]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: Add a timer to handle CFS bandwidth refresh
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
6e0534f2 82#include "sched_cpupri.h"
21aa9af0 83#include "workqueue_sched.h"
5091faa4 84#include "sched_autogroup.h"
6e0534f2 85
a8d154b0 86#define CREATE_TRACE_POINTS
ad8d75ff 87#include <trace/events/sched.h>
a8d154b0 88
1da177e4
LT
89/*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98/*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107/*
d7876a08 108 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 109 */
d6322faf 110#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 111
6aa645ea
IM
112#define NICE_0_LOAD SCHED_LOAD_SCALE
113#define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
1da177e4
LT
115/*
116 * These are the 'tuning knobs' of the scheduler:
117 *
a4ec24b4 118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
119 * Timeslices get refilled after they expire.
120 */
1da177e4 121#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 122
d0b27fa7
PZ
123/*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126#define RUNTIME_INF ((u64)~0ULL)
127
e05606d3
IM
128static inline int rt_policy(int policy)
129{
63f01241 130 if (policy == SCHED_FIFO || policy == SCHED_RR)
e05606d3
IM
131 return 1;
132 return 0;
133}
134
135static inline int task_has_rt_policy(struct task_struct *p)
136{
137 return rt_policy(p->policy);
138}
139
1da177e4 140/*
6aa645ea 141 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 142 */
6aa645ea
IM
143struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146};
147
d0b27fa7 148struct rt_bandwidth {
ea736ed5 149 /* nests inside the rq lock: */
0986b11b 150 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
d0b27fa7
PZ
154};
155
156static struct rt_bandwidth def_rt_bandwidth;
157
158static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161{
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179}
180
181static
182void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183{
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
0986b11b 187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 188
d0b27fa7
PZ
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
192}
193
c8bfff6d
KH
194static inline int rt_bandwidth_enabled(void)
195{
196 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
197}
198
58088ad0 199static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 200{
58088ad0
PT
201 unsigned long delta;
202 ktime_t soft, hard, now;
d0b27fa7 203
58088ad0
PT
204 for (;;) {
205 if (hrtimer_active(period_timer))
206 break;
207
208 now = hrtimer_cb_get_time(period_timer);
209 hrtimer_forward(period_timer, now, period);
210
211 soft = hrtimer_get_softexpires(period_timer);
212 hard = hrtimer_get_expires(period_timer);
213 delta = ktime_to_ns(ktime_sub(hard, soft));
214 __hrtimer_start_range_ns(period_timer, soft, delta,
215 HRTIMER_MODE_ABS_PINNED, 0);
216 }
217}
218
219static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220{
cac64d00 221 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
222 return;
223
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 return;
226
0986b11b 227 raw_spin_lock(&rt_b->rt_runtime_lock);
58088ad0 228 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
0986b11b 229 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
230}
231
232#ifdef CONFIG_RT_GROUP_SCHED
233static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234{
235 hrtimer_cancel(&rt_b->rt_period_timer);
236}
237#endif
238
712555ee 239/*
c4a8849a 240 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
241 * detach_destroy_domains and partition_sched_domains.
242 */
243static DEFINE_MUTEX(sched_domains_mutex);
244
7c941438 245#ifdef CONFIG_CGROUP_SCHED
29f59db3 246
68318b8e
SV
247#include <linux/cgroup.h>
248
29f59db3
SV
249struct cfs_rq;
250
6f505b16
PZ
251static LIST_HEAD(task_groups);
252
ab84d31e
PT
253struct cfs_bandwidth {
254#ifdef CONFIG_CFS_BANDWIDTH
255 raw_spinlock_t lock;
256 ktime_t period;
ec12cb7f 257 u64 quota, runtime;
a790de99 258 s64 hierarchal_quota;
58088ad0
PT
259
260 int idle, timer_active;
261 struct hrtimer period_timer;
ab84d31e
PT
262#endif
263};
264
29f59db3 265/* task group related information */
4cf86d77 266struct task_group {
68318b8e 267 struct cgroup_subsys_state css;
6c415b92 268
052f1dc7 269#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
270 /* schedulable entities of this group on each cpu */
271 struct sched_entity **se;
272 /* runqueue "owned" by this group on each cpu */
273 struct cfs_rq **cfs_rq;
274 unsigned long shares;
2069dd75
PZ
275
276 atomic_t load_weight;
052f1dc7
PZ
277#endif
278
279#ifdef CONFIG_RT_GROUP_SCHED
280 struct sched_rt_entity **rt_se;
281 struct rt_rq **rt_rq;
282
d0b27fa7 283 struct rt_bandwidth rt_bandwidth;
052f1dc7 284#endif
6b2d7700 285
ae8393e5 286 struct rcu_head rcu;
6f505b16 287 struct list_head list;
f473aa5e
PZ
288
289 struct task_group *parent;
290 struct list_head siblings;
291 struct list_head children;
5091faa4
MG
292
293#ifdef CONFIG_SCHED_AUTOGROUP
294 struct autogroup *autogroup;
295#endif
ab84d31e
PT
296
297 struct cfs_bandwidth cfs_bandwidth;
29f59db3
SV
298};
299
3d4b47b4 300/* task_group_lock serializes the addition/removal of task groups */
8ed36996 301static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 302
e9036b36
CG
303#ifdef CONFIG_FAIR_GROUP_SCHED
304
07e06b01 305# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 306
cb4ad1ff 307/*
2e084786
LJ
308 * A weight of 0 or 1 can cause arithmetics problems.
309 * A weight of a cfs_rq is the sum of weights of which entities
310 * are queued on this cfs_rq, so a weight of a entity should not be
311 * too large, so as the shares value of a task group.
cb4ad1ff
MX
312 * (The default weight is 1024 - so there's no practical
313 * limitation from this.)
314 */
cd62287e
MG
315#define MIN_SHARES (1UL << 1)
316#define MAX_SHARES (1UL << 18)
18d95a28 317
07e06b01 318static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
319#endif
320
29f59db3 321/* Default task group.
3a252015 322 * Every task in system belong to this group at bootup.
29f59db3 323 */
07e06b01 324struct task_group root_task_group;
29f59db3 325
7c941438 326#endif /* CONFIG_CGROUP_SCHED */
29f59db3 327
6aa645ea
IM
328/* CFS-related fields in a runqueue */
329struct cfs_rq {
330 struct load_weight load;
953bfcd1 331 unsigned long nr_running, h_nr_running;
6aa645ea 332
6aa645ea 333 u64 exec_clock;
e9acbff6 334 u64 min_vruntime;
3fe1698b
PZ
335#ifndef CONFIG_64BIT
336 u64 min_vruntime_copy;
337#endif
6aa645ea
IM
338
339 struct rb_root tasks_timeline;
340 struct rb_node *rb_leftmost;
4a55bd5e
PZ
341
342 struct list_head tasks;
343 struct list_head *balance_iterator;
344
345 /*
346 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
347 * It is set to NULL otherwise (i.e when none are currently running).
348 */
ac53db59 349 struct sched_entity *curr, *next, *last, *skip;
ddc97297 350
4934a4d3 351#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 352 unsigned int nr_spread_over;
4934a4d3 353#endif
ddc97297 354
62160e3f 355#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
356 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
357
41a2d6cf
IM
358 /*
359 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
360 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
361 * (like users, containers etc.)
362 *
363 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
364 * list is used during load balance.
365 */
3d4b47b4 366 int on_list;
41a2d6cf
IM
367 struct list_head leaf_cfs_rq_list;
368 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
369
370#ifdef CONFIG_SMP
c09595f6 371 /*
c8cba857 372 * the part of load.weight contributed by tasks
c09595f6 373 */
c8cba857 374 unsigned long task_weight;
c09595f6 375
c8cba857
PZ
376 /*
377 * h_load = weight * f(tg)
378 *
379 * Where f(tg) is the recursive weight fraction assigned to
380 * this group.
381 */
382 unsigned long h_load;
c09595f6 383
c8cba857 384 /*
3b3d190e
PT
385 * Maintaining per-cpu shares distribution for group scheduling
386 *
387 * load_stamp is the last time we updated the load average
388 * load_last is the last time we updated the load average and saw load
389 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 390 */
2069dd75
PZ
391 u64 load_avg;
392 u64 load_period;
3b3d190e 393 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 394
2069dd75 395 unsigned long load_contribution;
c09595f6 396#endif
ab84d31e
PT
397#ifdef CONFIG_CFS_BANDWIDTH
398 int runtime_enabled;
399 s64 runtime_remaining;
400#endif
6aa645ea
IM
401#endif
402};
1da177e4 403
ab84d31e
PT
404#ifdef CONFIG_FAIR_GROUP_SCHED
405#ifdef CONFIG_CFS_BANDWIDTH
406static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
407{
408 return &tg->cfs_bandwidth;
409}
410
411static inline u64 default_cfs_period(void);
58088ad0
PT
412static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
413
414static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
415{
416 struct cfs_bandwidth *cfs_b =
417 container_of(timer, struct cfs_bandwidth, period_timer);
418 ktime_t now;
419 int overrun;
420 int idle = 0;
421
422 for (;;) {
423 now = hrtimer_cb_get_time(timer);
424 overrun = hrtimer_forward(timer, now, cfs_b->period);
425
426 if (!overrun)
427 break;
428
429 idle = do_sched_cfs_period_timer(cfs_b, overrun);
430 }
431
432 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
433}
ab84d31e
PT
434
435static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
436{
437 raw_spin_lock_init(&cfs_b->lock);
ec12cb7f 438 cfs_b->runtime = 0;
ab84d31e
PT
439 cfs_b->quota = RUNTIME_INF;
440 cfs_b->period = ns_to_ktime(default_cfs_period());
58088ad0
PT
441
442 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
443 cfs_b->period_timer.function = sched_cfs_period_timer;
ab84d31e
PT
444}
445
446static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
447{
448 cfs_rq->runtime_enabled = 0;
449}
450
58088ad0
PT
451/* requires cfs_b->lock, may release to reprogram timer */
452static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
453{
454 /*
455 * The timer may be active because we're trying to set a new bandwidth
456 * period or because we're racing with the tear-down path
457 * (timer_active==0 becomes visible before the hrtimer call-back
458 * terminates). In either case we ensure that it's re-programmed
459 */
460 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
461 raw_spin_unlock(&cfs_b->lock);
462 /* ensure cfs_b->lock is available while we wait */
463 hrtimer_cancel(&cfs_b->period_timer);
464
465 raw_spin_lock(&cfs_b->lock);
466 /* if someone else restarted the timer then we're done */
467 if (cfs_b->timer_active)
468 return;
469 }
470
471 cfs_b->timer_active = 1;
472 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
473}
474
ab84d31e 475static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
58088ad0
PT
476{
477 hrtimer_cancel(&cfs_b->period_timer);
478}
ab84d31e
PT
479#else
480static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
481static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
482static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
483
484static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
485{
486 return NULL;
487}
488#endif /* CONFIG_CFS_BANDWIDTH */
489#endif /* CONFIG_FAIR_GROUP_SCHED */
490
6aa645ea
IM
491/* Real-Time classes' related field in a runqueue: */
492struct rt_rq {
493 struct rt_prio_array active;
63489e45 494 unsigned long rt_nr_running;
052f1dc7 495#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
496 struct {
497 int curr; /* highest queued rt task prio */
398a153b 498#ifdef CONFIG_SMP
e864c499 499 int next; /* next highest */
398a153b 500#endif
e864c499 501 } highest_prio;
6f505b16 502#endif
fa85ae24 503#ifdef CONFIG_SMP
73fe6aae 504 unsigned long rt_nr_migratory;
a1ba4d8b 505 unsigned long rt_nr_total;
a22d7fc1 506 int overloaded;
917b627d 507 struct plist_head pushable_tasks;
fa85ae24 508#endif
6f505b16 509 int rt_throttled;
fa85ae24 510 u64 rt_time;
ac086bc2 511 u64 rt_runtime;
ea736ed5 512 /* Nests inside the rq lock: */
0986b11b 513 raw_spinlock_t rt_runtime_lock;
6f505b16 514
052f1dc7 515#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
516 unsigned long rt_nr_boosted;
517
6f505b16
PZ
518 struct rq *rq;
519 struct list_head leaf_rt_rq_list;
520 struct task_group *tg;
6f505b16 521#endif
6aa645ea
IM
522};
523
57d885fe
GH
524#ifdef CONFIG_SMP
525
526/*
527 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
528 * variables. Each exclusive cpuset essentially defines an island domain by
529 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
530 * exclusive cpuset is created, we also create and attach a new root-domain
531 * object.
532 *
57d885fe
GH
533 */
534struct root_domain {
535 atomic_t refcount;
26a148eb 536 atomic_t rto_count;
dce840a0 537 struct rcu_head rcu;
c6c4927b
RR
538 cpumask_var_t span;
539 cpumask_var_t online;
637f5085 540
0eab9146 541 /*
637f5085
GH
542 * The "RT overload" flag: it gets set if a CPU has more than
543 * one runnable RT task.
544 */
c6c4927b 545 cpumask_var_t rto_mask;
6e0534f2 546 struct cpupri cpupri;
57d885fe
GH
547};
548
dc938520
GH
549/*
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
552 */
57d885fe
GH
553static struct root_domain def_root_domain;
554
ed2d372c 555#endif /* CONFIG_SMP */
57d885fe 556
1da177e4
LT
557/*
558 * This is the main, per-CPU runqueue data structure.
559 *
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
563 */
70b97a7f 564struct rq {
d8016491 565 /* runqueue lock: */
05fa785c 566 raw_spinlock_t lock;
1da177e4
LT
567
568 /*
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
571 */
572 unsigned long nr_running;
6aa645ea
IM
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 575 unsigned long last_load_update_tick;
46cb4b7c 576#ifdef CONFIG_NO_HZ
39c0cbe2 577 u64 nohz_stamp;
83cd4fe2 578 unsigned char nohz_balance_kick;
46cb4b7c 579#endif
61eadef6 580 int skip_clock_update;
a64692a3 581
d8016491
IM
582 /* capture load from *all* tasks on this cpu: */
583 struct load_weight load;
6aa645ea
IM
584 unsigned long nr_load_updates;
585 u64 nr_switches;
586
587 struct cfs_rq cfs;
6f505b16 588 struct rt_rq rt;
6f505b16 589
6aa645ea 590#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
591 /* list of leaf cfs_rq on this cpu: */
592 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
593#endif
594#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 595 struct list_head leaf_rt_rq_list;
1da177e4 596#endif
1da177e4
LT
597
598 /*
599 * This is part of a global counter where only the total sum
600 * over all CPUs matters. A task can increase this counter on
601 * one CPU and if it got migrated afterwards it may decrease
602 * it on another CPU. Always updated under the runqueue lock:
603 */
604 unsigned long nr_uninterruptible;
605
34f971f6 606 struct task_struct *curr, *idle, *stop;
c9819f45 607 unsigned long next_balance;
1da177e4 608 struct mm_struct *prev_mm;
6aa645ea 609
3e51f33f 610 u64 clock;
305e6835 611 u64 clock_task;
6aa645ea 612
1da177e4
LT
613 atomic_t nr_iowait;
614
615#ifdef CONFIG_SMP
0eab9146 616 struct root_domain *rd;
1da177e4
LT
617 struct sched_domain *sd;
618
e51fd5e2
PZ
619 unsigned long cpu_power;
620
a0a522ce 621 unsigned char idle_at_tick;
1da177e4 622 /* For active balancing */
3f029d3c 623 int post_schedule;
1da177e4
LT
624 int active_balance;
625 int push_cpu;
969c7921 626 struct cpu_stop_work active_balance_work;
d8016491
IM
627 /* cpu of this runqueue: */
628 int cpu;
1f11eb6a 629 int online;
1da177e4 630
e9e9250b
PZ
631 u64 rt_avg;
632 u64 age_stamp;
1b9508f6
MG
633 u64 idle_stamp;
634 u64 avg_idle;
1da177e4
LT
635#endif
636
aa483808
VP
637#ifdef CONFIG_IRQ_TIME_ACCOUNTING
638 u64 prev_irq_time;
639#endif
e6e6685a
GC
640#ifdef CONFIG_PARAVIRT
641 u64 prev_steal_time;
642#endif
095c0aa8
GC
643#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
644 u64 prev_steal_time_rq;
645#endif
aa483808 646
dce48a84
TG
647 /* calc_load related fields */
648 unsigned long calc_load_update;
649 long calc_load_active;
650
8f4d37ec 651#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
652#ifdef CONFIG_SMP
653 int hrtick_csd_pending;
654 struct call_single_data hrtick_csd;
655#endif
8f4d37ec
PZ
656 struct hrtimer hrtick_timer;
657#endif
658
1da177e4
LT
659#ifdef CONFIG_SCHEDSTATS
660 /* latency stats */
661 struct sched_info rq_sched_info;
9c2c4802
KC
662 unsigned long long rq_cpu_time;
663 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
664
665 /* sys_sched_yield() stats */
480b9434 666 unsigned int yld_count;
1da177e4
LT
667
668 /* schedule() stats */
480b9434
KC
669 unsigned int sched_switch;
670 unsigned int sched_count;
671 unsigned int sched_goidle;
1da177e4
LT
672
673 /* try_to_wake_up() stats */
480b9434
KC
674 unsigned int ttwu_count;
675 unsigned int ttwu_local;
1da177e4 676#endif
317f3941
PZ
677
678#ifdef CONFIG_SMP
679 struct task_struct *wake_list;
680#endif
1da177e4
LT
681};
682
f34e3b61 683static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 684
a64692a3 685
1e5a7405 686static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 687
0a2966b4
CL
688static inline int cpu_of(struct rq *rq)
689{
690#ifdef CONFIG_SMP
691 return rq->cpu;
692#else
693 return 0;
694#endif
695}
696
497f0ab3 697#define rcu_dereference_check_sched_domain(p) \
d11c563d 698 rcu_dereference_check((p), \
d11c563d
PM
699 lockdep_is_held(&sched_domains_mutex))
700
674311d5
NP
701/*
702 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 703 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
704 *
705 * The domain tree of any CPU may only be accessed from within
706 * preempt-disabled sections.
707 */
48f24c4d 708#define for_each_domain(cpu, __sd) \
497f0ab3 709 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
710
711#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
712#define this_rq() (&__get_cpu_var(runqueues))
713#define task_rq(p) cpu_rq(task_cpu(p))
714#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 715#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 716
dc61b1d6
PZ
717#ifdef CONFIG_CGROUP_SCHED
718
719/*
720 * Return the group to which this tasks belongs.
721 *
6c6c54e1
PZ
722 * We use task_subsys_state_check() and extend the RCU verification with
723 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
724 * task it moves into the cgroup. Therefore by holding either of those locks,
725 * we pin the task to the current cgroup.
dc61b1d6
PZ
726 */
727static inline struct task_group *task_group(struct task_struct *p)
728{
5091faa4 729 struct task_group *tg;
dc61b1d6
PZ
730 struct cgroup_subsys_state *css;
731
732 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
6c6c54e1
PZ
733 lockdep_is_held(&p->pi_lock) ||
734 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
735 tg = container_of(css, struct task_group, css);
736
737 return autogroup_task_group(p, tg);
dc61b1d6
PZ
738}
739
740/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
741static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
742{
743#ifdef CONFIG_FAIR_GROUP_SCHED
744 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
745 p->se.parent = task_group(p)->se[cpu];
746#endif
747
748#ifdef CONFIG_RT_GROUP_SCHED
749 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
750 p->rt.parent = task_group(p)->rt_se[cpu];
751#endif
752}
753
754#else /* CONFIG_CGROUP_SCHED */
755
756static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
757static inline struct task_group *task_group(struct task_struct *p)
758{
759 return NULL;
760}
761
762#endif /* CONFIG_CGROUP_SCHED */
763
fe44d621 764static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 765
fe44d621 766static void update_rq_clock(struct rq *rq)
3e51f33f 767{
fe44d621 768 s64 delta;
305e6835 769
61eadef6 770 if (rq->skip_clock_update > 0)
f26f9aff 771 return;
aa483808 772
fe44d621
PZ
773 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
774 rq->clock += delta;
775 update_rq_clock_task(rq, delta);
3e51f33f
PZ
776}
777
bf5c91ba
IM
778/*
779 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
780 */
781#ifdef CONFIG_SCHED_DEBUG
782# define const_debug __read_mostly
783#else
784# define const_debug static const
785#endif
786
017730c1 787/**
1fd06bb1 788 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 789 * @cpu: the processor in question.
017730c1 790 *
017730c1
IM
791 * This interface allows printk to be called with the runqueue lock
792 * held and know whether or not it is OK to wake up the klogd.
793 */
89f19f04 794int runqueue_is_locked(int cpu)
017730c1 795{
05fa785c 796 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
797}
798
bf5c91ba
IM
799/*
800 * Debugging: various feature bits
801 */
f00b45c1
PZ
802
803#define SCHED_FEAT(name, enabled) \
804 __SCHED_FEAT_##name ,
805
bf5c91ba 806enum {
f00b45c1 807#include "sched_features.h"
bf5c91ba
IM
808};
809
f00b45c1
PZ
810#undef SCHED_FEAT
811
812#define SCHED_FEAT(name, enabled) \
813 (1UL << __SCHED_FEAT_##name) * enabled |
814
bf5c91ba 815const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
816#include "sched_features.h"
817 0;
818
819#undef SCHED_FEAT
820
821#ifdef CONFIG_SCHED_DEBUG
822#define SCHED_FEAT(name, enabled) \
823 #name ,
824
983ed7a6 825static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
826#include "sched_features.h"
827 NULL
828};
829
830#undef SCHED_FEAT
831
34f3a814 832static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 833{
f00b45c1
PZ
834 int i;
835
836 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
837 if (!(sysctl_sched_features & (1UL << i)))
838 seq_puts(m, "NO_");
839 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 840 }
34f3a814 841 seq_puts(m, "\n");
f00b45c1 842
34f3a814 843 return 0;
f00b45c1
PZ
844}
845
846static ssize_t
847sched_feat_write(struct file *filp, const char __user *ubuf,
848 size_t cnt, loff_t *ppos)
849{
850 char buf[64];
7740191c 851 char *cmp;
f00b45c1
PZ
852 int neg = 0;
853 int i;
854
855 if (cnt > 63)
856 cnt = 63;
857
858 if (copy_from_user(&buf, ubuf, cnt))
859 return -EFAULT;
860
861 buf[cnt] = 0;
7740191c 862 cmp = strstrip(buf);
f00b45c1 863
524429c3 864 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
865 neg = 1;
866 cmp += 3;
867 }
868
869 for (i = 0; sched_feat_names[i]; i++) {
7740191c 870 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
871 if (neg)
872 sysctl_sched_features &= ~(1UL << i);
873 else
874 sysctl_sched_features |= (1UL << i);
875 break;
876 }
877 }
878
879 if (!sched_feat_names[i])
880 return -EINVAL;
881
42994724 882 *ppos += cnt;
f00b45c1
PZ
883
884 return cnt;
885}
886
34f3a814
LZ
887static int sched_feat_open(struct inode *inode, struct file *filp)
888{
889 return single_open(filp, sched_feat_show, NULL);
890}
891
828c0950 892static const struct file_operations sched_feat_fops = {
34f3a814
LZ
893 .open = sched_feat_open,
894 .write = sched_feat_write,
895 .read = seq_read,
896 .llseek = seq_lseek,
897 .release = single_release,
f00b45c1
PZ
898};
899
900static __init int sched_init_debug(void)
901{
f00b45c1
PZ
902 debugfs_create_file("sched_features", 0644, NULL, NULL,
903 &sched_feat_fops);
904
905 return 0;
906}
907late_initcall(sched_init_debug);
908
909#endif
910
911#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 912
b82d9fdd
PZ
913/*
914 * Number of tasks to iterate in a single balance run.
915 * Limited because this is done with IRQs disabled.
916 */
917const_debug unsigned int sysctl_sched_nr_migrate = 32;
918
e9e9250b
PZ
919/*
920 * period over which we average the RT time consumption, measured
921 * in ms.
922 *
923 * default: 1s
924 */
925const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
926
fa85ae24 927/*
9f0c1e56 928 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
929 * default: 1s
930 */
9f0c1e56 931unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 932
6892b75e
IM
933static __read_mostly int scheduler_running;
934
9f0c1e56
PZ
935/*
936 * part of the period that we allow rt tasks to run in us.
937 * default: 0.95s
938 */
939int sysctl_sched_rt_runtime = 950000;
fa85ae24 940
d0b27fa7
PZ
941static inline u64 global_rt_period(void)
942{
943 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
944}
945
946static inline u64 global_rt_runtime(void)
947{
e26873bb 948 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
949 return RUNTIME_INF;
950
951 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
952}
fa85ae24 953
1da177e4 954#ifndef prepare_arch_switch
4866cde0
NP
955# define prepare_arch_switch(next) do { } while (0)
956#endif
957#ifndef finish_arch_switch
958# define finish_arch_switch(prev) do { } while (0)
959#endif
960
051a1d1a
DA
961static inline int task_current(struct rq *rq, struct task_struct *p)
962{
963 return rq->curr == p;
964}
965
70b97a7f 966static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 967{
3ca7a440
PZ
968#ifdef CONFIG_SMP
969 return p->on_cpu;
970#else
051a1d1a 971 return task_current(rq, p);
3ca7a440 972#endif
4866cde0
NP
973}
974
3ca7a440 975#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 976static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 977{
3ca7a440
PZ
978#ifdef CONFIG_SMP
979 /*
980 * We can optimise this out completely for !SMP, because the
981 * SMP rebalancing from interrupt is the only thing that cares
982 * here.
983 */
984 next->on_cpu = 1;
985#endif
4866cde0
NP
986}
987
70b97a7f 988static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 989{
3ca7a440
PZ
990#ifdef CONFIG_SMP
991 /*
992 * After ->on_cpu is cleared, the task can be moved to a different CPU.
993 * We must ensure this doesn't happen until the switch is completely
994 * finished.
995 */
996 smp_wmb();
997 prev->on_cpu = 0;
998#endif
da04c035
IM
999#ifdef CONFIG_DEBUG_SPINLOCK
1000 /* this is a valid case when another task releases the spinlock */
1001 rq->lock.owner = current;
1002#endif
8a25d5de
IM
1003 /*
1004 * If we are tracking spinlock dependencies then we have to
1005 * fix up the runqueue lock - which gets 'carried over' from
1006 * prev into current:
1007 */
1008 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1009
05fa785c 1010 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
1011}
1012
1013#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 1014static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1015{
1016#ifdef CONFIG_SMP
1017 /*
1018 * We can optimise this out completely for !SMP, because the
1019 * SMP rebalancing from interrupt is the only thing that cares
1020 * here.
1021 */
3ca7a440 1022 next->on_cpu = 1;
4866cde0
NP
1023#endif
1024#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 1025 raw_spin_unlock_irq(&rq->lock);
4866cde0 1026#else
05fa785c 1027 raw_spin_unlock(&rq->lock);
4866cde0
NP
1028#endif
1029}
1030
70b97a7f 1031static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
1032{
1033#ifdef CONFIG_SMP
1034 /*
3ca7a440 1035 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
1036 * We must ensure this doesn't happen until the switch is completely
1037 * finished.
1038 */
1039 smp_wmb();
3ca7a440 1040 prev->on_cpu = 0;
4866cde0
NP
1041#endif
1042#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1043 local_irq_enable();
1da177e4 1044#endif
4866cde0
NP
1045}
1046#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 1047
0970d299 1048/*
0122ec5b 1049 * __task_rq_lock - lock the rq @p resides on.
b29739f9 1050 */
70b97a7f 1051static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
1052 __acquires(rq->lock)
1053{
0970d299
PZ
1054 struct rq *rq;
1055
0122ec5b
PZ
1056 lockdep_assert_held(&p->pi_lock);
1057
3a5c359a 1058 for (;;) {
0970d299 1059 rq = task_rq(p);
05fa785c 1060 raw_spin_lock(&rq->lock);
65cc8e48 1061 if (likely(rq == task_rq(p)))
3a5c359a 1062 return rq;
05fa785c 1063 raw_spin_unlock(&rq->lock);
b29739f9 1064 }
b29739f9
IM
1065}
1066
1da177e4 1067/*
0122ec5b 1068 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 1069 */
70b97a7f 1070static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 1071 __acquires(p->pi_lock)
1da177e4
LT
1072 __acquires(rq->lock)
1073{
70b97a7f 1074 struct rq *rq;
1da177e4 1075
3a5c359a 1076 for (;;) {
0122ec5b 1077 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 1078 rq = task_rq(p);
05fa785c 1079 raw_spin_lock(&rq->lock);
65cc8e48 1080 if (likely(rq == task_rq(p)))
3a5c359a 1081 return rq;
0122ec5b
PZ
1082 raw_spin_unlock(&rq->lock);
1083 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 1084 }
1da177e4
LT
1085}
1086
a9957449 1087static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1088 __releases(rq->lock)
1089{
05fa785c 1090 raw_spin_unlock(&rq->lock);
b29739f9
IM
1091}
1092
0122ec5b
PZ
1093static inline void
1094task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 1095 __releases(rq->lock)
0122ec5b 1096 __releases(p->pi_lock)
1da177e4 1097{
0122ec5b
PZ
1098 raw_spin_unlock(&rq->lock);
1099 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
1100}
1101
1da177e4 1102/*
cc2a73b5 1103 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1104 */
a9957449 1105static struct rq *this_rq_lock(void)
1da177e4
LT
1106 __acquires(rq->lock)
1107{
70b97a7f 1108 struct rq *rq;
1da177e4
LT
1109
1110 local_irq_disable();
1111 rq = this_rq();
05fa785c 1112 raw_spin_lock(&rq->lock);
1da177e4
LT
1113
1114 return rq;
1115}
1116
8f4d37ec
PZ
1117#ifdef CONFIG_SCHED_HRTICK
1118/*
1119 * Use HR-timers to deliver accurate preemption points.
1120 *
1121 * Its all a bit involved since we cannot program an hrt while holding the
1122 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1123 * reschedule event.
1124 *
1125 * When we get rescheduled we reprogram the hrtick_timer outside of the
1126 * rq->lock.
1127 */
8f4d37ec
PZ
1128
1129/*
1130 * Use hrtick when:
1131 * - enabled by features
1132 * - hrtimer is actually high res
1133 */
1134static inline int hrtick_enabled(struct rq *rq)
1135{
1136 if (!sched_feat(HRTICK))
1137 return 0;
ba42059f 1138 if (!cpu_active(cpu_of(rq)))
b328ca18 1139 return 0;
8f4d37ec
PZ
1140 return hrtimer_is_hres_active(&rq->hrtick_timer);
1141}
1142
8f4d37ec
PZ
1143static void hrtick_clear(struct rq *rq)
1144{
1145 if (hrtimer_active(&rq->hrtick_timer))
1146 hrtimer_cancel(&rq->hrtick_timer);
1147}
1148
8f4d37ec
PZ
1149/*
1150 * High-resolution timer tick.
1151 * Runs from hardirq context with interrupts disabled.
1152 */
1153static enum hrtimer_restart hrtick(struct hrtimer *timer)
1154{
1155 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1156
1157 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1158
05fa785c 1159 raw_spin_lock(&rq->lock);
3e51f33f 1160 update_rq_clock(rq);
8f4d37ec 1161 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1162 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1163
1164 return HRTIMER_NORESTART;
1165}
1166
95e904c7 1167#ifdef CONFIG_SMP
31656519
PZ
1168/*
1169 * called from hardirq (IPI) context
1170 */
1171static void __hrtick_start(void *arg)
b328ca18 1172{
31656519 1173 struct rq *rq = arg;
b328ca18 1174
05fa785c 1175 raw_spin_lock(&rq->lock);
31656519
PZ
1176 hrtimer_restart(&rq->hrtick_timer);
1177 rq->hrtick_csd_pending = 0;
05fa785c 1178 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1179}
1180
31656519
PZ
1181/*
1182 * Called to set the hrtick timer state.
1183 *
1184 * called with rq->lock held and irqs disabled
1185 */
1186static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1187{
31656519
PZ
1188 struct hrtimer *timer = &rq->hrtick_timer;
1189 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1190
cc584b21 1191 hrtimer_set_expires(timer, time);
31656519
PZ
1192
1193 if (rq == this_rq()) {
1194 hrtimer_restart(timer);
1195 } else if (!rq->hrtick_csd_pending) {
6e275637 1196 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1197 rq->hrtick_csd_pending = 1;
1198 }
b328ca18
PZ
1199}
1200
1201static int
1202hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1203{
1204 int cpu = (int)(long)hcpu;
1205
1206 switch (action) {
1207 case CPU_UP_CANCELED:
1208 case CPU_UP_CANCELED_FROZEN:
1209 case CPU_DOWN_PREPARE:
1210 case CPU_DOWN_PREPARE_FROZEN:
1211 case CPU_DEAD:
1212 case CPU_DEAD_FROZEN:
31656519 1213 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1214 return NOTIFY_OK;
1215 }
1216
1217 return NOTIFY_DONE;
1218}
1219
fa748203 1220static __init void init_hrtick(void)
b328ca18
PZ
1221{
1222 hotcpu_notifier(hotplug_hrtick, 0);
1223}
31656519
PZ
1224#else
1225/*
1226 * Called to set the hrtick timer state.
1227 *
1228 * called with rq->lock held and irqs disabled
1229 */
1230static void hrtick_start(struct rq *rq, u64 delay)
1231{
7f1e2ca9 1232 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1233 HRTIMER_MODE_REL_PINNED, 0);
31656519 1234}
b328ca18 1235
006c75f1 1236static inline void init_hrtick(void)
8f4d37ec 1237{
8f4d37ec 1238}
31656519 1239#endif /* CONFIG_SMP */
8f4d37ec 1240
31656519 1241static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1242{
31656519
PZ
1243#ifdef CONFIG_SMP
1244 rq->hrtick_csd_pending = 0;
8f4d37ec 1245
31656519
PZ
1246 rq->hrtick_csd.flags = 0;
1247 rq->hrtick_csd.func = __hrtick_start;
1248 rq->hrtick_csd.info = rq;
1249#endif
8f4d37ec 1250
31656519
PZ
1251 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1252 rq->hrtick_timer.function = hrtick;
8f4d37ec 1253}
006c75f1 1254#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1255static inline void hrtick_clear(struct rq *rq)
1256{
1257}
1258
8f4d37ec
PZ
1259static inline void init_rq_hrtick(struct rq *rq)
1260{
1261}
1262
b328ca18
PZ
1263static inline void init_hrtick(void)
1264{
1265}
006c75f1 1266#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1267
c24d20db
IM
1268/*
1269 * resched_task - mark a task 'to be rescheduled now'.
1270 *
1271 * On UP this means the setting of the need_resched flag, on SMP it
1272 * might also involve a cross-CPU call to trigger the scheduler on
1273 * the target CPU.
1274 */
1275#ifdef CONFIG_SMP
1276
1277#ifndef tsk_is_polling
1278#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1279#endif
1280
31656519 1281static void resched_task(struct task_struct *p)
c24d20db
IM
1282{
1283 int cpu;
1284
05fa785c 1285 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1286
5ed0cec0 1287 if (test_tsk_need_resched(p))
c24d20db
IM
1288 return;
1289
5ed0cec0 1290 set_tsk_need_resched(p);
c24d20db
IM
1291
1292 cpu = task_cpu(p);
1293 if (cpu == smp_processor_id())
1294 return;
1295
1296 /* NEED_RESCHED must be visible before we test polling */
1297 smp_mb();
1298 if (!tsk_is_polling(p))
1299 smp_send_reschedule(cpu);
1300}
1301
1302static void resched_cpu(int cpu)
1303{
1304 struct rq *rq = cpu_rq(cpu);
1305 unsigned long flags;
1306
05fa785c 1307 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1308 return;
1309 resched_task(cpu_curr(cpu));
05fa785c 1310 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1311}
06d8308c
TG
1312
1313#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1314/*
1315 * In the semi idle case, use the nearest busy cpu for migrating timers
1316 * from an idle cpu. This is good for power-savings.
1317 *
1318 * We don't do similar optimization for completely idle system, as
1319 * selecting an idle cpu will add more delays to the timers than intended
1320 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1321 */
1322int get_nohz_timer_target(void)
1323{
1324 int cpu = smp_processor_id();
1325 int i;
1326 struct sched_domain *sd;
1327
057f3fad 1328 rcu_read_lock();
83cd4fe2 1329 for_each_domain(cpu, sd) {
057f3fad
PZ
1330 for_each_cpu(i, sched_domain_span(sd)) {
1331 if (!idle_cpu(i)) {
1332 cpu = i;
1333 goto unlock;
1334 }
1335 }
83cd4fe2 1336 }
057f3fad
PZ
1337unlock:
1338 rcu_read_unlock();
83cd4fe2
VP
1339 return cpu;
1340}
06d8308c
TG
1341/*
1342 * When add_timer_on() enqueues a timer into the timer wheel of an
1343 * idle CPU then this timer might expire before the next timer event
1344 * which is scheduled to wake up that CPU. In case of a completely
1345 * idle system the next event might even be infinite time into the
1346 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1347 * leaves the inner idle loop so the newly added timer is taken into
1348 * account when the CPU goes back to idle and evaluates the timer
1349 * wheel for the next timer event.
1350 */
1351void wake_up_idle_cpu(int cpu)
1352{
1353 struct rq *rq = cpu_rq(cpu);
1354
1355 if (cpu == smp_processor_id())
1356 return;
1357
1358 /*
1359 * This is safe, as this function is called with the timer
1360 * wheel base lock of (cpu) held. When the CPU is on the way
1361 * to idle and has not yet set rq->curr to idle then it will
1362 * be serialized on the timer wheel base lock and take the new
1363 * timer into account automatically.
1364 */
1365 if (rq->curr != rq->idle)
1366 return;
1367
1368 /*
1369 * We can set TIF_RESCHED on the idle task of the other CPU
1370 * lockless. The worst case is that the other CPU runs the
1371 * idle task through an additional NOOP schedule()
1372 */
5ed0cec0 1373 set_tsk_need_resched(rq->idle);
06d8308c
TG
1374
1375 /* NEED_RESCHED must be visible before we test polling */
1376 smp_mb();
1377 if (!tsk_is_polling(rq->idle))
1378 smp_send_reschedule(cpu);
1379}
39c0cbe2 1380
6d6bc0ad 1381#endif /* CONFIG_NO_HZ */
06d8308c 1382
e9e9250b
PZ
1383static u64 sched_avg_period(void)
1384{
1385 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1386}
1387
1388static void sched_avg_update(struct rq *rq)
1389{
1390 s64 period = sched_avg_period();
1391
1392 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1393 /*
1394 * Inline assembly required to prevent the compiler
1395 * optimising this loop into a divmod call.
1396 * See __iter_div_u64_rem() for another example of this.
1397 */
1398 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1399 rq->age_stamp += period;
1400 rq->rt_avg /= 2;
1401 }
1402}
1403
1404static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1405{
1406 rq->rt_avg += rt_delta;
1407 sched_avg_update(rq);
1408}
1409
6d6bc0ad 1410#else /* !CONFIG_SMP */
31656519 1411static void resched_task(struct task_struct *p)
c24d20db 1412{
05fa785c 1413 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1414 set_tsk_need_resched(p);
c24d20db 1415}
e9e9250b
PZ
1416
1417static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1418{
1419}
da2b71ed
SS
1420
1421static void sched_avg_update(struct rq *rq)
1422{
1423}
6d6bc0ad 1424#endif /* CONFIG_SMP */
c24d20db 1425
45bf76df
IM
1426#if BITS_PER_LONG == 32
1427# define WMULT_CONST (~0UL)
1428#else
1429# define WMULT_CONST (1UL << 32)
1430#endif
1431
1432#define WMULT_SHIFT 32
1433
194081eb
IM
1434/*
1435 * Shift right and round:
1436 */
cf2ab469 1437#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1438
a7be37ac
PZ
1439/*
1440 * delta *= weight / lw
1441 */
cb1c4fc9 1442static unsigned long
45bf76df
IM
1443calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1444 struct load_weight *lw)
1445{
1446 u64 tmp;
1447
c8b28116
NR
1448 /*
1449 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1450 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1451 * 2^SCHED_LOAD_RESOLUTION.
1452 */
1453 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1454 tmp = (u64)delta_exec * scale_load_down(weight);
1455 else
1456 tmp = (u64)delta_exec;
db670dac 1457
7a232e03 1458 if (!lw->inv_weight) {
c8b28116
NR
1459 unsigned long w = scale_load_down(lw->weight);
1460
1461 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1462 lw->inv_weight = 1;
c8b28116
NR
1463 else if (unlikely(!w))
1464 lw->inv_weight = WMULT_CONST;
7a232e03 1465 else
c8b28116 1466 lw->inv_weight = WMULT_CONST / w;
7a232e03 1467 }
45bf76df 1468
45bf76df
IM
1469 /*
1470 * Check whether we'd overflow the 64-bit multiplication:
1471 */
194081eb 1472 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1473 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1474 WMULT_SHIFT/2);
1475 else
cf2ab469 1476 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1477
ecf691da 1478 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1479}
1480
1091985b 1481static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1482{
1483 lw->weight += inc;
e89996ae 1484 lw->inv_weight = 0;
45bf76df
IM
1485}
1486
1091985b 1487static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1488{
1489 lw->weight -= dec;
e89996ae 1490 lw->inv_weight = 0;
45bf76df
IM
1491}
1492
2069dd75
PZ
1493static inline void update_load_set(struct load_weight *lw, unsigned long w)
1494{
1495 lw->weight = w;
1496 lw->inv_weight = 0;
1497}
1498
2dd73a4f
PW
1499/*
1500 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1501 * of tasks with abnormal "nice" values across CPUs the contribution that
1502 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1503 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1504 * scaled version of the new time slice allocation that they receive on time
1505 * slice expiry etc.
1506 */
1507
cce7ade8
PZ
1508#define WEIGHT_IDLEPRIO 3
1509#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1510
1511/*
1512 * Nice levels are multiplicative, with a gentle 10% change for every
1513 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1514 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1515 * that remained on nice 0.
1516 *
1517 * The "10% effect" is relative and cumulative: from _any_ nice level,
1518 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1519 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1520 * If a task goes up by ~10% and another task goes down by ~10% then
1521 * the relative distance between them is ~25%.)
dd41f596
IM
1522 */
1523static const int prio_to_weight[40] = {
254753dc
IM
1524 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1525 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1526 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1527 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1528 /* 0 */ 1024, 820, 655, 526, 423,
1529 /* 5 */ 335, 272, 215, 172, 137,
1530 /* 10 */ 110, 87, 70, 56, 45,
1531 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1532};
1533
5714d2de
IM
1534/*
1535 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1536 *
1537 * In cases where the weight does not change often, we can use the
1538 * precalculated inverse to speed up arithmetics by turning divisions
1539 * into multiplications:
1540 */
dd41f596 1541static const u32 prio_to_wmult[40] = {
254753dc
IM
1542 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1543 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1544 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1545 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1546 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1547 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1548 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1549 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1550};
2dd73a4f 1551
ef12fefa
BR
1552/* Time spent by the tasks of the cpu accounting group executing in ... */
1553enum cpuacct_stat_index {
1554 CPUACCT_STAT_USER, /* ... user mode */
1555 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1556
1557 CPUACCT_STAT_NSTATS,
1558};
1559
d842de87
SV
1560#ifdef CONFIG_CGROUP_CPUACCT
1561static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1562static void cpuacct_update_stats(struct task_struct *tsk,
1563 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1564#else
1565static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1566static inline void cpuacct_update_stats(struct task_struct *tsk,
1567 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1568#endif
1569
18d95a28
PZ
1570static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1571{
1572 update_load_add(&rq->load, load);
1573}
1574
1575static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1576{
1577 update_load_sub(&rq->load, load);
1578}
1579
a790de99
PT
1580#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1581 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
eb755805 1582typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1583
1584/*
1585 * Iterate the full tree, calling @down when first entering a node and @up when
1586 * leaving it for the final time.
1587 */
eb755805 1588static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1589{
1590 struct task_group *parent, *child;
eb755805 1591 int ret;
c09595f6
PZ
1592
1593 rcu_read_lock();
1594 parent = &root_task_group;
1595down:
eb755805
PZ
1596 ret = (*down)(parent, data);
1597 if (ret)
1598 goto out_unlock;
c09595f6
PZ
1599 list_for_each_entry_rcu(child, &parent->children, siblings) {
1600 parent = child;
1601 goto down;
1602
1603up:
1604 continue;
1605 }
eb755805
PZ
1606 ret = (*up)(parent, data);
1607 if (ret)
1608 goto out_unlock;
c09595f6
PZ
1609
1610 child = parent;
1611 parent = parent->parent;
1612 if (parent)
1613 goto up;
eb755805 1614out_unlock:
c09595f6 1615 rcu_read_unlock();
eb755805
PZ
1616
1617 return ret;
c09595f6
PZ
1618}
1619
eb755805
PZ
1620static int tg_nop(struct task_group *tg, void *data)
1621{
1622 return 0;
c09595f6 1623}
eb755805
PZ
1624#endif
1625
1626#ifdef CONFIG_SMP
f5f08f39
PZ
1627/* Used instead of source_load when we know the type == 0 */
1628static unsigned long weighted_cpuload(const int cpu)
1629{
1630 return cpu_rq(cpu)->load.weight;
1631}
1632
1633/*
1634 * Return a low guess at the load of a migration-source cpu weighted
1635 * according to the scheduling class and "nice" value.
1636 *
1637 * We want to under-estimate the load of migration sources, to
1638 * balance conservatively.
1639 */
1640static unsigned long source_load(int cpu, int type)
1641{
1642 struct rq *rq = cpu_rq(cpu);
1643 unsigned long total = weighted_cpuload(cpu);
1644
1645 if (type == 0 || !sched_feat(LB_BIAS))
1646 return total;
1647
1648 return min(rq->cpu_load[type-1], total);
1649}
1650
1651/*
1652 * Return a high guess at the load of a migration-target cpu weighted
1653 * according to the scheduling class and "nice" value.
1654 */
1655static unsigned long target_load(int cpu, int type)
1656{
1657 struct rq *rq = cpu_rq(cpu);
1658 unsigned long total = weighted_cpuload(cpu);
1659
1660 if (type == 0 || !sched_feat(LB_BIAS))
1661 return total;
1662
1663 return max(rq->cpu_load[type-1], total);
1664}
1665
ae154be1
PZ
1666static unsigned long power_of(int cpu)
1667{
e51fd5e2 1668 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1669}
1670
eb755805
PZ
1671static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1672
1673static unsigned long cpu_avg_load_per_task(int cpu)
1674{
1675 struct rq *rq = cpu_rq(cpu);
af6d596f 1676 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1677
4cd42620 1678 if (nr_running)
e2b245f8 1679 return rq->load.weight / nr_running;
eb755805 1680
e2b245f8 1681 return 0;
eb755805
PZ
1682}
1683
8f45e2b5
GH
1684#ifdef CONFIG_PREEMPT
1685
b78bb868
PZ
1686static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1687
70574a99 1688/*
8f45e2b5
GH
1689 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1690 * way at the expense of forcing extra atomic operations in all
1691 * invocations. This assures that the double_lock is acquired using the
1692 * same underlying policy as the spinlock_t on this architecture, which
1693 * reduces latency compared to the unfair variant below. However, it
1694 * also adds more overhead and therefore may reduce throughput.
70574a99 1695 */
8f45e2b5
GH
1696static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1697 __releases(this_rq->lock)
1698 __acquires(busiest->lock)
1699 __acquires(this_rq->lock)
1700{
05fa785c 1701 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1702 double_rq_lock(this_rq, busiest);
1703
1704 return 1;
1705}
1706
1707#else
1708/*
1709 * Unfair double_lock_balance: Optimizes throughput at the expense of
1710 * latency by eliminating extra atomic operations when the locks are
1711 * already in proper order on entry. This favors lower cpu-ids and will
1712 * grant the double lock to lower cpus over higher ids under contention,
1713 * regardless of entry order into the function.
1714 */
1715static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1716 __releases(this_rq->lock)
1717 __acquires(busiest->lock)
1718 __acquires(this_rq->lock)
1719{
1720 int ret = 0;
1721
05fa785c 1722 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1723 if (busiest < this_rq) {
05fa785c
TG
1724 raw_spin_unlock(&this_rq->lock);
1725 raw_spin_lock(&busiest->lock);
1726 raw_spin_lock_nested(&this_rq->lock,
1727 SINGLE_DEPTH_NESTING);
70574a99
AD
1728 ret = 1;
1729 } else
05fa785c
TG
1730 raw_spin_lock_nested(&busiest->lock,
1731 SINGLE_DEPTH_NESTING);
70574a99
AD
1732 }
1733 return ret;
1734}
1735
8f45e2b5
GH
1736#endif /* CONFIG_PREEMPT */
1737
1738/*
1739 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1740 */
1741static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1742{
1743 if (unlikely(!irqs_disabled())) {
1744 /* printk() doesn't work good under rq->lock */
05fa785c 1745 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1746 BUG_ON(1);
1747 }
1748
1749 return _double_lock_balance(this_rq, busiest);
1750}
1751
70574a99
AD
1752static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1753 __releases(busiest->lock)
1754{
05fa785c 1755 raw_spin_unlock(&busiest->lock);
70574a99
AD
1756 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1757}
1e3c88bd
PZ
1758
1759/*
1760 * double_rq_lock - safely lock two runqueues
1761 *
1762 * Note this does not disable interrupts like task_rq_lock,
1763 * you need to do so manually before calling.
1764 */
1765static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1766 __acquires(rq1->lock)
1767 __acquires(rq2->lock)
1768{
1769 BUG_ON(!irqs_disabled());
1770 if (rq1 == rq2) {
1771 raw_spin_lock(&rq1->lock);
1772 __acquire(rq2->lock); /* Fake it out ;) */
1773 } else {
1774 if (rq1 < rq2) {
1775 raw_spin_lock(&rq1->lock);
1776 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1777 } else {
1778 raw_spin_lock(&rq2->lock);
1779 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1780 }
1781 }
1e3c88bd
PZ
1782}
1783
1784/*
1785 * double_rq_unlock - safely unlock two runqueues
1786 *
1787 * Note this does not restore interrupts like task_rq_unlock,
1788 * you need to do so manually after calling.
1789 */
1790static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1791 __releases(rq1->lock)
1792 __releases(rq2->lock)
1793{
1794 raw_spin_unlock(&rq1->lock);
1795 if (rq1 != rq2)
1796 raw_spin_unlock(&rq2->lock);
1797 else
1798 __release(rq2->lock);
1799}
1800
d95f4122
MG
1801#else /* CONFIG_SMP */
1802
1803/*
1804 * double_rq_lock - safely lock two runqueues
1805 *
1806 * Note this does not disable interrupts like task_rq_lock,
1807 * you need to do so manually before calling.
1808 */
1809static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1810 __acquires(rq1->lock)
1811 __acquires(rq2->lock)
1812{
1813 BUG_ON(!irqs_disabled());
1814 BUG_ON(rq1 != rq2);
1815 raw_spin_lock(&rq1->lock);
1816 __acquire(rq2->lock); /* Fake it out ;) */
1817}
1818
1819/*
1820 * double_rq_unlock - safely unlock two runqueues
1821 *
1822 * Note this does not restore interrupts like task_rq_unlock,
1823 * you need to do so manually after calling.
1824 */
1825static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1826 __releases(rq1->lock)
1827 __releases(rq2->lock)
1828{
1829 BUG_ON(rq1 != rq2);
1830 raw_spin_unlock(&rq1->lock);
1831 __release(rq2->lock);
1832}
1833
18d95a28
PZ
1834#endif
1835
74f5187a 1836static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1837static void update_sysctl(void);
acb4a848 1838static int get_update_sysctl_factor(void);
fdf3e95d 1839static void update_cpu_load(struct rq *this_rq);
dce48a84 1840
cd29fe6f
PZ
1841static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1842{
1843 set_task_rq(p, cpu);
1844#ifdef CONFIG_SMP
1845 /*
1846 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1847 * successfuly executed on another CPU. We must ensure that updates of
1848 * per-task data have been completed by this moment.
1849 */
1850 smp_wmb();
1851 task_thread_info(p)->cpu = cpu;
1852#endif
1853}
dce48a84 1854
1e3c88bd 1855static const struct sched_class rt_sched_class;
dd41f596 1856
34f971f6 1857#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1858#define for_each_class(class) \
1859 for (class = sched_class_highest; class; class = class->next)
dd41f596 1860
1e3c88bd
PZ
1861#include "sched_stats.h"
1862
c09595f6 1863static void inc_nr_running(struct rq *rq)
9c217245
IM
1864{
1865 rq->nr_running++;
9c217245
IM
1866}
1867
c09595f6 1868static void dec_nr_running(struct rq *rq)
9c217245
IM
1869{
1870 rq->nr_running--;
9c217245
IM
1871}
1872
45bf76df
IM
1873static void set_load_weight(struct task_struct *p)
1874{
f05998d4
NR
1875 int prio = p->static_prio - MAX_RT_PRIO;
1876 struct load_weight *load = &p->se.load;
1877
dd41f596
IM
1878 /*
1879 * SCHED_IDLE tasks get minimal weight:
1880 */
1881 if (p->policy == SCHED_IDLE) {
c8b28116 1882 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1883 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1884 return;
1885 }
71f8bd46 1886
c8b28116 1887 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1888 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1889}
1890
371fd7e7 1891static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1892{
a64692a3 1893 update_rq_clock(rq);
dd41f596 1894 sched_info_queued(p);
371fd7e7 1895 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1896}
1897
371fd7e7 1898static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1899{
a64692a3 1900 update_rq_clock(rq);
46ac22ba 1901 sched_info_dequeued(p);
371fd7e7 1902 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1903}
1904
1e3c88bd
PZ
1905/*
1906 * activate_task - move a task to the runqueue.
1907 */
371fd7e7 1908static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1909{
1910 if (task_contributes_to_load(p))
1911 rq->nr_uninterruptible--;
1912
371fd7e7 1913 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1914}
1915
1916/*
1917 * deactivate_task - remove a task from the runqueue.
1918 */
371fd7e7 1919static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1920{
1921 if (task_contributes_to_load(p))
1922 rq->nr_uninterruptible++;
1923
371fd7e7 1924 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1925}
1926
b52bfee4
VP
1927#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1928
305e6835
VP
1929/*
1930 * There are no locks covering percpu hardirq/softirq time.
1931 * They are only modified in account_system_vtime, on corresponding CPU
1932 * with interrupts disabled. So, writes are safe.
1933 * They are read and saved off onto struct rq in update_rq_clock().
1934 * This may result in other CPU reading this CPU's irq time and can
1935 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1936 * or new value with a side effect of accounting a slice of irq time to wrong
1937 * task when irq is in progress while we read rq->clock. That is a worthy
1938 * compromise in place of having locks on each irq in account_system_time.
305e6835 1939 */
b52bfee4
VP
1940static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1941static DEFINE_PER_CPU(u64, cpu_softirq_time);
1942
1943static DEFINE_PER_CPU(u64, irq_start_time);
1944static int sched_clock_irqtime;
1945
1946void enable_sched_clock_irqtime(void)
1947{
1948 sched_clock_irqtime = 1;
1949}
1950
1951void disable_sched_clock_irqtime(void)
1952{
1953 sched_clock_irqtime = 0;
1954}
1955
8e92c201
PZ
1956#ifndef CONFIG_64BIT
1957static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1958
1959static inline void irq_time_write_begin(void)
1960{
1961 __this_cpu_inc(irq_time_seq.sequence);
1962 smp_wmb();
1963}
1964
1965static inline void irq_time_write_end(void)
1966{
1967 smp_wmb();
1968 __this_cpu_inc(irq_time_seq.sequence);
1969}
1970
1971static inline u64 irq_time_read(int cpu)
1972{
1973 u64 irq_time;
1974 unsigned seq;
1975
1976 do {
1977 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1978 irq_time = per_cpu(cpu_softirq_time, cpu) +
1979 per_cpu(cpu_hardirq_time, cpu);
1980 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1981
1982 return irq_time;
1983}
1984#else /* CONFIG_64BIT */
1985static inline void irq_time_write_begin(void)
1986{
1987}
1988
1989static inline void irq_time_write_end(void)
1990{
1991}
1992
1993static inline u64 irq_time_read(int cpu)
305e6835 1994{
305e6835
VP
1995 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1996}
8e92c201 1997#endif /* CONFIG_64BIT */
305e6835 1998
fe44d621
PZ
1999/*
2000 * Called before incrementing preempt_count on {soft,}irq_enter
2001 * and before decrementing preempt_count on {soft,}irq_exit.
2002 */
b52bfee4
VP
2003void account_system_vtime(struct task_struct *curr)
2004{
2005 unsigned long flags;
fe44d621 2006 s64 delta;
b52bfee4 2007 int cpu;
b52bfee4
VP
2008
2009 if (!sched_clock_irqtime)
2010 return;
2011
2012 local_irq_save(flags);
2013
b52bfee4 2014 cpu = smp_processor_id();
fe44d621
PZ
2015 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2016 __this_cpu_add(irq_start_time, delta);
2017
8e92c201 2018 irq_time_write_begin();
b52bfee4
VP
2019 /*
2020 * We do not account for softirq time from ksoftirqd here.
2021 * We want to continue accounting softirq time to ksoftirqd thread
2022 * in that case, so as not to confuse scheduler with a special task
2023 * that do not consume any time, but still wants to run.
2024 */
2025 if (hardirq_count())
fe44d621 2026 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 2027 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 2028 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 2029
8e92c201 2030 irq_time_write_end();
b52bfee4
VP
2031 local_irq_restore(flags);
2032}
b7dadc38 2033EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 2034
e6e6685a
GC
2035#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2036
2037#ifdef CONFIG_PARAVIRT
2038static inline u64 steal_ticks(u64 steal)
aa483808 2039{
e6e6685a
GC
2040 if (unlikely(steal > NSEC_PER_SEC))
2041 return div_u64(steal, TICK_NSEC);
fe44d621 2042
e6e6685a
GC
2043 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2044}
2045#endif
2046
fe44d621 2047static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 2048{
095c0aa8
GC
2049/*
2050 * In theory, the compile should just see 0 here, and optimize out the call
2051 * to sched_rt_avg_update. But I don't trust it...
2052 */
2053#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2054 s64 steal = 0, irq_delta = 0;
2055#endif
2056#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 2057 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
2058
2059 /*
2060 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2061 * this case when a previous update_rq_clock() happened inside a
2062 * {soft,}irq region.
2063 *
2064 * When this happens, we stop ->clock_task and only update the
2065 * prev_irq_time stamp to account for the part that fit, so that a next
2066 * update will consume the rest. This ensures ->clock_task is
2067 * monotonic.
2068 *
2069 * It does however cause some slight miss-attribution of {soft,}irq
2070 * time, a more accurate solution would be to update the irq_time using
2071 * the current rq->clock timestamp, except that would require using
2072 * atomic ops.
2073 */
2074 if (irq_delta > delta)
2075 irq_delta = delta;
2076
2077 rq->prev_irq_time += irq_delta;
2078 delta -= irq_delta;
095c0aa8
GC
2079#endif
2080#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2081 if (static_branch((&paravirt_steal_rq_enabled))) {
2082 u64 st;
2083
2084 steal = paravirt_steal_clock(cpu_of(rq));
2085 steal -= rq->prev_steal_time_rq;
2086
2087 if (unlikely(steal > delta))
2088 steal = delta;
2089
2090 st = steal_ticks(steal);
2091 steal = st * TICK_NSEC;
2092
2093 rq->prev_steal_time_rq += steal;
2094
2095 delta -= steal;
2096 }
2097#endif
2098
fe44d621
PZ
2099 rq->clock_task += delta;
2100
095c0aa8
GC
2101#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2102 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2103 sched_rt_avg_update(rq, irq_delta + steal);
2104#endif
aa483808
VP
2105}
2106
095c0aa8 2107#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
2108static int irqtime_account_hi_update(void)
2109{
2110 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2111 unsigned long flags;
2112 u64 latest_ns;
2113 int ret = 0;
2114
2115 local_irq_save(flags);
2116 latest_ns = this_cpu_read(cpu_hardirq_time);
2117 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2118 ret = 1;
2119 local_irq_restore(flags);
2120 return ret;
2121}
2122
2123static int irqtime_account_si_update(void)
2124{
2125 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2126 unsigned long flags;
2127 u64 latest_ns;
2128 int ret = 0;
2129
2130 local_irq_save(flags);
2131 latest_ns = this_cpu_read(cpu_softirq_time);
2132 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2133 ret = 1;
2134 local_irq_restore(flags);
2135 return ret;
2136}
2137
fe44d621 2138#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2139
abb74cef
VP
2140#define sched_clock_irqtime (0)
2141
095c0aa8 2142#endif
b52bfee4 2143
1e3c88bd
PZ
2144#include "sched_idletask.c"
2145#include "sched_fair.c"
2146#include "sched_rt.c"
5091faa4 2147#include "sched_autogroup.c"
34f971f6 2148#include "sched_stoptask.c"
1e3c88bd
PZ
2149#ifdef CONFIG_SCHED_DEBUG
2150# include "sched_debug.c"
2151#endif
2152
34f971f6
PZ
2153void sched_set_stop_task(int cpu, struct task_struct *stop)
2154{
2155 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2156 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2157
2158 if (stop) {
2159 /*
2160 * Make it appear like a SCHED_FIFO task, its something
2161 * userspace knows about and won't get confused about.
2162 *
2163 * Also, it will make PI more or less work without too
2164 * much confusion -- but then, stop work should not
2165 * rely on PI working anyway.
2166 */
2167 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2168
2169 stop->sched_class = &stop_sched_class;
2170 }
2171
2172 cpu_rq(cpu)->stop = stop;
2173
2174 if (old_stop) {
2175 /*
2176 * Reset it back to a normal scheduling class so that
2177 * it can die in pieces.
2178 */
2179 old_stop->sched_class = &rt_sched_class;
2180 }
2181}
2182
14531189 2183/*
dd41f596 2184 * __normal_prio - return the priority that is based on the static prio
14531189 2185 */
14531189
IM
2186static inline int __normal_prio(struct task_struct *p)
2187{
dd41f596 2188 return p->static_prio;
14531189
IM
2189}
2190
b29739f9
IM
2191/*
2192 * Calculate the expected normal priority: i.e. priority
2193 * without taking RT-inheritance into account. Might be
2194 * boosted by interactivity modifiers. Changes upon fork,
2195 * setprio syscalls, and whenever the interactivity
2196 * estimator recalculates.
2197 */
36c8b586 2198static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2199{
2200 int prio;
2201
e05606d3 2202 if (task_has_rt_policy(p))
b29739f9
IM
2203 prio = MAX_RT_PRIO-1 - p->rt_priority;
2204 else
2205 prio = __normal_prio(p);
2206 return prio;
2207}
2208
2209/*
2210 * Calculate the current priority, i.e. the priority
2211 * taken into account by the scheduler. This value might
2212 * be boosted by RT tasks, or might be boosted by
2213 * interactivity modifiers. Will be RT if the task got
2214 * RT-boosted. If not then it returns p->normal_prio.
2215 */
36c8b586 2216static int effective_prio(struct task_struct *p)
b29739f9
IM
2217{
2218 p->normal_prio = normal_prio(p);
2219 /*
2220 * If we are RT tasks or we were boosted to RT priority,
2221 * keep the priority unchanged. Otherwise, update priority
2222 * to the normal priority:
2223 */
2224 if (!rt_prio(p->prio))
2225 return p->normal_prio;
2226 return p->prio;
2227}
2228
1da177e4
LT
2229/**
2230 * task_curr - is this task currently executing on a CPU?
2231 * @p: the task in question.
2232 */
36c8b586 2233inline int task_curr(const struct task_struct *p)
1da177e4
LT
2234{
2235 return cpu_curr(task_cpu(p)) == p;
2236}
2237
cb469845
SR
2238static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2239 const struct sched_class *prev_class,
da7a735e 2240 int oldprio)
cb469845
SR
2241{
2242 if (prev_class != p->sched_class) {
2243 if (prev_class->switched_from)
da7a735e
PZ
2244 prev_class->switched_from(rq, p);
2245 p->sched_class->switched_to(rq, p);
2246 } else if (oldprio != p->prio)
2247 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2248}
2249
1e5a7405
PZ
2250static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2251{
2252 const struct sched_class *class;
2253
2254 if (p->sched_class == rq->curr->sched_class) {
2255 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2256 } else {
2257 for_each_class(class) {
2258 if (class == rq->curr->sched_class)
2259 break;
2260 if (class == p->sched_class) {
2261 resched_task(rq->curr);
2262 break;
2263 }
2264 }
2265 }
2266
2267 /*
2268 * A queue event has occurred, and we're going to schedule. In
2269 * this case, we can save a useless back to back clock update.
2270 */
fd2f4419 2271 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2272 rq->skip_clock_update = 1;
2273}
2274
1da177e4 2275#ifdef CONFIG_SMP
cc367732
IM
2276/*
2277 * Is this task likely cache-hot:
2278 */
e7693a36 2279static int
cc367732
IM
2280task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2281{
2282 s64 delta;
2283
e6c8fba7
PZ
2284 if (p->sched_class != &fair_sched_class)
2285 return 0;
2286
ef8002f6
NR
2287 if (unlikely(p->policy == SCHED_IDLE))
2288 return 0;
2289
f540a608
IM
2290 /*
2291 * Buddy candidates are cache hot:
2292 */
f685ceac 2293 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2294 (&p->se == cfs_rq_of(&p->se)->next ||
2295 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2296 return 1;
2297
6bc1665b
IM
2298 if (sysctl_sched_migration_cost == -1)
2299 return 1;
2300 if (sysctl_sched_migration_cost == 0)
2301 return 0;
2302
cc367732
IM
2303 delta = now - p->se.exec_start;
2304
2305 return delta < (s64)sysctl_sched_migration_cost;
2306}
2307
dd41f596 2308void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2309{
e2912009
PZ
2310#ifdef CONFIG_SCHED_DEBUG
2311 /*
2312 * We should never call set_task_cpu() on a blocked task,
2313 * ttwu() will sort out the placement.
2314 */
077614ee
PZ
2315 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2316 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2317
2318#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2319 /*
2320 * The caller should hold either p->pi_lock or rq->lock, when changing
2321 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2322 *
2323 * sched_move_task() holds both and thus holding either pins the cgroup,
2324 * see set_task_rq().
2325 *
2326 * Furthermore, all task_rq users should acquire both locks, see
2327 * task_rq_lock().
2328 */
0122ec5b
PZ
2329 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2330 lockdep_is_held(&task_rq(p)->lock)));
2331#endif
e2912009
PZ
2332#endif
2333
de1d7286 2334 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2335
0c69774e
PZ
2336 if (task_cpu(p) != new_cpu) {
2337 p->se.nr_migrations++;
a8b0ca17 2338 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 2339 }
dd41f596
IM
2340
2341 __set_task_cpu(p, new_cpu);
c65cc870
IM
2342}
2343
969c7921 2344struct migration_arg {
36c8b586 2345 struct task_struct *task;
1da177e4 2346 int dest_cpu;
70b97a7f 2347};
1da177e4 2348
969c7921
TH
2349static int migration_cpu_stop(void *data);
2350
1da177e4
LT
2351/*
2352 * wait_task_inactive - wait for a thread to unschedule.
2353 *
85ba2d86
RM
2354 * If @match_state is nonzero, it's the @p->state value just checked and
2355 * not expected to change. If it changes, i.e. @p might have woken up,
2356 * then return zero. When we succeed in waiting for @p to be off its CPU,
2357 * we return a positive number (its total switch count). If a second call
2358 * a short while later returns the same number, the caller can be sure that
2359 * @p has remained unscheduled the whole time.
2360 *
1da177e4
LT
2361 * The caller must ensure that the task *will* unschedule sometime soon,
2362 * else this function might spin for a *long* time. This function can't
2363 * be called with interrupts off, or it may introduce deadlock with
2364 * smp_call_function() if an IPI is sent by the same process we are
2365 * waiting to become inactive.
2366 */
85ba2d86 2367unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2368{
2369 unsigned long flags;
dd41f596 2370 int running, on_rq;
85ba2d86 2371 unsigned long ncsw;
70b97a7f 2372 struct rq *rq;
1da177e4 2373
3a5c359a
AK
2374 for (;;) {
2375 /*
2376 * We do the initial early heuristics without holding
2377 * any task-queue locks at all. We'll only try to get
2378 * the runqueue lock when things look like they will
2379 * work out!
2380 */
2381 rq = task_rq(p);
fa490cfd 2382
3a5c359a
AK
2383 /*
2384 * If the task is actively running on another CPU
2385 * still, just relax and busy-wait without holding
2386 * any locks.
2387 *
2388 * NOTE! Since we don't hold any locks, it's not
2389 * even sure that "rq" stays as the right runqueue!
2390 * But we don't care, since "task_running()" will
2391 * return false if the runqueue has changed and p
2392 * is actually now running somewhere else!
2393 */
85ba2d86
RM
2394 while (task_running(rq, p)) {
2395 if (match_state && unlikely(p->state != match_state))
2396 return 0;
3a5c359a 2397 cpu_relax();
85ba2d86 2398 }
fa490cfd 2399
3a5c359a
AK
2400 /*
2401 * Ok, time to look more closely! We need the rq
2402 * lock now, to be *sure*. If we're wrong, we'll
2403 * just go back and repeat.
2404 */
2405 rq = task_rq_lock(p, &flags);
27a9da65 2406 trace_sched_wait_task(p);
3a5c359a 2407 running = task_running(rq, p);
fd2f4419 2408 on_rq = p->on_rq;
85ba2d86 2409 ncsw = 0;
f31e11d8 2410 if (!match_state || p->state == match_state)
93dcf55f 2411 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2412 task_rq_unlock(rq, p, &flags);
fa490cfd 2413
85ba2d86
RM
2414 /*
2415 * If it changed from the expected state, bail out now.
2416 */
2417 if (unlikely(!ncsw))
2418 break;
2419
3a5c359a
AK
2420 /*
2421 * Was it really running after all now that we
2422 * checked with the proper locks actually held?
2423 *
2424 * Oops. Go back and try again..
2425 */
2426 if (unlikely(running)) {
2427 cpu_relax();
2428 continue;
2429 }
fa490cfd 2430
3a5c359a
AK
2431 /*
2432 * It's not enough that it's not actively running,
2433 * it must be off the runqueue _entirely_, and not
2434 * preempted!
2435 *
80dd99b3 2436 * So if it was still runnable (but just not actively
3a5c359a
AK
2437 * running right now), it's preempted, and we should
2438 * yield - it could be a while.
2439 */
2440 if (unlikely(on_rq)) {
8eb90c30
TG
2441 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2442
2443 set_current_state(TASK_UNINTERRUPTIBLE);
2444 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2445 continue;
2446 }
fa490cfd 2447
3a5c359a
AK
2448 /*
2449 * Ahh, all good. It wasn't running, and it wasn't
2450 * runnable, which means that it will never become
2451 * running in the future either. We're all done!
2452 */
2453 break;
2454 }
85ba2d86
RM
2455
2456 return ncsw;
1da177e4
LT
2457}
2458
2459/***
2460 * kick_process - kick a running thread to enter/exit the kernel
2461 * @p: the to-be-kicked thread
2462 *
2463 * Cause a process which is running on another CPU to enter
2464 * kernel-mode, without any delay. (to get signals handled.)
2465 *
25985edc 2466 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2467 * because all it wants to ensure is that the remote task enters
2468 * the kernel. If the IPI races and the task has been migrated
2469 * to another CPU then no harm is done and the purpose has been
2470 * achieved as well.
2471 */
36c8b586 2472void kick_process(struct task_struct *p)
1da177e4
LT
2473{
2474 int cpu;
2475
2476 preempt_disable();
2477 cpu = task_cpu(p);
2478 if ((cpu != smp_processor_id()) && task_curr(p))
2479 smp_send_reschedule(cpu);
2480 preempt_enable();
2481}
b43e3521 2482EXPORT_SYMBOL_GPL(kick_process);
476d139c 2483#endif /* CONFIG_SMP */
1da177e4 2484
970b13ba 2485#ifdef CONFIG_SMP
30da688e 2486/*
013fdb80 2487 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2488 */
5da9a0fb
PZ
2489static int select_fallback_rq(int cpu, struct task_struct *p)
2490{
2491 int dest_cpu;
2492 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2493
2494 /* Look for allowed, online CPU in same node. */
2495 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2496 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2497 return dest_cpu;
2498
2499 /* Any allowed, online CPU? */
2500 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2501 if (dest_cpu < nr_cpu_ids)
2502 return dest_cpu;
2503
2504 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2505 dest_cpu = cpuset_cpus_allowed_fallback(p);
2506 /*
2507 * Don't tell them about moving exiting tasks or
2508 * kernel threads (both mm NULL), since they never
2509 * leave kernel.
2510 */
2511 if (p->mm && printk_ratelimit()) {
2512 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2513 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2514 }
2515
2516 return dest_cpu;
2517}
2518
e2912009 2519/*
013fdb80 2520 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2521 */
970b13ba 2522static inline
7608dec2 2523int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2524{
7608dec2 2525 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2526
2527 /*
2528 * In order not to call set_task_cpu() on a blocking task we need
2529 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2530 * cpu.
2531 *
2532 * Since this is common to all placement strategies, this lives here.
2533 *
2534 * [ this allows ->select_task() to simply return task_cpu(p) and
2535 * not worry about this generic constraint ]
2536 */
2537 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2538 !cpu_online(cpu)))
5da9a0fb 2539 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2540
2541 return cpu;
970b13ba 2542}
09a40af5
MG
2543
2544static void update_avg(u64 *avg, u64 sample)
2545{
2546 s64 diff = sample - *avg;
2547 *avg += diff >> 3;
2548}
970b13ba
PZ
2549#endif
2550
d7c01d27 2551static void
b84cb5df 2552ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2553{
d7c01d27 2554#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2555 struct rq *rq = this_rq();
2556
d7c01d27
PZ
2557#ifdef CONFIG_SMP
2558 int this_cpu = smp_processor_id();
2559
2560 if (cpu == this_cpu) {
2561 schedstat_inc(rq, ttwu_local);
2562 schedstat_inc(p, se.statistics.nr_wakeups_local);
2563 } else {
2564 struct sched_domain *sd;
2565
2566 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2567 rcu_read_lock();
d7c01d27
PZ
2568 for_each_domain(this_cpu, sd) {
2569 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2570 schedstat_inc(sd, ttwu_wake_remote);
2571 break;
2572 }
2573 }
057f3fad 2574 rcu_read_unlock();
d7c01d27 2575 }
f339b9dc
PZ
2576
2577 if (wake_flags & WF_MIGRATED)
2578 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2579
d7c01d27
PZ
2580#endif /* CONFIG_SMP */
2581
2582 schedstat_inc(rq, ttwu_count);
9ed3811a 2583 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2584
2585 if (wake_flags & WF_SYNC)
9ed3811a 2586 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 2587
d7c01d27
PZ
2588#endif /* CONFIG_SCHEDSTATS */
2589}
2590
2591static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2592{
9ed3811a 2593 activate_task(rq, p, en_flags);
fd2f4419 2594 p->on_rq = 1;
c2f7115e
PZ
2595
2596 /* if a worker is waking up, notify workqueue */
2597 if (p->flags & PF_WQ_WORKER)
2598 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2599}
2600
23f41eeb
PZ
2601/*
2602 * Mark the task runnable and perform wakeup-preemption.
2603 */
89363381 2604static void
23f41eeb 2605ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2606{
89363381 2607 trace_sched_wakeup(p, true);
9ed3811a
TH
2608 check_preempt_curr(rq, p, wake_flags);
2609
2610 p->state = TASK_RUNNING;
2611#ifdef CONFIG_SMP
2612 if (p->sched_class->task_woken)
2613 p->sched_class->task_woken(rq, p);
2614
e69c6341 2615 if (rq->idle_stamp) {
9ed3811a
TH
2616 u64 delta = rq->clock - rq->idle_stamp;
2617 u64 max = 2*sysctl_sched_migration_cost;
2618
2619 if (delta > max)
2620 rq->avg_idle = max;
2621 else
2622 update_avg(&rq->avg_idle, delta);
2623 rq->idle_stamp = 0;
2624 }
2625#endif
2626}
2627
c05fbafb
PZ
2628static void
2629ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2630{
2631#ifdef CONFIG_SMP
2632 if (p->sched_contributes_to_load)
2633 rq->nr_uninterruptible--;
2634#endif
2635
2636 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2637 ttwu_do_wakeup(rq, p, wake_flags);
2638}
2639
2640/*
2641 * Called in case the task @p isn't fully descheduled from its runqueue,
2642 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2643 * since all we need to do is flip p->state to TASK_RUNNING, since
2644 * the task is still ->on_rq.
2645 */
2646static int ttwu_remote(struct task_struct *p, int wake_flags)
2647{
2648 struct rq *rq;
2649 int ret = 0;
2650
2651 rq = __task_rq_lock(p);
2652 if (p->on_rq) {
2653 ttwu_do_wakeup(rq, p, wake_flags);
2654 ret = 1;
2655 }
2656 __task_rq_unlock(rq);
2657
2658 return ret;
2659}
2660
317f3941 2661#ifdef CONFIG_SMP
c5d753a5 2662static void sched_ttwu_do_pending(struct task_struct *list)
317f3941
PZ
2663{
2664 struct rq *rq = this_rq();
317f3941
PZ
2665
2666 raw_spin_lock(&rq->lock);
2667
2668 while (list) {
2669 struct task_struct *p = list;
2670 list = list->wake_entry;
2671 ttwu_do_activate(rq, p, 0);
2672 }
2673
2674 raw_spin_unlock(&rq->lock);
2675}
2676
c5d753a5
PZ
2677#ifdef CONFIG_HOTPLUG_CPU
2678
2679static void sched_ttwu_pending(void)
2680{
2681 struct rq *rq = this_rq();
2682 struct task_struct *list = xchg(&rq->wake_list, NULL);
2683
2684 if (!list)
2685 return;
2686
2687 sched_ttwu_do_pending(list);
2688}
2689
2690#endif /* CONFIG_HOTPLUG_CPU */
2691
317f3941
PZ
2692void scheduler_ipi(void)
2693{
c5d753a5
PZ
2694 struct rq *rq = this_rq();
2695 struct task_struct *list = xchg(&rq->wake_list, NULL);
2696
2697 if (!list)
2698 return;
2699
2700 /*
2701 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2702 * traditionally all their work was done from the interrupt return
2703 * path. Now that we actually do some work, we need to make sure
2704 * we do call them.
2705 *
2706 * Some archs already do call them, luckily irq_enter/exit nest
2707 * properly.
2708 *
2709 * Arguably we should visit all archs and update all handlers,
2710 * however a fair share of IPIs are still resched only so this would
2711 * somewhat pessimize the simple resched case.
2712 */
2713 irq_enter();
2714 sched_ttwu_do_pending(list);
2715 irq_exit();
317f3941
PZ
2716}
2717
2718static void ttwu_queue_remote(struct task_struct *p, int cpu)
2719{
2720 struct rq *rq = cpu_rq(cpu);
2721 struct task_struct *next = rq->wake_list;
2722
2723 for (;;) {
2724 struct task_struct *old = next;
2725
2726 p->wake_entry = next;
2727 next = cmpxchg(&rq->wake_list, old, p);
2728 if (next == old)
2729 break;
2730 }
2731
2732 if (!next)
2733 smp_send_reschedule(cpu);
2734}
d6aa8f85
PZ
2735
2736#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2737static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2738{
2739 struct rq *rq;
2740 int ret = 0;
2741
2742 rq = __task_rq_lock(p);
2743 if (p->on_cpu) {
2744 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2745 ttwu_do_wakeup(rq, p, wake_flags);
2746 ret = 1;
2747 }
2748 __task_rq_unlock(rq);
2749
2750 return ret;
2751
2752}
2753#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2754#endif /* CONFIG_SMP */
317f3941 2755
c05fbafb
PZ
2756static void ttwu_queue(struct task_struct *p, int cpu)
2757{
2758 struct rq *rq = cpu_rq(cpu);
2759
17d9f311 2760#if defined(CONFIG_SMP)
317f3941 2761 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 2762 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
2763 ttwu_queue_remote(p, cpu);
2764 return;
2765 }
2766#endif
2767
c05fbafb
PZ
2768 raw_spin_lock(&rq->lock);
2769 ttwu_do_activate(rq, p, 0);
2770 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2771}
2772
2773/**
1da177e4 2774 * try_to_wake_up - wake up a thread
9ed3811a 2775 * @p: the thread to be awakened
1da177e4 2776 * @state: the mask of task states that can be woken
9ed3811a 2777 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2778 *
2779 * Put it on the run-queue if it's not already there. The "current"
2780 * thread is always on the run-queue (except when the actual
2781 * re-schedule is in progress), and as such you're allowed to do
2782 * the simpler "current->state = TASK_RUNNING" to mark yourself
2783 * runnable without the overhead of this.
2784 *
9ed3811a
TH
2785 * Returns %true if @p was woken up, %false if it was already running
2786 * or @state didn't match @p's state.
1da177e4 2787 */
e4a52bcb
PZ
2788static int
2789try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2790{
1da177e4 2791 unsigned long flags;
c05fbafb 2792 int cpu, success = 0;
2398f2c6 2793
04e2f174 2794 smp_wmb();
013fdb80 2795 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2796 if (!(p->state & state))
1da177e4
LT
2797 goto out;
2798
c05fbafb 2799 success = 1; /* we're going to change ->state */
1da177e4 2800 cpu = task_cpu(p);
1da177e4 2801
c05fbafb
PZ
2802 if (p->on_rq && ttwu_remote(p, wake_flags))
2803 goto stat;
1da177e4 2804
1da177e4 2805#ifdef CONFIG_SMP
e9c84311 2806 /*
c05fbafb
PZ
2807 * If the owning (remote) cpu is still in the middle of schedule() with
2808 * this task as prev, wait until its done referencing the task.
e9c84311 2809 */
e4a52bcb
PZ
2810 while (p->on_cpu) {
2811#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2812 /*
d6aa8f85
PZ
2813 * In case the architecture enables interrupts in
2814 * context_switch(), we cannot busy wait, since that
2815 * would lead to deadlocks when an interrupt hits and
2816 * tries to wake up @prev. So bail and do a complete
2817 * remote wakeup.
e4a52bcb 2818 */
d6aa8f85 2819 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2820 goto stat;
d6aa8f85 2821#else
e4a52bcb 2822 cpu_relax();
d6aa8f85 2823#endif
371fd7e7 2824 }
0970d299 2825 /*
e4a52bcb 2826 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2827 */
e4a52bcb 2828 smp_rmb();
1da177e4 2829
a8e4f2ea 2830 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2831 p->state = TASK_WAKING;
e7693a36 2832
e4a52bcb 2833 if (p->sched_class->task_waking)
74f8e4b2 2834 p->sched_class->task_waking(p);
efbbd05a 2835
7608dec2 2836 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2837 if (task_cpu(p) != cpu) {
2838 wake_flags |= WF_MIGRATED;
e4a52bcb 2839 set_task_cpu(p, cpu);
f339b9dc 2840 }
1da177e4 2841#endif /* CONFIG_SMP */
1da177e4 2842
c05fbafb
PZ
2843 ttwu_queue(p, cpu);
2844stat:
b84cb5df 2845 ttwu_stat(p, cpu, wake_flags);
1da177e4 2846out:
013fdb80 2847 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2848
2849 return success;
2850}
2851
21aa9af0
TH
2852/**
2853 * try_to_wake_up_local - try to wake up a local task with rq lock held
2854 * @p: the thread to be awakened
2855 *
2acca55e 2856 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2857 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2858 * the current task.
21aa9af0
TH
2859 */
2860static void try_to_wake_up_local(struct task_struct *p)
2861{
2862 struct rq *rq = task_rq(p);
21aa9af0
TH
2863
2864 BUG_ON(rq != this_rq());
2865 BUG_ON(p == current);
2866 lockdep_assert_held(&rq->lock);
2867
2acca55e
PZ
2868 if (!raw_spin_trylock(&p->pi_lock)) {
2869 raw_spin_unlock(&rq->lock);
2870 raw_spin_lock(&p->pi_lock);
2871 raw_spin_lock(&rq->lock);
2872 }
2873
21aa9af0 2874 if (!(p->state & TASK_NORMAL))
2acca55e 2875 goto out;
21aa9af0 2876
fd2f4419 2877 if (!p->on_rq)
d7c01d27
PZ
2878 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2879
23f41eeb 2880 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2881 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2882out:
2883 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2884}
2885
50fa610a
DH
2886/**
2887 * wake_up_process - Wake up a specific process
2888 * @p: The process to be woken up.
2889 *
2890 * Attempt to wake up the nominated process and move it to the set of runnable
2891 * processes. Returns 1 if the process was woken up, 0 if it was already
2892 * running.
2893 *
2894 * It may be assumed that this function implies a write memory barrier before
2895 * changing the task state if and only if any tasks are woken up.
2896 */
7ad5b3a5 2897int wake_up_process(struct task_struct *p)
1da177e4 2898{
d9514f6c 2899 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2900}
1da177e4
LT
2901EXPORT_SYMBOL(wake_up_process);
2902
7ad5b3a5 2903int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2904{
2905 return try_to_wake_up(p, state, 0);
2906}
2907
1da177e4
LT
2908/*
2909 * Perform scheduler related setup for a newly forked process p.
2910 * p is forked by current.
dd41f596
IM
2911 *
2912 * __sched_fork() is basic setup used by init_idle() too:
2913 */
2914static void __sched_fork(struct task_struct *p)
2915{
fd2f4419
PZ
2916 p->on_rq = 0;
2917
2918 p->se.on_rq = 0;
dd41f596
IM
2919 p->se.exec_start = 0;
2920 p->se.sum_exec_runtime = 0;
f6cf891c 2921 p->se.prev_sum_exec_runtime = 0;
6c594c21 2922 p->se.nr_migrations = 0;
da7a735e 2923 p->se.vruntime = 0;
fd2f4419 2924 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2925
2926#ifdef CONFIG_SCHEDSTATS
41acab88 2927 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2928#endif
476d139c 2929
fa717060 2930 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2931
e107be36
AK
2932#ifdef CONFIG_PREEMPT_NOTIFIERS
2933 INIT_HLIST_HEAD(&p->preempt_notifiers);
2934#endif
dd41f596
IM
2935}
2936
2937/*
2938 * fork()/clone()-time setup:
2939 */
3e51e3ed 2940void sched_fork(struct task_struct *p)
dd41f596 2941{
0122ec5b 2942 unsigned long flags;
dd41f596
IM
2943 int cpu = get_cpu();
2944
2945 __sched_fork(p);
06b83b5f 2946 /*
0017d735 2947 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2948 * nobody will actually run it, and a signal or other external
2949 * event cannot wake it up and insert it on the runqueue either.
2950 */
0017d735 2951 p->state = TASK_RUNNING;
dd41f596 2952
c350a04e
MG
2953 /*
2954 * Make sure we do not leak PI boosting priority to the child.
2955 */
2956 p->prio = current->normal_prio;
2957
b9dc29e7
MG
2958 /*
2959 * Revert to default priority/policy on fork if requested.
2960 */
2961 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 2962 if (task_has_rt_policy(p)) {
b9dc29e7 2963 p->policy = SCHED_NORMAL;
6c697bdf 2964 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2965 p->rt_priority = 0;
2966 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2967 p->static_prio = NICE_TO_PRIO(0);
2968
2969 p->prio = p->normal_prio = __normal_prio(p);
2970 set_load_weight(p);
6c697bdf 2971
b9dc29e7
MG
2972 /*
2973 * We don't need the reset flag anymore after the fork. It has
2974 * fulfilled its duty:
2975 */
2976 p->sched_reset_on_fork = 0;
2977 }
ca94c442 2978
2ddbf952
HS
2979 if (!rt_prio(p->prio))
2980 p->sched_class = &fair_sched_class;
b29739f9 2981
cd29fe6f
PZ
2982 if (p->sched_class->task_fork)
2983 p->sched_class->task_fork(p);
2984
86951599
PZ
2985 /*
2986 * The child is not yet in the pid-hash so no cgroup attach races,
2987 * and the cgroup is pinned to this child due to cgroup_fork()
2988 * is ran before sched_fork().
2989 *
2990 * Silence PROVE_RCU.
2991 */
0122ec5b 2992 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2993 set_task_cpu(p, cpu);
0122ec5b 2994 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2995
52f17b6c 2996#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2997 if (likely(sched_info_on()))
52f17b6c 2998 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2999#endif
3ca7a440
PZ
3000#if defined(CONFIG_SMP)
3001 p->on_cpu = 0;
4866cde0 3002#endif
bdd4e85d 3003#ifdef CONFIG_PREEMPT_COUNT
4866cde0 3004 /* Want to start with kernel preemption disabled. */
a1261f54 3005 task_thread_info(p)->preempt_count = 1;
1da177e4 3006#endif
806c09a7 3007#ifdef CONFIG_SMP
917b627d 3008 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 3009#endif
917b627d 3010
476d139c 3011 put_cpu();
1da177e4
LT
3012}
3013
3014/*
3015 * wake_up_new_task - wake up a newly created task for the first time.
3016 *
3017 * This function will do some initial scheduler statistics housekeeping
3018 * that must be done for every newly created context, then puts the task
3019 * on the runqueue and wakes it.
3020 */
3e51e3ed 3021void wake_up_new_task(struct task_struct *p)
1da177e4
LT
3022{
3023 unsigned long flags;
dd41f596 3024 struct rq *rq;
fabf318e 3025
ab2515c4 3026 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
3027#ifdef CONFIG_SMP
3028 /*
3029 * Fork balancing, do it here and not earlier because:
3030 * - cpus_allowed can change in the fork path
3031 * - any previously selected cpu might disappear through hotplug
fabf318e 3032 */
ab2515c4 3033 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
3034#endif
3035
ab2515c4 3036 rq = __task_rq_lock(p);
cd29fe6f 3037 activate_task(rq, p, 0);
fd2f4419 3038 p->on_rq = 1;
89363381 3039 trace_sched_wakeup_new(p, true);
a7558e01 3040 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3041#ifdef CONFIG_SMP
efbbd05a
PZ
3042 if (p->sched_class->task_woken)
3043 p->sched_class->task_woken(rq, p);
9a897c5a 3044#endif
0122ec5b 3045 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3046}
3047
e107be36
AK
3048#ifdef CONFIG_PREEMPT_NOTIFIERS
3049
3050/**
80dd99b3 3051 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3052 * @notifier: notifier struct to register
e107be36
AK
3053 */
3054void preempt_notifier_register(struct preempt_notifier *notifier)
3055{
3056 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3057}
3058EXPORT_SYMBOL_GPL(preempt_notifier_register);
3059
3060/**
3061 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3062 * @notifier: notifier struct to unregister
e107be36
AK
3063 *
3064 * This is safe to call from within a preemption notifier.
3065 */
3066void preempt_notifier_unregister(struct preempt_notifier *notifier)
3067{
3068 hlist_del(&notifier->link);
3069}
3070EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3071
3072static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3073{
3074 struct preempt_notifier *notifier;
3075 struct hlist_node *node;
3076
3077 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3078 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3079}
3080
3081static void
3082fire_sched_out_preempt_notifiers(struct task_struct *curr,
3083 struct task_struct *next)
3084{
3085 struct preempt_notifier *notifier;
3086 struct hlist_node *node;
3087
3088 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3089 notifier->ops->sched_out(notifier, next);
3090}
3091
6d6bc0ad 3092#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
3093
3094static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3095{
3096}
3097
3098static void
3099fire_sched_out_preempt_notifiers(struct task_struct *curr,
3100 struct task_struct *next)
3101{
3102}
3103
6d6bc0ad 3104#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3105
4866cde0
NP
3106/**
3107 * prepare_task_switch - prepare to switch tasks
3108 * @rq: the runqueue preparing to switch
421cee29 3109 * @prev: the current task that is being switched out
4866cde0
NP
3110 * @next: the task we are going to switch to.
3111 *
3112 * This is called with the rq lock held and interrupts off. It must
3113 * be paired with a subsequent finish_task_switch after the context
3114 * switch.
3115 *
3116 * prepare_task_switch sets up locking and calls architecture specific
3117 * hooks.
3118 */
e107be36
AK
3119static inline void
3120prepare_task_switch(struct rq *rq, struct task_struct *prev,
3121 struct task_struct *next)
4866cde0 3122{
fe4b04fa
PZ
3123 sched_info_switch(prev, next);
3124 perf_event_task_sched_out(prev, next);
e107be36 3125 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
3126 prepare_lock_switch(rq, next);
3127 prepare_arch_switch(next);
fe4b04fa 3128 trace_sched_switch(prev, next);
4866cde0
NP
3129}
3130
1da177e4
LT
3131/**
3132 * finish_task_switch - clean up after a task-switch
344babaa 3133 * @rq: runqueue associated with task-switch
1da177e4
LT
3134 * @prev: the thread we just switched away from.
3135 *
4866cde0
NP
3136 * finish_task_switch must be called after the context switch, paired
3137 * with a prepare_task_switch call before the context switch.
3138 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3139 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3140 *
3141 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3142 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3143 * with the lock held can cause deadlocks; see schedule() for
3144 * details.)
3145 */
a9957449 3146static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
3147 __releases(rq->lock)
3148{
1da177e4 3149 struct mm_struct *mm = rq->prev_mm;
55a101f8 3150 long prev_state;
1da177e4
LT
3151
3152 rq->prev_mm = NULL;
3153
3154 /*
3155 * A task struct has one reference for the use as "current".
c394cc9f 3156 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3157 * schedule one last time. The schedule call will never return, and
3158 * the scheduled task must drop that reference.
c394cc9f 3159 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
3160 * still held, otherwise prev could be scheduled on another cpu, die
3161 * there before we look at prev->state, and then the reference would
3162 * be dropped twice.
3163 * Manfred Spraul <manfred@colorfullife.com>
3164 */
55a101f8 3165 prev_state = prev->state;
4866cde0 3166 finish_arch_switch(prev);
8381f65d
JI
3167#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3168 local_irq_disable();
3169#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 3170 perf_event_task_sched_in(current);
8381f65d
JI
3171#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3172 local_irq_enable();
3173#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3174 finish_lock_switch(rq, prev);
e8fa1362 3175
e107be36 3176 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3177 if (mm)
3178 mmdrop(mm);
c394cc9f 3179 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3180 /*
3181 * Remove function-return probe instances associated with this
3182 * task and put them back on the free list.
9761eea8 3183 */
c6fd91f0 3184 kprobe_flush_task(prev);
1da177e4 3185 put_task_struct(prev);
c6fd91f0 3186 }
1da177e4
LT
3187}
3188
3f029d3c
GH
3189#ifdef CONFIG_SMP
3190
3191/* assumes rq->lock is held */
3192static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3193{
3194 if (prev->sched_class->pre_schedule)
3195 prev->sched_class->pre_schedule(rq, prev);
3196}
3197
3198/* rq->lock is NOT held, but preemption is disabled */
3199static inline void post_schedule(struct rq *rq)
3200{
3201 if (rq->post_schedule) {
3202 unsigned long flags;
3203
05fa785c 3204 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3205 if (rq->curr->sched_class->post_schedule)
3206 rq->curr->sched_class->post_schedule(rq);
05fa785c 3207 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3208
3209 rq->post_schedule = 0;
3210 }
3211}
3212
3213#else
da19ab51 3214
3f029d3c
GH
3215static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3216{
3217}
3218
3219static inline void post_schedule(struct rq *rq)
3220{
1da177e4
LT
3221}
3222
3f029d3c
GH
3223#endif
3224
1da177e4
LT
3225/**
3226 * schedule_tail - first thing a freshly forked thread must call.
3227 * @prev: the thread we just switched away from.
3228 */
36c8b586 3229asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3230 __releases(rq->lock)
3231{
70b97a7f
IM
3232 struct rq *rq = this_rq();
3233
4866cde0 3234 finish_task_switch(rq, prev);
da19ab51 3235
3f029d3c
GH
3236 /*
3237 * FIXME: do we need to worry about rq being invalidated by the
3238 * task_switch?
3239 */
3240 post_schedule(rq);
70b97a7f 3241
4866cde0
NP
3242#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3243 /* In this case, finish_task_switch does not reenable preemption */
3244 preempt_enable();
3245#endif
1da177e4 3246 if (current->set_child_tid)
b488893a 3247 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3248}
3249
3250/*
3251 * context_switch - switch to the new MM and the new
3252 * thread's register state.
3253 */
dd41f596 3254static inline void
70b97a7f 3255context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3256 struct task_struct *next)
1da177e4 3257{
dd41f596 3258 struct mm_struct *mm, *oldmm;
1da177e4 3259
e107be36 3260 prepare_task_switch(rq, prev, next);
fe4b04fa 3261
dd41f596
IM
3262 mm = next->mm;
3263 oldmm = prev->active_mm;
9226d125
ZA
3264 /*
3265 * For paravirt, this is coupled with an exit in switch_to to
3266 * combine the page table reload and the switch backend into
3267 * one hypercall.
3268 */
224101ed 3269 arch_start_context_switch(prev);
9226d125 3270
31915ab4 3271 if (!mm) {
1da177e4
LT
3272 next->active_mm = oldmm;
3273 atomic_inc(&oldmm->mm_count);
3274 enter_lazy_tlb(oldmm, next);
3275 } else
3276 switch_mm(oldmm, mm, next);
3277
31915ab4 3278 if (!prev->mm) {
1da177e4 3279 prev->active_mm = NULL;
1da177e4
LT
3280 rq->prev_mm = oldmm;
3281 }
3a5f5e48
IM
3282 /*
3283 * Since the runqueue lock will be released by the next
3284 * task (which is an invalid locking op but in the case
3285 * of the scheduler it's an obvious special-case), so we
3286 * do an early lockdep release here:
3287 */
3288#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3289 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3290#endif
1da177e4
LT
3291
3292 /* Here we just switch the register state and the stack. */
3293 switch_to(prev, next, prev);
3294
dd41f596
IM
3295 barrier();
3296 /*
3297 * this_rq must be evaluated again because prev may have moved
3298 * CPUs since it called schedule(), thus the 'rq' on its stack
3299 * frame will be invalid.
3300 */
3301 finish_task_switch(this_rq(), prev);
1da177e4
LT
3302}
3303
3304/*
3305 * nr_running, nr_uninterruptible and nr_context_switches:
3306 *
3307 * externally visible scheduler statistics: current number of runnable
3308 * threads, current number of uninterruptible-sleeping threads, total
3309 * number of context switches performed since bootup.
3310 */
3311unsigned long nr_running(void)
3312{
3313 unsigned long i, sum = 0;
3314
3315 for_each_online_cpu(i)
3316 sum += cpu_rq(i)->nr_running;
3317
3318 return sum;
f711f609 3319}
1da177e4
LT
3320
3321unsigned long nr_uninterruptible(void)
f711f609 3322{
1da177e4 3323 unsigned long i, sum = 0;
f711f609 3324
0a945022 3325 for_each_possible_cpu(i)
1da177e4 3326 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3327
3328 /*
1da177e4
LT
3329 * Since we read the counters lockless, it might be slightly
3330 * inaccurate. Do not allow it to go below zero though:
f711f609 3331 */
1da177e4
LT
3332 if (unlikely((long)sum < 0))
3333 sum = 0;
f711f609 3334
1da177e4 3335 return sum;
f711f609 3336}
f711f609 3337
1da177e4 3338unsigned long long nr_context_switches(void)
46cb4b7c 3339{
cc94abfc
SR
3340 int i;
3341 unsigned long long sum = 0;
46cb4b7c 3342
0a945022 3343 for_each_possible_cpu(i)
1da177e4 3344 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3345
1da177e4
LT
3346 return sum;
3347}
483b4ee6 3348
1da177e4
LT
3349unsigned long nr_iowait(void)
3350{
3351 unsigned long i, sum = 0;
483b4ee6 3352
0a945022 3353 for_each_possible_cpu(i)
1da177e4 3354 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3355
1da177e4
LT
3356 return sum;
3357}
483b4ee6 3358
8c215bd3 3359unsigned long nr_iowait_cpu(int cpu)
69d25870 3360{
8c215bd3 3361 struct rq *this = cpu_rq(cpu);
69d25870
AV
3362 return atomic_read(&this->nr_iowait);
3363}
46cb4b7c 3364
69d25870
AV
3365unsigned long this_cpu_load(void)
3366{
3367 struct rq *this = this_rq();
3368 return this->cpu_load[0];
3369}
e790fb0b 3370
46cb4b7c 3371
dce48a84
TG
3372/* Variables and functions for calc_load */
3373static atomic_long_t calc_load_tasks;
3374static unsigned long calc_load_update;
3375unsigned long avenrun[3];
3376EXPORT_SYMBOL(avenrun);
46cb4b7c 3377
74f5187a
PZ
3378static long calc_load_fold_active(struct rq *this_rq)
3379{
3380 long nr_active, delta = 0;
3381
3382 nr_active = this_rq->nr_running;
3383 nr_active += (long) this_rq->nr_uninterruptible;
3384
3385 if (nr_active != this_rq->calc_load_active) {
3386 delta = nr_active - this_rq->calc_load_active;
3387 this_rq->calc_load_active = nr_active;
3388 }
3389
3390 return delta;
3391}
3392
0f004f5a
PZ
3393static unsigned long
3394calc_load(unsigned long load, unsigned long exp, unsigned long active)
3395{
3396 load *= exp;
3397 load += active * (FIXED_1 - exp);
3398 load += 1UL << (FSHIFT - 1);
3399 return load >> FSHIFT;
3400}
3401
74f5187a
PZ
3402#ifdef CONFIG_NO_HZ
3403/*
3404 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3405 *
3406 * When making the ILB scale, we should try to pull this in as well.
3407 */
3408static atomic_long_t calc_load_tasks_idle;
3409
3410static void calc_load_account_idle(struct rq *this_rq)
3411{
3412 long delta;
3413
3414 delta = calc_load_fold_active(this_rq);
3415 if (delta)
3416 atomic_long_add(delta, &calc_load_tasks_idle);
3417}
3418
3419static long calc_load_fold_idle(void)
3420{
3421 long delta = 0;
3422
3423 /*
3424 * Its got a race, we don't care...
3425 */
3426 if (atomic_long_read(&calc_load_tasks_idle))
3427 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3428
3429 return delta;
3430}
0f004f5a
PZ
3431
3432/**
3433 * fixed_power_int - compute: x^n, in O(log n) time
3434 *
3435 * @x: base of the power
3436 * @frac_bits: fractional bits of @x
3437 * @n: power to raise @x to.
3438 *
3439 * By exploiting the relation between the definition of the natural power
3440 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3441 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3442 * (where: n_i \elem {0, 1}, the binary vector representing n),
3443 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3444 * of course trivially computable in O(log_2 n), the length of our binary
3445 * vector.
3446 */
3447static unsigned long
3448fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3449{
3450 unsigned long result = 1UL << frac_bits;
3451
3452 if (n) for (;;) {
3453 if (n & 1) {
3454 result *= x;
3455 result += 1UL << (frac_bits - 1);
3456 result >>= frac_bits;
3457 }
3458 n >>= 1;
3459 if (!n)
3460 break;
3461 x *= x;
3462 x += 1UL << (frac_bits - 1);
3463 x >>= frac_bits;
3464 }
3465
3466 return result;
3467}
3468
3469/*
3470 * a1 = a0 * e + a * (1 - e)
3471 *
3472 * a2 = a1 * e + a * (1 - e)
3473 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3474 * = a0 * e^2 + a * (1 - e) * (1 + e)
3475 *
3476 * a3 = a2 * e + a * (1 - e)
3477 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3478 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3479 *
3480 * ...
3481 *
3482 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3483 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3484 * = a0 * e^n + a * (1 - e^n)
3485 *
3486 * [1] application of the geometric series:
3487 *
3488 * n 1 - x^(n+1)
3489 * S_n := \Sum x^i = -------------
3490 * i=0 1 - x
3491 */
3492static unsigned long
3493calc_load_n(unsigned long load, unsigned long exp,
3494 unsigned long active, unsigned int n)
3495{
3496
3497 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3498}
3499
3500/*
3501 * NO_HZ can leave us missing all per-cpu ticks calling
3502 * calc_load_account_active(), but since an idle CPU folds its delta into
3503 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3504 * in the pending idle delta if our idle period crossed a load cycle boundary.
3505 *
3506 * Once we've updated the global active value, we need to apply the exponential
3507 * weights adjusted to the number of cycles missed.
3508 */
3509static void calc_global_nohz(unsigned long ticks)
3510{
3511 long delta, active, n;
3512
3513 if (time_before(jiffies, calc_load_update))
3514 return;
3515
3516 /*
3517 * If we crossed a calc_load_update boundary, make sure to fold
3518 * any pending idle changes, the respective CPUs might have
3519 * missed the tick driven calc_load_account_active() update
3520 * due to NO_HZ.
3521 */
3522 delta = calc_load_fold_idle();
3523 if (delta)
3524 atomic_long_add(delta, &calc_load_tasks);
3525
3526 /*
3527 * If we were idle for multiple load cycles, apply them.
3528 */
3529 if (ticks >= LOAD_FREQ) {
3530 n = ticks / LOAD_FREQ;
3531
3532 active = atomic_long_read(&calc_load_tasks);
3533 active = active > 0 ? active * FIXED_1 : 0;
3534
3535 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3536 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3537 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3538
3539 calc_load_update += n * LOAD_FREQ;
3540 }
3541
3542 /*
3543 * Its possible the remainder of the above division also crosses
3544 * a LOAD_FREQ period, the regular check in calc_global_load()
3545 * which comes after this will take care of that.
3546 *
3547 * Consider us being 11 ticks before a cycle completion, and us
3548 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3549 * age us 4 cycles, and the test in calc_global_load() will
3550 * pick up the final one.
3551 */
3552}
74f5187a
PZ
3553#else
3554static void calc_load_account_idle(struct rq *this_rq)
3555{
3556}
3557
3558static inline long calc_load_fold_idle(void)
3559{
3560 return 0;
3561}
0f004f5a
PZ
3562
3563static void calc_global_nohz(unsigned long ticks)
3564{
3565}
74f5187a
PZ
3566#endif
3567
2d02494f
TG
3568/**
3569 * get_avenrun - get the load average array
3570 * @loads: pointer to dest load array
3571 * @offset: offset to add
3572 * @shift: shift count to shift the result left
3573 *
3574 * These values are estimates at best, so no need for locking.
3575 */
3576void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3577{
3578 loads[0] = (avenrun[0] + offset) << shift;
3579 loads[1] = (avenrun[1] + offset) << shift;
3580 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3581}
46cb4b7c 3582
46cb4b7c 3583/*
dce48a84
TG
3584 * calc_load - update the avenrun load estimates 10 ticks after the
3585 * CPUs have updated calc_load_tasks.
7835b98b 3586 */
0f004f5a 3587void calc_global_load(unsigned long ticks)
7835b98b 3588{
dce48a84 3589 long active;
1da177e4 3590
0f004f5a
PZ
3591 calc_global_nohz(ticks);
3592
3593 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3594 return;
1da177e4 3595
dce48a84
TG
3596 active = atomic_long_read(&calc_load_tasks);
3597 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3598
dce48a84
TG
3599 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3600 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3601 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3602
dce48a84
TG
3603 calc_load_update += LOAD_FREQ;
3604}
1da177e4 3605
dce48a84 3606/*
74f5187a
PZ
3607 * Called from update_cpu_load() to periodically update this CPU's
3608 * active count.
dce48a84
TG
3609 */
3610static void calc_load_account_active(struct rq *this_rq)
3611{
74f5187a 3612 long delta;
08c183f3 3613
74f5187a
PZ
3614 if (time_before(jiffies, this_rq->calc_load_update))
3615 return;
783609c6 3616
74f5187a
PZ
3617 delta = calc_load_fold_active(this_rq);
3618 delta += calc_load_fold_idle();
3619 if (delta)
dce48a84 3620 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3621
3622 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3623}
3624
fdf3e95d
VP
3625/*
3626 * The exact cpuload at various idx values, calculated at every tick would be
3627 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3628 *
3629 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3630 * on nth tick when cpu may be busy, then we have:
3631 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3632 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3633 *
3634 * decay_load_missed() below does efficient calculation of
3635 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3636 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3637 *
3638 * The calculation is approximated on a 128 point scale.
3639 * degrade_zero_ticks is the number of ticks after which load at any
3640 * particular idx is approximated to be zero.
3641 * degrade_factor is a precomputed table, a row for each load idx.
3642 * Each column corresponds to degradation factor for a power of two ticks,
3643 * based on 128 point scale.
3644 * Example:
3645 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3646 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3647 *
3648 * With this power of 2 load factors, we can degrade the load n times
3649 * by looking at 1 bits in n and doing as many mult/shift instead of
3650 * n mult/shifts needed by the exact degradation.
3651 */
3652#define DEGRADE_SHIFT 7
3653static const unsigned char
3654 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3655static const unsigned char
3656 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3657 {0, 0, 0, 0, 0, 0, 0, 0},
3658 {64, 32, 8, 0, 0, 0, 0, 0},
3659 {96, 72, 40, 12, 1, 0, 0},
3660 {112, 98, 75, 43, 15, 1, 0},
3661 {120, 112, 98, 76, 45, 16, 2} };
3662
3663/*
3664 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3665 * would be when CPU is idle and so we just decay the old load without
3666 * adding any new load.
3667 */
3668static unsigned long
3669decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3670{
3671 int j = 0;
3672
3673 if (!missed_updates)
3674 return load;
3675
3676 if (missed_updates >= degrade_zero_ticks[idx])
3677 return 0;
3678
3679 if (idx == 1)
3680 return load >> missed_updates;
3681
3682 while (missed_updates) {
3683 if (missed_updates % 2)
3684 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3685
3686 missed_updates >>= 1;
3687 j++;
3688 }
3689 return load;
3690}
3691
46cb4b7c 3692/*
dd41f596 3693 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3694 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3695 * every tick. We fix it up based on jiffies.
46cb4b7c 3696 */
dd41f596 3697static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3698{
495eca49 3699 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3700 unsigned long curr_jiffies = jiffies;
3701 unsigned long pending_updates;
dd41f596 3702 int i, scale;
46cb4b7c 3703
dd41f596 3704 this_rq->nr_load_updates++;
46cb4b7c 3705
fdf3e95d
VP
3706 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3707 if (curr_jiffies == this_rq->last_load_update_tick)
3708 return;
3709
3710 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3711 this_rq->last_load_update_tick = curr_jiffies;
3712
dd41f596 3713 /* Update our load: */
fdf3e95d
VP
3714 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3715 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3716 unsigned long old_load, new_load;
7d1e6a9b 3717
dd41f596 3718 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3719
dd41f596 3720 old_load = this_rq->cpu_load[i];
fdf3e95d 3721 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3722 new_load = this_load;
a25707f3
IM
3723 /*
3724 * Round up the averaging division if load is increasing. This
3725 * prevents us from getting stuck on 9 if the load is 10, for
3726 * example.
3727 */
3728 if (new_load > old_load)
fdf3e95d
VP
3729 new_load += scale - 1;
3730
3731 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3732 }
da2b71ed
SS
3733
3734 sched_avg_update(this_rq);
fdf3e95d
VP
3735}
3736
3737static void update_cpu_load_active(struct rq *this_rq)
3738{
3739 update_cpu_load(this_rq);
46cb4b7c 3740
74f5187a 3741 calc_load_account_active(this_rq);
46cb4b7c
SS
3742}
3743
dd41f596 3744#ifdef CONFIG_SMP
8a0be9ef 3745
46cb4b7c 3746/*
38022906
PZ
3747 * sched_exec - execve() is a valuable balancing opportunity, because at
3748 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3749 */
38022906 3750void sched_exec(void)
46cb4b7c 3751{
38022906 3752 struct task_struct *p = current;
1da177e4 3753 unsigned long flags;
0017d735 3754 int dest_cpu;
46cb4b7c 3755
8f42ced9 3756 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3757 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3758 if (dest_cpu == smp_processor_id())
3759 goto unlock;
38022906 3760
8f42ced9 3761 if (likely(cpu_active(dest_cpu))) {
969c7921 3762 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3763
8f42ced9
PZ
3764 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3765 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3766 return;
3767 }
0017d735 3768unlock:
8f42ced9 3769 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3770}
dd41f596 3771
1da177e4
LT
3772#endif
3773
1da177e4
LT
3774DEFINE_PER_CPU(struct kernel_stat, kstat);
3775
3776EXPORT_PER_CPU_SYMBOL(kstat);
3777
3778/*
c5f8d995 3779 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3780 * @p in case that task is currently running.
c5f8d995
HS
3781 *
3782 * Called with task_rq_lock() held on @rq.
1da177e4 3783 */
c5f8d995
HS
3784static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3785{
3786 u64 ns = 0;
3787
3788 if (task_current(rq, p)) {
3789 update_rq_clock(rq);
305e6835 3790 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3791 if ((s64)ns < 0)
3792 ns = 0;
3793 }
3794
3795 return ns;
3796}
3797
bb34d92f 3798unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3799{
1da177e4 3800 unsigned long flags;
41b86e9c 3801 struct rq *rq;
bb34d92f 3802 u64 ns = 0;
48f24c4d 3803
41b86e9c 3804 rq = task_rq_lock(p, &flags);
c5f8d995 3805 ns = do_task_delta_exec(p, rq);
0122ec5b 3806 task_rq_unlock(rq, p, &flags);
1508487e 3807
c5f8d995
HS
3808 return ns;
3809}
f06febc9 3810
c5f8d995
HS
3811/*
3812 * Return accounted runtime for the task.
3813 * In case the task is currently running, return the runtime plus current's
3814 * pending runtime that have not been accounted yet.
3815 */
3816unsigned long long task_sched_runtime(struct task_struct *p)
3817{
3818 unsigned long flags;
3819 struct rq *rq;
3820 u64 ns = 0;
3821
3822 rq = task_rq_lock(p, &flags);
3823 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3824 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3825
3826 return ns;
3827}
48f24c4d 3828
c5f8d995
HS
3829/*
3830 * Return sum_exec_runtime for the thread group.
3831 * In case the task is currently running, return the sum plus current's
3832 * pending runtime that have not been accounted yet.
3833 *
3834 * Note that the thread group might have other running tasks as well,
3835 * so the return value not includes other pending runtime that other
3836 * running tasks might have.
3837 */
3838unsigned long long thread_group_sched_runtime(struct task_struct *p)
3839{
3840 struct task_cputime totals;
3841 unsigned long flags;
3842 struct rq *rq;
3843 u64 ns;
3844
3845 rq = task_rq_lock(p, &flags);
3846 thread_group_cputime(p, &totals);
3847 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3848 task_rq_unlock(rq, p, &flags);
48f24c4d 3849
1da177e4
LT
3850 return ns;
3851}
3852
1da177e4
LT
3853/*
3854 * Account user cpu time to a process.
3855 * @p: the process that the cpu time gets accounted to
1da177e4 3856 * @cputime: the cpu time spent in user space since the last update
457533a7 3857 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3858 */
457533a7
MS
3859void account_user_time(struct task_struct *p, cputime_t cputime,
3860 cputime_t cputime_scaled)
1da177e4
LT
3861{
3862 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3863 cputime64_t tmp;
3864
457533a7 3865 /* Add user time to process. */
1da177e4 3866 p->utime = cputime_add(p->utime, cputime);
457533a7 3867 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3868 account_group_user_time(p, cputime);
1da177e4
LT
3869
3870 /* Add user time to cpustat. */
3871 tmp = cputime_to_cputime64(cputime);
3872 if (TASK_NICE(p) > 0)
3873 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3874 else
3875 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3876
3877 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3878 /* Account for user time used */
3879 acct_update_integrals(p);
1da177e4
LT
3880}
3881
94886b84
LV
3882/*
3883 * Account guest cpu time to a process.
3884 * @p: the process that the cpu time gets accounted to
3885 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3886 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3887 */
457533a7
MS
3888static void account_guest_time(struct task_struct *p, cputime_t cputime,
3889 cputime_t cputime_scaled)
94886b84
LV
3890{
3891 cputime64_t tmp;
3892 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3893
3894 tmp = cputime_to_cputime64(cputime);
3895
457533a7 3896 /* Add guest time to process. */
94886b84 3897 p->utime = cputime_add(p->utime, cputime);
457533a7 3898 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3899 account_group_user_time(p, cputime);
94886b84
LV
3900 p->gtime = cputime_add(p->gtime, cputime);
3901
457533a7 3902 /* Add guest time to cpustat. */
ce0e7b28
RO
3903 if (TASK_NICE(p) > 0) {
3904 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3905 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3906 } else {
3907 cpustat->user = cputime64_add(cpustat->user, tmp);
3908 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3909 }
94886b84
LV
3910}
3911
70a89a66
VP
3912/*
3913 * Account system cpu time to a process and desired cpustat field
3914 * @p: the process that the cpu time gets accounted to
3915 * @cputime: the cpu time spent in kernel space since the last update
3916 * @cputime_scaled: cputime scaled by cpu frequency
3917 * @target_cputime64: pointer to cpustat field that has to be updated
3918 */
3919static inline
3920void __account_system_time(struct task_struct *p, cputime_t cputime,
3921 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3922{
3923 cputime64_t tmp = cputime_to_cputime64(cputime);
3924
3925 /* Add system time to process. */
3926 p->stime = cputime_add(p->stime, cputime);
3927 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3928 account_group_system_time(p, cputime);
3929
3930 /* Add system time to cpustat. */
3931 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3932 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3933
3934 /* Account for system time used */
3935 acct_update_integrals(p);
3936}
3937
1da177e4
LT
3938/*
3939 * Account system cpu time to a process.
3940 * @p: the process that the cpu time gets accounted to
3941 * @hardirq_offset: the offset to subtract from hardirq_count()
3942 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3943 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3944 */
3945void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3946 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3947{
3948 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3949 cputime64_t *target_cputime64;
1da177e4 3950
983ed7a6 3951 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3952 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3953 return;
3954 }
94886b84 3955
1da177e4 3956 if (hardirq_count() - hardirq_offset)
70a89a66 3957 target_cputime64 = &cpustat->irq;
75e1056f 3958 else if (in_serving_softirq())
70a89a66 3959 target_cputime64 = &cpustat->softirq;
1da177e4 3960 else
70a89a66 3961 target_cputime64 = &cpustat->system;
ef12fefa 3962
70a89a66 3963 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3964}
3965
c66f08be 3966/*
1da177e4 3967 * Account for involuntary wait time.
544b4a1f 3968 * @cputime: the cpu time spent in involuntary wait
c66f08be 3969 */
79741dd3 3970void account_steal_time(cputime_t cputime)
c66f08be 3971{
79741dd3
MS
3972 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3973 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3974
3975 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3976}
3977
1da177e4 3978/*
79741dd3
MS
3979 * Account for idle time.
3980 * @cputime: the cpu time spent in idle wait
1da177e4 3981 */
79741dd3 3982void account_idle_time(cputime_t cputime)
1da177e4
LT
3983{
3984 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3985 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3986 struct rq *rq = this_rq();
1da177e4 3987
79741dd3
MS
3988 if (atomic_read(&rq->nr_iowait) > 0)
3989 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3990 else
3991 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3992}
3993
e6e6685a
GC
3994static __always_inline bool steal_account_process_tick(void)
3995{
3996#ifdef CONFIG_PARAVIRT
3997 if (static_branch(&paravirt_steal_enabled)) {
3998 u64 steal, st = 0;
3999
4000 steal = paravirt_steal_clock(smp_processor_id());
4001 steal -= this_rq()->prev_steal_time;
4002
4003 st = steal_ticks(steal);
4004 this_rq()->prev_steal_time += st * TICK_NSEC;
4005
4006 account_steal_time(st);
4007 return st;
4008 }
4009#endif
4010 return false;
4011}
4012
79741dd3
MS
4013#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4014
abb74cef
VP
4015#ifdef CONFIG_IRQ_TIME_ACCOUNTING
4016/*
4017 * Account a tick to a process and cpustat
4018 * @p: the process that the cpu time gets accounted to
4019 * @user_tick: is the tick from userspace
4020 * @rq: the pointer to rq
4021 *
4022 * Tick demultiplexing follows the order
4023 * - pending hardirq update
4024 * - pending softirq update
4025 * - user_time
4026 * - idle_time
4027 * - system time
4028 * - check for guest_time
4029 * - else account as system_time
4030 *
4031 * Check for hardirq is done both for system and user time as there is
4032 * no timer going off while we are on hardirq and hence we may never get an
4033 * opportunity to update it solely in system time.
4034 * p->stime and friends are only updated on system time and not on irq
4035 * softirq as those do not count in task exec_runtime any more.
4036 */
4037static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4038 struct rq *rq)
4039{
4040 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4041 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4042 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4043
e6e6685a
GC
4044 if (steal_account_process_tick())
4045 return;
4046
abb74cef
VP
4047 if (irqtime_account_hi_update()) {
4048 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4049 } else if (irqtime_account_si_update()) {
4050 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
4051 } else if (this_cpu_ksoftirqd() == p) {
4052 /*
4053 * ksoftirqd time do not get accounted in cpu_softirq_time.
4054 * So, we have to handle it separately here.
4055 * Also, p->stime needs to be updated for ksoftirqd.
4056 */
4057 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4058 &cpustat->softirq);
abb74cef
VP
4059 } else if (user_tick) {
4060 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4061 } else if (p == rq->idle) {
4062 account_idle_time(cputime_one_jiffy);
4063 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4064 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4065 } else {
4066 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4067 &cpustat->system);
4068 }
4069}
4070
4071static void irqtime_account_idle_ticks(int ticks)
4072{
4073 int i;
4074 struct rq *rq = this_rq();
4075
4076 for (i = 0; i < ticks; i++)
4077 irqtime_account_process_tick(current, 0, rq);
4078}
544b4a1f 4079#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
4080static void irqtime_account_idle_ticks(int ticks) {}
4081static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4082 struct rq *rq) {}
544b4a1f 4083#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
4084
4085/*
4086 * Account a single tick of cpu time.
4087 * @p: the process that the cpu time gets accounted to
4088 * @user_tick: indicates if the tick is a user or a system tick
4089 */
4090void account_process_tick(struct task_struct *p, int user_tick)
4091{
a42548a1 4092 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
4093 struct rq *rq = this_rq();
4094
abb74cef
VP
4095 if (sched_clock_irqtime) {
4096 irqtime_account_process_tick(p, user_tick, rq);
4097 return;
4098 }
4099
e6e6685a
GC
4100 if (steal_account_process_tick())
4101 return;
4102
79741dd3 4103 if (user_tick)
a42548a1 4104 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 4105 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 4106 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
4107 one_jiffy_scaled);
4108 else
a42548a1 4109 account_idle_time(cputime_one_jiffy);
79741dd3
MS
4110}
4111
4112/*
4113 * Account multiple ticks of steal time.
4114 * @p: the process from which the cpu time has been stolen
4115 * @ticks: number of stolen ticks
4116 */
4117void account_steal_ticks(unsigned long ticks)
4118{
4119 account_steal_time(jiffies_to_cputime(ticks));
4120}
4121
4122/*
4123 * Account multiple ticks of idle time.
4124 * @ticks: number of stolen ticks
4125 */
4126void account_idle_ticks(unsigned long ticks)
4127{
abb74cef
VP
4128
4129 if (sched_clock_irqtime) {
4130 irqtime_account_idle_ticks(ticks);
4131 return;
4132 }
4133
79741dd3 4134 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4135}
4136
79741dd3
MS
4137#endif
4138
49048622
BS
4139/*
4140 * Use precise platform statistics if available:
4141 */
4142#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 4143void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4144{
d99ca3b9
HS
4145 *ut = p->utime;
4146 *st = p->stime;
49048622
BS
4147}
4148
0cf55e1e 4149void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4150{
0cf55e1e
HS
4151 struct task_cputime cputime;
4152
4153 thread_group_cputime(p, &cputime);
4154
4155 *ut = cputime.utime;
4156 *st = cputime.stime;
49048622
BS
4157}
4158#else
761b1d26
HS
4159
4160#ifndef nsecs_to_cputime
b7b20df9 4161# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
4162#endif
4163
d180c5bc 4164void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4165{
d99ca3b9 4166 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
4167
4168 /*
4169 * Use CFS's precise accounting:
4170 */
d180c5bc 4171 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
4172
4173 if (total) {
e75e863d 4174 u64 temp = rtime;
d180c5bc 4175
e75e863d 4176 temp *= utime;
49048622 4177 do_div(temp, total);
d180c5bc
HS
4178 utime = (cputime_t)temp;
4179 } else
4180 utime = rtime;
49048622 4181
d180c5bc
HS
4182 /*
4183 * Compare with previous values, to keep monotonicity:
4184 */
761b1d26 4185 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4186 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4187
d99ca3b9
HS
4188 *ut = p->prev_utime;
4189 *st = p->prev_stime;
49048622
BS
4190}
4191
0cf55e1e
HS
4192/*
4193 * Must be called with siglock held.
4194 */
4195void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4196{
0cf55e1e
HS
4197 struct signal_struct *sig = p->signal;
4198 struct task_cputime cputime;
4199 cputime_t rtime, utime, total;
49048622 4200
0cf55e1e 4201 thread_group_cputime(p, &cputime);
49048622 4202
0cf55e1e
HS
4203 total = cputime_add(cputime.utime, cputime.stime);
4204 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4205
0cf55e1e 4206 if (total) {
e75e863d 4207 u64 temp = rtime;
49048622 4208
e75e863d 4209 temp *= cputime.utime;
0cf55e1e
HS
4210 do_div(temp, total);
4211 utime = (cputime_t)temp;
4212 } else
4213 utime = rtime;
4214
4215 sig->prev_utime = max(sig->prev_utime, utime);
4216 sig->prev_stime = max(sig->prev_stime,
4217 cputime_sub(rtime, sig->prev_utime));
4218
4219 *ut = sig->prev_utime;
4220 *st = sig->prev_stime;
49048622 4221}
49048622 4222#endif
49048622 4223
7835b98b
CL
4224/*
4225 * This function gets called by the timer code, with HZ frequency.
4226 * We call it with interrupts disabled.
7835b98b
CL
4227 */
4228void scheduler_tick(void)
4229{
7835b98b
CL
4230 int cpu = smp_processor_id();
4231 struct rq *rq = cpu_rq(cpu);
dd41f596 4232 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4233
4234 sched_clock_tick();
dd41f596 4235
05fa785c 4236 raw_spin_lock(&rq->lock);
3e51f33f 4237 update_rq_clock(rq);
fdf3e95d 4238 update_cpu_load_active(rq);
fa85ae24 4239 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4240 raw_spin_unlock(&rq->lock);
7835b98b 4241
e9d2b064 4242 perf_event_task_tick();
e220d2dc 4243
e418e1c2 4244#ifdef CONFIG_SMP
dd41f596
IM
4245 rq->idle_at_tick = idle_cpu(cpu);
4246 trigger_load_balance(rq, cpu);
e418e1c2 4247#endif
1da177e4
LT
4248}
4249
132380a0 4250notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4251{
4252 if (in_lock_functions(addr)) {
4253 addr = CALLER_ADDR2;
4254 if (in_lock_functions(addr))
4255 addr = CALLER_ADDR3;
4256 }
4257 return addr;
4258}
1da177e4 4259
7e49fcce
SR
4260#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4261 defined(CONFIG_PREEMPT_TRACER))
4262
43627582 4263void __kprobes add_preempt_count(int val)
1da177e4 4264{
6cd8a4bb 4265#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4266 /*
4267 * Underflow?
4268 */
9a11b49a
IM
4269 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4270 return;
6cd8a4bb 4271#endif
1da177e4 4272 preempt_count() += val;
6cd8a4bb 4273#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4274 /*
4275 * Spinlock count overflowing soon?
4276 */
33859f7f
MOS
4277 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4278 PREEMPT_MASK - 10);
6cd8a4bb
SR
4279#endif
4280 if (preempt_count() == val)
4281 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4282}
4283EXPORT_SYMBOL(add_preempt_count);
4284
43627582 4285void __kprobes sub_preempt_count(int val)
1da177e4 4286{
6cd8a4bb 4287#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4288 /*
4289 * Underflow?
4290 */
01e3eb82 4291 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4292 return;
1da177e4
LT
4293 /*
4294 * Is the spinlock portion underflowing?
4295 */
9a11b49a
IM
4296 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4297 !(preempt_count() & PREEMPT_MASK)))
4298 return;
6cd8a4bb 4299#endif
9a11b49a 4300
6cd8a4bb
SR
4301 if (preempt_count() == val)
4302 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4303 preempt_count() -= val;
4304}
4305EXPORT_SYMBOL(sub_preempt_count);
4306
4307#endif
4308
4309/*
dd41f596 4310 * Print scheduling while atomic bug:
1da177e4 4311 */
dd41f596 4312static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4313{
838225b4
SS
4314 struct pt_regs *regs = get_irq_regs();
4315
3df0fc5b
PZ
4316 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4317 prev->comm, prev->pid, preempt_count());
838225b4 4318
dd41f596 4319 debug_show_held_locks(prev);
e21f5b15 4320 print_modules();
dd41f596
IM
4321 if (irqs_disabled())
4322 print_irqtrace_events(prev);
838225b4
SS
4323
4324 if (regs)
4325 show_regs(regs);
4326 else
4327 dump_stack();
dd41f596 4328}
1da177e4 4329
dd41f596
IM
4330/*
4331 * Various schedule()-time debugging checks and statistics:
4332 */
4333static inline void schedule_debug(struct task_struct *prev)
4334{
1da177e4 4335 /*
41a2d6cf 4336 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4337 * schedule() atomically, we ignore that path for now.
4338 * Otherwise, whine if we are scheduling when we should not be.
4339 */
3f33a7ce 4340 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4341 __schedule_bug(prev);
4342
1da177e4
LT
4343 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4344
2d72376b 4345 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4346}
4347
6cecd084 4348static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4349{
61eadef6 4350 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4351 update_rq_clock(rq);
6cecd084 4352 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4353}
4354
dd41f596
IM
4355/*
4356 * Pick up the highest-prio task:
4357 */
4358static inline struct task_struct *
b67802ea 4359pick_next_task(struct rq *rq)
dd41f596 4360{
5522d5d5 4361 const struct sched_class *class;
dd41f596 4362 struct task_struct *p;
1da177e4
LT
4363
4364 /*
dd41f596
IM
4365 * Optimization: we know that if all tasks are in
4366 * the fair class we can call that function directly:
1da177e4 4367 */
953bfcd1 4368 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 4369 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4370 if (likely(p))
4371 return p;
1da177e4
LT
4372 }
4373
34f971f6 4374 for_each_class(class) {
fb8d4724 4375 p = class->pick_next_task(rq);
dd41f596
IM
4376 if (p)
4377 return p;
dd41f596 4378 }
34f971f6
PZ
4379
4380 BUG(); /* the idle class will always have a runnable task */
dd41f596 4381}
1da177e4 4382
dd41f596
IM
4383/*
4384 * schedule() is the main scheduler function.
4385 */
ff743345 4386asmlinkage void __sched schedule(void)
dd41f596
IM
4387{
4388 struct task_struct *prev, *next;
67ca7bde 4389 unsigned long *switch_count;
dd41f596 4390 struct rq *rq;
31656519 4391 int cpu;
dd41f596 4392
ff743345
PZ
4393need_resched:
4394 preempt_disable();
dd41f596
IM
4395 cpu = smp_processor_id();
4396 rq = cpu_rq(cpu);
25502a6c 4397 rcu_note_context_switch(cpu);
dd41f596 4398 prev = rq->curr;
dd41f596 4399
dd41f596 4400 schedule_debug(prev);
1da177e4 4401
31656519 4402 if (sched_feat(HRTICK))
f333fdc9 4403 hrtick_clear(rq);
8f4d37ec 4404
05fa785c 4405 raw_spin_lock_irq(&rq->lock);
1da177e4 4406
246d86b5 4407 switch_count = &prev->nivcsw;
1da177e4 4408 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4409 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4410 prev->state = TASK_RUNNING;
21aa9af0 4411 } else {
2acca55e
PZ
4412 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4413 prev->on_rq = 0;
4414
21aa9af0 4415 /*
2acca55e
PZ
4416 * If a worker went to sleep, notify and ask workqueue
4417 * whether it wants to wake up a task to maintain
4418 * concurrency.
21aa9af0
TH
4419 */
4420 if (prev->flags & PF_WQ_WORKER) {
4421 struct task_struct *to_wakeup;
4422
4423 to_wakeup = wq_worker_sleeping(prev, cpu);
4424 if (to_wakeup)
4425 try_to_wake_up_local(to_wakeup);
4426 }
fd2f4419 4427
6631e635 4428 /*
2acca55e
PZ
4429 * If we are going to sleep and we have plugged IO
4430 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4431 */
4432 if (blk_needs_flush_plug(prev)) {
4433 raw_spin_unlock(&rq->lock);
a237c1c5 4434 blk_schedule_flush_plug(prev);
6631e635
LT
4435 raw_spin_lock(&rq->lock);
4436 }
21aa9af0 4437 }
dd41f596 4438 switch_count = &prev->nvcsw;
1da177e4
LT
4439 }
4440
3f029d3c 4441 pre_schedule(rq, prev);
f65eda4f 4442
dd41f596 4443 if (unlikely(!rq->nr_running))
1da177e4 4444 idle_balance(cpu, rq);
1da177e4 4445
df1c99d4 4446 put_prev_task(rq, prev);
b67802ea 4447 next = pick_next_task(rq);
f26f9aff
MG
4448 clear_tsk_need_resched(prev);
4449 rq->skip_clock_update = 0;
1da177e4 4450
1da177e4 4451 if (likely(prev != next)) {
1da177e4
LT
4452 rq->nr_switches++;
4453 rq->curr = next;
4454 ++*switch_count;
4455
dd41f596 4456 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4457 /*
246d86b5
ON
4458 * The context switch have flipped the stack from under us
4459 * and restored the local variables which were saved when
4460 * this task called schedule() in the past. prev == current
4461 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4462 */
4463 cpu = smp_processor_id();
4464 rq = cpu_rq(cpu);
1da177e4 4465 } else
05fa785c 4466 raw_spin_unlock_irq(&rq->lock);
1da177e4 4467
3f029d3c 4468 post_schedule(rq);
1da177e4 4469
1da177e4 4470 preempt_enable_no_resched();
ff743345 4471 if (need_resched())
1da177e4
LT
4472 goto need_resched;
4473}
1da177e4
LT
4474EXPORT_SYMBOL(schedule);
4475
c08f7829 4476#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4477
c6eb3dda
PZ
4478static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4479{
c6eb3dda 4480 if (lock->owner != owner)
307bf980 4481 return false;
0d66bf6d
PZ
4482
4483 /*
c6eb3dda
PZ
4484 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4485 * lock->owner still matches owner, if that fails, owner might
4486 * point to free()d memory, if it still matches, the rcu_read_lock()
4487 * ensures the memory stays valid.
0d66bf6d 4488 */
c6eb3dda 4489 barrier();
0d66bf6d 4490
307bf980 4491 return owner->on_cpu;
c6eb3dda 4492}
0d66bf6d 4493
c6eb3dda
PZ
4494/*
4495 * Look out! "owner" is an entirely speculative pointer
4496 * access and not reliable.
4497 */
4498int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4499{
4500 if (!sched_feat(OWNER_SPIN))
4501 return 0;
0d66bf6d 4502
307bf980 4503 rcu_read_lock();
c6eb3dda
PZ
4504 while (owner_running(lock, owner)) {
4505 if (need_resched())
307bf980 4506 break;
0d66bf6d 4507
335d7afb 4508 arch_mutex_cpu_relax();
0d66bf6d 4509 }
307bf980 4510 rcu_read_unlock();
4b402210 4511
c6eb3dda 4512 /*
307bf980
TG
4513 * We break out the loop above on need_resched() and when the
4514 * owner changed, which is a sign for heavy contention. Return
4515 * success only when lock->owner is NULL.
c6eb3dda 4516 */
307bf980 4517 return lock->owner == NULL;
0d66bf6d
PZ
4518}
4519#endif
4520
1da177e4
LT
4521#ifdef CONFIG_PREEMPT
4522/*
2ed6e34f 4523 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4524 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4525 * occur there and call schedule directly.
4526 */
d1f74e20 4527asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4528{
4529 struct thread_info *ti = current_thread_info();
6478d880 4530
1da177e4
LT
4531 /*
4532 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4533 * we do not want to preempt the current task. Just return..
1da177e4 4534 */
beed33a8 4535 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4536 return;
4537
3a5c359a 4538 do {
d1f74e20 4539 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4540 schedule();
d1f74e20 4541 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4542
3a5c359a
AK
4543 /*
4544 * Check again in case we missed a preemption opportunity
4545 * between schedule and now.
4546 */
4547 barrier();
5ed0cec0 4548 } while (need_resched());
1da177e4 4549}
1da177e4
LT
4550EXPORT_SYMBOL(preempt_schedule);
4551
4552/*
2ed6e34f 4553 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4554 * off of irq context.
4555 * Note, that this is called and return with irqs disabled. This will
4556 * protect us against recursive calling from irq.
4557 */
4558asmlinkage void __sched preempt_schedule_irq(void)
4559{
4560 struct thread_info *ti = current_thread_info();
6478d880 4561
2ed6e34f 4562 /* Catch callers which need to be fixed */
1da177e4
LT
4563 BUG_ON(ti->preempt_count || !irqs_disabled());
4564
3a5c359a
AK
4565 do {
4566 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4567 local_irq_enable();
4568 schedule();
4569 local_irq_disable();
3a5c359a 4570 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4571
3a5c359a
AK
4572 /*
4573 * Check again in case we missed a preemption opportunity
4574 * between schedule and now.
4575 */
4576 barrier();
5ed0cec0 4577 } while (need_resched());
1da177e4
LT
4578}
4579
4580#endif /* CONFIG_PREEMPT */
4581
63859d4f 4582int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4583 void *key)
1da177e4 4584{
63859d4f 4585 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4586}
1da177e4
LT
4587EXPORT_SYMBOL(default_wake_function);
4588
4589/*
41a2d6cf
IM
4590 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4591 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4592 * number) then we wake all the non-exclusive tasks and one exclusive task.
4593 *
4594 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4595 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4596 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4597 */
78ddb08f 4598static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4599 int nr_exclusive, int wake_flags, void *key)
1da177e4 4600{
2e45874c 4601 wait_queue_t *curr, *next;
1da177e4 4602
2e45874c 4603 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4604 unsigned flags = curr->flags;
4605
63859d4f 4606 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4607 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4608 break;
4609 }
4610}
4611
4612/**
4613 * __wake_up - wake up threads blocked on a waitqueue.
4614 * @q: the waitqueue
4615 * @mode: which threads
4616 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4617 * @key: is directly passed to the wakeup function
50fa610a
DH
4618 *
4619 * It may be assumed that this function implies a write memory barrier before
4620 * changing the task state if and only if any tasks are woken up.
1da177e4 4621 */
7ad5b3a5 4622void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4623 int nr_exclusive, void *key)
1da177e4
LT
4624{
4625 unsigned long flags;
4626
4627 spin_lock_irqsave(&q->lock, flags);
4628 __wake_up_common(q, mode, nr_exclusive, 0, key);
4629 spin_unlock_irqrestore(&q->lock, flags);
4630}
1da177e4
LT
4631EXPORT_SYMBOL(__wake_up);
4632
4633/*
4634 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4635 */
7ad5b3a5 4636void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4637{
4638 __wake_up_common(q, mode, 1, 0, NULL);
4639}
22c43c81 4640EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4641
4ede816a
DL
4642void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4643{
4644 __wake_up_common(q, mode, 1, 0, key);
4645}
bf294b41 4646EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4647
1da177e4 4648/**
4ede816a 4649 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4650 * @q: the waitqueue
4651 * @mode: which threads
4652 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4653 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4654 *
4655 * The sync wakeup differs that the waker knows that it will schedule
4656 * away soon, so while the target thread will be woken up, it will not
4657 * be migrated to another CPU - ie. the two threads are 'synchronized'
4658 * with each other. This can prevent needless bouncing between CPUs.
4659 *
4660 * On UP it can prevent extra preemption.
50fa610a
DH
4661 *
4662 * It may be assumed that this function implies a write memory barrier before
4663 * changing the task state if and only if any tasks are woken up.
1da177e4 4664 */
4ede816a
DL
4665void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4666 int nr_exclusive, void *key)
1da177e4
LT
4667{
4668 unsigned long flags;
7d478721 4669 int wake_flags = WF_SYNC;
1da177e4
LT
4670
4671 if (unlikely(!q))
4672 return;
4673
4674 if (unlikely(!nr_exclusive))
7d478721 4675 wake_flags = 0;
1da177e4
LT
4676
4677 spin_lock_irqsave(&q->lock, flags);
7d478721 4678 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4679 spin_unlock_irqrestore(&q->lock, flags);
4680}
4ede816a
DL
4681EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4682
4683/*
4684 * __wake_up_sync - see __wake_up_sync_key()
4685 */
4686void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4687{
4688 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4689}
1da177e4
LT
4690EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4691
65eb3dc6
KD
4692/**
4693 * complete: - signals a single thread waiting on this completion
4694 * @x: holds the state of this particular completion
4695 *
4696 * This will wake up a single thread waiting on this completion. Threads will be
4697 * awakened in the same order in which they were queued.
4698 *
4699 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4700 *
4701 * It may be assumed that this function implies a write memory barrier before
4702 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4703 */
b15136e9 4704void complete(struct completion *x)
1da177e4
LT
4705{
4706 unsigned long flags;
4707
4708 spin_lock_irqsave(&x->wait.lock, flags);
4709 x->done++;
d9514f6c 4710 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4711 spin_unlock_irqrestore(&x->wait.lock, flags);
4712}
4713EXPORT_SYMBOL(complete);
4714
65eb3dc6
KD
4715/**
4716 * complete_all: - signals all threads waiting on this completion
4717 * @x: holds the state of this particular completion
4718 *
4719 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4720 *
4721 * It may be assumed that this function implies a write memory barrier before
4722 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4723 */
b15136e9 4724void complete_all(struct completion *x)
1da177e4
LT
4725{
4726 unsigned long flags;
4727
4728 spin_lock_irqsave(&x->wait.lock, flags);
4729 x->done += UINT_MAX/2;
d9514f6c 4730 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4731 spin_unlock_irqrestore(&x->wait.lock, flags);
4732}
4733EXPORT_SYMBOL(complete_all);
4734
8cbbe86d
AK
4735static inline long __sched
4736do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4737{
1da177e4
LT
4738 if (!x->done) {
4739 DECLARE_WAITQUEUE(wait, current);
4740
a93d2f17 4741 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4742 do {
94d3d824 4743 if (signal_pending_state(state, current)) {
ea71a546
ON
4744 timeout = -ERESTARTSYS;
4745 break;
8cbbe86d
AK
4746 }
4747 __set_current_state(state);
1da177e4
LT
4748 spin_unlock_irq(&x->wait.lock);
4749 timeout = schedule_timeout(timeout);
4750 spin_lock_irq(&x->wait.lock);
ea71a546 4751 } while (!x->done && timeout);
1da177e4 4752 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4753 if (!x->done)
4754 return timeout;
1da177e4
LT
4755 }
4756 x->done--;
ea71a546 4757 return timeout ?: 1;
1da177e4 4758}
1da177e4 4759
8cbbe86d
AK
4760static long __sched
4761wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4762{
1da177e4
LT
4763 might_sleep();
4764
4765 spin_lock_irq(&x->wait.lock);
8cbbe86d 4766 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4767 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4768 return timeout;
4769}
1da177e4 4770
65eb3dc6
KD
4771/**
4772 * wait_for_completion: - waits for completion of a task
4773 * @x: holds the state of this particular completion
4774 *
4775 * This waits to be signaled for completion of a specific task. It is NOT
4776 * interruptible and there is no timeout.
4777 *
4778 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4779 * and interrupt capability. Also see complete().
4780 */
b15136e9 4781void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4782{
4783 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4784}
8cbbe86d 4785EXPORT_SYMBOL(wait_for_completion);
1da177e4 4786
65eb3dc6
KD
4787/**
4788 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4789 * @x: holds the state of this particular completion
4790 * @timeout: timeout value in jiffies
4791 *
4792 * This waits for either a completion of a specific task to be signaled or for a
4793 * specified timeout to expire. The timeout is in jiffies. It is not
4794 * interruptible.
4795 */
b15136e9 4796unsigned long __sched
8cbbe86d 4797wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4798{
8cbbe86d 4799 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4800}
8cbbe86d 4801EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4802
65eb3dc6
KD
4803/**
4804 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4805 * @x: holds the state of this particular completion
4806 *
4807 * This waits for completion of a specific task to be signaled. It is
4808 * interruptible.
4809 */
8cbbe86d 4810int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4811{
51e97990
AK
4812 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4813 if (t == -ERESTARTSYS)
4814 return t;
4815 return 0;
0fec171c 4816}
8cbbe86d 4817EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4818
65eb3dc6
KD
4819/**
4820 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4821 * @x: holds the state of this particular completion
4822 * @timeout: timeout value in jiffies
4823 *
4824 * This waits for either a completion of a specific task to be signaled or for a
4825 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4826 */
6bf41237 4827long __sched
8cbbe86d
AK
4828wait_for_completion_interruptible_timeout(struct completion *x,
4829 unsigned long timeout)
0fec171c 4830{
8cbbe86d 4831 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4832}
8cbbe86d 4833EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4834
65eb3dc6
KD
4835/**
4836 * wait_for_completion_killable: - waits for completion of a task (killable)
4837 * @x: holds the state of this particular completion
4838 *
4839 * This waits to be signaled for completion of a specific task. It can be
4840 * interrupted by a kill signal.
4841 */
009e577e
MW
4842int __sched wait_for_completion_killable(struct completion *x)
4843{
4844 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4845 if (t == -ERESTARTSYS)
4846 return t;
4847 return 0;
4848}
4849EXPORT_SYMBOL(wait_for_completion_killable);
4850
0aa12fb4
SW
4851/**
4852 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4853 * @x: holds the state of this particular completion
4854 * @timeout: timeout value in jiffies
4855 *
4856 * This waits for either a completion of a specific task to be
4857 * signaled or for a specified timeout to expire. It can be
4858 * interrupted by a kill signal. The timeout is in jiffies.
4859 */
6bf41237 4860long __sched
0aa12fb4
SW
4861wait_for_completion_killable_timeout(struct completion *x,
4862 unsigned long timeout)
4863{
4864 return wait_for_common(x, timeout, TASK_KILLABLE);
4865}
4866EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4867
be4de352
DC
4868/**
4869 * try_wait_for_completion - try to decrement a completion without blocking
4870 * @x: completion structure
4871 *
4872 * Returns: 0 if a decrement cannot be done without blocking
4873 * 1 if a decrement succeeded.
4874 *
4875 * If a completion is being used as a counting completion,
4876 * attempt to decrement the counter without blocking. This
4877 * enables us to avoid waiting if the resource the completion
4878 * is protecting is not available.
4879 */
4880bool try_wait_for_completion(struct completion *x)
4881{
7539a3b3 4882 unsigned long flags;
be4de352
DC
4883 int ret = 1;
4884
7539a3b3 4885 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4886 if (!x->done)
4887 ret = 0;
4888 else
4889 x->done--;
7539a3b3 4890 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4891 return ret;
4892}
4893EXPORT_SYMBOL(try_wait_for_completion);
4894
4895/**
4896 * completion_done - Test to see if a completion has any waiters
4897 * @x: completion structure
4898 *
4899 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4900 * 1 if there are no waiters.
4901 *
4902 */
4903bool completion_done(struct completion *x)
4904{
7539a3b3 4905 unsigned long flags;
be4de352
DC
4906 int ret = 1;
4907
7539a3b3 4908 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4909 if (!x->done)
4910 ret = 0;
7539a3b3 4911 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4912 return ret;
4913}
4914EXPORT_SYMBOL(completion_done);
4915
8cbbe86d
AK
4916static long __sched
4917sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4918{
0fec171c
IM
4919 unsigned long flags;
4920 wait_queue_t wait;
4921
4922 init_waitqueue_entry(&wait, current);
1da177e4 4923
8cbbe86d 4924 __set_current_state(state);
1da177e4 4925
8cbbe86d
AK
4926 spin_lock_irqsave(&q->lock, flags);
4927 __add_wait_queue(q, &wait);
4928 spin_unlock(&q->lock);
4929 timeout = schedule_timeout(timeout);
4930 spin_lock_irq(&q->lock);
4931 __remove_wait_queue(q, &wait);
4932 spin_unlock_irqrestore(&q->lock, flags);
4933
4934 return timeout;
4935}
4936
4937void __sched interruptible_sleep_on(wait_queue_head_t *q)
4938{
4939 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4940}
1da177e4
LT
4941EXPORT_SYMBOL(interruptible_sleep_on);
4942
0fec171c 4943long __sched
95cdf3b7 4944interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4945{
8cbbe86d 4946 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4947}
1da177e4
LT
4948EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4949
0fec171c 4950void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4951{
8cbbe86d 4952 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4953}
1da177e4
LT
4954EXPORT_SYMBOL(sleep_on);
4955
0fec171c 4956long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4957{
8cbbe86d 4958 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4959}
1da177e4
LT
4960EXPORT_SYMBOL(sleep_on_timeout);
4961
b29739f9
IM
4962#ifdef CONFIG_RT_MUTEXES
4963
4964/*
4965 * rt_mutex_setprio - set the current priority of a task
4966 * @p: task
4967 * @prio: prio value (kernel-internal form)
4968 *
4969 * This function changes the 'effective' priority of a task. It does
4970 * not touch ->normal_prio like __setscheduler().
4971 *
4972 * Used by the rt_mutex code to implement priority inheritance logic.
4973 */
36c8b586 4974void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4975{
83b699ed 4976 int oldprio, on_rq, running;
70b97a7f 4977 struct rq *rq;
83ab0aa0 4978 const struct sched_class *prev_class;
b29739f9
IM
4979
4980 BUG_ON(prio < 0 || prio > MAX_PRIO);
4981
0122ec5b 4982 rq = __task_rq_lock(p);
b29739f9 4983
a8027073 4984 trace_sched_pi_setprio(p, prio);
d5f9f942 4985 oldprio = p->prio;
83ab0aa0 4986 prev_class = p->sched_class;
fd2f4419 4987 on_rq = p->on_rq;
051a1d1a 4988 running = task_current(rq, p);
0e1f3483 4989 if (on_rq)
69be72c1 4990 dequeue_task(rq, p, 0);
0e1f3483
HS
4991 if (running)
4992 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4993
4994 if (rt_prio(prio))
4995 p->sched_class = &rt_sched_class;
4996 else
4997 p->sched_class = &fair_sched_class;
4998
b29739f9
IM
4999 p->prio = prio;
5000
0e1f3483
HS
5001 if (running)
5002 p->sched_class->set_curr_task(rq);
da7a735e 5003 if (on_rq)
371fd7e7 5004 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 5005
da7a735e 5006 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5007 __task_rq_unlock(rq);
b29739f9
IM
5008}
5009
5010#endif
5011
36c8b586 5012void set_user_nice(struct task_struct *p, long nice)
1da177e4 5013{
dd41f596 5014 int old_prio, delta, on_rq;
1da177e4 5015 unsigned long flags;
70b97a7f 5016 struct rq *rq;
1da177e4
LT
5017
5018 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5019 return;
5020 /*
5021 * We have to be careful, if called from sys_setpriority(),
5022 * the task might be in the middle of scheduling on another CPU.
5023 */
5024 rq = task_rq_lock(p, &flags);
5025 /*
5026 * The RT priorities are set via sched_setscheduler(), but we still
5027 * allow the 'normal' nice value to be set - but as expected
5028 * it wont have any effect on scheduling until the task is
dd41f596 5029 * SCHED_FIFO/SCHED_RR:
1da177e4 5030 */
e05606d3 5031 if (task_has_rt_policy(p)) {
1da177e4
LT
5032 p->static_prio = NICE_TO_PRIO(nice);
5033 goto out_unlock;
5034 }
fd2f4419 5035 on_rq = p->on_rq;
c09595f6 5036 if (on_rq)
69be72c1 5037 dequeue_task(rq, p, 0);
1da177e4 5038
1da177e4 5039 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5040 set_load_weight(p);
b29739f9
IM
5041 old_prio = p->prio;
5042 p->prio = effective_prio(p);
5043 delta = p->prio - old_prio;
1da177e4 5044
dd41f596 5045 if (on_rq) {
371fd7e7 5046 enqueue_task(rq, p, 0);
1da177e4 5047 /*
d5f9f942
AM
5048 * If the task increased its priority or is running and
5049 * lowered its priority, then reschedule its CPU:
1da177e4 5050 */
d5f9f942 5051 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5052 resched_task(rq->curr);
5053 }
5054out_unlock:
0122ec5b 5055 task_rq_unlock(rq, p, &flags);
1da177e4 5056}
1da177e4
LT
5057EXPORT_SYMBOL(set_user_nice);
5058
e43379f1
MM
5059/*
5060 * can_nice - check if a task can reduce its nice value
5061 * @p: task
5062 * @nice: nice value
5063 */
36c8b586 5064int can_nice(const struct task_struct *p, const int nice)
e43379f1 5065{
024f4747
MM
5066 /* convert nice value [19,-20] to rlimit style value [1,40] */
5067 int nice_rlim = 20 - nice;
48f24c4d 5068
78d7d407 5069 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5070 capable(CAP_SYS_NICE));
5071}
5072
1da177e4
LT
5073#ifdef __ARCH_WANT_SYS_NICE
5074
5075/*
5076 * sys_nice - change the priority of the current process.
5077 * @increment: priority increment
5078 *
5079 * sys_setpriority is a more generic, but much slower function that
5080 * does similar things.
5081 */
5add95d4 5082SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5083{
48f24c4d 5084 long nice, retval;
1da177e4
LT
5085
5086 /*
5087 * Setpriority might change our priority at the same moment.
5088 * We don't have to worry. Conceptually one call occurs first
5089 * and we have a single winner.
5090 */
e43379f1
MM
5091 if (increment < -40)
5092 increment = -40;
1da177e4
LT
5093 if (increment > 40)
5094 increment = 40;
5095
2b8f836f 5096 nice = TASK_NICE(current) + increment;
1da177e4
LT
5097 if (nice < -20)
5098 nice = -20;
5099 if (nice > 19)
5100 nice = 19;
5101
e43379f1
MM
5102 if (increment < 0 && !can_nice(current, nice))
5103 return -EPERM;
5104
1da177e4
LT
5105 retval = security_task_setnice(current, nice);
5106 if (retval)
5107 return retval;
5108
5109 set_user_nice(current, nice);
5110 return 0;
5111}
5112
5113#endif
5114
5115/**
5116 * task_prio - return the priority value of a given task.
5117 * @p: the task in question.
5118 *
5119 * This is the priority value as seen by users in /proc.
5120 * RT tasks are offset by -200. Normal tasks are centered
5121 * around 0, value goes from -16 to +15.
5122 */
36c8b586 5123int task_prio(const struct task_struct *p)
1da177e4
LT
5124{
5125 return p->prio - MAX_RT_PRIO;
5126}
5127
5128/**
5129 * task_nice - return the nice value of a given task.
5130 * @p: the task in question.
5131 */
36c8b586 5132int task_nice(const struct task_struct *p)
1da177e4
LT
5133{
5134 return TASK_NICE(p);
5135}
150d8bed 5136EXPORT_SYMBOL(task_nice);
1da177e4
LT
5137
5138/**
5139 * idle_cpu - is a given cpu idle currently?
5140 * @cpu: the processor in question.
5141 */
5142int idle_cpu(int cpu)
5143{
5144 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5145}
5146
1da177e4
LT
5147/**
5148 * idle_task - return the idle task for a given cpu.
5149 * @cpu: the processor in question.
5150 */
36c8b586 5151struct task_struct *idle_task(int cpu)
1da177e4
LT
5152{
5153 return cpu_rq(cpu)->idle;
5154}
5155
5156/**
5157 * find_process_by_pid - find a process with a matching PID value.
5158 * @pid: the pid in question.
5159 */
a9957449 5160static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5161{
228ebcbe 5162 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5163}
5164
5165/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5166static void
5167__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5168{
1da177e4
LT
5169 p->policy = policy;
5170 p->rt_priority = prio;
b29739f9
IM
5171 p->normal_prio = normal_prio(p);
5172 /* we are holding p->pi_lock already */
5173 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
5174 if (rt_prio(p->prio))
5175 p->sched_class = &rt_sched_class;
5176 else
5177 p->sched_class = &fair_sched_class;
2dd73a4f 5178 set_load_weight(p);
1da177e4
LT
5179}
5180
c69e8d9c
DH
5181/*
5182 * check the target process has a UID that matches the current process's
5183 */
5184static bool check_same_owner(struct task_struct *p)
5185{
5186 const struct cred *cred = current_cred(), *pcred;
5187 bool match;
5188
5189 rcu_read_lock();
5190 pcred = __task_cred(p);
b0e77598
SH
5191 if (cred->user->user_ns == pcred->user->user_ns)
5192 match = (cred->euid == pcred->euid ||
5193 cred->euid == pcred->uid);
5194 else
5195 match = false;
c69e8d9c
DH
5196 rcu_read_unlock();
5197 return match;
5198}
5199
961ccddd 5200static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5201 const struct sched_param *param, bool user)
1da177e4 5202{
83b699ed 5203 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5204 unsigned long flags;
83ab0aa0 5205 const struct sched_class *prev_class;
70b97a7f 5206 struct rq *rq;
ca94c442 5207 int reset_on_fork;
1da177e4 5208
66e5393a
SR
5209 /* may grab non-irq protected spin_locks */
5210 BUG_ON(in_interrupt());
1da177e4
LT
5211recheck:
5212 /* double check policy once rq lock held */
ca94c442
LP
5213 if (policy < 0) {
5214 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5215 policy = oldpolicy = p->policy;
ca94c442
LP
5216 } else {
5217 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5218 policy &= ~SCHED_RESET_ON_FORK;
5219
5220 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5221 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5222 policy != SCHED_IDLE)
5223 return -EINVAL;
5224 }
5225
1da177e4
LT
5226 /*
5227 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5228 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5229 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5230 */
5231 if (param->sched_priority < 0 ||
95cdf3b7 5232 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5233 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5234 return -EINVAL;
e05606d3 5235 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5236 return -EINVAL;
5237
37e4ab3f
OC
5238 /*
5239 * Allow unprivileged RT tasks to decrease priority:
5240 */
961ccddd 5241 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5242 if (rt_policy(policy)) {
a44702e8
ON
5243 unsigned long rlim_rtprio =
5244 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5245
5246 /* can't set/change the rt policy */
5247 if (policy != p->policy && !rlim_rtprio)
5248 return -EPERM;
5249
5250 /* can't increase priority */
5251 if (param->sched_priority > p->rt_priority &&
5252 param->sched_priority > rlim_rtprio)
5253 return -EPERM;
5254 }
c02aa73b 5255
dd41f596 5256 /*
c02aa73b
DH
5257 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5258 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5259 */
c02aa73b
DH
5260 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5261 if (!can_nice(p, TASK_NICE(p)))
5262 return -EPERM;
5263 }
5fe1d75f 5264
37e4ab3f 5265 /* can't change other user's priorities */
c69e8d9c 5266 if (!check_same_owner(p))
37e4ab3f 5267 return -EPERM;
ca94c442
LP
5268
5269 /* Normal users shall not reset the sched_reset_on_fork flag */
5270 if (p->sched_reset_on_fork && !reset_on_fork)
5271 return -EPERM;
37e4ab3f 5272 }
1da177e4 5273
725aad24 5274 if (user) {
b0ae1981 5275 retval = security_task_setscheduler(p);
725aad24
JF
5276 if (retval)
5277 return retval;
5278 }
5279
b29739f9
IM
5280 /*
5281 * make sure no PI-waiters arrive (or leave) while we are
5282 * changing the priority of the task:
0122ec5b 5283 *
25985edc 5284 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5285 * runqueue lock must be held.
5286 */
0122ec5b 5287 rq = task_rq_lock(p, &flags);
dc61b1d6 5288
34f971f6
PZ
5289 /*
5290 * Changing the policy of the stop threads its a very bad idea
5291 */
5292 if (p == rq->stop) {
0122ec5b 5293 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5294 return -EINVAL;
5295 }
5296
a51e9198
DF
5297 /*
5298 * If not changing anything there's no need to proceed further:
5299 */
5300 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5301 param->sched_priority == p->rt_priority))) {
5302
5303 __task_rq_unlock(rq);
5304 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5305 return 0;
5306 }
5307
dc61b1d6
PZ
5308#ifdef CONFIG_RT_GROUP_SCHED
5309 if (user) {
5310 /*
5311 * Do not allow realtime tasks into groups that have no runtime
5312 * assigned.
5313 */
5314 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5315 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5316 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5317 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5318 return -EPERM;
5319 }
5320 }
5321#endif
5322
1da177e4
LT
5323 /* recheck policy now with rq lock held */
5324 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5325 policy = oldpolicy = -1;
0122ec5b 5326 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5327 goto recheck;
5328 }
fd2f4419 5329 on_rq = p->on_rq;
051a1d1a 5330 running = task_current(rq, p);
0e1f3483 5331 if (on_rq)
2e1cb74a 5332 deactivate_task(rq, p, 0);
0e1f3483
HS
5333 if (running)
5334 p->sched_class->put_prev_task(rq, p);
f6b53205 5335
ca94c442
LP
5336 p->sched_reset_on_fork = reset_on_fork;
5337
1da177e4 5338 oldprio = p->prio;
83ab0aa0 5339 prev_class = p->sched_class;
dd41f596 5340 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5341
0e1f3483
HS
5342 if (running)
5343 p->sched_class->set_curr_task(rq);
da7a735e 5344 if (on_rq)
dd41f596 5345 activate_task(rq, p, 0);
cb469845 5346
da7a735e 5347 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5348 task_rq_unlock(rq, p, &flags);
b29739f9 5349
95e02ca9
TG
5350 rt_mutex_adjust_pi(p);
5351
1da177e4
LT
5352 return 0;
5353}
961ccddd
RR
5354
5355/**
5356 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5357 * @p: the task in question.
5358 * @policy: new policy.
5359 * @param: structure containing the new RT priority.
5360 *
5361 * NOTE that the task may be already dead.
5362 */
5363int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5364 const struct sched_param *param)
961ccddd
RR
5365{
5366 return __sched_setscheduler(p, policy, param, true);
5367}
1da177e4
LT
5368EXPORT_SYMBOL_GPL(sched_setscheduler);
5369
961ccddd
RR
5370/**
5371 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5372 * @p: the task in question.
5373 * @policy: new policy.
5374 * @param: structure containing the new RT priority.
5375 *
5376 * Just like sched_setscheduler, only don't bother checking if the
5377 * current context has permission. For example, this is needed in
5378 * stop_machine(): we create temporary high priority worker threads,
5379 * but our caller might not have that capability.
5380 */
5381int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5382 const struct sched_param *param)
961ccddd
RR
5383{
5384 return __sched_setscheduler(p, policy, param, false);
5385}
5386
95cdf3b7
IM
5387static int
5388do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5389{
1da177e4
LT
5390 struct sched_param lparam;
5391 struct task_struct *p;
36c8b586 5392 int retval;
1da177e4
LT
5393
5394 if (!param || pid < 0)
5395 return -EINVAL;
5396 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5397 return -EFAULT;
5fe1d75f
ON
5398
5399 rcu_read_lock();
5400 retval = -ESRCH;
1da177e4 5401 p = find_process_by_pid(pid);
5fe1d75f
ON
5402 if (p != NULL)
5403 retval = sched_setscheduler(p, policy, &lparam);
5404 rcu_read_unlock();
36c8b586 5405
1da177e4
LT
5406 return retval;
5407}
5408
5409/**
5410 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5411 * @pid: the pid in question.
5412 * @policy: new policy.
5413 * @param: structure containing the new RT priority.
5414 */
5add95d4
HC
5415SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5416 struct sched_param __user *, param)
1da177e4 5417{
c21761f1
JB
5418 /* negative values for policy are not valid */
5419 if (policy < 0)
5420 return -EINVAL;
5421
1da177e4
LT
5422 return do_sched_setscheduler(pid, policy, param);
5423}
5424
5425/**
5426 * sys_sched_setparam - set/change the RT priority of a thread
5427 * @pid: the pid in question.
5428 * @param: structure containing the new RT priority.
5429 */
5add95d4 5430SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5431{
5432 return do_sched_setscheduler(pid, -1, param);
5433}
5434
5435/**
5436 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5437 * @pid: the pid in question.
5438 */
5add95d4 5439SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5440{
36c8b586 5441 struct task_struct *p;
3a5c359a 5442 int retval;
1da177e4
LT
5443
5444 if (pid < 0)
3a5c359a 5445 return -EINVAL;
1da177e4
LT
5446
5447 retval = -ESRCH;
5fe85be0 5448 rcu_read_lock();
1da177e4
LT
5449 p = find_process_by_pid(pid);
5450 if (p) {
5451 retval = security_task_getscheduler(p);
5452 if (!retval)
ca94c442
LP
5453 retval = p->policy
5454 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5455 }
5fe85be0 5456 rcu_read_unlock();
1da177e4
LT
5457 return retval;
5458}
5459
5460/**
ca94c442 5461 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5462 * @pid: the pid in question.
5463 * @param: structure containing the RT priority.
5464 */
5add95d4 5465SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5466{
5467 struct sched_param lp;
36c8b586 5468 struct task_struct *p;
3a5c359a 5469 int retval;
1da177e4
LT
5470
5471 if (!param || pid < 0)
3a5c359a 5472 return -EINVAL;
1da177e4 5473
5fe85be0 5474 rcu_read_lock();
1da177e4
LT
5475 p = find_process_by_pid(pid);
5476 retval = -ESRCH;
5477 if (!p)
5478 goto out_unlock;
5479
5480 retval = security_task_getscheduler(p);
5481 if (retval)
5482 goto out_unlock;
5483
5484 lp.sched_priority = p->rt_priority;
5fe85be0 5485 rcu_read_unlock();
1da177e4
LT
5486
5487 /*
5488 * This one might sleep, we cannot do it with a spinlock held ...
5489 */
5490 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5491
1da177e4
LT
5492 return retval;
5493
5494out_unlock:
5fe85be0 5495 rcu_read_unlock();
1da177e4
LT
5496 return retval;
5497}
5498
96f874e2 5499long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5500{
5a16f3d3 5501 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5502 struct task_struct *p;
5503 int retval;
1da177e4 5504
95402b38 5505 get_online_cpus();
23f5d142 5506 rcu_read_lock();
1da177e4
LT
5507
5508 p = find_process_by_pid(pid);
5509 if (!p) {
23f5d142 5510 rcu_read_unlock();
95402b38 5511 put_online_cpus();
1da177e4
LT
5512 return -ESRCH;
5513 }
5514
23f5d142 5515 /* Prevent p going away */
1da177e4 5516 get_task_struct(p);
23f5d142 5517 rcu_read_unlock();
1da177e4 5518
5a16f3d3
RR
5519 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5520 retval = -ENOMEM;
5521 goto out_put_task;
5522 }
5523 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5524 retval = -ENOMEM;
5525 goto out_free_cpus_allowed;
5526 }
1da177e4 5527 retval = -EPERM;
b0e77598 5528 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5529 goto out_unlock;
5530
b0ae1981 5531 retval = security_task_setscheduler(p);
e7834f8f
DQ
5532 if (retval)
5533 goto out_unlock;
5534
5a16f3d3
RR
5535 cpuset_cpus_allowed(p, cpus_allowed);
5536 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5537again:
5a16f3d3 5538 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5539
8707d8b8 5540 if (!retval) {
5a16f3d3
RR
5541 cpuset_cpus_allowed(p, cpus_allowed);
5542 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5543 /*
5544 * We must have raced with a concurrent cpuset
5545 * update. Just reset the cpus_allowed to the
5546 * cpuset's cpus_allowed
5547 */
5a16f3d3 5548 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5549 goto again;
5550 }
5551 }
1da177e4 5552out_unlock:
5a16f3d3
RR
5553 free_cpumask_var(new_mask);
5554out_free_cpus_allowed:
5555 free_cpumask_var(cpus_allowed);
5556out_put_task:
1da177e4 5557 put_task_struct(p);
95402b38 5558 put_online_cpus();
1da177e4
LT
5559 return retval;
5560}
5561
5562static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5563 struct cpumask *new_mask)
1da177e4 5564{
96f874e2
RR
5565 if (len < cpumask_size())
5566 cpumask_clear(new_mask);
5567 else if (len > cpumask_size())
5568 len = cpumask_size();
5569
1da177e4
LT
5570 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5571}
5572
5573/**
5574 * sys_sched_setaffinity - set the cpu affinity of a process
5575 * @pid: pid of the process
5576 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5577 * @user_mask_ptr: user-space pointer to the new cpu mask
5578 */
5add95d4
HC
5579SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5580 unsigned long __user *, user_mask_ptr)
1da177e4 5581{
5a16f3d3 5582 cpumask_var_t new_mask;
1da177e4
LT
5583 int retval;
5584
5a16f3d3
RR
5585 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5586 return -ENOMEM;
1da177e4 5587
5a16f3d3
RR
5588 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5589 if (retval == 0)
5590 retval = sched_setaffinity(pid, new_mask);
5591 free_cpumask_var(new_mask);
5592 return retval;
1da177e4
LT
5593}
5594
96f874e2 5595long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5596{
36c8b586 5597 struct task_struct *p;
31605683 5598 unsigned long flags;
1da177e4 5599 int retval;
1da177e4 5600
95402b38 5601 get_online_cpus();
23f5d142 5602 rcu_read_lock();
1da177e4
LT
5603
5604 retval = -ESRCH;
5605 p = find_process_by_pid(pid);
5606 if (!p)
5607 goto out_unlock;
5608
e7834f8f
DQ
5609 retval = security_task_getscheduler(p);
5610 if (retval)
5611 goto out_unlock;
5612
013fdb80 5613 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5614 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5615 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5616
5617out_unlock:
23f5d142 5618 rcu_read_unlock();
95402b38 5619 put_online_cpus();
1da177e4 5620
9531b62f 5621 return retval;
1da177e4
LT
5622}
5623
5624/**
5625 * sys_sched_getaffinity - get the cpu affinity of a process
5626 * @pid: pid of the process
5627 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5628 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5629 */
5add95d4
HC
5630SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5631 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5632{
5633 int ret;
f17c8607 5634 cpumask_var_t mask;
1da177e4 5635
84fba5ec 5636 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5637 return -EINVAL;
5638 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5639 return -EINVAL;
5640
f17c8607
RR
5641 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5642 return -ENOMEM;
1da177e4 5643
f17c8607
RR
5644 ret = sched_getaffinity(pid, mask);
5645 if (ret == 0) {
8bc037fb 5646 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5647
5648 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5649 ret = -EFAULT;
5650 else
cd3d8031 5651 ret = retlen;
f17c8607
RR
5652 }
5653 free_cpumask_var(mask);
1da177e4 5654
f17c8607 5655 return ret;
1da177e4
LT
5656}
5657
5658/**
5659 * sys_sched_yield - yield the current processor to other threads.
5660 *
dd41f596
IM
5661 * This function yields the current CPU to other tasks. If there are no
5662 * other threads running on this CPU then this function will return.
1da177e4 5663 */
5add95d4 5664SYSCALL_DEFINE0(sched_yield)
1da177e4 5665{
70b97a7f 5666 struct rq *rq = this_rq_lock();
1da177e4 5667
2d72376b 5668 schedstat_inc(rq, yld_count);
4530d7ab 5669 current->sched_class->yield_task(rq);
1da177e4
LT
5670
5671 /*
5672 * Since we are going to call schedule() anyway, there's
5673 * no need to preempt or enable interrupts:
5674 */
5675 __release(rq->lock);
8a25d5de 5676 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5677 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5678 preempt_enable_no_resched();
5679
5680 schedule();
5681
5682 return 0;
5683}
5684
d86ee480
PZ
5685static inline int should_resched(void)
5686{
5687 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5688}
5689
e7b38404 5690static void __cond_resched(void)
1da177e4 5691{
e7aaaa69
FW
5692 add_preempt_count(PREEMPT_ACTIVE);
5693 schedule();
5694 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5695}
5696
02b67cc3 5697int __sched _cond_resched(void)
1da177e4 5698{
d86ee480 5699 if (should_resched()) {
1da177e4
LT
5700 __cond_resched();
5701 return 1;
5702 }
5703 return 0;
5704}
02b67cc3 5705EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5706
5707/*
613afbf8 5708 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5709 * call schedule, and on return reacquire the lock.
5710 *
41a2d6cf 5711 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5712 * operations here to prevent schedule() from being called twice (once via
5713 * spin_unlock(), once by hand).
5714 */
613afbf8 5715int __cond_resched_lock(spinlock_t *lock)
1da177e4 5716{
d86ee480 5717 int resched = should_resched();
6df3cecb
JK
5718 int ret = 0;
5719
f607c668
PZ
5720 lockdep_assert_held(lock);
5721
95c354fe 5722 if (spin_needbreak(lock) || resched) {
1da177e4 5723 spin_unlock(lock);
d86ee480 5724 if (resched)
95c354fe
NP
5725 __cond_resched();
5726 else
5727 cpu_relax();
6df3cecb 5728 ret = 1;
1da177e4 5729 spin_lock(lock);
1da177e4 5730 }
6df3cecb 5731 return ret;
1da177e4 5732}
613afbf8 5733EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5734
613afbf8 5735int __sched __cond_resched_softirq(void)
1da177e4
LT
5736{
5737 BUG_ON(!in_softirq());
5738
d86ee480 5739 if (should_resched()) {
98d82567 5740 local_bh_enable();
1da177e4
LT
5741 __cond_resched();
5742 local_bh_disable();
5743 return 1;
5744 }
5745 return 0;
5746}
613afbf8 5747EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5748
1da177e4
LT
5749/**
5750 * yield - yield the current processor to other threads.
5751 *
72fd4a35 5752 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5753 * thread runnable and calls sys_sched_yield().
5754 */
5755void __sched yield(void)
5756{
5757 set_current_state(TASK_RUNNING);
5758 sys_sched_yield();
5759}
1da177e4
LT
5760EXPORT_SYMBOL(yield);
5761
d95f4122
MG
5762/**
5763 * yield_to - yield the current processor to another thread in
5764 * your thread group, or accelerate that thread toward the
5765 * processor it's on.
16addf95
RD
5766 * @p: target task
5767 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5768 *
5769 * It's the caller's job to ensure that the target task struct
5770 * can't go away on us before we can do any checks.
5771 *
5772 * Returns true if we indeed boosted the target task.
5773 */
5774bool __sched yield_to(struct task_struct *p, bool preempt)
5775{
5776 struct task_struct *curr = current;
5777 struct rq *rq, *p_rq;
5778 unsigned long flags;
5779 bool yielded = 0;
5780
5781 local_irq_save(flags);
5782 rq = this_rq();
5783
5784again:
5785 p_rq = task_rq(p);
5786 double_rq_lock(rq, p_rq);
5787 while (task_rq(p) != p_rq) {
5788 double_rq_unlock(rq, p_rq);
5789 goto again;
5790 }
5791
5792 if (!curr->sched_class->yield_to_task)
5793 goto out;
5794
5795 if (curr->sched_class != p->sched_class)
5796 goto out;
5797
5798 if (task_running(p_rq, p) || p->state)
5799 goto out;
5800
5801 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5802 if (yielded) {
d95f4122 5803 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5804 /*
5805 * Make p's CPU reschedule; pick_next_entity takes care of
5806 * fairness.
5807 */
5808 if (preempt && rq != p_rq)
5809 resched_task(p_rq->curr);
5810 }
d95f4122
MG
5811
5812out:
5813 double_rq_unlock(rq, p_rq);
5814 local_irq_restore(flags);
5815
5816 if (yielded)
5817 schedule();
5818
5819 return yielded;
5820}
5821EXPORT_SYMBOL_GPL(yield_to);
5822
1da177e4 5823/*
41a2d6cf 5824 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5825 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5826 */
5827void __sched io_schedule(void)
5828{
54d35f29 5829 struct rq *rq = raw_rq();
1da177e4 5830
0ff92245 5831 delayacct_blkio_start();
1da177e4 5832 atomic_inc(&rq->nr_iowait);
73c10101 5833 blk_flush_plug(current);
8f0dfc34 5834 current->in_iowait = 1;
1da177e4 5835 schedule();
8f0dfc34 5836 current->in_iowait = 0;
1da177e4 5837 atomic_dec(&rq->nr_iowait);
0ff92245 5838 delayacct_blkio_end();
1da177e4 5839}
1da177e4
LT
5840EXPORT_SYMBOL(io_schedule);
5841
5842long __sched io_schedule_timeout(long timeout)
5843{
54d35f29 5844 struct rq *rq = raw_rq();
1da177e4
LT
5845 long ret;
5846
0ff92245 5847 delayacct_blkio_start();
1da177e4 5848 atomic_inc(&rq->nr_iowait);
73c10101 5849 blk_flush_plug(current);
8f0dfc34 5850 current->in_iowait = 1;
1da177e4 5851 ret = schedule_timeout(timeout);
8f0dfc34 5852 current->in_iowait = 0;
1da177e4 5853 atomic_dec(&rq->nr_iowait);
0ff92245 5854 delayacct_blkio_end();
1da177e4
LT
5855 return ret;
5856}
5857
5858/**
5859 * sys_sched_get_priority_max - return maximum RT priority.
5860 * @policy: scheduling class.
5861 *
5862 * this syscall returns the maximum rt_priority that can be used
5863 * by a given scheduling class.
5864 */
5add95d4 5865SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5866{
5867 int ret = -EINVAL;
5868
5869 switch (policy) {
5870 case SCHED_FIFO:
5871 case SCHED_RR:
5872 ret = MAX_USER_RT_PRIO-1;
5873 break;
5874 case SCHED_NORMAL:
b0a9499c 5875 case SCHED_BATCH:
dd41f596 5876 case SCHED_IDLE:
1da177e4
LT
5877 ret = 0;
5878 break;
5879 }
5880 return ret;
5881}
5882
5883/**
5884 * sys_sched_get_priority_min - return minimum RT priority.
5885 * @policy: scheduling class.
5886 *
5887 * this syscall returns the minimum rt_priority that can be used
5888 * by a given scheduling class.
5889 */
5add95d4 5890SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5891{
5892 int ret = -EINVAL;
5893
5894 switch (policy) {
5895 case SCHED_FIFO:
5896 case SCHED_RR:
5897 ret = 1;
5898 break;
5899 case SCHED_NORMAL:
b0a9499c 5900 case SCHED_BATCH:
dd41f596 5901 case SCHED_IDLE:
1da177e4
LT
5902 ret = 0;
5903 }
5904 return ret;
5905}
5906
5907/**
5908 * sys_sched_rr_get_interval - return the default timeslice of a process.
5909 * @pid: pid of the process.
5910 * @interval: userspace pointer to the timeslice value.
5911 *
5912 * this syscall writes the default timeslice value of a given process
5913 * into the user-space timespec buffer. A value of '0' means infinity.
5914 */
17da2bd9 5915SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5916 struct timespec __user *, interval)
1da177e4 5917{
36c8b586 5918 struct task_struct *p;
a4ec24b4 5919 unsigned int time_slice;
dba091b9
TG
5920 unsigned long flags;
5921 struct rq *rq;
3a5c359a 5922 int retval;
1da177e4 5923 struct timespec t;
1da177e4
LT
5924
5925 if (pid < 0)
3a5c359a 5926 return -EINVAL;
1da177e4
LT
5927
5928 retval = -ESRCH;
1a551ae7 5929 rcu_read_lock();
1da177e4
LT
5930 p = find_process_by_pid(pid);
5931 if (!p)
5932 goto out_unlock;
5933
5934 retval = security_task_getscheduler(p);
5935 if (retval)
5936 goto out_unlock;
5937
dba091b9
TG
5938 rq = task_rq_lock(p, &flags);
5939 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5940 task_rq_unlock(rq, p, &flags);
a4ec24b4 5941
1a551ae7 5942 rcu_read_unlock();
a4ec24b4 5943 jiffies_to_timespec(time_slice, &t);
1da177e4 5944 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5945 return retval;
3a5c359a 5946
1da177e4 5947out_unlock:
1a551ae7 5948 rcu_read_unlock();
1da177e4
LT
5949 return retval;
5950}
5951
7c731e0a 5952static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5953
82a1fcb9 5954void sched_show_task(struct task_struct *p)
1da177e4 5955{
1da177e4 5956 unsigned long free = 0;
36c8b586 5957 unsigned state;
1da177e4 5958
1da177e4 5959 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5960 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5961 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5962#if BITS_PER_LONG == 32
1da177e4 5963 if (state == TASK_RUNNING)
3df0fc5b 5964 printk(KERN_CONT " running ");
1da177e4 5965 else
3df0fc5b 5966 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5967#else
5968 if (state == TASK_RUNNING)
3df0fc5b 5969 printk(KERN_CONT " running task ");
1da177e4 5970 else
3df0fc5b 5971 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5972#endif
5973#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5974 free = stack_not_used(p);
1da177e4 5975#endif
3df0fc5b 5976 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5977 task_pid_nr(p), task_pid_nr(p->real_parent),
5978 (unsigned long)task_thread_info(p)->flags);
1da177e4 5979
5fb5e6de 5980 show_stack(p, NULL);
1da177e4
LT
5981}
5982
e59e2ae2 5983void show_state_filter(unsigned long state_filter)
1da177e4 5984{
36c8b586 5985 struct task_struct *g, *p;
1da177e4 5986
4bd77321 5987#if BITS_PER_LONG == 32
3df0fc5b
PZ
5988 printk(KERN_INFO
5989 " task PC stack pid father\n");
1da177e4 5990#else
3df0fc5b
PZ
5991 printk(KERN_INFO
5992 " task PC stack pid father\n");
1da177e4
LT
5993#endif
5994 read_lock(&tasklist_lock);
5995 do_each_thread(g, p) {
5996 /*
5997 * reset the NMI-timeout, listing all files on a slow
25985edc 5998 * console might take a lot of time:
1da177e4
LT
5999 */
6000 touch_nmi_watchdog();
39bc89fd 6001 if (!state_filter || (p->state & state_filter))
82a1fcb9 6002 sched_show_task(p);
1da177e4
LT
6003 } while_each_thread(g, p);
6004
04c9167f
JF
6005 touch_all_softlockup_watchdogs();
6006
dd41f596
IM
6007#ifdef CONFIG_SCHED_DEBUG
6008 sysrq_sched_debug_show();
6009#endif
1da177e4 6010 read_unlock(&tasklist_lock);
e59e2ae2
IM
6011 /*
6012 * Only show locks if all tasks are dumped:
6013 */
93335a21 6014 if (!state_filter)
e59e2ae2 6015 debug_show_all_locks();
1da177e4
LT
6016}
6017
1df21055
IM
6018void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6019{
dd41f596 6020 idle->sched_class = &idle_sched_class;
1df21055
IM
6021}
6022
f340c0d1
IM
6023/**
6024 * init_idle - set up an idle thread for a given CPU
6025 * @idle: task in question
6026 * @cpu: cpu the idle task belongs to
6027 *
6028 * NOTE: this function does not set the idle thread's NEED_RESCHED
6029 * flag, to make booting more robust.
6030 */
5c1e1767 6031void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6032{
70b97a7f 6033 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6034 unsigned long flags;
6035
05fa785c 6036 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 6037
dd41f596 6038 __sched_fork(idle);
06b83b5f 6039 idle->state = TASK_RUNNING;
dd41f596
IM
6040 idle->se.exec_start = sched_clock();
6041
1e1b6c51 6042 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
6043 /*
6044 * We're having a chicken and egg problem, even though we are
6045 * holding rq->lock, the cpu isn't yet set to this cpu so the
6046 * lockdep check in task_group() will fail.
6047 *
6048 * Similar case to sched_fork(). / Alternatively we could
6049 * use task_rq_lock() here and obtain the other rq->lock.
6050 *
6051 * Silence PROVE_RCU
6052 */
6053 rcu_read_lock();
dd41f596 6054 __set_task_cpu(idle, cpu);
6506cf6c 6055 rcu_read_unlock();
1da177e4 6056
1da177e4 6057 rq->curr = rq->idle = idle;
3ca7a440
PZ
6058#if defined(CONFIG_SMP)
6059 idle->on_cpu = 1;
4866cde0 6060#endif
05fa785c 6061 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
6062
6063 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 6064 task_thread_info(idle)->preempt_count = 0;
625f2a37 6065
dd41f596
IM
6066 /*
6067 * The idle tasks have their own, simple scheduling class:
6068 */
6069 idle->sched_class = &idle_sched_class;
868baf07 6070 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
6071}
6072
6073/*
6074 * In a system that switches off the HZ timer nohz_cpu_mask
6075 * indicates which cpus entered this state. This is used
6076 * in the rcu update to wait only for active cpus. For system
6077 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6078 * always be CPU_BITS_NONE.
1da177e4 6079 */
6a7b3dc3 6080cpumask_var_t nohz_cpu_mask;
1da177e4 6081
19978ca6
IM
6082/*
6083 * Increase the granularity value when there are more CPUs,
6084 * because with more CPUs the 'effective latency' as visible
6085 * to users decreases. But the relationship is not linear,
6086 * so pick a second-best guess by going with the log2 of the
6087 * number of CPUs.
6088 *
6089 * This idea comes from the SD scheduler of Con Kolivas:
6090 */
acb4a848 6091static int get_update_sysctl_factor(void)
19978ca6 6092{
4ca3ef71 6093 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
6094 unsigned int factor;
6095
6096 switch (sysctl_sched_tunable_scaling) {
6097 case SCHED_TUNABLESCALING_NONE:
6098 factor = 1;
6099 break;
6100 case SCHED_TUNABLESCALING_LINEAR:
6101 factor = cpus;
6102 break;
6103 case SCHED_TUNABLESCALING_LOG:
6104 default:
6105 factor = 1 + ilog2(cpus);
6106 break;
6107 }
19978ca6 6108
acb4a848
CE
6109 return factor;
6110}
19978ca6 6111
acb4a848
CE
6112static void update_sysctl(void)
6113{
6114 unsigned int factor = get_update_sysctl_factor();
19978ca6 6115
0bcdcf28
CE
6116#define SET_SYSCTL(name) \
6117 (sysctl_##name = (factor) * normalized_sysctl_##name)
6118 SET_SYSCTL(sched_min_granularity);
6119 SET_SYSCTL(sched_latency);
6120 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
6121#undef SET_SYSCTL
6122}
55cd5340 6123
0bcdcf28
CE
6124static inline void sched_init_granularity(void)
6125{
6126 update_sysctl();
19978ca6
IM
6127}
6128
1da177e4 6129#ifdef CONFIG_SMP
1e1b6c51
KM
6130void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6131{
6132 if (p->sched_class && p->sched_class->set_cpus_allowed)
6133 p->sched_class->set_cpus_allowed(p, new_mask);
6134 else {
6135 cpumask_copy(&p->cpus_allowed, new_mask);
6136 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6137 }
6138}
6139
1da177e4
LT
6140/*
6141 * This is how migration works:
6142 *
969c7921
TH
6143 * 1) we invoke migration_cpu_stop() on the target CPU using
6144 * stop_one_cpu().
6145 * 2) stopper starts to run (implicitly forcing the migrated thread
6146 * off the CPU)
6147 * 3) it checks whether the migrated task is still in the wrong runqueue.
6148 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 6149 * it and puts it into the right queue.
969c7921
TH
6150 * 5) stopper completes and stop_one_cpu() returns and the migration
6151 * is done.
1da177e4
LT
6152 */
6153
6154/*
6155 * Change a given task's CPU affinity. Migrate the thread to a
6156 * proper CPU and schedule it away if the CPU it's executing on
6157 * is removed from the allowed bitmask.
6158 *
6159 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6160 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6161 * call is not atomic; no spinlocks may be held.
6162 */
96f874e2 6163int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
6164{
6165 unsigned long flags;
70b97a7f 6166 struct rq *rq;
969c7921 6167 unsigned int dest_cpu;
48f24c4d 6168 int ret = 0;
1da177e4
LT
6169
6170 rq = task_rq_lock(p, &flags);
e2912009 6171
db44fc01
YZ
6172 if (cpumask_equal(&p->cpus_allowed, new_mask))
6173 goto out;
6174
6ad4c188 6175 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
6176 ret = -EINVAL;
6177 goto out;
6178 }
6179
db44fc01 6180 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
6181 ret = -EINVAL;
6182 goto out;
6183 }
6184
1e1b6c51 6185 do_set_cpus_allowed(p, new_mask);
73fe6aae 6186
1da177e4 6187 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6188 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6189 goto out;
6190
969c7921 6191 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6192 if (p->on_rq) {
969c7921 6193 struct migration_arg arg = { p, dest_cpu };
1da177e4 6194 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6195 task_rq_unlock(rq, p, &flags);
969c7921 6196 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6197 tlb_migrate_finish(p->mm);
6198 return 0;
6199 }
6200out:
0122ec5b 6201 task_rq_unlock(rq, p, &flags);
48f24c4d 6202
1da177e4
LT
6203 return ret;
6204}
cd8ba7cd 6205EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6206
6207/*
41a2d6cf 6208 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6209 * this because either it can't run here any more (set_cpus_allowed()
6210 * away from this CPU, or CPU going down), or because we're
6211 * attempting to rebalance this task on exec (sched_exec).
6212 *
6213 * So we race with normal scheduler movements, but that's OK, as long
6214 * as the task is no longer on this CPU.
efc30814
KK
6215 *
6216 * Returns non-zero if task was successfully migrated.
1da177e4 6217 */
efc30814 6218static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6219{
70b97a7f 6220 struct rq *rq_dest, *rq_src;
e2912009 6221 int ret = 0;
1da177e4 6222
e761b772 6223 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6224 return ret;
1da177e4
LT
6225
6226 rq_src = cpu_rq(src_cpu);
6227 rq_dest = cpu_rq(dest_cpu);
6228
0122ec5b 6229 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6230 double_rq_lock(rq_src, rq_dest);
6231 /* Already moved. */
6232 if (task_cpu(p) != src_cpu)
b1e38734 6233 goto done;
1da177e4 6234 /* Affinity changed (again). */
96f874e2 6235 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6236 goto fail;
1da177e4 6237
e2912009
PZ
6238 /*
6239 * If we're not on a rq, the next wake-up will ensure we're
6240 * placed properly.
6241 */
fd2f4419 6242 if (p->on_rq) {
2e1cb74a 6243 deactivate_task(rq_src, p, 0);
e2912009 6244 set_task_cpu(p, dest_cpu);
dd41f596 6245 activate_task(rq_dest, p, 0);
15afe09b 6246 check_preempt_curr(rq_dest, p, 0);
1da177e4 6247 }
b1e38734 6248done:
efc30814 6249 ret = 1;
b1e38734 6250fail:
1da177e4 6251 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6252 raw_spin_unlock(&p->pi_lock);
efc30814 6253 return ret;
1da177e4
LT
6254}
6255
6256/*
969c7921
TH
6257 * migration_cpu_stop - this will be executed by a highprio stopper thread
6258 * and performs thread migration by bumping thread off CPU then
6259 * 'pushing' onto another runqueue.
1da177e4 6260 */
969c7921 6261static int migration_cpu_stop(void *data)
1da177e4 6262{
969c7921 6263 struct migration_arg *arg = data;
f7b4cddc 6264
969c7921
TH
6265 /*
6266 * The original target cpu might have gone down and we might
6267 * be on another cpu but it doesn't matter.
6268 */
f7b4cddc 6269 local_irq_disable();
969c7921 6270 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6271 local_irq_enable();
1da177e4 6272 return 0;
f7b4cddc
ON
6273}
6274
1da177e4 6275#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6276
054b9108 6277/*
48c5ccae
PZ
6278 * Ensures that the idle task is using init_mm right before its cpu goes
6279 * offline.
054b9108 6280 */
48c5ccae 6281void idle_task_exit(void)
1da177e4 6282{
48c5ccae 6283 struct mm_struct *mm = current->active_mm;
e76bd8d9 6284
48c5ccae 6285 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6286
48c5ccae
PZ
6287 if (mm != &init_mm)
6288 switch_mm(mm, &init_mm, current);
6289 mmdrop(mm);
1da177e4
LT
6290}
6291
6292/*
6293 * While a dead CPU has no uninterruptible tasks queued at this point,
6294 * it might still have a nonzero ->nr_uninterruptible counter, because
6295 * for performance reasons the counter is not stricly tracking tasks to
6296 * their home CPUs. So we just add the counter to another CPU's counter,
6297 * to keep the global sum constant after CPU-down:
6298 */
70b97a7f 6299static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6300{
6ad4c188 6301 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6302
1da177e4
LT
6303 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6304 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6305}
6306
dd41f596 6307/*
48c5ccae 6308 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6309 */
48c5ccae 6310static void calc_global_load_remove(struct rq *rq)
1da177e4 6311{
48c5ccae
PZ
6312 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6313 rq->calc_load_active = 0;
1da177e4
LT
6314}
6315
48f24c4d 6316/*
48c5ccae
PZ
6317 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6318 * try_to_wake_up()->select_task_rq().
6319 *
6320 * Called with rq->lock held even though we'er in stop_machine() and
6321 * there's no concurrency possible, we hold the required locks anyway
6322 * because of lock validation efforts.
1da177e4 6323 */
48c5ccae 6324static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6325{
70b97a7f 6326 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6327 struct task_struct *next, *stop = rq->stop;
6328 int dest_cpu;
1da177e4
LT
6329
6330 /*
48c5ccae
PZ
6331 * Fudge the rq selection such that the below task selection loop
6332 * doesn't get stuck on the currently eligible stop task.
6333 *
6334 * We're currently inside stop_machine() and the rq is either stuck
6335 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6336 * either way we should never end up calling schedule() until we're
6337 * done here.
1da177e4 6338 */
48c5ccae 6339 rq->stop = NULL;
48f24c4d 6340
dd41f596 6341 for ( ; ; ) {
48c5ccae
PZ
6342 /*
6343 * There's this thread running, bail when that's the only
6344 * remaining thread.
6345 */
6346 if (rq->nr_running == 1)
dd41f596 6347 break;
48c5ccae 6348
b67802ea 6349 next = pick_next_task(rq);
48c5ccae 6350 BUG_ON(!next);
79c53799 6351 next->sched_class->put_prev_task(rq, next);
e692ab53 6352
48c5ccae
PZ
6353 /* Find suitable destination for @next, with force if needed. */
6354 dest_cpu = select_fallback_rq(dead_cpu, next);
6355 raw_spin_unlock(&rq->lock);
6356
6357 __migrate_task(next, dead_cpu, dest_cpu);
6358
6359 raw_spin_lock(&rq->lock);
1da177e4 6360 }
dce48a84 6361
48c5ccae 6362 rq->stop = stop;
dce48a84 6363}
48c5ccae 6364
1da177e4
LT
6365#endif /* CONFIG_HOTPLUG_CPU */
6366
e692ab53
NP
6367#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6368
6369static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6370 {
6371 .procname = "sched_domain",
c57baf1e 6372 .mode = 0555,
e0361851 6373 },
56992309 6374 {}
e692ab53
NP
6375};
6376
6377static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6378 {
6379 .procname = "kernel",
c57baf1e 6380 .mode = 0555,
e0361851
AD
6381 .child = sd_ctl_dir,
6382 },
56992309 6383 {}
e692ab53
NP
6384};
6385
6386static struct ctl_table *sd_alloc_ctl_entry(int n)
6387{
6388 struct ctl_table *entry =
5cf9f062 6389 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6390
e692ab53
NP
6391 return entry;
6392}
6393
6382bc90
MM
6394static void sd_free_ctl_entry(struct ctl_table **tablep)
6395{
cd790076 6396 struct ctl_table *entry;
6382bc90 6397
cd790076
MM
6398 /*
6399 * In the intermediate directories, both the child directory and
6400 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6401 * will always be set. In the lowest directory the names are
cd790076
MM
6402 * static strings and all have proc handlers.
6403 */
6404 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6405 if (entry->child)
6406 sd_free_ctl_entry(&entry->child);
cd790076
MM
6407 if (entry->proc_handler == NULL)
6408 kfree(entry->procname);
6409 }
6382bc90
MM
6410
6411 kfree(*tablep);
6412 *tablep = NULL;
6413}
6414
e692ab53 6415static void
e0361851 6416set_table_entry(struct ctl_table *entry,
e692ab53
NP
6417 const char *procname, void *data, int maxlen,
6418 mode_t mode, proc_handler *proc_handler)
6419{
e692ab53
NP
6420 entry->procname = procname;
6421 entry->data = data;
6422 entry->maxlen = maxlen;
6423 entry->mode = mode;
6424 entry->proc_handler = proc_handler;
6425}
6426
6427static struct ctl_table *
6428sd_alloc_ctl_domain_table(struct sched_domain *sd)
6429{
a5d8c348 6430 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6431
ad1cdc1d
MM
6432 if (table == NULL)
6433 return NULL;
6434
e0361851 6435 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6436 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6437 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6438 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6439 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6440 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6441 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6442 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6443 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6444 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6445 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6446 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6447 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6448 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6449 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6450 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6451 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6452 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6453 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6454 &sd->cache_nice_tries,
6455 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6456 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6457 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6458 set_table_entry(&table[11], "name", sd->name,
6459 CORENAME_MAX_SIZE, 0444, proc_dostring);
6460 /* &table[12] is terminator */
e692ab53
NP
6461
6462 return table;
6463}
6464
9a4e7159 6465static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6466{
6467 struct ctl_table *entry, *table;
6468 struct sched_domain *sd;
6469 int domain_num = 0, i;
6470 char buf[32];
6471
6472 for_each_domain(cpu, sd)
6473 domain_num++;
6474 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6475 if (table == NULL)
6476 return NULL;
e692ab53
NP
6477
6478 i = 0;
6479 for_each_domain(cpu, sd) {
6480 snprintf(buf, 32, "domain%d", i);
e692ab53 6481 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6482 entry->mode = 0555;
e692ab53
NP
6483 entry->child = sd_alloc_ctl_domain_table(sd);
6484 entry++;
6485 i++;
6486 }
6487 return table;
6488}
6489
6490static struct ctl_table_header *sd_sysctl_header;
6382bc90 6491static void register_sched_domain_sysctl(void)
e692ab53 6492{
6ad4c188 6493 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6494 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6495 char buf[32];
6496
7378547f
MM
6497 WARN_ON(sd_ctl_dir[0].child);
6498 sd_ctl_dir[0].child = entry;
6499
ad1cdc1d
MM
6500 if (entry == NULL)
6501 return;
6502
6ad4c188 6503 for_each_possible_cpu(i) {
e692ab53 6504 snprintf(buf, 32, "cpu%d", i);
e692ab53 6505 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6506 entry->mode = 0555;
e692ab53 6507 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6508 entry++;
e692ab53 6509 }
7378547f
MM
6510
6511 WARN_ON(sd_sysctl_header);
e692ab53
NP
6512 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6513}
6382bc90 6514
7378547f 6515/* may be called multiple times per register */
6382bc90
MM
6516static void unregister_sched_domain_sysctl(void)
6517{
7378547f
MM
6518 if (sd_sysctl_header)
6519 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6520 sd_sysctl_header = NULL;
7378547f
MM
6521 if (sd_ctl_dir[0].child)
6522 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6523}
e692ab53 6524#else
6382bc90
MM
6525static void register_sched_domain_sysctl(void)
6526{
6527}
6528static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6529{
6530}
6531#endif
6532
1f11eb6a
GH
6533static void set_rq_online(struct rq *rq)
6534{
6535 if (!rq->online) {
6536 const struct sched_class *class;
6537
c6c4927b 6538 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6539 rq->online = 1;
6540
6541 for_each_class(class) {
6542 if (class->rq_online)
6543 class->rq_online(rq);
6544 }
6545 }
6546}
6547
6548static void set_rq_offline(struct rq *rq)
6549{
6550 if (rq->online) {
6551 const struct sched_class *class;
6552
6553 for_each_class(class) {
6554 if (class->rq_offline)
6555 class->rq_offline(rq);
6556 }
6557
c6c4927b 6558 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6559 rq->online = 0;
6560 }
6561}
6562
1da177e4
LT
6563/*
6564 * migration_call - callback that gets triggered when a CPU is added.
6565 * Here we can start up the necessary migration thread for the new CPU.
6566 */
48f24c4d
IM
6567static int __cpuinit
6568migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6569{
48f24c4d 6570 int cpu = (long)hcpu;
1da177e4 6571 unsigned long flags;
969c7921 6572 struct rq *rq = cpu_rq(cpu);
1da177e4 6573
48c5ccae 6574 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6575
1da177e4 6576 case CPU_UP_PREPARE:
a468d389 6577 rq->calc_load_update = calc_load_update;
1da177e4 6578 break;
48f24c4d 6579
1da177e4 6580 case CPU_ONLINE:
1f94ef59 6581 /* Update our root-domain */
05fa785c 6582 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6583 if (rq->rd) {
c6c4927b 6584 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6585
6586 set_rq_online(rq);
1f94ef59 6587 }
05fa785c 6588 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6589 break;
48f24c4d 6590
1da177e4 6591#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6592 case CPU_DYING:
317f3941 6593 sched_ttwu_pending();
57d885fe 6594 /* Update our root-domain */
05fa785c 6595 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6596 if (rq->rd) {
c6c4927b 6597 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6598 set_rq_offline(rq);
57d885fe 6599 }
48c5ccae
PZ
6600 migrate_tasks(cpu);
6601 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6602 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6603
6604 migrate_nr_uninterruptible(rq);
6605 calc_global_load_remove(rq);
57d885fe 6606 break;
1da177e4
LT
6607#endif
6608 }
49c022e6
PZ
6609
6610 update_max_interval();
6611
1da177e4
LT
6612 return NOTIFY_OK;
6613}
6614
f38b0820
PM
6615/*
6616 * Register at high priority so that task migration (migrate_all_tasks)
6617 * happens before everything else. This has to be lower priority than
cdd6c482 6618 * the notifier in the perf_event subsystem, though.
1da177e4 6619 */
26c2143b 6620static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6621 .notifier_call = migration_call,
50a323b7 6622 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6623};
6624
3a101d05
TH
6625static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6626 unsigned long action, void *hcpu)
6627{
6628 switch (action & ~CPU_TASKS_FROZEN) {
6629 case CPU_ONLINE:
6630 case CPU_DOWN_FAILED:
6631 set_cpu_active((long)hcpu, true);
6632 return NOTIFY_OK;
6633 default:
6634 return NOTIFY_DONE;
6635 }
6636}
6637
6638static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6639 unsigned long action, void *hcpu)
6640{
6641 switch (action & ~CPU_TASKS_FROZEN) {
6642 case CPU_DOWN_PREPARE:
6643 set_cpu_active((long)hcpu, false);
6644 return NOTIFY_OK;
6645 default:
6646 return NOTIFY_DONE;
6647 }
6648}
6649
7babe8db 6650static int __init migration_init(void)
1da177e4
LT
6651{
6652 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6653 int err;
48f24c4d 6654
3a101d05 6655 /* Initialize migration for the boot CPU */
07dccf33
AM
6656 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6657 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6658 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6659 register_cpu_notifier(&migration_notifier);
7babe8db 6660
3a101d05
TH
6661 /* Register cpu active notifiers */
6662 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6663 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6664
a004cd42 6665 return 0;
1da177e4 6666}
7babe8db 6667early_initcall(migration_init);
1da177e4
LT
6668#endif
6669
6670#ifdef CONFIG_SMP
476f3534 6671
4cb98839
PZ
6672static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6673
3e9830dc 6674#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6675
f6630114
MT
6676static __read_mostly int sched_domain_debug_enabled;
6677
6678static int __init sched_domain_debug_setup(char *str)
6679{
6680 sched_domain_debug_enabled = 1;
6681
6682 return 0;
6683}
6684early_param("sched_debug", sched_domain_debug_setup);
6685
7c16ec58 6686static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6687 struct cpumask *groupmask)
1da177e4 6688{
4dcf6aff 6689 struct sched_group *group = sd->groups;
434d53b0 6690 char str[256];
1da177e4 6691
968ea6d8 6692 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6693 cpumask_clear(groupmask);
4dcf6aff
IM
6694
6695 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6696
6697 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6698 printk("does not load-balance\n");
4dcf6aff 6699 if (sd->parent)
3df0fc5b
PZ
6700 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6701 " has parent");
4dcf6aff 6702 return -1;
41c7ce9a
NP
6703 }
6704
3df0fc5b 6705 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6706
758b2cdc 6707 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6708 printk(KERN_ERR "ERROR: domain->span does not contain "
6709 "CPU%d\n", cpu);
4dcf6aff 6710 }
758b2cdc 6711 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6712 printk(KERN_ERR "ERROR: domain->groups does not contain"
6713 " CPU%d\n", cpu);
4dcf6aff 6714 }
1da177e4 6715
4dcf6aff 6716 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6717 do {
4dcf6aff 6718 if (!group) {
3df0fc5b
PZ
6719 printk("\n");
6720 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6721 break;
6722 }
6723
9c3f75cb 6724 if (!group->sgp->power) {
3df0fc5b
PZ
6725 printk(KERN_CONT "\n");
6726 printk(KERN_ERR "ERROR: domain->cpu_power not "
6727 "set\n");
4dcf6aff
IM
6728 break;
6729 }
1da177e4 6730
758b2cdc 6731 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6732 printk(KERN_CONT "\n");
6733 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6734 break;
6735 }
1da177e4 6736
758b2cdc 6737 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6738 printk(KERN_CONT "\n");
6739 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6740 break;
6741 }
1da177e4 6742
758b2cdc 6743 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6744
968ea6d8 6745 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6746
3df0fc5b 6747 printk(KERN_CONT " %s", str);
9c3f75cb 6748 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 6749 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 6750 group->sgp->power);
381512cf 6751 }
1da177e4 6752
4dcf6aff
IM
6753 group = group->next;
6754 } while (group != sd->groups);
3df0fc5b 6755 printk(KERN_CONT "\n");
1da177e4 6756
758b2cdc 6757 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6758 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6759
758b2cdc
RR
6760 if (sd->parent &&
6761 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6762 printk(KERN_ERR "ERROR: parent span is not a superset "
6763 "of domain->span\n");
4dcf6aff
IM
6764 return 0;
6765}
1da177e4 6766
4dcf6aff
IM
6767static void sched_domain_debug(struct sched_domain *sd, int cpu)
6768{
6769 int level = 0;
1da177e4 6770
f6630114
MT
6771 if (!sched_domain_debug_enabled)
6772 return;
6773
4dcf6aff
IM
6774 if (!sd) {
6775 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6776 return;
6777 }
1da177e4 6778
4dcf6aff
IM
6779 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6780
6781 for (;;) {
4cb98839 6782 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6783 break;
1da177e4
LT
6784 level++;
6785 sd = sd->parent;
33859f7f 6786 if (!sd)
4dcf6aff
IM
6787 break;
6788 }
1da177e4 6789}
6d6bc0ad 6790#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6791# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6792#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6793
1a20ff27 6794static int sd_degenerate(struct sched_domain *sd)
245af2c7 6795{
758b2cdc 6796 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6797 return 1;
6798
6799 /* Following flags need at least 2 groups */
6800 if (sd->flags & (SD_LOAD_BALANCE |
6801 SD_BALANCE_NEWIDLE |
6802 SD_BALANCE_FORK |
89c4710e
SS
6803 SD_BALANCE_EXEC |
6804 SD_SHARE_CPUPOWER |
6805 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6806 if (sd->groups != sd->groups->next)
6807 return 0;
6808 }
6809
6810 /* Following flags don't use groups */
c88d5910 6811 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6812 return 0;
6813
6814 return 1;
6815}
6816
48f24c4d
IM
6817static int
6818sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6819{
6820 unsigned long cflags = sd->flags, pflags = parent->flags;
6821
6822 if (sd_degenerate(parent))
6823 return 1;
6824
758b2cdc 6825 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6826 return 0;
6827
245af2c7
SS
6828 /* Flags needing groups don't count if only 1 group in parent */
6829 if (parent->groups == parent->groups->next) {
6830 pflags &= ~(SD_LOAD_BALANCE |
6831 SD_BALANCE_NEWIDLE |
6832 SD_BALANCE_FORK |
89c4710e
SS
6833 SD_BALANCE_EXEC |
6834 SD_SHARE_CPUPOWER |
6835 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6836 if (nr_node_ids == 1)
6837 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6838 }
6839 if (~cflags & pflags)
6840 return 0;
6841
6842 return 1;
6843}
6844
dce840a0 6845static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6846{
dce840a0 6847 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6848
68e74568 6849 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6850 free_cpumask_var(rd->rto_mask);
6851 free_cpumask_var(rd->online);
6852 free_cpumask_var(rd->span);
6853 kfree(rd);
6854}
6855
57d885fe
GH
6856static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6857{
a0490fa3 6858 struct root_domain *old_rd = NULL;
57d885fe 6859 unsigned long flags;
57d885fe 6860
05fa785c 6861 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6862
6863 if (rq->rd) {
a0490fa3 6864 old_rd = rq->rd;
57d885fe 6865
c6c4927b 6866 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6867 set_rq_offline(rq);
57d885fe 6868
c6c4927b 6869 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6870
a0490fa3
IM
6871 /*
6872 * If we dont want to free the old_rt yet then
6873 * set old_rd to NULL to skip the freeing later
6874 * in this function:
6875 */
6876 if (!atomic_dec_and_test(&old_rd->refcount))
6877 old_rd = NULL;
57d885fe
GH
6878 }
6879
6880 atomic_inc(&rd->refcount);
6881 rq->rd = rd;
6882
c6c4927b 6883 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6884 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6885 set_rq_online(rq);
57d885fe 6886
05fa785c 6887 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6888
6889 if (old_rd)
dce840a0 6890 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6891}
6892
68c38fc3 6893static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6894{
6895 memset(rd, 0, sizeof(*rd));
6896
68c38fc3 6897 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6898 goto out;
68c38fc3 6899 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6900 goto free_span;
68c38fc3 6901 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6902 goto free_online;
6e0534f2 6903
68c38fc3 6904 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6905 goto free_rto_mask;
c6c4927b 6906 return 0;
6e0534f2 6907
68e74568
RR
6908free_rto_mask:
6909 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6910free_online:
6911 free_cpumask_var(rd->online);
6912free_span:
6913 free_cpumask_var(rd->span);
0c910d28 6914out:
c6c4927b 6915 return -ENOMEM;
57d885fe
GH
6916}
6917
6918static void init_defrootdomain(void)
6919{
68c38fc3 6920 init_rootdomain(&def_root_domain);
c6c4927b 6921
57d885fe
GH
6922 atomic_set(&def_root_domain.refcount, 1);
6923}
6924
dc938520 6925static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6926{
6927 struct root_domain *rd;
6928
6929 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6930 if (!rd)
6931 return NULL;
6932
68c38fc3 6933 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6934 kfree(rd);
6935 return NULL;
6936 }
57d885fe
GH
6937
6938 return rd;
6939}
6940
e3589f6c
PZ
6941static void free_sched_groups(struct sched_group *sg, int free_sgp)
6942{
6943 struct sched_group *tmp, *first;
6944
6945 if (!sg)
6946 return;
6947
6948 first = sg;
6949 do {
6950 tmp = sg->next;
6951
6952 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6953 kfree(sg->sgp);
6954
6955 kfree(sg);
6956 sg = tmp;
6957 } while (sg != first);
6958}
6959
dce840a0
PZ
6960static void free_sched_domain(struct rcu_head *rcu)
6961{
6962 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
6963
6964 /*
6965 * If its an overlapping domain it has private groups, iterate and
6966 * nuke them all.
6967 */
6968 if (sd->flags & SD_OVERLAP) {
6969 free_sched_groups(sd->groups, 1);
6970 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 6971 kfree(sd->groups->sgp);
dce840a0 6972 kfree(sd->groups);
9c3f75cb 6973 }
dce840a0
PZ
6974 kfree(sd);
6975}
6976
6977static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6978{
6979 call_rcu(&sd->rcu, free_sched_domain);
6980}
6981
6982static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6983{
6984 for (; sd; sd = sd->parent)
6985 destroy_sched_domain(sd, cpu);
6986}
6987
1da177e4 6988/*
0eab9146 6989 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6990 * hold the hotplug lock.
6991 */
0eab9146
IM
6992static void
6993cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6994{
70b97a7f 6995 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6996 struct sched_domain *tmp;
6997
6998 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6999 for (tmp = sd; tmp; ) {
245af2c7
SS
7000 struct sched_domain *parent = tmp->parent;
7001 if (!parent)
7002 break;
f29c9b1c 7003
1a848870 7004 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7005 tmp->parent = parent->parent;
1a848870
SS
7006 if (parent->parent)
7007 parent->parent->child = tmp;
dce840a0 7008 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
7009 } else
7010 tmp = tmp->parent;
245af2c7
SS
7011 }
7012
1a848870 7013 if (sd && sd_degenerate(sd)) {
dce840a0 7014 tmp = sd;
245af2c7 7015 sd = sd->parent;
dce840a0 7016 destroy_sched_domain(tmp, cpu);
1a848870
SS
7017 if (sd)
7018 sd->child = NULL;
7019 }
1da177e4 7020
4cb98839 7021 sched_domain_debug(sd, cpu);
1da177e4 7022
57d885fe 7023 rq_attach_root(rq, rd);
dce840a0 7024 tmp = rq->sd;
674311d5 7025 rcu_assign_pointer(rq->sd, sd);
dce840a0 7026 destroy_sched_domains(tmp, cpu);
1da177e4
LT
7027}
7028
7029/* cpus with isolated domains */
dcc30a35 7030static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7031
7032/* Setup the mask of cpus configured for isolated domains */
7033static int __init isolated_cpu_setup(char *str)
7034{
bdddd296 7035 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 7036 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7037 return 1;
7038}
7039
8927f494 7040__setup("isolcpus=", isolated_cpu_setup);
1da177e4 7041
9c1cfda2 7042#define SD_NODES_PER_DOMAIN 16
1da177e4 7043
9c1cfda2 7044#ifdef CONFIG_NUMA
198e2f18 7045
9c1cfda2
JH
7046/**
7047 * find_next_best_node - find the next node to include in a sched_domain
7048 * @node: node whose sched_domain we're building
7049 * @used_nodes: nodes already in the sched_domain
7050 *
41a2d6cf 7051 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7052 * finds the closest node not already in the @used_nodes map.
7053 *
7054 * Should use nodemask_t.
7055 */
c5f59f08 7056static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 7057{
7142d17e 7058 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
7059
7060 min_val = INT_MAX;
7061
076ac2af 7062 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7063 /* Start at @node */
076ac2af 7064 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7065
7066 if (!nr_cpus_node(n))
7067 continue;
7068
7069 /* Skip already used nodes */
c5f59f08 7070 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7071 continue;
7072
7073 /* Simple min distance search */
7074 val = node_distance(node, n);
7075
7076 if (val < min_val) {
7077 min_val = val;
7078 best_node = n;
7079 }
7080 }
7081
7142d17e
HD
7082 if (best_node != -1)
7083 node_set(best_node, *used_nodes);
9c1cfda2
JH
7084 return best_node;
7085}
7086
7087/**
7088 * sched_domain_node_span - get a cpumask for a node's sched_domain
7089 * @node: node whose cpumask we're constructing
73486722 7090 * @span: resulting cpumask
9c1cfda2 7091 *
41a2d6cf 7092 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7093 * should be one that prevents unnecessary balancing, but also spreads tasks
7094 * out optimally.
7095 */
96f874e2 7096static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7097{
c5f59f08 7098 nodemask_t used_nodes;
48f24c4d 7099 int i;
9c1cfda2 7100
6ca09dfc 7101 cpumask_clear(span);
c5f59f08 7102 nodes_clear(used_nodes);
9c1cfda2 7103
6ca09dfc 7104 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7105 node_set(node, used_nodes);
9c1cfda2
JH
7106
7107 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7108 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
7109 if (next_node < 0)
7110 break;
6ca09dfc 7111 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7112 }
9c1cfda2 7113}
d3081f52
PZ
7114
7115static const struct cpumask *cpu_node_mask(int cpu)
7116{
7117 lockdep_assert_held(&sched_domains_mutex);
7118
7119 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7120
7121 return sched_domains_tmpmask;
7122}
2c402dc3
PZ
7123
7124static const struct cpumask *cpu_allnodes_mask(int cpu)
7125{
7126 return cpu_possible_mask;
7127}
6d6bc0ad 7128#endif /* CONFIG_NUMA */
9c1cfda2 7129
d3081f52
PZ
7130static const struct cpumask *cpu_cpu_mask(int cpu)
7131{
7132 return cpumask_of_node(cpu_to_node(cpu));
7133}
7134
5c45bf27 7135int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7136
dce840a0
PZ
7137struct sd_data {
7138 struct sched_domain **__percpu sd;
7139 struct sched_group **__percpu sg;
9c3f75cb 7140 struct sched_group_power **__percpu sgp;
dce840a0
PZ
7141};
7142
49a02c51 7143struct s_data {
21d42ccf 7144 struct sched_domain ** __percpu sd;
49a02c51
AH
7145 struct root_domain *rd;
7146};
7147
2109b99e 7148enum s_alloc {
2109b99e 7149 sa_rootdomain,
21d42ccf 7150 sa_sd,
dce840a0 7151 sa_sd_storage,
2109b99e
AH
7152 sa_none,
7153};
7154
54ab4ff4
PZ
7155struct sched_domain_topology_level;
7156
7157typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
7158typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7159
e3589f6c
PZ
7160#define SDTL_OVERLAP 0x01
7161
eb7a74e6 7162struct sched_domain_topology_level {
2c402dc3
PZ
7163 sched_domain_init_f init;
7164 sched_domain_mask_f mask;
e3589f6c 7165 int flags;
54ab4ff4 7166 struct sd_data data;
eb7a74e6
PZ
7167};
7168
e3589f6c
PZ
7169static int
7170build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7171{
7172 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7173 const struct cpumask *span = sched_domain_span(sd);
7174 struct cpumask *covered = sched_domains_tmpmask;
7175 struct sd_data *sdd = sd->private;
7176 struct sched_domain *child;
7177 int i;
7178
7179 cpumask_clear(covered);
7180
7181 for_each_cpu(i, span) {
7182 struct cpumask *sg_span;
7183
7184 if (cpumask_test_cpu(i, covered))
7185 continue;
7186
7187 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7188 GFP_KERNEL, cpu_to_node(i));
7189
7190 if (!sg)
7191 goto fail;
7192
7193 sg_span = sched_group_cpus(sg);
7194
7195 child = *per_cpu_ptr(sdd->sd, i);
7196 if (child->child) {
7197 child = child->child;
7198 cpumask_copy(sg_span, sched_domain_span(child));
7199 } else
7200 cpumask_set_cpu(i, sg_span);
7201
7202 cpumask_or(covered, covered, sg_span);
7203
7204 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7205 atomic_inc(&sg->sgp->ref);
7206
7207 if (cpumask_test_cpu(cpu, sg_span))
7208 groups = sg;
7209
7210 if (!first)
7211 first = sg;
7212 if (last)
7213 last->next = sg;
7214 last = sg;
7215 last->next = first;
7216 }
7217 sd->groups = groups;
7218
7219 return 0;
7220
7221fail:
7222 free_sched_groups(first, 0);
7223
7224 return -ENOMEM;
7225}
7226
dce840a0 7227static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 7228{
dce840a0
PZ
7229 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7230 struct sched_domain *child = sd->child;
1da177e4 7231
dce840a0
PZ
7232 if (child)
7233 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 7234
9c3f75cb 7235 if (sg) {
dce840a0 7236 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 7237 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 7238 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 7239 }
dce840a0
PZ
7240
7241 return cpu;
1e9f28fa 7242}
1e9f28fa 7243
01a08546 7244/*
dce840a0
PZ
7245 * build_sched_groups will build a circular linked list of the groups
7246 * covered by the given span, and will set each group's ->cpumask correctly,
7247 * and ->cpu_power to 0.
e3589f6c
PZ
7248 *
7249 * Assumes the sched_domain tree is fully constructed
01a08546 7250 */
e3589f6c
PZ
7251static int
7252build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 7253{
dce840a0
PZ
7254 struct sched_group *first = NULL, *last = NULL;
7255 struct sd_data *sdd = sd->private;
7256 const struct cpumask *span = sched_domain_span(sd);
f96225fd 7257 struct cpumask *covered;
dce840a0 7258 int i;
9c1cfda2 7259
e3589f6c
PZ
7260 get_group(cpu, sdd, &sd->groups);
7261 atomic_inc(&sd->groups->ref);
7262
7263 if (cpu != cpumask_first(sched_domain_span(sd)))
7264 return 0;
7265
f96225fd
PZ
7266 lockdep_assert_held(&sched_domains_mutex);
7267 covered = sched_domains_tmpmask;
7268
dce840a0 7269 cpumask_clear(covered);
6711cab4 7270
dce840a0
PZ
7271 for_each_cpu(i, span) {
7272 struct sched_group *sg;
7273 int group = get_group(i, sdd, &sg);
7274 int j;
6711cab4 7275
dce840a0
PZ
7276 if (cpumask_test_cpu(i, covered))
7277 continue;
6711cab4 7278
dce840a0 7279 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 7280 sg->sgp->power = 0;
0601a88d 7281
dce840a0
PZ
7282 for_each_cpu(j, span) {
7283 if (get_group(j, sdd, NULL) != group)
7284 continue;
0601a88d 7285
dce840a0
PZ
7286 cpumask_set_cpu(j, covered);
7287 cpumask_set_cpu(j, sched_group_cpus(sg));
7288 }
0601a88d 7289
dce840a0
PZ
7290 if (!first)
7291 first = sg;
7292 if (last)
7293 last->next = sg;
7294 last = sg;
7295 }
7296 last->next = first;
e3589f6c
PZ
7297
7298 return 0;
0601a88d 7299}
51888ca2 7300
89c4710e
SS
7301/*
7302 * Initialize sched groups cpu_power.
7303 *
7304 * cpu_power indicates the capacity of sched group, which is used while
7305 * distributing the load between different sched groups in a sched domain.
7306 * Typically cpu_power for all the groups in a sched domain will be same unless
7307 * there are asymmetries in the topology. If there are asymmetries, group
7308 * having more cpu_power will pickup more load compared to the group having
7309 * less cpu_power.
89c4710e
SS
7310 */
7311static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7312{
e3589f6c 7313 struct sched_group *sg = sd->groups;
89c4710e 7314
e3589f6c
PZ
7315 WARN_ON(!sd || !sg);
7316
7317 do {
7318 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7319 sg = sg->next;
7320 } while (sg != sd->groups);
89c4710e 7321
e3589f6c
PZ
7322 if (cpu != group_first_cpu(sg))
7323 return;
aae6d3dd 7324
d274cb30 7325 update_group_power(sd, cpu);
89c4710e
SS
7326}
7327
7c16ec58
MT
7328/*
7329 * Initializers for schedule domains
7330 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7331 */
7332
a5d8c348
IM
7333#ifdef CONFIG_SCHED_DEBUG
7334# define SD_INIT_NAME(sd, type) sd->name = #type
7335#else
7336# define SD_INIT_NAME(sd, type) do { } while (0)
7337#endif
7338
54ab4ff4
PZ
7339#define SD_INIT_FUNC(type) \
7340static noinline struct sched_domain * \
7341sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7342{ \
7343 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7344 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7345 SD_INIT_NAME(sd, type); \
7346 sd->private = &tl->data; \
7347 return sd; \
7c16ec58
MT
7348}
7349
7350SD_INIT_FUNC(CPU)
7351#ifdef CONFIG_NUMA
7352 SD_INIT_FUNC(ALLNODES)
7353 SD_INIT_FUNC(NODE)
7354#endif
7355#ifdef CONFIG_SCHED_SMT
7356 SD_INIT_FUNC(SIBLING)
7357#endif
7358#ifdef CONFIG_SCHED_MC
7359 SD_INIT_FUNC(MC)
7360#endif
01a08546
HC
7361#ifdef CONFIG_SCHED_BOOK
7362 SD_INIT_FUNC(BOOK)
7363#endif
7c16ec58 7364
1d3504fc 7365static int default_relax_domain_level = -1;
60495e77 7366int sched_domain_level_max;
1d3504fc
HS
7367
7368static int __init setup_relax_domain_level(char *str)
7369{
30e0e178
LZ
7370 unsigned long val;
7371
7372 val = simple_strtoul(str, NULL, 0);
60495e77 7373 if (val < sched_domain_level_max)
30e0e178
LZ
7374 default_relax_domain_level = val;
7375
1d3504fc
HS
7376 return 1;
7377}
7378__setup("relax_domain_level=", setup_relax_domain_level);
7379
7380static void set_domain_attribute(struct sched_domain *sd,
7381 struct sched_domain_attr *attr)
7382{
7383 int request;
7384
7385 if (!attr || attr->relax_domain_level < 0) {
7386 if (default_relax_domain_level < 0)
7387 return;
7388 else
7389 request = default_relax_domain_level;
7390 } else
7391 request = attr->relax_domain_level;
7392 if (request < sd->level) {
7393 /* turn off idle balance on this domain */
c88d5910 7394 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7395 } else {
7396 /* turn on idle balance on this domain */
c88d5910 7397 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7398 }
7399}
7400
54ab4ff4
PZ
7401static void __sdt_free(const struct cpumask *cpu_map);
7402static int __sdt_alloc(const struct cpumask *cpu_map);
7403
2109b99e
AH
7404static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7405 const struct cpumask *cpu_map)
7406{
7407 switch (what) {
2109b99e 7408 case sa_rootdomain:
822ff793
PZ
7409 if (!atomic_read(&d->rd->refcount))
7410 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7411 case sa_sd:
7412 free_percpu(d->sd); /* fall through */
dce840a0 7413 case sa_sd_storage:
54ab4ff4 7414 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7415 case sa_none:
7416 break;
7417 }
7418}
3404c8d9 7419
2109b99e
AH
7420static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7421 const struct cpumask *cpu_map)
7422{
dce840a0
PZ
7423 memset(d, 0, sizeof(*d));
7424
54ab4ff4
PZ
7425 if (__sdt_alloc(cpu_map))
7426 return sa_sd_storage;
dce840a0
PZ
7427 d->sd = alloc_percpu(struct sched_domain *);
7428 if (!d->sd)
7429 return sa_sd_storage;
2109b99e 7430 d->rd = alloc_rootdomain();
dce840a0 7431 if (!d->rd)
21d42ccf 7432 return sa_sd;
2109b99e
AH
7433 return sa_rootdomain;
7434}
57d885fe 7435
dce840a0
PZ
7436/*
7437 * NULL the sd_data elements we've used to build the sched_domain and
7438 * sched_group structure so that the subsequent __free_domain_allocs()
7439 * will not free the data we're using.
7440 */
7441static void claim_allocations(int cpu, struct sched_domain *sd)
7442{
7443 struct sd_data *sdd = sd->private;
dce840a0
PZ
7444
7445 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7446 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7447
e3589f6c 7448 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 7449 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
7450
7451 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 7452 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
7453}
7454
2c402dc3
PZ
7455#ifdef CONFIG_SCHED_SMT
7456static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7457{
2c402dc3 7458 return topology_thread_cpumask(cpu);
3bd65a80 7459}
2c402dc3 7460#endif
7f4588f3 7461
d069b916
PZ
7462/*
7463 * Topology list, bottom-up.
7464 */
2c402dc3 7465static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7466#ifdef CONFIG_SCHED_SMT
7467 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7468#endif
1e9f28fa 7469#ifdef CONFIG_SCHED_MC
2c402dc3 7470 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7471#endif
d069b916
PZ
7472#ifdef CONFIG_SCHED_BOOK
7473 { sd_init_BOOK, cpu_book_mask, },
7474#endif
7475 { sd_init_CPU, cpu_cpu_mask, },
7476#ifdef CONFIG_NUMA
e3589f6c 7477 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 7478 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7479#endif
eb7a74e6
PZ
7480 { NULL, },
7481};
7482
7483static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7484
54ab4ff4
PZ
7485static int __sdt_alloc(const struct cpumask *cpu_map)
7486{
7487 struct sched_domain_topology_level *tl;
7488 int j;
7489
7490 for (tl = sched_domain_topology; tl->init; tl++) {
7491 struct sd_data *sdd = &tl->data;
7492
7493 sdd->sd = alloc_percpu(struct sched_domain *);
7494 if (!sdd->sd)
7495 return -ENOMEM;
7496
7497 sdd->sg = alloc_percpu(struct sched_group *);
7498 if (!sdd->sg)
7499 return -ENOMEM;
7500
9c3f75cb
PZ
7501 sdd->sgp = alloc_percpu(struct sched_group_power *);
7502 if (!sdd->sgp)
7503 return -ENOMEM;
7504
54ab4ff4
PZ
7505 for_each_cpu(j, cpu_map) {
7506 struct sched_domain *sd;
7507 struct sched_group *sg;
9c3f75cb 7508 struct sched_group_power *sgp;
54ab4ff4
PZ
7509
7510 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7511 GFP_KERNEL, cpu_to_node(j));
7512 if (!sd)
7513 return -ENOMEM;
7514
7515 *per_cpu_ptr(sdd->sd, j) = sd;
7516
7517 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7518 GFP_KERNEL, cpu_to_node(j));
7519 if (!sg)
7520 return -ENOMEM;
7521
7522 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
7523
7524 sgp = kzalloc_node(sizeof(struct sched_group_power),
7525 GFP_KERNEL, cpu_to_node(j));
7526 if (!sgp)
7527 return -ENOMEM;
7528
7529 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
7530 }
7531 }
7532
7533 return 0;
7534}
7535
7536static void __sdt_free(const struct cpumask *cpu_map)
7537{
7538 struct sched_domain_topology_level *tl;
7539 int j;
7540
7541 for (tl = sched_domain_topology; tl->init; tl++) {
7542 struct sd_data *sdd = &tl->data;
7543
7544 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
7545 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7546 if (sd && (sd->flags & SD_OVERLAP))
7547 free_sched_groups(sd->groups, 0);
54ab4ff4 7548 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 7549 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
7550 }
7551 free_percpu(sdd->sd);
7552 free_percpu(sdd->sg);
9c3f75cb 7553 free_percpu(sdd->sgp);
54ab4ff4
PZ
7554 }
7555}
7556
2c402dc3
PZ
7557struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7558 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7559 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7560 int cpu)
7561{
54ab4ff4 7562 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7563 if (!sd)
d069b916 7564 return child;
2c402dc3
PZ
7565
7566 set_domain_attribute(sd, attr);
7567 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7568 if (child) {
7569 sd->level = child->level + 1;
7570 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7571 child->parent = sd;
60495e77 7572 }
d069b916 7573 sd->child = child;
2c402dc3
PZ
7574
7575 return sd;
7576}
7577
2109b99e
AH
7578/*
7579 * Build sched domains for a given set of cpus and attach the sched domains
7580 * to the individual cpus
7581 */
dce840a0
PZ
7582static int build_sched_domains(const struct cpumask *cpu_map,
7583 struct sched_domain_attr *attr)
2109b99e
AH
7584{
7585 enum s_alloc alloc_state = sa_none;
dce840a0 7586 struct sched_domain *sd;
2109b99e 7587 struct s_data d;
822ff793 7588 int i, ret = -ENOMEM;
9c1cfda2 7589
2109b99e
AH
7590 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7591 if (alloc_state != sa_rootdomain)
7592 goto error;
9c1cfda2 7593
dce840a0 7594 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7595 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7596 struct sched_domain_topology_level *tl;
7597
3bd65a80 7598 sd = NULL;
e3589f6c 7599 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 7600 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
7601 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7602 sd->flags |= SD_OVERLAP;
d110235d
PZ
7603 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7604 break;
e3589f6c 7605 }
d274cb30 7606
d069b916
PZ
7607 while (sd->child)
7608 sd = sd->child;
7609
21d42ccf 7610 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7611 }
7612
7613 /* Build the groups for the domains */
7614 for_each_cpu(i, cpu_map) {
7615 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7616 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7617 if (sd->flags & SD_OVERLAP) {
7618 if (build_overlap_sched_groups(sd, i))
7619 goto error;
7620 } else {
7621 if (build_sched_groups(sd, i))
7622 goto error;
7623 }
1cf51902 7624 }
a06dadbe 7625 }
9c1cfda2 7626
1da177e4 7627 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7628 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7629 if (!cpumask_test_cpu(i, cpu_map))
7630 continue;
9c1cfda2 7631
dce840a0
PZ
7632 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7633 claim_allocations(i, sd);
cd4ea6ae 7634 init_sched_groups_power(i, sd);
dce840a0 7635 }
f712c0c7 7636 }
9c1cfda2 7637
1da177e4 7638 /* Attach the domains */
dce840a0 7639 rcu_read_lock();
abcd083a 7640 for_each_cpu(i, cpu_map) {
21d42ccf 7641 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7642 cpu_attach_domain(sd, d.rd, i);
1da177e4 7643 }
dce840a0 7644 rcu_read_unlock();
51888ca2 7645
822ff793 7646 ret = 0;
51888ca2 7647error:
2109b99e 7648 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7649 return ret;
1da177e4 7650}
029190c5 7651
acc3f5d7 7652static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7653static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7654static struct sched_domain_attr *dattr_cur;
7655 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7656
7657/*
7658 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7659 * cpumask) fails, then fallback to a single sched domain,
7660 * as determined by the single cpumask fallback_doms.
029190c5 7661 */
4212823f 7662static cpumask_var_t fallback_doms;
029190c5 7663
ee79d1bd
HC
7664/*
7665 * arch_update_cpu_topology lets virtualized architectures update the
7666 * cpu core maps. It is supposed to return 1 if the topology changed
7667 * or 0 if it stayed the same.
7668 */
7669int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7670{
ee79d1bd 7671 return 0;
22e52b07
HC
7672}
7673
acc3f5d7
RR
7674cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7675{
7676 int i;
7677 cpumask_var_t *doms;
7678
7679 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7680 if (!doms)
7681 return NULL;
7682 for (i = 0; i < ndoms; i++) {
7683 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7684 free_sched_domains(doms, i);
7685 return NULL;
7686 }
7687 }
7688 return doms;
7689}
7690
7691void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7692{
7693 unsigned int i;
7694 for (i = 0; i < ndoms; i++)
7695 free_cpumask_var(doms[i]);
7696 kfree(doms);
7697}
7698
1a20ff27 7699/*
41a2d6cf 7700 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7701 * For now this just excludes isolated cpus, but could be used to
7702 * exclude other special cases in the future.
1a20ff27 7703 */
c4a8849a 7704static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7705{
7378547f
MM
7706 int err;
7707
22e52b07 7708 arch_update_cpu_topology();
029190c5 7709 ndoms_cur = 1;
acc3f5d7 7710 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7711 if (!doms_cur)
acc3f5d7
RR
7712 doms_cur = &fallback_doms;
7713 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7714 dattr_cur = NULL;
dce840a0 7715 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7716 register_sched_domain_sysctl();
7378547f
MM
7717
7718 return err;
1a20ff27
DG
7719}
7720
1a20ff27
DG
7721/*
7722 * Detach sched domains from a group of cpus specified in cpu_map
7723 * These cpus will now be attached to the NULL domain
7724 */
96f874e2 7725static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7726{
7727 int i;
7728
dce840a0 7729 rcu_read_lock();
abcd083a 7730 for_each_cpu(i, cpu_map)
57d885fe 7731 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7732 rcu_read_unlock();
1a20ff27
DG
7733}
7734
1d3504fc
HS
7735/* handle null as "default" */
7736static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7737 struct sched_domain_attr *new, int idx_new)
7738{
7739 struct sched_domain_attr tmp;
7740
7741 /* fast path */
7742 if (!new && !cur)
7743 return 1;
7744
7745 tmp = SD_ATTR_INIT;
7746 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7747 new ? (new + idx_new) : &tmp,
7748 sizeof(struct sched_domain_attr));
7749}
7750
029190c5
PJ
7751/*
7752 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7753 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7754 * doms_new[] to the current sched domain partitioning, doms_cur[].
7755 * It destroys each deleted domain and builds each new domain.
7756 *
acc3f5d7 7757 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7758 * The masks don't intersect (don't overlap.) We should setup one
7759 * sched domain for each mask. CPUs not in any of the cpumasks will
7760 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7761 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7762 * it as it is.
7763 *
acc3f5d7
RR
7764 * The passed in 'doms_new' should be allocated using
7765 * alloc_sched_domains. This routine takes ownership of it and will
7766 * free_sched_domains it when done with it. If the caller failed the
7767 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7768 * and partition_sched_domains() will fallback to the single partition
7769 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7770 *
96f874e2 7771 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7772 * ndoms_new == 0 is a special case for destroying existing domains,
7773 * and it will not create the default domain.
dfb512ec 7774 *
029190c5
PJ
7775 * Call with hotplug lock held
7776 */
acc3f5d7 7777void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7778 struct sched_domain_attr *dattr_new)
029190c5 7779{
dfb512ec 7780 int i, j, n;
d65bd5ec 7781 int new_topology;
029190c5 7782
712555ee 7783 mutex_lock(&sched_domains_mutex);
a1835615 7784
7378547f
MM
7785 /* always unregister in case we don't destroy any domains */
7786 unregister_sched_domain_sysctl();
7787
d65bd5ec
HC
7788 /* Let architecture update cpu core mappings. */
7789 new_topology = arch_update_cpu_topology();
7790
dfb512ec 7791 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7792
7793 /* Destroy deleted domains */
7794 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7795 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7796 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7797 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7798 goto match1;
7799 }
7800 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7801 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7802match1:
7803 ;
7804 }
7805
e761b772
MK
7806 if (doms_new == NULL) {
7807 ndoms_cur = 0;
acc3f5d7 7808 doms_new = &fallback_doms;
6ad4c188 7809 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7810 WARN_ON_ONCE(dattr_new);
e761b772
MK
7811 }
7812
029190c5
PJ
7813 /* Build new domains */
7814 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7815 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7816 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7817 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7818 goto match2;
7819 }
7820 /* no match - add a new doms_new */
dce840a0 7821 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7822match2:
7823 ;
7824 }
7825
7826 /* Remember the new sched domains */
acc3f5d7
RR
7827 if (doms_cur != &fallback_doms)
7828 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7829 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7830 doms_cur = doms_new;
1d3504fc 7831 dattr_cur = dattr_new;
029190c5 7832 ndoms_cur = ndoms_new;
7378547f
MM
7833
7834 register_sched_domain_sysctl();
a1835615 7835
712555ee 7836 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7837}
7838
5c45bf27 7839#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7840static void reinit_sched_domains(void)
5c45bf27 7841{
95402b38 7842 get_online_cpus();
dfb512ec
MK
7843
7844 /* Destroy domains first to force the rebuild */
7845 partition_sched_domains(0, NULL, NULL);
7846
e761b772 7847 rebuild_sched_domains();
95402b38 7848 put_online_cpus();
5c45bf27
SS
7849}
7850
7851static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7852{
afb8a9b7 7853 unsigned int level = 0;
5c45bf27 7854
afb8a9b7
GS
7855 if (sscanf(buf, "%u", &level) != 1)
7856 return -EINVAL;
7857
7858 /*
7859 * level is always be positive so don't check for
7860 * level < POWERSAVINGS_BALANCE_NONE which is 0
7861 * What happens on 0 or 1 byte write,
7862 * need to check for count as well?
7863 */
7864
7865 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7866 return -EINVAL;
7867
7868 if (smt)
afb8a9b7 7869 sched_smt_power_savings = level;
5c45bf27 7870 else
afb8a9b7 7871 sched_mc_power_savings = level;
5c45bf27 7872
c4a8849a 7873 reinit_sched_domains();
5c45bf27 7874
c70f22d2 7875 return count;
5c45bf27
SS
7876}
7877
5c45bf27 7878#ifdef CONFIG_SCHED_MC
f718cd4a 7879static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7880 struct sysdev_class_attribute *attr,
f718cd4a 7881 char *page)
5c45bf27
SS
7882{
7883 return sprintf(page, "%u\n", sched_mc_power_savings);
7884}
f718cd4a 7885static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7886 struct sysdev_class_attribute *attr,
48f24c4d 7887 const char *buf, size_t count)
5c45bf27
SS
7888{
7889 return sched_power_savings_store(buf, count, 0);
7890}
f718cd4a
AK
7891static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7892 sched_mc_power_savings_show,
7893 sched_mc_power_savings_store);
5c45bf27
SS
7894#endif
7895
7896#ifdef CONFIG_SCHED_SMT
f718cd4a 7897static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7898 struct sysdev_class_attribute *attr,
f718cd4a 7899 char *page)
5c45bf27
SS
7900{
7901 return sprintf(page, "%u\n", sched_smt_power_savings);
7902}
f718cd4a 7903static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7904 struct sysdev_class_attribute *attr,
48f24c4d 7905 const char *buf, size_t count)
5c45bf27
SS
7906{
7907 return sched_power_savings_store(buf, count, 1);
7908}
f718cd4a
AK
7909static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7910 sched_smt_power_savings_show,
6707de00
AB
7911 sched_smt_power_savings_store);
7912#endif
7913
39aac648 7914int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7915{
7916 int err = 0;
7917
7918#ifdef CONFIG_SCHED_SMT
7919 if (smt_capable())
7920 err = sysfs_create_file(&cls->kset.kobj,
7921 &attr_sched_smt_power_savings.attr);
7922#endif
7923#ifdef CONFIG_SCHED_MC
7924 if (!err && mc_capable())
7925 err = sysfs_create_file(&cls->kset.kobj,
7926 &attr_sched_mc_power_savings.attr);
7927#endif
7928 return err;
7929}
6d6bc0ad 7930#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7931
1da177e4 7932/*
3a101d05
TH
7933 * Update cpusets according to cpu_active mask. If cpusets are
7934 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7935 * around partition_sched_domains().
1da177e4 7936 */
0b2e918a
TH
7937static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7938 void *hcpu)
e761b772 7939{
3a101d05 7940 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7941 case CPU_ONLINE:
6ad4c188 7942 case CPU_DOWN_FAILED:
3a101d05 7943 cpuset_update_active_cpus();
e761b772 7944 return NOTIFY_OK;
3a101d05
TH
7945 default:
7946 return NOTIFY_DONE;
7947 }
7948}
e761b772 7949
0b2e918a
TH
7950static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7951 void *hcpu)
3a101d05
TH
7952{
7953 switch (action & ~CPU_TASKS_FROZEN) {
7954 case CPU_DOWN_PREPARE:
7955 cpuset_update_active_cpus();
7956 return NOTIFY_OK;
e761b772
MK
7957 default:
7958 return NOTIFY_DONE;
7959 }
7960}
e761b772
MK
7961
7962static int update_runtime(struct notifier_block *nfb,
7963 unsigned long action, void *hcpu)
1da177e4 7964{
7def2be1
PZ
7965 int cpu = (int)(long)hcpu;
7966
1da177e4 7967 switch (action) {
1da177e4 7968 case CPU_DOWN_PREPARE:
8bb78442 7969 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7970 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7971 return NOTIFY_OK;
7972
1da177e4 7973 case CPU_DOWN_FAILED:
8bb78442 7974 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7975 case CPU_ONLINE:
8bb78442 7976 case CPU_ONLINE_FROZEN:
7def2be1 7977 enable_runtime(cpu_rq(cpu));
e761b772
MK
7978 return NOTIFY_OK;
7979
1da177e4
LT
7980 default:
7981 return NOTIFY_DONE;
7982 }
1da177e4 7983}
1da177e4
LT
7984
7985void __init sched_init_smp(void)
7986{
dcc30a35
RR
7987 cpumask_var_t non_isolated_cpus;
7988
7989 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7990 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7991
95402b38 7992 get_online_cpus();
712555ee 7993 mutex_lock(&sched_domains_mutex);
c4a8849a 7994 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7995 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7996 if (cpumask_empty(non_isolated_cpus))
7997 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7998 mutex_unlock(&sched_domains_mutex);
95402b38 7999 put_online_cpus();
e761b772 8000
3a101d05
TH
8001 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8002 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
8003
8004 /* RT runtime code needs to handle some hotplug events */
8005 hotcpu_notifier(update_runtime, 0);
8006
b328ca18 8007 init_hrtick();
5c1e1767
NP
8008
8009 /* Move init over to a non-isolated CPU */
dcc30a35 8010 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8011 BUG();
19978ca6 8012 sched_init_granularity();
dcc30a35 8013 free_cpumask_var(non_isolated_cpus);
4212823f 8014
0e3900e6 8015 init_sched_rt_class();
1da177e4
LT
8016}
8017#else
8018void __init sched_init_smp(void)
8019{
19978ca6 8020 sched_init_granularity();
1da177e4
LT
8021}
8022#endif /* CONFIG_SMP */
8023
cd1bb94b
AB
8024const_debug unsigned int sysctl_timer_migration = 1;
8025
1da177e4
LT
8026int in_sched_functions(unsigned long addr)
8027{
1da177e4
LT
8028 return in_lock_functions(addr) ||
8029 (addr >= (unsigned long)__sched_text_start
8030 && addr < (unsigned long)__sched_text_end);
8031}
8032
acb5a9ba 8033static void init_cfs_rq(struct cfs_rq *cfs_rq)
dd41f596
IM
8034{
8035 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8036 INIT_LIST_HEAD(&cfs_rq->tasks);
67e9fb2a 8037 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
c64be78f
PZ
8038#ifndef CONFIG_64BIT
8039 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8040#endif
dd41f596
IM
8041}
8042
fa85ae24
PZ
8043static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8044{
8045 struct rt_prio_array *array;
8046 int i;
8047
8048 array = &rt_rq->active;
8049 for (i = 0; i < MAX_RT_PRIO; i++) {
8050 INIT_LIST_HEAD(array->queue + i);
8051 __clear_bit(i, array->bitmap);
8052 }
8053 /* delimiter for bitsearch: */
8054 __set_bit(MAX_RT_PRIO, array->bitmap);
8055
acb5a9ba 8056#if defined CONFIG_SMP
e864c499
GH
8057 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8058 rt_rq->highest_prio.next = MAX_RT_PRIO;
fa85ae24 8059 rt_rq->rt_nr_migratory = 0;
fa85ae24 8060 rt_rq->overloaded = 0;
732375c6 8061 plist_head_init(&rt_rq->pushable_tasks);
fa85ae24
PZ
8062#endif
8063
8064 rt_rq->rt_time = 0;
8065 rt_rq->rt_throttled = 0;
ac086bc2 8066 rt_rq->rt_runtime = 0;
0986b11b 8067 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
fa85ae24
PZ
8068}
8069
6f505b16 8070#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8071static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8072 struct sched_entity *se, int cpu,
ec7dc8ac 8073 struct sched_entity *parent)
6f505b16 8074{
ec7dc8ac 8075 struct rq *rq = cpu_rq(cpu);
acb5a9ba 8076
6f505b16 8077 cfs_rq->tg = tg;
acb5a9ba
JS
8078 cfs_rq->rq = rq;
8079#ifdef CONFIG_SMP
8080 /* allow initial update_cfs_load() to truncate */
8081 cfs_rq->load_stamp = 1;
8082#endif
ab84d31e 8083 init_cfs_rq_runtime(cfs_rq);
6f505b16 8084
acb5a9ba 8085 tg->cfs_rq[cpu] = cfs_rq;
6f505b16 8086 tg->se[cpu] = se;
acb5a9ba 8087
07e06b01 8088 /* se could be NULL for root_task_group */
354d60c2
DG
8089 if (!se)
8090 return;
8091
ec7dc8ac
DG
8092 if (!parent)
8093 se->cfs_rq = &rq->cfs;
8094 else
8095 se->cfs_rq = parent->my_q;
8096
6f505b16 8097 se->my_q = cfs_rq;
9437178f 8098 update_load_set(&se->load, 0);
ec7dc8ac 8099 se->parent = parent;
6f505b16 8100}
052f1dc7 8101#endif
6f505b16 8102
052f1dc7 8103#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8104static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8105 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8106 struct sched_rt_entity *parent)
6f505b16 8107{
ec7dc8ac
DG
8108 struct rq *rq = cpu_rq(cpu);
8109
acb5a9ba
JS
8110 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8111 rt_rq->rt_nr_boosted = 0;
8112 rt_rq->rq = rq;
6f505b16 8113 rt_rq->tg = tg;
6f505b16 8114
acb5a9ba 8115 tg->rt_rq[cpu] = rt_rq;
6f505b16 8116 tg->rt_se[cpu] = rt_se;
acb5a9ba 8117
354d60c2
DG
8118 if (!rt_se)
8119 return;
8120
ec7dc8ac
DG
8121 if (!parent)
8122 rt_se->rt_rq = &rq->rt;
8123 else
8124 rt_se->rt_rq = parent->my_q;
8125
6f505b16 8126 rt_se->my_q = rt_rq;
ec7dc8ac 8127 rt_se->parent = parent;
6f505b16
PZ
8128 INIT_LIST_HEAD(&rt_se->run_list);
8129}
8130#endif
8131
1da177e4
LT
8132void __init sched_init(void)
8133{
dd41f596 8134 int i, j;
434d53b0
MT
8135 unsigned long alloc_size = 0, ptr;
8136
8137#ifdef CONFIG_FAIR_GROUP_SCHED
8138 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8139#endif
8140#ifdef CONFIG_RT_GROUP_SCHED
8141 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8142#endif
df7c8e84 8143#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8144 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8145#endif
434d53b0 8146 if (alloc_size) {
36b7b6d4 8147 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8148
8149#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8150 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8151 ptr += nr_cpu_ids * sizeof(void **);
8152
07e06b01 8153 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8154 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8155
6d6bc0ad 8156#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8157#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8158 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8159 ptr += nr_cpu_ids * sizeof(void **);
8160
07e06b01 8161 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8162 ptr += nr_cpu_ids * sizeof(void **);
8163
6d6bc0ad 8164#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8165#ifdef CONFIG_CPUMASK_OFFSTACK
8166 for_each_possible_cpu(i) {
8167 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8168 ptr += cpumask_size();
8169 }
8170#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8171 }
dd41f596 8172
57d885fe
GH
8173#ifdef CONFIG_SMP
8174 init_defrootdomain();
8175#endif
8176
d0b27fa7
PZ
8177 init_rt_bandwidth(&def_rt_bandwidth,
8178 global_rt_period(), global_rt_runtime());
8179
8180#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8181 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8182 global_rt_period(), global_rt_runtime());
6d6bc0ad 8183#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8184
7c941438 8185#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8186 list_add(&root_task_group.list, &task_groups);
8187 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8188 autogroup_init(&init_task);
7c941438 8189#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8190
0a945022 8191 for_each_possible_cpu(i) {
70b97a7f 8192 struct rq *rq;
1da177e4
LT
8193
8194 rq = cpu_rq(i);
05fa785c 8195 raw_spin_lock_init(&rq->lock);
7897986b 8196 rq->nr_running = 0;
dce48a84
TG
8197 rq->calc_load_active = 0;
8198 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8199 init_cfs_rq(&rq->cfs);
6f505b16 8200 init_rt_rq(&rq->rt, rq);
dd41f596 8201#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8202 root_task_group.shares = root_task_group_load;
6f505b16 8203 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8204 /*
07e06b01 8205 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8206 *
8207 * In case of task-groups formed thr' the cgroup filesystem, it
8208 * gets 100% of the cpu resources in the system. This overall
8209 * system cpu resource is divided among the tasks of
07e06b01 8210 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8211 * based on each entity's (task or task-group's) weight
8212 * (se->load.weight).
8213 *
07e06b01 8214 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8215 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8216 * then A0's share of the cpu resource is:
8217 *
0d905bca 8218 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8219 *
07e06b01
YZ
8220 * We achieve this by letting root_task_group's tasks sit
8221 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8222 */
ab84d31e 8223 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 8224 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8225#endif /* CONFIG_FAIR_GROUP_SCHED */
8226
8227 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8228#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8229 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8230 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8231#endif
1da177e4 8232
dd41f596
IM
8233 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8234 rq->cpu_load[j] = 0;
fdf3e95d
VP
8235
8236 rq->last_load_update_tick = jiffies;
8237
1da177e4 8238#ifdef CONFIG_SMP
41c7ce9a 8239 rq->sd = NULL;
57d885fe 8240 rq->rd = NULL;
1399fa78 8241 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 8242 rq->post_schedule = 0;
1da177e4 8243 rq->active_balance = 0;
dd41f596 8244 rq->next_balance = jiffies;
1da177e4 8245 rq->push_cpu = 0;
0a2966b4 8246 rq->cpu = i;
1f11eb6a 8247 rq->online = 0;
eae0c9df
MG
8248 rq->idle_stamp = 0;
8249 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8250 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8251#ifdef CONFIG_NO_HZ
8252 rq->nohz_balance_kick = 0;
8253 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8254#endif
1da177e4 8255#endif
8f4d37ec 8256 init_rq_hrtick(rq);
1da177e4 8257 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8258 }
8259
2dd73a4f 8260 set_load_weight(&init_task);
b50f60ce 8261
e107be36
AK
8262#ifdef CONFIG_PREEMPT_NOTIFIERS
8263 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8264#endif
8265
c9819f45 8266#ifdef CONFIG_SMP
962cf36c 8267 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8268#endif
8269
b50f60ce 8270#ifdef CONFIG_RT_MUTEXES
732375c6 8271 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
8272#endif
8273
1da177e4
LT
8274 /*
8275 * The boot idle thread does lazy MMU switching as well:
8276 */
8277 atomic_inc(&init_mm.mm_count);
8278 enter_lazy_tlb(&init_mm, current);
8279
8280 /*
8281 * Make us the idle thread. Technically, schedule() should not be
8282 * called from this thread, however somewhere below it might be,
8283 * but because we are the idle thread, we just pick up running again
8284 * when this runqueue becomes "idle".
8285 */
8286 init_idle(current, smp_processor_id());
dce48a84
TG
8287
8288 calc_load_update = jiffies + LOAD_FREQ;
8289
dd41f596
IM
8290 /*
8291 * During early bootup we pretend to be a normal task:
8292 */
8293 current->sched_class = &fair_sched_class;
6892b75e 8294
6a7b3dc3 8295 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8296 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8297#ifdef CONFIG_SMP
4cb98839 8298 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 8299#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8300 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8301 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8302 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8303 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8304 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8305#endif
bdddd296
RR
8306 /* May be allocated at isolcpus cmdline parse time */
8307 if (cpu_isolated_map == NULL)
8308 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8309#endif /* SMP */
6a7b3dc3 8310
6892b75e 8311 scheduler_running = 1;
1da177e4
LT
8312}
8313
d902db1e 8314#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8315static inline int preempt_count_equals(int preempt_offset)
8316{
234da7bc 8317 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8318
4ba8216c 8319 return (nested == preempt_offset);
e4aafea2
FW
8320}
8321
d894837f 8322void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8323{
1da177e4
LT
8324 static unsigned long prev_jiffy; /* ratelimiting */
8325
e4aafea2
FW
8326 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8327 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8328 return;
8329 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8330 return;
8331 prev_jiffy = jiffies;
8332
3df0fc5b
PZ
8333 printk(KERN_ERR
8334 "BUG: sleeping function called from invalid context at %s:%d\n",
8335 file, line);
8336 printk(KERN_ERR
8337 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8338 in_atomic(), irqs_disabled(),
8339 current->pid, current->comm);
aef745fc
IM
8340
8341 debug_show_held_locks(current);
8342 if (irqs_disabled())
8343 print_irqtrace_events(current);
8344 dump_stack();
1da177e4
LT
8345}
8346EXPORT_SYMBOL(__might_sleep);
8347#endif
8348
8349#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8350static void normalize_task(struct rq *rq, struct task_struct *p)
8351{
da7a735e
PZ
8352 const struct sched_class *prev_class = p->sched_class;
8353 int old_prio = p->prio;
3a5e4dc1 8354 int on_rq;
3e51f33f 8355
fd2f4419 8356 on_rq = p->on_rq;
3a5e4dc1
AK
8357 if (on_rq)
8358 deactivate_task(rq, p, 0);
8359 __setscheduler(rq, p, SCHED_NORMAL, 0);
8360 if (on_rq) {
8361 activate_task(rq, p, 0);
8362 resched_task(rq->curr);
8363 }
da7a735e
PZ
8364
8365 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8366}
8367
1da177e4
LT
8368void normalize_rt_tasks(void)
8369{
a0f98a1c 8370 struct task_struct *g, *p;
1da177e4 8371 unsigned long flags;
70b97a7f 8372 struct rq *rq;
1da177e4 8373
4cf5d77a 8374 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8375 do_each_thread(g, p) {
178be793
IM
8376 /*
8377 * Only normalize user tasks:
8378 */
8379 if (!p->mm)
8380 continue;
8381
6cfb0d5d 8382 p->se.exec_start = 0;
6cfb0d5d 8383#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8384 p->se.statistics.wait_start = 0;
8385 p->se.statistics.sleep_start = 0;
8386 p->se.statistics.block_start = 0;
6cfb0d5d 8387#endif
dd41f596
IM
8388
8389 if (!rt_task(p)) {
8390 /*
8391 * Renice negative nice level userspace
8392 * tasks back to 0:
8393 */
8394 if (TASK_NICE(p) < 0 && p->mm)
8395 set_user_nice(p, 0);
1da177e4 8396 continue;
dd41f596 8397 }
1da177e4 8398
1d615482 8399 raw_spin_lock(&p->pi_lock);
b29739f9 8400 rq = __task_rq_lock(p);
1da177e4 8401
178be793 8402 normalize_task(rq, p);
3a5e4dc1 8403
b29739f9 8404 __task_rq_unlock(rq);
1d615482 8405 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8406 } while_each_thread(g, p);
8407
4cf5d77a 8408 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8409}
8410
8411#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8412
67fc4e0c 8413#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8414/*
67fc4e0c 8415 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8416 *
8417 * They can only be called when the whole system has been
8418 * stopped - every CPU needs to be quiescent, and no scheduling
8419 * activity can take place. Using them for anything else would
8420 * be a serious bug, and as a result, they aren't even visible
8421 * under any other configuration.
8422 */
8423
8424/**
8425 * curr_task - return the current task for a given cpu.
8426 * @cpu: the processor in question.
8427 *
8428 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8429 */
36c8b586 8430struct task_struct *curr_task(int cpu)
1df5c10a
LT
8431{
8432 return cpu_curr(cpu);
8433}
8434
67fc4e0c
JW
8435#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8436
8437#ifdef CONFIG_IA64
1df5c10a
LT
8438/**
8439 * set_curr_task - set the current task for a given cpu.
8440 * @cpu: the processor in question.
8441 * @p: the task pointer to set.
8442 *
8443 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8444 * are serviced on a separate stack. It allows the architecture to switch the
8445 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8446 * must be called with all CPU's synchronized, and interrupts disabled, the
8447 * and caller must save the original value of the current task (see
8448 * curr_task() above) and restore that value before reenabling interrupts and
8449 * re-starting the system.
8450 *
8451 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8452 */
36c8b586 8453void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8454{
8455 cpu_curr(cpu) = p;
8456}
8457
8458#endif
29f59db3 8459
bccbe08a
PZ
8460#ifdef CONFIG_FAIR_GROUP_SCHED
8461static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8462{
8463 int i;
8464
ab84d31e
PT
8465 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8466
6f505b16
PZ
8467 for_each_possible_cpu(i) {
8468 if (tg->cfs_rq)
8469 kfree(tg->cfs_rq[i]);
8470 if (tg->se)
8471 kfree(tg->se[i]);
6f505b16
PZ
8472 }
8473
8474 kfree(tg->cfs_rq);
8475 kfree(tg->se);
6f505b16
PZ
8476}
8477
ec7dc8ac
DG
8478static
8479int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8480{
29f59db3 8481 struct cfs_rq *cfs_rq;
eab17229 8482 struct sched_entity *se;
29f59db3
SV
8483 int i;
8484
434d53b0 8485 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8486 if (!tg->cfs_rq)
8487 goto err;
434d53b0 8488 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8489 if (!tg->se)
8490 goto err;
052f1dc7
PZ
8491
8492 tg->shares = NICE_0_LOAD;
29f59db3 8493
ab84d31e
PT
8494 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8495
29f59db3 8496 for_each_possible_cpu(i) {
eab17229
LZ
8497 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8498 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8499 if (!cfs_rq)
8500 goto err;
8501
eab17229
LZ
8502 se = kzalloc_node(sizeof(struct sched_entity),
8503 GFP_KERNEL, cpu_to_node(i));
29f59db3 8504 if (!se)
dfc12eb2 8505 goto err_free_rq;
29f59db3 8506
acb5a9ba 8507 init_cfs_rq(cfs_rq);
3d4b47b4 8508 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8509 }
8510
8511 return 1;
8512
49246274 8513err_free_rq:
dfc12eb2 8514 kfree(cfs_rq);
49246274 8515err:
bccbe08a
PZ
8516 return 0;
8517}
8518
bccbe08a
PZ
8519static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8520{
3d4b47b4
PZ
8521 struct rq *rq = cpu_rq(cpu);
8522 unsigned long flags;
3d4b47b4
PZ
8523
8524 /*
8525 * Only empty task groups can be destroyed; so we can speculatively
8526 * check on_list without danger of it being re-added.
8527 */
8528 if (!tg->cfs_rq[cpu]->on_list)
8529 return;
8530
8531 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8532 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8533 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8534}
5f817d67 8535#else /* !CONFIG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8536static inline void free_fair_sched_group(struct task_group *tg)
8537{
8538}
8539
ec7dc8ac
DG
8540static inline
8541int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8542{
8543 return 1;
8544}
8545
bccbe08a
PZ
8546static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8547{
8548}
6d6bc0ad 8549#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8550
8551#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8552static void free_rt_sched_group(struct task_group *tg)
8553{
8554 int i;
8555
99bc5242
BL
8556 if (tg->rt_se)
8557 destroy_rt_bandwidth(&tg->rt_bandwidth);
d0b27fa7 8558
bccbe08a
PZ
8559 for_each_possible_cpu(i) {
8560 if (tg->rt_rq)
8561 kfree(tg->rt_rq[i]);
8562 if (tg->rt_se)
8563 kfree(tg->rt_se[i]);
8564 }
8565
8566 kfree(tg->rt_rq);
8567 kfree(tg->rt_se);
8568}
8569
ec7dc8ac
DG
8570static
8571int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8572{
8573 struct rt_rq *rt_rq;
eab17229 8574 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8575 int i;
8576
434d53b0 8577 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8578 if (!tg->rt_rq)
8579 goto err;
434d53b0 8580 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8581 if (!tg->rt_se)
8582 goto err;
8583
d0b27fa7
PZ
8584 init_rt_bandwidth(&tg->rt_bandwidth,
8585 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8586
8587 for_each_possible_cpu(i) {
eab17229
LZ
8588 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8589 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8590 if (!rt_rq)
8591 goto err;
29f59db3 8592
eab17229
LZ
8593 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8594 GFP_KERNEL, cpu_to_node(i));
6f505b16 8595 if (!rt_se)
dfc12eb2 8596 goto err_free_rq;
29f59db3 8597
acb5a9ba
JS
8598 init_rt_rq(rt_rq, cpu_rq(i));
8599 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
3d4b47b4 8600 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8601 }
8602
bccbe08a
PZ
8603 return 1;
8604
49246274 8605err_free_rq:
dfc12eb2 8606 kfree(rt_rq);
49246274 8607err:
bccbe08a
PZ
8608 return 0;
8609}
6d6bc0ad 8610#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8611static inline void free_rt_sched_group(struct task_group *tg)
8612{
8613}
8614
ec7dc8ac
DG
8615static inline
8616int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8617{
8618 return 1;
8619}
6d6bc0ad 8620#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8621
7c941438 8622#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8623static void free_sched_group(struct task_group *tg)
8624{
8625 free_fair_sched_group(tg);
8626 free_rt_sched_group(tg);
e9aa1dd1 8627 autogroup_free(tg);
bccbe08a
PZ
8628 kfree(tg);
8629}
8630
8631/* allocate runqueue etc for a new task group */
ec7dc8ac 8632struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8633{
8634 struct task_group *tg;
8635 unsigned long flags;
bccbe08a
PZ
8636
8637 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8638 if (!tg)
8639 return ERR_PTR(-ENOMEM);
8640
ec7dc8ac 8641 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8642 goto err;
8643
ec7dc8ac 8644 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8645 goto err;
8646
8ed36996 8647 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8648 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8649
8650 WARN_ON(!parent); /* root should already exist */
8651
8652 tg->parent = parent;
f473aa5e 8653 INIT_LIST_HEAD(&tg->children);
09f2724a 8654 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8655 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8656
9b5b7751 8657 return tg;
29f59db3
SV
8658
8659err:
6f505b16 8660 free_sched_group(tg);
29f59db3
SV
8661 return ERR_PTR(-ENOMEM);
8662}
8663
9b5b7751 8664/* rcu callback to free various structures associated with a task group */
6f505b16 8665static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8666{
29f59db3 8667 /* now it should be safe to free those cfs_rqs */
6f505b16 8668 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8669}
8670
9b5b7751 8671/* Destroy runqueue etc associated with a task group */
4cf86d77 8672void sched_destroy_group(struct task_group *tg)
29f59db3 8673{
8ed36996 8674 unsigned long flags;
9b5b7751 8675 int i;
29f59db3 8676
3d4b47b4
PZ
8677 /* end participation in shares distribution */
8678 for_each_possible_cpu(i)
bccbe08a 8679 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8680
8681 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8682 list_del_rcu(&tg->list);
f473aa5e 8683 list_del_rcu(&tg->siblings);
8ed36996 8684 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8685
9b5b7751 8686 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8687 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8688}
8689
9b5b7751 8690/* change task's runqueue when it moves between groups.
3a252015
IM
8691 * The caller of this function should have put the task in its new group
8692 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8693 * reflect its new group.
9b5b7751
SV
8694 */
8695void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8696{
8697 int on_rq, running;
8698 unsigned long flags;
8699 struct rq *rq;
8700
8701 rq = task_rq_lock(tsk, &flags);
8702
051a1d1a 8703 running = task_current(rq, tsk);
fd2f4419 8704 on_rq = tsk->on_rq;
29f59db3 8705
0e1f3483 8706 if (on_rq)
29f59db3 8707 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8708 if (unlikely(running))
8709 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8710
810b3817 8711#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8712 if (tsk->sched_class->task_move_group)
8713 tsk->sched_class->task_move_group(tsk, on_rq);
8714 else
810b3817 8715#endif
b2b5ce02 8716 set_task_rq(tsk, task_cpu(tsk));
810b3817 8717
0e1f3483
HS
8718 if (unlikely(running))
8719 tsk->sched_class->set_curr_task(rq);
8720 if (on_rq)
371fd7e7 8721 enqueue_task(rq, tsk, 0);
29f59db3 8722
0122ec5b 8723 task_rq_unlock(rq, tsk, &flags);
29f59db3 8724}
7c941438 8725#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8726
052f1dc7 8727#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8728static DEFINE_MUTEX(shares_mutex);
8729
4cf86d77 8730int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8731{
8732 int i;
8ed36996 8733 unsigned long flags;
c61935fd 8734
ec7dc8ac
DG
8735 /*
8736 * We can't change the weight of the root cgroup.
8737 */
8738 if (!tg->se[0])
8739 return -EINVAL;
8740
cd62287e 8741 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
62fb1851 8742
8ed36996 8743 mutex_lock(&shares_mutex);
9b5b7751 8744 if (tg->shares == shares)
5cb350ba 8745 goto done;
29f59db3 8746
9b5b7751 8747 tg->shares = shares;
c09595f6 8748 for_each_possible_cpu(i) {
9437178f
PT
8749 struct rq *rq = cpu_rq(i);
8750 struct sched_entity *se;
8751
8752 se = tg->se[i];
8753 /* Propagate contribution to hierarchy */
8754 raw_spin_lock_irqsave(&rq->lock, flags);
8755 for_each_sched_entity(se)
6d5ab293 8756 update_cfs_shares(group_cfs_rq(se));
9437178f 8757 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8758 }
29f59db3 8759
5cb350ba 8760done:
8ed36996 8761 mutex_unlock(&shares_mutex);
9b5b7751 8762 return 0;
29f59db3
SV
8763}
8764
5cb350ba
DG
8765unsigned long sched_group_shares(struct task_group *tg)
8766{
8767 return tg->shares;
8768}
052f1dc7 8769#endif
5cb350ba 8770
a790de99 8771#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
8772static unsigned long to_ratio(u64 period, u64 runtime)
8773{
8774 if (runtime == RUNTIME_INF)
9a7e0b18 8775 return 1ULL << 20;
9f0c1e56 8776
9a7e0b18 8777 return div64_u64(runtime << 20, period);
9f0c1e56 8778}
a790de99
PT
8779#endif
8780
8781#ifdef CONFIG_RT_GROUP_SCHED
8782/*
8783 * Ensure that the real time constraints are schedulable.
8784 */
8785static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 8786
9a7e0b18
PZ
8787/* Must be called with tasklist_lock held */
8788static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8789{
9a7e0b18 8790 struct task_struct *g, *p;
b40b2e8e 8791
9a7e0b18
PZ
8792 do_each_thread(g, p) {
8793 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8794 return 1;
8795 } while_each_thread(g, p);
b40b2e8e 8796
9a7e0b18
PZ
8797 return 0;
8798}
b40b2e8e 8799
9a7e0b18
PZ
8800struct rt_schedulable_data {
8801 struct task_group *tg;
8802 u64 rt_period;
8803 u64 rt_runtime;
8804};
b40b2e8e 8805
a790de99 8806static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8807{
8808 struct rt_schedulable_data *d = data;
8809 struct task_group *child;
8810 unsigned long total, sum = 0;
8811 u64 period, runtime;
b40b2e8e 8812
9a7e0b18
PZ
8813 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8814 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8815
9a7e0b18
PZ
8816 if (tg == d->tg) {
8817 period = d->rt_period;
8818 runtime = d->rt_runtime;
b40b2e8e 8819 }
b40b2e8e 8820
4653f803
PZ
8821 /*
8822 * Cannot have more runtime than the period.
8823 */
8824 if (runtime > period && runtime != RUNTIME_INF)
8825 return -EINVAL;
6f505b16 8826
4653f803
PZ
8827 /*
8828 * Ensure we don't starve existing RT tasks.
8829 */
9a7e0b18
PZ
8830 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8831 return -EBUSY;
6f505b16 8832
9a7e0b18 8833 total = to_ratio(period, runtime);
6f505b16 8834
4653f803
PZ
8835 /*
8836 * Nobody can have more than the global setting allows.
8837 */
8838 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8839 return -EINVAL;
6f505b16 8840
4653f803
PZ
8841 /*
8842 * The sum of our children's runtime should not exceed our own.
8843 */
9a7e0b18
PZ
8844 list_for_each_entry_rcu(child, &tg->children, siblings) {
8845 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8846 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8847
9a7e0b18
PZ
8848 if (child == d->tg) {
8849 period = d->rt_period;
8850 runtime = d->rt_runtime;
8851 }
6f505b16 8852
9a7e0b18 8853 sum += to_ratio(period, runtime);
9f0c1e56 8854 }
6f505b16 8855
9a7e0b18
PZ
8856 if (sum > total)
8857 return -EINVAL;
8858
8859 return 0;
6f505b16
PZ
8860}
8861
9a7e0b18 8862static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8863{
9a7e0b18
PZ
8864 struct rt_schedulable_data data = {
8865 .tg = tg,
8866 .rt_period = period,
8867 .rt_runtime = runtime,
8868 };
8869
a790de99 8870 return walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
521f1a24
DG
8871}
8872
ab84d31e 8873static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8874 u64 rt_period, u64 rt_runtime)
6f505b16 8875{
ac086bc2 8876 int i, err = 0;
9f0c1e56 8877
9f0c1e56 8878 mutex_lock(&rt_constraints_mutex);
521f1a24 8879 read_lock(&tasklist_lock);
9a7e0b18
PZ
8880 err = __rt_schedulable(tg, rt_period, rt_runtime);
8881 if (err)
9f0c1e56 8882 goto unlock;
ac086bc2 8883
0986b11b 8884 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8885 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8886 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8887
8888 for_each_possible_cpu(i) {
8889 struct rt_rq *rt_rq = tg->rt_rq[i];
8890
0986b11b 8891 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8892 rt_rq->rt_runtime = rt_runtime;
0986b11b 8893 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8894 }
0986b11b 8895 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8896unlock:
521f1a24 8897 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8898 mutex_unlock(&rt_constraints_mutex);
8899
8900 return err;
6f505b16
PZ
8901}
8902
d0b27fa7
PZ
8903int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8904{
8905 u64 rt_runtime, rt_period;
8906
8907 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8908 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8909 if (rt_runtime_us < 0)
8910 rt_runtime = RUNTIME_INF;
8911
ab84d31e 8912 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8913}
8914
9f0c1e56
PZ
8915long sched_group_rt_runtime(struct task_group *tg)
8916{
8917 u64 rt_runtime_us;
8918
d0b27fa7 8919 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8920 return -1;
8921
d0b27fa7 8922 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8923 do_div(rt_runtime_us, NSEC_PER_USEC);
8924 return rt_runtime_us;
8925}
d0b27fa7
PZ
8926
8927int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8928{
8929 u64 rt_runtime, rt_period;
8930
8931 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8932 rt_runtime = tg->rt_bandwidth.rt_runtime;
8933
619b0488
R
8934 if (rt_period == 0)
8935 return -EINVAL;
8936
ab84d31e 8937 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8938}
8939
8940long sched_group_rt_period(struct task_group *tg)
8941{
8942 u64 rt_period_us;
8943
8944 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8945 do_div(rt_period_us, NSEC_PER_USEC);
8946 return rt_period_us;
8947}
8948
8949static int sched_rt_global_constraints(void)
8950{
4653f803 8951 u64 runtime, period;
d0b27fa7
PZ
8952 int ret = 0;
8953
ec5d4989
HS
8954 if (sysctl_sched_rt_period <= 0)
8955 return -EINVAL;
8956
4653f803
PZ
8957 runtime = global_rt_runtime();
8958 period = global_rt_period();
8959
8960 /*
8961 * Sanity check on the sysctl variables.
8962 */
8963 if (runtime > period && runtime != RUNTIME_INF)
8964 return -EINVAL;
10b612f4 8965
d0b27fa7 8966 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8967 read_lock(&tasklist_lock);
4653f803 8968 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8969 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8970 mutex_unlock(&rt_constraints_mutex);
8971
8972 return ret;
8973}
54e99124
DG
8974
8975int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8976{
8977 /* Don't accept realtime tasks when there is no way for them to run */
8978 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8979 return 0;
8980
8981 return 1;
8982}
8983
6d6bc0ad 8984#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8985static int sched_rt_global_constraints(void)
8986{
ac086bc2
PZ
8987 unsigned long flags;
8988 int i;
8989
ec5d4989
HS
8990 if (sysctl_sched_rt_period <= 0)
8991 return -EINVAL;
8992
60aa605d
PZ
8993 /*
8994 * There's always some RT tasks in the root group
8995 * -- migration, kstopmachine etc..
8996 */
8997 if (sysctl_sched_rt_runtime == 0)
8998 return -EBUSY;
8999
0986b11b 9000 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
9001 for_each_possible_cpu(i) {
9002 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9003
0986b11b 9004 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 9005 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 9006 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 9007 }
0986b11b 9008 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 9009
d0b27fa7
PZ
9010 return 0;
9011}
6d6bc0ad 9012#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9013
9014int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 9015 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9016 loff_t *ppos)
9017{
9018 int ret;
9019 int old_period, old_runtime;
9020 static DEFINE_MUTEX(mutex);
9021
9022 mutex_lock(&mutex);
9023 old_period = sysctl_sched_rt_period;
9024 old_runtime = sysctl_sched_rt_runtime;
9025
8d65af78 9026 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9027
9028 if (!ret && write) {
9029 ret = sched_rt_global_constraints();
9030 if (ret) {
9031 sysctl_sched_rt_period = old_period;
9032 sysctl_sched_rt_runtime = old_runtime;
9033 } else {
9034 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9035 def_rt_bandwidth.rt_period =
9036 ns_to_ktime(global_rt_period());
9037 }
9038 }
9039 mutex_unlock(&mutex);
9040
9041 return ret;
9042}
68318b8e 9043
052f1dc7 9044#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9045
9046/* return corresponding task_group object of a cgroup */
2b01dfe3 9047static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9048{
2b01dfe3
PM
9049 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9050 struct task_group, css);
68318b8e
SV
9051}
9052
9053static struct cgroup_subsys_state *
2b01dfe3 9054cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9055{
ec7dc8ac 9056 struct task_group *tg, *parent;
68318b8e 9057
2b01dfe3 9058 if (!cgrp->parent) {
68318b8e 9059 /* This is early initialization for the top cgroup */
07e06b01 9060 return &root_task_group.css;
68318b8e
SV
9061 }
9062
ec7dc8ac
DG
9063 parent = cgroup_tg(cgrp->parent);
9064 tg = sched_create_group(parent);
68318b8e
SV
9065 if (IS_ERR(tg))
9066 return ERR_PTR(-ENOMEM);
9067
68318b8e
SV
9068 return &tg->css;
9069}
9070
41a2d6cf
IM
9071static void
9072cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9073{
2b01dfe3 9074 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9075
9076 sched_destroy_group(tg);
9077}
9078
41a2d6cf 9079static int
be367d09 9080cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9081{
b68aa230 9082#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9083 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9084 return -EINVAL;
9085#else
68318b8e
SV
9086 /* We don't support RT-tasks being in separate groups */
9087 if (tsk->sched_class != &fair_sched_class)
9088 return -EINVAL;
b68aa230 9089#endif
be367d09
BB
9090 return 0;
9091}
68318b8e 9092
68318b8e 9093static void
f780bdb7 9094cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
9095{
9096 sched_move_task(tsk);
9097}
9098
068c5cc5 9099static void
d41d5a01
PZ
9100cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9101 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9102{
9103 /*
9104 * cgroup_exit() is called in the copy_process() failure path.
9105 * Ignore this case since the task hasn't ran yet, this avoids
9106 * trying to poke a half freed task state from generic code.
9107 */
9108 if (!(task->flags & PF_EXITING))
9109 return;
9110
9111 sched_move_task(task);
9112}
9113
052f1dc7 9114#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9115static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9116 u64 shareval)
68318b8e 9117{
c8b28116 9118 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
9119}
9120
f4c753b7 9121static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9122{
2b01dfe3 9123 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 9124
c8b28116 9125 return (u64) scale_load_down(tg->shares);
68318b8e 9126}
ab84d31e
PT
9127
9128#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
9129static DEFINE_MUTEX(cfs_constraints_mutex);
9130
ab84d31e
PT
9131const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9132const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9133
a790de99
PT
9134static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9135
ab84d31e
PT
9136static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9137{
58088ad0 9138 int i, ret = 0, runtime_enabled;
ab84d31e 9139 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
ab84d31e
PT
9140
9141 if (tg == &root_task_group)
9142 return -EINVAL;
9143
9144 /*
9145 * Ensure we have at some amount of bandwidth every period. This is
9146 * to prevent reaching a state of large arrears when throttled via
9147 * entity_tick() resulting in prolonged exit starvation.
9148 */
9149 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9150 return -EINVAL;
9151
9152 /*
9153 * Likewise, bound things on the otherside by preventing insane quota
9154 * periods. This also allows us to normalize in computing quota
9155 * feasibility.
9156 */
9157 if (period > max_cfs_quota_period)
9158 return -EINVAL;
9159
a790de99
PT
9160 mutex_lock(&cfs_constraints_mutex);
9161 ret = __cfs_schedulable(tg, period, quota);
9162 if (ret)
9163 goto out_unlock;
9164
58088ad0 9165 runtime_enabled = quota != RUNTIME_INF;
ab84d31e
PT
9166 raw_spin_lock_irq(&cfs_b->lock);
9167 cfs_b->period = ns_to_ktime(period);
9168 cfs_b->quota = quota;
ec12cb7f 9169 cfs_b->runtime = quota;
58088ad0
PT
9170
9171 /* restart the period timer (if active) to handle new period expiry */
9172 if (runtime_enabled && cfs_b->timer_active) {
9173 /* force a reprogram */
9174 cfs_b->timer_active = 0;
9175 __start_cfs_bandwidth(cfs_b);
9176 }
ab84d31e
PT
9177 raw_spin_unlock_irq(&cfs_b->lock);
9178
9179 for_each_possible_cpu(i) {
9180 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9181 struct rq *rq = rq_of(cfs_rq);
9182
9183 raw_spin_lock_irq(&rq->lock);
58088ad0 9184 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e
PT
9185 cfs_rq->runtime_remaining = 0;
9186 raw_spin_unlock_irq(&rq->lock);
9187 }
a790de99
PT
9188out_unlock:
9189 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 9190
a790de99 9191 return ret;
ab84d31e
PT
9192}
9193
9194int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9195{
9196 u64 quota, period;
9197
9198 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9199 if (cfs_quota_us < 0)
9200 quota = RUNTIME_INF;
9201 else
9202 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9203
9204 return tg_set_cfs_bandwidth(tg, period, quota);
9205}
9206
9207long tg_get_cfs_quota(struct task_group *tg)
9208{
9209 u64 quota_us;
9210
9211 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9212 return -1;
9213
9214 quota_us = tg_cfs_bandwidth(tg)->quota;
9215 do_div(quota_us, NSEC_PER_USEC);
9216
9217 return quota_us;
9218}
9219
9220int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9221{
9222 u64 quota, period;
9223
9224 period = (u64)cfs_period_us * NSEC_PER_USEC;
9225 quota = tg_cfs_bandwidth(tg)->quota;
9226
9227 if (period <= 0)
9228 return -EINVAL;
9229
9230 return tg_set_cfs_bandwidth(tg, period, quota);
9231}
9232
9233long tg_get_cfs_period(struct task_group *tg)
9234{
9235 u64 cfs_period_us;
9236
9237 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9238 do_div(cfs_period_us, NSEC_PER_USEC);
9239
9240 return cfs_period_us;
9241}
9242
9243static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9244{
9245 return tg_get_cfs_quota(cgroup_tg(cgrp));
9246}
9247
9248static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9249 s64 cfs_quota_us)
9250{
9251 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9252}
9253
9254static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9255{
9256 return tg_get_cfs_period(cgroup_tg(cgrp));
9257}
9258
9259static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9260 u64 cfs_period_us)
9261{
9262 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9263}
9264
a790de99
PT
9265struct cfs_schedulable_data {
9266 struct task_group *tg;
9267 u64 period, quota;
9268};
9269
9270/*
9271 * normalize group quota/period to be quota/max_period
9272 * note: units are usecs
9273 */
9274static u64 normalize_cfs_quota(struct task_group *tg,
9275 struct cfs_schedulable_data *d)
9276{
9277 u64 quota, period;
9278
9279 if (tg == d->tg) {
9280 period = d->period;
9281 quota = d->quota;
9282 } else {
9283 period = tg_get_cfs_period(tg);
9284 quota = tg_get_cfs_quota(tg);
9285 }
9286
9287 /* note: these should typically be equivalent */
9288 if (quota == RUNTIME_INF || quota == -1)
9289 return RUNTIME_INF;
9290
9291 return to_ratio(period, quota);
9292}
9293
9294static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9295{
9296 struct cfs_schedulable_data *d = data;
9297 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9298 s64 quota = 0, parent_quota = -1;
9299
9300 if (!tg->parent) {
9301 quota = RUNTIME_INF;
9302 } else {
9303 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9304
9305 quota = normalize_cfs_quota(tg, d);
9306 parent_quota = parent_b->hierarchal_quota;
9307
9308 /*
9309 * ensure max(child_quota) <= parent_quota, inherit when no
9310 * limit is set
9311 */
9312 if (quota == RUNTIME_INF)
9313 quota = parent_quota;
9314 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9315 return -EINVAL;
9316 }
9317 cfs_b->hierarchal_quota = quota;
9318
9319 return 0;
9320}
9321
9322static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9323{
9324 struct cfs_schedulable_data data = {
9325 .tg = tg,
9326 .period = period,
9327 .quota = quota,
9328 };
9329
9330 if (quota != RUNTIME_INF) {
9331 do_div(data.period, NSEC_PER_USEC);
9332 do_div(data.quota, NSEC_PER_USEC);
9333 }
9334
9335 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9336}
ab84d31e 9337#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 9338#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9339
052f1dc7 9340#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9341static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9342 s64 val)
6f505b16 9343{
06ecb27c 9344 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9345}
9346
06ecb27c 9347static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9348{
06ecb27c 9349 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9350}
d0b27fa7
PZ
9351
9352static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9353 u64 rt_period_us)
9354{
9355 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9356}
9357
9358static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9359{
9360 return sched_group_rt_period(cgroup_tg(cgrp));
9361}
6d6bc0ad 9362#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9363
fe5c7cc2 9364static struct cftype cpu_files[] = {
052f1dc7 9365#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9366 {
9367 .name = "shares",
f4c753b7
PM
9368 .read_u64 = cpu_shares_read_u64,
9369 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9370 },
052f1dc7 9371#endif
ab84d31e
PT
9372#ifdef CONFIG_CFS_BANDWIDTH
9373 {
9374 .name = "cfs_quota_us",
9375 .read_s64 = cpu_cfs_quota_read_s64,
9376 .write_s64 = cpu_cfs_quota_write_s64,
9377 },
9378 {
9379 .name = "cfs_period_us",
9380 .read_u64 = cpu_cfs_period_read_u64,
9381 .write_u64 = cpu_cfs_period_write_u64,
9382 },
9383#endif
052f1dc7 9384#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9385 {
9f0c1e56 9386 .name = "rt_runtime_us",
06ecb27c
PM
9387 .read_s64 = cpu_rt_runtime_read,
9388 .write_s64 = cpu_rt_runtime_write,
6f505b16 9389 },
d0b27fa7
PZ
9390 {
9391 .name = "rt_period_us",
f4c753b7
PM
9392 .read_u64 = cpu_rt_period_read_uint,
9393 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9394 },
052f1dc7 9395#endif
68318b8e
SV
9396};
9397
9398static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9399{
fe5c7cc2 9400 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9401}
9402
9403struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9404 .name = "cpu",
9405 .create = cpu_cgroup_create,
9406 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
9407 .can_attach_task = cpu_cgroup_can_attach_task,
9408 .attach_task = cpu_cgroup_attach_task,
068c5cc5 9409 .exit = cpu_cgroup_exit,
38605cae
IM
9410 .populate = cpu_cgroup_populate,
9411 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9412 .early_init = 1,
9413};
9414
052f1dc7 9415#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9416
9417#ifdef CONFIG_CGROUP_CPUACCT
9418
9419/*
9420 * CPU accounting code for task groups.
9421 *
9422 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9423 * (balbir@in.ibm.com).
9424 */
9425
934352f2 9426/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9427struct cpuacct {
9428 struct cgroup_subsys_state css;
9429 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9430 u64 __percpu *cpuusage;
ef12fefa 9431 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9432 struct cpuacct *parent;
d842de87
SV
9433};
9434
9435struct cgroup_subsys cpuacct_subsys;
9436
9437/* return cpu accounting group corresponding to this container */
32cd756a 9438static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9439{
32cd756a 9440 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9441 struct cpuacct, css);
9442}
9443
9444/* return cpu accounting group to which this task belongs */
9445static inline struct cpuacct *task_ca(struct task_struct *tsk)
9446{
9447 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9448 struct cpuacct, css);
9449}
9450
9451/* create a new cpu accounting group */
9452static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9453 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9454{
9455 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9456 int i;
d842de87
SV
9457
9458 if (!ca)
ef12fefa 9459 goto out;
d842de87
SV
9460
9461 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9462 if (!ca->cpuusage)
9463 goto out_free_ca;
9464
9465 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9466 if (percpu_counter_init(&ca->cpustat[i], 0))
9467 goto out_free_counters;
d842de87 9468
934352f2
BR
9469 if (cgrp->parent)
9470 ca->parent = cgroup_ca(cgrp->parent);
9471
d842de87 9472 return &ca->css;
ef12fefa
BR
9473
9474out_free_counters:
9475 while (--i >= 0)
9476 percpu_counter_destroy(&ca->cpustat[i]);
9477 free_percpu(ca->cpuusage);
9478out_free_ca:
9479 kfree(ca);
9480out:
9481 return ERR_PTR(-ENOMEM);
d842de87
SV
9482}
9483
9484/* destroy an existing cpu accounting group */
41a2d6cf 9485static void
32cd756a 9486cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9487{
32cd756a 9488 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9489 int i;
d842de87 9490
ef12fefa
BR
9491 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9492 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9493 free_percpu(ca->cpuusage);
9494 kfree(ca);
9495}
9496
720f5498
KC
9497static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9498{
b36128c8 9499 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9500 u64 data;
9501
9502#ifndef CONFIG_64BIT
9503 /*
9504 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9505 */
05fa785c 9506 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9507 data = *cpuusage;
05fa785c 9508 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9509#else
9510 data = *cpuusage;
9511#endif
9512
9513 return data;
9514}
9515
9516static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9517{
b36128c8 9518 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9519
9520#ifndef CONFIG_64BIT
9521 /*
9522 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9523 */
05fa785c 9524 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9525 *cpuusage = val;
05fa785c 9526 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9527#else
9528 *cpuusage = val;
9529#endif
9530}
9531
d842de87 9532/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9533static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9534{
32cd756a 9535 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9536 u64 totalcpuusage = 0;
9537 int i;
9538
720f5498
KC
9539 for_each_present_cpu(i)
9540 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9541
9542 return totalcpuusage;
9543}
9544
0297b803
DG
9545static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9546 u64 reset)
9547{
9548 struct cpuacct *ca = cgroup_ca(cgrp);
9549 int err = 0;
9550 int i;
9551
9552 if (reset) {
9553 err = -EINVAL;
9554 goto out;
9555 }
9556
720f5498
KC
9557 for_each_present_cpu(i)
9558 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9559
0297b803
DG
9560out:
9561 return err;
9562}
9563
e9515c3c
KC
9564static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9565 struct seq_file *m)
9566{
9567 struct cpuacct *ca = cgroup_ca(cgroup);
9568 u64 percpu;
9569 int i;
9570
9571 for_each_present_cpu(i) {
9572 percpu = cpuacct_cpuusage_read(ca, i);
9573 seq_printf(m, "%llu ", (unsigned long long) percpu);
9574 }
9575 seq_printf(m, "\n");
9576 return 0;
9577}
9578
ef12fefa
BR
9579static const char *cpuacct_stat_desc[] = {
9580 [CPUACCT_STAT_USER] = "user",
9581 [CPUACCT_STAT_SYSTEM] = "system",
9582};
9583
9584static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9585 struct cgroup_map_cb *cb)
9586{
9587 struct cpuacct *ca = cgroup_ca(cgrp);
9588 int i;
9589
9590 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9591 s64 val = percpu_counter_read(&ca->cpustat[i]);
9592 val = cputime64_to_clock_t(val);
9593 cb->fill(cb, cpuacct_stat_desc[i], val);
9594 }
9595 return 0;
9596}
9597
d842de87
SV
9598static struct cftype files[] = {
9599 {
9600 .name = "usage",
f4c753b7
PM
9601 .read_u64 = cpuusage_read,
9602 .write_u64 = cpuusage_write,
d842de87 9603 },
e9515c3c
KC
9604 {
9605 .name = "usage_percpu",
9606 .read_seq_string = cpuacct_percpu_seq_read,
9607 },
ef12fefa
BR
9608 {
9609 .name = "stat",
9610 .read_map = cpuacct_stats_show,
9611 },
d842de87
SV
9612};
9613
32cd756a 9614static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9615{
32cd756a 9616 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9617}
9618
9619/*
9620 * charge this task's execution time to its accounting group.
9621 *
9622 * called with rq->lock held.
9623 */
9624static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9625{
9626 struct cpuacct *ca;
934352f2 9627 int cpu;
d842de87 9628
c40c6f85 9629 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9630 return;
9631
934352f2 9632 cpu = task_cpu(tsk);
a18b83b7
BR
9633
9634 rcu_read_lock();
9635
d842de87 9636 ca = task_ca(tsk);
d842de87 9637
934352f2 9638 for (; ca; ca = ca->parent) {
b36128c8 9639 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9640 *cpuusage += cputime;
9641 }
a18b83b7
BR
9642
9643 rcu_read_unlock();
d842de87
SV
9644}
9645
fa535a77
AB
9646/*
9647 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9648 * in cputime_t units. As a result, cpuacct_update_stats calls
9649 * percpu_counter_add with values large enough to always overflow the
9650 * per cpu batch limit causing bad SMP scalability.
9651 *
9652 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9653 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9654 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9655 */
9656#ifdef CONFIG_SMP
9657#define CPUACCT_BATCH \
9658 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9659#else
9660#define CPUACCT_BATCH 0
9661#endif
9662
ef12fefa
BR
9663/*
9664 * Charge the system/user time to the task's accounting group.
9665 */
9666static void cpuacct_update_stats(struct task_struct *tsk,
9667 enum cpuacct_stat_index idx, cputime_t val)
9668{
9669 struct cpuacct *ca;
fa535a77 9670 int batch = CPUACCT_BATCH;
ef12fefa
BR
9671
9672 if (unlikely(!cpuacct_subsys.active))
9673 return;
9674
9675 rcu_read_lock();
9676 ca = task_ca(tsk);
9677
9678 do {
fa535a77 9679 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9680 ca = ca->parent;
9681 } while (ca);
9682 rcu_read_unlock();
9683}
9684
d842de87
SV
9685struct cgroup_subsys cpuacct_subsys = {
9686 .name = "cpuacct",
9687 .create = cpuacct_create,
9688 .destroy = cpuacct_destroy,
9689 .populate = cpuacct_populate,
9690 .subsys_id = cpuacct_subsys_id,
9691};
9692#endif /* CONFIG_CGROUP_CPUACCT */