]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
block: initial patch for on-stack per-task plugging
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
335d7afb 78#include <asm/mutex.h>
1da177e4 79
6e0534f2 80#include "sched_cpupri.h"
21aa9af0 81#include "workqueue_sched.h"
5091faa4 82#include "sched_autogroup.h"
6e0534f2 83
a8d154b0 84#define CREATE_TRACE_POINTS
ad8d75ff 85#include <trace/events/sched.h>
a8d154b0 86
1da177e4
LT
87/*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96/*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105/*
d7876a08 106 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 107 */
d6322faf 108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 109
6aa645ea
IM
110#define NICE_0_LOAD SCHED_LOAD_SCALE
111#define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
1da177e4
LT
113/*
114 * These are the 'tuning knobs' of the scheduler:
115 *
a4ec24b4 116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
117 * Timeslices get refilled after they expire.
118 */
1da177e4 119#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 120
d0b27fa7
PZ
121/*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124#define RUNTIME_INF ((u64)~0ULL)
125
e05606d3
IM
126static inline int rt_policy(int policy)
127{
3f33a7ce 128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
129 return 1;
130 return 0;
131}
132
133static inline int task_has_rt_policy(struct task_struct *p)
134{
135 return rt_policy(p->policy);
136}
137
1da177e4 138/*
6aa645ea 139 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 140 */
6aa645ea
IM
141struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144};
145
d0b27fa7 146struct rt_bandwidth {
ea736ed5 147 /* nests inside the rq lock: */
0986b11b 148 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
d0b27fa7
PZ
152};
153
154static struct rt_bandwidth def_rt_bandwidth;
155
156static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159{
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
165
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170 if (!overrun)
171 break;
172
173 idle = do_sched_rt_period_timer(rt_b, overrun);
174 }
175
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177}
178
179static
180void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181{
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
184
0986b11b 185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 186
d0b27fa7
PZ
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
190}
191
c8bfff6d
KH
192static inline int rt_bandwidth_enabled(void)
193{
194 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
195}
196
197static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198{
199 ktime_t now;
200
cac64d00 201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
202 return;
203
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
206
0986b11b 207 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 208 for (;;) {
7f1e2ca9
PZ
209 unsigned long delta;
210 ktime_t soft, hard;
211
d0b27fa7
PZ
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
214
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
217
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 222 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 223 }
0986b11b 224 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
225}
226
227#ifdef CONFIG_RT_GROUP_SCHED
228static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229{
230 hrtimer_cancel(&rt_b->rt_period_timer);
231}
232#endif
233
712555ee
HC
234/*
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
237 */
238static DEFINE_MUTEX(sched_domains_mutex);
239
7c941438 240#ifdef CONFIG_CGROUP_SCHED
29f59db3 241
68318b8e
SV
242#include <linux/cgroup.h>
243
29f59db3
SV
244struct cfs_rq;
245
6f505b16
PZ
246static LIST_HEAD(task_groups);
247
29f59db3 248/* task group related information */
4cf86d77 249struct task_group {
68318b8e 250 struct cgroup_subsys_state css;
6c415b92 251
052f1dc7 252#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
2069dd75
PZ
258
259 atomic_t load_weight;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
5091faa4
MG
275
276#ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278#endif
29f59db3
SV
279};
280
3d4b47b4 281/* task_group_lock serializes the addition/removal of task groups */
8ed36996 282static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 283
e9036b36
CG
284#ifdef CONFIG_FAIR_GROUP_SCHED
285
07e06b01 286# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 287
cb4ad1ff 288/*
2e084786
LJ
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
cb4ad1ff
MX
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
295 */
18d95a28 296#define MIN_SHARES 2
2e084786 297#define MAX_SHARES (1UL << 18)
18d95a28 298
07e06b01 299static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
300#endif
301
29f59db3 302/* Default task group.
3a252015 303 * Every task in system belong to this group at bootup.
29f59db3 304 */
07e06b01 305struct task_group root_task_group;
29f59db3 306
7c941438 307#endif /* CONFIG_CGROUP_SCHED */
29f59db3 308
6aa645ea
IM
309/* CFS-related fields in a runqueue */
310struct cfs_rq {
311 struct load_weight load;
312 unsigned long nr_running;
313
6aa645ea 314 u64 exec_clock;
e9acbff6 315 u64 min_vruntime;
6aa645ea
IM
316
317 struct rb_root tasks_timeline;
318 struct rb_node *rb_leftmost;
4a55bd5e
PZ
319
320 struct list_head tasks;
321 struct list_head *balance_iterator;
322
323 /*
324 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
325 * It is set to NULL otherwise (i.e when none are currently running).
326 */
4793241b 327 struct sched_entity *curr, *next, *last;
ddc97297 328
5ac5c4d6 329 unsigned int nr_spread_over;
ddc97297 330
62160e3f 331#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
332 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
333
41a2d6cf
IM
334 /*
335 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
336 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
337 * (like users, containers etc.)
338 *
339 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
340 * list is used during load balance.
341 */
3d4b47b4 342 int on_list;
41a2d6cf
IM
343 struct list_head leaf_cfs_rq_list;
344 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
345
346#ifdef CONFIG_SMP
c09595f6 347 /*
c8cba857 348 * the part of load.weight contributed by tasks
c09595f6 349 */
c8cba857 350 unsigned long task_weight;
c09595f6 351
c8cba857
PZ
352 /*
353 * h_load = weight * f(tg)
354 *
355 * Where f(tg) is the recursive weight fraction assigned to
356 * this group.
357 */
358 unsigned long h_load;
c09595f6 359
c8cba857 360 /*
3b3d190e
PT
361 * Maintaining per-cpu shares distribution for group scheduling
362 *
363 * load_stamp is the last time we updated the load average
364 * load_last is the last time we updated the load average and saw load
365 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 366 */
2069dd75
PZ
367 u64 load_avg;
368 u64 load_period;
3b3d190e 369 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 370
2069dd75 371 unsigned long load_contribution;
c09595f6 372#endif
6aa645ea
IM
373#endif
374};
1da177e4 375
6aa645ea
IM
376/* Real-Time classes' related field in a runqueue: */
377struct rt_rq {
378 struct rt_prio_array active;
63489e45 379 unsigned long rt_nr_running;
052f1dc7 380#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
381 struct {
382 int curr; /* highest queued rt task prio */
398a153b 383#ifdef CONFIG_SMP
e864c499 384 int next; /* next highest */
398a153b 385#endif
e864c499 386 } highest_prio;
6f505b16 387#endif
fa85ae24 388#ifdef CONFIG_SMP
73fe6aae 389 unsigned long rt_nr_migratory;
a1ba4d8b 390 unsigned long rt_nr_total;
a22d7fc1 391 int overloaded;
917b627d 392 struct plist_head pushable_tasks;
fa85ae24 393#endif
6f505b16 394 int rt_throttled;
fa85ae24 395 u64 rt_time;
ac086bc2 396 u64 rt_runtime;
ea736ed5 397 /* Nests inside the rq lock: */
0986b11b 398 raw_spinlock_t rt_runtime_lock;
6f505b16 399
052f1dc7 400#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
401 unsigned long rt_nr_boosted;
402
6f505b16
PZ
403 struct rq *rq;
404 struct list_head leaf_rt_rq_list;
405 struct task_group *tg;
6f505b16 406#endif
6aa645ea
IM
407};
408
57d885fe
GH
409#ifdef CONFIG_SMP
410
411/*
412 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
413 * variables. Each exclusive cpuset essentially defines an island domain by
414 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
415 * exclusive cpuset is created, we also create and attach a new root-domain
416 * object.
417 *
57d885fe
GH
418 */
419struct root_domain {
420 atomic_t refcount;
c6c4927b
RR
421 cpumask_var_t span;
422 cpumask_var_t online;
637f5085 423
0eab9146 424 /*
637f5085
GH
425 * The "RT overload" flag: it gets set if a CPU has more than
426 * one runnable RT task.
427 */
c6c4927b 428 cpumask_var_t rto_mask;
0eab9146 429 atomic_t rto_count;
6e0534f2 430 struct cpupri cpupri;
57d885fe
GH
431};
432
dc938520
GH
433/*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
57d885fe
GH
437static struct root_domain def_root_domain;
438
ed2d372c 439#endif /* CONFIG_SMP */
57d885fe 440
1da177e4
LT
441/*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
70b97a7f 448struct rq {
d8016491 449 /* runqueue lock: */
05fa785c 450 raw_spinlock_t lock;
1da177e4
LT
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
6aa645ea
IM
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 459 unsigned long last_load_update_tick;
46cb4b7c 460#ifdef CONFIG_NO_HZ
39c0cbe2 461 u64 nohz_stamp;
83cd4fe2 462 unsigned char nohz_balance_kick;
46cb4b7c 463#endif
a64692a3
MG
464 unsigned int skip_clock_update;
465
d8016491
IM
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
6aa645ea
IM
468 unsigned long nr_load_updates;
469 u64 nr_switches;
470
471 struct cfs_rq cfs;
6f505b16 472 struct rt_rq rt;
6f505b16 473
6aa645ea 474#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
477#endif
478#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 479 struct list_head leaf_rt_rq_list;
1da177e4 480#endif
1da177e4
LT
481
482 /*
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
487 */
488 unsigned long nr_uninterruptible;
489
34f971f6 490 struct task_struct *curr, *idle, *stop;
c9819f45 491 unsigned long next_balance;
1da177e4 492 struct mm_struct *prev_mm;
6aa645ea 493
3e51f33f 494 u64 clock;
305e6835 495 u64 clock_task;
6aa645ea 496
1da177e4
LT
497 atomic_t nr_iowait;
498
499#ifdef CONFIG_SMP
0eab9146 500 struct root_domain *rd;
1da177e4
LT
501 struct sched_domain *sd;
502
e51fd5e2
PZ
503 unsigned long cpu_power;
504
a0a522ce 505 unsigned char idle_at_tick;
1da177e4 506 /* For active balancing */
3f029d3c 507 int post_schedule;
1da177e4
LT
508 int active_balance;
509 int push_cpu;
969c7921 510 struct cpu_stop_work active_balance_work;
d8016491
IM
511 /* cpu of this runqueue: */
512 int cpu;
1f11eb6a 513 int online;
1da177e4 514
a8a51d5e 515 unsigned long avg_load_per_task;
1da177e4 516
e9e9250b
PZ
517 u64 rt_avg;
518 u64 age_stamp;
1b9508f6
MG
519 u64 idle_stamp;
520 u64 avg_idle;
1da177e4
LT
521#endif
522
aa483808
VP
523#ifdef CONFIG_IRQ_TIME_ACCOUNTING
524 u64 prev_irq_time;
525#endif
526
dce48a84
TG
527 /* calc_load related fields */
528 unsigned long calc_load_update;
529 long calc_load_active;
530
8f4d37ec 531#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
532#ifdef CONFIG_SMP
533 int hrtick_csd_pending;
534 struct call_single_data hrtick_csd;
535#endif
8f4d37ec
PZ
536 struct hrtimer hrtick_timer;
537#endif
538
1da177e4
LT
539#ifdef CONFIG_SCHEDSTATS
540 /* latency stats */
541 struct sched_info rq_sched_info;
9c2c4802
KC
542 unsigned long long rq_cpu_time;
543 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
544
545 /* sys_sched_yield() stats */
480b9434 546 unsigned int yld_count;
1da177e4
LT
547
548 /* schedule() stats */
480b9434
KC
549 unsigned int sched_switch;
550 unsigned int sched_count;
551 unsigned int sched_goidle;
1da177e4
LT
552
553 /* try_to_wake_up() stats */
480b9434
KC
554 unsigned int ttwu_count;
555 unsigned int ttwu_local;
1da177e4
LT
556#endif
557};
558
f34e3b61 559static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 560
a64692a3 561
1e5a7405 562static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 563
0a2966b4
CL
564static inline int cpu_of(struct rq *rq)
565{
566#ifdef CONFIG_SMP
567 return rq->cpu;
568#else
569 return 0;
570#endif
571}
572
497f0ab3 573#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
574 rcu_dereference_check((p), \
575 rcu_read_lock_sched_held() || \
576 lockdep_is_held(&sched_domains_mutex))
577
674311d5
NP
578/*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 580 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
48f24c4d 585#define for_each_domain(cpu, __sd) \
497f0ab3 586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
587
588#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589#define this_rq() (&__get_cpu_var(runqueues))
590#define task_rq(p) cpu_rq(task_cpu(p))
591#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 592#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 593
dc61b1d6
PZ
594#ifdef CONFIG_CGROUP_SCHED
595
596/*
597 * Return the group to which this tasks belongs.
598 *
599 * We use task_subsys_state_check() and extend the RCU verification
600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601 * holds that lock for each task it moves into the cgroup. Therefore
602 * by holding that lock, we pin the task to the current cgroup.
603 */
604static inline struct task_group *task_group(struct task_struct *p)
605{
5091faa4 606 struct task_group *tg;
dc61b1d6
PZ
607 struct cgroup_subsys_state *css;
608
068c5cc5
PZ
609 if (p->flags & PF_EXITING)
610 return &root_task_group;
611
dc61b1d6
PZ
612 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
613 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
614 tg = container_of(css, struct task_group, css);
615
616 return autogroup_task_group(p, tg);
dc61b1d6
PZ
617}
618
619/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
620static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
621{
622#ifdef CONFIG_FAIR_GROUP_SCHED
623 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
624 p->se.parent = task_group(p)->se[cpu];
625#endif
626
627#ifdef CONFIG_RT_GROUP_SCHED
628 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
629 p->rt.parent = task_group(p)->rt_se[cpu];
630#endif
631}
632
633#else /* CONFIG_CGROUP_SCHED */
634
635static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
636static inline struct task_group *task_group(struct task_struct *p)
637{
638 return NULL;
639}
640
641#endif /* CONFIG_CGROUP_SCHED */
642
fe44d621 643static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 644
fe44d621 645static void update_rq_clock(struct rq *rq)
3e51f33f 646{
fe44d621 647 s64 delta;
305e6835 648
f26f9aff
MG
649 if (rq->skip_clock_update)
650 return;
aa483808 651
fe44d621
PZ
652 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
653 rq->clock += delta;
654 update_rq_clock_task(rq, delta);
3e51f33f
PZ
655}
656
bf5c91ba
IM
657/*
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659 */
660#ifdef CONFIG_SCHED_DEBUG
661# define const_debug __read_mostly
662#else
663# define const_debug static const
664#endif
665
017730c1
IM
666/**
667 * runqueue_is_locked
e17b38bf 668 * @cpu: the processor in question.
017730c1
IM
669 *
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
673 */
89f19f04 674int runqueue_is_locked(int cpu)
017730c1 675{
05fa785c 676 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
677}
678
bf5c91ba
IM
679/*
680 * Debugging: various feature bits
681 */
f00b45c1
PZ
682
683#define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
bf5c91ba 686enum {
f00b45c1 687#include "sched_features.h"
bf5c91ba
IM
688};
689
f00b45c1
PZ
690#undef SCHED_FEAT
691
692#define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
bf5c91ba 695const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
696#include "sched_features.h"
697 0;
698
699#undef SCHED_FEAT
700
701#ifdef CONFIG_SCHED_DEBUG
702#define SCHED_FEAT(name, enabled) \
703 #name ,
704
983ed7a6 705static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
706#include "sched_features.h"
707 NULL
708};
709
710#undef SCHED_FEAT
711
34f3a814 712static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 713{
f00b45c1
PZ
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
717 if (!(sysctl_sched_features & (1UL << i)))
718 seq_puts(m, "NO_");
719 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 720 }
34f3a814 721 seq_puts(m, "\n");
f00b45c1 722
34f3a814 723 return 0;
f00b45c1
PZ
724}
725
726static ssize_t
727sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
729{
730 char buf[64];
7740191c 731 char *cmp;
f00b45c1
PZ
732 int neg = 0;
733 int i;
734
735 if (cnt > 63)
736 cnt = 63;
737
738 if (copy_from_user(&buf, ubuf, cnt))
739 return -EFAULT;
740
741 buf[cnt] = 0;
7740191c 742 cmp = strstrip(buf);
f00b45c1 743
524429c3 744 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
745 neg = 1;
746 cmp += 3;
747 }
748
749 for (i = 0; sched_feat_names[i]; i++) {
7740191c 750 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
751 if (neg)
752 sysctl_sched_features &= ~(1UL << i);
753 else
754 sysctl_sched_features |= (1UL << i);
755 break;
756 }
757 }
758
759 if (!sched_feat_names[i])
760 return -EINVAL;
761
42994724 762 *ppos += cnt;
f00b45c1
PZ
763
764 return cnt;
765}
766
34f3a814
LZ
767static int sched_feat_open(struct inode *inode, struct file *filp)
768{
769 return single_open(filp, sched_feat_show, NULL);
770}
771
828c0950 772static const struct file_operations sched_feat_fops = {
34f3a814
LZ
773 .open = sched_feat_open,
774 .write = sched_feat_write,
775 .read = seq_read,
776 .llseek = seq_lseek,
777 .release = single_release,
f00b45c1
PZ
778};
779
780static __init int sched_init_debug(void)
781{
f00b45c1
PZ
782 debugfs_create_file("sched_features", 0644, NULL, NULL,
783 &sched_feat_fops);
784
785 return 0;
786}
787late_initcall(sched_init_debug);
788
789#endif
790
791#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 792
b82d9fdd
PZ
793/*
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
796 */
797const_debug unsigned int sysctl_sched_nr_migrate = 32;
798
e9e9250b
PZ
799/*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
05fa785c 869 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0 894#else
05fa785c 895 raw_spin_unlock(&rq->lock);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
0970d299 916/*
65cc8e48
PZ
917 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
918 * against ttwu().
0970d299
PZ
919 */
920static inline int task_is_waking(struct task_struct *p)
921{
0017d735 922 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
923}
924
b29739f9
IM
925/*
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
928 */
70b97a7f 929static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
930 __acquires(rq->lock)
931{
0970d299
PZ
932 struct rq *rq;
933
3a5c359a 934 for (;;) {
0970d299 935 rq = task_rq(p);
05fa785c 936 raw_spin_lock(&rq->lock);
65cc8e48 937 if (likely(rq == task_rq(p)))
3a5c359a 938 return rq;
05fa785c 939 raw_spin_unlock(&rq->lock);
b29739f9 940 }
b29739f9
IM
941}
942
1da177e4
LT
943/*
944 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 945 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
946 * explicitly disabling preemption.
947 */
70b97a7f 948static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
949 __acquires(rq->lock)
950{
70b97a7f 951 struct rq *rq;
1da177e4 952
3a5c359a
AK
953 for (;;) {
954 local_irq_save(*flags);
955 rq = task_rq(p);
05fa785c 956 raw_spin_lock(&rq->lock);
65cc8e48 957 if (likely(rq == task_rq(p)))
3a5c359a 958 return rq;
05fa785c 959 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 960 }
1da177e4
LT
961}
962
a9957449 963static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
964 __releases(rq->lock)
965{
05fa785c 966 raw_spin_unlock(&rq->lock);
b29739f9
IM
967}
968
70b97a7f 969static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
970 __releases(rq->lock)
971{
05fa785c 972 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
973}
974
1da177e4 975/*
cc2a73b5 976 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 977 */
a9957449 978static struct rq *this_rq_lock(void)
1da177e4
LT
979 __acquires(rq->lock)
980{
70b97a7f 981 struct rq *rq;
1da177e4
LT
982
983 local_irq_disable();
984 rq = this_rq();
05fa785c 985 raw_spin_lock(&rq->lock);
1da177e4
LT
986
987 return rq;
988}
989
8f4d37ec
PZ
990#ifdef CONFIG_SCHED_HRTICK
991/*
992 * Use HR-timers to deliver accurate preemption points.
993 *
994 * Its all a bit involved since we cannot program an hrt while holding the
995 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
996 * reschedule event.
997 *
998 * When we get rescheduled we reprogram the hrtick_timer outside of the
999 * rq->lock.
1000 */
8f4d37ec
PZ
1001
1002/*
1003 * Use hrtick when:
1004 * - enabled by features
1005 * - hrtimer is actually high res
1006 */
1007static inline int hrtick_enabled(struct rq *rq)
1008{
1009 if (!sched_feat(HRTICK))
1010 return 0;
ba42059f 1011 if (!cpu_active(cpu_of(rq)))
b328ca18 1012 return 0;
8f4d37ec
PZ
1013 return hrtimer_is_hres_active(&rq->hrtick_timer);
1014}
1015
8f4d37ec
PZ
1016static void hrtick_clear(struct rq *rq)
1017{
1018 if (hrtimer_active(&rq->hrtick_timer))
1019 hrtimer_cancel(&rq->hrtick_timer);
1020}
1021
8f4d37ec
PZ
1022/*
1023 * High-resolution timer tick.
1024 * Runs from hardirq context with interrupts disabled.
1025 */
1026static enum hrtimer_restart hrtick(struct hrtimer *timer)
1027{
1028 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1029
1030 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1031
05fa785c 1032 raw_spin_lock(&rq->lock);
3e51f33f 1033 update_rq_clock(rq);
8f4d37ec 1034 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1035 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1036
1037 return HRTIMER_NORESTART;
1038}
1039
95e904c7 1040#ifdef CONFIG_SMP
31656519
PZ
1041/*
1042 * called from hardirq (IPI) context
1043 */
1044static void __hrtick_start(void *arg)
b328ca18 1045{
31656519 1046 struct rq *rq = arg;
b328ca18 1047
05fa785c 1048 raw_spin_lock(&rq->lock);
31656519
PZ
1049 hrtimer_restart(&rq->hrtick_timer);
1050 rq->hrtick_csd_pending = 0;
05fa785c 1051 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1052}
1053
31656519
PZ
1054/*
1055 * Called to set the hrtick timer state.
1056 *
1057 * called with rq->lock held and irqs disabled
1058 */
1059static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1060{
31656519
PZ
1061 struct hrtimer *timer = &rq->hrtick_timer;
1062 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1063
cc584b21 1064 hrtimer_set_expires(timer, time);
31656519
PZ
1065
1066 if (rq == this_rq()) {
1067 hrtimer_restart(timer);
1068 } else if (!rq->hrtick_csd_pending) {
6e275637 1069 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1070 rq->hrtick_csd_pending = 1;
1071 }
b328ca18
PZ
1072}
1073
1074static int
1075hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1076{
1077 int cpu = (int)(long)hcpu;
1078
1079 switch (action) {
1080 case CPU_UP_CANCELED:
1081 case CPU_UP_CANCELED_FROZEN:
1082 case CPU_DOWN_PREPARE:
1083 case CPU_DOWN_PREPARE_FROZEN:
1084 case CPU_DEAD:
1085 case CPU_DEAD_FROZEN:
31656519 1086 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1087 return NOTIFY_OK;
1088 }
1089
1090 return NOTIFY_DONE;
1091}
1092
fa748203 1093static __init void init_hrtick(void)
b328ca18
PZ
1094{
1095 hotcpu_notifier(hotplug_hrtick, 0);
1096}
31656519
PZ
1097#else
1098/*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103static void hrtick_start(struct rq *rq, u64 delay)
1104{
7f1e2ca9 1105 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1106 HRTIMER_MODE_REL_PINNED, 0);
31656519 1107}
b328ca18 1108
006c75f1 1109static inline void init_hrtick(void)
8f4d37ec 1110{
8f4d37ec 1111}
31656519 1112#endif /* CONFIG_SMP */
8f4d37ec 1113
31656519 1114static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1115{
31656519
PZ
1116#ifdef CONFIG_SMP
1117 rq->hrtick_csd_pending = 0;
8f4d37ec 1118
31656519
PZ
1119 rq->hrtick_csd.flags = 0;
1120 rq->hrtick_csd.func = __hrtick_start;
1121 rq->hrtick_csd.info = rq;
1122#endif
8f4d37ec 1123
31656519
PZ
1124 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1125 rq->hrtick_timer.function = hrtick;
8f4d37ec 1126}
006c75f1 1127#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1128static inline void hrtick_clear(struct rq *rq)
1129{
1130}
1131
8f4d37ec
PZ
1132static inline void init_rq_hrtick(struct rq *rq)
1133{
1134}
1135
b328ca18
PZ
1136static inline void init_hrtick(void)
1137{
1138}
006c75f1 1139#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1140
c24d20db
IM
1141/*
1142 * resched_task - mark a task 'to be rescheduled now'.
1143 *
1144 * On UP this means the setting of the need_resched flag, on SMP it
1145 * might also involve a cross-CPU call to trigger the scheduler on
1146 * the target CPU.
1147 */
1148#ifdef CONFIG_SMP
1149
1150#ifndef tsk_is_polling
1151#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1152#endif
1153
31656519 1154static void resched_task(struct task_struct *p)
c24d20db
IM
1155{
1156 int cpu;
1157
05fa785c 1158 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1159
5ed0cec0 1160 if (test_tsk_need_resched(p))
c24d20db
IM
1161 return;
1162
5ed0cec0 1163 set_tsk_need_resched(p);
c24d20db
IM
1164
1165 cpu = task_cpu(p);
1166 if (cpu == smp_processor_id())
1167 return;
1168
1169 /* NEED_RESCHED must be visible before we test polling */
1170 smp_mb();
1171 if (!tsk_is_polling(p))
1172 smp_send_reschedule(cpu);
1173}
1174
1175static void resched_cpu(int cpu)
1176{
1177 struct rq *rq = cpu_rq(cpu);
1178 unsigned long flags;
1179
05fa785c 1180 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1181 return;
1182 resched_task(cpu_curr(cpu));
05fa785c 1183 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1184}
06d8308c
TG
1185
1186#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1187/*
1188 * In the semi idle case, use the nearest busy cpu for migrating timers
1189 * from an idle cpu. This is good for power-savings.
1190 *
1191 * We don't do similar optimization for completely idle system, as
1192 * selecting an idle cpu will add more delays to the timers than intended
1193 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1194 */
1195int get_nohz_timer_target(void)
1196{
1197 int cpu = smp_processor_id();
1198 int i;
1199 struct sched_domain *sd;
1200
1201 for_each_domain(cpu, sd) {
1202 for_each_cpu(i, sched_domain_span(sd))
1203 if (!idle_cpu(i))
1204 return i;
1205 }
1206 return cpu;
1207}
06d8308c
TG
1208/*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218void wake_up_idle_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
5ed0cec0 1240 set_tsk_need_resched(rq->idle);
06d8308c
TG
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246}
39c0cbe2 1247
6d6bc0ad 1248#endif /* CONFIG_NO_HZ */
06d8308c 1249
e9e9250b
PZ
1250static u64 sched_avg_period(void)
1251{
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253}
1254
1255static void sched_avg_update(struct rq *rq)
1256{
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1260 /*
1261 * Inline assembly required to prevent the compiler
1262 * optimising this loop into a divmod call.
1263 * See __iter_div_u64_rem() for another example of this.
1264 */
1265 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1266 rq->age_stamp += period;
1267 rq->rt_avg /= 2;
1268 }
1269}
1270
1271static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272{
1273 rq->rt_avg += rt_delta;
1274 sched_avg_update(rq);
1275}
1276
6d6bc0ad 1277#else /* !CONFIG_SMP */
31656519 1278static void resched_task(struct task_struct *p)
c24d20db 1279{
05fa785c 1280 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1281 set_tsk_need_resched(p);
c24d20db 1282}
e9e9250b
PZ
1283
1284static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285{
1286}
da2b71ed
SS
1287
1288static void sched_avg_update(struct rq *rq)
1289{
1290}
6d6bc0ad 1291#endif /* CONFIG_SMP */
c24d20db 1292
45bf76df
IM
1293#if BITS_PER_LONG == 32
1294# define WMULT_CONST (~0UL)
1295#else
1296# define WMULT_CONST (1UL << 32)
1297#endif
1298
1299#define WMULT_SHIFT 32
1300
194081eb
IM
1301/*
1302 * Shift right and round:
1303 */
cf2ab469 1304#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1305
a7be37ac
PZ
1306/*
1307 * delta *= weight / lw
1308 */
cb1c4fc9 1309static unsigned long
45bf76df
IM
1310calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1311 struct load_weight *lw)
1312{
1313 u64 tmp;
1314
7a232e03
LJ
1315 if (!lw->inv_weight) {
1316 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1317 lw->inv_weight = 1;
1318 else
1319 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1320 / (lw->weight+1);
1321 }
45bf76df
IM
1322
1323 tmp = (u64)delta_exec * weight;
1324 /*
1325 * Check whether we'd overflow the 64-bit multiplication:
1326 */
194081eb 1327 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1328 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1329 WMULT_SHIFT/2);
1330 else
cf2ab469 1331 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1332
ecf691da 1333 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1337{
1338 lw->weight += inc;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
1091985b 1342static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1343{
1344 lw->weight -= dec;
e89996ae 1345 lw->inv_weight = 0;
45bf76df
IM
1346}
1347
2069dd75
PZ
1348static inline void update_load_set(struct load_weight *lw, unsigned long w)
1349{
1350 lw->weight = w;
1351 lw->inv_weight = 0;
1352}
1353
2dd73a4f
PW
1354/*
1355 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356 * of tasks with abnormal "nice" values across CPUs the contribution that
1357 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1358 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1359 * scaled version of the new time slice allocation that they receive on time
1360 * slice expiry etc.
1361 */
1362
cce7ade8
PZ
1363#define WEIGHT_IDLEPRIO 3
1364#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1365
1366/*
1367 * Nice levels are multiplicative, with a gentle 10% change for every
1368 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370 * that remained on nice 0.
1371 *
1372 * The "10% effect" is relative and cumulative: from _any_ nice level,
1373 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1374 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375 * If a task goes up by ~10% and another task goes down by ~10% then
1376 * the relative distance between them is ~25%.)
dd41f596
IM
1377 */
1378static const int prio_to_weight[40] = {
254753dc
IM
1379 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1380 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1381 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1382 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1383 /* 0 */ 1024, 820, 655, 526, 423,
1384 /* 5 */ 335, 272, 215, 172, 137,
1385 /* 10 */ 110, 87, 70, 56, 45,
1386 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1387};
1388
5714d2de
IM
1389/*
1390 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1391 *
1392 * In cases where the weight does not change often, we can use the
1393 * precalculated inverse to speed up arithmetics by turning divisions
1394 * into multiplications:
1395 */
dd41f596 1396static const u32 prio_to_wmult[40] = {
254753dc
IM
1397 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1398 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1399 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1400 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1401 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1402 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1403 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1404 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1405};
2dd73a4f 1406
ef12fefa
BR
1407/* Time spent by the tasks of the cpu accounting group executing in ... */
1408enum cpuacct_stat_index {
1409 CPUACCT_STAT_USER, /* ... user mode */
1410 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1411
1412 CPUACCT_STAT_NSTATS,
1413};
1414
d842de87
SV
1415#ifdef CONFIG_CGROUP_CPUACCT
1416static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1417static void cpuacct_update_stats(struct task_struct *tsk,
1418 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1419#else
1420static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1421static inline void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1423#endif
1424
18d95a28
PZ
1425static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1426{
1427 update_load_add(&rq->load, load);
1428}
1429
1430static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1431{
1432 update_load_sub(&rq->load, load);
1433}
1434
7940ca36 1435#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1436typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1437
1438/*
1439 * Iterate the full tree, calling @down when first entering a node and @up when
1440 * leaving it for the final time.
1441 */
eb755805 1442static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1443{
1444 struct task_group *parent, *child;
eb755805 1445 int ret;
c09595f6
PZ
1446
1447 rcu_read_lock();
1448 parent = &root_task_group;
1449down:
eb755805
PZ
1450 ret = (*down)(parent, data);
1451 if (ret)
1452 goto out_unlock;
c09595f6
PZ
1453 list_for_each_entry_rcu(child, &parent->children, siblings) {
1454 parent = child;
1455 goto down;
1456
1457up:
1458 continue;
1459 }
eb755805
PZ
1460 ret = (*up)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463
1464 child = parent;
1465 parent = parent->parent;
1466 if (parent)
1467 goto up;
eb755805 1468out_unlock:
c09595f6 1469 rcu_read_unlock();
eb755805
PZ
1470
1471 return ret;
c09595f6
PZ
1472}
1473
eb755805
PZ
1474static int tg_nop(struct task_group *tg, void *data)
1475{
1476 return 0;
c09595f6 1477}
eb755805
PZ
1478#endif
1479
1480#ifdef CONFIG_SMP
f5f08f39
PZ
1481/* Used instead of source_load when we know the type == 0 */
1482static unsigned long weighted_cpuload(const int cpu)
1483{
1484 return cpu_rq(cpu)->load.weight;
1485}
1486
1487/*
1488 * Return a low guess at the load of a migration-source cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 *
1491 * We want to under-estimate the load of migration sources, to
1492 * balance conservatively.
1493 */
1494static unsigned long source_load(int cpu, int type)
1495{
1496 struct rq *rq = cpu_rq(cpu);
1497 unsigned long total = weighted_cpuload(cpu);
1498
1499 if (type == 0 || !sched_feat(LB_BIAS))
1500 return total;
1501
1502 return min(rq->cpu_load[type-1], total);
1503}
1504
1505/*
1506 * Return a high guess at the load of a migration-target cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 */
1509static unsigned long target_load(int cpu, int type)
1510{
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return max(rq->cpu_load[type-1], total);
1518}
1519
ae154be1
PZ
1520static unsigned long power_of(int cpu)
1521{
e51fd5e2 1522 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1523}
1524
eb755805
PZ
1525static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526
1527static unsigned long cpu_avg_load_per_task(int cpu)
1528{
1529 struct rq *rq = cpu_rq(cpu);
af6d596f 1530 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1531
4cd42620
SR
1532 if (nr_running)
1533 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1534 else
1535 rq->avg_load_per_task = 0;
eb755805
PZ
1536
1537 return rq->avg_load_per_task;
1538}
1539
1540#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1541
c09595f6 1542/*
c8cba857
PZ
1543 * Compute the cpu's hierarchical load factor for each task group.
1544 * This needs to be done in a top-down fashion because the load of a child
1545 * group is a fraction of its parents load.
c09595f6 1546 */
eb755805 1547static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1548{
c8cba857 1549 unsigned long load;
eb755805 1550 long cpu = (long)data;
c09595f6 1551
c8cba857
PZ
1552 if (!tg->parent) {
1553 load = cpu_rq(cpu)->load.weight;
1554 } else {
1555 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1556 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1557 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1558 }
c09595f6 1559
c8cba857 1560 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1561
eb755805 1562 return 0;
c09595f6
PZ
1563}
1564
eb755805 1565static void update_h_load(long cpu)
c09595f6 1566{
eb755805 1567 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1568}
1569
18d95a28
PZ
1570#endif
1571
8f45e2b5
GH
1572#ifdef CONFIG_PREEMPT
1573
b78bb868
PZ
1574static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1575
70574a99 1576/*
8f45e2b5
GH
1577 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1578 * way at the expense of forcing extra atomic operations in all
1579 * invocations. This assures that the double_lock is acquired using the
1580 * same underlying policy as the spinlock_t on this architecture, which
1581 * reduces latency compared to the unfair variant below. However, it
1582 * also adds more overhead and therefore may reduce throughput.
70574a99 1583 */
8f45e2b5
GH
1584static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1585 __releases(this_rq->lock)
1586 __acquires(busiest->lock)
1587 __acquires(this_rq->lock)
1588{
05fa785c 1589 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1590 double_rq_lock(this_rq, busiest);
1591
1592 return 1;
1593}
1594
1595#else
1596/*
1597 * Unfair double_lock_balance: Optimizes throughput at the expense of
1598 * latency by eliminating extra atomic operations when the locks are
1599 * already in proper order on entry. This favors lower cpu-ids and will
1600 * grant the double lock to lower cpus over higher ids under contention,
1601 * regardless of entry order into the function.
1602 */
1603static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1604 __releases(this_rq->lock)
1605 __acquires(busiest->lock)
1606 __acquires(this_rq->lock)
1607{
1608 int ret = 0;
1609
05fa785c 1610 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1611 if (busiest < this_rq) {
05fa785c
TG
1612 raw_spin_unlock(&this_rq->lock);
1613 raw_spin_lock(&busiest->lock);
1614 raw_spin_lock_nested(&this_rq->lock,
1615 SINGLE_DEPTH_NESTING);
70574a99
AD
1616 ret = 1;
1617 } else
05fa785c
TG
1618 raw_spin_lock_nested(&busiest->lock,
1619 SINGLE_DEPTH_NESTING);
70574a99
AD
1620 }
1621 return ret;
1622}
1623
8f45e2b5
GH
1624#endif /* CONFIG_PREEMPT */
1625
1626/*
1627 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1628 */
1629static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1630{
1631 if (unlikely(!irqs_disabled())) {
1632 /* printk() doesn't work good under rq->lock */
05fa785c 1633 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1634 BUG_ON(1);
1635 }
1636
1637 return _double_lock_balance(this_rq, busiest);
1638}
1639
70574a99
AD
1640static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642{
05fa785c 1643 raw_spin_unlock(&busiest->lock);
70574a99
AD
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645}
1e3c88bd
PZ
1646
1647/*
1648 * double_rq_lock - safely lock two runqueues
1649 *
1650 * Note this does not disable interrupts like task_rq_lock,
1651 * you need to do so manually before calling.
1652 */
1653static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1654 __acquires(rq1->lock)
1655 __acquires(rq2->lock)
1656{
1657 BUG_ON(!irqs_disabled());
1658 if (rq1 == rq2) {
1659 raw_spin_lock(&rq1->lock);
1660 __acquire(rq2->lock); /* Fake it out ;) */
1661 } else {
1662 if (rq1 < rq2) {
1663 raw_spin_lock(&rq1->lock);
1664 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1665 } else {
1666 raw_spin_lock(&rq2->lock);
1667 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1668 }
1669 }
1e3c88bd
PZ
1670}
1671
1672/*
1673 * double_rq_unlock - safely unlock two runqueues
1674 *
1675 * Note this does not restore interrupts like task_rq_unlock,
1676 * you need to do so manually after calling.
1677 */
1678static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1679 __releases(rq1->lock)
1680 __releases(rq2->lock)
1681{
1682 raw_spin_unlock(&rq1->lock);
1683 if (rq1 != rq2)
1684 raw_spin_unlock(&rq2->lock);
1685 else
1686 __release(rq2->lock);
1687}
1688
18d95a28
PZ
1689#endif
1690
74f5187a 1691static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1692static void update_sysctl(void);
acb4a848 1693static int get_update_sysctl_factor(void);
fdf3e95d 1694static void update_cpu_load(struct rq *this_rq);
dce48a84 1695
cd29fe6f
PZ
1696static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1697{
1698 set_task_rq(p, cpu);
1699#ifdef CONFIG_SMP
1700 /*
1701 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1702 * successfuly executed on another CPU. We must ensure that updates of
1703 * per-task data have been completed by this moment.
1704 */
1705 smp_wmb();
1706 task_thread_info(p)->cpu = cpu;
1707#endif
1708}
dce48a84 1709
1e3c88bd 1710static const struct sched_class rt_sched_class;
dd41f596 1711
34f971f6 1712#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1713#define for_each_class(class) \
1714 for (class = sched_class_highest; class; class = class->next)
dd41f596 1715
1e3c88bd
PZ
1716#include "sched_stats.h"
1717
c09595f6 1718static void inc_nr_running(struct rq *rq)
9c217245
IM
1719{
1720 rq->nr_running++;
9c217245
IM
1721}
1722
c09595f6 1723static void dec_nr_running(struct rq *rq)
9c217245
IM
1724{
1725 rq->nr_running--;
9c217245
IM
1726}
1727
45bf76df
IM
1728static void set_load_weight(struct task_struct *p)
1729{
dd41f596
IM
1730 /*
1731 * SCHED_IDLE tasks get minimal weight:
1732 */
1733 if (p->policy == SCHED_IDLE) {
1734 p->se.load.weight = WEIGHT_IDLEPRIO;
1735 p->se.load.inv_weight = WMULT_IDLEPRIO;
1736 return;
1737 }
71f8bd46 1738
dd41f596
IM
1739 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1740 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1741}
1742
371fd7e7 1743static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1744{
a64692a3 1745 update_rq_clock(rq);
dd41f596 1746 sched_info_queued(p);
371fd7e7 1747 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1748 p->se.on_rq = 1;
71f8bd46
IM
1749}
1750
371fd7e7 1751static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1752{
a64692a3 1753 update_rq_clock(rq);
46ac22ba 1754 sched_info_dequeued(p);
371fd7e7 1755 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1756 p->se.on_rq = 0;
71f8bd46
IM
1757}
1758
1e3c88bd
PZ
1759/*
1760 * activate_task - move a task to the runqueue.
1761 */
371fd7e7 1762static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1763{
1764 if (task_contributes_to_load(p))
1765 rq->nr_uninterruptible--;
1766
371fd7e7 1767 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1768 inc_nr_running(rq);
1769}
1770
1771/*
1772 * deactivate_task - remove a task from the runqueue.
1773 */
371fd7e7 1774static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1775{
1776 if (task_contributes_to_load(p))
1777 rq->nr_uninterruptible++;
1778
371fd7e7 1779 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1780 dec_nr_running(rq);
1781}
1782
b52bfee4
VP
1783#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1784
305e6835
VP
1785/*
1786 * There are no locks covering percpu hardirq/softirq time.
1787 * They are only modified in account_system_vtime, on corresponding CPU
1788 * with interrupts disabled. So, writes are safe.
1789 * They are read and saved off onto struct rq in update_rq_clock().
1790 * This may result in other CPU reading this CPU's irq time and can
1791 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1792 * or new value with a side effect of accounting a slice of irq time to wrong
1793 * task when irq is in progress while we read rq->clock. That is a worthy
1794 * compromise in place of having locks on each irq in account_system_time.
305e6835 1795 */
b52bfee4
VP
1796static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1797static DEFINE_PER_CPU(u64, cpu_softirq_time);
1798
1799static DEFINE_PER_CPU(u64, irq_start_time);
1800static int sched_clock_irqtime;
1801
1802void enable_sched_clock_irqtime(void)
1803{
1804 sched_clock_irqtime = 1;
1805}
1806
1807void disable_sched_clock_irqtime(void)
1808{
1809 sched_clock_irqtime = 0;
1810}
1811
8e92c201
PZ
1812#ifndef CONFIG_64BIT
1813static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1814
1815static inline void irq_time_write_begin(void)
1816{
1817 __this_cpu_inc(irq_time_seq.sequence);
1818 smp_wmb();
1819}
1820
1821static inline void irq_time_write_end(void)
1822{
1823 smp_wmb();
1824 __this_cpu_inc(irq_time_seq.sequence);
1825}
1826
1827static inline u64 irq_time_read(int cpu)
1828{
1829 u64 irq_time;
1830 unsigned seq;
1831
1832 do {
1833 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1834 irq_time = per_cpu(cpu_softirq_time, cpu) +
1835 per_cpu(cpu_hardirq_time, cpu);
1836 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1837
1838 return irq_time;
1839}
1840#else /* CONFIG_64BIT */
1841static inline void irq_time_write_begin(void)
1842{
1843}
1844
1845static inline void irq_time_write_end(void)
1846{
1847}
1848
1849static inline u64 irq_time_read(int cpu)
305e6835 1850{
305e6835
VP
1851 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1852}
8e92c201 1853#endif /* CONFIG_64BIT */
305e6835 1854
fe44d621
PZ
1855/*
1856 * Called before incrementing preempt_count on {soft,}irq_enter
1857 * and before decrementing preempt_count on {soft,}irq_exit.
1858 */
b52bfee4
VP
1859void account_system_vtime(struct task_struct *curr)
1860{
1861 unsigned long flags;
fe44d621 1862 s64 delta;
b52bfee4 1863 int cpu;
b52bfee4
VP
1864
1865 if (!sched_clock_irqtime)
1866 return;
1867
1868 local_irq_save(flags);
1869
b52bfee4 1870 cpu = smp_processor_id();
fe44d621
PZ
1871 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1872 __this_cpu_add(irq_start_time, delta);
1873
8e92c201 1874 irq_time_write_begin();
b52bfee4
VP
1875 /*
1876 * We do not account for softirq time from ksoftirqd here.
1877 * We want to continue accounting softirq time to ksoftirqd thread
1878 * in that case, so as not to confuse scheduler with a special task
1879 * that do not consume any time, but still wants to run.
1880 */
1881 if (hardirq_count())
fe44d621 1882 __this_cpu_add(cpu_hardirq_time, delta);
b52bfee4 1883 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
fe44d621 1884 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1885
8e92c201 1886 irq_time_write_end();
b52bfee4
VP
1887 local_irq_restore(flags);
1888}
b7dadc38 1889EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1890
fe44d621 1891static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1892{
fe44d621
PZ
1893 s64 irq_delta;
1894
8e92c201 1895 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1896
1897 /*
1898 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1899 * this case when a previous update_rq_clock() happened inside a
1900 * {soft,}irq region.
1901 *
1902 * When this happens, we stop ->clock_task and only update the
1903 * prev_irq_time stamp to account for the part that fit, so that a next
1904 * update will consume the rest. This ensures ->clock_task is
1905 * monotonic.
1906 *
1907 * It does however cause some slight miss-attribution of {soft,}irq
1908 * time, a more accurate solution would be to update the irq_time using
1909 * the current rq->clock timestamp, except that would require using
1910 * atomic ops.
1911 */
1912 if (irq_delta > delta)
1913 irq_delta = delta;
1914
1915 rq->prev_irq_time += irq_delta;
1916 delta -= irq_delta;
1917 rq->clock_task += delta;
1918
1919 if (irq_delta && sched_feat(NONIRQ_POWER))
1920 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1921}
1922
fe44d621 1923#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1924
fe44d621 1925static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1926{
fe44d621 1927 rq->clock_task += delta;
305e6835
VP
1928}
1929
fe44d621 1930#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1931
1e3c88bd
PZ
1932#include "sched_idletask.c"
1933#include "sched_fair.c"
1934#include "sched_rt.c"
5091faa4 1935#include "sched_autogroup.c"
34f971f6 1936#include "sched_stoptask.c"
1e3c88bd
PZ
1937#ifdef CONFIG_SCHED_DEBUG
1938# include "sched_debug.c"
1939#endif
1940
34f971f6
PZ
1941void sched_set_stop_task(int cpu, struct task_struct *stop)
1942{
1943 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1944 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1945
1946 if (stop) {
1947 /*
1948 * Make it appear like a SCHED_FIFO task, its something
1949 * userspace knows about and won't get confused about.
1950 *
1951 * Also, it will make PI more or less work without too
1952 * much confusion -- but then, stop work should not
1953 * rely on PI working anyway.
1954 */
1955 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1956
1957 stop->sched_class = &stop_sched_class;
1958 }
1959
1960 cpu_rq(cpu)->stop = stop;
1961
1962 if (old_stop) {
1963 /*
1964 * Reset it back to a normal scheduling class so that
1965 * it can die in pieces.
1966 */
1967 old_stop->sched_class = &rt_sched_class;
1968 }
1969}
1970
14531189 1971/*
dd41f596 1972 * __normal_prio - return the priority that is based on the static prio
14531189 1973 */
14531189
IM
1974static inline int __normal_prio(struct task_struct *p)
1975{
dd41f596 1976 return p->static_prio;
14531189
IM
1977}
1978
b29739f9
IM
1979/*
1980 * Calculate the expected normal priority: i.e. priority
1981 * without taking RT-inheritance into account. Might be
1982 * boosted by interactivity modifiers. Changes upon fork,
1983 * setprio syscalls, and whenever the interactivity
1984 * estimator recalculates.
1985 */
36c8b586 1986static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1987{
1988 int prio;
1989
e05606d3 1990 if (task_has_rt_policy(p))
b29739f9
IM
1991 prio = MAX_RT_PRIO-1 - p->rt_priority;
1992 else
1993 prio = __normal_prio(p);
1994 return prio;
1995}
1996
1997/*
1998 * Calculate the current priority, i.e. the priority
1999 * taken into account by the scheduler. This value might
2000 * be boosted by RT tasks, or might be boosted by
2001 * interactivity modifiers. Will be RT if the task got
2002 * RT-boosted. If not then it returns p->normal_prio.
2003 */
36c8b586 2004static int effective_prio(struct task_struct *p)
b29739f9
IM
2005{
2006 p->normal_prio = normal_prio(p);
2007 /*
2008 * If we are RT tasks or we were boosted to RT priority,
2009 * keep the priority unchanged. Otherwise, update priority
2010 * to the normal priority:
2011 */
2012 if (!rt_prio(p->prio))
2013 return p->normal_prio;
2014 return p->prio;
2015}
2016
1da177e4
LT
2017/**
2018 * task_curr - is this task currently executing on a CPU?
2019 * @p: the task in question.
2020 */
36c8b586 2021inline int task_curr(const struct task_struct *p)
1da177e4
LT
2022{
2023 return cpu_curr(task_cpu(p)) == p;
2024}
2025
cb469845
SR
2026static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2027 const struct sched_class *prev_class,
2028 int oldprio, int running)
2029{
2030 if (prev_class != p->sched_class) {
2031 if (prev_class->switched_from)
2032 prev_class->switched_from(rq, p, running);
2033 p->sched_class->switched_to(rq, p, running);
2034 } else
2035 p->sched_class->prio_changed(rq, p, oldprio, running);
2036}
2037
1e5a7405
PZ
2038static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2039{
2040 const struct sched_class *class;
2041
2042 if (p->sched_class == rq->curr->sched_class) {
2043 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2044 } else {
2045 for_each_class(class) {
2046 if (class == rq->curr->sched_class)
2047 break;
2048 if (class == p->sched_class) {
2049 resched_task(rq->curr);
2050 break;
2051 }
2052 }
2053 }
2054
2055 /*
2056 * A queue event has occurred, and we're going to schedule. In
2057 * this case, we can save a useless back to back clock update.
2058 */
f26f9aff 2059 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2060 rq->skip_clock_update = 1;
2061}
2062
1da177e4 2063#ifdef CONFIG_SMP
cc367732
IM
2064/*
2065 * Is this task likely cache-hot:
2066 */
e7693a36 2067static int
cc367732
IM
2068task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2069{
2070 s64 delta;
2071
e6c8fba7
PZ
2072 if (p->sched_class != &fair_sched_class)
2073 return 0;
2074
ef8002f6
NR
2075 if (unlikely(p->policy == SCHED_IDLE))
2076 return 0;
2077
f540a608
IM
2078 /*
2079 * Buddy candidates are cache hot:
2080 */
f685ceac 2081 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2082 (&p->se == cfs_rq_of(&p->se)->next ||
2083 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2084 return 1;
2085
6bc1665b
IM
2086 if (sysctl_sched_migration_cost == -1)
2087 return 1;
2088 if (sysctl_sched_migration_cost == 0)
2089 return 0;
2090
cc367732
IM
2091 delta = now - p->se.exec_start;
2092
2093 return delta < (s64)sysctl_sched_migration_cost;
2094}
2095
dd41f596 2096void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2097{
e2912009
PZ
2098#ifdef CONFIG_SCHED_DEBUG
2099 /*
2100 * We should never call set_task_cpu() on a blocked task,
2101 * ttwu() will sort out the placement.
2102 */
077614ee
PZ
2103 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2104 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2105#endif
2106
de1d7286 2107 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2108
0c69774e
PZ
2109 if (task_cpu(p) != new_cpu) {
2110 p->se.nr_migrations++;
2111 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2112 }
dd41f596
IM
2113
2114 __set_task_cpu(p, new_cpu);
c65cc870
IM
2115}
2116
969c7921 2117struct migration_arg {
36c8b586 2118 struct task_struct *task;
1da177e4 2119 int dest_cpu;
70b97a7f 2120};
1da177e4 2121
969c7921
TH
2122static int migration_cpu_stop(void *data);
2123
1da177e4
LT
2124/*
2125 * The task's runqueue lock must be held.
2126 * Returns true if you have to wait for migration thread.
2127 */
b7a2b39d 2128static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2129{
1da177e4
LT
2130 /*
2131 * If the task is not on a runqueue (and not running), then
e2912009 2132 * the next wake-up will properly place the task.
1da177e4 2133 */
969c7921 2134 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2135}
2136
2137/*
2138 * wait_task_inactive - wait for a thread to unschedule.
2139 *
85ba2d86
RM
2140 * If @match_state is nonzero, it's the @p->state value just checked and
2141 * not expected to change. If it changes, i.e. @p might have woken up,
2142 * then return zero. When we succeed in waiting for @p to be off its CPU,
2143 * we return a positive number (its total switch count). If a second call
2144 * a short while later returns the same number, the caller can be sure that
2145 * @p has remained unscheduled the whole time.
2146 *
1da177e4
LT
2147 * The caller must ensure that the task *will* unschedule sometime soon,
2148 * else this function might spin for a *long* time. This function can't
2149 * be called with interrupts off, or it may introduce deadlock with
2150 * smp_call_function() if an IPI is sent by the same process we are
2151 * waiting to become inactive.
2152 */
85ba2d86 2153unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2154{
2155 unsigned long flags;
dd41f596 2156 int running, on_rq;
85ba2d86 2157 unsigned long ncsw;
70b97a7f 2158 struct rq *rq;
1da177e4 2159
3a5c359a
AK
2160 for (;;) {
2161 /*
2162 * We do the initial early heuristics without holding
2163 * any task-queue locks at all. We'll only try to get
2164 * the runqueue lock when things look like they will
2165 * work out!
2166 */
2167 rq = task_rq(p);
fa490cfd 2168
3a5c359a
AK
2169 /*
2170 * If the task is actively running on another CPU
2171 * still, just relax and busy-wait without holding
2172 * any locks.
2173 *
2174 * NOTE! Since we don't hold any locks, it's not
2175 * even sure that "rq" stays as the right runqueue!
2176 * But we don't care, since "task_running()" will
2177 * return false if the runqueue has changed and p
2178 * is actually now running somewhere else!
2179 */
85ba2d86
RM
2180 while (task_running(rq, p)) {
2181 if (match_state && unlikely(p->state != match_state))
2182 return 0;
3a5c359a 2183 cpu_relax();
85ba2d86 2184 }
fa490cfd 2185
3a5c359a
AK
2186 /*
2187 * Ok, time to look more closely! We need the rq
2188 * lock now, to be *sure*. If we're wrong, we'll
2189 * just go back and repeat.
2190 */
2191 rq = task_rq_lock(p, &flags);
27a9da65 2192 trace_sched_wait_task(p);
3a5c359a
AK
2193 running = task_running(rq, p);
2194 on_rq = p->se.on_rq;
85ba2d86 2195 ncsw = 0;
f31e11d8 2196 if (!match_state || p->state == match_state)
93dcf55f 2197 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2198 task_rq_unlock(rq, &flags);
fa490cfd 2199
85ba2d86
RM
2200 /*
2201 * If it changed from the expected state, bail out now.
2202 */
2203 if (unlikely(!ncsw))
2204 break;
2205
3a5c359a
AK
2206 /*
2207 * Was it really running after all now that we
2208 * checked with the proper locks actually held?
2209 *
2210 * Oops. Go back and try again..
2211 */
2212 if (unlikely(running)) {
2213 cpu_relax();
2214 continue;
2215 }
fa490cfd 2216
3a5c359a
AK
2217 /*
2218 * It's not enough that it's not actively running,
2219 * it must be off the runqueue _entirely_, and not
2220 * preempted!
2221 *
80dd99b3 2222 * So if it was still runnable (but just not actively
3a5c359a
AK
2223 * running right now), it's preempted, and we should
2224 * yield - it could be a while.
2225 */
2226 if (unlikely(on_rq)) {
2227 schedule_timeout_uninterruptible(1);
2228 continue;
2229 }
fa490cfd 2230
3a5c359a
AK
2231 /*
2232 * Ahh, all good. It wasn't running, and it wasn't
2233 * runnable, which means that it will never become
2234 * running in the future either. We're all done!
2235 */
2236 break;
2237 }
85ba2d86
RM
2238
2239 return ncsw;
1da177e4
LT
2240}
2241
2242/***
2243 * kick_process - kick a running thread to enter/exit the kernel
2244 * @p: the to-be-kicked thread
2245 *
2246 * Cause a process which is running on another CPU to enter
2247 * kernel-mode, without any delay. (to get signals handled.)
2248 *
2249 * NOTE: this function doesnt have to take the runqueue lock,
2250 * because all it wants to ensure is that the remote task enters
2251 * the kernel. If the IPI races and the task has been migrated
2252 * to another CPU then no harm is done and the purpose has been
2253 * achieved as well.
2254 */
36c8b586 2255void kick_process(struct task_struct *p)
1da177e4
LT
2256{
2257 int cpu;
2258
2259 preempt_disable();
2260 cpu = task_cpu(p);
2261 if ((cpu != smp_processor_id()) && task_curr(p))
2262 smp_send_reschedule(cpu);
2263 preempt_enable();
2264}
b43e3521 2265EXPORT_SYMBOL_GPL(kick_process);
476d139c 2266#endif /* CONFIG_SMP */
1da177e4 2267
0793a61d
TG
2268/**
2269 * task_oncpu_function_call - call a function on the cpu on which a task runs
2270 * @p: the task to evaluate
2271 * @func: the function to be called
2272 * @info: the function call argument
2273 *
2274 * Calls the function @func when the task is currently running. This might
2275 * be on the current CPU, which just calls the function directly
2276 */
2277void task_oncpu_function_call(struct task_struct *p,
2278 void (*func) (void *info), void *info)
2279{
2280 int cpu;
2281
2282 preempt_disable();
2283 cpu = task_cpu(p);
2284 if (task_curr(p))
2285 smp_call_function_single(cpu, func, info, 1);
2286 preempt_enable();
2287}
2288
970b13ba 2289#ifdef CONFIG_SMP
30da688e
ON
2290/*
2291 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2292 */
5da9a0fb
PZ
2293static int select_fallback_rq(int cpu, struct task_struct *p)
2294{
2295 int dest_cpu;
2296 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2297
2298 /* Look for allowed, online CPU in same node. */
2299 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2300 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2301 return dest_cpu;
2302
2303 /* Any allowed, online CPU? */
2304 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2305 if (dest_cpu < nr_cpu_ids)
2306 return dest_cpu;
2307
2308 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2309 dest_cpu = cpuset_cpus_allowed_fallback(p);
2310 /*
2311 * Don't tell them about moving exiting tasks or
2312 * kernel threads (both mm NULL), since they never
2313 * leave kernel.
2314 */
2315 if (p->mm && printk_ratelimit()) {
2316 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2317 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2318 }
2319
2320 return dest_cpu;
2321}
2322
e2912009 2323/*
30da688e 2324 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2325 */
970b13ba 2326static inline
0017d735 2327int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2328{
0017d735 2329 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2330
2331 /*
2332 * In order not to call set_task_cpu() on a blocking task we need
2333 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2334 * cpu.
2335 *
2336 * Since this is common to all placement strategies, this lives here.
2337 *
2338 * [ this allows ->select_task() to simply return task_cpu(p) and
2339 * not worry about this generic constraint ]
2340 */
2341 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2342 !cpu_online(cpu)))
5da9a0fb 2343 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2344
2345 return cpu;
970b13ba 2346}
09a40af5
MG
2347
2348static void update_avg(u64 *avg, u64 sample)
2349{
2350 s64 diff = sample - *avg;
2351 *avg += diff >> 3;
2352}
970b13ba
PZ
2353#endif
2354
9ed3811a
TH
2355static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2356 bool is_sync, bool is_migrate, bool is_local,
2357 unsigned long en_flags)
2358{
2359 schedstat_inc(p, se.statistics.nr_wakeups);
2360 if (is_sync)
2361 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2362 if (is_migrate)
2363 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2364 if (is_local)
2365 schedstat_inc(p, se.statistics.nr_wakeups_local);
2366 else
2367 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2368
2369 activate_task(rq, p, en_flags);
2370}
2371
2372static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2373 int wake_flags, bool success)
2374{
2375 trace_sched_wakeup(p, success);
2376 check_preempt_curr(rq, p, wake_flags);
2377
2378 p->state = TASK_RUNNING;
2379#ifdef CONFIG_SMP
2380 if (p->sched_class->task_woken)
2381 p->sched_class->task_woken(rq, p);
2382
2383 if (unlikely(rq->idle_stamp)) {
2384 u64 delta = rq->clock - rq->idle_stamp;
2385 u64 max = 2*sysctl_sched_migration_cost;
2386
2387 if (delta > max)
2388 rq->avg_idle = max;
2389 else
2390 update_avg(&rq->avg_idle, delta);
2391 rq->idle_stamp = 0;
2392 }
2393#endif
21aa9af0
TH
2394 /* if a worker is waking up, notify workqueue */
2395 if ((p->flags & PF_WQ_WORKER) && success)
2396 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2397}
2398
2399/**
1da177e4 2400 * try_to_wake_up - wake up a thread
9ed3811a 2401 * @p: the thread to be awakened
1da177e4 2402 * @state: the mask of task states that can be woken
9ed3811a 2403 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2404 *
2405 * Put it on the run-queue if it's not already there. The "current"
2406 * thread is always on the run-queue (except when the actual
2407 * re-schedule is in progress), and as such you're allowed to do
2408 * the simpler "current->state = TASK_RUNNING" to mark yourself
2409 * runnable without the overhead of this.
2410 *
9ed3811a
TH
2411 * Returns %true if @p was woken up, %false if it was already running
2412 * or @state didn't match @p's state.
1da177e4 2413 */
7d478721
PZ
2414static int try_to_wake_up(struct task_struct *p, unsigned int state,
2415 int wake_flags)
1da177e4 2416{
cc367732 2417 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2418 unsigned long flags;
371fd7e7 2419 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2420 struct rq *rq;
1da177e4 2421
e9c84311 2422 this_cpu = get_cpu();
2398f2c6 2423
04e2f174 2424 smp_wmb();
ab3b3aa5 2425 rq = task_rq_lock(p, &flags);
e9c84311 2426 if (!(p->state & state))
1da177e4
LT
2427 goto out;
2428
dd41f596 2429 if (p->se.on_rq)
1da177e4
LT
2430 goto out_running;
2431
2432 cpu = task_cpu(p);
cc367732 2433 orig_cpu = cpu;
1da177e4
LT
2434
2435#ifdef CONFIG_SMP
2436 if (unlikely(task_running(rq, p)))
2437 goto out_activate;
2438
e9c84311
PZ
2439 /*
2440 * In order to handle concurrent wakeups and release the rq->lock
2441 * we put the task in TASK_WAKING state.
eb24073b
IM
2442 *
2443 * First fix up the nr_uninterruptible count:
e9c84311 2444 */
cc87f76a
PZ
2445 if (task_contributes_to_load(p)) {
2446 if (likely(cpu_online(orig_cpu)))
2447 rq->nr_uninterruptible--;
2448 else
2449 this_rq()->nr_uninterruptible--;
2450 }
e9c84311 2451 p->state = TASK_WAKING;
efbbd05a 2452
371fd7e7 2453 if (p->sched_class->task_waking) {
efbbd05a 2454 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2455 en_flags |= ENQUEUE_WAKING;
2456 }
efbbd05a 2457
0017d735
PZ
2458 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2459 if (cpu != orig_cpu)
5d2f5a61 2460 set_task_cpu(p, cpu);
0017d735 2461 __task_rq_unlock(rq);
ab19cb23 2462
0970d299
PZ
2463 rq = cpu_rq(cpu);
2464 raw_spin_lock(&rq->lock);
f5dc3753 2465
0970d299
PZ
2466 /*
2467 * We migrated the task without holding either rq->lock, however
2468 * since the task is not on the task list itself, nobody else
2469 * will try and migrate the task, hence the rq should match the
2470 * cpu we just moved it to.
2471 */
2472 WARN_ON(task_cpu(p) != cpu);
e9c84311 2473 WARN_ON(p->state != TASK_WAKING);
1da177e4 2474
e7693a36
GH
2475#ifdef CONFIG_SCHEDSTATS
2476 schedstat_inc(rq, ttwu_count);
2477 if (cpu == this_cpu)
2478 schedstat_inc(rq, ttwu_local);
2479 else {
2480 struct sched_domain *sd;
2481 for_each_domain(this_cpu, sd) {
758b2cdc 2482 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2483 schedstat_inc(sd, ttwu_wake_remote);
2484 break;
2485 }
2486 }
2487 }
6d6bc0ad 2488#endif /* CONFIG_SCHEDSTATS */
e7693a36 2489
1da177e4
LT
2490out_activate:
2491#endif /* CONFIG_SMP */
9ed3811a
TH
2492 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2493 cpu == this_cpu, en_flags);
1da177e4 2494 success = 1;
1da177e4 2495out_running:
9ed3811a 2496 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2497out:
2498 task_rq_unlock(rq, &flags);
e9c84311 2499 put_cpu();
1da177e4
LT
2500
2501 return success;
2502}
2503
21aa9af0
TH
2504/**
2505 * try_to_wake_up_local - try to wake up a local task with rq lock held
2506 * @p: the thread to be awakened
2507 *
b595076a 2508 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2509 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2510 * the current task. this_rq() stays locked over invocation.
2511 */
2512static void try_to_wake_up_local(struct task_struct *p)
2513{
2514 struct rq *rq = task_rq(p);
2515 bool success = false;
2516
2517 BUG_ON(rq != this_rq());
2518 BUG_ON(p == current);
2519 lockdep_assert_held(&rq->lock);
2520
2521 if (!(p->state & TASK_NORMAL))
2522 return;
2523
2524 if (!p->se.on_rq) {
2525 if (likely(!task_running(rq, p))) {
2526 schedstat_inc(rq, ttwu_count);
2527 schedstat_inc(rq, ttwu_local);
2528 }
2529 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2530 success = true;
2531 }
2532 ttwu_post_activation(p, rq, 0, success);
2533}
2534
50fa610a
DH
2535/**
2536 * wake_up_process - Wake up a specific process
2537 * @p: The process to be woken up.
2538 *
2539 * Attempt to wake up the nominated process and move it to the set of runnable
2540 * processes. Returns 1 if the process was woken up, 0 if it was already
2541 * running.
2542 *
2543 * It may be assumed that this function implies a write memory barrier before
2544 * changing the task state if and only if any tasks are woken up.
2545 */
7ad5b3a5 2546int wake_up_process(struct task_struct *p)
1da177e4 2547{
d9514f6c 2548 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2549}
1da177e4
LT
2550EXPORT_SYMBOL(wake_up_process);
2551
7ad5b3a5 2552int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2553{
2554 return try_to_wake_up(p, state, 0);
2555}
2556
1da177e4
LT
2557/*
2558 * Perform scheduler related setup for a newly forked process p.
2559 * p is forked by current.
dd41f596
IM
2560 *
2561 * __sched_fork() is basic setup used by init_idle() too:
2562 */
2563static void __sched_fork(struct task_struct *p)
2564{
dd41f596
IM
2565 p->se.exec_start = 0;
2566 p->se.sum_exec_runtime = 0;
f6cf891c 2567 p->se.prev_sum_exec_runtime = 0;
6c594c21 2568 p->se.nr_migrations = 0;
6cfb0d5d
IM
2569
2570#ifdef CONFIG_SCHEDSTATS
41acab88 2571 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2572#endif
476d139c 2573
fa717060 2574 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2575 p->se.on_rq = 0;
4a55bd5e 2576 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2577
e107be36
AK
2578#ifdef CONFIG_PREEMPT_NOTIFIERS
2579 INIT_HLIST_HEAD(&p->preempt_notifiers);
2580#endif
dd41f596
IM
2581}
2582
2583/*
2584 * fork()/clone()-time setup:
2585 */
2586void sched_fork(struct task_struct *p, int clone_flags)
2587{
2588 int cpu = get_cpu();
2589
2590 __sched_fork(p);
06b83b5f 2591 /*
0017d735 2592 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2593 * nobody will actually run it, and a signal or other external
2594 * event cannot wake it up and insert it on the runqueue either.
2595 */
0017d735 2596 p->state = TASK_RUNNING;
dd41f596 2597
b9dc29e7
MG
2598 /*
2599 * Revert to default priority/policy on fork if requested.
2600 */
2601 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2602 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2603 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2604 p->normal_prio = p->static_prio;
2605 }
b9dc29e7 2606
6c697bdf
MG
2607 if (PRIO_TO_NICE(p->static_prio) < 0) {
2608 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2609 p->normal_prio = p->static_prio;
6c697bdf
MG
2610 set_load_weight(p);
2611 }
2612
b9dc29e7
MG
2613 /*
2614 * We don't need the reset flag anymore after the fork. It has
2615 * fulfilled its duty:
2616 */
2617 p->sched_reset_on_fork = 0;
2618 }
ca94c442 2619
f83f9ac2
PW
2620 /*
2621 * Make sure we do not leak PI boosting priority to the child.
2622 */
2623 p->prio = current->normal_prio;
2624
2ddbf952
HS
2625 if (!rt_prio(p->prio))
2626 p->sched_class = &fair_sched_class;
b29739f9 2627
cd29fe6f
PZ
2628 if (p->sched_class->task_fork)
2629 p->sched_class->task_fork(p);
2630
86951599
PZ
2631 /*
2632 * The child is not yet in the pid-hash so no cgroup attach races,
2633 * and the cgroup is pinned to this child due to cgroup_fork()
2634 * is ran before sched_fork().
2635 *
2636 * Silence PROVE_RCU.
2637 */
2638 rcu_read_lock();
5f3edc1b 2639 set_task_cpu(p, cpu);
86951599 2640 rcu_read_unlock();
5f3edc1b 2641
52f17b6c 2642#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2643 if (likely(sched_info_on()))
52f17b6c 2644 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2645#endif
d6077cb8 2646#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2647 p->oncpu = 0;
2648#endif
1da177e4 2649#ifdef CONFIG_PREEMPT
4866cde0 2650 /* Want to start with kernel preemption disabled. */
a1261f54 2651 task_thread_info(p)->preempt_count = 1;
1da177e4 2652#endif
806c09a7 2653#ifdef CONFIG_SMP
917b627d 2654 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2655#endif
917b627d 2656
476d139c 2657 put_cpu();
1da177e4
LT
2658}
2659
2660/*
2661 * wake_up_new_task - wake up a newly created task for the first time.
2662 *
2663 * This function will do some initial scheduler statistics housekeeping
2664 * that must be done for every newly created context, then puts the task
2665 * on the runqueue and wakes it.
2666 */
7ad5b3a5 2667void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2668{
2669 unsigned long flags;
dd41f596 2670 struct rq *rq;
c890692b 2671 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2672
2673#ifdef CONFIG_SMP
0017d735
PZ
2674 rq = task_rq_lock(p, &flags);
2675 p->state = TASK_WAKING;
2676
fabf318e
PZ
2677 /*
2678 * Fork balancing, do it here and not earlier because:
2679 * - cpus_allowed can change in the fork path
2680 * - any previously selected cpu might disappear through hotplug
2681 *
0017d735
PZ
2682 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2683 * without people poking at ->cpus_allowed.
fabf318e 2684 */
0017d735 2685 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2686 set_task_cpu(p, cpu);
1da177e4 2687
06b83b5f 2688 p->state = TASK_RUNNING;
0017d735
PZ
2689 task_rq_unlock(rq, &flags);
2690#endif
2691
2692 rq = task_rq_lock(p, &flags);
cd29fe6f 2693 activate_task(rq, p, 0);
27a9da65 2694 trace_sched_wakeup_new(p, 1);
a7558e01 2695 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2696#ifdef CONFIG_SMP
efbbd05a
PZ
2697 if (p->sched_class->task_woken)
2698 p->sched_class->task_woken(rq, p);
9a897c5a 2699#endif
dd41f596 2700 task_rq_unlock(rq, &flags);
fabf318e 2701 put_cpu();
1da177e4
LT
2702}
2703
e107be36
AK
2704#ifdef CONFIG_PREEMPT_NOTIFIERS
2705
2706/**
80dd99b3 2707 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2708 * @notifier: notifier struct to register
e107be36
AK
2709 */
2710void preempt_notifier_register(struct preempt_notifier *notifier)
2711{
2712 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2713}
2714EXPORT_SYMBOL_GPL(preempt_notifier_register);
2715
2716/**
2717 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2718 * @notifier: notifier struct to unregister
e107be36
AK
2719 *
2720 * This is safe to call from within a preemption notifier.
2721 */
2722void preempt_notifier_unregister(struct preempt_notifier *notifier)
2723{
2724 hlist_del(&notifier->link);
2725}
2726EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2727
2728static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2729{
2730 struct preempt_notifier *notifier;
2731 struct hlist_node *node;
2732
2733 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2734 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2735}
2736
2737static void
2738fire_sched_out_preempt_notifiers(struct task_struct *curr,
2739 struct task_struct *next)
2740{
2741 struct preempt_notifier *notifier;
2742 struct hlist_node *node;
2743
2744 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2745 notifier->ops->sched_out(notifier, next);
2746}
2747
6d6bc0ad 2748#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2749
2750static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2751{
2752}
2753
2754static void
2755fire_sched_out_preempt_notifiers(struct task_struct *curr,
2756 struct task_struct *next)
2757{
2758}
2759
6d6bc0ad 2760#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2761
4866cde0
NP
2762/**
2763 * prepare_task_switch - prepare to switch tasks
2764 * @rq: the runqueue preparing to switch
421cee29 2765 * @prev: the current task that is being switched out
4866cde0
NP
2766 * @next: the task we are going to switch to.
2767 *
2768 * This is called with the rq lock held and interrupts off. It must
2769 * be paired with a subsequent finish_task_switch after the context
2770 * switch.
2771 *
2772 * prepare_task_switch sets up locking and calls architecture specific
2773 * hooks.
2774 */
e107be36
AK
2775static inline void
2776prepare_task_switch(struct rq *rq, struct task_struct *prev,
2777 struct task_struct *next)
4866cde0 2778{
e107be36 2779 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2780 prepare_lock_switch(rq, next);
2781 prepare_arch_switch(next);
2782}
2783
1da177e4
LT
2784/**
2785 * finish_task_switch - clean up after a task-switch
344babaa 2786 * @rq: runqueue associated with task-switch
1da177e4
LT
2787 * @prev: the thread we just switched away from.
2788 *
4866cde0
NP
2789 * finish_task_switch must be called after the context switch, paired
2790 * with a prepare_task_switch call before the context switch.
2791 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2792 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2793 *
2794 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2795 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2796 * with the lock held can cause deadlocks; see schedule() for
2797 * details.)
2798 */
a9957449 2799static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2800 __releases(rq->lock)
2801{
1da177e4 2802 struct mm_struct *mm = rq->prev_mm;
55a101f8 2803 long prev_state;
1da177e4
LT
2804
2805 rq->prev_mm = NULL;
2806
2807 /*
2808 * A task struct has one reference for the use as "current".
c394cc9f 2809 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2810 * schedule one last time. The schedule call will never return, and
2811 * the scheduled task must drop that reference.
c394cc9f 2812 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2813 * still held, otherwise prev could be scheduled on another cpu, die
2814 * there before we look at prev->state, and then the reference would
2815 * be dropped twice.
2816 * Manfred Spraul <manfred@colorfullife.com>
2817 */
55a101f8 2818 prev_state = prev->state;
4866cde0 2819 finish_arch_switch(prev);
8381f65d
JI
2820#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2821 local_irq_disable();
2822#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2823 perf_event_task_sched_in(current);
8381f65d
JI
2824#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2825 local_irq_enable();
2826#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2827 finish_lock_switch(rq, prev);
e8fa1362 2828
e107be36 2829 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2830 if (mm)
2831 mmdrop(mm);
c394cc9f 2832 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2833 /*
2834 * Remove function-return probe instances associated with this
2835 * task and put them back on the free list.
9761eea8 2836 */
c6fd91f0 2837 kprobe_flush_task(prev);
1da177e4 2838 put_task_struct(prev);
c6fd91f0 2839 }
1da177e4
LT
2840}
2841
3f029d3c
GH
2842#ifdef CONFIG_SMP
2843
2844/* assumes rq->lock is held */
2845static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2846{
2847 if (prev->sched_class->pre_schedule)
2848 prev->sched_class->pre_schedule(rq, prev);
2849}
2850
2851/* rq->lock is NOT held, but preemption is disabled */
2852static inline void post_schedule(struct rq *rq)
2853{
2854 if (rq->post_schedule) {
2855 unsigned long flags;
2856
05fa785c 2857 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2858 if (rq->curr->sched_class->post_schedule)
2859 rq->curr->sched_class->post_schedule(rq);
05fa785c 2860 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2861
2862 rq->post_schedule = 0;
2863 }
2864}
2865
2866#else
da19ab51 2867
3f029d3c
GH
2868static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2869{
2870}
2871
2872static inline void post_schedule(struct rq *rq)
2873{
1da177e4
LT
2874}
2875
3f029d3c
GH
2876#endif
2877
1da177e4
LT
2878/**
2879 * schedule_tail - first thing a freshly forked thread must call.
2880 * @prev: the thread we just switched away from.
2881 */
36c8b586 2882asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2883 __releases(rq->lock)
2884{
70b97a7f
IM
2885 struct rq *rq = this_rq();
2886
4866cde0 2887 finish_task_switch(rq, prev);
da19ab51 2888
3f029d3c
GH
2889 /*
2890 * FIXME: do we need to worry about rq being invalidated by the
2891 * task_switch?
2892 */
2893 post_schedule(rq);
70b97a7f 2894
4866cde0
NP
2895#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2896 /* In this case, finish_task_switch does not reenable preemption */
2897 preempt_enable();
2898#endif
1da177e4 2899 if (current->set_child_tid)
b488893a 2900 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2901}
2902
2903/*
2904 * context_switch - switch to the new MM and the new
2905 * thread's register state.
2906 */
dd41f596 2907static inline void
70b97a7f 2908context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2909 struct task_struct *next)
1da177e4 2910{
dd41f596 2911 struct mm_struct *mm, *oldmm;
1da177e4 2912
e107be36 2913 prepare_task_switch(rq, prev, next);
27a9da65 2914 trace_sched_switch(prev, next);
dd41f596
IM
2915 mm = next->mm;
2916 oldmm = prev->active_mm;
9226d125
ZA
2917 /*
2918 * For paravirt, this is coupled with an exit in switch_to to
2919 * combine the page table reload and the switch backend into
2920 * one hypercall.
2921 */
224101ed 2922 arch_start_context_switch(prev);
9226d125 2923
31915ab4 2924 if (!mm) {
1da177e4
LT
2925 next->active_mm = oldmm;
2926 atomic_inc(&oldmm->mm_count);
2927 enter_lazy_tlb(oldmm, next);
2928 } else
2929 switch_mm(oldmm, mm, next);
2930
31915ab4 2931 if (!prev->mm) {
1da177e4 2932 prev->active_mm = NULL;
1da177e4
LT
2933 rq->prev_mm = oldmm;
2934 }
3a5f5e48
IM
2935 /*
2936 * Since the runqueue lock will be released by the next
2937 * task (which is an invalid locking op but in the case
2938 * of the scheduler it's an obvious special-case), so we
2939 * do an early lockdep release here:
2940 */
2941#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2942 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2943#endif
1da177e4
LT
2944
2945 /* Here we just switch the register state and the stack. */
2946 switch_to(prev, next, prev);
2947
dd41f596
IM
2948 barrier();
2949 /*
2950 * this_rq must be evaluated again because prev may have moved
2951 * CPUs since it called schedule(), thus the 'rq' on its stack
2952 * frame will be invalid.
2953 */
2954 finish_task_switch(this_rq(), prev);
1da177e4
LT
2955}
2956
2957/*
2958 * nr_running, nr_uninterruptible and nr_context_switches:
2959 *
2960 * externally visible scheduler statistics: current number of runnable
2961 * threads, current number of uninterruptible-sleeping threads, total
2962 * number of context switches performed since bootup.
2963 */
2964unsigned long nr_running(void)
2965{
2966 unsigned long i, sum = 0;
2967
2968 for_each_online_cpu(i)
2969 sum += cpu_rq(i)->nr_running;
2970
2971 return sum;
f711f609 2972}
1da177e4
LT
2973
2974unsigned long nr_uninterruptible(void)
f711f609 2975{
1da177e4 2976 unsigned long i, sum = 0;
f711f609 2977
0a945022 2978 for_each_possible_cpu(i)
1da177e4 2979 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2980
2981 /*
1da177e4
LT
2982 * Since we read the counters lockless, it might be slightly
2983 * inaccurate. Do not allow it to go below zero though:
f711f609 2984 */
1da177e4
LT
2985 if (unlikely((long)sum < 0))
2986 sum = 0;
f711f609 2987
1da177e4 2988 return sum;
f711f609 2989}
f711f609 2990
1da177e4 2991unsigned long long nr_context_switches(void)
46cb4b7c 2992{
cc94abfc
SR
2993 int i;
2994 unsigned long long sum = 0;
46cb4b7c 2995
0a945022 2996 for_each_possible_cpu(i)
1da177e4 2997 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2998
1da177e4
LT
2999 return sum;
3000}
483b4ee6 3001
1da177e4
LT
3002unsigned long nr_iowait(void)
3003{
3004 unsigned long i, sum = 0;
483b4ee6 3005
0a945022 3006 for_each_possible_cpu(i)
1da177e4 3007 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3008
1da177e4
LT
3009 return sum;
3010}
483b4ee6 3011
8c215bd3 3012unsigned long nr_iowait_cpu(int cpu)
69d25870 3013{
8c215bd3 3014 struct rq *this = cpu_rq(cpu);
69d25870
AV
3015 return atomic_read(&this->nr_iowait);
3016}
46cb4b7c 3017
69d25870
AV
3018unsigned long this_cpu_load(void)
3019{
3020 struct rq *this = this_rq();
3021 return this->cpu_load[0];
3022}
e790fb0b 3023
46cb4b7c 3024
dce48a84
TG
3025/* Variables and functions for calc_load */
3026static atomic_long_t calc_load_tasks;
3027static unsigned long calc_load_update;
3028unsigned long avenrun[3];
3029EXPORT_SYMBOL(avenrun);
46cb4b7c 3030
74f5187a
PZ
3031static long calc_load_fold_active(struct rq *this_rq)
3032{
3033 long nr_active, delta = 0;
3034
3035 nr_active = this_rq->nr_running;
3036 nr_active += (long) this_rq->nr_uninterruptible;
3037
3038 if (nr_active != this_rq->calc_load_active) {
3039 delta = nr_active - this_rq->calc_load_active;
3040 this_rq->calc_load_active = nr_active;
3041 }
3042
3043 return delta;
3044}
3045
0f004f5a
PZ
3046static unsigned long
3047calc_load(unsigned long load, unsigned long exp, unsigned long active)
3048{
3049 load *= exp;
3050 load += active * (FIXED_1 - exp);
3051 load += 1UL << (FSHIFT - 1);
3052 return load >> FSHIFT;
3053}
3054
74f5187a
PZ
3055#ifdef CONFIG_NO_HZ
3056/*
3057 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3058 *
3059 * When making the ILB scale, we should try to pull this in as well.
3060 */
3061static atomic_long_t calc_load_tasks_idle;
3062
3063static void calc_load_account_idle(struct rq *this_rq)
3064{
3065 long delta;
3066
3067 delta = calc_load_fold_active(this_rq);
3068 if (delta)
3069 atomic_long_add(delta, &calc_load_tasks_idle);
3070}
3071
3072static long calc_load_fold_idle(void)
3073{
3074 long delta = 0;
3075
3076 /*
3077 * Its got a race, we don't care...
3078 */
3079 if (atomic_long_read(&calc_load_tasks_idle))
3080 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3081
3082 return delta;
3083}
0f004f5a
PZ
3084
3085/**
3086 * fixed_power_int - compute: x^n, in O(log n) time
3087 *
3088 * @x: base of the power
3089 * @frac_bits: fractional bits of @x
3090 * @n: power to raise @x to.
3091 *
3092 * By exploiting the relation between the definition of the natural power
3093 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3094 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3095 * (where: n_i \elem {0, 1}, the binary vector representing n),
3096 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3097 * of course trivially computable in O(log_2 n), the length of our binary
3098 * vector.
3099 */
3100static unsigned long
3101fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3102{
3103 unsigned long result = 1UL << frac_bits;
3104
3105 if (n) for (;;) {
3106 if (n & 1) {
3107 result *= x;
3108 result += 1UL << (frac_bits - 1);
3109 result >>= frac_bits;
3110 }
3111 n >>= 1;
3112 if (!n)
3113 break;
3114 x *= x;
3115 x += 1UL << (frac_bits - 1);
3116 x >>= frac_bits;
3117 }
3118
3119 return result;
3120}
3121
3122/*
3123 * a1 = a0 * e + a * (1 - e)
3124 *
3125 * a2 = a1 * e + a * (1 - e)
3126 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3127 * = a0 * e^2 + a * (1 - e) * (1 + e)
3128 *
3129 * a3 = a2 * e + a * (1 - e)
3130 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3131 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3132 *
3133 * ...
3134 *
3135 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3136 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3137 * = a0 * e^n + a * (1 - e^n)
3138 *
3139 * [1] application of the geometric series:
3140 *
3141 * n 1 - x^(n+1)
3142 * S_n := \Sum x^i = -------------
3143 * i=0 1 - x
3144 */
3145static unsigned long
3146calc_load_n(unsigned long load, unsigned long exp,
3147 unsigned long active, unsigned int n)
3148{
3149
3150 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3151}
3152
3153/*
3154 * NO_HZ can leave us missing all per-cpu ticks calling
3155 * calc_load_account_active(), but since an idle CPU folds its delta into
3156 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3157 * in the pending idle delta if our idle period crossed a load cycle boundary.
3158 *
3159 * Once we've updated the global active value, we need to apply the exponential
3160 * weights adjusted to the number of cycles missed.
3161 */
3162static void calc_global_nohz(unsigned long ticks)
3163{
3164 long delta, active, n;
3165
3166 if (time_before(jiffies, calc_load_update))
3167 return;
3168
3169 /*
3170 * If we crossed a calc_load_update boundary, make sure to fold
3171 * any pending idle changes, the respective CPUs might have
3172 * missed the tick driven calc_load_account_active() update
3173 * due to NO_HZ.
3174 */
3175 delta = calc_load_fold_idle();
3176 if (delta)
3177 atomic_long_add(delta, &calc_load_tasks);
3178
3179 /*
3180 * If we were idle for multiple load cycles, apply them.
3181 */
3182 if (ticks >= LOAD_FREQ) {
3183 n = ticks / LOAD_FREQ;
3184
3185 active = atomic_long_read(&calc_load_tasks);
3186 active = active > 0 ? active * FIXED_1 : 0;
3187
3188 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3189 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3190 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3191
3192 calc_load_update += n * LOAD_FREQ;
3193 }
3194
3195 /*
3196 * Its possible the remainder of the above division also crosses
3197 * a LOAD_FREQ period, the regular check in calc_global_load()
3198 * which comes after this will take care of that.
3199 *
3200 * Consider us being 11 ticks before a cycle completion, and us
3201 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3202 * age us 4 cycles, and the test in calc_global_load() will
3203 * pick up the final one.
3204 */
3205}
74f5187a
PZ
3206#else
3207static void calc_load_account_idle(struct rq *this_rq)
3208{
3209}
3210
3211static inline long calc_load_fold_idle(void)
3212{
3213 return 0;
3214}
0f004f5a
PZ
3215
3216static void calc_global_nohz(unsigned long ticks)
3217{
3218}
74f5187a
PZ
3219#endif
3220
2d02494f
TG
3221/**
3222 * get_avenrun - get the load average array
3223 * @loads: pointer to dest load array
3224 * @offset: offset to add
3225 * @shift: shift count to shift the result left
3226 *
3227 * These values are estimates at best, so no need for locking.
3228 */
3229void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3230{
3231 loads[0] = (avenrun[0] + offset) << shift;
3232 loads[1] = (avenrun[1] + offset) << shift;
3233 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3234}
46cb4b7c 3235
46cb4b7c 3236/*
dce48a84
TG
3237 * calc_load - update the avenrun load estimates 10 ticks after the
3238 * CPUs have updated calc_load_tasks.
7835b98b 3239 */
0f004f5a 3240void calc_global_load(unsigned long ticks)
7835b98b 3241{
dce48a84 3242 long active;
1da177e4 3243
0f004f5a
PZ
3244 calc_global_nohz(ticks);
3245
3246 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3247 return;
1da177e4 3248
dce48a84
TG
3249 active = atomic_long_read(&calc_load_tasks);
3250 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3251
dce48a84
TG
3252 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3253 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3254 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3255
dce48a84
TG
3256 calc_load_update += LOAD_FREQ;
3257}
1da177e4 3258
dce48a84 3259/*
74f5187a
PZ
3260 * Called from update_cpu_load() to periodically update this CPU's
3261 * active count.
dce48a84
TG
3262 */
3263static void calc_load_account_active(struct rq *this_rq)
3264{
74f5187a 3265 long delta;
08c183f3 3266
74f5187a
PZ
3267 if (time_before(jiffies, this_rq->calc_load_update))
3268 return;
783609c6 3269
74f5187a
PZ
3270 delta = calc_load_fold_active(this_rq);
3271 delta += calc_load_fold_idle();
3272 if (delta)
dce48a84 3273 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3274
3275 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3276}
3277
fdf3e95d
VP
3278/*
3279 * The exact cpuload at various idx values, calculated at every tick would be
3280 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3281 *
3282 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3283 * on nth tick when cpu may be busy, then we have:
3284 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3285 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3286 *
3287 * decay_load_missed() below does efficient calculation of
3288 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3289 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3290 *
3291 * The calculation is approximated on a 128 point scale.
3292 * degrade_zero_ticks is the number of ticks after which load at any
3293 * particular idx is approximated to be zero.
3294 * degrade_factor is a precomputed table, a row for each load idx.
3295 * Each column corresponds to degradation factor for a power of two ticks,
3296 * based on 128 point scale.
3297 * Example:
3298 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3299 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3300 *
3301 * With this power of 2 load factors, we can degrade the load n times
3302 * by looking at 1 bits in n and doing as many mult/shift instead of
3303 * n mult/shifts needed by the exact degradation.
3304 */
3305#define DEGRADE_SHIFT 7
3306static const unsigned char
3307 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3308static const unsigned char
3309 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3310 {0, 0, 0, 0, 0, 0, 0, 0},
3311 {64, 32, 8, 0, 0, 0, 0, 0},
3312 {96, 72, 40, 12, 1, 0, 0},
3313 {112, 98, 75, 43, 15, 1, 0},
3314 {120, 112, 98, 76, 45, 16, 2} };
3315
3316/*
3317 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3318 * would be when CPU is idle and so we just decay the old load without
3319 * adding any new load.
3320 */
3321static unsigned long
3322decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3323{
3324 int j = 0;
3325
3326 if (!missed_updates)
3327 return load;
3328
3329 if (missed_updates >= degrade_zero_ticks[idx])
3330 return 0;
3331
3332 if (idx == 1)
3333 return load >> missed_updates;
3334
3335 while (missed_updates) {
3336 if (missed_updates % 2)
3337 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3338
3339 missed_updates >>= 1;
3340 j++;
3341 }
3342 return load;
3343}
3344
46cb4b7c 3345/*
dd41f596 3346 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3347 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3348 * every tick. We fix it up based on jiffies.
46cb4b7c 3349 */
dd41f596 3350static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3351{
495eca49 3352 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3353 unsigned long curr_jiffies = jiffies;
3354 unsigned long pending_updates;
dd41f596 3355 int i, scale;
46cb4b7c 3356
dd41f596 3357 this_rq->nr_load_updates++;
46cb4b7c 3358
fdf3e95d
VP
3359 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3360 if (curr_jiffies == this_rq->last_load_update_tick)
3361 return;
3362
3363 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3364 this_rq->last_load_update_tick = curr_jiffies;
3365
dd41f596 3366 /* Update our load: */
fdf3e95d
VP
3367 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3368 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3369 unsigned long old_load, new_load;
7d1e6a9b 3370
dd41f596 3371 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3372
dd41f596 3373 old_load = this_rq->cpu_load[i];
fdf3e95d 3374 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3375 new_load = this_load;
a25707f3
IM
3376 /*
3377 * Round up the averaging division if load is increasing. This
3378 * prevents us from getting stuck on 9 if the load is 10, for
3379 * example.
3380 */
3381 if (new_load > old_load)
fdf3e95d
VP
3382 new_load += scale - 1;
3383
3384 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3385 }
da2b71ed
SS
3386
3387 sched_avg_update(this_rq);
fdf3e95d
VP
3388}
3389
3390static void update_cpu_load_active(struct rq *this_rq)
3391{
3392 update_cpu_load(this_rq);
46cb4b7c 3393
74f5187a 3394 calc_load_account_active(this_rq);
46cb4b7c
SS
3395}
3396
dd41f596 3397#ifdef CONFIG_SMP
8a0be9ef 3398
46cb4b7c 3399/*
38022906
PZ
3400 * sched_exec - execve() is a valuable balancing opportunity, because at
3401 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3402 */
38022906 3403void sched_exec(void)
46cb4b7c 3404{
38022906 3405 struct task_struct *p = current;
1da177e4 3406 unsigned long flags;
70b97a7f 3407 struct rq *rq;
0017d735 3408 int dest_cpu;
46cb4b7c 3409
1da177e4 3410 rq = task_rq_lock(p, &flags);
0017d735
PZ
3411 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3412 if (dest_cpu == smp_processor_id())
3413 goto unlock;
38022906 3414
46cb4b7c 3415 /*
38022906 3416 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3417 */
30da688e 3418 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3419 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3420 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3421
1da177e4 3422 task_rq_unlock(rq, &flags);
969c7921 3423 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3424 return;
3425 }
0017d735 3426unlock:
1da177e4 3427 task_rq_unlock(rq, &flags);
1da177e4 3428}
dd41f596 3429
1da177e4
LT
3430#endif
3431
1da177e4
LT
3432DEFINE_PER_CPU(struct kernel_stat, kstat);
3433
3434EXPORT_PER_CPU_SYMBOL(kstat);
3435
3436/*
c5f8d995 3437 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3438 * @p in case that task is currently running.
c5f8d995
HS
3439 *
3440 * Called with task_rq_lock() held on @rq.
1da177e4 3441 */
c5f8d995
HS
3442static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3443{
3444 u64 ns = 0;
3445
3446 if (task_current(rq, p)) {
3447 update_rq_clock(rq);
305e6835 3448 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3449 if ((s64)ns < 0)
3450 ns = 0;
3451 }
3452
3453 return ns;
3454}
3455
bb34d92f 3456unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3457{
1da177e4 3458 unsigned long flags;
41b86e9c 3459 struct rq *rq;
bb34d92f 3460 u64 ns = 0;
48f24c4d 3461
41b86e9c 3462 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3463 ns = do_task_delta_exec(p, rq);
3464 task_rq_unlock(rq, &flags);
1508487e 3465
c5f8d995
HS
3466 return ns;
3467}
f06febc9 3468
c5f8d995
HS
3469/*
3470 * Return accounted runtime for the task.
3471 * In case the task is currently running, return the runtime plus current's
3472 * pending runtime that have not been accounted yet.
3473 */
3474unsigned long long task_sched_runtime(struct task_struct *p)
3475{
3476 unsigned long flags;
3477 struct rq *rq;
3478 u64 ns = 0;
3479
3480 rq = task_rq_lock(p, &flags);
3481 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3482 task_rq_unlock(rq, &flags);
3483
3484 return ns;
3485}
48f24c4d 3486
c5f8d995
HS
3487/*
3488 * Return sum_exec_runtime for the thread group.
3489 * In case the task is currently running, return the sum plus current's
3490 * pending runtime that have not been accounted yet.
3491 *
3492 * Note that the thread group might have other running tasks as well,
3493 * so the return value not includes other pending runtime that other
3494 * running tasks might have.
3495 */
3496unsigned long long thread_group_sched_runtime(struct task_struct *p)
3497{
3498 struct task_cputime totals;
3499 unsigned long flags;
3500 struct rq *rq;
3501 u64 ns;
3502
3503 rq = task_rq_lock(p, &flags);
3504 thread_group_cputime(p, &totals);
3505 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3506 task_rq_unlock(rq, &flags);
48f24c4d 3507
1da177e4
LT
3508 return ns;
3509}
3510
1da177e4
LT
3511/*
3512 * Account user cpu time to a process.
3513 * @p: the process that the cpu time gets accounted to
1da177e4 3514 * @cputime: the cpu time spent in user space since the last update
457533a7 3515 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3516 */
457533a7
MS
3517void account_user_time(struct task_struct *p, cputime_t cputime,
3518 cputime_t cputime_scaled)
1da177e4
LT
3519{
3520 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3521 cputime64_t tmp;
3522
457533a7 3523 /* Add user time to process. */
1da177e4 3524 p->utime = cputime_add(p->utime, cputime);
457533a7 3525 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3526 account_group_user_time(p, cputime);
1da177e4
LT
3527
3528 /* Add user time to cpustat. */
3529 tmp = cputime_to_cputime64(cputime);
3530 if (TASK_NICE(p) > 0)
3531 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3532 else
3533 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3534
3535 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3536 /* Account for user time used */
3537 acct_update_integrals(p);
1da177e4
LT
3538}
3539
94886b84
LV
3540/*
3541 * Account guest cpu time to a process.
3542 * @p: the process that the cpu time gets accounted to
3543 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3544 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3545 */
457533a7
MS
3546static void account_guest_time(struct task_struct *p, cputime_t cputime,
3547 cputime_t cputime_scaled)
94886b84
LV
3548{
3549 cputime64_t tmp;
3550 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3551
3552 tmp = cputime_to_cputime64(cputime);
3553
457533a7 3554 /* Add guest time to process. */
94886b84 3555 p->utime = cputime_add(p->utime, cputime);
457533a7 3556 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3557 account_group_user_time(p, cputime);
94886b84
LV
3558 p->gtime = cputime_add(p->gtime, cputime);
3559
457533a7 3560 /* Add guest time to cpustat. */
ce0e7b28
RO
3561 if (TASK_NICE(p) > 0) {
3562 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3563 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3564 } else {
3565 cpustat->user = cputime64_add(cpustat->user, tmp);
3566 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3567 }
94886b84
LV
3568}
3569
1da177e4
LT
3570/*
3571 * Account system cpu time to a process.
3572 * @p: the process that the cpu time gets accounted to
3573 * @hardirq_offset: the offset to subtract from hardirq_count()
3574 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3575 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3576 */
3577void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3578 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3579{
3580 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3581 cputime64_t tmp;
3582
983ed7a6 3583 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3584 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3585 return;
3586 }
94886b84 3587
457533a7 3588 /* Add system time to process. */
1da177e4 3589 p->stime = cputime_add(p->stime, cputime);
457533a7 3590 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3591 account_group_system_time(p, cputime);
1da177e4
LT
3592
3593 /* Add system time to cpustat. */
3594 tmp = cputime_to_cputime64(cputime);
3595 if (hardirq_count() - hardirq_offset)
3596 cpustat->irq = cputime64_add(cpustat->irq, tmp);
75e1056f 3597 else if (in_serving_softirq())
1da177e4 3598 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3599 else
79741dd3
MS
3600 cpustat->system = cputime64_add(cpustat->system, tmp);
3601
ef12fefa
BR
3602 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3603
1da177e4
LT
3604 /* Account for system time used */
3605 acct_update_integrals(p);
1da177e4
LT
3606}
3607
c66f08be 3608/*
1da177e4 3609 * Account for involuntary wait time.
1da177e4 3610 * @steal: the cpu time spent in involuntary wait
c66f08be 3611 */
79741dd3 3612void account_steal_time(cputime_t cputime)
c66f08be 3613{
79741dd3
MS
3614 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3615 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3616
3617 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3618}
3619
1da177e4 3620/*
79741dd3
MS
3621 * Account for idle time.
3622 * @cputime: the cpu time spent in idle wait
1da177e4 3623 */
79741dd3 3624void account_idle_time(cputime_t cputime)
1da177e4
LT
3625{
3626 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3627 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3628 struct rq *rq = this_rq();
1da177e4 3629
79741dd3
MS
3630 if (atomic_read(&rq->nr_iowait) > 0)
3631 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3632 else
3633 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3634}
3635
79741dd3
MS
3636#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3637
3638/*
3639 * Account a single tick of cpu time.
3640 * @p: the process that the cpu time gets accounted to
3641 * @user_tick: indicates if the tick is a user or a system tick
3642 */
3643void account_process_tick(struct task_struct *p, int user_tick)
3644{
a42548a1 3645 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3646 struct rq *rq = this_rq();
3647
3648 if (user_tick)
a42548a1 3649 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3650 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3651 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3652 one_jiffy_scaled);
3653 else
a42548a1 3654 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3655}
3656
3657/*
3658 * Account multiple ticks of steal time.
3659 * @p: the process from which the cpu time has been stolen
3660 * @ticks: number of stolen ticks
3661 */
3662void account_steal_ticks(unsigned long ticks)
3663{
3664 account_steal_time(jiffies_to_cputime(ticks));
3665}
3666
3667/*
3668 * Account multiple ticks of idle time.
3669 * @ticks: number of stolen ticks
3670 */
3671void account_idle_ticks(unsigned long ticks)
3672{
3673 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3674}
3675
79741dd3
MS
3676#endif
3677
49048622
BS
3678/*
3679 * Use precise platform statistics if available:
3680 */
3681#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3682void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3683{
d99ca3b9
HS
3684 *ut = p->utime;
3685 *st = p->stime;
49048622
BS
3686}
3687
0cf55e1e 3688void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3689{
0cf55e1e
HS
3690 struct task_cputime cputime;
3691
3692 thread_group_cputime(p, &cputime);
3693
3694 *ut = cputime.utime;
3695 *st = cputime.stime;
49048622
BS
3696}
3697#else
761b1d26
HS
3698
3699#ifndef nsecs_to_cputime
b7b20df9 3700# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3701#endif
3702
d180c5bc 3703void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3704{
d99ca3b9 3705 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3706
3707 /*
3708 * Use CFS's precise accounting:
3709 */
d180c5bc 3710 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3711
3712 if (total) {
e75e863d 3713 u64 temp = rtime;
d180c5bc 3714
e75e863d 3715 temp *= utime;
49048622 3716 do_div(temp, total);
d180c5bc
HS
3717 utime = (cputime_t)temp;
3718 } else
3719 utime = rtime;
49048622 3720
d180c5bc
HS
3721 /*
3722 * Compare with previous values, to keep monotonicity:
3723 */
761b1d26 3724 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3725 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3726
d99ca3b9
HS
3727 *ut = p->prev_utime;
3728 *st = p->prev_stime;
49048622
BS
3729}
3730
0cf55e1e
HS
3731/*
3732 * Must be called with siglock held.
3733 */
3734void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3735{
0cf55e1e
HS
3736 struct signal_struct *sig = p->signal;
3737 struct task_cputime cputime;
3738 cputime_t rtime, utime, total;
49048622 3739
0cf55e1e 3740 thread_group_cputime(p, &cputime);
49048622 3741
0cf55e1e
HS
3742 total = cputime_add(cputime.utime, cputime.stime);
3743 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3744
0cf55e1e 3745 if (total) {
e75e863d 3746 u64 temp = rtime;
49048622 3747
e75e863d 3748 temp *= cputime.utime;
0cf55e1e
HS
3749 do_div(temp, total);
3750 utime = (cputime_t)temp;
3751 } else
3752 utime = rtime;
3753
3754 sig->prev_utime = max(sig->prev_utime, utime);
3755 sig->prev_stime = max(sig->prev_stime,
3756 cputime_sub(rtime, sig->prev_utime));
3757
3758 *ut = sig->prev_utime;
3759 *st = sig->prev_stime;
49048622 3760}
49048622 3761#endif
49048622 3762
7835b98b
CL
3763/*
3764 * This function gets called by the timer code, with HZ frequency.
3765 * We call it with interrupts disabled.
3766 *
3767 * It also gets called by the fork code, when changing the parent's
3768 * timeslices.
3769 */
3770void scheduler_tick(void)
3771{
7835b98b
CL
3772 int cpu = smp_processor_id();
3773 struct rq *rq = cpu_rq(cpu);
dd41f596 3774 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3775
3776 sched_clock_tick();
dd41f596 3777
05fa785c 3778 raw_spin_lock(&rq->lock);
3e51f33f 3779 update_rq_clock(rq);
fdf3e95d 3780 update_cpu_load_active(rq);
fa85ae24 3781 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3782 raw_spin_unlock(&rq->lock);
7835b98b 3783
e9d2b064 3784 perf_event_task_tick();
e220d2dc 3785
e418e1c2 3786#ifdef CONFIG_SMP
dd41f596
IM
3787 rq->idle_at_tick = idle_cpu(cpu);
3788 trigger_load_balance(rq, cpu);
e418e1c2 3789#endif
1da177e4
LT
3790}
3791
132380a0 3792notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3793{
3794 if (in_lock_functions(addr)) {
3795 addr = CALLER_ADDR2;
3796 if (in_lock_functions(addr))
3797 addr = CALLER_ADDR3;
3798 }
3799 return addr;
3800}
1da177e4 3801
7e49fcce
SR
3802#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3803 defined(CONFIG_PREEMPT_TRACER))
3804
43627582 3805void __kprobes add_preempt_count(int val)
1da177e4 3806{
6cd8a4bb 3807#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3808 /*
3809 * Underflow?
3810 */
9a11b49a
IM
3811 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3812 return;
6cd8a4bb 3813#endif
1da177e4 3814 preempt_count() += val;
6cd8a4bb 3815#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3816 /*
3817 * Spinlock count overflowing soon?
3818 */
33859f7f
MOS
3819 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3820 PREEMPT_MASK - 10);
6cd8a4bb
SR
3821#endif
3822 if (preempt_count() == val)
3823 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3824}
3825EXPORT_SYMBOL(add_preempt_count);
3826
43627582 3827void __kprobes sub_preempt_count(int val)
1da177e4 3828{
6cd8a4bb 3829#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3830 /*
3831 * Underflow?
3832 */
01e3eb82 3833 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3834 return;
1da177e4
LT
3835 /*
3836 * Is the spinlock portion underflowing?
3837 */
9a11b49a
IM
3838 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3839 !(preempt_count() & PREEMPT_MASK)))
3840 return;
6cd8a4bb 3841#endif
9a11b49a 3842
6cd8a4bb
SR
3843 if (preempt_count() == val)
3844 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3845 preempt_count() -= val;
3846}
3847EXPORT_SYMBOL(sub_preempt_count);
3848
3849#endif
3850
3851/*
dd41f596 3852 * Print scheduling while atomic bug:
1da177e4 3853 */
dd41f596 3854static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3855{
838225b4
SS
3856 struct pt_regs *regs = get_irq_regs();
3857
3df0fc5b
PZ
3858 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3859 prev->comm, prev->pid, preempt_count());
838225b4 3860
dd41f596 3861 debug_show_held_locks(prev);
e21f5b15 3862 print_modules();
dd41f596
IM
3863 if (irqs_disabled())
3864 print_irqtrace_events(prev);
838225b4
SS
3865
3866 if (regs)
3867 show_regs(regs);
3868 else
3869 dump_stack();
dd41f596 3870}
1da177e4 3871
dd41f596
IM
3872/*
3873 * Various schedule()-time debugging checks and statistics:
3874 */
3875static inline void schedule_debug(struct task_struct *prev)
3876{
1da177e4 3877 /*
41a2d6cf 3878 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3879 * schedule() atomically, we ignore that path for now.
3880 * Otherwise, whine if we are scheduling when we should not be.
3881 */
3f33a7ce 3882 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3883 __schedule_bug(prev);
3884
1da177e4
LT
3885 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3886
2d72376b 3887 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3888#ifdef CONFIG_SCHEDSTATS
3889 if (unlikely(prev->lock_depth >= 0)) {
fce20979 3890 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 3891 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3892 }
3893#endif
dd41f596
IM
3894}
3895
6cecd084 3896static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3897{
a64692a3
MG
3898 if (prev->se.on_rq)
3899 update_rq_clock(rq);
6cecd084 3900 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3901}
3902
dd41f596
IM
3903/*
3904 * Pick up the highest-prio task:
3905 */
3906static inline struct task_struct *
b67802ea 3907pick_next_task(struct rq *rq)
dd41f596 3908{
5522d5d5 3909 const struct sched_class *class;
dd41f596 3910 struct task_struct *p;
1da177e4
LT
3911
3912 /*
dd41f596
IM
3913 * Optimization: we know that if all tasks are in
3914 * the fair class we can call that function directly:
1da177e4 3915 */
dd41f596 3916 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3917 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3918 if (likely(p))
3919 return p;
1da177e4
LT
3920 }
3921
34f971f6 3922 for_each_class(class) {
fb8d4724 3923 p = class->pick_next_task(rq);
dd41f596
IM
3924 if (p)
3925 return p;
dd41f596 3926 }
34f971f6
PZ
3927
3928 BUG(); /* the idle class will always have a runnable task */
dd41f596 3929}
1da177e4 3930
dd41f596
IM
3931/*
3932 * schedule() is the main scheduler function.
3933 */
ff743345 3934asmlinkage void __sched schedule(void)
dd41f596
IM
3935{
3936 struct task_struct *prev, *next;
67ca7bde 3937 unsigned long *switch_count;
dd41f596 3938 struct rq *rq;
31656519 3939 int cpu;
dd41f596 3940
ff743345
PZ
3941need_resched:
3942 preempt_disable();
dd41f596
IM
3943 cpu = smp_processor_id();
3944 rq = cpu_rq(cpu);
25502a6c 3945 rcu_note_context_switch(cpu);
dd41f596 3946 prev = rq->curr;
dd41f596
IM
3947
3948 release_kernel_lock(prev);
3949need_resched_nonpreemptible:
3950
3951 schedule_debug(prev);
1da177e4 3952
31656519 3953 if (sched_feat(HRTICK))
f333fdc9 3954 hrtick_clear(rq);
8f4d37ec 3955
05fa785c 3956 raw_spin_lock_irq(&rq->lock);
1da177e4 3957
246d86b5 3958 switch_count = &prev->nivcsw;
1da177e4 3959 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3960 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3961 prev->state = TASK_RUNNING;
21aa9af0
TH
3962 } else {
3963 /*
3964 * If a worker is going to sleep, notify and
3965 * ask workqueue whether it wants to wake up a
3966 * task to maintain concurrency. If so, wake
3967 * up the task.
3968 */
3969 if (prev->flags & PF_WQ_WORKER) {
3970 struct task_struct *to_wakeup;
3971
3972 to_wakeup = wq_worker_sleeping(prev, cpu);
3973 if (to_wakeup)
3974 try_to_wake_up_local(to_wakeup);
3975 }
371fd7e7 3976 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3977 }
dd41f596 3978 switch_count = &prev->nvcsw;
1da177e4
LT
3979 }
3980
73c10101
JA
3981 /*
3982 * If we are going to sleep and we have plugged IO queued, make
3983 * sure to submit it to avoid deadlocks.
3984 */
3985 if (prev->state != TASK_RUNNING && blk_needs_flush_plug(prev)) {
3986 raw_spin_unlock(&rq->lock);
3987 blk_flush_plug(prev);
3988 raw_spin_lock(&rq->lock);
3989 }
3990
3f029d3c 3991 pre_schedule(rq, prev);
f65eda4f 3992
dd41f596 3993 if (unlikely(!rq->nr_running))
1da177e4 3994 idle_balance(cpu, rq);
1da177e4 3995
df1c99d4 3996 put_prev_task(rq, prev);
b67802ea 3997 next = pick_next_task(rq);
f26f9aff
MG
3998 clear_tsk_need_resched(prev);
3999 rq->skip_clock_update = 0;
1da177e4 4000
1da177e4 4001 if (likely(prev != next)) {
673a90a1 4002 sched_info_switch(prev, next);
49f47433 4003 perf_event_task_sched_out(prev, next);
673a90a1 4004
1da177e4
LT
4005 rq->nr_switches++;
4006 rq->curr = next;
4007 ++*switch_count;
4008
dd41f596 4009 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4010 /*
246d86b5
ON
4011 * The context switch have flipped the stack from under us
4012 * and restored the local variables which were saved when
4013 * this task called schedule() in the past. prev == current
4014 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4015 */
4016 cpu = smp_processor_id();
4017 rq = cpu_rq(cpu);
1da177e4 4018 } else
05fa785c 4019 raw_spin_unlock_irq(&rq->lock);
1da177e4 4020
3f029d3c 4021 post_schedule(rq);
1da177e4 4022
246d86b5 4023 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 4024 goto need_resched_nonpreemptible;
8f4d37ec 4025
1da177e4 4026 preempt_enable_no_resched();
ff743345 4027 if (need_resched())
1da177e4
LT
4028 goto need_resched;
4029}
1da177e4
LT
4030EXPORT_SYMBOL(schedule);
4031
c08f7829 4032#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4033/*
4034 * Look out! "owner" is an entirely speculative pointer
4035 * access and not reliable.
4036 */
4037int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4038{
4039 unsigned int cpu;
4040 struct rq *rq;
4041
4042 if (!sched_feat(OWNER_SPIN))
4043 return 0;
4044
4045#ifdef CONFIG_DEBUG_PAGEALLOC
4046 /*
4047 * Need to access the cpu field knowing that
4048 * DEBUG_PAGEALLOC could have unmapped it if
4049 * the mutex owner just released it and exited.
4050 */
4051 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4052 return 0;
0d66bf6d
PZ
4053#else
4054 cpu = owner->cpu;
4055#endif
4056
4057 /*
4058 * Even if the access succeeded (likely case),
4059 * the cpu field may no longer be valid.
4060 */
4061 if (cpu >= nr_cpumask_bits)
4b402210 4062 return 0;
0d66bf6d
PZ
4063
4064 /*
4065 * We need to validate that we can do a
4066 * get_cpu() and that we have the percpu area.
4067 */
4068 if (!cpu_online(cpu))
4b402210 4069 return 0;
0d66bf6d
PZ
4070
4071 rq = cpu_rq(cpu);
4072
4073 for (;;) {
4074 /*
4075 * Owner changed, break to re-assess state.
4076 */
9d0f4dcc
TC
4077 if (lock->owner != owner) {
4078 /*
4079 * If the lock has switched to a different owner,
4080 * we likely have heavy contention. Return 0 to quit
4081 * optimistic spinning and not contend further:
4082 */
4083 if (lock->owner)
4084 return 0;
0d66bf6d 4085 break;
9d0f4dcc 4086 }
0d66bf6d
PZ
4087
4088 /*
4089 * Is that owner really running on that cpu?
4090 */
4091 if (task_thread_info(rq->curr) != owner || need_resched())
4092 return 0;
4093
335d7afb 4094 arch_mutex_cpu_relax();
0d66bf6d 4095 }
4b402210 4096
0d66bf6d
PZ
4097 return 1;
4098}
4099#endif
4100
1da177e4
LT
4101#ifdef CONFIG_PREEMPT
4102/*
2ed6e34f 4103 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4104 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4105 * occur there and call schedule directly.
4106 */
d1f74e20 4107asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4108{
4109 struct thread_info *ti = current_thread_info();
6478d880 4110
1da177e4
LT
4111 /*
4112 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4113 * we do not want to preempt the current task. Just return..
1da177e4 4114 */
beed33a8 4115 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4116 return;
4117
3a5c359a 4118 do {
d1f74e20 4119 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4120 schedule();
d1f74e20 4121 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4122
3a5c359a
AK
4123 /*
4124 * Check again in case we missed a preemption opportunity
4125 * between schedule and now.
4126 */
4127 barrier();
5ed0cec0 4128 } while (need_resched());
1da177e4 4129}
1da177e4
LT
4130EXPORT_SYMBOL(preempt_schedule);
4131
4132/*
2ed6e34f 4133 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4134 * off of irq context.
4135 * Note, that this is called and return with irqs disabled. This will
4136 * protect us against recursive calling from irq.
4137 */
4138asmlinkage void __sched preempt_schedule_irq(void)
4139{
4140 struct thread_info *ti = current_thread_info();
6478d880 4141
2ed6e34f 4142 /* Catch callers which need to be fixed */
1da177e4
LT
4143 BUG_ON(ti->preempt_count || !irqs_disabled());
4144
3a5c359a
AK
4145 do {
4146 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4147 local_irq_enable();
4148 schedule();
4149 local_irq_disable();
3a5c359a 4150 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4151
3a5c359a
AK
4152 /*
4153 * Check again in case we missed a preemption opportunity
4154 * between schedule and now.
4155 */
4156 barrier();
5ed0cec0 4157 } while (need_resched());
1da177e4
LT
4158}
4159
4160#endif /* CONFIG_PREEMPT */
4161
63859d4f 4162int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4163 void *key)
1da177e4 4164{
63859d4f 4165 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4166}
1da177e4
LT
4167EXPORT_SYMBOL(default_wake_function);
4168
4169/*
41a2d6cf
IM
4170 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4171 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4172 * number) then we wake all the non-exclusive tasks and one exclusive task.
4173 *
4174 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4175 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4176 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4177 */
78ddb08f 4178static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4179 int nr_exclusive, int wake_flags, void *key)
1da177e4 4180{
2e45874c 4181 wait_queue_t *curr, *next;
1da177e4 4182
2e45874c 4183 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4184 unsigned flags = curr->flags;
4185
63859d4f 4186 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4187 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4188 break;
4189 }
4190}
4191
4192/**
4193 * __wake_up - wake up threads blocked on a waitqueue.
4194 * @q: the waitqueue
4195 * @mode: which threads
4196 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4197 * @key: is directly passed to the wakeup function
50fa610a
DH
4198 *
4199 * It may be assumed that this function implies a write memory barrier before
4200 * changing the task state if and only if any tasks are woken up.
1da177e4 4201 */
7ad5b3a5 4202void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4203 int nr_exclusive, void *key)
1da177e4
LT
4204{
4205 unsigned long flags;
4206
4207 spin_lock_irqsave(&q->lock, flags);
4208 __wake_up_common(q, mode, nr_exclusive, 0, key);
4209 spin_unlock_irqrestore(&q->lock, flags);
4210}
1da177e4
LT
4211EXPORT_SYMBOL(__wake_up);
4212
4213/*
4214 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4215 */
7ad5b3a5 4216void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4217{
4218 __wake_up_common(q, mode, 1, 0, NULL);
4219}
22c43c81 4220EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4221
4ede816a
DL
4222void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4223{
4224 __wake_up_common(q, mode, 1, 0, key);
4225}
4226
1da177e4 4227/**
4ede816a 4228 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4229 * @q: the waitqueue
4230 * @mode: which threads
4231 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4232 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4233 *
4234 * The sync wakeup differs that the waker knows that it will schedule
4235 * away soon, so while the target thread will be woken up, it will not
4236 * be migrated to another CPU - ie. the two threads are 'synchronized'
4237 * with each other. This can prevent needless bouncing between CPUs.
4238 *
4239 * On UP it can prevent extra preemption.
50fa610a
DH
4240 *
4241 * It may be assumed that this function implies a write memory barrier before
4242 * changing the task state if and only if any tasks are woken up.
1da177e4 4243 */
4ede816a
DL
4244void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4245 int nr_exclusive, void *key)
1da177e4
LT
4246{
4247 unsigned long flags;
7d478721 4248 int wake_flags = WF_SYNC;
1da177e4
LT
4249
4250 if (unlikely(!q))
4251 return;
4252
4253 if (unlikely(!nr_exclusive))
7d478721 4254 wake_flags = 0;
1da177e4
LT
4255
4256 spin_lock_irqsave(&q->lock, flags);
7d478721 4257 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4258 spin_unlock_irqrestore(&q->lock, flags);
4259}
4ede816a
DL
4260EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4261
4262/*
4263 * __wake_up_sync - see __wake_up_sync_key()
4264 */
4265void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4266{
4267 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4268}
1da177e4
LT
4269EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4270
65eb3dc6
KD
4271/**
4272 * complete: - signals a single thread waiting on this completion
4273 * @x: holds the state of this particular completion
4274 *
4275 * This will wake up a single thread waiting on this completion. Threads will be
4276 * awakened in the same order in which they were queued.
4277 *
4278 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4279 *
4280 * It may be assumed that this function implies a write memory barrier before
4281 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4282 */
b15136e9 4283void complete(struct completion *x)
1da177e4
LT
4284{
4285 unsigned long flags;
4286
4287 spin_lock_irqsave(&x->wait.lock, flags);
4288 x->done++;
d9514f6c 4289 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4290 spin_unlock_irqrestore(&x->wait.lock, flags);
4291}
4292EXPORT_SYMBOL(complete);
4293
65eb3dc6
KD
4294/**
4295 * complete_all: - signals all threads waiting on this completion
4296 * @x: holds the state of this particular completion
4297 *
4298 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4299 *
4300 * It may be assumed that this function implies a write memory barrier before
4301 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4302 */
b15136e9 4303void complete_all(struct completion *x)
1da177e4
LT
4304{
4305 unsigned long flags;
4306
4307 spin_lock_irqsave(&x->wait.lock, flags);
4308 x->done += UINT_MAX/2;
d9514f6c 4309 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4310 spin_unlock_irqrestore(&x->wait.lock, flags);
4311}
4312EXPORT_SYMBOL(complete_all);
4313
8cbbe86d
AK
4314static inline long __sched
4315do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4316{
1da177e4
LT
4317 if (!x->done) {
4318 DECLARE_WAITQUEUE(wait, current);
4319
a93d2f17 4320 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4321 do {
94d3d824 4322 if (signal_pending_state(state, current)) {
ea71a546
ON
4323 timeout = -ERESTARTSYS;
4324 break;
8cbbe86d
AK
4325 }
4326 __set_current_state(state);
1da177e4
LT
4327 spin_unlock_irq(&x->wait.lock);
4328 timeout = schedule_timeout(timeout);
4329 spin_lock_irq(&x->wait.lock);
ea71a546 4330 } while (!x->done && timeout);
1da177e4 4331 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4332 if (!x->done)
4333 return timeout;
1da177e4
LT
4334 }
4335 x->done--;
ea71a546 4336 return timeout ?: 1;
1da177e4 4337}
1da177e4 4338
8cbbe86d
AK
4339static long __sched
4340wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4341{
1da177e4
LT
4342 might_sleep();
4343
4344 spin_lock_irq(&x->wait.lock);
8cbbe86d 4345 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4346 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4347 return timeout;
4348}
1da177e4 4349
65eb3dc6
KD
4350/**
4351 * wait_for_completion: - waits for completion of a task
4352 * @x: holds the state of this particular completion
4353 *
4354 * This waits to be signaled for completion of a specific task. It is NOT
4355 * interruptible and there is no timeout.
4356 *
4357 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4358 * and interrupt capability. Also see complete().
4359 */
b15136e9 4360void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4361{
4362 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4363}
8cbbe86d 4364EXPORT_SYMBOL(wait_for_completion);
1da177e4 4365
65eb3dc6
KD
4366/**
4367 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4368 * @x: holds the state of this particular completion
4369 * @timeout: timeout value in jiffies
4370 *
4371 * This waits for either a completion of a specific task to be signaled or for a
4372 * specified timeout to expire. The timeout is in jiffies. It is not
4373 * interruptible.
4374 */
b15136e9 4375unsigned long __sched
8cbbe86d 4376wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4377{
8cbbe86d 4378 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4379}
8cbbe86d 4380EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4381
65eb3dc6
KD
4382/**
4383 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4384 * @x: holds the state of this particular completion
4385 *
4386 * This waits for completion of a specific task to be signaled. It is
4387 * interruptible.
4388 */
8cbbe86d 4389int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4390{
51e97990
AK
4391 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4392 if (t == -ERESTARTSYS)
4393 return t;
4394 return 0;
0fec171c 4395}
8cbbe86d 4396EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4397
65eb3dc6
KD
4398/**
4399 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4400 * @x: holds the state of this particular completion
4401 * @timeout: timeout value in jiffies
4402 *
4403 * This waits for either a completion of a specific task to be signaled or for a
4404 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4405 */
6bf41237 4406long __sched
8cbbe86d
AK
4407wait_for_completion_interruptible_timeout(struct completion *x,
4408 unsigned long timeout)
0fec171c 4409{
8cbbe86d 4410 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4411}
8cbbe86d 4412EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4413
65eb3dc6
KD
4414/**
4415 * wait_for_completion_killable: - waits for completion of a task (killable)
4416 * @x: holds the state of this particular completion
4417 *
4418 * This waits to be signaled for completion of a specific task. It can be
4419 * interrupted by a kill signal.
4420 */
009e577e
MW
4421int __sched wait_for_completion_killable(struct completion *x)
4422{
4423 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4424 if (t == -ERESTARTSYS)
4425 return t;
4426 return 0;
4427}
4428EXPORT_SYMBOL(wait_for_completion_killable);
4429
0aa12fb4
SW
4430/**
4431 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4432 * @x: holds the state of this particular completion
4433 * @timeout: timeout value in jiffies
4434 *
4435 * This waits for either a completion of a specific task to be
4436 * signaled or for a specified timeout to expire. It can be
4437 * interrupted by a kill signal. The timeout is in jiffies.
4438 */
6bf41237 4439long __sched
0aa12fb4
SW
4440wait_for_completion_killable_timeout(struct completion *x,
4441 unsigned long timeout)
4442{
4443 return wait_for_common(x, timeout, TASK_KILLABLE);
4444}
4445EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4446
be4de352
DC
4447/**
4448 * try_wait_for_completion - try to decrement a completion without blocking
4449 * @x: completion structure
4450 *
4451 * Returns: 0 if a decrement cannot be done without blocking
4452 * 1 if a decrement succeeded.
4453 *
4454 * If a completion is being used as a counting completion,
4455 * attempt to decrement the counter without blocking. This
4456 * enables us to avoid waiting if the resource the completion
4457 * is protecting is not available.
4458 */
4459bool try_wait_for_completion(struct completion *x)
4460{
7539a3b3 4461 unsigned long flags;
be4de352
DC
4462 int ret = 1;
4463
7539a3b3 4464 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4465 if (!x->done)
4466 ret = 0;
4467 else
4468 x->done--;
7539a3b3 4469 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4470 return ret;
4471}
4472EXPORT_SYMBOL(try_wait_for_completion);
4473
4474/**
4475 * completion_done - Test to see if a completion has any waiters
4476 * @x: completion structure
4477 *
4478 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4479 * 1 if there are no waiters.
4480 *
4481 */
4482bool completion_done(struct completion *x)
4483{
7539a3b3 4484 unsigned long flags;
be4de352
DC
4485 int ret = 1;
4486
7539a3b3 4487 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4488 if (!x->done)
4489 ret = 0;
7539a3b3 4490 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4491 return ret;
4492}
4493EXPORT_SYMBOL(completion_done);
4494
8cbbe86d
AK
4495static long __sched
4496sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4497{
0fec171c
IM
4498 unsigned long flags;
4499 wait_queue_t wait;
4500
4501 init_waitqueue_entry(&wait, current);
1da177e4 4502
8cbbe86d 4503 __set_current_state(state);
1da177e4 4504
8cbbe86d
AK
4505 spin_lock_irqsave(&q->lock, flags);
4506 __add_wait_queue(q, &wait);
4507 spin_unlock(&q->lock);
4508 timeout = schedule_timeout(timeout);
4509 spin_lock_irq(&q->lock);
4510 __remove_wait_queue(q, &wait);
4511 spin_unlock_irqrestore(&q->lock, flags);
4512
4513 return timeout;
4514}
4515
4516void __sched interruptible_sleep_on(wait_queue_head_t *q)
4517{
4518 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4519}
1da177e4
LT
4520EXPORT_SYMBOL(interruptible_sleep_on);
4521
0fec171c 4522long __sched
95cdf3b7 4523interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4524{
8cbbe86d 4525 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4526}
1da177e4
LT
4527EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4528
0fec171c 4529void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4530{
8cbbe86d 4531 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4532}
1da177e4
LT
4533EXPORT_SYMBOL(sleep_on);
4534
0fec171c 4535long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4536{
8cbbe86d 4537 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4538}
1da177e4
LT
4539EXPORT_SYMBOL(sleep_on_timeout);
4540
b29739f9
IM
4541#ifdef CONFIG_RT_MUTEXES
4542
4543/*
4544 * rt_mutex_setprio - set the current priority of a task
4545 * @p: task
4546 * @prio: prio value (kernel-internal form)
4547 *
4548 * This function changes the 'effective' priority of a task. It does
4549 * not touch ->normal_prio like __setscheduler().
4550 *
4551 * Used by the rt_mutex code to implement priority inheritance logic.
4552 */
36c8b586 4553void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4554{
4555 unsigned long flags;
83b699ed 4556 int oldprio, on_rq, running;
70b97a7f 4557 struct rq *rq;
83ab0aa0 4558 const struct sched_class *prev_class;
b29739f9
IM
4559
4560 BUG_ON(prio < 0 || prio > MAX_PRIO);
4561
4562 rq = task_rq_lock(p, &flags);
4563
a8027073 4564 trace_sched_pi_setprio(p, prio);
d5f9f942 4565 oldprio = p->prio;
83ab0aa0 4566 prev_class = p->sched_class;
dd41f596 4567 on_rq = p->se.on_rq;
051a1d1a 4568 running = task_current(rq, p);
0e1f3483 4569 if (on_rq)
69be72c1 4570 dequeue_task(rq, p, 0);
0e1f3483
HS
4571 if (running)
4572 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4573
4574 if (rt_prio(prio))
4575 p->sched_class = &rt_sched_class;
4576 else
4577 p->sched_class = &fair_sched_class;
4578
b29739f9
IM
4579 p->prio = prio;
4580
0e1f3483
HS
4581 if (running)
4582 p->sched_class->set_curr_task(rq);
dd41f596 4583 if (on_rq) {
371fd7e7 4584 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4585
4586 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4587 }
4588 task_rq_unlock(rq, &flags);
4589}
4590
4591#endif
4592
36c8b586 4593void set_user_nice(struct task_struct *p, long nice)
1da177e4 4594{
dd41f596 4595 int old_prio, delta, on_rq;
1da177e4 4596 unsigned long flags;
70b97a7f 4597 struct rq *rq;
1da177e4
LT
4598
4599 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4600 return;
4601 /*
4602 * We have to be careful, if called from sys_setpriority(),
4603 * the task might be in the middle of scheduling on another CPU.
4604 */
4605 rq = task_rq_lock(p, &flags);
4606 /*
4607 * The RT priorities are set via sched_setscheduler(), but we still
4608 * allow the 'normal' nice value to be set - but as expected
4609 * it wont have any effect on scheduling until the task is
dd41f596 4610 * SCHED_FIFO/SCHED_RR:
1da177e4 4611 */
e05606d3 4612 if (task_has_rt_policy(p)) {
1da177e4
LT
4613 p->static_prio = NICE_TO_PRIO(nice);
4614 goto out_unlock;
4615 }
dd41f596 4616 on_rq = p->se.on_rq;
c09595f6 4617 if (on_rq)
69be72c1 4618 dequeue_task(rq, p, 0);
1da177e4 4619
1da177e4 4620 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4621 set_load_weight(p);
b29739f9
IM
4622 old_prio = p->prio;
4623 p->prio = effective_prio(p);
4624 delta = p->prio - old_prio;
1da177e4 4625
dd41f596 4626 if (on_rq) {
371fd7e7 4627 enqueue_task(rq, p, 0);
1da177e4 4628 /*
d5f9f942
AM
4629 * If the task increased its priority or is running and
4630 * lowered its priority, then reschedule its CPU:
1da177e4 4631 */
d5f9f942 4632 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4633 resched_task(rq->curr);
4634 }
4635out_unlock:
4636 task_rq_unlock(rq, &flags);
4637}
1da177e4
LT
4638EXPORT_SYMBOL(set_user_nice);
4639
e43379f1
MM
4640/*
4641 * can_nice - check if a task can reduce its nice value
4642 * @p: task
4643 * @nice: nice value
4644 */
36c8b586 4645int can_nice(const struct task_struct *p, const int nice)
e43379f1 4646{
024f4747
MM
4647 /* convert nice value [19,-20] to rlimit style value [1,40] */
4648 int nice_rlim = 20 - nice;
48f24c4d 4649
78d7d407 4650 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4651 capable(CAP_SYS_NICE));
4652}
4653
1da177e4
LT
4654#ifdef __ARCH_WANT_SYS_NICE
4655
4656/*
4657 * sys_nice - change the priority of the current process.
4658 * @increment: priority increment
4659 *
4660 * sys_setpriority is a more generic, but much slower function that
4661 * does similar things.
4662 */
5add95d4 4663SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4664{
48f24c4d 4665 long nice, retval;
1da177e4
LT
4666
4667 /*
4668 * Setpriority might change our priority at the same moment.
4669 * We don't have to worry. Conceptually one call occurs first
4670 * and we have a single winner.
4671 */
e43379f1
MM
4672 if (increment < -40)
4673 increment = -40;
1da177e4
LT
4674 if (increment > 40)
4675 increment = 40;
4676
2b8f836f 4677 nice = TASK_NICE(current) + increment;
1da177e4
LT
4678 if (nice < -20)
4679 nice = -20;
4680 if (nice > 19)
4681 nice = 19;
4682
e43379f1
MM
4683 if (increment < 0 && !can_nice(current, nice))
4684 return -EPERM;
4685
1da177e4
LT
4686 retval = security_task_setnice(current, nice);
4687 if (retval)
4688 return retval;
4689
4690 set_user_nice(current, nice);
4691 return 0;
4692}
4693
4694#endif
4695
4696/**
4697 * task_prio - return the priority value of a given task.
4698 * @p: the task in question.
4699 *
4700 * This is the priority value as seen by users in /proc.
4701 * RT tasks are offset by -200. Normal tasks are centered
4702 * around 0, value goes from -16 to +15.
4703 */
36c8b586 4704int task_prio(const struct task_struct *p)
1da177e4
LT
4705{
4706 return p->prio - MAX_RT_PRIO;
4707}
4708
4709/**
4710 * task_nice - return the nice value of a given task.
4711 * @p: the task in question.
4712 */
36c8b586 4713int task_nice(const struct task_struct *p)
1da177e4
LT
4714{
4715 return TASK_NICE(p);
4716}
150d8bed 4717EXPORT_SYMBOL(task_nice);
1da177e4
LT
4718
4719/**
4720 * idle_cpu - is a given cpu idle currently?
4721 * @cpu: the processor in question.
4722 */
4723int idle_cpu(int cpu)
4724{
4725 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4726}
4727
1da177e4
LT
4728/**
4729 * idle_task - return the idle task for a given cpu.
4730 * @cpu: the processor in question.
4731 */
36c8b586 4732struct task_struct *idle_task(int cpu)
1da177e4
LT
4733{
4734 return cpu_rq(cpu)->idle;
4735}
4736
4737/**
4738 * find_process_by_pid - find a process with a matching PID value.
4739 * @pid: the pid in question.
4740 */
a9957449 4741static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4742{
228ebcbe 4743 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4744}
4745
4746/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4747static void
4748__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4749{
dd41f596 4750 BUG_ON(p->se.on_rq);
48f24c4d 4751
1da177e4
LT
4752 p->policy = policy;
4753 p->rt_priority = prio;
b29739f9
IM
4754 p->normal_prio = normal_prio(p);
4755 /* we are holding p->pi_lock already */
4756 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4757 if (rt_prio(p->prio))
4758 p->sched_class = &rt_sched_class;
4759 else
4760 p->sched_class = &fair_sched_class;
2dd73a4f 4761 set_load_weight(p);
1da177e4
LT
4762}
4763
c69e8d9c
DH
4764/*
4765 * check the target process has a UID that matches the current process's
4766 */
4767static bool check_same_owner(struct task_struct *p)
4768{
4769 const struct cred *cred = current_cred(), *pcred;
4770 bool match;
4771
4772 rcu_read_lock();
4773 pcred = __task_cred(p);
4774 match = (cred->euid == pcred->euid ||
4775 cred->euid == pcred->uid);
4776 rcu_read_unlock();
4777 return match;
4778}
4779
961ccddd 4780static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4781 const struct sched_param *param, bool user)
1da177e4 4782{
83b699ed 4783 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4784 unsigned long flags;
83ab0aa0 4785 const struct sched_class *prev_class;
70b97a7f 4786 struct rq *rq;
ca94c442 4787 int reset_on_fork;
1da177e4 4788
66e5393a
SR
4789 /* may grab non-irq protected spin_locks */
4790 BUG_ON(in_interrupt());
1da177e4
LT
4791recheck:
4792 /* double check policy once rq lock held */
ca94c442
LP
4793 if (policy < 0) {
4794 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4795 policy = oldpolicy = p->policy;
ca94c442
LP
4796 } else {
4797 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4798 policy &= ~SCHED_RESET_ON_FORK;
4799
4800 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4801 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4802 policy != SCHED_IDLE)
4803 return -EINVAL;
4804 }
4805
1da177e4
LT
4806 /*
4807 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4808 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4809 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4810 */
4811 if (param->sched_priority < 0 ||
95cdf3b7 4812 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4813 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4814 return -EINVAL;
e05606d3 4815 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4816 return -EINVAL;
4817
37e4ab3f
OC
4818 /*
4819 * Allow unprivileged RT tasks to decrease priority:
4820 */
961ccddd 4821 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4822 if (rt_policy(policy)) {
a44702e8
ON
4823 unsigned long rlim_rtprio =
4824 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4825
4826 /* can't set/change the rt policy */
4827 if (policy != p->policy && !rlim_rtprio)
4828 return -EPERM;
4829
4830 /* can't increase priority */
4831 if (param->sched_priority > p->rt_priority &&
4832 param->sched_priority > rlim_rtprio)
4833 return -EPERM;
4834 }
dd41f596
IM
4835 /*
4836 * Like positive nice levels, dont allow tasks to
4837 * move out of SCHED_IDLE either:
4838 */
4839 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4840 return -EPERM;
5fe1d75f 4841
37e4ab3f 4842 /* can't change other user's priorities */
c69e8d9c 4843 if (!check_same_owner(p))
37e4ab3f 4844 return -EPERM;
ca94c442
LP
4845
4846 /* Normal users shall not reset the sched_reset_on_fork flag */
4847 if (p->sched_reset_on_fork && !reset_on_fork)
4848 return -EPERM;
37e4ab3f 4849 }
1da177e4 4850
725aad24 4851 if (user) {
b0ae1981 4852 retval = security_task_setscheduler(p);
725aad24
JF
4853 if (retval)
4854 return retval;
4855 }
4856
b29739f9
IM
4857 /*
4858 * make sure no PI-waiters arrive (or leave) while we are
4859 * changing the priority of the task:
4860 */
1d615482 4861 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4862 /*
4863 * To be able to change p->policy safely, the apropriate
4864 * runqueue lock must be held.
4865 */
b29739f9 4866 rq = __task_rq_lock(p);
dc61b1d6 4867
34f971f6
PZ
4868 /*
4869 * Changing the policy of the stop threads its a very bad idea
4870 */
4871 if (p == rq->stop) {
4872 __task_rq_unlock(rq);
4873 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4874 return -EINVAL;
4875 }
4876
dc61b1d6
PZ
4877#ifdef CONFIG_RT_GROUP_SCHED
4878 if (user) {
4879 /*
4880 * Do not allow realtime tasks into groups that have no runtime
4881 * assigned.
4882 */
4883 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4884 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4885 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
4886 __task_rq_unlock(rq);
4887 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4888 return -EPERM;
4889 }
4890 }
4891#endif
4892
1da177e4
LT
4893 /* recheck policy now with rq lock held */
4894 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4895 policy = oldpolicy = -1;
b29739f9 4896 __task_rq_unlock(rq);
1d615482 4897 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4898 goto recheck;
4899 }
dd41f596 4900 on_rq = p->se.on_rq;
051a1d1a 4901 running = task_current(rq, p);
0e1f3483 4902 if (on_rq)
2e1cb74a 4903 deactivate_task(rq, p, 0);
0e1f3483
HS
4904 if (running)
4905 p->sched_class->put_prev_task(rq, p);
f6b53205 4906
ca94c442
LP
4907 p->sched_reset_on_fork = reset_on_fork;
4908
1da177e4 4909 oldprio = p->prio;
83ab0aa0 4910 prev_class = p->sched_class;
dd41f596 4911 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4912
0e1f3483
HS
4913 if (running)
4914 p->sched_class->set_curr_task(rq);
dd41f596
IM
4915 if (on_rq) {
4916 activate_task(rq, p, 0);
cb469845
SR
4917
4918 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4919 }
b29739f9 4920 __task_rq_unlock(rq);
1d615482 4921 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4922
95e02ca9
TG
4923 rt_mutex_adjust_pi(p);
4924
1da177e4
LT
4925 return 0;
4926}
961ccddd
RR
4927
4928/**
4929 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4930 * @p: the task in question.
4931 * @policy: new policy.
4932 * @param: structure containing the new RT priority.
4933 *
4934 * NOTE that the task may be already dead.
4935 */
4936int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4937 const struct sched_param *param)
961ccddd
RR
4938{
4939 return __sched_setscheduler(p, policy, param, true);
4940}
1da177e4
LT
4941EXPORT_SYMBOL_GPL(sched_setscheduler);
4942
961ccddd
RR
4943/**
4944 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4945 * @p: the task in question.
4946 * @policy: new policy.
4947 * @param: structure containing the new RT priority.
4948 *
4949 * Just like sched_setscheduler, only don't bother checking if the
4950 * current context has permission. For example, this is needed in
4951 * stop_machine(): we create temporary high priority worker threads,
4952 * but our caller might not have that capability.
4953 */
4954int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4955 const struct sched_param *param)
961ccddd
RR
4956{
4957 return __sched_setscheduler(p, policy, param, false);
4958}
4959
95cdf3b7
IM
4960static int
4961do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4962{
1da177e4
LT
4963 struct sched_param lparam;
4964 struct task_struct *p;
36c8b586 4965 int retval;
1da177e4
LT
4966
4967 if (!param || pid < 0)
4968 return -EINVAL;
4969 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4970 return -EFAULT;
5fe1d75f
ON
4971
4972 rcu_read_lock();
4973 retval = -ESRCH;
1da177e4 4974 p = find_process_by_pid(pid);
5fe1d75f
ON
4975 if (p != NULL)
4976 retval = sched_setscheduler(p, policy, &lparam);
4977 rcu_read_unlock();
36c8b586 4978
1da177e4
LT
4979 return retval;
4980}
4981
4982/**
4983 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4984 * @pid: the pid in question.
4985 * @policy: new policy.
4986 * @param: structure containing the new RT priority.
4987 */
5add95d4
HC
4988SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4989 struct sched_param __user *, param)
1da177e4 4990{
c21761f1
JB
4991 /* negative values for policy are not valid */
4992 if (policy < 0)
4993 return -EINVAL;
4994
1da177e4
LT
4995 return do_sched_setscheduler(pid, policy, param);
4996}
4997
4998/**
4999 * sys_sched_setparam - set/change the RT priority of a thread
5000 * @pid: the pid in question.
5001 * @param: structure containing the new RT priority.
5002 */
5add95d4 5003SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5004{
5005 return do_sched_setscheduler(pid, -1, param);
5006}
5007
5008/**
5009 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5010 * @pid: the pid in question.
5011 */
5add95d4 5012SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5013{
36c8b586 5014 struct task_struct *p;
3a5c359a 5015 int retval;
1da177e4
LT
5016
5017 if (pid < 0)
3a5c359a 5018 return -EINVAL;
1da177e4
LT
5019
5020 retval = -ESRCH;
5fe85be0 5021 rcu_read_lock();
1da177e4
LT
5022 p = find_process_by_pid(pid);
5023 if (p) {
5024 retval = security_task_getscheduler(p);
5025 if (!retval)
ca94c442
LP
5026 retval = p->policy
5027 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5028 }
5fe85be0 5029 rcu_read_unlock();
1da177e4
LT
5030 return retval;
5031}
5032
5033/**
ca94c442 5034 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5035 * @pid: the pid in question.
5036 * @param: structure containing the RT priority.
5037 */
5add95d4 5038SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5039{
5040 struct sched_param lp;
36c8b586 5041 struct task_struct *p;
3a5c359a 5042 int retval;
1da177e4
LT
5043
5044 if (!param || pid < 0)
3a5c359a 5045 return -EINVAL;
1da177e4 5046
5fe85be0 5047 rcu_read_lock();
1da177e4
LT
5048 p = find_process_by_pid(pid);
5049 retval = -ESRCH;
5050 if (!p)
5051 goto out_unlock;
5052
5053 retval = security_task_getscheduler(p);
5054 if (retval)
5055 goto out_unlock;
5056
5057 lp.sched_priority = p->rt_priority;
5fe85be0 5058 rcu_read_unlock();
1da177e4
LT
5059
5060 /*
5061 * This one might sleep, we cannot do it with a spinlock held ...
5062 */
5063 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5064
1da177e4
LT
5065 return retval;
5066
5067out_unlock:
5fe85be0 5068 rcu_read_unlock();
1da177e4
LT
5069 return retval;
5070}
5071
96f874e2 5072long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5073{
5a16f3d3 5074 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5075 struct task_struct *p;
5076 int retval;
1da177e4 5077
95402b38 5078 get_online_cpus();
23f5d142 5079 rcu_read_lock();
1da177e4
LT
5080
5081 p = find_process_by_pid(pid);
5082 if (!p) {
23f5d142 5083 rcu_read_unlock();
95402b38 5084 put_online_cpus();
1da177e4
LT
5085 return -ESRCH;
5086 }
5087
23f5d142 5088 /* Prevent p going away */
1da177e4 5089 get_task_struct(p);
23f5d142 5090 rcu_read_unlock();
1da177e4 5091
5a16f3d3
RR
5092 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5093 retval = -ENOMEM;
5094 goto out_put_task;
5095 }
5096 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5097 retval = -ENOMEM;
5098 goto out_free_cpus_allowed;
5099 }
1da177e4 5100 retval = -EPERM;
c69e8d9c 5101 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5102 goto out_unlock;
5103
b0ae1981 5104 retval = security_task_setscheduler(p);
e7834f8f
DQ
5105 if (retval)
5106 goto out_unlock;
5107
5a16f3d3
RR
5108 cpuset_cpus_allowed(p, cpus_allowed);
5109 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5110again:
5a16f3d3 5111 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5112
8707d8b8 5113 if (!retval) {
5a16f3d3
RR
5114 cpuset_cpus_allowed(p, cpus_allowed);
5115 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5116 /*
5117 * We must have raced with a concurrent cpuset
5118 * update. Just reset the cpus_allowed to the
5119 * cpuset's cpus_allowed
5120 */
5a16f3d3 5121 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5122 goto again;
5123 }
5124 }
1da177e4 5125out_unlock:
5a16f3d3
RR
5126 free_cpumask_var(new_mask);
5127out_free_cpus_allowed:
5128 free_cpumask_var(cpus_allowed);
5129out_put_task:
1da177e4 5130 put_task_struct(p);
95402b38 5131 put_online_cpus();
1da177e4
LT
5132 return retval;
5133}
5134
5135static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5136 struct cpumask *new_mask)
1da177e4 5137{
96f874e2
RR
5138 if (len < cpumask_size())
5139 cpumask_clear(new_mask);
5140 else if (len > cpumask_size())
5141 len = cpumask_size();
5142
1da177e4
LT
5143 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5144}
5145
5146/**
5147 * sys_sched_setaffinity - set the cpu affinity of a process
5148 * @pid: pid of the process
5149 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5150 * @user_mask_ptr: user-space pointer to the new cpu mask
5151 */
5add95d4
HC
5152SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5153 unsigned long __user *, user_mask_ptr)
1da177e4 5154{
5a16f3d3 5155 cpumask_var_t new_mask;
1da177e4
LT
5156 int retval;
5157
5a16f3d3
RR
5158 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5159 return -ENOMEM;
1da177e4 5160
5a16f3d3
RR
5161 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5162 if (retval == 0)
5163 retval = sched_setaffinity(pid, new_mask);
5164 free_cpumask_var(new_mask);
5165 return retval;
1da177e4
LT
5166}
5167
96f874e2 5168long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5169{
36c8b586 5170 struct task_struct *p;
31605683
TG
5171 unsigned long flags;
5172 struct rq *rq;
1da177e4 5173 int retval;
1da177e4 5174
95402b38 5175 get_online_cpus();
23f5d142 5176 rcu_read_lock();
1da177e4
LT
5177
5178 retval = -ESRCH;
5179 p = find_process_by_pid(pid);
5180 if (!p)
5181 goto out_unlock;
5182
e7834f8f
DQ
5183 retval = security_task_getscheduler(p);
5184 if (retval)
5185 goto out_unlock;
5186
31605683 5187 rq = task_rq_lock(p, &flags);
96f874e2 5188 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5189 task_rq_unlock(rq, &flags);
1da177e4
LT
5190
5191out_unlock:
23f5d142 5192 rcu_read_unlock();
95402b38 5193 put_online_cpus();
1da177e4 5194
9531b62f 5195 return retval;
1da177e4
LT
5196}
5197
5198/**
5199 * sys_sched_getaffinity - get the cpu affinity of a process
5200 * @pid: pid of the process
5201 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5202 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5203 */
5add95d4
HC
5204SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5205 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5206{
5207 int ret;
f17c8607 5208 cpumask_var_t mask;
1da177e4 5209
84fba5ec 5210 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5211 return -EINVAL;
5212 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5213 return -EINVAL;
5214
f17c8607
RR
5215 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5216 return -ENOMEM;
1da177e4 5217
f17c8607
RR
5218 ret = sched_getaffinity(pid, mask);
5219 if (ret == 0) {
8bc037fb 5220 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5221
5222 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5223 ret = -EFAULT;
5224 else
cd3d8031 5225 ret = retlen;
f17c8607
RR
5226 }
5227 free_cpumask_var(mask);
1da177e4 5228
f17c8607 5229 return ret;
1da177e4
LT
5230}
5231
5232/**
5233 * sys_sched_yield - yield the current processor to other threads.
5234 *
dd41f596
IM
5235 * This function yields the current CPU to other tasks. If there are no
5236 * other threads running on this CPU then this function will return.
1da177e4 5237 */
5add95d4 5238SYSCALL_DEFINE0(sched_yield)
1da177e4 5239{
70b97a7f 5240 struct rq *rq = this_rq_lock();
1da177e4 5241
2d72376b 5242 schedstat_inc(rq, yld_count);
4530d7ab 5243 current->sched_class->yield_task(rq);
1da177e4
LT
5244
5245 /*
5246 * Since we are going to call schedule() anyway, there's
5247 * no need to preempt or enable interrupts:
5248 */
5249 __release(rq->lock);
8a25d5de 5250 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5251 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5252 preempt_enable_no_resched();
5253
5254 schedule();
5255
5256 return 0;
5257}
5258
d86ee480
PZ
5259static inline int should_resched(void)
5260{
5261 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5262}
5263
e7b38404 5264static void __cond_resched(void)
1da177e4 5265{
e7aaaa69
FW
5266 add_preempt_count(PREEMPT_ACTIVE);
5267 schedule();
5268 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5269}
5270
02b67cc3 5271int __sched _cond_resched(void)
1da177e4 5272{
d86ee480 5273 if (should_resched()) {
1da177e4
LT
5274 __cond_resched();
5275 return 1;
5276 }
5277 return 0;
5278}
02b67cc3 5279EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5280
5281/*
613afbf8 5282 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5283 * call schedule, and on return reacquire the lock.
5284 *
41a2d6cf 5285 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5286 * operations here to prevent schedule() from being called twice (once via
5287 * spin_unlock(), once by hand).
5288 */
613afbf8 5289int __cond_resched_lock(spinlock_t *lock)
1da177e4 5290{
d86ee480 5291 int resched = should_resched();
6df3cecb
JK
5292 int ret = 0;
5293
f607c668
PZ
5294 lockdep_assert_held(lock);
5295
95c354fe 5296 if (spin_needbreak(lock) || resched) {
1da177e4 5297 spin_unlock(lock);
d86ee480 5298 if (resched)
95c354fe
NP
5299 __cond_resched();
5300 else
5301 cpu_relax();
6df3cecb 5302 ret = 1;
1da177e4 5303 spin_lock(lock);
1da177e4 5304 }
6df3cecb 5305 return ret;
1da177e4 5306}
613afbf8 5307EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5308
613afbf8 5309int __sched __cond_resched_softirq(void)
1da177e4
LT
5310{
5311 BUG_ON(!in_softirq());
5312
d86ee480 5313 if (should_resched()) {
98d82567 5314 local_bh_enable();
1da177e4
LT
5315 __cond_resched();
5316 local_bh_disable();
5317 return 1;
5318 }
5319 return 0;
5320}
613afbf8 5321EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5322
1da177e4
LT
5323/**
5324 * yield - yield the current processor to other threads.
5325 *
72fd4a35 5326 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5327 * thread runnable and calls sys_sched_yield().
5328 */
5329void __sched yield(void)
5330{
5331 set_current_state(TASK_RUNNING);
5332 sys_sched_yield();
5333}
1da177e4
LT
5334EXPORT_SYMBOL(yield);
5335
5336/*
41a2d6cf 5337 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5338 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5339 */
5340void __sched io_schedule(void)
5341{
54d35f29 5342 struct rq *rq = raw_rq();
1da177e4 5343
0ff92245 5344 delayacct_blkio_start();
1da177e4 5345 atomic_inc(&rq->nr_iowait);
73c10101 5346 blk_flush_plug(current);
8f0dfc34 5347 current->in_iowait = 1;
1da177e4 5348 schedule();
8f0dfc34 5349 current->in_iowait = 0;
1da177e4 5350 atomic_dec(&rq->nr_iowait);
0ff92245 5351 delayacct_blkio_end();
1da177e4 5352}
1da177e4
LT
5353EXPORT_SYMBOL(io_schedule);
5354
5355long __sched io_schedule_timeout(long timeout)
5356{
54d35f29 5357 struct rq *rq = raw_rq();
1da177e4
LT
5358 long ret;
5359
0ff92245 5360 delayacct_blkio_start();
1da177e4 5361 atomic_inc(&rq->nr_iowait);
73c10101 5362 blk_flush_plug(current);
8f0dfc34 5363 current->in_iowait = 1;
1da177e4 5364 ret = schedule_timeout(timeout);
8f0dfc34 5365 current->in_iowait = 0;
1da177e4 5366 atomic_dec(&rq->nr_iowait);
0ff92245 5367 delayacct_blkio_end();
1da177e4
LT
5368 return ret;
5369}
5370
5371/**
5372 * sys_sched_get_priority_max - return maximum RT priority.
5373 * @policy: scheduling class.
5374 *
5375 * this syscall returns the maximum rt_priority that can be used
5376 * by a given scheduling class.
5377 */
5add95d4 5378SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5379{
5380 int ret = -EINVAL;
5381
5382 switch (policy) {
5383 case SCHED_FIFO:
5384 case SCHED_RR:
5385 ret = MAX_USER_RT_PRIO-1;
5386 break;
5387 case SCHED_NORMAL:
b0a9499c 5388 case SCHED_BATCH:
dd41f596 5389 case SCHED_IDLE:
1da177e4
LT
5390 ret = 0;
5391 break;
5392 }
5393 return ret;
5394}
5395
5396/**
5397 * sys_sched_get_priority_min - return minimum RT priority.
5398 * @policy: scheduling class.
5399 *
5400 * this syscall returns the minimum rt_priority that can be used
5401 * by a given scheduling class.
5402 */
5add95d4 5403SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5404{
5405 int ret = -EINVAL;
5406
5407 switch (policy) {
5408 case SCHED_FIFO:
5409 case SCHED_RR:
5410 ret = 1;
5411 break;
5412 case SCHED_NORMAL:
b0a9499c 5413 case SCHED_BATCH:
dd41f596 5414 case SCHED_IDLE:
1da177e4
LT
5415 ret = 0;
5416 }
5417 return ret;
5418}
5419
5420/**
5421 * sys_sched_rr_get_interval - return the default timeslice of a process.
5422 * @pid: pid of the process.
5423 * @interval: userspace pointer to the timeslice value.
5424 *
5425 * this syscall writes the default timeslice value of a given process
5426 * into the user-space timespec buffer. A value of '0' means infinity.
5427 */
17da2bd9 5428SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5429 struct timespec __user *, interval)
1da177e4 5430{
36c8b586 5431 struct task_struct *p;
a4ec24b4 5432 unsigned int time_slice;
dba091b9
TG
5433 unsigned long flags;
5434 struct rq *rq;
3a5c359a 5435 int retval;
1da177e4 5436 struct timespec t;
1da177e4
LT
5437
5438 if (pid < 0)
3a5c359a 5439 return -EINVAL;
1da177e4
LT
5440
5441 retval = -ESRCH;
1a551ae7 5442 rcu_read_lock();
1da177e4
LT
5443 p = find_process_by_pid(pid);
5444 if (!p)
5445 goto out_unlock;
5446
5447 retval = security_task_getscheduler(p);
5448 if (retval)
5449 goto out_unlock;
5450
dba091b9
TG
5451 rq = task_rq_lock(p, &flags);
5452 time_slice = p->sched_class->get_rr_interval(rq, p);
5453 task_rq_unlock(rq, &flags);
a4ec24b4 5454
1a551ae7 5455 rcu_read_unlock();
a4ec24b4 5456 jiffies_to_timespec(time_slice, &t);
1da177e4 5457 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5458 return retval;
3a5c359a 5459
1da177e4 5460out_unlock:
1a551ae7 5461 rcu_read_unlock();
1da177e4
LT
5462 return retval;
5463}
5464
7c731e0a 5465static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5466
82a1fcb9 5467void sched_show_task(struct task_struct *p)
1da177e4 5468{
1da177e4 5469 unsigned long free = 0;
36c8b586 5470 unsigned state;
1da177e4 5471
1da177e4 5472 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5473 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5474 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5475#if BITS_PER_LONG == 32
1da177e4 5476 if (state == TASK_RUNNING)
3df0fc5b 5477 printk(KERN_CONT " running ");
1da177e4 5478 else
3df0fc5b 5479 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5480#else
5481 if (state == TASK_RUNNING)
3df0fc5b 5482 printk(KERN_CONT " running task ");
1da177e4 5483 else
3df0fc5b 5484 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5485#endif
5486#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5487 free = stack_not_used(p);
1da177e4 5488#endif
3df0fc5b 5489 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5490 task_pid_nr(p), task_pid_nr(p->real_parent),
5491 (unsigned long)task_thread_info(p)->flags);
1da177e4 5492
5fb5e6de 5493 show_stack(p, NULL);
1da177e4
LT
5494}
5495
e59e2ae2 5496void show_state_filter(unsigned long state_filter)
1da177e4 5497{
36c8b586 5498 struct task_struct *g, *p;
1da177e4 5499
4bd77321 5500#if BITS_PER_LONG == 32
3df0fc5b
PZ
5501 printk(KERN_INFO
5502 " task PC stack pid father\n");
1da177e4 5503#else
3df0fc5b
PZ
5504 printk(KERN_INFO
5505 " task PC stack pid father\n");
1da177e4
LT
5506#endif
5507 read_lock(&tasklist_lock);
5508 do_each_thread(g, p) {
5509 /*
5510 * reset the NMI-timeout, listing all files on a slow
5511 * console might take alot of time:
5512 */
5513 touch_nmi_watchdog();
39bc89fd 5514 if (!state_filter || (p->state & state_filter))
82a1fcb9 5515 sched_show_task(p);
1da177e4
LT
5516 } while_each_thread(g, p);
5517
04c9167f
JF
5518 touch_all_softlockup_watchdogs();
5519
dd41f596
IM
5520#ifdef CONFIG_SCHED_DEBUG
5521 sysrq_sched_debug_show();
5522#endif
1da177e4 5523 read_unlock(&tasklist_lock);
e59e2ae2
IM
5524 /*
5525 * Only show locks if all tasks are dumped:
5526 */
93335a21 5527 if (!state_filter)
e59e2ae2 5528 debug_show_all_locks();
1da177e4
LT
5529}
5530
1df21055
IM
5531void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5532{
dd41f596 5533 idle->sched_class = &idle_sched_class;
1df21055
IM
5534}
5535
f340c0d1
IM
5536/**
5537 * init_idle - set up an idle thread for a given CPU
5538 * @idle: task in question
5539 * @cpu: cpu the idle task belongs to
5540 *
5541 * NOTE: this function does not set the idle thread's NEED_RESCHED
5542 * flag, to make booting more robust.
5543 */
5c1e1767 5544void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5545{
70b97a7f 5546 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5547 unsigned long flags;
5548
05fa785c 5549 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5550
dd41f596 5551 __sched_fork(idle);
06b83b5f 5552 idle->state = TASK_RUNNING;
dd41f596
IM
5553 idle->se.exec_start = sched_clock();
5554
96f874e2 5555 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5556 /*
5557 * We're having a chicken and egg problem, even though we are
5558 * holding rq->lock, the cpu isn't yet set to this cpu so the
5559 * lockdep check in task_group() will fail.
5560 *
5561 * Similar case to sched_fork(). / Alternatively we could
5562 * use task_rq_lock() here and obtain the other rq->lock.
5563 *
5564 * Silence PROVE_RCU
5565 */
5566 rcu_read_lock();
dd41f596 5567 __set_task_cpu(idle, cpu);
6506cf6c 5568 rcu_read_unlock();
1da177e4 5569
1da177e4 5570 rq->curr = rq->idle = idle;
4866cde0
NP
5571#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5572 idle->oncpu = 1;
5573#endif
05fa785c 5574 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5575
5576 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5577#if defined(CONFIG_PREEMPT)
5578 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5579#else
a1261f54 5580 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5581#endif
dd41f596
IM
5582 /*
5583 * The idle tasks have their own, simple scheduling class:
5584 */
5585 idle->sched_class = &idle_sched_class;
fb52607a 5586 ftrace_graph_init_task(idle);
1da177e4
LT
5587}
5588
5589/*
5590 * In a system that switches off the HZ timer nohz_cpu_mask
5591 * indicates which cpus entered this state. This is used
5592 * in the rcu update to wait only for active cpus. For system
5593 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5594 * always be CPU_BITS_NONE.
1da177e4 5595 */
6a7b3dc3 5596cpumask_var_t nohz_cpu_mask;
1da177e4 5597
19978ca6
IM
5598/*
5599 * Increase the granularity value when there are more CPUs,
5600 * because with more CPUs the 'effective latency' as visible
5601 * to users decreases. But the relationship is not linear,
5602 * so pick a second-best guess by going with the log2 of the
5603 * number of CPUs.
5604 *
5605 * This idea comes from the SD scheduler of Con Kolivas:
5606 */
acb4a848 5607static int get_update_sysctl_factor(void)
19978ca6 5608{
4ca3ef71 5609 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5610 unsigned int factor;
5611
5612 switch (sysctl_sched_tunable_scaling) {
5613 case SCHED_TUNABLESCALING_NONE:
5614 factor = 1;
5615 break;
5616 case SCHED_TUNABLESCALING_LINEAR:
5617 factor = cpus;
5618 break;
5619 case SCHED_TUNABLESCALING_LOG:
5620 default:
5621 factor = 1 + ilog2(cpus);
5622 break;
5623 }
19978ca6 5624
acb4a848
CE
5625 return factor;
5626}
19978ca6 5627
acb4a848
CE
5628static void update_sysctl(void)
5629{
5630 unsigned int factor = get_update_sysctl_factor();
19978ca6 5631
0bcdcf28
CE
5632#define SET_SYSCTL(name) \
5633 (sysctl_##name = (factor) * normalized_sysctl_##name)
5634 SET_SYSCTL(sched_min_granularity);
5635 SET_SYSCTL(sched_latency);
5636 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5637#undef SET_SYSCTL
5638}
55cd5340 5639
0bcdcf28
CE
5640static inline void sched_init_granularity(void)
5641{
5642 update_sysctl();
19978ca6
IM
5643}
5644
1da177e4
LT
5645#ifdef CONFIG_SMP
5646/*
5647 * This is how migration works:
5648 *
969c7921
TH
5649 * 1) we invoke migration_cpu_stop() on the target CPU using
5650 * stop_one_cpu().
5651 * 2) stopper starts to run (implicitly forcing the migrated thread
5652 * off the CPU)
5653 * 3) it checks whether the migrated task is still in the wrong runqueue.
5654 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5655 * it and puts it into the right queue.
969c7921
TH
5656 * 5) stopper completes and stop_one_cpu() returns and the migration
5657 * is done.
1da177e4
LT
5658 */
5659
5660/*
5661 * Change a given task's CPU affinity. Migrate the thread to a
5662 * proper CPU and schedule it away if the CPU it's executing on
5663 * is removed from the allowed bitmask.
5664 *
5665 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5666 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5667 * call is not atomic; no spinlocks may be held.
5668 */
96f874e2 5669int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5670{
5671 unsigned long flags;
70b97a7f 5672 struct rq *rq;
969c7921 5673 unsigned int dest_cpu;
48f24c4d 5674 int ret = 0;
1da177e4 5675
65cc8e48
PZ
5676 /*
5677 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5678 * drop the rq->lock and still rely on ->cpus_allowed.
5679 */
5680again:
5681 while (task_is_waking(p))
5682 cpu_relax();
1da177e4 5683 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5684 if (task_is_waking(p)) {
5685 task_rq_unlock(rq, &flags);
5686 goto again;
5687 }
e2912009 5688
6ad4c188 5689 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5690 ret = -EINVAL;
5691 goto out;
5692 }
5693
9985b0ba 5694 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5695 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5696 ret = -EINVAL;
5697 goto out;
5698 }
5699
73fe6aae 5700 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5701 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5702 else {
96f874e2
RR
5703 cpumask_copy(&p->cpus_allowed, new_mask);
5704 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5705 }
5706
1da177e4 5707 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5708 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5709 goto out;
5710
969c7921 5711 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5712 if (migrate_task(p, rq)) {
969c7921 5713 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5714 /* Need help from migration thread: drop lock and wait. */
5715 task_rq_unlock(rq, &flags);
969c7921 5716 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5717 tlb_migrate_finish(p->mm);
5718 return 0;
5719 }
5720out:
5721 task_rq_unlock(rq, &flags);
48f24c4d 5722
1da177e4
LT
5723 return ret;
5724}
cd8ba7cd 5725EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5726
5727/*
41a2d6cf 5728 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5729 * this because either it can't run here any more (set_cpus_allowed()
5730 * away from this CPU, or CPU going down), or because we're
5731 * attempting to rebalance this task on exec (sched_exec).
5732 *
5733 * So we race with normal scheduler movements, but that's OK, as long
5734 * as the task is no longer on this CPU.
efc30814
KK
5735 *
5736 * Returns non-zero if task was successfully migrated.
1da177e4 5737 */
efc30814 5738static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5739{
70b97a7f 5740 struct rq *rq_dest, *rq_src;
e2912009 5741 int ret = 0;
1da177e4 5742
e761b772 5743 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5744 return ret;
1da177e4
LT
5745
5746 rq_src = cpu_rq(src_cpu);
5747 rq_dest = cpu_rq(dest_cpu);
5748
5749 double_rq_lock(rq_src, rq_dest);
5750 /* Already moved. */
5751 if (task_cpu(p) != src_cpu)
b1e38734 5752 goto done;
1da177e4 5753 /* Affinity changed (again). */
96f874e2 5754 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5755 goto fail;
1da177e4 5756
e2912009
PZ
5757 /*
5758 * If we're not on a rq, the next wake-up will ensure we're
5759 * placed properly.
5760 */
5761 if (p->se.on_rq) {
2e1cb74a 5762 deactivate_task(rq_src, p, 0);
e2912009 5763 set_task_cpu(p, dest_cpu);
dd41f596 5764 activate_task(rq_dest, p, 0);
15afe09b 5765 check_preempt_curr(rq_dest, p, 0);
1da177e4 5766 }
b1e38734 5767done:
efc30814 5768 ret = 1;
b1e38734 5769fail:
1da177e4 5770 double_rq_unlock(rq_src, rq_dest);
efc30814 5771 return ret;
1da177e4
LT
5772}
5773
5774/*
969c7921
TH
5775 * migration_cpu_stop - this will be executed by a highprio stopper thread
5776 * and performs thread migration by bumping thread off CPU then
5777 * 'pushing' onto another runqueue.
1da177e4 5778 */
969c7921 5779static int migration_cpu_stop(void *data)
1da177e4 5780{
969c7921 5781 struct migration_arg *arg = data;
f7b4cddc 5782
969c7921
TH
5783 /*
5784 * The original target cpu might have gone down and we might
5785 * be on another cpu but it doesn't matter.
5786 */
f7b4cddc 5787 local_irq_disable();
969c7921 5788 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5789 local_irq_enable();
1da177e4 5790 return 0;
f7b4cddc
ON
5791}
5792
1da177e4 5793#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5794
054b9108 5795/*
48c5ccae
PZ
5796 * Ensures that the idle task is using init_mm right before its cpu goes
5797 * offline.
054b9108 5798 */
48c5ccae 5799void idle_task_exit(void)
1da177e4 5800{
48c5ccae 5801 struct mm_struct *mm = current->active_mm;
e76bd8d9 5802
48c5ccae 5803 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5804
48c5ccae
PZ
5805 if (mm != &init_mm)
5806 switch_mm(mm, &init_mm, current);
5807 mmdrop(mm);
1da177e4
LT
5808}
5809
5810/*
5811 * While a dead CPU has no uninterruptible tasks queued at this point,
5812 * it might still have a nonzero ->nr_uninterruptible counter, because
5813 * for performance reasons the counter is not stricly tracking tasks to
5814 * their home CPUs. So we just add the counter to another CPU's counter,
5815 * to keep the global sum constant after CPU-down:
5816 */
70b97a7f 5817static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5818{
6ad4c188 5819 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5820
1da177e4
LT
5821 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5822 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5823}
5824
dd41f596 5825/*
48c5ccae 5826 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5827 */
48c5ccae 5828static void calc_global_load_remove(struct rq *rq)
1da177e4 5829{
48c5ccae
PZ
5830 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5831 rq->calc_load_active = 0;
1da177e4
LT
5832}
5833
48f24c4d 5834/*
48c5ccae
PZ
5835 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5836 * try_to_wake_up()->select_task_rq().
5837 *
5838 * Called with rq->lock held even though we'er in stop_machine() and
5839 * there's no concurrency possible, we hold the required locks anyway
5840 * because of lock validation efforts.
1da177e4 5841 */
48c5ccae 5842static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5843{
70b97a7f 5844 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5845 struct task_struct *next, *stop = rq->stop;
5846 int dest_cpu;
1da177e4
LT
5847
5848 /*
48c5ccae
PZ
5849 * Fudge the rq selection such that the below task selection loop
5850 * doesn't get stuck on the currently eligible stop task.
5851 *
5852 * We're currently inside stop_machine() and the rq is either stuck
5853 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5854 * either way we should never end up calling schedule() until we're
5855 * done here.
1da177e4 5856 */
48c5ccae 5857 rq->stop = NULL;
48f24c4d 5858
dd41f596 5859 for ( ; ; ) {
48c5ccae
PZ
5860 /*
5861 * There's this thread running, bail when that's the only
5862 * remaining thread.
5863 */
5864 if (rq->nr_running == 1)
dd41f596 5865 break;
48c5ccae 5866
b67802ea 5867 next = pick_next_task(rq);
48c5ccae 5868 BUG_ON(!next);
79c53799 5869 next->sched_class->put_prev_task(rq, next);
e692ab53 5870
48c5ccae
PZ
5871 /* Find suitable destination for @next, with force if needed. */
5872 dest_cpu = select_fallback_rq(dead_cpu, next);
5873 raw_spin_unlock(&rq->lock);
5874
5875 __migrate_task(next, dead_cpu, dest_cpu);
5876
5877 raw_spin_lock(&rq->lock);
1da177e4 5878 }
dce48a84 5879
48c5ccae 5880 rq->stop = stop;
dce48a84 5881}
48c5ccae 5882
1da177e4
LT
5883#endif /* CONFIG_HOTPLUG_CPU */
5884
e692ab53
NP
5885#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5886
5887static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5888 {
5889 .procname = "sched_domain",
c57baf1e 5890 .mode = 0555,
e0361851 5891 },
56992309 5892 {}
e692ab53
NP
5893};
5894
5895static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5896 {
5897 .procname = "kernel",
c57baf1e 5898 .mode = 0555,
e0361851
AD
5899 .child = sd_ctl_dir,
5900 },
56992309 5901 {}
e692ab53
NP
5902};
5903
5904static struct ctl_table *sd_alloc_ctl_entry(int n)
5905{
5906 struct ctl_table *entry =
5cf9f062 5907 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5908
e692ab53
NP
5909 return entry;
5910}
5911
6382bc90
MM
5912static void sd_free_ctl_entry(struct ctl_table **tablep)
5913{
cd790076 5914 struct ctl_table *entry;
6382bc90 5915
cd790076
MM
5916 /*
5917 * In the intermediate directories, both the child directory and
5918 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5919 * will always be set. In the lowest directory the names are
cd790076
MM
5920 * static strings and all have proc handlers.
5921 */
5922 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5923 if (entry->child)
5924 sd_free_ctl_entry(&entry->child);
cd790076
MM
5925 if (entry->proc_handler == NULL)
5926 kfree(entry->procname);
5927 }
6382bc90
MM
5928
5929 kfree(*tablep);
5930 *tablep = NULL;
5931}
5932
e692ab53 5933static void
e0361851 5934set_table_entry(struct ctl_table *entry,
e692ab53
NP
5935 const char *procname, void *data, int maxlen,
5936 mode_t mode, proc_handler *proc_handler)
5937{
e692ab53
NP
5938 entry->procname = procname;
5939 entry->data = data;
5940 entry->maxlen = maxlen;
5941 entry->mode = mode;
5942 entry->proc_handler = proc_handler;
5943}
5944
5945static struct ctl_table *
5946sd_alloc_ctl_domain_table(struct sched_domain *sd)
5947{
a5d8c348 5948 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5949
ad1cdc1d
MM
5950 if (table == NULL)
5951 return NULL;
5952
e0361851 5953 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5954 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5955 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5956 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5957 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5958 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5959 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5960 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5961 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5962 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5963 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5964 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5965 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5966 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5967 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5968 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5969 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5970 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5971 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5972 &sd->cache_nice_tries,
5973 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5974 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5975 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5976 set_table_entry(&table[11], "name", sd->name,
5977 CORENAME_MAX_SIZE, 0444, proc_dostring);
5978 /* &table[12] is terminator */
e692ab53
NP
5979
5980 return table;
5981}
5982
9a4e7159 5983static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5984{
5985 struct ctl_table *entry, *table;
5986 struct sched_domain *sd;
5987 int domain_num = 0, i;
5988 char buf[32];
5989
5990 for_each_domain(cpu, sd)
5991 domain_num++;
5992 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5993 if (table == NULL)
5994 return NULL;
e692ab53
NP
5995
5996 i = 0;
5997 for_each_domain(cpu, sd) {
5998 snprintf(buf, 32, "domain%d", i);
e692ab53 5999 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6000 entry->mode = 0555;
e692ab53
NP
6001 entry->child = sd_alloc_ctl_domain_table(sd);
6002 entry++;
6003 i++;
6004 }
6005 return table;
6006}
6007
6008static struct ctl_table_header *sd_sysctl_header;
6382bc90 6009static void register_sched_domain_sysctl(void)
e692ab53 6010{
6ad4c188 6011 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6012 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6013 char buf[32];
6014
7378547f
MM
6015 WARN_ON(sd_ctl_dir[0].child);
6016 sd_ctl_dir[0].child = entry;
6017
ad1cdc1d
MM
6018 if (entry == NULL)
6019 return;
6020
6ad4c188 6021 for_each_possible_cpu(i) {
e692ab53 6022 snprintf(buf, 32, "cpu%d", i);
e692ab53 6023 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6024 entry->mode = 0555;
e692ab53 6025 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6026 entry++;
e692ab53 6027 }
7378547f
MM
6028
6029 WARN_ON(sd_sysctl_header);
e692ab53
NP
6030 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6031}
6382bc90 6032
7378547f 6033/* may be called multiple times per register */
6382bc90
MM
6034static void unregister_sched_domain_sysctl(void)
6035{
7378547f
MM
6036 if (sd_sysctl_header)
6037 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6038 sd_sysctl_header = NULL;
7378547f
MM
6039 if (sd_ctl_dir[0].child)
6040 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6041}
e692ab53 6042#else
6382bc90
MM
6043static void register_sched_domain_sysctl(void)
6044{
6045}
6046static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6047{
6048}
6049#endif
6050
1f11eb6a
GH
6051static void set_rq_online(struct rq *rq)
6052{
6053 if (!rq->online) {
6054 const struct sched_class *class;
6055
c6c4927b 6056 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6057 rq->online = 1;
6058
6059 for_each_class(class) {
6060 if (class->rq_online)
6061 class->rq_online(rq);
6062 }
6063 }
6064}
6065
6066static void set_rq_offline(struct rq *rq)
6067{
6068 if (rq->online) {
6069 const struct sched_class *class;
6070
6071 for_each_class(class) {
6072 if (class->rq_offline)
6073 class->rq_offline(rq);
6074 }
6075
c6c4927b 6076 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6077 rq->online = 0;
6078 }
6079}
6080
1da177e4
LT
6081/*
6082 * migration_call - callback that gets triggered when a CPU is added.
6083 * Here we can start up the necessary migration thread for the new CPU.
6084 */
48f24c4d
IM
6085static int __cpuinit
6086migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6087{
48f24c4d 6088 int cpu = (long)hcpu;
1da177e4 6089 unsigned long flags;
969c7921 6090 struct rq *rq = cpu_rq(cpu);
1da177e4 6091
48c5ccae 6092 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6093
1da177e4 6094 case CPU_UP_PREPARE:
a468d389 6095 rq->calc_load_update = calc_load_update;
1da177e4 6096 break;
48f24c4d 6097
1da177e4 6098 case CPU_ONLINE:
1f94ef59 6099 /* Update our root-domain */
05fa785c 6100 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6101 if (rq->rd) {
c6c4927b 6102 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6103
6104 set_rq_online(rq);
1f94ef59 6105 }
05fa785c 6106 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6107 break;
48f24c4d 6108
1da177e4 6109#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6110 case CPU_DYING:
57d885fe 6111 /* Update our root-domain */
05fa785c 6112 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6113 if (rq->rd) {
c6c4927b 6114 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6115 set_rq_offline(rq);
57d885fe 6116 }
48c5ccae
PZ
6117 migrate_tasks(cpu);
6118 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6119 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6120
6121 migrate_nr_uninterruptible(rq);
6122 calc_global_load_remove(rq);
57d885fe 6123 break;
1da177e4
LT
6124#endif
6125 }
6126 return NOTIFY_OK;
6127}
6128
f38b0820
PM
6129/*
6130 * Register at high priority so that task migration (migrate_all_tasks)
6131 * happens before everything else. This has to be lower priority than
cdd6c482 6132 * the notifier in the perf_event subsystem, though.
1da177e4 6133 */
26c2143b 6134static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6135 .notifier_call = migration_call,
50a323b7 6136 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6137};
6138
3a101d05
TH
6139static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6140 unsigned long action, void *hcpu)
6141{
6142 switch (action & ~CPU_TASKS_FROZEN) {
6143 case CPU_ONLINE:
6144 case CPU_DOWN_FAILED:
6145 set_cpu_active((long)hcpu, true);
6146 return NOTIFY_OK;
6147 default:
6148 return NOTIFY_DONE;
6149 }
6150}
6151
6152static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6153 unsigned long action, void *hcpu)
6154{
6155 switch (action & ~CPU_TASKS_FROZEN) {
6156 case CPU_DOWN_PREPARE:
6157 set_cpu_active((long)hcpu, false);
6158 return NOTIFY_OK;
6159 default:
6160 return NOTIFY_DONE;
6161 }
6162}
6163
7babe8db 6164static int __init migration_init(void)
1da177e4
LT
6165{
6166 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6167 int err;
48f24c4d 6168
3a101d05 6169 /* Initialize migration for the boot CPU */
07dccf33
AM
6170 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6171 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6172 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6173 register_cpu_notifier(&migration_notifier);
7babe8db 6174
3a101d05
TH
6175 /* Register cpu active notifiers */
6176 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6177 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6178
a004cd42 6179 return 0;
1da177e4 6180}
7babe8db 6181early_initcall(migration_init);
1da177e4
LT
6182#endif
6183
6184#ifdef CONFIG_SMP
476f3534 6185
3e9830dc 6186#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6187
f6630114
MT
6188static __read_mostly int sched_domain_debug_enabled;
6189
6190static int __init sched_domain_debug_setup(char *str)
6191{
6192 sched_domain_debug_enabled = 1;
6193
6194 return 0;
6195}
6196early_param("sched_debug", sched_domain_debug_setup);
6197
7c16ec58 6198static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6199 struct cpumask *groupmask)
1da177e4 6200{
4dcf6aff 6201 struct sched_group *group = sd->groups;
434d53b0 6202 char str[256];
1da177e4 6203
968ea6d8 6204 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6205 cpumask_clear(groupmask);
4dcf6aff
IM
6206
6207 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6208
6209 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6210 printk("does not load-balance\n");
4dcf6aff 6211 if (sd->parent)
3df0fc5b
PZ
6212 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6213 " has parent");
4dcf6aff 6214 return -1;
41c7ce9a
NP
6215 }
6216
3df0fc5b 6217 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6218
758b2cdc 6219 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6220 printk(KERN_ERR "ERROR: domain->span does not contain "
6221 "CPU%d\n", cpu);
4dcf6aff 6222 }
758b2cdc 6223 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6224 printk(KERN_ERR "ERROR: domain->groups does not contain"
6225 " CPU%d\n", cpu);
4dcf6aff 6226 }
1da177e4 6227
4dcf6aff 6228 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6229 do {
4dcf6aff 6230 if (!group) {
3df0fc5b
PZ
6231 printk("\n");
6232 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6233 break;
6234 }
6235
18a3885f 6236 if (!group->cpu_power) {
3df0fc5b
PZ
6237 printk(KERN_CONT "\n");
6238 printk(KERN_ERR "ERROR: domain->cpu_power not "
6239 "set\n");
4dcf6aff
IM
6240 break;
6241 }
1da177e4 6242
758b2cdc 6243 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6244 printk(KERN_CONT "\n");
6245 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6246 break;
6247 }
1da177e4 6248
758b2cdc 6249 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6250 printk(KERN_CONT "\n");
6251 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6252 break;
6253 }
1da177e4 6254
758b2cdc 6255 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6256
968ea6d8 6257 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6258
3df0fc5b 6259 printk(KERN_CONT " %s", str);
18a3885f 6260 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6261 printk(KERN_CONT " (cpu_power = %d)",
6262 group->cpu_power);
381512cf 6263 }
1da177e4 6264
4dcf6aff
IM
6265 group = group->next;
6266 } while (group != sd->groups);
3df0fc5b 6267 printk(KERN_CONT "\n");
1da177e4 6268
758b2cdc 6269 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6270 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6271
758b2cdc
RR
6272 if (sd->parent &&
6273 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6274 printk(KERN_ERR "ERROR: parent span is not a superset "
6275 "of domain->span\n");
4dcf6aff
IM
6276 return 0;
6277}
1da177e4 6278
4dcf6aff
IM
6279static void sched_domain_debug(struct sched_domain *sd, int cpu)
6280{
d5dd3db1 6281 cpumask_var_t groupmask;
4dcf6aff 6282 int level = 0;
1da177e4 6283
f6630114
MT
6284 if (!sched_domain_debug_enabled)
6285 return;
6286
4dcf6aff
IM
6287 if (!sd) {
6288 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6289 return;
6290 }
1da177e4 6291
4dcf6aff
IM
6292 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6293
d5dd3db1 6294 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6295 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6296 return;
6297 }
6298
4dcf6aff 6299 for (;;) {
7c16ec58 6300 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6301 break;
1da177e4
LT
6302 level++;
6303 sd = sd->parent;
33859f7f 6304 if (!sd)
4dcf6aff
IM
6305 break;
6306 }
d5dd3db1 6307 free_cpumask_var(groupmask);
1da177e4 6308}
6d6bc0ad 6309#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6310# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6311#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6312
1a20ff27 6313static int sd_degenerate(struct sched_domain *sd)
245af2c7 6314{
758b2cdc 6315 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6316 return 1;
6317
6318 /* Following flags need at least 2 groups */
6319 if (sd->flags & (SD_LOAD_BALANCE |
6320 SD_BALANCE_NEWIDLE |
6321 SD_BALANCE_FORK |
89c4710e
SS
6322 SD_BALANCE_EXEC |
6323 SD_SHARE_CPUPOWER |
6324 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6325 if (sd->groups != sd->groups->next)
6326 return 0;
6327 }
6328
6329 /* Following flags don't use groups */
c88d5910 6330 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6331 return 0;
6332
6333 return 1;
6334}
6335
48f24c4d
IM
6336static int
6337sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6338{
6339 unsigned long cflags = sd->flags, pflags = parent->flags;
6340
6341 if (sd_degenerate(parent))
6342 return 1;
6343
758b2cdc 6344 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6345 return 0;
6346
245af2c7
SS
6347 /* Flags needing groups don't count if only 1 group in parent */
6348 if (parent->groups == parent->groups->next) {
6349 pflags &= ~(SD_LOAD_BALANCE |
6350 SD_BALANCE_NEWIDLE |
6351 SD_BALANCE_FORK |
89c4710e
SS
6352 SD_BALANCE_EXEC |
6353 SD_SHARE_CPUPOWER |
6354 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6355 if (nr_node_ids == 1)
6356 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6357 }
6358 if (~cflags & pflags)
6359 return 0;
6360
6361 return 1;
6362}
6363
c6c4927b
RR
6364static void free_rootdomain(struct root_domain *rd)
6365{
047106ad
PZ
6366 synchronize_sched();
6367
68e74568
RR
6368 cpupri_cleanup(&rd->cpupri);
6369
c6c4927b
RR
6370 free_cpumask_var(rd->rto_mask);
6371 free_cpumask_var(rd->online);
6372 free_cpumask_var(rd->span);
6373 kfree(rd);
6374}
6375
57d885fe
GH
6376static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6377{
a0490fa3 6378 struct root_domain *old_rd = NULL;
57d885fe 6379 unsigned long flags;
57d885fe 6380
05fa785c 6381 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6382
6383 if (rq->rd) {
a0490fa3 6384 old_rd = rq->rd;
57d885fe 6385
c6c4927b 6386 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6387 set_rq_offline(rq);
57d885fe 6388
c6c4927b 6389 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6390
a0490fa3
IM
6391 /*
6392 * If we dont want to free the old_rt yet then
6393 * set old_rd to NULL to skip the freeing later
6394 * in this function:
6395 */
6396 if (!atomic_dec_and_test(&old_rd->refcount))
6397 old_rd = NULL;
57d885fe
GH
6398 }
6399
6400 atomic_inc(&rd->refcount);
6401 rq->rd = rd;
6402
c6c4927b 6403 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6404 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6405 set_rq_online(rq);
57d885fe 6406
05fa785c 6407 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6408
6409 if (old_rd)
6410 free_rootdomain(old_rd);
57d885fe
GH
6411}
6412
68c38fc3 6413static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6414{
6415 memset(rd, 0, sizeof(*rd));
6416
68c38fc3 6417 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6418 goto out;
68c38fc3 6419 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6420 goto free_span;
68c38fc3 6421 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6422 goto free_online;
6e0534f2 6423
68c38fc3 6424 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6425 goto free_rto_mask;
c6c4927b 6426 return 0;
6e0534f2 6427
68e74568
RR
6428free_rto_mask:
6429 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6430free_online:
6431 free_cpumask_var(rd->online);
6432free_span:
6433 free_cpumask_var(rd->span);
0c910d28 6434out:
c6c4927b 6435 return -ENOMEM;
57d885fe
GH
6436}
6437
6438static void init_defrootdomain(void)
6439{
68c38fc3 6440 init_rootdomain(&def_root_domain);
c6c4927b 6441
57d885fe
GH
6442 atomic_set(&def_root_domain.refcount, 1);
6443}
6444
dc938520 6445static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6446{
6447 struct root_domain *rd;
6448
6449 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6450 if (!rd)
6451 return NULL;
6452
68c38fc3 6453 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6454 kfree(rd);
6455 return NULL;
6456 }
57d885fe
GH
6457
6458 return rd;
6459}
6460
1da177e4 6461/*
0eab9146 6462 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6463 * hold the hotplug lock.
6464 */
0eab9146
IM
6465static void
6466cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6467{
70b97a7f 6468 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6469 struct sched_domain *tmp;
6470
669c55e9
PZ
6471 for (tmp = sd; tmp; tmp = tmp->parent)
6472 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6473
245af2c7 6474 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6475 for (tmp = sd; tmp; ) {
245af2c7
SS
6476 struct sched_domain *parent = tmp->parent;
6477 if (!parent)
6478 break;
f29c9b1c 6479
1a848870 6480 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6481 tmp->parent = parent->parent;
1a848870
SS
6482 if (parent->parent)
6483 parent->parent->child = tmp;
f29c9b1c
LZ
6484 } else
6485 tmp = tmp->parent;
245af2c7
SS
6486 }
6487
1a848870 6488 if (sd && sd_degenerate(sd)) {
245af2c7 6489 sd = sd->parent;
1a848870
SS
6490 if (sd)
6491 sd->child = NULL;
6492 }
1da177e4
LT
6493
6494 sched_domain_debug(sd, cpu);
6495
57d885fe 6496 rq_attach_root(rq, rd);
674311d5 6497 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6498}
6499
6500/* cpus with isolated domains */
dcc30a35 6501static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6502
6503/* Setup the mask of cpus configured for isolated domains */
6504static int __init isolated_cpu_setup(char *str)
6505{
bdddd296 6506 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6507 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6508 return 1;
6509}
6510
8927f494 6511__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6512
6513/*
6711cab4
SS
6514 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6515 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6516 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6517 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6518 *
6519 * init_sched_build_groups will build a circular linked list of the groups
6520 * covered by the given span, and will set each group's ->cpumask correctly,
6521 * and ->cpu_power to 0.
6522 */
a616058b 6523static void
96f874e2
RR
6524init_sched_build_groups(const struct cpumask *span,
6525 const struct cpumask *cpu_map,
6526 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6527 struct sched_group **sg,
96f874e2
RR
6528 struct cpumask *tmpmask),
6529 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6530{
6531 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6532 int i;
6533
96f874e2 6534 cpumask_clear(covered);
7c16ec58 6535
abcd083a 6536 for_each_cpu(i, span) {
6711cab4 6537 struct sched_group *sg;
7c16ec58 6538 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6539 int j;
6540
758b2cdc 6541 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6542 continue;
6543
758b2cdc 6544 cpumask_clear(sched_group_cpus(sg));
18a3885f 6545 sg->cpu_power = 0;
1da177e4 6546
abcd083a 6547 for_each_cpu(j, span) {
7c16ec58 6548 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6549 continue;
6550
96f874e2 6551 cpumask_set_cpu(j, covered);
758b2cdc 6552 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6553 }
6554 if (!first)
6555 first = sg;
6556 if (last)
6557 last->next = sg;
6558 last = sg;
6559 }
6560 last->next = first;
6561}
6562
9c1cfda2 6563#define SD_NODES_PER_DOMAIN 16
1da177e4 6564
9c1cfda2 6565#ifdef CONFIG_NUMA
198e2f18 6566
9c1cfda2
JH
6567/**
6568 * find_next_best_node - find the next node to include in a sched_domain
6569 * @node: node whose sched_domain we're building
6570 * @used_nodes: nodes already in the sched_domain
6571 *
41a2d6cf 6572 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6573 * finds the closest node not already in the @used_nodes map.
6574 *
6575 * Should use nodemask_t.
6576 */
c5f59f08 6577static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6578{
6579 int i, n, val, min_val, best_node = 0;
6580
6581 min_val = INT_MAX;
6582
076ac2af 6583 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6584 /* Start at @node */
076ac2af 6585 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6586
6587 if (!nr_cpus_node(n))
6588 continue;
6589
6590 /* Skip already used nodes */
c5f59f08 6591 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6592 continue;
6593
6594 /* Simple min distance search */
6595 val = node_distance(node, n);
6596
6597 if (val < min_val) {
6598 min_val = val;
6599 best_node = n;
6600 }
6601 }
6602
c5f59f08 6603 node_set(best_node, *used_nodes);
9c1cfda2
JH
6604 return best_node;
6605}
6606
6607/**
6608 * sched_domain_node_span - get a cpumask for a node's sched_domain
6609 * @node: node whose cpumask we're constructing
73486722 6610 * @span: resulting cpumask
9c1cfda2 6611 *
41a2d6cf 6612 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6613 * should be one that prevents unnecessary balancing, but also spreads tasks
6614 * out optimally.
6615 */
96f874e2 6616static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6617{
c5f59f08 6618 nodemask_t used_nodes;
48f24c4d 6619 int i;
9c1cfda2 6620
6ca09dfc 6621 cpumask_clear(span);
c5f59f08 6622 nodes_clear(used_nodes);
9c1cfda2 6623
6ca09dfc 6624 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6625 node_set(node, used_nodes);
9c1cfda2
JH
6626
6627 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6628 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6629
6ca09dfc 6630 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6631 }
9c1cfda2 6632}
6d6bc0ad 6633#endif /* CONFIG_NUMA */
9c1cfda2 6634
5c45bf27 6635int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6636
6c99e9ad
RR
6637/*
6638 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6639 *
6640 * ( See the the comments in include/linux/sched.h:struct sched_group
6641 * and struct sched_domain. )
6c99e9ad
RR
6642 */
6643struct static_sched_group {
6644 struct sched_group sg;
6645 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6646};
6647
6648struct static_sched_domain {
6649 struct sched_domain sd;
6650 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6651};
6652
49a02c51
AH
6653struct s_data {
6654#ifdef CONFIG_NUMA
6655 int sd_allnodes;
6656 cpumask_var_t domainspan;
6657 cpumask_var_t covered;
6658 cpumask_var_t notcovered;
6659#endif
6660 cpumask_var_t nodemask;
6661 cpumask_var_t this_sibling_map;
6662 cpumask_var_t this_core_map;
01a08546 6663 cpumask_var_t this_book_map;
49a02c51
AH
6664 cpumask_var_t send_covered;
6665 cpumask_var_t tmpmask;
6666 struct sched_group **sched_group_nodes;
6667 struct root_domain *rd;
6668};
6669
2109b99e
AH
6670enum s_alloc {
6671 sa_sched_groups = 0,
6672 sa_rootdomain,
6673 sa_tmpmask,
6674 sa_send_covered,
01a08546 6675 sa_this_book_map,
2109b99e
AH
6676 sa_this_core_map,
6677 sa_this_sibling_map,
6678 sa_nodemask,
6679 sa_sched_group_nodes,
6680#ifdef CONFIG_NUMA
6681 sa_notcovered,
6682 sa_covered,
6683 sa_domainspan,
6684#endif
6685 sa_none,
6686};
6687
9c1cfda2 6688/*
48f24c4d 6689 * SMT sched-domains:
9c1cfda2 6690 */
1da177e4 6691#ifdef CONFIG_SCHED_SMT
6c99e9ad 6692static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6693static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6694
41a2d6cf 6695static int
96f874e2
RR
6696cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6697 struct sched_group **sg, struct cpumask *unused)
1da177e4 6698{
6711cab4 6699 if (sg)
1871e52c 6700 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6701 return cpu;
6702}
6d6bc0ad 6703#endif /* CONFIG_SCHED_SMT */
1da177e4 6704
48f24c4d
IM
6705/*
6706 * multi-core sched-domains:
6707 */
1e9f28fa 6708#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6709static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6710static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6711
41a2d6cf 6712static int
96f874e2
RR
6713cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6714 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6715{
6711cab4 6716 int group;
f269893c 6717#ifdef CONFIG_SCHED_SMT
c69fc56d 6718 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6719 group = cpumask_first(mask);
f269893c
HC
6720#else
6721 group = cpu;
6722#endif
6711cab4 6723 if (sg)
6c99e9ad 6724 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6725 return group;
1e9f28fa 6726}
f269893c 6727#endif /* CONFIG_SCHED_MC */
1e9f28fa 6728
01a08546
HC
6729/*
6730 * book sched-domains:
6731 */
6732#ifdef CONFIG_SCHED_BOOK
6733static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6734static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6735
41a2d6cf 6736static int
01a08546
HC
6737cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6738 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6739{
01a08546
HC
6740 int group = cpu;
6741#ifdef CONFIG_SCHED_MC
6742 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6743 group = cpumask_first(mask);
6744#elif defined(CONFIG_SCHED_SMT)
6745 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6746 group = cpumask_first(mask);
6747#endif
6711cab4 6748 if (sg)
01a08546
HC
6749 *sg = &per_cpu(sched_group_book, group).sg;
6750 return group;
1e9f28fa 6751}
01a08546 6752#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6753
6c99e9ad
RR
6754static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6755static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6756
41a2d6cf 6757static int
96f874e2
RR
6758cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6759 struct sched_group **sg, struct cpumask *mask)
1da177e4 6760{
6711cab4 6761 int group;
01a08546
HC
6762#ifdef CONFIG_SCHED_BOOK
6763 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6764 group = cpumask_first(mask);
6765#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6766 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6767 group = cpumask_first(mask);
1e9f28fa 6768#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6769 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6770 group = cpumask_first(mask);
1da177e4 6771#else
6711cab4 6772 group = cpu;
1da177e4 6773#endif
6711cab4 6774 if (sg)
6c99e9ad 6775 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6776 return group;
1da177e4
LT
6777}
6778
6779#ifdef CONFIG_NUMA
1da177e4 6780/*
9c1cfda2
JH
6781 * The init_sched_build_groups can't handle what we want to do with node
6782 * groups, so roll our own. Now each node has its own list of groups which
6783 * gets dynamically allocated.
1da177e4 6784 */
62ea9ceb 6785static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6786static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6787
62ea9ceb 6788static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6789static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6790
96f874e2
RR
6791static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6792 struct sched_group **sg,
6793 struct cpumask *nodemask)
9c1cfda2 6794{
6711cab4
SS
6795 int group;
6796
6ca09dfc 6797 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6798 group = cpumask_first(nodemask);
6711cab4
SS
6799
6800 if (sg)
6c99e9ad 6801 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6802 return group;
1da177e4 6803}
6711cab4 6804
08069033
SS
6805static void init_numa_sched_groups_power(struct sched_group *group_head)
6806{
6807 struct sched_group *sg = group_head;
6808 int j;
6809
6810 if (!sg)
6811 return;
3a5c359a 6812 do {
758b2cdc 6813 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6814 struct sched_domain *sd;
08069033 6815
6c99e9ad 6816 sd = &per_cpu(phys_domains, j).sd;
13318a71 6817 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6818 /*
6819 * Only add "power" once for each
6820 * physical package.
6821 */
6822 continue;
6823 }
08069033 6824
18a3885f 6825 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6826 }
6827 sg = sg->next;
6828 } while (sg != group_head);
08069033 6829}
0601a88d
AH
6830
6831static int build_numa_sched_groups(struct s_data *d,
6832 const struct cpumask *cpu_map, int num)
6833{
6834 struct sched_domain *sd;
6835 struct sched_group *sg, *prev;
6836 int n, j;
6837
6838 cpumask_clear(d->covered);
6839 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6840 if (cpumask_empty(d->nodemask)) {
6841 d->sched_group_nodes[num] = NULL;
6842 goto out;
6843 }
6844
6845 sched_domain_node_span(num, d->domainspan);
6846 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6847
6848 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6849 GFP_KERNEL, num);
6850 if (!sg) {
3df0fc5b
PZ
6851 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6852 num);
0601a88d
AH
6853 return -ENOMEM;
6854 }
6855 d->sched_group_nodes[num] = sg;
6856
6857 for_each_cpu(j, d->nodemask) {
6858 sd = &per_cpu(node_domains, j).sd;
6859 sd->groups = sg;
6860 }
6861
18a3885f 6862 sg->cpu_power = 0;
0601a88d
AH
6863 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6864 sg->next = sg;
6865 cpumask_or(d->covered, d->covered, d->nodemask);
6866
6867 prev = sg;
6868 for (j = 0; j < nr_node_ids; j++) {
6869 n = (num + j) % nr_node_ids;
6870 cpumask_complement(d->notcovered, d->covered);
6871 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6872 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6873 if (cpumask_empty(d->tmpmask))
6874 break;
6875 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6876 if (cpumask_empty(d->tmpmask))
6877 continue;
6878 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6879 GFP_KERNEL, num);
6880 if (!sg) {
3df0fc5b
PZ
6881 printk(KERN_WARNING
6882 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6883 return -ENOMEM;
6884 }
18a3885f 6885 sg->cpu_power = 0;
0601a88d
AH
6886 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6887 sg->next = prev->next;
6888 cpumask_or(d->covered, d->covered, d->tmpmask);
6889 prev->next = sg;
6890 prev = sg;
6891 }
6892out:
6893 return 0;
6894}
6d6bc0ad 6895#endif /* CONFIG_NUMA */
1da177e4 6896
a616058b 6897#ifdef CONFIG_NUMA
51888ca2 6898/* Free memory allocated for various sched_group structures */
96f874e2
RR
6899static void free_sched_groups(const struct cpumask *cpu_map,
6900 struct cpumask *nodemask)
51888ca2 6901{
a616058b 6902 int cpu, i;
51888ca2 6903
abcd083a 6904 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6905 struct sched_group **sched_group_nodes
6906 = sched_group_nodes_bycpu[cpu];
6907
51888ca2
SV
6908 if (!sched_group_nodes)
6909 continue;
6910
076ac2af 6911 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6912 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6913
6ca09dfc 6914 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6915 if (cpumask_empty(nodemask))
51888ca2
SV
6916 continue;
6917
6918 if (sg == NULL)
6919 continue;
6920 sg = sg->next;
6921next_sg:
6922 oldsg = sg;
6923 sg = sg->next;
6924 kfree(oldsg);
6925 if (oldsg != sched_group_nodes[i])
6926 goto next_sg;
6927 }
6928 kfree(sched_group_nodes);
6929 sched_group_nodes_bycpu[cpu] = NULL;
6930 }
51888ca2 6931}
6d6bc0ad 6932#else /* !CONFIG_NUMA */
96f874e2
RR
6933static void free_sched_groups(const struct cpumask *cpu_map,
6934 struct cpumask *nodemask)
a616058b
SS
6935{
6936}
6d6bc0ad 6937#endif /* CONFIG_NUMA */
51888ca2 6938
89c4710e
SS
6939/*
6940 * Initialize sched groups cpu_power.
6941 *
6942 * cpu_power indicates the capacity of sched group, which is used while
6943 * distributing the load between different sched groups in a sched domain.
6944 * Typically cpu_power for all the groups in a sched domain will be same unless
6945 * there are asymmetries in the topology. If there are asymmetries, group
6946 * having more cpu_power will pickup more load compared to the group having
6947 * less cpu_power.
89c4710e
SS
6948 */
6949static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6950{
6951 struct sched_domain *child;
6952 struct sched_group *group;
f93e65c1
PZ
6953 long power;
6954 int weight;
89c4710e
SS
6955
6956 WARN_ON(!sd || !sd->groups);
6957
13318a71 6958 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6959 return;
6960
aae6d3dd
SS
6961 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
6962
89c4710e
SS
6963 child = sd->child;
6964
18a3885f 6965 sd->groups->cpu_power = 0;
5517d86b 6966
f93e65c1
PZ
6967 if (!child) {
6968 power = SCHED_LOAD_SCALE;
6969 weight = cpumask_weight(sched_domain_span(sd));
6970 /*
6971 * SMT siblings share the power of a single core.
a52bfd73
PZ
6972 * Usually multiple threads get a better yield out of
6973 * that one core than a single thread would have,
6974 * reflect that in sd->smt_gain.
f93e65c1 6975 */
a52bfd73
PZ
6976 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6977 power *= sd->smt_gain;
f93e65c1 6978 power /= weight;
a52bfd73
PZ
6979 power >>= SCHED_LOAD_SHIFT;
6980 }
18a3885f 6981 sd->groups->cpu_power += power;
89c4710e
SS
6982 return;
6983 }
6984
89c4710e 6985 /*
f93e65c1 6986 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6987 */
6988 group = child->groups;
6989 do {
18a3885f 6990 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6991 group = group->next;
6992 } while (group != child->groups);
6993}
6994
7c16ec58
MT
6995/*
6996 * Initializers for schedule domains
6997 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6998 */
6999
a5d8c348
IM
7000#ifdef CONFIG_SCHED_DEBUG
7001# define SD_INIT_NAME(sd, type) sd->name = #type
7002#else
7003# define SD_INIT_NAME(sd, type) do { } while (0)
7004#endif
7005
7c16ec58 7006#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7007
7c16ec58
MT
7008#define SD_INIT_FUNC(type) \
7009static noinline void sd_init_##type(struct sched_domain *sd) \
7010{ \
7011 memset(sd, 0, sizeof(*sd)); \
7012 *sd = SD_##type##_INIT; \
1d3504fc 7013 sd->level = SD_LV_##type; \
a5d8c348 7014 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7015}
7016
7017SD_INIT_FUNC(CPU)
7018#ifdef CONFIG_NUMA
7019 SD_INIT_FUNC(ALLNODES)
7020 SD_INIT_FUNC(NODE)
7021#endif
7022#ifdef CONFIG_SCHED_SMT
7023 SD_INIT_FUNC(SIBLING)
7024#endif
7025#ifdef CONFIG_SCHED_MC
7026 SD_INIT_FUNC(MC)
7027#endif
01a08546
HC
7028#ifdef CONFIG_SCHED_BOOK
7029 SD_INIT_FUNC(BOOK)
7030#endif
7c16ec58 7031
1d3504fc
HS
7032static int default_relax_domain_level = -1;
7033
7034static int __init setup_relax_domain_level(char *str)
7035{
30e0e178
LZ
7036 unsigned long val;
7037
7038 val = simple_strtoul(str, NULL, 0);
7039 if (val < SD_LV_MAX)
7040 default_relax_domain_level = val;
7041
1d3504fc
HS
7042 return 1;
7043}
7044__setup("relax_domain_level=", setup_relax_domain_level);
7045
7046static void set_domain_attribute(struct sched_domain *sd,
7047 struct sched_domain_attr *attr)
7048{
7049 int request;
7050
7051 if (!attr || attr->relax_domain_level < 0) {
7052 if (default_relax_domain_level < 0)
7053 return;
7054 else
7055 request = default_relax_domain_level;
7056 } else
7057 request = attr->relax_domain_level;
7058 if (request < sd->level) {
7059 /* turn off idle balance on this domain */
c88d5910 7060 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7061 } else {
7062 /* turn on idle balance on this domain */
c88d5910 7063 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7064 }
7065}
7066
2109b99e
AH
7067static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7068 const struct cpumask *cpu_map)
7069{
7070 switch (what) {
7071 case sa_sched_groups:
7072 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7073 d->sched_group_nodes = NULL;
7074 case sa_rootdomain:
7075 free_rootdomain(d->rd); /* fall through */
7076 case sa_tmpmask:
7077 free_cpumask_var(d->tmpmask); /* fall through */
7078 case sa_send_covered:
7079 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7080 case sa_this_book_map:
7081 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7082 case sa_this_core_map:
7083 free_cpumask_var(d->this_core_map); /* fall through */
7084 case sa_this_sibling_map:
7085 free_cpumask_var(d->this_sibling_map); /* fall through */
7086 case sa_nodemask:
7087 free_cpumask_var(d->nodemask); /* fall through */
7088 case sa_sched_group_nodes:
d1b55138 7089#ifdef CONFIG_NUMA
2109b99e
AH
7090 kfree(d->sched_group_nodes); /* fall through */
7091 case sa_notcovered:
7092 free_cpumask_var(d->notcovered); /* fall through */
7093 case sa_covered:
7094 free_cpumask_var(d->covered); /* fall through */
7095 case sa_domainspan:
7096 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7097#endif
2109b99e
AH
7098 case sa_none:
7099 break;
7100 }
7101}
3404c8d9 7102
2109b99e
AH
7103static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7104 const struct cpumask *cpu_map)
7105{
3404c8d9 7106#ifdef CONFIG_NUMA
2109b99e
AH
7107 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7108 return sa_none;
7109 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7110 return sa_domainspan;
7111 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7112 return sa_covered;
7113 /* Allocate the per-node list of sched groups */
7114 d->sched_group_nodes = kcalloc(nr_node_ids,
7115 sizeof(struct sched_group *), GFP_KERNEL);
7116 if (!d->sched_group_nodes) {
3df0fc5b 7117 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7118 return sa_notcovered;
d1b55138 7119 }
2109b99e 7120 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7121#endif
2109b99e
AH
7122 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7123 return sa_sched_group_nodes;
7124 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7125 return sa_nodemask;
7126 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7127 return sa_this_sibling_map;
01a08546 7128 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7129 return sa_this_core_map;
01a08546
HC
7130 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7131 return sa_this_book_map;
2109b99e
AH
7132 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7133 return sa_send_covered;
7134 d->rd = alloc_rootdomain();
7135 if (!d->rd) {
3df0fc5b 7136 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7137 return sa_tmpmask;
57d885fe 7138 }
2109b99e
AH
7139 return sa_rootdomain;
7140}
57d885fe 7141
7f4588f3
AH
7142static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7143 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7144{
7145 struct sched_domain *sd = NULL;
7c16ec58 7146#ifdef CONFIG_NUMA
7f4588f3 7147 struct sched_domain *parent;
1da177e4 7148
7f4588f3
AH
7149 d->sd_allnodes = 0;
7150 if (cpumask_weight(cpu_map) >
7151 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7152 sd = &per_cpu(allnodes_domains, i).sd;
7153 SD_INIT(sd, ALLNODES);
1d3504fc 7154 set_domain_attribute(sd, attr);
7f4588f3
AH
7155 cpumask_copy(sched_domain_span(sd), cpu_map);
7156 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7157 d->sd_allnodes = 1;
7158 }
7159 parent = sd;
7160
7161 sd = &per_cpu(node_domains, i).sd;
7162 SD_INIT(sd, NODE);
7163 set_domain_attribute(sd, attr);
7164 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7165 sd->parent = parent;
7166 if (parent)
7167 parent->child = sd;
7168 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7169#endif
7f4588f3
AH
7170 return sd;
7171}
1da177e4 7172
87cce662
AH
7173static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7174 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7175 struct sched_domain *parent, int i)
7176{
7177 struct sched_domain *sd;
7178 sd = &per_cpu(phys_domains, i).sd;
7179 SD_INIT(sd, CPU);
7180 set_domain_attribute(sd, attr);
7181 cpumask_copy(sched_domain_span(sd), d->nodemask);
7182 sd->parent = parent;
7183 if (parent)
7184 parent->child = sd;
7185 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7186 return sd;
7187}
1da177e4 7188
01a08546
HC
7189static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7190 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7191 struct sched_domain *parent, int i)
7192{
7193 struct sched_domain *sd = parent;
7194#ifdef CONFIG_SCHED_BOOK
7195 sd = &per_cpu(book_domains, i).sd;
7196 SD_INIT(sd, BOOK);
7197 set_domain_attribute(sd, attr);
7198 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7199 sd->parent = parent;
7200 parent->child = sd;
7201 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7202#endif
7203 return sd;
7204}
7205
410c4081
AH
7206static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7207 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7208 struct sched_domain *parent, int i)
7209{
7210 struct sched_domain *sd = parent;
1e9f28fa 7211#ifdef CONFIG_SCHED_MC
410c4081
AH
7212 sd = &per_cpu(core_domains, i).sd;
7213 SD_INIT(sd, MC);
7214 set_domain_attribute(sd, attr);
7215 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7216 sd->parent = parent;
7217 parent->child = sd;
7218 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7219#endif
410c4081
AH
7220 return sd;
7221}
1e9f28fa 7222
d8173535
AH
7223static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7224 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7225 struct sched_domain *parent, int i)
7226{
7227 struct sched_domain *sd = parent;
1da177e4 7228#ifdef CONFIG_SCHED_SMT
d8173535
AH
7229 sd = &per_cpu(cpu_domains, i).sd;
7230 SD_INIT(sd, SIBLING);
7231 set_domain_attribute(sd, attr);
7232 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7233 sd->parent = parent;
7234 parent->child = sd;
7235 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7236#endif
d8173535
AH
7237 return sd;
7238}
1da177e4 7239
0e8e85c9
AH
7240static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7241 const struct cpumask *cpu_map, int cpu)
7242{
7243 switch (l) {
1da177e4 7244#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7245 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7246 cpumask_and(d->this_sibling_map, cpu_map,
7247 topology_thread_cpumask(cpu));
7248 if (cpu == cpumask_first(d->this_sibling_map))
7249 init_sched_build_groups(d->this_sibling_map, cpu_map,
7250 &cpu_to_cpu_group,
7251 d->send_covered, d->tmpmask);
7252 break;
1da177e4 7253#endif
1e9f28fa 7254#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7255 case SD_LV_MC: /* set up multi-core groups */
7256 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7257 if (cpu == cpumask_first(d->this_core_map))
7258 init_sched_build_groups(d->this_core_map, cpu_map,
7259 &cpu_to_core_group,
7260 d->send_covered, d->tmpmask);
7261 break;
01a08546
HC
7262#endif
7263#ifdef CONFIG_SCHED_BOOK
7264 case SD_LV_BOOK: /* set up book groups */
7265 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7266 if (cpu == cpumask_first(d->this_book_map))
7267 init_sched_build_groups(d->this_book_map, cpu_map,
7268 &cpu_to_book_group,
7269 d->send_covered, d->tmpmask);
7270 break;
1e9f28fa 7271#endif
86548096
AH
7272 case SD_LV_CPU: /* set up physical groups */
7273 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7274 if (!cpumask_empty(d->nodemask))
7275 init_sched_build_groups(d->nodemask, cpu_map,
7276 &cpu_to_phys_group,
7277 d->send_covered, d->tmpmask);
7278 break;
1da177e4 7279#ifdef CONFIG_NUMA
de616e36
AH
7280 case SD_LV_ALLNODES:
7281 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7282 d->send_covered, d->tmpmask);
7283 break;
7284#endif
0e8e85c9
AH
7285 default:
7286 break;
7c16ec58 7287 }
0e8e85c9 7288}
9c1cfda2 7289
2109b99e
AH
7290/*
7291 * Build sched domains for a given set of cpus and attach the sched domains
7292 * to the individual cpus
7293 */
7294static int __build_sched_domains(const struct cpumask *cpu_map,
7295 struct sched_domain_attr *attr)
7296{
7297 enum s_alloc alloc_state = sa_none;
7298 struct s_data d;
294b0c96 7299 struct sched_domain *sd;
2109b99e 7300 int i;
7c16ec58 7301#ifdef CONFIG_NUMA
2109b99e 7302 d.sd_allnodes = 0;
7c16ec58 7303#endif
9c1cfda2 7304
2109b99e
AH
7305 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7306 if (alloc_state != sa_rootdomain)
7307 goto error;
7308 alloc_state = sa_sched_groups;
9c1cfda2 7309
1da177e4 7310 /*
1a20ff27 7311 * Set up domains for cpus specified by the cpu_map.
1da177e4 7312 */
abcd083a 7313 for_each_cpu(i, cpu_map) {
49a02c51
AH
7314 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7315 cpu_map);
9761eea8 7316
7f4588f3 7317 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7318 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7319 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7320 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7321 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7322 }
9c1cfda2 7323
abcd083a 7324 for_each_cpu(i, cpu_map) {
0e8e85c9 7325 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7326 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7327 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7328 }
9c1cfda2 7329
1da177e4 7330 /* Set up physical groups */
86548096
AH
7331 for (i = 0; i < nr_node_ids; i++)
7332 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7333
1da177e4
LT
7334#ifdef CONFIG_NUMA
7335 /* Set up node groups */
de616e36
AH
7336 if (d.sd_allnodes)
7337 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7338
0601a88d
AH
7339 for (i = 0; i < nr_node_ids; i++)
7340 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7341 goto error;
1da177e4
LT
7342#endif
7343
7344 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7345#ifdef CONFIG_SCHED_SMT
abcd083a 7346 for_each_cpu(i, cpu_map) {
294b0c96 7347 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7348 init_sched_groups_power(i, sd);
5c45bf27 7349 }
1da177e4 7350#endif
1e9f28fa 7351#ifdef CONFIG_SCHED_MC
abcd083a 7352 for_each_cpu(i, cpu_map) {
294b0c96 7353 sd = &per_cpu(core_domains, i).sd;
89c4710e 7354 init_sched_groups_power(i, sd);
5c45bf27
SS
7355 }
7356#endif
01a08546
HC
7357#ifdef CONFIG_SCHED_BOOK
7358 for_each_cpu(i, cpu_map) {
7359 sd = &per_cpu(book_domains, i).sd;
7360 init_sched_groups_power(i, sd);
7361 }
7362#endif
1e9f28fa 7363
abcd083a 7364 for_each_cpu(i, cpu_map) {
294b0c96 7365 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7366 init_sched_groups_power(i, sd);
1da177e4
LT
7367 }
7368
9c1cfda2 7369#ifdef CONFIG_NUMA
076ac2af 7370 for (i = 0; i < nr_node_ids; i++)
49a02c51 7371 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7372
49a02c51 7373 if (d.sd_allnodes) {
6711cab4 7374 struct sched_group *sg;
f712c0c7 7375
96f874e2 7376 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7377 d.tmpmask);
f712c0c7
SS
7378 init_numa_sched_groups_power(sg);
7379 }
9c1cfda2
JH
7380#endif
7381
1da177e4 7382 /* Attach the domains */
abcd083a 7383 for_each_cpu(i, cpu_map) {
1da177e4 7384#ifdef CONFIG_SCHED_SMT
6c99e9ad 7385 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7386#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7387 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7388#elif defined(CONFIG_SCHED_BOOK)
7389 sd = &per_cpu(book_domains, i).sd;
1da177e4 7390#else
6c99e9ad 7391 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7392#endif
49a02c51 7393 cpu_attach_domain(sd, d.rd, i);
1da177e4 7394 }
51888ca2 7395
2109b99e
AH
7396 d.sched_group_nodes = NULL; /* don't free this we still need it */
7397 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7398 return 0;
51888ca2 7399
51888ca2 7400error:
2109b99e
AH
7401 __free_domain_allocs(&d, alloc_state, cpu_map);
7402 return -ENOMEM;
1da177e4 7403}
029190c5 7404
96f874e2 7405static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7406{
7407 return __build_sched_domains(cpu_map, NULL);
7408}
7409
acc3f5d7 7410static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7411static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7412static struct sched_domain_attr *dattr_cur;
7413 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7414
7415/*
7416 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7417 * cpumask) fails, then fallback to a single sched domain,
7418 * as determined by the single cpumask fallback_doms.
029190c5 7419 */
4212823f 7420static cpumask_var_t fallback_doms;
029190c5 7421
ee79d1bd
HC
7422/*
7423 * arch_update_cpu_topology lets virtualized architectures update the
7424 * cpu core maps. It is supposed to return 1 if the topology changed
7425 * or 0 if it stayed the same.
7426 */
7427int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7428{
ee79d1bd 7429 return 0;
22e52b07
HC
7430}
7431
acc3f5d7
RR
7432cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7433{
7434 int i;
7435 cpumask_var_t *doms;
7436
7437 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7438 if (!doms)
7439 return NULL;
7440 for (i = 0; i < ndoms; i++) {
7441 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7442 free_sched_domains(doms, i);
7443 return NULL;
7444 }
7445 }
7446 return doms;
7447}
7448
7449void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7450{
7451 unsigned int i;
7452 for (i = 0; i < ndoms; i++)
7453 free_cpumask_var(doms[i]);
7454 kfree(doms);
7455}
7456
1a20ff27 7457/*
41a2d6cf 7458 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7459 * For now this just excludes isolated cpus, but could be used to
7460 * exclude other special cases in the future.
1a20ff27 7461 */
96f874e2 7462static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7463{
7378547f
MM
7464 int err;
7465
22e52b07 7466 arch_update_cpu_topology();
029190c5 7467 ndoms_cur = 1;
acc3f5d7 7468 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7469 if (!doms_cur)
acc3f5d7
RR
7470 doms_cur = &fallback_doms;
7471 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7472 dattr_cur = NULL;
acc3f5d7 7473 err = build_sched_domains(doms_cur[0]);
6382bc90 7474 register_sched_domain_sysctl();
7378547f
MM
7475
7476 return err;
1a20ff27
DG
7477}
7478
96f874e2
RR
7479static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7480 struct cpumask *tmpmask)
1da177e4 7481{
7c16ec58 7482 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7483}
1da177e4 7484
1a20ff27
DG
7485/*
7486 * Detach sched domains from a group of cpus specified in cpu_map
7487 * These cpus will now be attached to the NULL domain
7488 */
96f874e2 7489static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7490{
96f874e2
RR
7491 /* Save because hotplug lock held. */
7492 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7493 int i;
7494
abcd083a 7495 for_each_cpu(i, cpu_map)
57d885fe 7496 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7497 synchronize_sched();
96f874e2 7498 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7499}
7500
1d3504fc
HS
7501/* handle null as "default" */
7502static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7503 struct sched_domain_attr *new, int idx_new)
7504{
7505 struct sched_domain_attr tmp;
7506
7507 /* fast path */
7508 if (!new && !cur)
7509 return 1;
7510
7511 tmp = SD_ATTR_INIT;
7512 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7513 new ? (new + idx_new) : &tmp,
7514 sizeof(struct sched_domain_attr));
7515}
7516
029190c5
PJ
7517/*
7518 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7519 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7520 * doms_new[] to the current sched domain partitioning, doms_cur[].
7521 * It destroys each deleted domain and builds each new domain.
7522 *
acc3f5d7 7523 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7524 * The masks don't intersect (don't overlap.) We should setup one
7525 * sched domain for each mask. CPUs not in any of the cpumasks will
7526 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7527 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7528 * it as it is.
7529 *
acc3f5d7
RR
7530 * The passed in 'doms_new' should be allocated using
7531 * alloc_sched_domains. This routine takes ownership of it and will
7532 * free_sched_domains it when done with it. If the caller failed the
7533 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7534 * and partition_sched_domains() will fallback to the single partition
7535 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7536 *
96f874e2 7537 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7538 * ndoms_new == 0 is a special case for destroying existing domains,
7539 * and it will not create the default domain.
dfb512ec 7540 *
029190c5
PJ
7541 * Call with hotplug lock held
7542 */
acc3f5d7 7543void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7544 struct sched_domain_attr *dattr_new)
029190c5 7545{
dfb512ec 7546 int i, j, n;
d65bd5ec 7547 int new_topology;
029190c5 7548
712555ee 7549 mutex_lock(&sched_domains_mutex);
a1835615 7550
7378547f
MM
7551 /* always unregister in case we don't destroy any domains */
7552 unregister_sched_domain_sysctl();
7553
d65bd5ec
HC
7554 /* Let architecture update cpu core mappings. */
7555 new_topology = arch_update_cpu_topology();
7556
dfb512ec 7557 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7558
7559 /* Destroy deleted domains */
7560 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7561 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7562 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7563 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7564 goto match1;
7565 }
7566 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7567 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7568match1:
7569 ;
7570 }
7571
e761b772
MK
7572 if (doms_new == NULL) {
7573 ndoms_cur = 0;
acc3f5d7 7574 doms_new = &fallback_doms;
6ad4c188 7575 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7576 WARN_ON_ONCE(dattr_new);
e761b772
MK
7577 }
7578
029190c5
PJ
7579 /* Build new domains */
7580 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7581 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7582 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7583 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7584 goto match2;
7585 }
7586 /* no match - add a new doms_new */
acc3f5d7 7587 __build_sched_domains(doms_new[i],
1d3504fc 7588 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7589match2:
7590 ;
7591 }
7592
7593 /* Remember the new sched domains */
acc3f5d7
RR
7594 if (doms_cur != &fallback_doms)
7595 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7596 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7597 doms_cur = doms_new;
1d3504fc 7598 dattr_cur = dattr_new;
029190c5 7599 ndoms_cur = ndoms_new;
7378547f
MM
7600
7601 register_sched_domain_sysctl();
a1835615 7602
712555ee 7603 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7604}
7605
5c45bf27 7606#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7607static void arch_reinit_sched_domains(void)
5c45bf27 7608{
95402b38 7609 get_online_cpus();
dfb512ec
MK
7610
7611 /* Destroy domains first to force the rebuild */
7612 partition_sched_domains(0, NULL, NULL);
7613
e761b772 7614 rebuild_sched_domains();
95402b38 7615 put_online_cpus();
5c45bf27
SS
7616}
7617
7618static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7619{
afb8a9b7 7620 unsigned int level = 0;
5c45bf27 7621
afb8a9b7
GS
7622 if (sscanf(buf, "%u", &level) != 1)
7623 return -EINVAL;
7624
7625 /*
7626 * level is always be positive so don't check for
7627 * level < POWERSAVINGS_BALANCE_NONE which is 0
7628 * What happens on 0 or 1 byte write,
7629 * need to check for count as well?
7630 */
7631
7632 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7633 return -EINVAL;
7634
7635 if (smt)
afb8a9b7 7636 sched_smt_power_savings = level;
5c45bf27 7637 else
afb8a9b7 7638 sched_mc_power_savings = level;
5c45bf27 7639
c70f22d2 7640 arch_reinit_sched_domains();
5c45bf27 7641
c70f22d2 7642 return count;
5c45bf27
SS
7643}
7644
5c45bf27 7645#ifdef CONFIG_SCHED_MC
f718cd4a 7646static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7647 struct sysdev_class_attribute *attr,
f718cd4a 7648 char *page)
5c45bf27
SS
7649{
7650 return sprintf(page, "%u\n", sched_mc_power_savings);
7651}
f718cd4a 7652static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7653 struct sysdev_class_attribute *attr,
48f24c4d 7654 const char *buf, size_t count)
5c45bf27
SS
7655{
7656 return sched_power_savings_store(buf, count, 0);
7657}
f718cd4a
AK
7658static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7659 sched_mc_power_savings_show,
7660 sched_mc_power_savings_store);
5c45bf27
SS
7661#endif
7662
7663#ifdef CONFIG_SCHED_SMT
f718cd4a 7664static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7665 struct sysdev_class_attribute *attr,
f718cd4a 7666 char *page)
5c45bf27
SS
7667{
7668 return sprintf(page, "%u\n", sched_smt_power_savings);
7669}
f718cd4a 7670static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7671 struct sysdev_class_attribute *attr,
48f24c4d 7672 const char *buf, size_t count)
5c45bf27
SS
7673{
7674 return sched_power_savings_store(buf, count, 1);
7675}
f718cd4a
AK
7676static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7677 sched_smt_power_savings_show,
6707de00
AB
7678 sched_smt_power_savings_store);
7679#endif
7680
39aac648 7681int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7682{
7683 int err = 0;
7684
7685#ifdef CONFIG_SCHED_SMT
7686 if (smt_capable())
7687 err = sysfs_create_file(&cls->kset.kobj,
7688 &attr_sched_smt_power_savings.attr);
7689#endif
7690#ifdef CONFIG_SCHED_MC
7691 if (!err && mc_capable())
7692 err = sysfs_create_file(&cls->kset.kobj,
7693 &attr_sched_mc_power_savings.attr);
7694#endif
7695 return err;
7696}
6d6bc0ad 7697#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7698
1da177e4 7699/*
3a101d05
TH
7700 * Update cpusets according to cpu_active mask. If cpusets are
7701 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7702 * around partition_sched_domains().
1da177e4 7703 */
0b2e918a
TH
7704static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7705 void *hcpu)
e761b772 7706{
3a101d05 7707 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7708 case CPU_ONLINE:
6ad4c188 7709 case CPU_DOWN_FAILED:
3a101d05 7710 cpuset_update_active_cpus();
e761b772 7711 return NOTIFY_OK;
3a101d05
TH
7712 default:
7713 return NOTIFY_DONE;
7714 }
7715}
e761b772 7716
0b2e918a
TH
7717static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7718 void *hcpu)
3a101d05
TH
7719{
7720 switch (action & ~CPU_TASKS_FROZEN) {
7721 case CPU_DOWN_PREPARE:
7722 cpuset_update_active_cpus();
7723 return NOTIFY_OK;
e761b772
MK
7724 default:
7725 return NOTIFY_DONE;
7726 }
7727}
e761b772
MK
7728
7729static int update_runtime(struct notifier_block *nfb,
7730 unsigned long action, void *hcpu)
1da177e4 7731{
7def2be1
PZ
7732 int cpu = (int)(long)hcpu;
7733
1da177e4 7734 switch (action) {
1da177e4 7735 case CPU_DOWN_PREPARE:
8bb78442 7736 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7737 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7738 return NOTIFY_OK;
7739
1da177e4 7740 case CPU_DOWN_FAILED:
8bb78442 7741 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7742 case CPU_ONLINE:
8bb78442 7743 case CPU_ONLINE_FROZEN:
7def2be1 7744 enable_runtime(cpu_rq(cpu));
e761b772
MK
7745 return NOTIFY_OK;
7746
1da177e4
LT
7747 default:
7748 return NOTIFY_DONE;
7749 }
1da177e4 7750}
1da177e4
LT
7751
7752void __init sched_init_smp(void)
7753{
dcc30a35
RR
7754 cpumask_var_t non_isolated_cpus;
7755
7756 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7757 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7758
434d53b0
MT
7759#if defined(CONFIG_NUMA)
7760 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7761 GFP_KERNEL);
7762 BUG_ON(sched_group_nodes_bycpu == NULL);
7763#endif
95402b38 7764 get_online_cpus();
712555ee 7765 mutex_lock(&sched_domains_mutex);
6ad4c188 7766 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7767 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7768 if (cpumask_empty(non_isolated_cpus))
7769 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7770 mutex_unlock(&sched_domains_mutex);
95402b38 7771 put_online_cpus();
e761b772 7772
3a101d05
TH
7773 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7774 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7775
7776 /* RT runtime code needs to handle some hotplug events */
7777 hotcpu_notifier(update_runtime, 0);
7778
b328ca18 7779 init_hrtick();
5c1e1767
NP
7780
7781 /* Move init over to a non-isolated CPU */
dcc30a35 7782 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7783 BUG();
19978ca6 7784 sched_init_granularity();
dcc30a35 7785 free_cpumask_var(non_isolated_cpus);
4212823f 7786
0e3900e6 7787 init_sched_rt_class();
1da177e4
LT
7788}
7789#else
7790void __init sched_init_smp(void)
7791{
19978ca6 7792 sched_init_granularity();
1da177e4
LT
7793}
7794#endif /* CONFIG_SMP */
7795
cd1bb94b
AB
7796const_debug unsigned int sysctl_timer_migration = 1;
7797
1da177e4
LT
7798int in_sched_functions(unsigned long addr)
7799{
1da177e4
LT
7800 return in_lock_functions(addr) ||
7801 (addr >= (unsigned long)__sched_text_start
7802 && addr < (unsigned long)__sched_text_end);
7803}
7804
a9957449 7805static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7806{
7807 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7808 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7809#ifdef CONFIG_FAIR_GROUP_SCHED
7810 cfs_rq->rq = rq;
7811#endif
67e9fb2a 7812 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7813}
7814
fa85ae24
PZ
7815static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7816{
7817 struct rt_prio_array *array;
7818 int i;
7819
7820 array = &rt_rq->active;
7821 for (i = 0; i < MAX_RT_PRIO; i++) {
7822 INIT_LIST_HEAD(array->queue + i);
7823 __clear_bit(i, array->bitmap);
7824 }
7825 /* delimiter for bitsearch: */
7826 __set_bit(MAX_RT_PRIO, array->bitmap);
7827
052f1dc7 7828#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7829 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7830#ifdef CONFIG_SMP
e864c499 7831 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7832#endif
48d5e258 7833#endif
fa85ae24
PZ
7834#ifdef CONFIG_SMP
7835 rt_rq->rt_nr_migratory = 0;
fa85ae24 7836 rt_rq->overloaded = 0;
05fa785c 7837 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7838#endif
7839
7840 rt_rq->rt_time = 0;
7841 rt_rq->rt_throttled = 0;
ac086bc2 7842 rt_rq->rt_runtime = 0;
0986b11b 7843 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7844
052f1dc7 7845#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7846 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7847 rt_rq->rq = rq;
7848#endif
fa85ae24
PZ
7849}
7850
6f505b16 7851#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7852static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7853 struct sched_entity *se, int cpu,
ec7dc8ac 7854 struct sched_entity *parent)
6f505b16 7855{
ec7dc8ac 7856 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7857 tg->cfs_rq[cpu] = cfs_rq;
7858 init_cfs_rq(cfs_rq, rq);
7859 cfs_rq->tg = tg;
6f505b16
PZ
7860
7861 tg->se[cpu] = se;
07e06b01 7862 /* se could be NULL for root_task_group */
354d60c2
DG
7863 if (!se)
7864 return;
7865
ec7dc8ac
DG
7866 if (!parent)
7867 se->cfs_rq = &rq->cfs;
7868 else
7869 se->cfs_rq = parent->my_q;
7870
6f505b16 7871 se->my_q = cfs_rq;
9437178f 7872 update_load_set(&se->load, 0);
ec7dc8ac 7873 se->parent = parent;
6f505b16 7874}
052f1dc7 7875#endif
6f505b16 7876
052f1dc7 7877#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7878static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7879 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7880 struct sched_rt_entity *parent)
6f505b16 7881{
ec7dc8ac
DG
7882 struct rq *rq = cpu_rq(cpu);
7883
6f505b16
PZ
7884 tg->rt_rq[cpu] = rt_rq;
7885 init_rt_rq(rt_rq, rq);
7886 rt_rq->tg = tg;
ac086bc2 7887 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7888
7889 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7890 if (!rt_se)
7891 return;
7892
ec7dc8ac
DG
7893 if (!parent)
7894 rt_se->rt_rq = &rq->rt;
7895 else
7896 rt_se->rt_rq = parent->my_q;
7897
6f505b16 7898 rt_se->my_q = rt_rq;
ec7dc8ac 7899 rt_se->parent = parent;
6f505b16
PZ
7900 INIT_LIST_HEAD(&rt_se->run_list);
7901}
7902#endif
7903
1da177e4
LT
7904void __init sched_init(void)
7905{
dd41f596 7906 int i, j;
434d53b0
MT
7907 unsigned long alloc_size = 0, ptr;
7908
7909#ifdef CONFIG_FAIR_GROUP_SCHED
7910 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7911#endif
7912#ifdef CONFIG_RT_GROUP_SCHED
7913 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7914#endif
df7c8e84 7915#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7916 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7917#endif
434d53b0 7918 if (alloc_size) {
36b7b6d4 7919 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7920
7921#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7922 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7923 ptr += nr_cpu_ids * sizeof(void **);
7924
07e06b01 7925 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7926 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7927
6d6bc0ad 7928#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7929#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7930 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7931 ptr += nr_cpu_ids * sizeof(void **);
7932
07e06b01 7933 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7934 ptr += nr_cpu_ids * sizeof(void **);
7935
6d6bc0ad 7936#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7937#ifdef CONFIG_CPUMASK_OFFSTACK
7938 for_each_possible_cpu(i) {
7939 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7940 ptr += cpumask_size();
7941 }
7942#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7943 }
dd41f596 7944
57d885fe
GH
7945#ifdef CONFIG_SMP
7946 init_defrootdomain();
7947#endif
7948
d0b27fa7
PZ
7949 init_rt_bandwidth(&def_rt_bandwidth,
7950 global_rt_period(), global_rt_runtime());
7951
7952#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7953 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7954 global_rt_period(), global_rt_runtime());
6d6bc0ad 7955#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7956
7c941438 7957#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7958 list_add(&root_task_group.list, &task_groups);
7959 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 7960 autogroup_init(&init_task);
7c941438 7961#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7962
0a945022 7963 for_each_possible_cpu(i) {
70b97a7f 7964 struct rq *rq;
1da177e4
LT
7965
7966 rq = cpu_rq(i);
05fa785c 7967 raw_spin_lock_init(&rq->lock);
7897986b 7968 rq->nr_running = 0;
dce48a84
TG
7969 rq->calc_load_active = 0;
7970 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7971 init_cfs_rq(&rq->cfs, rq);
6f505b16 7972 init_rt_rq(&rq->rt, rq);
dd41f596 7973#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7974 root_task_group.shares = root_task_group_load;
6f505b16 7975 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7976 /*
07e06b01 7977 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7978 *
7979 * In case of task-groups formed thr' the cgroup filesystem, it
7980 * gets 100% of the cpu resources in the system. This overall
7981 * system cpu resource is divided among the tasks of
07e06b01 7982 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7983 * based on each entity's (task or task-group's) weight
7984 * (se->load.weight).
7985 *
07e06b01 7986 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7987 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7988 * then A0's share of the cpu resource is:
7989 *
0d905bca 7990 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7991 *
07e06b01
YZ
7992 * We achieve this by letting root_task_group's tasks sit
7993 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7994 */
07e06b01 7995 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7996#endif /* CONFIG_FAIR_GROUP_SCHED */
7997
7998 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7999#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8000 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8001 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8002#endif
1da177e4 8003
dd41f596
IM
8004 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8005 rq->cpu_load[j] = 0;
fdf3e95d
VP
8006
8007 rq->last_load_update_tick = jiffies;
8008
1da177e4 8009#ifdef CONFIG_SMP
41c7ce9a 8010 rq->sd = NULL;
57d885fe 8011 rq->rd = NULL;
e51fd5e2 8012 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8013 rq->post_schedule = 0;
1da177e4 8014 rq->active_balance = 0;
dd41f596 8015 rq->next_balance = jiffies;
1da177e4 8016 rq->push_cpu = 0;
0a2966b4 8017 rq->cpu = i;
1f11eb6a 8018 rq->online = 0;
eae0c9df
MG
8019 rq->idle_stamp = 0;
8020 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8021 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8022#ifdef CONFIG_NO_HZ
8023 rq->nohz_balance_kick = 0;
8024 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8025#endif
1da177e4 8026#endif
8f4d37ec 8027 init_rq_hrtick(rq);
1da177e4 8028 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8029 }
8030
2dd73a4f 8031 set_load_weight(&init_task);
b50f60ce 8032
e107be36
AK
8033#ifdef CONFIG_PREEMPT_NOTIFIERS
8034 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8035#endif
8036
c9819f45 8037#ifdef CONFIG_SMP
962cf36c 8038 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8039#endif
8040
b50f60ce 8041#ifdef CONFIG_RT_MUTEXES
1d615482 8042 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8043#endif
8044
1da177e4
LT
8045 /*
8046 * The boot idle thread does lazy MMU switching as well:
8047 */
8048 atomic_inc(&init_mm.mm_count);
8049 enter_lazy_tlb(&init_mm, current);
8050
8051 /*
8052 * Make us the idle thread. Technically, schedule() should not be
8053 * called from this thread, however somewhere below it might be,
8054 * but because we are the idle thread, we just pick up running again
8055 * when this runqueue becomes "idle".
8056 */
8057 init_idle(current, smp_processor_id());
dce48a84
TG
8058
8059 calc_load_update = jiffies + LOAD_FREQ;
8060
dd41f596
IM
8061 /*
8062 * During early bootup we pretend to be a normal task:
8063 */
8064 current->sched_class = &fair_sched_class;
6892b75e 8065
6a7b3dc3 8066 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8067 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8068#ifdef CONFIG_SMP
7d1e6a9b 8069#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8070 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8071 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8072 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8073 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8074 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8075#endif
bdddd296
RR
8076 /* May be allocated at isolcpus cmdline parse time */
8077 if (cpu_isolated_map == NULL)
8078 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8079#endif /* SMP */
6a7b3dc3 8080
6892b75e 8081 scheduler_running = 1;
1da177e4
LT
8082}
8083
8084#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8085static inline int preempt_count_equals(int preempt_offset)
8086{
234da7bc 8087 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8088
8089 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8090}
8091
d894837f 8092void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8093{
48f24c4d 8094#ifdef in_atomic
1da177e4
LT
8095 static unsigned long prev_jiffy; /* ratelimiting */
8096
e4aafea2
FW
8097 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8098 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8099 return;
8100 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8101 return;
8102 prev_jiffy = jiffies;
8103
3df0fc5b
PZ
8104 printk(KERN_ERR
8105 "BUG: sleeping function called from invalid context at %s:%d\n",
8106 file, line);
8107 printk(KERN_ERR
8108 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8109 in_atomic(), irqs_disabled(),
8110 current->pid, current->comm);
aef745fc
IM
8111
8112 debug_show_held_locks(current);
8113 if (irqs_disabled())
8114 print_irqtrace_events(current);
8115 dump_stack();
1da177e4
LT
8116#endif
8117}
8118EXPORT_SYMBOL(__might_sleep);
8119#endif
8120
8121#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8122static void normalize_task(struct rq *rq, struct task_struct *p)
8123{
8124 int on_rq;
3e51f33f 8125
3a5e4dc1
AK
8126 on_rq = p->se.on_rq;
8127 if (on_rq)
8128 deactivate_task(rq, p, 0);
8129 __setscheduler(rq, p, SCHED_NORMAL, 0);
8130 if (on_rq) {
8131 activate_task(rq, p, 0);
8132 resched_task(rq->curr);
8133 }
8134}
8135
1da177e4
LT
8136void normalize_rt_tasks(void)
8137{
a0f98a1c 8138 struct task_struct *g, *p;
1da177e4 8139 unsigned long flags;
70b97a7f 8140 struct rq *rq;
1da177e4 8141
4cf5d77a 8142 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8143 do_each_thread(g, p) {
178be793
IM
8144 /*
8145 * Only normalize user tasks:
8146 */
8147 if (!p->mm)
8148 continue;
8149
6cfb0d5d 8150 p->se.exec_start = 0;
6cfb0d5d 8151#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8152 p->se.statistics.wait_start = 0;
8153 p->se.statistics.sleep_start = 0;
8154 p->se.statistics.block_start = 0;
6cfb0d5d 8155#endif
dd41f596
IM
8156
8157 if (!rt_task(p)) {
8158 /*
8159 * Renice negative nice level userspace
8160 * tasks back to 0:
8161 */
8162 if (TASK_NICE(p) < 0 && p->mm)
8163 set_user_nice(p, 0);
1da177e4 8164 continue;
dd41f596 8165 }
1da177e4 8166
1d615482 8167 raw_spin_lock(&p->pi_lock);
b29739f9 8168 rq = __task_rq_lock(p);
1da177e4 8169
178be793 8170 normalize_task(rq, p);
3a5e4dc1 8171
b29739f9 8172 __task_rq_unlock(rq);
1d615482 8173 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8174 } while_each_thread(g, p);
8175
4cf5d77a 8176 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8177}
8178
8179#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8180
67fc4e0c 8181#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8182/*
67fc4e0c 8183 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8184 *
8185 * They can only be called when the whole system has been
8186 * stopped - every CPU needs to be quiescent, and no scheduling
8187 * activity can take place. Using them for anything else would
8188 * be a serious bug, and as a result, they aren't even visible
8189 * under any other configuration.
8190 */
8191
8192/**
8193 * curr_task - return the current task for a given cpu.
8194 * @cpu: the processor in question.
8195 *
8196 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8197 */
36c8b586 8198struct task_struct *curr_task(int cpu)
1df5c10a
LT
8199{
8200 return cpu_curr(cpu);
8201}
8202
67fc4e0c
JW
8203#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8204
8205#ifdef CONFIG_IA64
1df5c10a
LT
8206/**
8207 * set_curr_task - set the current task for a given cpu.
8208 * @cpu: the processor in question.
8209 * @p: the task pointer to set.
8210 *
8211 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8212 * are serviced on a separate stack. It allows the architecture to switch the
8213 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8214 * must be called with all CPU's synchronized, and interrupts disabled, the
8215 * and caller must save the original value of the current task (see
8216 * curr_task() above) and restore that value before reenabling interrupts and
8217 * re-starting the system.
8218 *
8219 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8220 */
36c8b586 8221void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8222{
8223 cpu_curr(cpu) = p;
8224}
8225
8226#endif
29f59db3 8227
bccbe08a
PZ
8228#ifdef CONFIG_FAIR_GROUP_SCHED
8229static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8230{
8231 int i;
8232
8233 for_each_possible_cpu(i) {
8234 if (tg->cfs_rq)
8235 kfree(tg->cfs_rq[i]);
8236 if (tg->se)
8237 kfree(tg->se[i]);
6f505b16
PZ
8238 }
8239
8240 kfree(tg->cfs_rq);
8241 kfree(tg->se);
6f505b16
PZ
8242}
8243
ec7dc8ac
DG
8244static
8245int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8246{
29f59db3 8247 struct cfs_rq *cfs_rq;
eab17229 8248 struct sched_entity *se;
9b5b7751 8249 struct rq *rq;
29f59db3
SV
8250 int i;
8251
434d53b0 8252 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8253 if (!tg->cfs_rq)
8254 goto err;
434d53b0 8255 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8256 if (!tg->se)
8257 goto err;
052f1dc7
PZ
8258
8259 tg->shares = NICE_0_LOAD;
29f59db3
SV
8260
8261 for_each_possible_cpu(i) {
9b5b7751 8262 rq = cpu_rq(i);
29f59db3 8263
eab17229
LZ
8264 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8265 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8266 if (!cfs_rq)
8267 goto err;
8268
eab17229
LZ
8269 se = kzalloc_node(sizeof(struct sched_entity),
8270 GFP_KERNEL, cpu_to_node(i));
29f59db3 8271 if (!se)
dfc12eb2 8272 goto err_free_rq;
29f59db3 8273
3d4b47b4 8274 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8275 }
8276
8277 return 1;
8278
49246274 8279err_free_rq:
dfc12eb2 8280 kfree(cfs_rq);
49246274 8281err:
bccbe08a
PZ
8282 return 0;
8283}
8284
bccbe08a
PZ
8285static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8286{
3d4b47b4
PZ
8287 struct rq *rq = cpu_rq(cpu);
8288 unsigned long flags;
3d4b47b4
PZ
8289
8290 /*
8291 * Only empty task groups can be destroyed; so we can speculatively
8292 * check on_list without danger of it being re-added.
8293 */
8294 if (!tg->cfs_rq[cpu]->on_list)
8295 return;
8296
8297 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8298 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8299 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8300}
6d6bc0ad 8301#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8302static inline void free_fair_sched_group(struct task_group *tg)
8303{
8304}
8305
ec7dc8ac
DG
8306static inline
8307int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8308{
8309 return 1;
8310}
8311
bccbe08a
PZ
8312static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8313{
8314}
6d6bc0ad 8315#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8316
8317#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8318static void free_rt_sched_group(struct task_group *tg)
8319{
8320 int i;
8321
d0b27fa7
PZ
8322 destroy_rt_bandwidth(&tg->rt_bandwidth);
8323
bccbe08a
PZ
8324 for_each_possible_cpu(i) {
8325 if (tg->rt_rq)
8326 kfree(tg->rt_rq[i]);
8327 if (tg->rt_se)
8328 kfree(tg->rt_se[i]);
8329 }
8330
8331 kfree(tg->rt_rq);
8332 kfree(tg->rt_se);
8333}
8334
ec7dc8ac
DG
8335static
8336int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8337{
8338 struct rt_rq *rt_rq;
eab17229 8339 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8340 struct rq *rq;
8341 int i;
8342
434d53b0 8343 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8344 if (!tg->rt_rq)
8345 goto err;
434d53b0 8346 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8347 if (!tg->rt_se)
8348 goto err;
8349
d0b27fa7
PZ
8350 init_rt_bandwidth(&tg->rt_bandwidth,
8351 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8352
8353 for_each_possible_cpu(i) {
8354 rq = cpu_rq(i);
8355
eab17229
LZ
8356 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8357 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8358 if (!rt_rq)
8359 goto err;
29f59db3 8360
eab17229
LZ
8361 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8362 GFP_KERNEL, cpu_to_node(i));
6f505b16 8363 if (!rt_se)
dfc12eb2 8364 goto err_free_rq;
29f59db3 8365
3d4b47b4 8366 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8367 }
8368
bccbe08a
PZ
8369 return 1;
8370
49246274 8371err_free_rq:
dfc12eb2 8372 kfree(rt_rq);
49246274 8373err:
bccbe08a
PZ
8374 return 0;
8375}
6d6bc0ad 8376#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8377static inline void free_rt_sched_group(struct task_group *tg)
8378{
8379}
8380
ec7dc8ac
DG
8381static inline
8382int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8383{
8384 return 1;
8385}
6d6bc0ad 8386#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8387
7c941438 8388#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8389static void free_sched_group(struct task_group *tg)
8390{
8391 free_fair_sched_group(tg);
8392 free_rt_sched_group(tg);
e9aa1dd1 8393 autogroup_free(tg);
bccbe08a
PZ
8394 kfree(tg);
8395}
8396
8397/* allocate runqueue etc for a new task group */
ec7dc8ac 8398struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8399{
8400 struct task_group *tg;
8401 unsigned long flags;
bccbe08a
PZ
8402
8403 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8404 if (!tg)
8405 return ERR_PTR(-ENOMEM);
8406
ec7dc8ac 8407 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8408 goto err;
8409
ec7dc8ac 8410 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8411 goto err;
8412
8ed36996 8413 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8414 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8415
8416 WARN_ON(!parent); /* root should already exist */
8417
8418 tg->parent = parent;
f473aa5e 8419 INIT_LIST_HEAD(&tg->children);
09f2724a 8420 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8421 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8422
9b5b7751 8423 return tg;
29f59db3
SV
8424
8425err:
6f505b16 8426 free_sched_group(tg);
29f59db3
SV
8427 return ERR_PTR(-ENOMEM);
8428}
8429
9b5b7751 8430/* rcu callback to free various structures associated with a task group */
6f505b16 8431static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8432{
29f59db3 8433 /* now it should be safe to free those cfs_rqs */
6f505b16 8434 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8435}
8436
9b5b7751 8437/* Destroy runqueue etc associated with a task group */
4cf86d77 8438void sched_destroy_group(struct task_group *tg)
29f59db3 8439{
8ed36996 8440 unsigned long flags;
9b5b7751 8441 int i;
29f59db3 8442
3d4b47b4
PZ
8443 /* end participation in shares distribution */
8444 for_each_possible_cpu(i)
bccbe08a 8445 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8446
8447 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8448 list_del_rcu(&tg->list);
f473aa5e 8449 list_del_rcu(&tg->siblings);
8ed36996 8450 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8451
9b5b7751 8452 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8453 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8454}
8455
9b5b7751 8456/* change task's runqueue when it moves between groups.
3a252015
IM
8457 * The caller of this function should have put the task in its new group
8458 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8459 * reflect its new group.
9b5b7751
SV
8460 */
8461void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8462{
8463 int on_rq, running;
8464 unsigned long flags;
8465 struct rq *rq;
8466
8467 rq = task_rq_lock(tsk, &flags);
8468
051a1d1a 8469 running = task_current(rq, tsk);
29f59db3
SV
8470 on_rq = tsk->se.on_rq;
8471
0e1f3483 8472 if (on_rq)
29f59db3 8473 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8474 if (unlikely(running))
8475 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8476
810b3817 8477#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8478 if (tsk->sched_class->task_move_group)
8479 tsk->sched_class->task_move_group(tsk, on_rq);
8480 else
810b3817 8481#endif
b2b5ce02 8482 set_task_rq(tsk, task_cpu(tsk));
810b3817 8483
0e1f3483
HS
8484 if (unlikely(running))
8485 tsk->sched_class->set_curr_task(rq);
8486 if (on_rq)
371fd7e7 8487 enqueue_task(rq, tsk, 0);
29f59db3 8488
29f59db3
SV
8489 task_rq_unlock(rq, &flags);
8490}
7c941438 8491#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8492
052f1dc7 8493#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8494static DEFINE_MUTEX(shares_mutex);
8495
4cf86d77 8496int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8497{
8498 int i;
8ed36996 8499 unsigned long flags;
c61935fd 8500
ec7dc8ac
DG
8501 /*
8502 * We can't change the weight of the root cgroup.
8503 */
8504 if (!tg->se[0])
8505 return -EINVAL;
8506
18d95a28
PZ
8507 if (shares < MIN_SHARES)
8508 shares = MIN_SHARES;
cb4ad1ff
MX
8509 else if (shares > MAX_SHARES)
8510 shares = MAX_SHARES;
62fb1851 8511
8ed36996 8512 mutex_lock(&shares_mutex);
9b5b7751 8513 if (tg->shares == shares)
5cb350ba 8514 goto done;
29f59db3 8515
9b5b7751 8516 tg->shares = shares;
c09595f6 8517 for_each_possible_cpu(i) {
9437178f
PT
8518 struct rq *rq = cpu_rq(i);
8519 struct sched_entity *se;
8520
8521 se = tg->se[i];
8522 /* Propagate contribution to hierarchy */
8523 raw_spin_lock_irqsave(&rq->lock, flags);
8524 for_each_sched_entity(se)
8525 update_cfs_shares(group_cfs_rq(se), 0);
8526 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8527 }
29f59db3 8528
5cb350ba 8529done:
8ed36996 8530 mutex_unlock(&shares_mutex);
9b5b7751 8531 return 0;
29f59db3
SV
8532}
8533
5cb350ba
DG
8534unsigned long sched_group_shares(struct task_group *tg)
8535{
8536 return tg->shares;
8537}
052f1dc7 8538#endif
5cb350ba 8539
052f1dc7 8540#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8541/*
9f0c1e56 8542 * Ensure that the real time constraints are schedulable.
6f505b16 8543 */
9f0c1e56
PZ
8544static DEFINE_MUTEX(rt_constraints_mutex);
8545
8546static unsigned long to_ratio(u64 period, u64 runtime)
8547{
8548 if (runtime == RUNTIME_INF)
9a7e0b18 8549 return 1ULL << 20;
9f0c1e56 8550
9a7e0b18 8551 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8552}
8553
9a7e0b18
PZ
8554/* Must be called with tasklist_lock held */
8555static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8556{
9a7e0b18 8557 struct task_struct *g, *p;
b40b2e8e 8558
9a7e0b18
PZ
8559 do_each_thread(g, p) {
8560 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8561 return 1;
8562 } while_each_thread(g, p);
b40b2e8e 8563
9a7e0b18
PZ
8564 return 0;
8565}
b40b2e8e 8566
9a7e0b18
PZ
8567struct rt_schedulable_data {
8568 struct task_group *tg;
8569 u64 rt_period;
8570 u64 rt_runtime;
8571};
b40b2e8e 8572
9a7e0b18
PZ
8573static int tg_schedulable(struct task_group *tg, void *data)
8574{
8575 struct rt_schedulable_data *d = data;
8576 struct task_group *child;
8577 unsigned long total, sum = 0;
8578 u64 period, runtime;
b40b2e8e 8579
9a7e0b18
PZ
8580 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8581 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8582
9a7e0b18
PZ
8583 if (tg == d->tg) {
8584 period = d->rt_period;
8585 runtime = d->rt_runtime;
b40b2e8e 8586 }
b40b2e8e 8587
4653f803
PZ
8588 /*
8589 * Cannot have more runtime than the period.
8590 */
8591 if (runtime > period && runtime != RUNTIME_INF)
8592 return -EINVAL;
6f505b16 8593
4653f803
PZ
8594 /*
8595 * Ensure we don't starve existing RT tasks.
8596 */
9a7e0b18
PZ
8597 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8598 return -EBUSY;
6f505b16 8599
9a7e0b18 8600 total = to_ratio(period, runtime);
6f505b16 8601
4653f803
PZ
8602 /*
8603 * Nobody can have more than the global setting allows.
8604 */
8605 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8606 return -EINVAL;
6f505b16 8607
4653f803
PZ
8608 /*
8609 * The sum of our children's runtime should not exceed our own.
8610 */
9a7e0b18
PZ
8611 list_for_each_entry_rcu(child, &tg->children, siblings) {
8612 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8613 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8614
9a7e0b18
PZ
8615 if (child == d->tg) {
8616 period = d->rt_period;
8617 runtime = d->rt_runtime;
8618 }
6f505b16 8619
9a7e0b18 8620 sum += to_ratio(period, runtime);
9f0c1e56 8621 }
6f505b16 8622
9a7e0b18
PZ
8623 if (sum > total)
8624 return -EINVAL;
8625
8626 return 0;
6f505b16
PZ
8627}
8628
9a7e0b18 8629static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8630{
9a7e0b18
PZ
8631 struct rt_schedulable_data data = {
8632 .tg = tg,
8633 .rt_period = period,
8634 .rt_runtime = runtime,
8635 };
8636
8637 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8638}
8639
d0b27fa7
PZ
8640static int tg_set_bandwidth(struct task_group *tg,
8641 u64 rt_period, u64 rt_runtime)
6f505b16 8642{
ac086bc2 8643 int i, err = 0;
9f0c1e56 8644
9f0c1e56 8645 mutex_lock(&rt_constraints_mutex);
521f1a24 8646 read_lock(&tasklist_lock);
9a7e0b18
PZ
8647 err = __rt_schedulable(tg, rt_period, rt_runtime);
8648 if (err)
9f0c1e56 8649 goto unlock;
ac086bc2 8650
0986b11b 8651 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8652 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8653 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8654
8655 for_each_possible_cpu(i) {
8656 struct rt_rq *rt_rq = tg->rt_rq[i];
8657
0986b11b 8658 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8659 rt_rq->rt_runtime = rt_runtime;
0986b11b 8660 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8661 }
0986b11b 8662 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8663unlock:
521f1a24 8664 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8665 mutex_unlock(&rt_constraints_mutex);
8666
8667 return err;
6f505b16
PZ
8668}
8669
d0b27fa7
PZ
8670int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8671{
8672 u64 rt_runtime, rt_period;
8673
8674 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8675 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8676 if (rt_runtime_us < 0)
8677 rt_runtime = RUNTIME_INF;
8678
8679 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8680}
8681
9f0c1e56
PZ
8682long sched_group_rt_runtime(struct task_group *tg)
8683{
8684 u64 rt_runtime_us;
8685
d0b27fa7 8686 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8687 return -1;
8688
d0b27fa7 8689 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8690 do_div(rt_runtime_us, NSEC_PER_USEC);
8691 return rt_runtime_us;
8692}
d0b27fa7
PZ
8693
8694int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8695{
8696 u64 rt_runtime, rt_period;
8697
8698 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8699 rt_runtime = tg->rt_bandwidth.rt_runtime;
8700
619b0488
R
8701 if (rt_period == 0)
8702 return -EINVAL;
8703
d0b27fa7
PZ
8704 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8705}
8706
8707long sched_group_rt_period(struct task_group *tg)
8708{
8709 u64 rt_period_us;
8710
8711 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8712 do_div(rt_period_us, NSEC_PER_USEC);
8713 return rt_period_us;
8714}
8715
8716static int sched_rt_global_constraints(void)
8717{
4653f803 8718 u64 runtime, period;
d0b27fa7
PZ
8719 int ret = 0;
8720
ec5d4989
HS
8721 if (sysctl_sched_rt_period <= 0)
8722 return -EINVAL;
8723
4653f803
PZ
8724 runtime = global_rt_runtime();
8725 period = global_rt_period();
8726
8727 /*
8728 * Sanity check on the sysctl variables.
8729 */
8730 if (runtime > period && runtime != RUNTIME_INF)
8731 return -EINVAL;
10b612f4 8732
d0b27fa7 8733 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8734 read_lock(&tasklist_lock);
4653f803 8735 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8736 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8737 mutex_unlock(&rt_constraints_mutex);
8738
8739 return ret;
8740}
54e99124
DG
8741
8742int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8743{
8744 /* Don't accept realtime tasks when there is no way for them to run */
8745 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8746 return 0;
8747
8748 return 1;
8749}
8750
6d6bc0ad 8751#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8752static int sched_rt_global_constraints(void)
8753{
ac086bc2
PZ
8754 unsigned long flags;
8755 int i;
8756
ec5d4989
HS
8757 if (sysctl_sched_rt_period <= 0)
8758 return -EINVAL;
8759
60aa605d
PZ
8760 /*
8761 * There's always some RT tasks in the root group
8762 * -- migration, kstopmachine etc..
8763 */
8764 if (sysctl_sched_rt_runtime == 0)
8765 return -EBUSY;
8766
0986b11b 8767 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8768 for_each_possible_cpu(i) {
8769 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8770
0986b11b 8771 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8772 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8773 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8774 }
0986b11b 8775 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8776
d0b27fa7
PZ
8777 return 0;
8778}
6d6bc0ad 8779#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8780
8781int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8782 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8783 loff_t *ppos)
8784{
8785 int ret;
8786 int old_period, old_runtime;
8787 static DEFINE_MUTEX(mutex);
8788
8789 mutex_lock(&mutex);
8790 old_period = sysctl_sched_rt_period;
8791 old_runtime = sysctl_sched_rt_runtime;
8792
8d65af78 8793 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8794
8795 if (!ret && write) {
8796 ret = sched_rt_global_constraints();
8797 if (ret) {
8798 sysctl_sched_rt_period = old_period;
8799 sysctl_sched_rt_runtime = old_runtime;
8800 } else {
8801 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8802 def_rt_bandwidth.rt_period =
8803 ns_to_ktime(global_rt_period());
8804 }
8805 }
8806 mutex_unlock(&mutex);
8807
8808 return ret;
8809}
68318b8e 8810
052f1dc7 8811#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8812
8813/* return corresponding task_group object of a cgroup */
2b01dfe3 8814static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8815{
2b01dfe3
PM
8816 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8817 struct task_group, css);
68318b8e
SV
8818}
8819
8820static struct cgroup_subsys_state *
2b01dfe3 8821cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8822{
ec7dc8ac 8823 struct task_group *tg, *parent;
68318b8e 8824
2b01dfe3 8825 if (!cgrp->parent) {
68318b8e 8826 /* This is early initialization for the top cgroup */
07e06b01 8827 return &root_task_group.css;
68318b8e
SV
8828 }
8829
ec7dc8ac
DG
8830 parent = cgroup_tg(cgrp->parent);
8831 tg = sched_create_group(parent);
68318b8e
SV
8832 if (IS_ERR(tg))
8833 return ERR_PTR(-ENOMEM);
8834
68318b8e
SV
8835 return &tg->css;
8836}
8837
41a2d6cf
IM
8838static void
8839cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8840{
2b01dfe3 8841 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8842
8843 sched_destroy_group(tg);
8844}
8845
41a2d6cf 8846static int
be367d09 8847cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8848{
b68aa230 8849#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8850 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8851 return -EINVAL;
8852#else
68318b8e
SV
8853 /* We don't support RT-tasks being in separate groups */
8854 if (tsk->sched_class != &fair_sched_class)
8855 return -EINVAL;
b68aa230 8856#endif
be367d09
BB
8857 return 0;
8858}
68318b8e 8859
be367d09
BB
8860static int
8861cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8862 struct task_struct *tsk, bool threadgroup)
8863{
8864 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8865 if (retval)
8866 return retval;
8867 if (threadgroup) {
8868 struct task_struct *c;
8869 rcu_read_lock();
8870 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8871 retval = cpu_cgroup_can_attach_task(cgrp, c);
8872 if (retval) {
8873 rcu_read_unlock();
8874 return retval;
8875 }
8876 }
8877 rcu_read_unlock();
8878 }
68318b8e
SV
8879 return 0;
8880}
8881
8882static void
2b01dfe3 8883cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8884 struct cgroup *old_cont, struct task_struct *tsk,
8885 bool threadgroup)
68318b8e
SV
8886{
8887 sched_move_task(tsk);
be367d09
BB
8888 if (threadgroup) {
8889 struct task_struct *c;
8890 rcu_read_lock();
8891 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8892 sched_move_task(c);
8893 }
8894 rcu_read_unlock();
8895 }
68318b8e
SV
8896}
8897
068c5cc5
PZ
8898static void
8899cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
8900{
8901 /*
8902 * cgroup_exit() is called in the copy_process() failure path.
8903 * Ignore this case since the task hasn't ran yet, this avoids
8904 * trying to poke a half freed task state from generic code.
8905 */
8906 if (!(task->flags & PF_EXITING))
8907 return;
8908
8909 sched_move_task(task);
8910}
8911
052f1dc7 8912#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8913static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8914 u64 shareval)
68318b8e 8915{
2b01dfe3 8916 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8917}
8918
f4c753b7 8919static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8920{
2b01dfe3 8921 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8922
8923 return (u64) tg->shares;
8924}
6d6bc0ad 8925#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8926
052f1dc7 8927#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8928static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8929 s64 val)
6f505b16 8930{
06ecb27c 8931 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8932}
8933
06ecb27c 8934static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8935{
06ecb27c 8936 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8937}
d0b27fa7
PZ
8938
8939static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8940 u64 rt_period_us)
8941{
8942 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8943}
8944
8945static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8946{
8947 return sched_group_rt_period(cgroup_tg(cgrp));
8948}
6d6bc0ad 8949#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8950
fe5c7cc2 8951static struct cftype cpu_files[] = {
052f1dc7 8952#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8953 {
8954 .name = "shares",
f4c753b7
PM
8955 .read_u64 = cpu_shares_read_u64,
8956 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8957 },
052f1dc7
PZ
8958#endif
8959#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8960 {
9f0c1e56 8961 .name = "rt_runtime_us",
06ecb27c
PM
8962 .read_s64 = cpu_rt_runtime_read,
8963 .write_s64 = cpu_rt_runtime_write,
6f505b16 8964 },
d0b27fa7
PZ
8965 {
8966 .name = "rt_period_us",
f4c753b7
PM
8967 .read_u64 = cpu_rt_period_read_uint,
8968 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8969 },
052f1dc7 8970#endif
68318b8e
SV
8971};
8972
8973static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8974{
fe5c7cc2 8975 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8976}
8977
8978struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8979 .name = "cpu",
8980 .create = cpu_cgroup_create,
8981 .destroy = cpu_cgroup_destroy,
8982 .can_attach = cpu_cgroup_can_attach,
8983 .attach = cpu_cgroup_attach,
068c5cc5 8984 .exit = cpu_cgroup_exit,
38605cae
IM
8985 .populate = cpu_cgroup_populate,
8986 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8987 .early_init = 1,
8988};
8989
052f1dc7 8990#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8991
8992#ifdef CONFIG_CGROUP_CPUACCT
8993
8994/*
8995 * CPU accounting code for task groups.
8996 *
8997 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8998 * (balbir@in.ibm.com).
8999 */
9000
934352f2 9001/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9002struct cpuacct {
9003 struct cgroup_subsys_state css;
9004 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9005 u64 __percpu *cpuusage;
ef12fefa 9006 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9007 struct cpuacct *parent;
d842de87
SV
9008};
9009
9010struct cgroup_subsys cpuacct_subsys;
9011
9012/* return cpu accounting group corresponding to this container */
32cd756a 9013static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9014{
32cd756a 9015 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9016 struct cpuacct, css);
9017}
9018
9019/* return cpu accounting group to which this task belongs */
9020static inline struct cpuacct *task_ca(struct task_struct *tsk)
9021{
9022 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9023 struct cpuacct, css);
9024}
9025
9026/* create a new cpu accounting group */
9027static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9028 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9029{
9030 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9031 int i;
d842de87
SV
9032
9033 if (!ca)
ef12fefa 9034 goto out;
d842de87
SV
9035
9036 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9037 if (!ca->cpuusage)
9038 goto out_free_ca;
9039
9040 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9041 if (percpu_counter_init(&ca->cpustat[i], 0))
9042 goto out_free_counters;
d842de87 9043
934352f2
BR
9044 if (cgrp->parent)
9045 ca->parent = cgroup_ca(cgrp->parent);
9046
d842de87 9047 return &ca->css;
ef12fefa
BR
9048
9049out_free_counters:
9050 while (--i >= 0)
9051 percpu_counter_destroy(&ca->cpustat[i]);
9052 free_percpu(ca->cpuusage);
9053out_free_ca:
9054 kfree(ca);
9055out:
9056 return ERR_PTR(-ENOMEM);
d842de87
SV
9057}
9058
9059/* destroy an existing cpu accounting group */
41a2d6cf 9060static void
32cd756a 9061cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9062{
32cd756a 9063 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9064 int i;
d842de87 9065
ef12fefa
BR
9066 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9067 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9068 free_percpu(ca->cpuusage);
9069 kfree(ca);
9070}
9071
720f5498
KC
9072static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9073{
b36128c8 9074 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9075 u64 data;
9076
9077#ifndef CONFIG_64BIT
9078 /*
9079 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9080 */
05fa785c 9081 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9082 data = *cpuusage;
05fa785c 9083 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9084#else
9085 data = *cpuusage;
9086#endif
9087
9088 return data;
9089}
9090
9091static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9092{
b36128c8 9093 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9094
9095#ifndef CONFIG_64BIT
9096 /*
9097 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9098 */
05fa785c 9099 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9100 *cpuusage = val;
05fa785c 9101 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9102#else
9103 *cpuusage = val;
9104#endif
9105}
9106
d842de87 9107/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9108static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9109{
32cd756a 9110 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9111 u64 totalcpuusage = 0;
9112 int i;
9113
720f5498
KC
9114 for_each_present_cpu(i)
9115 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9116
9117 return totalcpuusage;
9118}
9119
0297b803
DG
9120static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9121 u64 reset)
9122{
9123 struct cpuacct *ca = cgroup_ca(cgrp);
9124 int err = 0;
9125 int i;
9126
9127 if (reset) {
9128 err = -EINVAL;
9129 goto out;
9130 }
9131
720f5498
KC
9132 for_each_present_cpu(i)
9133 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9134
0297b803
DG
9135out:
9136 return err;
9137}
9138
e9515c3c
KC
9139static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9140 struct seq_file *m)
9141{
9142 struct cpuacct *ca = cgroup_ca(cgroup);
9143 u64 percpu;
9144 int i;
9145
9146 for_each_present_cpu(i) {
9147 percpu = cpuacct_cpuusage_read(ca, i);
9148 seq_printf(m, "%llu ", (unsigned long long) percpu);
9149 }
9150 seq_printf(m, "\n");
9151 return 0;
9152}
9153
ef12fefa
BR
9154static const char *cpuacct_stat_desc[] = {
9155 [CPUACCT_STAT_USER] = "user",
9156 [CPUACCT_STAT_SYSTEM] = "system",
9157};
9158
9159static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9160 struct cgroup_map_cb *cb)
9161{
9162 struct cpuacct *ca = cgroup_ca(cgrp);
9163 int i;
9164
9165 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9166 s64 val = percpu_counter_read(&ca->cpustat[i]);
9167 val = cputime64_to_clock_t(val);
9168 cb->fill(cb, cpuacct_stat_desc[i], val);
9169 }
9170 return 0;
9171}
9172
d842de87
SV
9173static struct cftype files[] = {
9174 {
9175 .name = "usage",
f4c753b7
PM
9176 .read_u64 = cpuusage_read,
9177 .write_u64 = cpuusage_write,
d842de87 9178 },
e9515c3c
KC
9179 {
9180 .name = "usage_percpu",
9181 .read_seq_string = cpuacct_percpu_seq_read,
9182 },
ef12fefa
BR
9183 {
9184 .name = "stat",
9185 .read_map = cpuacct_stats_show,
9186 },
d842de87
SV
9187};
9188
32cd756a 9189static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9190{
32cd756a 9191 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9192}
9193
9194/*
9195 * charge this task's execution time to its accounting group.
9196 *
9197 * called with rq->lock held.
9198 */
9199static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9200{
9201 struct cpuacct *ca;
934352f2 9202 int cpu;
d842de87 9203
c40c6f85 9204 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9205 return;
9206
934352f2 9207 cpu = task_cpu(tsk);
a18b83b7
BR
9208
9209 rcu_read_lock();
9210
d842de87 9211 ca = task_ca(tsk);
d842de87 9212
934352f2 9213 for (; ca; ca = ca->parent) {
b36128c8 9214 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9215 *cpuusage += cputime;
9216 }
a18b83b7
BR
9217
9218 rcu_read_unlock();
d842de87
SV
9219}
9220
fa535a77
AB
9221/*
9222 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9223 * in cputime_t units. As a result, cpuacct_update_stats calls
9224 * percpu_counter_add with values large enough to always overflow the
9225 * per cpu batch limit causing bad SMP scalability.
9226 *
9227 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9228 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9229 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9230 */
9231#ifdef CONFIG_SMP
9232#define CPUACCT_BATCH \
9233 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9234#else
9235#define CPUACCT_BATCH 0
9236#endif
9237
ef12fefa
BR
9238/*
9239 * Charge the system/user time to the task's accounting group.
9240 */
9241static void cpuacct_update_stats(struct task_struct *tsk,
9242 enum cpuacct_stat_index idx, cputime_t val)
9243{
9244 struct cpuacct *ca;
fa535a77 9245 int batch = CPUACCT_BATCH;
ef12fefa
BR
9246
9247 if (unlikely(!cpuacct_subsys.active))
9248 return;
9249
9250 rcu_read_lock();
9251 ca = task_ca(tsk);
9252
9253 do {
fa535a77 9254 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9255 ca = ca->parent;
9256 } while (ca);
9257 rcu_read_unlock();
9258}
9259
d842de87
SV
9260struct cgroup_subsys cpuacct_subsys = {
9261 .name = "cpuacct",
9262 .create = cpuacct_create,
9263 .destroy = cpuacct_destroy,
9264 .populate = cpuacct_populate,
9265 .subsys_id = cpuacct_subsys_id,
9266};
9267#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9268