]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: Request for idle balance during nohz idle load balance
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
6e0534f2 82#include "sched_cpupri.h"
21aa9af0 83#include "workqueue_sched.h"
5091faa4 84#include "sched_autogroup.h"
6e0534f2 85
a8d154b0 86#define CREATE_TRACE_POINTS
ad8d75ff 87#include <trace/events/sched.h>
a8d154b0 88
1da177e4
LT
89/*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98/*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107/*
d7876a08 108 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 109 */
d6322faf 110#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 111
6aa645ea
IM
112#define NICE_0_LOAD SCHED_LOAD_SCALE
113#define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
1da177e4
LT
115/*
116 * These are the 'tuning knobs' of the scheduler:
117 *
a4ec24b4 118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
119 * Timeslices get refilled after they expire.
120 */
1da177e4 121#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 122
d0b27fa7
PZ
123/*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126#define RUNTIME_INF ((u64)~0ULL)
127
e05606d3
IM
128static inline int rt_policy(int policy)
129{
63f01241 130 if (policy == SCHED_FIFO || policy == SCHED_RR)
e05606d3
IM
131 return 1;
132 return 0;
133}
134
135static inline int task_has_rt_policy(struct task_struct *p)
136{
137 return rt_policy(p->policy);
138}
139
1da177e4 140/*
6aa645ea 141 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 142 */
6aa645ea
IM
143struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146};
147
d0b27fa7 148struct rt_bandwidth {
ea736ed5 149 /* nests inside the rq lock: */
0986b11b 150 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
d0b27fa7
PZ
154};
155
156static struct rt_bandwidth def_rt_bandwidth;
157
158static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161{
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179}
180
181static
182void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183{
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
0986b11b 187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 188
d0b27fa7
PZ
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
192}
193
c8bfff6d
KH
194static inline int rt_bandwidth_enabled(void)
195{
196 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
197}
198
58088ad0 199static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 200{
58088ad0
PT
201 unsigned long delta;
202 ktime_t soft, hard, now;
d0b27fa7 203
58088ad0
PT
204 for (;;) {
205 if (hrtimer_active(period_timer))
206 break;
207
208 now = hrtimer_cb_get_time(period_timer);
209 hrtimer_forward(period_timer, now, period);
210
211 soft = hrtimer_get_softexpires(period_timer);
212 hard = hrtimer_get_expires(period_timer);
213 delta = ktime_to_ns(ktime_sub(hard, soft));
214 __hrtimer_start_range_ns(period_timer, soft, delta,
215 HRTIMER_MODE_ABS_PINNED, 0);
216 }
217}
218
219static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220{
cac64d00 221 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
222 return;
223
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 return;
226
0986b11b 227 raw_spin_lock(&rt_b->rt_runtime_lock);
58088ad0 228 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
0986b11b 229 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
230}
231
232#ifdef CONFIG_RT_GROUP_SCHED
233static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234{
235 hrtimer_cancel(&rt_b->rt_period_timer);
236}
237#endif
238
712555ee 239/*
c4a8849a 240 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
241 * detach_destroy_domains and partition_sched_domains.
242 */
243static DEFINE_MUTEX(sched_domains_mutex);
244
7c941438 245#ifdef CONFIG_CGROUP_SCHED
29f59db3 246
68318b8e
SV
247#include <linux/cgroup.h>
248
29f59db3
SV
249struct cfs_rq;
250
6f505b16
PZ
251static LIST_HEAD(task_groups);
252
ab84d31e
PT
253struct cfs_bandwidth {
254#ifdef CONFIG_CFS_BANDWIDTH
255 raw_spinlock_t lock;
256 ktime_t period;
ec12cb7f 257 u64 quota, runtime;
a790de99 258 s64 hierarchal_quota;
a9cf55b2 259 u64 runtime_expires;
58088ad0
PT
260
261 int idle, timer_active;
d8b4986d 262 struct hrtimer period_timer, slack_timer;
85dac906
PT
263 struct list_head throttled_cfs_rq;
264
e8da1b18
NR
265 /* statistics */
266 int nr_periods, nr_throttled;
267 u64 throttled_time;
ab84d31e
PT
268#endif
269};
270
29f59db3 271/* task group related information */
4cf86d77 272struct task_group {
68318b8e 273 struct cgroup_subsys_state css;
6c415b92 274
052f1dc7 275#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
276 /* schedulable entities of this group on each cpu */
277 struct sched_entity **se;
278 /* runqueue "owned" by this group on each cpu */
279 struct cfs_rq **cfs_rq;
280 unsigned long shares;
2069dd75
PZ
281
282 atomic_t load_weight;
052f1dc7
PZ
283#endif
284
285#ifdef CONFIG_RT_GROUP_SCHED
286 struct sched_rt_entity **rt_se;
287 struct rt_rq **rt_rq;
288
d0b27fa7 289 struct rt_bandwidth rt_bandwidth;
052f1dc7 290#endif
6b2d7700 291
ae8393e5 292 struct rcu_head rcu;
6f505b16 293 struct list_head list;
f473aa5e
PZ
294
295 struct task_group *parent;
296 struct list_head siblings;
297 struct list_head children;
5091faa4
MG
298
299#ifdef CONFIG_SCHED_AUTOGROUP
300 struct autogroup *autogroup;
301#endif
ab84d31e
PT
302
303 struct cfs_bandwidth cfs_bandwidth;
29f59db3
SV
304};
305
3d4b47b4 306/* task_group_lock serializes the addition/removal of task groups */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
e9036b36
CG
309#ifdef CONFIG_FAIR_GROUP_SCHED
310
07e06b01 311# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 312
cb4ad1ff 313/*
2e084786
LJ
314 * A weight of 0 or 1 can cause arithmetics problems.
315 * A weight of a cfs_rq is the sum of weights of which entities
316 * are queued on this cfs_rq, so a weight of a entity should not be
317 * too large, so as the shares value of a task group.
cb4ad1ff
MX
318 * (The default weight is 1024 - so there's no practical
319 * limitation from this.)
320 */
cd62287e
MG
321#define MIN_SHARES (1UL << 1)
322#define MAX_SHARES (1UL << 18)
18d95a28 323
07e06b01 324static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
325#endif
326
29f59db3 327/* Default task group.
3a252015 328 * Every task in system belong to this group at bootup.
29f59db3 329 */
07e06b01 330struct task_group root_task_group;
29f59db3 331
7c941438 332#endif /* CONFIG_CGROUP_SCHED */
29f59db3 333
6aa645ea
IM
334/* CFS-related fields in a runqueue */
335struct cfs_rq {
336 struct load_weight load;
953bfcd1 337 unsigned long nr_running, h_nr_running;
6aa645ea 338
6aa645ea 339 u64 exec_clock;
e9acbff6 340 u64 min_vruntime;
3fe1698b
PZ
341#ifndef CONFIG_64BIT
342 u64 min_vruntime_copy;
343#endif
6aa645ea
IM
344
345 struct rb_root tasks_timeline;
346 struct rb_node *rb_leftmost;
4a55bd5e
PZ
347
348 struct list_head tasks;
349 struct list_head *balance_iterator;
350
351 /*
352 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
353 * It is set to NULL otherwise (i.e when none are currently running).
354 */
ac53db59 355 struct sched_entity *curr, *next, *last, *skip;
ddc97297 356
4934a4d3 357#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 358 unsigned int nr_spread_over;
4934a4d3 359#endif
ddc97297 360
62160e3f 361#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363
41a2d6cf
IM
364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
371 */
3d4b47b4 372 int on_list;
41a2d6cf
IM
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
375
376#ifdef CONFIG_SMP
c09595f6 377 /*
c8cba857 378 * the part of load.weight contributed by tasks
c09595f6 379 */
c8cba857 380 unsigned long task_weight;
c09595f6 381
c8cba857
PZ
382 /*
383 * h_load = weight * f(tg)
384 *
385 * Where f(tg) is the recursive weight fraction assigned to
386 * this group.
387 */
388 unsigned long h_load;
c09595f6 389
c8cba857 390 /*
3b3d190e
PT
391 * Maintaining per-cpu shares distribution for group scheduling
392 *
393 * load_stamp is the last time we updated the load average
394 * load_last is the last time we updated the load average and saw load
395 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 396 */
2069dd75
PZ
397 u64 load_avg;
398 u64 load_period;
3b3d190e 399 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 400
2069dd75 401 unsigned long load_contribution;
c09595f6 402#endif
ab84d31e
PT
403#ifdef CONFIG_CFS_BANDWIDTH
404 int runtime_enabled;
a9cf55b2 405 u64 runtime_expires;
ab84d31e 406 s64 runtime_remaining;
85dac906 407
e8da1b18 408 u64 throttled_timestamp;
64660c86 409 int throttled, throttle_count;
85dac906 410 struct list_head throttled_list;
ab84d31e 411#endif
6aa645ea
IM
412#endif
413};
1da177e4 414
ab84d31e
PT
415#ifdef CONFIG_FAIR_GROUP_SCHED
416#ifdef CONFIG_CFS_BANDWIDTH
417static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
418{
419 return &tg->cfs_bandwidth;
420}
421
422static inline u64 default_cfs_period(void);
58088ad0 423static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
d8b4986d
PT
424static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
425
426static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
427{
428 struct cfs_bandwidth *cfs_b =
429 container_of(timer, struct cfs_bandwidth, slack_timer);
430 do_sched_cfs_slack_timer(cfs_b);
431
432 return HRTIMER_NORESTART;
433}
58088ad0
PT
434
435static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
436{
437 struct cfs_bandwidth *cfs_b =
438 container_of(timer, struct cfs_bandwidth, period_timer);
439 ktime_t now;
440 int overrun;
441 int idle = 0;
442
443 for (;;) {
444 now = hrtimer_cb_get_time(timer);
445 overrun = hrtimer_forward(timer, now, cfs_b->period);
446
447 if (!overrun)
448 break;
449
450 idle = do_sched_cfs_period_timer(cfs_b, overrun);
451 }
452
453 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
454}
ab84d31e
PT
455
456static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
457{
458 raw_spin_lock_init(&cfs_b->lock);
ec12cb7f 459 cfs_b->runtime = 0;
ab84d31e
PT
460 cfs_b->quota = RUNTIME_INF;
461 cfs_b->period = ns_to_ktime(default_cfs_period());
58088ad0 462
85dac906 463 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
58088ad0
PT
464 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
465 cfs_b->period_timer.function = sched_cfs_period_timer;
d8b4986d
PT
466 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
467 cfs_b->slack_timer.function = sched_cfs_slack_timer;
ab84d31e
PT
468}
469
470static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
471{
472 cfs_rq->runtime_enabled = 0;
85dac906 473 INIT_LIST_HEAD(&cfs_rq->throttled_list);
ab84d31e
PT
474}
475
58088ad0
PT
476/* requires cfs_b->lock, may release to reprogram timer */
477static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
478{
479 /*
480 * The timer may be active because we're trying to set a new bandwidth
481 * period or because we're racing with the tear-down path
482 * (timer_active==0 becomes visible before the hrtimer call-back
483 * terminates). In either case we ensure that it's re-programmed
484 */
485 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
486 raw_spin_unlock(&cfs_b->lock);
487 /* ensure cfs_b->lock is available while we wait */
488 hrtimer_cancel(&cfs_b->period_timer);
489
490 raw_spin_lock(&cfs_b->lock);
491 /* if someone else restarted the timer then we're done */
492 if (cfs_b->timer_active)
493 return;
494 }
495
496 cfs_b->timer_active = 1;
497 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
498}
499
ab84d31e 500static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
58088ad0
PT
501{
502 hrtimer_cancel(&cfs_b->period_timer);
d8b4986d 503 hrtimer_cancel(&cfs_b->slack_timer);
58088ad0 504}
ab84d31e
PT
505#else
506static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
507static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
508static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
509
510static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
511{
512 return NULL;
513}
514#endif /* CONFIG_CFS_BANDWIDTH */
515#endif /* CONFIG_FAIR_GROUP_SCHED */
516
6aa645ea
IM
517/* Real-Time classes' related field in a runqueue: */
518struct rt_rq {
519 struct rt_prio_array active;
63489e45 520 unsigned long rt_nr_running;
052f1dc7 521#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
522 struct {
523 int curr; /* highest queued rt task prio */
398a153b 524#ifdef CONFIG_SMP
e864c499 525 int next; /* next highest */
398a153b 526#endif
e864c499 527 } highest_prio;
6f505b16 528#endif
fa85ae24 529#ifdef CONFIG_SMP
73fe6aae 530 unsigned long rt_nr_migratory;
a1ba4d8b 531 unsigned long rt_nr_total;
a22d7fc1 532 int overloaded;
917b627d 533 struct plist_head pushable_tasks;
fa85ae24 534#endif
6f505b16 535 int rt_throttled;
fa85ae24 536 u64 rt_time;
ac086bc2 537 u64 rt_runtime;
ea736ed5 538 /* Nests inside the rq lock: */
0986b11b 539 raw_spinlock_t rt_runtime_lock;
6f505b16 540
052f1dc7 541#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
542 unsigned long rt_nr_boosted;
543
6f505b16
PZ
544 struct rq *rq;
545 struct list_head leaf_rt_rq_list;
546 struct task_group *tg;
6f505b16 547#endif
6aa645ea
IM
548};
549
57d885fe
GH
550#ifdef CONFIG_SMP
551
552/*
553 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
554 * variables. Each exclusive cpuset essentially defines an island domain by
555 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
556 * exclusive cpuset is created, we also create and attach a new root-domain
557 * object.
558 *
57d885fe
GH
559 */
560struct root_domain {
561 atomic_t refcount;
26a148eb 562 atomic_t rto_count;
dce840a0 563 struct rcu_head rcu;
c6c4927b
RR
564 cpumask_var_t span;
565 cpumask_var_t online;
637f5085 566
0eab9146 567 /*
637f5085
GH
568 * The "RT overload" flag: it gets set if a CPU has more than
569 * one runnable RT task.
570 */
c6c4927b 571 cpumask_var_t rto_mask;
6e0534f2 572 struct cpupri cpupri;
57d885fe
GH
573};
574
dc938520
GH
575/*
576 * By default the system creates a single root-domain with all cpus as
577 * members (mimicking the global state we have today).
578 */
57d885fe
GH
579static struct root_domain def_root_domain;
580
ed2d372c 581#endif /* CONFIG_SMP */
57d885fe 582
1da177e4
LT
583/*
584 * This is the main, per-CPU runqueue data structure.
585 *
586 * Locking rule: those places that want to lock multiple runqueues
587 * (such as the load balancing or the thread migration code), lock
588 * acquire operations must be ordered by ascending &runqueue.
589 */
70b97a7f 590struct rq {
d8016491 591 /* runqueue lock: */
05fa785c 592 raw_spinlock_t lock;
1da177e4
LT
593
594 /*
595 * nr_running and cpu_load should be in the same cacheline because
596 * remote CPUs use both these fields when doing load calculation.
597 */
598 unsigned long nr_running;
6aa645ea
IM
599 #define CPU_LOAD_IDX_MAX 5
600 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 601 unsigned long last_load_update_tick;
46cb4b7c 602#ifdef CONFIG_NO_HZ
39c0cbe2 603 u64 nohz_stamp;
83cd4fe2 604 unsigned char nohz_balance_kick;
46cb4b7c 605#endif
61eadef6 606 int skip_clock_update;
a64692a3 607
d8016491
IM
608 /* capture load from *all* tasks on this cpu: */
609 struct load_weight load;
6aa645ea
IM
610 unsigned long nr_load_updates;
611 u64 nr_switches;
612
613 struct cfs_rq cfs;
6f505b16 614 struct rt_rq rt;
6f505b16 615
6aa645ea 616#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
617 /* list of leaf cfs_rq on this cpu: */
618 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
619#endif
620#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 621 struct list_head leaf_rt_rq_list;
1da177e4 622#endif
1da177e4
LT
623
624 /*
625 * This is part of a global counter where only the total sum
626 * over all CPUs matters. A task can increase this counter on
627 * one CPU and if it got migrated afterwards it may decrease
628 * it on another CPU. Always updated under the runqueue lock:
629 */
630 unsigned long nr_uninterruptible;
631
34f971f6 632 struct task_struct *curr, *idle, *stop;
c9819f45 633 unsigned long next_balance;
1da177e4 634 struct mm_struct *prev_mm;
6aa645ea 635
3e51f33f 636 u64 clock;
305e6835 637 u64 clock_task;
6aa645ea 638
1da177e4
LT
639 atomic_t nr_iowait;
640
641#ifdef CONFIG_SMP
0eab9146 642 struct root_domain *rd;
1da177e4
LT
643 struct sched_domain *sd;
644
e51fd5e2
PZ
645 unsigned long cpu_power;
646
6eb57e0d 647 unsigned char idle_balance;
1da177e4 648 /* For active balancing */
3f029d3c 649 int post_schedule;
1da177e4
LT
650 int active_balance;
651 int push_cpu;
969c7921 652 struct cpu_stop_work active_balance_work;
d8016491
IM
653 /* cpu of this runqueue: */
654 int cpu;
1f11eb6a 655 int online;
1da177e4 656
e9e9250b
PZ
657 u64 rt_avg;
658 u64 age_stamp;
1b9508f6
MG
659 u64 idle_stamp;
660 u64 avg_idle;
1da177e4
LT
661#endif
662
aa483808
VP
663#ifdef CONFIG_IRQ_TIME_ACCOUNTING
664 u64 prev_irq_time;
665#endif
e6e6685a
GC
666#ifdef CONFIG_PARAVIRT
667 u64 prev_steal_time;
668#endif
095c0aa8
GC
669#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
670 u64 prev_steal_time_rq;
671#endif
aa483808 672
dce48a84
TG
673 /* calc_load related fields */
674 unsigned long calc_load_update;
675 long calc_load_active;
676
8f4d37ec 677#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
678#ifdef CONFIG_SMP
679 int hrtick_csd_pending;
680 struct call_single_data hrtick_csd;
681#endif
8f4d37ec
PZ
682 struct hrtimer hrtick_timer;
683#endif
684
1da177e4
LT
685#ifdef CONFIG_SCHEDSTATS
686 /* latency stats */
687 struct sched_info rq_sched_info;
9c2c4802
KC
688 unsigned long long rq_cpu_time;
689 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
690
691 /* sys_sched_yield() stats */
480b9434 692 unsigned int yld_count;
1da177e4
LT
693
694 /* schedule() stats */
480b9434
KC
695 unsigned int sched_switch;
696 unsigned int sched_count;
697 unsigned int sched_goidle;
1da177e4
LT
698
699 /* try_to_wake_up() stats */
480b9434
KC
700 unsigned int ttwu_count;
701 unsigned int ttwu_local;
1da177e4 702#endif
317f3941
PZ
703
704#ifdef CONFIG_SMP
fa14ff4a 705 struct llist_head wake_list;
317f3941 706#endif
1da177e4
LT
707};
708
f34e3b61 709static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 710
a64692a3 711
1e5a7405 712static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 713
0a2966b4
CL
714static inline int cpu_of(struct rq *rq)
715{
716#ifdef CONFIG_SMP
717 return rq->cpu;
718#else
719 return 0;
720#endif
721}
722
497f0ab3 723#define rcu_dereference_check_sched_domain(p) \
d11c563d 724 rcu_dereference_check((p), \
d11c563d
PM
725 lockdep_is_held(&sched_domains_mutex))
726
674311d5
NP
727/*
728 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 729 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
730 *
731 * The domain tree of any CPU may only be accessed from within
732 * preempt-disabled sections.
733 */
48f24c4d 734#define for_each_domain(cpu, __sd) \
497f0ab3 735 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
736
737#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
738#define this_rq() (&__get_cpu_var(runqueues))
739#define task_rq(p) cpu_rq(task_cpu(p))
740#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 741#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 742
dc61b1d6
PZ
743#ifdef CONFIG_CGROUP_SCHED
744
745/*
746 * Return the group to which this tasks belongs.
747 *
6c6c54e1
PZ
748 * We use task_subsys_state_check() and extend the RCU verification with
749 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
750 * task it moves into the cgroup. Therefore by holding either of those locks,
751 * we pin the task to the current cgroup.
dc61b1d6
PZ
752 */
753static inline struct task_group *task_group(struct task_struct *p)
754{
5091faa4 755 struct task_group *tg;
dc61b1d6
PZ
756 struct cgroup_subsys_state *css;
757
758 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
6c6c54e1
PZ
759 lockdep_is_held(&p->pi_lock) ||
760 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
761 tg = container_of(css, struct task_group, css);
762
763 return autogroup_task_group(p, tg);
dc61b1d6
PZ
764}
765
766/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
767static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
768{
769#ifdef CONFIG_FAIR_GROUP_SCHED
770 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
771 p->se.parent = task_group(p)->se[cpu];
772#endif
773
774#ifdef CONFIG_RT_GROUP_SCHED
775 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
776 p->rt.parent = task_group(p)->rt_se[cpu];
777#endif
778}
779
780#else /* CONFIG_CGROUP_SCHED */
781
782static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
783static inline struct task_group *task_group(struct task_struct *p)
784{
785 return NULL;
786}
787
788#endif /* CONFIG_CGROUP_SCHED */
789
fe44d621 790static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 791
fe44d621 792static void update_rq_clock(struct rq *rq)
3e51f33f 793{
fe44d621 794 s64 delta;
305e6835 795
61eadef6 796 if (rq->skip_clock_update > 0)
f26f9aff 797 return;
aa483808 798
fe44d621
PZ
799 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
800 rq->clock += delta;
801 update_rq_clock_task(rq, delta);
3e51f33f
PZ
802}
803
bf5c91ba
IM
804/*
805 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
806 */
807#ifdef CONFIG_SCHED_DEBUG
808# define const_debug __read_mostly
809#else
810# define const_debug static const
811#endif
812
017730c1 813/**
1fd06bb1 814 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 815 * @cpu: the processor in question.
017730c1 816 *
017730c1
IM
817 * This interface allows printk to be called with the runqueue lock
818 * held and know whether or not it is OK to wake up the klogd.
819 */
89f19f04 820int runqueue_is_locked(int cpu)
017730c1 821{
05fa785c 822 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
823}
824
bf5c91ba
IM
825/*
826 * Debugging: various feature bits
827 */
f00b45c1
PZ
828
829#define SCHED_FEAT(name, enabled) \
830 __SCHED_FEAT_##name ,
831
bf5c91ba 832enum {
f00b45c1 833#include "sched_features.h"
bf5c91ba
IM
834};
835
f00b45c1
PZ
836#undef SCHED_FEAT
837
838#define SCHED_FEAT(name, enabled) \
839 (1UL << __SCHED_FEAT_##name) * enabled |
840
bf5c91ba 841const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
842#include "sched_features.h"
843 0;
844
845#undef SCHED_FEAT
846
847#ifdef CONFIG_SCHED_DEBUG
848#define SCHED_FEAT(name, enabled) \
849 #name ,
850
983ed7a6 851static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
852#include "sched_features.h"
853 NULL
854};
855
856#undef SCHED_FEAT
857
34f3a814 858static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 859{
f00b45c1
PZ
860 int i;
861
862 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
863 if (!(sysctl_sched_features & (1UL << i)))
864 seq_puts(m, "NO_");
865 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 866 }
34f3a814 867 seq_puts(m, "\n");
f00b45c1 868
34f3a814 869 return 0;
f00b45c1
PZ
870}
871
872static ssize_t
873sched_feat_write(struct file *filp, const char __user *ubuf,
874 size_t cnt, loff_t *ppos)
875{
876 char buf[64];
7740191c 877 char *cmp;
f00b45c1
PZ
878 int neg = 0;
879 int i;
880
881 if (cnt > 63)
882 cnt = 63;
883
884 if (copy_from_user(&buf, ubuf, cnt))
885 return -EFAULT;
886
887 buf[cnt] = 0;
7740191c 888 cmp = strstrip(buf);
f00b45c1 889
524429c3 890 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
891 neg = 1;
892 cmp += 3;
893 }
894
895 for (i = 0; sched_feat_names[i]; i++) {
7740191c 896 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
897 if (neg)
898 sysctl_sched_features &= ~(1UL << i);
899 else
900 sysctl_sched_features |= (1UL << i);
901 break;
902 }
903 }
904
905 if (!sched_feat_names[i])
906 return -EINVAL;
907
42994724 908 *ppos += cnt;
f00b45c1
PZ
909
910 return cnt;
911}
912
34f3a814
LZ
913static int sched_feat_open(struct inode *inode, struct file *filp)
914{
915 return single_open(filp, sched_feat_show, NULL);
916}
917
828c0950 918static const struct file_operations sched_feat_fops = {
34f3a814
LZ
919 .open = sched_feat_open,
920 .write = sched_feat_write,
921 .read = seq_read,
922 .llseek = seq_lseek,
923 .release = single_release,
f00b45c1
PZ
924};
925
926static __init int sched_init_debug(void)
927{
f00b45c1
PZ
928 debugfs_create_file("sched_features", 0644, NULL, NULL,
929 &sched_feat_fops);
930
931 return 0;
932}
933late_initcall(sched_init_debug);
934
935#endif
936
937#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 938
b82d9fdd
PZ
939/*
940 * Number of tasks to iterate in a single balance run.
941 * Limited because this is done with IRQs disabled.
942 */
943const_debug unsigned int sysctl_sched_nr_migrate = 32;
944
e9e9250b
PZ
945/*
946 * period over which we average the RT time consumption, measured
947 * in ms.
948 *
949 * default: 1s
950 */
951const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
952
fa85ae24 953/*
9f0c1e56 954 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
955 * default: 1s
956 */
9f0c1e56 957unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 958
6892b75e
IM
959static __read_mostly int scheduler_running;
960
9f0c1e56
PZ
961/*
962 * part of the period that we allow rt tasks to run in us.
963 * default: 0.95s
964 */
965int sysctl_sched_rt_runtime = 950000;
fa85ae24 966
d0b27fa7
PZ
967static inline u64 global_rt_period(void)
968{
969 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
970}
971
972static inline u64 global_rt_runtime(void)
973{
e26873bb 974 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
975 return RUNTIME_INF;
976
977 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
978}
fa85ae24 979
1da177e4 980#ifndef prepare_arch_switch
4866cde0
NP
981# define prepare_arch_switch(next) do { } while (0)
982#endif
983#ifndef finish_arch_switch
984# define finish_arch_switch(prev) do { } while (0)
985#endif
986
051a1d1a
DA
987static inline int task_current(struct rq *rq, struct task_struct *p)
988{
989 return rq->curr == p;
990}
991
70b97a7f 992static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 993{
3ca7a440
PZ
994#ifdef CONFIG_SMP
995 return p->on_cpu;
996#else
051a1d1a 997 return task_current(rq, p);
3ca7a440 998#endif
4866cde0
NP
999}
1000
3ca7a440 1001#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 1002static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 1003{
3ca7a440
PZ
1004#ifdef CONFIG_SMP
1005 /*
1006 * We can optimise this out completely for !SMP, because the
1007 * SMP rebalancing from interrupt is the only thing that cares
1008 * here.
1009 */
1010 next->on_cpu = 1;
1011#endif
4866cde0
NP
1012}
1013
70b97a7f 1014static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 1015{
3ca7a440
PZ
1016#ifdef CONFIG_SMP
1017 /*
1018 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1019 * We must ensure this doesn't happen until the switch is completely
1020 * finished.
1021 */
1022 smp_wmb();
1023 prev->on_cpu = 0;
1024#endif
da04c035
IM
1025#ifdef CONFIG_DEBUG_SPINLOCK
1026 /* this is a valid case when another task releases the spinlock */
1027 rq->lock.owner = current;
1028#endif
8a25d5de
IM
1029 /*
1030 * If we are tracking spinlock dependencies then we have to
1031 * fix up the runqueue lock - which gets 'carried over' from
1032 * prev into current:
1033 */
1034 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1035
05fa785c 1036 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
1037}
1038
1039#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 1040static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1041{
1042#ifdef CONFIG_SMP
1043 /*
1044 * We can optimise this out completely for !SMP, because the
1045 * SMP rebalancing from interrupt is the only thing that cares
1046 * here.
1047 */
3ca7a440 1048 next->on_cpu = 1;
4866cde0
NP
1049#endif
1050#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 1051 raw_spin_unlock_irq(&rq->lock);
4866cde0 1052#else
05fa785c 1053 raw_spin_unlock(&rq->lock);
4866cde0
NP
1054#endif
1055}
1056
70b97a7f 1057static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
1058{
1059#ifdef CONFIG_SMP
1060 /*
3ca7a440 1061 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
1062 * We must ensure this doesn't happen until the switch is completely
1063 * finished.
1064 */
1065 smp_wmb();
3ca7a440 1066 prev->on_cpu = 0;
4866cde0
NP
1067#endif
1068#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1069 local_irq_enable();
1da177e4 1070#endif
4866cde0
NP
1071}
1072#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 1073
0970d299 1074/*
0122ec5b 1075 * __task_rq_lock - lock the rq @p resides on.
b29739f9 1076 */
70b97a7f 1077static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
1078 __acquires(rq->lock)
1079{
0970d299
PZ
1080 struct rq *rq;
1081
0122ec5b
PZ
1082 lockdep_assert_held(&p->pi_lock);
1083
3a5c359a 1084 for (;;) {
0970d299 1085 rq = task_rq(p);
05fa785c 1086 raw_spin_lock(&rq->lock);
65cc8e48 1087 if (likely(rq == task_rq(p)))
3a5c359a 1088 return rq;
05fa785c 1089 raw_spin_unlock(&rq->lock);
b29739f9 1090 }
b29739f9
IM
1091}
1092
1da177e4 1093/*
0122ec5b 1094 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 1095 */
70b97a7f 1096static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 1097 __acquires(p->pi_lock)
1da177e4
LT
1098 __acquires(rq->lock)
1099{
70b97a7f 1100 struct rq *rq;
1da177e4 1101
3a5c359a 1102 for (;;) {
0122ec5b 1103 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 1104 rq = task_rq(p);
05fa785c 1105 raw_spin_lock(&rq->lock);
65cc8e48 1106 if (likely(rq == task_rq(p)))
3a5c359a 1107 return rq;
0122ec5b
PZ
1108 raw_spin_unlock(&rq->lock);
1109 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 1110 }
1da177e4
LT
1111}
1112
a9957449 1113static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1114 __releases(rq->lock)
1115{
05fa785c 1116 raw_spin_unlock(&rq->lock);
b29739f9
IM
1117}
1118
0122ec5b
PZ
1119static inline void
1120task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 1121 __releases(rq->lock)
0122ec5b 1122 __releases(p->pi_lock)
1da177e4 1123{
0122ec5b
PZ
1124 raw_spin_unlock(&rq->lock);
1125 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
1126}
1127
1da177e4 1128/*
cc2a73b5 1129 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1130 */
a9957449 1131static struct rq *this_rq_lock(void)
1da177e4
LT
1132 __acquires(rq->lock)
1133{
70b97a7f 1134 struct rq *rq;
1da177e4
LT
1135
1136 local_irq_disable();
1137 rq = this_rq();
05fa785c 1138 raw_spin_lock(&rq->lock);
1da177e4
LT
1139
1140 return rq;
1141}
1142
8f4d37ec
PZ
1143#ifdef CONFIG_SCHED_HRTICK
1144/*
1145 * Use HR-timers to deliver accurate preemption points.
1146 *
1147 * Its all a bit involved since we cannot program an hrt while holding the
1148 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1149 * reschedule event.
1150 *
1151 * When we get rescheduled we reprogram the hrtick_timer outside of the
1152 * rq->lock.
1153 */
8f4d37ec
PZ
1154
1155/*
1156 * Use hrtick when:
1157 * - enabled by features
1158 * - hrtimer is actually high res
1159 */
1160static inline int hrtick_enabled(struct rq *rq)
1161{
1162 if (!sched_feat(HRTICK))
1163 return 0;
ba42059f 1164 if (!cpu_active(cpu_of(rq)))
b328ca18 1165 return 0;
8f4d37ec
PZ
1166 return hrtimer_is_hres_active(&rq->hrtick_timer);
1167}
1168
8f4d37ec
PZ
1169static void hrtick_clear(struct rq *rq)
1170{
1171 if (hrtimer_active(&rq->hrtick_timer))
1172 hrtimer_cancel(&rq->hrtick_timer);
1173}
1174
8f4d37ec
PZ
1175/*
1176 * High-resolution timer tick.
1177 * Runs from hardirq context with interrupts disabled.
1178 */
1179static enum hrtimer_restart hrtick(struct hrtimer *timer)
1180{
1181 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1182
1183 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1184
05fa785c 1185 raw_spin_lock(&rq->lock);
3e51f33f 1186 update_rq_clock(rq);
8f4d37ec 1187 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1188 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1189
1190 return HRTIMER_NORESTART;
1191}
1192
95e904c7 1193#ifdef CONFIG_SMP
31656519
PZ
1194/*
1195 * called from hardirq (IPI) context
1196 */
1197static void __hrtick_start(void *arg)
b328ca18 1198{
31656519 1199 struct rq *rq = arg;
b328ca18 1200
05fa785c 1201 raw_spin_lock(&rq->lock);
31656519
PZ
1202 hrtimer_restart(&rq->hrtick_timer);
1203 rq->hrtick_csd_pending = 0;
05fa785c 1204 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1205}
1206
31656519
PZ
1207/*
1208 * Called to set the hrtick timer state.
1209 *
1210 * called with rq->lock held and irqs disabled
1211 */
1212static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1213{
31656519
PZ
1214 struct hrtimer *timer = &rq->hrtick_timer;
1215 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1216
cc584b21 1217 hrtimer_set_expires(timer, time);
31656519
PZ
1218
1219 if (rq == this_rq()) {
1220 hrtimer_restart(timer);
1221 } else if (!rq->hrtick_csd_pending) {
6e275637 1222 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1223 rq->hrtick_csd_pending = 1;
1224 }
b328ca18
PZ
1225}
1226
1227static int
1228hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1229{
1230 int cpu = (int)(long)hcpu;
1231
1232 switch (action) {
1233 case CPU_UP_CANCELED:
1234 case CPU_UP_CANCELED_FROZEN:
1235 case CPU_DOWN_PREPARE:
1236 case CPU_DOWN_PREPARE_FROZEN:
1237 case CPU_DEAD:
1238 case CPU_DEAD_FROZEN:
31656519 1239 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1240 return NOTIFY_OK;
1241 }
1242
1243 return NOTIFY_DONE;
1244}
1245
fa748203 1246static __init void init_hrtick(void)
b328ca18
PZ
1247{
1248 hotcpu_notifier(hotplug_hrtick, 0);
1249}
31656519
PZ
1250#else
1251/*
1252 * Called to set the hrtick timer state.
1253 *
1254 * called with rq->lock held and irqs disabled
1255 */
1256static void hrtick_start(struct rq *rq, u64 delay)
1257{
7f1e2ca9 1258 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1259 HRTIMER_MODE_REL_PINNED, 0);
31656519 1260}
b328ca18 1261
006c75f1 1262static inline void init_hrtick(void)
8f4d37ec 1263{
8f4d37ec 1264}
31656519 1265#endif /* CONFIG_SMP */
8f4d37ec 1266
31656519 1267static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1268{
31656519
PZ
1269#ifdef CONFIG_SMP
1270 rq->hrtick_csd_pending = 0;
8f4d37ec 1271
31656519
PZ
1272 rq->hrtick_csd.flags = 0;
1273 rq->hrtick_csd.func = __hrtick_start;
1274 rq->hrtick_csd.info = rq;
1275#endif
8f4d37ec 1276
31656519
PZ
1277 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1278 rq->hrtick_timer.function = hrtick;
8f4d37ec 1279}
006c75f1 1280#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1281static inline void hrtick_clear(struct rq *rq)
1282{
1283}
1284
8f4d37ec
PZ
1285static inline void init_rq_hrtick(struct rq *rq)
1286{
1287}
1288
b328ca18
PZ
1289static inline void init_hrtick(void)
1290{
1291}
006c75f1 1292#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1293
c24d20db
IM
1294/*
1295 * resched_task - mark a task 'to be rescheduled now'.
1296 *
1297 * On UP this means the setting of the need_resched flag, on SMP it
1298 * might also involve a cross-CPU call to trigger the scheduler on
1299 * the target CPU.
1300 */
1301#ifdef CONFIG_SMP
1302
1303#ifndef tsk_is_polling
1304#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1305#endif
1306
31656519 1307static void resched_task(struct task_struct *p)
c24d20db
IM
1308{
1309 int cpu;
1310
05fa785c 1311 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1312
5ed0cec0 1313 if (test_tsk_need_resched(p))
c24d20db
IM
1314 return;
1315
5ed0cec0 1316 set_tsk_need_resched(p);
c24d20db
IM
1317
1318 cpu = task_cpu(p);
1319 if (cpu == smp_processor_id())
1320 return;
1321
1322 /* NEED_RESCHED must be visible before we test polling */
1323 smp_mb();
1324 if (!tsk_is_polling(p))
1325 smp_send_reschedule(cpu);
1326}
1327
1328static void resched_cpu(int cpu)
1329{
1330 struct rq *rq = cpu_rq(cpu);
1331 unsigned long flags;
1332
05fa785c 1333 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1334 return;
1335 resched_task(cpu_curr(cpu));
05fa785c 1336 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1337}
06d8308c
TG
1338
1339#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1340/*
1341 * In the semi idle case, use the nearest busy cpu for migrating timers
1342 * from an idle cpu. This is good for power-savings.
1343 *
1344 * We don't do similar optimization for completely idle system, as
1345 * selecting an idle cpu will add more delays to the timers than intended
1346 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1347 */
1348int get_nohz_timer_target(void)
1349{
1350 int cpu = smp_processor_id();
1351 int i;
1352 struct sched_domain *sd;
1353
057f3fad 1354 rcu_read_lock();
83cd4fe2 1355 for_each_domain(cpu, sd) {
057f3fad
PZ
1356 for_each_cpu(i, sched_domain_span(sd)) {
1357 if (!idle_cpu(i)) {
1358 cpu = i;
1359 goto unlock;
1360 }
1361 }
83cd4fe2 1362 }
057f3fad
PZ
1363unlock:
1364 rcu_read_unlock();
83cd4fe2
VP
1365 return cpu;
1366}
06d8308c
TG
1367/*
1368 * When add_timer_on() enqueues a timer into the timer wheel of an
1369 * idle CPU then this timer might expire before the next timer event
1370 * which is scheduled to wake up that CPU. In case of a completely
1371 * idle system the next event might even be infinite time into the
1372 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1373 * leaves the inner idle loop so the newly added timer is taken into
1374 * account when the CPU goes back to idle and evaluates the timer
1375 * wheel for the next timer event.
1376 */
1377void wake_up_idle_cpu(int cpu)
1378{
1379 struct rq *rq = cpu_rq(cpu);
1380
1381 if (cpu == smp_processor_id())
1382 return;
1383
1384 /*
1385 * This is safe, as this function is called with the timer
1386 * wheel base lock of (cpu) held. When the CPU is on the way
1387 * to idle and has not yet set rq->curr to idle then it will
1388 * be serialized on the timer wheel base lock and take the new
1389 * timer into account automatically.
1390 */
1391 if (rq->curr != rq->idle)
1392 return;
1393
1394 /*
1395 * We can set TIF_RESCHED on the idle task of the other CPU
1396 * lockless. The worst case is that the other CPU runs the
1397 * idle task through an additional NOOP schedule()
1398 */
5ed0cec0 1399 set_tsk_need_resched(rq->idle);
06d8308c
TG
1400
1401 /* NEED_RESCHED must be visible before we test polling */
1402 smp_mb();
1403 if (!tsk_is_polling(rq->idle))
1404 smp_send_reschedule(cpu);
1405}
39c0cbe2 1406
ca38062e
SS
1407static inline bool got_nohz_idle_kick(void)
1408{
1409 return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
1410}
1411
1412#else /* CONFIG_NO_HZ */
1413
1414static inline bool got_nohz_idle_kick(void)
1415{
1416 return false;
1417}
1418
6d6bc0ad 1419#endif /* CONFIG_NO_HZ */
06d8308c 1420
e9e9250b
PZ
1421static u64 sched_avg_period(void)
1422{
1423 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1424}
1425
1426static void sched_avg_update(struct rq *rq)
1427{
1428 s64 period = sched_avg_period();
1429
1430 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1431 /*
1432 * Inline assembly required to prevent the compiler
1433 * optimising this loop into a divmod call.
1434 * See __iter_div_u64_rem() for another example of this.
1435 */
1436 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1437 rq->age_stamp += period;
1438 rq->rt_avg /= 2;
1439 }
1440}
1441
1442static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1443{
1444 rq->rt_avg += rt_delta;
1445 sched_avg_update(rq);
1446}
1447
6d6bc0ad 1448#else /* !CONFIG_SMP */
31656519 1449static void resched_task(struct task_struct *p)
c24d20db 1450{
05fa785c 1451 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1452 set_tsk_need_resched(p);
c24d20db 1453}
e9e9250b
PZ
1454
1455static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1456{
1457}
da2b71ed
SS
1458
1459static void sched_avg_update(struct rq *rq)
1460{
1461}
6d6bc0ad 1462#endif /* CONFIG_SMP */
c24d20db 1463
45bf76df
IM
1464#if BITS_PER_LONG == 32
1465# define WMULT_CONST (~0UL)
1466#else
1467# define WMULT_CONST (1UL << 32)
1468#endif
1469
1470#define WMULT_SHIFT 32
1471
194081eb
IM
1472/*
1473 * Shift right and round:
1474 */
cf2ab469 1475#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1476
a7be37ac
PZ
1477/*
1478 * delta *= weight / lw
1479 */
cb1c4fc9 1480static unsigned long
45bf76df
IM
1481calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1482 struct load_weight *lw)
1483{
1484 u64 tmp;
1485
c8b28116
NR
1486 /*
1487 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1488 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1489 * 2^SCHED_LOAD_RESOLUTION.
1490 */
1491 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1492 tmp = (u64)delta_exec * scale_load_down(weight);
1493 else
1494 tmp = (u64)delta_exec;
db670dac 1495
7a232e03 1496 if (!lw->inv_weight) {
c8b28116
NR
1497 unsigned long w = scale_load_down(lw->weight);
1498
1499 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1500 lw->inv_weight = 1;
c8b28116
NR
1501 else if (unlikely(!w))
1502 lw->inv_weight = WMULT_CONST;
7a232e03 1503 else
c8b28116 1504 lw->inv_weight = WMULT_CONST / w;
7a232e03 1505 }
45bf76df 1506
45bf76df
IM
1507 /*
1508 * Check whether we'd overflow the 64-bit multiplication:
1509 */
194081eb 1510 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1511 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1512 WMULT_SHIFT/2);
1513 else
cf2ab469 1514 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1515
ecf691da 1516 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1517}
1518
1091985b 1519static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1520{
1521 lw->weight += inc;
e89996ae 1522 lw->inv_weight = 0;
45bf76df
IM
1523}
1524
1091985b 1525static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1526{
1527 lw->weight -= dec;
e89996ae 1528 lw->inv_weight = 0;
45bf76df
IM
1529}
1530
2069dd75
PZ
1531static inline void update_load_set(struct load_weight *lw, unsigned long w)
1532{
1533 lw->weight = w;
1534 lw->inv_weight = 0;
1535}
1536
2dd73a4f
PW
1537/*
1538 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1539 * of tasks with abnormal "nice" values across CPUs the contribution that
1540 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1541 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1542 * scaled version of the new time slice allocation that they receive on time
1543 * slice expiry etc.
1544 */
1545
cce7ade8
PZ
1546#define WEIGHT_IDLEPRIO 3
1547#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1548
1549/*
1550 * Nice levels are multiplicative, with a gentle 10% change for every
1551 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1552 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1553 * that remained on nice 0.
1554 *
1555 * The "10% effect" is relative and cumulative: from _any_ nice level,
1556 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1557 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1558 * If a task goes up by ~10% and another task goes down by ~10% then
1559 * the relative distance between them is ~25%.)
dd41f596
IM
1560 */
1561static const int prio_to_weight[40] = {
254753dc
IM
1562 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1563 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1564 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1565 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1566 /* 0 */ 1024, 820, 655, 526, 423,
1567 /* 5 */ 335, 272, 215, 172, 137,
1568 /* 10 */ 110, 87, 70, 56, 45,
1569 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1570};
1571
5714d2de
IM
1572/*
1573 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1574 *
1575 * In cases where the weight does not change often, we can use the
1576 * precalculated inverse to speed up arithmetics by turning divisions
1577 * into multiplications:
1578 */
dd41f596 1579static const u32 prio_to_wmult[40] = {
254753dc
IM
1580 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1581 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1582 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1583 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1584 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1585 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1586 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1587 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1588};
2dd73a4f 1589
ef12fefa
BR
1590/* Time spent by the tasks of the cpu accounting group executing in ... */
1591enum cpuacct_stat_index {
1592 CPUACCT_STAT_USER, /* ... user mode */
1593 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1594
1595 CPUACCT_STAT_NSTATS,
1596};
1597
d842de87
SV
1598#ifdef CONFIG_CGROUP_CPUACCT
1599static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1600static void cpuacct_update_stats(struct task_struct *tsk,
1601 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1602#else
1603static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1604static inline void cpuacct_update_stats(struct task_struct *tsk,
1605 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1606#endif
1607
18d95a28
PZ
1608static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1609{
1610 update_load_add(&rq->load, load);
1611}
1612
1613static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1614{
1615 update_load_sub(&rq->load, load);
1616}
1617
a790de99
PT
1618#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1619 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
eb755805 1620typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1621
1622/*
8277434e
PT
1623 * Iterate task_group tree rooted at *from, calling @down when first entering a
1624 * node and @up when leaving it for the final time.
1625 *
1626 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1627 */
8277434e
PT
1628static int walk_tg_tree_from(struct task_group *from,
1629 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1630{
1631 struct task_group *parent, *child;
eb755805 1632 int ret;
c09595f6 1633
8277434e
PT
1634 parent = from;
1635
c09595f6 1636down:
eb755805
PZ
1637 ret = (*down)(parent, data);
1638 if (ret)
8277434e 1639 goto out;
c09595f6
PZ
1640 list_for_each_entry_rcu(child, &parent->children, siblings) {
1641 parent = child;
1642 goto down;
1643
1644up:
1645 continue;
1646 }
eb755805 1647 ret = (*up)(parent, data);
8277434e
PT
1648 if (ret || parent == from)
1649 goto out;
c09595f6
PZ
1650
1651 child = parent;
1652 parent = parent->parent;
1653 if (parent)
1654 goto up;
8277434e 1655out:
eb755805 1656 return ret;
c09595f6
PZ
1657}
1658
8277434e
PT
1659/*
1660 * Iterate the full tree, calling @down when first entering a node and @up when
1661 * leaving it for the final time.
1662 *
1663 * Caller must hold rcu_lock or sufficient equivalent.
1664 */
1665
1666static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1667{
1668 return walk_tg_tree_from(&root_task_group, down, up, data);
1669}
1670
eb755805
PZ
1671static int tg_nop(struct task_group *tg, void *data)
1672{
1673 return 0;
c09595f6 1674}
eb755805
PZ
1675#endif
1676
1677#ifdef CONFIG_SMP
f5f08f39
PZ
1678/* Used instead of source_load when we know the type == 0 */
1679static unsigned long weighted_cpuload(const int cpu)
1680{
1681 return cpu_rq(cpu)->load.weight;
1682}
1683
1684/*
1685 * Return a low guess at the load of a migration-source cpu weighted
1686 * according to the scheduling class and "nice" value.
1687 *
1688 * We want to under-estimate the load of migration sources, to
1689 * balance conservatively.
1690 */
1691static unsigned long source_load(int cpu, int type)
1692{
1693 struct rq *rq = cpu_rq(cpu);
1694 unsigned long total = weighted_cpuload(cpu);
1695
1696 if (type == 0 || !sched_feat(LB_BIAS))
1697 return total;
1698
1699 return min(rq->cpu_load[type-1], total);
1700}
1701
1702/*
1703 * Return a high guess at the load of a migration-target cpu weighted
1704 * according to the scheduling class and "nice" value.
1705 */
1706static unsigned long target_load(int cpu, int type)
1707{
1708 struct rq *rq = cpu_rq(cpu);
1709 unsigned long total = weighted_cpuload(cpu);
1710
1711 if (type == 0 || !sched_feat(LB_BIAS))
1712 return total;
1713
1714 return max(rq->cpu_load[type-1], total);
1715}
1716
ae154be1
PZ
1717static unsigned long power_of(int cpu)
1718{
e51fd5e2 1719 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1720}
1721
eb755805
PZ
1722static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1723
1724static unsigned long cpu_avg_load_per_task(int cpu)
1725{
1726 struct rq *rq = cpu_rq(cpu);
af6d596f 1727 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1728
4cd42620 1729 if (nr_running)
e2b245f8 1730 return rq->load.weight / nr_running;
eb755805 1731
e2b245f8 1732 return 0;
eb755805
PZ
1733}
1734
8f45e2b5
GH
1735#ifdef CONFIG_PREEMPT
1736
b78bb868
PZ
1737static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1738
70574a99 1739/*
8f45e2b5
GH
1740 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1741 * way at the expense of forcing extra atomic operations in all
1742 * invocations. This assures that the double_lock is acquired using the
1743 * same underlying policy as the spinlock_t on this architecture, which
1744 * reduces latency compared to the unfair variant below. However, it
1745 * also adds more overhead and therefore may reduce throughput.
70574a99 1746 */
8f45e2b5
GH
1747static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1748 __releases(this_rq->lock)
1749 __acquires(busiest->lock)
1750 __acquires(this_rq->lock)
1751{
05fa785c 1752 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1753 double_rq_lock(this_rq, busiest);
1754
1755 return 1;
1756}
1757
1758#else
1759/*
1760 * Unfair double_lock_balance: Optimizes throughput at the expense of
1761 * latency by eliminating extra atomic operations when the locks are
1762 * already in proper order on entry. This favors lower cpu-ids and will
1763 * grant the double lock to lower cpus over higher ids under contention,
1764 * regardless of entry order into the function.
1765 */
1766static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1767 __releases(this_rq->lock)
1768 __acquires(busiest->lock)
1769 __acquires(this_rq->lock)
1770{
1771 int ret = 0;
1772
05fa785c 1773 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1774 if (busiest < this_rq) {
05fa785c
TG
1775 raw_spin_unlock(&this_rq->lock);
1776 raw_spin_lock(&busiest->lock);
1777 raw_spin_lock_nested(&this_rq->lock,
1778 SINGLE_DEPTH_NESTING);
70574a99
AD
1779 ret = 1;
1780 } else
05fa785c
TG
1781 raw_spin_lock_nested(&busiest->lock,
1782 SINGLE_DEPTH_NESTING);
70574a99
AD
1783 }
1784 return ret;
1785}
1786
8f45e2b5
GH
1787#endif /* CONFIG_PREEMPT */
1788
1789/*
1790 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1791 */
1792static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1793{
1794 if (unlikely(!irqs_disabled())) {
1795 /* printk() doesn't work good under rq->lock */
05fa785c 1796 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1797 BUG_ON(1);
1798 }
1799
1800 return _double_lock_balance(this_rq, busiest);
1801}
1802
70574a99
AD
1803static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1804 __releases(busiest->lock)
1805{
05fa785c 1806 raw_spin_unlock(&busiest->lock);
70574a99
AD
1807 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1808}
1e3c88bd
PZ
1809
1810/*
1811 * double_rq_lock - safely lock two runqueues
1812 *
1813 * Note this does not disable interrupts like task_rq_lock,
1814 * you need to do so manually before calling.
1815 */
1816static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1817 __acquires(rq1->lock)
1818 __acquires(rq2->lock)
1819{
1820 BUG_ON(!irqs_disabled());
1821 if (rq1 == rq2) {
1822 raw_spin_lock(&rq1->lock);
1823 __acquire(rq2->lock); /* Fake it out ;) */
1824 } else {
1825 if (rq1 < rq2) {
1826 raw_spin_lock(&rq1->lock);
1827 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1828 } else {
1829 raw_spin_lock(&rq2->lock);
1830 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1831 }
1832 }
1e3c88bd
PZ
1833}
1834
1835/*
1836 * double_rq_unlock - safely unlock two runqueues
1837 *
1838 * Note this does not restore interrupts like task_rq_unlock,
1839 * you need to do so manually after calling.
1840 */
1841static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1842 __releases(rq1->lock)
1843 __releases(rq2->lock)
1844{
1845 raw_spin_unlock(&rq1->lock);
1846 if (rq1 != rq2)
1847 raw_spin_unlock(&rq2->lock);
1848 else
1849 __release(rq2->lock);
1850}
1851
d95f4122
MG
1852#else /* CONFIG_SMP */
1853
1854/*
1855 * double_rq_lock - safely lock two runqueues
1856 *
1857 * Note this does not disable interrupts like task_rq_lock,
1858 * you need to do so manually before calling.
1859 */
1860static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1861 __acquires(rq1->lock)
1862 __acquires(rq2->lock)
1863{
1864 BUG_ON(!irqs_disabled());
1865 BUG_ON(rq1 != rq2);
1866 raw_spin_lock(&rq1->lock);
1867 __acquire(rq2->lock); /* Fake it out ;) */
1868}
1869
1870/*
1871 * double_rq_unlock - safely unlock two runqueues
1872 *
1873 * Note this does not restore interrupts like task_rq_unlock,
1874 * you need to do so manually after calling.
1875 */
1876static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1877 __releases(rq1->lock)
1878 __releases(rq2->lock)
1879{
1880 BUG_ON(rq1 != rq2);
1881 raw_spin_unlock(&rq1->lock);
1882 __release(rq2->lock);
1883}
1884
18d95a28
PZ
1885#endif
1886
74f5187a 1887static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1888static void update_sysctl(void);
acb4a848 1889static int get_update_sysctl_factor(void);
fdf3e95d 1890static void update_cpu_load(struct rq *this_rq);
dce48a84 1891
cd29fe6f
PZ
1892static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1893{
1894 set_task_rq(p, cpu);
1895#ifdef CONFIG_SMP
1896 /*
1897 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1898 * successfuly executed on another CPU. We must ensure that updates of
1899 * per-task data have been completed by this moment.
1900 */
1901 smp_wmb();
1902 task_thread_info(p)->cpu = cpu;
1903#endif
1904}
dce48a84 1905
1e3c88bd 1906static const struct sched_class rt_sched_class;
dd41f596 1907
34f971f6 1908#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1909#define for_each_class(class) \
1910 for (class = sched_class_highest; class; class = class->next)
dd41f596 1911
1e3c88bd
PZ
1912#include "sched_stats.h"
1913
c09595f6 1914static void inc_nr_running(struct rq *rq)
9c217245
IM
1915{
1916 rq->nr_running++;
9c217245
IM
1917}
1918
c09595f6 1919static void dec_nr_running(struct rq *rq)
9c217245
IM
1920{
1921 rq->nr_running--;
9c217245
IM
1922}
1923
45bf76df
IM
1924static void set_load_weight(struct task_struct *p)
1925{
f05998d4
NR
1926 int prio = p->static_prio - MAX_RT_PRIO;
1927 struct load_weight *load = &p->se.load;
1928
dd41f596
IM
1929 /*
1930 * SCHED_IDLE tasks get minimal weight:
1931 */
1932 if (p->policy == SCHED_IDLE) {
c8b28116 1933 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1934 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1935 return;
1936 }
71f8bd46 1937
c8b28116 1938 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1939 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1940}
1941
371fd7e7 1942static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1943{
a64692a3 1944 update_rq_clock(rq);
dd41f596 1945 sched_info_queued(p);
371fd7e7 1946 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1947}
1948
371fd7e7 1949static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1950{
a64692a3 1951 update_rq_clock(rq);
46ac22ba 1952 sched_info_dequeued(p);
371fd7e7 1953 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1954}
1955
1e3c88bd
PZ
1956/*
1957 * activate_task - move a task to the runqueue.
1958 */
371fd7e7 1959static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1960{
1961 if (task_contributes_to_load(p))
1962 rq->nr_uninterruptible--;
1963
371fd7e7 1964 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1965}
1966
1967/*
1968 * deactivate_task - remove a task from the runqueue.
1969 */
371fd7e7 1970static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1971{
1972 if (task_contributes_to_load(p))
1973 rq->nr_uninterruptible++;
1974
371fd7e7 1975 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1976}
1977
b52bfee4
VP
1978#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1979
305e6835
VP
1980/*
1981 * There are no locks covering percpu hardirq/softirq time.
1982 * They are only modified in account_system_vtime, on corresponding CPU
1983 * with interrupts disabled. So, writes are safe.
1984 * They are read and saved off onto struct rq in update_rq_clock().
1985 * This may result in other CPU reading this CPU's irq time and can
1986 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1987 * or new value with a side effect of accounting a slice of irq time to wrong
1988 * task when irq is in progress while we read rq->clock. That is a worthy
1989 * compromise in place of having locks on each irq in account_system_time.
305e6835 1990 */
b52bfee4
VP
1991static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1992static DEFINE_PER_CPU(u64, cpu_softirq_time);
1993
1994static DEFINE_PER_CPU(u64, irq_start_time);
1995static int sched_clock_irqtime;
1996
1997void enable_sched_clock_irqtime(void)
1998{
1999 sched_clock_irqtime = 1;
2000}
2001
2002void disable_sched_clock_irqtime(void)
2003{
2004 sched_clock_irqtime = 0;
2005}
2006
8e92c201
PZ
2007#ifndef CONFIG_64BIT
2008static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
2009
2010static inline void irq_time_write_begin(void)
2011{
2012 __this_cpu_inc(irq_time_seq.sequence);
2013 smp_wmb();
2014}
2015
2016static inline void irq_time_write_end(void)
2017{
2018 smp_wmb();
2019 __this_cpu_inc(irq_time_seq.sequence);
2020}
2021
2022static inline u64 irq_time_read(int cpu)
2023{
2024 u64 irq_time;
2025 unsigned seq;
2026
2027 do {
2028 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2029 irq_time = per_cpu(cpu_softirq_time, cpu) +
2030 per_cpu(cpu_hardirq_time, cpu);
2031 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2032
2033 return irq_time;
2034}
2035#else /* CONFIG_64BIT */
2036static inline void irq_time_write_begin(void)
2037{
2038}
2039
2040static inline void irq_time_write_end(void)
2041{
2042}
2043
2044static inline u64 irq_time_read(int cpu)
305e6835 2045{
305e6835
VP
2046 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2047}
8e92c201 2048#endif /* CONFIG_64BIT */
305e6835 2049
fe44d621
PZ
2050/*
2051 * Called before incrementing preempt_count on {soft,}irq_enter
2052 * and before decrementing preempt_count on {soft,}irq_exit.
2053 */
b52bfee4
VP
2054void account_system_vtime(struct task_struct *curr)
2055{
2056 unsigned long flags;
fe44d621 2057 s64 delta;
b52bfee4 2058 int cpu;
b52bfee4
VP
2059
2060 if (!sched_clock_irqtime)
2061 return;
2062
2063 local_irq_save(flags);
2064
b52bfee4 2065 cpu = smp_processor_id();
fe44d621
PZ
2066 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2067 __this_cpu_add(irq_start_time, delta);
2068
8e92c201 2069 irq_time_write_begin();
b52bfee4
VP
2070 /*
2071 * We do not account for softirq time from ksoftirqd here.
2072 * We want to continue accounting softirq time to ksoftirqd thread
2073 * in that case, so as not to confuse scheduler with a special task
2074 * that do not consume any time, but still wants to run.
2075 */
2076 if (hardirq_count())
fe44d621 2077 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 2078 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 2079 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 2080
8e92c201 2081 irq_time_write_end();
b52bfee4
VP
2082 local_irq_restore(flags);
2083}
b7dadc38 2084EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 2085
e6e6685a
GC
2086#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2087
2088#ifdef CONFIG_PARAVIRT
2089static inline u64 steal_ticks(u64 steal)
aa483808 2090{
e6e6685a
GC
2091 if (unlikely(steal > NSEC_PER_SEC))
2092 return div_u64(steal, TICK_NSEC);
fe44d621 2093
e6e6685a
GC
2094 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2095}
2096#endif
2097
fe44d621 2098static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 2099{
095c0aa8
GC
2100/*
2101 * In theory, the compile should just see 0 here, and optimize out the call
2102 * to sched_rt_avg_update. But I don't trust it...
2103 */
2104#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2105 s64 steal = 0, irq_delta = 0;
2106#endif
2107#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 2108 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
2109
2110 /*
2111 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2112 * this case when a previous update_rq_clock() happened inside a
2113 * {soft,}irq region.
2114 *
2115 * When this happens, we stop ->clock_task and only update the
2116 * prev_irq_time stamp to account for the part that fit, so that a next
2117 * update will consume the rest. This ensures ->clock_task is
2118 * monotonic.
2119 *
2120 * It does however cause some slight miss-attribution of {soft,}irq
2121 * time, a more accurate solution would be to update the irq_time using
2122 * the current rq->clock timestamp, except that would require using
2123 * atomic ops.
2124 */
2125 if (irq_delta > delta)
2126 irq_delta = delta;
2127
2128 rq->prev_irq_time += irq_delta;
2129 delta -= irq_delta;
095c0aa8
GC
2130#endif
2131#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2132 if (static_branch((&paravirt_steal_rq_enabled))) {
2133 u64 st;
2134
2135 steal = paravirt_steal_clock(cpu_of(rq));
2136 steal -= rq->prev_steal_time_rq;
2137
2138 if (unlikely(steal > delta))
2139 steal = delta;
2140
2141 st = steal_ticks(steal);
2142 steal = st * TICK_NSEC;
2143
2144 rq->prev_steal_time_rq += steal;
2145
2146 delta -= steal;
2147 }
2148#endif
2149
fe44d621
PZ
2150 rq->clock_task += delta;
2151
095c0aa8
GC
2152#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2153 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2154 sched_rt_avg_update(rq, irq_delta + steal);
2155#endif
aa483808
VP
2156}
2157
095c0aa8 2158#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
2159static int irqtime_account_hi_update(void)
2160{
2161 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2162 unsigned long flags;
2163 u64 latest_ns;
2164 int ret = 0;
2165
2166 local_irq_save(flags);
2167 latest_ns = this_cpu_read(cpu_hardirq_time);
2168 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2169 ret = 1;
2170 local_irq_restore(flags);
2171 return ret;
2172}
2173
2174static int irqtime_account_si_update(void)
2175{
2176 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2177 unsigned long flags;
2178 u64 latest_ns;
2179 int ret = 0;
2180
2181 local_irq_save(flags);
2182 latest_ns = this_cpu_read(cpu_softirq_time);
2183 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2184 ret = 1;
2185 local_irq_restore(flags);
2186 return ret;
2187}
2188
fe44d621 2189#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2190
abb74cef
VP
2191#define sched_clock_irqtime (0)
2192
095c0aa8 2193#endif
b52bfee4 2194
1e3c88bd
PZ
2195#include "sched_idletask.c"
2196#include "sched_fair.c"
2197#include "sched_rt.c"
5091faa4 2198#include "sched_autogroup.c"
34f971f6 2199#include "sched_stoptask.c"
1e3c88bd
PZ
2200#ifdef CONFIG_SCHED_DEBUG
2201# include "sched_debug.c"
2202#endif
2203
34f971f6
PZ
2204void sched_set_stop_task(int cpu, struct task_struct *stop)
2205{
2206 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2207 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2208
2209 if (stop) {
2210 /*
2211 * Make it appear like a SCHED_FIFO task, its something
2212 * userspace knows about and won't get confused about.
2213 *
2214 * Also, it will make PI more or less work without too
2215 * much confusion -- but then, stop work should not
2216 * rely on PI working anyway.
2217 */
2218 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2219
2220 stop->sched_class = &stop_sched_class;
2221 }
2222
2223 cpu_rq(cpu)->stop = stop;
2224
2225 if (old_stop) {
2226 /*
2227 * Reset it back to a normal scheduling class so that
2228 * it can die in pieces.
2229 */
2230 old_stop->sched_class = &rt_sched_class;
2231 }
2232}
2233
14531189 2234/*
dd41f596 2235 * __normal_prio - return the priority that is based on the static prio
14531189 2236 */
14531189
IM
2237static inline int __normal_prio(struct task_struct *p)
2238{
dd41f596 2239 return p->static_prio;
14531189
IM
2240}
2241
b29739f9
IM
2242/*
2243 * Calculate the expected normal priority: i.e. priority
2244 * without taking RT-inheritance into account. Might be
2245 * boosted by interactivity modifiers. Changes upon fork,
2246 * setprio syscalls, and whenever the interactivity
2247 * estimator recalculates.
2248 */
36c8b586 2249static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2250{
2251 int prio;
2252
e05606d3 2253 if (task_has_rt_policy(p))
b29739f9
IM
2254 prio = MAX_RT_PRIO-1 - p->rt_priority;
2255 else
2256 prio = __normal_prio(p);
2257 return prio;
2258}
2259
2260/*
2261 * Calculate the current priority, i.e. the priority
2262 * taken into account by the scheduler. This value might
2263 * be boosted by RT tasks, or might be boosted by
2264 * interactivity modifiers. Will be RT if the task got
2265 * RT-boosted. If not then it returns p->normal_prio.
2266 */
36c8b586 2267static int effective_prio(struct task_struct *p)
b29739f9
IM
2268{
2269 p->normal_prio = normal_prio(p);
2270 /*
2271 * If we are RT tasks or we were boosted to RT priority,
2272 * keep the priority unchanged. Otherwise, update priority
2273 * to the normal priority:
2274 */
2275 if (!rt_prio(p->prio))
2276 return p->normal_prio;
2277 return p->prio;
2278}
2279
1da177e4
LT
2280/**
2281 * task_curr - is this task currently executing on a CPU?
2282 * @p: the task in question.
2283 */
36c8b586 2284inline int task_curr(const struct task_struct *p)
1da177e4
LT
2285{
2286 return cpu_curr(task_cpu(p)) == p;
2287}
2288
cb469845
SR
2289static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2290 const struct sched_class *prev_class,
da7a735e 2291 int oldprio)
cb469845
SR
2292{
2293 if (prev_class != p->sched_class) {
2294 if (prev_class->switched_from)
da7a735e
PZ
2295 prev_class->switched_from(rq, p);
2296 p->sched_class->switched_to(rq, p);
2297 } else if (oldprio != p->prio)
2298 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2299}
2300
1e5a7405
PZ
2301static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2302{
2303 const struct sched_class *class;
2304
2305 if (p->sched_class == rq->curr->sched_class) {
2306 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2307 } else {
2308 for_each_class(class) {
2309 if (class == rq->curr->sched_class)
2310 break;
2311 if (class == p->sched_class) {
2312 resched_task(rq->curr);
2313 break;
2314 }
2315 }
2316 }
2317
2318 /*
2319 * A queue event has occurred, and we're going to schedule. In
2320 * this case, we can save a useless back to back clock update.
2321 */
fd2f4419 2322 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2323 rq->skip_clock_update = 1;
2324}
2325
1da177e4 2326#ifdef CONFIG_SMP
cc367732
IM
2327/*
2328 * Is this task likely cache-hot:
2329 */
e7693a36 2330static int
cc367732
IM
2331task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2332{
2333 s64 delta;
2334
e6c8fba7
PZ
2335 if (p->sched_class != &fair_sched_class)
2336 return 0;
2337
ef8002f6
NR
2338 if (unlikely(p->policy == SCHED_IDLE))
2339 return 0;
2340
f540a608
IM
2341 /*
2342 * Buddy candidates are cache hot:
2343 */
f685ceac 2344 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2345 (&p->se == cfs_rq_of(&p->se)->next ||
2346 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2347 return 1;
2348
6bc1665b
IM
2349 if (sysctl_sched_migration_cost == -1)
2350 return 1;
2351 if (sysctl_sched_migration_cost == 0)
2352 return 0;
2353
cc367732
IM
2354 delta = now - p->se.exec_start;
2355
2356 return delta < (s64)sysctl_sched_migration_cost;
2357}
2358
dd41f596 2359void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2360{
e2912009
PZ
2361#ifdef CONFIG_SCHED_DEBUG
2362 /*
2363 * We should never call set_task_cpu() on a blocked task,
2364 * ttwu() will sort out the placement.
2365 */
077614ee
PZ
2366 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2367 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2368
2369#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2370 /*
2371 * The caller should hold either p->pi_lock or rq->lock, when changing
2372 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2373 *
2374 * sched_move_task() holds both and thus holding either pins the cgroup,
2375 * see set_task_rq().
2376 *
2377 * Furthermore, all task_rq users should acquire both locks, see
2378 * task_rq_lock().
2379 */
0122ec5b
PZ
2380 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2381 lockdep_is_held(&task_rq(p)->lock)));
2382#endif
e2912009
PZ
2383#endif
2384
de1d7286 2385 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2386
0c69774e
PZ
2387 if (task_cpu(p) != new_cpu) {
2388 p->se.nr_migrations++;
a8b0ca17 2389 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 2390 }
dd41f596
IM
2391
2392 __set_task_cpu(p, new_cpu);
c65cc870
IM
2393}
2394
969c7921 2395struct migration_arg {
36c8b586 2396 struct task_struct *task;
1da177e4 2397 int dest_cpu;
70b97a7f 2398};
1da177e4 2399
969c7921
TH
2400static int migration_cpu_stop(void *data);
2401
1da177e4
LT
2402/*
2403 * wait_task_inactive - wait for a thread to unschedule.
2404 *
85ba2d86
RM
2405 * If @match_state is nonzero, it's the @p->state value just checked and
2406 * not expected to change. If it changes, i.e. @p might have woken up,
2407 * then return zero. When we succeed in waiting for @p to be off its CPU,
2408 * we return a positive number (its total switch count). If a second call
2409 * a short while later returns the same number, the caller can be sure that
2410 * @p has remained unscheduled the whole time.
2411 *
1da177e4
LT
2412 * The caller must ensure that the task *will* unschedule sometime soon,
2413 * else this function might spin for a *long* time. This function can't
2414 * be called with interrupts off, or it may introduce deadlock with
2415 * smp_call_function() if an IPI is sent by the same process we are
2416 * waiting to become inactive.
2417 */
85ba2d86 2418unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2419{
2420 unsigned long flags;
dd41f596 2421 int running, on_rq;
85ba2d86 2422 unsigned long ncsw;
70b97a7f 2423 struct rq *rq;
1da177e4 2424
3a5c359a
AK
2425 for (;;) {
2426 /*
2427 * We do the initial early heuristics without holding
2428 * any task-queue locks at all. We'll only try to get
2429 * the runqueue lock when things look like they will
2430 * work out!
2431 */
2432 rq = task_rq(p);
fa490cfd 2433
3a5c359a
AK
2434 /*
2435 * If the task is actively running on another CPU
2436 * still, just relax and busy-wait without holding
2437 * any locks.
2438 *
2439 * NOTE! Since we don't hold any locks, it's not
2440 * even sure that "rq" stays as the right runqueue!
2441 * But we don't care, since "task_running()" will
2442 * return false if the runqueue has changed and p
2443 * is actually now running somewhere else!
2444 */
85ba2d86
RM
2445 while (task_running(rq, p)) {
2446 if (match_state && unlikely(p->state != match_state))
2447 return 0;
3a5c359a 2448 cpu_relax();
85ba2d86 2449 }
fa490cfd 2450
3a5c359a
AK
2451 /*
2452 * Ok, time to look more closely! We need the rq
2453 * lock now, to be *sure*. If we're wrong, we'll
2454 * just go back and repeat.
2455 */
2456 rq = task_rq_lock(p, &flags);
27a9da65 2457 trace_sched_wait_task(p);
3a5c359a 2458 running = task_running(rq, p);
fd2f4419 2459 on_rq = p->on_rq;
85ba2d86 2460 ncsw = 0;
f31e11d8 2461 if (!match_state || p->state == match_state)
93dcf55f 2462 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2463 task_rq_unlock(rq, p, &flags);
fa490cfd 2464
85ba2d86
RM
2465 /*
2466 * If it changed from the expected state, bail out now.
2467 */
2468 if (unlikely(!ncsw))
2469 break;
2470
3a5c359a
AK
2471 /*
2472 * Was it really running after all now that we
2473 * checked with the proper locks actually held?
2474 *
2475 * Oops. Go back and try again..
2476 */
2477 if (unlikely(running)) {
2478 cpu_relax();
2479 continue;
2480 }
fa490cfd 2481
3a5c359a
AK
2482 /*
2483 * It's not enough that it's not actively running,
2484 * it must be off the runqueue _entirely_, and not
2485 * preempted!
2486 *
80dd99b3 2487 * So if it was still runnable (but just not actively
3a5c359a
AK
2488 * running right now), it's preempted, and we should
2489 * yield - it could be a while.
2490 */
2491 if (unlikely(on_rq)) {
8eb90c30
TG
2492 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2493
2494 set_current_state(TASK_UNINTERRUPTIBLE);
2495 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2496 continue;
2497 }
fa490cfd 2498
3a5c359a
AK
2499 /*
2500 * Ahh, all good. It wasn't running, and it wasn't
2501 * runnable, which means that it will never become
2502 * running in the future either. We're all done!
2503 */
2504 break;
2505 }
85ba2d86
RM
2506
2507 return ncsw;
1da177e4
LT
2508}
2509
2510/***
2511 * kick_process - kick a running thread to enter/exit the kernel
2512 * @p: the to-be-kicked thread
2513 *
2514 * Cause a process which is running on another CPU to enter
2515 * kernel-mode, without any delay. (to get signals handled.)
2516 *
25985edc 2517 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2518 * because all it wants to ensure is that the remote task enters
2519 * the kernel. If the IPI races and the task has been migrated
2520 * to another CPU then no harm is done and the purpose has been
2521 * achieved as well.
2522 */
36c8b586 2523void kick_process(struct task_struct *p)
1da177e4
LT
2524{
2525 int cpu;
2526
2527 preempt_disable();
2528 cpu = task_cpu(p);
2529 if ((cpu != smp_processor_id()) && task_curr(p))
2530 smp_send_reschedule(cpu);
2531 preempt_enable();
2532}
b43e3521 2533EXPORT_SYMBOL_GPL(kick_process);
476d139c 2534#endif /* CONFIG_SMP */
1da177e4 2535
970b13ba 2536#ifdef CONFIG_SMP
30da688e 2537/*
013fdb80 2538 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2539 */
5da9a0fb
PZ
2540static int select_fallback_rq(int cpu, struct task_struct *p)
2541{
2542 int dest_cpu;
2543 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2544
2545 /* Look for allowed, online CPU in same node. */
2546 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2547 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2548 return dest_cpu;
2549
2550 /* Any allowed, online CPU? */
2551 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2552 if (dest_cpu < nr_cpu_ids)
2553 return dest_cpu;
2554
2555 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2556 dest_cpu = cpuset_cpus_allowed_fallback(p);
2557 /*
2558 * Don't tell them about moving exiting tasks or
2559 * kernel threads (both mm NULL), since they never
2560 * leave kernel.
2561 */
2562 if (p->mm && printk_ratelimit()) {
2563 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2564 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2565 }
2566
2567 return dest_cpu;
2568}
2569
e2912009 2570/*
013fdb80 2571 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2572 */
970b13ba 2573static inline
7608dec2 2574int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2575{
7608dec2 2576 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2577
2578 /*
2579 * In order not to call set_task_cpu() on a blocking task we need
2580 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2581 * cpu.
2582 *
2583 * Since this is common to all placement strategies, this lives here.
2584 *
2585 * [ this allows ->select_task() to simply return task_cpu(p) and
2586 * not worry about this generic constraint ]
2587 */
2588 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2589 !cpu_online(cpu)))
5da9a0fb 2590 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2591
2592 return cpu;
970b13ba 2593}
09a40af5
MG
2594
2595static void update_avg(u64 *avg, u64 sample)
2596{
2597 s64 diff = sample - *avg;
2598 *avg += diff >> 3;
2599}
970b13ba
PZ
2600#endif
2601
d7c01d27 2602static void
b84cb5df 2603ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2604{
d7c01d27 2605#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2606 struct rq *rq = this_rq();
2607
d7c01d27
PZ
2608#ifdef CONFIG_SMP
2609 int this_cpu = smp_processor_id();
2610
2611 if (cpu == this_cpu) {
2612 schedstat_inc(rq, ttwu_local);
2613 schedstat_inc(p, se.statistics.nr_wakeups_local);
2614 } else {
2615 struct sched_domain *sd;
2616
2617 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2618 rcu_read_lock();
d7c01d27
PZ
2619 for_each_domain(this_cpu, sd) {
2620 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2621 schedstat_inc(sd, ttwu_wake_remote);
2622 break;
2623 }
2624 }
057f3fad 2625 rcu_read_unlock();
d7c01d27 2626 }
f339b9dc
PZ
2627
2628 if (wake_flags & WF_MIGRATED)
2629 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2630
d7c01d27
PZ
2631#endif /* CONFIG_SMP */
2632
2633 schedstat_inc(rq, ttwu_count);
9ed3811a 2634 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2635
2636 if (wake_flags & WF_SYNC)
9ed3811a 2637 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 2638
d7c01d27
PZ
2639#endif /* CONFIG_SCHEDSTATS */
2640}
2641
2642static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2643{
9ed3811a 2644 activate_task(rq, p, en_flags);
fd2f4419 2645 p->on_rq = 1;
c2f7115e
PZ
2646
2647 /* if a worker is waking up, notify workqueue */
2648 if (p->flags & PF_WQ_WORKER)
2649 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2650}
2651
23f41eeb
PZ
2652/*
2653 * Mark the task runnable and perform wakeup-preemption.
2654 */
89363381 2655static void
23f41eeb 2656ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2657{
89363381 2658 trace_sched_wakeup(p, true);
9ed3811a
TH
2659 check_preempt_curr(rq, p, wake_flags);
2660
2661 p->state = TASK_RUNNING;
2662#ifdef CONFIG_SMP
2663 if (p->sched_class->task_woken)
2664 p->sched_class->task_woken(rq, p);
2665
e69c6341 2666 if (rq->idle_stamp) {
9ed3811a
TH
2667 u64 delta = rq->clock - rq->idle_stamp;
2668 u64 max = 2*sysctl_sched_migration_cost;
2669
2670 if (delta > max)
2671 rq->avg_idle = max;
2672 else
2673 update_avg(&rq->avg_idle, delta);
2674 rq->idle_stamp = 0;
2675 }
2676#endif
2677}
2678
c05fbafb
PZ
2679static void
2680ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2681{
2682#ifdef CONFIG_SMP
2683 if (p->sched_contributes_to_load)
2684 rq->nr_uninterruptible--;
2685#endif
2686
2687 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2688 ttwu_do_wakeup(rq, p, wake_flags);
2689}
2690
2691/*
2692 * Called in case the task @p isn't fully descheduled from its runqueue,
2693 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2694 * since all we need to do is flip p->state to TASK_RUNNING, since
2695 * the task is still ->on_rq.
2696 */
2697static int ttwu_remote(struct task_struct *p, int wake_flags)
2698{
2699 struct rq *rq;
2700 int ret = 0;
2701
2702 rq = __task_rq_lock(p);
2703 if (p->on_rq) {
2704 ttwu_do_wakeup(rq, p, wake_flags);
2705 ret = 1;
2706 }
2707 __task_rq_unlock(rq);
2708
2709 return ret;
2710}
2711
317f3941 2712#ifdef CONFIG_SMP
fa14ff4a 2713static void sched_ttwu_pending(void)
317f3941
PZ
2714{
2715 struct rq *rq = this_rq();
fa14ff4a
PZ
2716 struct llist_node *llist = llist_del_all(&rq->wake_list);
2717 struct task_struct *p;
317f3941
PZ
2718
2719 raw_spin_lock(&rq->lock);
2720
fa14ff4a
PZ
2721 while (llist) {
2722 p = llist_entry(llist, struct task_struct, wake_entry);
2723 llist = llist_next(llist);
317f3941
PZ
2724 ttwu_do_activate(rq, p, 0);
2725 }
2726
2727 raw_spin_unlock(&rq->lock);
2728}
2729
2730void scheduler_ipi(void)
2731{
ca38062e 2732 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
2733 return;
2734
2735 /*
2736 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2737 * traditionally all their work was done from the interrupt return
2738 * path. Now that we actually do some work, we need to make sure
2739 * we do call them.
2740 *
2741 * Some archs already do call them, luckily irq_enter/exit nest
2742 * properly.
2743 *
2744 * Arguably we should visit all archs and update all handlers,
2745 * however a fair share of IPIs are still resched only so this would
2746 * somewhat pessimize the simple resched case.
2747 */
2748 irq_enter();
fa14ff4a 2749 sched_ttwu_pending();
ca38062e
SS
2750
2751 /*
2752 * Check if someone kicked us for doing the nohz idle load balance.
2753 */
6eb57e0d
SS
2754 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
2755 this_rq()->idle_balance = 1;
ca38062e 2756 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 2757 }
c5d753a5 2758 irq_exit();
317f3941
PZ
2759}
2760
2761static void ttwu_queue_remote(struct task_struct *p, int cpu)
2762{
fa14ff4a 2763 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
2764 smp_send_reschedule(cpu);
2765}
d6aa8f85
PZ
2766
2767#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2768static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2769{
2770 struct rq *rq;
2771 int ret = 0;
2772
2773 rq = __task_rq_lock(p);
2774 if (p->on_cpu) {
2775 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2776 ttwu_do_wakeup(rq, p, wake_flags);
2777 ret = 1;
2778 }
2779 __task_rq_unlock(rq);
2780
2781 return ret;
2782
2783}
2784#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2785#endif /* CONFIG_SMP */
317f3941 2786
c05fbafb
PZ
2787static void ttwu_queue(struct task_struct *p, int cpu)
2788{
2789 struct rq *rq = cpu_rq(cpu);
2790
17d9f311 2791#if defined(CONFIG_SMP)
317f3941 2792 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 2793 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
2794 ttwu_queue_remote(p, cpu);
2795 return;
2796 }
2797#endif
2798
c05fbafb
PZ
2799 raw_spin_lock(&rq->lock);
2800 ttwu_do_activate(rq, p, 0);
2801 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2802}
2803
2804/**
1da177e4 2805 * try_to_wake_up - wake up a thread
9ed3811a 2806 * @p: the thread to be awakened
1da177e4 2807 * @state: the mask of task states that can be woken
9ed3811a 2808 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2809 *
2810 * Put it on the run-queue if it's not already there. The "current"
2811 * thread is always on the run-queue (except when the actual
2812 * re-schedule is in progress), and as such you're allowed to do
2813 * the simpler "current->state = TASK_RUNNING" to mark yourself
2814 * runnable without the overhead of this.
2815 *
9ed3811a
TH
2816 * Returns %true if @p was woken up, %false if it was already running
2817 * or @state didn't match @p's state.
1da177e4 2818 */
e4a52bcb
PZ
2819static int
2820try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2821{
1da177e4 2822 unsigned long flags;
c05fbafb 2823 int cpu, success = 0;
2398f2c6 2824
04e2f174 2825 smp_wmb();
013fdb80 2826 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2827 if (!(p->state & state))
1da177e4
LT
2828 goto out;
2829
c05fbafb 2830 success = 1; /* we're going to change ->state */
1da177e4 2831 cpu = task_cpu(p);
1da177e4 2832
c05fbafb
PZ
2833 if (p->on_rq && ttwu_remote(p, wake_flags))
2834 goto stat;
1da177e4 2835
1da177e4 2836#ifdef CONFIG_SMP
e9c84311 2837 /*
c05fbafb
PZ
2838 * If the owning (remote) cpu is still in the middle of schedule() with
2839 * this task as prev, wait until its done referencing the task.
e9c84311 2840 */
e4a52bcb
PZ
2841 while (p->on_cpu) {
2842#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2843 /*
d6aa8f85
PZ
2844 * In case the architecture enables interrupts in
2845 * context_switch(), we cannot busy wait, since that
2846 * would lead to deadlocks when an interrupt hits and
2847 * tries to wake up @prev. So bail and do a complete
2848 * remote wakeup.
e4a52bcb 2849 */
d6aa8f85 2850 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2851 goto stat;
d6aa8f85 2852#else
e4a52bcb 2853 cpu_relax();
d6aa8f85 2854#endif
371fd7e7 2855 }
0970d299 2856 /*
e4a52bcb 2857 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2858 */
e4a52bcb 2859 smp_rmb();
1da177e4 2860
a8e4f2ea 2861 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2862 p->state = TASK_WAKING;
e7693a36 2863
e4a52bcb 2864 if (p->sched_class->task_waking)
74f8e4b2 2865 p->sched_class->task_waking(p);
efbbd05a 2866
7608dec2 2867 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2868 if (task_cpu(p) != cpu) {
2869 wake_flags |= WF_MIGRATED;
e4a52bcb 2870 set_task_cpu(p, cpu);
f339b9dc 2871 }
1da177e4 2872#endif /* CONFIG_SMP */
1da177e4 2873
c05fbafb
PZ
2874 ttwu_queue(p, cpu);
2875stat:
b84cb5df 2876 ttwu_stat(p, cpu, wake_flags);
1da177e4 2877out:
013fdb80 2878 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2879
2880 return success;
2881}
2882
21aa9af0
TH
2883/**
2884 * try_to_wake_up_local - try to wake up a local task with rq lock held
2885 * @p: the thread to be awakened
2886 *
2acca55e 2887 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2888 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2889 * the current task.
21aa9af0
TH
2890 */
2891static void try_to_wake_up_local(struct task_struct *p)
2892{
2893 struct rq *rq = task_rq(p);
21aa9af0
TH
2894
2895 BUG_ON(rq != this_rq());
2896 BUG_ON(p == current);
2897 lockdep_assert_held(&rq->lock);
2898
2acca55e
PZ
2899 if (!raw_spin_trylock(&p->pi_lock)) {
2900 raw_spin_unlock(&rq->lock);
2901 raw_spin_lock(&p->pi_lock);
2902 raw_spin_lock(&rq->lock);
2903 }
2904
21aa9af0 2905 if (!(p->state & TASK_NORMAL))
2acca55e 2906 goto out;
21aa9af0 2907
fd2f4419 2908 if (!p->on_rq)
d7c01d27
PZ
2909 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2910
23f41eeb 2911 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2912 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2913out:
2914 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2915}
2916
50fa610a
DH
2917/**
2918 * wake_up_process - Wake up a specific process
2919 * @p: The process to be woken up.
2920 *
2921 * Attempt to wake up the nominated process and move it to the set of runnable
2922 * processes. Returns 1 if the process was woken up, 0 if it was already
2923 * running.
2924 *
2925 * It may be assumed that this function implies a write memory barrier before
2926 * changing the task state if and only if any tasks are woken up.
2927 */
7ad5b3a5 2928int wake_up_process(struct task_struct *p)
1da177e4 2929{
d9514f6c 2930 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2931}
1da177e4
LT
2932EXPORT_SYMBOL(wake_up_process);
2933
7ad5b3a5 2934int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2935{
2936 return try_to_wake_up(p, state, 0);
2937}
2938
1da177e4
LT
2939/*
2940 * Perform scheduler related setup for a newly forked process p.
2941 * p is forked by current.
dd41f596
IM
2942 *
2943 * __sched_fork() is basic setup used by init_idle() too:
2944 */
2945static void __sched_fork(struct task_struct *p)
2946{
fd2f4419
PZ
2947 p->on_rq = 0;
2948
2949 p->se.on_rq = 0;
dd41f596
IM
2950 p->se.exec_start = 0;
2951 p->se.sum_exec_runtime = 0;
f6cf891c 2952 p->se.prev_sum_exec_runtime = 0;
6c594c21 2953 p->se.nr_migrations = 0;
da7a735e 2954 p->se.vruntime = 0;
fd2f4419 2955 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2956
2957#ifdef CONFIG_SCHEDSTATS
41acab88 2958 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2959#endif
476d139c 2960
fa717060 2961 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2962
e107be36
AK
2963#ifdef CONFIG_PREEMPT_NOTIFIERS
2964 INIT_HLIST_HEAD(&p->preempt_notifiers);
2965#endif
dd41f596
IM
2966}
2967
2968/*
2969 * fork()/clone()-time setup:
2970 */
3e51e3ed 2971void sched_fork(struct task_struct *p)
dd41f596 2972{
0122ec5b 2973 unsigned long flags;
dd41f596
IM
2974 int cpu = get_cpu();
2975
2976 __sched_fork(p);
06b83b5f 2977 /*
0017d735 2978 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2979 * nobody will actually run it, and a signal or other external
2980 * event cannot wake it up and insert it on the runqueue either.
2981 */
0017d735 2982 p->state = TASK_RUNNING;
dd41f596 2983
c350a04e
MG
2984 /*
2985 * Make sure we do not leak PI boosting priority to the child.
2986 */
2987 p->prio = current->normal_prio;
2988
b9dc29e7
MG
2989 /*
2990 * Revert to default priority/policy on fork if requested.
2991 */
2992 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 2993 if (task_has_rt_policy(p)) {
b9dc29e7 2994 p->policy = SCHED_NORMAL;
6c697bdf 2995 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2996 p->rt_priority = 0;
2997 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2998 p->static_prio = NICE_TO_PRIO(0);
2999
3000 p->prio = p->normal_prio = __normal_prio(p);
3001 set_load_weight(p);
6c697bdf 3002
b9dc29e7
MG
3003 /*
3004 * We don't need the reset flag anymore after the fork. It has
3005 * fulfilled its duty:
3006 */
3007 p->sched_reset_on_fork = 0;
3008 }
ca94c442 3009
2ddbf952
HS
3010 if (!rt_prio(p->prio))
3011 p->sched_class = &fair_sched_class;
b29739f9 3012
cd29fe6f
PZ
3013 if (p->sched_class->task_fork)
3014 p->sched_class->task_fork(p);
3015
86951599
PZ
3016 /*
3017 * The child is not yet in the pid-hash so no cgroup attach races,
3018 * and the cgroup is pinned to this child due to cgroup_fork()
3019 * is ran before sched_fork().
3020 *
3021 * Silence PROVE_RCU.
3022 */
0122ec5b 3023 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 3024 set_task_cpu(p, cpu);
0122ec5b 3025 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 3026
52f17b6c 3027#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 3028 if (likely(sched_info_on()))
52f17b6c 3029 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 3030#endif
3ca7a440
PZ
3031#if defined(CONFIG_SMP)
3032 p->on_cpu = 0;
4866cde0 3033#endif
bdd4e85d 3034#ifdef CONFIG_PREEMPT_COUNT
4866cde0 3035 /* Want to start with kernel preemption disabled. */
a1261f54 3036 task_thread_info(p)->preempt_count = 1;
1da177e4 3037#endif
806c09a7 3038#ifdef CONFIG_SMP
917b627d 3039 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 3040#endif
917b627d 3041
476d139c 3042 put_cpu();
1da177e4
LT
3043}
3044
3045/*
3046 * wake_up_new_task - wake up a newly created task for the first time.
3047 *
3048 * This function will do some initial scheduler statistics housekeeping
3049 * that must be done for every newly created context, then puts the task
3050 * on the runqueue and wakes it.
3051 */
3e51e3ed 3052void wake_up_new_task(struct task_struct *p)
1da177e4
LT
3053{
3054 unsigned long flags;
dd41f596 3055 struct rq *rq;
fabf318e 3056
ab2515c4 3057 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
3058#ifdef CONFIG_SMP
3059 /*
3060 * Fork balancing, do it here and not earlier because:
3061 * - cpus_allowed can change in the fork path
3062 * - any previously selected cpu might disappear through hotplug
fabf318e 3063 */
ab2515c4 3064 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
3065#endif
3066
ab2515c4 3067 rq = __task_rq_lock(p);
cd29fe6f 3068 activate_task(rq, p, 0);
fd2f4419 3069 p->on_rq = 1;
89363381 3070 trace_sched_wakeup_new(p, true);
a7558e01 3071 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3072#ifdef CONFIG_SMP
efbbd05a
PZ
3073 if (p->sched_class->task_woken)
3074 p->sched_class->task_woken(rq, p);
9a897c5a 3075#endif
0122ec5b 3076 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3077}
3078
e107be36
AK
3079#ifdef CONFIG_PREEMPT_NOTIFIERS
3080
3081/**
80dd99b3 3082 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3083 * @notifier: notifier struct to register
e107be36
AK
3084 */
3085void preempt_notifier_register(struct preempt_notifier *notifier)
3086{
3087 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3088}
3089EXPORT_SYMBOL_GPL(preempt_notifier_register);
3090
3091/**
3092 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3093 * @notifier: notifier struct to unregister
e107be36
AK
3094 *
3095 * This is safe to call from within a preemption notifier.
3096 */
3097void preempt_notifier_unregister(struct preempt_notifier *notifier)
3098{
3099 hlist_del(&notifier->link);
3100}
3101EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3102
3103static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3104{
3105 struct preempt_notifier *notifier;
3106 struct hlist_node *node;
3107
3108 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3109 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3110}
3111
3112static void
3113fire_sched_out_preempt_notifiers(struct task_struct *curr,
3114 struct task_struct *next)
3115{
3116 struct preempt_notifier *notifier;
3117 struct hlist_node *node;
3118
3119 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3120 notifier->ops->sched_out(notifier, next);
3121}
3122
6d6bc0ad 3123#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
3124
3125static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3126{
3127}
3128
3129static void
3130fire_sched_out_preempt_notifiers(struct task_struct *curr,
3131 struct task_struct *next)
3132{
3133}
3134
6d6bc0ad 3135#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3136
4866cde0
NP
3137/**
3138 * prepare_task_switch - prepare to switch tasks
3139 * @rq: the runqueue preparing to switch
421cee29 3140 * @prev: the current task that is being switched out
4866cde0
NP
3141 * @next: the task we are going to switch to.
3142 *
3143 * This is called with the rq lock held and interrupts off. It must
3144 * be paired with a subsequent finish_task_switch after the context
3145 * switch.
3146 *
3147 * prepare_task_switch sets up locking and calls architecture specific
3148 * hooks.
3149 */
e107be36
AK
3150static inline void
3151prepare_task_switch(struct rq *rq, struct task_struct *prev,
3152 struct task_struct *next)
4866cde0 3153{
fe4b04fa
PZ
3154 sched_info_switch(prev, next);
3155 perf_event_task_sched_out(prev, next);
e107be36 3156 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
3157 prepare_lock_switch(rq, next);
3158 prepare_arch_switch(next);
fe4b04fa 3159 trace_sched_switch(prev, next);
4866cde0
NP
3160}
3161
1da177e4
LT
3162/**
3163 * finish_task_switch - clean up after a task-switch
344babaa 3164 * @rq: runqueue associated with task-switch
1da177e4
LT
3165 * @prev: the thread we just switched away from.
3166 *
4866cde0
NP
3167 * finish_task_switch must be called after the context switch, paired
3168 * with a prepare_task_switch call before the context switch.
3169 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3170 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3171 *
3172 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3173 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3174 * with the lock held can cause deadlocks; see schedule() for
3175 * details.)
3176 */
a9957449 3177static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
3178 __releases(rq->lock)
3179{
1da177e4 3180 struct mm_struct *mm = rq->prev_mm;
55a101f8 3181 long prev_state;
1da177e4
LT
3182
3183 rq->prev_mm = NULL;
3184
3185 /*
3186 * A task struct has one reference for the use as "current".
c394cc9f 3187 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3188 * schedule one last time. The schedule call will never return, and
3189 * the scheduled task must drop that reference.
c394cc9f 3190 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
3191 * still held, otherwise prev could be scheduled on another cpu, die
3192 * there before we look at prev->state, and then the reference would
3193 * be dropped twice.
3194 * Manfred Spraul <manfred@colorfullife.com>
3195 */
55a101f8 3196 prev_state = prev->state;
4866cde0 3197 finish_arch_switch(prev);
8381f65d
JI
3198#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3199 local_irq_disable();
3200#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 3201 perf_event_task_sched_in(prev, current);
8381f65d
JI
3202#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3203 local_irq_enable();
3204#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3205 finish_lock_switch(rq, prev);
e8fa1362 3206
e107be36 3207 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3208 if (mm)
3209 mmdrop(mm);
c394cc9f 3210 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3211 /*
3212 * Remove function-return probe instances associated with this
3213 * task and put them back on the free list.
9761eea8 3214 */
c6fd91f0 3215 kprobe_flush_task(prev);
1da177e4 3216 put_task_struct(prev);
c6fd91f0 3217 }
1da177e4
LT
3218}
3219
3f029d3c
GH
3220#ifdef CONFIG_SMP
3221
3222/* assumes rq->lock is held */
3223static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3224{
3225 if (prev->sched_class->pre_schedule)
3226 prev->sched_class->pre_schedule(rq, prev);
3227}
3228
3229/* rq->lock is NOT held, but preemption is disabled */
3230static inline void post_schedule(struct rq *rq)
3231{
3232 if (rq->post_schedule) {
3233 unsigned long flags;
3234
05fa785c 3235 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3236 if (rq->curr->sched_class->post_schedule)
3237 rq->curr->sched_class->post_schedule(rq);
05fa785c 3238 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3239
3240 rq->post_schedule = 0;
3241 }
3242}
3243
3244#else
da19ab51 3245
3f029d3c
GH
3246static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3247{
3248}
3249
3250static inline void post_schedule(struct rq *rq)
3251{
1da177e4
LT
3252}
3253
3f029d3c
GH
3254#endif
3255
1da177e4
LT
3256/**
3257 * schedule_tail - first thing a freshly forked thread must call.
3258 * @prev: the thread we just switched away from.
3259 */
36c8b586 3260asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3261 __releases(rq->lock)
3262{
70b97a7f
IM
3263 struct rq *rq = this_rq();
3264
4866cde0 3265 finish_task_switch(rq, prev);
da19ab51 3266
3f029d3c
GH
3267 /*
3268 * FIXME: do we need to worry about rq being invalidated by the
3269 * task_switch?
3270 */
3271 post_schedule(rq);
70b97a7f 3272
4866cde0
NP
3273#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3274 /* In this case, finish_task_switch does not reenable preemption */
3275 preempt_enable();
3276#endif
1da177e4 3277 if (current->set_child_tid)
b488893a 3278 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3279}
3280
3281/*
3282 * context_switch - switch to the new MM and the new
3283 * thread's register state.
3284 */
dd41f596 3285static inline void
70b97a7f 3286context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3287 struct task_struct *next)
1da177e4 3288{
dd41f596 3289 struct mm_struct *mm, *oldmm;
1da177e4 3290
e107be36 3291 prepare_task_switch(rq, prev, next);
fe4b04fa 3292
dd41f596
IM
3293 mm = next->mm;
3294 oldmm = prev->active_mm;
9226d125
ZA
3295 /*
3296 * For paravirt, this is coupled with an exit in switch_to to
3297 * combine the page table reload and the switch backend into
3298 * one hypercall.
3299 */
224101ed 3300 arch_start_context_switch(prev);
9226d125 3301
31915ab4 3302 if (!mm) {
1da177e4
LT
3303 next->active_mm = oldmm;
3304 atomic_inc(&oldmm->mm_count);
3305 enter_lazy_tlb(oldmm, next);
3306 } else
3307 switch_mm(oldmm, mm, next);
3308
31915ab4 3309 if (!prev->mm) {
1da177e4 3310 prev->active_mm = NULL;
1da177e4
LT
3311 rq->prev_mm = oldmm;
3312 }
3a5f5e48
IM
3313 /*
3314 * Since the runqueue lock will be released by the next
3315 * task (which is an invalid locking op but in the case
3316 * of the scheduler it's an obvious special-case), so we
3317 * do an early lockdep release here:
3318 */
3319#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3320 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3321#endif
1da177e4
LT
3322
3323 /* Here we just switch the register state and the stack. */
3324 switch_to(prev, next, prev);
3325
dd41f596
IM
3326 barrier();
3327 /*
3328 * this_rq must be evaluated again because prev may have moved
3329 * CPUs since it called schedule(), thus the 'rq' on its stack
3330 * frame will be invalid.
3331 */
3332 finish_task_switch(this_rq(), prev);
1da177e4
LT
3333}
3334
3335/*
3336 * nr_running, nr_uninterruptible and nr_context_switches:
3337 *
3338 * externally visible scheduler statistics: current number of runnable
3339 * threads, current number of uninterruptible-sleeping threads, total
3340 * number of context switches performed since bootup.
3341 */
3342unsigned long nr_running(void)
3343{
3344 unsigned long i, sum = 0;
3345
3346 for_each_online_cpu(i)
3347 sum += cpu_rq(i)->nr_running;
3348
3349 return sum;
f711f609 3350}
1da177e4
LT
3351
3352unsigned long nr_uninterruptible(void)
f711f609 3353{
1da177e4 3354 unsigned long i, sum = 0;
f711f609 3355
0a945022 3356 for_each_possible_cpu(i)
1da177e4 3357 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3358
3359 /*
1da177e4
LT
3360 * Since we read the counters lockless, it might be slightly
3361 * inaccurate. Do not allow it to go below zero though:
f711f609 3362 */
1da177e4
LT
3363 if (unlikely((long)sum < 0))
3364 sum = 0;
f711f609 3365
1da177e4 3366 return sum;
f711f609 3367}
f711f609 3368
1da177e4 3369unsigned long long nr_context_switches(void)
46cb4b7c 3370{
cc94abfc
SR
3371 int i;
3372 unsigned long long sum = 0;
46cb4b7c 3373
0a945022 3374 for_each_possible_cpu(i)
1da177e4 3375 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3376
1da177e4
LT
3377 return sum;
3378}
483b4ee6 3379
1da177e4
LT
3380unsigned long nr_iowait(void)
3381{
3382 unsigned long i, sum = 0;
483b4ee6 3383
0a945022 3384 for_each_possible_cpu(i)
1da177e4 3385 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3386
1da177e4
LT
3387 return sum;
3388}
483b4ee6 3389
8c215bd3 3390unsigned long nr_iowait_cpu(int cpu)
69d25870 3391{
8c215bd3 3392 struct rq *this = cpu_rq(cpu);
69d25870
AV
3393 return atomic_read(&this->nr_iowait);
3394}
46cb4b7c 3395
69d25870
AV
3396unsigned long this_cpu_load(void)
3397{
3398 struct rq *this = this_rq();
3399 return this->cpu_load[0];
3400}
e790fb0b 3401
46cb4b7c 3402
dce48a84
TG
3403/* Variables and functions for calc_load */
3404static atomic_long_t calc_load_tasks;
3405static unsigned long calc_load_update;
3406unsigned long avenrun[3];
3407EXPORT_SYMBOL(avenrun);
46cb4b7c 3408
74f5187a
PZ
3409static long calc_load_fold_active(struct rq *this_rq)
3410{
3411 long nr_active, delta = 0;
3412
3413 nr_active = this_rq->nr_running;
3414 nr_active += (long) this_rq->nr_uninterruptible;
3415
3416 if (nr_active != this_rq->calc_load_active) {
3417 delta = nr_active - this_rq->calc_load_active;
3418 this_rq->calc_load_active = nr_active;
3419 }
3420
3421 return delta;
3422}
3423
0f004f5a
PZ
3424static unsigned long
3425calc_load(unsigned long load, unsigned long exp, unsigned long active)
3426{
3427 load *= exp;
3428 load += active * (FIXED_1 - exp);
3429 load += 1UL << (FSHIFT - 1);
3430 return load >> FSHIFT;
3431}
3432
74f5187a
PZ
3433#ifdef CONFIG_NO_HZ
3434/*
3435 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3436 *
3437 * When making the ILB scale, we should try to pull this in as well.
3438 */
3439static atomic_long_t calc_load_tasks_idle;
3440
3441static void calc_load_account_idle(struct rq *this_rq)
3442{
3443 long delta;
3444
3445 delta = calc_load_fold_active(this_rq);
3446 if (delta)
3447 atomic_long_add(delta, &calc_load_tasks_idle);
3448}
3449
3450static long calc_load_fold_idle(void)
3451{
3452 long delta = 0;
3453
3454 /*
3455 * Its got a race, we don't care...
3456 */
3457 if (atomic_long_read(&calc_load_tasks_idle))
3458 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3459
3460 return delta;
3461}
0f004f5a
PZ
3462
3463/**
3464 * fixed_power_int - compute: x^n, in O(log n) time
3465 *
3466 * @x: base of the power
3467 * @frac_bits: fractional bits of @x
3468 * @n: power to raise @x to.
3469 *
3470 * By exploiting the relation between the definition of the natural power
3471 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3472 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3473 * (where: n_i \elem {0, 1}, the binary vector representing n),
3474 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3475 * of course trivially computable in O(log_2 n), the length of our binary
3476 * vector.
3477 */
3478static unsigned long
3479fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3480{
3481 unsigned long result = 1UL << frac_bits;
3482
3483 if (n) for (;;) {
3484 if (n & 1) {
3485 result *= x;
3486 result += 1UL << (frac_bits - 1);
3487 result >>= frac_bits;
3488 }
3489 n >>= 1;
3490 if (!n)
3491 break;
3492 x *= x;
3493 x += 1UL << (frac_bits - 1);
3494 x >>= frac_bits;
3495 }
3496
3497 return result;
3498}
3499
3500/*
3501 * a1 = a0 * e + a * (1 - e)
3502 *
3503 * a2 = a1 * e + a * (1 - e)
3504 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3505 * = a0 * e^2 + a * (1 - e) * (1 + e)
3506 *
3507 * a3 = a2 * e + a * (1 - e)
3508 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3509 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3510 *
3511 * ...
3512 *
3513 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3514 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3515 * = a0 * e^n + a * (1 - e^n)
3516 *
3517 * [1] application of the geometric series:
3518 *
3519 * n 1 - x^(n+1)
3520 * S_n := \Sum x^i = -------------
3521 * i=0 1 - x
3522 */
3523static unsigned long
3524calc_load_n(unsigned long load, unsigned long exp,
3525 unsigned long active, unsigned int n)
3526{
3527
3528 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3529}
3530
3531/*
3532 * NO_HZ can leave us missing all per-cpu ticks calling
3533 * calc_load_account_active(), but since an idle CPU folds its delta into
3534 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3535 * in the pending idle delta if our idle period crossed a load cycle boundary.
3536 *
3537 * Once we've updated the global active value, we need to apply the exponential
3538 * weights adjusted to the number of cycles missed.
3539 */
3540static void calc_global_nohz(unsigned long ticks)
3541{
3542 long delta, active, n;
3543
3544 if (time_before(jiffies, calc_load_update))
3545 return;
3546
3547 /*
3548 * If we crossed a calc_load_update boundary, make sure to fold
3549 * any pending idle changes, the respective CPUs might have
3550 * missed the tick driven calc_load_account_active() update
3551 * due to NO_HZ.
3552 */
3553 delta = calc_load_fold_idle();
3554 if (delta)
3555 atomic_long_add(delta, &calc_load_tasks);
3556
3557 /*
3558 * If we were idle for multiple load cycles, apply them.
3559 */
3560 if (ticks >= LOAD_FREQ) {
3561 n = ticks / LOAD_FREQ;
3562
3563 active = atomic_long_read(&calc_load_tasks);
3564 active = active > 0 ? active * FIXED_1 : 0;
3565
3566 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3567 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3568 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3569
3570 calc_load_update += n * LOAD_FREQ;
3571 }
3572
3573 /*
3574 * Its possible the remainder of the above division also crosses
3575 * a LOAD_FREQ period, the regular check in calc_global_load()
3576 * which comes after this will take care of that.
3577 *
3578 * Consider us being 11 ticks before a cycle completion, and us
3579 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3580 * age us 4 cycles, and the test in calc_global_load() will
3581 * pick up the final one.
3582 */
3583}
74f5187a
PZ
3584#else
3585static void calc_load_account_idle(struct rq *this_rq)
3586{
3587}
3588
3589static inline long calc_load_fold_idle(void)
3590{
3591 return 0;
3592}
0f004f5a
PZ
3593
3594static void calc_global_nohz(unsigned long ticks)
3595{
3596}
74f5187a
PZ
3597#endif
3598
2d02494f
TG
3599/**
3600 * get_avenrun - get the load average array
3601 * @loads: pointer to dest load array
3602 * @offset: offset to add
3603 * @shift: shift count to shift the result left
3604 *
3605 * These values are estimates at best, so no need for locking.
3606 */
3607void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3608{
3609 loads[0] = (avenrun[0] + offset) << shift;
3610 loads[1] = (avenrun[1] + offset) << shift;
3611 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3612}
46cb4b7c 3613
46cb4b7c 3614/*
dce48a84
TG
3615 * calc_load - update the avenrun load estimates 10 ticks after the
3616 * CPUs have updated calc_load_tasks.
7835b98b 3617 */
0f004f5a 3618void calc_global_load(unsigned long ticks)
7835b98b 3619{
dce48a84 3620 long active;
1da177e4 3621
0f004f5a
PZ
3622 calc_global_nohz(ticks);
3623
3624 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3625 return;
1da177e4 3626
dce48a84
TG
3627 active = atomic_long_read(&calc_load_tasks);
3628 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3629
dce48a84
TG
3630 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3631 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3632 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3633
dce48a84
TG
3634 calc_load_update += LOAD_FREQ;
3635}
1da177e4 3636
dce48a84 3637/*
74f5187a
PZ
3638 * Called from update_cpu_load() to periodically update this CPU's
3639 * active count.
dce48a84
TG
3640 */
3641static void calc_load_account_active(struct rq *this_rq)
3642{
74f5187a 3643 long delta;
08c183f3 3644
74f5187a
PZ
3645 if (time_before(jiffies, this_rq->calc_load_update))
3646 return;
783609c6 3647
74f5187a
PZ
3648 delta = calc_load_fold_active(this_rq);
3649 delta += calc_load_fold_idle();
3650 if (delta)
dce48a84 3651 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3652
3653 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3654}
3655
fdf3e95d
VP
3656/*
3657 * The exact cpuload at various idx values, calculated at every tick would be
3658 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3659 *
3660 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3661 * on nth tick when cpu may be busy, then we have:
3662 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3663 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3664 *
3665 * decay_load_missed() below does efficient calculation of
3666 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3667 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3668 *
3669 * The calculation is approximated on a 128 point scale.
3670 * degrade_zero_ticks is the number of ticks after which load at any
3671 * particular idx is approximated to be zero.
3672 * degrade_factor is a precomputed table, a row for each load idx.
3673 * Each column corresponds to degradation factor for a power of two ticks,
3674 * based on 128 point scale.
3675 * Example:
3676 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3677 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3678 *
3679 * With this power of 2 load factors, we can degrade the load n times
3680 * by looking at 1 bits in n and doing as many mult/shift instead of
3681 * n mult/shifts needed by the exact degradation.
3682 */
3683#define DEGRADE_SHIFT 7
3684static const unsigned char
3685 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3686static const unsigned char
3687 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3688 {0, 0, 0, 0, 0, 0, 0, 0},
3689 {64, 32, 8, 0, 0, 0, 0, 0},
3690 {96, 72, 40, 12, 1, 0, 0},
3691 {112, 98, 75, 43, 15, 1, 0},
3692 {120, 112, 98, 76, 45, 16, 2} };
3693
3694/*
3695 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3696 * would be when CPU is idle and so we just decay the old load without
3697 * adding any new load.
3698 */
3699static unsigned long
3700decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3701{
3702 int j = 0;
3703
3704 if (!missed_updates)
3705 return load;
3706
3707 if (missed_updates >= degrade_zero_ticks[idx])
3708 return 0;
3709
3710 if (idx == 1)
3711 return load >> missed_updates;
3712
3713 while (missed_updates) {
3714 if (missed_updates % 2)
3715 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3716
3717 missed_updates >>= 1;
3718 j++;
3719 }
3720 return load;
3721}
3722
46cb4b7c 3723/*
dd41f596 3724 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3725 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3726 * every tick. We fix it up based on jiffies.
46cb4b7c 3727 */
dd41f596 3728static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3729{
495eca49 3730 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3731 unsigned long curr_jiffies = jiffies;
3732 unsigned long pending_updates;
dd41f596 3733 int i, scale;
46cb4b7c 3734
dd41f596 3735 this_rq->nr_load_updates++;
46cb4b7c 3736
fdf3e95d
VP
3737 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3738 if (curr_jiffies == this_rq->last_load_update_tick)
3739 return;
3740
3741 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3742 this_rq->last_load_update_tick = curr_jiffies;
3743
dd41f596 3744 /* Update our load: */
fdf3e95d
VP
3745 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3746 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3747 unsigned long old_load, new_load;
7d1e6a9b 3748
dd41f596 3749 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3750
dd41f596 3751 old_load = this_rq->cpu_load[i];
fdf3e95d 3752 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3753 new_load = this_load;
a25707f3
IM
3754 /*
3755 * Round up the averaging division if load is increasing. This
3756 * prevents us from getting stuck on 9 if the load is 10, for
3757 * example.
3758 */
3759 if (new_load > old_load)
fdf3e95d
VP
3760 new_load += scale - 1;
3761
3762 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3763 }
da2b71ed
SS
3764
3765 sched_avg_update(this_rq);
fdf3e95d
VP
3766}
3767
3768static void update_cpu_load_active(struct rq *this_rq)
3769{
3770 update_cpu_load(this_rq);
46cb4b7c 3771
74f5187a 3772 calc_load_account_active(this_rq);
46cb4b7c
SS
3773}
3774
dd41f596 3775#ifdef CONFIG_SMP
8a0be9ef 3776
46cb4b7c 3777/*
38022906
PZ
3778 * sched_exec - execve() is a valuable balancing opportunity, because at
3779 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3780 */
38022906 3781void sched_exec(void)
46cb4b7c 3782{
38022906 3783 struct task_struct *p = current;
1da177e4 3784 unsigned long flags;
0017d735 3785 int dest_cpu;
46cb4b7c 3786
8f42ced9 3787 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3788 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3789 if (dest_cpu == smp_processor_id())
3790 goto unlock;
38022906 3791
8f42ced9 3792 if (likely(cpu_active(dest_cpu))) {
969c7921 3793 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3794
8f42ced9
PZ
3795 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3796 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3797 return;
3798 }
0017d735 3799unlock:
8f42ced9 3800 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3801}
dd41f596 3802
1da177e4
LT
3803#endif
3804
1da177e4
LT
3805DEFINE_PER_CPU(struct kernel_stat, kstat);
3806
3807EXPORT_PER_CPU_SYMBOL(kstat);
3808
3809/*
c5f8d995 3810 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3811 * @p in case that task is currently running.
c5f8d995
HS
3812 *
3813 * Called with task_rq_lock() held on @rq.
1da177e4 3814 */
c5f8d995
HS
3815static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3816{
3817 u64 ns = 0;
3818
3819 if (task_current(rq, p)) {
3820 update_rq_clock(rq);
305e6835 3821 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3822 if ((s64)ns < 0)
3823 ns = 0;
3824 }
3825
3826 return ns;
3827}
3828
bb34d92f 3829unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3830{
1da177e4 3831 unsigned long flags;
41b86e9c 3832 struct rq *rq;
bb34d92f 3833 u64 ns = 0;
48f24c4d 3834
41b86e9c 3835 rq = task_rq_lock(p, &flags);
c5f8d995 3836 ns = do_task_delta_exec(p, rq);
0122ec5b 3837 task_rq_unlock(rq, p, &flags);
1508487e 3838
c5f8d995
HS
3839 return ns;
3840}
f06febc9 3841
c5f8d995
HS
3842/*
3843 * Return accounted runtime for the task.
3844 * In case the task is currently running, return the runtime plus current's
3845 * pending runtime that have not been accounted yet.
3846 */
3847unsigned long long task_sched_runtime(struct task_struct *p)
3848{
3849 unsigned long flags;
3850 struct rq *rq;
3851 u64 ns = 0;
3852
3853 rq = task_rq_lock(p, &flags);
3854 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3855 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3856
3857 return ns;
3858}
48f24c4d 3859
1da177e4
LT
3860/*
3861 * Account user cpu time to a process.
3862 * @p: the process that the cpu time gets accounted to
1da177e4 3863 * @cputime: the cpu time spent in user space since the last update
457533a7 3864 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3865 */
457533a7
MS
3866void account_user_time(struct task_struct *p, cputime_t cputime,
3867 cputime_t cputime_scaled)
1da177e4
LT
3868{
3869 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3870 cputime64_t tmp;
3871
457533a7 3872 /* Add user time to process. */
1da177e4 3873 p->utime = cputime_add(p->utime, cputime);
457533a7 3874 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3875 account_group_user_time(p, cputime);
1da177e4
LT
3876
3877 /* Add user time to cpustat. */
3878 tmp = cputime_to_cputime64(cputime);
3879 if (TASK_NICE(p) > 0)
3880 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3881 else
3882 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3883
3884 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3885 /* Account for user time used */
3886 acct_update_integrals(p);
1da177e4
LT
3887}
3888
94886b84
LV
3889/*
3890 * Account guest cpu time to a process.
3891 * @p: the process that the cpu time gets accounted to
3892 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3893 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3894 */
457533a7
MS
3895static void account_guest_time(struct task_struct *p, cputime_t cputime,
3896 cputime_t cputime_scaled)
94886b84
LV
3897{
3898 cputime64_t tmp;
3899 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3900
3901 tmp = cputime_to_cputime64(cputime);
3902
457533a7 3903 /* Add guest time to process. */
94886b84 3904 p->utime = cputime_add(p->utime, cputime);
457533a7 3905 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3906 account_group_user_time(p, cputime);
94886b84
LV
3907 p->gtime = cputime_add(p->gtime, cputime);
3908
457533a7 3909 /* Add guest time to cpustat. */
ce0e7b28
RO
3910 if (TASK_NICE(p) > 0) {
3911 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3912 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3913 } else {
3914 cpustat->user = cputime64_add(cpustat->user, tmp);
3915 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3916 }
94886b84
LV
3917}
3918
70a89a66
VP
3919/*
3920 * Account system cpu time to a process and desired cpustat field
3921 * @p: the process that the cpu time gets accounted to
3922 * @cputime: the cpu time spent in kernel space since the last update
3923 * @cputime_scaled: cputime scaled by cpu frequency
3924 * @target_cputime64: pointer to cpustat field that has to be updated
3925 */
3926static inline
3927void __account_system_time(struct task_struct *p, cputime_t cputime,
3928 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3929{
3930 cputime64_t tmp = cputime_to_cputime64(cputime);
3931
3932 /* Add system time to process. */
3933 p->stime = cputime_add(p->stime, cputime);
3934 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3935 account_group_system_time(p, cputime);
3936
3937 /* Add system time to cpustat. */
3938 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3939 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3940
3941 /* Account for system time used */
3942 acct_update_integrals(p);
3943}
3944
1da177e4
LT
3945/*
3946 * Account system cpu time to a process.
3947 * @p: the process that the cpu time gets accounted to
3948 * @hardirq_offset: the offset to subtract from hardirq_count()
3949 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3950 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3951 */
3952void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3953 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3954{
3955 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3956 cputime64_t *target_cputime64;
1da177e4 3957
983ed7a6 3958 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3959 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3960 return;
3961 }
94886b84 3962
1da177e4 3963 if (hardirq_count() - hardirq_offset)
70a89a66 3964 target_cputime64 = &cpustat->irq;
75e1056f 3965 else if (in_serving_softirq())
70a89a66 3966 target_cputime64 = &cpustat->softirq;
1da177e4 3967 else
70a89a66 3968 target_cputime64 = &cpustat->system;
ef12fefa 3969
70a89a66 3970 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3971}
3972
c66f08be 3973/*
1da177e4 3974 * Account for involuntary wait time.
544b4a1f 3975 * @cputime: the cpu time spent in involuntary wait
c66f08be 3976 */
79741dd3 3977void account_steal_time(cputime_t cputime)
c66f08be 3978{
79741dd3
MS
3979 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3980 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3981
3982 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3983}
3984
1da177e4 3985/*
79741dd3
MS
3986 * Account for idle time.
3987 * @cputime: the cpu time spent in idle wait
1da177e4 3988 */
79741dd3 3989void account_idle_time(cputime_t cputime)
1da177e4
LT
3990{
3991 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3992 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3993 struct rq *rq = this_rq();
1da177e4 3994
79741dd3
MS
3995 if (atomic_read(&rq->nr_iowait) > 0)
3996 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3997 else
3998 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3999}
4000
e6e6685a
GC
4001static __always_inline bool steal_account_process_tick(void)
4002{
4003#ifdef CONFIG_PARAVIRT
4004 if (static_branch(&paravirt_steal_enabled)) {
4005 u64 steal, st = 0;
4006
4007 steal = paravirt_steal_clock(smp_processor_id());
4008 steal -= this_rq()->prev_steal_time;
4009
4010 st = steal_ticks(steal);
4011 this_rq()->prev_steal_time += st * TICK_NSEC;
4012
4013 account_steal_time(st);
4014 return st;
4015 }
4016#endif
4017 return false;
4018}
4019
79741dd3
MS
4020#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4021
abb74cef
VP
4022#ifdef CONFIG_IRQ_TIME_ACCOUNTING
4023/*
4024 * Account a tick to a process and cpustat
4025 * @p: the process that the cpu time gets accounted to
4026 * @user_tick: is the tick from userspace
4027 * @rq: the pointer to rq
4028 *
4029 * Tick demultiplexing follows the order
4030 * - pending hardirq update
4031 * - pending softirq update
4032 * - user_time
4033 * - idle_time
4034 * - system time
4035 * - check for guest_time
4036 * - else account as system_time
4037 *
4038 * Check for hardirq is done both for system and user time as there is
4039 * no timer going off while we are on hardirq and hence we may never get an
4040 * opportunity to update it solely in system time.
4041 * p->stime and friends are only updated on system time and not on irq
4042 * softirq as those do not count in task exec_runtime any more.
4043 */
4044static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4045 struct rq *rq)
4046{
4047 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4048 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4049 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4050
e6e6685a
GC
4051 if (steal_account_process_tick())
4052 return;
4053
abb74cef
VP
4054 if (irqtime_account_hi_update()) {
4055 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4056 } else if (irqtime_account_si_update()) {
4057 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
4058 } else if (this_cpu_ksoftirqd() == p) {
4059 /*
4060 * ksoftirqd time do not get accounted in cpu_softirq_time.
4061 * So, we have to handle it separately here.
4062 * Also, p->stime needs to be updated for ksoftirqd.
4063 */
4064 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4065 &cpustat->softirq);
abb74cef
VP
4066 } else if (user_tick) {
4067 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4068 } else if (p == rq->idle) {
4069 account_idle_time(cputime_one_jiffy);
4070 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4071 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4072 } else {
4073 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4074 &cpustat->system);
4075 }
4076}
4077
4078static void irqtime_account_idle_ticks(int ticks)
4079{
4080 int i;
4081 struct rq *rq = this_rq();
4082
4083 for (i = 0; i < ticks; i++)
4084 irqtime_account_process_tick(current, 0, rq);
4085}
544b4a1f 4086#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
4087static void irqtime_account_idle_ticks(int ticks) {}
4088static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4089 struct rq *rq) {}
544b4a1f 4090#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
4091
4092/*
4093 * Account a single tick of cpu time.
4094 * @p: the process that the cpu time gets accounted to
4095 * @user_tick: indicates if the tick is a user or a system tick
4096 */
4097void account_process_tick(struct task_struct *p, int user_tick)
4098{
a42548a1 4099 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
4100 struct rq *rq = this_rq();
4101
abb74cef
VP
4102 if (sched_clock_irqtime) {
4103 irqtime_account_process_tick(p, user_tick, rq);
4104 return;
4105 }
4106
e6e6685a
GC
4107 if (steal_account_process_tick())
4108 return;
4109
79741dd3 4110 if (user_tick)
a42548a1 4111 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 4112 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 4113 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
4114 one_jiffy_scaled);
4115 else
a42548a1 4116 account_idle_time(cputime_one_jiffy);
79741dd3
MS
4117}
4118
4119/*
4120 * Account multiple ticks of steal time.
4121 * @p: the process from which the cpu time has been stolen
4122 * @ticks: number of stolen ticks
4123 */
4124void account_steal_ticks(unsigned long ticks)
4125{
4126 account_steal_time(jiffies_to_cputime(ticks));
4127}
4128
4129/*
4130 * Account multiple ticks of idle time.
4131 * @ticks: number of stolen ticks
4132 */
4133void account_idle_ticks(unsigned long ticks)
4134{
abb74cef
VP
4135
4136 if (sched_clock_irqtime) {
4137 irqtime_account_idle_ticks(ticks);
4138 return;
4139 }
4140
79741dd3 4141 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4142}
4143
79741dd3
MS
4144#endif
4145
49048622
BS
4146/*
4147 * Use precise platform statistics if available:
4148 */
4149#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 4150void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4151{
d99ca3b9
HS
4152 *ut = p->utime;
4153 *st = p->stime;
49048622
BS
4154}
4155
0cf55e1e 4156void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4157{
0cf55e1e
HS
4158 struct task_cputime cputime;
4159
4160 thread_group_cputime(p, &cputime);
4161
4162 *ut = cputime.utime;
4163 *st = cputime.stime;
49048622
BS
4164}
4165#else
761b1d26
HS
4166
4167#ifndef nsecs_to_cputime
b7b20df9 4168# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
4169#endif
4170
d180c5bc 4171void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4172{
d99ca3b9 4173 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
4174
4175 /*
4176 * Use CFS's precise accounting:
4177 */
d180c5bc 4178 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
4179
4180 if (total) {
e75e863d 4181 u64 temp = rtime;
d180c5bc 4182
e75e863d 4183 temp *= utime;
49048622 4184 do_div(temp, total);
d180c5bc
HS
4185 utime = (cputime_t)temp;
4186 } else
4187 utime = rtime;
49048622 4188
d180c5bc
HS
4189 /*
4190 * Compare with previous values, to keep monotonicity:
4191 */
761b1d26 4192 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4193 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4194
d99ca3b9
HS
4195 *ut = p->prev_utime;
4196 *st = p->prev_stime;
49048622
BS
4197}
4198
0cf55e1e
HS
4199/*
4200 * Must be called with siglock held.
4201 */
4202void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4203{
0cf55e1e
HS
4204 struct signal_struct *sig = p->signal;
4205 struct task_cputime cputime;
4206 cputime_t rtime, utime, total;
49048622 4207
0cf55e1e 4208 thread_group_cputime(p, &cputime);
49048622 4209
0cf55e1e
HS
4210 total = cputime_add(cputime.utime, cputime.stime);
4211 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4212
0cf55e1e 4213 if (total) {
e75e863d 4214 u64 temp = rtime;
49048622 4215
e75e863d 4216 temp *= cputime.utime;
0cf55e1e
HS
4217 do_div(temp, total);
4218 utime = (cputime_t)temp;
4219 } else
4220 utime = rtime;
4221
4222 sig->prev_utime = max(sig->prev_utime, utime);
4223 sig->prev_stime = max(sig->prev_stime,
4224 cputime_sub(rtime, sig->prev_utime));
4225
4226 *ut = sig->prev_utime;
4227 *st = sig->prev_stime;
49048622 4228}
49048622 4229#endif
49048622 4230
7835b98b
CL
4231/*
4232 * This function gets called by the timer code, with HZ frequency.
4233 * We call it with interrupts disabled.
7835b98b
CL
4234 */
4235void scheduler_tick(void)
4236{
7835b98b
CL
4237 int cpu = smp_processor_id();
4238 struct rq *rq = cpu_rq(cpu);
dd41f596 4239 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4240
4241 sched_clock_tick();
dd41f596 4242
05fa785c 4243 raw_spin_lock(&rq->lock);
3e51f33f 4244 update_rq_clock(rq);
fdf3e95d 4245 update_cpu_load_active(rq);
fa85ae24 4246 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4247 raw_spin_unlock(&rq->lock);
7835b98b 4248
e9d2b064 4249 perf_event_task_tick();
e220d2dc 4250
e418e1c2 4251#ifdef CONFIG_SMP
6eb57e0d 4252 rq->idle_balance = idle_cpu(cpu);
dd41f596 4253 trigger_load_balance(rq, cpu);
e418e1c2 4254#endif
1da177e4
LT
4255}
4256
132380a0 4257notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4258{
4259 if (in_lock_functions(addr)) {
4260 addr = CALLER_ADDR2;
4261 if (in_lock_functions(addr))
4262 addr = CALLER_ADDR3;
4263 }
4264 return addr;
4265}
1da177e4 4266
7e49fcce
SR
4267#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4268 defined(CONFIG_PREEMPT_TRACER))
4269
43627582 4270void __kprobes add_preempt_count(int val)
1da177e4 4271{
6cd8a4bb 4272#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4273 /*
4274 * Underflow?
4275 */
9a11b49a
IM
4276 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4277 return;
6cd8a4bb 4278#endif
1da177e4 4279 preempt_count() += val;
6cd8a4bb 4280#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4281 /*
4282 * Spinlock count overflowing soon?
4283 */
33859f7f
MOS
4284 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4285 PREEMPT_MASK - 10);
6cd8a4bb
SR
4286#endif
4287 if (preempt_count() == val)
4288 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4289}
4290EXPORT_SYMBOL(add_preempt_count);
4291
43627582 4292void __kprobes sub_preempt_count(int val)
1da177e4 4293{
6cd8a4bb 4294#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4295 /*
4296 * Underflow?
4297 */
01e3eb82 4298 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4299 return;
1da177e4
LT
4300 /*
4301 * Is the spinlock portion underflowing?
4302 */
9a11b49a
IM
4303 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4304 !(preempt_count() & PREEMPT_MASK)))
4305 return;
6cd8a4bb 4306#endif
9a11b49a 4307
6cd8a4bb
SR
4308 if (preempt_count() == val)
4309 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4310 preempt_count() -= val;
4311}
4312EXPORT_SYMBOL(sub_preempt_count);
4313
4314#endif
4315
4316/*
dd41f596 4317 * Print scheduling while atomic bug:
1da177e4 4318 */
dd41f596 4319static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4320{
838225b4
SS
4321 struct pt_regs *regs = get_irq_regs();
4322
3df0fc5b
PZ
4323 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4324 prev->comm, prev->pid, preempt_count());
838225b4 4325
dd41f596 4326 debug_show_held_locks(prev);
e21f5b15 4327 print_modules();
dd41f596
IM
4328 if (irqs_disabled())
4329 print_irqtrace_events(prev);
838225b4
SS
4330
4331 if (regs)
4332 show_regs(regs);
4333 else
4334 dump_stack();
dd41f596 4335}
1da177e4 4336
dd41f596
IM
4337/*
4338 * Various schedule()-time debugging checks and statistics:
4339 */
4340static inline void schedule_debug(struct task_struct *prev)
4341{
1da177e4 4342 /*
41a2d6cf 4343 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4344 * schedule() atomically, we ignore that path for now.
4345 * Otherwise, whine if we are scheduling when we should not be.
4346 */
3f33a7ce 4347 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4348 __schedule_bug(prev);
4349
1da177e4
LT
4350 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4351
2d72376b 4352 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4353}
4354
6cecd084 4355static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4356{
61eadef6 4357 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4358 update_rq_clock(rq);
6cecd084 4359 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4360}
4361
dd41f596
IM
4362/*
4363 * Pick up the highest-prio task:
4364 */
4365static inline struct task_struct *
b67802ea 4366pick_next_task(struct rq *rq)
dd41f596 4367{
5522d5d5 4368 const struct sched_class *class;
dd41f596 4369 struct task_struct *p;
1da177e4
LT
4370
4371 /*
dd41f596
IM
4372 * Optimization: we know that if all tasks are in
4373 * the fair class we can call that function directly:
1da177e4 4374 */
953bfcd1 4375 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 4376 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4377 if (likely(p))
4378 return p;
1da177e4
LT
4379 }
4380
34f971f6 4381 for_each_class(class) {
fb8d4724 4382 p = class->pick_next_task(rq);
dd41f596
IM
4383 if (p)
4384 return p;
dd41f596 4385 }
34f971f6
PZ
4386
4387 BUG(); /* the idle class will always have a runnable task */
dd41f596 4388}
1da177e4 4389
dd41f596 4390/*
c259e01a 4391 * __schedule() is the main scheduler function.
dd41f596 4392 */
c259e01a 4393static void __sched __schedule(void)
dd41f596
IM
4394{
4395 struct task_struct *prev, *next;
67ca7bde 4396 unsigned long *switch_count;
dd41f596 4397 struct rq *rq;
31656519 4398 int cpu;
dd41f596 4399
ff743345
PZ
4400need_resched:
4401 preempt_disable();
dd41f596
IM
4402 cpu = smp_processor_id();
4403 rq = cpu_rq(cpu);
25502a6c 4404 rcu_note_context_switch(cpu);
dd41f596 4405 prev = rq->curr;
dd41f596 4406
dd41f596 4407 schedule_debug(prev);
1da177e4 4408
31656519 4409 if (sched_feat(HRTICK))
f333fdc9 4410 hrtick_clear(rq);
8f4d37ec 4411
05fa785c 4412 raw_spin_lock_irq(&rq->lock);
1da177e4 4413
246d86b5 4414 switch_count = &prev->nivcsw;
1da177e4 4415 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4416 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4417 prev->state = TASK_RUNNING;
21aa9af0 4418 } else {
2acca55e
PZ
4419 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4420 prev->on_rq = 0;
4421
21aa9af0 4422 /*
2acca55e
PZ
4423 * If a worker went to sleep, notify and ask workqueue
4424 * whether it wants to wake up a task to maintain
4425 * concurrency.
21aa9af0
TH
4426 */
4427 if (prev->flags & PF_WQ_WORKER) {
4428 struct task_struct *to_wakeup;
4429
4430 to_wakeup = wq_worker_sleeping(prev, cpu);
4431 if (to_wakeup)
4432 try_to_wake_up_local(to_wakeup);
4433 }
21aa9af0 4434 }
dd41f596 4435 switch_count = &prev->nvcsw;
1da177e4
LT
4436 }
4437
3f029d3c 4438 pre_schedule(rq, prev);
f65eda4f 4439
dd41f596 4440 if (unlikely(!rq->nr_running))
1da177e4 4441 idle_balance(cpu, rq);
1da177e4 4442
df1c99d4 4443 put_prev_task(rq, prev);
b67802ea 4444 next = pick_next_task(rq);
f26f9aff
MG
4445 clear_tsk_need_resched(prev);
4446 rq->skip_clock_update = 0;
1da177e4 4447
1da177e4 4448 if (likely(prev != next)) {
1da177e4
LT
4449 rq->nr_switches++;
4450 rq->curr = next;
4451 ++*switch_count;
4452
dd41f596 4453 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4454 /*
246d86b5
ON
4455 * The context switch have flipped the stack from under us
4456 * and restored the local variables which were saved when
4457 * this task called schedule() in the past. prev == current
4458 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4459 */
4460 cpu = smp_processor_id();
4461 rq = cpu_rq(cpu);
1da177e4 4462 } else
05fa785c 4463 raw_spin_unlock_irq(&rq->lock);
1da177e4 4464
3f029d3c 4465 post_schedule(rq);
1da177e4 4466
1da177e4 4467 preempt_enable_no_resched();
ff743345 4468 if (need_resched())
1da177e4
LT
4469 goto need_resched;
4470}
c259e01a 4471
9c40cef2
TG
4472static inline void sched_submit_work(struct task_struct *tsk)
4473{
4474 if (!tsk->state)
4475 return;
4476 /*
4477 * If we are going to sleep and we have plugged IO queued,
4478 * make sure to submit it to avoid deadlocks.
4479 */
4480 if (blk_needs_flush_plug(tsk))
4481 blk_schedule_flush_plug(tsk);
4482}
4483
6ebbe7a0 4484asmlinkage void __sched schedule(void)
c259e01a 4485{
9c40cef2
TG
4486 struct task_struct *tsk = current;
4487
4488 sched_submit_work(tsk);
c259e01a
TG
4489 __schedule();
4490}
1da177e4
LT
4491EXPORT_SYMBOL(schedule);
4492
c08f7829 4493#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4494
c6eb3dda
PZ
4495static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4496{
c6eb3dda 4497 if (lock->owner != owner)
307bf980 4498 return false;
0d66bf6d
PZ
4499
4500 /*
c6eb3dda
PZ
4501 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4502 * lock->owner still matches owner, if that fails, owner might
4503 * point to free()d memory, if it still matches, the rcu_read_lock()
4504 * ensures the memory stays valid.
0d66bf6d 4505 */
c6eb3dda 4506 barrier();
0d66bf6d 4507
307bf980 4508 return owner->on_cpu;
c6eb3dda 4509}
0d66bf6d 4510
c6eb3dda
PZ
4511/*
4512 * Look out! "owner" is an entirely speculative pointer
4513 * access and not reliable.
4514 */
4515int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4516{
4517 if (!sched_feat(OWNER_SPIN))
4518 return 0;
0d66bf6d 4519
307bf980 4520 rcu_read_lock();
c6eb3dda
PZ
4521 while (owner_running(lock, owner)) {
4522 if (need_resched())
307bf980 4523 break;
0d66bf6d 4524
335d7afb 4525 arch_mutex_cpu_relax();
0d66bf6d 4526 }
307bf980 4527 rcu_read_unlock();
4b402210 4528
c6eb3dda 4529 /*
307bf980
TG
4530 * We break out the loop above on need_resched() and when the
4531 * owner changed, which is a sign for heavy contention. Return
4532 * success only when lock->owner is NULL.
c6eb3dda 4533 */
307bf980 4534 return lock->owner == NULL;
0d66bf6d
PZ
4535}
4536#endif
4537
1da177e4
LT
4538#ifdef CONFIG_PREEMPT
4539/*
2ed6e34f 4540 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4541 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4542 * occur there and call schedule directly.
4543 */
d1f74e20 4544asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4545{
4546 struct thread_info *ti = current_thread_info();
6478d880 4547
1da177e4
LT
4548 /*
4549 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4550 * we do not want to preempt the current task. Just return..
1da177e4 4551 */
beed33a8 4552 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4553 return;
4554
3a5c359a 4555 do {
d1f74e20 4556 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 4557 __schedule();
d1f74e20 4558 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4559
3a5c359a
AK
4560 /*
4561 * Check again in case we missed a preemption opportunity
4562 * between schedule and now.
4563 */
4564 barrier();
5ed0cec0 4565 } while (need_resched());
1da177e4 4566}
1da177e4
LT
4567EXPORT_SYMBOL(preempt_schedule);
4568
4569/*
2ed6e34f 4570 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4571 * off of irq context.
4572 * Note, that this is called and return with irqs disabled. This will
4573 * protect us against recursive calling from irq.
4574 */
4575asmlinkage void __sched preempt_schedule_irq(void)
4576{
4577 struct thread_info *ti = current_thread_info();
6478d880 4578
2ed6e34f 4579 /* Catch callers which need to be fixed */
1da177e4
LT
4580 BUG_ON(ti->preempt_count || !irqs_disabled());
4581
3a5c359a
AK
4582 do {
4583 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4584 local_irq_enable();
c259e01a 4585 __schedule();
3a5c359a 4586 local_irq_disable();
3a5c359a 4587 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4588
3a5c359a
AK
4589 /*
4590 * Check again in case we missed a preemption opportunity
4591 * between schedule and now.
4592 */
4593 barrier();
5ed0cec0 4594 } while (need_resched());
1da177e4
LT
4595}
4596
4597#endif /* CONFIG_PREEMPT */
4598
63859d4f 4599int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4600 void *key)
1da177e4 4601{
63859d4f 4602 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4603}
1da177e4
LT
4604EXPORT_SYMBOL(default_wake_function);
4605
4606/*
41a2d6cf
IM
4607 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4608 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4609 * number) then we wake all the non-exclusive tasks and one exclusive task.
4610 *
4611 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4612 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4613 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4614 */
78ddb08f 4615static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4616 int nr_exclusive, int wake_flags, void *key)
1da177e4 4617{
2e45874c 4618 wait_queue_t *curr, *next;
1da177e4 4619
2e45874c 4620 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4621 unsigned flags = curr->flags;
4622
63859d4f 4623 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4624 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4625 break;
4626 }
4627}
4628
4629/**
4630 * __wake_up - wake up threads blocked on a waitqueue.
4631 * @q: the waitqueue
4632 * @mode: which threads
4633 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4634 * @key: is directly passed to the wakeup function
50fa610a
DH
4635 *
4636 * It may be assumed that this function implies a write memory barrier before
4637 * changing the task state if and only if any tasks are woken up.
1da177e4 4638 */
7ad5b3a5 4639void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4640 int nr_exclusive, void *key)
1da177e4
LT
4641{
4642 unsigned long flags;
4643
4644 spin_lock_irqsave(&q->lock, flags);
4645 __wake_up_common(q, mode, nr_exclusive, 0, key);
4646 spin_unlock_irqrestore(&q->lock, flags);
4647}
1da177e4
LT
4648EXPORT_SYMBOL(__wake_up);
4649
4650/*
4651 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4652 */
7ad5b3a5 4653void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4654{
4655 __wake_up_common(q, mode, 1, 0, NULL);
4656}
22c43c81 4657EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4658
4ede816a
DL
4659void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4660{
4661 __wake_up_common(q, mode, 1, 0, key);
4662}
bf294b41 4663EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4664
1da177e4 4665/**
4ede816a 4666 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4667 * @q: the waitqueue
4668 * @mode: which threads
4669 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4670 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4671 *
4672 * The sync wakeup differs that the waker knows that it will schedule
4673 * away soon, so while the target thread will be woken up, it will not
4674 * be migrated to another CPU - ie. the two threads are 'synchronized'
4675 * with each other. This can prevent needless bouncing between CPUs.
4676 *
4677 * On UP it can prevent extra preemption.
50fa610a
DH
4678 *
4679 * It may be assumed that this function implies a write memory barrier before
4680 * changing the task state if and only if any tasks are woken up.
1da177e4 4681 */
4ede816a
DL
4682void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4683 int nr_exclusive, void *key)
1da177e4
LT
4684{
4685 unsigned long flags;
7d478721 4686 int wake_flags = WF_SYNC;
1da177e4
LT
4687
4688 if (unlikely(!q))
4689 return;
4690
4691 if (unlikely(!nr_exclusive))
7d478721 4692 wake_flags = 0;
1da177e4
LT
4693
4694 spin_lock_irqsave(&q->lock, flags);
7d478721 4695 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4696 spin_unlock_irqrestore(&q->lock, flags);
4697}
4ede816a
DL
4698EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4699
4700/*
4701 * __wake_up_sync - see __wake_up_sync_key()
4702 */
4703void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4704{
4705 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4706}
1da177e4
LT
4707EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4708
65eb3dc6
KD
4709/**
4710 * complete: - signals a single thread waiting on this completion
4711 * @x: holds the state of this particular completion
4712 *
4713 * This will wake up a single thread waiting on this completion. Threads will be
4714 * awakened in the same order in which they were queued.
4715 *
4716 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4717 *
4718 * It may be assumed that this function implies a write memory barrier before
4719 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4720 */
b15136e9 4721void complete(struct completion *x)
1da177e4
LT
4722{
4723 unsigned long flags;
4724
4725 spin_lock_irqsave(&x->wait.lock, flags);
4726 x->done++;
d9514f6c 4727 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4728 spin_unlock_irqrestore(&x->wait.lock, flags);
4729}
4730EXPORT_SYMBOL(complete);
4731
65eb3dc6
KD
4732/**
4733 * complete_all: - signals all threads waiting on this completion
4734 * @x: holds the state of this particular completion
4735 *
4736 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4737 *
4738 * It may be assumed that this function implies a write memory barrier before
4739 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4740 */
b15136e9 4741void complete_all(struct completion *x)
1da177e4
LT
4742{
4743 unsigned long flags;
4744
4745 spin_lock_irqsave(&x->wait.lock, flags);
4746 x->done += UINT_MAX/2;
d9514f6c 4747 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4748 spin_unlock_irqrestore(&x->wait.lock, flags);
4749}
4750EXPORT_SYMBOL(complete_all);
4751
8cbbe86d
AK
4752static inline long __sched
4753do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4754{
1da177e4
LT
4755 if (!x->done) {
4756 DECLARE_WAITQUEUE(wait, current);
4757
a93d2f17 4758 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4759 do {
94d3d824 4760 if (signal_pending_state(state, current)) {
ea71a546
ON
4761 timeout = -ERESTARTSYS;
4762 break;
8cbbe86d
AK
4763 }
4764 __set_current_state(state);
1da177e4
LT
4765 spin_unlock_irq(&x->wait.lock);
4766 timeout = schedule_timeout(timeout);
4767 spin_lock_irq(&x->wait.lock);
ea71a546 4768 } while (!x->done && timeout);
1da177e4 4769 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4770 if (!x->done)
4771 return timeout;
1da177e4
LT
4772 }
4773 x->done--;
ea71a546 4774 return timeout ?: 1;
1da177e4 4775}
1da177e4 4776
8cbbe86d
AK
4777static long __sched
4778wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4779{
1da177e4
LT
4780 might_sleep();
4781
4782 spin_lock_irq(&x->wait.lock);
8cbbe86d 4783 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4784 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4785 return timeout;
4786}
1da177e4 4787
65eb3dc6
KD
4788/**
4789 * wait_for_completion: - waits for completion of a task
4790 * @x: holds the state of this particular completion
4791 *
4792 * This waits to be signaled for completion of a specific task. It is NOT
4793 * interruptible and there is no timeout.
4794 *
4795 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4796 * and interrupt capability. Also see complete().
4797 */
b15136e9 4798void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4799{
4800 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4801}
8cbbe86d 4802EXPORT_SYMBOL(wait_for_completion);
1da177e4 4803
65eb3dc6
KD
4804/**
4805 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4806 * @x: holds the state of this particular completion
4807 * @timeout: timeout value in jiffies
4808 *
4809 * This waits for either a completion of a specific task to be signaled or for a
4810 * specified timeout to expire. The timeout is in jiffies. It is not
4811 * interruptible.
4812 */
b15136e9 4813unsigned long __sched
8cbbe86d 4814wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4815{
8cbbe86d 4816 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4817}
8cbbe86d 4818EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4819
65eb3dc6
KD
4820/**
4821 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4822 * @x: holds the state of this particular completion
4823 *
4824 * This waits for completion of a specific task to be signaled. It is
4825 * interruptible.
4826 */
8cbbe86d 4827int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4828{
51e97990
AK
4829 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4830 if (t == -ERESTARTSYS)
4831 return t;
4832 return 0;
0fec171c 4833}
8cbbe86d 4834EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4835
65eb3dc6
KD
4836/**
4837 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4838 * @x: holds the state of this particular completion
4839 * @timeout: timeout value in jiffies
4840 *
4841 * This waits for either a completion of a specific task to be signaled or for a
4842 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4843 */
6bf41237 4844long __sched
8cbbe86d
AK
4845wait_for_completion_interruptible_timeout(struct completion *x,
4846 unsigned long timeout)
0fec171c 4847{
8cbbe86d 4848 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4849}
8cbbe86d 4850EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4851
65eb3dc6
KD
4852/**
4853 * wait_for_completion_killable: - waits for completion of a task (killable)
4854 * @x: holds the state of this particular completion
4855 *
4856 * This waits to be signaled for completion of a specific task. It can be
4857 * interrupted by a kill signal.
4858 */
009e577e
MW
4859int __sched wait_for_completion_killable(struct completion *x)
4860{
4861 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4862 if (t == -ERESTARTSYS)
4863 return t;
4864 return 0;
4865}
4866EXPORT_SYMBOL(wait_for_completion_killable);
4867
0aa12fb4
SW
4868/**
4869 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4870 * @x: holds the state of this particular completion
4871 * @timeout: timeout value in jiffies
4872 *
4873 * This waits for either a completion of a specific task to be
4874 * signaled or for a specified timeout to expire. It can be
4875 * interrupted by a kill signal. The timeout is in jiffies.
4876 */
6bf41237 4877long __sched
0aa12fb4
SW
4878wait_for_completion_killable_timeout(struct completion *x,
4879 unsigned long timeout)
4880{
4881 return wait_for_common(x, timeout, TASK_KILLABLE);
4882}
4883EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4884
be4de352
DC
4885/**
4886 * try_wait_for_completion - try to decrement a completion without blocking
4887 * @x: completion structure
4888 *
4889 * Returns: 0 if a decrement cannot be done without blocking
4890 * 1 if a decrement succeeded.
4891 *
4892 * If a completion is being used as a counting completion,
4893 * attempt to decrement the counter without blocking. This
4894 * enables us to avoid waiting if the resource the completion
4895 * is protecting is not available.
4896 */
4897bool try_wait_for_completion(struct completion *x)
4898{
7539a3b3 4899 unsigned long flags;
be4de352
DC
4900 int ret = 1;
4901
7539a3b3 4902 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4903 if (!x->done)
4904 ret = 0;
4905 else
4906 x->done--;
7539a3b3 4907 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4908 return ret;
4909}
4910EXPORT_SYMBOL(try_wait_for_completion);
4911
4912/**
4913 * completion_done - Test to see if a completion has any waiters
4914 * @x: completion structure
4915 *
4916 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4917 * 1 if there are no waiters.
4918 *
4919 */
4920bool completion_done(struct completion *x)
4921{
7539a3b3 4922 unsigned long flags;
be4de352
DC
4923 int ret = 1;
4924
7539a3b3 4925 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4926 if (!x->done)
4927 ret = 0;
7539a3b3 4928 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4929 return ret;
4930}
4931EXPORT_SYMBOL(completion_done);
4932
8cbbe86d
AK
4933static long __sched
4934sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4935{
0fec171c
IM
4936 unsigned long flags;
4937 wait_queue_t wait;
4938
4939 init_waitqueue_entry(&wait, current);
1da177e4 4940
8cbbe86d 4941 __set_current_state(state);
1da177e4 4942
8cbbe86d
AK
4943 spin_lock_irqsave(&q->lock, flags);
4944 __add_wait_queue(q, &wait);
4945 spin_unlock(&q->lock);
4946 timeout = schedule_timeout(timeout);
4947 spin_lock_irq(&q->lock);
4948 __remove_wait_queue(q, &wait);
4949 spin_unlock_irqrestore(&q->lock, flags);
4950
4951 return timeout;
4952}
4953
4954void __sched interruptible_sleep_on(wait_queue_head_t *q)
4955{
4956 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4957}
1da177e4
LT
4958EXPORT_SYMBOL(interruptible_sleep_on);
4959
0fec171c 4960long __sched
95cdf3b7 4961interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4962{
8cbbe86d 4963 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4964}
1da177e4
LT
4965EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4966
0fec171c 4967void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4968{
8cbbe86d 4969 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4970}
1da177e4
LT
4971EXPORT_SYMBOL(sleep_on);
4972
0fec171c 4973long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4974{
8cbbe86d 4975 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4976}
1da177e4
LT
4977EXPORT_SYMBOL(sleep_on_timeout);
4978
b29739f9
IM
4979#ifdef CONFIG_RT_MUTEXES
4980
4981/*
4982 * rt_mutex_setprio - set the current priority of a task
4983 * @p: task
4984 * @prio: prio value (kernel-internal form)
4985 *
4986 * This function changes the 'effective' priority of a task. It does
4987 * not touch ->normal_prio like __setscheduler().
4988 *
4989 * Used by the rt_mutex code to implement priority inheritance logic.
4990 */
36c8b586 4991void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4992{
83b699ed 4993 int oldprio, on_rq, running;
70b97a7f 4994 struct rq *rq;
83ab0aa0 4995 const struct sched_class *prev_class;
b29739f9
IM
4996
4997 BUG_ON(prio < 0 || prio > MAX_PRIO);
4998
0122ec5b 4999 rq = __task_rq_lock(p);
b29739f9 5000
a8027073 5001 trace_sched_pi_setprio(p, prio);
d5f9f942 5002 oldprio = p->prio;
83ab0aa0 5003 prev_class = p->sched_class;
fd2f4419 5004 on_rq = p->on_rq;
051a1d1a 5005 running = task_current(rq, p);
0e1f3483 5006 if (on_rq)
69be72c1 5007 dequeue_task(rq, p, 0);
0e1f3483
HS
5008 if (running)
5009 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5010
5011 if (rt_prio(prio))
5012 p->sched_class = &rt_sched_class;
5013 else
5014 p->sched_class = &fair_sched_class;
5015
b29739f9
IM
5016 p->prio = prio;
5017
0e1f3483
HS
5018 if (running)
5019 p->sched_class->set_curr_task(rq);
da7a735e 5020 if (on_rq)
371fd7e7 5021 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 5022
da7a735e 5023 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5024 __task_rq_unlock(rq);
b29739f9
IM
5025}
5026
5027#endif
5028
36c8b586 5029void set_user_nice(struct task_struct *p, long nice)
1da177e4 5030{
dd41f596 5031 int old_prio, delta, on_rq;
1da177e4 5032 unsigned long flags;
70b97a7f 5033 struct rq *rq;
1da177e4
LT
5034
5035 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5036 return;
5037 /*
5038 * We have to be careful, if called from sys_setpriority(),
5039 * the task might be in the middle of scheduling on another CPU.
5040 */
5041 rq = task_rq_lock(p, &flags);
5042 /*
5043 * The RT priorities are set via sched_setscheduler(), but we still
5044 * allow the 'normal' nice value to be set - but as expected
5045 * it wont have any effect on scheduling until the task is
dd41f596 5046 * SCHED_FIFO/SCHED_RR:
1da177e4 5047 */
e05606d3 5048 if (task_has_rt_policy(p)) {
1da177e4
LT
5049 p->static_prio = NICE_TO_PRIO(nice);
5050 goto out_unlock;
5051 }
fd2f4419 5052 on_rq = p->on_rq;
c09595f6 5053 if (on_rq)
69be72c1 5054 dequeue_task(rq, p, 0);
1da177e4 5055
1da177e4 5056 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5057 set_load_weight(p);
b29739f9
IM
5058 old_prio = p->prio;
5059 p->prio = effective_prio(p);
5060 delta = p->prio - old_prio;
1da177e4 5061
dd41f596 5062 if (on_rq) {
371fd7e7 5063 enqueue_task(rq, p, 0);
1da177e4 5064 /*
d5f9f942
AM
5065 * If the task increased its priority or is running and
5066 * lowered its priority, then reschedule its CPU:
1da177e4 5067 */
d5f9f942 5068 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5069 resched_task(rq->curr);
5070 }
5071out_unlock:
0122ec5b 5072 task_rq_unlock(rq, p, &flags);
1da177e4 5073}
1da177e4
LT
5074EXPORT_SYMBOL(set_user_nice);
5075
e43379f1
MM
5076/*
5077 * can_nice - check if a task can reduce its nice value
5078 * @p: task
5079 * @nice: nice value
5080 */
36c8b586 5081int can_nice(const struct task_struct *p, const int nice)
e43379f1 5082{
024f4747
MM
5083 /* convert nice value [19,-20] to rlimit style value [1,40] */
5084 int nice_rlim = 20 - nice;
48f24c4d 5085
78d7d407 5086 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5087 capable(CAP_SYS_NICE));
5088}
5089
1da177e4
LT
5090#ifdef __ARCH_WANT_SYS_NICE
5091
5092/*
5093 * sys_nice - change the priority of the current process.
5094 * @increment: priority increment
5095 *
5096 * sys_setpriority is a more generic, but much slower function that
5097 * does similar things.
5098 */
5add95d4 5099SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5100{
48f24c4d 5101 long nice, retval;
1da177e4
LT
5102
5103 /*
5104 * Setpriority might change our priority at the same moment.
5105 * We don't have to worry. Conceptually one call occurs first
5106 * and we have a single winner.
5107 */
e43379f1
MM
5108 if (increment < -40)
5109 increment = -40;
1da177e4
LT
5110 if (increment > 40)
5111 increment = 40;
5112
2b8f836f 5113 nice = TASK_NICE(current) + increment;
1da177e4
LT
5114 if (nice < -20)
5115 nice = -20;
5116 if (nice > 19)
5117 nice = 19;
5118
e43379f1
MM
5119 if (increment < 0 && !can_nice(current, nice))
5120 return -EPERM;
5121
1da177e4
LT
5122 retval = security_task_setnice(current, nice);
5123 if (retval)
5124 return retval;
5125
5126 set_user_nice(current, nice);
5127 return 0;
5128}
5129
5130#endif
5131
5132/**
5133 * task_prio - return the priority value of a given task.
5134 * @p: the task in question.
5135 *
5136 * This is the priority value as seen by users in /proc.
5137 * RT tasks are offset by -200. Normal tasks are centered
5138 * around 0, value goes from -16 to +15.
5139 */
36c8b586 5140int task_prio(const struct task_struct *p)
1da177e4
LT
5141{
5142 return p->prio - MAX_RT_PRIO;
5143}
5144
5145/**
5146 * task_nice - return the nice value of a given task.
5147 * @p: the task in question.
5148 */
36c8b586 5149int task_nice(const struct task_struct *p)
1da177e4
LT
5150{
5151 return TASK_NICE(p);
5152}
150d8bed 5153EXPORT_SYMBOL(task_nice);
1da177e4
LT
5154
5155/**
5156 * idle_cpu - is a given cpu idle currently?
5157 * @cpu: the processor in question.
5158 */
5159int idle_cpu(int cpu)
5160{
908a3283
TG
5161 struct rq *rq = cpu_rq(cpu);
5162
5163 if (rq->curr != rq->idle)
5164 return 0;
5165
5166 if (rq->nr_running)
5167 return 0;
5168
5169#ifdef CONFIG_SMP
5170 if (!llist_empty(&rq->wake_list))
5171 return 0;
5172#endif
5173
5174 return 1;
1da177e4
LT
5175}
5176
1da177e4
LT
5177/**
5178 * idle_task - return the idle task for a given cpu.
5179 * @cpu: the processor in question.
5180 */
36c8b586 5181struct task_struct *idle_task(int cpu)
1da177e4
LT
5182{
5183 return cpu_rq(cpu)->idle;
5184}
5185
5186/**
5187 * find_process_by_pid - find a process with a matching PID value.
5188 * @pid: the pid in question.
5189 */
a9957449 5190static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5191{
228ebcbe 5192 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5193}
5194
5195/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5196static void
5197__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5198{
1da177e4
LT
5199 p->policy = policy;
5200 p->rt_priority = prio;
b29739f9
IM
5201 p->normal_prio = normal_prio(p);
5202 /* we are holding p->pi_lock already */
5203 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
5204 if (rt_prio(p->prio))
5205 p->sched_class = &rt_sched_class;
5206 else
5207 p->sched_class = &fair_sched_class;
2dd73a4f 5208 set_load_weight(p);
1da177e4
LT
5209}
5210
c69e8d9c
DH
5211/*
5212 * check the target process has a UID that matches the current process's
5213 */
5214static bool check_same_owner(struct task_struct *p)
5215{
5216 const struct cred *cred = current_cred(), *pcred;
5217 bool match;
5218
5219 rcu_read_lock();
5220 pcred = __task_cred(p);
b0e77598
SH
5221 if (cred->user->user_ns == pcred->user->user_ns)
5222 match = (cred->euid == pcred->euid ||
5223 cred->euid == pcred->uid);
5224 else
5225 match = false;
c69e8d9c
DH
5226 rcu_read_unlock();
5227 return match;
5228}
5229
961ccddd 5230static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5231 const struct sched_param *param, bool user)
1da177e4 5232{
83b699ed 5233 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5234 unsigned long flags;
83ab0aa0 5235 const struct sched_class *prev_class;
70b97a7f 5236 struct rq *rq;
ca94c442 5237 int reset_on_fork;
1da177e4 5238
66e5393a
SR
5239 /* may grab non-irq protected spin_locks */
5240 BUG_ON(in_interrupt());
1da177e4
LT
5241recheck:
5242 /* double check policy once rq lock held */
ca94c442
LP
5243 if (policy < 0) {
5244 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5245 policy = oldpolicy = p->policy;
ca94c442
LP
5246 } else {
5247 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5248 policy &= ~SCHED_RESET_ON_FORK;
5249
5250 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5251 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5252 policy != SCHED_IDLE)
5253 return -EINVAL;
5254 }
5255
1da177e4
LT
5256 /*
5257 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5258 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5259 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5260 */
5261 if (param->sched_priority < 0 ||
95cdf3b7 5262 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5263 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5264 return -EINVAL;
e05606d3 5265 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5266 return -EINVAL;
5267
37e4ab3f
OC
5268 /*
5269 * Allow unprivileged RT tasks to decrease priority:
5270 */
961ccddd 5271 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5272 if (rt_policy(policy)) {
a44702e8
ON
5273 unsigned long rlim_rtprio =
5274 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5275
5276 /* can't set/change the rt policy */
5277 if (policy != p->policy && !rlim_rtprio)
5278 return -EPERM;
5279
5280 /* can't increase priority */
5281 if (param->sched_priority > p->rt_priority &&
5282 param->sched_priority > rlim_rtprio)
5283 return -EPERM;
5284 }
c02aa73b 5285
dd41f596 5286 /*
c02aa73b
DH
5287 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5288 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5289 */
c02aa73b
DH
5290 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5291 if (!can_nice(p, TASK_NICE(p)))
5292 return -EPERM;
5293 }
5fe1d75f 5294
37e4ab3f 5295 /* can't change other user's priorities */
c69e8d9c 5296 if (!check_same_owner(p))
37e4ab3f 5297 return -EPERM;
ca94c442
LP
5298
5299 /* Normal users shall not reset the sched_reset_on_fork flag */
5300 if (p->sched_reset_on_fork && !reset_on_fork)
5301 return -EPERM;
37e4ab3f 5302 }
1da177e4 5303
725aad24 5304 if (user) {
b0ae1981 5305 retval = security_task_setscheduler(p);
725aad24
JF
5306 if (retval)
5307 return retval;
5308 }
5309
b29739f9
IM
5310 /*
5311 * make sure no PI-waiters arrive (or leave) while we are
5312 * changing the priority of the task:
0122ec5b 5313 *
25985edc 5314 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5315 * runqueue lock must be held.
5316 */
0122ec5b 5317 rq = task_rq_lock(p, &flags);
dc61b1d6 5318
34f971f6
PZ
5319 /*
5320 * Changing the policy of the stop threads its a very bad idea
5321 */
5322 if (p == rq->stop) {
0122ec5b 5323 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5324 return -EINVAL;
5325 }
5326
a51e9198
DF
5327 /*
5328 * If not changing anything there's no need to proceed further:
5329 */
5330 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5331 param->sched_priority == p->rt_priority))) {
5332
5333 __task_rq_unlock(rq);
5334 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5335 return 0;
5336 }
5337
dc61b1d6
PZ
5338#ifdef CONFIG_RT_GROUP_SCHED
5339 if (user) {
5340 /*
5341 * Do not allow realtime tasks into groups that have no runtime
5342 * assigned.
5343 */
5344 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5345 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5346 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5347 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5348 return -EPERM;
5349 }
5350 }
5351#endif
5352
1da177e4
LT
5353 /* recheck policy now with rq lock held */
5354 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5355 policy = oldpolicy = -1;
0122ec5b 5356 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5357 goto recheck;
5358 }
fd2f4419 5359 on_rq = p->on_rq;
051a1d1a 5360 running = task_current(rq, p);
0e1f3483 5361 if (on_rq)
2e1cb74a 5362 deactivate_task(rq, p, 0);
0e1f3483
HS
5363 if (running)
5364 p->sched_class->put_prev_task(rq, p);
f6b53205 5365
ca94c442
LP
5366 p->sched_reset_on_fork = reset_on_fork;
5367
1da177e4 5368 oldprio = p->prio;
83ab0aa0 5369 prev_class = p->sched_class;
dd41f596 5370 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5371
0e1f3483
HS
5372 if (running)
5373 p->sched_class->set_curr_task(rq);
da7a735e 5374 if (on_rq)
dd41f596 5375 activate_task(rq, p, 0);
cb469845 5376
da7a735e 5377 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5378 task_rq_unlock(rq, p, &flags);
b29739f9 5379
95e02ca9
TG
5380 rt_mutex_adjust_pi(p);
5381
1da177e4
LT
5382 return 0;
5383}
961ccddd
RR
5384
5385/**
5386 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5387 * @p: the task in question.
5388 * @policy: new policy.
5389 * @param: structure containing the new RT priority.
5390 *
5391 * NOTE that the task may be already dead.
5392 */
5393int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5394 const struct sched_param *param)
961ccddd
RR
5395{
5396 return __sched_setscheduler(p, policy, param, true);
5397}
1da177e4
LT
5398EXPORT_SYMBOL_GPL(sched_setscheduler);
5399
961ccddd
RR
5400/**
5401 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5402 * @p: the task in question.
5403 * @policy: new policy.
5404 * @param: structure containing the new RT priority.
5405 *
5406 * Just like sched_setscheduler, only don't bother checking if the
5407 * current context has permission. For example, this is needed in
5408 * stop_machine(): we create temporary high priority worker threads,
5409 * but our caller might not have that capability.
5410 */
5411int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5412 const struct sched_param *param)
961ccddd
RR
5413{
5414 return __sched_setscheduler(p, policy, param, false);
5415}
5416
95cdf3b7
IM
5417static int
5418do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5419{
1da177e4
LT
5420 struct sched_param lparam;
5421 struct task_struct *p;
36c8b586 5422 int retval;
1da177e4
LT
5423
5424 if (!param || pid < 0)
5425 return -EINVAL;
5426 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5427 return -EFAULT;
5fe1d75f
ON
5428
5429 rcu_read_lock();
5430 retval = -ESRCH;
1da177e4 5431 p = find_process_by_pid(pid);
5fe1d75f
ON
5432 if (p != NULL)
5433 retval = sched_setscheduler(p, policy, &lparam);
5434 rcu_read_unlock();
36c8b586 5435
1da177e4
LT
5436 return retval;
5437}
5438
5439/**
5440 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5441 * @pid: the pid in question.
5442 * @policy: new policy.
5443 * @param: structure containing the new RT priority.
5444 */
5add95d4
HC
5445SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5446 struct sched_param __user *, param)
1da177e4 5447{
c21761f1
JB
5448 /* negative values for policy are not valid */
5449 if (policy < 0)
5450 return -EINVAL;
5451
1da177e4
LT
5452 return do_sched_setscheduler(pid, policy, param);
5453}
5454
5455/**
5456 * sys_sched_setparam - set/change the RT priority of a thread
5457 * @pid: the pid in question.
5458 * @param: structure containing the new RT priority.
5459 */
5add95d4 5460SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5461{
5462 return do_sched_setscheduler(pid, -1, param);
5463}
5464
5465/**
5466 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5467 * @pid: the pid in question.
5468 */
5add95d4 5469SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5470{
36c8b586 5471 struct task_struct *p;
3a5c359a 5472 int retval;
1da177e4
LT
5473
5474 if (pid < 0)
3a5c359a 5475 return -EINVAL;
1da177e4
LT
5476
5477 retval = -ESRCH;
5fe85be0 5478 rcu_read_lock();
1da177e4
LT
5479 p = find_process_by_pid(pid);
5480 if (p) {
5481 retval = security_task_getscheduler(p);
5482 if (!retval)
ca94c442
LP
5483 retval = p->policy
5484 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5485 }
5fe85be0 5486 rcu_read_unlock();
1da177e4
LT
5487 return retval;
5488}
5489
5490/**
ca94c442 5491 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5492 * @pid: the pid in question.
5493 * @param: structure containing the RT priority.
5494 */
5add95d4 5495SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5496{
5497 struct sched_param lp;
36c8b586 5498 struct task_struct *p;
3a5c359a 5499 int retval;
1da177e4
LT
5500
5501 if (!param || pid < 0)
3a5c359a 5502 return -EINVAL;
1da177e4 5503
5fe85be0 5504 rcu_read_lock();
1da177e4
LT
5505 p = find_process_by_pid(pid);
5506 retval = -ESRCH;
5507 if (!p)
5508 goto out_unlock;
5509
5510 retval = security_task_getscheduler(p);
5511 if (retval)
5512 goto out_unlock;
5513
5514 lp.sched_priority = p->rt_priority;
5fe85be0 5515 rcu_read_unlock();
1da177e4
LT
5516
5517 /*
5518 * This one might sleep, we cannot do it with a spinlock held ...
5519 */
5520 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5521
1da177e4
LT
5522 return retval;
5523
5524out_unlock:
5fe85be0 5525 rcu_read_unlock();
1da177e4
LT
5526 return retval;
5527}
5528
96f874e2 5529long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5530{
5a16f3d3 5531 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5532 struct task_struct *p;
5533 int retval;
1da177e4 5534
95402b38 5535 get_online_cpus();
23f5d142 5536 rcu_read_lock();
1da177e4
LT
5537
5538 p = find_process_by_pid(pid);
5539 if (!p) {
23f5d142 5540 rcu_read_unlock();
95402b38 5541 put_online_cpus();
1da177e4
LT
5542 return -ESRCH;
5543 }
5544
23f5d142 5545 /* Prevent p going away */
1da177e4 5546 get_task_struct(p);
23f5d142 5547 rcu_read_unlock();
1da177e4 5548
5a16f3d3
RR
5549 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5550 retval = -ENOMEM;
5551 goto out_put_task;
5552 }
5553 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5554 retval = -ENOMEM;
5555 goto out_free_cpus_allowed;
5556 }
1da177e4 5557 retval = -EPERM;
b0e77598 5558 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5559 goto out_unlock;
5560
b0ae1981 5561 retval = security_task_setscheduler(p);
e7834f8f
DQ
5562 if (retval)
5563 goto out_unlock;
5564
5a16f3d3
RR
5565 cpuset_cpus_allowed(p, cpus_allowed);
5566 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5567again:
5a16f3d3 5568 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5569
8707d8b8 5570 if (!retval) {
5a16f3d3
RR
5571 cpuset_cpus_allowed(p, cpus_allowed);
5572 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5573 /*
5574 * We must have raced with a concurrent cpuset
5575 * update. Just reset the cpus_allowed to the
5576 * cpuset's cpus_allowed
5577 */
5a16f3d3 5578 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5579 goto again;
5580 }
5581 }
1da177e4 5582out_unlock:
5a16f3d3
RR
5583 free_cpumask_var(new_mask);
5584out_free_cpus_allowed:
5585 free_cpumask_var(cpus_allowed);
5586out_put_task:
1da177e4 5587 put_task_struct(p);
95402b38 5588 put_online_cpus();
1da177e4
LT
5589 return retval;
5590}
5591
5592static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5593 struct cpumask *new_mask)
1da177e4 5594{
96f874e2
RR
5595 if (len < cpumask_size())
5596 cpumask_clear(new_mask);
5597 else if (len > cpumask_size())
5598 len = cpumask_size();
5599
1da177e4
LT
5600 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5601}
5602
5603/**
5604 * sys_sched_setaffinity - set the cpu affinity of a process
5605 * @pid: pid of the process
5606 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5607 * @user_mask_ptr: user-space pointer to the new cpu mask
5608 */
5add95d4
HC
5609SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5610 unsigned long __user *, user_mask_ptr)
1da177e4 5611{
5a16f3d3 5612 cpumask_var_t new_mask;
1da177e4
LT
5613 int retval;
5614
5a16f3d3
RR
5615 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5616 return -ENOMEM;
1da177e4 5617
5a16f3d3
RR
5618 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5619 if (retval == 0)
5620 retval = sched_setaffinity(pid, new_mask);
5621 free_cpumask_var(new_mask);
5622 return retval;
1da177e4
LT
5623}
5624
96f874e2 5625long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5626{
36c8b586 5627 struct task_struct *p;
31605683 5628 unsigned long flags;
1da177e4 5629 int retval;
1da177e4 5630
95402b38 5631 get_online_cpus();
23f5d142 5632 rcu_read_lock();
1da177e4
LT
5633
5634 retval = -ESRCH;
5635 p = find_process_by_pid(pid);
5636 if (!p)
5637 goto out_unlock;
5638
e7834f8f
DQ
5639 retval = security_task_getscheduler(p);
5640 if (retval)
5641 goto out_unlock;
5642
013fdb80 5643 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5644 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5645 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5646
5647out_unlock:
23f5d142 5648 rcu_read_unlock();
95402b38 5649 put_online_cpus();
1da177e4 5650
9531b62f 5651 return retval;
1da177e4
LT
5652}
5653
5654/**
5655 * sys_sched_getaffinity - get the cpu affinity of a process
5656 * @pid: pid of the process
5657 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5658 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5659 */
5add95d4
HC
5660SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5661 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5662{
5663 int ret;
f17c8607 5664 cpumask_var_t mask;
1da177e4 5665
84fba5ec 5666 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5667 return -EINVAL;
5668 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5669 return -EINVAL;
5670
f17c8607
RR
5671 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5672 return -ENOMEM;
1da177e4 5673
f17c8607
RR
5674 ret = sched_getaffinity(pid, mask);
5675 if (ret == 0) {
8bc037fb 5676 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5677
5678 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5679 ret = -EFAULT;
5680 else
cd3d8031 5681 ret = retlen;
f17c8607
RR
5682 }
5683 free_cpumask_var(mask);
1da177e4 5684
f17c8607 5685 return ret;
1da177e4
LT
5686}
5687
5688/**
5689 * sys_sched_yield - yield the current processor to other threads.
5690 *
dd41f596
IM
5691 * This function yields the current CPU to other tasks. If there are no
5692 * other threads running on this CPU then this function will return.
1da177e4 5693 */
5add95d4 5694SYSCALL_DEFINE0(sched_yield)
1da177e4 5695{
70b97a7f 5696 struct rq *rq = this_rq_lock();
1da177e4 5697
2d72376b 5698 schedstat_inc(rq, yld_count);
4530d7ab 5699 current->sched_class->yield_task(rq);
1da177e4
LT
5700
5701 /*
5702 * Since we are going to call schedule() anyway, there's
5703 * no need to preempt or enable interrupts:
5704 */
5705 __release(rq->lock);
8a25d5de 5706 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5707 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5708 preempt_enable_no_resched();
5709
5710 schedule();
5711
5712 return 0;
5713}
5714
d86ee480
PZ
5715static inline int should_resched(void)
5716{
5717 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5718}
5719
e7b38404 5720static void __cond_resched(void)
1da177e4 5721{
e7aaaa69 5722 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 5723 __schedule();
e7aaaa69 5724 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5725}
5726
02b67cc3 5727int __sched _cond_resched(void)
1da177e4 5728{
d86ee480 5729 if (should_resched()) {
1da177e4
LT
5730 __cond_resched();
5731 return 1;
5732 }
5733 return 0;
5734}
02b67cc3 5735EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5736
5737/*
613afbf8 5738 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5739 * call schedule, and on return reacquire the lock.
5740 *
41a2d6cf 5741 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5742 * operations here to prevent schedule() from being called twice (once via
5743 * spin_unlock(), once by hand).
5744 */
613afbf8 5745int __cond_resched_lock(spinlock_t *lock)
1da177e4 5746{
d86ee480 5747 int resched = should_resched();
6df3cecb
JK
5748 int ret = 0;
5749
f607c668
PZ
5750 lockdep_assert_held(lock);
5751
95c354fe 5752 if (spin_needbreak(lock) || resched) {
1da177e4 5753 spin_unlock(lock);
d86ee480 5754 if (resched)
95c354fe
NP
5755 __cond_resched();
5756 else
5757 cpu_relax();
6df3cecb 5758 ret = 1;
1da177e4 5759 spin_lock(lock);
1da177e4 5760 }
6df3cecb 5761 return ret;
1da177e4 5762}
613afbf8 5763EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5764
613afbf8 5765int __sched __cond_resched_softirq(void)
1da177e4
LT
5766{
5767 BUG_ON(!in_softirq());
5768
d86ee480 5769 if (should_resched()) {
98d82567 5770 local_bh_enable();
1da177e4
LT
5771 __cond_resched();
5772 local_bh_disable();
5773 return 1;
5774 }
5775 return 0;
5776}
613afbf8 5777EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5778
1da177e4
LT
5779/**
5780 * yield - yield the current processor to other threads.
5781 *
72fd4a35 5782 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5783 * thread runnable and calls sys_sched_yield().
5784 */
5785void __sched yield(void)
5786{
5787 set_current_state(TASK_RUNNING);
5788 sys_sched_yield();
5789}
1da177e4
LT
5790EXPORT_SYMBOL(yield);
5791
d95f4122
MG
5792/**
5793 * yield_to - yield the current processor to another thread in
5794 * your thread group, or accelerate that thread toward the
5795 * processor it's on.
16addf95
RD
5796 * @p: target task
5797 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5798 *
5799 * It's the caller's job to ensure that the target task struct
5800 * can't go away on us before we can do any checks.
5801 *
5802 * Returns true if we indeed boosted the target task.
5803 */
5804bool __sched yield_to(struct task_struct *p, bool preempt)
5805{
5806 struct task_struct *curr = current;
5807 struct rq *rq, *p_rq;
5808 unsigned long flags;
5809 bool yielded = 0;
5810
5811 local_irq_save(flags);
5812 rq = this_rq();
5813
5814again:
5815 p_rq = task_rq(p);
5816 double_rq_lock(rq, p_rq);
5817 while (task_rq(p) != p_rq) {
5818 double_rq_unlock(rq, p_rq);
5819 goto again;
5820 }
5821
5822 if (!curr->sched_class->yield_to_task)
5823 goto out;
5824
5825 if (curr->sched_class != p->sched_class)
5826 goto out;
5827
5828 if (task_running(p_rq, p) || p->state)
5829 goto out;
5830
5831 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5832 if (yielded) {
d95f4122 5833 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5834 /*
5835 * Make p's CPU reschedule; pick_next_entity takes care of
5836 * fairness.
5837 */
5838 if (preempt && rq != p_rq)
5839 resched_task(p_rq->curr);
5840 }
d95f4122
MG
5841
5842out:
5843 double_rq_unlock(rq, p_rq);
5844 local_irq_restore(flags);
5845
5846 if (yielded)
5847 schedule();
5848
5849 return yielded;
5850}
5851EXPORT_SYMBOL_GPL(yield_to);
5852
1da177e4 5853/*
41a2d6cf 5854 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5855 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5856 */
5857void __sched io_schedule(void)
5858{
54d35f29 5859 struct rq *rq = raw_rq();
1da177e4 5860
0ff92245 5861 delayacct_blkio_start();
1da177e4 5862 atomic_inc(&rq->nr_iowait);
73c10101 5863 blk_flush_plug(current);
8f0dfc34 5864 current->in_iowait = 1;
1da177e4 5865 schedule();
8f0dfc34 5866 current->in_iowait = 0;
1da177e4 5867 atomic_dec(&rq->nr_iowait);
0ff92245 5868 delayacct_blkio_end();
1da177e4 5869}
1da177e4
LT
5870EXPORT_SYMBOL(io_schedule);
5871
5872long __sched io_schedule_timeout(long timeout)
5873{
54d35f29 5874 struct rq *rq = raw_rq();
1da177e4
LT
5875 long ret;
5876
0ff92245 5877 delayacct_blkio_start();
1da177e4 5878 atomic_inc(&rq->nr_iowait);
73c10101 5879 blk_flush_plug(current);
8f0dfc34 5880 current->in_iowait = 1;
1da177e4 5881 ret = schedule_timeout(timeout);
8f0dfc34 5882 current->in_iowait = 0;
1da177e4 5883 atomic_dec(&rq->nr_iowait);
0ff92245 5884 delayacct_blkio_end();
1da177e4
LT
5885 return ret;
5886}
5887
5888/**
5889 * sys_sched_get_priority_max - return maximum RT priority.
5890 * @policy: scheduling class.
5891 *
5892 * this syscall returns the maximum rt_priority that can be used
5893 * by a given scheduling class.
5894 */
5add95d4 5895SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5896{
5897 int ret = -EINVAL;
5898
5899 switch (policy) {
5900 case SCHED_FIFO:
5901 case SCHED_RR:
5902 ret = MAX_USER_RT_PRIO-1;
5903 break;
5904 case SCHED_NORMAL:
b0a9499c 5905 case SCHED_BATCH:
dd41f596 5906 case SCHED_IDLE:
1da177e4
LT
5907 ret = 0;
5908 break;
5909 }
5910 return ret;
5911}
5912
5913/**
5914 * sys_sched_get_priority_min - return minimum RT priority.
5915 * @policy: scheduling class.
5916 *
5917 * this syscall returns the minimum rt_priority that can be used
5918 * by a given scheduling class.
5919 */
5add95d4 5920SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5921{
5922 int ret = -EINVAL;
5923
5924 switch (policy) {
5925 case SCHED_FIFO:
5926 case SCHED_RR:
5927 ret = 1;
5928 break;
5929 case SCHED_NORMAL:
b0a9499c 5930 case SCHED_BATCH:
dd41f596 5931 case SCHED_IDLE:
1da177e4
LT
5932 ret = 0;
5933 }
5934 return ret;
5935}
5936
5937/**
5938 * sys_sched_rr_get_interval - return the default timeslice of a process.
5939 * @pid: pid of the process.
5940 * @interval: userspace pointer to the timeslice value.
5941 *
5942 * this syscall writes the default timeslice value of a given process
5943 * into the user-space timespec buffer. A value of '0' means infinity.
5944 */
17da2bd9 5945SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5946 struct timespec __user *, interval)
1da177e4 5947{
36c8b586 5948 struct task_struct *p;
a4ec24b4 5949 unsigned int time_slice;
dba091b9
TG
5950 unsigned long flags;
5951 struct rq *rq;
3a5c359a 5952 int retval;
1da177e4 5953 struct timespec t;
1da177e4
LT
5954
5955 if (pid < 0)
3a5c359a 5956 return -EINVAL;
1da177e4
LT
5957
5958 retval = -ESRCH;
1a551ae7 5959 rcu_read_lock();
1da177e4
LT
5960 p = find_process_by_pid(pid);
5961 if (!p)
5962 goto out_unlock;
5963
5964 retval = security_task_getscheduler(p);
5965 if (retval)
5966 goto out_unlock;
5967
dba091b9
TG
5968 rq = task_rq_lock(p, &flags);
5969 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5970 task_rq_unlock(rq, p, &flags);
a4ec24b4 5971
1a551ae7 5972 rcu_read_unlock();
a4ec24b4 5973 jiffies_to_timespec(time_slice, &t);
1da177e4 5974 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5975 return retval;
3a5c359a 5976
1da177e4 5977out_unlock:
1a551ae7 5978 rcu_read_unlock();
1da177e4
LT
5979 return retval;
5980}
5981
7c731e0a 5982static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5983
82a1fcb9 5984void sched_show_task(struct task_struct *p)
1da177e4 5985{
1da177e4 5986 unsigned long free = 0;
36c8b586 5987 unsigned state;
1da177e4 5988
1da177e4 5989 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5990 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5991 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5992#if BITS_PER_LONG == 32
1da177e4 5993 if (state == TASK_RUNNING)
3df0fc5b 5994 printk(KERN_CONT " running ");
1da177e4 5995 else
3df0fc5b 5996 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5997#else
5998 if (state == TASK_RUNNING)
3df0fc5b 5999 printk(KERN_CONT " running task ");
1da177e4 6000 else
3df0fc5b 6001 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6002#endif
6003#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6004 free = stack_not_used(p);
1da177e4 6005#endif
3df0fc5b 6006 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6007 task_pid_nr(p), task_pid_nr(p->real_parent),
6008 (unsigned long)task_thread_info(p)->flags);
1da177e4 6009
5fb5e6de 6010 show_stack(p, NULL);
1da177e4
LT
6011}
6012
e59e2ae2 6013void show_state_filter(unsigned long state_filter)
1da177e4 6014{
36c8b586 6015 struct task_struct *g, *p;
1da177e4 6016
4bd77321 6017#if BITS_PER_LONG == 32
3df0fc5b
PZ
6018 printk(KERN_INFO
6019 " task PC stack pid father\n");
1da177e4 6020#else
3df0fc5b
PZ
6021 printk(KERN_INFO
6022 " task PC stack pid father\n");
1da177e4
LT
6023#endif
6024 read_lock(&tasklist_lock);
6025 do_each_thread(g, p) {
6026 /*
6027 * reset the NMI-timeout, listing all files on a slow
25985edc 6028 * console might take a lot of time:
1da177e4
LT
6029 */
6030 touch_nmi_watchdog();
39bc89fd 6031 if (!state_filter || (p->state & state_filter))
82a1fcb9 6032 sched_show_task(p);
1da177e4
LT
6033 } while_each_thread(g, p);
6034
04c9167f
JF
6035 touch_all_softlockup_watchdogs();
6036
dd41f596
IM
6037#ifdef CONFIG_SCHED_DEBUG
6038 sysrq_sched_debug_show();
6039#endif
1da177e4 6040 read_unlock(&tasklist_lock);
e59e2ae2
IM
6041 /*
6042 * Only show locks if all tasks are dumped:
6043 */
93335a21 6044 if (!state_filter)
e59e2ae2 6045 debug_show_all_locks();
1da177e4
LT
6046}
6047
1df21055
IM
6048void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6049{
dd41f596 6050 idle->sched_class = &idle_sched_class;
1df21055
IM
6051}
6052
f340c0d1
IM
6053/**
6054 * init_idle - set up an idle thread for a given CPU
6055 * @idle: task in question
6056 * @cpu: cpu the idle task belongs to
6057 *
6058 * NOTE: this function does not set the idle thread's NEED_RESCHED
6059 * flag, to make booting more robust.
6060 */
5c1e1767 6061void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6062{
70b97a7f 6063 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6064 unsigned long flags;
6065
05fa785c 6066 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 6067
dd41f596 6068 __sched_fork(idle);
06b83b5f 6069 idle->state = TASK_RUNNING;
dd41f596
IM
6070 idle->se.exec_start = sched_clock();
6071
1e1b6c51 6072 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
6073 /*
6074 * We're having a chicken and egg problem, even though we are
6075 * holding rq->lock, the cpu isn't yet set to this cpu so the
6076 * lockdep check in task_group() will fail.
6077 *
6078 * Similar case to sched_fork(). / Alternatively we could
6079 * use task_rq_lock() here and obtain the other rq->lock.
6080 *
6081 * Silence PROVE_RCU
6082 */
6083 rcu_read_lock();
dd41f596 6084 __set_task_cpu(idle, cpu);
6506cf6c 6085 rcu_read_unlock();
1da177e4 6086
1da177e4 6087 rq->curr = rq->idle = idle;
3ca7a440
PZ
6088#if defined(CONFIG_SMP)
6089 idle->on_cpu = 1;
4866cde0 6090#endif
05fa785c 6091 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
6092
6093 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 6094 task_thread_info(idle)->preempt_count = 0;
625f2a37 6095
dd41f596
IM
6096 /*
6097 * The idle tasks have their own, simple scheduling class:
6098 */
6099 idle->sched_class = &idle_sched_class;
868baf07 6100 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
6101}
6102
6103/*
6104 * In a system that switches off the HZ timer nohz_cpu_mask
6105 * indicates which cpus entered this state. This is used
6106 * in the rcu update to wait only for active cpus. For system
6107 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6108 * always be CPU_BITS_NONE.
1da177e4 6109 */
6a7b3dc3 6110cpumask_var_t nohz_cpu_mask;
1da177e4 6111
19978ca6
IM
6112/*
6113 * Increase the granularity value when there are more CPUs,
6114 * because with more CPUs the 'effective latency' as visible
6115 * to users decreases. But the relationship is not linear,
6116 * so pick a second-best guess by going with the log2 of the
6117 * number of CPUs.
6118 *
6119 * This idea comes from the SD scheduler of Con Kolivas:
6120 */
acb4a848 6121static int get_update_sysctl_factor(void)
19978ca6 6122{
4ca3ef71 6123 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
6124 unsigned int factor;
6125
6126 switch (sysctl_sched_tunable_scaling) {
6127 case SCHED_TUNABLESCALING_NONE:
6128 factor = 1;
6129 break;
6130 case SCHED_TUNABLESCALING_LINEAR:
6131 factor = cpus;
6132 break;
6133 case SCHED_TUNABLESCALING_LOG:
6134 default:
6135 factor = 1 + ilog2(cpus);
6136 break;
6137 }
19978ca6 6138
acb4a848
CE
6139 return factor;
6140}
19978ca6 6141
acb4a848
CE
6142static void update_sysctl(void)
6143{
6144 unsigned int factor = get_update_sysctl_factor();
19978ca6 6145
0bcdcf28
CE
6146#define SET_SYSCTL(name) \
6147 (sysctl_##name = (factor) * normalized_sysctl_##name)
6148 SET_SYSCTL(sched_min_granularity);
6149 SET_SYSCTL(sched_latency);
6150 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
6151#undef SET_SYSCTL
6152}
55cd5340 6153
0bcdcf28
CE
6154static inline void sched_init_granularity(void)
6155{
6156 update_sysctl();
19978ca6
IM
6157}
6158
1da177e4 6159#ifdef CONFIG_SMP
1e1b6c51
KM
6160void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6161{
6162 if (p->sched_class && p->sched_class->set_cpus_allowed)
6163 p->sched_class->set_cpus_allowed(p, new_mask);
6164 else {
6165 cpumask_copy(&p->cpus_allowed, new_mask);
6166 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6167 }
6168}
6169
1da177e4
LT
6170/*
6171 * This is how migration works:
6172 *
969c7921
TH
6173 * 1) we invoke migration_cpu_stop() on the target CPU using
6174 * stop_one_cpu().
6175 * 2) stopper starts to run (implicitly forcing the migrated thread
6176 * off the CPU)
6177 * 3) it checks whether the migrated task is still in the wrong runqueue.
6178 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 6179 * it and puts it into the right queue.
969c7921
TH
6180 * 5) stopper completes and stop_one_cpu() returns and the migration
6181 * is done.
1da177e4
LT
6182 */
6183
6184/*
6185 * Change a given task's CPU affinity. Migrate the thread to a
6186 * proper CPU and schedule it away if the CPU it's executing on
6187 * is removed from the allowed bitmask.
6188 *
6189 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6190 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6191 * call is not atomic; no spinlocks may be held.
6192 */
96f874e2 6193int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
6194{
6195 unsigned long flags;
70b97a7f 6196 struct rq *rq;
969c7921 6197 unsigned int dest_cpu;
48f24c4d 6198 int ret = 0;
1da177e4
LT
6199
6200 rq = task_rq_lock(p, &flags);
e2912009 6201
db44fc01
YZ
6202 if (cpumask_equal(&p->cpus_allowed, new_mask))
6203 goto out;
6204
6ad4c188 6205 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
6206 ret = -EINVAL;
6207 goto out;
6208 }
6209
db44fc01 6210 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
6211 ret = -EINVAL;
6212 goto out;
6213 }
6214
1e1b6c51 6215 do_set_cpus_allowed(p, new_mask);
73fe6aae 6216
1da177e4 6217 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6218 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6219 goto out;
6220
969c7921 6221 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6222 if (p->on_rq) {
969c7921 6223 struct migration_arg arg = { p, dest_cpu };
1da177e4 6224 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6225 task_rq_unlock(rq, p, &flags);
969c7921 6226 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6227 tlb_migrate_finish(p->mm);
6228 return 0;
6229 }
6230out:
0122ec5b 6231 task_rq_unlock(rq, p, &flags);
48f24c4d 6232
1da177e4
LT
6233 return ret;
6234}
cd8ba7cd 6235EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6236
6237/*
41a2d6cf 6238 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6239 * this because either it can't run here any more (set_cpus_allowed()
6240 * away from this CPU, or CPU going down), or because we're
6241 * attempting to rebalance this task on exec (sched_exec).
6242 *
6243 * So we race with normal scheduler movements, but that's OK, as long
6244 * as the task is no longer on this CPU.
efc30814
KK
6245 *
6246 * Returns non-zero if task was successfully migrated.
1da177e4 6247 */
efc30814 6248static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6249{
70b97a7f 6250 struct rq *rq_dest, *rq_src;
e2912009 6251 int ret = 0;
1da177e4 6252
e761b772 6253 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6254 return ret;
1da177e4
LT
6255
6256 rq_src = cpu_rq(src_cpu);
6257 rq_dest = cpu_rq(dest_cpu);
6258
0122ec5b 6259 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6260 double_rq_lock(rq_src, rq_dest);
6261 /* Already moved. */
6262 if (task_cpu(p) != src_cpu)
b1e38734 6263 goto done;
1da177e4 6264 /* Affinity changed (again). */
96f874e2 6265 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6266 goto fail;
1da177e4 6267
e2912009
PZ
6268 /*
6269 * If we're not on a rq, the next wake-up will ensure we're
6270 * placed properly.
6271 */
fd2f4419 6272 if (p->on_rq) {
2e1cb74a 6273 deactivate_task(rq_src, p, 0);
e2912009 6274 set_task_cpu(p, dest_cpu);
dd41f596 6275 activate_task(rq_dest, p, 0);
15afe09b 6276 check_preempt_curr(rq_dest, p, 0);
1da177e4 6277 }
b1e38734 6278done:
efc30814 6279 ret = 1;
b1e38734 6280fail:
1da177e4 6281 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6282 raw_spin_unlock(&p->pi_lock);
efc30814 6283 return ret;
1da177e4
LT
6284}
6285
6286/*
969c7921
TH
6287 * migration_cpu_stop - this will be executed by a highprio stopper thread
6288 * and performs thread migration by bumping thread off CPU then
6289 * 'pushing' onto another runqueue.
1da177e4 6290 */
969c7921 6291static int migration_cpu_stop(void *data)
1da177e4 6292{
969c7921 6293 struct migration_arg *arg = data;
f7b4cddc 6294
969c7921
TH
6295 /*
6296 * The original target cpu might have gone down and we might
6297 * be on another cpu but it doesn't matter.
6298 */
f7b4cddc 6299 local_irq_disable();
969c7921 6300 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6301 local_irq_enable();
1da177e4 6302 return 0;
f7b4cddc
ON
6303}
6304
1da177e4 6305#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6306
054b9108 6307/*
48c5ccae
PZ
6308 * Ensures that the idle task is using init_mm right before its cpu goes
6309 * offline.
054b9108 6310 */
48c5ccae 6311void idle_task_exit(void)
1da177e4 6312{
48c5ccae 6313 struct mm_struct *mm = current->active_mm;
e76bd8d9 6314
48c5ccae 6315 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6316
48c5ccae
PZ
6317 if (mm != &init_mm)
6318 switch_mm(mm, &init_mm, current);
6319 mmdrop(mm);
1da177e4
LT
6320}
6321
6322/*
6323 * While a dead CPU has no uninterruptible tasks queued at this point,
6324 * it might still have a nonzero ->nr_uninterruptible counter, because
6325 * for performance reasons the counter is not stricly tracking tasks to
6326 * their home CPUs. So we just add the counter to another CPU's counter,
6327 * to keep the global sum constant after CPU-down:
6328 */
70b97a7f 6329static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6330{
6ad4c188 6331 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6332
1da177e4
LT
6333 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6334 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6335}
6336
dd41f596 6337/*
48c5ccae 6338 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6339 */
48c5ccae 6340static void calc_global_load_remove(struct rq *rq)
1da177e4 6341{
48c5ccae
PZ
6342 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6343 rq->calc_load_active = 0;
1da177e4
LT
6344}
6345
8cb120d3
PT
6346#ifdef CONFIG_CFS_BANDWIDTH
6347static void unthrottle_offline_cfs_rqs(struct rq *rq)
6348{
6349 struct cfs_rq *cfs_rq;
6350
6351 for_each_leaf_cfs_rq(rq, cfs_rq) {
6352 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6353
6354 if (!cfs_rq->runtime_enabled)
6355 continue;
6356
6357 /*
6358 * clock_task is not advancing so we just need to make sure
6359 * there's some valid quota amount
6360 */
6361 cfs_rq->runtime_remaining = cfs_b->quota;
6362 if (cfs_rq_throttled(cfs_rq))
6363 unthrottle_cfs_rq(cfs_rq);
6364 }
6365}
6366#else
6367static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6368#endif
6369
48f24c4d 6370/*
48c5ccae
PZ
6371 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6372 * try_to_wake_up()->select_task_rq().
6373 *
6374 * Called with rq->lock held even though we'er in stop_machine() and
6375 * there's no concurrency possible, we hold the required locks anyway
6376 * because of lock validation efforts.
1da177e4 6377 */
48c5ccae 6378static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6379{
70b97a7f 6380 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6381 struct task_struct *next, *stop = rq->stop;
6382 int dest_cpu;
1da177e4
LT
6383
6384 /*
48c5ccae
PZ
6385 * Fudge the rq selection such that the below task selection loop
6386 * doesn't get stuck on the currently eligible stop task.
6387 *
6388 * We're currently inside stop_machine() and the rq is either stuck
6389 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6390 * either way we should never end up calling schedule() until we're
6391 * done here.
1da177e4 6392 */
48c5ccae 6393 rq->stop = NULL;
48f24c4d 6394
8cb120d3
PT
6395 /* Ensure any throttled groups are reachable by pick_next_task */
6396 unthrottle_offline_cfs_rqs(rq);
6397
dd41f596 6398 for ( ; ; ) {
48c5ccae
PZ
6399 /*
6400 * There's this thread running, bail when that's the only
6401 * remaining thread.
6402 */
6403 if (rq->nr_running == 1)
dd41f596 6404 break;
48c5ccae 6405
b67802ea 6406 next = pick_next_task(rq);
48c5ccae 6407 BUG_ON(!next);
79c53799 6408 next->sched_class->put_prev_task(rq, next);
e692ab53 6409
48c5ccae
PZ
6410 /* Find suitable destination for @next, with force if needed. */
6411 dest_cpu = select_fallback_rq(dead_cpu, next);
6412 raw_spin_unlock(&rq->lock);
6413
6414 __migrate_task(next, dead_cpu, dest_cpu);
6415
6416 raw_spin_lock(&rq->lock);
1da177e4 6417 }
dce48a84 6418
48c5ccae 6419 rq->stop = stop;
dce48a84 6420}
48c5ccae 6421
1da177e4
LT
6422#endif /* CONFIG_HOTPLUG_CPU */
6423
e692ab53
NP
6424#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6425
6426static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6427 {
6428 .procname = "sched_domain",
c57baf1e 6429 .mode = 0555,
e0361851 6430 },
56992309 6431 {}
e692ab53
NP
6432};
6433
6434static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6435 {
6436 .procname = "kernel",
c57baf1e 6437 .mode = 0555,
e0361851
AD
6438 .child = sd_ctl_dir,
6439 },
56992309 6440 {}
e692ab53
NP
6441};
6442
6443static struct ctl_table *sd_alloc_ctl_entry(int n)
6444{
6445 struct ctl_table *entry =
5cf9f062 6446 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6447
e692ab53
NP
6448 return entry;
6449}
6450
6382bc90
MM
6451static void sd_free_ctl_entry(struct ctl_table **tablep)
6452{
cd790076 6453 struct ctl_table *entry;
6382bc90 6454
cd790076
MM
6455 /*
6456 * In the intermediate directories, both the child directory and
6457 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6458 * will always be set. In the lowest directory the names are
cd790076
MM
6459 * static strings and all have proc handlers.
6460 */
6461 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6462 if (entry->child)
6463 sd_free_ctl_entry(&entry->child);
cd790076
MM
6464 if (entry->proc_handler == NULL)
6465 kfree(entry->procname);
6466 }
6382bc90
MM
6467
6468 kfree(*tablep);
6469 *tablep = NULL;
6470}
6471
e692ab53 6472static void
e0361851 6473set_table_entry(struct ctl_table *entry,
e692ab53
NP
6474 const char *procname, void *data, int maxlen,
6475 mode_t mode, proc_handler *proc_handler)
6476{
e692ab53
NP
6477 entry->procname = procname;
6478 entry->data = data;
6479 entry->maxlen = maxlen;
6480 entry->mode = mode;
6481 entry->proc_handler = proc_handler;
6482}
6483
6484static struct ctl_table *
6485sd_alloc_ctl_domain_table(struct sched_domain *sd)
6486{
a5d8c348 6487 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6488
ad1cdc1d
MM
6489 if (table == NULL)
6490 return NULL;
6491
e0361851 6492 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6493 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6494 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6495 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6496 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6497 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6498 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6499 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6500 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6501 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6502 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6503 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6504 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6505 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6506 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6507 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6508 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6509 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6510 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6511 &sd->cache_nice_tries,
6512 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6513 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6514 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6515 set_table_entry(&table[11], "name", sd->name,
6516 CORENAME_MAX_SIZE, 0444, proc_dostring);
6517 /* &table[12] is terminator */
e692ab53
NP
6518
6519 return table;
6520}
6521
9a4e7159 6522static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6523{
6524 struct ctl_table *entry, *table;
6525 struct sched_domain *sd;
6526 int domain_num = 0, i;
6527 char buf[32];
6528
6529 for_each_domain(cpu, sd)
6530 domain_num++;
6531 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6532 if (table == NULL)
6533 return NULL;
e692ab53
NP
6534
6535 i = 0;
6536 for_each_domain(cpu, sd) {
6537 snprintf(buf, 32, "domain%d", i);
e692ab53 6538 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6539 entry->mode = 0555;
e692ab53
NP
6540 entry->child = sd_alloc_ctl_domain_table(sd);
6541 entry++;
6542 i++;
6543 }
6544 return table;
6545}
6546
6547static struct ctl_table_header *sd_sysctl_header;
6382bc90 6548static void register_sched_domain_sysctl(void)
e692ab53 6549{
6ad4c188 6550 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6551 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6552 char buf[32];
6553
7378547f
MM
6554 WARN_ON(sd_ctl_dir[0].child);
6555 sd_ctl_dir[0].child = entry;
6556
ad1cdc1d
MM
6557 if (entry == NULL)
6558 return;
6559
6ad4c188 6560 for_each_possible_cpu(i) {
e692ab53 6561 snprintf(buf, 32, "cpu%d", i);
e692ab53 6562 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6563 entry->mode = 0555;
e692ab53 6564 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6565 entry++;
e692ab53 6566 }
7378547f
MM
6567
6568 WARN_ON(sd_sysctl_header);
e692ab53
NP
6569 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6570}
6382bc90 6571
7378547f 6572/* may be called multiple times per register */
6382bc90
MM
6573static void unregister_sched_domain_sysctl(void)
6574{
7378547f
MM
6575 if (sd_sysctl_header)
6576 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6577 sd_sysctl_header = NULL;
7378547f
MM
6578 if (sd_ctl_dir[0].child)
6579 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6580}
e692ab53 6581#else
6382bc90
MM
6582static void register_sched_domain_sysctl(void)
6583{
6584}
6585static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6586{
6587}
6588#endif
6589
1f11eb6a
GH
6590static void set_rq_online(struct rq *rq)
6591{
6592 if (!rq->online) {
6593 const struct sched_class *class;
6594
c6c4927b 6595 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6596 rq->online = 1;
6597
6598 for_each_class(class) {
6599 if (class->rq_online)
6600 class->rq_online(rq);
6601 }
6602 }
6603}
6604
6605static void set_rq_offline(struct rq *rq)
6606{
6607 if (rq->online) {
6608 const struct sched_class *class;
6609
6610 for_each_class(class) {
6611 if (class->rq_offline)
6612 class->rq_offline(rq);
6613 }
6614
c6c4927b 6615 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6616 rq->online = 0;
6617 }
6618}
6619
1da177e4
LT
6620/*
6621 * migration_call - callback that gets triggered when a CPU is added.
6622 * Here we can start up the necessary migration thread for the new CPU.
6623 */
48f24c4d
IM
6624static int __cpuinit
6625migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6626{
48f24c4d 6627 int cpu = (long)hcpu;
1da177e4 6628 unsigned long flags;
969c7921 6629 struct rq *rq = cpu_rq(cpu);
1da177e4 6630
48c5ccae 6631 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6632
1da177e4 6633 case CPU_UP_PREPARE:
a468d389 6634 rq->calc_load_update = calc_load_update;
1da177e4 6635 break;
48f24c4d 6636
1da177e4 6637 case CPU_ONLINE:
1f94ef59 6638 /* Update our root-domain */
05fa785c 6639 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6640 if (rq->rd) {
c6c4927b 6641 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6642
6643 set_rq_online(rq);
1f94ef59 6644 }
05fa785c 6645 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6646 break;
48f24c4d 6647
1da177e4 6648#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6649 case CPU_DYING:
317f3941 6650 sched_ttwu_pending();
57d885fe 6651 /* Update our root-domain */
05fa785c 6652 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6653 if (rq->rd) {
c6c4927b 6654 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6655 set_rq_offline(rq);
57d885fe 6656 }
48c5ccae
PZ
6657 migrate_tasks(cpu);
6658 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6659 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6660
6661 migrate_nr_uninterruptible(rq);
6662 calc_global_load_remove(rq);
57d885fe 6663 break;
1da177e4
LT
6664#endif
6665 }
49c022e6
PZ
6666
6667 update_max_interval();
6668
1da177e4
LT
6669 return NOTIFY_OK;
6670}
6671
f38b0820
PM
6672/*
6673 * Register at high priority so that task migration (migrate_all_tasks)
6674 * happens before everything else. This has to be lower priority than
cdd6c482 6675 * the notifier in the perf_event subsystem, though.
1da177e4 6676 */
26c2143b 6677static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6678 .notifier_call = migration_call,
50a323b7 6679 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6680};
6681
3a101d05
TH
6682static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6683 unsigned long action, void *hcpu)
6684{
6685 switch (action & ~CPU_TASKS_FROZEN) {
6686 case CPU_ONLINE:
6687 case CPU_DOWN_FAILED:
6688 set_cpu_active((long)hcpu, true);
6689 return NOTIFY_OK;
6690 default:
6691 return NOTIFY_DONE;
6692 }
6693}
6694
6695static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6696 unsigned long action, void *hcpu)
6697{
6698 switch (action & ~CPU_TASKS_FROZEN) {
6699 case CPU_DOWN_PREPARE:
6700 set_cpu_active((long)hcpu, false);
6701 return NOTIFY_OK;
6702 default:
6703 return NOTIFY_DONE;
6704 }
6705}
6706
7babe8db 6707static int __init migration_init(void)
1da177e4
LT
6708{
6709 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6710 int err;
48f24c4d 6711
3a101d05 6712 /* Initialize migration for the boot CPU */
07dccf33
AM
6713 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6714 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6715 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6716 register_cpu_notifier(&migration_notifier);
7babe8db 6717
3a101d05
TH
6718 /* Register cpu active notifiers */
6719 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6720 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6721
a004cd42 6722 return 0;
1da177e4 6723}
7babe8db 6724early_initcall(migration_init);
1da177e4
LT
6725#endif
6726
6727#ifdef CONFIG_SMP
476f3534 6728
4cb98839
PZ
6729static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6730
3e9830dc 6731#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6732
f6630114
MT
6733static __read_mostly int sched_domain_debug_enabled;
6734
6735static int __init sched_domain_debug_setup(char *str)
6736{
6737 sched_domain_debug_enabled = 1;
6738
6739 return 0;
6740}
6741early_param("sched_debug", sched_domain_debug_setup);
6742
7c16ec58 6743static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6744 struct cpumask *groupmask)
1da177e4 6745{
4dcf6aff 6746 struct sched_group *group = sd->groups;
434d53b0 6747 char str[256];
1da177e4 6748
968ea6d8 6749 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6750 cpumask_clear(groupmask);
4dcf6aff
IM
6751
6752 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6753
6754 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6755 printk("does not load-balance\n");
4dcf6aff 6756 if (sd->parent)
3df0fc5b
PZ
6757 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6758 " has parent");
4dcf6aff 6759 return -1;
41c7ce9a
NP
6760 }
6761
3df0fc5b 6762 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6763
758b2cdc 6764 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6765 printk(KERN_ERR "ERROR: domain->span does not contain "
6766 "CPU%d\n", cpu);
4dcf6aff 6767 }
758b2cdc 6768 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6769 printk(KERN_ERR "ERROR: domain->groups does not contain"
6770 " CPU%d\n", cpu);
4dcf6aff 6771 }
1da177e4 6772
4dcf6aff 6773 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6774 do {
4dcf6aff 6775 if (!group) {
3df0fc5b
PZ
6776 printk("\n");
6777 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6778 break;
6779 }
6780
9c3f75cb 6781 if (!group->sgp->power) {
3df0fc5b
PZ
6782 printk(KERN_CONT "\n");
6783 printk(KERN_ERR "ERROR: domain->cpu_power not "
6784 "set\n");
4dcf6aff
IM
6785 break;
6786 }
1da177e4 6787
758b2cdc 6788 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6789 printk(KERN_CONT "\n");
6790 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6791 break;
6792 }
1da177e4 6793
758b2cdc 6794 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6795 printk(KERN_CONT "\n");
6796 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6797 break;
6798 }
1da177e4 6799
758b2cdc 6800 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6801
968ea6d8 6802 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6803
3df0fc5b 6804 printk(KERN_CONT " %s", str);
9c3f75cb 6805 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 6806 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 6807 group->sgp->power);
381512cf 6808 }
1da177e4 6809
4dcf6aff
IM
6810 group = group->next;
6811 } while (group != sd->groups);
3df0fc5b 6812 printk(KERN_CONT "\n");
1da177e4 6813
758b2cdc 6814 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6815 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6816
758b2cdc
RR
6817 if (sd->parent &&
6818 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6819 printk(KERN_ERR "ERROR: parent span is not a superset "
6820 "of domain->span\n");
4dcf6aff
IM
6821 return 0;
6822}
1da177e4 6823
4dcf6aff
IM
6824static void sched_domain_debug(struct sched_domain *sd, int cpu)
6825{
6826 int level = 0;
1da177e4 6827
f6630114
MT
6828 if (!sched_domain_debug_enabled)
6829 return;
6830
4dcf6aff
IM
6831 if (!sd) {
6832 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6833 return;
6834 }
1da177e4 6835
4dcf6aff
IM
6836 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6837
6838 for (;;) {
4cb98839 6839 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6840 break;
1da177e4
LT
6841 level++;
6842 sd = sd->parent;
33859f7f 6843 if (!sd)
4dcf6aff
IM
6844 break;
6845 }
1da177e4 6846}
6d6bc0ad 6847#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6848# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6849#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6850
1a20ff27 6851static int sd_degenerate(struct sched_domain *sd)
245af2c7 6852{
758b2cdc 6853 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6854 return 1;
6855
6856 /* Following flags need at least 2 groups */
6857 if (sd->flags & (SD_LOAD_BALANCE |
6858 SD_BALANCE_NEWIDLE |
6859 SD_BALANCE_FORK |
89c4710e
SS
6860 SD_BALANCE_EXEC |
6861 SD_SHARE_CPUPOWER |
6862 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6863 if (sd->groups != sd->groups->next)
6864 return 0;
6865 }
6866
6867 /* Following flags don't use groups */
c88d5910 6868 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6869 return 0;
6870
6871 return 1;
6872}
6873
48f24c4d
IM
6874static int
6875sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6876{
6877 unsigned long cflags = sd->flags, pflags = parent->flags;
6878
6879 if (sd_degenerate(parent))
6880 return 1;
6881
758b2cdc 6882 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6883 return 0;
6884
245af2c7
SS
6885 /* Flags needing groups don't count if only 1 group in parent */
6886 if (parent->groups == parent->groups->next) {
6887 pflags &= ~(SD_LOAD_BALANCE |
6888 SD_BALANCE_NEWIDLE |
6889 SD_BALANCE_FORK |
89c4710e
SS
6890 SD_BALANCE_EXEC |
6891 SD_SHARE_CPUPOWER |
6892 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6893 if (nr_node_ids == 1)
6894 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6895 }
6896 if (~cflags & pflags)
6897 return 0;
6898
6899 return 1;
6900}
6901
dce840a0 6902static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6903{
dce840a0 6904 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6905
68e74568 6906 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6907 free_cpumask_var(rd->rto_mask);
6908 free_cpumask_var(rd->online);
6909 free_cpumask_var(rd->span);
6910 kfree(rd);
6911}
6912
57d885fe
GH
6913static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6914{
a0490fa3 6915 struct root_domain *old_rd = NULL;
57d885fe 6916 unsigned long flags;
57d885fe 6917
05fa785c 6918 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6919
6920 if (rq->rd) {
a0490fa3 6921 old_rd = rq->rd;
57d885fe 6922
c6c4927b 6923 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6924 set_rq_offline(rq);
57d885fe 6925
c6c4927b 6926 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6927
a0490fa3
IM
6928 /*
6929 * If we dont want to free the old_rt yet then
6930 * set old_rd to NULL to skip the freeing later
6931 * in this function:
6932 */
6933 if (!atomic_dec_and_test(&old_rd->refcount))
6934 old_rd = NULL;
57d885fe
GH
6935 }
6936
6937 atomic_inc(&rd->refcount);
6938 rq->rd = rd;
6939
c6c4927b 6940 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6941 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6942 set_rq_online(rq);
57d885fe 6943
05fa785c 6944 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6945
6946 if (old_rd)
dce840a0 6947 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6948}
6949
68c38fc3 6950static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6951{
6952 memset(rd, 0, sizeof(*rd));
6953
68c38fc3 6954 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6955 goto out;
68c38fc3 6956 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6957 goto free_span;
68c38fc3 6958 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6959 goto free_online;
6e0534f2 6960
68c38fc3 6961 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6962 goto free_rto_mask;
c6c4927b 6963 return 0;
6e0534f2 6964
68e74568
RR
6965free_rto_mask:
6966 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6967free_online:
6968 free_cpumask_var(rd->online);
6969free_span:
6970 free_cpumask_var(rd->span);
0c910d28 6971out:
c6c4927b 6972 return -ENOMEM;
57d885fe
GH
6973}
6974
6975static void init_defrootdomain(void)
6976{
68c38fc3 6977 init_rootdomain(&def_root_domain);
c6c4927b 6978
57d885fe
GH
6979 atomic_set(&def_root_domain.refcount, 1);
6980}
6981
dc938520 6982static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6983{
6984 struct root_domain *rd;
6985
6986 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6987 if (!rd)
6988 return NULL;
6989
68c38fc3 6990 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6991 kfree(rd);
6992 return NULL;
6993 }
57d885fe
GH
6994
6995 return rd;
6996}
6997
e3589f6c
PZ
6998static void free_sched_groups(struct sched_group *sg, int free_sgp)
6999{
7000 struct sched_group *tmp, *first;
7001
7002 if (!sg)
7003 return;
7004
7005 first = sg;
7006 do {
7007 tmp = sg->next;
7008
7009 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
7010 kfree(sg->sgp);
7011
7012 kfree(sg);
7013 sg = tmp;
7014 } while (sg != first);
7015}
7016
dce840a0
PZ
7017static void free_sched_domain(struct rcu_head *rcu)
7018{
7019 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
7020
7021 /*
7022 * If its an overlapping domain it has private groups, iterate and
7023 * nuke them all.
7024 */
7025 if (sd->flags & SD_OVERLAP) {
7026 free_sched_groups(sd->groups, 1);
7027 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 7028 kfree(sd->groups->sgp);
dce840a0 7029 kfree(sd->groups);
9c3f75cb 7030 }
dce840a0
PZ
7031 kfree(sd);
7032}
7033
7034static void destroy_sched_domain(struct sched_domain *sd, int cpu)
7035{
7036 call_rcu(&sd->rcu, free_sched_domain);
7037}
7038
7039static void destroy_sched_domains(struct sched_domain *sd, int cpu)
7040{
7041 for (; sd; sd = sd->parent)
7042 destroy_sched_domain(sd, cpu);
7043}
7044
1da177e4 7045/*
0eab9146 7046 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7047 * hold the hotplug lock.
7048 */
0eab9146
IM
7049static void
7050cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7051{
70b97a7f 7052 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7053 struct sched_domain *tmp;
7054
7055 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7056 for (tmp = sd; tmp; ) {
245af2c7
SS
7057 struct sched_domain *parent = tmp->parent;
7058 if (!parent)
7059 break;
f29c9b1c 7060
1a848870 7061 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7062 tmp->parent = parent->parent;
1a848870
SS
7063 if (parent->parent)
7064 parent->parent->child = tmp;
dce840a0 7065 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
7066 } else
7067 tmp = tmp->parent;
245af2c7
SS
7068 }
7069
1a848870 7070 if (sd && sd_degenerate(sd)) {
dce840a0 7071 tmp = sd;
245af2c7 7072 sd = sd->parent;
dce840a0 7073 destroy_sched_domain(tmp, cpu);
1a848870
SS
7074 if (sd)
7075 sd->child = NULL;
7076 }
1da177e4 7077
4cb98839 7078 sched_domain_debug(sd, cpu);
1da177e4 7079
57d885fe 7080 rq_attach_root(rq, rd);
dce840a0 7081 tmp = rq->sd;
674311d5 7082 rcu_assign_pointer(rq->sd, sd);
dce840a0 7083 destroy_sched_domains(tmp, cpu);
1da177e4
LT
7084}
7085
7086/* cpus with isolated domains */
dcc30a35 7087static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7088
7089/* Setup the mask of cpus configured for isolated domains */
7090static int __init isolated_cpu_setup(char *str)
7091{
bdddd296 7092 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 7093 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7094 return 1;
7095}
7096
8927f494 7097__setup("isolcpus=", isolated_cpu_setup);
1da177e4 7098
9c1cfda2 7099#define SD_NODES_PER_DOMAIN 16
1da177e4 7100
9c1cfda2 7101#ifdef CONFIG_NUMA
198e2f18 7102
9c1cfda2
JH
7103/**
7104 * find_next_best_node - find the next node to include in a sched_domain
7105 * @node: node whose sched_domain we're building
7106 * @used_nodes: nodes already in the sched_domain
7107 *
41a2d6cf 7108 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7109 * finds the closest node not already in the @used_nodes map.
7110 *
7111 * Should use nodemask_t.
7112 */
c5f59f08 7113static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 7114{
7142d17e 7115 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
7116
7117 min_val = INT_MAX;
7118
076ac2af 7119 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7120 /* Start at @node */
076ac2af 7121 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7122
7123 if (!nr_cpus_node(n))
7124 continue;
7125
7126 /* Skip already used nodes */
c5f59f08 7127 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7128 continue;
7129
7130 /* Simple min distance search */
7131 val = node_distance(node, n);
7132
7133 if (val < min_val) {
7134 min_val = val;
7135 best_node = n;
7136 }
7137 }
7138
7142d17e
HD
7139 if (best_node != -1)
7140 node_set(best_node, *used_nodes);
9c1cfda2
JH
7141 return best_node;
7142}
7143
7144/**
7145 * sched_domain_node_span - get a cpumask for a node's sched_domain
7146 * @node: node whose cpumask we're constructing
73486722 7147 * @span: resulting cpumask
9c1cfda2 7148 *
41a2d6cf 7149 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7150 * should be one that prevents unnecessary balancing, but also spreads tasks
7151 * out optimally.
7152 */
96f874e2 7153static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7154{
c5f59f08 7155 nodemask_t used_nodes;
48f24c4d 7156 int i;
9c1cfda2 7157
6ca09dfc 7158 cpumask_clear(span);
c5f59f08 7159 nodes_clear(used_nodes);
9c1cfda2 7160
6ca09dfc 7161 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7162 node_set(node, used_nodes);
9c1cfda2
JH
7163
7164 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7165 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
7166 if (next_node < 0)
7167 break;
6ca09dfc 7168 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7169 }
9c1cfda2 7170}
d3081f52
PZ
7171
7172static const struct cpumask *cpu_node_mask(int cpu)
7173{
7174 lockdep_assert_held(&sched_domains_mutex);
7175
7176 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7177
7178 return sched_domains_tmpmask;
7179}
2c402dc3
PZ
7180
7181static const struct cpumask *cpu_allnodes_mask(int cpu)
7182{
7183 return cpu_possible_mask;
7184}
6d6bc0ad 7185#endif /* CONFIG_NUMA */
9c1cfda2 7186
d3081f52
PZ
7187static const struct cpumask *cpu_cpu_mask(int cpu)
7188{
7189 return cpumask_of_node(cpu_to_node(cpu));
7190}
7191
5c45bf27 7192int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7193
dce840a0
PZ
7194struct sd_data {
7195 struct sched_domain **__percpu sd;
7196 struct sched_group **__percpu sg;
9c3f75cb 7197 struct sched_group_power **__percpu sgp;
dce840a0
PZ
7198};
7199
49a02c51 7200struct s_data {
21d42ccf 7201 struct sched_domain ** __percpu sd;
49a02c51
AH
7202 struct root_domain *rd;
7203};
7204
2109b99e 7205enum s_alloc {
2109b99e 7206 sa_rootdomain,
21d42ccf 7207 sa_sd,
dce840a0 7208 sa_sd_storage,
2109b99e
AH
7209 sa_none,
7210};
7211
54ab4ff4
PZ
7212struct sched_domain_topology_level;
7213
7214typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
7215typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7216
e3589f6c
PZ
7217#define SDTL_OVERLAP 0x01
7218
eb7a74e6 7219struct sched_domain_topology_level {
2c402dc3
PZ
7220 sched_domain_init_f init;
7221 sched_domain_mask_f mask;
e3589f6c 7222 int flags;
54ab4ff4 7223 struct sd_data data;
eb7a74e6
PZ
7224};
7225
e3589f6c
PZ
7226static int
7227build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7228{
7229 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7230 const struct cpumask *span = sched_domain_span(sd);
7231 struct cpumask *covered = sched_domains_tmpmask;
7232 struct sd_data *sdd = sd->private;
7233 struct sched_domain *child;
7234 int i;
7235
7236 cpumask_clear(covered);
7237
7238 for_each_cpu(i, span) {
7239 struct cpumask *sg_span;
7240
7241 if (cpumask_test_cpu(i, covered))
7242 continue;
7243
7244 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7245 GFP_KERNEL, cpu_to_node(i));
7246
7247 if (!sg)
7248 goto fail;
7249
7250 sg_span = sched_group_cpus(sg);
7251
7252 child = *per_cpu_ptr(sdd->sd, i);
7253 if (child->child) {
7254 child = child->child;
7255 cpumask_copy(sg_span, sched_domain_span(child));
7256 } else
7257 cpumask_set_cpu(i, sg_span);
7258
7259 cpumask_or(covered, covered, sg_span);
7260
7261 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7262 atomic_inc(&sg->sgp->ref);
7263
7264 if (cpumask_test_cpu(cpu, sg_span))
7265 groups = sg;
7266
7267 if (!first)
7268 first = sg;
7269 if (last)
7270 last->next = sg;
7271 last = sg;
7272 last->next = first;
7273 }
7274 sd->groups = groups;
7275
7276 return 0;
7277
7278fail:
7279 free_sched_groups(first, 0);
7280
7281 return -ENOMEM;
7282}
7283
dce840a0 7284static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 7285{
dce840a0
PZ
7286 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7287 struct sched_domain *child = sd->child;
1da177e4 7288
dce840a0
PZ
7289 if (child)
7290 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 7291
9c3f75cb 7292 if (sg) {
dce840a0 7293 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 7294 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 7295 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 7296 }
dce840a0
PZ
7297
7298 return cpu;
1e9f28fa 7299}
1e9f28fa 7300
01a08546 7301/*
dce840a0
PZ
7302 * build_sched_groups will build a circular linked list of the groups
7303 * covered by the given span, and will set each group's ->cpumask correctly,
7304 * and ->cpu_power to 0.
e3589f6c
PZ
7305 *
7306 * Assumes the sched_domain tree is fully constructed
01a08546 7307 */
e3589f6c
PZ
7308static int
7309build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 7310{
dce840a0
PZ
7311 struct sched_group *first = NULL, *last = NULL;
7312 struct sd_data *sdd = sd->private;
7313 const struct cpumask *span = sched_domain_span(sd);
f96225fd 7314 struct cpumask *covered;
dce840a0 7315 int i;
9c1cfda2 7316
e3589f6c
PZ
7317 get_group(cpu, sdd, &sd->groups);
7318 atomic_inc(&sd->groups->ref);
7319
7320 if (cpu != cpumask_first(sched_domain_span(sd)))
7321 return 0;
7322
f96225fd
PZ
7323 lockdep_assert_held(&sched_domains_mutex);
7324 covered = sched_domains_tmpmask;
7325
dce840a0 7326 cpumask_clear(covered);
6711cab4 7327
dce840a0
PZ
7328 for_each_cpu(i, span) {
7329 struct sched_group *sg;
7330 int group = get_group(i, sdd, &sg);
7331 int j;
6711cab4 7332
dce840a0
PZ
7333 if (cpumask_test_cpu(i, covered))
7334 continue;
6711cab4 7335
dce840a0 7336 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 7337 sg->sgp->power = 0;
0601a88d 7338
dce840a0
PZ
7339 for_each_cpu(j, span) {
7340 if (get_group(j, sdd, NULL) != group)
7341 continue;
0601a88d 7342
dce840a0
PZ
7343 cpumask_set_cpu(j, covered);
7344 cpumask_set_cpu(j, sched_group_cpus(sg));
7345 }
0601a88d 7346
dce840a0
PZ
7347 if (!first)
7348 first = sg;
7349 if (last)
7350 last->next = sg;
7351 last = sg;
7352 }
7353 last->next = first;
e3589f6c
PZ
7354
7355 return 0;
0601a88d 7356}
51888ca2 7357
89c4710e
SS
7358/*
7359 * Initialize sched groups cpu_power.
7360 *
7361 * cpu_power indicates the capacity of sched group, which is used while
7362 * distributing the load between different sched groups in a sched domain.
7363 * Typically cpu_power for all the groups in a sched domain will be same unless
7364 * there are asymmetries in the topology. If there are asymmetries, group
7365 * having more cpu_power will pickup more load compared to the group having
7366 * less cpu_power.
89c4710e
SS
7367 */
7368static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7369{
e3589f6c 7370 struct sched_group *sg = sd->groups;
89c4710e 7371
e3589f6c
PZ
7372 WARN_ON(!sd || !sg);
7373
7374 do {
7375 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7376 sg = sg->next;
7377 } while (sg != sd->groups);
89c4710e 7378
e3589f6c
PZ
7379 if (cpu != group_first_cpu(sg))
7380 return;
aae6d3dd 7381
d274cb30 7382 update_group_power(sd, cpu);
89c4710e
SS
7383}
7384
7c16ec58
MT
7385/*
7386 * Initializers for schedule domains
7387 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7388 */
7389
a5d8c348
IM
7390#ifdef CONFIG_SCHED_DEBUG
7391# define SD_INIT_NAME(sd, type) sd->name = #type
7392#else
7393# define SD_INIT_NAME(sd, type) do { } while (0)
7394#endif
7395
54ab4ff4
PZ
7396#define SD_INIT_FUNC(type) \
7397static noinline struct sched_domain * \
7398sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7399{ \
7400 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7401 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7402 SD_INIT_NAME(sd, type); \
7403 sd->private = &tl->data; \
7404 return sd; \
7c16ec58
MT
7405}
7406
7407SD_INIT_FUNC(CPU)
7408#ifdef CONFIG_NUMA
7409 SD_INIT_FUNC(ALLNODES)
7410 SD_INIT_FUNC(NODE)
7411#endif
7412#ifdef CONFIG_SCHED_SMT
7413 SD_INIT_FUNC(SIBLING)
7414#endif
7415#ifdef CONFIG_SCHED_MC
7416 SD_INIT_FUNC(MC)
7417#endif
01a08546
HC
7418#ifdef CONFIG_SCHED_BOOK
7419 SD_INIT_FUNC(BOOK)
7420#endif
7c16ec58 7421
1d3504fc 7422static int default_relax_domain_level = -1;
60495e77 7423int sched_domain_level_max;
1d3504fc
HS
7424
7425static int __init setup_relax_domain_level(char *str)
7426{
30e0e178
LZ
7427 unsigned long val;
7428
7429 val = simple_strtoul(str, NULL, 0);
60495e77 7430 if (val < sched_domain_level_max)
30e0e178
LZ
7431 default_relax_domain_level = val;
7432
1d3504fc
HS
7433 return 1;
7434}
7435__setup("relax_domain_level=", setup_relax_domain_level);
7436
7437static void set_domain_attribute(struct sched_domain *sd,
7438 struct sched_domain_attr *attr)
7439{
7440 int request;
7441
7442 if (!attr || attr->relax_domain_level < 0) {
7443 if (default_relax_domain_level < 0)
7444 return;
7445 else
7446 request = default_relax_domain_level;
7447 } else
7448 request = attr->relax_domain_level;
7449 if (request < sd->level) {
7450 /* turn off idle balance on this domain */
c88d5910 7451 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7452 } else {
7453 /* turn on idle balance on this domain */
c88d5910 7454 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7455 }
7456}
7457
54ab4ff4
PZ
7458static void __sdt_free(const struct cpumask *cpu_map);
7459static int __sdt_alloc(const struct cpumask *cpu_map);
7460
2109b99e
AH
7461static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7462 const struct cpumask *cpu_map)
7463{
7464 switch (what) {
2109b99e 7465 case sa_rootdomain:
822ff793
PZ
7466 if (!atomic_read(&d->rd->refcount))
7467 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7468 case sa_sd:
7469 free_percpu(d->sd); /* fall through */
dce840a0 7470 case sa_sd_storage:
54ab4ff4 7471 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7472 case sa_none:
7473 break;
7474 }
7475}
3404c8d9 7476
2109b99e
AH
7477static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7478 const struct cpumask *cpu_map)
7479{
dce840a0
PZ
7480 memset(d, 0, sizeof(*d));
7481
54ab4ff4
PZ
7482 if (__sdt_alloc(cpu_map))
7483 return sa_sd_storage;
dce840a0
PZ
7484 d->sd = alloc_percpu(struct sched_domain *);
7485 if (!d->sd)
7486 return sa_sd_storage;
2109b99e 7487 d->rd = alloc_rootdomain();
dce840a0 7488 if (!d->rd)
21d42ccf 7489 return sa_sd;
2109b99e
AH
7490 return sa_rootdomain;
7491}
57d885fe 7492
dce840a0
PZ
7493/*
7494 * NULL the sd_data elements we've used to build the sched_domain and
7495 * sched_group structure so that the subsequent __free_domain_allocs()
7496 * will not free the data we're using.
7497 */
7498static void claim_allocations(int cpu, struct sched_domain *sd)
7499{
7500 struct sd_data *sdd = sd->private;
dce840a0
PZ
7501
7502 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7503 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7504
e3589f6c 7505 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 7506 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
7507
7508 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 7509 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
7510}
7511
2c402dc3
PZ
7512#ifdef CONFIG_SCHED_SMT
7513static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7514{
2c402dc3 7515 return topology_thread_cpumask(cpu);
3bd65a80 7516}
2c402dc3 7517#endif
7f4588f3 7518
d069b916
PZ
7519/*
7520 * Topology list, bottom-up.
7521 */
2c402dc3 7522static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7523#ifdef CONFIG_SCHED_SMT
7524 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7525#endif
1e9f28fa 7526#ifdef CONFIG_SCHED_MC
2c402dc3 7527 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7528#endif
d069b916
PZ
7529#ifdef CONFIG_SCHED_BOOK
7530 { sd_init_BOOK, cpu_book_mask, },
7531#endif
7532 { sd_init_CPU, cpu_cpu_mask, },
7533#ifdef CONFIG_NUMA
e3589f6c 7534 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 7535 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7536#endif
eb7a74e6
PZ
7537 { NULL, },
7538};
7539
7540static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7541
54ab4ff4
PZ
7542static int __sdt_alloc(const struct cpumask *cpu_map)
7543{
7544 struct sched_domain_topology_level *tl;
7545 int j;
7546
7547 for (tl = sched_domain_topology; tl->init; tl++) {
7548 struct sd_data *sdd = &tl->data;
7549
7550 sdd->sd = alloc_percpu(struct sched_domain *);
7551 if (!sdd->sd)
7552 return -ENOMEM;
7553
7554 sdd->sg = alloc_percpu(struct sched_group *);
7555 if (!sdd->sg)
7556 return -ENOMEM;
7557
9c3f75cb
PZ
7558 sdd->sgp = alloc_percpu(struct sched_group_power *);
7559 if (!sdd->sgp)
7560 return -ENOMEM;
7561
54ab4ff4
PZ
7562 for_each_cpu(j, cpu_map) {
7563 struct sched_domain *sd;
7564 struct sched_group *sg;
9c3f75cb 7565 struct sched_group_power *sgp;
54ab4ff4
PZ
7566
7567 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7568 GFP_KERNEL, cpu_to_node(j));
7569 if (!sd)
7570 return -ENOMEM;
7571
7572 *per_cpu_ptr(sdd->sd, j) = sd;
7573
7574 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7575 GFP_KERNEL, cpu_to_node(j));
7576 if (!sg)
7577 return -ENOMEM;
7578
7579 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
7580
7581 sgp = kzalloc_node(sizeof(struct sched_group_power),
7582 GFP_KERNEL, cpu_to_node(j));
7583 if (!sgp)
7584 return -ENOMEM;
7585
7586 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
7587 }
7588 }
7589
7590 return 0;
7591}
7592
7593static void __sdt_free(const struct cpumask *cpu_map)
7594{
7595 struct sched_domain_topology_level *tl;
7596 int j;
7597
7598 for (tl = sched_domain_topology; tl->init; tl++) {
7599 struct sd_data *sdd = &tl->data;
7600
7601 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
7602 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7603 if (sd && (sd->flags & SD_OVERLAP))
7604 free_sched_groups(sd->groups, 0);
feff8fa0 7605 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 7606 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 7607 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
7608 }
7609 free_percpu(sdd->sd);
7610 free_percpu(sdd->sg);
9c3f75cb 7611 free_percpu(sdd->sgp);
54ab4ff4
PZ
7612 }
7613}
7614
2c402dc3
PZ
7615struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7616 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7617 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7618 int cpu)
7619{
54ab4ff4 7620 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7621 if (!sd)
d069b916 7622 return child;
2c402dc3
PZ
7623
7624 set_domain_attribute(sd, attr);
7625 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7626 if (child) {
7627 sd->level = child->level + 1;
7628 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7629 child->parent = sd;
60495e77 7630 }
d069b916 7631 sd->child = child;
2c402dc3
PZ
7632
7633 return sd;
7634}
7635
2109b99e
AH
7636/*
7637 * Build sched domains for a given set of cpus and attach the sched domains
7638 * to the individual cpus
7639 */
dce840a0
PZ
7640static int build_sched_domains(const struct cpumask *cpu_map,
7641 struct sched_domain_attr *attr)
2109b99e
AH
7642{
7643 enum s_alloc alloc_state = sa_none;
dce840a0 7644 struct sched_domain *sd;
2109b99e 7645 struct s_data d;
822ff793 7646 int i, ret = -ENOMEM;
9c1cfda2 7647
2109b99e
AH
7648 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7649 if (alloc_state != sa_rootdomain)
7650 goto error;
9c1cfda2 7651
dce840a0 7652 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7653 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7654 struct sched_domain_topology_level *tl;
7655
3bd65a80 7656 sd = NULL;
e3589f6c 7657 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 7658 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
7659 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7660 sd->flags |= SD_OVERLAP;
d110235d
PZ
7661 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7662 break;
e3589f6c 7663 }
d274cb30 7664
d069b916
PZ
7665 while (sd->child)
7666 sd = sd->child;
7667
21d42ccf 7668 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7669 }
7670
7671 /* Build the groups for the domains */
7672 for_each_cpu(i, cpu_map) {
7673 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7674 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7675 if (sd->flags & SD_OVERLAP) {
7676 if (build_overlap_sched_groups(sd, i))
7677 goto error;
7678 } else {
7679 if (build_sched_groups(sd, i))
7680 goto error;
7681 }
1cf51902 7682 }
a06dadbe 7683 }
9c1cfda2 7684
1da177e4 7685 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7686 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7687 if (!cpumask_test_cpu(i, cpu_map))
7688 continue;
9c1cfda2 7689
dce840a0
PZ
7690 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7691 claim_allocations(i, sd);
cd4ea6ae 7692 init_sched_groups_power(i, sd);
dce840a0 7693 }
f712c0c7 7694 }
9c1cfda2 7695
1da177e4 7696 /* Attach the domains */
dce840a0 7697 rcu_read_lock();
abcd083a 7698 for_each_cpu(i, cpu_map) {
21d42ccf 7699 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7700 cpu_attach_domain(sd, d.rd, i);
1da177e4 7701 }
dce840a0 7702 rcu_read_unlock();
51888ca2 7703
822ff793 7704 ret = 0;
51888ca2 7705error:
2109b99e 7706 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7707 return ret;
1da177e4 7708}
029190c5 7709
acc3f5d7 7710static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7711static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7712static struct sched_domain_attr *dattr_cur;
7713 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7714
7715/*
7716 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7717 * cpumask) fails, then fallback to a single sched domain,
7718 * as determined by the single cpumask fallback_doms.
029190c5 7719 */
4212823f 7720static cpumask_var_t fallback_doms;
029190c5 7721
ee79d1bd
HC
7722/*
7723 * arch_update_cpu_topology lets virtualized architectures update the
7724 * cpu core maps. It is supposed to return 1 if the topology changed
7725 * or 0 if it stayed the same.
7726 */
7727int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7728{
ee79d1bd 7729 return 0;
22e52b07
HC
7730}
7731
acc3f5d7
RR
7732cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7733{
7734 int i;
7735 cpumask_var_t *doms;
7736
7737 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7738 if (!doms)
7739 return NULL;
7740 for (i = 0; i < ndoms; i++) {
7741 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7742 free_sched_domains(doms, i);
7743 return NULL;
7744 }
7745 }
7746 return doms;
7747}
7748
7749void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7750{
7751 unsigned int i;
7752 for (i = 0; i < ndoms; i++)
7753 free_cpumask_var(doms[i]);
7754 kfree(doms);
7755}
7756
1a20ff27 7757/*
41a2d6cf 7758 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7759 * For now this just excludes isolated cpus, but could be used to
7760 * exclude other special cases in the future.
1a20ff27 7761 */
c4a8849a 7762static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7763{
7378547f
MM
7764 int err;
7765
22e52b07 7766 arch_update_cpu_topology();
029190c5 7767 ndoms_cur = 1;
acc3f5d7 7768 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7769 if (!doms_cur)
acc3f5d7
RR
7770 doms_cur = &fallback_doms;
7771 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7772 dattr_cur = NULL;
dce840a0 7773 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7774 register_sched_domain_sysctl();
7378547f
MM
7775
7776 return err;
1a20ff27
DG
7777}
7778
1a20ff27
DG
7779/*
7780 * Detach sched domains from a group of cpus specified in cpu_map
7781 * These cpus will now be attached to the NULL domain
7782 */
96f874e2 7783static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7784{
7785 int i;
7786
dce840a0 7787 rcu_read_lock();
abcd083a 7788 for_each_cpu(i, cpu_map)
57d885fe 7789 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7790 rcu_read_unlock();
1a20ff27
DG
7791}
7792
1d3504fc
HS
7793/* handle null as "default" */
7794static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7795 struct sched_domain_attr *new, int idx_new)
7796{
7797 struct sched_domain_attr tmp;
7798
7799 /* fast path */
7800 if (!new && !cur)
7801 return 1;
7802
7803 tmp = SD_ATTR_INIT;
7804 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7805 new ? (new + idx_new) : &tmp,
7806 sizeof(struct sched_domain_attr));
7807}
7808
029190c5
PJ
7809/*
7810 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7811 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7812 * doms_new[] to the current sched domain partitioning, doms_cur[].
7813 * It destroys each deleted domain and builds each new domain.
7814 *
acc3f5d7 7815 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7816 * The masks don't intersect (don't overlap.) We should setup one
7817 * sched domain for each mask. CPUs not in any of the cpumasks will
7818 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7819 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7820 * it as it is.
7821 *
acc3f5d7
RR
7822 * The passed in 'doms_new' should be allocated using
7823 * alloc_sched_domains. This routine takes ownership of it and will
7824 * free_sched_domains it when done with it. If the caller failed the
7825 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7826 * and partition_sched_domains() will fallback to the single partition
7827 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7828 *
96f874e2 7829 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7830 * ndoms_new == 0 is a special case for destroying existing domains,
7831 * and it will not create the default domain.
dfb512ec 7832 *
029190c5
PJ
7833 * Call with hotplug lock held
7834 */
acc3f5d7 7835void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7836 struct sched_domain_attr *dattr_new)
029190c5 7837{
dfb512ec 7838 int i, j, n;
d65bd5ec 7839 int new_topology;
029190c5 7840
712555ee 7841 mutex_lock(&sched_domains_mutex);
a1835615 7842
7378547f
MM
7843 /* always unregister in case we don't destroy any domains */
7844 unregister_sched_domain_sysctl();
7845
d65bd5ec
HC
7846 /* Let architecture update cpu core mappings. */
7847 new_topology = arch_update_cpu_topology();
7848
dfb512ec 7849 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7850
7851 /* Destroy deleted domains */
7852 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7853 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7854 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7855 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7856 goto match1;
7857 }
7858 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7859 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7860match1:
7861 ;
7862 }
7863
e761b772
MK
7864 if (doms_new == NULL) {
7865 ndoms_cur = 0;
acc3f5d7 7866 doms_new = &fallback_doms;
6ad4c188 7867 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7868 WARN_ON_ONCE(dattr_new);
e761b772
MK
7869 }
7870
029190c5
PJ
7871 /* Build new domains */
7872 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7873 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7874 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7875 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7876 goto match2;
7877 }
7878 /* no match - add a new doms_new */
dce840a0 7879 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7880match2:
7881 ;
7882 }
7883
7884 /* Remember the new sched domains */
acc3f5d7
RR
7885 if (doms_cur != &fallback_doms)
7886 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7887 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7888 doms_cur = doms_new;
1d3504fc 7889 dattr_cur = dattr_new;
029190c5 7890 ndoms_cur = ndoms_new;
7378547f
MM
7891
7892 register_sched_domain_sysctl();
a1835615 7893
712555ee 7894 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7895}
7896
5c45bf27 7897#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7898static void reinit_sched_domains(void)
5c45bf27 7899{
95402b38 7900 get_online_cpus();
dfb512ec
MK
7901
7902 /* Destroy domains first to force the rebuild */
7903 partition_sched_domains(0, NULL, NULL);
7904
e761b772 7905 rebuild_sched_domains();
95402b38 7906 put_online_cpus();
5c45bf27
SS
7907}
7908
7909static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7910{
afb8a9b7 7911 unsigned int level = 0;
5c45bf27 7912
afb8a9b7
GS
7913 if (sscanf(buf, "%u", &level) != 1)
7914 return -EINVAL;
7915
7916 /*
7917 * level is always be positive so don't check for
7918 * level < POWERSAVINGS_BALANCE_NONE which is 0
7919 * What happens on 0 or 1 byte write,
7920 * need to check for count as well?
7921 */
7922
7923 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7924 return -EINVAL;
7925
7926 if (smt)
afb8a9b7 7927 sched_smt_power_savings = level;
5c45bf27 7928 else
afb8a9b7 7929 sched_mc_power_savings = level;
5c45bf27 7930
c4a8849a 7931 reinit_sched_domains();
5c45bf27 7932
c70f22d2 7933 return count;
5c45bf27
SS
7934}
7935
5c45bf27 7936#ifdef CONFIG_SCHED_MC
f718cd4a 7937static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7938 struct sysdev_class_attribute *attr,
f718cd4a 7939 char *page)
5c45bf27
SS
7940{
7941 return sprintf(page, "%u\n", sched_mc_power_savings);
7942}
f718cd4a 7943static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7944 struct sysdev_class_attribute *attr,
48f24c4d 7945 const char *buf, size_t count)
5c45bf27
SS
7946{
7947 return sched_power_savings_store(buf, count, 0);
7948}
f718cd4a
AK
7949static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7950 sched_mc_power_savings_show,
7951 sched_mc_power_savings_store);
5c45bf27
SS
7952#endif
7953
7954#ifdef CONFIG_SCHED_SMT
f718cd4a 7955static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7956 struct sysdev_class_attribute *attr,
f718cd4a 7957 char *page)
5c45bf27
SS
7958{
7959 return sprintf(page, "%u\n", sched_smt_power_savings);
7960}
f718cd4a 7961static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7962 struct sysdev_class_attribute *attr,
48f24c4d 7963 const char *buf, size_t count)
5c45bf27
SS
7964{
7965 return sched_power_savings_store(buf, count, 1);
7966}
f718cd4a
AK
7967static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7968 sched_smt_power_savings_show,
6707de00
AB
7969 sched_smt_power_savings_store);
7970#endif
7971
39aac648 7972int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7973{
7974 int err = 0;
7975
7976#ifdef CONFIG_SCHED_SMT
7977 if (smt_capable())
7978 err = sysfs_create_file(&cls->kset.kobj,
7979 &attr_sched_smt_power_savings.attr);
7980#endif
7981#ifdef CONFIG_SCHED_MC
7982 if (!err && mc_capable())
7983 err = sysfs_create_file(&cls->kset.kobj,
7984 &attr_sched_mc_power_savings.attr);
7985#endif
7986 return err;
7987}
6d6bc0ad 7988#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7989
1da177e4 7990/*
3a101d05
TH
7991 * Update cpusets according to cpu_active mask. If cpusets are
7992 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7993 * around partition_sched_domains().
1da177e4 7994 */
0b2e918a
TH
7995static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7996 void *hcpu)
e761b772 7997{
3a101d05 7998 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7999 case CPU_ONLINE:
6ad4c188 8000 case CPU_DOWN_FAILED:
3a101d05 8001 cpuset_update_active_cpus();
e761b772 8002 return NOTIFY_OK;
3a101d05
TH
8003 default:
8004 return NOTIFY_DONE;
8005 }
8006}
e761b772 8007
0b2e918a
TH
8008static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
8009 void *hcpu)
3a101d05
TH
8010{
8011 switch (action & ~CPU_TASKS_FROZEN) {
8012 case CPU_DOWN_PREPARE:
8013 cpuset_update_active_cpus();
8014 return NOTIFY_OK;
e761b772
MK
8015 default:
8016 return NOTIFY_DONE;
8017 }
8018}
e761b772
MK
8019
8020static int update_runtime(struct notifier_block *nfb,
8021 unsigned long action, void *hcpu)
1da177e4 8022{
7def2be1
PZ
8023 int cpu = (int)(long)hcpu;
8024
1da177e4 8025 switch (action) {
1da177e4 8026 case CPU_DOWN_PREPARE:
8bb78442 8027 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8028 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8029 return NOTIFY_OK;
8030
1da177e4 8031 case CPU_DOWN_FAILED:
8bb78442 8032 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8033 case CPU_ONLINE:
8bb78442 8034 case CPU_ONLINE_FROZEN:
7def2be1 8035 enable_runtime(cpu_rq(cpu));
e761b772
MK
8036 return NOTIFY_OK;
8037
1da177e4
LT
8038 default:
8039 return NOTIFY_DONE;
8040 }
1da177e4 8041}
1da177e4
LT
8042
8043void __init sched_init_smp(void)
8044{
dcc30a35
RR
8045 cpumask_var_t non_isolated_cpus;
8046
8047 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 8048 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 8049
95402b38 8050 get_online_cpus();
712555ee 8051 mutex_lock(&sched_domains_mutex);
c4a8849a 8052 init_sched_domains(cpu_active_mask);
dcc30a35
RR
8053 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8054 if (cpumask_empty(non_isolated_cpus))
8055 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8056 mutex_unlock(&sched_domains_mutex);
95402b38 8057 put_online_cpus();
e761b772 8058
3a101d05
TH
8059 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8060 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
8061
8062 /* RT runtime code needs to handle some hotplug events */
8063 hotcpu_notifier(update_runtime, 0);
8064
b328ca18 8065 init_hrtick();
5c1e1767
NP
8066
8067 /* Move init over to a non-isolated CPU */
dcc30a35 8068 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8069 BUG();
19978ca6 8070 sched_init_granularity();
dcc30a35 8071 free_cpumask_var(non_isolated_cpus);
4212823f 8072
0e3900e6 8073 init_sched_rt_class();
1da177e4
LT
8074}
8075#else
8076void __init sched_init_smp(void)
8077{
19978ca6 8078 sched_init_granularity();
1da177e4
LT
8079}
8080#endif /* CONFIG_SMP */
8081
cd1bb94b
AB
8082const_debug unsigned int sysctl_timer_migration = 1;
8083
1da177e4
LT
8084int in_sched_functions(unsigned long addr)
8085{
1da177e4
LT
8086 return in_lock_functions(addr) ||
8087 (addr >= (unsigned long)__sched_text_start
8088 && addr < (unsigned long)__sched_text_end);
8089}
8090
acb5a9ba 8091static void init_cfs_rq(struct cfs_rq *cfs_rq)
dd41f596
IM
8092{
8093 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8094 INIT_LIST_HEAD(&cfs_rq->tasks);
67e9fb2a 8095 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
c64be78f
PZ
8096#ifndef CONFIG_64BIT
8097 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8098#endif
dd41f596
IM
8099}
8100
fa85ae24
PZ
8101static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8102{
8103 struct rt_prio_array *array;
8104 int i;
8105
8106 array = &rt_rq->active;
8107 for (i = 0; i < MAX_RT_PRIO; i++) {
8108 INIT_LIST_HEAD(array->queue + i);
8109 __clear_bit(i, array->bitmap);
8110 }
8111 /* delimiter for bitsearch: */
8112 __set_bit(MAX_RT_PRIO, array->bitmap);
8113
acb5a9ba 8114#if defined CONFIG_SMP
e864c499
GH
8115 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8116 rt_rq->highest_prio.next = MAX_RT_PRIO;
fa85ae24 8117 rt_rq->rt_nr_migratory = 0;
fa85ae24 8118 rt_rq->overloaded = 0;
732375c6 8119 plist_head_init(&rt_rq->pushable_tasks);
fa85ae24
PZ
8120#endif
8121
8122 rt_rq->rt_time = 0;
8123 rt_rq->rt_throttled = 0;
ac086bc2 8124 rt_rq->rt_runtime = 0;
0986b11b 8125 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
fa85ae24
PZ
8126}
8127
6f505b16 8128#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8129static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8130 struct sched_entity *se, int cpu,
ec7dc8ac 8131 struct sched_entity *parent)
6f505b16 8132{
ec7dc8ac 8133 struct rq *rq = cpu_rq(cpu);
acb5a9ba 8134
6f505b16 8135 cfs_rq->tg = tg;
acb5a9ba
JS
8136 cfs_rq->rq = rq;
8137#ifdef CONFIG_SMP
8138 /* allow initial update_cfs_load() to truncate */
8139 cfs_rq->load_stamp = 1;
8140#endif
ab84d31e 8141 init_cfs_rq_runtime(cfs_rq);
6f505b16 8142
acb5a9ba 8143 tg->cfs_rq[cpu] = cfs_rq;
6f505b16 8144 tg->se[cpu] = se;
acb5a9ba 8145
07e06b01 8146 /* se could be NULL for root_task_group */
354d60c2
DG
8147 if (!se)
8148 return;
8149
ec7dc8ac
DG
8150 if (!parent)
8151 se->cfs_rq = &rq->cfs;
8152 else
8153 se->cfs_rq = parent->my_q;
8154
6f505b16 8155 se->my_q = cfs_rq;
9437178f 8156 update_load_set(&se->load, 0);
ec7dc8ac 8157 se->parent = parent;
6f505b16 8158}
052f1dc7 8159#endif
6f505b16 8160
052f1dc7 8161#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8162static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8163 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8164 struct sched_rt_entity *parent)
6f505b16 8165{
ec7dc8ac
DG
8166 struct rq *rq = cpu_rq(cpu);
8167
acb5a9ba
JS
8168 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8169 rt_rq->rt_nr_boosted = 0;
8170 rt_rq->rq = rq;
6f505b16 8171 rt_rq->tg = tg;
6f505b16 8172
acb5a9ba 8173 tg->rt_rq[cpu] = rt_rq;
6f505b16 8174 tg->rt_se[cpu] = rt_se;
acb5a9ba 8175
354d60c2
DG
8176 if (!rt_se)
8177 return;
8178
ec7dc8ac
DG
8179 if (!parent)
8180 rt_se->rt_rq = &rq->rt;
8181 else
8182 rt_se->rt_rq = parent->my_q;
8183
6f505b16 8184 rt_se->my_q = rt_rq;
ec7dc8ac 8185 rt_se->parent = parent;
6f505b16
PZ
8186 INIT_LIST_HEAD(&rt_se->run_list);
8187}
8188#endif
8189
1da177e4
LT
8190void __init sched_init(void)
8191{
dd41f596 8192 int i, j;
434d53b0
MT
8193 unsigned long alloc_size = 0, ptr;
8194
8195#ifdef CONFIG_FAIR_GROUP_SCHED
8196 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8197#endif
8198#ifdef CONFIG_RT_GROUP_SCHED
8199 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8200#endif
df7c8e84 8201#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8202 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8203#endif
434d53b0 8204 if (alloc_size) {
36b7b6d4 8205 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8206
8207#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8208 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8209 ptr += nr_cpu_ids * sizeof(void **);
8210
07e06b01 8211 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8212 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8213
6d6bc0ad 8214#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8215#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8216 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8217 ptr += nr_cpu_ids * sizeof(void **);
8218
07e06b01 8219 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8220 ptr += nr_cpu_ids * sizeof(void **);
8221
6d6bc0ad 8222#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8223#ifdef CONFIG_CPUMASK_OFFSTACK
8224 for_each_possible_cpu(i) {
8225 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8226 ptr += cpumask_size();
8227 }
8228#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8229 }
dd41f596 8230
57d885fe
GH
8231#ifdef CONFIG_SMP
8232 init_defrootdomain();
8233#endif
8234
d0b27fa7
PZ
8235 init_rt_bandwidth(&def_rt_bandwidth,
8236 global_rt_period(), global_rt_runtime());
8237
8238#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8239 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8240 global_rt_period(), global_rt_runtime());
6d6bc0ad 8241#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8242
7c941438 8243#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8244 list_add(&root_task_group.list, &task_groups);
8245 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8246 autogroup_init(&init_task);
7c941438 8247#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8248
0a945022 8249 for_each_possible_cpu(i) {
70b97a7f 8250 struct rq *rq;
1da177e4
LT
8251
8252 rq = cpu_rq(i);
05fa785c 8253 raw_spin_lock_init(&rq->lock);
7897986b 8254 rq->nr_running = 0;
dce48a84
TG
8255 rq->calc_load_active = 0;
8256 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8257 init_cfs_rq(&rq->cfs);
6f505b16 8258 init_rt_rq(&rq->rt, rq);
dd41f596 8259#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8260 root_task_group.shares = root_task_group_load;
6f505b16 8261 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8262 /*
07e06b01 8263 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8264 *
8265 * In case of task-groups formed thr' the cgroup filesystem, it
8266 * gets 100% of the cpu resources in the system. This overall
8267 * system cpu resource is divided among the tasks of
07e06b01 8268 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8269 * based on each entity's (task or task-group's) weight
8270 * (se->load.weight).
8271 *
07e06b01 8272 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8273 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8274 * then A0's share of the cpu resource is:
8275 *
0d905bca 8276 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8277 *
07e06b01
YZ
8278 * We achieve this by letting root_task_group's tasks sit
8279 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8280 */
ab84d31e 8281 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 8282 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8283#endif /* CONFIG_FAIR_GROUP_SCHED */
8284
8285 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8286#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8287 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8288 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8289#endif
1da177e4 8290
dd41f596
IM
8291 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8292 rq->cpu_load[j] = 0;
fdf3e95d
VP
8293
8294 rq->last_load_update_tick = jiffies;
8295
1da177e4 8296#ifdef CONFIG_SMP
41c7ce9a 8297 rq->sd = NULL;
57d885fe 8298 rq->rd = NULL;
1399fa78 8299 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 8300 rq->post_schedule = 0;
1da177e4 8301 rq->active_balance = 0;
dd41f596 8302 rq->next_balance = jiffies;
1da177e4 8303 rq->push_cpu = 0;
0a2966b4 8304 rq->cpu = i;
1f11eb6a 8305 rq->online = 0;
eae0c9df
MG
8306 rq->idle_stamp = 0;
8307 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8308 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8309#ifdef CONFIG_NO_HZ
8310 rq->nohz_balance_kick = 0;
83cd4fe2 8311#endif
1da177e4 8312#endif
8f4d37ec 8313 init_rq_hrtick(rq);
1da177e4 8314 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8315 }
8316
2dd73a4f 8317 set_load_weight(&init_task);
b50f60ce 8318
e107be36
AK
8319#ifdef CONFIG_PREEMPT_NOTIFIERS
8320 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8321#endif
8322
c9819f45 8323#ifdef CONFIG_SMP
962cf36c 8324 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8325#endif
8326
b50f60ce 8327#ifdef CONFIG_RT_MUTEXES
732375c6 8328 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
8329#endif
8330
1da177e4
LT
8331 /*
8332 * The boot idle thread does lazy MMU switching as well:
8333 */
8334 atomic_inc(&init_mm.mm_count);
8335 enter_lazy_tlb(&init_mm, current);
8336
8337 /*
8338 * Make us the idle thread. Technically, schedule() should not be
8339 * called from this thread, however somewhere below it might be,
8340 * but because we are the idle thread, we just pick up running again
8341 * when this runqueue becomes "idle".
8342 */
8343 init_idle(current, smp_processor_id());
dce48a84
TG
8344
8345 calc_load_update = jiffies + LOAD_FREQ;
8346
dd41f596
IM
8347 /*
8348 * During early bootup we pretend to be a normal task:
8349 */
8350 current->sched_class = &fair_sched_class;
6892b75e 8351
6a7b3dc3 8352 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8353 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8354#ifdef CONFIG_SMP
4cb98839 8355 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 8356#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8357 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8358 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8359 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8360 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8361 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8362#endif
bdddd296
RR
8363 /* May be allocated at isolcpus cmdline parse time */
8364 if (cpu_isolated_map == NULL)
8365 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8366#endif /* SMP */
6a7b3dc3 8367
6892b75e 8368 scheduler_running = 1;
1da177e4
LT
8369}
8370
d902db1e 8371#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8372static inline int preempt_count_equals(int preempt_offset)
8373{
234da7bc 8374 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8375
4ba8216c 8376 return (nested == preempt_offset);
e4aafea2
FW
8377}
8378
d894837f 8379void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8380{
1da177e4
LT
8381 static unsigned long prev_jiffy; /* ratelimiting */
8382
e4aafea2
FW
8383 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8384 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8385 return;
8386 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8387 return;
8388 prev_jiffy = jiffies;
8389
3df0fc5b
PZ
8390 printk(KERN_ERR
8391 "BUG: sleeping function called from invalid context at %s:%d\n",
8392 file, line);
8393 printk(KERN_ERR
8394 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8395 in_atomic(), irqs_disabled(),
8396 current->pid, current->comm);
aef745fc
IM
8397
8398 debug_show_held_locks(current);
8399 if (irqs_disabled())
8400 print_irqtrace_events(current);
8401 dump_stack();
1da177e4
LT
8402}
8403EXPORT_SYMBOL(__might_sleep);
8404#endif
8405
8406#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8407static void normalize_task(struct rq *rq, struct task_struct *p)
8408{
da7a735e
PZ
8409 const struct sched_class *prev_class = p->sched_class;
8410 int old_prio = p->prio;
3a5e4dc1 8411 int on_rq;
3e51f33f 8412
fd2f4419 8413 on_rq = p->on_rq;
3a5e4dc1
AK
8414 if (on_rq)
8415 deactivate_task(rq, p, 0);
8416 __setscheduler(rq, p, SCHED_NORMAL, 0);
8417 if (on_rq) {
8418 activate_task(rq, p, 0);
8419 resched_task(rq->curr);
8420 }
da7a735e
PZ
8421
8422 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8423}
8424
1da177e4
LT
8425void normalize_rt_tasks(void)
8426{
a0f98a1c 8427 struct task_struct *g, *p;
1da177e4 8428 unsigned long flags;
70b97a7f 8429 struct rq *rq;
1da177e4 8430
4cf5d77a 8431 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8432 do_each_thread(g, p) {
178be793
IM
8433 /*
8434 * Only normalize user tasks:
8435 */
8436 if (!p->mm)
8437 continue;
8438
6cfb0d5d 8439 p->se.exec_start = 0;
6cfb0d5d 8440#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8441 p->se.statistics.wait_start = 0;
8442 p->se.statistics.sleep_start = 0;
8443 p->se.statistics.block_start = 0;
6cfb0d5d 8444#endif
dd41f596
IM
8445
8446 if (!rt_task(p)) {
8447 /*
8448 * Renice negative nice level userspace
8449 * tasks back to 0:
8450 */
8451 if (TASK_NICE(p) < 0 && p->mm)
8452 set_user_nice(p, 0);
1da177e4 8453 continue;
dd41f596 8454 }
1da177e4 8455
1d615482 8456 raw_spin_lock(&p->pi_lock);
b29739f9 8457 rq = __task_rq_lock(p);
1da177e4 8458
178be793 8459 normalize_task(rq, p);
3a5e4dc1 8460
b29739f9 8461 __task_rq_unlock(rq);
1d615482 8462 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8463 } while_each_thread(g, p);
8464
4cf5d77a 8465 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8466}
8467
8468#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8469
67fc4e0c 8470#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8471/*
67fc4e0c 8472 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8473 *
8474 * They can only be called when the whole system has been
8475 * stopped - every CPU needs to be quiescent, and no scheduling
8476 * activity can take place. Using them for anything else would
8477 * be a serious bug, and as a result, they aren't even visible
8478 * under any other configuration.
8479 */
8480
8481/**
8482 * curr_task - return the current task for a given cpu.
8483 * @cpu: the processor in question.
8484 *
8485 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8486 */
36c8b586 8487struct task_struct *curr_task(int cpu)
1df5c10a
LT
8488{
8489 return cpu_curr(cpu);
8490}
8491
67fc4e0c
JW
8492#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8493
8494#ifdef CONFIG_IA64
1df5c10a
LT
8495/**
8496 * set_curr_task - set the current task for a given cpu.
8497 * @cpu: the processor in question.
8498 * @p: the task pointer to set.
8499 *
8500 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8501 * are serviced on a separate stack. It allows the architecture to switch the
8502 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8503 * must be called with all CPU's synchronized, and interrupts disabled, the
8504 * and caller must save the original value of the current task (see
8505 * curr_task() above) and restore that value before reenabling interrupts and
8506 * re-starting the system.
8507 *
8508 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8509 */
36c8b586 8510void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8511{
8512 cpu_curr(cpu) = p;
8513}
8514
8515#endif
29f59db3 8516
bccbe08a
PZ
8517#ifdef CONFIG_FAIR_GROUP_SCHED
8518static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8519{
8520 int i;
8521
ab84d31e
PT
8522 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8523
6f505b16
PZ
8524 for_each_possible_cpu(i) {
8525 if (tg->cfs_rq)
8526 kfree(tg->cfs_rq[i]);
8527 if (tg->se)
8528 kfree(tg->se[i]);
6f505b16
PZ
8529 }
8530
8531 kfree(tg->cfs_rq);
8532 kfree(tg->se);
6f505b16
PZ
8533}
8534
ec7dc8ac
DG
8535static
8536int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8537{
29f59db3 8538 struct cfs_rq *cfs_rq;
eab17229 8539 struct sched_entity *se;
29f59db3
SV
8540 int i;
8541
434d53b0 8542 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8543 if (!tg->cfs_rq)
8544 goto err;
434d53b0 8545 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8546 if (!tg->se)
8547 goto err;
052f1dc7
PZ
8548
8549 tg->shares = NICE_0_LOAD;
29f59db3 8550
ab84d31e
PT
8551 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8552
29f59db3 8553 for_each_possible_cpu(i) {
eab17229
LZ
8554 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8555 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8556 if (!cfs_rq)
8557 goto err;
8558
eab17229
LZ
8559 se = kzalloc_node(sizeof(struct sched_entity),
8560 GFP_KERNEL, cpu_to_node(i));
29f59db3 8561 if (!se)
dfc12eb2 8562 goto err_free_rq;
29f59db3 8563
acb5a9ba 8564 init_cfs_rq(cfs_rq);
3d4b47b4 8565 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8566 }
8567
8568 return 1;
8569
49246274 8570err_free_rq:
dfc12eb2 8571 kfree(cfs_rq);
49246274 8572err:
bccbe08a
PZ
8573 return 0;
8574}
8575
bccbe08a
PZ
8576static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8577{
3d4b47b4
PZ
8578 struct rq *rq = cpu_rq(cpu);
8579 unsigned long flags;
3d4b47b4
PZ
8580
8581 /*
8582 * Only empty task groups can be destroyed; so we can speculatively
8583 * check on_list without danger of it being re-added.
8584 */
8585 if (!tg->cfs_rq[cpu]->on_list)
8586 return;
8587
8588 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8589 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8590 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8591}
5f817d67 8592#else /* !CONFIG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8593static inline void free_fair_sched_group(struct task_group *tg)
8594{
8595}
8596
ec7dc8ac
DG
8597static inline
8598int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8599{
8600 return 1;
8601}
8602
bccbe08a
PZ
8603static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8604{
8605}
6d6bc0ad 8606#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8607
8608#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8609static void free_rt_sched_group(struct task_group *tg)
8610{
8611 int i;
8612
99bc5242
BL
8613 if (tg->rt_se)
8614 destroy_rt_bandwidth(&tg->rt_bandwidth);
d0b27fa7 8615
bccbe08a
PZ
8616 for_each_possible_cpu(i) {
8617 if (tg->rt_rq)
8618 kfree(tg->rt_rq[i]);
8619 if (tg->rt_se)
8620 kfree(tg->rt_se[i]);
8621 }
8622
8623 kfree(tg->rt_rq);
8624 kfree(tg->rt_se);
8625}
8626
ec7dc8ac
DG
8627static
8628int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8629{
8630 struct rt_rq *rt_rq;
eab17229 8631 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8632 int i;
8633
434d53b0 8634 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8635 if (!tg->rt_rq)
8636 goto err;
434d53b0 8637 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8638 if (!tg->rt_se)
8639 goto err;
8640
d0b27fa7
PZ
8641 init_rt_bandwidth(&tg->rt_bandwidth,
8642 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8643
8644 for_each_possible_cpu(i) {
eab17229
LZ
8645 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8646 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8647 if (!rt_rq)
8648 goto err;
29f59db3 8649
eab17229
LZ
8650 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8651 GFP_KERNEL, cpu_to_node(i));
6f505b16 8652 if (!rt_se)
dfc12eb2 8653 goto err_free_rq;
29f59db3 8654
acb5a9ba
JS
8655 init_rt_rq(rt_rq, cpu_rq(i));
8656 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
3d4b47b4 8657 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8658 }
8659
bccbe08a
PZ
8660 return 1;
8661
49246274 8662err_free_rq:
dfc12eb2 8663 kfree(rt_rq);
49246274 8664err:
bccbe08a
PZ
8665 return 0;
8666}
6d6bc0ad 8667#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8668static inline void free_rt_sched_group(struct task_group *tg)
8669{
8670}
8671
ec7dc8ac
DG
8672static inline
8673int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8674{
8675 return 1;
8676}
6d6bc0ad 8677#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8678
7c941438 8679#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8680static void free_sched_group(struct task_group *tg)
8681{
8682 free_fair_sched_group(tg);
8683 free_rt_sched_group(tg);
e9aa1dd1 8684 autogroup_free(tg);
bccbe08a
PZ
8685 kfree(tg);
8686}
8687
8688/* allocate runqueue etc for a new task group */
ec7dc8ac 8689struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8690{
8691 struct task_group *tg;
8692 unsigned long flags;
bccbe08a
PZ
8693
8694 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8695 if (!tg)
8696 return ERR_PTR(-ENOMEM);
8697
ec7dc8ac 8698 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8699 goto err;
8700
ec7dc8ac 8701 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8702 goto err;
8703
8ed36996 8704 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8705 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8706
8707 WARN_ON(!parent); /* root should already exist */
8708
8709 tg->parent = parent;
f473aa5e 8710 INIT_LIST_HEAD(&tg->children);
09f2724a 8711 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8712 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8713
9b5b7751 8714 return tg;
29f59db3
SV
8715
8716err:
6f505b16 8717 free_sched_group(tg);
29f59db3
SV
8718 return ERR_PTR(-ENOMEM);
8719}
8720
9b5b7751 8721/* rcu callback to free various structures associated with a task group */
6f505b16 8722static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8723{
29f59db3 8724 /* now it should be safe to free those cfs_rqs */
6f505b16 8725 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8726}
8727
9b5b7751 8728/* Destroy runqueue etc associated with a task group */
4cf86d77 8729void sched_destroy_group(struct task_group *tg)
29f59db3 8730{
8ed36996 8731 unsigned long flags;
9b5b7751 8732 int i;
29f59db3 8733
3d4b47b4
PZ
8734 /* end participation in shares distribution */
8735 for_each_possible_cpu(i)
bccbe08a 8736 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8737
8738 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8739 list_del_rcu(&tg->list);
f473aa5e 8740 list_del_rcu(&tg->siblings);
8ed36996 8741 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8742
9b5b7751 8743 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8744 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8745}
8746
9b5b7751 8747/* change task's runqueue when it moves between groups.
3a252015
IM
8748 * The caller of this function should have put the task in its new group
8749 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8750 * reflect its new group.
9b5b7751
SV
8751 */
8752void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8753{
8754 int on_rq, running;
8755 unsigned long flags;
8756 struct rq *rq;
8757
8758 rq = task_rq_lock(tsk, &flags);
8759
051a1d1a 8760 running = task_current(rq, tsk);
fd2f4419 8761 on_rq = tsk->on_rq;
29f59db3 8762
0e1f3483 8763 if (on_rq)
29f59db3 8764 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8765 if (unlikely(running))
8766 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8767
810b3817 8768#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8769 if (tsk->sched_class->task_move_group)
8770 tsk->sched_class->task_move_group(tsk, on_rq);
8771 else
810b3817 8772#endif
b2b5ce02 8773 set_task_rq(tsk, task_cpu(tsk));
810b3817 8774
0e1f3483
HS
8775 if (unlikely(running))
8776 tsk->sched_class->set_curr_task(rq);
8777 if (on_rq)
371fd7e7 8778 enqueue_task(rq, tsk, 0);
29f59db3 8779
0122ec5b 8780 task_rq_unlock(rq, tsk, &flags);
29f59db3 8781}
7c941438 8782#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8783
052f1dc7 8784#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8785static DEFINE_MUTEX(shares_mutex);
8786
4cf86d77 8787int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8788{
8789 int i;
8ed36996 8790 unsigned long flags;
c61935fd 8791
ec7dc8ac
DG
8792 /*
8793 * We can't change the weight of the root cgroup.
8794 */
8795 if (!tg->se[0])
8796 return -EINVAL;
8797
cd62287e 8798 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
62fb1851 8799
8ed36996 8800 mutex_lock(&shares_mutex);
9b5b7751 8801 if (tg->shares == shares)
5cb350ba 8802 goto done;
29f59db3 8803
9b5b7751 8804 tg->shares = shares;
c09595f6 8805 for_each_possible_cpu(i) {
9437178f
PT
8806 struct rq *rq = cpu_rq(i);
8807 struct sched_entity *se;
8808
8809 se = tg->se[i];
8810 /* Propagate contribution to hierarchy */
8811 raw_spin_lock_irqsave(&rq->lock, flags);
8812 for_each_sched_entity(se)
6d5ab293 8813 update_cfs_shares(group_cfs_rq(se));
9437178f 8814 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8815 }
29f59db3 8816
5cb350ba 8817done:
8ed36996 8818 mutex_unlock(&shares_mutex);
9b5b7751 8819 return 0;
29f59db3
SV
8820}
8821
5cb350ba
DG
8822unsigned long sched_group_shares(struct task_group *tg)
8823{
8824 return tg->shares;
8825}
052f1dc7 8826#endif
5cb350ba 8827
a790de99 8828#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
8829static unsigned long to_ratio(u64 period, u64 runtime)
8830{
8831 if (runtime == RUNTIME_INF)
9a7e0b18 8832 return 1ULL << 20;
9f0c1e56 8833
9a7e0b18 8834 return div64_u64(runtime << 20, period);
9f0c1e56 8835}
a790de99
PT
8836#endif
8837
8838#ifdef CONFIG_RT_GROUP_SCHED
8839/*
8840 * Ensure that the real time constraints are schedulable.
8841 */
8842static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 8843
9a7e0b18
PZ
8844/* Must be called with tasklist_lock held */
8845static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8846{
9a7e0b18 8847 struct task_struct *g, *p;
b40b2e8e 8848
9a7e0b18
PZ
8849 do_each_thread(g, p) {
8850 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8851 return 1;
8852 } while_each_thread(g, p);
b40b2e8e 8853
9a7e0b18
PZ
8854 return 0;
8855}
b40b2e8e 8856
9a7e0b18
PZ
8857struct rt_schedulable_data {
8858 struct task_group *tg;
8859 u64 rt_period;
8860 u64 rt_runtime;
8861};
b40b2e8e 8862
a790de99 8863static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8864{
8865 struct rt_schedulable_data *d = data;
8866 struct task_group *child;
8867 unsigned long total, sum = 0;
8868 u64 period, runtime;
b40b2e8e 8869
9a7e0b18
PZ
8870 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8871 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8872
9a7e0b18
PZ
8873 if (tg == d->tg) {
8874 period = d->rt_period;
8875 runtime = d->rt_runtime;
b40b2e8e 8876 }
b40b2e8e 8877
4653f803
PZ
8878 /*
8879 * Cannot have more runtime than the period.
8880 */
8881 if (runtime > period && runtime != RUNTIME_INF)
8882 return -EINVAL;
6f505b16 8883
4653f803
PZ
8884 /*
8885 * Ensure we don't starve existing RT tasks.
8886 */
9a7e0b18
PZ
8887 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8888 return -EBUSY;
6f505b16 8889
9a7e0b18 8890 total = to_ratio(period, runtime);
6f505b16 8891
4653f803
PZ
8892 /*
8893 * Nobody can have more than the global setting allows.
8894 */
8895 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8896 return -EINVAL;
6f505b16 8897
4653f803
PZ
8898 /*
8899 * The sum of our children's runtime should not exceed our own.
8900 */
9a7e0b18
PZ
8901 list_for_each_entry_rcu(child, &tg->children, siblings) {
8902 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8903 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8904
9a7e0b18
PZ
8905 if (child == d->tg) {
8906 period = d->rt_period;
8907 runtime = d->rt_runtime;
8908 }
6f505b16 8909
9a7e0b18 8910 sum += to_ratio(period, runtime);
9f0c1e56 8911 }
6f505b16 8912
9a7e0b18
PZ
8913 if (sum > total)
8914 return -EINVAL;
8915
8916 return 0;
6f505b16
PZ
8917}
8918
9a7e0b18 8919static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8920{
8277434e
PT
8921 int ret;
8922
9a7e0b18
PZ
8923 struct rt_schedulable_data data = {
8924 .tg = tg,
8925 .rt_period = period,
8926 .rt_runtime = runtime,
8927 };
8928
8277434e
PT
8929 rcu_read_lock();
8930 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8931 rcu_read_unlock();
8932
8933 return ret;
521f1a24
DG
8934}
8935
ab84d31e 8936static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8937 u64 rt_period, u64 rt_runtime)
6f505b16 8938{
ac086bc2 8939 int i, err = 0;
9f0c1e56 8940
9f0c1e56 8941 mutex_lock(&rt_constraints_mutex);
521f1a24 8942 read_lock(&tasklist_lock);
9a7e0b18
PZ
8943 err = __rt_schedulable(tg, rt_period, rt_runtime);
8944 if (err)
9f0c1e56 8945 goto unlock;
ac086bc2 8946
0986b11b 8947 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8948 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8949 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8950
8951 for_each_possible_cpu(i) {
8952 struct rt_rq *rt_rq = tg->rt_rq[i];
8953
0986b11b 8954 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8955 rt_rq->rt_runtime = rt_runtime;
0986b11b 8956 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8957 }
0986b11b 8958 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8959unlock:
521f1a24 8960 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8961 mutex_unlock(&rt_constraints_mutex);
8962
8963 return err;
6f505b16
PZ
8964}
8965
d0b27fa7
PZ
8966int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8967{
8968 u64 rt_runtime, rt_period;
8969
8970 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8971 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8972 if (rt_runtime_us < 0)
8973 rt_runtime = RUNTIME_INF;
8974
ab84d31e 8975 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8976}
8977
9f0c1e56
PZ
8978long sched_group_rt_runtime(struct task_group *tg)
8979{
8980 u64 rt_runtime_us;
8981
d0b27fa7 8982 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8983 return -1;
8984
d0b27fa7 8985 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8986 do_div(rt_runtime_us, NSEC_PER_USEC);
8987 return rt_runtime_us;
8988}
d0b27fa7
PZ
8989
8990int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8991{
8992 u64 rt_runtime, rt_period;
8993
8994 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8995 rt_runtime = tg->rt_bandwidth.rt_runtime;
8996
619b0488
R
8997 if (rt_period == 0)
8998 return -EINVAL;
8999
ab84d31e 9000 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
9001}
9002
9003long sched_group_rt_period(struct task_group *tg)
9004{
9005 u64 rt_period_us;
9006
9007 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9008 do_div(rt_period_us, NSEC_PER_USEC);
9009 return rt_period_us;
9010}
9011
9012static int sched_rt_global_constraints(void)
9013{
4653f803 9014 u64 runtime, period;
d0b27fa7
PZ
9015 int ret = 0;
9016
ec5d4989
HS
9017 if (sysctl_sched_rt_period <= 0)
9018 return -EINVAL;
9019
4653f803
PZ
9020 runtime = global_rt_runtime();
9021 period = global_rt_period();
9022
9023 /*
9024 * Sanity check on the sysctl variables.
9025 */
9026 if (runtime > period && runtime != RUNTIME_INF)
9027 return -EINVAL;
10b612f4 9028
d0b27fa7 9029 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9030 read_lock(&tasklist_lock);
4653f803 9031 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9032 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9033 mutex_unlock(&rt_constraints_mutex);
9034
9035 return ret;
9036}
54e99124
DG
9037
9038int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9039{
9040 /* Don't accept realtime tasks when there is no way for them to run */
9041 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9042 return 0;
9043
9044 return 1;
9045}
9046
6d6bc0ad 9047#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9048static int sched_rt_global_constraints(void)
9049{
ac086bc2
PZ
9050 unsigned long flags;
9051 int i;
9052
ec5d4989
HS
9053 if (sysctl_sched_rt_period <= 0)
9054 return -EINVAL;
9055
60aa605d
PZ
9056 /*
9057 * There's always some RT tasks in the root group
9058 * -- migration, kstopmachine etc..
9059 */
9060 if (sysctl_sched_rt_runtime == 0)
9061 return -EBUSY;
9062
0986b11b 9063 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
9064 for_each_possible_cpu(i) {
9065 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9066
0986b11b 9067 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 9068 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 9069 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 9070 }
0986b11b 9071 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 9072
d0b27fa7
PZ
9073 return 0;
9074}
6d6bc0ad 9075#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9076
9077int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 9078 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9079 loff_t *ppos)
9080{
9081 int ret;
9082 int old_period, old_runtime;
9083 static DEFINE_MUTEX(mutex);
9084
9085 mutex_lock(&mutex);
9086 old_period = sysctl_sched_rt_period;
9087 old_runtime = sysctl_sched_rt_runtime;
9088
8d65af78 9089 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9090
9091 if (!ret && write) {
9092 ret = sched_rt_global_constraints();
9093 if (ret) {
9094 sysctl_sched_rt_period = old_period;
9095 sysctl_sched_rt_runtime = old_runtime;
9096 } else {
9097 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9098 def_rt_bandwidth.rt_period =
9099 ns_to_ktime(global_rt_period());
9100 }
9101 }
9102 mutex_unlock(&mutex);
9103
9104 return ret;
9105}
68318b8e 9106
052f1dc7 9107#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9108
9109/* return corresponding task_group object of a cgroup */
2b01dfe3 9110static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9111{
2b01dfe3
PM
9112 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9113 struct task_group, css);
68318b8e
SV
9114}
9115
9116static struct cgroup_subsys_state *
2b01dfe3 9117cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9118{
ec7dc8ac 9119 struct task_group *tg, *parent;
68318b8e 9120
2b01dfe3 9121 if (!cgrp->parent) {
68318b8e 9122 /* This is early initialization for the top cgroup */
07e06b01 9123 return &root_task_group.css;
68318b8e
SV
9124 }
9125
ec7dc8ac
DG
9126 parent = cgroup_tg(cgrp->parent);
9127 tg = sched_create_group(parent);
68318b8e
SV
9128 if (IS_ERR(tg))
9129 return ERR_PTR(-ENOMEM);
9130
68318b8e
SV
9131 return &tg->css;
9132}
9133
41a2d6cf
IM
9134static void
9135cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9136{
2b01dfe3 9137 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9138
9139 sched_destroy_group(tg);
9140}
9141
41a2d6cf 9142static int
be367d09 9143cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9144{
b68aa230 9145#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9146 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9147 return -EINVAL;
9148#else
68318b8e
SV
9149 /* We don't support RT-tasks being in separate groups */
9150 if (tsk->sched_class != &fair_sched_class)
9151 return -EINVAL;
b68aa230 9152#endif
be367d09
BB
9153 return 0;
9154}
68318b8e 9155
68318b8e 9156static void
f780bdb7 9157cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
9158{
9159 sched_move_task(tsk);
9160}
9161
068c5cc5 9162static void
d41d5a01
PZ
9163cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9164 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9165{
9166 /*
9167 * cgroup_exit() is called in the copy_process() failure path.
9168 * Ignore this case since the task hasn't ran yet, this avoids
9169 * trying to poke a half freed task state from generic code.
9170 */
9171 if (!(task->flags & PF_EXITING))
9172 return;
9173
9174 sched_move_task(task);
9175}
9176
052f1dc7 9177#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9178static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9179 u64 shareval)
68318b8e 9180{
c8b28116 9181 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
9182}
9183
f4c753b7 9184static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9185{
2b01dfe3 9186 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 9187
c8b28116 9188 return (u64) scale_load_down(tg->shares);
68318b8e 9189}
ab84d31e
PT
9190
9191#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
9192static DEFINE_MUTEX(cfs_constraints_mutex);
9193
ab84d31e
PT
9194const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9195const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9196
a790de99
PT
9197static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9198
ab84d31e
PT
9199static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9200{
58088ad0 9201 int i, ret = 0, runtime_enabled;
ab84d31e 9202 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
ab84d31e
PT
9203
9204 if (tg == &root_task_group)
9205 return -EINVAL;
9206
9207 /*
9208 * Ensure we have at some amount of bandwidth every period. This is
9209 * to prevent reaching a state of large arrears when throttled via
9210 * entity_tick() resulting in prolonged exit starvation.
9211 */
9212 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9213 return -EINVAL;
9214
9215 /*
9216 * Likewise, bound things on the otherside by preventing insane quota
9217 * periods. This also allows us to normalize in computing quota
9218 * feasibility.
9219 */
9220 if (period > max_cfs_quota_period)
9221 return -EINVAL;
9222
a790de99
PT
9223 mutex_lock(&cfs_constraints_mutex);
9224 ret = __cfs_schedulable(tg, period, quota);
9225 if (ret)
9226 goto out_unlock;
9227
58088ad0 9228 runtime_enabled = quota != RUNTIME_INF;
ab84d31e
PT
9229 raw_spin_lock_irq(&cfs_b->lock);
9230 cfs_b->period = ns_to_ktime(period);
9231 cfs_b->quota = quota;
58088ad0 9232
a9cf55b2 9233 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
9234 /* restart the period timer (if active) to handle new period expiry */
9235 if (runtime_enabled && cfs_b->timer_active) {
9236 /* force a reprogram */
9237 cfs_b->timer_active = 0;
9238 __start_cfs_bandwidth(cfs_b);
9239 }
ab84d31e
PT
9240 raw_spin_unlock_irq(&cfs_b->lock);
9241
9242 for_each_possible_cpu(i) {
9243 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9244 struct rq *rq = rq_of(cfs_rq);
9245
9246 raw_spin_lock_irq(&rq->lock);
58088ad0 9247 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 9248 cfs_rq->runtime_remaining = 0;
671fd9da
PT
9249
9250 if (cfs_rq_throttled(cfs_rq))
9251 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
9252 raw_spin_unlock_irq(&rq->lock);
9253 }
a790de99
PT
9254out_unlock:
9255 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 9256
a790de99 9257 return ret;
ab84d31e
PT
9258}
9259
9260int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9261{
9262 u64 quota, period;
9263
9264 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9265 if (cfs_quota_us < 0)
9266 quota = RUNTIME_INF;
9267 else
9268 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9269
9270 return tg_set_cfs_bandwidth(tg, period, quota);
9271}
9272
9273long tg_get_cfs_quota(struct task_group *tg)
9274{
9275 u64 quota_us;
9276
9277 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9278 return -1;
9279
9280 quota_us = tg_cfs_bandwidth(tg)->quota;
9281 do_div(quota_us, NSEC_PER_USEC);
9282
9283 return quota_us;
9284}
9285
9286int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9287{
9288 u64 quota, period;
9289
9290 period = (u64)cfs_period_us * NSEC_PER_USEC;
9291 quota = tg_cfs_bandwidth(tg)->quota;
9292
9293 if (period <= 0)
9294 return -EINVAL;
9295
9296 return tg_set_cfs_bandwidth(tg, period, quota);
9297}
9298
9299long tg_get_cfs_period(struct task_group *tg)
9300{
9301 u64 cfs_period_us;
9302
9303 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9304 do_div(cfs_period_us, NSEC_PER_USEC);
9305
9306 return cfs_period_us;
9307}
9308
9309static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9310{
9311 return tg_get_cfs_quota(cgroup_tg(cgrp));
9312}
9313
9314static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9315 s64 cfs_quota_us)
9316{
9317 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9318}
9319
9320static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9321{
9322 return tg_get_cfs_period(cgroup_tg(cgrp));
9323}
9324
9325static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9326 u64 cfs_period_us)
9327{
9328 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9329}
9330
a790de99
PT
9331struct cfs_schedulable_data {
9332 struct task_group *tg;
9333 u64 period, quota;
9334};
9335
9336/*
9337 * normalize group quota/period to be quota/max_period
9338 * note: units are usecs
9339 */
9340static u64 normalize_cfs_quota(struct task_group *tg,
9341 struct cfs_schedulable_data *d)
9342{
9343 u64 quota, period;
9344
9345 if (tg == d->tg) {
9346 period = d->period;
9347 quota = d->quota;
9348 } else {
9349 period = tg_get_cfs_period(tg);
9350 quota = tg_get_cfs_quota(tg);
9351 }
9352
9353 /* note: these should typically be equivalent */
9354 if (quota == RUNTIME_INF || quota == -1)
9355 return RUNTIME_INF;
9356
9357 return to_ratio(period, quota);
9358}
9359
9360static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9361{
9362 struct cfs_schedulable_data *d = data;
9363 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9364 s64 quota = 0, parent_quota = -1;
9365
9366 if (!tg->parent) {
9367 quota = RUNTIME_INF;
9368 } else {
9369 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9370
9371 quota = normalize_cfs_quota(tg, d);
9372 parent_quota = parent_b->hierarchal_quota;
9373
9374 /*
9375 * ensure max(child_quota) <= parent_quota, inherit when no
9376 * limit is set
9377 */
9378 if (quota == RUNTIME_INF)
9379 quota = parent_quota;
9380 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9381 return -EINVAL;
9382 }
9383 cfs_b->hierarchal_quota = quota;
9384
9385 return 0;
9386}
9387
9388static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9389{
8277434e 9390 int ret;
a790de99
PT
9391 struct cfs_schedulable_data data = {
9392 .tg = tg,
9393 .period = period,
9394 .quota = quota,
9395 };
9396
9397 if (quota != RUNTIME_INF) {
9398 do_div(data.period, NSEC_PER_USEC);
9399 do_div(data.quota, NSEC_PER_USEC);
9400 }
9401
8277434e
PT
9402 rcu_read_lock();
9403 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9404 rcu_read_unlock();
9405
9406 return ret;
a790de99 9407}
e8da1b18
NR
9408
9409static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
9410 struct cgroup_map_cb *cb)
9411{
9412 struct task_group *tg = cgroup_tg(cgrp);
9413 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9414
9415 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
9416 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
9417 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
9418
9419 return 0;
9420}
ab84d31e 9421#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 9422#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9423
052f1dc7 9424#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9425static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9426 s64 val)
6f505b16 9427{
06ecb27c 9428 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9429}
9430
06ecb27c 9431static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9432{
06ecb27c 9433 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9434}
d0b27fa7
PZ
9435
9436static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9437 u64 rt_period_us)
9438{
9439 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9440}
9441
9442static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9443{
9444 return sched_group_rt_period(cgroup_tg(cgrp));
9445}
6d6bc0ad 9446#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9447
fe5c7cc2 9448static struct cftype cpu_files[] = {
052f1dc7 9449#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9450 {
9451 .name = "shares",
f4c753b7
PM
9452 .read_u64 = cpu_shares_read_u64,
9453 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9454 },
052f1dc7 9455#endif
ab84d31e
PT
9456#ifdef CONFIG_CFS_BANDWIDTH
9457 {
9458 .name = "cfs_quota_us",
9459 .read_s64 = cpu_cfs_quota_read_s64,
9460 .write_s64 = cpu_cfs_quota_write_s64,
9461 },
9462 {
9463 .name = "cfs_period_us",
9464 .read_u64 = cpu_cfs_period_read_u64,
9465 .write_u64 = cpu_cfs_period_write_u64,
9466 },
e8da1b18
NR
9467 {
9468 .name = "stat",
9469 .read_map = cpu_stats_show,
9470 },
ab84d31e 9471#endif
052f1dc7 9472#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9473 {
9f0c1e56 9474 .name = "rt_runtime_us",
06ecb27c
PM
9475 .read_s64 = cpu_rt_runtime_read,
9476 .write_s64 = cpu_rt_runtime_write,
6f505b16 9477 },
d0b27fa7
PZ
9478 {
9479 .name = "rt_period_us",
f4c753b7
PM
9480 .read_u64 = cpu_rt_period_read_uint,
9481 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9482 },
052f1dc7 9483#endif
68318b8e
SV
9484};
9485
9486static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9487{
fe5c7cc2 9488 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9489}
9490
9491struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9492 .name = "cpu",
9493 .create = cpu_cgroup_create,
9494 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
9495 .can_attach_task = cpu_cgroup_can_attach_task,
9496 .attach_task = cpu_cgroup_attach_task,
068c5cc5 9497 .exit = cpu_cgroup_exit,
38605cae
IM
9498 .populate = cpu_cgroup_populate,
9499 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9500 .early_init = 1,
9501};
9502
052f1dc7 9503#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9504
9505#ifdef CONFIG_CGROUP_CPUACCT
9506
9507/*
9508 * CPU accounting code for task groups.
9509 *
9510 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9511 * (balbir@in.ibm.com).
9512 */
9513
934352f2 9514/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9515struct cpuacct {
9516 struct cgroup_subsys_state css;
9517 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9518 u64 __percpu *cpuusage;
ef12fefa 9519 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9520 struct cpuacct *parent;
d842de87
SV
9521};
9522
9523struct cgroup_subsys cpuacct_subsys;
9524
9525/* return cpu accounting group corresponding to this container */
32cd756a 9526static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9527{
32cd756a 9528 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9529 struct cpuacct, css);
9530}
9531
9532/* return cpu accounting group to which this task belongs */
9533static inline struct cpuacct *task_ca(struct task_struct *tsk)
9534{
9535 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9536 struct cpuacct, css);
9537}
9538
9539/* create a new cpu accounting group */
9540static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9541 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9542{
9543 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9544 int i;
d842de87
SV
9545
9546 if (!ca)
ef12fefa 9547 goto out;
d842de87
SV
9548
9549 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9550 if (!ca->cpuusage)
9551 goto out_free_ca;
9552
9553 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9554 if (percpu_counter_init(&ca->cpustat[i], 0))
9555 goto out_free_counters;
d842de87 9556
934352f2
BR
9557 if (cgrp->parent)
9558 ca->parent = cgroup_ca(cgrp->parent);
9559
d842de87 9560 return &ca->css;
ef12fefa
BR
9561
9562out_free_counters:
9563 while (--i >= 0)
9564 percpu_counter_destroy(&ca->cpustat[i]);
9565 free_percpu(ca->cpuusage);
9566out_free_ca:
9567 kfree(ca);
9568out:
9569 return ERR_PTR(-ENOMEM);
d842de87
SV
9570}
9571
9572/* destroy an existing cpu accounting group */
41a2d6cf 9573static void
32cd756a 9574cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9575{
32cd756a 9576 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9577 int i;
d842de87 9578
ef12fefa
BR
9579 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9580 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9581 free_percpu(ca->cpuusage);
9582 kfree(ca);
9583}
9584
720f5498
KC
9585static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9586{
b36128c8 9587 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9588 u64 data;
9589
9590#ifndef CONFIG_64BIT
9591 /*
9592 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9593 */
05fa785c 9594 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9595 data = *cpuusage;
05fa785c 9596 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9597#else
9598 data = *cpuusage;
9599#endif
9600
9601 return data;
9602}
9603
9604static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9605{
b36128c8 9606 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9607
9608#ifndef CONFIG_64BIT
9609 /*
9610 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9611 */
05fa785c 9612 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9613 *cpuusage = val;
05fa785c 9614 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9615#else
9616 *cpuusage = val;
9617#endif
9618}
9619
d842de87 9620/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9621static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9622{
32cd756a 9623 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9624 u64 totalcpuusage = 0;
9625 int i;
9626
720f5498
KC
9627 for_each_present_cpu(i)
9628 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9629
9630 return totalcpuusage;
9631}
9632
0297b803
DG
9633static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9634 u64 reset)
9635{
9636 struct cpuacct *ca = cgroup_ca(cgrp);
9637 int err = 0;
9638 int i;
9639
9640 if (reset) {
9641 err = -EINVAL;
9642 goto out;
9643 }
9644
720f5498
KC
9645 for_each_present_cpu(i)
9646 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9647
0297b803
DG
9648out:
9649 return err;
9650}
9651
e9515c3c
KC
9652static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9653 struct seq_file *m)
9654{
9655 struct cpuacct *ca = cgroup_ca(cgroup);
9656 u64 percpu;
9657 int i;
9658
9659 for_each_present_cpu(i) {
9660 percpu = cpuacct_cpuusage_read(ca, i);
9661 seq_printf(m, "%llu ", (unsigned long long) percpu);
9662 }
9663 seq_printf(m, "\n");
9664 return 0;
9665}
9666
ef12fefa
BR
9667static const char *cpuacct_stat_desc[] = {
9668 [CPUACCT_STAT_USER] = "user",
9669 [CPUACCT_STAT_SYSTEM] = "system",
9670};
9671
9672static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9673 struct cgroup_map_cb *cb)
9674{
9675 struct cpuacct *ca = cgroup_ca(cgrp);
9676 int i;
9677
9678 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9679 s64 val = percpu_counter_read(&ca->cpustat[i]);
9680 val = cputime64_to_clock_t(val);
9681 cb->fill(cb, cpuacct_stat_desc[i], val);
9682 }
9683 return 0;
9684}
9685
d842de87
SV
9686static struct cftype files[] = {
9687 {
9688 .name = "usage",
f4c753b7
PM
9689 .read_u64 = cpuusage_read,
9690 .write_u64 = cpuusage_write,
d842de87 9691 },
e9515c3c
KC
9692 {
9693 .name = "usage_percpu",
9694 .read_seq_string = cpuacct_percpu_seq_read,
9695 },
ef12fefa
BR
9696 {
9697 .name = "stat",
9698 .read_map = cpuacct_stats_show,
9699 },
d842de87
SV
9700};
9701
32cd756a 9702static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9703{
32cd756a 9704 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9705}
9706
9707/*
9708 * charge this task's execution time to its accounting group.
9709 *
9710 * called with rq->lock held.
9711 */
9712static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9713{
9714 struct cpuacct *ca;
934352f2 9715 int cpu;
d842de87 9716
c40c6f85 9717 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9718 return;
9719
934352f2 9720 cpu = task_cpu(tsk);
a18b83b7
BR
9721
9722 rcu_read_lock();
9723
d842de87 9724 ca = task_ca(tsk);
d842de87 9725
934352f2 9726 for (; ca; ca = ca->parent) {
b36128c8 9727 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9728 *cpuusage += cputime;
9729 }
a18b83b7
BR
9730
9731 rcu_read_unlock();
d842de87
SV
9732}
9733
fa535a77
AB
9734/*
9735 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9736 * in cputime_t units. As a result, cpuacct_update_stats calls
9737 * percpu_counter_add with values large enough to always overflow the
9738 * per cpu batch limit causing bad SMP scalability.
9739 *
9740 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9741 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9742 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9743 */
9744#ifdef CONFIG_SMP
9745#define CPUACCT_BATCH \
9746 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9747#else
9748#define CPUACCT_BATCH 0
9749#endif
9750
ef12fefa
BR
9751/*
9752 * Charge the system/user time to the task's accounting group.
9753 */
9754static void cpuacct_update_stats(struct task_struct *tsk,
9755 enum cpuacct_stat_index idx, cputime_t val)
9756{
9757 struct cpuacct *ca;
fa535a77 9758 int batch = CPUACCT_BATCH;
ef12fefa
BR
9759
9760 if (unlikely(!cpuacct_subsys.active))
9761 return;
9762
9763 rcu_read_lock();
9764 ca = task_ca(tsk);
9765
9766 do {
fa535a77 9767 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9768 ca = ca->parent;
9769 } while (ca);
9770 rcu_read_unlock();
9771}
9772
d842de87
SV
9773struct cgroup_subsys cpuacct_subsys = {
9774 .name = "cpuacct",
9775 .create = cpuacct_create,
9776 .destroy = cpuacct_destroy,
9777 .populate = cpuacct_populate,
9778 .subsys_id = cpuacct_subsys_id,
9779};
9780#endif /* CONFIG_CGROUP_CPUACCT */