4089{
0cf55e1e
HS
4090 struct signal_struct *sig = p->signal;
4091 struct task_cputime cputime;
4092 cputime_t rtime, utime, total;
49048622 4093
0cf55e1e 4094 thread_group_cputime(p, &cputime);
49048622 4095
0cf55e1e
HS
4096 total = cputime_add(cputime.utime, cputime.stime);
4097 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4098
0cf55e1e 4099 if (total) {
e75e863d 4100 u64 temp = rtime;
49048622 4101
e75e863d 4102 temp *= cputime.utime;
0cf55e1e
HS
4103 do_div(temp, total);
4104 utime = (cputime_t)temp;
4105 } else
4106 utime = rtime;
4107
4108 sig->prev_utime = max(sig->prev_utime, utime);
4109 sig->prev_stime = max(sig->prev_stime,
4110 cputime_sub(rtime, sig->prev_utime));
4111
4112 *ut = sig->prev_utime;
4113 *st = sig->prev_stime;
49048622 4114}
49048622 4115#endif
49048622 4116
7835b98b
CL
4117/*
4118 * This function gets called by the timer code, with HZ frequency.
4119 * We call it with interrupts disabled.
7835b98b
CL
4120 */
4121void scheduler_tick(void)
4122{
7835b98b
CL
4123 int cpu = smp_processor_id();
4124 struct rq *rq = cpu_rq(cpu);
dd41f596 4125 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4126
4127 sched_clock_tick();
dd41f596 4128
05fa785c 4129 raw_spin_lock(&rq->lock);
3e51f33f 4130 update_rq_clock(rq);
fdf3e95d 4131 update_cpu_load_active(rq);
fa85ae24 4132 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4133 raw_spin_unlock(&rq->lock);
7835b98b 4134
e9d2b064 4135 perf_event_task_tick();
e220d2dc 4136
e418e1c2 4137#ifdef CONFIG_SMP
dd41f596
IM
4138 rq->idle_at_tick = idle_cpu(cpu);
4139 trigger_load_balance(rq, cpu);
e418e1c2 4140#endif
1da177e4
LT
4141}
4142
132380a0 4143notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4144{
4145 if (in_lock_functions(addr)) {
4146 addr = CALLER_ADDR2;
4147 if (in_lock_functions(addr))
4148 addr = CALLER_ADDR3;
4149 }
4150 return addr;
4151}
1da177e4 4152
7e49fcce
SR
4153#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4154 defined(CONFIG_PREEMPT_TRACER))
4155
43627582 4156void __kprobes add_preempt_count(int val)
1da177e4 4157{
6cd8a4bb 4158#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4159 /*
4160 * Underflow?
4161 */
9a11b49a
IM
4162 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4163 return;
6cd8a4bb 4164#endif
1da177e4 4165 preempt_count() += val;
6cd8a4bb 4166#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4167 /*
4168 * Spinlock count overflowing soon?
4169 */
33859f7f
MOS
4170 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4171 PREEMPT_MASK - 10);
6cd8a4bb
SR
4172#endif
4173 if (preempt_count() == val)
4174 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4175}
4176EXPORT_SYMBOL(add_preempt_count);
4177
43627582 4178void __kprobes sub_preempt_count(int val)
1da177e4 4179{
6cd8a4bb 4180#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4181 /*
4182 * Underflow?
4183 */
01e3eb82 4184 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4185 return;
1da177e4
LT
4186 /*
4187 * Is the spinlock portion underflowing?
4188 */
9a11b49a
IM
4189 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4190 !(preempt_count() & PREEMPT_MASK)))
4191 return;
6cd8a4bb 4192#endif
9a11b49a 4193
6cd8a4bb
SR
4194 if (preempt_count() == val)
4195 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4196 preempt_count() -= val;
4197}
4198EXPORT_SYMBOL(sub_preempt_count);
4199
4200#endif
4201
4202/*
dd41f596 4203 * Print scheduling while atomic bug:
1da177e4 4204 */
dd41f596 4205static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4206{
838225b4
SS
4207 struct pt_regs *regs = get_irq_regs();
4208
3df0fc5b
PZ
4209 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4210 prev->comm, prev->pid, preempt_count());
838225b4 4211
dd41f596 4212 debug_show_held_locks(prev);
e21f5b15 4213 print_modules();
dd41f596
IM
4214 if (irqs_disabled())
4215 print_irqtrace_events(prev);
838225b4
SS
4216
4217 if (regs)
4218 show_regs(regs);
4219 else
4220 dump_stack();
dd41f596 4221}
1da177e4 4222
dd41f596
IM
4223/*
4224 * Various schedule()-time debugging checks and statistics:
4225 */
4226static inline void schedule_debug(struct task_struct *prev)
4227{
1da177e4 4228 /*
41a2d6cf 4229 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4230 * schedule() atomically, we ignore that path for now.
4231 * Otherwise, whine if we are scheduling when we should not be.
4232 */
3f33a7ce 4233 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4234 __schedule_bug(prev);
4235
1da177e4
LT
4236 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4237
2d72376b 4238 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4239}
4240
6cecd084 4241static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4242{
61eadef6 4243 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4244 update_rq_clock(rq);
6cecd084 4245 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4246}
4247
dd41f596
IM
4248/*
4249 * Pick up the highest-prio task:
4250 */
4251static inline struct task_struct *
b67802ea 4252pick_next_task(struct rq *rq)
dd41f596 4253{
5522d5d5 4254 const struct sched_class *class;
dd41f596 4255 struct task_struct *p;
1da177e4
LT
4256
4257 /*
dd41f596
IM
4258 * Optimization: we know that if all tasks are in
4259 * the fair class we can call that function directly:
1da177e4 4260 */
dd41f596 4261 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4262 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4263 if (likely(p))
4264 return p;
1da177e4
LT
4265 }
4266
34f971f6 4267 for_each_class(class) {
fb8d4724 4268 p = class->pick_next_task(rq);
dd41f596
IM
4269 if (p)
4270 return p;
dd41f596 4271 }
34f971f6
PZ
4272
4273 BUG(); /* the idle class will always have a runnable task */
dd41f596 4274}
1da177e4 4275
dd41f596
IM
4276/*
4277 * schedule() is the main scheduler function.
4278 */
ff743345 4279asmlinkage void __sched schedule(void)
dd41f596
IM
4280{
4281 struct task_struct *prev, *next;
67ca7bde 4282 unsigned long *switch_count;
dd41f596 4283 struct rq *rq;
31656519 4284 int cpu;
dd41f596 4285
ff743345
PZ
4286need_resched:
4287 preempt_disable();
dd41f596
IM
4288 cpu = smp_processor_id();
4289 rq = cpu_rq(cpu);
25502a6c 4290 rcu_note_context_switch(cpu);
dd41f596 4291 prev = rq->curr;
dd41f596 4292
dd41f596 4293 schedule_debug(prev);
1da177e4 4294
31656519 4295 if (sched_feat(HRTICK))
f333fdc9 4296 hrtick_clear(rq);
8f4d37ec 4297
05fa785c 4298 raw_spin_lock_irq(&rq->lock);
1da177e4 4299
246d86b5 4300 switch_count = &prev->nivcsw;
1da177e4 4301 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4302 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4303 prev->state = TASK_RUNNING;
21aa9af0 4304 } else {
2acca55e
PZ
4305 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4306 prev->on_rq = 0;
4307
21aa9af0 4308 /*
2acca55e
PZ
4309 * If a worker went to sleep, notify and ask workqueue
4310 * whether it wants to wake up a task to maintain
4311 * concurrency.
21aa9af0
TH
4312 */
4313 if (prev->flags & PF_WQ_WORKER) {
4314 struct task_struct *to_wakeup;
4315
4316 to_wakeup = wq_worker_sleeping(prev, cpu);
4317 if (to_wakeup)
4318 try_to_wake_up_local(to_wakeup);
4319 }
fd2f4419 4320
6631e635 4321 /*
2acca55e
PZ
4322 * If we are going to sleep and we have plugged IO
4323 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4324 */
4325 if (blk_needs_flush_plug(prev)) {
4326 raw_spin_unlock(&rq->lock);
a237c1c5 4327 blk_schedule_flush_plug(prev);
6631e635
LT
4328 raw_spin_lock(&rq->lock);
4329 }
21aa9af0 4330 }
dd41f596 4331 switch_count = &prev->nvcsw;
1da177e4
LT
4332 }
4333
3f029d3c 4334 pre_schedule(rq, prev);
f65eda4f 4335
dd41f596 4336 if (unlikely(!rq->nr_running))
1da177e4 4337 idle_balance(cpu, rq);
1da177e4 4338
df1c99d4 4339 put_prev_task(rq, prev);
b67802ea 4340 next = pick_next_task(rq);
f26f9aff
MG
4341 clear_tsk_need_resched(prev);
4342 rq->skip_clock_update = 0;
1da177e4 4343
1da177e4 4344 if (likely(prev != next)) {
1da177e4
LT
4345 rq->nr_switches++;
4346 rq->curr = next;
4347 ++*switch_count;
4348
dd41f596 4349 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4350 /*
246d86b5
ON
4351 * The context switch have flipped the stack from under us
4352 * and restored the local variables which were saved when
4353 * this task called schedule() in the past. prev == current
4354 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4355 */
4356 cpu = smp_processor_id();
4357 rq = cpu_rq(cpu);
1da177e4 4358 } else
05fa785c 4359 raw_spin_unlock_irq(&rq->lock);
1da177e4 4360
3f029d3c 4361 post_schedule(rq);
1da177e4 4362
1da177e4 4363 preempt_enable_no_resched();
ff743345 4364 if (need_resched())
1da177e4
LT
4365 goto need_resched;
4366}
1da177e4
LT
4367EXPORT_SYMBOL(schedule);
4368
c08f7829 4369#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4370
c6eb3dda
PZ
4371static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4372{
c6eb3dda 4373 if (lock->owner != owner)
307bf980 4374 return false;
0d66bf6d
PZ
4375
4376 /*
c6eb3dda
PZ
4377 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4378 * lock->owner still matches owner, if that fails, owner might
4379 * point to free()d memory, if it still matches, the rcu_read_lock()
4380 * ensures the memory stays valid.
0d66bf6d 4381 */
c6eb3dda 4382 barrier();
0d66bf6d 4383
307bf980 4384 return owner->on_cpu;
c6eb3dda 4385}
0d66bf6d 4386
c6eb3dda
PZ
4387/*
4388 * Look out! "owner" is an entirely speculative pointer
4389 * access and not reliable.
4390 */
4391int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4392{
4393 if (!sched_feat(OWNER_SPIN))
4394 return 0;
0d66bf6d 4395
307bf980 4396 rcu_read_lock();
c6eb3dda
PZ
4397 while (owner_running(lock, owner)) {
4398 if (need_resched())
307bf980 4399 break;
0d66bf6d 4400
335d7afb 4401 arch_mutex_cpu_relax();
0d66bf6d 4402 }
307bf980 4403 rcu_read_unlock();
4b402210 4404
c6eb3dda 4405 /*
307bf980
TG
4406 * We break out the loop above on need_resched() and when the
4407 * owner changed, which is a sign for heavy contention. Return
4408 * success only when lock->owner is NULL.
c6eb3dda 4409 */
307bf980 4410 return lock->owner == NULL;
0d66bf6d
PZ
4411}
4412#endif
4413
1da177e4
LT
4414#ifdef CONFIG_PREEMPT
4415/*
2ed6e34f 4416 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4417 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4418 * occur there and call schedule directly.
4419 */
d1f74e20 4420asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4421{
4422 struct thread_info *ti = current_thread_info();
6478d880 4423
1da177e4
LT
4424 /*
4425 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4426 * we do not want to preempt the current task. Just return..
1da177e4 4427 */
beed33a8 4428 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4429 return;
4430
3a5c359a 4431 do {
d1f74e20 4432 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4433 schedule();
d1f74e20 4434 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4435
3a5c359a
AK
4436 /*
4437 * Check again in case we missed a preemption opportunity
4438 * between schedule and now.
4439 */
4440 barrier();
5ed0cec0 4441 } while (need_resched());
1da177e4 4442}
1da177e4
LT
4443EXPORT_SYMBOL(preempt_schedule);
4444
4445/*
2ed6e34f 4446 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4447 * off of irq context.
4448 * Note, that this is called and return with irqs disabled. This will
4449 * protect us against recursive calling from irq.
4450 */
4451asmlinkage void __sched preempt_schedule_irq(void)
4452{
4453 struct thread_info *ti = current_thread_info();
6478d880 4454
2ed6e34f 4455 /* Catch callers which need to be fixed */
1da177e4
LT
4456 BUG_ON(ti->preempt_count || !irqs_disabled());
4457
3a5c359a
AK
4458 do {
4459 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4460 local_irq_enable();
4461 schedule();
4462 local_irq_disable();
3a5c359a 4463 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4464
3a5c359a
AK
4465 /*
4466 * Check again in case we missed a preemption opportunity
4467 * between schedule and now.
4468 */
4469 barrier();
5ed0cec0 4470 } while (need_resched());
1da177e4
LT
4471}
4472
4473#endif /* CONFIG_PREEMPT */
4474
63859d4f 4475int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4476 void *key)
1da177e4 4477{
63859d4f 4478 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4479}
1da177e4
LT
4480EXPORT_SYMBOL(default_wake_function);
4481
4482/*
41a2d6cf
IM
4483 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4484 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4485 * number) then we wake all the non-exclusive tasks and one exclusive task.
4486 *
4487 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4488 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4489 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4490 */
78ddb08f 4491static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4492 int nr_exclusive, int wake_flags, void *key)
1da177e4 4493{
2e45874c 4494 wait_queue_t *curr, *next;
1da177e4 4495
2e45874c 4496 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4497 unsigned flags = curr->flags;
4498
63859d4f 4499 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4500 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4501 break;
4502 }
4503}
4504
4505/**
4506 * __wake_up - wake up threads blocked on a waitqueue.
4507 * @q: the waitqueue
4508 * @mode: which threads
4509 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4510 * @key: is directly passed to the wakeup function
50fa610a
DH
4511 *
4512 * It may be assumed that this function implies a write memory barrier before
4513 * changing the task state if and only if any tasks are woken up.
1da177e4 4514 */
7ad5b3a5 4515void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4516 int nr_exclusive, void *key)
1da177e4
LT
4517{
4518 unsigned long flags;
4519
4520 spin_lock_irqsave(&q->lock, flags);
4521 __wake_up_common(q, mode, nr_exclusive, 0, key);
4522 spin_unlock_irqrestore(&q->lock, flags);
4523}
1da177e4
LT
4524EXPORT_SYMBOL(__wake_up);
4525
4526/*
4527 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4528 */
7ad5b3a5 4529void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4530{
4531 __wake_up_common(q, mode, 1, 0, NULL);
4532}
22c43c81 4533EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4534
4ede816a
DL
4535void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4536{
4537 __wake_up_common(q, mode, 1, 0, key);
4538}
bf294b41 4539EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4540
1da177e4 4541/**
4ede816a 4542 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4543 * @q: the waitqueue
4544 * @mode: which threads
4545 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4546 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4547 *
4548 * The sync wakeup differs that the waker knows that it will schedule
4549 * away soon, so while the target thread will be woken up, it will not
4550 * be migrated to another CPU - ie. the two threads are 'synchronized'
4551 * with each other. This can prevent needless bouncing between CPUs.
4552 *
4553 * On UP it can prevent extra preemption.
50fa610a
DH
4554 *
4555 * It may be assumed that this function implies a write memory barrier before
4556 * changing the task state if and only if any tasks are woken up.
1da177e4 4557 */
4ede816a
DL
4558void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4559 int nr_exclusive, void *key)
1da177e4
LT
4560{
4561 unsigned long flags;
7d478721 4562 int wake_flags = WF_SYNC;
1da177e4
LT
4563
4564 if (unlikely(!q))
4565 return;
4566
4567 if (unlikely(!nr_exclusive))
7d478721 4568 wake_flags = 0;
1da177e4
LT
4569
4570 spin_lock_irqsave(&q->lock, flags);
7d478721 4571 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4572 spin_unlock_irqrestore(&q->lock, flags);
4573}
4ede816a
DL
4574EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4575
4576/*
4577 * __wake_up_sync - see __wake_up_sync_key()
4578 */
4579void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4580{
4581 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4582}
1da177e4
LT
4583EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4584
65eb3dc6
KD
4585/**
4586 * complete: - signals a single thread waiting on this completion
4587 * @x: holds the state of this particular completion
4588 *
4589 * This will wake up a single thread waiting on this completion. Threads will be
4590 * awakened in the same order in which they were queued.
4591 *
4592 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4593 *
4594 * It may be assumed that this function implies a write memory barrier before
4595 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4596 */
b15136e9 4597void complete(struct completion *x)
1da177e4
LT
4598{
4599 unsigned long flags;
4600
4601 spin_lock_irqsave(&x->wait.lock, flags);
4602 x->done++;
d9514f6c 4603 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4604 spin_unlock_irqrestore(&x->wait.lock, flags);
4605}
4606EXPORT_SYMBOL(complete);
4607
65eb3dc6
KD
4608/**
4609 * complete_all: - signals all threads waiting on this completion
4610 * @x: holds the state of this particular completion
4611 *
4612 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4613 *
4614 * It may be assumed that this function implies a write memory barrier before
4615 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4616 */
b15136e9 4617void complete_all(struct completion *x)
1da177e4
LT
4618{
4619 unsigned long flags;
4620
4621 spin_lock_irqsave(&x->wait.lock, flags);
4622 x->done += UINT_MAX/2;
d9514f6c 4623 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4624 spin_unlock_irqrestore(&x->wait.lock, flags);
4625}
4626EXPORT_SYMBOL(complete_all);
4627
8cbbe86d
AK
4628static inline long __sched
4629do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4630{
1da177e4
LT
4631 if (!x->done) {
4632 DECLARE_WAITQUEUE(wait, current);
4633
a93d2f17 4634 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4635 do {
94d3d824 4636 if (signal_pending_state(state, current)) {
ea71a546
ON
4637 timeout = -ERESTARTSYS;
4638 break;
8cbbe86d
AK
4639 }
4640 __set_current_state(state);
1da177e4
LT
4641 spin_unlock_irq(&x->wait.lock);
4642 timeout = schedule_timeout(timeout);
4643 spin_lock_irq(&x->wait.lock);
ea71a546 4644 } while (!x->done && timeout);
1da177e4 4645 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4646 if (!x->done)
4647 return timeout;
1da177e4
LT
4648 }
4649 x->done--;
ea71a546 4650 return timeout ?: 1;
1da177e4 4651}
1da177e4 4652
8cbbe86d
AK
4653static long __sched
4654wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4655{
1da177e4
LT
4656 might_sleep();
4657
4658 spin_lock_irq(&x->wait.lock);
8cbbe86d 4659 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4660 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4661 return timeout;
4662}
1da177e4 4663
65eb3dc6
KD
4664/**
4665 * wait_for_completion: - waits for completion of a task
4666 * @x: holds the state of this particular completion
4667 *
4668 * This waits to be signaled for completion of a specific task. It is NOT
4669 * interruptible and there is no timeout.
4670 *
4671 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4672 * and interrupt capability. Also see complete().
4673 */
b15136e9 4674void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4675{
4676 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4677}
8cbbe86d 4678EXPORT_SYMBOL(wait_for_completion);
1da177e4 4679
65eb3dc6
KD
4680/**
4681 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4682 * @x: holds the state of this particular completion
4683 * @timeout: timeout value in jiffies
4684 *
4685 * This waits for either a completion of a specific task to be signaled or for a
4686 * specified timeout to expire. The timeout is in jiffies. It is not
4687 * interruptible.
4688 */
b15136e9 4689unsigned long __sched
8cbbe86d 4690wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4691{
8cbbe86d 4692 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4693}
8cbbe86d 4694EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4695
65eb3dc6
KD
4696/**
4697 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4698 * @x: holds the state of this particular completion
4699 *
4700 * This waits for completion of a specific task to be signaled. It is
4701 * interruptible.
4702 */
8cbbe86d 4703int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4704{
51e97990
AK
4705 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4706 if (t == -ERESTARTSYS)
4707 return t;
4708 return 0;
0fec171c 4709}
8cbbe86d 4710EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4711
65eb3dc6
KD
4712/**
4713 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4714 * @x: holds the state of this particular completion
4715 * @timeout: timeout value in jiffies
4716 *
4717 * This waits for either a completion of a specific task to be signaled or for a
4718 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4719 */
6bf41237 4720long __sched
8cbbe86d
AK
4721wait_for_completion_interruptible_timeout(struct completion *x,
4722 unsigned long timeout)
0fec171c 4723{
8cbbe86d 4724 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4725}
8cbbe86d 4726EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4727
65eb3dc6
KD
4728/**
4729 * wait_for_completion_killable: - waits for completion of a task (killable)
4730 * @x: holds the state of this particular completion
4731 *
4732 * This waits to be signaled for completion of a specific task. It can be
4733 * interrupted by a kill signal.
4734 */
009e577e
MW
4735int __sched wait_for_completion_killable(struct completion *x)
4736{
4737 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4738 if (t == -ERESTARTSYS)
4739 return t;
4740 return 0;
4741}
4742EXPORT_SYMBOL(wait_for_completion_killable);
4743
0aa12fb4
SW
4744/**
4745 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4746 * @x: holds the state of this particular completion
4747 * @timeout: timeout value in jiffies
4748 *
4749 * This waits for either a completion of a specific task to be
4750 * signaled or for a specified timeout to expire. It can be
4751 * interrupted by a kill signal. The timeout is in jiffies.
4752 */
6bf41237 4753long __sched
0aa12fb4
SW
4754wait_for_completion_killable_timeout(struct completion *x,
4755 unsigned long timeout)
4756{
4757 return wait_for_common(x, timeout, TASK_KILLABLE);
4758}
4759EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4760
be4de352
DC
4761/**
4762 * try_wait_for_completion - try to decrement a completion without blocking
4763 * @x: completion structure
4764 *
4765 * Returns: 0 if a decrement cannot be done without blocking
4766 * 1 if a decrement succeeded.
4767 *
4768 * If a completion is being used as a counting completion,
4769 * attempt to decrement the counter without blocking. This
4770 * enables us to avoid waiting if the resource the completion
4771 * is protecting is not available.
4772 */
4773bool try_wait_for_completion(struct completion *x)
4774{
7539a3b3 4775 unsigned long flags;
be4de352
DC
4776 int ret = 1;
4777
7539a3b3 4778 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4779 if (!x->done)
4780 ret = 0;
4781 else
4782 x->done--;
7539a3b3 4783 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4784 return ret;
4785}
4786EXPORT_SYMBOL(try_wait_for_completion);
4787
4788/**
4789 * completion_done - Test to see if a completion has any waiters
4790 * @x: completion structure
4791 *
4792 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4793 * 1 if there are no waiters.
4794 *
4795 */
4796bool completion_done(struct completion *x)
4797{
7539a3b3 4798 unsigned long flags;
be4de352
DC
4799 int ret = 1;
4800
7539a3b3 4801 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4802 if (!x->done)
4803 ret = 0;
7539a3b3 4804 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4805 return ret;
4806}
4807EXPORT_SYMBOL(completion_done);
4808
8cbbe86d
AK
4809static long __sched
4810sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4811{
0fec171c
IM
4812 unsigned long flags;
4813 wait_queue_t wait;
4814
4815 init_waitqueue_entry(&wait, current);
1da177e4 4816
8cbbe86d 4817 __set_current_state(state);
1da177e4 4818
8cbbe86d
AK
4819 spin_lock_irqsave(&q->lock, flags);
4820 __add_wait_queue(q, &wait);
4821 spin_unlock(&q->lock);
4822 timeout = schedule_timeout(timeout);
4823 spin_lock_irq(&q->lock);
4824 __remove_wait_queue(q, &wait);
4825 spin_unlock_irqrestore(&q->lock, flags);
4826
4827 return timeout;
4828}
4829
4830void __sched interruptible_sleep_on(wait_queue_head_t *q)
4831{
4832 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4833}
1da177e4
LT
4834EXPORT_SYMBOL(interruptible_sleep_on);
4835
0fec171c 4836long __sched
95cdf3b7 4837interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4838{
8cbbe86d 4839 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4840}
1da177e4
LT
4841EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4842
0fec171c 4843void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4844{
8cbbe86d 4845 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4846}
1da177e4
LT
4847EXPORT_SYMBOL(sleep_on);
4848
0fec171c 4849long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4850{
8cbbe86d 4851 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4852}
1da177e4
LT
4853EXPORT_SYMBOL(sleep_on_timeout);
4854
b29739f9
IM
4855#ifdef CONFIG_RT_MUTEXES
4856
4857/*
4858 * rt_mutex_setprio - set the current priority of a task
4859 * @p: task
4860 * @prio: prio value (kernel-internal form)
4861 *
4862 * This function changes the 'effective' priority of a task. It does
4863 * not touch ->normal_prio like __setscheduler().
4864 *
4865 * Used by the rt_mutex code to implement priority inheritance logic.
4866 */
36c8b586 4867void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4868{
83b699ed 4869 int oldprio, on_rq, running;
70b97a7f 4870 struct rq *rq;
83ab0aa0 4871 const struct sched_class *prev_class;
b29739f9
IM
4872
4873 BUG_ON(prio < 0 || prio > MAX_PRIO);
4874
0122ec5b 4875 rq = __task_rq_lock(p);
b29739f9 4876
a8027073 4877 trace_sched_pi_setprio(p, prio);
d5f9f942 4878 oldprio = p->prio;
83ab0aa0 4879 prev_class = p->sched_class;
fd2f4419 4880 on_rq = p->on_rq;
051a1d1a 4881 running = task_current(rq, p);
0e1f3483 4882 if (on_rq)
69be72c1 4883 dequeue_task(rq, p, 0);
0e1f3483
HS
4884 if (running)
4885 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4886
4887 if (rt_prio(prio))
4888 p->sched_class = &rt_sched_class;
4889 else
4890 p->sched_class = &fair_sched_class;
4891
b29739f9
IM
4892 p->prio = prio;
4893
0e1f3483
HS
4894 if (running)
4895 p->sched_class->set_curr_task(rq);
da7a735e 4896 if (on_rq)
371fd7e7 4897 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4898
da7a735e 4899 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4900 __task_rq_unlock(rq);
b29739f9
IM
4901}
4902
4903#endif
4904
36c8b586 4905void set_user_nice(struct task_struct *p, long nice)
1da177e4 4906{
dd41f596 4907 int old_prio, delta, on_rq;
1da177e4 4908 unsigned long flags;
70b97a7f 4909 struct rq *rq;
1da177e4
LT
4910
4911 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4912 return;
4913 /*
4914 * We have to be careful, if called from sys_setpriority(),
4915 * the task might be in the middle of scheduling on another CPU.
4916 */
4917 rq = task_rq_lock(p, &flags);
4918 /*
4919 * The RT priorities are set via sched_setscheduler(), but we still
4920 * allow the 'normal' nice value to be set - but as expected
4921 * it wont have any effect on scheduling until the task is
dd41f596 4922 * SCHED_FIFO/SCHED_RR:
1da177e4 4923 */
e05606d3 4924 if (task_has_rt_policy(p)) {
1da177e4
LT
4925 p->static_prio = NICE_TO_PRIO(nice);
4926 goto out_unlock;
4927 }
fd2f4419 4928 on_rq = p->on_rq;
c09595f6 4929 if (on_rq)
69be72c1 4930 dequeue_task(rq, p, 0);
1da177e4 4931
1da177e4 4932 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4933 set_load_weight(p);
b29739f9
IM
4934 old_prio = p->prio;
4935 p->prio = effective_prio(p);
4936 delta = p->prio - old_prio;
1da177e4 4937
dd41f596 4938 if (on_rq) {
371fd7e7 4939 enqueue_task(rq, p, 0);
1da177e4 4940 /*
d5f9f942
AM
4941 * If the task increased its priority or is running and
4942 * lowered its priority, then reschedule its CPU:
1da177e4 4943 */
d5f9f942 4944 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4945 resched_task(rq->curr);
4946 }
4947out_unlock:
0122ec5b 4948 task_rq_unlock(rq, p, &flags);
1da177e4 4949}
1da177e4
LT
4950EXPORT_SYMBOL(set_user_nice);
4951
e43379f1
MM
4952/*
4953 * can_nice - check if a task can reduce its nice value
4954 * @p: task
4955 * @nice: nice value
4956 */
36c8b586 4957int can_nice(const struct task_struct *p, const int nice)
e43379f1 4958{
024f4747
MM
4959 /* convert nice value [19,-20] to rlimit style value [1,40] */
4960 int nice_rlim = 20 - nice;
48f24c4d 4961
78d7d407 4962 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4963 capable(CAP_SYS_NICE));
4964}
4965
1da177e4
LT
4966#ifdef __ARCH_WANT_SYS_NICE
4967
4968/*
4969 * sys_nice - change the priority of the current process.
4970 * @increment: priority increment
4971 *
4972 * sys_setpriority is a more generic, but much slower function that
4973 * does similar things.
4974 */
5add95d4 4975SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4976{
48f24c4d 4977 long nice, retval;
1da177e4
LT
4978
4979 /*
4980 * Setpriority might change our priority at the same moment.
4981 * We don't have to worry. Conceptually one call occurs first
4982 * and we have a single winner.
4983 */
e43379f1
MM
4984 if (increment < -40)
4985 increment = -40;
1da177e4
LT
4986 if (increment > 40)
4987 increment = 40;
4988
2b8f836f 4989 nice = TASK_NICE(current) + increment;
1da177e4
LT
4990 if (nice < -20)
4991 nice = -20;
4992 if (nice > 19)
4993 nice = 19;
4994
e43379f1
MM
4995 if (increment < 0 && !can_nice(current, nice))
4996 return -EPERM;
4997
1da177e4
LT
4998 retval = security_task_setnice(current, nice);
4999 if (retval)
5000 return retval;
5001
5002 set_user_nice(current, nice);
5003 return 0;
5004}
5005
5006#endif
5007
5008/**
5009 * task_prio - return the priority value of a given task.
5010 * @p: the task in question.
5011 *
5012 * This is the priority value as seen by users in /proc.
5013 * RT tasks are offset by -200. Normal tasks are centered
5014 * around 0, value goes from -16 to +15.
5015 */
36c8b586 5016int task_prio(const struct task_struct *p)
1da177e4
LT
5017{
5018 return p->prio - MAX_RT_PRIO;
5019}
5020
5021/**
5022 * task_nice - return the nice value of a given task.
5023 * @p: the task in question.
5024 */
36c8b586 5025int task_nice(const struct task_struct *p)
1da177e4
LT
5026{
5027 return TASK_NICE(p);
5028}
150d8bed 5029EXPORT_SYMBOL(task_nice);
1da177e4
LT
5030
5031/**
5032 * idle_cpu - is a given cpu idle currently?
5033 * @cpu: the processor in question.
5034 */
5035int idle_cpu(int cpu)
5036{
5037 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5038}
5039
1da177e4
LT
5040/**
5041 * idle_task - return the idle task for a given cpu.
5042 * @cpu: the processor in question.
5043 */
36c8b586 5044struct task_struct *idle_task(int cpu)
1da177e4
LT
5045{
5046 return cpu_rq(cpu)->idle;
5047}
5048
5049/**
5050 * find_process_by_pid - find a process with a matching PID value.
5051 * @pid: the pid in question.
5052 */
a9957449 5053static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5054{
228ebcbe 5055 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5056}
5057
5058/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5059static void
5060__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5061{
1da177e4
LT
5062 p->policy = policy;
5063 p->rt_priority = prio;
b29739f9
IM
5064 p->normal_prio = normal_prio(p);
5065 /* we are holding p->pi_lock already */
5066 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
5067 if (rt_prio(p->prio))
5068 p->sched_class = &rt_sched_class;
5069 else
5070 p->sched_class = &fair_sched_class;
2dd73a4f 5071 set_load_weight(p);
1da177e4
LT
5072}
5073
c69e8d9c
DH
5074/*
5075 * check the target process has a UID that matches the current process's
5076 */
5077static bool check_same_owner(struct task_struct *p)
5078{
5079 const struct cred *cred = current_cred(), *pcred;
5080 bool match;
5081
5082 rcu_read_lock();
5083 pcred = __task_cred(p);
b0e77598
SH
5084 if (cred->user->user_ns == pcred->user->user_ns)
5085 match = (cred->euid == pcred->euid ||
5086 cred->euid == pcred->uid);
5087 else
5088 match = false;
c69e8d9c
DH
5089 rcu_read_unlock();
5090 return match;
5091}
5092
961ccddd 5093static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5094 const struct sched_param *param, bool user)
1da177e4 5095{
83b699ed 5096 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5097 unsigned long flags;
83ab0aa0 5098 const struct sched_class *prev_class;
70b97a7f 5099 struct rq *rq;
ca94c442 5100 int reset_on_fork;
1da177e4 5101
66e5393a
SR
5102 /* may grab non-irq protected spin_locks */
5103 BUG_ON(in_interrupt());
1da177e4
LT
5104recheck:
5105 /* double check policy once rq lock held */
ca94c442
LP
5106 if (policy < 0) {
5107 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5108 policy = oldpolicy = p->policy;
ca94c442
LP
5109 } else {
5110 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5111 policy &= ~SCHED_RESET_ON_FORK;
5112
5113 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5114 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5115 policy != SCHED_IDLE)
5116 return -EINVAL;
5117 }
5118
1da177e4
LT
5119 /*
5120 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5121 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5122 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5123 */
5124 if (param->sched_priority < 0 ||
95cdf3b7 5125 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5126 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5127 return -EINVAL;
e05606d3 5128 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5129 return -EINVAL;
5130
37e4ab3f
OC
5131 /*
5132 * Allow unprivileged RT tasks to decrease priority:
5133 */
961ccddd 5134 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5135 if (rt_policy(policy)) {
a44702e8
ON
5136 unsigned long rlim_rtprio =
5137 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5138
5139 /* can't set/change the rt policy */
5140 if (policy != p->policy && !rlim_rtprio)
5141 return -EPERM;
5142
5143 /* can't increase priority */
5144 if (param->sched_priority > p->rt_priority &&
5145 param->sched_priority > rlim_rtprio)
5146 return -EPERM;
5147 }
c02aa73b 5148
dd41f596 5149 /*
c02aa73b
DH
5150 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5151 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5152 */
c02aa73b
DH
5153 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5154 if (!can_nice(p, TASK_NICE(p)))
5155 return -EPERM;
5156 }
5fe1d75f 5157
37e4ab3f 5158 /* can't change other user's priorities */
c69e8d9c 5159 if (!check_same_owner(p))
37e4ab3f 5160 return -EPERM;
ca94c442
LP
5161
5162 /* Normal users shall not reset the sched_reset_on_fork flag */
5163 if (p->sched_reset_on_fork && !reset_on_fork)
5164 return -EPERM;
37e4ab3f 5165 }
1da177e4 5166
725aad24 5167 if (user) {
b0ae1981 5168 retval = security_task_setscheduler(p);
725aad24
JF
5169 if (retval)
5170 return retval;
5171 }
5172
b29739f9
IM
5173 /*
5174 * make sure no PI-waiters arrive (or leave) while we are
5175 * changing the priority of the task:
0122ec5b 5176 *
25985edc 5177 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5178 * runqueue lock must be held.
5179 */
0122ec5b 5180 rq = task_rq_lock(p, &flags);
dc61b1d6 5181
34f971f6
PZ
5182 /*
5183 * Changing the policy of the stop threads its a very bad idea
5184 */
5185 if (p == rq->stop) {
0122ec5b 5186 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5187 return -EINVAL;
5188 }
5189
a51e9198
DF
5190 /*
5191 * If not changing anything there's no need to proceed further:
5192 */
5193 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5194 param->sched_priority == p->rt_priority))) {
5195
5196 __task_rq_unlock(rq);
5197 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5198 return 0;
5199 }
5200
dc61b1d6
PZ
5201#ifdef CONFIG_RT_GROUP_SCHED
5202 if (user) {
5203 /*
5204 * Do not allow realtime tasks into groups that have no runtime
5205 * assigned.
5206 */
5207 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5208 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5209 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5210 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5211 return -EPERM;
5212 }
5213 }
5214#endif
5215
1da177e4
LT
5216 /* recheck policy now with rq lock held */
5217 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5218 policy = oldpolicy = -1;
0122ec5b 5219 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5220 goto recheck;
5221 }
fd2f4419 5222 on_rq = p->on_rq;
051a1d1a 5223 running = task_current(rq, p);
0e1f3483 5224 if (on_rq)
2e1cb74a 5225 deactivate_task(rq, p, 0);
0e1f3483
HS
5226 if (running)
5227 p->sched_class->put_prev_task(rq, p);
f6b53205 5228
ca94c442
LP
5229 p->sched_reset_on_fork = reset_on_fork;
5230
1da177e4 5231 oldprio = p->prio;
83ab0aa0 5232 prev_class = p->sched_class;
dd41f596 5233 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5234
0e1f3483
HS
5235 if (running)
5236 p->sched_class->set_curr_task(rq);
da7a735e 5237 if (on_rq)
dd41f596 5238 activate_task(rq, p, 0);
cb469845 5239
da7a735e 5240 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5241 task_rq_unlock(rq, p, &flags);
b29739f9 5242
95e02ca9
TG
5243 rt_mutex_adjust_pi(p);
5244
1da177e4
LT
5245 return 0;
5246}
961ccddd
RR
5247
5248/**
5249 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5250 * @p: the task in question.
5251 * @policy: new policy.
5252 * @param: structure containing the new RT priority.
5253 *
5254 * NOTE that the task may be already dead.
5255 */
5256int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5257 const struct sched_param *param)
961ccddd
RR
5258{
5259 return __sched_setscheduler(p, policy, param, true);
5260}
1da177e4
LT
5261EXPORT_SYMBOL_GPL(sched_setscheduler);
5262
961ccddd
RR
5263/**
5264 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5265 * @p: the task in question.
5266 * @policy: new policy.
5267 * @param: structure containing the new RT priority.
5268 *
5269 * Just like sched_setscheduler, only don't bother checking if the
5270 * current context has permission. For example, this is needed in
5271 * stop_machine(): we create temporary high priority worker threads,
5272 * but our caller might not have that capability.
5273 */
5274int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5275 const struct sched_param *param)
961ccddd
RR
5276{
5277 return __sched_setscheduler(p, policy, param, false);
5278}
5279
95cdf3b7
IM
5280static int
5281do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5282{
1da177e4
LT
5283 struct sched_param lparam;
5284 struct task_struct *p;
36c8b586 5285 int retval;
1da177e4
LT
5286
5287 if (!param || pid < 0)
5288 return -EINVAL;
5289 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5290 return -EFAULT;
5fe1d75f
ON
5291
5292 rcu_read_lock();
5293 retval = -ESRCH;
1da177e4 5294 p = find_process_by_pid(pid);
5fe1d75f
ON
5295 if (p != NULL)
5296 retval = sched_setscheduler(p, policy, &lparam);
5297 rcu_read_unlock();
36c8b586 5298
1da177e4
LT
5299 return retval;
5300}
5301
5302/**
5303 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5304 * @pid: the pid in question.
5305 * @policy: new policy.
5306 * @param: structure containing the new RT priority.
5307 */
5add95d4
HC
5308SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5309 struct sched_param __user *, param)
1da177e4 5310{
c21761f1
JB
5311 /* negative values for policy are not valid */
5312 if (policy < 0)
5313 return -EINVAL;
5314
1da177e4
LT
5315 return do_sched_setscheduler(pid, policy, param);
5316}
5317
5318/**
5319 * sys_sched_setparam - set/change the RT priority of a thread
5320 * @pid: the pid in question.
5321 * @param: structure containing the new RT priority.
5322 */
5add95d4 5323SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5324{
5325 return do_sched_setscheduler(pid, -1, param);
5326}
5327
5328/**
5329 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5330 * @pid: the pid in question.
5331 */
5add95d4 5332SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5333{
36c8b586 5334 struct task_struct *p;
3a5c359a 5335 int retval;
1da177e4
LT
5336
5337 if (pid < 0)
3a5c359a 5338 return -EINVAL;
1da177e4
LT
5339
5340 retval = -ESRCH;
5fe85be0 5341 rcu_read_lock();
1da177e4
LT
5342 p = find_process_by_pid(pid);
5343 if (p) {
5344 retval = security_task_getscheduler(p);
5345 if (!retval)
ca94c442
LP
5346 retval = p->policy
5347 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5348 }
5fe85be0 5349 rcu_read_unlock();
1da177e4
LT
5350 return retval;
5351}
5352
5353/**
ca94c442 5354 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5355 * @pid: the pid in question.
5356 * @param: structure containing the RT priority.
5357 */
5add95d4 5358SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5359{
5360 struct sched_param lp;
36c8b586 5361 struct task_struct *p;
3a5c359a 5362 int retval;
1da177e4
LT
5363
5364 if (!param || pid < 0)
3a5c359a 5365 return -EINVAL;
1da177e4 5366
5fe85be0 5367 rcu_read_lock();
1da177e4
LT
5368 p = find_process_by_pid(pid);
5369 retval = -ESRCH;
5370 if (!p)
5371 goto out_unlock;
5372
5373 retval = security_task_getscheduler(p);
5374 if (retval)
5375 goto out_unlock;
5376
5377 lp.sched_priority = p->rt_priority;
5fe85be0 5378 rcu_read_unlock();
1da177e4
LT
5379
5380 /*
5381 * This one might sleep, we cannot do it with a spinlock held ...
5382 */
5383 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5384
1da177e4
LT
5385 return retval;
5386
5387out_unlock:
5fe85be0 5388 rcu_read_unlock();
1da177e4
LT
5389 return retval;
5390}
5391
96f874e2 5392long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5393{
5a16f3d3 5394 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5395 struct task_struct *p;
5396 int retval;
1da177e4 5397
95402b38 5398 get_online_cpus();
23f5d142 5399 rcu_read_lock();
1da177e4
LT
5400
5401 p = find_process_by_pid(pid);
5402 if (!p) {
23f5d142 5403 rcu_read_unlock();
95402b38 5404 put_online_cpus();
1da177e4
LT
5405 return -ESRCH;
5406 }
5407
23f5d142 5408 /* Prevent p going away */
1da177e4 5409 get_task_struct(p);
23f5d142 5410 rcu_read_unlock();
1da177e4 5411
5a16f3d3
RR
5412 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5413 retval = -ENOMEM;
5414 goto out_put_task;
5415 }
5416 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5417 retval = -ENOMEM;
5418 goto out_free_cpus_allowed;
5419 }
1da177e4 5420 retval = -EPERM;
b0e77598 5421 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5422 goto out_unlock;
5423
b0ae1981 5424 retval = security_task_setscheduler(p);
e7834f8f
DQ
5425 if (retval)
5426 goto out_unlock;
5427
5a16f3d3
RR
5428 cpuset_cpus_allowed(p, cpus_allowed);
5429 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5430again:
5a16f3d3 5431 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5432
8707d8b8 5433 if (!retval) {
5a16f3d3
RR
5434 cpuset_cpus_allowed(p, cpus_allowed);
5435 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5436 /*
5437 * We must have raced with a concurrent cpuset
5438 * update. Just reset the cpus_allowed to the
5439 * cpuset's cpus_allowed
5440 */
5a16f3d3 5441 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5442 goto again;
5443 }
5444 }
1da177e4 5445out_unlock:
5a16f3d3
RR
5446 free_cpumask_var(new_mask);
5447out_free_cpus_allowed:
5448 free_cpumask_var(cpus_allowed);
5449out_put_task:
1da177e4 5450 put_task_struct(p);
95402b38 5451 put_online_cpus();
1da177e4
LT
5452 return retval;
5453}
5454
5455static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5456 struct cpumask *new_mask)
1da177e4 5457{
96f874e2
RR
5458 if (len < cpumask_size())
5459 cpumask_clear(new_mask);
5460 else if (len > cpumask_size())
5461 len = cpumask_size();
5462
1da177e4
LT
5463 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5464}
5465
5466/**
5467 * sys_sched_setaffinity - set the cpu affinity of a process
5468 * @pid: pid of the process
5469 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5470 * @user_mask_ptr: user-space pointer to the new cpu mask
5471 */
5add95d4
HC
5472SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5473 unsigned long __user *, user_mask_ptr)
1da177e4 5474{
5a16f3d3 5475 cpumask_var_t new_mask;
1da177e4
LT
5476 int retval;
5477
5a16f3d3
RR
5478 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5479 return -ENOMEM;
1da177e4 5480
5a16f3d3
RR
5481 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5482 if (retval == 0)
5483 retval = sched_setaffinity(pid, new_mask);
5484 free_cpumask_var(new_mask);
5485 return retval;
1da177e4
LT
5486}
5487
96f874e2 5488long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5489{
36c8b586 5490 struct task_struct *p;
31605683 5491 unsigned long flags;
1da177e4 5492 int retval;
1da177e4 5493
95402b38 5494 get_online_cpus();
23f5d142 5495 rcu_read_lock();
1da177e4
LT
5496
5497 retval = -ESRCH;
5498 p = find_process_by_pid(pid);
5499 if (!p)
5500 goto out_unlock;
5501
e7834f8f
DQ
5502 retval = security_task_getscheduler(p);
5503 if (retval)
5504 goto out_unlock;
5505
013fdb80 5506 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5507 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5508 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5509
5510out_unlock:
23f5d142 5511 rcu_read_unlock();
95402b38 5512 put_online_cpus();
1da177e4 5513
9531b62f 5514 return retval;
1da177e4
LT
5515}
5516
5517/**
5518 * sys_sched_getaffinity - get the cpu affinity of a process
5519 * @pid: pid of the process
5520 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5521 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5522 */
5add95d4
HC
5523SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5524 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5525{
5526 int ret;
f17c8607 5527 cpumask_var_t mask;
1da177e4 5528
84fba5ec 5529 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5530 return -EINVAL;
5531 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5532 return -EINVAL;
5533
f17c8607
RR
5534 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5535 return -ENOMEM;
1da177e4 5536
f17c8607
RR
5537 ret = sched_getaffinity(pid, mask);
5538 if (ret == 0) {
8bc037fb 5539 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5540
5541 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5542 ret = -EFAULT;
5543 else
cd3d8031 5544 ret = retlen;
f17c8607
RR
5545 }
5546 free_cpumask_var(mask);
1da177e4 5547
f17c8607 5548 return ret;
1da177e4
LT
5549}
5550
5551/**
5552 * sys_sched_yield - yield the current processor to other threads.
5553 *
dd41f596
IM
5554 * This function yields the current CPU to other tasks. If there are no
5555 * other threads running on this CPU then this function will return.
1da177e4 5556 */
5add95d4 5557SYSCALL_DEFINE0(sched_yield)
1da177e4 5558{
70b97a7f 5559 struct rq *rq = this_rq_lock();
1da177e4 5560
2d72376b 5561 schedstat_inc(rq, yld_count);
4530d7ab 5562 current->sched_class->yield_task(rq);
1da177e4
LT
5563
5564 /*
5565 * Since we are going to call schedule() anyway, there's
5566 * no need to preempt or enable interrupts:
5567 */
5568 __release(rq->lock);
8a25d5de 5569 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5570 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5571 preempt_enable_no_resched();
5572
5573 schedule();
5574
5575 return 0;
5576}
5577
d86ee480
PZ
5578static inline int should_resched(void)
5579{
5580 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5581}
5582
e7b38404 5583static void __cond_resched(void)
1da177e4 5584{
e7aaaa69
FW
5585 add_preempt_count(PREEMPT_ACTIVE);
5586 schedule();
5587 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5588}
5589
02b67cc3 5590int __sched _cond_resched(void)
1da177e4 5591{
d86ee480 5592 if (should_resched()) {
1da177e4
LT
5593 __cond_resched();
5594 return 1;
5595 }
5596 return 0;
5597}
02b67cc3 5598EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5599
5600/*
613afbf8 5601 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5602 * call schedule, and on return reacquire the lock.
5603 *
41a2d6cf 5604 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5605 * operations here to prevent schedule() from being called twice (once via
5606 * spin_unlock(), once by hand).
5607 */
613afbf8 5608int __cond_resched_lock(spinlock_t *lock)
1da177e4 5609{
d86ee480 5610 int resched = should_resched();
6df3cecb
JK
5611 int ret = 0;
5612
f607c668
PZ
5613 lockdep_assert_held(lock);
5614
95c354fe 5615 if (spin_needbreak(lock) || resched) {
1da177e4 5616 spin_unlock(lock);
d86ee480 5617 if (resched)
95c354fe
NP
5618 __cond_resched();
5619 else
5620 cpu_relax();
6df3cecb 5621 ret = 1;
1da177e4 5622 spin_lock(lock);
1da177e4 5623 }
6df3cecb 5624 return ret;
1da177e4 5625}
613afbf8 5626EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5627
613afbf8 5628int __sched __cond_resched_softirq(void)
1da177e4
LT
5629{
5630 BUG_ON(!in_softirq());
5631
d86ee480 5632 if (should_resched()) {
98d82567 5633 local_bh_enable();
1da177e4
LT
5634 __cond_resched();
5635 local_bh_disable();
5636 return 1;
5637 }
5638 return 0;
5639}
613afbf8 5640EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5641
1da177e4
LT
5642/**
5643 * yield - yield the current processor to other threads.
5644 *
72fd4a35 5645 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5646 * thread runnable and calls sys_sched_yield().
5647 */
5648void __sched yield(void)
5649{
5650 set_current_state(TASK_RUNNING);
5651 sys_sched_yield();
5652}
1da177e4
LT
5653EXPORT_SYMBOL(yield);
5654
d95f4122
MG
5655/**
5656 * yield_to - yield the current processor to another thread in
5657 * your thread group, or accelerate that thread toward the
5658 * processor it's on.
16addf95
RD
5659 * @p: target task
5660 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5661 *
5662 * It's the caller's job to ensure that the target task struct
5663 * can't go away on us before we can do any checks.
5664 *
5665 * Returns true if we indeed boosted the target task.
5666 */
5667bool __sched yield_to(struct task_struct *p, bool preempt)
5668{
5669 struct task_struct *curr = current;
5670 struct rq *rq, *p_rq;
5671 unsigned long flags;
5672 bool yielded = 0;
5673
5674 local_irq_save(flags);
5675 rq = this_rq();
5676
5677again:
5678 p_rq = task_rq(p);
5679 double_rq_lock(rq, p_rq);
5680 while (task_rq(p) != p_rq) {
5681 double_rq_unlock(rq, p_rq);
5682 goto again;
5683 }
5684
5685 if (!curr->sched_class->yield_to_task)
5686 goto out;
5687
5688 if (curr->sched_class != p->sched_class)
5689 goto out;
5690
5691 if (task_running(p_rq, p) || p->state)
5692 goto out;
5693
5694 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5695 if (yielded) {
d95f4122 5696 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5697 /*
5698 * Make p's CPU reschedule; pick_next_entity takes care of
5699 * fairness.
5700 */
5701 if (preempt && rq != p_rq)
5702 resched_task(p_rq->curr);
5703 }
d95f4122
MG
5704
5705out:
5706 double_rq_unlock(rq, p_rq);
5707 local_irq_restore(flags);
5708
5709 if (yielded)
5710 schedule();
5711
5712 return yielded;
5713}
5714EXPORT_SYMBOL_GPL(yield_to);
5715
1da177e4 5716/*
41a2d6cf 5717 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5718 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5719 */
5720void __sched io_schedule(void)
5721{
54d35f29 5722 struct rq *rq = raw_rq();
1da177e4 5723
0ff92245 5724 delayacct_blkio_start();
1da177e4 5725 atomic_inc(&rq->nr_iowait);
73c10101 5726 blk_flush_plug(current);
8f0dfc34 5727 current->in_iowait = 1;
1da177e4 5728 schedule();
8f0dfc34 5729 current->in_iowait = 0;
1da177e4 5730 atomic_dec(&rq->nr_iowait);
0ff92245 5731 delayacct_blkio_end();
1da177e4 5732}
1da177e4
LT
5733EXPORT_SYMBOL(io_schedule);
5734
5735long __sched io_schedule_timeout(long timeout)
5736{
54d35f29 5737 struct rq *rq = raw_rq();
1da177e4
LT
5738 long ret;
5739
0ff92245 5740 delayacct_blkio_start();
1da177e4 5741 atomic_inc(&rq->nr_iowait);
73c10101 5742 blk_flush_plug(current);
8f0dfc34 5743 current->in_iowait = 1;
1da177e4 5744 ret = schedule_timeout(timeout);
8f0dfc34 5745 current->in_iowait = 0;
1da177e4 5746 atomic_dec(&rq->nr_iowait);
0ff92245 5747 delayacct_blkio_end();
1da177e4
LT
5748 return ret;
5749}
5750
5751/**
5752 * sys_sched_get_priority_max - return maximum RT priority.
5753 * @policy: scheduling class.
5754 *
5755 * this syscall returns the maximum rt_priority that can be used
5756 * by a given scheduling class.
5757 */
5add95d4 5758SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5759{
5760 int ret = -EINVAL;
5761
5762 switch (policy) {
5763 case SCHED_FIFO:
5764 case SCHED_RR:
5765 ret = MAX_USER_RT_PRIO-1;
5766 break;
5767 case SCHED_NORMAL:
b0a9499c 5768 case SCHED_BATCH:
dd41f596 5769 case SCHED_IDLE:
1da177e4
LT
5770 ret = 0;
5771 break;
5772 }
5773 return ret;
5774}
5775
5776/**
5777 * sys_sched_get_priority_min - return minimum RT priority.
5778 * @policy: scheduling class.
5779 *
5780 * this syscall returns the minimum rt_priority that can be used
5781 * by a given scheduling class.
5782 */
5add95d4 5783SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5784{
5785 int ret = -EINVAL;
5786
5787 switch (policy) {
5788 case SCHED_FIFO:
5789 case SCHED_RR:
5790 ret = 1;
5791 break;
5792 case SCHED_NORMAL:
b0a9499c 5793 case SCHED_BATCH:
dd41f596 5794 case SCHED_IDLE:
1da177e4
LT
5795 ret = 0;
5796 }
5797 return ret;
5798}
5799
5800/**
5801 * sys_sched_rr_get_interval - return the default timeslice of a process.
5802 * @pid: pid of the process.
5803 * @interval: userspace pointer to the timeslice value.
5804 *
5805 * this syscall writes the default timeslice value of a given process
5806 * into the user-space timespec buffer. A value of '0' means infinity.
5807 */
17da2bd9 5808SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5809 struct timespec __user *, interval)
1da177e4 5810{
36c8b586 5811 struct task_struct *p;
a4ec24b4 5812 unsigned int time_slice;
dba091b9
TG
5813 unsigned long flags;
5814 struct rq *rq;
3a5c359a 5815 int retval;
1da177e4 5816 struct timespec t;
1da177e4
LT
5817
5818 if (pid < 0)
3a5c359a 5819 return -EINVAL;
1da177e4
LT
5820
5821 retval = -ESRCH;
1a551ae7 5822 rcu_read_lock();
1da177e4
LT
5823 p = find_process_by_pid(pid);
5824 if (!p)
5825 goto out_unlock;
5826
5827 retval = security_task_getscheduler(p);
5828 if (retval)
5829 goto out_unlock;
5830
dba091b9
TG
5831 rq = task_rq_lock(p, &flags);
5832 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5833 task_rq_unlock(rq, p, &flags);
a4ec24b4 5834
1a551ae7 5835 rcu_read_unlock();
a4ec24b4 5836 jiffies_to_timespec(time_slice, &t);
1da177e4 5837 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5838 return retval;
3a5c359a 5839
1da177e4 5840out_unlock:
1a551ae7 5841 rcu_read_unlock();
1da177e4
LT
5842 return retval;
5843}
5844
7c731e0a 5845static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5846
82a1fcb9 5847void sched_show_task(struct task_struct *p)
1da177e4 5848{
1da177e4 5849 unsigned long free = 0;
36c8b586 5850 unsigned state;
1da177e4 5851
1da177e4 5852 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5853 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5854 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5855#if BITS_PER_LONG == 32
1da177e4 5856 if (state == TASK_RUNNING)
3df0fc5b 5857 printk(KERN_CONT " running ");
1da177e4 5858 else
3df0fc5b 5859 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5860#else
5861 if (state == TASK_RUNNING)
3df0fc5b 5862 printk(KERN_CONT " running task ");
1da177e4 5863 else
3df0fc5b 5864 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5865#endif
5866#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5867 free = stack_not_used(p);
1da177e4 5868#endif
3df0fc5b 5869 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5870 task_pid_nr(p), task_pid_nr(p->real_parent),
5871 (unsigned long)task_thread_info(p)->flags);
1da177e4 5872
5fb5e6de 5873 show_stack(p, NULL);
1da177e4
LT
5874}
5875
e59e2ae2 5876void show_state_filter(unsigned long state_filter)
1da177e4 5877{
36c8b586 5878 struct task_struct *g, *p;
1da177e4 5879
4bd77321 5880#if BITS_PER_LONG == 32
3df0fc5b
PZ
5881 printk(KERN_INFO
5882 " task PC stack pid father\n");
1da177e4 5883#else
3df0fc5b
PZ
5884 printk(KERN_INFO
5885 " task PC stack pid father\n");
1da177e4
LT
5886#endif
5887 read_lock(&tasklist_lock);
5888 do_each_thread(g, p) {
5889 /*
5890 * reset the NMI-timeout, listing all files on a slow
25985edc 5891 * console might take a lot of time:
1da177e4
LT
5892 */
5893 touch_nmi_watchdog();
39bc89fd 5894 if (!state_filter || (p->state & state_filter))
82a1fcb9 5895 sched_show_task(p);
1da177e4
LT
5896 } while_each_thread(g, p);
5897
04c9167f
JF
5898 touch_all_softlockup_watchdogs();
5899
dd41f596
IM
5900#ifdef CONFIG_SCHED_DEBUG
5901 sysrq_sched_debug_show();
5902#endif
1da177e4 5903 read_unlock(&tasklist_lock);
e59e2ae2
IM
5904 /*
5905 * Only show locks if all tasks are dumped:
5906 */
93335a21 5907 if (!state_filter)
e59e2ae2 5908 debug_show_all_locks();
1da177e4
LT
5909}
5910
1df21055
IM
5911void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5912{
dd41f596 5913 idle->sched_class = &idle_sched_class;
1df21055
IM
5914}
5915
f340c0d1
IM
5916/**
5917 * init_idle - set up an idle thread for a given CPU
5918 * @idle: task in question
5919 * @cpu: cpu the idle task belongs to
5920 *
5921 * NOTE: this function does not set the idle thread's NEED_RESCHED
5922 * flag, to make booting more robust.
5923 */
5c1e1767 5924void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5925{
70b97a7f 5926 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5927 unsigned long flags;
5928
05fa785c 5929 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5930
dd41f596 5931 __sched_fork(idle);
06b83b5f 5932 idle->state = TASK_RUNNING;
dd41f596
IM
5933 idle->se.exec_start = sched_clock();
5934
1e1b6c51 5935 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
5936 /*
5937 * We're having a chicken and egg problem, even though we are
5938 * holding rq->lock, the cpu isn't yet set to this cpu so the
5939 * lockdep check in task_group() will fail.
5940 *
5941 * Similar case to sched_fork(). / Alternatively we could
5942 * use task_rq_lock() here and obtain the other rq->lock.
5943 *
5944 * Silence PROVE_RCU
5945 */
5946 rcu_read_lock();
dd41f596 5947 __set_task_cpu(idle, cpu);
6506cf6c 5948 rcu_read_unlock();
1da177e4 5949
1da177e4 5950 rq->curr = rq->idle = idle;
3ca7a440
PZ
5951#if defined(CONFIG_SMP)
5952 idle->on_cpu = 1;
4866cde0 5953#endif
05fa785c 5954 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5955
5956 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5957 task_thread_info(idle)->preempt_count = 0;
625f2a37 5958
dd41f596
IM
5959 /*
5960 * The idle tasks have their own, simple scheduling class:
5961 */
5962 idle->sched_class = &idle_sched_class;
868baf07 5963 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5964}
5965
5966/*
5967 * In a system that switches off the HZ timer nohz_cpu_mask
5968 * indicates which cpus entered this state. This is used
5969 * in the rcu update to wait only for active cpus. For system
5970 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5971 * always be CPU_BITS_NONE.
1da177e4 5972 */
6a7b3dc3 5973cpumask_var_t nohz_cpu_mask;
1da177e4 5974
19978ca6
IM
5975/*
5976 * Increase the granularity value when there are more CPUs,
5977 * because with more CPUs the 'effective latency' as visible
5978 * to users decreases. But the relationship is not linear,
5979 * so pick a second-best guess by going with the log2 of the
5980 * number of CPUs.
5981 *
5982 * This idea comes from the SD scheduler of Con Kolivas:
5983 */
acb4a848 5984static int get_update_sysctl_factor(void)
19978ca6 5985{
4ca3ef71 5986 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5987 unsigned int factor;
5988
5989 switch (sysctl_sched_tunable_scaling) {
5990 case SCHED_TUNABLESCALING_NONE:
5991 factor = 1;
5992 break;
5993 case SCHED_TUNABLESCALING_LINEAR:
5994 factor = cpus;
5995 break;
5996 case SCHED_TUNABLESCALING_LOG:
5997 default:
5998 factor = 1 + ilog2(cpus);
5999 break;
6000 }
19978ca6 6001
acb4a848
CE
6002 return factor;
6003}
19978ca6 6004
acb4a848
CE
6005static void update_sysctl(void)
6006{
6007 unsigned int factor = get_update_sysctl_factor();
19978ca6 6008
0bcdcf28
CE
6009#define SET_SYSCTL(name) \
6010 (sysctl_##name = (factor) * normalized_sysctl_##name)
6011 SET_SYSCTL(sched_min_granularity);
6012 SET_SYSCTL(sched_latency);
6013 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
6014#undef SET_SYSCTL
6015}
55cd5340 6016
0bcdcf28
CE
6017static inline void sched_init_granularity(void)
6018{
6019 update_sysctl();
19978ca6
IM
6020}
6021
1da177e4 6022#ifdef CONFIG_SMP
1e1b6c51
KM
6023void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6024{
6025 if (p->sched_class && p->sched_class->set_cpus_allowed)
6026 p->sched_class->set_cpus_allowed(p, new_mask);
6027 else {
6028 cpumask_copy(&p->cpus_allowed, new_mask);
6029 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6030 }
6031}
6032
1da177e4
LT
6033/*
6034 * This is how migration works:
6035 *
969c7921
TH
6036 * 1) we invoke migration_cpu_stop() on the target CPU using
6037 * stop_one_cpu().
6038 * 2) stopper starts to run (implicitly forcing the migrated thread
6039 * off the CPU)
6040 * 3) it checks whether the migrated task is still in the wrong runqueue.
6041 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 6042 * it and puts it into the right queue.
969c7921
TH
6043 * 5) stopper completes and stop_one_cpu() returns and the migration
6044 * is done.
1da177e4
LT
6045 */
6046
6047/*
6048 * Change a given task's CPU affinity. Migrate the thread to a
6049 * proper CPU and schedule it away if the CPU it's executing on
6050 * is removed from the allowed bitmask.
6051 *
6052 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6053 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6054 * call is not atomic; no spinlocks may be held.
6055 */
96f874e2 6056int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
6057{
6058 unsigned long flags;
70b97a7f 6059 struct rq *rq;
969c7921 6060 unsigned int dest_cpu;
48f24c4d 6061 int ret = 0;
1da177e4
LT
6062
6063 rq = task_rq_lock(p, &flags);
e2912009 6064
db44fc01
YZ
6065 if (cpumask_equal(&p->cpus_allowed, new_mask))
6066 goto out;
6067
6ad4c188 6068 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
6069 ret = -EINVAL;
6070 goto out;
6071 }
6072
db44fc01 6073 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
6074 ret = -EINVAL;
6075 goto out;
6076 }
6077
1e1b6c51 6078 do_set_cpus_allowed(p, new_mask);
73fe6aae 6079
1da177e4 6080 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6081 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6082 goto out;
6083
969c7921 6084 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6085 if (p->on_rq) {
969c7921 6086 struct migration_arg arg = { p, dest_cpu };
1da177e4 6087 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6088 task_rq_unlock(rq, p, &flags);
969c7921 6089 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6090 tlb_migrate_finish(p->mm);
6091 return 0;
6092 }
6093out:
0122ec5b 6094 task_rq_unlock(rq, p, &flags);
48f24c4d 6095
1da177e4
LT
6096 return ret;
6097}
cd8ba7cd 6098EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6099
6100/*
41a2d6cf 6101 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6102 * this because either it can't run here any more (set_cpus_allowed()
6103 * away from this CPU, or CPU going down), or because we're
6104 * attempting to rebalance this task on exec (sched_exec).
6105 *
6106 * So we race with normal scheduler movements, but that's OK, as long
6107 * as the task is no longer on this CPU.
efc30814
KK
6108 *
6109 * Returns non-zero if task was successfully migrated.
1da177e4 6110 */
efc30814 6111static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6112{
70b97a7f 6113 struct rq *rq_dest, *rq_src;
e2912009 6114 int ret = 0;
1da177e4 6115
e761b772 6116 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6117 return ret;
1da177e4
LT
6118
6119 rq_src = cpu_rq(src_cpu);
6120 rq_dest = cpu_rq(dest_cpu);
6121
0122ec5b 6122 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6123 double_rq_lock(rq_src, rq_dest);
6124 /* Already moved. */
6125 if (task_cpu(p) != src_cpu)
b1e38734 6126 goto done;
1da177e4 6127 /* Affinity changed (again). */
96f874e2 6128 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6129 goto fail;
1da177e4 6130
e2912009
PZ
6131 /*
6132 * If we're not on a rq, the next wake-up will ensure we're
6133 * placed properly.
6134 */
fd2f4419 6135 if (p->on_rq) {
2e1cb74a 6136 deactivate_task(rq_src, p, 0);
e2912009 6137 set_task_cpu(p, dest_cpu);
dd41f596 6138 activate_task(rq_dest, p, 0);
15afe09b 6139 check_preempt_curr(rq_dest, p, 0);
1da177e4 6140 }
b1e38734 6141done:
efc30814 6142 ret = 1;
b1e38734 6143fail:
1da177e4 6144 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6145 raw_spin_unlock(&p->pi_lock);
efc30814 6146 return ret;
1da177e4
LT
6147}
6148
6149/*
969c7921
TH
6150 * migration_cpu_stop - this will be executed by a highprio stopper thread
6151 * and performs thread migration by bumping thread off CPU then
6152 * 'pushing' onto another runqueue.
1da177e4 6153 */
969c7921 6154static int migration_cpu_stop(void *data)
1da177e4 6155{
969c7921 6156 struct migration_arg *arg = data;
f7b4cddc 6157
969c7921
TH
6158 /*
6159 * The original target cpu might have gone down and we might
6160 * be on another cpu but it doesn't matter.
6161 */
f7b4cddc 6162 local_irq_disable();
969c7921 6163 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6164 local_irq_enable();
1da177e4 6165 return 0;
f7b4cddc
ON
6166}
6167
1da177e4 6168#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6169
054b9108 6170/*
48c5ccae
PZ
6171 * Ensures that the idle task is using init_mm right before its cpu goes
6172 * offline.
054b9108 6173 */
48c5ccae 6174void idle_task_exit(void)
1da177e4 6175{
48c5ccae 6176 struct mm_struct *mm = current->active_mm;
e76bd8d9 6177
48c5ccae 6178 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6179
48c5ccae
PZ
6180 if (mm != &init_mm)
6181 switch_mm(mm, &init_mm, current);
6182 mmdrop(mm);
1da177e4
LT
6183}
6184
6185/*
6186 * While a dead CPU has no uninterruptible tasks queued at this point,
6187 * it might still have a nonzero ->nr_uninterruptible counter, because
6188 * for performance reasons the counter is not stricly tracking tasks to
6189 * their home CPUs. So we just add the counter to another CPU's counter,
6190 * to keep the global sum constant after CPU-down:
6191 */
70b97a7f 6192static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6193{
6ad4c188 6194 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6195
1da177e4
LT
6196 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6197 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6198}
6199
dd41f596 6200/*
48c5ccae 6201 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6202 */
48c5ccae 6203static void calc_global_load_remove(struct rq *rq)
1da177e4 6204{
48c5ccae
PZ
6205 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6206 rq->calc_load_active = 0;
1da177e4
LT
6207}
6208
48f24c4d 6209/*
48c5ccae
PZ
6210 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6211 * try_to_wake_up()->select_task_rq().
6212 *
6213 * Called with rq->lock held even though we'er in stop_machine() and
6214 * there's no concurrency possible, we hold the required locks anyway
6215 * because of lock validation efforts.
1da177e4 6216 */
48c5ccae 6217static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6218{
70b97a7f 6219 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6220 struct task_struct *next, *stop = rq->stop;
6221 int dest_cpu;
1da177e4
LT
6222
6223 /*
48c5ccae
PZ
6224 * Fudge the rq selection such that the below task selection loop
6225 * doesn't get stuck on the currently eligible stop task.
6226 *
6227 * We're currently inside stop_machine() and the rq is either stuck
6228 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6229 * either way we should never end up calling schedule() until we're
6230 * done here.
1da177e4 6231 */
48c5ccae 6232 rq->stop = NULL;
48f24c4d 6233
dd41f596 6234 for ( ; ; ) {
48c5ccae
PZ
6235 /*
6236 * There's this thread running, bail when that's the only
6237 * remaining thread.
6238 */
6239 if (rq->nr_running == 1)
dd41f596 6240 break;
48c5ccae 6241
b67802ea 6242 next = pick_next_task(rq);
48c5ccae 6243 BUG_ON(!next);
79c53799 6244 next->sched_class->put_prev_task(rq, next);
e692ab53 6245
48c5ccae
PZ
6246 /* Find suitable destination for @next, with force if needed. */
6247 dest_cpu = select_fallback_rq(dead_cpu, next);
6248 raw_spin_unlock(&rq->lock);
6249
6250 __migrate_task(next, dead_cpu, dest_cpu);
6251
6252 raw_spin_lock(&rq->lock);
1da177e4 6253 }
dce48a84 6254
48c5ccae 6255 rq->stop = stop;
dce48a84 6256}
48c5ccae 6257
1da177e4
LT
6258#endif /* CONFIG_HOTPLUG_CPU */
6259
e692ab53
NP
6260#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6261
6262static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6263 {
6264 .procname = "sched_domain",
c57baf1e 6265 .mode = 0555,
e0361851 6266 },
56992309 6267 {}
e692ab53
NP
6268};
6269
6270static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6271 {
6272 .procname = "kernel",
c57baf1e 6273 .mode = 0555,
e0361851
AD
6274 .child = sd_ctl_dir,
6275 },
56992309 6276 {}
e692ab53
NP
6277};
6278
6279static struct ctl_table *sd_alloc_ctl_entry(int n)
6280{
6281 struct ctl_table *entry =
5cf9f062 6282 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6283
e692ab53
NP
6284 return entry;
6285}
6286
6382bc90
MM
6287static void sd_free_ctl_entry(struct ctl_table **tablep)
6288{
cd790076 6289 struct ctl_table *entry;
6382bc90 6290
cd790076
MM
6291 /*
6292 * In the intermediate directories, both the child directory and
6293 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6294 * will always be set. In the lowest directory the names are
cd790076
MM
6295 * static strings and all have proc handlers.
6296 */
6297 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6298 if (entry->child)
6299 sd_free_ctl_entry(&entry->child);
cd790076
MM
6300 if (entry->proc_handler == NULL)
6301 kfree(entry->procname);
6302 }
6382bc90
MM
6303
6304 kfree(*tablep);
6305 *tablep = NULL;
6306}
6307
e692ab53 6308static void
e0361851 6309set_table_entry(struct ctl_table *entry,
e692ab53
NP
6310 const char *procname, void *data, int maxlen,
6311 mode_t mode, proc_handler *proc_handler)
6312{
e692ab53
NP
6313 entry->procname = procname;
6314 entry->data = data;
6315 entry->maxlen = maxlen;
6316 entry->mode = mode;
6317 entry->proc_handler = proc_handler;
6318}
6319
6320static struct ctl_table *
6321sd_alloc_ctl_domain_table(struct sched_domain *sd)
6322{
a5d8c348 6323 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6324
ad1cdc1d
MM
6325 if (table == NULL)
6326 return NULL;
6327
e0361851 6328 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6329 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6330 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6331 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6332 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6333 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6334 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6335 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6336 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6337 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6338 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6339 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6340 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6341 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6342 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6343 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6344 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6345 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6346 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6347 &sd->cache_nice_tries,
6348 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6349 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6350 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6351 set_table_entry(&table[11], "name", sd->name,
6352 CORENAME_MAX_SIZE, 0444, proc_dostring);
6353 /* &table[12] is terminator */
e692ab53
NP
6354
6355 return table;
6356}
6357
9a4e7159 6358static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6359{
6360 struct ctl_table *entry, *table;
6361 struct sched_domain *sd;
6362 int domain_num = 0, i;
6363 char buf[32];
6364
6365 for_each_domain(cpu, sd)
6366 domain_num++;
6367 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6368 if (table == NULL)
6369 return NULL;
e692ab53
NP
6370
6371 i = 0;
6372 for_each_domain(cpu, sd) {
6373 snprintf(buf, 32, "domain%d", i);
e692ab53 6374 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6375 entry->mode = 0555;
e692ab53
NP
6376 entry->child = sd_alloc_ctl_domain_table(sd);
6377 entry++;
6378 i++;
6379 }
6380 return table;
6381}
6382
6383static struct ctl_table_header *sd_sysctl_header;
6382bc90 6384static void register_sched_domain_sysctl(void)
e692ab53 6385{
6ad4c188 6386 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6387 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6388 char buf[32];
6389
7378547f
MM
6390 WARN_ON(sd_ctl_dir[0].child);
6391 sd_ctl_dir[0].child = entry;
6392
ad1cdc1d
MM
6393 if (entry == NULL)
6394 return;
6395
6ad4c188 6396 for_each_possible_cpu(i) {
e692ab53 6397 snprintf(buf, 32, "cpu%d", i);
e692ab53 6398 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6399 entry->mode = 0555;
e692ab53 6400 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6401 entry++;
e692ab53 6402 }
7378547f
MM
6403
6404 WARN_ON(sd_sysctl_header);
e692ab53
NP
6405 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6406}
6382bc90 6407
7378547f 6408/* may be called multiple times per register */
6382bc90
MM
6409static void unregister_sched_domain_sysctl(void)
6410{
7378547f
MM
6411 if (sd_sysctl_header)
6412 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6413 sd_sysctl_header = NULL;
7378547f
MM
6414 if (sd_ctl_dir[0].child)
6415 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6416}
e692ab53 6417#else
6382bc90
MM
6418static void register_sched_domain_sysctl(void)
6419{
6420}
6421static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6422{
6423}
6424#endif
6425
1f11eb6a
GH
6426static void set_rq_online(struct rq *rq)
6427{
6428 if (!rq->online) {
6429 const struct sched_class *class;
6430
c6c4927b 6431 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6432 rq->online = 1;
6433
6434 for_each_class(class) {
6435 if (class->rq_online)
6436 class->rq_online(rq);
6437 }
6438 }
6439}
6440
6441static void set_rq_offline(struct rq *rq)
6442{
6443 if (rq->online) {
6444 const struct sched_class *class;
6445
6446 for_each_class(class) {
6447 if (class->rq_offline)
6448 class->rq_offline(rq);
6449 }
6450
c6c4927b 6451 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6452 rq->online = 0;
6453 }
6454}
6455
1da177e4
LT
6456/*
6457 * migration_call - callback that gets triggered when a CPU is added.
6458 * Here we can start up the necessary migration thread for the new CPU.
6459 */
48f24c4d
IM
6460static int __cpuinit
6461migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6462{
48f24c4d 6463 int cpu = (long)hcpu;
1da177e4 6464 unsigned long flags;
969c7921 6465 struct rq *rq = cpu_rq(cpu);
1da177e4 6466
48c5ccae 6467 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6468
1da177e4 6469 case CPU_UP_PREPARE:
a468d389 6470 rq->calc_load_update = calc_load_update;
1da177e4 6471 break;
48f24c4d 6472
1da177e4 6473 case CPU_ONLINE:
1f94ef59 6474 /* Update our root-domain */
05fa785c 6475 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6476 if (rq->rd) {
c6c4927b 6477 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6478
6479 set_rq_online(rq);
1f94ef59 6480 }
05fa785c 6481 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6482 break;
48f24c4d 6483
1da177e4 6484#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6485 case CPU_DYING:
317f3941 6486 sched_ttwu_pending();
57d885fe 6487 /* Update our root-domain */
05fa785c 6488 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6489 if (rq->rd) {
c6c4927b 6490 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6491 set_rq_offline(rq);
57d885fe 6492 }
48c5ccae
PZ
6493 migrate_tasks(cpu);
6494 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6495 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6496
6497 migrate_nr_uninterruptible(rq);
6498 calc_global_load_remove(rq);
57d885fe 6499 break;
1da177e4
LT
6500#endif
6501 }
49c022e6
PZ
6502
6503 update_max_interval();
6504
1da177e4
LT
6505 return NOTIFY_OK;
6506}
6507
f38b0820
PM
6508/*
6509 * Register at high priority so that task migration (migrate_all_tasks)
6510 * happens before everything else. This has to be lower priority than
cdd6c482 6511 * the notifier in the perf_event subsystem, though.
1da177e4 6512 */
26c2143b 6513static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6514 .notifier_call = migration_call,
50a323b7 6515 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6516};
6517
3a101d05
TH
6518static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6519 unsigned long action, void *hcpu)
6520{
6521 switch (action & ~CPU_TASKS_FROZEN) {
6522 case CPU_ONLINE:
6523 case CPU_DOWN_FAILED:
6524 set_cpu_active((long)hcpu, true);
6525 return NOTIFY_OK;
6526 default:
6527 return NOTIFY_DONE;
6528 }
6529}
6530
6531static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6532 unsigned long action, void *hcpu)
6533{
6534 switch (action & ~CPU_TASKS_FROZEN) {
6535 case CPU_DOWN_PREPARE:
6536 set_cpu_active((long)hcpu, false);
6537 return NOTIFY_OK;
6538 default:
6539 return NOTIFY_DONE;
6540 }
6541}
6542
7babe8db 6543static int __init migration_init(void)
1da177e4
LT
6544{
6545 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6546 int err;
48f24c4d 6547
3a101d05 6548 /* Initialize migration for the boot CPU */
07dccf33
AM
6549 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6550 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6551 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6552 register_cpu_notifier(&migration_notifier);
7babe8db 6553
3a101d05
TH
6554 /* Register cpu active notifiers */
6555 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6556 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6557
a004cd42 6558 return 0;
1da177e4 6559}
7babe8db 6560early_initcall(migration_init);
1da177e4
LT
6561#endif
6562
6563#ifdef CONFIG_SMP
476f3534 6564
4cb98839
PZ
6565static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6566
3e9830dc 6567#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6568
f6630114
MT
6569static __read_mostly int sched_domain_debug_enabled;
6570
6571static int __init sched_domain_debug_setup(char *str)
6572{
6573 sched_domain_debug_enabled = 1;
6574
6575 return 0;
6576}
6577early_param("sched_debug", sched_domain_debug_setup);
6578
7c16ec58 6579static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6580 struct cpumask *groupmask)
1da177e4 6581{
4dcf6aff 6582 struct sched_group *group = sd->groups;
434d53b0 6583 char str[256];
1da177e4 6584
968ea6d8 6585 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6586 cpumask_clear(groupmask);
4dcf6aff
IM
6587
6588 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6589
6590 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6591 printk("does not load-balance\n");
4dcf6aff 6592 if (sd->parent)
3df0fc5b
PZ
6593 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6594 " has parent");
4dcf6aff 6595 return -1;
41c7ce9a
NP
6596 }
6597
3df0fc5b 6598 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6599
758b2cdc 6600 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6601 printk(KERN_ERR "ERROR: domain->span does not contain "
6602 "CPU%d\n", cpu);
4dcf6aff 6603 }
758b2cdc 6604 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6605 printk(KERN_ERR "ERROR: domain->groups does not contain"
6606 " CPU%d\n", cpu);
4dcf6aff 6607 }
1da177e4 6608
4dcf6aff 6609 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6610 do {
4dcf6aff 6611 if (!group) {
3df0fc5b
PZ
6612 printk("\n");
6613 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6614 break;
6615 }
6616
9c3f75cb 6617 if (!group->sgp->power) {
3df0fc5b
PZ
6618 printk(KERN_CONT "\n");
6619 printk(KERN_ERR "ERROR: domain->cpu_power not "
6620 "set\n");
4dcf6aff
IM
6621 break;
6622 }
1da177e4 6623
758b2cdc 6624 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6625 printk(KERN_CONT "\n");
6626 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6627 break;
6628 }
1da177e4 6629
758b2cdc 6630 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6631 printk(KERN_CONT "\n");
6632 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6633 break;
6634 }
1da177e4 6635
758b2cdc 6636 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6637
968ea6d8 6638 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6639
3df0fc5b 6640 printk(KERN_CONT " %s", str);
9c3f75cb 6641 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 6642 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 6643 group->sgp->power);
381512cf 6644 }
1da177e4 6645
4dcf6aff
IM
6646 group = group->next;
6647 } while (group != sd->groups);
3df0fc5b 6648 printk(KERN_CONT "\n");
1da177e4 6649
758b2cdc 6650 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6651 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6652
758b2cdc
RR
6653 if (sd->parent &&
6654 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6655 printk(KERN_ERR "ERROR: parent span is not a superset "
6656 "of domain->span\n");
4dcf6aff
IM
6657 return 0;
6658}
1da177e4 6659
4dcf6aff
IM
6660static void sched_domain_debug(struct sched_domain *sd, int cpu)
6661{
6662 int level = 0;
1da177e4 6663
f6630114
MT
6664 if (!sched_domain_debug_enabled)
6665 return;
6666
4dcf6aff
IM
6667 if (!sd) {
6668 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6669 return;
6670 }
1da177e4 6671
4dcf6aff
IM
6672 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6673
6674 for (;;) {
4cb98839 6675 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6676 break;
1da177e4
LT
6677 level++;
6678 sd = sd->parent;
33859f7f 6679 if (!sd)
4dcf6aff
IM
6680 break;
6681 }
1da177e4 6682}
6d6bc0ad 6683#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6684# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6685#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6686
1a20ff27 6687static int sd_degenerate(struct sched_domain *sd)
245af2c7 6688{
758b2cdc 6689 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6690 return 1;
6691
6692 /* Following flags need at least 2 groups */
6693 if (sd->flags & (SD_LOAD_BALANCE |
6694 SD_BALANCE_NEWIDLE |
6695 SD_BALANCE_FORK |
89c4710e
SS
6696 SD_BALANCE_EXEC |
6697 SD_SHARE_CPUPOWER |
6698 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6699 if (sd->groups != sd->groups->next)
6700 return 0;
6701 }
6702
6703 /* Following flags don't use groups */
c88d5910 6704 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6705 return 0;
6706
6707 return 1;
6708}
6709
48f24c4d
IM
6710static int
6711sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6712{
6713 unsigned long cflags = sd->flags, pflags = parent->flags;
6714
6715 if (sd_degenerate(parent))
6716 return 1;
6717
758b2cdc 6718 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6719 return 0;
6720
245af2c7
SS
6721 /* Flags needing groups don't count if only 1 group in parent */
6722 if (parent->groups == parent->groups->next) {
6723 pflags &= ~(SD_LOAD_BALANCE |
6724 SD_BALANCE_NEWIDLE |
6725 SD_BALANCE_FORK |
89c4710e
SS
6726 SD_BALANCE_EXEC |
6727 SD_SHARE_CPUPOWER |
6728 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6729 if (nr_node_ids == 1)
6730 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6731 }
6732 if (~cflags & pflags)
6733 return 0;
6734
6735 return 1;
6736}
6737
dce840a0 6738static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6739{
dce840a0 6740 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6741
68e74568 6742 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6743 free_cpumask_var(rd->rto_mask);
6744 free_cpumask_var(rd->online);
6745 free_cpumask_var(rd->span);
6746 kfree(rd);
6747}
6748
57d885fe
GH
6749static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6750{
a0490fa3 6751 struct root_domain *old_rd = NULL;
57d885fe 6752 unsigned long flags;
57d885fe 6753
05fa785c 6754 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6755
6756 if (rq->rd) {
a0490fa3 6757 old_rd = rq->rd;
57d885fe 6758
c6c4927b 6759 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6760 set_rq_offline(rq);
57d885fe 6761
c6c4927b 6762 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6763
a0490fa3
IM
6764 /*
6765 * If we dont want to free the old_rt yet then
6766 * set old_rd to NULL to skip the freeing later
6767 * in this function:
6768 */
6769 if (!atomic_dec_and_test(&old_rd->refcount))
6770 old_rd = NULL;
57d885fe
GH
6771 }
6772
6773 atomic_inc(&rd->refcount);
6774 rq->rd = rd;
6775
c6c4927b 6776 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6777 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6778 set_rq_online(rq);
57d885fe 6779
05fa785c 6780 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6781
6782 if (old_rd)
dce840a0 6783 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6784}
6785
68c38fc3 6786static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6787{
6788 memset(rd, 0, sizeof(*rd));
6789
68c38fc3 6790 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6791 goto out;
68c38fc3 6792 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6793 goto free_span;
68c38fc3 6794 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6795 goto free_online;
6e0534f2 6796
68c38fc3 6797 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6798 goto free_rto_mask;
c6c4927b 6799 return 0;
6e0534f2 6800
68e74568
RR
6801free_rto_mask:
6802 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6803free_online:
6804 free_cpumask_var(rd->online);
6805free_span:
6806 free_cpumask_var(rd->span);
0c910d28 6807out:
c6c4927b 6808 return -ENOMEM;
57d885fe
GH
6809}
6810
6811static void init_defrootdomain(void)
6812{
68c38fc3 6813 init_rootdomain(&def_root_domain);
c6c4927b 6814
57d885fe
GH
6815 atomic_set(&def_root_domain.refcount, 1);
6816}
6817
dc938520 6818static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6819{
6820 struct root_domain *rd;
6821
6822 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6823 if (!rd)
6824 return NULL;
6825
68c38fc3 6826 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6827 kfree(rd);
6828 return NULL;
6829 }
57d885fe
GH
6830
6831 return rd;
6832}
6833
e3589f6c
PZ
6834static void free_sched_groups(struct sched_group *sg, int free_sgp)
6835{
6836 struct sched_group *tmp, *first;
6837
6838 if (!sg)
6839 return;
6840
6841 first = sg;
6842 do {
6843 tmp = sg->next;
6844
6845 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6846 kfree(sg->sgp);
6847
6848 kfree(sg);
6849 sg = tmp;
6850 } while (sg != first);
6851}
6852
dce840a0
PZ
6853static void free_sched_domain(struct rcu_head *rcu)
6854{
6855 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
6856
6857 /*
6858 * If its an overlapping domain it has private groups, iterate and
6859 * nuke them all.
6860 */
6861 if (sd->flags & SD_OVERLAP) {
6862 free_sched_groups(sd->groups, 1);
6863 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 6864 kfree(sd->groups->sgp);
dce840a0 6865 kfree(sd->groups);
9c3f75cb 6866 }
dce840a0
PZ
6867 kfree(sd);
6868}
6869
6870static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6871{
6872 call_rcu(&sd->rcu, free_sched_domain);
6873}
6874
6875static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6876{
6877 for (; sd; sd = sd->parent)
6878 destroy_sched_domain(sd, cpu);
6879}
6880
1da177e4 6881/*
0eab9146 6882 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6883 * hold the hotplug lock.
6884 */
0eab9146
IM
6885static void
6886cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6887{
70b97a7f 6888 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6889 struct sched_domain *tmp;
6890
6891 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6892 for (tmp = sd; tmp; ) {
245af2c7
SS
6893 struct sched_domain *parent = tmp->parent;
6894 if (!parent)
6895 break;
f29c9b1c 6896
1a848870 6897 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6898 tmp->parent = parent->parent;
1a848870
SS
6899 if (parent->parent)
6900 parent->parent->child = tmp;
dce840a0 6901 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6902 } else
6903 tmp = tmp->parent;
245af2c7
SS
6904 }
6905
1a848870 6906 if (sd && sd_degenerate(sd)) {
dce840a0 6907 tmp = sd;
245af2c7 6908 sd = sd->parent;
dce840a0 6909 destroy_sched_domain(tmp, cpu);
1a848870
SS
6910 if (sd)
6911 sd->child = NULL;
6912 }
1da177e4 6913
4cb98839 6914 sched_domain_debug(sd, cpu);
1da177e4 6915
57d885fe 6916 rq_attach_root(rq, rd);
dce840a0 6917 tmp = rq->sd;
674311d5 6918 rcu_assign_pointer(rq->sd, sd);
dce840a0 6919 destroy_sched_domains(tmp, cpu);
1da177e4
LT
6920}
6921
6922/* cpus with isolated domains */
dcc30a35 6923static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6924
6925/* Setup the mask of cpus configured for isolated domains */
6926static int __init isolated_cpu_setup(char *str)
6927{
bdddd296 6928 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6929 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6930 return 1;
6931}
6932
8927f494 6933__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6934
9c1cfda2 6935#define SD_NODES_PER_DOMAIN 16
1da177e4 6936
9c1cfda2 6937#ifdef CONFIG_NUMA
198e2f18 6938
9c1cfda2
JH
6939/**
6940 * find_next_best_node - find the next node to include in a sched_domain
6941 * @node: node whose sched_domain we're building
6942 * @used_nodes: nodes already in the sched_domain
6943 *
41a2d6cf 6944 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6945 * finds the closest node not already in the @used_nodes map.
6946 *
6947 * Should use nodemask_t.
6948 */
c5f59f08 6949static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 6950{
7142d17e 6951 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
6952
6953 min_val = INT_MAX;
6954
076ac2af 6955 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6956 /* Start at @node */
076ac2af 6957 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6958
6959 if (!nr_cpus_node(n))
6960 continue;
6961
6962 /* Skip already used nodes */
c5f59f08 6963 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6964 continue;
6965
6966 /* Simple min distance search */
6967 val = node_distance(node, n);
6968
6969 if (val < min_val) {
6970 min_val = val;
6971 best_node = n;
6972 }
6973 }
6974
7142d17e
HD
6975 if (best_node != -1)
6976 node_set(best_node, *used_nodes);
9c1cfda2
JH
6977 return best_node;
6978}
6979
6980/**
6981 * sched_domain_node_span - get a cpumask for a node's sched_domain
6982 * @node: node whose cpumask we're constructing
73486722 6983 * @span: resulting cpumask
9c1cfda2 6984 *
41a2d6cf 6985 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6986 * should be one that prevents unnecessary balancing, but also spreads tasks
6987 * out optimally.
6988 */
96f874e2 6989static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6990{
c5f59f08 6991 nodemask_t used_nodes;
48f24c4d 6992 int i;
9c1cfda2 6993
6ca09dfc 6994 cpumask_clear(span);
c5f59f08 6995 nodes_clear(used_nodes);
9c1cfda2 6996
6ca09dfc 6997 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6998 node_set(node, used_nodes);
9c1cfda2
JH
6999
7000 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7001 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
7002 if (next_node < 0)
7003 break;
6ca09dfc 7004 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7005 }
9c1cfda2 7006}
d3081f52
PZ
7007
7008static const struct cpumask *cpu_node_mask(int cpu)
7009{
7010 lockdep_assert_held(&sched_domains_mutex);
7011
7012 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7013
7014 return sched_domains_tmpmask;
7015}
2c402dc3
PZ
7016
7017static const struct cpumask *cpu_allnodes_mask(int cpu)
7018{
7019 return cpu_possible_mask;
7020}
6d6bc0ad 7021#endif /* CONFIG_NUMA */
9c1cfda2 7022
d3081f52
PZ
7023static const struct cpumask *cpu_cpu_mask(int cpu)
7024{
7025 return cpumask_of_node(cpu_to_node(cpu));
7026}
7027
5c45bf27 7028int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7029
dce840a0
PZ
7030struct sd_data {
7031 struct sched_domain **__percpu sd;
7032 struct sched_group **__percpu sg;
9c3f75cb 7033 struct sched_group_power **__percpu sgp;
dce840a0
PZ
7034};
7035
49a02c51 7036struct s_data {
21d42ccf 7037 struct sched_domain ** __percpu sd;
49a02c51
AH
7038 struct root_domain *rd;
7039};
7040
2109b99e 7041enum s_alloc {
2109b99e 7042 sa_rootdomain,
21d42ccf 7043 sa_sd,
dce840a0 7044 sa_sd_storage,
2109b99e
AH
7045 sa_none,
7046};
7047
54ab4ff4
PZ
7048struct sched_domain_topology_level;
7049
7050typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
7051typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7052
e3589f6c
PZ
7053#define SDTL_OVERLAP 0x01
7054
eb7a74e6 7055struct sched_domain_topology_level {
2c402dc3
PZ
7056 sched_domain_init_f init;
7057 sched_domain_mask_f mask;
e3589f6c 7058 int flags;
54ab4ff4 7059 struct sd_data data;
eb7a74e6
PZ
7060};
7061
e3589f6c
PZ
7062static int
7063build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7064{
7065 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7066 const struct cpumask *span = sched_domain_span(sd);
7067 struct cpumask *covered = sched_domains_tmpmask;
7068 struct sd_data *sdd = sd->private;
7069 struct sched_domain *child;
7070 int i;
7071
7072 cpumask_clear(covered);
7073
7074 for_each_cpu(i, span) {
7075 struct cpumask *sg_span;
7076
7077 if (cpumask_test_cpu(i, covered))
7078 continue;
7079
7080 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7081 GFP_KERNEL, cpu_to_node(i));
7082
7083 if (!sg)
7084 goto fail;
7085
7086 sg_span = sched_group_cpus(sg);
7087
7088 child = *per_cpu_ptr(sdd->sd, i);
7089 if (child->child) {
7090 child = child->child;
7091 cpumask_copy(sg_span, sched_domain_span(child));
7092 } else
7093 cpumask_set_cpu(i, sg_span);
7094
7095 cpumask_or(covered, covered, sg_span);
7096
7097 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7098 atomic_inc(&sg->sgp->ref);
7099
7100 if (cpumask_test_cpu(cpu, sg_span))
7101 groups = sg;
7102
7103 if (!first)
7104 first = sg;
7105 if (last)
7106 last->next = sg;
7107 last = sg;
7108 last->next = first;
7109 }
7110 sd->groups = groups;
7111
7112 return 0;
7113
7114fail:
7115 free_sched_groups(first, 0);
7116
7117 return -ENOMEM;
7118}
7119
dce840a0 7120static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 7121{
dce840a0
PZ
7122 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7123 struct sched_domain *child = sd->child;
1da177e4 7124
dce840a0
PZ
7125 if (child)
7126 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 7127
9c3f75cb 7128 if (sg) {
dce840a0 7129 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 7130 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 7131 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 7132 }
dce840a0
PZ
7133
7134 return cpu;
1e9f28fa 7135}
1e9f28fa 7136
01a08546 7137/*
dce840a0
PZ
7138 * build_sched_groups will build a circular linked list of the groups
7139 * covered by the given span, and will set each group's ->cpumask correctly,
7140 * and ->cpu_power to 0.
e3589f6c
PZ
7141 *
7142 * Assumes the sched_domain tree is fully constructed
01a08546 7143 */
e3589f6c
PZ
7144static int
7145build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 7146{
dce840a0
PZ
7147 struct sched_group *first = NULL, *last = NULL;
7148 struct sd_data *sdd = sd->private;
7149 const struct cpumask *span = sched_domain_span(sd);
f96225fd 7150 struct cpumask *covered;
dce840a0 7151 int i;
9c1cfda2 7152
e3589f6c
PZ
7153 get_group(cpu, sdd, &sd->groups);
7154 atomic_inc(&sd->groups->ref);
7155
7156 if (cpu != cpumask_first(sched_domain_span(sd)))
7157 return 0;
7158
f96225fd
PZ
7159 lockdep_assert_held(&sched_domains_mutex);
7160 covered = sched_domains_tmpmask;
7161
dce840a0 7162 cpumask_clear(covered);
6711cab4 7163
dce840a0
PZ
7164 for_each_cpu(i, span) {
7165 struct sched_group *sg;
7166 int group = get_group(i, sdd, &sg);
7167 int j;
6711cab4 7168
dce840a0
PZ
7169 if (cpumask_test_cpu(i, covered))
7170 continue;
6711cab4 7171
dce840a0 7172 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 7173 sg->sgp->power = 0;
0601a88d 7174
dce840a0
PZ
7175 for_each_cpu(j, span) {
7176 if (get_group(j, sdd, NULL) != group)
7177 continue;
0601a88d 7178
dce840a0
PZ
7179 cpumask_set_cpu(j, covered);
7180 cpumask_set_cpu(j, sched_group_cpus(sg));
7181 }
0601a88d 7182
dce840a0
PZ
7183 if (!first)
7184 first = sg;
7185 if (last)
7186 last->next = sg;
7187 last = sg;
7188 }
7189 last->next = first;
e3589f6c
PZ
7190
7191 return 0;
0601a88d 7192}
51888ca2 7193
89c4710e
SS
7194/*
7195 * Initialize sched groups cpu_power.
7196 *
7197 * cpu_power indicates the capacity of sched group, which is used while
7198 * distributing the load between different sched groups in a sched domain.
7199 * Typically cpu_power for all the groups in a sched domain will be same unless
7200 * there are asymmetries in the topology. If there are asymmetries, group
7201 * having more cpu_power will pickup more load compared to the group having
7202 * less cpu_power.
89c4710e
SS
7203 */
7204static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7205{
e3589f6c 7206 struct sched_group *sg = sd->groups;
89c4710e 7207
e3589f6c
PZ
7208 WARN_ON(!sd || !sg);
7209
7210 do {
7211 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7212 sg = sg->next;
7213 } while (sg != sd->groups);
89c4710e 7214
e3589f6c
PZ
7215 if (cpu != group_first_cpu(sg))
7216 return;
aae6d3dd 7217
d274cb30 7218 update_group_power(sd, cpu);
89c4710e
SS
7219}
7220
7c16ec58
MT
7221/*
7222 * Initializers for schedule domains
7223 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7224 */
7225
a5d8c348
IM
7226#ifdef CONFIG_SCHED_DEBUG
7227# define SD_INIT_NAME(sd, type) sd->name = #type
7228#else
7229# define SD_INIT_NAME(sd, type) do { } while (0)
7230#endif
7231
54ab4ff4
PZ
7232#define SD_INIT_FUNC(type) \
7233static noinline struct sched_domain * \
7234sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7235{ \
7236 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7237 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7238 SD_INIT_NAME(sd, type); \
7239 sd->private = &tl->data; \
7240 return sd; \
7c16ec58
MT
7241}
7242
7243SD_INIT_FUNC(CPU)
7244#ifdef CONFIG_NUMA
7245 SD_INIT_FUNC(ALLNODES)
7246 SD_INIT_FUNC(NODE)
7247#endif
7248#ifdef CONFIG_SCHED_SMT
7249 SD_INIT_FUNC(SIBLING)
7250#endif
7251#ifdef CONFIG_SCHED_MC
7252 SD_INIT_FUNC(MC)
7253#endif
01a08546
HC
7254#ifdef CONFIG_SCHED_BOOK
7255 SD_INIT_FUNC(BOOK)
7256#endif
7c16ec58 7257
1d3504fc 7258static int default_relax_domain_level = -1;
60495e77 7259int sched_domain_level_max;
1d3504fc
HS
7260
7261static int __init setup_relax_domain_level(char *str)
7262{
30e0e178
LZ
7263 unsigned long val;
7264
7265 val = simple_strtoul(str, NULL, 0);
60495e77 7266 if (val < sched_domain_level_max)
30e0e178
LZ
7267 default_relax_domain_level = val;
7268
1d3504fc
HS
7269 return 1;
7270}
7271__setup("relax_domain_level=", setup_relax_domain_level);
7272
7273static void set_domain_attribute(struct sched_domain *sd,
7274 struct sched_domain_attr *attr)
7275{
7276 int request;
7277
7278 if (!attr || attr->relax_domain_level < 0) {
7279 if (default_relax_domain_level < 0)
7280 return;
7281 else
7282 request = default_relax_domain_level;
7283 } else
7284 request = attr->relax_domain_level;
7285 if (request < sd->level) {
7286 /* turn off idle balance on this domain */
c88d5910 7287 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7288 } else {
7289 /* turn on idle balance on this domain */
c88d5910 7290 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7291 }
7292}
7293
54ab4ff4
PZ
7294static void __sdt_free(const struct cpumask *cpu_map);
7295static int __sdt_alloc(const struct cpumask *cpu_map);
7296
2109b99e
AH
7297static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7298 const struct cpumask *cpu_map)
7299{
7300 switch (what) {
2109b99e 7301 case sa_rootdomain:
822ff793
PZ
7302 if (!atomic_read(&d->rd->refcount))
7303 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7304 case sa_sd:
7305 free_percpu(d->sd); /* fall through */
dce840a0 7306 case sa_sd_storage:
54ab4ff4 7307 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7308 case sa_none:
7309 break;
7310 }
7311}
3404c8d9 7312
2109b99e
AH
7313static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7314 const struct cpumask *cpu_map)
7315{
dce840a0
PZ
7316 memset(d, 0, sizeof(*d));
7317
54ab4ff4
PZ
7318 if (__sdt_alloc(cpu_map))
7319 return sa_sd_storage;
dce840a0
PZ
7320 d->sd = alloc_percpu(struct sched_domain *);
7321 if (!d->sd)
7322 return sa_sd_storage;
2109b99e 7323 d->rd = alloc_rootdomain();
dce840a0 7324 if (!d->rd)
21d42ccf 7325 return sa_sd;
2109b99e
AH
7326 return sa_rootdomain;
7327}
57d885fe 7328
dce840a0
PZ
7329/*
7330 * NULL the sd_data elements we've used to build the sched_domain and
7331 * sched_group structure so that the subsequent __free_domain_allocs()
7332 * will not free the data we're using.
7333 */
7334static void claim_allocations(int cpu, struct sched_domain *sd)
7335{
7336 struct sd_data *sdd = sd->private;
dce840a0
PZ
7337
7338 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7339 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7340
e3589f6c 7341 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 7342 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
7343
7344 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 7345 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
7346}
7347
2c402dc3
PZ
7348#ifdef CONFIG_SCHED_SMT
7349static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7350{
2c402dc3 7351 return topology_thread_cpumask(cpu);
3bd65a80 7352}
2c402dc3 7353#endif
7f4588f3 7354
d069b916
PZ
7355/*
7356 * Topology list, bottom-up.
7357 */
2c402dc3 7358static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7359#ifdef CONFIG_SCHED_SMT
7360 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7361#endif
1e9f28fa 7362#ifdef CONFIG_SCHED_MC
2c402dc3 7363 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7364#endif
d069b916
PZ
7365#ifdef CONFIG_SCHED_BOOK
7366 { sd_init_BOOK, cpu_book_mask, },
7367#endif
7368 { sd_init_CPU, cpu_cpu_mask, },
7369#ifdef CONFIG_NUMA
e3589f6c 7370 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 7371 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7372#endif
eb7a74e6
PZ
7373 { NULL, },
7374};
7375
7376static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7377
54ab4ff4
PZ
7378static int __sdt_alloc(const struct cpumask *cpu_map)
7379{
7380 struct sched_domain_topology_level *tl;
7381 int j;
7382
7383 for (tl = sched_domain_topology; tl->init; tl++) {
7384 struct sd_data *sdd = &tl->data;
7385
7386 sdd->sd = alloc_percpu(struct sched_domain *);
7387 if (!sdd->sd)
7388 return -ENOMEM;
7389
7390 sdd->sg = alloc_percpu(struct sched_group *);
7391 if (!sdd->sg)
7392 return -ENOMEM;
7393
9c3f75cb
PZ
7394 sdd->sgp = alloc_percpu(struct sched_group_power *);
7395 if (!sdd->sgp)
7396 return -ENOMEM;
7397
54ab4ff4
PZ
7398 for_each_cpu(j, cpu_map) {
7399 struct sched_domain *sd;
7400 struct sched_group *sg;
9c3f75cb 7401 struct sched_group_power *sgp;
54ab4ff4
PZ
7402
7403 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7404 GFP_KERNEL, cpu_to_node(j));
7405 if (!sd)
7406 return -ENOMEM;
7407
7408 *per_cpu_ptr(sdd->sd, j) = sd;
7409
7410 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7411 GFP_KERNEL, cpu_to_node(j));
7412 if (!sg)
7413 return -ENOMEM;
7414
7415 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
7416
7417 sgp = kzalloc_node(sizeof(struct sched_group_power),
7418 GFP_KERNEL, cpu_to_node(j));
7419 if (!sgp)
7420 return -ENOMEM;
7421
7422 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
7423 }
7424 }
7425
7426 return 0;
7427}
7428
7429static void __sdt_free(const struct cpumask *cpu_map)
7430{
7431 struct sched_domain_topology_level *tl;
7432 int j;
7433
7434 for (tl = sched_domain_topology; tl->init; tl++) {
7435 struct sd_data *sdd = &tl->data;
7436
7437 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
7438 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7439 if (sd && (sd->flags & SD_OVERLAP))
7440 free_sched_groups(sd->groups, 0);
54ab4ff4 7441 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 7442 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
7443 }
7444 free_percpu(sdd->sd);
7445 free_percpu(sdd->sg);
9c3f75cb 7446 free_percpu(sdd->sgp);
54ab4ff4
PZ
7447 }
7448}
7449
2c402dc3
PZ
7450struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7451 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7452 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7453 int cpu)
7454{
54ab4ff4 7455 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7456 if (!sd)
d069b916 7457 return child;
2c402dc3
PZ
7458
7459 set_domain_attribute(sd, attr);
7460 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7461 if (child) {
7462 sd->level = child->level + 1;
7463 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7464 child->parent = sd;
60495e77 7465 }
d069b916 7466 sd->child = child;
2c402dc3
PZ
7467
7468 return sd;
7469}
7470
2109b99e
AH
7471/*
7472 * Build sched domains for a given set of cpus and attach the sched domains
7473 * to the individual cpus
7474 */
dce840a0
PZ
7475static int build_sched_domains(const struct cpumask *cpu_map,
7476 struct sched_domain_attr *attr)
2109b99e
AH
7477{
7478 enum s_alloc alloc_state = sa_none;
dce840a0 7479 struct sched_domain *sd;
2109b99e 7480 struct s_data d;
822ff793 7481 int i, ret = -ENOMEM;
9c1cfda2 7482
2109b99e
AH
7483 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7484 if (alloc_state != sa_rootdomain)
7485 goto error;
9c1cfda2 7486
dce840a0 7487 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7488 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7489 struct sched_domain_topology_level *tl;
7490
3bd65a80 7491 sd = NULL;
e3589f6c 7492 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 7493 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
7494 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7495 sd->flags |= SD_OVERLAP;
d110235d
PZ
7496 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7497 break;
e3589f6c 7498 }
d274cb30 7499
d069b916
PZ
7500 while (sd->child)
7501 sd = sd->child;
7502
21d42ccf 7503 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7504 }
7505
7506 /* Build the groups for the domains */
7507 for_each_cpu(i, cpu_map) {
7508 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7509 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7510 if (sd->flags & SD_OVERLAP) {
7511 if (build_overlap_sched_groups(sd, i))
7512 goto error;
7513 } else {
7514 if (build_sched_groups(sd, i))
7515 goto error;
7516 }
1cf51902 7517 }
a06dadbe 7518 }
9c1cfda2 7519
1da177e4 7520 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7521 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7522 if (!cpumask_test_cpu(i, cpu_map))
7523 continue;
9c1cfda2 7524
dce840a0
PZ
7525 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7526 claim_allocations(i, sd);
cd4ea6ae 7527 init_sched_groups_power(i, sd);
dce840a0 7528 }
f712c0c7 7529 }
9c1cfda2 7530
1da177e4 7531 /* Attach the domains */
dce840a0 7532 rcu_read_lock();
abcd083a 7533 for_each_cpu(i, cpu_map) {
21d42ccf 7534 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7535 cpu_attach_domain(sd, d.rd, i);
1da177e4 7536 }
dce840a0 7537 rcu_read_unlock();
51888ca2 7538
822ff793 7539 ret = 0;
51888ca2 7540error:
2109b99e 7541 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7542 return ret;
1da177e4 7543}
029190c5 7544
acc3f5d7 7545static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7546static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7547static struct sched_domain_attr *dattr_cur;
7548 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7549
7550/*
7551 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7552 * cpumask) fails, then fallback to a single sched domain,
7553 * as determined by the single cpumask fallback_doms.
029190c5 7554 */
4212823f 7555static cpumask_var_t fallback_doms;
029190c5 7556
ee79d1bd
HC
7557/*
7558 * arch_update_cpu_topology lets virtualized architectures update the
7559 * cpu core maps. It is supposed to return 1 if the topology changed
7560 * or 0 if it stayed the same.
7561 */
7562int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7563{
ee79d1bd 7564 return 0;
22e52b07
HC
7565}
7566
acc3f5d7
RR
7567cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7568{
7569 int i;
7570 cpumask_var_t *doms;
7571
7572 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7573 if (!doms)
7574 return NULL;
7575 for (i = 0; i < ndoms; i++) {
7576 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7577 free_sched_domains(doms, i);
7578 return NULL;
7579 }
7580 }
7581 return doms;
7582}
7583
7584void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7585{
7586 unsigned int i;
7587 for (i = 0; i < ndoms; i++)
7588 free_cpumask_var(doms[i]);
7589 kfree(doms);
7590}
7591
1a20ff27 7592/*
41a2d6cf 7593 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7594 * For now this just excludes isolated cpus, but could be used to
7595 * exclude other special cases in the future.
1a20ff27 7596 */
c4a8849a 7597static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7598{
7378547f
MM
7599 int err;
7600
22e52b07 7601 arch_update_cpu_topology();
029190c5 7602 ndoms_cur = 1;
acc3f5d7 7603 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7604 if (!doms_cur)
acc3f5d7
RR
7605 doms_cur = &fallback_doms;
7606 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7607 dattr_cur = NULL;
dce840a0 7608 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7609 register_sched_domain_sysctl();
7378547f
MM
7610
7611 return err;
1a20ff27
DG
7612}
7613
1a20ff27
DG
7614/*
7615 * Detach sched domains from a group of cpus specified in cpu_map
7616 * These cpus will now be attached to the NULL domain
7617 */
96f874e2 7618static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7619{
7620 int i;
7621
dce840a0 7622 rcu_read_lock();
abcd083a 7623 for_each_cpu(i, cpu_map)
57d885fe 7624 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7625 rcu_read_unlock();
1a20ff27
DG
7626}
7627
1d3504fc
HS
7628/* handle null as "default" */
7629static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7630 struct sched_domain_attr *new, int idx_new)
7631{
7632 struct sched_domain_attr tmp;
7633
7634 /* fast path */
7635 if (!new && !cur)
7636 return 1;
7637
7638 tmp = SD_ATTR_INIT;
7639 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7640 new ? (new + idx_new) : &tmp,
7641 sizeof(struct sched_domain_attr));
7642}
7643
029190c5
PJ
7644/*
7645 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7646 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7647 * doms_new[] to the current sched domain partitioning, doms_cur[].
7648 * It destroys each deleted domain and builds each new domain.
7649 *
acc3f5d7 7650 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7651 * The masks don't intersect (don't overlap.) We should setup one
7652 * sched domain for each mask. CPUs not in any of the cpumasks will
7653 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7654 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7655 * it as it is.
7656 *
acc3f5d7
RR
7657 * The passed in 'doms_new' should be allocated using
7658 * alloc_sched_domains. This routine takes ownership of it and will
7659 * free_sched_domains it when done with it. If the caller failed the
7660 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7661 * and partition_sched_domains() will fallback to the single partition
7662 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7663 *
96f874e2 7664 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7665 * ndoms_new == 0 is a special case for destroying existing domains,
7666 * and it will not create the default domain.
dfb512ec 7667 *
029190c5
PJ
7668 * Call with hotplug lock held
7669 */
acc3f5d7 7670void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7671 struct sched_domain_attr *dattr_new)
029190c5 7672{
dfb512ec 7673 int i, j, n;
d65bd5ec 7674 int new_topology;
029190c5 7675
712555ee 7676 mutex_lock(&sched_domains_mutex);
a1835615 7677
7378547f
MM
7678 /* always unregister in case we don't destroy any domains */
7679 unregister_sched_domain_sysctl();
7680
d65bd5ec
HC
7681 /* Let architecture update cpu core mappings. */
7682 new_topology = arch_update_cpu_topology();
7683
dfb512ec 7684 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7685
7686 /* Destroy deleted domains */
7687 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7688 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7689 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7690 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7691 goto match1;
7692 }
7693 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7694 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7695match1:
7696 ;
7697 }
7698
e761b772
MK
7699 if (doms_new == NULL) {
7700 ndoms_cur = 0;
acc3f5d7 7701 doms_new = &fallback_doms;
6ad4c188 7702 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7703 WARN_ON_ONCE(dattr_new);
e761b772
MK
7704 }
7705
029190c5
PJ
7706 /* Build new domains */
7707 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7708 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7709 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7710 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7711 goto match2;
7712 }
7713 /* no match - add a new doms_new */
dce840a0 7714 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7715match2:
7716 ;
7717 }
7718
7719 /* Remember the new sched domains */
acc3f5d7
RR
7720 if (doms_cur != &fallback_doms)
7721 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7722 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7723 doms_cur = doms_new;
1d3504fc 7724 dattr_cur = dattr_new;
029190c5 7725 ndoms_cur = ndoms_new;
7378547f
MM
7726
7727 register_sched_domain_sysctl();
a1835615 7728
712555ee 7729 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7730}
7731
5c45bf27 7732#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7733static void reinit_sched_domains(void)
5c45bf27 7734{
95402b38 7735 get_online_cpus();
dfb512ec
MK
7736
7737 /* Destroy domains first to force the rebuild */
7738 partition_sched_domains(0, NULL, NULL);
7739
e761b772 7740 rebuild_sched_domains();
95402b38 7741 put_online_cpus();
5c45bf27
SS
7742}
7743
7744static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7745{
afb8a9b7 7746 unsigned int level = 0;
5c45bf27 7747
afb8a9b7
GS
7748 if (sscanf(buf, "%u", &level) != 1)
7749 return -EINVAL;
7750
7751 /*
7752 * level is always be positive so don't check for
7753 * level < POWERSAVINGS_BALANCE_NONE which is 0
7754 * What happens on 0 or 1 byte write,
7755 * need to check for count as well?
7756 */
7757
7758 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7759 return -EINVAL;
7760
7761 if (smt)
afb8a9b7 7762 sched_smt_power_savings = level;
5c45bf27 7763 else
afb8a9b7 7764 sched_mc_power_savings = level;
5c45bf27 7765
c4a8849a 7766 reinit_sched_domains();
5c45bf27 7767
c70f22d2 7768 return count;
5c45bf27
SS
7769}
7770
5c45bf27 7771#ifdef CONFIG_SCHED_MC
f718cd4a 7772static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7773 struct sysdev_class_attribute *attr,
f718cd4a 7774 char *page)
5c45bf27
SS
7775{
7776 return sprintf(page, "%u\n", sched_mc_power_savings);
7777}
f718cd4a 7778static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7779 struct sysdev_class_attribute *attr,
48f24c4d 7780 const char *buf, size_t count)
5c45bf27
SS
7781{
7782 return sched_power_savings_store(buf, count, 0);
7783}
f718cd4a
AK
7784static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7785 sched_mc_power_savings_show,
7786 sched_mc_power_savings_store);
5c45bf27
SS
7787#endif
7788
7789#ifdef CONFIG_SCHED_SMT
f718cd4a 7790static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7791 struct sysdev_class_attribute *attr,
f718cd4a 7792 char *page)
5c45bf27
SS
7793{
7794 return sprintf(page, "%u\n", sched_smt_power_savings);
7795}
f718cd4a 7796static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7797 struct sysdev_class_attribute *attr,
48f24c4d 7798 const char *buf, size_t count)
5c45bf27
SS
7799{
7800 return sched_power_savings_store(buf, count, 1);
7801}
f718cd4a
AK
7802static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7803 sched_smt_power_savings_show,
6707de00
AB
7804 sched_smt_power_savings_store);
7805#endif
7806
39aac648 7807int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7808{
7809 int err = 0;
7810
7811#ifdef CONFIG_SCHED_SMT
7812 if (smt_capable())
7813 err = sysfs_create_file(&cls->kset.kobj,
7814 &attr_sched_smt_power_savings.attr);
7815#endif
7816#ifdef CONFIG_SCHED_MC
7817 if (!err && mc_capable())
7818 err = sysfs_create_file(&cls->kset.kobj,
7819 &attr_sched_mc_power_savings.attr);
7820#endif
7821 return err;
7822}
6d6bc0ad 7823#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7824
1da177e4 7825/*
3a101d05
TH
7826 * Update cpusets according to cpu_active mask. If cpusets are
7827 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7828 * around partition_sched_domains().
1da177e4 7829 */
0b2e918a
TH
7830static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7831 void *hcpu)
e761b772 7832{
3a101d05 7833 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7834 case CPU_ONLINE:
6ad4c188 7835 case CPU_DOWN_FAILED:
3a101d05 7836 cpuset_update_active_cpus();
e761b772 7837 return NOTIFY_OK;
3a101d05
TH
7838 default:
7839 return NOTIFY_DONE;
7840 }
7841}
e761b772 7842
0b2e918a
TH
7843static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7844 void *hcpu)
3a101d05
TH
7845{
7846 switch (action & ~CPU_TASKS_FROZEN) {
7847 case CPU_DOWN_PREPARE:
7848 cpuset_update_active_cpus();
7849 return NOTIFY_OK;
e761b772
MK
7850 default:
7851 return NOTIFY_DONE;
7852 }
7853}
e761b772
MK
7854
7855static int update_runtime(struct notifier_block *nfb,
7856 unsigned long action, void *hcpu)
1da177e4 7857{
7def2be1
PZ
7858 int cpu = (int)(long)hcpu;
7859
1da177e4 7860 switch (action) {
1da177e4 7861 case CPU_DOWN_PREPARE:
8bb78442 7862 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7863 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7864 return NOTIFY_OK;
7865
1da177e4 7866 case CPU_DOWN_FAILED:
8bb78442 7867 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7868 case CPU_ONLINE:
8bb78442 7869 case CPU_ONLINE_FROZEN:
7def2be1 7870 enable_runtime(cpu_rq(cpu));
e761b772
MK
7871 return NOTIFY_OK;
7872
1da177e4
LT
7873 default:
7874 return NOTIFY_DONE;
7875 }
1da177e4 7876}
1da177e4
LT
7877
7878void __init sched_init_smp(void)
7879{
dcc30a35
RR
7880 cpumask_var_t non_isolated_cpus;
7881
7882 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7883 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7884
95402b38 7885 get_online_cpus();
712555ee 7886 mutex_lock(&sched_domains_mutex);
c4a8849a 7887 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7888 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7889 if (cpumask_empty(non_isolated_cpus))
7890 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7891 mutex_unlock(&sched_domains_mutex);
95402b38 7892 put_online_cpus();
e761b772 7893
3a101d05
TH
7894 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7895 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7896
7897 /* RT runtime code needs to handle some hotplug events */
7898 hotcpu_notifier(update_runtime, 0);
7899
b328ca18 7900 init_hrtick();
5c1e1767
NP
7901
7902 /* Move init over to a non-isolated CPU */
dcc30a35 7903 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7904 BUG();
19978ca6 7905 sched_init_granularity();
dcc30a35 7906 free_cpumask_var(non_isolated_cpus);
4212823f 7907
0e3900e6 7908 init_sched_rt_class();
1da177e4
LT
7909}
7910#else
7911void __init sched_init_smp(void)
7912{
19978ca6 7913 sched_init_granularity();
1da177e4
LT
7914}
7915#endif /* CONFIG_SMP */
7916
cd1bb94b
AB
7917const_debug unsigned int sysctl_timer_migration = 1;
7918
1da177e4
LT
7919int in_sched_functions(unsigned long addr)
7920{
1da177e4
LT
7921 return in_lock_functions(addr) ||
7922 (addr >= (unsigned long)__sched_text_start
7923 && addr < (unsigned long)__sched_text_end);
7924}
7925
acb5a9ba 7926static void init_cfs_rq(struct cfs_rq *cfs_rq)
dd41f596
IM
7927{
7928 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7929 INIT_LIST_HEAD(&cfs_rq->tasks);
67e9fb2a 7930 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
c64be78f
PZ
7931#ifndef CONFIG_64BIT
7932 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7933#endif
dd41f596
IM
7934}
7935
fa85ae24
PZ
7936static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7937{
7938 struct rt_prio_array *array;
7939 int i;
7940
7941 array = &rt_rq->active;
7942 for (i = 0; i < MAX_RT_PRIO; i++) {
7943 INIT_LIST_HEAD(array->queue + i);
7944 __clear_bit(i, array->bitmap);
7945 }
7946 /* delimiter for bitsearch: */
7947 __set_bit(MAX_RT_PRIO, array->bitmap);
7948
acb5a9ba 7949#if defined CONFIG_SMP
e864c499
GH
7950 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7951 rt_rq->highest_prio.next = MAX_RT_PRIO;
fa85ae24 7952 rt_rq->rt_nr_migratory = 0;
fa85ae24 7953 rt_rq->overloaded = 0;
732375c6 7954 plist_head_init(&rt_rq->pushable_tasks);
fa85ae24
PZ
7955#endif
7956
7957 rt_rq->rt_time = 0;
7958 rt_rq->rt_throttled = 0;
ac086bc2 7959 rt_rq->rt_runtime = 0;
0986b11b 7960 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
fa85ae24
PZ
7961}
7962
6f505b16 7963#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7964static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7965 struct sched_entity *se, int cpu,
ec7dc8ac 7966 struct sched_entity *parent)
6f505b16 7967{
ec7dc8ac 7968 struct rq *rq = cpu_rq(cpu);
acb5a9ba 7969
6f505b16 7970 cfs_rq->tg = tg;
acb5a9ba
JS
7971 cfs_rq->rq = rq;
7972#ifdef CONFIG_SMP
7973 /* allow initial update_cfs_load() to truncate */
7974 cfs_rq->load_stamp = 1;
7975#endif
6f505b16 7976
acb5a9ba 7977 tg->cfs_rq[cpu] = cfs_rq;
6f505b16 7978 tg->se[cpu] = se;
acb5a9ba 7979
07e06b01 7980 /* se could be NULL for root_task_group */
354d60c2
DG
7981 if (!se)
7982 return;
7983
ec7dc8ac
DG
7984 if (!parent)
7985 se->cfs_rq = &rq->cfs;
7986 else
7987 se->cfs_rq = parent->my_q;
7988
6f505b16 7989 se->my_q = cfs_rq;
9437178f 7990 update_load_set(&se->load, 0);
ec7dc8ac 7991 se->parent = parent;
6f505b16 7992}
052f1dc7 7993#endif
6f505b16 7994
052f1dc7 7995#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7996static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7997 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7998 struct sched_rt_entity *parent)
6f505b16 7999{
ec7dc8ac
DG
8000 struct rq *rq = cpu_rq(cpu);
8001
acb5a9ba
JS
8002 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8003 rt_rq->rt_nr_boosted = 0;
8004 rt_rq->rq = rq;
6f505b16 8005 rt_rq->tg = tg;
6f505b16 8006
acb5a9ba 8007 tg->rt_rq[cpu] = rt_rq;
6f505b16 8008 tg->rt_se[cpu] = rt_se;
acb5a9ba 8009
354d60c2
DG
8010 if (!rt_se)
8011 return;
8012
ec7dc8ac
DG
8013 if (!parent)
8014 rt_se->rt_rq = &rq->rt;
8015 else
8016 rt_se->rt_rq = parent->my_q;
8017
6f505b16 8018 rt_se->my_q = rt_rq;
ec7dc8ac 8019 rt_se->parent = parent;
6f505b16
PZ
8020 INIT_LIST_HEAD(&rt_se->run_list);
8021}
8022#endif
8023
1da177e4
LT
8024void __init sched_init(void)
8025{
dd41f596 8026 int i, j;
434d53b0
MT
8027 unsigned long alloc_size = 0, ptr;
8028
8029#ifdef CONFIG_FAIR_GROUP_SCHED
8030 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8031#endif
8032#ifdef CONFIG_RT_GROUP_SCHED
8033 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8034#endif
df7c8e84 8035#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8036 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8037#endif
434d53b0 8038 if (alloc_size) {
36b7b6d4 8039 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8040
8041#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8042 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8043 ptr += nr_cpu_ids * sizeof(void **);
8044
07e06b01 8045 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8046 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8047
6d6bc0ad 8048#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8049#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8050 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8051 ptr += nr_cpu_ids * sizeof(void **);
8052
07e06b01 8053 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8054 ptr += nr_cpu_ids * sizeof(void **);
8055
6d6bc0ad 8056#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8057#ifdef CONFIG_CPUMASK_OFFSTACK
8058 for_each_possible_cpu(i) {
8059 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8060 ptr += cpumask_size();
8061 }
8062#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8063 }
dd41f596 8064
57d885fe
GH
8065#ifdef CONFIG_SMP
8066 init_defrootdomain();
8067#endif
8068
d0b27fa7
PZ
8069 init_rt_bandwidth(&def_rt_bandwidth,
8070 global_rt_period(), global_rt_runtime());
8071
8072#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8073 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8074 global_rt_period(), global_rt_runtime());
6d6bc0ad 8075#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8076
7c941438 8077#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8078 list_add(&root_task_group.list, &task_groups);
8079 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8080 autogroup_init(&init_task);
7c941438 8081#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8082
0a945022 8083 for_each_possible_cpu(i) {
70b97a7f 8084 struct rq *rq;
1da177e4
LT
8085
8086 rq = cpu_rq(i);
05fa785c 8087 raw_spin_lock_init(&rq->lock);
7897986b 8088 rq->nr_running = 0;
dce48a84
TG
8089 rq->calc_load_active = 0;
8090 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8091 init_cfs_rq(&rq->cfs);
6f505b16 8092 init_rt_rq(&rq->rt, rq);
dd41f596 8093#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8094 root_task_group.shares = root_task_group_load;
6f505b16 8095 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8096 /*
07e06b01 8097 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8098 *
8099 * In case of task-groups formed thr' the cgroup filesystem, it
8100 * gets 100% of the cpu resources in the system. This overall
8101 * system cpu resource is divided among the tasks of
07e06b01 8102 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8103 * based on each entity's (task or task-group's) weight
8104 * (se->load.weight).
8105 *
07e06b01 8106 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8107 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8108 * then A0's share of the cpu resource is:
8109 *
0d905bca 8110 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8111 *
07e06b01
YZ
8112 * We achieve this by letting root_task_group's tasks sit
8113 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8114 */
07e06b01 8115 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8116#endif /* CONFIG_FAIR_GROUP_SCHED */
8117
8118 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8119#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8120 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8121 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8122#endif
1da177e4 8123
dd41f596
IM
8124 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8125 rq->cpu_load[j] = 0;
fdf3e95d
VP
8126
8127 rq->last_load_update_tick = jiffies;
8128
1da177e4 8129#ifdef CONFIG_SMP
41c7ce9a 8130 rq->sd = NULL;
57d885fe 8131 rq->rd = NULL;
1399fa78 8132 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 8133 rq->post_schedule = 0;
1da177e4 8134 rq->active_balance = 0;
dd41f596 8135 rq->next_balance = jiffies;
1da177e4 8136 rq->push_cpu = 0;
0a2966b4 8137 rq->cpu = i;
1f11eb6a 8138 rq->online = 0;
eae0c9df
MG
8139 rq->idle_stamp = 0;
8140 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8141 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8142#ifdef CONFIG_NO_HZ
8143 rq->nohz_balance_kick = 0;
8144 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8145#endif
1da177e4 8146#endif
8f4d37ec 8147 init_rq_hrtick(rq);
1da177e4 8148 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8149 }
8150
2dd73a4f 8151 set_load_weight(&init_task);
b50f60ce 8152
e107be36
AK
8153#ifdef CONFIG_PREEMPT_NOTIFIERS
8154 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8155#endif
8156
c9819f45 8157#ifdef CONFIG_SMP
962cf36c 8158 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8159#endif
8160
b50f60ce 8161#ifdef CONFIG_RT_MUTEXES
732375c6 8162 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
8163#endif
8164
1da177e4
LT
8165 /*
8166 * The boot idle thread does lazy MMU switching as well:
8167 */
8168 atomic_inc(&init_mm.mm_count);
8169 enter_lazy_tlb(&init_mm, current);
8170
8171 /*
8172 * Make us the idle thread. Technically, schedule() should not be
8173 * called from this thread, however somewhere below it might be,
8174 * but because we are the idle thread, we just pick up running again
8175 * when this runqueue becomes "idle".
8176 */
8177 init_idle(current, smp_processor_id());
dce48a84
TG
8178
8179 calc_load_update = jiffies + LOAD_FREQ;
8180
dd41f596
IM
8181 /*
8182 * During early bootup we pretend to be a normal task:
8183 */
8184 current->sched_class = &fair_sched_class;
6892b75e 8185
6a7b3dc3 8186 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8187 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8188#ifdef CONFIG_SMP
4cb98839 8189 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 8190#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8191 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8192 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8193 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8194 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8195 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8196#endif
bdddd296
RR
8197 /* May be allocated at isolcpus cmdline parse time */
8198 if (cpu_isolated_map == NULL)
8199 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8200#endif /* SMP */
6a7b3dc3 8201
6892b75e 8202 scheduler_running = 1;
1da177e4
LT
8203}
8204
d902db1e 8205#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8206static inline int preempt_count_equals(int preempt_offset)
8207{
234da7bc 8208 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8209
4ba8216c 8210 return (nested == preempt_offset);
e4aafea2
FW
8211}
8212
d894837f 8213void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8214{
1da177e4
LT
8215 static unsigned long prev_jiffy; /* ratelimiting */
8216
e4aafea2
FW
8217 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8218 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8219 return;
8220 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8221 return;
8222 prev_jiffy = jiffies;
8223
3df0fc5b
PZ
8224 printk(KERN_ERR
8225 "BUG: sleeping function called from invalid context at %s:%d\n",
8226 file, line);
8227 printk(KERN_ERR
8228 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8229 in_atomic(), irqs_disabled(),
8230 current->pid, current->comm);
aef745fc
IM
8231
8232 debug_show_held_locks(current);
8233 if (irqs_disabled())
8234 print_irqtrace_events(current);
8235 dump_stack();
1da177e4
LT
8236}
8237EXPORT_SYMBOL(__might_sleep);
8238#endif
8239
8240#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8241static void normalize_task(struct rq *rq, struct task_struct *p)
8242{
da7a735e
PZ
8243 const struct sched_class *prev_class = p->sched_class;
8244 int old_prio = p->prio;
3a5e4dc1 8245 int on_rq;
3e51f33f 8246
fd2f4419 8247 on_rq = p->on_rq;
3a5e4dc1
AK
8248 if (on_rq)
8249 deactivate_task(rq, p, 0);
8250 __setscheduler(rq, p, SCHED_NORMAL, 0);
8251 if (on_rq) {
8252 activate_task(rq, p, 0);
8253 resched_task(rq->curr);
8254 }
da7a735e
PZ
8255
8256 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8257}
8258
1da177e4
LT
8259void normalize_rt_tasks(void)
8260{
a0f98a1c 8261 struct task_struct *g, *p;
1da177e4 8262 unsigned long flags;
70b97a7f 8263 struct rq *rq;
1da177e4 8264
4cf5d77a 8265 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8266 do_each_thread(g, p) {
178be793
IM
8267 /*
8268 * Only normalize user tasks:
8269 */
8270 if (!p->mm)
8271 continue;
8272
6cfb0d5d 8273 p->se.exec_start = 0;
6cfb0d5d 8274#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8275 p->se.statistics.wait_start = 0;
8276 p->se.statistics.sleep_start = 0;
8277 p->se.statistics.block_start = 0;
6cfb0d5d 8278#endif
dd41f596
IM
8279
8280 if (!rt_task(p)) {
8281 /*
8282 * Renice negative nice level userspace
8283 * tasks back to 0:
8284 */
8285 if (TASK_NICE(p) < 0 && p->mm)
8286 set_user_nice(p, 0);
1da177e4 8287 continue;
dd41f596 8288 }
1da177e4 8289
1d615482 8290 raw_spin_lock(&p->pi_lock);
b29739f9 8291 rq = __task_rq_lock(p);
1da177e4 8292
178be793 8293 normalize_task(rq, p);
3a5e4dc1 8294
b29739f9 8295 __task_rq_unlock(rq);
1d615482 8296 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8297 } while_each_thread(g, p);
8298
4cf5d77a 8299 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8300}
8301
8302#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8303
67fc4e0c 8304#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8305/*
67fc4e0c 8306 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8307 *
8308 * They can only be called when the whole system has been
8309 * stopped - every CPU needs to be quiescent, and no scheduling
8310 * activity can take place. Using them for anything else would
8311 * be a serious bug, and as a result, they aren't even visible
8312 * under any other configuration.
8313 */
8314
8315/**
8316 * curr_task - return the current task for a given cpu.
8317 * @cpu: the processor in question.
8318 *
8319 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8320 */
36c8b586 8321struct task_struct *curr_task(int cpu)
1df5c10a
LT
8322{
8323 return cpu_curr(cpu);
8324}
8325
67fc4e0c
JW
8326#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8327
8328#ifdef CONFIG_IA64
1df5c10a
LT
8329/**
8330 * set_curr_task - set the current task for a given cpu.
8331 * @cpu: the processor in question.
8332 * @p: the task pointer to set.
8333 *
8334 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8335 * are serviced on a separate stack. It allows the architecture to switch the
8336 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8337 * must be called with all CPU's synchronized, and interrupts disabled, the
8338 * and caller must save the original value of the current task (see
8339 * curr_task() above) and restore that value before reenabling interrupts and
8340 * re-starting the system.
8341 *
8342 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8343 */
36c8b586 8344void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8345{
8346 cpu_curr(cpu) = p;
8347}
8348
8349#endif
29f59db3 8350
bccbe08a
PZ
8351#ifdef CONFIG_FAIR_GROUP_SCHED
8352static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8353{
8354 int i;
8355
8356 for_each_possible_cpu(i) {
8357 if (tg->cfs_rq)
8358 kfree(tg->cfs_rq[i]);
8359 if (tg->se)
8360 kfree(tg->se[i]);
6f505b16
PZ
8361 }
8362
8363 kfree(tg->cfs_rq);
8364 kfree(tg->se);
6f505b16
PZ
8365}
8366
ec7dc8ac
DG
8367static
8368int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8369{
29f59db3 8370 struct cfs_rq *cfs_rq;
eab17229 8371 struct sched_entity *se;
29f59db3
SV
8372 int i;
8373
434d53b0 8374 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8375 if (!tg->cfs_rq)
8376 goto err;
434d53b0 8377 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8378 if (!tg->se)
8379 goto err;
052f1dc7
PZ
8380
8381 tg->shares = NICE_0_LOAD;
29f59db3
SV
8382
8383 for_each_possible_cpu(i) {
eab17229
LZ
8384 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8385 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8386 if (!cfs_rq)
8387 goto err;
8388
eab17229
LZ
8389 se = kzalloc_node(sizeof(struct sched_entity),
8390 GFP_KERNEL, cpu_to_node(i));
29f59db3 8391 if (!se)
dfc12eb2 8392 goto err_free_rq;
29f59db3 8393
acb5a9ba 8394 init_cfs_rq(cfs_rq);
3d4b47b4 8395 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8396 }
8397
8398 return 1;
8399
49246274 8400err_free_rq:
dfc12eb2 8401 kfree(cfs_rq);
49246274 8402err:
bccbe08a
PZ
8403 return 0;
8404}
8405
bccbe08a
PZ
8406static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8407{
3d4b47b4
PZ
8408 struct rq *rq = cpu_rq(cpu);
8409 unsigned long flags;
3d4b47b4
PZ
8410
8411 /*
8412 * Only empty task groups can be destroyed; so we can speculatively
8413 * check on_list without danger of it being re-added.
8414 */
8415 if (!tg->cfs_rq[cpu]->on_list)
8416 return;
8417
8418 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8419 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8420 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8421}
5f817d67 8422#else /* !CONFIG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8423static inline void free_fair_sched_group(struct task_group *tg)
8424{
8425}
8426
ec7dc8ac
DG
8427static inline
8428int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8429{
8430 return 1;
8431}
8432
bccbe08a
PZ
8433static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8434{
8435}
6d6bc0ad 8436#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8437
8438#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8439static void free_rt_sched_group(struct task_group *tg)
8440{
8441 int i;
8442
99bc5242
BL
8443 if (tg->rt_se)
8444 destroy_rt_bandwidth(&tg->rt_bandwidth);
d0b27fa7 8445
bccbe08a
PZ
8446 for_each_possible_cpu(i) {
8447 if (tg->rt_rq)
8448 kfree(tg->rt_rq[i]);
8449 if (tg->rt_se)
8450 kfree(tg->rt_se[i]);
8451 }
8452
8453 kfree(tg->rt_rq);
8454 kfree(tg->rt_se);
8455}
8456
ec7dc8ac
DG
8457static
8458int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8459{
8460 struct rt_rq *rt_rq;
eab17229 8461 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8462 int i;
8463
434d53b0 8464 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8465 if (!tg->rt_rq)
8466 goto err;
434d53b0 8467 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8468 if (!tg->rt_se)
8469 goto err;
8470
d0b27fa7
PZ
8471 init_rt_bandwidth(&tg->rt_bandwidth,
8472 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8473
8474 for_each_possible_cpu(i) {
eab17229
LZ
8475 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8476 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8477 if (!rt_rq)
8478 goto err;
29f59db3 8479
eab17229
LZ
8480 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8481 GFP_KERNEL, cpu_to_node(i));
6f505b16 8482 if (!rt_se)
dfc12eb2 8483 goto err_free_rq;
29f59db3 8484
acb5a9ba
JS
8485 init_rt_rq(rt_rq, cpu_rq(i));
8486 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
3d4b47b4 8487 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8488 }
8489
bccbe08a
PZ
8490 return 1;
8491
49246274 8492err_free_rq:
dfc12eb2 8493 kfree(rt_rq);
49246274 8494err:
bccbe08a
PZ
8495 return 0;
8496}
6d6bc0ad 8497#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8498static inline void free_rt_sched_group(struct task_group *tg)
8499{
8500}
8501
ec7dc8ac
DG
8502static inline
8503int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8504{
8505 return 1;
8506}
6d6bc0ad 8507#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8508
7c941438 8509#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8510static void free_sched_group(struct task_group *tg)
8511{
8512 free_fair_sched_group(tg);
8513 free_rt_sched_group(tg);
e9aa1dd1 8514 autogroup_free(tg);
bccbe08a
PZ
8515 kfree(tg);
8516}
8517
8518/* allocate runqueue etc for a new task group */
ec7dc8ac 8519struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8520{
8521 struct task_group *tg;
8522 unsigned long flags;
bccbe08a
PZ
8523
8524 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8525 if (!tg)
8526 return ERR_PTR(-ENOMEM);
8527
ec7dc8ac 8528 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8529 goto err;
8530
ec7dc8ac 8531 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8532 goto err;
8533
8ed36996 8534 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8535 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8536
8537 WARN_ON(!parent); /* root should already exist */
8538
8539 tg->parent = parent;
f473aa5e 8540 INIT_LIST_HEAD(&tg->children);
09f2724a 8541 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8542 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8543
9b5b7751 8544 return tg;
29f59db3
SV
8545
8546err:
6f505b16 8547 free_sched_group(tg);
29f59db3
SV
8548 return ERR_PTR(-ENOMEM);
8549}
8550
9b5b7751 8551/* rcu callback to free various structures associated with a task group */
6f505b16 8552static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8553{
29f59db3 8554 /* now it should be safe to free those cfs_rqs */
6f505b16 8555 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8556}
8557
9b5b7751 8558/* Destroy runqueue etc associated with a task group */
4cf86d77 8559void sched_destroy_group(struct task_group *tg)
29f59db3 8560{
8ed36996 8561 unsigned long flags;
9b5b7751 8562 int i;
29f59db3 8563
3d4b47b4
PZ
8564 /* end participation in shares distribution */
8565 for_each_possible_cpu(i)
bccbe08a 8566 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8567
8568 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8569 list_del_rcu(&tg->list);
f473aa5e 8570 list_del_rcu(&tg->siblings);
8ed36996 8571 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8572
9b5b7751 8573 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8574 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8575}
8576
9b5b7751 8577/* change task's runqueue when it moves between groups.
3a252015
IM
8578 * The caller of this function should have put the task in its new group
8579 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8580 * reflect its new group.
9b5b7751
SV
8581 */
8582void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8583{
8584 int on_rq, running;
8585 unsigned long flags;
8586 struct rq *rq;
8587
8588 rq = task_rq_lock(tsk, &flags);
8589
051a1d1a 8590 running = task_current(rq, tsk);
fd2f4419 8591 on_rq = tsk->on_rq;
29f59db3 8592
0e1f3483 8593 if (on_rq)
29f59db3 8594 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8595 if (unlikely(running))
8596 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8597
810b3817 8598#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8599 if (tsk->sched_class->task_move_group)
8600 tsk->sched_class->task_move_group(tsk, on_rq);
8601 else
810b3817 8602#endif
b2b5ce02 8603 set_task_rq(tsk, task_cpu(tsk));
810b3817 8604
0e1f3483
HS
8605 if (unlikely(running))
8606 tsk->sched_class->set_curr_task(rq);
8607 if (on_rq)
371fd7e7 8608 enqueue_task(rq, tsk, 0);
29f59db3 8609
0122ec5b 8610 task_rq_unlock(rq, tsk, &flags);
29f59db3 8611}
7c941438 8612#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8613
052f1dc7 8614#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8615static DEFINE_MUTEX(shares_mutex);
8616
4cf86d77 8617int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8618{
8619 int i;
8ed36996 8620 unsigned long flags;
c61935fd 8621
ec7dc8ac
DG
8622 /*
8623 * We can't change the weight of the root cgroup.
8624 */
8625 if (!tg->se[0])
8626 return -EINVAL;
8627
cd62287e 8628 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
62fb1851 8629
8ed36996 8630 mutex_lock(&shares_mutex);
9b5b7751 8631 if (tg->shares == shares)
5cb350ba 8632 goto done;
29f59db3 8633
9b5b7751 8634 tg->shares = shares;
c09595f6 8635 for_each_possible_cpu(i) {
9437178f
PT
8636 struct rq *rq = cpu_rq(i);
8637 struct sched_entity *se;
8638
8639 se = tg->se[i];
8640 /* Propagate contribution to hierarchy */
8641 raw_spin_lock_irqsave(&rq->lock, flags);
8642 for_each_sched_entity(se)
6d5ab293 8643 update_cfs_shares(group_cfs_rq(se));
9437178f 8644 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8645 }
29f59db3 8646
5cb350ba 8647done:
8ed36996 8648 mutex_unlock(&shares_mutex);
9b5b7751 8649 return 0;
29f59db3
SV
8650}
8651
5cb350ba
DG
8652unsigned long sched_group_shares(struct task_group *tg)
8653{
8654 return tg->shares;
8655}
052f1dc7 8656#endif
5cb350ba 8657
052f1dc7 8658#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8659/*
9f0c1e56 8660 * Ensure that the real time constraints are schedulable.
6f505b16 8661 */
9f0c1e56
PZ
8662static DEFINE_MUTEX(rt_constraints_mutex);
8663
8664static unsigned long to_ratio(u64 period, u64 runtime)
8665{
8666 if (runtime == RUNTIME_INF)
9a7e0b18 8667 return 1ULL << 20;
9f0c1e56 8668
9a7e0b18 8669 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8670}
8671
9a7e0b18
PZ
8672/* Must be called with tasklist_lock held */
8673static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8674{
9a7e0b18 8675 struct task_struct *g, *p;
b40b2e8e 8676
9a7e0b18
PZ
8677 do_each_thread(g, p) {
8678 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8679 return 1;
8680 } while_each_thread(g, p);
b40b2e8e 8681
9a7e0b18
PZ
8682 return 0;
8683}
b40b2e8e 8684
9a7e0b18
PZ
8685struct rt_schedulable_data {
8686 struct task_group *tg;
8687 u64 rt_period;
8688 u64 rt_runtime;
8689};
b40b2e8e 8690
9a7e0b18
PZ
8691static int tg_schedulable(struct task_group *tg, void *data)
8692{
8693 struct rt_schedulable_data *d = data;
8694 struct task_group *child;
8695 unsigned long total, sum = 0;
8696 u64 period, runtime;
b40b2e8e 8697
9a7e0b18
PZ
8698 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8699 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8700
9a7e0b18
PZ
8701 if (tg == d->tg) {
8702 period = d->rt_period;
8703 runtime = d->rt_runtime;
b40b2e8e 8704 }
b40b2e8e 8705
4653f803
PZ
8706 /*
8707 * Cannot have more runtime than the period.
8708 */
8709 if (runtime > period && runtime != RUNTIME_INF)
8710 return -EINVAL;
6f505b16 8711
4653f803
PZ
8712 /*
8713 * Ensure we don't starve existing RT tasks.
8714 */
9a7e0b18
PZ
8715 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8716 return -EBUSY;
6f505b16 8717
9a7e0b18 8718 total = to_ratio(period, runtime);
6f505b16 8719
4653f803
PZ
8720 /*
8721 * Nobody can have more than the global setting allows.
8722 */
8723 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8724 return -EINVAL;
6f505b16 8725
4653f803
PZ
8726 /*
8727 * The sum of our children's runtime should not exceed our own.
8728 */
9a7e0b18
PZ
8729 list_for_each_entry_rcu(child, &tg->children, siblings) {
8730 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8731 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8732
9a7e0b18
PZ
8733 if (child == d->tg) {
8734 period = d->rt_period;
8735 runtime = d->rt_runtime;
8736 }
6f505b16 8737
9a7e0b18 8738 sum += to_ratio(period, runtime);
9f0c1e56 8739 }
6f505b16 8740
9a7e0b18
PZ
8741 if (sum > total)
8742 return -EINVAL;
8743
8744 return 0;
6f505b16
PZ
8745}
8746
9a7e0b18 8747static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8748{
9a7e0b18
PZ
8749 struct rt_schedulable_data data = {
8750 .tg = tg,
8751 .rt_period = period,
8752 .rt_runtime = runtime,
8753 };
8754
8755 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8756}
8757
d0b27fa7
PZ
8758static int tg_set_bandwidth(struct task_group *tg,
8759 u64 rt_period, u64 rt_runtime)
6f505b16 8760{
ac086bc2 8761 int i, err = 0;
9f0c1e56 8762
9f0c1e56 8763 mutex_lock(&rt_constraints_mutex);
521f1a24 8764 read_lock(&tasklist_lock);
9a7e0b18
PZ
8765 err = __rt_schedulable(tg, rt_period, rt_runtime);
8766 if (err)
9f0c1e56 8767 goto unlock;
ac086bc2 8768
0986b11b 8769 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8770 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8771 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8772
8773 for_each_possible_cpu(i) {
8774 struct rt_rq *rt_rq = tg->rt_rq[i];
8775
0986b11b 8776 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8777 rt_rq->rt_runtime = rt_runtime;
0986b11b 8778 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8779 }
0986b11b 8780 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8781unlock:
521f1a24 8782 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8783 mutex_unlock(&rt_constraints_mutex);
8784
8785 return err;
6f505b16
PZ
8786}
8787
d0b27fa7
PZ
8788int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8789{
8790 u64 rt_runtime, rt_period;
8791
8792 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8793 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8794 if (rt_runtime_us < 0)
8795 rt_runtime = RUNTIME_INF;
8796
8797 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8798}
8799
9f0c1e56
PZ
8800long sched_group_rt_runtime(struct task_group *tg)
8801{
8802 u64 rt_runtime_us;
8803
d0b27fa7 8804 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8805 return -1;
8806
d0b27fa7 8807 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8808 do_div(rt_runtime_us, NSEC_PER_USEC);
8809 return rt_runtime_us;
8810}
d0b27fa7
PZ
8811
8812int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8813{
8814 u64 rt_runtime, rt_period;
8815
8816 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8817 rt_runtime = tg->rt_bandwidth.rt_runtime;
8818
619b0488
R
8819 if (rt_period == 0)
8820 return -EINVAL;
8821
d0b27fa7
PZ
8822 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8823}
8824
8825long sched_group_rt_period(struct task_group *tg)
8826{
8827 u64 rt_period_us;
8828
8829 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8830 do_div(rt_period_us, NSEC_PER_USEC);
8831 return rt_period_us;
8832}
8833
8834static int sched_rt_global_constraints(void)
8835{
4653f803 8836 u64 runtime, period;
d0b27fa7
PZ
8837 int ret = 0;
8838
ec5d4989
HS
8839 if (sysctl_sched_rt_period <= 0)
8840 return -EINVAL;
8841
4653f803
PZ
8842 runtime = global_rt_runtime();
8843 period = global_rt_period();
8844
8845 /*
8846 * Sanity check on the sysctl variables.
8847 */
8848 if (runtime > period && runtime != RUNTIME_INF)
8849 return -EINVAL;
10b612f4 8850
d0b27fa7 8851 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8852 read_lock(&tasklist_lock);
4653f803 8853 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8854 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8855 mutex_unlock(&rt_constraints_mutex);
8856
8857 return ret;
8858}
54e99124
DG
8859
8860int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8861{
8862 /* Don't accept realtime tasks when there is no way for them to run */
8863 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8864 return 0;
8865
8866 return 1;
8867}
8868
6d6bc0ad 8869#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8870static int sched_rt_global_constraints(void)
8871{
ac086bc2
PZ
8872 unsigned long flags;
8873 int i;
8874
ec5d4989
HS
8875 if (sysctl_sched_rt_period <= 0)
8876 return -EINVAL;
8877
60aa605d
PZ
8878 /*
8879 * There's always some RT tasks in the root group
8880 * -- migration, kstopmachine etc..
8881 */
8882 if (sysctl_sched_rt_runtime == 0)
8883 return -EBUSY;
8884
0986b11b 8885 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8886 for_each_possible_cpu(i) {
8887 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8888
0986b11b 8889 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8890 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8891 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8892 }
0986b11b 8893 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8894
d0b27fa7
PZ
8895 return 0;
8896}
6d6bc0ad 8897#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8898
8899int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8900 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8901 loff_t *ppos)
8902{
8903 int ret;
8904 int old_period, old_runtime;
8905 static DEFINE_MUTEX(mutex);
8906
8907 mutex_lock(&mutex);
8908 old_period = sysctl_sched_rt_period;
8909 old_runtime = sysctl_sched_rt_runtime;
8910
8d65af78 8911 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8912
8913 if (!ret && write) {
8914 ret = sched_rt_global_constraints();
8915 if (ret) {
8916 sysctl_sched_rt_period = old_period;
8917 sysctl_sched_rt_runtime = old_runtime;
8918 } else {
8919 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8920 def_rt_bandwidth.rt_period =
8921 ns_to_ktime(global_rt_period());
8922 }
8923 }
8924 mutex_unlock(&mutex);
8925
8926 return ret;
8927}
68318b8e 8928
052f1dc7 8929#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8930
8931/* return corresponding task_group object of a cgroup */
2b01dfe3 8932static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8933{
2b01dfe3
PM
8934 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8935 struct task_group, css);
68318b8e
SV
8936}
8937
8938static struct cgroup_subsys_state *
2b01dfe3 8939cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8940{
ec7dc8ac 8941 struct task_group *tg, *parent;
68318b8e 8942
2b01dfe3 8943 if (!cgrp->parent) {
68318b8e 8944 /* This is early initialization for the top cgroup */
07e06b01 8945 return &root_task_group.css;
68318b8e
SV
8946 }
8947
ec7dc8ac
DG
8948 parent = cgroup_tg(cgrp->parent);
8949 tg = sched_create_group(parent);
68318b8e
SV
8950 if (IS_ERR(tg))
8951 return ERR_PTR(-ENOMEM);
8952
68318b8e
SV
8953 return &tg->css;
8954}
8955
41a2d6cf
IM
8956static void
8957cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8958{
2b01dfe3 8959 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8960
8961 sched_destroy_group(tg);
8962}
8963
41a2d6cf 8964static int
be367d09 8965cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8966{
b68aa230 8967#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8968 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8969 return -EINVAL;
8970#else
68318b8e
SV
8971 /* We don't support RT-tasks being in separate groups */
8972 if (tsk->sched_class != &fair_sched_class)
8973 return -EINVAL;
b68aa230 8974#endif
be367d09
BB
8975 return 0;
8976}
68318b8e 8977
68318b8e 8978static void
f780bdb7 8979cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
8980{
8981 sched_move_task(tsk);
8982}
8983
068c5cc5 8984static void
d41d5a01
PZ
8985cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8986 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
8987{
8988 /*
8989 * cgroup_exit() is called in the copy_process() failure path.
8990 * Ignore this case since the task hasn't ran yet, this avoids
8991 * trying to poke a half freed task state from generic code.
8992 */
8993 if (!(task->flags & PF_EXITING))
8994 return;
8995
8996 sched_move_task(task);
8997}
8998
052f1dc7 8999#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9000static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9001 u64 shareval)
68318b8e 9002{
c8b28116 9003 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
9004}
9005
f4c753b7 9006static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9007{
2b01dfe3 9008 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 9009
c8b28116 9010 return (u64) scale_load_down(tg->shares);
68318b8e 9011}
6d6bc0ad 9012#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9013
052f1dc7 9014#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9015static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9016 s64 val)
6f505b16 9017{
06ecb27c 9018 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9019}
9020
06ecb27c 9021static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9022{
06ecb27c 9023 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9024}
d0b27fa7
PZ
9025
9026static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9027 u64 rt_period_us)
9028{
9029 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9030}
9031
9032static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9033{
9034 return sched_group_rt_period(cgroup_tg(cgrp));
9035}
6d6bc0ad 9036#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9037
fe5c7cc2 9038static struct cftype cpu_files[] = {
052f1dc7 9039#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9040 {
9041 .name = "shares",
f4c753b7
PM
9042 .read_u64 = cpu_shares_read_u64,
9043 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9044 },
052f1dc7
PZ
9045#endif
9046#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9047 {
9f0c1e56 9048 .name = "rt_runtime_us",
06ecb27c
PM
9049 .read_s64 = cpu_rt_runtime_read,
9050 .write_s64 = cpu_rt_runtime_write,
6f505b16 9051 },
d0b27fa7
PZ
9052 {
9053 .name = "rt_period_us",
f4c753b7
PM
9054 .read_u64 = cpu_rt_period_read_uint,
9055 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9056 },
052f1dc7 9057#endif
68318b8e
SV
9058};
9059
9060static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9061{
fe5c7cc2 9062 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9063}
9064
9065struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9066 .name = "cpu",
9067 .create = cpu_cgroup_create,
9068 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
9069 .can_attach_task = cpu_cgroup_can_attach_task,
9070 .attach_task = cpu_cgroup_attach_task,
068c5cc5 9071 .exit = cpu_cgroup_exit,
38605cae
IM
9072 .populate = cpu_cgroup_populate,
9073 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9074 .early_init = 1,
9075};
9076
052f1dc7 9077#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9078
9079#ifdef CONFIG_CGROUP_CPUACCT
9080
9081/*
9082 * CPU accounting code for task groups.
9083 *
9084 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9085 * (balbir@in.ibm.com).
9086 */
9087
934352f2 9088/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9089struct cpuacct {
9090 struct cgroup_subsys_state css;
9091 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9092 u64 __percpu *cpuusage;
ef12fefa 9093 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9094 struct cpuacct *parent;
d842de87
SV
9095};
9096
9097struct cgroup_subsys cpuacct_subsys;
9098
9099/* return cpu accounting group corresponding to this container */
32cd756a 9100static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9101{
32cd756a 9102 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9103 struct cpuacct, css);
9104}
9105
9106/* return cpu accounting group to which this task belongs */
9107static inline struct cpuacct *task_ca(struct task_struct *tsk)
9108{
9109 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9110 struct cpuacct, css);
9111}
9112
9113/* create a new cpu accounting group */
9114static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9115 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9116{
9117 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9118 int i;
d842de87
SV
9119
9120 if (!ca)
ef12fefa 9121 goto out;
d842de87
SV
9122
9123 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9124 if (!ca->cpuusage)
9125 goto out_free_ca;
9126
9127 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9128 if (percpu_counter_init(&ca->cpustat[i], 0))
9129 goto out_free_counters;
d842de87 9130
934352f2
BR
9131 if (cgrp->parent)
9132 ca->parent = cgroup_ca(cgrp->parent);
9133
d842de87 9134 return &ca->css;
ef12fefa
BR
9135
9136out_free_counters:
9137 while (--i >= 0)
9138 percpu_counter_destroy(&ca->cpustat[i]);
9139 free_percpu(ca->cpuusage);
9140out_free_ca:
9141 kfree(ca);
9142out:
9143 return ERR_PTR(-ENOMEM);
d842de87
SV
9144}
9145
9146/* destroy an existing cpu accounting group */
41a2d6cf 9147static void
32cd756a 9148cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9149{
32cd756a 9150 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9151 int i;
d842de87 9152
ef12fefa
BR
9153 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9154 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9155 free_percpu(ca->cpuusage);
9156 kfree(ca);
9157}
9158
720f5498
KC
9159static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9160{
b36128c8 9161 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9162 u64 data;
9163
9164#ifndef CONFIG_64BIT
9165 /*
9166 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9167 */
05fa785c 9168 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9169 data = *cpuusage;
05fa785c 9170 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9171#else
9172 data = *cpuusage;
9173#endif
9174
9175 return data;
9176}
9177
9178static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9179{
b36128c8 9180 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9181
9182#ifndef CONFIG_64BIT
9183 /*
9184 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9185 */
05fa785c 9186 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9187 *cpuusage = val;
05fa785c 9188 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9189#else
9190 *cpuusage = val;
9191#endif
9192}
9193
d842de87 9194/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9195static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9196{
32cd756a 9197 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9198 u64 totalcpuusage = 0;
9199 int i;
9200
720f5498
KC
9201 for_each_present_cpu(i)
9202 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9203
9204 return totalcpuusage;
9205}
9206
0297b803
DG
9207static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9208 u64 reset)
9209{
9210 struct cpuacct *ca = cgroup_ca(cgrp);
9211 int err = 0;
9212 int i;
9213
9214 if (reset) {
9215 err = -EINVAL;
9216 goto out;
9217 }
9218
720f5498
KC
9219 for_each_present_cpu(i)
9220 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9221
0297b803
DG
9222out:
9223 return err;
9224}
9225
e9515c3c
KC
9226static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9227 struct seq_file *m)
9228{
9229 struct cpuacct *ca = cgroup_ca(cgroup);
9230 u64 percpu;
9231 int i;
9232
9233 for_each_present_cpu(i) {
9234 percpu = cpuacct_cpuusage_read(ca, i);
9235 seq_printf(m, "%llu ", (unsigned long long) percpu);
9236 }
9237 seq_printf(m, "\n");
9238 return 0;
9239}
9240
ef12fefa
BR
9241static const char *cpuacct_stat_desc[] = {
9242 [CPUACCT_STAT_USER] = "user",
9243 [CPUACCT_STAT_SYSTEM] = "system",
9244};
9245
9246static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9247 struct cgroup_map_cb *cb)
9248{
9249 struct cpuacct *ca = cgroup_ca(cgrp);
9250 int i;
9251
9252 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9253 s64 val = percpu_counter_read(&ca->cpustat[i]);
9254 val = cputime64_to_clock_t(val);
9255 cb->fill(cb, cpuacct_stat_desc[i], val);
9256 }
9257 return 0;
9258}
9259
d842de87
SV
9260static struct cftype files[] = {
9261 {
9262 .name = "usage",
f4c753b7
PM
9263 .read_u64 = cpuusage_read,
9264 .write_u64 = cpuusage_write,
d842de87 9265 },
e9515c3c
KC
9266 {
9267 .name = "usage_percpu",
9268 .read_seq_string = cpuacct_percpu_seq_read,
9269 },
ef12fefa
BR
9270 {
9271 .name = "stat",
9272 .read_map = cpuacct_stats_show,
9273 },
d842de87
SV
9274};
9275
32cd756a 9276static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9277{
32cd756a 9278 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9279}
9280
9281/*
9282 * charge this task's execution time to its accounting group.
9283 *
9284 * called with rq->lock held.
9285 */
9286static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9287{
9288 struct cpuacct *ca;
934352f2 9289 int cpu;
d842de87 9290
c40c6f85 9291 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9292 return;
9293
934352f2 9294 cpu = task_cpu(tsk);
a18b83b7
BR
9295
9296 rcu_read_lock();
9297
d842de87 9298 ca = task_ca(tsk);
d842de87 9299
934352f2 9300 for (; ca; ca = ca->parent) {
b36128c8 9301 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9302 *cpuusage += cputime;
9303 }
a18b83b7
BR
9304
9305 rcu_read_unlock();
d842de87
SV
9306}
9307
fa535a77
AB
9308/*
9309 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9310 * in cputime_t units. As a result, cpuacct_update_stats calls
9311 * percpu_counter_add with values large enough to always overflow the
9312 * per cpu batch limit causing bad SMP scalability.
9313 *
9314 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9315 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9316 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9317 */
9318#ifdef CONFIG_SMP
9319#define CPUACCT_BATCH \
9320 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9321#else
9322#define CPUACCT_BATCH 0
9323#endif
9324
ef12fefa
BR
9325/*
9326 * Charge the system/user time to the task's accounting group.
9327 */
9328static void cpuacct_update_stats(struct task_struct *tsk,
9329 enum cpuacct_stat_index idx, cputime_t val)
9330{
9331 struct cpuacct *ca;
fa535a77 9332 int batch = CPUACCT_BATCH;
ef12fefa
BR
9333
9334 if (unlikely(!cpuacct_subsys.active))
9335 return;
9336
9337 rcu_read_lock();
9338 ca = task_ca(tsk);
9339
9340 do {
fa535a77 9341 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9342 ca = ca->parent;
9343 } while (ca);
9344 rcu_read_unlock();
9345}
9346
d842de87
SV
9347struct cgroup_subsys cpuacct_subsys = {
9348 .name = "cpuacct",
9349 .create = cpuacct_create,
9350 .destroy = cpuacct_destroy,
9351 .populate = cpuacct_populate,
9352 .subsys_id = cpuacct_subsys_id,
9353};
9354#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9355