]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/sched.c
sched: remove the 'u64 now' parameter from dequeue_task()
[mirror_ubuntu-eoan-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
1da177e4 64
5517d86b 65#include <asm/tlb.h>
1da177e4 66
b035b6de
AD
67/*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72unsigned long long __attribute__((weak)) sched_clock(void)
73{
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75}
76
1da177e4
LT
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
6aa645ea
IM
101#define NICE_0_LOAD SCHED_LOAD_SCALE
102#define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
1da177e4
LT
104/*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
5517d86b
ED
114#ifdef CONFIG_SMP
115/*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120{
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122}
123
124/*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129{
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132}
133#endif
134
634fa8c9
IM
135#define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
91fcdd4e 138/*
634fa8c9 139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 140 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 141 */
634fa8c9 142static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 143{
634fa8c9
IM
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
151}
152
e05606d3
IM
153static inline int rt_policy(int policy)
154{
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158}
159
160static inline int task_has_rt_policy(struct task_struct *p)
161{
162 return rt_policy(p->policy);
163}
164
1da177e4 165/*
6aa645ea 166 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 167 */
6aa645ea
IM
168struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171};
172
173struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177};
178
179/* CFS-related fields in a runqueue */
180struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193#ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208#endif
209};
1da177e4 210
6aa645ea
IM
211/* Real-Time classes' related field in a runqueue: */
212struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216};
217
1da177e4
LT
218/*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
70b97a7f 225struct rq {
6aa645ea 226 spinlock_t lock; /* runqueue lock */
1da177e4
LT
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
6aa645ea
IM
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 235 unsigned char idle_at_tick;
46cb4b7c
SS
236#ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238#endif
6aa645ea
IM
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 246#endif
6aa645ea 247 struct rt_rq rt;
1da177e4
LT
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
36c8b586 257 struct task_struct *curr, *idle;
c9819f45 258 unsigned long next_balance;
1da177e4 259 struct mm_struct *prev_mm;
6aa645ea 260
6aa645ea
IM
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
1da177e4
LT
267 atomic_t nr_iowait;
268
269#ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
0a2966b4 275 int cpu; /* cpu of this runqueue */
1da177e4 276
36c8b586 277 struct task_struct *migration_thread;
1da177e4
LT
278 struct list_head migration_queue;
279#endif
280
281#ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299#endif
fcb99371 300 struct lock_class_key rq_lock_key;
1da177e4
LT
301};
302
f34e3b61 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 304static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 305
dd41f596
IM
306static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307{
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309}
310
0a2966b4
CL
311static inline int cpu_of(struct rq *rq)
312{
313#ifdef CONFIG_SMP
314 return rq->cpu;
315#else
316 return 0;
317#endif
318}
319
20d315d4 320/*
b04a0f4c
IM
321 * Update the per-runqueue clock, as finegrained as the platform can give
322 * us, but without assuming monotonicity, etc.:
20d315d4 323 */
b04a0f4c 324static void __update_rq_clock(struct rq *rq)
20d315d4
IM
325{
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
330
b04a0f4c
IM
331#ifdef CONFIG_SCHED_DEBUG
332 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
333#endif
20d315d4
IM
334 /*
335 * Protect against sched_clock() occasionally going backwards:
336 */
337 if (unlikely(delta < 0)) {
338 clock++;
339 rq->clock_warps++;
340 } else {
341 /*
342 * Catch too large forward jumps too:
343 */
344 if (unlikely(delta > 2*TICK_NSEC)) {
345 clock++;
346 rq->clock_overflows++;
347 } else {
348 if (unlikely(delta > rq->clock_max_delta))
349 rq->clock_max_delta = delta;
350 clock += delta;
351 }
352 }
353
354 rq->prev_clock_raw = now;
355 rq->clock = clock;
b04a0f4c 356}
20d315d4 357
b04a0f4c
IM
358static void update_rq_clock(struct rq *rq)
359{
360 if (likely(smp_processor_id() == cpu_of(rq)))
361 __update_rq_clock(rq);
20d315d4
IM
362}
363
674311d5
NP
364/*
365 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 366 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
367 *
368 * The domain tree of any CPU may only be accessed from within
369 * preempt-disabled sections.
370 */
48f24c4d
IM
371#define for_each_domain(cpu, __sd) \
372 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
373
374#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
375#define this_rq() (&__get_cpu_var(runqueues))
376#define task_rq(p) cpu_rq(task_cpu(p))
377#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
378
e436d800
IM
379/*
380 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
381 * clock constructed from sched_clock():
382 */
383unsigned long long cpu_clock(int cpu)
384{
e436d800
IM
385 unsigned long long now;
386 unsigned long flags;
b04a0f4c 387 struct rq *rq;
e436d800 388
2cd4d0ea 389 local_irq_save(flags);
b04a0f4c
IM
390 rq = cpu_rq(cpu);
391 update_rq_clock(rq);
392 now = rq->clock;
2cd4d0ea 393 local_irq_restore(flags);
e436d800
IM
394
395 return now;
396}
397
138a8aeb
IM
398#ifdef CONFIG_FAIR_GROUP_SCHED
399/* Change a task's ->cfs_rq if it moves across CPUs */
400static inline void set_task_cfs_rq(struct task_struct *p)
401{
402 p->se.cfs_rq = &task_rq(p)->cfs;
403}
404#else
405static inline void set_task_cfs_rq(struct task_struct *p)
406{
407}
408#endif
409
1da177e4 410#ifndef prepare_arch_switch
4866cde0
NP
411# define prepare_arch_switch(next) do { } while (0)
412#endif
413#ifndef finish_arch_switch
414# define finish_arch_switch(prev) do { } while (0)
415#endif
416
417#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 418static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
419{
420 return rq->curr == p;
421}
422
70b97a7f 423static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
424{
425}
426
70b97a7f 427static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 428{
da04c035
IM
429#ifdef CONFIG_DEBUG_SPINLOCK
430 /* this is a valid case when another task releases the spinlock */
431 rq->lock.owner = current;
432#endif
8a25d5de
IM
433 /*
434 * If we are tracking spinlock dependencies then we have to
435 * fix up the runqueue lock - which gets 'carried over' from
436 * prev into current:
437 */
438 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
439
4866cde0
NP
440 spin_unlock_irq(&rq->lock);
441}
442
443#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 444static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
445{
446#ifdef CONFIG_SMP
447 return p->oncpu;
448#else
449 return rq->curr == p;
450#endif
451}
452
70b97a7f 453static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
454{
455#ifdef CONFIG_SMP
456 /*
457 * We can optimise this out completely for !SMP, because the
458 * SMP rebalancing from interrupt is the only thing that cares
459 * here.
460 */
461 next->oncpu = 1;
462#endif
463#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
464 spin_unlock_irq(&rq->lock);
465#else
466 spin_unlock(&rq->lock);
467#endif
468}
469
70b97a7f 470static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
471{
472#ifdef CONFIG_SMP
473 /*
474 * After ->oncpu is cleared, the task can be moved to a different CPU.
475 * We must ensure this doesn't happen until the switch is completely
476 * finished.
477 */
478 smp_wmb();
479 prev->oncpu = 0;
480#endif
481#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
482 local_irq_enable();
1da177e4 483#endif
4866cde0
NP
484}
485#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 486
b29739f9
IM
487/*
488 * __task_rq_lock - lock the runqueue a given task resides on.
489 * Must be called interrupts disabled.
490 */
70b97a7f 491static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
492 __acquires(rq->lock)
493{
70b97a7f 494 struct rq *rq;
b29739f9
IM
495
496repeat_lock_task:
497 rq = task_rq(p);
498 spin_lock(&rq->lock);
499 if (unlikely(rq != task_rq(p))) {
500 spin_unlock(&rq->lock);
501 goto repeat_lock_task;
502 }
503 return rq;
504}
505
1da177e4
LT
506/*
507 * task_rq_lock - lock the runqueue a given task resides on and disable
508 * interrupts. Note the ordering: we can safely lookup the task_rq without
509 * explicitly disabling preemption.
510 */
70b97a7f 511static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
512 __acquires(rq->lock)
513{
70b97a7f 514 struct rq *rq;
1da177e4
LT
515
516repeat_lock_task:
517 local_irq_save(*flags);
518 rq = task_rq(p);
519 spin_lock(&rq->lock);
520 if (unlikely(rq != task_rq(p))) {
521 spin_unlock_irqrestore(&rq->lock, *flags);
522 goto repeat_lock_task;
523 }
524 return rq;
525}
526
70b97a7f 527static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
528 __releases(rq->lock)
529{
530 spin_unlock(&rq->lock);
531}
532
70b97a7f 533static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
534 __releases(rq->lock)
535{
536 spin_unlock_irqrestore(&rq->lock, *flags);
537}
538
1da177e4 539/*
cc2a73b5 540 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 541 */
70b97a7f 542static inline struct rq *this_rq_lock(void)
1da177e4
LT
543 __acquires(rq->lock)
544{
70b97a7f 545 struct rq *rq;
1da177e4
LT
546
547 local_irq_disable();
548 rq = this_rq();
549 spin_lock(&rq->lock);
550
551 return rq;
552}
553
1b9f19c2
IM
554/*
555 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
556 */
557void sched_clock_unstable_event(void)
558{
559 unsigned long flags;
560 struct rq *rq;
561
562 rq = task_rq_lock(current, &flags);
563 rq->prev_clock_raw = sched_clock();
564 rq->clock_unstable_events++;
565 task_rq_unlock(rq, &flags);
566}
567
c24d20db
IM
568/*
569 * resched_task - mark a task 'to be rescheduled now'.
570 *
571 * On UP this means the setting of the need_resched flag, on SMP it
572 * might also involve a cross-CPU call to trigger the scheduler on
573 * the target CPU.
574 */
575#ifdef CONFIG_SMP
576
577#ifndef tsk_is_polling
578#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
579#endif
580
581static void resched_task(struct task_struct *p)
582{
583 int cpu;
584
585 assert_spin_locked(&task_rq(p)->lock);
586
587 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
588 return;
589
590 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
591
592 cpu = task_cpu(p);
593 if (cpu == smp_processor_id())
594 return;
595
596 /* NEED_RESCHED must be visible before we test polling */
597 smp_mb();
598 if (!tsk_is_polling(p))
599 smp_send_reschedule(cpu);
600}
601
602static void resched_cpu(int cpu)
603{
604 struct rq *rq = cpu_rq(cpu);
605 unsigned long flags;
606
607 if (!spin_trylock_irqsave(&rq->lock, flags))
608 return;
609 resched_task(cpu_curr(cpu));
610 spin_unlock_irqrestore(&rq->lock, flags);
611}
612#else
613static inline void resched_task(struct task_struct *p)
614{
615 assert_spin_locked(&task_rq(p)->lock);
616 set_tsk_need_resched(p);
617}
618#endif
619
45bf76df
IM
620static u64 div64_likely32(u64 divident, unsigned long divisor)
621{
622#if BITS_PER_LONG == 32
623 if (likely(divident <= 0xffffffffULL))
624 return (u32)divident / divisor;
625 do_div(divident, divisor);
626
627 return divident;
628#else
629 return divident / divisor;
630#endif
631}
632
633#if BITS_PER_LONG == 32
634# define WMULT_CONST (~0UL)
635#else
636# define WMULT_CONST (1UL << 32)
637#endif
638
639#define WMULT_SHIFT 32
640
cb1c4fc9 641static unsigned long
45bf76df
IM
642calc_delta_mine(unsigned long delta_exec, unsigned long weight,
643 struct load_weight *lw)
644{
645 u64 tmp;
646
647 if (unlikely(!lw->inv_weight))
648 lw->inv_weight = WMULT_CONST / lw->weight;
649
650 tmp = (u64)delta_exec * weight;
651 /*
652 * Check whether we'd overflow the 64-bit multiplication:
653 */
654 if (unlikely(tmp > WMULT_CONST)) {
655 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
656 >> (WMULT_SHIFT/2);
657 } else {
658 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
659 }
660
ecf691da 661 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
662}
663
664static inline unsigned long
665calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
666{
667 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
668}
669
670static void update_load_add(struct load_weight *lw, unsigned long inc)
671{
672 lw->weight += inc;
673 lw->inv_weight = 0;
674}
675
676static void update_load_sub(struct load_weight *lw, unsigned long dec)
677{
678 lw->weight -= dec;
679 lw->inv_weight = 0;
680}
681
2dd73a4f
PW
682/*
683 * To aid in avoiding the subversion of "niceness" due to uneven distribution
684 * of tasks with abnormal "nice" values across CPUs the contribution that
685 * each task makes to its run queue's load is weighted according to its
686 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
687 * scaled version of the new time slice allocation that they receive on time
688 * slice expiry etc.
689 */
690
dd41f596
IM
691#define WEIGHT_IDLEPRIO 2
692#define WMULT_IDLEPRIO (1 << 31)
693
694/*
695 * Nice levels are multiplicative, with a gentle 10% change for every
696 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
697 * nice 1, it will get ~10% less CPU time than another CPU-bound task
698 * that remained on nice 0.
699 *
700 * The "10% effect" is relative and cumulative: from _any_ nice level,
701 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
702 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
703 * If a task goes up by ~10% and another task goes down by ~10% then
704 * the relative distance between them is ~25%.)
dd41f596
IM
705 */
706static const int prio_to_weight[40] = {
707/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
708/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
709/* 0 */ NICE_0_LOAD /* 1024 */,
710/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
711/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
712};
713
5714d2de
IM
714/*
715 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
716 *
717 * In cases where the weight does not change often, we can use the
718 * precalculated inverse to speed up arithmetics by turning divisions
719 * into multiplications:
720 */
dd41f596 721static const u32 prio_to_wmult[40] = {
e4af30be
IM
722/* -20 */ 48356, 60446, 75558, 94446, 118058,
723/* -15 */ 147573, 184467, 230589, 288233, 360285,
724/* -10 */ 450347, 562979, 703746, 879575, 1099582,
725/* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
726/* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
727/* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
728/* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
729/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 730};
2dd73a4f 731
dd41f596
IM
732static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
733
734/*
735 * runqueue iterator, to support SMP load-balancing between different
736 * scheduling classes, without having to expose their internal data
737 * structures to the load-balancing proper:
738 */
739struct rq_iterator {
740 void *arg;
741 struct task_struct *(*start)(void *);
742 struct task_struct *(*next)(void *);
743};
744
745static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
746 unsigned long max_nr_move, unsigned long max_load_move,
747 struct sched_domain *sd, enum cpu_idle_type idle,
748 int *all_pinned, unsigned long *load_moved,
a4ac01c3 749 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
750
751#include "sched_stats.h"
752#include "sched_rt.c"
753#include "sched_fair.c"
754#include "sched_idletask.c"
755#ifdef CONFIG_SCHED_DEBUG
756# include "sched_debug.c"
757#endif
758
759#define sched_class_highest (&rt_sched_class)
760
9c217245
IM
761static void __update_curr_load(struct rq *rq, struct load_stat *ls)
762{
763 if (rq->curr != rq->idle && ls->load.weight) {
764 ls->delta_exec += ls->delta_stat;
765 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
766 ls->delta_stat = 0;
767 }
768}
769
770/*
771 * Update delta_exec, delta_fair fields for rq.
772 *
773 * delta_fair clock advances at a rate inversely proportional to
774 * total load (rq->ls.load.weight) on the runqueue, while
775 * delta_exec advances at the same rate as wall-clock (provided
776 * cpu is not idle).
777 *
778 * delta_exec / delta_fair is a measure of the (smoothened) load on this
779 * runqueue over any given interval. This (smoothened) load is used
780 * during load balance.
781 *
782 * This function is called /before/ updating rq->ls.load
783 * and when switching tasks.
784 */
84a1d7a2 785static void update_curr_load(struct rq *rq)
9c217245
IM
786{
787 struct load_stat *ls = &rq->ls;
788 u64 start;
789
790 start = ls->load_update_start;
d281918d
IM
791 ls->load_update_start = rq->clock;
792 ls->delta_stat += rq->clock - start;
9c217245
IM
793 /*
794 * Stagger updates to ls->delta_fair. Very frequent updates
795 * can be expensive.
796 */
797 if (ls->delta_stat >= sysctl_sched_stat_granularity)
798 __update_curr_load(rq, ls);
799}
800
29b4b623 801static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 802{
84a1d7a2 803 update_curr_load(rq);
9c217245
IM
804 update_load_add(&rq->ls.load, p->se.load.weight);
805}
806
79b5dddf 807static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 808{
84a1d7a2 809 update_curr_load(rq);
9c217245
IM
810 update_load_sub(&rq->ls.load, p->se.load.weight);
811}
812
e5fa2237 813static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
814{
815 rq->nr_running++;
29b4b623 816 inc_load(rq, p);
9c217245
IM
817}
818
db53181e 819static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
820{
821 rq->nr_running--;
79b5dddf 822 dec_load(rq, p);
9c217245
IM
823}
824
45bf76df
IM
825static void set_load_weight(struct task_struct *p)
826{
dd41f596
IM
827 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
828 p->se.wait_runtime = 0;
829
45bf76df 830 if (task_has_rt_policy(p)) {
dd41f596
IM
831 p->se.load.weight = prio_to_weight[0] * 2;
832 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
833 return;
834 }
45bf76df 835
dd41f596
IM
836 /*
837 * SCHED_IDLE tasks get minimal weight:
838 */
839 if (p->policy == SCHED_IDLE) {
840 p->se.load.weight = WEIGHT_IDLEPRIO;
841 p->se.load.inv_weight = WMULT_IDLEPRIO;
842 return;
843 }
71f8bd46 844
dd41f596
IM
845 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
846 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
847}
848
8159f87e 849static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 850{
dd41f596 851 sched_info_queued(p);
fd390f6a 852 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 853 p->se.on_rq = 1;
71f8bd46
IM
854}
855
69be72c1 856static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 857{
f02231e5 858 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 859 p->se.on_rq = 0;
71f8bd46
IM
860}
861
14531189 862/*
dd41f596 863 * __normal_prio - return the priority that is based on the static prio
14531189 864 */
14531189
IM
865static inline int __normal_prio(struct task_struct *p)
866{
dd41f596 867 return p->static_prio;
14531189
IM
868}
869
b29739f9
IM
870/*
871 * Calculate the expected normal priority: i.e. priority
872 * without taking RT-inheritance into account. Might be
873 * boosted by interactivity modifiers. Changes upon fork,
874 * setprio syscalls, and whenever the interactivity
875 * estimator recalculates.
876 */
36c8b586 877static inline int normal_prio(struct task_struct *p)
b29739f9
IM
878{
879 int prio;
880
e05606d3 881 if (task_has_rt_policy(p))
b29739f9
IM
882 prio = MAX_RT_PRIO-1 - p->rt_priority;
883 else
884 prio = __normal_prio(p);
885 return prio;
886}
887
888/*
889 * Calculate the current priority, i.e. the priority
890 * taken into account by the scheduler. This value might
891 * be boosted by RT tasks, or might be boosted by
892 * interactivity modifiers. Will be RT if the task got
893 * RT-boosted. If not then it returns p->normal_prio.
894 */
36c8b586 895static int effective_prio(struct task_struct *p)
b29739f9
IM
896{
897 p->normal_prio = normal_prio(p);
898 /*
899 * If we are RT tasks or we were boosted to RT priority,
900 * keep the priority unchanged. Otherwise, update priority
901 * to the normal priority:
902 */
903 if (!rt_prio(p->prio))
904 return p->normal_prio;
905 return p->prio;
906}
907
1da177e4 908/*
dd41f596 909 * activate_task - move a task to the runqueue.
1da177e4 910 */
dd41f596 911static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 912{
a8e504d2
IM
913 u64 now;
914
915 update_rq_clock(rq);
916 now = rq->clock;
d425b274 917
dd41f596
IM
918 if (p->state == TASK_UNINTERRUPTIBLE)
919 rq->nr_uninterruptible--;
1da177e4 920
8159f87e 921 enqueue_task(rq, p, wakeup);
e5fa2237 922 inc_nr_running(p, rq);
1da177e4
LT
923}
924
925/*
dd41f596 926 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 927 */
dd41f596 928static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 929{
a8e504d2
IM
930 u64 now;
931
932 update_rq_clock(rq);
933 now = rq->clock;
1da177e4 934
dd41f596
IM
935 if (p->state == TASK_UNINTERRUPTIBLE)
936 rq->nr_uninterruptible--;
ece8a684 937
8159f87e 938 enqueue_task(rq, p, 0);
e5fa2237 939 inc_nr_running(p, rq);
1da177e4
LT
940}
941
942/*
943 * deactivate_task - remove a task from the runqueue.
944 */
8e717b19
IM
945static void
946deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
1da177e4 947{
dd41f596
IM
948 if (p->state == TASK_UNINTERRUPTIBLE)
949 rq->nr_uninterruptible++;
950
69be72c1 951 dequeue_task(rq, p, sleep);
db53181e 952 dec_nr_running(p, rq);
1da177e4
LT
953}
954
1da177e4
LT
955/**
956 * task_curr - is this task currently executing on a CPU?
957 * @p: the task in question.
958 */
36c8b586 959inline int task_curr(const struct task_struct *p)
1da177e4
LT
960{
961 return cpu_curr(task_cpu(p)) == p;
962}
963
2dd73a4f
PW
964/* Used instead of source_load when we know the type == 0 */
965unsigned long weighted_cpuload(const int cpu)
966{
dd41f596
IM
967 return cpu_rq(cpu)->ls.load.weight;
968}
969
970static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
971{
972#ifdef CONFIG_SMP
973 task_thread_info(p)->cpu = cpu;
974 set_task_cfs_rq(p);
975#endif
2dd73a4f
PW
976}
977
1da177e4 978#ifdef CONFIG_SMP
c65cc870 979
dd41f596 980void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 981{
dd41f596
IM
982 int old_cpu = task_cpu(p);
983 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
984 u64 clock_offset, fair_clock_offset;
985
986 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
987 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
988
dd41f596
IM
989 if (p->se.wait_start_fair)
990 p->se.wait_start_fair -= fair_clock_offset;
6cfb0d5d
IM
991 if (p->se.sleep_start_fair)
992 p->se.sleep_start_fair -= fair_clock_offset;
993
994#ifdef CONFIG_SCHEDSTATS
995 if (p->se.wait_start)
996 p->se.wait_start -= clock_offset;
dd41f596
IM
997 if (p->se.sleep_start)
998 p->se.sleep_start -= clock_offset;
999 if (p->se.block_start)
1000 p->se.block_start -= clock_offset;
6cfb0d5d 1001#endif
dd41f596
IM
1002
1003 __set_task_cpu(p, new_cpu);
c65cc870
IM
1004}
1005
70b97a7f 1006struct migration_req {
1da177e4 1007 struct list_head list;
1da177e4 1008
36c8b586 1009 struct task_struct *task;
1da177e4
LT
1010 int dest_cpu;
1011
1da177e4 1012 struct completion done;
70b97a7f 1013};
1da177e4
LT
1014
1015/*
1016 * The task's runqueue lock must be held.
1017 * Returns true if you have to wait for migration thread.
1018 */
36c8b586 1019static int
70b97a7f 1020migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1021{
70b97a7f 1022 struct rq *rq = task_rq(p);
1da177e4
LT
1023
1024 /*
1025 * If the task is not on a runqueue (and not running), then
1026 * it is sufficient to simply update the task's cpu field.
1027 */
dd41f596 1028 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1029 set_task_cpu(p, dest_cpu);
1030 return 0;
1031 }
1032
1033 init_completion(&req->done);
1da177e4
LT
1034 req->task = p;
1035 req->dest_cpu = dest_cpu;
1036 list_add(&req->list, &rq->migration_queue);
48f24c4d 1037
1da177e4
LT
1038 return 1;
1039}
1040
1041/*
1042 * wait_task_inactive - wait for a thread to unschedule.
1043 *
1044 * The caller must ensure that the task *will* unschedule sometime soon,
1045 * else this function might spin for a *long* time. This function can't
1046 * be called with interrupts off, or it may introduce deadlock with
1047 * smp_call_function() if an IPI is sent by the same process we are
1048 * waiting to become inactive.
1049 */
36c8b586 1050void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1051{
1052 unsigned long flags;
dd41f596 1053 int running, on_rq;
70b97a7f 1054 struct rq *rq;
1da177e4
LT
1055
1056repeat:
fa490cfd
LT
1057 /*
1058 * We do the initial early heuristics without holding
1059 * any task-queue locks at all. We'll only try to get
1060 * the runqueue lock when things look like they will
1061 * work out!
1062 */
1063 rq = task_rq(p);
1064
1065 /*
1066 * If the task is actively running on another CPU
1067 * still, just relax and busy-wait without holding
1068 * any locks.
1069 *
1070 * NOTE! Since we don't hold any locks, it's not
1071 * even sure that "rq" stays as the right runqueue!
1072 * But we don't care, since "task_running()" will
1073 * return false if the runqueue has changed and p
1074 * is actually now running somewhere else!
1075 */
1076 while (task_running(rq, p))
1077 cpu_relax();
1078
1079 /*
1080 * Ok, time to look more closely! We need the rq
1081 * lock now, to be *sure*. If we're wrong, we'll
1082 * just go back and repeat.
1083 */
1da177e4 1084 rq = task_rq_lock(p, &flags);
fa490cfd 1085 running = task_running(rq, p);
dd41f596 1086 on_rq = p->se.on_rq;
fa490cfd
LT
1087 task_rq_unlock(rq, &flags);
1088
1089 /*
1090 * Was it really running after all now that we
1091 * checked with the proper locks actually held?
1092 *
1093 * Oops. Go back and try again..
1094 */
1095 if (unlikely(running)) {
1da177e4 1096 cpu_relax();
1da177e4
LT
1097 goto repeat;
1098 }
fa490cfd
LT
1099
1100 /*
1101 * It's not enough that it's not actively running,
1102 * it must be off the runqueue _entirely_, and not
1103 * preempted!
1104 *
1105 * So if it wa still runnable (but just not actively
1106 * running right now), it's preempted, and we should
1107 * yield - it could be a while.
1108 */
dd41f596 1109 if (unlikely(on_rq)) {
fa490cfd
LT
1110 yield();
1111 goto repeat;
1112 }
1113
1114 /*
1115 * Ahh, all good. It wasn't running, and it wasn't
1116 * runnable, which means that it will never become
1117 * running in the future either. We're all done!
1118 */
1da177e4
LT
1119}
1120
1121/***
1122 * kick_process - kick a running thread to enter/exit the kernel
1123 * @p: the to-be-kicked thread
1124 *
1125 * Cause a process which is running on another CPU to enter
1126 * kernel-mode, without any delay. (to get signals handled.)
1127 *
1128 * NOTE: this function doesnt have to take the runqueue lock,
1129 * because all it wants to ensure is that the remote task enters
1130 * the kernel. If the IPI races and the task has been migrated
1131 * to another CPU then no harm is done and the purpose has been
1132 * achieved as well.
1133 */
36c8b586 1134void kick_process(struct task_struct *p)
1da177e4
LT
1135{
1136 int cpu;
1137
1138 preempt_disable();
1139 cpu = task_cpu(p);
1140 if ((cpu != smp_processor_id()) && task_curr(p))
1141 smp_send_reschedule(cpu);
1142 preempt_enable();
1143}
1144
1145/*
2dd73a4f
PW
1146 * Return a low guess at the load of a migration-source cpu weighted
1147 * according to the scheduling class and "nice" value.
1da177e4
LT
1148 *
1149 * We want to under-estimate the load of migration sources, to
1150 * balance conservatively.
1151 */
a2000572 1152static inline unsigned long source_load(int cpu, int type)
1da177e4 1153{
70b97a7f 1154 struct rq *rq = cpu_rq(cpu);
dd41f596 1155 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1156
3b0bd9bc 1157 if (type == 0)
dd41f596 1158 return total;
b910472d 1159
dd41f596 1160 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1161}
1162
1163/*
2dd73a4f
PW
1164 * Return a high guess at the load of a migration-target cpu weighted
1165 * according to the scheduling class and "nice" value.
1da177e4 1166 */
a2000572 1167static inline unsigned long target_load(int cpu, int type)
1da177e4 1168{
70b97a7f 1169 struct rq *rq = cpu_rq(cpu);
dd41f596 1170 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1171
7897986b 1172 if (type == 0)
dd41f596 1173 return total;
3b0bd9bc 1174
dd41f596 1175 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1176}
1177
1178/*
1179 * Return the average load per task on the cpu's run queue
1180 */
1181static inline unsigned long cpu_avg_load_per_task(int cpu)
1182{
70b97a7f 1183 struct rq *rq = cpu_rq(cpu);
dd41f596 1184 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1185 unsigned long n = rq->nr_running;
1186
dd41f596 1187 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1188}
1189
147cbb4b
NP
1190/*
1191 * find_idlest_group finds and returns the least busy CPU group within the
1192 * domain.
1193 */
1194static struct sched_group *
1195find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1196{
1197 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1198 unsigned long min_load = ULONG_MAX, this_load = 0;
1199 int load_idx = sd->forkexec_idx;
1200 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1201
1202 do {
1203 unsigned long load, avg_load;
1204 int local_group;
1205 int i;
1206
da5a5522
BD
1207 /* Skip over this group if it has no CPUs allowed */
1208 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1209 goto nextgroup;
1210
147cbb4b 1211 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1212
1213 /* Tally up the load of all CPUs in the group */
1214 avg_load = 0;
1215
1216 for_each_cpu_mask(i, group->cpumask) {
1217 /* Bias balancing toward cpus of our domain */
1218 if (local_group)
1219 load = source_load(i, load_idx);
1220 else
1221 load = target_load(i, load_idx);
1222
1223 avg_load += load;
1224 }
1225
1226 /* Adjust by relative CPU power of the group */
5517d86b
ED
1227 avg_load = sg_div_cpu_power(group,
1228 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1229
1230 if (local_group) {
1231 this_load = avg_load;
1232 this = group;
1233 } else if (avg_load < min_load) {
1234 min_load = avg_load;
1235 idlest = group;
1236 }
da5a5522 1237nextgroup:
147cbb4b
NP
1238 group = group->next;
1239 } while (group != sd->groups);
1240
1241 if (!idlest || 100*this_load < imbalance*min_load)
1242 return NULL;
1243 return idlest;
1244}
1245
1246/*
0feaece9 1247 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1248 */
95cdf3b7
IM
1249static int
1250find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1251{
da5a5522 1252 cpumask_t tmp;
147cbb4b
NP
1253 unsigned long load, min_load = ULONG_MAX;
1254 int idlest = -1;
1255 int i;
1256
da5a5522
BD
1257 /* Traverse only the allowed CPUs */
1258 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1259
1260 for_each_cpu_mask(i, tmp) {
2dd73a4f 1261 load = weighted_cpuload(i);
147cbb4b
NP
1262
1263 if (load < min_load || (load == min_load && i == this_cpu)) {
1264 min_load = load;
1265 idlest = i;
1266 }
1267 }
1268
1269 return idlest;
1270}
1271
476d139c
NP
1272/*
1273 * sched_balance_self: balance the current task (running on cpu) in domains
1274 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1275 * SD_BALANCE_EXEC.
1276 *
1277 * Balance, ie. select the least loaded group.
1278 *
1279 * Returns the target CPU number, or the same CPU if no balancing is needed.
1280 *
1281 * preempt must be disabled.
1282 */
1283static int sched_balance_self(int cpu, int flag)
1284{
1285 struct task_struct *t = current;
1286 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1287
c96d145e 1288 for_each_domain(cpu, tmp) {
9761eea8
IM
1289 /*
1290 * If power savings logic is enabled for a domain, stop there.
1291 */
5c45bf27
SS
1292 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1293 break;
476d139c
NP
1294 if (tmp->flags & flag)
1295 sd = tmp;
c96d145e 1296 }
476d139c
NP
1297
1298 while (sd) {
1299 cpumask_t span;
1300 struct sched_group *group;
1a848870
SS
1301 int new_cpu, weight;
1302
1303 if (!(sd->flags & flag)) {
1304 sd = sd->child;
1305 continue;
1306 }
476d139c
NP
1307
1308 span = sd->span;
1309 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1310 if (!group) {
1311 sd = sd->child;
1312 continue;
1313 }
476d139c 1314
da5a5522 1315 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1316 if (new_cpu == -1 || new_cpu == cpu) {
1317 /* Now try balancing at a lower domain level of cpu */
1318 sd = sd->child;
1319 continue;
1320 }
476d139c 1321
1a848870 1322 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1323 cpu = new_cpu;
476d139c
NP
1324 sd = NULL;
1325 weight = cpus_weight(span);
1326 for_each_domain(cpu, tmp) {
1327 if (weight <= cpus_weight(tmp->span))
1328 break;
1329 if (tmp->flags & flag)
1330 sd = tmp;
1331 }
1332 /* while loop will break here if sd == NULL */
1333 }
1334
1335 return cpu;
1336}
1337
1338#endif /* CONFIG_SMP */
1da177e4
LT
1339
1340/*
1341 * wake_idle() will wake a task on an idle cpu if task->cpu is
1342 * not idle and an idle cpu is available. The span of cpus to
1343 * search starts with cpus closest then further out as needed,
1344 * so we always favor a closer, idle cpu.
1345 *
1346 * Returns the CPU we should wake onto.
1347 */
1348#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1349static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1350{
1351 cpumask_t tmp;
1352 struct sched_domain *sd;
1353 int i;
1354
4953198b
SS
1355 /*
1356 * If it is idle, then it is the best cpu to run this task.
1357 *
1358 * This cpu is also the best, if it has more than one task already.
1359 * Siblings must be also busy(in most cases) as they didn't already
1360 * pickup the extra load from this cpu and hence we need not check
1361 * sibling runqueue info. This will avoid the checks and cache miss
1362 * penalities associated with that.
1363 */
1364 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1365 return cpu;
1366
1367 for_each_domain(cpu, sd) {
1368 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1369 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1370 for_each_cpu_mask(i, tmp) {
1371 if (idle_cpu(i))
1372 return i;
1373 }
9761eea8 1374 } else {
e0f364f4 1375 break;
9761eea8 1376 }
1da177e4
LT
1377 }
1378 return cpu;
1379}
1380#else
36c8b586 1381static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1382{
1383 return cpu;
1384}
1385#endif
1386
1387/***
1388 * try_to_wake_up - wake up a thread
1389 * @p: the to-be-woken-up thread
1390 * @state: the mask of task states that can be woken
1391 * @sync: do a synchronous wakeup?
1392 *
1393 * Put it on the run-queue if it's not already there. The "current"
1394 * thread is always on the run-queue (except when the actual
1395 * re-schedule is in progress), and as such you're allowed to do
1396 * the simpler "current->state = TASK_RUNNING" to mark yourself
1397 * runnable without the overhead of this.
1398 *
1399 * returns failure only if the task is already active.
1400 */
36c8b586 1401static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1402{
1403 int cpu, this_cpu, success = 0;
1404 unsigned long flags;
1405 long old_state;
70b97a7f 1406 struct rq *rq;
1da177e4 1407#ifdef CONFIG_SMP
7897986b 1408 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1409 unsigned long load, this_load;
1da177e4
LT
1410 int new_cpu;
1411#endif
1412
1413 rq = task_rq_lock(p, &flags);
1414 old_state = p->state;
1415 if (!(old_state & state))
1416 goto out;
1417
dd41f596 1418 if (p->se.on_rq)
1da177e4
LT
1419 goto out_running;
1420
1421 cpu = task_cpu(p);
1422 this_cpu = smp_processor_id();
1423
1424#ifdef CONFIG_SMP
1425 if (unlikely(task_running(rq, p)))
1426 goto out_activate;
1427
7897986b
NP
1428 new_cpu = cpu;
1429
1da177e4
LT
1430 schedstat_inc(rq, ttwu_cnt);
1431 if (cpu == this_cpu) {
1432 schedstat_inc(rq, ttwu_local);
7897986b
NP
1433 goto out_set_cpu;
1434 }
1435
1436 for_each_domain(this_cpu, sd) {
1437 if (cpu_isset(cpu, sd->span)) {
1438 schedstat_inc(sd, ttwu_wake_remote);
1439 this_sd = sd;
1440 break;
1da177e4
LT
1441 }
1442 }
1da177e4 1443
7897986b 1444 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1445 goto out_set_cpu;
1446
1da177e4 1447 /*
7897986b 1448 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1449 */
7897986b
NP
1450 if (this_sd) {
1451 int idx = this_sd->wake_idx;
1452 unsigned int imbalance;
1da177e4 1453
a3f21bce
NP
1454 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1455
7897986b
NP
1456 load = source_load(cpu, idx);
1457 this_load = target_load(this_cpu, idx);
1da177e4 1458
7897986b
NP
1459 new_cpu = this_cpu; /* Wake to this CPU if we can */
1460
a3f21bce
NP
1461 if (this_sd->flags & SD_WAKE_AFFINE) {
1462 unsigned long tl = this_load;
33859f7f
MOS
1463 unsigned long tl_per_task;
1464
1465 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1466
1da177e4 1467 /*
a3f21bce
NP
1468 * If sync wakeup then subtract the (maximum possible)
1469 * effect of the currently running task from the load
1470 * of the current CPU:
1da177e4 1471 */
a3f21bce 1472 if (sync)
dd41f596 1473 tl -= current->se.load.weight;
a3f21bce
NP
1474
1475 if ((tl <= load &&
2dd73a4f 1476 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1477 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1478 /*
1479 * This domain has SD_WAKE_AFFINE and
1480 * p is cache cold in this domain, and
1481 * there is no bad imbalance.
1482 */
1483 schedstat_inc(this_sd, ttwu_move_affine);
1484 goto out_set_cpu;
1485 }
1486 }
1487
1488 /*
1489 * Start passive balancing when half the imbalance_pct
1490 * limit is reached.
1491 */
1492 if (this_sd->flags & SD_WAKE_BALANCE) {
1493 if (imbalance*this_load <= 100*load) {
1494 schedstat_inc(this_sd, ttwu_move_balance);
1495 goto out_set_cpu;
1496 }
1da177e4
LT
1497 }
1498 }
1499
1500 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1501out_set_cpu:
1502 new_cpu = wake_idle(new_cpu, p);
1503 if (new_cpu != cpu) {
1504 set_task_cpu(p, new_cpu);
1505 task_rq_unlock(rq, &flags);
1506 /* might preempt at this point */
1507 rq = task_rq_lock(p, &flags);
1508 old_state = p->state;
1509 if (!(old_state & state))
1510 goto out;
dd41f596 1511 if (p->se.on_rq)
1da177e4
LT
1512 goto out_running;
1513
1514 this_cpu = smp_processor_id();
1515 cpu = task_cpu(p);
1516 }
1517
1518out_activate:
1519#endif /* CONFIG_SMP */
dd41f596 1520 activate_task(rq, p, 1);
1da177e4
LT
1521 /*
1522 * Sync wakeups (i.e. those types of wakeups where the waker
1523 * has indicated that it will leave the CPU in short order)
1524 * don't trigger a preemption, if the woken up task will run on
1525 * this cpu. (in this case the 'I will reschedule' promise of
1526 * the waker guarantees that the freshly woken up task is going
1527 * to be considered on this CPU.)
1528 */
dd41f596
IM
1529 if (!sync || cpu != this_cpu)
1530 check_preempt_curr(rq, p);
1da177e4
LT
1531 success = 1;
1532
1533out_running:
1534 p->state = TASK_RUNNING;
1535out:
1536 task_rq_unlock(rq, &flags);
1537
1538 return success;
1539}
1540
36c8b586 1541int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1542{
1543 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1544 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1545}
1da177e4
LT
1546EXPORT_SYMBOL(wake_up_process);
1547
36c8b586 1548int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1549{
1550 return try_to_wake_up(p, state, 0);
1551}
1552
1da177e4
LT
1553/*
1554 * Perform scheduler related setup for a newly forked process p.
1555 * p is forked by current.
dd41f596
IM
1556 *
1557 * __sched_fork() is basic setup used by init_idle() too:
1558 */
1559static void __sched_fork(struct task_struct *p)
1560{
1561 p->se.wait_start_fair = 0;
dd41f596
IM
1562 p->se.exec_start = 0;
1563 p->se.sum_exec_runtime = 0;
1564 p->se.delta_exec = 0;
1565 p->se.delta_fair_run = 0;
1566 p->se.delta_fair_sleep = 0;
1567 p->se.wait_runtime = 0;
6cfb0d5d
IM
1568 p->se.sleep_start_fair = 0;
1569
1570#ifdef CONFIG_SCHEDSTATS
1571 p->se.wait_start = 0;
dd41f596
IM
1572 p->se.sum_wait_runtime = 0;
1573 p->se.sum_sleep_runtime = 0;
1574 p->se.sleep_start = 0;
dd41f596
IM
1575 p->se.block_start = 0;
1576 p->se.sleep_max = 0;
1577 p->se.block_max = 0;
1578 p->se.exec_max = 0;
1579 p->se.wait_max = 0;
1580 p->se.wait_runtime_overruns = 0;
1581 p->se.wait_runtime_underruns = 0;
6cfb0d5d 1582#endif
476d139c 1583
dd41f596
IM
1584 INIT_LIST_HEAD(&p->run_list);
1585 p->se.on_rq = 0;
476d139c 1586
e107be36
AK
1587#ifdef CONFIG_PREEMPT_NOTIFIERS
1588 INIT_HLIST_HEAD(&p->preempt_notifiers);
1589#endif
1590
1da177e4
LT
1591 /*
1592 * We mark the process as running here, but have not actually
1593 * inserted it onto the runqueue yet. This guarantees that
1594 * nobody will actually run it, and a signal or other external
1595 * event cannot wake it up and insert it on the runqueue either.
1596 */
1597 p->state = TASK_RUNNING;
dd41f596
IM
1598}
1599
1600/*
1601 * fork()/clone()-time setup:
1602 */
1603void sched_fork(struct task_struct *p, int clone_flags)
1604{
1605 int cpu = get_cpu();
1606
1607 __sched_fork(p);
1608
1609#ifdef CONFIG_SMP
1610 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1611#endif
1612 __set_task_cpu(p, cpu);
b29739f9
IM
1613
1614 /*
1615 * Make sure we do not leak PI boosting priority to the child:
1616 */
1617 p->prio = current->normal_prio;
1618
52f17b6c 1619#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1620 if (likely(sched_info_on()))
52f17b6c 1621 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1622#endif
d6077cb8 1623#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1624 p->oncpu = 0;
1625#endif
1da177e4 1626#ifdef CONFIG_PREEMPT
4866cde0 1627 /* Want to start with kernel preemption disabled. */
a1261f54 1628 task_thread_info(p)->preempt_count = 1;
1da177e4 1629#endif
476d139c 1630 put_cpu();
1da177e4
LT
1631}
1632
dd41f596
IM
1633/*
1634 * After fork, child runs first. (default) If set to 0 then
1635 * parent will (try to) run first.
1636 */
1637unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1638
1da177e4
LT
1639/*
1640 * wake_up_new_task - wake up a newly created task for the first time.
1641 *
1642 * This function will do some initial scheduler statistics housekeeping
1643 * that must be done for every newly created context, then puts the task
1644 * on the runqueue and wakes it.
1645 */
36c8b586 1646void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1647{
1648 unsigned long flags;
dd41f596
IM
1649 struct rq *rq;
1650 int this_cpu;
cad60d93 1651 u64 now;
1da177e4
LT
1652
1653 rq = task_rq_lock(p, &flags);
147cbb4b 1654 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1655 this_cpu = smp_processor_id(); /* parent's CPU */
a8e504d2
IM
1656 update_rq_clock(rq);
1657 now = rq->clock;
1da177e4
LT
1658
1659 p->prio = effective_prio(p);
1660
cad60d93
IM
1661 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1662 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1663 !current->se.on_rq) {
1664
dd41f596 1665 activate_task(rq, p, 0);
1da177e4 1666 } else {
1da177e4 1667 /*
dd41f596
IM
1668 * Let the scheduling class do new task startup
1669 * management (if any):
1da177e4 1670 */
ee0827d8 1671 p->sched_class->task_new(rq, p);
e5fa2237 1672 inc_nr_running(p, rq);
1da177e4 1673 }
dd41f596
IM
1674 check_preempt_curr(rq, p);
1675 task_rq_unlock(rq, &flags);
1da177e4
LT
1676}
1677
e107be36
AK
1678#ifdef CONFIG_PREEMPT_NOTIFIERS
1679
1680/**
421cee29
RD
1681 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1682 * @notifier: notifier struct to register
e107be36
AK
1683 */
1684void preempt_notifier_register(struct preempt_notifier *notifier)
1685{
1686 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1687}
1688EXPORT_SYMBOL_GPL(preempt_notifier_register);
1689
1690/**
1691 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1692 * @notifier: notifier struct to unregister
e107be36
AK
1693 *
1694 * This is safe to call from within a preemption notifier.
1695 */
1696void preempt_notifier_unregister(struct preempt_notifier *notifier)
1697{
1698 hlist_del(&notifier->link);
1699}
1700EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1701
1702static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1703{
1704 struct preempt_notifier *notifier;
1705 struct hlist_node *node;
1706
1707 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1708 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1709}
1710
1711static void
1712fire_sched_out_preempt_notifiers(struct task_struct *curr,
1713 struct task_struct *next)
1714{
1715 struct preempt_notifier *notifier;
1716 struct hlist_node *node;
1717
1718 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1719 notifier->ops->sched_out(notifier, next);
1720}
1721
1722#else
1723
1724static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1725{
1726}
1727
1728static void
1729fire_sched_out_preempt_notifiers(struct task_struct *curr,
1730 struct task_struct *next)
1731{
1732}
1733
1734#endif
1735
4866cde0
NP
1736/**
1737 * prepare_task_switch - prepare to switch tasks
1738 * @rq: the runqueue preparing to switch
421cee29 1739 * @prev: the current task that is being switched out
4866cde0
NP
1740 * @next: the task we are going to switch to.
1741 *
1742 * This is called with the rq lock held and interrupts off. It must
1743 * be paired with a subsequent finish_task_switch after the context
1744 * switch.
1745 *
1746 * prepare_task_switch sets up locking and calls architecture specific
1747 * hooks.
1748 */
e107be36
AK
1749static inline void
1750prepare_task_switch(struct rq *rq, struct task_struct *prev,
1751 struct task_struct *next)
4866cde0 1752{
e107be36 1753 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1754 prepare_lock_switch(rq, next);
1755 prepare_arch_switch(next);
1756}
1757
1da177e4
LT
1758/**
1759 * finish_task_switch - clean up after a task-switch
344babaa 1760 * @rq: runqueue associated with task-switch
1da177e4
LT
1761 * @prev: the thread we just switched away from.
1762 *
4866cde0
NP
1763 * finish_task_switch must be called after the context switch, paired
1764 * with a prepare_task_switch call before the context switch.
1765 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1766 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1767 *
1768 * Note that we may have delayed dropping an mm in context_switch(). If
1769 * so, we finish that here outside of the runqueue lock. (Doing it
1770 * with the lock held can cause deadlocks; see schedule() for
1771 * details.)
1772 */
70b97a7f 1773static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1774 __releases(rq->lock)
1775{
1da177e4 1776 struct mm_struct *mm = rq->prev_mm;
55a101f8 1777 long prev_state;
1da177e4
LT
1778
1779 rq->prev_mm = NULL;
1780
1781 /*
1782 * A task struct has one reference for the use as "current".
c394cc9f 1783 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1784 * schedule one last time. The schedule call will never return, and
1785 * the scheduled task must drop that reference.
c394cc9f 1786 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1787 * still held, otherwise prev could be scheduled on another cpu, die
1788 * there before we look at prev->state, and then the reference would
1789 * be dropped twice.
1790 * Manfred Spraul <manfred@colorfullife.com>
1791 */
55a101f8 1792 prev_state = prev->state;
4866cde0
NP
1793 finish_arch_switch(prev);
1794 finish_lock_switch(rq, prev);
e107be36 1795 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1796 if (mm)
1797 mmdrop(mm);
c394cc9f 1798 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1799 /*
1800 * Remove function-return probe instances associated with this
1801 * task and put them back on the free list.
9761eea8 1802 */
c6fd91f0 1803 kprobe_flush_task(prev);
1da177e4 1804 put_task_struct(prev);
c6fd91f0 1805 }
1da177e4
LT
1806}
1807
1808/**
1809 * schedule_tail - first thing a freshly forked thread must call.
1810 * @prev: the thread we just switched away from.
1811 */
36c8b586 1812asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1813 __releases(rq->lock)
1814{
70b97a7f
IM
1815 struct rq *rq = this_rq();
1816
4866cde0
NP
1817 finish_task_switch(rq, prev);
1818#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1819 /* In this case, finish_task_switch does not reenable preemption */
1820 preempt_enable();
1821#endif
1da177e4
LT
1822 if (current->set_child_tid)
1823 put_user(current->pid, current->set_child_tid);
1824}
1825
1826/*
1827 * context_switch - switch to the new MM and the new
1828 * thread's register state.
1829 */
dd41f596 1830static inline void
70b97a7f 1831context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1832 struct task_struct *next)
1da177e4 1833{
dd41f596 1834 struct mm_struct *mm, *oldmm;
1da177e4 1835
e107be36 1836 prepare_task_switch(rq, prev, next);
dd41f596
IM
1837 mm = next->mm;
1838 oldmm = prev->active_mm;
9226d125
ZA
1839 /*
1840 * For paravirt, this is coupled with an exit in switch_to to
1841 * combine the page table reload and the switch backend into
1842 * one hypercall.
1843 */
1844 arch_enter_lazy_cpu_mode();
1845
dd41f596 1846 if (unlikely(!mm)) {
1da177e4
LT
1847 next->active_mm = oldmm;
1848 atomic_inc(&oldmm->mm_count);
1849 enter_lazy_tlb(oldmm, next);
1850 } else
1851 switch_mm(oldmm, mm, next);
1852
dd41f596 1853 if (unlikely(!prev->mm)) {
1da177e4 1854 prev->active_mm = NULL;
1da177e4
LT
1855 rq->prev_mm = oldmm;
1856 }
3a5f5e48
IM
1857 /*
1858 * Since the runqueue lock will be released by the next
1859 * task (which is an invalid locking op but in the case
1860 * of the scheduler it's an obvious special-case), so we
1861 * do an early lockdep release here:
1862 */
1863#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1864 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1865#endif
1da177e4
LT
1866
1867 /* Here we just switch the register state and the stack. */
1868 switch_to(prev, next, prev);
1869
dd41f596
IM
1870 barrier();
1871 /*
1872 * this_rq must be evaluated again because prev may have moved
1873 * CPUs since it called schedule(), thus the 'rq' on its stack
1874 * frame will be invalid.
1875 */
1876 finish_task_switch(this_rq(), prev);
1da177e4
LT
1877}
1878
1879/*
1880 * nr_running, nr_uninterruptible and nr_context_switches:
1881 *
1882 * externally visible scheduler statistics: current number of runnable
1883 * threads, current number of uninterruptible-sleeping threads, total
1884 * number of context switches performed since bootup.
1885 */
1886unsigned long nr_running(void)
1887{
1888 unsigned long i, sum = 0;
1889
1890 for_each_online_cpu(i)
1891 sum += cpu_rq(i)->nr_running;
1892
1893 return sum;
1894}
1895
1896unsigned long nr_uninterruptible(void)
1897{
1898 unsigned long i, sum = 0;
1899
0a945022 1900 for_each_possible_cpu(i)
1da177e4
LT
1901 sum += cpu_rq(i)->nr_uninterruptible;
1902
1903 /*
1904 * Since we read the counters lockless, it might be slightly
1905 * inaccurate. Do not allow it to go below zero though:
1906 */
1907 if (unlikely((long)sum < 0))
1908 sum = 0;
1909
1910 return sum;
1911}
1912
1913unsigned long long nr_context_switches(void)
1914{
cc94abfc
SR
1915 int i;
1916 unsigned long long sum = 0;
1da177e4 1917
0a945022 1918 for_each_possible_cpu(i)
1da177e4
LT
1919 sum += cpu_rq(i)->nr_switches;
1920
1921 return sum;
1922}
1923
1924unsigned long nr_iowait(void)
1925{
1926 unsigned long i, sum = 0;
1927
0a945022 1928 for_each_possible_cpu(i)
1da177e4
LT
1929 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1930
1931 return sum;
1932}
1933
db1b1fef
JS
1934unsigned long nr_active(void)
1935{
1936 unsigned long i, running = 0, uninterruptible = 0;
1937
1938 for_each_online_cpu(i) {
1939 running += cpu_rq(i)->nr_running;
1940 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1941 }
1942
1943 if (unlikely((long)uninterruptible < 0))
1944 uninterruptible = 0;
1945
1946 return running + uninterruptible;
1947}
1948
48f24c4d 1949/*
dd41f596
IM
1950 * Update rq->cpu_load[] statistics. This function is usually called every
1951 * scheduler tick (TICK_NSEC).
48f24c4d 1952 */
dd41f596 1953static void update_cpu_load(struct rq *this_rq)
48f24c4d 1954{
dd41f596
IM
1955 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1956 unsigned long total_load = this_rq->ls.load.weight;
1957 unsigned long this_load = total_load;
1958 struct load_stat *ls = &this_rq->ls;
c1b3da3e 1959 u64 now;
dd41f596
IM
1960 int i, scale;
1961
c1b3da3e
IM
1962 __update_rq_clock(this_rq);
1963 now = this_rq->clock;
1964
dd41f596
IM
1965 this_rq->nr_load_updates++;
1966 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1967 goto do_avg;
1968
1969 /* Update delta_fair/delta_exec fields first */
84a1d7a2 1970 update_curr_load(this_rq);
dd41f596
IM
1971
1972 fair_delta64 = ls->delta_fair + 1;
1973 ls->delta_fair = 0;
1974
1975 exec_delta64 = ls->delta_exec + 1;
1976 ls->delta_exec = 0;
1977
d281918d
IM
1978 sample_interval64 = this_rq->clock - ls->load_update_last;
1979 ls->load_update_last = this_rq->clock;
dd41f596
IM
1980
1981 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1982 sample_interval64 = TICK_NSEC;
1983
1984 if (exec_delta64 > sample_interval64)
1985 exec_delta64 = sample_interval64;
1986
1987 idle_delta64 = sample_interval64 - exec_delta64;
1988
1989 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1990 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1991
1992 this_load = (unsigned long)tmp64;
1993
1994do_avg:
1995
1996 /* Update our load: */
1997 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1998 unsigned long old_load, new_load;
1999
2000 /* scale is effectively 1 << i now, and >> i divides by scale */
2001
2002 old_load = this_rq->cpu_load[i];
2003 new_load = this_load;
2004
2005 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2006 }
48f24c4d
IM
2007}
2008
dd41f596
IM
2009#ifdef CONFIG_SMP
2010
1da177e4
LT
2011/*
2012 * double_rq_lock - safely lock two runqueues
2013 *
2014 * Note this does not disable interrupts like task_rq_lock,
2015 * you need to do so manually before calling.
2016 */
70b97a7f 2017static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2018 __acquires(rq1->lock)
2019 __acquires(rq2->lock)
2020{
054b9108 2021 BUG_ON(!irqs_disabled());
1da177e4
LT
2022 if (rq1 == rq2) {
2023 spin_lock(&rq1->lock);
2024 __acquire(rq2->lock); /* Fake it out ;) */
2025 } else {
c96d145e 2026 if (rq1 < rq2) {
1da177e4
LT
2027 spin_lock(&rq1->lock);
2028 spin_lock(&rq2->lock);
2029 } else {
2030 spin_lock(&rq2->lock);
2031 spin_lock(&rq1->lock);
2032 }
2033 }
2034}
2035
2036/*
2037 * double_rq_unlock - safely unlock two runqueues
2038 *
2039 * Note this does not restore interrupts like task_rq_unlock,
2040 * you need to do so manually after calling.
2041 */
70b97a7f 2042static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2043 __releases(rq1->lock)
2044 __releases(rq2->lock)
2045{
2046 spin_unlock(&rq1->lock);
2047 if (rq1 != rq2)
2048 spin_unlock(&rq2->lock);
2049 else
2050 __release(rq2->lock);
2051}
2052
2053/*
2054 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2055 */
70b97a7f 2056static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2057 __releases(this_rq->lock)
2058 __acquires(busiest->lock)
2059 __acquires(this_rq->lock)
2060{
054b9108
KK
2061 if (unlikely(!irqs_disabled())) {
2062 /* printk() doesn't work good under rq->lock */
2063 spin_unlock(&this_rq->lock);
2064 BUG_ON(1);
2065 }
1da177e4 2066 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2067 if (busiest < this_rq) {
1da177e4
LT
2068 spin_unlock(&this_rq->lock);
2069 spin_lock(&busiest->lock);
2070 spin_lock(&this_rq->lock);
2071 } else
2072 spin_lock(&busiest->lock);
2073 }
2074}
2075
1da177e4
LT
2076/*
2077 * If dest_cpu is allowed for this process, migrate the task to it.
2078 * This is accomplished by forcing the cpu_allowed mask to only
2079 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2080 * the cpu_allowed mask is restored.
2081 */
36c8b586 2082static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2083{
70b97a7f 2084 struct migration_req req;
1da177e4 2085 unsigned long flags;
70b97a7f 2086 struct rq *rq;
1da177e4
LT
2087
2088 rq = task_rq_lock(p, &flags);
2089 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2090 || unlikely(cpu_is_offline(dest_cpu)))
2091 goto out;
2092
2093 /* force the process onto the specified CPU */
2094 if (migrate_task(p, dest_cpu, &req)) {
2095 /* Need to wait for migration thread (might exit: take ref). */
2096 struct task_struct *mt = rq->migration_thread;
36c8b586 2097
1da177e4
LT
2098 get_task_struct(mt);
2099 task_rq_unlock(rq, &flags);
2100 wake_up_process(mt);
2101 put_task_struct(mt);
2102 wait_for_completion(&req.done);
36c8b586 2103
1da177e4
LT
2104 return;
2105 }
2106out:
2107 task_rq_unlock(rq, &flags);
2108}
2109
2110/*
476d139c
NP
2111 * sched_exec - execve() is a valuable balancing opportunity, because at
2112 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2113 */
2114void sched_exec(void)
2115{
1da177e4 2116 int new_cpu, this_cpu = get_cpu();
476d139c 2117 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2118 put_cpu();
476d139c
NP
2119 if (new_cpu != this_cpu)
2120 sched_migrate_task(current, new_cpu);
1da177e4
LT
2121}
2122
2123/*
2124 * pull_task - move a task from a remote runqueue to the local runqueue.
2125 * Both runqueues must be locked.
2126 */
dd41f596
IM
2127static void pull_task(struct rq *src_rq, struct task_struct *p,
2128 struct rq *this_rq, int this_cpu)
1da177e4 2129{
a8e504d2
IM
2130 update_rq_clock(src_rq);
2131 deactivate_task(src_rq, p, 0, src_rq->clock);
1da177e4 2132 set_task_cpu(p, this_cpu);
dd41f596 2133 activate_task(this_rq, p, 0);
1da177e4
LT
2134 /*
2135 * Note that idle threads have a prio of MAX_PRIO, for this test
2136 * to be always true for them.
2137 */
dd41f596 2138 check_preempt_curr(this_rq, p);
1da177e4
LT
2139}
2140
2141/*
2142 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2143 */
858119e1 2144static
70b97a7f 2145int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2146 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2147 int *all_pinned)
1da177e4
LT
2148{
2149 /*
2150 * We do not migrate tasks that are:
2151 * 1) running (obviously), or
2152 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2153 * 3) are cache-hot on their current CPU.
2154 */
1da177e4
LT
2155 if (!cpu_isset(this_cpu, p->cpus_allowed))
2156 return 0;
81026794
NP
2157 *all_pinned = 0;
2158
2159 if (task_running(rq, p))
2160 return 0;
1da177e4
LT
2161
2162 /*
dd41f596 2163 * Aggressive migration if too many balance attempts have failed:
1da177e4 2164 */
dd41f596 2165 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2166 return 1;
2167
1da177e4
LT
2168 return 1;
2169}
2170
dd41f596 2171static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2172 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2173 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2174 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2175 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2176{
dd41f596
IM
2177 int pulled = 0, pinned = 0, skip_for_load;
2178 struct task_struct *p;
2179 long rem_load_move = max_load_move;
1da177e4 2180
2dd73a4f 2181 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2182 goto out;
2183
81026794
NP
2184 pinned = 1;
2185
1da177e4 2186 /*
dd41f596 2187 * Start the load-balancing iterator:
1da177e4 2188 */
dd41f596
IM
2189 p = iterator->start(iterator->arg);
2190next:
2191 if (!p)
1da177e4 2192 goto out;
50ddd969
PW
2193 /*
2194 * To help distribute high priority tasks accross CPUs we don't
2195 * skip a task if it will be the highest priority task (i.e. smallest
2196 * prio value) on its new queue regardless of its load weight
2197 */
dd41f596
IM
2198 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2199 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2200 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2201 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2202 p = iterator->next(iterator->arg);
2203 goto next;
1da177e4
LT
2204 }
2205
dd41f596 2206 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2207 pulled++;
dd41f596 2208 rem_load_move -= p->se.load.weight;
1da177e4 2209
2dd73a4f
PW
2210 /*
2211 * We only want to steal up to the prescribed number of tasks
2212 * and the prescribed amount of weighted load.
2213 */
2214 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2215 if (p->prio < *this_best_prio)
2216 *this_best_prio = p->prio;
dd41f596
IM
2217 p = iterator->next(iterator->arg);
2218 goto next;
1da177e4
LT
2219 }
2220out:
2221 /*
2222 * Right now, this is the only place pull_task() is called,
2223 * so we can safely collect pull_task() stats here rather than
2224 * inside pull_task().
2225 */
2226 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2227
2228 if (all_pinned)
2229 *all_pinned = pinned;
dd41f596 2230 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2231 return pulled;
2232}
2233
dd41f596 2234/*
43010659
PW
2235 * move_tasks tries to move up to max_load_move weighted load from busiest to
2236 * this_rq, as part of a balancing operation within domain "sd".
2237 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2238 *
2239 * Called with both runqueues locked.
2240 */
2241static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2242 unsigned long max_load_move,
dd41f596
IM
2243 struct sched_domain *sd, enum cpu_idle_type idle,
2244 int *all_pinned)
2245{
2246 struct sched_class *class = sched_class_highest;
43010659 2247 unsigned long total_load_moved = 0;
a4ac01c3 2248 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2249
2250 do {
43010659
PW
2251 total_load_moved +=
2252 class->load_balance(this_rq, this_cpu, busiest,
2253 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2254 sd, idle, all_pinned, &this_best_prio);
dd41f596 2255 class = class->next;
43010659 2256 } while (class && max_load_move > total_load_moved);
dd41f596 2257
43010659
PW
2258 return total_load_moved > 0;
2259}
2260
2261/*
2262 * move_one_task tries to move exactly one task from busiest to this_rq, as
2263 * part of active balancing operations within "domain".
2264 * Returns 1 if successful and 0 otherwise.
2265 *
2266 * Called with both runqueues locked.
2267 */
2268static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2269 struct sched_domain *sd, enum cpu_idle_type idle)
2270{
2271 struct sched_class *class;
a4ac01c3 2272 int this_best_prio = MAX_PRIO;
43010659
PW
2273
2274 for (class = sched_class_highest; class; class = class->next)
2275 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2276 1, ULONG_MAX, sd, idle, NULL,
2277 &this_best_prio))
43010659
PW
2278 return 1;
2279
2280 return 0;
dd41f596
IM
2281}
2282
1da177e4
LT
2283/*
2284 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2285 * domain. It calculates and returns the amount of weighted load which
2286 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2287 */
2288static struct sched_group *
2289find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2290 unsigned long *imbalance, enum cpu_idle_type idle,
2291 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2292{
2293 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2294 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2295 unsigned long max_pull;
2dd73a4f
PW
2296 unsigned long busiest_load_per_task, busiest_nr_running;
2297 unsigned long this_load_per_task, this_nr_running;
7897986b 2298 int load_idx;
5c45bf27
SS
2299#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2300 int power_savings_balance = 1;
2301 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2302 unsigned long min_nr_running = ULONG_MAX;
2303 struct sched_group *group_min = NULL, *group_leader = NULL;
2304#endif
1da177e4
LT
2305
2306 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2307 busiest_load_per_task = busiest_nr_running = 0;
2308 this_load_per_task = this_nr_running = 0;
d15bcfdb 2309 if (idle == CPU_NOT_IDLE)
7897986b 2310 load_idx = sd->busy_idx;
d15bcfdb 2311 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2312 load_idx = sd->newidle_idx;
2313 else
2314 load_idx = sd->idle_idx;
1da177e4
LT
2315
2316 do {
5c45bf27 2317 unsigned long load, group_capacity;
1da177e4
LT
2318 int local_group;
2319 int i;
783609c6 2320 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2321 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2322
2323 local_group = cpu_isset(this_cpu, group->cpumask);
2324
783609c6
SS
2325 if (local_group)
2326 balance_cpu = first_cpu(group->cpumask);
2327
1da177e4 2328 /* Tally up the load of all CPUs in the group */
2dd73a4f 2329 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2330
2331 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2332 struct rq *rq;
2333
2334 if (!cpu_isset(i, *cpus))
2335 continue;
2336
2337 rq = cpu_rq(i);
2dd73a4f 2338
9439aab8 2339 if (*sd_idle && rq->nr_running)
5969fe06
NP
2340 *sd_idle = 0;
2341
1da177e4 2342 /* Bias balancing toward cpus of our domain */
783609c6
SS
2343 if (local_group) {
2344 if (idle_cpu(i) && !first_idle_cpu) {
2345 first_idle_cpu = 1;
2346 balance_cpu = i;
2347 }
2348
a2000572 2349 load = target_load(i, load_idx);
783609c6 2350 } else
a2000572 2351 load = source_load(i, load_idx);
1da177e4
LT
2352
2353 avg_load += load;
2dd73a4f 2354 sum_nr_running += rq->nr_running;
dd41f596 2355 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2356 }
2357
783609c6
SS
2358 /*
2359 * First idle cpu or the first cpu(busiest) in this sched group
2360 * is eligible for doing load balancing at this and above
9439aab8
SS
2361 * domains. In the newly idle case, we will allow all the cpu's
2362 * to do the newly idle load balance.
783609c6 2363 */
9439aab8
SS
2364 if (idle != CPU_NEWLY_IDLE && local_group &&
2365 balance_cpu != this_cpu && balance) {
783609c6
SS
2366 *balance = 0;
2367 goto ret;
2368 }
2369
1da177e4 2370 total_load += avg_load;
5517d86b 2371 total_pwr += group->__cpu_power;
1da177e4
LT
2372
2373 /* Adjust by relative CPU power of the group */
5517d86b
ED
2374 avg_load = sg_div_cpu_power(group,
2375 avg_load * SCHED_LOAD_SCALE);
1da177e4 2376
5517d86b 2377 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2378
1da177e4
LT
2379 if (local_group) {
2380 this_load = avg_load;
2381 this = group;
2dd73a4f
PW
2382 this_nr_running = sum_nr_running;
2383 this_load_per_task = sum_weighted_load;
2384 } else if (avg_load > max_load &&
5c45bf27 2385 sum_nr_running > group_capacity) {
1da177e4
LT
2386 max_load = avg_load;
2387 busiest = group;
2dd73a4f
PW
2388 busiest_nr_running = sum_nr_running;
2389 busiest_load_per_task = sum_weighted_load;
1da177e4 2390 }
5c45bf27
SS
2391
2392#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2393 /*
2394 * Busy processors will not participate in power savings
2395 * balance.
2396 */
dd41f596
IM
2397 if (idle == CPU_NOT_IDLE ||
2398 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2399 goto group_next;
5c45bf27
SS
2400
2401 /*
2402 * If the local group is idle or completely loaded
2403 * no need to do power savings balance at this domain
2404 */
2405 if (local_group && (this_nr_running >= group_capacity ||
2406 !this_nr_running))
2407 power_savings_balance = 0;
2408
dd41f596 2409 /*
5c45bf27
SS
2410 * If a group is already running at full capacity or idle,
2411 * don't include that group in power savings calculations
dd41f596
IM
2412 */
2413 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2414 || !sum_nr_running)
dd41f596 2415 goto group_next;
5c45bf27 2416
dd41f596 2417 /*
5c45bf27 2418 * Calculate the group which has the least non-idle load.
dd41f596
IM
2419 * This is the group from where we need to pick up the load
2420 * for saving power
2421 */
2422 if ((sum_nr_running < min_nr_running) ||
2423 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2424 first_cpu(group->cpumask) <
2425 first_cpu(group_min->cpumask))) {
dd41f596
IM
2426 group_min = group;
2427 min_nr_running = sum_nr_running;
5c45bf27
SS
2428 min_load_per_task = sum_weighted_load /
2429 sum_nr_running;
dd41f596 2430 }
5c45bf27 2431
dd41f596 2432 /*
5c45bf27 2433 * Calculate the group which is almost near its
dd41f596
IM
2434 * capacity but still has some space to pick up some load
2435 * from other group and save more power
2436 */
2437 if (sum_nr_running <= group_capacity - 1) {
2438 if (sum_nr_running > leader_nr_running ||
2439 (sum_nr_running == leader_nr_running &&
2440 first_cpu(group->cpumask) >
2441 first_cpu(group_leader->cpumask))) {
2442 group_leader = group;
2443 leader_nr_running = sum_nr_running;
2444 }
48f24c4d 2445 }
5c45bf27
SS
2446group_next:
2447#endif
1da177e4
LT
2448 group = group->next;
2449 } while (group != sd->groups);
2450
2dd73a4f 2451 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2452 goto out_balanced;
2453
2454 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2455
2456 if (this_load >= avg_load ||
2457 100*max_load <= sd->imbalance_pct*this_load)
2458 goto out_balanced;
2459
2dd73a4f 2460 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2461 /*
2462 * We're trying to get all the cpus to the average_load, so we don't
2463 * want to push ourselves above the average load, nor do we wish to
2464 * reduce the max loaded cpu below the average load, as either of these
2465 * actions would just result in more rebalancing later, and ping-pong
2466 * tasks around. Thus we look for the minimum possible imbalance.
2467 * Negative imbalances (*we* are more loaded than anyone else) will
2468 * be counted as no imbalance for these purposes -- we can't fix that
2469 * by pulling tasks to us. Be careful of negative numbers as they'll
2470 * appear as very large values with unsigned longs.
2471 */
2dd73a4f
PW
2472 if (max_load <= busiest_load_per_task)
2473 goto out_balanced;
2474
2475 /*
2476 * In the presence of smp nice balancing, certain scenarios can have
2477 * max load less than avg load(as we skip the groups at or below
2478 * its cpu_power, while calculating max_load..)
2479 */
2480 if (max_load < avg_load) {
2481 *imbalance = 0;
2482 goto small_imbalance;
2483 }
0c117f1b
SS
2484
2485 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2486 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2487
1da177e4 2488 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2489 *imbalance = min(max_pull * busiest->__cpu_power,
2490 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2491 / SCHED_LOAD_SCALE;
2492
2dd73a4f
PW
2493 /*
2494 * if *imbalance is less than the average load per runnable task
2495 * there is no gaurantee that any tasks will be moved so we'll have
2496 * a think about bumping its value to force at least one task to be
2497 * moved
2498 */
dd41f596 2499 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
48f24c4d 2500 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2501 unsigned int imbn;
2502
2503small_imbalance:
2504 pwr_move = pwr_now = 0;
2505 imbn = 2;
2506 if (this_nr_running) {
2507 this_load_per_task /= this_nr_running;
2508 if (busiest_load_per_task > this_load_per_task)
2509 imbn = 1;
2510 } else
2511 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2512
dd41f596
IM
2513 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2514 busiest_load_per_task * imbn) {
2dd73a4f 2515 *imbalance = busiest_load_per_task;
1da177e4
LT
2516 return busiest;
2517 }
2518
2519 /*
2520 * OK, we don't have enough imbalance to justify moving tasks,
2521 * however we may be able to increase total CPU power used by
2522 * moving them.
2523 */
2524
5517d86b
ED
2525 pwr_now += busiest->__cpu_power *
2526 min(busiest_load_per_task, max_load);
2527 pwr_now += this->__cpu_power *
2528 min(this_load_per_task, this_load);
1da177e4
LT
2529 pwr_now /= SCHED_LOAD_SCALE;
2530
2531 /* Amount of load we'd subtract */
5517d86b
ED
2532 tmp = sg_div_cpu_power(busiest,
2533 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2534 if (max_load > tmp)
5517d86b 2535 pwr_move += busiest->__cpu_power *
2dd73a4f 2536 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2537
2538 /* Amount of load we'd add */
5517d86b 2539 if (max_load * busiest->__cpu_power <
33859f7f 2540 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2541 tmp = sg_div_cpu_power(this,
2542 max_load * busiest->__cpu_power);
1da177e4 2543 else
5517d86b
ED
2544 tmp = sg_div_cpu_power(this,
2545 busiest_load_per_task * SCHED_LOAD_SCALE);
2546 pwr_move += this->__cpu_power *
2547 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2548 pwr_move /= SCHED_LOAD_SCALE;
2549
2550 /* Move if we gain throughput */
2551 if (pwr_move <= pwr_now)
2552 goto out_balanced;
2553
2dd73a4f 2554 *imbalance = busiest_load_per_task;
1da177e4
LT
2555 }
2556
1da177e4
LT
2557 return busiest;
2558
2559out_balanced:
5c45bf27 2560#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2561 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2562 goto ret;
1da177e4 2563
5c45bf27
SS
2564 if (this == group_leader && group_leader != group_min) {
2565 *imbalance = min_load_per_task;
2566 return group_min;
2567 }
5c45bf27 2568#endif
783609c6 2569ret:
1da177e4
LT
2570 *imbalance = 0;
2571 return NULL;
2572}
2573
2574/*
2575 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2576 */
70b97a7f 2577static struct rq *
d15bcfdb 2578find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2579 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2580{
70b97a7f 2581 struct rq *busiest = NULL, *rq;
2dd73a4f 2582 unsigned long max_load = 0;
1da177e4
LT
2583 int i;
2584
2585 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2586 unsigned long wl;
0a2966b4
CL
2587
2588 if (!cpu_isset(i, *cpus))
2589 continue;
2590
48f24c4d 2591 rq = cpu_rq(i);
dd41f596 2592 wl = weighted_cpuload(i);
2dd73a4f 2593
dd41f596 2594 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2595 continue;
1da177e4 2596
dd41f596
IM
2597 if (wl > max_load) {
2598 max_load = wl;
48f24c4d 2599 busiest = rq;
1da177e4
LT
2600 }
2601 }
2602
2603 return busiest;
2604}
2605
77391d71
NP
2606/*
2607 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2608 * so long as it is large enough.
2609 */
2610#define MAX_PINNED_INTERVAL 512
2611
1da177e4
LT
2612/*
2613 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2614 * tasks if there is an imbalance.
1da177e4 2615 */
70b97a7f 2616static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2617 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2618 int *balance)
1da177e4 2619{
43010659 2620 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2621 struct sched_group *group;
1da177e4 2622 unsigned long imbalance;
70b97a7f 2623 struct rq *busiest;
0a2966b4 2624 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2625 unsigned long flags;
5969fe06 2626
89c4710e
SS
2627 /*
2628 * When power savings policy is enabled for the parent domain, idle
2629 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2630 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2631 * portraying it as CPU_NOT_IDLE.
89c4710e 2632 */
d15bcfdb 2633 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2634 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2635 sd_idle = 1;
1da177e4 2636
1da177e4
LT
2637 schedstat_inc(sd, lb_cnt[idle]);
2638
0a2966b4
CL
2639redo:
2640 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2641 &cpus, balance);
2642
06066714 2643 if (*balance == 0)
783609c6 2644 goto out_balanced;
783609c6 2645
1da177e4
LT
2646 if (!group) {
2647 schedstat_inc(sd, lb_nobusyg[idle]);
2648 goto out_balanced;
2649 }
2650
0a2966b4 2651 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2652 if (!busiest) {
2653 schedstat_inc(sd, lb_nobusyq[idle]);
2654 goto out_balanced;
2655 }
2656
db935dbd 2657 BUG_ON(busiest == this_rq);
1da177e4
LT
2658
2659 schedstat_add(sd, lb_imbalance[idle], imbalance);
2660
43010659 2661 ld_moved = 0;
1da177e4
LT
2662 if (busiest->nr_running > 1) {
2663 /*
2664 * Attempt to move tasks. If find_busiest_group has found
2665 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2666 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2667 * correctly treated as an imbalance.
2668 */
fe2eea3f 2669 local_irq_save(flags);
e17224bf 2670 double_rq_lock(this_rq, busiest);
43010659 2671 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2672 imbalance, sd, idle, &all_pinned);
e17224bf 2673 double_rq_unlock(this_rq, busiest);
fe2eea3f 2674 local_irq_restore(flags);
81026794 2675
46cb4b7c
SS
2676 /*
2677 * some other cpu did the load balance for us.
2678 */
43010659 2679 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2680 resched_cpu(this_cpu);
2681
81026794 2682 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2683 if (unlikely(all_pinned)) {
2684 cpu_clear(cpu_of(busiest), cpus);
2685 if (!cpus_empty(cpus))
2686 goto redo;
81026794 2687 goto out_balanced;
0a2966b4 2688 }
1da177e4 2689 }
81026794 2690
43010659 2691 if (!ld_moved) {
1da177e4
LT
2692 schedstat_inc(sd, lb_failed[idle]);
2693 sd->nr_balance_failed++;
2694
2695 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2696
fe2eea3f 2697 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2698
2699 /* don't kick the migration_thread, if the curr
2700 * task on busiest cpu can't be moved to this_cpu
2701 */
2702 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2703 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2704 all_pinned = 1;
2705 goto out_one_pinned;
2706 }
2707
1da177e4
LT
2708 if (!busiest->active_balance) {
2709 busiest->active_balance = 1;
2710 busiest->push_cpu = this_cpu;
81026794 2711 active_balance = 1;
1da177e4 2712 }
fe2eea3f 2713 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2714 if (active_balance)
1da177e4
LT
2715 wake_up_process(busiest->migration_thread);
2716
2717 /*
2718 * We've kicked active balancing, reset the failure
2719 * counter.
2720 */
39507451 2721 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2722 }
81026794 2723 } else
1da177e4
LT
2724 sd->nr_balance_failed = 0;
2725
81026794 2726 if (likely(!active_balance)) {
1da177e4
LT
2727 /* We were unbalanced, so reset the balancing interval */
2728 sd->balance_interval = sd->min_interval;
81026794
NP
2729 } else {
2730 /*
2731 * If we've begun active balancing, start to back off. This
2732 * case may not be covered by the all_pinned logic if there
2733 * is only 1 task on the busy runqueue (because we don't call
2734 * move_tasks).
2735 */
2736 if (sd->balance_interval < sd->max_interval)
2737 sd->balance_interval *= 2;
1da177e4
LT
2738 }
2739
43010659 2740 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2741 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2742 return -1;
43010659 2743 return ld_moved;
1da177e4
LT
2744
2745out_balanced:
1da177e4
LT
2746 schedstat_inc(sd, lb_balanced[idle]);
2747
16cfb1c0 2748 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2749
2750out_one_pinned:
1da177e4 2751 /* tune up the balancing interval */
77391d71
NP
2752 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2753 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2754 sd->balance_interval *= 2;
2755
48f24c4d 2756 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2757 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2758 return -1;
1da177e4
LT
2759 return 0;
2760}
2761
2762/*
2763 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2764 * tasks if there is an imbalance.
2765 *
d15bcfdb 2766 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2767 * this_rq is locked.
2768 */
48f24c4d 2769static int
70b97a7f 2770load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2771{
2772 struct sched_group *group;
70b97a7f 2773 struct rq *busiest = NULL;
1da177e4 2774 unsigned long imbalance;
43010659 2775 int ld_moved = 0;
5969fe06 2776 int sd_idle = 0;
969bb4e4 2777 int all_pinned = 0;
0a2966b4 2778 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2779
89c4710e
SS
2780 /*
2781 * When power savings policy is enabled for the parent domain, idle
2782 * sibling can pick up load irrespective of busy siblings. In this case,
2783 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2784 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2785 */
2786 if (sd->flags & SD_SHARE_CPUPOWER &&
2787 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2788 sd_idle = 1;
1da177e4 2789
d15bcfdb 2790 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2791redo:
d15bcfdb 2792 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2793 &sd_idle, &cpus, NULL);
1da177e4 2794 if (!group) {
d15bcfdb 2795 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2796 goto out_balanced;
1da177e4
LT
2797 }
2798
d15bcfdb 2799 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2800 &cpus);
db935dbd 2801 if (!busiest) {
d15bcfdb 2802 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2803 goto out_balanced;
1da177e4
LT
2804 }
2805
db935dbd
NP
2806 BUG_ON(busiest == this_rq);
2807
d15bcfdb 2808 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2809
43010659 2810 ld_moved = 0;
d6d5cfaf
NP
2811 if (busiest->nr_running > 1) {
2812 /* Attempt to move tasks */
2813 double_lock_balance(this_rq, busiest);
43010659 2814 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2815 imbalance, sd, CPU_NEWLY_IDLE,
2816 &all_pinned);
d6d5cfaf 2817 spin_unlock(&busiest->lock);
0a2966b4 2818
969bb4e4 2819 if (unlikely(all_pinned)) {
0a2966b4
CL
2820 cpu_clear(cpu_of(busiest), cpus);
2821 if (!cpus_empty(cpus))
2822 goto redo;
2823 }
d6d5cfaf
NP
2824 }
2825
43010659 2826 if (!ld_moved) {
d15bcfdb 2827 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2828 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2829 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2830 return -1;
2831 } else
16cfb1c0 2832 sd->nr_balance_failed = 0;
1da177e4 2833
43010659 2834 return ld_moved;
16cfb1c0
NP
2835
2836out_balanced:
d15bcfdb 2837 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2838 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2839 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2840 return -1;
16cfb1c0 2841 sd->nr_balance_failed = 0;
48f24c4d 2842
16cfb1c0 2843 return 0;
1da177e4
LT
2844}
2845
2846/*
2847 * idle_balance is called by schedule() if this_cpu is about to become
2848 * idle. Attempts to pull tasks from other CPUs.
2849 */
70b97a7f 2850static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2851{
2852 struct sched_domain *sd;
dd41f596
IM
2853 int pulled_task = -1;
2854 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2855
2856 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2857 unsigned long interval;
2858
2859 if (!(sd->flags & SD_LOAD_BALANCE))
2860 continue;
2861
2862 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2863 /* If we've pulled tasks over stop searching: */
1bd77f2d 2864 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2865 this_rq, sd);
2866
2867 interval = msecs_to_jiffies(sd->balance_interval);
2868 if (time_after(next_balance, sd->last_balance + interval))
2869 next_balance = sd->last_balance + interval;
2870 if (pulled_task)
2871 break;
1da177e4 2872 }
dd41f596 2873 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2874 /*
2875 * We are going idle. next_balance may be set based on
2876 * a busy processor. So reset next_balance.
2877 */
2878 this_rq->next_balance = next_balance;
dd41f596 2879 }
1da177e4
LT
2880}
2881
2882/*
2883 * active_load_balance is run by migration threads. It pushes running tasks
2884 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2885 * running on each physical CPU where possible, and avoids physical /
2886 * logical imbalances.
2887 *
2888 * Called with busiest_rq locked.
2889 */
70b97a7f 2890static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2891{
39507451 2892 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2893 struct sched_domain *sd;
2894 struct rq *target_rq;
39507451 2895
48f24c4d 2896 /* Is there any task to move? */
39507451 2897 if (busiest_rq->nr_running <= 1)
39507451
NP
2898 return;
2899
2900 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2901
2902 /*
39507451
NP
2903 * This condition is "impossible", if it occurs
2904 * we need to fix it. Originally reported by
2905 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2906 */
39507451 2907 BUG_ON(busiest_rq == target_rq);
1da177e4 2908
39507451
NP
2909 /* move a task from busiest_rq to target_rq */
2910 double_lock_balance(busiest_rq, target_rq);
2911
2912 /* Search for an sd spanning us and the target CPU. */
c96d145e 2913 for_each_domain(target_cpu, sd) {
39507451 2914 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2915 cpu_isset(busiest_cpu, sd->span))
39507451 2916 break;
c96d145e 2917 }
39507451 2918
48f24c4d
IM
2919 if (likely(sd)) {
2920 schedstat_inc(sd, alb_cnt);
39507451 2921
43010659
PW
2922 if (move_one_task(target_rq, target_cpu, busiest_rq,
2923 sd, CPU_IDLE))
48f24c4d
IM
2924 schedstat_inc(sd, alb_pushed);
2925 else
2926 schedstat_inc(sd, alb_failed);
2927 }
39507451 2928 spin_unlock(&target_rq->lock);
1da177e4
LT
2929}
2930
46cb4b7c
SS
2931#ifdef CONFIG_NO_HZ
2932static struct {
2933 atomic_t load_balancer;
2934 cpumask_t cpu_mask;
2935} nohz ____cacheline_aligned = {
2936 .load_balancer = ATOMIC_INIT(-1),
2937 .cpu_mask = CPU_MASK_NONE,
2938};
2939
7835b98b 2940/*
46cb4b7c
SS
2941 * This routine will try to nominate the ilb (idle load balancing)
2942 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2943 * load balancing on behalf of all those cpus. If all the cpus in the system
2944 * go into this tickless mode, then there will be no ilb owner (as there is
2945 * no need for one) and all the cpus will sleep till the next wakeup event
2946 * arrives...
2947 *
2948 * For the ilb owner, tick is not stopped. And this tick will be used
2949 * for idle load balancing. ilb owner will still be part of
2950 * nohz.cpu_mask..
7835b98b 2951 *
46cb4b7c
SS
2952 * While stopping the tick, this cpu will become the ilb owner if there
2953 * is no other owner. And will be the owner till that cpu becomes busy
2954 * or if all cpus in the system stop their ticks at which point
2955 * there is no need for ilb owner.
2956 *
2957 * When the ilb owner becomes busy, it nominates another owner, during the
2958 * next busy scheduler_tick()
2959 */
2960int select_nohz_load_balancer(int stop_tick)
2961{
2962 int cpu = smp_processor_id();
2963
2964 if (stop_tick) {
2965 cpu_set(cpu, nohz.cpu_mask);
2966 cpu_rq(cpu)->in_nohz_recently = 1;
2967
2968 /*
2969 * If we are going offline and still the leader, give up!
2970 */
2971 if (cpu_is_offline(cpu) &&
2972 atomic_read(&nohz.load_balancer) == cpu) {
2973 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2974 BUG();
2975 return 0;
2976 }
2977
2978 /* time for ilb owner also to sleep */
2979 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2980 if (atomic_read(&nohz.load_balancer) == cpu)
2981 atomic_set(&nohz.load_balancer, -1);
2982 return 0;
2983 }
2984
2985 if (atomic_read(&nohz.load_balancer) == -1) {
2986 /* make me the ilb owner */
2987 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2988 return 1;
2989 } else if (atomic_read(&nohz.load_balancer) == cpu)
2990 return 1;
2991 } else {
2992 if (!cpu_isset(cpu, nohz.cpu_mask))
2993 return 0;
2994
2995 cpu_clear(cpu, nohz.cpu_mask);
2996
2997 if (atomic_read(&nohz.load_balancer) == cpu)
2998 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2999 BUG();
3000 }
3001 return 0;
3002}
3003#endif
3004
3005static DEFINE_SPINLOCK(balancing);
3006
3007/*
7835b98b
CL
3008 * It checks each scheduling domain to see if it is due to be balanced,
3009 * and initiates a balancing operation if so.
3010 *
3011 * Balancing parameters are set up in arch_init_sched_domains.
3012 */
d15bcfdb 3013static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3014{
46cb4b7c
SS
3015 int balance = 1;
3016 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3017 unsigned long interval;
3018 struct sched_domain *sd;
46cb4b7c 3019 /* Earliest time when we have to do rebalance again */
c9819f45 3020 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 3021
46cb4b7c 3022 for_each_domain(cpu, sd) {
1da177e4
LT
3023 if (!(sd->flags & SD_LOAD_BALANCE))
3024 continue;
3025
3026 interval = sd->balance_interval;
d15bcfdb 3027 if (idle != CPU_IDLE)
1da177e4
LT
3028 interval *= sd->busy_factor;
3029
3030 /* scale ms to jiffies */
3031 interval = msecs_to_jiffies(interval);
3032 if (unlikely(!interval))
3033 interval = 1;
dd41f596
IM
3034 if (interval > HZ*NR_CPUS/10)
3035 interval = HZ*NR_CPUS/10;
3036
1da177e4 3037
08c183f3
CL
3038 if (sd->flags & SD_SERIALIZE) {
3039 if (!spin_trylock(&balancing))
3040 goto out;
3041 }
3042
c9819f45 3043 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3044 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3045 /*
3046 * We've pulled tasks over so either we're no
5969fe06
NP
3047 * longer idle, or one of our SMT siblings is
3048 * not idle.
3049 */
d15bcfdb 3050 idle = CPU_NOT_IDLE;
1da177e4 3051 }
1bd77f2d 3052 sd->last_balance = jiffies;
1da177e4 3053 }
08c183f3
CL
3054 if (sd->flags & SD_SERIALIZE)
3055 spin_unlock(&balancing);
3056out:
c9819f45
CL
3057 if (time_after(next_balance, sd->last_balance + interval))
3058 next_balance = sd->last_balance + interval;
783609c6
SS
3059
3060 /*
3061 * Stop the load balance at this level. There is another
3062 * CPU in our sched group which is doing load balancing more
3063 * actively.
3064 */
3065 if (!balance)
3066 break;
1da177e4 3067 }
46cb4b7c
SS
3068 rq->next_balance = next_balance;
3069}
3070
3071/*
3072 * run_rebalance_domains is triggered when needed from the scheduler tick.
3073 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3074 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3075 */
3076static void run_rebalance_domains(struct softirq_action *h)
3077{
dd41f596
IM
3078 int this_cpu = smp_processor_id();
3079 struct rq *this_rq = cpu_rq(this_cpu);
3080 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3081 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3082
dd41f596 3083 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3084
3085#ifdef CONFIG_NO_HZ
3086 /*
3087 * If this cpu is the owner for idle load balancing, then do the
3088 * balancing on behalf of the other idle cpus whose ticks are
3089 * stopped.
3090 */
dd41f596
IM
3091 if (this_rq->idle_at_tick &&
3092 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3093 cpumask_t cpus = nohz.cpu_mask;
3094 struct rq *rq;
3095 int balance_cpu;
3096
dd41f596 3097 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3098 for_each_cpu_mask(balance_cpu, cpus) {
3099 /*
3100 * If this cpu gets work to do, stop the load balancing
3101 * work being done for other cpus. Next load
3102 * balancing owner will pick it up.
3103 */
3104 if (need_resched())
3105 break;
3106
dd41f596 3107 rebalance_domains(balance_cpu, SCHED_IDLE);
46cb4b7c
SS
3108
3109 rq = cpu_rq(balance_cpu);
dd41f596
IM
3110 if (time_after(this_rq->next_balance, rq->next_balance))
3111 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3112 }
3113 }
3114#endif
3115}
3116
3117/*
3118 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3119 *
3120 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3121 * idle load balancing owner or decide to stop the periodic load balancing,
3122 * if the whole system is idle.
3123 */
dd41f596 3124static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3125{
46cb4b7c
SS
3126#ifdef CONFIG_NO_HZ
3127 /*
3128 * If we were in the nohz mode recently and busy at the current
3129 * scheduler tick, then check if we need to nominate new idle
3130 * load balancer.
3131 */
3132 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3133 rq->in_nohz_recently = 0;
3134
3135 if (atomic_read(&nohz.load_balancer) == cpu) {
3136 cpu_clear(cpu, nohz.cpu_mask);
3137 atomic_set(&nohz.load_balancer, -1);
3138 }
3139
3140 if (atomic_read(&nohz.load_balancer) == -1) {
3141 /*
3142 * simple selection for now: Nominate the
3143 * first cpu in the nohz list to be the next
3144 * ilb owner.
3145 *
3146 * TBD: Traverse the sched domains and nominate
3147 * the nearest cpu in the nohz.cpu_mask.
3148 */
3149 int ilb = first_cpu(nohz.cpu_mask);
3150
3151 if (ilb != NR_CPUS)
3152 resched_cpu(ilb);
3153 }
3154 }
3155
3156 /*
3157 * If this cpu is idle and doing idle load balancing for all the
3158 * cpus with ticks stopped, is it time for that to stop?
3159 */
3160 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3161 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3162 resched_cpu(cpu);
3163 return;
3164 }
3165
3166 /*
3167 * If this cpu is idle and the idle load balancing is done by
3168 * someone else, then no need raise the SCHED_SOFTIRQ
3169 */
3170 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3171 cpu_isset(cpu, nohz.cpu_mask))
3172 return;
3173#endif
3174 if (time_after_eq(jiffies, rq->next_balance))
3175 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3176}
dd41f596
IM
3177
3178#else /* CONFIG_SMP */
3179
1da177e4
LT
3180/*
3181 * on UP we do not need to balance between CPUs:
3182 */
70b97a7f 3183static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3184{
3185}
dd41f596
IM
3186
3187/* Avoid "used but not defined" warning on UP */
3188static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3189 unsigned long max_nr_move, unsigned long max_load_move,
3190 struct sched_domain *sd, enum cpu_idle_type idle,
3191 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3192 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3193{
3194 *load_moved = 0;
3195
3196 return 0;
3197}
3198
1da177e4
LT
3199#endif
3200
1da177e4
LT
3201DEFINE_PER_CPU(struct kernel_stat, kstat);
3202
3203EXPORT_PER_CPU_SYMBOL(kstat);
3204
3205/*
41b86e9c
IM
3206 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3207 * that have not yet been banked in case the task is currently running.
1da177e4 3208 */
41b86e9c 3209unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3210{
1da177e4 3211 unsigned long flags;
41b86e9c
IM
3212 u64 ns, delta_exec;
3213 struct rq *rq;
48f24c4d 3214
41b86e9c
IM
3215 rq = task_rq_lock(p, &flags);
3216 ns = p->se.sum_exec_runtime;
3217 if (rq->curr == p) {
a8e504d2
IM
3218 update_rq_clock(rq);
3219 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3220 if ((s64)delta_exec > 0)
3221 ns += delta_exec;
3222 }
3223 task_rq_unlock(rq, &flags);
48f24c4d 3224
1da177e4
LT
3225 return ns;
3226}
3227
1da177e4
LT
3228/*
3229 * Account user cpu time to a process.
3230 * @p: the process that the cpu time gets accounted to
3231 * @hardirq_offset: the offset to subtract from hardirq_count()
3232 * @cputime: the cpu time spent in user space since the last update
3233 */
3234void account_user_time(struct task_struct *p, cputime_t cputime)
3235{
3236 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3237 cputime64_t tmp;
3238
3239 p->utime = cputime_add(p->utime, cputime);
3240
3241 /* Add user time to cpustat. */
3242 tmp = cputime_to_cputime64(cputime);
3243 if (TASK_NICE(p) > 0)
3244 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3245 else
3246 cpustat->user = cputime64_add(cpustat->user, tmp);
3247}
3248
3249/*
3250 * Account system cpu time to a process.
3251 * @p: the process that the cpu time gets accounted to
3252 * @hardirq_offset: the offset to subtract from hardirq_count()
3253 * @cputime: the cpu time spent in kernel space since the last update
3254 */
3255void account_system_time(struct task_struct *p, int hardirq_offset,
3256 cputime_t cputime)
3257{
3258 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3259 struct rq *rq = this_rq();
1da177e4
LT
3260 cputime64_t tmp;
3261
3262 p->stime = cputime_add(p->stime, cputime);
3263
3264 /* Add system time to cpustat. */
3265 tmp = cputime_to_cputime64(cputime);
3266 if (hardirq_count() - hardirq_offset)
3267 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3268 else if (softirq_count())
3269 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3270 else if (p != rq->idle)
3271 cpustat->system = cputime64_add(cpustat->system, tmp);
3272 else if (atomic_read(&rq->nr_iowait) > 0)
3273 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3274 else
3275 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3276 /* Account for system time used */
3277 acct_update_integrals(p);
1da177e4
LT
3278}
3279
3280/*
3281 * Account for involuntary wait time.
3282 * @p: the process from which the cpu time has been stolen
3283 * @steal: the cpu time spent in involuntary wait
3284 */
3285void account_steal_time(struct task_struct *p, cputime_t steal)
3286{
3287 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3288 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3289 struct rq *rq = this_rq();
1da177e4
LT
3290
3291 if (p == rq->idle) {
3292 p->stime = cputime_add(p->stime, steal);
3293 if (atomic_read(&rq->nr_iowait) > 0)
3294 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3295 else
3296 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3297 } else
3298 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3299}
3300
7835b98b
CL
3301/*
3302 * This function gets called by the timer code, with HZ frequency.
3303 * We call it with interrupts disabled.
3304 *
3305 * It also gets called by the fork code, when changing the parent's
3306 * timeslices.
3307 */
3308void scheduler_tick(void)
3309{
7835b98b
CL
3310 int cpu = smp_processor_id();
3311 struct rq *rq = cpu_rq(cpu);
dd41f596
IM
3312 struct task_struct *curr = rq->curr;
3313
3314 spin_lock(&rq->lock);
f1a438d8 3315 update_cpu_load(rq);
dd41f596
IM
3316 if (curr != rq->idle) /* FIXME: needed? */
3317 curr->sched_class->task_tick(rq, curr);
dd41f596 3318 spin_unlock(&rq->lock);
7835b98b 3319
e418e1c2 3320#ifdef CONFIG_SMP
dd41f596
IM
3321 rq->idle_at_tick = idle_cpu(cpu);
3322 trigger_load_balance(rq, cpu);
e418e1c2 3323#endif
1da177e4
LT
3324}
3325
1da177e4
LT
3326#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3327
3328void fastcall add_preempt_count(int val)
3329{
3330 /*
3331 * Underflow?
3332 */
9a11b49a
IM
3333 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3334 return;
1da177e4
LT
3335 preempt_count() += val;
3336 /*
3337 * Spinlock count overflowing soon?
3338 */
33859f7f
MOS
3339 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3340 PREEMPT_MASK - 10);
1da177e4
LT
3341}
3342EXPORT_SYMBOL(add_preempt_count);
3343
3344void fastcall sub_preempt_count(int val)
3345{
3346 /*
3347 * Underflow?
3348 */
9a11b49a
IM
3349 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3350 return;
1da177e4
LT
3351 /*
3352 * Is the spinlock portion underflowing?
3353 */
9a11b49a
IM
3354 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3355 !(preempt_count() & PREEMPT_MASK)))
3356 return;
3357
1da177e4
LT
3358 preempt_count() -= val;
3359}
3360EXPORT_SYMBOL(sub_preempt_count);
3361
3362#endif
3363
3364/*
dd41f596 3365 * Print scheduling while atomic bug:
1da177e4 3366 */
dd41f596 3367static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3368{
dd41f596
IM
3369 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3370 prev->comm, preempt_count(), prev->pid);
3371 debug_show_held_locks(prev);
3372 if (irqs_disabled())
3373 print_irqtrace_events(prev);
3374 dump_stack();
3375}
1da177e4 3376
dd41f596
IM
3377/*
3378 * Various schedule()-time debugging checks and statistics:
3379 */
3380static inline void schedule_debug(struct task_struct *prev)
3381{
1da177e4
LT
3382 /*
3383 * Test if we are atomic. Since do_exit() needs to call into
3384 * schedule() atomically, we ignore that path for now.
3385 * Otherwise, whine if we are scheduling when we should not be.
3386 */
dd41f596
IM
3387 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3388 __schedule_bug(prev);
3389
1da177e4
LT
3390 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3391
dd41f596
IM
3392 schedstat_inc(this_rq(), sched_cnt);
3393}
3394
3395/*
3396 * Pick up the highest-prio task:
3397 */
3398static inline struct task_struct *
ff95f3df 3399pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596
IM
3400{
3401 struct sched_class *class;
3402 struct task_struct *p;
1da177e4
LT
3403
3404 /*
dd41f596
IM
3405 * Optimization: we know that if all tasks are in
3406 * the fair class we can call that function directly:
1da177e4 3407 */
dd41f596 3408 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3409 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3410 if (likely(p))
3411 return p;
1da177e4
LT
3412 }
3413
dd41f596
IM
3414 class = sched_class_highest;
3415 for ( ; ; ) {
fb8d4724 3416 p = class->pick_next_task(rq);
dd41f596
IM
3417 if (p)
3418 return p;
3419 /*
3420 * Will never be NULL as the idle class always
3421 * returns a non-NULL p:
3422 */
3423 class = class->next;
3424 }
3425}
1da177e4 3426
dd41f596
IM
3427/*
3428 * schedule() is the main scheduler function.
3429 */
3430asmlinkage void __sched schedule(void)
3431{
3432 struct task_struct *prev, *next;
3433 long *switch_count;
3434 struct rq *rq;
3435 u64 now;
3436 int cpu;
3437
3438need_resched:
3439 preempt_disable();
3440 cpu = smp_processor_id();
3441 rq = cpu_rq(cpu);
3442 rcu_qsctr_inc(cpu);
3443 prev = rq->curr;
3444 switch_count = &prev->nivcsw;
3445
3446 release_kernel_lock(prev);
3447need_resched_nonpreemptible:
3448
3449 schedule_debug(prev);
1da177e4
LT
3450
3451 spin_lock_irq(&rq->lock);
dd41f596 3452 clear_tsk_need_resched(prev);
c1b3da3e
IM
3453 __update_rq_clock(rq);
3454 now = rq->clock;
1da177e4 3455
1da177e4 3456 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3457 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3458 unlikely(signal_pending(prev)))) {
1da177e4 3459 prev->state = TASK_RUNNING;
dd41f596 3460 } else {
8e717b19 3461 deactivate_task(rq, prev, 1, now);
1da177e4 3462 }
dd41f596 3463 switch_count = &prev->nvcsw;
1da177e4
LT
3464 }
3465
dd41f596 3466 if (unlikely(!rq->nr_running))
1da177e4 3467 idle_balance(cpu, rq);
1da177e4 3468
31ee529c 3469 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3470 next = pick_next_task(rq, prev);
1da177e4
LT
3471
3472 sched_info_switch(prev, next);
dd41f596 3473
1da177e4 3474 if (likely(prev != next)) {
1da177e4
LT
3475 rq->nr_switches++;
3476 rq->curr = next;
3477 ++*switch_count;
3478
dd41f596 3479 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3480 } else
3481 spin_unlock_irq(&rq->lock);
3482
dd41f596
IM
3483 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3484 cpu = smp_processor_id();
3485 rq = cpu_rq(cpu);
1da177e4 3486 goto need_resched_nonpreemptible;
dd41f596 3487 }
1da177e4
LT
3488 preempt_enable_no_resched();
3489 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3490 goto need_resched;
3491}
1da177e4
LT
3492EXPORT_SYMBOL(schedule);
3493
3494#ifdef CONFIG_PREEMPT
3495/*
2ed6e34f 3496 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3497 * off of preempt_enable. Kernel preemptions off return from interrupt
3498 * occur there and call schedule directly.
3499 */
3500asmlinkage void __sched preempt_schedule(void)
3501{
3502 struct thread_info *ti = current_thread_info();
3503#ifdef CONFIG_PREEMPT_BKL
3504 struct task_struct *task = current;
3505 int saved_lock_depth;
3506#endif
3507 /*
3508 * If there is a non-zero preempt_count or interrupts are disabled,
3509 * we do not want to preempt the current task. Just return..
3510 */
beed33a8 3511 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3512 return;
3513
3514need_resched:
3515 add_preempt_count(PREEMPT_ACTIVE);
3516 /*
3517 * We keep the big kernel semaphore locked, but we
3518 * clear ->lock_depth so that schedule() doesnt
3519 * auto-release the semaphore:
3520 */
3521#ifdef CONFIG_PREEMPT_BKL
3522 saved_lock_depth = task->lock_depth;
3523 task->lock_depth = -1;
3524#endif
3525 schedule();
3526#ifdef CONFIG_PREEMPT_BKL
3527 task->lock_depth = saved_lock_depth;
3528#endif
3529 sub_preempt_count(PREEMPT_ACTIVE);
3530
3531 /* we could miss a preemption opportunity between schedule and now */
3532 barrier();
3533 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3534 goto need_resched;
3535}
1da177e4
LT
3536EXPORT_SYMBOL(preempt_schedule);
3537
3538/*
2ed6e34f 3539 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3540 * off of irq context.
3541 * Note, that this is called and return with irqs disabled. This will
3542 * protect us against recursive calling from irq.
3543 */
3544asmlinkage void __sched preempt_schedule_irq(void)
3545{
3546 struct thread_info *ti = current_thread_info();
3547#ifdef CONFIG_PREEMPT_BKL
3548 struct task_struct *task = current;
3549 int saved_lock_depth;
3550#endif
2ed6e34f 3551 /* Catch callers which need to be fixed */
1da177e4
LT
3552 BUG_ON(ti->preempt_count || !irqs_disabled());
3553
3554need_resched:
3555 add_preempt_count(PREEMPT_ACTIVE);
3556 /*
3557 * We keep the big kernel semaphore locked, but we
3558 * clear ->lock_depth so that schedule() doesnt
3559 * auto-release the semaphore:
3560 */
3561#ifdef CONFIG_PREEMPT_BKL
3562 saved_lock_depth = task->lock_depth;
3563 task->lock_depth = -1;
3564#endif
3565 local_irq_enable();
3566 schedule();
3567 local_irq_disable();
3568#ifdef CONFIG_PREEMPT_BKL
3569 task->lock_depth = saved_lock_depth;
3570#endif
3571 sub_preempt_count(PREEMPT_ACTIVE);
3572
3573 /* we could miss a preemption opportunity between schedule and now */
3574 barrier();
3575 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3576 goto need_resched;
3577}
3578
3579#endif /* CONFIG_PREEMPT */
3580
95cdf3b7
IM
3581int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3582 void *key)
1da177e4 3583{
48f24c4d 3584 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3585}
1da177e4
LT
3586EXPORT_SYMBOL(default_wake_function);
3587
3588/*
3589 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3590 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3591 * number) then we wake all the non-exclusive tasks and one exclusive task.
3592 *
3593 * There are circumstances in which we can try to wake a task which has already
3594 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3595 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3596 */
3597static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3598 int nr_exclusive, int sync, void *key)
3599{
3600 struct list_head *tmp, *next;
3601
3602 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3603 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3604 unsigned flags = curr->flags;
3605
1da177e4 3606 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3607 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3608 break;
3609 }
3610}
3611
3612/**
3613 * __wake_up - wake up threads blocked on a waitqueue.
3614 * @q: the waitqueue
3615 * @mode: which threads
3616 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3617 * @key: is directly passed to the wakeup function
1da177e4
LT
3618 */
3619void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3620 int nr_exclusive, void *key)
1da177e4
LT
3621{
3622 unsigned long flags;
3623
3624 spin_lock_irqsave(&q->lock, flags);
3625 __wake_up_common(q, mode, nr_exclusive, 0, key);
3626 spin_unlock_irqrestore(&q->lock, flags);
3627}
1da177e4
LT
3628EXPORT_SYMBOL(__wake_up);
3629
3630/*
3631 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3632 */
3633void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3634{
3635 __wake_up_common(q, mode, 1, 0, NULL);
3636}
3637
3638/**
67be2dd1 3639 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3640 * @q: the waitqueue
3641 * @mode: which threads
3642 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3643 *
3644 * The sync wakeup differs that the waker knows that it will schedule
3645 * away soon, so while the target thread will be woken up, it will not
3646 * be migrated to another CPU - ie. the two threads are 'synchronized'
3647 * with each other. This can prevent needless bouncing between CPUs.
3648 *
3649 * On UP it can prevent extra preemption.
3650 */
95cdf3b7
IM
3651void fastcall
3652__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3653{
3654 unsigned long flags;
3655 int sync = 1;
3656
3657 if (unlikely(!q))
3658 return;
3659
3660 if (unlikely(!nr_exclusive))
3661 sync = 0;
3662
3663 spin_lock_irqsave(&q->lock, flags);
3664 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3665 spin_unlock_irqrestore(&q->lock, flags);
3666}
3667EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3668
3669void fastcall complete(struct completion *x)
3670{
3671 unsigned long flags;
3672
3673 spin_lock_irqsave(&x->wait.lock, flags);
3674 x->done++;
3675 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3676 1, 0, NULL);
3677 spin_unlock_irqrestore(&x->wait.lock, flags);
3678}
3679EXPORT_SYMBOL(complete);
3680
3681void fastcall complete_all(struct completion *x)
3682{
3683 unsigned long flags;
3684
3685 spin_lock_irqsave(&x->wait.lock, flags);
3686 x->done += UINT_MAX/2;
3687 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3688 0, 0, NULL);
3689 spin_unlock_irqrestore(&x->wait.lock, flags);
3690}
3691EXPORT_SYMBOL(complete_all);
3692
3693void fastcall __sched wait_for_completion(struct completion *x)
3694{
3695 might_sleep();
48f24c4d 3696
1da177e4
LT
3697 spin_lock_irq(&x->wait.lock);
3698 if (!x->done) {
3699 DECLARE_WAITQUEUE(wait, current);
3700
3701 wait.flags |= WQ_FLAG_EXCLUSIVE;
3702 __add_wait_queue_tail(&x->wait, &wait);
3703 do {
3704 __set_current_state(TASK_UNINTERRUPTIBLE);
3705 spin_unlock_irq(&x->wait.lock);
3706 schedule();
3707 spin_lock_irq(&x->wait.lock);
3708 } while (!x->done);
3709 __remove_wait_queue(&x->wait, &wait);
3710 }
3711 x->done--;
3712 spin_unlock_irq(&x->wait.lock);
3713}
3714EXPORT_SYMBOL(wait_for_completion);
3715
3716unsigned long fastcall __sched
3717wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3718{
3719 might_sleep();
3720
3721 spin_lock_irq(&x->wait.lock);
3722 if (!x->done) {
3723 DECLARE_WAITQUEUE(wait, current);
3724
3725 wait.flags |= WQ_FLAG_EXCLUSIVE;
3726 __add_wait_queue_tail(&x->wait, &wait);
3727 do {
3728 __set_current_state(TASK_UNINTERRUPTIBLE);
3729 spin_unlock_irq(&x->wait.lock);
3730 timeout = schedule_timeout(timeout);
3731 spin_lock_irq(&x->wait.lock);
3732 if (!timeout) {
3733 __remove_wait_queue(&x->wait, &wait);
3734 goto out;
3735 }
3736 } while (!x->done);
3737 __remove_wait_queue(&x->wait, &wait);
3738 }
3739 x->done--;
3740out:
3741 spin_unlock_irq(&x->wait.lock);
3742 return timeout;
3743}
3744EXPORT_SYMBOL(wait_for_completion_timeout);
3745
3746int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3747{
3748 int ret = 0;
3749
3750 might_sleep();
3751
3752 spin_lock_irq(&x->wait.lock);
3753 if (!x->done) {
3754 DECLARE_WAITQUEUE(wait, current);
3755
3756 wait.flags |= WQ_FLAG_EXCLUSIVE;
3757 __add_wait_queue_tail(&x->wait, &wait);
3758 do {
3759 if (signal_pending(current)) {
3760 ret = -ERESTARTSYS;
3761 __remove_wait_queue(&x->wait, &wait);
3762 goto out;
3763 }
3764 __set_current_state(TASK_INTERRUPTIBLE);
3765 spin_unlock_irq(&x->wait.lock);
3766 schedule();
3767 spin_lock_irq(&x->wait.lock);
3768 } while (!x->done);
3769 __remove_wait_queue(&x->wait, &wait);
3770 }
3771 x->done--;
3772out:
3773 spin_unlock_irq(&x->wait.lock);
3774
3775 return ret;
3776}
3777EXPORT_SYMBOL(wait_for_completion_interruptible);
3778
3779unsigned long fastcall __sched
3780wait_for_completion_interruptible_timeout(struct completion *x,
3781 unsigned long timeout)
3782{
3783 might_sleep();
3784
3785 spin_lock_irq(&x->wait.lock);
3786 if (!x->done) {
3787 DECLARE_WAITQUEUE(wait, current);
3788
3789 wait.flags |= WQ_FLAG_EXCLUSIVE;
3790 __add_wait_queue_tail(&x->wait, &wait);
3791 do {
3792 if (signal_pending(current)) {
3793 timeout = -ERESTARTSYS;
3794 __remove_wait_queue(&x->wait, &wait);
3795 goto out;
3796 }
3797 __set_current_state(TASK_INTERRUPTIBLE);
3798 spin_unlock_irq(&x->wait.lock);
3799 timeout = schedule_timeout(timeout);
3800 spin_lock_irq(&x->wait.lock);
3801 if (!timeout) {
3802 __remove_wait_queue(&x->wait, &wait);
3803 goto out;
3804 }
3805 } while (!x->done);
3806 __remove_wait_queue(&x->wait, &wait);
3807 }
3808 x->done--;
3809out:
3810 spin_unlock_irq(&x->wait.lock);
3811 return timeout;
3812}
3813EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3814
0fec171c
IM
3815static inline void
3816sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3817{
3818 spin_lock_irqsave(&q->lock, *flags);
3819 __add_wait_queue(q, wait);
1da177e4 3820 spin_unlock(&q->lock);
0fec171c 3821}
1da177e4 3822
0fec171c
IM
3823static inline void
3824sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3825{
3826 spin_lock_irq(&q->lock);
3827 __remove_wait_queue(q, wait);
3828 spin_unlock_irqrestore(&q->lock, *flags);
3829}
1da177e4 3830
0fec171c 3831void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3832{
0fec171c
IM
3833 unsigned long flags;
3834 wait_queue_t wait;
3835
3836 init_waitqueue_entry(&wait, current);
1da177e4
LT
3837
3838 current->state = TASK_INTERRUPTIBLE;
3839
0fec171c 3840 sleep_on_head(q, &wait, &flags);
1da177e4 3841 schedule();
0fec171c 3842 sleep_on_tail(q, &wait, &flags);
1da177e4 3843}
1da177e4
LT
3844EXPORT_SYMBOL(interruptible_sleep_on);
3845
0fec171c 3846long __sched
95cdf3b7 3847interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3848{
0fec171c
IM
3849 unsigned long flags;
3850 wait_queue_t wait;
3851
3852 init_waitqueue_entry(&wait, current);
1da177e4
LT
3853
3854 current->state = TASK_INTERRUPTIBLE;
3855
0fec171c 3856 sleep_on_head(q, &wait, &flags);
1da177e4 3857 timeout = schedule_timeout(timeout);
0fec171c 3858 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3859
3860 return timeout;
3861}
1da177e4
LT
3862EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3863
0fec171c 3864void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3865{
0fec171c
IM
3866 unsigned long flags;
3867 wait_queue_t wait;
3868
3869 init_waitqueue_entry(&wait, current);
1da177e4
LT
3870
3871 current->state = TASK_UNINTERRUPTIBLE;
3872
0fec171c 3873 sleep_on_head(q, &wait, &flags);
1da177e4 3874 schedule();
0fec171c 3875 sleep_on_tail(q, &wait, &flags);
1da177e4 3876}
1da177e4
LT
3877EXPORT_SYMBOL(sleep_on);
3878
0fec171c 3879long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3880{
0fec171c
IM
3881 unsigned long flags;
3882 wait_queue_t wait;
3883
3884 init_waitqueue_entry(&wait, current);
1da177e4
LT
3885
3886 current->state = TASK_UNINTERRUPTIBLE;
3887
0fec171c 3888 sleep_on_head(q, &wait, &flags);
1da177e4 3889 timeout = schedule_timeout(timeout);
0fec171c 3890 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3891
3892 return timeout;
3893}
1da177e4
LT
3894EXPORT_SYMBOL(sleep_on_timeout);
3895
b29739f9
IM
3896#ifdef CONFIG_RT_MUTEXES
3897
3898/*
3899 * rt_mutex_setprio - set the current priority of a task
3900 * @p: task
3901 * @prio: prio value (kernel-internal form)
3902 *
3903 * This function changes the 'effective' priority of a task. It does
3904 * not touch ->normal_prio like __setscheduler().
3905 *
3906 * Used by the rt_mutex code to implement priority inheritance logic.
3907 */
36c8b586 3908void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3909{
3910 unsigned long flags;
dd41f596 3911 int oldprio, on_rq;
70b97a7f 3912 struct rq *rq;
dd41f596 3913 u64 now;
b29739f9
IM
3914
3915 BUG_ON(prio < 0 || prio > MAX_PRIO);
3916
3917 rq = task_rq_lock(p, &flags);
a8e504d2
IM
3918 update_rq_clock(rq);
3919 now = rq->clock;
b29739f9 3920
d5f9f942 3921 oldprio = p->prio;
dd41f596
IM
3922 on_rq = p->se.on_rq;
3923 if (on_rq)
69be72c1 3924 dequeue_task(rq, p, 0);
dd41f596
IM
3925
3926 if (rt_prio(prio))
3927 p->sched_class = &rt_sched_class;
3928 else
3929 p->sched_class = &fair_sched_class;
3930
b29739f9
IM
3931 p->prio = prio;
3932
dd41f596 3933 if (on_rq) {
8159f87e 3934 enqueue_task(rq, p, 0);
b29739f9
IM
3935 /*
3936 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3937 * our priority decreased, or if we are not currently running on
3938 * this runqueue and our priority is higher than the current's
b29739f9 3939 */
d5f9f942
AM
3940 if (task_running(rq, p)) {
3941 if (p->prio > oldprio)
3942 resched_task(rq->curr);
dd41f596
IM
3943 } else {
3944 check_preempt_curr(rq, p);
3945 }
b29739f9
IM
3946 }
3947 task_rq_unlock(rq, &flags);
3948}
3949
3950#endif
3951
36c8b586 3952void set_user_nice(struct task_struct *p, long nice)
1da177e4 3953{
dd41f596 3954 int old_prio, delta, on_rq;
1da177e4 3955 unsigned long flags;
70b97a7f 3956 struct rq *rq;
dd41f596 3957 u64 now;
1da177e4
LT
3958
3959 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3960 return;
3961 /*
3962 * We have to be careful, if called from sys_setpriority(),
3963 * the task might be in the middle of scheduling on another CPU.
3964 */
3965 rq = task_rq_lock(p, &flags);
a8e504d2
IM
3966 update_rq_clock(rq);
3967 now = rq->clock;
1da177e4
LT
3968 /*
3969 * The RT priorities are set via sched_setscheduler(), but we still
3970 * allow the 'normal' nice value to be set - but as expected
3971 * it wont have any effect on scheduling until the task is
dd41f596 3972 * SCHED_FIFO/SCHED_RR:
1da177e4 3973 */
e05606d3 3974 if (task_has_rt_policy(p)) {
1da177e4
LT
3975 p->static_prio = NICE_TO_PRIO(nice);
3976 goto out_unlock;
3977 }
dd41f596
IM
3978 on_rq = p->se.on_rq;
3979 if (on_rq) {
69be72c1 3980 dequeue_task(rq, p, 0);
79b5dddf 3981 dec_load(rq, p);
2dd73a4f 3982 }
1da177e4 3983
1da177e4 3984 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3985 set_load_weight(p);
b29739f9
IM
3986 old_prio = p->prio;
3987 p->prio = effective_prio(p);
3988 delta = p->prio - old_prio;
1da177e4 3989
dd41f596 3990 if (on_rq) {
8159f87e 3991 enqueue_task(rq, p, 0);
29b4b623 3992 inc_load(rq, p);
1da177e4 3993 /*
d5f9f942
AM
3994 * If the task increased its priority or is running and
3995 * lowered its priority, then reschedule its CPU:
1da177e4 3996 */
d5f9f942 3997 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3998 resched_task(rq->curr);
3999 }
4000out_unlock:
4001 task_rq_unlock(rq, &flags);
4002}
1da177e4
LT
4003EXPORT_SYMBOL(set_user_nice);
4004
e43379f1
MM
4005/*
4006 * can_nice - check if a task can reduce its nice value
4007 * @p: task
4008 * @nice: nice value
4009 */
36c8b586 4010int can_nice(const struct task_struct *p, const int nice)
e43379f1 4011{
024f4747
MM
4012 /* convert nice value [19,-20] to rlimit style value [1,40] */
4013 int nice_rlim = 20 - nice;
48f24c4d 4014
e43379f1
MM
4015 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4016 capable(CAP_SYS_NICE));
4017}
4018
1da177e4
LT
4019#ifdef __ARCH_WANT_SYS_NICE
4020
4021/*
4022 * sys_nice - change the priority of the current process.
4023 * @increment: priority increment
4024 *
4025 * sys_setpriority is a more generic, but much slower function that
4026 * does similar things.
4027 */
4028asmlinkage long sys_nice(int increment)
4029{
48f24c4d 4030 long nice, retval;
1da177e4
LT
4031
4032 /*
4033 * Setpriority might change our priority at the same moment.
4034 * We don't have to worry. Conceptually one call occurs first
4035 * and we have a single winner.
4036 */
e43379f1
MM
4037 if (increment < -40)
4038 increment = -40;
1da177e4
LT
4039 if (increment > 40)
4040 increment = 40;
4041
4042 nice = PRIO_TO_NICE(current->static_prio) + increment;
4043 if (nice < -20)
4044 nice = -20;
4045 if (nice > 19)
4046 nice = 19;
4047
e43379f1
MM
4048 if (increment < 0 && !can_nice(current, nice))
4049 return -EPERM;
4050
1da177e4
LT
4051 retval = security_task_setnice(current, nice);
4052 if (retval)
4053 return retval;
4054
4055 set_user_nice(current, nice);
4056 return 0;
4057}
4058
4059#endif
4060
4061/**
4062 * task_prio - return the priority value of a given task.
4063 * @p: the task in question.
4064 *
4065 * This is the priority value as seen by users in /proc.
4066 * RT tasks are offset by -200. Normal tasks are centered
4067 * around 0, value goes from -16 to +15.
4068 */
36c8b586 4069int task_prio(const struct task_struct *p)
1da177e4
LT
4070{
4071 return p->prio - MAX_RT_PRIO;
4072}
4073
4074/**
4075 * task_nice - return the nice value of a given task.
4076 * @p: the task in question.
4077 */
36c8b586 4078int task_nice(const struct task_struct *p)
1da177e4
LT
4079{
4080 return TASK_NICE(p);
4081}
1da177e4 4082EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4083
4084/**
4085 * idle_cpu - is a given cpu idle currently?
4086 * @cpu: the processor in question.
4087 */
4088int idle_cpu(int cpu)
4089{
4090 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4091}
4092
1da177e4
LT
4093/**
4094 * idle_task - return the idle task for a given cpu.
4095 * @cpu: the processor in question.
4096 */
36c8b586 4097struct task_struct *idle_task(int cpu)
1da177e4
LT
4098{
4099 return cpu_rq(cpu)->idle;
4100}
4101
4102/**
4103 * find_process_by_pid - find a process with a matching PID value.
4104 * @pid: the pid in question.
4105 */
36c8b586 4106static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4107{
4108 return pid ? find_task_by_pid(pid) : current;
4109}
4110
4111/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4112static void
4113__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4114{
dd41f596 4115 BUG_ON(p->se.on_rq);
48f24c4d 4116
1da177e4 4117 p->policy = policy;
dd41f596
IM
4118 switch (p->policy) {
4119 case SCHED_NORMAL:
4120 case SCHED_BATCH:
4121 case SCHED_IDLE:
4122 p->sched_class = &fair_sched_class;
4123 break;
4124 case SCHED_FIFO:
4125 case SCHED_RR:
4126 p->sched_class = &rt_sched_class;
4127 break;
4128 }
4129
1da177e4 4130 p->rt_priority = prio;
b29739f9
IM
4131 p->normal_prio = normal_prio(p);
4132 /* we are holding p->pi_lock already */
4133 p->prio = rt_mutex_getprio(p);
2dd73a4f 4134 set_load_weight(p);
1da177e4
LT
4135}
4136
4137/**
72fd4a35 4138 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4139 * @p: the task in question.
4140 * @policy: new policy.
4141 * @param: structure containing the new RT priority.
5fe1d75f 4142 *
72fd4a35 4143 * NOTE that the task may be already dead.
1da177e4 4144 */
95cdf3b7
IM
4145int sched_setscheduler(struct task_struct *p, int policy,
4146 struct sched_param *param)
1da177e4 4147{
dd41f596 4148 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4149 unsigned long flags;
70b97a7f 4150 struct rq *rq;
1da177e4 4151
66e5393a
SR
4152 /* may grab non-irq protected spin_locks */
4153 BUG_ON(in_interrupt());
1da177e4
LT
4154recheck:
4155 /* double check policy once rq lock held */
4156 if (policy < 0)
4157 policy = oldpolicy = p->policy;
4158 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4159 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4160 policy != SCHED_IDLE)
b0a9499c 4161 return -EINVAL;
1da177e4
LT
4162 /*
4163 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4164 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4165 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4166 */
4167 if (param->sched_priority < 0 ||
95cdf3b7 4168 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4169 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4170 return -EINVAL;
e05606d3 4171 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4172 return -EINVAL;
4173
37e4ab3f
OC
4174 /*
4175 * Allow unprivileged RT tasks to decrease priority:
4176 */
4177 if (!capable(CAP_SYS_NICE)) {
e05606d3 4178 if (rt_policy(policy)) {
8dc3e909 4179 unsigned long rlim_rtprio;
8dc3e909
ON
4180
4181 if (!lock_task_sighand(p, &flags))
4182 return -ESRCH;
4183 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4184 unlock_task_sighand(p, &flags);
4185
4186 /* can't set/change the rt policy */
4187 if (policy != p->policy && !rlim_rtprio)
4188 return -EPERM;
4189
4190 /* can't increase priority */
4191 if (param->sched_priority > p->rt_priority &&
4192 param->sched_priority > rlim_rtprio)
4193 return -EPERM;
4194 }
dd41f596
IM
4195 /*
4196 * Like positive nice levels, dont allow tasks to
4197 * move out of SCHED_IDLE either:
4198 */
4199 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4200 return -EPERM;
5fe1d75f 4201
37e4ab3f
OC
4202 /* can't change other user's priorities */
4203 if ((current->euid != p->euid) &&
4204 (current->euid != p->uid))
4205 return -EPERM;
4206 }
1da177e4
LT
4207
4208 retval = security_task_setscheduler(p, policy, param);
4209 if (retval)
4210 return retval;
b29739f9
IM
4211 /*
4212 * make sure no PI-waiters arrive (or leave) while we are
4213 * changing the priority of the task:
4214 */
4215 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4216 /*
4217 * To be able to change p->policy safely, the apropriate
4218 * runqueue lock must be held.
4219 */
b29739f9 4220 rq = __task_rq_lock(p);
1da177e4
LT
4221 /* recheck policy now with rq lock held */
4222 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4223 policy = oldpolicy = -1;
b29739f9
IM
4224 __task_rq_unlock(rq);
4225 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4226 goto recheck;
4227 }
dd41f596 4228 on_rq = p->se.on_rq;
a8e504d2
IM
4229 if (on_rq) {
4230 update_rq_clock(rq);
4231 deactivate_task(rq, p, 0, rq->clock);
4232 }
1da177e4 4233 oldprio = p->prio;
dd41f596
IM
4234 __setscheduler(rq, p, policy, param->sched_priority);
4235 if (on_rq) {
4236 activate_task(rq, p, 0);
1da177e4
LT
4237 /*
4238 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4239 * our priority decreased, or if we are not currently running on
4240 * this runqueue and our priority is higher than the current's
1da177e4 4241 */
d5f9f942
AM
4242 if (task_running(rq, p)) {
4243 if (p->prio > oldprio)
4244 resched_task(rq->curr);
dd41f596
IM
4245 } else {
4246 check_preempt_curr(rq, p);
4247 }
1da177e4 4248 }
b29739f9
IM
4249 __task_rq_unlock(rq);
4250 spin_unlock_irqrestore(&p->pi_lock, flags);
4251
95e02ca9
TG
4252 rt_mutex_adjust_pi(p);
4253
1da177e4
LT
4254 return 0;
4255}
4256EXPORT_SYMBOL_GPL(sched_setscheduler);
4257
95cdf3b7
IM
4258static int
4259do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4260{
1da177e4
LT
4261 struct sched_param lparam;
4262 struct task_struct *p;
36c8b586 4263 int retval;
1da177e4
LT
4264
4265 if (!param || pid < 0)
4266 return -EINVAL;
4267 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4268 return -EFAULT;
5fe1d75f
ON
4269
4270 rcu_read_lock();
4271 retval = -ESRCH;
1da177e4 4272 p = find_process_by_pid(pid);
5fe1d75f
ON
4273 if (p != NULL)
4274 retval = sched_setscheduler(p, policy, &lparam);
4275 rcu_read_unlock();
36c8b586 4276
1da177e4
LT
4277 return retval;
4278}
4279
4280/**
4281 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4282 * @pid: the pid in question.
4283 * @policy: new policy.
4284 * @param: structure containing the new RT priority.
4285 */
4286asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4287 struct sched_param __user *param)
4288{
c21761f1
JB
4289 /* negative values for policy are not valid */
4290 if (policy < 0)
4291 return -EINVAL;
4292
1da177e4
LT
4293 return do_sched_setscheduler(pid, policy, param);
4294}
4295
4296/**
4297 * sys_sched_setparam - set/change the RT priority of a thread
4298 * @pid: the pid in question.
4299 * @param: structure containing the new RT priority.
4300 */
4301asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4302{
4303 return do_sched_setscheduler(pid, -1, param);
4304}
4305
4306/**
4307 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4308 * @pid: the pid in question.
4309 */
4310asmlinkage long sys_sched_getscheduler(pid_t pid)
4311{
36c8b586 4312 struct task_struct *p;
1da177e4 4313 int retval = -EINVAL;
1da177e4
LT
4314
4315 if (pid < 0)
4316 goto out_nounlock;
4317
4318 retval = -ESRCH;
4319 read_lock(&tasklist_lock);
4320 p = find_process_by_pid(pid);
4321 if (p) {
4322 retval = security_task_getscheduler(p);
4323 if (!retval)
4324 retval = p->policy;
4325 }
4326 read_unlock(&tasklist_lock);
4327
4328out_nounlock:
4329 return retval;
4330}
4331
4332/**
4333 * sys_sched_getscheduler - get the RT priority of a thread
4334 * @pid: the pid in question.
4335 * @param: structure containing the RT priority.
4336 */
4337asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4338{
4339 struct sched_param lp;
36c8b586 4340 struct task_struct *p;
1da177e4 4341 int retval = -EINVAL;
1da177e4
LT
4342
4343 if (!param || pid < 0)
4344 goto out_nounlock;
4345
4346 read_lock(&tasklist_lock);
4347 p = find_process_by_pid(pid);
4348 retval = -ESRCH;
4349 if (!p)
4350 goto out_unlock;
4351
4352 retval = security_task_getscheduler(p);
4353 if (retval)
4354 goto out_unlock;
4355
4356 lp.sched_priority = p->rt_priority;
4357 read_unlock(&tasklist_lock);
4358
4359 /*
4360 * This one might sleep, we cannot do it with a spinlock held ...
4361 */
4362 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4363
4364out_nounlock:
4365 return retval;
4366
4367out_unlock:
4368 read_unlock(&tasklist_lock);
4369 return retval;
4370}
4371
4372long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4373{
1da177e4 4374 cpumask_t cpus_allowed;
36c8b586
IM
4375 struct task_struct *p;
4376 int retval;
1da177e4 4377
5be9361c 4378 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4379 read_lock(&tasklist_lock);
4380
4381 p = find_process_by_pid(pid);
4382 if (!p) {
4383 read_unlock(&tasklist_lock);
5be9361c 4384 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4385 return -ESRCH;
4386 }
4387
4388 /*
4389 * It is not safe to call set_cpus_allowed with the
4390 * tasklist_lock held. We will bump the task_struct's
4391 * usage count and then drop tasklist_lock.
4392 */
4393 get_task_struct(p);
4394 read_unlock(&tasklist_lock);
4395
4396 retval = -EPERM;
4397 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4398 !capable(CAP_SYS_NICE))
4399 goto out_unlock;
4400
e7834f8f
DQ
4401 retval = security_task_setscheduler(p, 0, NULL);
4402 if (retval)
4403 goto out_unlock;
4404
1da177e4
LT
4405 cpus_allowed = cpuset_cpus_allowed(p);
4406 cpus_and(new_mask, new_mask, cpus_allowed);
4407 retval = set_cpus_allowed(p, new_mask);
4408
4409out_unlock:
4410 put_task_struct(p);
5be9361c 4411 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4412 return retval;
4413}
4414
4415static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4416 cpumask_t *new_mask)
4417{
4418 if (len < sizeof(cpumask_t)) {
4419 memset(new_mask, 0, sizeof(cpumask_t));
4420 } else if (len > sizeof(cpumask_t)) {
4421 len = sizeof(cpumask_t);
4422 }
4423 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4424}
4425
4426/**
4427 * sys_sched_setaffinity - set the cpu affinity of a process
4428 * @pid: pid of the process
4429 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4430 * @user_mask_ptr: user-space pointer to the new cpu mask
4431 */
4432asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4433 unsigned long __user *user_mask_ptr)
4434{
4435 cpumask_t new_mask;
4436 int retval;
4437
4438 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4439 if (retval)
4440 return retval;
4441
4442 return sched_setaffinity(pid, new_mask);
4443}
4444
4445/*
4446 * Represents all cpu's present in the system
4447 * In systems capable of hotplug, this map could dynamically grow
4448 * as new cpu's are detected in the system via any platform specific
4449 * method, such as ACPI for e.g.
4450 */
4451
4cef0c61 4452cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4453EXPORT_SYMBOL(cpu_present_map);
4454
4455#ifndef CONFIG_SMP
4cef0c61 4456cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4457EXPORT_SYMBOL(cpu_online_map);
4458
4cef0c61 4459cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4460EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4461#endif
4462
4463long sched_getaffinity(pid_t pid, cpumask_t *mask)
4464{
36c8b586 4465 struct task_struct *p;
1da177e4 4466 int retval;
1da177e4 4467
5be9361c 4468 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4469 read_lock(&tasklist_lock);
4470
4471 retval = -ESRCH;
4472 p = find_process_by_pid(pid);
4473 if (!p)
4474 goto out_unlock;
4475
e7834f8f
DQ
4476 retval = security_task_getscheduler(p);
4477 if (retval)
4478 goto out_unlock;
4479
2f7016d9 4480 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4481
4482out_unlock:
4483 read_unlock(&tasklist_lock);
5be9361c 4484 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4485
9531b62f 4486 return retval;
1da177e4
LT
4487}
4488
4489/**
4490 * sys_sched_getaffinity - get the cpu affinity of a process
4491 * @pid: pid of the process
4492 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4493 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4494 */
4495asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4496 unsigned long __user *user_mask_ptr)
4497{
4498 int ret;
4499 cpumask_t mask;
4500
4501 if (len < sizeof(cpumask_t))
4502 return -EINVAL;
4503
4504 ret = sched_getaffinity(pid, &mask);
4505 if (ret < 0)
4506 return ret;
4507
4508 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4509 return -EFAULT;
4510
4511 return sizeof(cpumask_t);
4512}
4513
4514/**
4515 * sys_sched_yield - yield the current processor to other threads.
4516 *
dd41f596
IM
4517 * This function yields the current CPU to other tasks. If there are no
4518 * other threads running on this CPU then this function will return.
1da177e4
LT
4519 */
4520asmlinkage long sys_sched_yield(void)
4521{
70b97a7f 4522 struct rq *rq = this_rq_lock();
1da177e4
LT
4523
4524 schedstat_inc(rq, yld_cnt);
dd41f596 4525 if (unlikely(rq->nr_running == 1))
1da177e4 4526 schedstat_inc(rq, yld_act_empty);
dd41f596
IM
4527 else
4528 current->sched_class->yield_task(rq, current);
1da177e4
LT
4529
4530 /*
4531 * Since we are going to call schedule() anyway, there's
4532 * no need to preempt or enable interrupts:
4533 */
4534 __release(rq->lock);
8a25d5de 4535 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4536 _raw_spin_unlock(&rq->lock);
4537 preempt_enable_no_resched();
4538
4539 schedule();
4540
4541 return 0;
4542}
4543
e7b38404 4544static void __cond_resched(void)
1da177e4 4545{
8e0a43d8
IM
4546#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4547 __might_sleep(__FILE__, __LINE__);
4548#endif
5bbcfd90
IM
4549 /*
4550 * The BKS might be reacquired before we have dropped
4551 * PREEMPT_ACTIVE, which could trigger a second
4552 * cond_resched() call.
4553 */
1da177e4
LT
4554 do {
4555 add_preempt_count(PREEMPT_ACTIVE);
4556 schedule();
4557 sub_preempt_count(PREEMPT_ACTIVE);
4558 } while (need_resched());
4559}
4560
4561int __sched cond_resched(void)
4562{
9414232f
IM
4563 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4564 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4565 __cond_resched();
4566 return 1;
4567 }
4568 return 0;
4569}
1da177e4
LT
4570EXPORT_SYMBOL(cond_resched);
4571
4572/*
4573 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4574 * call schedule, and on return reacquire the lock.
4575 *
4576 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4577 * operations here to prevent schedule() from being called twice (once via
4578 * spin_unlock(), once by hand).
4579 */
95cdf3b7 4580int cond_resched_lock(spinlock_t *lock)
1da177e4 4581{
6df3cecb
JK
4582 int ret = 0;
4583
1da177e4
LT
4584 if (need_lockbreak(lock)) {
4585 spin_unlock(lock);
4586 cpu_relax();
6df3cecb 4587 ret = 1;
1da177e4
LT
4588 spin_lock(lock);
4589 }
9414232f 4590 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4591 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4592 _raw_spin_unlock(lock);
4593 preempt_enable_no_resched();
4594 __cond_resched();
6df3cecb 4595 ret = 1;
1da177e4 4596 spin_lock(lock);
1da177e4 4597 }
6df3cecb 4598 return ret;
1da177e4 4599}
1da177e4
LT
4600EXPORT_SYMBOL(cond_resched_lock);
4601
4602int __sched cond_resched_softirq(void)
4603{
4604 BUG_ON(!in_softirq());
4605
9414232f 4606 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4607 local_bh_enable();
1da177e4
LT
4608 __cond_resched();
4609 local_bh_disable();
4610 return 1;
4611 }
4612 return 0;
4613}
1da177e4
LT
4614EXPORT_SYMBOL(cond_resched_softirq);
4615
1da177e4
LT
4616/**
4617 * yield - yield the current processor to other threads.
4618 *
72fd4a35 4619 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4620 * thread runnable and calls sys_sched_yield().
4621 */
4622void __sched yield(void)
4623{
4624 set_current_state(TASK_RUNNING);
4625 sys_sched_yield();
4626}
1da177e4
LT
4627EXPORT_SYMBOL(yield);
4628
4629/*
4630 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4631 * that process accounting knows that this is a task in IO wait state.
4632 *
4633 * But don't do that if it is a deliberate, throttling IO wait (this task
4634 * has set its backing_dev_info: the queue against which it should throttle)
4635 */
4636void __sched io_schedule(void)
4637{
70b97a7f 4638 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4639
0ff92245 4640 delayacct_blkio_start();
1da177e4
LT
4641 atomic_inc(&rq->nr_iowait);
4642 schedule();
4643 atomic_dec(&rq->nr_iowait);
0ff92245 4644 delayacct_blkio_end();
1da177e4 4645}
1da177e4
LT
4646EXPORT_SYMBOL(io_schedule);
4647
4648long __sched io_schedule_timeout(long timeout)
4649{
70b97a7f 4650 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4651 long ret;
4652
0ff92245 4653 delayacct_blkio_start();
1da177e4
LT
4654 atomic_inc(&rq->nr_iowait);
4655 ret = schedule_timeout(timeout);
4656 atomic_dec(&rq->nr_iowait);
0ff92245 4657 delayacct_blkio_end();
1da177e4
LT
4658 return ret;
4659}
4660
4661/**
4662 * sys_sched_get_priority_max - return maximum RT priority.
4663 * @policy: scheduling class.
4664 *
4665 * this syscall returns the maximum rt_priority that can be used
4666 * by a given scheduling class.
4667 */
4668asmlinkage long sys_sched_get_priority_max(int policy)
4669{
4670 int ret = -EINVAL;
4671
4672 switch (policy) {
4673 case SCHED_FIFO:
4674 case SCHED_RR:
4675 ret = MAX_USER_RT_PRIO-1;
4676 break;
4677 case SCHED_NORMAL:
b0a9499c 4678 case SCHED_BATCH:
dd41f596 4679 case SCHED_IDLE:
1da177e4
LT
4680 ret = 0;
4681 break;
4682 }
4683 return ret;
4684}
4685
4686/**
4687 * sys_sched_get_priority_min - return minimum RT priority.
4688 * @policy: scheduling class.
4689 *
4690 * this syscall returns the minimum rt_priority that can be used
4691 * by a given scheduling class.
4692 */
4693asmlinkage long sys_sched_get_priority_min(int policy)
4694{
4695 int ret = -EINVAL;
4696
4697 switch (policy) {
4698 case SCHED_FIFO:
4699 case SCHED_RR:
4700 ret = 1;
4701 break;
4702 case SCHED_NORMAL:
b0a9499c 4703 case SCHED_BATCH:
dd41f596 4704 case SCHED_IDLE:
1da177e4
LT
4705 ret = 0;
4706 }
4707 return ret;
4708}
4709
4710/**
4711 * sys_sched_rr_get_interval - return the default timeslice of a process.
4712 * @pid: pid of the process.
4713 * @interval: userspace pointer to the timeslice value.
4714 *
4715 * this syscall writes the default timeslice value of a given process
4716 * into the user-space timespec buffer. A value of '0' means infinity.
4717 */
4718asmlinkage
4719long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4720{
36c8b586 4721 struct task_struct *p;
1da177e4
LT
4722 int retval = -EINVAL;
4723 struct timespec t;
1da177e4
LT
4724
4725 if (pid < 0)
4726 goto out_nounlock;
4727
4728 retval = -ESRCH;
4729 read_lock(&tasklist_lock);
4730 p = find_process_by_pid(pid);
4731 if (!p)
4732 goto out_unlock;
4733
4734 retval = security_task_getscheduler(p);
4735 if (retval)
4736 goto out_unlock;
4737
b78709cf 4738 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4739 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4740 read_unlock(&tasklist_lock);
4741 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4742out_nounlock:
4743 return retval;
4744out_unlock:
4745 read_unlock(&tasklist_lock);
4746 return retval;
4747}
4748
2ed6e34f 4749static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4750
4751static void show_task(struct task_struct *p)
1da177e4 4752{
1da177e4 4753 unsigned long free = 0;
36c8b586 4754 unsigned state;
1da177e4 4755
1da177e4 4756 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4757 printk("%-13.13s %c", p->comm,
4758 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4759#if BITS_PER_LONG == 32
1da177e4 4760 if (state == TASK_RUNNING)
4bd77321 4761 printk(" running ");
1da177e4 4762 else
4bd77321 4763 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4764#else
4765 if (state == TASK_RUNNING)
4bd77321 4766 printk(" running task ");
1da177e4
LT
4767 else
4768 printk(" %016lx ", thread_saved_pc(p));
4769#endif
4770#ifdef CONFIG_DEBUG_STACK_USAGE
4771 {
10ebffde 4772 unsigned long *n = end_of_stack(p);
1da177e4
LT
4773 while (!*n)
4774 n++;
10ebffde 4775 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4776 }
4777#endif
4bd77321 4778 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4779
4780 if (state != TASK_RUNNING)
4781 show_stack(p, NULL);
4782}
4783
e59e2ae2 4784void show_state_filter(unsigned long state_filter)
1da177e4 4785{
36c8b586 4786 struct task_struct *g, *p;
1da177e4 4787
4bd77321
IM
4788#if BITS_PER_LONG == 32
4789 printk(KERN_INFO
4790 " task PC stack pid father\n");
1da177e4 4791#else
4bd77321
IM
4792 printk(KERN_INFO
4793 " task PC stack pid father\n");
1da177e4
LT
4794#endif
4795 read_lock(&tasklist_lock);
4796 do_each_thread(g, p) {
4797 /*
4798 * reset the NMI-timeout, listing all files on a slow
4799 * console might take alot of time:
4800 */
4801 touch_nmi_watchdog();
39bc89fd 4802 if (!state_filter || (p->state & state_filter))
e59e2ae2 4803 show_task(p);
1da177e4
LT
4804 } while_each_thread(g, p);
4805
04c9167f
JF
4806 touch_all_softlockup_watchdogs();
4807
dd41f596
IM
4808#ifdef CONFIG_SCHED_DEBUG
4809 sysrq_sched_debug_show();
4810#endif
1da177e4 4811 read_unlock(&tasklist_lock);
e59e2ae2
IM
4812 /*
4813 * Only show locks if all tasks are dumped:
4814 */
4815 if (state_filter == -1)
4816 debug_show_all_locks();
1da177e4
LT
4817}
4818
1df21055
IM
4819void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4820{
dd41f596 4821 idle->sched_class = &idle_sched_class;
1df21055
IM
4822}
4823
f340c0d1
IM
4824/**
4825 * init_idle - set up an idle thread for a given CPU
4826 * @idle: task in question
4827 * @cpu: cpu the idle task belongs to
4828 *
4829 * NOTE: this function does not set the idle thread's NEED_RESCHED
4830 * flag, to make booting more robust.
4831 */
5c1e1767 4832void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4833{
70b97a7f 4834 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4835 unsigned long flags;
4836
dd41f596
IM
4837 __sched_fork(idle);
4838 idle->se.exec_start = sched_clock();
4839
b29739f9 4840 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4841 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4842 __set_task_cpu(idle, cpu);
1da177e4
LT
4843
4844 spin_lock_irqsave(&rq->lock, flags);
4845 rq->curr = rq->idle = idle;
4866cde0
NP
4846#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4847 idle->oncpu = 1;
4848#endif
1da177e4
LT
4849 spin_unlock_irqrestore(&rq->lock, flags);
4850
4851 /* Set the preempt count _outside_ the spinlocks! */
4852#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4853 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4854#else
a1261f54 4855 task_thread_info(idle)->preempt_count = 0;
1da177e4 4856#endif
dd41f596
IM
4857 /*
4858 * The idle tasks have their own, simple scheduling class:
4859 */
4860 idle->sched_class = &idle_sched_class;
1da177e4
LT
4861}
4862
4863/*
4864 * In a system that switches off the HZ timer nohz_cpu_mask
4865 * indicates which cpus entered this state. This is used
4866 * in the rcu update to wait only for active cpus. For system
4867 * which do not switch off the HZ timer nohz_cpu_mask should
4868 * always be CPU_MASK_NONE.
4869 */
4870cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4871
dd41f596
IM
4872/*
4873 * Increase the granularity value when there are more CPUs,
4874 * because with more CPUs the 'effective latency' as visible
4875 * to users decreases. But the relationship is not linear,
4876 * so pick a second-best guess by going with the log2 of the
4877 * number of CPUs.
4878 *
4879 * This idea comes from the SD scheduler of Con Kolivas:
4880 */
4881static inline void sched_init_granularity(void)
4882{
4883 unsigned int factor = 1 + ilog2(num_online_cpus());
a5968df8 4884 const unsigned long gran_limit = 100000000;
dd41f596
IM
4885
4886 sysctl_sched_granularity *= factor;
4887 if (sysctl_sched_granularity > gran_limit)
4888 sysctl_sched_granularity = gran_limit;
4889
4890 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4891 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4892}
4893
1da177e4
LT
4894#ifdef CONFIG_SMP
4895/*
4896 * This is how migration works:
4897 *
70b97a7f 4898 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4899 * runqueue and wake up that CPU's migration thread.
4900 * 2) we down() the locked semaphore => thread blocks.
4901 * 3) migration thread wakes up (implicitly it forces the migrated
4902 * thread off the CPU)
4903 * 4) it gets the migration request and checks whether the migrated
4904 * task is still in the wrong runqueue.
4905 * 5) if it's in the wrong runqueue then the migration thread removes
4906 * it and puts it into the right queue.
4907 * 6) migration thread up()s the semaphore.
4908 * 7) we wake up and the migration is done.
4909 */
4910
4911/*
4912 * Change a given task's CPU affinity. Migrate the thread to a
4913 * proper CPU and schedule it away if the CPU it's executing on
4914 * is removed from the allowed bitmask.
4915 *
4916 * NOTE: the caller must have a valid reference to the task, the
4917 * task must not exit() & deallocate itself prematurely. The
4918 * call is not atomic; no spinlocks may be held.
4919 */
36c8b586 4920int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4921{
70b97a7f 4922 struct migration_req req;
1da177e4 4923 unsigned long flags;
70b97a7f 4924 struct rq *rq;
48f24c4d 4925 int ret = 0;
1da177e4
LT
4926
4927 rq = task_rq_lock(p, &flags);
4928 if (!cpus_intersects(new_mask, cpu_online_map)) {
4929 ret = -EINVAL;
4930 goto out;
4931 }
4932
4933 p->cpus_allowed = new_mask;
4934 /* Can the task run on the task's current CPU? If so, we're done */
4935 if (cpu_isset(task_cpu(p), new_mask))
4936 goto out;
4937
4938 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4939 /* Need help from migration thread: drop lock and wait. */
4940 task_rq_unlock(rq, &flags);
4941 wake_up_process(rq->migration_thread);
4942 wait_for_completion(&req.done);
4943 tlb_migrate_finish(p->mm);
4944 return 0;
4945 }
4946out:
4947 task_rq_unlock(rq, &flags);
48f24c4d 4948
1da177e4
LT
4949 return ret;
4950}
1da177e4
LT
4951EXPORT_SYMBOL_GPL(set_cpus_allowed);
4952
4953/*
4954 * Move (not current) task off this cpu, onto dest cpu. We're doing
4955 * this because either it can't run here any more (set_cpus_allowed()
4956 * away from this CPU, or CPU going down), or because we're
4957 * attempting to rebalance this task on exec (sched_exec).
4958 *
4959 * So we race with normal scheduler movements, but that's OK, as long
4960 * as the task is no longer on this CPU.
efc30814
KK
4961 *
4962 * Returns non-zero if task was successfully migrated.
1da177e4 4963 */
efc30814 4964static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4965{
70b97a7f 4966 struct rq *rq_dest, *rq_src;
dd41f596 4967 int ret = 0, on_rq;
1da177e4
LT
4968
4969 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4970 return ret;
1da177e4
LT
4971
4972 rq_src = cpu_rq(src_cpu);
4973 rq_dest = cpu_rq(dest_cpu);
4974
4975 double_rq_lock(rq_src, rq_dest);
4976 /* Already moved. */
4977 if (task_cpu(p) != src_cpu)
4978 goto out;
4979 /* Affinity changed (again). */
4980 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4981 goto out;
4982
dd41f596 4983 on_rq = p->se.on_rq;
a8e504d2
IM
4984 if (on_rq) {
4985 update_rq_clock(rq_src);
4986 deactivate_task(rq_src, p, 0, rq_src->clock);
4987 }
1da177e4 4988 set_task_cpu(p, dest_cpu);
dd41f596
IM
4989 if (on_rq) {
4990 activate_task(rq_dest, p, 0);
4991 check_preempt_curr(rq_dest, p);
1da177e4 4992 }
efc30814 4993 ret = 1;
1da177e4
LT
4994out:
4995 double_rq_unlock(rq_src, rq_dest);
efc30814 4996 return ret;
1da177e4
LT
4997}
4998
4999/*
5000 * migration_thread - this is a highprio system thread that performs
5001 * thread migration by bumping thread off CPU then 'pushing' onto
5002 * another runqueue.
5003 */
95cdf3b7 5004static int migration_thread(void *data)
1da177e4 5005{
1da177e4 5006 int cpu = (long)data;
70b97a7f 5007 struct rq *rq;
1da177e4
LT
5008
5009 rq = cpu_rq(cpu);
5010 BUG_ON(rq->migration_thread != current);
5011
5012 set_current_state(TASK_INTERRUPTIBLE);
5013 while (!kthread_should_stop()) {
70b97a7f 5014 struct migration_req *req;
1da177e4 5015 struct list_head *head;
1da177e4 5016
1da177e4
LT
5017 spin_lock_irq(&rq->lock);
5018
5019 if (cpu_is_offline(cpu)) {
5020 spin_unlock_irq(&rq->lock);
5021 goto wait_to_die;
5022 }
5023
5024 if (rq->active_balance) {
5025 active_load_balance(rq, cpu);
5026 rq->active_balance = 0;
5027 }
5028
5029 head = &rq->migration_queue;
5030
5031 if (list_empty(head)) {
5032 spin_unlock_irq(&rq->lock);
5033 schedule();
5034 set_current_state(TASK_INTERRUPTIBLE);
5035 continue;
5036 }
70b97a7f 5037 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5038 list_del_init(head->next);
5039
674311d5
NP
5040 spin_unlock(&rq->lock);
5041 __migrate_task(req->task, cpu, req->dest_cpu);
5042 local_irq_enable();
1da177e4
LT
5043
5044 complete(&req->done);
5045 }
5046 __set_current_state(TASK_RUNNING);
5047 return 0;
5048
5049wait_to_die:
5050 /* Wait for kthread_stop */
5051 set_current_state(TASK_INTERRUPTIBLE);
5052 while (!kthread_should_stop()) {
5053 schedule();
5054 set_current_state(TASK_INTERRUPTIBLE);
5055 }
5056 __set_current_state(TASK_RUNNING);
5057 return 0;
5058}
5059
5060#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5061/*
5062 * Figure out where task on dead CPU should go, use force if neccessary.
5063 * NOTE: interrupts should be disabled by the caller
5064 */
48f24c4d 5065static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5066{
efc30814 5067 unsigned long flags;
1da177e4 5068 cpumask_t mask;
70b97a7f
IM
5069 struct rq *rq;
5070 int dest_cpu;
1da177e4 5071
efc30814 5072restart:
1da177e4
LT
5073 /* On same node? */
5074 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5075 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5076 dest_cpu = any_online_cpu(mask);
5077
5078 /* On any allowed CPU? */
5079 if (dest_cpu == NR_CPUS)
48f24c4d 5080 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5081
5082 /* No more Mr. Nice Guy. */
5083 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5084 rq = task_rq_lock(p, &flags);
5085 cpus_setall(p->cpus_allowed);
5086 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5087 task_rq_unlock(rq, &flags);
1da177e4
LT
5088
5089 /*
5090 * Don't tell them about moving exiting tasks or
5091 * kernel threads (both mm NULL), since they never
5092 * leave kernel.
5093 */
48f24c4d 5094 if (p->mm && printk_ratelimit())
1da177e4
LT
5095 printk(KERN_INFO "process %d (%s) no "
5096 "longer affine to cpu%d\n",
48f24c4d 5097 p->pid, p->comm, dead_cpu);
1da177e4 5098 }
48f24c4d 5099 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5100 goto restart;
1da177e4
LT
5101}
5102
5103/*
5104 * While a dead CPU has no uninterruptible tasks queued at this point,
5105 * it might still have a nonzero ->nr_uninterruptible counter, because
5106 * for performance reasons the counter is not stricly tracking tasks to
5107 * their home CPUs. So we just add the counter to another CPU's counter,
5108 * to keep the global sum constant after CPU-down:
5109 */
70b97a7f 5110static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5111{
70b97a7f 5112 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5113 unsigned long flags;
5114
5115 local_irq_save(flags);
5116 double_rq_lock(rq_src, rq_dest);
5117 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5118 rq_src->nr_uninterruptible = 0;
5119 double_rq_unlock(rq_src, rq_dest);
5120 local_irq_restore(flags);
5121}
5122
5123/* Run through task list and migrate tasks from the dead cpu. */
5124static void migrate_live_tasks(int src_cpu)
5125{
48f24c4d 5126 struct task_struct *p, *t;
1da177e4
LT
5127
5128 write_lock_irq(&tasklist_lock);
5129
48f24c4d
IM
5130 do_each_thread(t, p) {
5131 if (p == current)
1da177e4
LT
5132 continue;
5133
48f24c4d
IM
5134 if (task_cpu(p) == src_cpu)
5135 move_task_off_dead_cpu(src_cpu, p);
5136 } while_each_thread(t, p);
1da177e4
LT
5137
5138 write_unlock_irq(&tasklist_lock);
5139}
5140
dd41f596
IM
5141/*
5142 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5143 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5144 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5145 */
5146void sched_idle_next(void)
5147{
48f24c4d 5148 int this_cpu = smp_processor_id();
70b97a7f 5149 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5150 struct task_struct *p = rq->idle;
5151 unsigned long flags;
5152
5153 /* cpu has to be offline */
48f24c4d 5154 BUG_ON(cpu_online(this_cpu));
1da177e4 5155
48f24c4d
IM
5156 /*
5157 * Strictly not necessary since rest of the CPUs are stopped by now
5158 * and interrupts disabled on the current cpu.
1da177e4
LT
5159 */
5160 spin_lock_irqsave(&rq->lock, flags);
5161
dd41f596 5162 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5163
5164 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5165 activate_idle_task(p, rq);
1da177e4
LT
5166
5167 spin_unlock_irqrestore(&rq->lock, flags);
5168}
5169
48f24c4d
IM
5170/*
5171 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5172 * offline.
5173 */
5174void idle_task_exit(void)
5175{
5176 struct mm_struct *mm = current->active_mm;
5177
5178 BUG_ON(cpu_online(smp_processor_id()));
5179
5180 if (mm != &init_mm)
5181 switch_mm(mm, &init_mm, current);
5182 mmdrop(mm);
5183}
5184
054b9108 5185/* called under rq->lock with disabled interrupts */
36c8b586 5186static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5187{
70b97a7f 5188 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5189
5190 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5191 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5192
5193 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5194 BUG_ON(p->state == TASK_DEAD);
1da177e4 5195
48f24c4d 5196 get_task_struct(p);
1da177e4
LT
5197
5198 /*
5199 * Drop lock around migration; if someone else moves it,
5200 * that's OK. No task can be added to this CPU, so iteration is
5201 * fine.
054b9108 5202 * NOTE: interrupts should be left disabled --dev@
1da177e4 5203 */
054b9108 5204 spin_unlock(&rq->lock);
48f24c4d 5205 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5206 spin_lock(&rq->lock);
1da177e4 5207
48f24c4d 5208 put_task_struct(p);
1da177e4
LT
5209}
5210
5211/* release_task() removes task from tasklist, so we won't find dead tasks. */
5212static void migrate_dead_tasks(unsigned int dead_cpu)
5213{
70b97a7f 5214 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5215 struct task_struct *next;
48f24c4d 5216
dd41f596
IM
5217 for ( ; ; ) {
5218 if (!rq->nr_running)
5219 break;
a8e504d2 5220 update_rq_clock(rq);
ff95f3df 5221 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5222 if (!next)
5223 break;
5224 migrate_dead(dead_cpu, next);
e692ab53 5225
1da177e4
LT
5226 }
5227}
5228#endif /* CONFIG_HOTPLUG_CPU */
5229
e692ab53
NP
5230#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5231
5232static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5233 {
5234 .procname = "sched_domain",
5235 .mode = 0755,
5236 },
e692ab53
NP
5237 {0,},
5238};
5239
5240static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5241 {
5242 .procname = "kernel",
5243 .mode = 0755,
5244 .child = sd_ctl_dir,
5245 },
e692ab53
NP
5246 {0,},
5247};
5248
5249static struct ctl_table *sd_alloc_ctl_entry(int n)
5250{
5251 struct ctl_table *entry =
5252 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5253
5254 BUG_ON(!entry);
5255 memset(entry, 0, n * sizeof(struct ctl_table));
5256
5257 return entry;
5258}
5259
5260static void
e0361851 5261set_table_entry(struct ctl_table *entry,
e692ab53
NP
5262 const char *procname, void *data, int maxlen,
5263 mode_t mode, proc_handler *proc_handler)
5264{
e692ab53
NP
5265 entry->procname = procname;
5266 entry->data = data;
5267 entry->maxlen = maxlen;
5268 entry->mode = mode;
5269 entry->proc_handler = proc_handler;
5270}
5271
5272static struct ctl_table *
5273sd_alloc_ctl_domain_table(struct sched_domain *sd)
5274{
5275 struct ctl_table *table = sd_alloc_ctl_entry(14);
5276
e0361851 5277 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5278 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5279 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5280 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5281 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5282 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5283 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5284 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5285 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5286 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5287 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5288 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5289 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5290 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5291 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5292 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5293 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5294 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5295 set_table_entry(&table[10], "cache_nice_tries",
e692ab53
NP
5296 &sd->cache_nice_tries,
5297 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5298 set_table_entry(&table[12], "flags", &sd->flags,
e692ab53
NP
5299 sizeof(int), 0644, proc_dointvec_minmax);
5300
5301 return table;
5302}
5303
5304static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5305{
5306 struct ctl_table *entry, *table;
5307 struct sched_domain *sd;
5308 int domain_num = 0, i;
5309 char buf[32];
5310
5311 for_each_domain(cpu, sd)
5312 domain_num++;
5313 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5314
5315 i = 0;
5316 for_each_domain(cpu, sd) {
5317 snprintf(buf, 32, "domain%d", i);
e692ab53
NP
5318 entry->procname = kstrdup(buf, GFP_KERNEL);
5319 entry->mode = 0755;
5320 entry->child = sd_alloc_ctl_domain_table(sd);
5321 entry++;
5322 i++;
5323 }
5324 return table;
5325}
5326
5327static struct ctl_table_header *sd_sysctl_header;
5328static void init_sched_domain_sysctl(void)
5329{
5330 int i, cpu_num = num_online_cpus();
5331 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5332 char buf[32];
5333
5334 sd_ctl_dir[0].child = entry;
5335
5336 for (i = 0; i < cpu_num; i++, entry++) {
5337 snprintf(buf, 32, "cpu%d", i);
e692ab53
NP
5338 entry->procname = kstrdup(buf, GFP_KERNEL);
5339 entry->mode = 0755;
5340 entry->child = sd_alloc_ctl_cpu_table(i);
5341 }
5342 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5343}
5344#else
5345static void init_sched_domain_sysctl(void)
5346{
5347}
5348#endif
5349
1da177e4
LT
5350/*
5351 * migration_call - callback that gets triggered when a CPU is added.
5352 * Here we can start up the necessary migration thread for the new CPU.
5353 */
48f24c4d
IM
5354static int __cpuinit
5355migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5356{
1da177e4 5357 struct task_struct *p;
48f24c4d 5358 int cpu = (long)hcpu;
1da177e4 5359 unsigned long flags;
70b97a7f 5360 struct rq *rq;
1da177e4
LT
5361
5362 switch (action) {
5be9361c
GS
5363 case CPU_LOCK_ACQUIRE:
5364 mutex_lock(&sched_hotcpu_mutex);
5365 break;
5366
1da177e4 5367 case CPU_UP_PREPARE:
8bb78442 5368 case CPU_UP_PREPARE_FROZEN:
dd41f596 5369 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5370 if (IS_ERR(p))
5371 return NOTIFY_BAD;
1da177e4
LT
5372 kthread_bind(p, cpu);
5373 /* Must be high prio: stop_machine expects to yield to it. */
5374 rq = task_rq_lock(p, &flags);
dd41f596 5375 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5376 task_rq_unlock(rq, &flags);
5377 cpu_rq(cpu)->migration_thread = p;
5378 break;
48f24c4d 5379
1da177e4 5380 case CPU_ONLINE:
8bb78442 5381 case CPU_ONLINE_FROZEN:
1da177e4
LT
5382 /* Strictly unneccessary, as first user will wake it. */
5383 wake_up_process(cpu_rq(cpu)->migration_thread);
5384 break;
48f24c4d 5385
1da177e4
LT
5386#ifdef CONFIG_HOTPLUG_CPU
5387 case CPU_UP_CANCELED:
8bb78442 5388 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5389 if (!cpu_rq(cpu)->migration_thread)
5390 break;
1da177e4 5391 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5392 kthread_bind(cpu_rq(cpu)->migration_thread,
5393 any_online_cpu(cpu_online_map));
1da177e4
LT
5394 kthread_stop(cpu_rq(cpu)->migration_thread);
5395 cpu_rq(cpu)->migration_thread = NULL;
5396 break;
48f24c4d 5397
1da177e4 5398 case CPU_DEAD:
8bb78442 5399 case CPU_DEAD_FROZEN:
1da177e4
LT
5400 migrate_live_tasks(cpu);
5401 rq = cpu_rq(cpu);
5402 kthread_stop(rq->migration_thread);
5403 rq->migration_thread = NULL;
5404 /* Idle task back to normal (off runqueue, low prio) */
5405 rq = task_rq_lock(rq->idle, &flags);
a8e504d2
IM
5406 update_rq_clock(rq);
5407 deactivate_task(rq, rq->idle, 0, rq->clock);
1da177e4 5408 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5409 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5410 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5411 migrate_dead_tasks(cpu);
5412 task_rq_unlock(rq, &flags);
5413 migrate_nr_uninterruptible(rq);
5414 BUG_ON(rq->nr_running != 0);
5415
5416 /* No need to migrate the tasks: it was best-effort if
5be9361c 5417 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5418 * the requestors. */
5419 spin_lock_irq(&rq->lock);
5420 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5421 struct migration_req *req;
5422
1da177e4 5423 req = list_entry(rq->migration_queue.next,
70b97a7f 5424 struct migration_req, list);
1da177e4
LT
5425 list_del_init(&req->list);
5426 complete(&req->done);
5427 }
5428 spin_unlock_irq(&rq->lock);
5429 break;
5430#endif
5be9361c
GS
5431 case CPU_LOCK_RELEASE:
5432 mutex_unlock(&sched_hotcpu_mutex);
5433 break;
1da177e4
LT
5434 }
5435 return NOTIFY_OK;
5436}
5437
5438/* Register at highest priority so that task migration (migrate_all_tasks)
5439 * happens before everything else.
5440 */
26c2143b 5441static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5442 .notifier_call = migration_call,
5443 .priority = 10
5444};
5445
5446int __init migration_init(void)
5447{
5448 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5449 int err;
48f24c4d
IM
5450
5451 /* Start one for the boot CPU: */
07dccf33
AM
5452 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5453 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5454 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5455 register_cpu_notifier(&migration_notifier);
48f24c4d 5456
1da177e4
LT
5457 return 0;
5458}
5459#endif
5460
5461#ifdef CONFIG_SMP
476f3534
CL
5462
5463/* Number of possible processor ids */
5464int nr_cpu_ids __read_mostly = NR_CPUS;
5465EXPORT_SYMBOL(nr_cpu_ids);
5466
1a20ff27 5467#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5468#ifdef SCHED_DOMAIN_DEBUG
5469static void sched_domain_debug(struct sched_domain *sd, int cpu)
5470{
5471 int level = 0;
5472
41c7ce9a
NP
5473 if (!sd) {
5474 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5475 return;
5476 }
5477
1da177e4
LT
5478 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5479
5480 do {
5481 int i;
5482 char str[NR_CPUS];
5483 struct sched_group *group = sd->groups;
5484 cpumask_t groupmask;
5485
5486 cpumask_scnprintf(str, NR_CPUS, sd->span);
5487 cpus_clear(groupmask);
5488
5489 printk(KERN_DEBUG);
5490 for (i = 0; i < level + 1; i++)
5491 printk(" ");
5492 printk("domain %d: ", level);
5493
5494 if (!(sd->flags & SD_LOAD_BALANCE)) {
5495 printk("does not load-balance\n");
5496 if (sd->parent)
33859f7f
MOS
5497 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5498 " has parent");
1da177e4
LT
5499 break;
5500 }
5501
5502 printk("span %s\n", str);
5503
5504 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5505 printk(KERN_ERR "ERROR: domain->span does not contain "
5506 "CPU%d\n", cpu);
1da177e4 5507 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5508 printk(KERN_ERR "ERROR: domain->groups does not contain"
5509 " CPU%d\n", cpu);
1da177e4
LT
5510
5511 printk(KERN_DEBUG);
5512 for (i = 0; i < level + 2; i++)
5513 printk(" ");
5514 printk("groups:");
5515 do {
5516 if (!group) {
5517 printk("\n");
5518 printk(KERN_ERR "ERROR: group is NULL\n");
5519 break;
5520 }
5521
5517d86b 5522 if (!group->__cpu_power) {
1da177e4 5523 printk("\n");
33859f7f
MOS
5524 printk(KERN_ERR "ERROR: domain->cpu_power not "
5525 "set\n");
1da177e4
LT
5526 }
5527
5528 if (!cpus_weight(group->cpumask)) {
5529 printk("\n");
5530 printk(KERN_ERR "ERROR: empty group\n");
5531 }
5532
5533 if (cpus_intersects(groupmask, group->cpumask)) {
5534 printk("\n");
5535 printk(KERN_ERR "ERROR: repeated CPUs\n");
5536 }
5537
5538 cpus_or(groupmask, groupmask, group->cpumask);
5539
5540 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5541 printk(" %s", str);
5542
5543 group = group->next;
5544 } while (group != sd->groups);
5545 printk("\n");
5546
5547 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5548 printk(KERN_ERR "ERROR: groups don't span "
5549 "domain->span\n");
1da177e4
LT
5550
5551 level++;
5552 sd = sd->parent;
33859f7f
MOS
5553 if (!sd)
5554 continue;
1da177e4 5555
33859f7f
MOS
5556 if (!cpus_subset(groupmask, sd->span))
5557 printk(KERN_ERR "ERROR: parent span is not a superset "
5558 "of domain->span\n");
1da177e4
LT
5559
5560 } while (sd);
5561}
5562#else
48f24c4d 5563# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5564#endif
5565
1a20ff27 5566static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5567{
5568 if (cpus_weight(sd->span) == 1)
5569 return 1;
5570
5571 /* Following flags need at least 2 groups */
5572 if (sd->flags & (SD_LOAD_BALANCE |
5573 SD_BALANCE_NEWIDLE |
5574 SD_BALANCE_FORK |
89c4710e
SS
5575 SD_BALANCE_EXEC |
5576 SD_SHARE_CPUPOWER |
5577 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5578 if (sd->groups != sd->groups->next)
5579 return 0;
5580 }
5581
5582 /* Following flags don't use groups */
5583 if (sd->flags & (SD_WAKE_IDLE |
5584 SD_WAKE_AFFINE |
5585 SD_WAKE_BALANCE))
5586 return 0;
5587
5588 return 1;
5589}
5590
48f24c4d
IM
5591static int
5592sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5593{
5594 unsigned long cflags = sd->flags, pflags = parent->flags;
5595
5596 if (sd_degenerate(parent))
5597 return 1;
5598
5599 if (!cpus_equal(sd->span, parent->span))
5600 return 0;
5601
5602 /* Does parent contain flags not in child? */
5603 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5604 if (cflags & SD_WAKE_AFFINE)
5605 pflags &= ~SD_WAKE_BALANCE;
5606 /* Flags needing groups don't count if only 1 group in parent */
5607 if (parent->groups == parent->groups->next) {
5608 pflags &= ~(SD_LOAD_BALANCE |
5609 SD_BALANCE_NEWIDLE |
5610 SD_BALANCE_FORK |
89c4710e
SS
5611 SD_BALANCE_EXEC |
5612 SD_SHARE_CPUPOWER |
5613 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5614 }
5615 if (~cflags & pflags)
5616 return 0;
5617
5618 return 1;
5619}
5620
1da177e4
LT
5621/*
5622 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5623 * hold the hotplug lock.
5624 */
9c1cfda2 5625static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5626{
70b97a7f 5627 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5628 struct sched_domain *tmp;
5629
5630 /* Remove the sched domains which do not contribute to scheduling. */
5631 for (tmp = sd; tmp; tmp = tmp->parent) {
5632 struct sched_domain *parent = tmp->parent;
5633 if (!parent)
5634 break;
1a848870 5635 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5636 tmp->parent = parent->parent;
1a848870
SS
5637 if (parent->parent)
5638 parent->parent->child = tmp;
5639 }
245af2c7
SS
5640 }
5641
1a848870 5642 if (sd && sd_degenerate(sd)) {
245af2c7 5643 sd = sd->parent;
1a848870
SS
5644 if (sd)
5645 sd->child = NULL;
5646 }
1da177e4
LT
5647
5648 sched_domain_debug(sd, cpu);
5649
674311d5 5650 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5651}
5652
5653/* cpus with isolated domains */
67af63a6 5654static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5655
5656/* Setup the mask of cpus configured for isolated domains */
5657static int __init isolated_cpu_setup(char *str)
5658{
5659 int ints[NR_CPUS], i;
5660
5661 str = get_options(str, ARRAY_SIZE(ints), ints);
5662 cpus_clear(cpu_isolated_map);
5663 for (i = 1; i <= ints[0]; i++)
5664 if (ints[i] < NR_CPUS)
5665 cpu_set(ints[i], cpu_isolated_map);
5666 return 1;
5667}
5668
5669__setup ("isolcpus=", isolated_cpu_setup);
5670
5671/*
6711cab4
SS
5672 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5673 * to a function which identifies what group(along with sched group) a CPU
5674 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5675 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5676 *
5677 * init_sched_build_groups will build a circular linked list of the groups
5678 * covered by the given span, and will set each group's ->cpumask correctly,
5679 * and ->cpu_power to 0.
5680 */
a616058b 5681static void
6711cab4
SS
5682init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5683 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5684 struct sched_group **sg))
1da177e4
LT
5685{
5686 struct sched_group *first = NULL, *last = NULL;
5687 cpumask_t covered = CPU_MASK_NONE;
5688 int i;
5689
5690 for_each_cpu_mask(i, span) {
6711cab4
SS
5691 struct sched_group *sg;
5692 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5693 int j;
5694
5695 if (cpu_isset(i, covered))
5696 continue;
5697
5698 sg->cpumask = CPU_MASK_NONE;
5517d86b 5699 sg->__cpu_power = 0;
1da177e4
LT
5700
5701 for_each_cpu_mask(j, span) {
6711cab4 5702 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5703 continue;
5704
5705 cpu_set(j, covered);
5706 cpu_set(j, sg->cpumask);
5707 }
5708 if (!first)
5709 first = sg;
5710 if (last)
5711 last->next = sg;
5712 last = sg;
5713 }
5714 last->next = first;
5715}
5716
9c1cfda2 5717#define SD_NODES_PER_DOMAIN 16
1da177e4 5718
9c1cfda2 5719#ifdef CONFIG_NUMA
198e2f18 5720
9c1cfda2
JH
5721/**
5722 * find_next_best_node - find the next node to include in a sched_domain
5723 * @node: node whose sched_domain we're building
5724 * @used_nodes: nodes already in the sched_domain
5725 *
5726 * Find the next node to include in a given scheduling domain. Simply
5727 * finds the closest node not already in the @used_nodes map.
5728 *
5729 * Should use nodemask_t.
5730 */
5731static int find_next_best_node(int node, unsigned long *used_nodes)
5732{
5733 int i, n, val, min_val, best_node = 0;
5734
5735 min_val = INT_MAX;
5736
5737 for (i = 0; i < MAX_NUMNODES; i++) {
5738 /* Start at @node */
5739 n = (node + i) % MAX_NUMNODES;
5740
5741 if (!nr_cpus_node(n))
5742 continue;
5743
5744 /* Skip already used nodes */
5745 if (test_bit(n, used_nodes))
5746 continue;
5747
5748 /* Simple min distance search */
5749 val = node_distance(node, n);
5750
5751 if (val < min_val) {
5752 min_val = val;
5753 best_node = n;
5754 }
5755 }
5756
5757 set_bit(best_node, used_nodes);
5758 return best_node;
5759}
5760
5761/**
5762 * sched_domain_node_span - get a cpumask for a node's sched_domain
5763 * @node: node whose cpumask we're constructing
5764 * @size: number of nodes to include in this span
5765 *
5766 * Given a node, construct a good cpumask for its sched_domain to span. It
5767 * should be one that prevents unnecessary balancing, but also spreads tasks
5768 * out optimally.
5769 */
5770static cpumask_t sched_domain_node_span(int node)
5771{
9c1cfda2 5772 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5773 cpumask_t span, nodemask;
5774 int i;
9c1cfda2
JH
5775
5776 cpus_clear(span);
5777 bitmap_zero(used_nodes, MAX_NUMNODES);
5778
5779 nodemask = node_to_cpumask(node);
5780 cpus_or(span, span, nodemask);
5781 set_bit(node, used_nodes);
5782
5783 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5784 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5785
9c1cfda2
JH
5786 nodemask = node_to_cpumask(next_node);
5787 cpus_or(span, span, nodemask);
5788 }
5789
5790 return span;
5791}
5792#endif
5793
5c45bf27 5794int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5795
9c1cfda2 5796/*
48f24c4d 5797 * SMT sched-domains:
9c1cfda2 5798 */
1da177e4
LT
5799#ifdef CONFIG_SCHED_SMT
5800static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5801static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5802
6711cab4
SS
5803static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5804 struct sched_group **sg)
1da177e4 5805{
6711cab4
SS
5806 if (sg)
5807 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5808 return cpu;
5809}
5810#endif
5811
48f24c4d
IM
5812/*
5813 * multi-core sched-domains:
5814 */
1e9f28fa
SS
5815#ifdef CONFIG_SCHED_MC
5816static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5817static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5818#endif
5819
5820#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5821static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5822 struct sched_group **sg)
1e9f28fa 5823{
6711cab4 5824 int group;
a616058b
SS
5825 cpumask_t mask = cpu_sibling_map[cpu];
5826 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5827 group = first_cpu(mask);
5828 if (sg)
5829 *sg = &per_cpu(sched_group_core, group);
5830 return group;
1e9f28fa
SS
5831}
5832#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5833static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5834 struct sched_group **sg)
1e9f28fa 5835{
6711cab4
SS
5836 if (sg)
5837 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5838 return cpu;
5839}
5840#endif
5841
1da177e4 5842static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5843static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5844
6711cab4
SS
5845static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5846 struct sched_group **sg)
1da177e4 5847{
6711cab4 5848 int group;
48f24c4d 5849#ifdef CONFIG_SCHED_MC
1e9f28fa 5850 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5851 cpus_and(mask, mask, *cpu_map);
6711cab4 5852 group = first_cpu(mask);
1e9f28fa 5853#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5854 cpumask_t mask = cpu_sibling_map[cpu];
5855 cpus_and(mask, mask, *cpu_map);
6711cab4 5856 group = first_cpu(mask);
1da177e4 5857#else
6711cab4 5858 group = cpu;
1da177e4 5859#endif
6711cab4
SS
5860 if (sg)
5861 *sg = &per_cpu(sched_group_phys, group);
5862 return group;
1da177e4
LT
5863}
5864
5865#ifdef CONFIG_NUMA
1da177e4 5866/*
9c1cfda2
JH
5867 * The init_sched_build_groups can't handle what we want to do with node
5868 * groups, so roll our own. Now each node has its own list of groups which
5869 * gets dynamically allocated.
1da177e4 5870 */
9c1cfda2 5871static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5872static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5873
9c1cfda2 5874static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5875static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5876
6711cab4
SS
5877static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5878 struct sched_group **sg)
9c1cfda2 5879{
6711cab4
SS
5880 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5881 int group;
5882
5883 cpus_and(nodemask, nodemask, *cpu_map);
5884 group = first_cpu(nodemask);
5885
5886 if (sg)
5887 *sg = &per_cpu(sched_group_allnodes, group);
5888 return group;
1da177e4 5889}
6711cab4 5890
08069033
SS
5891static void init_numa_sched_groups_power(struct sched_group *group_head)
5892{
5893 struct sched_group *sg = group_head;
5894 int j;
5895
5896 if (!sg)
5897 return;
5898next_sg:
5899 for_each_cpu_mask(j, sg->cpumask) {
5900 struct sched_domain *sd;
5901
5902 sd = &per_cpu(phys_domains, j);
5903 if (j != first_cpu(sd->groups->cpumask)) {
5904 /*
5905 * Only add "power" once for each
5906 * physical package.
5907 */
5908 continue;
5909 }
5910
5517d86b 5911 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5912 }
5913 sg = sg->next;
5914 if (sg != group_head)
5915 goto next_sg;
5916}
1da177e4
LT
5917#endif
5918
a616058b 5919#ifdef CONFIG_NUMA
51888ca2
SV
5920/* Free memory allocated for various sched_group structures */
5921static void free_sched_groups(const cpumask_t *cpu_map)
5922{
a616058b 5923 int cpu, i;
51888ca2
SV
5924
5925 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5926 struct sched_group **sched_group_nodes
5927 = sched_group_nodes_bycpu[cpu];
5928
51888ca2
SV
5929 if (!sched_group_nodes)
5930 continue;
5931
5932 for (i = 0; i < MAX_NUMNODES; i++) {
5933 cpumask_t nodemask = node_to_cpumask(i);
5934 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5935
5936 cpus_and(nodemask, nodemask, *cpu_map);
5937 if (cpus_empty(nodemask))
5938 continue;
5939
5940 if (sg == NULL)
5941 continue;
5942 sg = sg->next;
5943next_sg:
5944 oldsg = sg;
5945 sg = sg->next;
5946 kfree(oldsg);
5947 if (oldsg != sched_group_nodes[i])
5948 goto next_sg;
5949 }
5950 kfree(sched_group_nodes);
5951 sched_group_nodes_bycpu[cpu] = NULL;
5952 }
51888ca2 5953}
a616058b
SS
5954#else
5955static void free_sched_groups(const cpumask_t *cpu_map)
5956{
5957}
5958#endif
51888ca2 5959
89c4710e
SS
5960/*
5961 * Initialize sched groups cpu_power.
5962 *
5963 * cpu_power indicates the capacity of sched group, which is used while
5964 * distributing the load between different sched groups in a sched domain.
5965 * Typically cpu_power for all the groups in a sched domain will be same unless
5966 * there are asymmetries in the topology. If there are asymmetries, group
5967 * having more cpu_power will pickup more load compared to the group having
5968 * less cpu_power.
5969 *
5970 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5971 * the maximum number of tasks a group can handle in the presence of other idle
5972 * or lightly loaded groups in the same sched domain.
5973 */
5974static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5975{
5976 struct sched_domain *child;
5977 struct sched_group *group;
5978
5979 WARN_ON(!sd || !sd->groups);
5980
5981 if (cpu != first_cpu(sd->groups->cpumask))
5982 return;
5983
5984 child = sd->child;
5985
5517d86b
ED
5986 sd->groups->__cpu_power = 0;
5987
89c4710e
SS
5988 /*
5989 * For perf policy, if the groups in child domain share resources
5990 * (for example cores sharing some portions of the cache hierarchy
5991 * or SMT), then set this domain groups cpu_power such that each group
5992 * can handle only one task, when there are other idle groups in the
5993 * same sched domain.
5994 */
5995 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5996 (child->flags &
5997 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5998 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5999 return;
6000 }
6001
89c4710e
SS
6002 /*
6003 * add cpu_power of each child group to this groups cpu_power
6004 */
6005 group = child->groups;
6006 do {
5517d86b 6007 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6008 group = group->next;
6009 } while (group != child->groups);
6010}
6011
1da177e4 6012/*
1a20ff27
DG
6013 * Build sched domains for a given set of cpus and attach the sched domains
6014 * to the individual cpus
1da177e4 6015 */
51888ca2 6016static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6017{
6018 int i;
d1b55138
JH
6019#ifdef CONFIG_NUMA
6020 struct sched_group **sched_group_nodes = NULL;
6711cab4 6021 int sd_allnodes = 0;
d1b55138
JH
6022
6023 /*
6024 * Allocate the per-node list of sched groups
6025 */
dd41f596 6026 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6027 GFP_KERNEL);
d1b55138
JH
6028 if (!sched_group_nodes) {
6029 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6030 return -ENOMEM;
d1b55138
JH
6031 }
6032 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6033#endif
1da177e4
LT
6034
6035 /*
1a20ff27 6036 * Set up domains for cpus specified by the cpu_map.
1da177e4 6037 */
1a20ff27 6038 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6039 struct sched_domain *sd = NULL, *p;
6040 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6041
1a20ff27 6042 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6043
6044#ifdef CONFIG_NUMA
dd41f596
IM
6045 if (cpus_weight(*cpu_map) >
6046 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6047 sd = &per_cpu(allnodes_domains, i);
6048 *sd = SD_ALLNODES_INIT;
6049 sd->span = *cpu_map;
6711cab4 6050 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6051 p = sd;
6711cab4 6052 sd_allnodes = 1;
9c1cfda2
JH
6053 } else
6054 p = NULL;
6055
1da177e4 6056 sd = &per_cpu(node_domains, i);
1da177e4 6057 *sd = SD_NODE_INIT;
9c1cfda2
JH
6058 sd->span = sched_domain_node_span(cpu_to_node(i));
6059 sd->parent = p;
1a848870
SS
6060 if (p)
6061 p->child = sd;
9c1cfda2 6062 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6063#endif
6064
6065 p = sd;
6066 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6067 *sd = SD_CPU_INIT;
6068 sd->span = nodemask;
6069 sd->parent = p;
1a848870
SS
6070 if (p)
6071 p->child = sd;
6711cab4 6072 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6073
1e9f28fa
SS
6074#ifdef CONFIG_SCHED_MC
6075 p = sd;
6076 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6077 *sd = SD_MC_INIT;
6078 sd->span = cpu_coregroup_map(i);
6079 cpus_and(sd->span, sd->span, *cpu_map);
6080 sd->parent = p;
1a848870 6081 p->child = sd;
6711cab4 6082 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6083#endif
6084
1da177e4
LT
6085#ifdef CONFIG_SCHED_SMT
6086 p = sd;
6087 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6088 *sd = SD_SIBLING_INIT;
6089 sd->span = cpu_sibling_map[i];
1a20ff27 6090 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6091 sd->parent = p;
1a848870 6092 p->child = sd;
6711cab4 6093 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6094#endif
6095 }
6096
6097#ifdef CONFIG_SCHED_SMT
6098 /* Set up CPU (sibling) groups */
9c1cfda2 6099 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6100 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6101 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6102 if (i != first_cpu(this_sibling_map))
6103 continue;
6104
dd41f596
IM
6105 init_sched_build_groups(this_sibling_map, cpu_map,
6106 &cpu_to_cpu_group);
1da177e4
LT
6107 }
6108#endif
6109
1e9f28fa
SS
6110#ifdef CONFIG_SCHED_MC
6111 /* Set up multi-core groups */
6112 for_each_cpu_mask(i, *cpu_map) {
6113 cpumask_t this_core_map = cpu_coregroup_map(i);
6114 cpus_and(this_core_map, this_core_map, *cpu_map);
6115 if (i != first_cpu(this_core_map))
6116 continue;
dd41f596
IM
6117 init_sched_build_groups(this_core_map, cpu_map,
6118 &cpu_to_core_group);
1e9f28fa
SS
6119 }
6120#endif
6121
1da177e4
LT
6122 /* Set up physical groups */
6123 for (i = 0; i < MAX_NUMNODES; i++) {
6124 cpumask_t nodemask = node_to_cpumask(i);
6125
1a20ff27 6126 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6127 if (cpus_empty(nodemask))
6128 continue;
6129
6711cab4 6130 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6131 }
6132
6133#ifdef CONFIG_NUMA
6134 /* Set up node groups */
6711cab4 6135 if (sd_allnodes)
dd41f596
IM
6136 init_sched_build_groups(*cpu_map, cpu_map,
6137 &cpu_to_allnodes_group);
9c1cfda2
JH
6138
6139 for (i = 0; i < MAX_NUMNODES; i++) {
6140 /* Set up node groups */
6141 struct sched_group *sg, *prev;
6142 cpumask_t nodemask = node_to_cpumask(i);
6143 cpumask_t domainspan;
6144 cpumask_t covered = CPU_MASK_NONE;
6145 int j;
6146
6147 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6148 if (cpus_empty(nodemask)) {
6149 sched_group_nodes[i] = NULL;
9c1cfda2 6150 continue;
d1b55138 6151 }
9c1cfda2
JH
6152
6153 domainspan = sched_domain_node_span(i);
6154 cpus_and(domainspan, domainspan, *cpu_map);
6155
15f0b676 6156 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6157 if (!sg) {
6158 printk(KERN_WARNING "Can not alloc domain group for "
6159 "node %d\n", i);
6160 goto error;
6161 }
9c1cfda2
JH
6162 sched_group_nodes[i] = sg;
6163 for_each_cpu_mask(j, nodemask) {
6164 struct sched_domain *sd;
9761eea8 6165
9c1cfda2
JH
6166 sd = &per_cpu(node_domains, j);
6167 sd->groups = sg;
9c1cfda2 6168 }
5517d86b 6169 sg->__cpu_power = 0;
9c1cfda2 6170 sg->cpumask = nodemask;
51888ca2 6171 sg->next = sg;
9c1cfda2
JH
6172 cpus_or(covered, covered, nodemask);
6173 prev = sg;
6174
6175 for (j = 0; j < MAX_NUMNODES; j++) {
6176 cpumask_t tmp, notcovered;
6177 int n = (i + j) % MAX_NUMNODES;
6178
6179 cpus_complement(notcovered, covered);
6180 cpus_and(tmp, notcovered, *cpu_map);
6181 cpus_and(tmp, tmp, domainspan);
6182 if (cpus_empty(tmp))
6183 break;
6184
6185 nodemask = node_to_cpumask(n);
6186 cpus_and(tmp, tmp, nodemask);
6187 if (cpus_empty(tmp))
6188 continue;
6189
15f0b676
SV
6190 sg = kmalloc_node(sizeof(struct sched_group),
6191 GFP_KERNEL, i);
9c1cfda2
JH
6192 if (!sg) {
6193 printk(KERN_WARNING
6194 "Can not alloc domain group for node %d\n", j);
51888ca2 6195 goto error;
9c1cfda2 6196 }
5517d86b 6197 sg->__cpu_power = 0;
9c1cfda2 6198 sg->cpumask = tmp;
51888ca2 6199 sg->next = prev->next;
9c1cfda2
JH
6200 cpus_or(covered, covered, tmp);
6201 prev->next = sg;
6202 prev = sg;
6203 }
9c1cfda2 6204 }
1da177e4
LT
6205#endif
6206
6207 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6208#ifdef CONFIG_SCHED_SMT
1a20ff27 6209 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6210 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6211
89c4710e 6212 init_sched_groups_power(i, sd);
5c45bf27 6213 }
1da177e4 6214#endif
1e9f28fa 6215#ifdef CONFIG_SCHED_MC
5c45bf27 6216 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6217 struct sched_domain *sd = &per_cpu(core_domains, i);
6218
89c4710e 6219 init_sched_groups_power(i, sd);
5c45bf27
SS
6220 }
6221#endif
1e9f28fa 6222
5c45bf27 6223 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6224 struct sched_domain *sd = &per_cpu(phys_domains, i);
6225
89c4710e 6226 init_sched_groups_power(i, sd);
1da177e4
LT
6227 }
6228
9c1cfda2 6229#ifdef CONFIG_NUMA
08069033
SS
6230 for (i = 0; i < MAX_NUMNODES; i++)
6231 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6232
6711cab4
SS
6233 if (sd_allnodes) {
6234 struct sched_group *sg;
f712c0c7 6235
6711cab4 6236 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6237 init_numa_sched_groups_power(sg);
6238 }
9c1cfda2
JH
6239#endif
6240
1da177e4 6241 /* Attach the domains */
1a20ff27 6242 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6243 struct sched_domain *sd;
6244#ifdef CONFIG_SCHED_SMT
6245 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6246#elif defined(CONFIG_SCHED_MC)
6247 sd = &per_cpu(core_domains, i);
1da177e4
LT
6248#else
6249 sd = &per_cpu(phys_domains, i);
6250#endif
6251 cpu_attach_domain(sd, i);
6252 }
51888ca2
SV
6253
6254 return 0;
6255
a616058b 6256#ifdef CONFIG_NUMA
51888ca2
SV
6257error:
6258 free_sched_groups(cpu_map);
6259 return -ENOMEM;
a616058b 6260#endif
1da177e4 6261}
1a20ff27
DG
6262/*
6263 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6264 */
51888ca2 6265static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6266{
6267 cpumask_t cpu_default_map;
51888ca2 6268 int err;
1da177e4 6269
1a20ff27
DG
6270 /*
6271 * Setup mask for cpus without special case scheduling requirements.
6272 * For now this just excludes isolated cpus, but could be used to
6273 * exclude other special cases in the future.
6274 */
6275 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6276
51888ca2
SV
6277 err = build_sched_domains(&cpu_default_map);
6278
6279 return err;
1a20ff27
DG
6280}
6281
6282static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6283{
51888ca2 6284 free_sched_groups(cpu_map);
9c1cfda2 6285}
1da177e4 6286
1a20ff27
DG
6287/*
6288 * Detach sched domains from a group of cpus specified in cpu_map
6289 * These cpus will now be attached to the NULL domain
6290 */
858119e1 6291static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6292{
6293 int i;
6294
6295 for_each_cpu_mask(i, *cpu_map)
6296 cpu_attach_domain(NULL, i);
6297 synchronize_sched();
6298 arch_destroy_sched_domains(cpu_map);
6299}
6300
6301/*
6302 * Partition sched domains as specified by the cpumasks below.
6303 * This attaches all cpus from the cpumasks to the NULL domain,
6304 * waits for a RCU quiescent period, recalculates sched
6305 * domain information and then attaches them back to the
6306 * correct sched domains
6307 * Call with hotplug lock held
6308 */
51888ca2 6309int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6310{
6311 cpumask_t change_map;
51888ca2 6312 int err = 0;
1a20ff27
DG
6313
6314 cpus_and(*partition1, *partition1, cpu_online_map);
6315 cpus_and(*partition2, *partition2, cpu_online_map);
6316 cpus_or(change_map, *partition1, *partition2);
6317
6318 /* Detach sched domains from all of the affected cpus */
6319 detach_destroy_domains(&change_map);
6320 if (!cpus_empty(*partition1))
51888ca2
SV
6321 err = build_sched_domains(partition1);
6322 if (!err && !cpus_empty(*partition2))
6323 err = build_sched_domains(partition2);
6324
6325 return err;
1a20ff27
DG
6326}
6327
5c45bf27
SS
6328#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6329int arch_reinit_sched_domains(void)
6330{
6331 int err;
6332
5be9361c 6333 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6334 detach_destroy_domains(&cpu_online_map);
6335 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6336 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6337
6338 return err;
6339}
6340
6341static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6342{
6343 int ret;
6344
6345 if (buf[0] != '0' && buf[0] != '1')
6346 return -EINVAL;
6347
6348 if (smt)
6349 sched_smt_power_savings = (buf[0] == '1');
6350 else
6351 sched_mc_power_savings = (buf[0] == '1');
6352
6353 ret = arch_reinit_sched_domains();
6354
6355 return ret ? ret : count;
6356}
6357
6358int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6359{
6360 int err = 0;
48f24c4d 6361
5c45bf27
SS
6362#ifdef CONFIG_SCHED_SMT
6363 if (smt_capable())
6364 err = sysfs_create_file(&cls->kset.kobj,
6365 &attr_sched_smt_power_savings.attr);
6366#endif
6367#ifdef CONFIG_SCHED_MC
6368 if (!err && mc_capable())
6369 err = sysfs_create_file(&cls->kset.kobj,
6370 &attr_sched_mc_power_savings.attr);
6371#endif
6372 return err;
6373}
6374#endif
6375
6376#ifdef CONFIG_SCHED_MC
6377static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6378{
6379 return sprintf(page, "%u\n", sched_mc_power_savings);
6380}
48f24c4d
IM
6381static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6382 const char *buf, size_t count)
5c45bf27
SS
6383{
6384 return sched_power_savings_store(buf, count, 0);
6385}
6386SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6387 sched_mc_power_savings_store);
6388#endif
6389
6390#ifdef CONFIG_SCHED_SMT
6391static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6392{
6393 return sprintf(page, "%u\n", sched_smt_power_savings);
6394}
48f24c4d
IM
6395static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6396 const char *buf, size_t count)
5c45bf27
SS
6397{
6398 return sched_power_savings_store(buf, count, 1);
6399}
6400SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6401 sched_smt_power_savings_store);
6402#endif
6403
1da177e4
LT
6404/*
6405 * Force a reinitialization of the sched domains hierarchy. The domains
6406 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6407 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6408 * which will prevent rebalancing while the sched domains are recalculated.
6409 */
6410static int update_sched_domains(struct notifier_block *nfb,
6411 unsigned long action, void *hcpu)
6412{
1da177e4
LT
6413 switch (action) {
6414 case CPU_UP_PREPARE:
8bb78442 6415 case CPU_UP_PREPARE_FROZEN:
1da177e4 6416 case CPU_DOWN_PREPARE:
8bb78442 6417 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6418 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6419 return NOTIFY_OK;
6420
6421 case CPU_UP_CANCELED:
8bb78442 6422 case CPU_UP_CANCELED_FROZEN:
1da177e4 6423 case CPU_DOWN_FAILED:
8bb78442 6424 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6425 case CPU_ONLINE:
8bb78442 6426 case CPU_ONLINE_FROZEN:
1da177e4 6427 case CPU_DEAD:
8bb78442 6428 case CPU_DEAD_FROZEN:
1da177e4
LT
6429 /*
6430 * Fall through and re-initialise the domains.
6431 */
6432 break;
6433 default:
6434 return NOTIFY_DONE;
6435 }
6436
6437 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6438 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6439
6440 return NOTIFY_OK;
6441}
1da177e4
LT
6442
6443void __init sched_init_smp(void)
6444{
5c1e1767
NP
6445 cpumask_t non_isolated_cpus;
6446
5be9361c 6447 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6448 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6449 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6450 if (cpus_empty(non_isolated_cpus))
6451 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6452 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6453 /* XXX: Theoretical race here - CPU may be hotplugged now */
6454 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6455
e692ab53
NP
6456 init_sched_domain_sysctl();
6457
5c1e1767
NP
6458 /* Move init over to a non-isolated CPU */
6459 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6460 BUG();
dd41f596 6461 sched_init_granularity();
1da177e4
LT
6462}
6463#else
6464void __init sched_init_smp(void)
6465{
dd41f596 6466 sched_init_granularity();
1da177e4
LT
6467}
6468#endif /* CONFIG_SMP */
6469
6470int in_sched_functions(unsigned long addr)
6471{
6472 /* Linker adds these: start and end of __sched functions */
6473 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6474
1da177e4
LT
6475 return in_lock_functions(addr) ||
6476 (addr >= (unsigned long)__sched_text_start
6477 && addr < (unsigned long)__sched_text_end);
6478}
6479
dd41f596
IM
6480static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6481{
6482 cfs_rq->tasks_timeline = RB_ROOT;
6483 cfs_rq->fair_clock = 1;
6484#ifdef CONFIG_FAIR_GROUP_SCHED
6485 cfs_rq->rq = rq;
6486#endif
6487}
6488
1da177e4
LT
6489void __init sched_init(void)
6490{
dd41f596 6491 u64 now = sched_clock();
476f3534 6492 int highest_cpu = 0;
dd41f596
IM
6493 int i, j;
6494
6495 /*
6496 * Link up the scheduling class hierarchy:
6497 */
6498 rt_sched_class.next = &fair_sched_class;
6499 fair_sched_class.next = &idle_sched_class;
6500 idle_sched_class.next = NULL;
1da177e4 6501
0a945022 6502 for_each_possible_cpu(i) {
dd41f596 6503 struct rt_prio_array *array;
70b97a7f 6504 struct rq *rq;
1da177e4
LT
6505
6506 rq = cpu_rq(i);
6507 spin_lock_init(&rq->lock);
fcb99371 6508 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6509 rq->nr_running = 0;
dd41f596
IM
6510 rq->clock = 1;
6511 init_cfs_rq(&rq->cfs, rq);
6512#ifdef CONFIG_FAIR_GROUP_SCHED
6513 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6514 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6515#endif
6516 rq->ls.load_update_last = now;
6517 rq->ls.load_update_start = now;
1da177e4 6518
dd41f596
IM
6519 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6520 rq->cpu_load[j] = 0;
1da177e4 6521#ifdef CONFIG_SMP
41c7ce9a 6522 rq->sd = NULL;
1da177e4 6523 rq->active_balance = 0;
dd41f596 6524 rq->next_balance = jiffies;
1da177e4 6525 rq->push_cpu = 0;
0a2966b4 6526 rq->cpu = i;
1da177e4
LT
6527 rq->migration_thread = NULL;
6528 INIT_LIST_HEAD(&rq->migration_queue);
6529#endif
6530 atomic_set(&rq->nr_iowait, 0);
6531
dd41f596
IM
6532 array = &rq->rt.active;
6533 for (j = 0; j < MAX_RT_PRIO; j++) {
6534 INIT_LIST_HEAD(array->queue + j);
6535 __clear_bit(j, array->bitmap);
1da177e4 6536 }
476f3534 6537 highest_cpu = i;
dd41f596
IM
6538 /* delimiter for bitsearch: */
6539 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6540 }
6541
2dd73a4f 6542 set_load_weight(&init_task);
b50f60ce 6543
e107be36
AK
6544#ifdef CONFIG_PREEMPT_NOTIFIERS
6545 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6546#endif
6547
c9819f45 6548#ifdef CONFIG_SMP
476f3534 6549 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6550 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6551#endif
6552
b50f60ce
HC
6553#ifdef CONFIG_RT_MUTEXES
6554 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6555#endif
6556
1da177e4
LT
6557 /*
6558 * The boot idle thread does lazy MMU switching as well:
6559 */
6560 atomic_inc(&init_mm.mm_count);
6561 enter_lazy_tlb(&init_mm, current);
6562
6563 /*
6564 * Make us the idle thread. Technically, schedule() should not be
6565 * called from this thread, however somewhere below it might be,
6566 * but because we are the idle thread, we just pick up running again
6567 * when this runqueue becomes "idle".
6568 */
6569 init_idle(current, smp_processor_id());
dd41f596
IM
6570 /*
6571 * During early bootup we pretend to be a normal task:
6572 */
6573 current->sched_class = &fair_sched_class;
1da177e4
LT
6574}
6575
6576#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6577void __might_sleep(char *file, int line)
6578{
48f24c4d 6579#ifdef in_atomic
1da177e4
LT
6580 static unsigned long prev_jiffy; /* ratelimiting */
6581
6582 if ((in_atomic() || irqs_disabled()) &&
6583 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6584 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6585 return;
6586 prev_jiffy = jiffies;
91368d73 6587 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6588 " context at %s:%d\n", file, line);
6589 printk("in_atomic():%d, irqs_disabled():%d\n",
6590 in_atomic(), irqs_disabled());
a4c410f0 6591 debug_show_held_locks(current);
3117df04
IM
6592 if (irqs_disabled())
6593 print_irqtrace_events(current);
1da177e4
LT
6594 dump_stack();
6595 }
6596#endif
6597}
6598EXPORT_SYMBOL(__might_sleep);
6599#endif
6600
6601#ifdef CONFIG_MAGIC_SYSRQ
6602void normalize_rt_tasks(void)
6603{
a0f98a1c 6604 struct task_struct *g, *p;
1da177e4 6605 unsigned long flags;
70b97a7f 6606 struct rq *rq;
dd41f596 6607 int on_rq;
1da177e4
LT
6608
6609 read_lock_irq(&tasklist_lock);
a0f98a1c 6610 do_each_thread(g, p) {
dd41f596
IM
6611 p->se.fair_key = 0;
6612 p->se.wait_runtime = 0;
6cfb0d5d 6613 p->se.exec_start = 0;
dd41f596 6614 p->se.wait_start_fair = 0;
6cfb0d5d
IM
6615 p->se.sleep_start_fair = 0;
6616#ifdef CONFIG_SCHEDSTATS
dd41f596 6617 p->se.wait_start = 0;
dd41f596 6618 p->se.sleep_start = 0;
dd41f596 6619 p->se.block_start = 0;
6cfb0d5d 6620#endif
dd41f596
IM
6621 task_rq(p)->cfs.fair_clock = 0;
6622 task_rq(p)->clock = 0;
6623
6624 if (!rt_task(p)) {
6625 /*
6626 * Renice negative nice level userspace
6627 * tasks back to 0:
6628 */
6629 if (TASK_NICE(p) < 0 && p->mm)
6630 set_user_nice(p, 0);
1da177e4 6631 continue;
dd41f596 6632 }
1da177e4 6633
b29739f9
IM
6634 spin_lock_irqsave(&p->pi_lock, flags);
6635 rq = __task_rq_lock(p);
dd41f596
IM
6636#ifdef CONFIG_SMP
6637 /*
6638 * Do not touch the migration thread:
6639 */
6640 if (p == rq->migration_thread)
6641 goto out_unlock;
6642#endif
1da177e4 6643
dd41f596 6644 on_rq = p->se.on_rq;
a8e504d2
IM
6645 if (on_rq) {
6646 update_rq_clock(task_rq(p));
6647 deactivate_task(task_rq(p), p, 0, task_rq(p)->clock);
6648 }
dd41f596
IM
6649 __setscheduler(rq, p, SCHED_NORMAL, 0);
6650 if (on_rq) {
6651 activate_task(task_rq(p), p, 0);
1da177e4
LT
6652 resched_task(rq->curr);
6653 }
dd41f596
IM
6654#ifdef CONFIG_SMP
6655 out_unlock:
6656#endif
b29739f9
IM
6657 __task_rq_unlock(rq);
6658 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6659 } while_each_thread(g, p);
6660
1da177e4
LT
6661 read_unlock_irq(&tasklist_lock);
6662}
6663
6664#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6665
6666#ifdef CONFIG_IA64
6667/*
6668 * These functions are only useful for the IA64 MCA handling.
6669 *
6670 * They can only be called when the whole system has been
6671 * stopped - every CPU needs to be quiescent, and no scheduling
6672 * activity can take place. Using them for anything else would
6673 * be a serious bug, and as a result, they aren't even visible
6674 * under any other configuration.
6675 */
6676
6677/**
6678 * curr_task - return the current task for a given cpu.
6679 * @cpu: the processor in question.
6680 *
6681 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6682 */
36c8b586 6683struct task_struct *curr_task(int cpu)
1df5c10a
LT
6684{
6685 return cpu_curr(cpu);
6686}
6687
6688/**
6689 * set_curr_task - set the current task for a given cpu.
6690 * @cpu: the processor in question.
6691 * @p: the task pointer to set.
6692 *
6693 * Description: This function must only be used when non-maskable interrupts
6694 * are serviced on a separate stack. It allows the architecture to switch the
6695 * notion of the current task on a cpu in a non-blocking manner. This function
6696 * must be called with all CPU's synchronized, and interrupts disabled, the
6697 * and caller must save the original value of the current task (see
6698 * curr_task() above) and restore that value before reenabling interrupts and
6699 * re-starting the system.
6700 *
6701 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6702 */
36c8b586 6703void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6704{
6705 cpu_curr(cpu) = p;
6706}
6707
6708#endif