]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched.c
[PATCH] lockdep: stacktrace subsystem, s390 support
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
9a11b49a 33#include <linux/debug_locks.h>
1da177e4
LT
34#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
37#include <linux/suspend.h>
198e2f18 38#include <linux/vmalloc.h>
1da177e4
LT
39#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
52#include <linux/acct.h>
c6fd91f0 53#include <linux/kprobes.h>
1da177e4
LT
54#include <asm/tlb.h>
55
56#include <asm/unistd.h>
57
58/*
59 * Convert user-nice values [ -20 ... 0 ... 19 ]
60 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
61 * and back.
62 */
63#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
64#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
65#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
66
67/*
68 * 'User priority' is the nice value converted to something we
69 * can work with better when scaling various scheduler parameters,
70 * it's a [ 0 ... 39 ] range.
71 */
72#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
73#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
74#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
75
76/*
77 * Some helpers for converting nanosecond timing to jiffy resolution
78 */
79#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
80#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
81
82/*
83 * These are the 'tuning knobs' of the scheduler:
84 *
85 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
86 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
87 * Timeslices get refilled after they expire.
88 */
89#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
90#define DEF_TIMESLICE (100 * HZ / 1000)
91#define ON_RUNQUEUE_WEIGHT 30
92#define CHILD_PENALTY 95
93#define PARENT_PENALTY 100
94#define EXIT_WEIGHT 3
95#define PRIO_BONUS_RATIO 25
96#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
97#define INTERACTIVE_DELTA 2
98#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
99#define STARVATION_LIMIT (MAX_SLEEP_AVG)
100#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
101
102/*
103 * If a task is 'interactive' then we reinsert it in the active
104 * array after it has expired its current timeslice. (it will not
105 * continue to run immediately, it will still roundrobin with
106 * other interactive tasks.)
107 *
108 * This part scales the interactivity limit depending on niceness.
109 *
110 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
111 * Here are a few examples of different nice levels:
112 *
113 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
114 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
115 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
118 *
119 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
120 * priority range a task can explore, a value of '1' means the
121 * task is rated interactive.)
122 *
123 * Ie. nice +19 tasks can never get 'interactive' enough to be
124 * reinserted into the active array. And only heavily CPU-hog nice -20
125 * tasks will be expired. Default nice 0 tasks are somewhere between,
126 * it takes some effort for them to get interactive, but it's not
127 * too hard.
128 */
129
130#define CURRENT_BONUS(p) \
131 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
132 MAX_SLEEP_AVG)
133
134#define GRANULARITY (10 * HZ / 1000 ? : 1)
135
136#ifdef CONFIG_SMP
137#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
139 num_online_cpus())
140#else
141#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
142 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
143#endif
144
145#define SCALE(v1,v1_max,v2_max) \
146 (v1) * (v2_max) / (v1_max)
147
148#define DELTA(p) \
013d3868
MA
149 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
150 INTERACTIVE_DELTA)
1da177e4
LT
151
152#define TASK_INTERACTIVE(p) \
153 ((p)->prio <= (p)->static_prio - DELTA(p))
154
155#define INTERACTIVE_SLEEP(p) \
156 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
157 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
158
159#define TASK_PREEMPTS_CURR(p, rq) \
160 ((p)->prio < (rq)->curr->prio)
161
162/*
163 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
164 * to time slice values: [800ms ... 100ms ... 5ms]
165 *
166 * The higher a thread's priority, the bigger timeslices
167 * it gets during one round of execution. But even the lowest
168 * priority thread gets MIN_TIMESLICE worth of execution time.
169 */
170
171#define SCALE_PRIO(x, prio) \
2dd73a4f 172 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
1da177e4 173
2dd73a4f 174static unsigned int static_prio_timeslice(int static_prio)
1da177e4 175{
2dd73a4f
PW
176 if (static_prio < NICE_TO_PRIO(0))
177 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
1da177e4 178 else
2dd73a4f 179 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
1da177e4 180}
2dd73a4f
PW
181
182static inline unsigned int task_timeslice(task_t *p)
183{
184 return static_prio_timeslice(p->static_prio);
185}
186
1da177e4
LT
187#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
188 < (long long) (sd)->cache_hot_time)
189
190/*
191 * These are the runqueue data structures:
192 */
193
1da177e4
LT
194typedef struct runqueue runqueue_t;
195
196struct prio_array {
197 unsigned int nr_active;
d444886e 198 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
1da177e4
LT
199 struct list_head queue[MAX_PRIO];
200};
201
202/*
203 * This is the main, per-CPU runqueue data structure.
204 *
205 * Locking rule: those places that want to lock multiple runqueues
206 * (such as the load balancing or the thread migration code), lock
207 * acquire operations must be ordered by ascending &runqueue.
208 */
209struct runqueue {
210 spinlock_t lock;
211
212 /*
213 * nr_running and cpu_load should be in the same cacheline because
214 * remote CPUs use both these fields when doing load calculation.
215 */
216 unsigned long nr_running;
2dd73a4f 217 unsigned long raw_weighted_load;
1da177e4 218#ifdef CONFIG_SMP
7897986b 219 unsigned long cpu_load[3];
1da177e4
LT
220#endif
221 unsigned long long nr_switches;
222
223 /*
224 * This is part of a global counter where only the total sum
225 * over all CPUs matters. A task can increase this counter on
226 * one CPU and if it got migrated afterwards it may decrease
227 * it on another CPU. Always updated under the runqueue lock:
228 */
229 unsigned long nr_uninterruptible;
230
231 unsigned long expired_timestamp;
232 unsigned long long timestamp_last_tick;
233 task_t *curr, *idle;
234 struct mm_struct *prev_mm;
235 prio_array_t *active, *expired, arrays[2];
236 int best_expired_prio;
237 atomic_t nr_iowait;
238
239#ifdef CONFIG_SMP
240 struct sched_domain *sd;
241
242 /* For active balancing */
243 int active_balance;
244 int push_cpu;
245
246 task_t *migration_thread;
247 struct list_head migration_queue;
248#endif
249
250#ifdef CONFIG_SCHEDSTATS
251 /* latency stats */
252 struct sched_info rq_sched_info;
253
254 /* sys_sched_yield() stats */
255 unsigned long yld_exp_empty;
256 unsigned long yld_act_empty;
257 unsigned long yld_both_empty;
258 unsigned long yld_cnt;
259
260 /* schedule() stats */
261 unsigned long sched_switch;
262 unsigned long sched_cnt;
263 unsigned long sched_goidle;
264
265 /* try_to_wake_up() stats */
266 unsigned long ttwu_cnt;
267 unsigned long ttwu_local;
268#endif
269};
270
271static DEFINE_PER_CPU(struct runqueue, runqueues);
272
674311d5
NP
273/*
274 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 275 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
276 *
277 * The domain tree of any CPU may only be accessed from within
278 * preempt-disabled sections.
279 */
1da177e4 280#define for_each_domain(cpu, domain) \
674311d5 281for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
1da177e4
LT
282
283#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
284#define this_rq() (&__get_cpu_var(runqueues))
285#define task_rq(p) cpu_rq(task_cpu(p))
286#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
287
1da177e4 288#ifndef prepare_arch_switch
4866cde0
NP
289# define prepare_arch_switch(next) do { } while (0)
290#endif
291#ifndef finish_arch_switch
292# define finish_arch_switch(prev) do { } while (0)
293#endif
294
295#ifndef __ARCH_WANT_UNLOCKED_CTXSW
296static inline int task_running(runqueue_t *rq, task_t *p)
297{
298 return rq->curr == p;
299}
300
301static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
302{
303}
304
305static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
306{
da04c035
IM
307#ifdef CONFIG_DEBUG_SPINLOCK
308 /* this is a valid case when another task releases the spinlock */
309 rq->lock.owner = current;
310#endif
4866cde0
NP
311 spin_unlock_irq(&rq->lock);
312}
313
314#else /* __ARCH_WANT_UNLOCKED_CTXSW */
315static inline int task_running(runqueue_t *rq, task_t *p)
316{
317#ifdef CONFIG_SMP
318 return p->oncpu;
319#else
320 return rq->curr == p;
321#endif
322}
323
324static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
325{
326#ifdef CONFIG_SMP
327 /*
328 * We can optimise this out completely for !SMP, because the
329 * SMP rebalancing from interrupt is the only thing that cares
330 * here.
331 */
332 next->oncpu = 1;
333#endif
334#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
335 spin_unlock_irq(&rq->lock);
336#else
337 spin_unlock(&rq->lock);
338#endif
339}
340
341static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
342{
343#ifdef CONFIG_SMP
344 /*
345 * After ->oncpu is cleared, the task can be moved to a different CPU.
346 * We must ensure this doesn't happen until the switch is completely
347 * finished.
348 */
349 smp_wmb();
350 prev->oncpu = 0;
351#endif
352#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
353 local_irq_enable();
1da177e4 354#endif
4866cde0
NP
355}
356#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 357
b29739f9
IM
358/*
359 * __task_rq_lock - lock the runqueue a given task resides on.
360 * Must be called interrupts disabled.
361 */
362static inline runqueue_t *__task_rq_lock(task_t *p)
363 __acquires(rq->lock)
364{
365 struct runqueue *rq;
366
367repeat_lock_task:
368 rq = task_rq(p);
369 spin_lock(&rq->lock);
370 if (unlikely(rq != task_rq(p))) {
371 spin_unlock(&rq->lock);
372 goto repeat_lock_task;
373 }
374 return rq;
375}
376
1da177e4
LT
377/*
378 * task_rq_lock - lock the runqueue a given task resides on and disable
379 * interrupts. Note the ordering: we can safely lookup the task_rq without
380 * explicitly disabling preemption.
381 */
9fea80e4 382static runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
1da177e4
LT
383 __acquires(rq->lock)
384{
385 struct runqueue *rq;
386
387repeat_lock_task:
388 local_irq_save(*flags);
389 rq = task_rq(p);
390 spin_lock(&rq->lock);
391 if (unlikely(rq != task_rq(p))) {
392 spin_unlock_irqrestore(&rq->lock, *flags);
393 goto repeat_lock_task;
394 }
395 return rq;
396}
397
b29739f9
IM
398static inline void __task_rq_unlock(runqueue_t *rq)
399 __releases(rq->lock)
400{
401 spin_unlock(&rq->lock);
402}
403
1da177e4
LT
404static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
405 __releases(rq->lock)
406{
407 spin_unlock_irqrestore(&rq->lock, *flags);
408}
409
410#ifdef CONFIG_SCHEDSTATS
411/*
412 * bump this up when changing the output format or the meaning of an existing
413 * format, so that tools can adapt (or abort)
414 */
68767a0a 415#define SCHEDSTAT_VERSION 12
1da177e4
LT
416
417static int show_schedstat(struct seq_file *seq, void *v)
418{
419 int cpu;
420
421 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
422 seq_printf(seq, "timestamp %lu\n", jiffies);
423 for_each_online_cpu(cpu) {
424 runqueue_t *rq = cpu_rq(cpu);
425#ifdef CONFIG_SMP
426 struct sched_domain *sd;
427 int dcnt = 0;
428#endif
429
430 /* runqueue-specific stats */
431 seq_printf(seq,
432 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
433 cpu, rq->yld_both_empty,
434 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
435 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
436 rq->ttwu_cnt, rq->ttwu_local,
437 rq->rq_sched_info.cpu_time,
438 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
439
440 seq_printf(seq, "\n");
441
442#ifdef CONFIG_SMP
443 /* domain-specific stats */
674311d5 444 preempt_disable();
1da177e4
LT
445 for_each_domain(cpu, sd) {
446 enum idle_type itype;
447 char mask_str[NR_CPUS];
448
449 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
450 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
451 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
452 itype++) {
453 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
454 sd->lb_cnt[itype],
455 sd->lb_balanced[itype],
456 sd->lb_failed[itype],
457 sd->lb_imbalance[itype],
458 sd->lb_gained[itype],
459 sd->lb_hot_gained[itype],
460 sd->lb_nobusyq[itype],
461 sd->lb_nobusyg[itype]);
462 }
68767a0a 463 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 464 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
465 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
466 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
467 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
468 }
674311d5 469 preempt_enable();
1da177e4
LT
470#endif
471 }
472 return 0;
473}
474
475static int schedstat_open(struct inode *inode, struct file *file)
476{
477 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
478 char *buf = kmalloc(size, GFP_KERNEL);
479 struct seq_file *m;
480 int res;
481
482 if (!buf)
483 return -ENOMEM;
484 res = single_open(file, show_schedstat, NULL);
485 if (!res) {
486 m = file->private_data;
487 m->buf = buf;
488 m->size = size;
489 } else
490 kfree(buf);
491 return res;
492}
493
494struct file_operations proc_schedstat_operations = {
495 .open = schedstat_open,
496 .read = seq_read,
497 .llseek = seq_lseek,
498 .release = single_release,
499};
500
501# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
502# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
503#else /* !CONFIG_SCHEDSTATS */
504# define schedstat_inc(rq, field) do { } while (0)
505# define schedstat_add(rq, field, amt) do { } while (0)
506#endif
507
508/*
509 * rq_lock - lock a given runqueue and disable interrupts.
510 */
511static inline runqueue_t *this_rq_lock(void)
512 __acquires(rq->lock)
513{
514 runqueue_t *rq;
515
516 local_irq_disable();
517 rq = this_rq();
518 spin_lock(&rq->lock);
519
520 return rq;
521}
522
1da177e4
LT
523#ifdef CONFIG_SCHEDSTATS
524/*
525 * Called when a process is dequeued from the active array and given
526 * the cpu. We should note that with the exception of interactive
527 * tasks, the expired queue will become the active queue after the active
528 * queue is empty, without explicitly dequeuing and requeuing tasks in the
529 * expired queue. (Interactive tasks may be requeued directly to the
530 * active queue, thus delaying tasks in the expired queue from running;
531 * see scheduler_tick()).
532 *
533 * This function is only called from sched_info_arrive(), rather than
534 * dequeue_task(). Even though a task may be queued and dequeued multiple
535 * times as it is shuffled about, we're really interested in knowing how
536 * long it was from the *first* time it was queued to the time that it
537 * finally hit a cpu.
538 */
539static inline void sched_info_dequeued(task_t *t)
540{
541 t->sched_info.last_queued = 0;
542}
543
544/*
545 * Called when a task finally hits the cpu. We can now calculate how
546 * long it was waiting to run. We also note when it began so that we
547 * can keep stats on how long its timeslice is.
548 */
858119e1 549static void sched_info_arrive(task_t *t)
1da177e4
LT
550{
551 unsigned long now = jiffies, diff = 0;
552 struct runqueue *rq = task_rq(t);
553
554 if (t->sched_info.last_queued)
555 diff = now - t->sched_info.last_queued;
556 sched_info_dequeued(t);
557 t->sched_info.run_delay += diff;
558 t->sched_info.last_arrival = now;
559 t->sched_info.pcnt++;
560
561 if (!rq)
562 return;
563
564 rq->rq_sched_info.run_delay += diff;
565 rq->rq_sched_info.pcnt++;
566}
567
568/*
569 * Called when a process is queued into either the active or expired
570 * array. The time is noted and later used to determine how long we
571 * had to wait for us to reach the cpu. Since the expired queue will
572 * become the active queue after active queue is empty, without dequeuing
573 * and requeuing any tasks, we are interested in queuing to either. It
574 * is unusual but not impossible for tasks to be dequeued and immediately
575 * requeued in the same or another array: this can happen in sched_yield(),
576 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
577 * to runqueue.
578 *
579 * This function is only called from enqueue_task(), but also only updates
580 * the timestamp if it is already not set. It's assumed that
581 * sched_info_dequeued() will clear that stamp when appropriate.
582 */
583static inline void sched_info_queued(task_t *t)
584{
585 if (!t->sched_info.last_queued)
586 t->sched_info.last_queued = jiffies;
587}
588
589/*
590 * Called when a process ceases being the active-running process, either
591 * voluntarily or involuntarily. Now we can calculate how long we ran.
592 */
593static inline void sched_info_depart(task_t *t)
594{
595 struct runqueue *rq = task_rq(t);
596 unsigned long diff = jiffies - t->sched_info.last_arrival;
597
598 t->sched_info.cpu_time += diff;
599
600 if (rq)
601 rq->rq_sched_info.cpu_time += diff;
602}
603
604/*
605 * Called when tasks are switched involuntarily due, typically, to expiring
606 * their time slice. (This may also be called when switching to or from
607 * the idle task.) We are only called when prev != next.
608 */
609static inline void sched_info_switch(task_t *prev, task_t *next)
610{
611 struct runqueue *rq = task_rq(prev);
612
613 /*
614 * prev now departs the cpu. It's not interesting to record
615 * stats about how efficient we were at scheduling the idle
616 * process, however.
617 */
618 if (prev != rq->idle)
619 sched_info_depart(prev);
620
621 if (next != rq->idle)
622 sched_info_arrive(next);
623}
624#else
625#define sched_info_queued(t) do { } while (0)
626#define sched_info_switch(t, next) do { } while (0)
627#endif /* CONFIG_SCHEDSTATS */
628
629/*
630 * Adding/removing a task to/from a priority array:
631 */
632static void dequeue_task(struct task_struct *p, prio_array_t *array)
633{
634 array->nr_active--;
635 list_del(&p->run_list);
636 if (list_empty(array->queue + p->prio))
637 __clear_bit(p->prio, array->bitmap);
638}
639
640static void enqueue_task(struct task_struct *p, prio_array_t *array)
641{
642 sched_info_queued(p);
643 list_add_tail(&p->run_list, array->queue + p->prio);
644 __set_bit(p->prio, array->bitmap);
645 array->nr_active++;
646 p->array = array;
647}
648
649/*
650 * Put task to the end of the run list without the overhead of dequeue
651 * followed by enqueue.
652 */
653static void requeue_task(struct task_struct *p, prio_array_t *array)
654{
655 list_move_tail(&p->run_list, array->queue + p->prio);
656}
657
658static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
659{
660 list_add(&p->run_list, array->queue + p->prio);
661 __set_bit(p->prio, array->bitmap);
662 array->nr_active++;
663 p->array = array;
664}
665
666/*
b29739f9 667 * __normal_prio - return the priority that is based on the static
1da177e4
LT
668 * priority but is modified by bonuses/penalties.
669 *
670 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
671 * into the -5 ... 0 ... +5 bonus/penalty range.
672 *
673 * We use 25% of the full 0...39 priority range so that:
674 *
675 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
676 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
677 *
678 * Both properties are important to certain workloads.
679 */
b29739f9
IM
680
681static inline int __normal_prio(task_t *p)
1da177e4
LT
682{
683 int bonus, prio;
684
1da177e4
LT
685 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
686
687 prio = p->static_prio - bonus;
688 if (prio < MAX_RT_PRIO)
689 prio = MAX_RT_PRIO;
690 if (prio > MAX_PRIO-1)
691 prio = MAX_PRIO-1;
692 return prio;
693}
694
2dd73a4f
PW
695/*
696 * To aid in avoiding the subversion of "niceness" due to uneven distribution
697 * of tasks with abnormal "nice" values across CPUs the contribution that
698 * each task makes to its run queue's load is weighted according to its
699 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
700 * scaled version of the new time slice allocation that they receive on time
701 * slice expiry etc.
702 */
703
704/*
705 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
706 * If static_prio_timeslice() is ever changed to break this assumption then
707 * this code will need modification
708 */
709#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
710#define LOAD_WEIGHT(lp) \
711 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
712#define PRIO_TO_LOAD_WEIGHT(prio) \
713 LOAD_WEIGHT(static_prio_timeslice(prio))
714#define RTPRIO_TO_LOAD_WEIGHT(rp) \
715 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
716
717static void set_load_weight(task_t *p)
718{
b29739f9 719 if (has_rt_policy(p)) {
2dd73a4f
PW
720#ifdef CONFIG_SMP
721 if (p == task_rq(p)->migration_thread)
722 /*
723 * The migration thread does the actual balancing.
724 * Giving its load any weight will skew balancing
725 * adversely.
726 */
727 p->load_weight = 0;
728 else
729#endif
730 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
731 } else
732 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
733}
734
735static inline void inc_raw_weighted_load(runqueue_t *rq, const task_t *p)
736{
737 rq->raw_weighted_load += p->load_weight;
738}
739
740static inline void dec_raw_weighted_load(runqueue_t *rq, const task_t *p)
741{
742 rq->raw_weighted_load -= p->load_weight;
743}
744
745static inline void inc_nr_running(task_t *p, runqueue_t *rq)
746{
747 rq->nr_running++;
748 inc_raw_weighted_load(rq, p);
749}
750
751static inline void dec_nr_running(task_t *p, runqueue_t *rq)
752{
753 rq->nr_running--;
754 dec_raw_weighted_load(rq, p);
755}
756
b29739f9
IM
757/*
758 * Calculate the expected normal priority: i.e. priority
759 * without taking RT-inheritance into account. Might be
760 * boosted by interactivity modifiers. Changes upon fork,
761 * setprio syscalls, and whenever the interactivity
762 * estimator recalculates.
763 */
764static inline int normal_prio(task_t *p)
765{
766 int prio;
767
768 if (has_rt_policy(p))
769 prio = MAX_RT_PRIO-1 - p->rt_priority;
770 else
771 prio = __normal_prio(p);
772 return prio;
773}
774
775/*
776 * Calculate the current priority, i.e. the priority
777 * taken into account by the scheduler. This value might
778 * be boosted by RT tasks, or might be boosted by
779 * interactivity modifiers. Will be RT if the task got
780 * RT-boosted. If not then it returns p->normal_prio.
781 */
782static int effective_prio(task_t *p)
783{
784 p->normal_prio = normal_prio(p);
785 /*
786 * If we are RT tasks or we were boosted to RT priority,
787 * keep the priority unchanged. Otherwise, update priority
788 * to the normal priority:
789 */
790 if (!rt_prio(p->prio))
791 return p->normal_prio;
792 return p->prio;
793}
794
1da177e4
LT
795/*
796 * __activate_task - move a task to the runqueue.
797 */
d425b274 798static void __activate_task(task_t *p, runqueue_t *rq)
1da177e4 799{
d425b274
CK
800 prio_array_t *target = rq->active;
801
f1adad78 802 if (batch_task(p))
d425b274
CK
803 target = rq->expired;
804 enqueue_task(p, target);
2dd73a4f 805 inc_nr_running(p, rq);
1da177e4
LT
806}
807
808/*
809 * __activate_idle_task - move idle task to the _front_ of runqueue.
810 */
811static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
812{
813 enqueue_task_head(p, rq->active);
2dd73a4f 814 inc_nr_running(p, rq);
1da177e4
LT
815}
816
b29739f9
IM
817/*
818 * Recalculate p->normal_prio and p->prio after having slept,
819 * updating the sleep-average too:
820 */
a3464a10 821static int recalc_task_prio(task_t *p, unsigned long long now)
1da177e4
LT
822{
823 /* Caller must always ensure 'now >= p->timestamp' */
72d2854d 824 unsigned long sleep_time = now - p->timestamp;
1da177e4 825
d425b274 826 if (batch_task(p))
b0a9499c 827 sleep_time = 0;
1da177e4
LT
828
829 if (likely(sleep_time > 0)) {
830 /*
72d2854d
CK
831 * This ceiling is set to the lowest priority that would allow
832 * a task to be reinserted into the active array on timeslice
833 * completion.
1da177e4 834 */
72d2854d 835 unsigned long ceiling = INTERACTIVE_SLEEP(p);
e72ff0bb 836
72d2854d
CK
837 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
838 /*
839 * Prevents user tasks from achieving best priority
840 * with one single large enough sleep.
841 */
842 p->sleep_avg = ceiling;
843 /*
844 * Using INTERACTIVE_SLEEP() as a ceiling places a
845 * nice(0) task 1ms sleep away from promotion, and
846 * gives it 700ms to round-robin with no chance of
847 * being demoted. This is more than generous, so
848 * mark this sleep as non-interactive to prevent the
849 * on-runqueue bonus logic from intervening should
850 * this task not receive cpu immediately.
851 */
852 p->sleep_type = SLEEP_NONINTERACTIVE;
1da177e4 853 } else {
1da177e4
LT
854 /*
855 * Tasks waking from uninterruptible sleep are
856 * limited in their sleep_avg rise as they
857 * are likely to be waiting on I/O
858 */
3dee386e 859 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
72d2854d 860 if (p->sleep_avg >= ceiling)
1da177e4
LT
861 sleep_time = 0;
862 else if (p->sleep_avg + sleep_time >=
72d2854d
CK
863 ceiling) {
864 p->sleep_avg = ceiling;
865 sleep_time = 0;
1da177e4
LT
866 }
867 }
868
869 /*
870 * This code gives a bonus to interactive tasks.
871 *
872 * The boost works by updating the 'average sleep time'
873 * value here, based on ->timestamp. The more time a
874 * task spends sleeping, the higher the average gets -
875 * and the higher the priority boost gets as well.
876 */
877 p->sleep_avg += sleep_time;
878
1da177e4 879 }
72d2854d
CK
880 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
881 p->sleep_avg = NS_MAX_SLEEP_AVG;
1da177e4
LT
882 }
883
a3464a10 884 return effective_prio(p);
1da177e4
LT
885}
886
887/*
888 * activate_task - move a task to the runqueue and do priority recalculation
889 *
890 * Update all the scheduling statistics stuff. (sleep average
891 * calculation, priority modifiers, etc.)
892 */
893static void activate_task(task_t *p, runqueue_t *rq, int local)
894{
895 unsigned long long now;
896
897 now = sched_clock();
898#ifdef CONFIG_SMP
899 if (!local) {
900 /* Compensate for drifting sched_clock */
901 runqueue_t *this_rq = this_rq();
902 now = (now - this_rq->timestamp_last_tick)
903 + rq->timestamp_last_tick;
904 }
905#endif
906
a47ab937
KC
907 if (!rt_task(p))
908 p->prio = recalc_task_prio(p, now);
1da177e4
LT
909
910 /*
911 * This checks to make sure it's not an uninterruptible task
912 * that is now waking up.
913 */
3dee386e 914 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
915 /*
916 * Tasks which were woken up by interrupts (ie. hw events)
917 * are most likely of interactive nature. So we give them
918 * the credit of extending their sleep time to the period
919 * of time they spend on the runqueue, waiting for execution
920 * on a CPU, first time around:
921 */
922 if (in_interrupt())
3dee386e 923 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
924 else {
925 /*
926 * Normal first-time wakeups get a credit too for
927 * on-runqueue time, but it will be weighted down:
928 */
3dee386e 929 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
930 }
931 }
932 p->timestamp = now;
933
934 __activate_task(p, rq);
935}
936
937/*
938 * deactivate_task - remove a task from the runqueue.
939 */
940static void deactivate_task(struct task_struct *p, runqueue_t *rq)
941{
2dd73a4f 942 dec_nr_running(p, rq);
1da177e4
LT
943 dequeue_task(p, p->array);
944 p->array = NULL;
945}
946
947/*
948 * resched_task - mark a task 'to be rescheduled now'.
949 *
950 * On UP this means the setting of the need_resched flag, on SMP it
951 * might also involve a cross-CPU call to trigger the scheduler on
952 * the target CPU.
953 */
954#ifdef CONFIG_SMP
495ab9c0
AK
955
956#ifndef tsk_is_polling
957#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
958#endif
959
1da177e4
LT
960static void resched_task(task_t *p)
961{
64c7c8f8 962 int cpu;
1da177e4
LT
963
964 assert_spin_locked(&task_rq(p)->lock);
965
64c7c8f8
NP
966 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
967 return;
968
969 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 970
64c7c8f8
NP
971 cpu = task_cpu(p);
972 if (cpu == smp_processor_id())
973 return;
974
495ab9c0 975 /* NEED_RESCHED must be visible before we test polling */
64c7c8f8 976 smp_mb();
495ab9c0 977 if (!tsk_is_polling(p))
64c7c8f8 978 smp_send_reschedule(cpu);
1da177e4
LT
979}
980#else
981static inline void resched_task(task_t *p)
982{
64c7c8f8 983 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
984 set_tsk_need_resched(p);
985}
986#endif
987
988/**
989 * task_curr - is this task currently executing on a CPU?
990 * @p: the task in question.
991 */
992inline int task_curr(const task_t *p)
993{
994 return cpu_curr(task_cpu(p)) == p;
995}
996
2dd73a4f
PW
997/* Used instead of source_load when we know the type == 0 */
998unsigned long weighted_cpuload(const int cpu)
999{
1000 return cpu_rq(cpu)->raw_weighted_load;
1001}
1002
1da177e4 1003#ifdef CONFIG_SMP
1da177e4
LT
1004typedef struct {
1005 struct list_head list;
1da177e4 1006
1da177e4
LT
1007 task_t *task;
1008 int dest_cpu;
1009
1da177e4
LT
1010 struct completion done;
1011} migration_req_t;
1012
1013/*
1014 * The task's runqueue lock must be held.
1015 * Returns true if you have to wait for migration thread.
1016 */
1017static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
1018{
1019 runqueue_t *rq = task_rq(p);
1020
1021 /*
1022 * If the task is not on a runqueue (and not running), then
1023 * it is sufficient to simply update the task's cpu field.
1024 */
1025 if (!p->array && !task_running(rq, p)) {
1026 set_task_cpu(p, dest_cpu);
1027 return 0;
1028 }
1029
1030 init_completion(&req->done);
1da177e4
LT
1031 req->task = p;
1032 req->dest_cpu = dest_cpu;
1033 list_add(&req->list, &rq->migration_queue);
1034 return 1;
1035}
1036
1037/*
1038 * wait_task_inactive - wait for a thread to unschedule.
1039 *
1040 * The caller must ensure that the task *will* unschedule sometime soon,
1041 * else this function might spin for a *long* time. This function can't
1042 * be called with interrupts off, or it may introduce deadlock with
1043 * smp_call_function() if an IPI is sent by the same process we are
1044 * waiting to become inactive.
1045 */
95cdf3b7 1046void wait_task_inactive(task_t *p)
1da177e4
LT
1047{
1048 unsigned long flags;
1049 runqueue_t *rq;
1050 int preempted;
1051
1052repeat:
1053 rq = task_rq_lock(p, &flags);
1054 /* Must be off runqueue entirely, not preempted. */
1055 if (unlikely(p->array || task_running(rq, p))) {
1056 /* If it's preempted, we yield. It could be a while. */
1057 preempted = !task_running(rq, p);
1058 task_rq_unlock(rq, &flags);
1059 cpu_relax();
1060 if (preempted)
1061 yield();
1062 goto repeat;
1063 }
1064 task_rq_unlock(rq, &flags);
1065}
1066
1067/***
1068 * kick_process - kick a running thread to enter/exit the kernel
1069 * @p: the to-be-kicked thread
1070 *
1071 * Cause a process which is running on another CPU to enter
1072 * kernel-mode, without any delay. (to get signals handled.)
1073 *
1074 * NOTE: this function doesnt have to take the runqueue lock,
1075 * because all it wants to ensure is that the remote task enters
1076 * the kernel. If the IPI races and the task has been migrated
1077 * to another CPU then no harm is done and the purpose has been
1078 * achieved as well.
1079 */
1080void kick_process(task_t *p)
1081{
1082 int cpu;
1083
1084 preempt_disable();
1085 cpu = task_cpu(p);
1086 if ((cpu != smp_processor_id()) && task_curr(p))
1087 smp_send_reschedule(cpu);
1088 preempt_enable();
1089}
1090
1091/*
2dd73a4f
PW
1092 * Return a low guess at the load of a migration-source cpu weighted
1093 * according to the scheduling class and "nice" value.
1da177e4
LT
1094 *
1095 * We want to under-estimate the load of migration sources, to
1096 * balance conservatively.
1097 */
a2000572 1098static inline unsigned long source_load(int cpu, int type)
1da177e4
LT
1099{
1100 runqueue_t *rq = cpu_rq(cpu);
2dd73a4f 1101
3b0bd9bc 1102 if (type == 0)
2dd73a4f 1103 return rq->raw_weighted_load;
b910472d 1104
2dd73a4f 1105 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1da177e4
LT
1106}
1107
1108/*
2dd73a4f
PW
1109 * Return a high guess at the load of a migration-target cpu weighted
1110 * according to the scheduling class and "nice" value.
1da177e4 1111 */
a2000572 1112static inline unsigned long target_load(int cpu, int type)
1da177e4
LT
1113{
1114 runqueue_t *rq = cpu_rq(cpu);
2dd73a4f 1115
7897986b 1116 if (type == 0)
2dd73a4f 1117 return rq->raw_weighted_load;
3b0bd9bc 1118
2dd73a4f
PW
1119 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1120}
1121
1122/*
1123 * Return the average load per task on the cpu's run queue
1124 */
1125static inline unsigned long cpu_avg_load_per_task(int cpu)
1126{
1127 runqueue_t *rq = cpu_rq(cpu);
1128 unsigned long n = rq->nr_running;
1129
1130 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1da177e4
LT
1131}
1132
147cbb4b
NP
1133/*
1134 * find_idlest_group finds and returns the least busy CPU group within the
1135 * domain.
1136 */
1137static struct sched_group *
1138find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1139{
1140 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1141 unsigned long min_load = ULONG_MAX, this_load = 0;
1142 int load_idx = sd->forkexec_idx;
1143 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1144
1145 do {
1146 unsigned long load, avg_load;
1147 int local_group;
1148 int i;
1149
da5a5522
BD
1150 /* Skip over this group if it has no CPUs allowed */
1151 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1152 goto nextgroup;
1153
147cbb4b 1154 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1155
1156 /* Tally up the load of all CPUs in the group */
1157 avg_load = 0;
1158
1159 for_each_cpu_mask(i, group->cpumask) {
1160 /* Bias balancing toward cpus of our domain */
1161 if (local_group)
1162 load = source_load(i, load_idx);
1163 else
1164 load = target_load(i, load_idx);
1165
1166 avg_load += load;
1167 }
1168
1169 /* Adjust by relative CPU power of the group */
1170 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1171
1172 if (local_group) {
1173 this_load = avg_load;
1174 this = group;
1175 } else if (avg_load < min_load) {
1176 min_load = avg_load;
1177 idlest = group;
1178 }
da5a5522 1179nextgroup:
147cbb4b
NP
1180 group = group->next;
1181 } while (group != sd->groups);
1182
1183 if (!idlest || 100*this_load < imbalance*min_load)
1184 return NULL;
1185 return idlest;
1186}
1187
1188/*
1189 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1190 */
95cdf3b7
IM
1191static int
1192find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1193{
da5a5522 1194 cpumask_t tmp;
147cbb4b
NP
1195 unsigned long load, min_load = ULONG_MAX;
1196 int idlest = -1;
1197 int i;
1198
da5a5522
BD
1199 /* Traverse only the allowed CPUs */
1200 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1201
1202 for_each_cpu_mask(i, tmp) {
2dd73a4f 1203 load = weighted_cpuload(i);
147cbb4b
NP
1204
1205 if (load < min_load || (load == min_load && i == this_cpu)) {
1206 min_load = load;
1207 idlest = i;
1208 }
1209 }
1210
1211 return idlest;
1212}
1213
476d139c
NP
1214/*
1215 * sched_balance_self: balance the current task (running on cpu) in domains
1216 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1217 * SD_BALANCE_EXEC.
1218 *
1219 * Balance, ie. select the least loaded group.
1220 *
1221 * Returns the target CPU number, or the same CPU if no balancing is needed.
1222 *
1223 * preempt must be disabled.
1224 */
1225static int sched_balance_self(int cpu, int flag)
1226{
1227 struct task_struct *t = current;
1228 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1229
c96d145e 1230 for_each_domain(cpu, tmp) {
5c45bf27
SS
1231 /*
1232 * If power savings logic is enabled for a domain, stop there.
1233 */
1234 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1235 break;
476d139c
NP
1236 if (tmp->flags & flag)
1237 sd = tmp;
c96d145e 1238 }
476d139c
NP
1239
1240 while (sd) {
1241 cpumask_t span;
1242 struct sched_group *group;
1243 int new_cpu;
1244 int weight;
1245
1246 span = sd->span;
1247 group = find_idlest_group(sd, t, cpu);
1248 if (!group)
1249 goto nextlevel;
1250
da5a5522 1251 new_cpu = find_idlest_cpu(group, t, cpu);
476d139c
NP
1252 if (new_cpu == -1 || new_cpu == cpu)
1253 goto nextlevel;
1254
1255 /* Now try balancing at a lower domain level */
1256 cpu = new_cpu;
1257nextlevel:
1258 sd = NULL;
1259 weight = cpus_weight(span);
1260 for_each_domain(cpu, tmp) {
1261 if (weight <= cpus_weight(tmp->span))
1262 break;
1263 if (tmp->flags & flag)
1264 sd = tmp;
1265 }
1266 /* while loop will break here if sd == NULL */
1267 }
1268
1269 return cpu;
1270}
1271
1272#endif /* CONFIG_SMP */
1da177e4
LT
1273
1274/*
1275 * wake_idle() will wake a task on an idle cpu if task->cpu is
1276 * not idle and an idle cpu is available. The span of cpus to
1277 * search starts with cpus closest then further out as needed,
1278 * so we always favor a closer, idle cpu.
1279 *
1280 * Returns the CPU we should wake onto.
1281 */
1282#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1283static int wake_idle(int cpu, task_t *p)
1284{
1285 cpumask_t tmp;
1286 struct sched_domain *sd;
1287 int i;
1288
1289 if (idle_cpu(cpu))
1290 return cpu;
1291
1292 for_each_domain(cpu, sd) {
1293 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1294 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1295 for_each_cpu_mask(i, tmp) {
1296 if (idle_cpu(i))
1297 return i;
1298 }
1299 }
e0f364f4
NP
1300 else
1301 break;
1da177e4
LT
1302 }
1303 return cpu;
1304}
1305#else
1306static inline int wake_idle(int cpu, task_t *p)
1307{
1308 return cpu;
1309}
1310#endif
1311
1312/***
1313 * try_to_wake_up - wake up a thread
1314 * @p: the to-be-woken-up thread
1315 * @state: the mask of task states that can be woken
1316 * @sync: do a synchronous wakeup?
1317 *
1318 * Put it on the run-queue if it's not already there. The "current"
1319 * thread is always on the run-queue (except when the actual
1320 * re-schedule is in progress), and as such you're allowed to do
1321 * the simpler "current->state = TASK_RUNNING" to mark yourself
1322 * runnable without the overhead of this.
1323 *
1324 * returns failure only if the task is already active.
1325 */
95cdf3b7 1326static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1da177e4
LT
1327{
1328 int cpu, this_cpu, success = 0;
1329 unsigned long flags;
1330 long old_state;
1331 runqueue_t *rq;
1332#ifdef CONFIG_SMP
1333 unsigned long load, this_load;
7897986b 1334 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
1335 int new_cpu;
1336#endif
1337
1338 rq = task_rq_lock(p, &flags);
1339 old_state = p->state;
1340 if (!(old_state & state))
1341 goto out;
1342
1343 if (p->array)
1344 goto out_running;
1345
1346 cpu = task_cpu(p);
1347 this_cpu = smp_processor_id();
1348
1349#ifdef CONFIG_SMP
1350 if (unlikely(task_running(rq, p)))
1351 goto out_activate;
1352
7897986b
NP
1353 new_cpu = cpu;
1354
1da177e4
LT
1355 schedstat_inc(rq, ttwu_cnt);
1356 if (cpu == this_cpu) {
1357 schedstat_inc(rq, ttwu_local);
7897986b
NP
1358 goto out_set_cpu;
1359 }
1360
1361 for_each_domain(this_cpu, sd) {
1362 if (cpu_isset(cpu, sd->span)) {
1363 schedstat_inc(sd, ttwu_wake_remote);
1364 this_sd = sd;
1365 break;
1da177e4
LT
1366 }
1367 }
1da177e4 1368
7897986b 1369 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1370 goto out_set_cpu;
1371
1da177e4 1372 /*
7897986b 1373 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1374 */
7897986b
NP
1375 if (this_sd) {
1376 int idx = this_sd->wake_idx;
1377 unsigned int imbalance;
1da177e4 1378
a3f21bce
NP
1379 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1380
7897986b
NP
1381 load = source_load(cpu, idx);
1382 this_load = target_load(this_cpu, idx);
1da177e4 1383
7897986b
NP
1384 new_cpu = this_cpu; /* Wake to this CPU if we can */
1385
a3f21bce
NP
1386 if (this_sd->flags & SD_WAKE_AFFINE) {
1387 unsigned long tl = this_load;
2dd73a4f
PW
1388 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1389
1da177e4 1390 /*
a3f21bce
NP
1391 * If sync wakeup then subtract the (maximum possible)
1392 * effect of the currently running task from the load
1393 * of the current CPU:
1da177e4 1394 */
a3f21bce 1395 if (sync)
2dd73a4f 1396 tl -= current->load_weight;
a3f21bce
NP
1397
1398 if ((tl <= load &&
2dd73a4f
PW
1399 tl + target_load(cpu, idx) <= tl_per_task) ||
1400 100*(tl + p->load_weight) <= imbalance*load) {
a3f21bce
NP
1401 /*
1402 * This domain has SD_WAKE_AFFINE and
1403 * p is cache cold in this domain, and
1404 * there is no bad imbalance.
1405 */
1406 schedstat_inc(this_sd, ttwu_move_affine);
1407 goto out_set_cpu;
1408 }
1409 }
1410
1411 /*
1412 * Start passive balancing when half the imbalance_pct
1413 * limit is reached.
1414 */
1415 if (this_sd->flags & SD_WAKE_BALANCE) {
1416 if (imbalance*this_load <= 100*load) {
1417 schedstat_inc(this_sd, ttwu_move_balance);
1418 goto out_set_cpu;
1419 }
1da177e4
LT
1420 }
1421 }
1422
1423 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1424out_set_cpu:
1425 new_cpu = wake_idle(new_cpu, p);
1426 if (new_cpu != cpu) {
1427 set_task_cpu(p, new_cpu);
1428 task_rq_unlock(rq, &flags);
1429 /* might preempt at this point */
1430 rq = task_rq_lock(p, &flags);
1431 old_state = p->state;
1432 if (!(old_state & state))
1433 goto out;
1434 if (p->array)
1435 goto out_running;
1436
1437 this_cpu = smp_processor_id();
1438 cpu = task_cpu(p);
1439 }
1440
1441out_activate:
1442#endif /* CONFIG_SMP */
1443 if (old_state == TASK_UNINTERRUPTIBLE) {
1444 rq->nr_uninterruptible--;
1445 /*
1446 * Tasks on involuntary sleep don't earn
1447 * sleep_avg beyond just interactive state.
1448 */
3dee386e 1449 p->sleep_type = SLEEP_NONINTERACTIVE;
e7c38cb4 1450 } else
1da177e4 1451
d79fc0fc
IM
1452 /*
1453 * Tasks that have marked their sleep as noninteractive get
e7c38cb4
CK
1454 * woken up with their sleep average not weighted in an
1455 * interactive way.
d79fc0fc 1456 */
e7c38cb4
CK
1457 if (old_state & TASK_NONINTERACTIVE)
1458 p->sleep_type = SLEEP_NONINTERACTIVE;
1459
1460
1461 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1462 /*
1463 * Sync wakeups (i.e. those types of wakeups where the waker
1464 * has indicated that it will leave the CPU in short order)
1465 * don't trigger a preemption, if the woken up task will run on
1466 * this cpu. (in this case the 'I will reschedule' promise of
1467 * the waker guarantees that the freshly woken up task is going
1468 * to be considered on this CPU.)
1469 */
1da177e4
LT
1470 if (!sync || cpu != this_cpu) {
1471 if (TASK_PREEMPTS_CURR(p, rq))
1472 resched_task(rq->curr);
1473 }
1474 success = 1;
1475
1476out_running:
1477 p->state = TASK_RUNNING;
1478out:
1479 task_rq_unlock(rq, &flags);
1480
1481 return success;
1482}
1483
95cdf3b7 1484int fastcall wake_up_process(task_t *p)
1da177e4
LT
1485{
1486 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1487 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1488}
1489
1490EXPORT_SYMBOL(wake_up_process);
1491
1492int fastcall wake_up_state(task_t *p, unsigned int state)
1493{
1494 return try_to_wake_up(p, state, 0);
1495}
1496
1da177e4
LT
1497/*
1498 * Perform scheduler related setup for a newly forked process p.
1499 * p is forked by current.
1500 */
476d139c 1501void fastcall sched_fork(task_t *p, int clone_flags)
1da177e4 1502{
476d139c
NP
1503 int cpu = get_cpu();
1504
1505#ifdef CONFIG_SMP
1506 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1507#endif
1508 set_task_cpu(p, cpu);
1509
1da177e4
LT
1510 /*
1511 * We mark the process as running here, but have not actually
1512 * inserted it onto the runqueue yet. This guarantees that
1513 * nobody will actually run it, and a signal or other external
1514 * event cannot wake it up and insert it on the runqueue either.
1515 */
1516 p->state = TASK_RUNNING;
b29739f9
IM
1517
1518 /*
1519 * Make sure we do not leak PI boosting priority to the child:
1520 */
1521 p->prio = current->normal_prio;
1522
1da177e4
LT
1523 INIT_LIST_HEAD(&p->run_list);
1524 p->array = NULL;
1da177e4
LT
1525#ifdef CONFIG_SCHEDSTATS
1526 memset(&p->sched_info, 0, sizeof(p->sched_info));
1527#endif
d6077cb8 1528#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1529 p->oncpu = 0;
1530#endif
1da177e4 1531#ifdef CONFIG_PREEMPT
4866cde0 1532 /* Want to start with kernel preemption disabled. */
a1261f54 1533 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1534#endif
1535 /*
1536 * Share the timeslice between parent and child, thus the
1537 * total amount of pending timeslices in the system doesn't change,
1538 * resulting in more scheduling fairness.
1539 */
1540 local_irq_disable();
1541 p->time_slice = (current->time_slice + 1) >> 1;
1542 /*
1543 * The remainder of the first timeslice might be recovered by
1544 * the parent if the child exits early enough.
1545 */
1546 p->first_time_slice = 1;
1547 current->time_slice >>= 1;
1548 p->timestamp = sched_clock();
1549 if (unlikely(!current->time_slice)) {
1550 /*
1551 * This case is rare, it happens when the parent has only
1552 * a single jiffy left from its timeslice. Taking the
1553 * runqueue lock is not a problem.
1554 */
1555 current->time_slice = 1;
1da177e4 1556 scheduler_tick();
476d139c
NP
1557 }
1558 local_irq_enable();
1559 put_cpu();
1da177e4
LT
1560}
1561
1562/*
1563 * wake_up_new_task - wake up a newly created task for the first time.
1564 *
1565 * This function will do some initial scheduler statistics housekeeping
1566 * that must be done for every newly created context, then puts the task
1567 * on the runqueue and wakes it.
1568 */
95cdf3b7 1569void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1da177e4
LT
1570{
1571 unsigned long flags;
1572 int this_cpu, cpu;
1573 runqueue_t *rq, *this_rq;
1574
1575 rq = task_rq_lock(p, &flags);
147cbb4b 1576 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1577 this_cpu = smp_processor_id();
147cbb4b 1578 cpu = task_cpu(p);
1da177e4 1579
1da177e4
LT
1580 /*
1581 * We decrease the sleep average of forking parents
1582 * and children as well, to keep max-interactive tasks
1583 * from forking tasks that are max-interactive. The parent
1584 * (current) is done further down, under its lock.
1585 */
1586 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1587 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1588
1589 p->prio = effective_prio(p);
1590
1591 if (likely(cpu == this_cpu)) {
1592 if (!(clone_flags & CLONE_VM)) {
1593 /*
1594 * The VM isn't cloned, so we're in a good position to
1595 * do child-runs-first in anticipation of an exec. This
1596 * usually avoids a lot of COW overhead.
1597 */
1598 if (unlikely(!current->array))
1599 __activate_task(p, rq);
1600 else {
1601 p->prio = current->prio;
b29739f9 1602 p->normal_prio = current->normal_prio;
1da177e4
LT
1603 list_add_tail(&p->run_list, &current->run_list);
1604 p->array = current->array;
1605 p->array->nr_active++;
2dd73a4f 1606 inc_nr_running(p, rq);
1da177e4
LT
1607 }
1608 set_need_resched();
1609 } else
1610 /* Run child last */
1611 __activate_task(p, rq);
1612 /*
1613 * We skip the following code due to cpu == this_cpu
1614 *
1615 * task_rq_unlock(rq, &flags);
1616 * this_rq = task_rq_lock(current, &flags);
1617 */
1618 this_rq = rq;
1619 } else {
1620 this_rq = cpu_rq(this_cpu);
1621
1622 /*
1623 * Not the local CPU - must adjust timestamp. This should
1624 * get optimised away in the !CONFIG_SMP case.
1625 */
1626 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1627 + rq->timestamp_last_tick;
1628 __activate_task(p, rq);
1629 if (TASK_PREEMPTS_CURR(p, rq))
1630 resched_task(rq->curr);
1631
1632 /*
1633 * Parent and child are on different CPUs, now get the
1634 * parent runqueue to update the parent's ->sleep_avg:
1635 */
1636 task_rq_unlock(rq, &flags);
1637 this_rq = task_rq_lock(current, &flags);
1638 }
1639 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1640 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1641 task_rq_unlock(this_rq, &flags);
1642}
1643
1644/*
1645 * Potentially available exiting-child timeslices are
1646 * retrieved here - this way the parent does not get
1647 * penalized for creating too many threads.
1648 *
1649 * (this cannot be used to 'generate' timeslices
1650 * artificially, because any timeslice recovered here
1651 * was given away by the parent in the first place.)
1652 */
95cdf3b7 1653void fastcall sched_exit(task_t *p)
1da177e4
LT
1654{
1655 unsigned long flags;
1656 runqueue_t *rq;
1657
1658 /*
1659 * If the child was a (relative-) CPU hog then decrease
1660 * the sleep_avg of the parent as well.
1661 */
1662 rq = task_rq_lock(p->parent, &flags);
889dfafe 1663 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1664 p->parent->time_slice += p->time_slice;
1665 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1666 p->parent->time_slice = task_timeslice(p);
1667 }
1668 if (p->sleep_avg < p->parent->sleep_avg)
1669 p->parent->sleep_avg = p->parent->sleep_avg /
1670 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1671 (EXIT_WEIGHT + 1);
1672 task_rq_unlock(rq, &flags);
1673}
1674
4866cde0
NP
1675/**
1676 * prepare_task_switch - prepare to switch tasks
1677 * @rq: the runqueue preparing to switch
1678 * @next: the task we are going to switch to.
1679 *
1680 * This is called with the rq lock held and interrupts off. It must
1681 * be paired with a subsequent finish_task_switch after the context
1682 * switch.
1683 *
1684 * prepare_task_switch sets up locking and calls architecture specific
1685 * hooks.
1686 */
1687static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1688{
1689 prepare_lock_switch(rq, next);
1690 prepare_arch_switch(next);
1691}
1692
1da177e4
LT
1693/**
1694 * finish_task_switch - clean up after a task-switch
344babaa 1695 * @rq: runqueue associated with task-switch
1da177e4
LT
1696 * @prev: the thread we just switched away from.
1697 *
4866cde0
NP
1698 * finish_task_switch must be called after the context switch, paired
1699 * with a prepare_task_switch call before the context switch.
1700 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1701 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1702 *
1703 * Note that we may have delayed dropping an mm in context_switch(). If
1704 * so, we finish that here outside of the runqueue lock. (Doing it
1705 * with the lock held can cause deadlocks; see schedule() for
1706 * details.)
1707 */
4866cde0 1708static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1da177e4
LT
1709 __releases(rq->lock)
1710{
1da177e4
LT
1711 struct mm_struct *mm = rq->prev_mm;
1712 unsigned long prev_task_flags;
1713
1714 rq->prev_mm = NULL;
1715
1716 /*
1717 * A task struct has one reference for the use as "current".
1718 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1719 * calls schedule one last time. The schedule call will never return,
1720 * and the scheduled task must drop that reference.
1721 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1722 * still held, otherwise prev could be scheduled on another cpu, die
1723 * there before we look at prev->state, and then the reference would
1724 * be dropped twice.
1725 * Manfred Spraul <manfred@colorfullife.com>
1726 */
1727 prev_task_flags = prev->flags;
4866cde0
NP
1728 finish_arch_switch(prev);
1729 finish_lock_switch(rq, prev);
1da177e4
LT
1730 if (mm)
1731 mmdrop(mm);
c6fd91f0 1732 if (unlikely(prev_task_flags & PF_DEAD)) {
1733 /*
1734 * Remove function-return probe instances associated with this
1735 * task and put them back on the free list.
1736 */
1737 kprobe_flush_task(prev);
1da177e4 1738 put_task_struct(prev);
c6fd91f0 1739 }
1da177e4
LT
1740}
1741
1742/**
1743 * schedule_tail - first thing a freshly forked thread must call.
1744 * @prev: the thread we just switched away from.
1745 */
1746asmlinkage void schedule_tail(task_t *prev)
1747 __releases(rq->lock)
1748{
4866cde0
NP
1749 runqueue_t *rq = this_rq();
1750 finish_task_switch(rq, prev);
1751#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1752 /* In this case, finish_task_switch does not reenable preemption */
1753 preempt_enable();
1754#endif
1da177e4
LT
1755 if (current->set_child_tid)
1756 put_user(current->pid, current->set_child_tid);
1757}
1758
1759/*
1760 * context_switch - switch to the new MM and the new
1761 * thread's register state.
1762 */
1763static inline
1764task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1765{
1766 struct mm_struct *mm = next->mm;
1767 struct mm_struct *oldmm = prev->active_mm;
1768
1769 if (unlikely(!mm)) {
1770 next->active_mm = oldmm;
1771 atomic_inc(&oldmm->mm_count);
1772 enter_lazy_tlb(oldmm, next);
1773 } else
1774 switch_mm(oldmm, mm, next);
1775
1776 if (unlikely(!prev->mm)) {
1777 prev->active_mm = NULL;
1778 WARN_ON(rq->prev_mm);
1779 rq->prev_mm = oldmm;
1780 }
1781
1782 /* Here we just switch the register state and the stack. */
1783 switch_to(prev, next, prev);
1784
1785 return prev;
1786}
1787
1788/*
1789 * nr_running, nr_uninterruptible and nr_context_switches:
1790 *
1791 * externally visible scheduler statistics: current number of runnable
1792 * threads, current number of uninterruptible-sleeping threads, total
1793 * number of context switches performed since bootup.
1794 */
1795unsigned long nr_running(void)
1796{
1797 unsigned long i, sum = 0;
1798
1799 for_each_online_cpu(i)
1800 sum += cpu_rq(i)->nr_running;
1801
1802 return sum;
1803}
1804
1805unsigned long nr_uninterruptible(void)
1806{
1807 unsigned long i, sum = 0;
1808
0a945022 1809 for_each_possible_cpu(i)
1da177e4
LT
1810 sum += cpu_rq(i)->nr_uninterruptible;
1811
1812 /*
1813 * Since we read the counters lockless, it might be slightly
1814 * inaccurate. Do not allow it to go below zero though:
1815 */
1816 if (unlikely((long)sum < 0))
1817 sum = 0;
1818
1819 return sum;
1820}
1821
1822unsigned long long nr_context_switches(void)
1823{
cc94abfc
SR
1824 int i;
1825 unsigned long long sum = 0;
1da177e4 1826
0a945022 1827 for_each_possible_cpu(i)
1da177e4
LT
1828 sum += cpu_rq(i)->nr_switches;
1829
1830 return sum;
1831}
1832
1833unsigned long nr_iowait(void)
1834{
1835 unsigned long i, sum = 0;
1836
0a945022 1837 for_each_possible_cpu(i)
1da177e4
LT
1838 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1839
1840 return sum;
1841}
1842
db1b1fef
JS
1843unsigned long nr_active(void)
1844{
1845 unsigned long i, running = 0, uninterruptible = 0;
1846
1847 for_each_online_cpu(i) {
1848 running += cpu_rq(i)->nr_running;
1849 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1850 }
1851
1852 if (unlikely((long)uninterruptible < 0))
1853 uninterruptible = 0;
1854
1855 return running + uninterruptible;
1856}
1857
1da177e4
LT
1858#ifdef CONFIG_SMP
1859
1860/*
1861 * double_rq_lock - safely lock two runqueues
1862 *
1863 * Note this does not disable interrupts like task_rq_lock,
1864 * you need to do so manually before calling.
1865 */
1866static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1867 __acquires(rq1->lock)
1868 __acquires(rq2->lock)
1869{
1870 if (rq1 == rq2) {
1871 spin_lock(&rq1->lock);
1872 __acquire(rq2->lock); /* Fake it out ;) */
1873 } else {
c96d145e 1874 if (rq1 < rq2) {
1da177e4
LT
1875 spin_lock(&rq1->lock);
1876 spin_lock(&rq2->lock);
1877 } else {
1878 spin_lock(&rq2->lock);
1879 spin_lock(&rq1->lock);
1880 }
1881 }
1882}
1883
1884/*
1885 * double_rq_unlock - safely unlock two runqueues
1886 *
1887 * Note this does not restore interrupts like task_rq_unlock,
1888 * you need to do so manually after calling.
1889 */
1890static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1891 __releases(rq1->lock)
1892 __releases(rq2->lock)
1893{
1894 spin_unlock(&rq1->lock);
1895 if (rq1 != rq2)
1896 spin_unlock(&rq2->lock);
1897 else
1898 __release(rq2->lock);
1899}
1900
1901/*
1902 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1903 */
1904static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1905 __releases(this_rq->lock)
1906 __acquires(busiest->lock)
1907 __acquires(this_rq->lock)
1908{
1909 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 1910 if (busiest < this_rq) {
1da177e4
LT
1911 spin_unlock(&this_rq->lock);
1912 spin_lock(&busiest->lock);
1913 spin_lock(&this_rq->lock);
1914 } else
1915 spin_lock(&busiest->lock);
1916 }
1917}
1918
1da177e4
LT
1919/*
1920 * If dest_cpu is allowed for this process, migrate the task to it.
1921 * This is accomplished by forcing the cpu_allowed mask to only
1922 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1923 * the cpu_allowed mask is restored.
1924 */
1925static void sched_migrate_task(task_t *p, int dest_cpu)
1926{
1927 migration_req_t req;
1928 runqueue_t *rq;
1929 unsigned long flags;
1930
1931 rq = task_rq_lock(p, &flags);
1932 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1933 || unlikely(cpu_is_offline(dest_cpu)))
1934 goto out;
1935
1936 /* force the process onto the specified CPU */
1937 if (migrate_task(p, dest_cpu, &req)) {
1938 /* Need to wait for migration thread (might exit: take ref). */
1939 struct task_struct *mt = rq->migration_thread;
1940 get_task_struct(mt);
1941 task_rq_unlock(rq, &flags);
1942 wake_up_process(mt);
1943 put_task_struct(mt);
1944 wait_for_completion(&req.done);
1945 return;
1946 }
1947out:
1948 task_rq_unlock(rq, &flags);
1949}
1950
1951/*
476d139c
NP
1952 * sched_exec - execve() is a valuable balancing opportunity, because at
1953 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
1954 */
1955void sched_exec(void)
1956{
1da177e4 1957 int new_cpu, this_cpu = get_cpu();
476d139c 1958 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 1959 put_cpu();
476d139c
NP
1960 if (new_cpu != this_cpu)
1961 sched_migrate_task(current, new_cpu);
1da177e4
LT
1962}
1963
1964/*
1965 * pull_task - move a task from a remote runqueue to the local runqueue.
1966 * Both runqueues must be locked.
1967 */
858119e1 1968static
1da177e4
LT
1969void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1970 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1971{
1972 dequeue_task(p, src_array);
2dd73a4f 1973 dec_nr_running(p, src_rq);
1da177e4 1974 set_task_cpu(p, this_cpu);
2dd73a4f 1975 inc_nr_running(p, this_rq);
1da177e4
LT
1976 enqueue_task(p, this_array);
1977 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1978 + this_rq->timestamp_last_tick;
1979 /*
1980 * Note that idle threads have a prio of MAX_PRIO, for this test
1981 * to be always true for them.
1982 */
1983 if (TASK_PREEMPTS_CURR(p, this_rq))
1984 resched_task(this_rq->curr);
1985}
1986
1987/*
1988 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1989 */
858119e1 1990static
1da177e4 1991int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
95cdf3b7
IM
1992 struct sched_domain *sd, enum idle_type idle,
1993 int *all_pinned)
1da177e4
LT
1994{
1995 /*
1996 * We do not migrate tasks that are:
1997 * 1) running (obviously), or
1998 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1999 * 3) are cache-hot on their current CPU.
2000 */
1da177e4
LT
2001 if (!cpu_isset(this_cpu, p->cpus_allowed))
2002 return 0;
81026794
NP
2003 *all_pinned = 0;
2004
2005 if (task_running(rq, p))
2006 return 0;
1da177e4
LT
2007
2008 /*
2009 * Aggressive migration if:
cafb20c1 2010 * 1) task is cache cold, or
1da177e4
LT
2011 * 2) too many balance attempts have failed.
2012 */
2013
cafb20c1 2014 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2015 return 1;
2016
2017 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 2018 return 0;
1da177e4
LT
2019 return 1;
2020}
2021
615052dc 2022#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
1da177e4 2023/*
2dd73a4f
PW
2024 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2025 * load from busiest to this_rq, as part of a balancing operation within
2026 * "domain". Returns the number of tasks moved.
1da177e4
LT
2027 *
2028 * Called with both runqueues locked.
2029 */
2030static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
2dd73a4f
PW
2031 unsigned long max_nr_move, unsigned long max_load_move,
2032 struct sched_domain *sd, enum idle_type idle,
2033 int *all_pinned)
1da177e4
LT
2034{
2035 prio_array_t *array, *dst_array;
2036 struct list_head *head, *curr;
615052dc
PW
2037 int idx, pulled = 0, pinned = 0, this_best_prio, busiest_best_prio;
2038 int busiest_best_prio_seen;
2039 int skip_for_load; /* skip the task based on weighted load issues */
2dd73a4f 2040 long rem_load_move;
1da177e4
LT
2041 task_t *tmp;
2042
2dd73a4f 2043 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2044 goto out;
2045
2dd73a4f 2046 rem_load_move = max_load_move;
81026794 2047 pinned = 1;
615052dc
PW
2048 this_best_prio = rq_best_prio(this_rq);
2049 busiest_best_prio = rq_best_prio(busiest);
2050 /*
2051 * Enable handling of the case where there is more than one task
2052 * with the best priority. If the current running task is one
2053 * of those with prio==busiest_best_prio we know it won't be moved
2054 * and therefore it's safe to override the skip (based on load) of
2055 * any task we find with that prio.
2056 */
2057 busiest_best_prio_seen = busiest_best_prio == busiest->curr->prio;
81026794 2058
1da177e4
LT
2059 /*
2060 * We first consider expired tasks. Those will likely not be
2061 * executed in the near future, and they are most likely to
2062 * be cache-cold, thus switching CPUs has the least effect
2063 * on them.
2064 */
2065 if (busiest->expired->nr_active) {
2066 array = busiest->expired;
2067 dst_array = this_rq->expired;
2068 } else {
2069 array = busiest->active;
2070 dst_array = this_rq->active;
2071 }
2072
2073new_array:
2074 /* Start searching at priority 0: */
2075 idx = 0;
2076skip_bitmap:
2077 if (!idx)
2078 idx = sched_find_first_bit(array->bitmap);
2079 else
2080 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2081 if (idx >= MAX_PRIO) {
2082 if (array == busiest->expired && busiest->active->nr_active) {
2083 array = busiest->active;
2084 dst_array = this_rq->active;
2085 goto new_array;
2086 }
2087 goto out;
2088 }
2089
2090 head = array->queue + idx;
2091 curr = head->prev;
2092skip_queue:
2093 tmp = list_entry(curr, task_t, run_list);
2094
2095 curr = curr->prev;
2096
50ddd969
PW
2097 /*
2098 * To help distribute high priority tasks accross CPUs we don't
2099 * skip a task if it will be the highest priority task (i.e. smallest
2100 * prio value) on its new queue regardless of its load weight
2101 */
615052dc
PW
2102 skip_for_load = tmp->load_weight > rem_load_move;
2103 if (skip_for_load && idx < this_best_prio)
2104 skip_for_load = !busiest_best_prio_seen && idx == busiest_best_prio;
2105 if (skip_for_load ||
2dd73a4f 2106 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
615052dc 2107 busiest_best_prio_seen |= idx == busiest_best_prio;
1da177e4
LT
2108 if (curr != head)
2109 goto skip_queue;
2110 idx++;
2111 goto skip_bitmap;
2112 }
2113
2114#ifdef CONFIG_SCHEDSTATS
2115 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2116 schedstat_inc(sd, lb_hot_gained[idle]);
2117#endif
2118
2119 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2120 pulled++;
2dd73a4f 2121 rem_load_move -= tmp->load_weight;
1da177e4 2122
2dd73a4f
PW
2123 /*
2124 * We only want to steal up to the prescribed number of tasks
2125 * and the prescribed amount of weighted load.
2126 */
2127 if (pulled < max_nr_move && rem_load_move > 0) {
615052dc
PW
2128 if (idx < this_best_prio)
2129 this_best_prio = idx;
1da177e4
LT
2130 if (curr != head)
2131 goto skip_queue;
2132 idx++;
2133 goto skip_bitmap;
2134 }
2135out:
2136 /*
2137 * Right now, this is the only place pull_task() is called,
2138 * so we can safely collect pull_task() stats here rather than
2139 * inside pull_task().
2140 */
2141 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2142
2143 if (all_pinned)
2144 *all_pinned = pinned;
1da177e4
LT
2145 return pulled;
2146}
2147
2148/*
2149 * find_busiest_group finds and returns the busiest CPU group within the
2dd73a4f 2150 * domain. It calculates and returns the amount of weighted load which should be
1da177e4
LT
2151 * moved to restore balance via the imbalance parameter.
2152 */
2153static struct sched_group *
2154find_busiest_group(struct sched_domain *sd, int this_cpu,
5969fe06 2155 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1da177e4
LT
2156{
2157 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2158 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2159 unsigned long max_pull;
2dd73a4f
PW
2160 unsigned long busiest_load_per_task, busiest_nr_running;
2161 unsigned long this_load_per_task, this_nr_running;
7897986b 2162 int load_idx;
5c45bf27
SS
2163#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2164 int power_savings_balance = 1;
2165 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2166 unsigned long min_nr_running = ULONG_MAX;
2167 struct sched_group *group_min = NULL, *group_leader = NULL;
2168#endif
1da177e4
LT
2169
2170 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2171 busiest_load_per_task = busiest_nr_running = 0;
2172 this_load_per_task = this_nr_running = 0;
7897986b
NP
2173 if (idle == NOT_IDLE)
2174 load_idx = sd->busy_idx;
2175 else if (idle == NEWLY_IDLE)
2176 load_idx = sd->newidle_idx;
2177 else
2178 load_idx = sd->idle_idx;
1da177e4
LT
2179
2180 do {
5c45bf27 2181 unsigned long load, group_capacity;
1da177e4
LT
2182 int local_group;
2183 int i;
2dd73a4f 2184 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2185
2186 local_group = cpu_isset(this_cpu, group->cpumask);
2187
2188 /* Tally up the load of all CPUs in the group */
2dd73a4f 2189 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2190
2191 for_each_cpu_mask(i, group->cpumask) {
2dd73a4f
PW
2192 runqueue_t *rq = cpu_rq(i);
2193
5969fe06
NP
2194 if (*sd_idle && !idle_cpu(i))
2195 *sd_idle = 0;
2196
1da177e4
LT
2197 /* Bias balancing toward cpus of our domain */
2198 if (local_group)
a2000572 2199 load = target_load(i, load_idx);
1da177e4 2200 else
a2000572 2201 load = source_load(i, load_idx);
1da177e4
LT
2202
2203 avg_load += load;
2dd73a4f
PW
2204 sum_nr_running += rq->nr_running;
2205 sum_weighted_load += rq->raw_weighted_load;
1da177e4
LT
2206 }
2207
2208 total_load += avg_load;
2209 total_pwr += group->cpu_power;
2210
2211 /* Adjust by relative CPU power of the group */
2212 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2213
5c45bf27
SS
2214 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2215
1da177e4
LT
2216 if (local_group) {
2217 this_load = avg_load;
2218 this = group;
2dd73a4f
PW
2219 this_nr_running = sum_nr_running;
2220 this_load_per_task = sum_weighted_load;
2221 } else if (avg_load > max_load &&
5c45bf27 2222 sum_nr_running > group_capacity) {
1da177e4
LT
2223 max_load = avg_load;
2224 busiest = group;
2dd73a4f
PW
2225 busiest_nr_running = sum_nr_running;
2226 busiest_load_per_task = sum_weighted_load;
1da177e4 2227 }
5c45bf27
SS
2228
2229#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2230 /*
2231 * Busy processors will not participate in power savings
2232 * balance.
2233 */
2234 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2235 goto group_next;
2236
2237 /*
2238 * If the local group is idle or completely loaded
2239 * no need to do power savings balance at this domain
2240 */
2241 if (local_group && (this_nr_running >= group_capacity ||
2242 !this_nr_running))
2243 power_savings_balance = 0;
2244
2245 /*
2246 * If a group is already running at full capacity or idle,
2247 * don't include that group in power savings calculations
2248 */
2249 if (!power_savings_balance || sum_nr_running >= group_capacity
2250 || !sum_nr_running)
2251 goto group_next;
2252
2253 /*
2254 * Calculate the group which has the least non-idle load.
2255 * This is the group from where we need to pick up the load
2256 * for saving power
2257 */
2258 if ((sum_nr_running < min_nr_running) ||
2259 (sum_nr_running == min_nr_running &&
2260 first_cpu(group->cpumask) <
2261 first_cpu(group_min->cpumask))) {
2262 group_min = group;
2263 min_nr_running = sum_nr_running;
2264 min_load_per_task = sum_weighted_load /
2265 sum_nr_running;
2266 }
2267
2268 /*
2269 * Calculate the group which is almost near its
2270 * capacity but still has some space to pick up some load
2271 * from other group and save more power
2272 */
2273 if (sum_nr_running <= group_capacity - 1)
2274 if (sum_nr_running > leader_nr_running ||
2275 (sum_nr_running == leader_nr_running &&
2276 first_cpu(group->cpumask) >
2277 first_cpu(group_leader->cpumask))) {
2278 group_leader = group;
2279 leader_nr_running = sum_nr_running;
2280 }
2281
2282group_next:
2283#endif
1da177e4
LT
2284 group = group->next;
2285 } while (group != sd->groups);
2286
2dd73a4f 2287 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2288 goto out_balanced;
2289
2290 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2291
2292 if (this_load >= avg_load ||
2293 100*max_load <= sd->imbalance_pct*this_load)
2294 goto out_balanced;
2295
2dd73a4f 2296 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2297 /*
2298 * We're trying to get all the cpus to the average_load, so we don't
2299 * want to push ourselves above the average load, nor do we wish to
2300 * reduce the max loaded cpu below the average load, as either of these
2301 * actions would just result in more rebalancing later, and ping-pong
2302 * tasks around. Thus we look for the minimum possible imbalance.
2303 * Negative imbalances (*we* are more loaded than anyone else) will
2304 * be counted as no imbalance for these purposes -- we can't fix that
2305 * by pulling tasks to us. Be careful of negative numbers as they'll
2306 * appear as very large values with unsigned longs.
2307 */
2dd73a4f
PW
2308 if (max_load <= busiest_load_per_task)
2309 goto out_balanced;
2310
2311 /*
2312 * In the presence of smp nice balancing, certain scenarios can have
2313 * max load less than avg load(as we skip the groups at or below
2314 * its cpu_power, while calculating max_load..)
2315 */
2316 if (max_load < avg_load) {
2317 *imbalance = 0;
2318 goto small_imbalance;
2319 }
0c117f1b
SS
2320
2321 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2322 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2323
1da177e4 2324 /* How much load to actually move to equalise the imbalance */
0c117f1b 2325 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2326 (avg_load - this_load) * this->cpu_power)
2327 / SCHED_LOAD_SCALE;
2328
2dd73a4f
PW
2329 /*
2330 * if *imbalance is less than the average load per runnable task
2331 * there is no gaurantee that any tasks will be moved so we'll have
2332 * a think about bumping its value to force at least one task to be
2333 * moved
2334 */
2335 if (*imbalance < busiest_load_per_task) {
2336 unsigned long pwr_now, pwr_move;
1da177e4 2337 unsigned long tmp;
2dd73a4f
PW
2338 unsigned int imbn;
2339
2340small_imbalance:
2341 pwr_move = pwr_now = 0;
2342 imbn = 2;
2343 if (this_nr_running) {
2344 this_load_per_task /= this_nr_running;
2345 if (busiest_load_per_task > this_load_per_task)
2346 imbn = 1;
2347 } else
2348 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2349
2dd73a4f
PW
2350 if (max_load - this_load >= busiest_load_per_task * imbn) {
2351 *imbalance = busiest_load_per_task;
1da177e4
LT
2352 return busiest;
2353 }
2354
2355 /*
2356 * OK, we don't have enough imbalance to justify moving tasks,
2357 * however we may be able to increase total CPU power used by
2358 * moving them.
2359 */
2360
2dd73a4f
PW
2361 pwr_now += busiest->cpu_power *
2362 min(busiest_load_per_task, max_load);
2363 pwr_now += this->cpu_power *
2364 min(this_load_per_task, this_load);
1da177e4
LT
2365 pwr_now /= SCHED_LOAD_SCALE;
2366
2367 /* Amount of load we'd subtract */
2dd73a4f 2368 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
1da177e4 2369 if (max_load > tmp)
2dd73a4f
PW
2370 pwr_move += busiest->cpu_power *
2371 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2372
2373 /* Amount of load we'd add */
2374 if (max_load*busiest->cpu_power <
2dd73a4f 2375 busiest_load_per_task*SCHED_LOAD_SCALE)
1da177e4
LT
2376 tmp = max_load*busiest->cpu_power/this->cpu_power;
2377 else
2dd73a4f
PW
2378 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2379 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
1da177e4
LT
2380 pwr_move /= SCHED_LOAD_SCALE;
2381
2382 /* Move if we gain throughput */
2383 if (pwr_move <= pwr_now)
2384 goto out_balanced;
2385
2dd73a4f 2386 *imbalance = busiest_load_per_task;
1da177e4
LT
2387 }
2388
1da177e4
LT
2389 return busiest;
2390
2391out_balanced:
5c45bf27
SS
2392#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2393 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2394 goto ret;
1da177e4 2395
5c45bf27
SS
2396 if (this == group_leader && group_leader != group_min) {
2397 *imbalance = min_load_per_task;
2398 return group_min;
2399 }
2400ret:
2401#endif
1da177e4
LT
2402 *imbalance = 0;
2403 return NULL;
2404}
2405
2406/*
2407 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2408 */
b910472d 2409static runqueue_t *find_busiest_queue(struct sched_group *group,
2dd73a4f 2410 enum idle_type idle, unsigned long imbalance)
1da177e4 2411{
2dd73a4f
PW
2412 unsigned long max_load = 0;
2413 runqueue_t *busiest = NULL, *rqi;
1da177e4
LT
2414 int i;
2415
2416 for_each_cpu_mask(i, group->cpumask) {
2dd73a4f
PW
2417 rqi = cpu_rq(i);
2418
2419 if (rqi->nr_running == 1 && rqi->raw_weighted_load > imbalance)
2420 continue;
1da177e4 2421
2dd73a4f
PW
2422 if (rqi->raw_weighted_load > max_load) {
2423 max_load = rqi->raw_weighted_load;
2424 busiest = rqi;
1da177e4
LT
2425 }
2426 }
2427
2428 return busiest;
2429}
2430
77391d71
NP
2431/*
2432 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2433 * so long as it is large enough.
2434 */
2435#define MAX_PINNED_INTERVAL 512
2436
2dd73a4f 2437#define minus_1_or_zero(n) ((n) > 0 ? (n) - 1 : 0)
1da177e4
LT
2438/*
2439 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2440 * tasks if there is an imbalance.
2441 *
2442 * Called with this_rq unlocked.
2443 */
2444static int load_balance(int this_cpu, runqueue_t *this_rq,
2445 struct sched_domain *sd, enum idle_type idle)
2446{
2447 struct sched_group *group;
2448 runqueue_t *busiest;
2449 unsigned long imbalance;
77391d71 2450 int nr_moved, all_pinned = 0;
81026794 2451 int active_balance = 0;
5969fe06
NP
2452 int sd_idle = 0;
2453
5c45bf27
SS
2454 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2455 !sched_smt_power_savings)
5969fe06 2456 sd_idle = 1;
1da177e4 2457
1da177e4
LT
2458 schedstat_inc(sd, lb_cnt[idle]);
2459
5969fe06 2460 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
1da177e4
LT
2461 if (!group) {
2462 schedstat_inc(sd, lb_nobusyg[idle]);
2463 goto out_balanced;
2464 }
2465
2dd73a4f 2466 busiest = find_busiest_queue(group, idle, imbalance);
1da177e4
LT
2467 if (!busiest) {
2468 schedstat_inc(sd, lb_nobusyq[idle]);
2469 goto out_balanced;
2470 }
2471
db935dbd 2472 BUG_ON(busiest == this_rq);
1da177e4
LT
2473
2474 schedstat_add(sd, lb_imbalance[idle], imbalance);
2475
2476 nr_moved = 0;
2477 if (busiest->nr_running > 1) {
2478 /*
2479 * Attempt to move tasks. If find_busiest_group has found
2480 * an imbalance but busiest->nr_running <= 1, the group is
2481 * still unbalanced. nr_moved simply stays zero, so it is
2482 * correctly treated as an imbalance.
2483 */
e17224bf 2484 double_rq_lock(this_rq, busiest);
1da177e4 2485 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2486 minus_1_or_zero(busiest->nr_running),
d6d5cfaf 2487 imbalance, sd, idle, &all_pinned);
e17224bf 2488 double_rq_unlock(this_rq, busiest);
81026794
NP
2489
2490 /* All tasks on this runqueue were pinned by CPU affinity */
2491 if (unlikely(all_pinned))
2492 goto out_balanced;
1da177e4 2493 }
81026794 2494
1da177e4
LT
2495 if (!nr_moved) {
2496 schedstat_inc(sd, lb_failed[idle]);
2497 sd->nr_balance_failed++;
2498
2499 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2500
2501 spin_lock(&busiest->lock);
fa3b6ddc
SS
2502
2503 /* don't kick the migration_thread, if the curr
2504 * task on busiest cpu can't be moved to this_cpu
2505 */
2506 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2507 spin_unlock(&busiest->lock);
2508 all_pinned = 1;
2509 goto out_one_pinned;
2510 }
2511
1da177e4
LT
2512 if (!busiest->active_balance) {
2513 busiest->active_balance = 1;
2514 busiest->push_cpu = this_cpu;
81026794 2515 active_balance = 1;
1da177e4
LT
2516 }
2517 spin_unlock(&busiest->lock);
81026794 2518 if (active_balance)
1da177e4
LT
2519 wake_up_process(busiest->migration_thread);
2520
2521 /*
2522 * We've kicked active balancing, reset the failure
2523 * counter.
2524 */
39507451 2525 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2526 }
81026794 2527 } else
1da177e4
LT
2528 sd->nr_balance_failed = 0;
2529
81026794 2530 if (likely(!active_balance)) {
1da177e4
LT
2531 /* We were unbalanced, so reset the balancing interval */
2532 sd->balance_interval = sd->min_interval;
81026794
NP
2533 } else {
2534 /*
2535 * If we've begun active balancing, start to back off. This
2536 * case may not be covered by the all_pinned logic if there
2537 * is only 1 task on the busy runqueue (because we don't call
2538 * move_tasks).
2539 */
2540 if (sd->balance_interval < sd->max_interval)
2541 sd->balance_interval *= 2;
1da177e4
LT
2542 }
2543
5c45bf27
SS
2544 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2545 !sched_smt_power_savings)
5969fe06 2546 return -1;
1da177e4
LT
2547 return nr_moved;
2548
2549out_balanced:
1da177e4
LT
2550 schedstat_inc(sd, lb_balanced[idle]);
2551
16cfb1c0 2552 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2553
2554out_one_pinned:
1da177e4 2555 /* tune up the balancing interval */
77391d71
NP
2556 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2557 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2558 sd->balance_interval *= 2;
2559
5c45bf27 2560 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
5969fe06 2561 return -1;
1da177e4
LT
2562 return 0;
2563}
2564
2565/*
2566 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2567 * tasks if there is an imbalance.
2568 *
2569 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2570 * this_rq is locked.
2571 */
2572static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2573 struct sched_domain *sd)
2574{
2575 struct sched_group *group;
2576 runqueue_t *busiest = NULL;
2577 unsigned long imbalance;
2578 int nr_moved = 0;
5969fe06
NP
2579 int sd_idle = 0;
2580
5c45bf27 2581 if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
5969fe06 2582 sd_idle = 1;
1da177e4
LT
2583
2584 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
5969fe06 2585 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
1da177e4 2586 if (!group) {
1da177e4 2587 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2588 goto out_balanced;
1da177e4
LT
2589 }
2590
2dd73a4f 2591 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
db935dbd 2592 if (!busiest) {
1da177e4 2593 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2594 goto out_balanced;
1da177e4
LT
2595 }
2596
db935dbd
NP
2597 BUG_ON(busiest == this_rq);
2598
1da177e4 2599 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2600
2601 nr_moved = 0;
2602 if (busiest->nr_running > 1) {
2603 /* Attempt to move tasks */
2604 double_lock_balance(this_rq, busiest);
2605 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2606 minus_1_or_zero(busiest->nr_running),
81026794 2607 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf
NP
2608 spin_unlock(&busiest->lock);
2609 }
2610
5969fe06 2611 if (!nr_moved) {
1da177e4 2612 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
5969fe06
NP
2613 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2614 return -1;
2615 } else
16cfb1c0 2616 sd->nr_balance_failed = 0;
1da177e4 2617
1da177e4 2618 return nr_moved;
16cfb1c0
NP
2619
2620out_balanced:
2621 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
5c45bf27 2622 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
5969fe06 2623 return -1;
16cfb1c0
NP
2624 sd->nr_balance_failed = 0;
2625 return 0;
1da177e4
LT
2626}
2627
2628/*
2629 * idle_balance is called by schedule() if this_cpu is about to become
2630 * idle. Attempts to pull tasks from other CPUs.
2631 */
858119e1 2632static void idle_balance(int this_cpu, runqueue_t *this_rq)
1da177e4
LT
2633{
2634 struct sched_domain *sd;
2635
2636 for_each_domain(this_cpu, sd) {
2637 if (sd->flags & SD_BALANCE_NEWIDLE) {
2638 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2639 /* We've pulled tasks over so stop searching */
2640 break;
2641 }
2642 }
2643 }
2644}
2645
2646/*
2647 * active_load_balance is run by migration threads. It pushes running tasks
2648 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2649 * running on each physical CPU where possible, and avoids physical /
2650 * logical imbalances.
2651 *
2652 * Called with busiest_rq locked.
2653 */
2654static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2655{
2656 struct sched_domain *sd;
1da177e4 2657 runqueue_t *target_rq;
39507451
NP
2658 int target_cpu = busiest_rq->push_cpu;
2659
2660 if (busiest_rq->nr_running <= 1)
2661 /* no task to move */
2662 return;
2663
2664 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2665
2666 /*
39507451
NP
2667 * This condition is "impossible", if it occurs
2668 * we need to fix it. Originally reported by
2669 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2670 */
39507451 2671 BUG_ON(busiest_rq == target_rq);
1da177e4 2672
39507451
NP
2673 /* move a task from busiest_rq to target_rq */
2674 double_lock_balance(busiest_rq, target_rq);
2675
2676 /* Search for an sd spanning us and the target CPU. */
c96d145e 2677 for_each_domain(target_cpu, sd) {
39507451
NP
2678 if ((sd->flags & SD_LOAD_BALANCE) &&
2679 cpu_isset(busiest_cpu, sd->span))
2680 break;
c96d145e 2681 }
39507451
NP
2682
2683 if (unlikely(sd == NULL))
2684 goto out;
2685
2686 schedstat_inc(sd, alb_cnt);
2687
2dd73a4f
PW
2688 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2689 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, NULL))
39507451
NP
2690 schedstat_inc(sd, alb_pushed);
2691 else
2692 schedstat_inc(sd, alb_failed);
2693out:
2694 spin_unlock(&target_rq->lock);
1da177e4
LT
2695}
2696
2697/*
2698 * rebalance_tick will get called every timer tick, on every CPU.
2699 *
2700 * It checks each scheduling domain to see if it is due to be balanced,
2701 * and initiates a balancing operation if so.
2702 *
2703 * Balancing parameters are set up in arch_init_sched_domains.
2704 */
2705
2706/* Don't have all balancing operations going off at once */
2707#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2708
2709static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2710 enum idle_type idle)
2711{
2712 unsigned long old_load, this_load;
2713 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2714 struct sched_domain *sd;
7897986b 2715 int i;
1da177e4 2716
2dd73a4f 2717 this_load = this_rq->raw_weighted_load;
7897986b
NP
2718 /* Update our load */
2719 for (i = 0; i < 3; i++) {
2720 unsigned long new_load = this_load;
2721 int scale = 1 << i;
2722 old_load = this_rq->cpu_load[i];
2723 /*
2724 * Round up the averaging division if load is increasing. This
2725 * prevents us from getting stuck on 9 if the load is 10, for
2726 * example.
2727 */
2728 if (new_load > old_load)
2729 new_load += scale-1;
2730 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2731 }
1da177e4
LT
2732
2733 for_each_domain(this_cpu, sd) {
2734 unsigned long interval;
2735
2736 if (!(sd->flags & SD_LOAD_BALANCE))
2737 continue;
2738
2739 interval = sd->balance_interval;
2740 if (idle != SCHED_IDLE)
2741 interval *= sd->busy_factor;
2742
2743 /* scale ms to jiffies */
2744 interval = msecs_to_jiffies(interval);
2745 if (unlikely(!interval))
2746 interval = 1;
2747
2748 if (j - sd->last_balance >= interval) {
2749 if (load_balance(this_cpu, this_rq, sd, idle)) {
fa3b6ddc
SS
2750 /*
2751 * We've pulled tasks over so either we're no
5969fe06
NP
2752 * longer idle, or one of our SMT siblings is
2753 * not idle.
2754 */
1da177e4
LT
2755 idle = NOT_IDLE;
2756 }
2757 sd->last_balance += interval;
2758 }
2759 }
2760}
2761#else
2762/*
2763 * on UP we do not need to balance between CPUs:
2764 */
2765static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2766{
2767}
2768static inline void idle_balance(int cpu, runqueue_t *rq)
2769{
2770}
2771#endif
2772
2773static inline int wake_priority_sleeper(runqueue_t *rq)
2774{
2775 int ret = 0;
2776#ifdef CONFIG_SCHED_SMT
2777 spin_lock(&rq->lock);
2778 /*
2779 * If an SMT sibling task has been put to sleep for priority
2780 * reasons reschedule the idle task to see if it can now run.
2781 */
2782 if (rq->nr_running) {
2783 resched_task(rq->idle);
2784 ret = 1;
2785 }
2786 spin_unlock(&rq->lock);
2787#endif
2788 return ret;
2789}
2790
2791DEFINE_PER_CPU(struct kernel_stat, kstat);
2792
2793EXPORT_PER_CPU_SYMBOL(kstat);
2794
2795/*
2796 * This is called on clock ticks and on context switches.
2797 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2798 */
2799static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2800 unsigned long long now)
2801{
2802 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2803 p->sched_time += now - last;
2804}
2805
2806/*
2807 * Return current->sched_time plus any more ns on the sched_clock
2808 * that have not yet been banked.
2809 */
2810unsigned long long current_sched_time(const task_t *tsk)
2811{
2812 unsigned long long ns;
2813 unsigned long flags;
2814 local_irq_save(flags);
2815 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2816 ns = tsk->sched_time + (sched_clock() - ns);
2817 local_irq_restore(flags);
2818 return ns;
2819}
2820
f1adad78
LT
2821/*
2822 * We place interactive tasks back into the active array, if possible.
2823 *
2824 * To guarantee that this does not starve expired tasks we ignore the
2825 * interactivity of a task if the first expired task had to wait more
2826 * than a 'reasonable' amount of time. This deadline timeout is
2827 * load-dependent, as the frequency of array switched decreases with
2828 * increasing number of running tasks. We also ignore the interactivity
2829 * if a better static_prio task has expired:
2830 */
2831#define EXPIRED_STARVING(rq) \
2832 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2833 (jiffies - (rq)->expired_timestamp >= \
2834 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2835 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2836
1da177e4
LT
2837/*
2838 * Account user cpu time to a process.
2839 * @p: the process that the cpu time gets accounted to
2840 * @hardirq_offset: the offset to subtract from hardirq_count()
2841 * @cputime: the cpu time spent in user space since the last update
2842 */
2843void account_user_time(struct task_struct *p, cputime_t cputime)
2844{
2845 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2846 cputime64_t tmp;
2847
2848 p->utime = cputime_add(p->utime, cputime);
2849
2850 /* Add user time to cpustat. */
2851 tmp = cputime_to_cputime64(cputime);
2852 if (TASK_NICE(p) > 0)
2853 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2854 else
2855 cpustat->user = cputime64_add(cpustat->user, tmp);
2856}
2857
2858/*
2859 * Account system cpu time to a process.
2860 * @p: the process that the cpu time gets accounted to
2861 * @hardirq_offset: the offset to subtract from hardirq_count()
2862 * @cputime: the cpu time spent in kernel space since the last update
2863 */
2864void account_system_time(struct task_struct *p, int hardirq_offset,
2865 cputime_t cputime)
2866{
2867 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2868 runqueue_t *rq = this_rq();
2869 cputime64_t tmp;
2870
2871 p->stime = cputime_add(p->stime, cputime);
2872
2873 /* Add system time to cpustat. */
2874 tmp = cputime_to_cputime64(cputime);
2875 if (hardirq_count() - hardirq_offset)
2876 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2877 else if (softirq_count())
2878 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2879 else if (p != rq->idle)
2880 cpustat->system = cputime64_add(cpustat->system, tmp);
2881 else if (atomic_read(&rq->nr_iowait) > 0)
2882 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2883 else
2884 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2885 /* Account for system time used */
2886 acct_update_integrals(p);
1da177e4
LT
2887}
2888
2889/*
2890 * Account for involuntary wait time.
2891 * @p: the process from which the cpu time has been stolen
2892 * @steal: the cpu time spent in involuntary wait
2893 */
2894void account_steal_time(struct task_struct *p, cputime_t steal)
2895{
2896 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2897 cputime64_t tmp = cputime_to_cputime64(steal);
2898 runqueue_t *rq = this_rq();
2899
2900 if (p == rq->idle) {
2901 p->stime = cputime_add(p->stime, steal);
2902 if (atomic_read(&rq->nr_iowait) > 0)
2903 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2904 else
2905 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2906 } else
2907 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2908}
2909
2910/*
2911 * This function gets called by the timer code, with HZ frequency.
2912 * We call it with interrupts disabled.
2913 *
2914 * It also gets called by the fork code, when changing the parent's
2915 * timeslices.
2916 */
2917void scheduler_tick(void)
2918{
2919 int cpu = smp_processor_id();
2920 runqueue_t *rq = this_rq();
2921 task_t *p = current;
2922 unsigned long long now = sched_clock();
2923
2924 update_cpu_clock(p, rq, now);
2925
2926 rq->timestamp_last_tick = now;
2927
2928 if (p == rq->idle) {
2929 if (wake_priority_sleeper(rq))
2930 goto out;
2931 rebalance_tick(cpu, rq, SCHED_IDLE);
2932 return;
2933 }
2934
2935 /* Task might have expired already, but not scheduled off yet */
2936 if (p->array != rq->active) {
2937 set_tsk_need_resched(p);
2938 goto out;
2939 }
2940 spin_lock(&rq->lock);
2941 /*
2942 * The task was running during this tick - update the
2943 * time slice counter. Note: we do not update a thread's
2944 * priority until it either goes to sleep or uses up its
2945 * timeslice. This makes it possible for interactive tasks
2946 * to use up their timeslices at their highest priority levels.
2947 */
2948 if (rt_task(p)) {
2949 /*
2950 * RR tasks need a special form of timeslice management.
2951 * FIFO tasks have no timeslices.
2952 */
2953 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2954 p->time_slice = task_timeslice(p);
2955 p->first_time_slice = 0;
2956 set_tsk_need_resched(p);
2957
2958 /* put it at the end of the queue: */
2959 requeue_task(p, rq->active);
2960 }
2961 goto out_unlock;
2962 }
2963 if (!--p->time_slice) {
2964 dequeue_task(p, rq->active);
2965 set_tsk_need_resched(p);
2966 p->prio = effective_prio(p);
2967 p->time_slice = task_timeslice(p);
2968 p->first_time_slice = 0;
2969
2970 if (!rq->expired_timestamp)
2971 rq->expired_timestamp = jiffies;
f1adad78 2972 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
1da177e4
LT
2973 enqueue_task(p, rq->expired);
2974 if (p->static_prio < rq->best_expired_prio)
2975 rq->best_expired_prio = p->static_prio;
2976 } else
2977 enqueue_task(p, rq->active);
2978 } else {
2979 /*
2980 * Prevent a too long timeslice allowing a task to monopolize
2981 * the CPU. We do this by splitting up the timeslice into
2982 * smaller pieces.
2983 *
2984 * Note: this does not mean the task's timeslices expire or
2985 * get lost in any way, they just might be preempted by
2986 * another task of equal priority. (one with higher
2987 * priority would have preempted this task already.) We
2988 * requeue this task to the end of the list on this priority
2989 * level, which is in essence a round-robin of tasks with
2990 * equal priority.
2991 *
2992 * This only applies to tasks in the interactive
2993 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2994 */
2995 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2996 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2997 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2998 (p->array == rq->active)) {
2999
3000 requeue_task(p, rq->active);
3001 set_tsk_need_resched(p);
3002 }
3003 }
3004out_unlock:
3005 spin_unlock(&rq->lock);
3006out:
3007 rebalance_tick(cpu, rq, NOT_IDLE);
3008}
3009
3010#ifdef CONFIG_SCHED_SMT
fc38ed75
CK
3011static inline void wakeup_busy_runqueue(runqueue_t *rq)
3012{
3013 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3014 if (rq->curr == rq->idle && rq->nr_running)
3015 resched_task(rq->idle);
3016}
3017
c96d145e
KC
3018/*
3019 * Called with interrupt disabled and this_rq's runqueue locked.
3020 */
3021static void wake_sleeping_dependent(int this_cpu)
1da177e4 3022{
41c7ce9a 3023 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
3024 int i;
3025
c96d145e
KC
3026 for_each_domain(this_cpu, tmp) {
3027 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3028 sd = tmp;
c96d145e
KC
3029 break;
3030 }
3031 }
41c7ce9a
NP
3032
3033 if (!sd)
1da177e4
LT
3034 return;
3035
c96d145e 3036 for_each_cpu_mask(i, sd->span) {
1da177e4
LT
3037 runqueue_t *smt_rq = cpu_rq(i);
3038
c96d145e
KC
3039 if (i == this_cpu)
3040 continue;
3041 if (unlikely(!spin_trylock(&smt_rq->lock)))
3042 continue;
3043
fc38ed75 3044 wakeup_busy_runqueue(smt_rq);
c96d145e 3045 spin_unlock(&smt_rq->lock);
1da177e4 3046 }
1da177e4
LT
3047}
3048
67f9a619
IM
3049/*
3050 * number of 'lost' timeslices this task wont be able to fully
3051 * utilize, if another task runs on a sibling. This models the
3052 * slowdown effect of other tasks running on siblings:
3053 */
3054static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
3055{
3056 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3057}
3058
c96d145e
KC
3059/*
3060 * To minimise lock contention and not have to drop this_rq's runlock we only
3061 * trylock the sibling runqueues and bypass those runqueues if we fail to
3062 * acquire their lock. As we only trylock the normal locking order does not
3063 * need to be obeyed.
3064 */
3065static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
1da177e4 3066{
41c7ce9a 3067 struct sched_domain *tmp, *sd = NULL;
1da177e4 3068 int ret = 0, i;
1da177e4 3069
c96d145e
KC
3070 /* kernel/rt threads do not participate in dependent sleeping */
3071 if (!p->mm || rt_task(p))
3072 return 0;
3073
3074 for_each_domain(this_cpu, tmp) {
3075 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3076 sd = tmp;
c96d145e
KC
3077 break;
3078 }
3079 }
41c7ce9a
NP
3080
3081 if (!sd)
1da177e4
LT
3082 return 0;
3083
c96d145e
KC
3084 for_each_cpu_mask(i, sd->span) {
3085 runqueue_t *smt_rq;
3086 task_t *smt_curr;
1da177e4 3087
c96d145e
KC
3088 if (i == this_cpu)
3089 continue;
1da177e4 3090
c96d145e
KC
3091 smt_rq = cpu_rq(i);
3092 if (unlikely(!spin_trylock(&smt_rq->lock)))
3093 continue;
1da177e4 3094
c96d145e 3095 smt_curr = smt_rq->curr;
1da177e4 3096
c96d145e
KC
3097 if (!smt_curr->mm)
3098 goto unlock;
fc38ed75 3099
1da177e4
LT
3100 /*
3101 * If a user task with lower static priority than the
3102 * running task on the SMT sibling is trying to schedule,
3103 * delay it till there is proportionately less timeslice
3104 * left of the sibling task to prevent a lower priority
3105 * task from using an unfair proportion of the
3106 * physical cpu's resources. -ck
3107 */
fc38ed75
CK
3108 if (rt_task(smt_curr)) {
3109 /*
3110 * With real time tasks we run non-rt tasks only
3111 * per_cpu_gain% of the time.
3112 */
3113 if ((jiffies % DEF_TIMESLICE) >
3114 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3115 ret = 1;
c96d145e 3116 } else {
67f9a619
IM
3117 if (smt_curr->static_prio < p->static_prio &&
3118 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3119 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75 3120 ret = 1;
fc38ed75 3121 }
c96d145e
KC
3122unlock:
3123 spin_unlock(&smt_rq->lock);
1da177e4 3124 }
1da177e4
LT
3125 return ret;
3126}
3127#else
c96d145e 3128static inline void wake_sleeping_dependent(int this_cpu)
1da177e4
LT
3129{
3130}
3131
c96d145e
KC
3132static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
3133 task_t *p)
1da177e4
LT
3134{
3135 return 0;
3136}
3137#endif
3138
3139#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3140
3141void fastcall add_preempt_count(int val)
3142{
3143 /*
3144 * Underflow?
3145 */
9a11b49a
IM
3146 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3147 return;
1da177e4
LT
3148 preempt_count() += val;
3149 /*
3150 * Spinlock count overflowing soon?
3151 */
9a11b49a 3152 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
1da177e4
LT
3153}
3154EXPORT_SYMBOL(add_preempt_count);
3155
3156void fastcall sub_preempt_count(int val)
3157{
3158 /*
3159 * Underflow?
3160 */
9a11b49a
IM
3161 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3162 return;
1da177e4
LT
3163 /*
3164 * Is the spinlock portion underflowing?
3165 */
9a11b49a
IM
3166 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3167 !(preempt_count() & PREEMPT_MASK)))
3168 return;
3169
1da177e4
LT
3170 preempt_count() -= val;
3171}
3172EXPORT_SYMBOL(sub_preempt_count);
3173
3174#endif
3175
3dee386e
CK
3176static inline int interactive_sleep(enum sleep_type sleep_type)
3177{
3178 return (sleep_type == SLEEP_INTERACTIVE ||
3179 sleep_type == SLEEP_INTERRUPTED);
3180}
3181
1da177e4
LT
3182/*
3183 * schedule() is the main scheduler function.
3184 */
3185asmlinkage void __sched schedule(void)
3186{
3187 long *switch_count;
3188 task_t *prev, *next;
3189 runqueue_t *rq;
3190 prio_array_t *array;
3191 struct list_head *queue;
3192 unsigned long long now;
3193 unsigned long run_time;
a3464a10 3194 int cpu, idx, new_prio;
1da177e4
LT
3195
3196 /*
3197 * Test if we are atomic. Since do_exit() needs to call into
3198 * schedule() atomically, we ignore that path for now.
3199 * Otherwise, whine if we are scheduling when we should not be.
3200 */
77e4bfbc
AM
3201 if (unlikely(in_atomic() && !current->exit_state)) {
3202 printk(KERN_ERR "BUG: scheduling while atomic: "
3203 "%s/0x%08x/%d\n",
3204 current->comm, preempt_count(), current->pid);
3205 dump_stack();
1da177e4
LT
3206 }
3207 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3208
3209need_resched:
3210 preempt_disable();
3211 prev = current;
3212 release_kernel_lock(prev);
3213need_resched_nonpreemptible:
3214 rq = this_rq();
3215
3216 /*
3217 * The idle thread is not allowed to schedule!
3218 * Remove this check after it has been exercised a bit.
3219 */
3220 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3221 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3222 dump_stack();
3223 }
3224
3225 schedstat_inc(rq, sched_cnt);
3226 now = sched_clock();
238628ed 3227 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 3228 run_time = now - prev->timestamp;
238628ed 3229 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
3230 run_time = 0;
3231 } else
3232 run_time = NS_MAX_SLEEP_AVG;
3233
3234 /*
3235 * Tasks charged proportionately less run_time at high sleep_avg to
3236 * delay them losing their interactive status
3237 */
3238 run_time /= (CURRENT_BONUS(prev) ? : 1);
3239
3240 spin_lock_irq(&rq->lock);
3241
3242 if (unlikely(prev->flags & PF_DEAD))
3243 prev->state = EXIT_DEAD;
3244
3245 switch_count = &prev->nivcsw;
3246 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3247 switch_count = &prev->nvcsw;
3248 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3249 unlikely(signal_pending(prev))))
3250 prev->state = TASK_RUNNING;
3251 else {
3252 if (prev->state == TASK_UNINTERRUPTIBLE)
3253 rq->nr_uninterruptible++;
3254 deactivate_task(prev, rq);
3255 }
3256 }
3257
3258 cpu = smp_processor_id();
3259 if (unlikely(!rq->nr_running)) {
1da177e4
LT
3260 idle_balance(cpu, rq);
3261 if (!rq->nr_running) {
3262 next = rq->idle;
3263 rq->expired_timestamp = 0;
c96d145e 3264 wake_sleeping_dependent(cpu);
1da177e4
LT
3265 goto switch_tasks;
3266 }
1da177e4
LT
3267 }
3268
3269 array = rq->active;
3270 if (unlikely(!array->nr_active)) {
3271 /*
3272 * Switch the active and expired arrays.
3273 */
3274 schedstat_inc(rq, sched_switch);
3275 rq->active = rq->expired;
3276 rq->expired = array;
3277 array = rq->active;
3278 rq->expired_timestamp = 0;
3279 rq->best_expired_prio = MAX_PRIO;
3280 }
3281
3282 idx = sched_find_first_bit(array->bitmap);
3283 queue = array->queue + idx;
3284 next = list_entry(queue->next, task_t, run_list);
3285
3dee386e 3286 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3287 unsigned long long delta = now - next->timestamp;
238628ed 3288 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3289 delta = 0;
3290
3dee386e 3291 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3292 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3293
3294 array = next->array;
a3464a10
CS
3295 new_prio = recalc_task_prio(next, next->timestamp + delta);
3296
3297 if (unlikely(next->prio != new_prio)) {
3298 dequeue_task(next, array);
3299 next->prio = new_prio;
3300 enqueue_task(next, array);
7c4bb1f9 3301 }
1da177e4 3302 }
3dee386e 3303 next->sleep_type = SLEEP_NORMAL;
c96d145e
KC
3304 if (dependent_sleeper(cpu, rq, next))
3305 next = rq->idle;
1da177e4
LT
3306switch_tasks:
3307 if (next == rq->idle)
3308 schedstat_inc(rq, sched_goidle);
3309 prefetch(next);
383f2835 3310 prefetch_stack(next);
1da177e4
LT
3311 clear_tsk_need_resched(prev);
3312 rcu_qsctr_inc(task_cpu(prev));
3313
3314 update_cpu_clock(prev, rq, now);
3315
3316 prev->sleep_avg -= run_time;
3317 if ((long)prev->sleep_avg <= 0)
3318 prev->sleep_avg = 0;
3319 prev->timestamp = prev->last_ran = now;
3320
3321 sched_info_switch(prev, next);
3322 if (likely(prev != next)) {
3323 next->timestamp = now;
3324 rq->nr_switches++;
3325 rq->curr = next;
3326 ++*switch_count;
3327
4866cde0 3328 prepare_task_switch(rq, next);
1da177e4
LT
3329 prev = context_switch(rq, prev, next);
3330 barrier();
4866cde0
NP
3331 /*
3332 * this_rq must be evaluated again because prev may have moved
3333 * CPUs since it called schedule(), thus the 'rq' on its stack
3334 * frame will be invalid.
3335 */
3336 finish_task_switch(this_rq(), prev);
1da177e4
LT
3337 } else
3338 spin_unlock_irq(&rq->lock);
3339
3340 prev = current;
3341 if (unlikely(reacquire_kernel_lock(prev) < 0))
3342 goto need_resched_nonpreemptible;
3343 preempt_enable_no_resched();
3344 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3345 goto need_resched;
3346}
3347
3348EXPORT_SYMBOL(schedule);
3349
3350#ifdef CONFIG_PREEMPT
3351/*
3352 * this is is the entry point to schedule() from in-kernel preemption
3353 * off of preempt_enable. Kernel preemptions off return from interrupt
3354 * occur there and call schedule directly.
3355 */
3356asmlinkage void __sched preempt_schedule(void)
3357{
3358 struct thread_info *ti = current_thread_info();
3359#ifdef CONFIG_PREEMPT_BKL
3360 struct task_struct *task = current;
3361 int saved_lock_depth;
3362#endif
3363 /*
3364 * If there is a non-zero preempt_count or interrupts are disabled,
3365 * we do not want to preempt the current task. Just return..
3366 */
3367 if (unlikely(ti->preempt_count || irqs_disabled()))
3368 return;
3369
3370need_resched:
3371 add_preempt_count(PREEMPT_ACTIVE);
3372 /*
3373 * We keep the big kernel semaphore locked, but we
3374 * clear ->lock_depth so that schedule() doesnt
3375 * auto-release the semaphore:
3376 */
3377#ifdef CONFIG_PREEMPT_BKL
3378 saved_lock_depth = task->lock_depth;
3379 task->lock_depth = -1;
3380#endif
3381 schedule();
3382#ifdef CONFIG_PREEMPT_BKL
3383 task->lock_depth = saved_lock_depth;
3384#endif
3385 sub_preempt_count(PREEMPT_ACTIVE);
3386
3387 /* we could miss a preemption opportunity between schedule and now */
3388 barrier();
3389 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3390 goto need_resched;
3391}
3392
3393EXPORT_SYMBOL(preempt_schedule);
3394
3395/*
3396 * this is is the entry point to schedule() from kernel preemption
3397 * off of irq context.
3398 * Note, that this is called and return with irqs disabled. This will
3399 * protect us against recursive calling from irq.
3400 */
3401asmlinkage void __sched preempt_schedule_irq(void)
3402{
3403 struct thread_info *ti = current_thread_info();
3404#ifdef CONFIG_PREEMPT_BKL
3405 struct task_struct *task = current;
3406 int saved_lock_depth;
3407#endif
3408 /* Catch callers which need to be fixed*/
3409 BUG_ON(ti->preempt_count || !irqs_disabled());
3410
3411need_resched:
3412 add_preempt_count(PREEMPT_ACTIVE);
3413 /*
3414 * We keep the big kernel semaphore locked, but we
3415 * clear ->lock_depth so that schedule() doesnt
3416 * auto-release the semaphore:
3417 */
3418#ifdef CONFIG_PREEMPT_BKL
3419 saved_lock_depth = task->lock_depth;
3420 task->lock_depth = -1;
3421#endif
3422 local_irq_enable();
3423 schedule();
3424 local_irq_disable();
3425#ifdef CONFIG_PREEMPT_BKL
3426 task->lock_depth = saved_lock_depth;
3427#endif
3428 sub_preempt_count(PREEMPT_ACTIVE);
3429
3430 /* we could miss a preemption opportunity between schedule and now */
3431 barrier();
3432 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3433 goto need_resched;
3434}
3435
3436#endif /* CONFIG_PREEMPT */
3437
95cdf3b7
IM
3438int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3439 void *key)
1da177e4 3440{
c43dc2fd 3441 task_t *p = curr->private;
1da177e4
LT
3442 return try_to_wake_up(p, mode, sync);
3443}
3444
3445EXPORT_SYMBOL(default_wake_function);
3446
3447/*
3448 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3449 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3450 * number) then we wake all the non-exclusive tasks and one exclusive task.
3451 *
3452 * There are circumstances in which we can try to wake a task which has already
3453 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3454 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3455 */
3456static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3457 int nr_exclusive, int sync, void *key)
3458{
3459 struct list_head *tmp, *next;
3460
3461 list_for_each_safe(tmp, next, &q->task_list) {
3462 wait_queue_t *curr;
3463 unsigned flags;
3464 curr = list_entry(tmp, wait_queue_t, task_list);
3465 flags = curr->flags;
3466 if (curr->func(curr, mode, sync, key) &&
3467 (flags & WQ_FLAG_EXCLUSIVE) &&
3468 !--nr_exclusive)
3469 break;
3470 }
3471}
3472
3473/**
3474 * __wake_up - wake up threads blocked on a waitqueue.
3475 * @q: the waitqueue
3476 * @mode: which threads
3477 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3478 * @key: is directly passed to the wakeup function
1da177e4
LT
3479 */
3480void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3481 int nr_exclusive, void *key)
1da177e4
LT
3482{
3483 unsigned long flags;
3484
3485 spin_lock_irqsave(&q->lock, flags);
3486 __wake_up_common(q, mode, nr_exclusive, 0, key);
3487 spin_unlock_irqrestore(&q->lock, flags);
3488}
3489
3490EXPORT_SYMBOL(__wake_up);
3491
3492/*
3493 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3494 */
3495void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3496{
3497 __wake_up_common(q, mode, 1, 0, NULL);
3498}
3499
3500/**
67be2dd1 3501 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3502 * @q: the waitqueue
3503 * @mode: which threads
3504 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3505 *
3506 * The sync wakeup differs that the waker knows that it will schedule
3507 * away soon, so while the target thread will be woken up, it will not
3508 * be migrated to another CPU - ie. the two threads are 'synchronized'
3509 * with each other. This can prevent needless bouncing between CPUs.
3510 *
3511 * On UP it can prevent extra preemption.
3512 */
95cdf3b7
IM
3513void fastcall
3514__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3515{
3516 unsigned long flags;
3517 int sync = 1;
3518
3519 if (unlikely(!q))
3520 return;
3521
3522 if (unlikely(!nr_exclusive))
3523 sync = 0;
3524
3525 spin_lock_irqsave(&q->lock, flags);
3526 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3527 spin_unlock_irqrestore(&q->lock, flags);
3528}
3529EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3530
3531void fastcall complete(struct completion *x)
3532{
3533 unsigned long flags;
3534
3535 spin_lock_irqsave(&x->wait.lock, flags);
3536 x->done++;
3537 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3538 1, 0, NULL);
3539 spin_unlock_irqrestore(&x->wait.lock, flags);
3540}
3541EXPORT_SYMBOL(complete);
3542
3543void fastcall complete_all(struct completion *x)
3544{
3545 unsigned long flags;
3546
3547 spin_lock_irqsave(&x->wait.lock, flags);
3548 x->done += UINT_MAX/2;
3549 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3550 0, 0, NULL);
3551 spin_unlock_irqrestore(&x->wait.lock, flags);
3552}
3553EXPORT_SYMBOL(complete_all);
3554
3555void fastcall __sched wait_for_completion(struct completion *x)
3556{
3557 might_sleep();
3558 spin_lock_irq(&x->wait.lock);
3559 if (!x->done) {
3560 DECLARE_WAITQUEUE(wait, current);
3561
3562 wait.flags |= WQ_FLAG_EXCLUSIVE;
3563 __add_wait_queue_tail(&x->wait, &wait);
3564 do {
3565 __set_current_state(TASK_UNINTERRUPTIBLE);
3566 spin_unlock_irq(&x->wait.lock);
3567 schedule();
3568 spin_lock_irq(&x->wait.lock);
3569 } while (!x->done);
3570 __remove_wait_queue(&x->wait, &wait);
3571 }
3572 x->done--;
3573 spin_unlock_irq(&x->wait.lock);
3574}
3575EXPORT_SYMBOL(wait_for_completion);
3576
3577unsigned long fastcall __sched
3578wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3579{
3580 might_sleep();
3581
3582 spin_lock_irq(&x->wait.lock);
3583 if (!x->done) {
3584 DECLARE_WAITQUEUE(wait, current);
3585
3586 wait.flags |= WQ_FLAG_EXCLUSIVE;
3587 __add_wait_queue_tail(&x->wait, &wait);
3588 do {
3589 __set_current_state(TASK_UNINTERRUPTIBLE);
3590 spin_unlock_irq(&x->wait.lock);
3591 timeout = schedule_timeout(timeout);
3592 spin_lock_irq(&x->wait.lock);
3593 if (!timeout) {
3594 __remove_wait_queue(&x->wait, &wait);
3595 goto out;
3596 }
3597 } while (!x->done);
3598 __remove_wait_queue(&x->wait, &wait);
3599 }
3600 x->done--;
3601out:
3602 spin_unlock_irq(&x->wait.lock);
3603 return timeout;
3604}
3605EXPORT_SYMBOL(wait_for_completion_timeout);
3606
3607int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3608{
3609 int ret = 0;
3610
3611 might_sleep();
3612
3613 spin_lock_irq(&x->wait.lock);
3614 if (!x->done) {
3615 DECLARE_WAITQUEUE(wait, current);
3616
3617 wait.flags |= WQ_FLAG_EXCLUSIVE;
3618 __add_wait_queue_tail(&x->wait, &wait);
3619 do {
3620 if (signal_pending(current)) {
3621 ret = -ERESTARTSYS;
3622 __remove_wait_queue(&x->wait, &wait);
3623 goto out;
3624 }
3625 __set_current_state(TASK_INTERRUPTIBLE);
3626 spin_unlock_irq(&x->wait.lock);
3627 schedule();
3628 spin_lock_irq(&x->wait.lock);
3629 } while (!x->done);
3630 __remove_wait_queue(&x->wait, &wait);
3631 }
3632 x->done--;
3633out:
3634 spin_unlock_irq(&x->wait.lock);
3635
3636 return ret;
3637}
3638EXPORT_SYMBOL(wait_for_completion_interruptible);
3639
3640unsigned long fastcall __sched
3641wait_for_completion_interruptible_timeout(struct completion *x,
3642 unsigned long timeout)
3643{
3644 might_sleep();
3645
3646 spin_lock_irq(&x->wait.lock);
3647 if (!x->done) {
3648 DECLARE_WAITQUEUE(wait, current);
3649
3650 wait.flags |= WQ_FLAG_EXCLUSIVE;
3651 __add_wait_queue_tail(&x->wait, &wait);
3652 do {
3653 if (signal_pending(current)) {
3654 timeout = -ERESTARTSYS;
3655 __remove_wait_queue(&x->wait, &wait);
3656 goto out;
3657 }
3658 __set_current_state(TASK_INTERRUPTIBLE);
3659 spin_unlock_irq(&x->wait.lock);
3660 timeout = schedule_timeout(timeout);
3661 spin_lock_irq(&x->wait.lock);
3662 if (!timeout) {
3663 __remove_wait_queue(&x->wait, &wait);
3664 goto out;
3665 }
3666 } while (!x->done);
3667 __remove_wait_queue(&x->wait, &wait);
3668 }
3669 x->done--;
3670out:
3671 spin_unlock_irq(&x->wait.lock);
3672 return timeout;
3673}
3674EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3675
3676
3677#define SLEEP_ON_VAR \
3678 unsigned long flags; \
3679 wait_queue_t wait; \
3680 init_waitqueue_entry(&wait, current);
3681
3682#define SLEEP_ON_HEAD \
3683 spin_lock_irqsave(&q->lock,flags); \
3684 __add_wait_queue(q, &wait); \
3685 spin_unlock(&q->lock);
3686
3687#define SLEEP_ON_TAIL \
3688 spin_lock_irq(&q->lock); \
3689 __remove_wait_queue(q, &wait); \
3690 spin_unlock_irqrestore(&q->lock, flags);
3691
3692void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3693{
3694 SLEEP_ON_VAR
3695
3696 current->state = TASK_INTERRUPTIBLE;
3697
3698 SLEEP_ON_HEAD
3699 schedule();
3700 SLEEP_ON_TAIL
3701}
3702
3703EXPORT_SYMBOL(interruptible_sleep_on);
3704
95cdf3b7
IM
3705long fastcall __sched
3706interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3707{
3708 SLEEP_ON_VAR
3709
3710 current->state = TASK_INTERRUPTIBLE;
3711
3712 SLEEP_ON_HEAD
3713 timeout = schedule_timeout(timeout);
3714 SLEEP_ON_TAIL
3715
3716 return timeout;
3717}
3718
3719EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3720
3721void fastcall __sched sleep_on(wait_queue_head_t *q)
3722{
3723 SLEEP_ON_VAR
3724
3725 current->state = TASK_UNINTERRUPTIBLE;
3726
3727 SLEEP_ON_HEAD
3728 schedule();
3729 SLEEP_ON_TAIL
3730}
3731
3732EXPORT_SYMBOL(sleep_on);
3733
3734long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3735{
3736 SLEEP_ON_VAR
3737
3738 current->state = TASK_UNINTERRUPTIBLE;
3739
3740 SLEEP_ON_HEAD
3741 timeout = schedule_timeout(timeout);
3742 SLEEP_ON_TAIL
3743
3744 return timeout;
3745}
3746
3747EXPORT_SYMBOL(sleep_on_timeout);
3748
b29739f9
IM
3749#ifdef CONFIG_RT_MUTEXES
3750
3751/*
3752 * rt_mutex_setprio - set the current priority of a task
3753 * @p: task
3754 * @prio: prio value (kernel-internal form)
3755 *
3756 * This function changes the 'effective' priority of a task. It does
3757 * not touch ->normal_prio like __setscheduler().
3758 *
3759 * Used by the rt_mutex code to implement priority inheritance logic.
3760 */
3761void rt_mutex_setprio(task_t *p, int prio)
3762{
3763 unsigned long flags;
3764 prio_array_t *array;
3765 runqueue_t *rq;
3766 int oldprio;
3767
3768 BUG_ON(prio < 0 || prio > MAX_PRIO);
3769
3770 rq = task_rq_lock(p, &flags);
3771
3772 oldprio = p->prio;
3773 array = p->array;
3774 if (array)
3775 dequeue_task(p, array);
3776 p->prio = prio;
3777
3778 if (array) {
3779 /*
3780 * If changing to an RT priority then queue it
3781 * in the active array!
3782 */
3783 if (rt_task(p))
3784 array = rq->active;
3785 enqueue_task(p, array);
3786 /*
3787 * Reschedule if we are currently running on this runqueue and
3788 * our priority decreased, or if we are not currently running on
3789 * this runqueue and our priority is higher than the current's
3790 */
3791 if (task_running(rq, p)) {
3792 if (p->prio > oldprio)
3793 resched_task(rq->curr);
3794 } else if (TASK_PREEMPTS_CURR(p, rq))
3795 resched_task(rq->curr);
3796 }
3797 task_rq_unlock(rq, &flags);
3798}
3799
3800#endif
3801
1da177e4
LT
3802void set_user_nice(task_t *p, long nice)
3803{
3804 unsigned long flags;
3805 prio_array_t *array;
3806 runqueue_t *rq;
b29739f9 3807 int old_prio, delta;
1da177e4
LT
3808
3809 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3810 return;
3811 /*
3812 * We have to be careful, if called from sys_setpriority(),
3813 * the task might be in the middle of scheduling on another CPU.
3814 */
3815 rq = task_rq_lock(p, &flags);
3816 /*
3817 * The RT priorities are set via sched_setscheduler(), but we still
3818 * allow the 'normal' nice value to be set - but as expected
3819 * it wont have any effect on scheduling until the task is
b0a9499c 3820 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4 3821 */
b29739f9 3822 if (has_rt_policy(p)) {
1da177e4
LT
3823 p->static_prio = NICE_TO_PRIO(nice);
3824 goto out_unlock;
3825 }
3826 array = p->array;
2dd73a4f 3827 if (array) {
1da177e4 3828 dequeue_task(p, array);
2dd73a4f
PW
3829 dec_raw_weighted_load(rq, p);
3830 }
1da177e4 3831
1da177e4 3832 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3833 set_load_weight(p);
b29739f9
IM
3834 old_prio = p->prio;
3835 p->prio = effective_prio(p);
3836 delta = p->prio - old_prio;
1da177e4
LT
3837
3838 if (array) {
3839 enqueue_task(p, array);
2dd73a4f 3840 inc_raw_weighted_load(rq, p);
1da177e4
LT
3841 /*
3842 * If the task increased its priority or is running and
3843 * lowered its priority, then reschedule its CPU:
3844 */
3845 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3846 resched_task(rq->curr);
3847 }
3848out_unlock:
3849 task_rq_unlock(rq, &flags);
3850}
1da177e4
LT
3851EXPORT_SYMBOL(set_user_nice);
3852
e43379f1
MM
3853/*
3854 * can_nice - check if a task can reduce its nice value
3855 * @p: task
3856 * @nice: nice value
3857 */
3858int can_nice(const task_t *p, const int nice)
3859{
024f4747
MM
3860 /* convert nice value [19,-20] to rlimit style value [1,40] */
3861 int nice_rlim = 20 - nice;
e43379f1
MM
3862 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3863 capable(CAP_SYS_NICE));
3864}
3865
1da177e4
LT
3866#ifdef __ARCH_WANT_SYS_NICE
3867
3868/*
3869 * sys_nice - change the priority of the current process.
3870 * @increment: priority increment
3871 *
3872 * sys_setpriority is a more generic, but much slower function that
3873 * does similar things.
3874 */
3875asmlinkage long sys_nice(int increment)
3876{
3877 int retval;
3878 long nice;
3879
3880 /*
3881 * Setpriority might change our priority at the same moment.
3882 * We don't have to worry. Conceptually one call occurs first
3883 * and we have a single winner.
3884 */
e43379f1
MM
3885 if (increment < -40)
3886 increment = -40;
1da177e4
LT
3887 if (increment > 40)
3888 increment = 40;
3889
3890 nice = PRIO_TO_NICE(current->static_prio) + increment;
3891 if (nice < -20)
3892 nice = -20;
3893 if (nice > 19)
3894 nice = 19;
3895
e43379f1
MM
3896 if (increment < 0 && !can_nice(current, nice))
3897 return -EPERM;
3898
1da177e4
LT
3899 retval = security_task_setnice(current, nice);
3900 if (retval)
3901 return retval;
3902
3903 set_user_nice(current, nice);
3904 return 0;
3905}
3906
3907#endif
3908
3909/**
3910 * task_prio - return the priority value of a given task.
3911 * @p: the task in question.
3912 *
3913 * This is the priority value as seen by users in /proc.
3914 * RT tasks are offset by -200. Normal tasks are centered
3915 * around 0, value goes from -16 to +15.
3916 */
3917int task_prio(const task_t *p)
3918{
3919 return p->prio - MAX_RT_PRIO;
3920}
3921
3922/**
3923 * task_nice - return the nice value of a given task.
3924 * @p: the task in question.
3925 */
3926int task_nice(const task_t *p)
3927{
3928 return TASK_NICE(p);
3929}
1da177e4 3930EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3931
3932/**
3933 * idle_cpu - is a given cpu idle currently?
3934 * @cpu: the processor in question.
3935 */
3936int idle_cpu(int cpu)
3937{
3938 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3939}
3940
1da177e4
LT
3941/**
3942 * idle_task - return the idle task for a given cpu.
3943 * @cpu: the processor in question.
3944 */
3945task_t *idle_task(int cpu)
3946{
3947 return cpu_rq(cpu)->idle;
3948}
3949
3950/**
3951 * find_process_by_pid - find a process with a matching PID value.
3952 * @pid: the pid in question.
3953 */
3954static inline task_t *find_process_by_pid(pid_t pid)
3955{
3956 return pid ? find_task_by_pid(pid) : current;
3957}
3958
3959/* Actually do priority change: must hold rq lock. */
3960static void __setscheduler(struct task_struct *p, int policy, int prio)
3961{
3962 BUG_ON(p->array);
3963 p->policy = policy;
3964 p->rt_priority = prio;
b29739f9
IM
3965 p->normal_prio = normal_prio(p);
3966 /* we are holding p->pi_lock already */
3967 p->prio = rt_mutex_getprio(p);
3968 /*
3969 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3970 */
3971 if (policy == SCHED_BATCH)
3972 p->sleep_avg = 0;
2dd73a4f 3973 set_load_weight(p);
1da177e4
LT
3974}
3975
3976/**
3977 * sched_setscheduler - change the scheduling policy and/or RT priority of
3978 * a thread.
3979 * @p: the task in question.
3980 * @policy: new policy.
3981 * @param: structure containing the new RT priority.
3982 */
95cdf3b7
IM
3983int sched_setscheduler(struct task_struct *p, int policy,
3984 struct sched_param *param)
1da177e4
LT
3985{
3986 int retval;
3987 int oldprio, oldpolicy = -1;
3988 prio_array_t *array;
3989 unsigned long flags;
3990 runqueue_t *rq;
3991
66e5393a
SR
3992 /* may grab non-irq protected spin_locks */
3993 BUG_ON(in_interrupt());
1da177e4
LT
3994recheck:
3995 /* double check policy once rq lock held */
3996 if (policy < 0)
3997 policy = oldpolicy = p->policy;
3998 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
3999 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4000 return -EINVAL;
1da177e4
LT
4001 /*
4002 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
4003 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4004 * SCHED_BATCH is 0.
1da177e4
LT
4005 */
4006 if (param->sched_priority < 0 ||
95cdf3b7 4007 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4008 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4009 return -EINVAL;
b0a9499c
IM
4010 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
4011 != (param->sched_priority == 0))
1da177e4
LT
4012 return -EINVAL;
4013
37e4ab3f
OC
4014 /*
4015 * Allow unprivileged RT tasks to decrease priority:
4016 */
4017 if (!capable(CAP_SYS_NICE)) {
b0a9499c
IM
4018 /*
4019 * can't change policy, except between SCHED_NORMAL
4020 * and SCHED_BATCH:
4021 */
4022 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
4023 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
4024 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
37e4ab3f
OC
4025 return -EPERM;
4026 /* can't increase priority */
b0a9499c 4027 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
37e4ab3f
OC
4028 param->sched_priority > p->rt_priority &&
4029 param->sched_priority >
4030 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4031 return -EPERM;
4032 /* can't change other user's priorities */
4033 if ((current->euid != p->euid) &&
4034 (current->euid != p->uid))
4035 return -EPERM;
4036 }
1da177e4
LT
4037
4038 retval = security_task_setscheduler(p, policy, param);
4039 if (retval)
4040 return retval;
b29739f9
IM
4041 /*
4042 * make sure no PI-waiters arrive (or leave) while we are
4043 * changing the priority of the task:
4044 */
4045 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4046 /*
4047 * To be able to change p->policy safely, the apropriate
4048 * runqueue lock must be held.
4049 */
b29739f9 4050 rq = __task_rq_lock(p);
1da177e4
LT
4051 /* recheck policy now with rq lock held */
4052 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4053 policy = oldpolicy = -1;
b29739f9
IM
4054 __task_rq_unlock(rq);
4055 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4056 goto recheck;
4057 }
4058 array = p->array;
4059 if (array)
4060 deactivate_task(p, rq);
4061 oldprio = p->prio;
4062 __setscheduler(p, policy, param->sched_priority);
4063 if (array) {
4064 __activate_task(p, rq);
4065 /*
4066 * Reschedule if we are currently running on this runqueue and
4067 * our priority decreased, or if we are not currently running on
4068 * this runqueue and our priority is higher than the current's
4069 */
4070 if (task_running(rq, p)) {
4071 if (p->prio > oldprio)
4072 resched_task(rq->curr);
4073 } else if (TASK_PREEMPTS_CURR(p, rq))
4074 resched_task(rq->curr);
4075 }
b29739f9
IM
4076 __task_rq_unlock(rq);
4077 spin_unlock_irqrestore(&p->pi_lock, flags);
4078
95e02ca9
TG
4079 rt_mutex_adjust_pi(p);
4080
1da177e4
LT
4081 return 0;
4082}
4083EXPORT_SYMBOL_GPL(sched_setscheduler);
4084
95cdf3b7
IM
4085static int
4086do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4
LT
4087{
4088 int retval;
4089 struct sched_param lparam;
4090 struct task_struct *p;
4091
4092 if (!param || pid < 0)
4093 return -EINVAL;
4094 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4095 return -EFAULT;
4096 read_lock_irq(&tasklist_lock);
4097 p = find_process_by_pid(pid);
4098 if (!p) {
4099 read_unlock_irq(&tasklist_lock);
4100 return -ESRCH;
4101 }
e74c69f4 4102 get_task_struct(p);
1da177e4 4103 read_unlock_irq(&tasklist_lock);
e74c69f4
TG
4104 retval = sched_setscheduler(p, policy, &lparam);
4105 put_task_struct(p);
1da177e4
LT
4106 return retval;
4107}
4108
4109/**
4110 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4111 * @pid: the pid in question.
4112 * @policy: new policy.
4113 * @param: structure containing the new RT priority.
4114 */
4115asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4116 struct sched_param __user *param)
4117{
c21761f1
JB
4118 /* negative values for policy are not valid */
4119 if (policy < 0)
4120 return -EINVAL;
4121
1da177e4
LT
4122 return do_sched_setscheduler(pid, policy, param);
4123}
4124
4125/**
4126 * sys_sched_setparam - set/change the RT priority of a thread
4127 * @pid: the pid in question.
4128 * @param: structure containing the new RT priority.
4129 */
4130asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4131{
4132 return do_sched_setscheduler(pid, -1, param);
4133}
4134
4135/**
4136 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4137 * @pid: the pid in question.
4138 */
4139asmlinkage long sys_sched_getscheduler(pid_t pid)
4140{
4141 int retval = -EINVAL;
4142 task_t *p;
4143
4144 if (pid < 0)
4145 goto out_nounlock;
4146
4147 retval = -ESRCH;
4148 read_lock(&tasklist_lock);
4149 p = find_process_by_pid(pid);
4150 if (p) {
4151 retval = security_task_getscheduler(p);
4152 if (!retval)
4153 retval = p->policy;
4154 }
4155 read_unlock(&tasklist_lock);
4156
4157out_nounlock:
4158 return retval;
4159}
4160
4161/**
4162 * sys_sched_getscheduler - get the RT priority of a thread
4163 * @pid: the pid in question.
4164 * @param: structure containing the RT priority.
4165 */
4166asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4167{
4168 struct sched_param lp;
4169 int retval = -EINVAL;
4170 task_t *p;
4171
4172 if (!param || pid < 0)
4173 goto out_nounlock;
4174
4175 read_lock(&tasklist_lock);
4176 p = find_process_by_pid(pid);
4177 retval = -ESRCH;
4178 if (!p)
4179 goto out_unlock;
4180
4181 retval = security_task_getscheduler(p);
4182 if (retval)
4183 goto out_unlock;
4184
4185 lp.sched_priority = p->rt_priority;
4186 read_unlock(&tasklist_lock);
4187
4188 /*
4189 * This one might sleep, we cannot do it with a spinlock held ...
4190 */
4191 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4192
4193out_nounlock:
4194 return retval;
4195
4196out_unlock:
4197 read_unlock(&tasklist_lock);
4198 return retval;
4199}
4200
4201long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4202{
4203 task_t *p;
4204 int retval;
4205 cpumask_t cpus_allowed;
4206
4207 lock_cpu_hotplug();
4208 read_lock(&tasklist_lock);
4209
4210 p = find_process_by_pid(pid);
4211 if (!p) {
4212 read_unlock(&tasklist_lock);
4213 unlock_cpu_hotplug();
4214 return -ESRCH;
4215 }
4216
4217 /*
4218 * It is not safe to call set_cpus_allowed with the
4219 * tasklist_lock held. We will bump the task_struct's
4220 * usage count and then drop tasklist_lock.
4221 */
4222 get_task_struct(p);
4223 read_unlock(&tasklist_lock);
4224
4225 retval = -EPERM;
4226 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4227 !capable(CAP_SYS_NICE))
4228 goto out_unlock;
4229
e7834f8f
DQ
4230 retval = security_task_setscheduler(p, 0, NULL);
4231 if (retval)
4232 goto out_unlock;
4233
1da177e4
LT
4234 cpus_allowed = cpuset_cpus_allowed(p);
4235 cpus_and(new_mask, new_mask, cpus_allowed);
4236 retval = set_cpus_allowed(p, new_mask);
4237
4238out_unlock:
4239 put_task_struct(p);
4240 unlock_cpu_hotplug();
4241 return retval;
4242}
4243
4244static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4245 cpumask_t *new_mask)
4246{
4247 if (len < sizeof(cpumask_t)) {
4248 memset(new_mask, 0, sizeof(cpumask_t));
4249 } else if (len > sizeof(cpumask_t)) {
4250 len = sizeof(cpumask_t);
4251 }
4252 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4253}
4254
4255/**
4256 * sys_sched_setaffinity - set the cpu affinity of a process
4257 * @pid: pid of the process
4258 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4259 * @user_mask_ptr: user-space pointer to the new cpu mask
4260 */
4261asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4262 unsigned long __user *user_mask_ptr)
4263{
4264 cpumask_t new_mask;
4265 int retval;
4266
4267 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4268 if (retval)
4269 return retval;
4270
4271 return sched_setaffinity(pid, new_mask);
4272}
4273
4274/*
4275 * Represents all cpu's present in the system
4276 * In systems capable of hotplug, this map could dynamically grow
4277 * as new cpu's are detected in the system via any platform specific
4278 * method, such as ACPI for e.g.
4279 */
4280
4cef0c61 4281cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4282EXPORT_SYMBOL(cpu_present_map);
4283
4284#ifndef CONFIG_SMP
4cef0c61
AK
4285cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4286cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
1da177e4
LT
4287#endif
4288
4289long sched_getaffinity(pid_t pid, cpumask_t *mask)
4290{
4291 int retval;
4292 task_t *p;
4293
4294 lock_cpu_hotplug();
4295 read_lock(&tasklist_lock);
4296
4297 retval = -ESRCH;
4298 p = find_process_by_pid(pid);
4299 if (!p)
4300 goto out_unlock;
4301
e7834f8f
DQ
4302 retval = security_task_getscheduler(p);
4303 if (retval)
4304 goto out_unlock;
4305
2f7016d9 4306 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4307
4308out_unlock:
4309 read_unlock(&tasklist_lock);
4310 unlock_cpu_hotplug();
4311 if (retval)
4312 return retval;
4313
4314 return 0;
4315}
4316
4317/**
4318 * sys_sched_getaffinity - get the cpu affinity of a process
4319 * @pid: pid of the process
4320 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4321 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4322 */
4323asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4324 unsigned long __user *user_mask_ptr)
4325{
4326 int ret;
4327 cpumask_t mask;
4328
4329 if (len < sizeof(cpumask_t))
4330 return -EINVAL;
4331
4332 ret = sched_getaffinity(pid, &mask);
4333 if (ret < 0)
4334 return ret;
4335
4336 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4337 return -EFAULT;
4338
4339 return sizeof(cpumask_t);
4340}
4341
4342/**
4343 * sys_sched_yield - yield the current processor to other threads.
4344 *
4345 * this function yields the current CPU by moving the calling thread
4346 * to the expired array. If there are no other threads running on this
4347 * CPU then this function will return.
4348 */
4349asmlinkage long sys_sched_yield(void)
4350{
4351 runqueue_t *rq = this_rq_lock();
4352 prio_array_t *array = current->array;
4353 prio_array_t *target = rq->expired;
4354
4355 schedstat_inc(rq, yld_cnt);
4356 /*
4357 * We implement yielding by moving the task into the expired
4358 * queue.
4359 *
4360 * (special rule: RT tasks will just roundrobin in the active
4361 * array.)
4362 */
4363 if (rt_task(current))
4364 target = rq->active;
4365
5927ad78 4366 if (array->nr_active == 1) {
1da177e4
LT
4367 schedstat_inc(rq, yld_act_empty);
4368 if (!rq->expired->nr_active)
4369 schedstat_inc(rq, yld_both_empty);
4370 } else if (!rq->expired->nr_active)
4371 schedstat_inc(rq, yld_exp_empty);
4372
4373 if (array != target) {
4374 dequeue_task(current, array);
4375 enqueue_task(current, target);
4376 } else
4377 /*
4378 * requeue_task is cheaper so perform that if possible.
4379 */
4380 requeue_task(current, array);
4381
4382 /*
4383 * Since we are going to call schedule() anyway, there's
4384 * no need to preempt or enable interrupts:
4385 */
4386 __release(rq->lock);
4387 _raw_spin_unlock(&rq->lock);
4388 preempt_enable_no_resched();
4389
4390 schedule();
4391
4392 return 0;
4393}
4394
e7b38404
AM
4395static inline int __resched_legal(void)
4396{
4397 if (unlikely(preempt_count()))
4398 return 0;
4399 if (unlikely(system_state != SYSTEM_RUNNING))
4400 return 0;
4401 return 1;
4402}
4403
4404static void __cond_resched(void)
1da177e4 4405{
8e0a43d8
IM
4406#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4407 __might_sleep(__FILE__, __LINE__);
4408#endif
5bbcfd90
IM
4409 /*
4410 * The BKS might be reacquired before we have dropped
4411 * PREEMPT_ACTIVE, which could trigger a second
4412 * cond_resched() call.
4413 */
1da177e4
LT
4414 do {
4415 add_preempt_count(PREEMPT_ACTIVE);
4416 schedule();
4417 sub_preempt_count(PREEMPT_ACTIVE);
4418 } while (need_resched());
4419}
4420
4421int __sched cond_resched(void)
4422{
e7b38404 4423 if (need_resched() && __resched_legal()) {
1da177e4
LT
4424 __cond_resched();
4425 return 1;
4426 }
4427 return 0;
4428}
1da177e4
LT
4429EXPORT_SYMBOL(cond_resched);
4430
4431/*
4432 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4433 * call schedule, and on return reacquire the lock.
4434 *
4435 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4436 * operations here to prevent schedule() from being called twice (once via
4437 * spin_unlock(), once by hand).
4438 */
95cdf3b7 4439int cond_resched_lock(spinlock_t *lock)
1da177e4 4440{
6df3cecb
JK
4441 int ret = 0;
4442
1da177e4
LT
4443 if (need_lockbreak(lock)) {
4444 spin_unlock(lock);
4445 cpu_relax();
6df3cecb 4446 ret = 1;
1da177e4
LT
4447 spin_lock(lock);
4448 }
e7b38404 4449 if (need_resched() && __resched_legal()) {
1da177e4
LT
4450 _raw_spin_unlock(lock);
4451 preempt_enable_no_resched();
4452 __cond_resched();
6df3cecb 4453 ret = 1;
1da177e4 4454 spin_lock(lock);
1da177e4 4455 }
6df3cecb 4456 return ret;
1da177e4 4457}
1da177e4
LT
4458EXPORT_SYMBOL(cond_resched_lock);
4459
4460int __sched cond_resched_softirq(void)
4461{
4462 BUG_ON(!in_softirq());
4463
e7b38404 4464 if (need_resched() && __resched_legal()) {
1da177e4
LT
4465 __local_bh_enable();
4466 __cond_resched();
4467 local_bh_disable();
4468 return 1;
4469 }
4470 return 0;
4471}
1da177e4
LT
4472EXPORT_SYMBOL(cond_resched_softirq);
4473
1da177e4
LT
4474/**
4475 * yield - yield the current processor to other threads.
4476 *
4477 * this is a shortcut for kernel-space yielding - it marks the
4478 * thread runnable and calls sys_sched_yield().
4479 */
4480void __sched yield(void)
4481{
4482 set_current_state(TASK_RUNNING);
4483 sys_sched_yield();
4484}
4485
4486EXPORT_SYMBOL(yield);
4487
4488/*
4489 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4490 * that process accounting knows that this is a task in IO wait state.
4491 *
4492 * But don't do that if it is a deliberate, throttling IO wait (this task
4493 * has set its backing_dev_info: the queue against which it should throttle)
4494 */
4495void __sched io_schedule(void)
4496{
bfe5d834 4497 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4498
4499 atomic_inc(&rq->nr_iowait);
4500 schedule();
4501 atomic_dec(&rq->nr_iowait);
4502}
4503
4504EXPORT_SYMBOL(io_schedule);
4505
4506long __sched io_schedule_timeout(long timeout)
4507{
bfe5d834 4508 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4509 long ret;
4510
4511 atomic_inc(&rq->nr_iowait);
4512 ret = schedule_timeout(timeout);
4513 atomic_dec(&rq->nr_iowait);
4514 return ret;
4515}
4516
4517/**
4518 * sys_sched_get_priority_max - return maximum RT priority.
4519 * @policy: scheduling class.
4520 *
4521 * this syscall returns the maximum rt_priority that can be used
4522 * by a given scheduling class.
4523 */
4524asmlinkage long sys_sched_get_priority_max(int policy)
4525{
4526 int ret = -EINVAL;
4527
4528 switch (policy) {
4529 case SCHED_FIFO:
4530 case SCHED_RR:
4531 ret = MAX_USER_RT_PRIO-1;
4532 break;
4533 case SCHED_NORMAL:
b0a9499c 4534 case SCHED_BATCH:
1da177e4
LT
4535 ret = 0;
4536 break;
4537 }
4538 return ret;
4539}
4540
4541/**
4542 * sys_sched_get_priority_min - return minimum RT priority.
4543 * @policy: scheduling class.
4544 *
4545 * this syscall returns the minimum rt_priority that can be used
4546 * by a given scheduling class.
4547 */
4548asmlinkage long sys_sched_get_priority_min(int policy)
4549{
4550 int ret = -EINVAL;
4551
4552 switch (policy) {
4553 case SCHED_FIFO:
4554 case SCHED_RR:
4555 ret = 1;
4556 break;
4557 case SCHED_NORMAL:
b0a9499c 4558 case SCHED_BATCH:
1da177e4
LT
4559 ret = 0;
4560 }
4561 return ret;
4562}
4563
4564/**
4565 * sys_sched_rr_get_interval - return the default timeslice of a process.
4566 * @pid: pid of the process.
4567 * @interval: userspace pointer to the timeslice value.
4568 *
4569 * this syscall writes the default timeslice value of a given process
4570 * into the user-space timespec buffer. A value of '0' means infinity.
4571 */
4572asmlinkage
4573long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4574{
4575 int retval = -EINVAL;
4576 struct timespec t;
4577 task_t *p;
4578
4579 if (pid < 0)
4580 goto out_nounlock;
4581
4582 retval = -ESRCH;
4583 read_lock(&tasklist_lock);
4584 p = find_process_by_pid(pid);
4585 if (!p)
4586 goto out_unlock;
4587
4588 retval = security_task_getscheduler(p);
4589 if (retval)
4590 goto out_unlock;
4591
b78709cf 4592 jiffies_to_timespec(p->policy == SCHED_FIFO ?
1da177e4
LT
4593 0 : task_timeslice(p), &t);
4594 read_unlock(&tasklist_lock);
4595 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4596out_nounlock:
4597 return retval;
4598out_unlock:
4599 read_unlock(&tasklist_lock);
4600 return retval;
4601}
4602
4603static inline struct task_struct *eldest_child(struct task_struct *p)
4604{
4605 if (list_empty(&p->children)) return NULL;
4606 return list_entry(p->children.next,struct task_struct,sibling);
4607}
4608
4609static inline struct task_struct *older_sibling(struct task_struct *p)
4610{
4611 if (p->sibling.prev==&p->parent->children) return NULL;
4612 return list_entry(p->sibling.prev,struct task_struct,sibling);
4613}
4614
4615static inline struct task_struct *younger_sibling(struct task_struct *p)
4616{
4617 if (p->sibling.next==&p->parent->children) return NULL;
4618 return list_entry(p->sibling.next,struct task_struct,sibling);
4619}
4620
95cdf3b7 4621static void show_task(task_t *p)
1da177e4
LT
4622{
4623 task_t *relative;
4624 unsigned state;
4625 unsigned long free = 0;
4626 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4627
4628 printk("%-13.13s ", p->comm);
4629 state = p->state ? __ffs(p->state) + 1 : 0;
4630 if (state < ARRAY_SIZE(stat_nam))
4631 printk(stat_nam[state]);
4632 else
4633 printk("?");
4634#if (BITS_PER_LONG == 32)
4635 if (state == TASK_RUNNING)
4636 printk(" running ");
4637 else
4638 printk(" %08lX ", thread_saved_pc(p));
4639#else
4640 if (state == TASK_RUNNING)
4641 printk(" running task ");
4642 else
4643 printk(" %016lx ", thread_saved_pc(p));
4644#endif
4645#ifdef CONFIG_DEBUG_STACK_USAGE
4646 {
10ebffde 4647 unsigned long *n = end_of_stack(p);
1da177e4
LT
4648 while (!*n)
4649 n++;
10ebffde 4650 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4651 }
4652#endif
4653 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4654 if ((relative = eldest_child(p)))
4655 printk("%5d ", relative->pid);
4656 else
4657 printk(" ");
4658 if ((relative = younger_sibling(p)))
4659 printk("%7d", relative->pid);
4660 else
4661 printk(" ");
4662 if ((relative = older_sibling(p)))
4663 printk(" %5d", relative->pid);
4664 else
4665 printk(" ");
4666 if (!p->mm)
4667 printk(" (L-TLB)\n");
4668 else
4669 printk(" (NOTLB)\n");
4670
4671 if (state != TASK_RUNNING)
4672 show_stack(p, NULL);
4673}
4674
4675void show_state(void)
4676{
4677 task_t *g, *p;
4678
4679#if (BITS_PER_LONG == 32)
4680 printk("\n"
4681 " sibling\n");
4682 printk(" task PC pid father child younger older\n");
4683#else
4684 printk("\n"
4685 " sibling\n");
4686 printk(" task PC pid father child younger older\n");
4687#endif
4688 read_lock(&tasklist_lock);
4689 do_each_thread(g, p) {
4690 /*
4691 * reset the NMI-timeout, listing all files on a slow
4692 * console might take alot of time:
4693 */
4694 touch_nmi_watchdog();
4695 show_task(p);
4696 } while_each_thread(g, p);
4697
4698 read_unlock(&tasklist_lock);
9a11b49a 4699 debug_show_all_locks();
1da177e4
LT
4700}
4701
f340c0d1
IM
4702/**
4703 * init_idle - set up an idle thread for a given CPU
4704 * @idle: task in question
4705 * @cpu: cpu the idle task belongs to
4706 *
4707 * NOTE: this function does not set the idle thread's NEED_RESCHED
4708 * flag, to make booting more robust.
4709 */
1da177e4
LT
4710void __devinit init_idle(task_t *idle, int cpu)
4711{
4712 runqueue_t *rq = cpu_rq(cpu);
4713 unsigned long flags;
4714
81c29a85 4715 idle->timestamp = sched_clock();
1da177e4
LT
4716 idle->sleep_avg = 0;
4717 idle->array = NULL;
b29739f9 4718 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4
LT
4719 idle->state = TASK_RUNNING;
4720 idle->cpus_allowed = cpumask_of_cpu(cpu);
4721 set_task_cpu(idle, cpu);
4722
4723 spin_lock_irqsave(&rq->lock, flags);
4724 rq->curr = rq->idle = idle;
4866cde0
NP
4725#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4726 idle->oncpu = 1;
4727#endif
1da177e4
LT
4728 spin_unlock_irqrestore(&rq->lock, flags);
4729
4730 /* Set the preempt count _outside_ the spinlocks! */
4731#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4732 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4733#else
a1261f54 4734 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4735#endif
4736}
4737
4738/*
4739 * In a system that switches off the HZ timer nohz_cpu_mask
4740 * indicates which cpus entered this state. This is used
4741 * in the rcu update to wait only for active cpus. For system
4742 * which do not switch off the HZ timer nohz_cpu_mask should
4743 * always be CPU_MASK_NONE.
4744 */
4745cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4746
4747#ifdef CONFIG_SMP
4748/*
4749 * This is how migration works:
4750 *
4751 * 1) we queue a migration_req_t structure in the source CPU's
4752 * runqueue and wake up that CPU's migration thread.
4753 * 2) we down() the locked semaphore => thread blocks.
4754 * 3) migration thread wakes up (implicitly it forces the migrated
4755 * thread off the CPU)
4756 * 4) it gets the migration request and checks whether the migrated
4757 * task is still in the wrong runqueue.
4758 * 5) if it's in the wrong runqueue then the migration thread removes
4759 * it and puts it into the right queue.
4760 * 6) migration thread up()s the semaphore.
4761 * 7) we wake up and the migration is done.
4762 */
4763
4764/*
4765 * Change a given task's CPU affinity. Migrate the thread to a
4766 * proper CPU and schedule it away if the CPU it's executing on
4767 * is removed from the allowed bitmask.
4768 *
4769 * NOTE: the caller must have a valid reference to the task, the
4770 * task must not exit() & deallocate itself prematurely. The
4771 * call is not atomic; no spinlocks may be held.
4772 */
4773int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4774{
4775 unsigned long flags;
4776 int ret = 0;
4777 migration_req_t req;
4778 runqueue_t *rq;
4779
4780 rq = task_rq_lock(p, &flags);
4781 if (!cpus_intersects(new_mask, cpu_online_map)) {
4782 ret = -EINVAL;
4783 goto out;
4784 }
4785
4786 p->cpus_allowed = new_mask;
4787 /* Can the task run on the task's current CPU? If so, we're done */
4788 if (cpu_isset(task_cpu(p), new_mask))
4789 goto out;
4790
4791 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4792 /* Need help from migration thread: drop lock and wait. */
4793 task_rq_unlock(rq, &flags);
4794 wake_up_process(rq->migration_thread);
4795 wait_for_completion(&req.done);
4796 tlb_migrate_finish(p->mm);
4797 return 0;
4798 }
4799out:
4800 task_rq_unlock(rq, &flags);
4801 return ret;
4802}
4803
4804EXPORT_SYMBOL_GPL(set_cpus_allowed);
4805
4806/*
4807 * Move (not current) task off this cpu, onto dest cpu. We're doing
4808 * this because either it can't run here any more (set_cpus_allowed()
4809 * away from this CPU, or CPU going down), or because we're
4810 * attempting to rebalance this task on exec (sched_exec).
4811 *
4812 * So we race with normal scheduler movements, but that's OK, as long
4813 * as the task is no longer on this CPU.
efc30814
KK
4814 *
4815 * Returns non-zero if task was successfully migrated.
1da177e4 4816 */
efc30814 4817static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4
LT
4818{
4819 runqueue_t *rq_dest, *rq_src;
efc30814 4820 int ret = 0;
1da177e4
LT
4821
4822 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4823 return ret;
1da177e4
LT
4824
4825 rq_src = cpu_rq(src_cpu);
4826 rq_dest = cpu_rq(dest_cpu);
4827
4828 double_rq_lock(rq_src, rq_dest);
4829 /* Already moved. */
4830 if (task_cpu(p) != src_cpu)
4831 goto out;
4832 /* Affinity changed (again). */
4833 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4834 goto out;
4835
4836 set_task_cpu(p, dest_cpu);
4837 if (p->array) {
4838 /*
4839 * Sync timestamp with rq_dest's before activating.
4840 * The same thing could be achieved by doing this step
4841 * afterwards, and pretending it was a local activate.
4842 * This way is cleaner and logically correct.
4843 */
4844 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4845 + rq_dest->timestamp_last_tick;
4846 deactivate_task(p, rq_src);
4847 activate_task(p, rq_dest, 0);
4848 if (TASK_PREEMPTS_CURR(p, rq_dest))
4849 resched_task(rq_dest->curr);
4850 }
efc30814 4851 ret = 1;
1da177e4
LT
4852out:
4853 double_rq_unlock(rq_src, rq_dest);
efc30814 4854 return ret;
1da177e4
LT
4855}
4856
4857/*
4858 * migration_thread - this is a highprio system thread that performs
4859 * thread migration by bumping thread off CPU then 'pushing' onto
4860 * another runqueue.
4861 */
95cdf3b7 4862static int migration_thread(void *data)
1da177e4
LT
4863{
4864 runqueue_t *rq;
4865 int cpu = (long)data;
4866
4867 rq = cpu_rq(cpu);
4868 BUG_ON(rq->migration_thread != current);
4869
4870 set_current_state(TASK_INTERRUPTIBLE);
4871 while (!kthread_should_stop()) {
4872 struct list_head *head;
4873 migration_req_t *req;
4874
3e1d1d28 4875 try_to_freeze();
1da177e4
LT
4876
4877 spin_lock_irq(&rq->lock);
4878
4879 if (cpu_is_offline(cpu)) {
4880 spin_unlock_irq(&rq->lock);
4881 goto wait_to_die;
4882 }
4883
4884 if (rq->active_balance) {
4885 active_load_balance(rq, cpu);
4886 rq->active_balance = 0;
4887 }
4888
4889 head = &rq->migration_queue;
4890
4891 if (list_empty(head)) {
4892 spin_unlock_irq(&rq->lock);
4893 schedule();
4894 set_current_state(TASK_INTERRUPTIBLE);
4895 continue;
4896 }
4897 req = list_entry(head->next, migration_req_t, list);
4898 list_del_init(head->next);
4899
674311d5
NP
4900 spin_unlock(&rq->lock);
4901 __migrate_task(req->task, cpu, req->dest_cpu);
4902 local_irq_enable();
1da177e4
LT
4903
4904 complete(&req->done);
4905 }
4906 __set_current_state(TASK_RUNNING);
4907 return 0;
4908
4909wait_to_die:
4910 /* Wait for kthread_stop */
4911 set_current_state(TASK_INTERRUPTIBLE);
4912 while (!kthread_should_stop()) {
4913 schedule();
4914 set_current_state(TASK_INTERRUPTIBLE);
4915 }
4916 __set_current_state(TASK_RUNNING);
4917 return 0;
4918}
4919
4920#ifdef CONFIG_HOTPLUG_CPU
4921/* Figure out where task on dead CPU should go, use force if neccessary. */
4922static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4923{
efc30814
KK
4924 runqueue_t *rq;
4925 unsigned long flags;
1da177e4
LT
4926 int dest_cpu;
4927 cpumask_t mask;
4928
efc30814 4929restart:
1da177e4
LT
4930 /* On same node? */
4931 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4932 cpus_and(mask, mask, tsk->cpus_allowed);
4933 dest_cpu = any_online_cpu(mask);
4934
4935 /* On any allowed CPU? */
4936 if (dest_cpu == NR_CPUS)
4937 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4938
4939 /* No more Mr. Nice Guy. */
4940 if (dest_cpu == NR_CPUS) {
efc30814 4941 rq = task_rq_lock(tsk, &flags);
b39c4fab 4942 cpus_setall(tsk->cpus_allowed);
1da177e4 4943 dest_cpu = any_online_cpu(tsk->cpus_allowed);
efc30814 4944 task_rq_unlock(rq, &flags);
1da177e4
LT
4945
4946 /*
4947 * Don't tell them about moving exiting tasks or
4948 * kernel threads (both mm NULL), since they never
4949 * leave kernel.
4950 */
4951 if (tsk->mm && printk_ratelimit())
4952 printk(KERN_INFO "process %d (%s) no "
4953 "longer affine to cpu%d\n",
4954 tsk->pid, tsk->comm, dead_cpu);
4955 }
efc30814
KK
4956 if (!__migrate_task(tsk, dead_cpu, dest_cpu))
4957 goto restart;
1da177e4
LT
4958}
4959
4960/*
4961 * While a dead CPU has no uninterruptible tasks queued at this point,
4962 * it might still have a nonzero ->nr_uninterruptible counter, because
4963 * for performance reasons the counter is not stricly tracking tasks to
4964 * their home CPUs. So we just add the counter to another CPU's counter,
4965 * to keep the global sum constant after CPU-down:
4966 */
4967static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4968{
4969 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4970 unsigned long flags;
4971
4972 local_irq_save(flags);
4973 double_rq_lock(rq_src, rq_dest);
4974 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4975 rq_src->nr_uninterruptible = 0;
4976 double_rq_unlock(rq_src, rq_dest);
4977 local_irq_restore(flags);
4978}
4979
4980/* Run through task list and migrate tasks from the dead cpu. */
4981static void migrate_live_tasks(int src_cpu)
4982{
4983 struct task_struct *tsk, *t;
4984
4985 write_lock_irq(&tasklist_lock);
4986
4987 do_each_thread(t, tsk) {
4988 if (tsk == current)
4989 continue;
4990
4991 if (task_cpu(tsk) == src_cpu)
4992 move_task_off_dead_cpu(src_cpu, tsk);
4993 } while_each_thread(t, tsk);
4994
4995 write_unlock_irq(&tasklist_lock);
4996}
4997
4998/* Schedules idle task to be the next runnable task on current CPU.
4999 * It does so by boosting its priority to highest possible and adding it to
5000 * the _front_ of runqueue. Used by CPU offline code.
5001 */
5002void sched_idle_next(void)
5003{
5004 int cpu = smp_processor_id();
5005 runqueue_t *rq = this_rq();
5006 struct task_struct *p = rq->idle;
5007 unsigned long flags;
5008
5009 /* cpu has to be offline */
5010 BUG_ON(cpu_online(cpu));
5011
5012 /* Strictly not necessary since rest of the CPUs are stopped by now
5013 * and interrupts disabled on current cpu.
5014 */
5015 spin_lock_irqsave(&rq->lock, flags);
5016
5017 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5018 /* Add idle task to _front_ of it's priority queue */
5019 __activate_idle_task(p, rq);
5020
5021 spin_unlock_irqrestore(&rq->lock, flags);
5022}
5023
5024/* Ensures that the idle task is using init_mm right before its cpu goes
5025 * offline.
5026 */
5027void idle_task_exit(void)
5028{
5029 struct mm_struct *mm = current->active_mm;
5030
5031 BUG_ON(cpu_online(smp_processor_id()));
5032
5033 if (mm != &init_mm)
5034 switch_mm(mm, &init_mm, current);
5035 mmdrop(mm);
5036}
5037
5038static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
5039{
5040 struct runqueue *rq = cpu_rq(dead_cpu);
5041
5042 /* Must be exiting, otherwise would be on tasklist. */
5043 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
5044
5045 /* Cannot have done final schedule yet: would have vanished. */
5046 BUG_ON(tsk->flags & PF_DEAD);
5047
5048 get_task_struct(tsk);
5049
5050 /*
5051 * Drop lock around migration; if someone else moves it,
5052 * that's OK. No task can be added to this CPU, so iteration is
5053 * fine.
5054 */
5055 spin_unlock_irq(&rq->lock);
5056 move_task_off_dead_cpu(dead_cpu, tsk);
5057 spin_lock_irq(&rq->lock);
5058
5059 put_task_struct(tsk);
5060}
5061
5062/* release_task() removes task from tasklist, so we won't find dead tasks. */
5063static void migrate_dead_tasks(unsigned int dead_cpu)
5064{
5065 unsigned arr, i;
5066 struct runqueue *rq = cpu_rq(dead_cpu);
5067
5068 for (arr = 0; arr < 2; arr++) {
5069 for (i = 0; i < MAX_PRIO; i++) {
5070 struct list_head *list = &rq->arrays[arr].queue[i];
5071 while (!list_empty(list))
5072 migrate_dead(dead_cpu,
5073 list_entry(list->next, task_t,
5074 run_list));
5075 }
5076 }
5077}
5078#endif /* CONFIG_HOTPLUG_CPU */
5079
5080/*
5081 * migration_call - callback that gets triggered when a CPU is added.
5082 * Here we can start up the necessary migration thread for the new CPU.
5083 */
26c2143b
CS
5084static int __cpuinit migration_call(struct notifier_block *nfb,
5085 unsigned long action,
5086 void *hcpu)
1da177e4
LT
5087{
5088 int cpu = (long)hcpu;
5089 struct task_struct *p;
5090 struct runqueue *rq;
5091 unsigned long flags;
5092
5093 switch (action) {
5094 case CPU_UP_PREPARE:
5095 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5096 if (IS_ERR(p))
5097 return NOTIFY_BAD;
5098 p->flags |= PF_NOFREEZE;
5099 kthread_bind(p, cpu);
5100 /* Must be high prio: stop_machine expects to yield to it. */
5101 rq = task_rq_lock(p, &flags);
5102 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5103 task_rq_unlock(rq, &flags);
5104 cpu_rq(cpu)->migration_thread = p;
5105 break;
5106 case CPU_ONLINE:
5107 /* Strictly unneccessary, as first user will wake it. */
5108 wake_up_process(cpu_rq(cpu)->migration_thread);
5109 break;
5110#ifdef CONFIG_HOTPLUG_CPU
5111 case CPU_UP_CANCELED:
fc75cdfa
HC
5112 if (!cpu_rq(cpu)->migration_thread)
5113 break;
1da177e4 5114 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5115 kthread_bind(cpu_rq(cpu)->migration_thread,
5116 any_online_cpu(cpu_online_map));
1da177e4
LT
5117 kthread_stop(cpu_rq(cpu)->migration_thread);
5118 cpu_rq(cpu)->migration_thread = NULL;
5119 break;
5120 case CPU_DEAD:
5121 migrate_live_tasks(cpu);
5122 rq = cpu_rq(cpu);
5123 kthread_stop(rq->migration_thread);
5124 rq->migration_thread = NULL;
5125 /* Idle task back to normal (off runqueue, low prio) */
5126 rq = task_rq_lock(rq->idle, &flags);
5127 deactivate_task(rq->idle, rq);
5128 rq->idle->static_prio = MAX_PRIO;
5129 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5130 migrate_dead_tasks(cpu);
5131 task_rq_unlock(rq, &flags);
5132 migrate_nr_uninterruptible(rq);
5133 BUG_ON(rq->nr_running != 0);
5134
5135 /* No need to migrate the tasks: it was best-effort if
5136 * they didn't do lock_cpu_hotplug(). Just wake up
5137 * the requestors. */
5138 spin_lock_irq(&rq->lock);
5139 while (!list_empty(&rq->migration_queue)) {
5140 migration_req_t *req;
5141 req = list_entry(rq->migration_queue.next,
5142 migration_req_t, list);
1da177e4
LT
5143 list_del_init(&req->list);
5144 complete(&req->done);
5145 }
5146 spin_unlock_irq(&rq->lock);
5147 break;
5148#endif
5149 }
5150 return NOTIFY_OK;
5151}
5152
5153/* Register at highest priority so that task migration (migrate_all_tasks)
5154 * happens before everything else.
5155 */
26c2143b 5156static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5157 .notifier_call = migration_call,
5158 .priority = 10
5159};
5160
5161int __init migration_init(void)
5162{
5163 void *cpu = (void *)(long)smp_processor_id();
5164 /* Start one for boot CPU. */
5165 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5166 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5167 register_cpu_notifier(&migration_notifier);
5168 return 0;
5169}
5170#endif
5171
5172#ifdef CONFIG_SMP
1a20ff27 5173#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5174#ifdef SCHED_DOMAIN_DEBUG
5175static void sched_domain_debug(struct sched_domain *sd, int cpu)
5176{
5177 int level = 0;
5178
41c7ce9a
NP
5179 if (!sd) {
5180 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5181 return;
5182 }
5183
1da177e4
LT
5184 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5185
5186 do {
5187 int i;
5188 char str[NR_CPUS];
5189 struct sched_group *group = sd->groups;
5190 cpumask_t groupmask;
5191
5192 cpumask_scnprintf(str, NR_CPUS, sd->span);
5193 cpus_clear(groupmask);
5194
5195 printk(KERN_DEBUG);
5196 for (i = 0; i < level + 1; i++)
5197 printk(" ");
5198 printk("domain %d: ", level);
5199
5200 if (!(sd->flags & SD_LOAD_BALANCE)) {
5201 printk("does not load-balance\n");
5202 if (sd->parent)
5203 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5204 break;
5205 }
5206
5207 printk("span %s\n", str);
5208
5209 if (!cpu_isset(cpu, sd->span))
5210 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5211 if (!cpu_isset(cpu, group->cpumask))
5212 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5213
5214 printk(KERN_DEBUG);
5215 for (i = 0; i < level + 2; i++)
5216 printk(" ");
5217 printk("groups:");
5218 do {
5219 if (!group) {
5220 printk("\n");
5221 printk(KERN_ERR "ERROR: group is NULL\n");
5222 break;
5223 }
5224
5225 if (!group->cpu_power) {
5226 printk("\n");
5227 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5228 }
5229
5230 if (!cpus_weight(group->cpumask)) {
5231 printk("\n");
5232 printk(KERN_ERR "ERROR: empty group\n");
5233 }
5234
5235 if (cpus_intersects(groupmask, group->cpumask)) {
5236 printk("\n");
5237 printk(KERN_ERR "ERROR: repeated CPUs\n");
5238 }
5239
5240 cpus_or(groupmask, groupmask, group->cpumask);
5241
5242 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5243 printk(" %s", str);
5244
5245 group = group->next;
5246 } while (group != sd->groups);
5247 printk("\n");
5248
5249 if (!cpus_equal(sd->span, groupmask))
5250 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5251
5252 level++;
5253 sd = sd->parent;
5254
5255 if (sd) {
5256 if (!cpus_subset(groupmask, sd->span))
5257 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5258 }
5259
5260 } while (sd);
5261}
5262#else
5263#define sched_domain_debug(sd, cpu) {}
5264#endif
5265
1a20ff27 5266static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5267{
5268 if (cpus_weight(sd->span) == 1)
5269 return 1;
5270
5271 /* Following flags need at least 2 groups */
5272 if (sd->flags & (SD_LOAD_BALANCE |
5273 SD_BALANCE_NEWIDLE |
5274 SD_BALANCE_FORK |
5275 SD_BALANCE_EXEC)) {
5276 if (sd->groups != sd->groups->next)
5277 return 0;
5278 }
5279
5280 /* Following flags don't use groups */
5281 if (sd->flags & (SD_WAKE_IDLE |
5282 SD_WAKE_AFFINE |
5283 SD_WAKE_BALANCE))
5284 return 0;
5285
5286 return 1;
5287}
5288
1a20ff27 5289static int sd_parent_degenerate(struct sched_domain *sd,
245af2c7
SS
5290 struct sched_domain *parent)
5291{
5292 unsigned long cflags = sd->flags, pflags = parent->flags;
5293
5294 if (sd_degenerate(parent))
5295 return 1;
5296
5297 if (!cpus_equal(sd->span, parent->span))
5298 return 0;
5299
5300 /* Does parent contain flags not in child? */
5301 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5302 if (cflags & SD_WAKE_AFFINE)
5303 pflags &= ~SD_WAKE_BALANCE;
5304 /* Flags needing groups don't count if only 1 group in parent */
5305 if (parent->groups == parent->groups->next) {
5306 pflags &= ~(SD_LOAD_BALANCE |
5307 SD_BALANCE_NEWIDLE |
5308 SD_BALANCE_FORK |
5309 SD_BALANCE_EXEC);
5310 }
5311 if (~cflags & pflags)
5312 return 0;
5313
5314 return 1;
5315}
5316
1da177e4
LT
5317/*
5318 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5319 * hold the hotplug lock.
5320 */
9c1cfda2 5321static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5322{
1da177e4 5323 runqueue_t *rq = cpu_rq(cpu);
245af2c7
SS
5324 struct sched_domain *tmp;
5325
5326 /* Remove the sched domains which do not contribute to scheduling. */
5327 for (tmp = sd; tmp; tmp = tmp->parent) {
5328 struct sched_domain *parent = tmp->parent;
5329 if (!parent)
5330 break;
5331 if (sd_parent_degenerate(tmp, parent))
5332 tmp->parent = parent->parent;
5333 }
5334
5335 if (sd && sd_degenerate(sd))
5336 sd = sd->parent;
1da177e4
LT
5337
5338 sched_domain_debug(sd, cpu);
5339
674311d5 5340 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5341}
5342
5343/* cpus with isolated domains */
9c1cfda2 5344static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5345
5346/* Setup the mask of cpus configured for isolated domains */
5347static int __init isolated_cpu_setup(char *str)
5348{
5349 int ints[NR_CPUS], i;
5350
5351 str = get_options(str, ARRAY_SIZE(ints), ints);
5352 cpus_clear(cpu_isolated_map);
5353 for (i = 1; i <= ints[0]; i++)
5354 if (ints[i] < NR_CPUS)
5355 cpu_set(ints[i], cpu_isolated_map);
5356 return 1;
5357}
5358
5359__setup ("isolcpus=", isolated_cpu_setup);
5360
5361/*
5362 * init_sched_build_groups takes an array of groups, the cpumask we wish
5363 * to span, and a pointer to a function which identifies what group a CPU
5364 * belongs to. The return value of group_fn must be a valid index into the
5365 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5366 * keep track of groups covered with a cpumask_t).
5367 *
5368 * init_sched_build_groups will build a circular linked list of the groups
5369 * covered by the given span, and will set each group's ->cpumask correctly,
5370 * and ->cpu_power to 0.
5371 */
9c1cfda2
JH
5372static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5373 int (*group_fn)(int cpu))
1da177e4
LT
5374{
5375 struct sched_group *first = NULL, *last = NULL;
5376 cpumask_t covered = CPU_MASK_NONE;
5377 int i;
5378
5379 for_each_cpu_mask(i, span) {
5380 int group = group_fn(i);
5381 struct sched_group *sg = &groups[group];
5382 int j;
5383
5384 if (cpu_isset(i, covered))
5385 continue;
5386
5387 sg->cpumask = CPU_MASK_NONE;
5388 sg->cpu_power = 0;
5389
5390 for_each_cpu_mask(j, span) {
5391 if (group_fn(j) != group)
5392 continue;
5393
5394 cpu_set(j, covered);
5395 cpu_set(j, sg->cpumask);
5396 }
5397 if (!first)
5398 first = sg;
5399 if (last)
5400 last->next = sg;
5401 last = sg;
5402 }
5403 last->next = first;
5404}
5405
9c1cfda2 5406#define SD_NODES_PER_DOMAIN 16
1da177e4 5407
198e2f18 5408/*
5409 * Self-tuning task migration cost measurement between source and target CPUs.
5410 *
5411 * This is done by measuring the cost of manipulating buffers of varying
5412 * sizes. For a given buffer-size here are the steps that are taken:
5413 *
5414 * 1) the source CPU reads+dirties a shared buffer
5415 * 2) the target CPU reads+dirties the same shared buffer
5416 *
5417 * We measure how long they take, in the following 4 scenarios:
5418 *
5419 * - source: CPU1, target: CPU2 | cost1
5420 * - source: CPU2, target: CPU1 | cost2
5421 * - source: CPU1, target: CPU1 | cost3
5422 * - source: CPU2, target: CPU2 | cost4
5423 *
5424 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5425 * the cost of migration.
5426 *
5427 * We then start off from a small buffer-size and iterate up to larger
5428 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5429 * doing a maximum search for the cost. (The maximum cost for a migration
5430 * normally occurs when the working set size is around the effective cache
5431 * size.)
5432 */
5433#define SEARCH_SCOPE 2
5434#define MIN_CACHE_SIZE (64*1024U)
5435#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5436#define ITERATIONS 1
198e2f18 5437#define SIZE_THRESH 130
5438#define COST_THRESH 130
5439
5440/*
5441 * The migration cost is a function of 'domain distance'. Domain
5442 * distance is the number of steps a CPU has to iterate down its
5443 * domain tree to share a domain with the other CPU. The farther
5444 * two CPUs are from each other, the larger the distance gets.
5445 *
5446 * Note that we use the distance only to cache measurement results,
5447 * the distance value is not used numerically otherwise. When two
5448 * CPUs have the same distance it is assumed that the migration
5449 * cost is the same. (this is a simplification but quite practical)
5450 */
5451#define MAX_DOMAIN_DISTANCE 32
5452
5453static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5454 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5455/*
5456 * Architectures may override the migration cost and thus avoid
5457 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5458 * virtualized hardware:
5459 */
5460#ifdef CONFIG_DEFAULT_MIGRATION_COST
5461 CONFIG_DEFAULT_MIGRATION_COST
5462#else
5463 -1LL
5464#endif
5465};
198e2f18 5466
5467/*
5468 * Allow override of migration cost - in units of microseconds.
5469 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5470 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5471 */
5472static int __init migration_cost_setup(char *str)
5473{
5474 int ints[MAX_DOMAIN_DISTANCE+1], i;
5475
5476 str = get_options(str, ARRAY_SIZE(ints), ints);
5477
5478 printk("#ints: %d\n", ints[0]);
5479 for (i = 1; i <= ints[0]; i++) {
5480 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5481 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5482 }
5483 return 1;
5484}
5485
5486__setup ("migration_cost=", migration_cost_setup);
5487
5488/*
5489 * Global multiplier (divisor) for migration-cutoff values,
5490 * in percentiles. E.g. use a value of 150 to get 1.5 times
5491 * longer cache-hot cutoff times.
5492 *
5493 * (We scale it from 100 to 128 to long long handling easier.)
5494 */
5495
5496#define MIGRATION_FACTOR_SCALE 128
5497
5498static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5499
5500static int __init setup_migration_factor(char *str)
5501{
5502 get_option(&str, &migration_factor);
5503 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5504 return 1;
5505}
5506
5507__setup("migration_factor=", setup_migration_factor);
5508
5509/*
5510 * Estimated distance of two CPUs, measured via the number of domains
5511 * we have to pass for the two CPUs to be in the same span:
5512 */
5513static unsigned long domain_distance(int cpu1, int cpu2)
5514{
5515 unsigned long distance = 0;
5516 struct sched_domain *sd;
5517
5518 for_each_domain(cpu1, sd) {
5519 WARN_ON(!cpu_isset(cpu1, sd->span));
5520 if (cpu_isset(cpu2, sd->span))
5521 return distance;
5522 distance++;
5523 }
5524 if (distance >= MAX_DOMAIN_DISTANCE) {
5525 WARN_ON(1);
5526 distance = MAX_DOMAIN_DISTANCE-1;
5527 }
5528
5529 return distance;
5530}
5531
5532static unsigned int migration_debug;
5533
5534static int __init setup_migration_debug(char *str)
5535{
5536 get_option(&str, &migration_debug);
5537 return 1;
5538}
5539
5540__setup("migration_debug=", setup_migration_debug);
5541
5542/*
5543 * Maximum cache-size that the scheduler should try to measure.
5544 * Architectures with larger caches should tune this up during
5545 * bootup. Gets used in the domain-setup code (i.e. during SMP
5546 * bootup).
5547 */
5548unsigned int max_cache_size;
5549
5550static int __init setup_max_cache_size(char *str)
5551{
5552 get_option(&str, &max_cache_size);
5553 return 1;
5554}
5555
5556__setup("max_cache_size=", setup_max_cache_size);
5557
5558/*
5559 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5560 * is the operation that is timed, so we try to generate unpredictable
5561 * cachemisses that still end up filling the L2 cache:
5562 */
5563static void touch_cache(void *__cache, unsigned long __size)
5564{
5565 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5566 chunk2 = 2*size/3;
5567 unsigned long *cache = __cache;
5568 int i;
5569
5570 for (i = 0; i < size/6; i += 8) {
5571 switch (i % 6) {
5572 case 0: cache[i]++;
5573 case 1: cache[size-1-i]++;
5574 case 2: cache[chunk1-i]++;
5575 case 3: cache[chunk1+i]++;
5576 case 4: cache[chunk2-i]++;
5577 case 5: cache[chunk2+i]++;
5578 }
5579 }
5580}
5581
5582/*
5583 * Measure the cache-cost of one task migration. Returns in units of nsec.
5584 */
5585static unsigned long long measure_one(void *cache, unsigned long size,
5586 int source, int target)
5587{
5588 cpumask_t mask, saved_mask;
5589 unsigned long long t0, t1, t2, t3, cost;
5590
5591 saved_mask = current->cpus_allowed;
5592
5593 /*
5594 * Flush source caches to RAM and invalidate them:
5595 */
5596 sched_cacheflush();
5597
5598 /*
5599 * Migrate to the source CPU:
5600 */
5601 mask = cpumask_of_cpu(source);
5602 set_cpus_allowed(current, mask);
5603 WARN_ON(smp_processor_id() != source);
5604
5605 /*
5606 * Dirty the working set:
5607 */
5608 t0 = sched_clock();
5609 touch_cache(cache, size);
5610 t1 = sched_clock();
5611
5612 /*
5613 * Migrate to the target CPU, dirty the L2 cache and access
5614 * the shared buffer. (which represents the working set
5615 * of a migrated task.)
5616 */
5617 mask = cpumask_of_cpu(target);
5618 set_cpus_allowed(current, mask);
5619 WARN_ON(smp_processor_id() != target);
5620
5621 t2 = sched_clock();
5622 touch_cache(cache, size);
5623 t3 = sched_clock();
5624
5625 cost = t1-t0 + t3-t2;
5626
5627 if (migration_debug >= 2)
5628 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5629 source, target, t1-t0, t1-t0, t3-t2, cost);
5630 /*
5631 * Flush target caches to RAM and invalidate them:
5632 */
5633 sched_cacheflush();
5634
5635 set_cpus_allowed(current, saved_mask);
5636
5637 return cost;
5638}
5639
5640/*
5641 * Measure a series of task migrations and return the average
5642 * result. Since this code runs early during bootup the system
5643 * is 'undisturbed' and the average latency makes sense.
5644 *
5645 * The algorithm in essence auto-detects the relevant cache-size,
5646 * so it will properly detect different cachesizes for different
5647 * cache-hierarchies, depending on how the CPUs are connected.
5648 *
5649 * Architectures can prime the upper limit of the search range via
5650 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5651 */
5652static unsigned long long
5653measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5654{
5655 unsigned long long cost1, cost2;
5656 int i;
5657
5658 /*
5659 * Measure the migration cost of 'size' bytes, over an
5660 * average of 10 runs:
5661 *
5662 * (We perturb the cache size by a small (0..4k)
5663 * value to compensate size/alignment related artifacts.
5664 * We also subtract the cost of the operation done on
5665 * the same CPU.)
5666 */
5667 cost1 = 0;
5668
5669 /*
5670 * dry run, to make sure we start off cache-cold on cpu1,
5671 * and to get any vmalloc pagefaults in advance:
5672 */
5673 measure_one(cache, size, cpu1, cpu2);
5674 for (i = 0; i < ITERATIONS; i++)
5675 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5676
5677 measure_one(cache, size, cpu2, cpu1);
5678 for (i = 0; i < ITERATIONS; i++)
5679 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5680
5681 /*
5682 * (We measure the non-migrating [cached] cost on both
5683 * cpu1 and cpu2, to handle CPUs with different speeds)
5684 */
5685 cost2 = 0;
5686
5687 measure_one(cache, size, cpu1, cpu1);
5688 for (i = 0; i < ITERATIONS; i++)
5689 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5690
5691 measure_one(cache, size, cpu2, cpu2);
5692 for (i = 0; i < ITERATIONS; i++)
5693 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5694
5695 /*
5696 * Get the per-iteration migration cost:
5697 */
5698 do_div(cost1, 2*ITERATIONS);
5699 do_div(cost2, 2*ITERATIONS);
5700
5701 return cost1 - cost2;
5702}
5703
5704static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5705{
5706 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5707 unsigned int max_size, size, size_found = 0;
5708 long long cost = 0, prev_cost;
5709 void *cache;
5710
5711 /*
5712 * Search from max_cache_size*5 down to 64K - the real relevant
5713 * cachesize has to lie somewhere inbetween.
5714 */
5715 if (max_cache_size) {
5716 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5717 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5718 } else {
5719 /*
5720 * Since we have no estimation about the relevant
5721 * search range
5722 */
5723 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5724 size = MIN_CACHE_SIZE;
5725 }
5726
5727 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5728 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5729 return 0;
5730 }
5731
5732 /*
5733 * Allocate the working set:
5734 */
5735 cache = vmalloc(max_size);
5736 if (!cache) {
5737 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5738 return 1000000; // return 1 msec on very small boxen
5739 }
5740
5741 while (size <= max_size) {
5742 prev_cost = cost;
5743 cost = measure_cost(cpu1, cpu2, cache, size);
5744
5745 /*
5746 * Update the max:
5747 */
5748 if (cost > 0) {
5749 if (max_cost < cost) {
5750 max_cost = cost;
5751 size_found = size;
5752 }
5753 }
5754 /*
5755 * Calculate average fluctuation, we use this to prevent
5756 * noise from triggering an early break out of the loop:
5757 */
5758 fluct = abs(cost - prev_cost);
5759 avg_fluct = (avg_fluct + fluct)/2;
5760
5761 if (migration_debug)
5762 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5763 cpu1, cpu2, size,
5764 (long)cost / 1000000,
5765 ((long)cost / 100000) % 10,
5766 (long)max_cost / 1000000,
5767 ((long)max_cost / 100000) % 10,
5768 domain_distance(cpu1, cpu2),
5769 cost, avg_fluct);
5770
5771 /*
5772 * If we iterated at least 20% past the previous maximum,
5773 * and the cost has dropped by more than 20% already,
5774 * (taking fluctuations into account) then we assume to
5775 * have found the maximum and break out of the loop early:
5776 */
5777 if (size_found && (size*100 > size_found*SIZE_THRESH))
5778 if (cost+avg_fluct <= 0 ||
5779 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5780
5781 if (migration_debug)
5782 printk("-> found max.\n");
5783 break;
5784 }
5785 /*
70b4d63e 5786 * Increase the cachesize in 10% steps:
198e2f18 5787 */
70b4d63e 5788 size = size * 10 / 9;
198e2f18 5789 }
5790
5791 if (migration_debug)
5792 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5793 cpu1, cpu2, size_found, max_cost);
5794
5795 vfree(cache);
5796
5797 /*
5798 * A task is considered 'cache cold' if at least 2 times
5799 * the worst-case cost of migration has passed.
5800 *
5801 * (this limit is only listened to if the load-balancing
5802 * situation is 'nice' - if there is a large imbalance we
5803 * ignore it for the sake of CPU utilization and
5804 * processing fairness.)
5805 */
5806 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5807}
5808
5809static void calibrate_migration_costs(const cpumask_t *cpu_map)
5810{
5811 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5812 unsigned long j0, j1, distance, max_distance = 0;
5813 struct sched_domain *sd;
5814
5815 j0 = jiffies;
5816
5817 /*
5818 * First pass - calculate the cacheflush times:
5819 */
5820 for_each_cpu_mask(cpu1, *cpu_map) {
5821 for_each_cpu_mask(cpu2, *cpu_map) {
5822 if (cpu1 == cpu2)
5823 continue;
5824 distance = domain_distance(cpu1, cpu2);
5825 max_distance = max(max_distance, distance);
5826 /*
5827 * No result cached yet?
5828 */
5829 if (migration_cost[distance] == -1LL)
5830 migration_cost[distance] =
5831 measure_migration_cost(cpu1, cpu2);
5832 }
5833 }
5834 /*
5835 * Second pass - update the sched domain hierarchy with
5836 * the new cache-hot-time estimations:
5837 */
5838 for_each_cpu_mask(cpu, *cpu_map) {
5839 distance = 0;
5840 for_each_domain(cpu, sd) {
5841 sd->cache_hot_time = migration_cost[distance];
5842 distance++;
5843 }
5844 }
5845 /*
5846 * Print the matrix:
5847 */
5848 if (migration_debug)
5849 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5850 max_cache_size,
5851#ifdef CONFIG_X86
5852 cpu_khz/1000
5853#else
5854 -1
5855#endif
5856 );
bd576c95
CE
5857 if (system_state == SYSTEM_BOOTING) {
5858 printk("migration_cost=");
5859 for (distance = 0; distance <= max_distance; distance++) {
5860 if (distance)
5861 printk(",");
5862 printk("%ld", (long)migration_cost[distance] / 1000);
5863 }
5864 printk("\n");
198e2f18 5865 }
198e2f18 5866 j1 = jiffies;
5867 if (migration_debug)
5868 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5869
5870 /*
5871 * Move back to the original CPU. NUMA-Q gets confused
5872 * if we migrate to another quad during bootup.
5873 */
5874 if (raw_smp_processor_id() != orig_cpu) {
5875 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5876 saved_mask = current->cpus_allowed;
5877
5878 set_cpus_allowed(current, mask);
5879 set_cpus_allowed(current, saved_mask);
5880 }
5881}
5882
9c1cfda2 5883#ifdef CONFIG_NUMA
198e2f18 5884
9c1cfda2
JH
5885/**
5886 * find_next_best_node - find the next node to include in a sched_domain
5887 * @node: node whose sched_domain we're building
5888 * @used_nodes: nodes already in the sched_domain
5889 *
5890 * Find the next node to include in a given scheduling domain. Simply
5891 * finds the closest node not already in the @used_nodes map.
5892 *
5893 * Should use nodemask_t.
5894 */
5895static int find_next_best_node(int node, unsigned long *used_nodes)
5896{
5897 int i, n, val, min_val, best_node = 0;
5898
5899 min_val = INT_MAX;
5900
5901 for (i = 0; i < MAX_NUMNODES; i++) {
5902 /* Start at @node */
5903 n = (node + i) % MAX_NUMNODES;
5904
5905 if (!nr_cpus_node(n))
5906 continue;
5907
5908 /* Skip already used nodes */
5909 if (test_bit(n, used_nodes))
5910 continue;
5911
5912 /* Simple min distance search */
5913 val = node_distance(node, n);
5914
5915 if (val < min_val) {
5916 min_val = val;
5917 best_node = n;
5918 }
5919 }
5920
5921 set_bit(best_node, used_nodes);
5922 return best_node;
5923}
5924
5925/**
5926 * sched_domain_node_span - get a cpumask for a node's sched_domain
5927 * @node: node whose cpumask we're constructing
5928 * @size: number of nodes to include in this span
5929 *
5930 * Given a node, construct a good cpumask for its sched_domain to span. It
5931 * should be one that prevents unnecessary balancing, but also spreads tasks
5932 * out optimally.
5933 */
5934static cpumask_t sched_domain_node_span(int node)
5935{
5936 int i;
5937 cpumask_t span, nodemask;
5938 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5939
5940 cpus_clear(span);
5941 bitmap_zero(used_nodes, MAX_NUMNODES);
5942
5943 nodemask = node_to_cpumask(node);
5944 cpus_or(span, span, nodemask);
5945 set_bit(node, used_nodes);
5946
5947 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5948 int next_node = find_next_best_node(node, used_nodes);
5949 nodemask = node_to_cpumask(next_node);
5950 cpus_or(span, span, nodemask);
5951 }
5952
5953 return span;
5954}
5955#endif
5956
5c45bf27 5957int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
9c1cfda2
JH
5958/*
5959 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5960 * can switch it on easily if needed.
5961 */
1da177e4
LT
5962#ifdef CONFIG_SCHED_SMT
5963static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5964static struct sched_group sched_group_cpus[NR_CPUS];
1a20ff27 5965static int cpu_to_cpu_group(int cpu)
1da177e4
LT
5966{
5967 return cpu;
5968}
5969#endif
5970
1e9f28fa
SS
5971#ifdef CONFIG_SCHED_MC
5972static DEFINE_PER_CPU(struct sched_domain, core_domains);
36938169 5973static struct sched_group *sched_group_core_bycpu[NR_CPUS];
1e9f28fa
SS
5974#endif
5975
5976#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5977static int cpu_to_core_group(int cpu)
5978{
5979 return first_cpu(cpu_sibling_map[cpu]);
5980}
5981#elif defined(CONFIG_SCHED_MC)
5982static int cpu_to_core_group(int cpu)
5983{
5984 return cpu;
5985}
5986#endif
5987
1da177e4 5988static DEFINE_PER_CPU(struct sched_domain, phys_domains);
36938169 5989static struct sched_group *sched_group_phys_bycpu[NR_CPUS];
1a20ff27 5990static int cpu_to_phys_group(int cpu)
1da177e4 5991{
1e9f28fa
SS
5992#if defined(CONFIG_SCHED_MC)
5993 cpumask_t mask = cpu_coregroup_map(cpu);
5994 return first_cpu(mask);
5995#elif defined(CONFIG_SCHED_SMT)
1da177e4
LT
5996 return first_cpu(cpu_sibling_map[cpu]);
5997#else
5998 return cpu;
5999#endif
6000}
6001
6002#ifdef CONFIG_NUMA
1da177e4 6003/*
9c1cfda2
JH
6004 * The init_sched_build_groups can't handle what we want to do with node
6005 * groups, so roll our own. Now each node has its own list of groups which
6006 * gets dynamically allocated.
1da177e4 6007 */
9c1cfda2 6008static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6009static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6010
9c1cfda2 6011static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
d1b55138 6012static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
9c1cfda2
JH
6013
6014static int cpu_to_allnodes_group(int cpu)
6015{
6016 return cpu_to_node(cpu);
1da177e4 6017}
08069033
SS
6018static void init_numa_sched_groups_power(struct sched_group *group_head)
6019{
6020 struct sched_group *sg = group_head;
6021 int j;
6022
6023 if (!sg)
6024 return;
6025next_sg:
6026 for_each_cpu_mask(j, sg->cpumask) {
6027 struct sched_domain *sd;
6028
6029 sd = &per_cpu(phys_domains, j);
6030 if (j != first_cpu(sd->groups->cpumask)) {
6031 /*
6032 * Only add "power" once for each
6033 * physical package.
6034 */
6035 continue;
6036 }
6037
6038 sg->cpu_power += sd->groups->cpu_power;
6039 }
6040 sg = sg->next;
6041 if (sg != group_head)
6042 goto next_sg;
6043}
1da177e4
LT
6044#endif
6045
51888ca2
SV
6046/* Free memory allocated for various sched_group structures */
6047static void free_sched_groups(const cpumask_t *cpu_map)
6048{
36938169 6049 int cpu;
51888ca2
SV
6050#ifdef CONFIG_NUMA
6051 int i;
51888ca2
SV
6052
6053 for_each_cpu_mask(cpu, *cpu_map) {
6054 struct sched_group *sched_group_allnodes
6055 = sched_group_allnodes_bycpu[cpu];
6056 struct sched_group **sched_group_nodes
6057 = sched_group_nodes_bycpu[cpu];
6058
6059 if (sched_group_allnodes) {
6060 kfree(sched_group_allnodes);
6061 sched_group_allnodes_bycpu[cpu] = NULL;
6062 }
6063
6064 if (!sched_group_nodes)
6065 continue;
6066
6067 for (i = 0; i < MAX_NUMNODES; i++) {
6068 cpumask_t nodemask = node_to_cpumask(i);
6069 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6070
6071 cpus_and(nodemask, nodemask, *cpu_map);
6072 if (cpus_empty(nodemask))
6073 continue;
6074
6075 if (sg == NULL)
6076 continue;
6077 sg = sg->next;
6078next_sg:
6079 oldsg = sg;
6080 sg = sg->next;
6081 kfree(oldsg);
6082 if (oldsg != sched_group_nodes[i])
6083 goto next_sg;
6084 }
6085 kfree(sched_group_nodes);
6086 sched_group_nodes_bycpu[cpu] = NULL;
6087 }
6088#endif
36938169
SV
6089 for_each_cpu_mask(cpu, *cpu_map) {
6090 if (sched_group_phys_bycpu[cpu]) {
6091 kfree(sched_group_phys_bycpu[cpu]);
6092 sched_group_phys_bycpu[cpu] = NULL;
6093 }
6094#ifdef CONFIG_SCHED_MC
6095 if (sched_group_core_bycpu[cpu]) {
6096 kfree(sched_group_core_bycpu[cpu]);
6097 sched_group_core_bycpu[cpu] = NULL;
6098 }
6099#endif
6100 }
51888ca2
SV
6101}
6102
1da177e4 6103/*
1a20ff27
DG
6104 * Build sched domains for a given set of cpus and attach the sched domains
6105 * to the individual cpus
1da177e4 6106 */
51888ca2 6107static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6108{
6109 int i;
36938169
SV
6110 struct sched_group *sched_group_phys = NULL;
6111#ifdef CONFIG_SCHED_MC
6112 struct sched_group *sched_group_core = NULL;
6113#endif
d1b55138
JH
6114#ifdef CONFIG_NUMA
6115 struct sched_group **sched_group_nodes = NULL;
6116 struct sched_group *sched_group_allnodes = NULL;
6117
6118 /*
6119 * Allocate the per-node list of sched groups
6120 */
51888ca2 6121 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
d3a5aa98 6122 GFP_KERNEL);
d1b55138
JH
6123 if (!sched_group_nodes) {
6124 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6125 return -ENOMEM;
d1b55138
JH
6126 }
6127 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6128#endif
1da177e4
LT
6129
6130 /*
1a20ff27 6131 * Set up domains for cpus specified by the cpu_map.
1da177e4 6132 */
1a20ff27 6133 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6134 int group;
6135 struct sched_domain *sd = NULL, *p;
6136 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6137
1a20ff27 6138 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6139
6140#ifdef CONFIG_NUMA
d1b55138 6141 if (cpus_weight(*cpu_map)
9c1cfda2 6142 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
d1b55138
JH
6143 if (!sched_group_allnodes) {
6144 sched_group_allnodes
6145 = kmalloc(sizeof(struct sched_group)
6146 * MAX_NUMNODES,
6147 GFP_KERNEL);
6148 if (!sched_group_allnodes) {
6149 printk(KERN_WARNING
6150 "Can not alloc allnodes sched group\n");
51888ca2 6151 goto error;
d1b55138
JH
6152 }
6153 sched_group_allnodes_bycpu[i]
6154 = sched_group_allnodes;
6155 }
9c1cfda2
JH
6156 sd = &per_cpu(allnodes_domains, i);
6157 *sd = SD_ALLNODES_INIT;
6158 sd->span = *cpu_map;
6159 group = cpu_to_allnodes_group(i);
6160 sd->groups = &sched_group_allnodes[group];
6161 p = sd;
6162 } else
6163 p = NULL;
6164
1da177e4 6165 sd = &per_cpu(node_domains, i);
1da177e4 6166 *sd = SD_NODE_INIT;
9c1cfda2
JH
6167 sd->span = sched_domain_node_span(cpu_to_node(i));
6168 sd->parent = p;
6169 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6170#endif
6171
36938169
SV
6172 if (!sched_group_phys) {
6173 sched_group_phys
6174 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6175 GFP_KERNEL);
6176 if (!sched_group_phys) {
6177 printk (KERN_WARNING "Can not alloc phys sched"
6178 "group\n");
6179 goto error;
6180 }
6181 sched_group_phys_bycpu[i] = sched_group_phys;
6182 }
6183
1da177e4
LT
6184 p = sd;
6185 sd = &per_cpu(phys_domains, i);
6186 group = cpu_to_phys_group(i);
6187 *sd = SD_CPU_INIT;
6188 sd->span = nodemask;
6189 sd->parent = p;
6190 sd->groups = &sched_group_phys[group];
6191
1e9f28fa 6192#ifdef CONFIG_SCHED_MC
36938169
SV
6193 if (!sched_group_core) {
6194 sched_group_core
6195 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6196 GFP_KERNEL);
6197 if (!sched_group_core) {
6198 printk (KERN_WARNING "Can not alloc core sched"
6199 "group\n");
6200 goto error;
6201 }
6202 sched_group_core_bycpu[i] = sched_group_core;
6203 }
6204
1e9f28fa
SS
6205 p = sd;
6206 sd = &per_cpu(core_domains, i);
6207 group = cpu_to_core_group(i);
6208 *sd = SD_MC_INIT;
6209 sd->span = cpu_coregroup_map(i);
6210 cpus_and(sd->span, sd->span, *cpu_map);
6211 sd->parent = p;
6212 sd->groups = &sched_group_core[group];
6213#endif
6214
1da177e4
LT
6215#ifdef CONFIG_SCHED_SMT
6216 p = sd;
6217 sd = &per_cpu(cpu_domains, i);
6218 group = cpu_to_cpu_group(i);
6219 *sd = SD_SIBLING_INIT;
6220 sd->span = cpu_sibling_map[i];
1a20ff27 6221 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6222 sd->parent = p;
6223 sd->groups = &sched_group_cpus[group];
6224#endif
6225 }
6226
6227#ifdef CONFIG_SCHED_SMT
6228 /* Set up CPU (sibling) groups */
9c1cfda2 6229 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6230 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6231 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6232 if (i != first_cpu(this_sibling_map))
6233 continue;
6234
6235 init_sched_build_groups(sched_group_cpus, this_sibling_map,
6236 &cpu_to_cpu_group);
6237 }
6238#endif
6239
1e9f28fa
SS
6240#ifdef CONFIG_SCHED_MC
6241 /* Set up multi-core groups */
6242 for_each_cpu_mask(i, *cpu_map) {
6243 cpumask_t this_core_map = cpu_coregroup_map(i);
6244 cpus_and(this_core_map, this_core_map, *cpu_map);
6245 if (i != first_cpu(this_core_map))
6246 continue;
6247 init_sched_build_groups(sched_group_core, this_core_map,
6248 &cpu_to_core_group);
6249 }
6250#endif
6251
6252
1da177e4
LT
6253 /* Set up physical groups */
6254 for (i = 0; i < MAX_NUMNODES; i++) {
6255 cpumask_t nodemask = node_to_cpumask(i);
6256
1a20ff27 6257 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6258 if (cpus_empty(nodemask))
6259 continue;
6260
6261 init_sched_build_groups(sched_group_phys, nodemask,
6262 &cpu_to_phys_group);
6263 }
6264
6265#ifdef CONFIG_NUMA
6266 /* Set up node groups */
d1b55138
JH
6267 if (sched_group_allnodes)
6268 init_sched_build_groups(sched_group_allnodes, *cpu_map,
6269 &cpu_to_allnodes_group);
9c1cfda2
JH
6270
6271 for (i = 0; i < MAX_NUMNODES; i++) {
6272 /* Set up node groups */
6273 struct sched_group *sg, *prev;
6274 cpumask_t nodemask = node_to_cpumask(i);
6275 cpumask_t domainspan;
6276 cpumask_t covered = CPU_MASK_NONE;
6277 int j;
6278
6279 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6280 if (cpus_empty(nodemask)) {
6281 sched_group_nodes[i] = NULL;
9c1cfda2 6282 continue;
d1b55138 6283 }
9c1cfda2
JH
6284
6285 domainspan = sched_domain_node_span(i);
6286 cpus_and(domainspan, domainspan, *cpu_map);
6287
15f0b676 6288 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6289 if (!sg) {
6290 printk(KERN_WARNING "Can not alloc domain group for "
6291 "node %d\n", i);
6292 goto error;
6293 }
9c1cfda2
JH
6294 sched_group_nodes[i] = sg;
6295 for_each_cpu_mask(j, nodemask) {
6296 struct sched_domain *sd;
6297 sd = &per_cpu(node_domains, j);
6298 sd->groups = sg;
9c1cfda2
JH
6299 }
6300 sg->cpu_power = 0;
6301 sg->cpumask = nodemask;
51888ca2 6302 sg->next = sg;
9c1cfda2
JH
6303 cpus_or(covered, covered, nodemask);
6304 prev = sg;
6305
6306 for (j = 0; j < MAX_NUMNODES; j++) {
6307 cpumask_t tmp, notcovered;
6308 int n = (i + j) % MAX_NUMNODES;
6309
6310 cpus_complement(notcovered, covered);
6311 cpus_and(tmp, notcovered, *cpu_map);
6312 cpus_and(tmp, tmp, domainspan);
6313 if (cpus_empty(tmp))
6314 break;
6315
6316 nodemask = node_to_cpumask(n);
6317 cpus_and(tmp, tmp, nodemask);
6318 if (cpus_empty(tmp))
6319 continue;
6320
15f0b676
SV
6321 sg = kmalloc_node(sizeof(struct sched_group),
6322 GFP_KERNEL, i);
9c1cfda2
JH
6323 if (!sg) {
6324 printk(KERN_WARNING
6325 "Can not alloc domain group for node %d\n", j);
51888ca2 6326 goto error;
9c1cfda2
JH
6327 }
6328 sg->cpu_power = 0;
6329 sg->cpumask = tmp;
51888ca2 6330 sg->next = prev->next;
9c1cfda2
JH
6331 cpus_or(covered, covered, tmp);
6332 prev->next = sg;
6333 prev = sg;
6334 }
9c1cfda2 6335 }
1da177e4
LT
6336#endif
6337
6338 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6339#ifdef CONFIG_SCHED_SMT
1a20ff27 6340 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6341 struct sched_domain *sd;
1da177e4 6342 sd = &per_cpu(cpu_domains, i);
5c45bf27
SS
6343 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6344 }
1da177e4 6345#endif
1e9f28fa 6346#ifdef CONFIG_SCHED_MC
5c45bf27
SS
6347 for_each_cpu_mask(i, *cpu_map) {
6348 int power;
6349 struct sched_domain *sd;
1e9f28fa 6350 sd = &per_cpu(core_domains, i);
5c45bf27
SS
6351 if (sched_smt_power_savings)
6352 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6353 else
6354 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
1e9f28fa
SS
6355 * SCHED_LOAD_SCALE / 10;
6356 sd->groups->cpu_power = power;
5c45bf27
SS
6357 }
6358#endif
1e9f28fa 6359
5c45bf27
SS
6360 for_each_cpu_mask(i, *cpu_map) {
6361 struct sched_domain *sd;
6362#ifdef CONFIG_SCHED_MC
1e9f28fa 6363 sd = &per_cpu(phys_domains, i);
5c45bf27
SS
6364 if (i != first_cpu(sd->groups->cpumask))
6365 continue;
1da177e4 6366
5c45bf27
SS
6367 sd->groups->cpu_power = 0;
6368 if (sched_mc_power_savings || sched_smt_power_savings) {
6369 int j;
6370
6371 for_each_cpu_mask(j, sd->groups->cpumask) {
6372 struct sched_domain *sd1;
6373 sd1 = &per_cpu(core_domains, j);
6374 /*
6375 * for each core we will add once
6376 * to the group in physical domain
6377 */
6378 if (j != first_cpu(sd1->groups->cpumask))
6379 continue;
6380
6381 if (sched_smt_power_savings)
6382 sd->groups->cpu_power += sd1->groups->cpu_power;
6383 else
6384 sd->groups->cpu_power += SCHED_LOAD_SCALE;
6385 }
6386 } else
6387 /*
6388 * This has to be < 2 * SCHED_LOAD_SCALE
6389 * Lets keep it SCHED_LOAD_SCALE, so that
6390 * while calculating NUMA group's cpu_power
6391 * we can simply do
6392 * numa_group->cpu_power += phys_group->cpu_power;
6393 *
6394 * See "only add power once for each physical pkg"
6395 * comment below
6396 */
6397 sd->groups->cpu_power = SCHED_LOAD_SCALE;
1e9f28fa 6398#else
5c45bf27 6399 int power;
1da177e4 6400 sd = &per_cpu(phys_domains, i);
5c45bf27
SS
6401 if (sched_smt_power_savings)
6402 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6403 else
6404 power = SCHED_LOAD_SCALE;
1da177e4 6405 sd->groups->cpu_power = power;
1e9f28fa 6406#endif
1da177e4
LT
6407 }
6408
9c1cfda2 6409#ifdef CONFIG_NUMA
08069033
SS
6410 for (i = 0; i < MAX_NUMNODES; i++)
6411 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6412
08069033 6413 init_numa_sched_groups_power(sched_group_allnodes);
9c1cfda2
JH
6414#endif
6415
1da177e4 6416 /* Attach the domains */
1a20ff27 6417 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6418 struct sched_domain *sd;
6419#ifdef CONFIG_SCHED_SMT
6420 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6421#elif defined(CONFIG_SCHED_MC)
6422 sd = &per_cpu(core_domains, i);
1da177e4
LT
6423#else
6424 sd = &per_cpu(phys_domains, i);
6425#endif
6426 cpu_attach_domain(sd, i);
6427 }
198e2f18 6428 /*
6429 * Tune cache-hot values:
6430 */
6431 calibrate_migration_costs(cpu_map);
51888ca2
SV
6432
6433 return 0;
6434
51888ca2
SV
6435error:
6436 free_sched_groups(cpu_map);
6437 return -ENOMEM;
1da177e4 6438}
1a20ff27
DG
6439/*
6440 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6441 */
51888ca2 6442static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6443{
6444 cpumask_t cpu_default_map;
51888ca2 6445 int err;
1da177e4 6446
1a20ff27
DG
6447 /*
6448 * Setup mask for cpus without special case scheduling requirements.
6449 * For now this just excludes isolated cpus, but could be used to
6450 * exclude other special cases in the future.
6451 */
6452 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6453
51888ca2
SV
6454 err = build_sched_domains(&cpu_default_map);
6455
6456 return err;
1a20ff27
DG
6457}
6458
6459static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6460{
51888ca2 6461 free_sched_groups(cpu_map);
9c1cfda2 6462}
1da177e4 6463
1a20ff27
DG
6464/*
6465 * Detach sched domains from a group of cpus specified in cpu_map
6466 * These cpus will now be attached to the NULL domain
6467 */
858119e1 6468static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6469{
6470 int i;
6471
6472 for_each_cpu_mask(i, *cpu_map)
6473 cpu_attach_domain(NULL, i);
6474 synchronize_sched();
6475 arch_destroy_sched_domains(cpu_map);
6476}
6477
6478/*
6479 * Partition sched domains as specified by the cpumasks below.
6480 * This attaches all cpus from the cpumasks to the NULL domain,
6481 * waits for a RCU quiescent period, recalculates sched
6482 * domain information and then attaches them back to the
6483 * correct sched domains
6484 * Call with hotplug lock held
6485 */
51888ca2 6486int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6487{
6488 cpumask_t change_map;
51888ca2 6489 int err = 0;
1a20ff27
DG
6490
6491 cpus_and(*partition1, *partition1, cpu_online_map);
6492 cpus_and(*partition2, *partition2, cpu_online_map);
6493 cpus_or(change_map, *partition1, *partition2);
6494
6495 /* Detach sched domains from all of the affected cpus */
6496 detach_destroy_domains(&change_map);
6497 if (!cpus_empty(*partition1))
51888ca2
SV
6498 err = build_sched_domains(partition1);
6499 if (!err && !cpus_empty(*partition2))
6500 err = build_sched_domains(partition2);
6501
6502 return err;
1a20ff27
DG
6503}
6504
5c45bf27
SS
6505#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6506int arch_reinit_sched_domains(void)
6507{
6508 int err;
6509
6510 lock_cpu_hotplug();
6511 detach_destroy_domains(&cpu_online_map);
6512 err = arch_init_sched_domains(&cpu_online_map);
6513 unlock_cpu_hotplug();
6514
6515 return err;
6516}
6517
6518static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6519{
6520 int ret;
6521
6522 if (buf[0] != '0' && buf[0] != '1')
6523 return -EINVAL;
6524
6525 if (smt)
6526 sched_smt_power_savings = (buf[0] == '1');
6527 else
6528 sched_mc_power_savings = (buf[0] == '1');
6529
6530 ret = arch_reinit_sched_domains();
6531
6532 return ret ? ret : count;
6533}
6534
6535int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6536{
6537 int err = 0;
6538#ifdef CONFIG_SCHED_SMT
6539 if (smt_capable())
6540 err = sysfs_create_file(&cls->kset.kobj,
6541 &attr_sched_smt_power_savings.attr);
6542#endif
6543#ifdef CONFIG_SCHED_MC
6544 if (!err && mc_capable())
6545 err = sysfs_create_file(&cls->kset.kobj,
6546 &attr_sched_mc_power_savings.attr);
6547#endif
6548 return err;
6549}
6550#endif
6551
6552#ifdef CONFIG_SCHED_MC
6553static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6554{
6555 return sprintf(page, "%u\n", sched_mc_power_savings);
6556}
6557static ssize_t sched_mc_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
6558{
6559 return sched_power_savings_store(buf, count, 0);
6560}
6561SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6562 sched_mc_power_savings_store);
6563#endif
6564
6565#ifdef CONFIG_SCHED_SMT
6566static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6567{
6568 return sprintf(page, "%u\n", sched_smt_power_savings);
6569}
6570static ssize_t sched_smt_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
6571{
6572 return sched_power_savings_store(buf, count, 1);
6573}
6574SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6575 sched_smt_power_savings_store);
6576#endif
6577
6578
1da177e4
LT
6579#ifdef CONFIG_HOTPLUG_CPU
6580/*
6581 * Force a reinitialization of the sched domains hierarchy. The domains
6582 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6583 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6584 * which will prevent rebalancing while the sched domains are recalculated.
6585 */
6586static int update_sched_domains(struct notifier_block *nfb,
6587 unsigned long action, void *hcpu)
6588{
1da177e4
LT
6589 switch (action) {
6590 case CPU_UP_PREPARE:
6591 case CPU_DOWN_PREPARE:
1a20ff27 6592 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6593 return NOTIFY_OK;
6594
6595 case CPU_UP_CANCELED:
6596 case CPU_DOWN_FAILED:
6597 case CPU_ONLINE:
6598 case CPU_DEAD:
6599 /*
6600 * Fall through and re-initialise the domains.
6601 */
6602 break;
6603 default:
6604 return NOTIFY_DONE;
6605 }
6606
6607 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6608 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6609
6610 return NOTIFY_OK;
6611}
6612#endif
6613
6614void __init sched_init_smp(void)
6615{
6616 lock_cpu_hotplug();
1a20ff27 6617 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6618 unlock_cpu_hotplug();
6619 /* XXX: Theoretical race here - CPU may be hotplugged now */
6620 hotcpu_notifier(update_sched_domains, 0);
6621}
6622#else
6623void __init sched_init_smp(void)
6624{
6625}
6626#endif /* CONFIG_SMP */
6627
6628int in_sched_functions(unsigned long addr)
6629{
6630 /* Linker adds these: start and end of __sched functions */
6631 extern char __sched_text_start[], __sched_text_end[];
6632 return in_lock_functions(addr) ||
6633 (addr >= (unsigned long)__sched_text_start
6634 && addr < (unsigned long)__sched_text_end);
6635}
6636
6637void __init sched_init(void)
6638{
6639 runqueue_t *rq;
6640 int i, j, k;
6641
0a945022 6642 for_each_possible_cpu(i) {
1da177e4
LT
6643 prio_array_t *array;
6644
6645 rq = cpu_rq(i);
6646 spin_lock_init(&rq->lock);
7897986b 6647 rq->nr_running = 0;
1da177e4
LT
6648 rq->active = rq->arrays;
6649 rq->expired = rq->arrays + 1;
6650 rq->best_expired_prio = MAX_PRIO;
6651
6652#ifdef CONFIG_SMP
41c7ce9a 6653 rq->sd = NULL;
7897986b
NP
6654 for (j = 1; j < 3; j++)
6655 rq->cpu_load[j] = 0;
1da177e4
LT
6656 rq->active_balance = 0;
6657 rq->push_cpu = 0;
6658 rq->migration_thread = NULL;
6659 INIT_LIST_HEAD(&rq->migration_queue);
6660#endif
6661 atomic_set(&rq->nr_iowait, 0);
6662
6663 for (j = 0; j < 2; j++) {
6664 array = rq->arrays + j;
6665 for (k = 0; k < MAX_PRIO; k++) {
6666 INIT_LIST_HEAD(array->queue + k);
6667 __clear_bit(k, array->bitmap);
6668 }
6669 // delimiter for bitsearch
6670 __set_bit(MAX_PRIO, array->bitmap);
6671 }
6672 }
6673
2dd73a4f 6674 set_load_weight(&init_task);
1da177e4
LT
6675 /*
6676 * The boot idle thread does lazy MMU switching as well:
6677 */
6678 atomic_inc(&init_mm.mm_count);
6679 enter_lazy_tlb(&init_mm, current);
6680
6681 /*
6682 * Make us the idle thread. Technically, schedule() should not be
6683 * called from this thread, however somewhere below it might be,
6684 * but because we are the idle thread, we just pick up running again
6685 * when this runqueue becomes "idle".
6686 */
6687 init_idle(current, smp_processor_id());
6688}
6689
6690#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6691void __might_sleep(char *file, int line)
6692{
6693#if defined(in_atomic)
6694 static unsigned long prev_jiffy; /* ratelimiting */
6695
6696 if ((in_atomic() || irqs_disabled()) &&
6697 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6698 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6699 return;
6700 prev_jiffy = jiffies;
91368d73 6701 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6702 " context at %s:%d\n", file, line);
6703 printk("in_atomic():%d, irqs_disabled():%d\n",
6704 in_atomic(), irqs_disabled());
6705 dump_stack();
6706 }
6707#endif
6708}
6709EXPORT_SYMBOL(__might_sleep);
6710#endif
6711
6712#ifdef CONFIG_MAGIC_SYSRQ
6713void normalize_rt_tasks(void)
6714{
6715 struct task_struct *p;
6716 prio_array_t *array;
6717 unsigned long flags;
6718 runqueue_t *rq;
6719
6720 read_lock_irq(&tasklist_lock);
c96d145e 6721 for_each_process(p) {
1da177e4
LT
6722 if (!rt_task(p))
6723 continue;
6724
b29739f9
IM
6725 spin_lock_irqsave(&p->pi_lock, flags);
6726 rq = __task_rq_lock(p);
1da177e4
LT
6727
6728 array = p->array;
6729 if (array)
6730 deactivate_task(p, task_rq(p));
6731 __setscheduler(p, SCHED_NORMAL, 0);
6732 if (array) {
6733 __activate_task(p, task_rq(p));
6734 resched_task(rq->curr);
6735 }
6736
b29739f9
IM
6737 __task_rq_unlock(rq);
6738 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6739 }
6740 read_unlock_irq(&tasklist_lock);
6741}
6742
6743#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6744
6745#ifdef CONFIG_IA64
6746/*
6747 * These functions are only useful for the IA64 MCA handling.
6748 *
6749 * They can only be called when the whole system has been
6750 * stopped - every CPU needs to be quiescent, and no scheduling
6751 * activity can take place. Using them for anything else would
6752 * be a serious bug, and as a result, they aren't even visible
6753 * under any other configuration.
6754 */
6755
6756/**
6757 * curr_task - return the current task for a given cpu.
6758 * @cpu: the processor in question.
6759 *
6760 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6761 */
6762task_t *curr_task(int cpu)
6763{
6764 return cpu_curr(cpu);
6765}
6766
6767/**
6768 * set_curr_task - set the current task for a given cpu.
6769 * @cpu: the processor in question.
6770 * @p: the task pointer to set.
6771 *
6772 * Description: This function must only be used when non-maskable interrupts
6773 * are serviced on a separate stack. It allows the architecture to switch the
6774 * notion of the current task on a cpu in a non-blocking manner. This function
6775 * must be called with all CPU's synchronized, and interrupts disabled, the
6776 * and caller must save the original value of the current task (see
6777 * curr_task() above) and restore that value before reenabling interrupts and
6778 * re-starting the system.
6779 *
6780 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6781 */
6782void set_curr_task(int cpu, task_t *p)
6783{
6784 cpu_curr(cpu) = p;
6785}
6786
6787#endif