]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched.c
sched: only try to push a task on wakeup if it is migratable
[mirror_ubuntu-kernels.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b
ED
127#ifdef CONFIG_SMP
128/*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133{
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135}
136
137/*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142{
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145}
146#endif
147
e05606d3
IM
148static inline int rt_policy(int policy)
149{
3f33a7ce 150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
151 return 1;
152 return 0;
153}
154
155static inline int task_has_rt_policy(struct task_struct *p)
156{
157 return rt_policy(p->policy);
158}
159
1da177e4 160/*
6aa645ea 161 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 162 */
6aa645ea
IM
163struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166};
167
d0b27fa7 168struct rt_bandwidth {
ea736ed5
IM
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
d0b27fa7
PZ
174};
175
176static struct rt_bandwidth def_rt_bandwidth;
177
178static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181{
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199}
200
201static
202void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203{
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
ac086bc2
PZ
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
d0b27fa7
PZ
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 212 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
213}
214
c8bfff6d
KH
215static inline int rt_bandwidth_enabled(void)
216{
217 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
218}
219
220static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221{
222 ktime_t now;
223
0b148fa0 224 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
225 return;
226
227 if (hrtimer_active(&rt_b->rt_period_timer))
228 return;
229
230 spin_lock(&rt_b->rt_runtime_lock);
231 for (;;) {
232 if (hrtimer_active(&rt_b->rt_period_timer))
233 break;
234
235 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
236 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
237 hrtimer_start_expires(&rt_b->rt_period_timer,
238 HRTIMER_MODE_ABS);
d0b27fa7
PZ
239 }
240 spin_unlock(&rt_b->rt_runtime_lock);
241}
242
243#ifdef CONFIG_RT_GROUP_SCHED
244static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
245{
246 hrtimer_cancel(&rt_b->rt_period_timer);
247}
248#endif
249
712555ee
HC
250/*
251 * sched_domains_mutex serializes calls to arch_init_sched_domains,
252 * detach_destroy_domains and partition_sched_domains.
253 */
254static DEFINE_MUTEX(sched_domains_mutex);
255
052f1dc7 256#ifdef CONFIG_GROUP_SCHED
29f59db3 257
68318b8e
SV
258#include <linux/cgroup.h>
259
29f59db3
SV
260struct cfs_rq;
261
6f505b16
PZ
262static LIST_HEAD(task_groups);
263
29f59db3 264/* task group related information */
4cf86d77 265struct task_group {
052f1dc7 266#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
267 struct cgroup_subsys_state css;
268#endif
052f1dc7 269
6c415b92
AB
270#ifdef CONFIG_USER_SCHED
271 uid_t uid;
272#endif
273
052f1dc7 274#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
275 /* schedulable entities of this group on each cpu */
276 struct sched_entity **se;
277 /* runqueue "owned" by this group on each cpu */
278 struct cfs_rq **cfs_rq;
279 unsigned long shares;
052f1dc7
PZ
280#endif
281
282#ifdef CONFIG_RT_GROUP_SCHED
283 struct sched_rt_entity **rt_se;
284 struct rt_rq **rt_rq;
285
d0b27fa7 286 struct rt_bandwidth rt_bandwidth;
052f1dc7 287#endif
6b2d7700 288
ae8393e5 289 struct rcu_head rcu;
6f505b16 290 struct list_head list;
f473aa5e
PZ
291
292 struct task_group *parent;
293 struct list_head siblings;
294 struct list_head children;
29f59db3
SV
295};
296
354d60c2 297#ifdef CONFIG_USER_SCHED
eff766a6 298
6c415b92
AB
299/* Helper function to pass uid information to create_sched_user() */
300void set_tg_uid(struct user_struct *user)
301{
302 user->tg->uid = user->uid;
303}
304
eff766a6
PZ
305/*
306 * Root task group.
307 * Every UID task group (including init_task_group aka UID-0) will
308 * be a child to this group.
309 */
310struct task_group root_task_group;
311
052f1dc7 312#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
313/* Default task group's sched entity on each cpu */
314static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
315/* Default task group's cfs_rq on each cpu */
316static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 317#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
318
319#ifdef CONFIG_RT_GROUP_SCHED
320static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
321static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 323#else /* !CONFIG_USER_SCHED */
eff766a6 324#define root_task_group init_task_group
9a7e0b18 325#endif /* CONFIG_USER_SCHED */
6f505b16 326
8ed36996 327/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
328 * a task group's cpu shares.
329 */
8ed36996 330static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 331
052f1dc7 332#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
333#ifdef CONFIG_USER_SCHED
334# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 335#else /* !CONFIG_USER_SCHED */
052f1dc7 336# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 337#endif /* CONFIG_USER_SCHED */
052f1dc7 338
cb4ad1ff 339/*
2e084786
LJ
340 * A weight of 0 or 1 can cause arithmetics problems.
341 * A weight of a cfs_rq is the sum of weights of which entities
342 * are queued on this cfs_rq, so a weight of a entity should not be
343 * too large, so as the shares value of a task group.
cb4ad1ff
MX
344 * (The default weight is 1024 - so there's no practical
345 * limitation from this.)
346 */
18d95a28 347#define MIN_SHARES 2
2e084786 348#define MAX_SHARES (1UL << 18)
18d95a28 349
052f1dc7
PZ
350static int init_task_group_load = INIT_TASK_GROUP_LOAD;
351#endif
352
29f59db3 353/* Default task group.
3a252015 354 * Every task in system belong to this group at bootup.
29f59db3 355 */
434d53b0 356struct task_group init_task_group;
29f59db3
SV
357
358/* return group to which a task belongs */
4cf86d77 359static inline struct task_group *task_group(struct task_struct *p)
29f59db3 360{
4cf86d77 361 struct task_group *tg;
9b5b7751 362
052f1dc7 363#ifdef CONFIG_USER_SCHED
24e377a8 364 tg = p->user->tg;
052f1dc7 365#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
366 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
367 struct task_group, css);
24e377a8 368#else
41a2d6cf 369 tg = &init_task_group;
24e377a8 370#endif
9b5b7751 371 return tg;
29f59db3
SV
372}
373
374/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 375static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 376{
052f1dc7 377#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
378 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
379 p->se.parent = task_group(p)->se[cpu];
052f1dc7 380#endif
6f505b16 381
052f1dc7 382#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
383 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
384 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 385#endif
29f59db3
SV
386}
387
388#else
389
6f505b16 390static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
391static inline struct task_group *task_group(struct task_struct *p)
392{
393 return NULL;
394}
29f59db3 395
052f1dc7 396#endif /* CONFIG_GROUP_SCHED */
29f59db3 397
6aa645ea
IM
398/* CFS-related fields in a runqueue */
399struct cfs_rq {
400 struct load_weight load;
401 unsigned long nr_running;
402
6aa645ea 403 u64 exec_clock;
e9acbff6 404 u64 min_vruntime;
6aa645ea
IM
405
406 struct rb_root tasks_timeline;
407 struct rb_node *rb_leftmost;
4a55bd5e
PZ
408
409 struct list_head tasks;
410 struct list_head *balance_iterator;
411
412 /*
413 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
414 * It is set to NULL otherwise (i.e when none are currently running).
415 */
4793241b 416 struct sched_entity *curr, *next, *last;
ddc97297 417
5ac5c4d6 418 unsigned int nr_spread_over;
ddc97297 419
62160e3f 420#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
421 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
422
41a2d6cf
IM
423 /*
424 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
425 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
426 * (like users, containers etc.)
427 *
428 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
429 * list is used during load balance.
430 */
41a2d6cf
IM
431 struct list_head leaf_cfs_rq_list;
432 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
433
434#ifdef CONFIG_SMP
c09595f6 435 /*
c8cba857 436 * the part of load.weight contributed by tasks
c09595f6 437 */
c8cba857 438 unsigned long task_weight;
c09595f6 439
c8cba857
PZ
440 /*
441 * h_load = weight * f(tg)
442 *
443 * Where f(tg) is the recursive weight fraction assigned to
444 * this group.
445 */
446 unsigned long h_load;
c09595f6 447
c8cba857
PZ
448 /*
449 * this cpu's part of tg->shares
450 */
451 unsigned long shares;
f1d239f7
PZ
452
453 /*
454 * load.weight at the time we set shares
455 */
456 unsigned long rq_weight;
c09595f6 457#endif
6aa645ea
IM
458#endif
459};
1da177e4 460
6aa645ea
IM
461/* Real-Time classes' related field in a runqueue: */
462struct rt_rq {
463 struct rt_prio_array active;
63489e45 464 unsigned long rt_nr_running;
052f1dc7 465#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
466 struct {
467 int curr; /* highest queued rt task prio */
468 int next; /* next highest */
469 } highest_prio;
6f505b16 470#endif
fa85ae24 471#ifdef CONFIG_SMP
73fe6aae 472 unsigned long rt_nr_migratory;
a22d7fc1 473 int overloaded;
fa85ae24 474#endif
6f505b16 475 int rt_throttled;
fa85ae24 476 u64 rt_time;
ac086bc2 477 u64 rt_runtime;
ea736ed5 478 /* Nests inside the rq lock: */
ac086bc2 479 spinlock_t rt_runtime_lock;
6f505b16 480
052f1dc7 481#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
482 unsigned long rt_nr_boosted;
483
6f505b16
PZ
484 struct rq *rq;
485 struct list_head leaf_rt_rq_list;
486 struct task_group *tg;
487 struct sched_rt_entity *rt_se;
488#endif
6aa645ea
IM
489};
490
57d885fe
GH
491#ifdef CONFIG_SMP
492
493/*
494 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
495 * variables. Each exclusive cpuset essentially defines an island domain by
496 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
497 * exclusive cpuset is created, we also create and attach a new root-domain
498 * object.
499 *
57d885fe
GH
500 */
501struct root_domain {
502 atomic_t refcount;
c6c4927b
RR
503 cpumask_var_t span;
504 cpumask_var_t online;
637f5085 505
0eab9146 506 /*
637f5085
GH
507 * The "RT overload" flag: it gets set if a CPU has more than
508 * one runnable RT task.
509 */
c6c4927b 510 cpumask_var_t rto_mask;
0eab9146 511 atomic_t rto_count;
6e0534f2
GH
512#ifdef CONFIG_SMP
513 struct cpupri cpupri;
514#endif
7a09b1a2
VS
515#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
516 /*
517 * Preferred wake up cpu nominated by sched_mc balance that will be
518 * used when most cpus are idle in the system indicating overall very
519 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
520 */
521 unsigned int sched_mc_preferred_wakeup_cpu;
522#endif
57d885fe
GH
523};
524
dc938520
GH
525/*
526 * By default the system creates a single root-domain with all cpus as
527 * members (mimicking the global state we have today).
528 */
57d885fe
GH
529static struct root_domain def_root_domain;
530
531#endif
532
1da177e4
LT
533/*
534 * This is the main, per-CPU runqueue data structure.
535 *
536 * Locking rule: those places that want to lock multiple runqueues
537 * (such as the load balancing or the thread migration code), lock
538 * acquire operations must be ordered by ascending &runqueue.
539 */
70b97a7f 540struct rq {
d8016491
IM
541 /* runqueue lock: */
542 spinlock_t lock;
1da177e4
LT
543
544 /*
545 * nr_running and cpu_load should be in the same cacheline because
546 * remote CPUs use both these fields when doing load calculation.
547 */
548 unsigned long nr_running;
6aa645ea
IM
549 #define CPU_LOAD_IDX_MAX 5
550 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 551 unsigned char idle_at_tick;
46cb4b7c 552#ifdef CONFIG_NO_HZ
15934a37 553 unsigned long last_tick_seen;
46cb4b7c
SS
554 unsigned char in_nohz_recently;
555#endif
d8016491
IM
556 /* capture load from *all* tasks on this cpu: */
557 struct load_weight load;
6aa645ea
IM
558 unsigned long nr_load_updates;
559 u64 nr_switches;
560
561 struct cfs_rq cfs;
6f505b16 562 struct rt_rq rt;
6f505b16 563
6aa645ea 564#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
565 /* list of leaf cfs_rq on this cpu: */
566 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
567#endif
568#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 569 struct list_head leaf_rt_rq_list;
1da177e4 570#endif
1da177e4
LT
571
572 /*
573 * This is part of a global counter where only the total sum
574 * over all CPUs matters. A task can increase this counter on
575 * one CPU and if it got migrated afterwards it may decrease
576 * it on another CPU. Always updated under the runqueue lock:
577 */
578 unsigned long nr_uninterruptible;
579
36c8b586 580 struct task_struct *curr, *idle;
c9819f45 581 unsigned long next_balance;
1da177e4 582 struct mm_struct *prev_mm;
6aa645ea 583
3e51f33f 584 u64 clock;
6aa645ea 585
1da177e4
LT
586 atomic_t nr_iowait;
587
588#ifdef CONFIG_SMP
0eab9146 589 struct root_domain *rd;
1da177e4
LT
590 struct sched_domain *sd;
591
592 /* For active balancing */
593 int active_balance;
594 int push_cpu;
d8016491
IM
595 /* cpu of this runqueue: */
596 int cpu;
1f11eb6a 597 int online;
1da177e4 598
a8a51d5e 599 unsigned long avg_load_per_task;
1da177e4 600
36c8b586 601 struct task_struct *migration_thread;
1da177e4
LT
602 struct list_head migration_queue;
603#endif
604
8f4d37ec 605#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
606#ifdef CONFIG_SMP
607 int hrtick_csd_pending;
608 struct call_single_data hrtick_csd;
609#endif
8f4d37ec
PZ
610 struct hrtimer hrtick_timer;
611#endif
612
1da177e4
LT
613#ifdef CONFIG_SCHEDSTATS
614 /* latency stats */
615 struct sched_info rq_sched_info;
616
617 /* sys_sched_yield() stats */
480b9434
KC
618 unsigned int yld_exp_empty;
619 unsigned int yld_act_empty;
620 unsigned int yld_both_empty;
621 unsigned int yld_count;
1da177e4
LT
622
623 /* schedule() stats */
480b9434
KC
624 unsigned int sched_switch;
625 unsigned int sched_count;
626 unsigned int sched_goidle;
1da177e4
LT
627
628 /* try_to_wake_up() stats */
480b9434
KC
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
b8efb561
IM
631
632 /* BKL stats */
480b9434 633 unsigned int bkl_count;
1da177e4
LT
634#endif
635};
636
f34e3b61 637static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 638
15afe09b 639static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 640{
15afe09b 641 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
642}
643
0a2966b4
CL
644static inline int cpu_of(struct rq *rq)
645{
646#ifdef CONFIG_SMP
647 return rq->cpu;
648#else
649 return 0;
650#endif
651}
652
674311d5
NP
653/*
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 655 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
656 *
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
659 */
48f24c4d
IM
660#define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
662
663#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664#define this_rq() (&__get_cpu_var(runqueues))
665#define task_rq(p) cpu_rq(task_cpu(p))
666#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
667
3e51f33f
PZ
668static inline void update_rq_clock(struct rq *rq)
669{
670 rq->clock = sched_clock_cpu(cpu_of(rq));
671}
672
bf5c91ba
IM
673/*
674 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
675 */
676#ifdef CONFIG_SCHED_DEBUG
677# define const_debug __read_mostly
678#else
679# define const_debug static const
680#endif
681
017730c1
IM
682/**
683 * runqueue_is_locked
684 *
685 * Returns true if the current cpu runqueue is locked.
686 * This interface allows printk to be called with the runqueue lock
687 * held and know whether or not it is OK to wake up the klogd.
688 */
689int runqueue_is_locked(void)
690{
691 int cpu = get_cpu();
692 struct rq *rq = cpu_rq(cpu);
693 int ret;
694
695 ret = spin_is_locked(&rq->lock);
696 put_cpu();
697 return ret;
698}
699
bf5c91ba
IM
700/*
701 * Debugging: various feature bits
702 */
f00b45c1
PZ
703
704#define SCHED_FEAT(name, enabled) \
705 __SCHED_FEAT_##name ,
706
bf5c91ba 707enum {
f00b45c1 708#include "sched_features.h"
bf5c91ba
IM
709};
710
f00b45c1
PZ
711#undef SCHED_FEAT
712
713#define SCHED_FEAT(name, enabled) \
714 (1UL << __SCHED_FEAT_##name) * enabled |
715
bf5c91ba 716const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
717#include "sched_features.h"
718 0;
719
720#undef SCHED_FEAT
721
722#ifdef CONFIG_SCHED_DEBUG
723#define SCHED_FEAT(name, enabled) \
724 #name ,
725
983ed7a6 726static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
727#include "sched_features.h"
728 NULL
729};
730
731#undef SCHED_FEAT
732
34f3a814 733static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 734{
f00b45c1
PZ
735 int i;
736
737 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
738 if (!(sysctl_sched_features & (1UL << i)))
739 seq_puts(m, "NO_");
740 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 741 }
34f3a814 742 seq_puts(m, "\n");
f00b45c1 743
34f3a814 744 return 0;
f00b45c1
PZ
745}
746
747static ssize_t
748sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750{
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
c24b7c52 764 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787}
788
34f3a814
LZ
789static int sched_feat_open(struct inode *inode, struct file *filp)
790{
791 return single_open(filp, sched_feat_show, NULL);
792}
793
f00b45c1 794static struct file_operations sched_feat_fops = {
34f3a814
LZ
795 .open = sched_feat_open,
796 .write = sched_feat_write,
797 .read = seq_read,
798 .llseek = seq_lseek,
799 .release = single_release,
f00b45c1
PZ
800};
801
802static __init int sched_init_debug(void)
803{
f00b45c1
PZ
804 debugfs_create_file("sched_features", 0644, NULL, NULL,
805 &sched_feat_fops);
806
807 return 0;
808}
809late_initcall(sched_init_debug);
810
811#endif
812
813#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 814
b82d9fdd
PZ
815/*
816 * Number of tasks to iterate in a single balance run.
817 * Limited because this is done with IRQs disabled.
818 */
819const_debug unsigned int sysctl_sched_nr_migrate = 32;
820
2398f2c6
PZ
821/*
822 * ratelimit for updating the group shares.
55cd5340 823 * default: 0.25ms
2398f2c6 824 */
55cd5340 825unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 826
ffda12a1
PZ
827/*
828 * Inject some fuzzyness into changing the per-cpu group shares
829 * this avoids remote rq-locks at the expense of fairness.
830 * default: 4
831 */
832unsigned int sysctl_sched_shares_thresh = 4;
833
fa85ae24 834/*
9f0c1e56 835 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
836 * default: 1s
837 */
9f0c1e56 838unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 839
6892b75e
IM
840static __read_mostly int scheduler_running;
841
9f0c1e56
PZ
842/*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846int sysctl_sched_rt_runtime = 950000;
fa85ae24 847
d0b27fa7
PZ
848static inline u64 global_rt_period(void)
849{
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851}
852
853static inline u64 global_rt_runtime(void)
854{
e26873bb 855 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859}
fa85ae24 860
1da177e4 861#ifndef prepare_arch_switch
4866cde0
NP
862# define prepare_arch_switch(next) do { } while (0)
863#endif
864#ifndef finish_arch_switch
865# define finish_arch_switch(prev) do { } while (0)
866#endif
867
051a1d1a
DA
868static inline int task_current(struct rq *rq, struct task_struct *p)
869{
870 return rq->curr == p;
871}
872
4866cde0 873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 875{
051a1d1a 876 return task_current(rq, p);
4866cde0
NP
877}
878
70b97a7f 879static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
880{
881}
882
70b97a7f 883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 884{
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
4866cde0
NP
896 spin_unlock_irq(&rq->lock);
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 return p->oncpu;
904#else
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918#endif
919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq->lock);
921#else
922 spin_unlock(&rq->lock);
923#endif
924}
925
70b97a7f 926static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
927{
928#ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936#endif
937#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
1da177e4 939#endif
4866cde0
NP
940}
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 942
b29739f9
IM
943/*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
70b97a7f 947static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
948 __acquires(rq->lock)
949{
3a5c359a
AK
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
b29739f9 955 spin_unlock(&rq->lock);
b29739f9 956 }
b29739f9
IM
957}
958
1da177e4
LT
959/*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 961 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
962 * explicitly disabling preemption.
963 */
70b97a7f 964static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
965 __acquires(rq->lock)
966{
70b97a7f 967 struct rq *rq;
1da177e4 968
3a5c359a
AK
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
1da177e4 975 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 976 }
1da177e4
LT
977}
978
ad474cac
ON
979void task_rq_unlock_wait(struct task_struct *p)
980{
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq->lock);
985}
986
a9957449 987static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
988 __releases(rq->lock)
989{
990 spin_unlock(&rq->lock);
991}
992
70b97a7f 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
994 __releases(rq->lock)
995{
996 spin_unlock_irqrestore(&rq->lock, *flags);
997}
998
1da177e4 999/*
cc2a73b5 1000 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1001 */
a9957449 1002static struct rq *this_rq_lock(void)
1da177e4
LT
1003 __acquires(rq->lock)
1004{
70b97a7f 1005 struct rq *rq;
1da177e4
LT
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 spin_lock(&rq->lock);
1010
1011 return rq;
1012}
1013
8f4d37ec
PZ
1014#ifdef CONFIG_SCHED_HRTICK
1015/*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
8f4d37ec
PZ
1025
1026/*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031static inline int hrtick_enabled(struct rq *rq)
1032{
1033 if (!sched_feat(HRTICK))
1034 return 0;
ba42059f 1035 if (!cpu_active(cpu_of(rq)))
b328ca18 1036 return 0;
8f4d37ec
PZ
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
8f4d37ec
PZ
1040static void hrtick_clear(struct rq *rq)
1041{
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044}
1045
8f4d37ec
PZ
1046/*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051{
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 spin_lock(&rq->lock);
3e51f33f 1057 update_rq_clock(rq);
8f4d37ec
PZ
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062}
1063
95e904c7 1064#ifdef CONFIG_SMP
31656519
PZ
1065/*
1066 * called from hardirq (IPI) context
1067 */
1068static void __hrtick_start(void *arg)
b328ca18 1069{
31656519 1070 struct rq *rq = arg;
b328ca18 1071
31656519
PZ
1072 spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 spin_unlock(&rq->lock);
b328ca18
PZ
1076}
1077
31656519
PZ
1078/*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1084{
31656519
PZ
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1087
cc584b21 1088 hrtimer_set_expires(timer, time);
31656519
PZ
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1094 rq->hrtick_csd_pending = 1;
1095 }
b328ca18
PZ
1096}
1097
1098static int
1099hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100{
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
31656519 1110 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115}
1116
fa748203 1117static __init void init_hrtick(void)
b328ca18
PZ
1118{
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120}
31656519
PZ
1121#else
1122/*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127static void hrtick_start(struct rq *rq, u64 delay)
1128{
1129 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1130}
b328ca18 1131
006c75f1 1132static inline void init_hrtick(void)
8f4d37ec 1133{
8f4d37ec 1134}
31656519 1135#endif /* CONFIG_SMP */
8f4d37ec 1136
31656519 1137static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1138{
31656519
PZ
1139#ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
8f4d37ec 1141
31656519
PZ
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145#endif
8f4d37ec 1146
31656519
PZ
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
ccc7dadf 1149 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1150}
006c75f1 1151#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1152static inline void hrtick_clear(struct rq *rq)
1153{
1154}
1155
8f4d37ec
PZ
1156static inline void init_rq_hrtick(struct rq *rq)
1157{
1158}
1159
b328ca18
PZ
1160static inline void init_hrtick(void)
1161{
1162}
006c75f1 1163#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1164
c24d20db
IM
1165/*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172#ifdef CONFIG_SMP
1173
1174#ifndef tsk_is_polling
1175#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176#endif
1177
31656519 1178static void resched_task(struct task_struct *p)
c24d20db
IM
1179{
1180 int cpu;
1181
1182 assert_spin_locked(&task_rq(p)->lock);
1183
31656519 1184 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1185 return;
1186
31656519 1187 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197}
1198
1199static void resched_cpu(int cpu)
1200{
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
1204 if (!spin_trylock_irqsave(&rq->lock, flags))
1205 return;
1206 resched_task(cpu_curr(cpu));
1207 spin_unlock_irqrestore(&rq->lock, flags);
1208}
06d8308c
TG
1209
1210#ifdef CONFIG_NO_HZ
1211/*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221void wake_up_idle_cpu(int cpu)
1222{
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
1243 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249}
6d6bc0ad 1250#endif /* CONFIG_NO_HZ */
06d8308c 1251
6d6bc0ad 1252#else /* !CONFIG_SMP */
31656519 1253static void resched_task(struct task_struct *p)
c24d20db
IM
1254{
1255 assert_spin_locked(&task_rq(p)->lock);
31656519 1256 set_tsk_need_resched(p);
c24d20db 1257}
6d6bc0ad 1258#endif /* CONFIG_SMP */
c24d20db 1259
45bf76df
IM
1260#if BITS_PER_LONG == 32
1261# define WMULT_CONST (~0UL)
1262#else
1263# define WMULT_CONST (1UL << 32)
1264#endif
1265
1266#define WMULT_SHIFT 32
1267
194081eb
IM
1268/*
1269 * Shift right and round:
1270 */
cf2ab469 1271#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1272
a7be37ac
PZ
1273/*
1274 * delta *= weight / lw
1275 */
cb1c4fc9 1276static unsigned long
45bf76df
IM
1277calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1278 struct load_weight *lw)
1279{
1280 u64 tmp;
1281
7a232e03
LJ
1282 if (!lw->inv_weight) {
1283 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1284 lw->inv_weight = 1;
1285 else
1286 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1287 / (lw->weight+1);
1288 }
45bf76df
IM
1289
1290 tmp = (u64)delta_exec * weight;
1291 /*
1292 * Check whether we'd overflow the 64-bit multiplication:
1293 */
194081eb 1294 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1295 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1296 WMULT_SHIFT/2);
1297 else
cf2ab469 1298 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1299
ecf691da 1300 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1301}
1302
1091985b 1303static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1304{
1305 lw->weight += inc;
e89996ae 1306 lw->inv_weight = 0;
45bf76df
IM
1307}
1308
1091985b 1309static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1310{
1311 lw->weight -= dec;
e89996ae 1312 lw->inv_weight = 0;
45bf76df
IM
1313}
1314
2dd73a4f
PW
1315/*
1316 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1317 * of tasks with abnormal "nice" values across CPUs the contribution that
1318 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1319 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1320 * scaled version of the new time slice allocation that they receive on time
1321 * slice expiry etc.
1322 */
1323
dd41f596
IM
1324#define WEIGHT_IDLEPRIO 2
1325#define WMULT_IDLEPRIO (1 << 31)
1326
1327/*
1328 * Nice levels are multiplicative, with a gentle 10% change for every
1329 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1330 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1331 * that remained on nice 0.
1332 *
1333 * The "10% effect" is relative and cumulative: from _any_ nice level,
1334 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1335 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1336 * If a task goes up by ~10% and another task goes down by ~10% then
1337 * the relative distance between them is ~25%.)
dd41f596
IM
1338 */
1339static const int prio_to_weight[40] = {
254753dc
IM
1340 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1341 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1342 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1343 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1344 /* 0 */ 1024, 820, 655, 526, 423,
1345 /* 5 */ 335, 272, 215, 172, 137,
1346 /* 10 */ 110, 87, 70, 56, 45,
1347 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1348};
1349
5714d2de
IM
1350/*
1351 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1352 *
1353 * In cases where the weight does not change often, we can use the
1354 * precalculated inverse to speed up arithmetics by turning divisions
1355 * into multiplications:
1356 */
dd41f596 1357static const u32 prio_to_wmult[40] = {
254753dc
IM
1358 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1359 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1360 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1361 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1362 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1363 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1364 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1365 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1366};
2dd73a4f 1367
dd41f596
IM
1368static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1369
1370/*
1371 * runqueue iterator, to support SMP load-balancing between different
1372 * scheduling classes, without having to expose their internal data
1373 * structures to the load-balancing proper:
1374 */
1375struct rq_iterator {
1376 void *arg;
1377 struct task_struct *(*start)(void *);
1378 struct task_struct *(*next)(void *);
1379};
1380
e1d1484f
PW
1381#ifdef CONFIG_SMP
1382static unsigned long
1383balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1384 unsigned long max_load_move, struct sched_domain *sd,
1385 enum cpu_idle_type idle, int *all_pinned,
1386 int *this_best_prio, struct rq_iterator *iterator);
1387
1388static int
1389iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1390 struct sched_domain *sd, enum cpu_idle_type idle,
1391 struct rq_iterator *iterator);
e1d1484f 1392#endif
dd41f596 1393
d842de87
SV
1394#ifdef CONFIG_CGROUP_CPUACCT
1395static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1396#else
1397static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1398#endif
1399
18d95a28
PZ
1400static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1401{
1402 update_load_add(&rq->load, load);
1403}
1404
1405static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1406{
1407 update_load_sub(&rq->load, load);
1408}
1409
7940ca36 1410#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1411typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1412
1413/*
1414 * Iterate the full tree, calling @down when first entering a node and @up when
1415 * leaving it for the final time.
1416 */
eb755805 1417static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1418{
1419 struct task_group *parent, *child;
eb755805 1420 int ret;
c09595f6
PZ
1421
1422 rcu_read_lock();
1423 parent = &root_task_group;
1424down:
eb755805
PZ
1425 ret = (*down)(parent, data);
1426 if (ret)
1427 goto out_unlock;
c09595f6
PZ
1428 list_for_each_entry_rcu(child, &parent->children, siblings) {
1429 parent = child;
1430 goto down;
1431
1432up:
1433 continue;
1434 }
eb755805
PZ
1435 ret = (*up)(parent, data);
1436 if (ret)
1437 goto out_unlock;
c09595f6
PZ
1438
1439 child = parent;
1440 parent = parent->parent;
1441 if (parent)
1442 goto up;
eb755805 1443out_unlock:
c09595f6 1444 rcu_read_unlock();
eb755805
PZ
1445
1446 return ret;
c09595f6
PZ
1447}
1448
eb755805
PZ
1449static int tg_nop(struct task_group *tg, void *data)
1450{
1451 return 0;
c09595f6 1452}
eb755805
PZ
1453#endif
1454
1455#ifdef CONFIG_SMP
1456static unsigned long source_load(int cpu, int type);
1457static unsigned long target_load(int cpu, int type);
1458static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1459
1460static unsigned long cpu_avg_load_per_task(int cpu)
1461{
1462 struct rq *rq = cpu_rq(cpu);
af6d596f 1463 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1464
4cd42620
SR
1465 if (nr_running)
1466 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1467 else
1468 rq->avg_load_per_task = 0;
eb755805
PZ
1469
1470 return rq->avg_load_per_task;
1471}
1472
1473#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1474
c09595f6
PZ
1475static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1476
1477/*
1478 * Calculate and set the cpu's group shares.
1479 */
1480static void
ffda12a1
PZ
1481update_group_shares_cpu(struct task_group *tg, int cpu,
1482 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1483{
c09595f6
PZ
1484 unsigned long shares;
1485 unsigned long rq_weight;
1486
c8cba857 1487 if (!tg->se[cpu])
c09595f6
PZ
1488 return;
1489
ec4e0e2f 1490 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1491
c09595f6
PZ
1492 /*
1493 * \Sum shares * rq_weight
1494 * shares = -----------------------
1495 * \Sum rq_weight
1496 *
1497 */
ec4e0e2f 1498 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1499 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1500
ffda12a1
PZ
1501 if (abs(shares - tg->se[cpu]->load.weight) >
1502 sysctl_sched_shares_thresh) {
1503 struct rq *rq = cpu_rq(cpu);
1504 unsigned long flags;
c09595f6 1505
ffda12a1 1506 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1507 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1508
ffda12a1
PZ
1509 __set_se_shares(tg->se[cpu], shares);
1510 spin_unlock_irqrestore(&rq->lock, flags);
1511 }
18d95a28 1512}
c09595f6
PZ
1513
1514/*
c8cba857
PZ
1515 * Re-compute the task group their per cpu shares over the given domain.
1516 * This needs to be done in a bottom-up fashion because the rq weight of a
1517 * parent group depends on the shares of its child groups.
c09595f6 1518 */
eb755805 1519static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1520{
ec4e0e2f 1521 unsigned long weight, rq_weight = 0;
c8cba857 1522 unsigned long shares = 0;
eb755805 1523 struct sched_domain *sd = data;
c8cba857 1524 int i;
c09595f6 1525
758b2cdc 1526 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1527 /*
1528 * If there are currently no tasks on the cpu pretend there
1529 * is one of average load so that when a new task gets to
1530 * run here it will not get delayed by group starvation.
1531 */
1532 weight = tg->cfs_rq[i]->load.weight;
1533 if (!weight)
1534 weight = NICE_0_LOAD;
1535
1536 tg->cfs_rq[i]->rq_weight = weight;
1537 rq_weight += weight;
c8cba857 1538 shares += tg->cfs_rq[i]->shares;
c09595f6 1539 }
c09595f6 1540
c8cba857
PZ
1541 if ((!shares && rq_weight) || shares > tg->shares)
1542 shares = tg->shares;
1543
1544 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1545 shares = tg->shares;
c09595f6 1546
758b2cdc 1547 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1548 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1549
1550 return 0;
c09595f6
PZ
1551}
1552
1553/*
c8cba857
PZ
1554 * Compute the cpu's hierarchical load factor for each task group.
1555 * This needs to be done in a top-down fashion because the load of a child
1556 * group is a fraction of its parents load.
c09595f6 1557 */
eb755805 1558static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1559{
c8cba857 1560 unsigned long load;
eb755805 1561 long cpu = (long)data;
c09595f6 1562
c8cba857
PZ
1563 if (!tg->parent) {
1564 load = cpu_rq(cpu)->load.weight;
1565 } else {
1566 load = tg->parent->cfs_rq[cpu]->h_load;
1567 load *= tg->cfs_rq[cpu]->shares;
1568 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1569 }
c09595f6 1570
c8cba857 1571 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1572
eb755805 1573 return 0;
c09595f6
PZ
1574}
1575
c8cba857 1576static void update_shares(struct sched_domain *sd)
4d8d595d 1577{
2398f2c6
PZ
1578 u64 now = cpu_clock(raw_smp_processor_id());
1579 s64 elapsed = now - sd->last_update;
1580
1581 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1582 sd->last_update = now;
eb755805 1583 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1584 }
4d8d595d
PZ
1585}
1586
3e5459b4
PZ
1587static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1588{
1589 spin_unlock(&rq->lock);
1590 update_shares(sd);
1591 spin_lock(&rq->lock);
1592}
1593
eb755805 1594static void update_h_load(long cpu)
c09595f6 1595{
eb755805 1596 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1597}
1598
c09595f6
PZ
1599#else
1600
c8cba857 1601static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1602{
1603}
1604
3e5459b4
PZ
1605static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1606{
1607}
1608
18d95a28
PZ
1609#endif
1610
70574a99
AD
1611/*
1612 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1613 */
1614static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1615 __releases(this_rq->lock)
1616 __acquires(busiest->lock)
1617 __acquires(this_rq->lock)
1618{
1619 int ret = 0;
1620
1621 if (unlikely(!irqs_disabled())) {
1622 /* printk() doesn't work good under rq->lock */
1623 spin_unlock(&this_rq->lock);
1624 BUG_ON(1);
1625 }
1626 if (unlikely(!spin_trylock(&busiest->lock))) {
1627 if (busiest < this_rq) {
1628 spin_unlock(&this_rq->lock);
1629 spin_lock(&busiest->lock);
1630 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1631 ret = 1;
1632 } else
1633 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1634 }
1635 return ret;
1636}
1637
1638static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1639 __releases(busiest->lock)
1640{
1641 spin_unlock(&busiest->lock);
1642 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1643}
18d95a28
PZ
1644#endif
1645
30432094 1646#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1647static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1648{
30432094 1649#ifdef CONFIG_SMP
34e83e85
IM
1650 cfs_rq->shares = shares;
1651#endif
1652}
30432094 1653#endif
e7693a36 1654
dd41f596 1655#include "sched_stats.h"
dd41f596 1656#include "sched_idletask.c"
5522d5d5
IM
1657#include "sched_fair.c"
1658#include "sched_rt.c"
dd41f596
IM
1659#ifdef CONFIG_SCHED_DEBUG
1660# include "sched_debug.c"
1661#endif
1662
1663#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1664#define for_each_class(class) \
1665 for (class = sched_class_highest; class; class = class->next)
dd41f596 1666
c09595f6 1667static void inc_nr_running(struct rq *rq)
9c217245
IM
1668{
1669 rq->nr_running++;
9c217245
IM
1670}
1671
c09595f6 1672static void dec_nr_running(struct rq *rq)
9c217245
IM
1673{
1674 rq->nr_running--;
9c217245
IM
1675}
1676
45bf76df
IM
1677static void set_load_weight(struct task_struct *p)
1678{
1679 if (task_has_rt_policy(p)) {
dd41f596
IM
1680 p->se.load.weight = prio_to_weight[0] * 2;
1681 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1682 return;
1683 }
45bf76df 1684
dd41f596
IM
1685 /*
1686 * SCHED_IDLE tasks get minimal weight:
1687 */
1688 if (p->policy == SCHED_IDLE) {
1689 p->se.load.weight = WEIGHT_IDLEPRIO;
1690 p->se.load.inv_weight = WMULT_IDLEPRIO;
1691 return;
1692 }
71f8bd46 1693
dd41f596
IM
1694 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1695 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1696}
1697
2087a1ad
GH
1698static void update_avg(u64 *avg, u64 sample)
1699{
1700 s64 diff = sample - *avg;
1701 *avg += diff >> 3;
1702}
1703
8159f87e 1704static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1705{
dd41f596 1706 sched_info_queued(p);
fd390f6a 1707 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1708 p->se.on_rq = 1;
71f8bd46
IM
1709}
1710
69be72c1 1711static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1712{
2087a1ad
GH
1713 if (sleep && p->se.last_wakeup) {
1714 update_avg(&p->se.avg_overlap,
1715 p->se.sum_exec_runtime - p->se.last_wakeup);
1716 p->se.last_wakeup = 0;
1717 }
1718
46ac22ba 1719 sched_info_dequeued(p);
f02231e5 1720 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1721 p->se.on_rq = 0;
71f8bd46
IM
1722}
1723
14531189 1724/*
dd41f596 1725 * __normal_prio - return the priority that is based on the static prio
14531189 1726 */
14531189
IM
1727static inline int __normal_prio(struct task_struct *p)
1728{
dd41f596 1729 return p->static_prio;
14531189
IM
1730}
1731
b29739f9
IM
1732/*
1733 * Calculate the expected normal priority: i.e. priority
1734 * without taking RT-inheritance into account. Might be
1735 * boosted by interactivity modifiers. Changes upon fork,
1736 * setprio syscalls, and whenever the interactivity
1737 * estimator recalculates.
1738 */
36c8b586 1739static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1740{
1741 int prio;
1742
e05606d3 1743 if (task_has_rt_policy(p))
b29739f9
IM
1744 prio = MAX_RT_PRIO-1 - p->rt_priority;
1745 else
1746 prio = __normal_prio(p);
1747 return prio;
1748}
1749
1750/*
1751 * Calculate the current priority, i.e. the priority
1752 * taken into account by the scheduler. This value might
1753 * be boosted by RT tasks, or might be boosted by
1754 * interactivity modifiers. Will be RT if the task got
1755 * RT-boosted. If not then it returns p->normal_prio.
1756 */
36c8b586 1757static int effective_prio(struct task_struct *p)
b29739f9
IM
1758{
1759 p->normal_prio = normal_prio(p);
1760 /*
1761 * If we are RT tasks or we were boosted to RT priority,
1762 * keep the priority unchanged. Otherwise, update priority
1763 * to the normal priority:
1764 */
1765 if (!rt_prio(p->prio))
1766 return p->normal_prio;
1767 return p->prio;
1768}
1769
1da177e4 1770/*
dd41f596 1771 * activate_task - move a task to the runqueue.
1da177e4 1772 */
dd41f596 1773static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1774{
d9514f6c 1775 if (task_contributes_to_load(p))
dd41f596 1776 rq->nr_uninterruptible--;
1da177e4 1777
8159f87e 1778 enqueue_task(rq, p, wakeup);
c09595f6 1779 inc_nr_running(rq);
1da177e4
LT
1780}
1781
1da177e4
LT
1782/*
1783 * deactivate_task - remove a task from the runqueue.
1784 */
2e1cb74a 1785static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1786{
d9514f6c 1787 if (task_contributes_to_load(p))
dd41f596
IM
1788 rq->nr_uninterruptible++;
1789
69be72c1 1790 dequeue_task(rq, p, sleep);
c09595f6 1791 dec_nr_running(rq);
1da177e4
LT
1792}
1793
1da177e4
LT
1794/**
1795 * task_curr - is this task currently executing on a CPU?
1796 * @p: the task in question.
1797 */
36c8b586 1798inline int task_curr(const struct task_struct *p)
1da177e4
LT
1799{
1800 return cpu_curr(task_cpu(p)) == p;
1801}
1802
dd41f596
IM
1803static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1804{
6f505b16 1805 set_task_rq(p, cpu);
dd41f596 1806#ifdef CONFIG_SMP
ce96b5ac
DA
1807 /*
1808 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1809 * successfuly executed on another CPU. We must ensure that updates of
1810 * per-task data have been completed by this moment.
1811 */
1812 smp_wmb();
dd41f596 1813 task_thread_info(p)->cpu = cpu;
dd41f596 1814#endif
2dd73a4f
PW
1815}
1816
cb469845
SR
1817static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1818 const struct sched_class *prev_class,
1819 int oldprio, int running)
1820{
1821 if (prev_class != p->sched_class) {
1822 if (prev_class->switched_from)
1823 prev_class->switched_from(rq, p, running);
1824 p->sched_class->switched_to(rq, p, running);
1825 } else
1826 p->sched_class->prio_changed(rq, p, oldprio, running);
1827}
1828
1da177e4 1829#ifdef CONFIG_SMP
c65cc870 1830
e958b360
TG
1831/* Used instead of source_load when we know the type == 0 */
1832static unsigned long weighted_cpuload(const int cpu)
1833{
1834 return cpu_rq(cpu)->load.weight;
1835}
1836
cc367732
IM
1837/*
1838 * Is this task likely cache-hot:
1839 */
e7693a36 1840static int
cc367732
IM
1841task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1842{
1843 s64 delta;
1844
f540a608
IM
1845 /*
1846 * Buddy candidates are cache hot:
1847 */
4793241b
PZ
1848 if (sched_feat(CACHE_HOT_BUDDY) &&
1849 (&p->se == cfs_rq_of(&p->se)->next ||
1850 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1851 return 1;
1852
cc367732
IM
1853 if (p->sched_class != &fair_sched_class)
1854 return 0;
1855
6bc1665b
IM
1856 if (sysctl_sched_migration_cost == -1)
1857 return 1;
1858 if (sysctl_sched_migration_cost == 0)
1859 return 0;
1860
cc367732
IM
1861 delta = now - p->se.exec_start;
1862
1863 return delta < (s64)sysctl_sched_migration_cost;
1864}
1865
1866
dd41f596 1867void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1868{
dd41f596
IM
1869 int old_cpu = task_cpu(p);
1870 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1871 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1872 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1873 u64 clock_offset;
dd41f596
IM
1874
1875 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1876
1877#ifdef CONFIG_SCHEDSTATS
1878 if (p->se.wait_start)
1879 p->se.wait_start -= clock_offset;
dd41f596
IM
1880 if (p->se.sleep_start)
1881 p->se.sleep_start -= clock_offset;
1882 if (p->se.block_start)
1883 p->se.block_start -= clock_offset;
cc367732
IM
1884 if (old_cpu != new_cpu) {
1885 schedstat_inc(p, se.nr_migrations);
1886 if (task_hot(p, old_rq->clock, NULL))
1887 schedstat_inc(p, se.nr_forced2_migrations);
1888 }
6cfb0d5d 1889#endif
2830cf8c
SV
1890 p->se.vruntime -= old_cfsrq->min_vruntime -
1891 new_cfsrq->min_vruntime;
dd41f596
IM
1892
1893 __set_task_cpu(p, new_cpu);
c65cc870
IM
1894}
1895
70b97a7f 1896struct migration_req {
1da177e4 1897 struct list_head list;
1da177e4 1898
36c8b586 1899 struct task_struct *task;
1da177e4
LT
1900 int dest_cpu;
1901
1da177e4 1902 struct completion done;
70b97a7f 1903};
1da177e4
LT
1904
1905/*
1906 * The task's runqueue lock must be held.
1907 * Returns true if you have to wait for migration thread.
1908 */
36c8b586 1909static int
70b97a7f 1910migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1911{
70b97a7f 1912 struct rq *rq = task_rq(p);
1da177e4
LT
1913
1914 /*
1915 * If the task is not on a runqueue (and not running), then
1916 * it is sufficient to simply update the task's cpu field.
1917 */
dd41f596 1918 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1919 set_task_cpu(p, dest_cpu);
1920 return 0;
1921 }
1922
1923 init_completion(&req->done);
1da177e4
LT
1924 req->task = p;
1925 req->dest_cpu = dest_cpu;
1926 list_add(&req->list, &rq->migration_queue);
48f24c4d 1927
1da177e4
LT
1928 return 1;
1929}
1930
1931/*
1932 * wait_task_inactive - wait for a thread to unschedule.
1933 *
85ba2d86
RM
1934 * If @match_state is nonzero, it's the @p->state value just checked and
1935 * not expected to change. If it changes, i.e. @p might have woken up,
1936 * then return zero. When we succeed in waiting for @p to be off its CPU,
1937 * we return a positive number (its total switch count). If a second call
1938 * a short while later returns the same number, the caller can be sure that
1939 * @p has remained unscheduled the whole time.
1940 *
1da177e4
LT
1941 * The caller must ensure that the task *will* unschedule sometime soon,
1942 * else this function might spin for a *long* time. This function can't
1943 * be called with interrupts off, or it may introduce deadlock with
1944 * smp_call_function() if an IPI is sent by the same process we are
1945 * waiting to become inactive.
1946 */
85ba2d86 1947unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1948{
1949 unsigned long flags;
dd41f596 1950 int running, on_rq;
85ba2d86 1951 unsigned long ncsw;
70b97a7f 1952 struct rq *rq;
1da177e4 1953
3a5c359a
AK
1954 for (;;) {
1955 /*
1956 * We do the initial early heuristics without holding
1957 * any task-queue locks at all. We'll only try to get
1958 * the runqueue lock when things look like they will
1959 * work out!
1960 */
1961 rq = task_rq(p);
fa490cfd 1962
3a5c359a
AK
1963 /*
1964 * If the task is actively running on another CPU
1965 * still, just relax and busy-wait without holding
1966 * any locks.
1967 *
1968 * NOTE! Since we don't hold any locks, it's not
1969 * even sure that "rq" stays as the right runqueue!
1970 * But we don't care, since "task_running()" will
1971 * return false if the runqueue has changed and p
1972 * is actually now running somewhere else!
1973 */
85ba2d86
RM
1974 while (task_running(rq, p)) {
1975 if (match_state && unlikely(p->state != match_state))
1976 return 0;
3a5c359a 1977 cpu_relax();
85ba2d86 1978 }
fa490cfd 1979
3a5c359a
AK
1980 /*
1981 * Ok, time to look more closely! We need the rq
1982 * lock now, to be *sure*. If we're wrong, we'll
1983 * just go back and repeat.
1984 */
1985 rq = task_rq_lock(p, &flags);
0a16b607 1986 trace_sched_wait_task(rq, p);
3a5c359a
AK
1987 running = task_running(rq, p);
1988 on_rq = p->se.on_rq;
85ba2d86 1989 ncsw = 0;
f31e11d8 1990 if (!match_state || p->state == match_state)
93dcf55f 1991 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1992 task_rq_unlock(rq, &flags);
fa490cfd 1993
85ba2d86
RM
1994 /*
1995 * If it changed from the expected state, bail out now.
1996 */
1997 if (unlikely(!ncsw))
1998 break;
1999
3a5c359a
AK
2000 /*
2001 * Was it really running after all now that we
2002 * checked with the proper locks actually held?
2003 *
2004 * Oops. Go back and try again..
2005 */
2006 if (unlikely(running)) {
2007 cpu_relax();
2008 continue;
2009 }
fa490cfd 2010
3a5c359a
AK
2011 /*
2012 * It's not enough that it's not actively running,
2013 * it must be off the runqueue _entirely_, and not
2014 * preempted!
2015 *
2016 * So if it wa still runnable (but just not actively
2017 * running right now), it's preempted, and we should
2018 * yield - it could be a while.
2019 */
2020 if (unlikely(on_rq)) {
2021 schedule_timeout_uninterruptible(1);
2022 continue;
2023 }
fa490cfd 2024
3a5c359a
AK
2025 /*
2026 * Ahh, all good. It wasn't running, and it wasn't
2027 * runnable, which means that it will never become
2028 * running in the future either. We're all done!
2029 */
2030 break;
2031 }
85ba2d86
RM
2032
2033 return ncsw;
1da177e4
LT
2034}
2035
2036/***
2037 * kick_process - kick a running thread to enter/exit the kernel
2038 * @p: the to-be-kicked thread
2039 *
2040 * Cause a process which is running on another CPU to enter
2041 * kernel-mode, without any delay. (to get signals handled.)
2042 *
2043 * NOTE: this function doesnt have to take the runqueue lock,
2044 * because all it wants to ensure is that the remote task enters
2045 * the kernel. If the IPI races and the task has been migrated
2046 * to another CPU then no harm is done and the purpose has been
2047 * achieved as well.
2048 */
36c8b586 2049void kick_process(struct task_struct *p)
1da177e4
LT
2050{
2051 int cpu;
2052
2053 preempt_disable();
2054 cpu = task_cpu(p);
2055 if ((cpu != smp_processor_id()) && task_curr(p))
2056 smp_send_reschedule(cpu);
2057 preempt_enable();
2058}
2059
2060/*
2dd73a4f
PW
2061 * Return a low guess at the load of a migration-source cpu weighted
2062 * according to the scheduling class and "nice" value.
1da177e4
LT
2063 *
2064 * We want to under-estimate the load of migration sources, to
2065 * balance conservatively.
2066 */
a9957449 2067static unsigned long source_load(int cpu, int type)
1da177e4 2068{
70b97a7f 2069 struct rq *rq = cpu_rq(cpu);
dd41f596 2070 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2071
93b75217 2072 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2073 return total;
b910472d 2074
dd41f596 2075 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2076}
2077
2078/*
2dd73a4f
PW
2079 * Return a high guess at the load of a migration-target cpu weighted
2080 * according to the scheduling class and "nice" value.
1da177e4 2081 */
a9957449 2082static unsigned long target_load(int cpu, int type)
1da177e4 2083{
70b97a7f 2084 struct rq *rq = cpu_rq(cpu);
dd41f596 2085 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2086
93b75217 2087 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2088 return total;
3b0bd9bc 2089
dd41f596 2090 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2091}
2092
147cbb4b
NP
2093/*
2094 * find_idlest_group finds and returns the least busy CPU group within the
2095 * domain.
2096 */
2097static struct sched_group *
2098find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2099{
2100 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2101 unsigned long min_load = ULONG_MAX, this_load = 0;
2102 int load_idx = sd->forkexec_idx;
2103 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2104
2105 do {
2106 unsigned long load, avg_load;
2107 int local_group;
2108 int i;
2109
da5a5522 2110 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2111 if (!cpumask_intersects(sched_group_cpus(group),
2112 &p->cpus_allowed))
3a5c359a 2113 continue;
da5a5522 2114
758b2cdc
RR
2115 local_group = cpumask_test_cpu(this_cpu,
2116 sched_group_cpus(group));
147cbb4b
NP
2117
2118 /* Tally up the load of all CPUs in the group */
2119 avg_load = 0;
2120
758b2cdc 2121 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2122 /* Bias balancing toward cpus of our domain */
2123 if (local_group)
2124 load = source_load(i, load_idx);
2125 else
2126 load = target_load(i, load_idx);
2127
2128 avg_load += load;
2129 }
2130
2131 /* Adjust by relative CPU power of the group */
5517d86b
ED
2132 avg_load = sg_div_cpu_power(group,
2133 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2134
2135 if (local_group) {
2136 this_load = avg_load;
2137 this = group;
2138 } else if (avg_load < min_load) {
2139 min_load = avg_load;
2140 idlest = group;
2141 }
3a5c359a 2142 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2143
2144 if (!idlest || 100*this_load < imbalance*min_load)
2145 return NULL;
2146 return idlest;
2147}
2148
2149/*
0feaece9 2150 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2151 */
95cdf3b7 2152static int
758b2cdc 2153find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2154{
2155 unsigned long load, min_load = ULONG_MAX;
2156 int idlest = -1;
2157 int i;
2158
da5a5522 2159 /* Traverse only the allowed CPUs */
758b2cdc 2160 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2161 load = weighted_cpuload(i);
147cbb4b
NP
2162
2163 if (load < min_load || (load == min_load && i == this_cpu)) {
2164 min_load = load;
2165 idlest = i;
2166 }
2167 }
2168
2169 return idlest;
2170}
2171
476d139c
NP
2172/*
2173 * sched_balance_self: balance the current task (running on cpu) in domains
2174 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2175 * SD_BALANCE_EXEC.
2176 *
2177 * Balance, ie. select the least loaded group.
2178 *
2179 * Returns the target CPU number, or the same CPU if no balancing is needed.
2180 *
2181 * preempt must be disabled.
2182 */
2183static int sched_balance_self(int cpu, int flag)
2184{
2185 struct task_struct *t = current;
2186 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2187
c96d145e 2188 for_each_domain(cpu, tmp) {
9761eea8
IM
2189 /*
2190 * If power savings logic is enabled for a domain, stop there.
2191 */
5c45bf27
SS
2192 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2193 break;
476d139c
NP
2194 if (tmp->flags & flag)
2195 sd = tmp;
c96d145e 2196 }
476d139c 2197
039a1c41
PZ
2198 if (sd)
2199 update_shares(sd);
2200
476d139c 2201 while (sd) {
476d139c 2202 struct sched_group *group;
1a848870
SS
2203 int new_cpu, weight;
2204
2205 if (!(sd->flags & flag)) {
2206 sd = sd->child;
2207 continue;
2208 }
476d139c 2209
476d139c 2210 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2211 if (!group) {
2212 sd = sd->child;
2213 continue;
2214 }
476d139c 2215
758b2cdc 2216 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2217 if (new_cpu == -1 || new_cpu == cpu) {
2218 /* Now try balancing at a lower domain level of cpu */
2219 sd = sd->child;
2220 continue;
2221 }
476d139c 2222
1a848870 2223 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2224 cpu = new_cpu;
758b2cdc 2225 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2226 sd = NULL;
476d139c 2227 for_each_domain(cpu, tmp) {
758b2cdc 2228 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2229 break;
2230 if (tmp->flags & flag)
2231 sd = tmp;
2232 }
2233 /* while loop will break here if sd == NULL */
2234 }
2235
2236 return cpu;
2237}
2238
2239#endif /* CONFIG_SMP */
1da177e4 2240
1da177e4
LT
2241/***
2242 * try_to_wake_up - wake up a thread
2243 * @p: the to-be-woken-up thread
2244 * @state: the mask of task states that can be woken
2245 * @sync: do a synchronous wakeup?
2246 *
2247 * Put it on the run-queue if it's not already there. The "current"
2248 * thread is always on the run-queue (except when the actual
2249 * re-schedule is in progress), and as such you're allowed to do
2250 * the simpler "current->state = TASK_RUNNING" to mark yourself
2251 * runnable without the overhead of this.
2252 *
2253 * returns failure only if the task is already active.
2254 */
36c8b586 2255static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2256{
cc367732 2257 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2258 unsigned long flags;
2259 long old_state;
70b97a7f 2260 struct rq *rq;
1da177e4 2261
b85d0667
IM
2262 if (!sched_feat(SYNC_WAKEUPS))
2263 sync = 0;
2264
2398f2c6
PZ
2265#ifdef CONFIG_SMP
2266 if (sched_feat(LB_WAKEUP_UPDATE)) {
2267 struct sched_domain *sd;
2268
2269 this_cpu = raw_smp_processor_id();
2270 cpu = task_cpu(p);
2271
2272 for_each_domain(this_cpu, sd) {
758b2cdc 2273 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2274 update_shares(sd);
2275 break;
2276 }
2277 }
2278 }
2279#endif
2280
04e2f174 2281 smp_wmb();
1da177e4
LT
2282 rq = task_rq_lock(p, &flags);
2283 old_state = p->state;
2284 if (!(old_state & state))
2285 goto out;
2286
dd41f596 2287 if (p->se.on_rq)
1da177e4
LT
2288 goto out_running;
2289
2290 cpu = task_cpu(p);
cc367732 2291 orig_cpu = cpu;
1da177e4
LT
2292 this_cpu = smp_processor_id();
2293
2294#ifdef CONFIG_SMP
2295 if (unlikely(task_running(rq, p)))
2296 goto out_activate;
2297
5d2f5a61
DA
2298 cpu = p->sched_class->select_task_rq(p, sync);
2299 if (cpu != orig_cpu) {
2300 set_task_cpu(p, cpu);
1da177e4
LT
2301 task_rq_unlock(rq, &flags);
2302 /* might preempt at this point */
2303 rq = task_rq_lock(p, &flags);
2304 old_state = p->state;
2305 if (!(old_state & state))
2306 goto out;
dd41f596 2307 if (p->se.on_rq)
1da177e4
LT
2308 goto out_running;
2309
2310 this_cpu = smp_processor_id();
2311 cpu = task_cpu(p);
2312 }
2313
e7693a36
GH
2314#ifdef CONFIG_SCHEDSTATS
2315 schedstat_inc(rq, ttwu_count);
2316 if (cpu == this_cpu)
2317 schedstat_inc(rq, ttwu_local);
2318 else {
2319 struct sched_domain *sd;
2320 for_each_domain(this_cpu, sd) {
758b2cdc 2321 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2322 schedstat_inc(sd, ttwu_wake_remote);
2323 break;
2324 }
2325 }
2326 }
6d6bc0ad 2327#endif /* CONFIG_SCHEDSTATS */
e7693a36 2328
1da177e4
LT
2329out_activate:
2330#endif /* CONFIG_SMP */
cc367732
IM
2331 schedstat_inc(p, se.nr_wakeups);
2332 if (sync)
2333 schedstat_inc(p, se.nr_wakeups_sync);
2334 if (orig_cpu != cpu)
2335 schedstat_inc(p, se.nr_wakeups_migrate);
2336 if (cpu == this_cpu)
2337 schedstat_inc(p, se.nr_wakeups_local);
2338 else
2339 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2340 update_rq_clock(rq);
dd41f596 2341 activate_task(rq, p, 1);
1da177e4
LT
2342 success = 1;
2343
2344out_running:
0a16b607 2345 trace_sched_wakeup(rq, p);
15afe09b 2346 check_preempt_curr(rq, p, sync);
4ae7d5ce 2347
1da177e4 2348 p->state = TASK_RUNNING;
9a897c5a
SR
2349#ifdef CONFIG_SMP
2350 if (p->sched_class->task_wake_up)
2351 p->sched_class->task_wake_up(rq, p);
2352#endif
1da177e4 2353out:
2087a1ad
GH
2354 current->se.last_wakeup = current->se.sum_exec_runtime;
2355
1da177e4
LT
2356 task_rq_unlock(rq, &flags);
2357
2358 return success;
2359}
2360
7ad5b3a5 2361int wake_up_process(struct task_struct *p)
1da177e4 2362{
d9514f6c 2363 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2364}
1da177e4
LT
2365EXPORT_SYMBOL(wake_up_process);
2366
7ad5b3a5 2367int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2368{
2369 return try_to_wake_up(p, state, 0);
2370}
2371
1da177e4
LT
2372/*
2373 * Perform scheduler related setup for a newly forked process p.
2374 * p is forked by current.
dd41f596
IM
2375 *
2376 * __sched_fork() is basic setup used by init_idle() too:
2377 */
2378static void __sched_fork(struct task_struct *p)
2379{
dd41f596
IM
2380 p->se.exec_start = 0;
2381 p->se.sum_exec_runtime = 0;
f6cf891c 2382 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2383 p->se.last_wakeup = 0;
2384 p->se.avg_overlap = 0;
6cfb0d5d
IM
2385
2386#ifdef CONFIG_SCHEDSTATS
2387 p->se.wait_start = 0;
dd41f596
IM
2388 p->se.sum_sleep_runtime = 0;
2389 p->se.sleep_start = 0;
dd41f596
IM
2390 p->se.block_start = 0;
2391 p->se.sleep_max = 0;
2392 p->se.block_max = 0;
2393 p->se.exec_max = 0;
eba1ed4b 2394 p->se.slice_max = 0;
dd41f596 2395 p->se.wait_max = 0;
6cfb0d5d 2396#endif
476d139c 2397
fa717060 2398 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2399 p->se.on_rq = 0;
4a55bd5e 2400 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2401
e107be36
AK
2402#ifdef CONFIG_PREEMPT_NOTIFIERS
2403 INIT_HLIST_HEAD(&p->preempt_notifiers);
2404#endif
2405
1da177e4
LT
2406 /*
2407 * We mark the process as running here, but have not actually
2408 * inserted it onto the runqueue yet. This guarantees that
2409 * nobody will actually run it, and a signal or other external
2410 * event cannot wake it up and insert it on the runqueue either.
2411 */
2412 p->state = TASK_RUNNING;
dd41f596
IM
2413}
2414
2415/*
2416 * fork()/clone()-time setup:
2417 */
2418void sched_fork(struct task_struct *p, int clone_flags)
2419{
2420 int cpu = get_cpu();
2421
2422 __sched_fork(p);
2423
2424#ifdef CONFIG_SMP
2425 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2426#endif
02e4bac2 2427 set_task_cpu(p, cpu);
b29739f9
IM
2428
2429 /*
2430 * Make sure we do not leak PI boosting priority to the child:
2431 */
2432 p->prio = current->normal_prio;
2ddbf952
HS
2433 if (!rt_prio(p->prio))
2434 p->sched_class = &fair_sched_class;
b29739f9 2435
52f17b6c 2436#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2437 if (likely(sched_info_on()))
52f17b6c 2438 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2439#endif
d6077cb8 2440#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2441 p->oncpu = 0;
2442#endif
1da177e4 2443#ifdef CONFIG_PREEMPT
4866cde0 2444 /* Want to start with kernel preemption disabled. */
a1261f54 2445 task_thread_info(p)->preempt_count = 1;
1da177e4 2446#endif
476d139c 2447 put_cpu();
1da177e4
LT
2448}
2449
2450/*
2451 * wake_up_new_task - wake up a newly created task for the first time.
2452 *
2453 * This function will do some initial scheduler statistics housekeeping
2454 * that must be done for every newly created context, then puts the task
2455 * on the runqueue and wakes it.
2456 */
7ad5b3a5 2457void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2458{
2459 unsigned long flags;
dd41f596 2460 struct rq *rq;
1da177e4
LT
2461
2462 rq = task_rq_lock(p, &flags);
147cbb4b 2463 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2464 update_rq_clock(rq);
1da177e4
LT
2465
2466 p->prio = effective_prio(p);
2467
b9dca1e0 2468 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2469 activate_task(rq, p, 0);
1da177e4 2470 } else {
1da177e4 2471 /*
dd41f596
IM
2472 * Let the scheduling class do new task startup
2473 * management (if any):
1da177e4 2474 */
ee0827d8 2475 p->sched_class->task_new(rq, p);
c09595f6 2476 inc_nr_running(rq);
1da177e4 2477 }
0a16b607 2478 trace_sched_wakeup_new(rq, p);
15afe09b 2479 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2480#ifdef CONFIG_SMP
2481 if (p->sched_class->task_wake_up)
2482 p->sched_class->task_wake_up(rq, p);
2483#endif
dd41f596 2484 task_rq_unlock(rq, &flags);
1da177e4
LT
2485}
2486
e107be36
AK
2487#ifdef CONFIG_PREEMPT_NOTIFIERS
2488
2489/**
421cee29
RD
2490 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2491 * @notifier: notifier struct to register
e107be36
AK
2492 */
2493void preempt_notifier_register(struct preempt_notifier *notifier)
2494{
2495 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2496}
2497EXPORT_SYMBOL_GPL(preempt_notifier_register);
2498
2499/**
2500 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2501 * @notifier: notifier struct to unregister
e107be36
AK
2502 *
2503 * This is safe to call from within a preemption notifier.
2504 */
2505void preempt_notifier_unregister(struct preempt_notifier *notifier)
2506{
2507 hlist_del(&notifier->link);
2508}
2509EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2510
2511static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2512{
2513 struct preempt_notifier *notifier;
2514 struct hlist_node *node;
2515
2516 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2517 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2518}
2519
2520static void
2521fire_sched_out_preempt_notifiers(struct task_struct *curr,
2522 struct task_struct *next)
2523{
2524 struct preempt_notifier *notifier;
2525 struct hlist_node *node;
2526
2527 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2528 notifier->ops->sched_out(notifier, next);
2529}
2530
6d6bc0ad 2531#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2532
2533static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2534{
2535}
2536
2537static void
2538fire_sched_out_preempt_notifiers(struct task_struct *curr,
2539 struct task_struct *next)
2540{
2541}
2542
6d6bc0ad 2543#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2544
4866cde0
NP
2545/**
2546 * prepare_task_switch - prepare to switch tasks
2547 * @rq: the runqueue preparing to switch
421cee29 2548 * @prev: the current task that is being switched out
4866cde0
NP
2549 * @next: the task we are going to switch to.
2550 *
2551 * This is called with the rq lock held and interrupts off. It must
2552 * be paired with a subsequent finish_task_switch after the context
2553 * switch.
2554 *
2555 * prepare_task_switch sets up locking and calls architecture specific
2556 * hooks.
2557 */
e107be36
AK
2558static inline void
2559prepare_task_switch(struct rq *rq, struct task_struct *prev,
2560 struct task_struct *next)
4866cde0 2561{
e107be36 2562 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2563 prepare_lock_switch(rq, next);
2564 prepare_arch_switch(next);
2565}
2566
1da177e4
LT
2567/**
2568 * finish_task_switch - clean up after a task-switch
344babaa 2569 * @rq: runqueue associated with task-switch
1da177e4
LT
2570 * @prev: the thread we just switched away from.
2571 *
4866cde0
NP
2572 * finish_task_switch must be called after the context switch, paired
2573 * with a prepare_task_switch call before the context switch.
2574 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2575 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2576 *
2577 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2578 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2579 * with the lock held can cause deadlocks; see schedule() for
2580 * details.)
2581 */
a9957449 2582static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2583 __releases(rq->lock)
2584{
1da177e4 2585 struct mm_struct *mm = rq->prev_mm;
55a101f8 2586 long prev_state;
1da177e4
LT
2587
2588 rq->prev_mm = NULL;
2589
2590 /*
2591 * A task struct has one reference for the use as "current".
c394cc9f 2592 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2593 * schedule one last time. The schedule call will never return, and
2594 * the scheduled task must drop that reference.
c394cc9f 2595 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2596 * still held, otherwise prev could be scheduled on another cpu, die
2597 * there before we look at prev->state, and then the reference would
2598 * be dropped twice.
2599 * Manfred Spraul <manfred@colorfullife.com>
2600 */
55a101f8 2601 prev_state = prev->state;
4866cde0
NP
2602 finish_arch_switch(prev);
2603 finish_lock_switch(rq, prev);
9a897c5a
SR
2604#ifdef CONFIG_SMP
2605 if (current->sched_class->post_schedule)
2606 current->sched_class->post_schedule(rq);
2607#endif
e8fa1362 2608
e107be36 2609 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2610 if (mm)
2611 mmdrop(mm);
c394cc9f 2612 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2613 /*
2614 * Remove function-return probe instances associated with this
2615 * task and put them back on the free list.
9761eea8 2616 */
c6fd91f0 2617 kprobe_flush_task(prev);
1da177e4 2618 put_task_struct(prev);
c6fd91f0 2619 }
1da177e4
LT
2620}
2621
2622/**
2623 * schedule_tail - first thing a freshly forked thread must call.
2624 * @prev: the thread we just switched away from.
2625 */
36c8b586 2626asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2627 __releases(rq->lock)
2628{
70b97a7f
IM
2629 struct rq *rq = this_rq();
2630
4866cde0
NP
2631 finish_task_switch(rq, prev);
2632#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2633 /* In this case, finish_task_switch does not reenable preemption */
2634 preempt_enable();
2635#endif
1da177e4 2636 if (current->set_child_tid)
b488893a 2637 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2638}
2639
2640/*
2641 * context_switch - switch to the new MM and the new
2642 * thread's register state.
2643 */
dd41f596 2644static inline void
70b97a7f 2645context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2646 struct task_struct *next)
1da177e4 2647{
dd41f596 2648 struct mm_struct *mm, *oldmm;
1da177e4 2649
e107be36 2650 prepare_task_switch(rq, prev, next);
0a16b607 2651 trace_sched_switch(rq, prev, next);
dd41f596
IM
2652 mm = next->mm;
2653 oldmm = prev->active_mm;
9226d125
ZA
2654 /*
2655 * For paravirt, this is coupled with an exit in switch_to to
2656 * combine the page table reload and the switch backend into
2657 * one hypercall.
2658 */
2659 arch_enter_lazy_cpu_mode();
2660
dd41f596 2661 if (unlikely(!mm)) {
1da177e4
LT
2662 next->active_mm = oldmm;
2663 atomic_inc(&oldmm->mm_count);
2664 enter_lazy_tlb(oldmm, next);
2665 } else
2666 switch_mm(oldmm, mm, next);
2667
dd41f596 2668 if (unlikely(!prev->mm)) {
1da177e4 2669 prev->active_mm = NULL;
1da177e4
LT
2670 rq->prev_mm = oldmm;
2671 }
3a5f5e48
IM
2672 /*
2673 * Since the runqueue lock will be released by the next
2674 * task (which is an invalid locking op but in the case
2675 * of the scheduler it's an obvious special-case), so we
2676 * do an early lockdep release here:
2677 */
2678#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2679 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2680#endif
1da177e4
LT
2681
2682 /* Here we just switch the register state and the stack. */
2683 switch_to(prev, next, prev);
2684
dd41f596
IM
2685 barrier();
2686 /*
2687 * this_rq must be evaluated again because prev may have moved
2688 * CPUs since it called schedule(), thus the 'rq' on its stack
2689 * frame will be invalid.
2690 */
2691 finish_task_switch(this_rq(), prev);
1da177e4
LT
2692}
2693
2694/*
2695 * nr_running, nr_uninterruptible and nr_context_switches:
2696 *
2697 * externally visible scheduler statistics: current number of runnable
2698 * threads, current number of uninterruptible-sleeping threads, total
2699 * number of context switches performed since bootup.
2700 */
2701unsigned long nr_running(void)
2702{
2703 unsigned long i, sum = 0;
2704
2705 for_each_online_cpu(i)
2706 sum += cpu_rq(i)->nr_running;
2707
2708 return sum;
2709}
2710
2711unsigned long nr_uninterruptible(void)
2712{
2713 unsigned long i, sum = 0;
2714
0a945022 2715 for_each_possible_cpu(i)
1da177e4
LT
2716 sum += cpu_rq(i)->nr_uninterruptible;
2717
2718 /*
2719 * Since we read the counters lockless, it might be slightly
2720 * inaccurate. Do not allow it to go below zero though:
2721 */
2722 if (unlikely((long)sum < 0))
2723 sum = 0;
2724
2725 return sum;
2726}
2727
2728unsigned long long nr_context_switches(void)
2729{
cc94abfc
SR
2730 int i;
2731 unsigned long long sum = 0;
1da177e4 2732
0a945022 2733 for_each_possible_cpu(i)
1da177e4
LT
2734 sum += cpu_rq(i)->nr_switches;
2735
2736 return sum;
2737}
2738
2739unsigned long nr_iowait(void)
2740{
2741 unsigned long i, sum = 0;
2742
0a945022 2743 for_each_possible_cpu(i)
1da177e4
LT
2744 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2745
2746 return sum;
2747}
2748
db1b1fef
JS
2749unsigned long nr_active(void)
2750{
2751 unsigned long i, running = 0, uninterruptible = 0;
2752
2753 for_each_online_cpu(i) {
2754 running += cpu_rq(i)->nr_running;
2755 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2756 }
2757
2758 if (unlikely((long)uninterruptible < 0))
2759 uninterruptible = 0;
2760
2761 return running + uninterruptible;
2762}
2763
48f24c4d 2764/*
dd41f596
IM
2765 * Update rq->cpu_load[] statistics. This function is usually called every
2766 * scheduler tick (TICK_NSEC).
48f24c4d 2767 */
dd41f596 2768static void update_cpu_load(struct rq *this_rq)
48f24c4d 2769{
495eca49 2770 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2771 int i, scale;
2772
2773 this_rq->nr_load_updates++;
dd41f596
IM
2774
2775 /* Update our load: */
2776 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2777 unsigned long old_load, new_load;
2778
2779 /* scale is effectively 1 << i now, and >> i divides by scale */
2780
2781 old_load = this_rq->cpu_load[i];
2782 new_load = this_load;
a25707f3
IM
2783 /*
2784 * Round up the averaging division if load is increasing. This
2785 * prevents us from getting stuck on 9 if the load is 10, for
2786 * example.
2787 */
2788 if (new_load > old_load)
2789 new_load += scale-1;
dd41f596
IM
2790 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2791 }
48f24c4d
IM
2792}
2793
dd41f596
IM
2794#ifdef CONFIG_SMP
2795
1da177e4
LT
2796/*
2797 * double_rq_lock - safely lock two runqueues
2798 *
2799 * Note this does not disable interrupts like task_rq_lock,
2800 * you need to do so manually before calling.
2801 */
70b97a7f 2802static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2803 __acquires(rq1->lock)
2804 __acquires(rq2->lock)
2805{
054b9108 2806 BUG_ON(!irqs_disabled());
1da177e4
LT
2807 if (rq1 == rq2) {
2808 spin_lock(&rq1->lock);
2809 __acquire(rq2->lock); /* Fake it out ;) */
2810 } else {
c96d145e 2811 if (rq1 < rq2) {
1da177e4 2812 spin_lock(&rq1->lock);
5e710e37 2813 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2814 } else {
2815 spin_lock(&rq2->lock);
5e710e37 2816 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2817 }
2818 }
6e82a3be
IM
2819 update_rq_clock(rq1);
2820 update_rq_clock(rq2);
1da177e4
LT
2821}
2822
2823/*
2824 * double_rq_unlock - safely unlock two runqueues
2825 *
2826 * Note this does not restore interrupts like task_rq_unlock,
2827 * you need to do so manually after calling.
2828 */
70b97a7f 2829static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2830 __releases(rq1->lock)
2831 __releases(rq2->lock)
2832{
2833 spin_unlock(&rq1->lock);
2834 if (rq1 != rq2)
2835 spin_unlock(&rq2->lock);
2836 else
2837 __release(rq2->lock);
2838}
2839
1da177e4
LT
2840/*
2841 * If dest_cpu is allowed for this process, migrate the task to it.
2842 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2843 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2844 * the cpu_allowed mask is restored.
2845 */
36c8b586 2846static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2847{
70b97a7f 2848 struct migration_req req;
1da177e4 2849 unsigned long flags;
70b97a7f 2850 struct rq *rq;
1da177e4
LT
2851
2852 rq = task_rq_lock(p, &flags);
96f874e2 2853 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2854 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2855 goto out;
2856
0a16b607 2857 trace_sched_migrate_task(rq, p, dest_cpu);
1da177e4
LT
2858 /* force the process onto the specified CPU */
2859 if (migrate_task(p, dest_cpu, &req)) {
2860 /* Need to wait for migration thread (might exit: take ref). */
2861 struct task_struct *mt = rq->migration_thread;
36c8b586 2862
1da177e4
LT
2863 get_task_struct(mt);
2864 task_rq_unlock(rq, &flags);
2865 wake_up_process(mt);
2866 put_task_struct(mt);
2867 wait_for_completion(&req.done);
36c8b586 2868
1da177e4
LT
2869 return;
2870 }
2871out:
2872 task_rq_unlock(rq, &flags);
2873}
2874
2875/*
476d139c
NP
2876 * sched_exec - execve() is a valuable balancing opportunity, because at
2877 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2878 */
2879void sched_exec(void)
2880{
1da177e4 2881 int new_cpu, this_cpu = get_cpu();
476d139c 2882 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2883 put_cpu();
476d139c
NP
2884 if (new_cpu != this_cpu)
2885 sched_migrate_task(current, new_cpu);
1da177e4
LT
2886}
2887
2888/*
2889 * pull_task - move a task from a remote runqueue to the local runqueue.
2890 * Both runqueues must be locked.
2891 */
dd41f596
IM
2892static void pull_task(struct rq *src_rq, struct task_struct *p,
2893 struct rq *this_rq, int this_cpu)
1da177e4 2894{
2e1cb74a 2895 deactivate_task(src_rq, p, 0);
1da177e4 2896 set_task_cpu(p, this_cpu);
dd41f596 2897 activate_task(this_rq, p, 0);
1da177e4
LT
2898 /*
2899 * Note that idle threads have a prio of MAX_PRIO, for this test
2900 * to be always true for them.
2901 */
15afe09b 2902 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2903}
2904
2905/*
2906 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2907 */
858119e1 2908static
70b97a7f 2909int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2910 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2911 int *all_pinned)
1da177e4
LT
2912{
2913 /*
2914 * We do not migrate tasks that are:
2915 * 1) running (obviously), or
2916 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2917 * 3) are cache-hot on their current CPU.
2918 */
96f874e2 2919 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 2920 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2921 return 0;
cc367732 2922 }
81026794
NP
2923 *all_pinned = 0;
2924
cc367732
IM
2925 if (task_running(rq, p)) {
2926 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2927 return 0;
cc367732 2928 }
1da177e4 2929
da84d961
IM
2930 /*
2931 * Aggressive migration if:
2932 * 1) task is cache cold, or
2933 * 2) too many balance attempts have failed.
2934 */
2935
6bc1665b
IM
2936 if (!task_hot(p, rq->clock, sd) ||
2937 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2938#ifdef CONFIG_SCHEDSTATS
cc367732 2939 if (task_hot(p, rq->clock, sd)) {
da84d961 2940 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2941 schedstat_inc(p, se.nr_forced_migrations);
2942 }
da84d961
IM
2943#endif
2944 return 1;
2945 }
2946
cc367732
IM
2947 if (task_hot(p, rq->clock, sd)) {
2948 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2949 return 0;
cc367732 2950 }
1da177e4
LT
2951 return 1;
2952}
2953
e1d1484f
PW
2954static unsigned long
2955balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2956 unsigned long max_load_move, struct sched_domain *sd,
2957 enum cpu_idle_type idle, int *all_pinned,
2958 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2959{
051c6764 2960 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2961 struct task_struct *p;
2962 long rem_load_move = max_load_move;
1da177e4 2963
e1d1484f 2964 if (max_load_move == 0)
1da177e4
LT
2965 goto out;
2966
81026794
NP
2967 pinned = 1;
2968
1da177e4 2969 /*
dd41f596 2970 * Start the load-balancing iterator:
1da177e4 2971 */
dd41f596
IM
2972 p = iterator->start(iterator->arg);
2973next:
b82d9fdd 2974 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2975 goto out;
051c6764
PZ
2976
2977 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2978 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2979 p = iterator->next(iterator->arg);
2980 goto next;
1da177e4
LT
2981 }
2982
dd41f596 2983 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2984 pulled++;
dd41f596 2985 rem_load_move -= p->se.load.weight;
1da177e4 2986
2dd73a4f 2987 /*
b82d9fdd 2988 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2989 */
e1d1484f 2990 if (rem_load_move > 0) {
a4ac01c3
PW
2991 if (p->prio < *this_best_prio)
2992 *this_best_prio = p->prio;
dd41f596
IM
2993 p = iterator->next(iterator->arg);
2994 goto next;
1da177e4
LT
2995 }
2996out:
2997 /*
e1d1484f 2998 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2999 * so we can safely collect pull_task() stats here rather than
3000 * inside pull_task().
3001 */
3002 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3003
3004 if (all_pinned)
3005 *all_pinned = pinned;
e1d1484f
PW
3006
3007 return max_load_move - rem_load_move;
1da177e4
LT
3008}
3009
dd41f596 3010/*
43010659
PW
3011 * move_tasks tries to move up to max_load_move weighted load from busiest to
3012 * this_rq, as part of a balancing operation within domain "sd".
3013 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3014 *
3015 * Called with both runqueues locked.
3016 */
3017static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3018 unsigned long max_load_move,
dd41f596
IM
3019 struct sched_domain *sd, enum cpu_idle_type idle,
3020 int *all_pinned)
3021{
5522d5d5 3022 const struct sched_class *class = sched_class_highest;
43010659 3023 unsigned long total_load_moved = 0;
a4ac01c3 3024 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3025
3026 do {
43010659
PW
3027 total_load_moved +=
3028 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3029 max_load_move - total_load_moved,
a4ac01c3 3030 sd, idle, all_pinned, &this_best_prio);
dd41f596 3031 class = class->next;
c4acb2c0
GH
3032
3033 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3034 break;
3035
43010659 3036 } while (class && max_load_move > total_load_moved);
dd41f596 3037
43010659
PW
3038 return total_load_moved > 0;
3039}
3040
e1d1484f
PW
3041static int
3042iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3043 struct sched_domain *sd, enum cpu_idle_type idle,
3044 struct rq_iterator *iterator)
3045{
3046 struct task_struct *p = iterator->start(iterator->arg);
3047 int pinned = 0;
3048
3049 while (p) {
3050 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3051 pull_task(busiest, p, this_rq, this_cpu);
3052 /*
3053 * Right now, this is only the second place pull_task()
3054 * is called, so we can safely collect pull_task()
3055 * stats here rather than inside pull_task().
3056 */
3057 schedstat_inc(sd, lb_gained[idle]);
3058
3059 return 1;
3060 }
3061 p = iterator->next(iterator->arg);
3062 }
3063
3064 return 0;
3065}
3066
43010659
PW
3067/*
3068 * move_one_task tries to move exactly one task from busiest to this_rq, as
3069 * part of active balancing operations within "domain".
3070 * Returns 1 if successful and 0 otherwise.
3071 *
3072 * Called with both runqueues locked.
3073 */
3074static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3075 struct sched_domain *sd, enum cpu_idle_type idle)
3076{
5522d5d5 3077 const struct sched_class *class;
43010659
PW
3078
3079 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3080 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3081 return 1;
3082
3083 return 0;
dd41f596
IM
3084}
3085
1da177e4
LT
3086/*
3087 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3088 * domain. It calculates and returns the amount of weighted load which
3089 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3090 */
3091static struct sched_group *
3092find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3093 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3094 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3095{
3096 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3097 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3098 unsigned long max_pull;
2dd73a4f
PW
3099 unsigned long busiest_load_per_task, busiest_nr_running;
3100 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3101 int load_idx, group_imb = 0;
5c45bf27
SS
3102#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3103 int power_savings_balance = 1;
3104 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3105 unsigned long min_nr_running = ULONG_MAX;
3106 struct sched_group *group_min = NULL, *group_leader = NULL;
3107#endif
1da177e4
LT
3108
3109 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3110 busiest_load_per_task = busiest_nr_running = 0;
3111 this_load_per_task = this_nr_running = 0;
408ed066 3112
d15bcfdb 3113 if (idle == CPU_NOT_IDLE)
7897986b 3114 load_idx = sd->busy_idx;
d15bcfdb 3115 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3116 load_idx = sd->newidle_idx;
3117 else
3118 load_idx = sd->idle_idx;
1da177e4
LT
3119
3120 do {
908a7c1b 3121 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3122 int local_group;
3123 int i;
908a7c1b 3124 int __group_imb = 0;
783609c6 3125 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3126 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3127 unsigned long sum_avg_load_per_task;
3128 unsigned long avg_load_per_task;
1da177e4 3129
758b2cdc
RR
3130 local_group = cpumask_test_cpu(this_cpu,
3131 sched_group_cpus(group));
1da177e4 3132
783609c6 3133 if (local_group)
758b2cdc 3134 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3135
1da177e4 3136 /* Tally up the load of all CPUs in the group */
2dd73a4f 3137 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3138 sum_avg_load_per_task = avg_load_per_task = 0;
3139
908a7c1b
KC
3140 max_cpu_load = 0;
3141 min_cpu_load = ~0UL;
1da177e4 3142
758b2cdc
RR
3143 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3144 struct rq *rq = cpu_rq(i);
2dd73a4f 3145
9439aab8 3146 if (*sd_idle && rq->nr_running)
5969fe06
NP
3147 *sd_idle = 0;
3148
1da177e4 3149 /* Bias balancing toward cpus of our domain */
783609c6
SS
3150 if (local_group) {
3151 if (idle_cpu(i) && !first_idle_cpu) {
3152 first_idle_cpu = 1;
3153 balance_cpu = i;
3154 }
3155
a2000572 3156 load = target_load(i, load_idx);
908a7c1b 3157 } else {
a2000572 3158 load = source_load(i, load_idx);
908a7c1b
KC
3159 if (load > max_cpu_load)
3160 max_cpu_load = load;
3161 if (min_cpu_load > load)
3162 min_cpu_load = load;
3163 }
1da177e4
LT
3164
3165 avg_load += load;
2dd73a4f 3166 sum_nr_running += rq->nr_running;
dd41f596 3167 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3168
3169 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3170 }
3171
783609c6
SS
3172 /*
3173 * First idle cpu or the first cpu(busiest) in this sched group
3174 * is eligible for doing load balancing at this and above
9439aab8
SS
3175 * domains. In the newly idle case, we will allow all the cpu's
3176 * to do the newly idle load balance.
783609c6 3177 */
9439aab8
SS
3178 if (idle != CPU_NEWLY_IDLE && local_group &&
3179 balance_cpu != this_cpu && balance) {
783609c6
SS
3180 *balance = 0;
3181 goto ret;
3182 }
3183
1da177e4 3184 total_load += avg_load;
5517d86b 3185 total_pwr += group->__cpu_power;
1da177e4
LT
3186
3187 /* Adjust by relative CPU power of the group */
5517d86b
ED
3188 avg_load = sg_div_cpu_power(group,
3189 avg_load * SCHED_LOAD_SCALE);
1da177e4 3190
408ed066
PZ
3191
3192 /*
3193 * Consider the group unbalanced when the imbalance is larger
3194 * than the average weight of two tasks.
3195 *
3196 * APZ: with cgroup the avg task weight can vary wildly and
3197 * might not be a suitable number - should we keep a
3198 * normalized nr_running number somewhere that negates
3199 * the hierarchy?
3200 */
3201 avg_load_per_task = sg_div_cpu_power(group,
3202 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3203
3204 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3205 __group_imb = 1;
3206
5517d86b 3207 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3208
1da177e4
LT
3209 if (local_group) {
3210 this_load = avg_load;
3211 this = group;
2dd73a4f
PW
3212 this_nr_running = sum_nr_running;
3213 this_load_per_task = sum_weighted_load;
3214 } else if (avg_load > max_load &&
908a7c1b 3215 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3216 max_load = avg_load;
3217 busiest = group;
2dd73a4f
PW
3218 busiest_nr_running = sum_nr_running;
3219 busiest_load_per_task = sum_weighted_load;
908a7c1b 3220 group_imb = __group_imb;
1da177e4 3221 }
5c45bf27
SS
3222
3223#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3224 /*
3225 * Busy processors will not participate in power savings
3226 * balance.
3227 */
dd41f596
IM
3228 if (idle == CPU_NOT_IDLE ||
3229 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3230 goto group_next;
5c45bf27
SS
3231
3232 /*
3233 * If the local group is idle or completely loaded
3234 * no need to do power savings balance at this domain
3235 */
3236 if (local_group && (this_nr_running >= group_capacity ||
3237 !this_nr_running))
3238 power_savings_balance = 0;
3239
dd41f596 3240 /*
5c45bf27
SS
3241 * If a group is already running at full capacity or idle,
3242 * don't include that group in power savings calculations
dd41f596
IM
3243 */
3244 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3245 || !sum_nr_running)
dd41f596 3246 goto group_next;
5c45bf27 3247
dd41f596 3248 /*
5c45bf27 3249 * Calculate the group which has the least non-idle load.
dd41f596
IM
3250 * This is the group from where we need to pick up the load
3251 * for saving power
3252 */
3253 if ((sum_nr_running < min_nr_running) ||
3254 (sum_nr_running == min_nr_running &&
d5679bd1 3255 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3256 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3257 group_min = group;
3258 min_nr_running = sum_nr_running;
5c45bf27
SS
3259 min_load_per_task = sum_weighted_load /
3260 sum_nr_running;
dd41f596 3261 }
5c45bf27 3262
dd41f596 3263 /*
5c45bf27 3264 * Calculate the group which is almost near its
dd41f596
IM
3265 * capacity but still has some space to pick up some load
3266 * from other group and save more power
3267 */
3268 if (sum_nr_running <= group_capacity - 1) {
3269 if (sum_nr_running > leader_nr_running ||
3270 (sum_nr_running == leader_nr_running &&
d5679bd1 3271 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3272 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3273 group_leader = group;
3274 leader_nr_running = sum_nr_running;
3275 }
48f24c4d 3276 }
5c45bf27
SS
3277group_next:
3278#endif
1da177e4
LT
3279 group = group->next;
3280 } while (group != sd->groups);
3281
2dd73a4f 3282 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3283 goto out_balanced;
3284
3285 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3286
3287 if (this_load >= avg_load ||
3288 100*max_load <= sd->imbalance_pct*this_load)
3289 goto out_balanced;
3290
2dd73a4f 3291 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3292 if (group_imb)
3293 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3294
1da177e4
LT
3295 /*
3296 * We're trying to get all the cpus to the average_load, so we don't
3297 * want to push ourselves above the average load, nor do we wish to
3298 * reduce the max loaded cpu below the average load, as either of these
3299 * actions would just result in more rebalancing later, and ping-pong
3300 * tasks around. Thus we look for the minimum possible imbalance.
3301 * Negative imbalances (*we* are more loaded than anyone else) will
3302 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3303 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3304 * appear as very large values with unsigned longs.
3305 */
2dd73a4f
PW
3306 if (max_load <= busiest_load_per_task)
3307 goto out_balanced;
3308
3309 /*
3310 * In the presence of smp nice balancing, certain scenarios can have
3311 * max load less than avg load(as we skip the groups at or below
3312 * its cpu_power, while calculating max_load..)
3313 */
3314 if (max_load < avg_load) {
3315 *imbalance = 0;
3316 goto small_imbalance;
3317 }
0c117f1b
SS
3318
3319 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3320 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3321
1da177e4 3322 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3323 *imbalance = min(max_pull * busiest->__cpu_power,
3324 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3325 / SCHED_LOAD_SCALE;
3326
2dd73a4f
PW
3327 /*
3328 * if *imbalance is less than the average load per runnable task
3329 * there is no gaurantee that any tasks will be moved so we'll have
3330 * a think about bumping its value to force at least one task to be
3331 * moved
3332 */
7fd0d2dd 3333 if (*imbalance < busiest_load_per_task) {
48f24c4d 3334 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3335 unsigned int imbn;
3336
3337small_imbalance:
3338 pwr_move = pwr_now = 0;
3339 imbn = 2;
3340 if (this_nr_running) {
3341 this_load_per_task /= this_nr_running;
3342 if (busiest_load_per_task > this_load_per_task)
3343 imbn = 1;
3344 } else
408ed066 3345 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3346
01c8c57d 3347 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3348 busiest_load_per_task * imbn) {
2dd73a4f 3349 *imbalance = busiest_load_per_task;
1da177e4
LT
3350 return busiest;
3351 }
3352
3353 /*
3354 * OK, we don't have enough imbalance to justify moving tasks,
3355 * however we may be able to increase total CPU power used by
3356 * moving them.
3357 */
3358
5517d86b
ED
3359 pwr_now += busiest->__cpu_power *
3360 min(busiest_load_per_task, max_load);
3361 pwr_now += this->__cpu_power *
3362 min(this_load_per_task, this_load);
1da177e4
LT
3363 pwr_now /= SCHED_LOAD_SCALE;
3364
3365 /* Amount of load we'd subtract */
5517d86b
ED
3366 tmp = sg_div_cpu_power(busiest,
3367 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3368 if (max_load > tmp)
5517d86b 3369 pwr_move += busiest->__cpu_power *
2dd73a4f 3370 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3371
3372 /* Amount of load we'd add */
5517d86b 3373 if (max_load * busiest->__cpu_power <
33859f7f 3374 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3375 tmp = sg_div_cpu_power(this,
3376 max_load * busiest->__cpu_power);
1da177e4 3377 else
5517d86b
ED
3378 tmp = sg_div_cpu_power(this,
3379 busiest_load_per_task * SCHED_LOAD_SCALE);
3380 pwr_move += this->__cpu_power *
3381 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3382 pwr_move /= SCHED_LOAD_SCALE;
3383
3384 /* Move if we gain throughput */
7fd0d2dd
SS
3385 if (pwr_move > pwr_now)
3386 *imbalance = busiest_load_per_task;
1da177e4
LT
3387 }
3388
1da177e4
LT
3389 return busiest;
3390
3391out_balanced:
5c45bf27 3392#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3393 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3394 goto ret;
1da177e4 3395
5c45bf27
SS
3396 if (this == group_leader && group_leader != group_min) {
3397 *imbalance = min_load_per_task;
7a09b1a2
VS
3398 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3399 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3400 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3401 }
5c45bf27
SS
3402 return group_min;
3403 }
5c45bf27 3404#endif
783609c6 3405ret:
1da177e4
LT
3406 *imbalance = 0;
3407 return NULL;
3408}
3409
3410/*
3411 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3412 */
70b97a7f 3413static struct rq *
d15bcfdb 3414find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3415 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3416{
70b97a7f 3417 struct rq *busiest = NULL, *rq;
2dd73a4f 3418 unsigned long max_load = 0;
1da177e4
LT
3419 int i;
3420
758b2cdc 3421 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3422 unsigned long wl;
0a2966b4 3423
96f874e2 3424 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3425 continue;
3426
48f24c4d 3427 rq = cpu_rq(i);
dd41f596 3428 wl = weighted_cpuload(i);
2dd73a4f 3429
dd41f596 3430 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3431 continue;
1da177e4 3432
dd41f596
IM
3433 if (wl > max_load) {
3434 max_load = wl;
48f24c4d 3435 busiest = rq;
1da177e4
LT
3436 }
3437 }
3438
3439 return busiest;
3440}
3441
77391d71
NP
3442/*
3443 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3444 * so long as it is large enough.
3445 */
3446#define MAX_PINNED_INTERVAL 512
3447
1da177e4
LT
3448/*
3449 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3450 * tasks if there is an imbalance.
1da177e4 3451 */
70b97a7f 3452static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3453 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3454 int *balance, struct cpumask *cpus)
1da177e4 3455{
43010659 3456 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3457 struct sched_group *group;
1da177e4 3458 unsigned long imbalance;
70b97a7f 3459 struct rq *busiest;
fe2eea3f 3460 unsigned long flags;
5969fe06 3461
96f874e2 3462 cpumask_setall(cpus);
7c16ec58 3463
89c4710e
SS
3464 /*
3465 * When power savings policy is enabled for the parent domain, idle
3466 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3467 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3468 * portraying it as CPU_NOT_IDLE.
89c4710e 3469 */
d15bcfdb 3470 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3471 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3472 sd_idle = 1;
1da177e4 3473
2d72376b 3474 schedstat_inc(sd, lb_count[idle]);
1da177e4 3475
0a2966b4 3476redo:
c8cba857 3477 update_shares(sd);
0a2966b4 3478 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3479 cpus, balance);
783609c6 3480
06066714 3481 if (*balance == 0)
783609c6 3482 goto out_balanced;
783609c6 3483
1da177e4
LT
3484 if (!group) {
3485 schedstat_inc(sd, lb_nobusyg[idle]);
3486 goto out_balanced;
3487 }
3488
7c16ec58 3489 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3490 if (!busiest) {
3491 schedstat_inc(sd, lb_nobusyq[idle]);
3492 goto out_balanced;
3493 }
3494
db935dbd 3495 BUG_ON(busiest == this_rq);
1da177e4
LT
3496
3497 schedstat_add(sd, lb_imbalance[idle], imbalance);
3498
43010659 3499 ld_moved = 0;
1da177e4
LT
3500 if (busiest->nr_running > 1) {
3501 /*
3502 * Attempt to move tasks. If find_busiest_group has found
3503 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3504 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3505 * correctly treated as an imbalance.
3506 */
fe2eea3f 3507 local_irq_save(flags);
e17224bf 3508 double_rq_lock(this_rq, busiest);
43010659 3509 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3510 imbalance, sd, idle, &all_pinned);
e17224bf 3511 double_rq_unlock(this_rq, busiest);
fe2eea3f 3512 local_irq_restore(flags);
81026794 3513
46cb4b7c
SS
3514 /*
3515 * some other cpu did the load balance for us.
3516 */
43010659 3517 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3518 resched_cpu(this_cpu);
3519
81026794 3520 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3521 if (unlikely(all_pinned)) {
96f874e2
RR
3522 cpumask_clear_cpu(cpu_of(busiest), cpus);
3523 if (!cpumask_empty(cpus))
0a2966b4 3524 goto redo;
81026794 3525 goto out_balanced;
0a2966b4 3526 }
1da177e4 3527 }
81026794 3528
43010659 3529 if (!ld_moved) {
1da177e4
LT
3530 schedstat_inc(sd, lb_failed[idle]);
3531 sd->nr_balance_failed++;
3532
3533 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3534
fe2eea3f 3535 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3536
3537 /* don't kick the migration_thread, if the curr
3538 * task on busiest cpu can't be moved to this_cpu
3539 */
96f874e2
RR
3540 if (!cpumask_test_cpu(this_cpu,
3541 &busiest->curr->cpus_allowed)) {
fe2eea3f 3542 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3543 all_pinned = 1;
3544 goto out_one_pinned;
3545 }
3546
1da177e4
LT
3547 if (!busiest->active_balance) {
3548 busiest->active_balance = 1;
3549 busiest->push_cpu = this_cpu;
81026794 3550 active_balance = 1;
1da177e4 3551 }
fe2eea3f 3552 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3553 if (active_balance)
1da177e4
LT
3554 wake_up_process(busiest->migration_thread);
3555
3556 /*
3557 * We've kicked active balancing, reset the failure
3558 * counter.
3559 */
39507451 3560 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3561 }
81026794 3562 } else
1da177e4
LT
3563 sd->nr_balance_failed = 0;
3564
81026794 3565 if (likely(!active_balance)) {
1da177e4
LT
3566 /* We were unbalanced, so reset the balancing interval */
3567 sd->balance_interval = sd->min_interval;
81026794
NP
3568 } else {
3569 /*
3570 * If we've begun active balancing, start to back off. This
3571 * case may not be covered by the all_pinned logic if there
3572 * is only 1 task on the busy runqueue (because we don't call
3573 * move_tasks).
3574 */
3575 if (sd->balance_interval < sd->max_interval)
3576 sd->balance_interval *= 2;
1da177e4
LT
3577 }
3578
43010659 3579 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3580 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3581 ld_moved = -1;
3582
3583 goto out;
1da177e4
LT
3584
3585out_balanced:
1da177e4
LT
3586 schedstat_inc(sd, lb_balanced[idle]);
3587
16cfb1c0 3588 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3589
3590out_one_pinned:
1da177e4 3591 /* tune up the balancing interval */
77391d71
NP
3592 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3593 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3594 sd->balance_interval *= 2;
3595
48f24c4d 3596 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3597 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3598 ld_moved = -1;
3599 else
3600 ld_moved = 0;
3601out:
c8cba857
PZ
3602 if (ld_moved)
3603 update_shares(sd);
c09595f6 3604 return ld_moved;
1da177e4
LT
3605}
3606
3607/*
3608 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3609 * tasks if there is an imbalance.
3610 *
d15bcfdb 3611 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3612 * this_rq is locked.
3613 */
48f24c4d 3614static int
7c16ec58 3615load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3616 struct cpumask *cpus)
1da177e4
LT
3617{
3618 struct sched_group *group;
70b97a7f 3619 struct rq *busiest = NULL;
1da177e4 3620 unsigned long imbalance;
43010659 3621 int ld_moved = 0;
5969fe06 3622 int sd_idle = 0;
969bb4e4 3623 int all_pinned = 0;
7c16ec58 3624
96f874e2 3625 cpumask_setall(cpus);
5969fe06 3626
89c4710e
SS
3627 /*
3628 * When power savings policy is enabled for the parent domain, idle
3629 * sibling can pick up load irrespective of busy siblings. In this case,
3630 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3631 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3632 */
3633 if (sd->flags & SD_SHARE_CPUPOWER &&
3634 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3635 sd_idle = 1;
1da177e4 3636
2d72376b 3637 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3638redo:
3e5459b4 3639 update_shares_locked(this_rq, sd);
d15bcfdb 3640 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3641 &sd_idle, cpus, NULL);
1da177e4 3642 if (!group) {
d15bcfdb 3643 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3644 goto out_balanced;
1da177e4
LT
3645 }
3646
7c16ec58 3647 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3648 if (!busiest) {
d15bcfdb 3649 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3650 goto out_balanced;
1da177e4
LT
3651 }
3652
db935dbd
NP
3653 BUG_ON(busiest == this_rq);
3654
d15bcfdb 3655 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3656
43010659 3657 ld_moved = 0;
d6d5cfaf
NP
3658 if (busiest->nr_running > 1) {
3659 /* Attempt to move tasks */
3660 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3661 /* this_rq->clock is already updated */
3662 update_rq_clock(busiest);
43010659 3663 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3664 imbalance, sd, CPU_NEWLY_IDLE,
3665 &all_pinned);
1b12bbc7 3666 double_unlock_balance(this_rq, busiest);
0a2966b4 3667
969bb4e4 3668 if (unlikely(all_pinned)) {
96f874e2
RR
3669 cpumask_clear_cpu(cpu_of(busiest), cpus);
3670 if (!cpumask_empty(cpus))
0a2966b4
CL
3671 goto redo;
3672 }
d6d5cfaf
NP
3673 }
3674
43010659 3675 if (!ld_moved) {
36dffab6 3676 int active_balance = 0;
ad273b32 3677
d15bcfdb 3678 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3679 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3680 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3681 return -1;
ad273b32
VS
3682
3683 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3684 return -1;
3685
3686 if (sd->nr_balance_failed++ < 2)
3687 return -1;
3688
3689 /*
3690 * The only task running in a non-idle cpu can be moved to this
3691 * cpu in an attempt to completely freeup the other CPU
3692 * package. The same method used to move task in load_balance()
3693 * have been extended for load_balance_newidle() to speedup
3694 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3695 *
3696 * The package power saving logic comes from
3697 * find_busiest_group(). If there are no imbalance, then
3698 * f_b_g() will return NULL. However when sched_mc={1,2} then
3699 * f_b_g() will select a group from which a running task may be
3700 * pulled to this cpu in order to make the other package idle.
3701 * If there is no opportunity to make a package idle and if
3702 * there are no imbalance, then f_b_g() will return NULL and no
3703 * action will be taken in load_balance_newidle().
3704 *
3705 * Under normal task pull operation due to imbalance, there
3706 * will be more than one task in the source run queue and
3707 * move_tasks() will succeed. ld_moved will be true and this
3708 * active balance code will not be triggered.
3709 */
3710
3711 /* Lock busiest in correct order while this_rq is held */
3712 double_lock_balance(this_rq, busiest);
3713
3714 /*
3715 * don't kick the migration_thread, if the curr
3716 * task on busiest cpu can't be moved to this_cpu
3717 */
3718 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3719 double_unlock_balance(this_rq, busiest);
3720 all_pinned = 1;
3721 return ld_moved;
3722 }
3723
3724 if (!busiest->active_balance) {
3725 busiest->active_balance = 1;
3726 busiest->push_cpu = this_cpu;
3727 active_balance = 1;
3728 }
3729
3730 double_unlock_balance(this_rq, busiest);
3731 if (active_balance)
3732 wake_up_process(busiest->migration_thread);
3733
5969fe06 3734 } else
16cfb1c0 3735 sd->nr_balance_failed = 0;
1da177e4 3736
3e5459b4 3737 update_shares_locked(this_rq, sd);
43010659 3738 return ld_moved;
16cfb1c0
NP
3739
3740out_balanced:
d15bcfdb 3741 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3742 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3743 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3744 return -1;
16cfb1c0 3745 sd->nr_balance_failed = 0;
48f24c4d 3746
16cfb1c0 3747 return 0;
1da177e4
LT
3748}
3749
3750/*
3751 * idle_balance is called by schedule() if this_cpu is about to become
3752 * idle. Attempts to pull tasks from other CPUs.
3753 */
70b97a7f 3754static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3755{
3756 struct sched_domain *sd;
efbe027e 3757 int pulled_task = 0;
dd41f596 3758 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3759 cpumask_var_t tmpmask;
3760
3761 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3762 return;
1da177e4
LT
3763
3764 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3765 unsigned long interval;
3766
3767 if (!(sd->flags & SD_LOAD_BALANCE))
3768 continue;
3769
3770 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3771 /* If we've pulled tasks over stop searching: */
7c16ec58 3772 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3773 sd, tmpmask);
92c4ca5c
CL
3774
3775 interval = msecs_to_jiffies(sd->balance_interval);
3776 if (time_after(next_balance, sd->last_balance + interval))
3777 next_balance = sd->last_balance + interval;
3778 if (pulled_task)
3779 break;
1da177e4 3780 }
dd41f596 3781 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3782 /*
3783 * We are going idle. next_balance may be set based on
3784 * a busy processor. So reset next_balance.
3785 */
3786 this_rq->next_balance = next_balance;
dd41f596 3787 }
4d2732c6 3788 free_cpumask_var(tmpmask);
1da177e4
LT
3789}
3790
3791/*
3792 * active_load_balance is run by migration threads. It pushes running tasks
3793 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3794 * running on each physical CPU where possible, and avoids physical /
3795 * logical imbalances.
3796 *
3797 * Called with busiest_rq locked.
3798 */
70b97a7f 3799static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3800{
39507451 3801 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3802 struct sched_domain *sd;
3803 struct rq *target_rq;
39507451 3804
48f24c4d 3805 /* Is there any task to move? */
39507451 3806 if (busiest_rq->nr_running <= 1)
39507451
NP
3807 return;
3808
3809 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3810
3811 /*
39507451 3812 * This condition is "impossible", if it occurs
41a2d6cf 3813 * we need to fix it. Originally reported by
39507451 3814 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3815 */
39507451 3816 BUG_ON(busiest_rq == target_rq);
1da177e4 3817
39507451
NP
3818 /* move a task from busiest_rq to target_rq */
3819 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3820 update_rq_clock(busiest_rq);
3821 update_rq_clock(target_rq);
39507451
NP
3822
3823 /* Search for an sd spanning us and the target CPU. */
c96d145e 3824 for_each_domain(target_cpu, sd) {
39507451 3825 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3826 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3827 break;
c96d145e 3828 }
39507451 3829
48f24c4d 3830 if (likely(sd)) {
2d72376b 3831 schedstat_inc(sd, alb_count);
39507451 3832
43010659
PW
3833 if (move_one_task(target_rq, target_cpu, busiest_rq,
3834 sd, CPU_IDLE))
48f24c4d
IM
3835 schedstat_inc(sd, alb_pushed);
3836 else
3837 schedstat_inc(sd, alb_failed);
3838 }
1b12bbc7 3839 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3840}
3841
46cb4b7c
SS
3842#ifdef CONFIG_NO_HZ
3843static struct {
3844 atomic_t load_balancer;
7d1e6a9b 3845 cpumask_var_t cpu_mask;
46cb4b7c
SS
3846} nohz ____cacheline_aligned = {
3847 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3848};
3849
7835b98b 3850/*
46cb4b7c
SS
3851 * This routine will try to nominate the ilb (idle load balancing)
3852 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3853 * load balancing on behalf of all those cpus. If all the cpus in the system
3854 * go into this tickless mode, then there will be no ilb owner (as there is
3855 * no need for one) and all the cpus will sleep till the next wakeup event
3856 * arrives...
3857 *
3858 * For the ilb owner, tick is not stopped. And this tick will be used
3859 * for idle load balancing. ilb owner will still be part of
3860 * nohz.cpu_mask..
7835b98b 3861 *
46cb4b7c
SS
3862 * While stopping the tick, this cpu will become the ilb owner if there
3863 * is no other owner. And will be the owner till that cpu becomes busy
3864 * or if all cpus in the system stop their ticks at which point
3865 * there is no need for ilb owner.
3866 *
3867 * When the ilb owner becomes busy, it nominates another owner, during the
3868 * next busy scheduler_tick()
3869 */
3870int select_nohz_load_balancer(int stop_tick)
3871{
3872 int cpu = smp_processor_id();
3873
3874 if (stop_tick) {
7d1e6a9b 3875 cpumask_set_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3876 cpu_rq(cpu)->in_nohz_recently = 1;
3877
3878 /*
3879 * If we are going offline and still the leader, give up!
3880 */
e761b772 3881 if (!cpu_active(cpu) &&
46cb4b7c
SS
3882 atomic_read(&nohz.load_balancer) == cpu) {
3883 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3884 BUG();
3885 return 0;
3886 }
3887
3888 /* time for ilb owner also to sleep */
7d1e6a9b 3889 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
3890 if (atomic_read(&nohz.load_balancer) == cpu)
3891 atomic_set(&nohz.load_balancer, -1);
3892 return 0;
3893 }
3894
3895 if (atomic_read(&nohz.load_balancer) == -1) {
3896 /* make me the ilb owner */
3897 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3898 return 1;
3899 } else if (atomic_read(&nohz.load_balancer) == cpu)
3900 return 1;
3901 } else {
7d1e6a9b 3902 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
3903 return 0;
3904
7d1e6a9b 3905 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3906
3907 if (atomic_read(&nohz.load_balancer) == cpu)
3908 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3909 BUG();
3910 }
3911 return 0;
3912}
3913#endif
3914
3915static DEFINE_SPINLOCK(balancing);
3916
3917/*
7835b98b
CL
3918 * It checks each scheduling domain to see if it is due to be balanced,
3919 * and initiates a balancing operation if so.
3920 *
3921 * Balancing parameters are set up in arch_init_sched_domains.
3922 */
a9957449 3923static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3924{
46cb4b7c
SS
3925 int balance = 1;
3926 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3927 unsigned long interval;
3928 struct sched_domain *sd;
46cb4b7c 3929 /* Earliest time when we have to do rebalance again */
c9819f45 3930 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3931 int update_next_balance = 0;
d07355f5 3932 int need_serialize;
a0e90245
RR
3933 cpumask_var_t tmp;
3934
3935 /* Fails alloc? Rebalancing probably not a priority right now. */
3936 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3937 return;
1da177e4 3938
46cb4b7c 3939 for_each_domain(cpu, sd) {
1da177e4
LT
3940 if (!(sd->flags & SD_LOAD_BALANCE))
3941 continue;
3942
3943 interval = sd->balance_interval;
d15bcfdb 3944 if (idle != CPU_IDLE)
1da177e4
LT
3945 interval *= sd->busy_factor;
3946
3947 /* scale ms to jiffies */
3948 interval = msecs_to_jiffies(interval);
3949 if (unlikely(!interval))
3950 interval = 1;
dd41f596
IM
3951 if (interval > HZ*NR_CPUS/10)
3952 interval = HZ*NR_CPUS/10;
3953
d07355f5 3954 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3955
d07355f5 3956 if (need_serialize) {
08c183f3
CL
3957 if (!spin_trylock(&balancing))
3958 goto out;
3959 }
3960
c9819f45 3961 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 3962 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
3963 /*
3964 * We've pulled tasks over so either we're no
5969fe06
NP
3965 * longer idle, or one of our SMT siblings is
3966 * not idle.
3967 */
d15bcfdb 3968 idle = CPU_NOT_IDLE;
1da177e4 3969 }
1bd77f2d 3970 sd->last_balance = jiffies;
1da177e4 3971 }
d07355f5 3972 if (need_serialize)
08c183f3
CL
3973 spin_unlock(&balancing);
3974out:
f549da84 3975 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3976 next_balance = sd->last_balance + interval;
f549da84
SS
3977 update_next_balance = 1;
3978 }
783609c6
SS
3979
3980 /*
3981 * Stop the load balance at this level. There is another
3982 * CPU in our sched group which is doing load balancing more
3983 * actively.
3984 */
3985 if (!balance)
3986 break;
1da177e4 3987 }
f549da84
SS
3988
3989 /*
3990 * next_balance will be updated only when there is a need.
3991 * When the cpu is attached to null domain for ex, it will not be
3992 * updated.
3993 */
3994 if (likely(update_next_balance))
3995 rq->next_balance = next_balance;
a0e90245
RR
3996
3997 free_cpumask_var(tmp);
46cb4b7c
SS
3998}
3999
4000/*
4001 * run_rebalance_domains is triggered when needed from the scheduler tick.
4002 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4003 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4004 */
4005static void run_rebalance_domains(struct softirq_action *h)
4006{
dd41f596
IM
4007 int this_cpu = smp_processor_id();
4008 struct rq *this_rq = cpu_rq(this_cpu);
4009 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4010 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4011
dd41f596 4012 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4013
4014#ifdef CONFIG_NO_HZ
4015 /*
4016 * If this cpu is the owner for idle load balancing, then do the
4017 * balancing on behalf of the other idle cpus whose ticks are
4018 * stopped.
4019 */
dd41f596
IM
4020 if (this_rq->idle_at_tick &&
4021 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4022 struct rq *rq;
4023 int balance_cpu;
4024
7d1e6a9b
RR
4025 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4026 if (balance_cpu == this_cpu)
4027 continue;
4028
46cb4b7c
SS
4029 /*
4030 * If this cpu gets work to do, stop the load balancing
4031 * work being done for other cpus. Next load
4032 * balancing owner will pick it up.
4033 */
4034 if (need_resched())
4035 break;
4036
de0cf899 4037 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4038
4039 rq = cpu_rq(balance_cpu);
dd41f596
IM
4040 if (time_after(this_rq->next_balance, rq->next_balance))
4041 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4042 }
4043 }
4044#endif
4045}
4046
4047/*
4048 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4049 *
4050 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4051 * idle load balancing owner or decide to stop the periodic load balancing,
4052 * if the whole system is idle.
4053 */
dd41f596 4054static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4055{
46cb4b7c
SS
4056#ifdef CONFIG_NO_HZ
4057 /*
4058 * If we were in the nohz mode recently and busy at the current
4059 * scheduler tick, then check if we need to nominate new idle
4060 * load balancer.
4061 */
4062 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4063 rq->in_nohz_recently = 0;
4064
4065 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4066 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4067 atomic_set(&nohz.load_balancer, -1);
4068 }
4069
4070 if (atomic_read(&nohz.load_balancer) == -1) {
4071 /*
4072 * simple selection for now: Nominate the
4073 * first cpu in the nohz list to be the next
4074 * ilb owner.
4075 *
4076 * TBD: Traverse the sched domains and nominate
4077 * the nearest cpu in the nohz.cpu_mask.
4078 */
7d1e6a9b 4079 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4080
434d53b0 4081 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4082 resched_cpu(ilb);
4083 }
4084 }
4085
4086 /*
4087 * If this cpu is idle and doing idle load balancing for all the
4088 * cpus with ticks stopped, is it time for that to stop?
4089 */
4090 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4091 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4092 resched_cpu(cpu);
4093 return;
4094 }
4095
4096 /*
4097 * If this cpu is idle and the idle load balancing is done by
4098 * someone else, then no need raise the SCHED_SOFTIRQ
4099 */
4100 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4101 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4102 return;
4103#endif
4104 if (time_after_eq(jiffies, rq->next_balance))
4105 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4106}
dd41f596
IM
4107
4108#else /* CONFIG_SMP */
4109
1da177e4
LT
4110/*
4111 * on UP we do not need to balance between CPUs:
4112 */
70b97a7f 4113static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4114{
4115}
dd41f596 4116
1da177e4
LT
4117#endif
4118
1da177e4
LT
4119DEFINE_PER_CPU(struct kernel_stat, kstat);
4120
4121EXPORT_PER_CPU_SYMBOL(kstat);
4122
4123/*
f06febc9
FM
4124 * Return any ns on the sched_clock that have not yet been banked in
4125 * @p in case that task is currently running.
1da177e4 4126 */
bb34d92f 4127unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4128{
1da177e4 4129 unsigned long flags;
41b86e9c 4130 struct rq *rq;
bb34d92f 4131 u64 ns = 0;
48f24c4d 4132
41b86e9c 4133 rq = task_rq_lock(p, &flags);
1508487e 4134
051a1d1a 4135 if (task_current(rq, p)) {
f06febc9
FM
4136 u64 delta_exec;
4137
a8e504d2
IM
4138 update_rq_clock(rq);
4139 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4140 if ((s64)delta_exec > 0)
bb34d92f 4141 ns = delta_exec;
41b86e9c 4142 }
48f24c4d 4143
41b86e9c 4144 task_rq_unlock(rq, &flags);
48f24c4d 4145
1da177e4
LT
4146 return ns;
4147}
4148
1da177e4
LT
4149/*
4150 * Account user cpu time to a process.
4151 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4152 * @cputime: the cpu time spent in user space since the last update
4153 */
4154void account_user_time(struct task_struct *p, cputime_t cputime)
4155{
4156 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4157 cputime64_t tmp;
4158
4159 p->utime = cputime_add(p->utime, cputime);
f06febc9 4160 account_group_user_time(p, cputime);
1da177e4
LT
4161
4162 /* Add user time to cpustat. */
4163 tmp = cputime_to_cputime64(cputime);
4164 if (TASK_NICE(p) > 0)
4165 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4166 else
4167 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4168 /* Account for user time used */
4169 acct_update_integrals(p);
1da177e4
LT
4170}
4171
94886b84
LV
4172/*
4173 * Account guest cpu time to a process.
4174 * @p: the process that the cpu time gets accounted to
4175 * @cputime: the cpu time spent in virtual machine since the last update
4176 */
f7402e03 4177static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4178{
4179 cputime64_t tmp;
4180 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4181
4182 tmp = cputime_to_cputime64(cputime);
4183
4184 p->utime = cputime_add(p->utime, cputime);
f06febc9 4185 account_group_user_time(p, cputime);
94886b84
LV
4186 p->gtime = cputime_add(p->gtime, cputime);
4187
4188 cpustat->user = cputime64_add(cpustat->user, tmp);
4189 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4190}
4191
c66f08be
MN
4192/*
4193 * Account scaled user cpu time to a process.
4194 * @p: the process that the cpu time gets accounted to
4195 * @cputime: the cpu time spent in user space since the last update
4196 */
4197void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4198{
4199 p->utimescaled = cputime_add(p->utimescaled, cputime);
4200}
4201
1da177e4
LT
4202/*
4203 * Account system cpu time to a process.
4204 * @p: the process that the cpu time gets accounted to
4205 * @hardirq_offset: the offset to subtract from hardirq_count()
4206 * @cputime: the cpu time spent in kernel space since the last update
4207 */
4208void account_system_time(struct task_struct *p, int hardirq_offset,
4209 cputime_t cputime)
4210{
4211 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4212 struct rq *rq = this_rq();
1da177e4
LT
4213 cputime64_t tmp;
4214
983ed7a6
HH
4215 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4216 account_guest_time(p, cputime);
4217 return;
4218 }
94886b84 4219
1da177e4 4220 p->stime = cputime_add(p->stime, cputime);
f06febc9 4221 account_group_system_time(p, cputime);
1da177e4
LT
4222
4223 /* Add system time to cpustat. */
4224 tmp = cputime_to_cputime64(cputime);
4225 if (hardirq_count() - hardirq_offset)
4226 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4227 else if (softirq_count())
4228 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4229 else if (p != rq->idle)
1da177e4 4230 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4231 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4232 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4233 else
4234 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4235 /* Account for system time used */
4236 acct_update_integrals(p);
1da177e4
LT
4237}
4238
c66f08be
MN
4239/*
4240 * Account scaled system cpu time to a process.
4241 * @p: the process that the cpu time gets accounted to
4242 * @hardirq_offset: the offset to subtract from hardirq_count()
4243 * @cputime: the cpu time spent in kernel space since the last update
4244 */
4245void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4246{
4247 p->stimescaled = cputime_add(p->stimescaled, cputime);
4248}
4249
1da177e4
LT
4250/*
4251 * Account for involuntary wait time.
4252 * @p: the process from which the cpu time has been stolen
4253 * @steal: the cpu time spent in involuntary wait
4254 */
4255void account_steal_time(struct task_struct *p, cputime_t steal)
4256{
4257 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4258 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4259 struct rq *rq = this_rq();
1da177e4
LT
4260
4261 if (p == rq->idle) {
4262 p->stime = cputime_add(p->stime, steal);
4263 if (atomic_read(&rq->nr_iowait) > 0)
4264 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4265 else
4266 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4267 } else
1da177e4
LT
4268 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4269}
4270
49048622
BS
4271/*
4272 * Use precise platform statistics if available:
4273 */
4274#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4275cputime_t task_utime(struct task_struct *p)
4276{
4277 return p->utime;
4278}
4279
4280cputime_t task_stime(struct task_struct *p)
4281{
4282 return p->stime;
4283}
4284#else
4285cputime_t task_utime(struct task_struct *p)
4286{
4287 clock_t utime = cputime_to_clock_t(p->utime),
4288 total = utime + cputime_to_clock_t(p->stime);
4289 u64 temp;
4290
4291 /*
4292 * Use CFS's precise accounting:
4293 */
4294 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4295
4296 if (total) {
4297 temp *= utime;
4298 do_div(temp, total);
4299 }
4300 utime = (clock_t)temp;
4301
4302 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4303 return p->prev_utime;
4304}
4305
4306cputime_t task_stime(struct task_struct *p)
4307{
4308 clock_t stime;
4309
4310 /*
4311 * Use CFS's precise accounting. (we subtract utime from
4312 * the total, to make sure the total observed by userspace
4313 * grows monotonically - apps rely on that):
4314 */
4315 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4316 cputime_to_clock_t(task_utime(p));
4317
4318 if (stime >= 0)
4319 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4320
4321 return p->prev_stime;
4322}
4323#endif
4324
4325inline cputime_t task_gtime(struct task_struct *p)
4326{
4327 return p->gtime;
4328}
4329
7835b98b
CL
4330/*
4331 * This function gets called by the timer code, with HZ frequency.
4332 * We call it with interrupts disabled.
4333 *
4334 * It also gets called by the fork code, when changing the parent's
4335 * timeslices.
4336 */
4337void scheduler_tick(void)
4338{
7835b98b
CL
4339 int cpu = smp_processor_id();
4340 struct rq *rq = cpu_rq(cpu);
dd41f596 4341 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4342
4343 sched_clock_tick();
dd41f596
IM
4344
4345 spin_lock(&rq->lock);
3e51f33f 4346 update_rq_clock(rq);
f1a438d8 4347 update_cpu_load(rq);
fa85ae24 4348 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4349 spin_unlock(&rq->lock);
7835b98b 4350
e418e1c2 4351#ifdef CONFIG_SMP
dd41f596
IM
4352 rq->idle_at_tick = idle_cpu(cpu);
4353 trigger_load_balance(rq, cpu);
e418e1c2 4354#endif
1da177e4
LT
4355}
4356
6cd8a4bb
SR
4357#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4358 defined(CONFIG_PREEMPT_TRACER))
4359
4360static inline unsigned long get_parent_ip(unsigned long addr)
4361{
4362 if (in_lock_functions(addr)) {
4363 addr = CALLER_ADDR2;
4364 if (in_lock_functions(addr))
4365 addr = CALLER_ADDR3;
4366 }
4367 return addr;
4368}
1da177e4 4369
43627582 4370void __kprobes add_preempt_count(int val)
1da177e4 4371{
6cd8a4bb 4372#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4373 /*
4374 * Underflow?
4375 */
9a11b49a
IM
4376 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4377 return;
6cd8a4bb 4378#endif
1da177e4 4379 preempt_count() += val;
6cd8a4bb 4380#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4381 /*
4382 * Spinlock count overflowing soon?
4383 */
33859f7f
MOS
4384 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4385 PREEMPT_MASK - 10);
6cd8a4bb
SR
4386#endif
4387 if (preempt_count() == val)
4388 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4389}
4390EXPORT_SYMBOL(add_preempt_count);
4391
43627582 4392void __kprobes sub_preempt_count(int val)
1da177e4 4393{
6cd8a4bb 4394#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4395 /*
4396 * Underflow?
4397 */
7317d7b8 4398 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
9a11b49a 4399 return;
1da177e4
LT
4400 /*
4401 * Is the spinlock portion underflowing?
4402 */
9a11b49a
IM
4403 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4404 !(preempt_count() & PREEMPT_MASK)))
4405 return;
6cd8a4bb 4406#endif
9a11b49a 4407
6cd8a4bb
SR
4408 if (preempt_count() == val)
4409 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4410 preempt_count() -= val;
4411}
4412EXPORT_SYMBOL(sub_preempt_count);
4413
4414#endif
4415
4416/*
dd41f596 4417 * Print scheduling while atomic bug:
1da177e4 4418 */
dd41f596 4419static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4420{
838225b4
SS
4421 struct pt_regs *regs = get_irq_regs();
4422
4423 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4424 prev->comm, prev->pid, preempt_count());
4425
dd41f596 4426 debug_show_held_locks(prev);
e21f5b15 4427 print_modules();
dd41f596
IM
4428 if (irqs_disabled())
4429 print_irqtrace_events(prev);
838225b4
SS
4430
4431 if (regs)
4432 show_regs(regs);
4433 else
4434 dump_stack();
dd41f596 4435}
1da177e4 4436
dd41f596
IM
4437/*
4438 * Various schedule()-time debugging checks and statistics:
4439 */
4440static inline void schedule_debug(struct task_struct *prev)
4441{
1da177e4 4442 /*
41a2d6cf 4443 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4444 * schedule() atomically, we ignore that path for now.
4445 * Otherwise, whine if we are scheduling when we should not be.
4446 */
3f33a7ce 4447 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4448 __schedule_bug(prev);
4449
1da177e4
LT
4450 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4451
2d72376b 4452 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4453#ifdef CONFIG_SCHEDSTATS
4454 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4455 schedstat_inc(this_rq(), bkl_count);
4456 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4457 }
4458#endif
dd41f596
IM
4459}
4460
4461/*
4462 * Pick up the highest-prio task:
4463 */
4464static inline struct task_struct *
ff95f3df 4465pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4466{
5522d5d5 4467 const struct sched_class *class;
dd41f596 4468 struct task_struct *p;
1da177e4
LT
4469
4470 /*
dd41f596
IM
4471 * Optimization: we know that if all tasks are in
4472 * the fair class we can call that function directly:
1da177e4 4473 */
dd41f596 4474 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4475 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4476 if (likely(p))
4477 return p;
1da177e4
LT
4478 }
4479
dd41f596
IM
4480 class = sched_class_highest;
4481 for ( ; ; ) {
fb8d4724 4482 p = class->pick_next_task(rq);
dd41f596
IM
4483 if (p)
4484 return p;
4485 /*
4486 * Will never be NULL as the idle class always
4487 * returns a non-NULL p:
4488 */
4489 class = class->next;
4490 }
4491}
1da177e4 4492
dd41f596
IM
4493/*
4494 * schedule() is the main scheduler function.
4495 */
4496asmlinkage void __sched schedule(void)
4497{
4498 struct task_struct *prev, *next;
67ca7bde 4499 unsigned long *switch_count;
dd41f596 4500 struct rq *rq;
31656519 4501 int cpu;
dd41f596
IM
4502
4503need_resched:
4504 preempt_disable();
4505 cpu = smp_processor_id();
4506 rq = cpu_rq(cpu);
4507 rcu_qsctr_inc(cpu);
4508 prev = rq->curr;
4509 switch_count = &prev->nivcsw;
4510
4511 release_kernel_lock(prev);
4512need_resched_nonpreemptible:
4513
4514 schedule_debug(prev);
1da177e4 4515
31656519 4516 if (sched_feat(HRTICK))
f333fdc9 4517 hrtick_clear(rq);
8f4d37ec 4518
8cd162ce 4519 spin_lock_irq(&rq->lock);
3e51f33f 4520 update_rq_clock(rq);
1e819950 4521 clear_tsk_need_resched(prev);
1da177e4 4522
1da177e4 4523 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4524 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4525 prev->state = TASK_RUNNING;
16882c1e 4526 else
2e1cb74a 4527 deactivate_task(rq, prev, 1);
dd41f596 4528 switch_count = &prev->nvcsw;
1da177e4
LT
4529 }
4530
9a897c5a
SR
4531#ifdef CONFIG_SMP
4532 if (prev->sched_class->pre_schedule)
4533 prev->sched_class->pre_schedule(rq, prev);
4534#endif
f65eda4f 4535
dd41f596 4536 if (unlikely(!rq->nr_running))
1da177e4 4537 idle_balance(cpu, rq);
1da177e4 4538
31ee529c 4539 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4540 next = pick_next_task(rq, prev);
1da177e4 4541
1da177e4 4542 if (likely(prev != next)) {
673a90a1
DS
4543 sched_info_switch(prev, next);
4544
1da177e4
LT
4545 rq->nr_switches++;
4546 rq->curr = next;
4547 ++*switch_count;
4548
dd41f596 4549 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4550 /*
4551 * the context switch might have flipped the stack from under
4552 * us, hence refresh the local variables.
4553 */
4554 cpu = smp_processor_id();
4555 rq = cpu_rq(cpu);
1da177e4
LT
4556 } else
4557 spin_unlock_irq(&rq->lock);
4558
8f4d37ec 4559 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4560 goto need_resched_nonpreemptible;
8f4d37ec 4561
1da177e4
LT
4562 preempt_enable_no_resched();
4563 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4564 goto need_resched;
4565}
1da177e4
LT
4566EXPORT_SYMBOL(schedule);
4567
4568#ifdef CONFIG_PREEMPT
4569/*
2ed6e34f 4570 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4571 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4572 * occur there and call schedule directly.
4573 */
4574asmlinkage void __sched preempt_schedule(void)
4575{
4576 struct thread_info *ti = current_thread_info();
6478d880 4577
1da177e4
LT
4578 /*
4579 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4580 * we do not want to preempt the current task. Just return..
1da177e4 4581 */
beed33a8 4582 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4583 return;
4584
3a5c359a
AK
4585 do {
4586 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4587 schedule();
3a5c359a 4588 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4589
3a5c359a
AK
4590 /*
4591 * Check again in case we missed a preemption opportunity
4592 * between schedule and now.
4593 */
4594 barrier();
4595 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4596}
1da177e4
LT
4597EXPORT_SYMBOL(preempt_schedule);
4598
4599/*
2ed6e34f 4600 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4601 * off of irq context.
4602 * Note, that this is called and return with irqs disabled. This will
4603 * protect us against recursive calling from irq.
4604 */
4605asmlinkage void __sched preempt_schedule_irq(void)
4606{
4607 struct thread_info *ti = current_thread_info();
6478d880 4608
2ed6e34f 4609 /* Catch callers which need to be fixed */
1da177e4
LT
4610 BUG_ON(ti->preempt_count || !irqs_disabled());
4611
3a5c359a
AK
4612 do {
4613 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4614 local_irq_enable();
4615 schedule();
4616 local_irq_disable();
3a5c359a 4617 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4618
3a5c359a
AK
4619 /*
4620 * Check again in case we missed a preemption opportunity
4621 * between schedule and now.
4622 */
4623 barrier();
4624 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4625}
4626
4627#endif /* CONFIG_PREEMPT */
4628
95cdf3b7
IM
4629int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4630 void *key)
1da177e4 4631{
48f24c4d 4632 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4633}
1da177e4
LT
4634EXPORT_SYMBOL(default_wake_function);
4635
4636/*
41a2d6cf
IM
4637 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4638 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4639 * number) then we wake all the non-exclusive tasks and one exclusive task.
4640 *
4641 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4642 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4643 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4644 */
4645static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4646 int nr_exclusive, int sync, void *key)
4647{
2e45874c 4648 wait_queue_t *curr, *next;
1da177e4 4649
2e45874c 4650 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4651 unsigned flags = curr->flags;
4652
1da177e4 4653 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4654 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4655 break;
4656 }
4657}
4658
4659/**
4660 * __wake_up - wake up threads blocked on a waitqueue.
4661 * @q: the waitqueue
4662 * @mode: which threads
4663 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4664 * @key: is directly passed to the wakeup function
1da177e4 4665 */
7ad5b3a5 4666void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4667 int nr_exclusive, void *key)
1da177e4
LT
4668{
4669 unsigned long flags;
4670
4671 spin_lock_irqsave(&q->lock, flags);
4672 __wake_up_common(q, mode, nr_exclusive, 0, key);
4673 spin_unlock_irqrestore(&q->lock, flags);
4674}
1da177e4
LT
4675EXPORT_SYMBOL(__wake_up);
4676
4677/*
4678 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4679 */
7ad5b3a5 4680void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4681{
4682 __wake_up_common(q, mode, 1, 0, NULL);
4683}
4684
4685/**
67be2dd1 4686 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4687 * @q: the waitqueue
4688 * @mode: which threads
4689 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4690 *
4691 * The sync wakeup differs that the waker knows that it will schedule
4692 * away soon, so while the target thread will be woken up, it will not
4693 * be migrated to another CPU - ie. the two threads are 'synchronized'
4694 * with each other. This can prevent needless bouncing between CPUs.
4695 *
4696 * On UP it can prevent extra preemption.
4697 */
7ad5b3a5 4698void
95cdf3b7 4699__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4700{
4701 unsigned long flags;
4702 int sync = 1;
4703
4704 if (unlikely(!q))
4705 return;
4706
4707 if (unlikely(!nr_exclusive))
4708 sync = 0;
4709
4710 spin_lock_irqsave(&q->lock, flags);
4711 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4712 spin_unlock_irqrestore(&q->lock, flags);
4713}
4714EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4715
65eb3dc6
KD
4716/**
4717 * complete: - signals a single thread waiting on this completion
4718 * @x: holds the state of this particular completion
4719 *
4720 * This will wake up a single thread waiting on this completion. Threads will be
4721 * awakened in the same order in which they were queued.
4722 *
4723 * See also complete_all(), wait_for_completion() and related routines.
4724 */
b15136e9 4725void complete(struct completion *x)
1da177e4
LT
4726{
4727 unsigned long flags;
4728
4729 spin_lock_irqsave(&x->wait.lock, flags);
4730 x->done++;
d9514f6c 4731 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4732 spin_unlock_irqrestore(&x->wait.lock, flags);
4733}
4734EXPORT_SYMBOL(complete);
4735
65eb3dc6
KD
4736/**
4737 * complete_all: - signals all threads waiting on this completion
4738 * @x: holds the state of this particular completion
4739 *
4740 * This will wake up all threads waiting on this particular completion event.
4741 */
b15136e9 4742void complete_all(struct completion *x)
1da177e4
LT
4743{
4744 unsigned long flags;
4745
4746 spin_lock_irqsave(&x->wait.lock, flags);
4747 x->done += UINT_MAX/2;
d9514f6c 4748 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4749 spin_unlock_irqrestore(&x->wait.lock, flags);
4750}
4751EXPORT_SYMBOL(complete_all);
4752
8cbbe86d
AK
4753static inline long __sched
4754do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4755{
1da177e4
LT
4756 if (!x->done) {
4757 DECLARE_WAITQUEUE(wait, current);
4758
4759 wait.flags |= WQ_FLAG_EXCLUSIVE;
4760 __add_wait_queue_tail(&x->wait, &wait);
4761 do {
94d3d824 4762 if (signal_pending_state(state, current)) {
ea71a546
ON
4763 timeout = -ERESTARTSYS;
4764 break;
8cbbe86d
AK
4765 }
4766 __set_current_state(state);
1da177e4
LT
4767 spin_unlock_irq(&x->wait.lock);
4768 timeout = schedule_timeout(timeout);
4769 spin_lock_irq(&x->wait.lock);
ea71a546 4770 } while (!x->done && timeout);
1da177e4 4771 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4772 if (!x->done)
4773 return timeout;
1da177e4
LT
4774 }
4775 x->done--;
ea71a546 4776 return timeout ?: 1;
1da177e4 4777}
1da177e4 4778
8cbbe86d
AK
4779static long __sched
4780wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4781{
1da177e4
LT
4782 might_sleep();
4783
4784 spin_lock_irq(&x->wait.lock);
8cbbe86d 4785 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4786 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4787 return timeout;
4788}
1da177e4 4789
65eb3dc6
KD
4790/**
4791 * wait_for_completion: - waits for completion of a task
4792 * @x: holds the state of this particular completion
4793 *
4794 * This waits to be signaled for completion of a specific task. It is NOT
4795 * interruptible and there is no timeout.
4796 *
4797 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4798 * and interrupt capability. Also see complete().
4799 */
b15136e9 4800void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4801{
4802 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4803}
8cbbe86d 4804EXPORT_SYMBOL(wait_for_completion);
1da177e4 4805
65eb3dc6
KD
4806/**
4807 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4808 * @x: holds the state of this particular completion
4809 * @timeout: timeout value in jiffies
4810 *
4811 * This waits for either a completion of a specific task to be signaled or for a
4812 * specified timeout to expire. The timeout is in jiffies. It is not
4813 * interruptible.
4814 */
b15136e9 4815unsigned long __sched
8cbbe86d 4816wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4817{
8cbbe86d 4818 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4819}
8cbbe86d 4820EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4821
65eb3dc6
KD
4822/**
4823 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4824 * @x: holds the state of this particular completion
4825 *
4826 * This waits for completion of a specific task to be signaled. It is
4827 * interruptible.
4828 */
8cbbe86d 4829int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4830{
51e97990
AK
4831 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4832 if (t == -ERESTARTSYS)
4833 return t;
4834 return 0;
0fec171c 4835}
8cbbe86d 4836EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4837
65eb3dc6
KD
4838/**
4839 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4840 * @x: holds the state of this particular completion
4841 * @timeout: timeout value in jiffies
4842 *
4843 * This waits for either a completion of a specific task to be signaled or for a
4844 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4845 */
b15136e9 4846unsigned long __sched
8cbbe86d
AK
4847wait_for_completion_interruptible_timeout(struct completion *x,
4848 unsigned long timeout)
0fec171c 4849{
8cbbe86d 4850 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4851}
8cbbe86d 4852EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4853
65eb3dc6
KD
4854/**
4855 * wait_for_completion_killable: - waits for completion of a task (killable)
4856 * @x: holds the state of this particular completion
4857 *
4858 * This waits to be signaled for completion of a specific task. It can be
4859 * interrupted by a kill signal.
4860 */
009e577e
MW
4861int __sched wait_for_completion_killable(struct completion *x)
4862{
4863 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4864 if (t == -ERESTARTSYS)
4865 return t;
4866 return 0;
4867}
4868EXPORT_SYMBOL(wait_for_completion_killable);
4869
be4de352
DC
4870/**
4871 * try_wait_for_completion - try to decrement a completion without blocking
4872 * @x: completion structure
4873 *
4874 * Returns: 0 if a decrement cannot be done without blocking
4875 * 1 if a decrement succeeded.
4876 *
4877 * If a completion is being used as a counting completion,
4878 * attempt to decrement the counter without blocking. This
4879 * enables us to avoid waiting if the resource the completion
4880 * is protecting is not available.
4881 */
4882bool try_wait_for_completion(struct completion *x)
4883{
4884 int ret = 1;
4885
4886 spin_lock_irq(&x->wait.lock);
4887 if (!x->done)
4888 ret = 0;
4889 else
4890 x->done--;
4891 spin_unlock_irq(&x->wait.lock);
4892 return ret;
4893}
4894EXPORT_SYMBOL(try_wait_for_completion);
4895
4896/**
4897 * completion_done - Test to see if a completion has any waiters
4898 * @x: completion structure
4899 *
4900 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4901 * 1 if there are no waiters.
4902 *
4903 */
4904bool completion_done(struct completion *x)
4905{
4906 int ret = 1;
4907
4908 spin_lock_irq(&x->wait.lock);
4909 if (!x->done)
4910 ret = 0;
4911 spin_unlock_irq(&x->wait.lock);
4912 return ret;
4913}
4914EXPORT_SYMBOL(completion_done);
4915
8cbbe86d
AK
4916static long __sched
4917sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4918{
0fec171c
IM
4919 unsigned long flags;
4920 wait_queue_t wait;
4921
4922 init_waitqueue_entry(&wait, current);
1da177e4 4923
8cbbe86d 4924 __set_current_state(state);
1da177e4 4925
8cbbe86d
AK
4926 spin_lock_irqsave(&q->lock, flags);
4927 __add_wait_queue(q, &wait);
4928 spin_unlock(&q->lock);
4929 timeout = schedule_timeout(timeout);
4930 spin_lock_irq(&q->lock);
4931 __remove_wait_queue(q, &wait);
4932 spin_unlock_irqrestore(&q->lock, flags);
4933
4934 return timeout;
4935}
4936
4937void __sched interruptible_sleep_on(wait_queue_head_t *q)
4938{
4939 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4940}
1da177e4
LT
4941EXPORT_SYMBOL(interruptible_sleep_on);
4942
0fec171c 4943long __sched
95cdf3b7 4944interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4945{
8cbbe86d 4946 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4947}
1da177e4
LT
4948EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4949
0fec171c 4950void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4951{
8cbbe86d 4952 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4953}
1da177e4
LT
4954EXPORT_SYMBOL(sleep_on);
4955
0fec171c 4956long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4957{
8cbbe86d 4958 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4959}
1da177e4
LT
4960EXPORT_SYMBOL(sleep_on_timeout);
4961
b29739f9
IM
4962#ifdef CONFIG_RT_MUTEXES
4963
4964/*
4965 * rt_mutex_setprio - set the current priority of a task
4966 * @p: task
4967 * @prio: prio value (kernel-internal form)
4968 *
4969 * This function changes the 'effective' priority of a task. It does
4970 * not touch ->normal_prio like __setscheduler().
4971 *
4972 * Used by the rt_mutex code to implement priority inheritance logic.
4973 */
36c8b586 4974void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4975{
4976 unsigned long flags;
83b699ed 4977 int oldprio, on_rq, running;
70b97a7f 4978 struct rq *rq;
cb469845 4979 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4980
4981 BUG_ON(prio < 0 || prio > MAX_PRIO);
4982
4983 rq = task_rq_lock(p, &flags);
a8e504d2 4984 update_rq_clock(rq);
b29739f9 4985
d5f9f942 4986 oldprio = p->prio;
dd41f596 4987 on_rq = p->se.on_rq;
051a1d1a 4988 running = task_current(rq, p);
0e1f3483 4989 if (on_rq)
69be72c1 4990 dequeue_task(rq, p, 0);
0e1f3483
HS
4991 if (running)
4992 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4993
4994 if (rt_prio(prio))
4995 p->sched_class = &rt_sched_class;
4996 else
4997 p->sched_class = &fair_sched_class;
4998
b29739f9
IM
4999 p->prio = prio;
5000
0e1f3483
HS
5001 if (running)
5002 p->sched_class->set_curr_task(rq);
dd41f596 5003 if (on_rq) {
8159f87e 5004 enqueue_task(rq, p, 0);
cb469845
SR
5005
5006 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5007 }
5008 task_rq_unlock(rq, &flags);
5009}
5010
5011#endif
5012
36c8b586 5013void set_user_nice(struct task_struct *p, long nice)
1da177e4 5014{
dd41f596 5015 int old_prio, delta, on_rq;
1da177e4 5016 unsigned long flags;
70b97a7f 5017 struct rq *rq;
1da177e4
LT
5018
5019 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5020 return;
5021 /*
5022 * We have to be careful, if called from sys_setpriority(),
5023 * the task might be in the middle of scheduling on another CPU.
5024 */
5025 rq = task_rq_lock(p, &flags);
a8e504d2 5026 update_rq_clock(rq);
1da177e4
LT
5027 /*
5028 * The RT priorities are set via sched_setscheduler(), but we still
5029 * allow the 'normal' nice value to be set - but as expected
5030 * it wont have any effect on scheduling until the task is
dd41f596 5031 * SCHED_FIFO/SCHED_RR:
1da177e4 5032 */
e05606d3 5033 if (task_has_rt_policy(p)) {
1da177e4
LT
5034 p->static_prio = NICE_TO_PRIO(nice);
5035 goto out_unlock;
5036 }
dd41f596 5037 on_rq = p->se.on_rq;
c09595f6 5038 if (on_rq)
69be72c1 5039 dequeue_task(rq, p, 0);
1da177e4 5040
1da177e4 5041 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5042 set_load_weight(p);
b29739f9
IM
5043 old_prio = p->prio;
5044 p->prio = effective_prio(p);
5045 delta = p->prio - old_prio;
1da177e4 5046
dd41f596 5047 if (on_rq) {
8159f87e 5048 enqueue_task(rq, p, 0);
1da177e4 5049 /*
d5f9f942
AM
5050 * If the task increased its priority or is running and
5051 * lowered its priority, then reschedule its CPU:
1da177e4 5052 */
d5f9f942 5053 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5054 resched_task(rq->curr);
5055 }
5056out_unlock:
5057 task_rq_unlock(rq, &flags);
5058}
1da177e4
LT
5059EXPORT_SYMBOL(set_user_nice);
5060
e43379f1
MM
5061/*
5062 * can_nice - check if a task can reduce its nice value
5063 * @p: task
5064 * @nice: nice value
5065 */
36c8b586 5066int can_nice(const struct task_struct *p, const int nice)
e43379f1 5067{
024f4747
MM
5068 /* convert nice value [19,-20] to rlimit style value [1,40] */
5069 int nice_rlim = 20 - nice;
48f24c4d 5070
e43379f1
MM
5071 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5072 capable(CAP_SYS_NICE));
5073}
5074
1da177e4
LT
5075#ifdef __ARCH_WANT_SYS_NICE
5076
5077/*
5078 * sys_nice - change the priority of the current process.
5079 * @increment: priority increment
5080 *
5081 * sys_setpriority is a more generic, but much slower function that
5082 * does similar things.
5083 */
5084asmlinkage long sys_nice(int increment)
5085{
48f24c4d 5086 long nice, retval;
1da177e4
LT
5087
5088 /*
5089 * Setpriority might change our priority at the same moment.
5090 * We don't have to worry. Conceptually one call occurs first
5091 * and we have a single winner.
5092 */
e43379f1
MM
5093 if (increment < -40)
5094 increment = -40;
1da177e4
LT
5095 if (increment > 40)
5096 increment = 40;
5097
5098 nice = PRIO_TO_NICE(current->static_prio) + increment;
5099 if (nice < -20)
5100 nice = -20;
5101 if (nice > 19)
5102 nice = 19;
5103
e43379f1
MM
5104 if (increment < 0 && !can_nice(current, nice))
5105 return -EPERM;
5106
1da177e4
LT
5107 retval = security_task_setnice(current, nice);
5108 if (retval)
5109 return retval;
5110
5111 set_user_nice(current, nice);
5112 return 0;
5113}
5114
5115#endif
5116
5117/**
5118 * task_prio - return the priority value of a given task.
5119 * @p: the task in question.
5120 *
5121 * This is the priority value as seen by users in /proc.
5122 * RT tasks are offset by -200. Normal tasks are centered
5123 * around 0, value goes from -16 to +15.
5124 */
36c8b586 5125int task_prio(const struct task_struct *p)
1da177e4
LT
5126{
5127 return p->prio - MAX_RT_PRIO;
5128}
5129
5130/**
5131 * task_nice - return the nice value of a given task.
5132 * @p: the task in question.
5133 */
36c8b586 5134int task_nice(const struct task_struct *p)
1da177e4
LT
5135{
5136 return TASK_NICE(p);
5137}
150d8bed 5138EXPORT_SYMBOL(task_nice);
1da177e4
LT
5139
5140/**
5141 * idle_cpu - is a given cpu idle currently?
5142 * @cpu: the processor in question.
5143 */
5144int idle_cpu(int cpu)
5145{
5146 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5147}
5148
1da177e4
LT
5149/**
5150 * idle_task - return the idle task for a given cpu.
5151 * @cpu: the processor in question.
5152 */
36c8b586 5153struct task_struct *idle_task(int cpu)
1da177e4
LT
5154{
5155 return cpu_rq(cpu)->idle;
5156}
5157
5158/**
5159 * find_process_by_pid - find a process with a matching PID value.
5160 * @pid: the pid in question.
5161 */
a9957449 5162static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5163{
228ebcbe 5164 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5165}
5166
5167/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5168static void
5169__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5170{
dd41f596 5171 BUG_ON(p->se.on_rq);
48f24c4d 5172
1da177e4 5173 p->policy = policy;
dd41f596
IM
5174 switch (p->policy) {
5175 case SCHED_NORMAL:
5176 case SCHED_BATCH:
5177 case SCHED_IDLE:
5178 p->sched_class = &fair_sched_class;
5179 break;
5180 case SCHED_FIFO:
5181 case SCHED_RR:
5182 p->sched_class = &rt_sched_class;
5183 break;
5184 }
5185
1da177e4 5186 p->rt_priority = prio;
b29739f9
IM
5187 p->normal_prio = normal_prio(p);
5188 /* we are holding p->pi_lock already */
5189 p->prio = rt_mutex_getprio(p);
2dd73a4f 5190 set_load_weight(p);
1da177e4
LT
5191}
5192
961ccddd
RR
5193static int __sched_setscheduler(struct task_struct *p, int policy,
5194 struct sched_param *param, bool user)
1da177e4 5195{
83b699ed 5196 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5197 unsigned long flags;
cb469845 5198 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5199 struct rq *rq;
1da177e4 5200
66e5393a
SR
5201 /* may grab non-irq protected spin_locks */
5202 BUG_ON(in_interrupt());
1da177e4
LT
5203recheck:
5204 /* double check policy once rq lock held */
5205 if (policy < 0)
5206 policy = oldpolicy = p->policy;
5207 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5208 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5209 policy != SCHED_IDLE)
b0a9499c 5210 return -EINVAL;
1da177e4
LT
5211 /*
5212 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5213 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5214 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5215 */
5216 if (param->sched_priority < 0 ||
95cdf3b7 5217 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5218 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5219 return -EINVAL;
e05606d3 5220 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5221 return -EINVAL;
5222
37e4ab3f
OC
5223 /*
5224 * Allow unprivileged RT tasks to decrease priority:
5225 */
961ccddd 5226 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5227 if (rt_policy(policy)) {
8dc3e909 5228 unsigned long rlim_rtprio;
8dc3e909
ON
5229
5230 if (!lock_task_sighand(p, &flags))
5231 return -ESRCH;
5232 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5233 unlock_task_sighand(p, &flags);
5234
5235 /* can't set/change the rt policy */
5236 if (policy != p->policy && !rlim_rtprio)
5237 return -EPERM;
5238
5239 /* can't increase priority */
5240 if (param->sched_priority > p->rt_priority &&
5241 param->sched_priority > rlim_rtprio)
5242 return -EPERM;
5243 }
dd41f596
IM
5244 /*
5245 * Like positive nice levels, dont allow tasks to
5246 * move out of SCHED_IDLE either:
5247 */
5248 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5249 return -EPERM;
5fe1d75f 5250
37e4ab3f
OC
5251 /* can't change other user's priorities */
5252 if ((current->euid != p->euid) &&
5253 (current->euid != p->uid))
5254 return -EPERM;
5255 }
1da177e4 5256
725aad24 5257 if (user) {
b68aa230 5258#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5259 /*
5260 * Do not allow realtime tasks into groups that have no runtime
5261 * assigned.
5262 */
9a7e0b18
PZ
5263 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5264 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5265 return -EPERM;
b68aa230
PZ
5266#endif
5267
725aad24
JF
5268 retval = security_task_setscheduler(p, policy, param);
5269 if (retval)
5270 return retval;
5271 }
5272
b29739f9
IM
5273 /*
5274 * make sure no PI-waiters arrive (or leave) while we are
5275 * changing the priority of the task:
5276 */
5277 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5278 /*
5279 * To be able to change p->policy safely, the apropriate
5280 * runqueue lock must be held.
5281 */
b29739f9 5282 rq = __task_rq_lock(p);
1da177e4
LT
5283 /* recheck policy now with rq lock held */
5284 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5285 policy = oldpolicy = -1;
b29739f9
IM
5286 __task_rq_unlock(rq);
5287 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5288 goto recheck;
5289 }
2daa3577 5290 update_rq_clock(rq);
dd41f596 5291 on_rq = p->se.on_rq;
051a1d1a 5292 running = task_current(rq, p);
0e1f3483 5293 if (on_rq)
2e1cb74a 5294 deactivate_task(rq, p, 0);
0e1f3483
HS
5295 if (running)
5296 p->sched_class->put_prev_task(rq, p);
f6b53205 5297
1da177e4 5298 oldprio = p->prio;
dd41f596 5299 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5300
0e1f3483
HS
5301 if (running)
5302 p->sched_class->set_curr_task(rq);
dd41f596
IM
5303 if (on_rq) {
5304 activate_task(rq, p, 0);
cb469845
SR
5305
5306 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5307 }
b29739f9
IM
5308 __task_rq_unlock(rq);
5309 spin_unlock_irqrestore(&p->pi_lock, flags);
5310
95e02ca9
TG
5311 rt_mutex_adjust_pi(p);
5312
1da177e4
LT
5313 return 0;
5314}
961ccddd
RR
5315
5316/**
5317 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5318 * @p: the task in question.
5319 * @policy: new policy.
5320 * @param: structure containing the new RT priority.
5321 *
5322 * NOTE that the task may be already dead.
5323 */
5324int sched_setscheduler(struct task_struct *p, int policy,
5325 struct sched_param *param)
5326{
5327 return __sched_setscheduler(p, policy, param, true);
5328}
1da177e4
LT
5329EXPORT_SYMBOL_GPL(sched_setscheduler);
5330
961ccddd
RR
5331/**
5332 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5333 * @p: the task in question.
5334 * @policy: new policy.
5335 * @param: structure containing the new RT priority.
5336 *
5337 * Just like sched_setscheduler, only don't bother checking if the
5338 * current context has permission. For example, this is needed in
5339 * stop_machine(): we create temporary high priority worker threads,
5340 * but our caller might not have that capability.
5341 */
5342int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5343 struct sched_param *param)
5344{
5345 return __sched_setscheduler(p, policy, param, false);
5346}
5347
95cdf3b7
IM
5348static int
5349do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5350{
1da177e4
LT
5351 struct sched_param lparam;
5352 struct task_struct *p;
36c8b586 5353 int retval;
1da177e4
LT
5354
5355 if (!param || pid < 0)
5356 return -EINVAL;
5357 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5358 return -EFAULT;
5fe1d75f
ON
5359
5360 rcu_read_lock();
5361 retval = -ESRCH;
1da177e4 5362 p = find_process_by_pid(pid);
5fe1d75f
ON
5363 if (p != NULL)
5364 retval = sched_setscheduler(p, policy, &lparam);
5365 rcu_read_unlock();
36c8b586 5366
1da177e4
LT
5367 return retval;
5368}
5369
5370/**
5371 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5372 * @pid: the pid in question.
5373 * @policy: new policy.
5374 * @param: structure containing the new RT priority.
5375 */
41a2d6cf
IM
5376asmlinkage long
5377sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5378{
c21761f1
JB
5379 /* negative values for policy are not valid */
5380 if (policy < 0)
5381 return -EINVAL;
5382
1da177e4
LT
5383 return do_sched_setscheduler(pid, policy, param);
5384}
5385
5386/**
5387 * sys_sched_setparam - set/change the RT priority of a thread
5388 * @pid: the pid in question.
5389 * @param: structure containing the new RT priority.
5390 */
5391asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5392{
5393 return do_sched_setscheduler(pid, -1, param);
5394}
5395
5396/**
5397 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5398 * @pid: the pid in question.
5399 */
5400asmlinkage long sys_sched_getscheduler(pid_t pid)
5401{
36c8b586 5402 struct task_struct *p;
3a5c359a 5403 int retval;
1da177e4
LT
5404
5405 if (pid < 0)
3a5c359a 5406 return -EINVAL;
1da177e4
LT
5407
5408 retval = -ESRCH;
5409 read_lock(&tasklist_lock);
5410 p = find_process_by_pid(pid);
5411 if (p) {
5412 retval = security_task_getscheduler(p);
5413 if (!retval)
5414 retval = p->policy;
5415 }
5416 read_unlock(&tasklist_lock);
1da177e4
LT
5417 return retval;
5418}
5419
5420/**
5421 * sys_sched_getscheduler - get the RT priority of a thread
5422 * @pid: the pid in question.
5423 * @param: structure containing the RT priority.
5424 */
5425asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5426{
5427 struct sched_param lp;
36c8b586 5428 struct task_struct *p;
3a5c359a 5429 int retval;
1da177e4
LT
5430
5431 if (!param || pid < 0)
3a5c359a 5432 return -EINVAL;
1da177e4
LT
5433
5434 read_lock(&tasklist_lock);
5435 p = find_process_by_pid(pid);
5436 retval = -ESRCH;
5437 if (!p)
5438 goto out_unlock;
5439
5440 retval = security_task_getscheduler(p);
5441 if (retval)
5442 goto out_unlock;
5443
5444 lp.sched_priority = p->rt_priority;
5445 read_unlock(&tasklist_lock);
5446
5447 /*
5448 * This one might sleep, we cannot do it with a spinlock held ...
5449 */
5450 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5451
1da177e4
LT
5452 return retval;
5453
5454out_unlock:
5455 read_unlock(&tasklist_lock);
5456 return retval;
5457}
5458
96f874e2 5459long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5460{
5a16f3d3 5461 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5462 struct task_struct *p;
5463 int retval;
1da177e4 5464
95402b38 5465 get_online_cpus();
1da177e4
LT
5466 read_lock(&tasklist_lock);
5467
5468 p = find_process_by_pid(pid);
5469 if (!p) {
5470 read_unlock(&tasklist_lock);
95402b38 5471 put_online_cpus();
1da177e4
LT
5472 return -ESRCH;
5473 }
5474
5475 /*
5476 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5477 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5478 * usage count and then drop tasklist_lock.
5479 */
5480 get_task_struct(p);
5481 read_unlock(&tasklist_lock);
5482
5a16f3d3
RR
5483 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5484 retval = -ENOMEM;
5485 goto out_put_task;
5486 }
5487 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5488 retval = -ENOMEM;
5489 goto out_free_cpus_allowed;
5490 }
1da177e4
LT
5491 retval = -EPERM;
5492 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5493 !capable(CAP_SYS_NICE))
5494 goto out_unlock;
5495
e7834f8f
DQ
5496 retval = security_task_setscheduler(p, 0, NULL);
5497 if (retval)
5498 goto out_unlock;
5499
5a16f3d3
RR
5500 cpuset_cpus_allowed(p, cpus_allowed);
5501 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5502 again:
5a16f3d3 5503 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5504
8707d8b8 5505 if (!retval) {
5a16f3d3
RR
5506 cpuset_cpus_allowed(p, cpus_allowed);
5507 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5508 /*
5509 * We must have raced with a concurrent cpuset
5510 * update. Just reset the cpus_allowed to the
5511 * cpuset's cpus_allowed
5512 */
5a16f3d3 5513 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5514 goto again;
5515 }
5516 }
1da177e4 5517out_unlock:
5a16f3d3
RR
5518 free_cpumask_var(new_mask);
5519out_free_cpus_allowed:
5520 free_cpumask_var(cpus_allowed);
5521out_put_task:
1da177e4 5522 put_task_struct(p);
95402b38 5523 put_online_cpus();
1da177e4
LT
5524 return retval;
5525}
5526
5527static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5528 struct cpumask *new_mask)
1da177e4 5529{
96f874e2
RR
5530 if (len < cpumask_size())
5531 cpumask_clear(new_mask);
5532 else if (len > cpumask_size())
5533 len = cpumask_size();
5534
1da177e4
LT
5535 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5536}
5537
5538/**
5539 * sys_sched_setaffinity - set the cpu affinity of a process
5540 * @pid: pid of the process
5541 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5542 * @user_mask_ptr: user-space pointer to the new cpu mask
5543 */
5544asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5545 unsigned long __user *user_mask_ptr)
5546{
5a16f3d3 5547 cpumask_var_t new_mask;
1da177e4
LT
5548 int retval;
5549
5a16f3d3
RR
5550 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5551 return -ENOMEM;
1da177e4 5552
5a16f3d3
RR
5553 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5554 if (retval == 0)
5555 retval = sched_setaffinity(pid, new_mask);
5556 free_cpumask_var(new_mask);
5557 return retval;
1da177e4
LT
5558}
5559
96f874e2 5560long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5561{
36c8b586 5562 struct task_struct *p;
1da177e4 5563 int retval;
1da177e4 5564
95402b38 5565 get_online_cpus();
1da177e4
LT
5566 read_lock(&tasklist_lock);
5567
5568 retval = -ESRCH;
5569 p = find_process_by_pid(pid);
5570 if (!p)
5571 goto out_unlock;
5572
e7834f8f
DQ
5573 retval = security_task_getscheduler(p);
5574 if (retval)
5575 goto out_unlock;
5576
96f874e2 5577 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5578
5579out_unlock:
5580 read_unlock(&tasklist_lock);
95402b38 5581 put_online_cpus();
1da177e4 5582
9531b62f 5583 return retval;
1da177e4
LT
5584}
5585
5586/**
5587 * sys_sched_getaffinity - get the cpu affinity of a process
5588 * @pid: pid of the process
5589 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5590 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5591 */
5592asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5593 unsigned long __user *user_mask_ptr)
5594{
5595 int ret;
f17c8607 5596 cpumask_var_t mask;
1da177e4 5597
f17c8607 5598 if (len < cpumask_size())
1da177e4
LT
5599 return -EINVAL;
5600
f17c8607
RR
5601 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5602 return -ENOMEM;
1da177e4 5603
f17c8607
RR
5604 ret = sched_getaffinity(pid, mask);
5605 if (ret == 0) {
5606 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5607 ret = -EFAULT;
5608 else
5609 ret = cpumask_size();
5610 }
5611 free_cpumask_var(mask);
1da177e4 5612
f17c8607 5613 return ret;
1da177e4
LT
5614}
5615
5616/**
5617 * sys_sched_yield - yield the current processor to other threads.
5618 *
dd41f596
IM
5619 * This function yields the current CPU to other tasks. If there are no
5620 * other threads running on this CPU then this function will return.
1da177e4
LT
5621 */
5622asmlinkage long sys_sched_yield(void)
5623{
70b97a7f 5624 struct rq *rq = this_rq_lock();
1da177e4 5625
2d72376b 5626 schedstat_inc(rq, yld_count);
4530d7ab 5627 current->sched_class->yield_task(rq);
1da177e4
LT
5628
5629 /*
5630 * Since we are going to call schedule() anyway, there's
5631 * no need to preempt or enable interrupts:
5632 */
5633 __release(rq->lock);
8a25d5de 5634 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5635 _raw_spin_unlock(&rq->lock);
5636 preempt_enable_no_resched();
5637
5638 schedule();
5639
5640 return 0;
5641}
5642
e7b38404 5643static void __cond_resched(void)
1da177e4 5644{
8e0a43d8
IM
5645#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5646 __might_sleep(__FILE__, __LINE__);
5647#endif
5bbcfd90
IM
5648 /*
5649 * The BKS might be reacquired before we have dropped
5650 * PREEMPT_ACTIVE, which could trigger a second
5651 * cond_resched() call.
5652 */
1da177e4
LT
5653 do {
5654 add_preempt_count(PREEMPT_ACTIVE);
5655 schedule();
5656 sub_preempt_count(PREEMPT_ACTIVE);
5657 } while (need_resched());
5658}
5659
02b67cc3 5660int __sched _cond_resched(void)
1da177e4 5661{
9414232f
IM
5662 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5663 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5664 __cond_resched();
5665 return 1;
5666 }
5667 return 0;
5668}
02b67cc3 5669EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5670
5671/*
5672 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5673 * call schedule, and on return reacquire the lock.
5674 *
41a2d6cf 5675 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5676 * operations here to prevent schedule() from being called twice (once via
5677 * spin_unlock(), once by hand).
5678 */
95cdf3b7 5679int cond_resched_lock(spinlock_t *lock)
1da177e4 5680{
95c354fe 5681 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5682 int ret = 0;
5683
95c354fe 5684 if (spin_needbreak(lock) || resched) {
1da177e4 5685 spin_unlock(lock);
95c354fe
NP
5686 if (resched && need_resched())
5687 __cond_resched();
5688 else
5689 cpu_relax();
6df3cecb 5690 ret = 1;
1da177e4 5691 spin_lock(lock);
1da177e4 5692 }
6df3cecb 5693 return ret;
1da177e4 5694}
1da177e4
LT
5695EXPORT_SYMBOL(cond_resched_lock);
5696
5697int __sched cond_resched_softirq(void)
5698{
5699 BUG_ON(!in_softirq());
5700
9414232f 5701 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5702 local_bh_enable();
1da177e4
LT
5703 __cond_resched();
5704 local_bh_disable();
5705 return 1;
5706 }
5707 return 0;
5708}
1da177e4
LT
5709EXPORT_SYMBOL(cond_resched_softirq);
5710
1da177e4
LT
5711/**
5712 * yield - yield the current processor to other threads.
5713 *
72fd4a35 5714 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5715 * thread runnable and calls sys_sched_yield().
5716 */
5717void __sched yield(void)
5718{
5719 set_current_state(TASK_RUNNING);
5720 sys_sched_yield();
5721}
1da177e4
LT
5722EXPORT_SYMBOL(yield);
5723
5724/*
41a2d6cf 5725 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5726 * that process accounting knows that this is a task in IO wait state.
5727 *
5728 * But don't do that if it is a deliberate, throttling IO wait (this task
5729 * has set its backing_dev_info: the queue against which it should throttle)
5730 */
5731void __sched io_schedule(void)
5732{
70b97a7f 5733 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5734
0ff92245 5735 delayacct_blkio_start();
1da177e4
LT
5736 atomic_inc(&rq->nr_iowait);
5737 schedule();
5738 atomic_dec(&rq->nr_iowait);
0ff92245 5739 delayacct_blkio_end();
1da177e4 5740}
1da177e4
LT
5741EXPORT_SYMBOL(io_schedule);
5742
5743long __sched io_schedule_timeout(long timeout)
5744{
70b97a7f 5745 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5746 long ret;
5747
0ff92245 5748 delayacct_blkio_start();
1da177e4
LT
5749 atomic_inc(&rq->nr_iowait);
5750 ret = schedule_timeout(timeout);
5751 atomic_dec(&rq->nr_iowait);
0ff92245 5752 delayacct_blkio_end();
1da177e4
LT
5753 return ret;
5754}
5755
5756/**
5757 * sys_sched_get_priority_max - return maximum RT priority.
5758 * @policy: scheduling class.
5759 *
5760 * this syscall returns the maximum rt_priority that can be used
5761 * by a given scheduling class.
5762 */
5763asmlinkage long sys_sched_get_priority_max(int policy)
5764{
5765 int ret = -EINVAL;
5766
5767 switch (policy) {
5768 case SCHED_FIFO:
5769 case SCHED_RR:
5770 ret = MAX_USER_RT_PRIO-1;
5771 break;
5772 case SCHED_NORMAL:
b0a9499c 5773 case SCHED_BATCH:
dd41f596 5774 case SCHED_IDLE:
1da177e4
LT
5775 ret = 0;
5776 break;
5777 }
5778 return ret;
5779}
5780
5781/**
5782 * sys_sched_get_priority_min - return minimum RT priority.
5783 * @policy: scheduling class.
5784 *
5785 * this syscall returns the minimum rt_priority that can be used
5786 * by a given scheduling class.
5787 */
5788asmlinkage long sys_sched_get_priority_min(int policy)
5789{
5790 int ret = -EINVAL;
5791
5792 switch (policy) {
5793 case SCHED_FIFO:
5794 case SCHED_RR:
5795 ret = 1;
5796 break;
5797 case SCHED_NORMAL:
b0a9499c 5798 case SCHED_BATCH:
dd41f596 5799 case SCHED_IDLE:
1da177e4
LT
5800 ret = 0;
5801 }
5802 return ret;
5803}
5804
5805/**
5806 * sys_sched_rr_get_interval - return the default timeslice of a process.
5807 * @pid: pid of the process.
5808 * @interval: userspace pointer to the timeslice value.
5809 *
5810 * this syscall writes the default timeslice value of a given process
5811 * into the user-space timespec buffer. A value of '0' means infinity.
5812 */
5813asmlinkage
5814long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5815{
36c8b586 5816 struct task_struct *p;
a4ec24b4 5817 unsigned int time_slice;
3a5c359a 5818 int retval;
1da177e4 5819 struct timespec t;
1da177e4
LT
5820
5821 if (pid < 0)
3a5c359a 5822 return -EINVAL;
1da177e4
LT
5823
5824 retval = -ESRCH;
5825 read_lock(&tasklist_lock);
5826 p = find_process_by_pid(pid);
5827 if (!p)
5828 goto out_unlock;
5829
5830 retval = security_task_getscheduler(p);
5831 if (retval)
5832 goto out_unlock;
5833
77034937
IM
5834 /*
5835 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5836 * tasks that are on an otherwise idle runqueue:
5837 */
5838 time_slice = 0;
5839 if (p->policy == SCHED_RR) {
a4ec24b4 5840 time_slice = DEF_TIMESLICE;
1868f958 5841 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5842 struct sched_entity *se = &p->se;
5843 unsigned long flags;
5844 struct rq *rq;
5845
5846 rq = task_rq_lock(p, &flags);
77034937
IM
5847 if (rq->cfs.load.weight)
5848 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5849 task_rq_unlock(rq, &flags);
5850 }
1da177e4 5851 read_unlock(&tasklist_lock);
a4ec24b4 5852 jiffies_to_timespec(time_slice, &t);
1da177e4 5853 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5854 return retval;
3a5c359a 5855
1da177e4
LT
5856out_unlock:
5857 read_unlock(&tasklist_lock);
5858 return retval;
5859}
5860
7c731e0a 5861static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5862
82a1fcb9 5863void sched_show_task(struct task_struct *p)
1da177e4 5864{
1da177e4 5865 unsigned long free = 0;
36c8b586 5866 unsigned state;
1da177e4 5867
1da177e4 5868 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5869 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5870 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5871#if BITS_PER_LONG == 32
1da177e4 5872 if (state == TASK_RUNNING)
cc4ea795 5873 printk(KERN_CONT " running ");
1da177e4 5874 else
cc4ea795 5875 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5876#else
5877 if (state == TASK_RUNNING)
cc4ea795 5878 printk(KERN_CONT " running task ");
1da177e4 5879 else
cc4ea795 5880 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5881#endif
5882#ifdef CONFIG_DEBUG_STACK_USAGE
5883 {
10ebffde 5884 unsigned long *n = end_of_stack(p);
1da177e4
LT
5885 while (!*n)
5886 n++;
10ebffde 5887 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5888 }
5889#endif
ba25f9dc 5890 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5891 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5892
5fb5e6de 5893 show_stack(p, NULL);
1da177e4
LT
5894}
5895
e59e2ae2 5896void show_state_filter(unsigned long state_filter)
1da177e4 5897{
36c8b586 5898 struct task_struct *g, *p;
1da177e4 5899
4bd77321
IM
5900#if BITS_PER_LONG == 32
5901 printk(KERN_INFO
5902 " task PC stack pid father\n");
1da177e4 5903#else
4bd77321
IM
5904 printk(KERN_INFO
5905 " task PC stack pid father\n");
1da177e4
LT
5906#endif
5907 read_lock(&tasklist_lock);
5908 do_each_thread(g, p) {
5909 /*
5910 * reset the NMI-timeout, listing all files on a slow
5911 * console might take alot of time:
5912 */
5913 touch_nmi_watchdog();
39bc89fd 5914 if (!state_filter || (p->state & state_filter))
82a1fcb9 5915 sched_show_task(p);
1da177e4
LT
5916 } while_each_thread(g, p);
5917
04c9167f
JF
5918 touch_all_softlockup_watchdogs();
5919
dd41f596
IM
5920#ifdef CONFIG_SCHED_DEBUG
5921 sysrq_sched_debug_show();
5922#endif
1da177e4 5923 read_unlock(&tasklist_lock);
e59e2ae2
IM
5924 /*
5925 * Only show locks if all tasks are dumped:
5926 */
5927 if (state_filter == -1)
5928 debug_show_all_locks();
1da177e4
LT
5929}
5930
1df21055
IM
5931void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5932{
dd41f596 5933 idle->sched_class = &idle_sched_class;
1df21055
IM
5934}
5935
f340c0d1
IM
5936/**
5937 * init_idle - set up an idle thread for a given CPU
5938 * @idle: task in question
5939 * @cpu: cpu the idle task belongs to
5940 *
5941 * NOTE: this function does not set the idle thread's NEED_RESCHED
5942 * flag, to make booting more robust.
5943 */
5c1e1767 5944void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5945{
70b97a7f 5946 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5947 unsigned long flags;
5948
5cbd54ef
IM
5949 spin_lock_irqsave(&rq->lock, flags);
5950
dd41f596
IM
5951 __sched_fork(idle);
5952 idle->se.exec_start = sched_clock();
5953
b29739f9 5954 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 5955 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5956 __set_task_cpu(idle, cpu);
1da177e4 5957
1da177e4 5958 rq->curr = rq->idle = idle;
4866cde0
NP
5959#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5960 idle->oncpu = 1;
5961#endif
1da177e4
LT
5962 spin_unlock_irqrestore(&rq->lock, flags);
5963
5964 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5965#if defined(CONFIG_PREEMPT)
5966 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5967#else
a1261f54 5968 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5969#endif
dd41f596
IM
5970 /*
5971 * The idle tasks have their own, simple scheduling class:
5972 */
5973 idle->sched_class = &idle_sched_class;
fb52607a 5974 ftrace_graph_init_task(idle);
1da177e4
LT
5975}
5976
5977/*
5978 * In a system that switches off the HZ timer nohz_cpu_mask
5979 * indicates which cpus entered this state. This is used
5980 * in the rcu update to wait only for active cpus. For system
5981 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5982 * always be CPU_BITS_NONE.
1da177e4 5983 */
6a7b3dc3 5984cpumask_var_t nohz_cpu_mask;
1da177e4 5985
19978ca6
IM
5986/*
5987 * Increase the granularity value when there are more CPUs,
5988 * because with more CPUs the 'effective latency' as visible
5989 * to users decreases. But the relationship is not linear,
5990 * so pick a second-best guess by going with the log2 of the
5991 * number of CPUs.
5992 *
5993 * This idea comes from the SD scheduler of Con Kolivas:
5994 */
5995static inline void sched_init_granularity(void)
5996{
5997 unsigned int factor = 1 + ilog2(num_online_cpus());
5998 const unsigned long limit = 200000000;
5999
6000 sysctl_sched_min_granularity *= factor;
6001 if (sysctl_sched_min_granularity > limit)
6002 sysctl_sched_min_granularity = limit;
6003
6004 sysctl_sched_latency *= factor;
6005 if (sysctl_sched_latency > limit)
6006 sysctl_sched_latency = limit;
6007
6008 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6009
6010 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6011}
6012
1da177e4
LT
6013#ifdef CONFIG_SMP
6014/*
6015 * This is how migration works:
6016 *
70b97a7f 6017 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6018 * runqueue and wake up that CPU's migration thread.
6019 * 2) we down() the locked semaphore => thread blocks.
6020 * 3) migration thread wakes up (implicitly it forces the migrated
6021 * thread off the CPU)
6022 * 4) it gets the migration request and checks whether the migrated
6023 * task is still in the wrong runqueue.
6024 * 5) if it's in the wrong runqueue then the migration thread removes
6025 * it and puts it into the right queue.
6026 * 6) migration thread up()s the semaphore.
6027 * 7) we wake up and the migration is done.
6028 */
6029
6030/*
6031 * Change a given task's CPU affinity. Migrate the thread to a
6032 * proper CPU and schedule it away if the CPU it's executing on
6033 * is removed from the allowed bitmask.
6034 *
6035 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6036 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6037 * call is not atomic; no spinlocks may be held.
6038 */
96f874e2 6039int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6040{
70b97a7f 6041 struct migration_req req;
1da177e4 6042 unsigned long flags;
70b97a7f 6043 struct rq *rq;
48f24c4d 6044 int ret = 0;
1da177e4
LT
6045
6046 rq = task_rq_lock(p, &flags);
96f874e2 6047 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6048 ret = -EINVAL;
6049 goto out;
6050 }
6051
9985b0ba 6052 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6053 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6054 ret = -EINVAL;
6055 goto out;
6056 }
6057
73fe6aae 6058 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6059 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6060 else {
96f874e2
RR
6061 cpumask_copy(&p->cpus_allowed, new_mask);
6062 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6063 }
6064
1da177e4 6065 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6066 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6067 goto out;
6068
1e5ce4f4 6069 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6070 /* Need help from migration thread: drop lock and wait. */
6071 task_rq_unlock(rq, &flags);
6072 wake_up_process(rq->migration_thread);
6073 wait_for_completion(&req.done);
6074 tlb_migrate_finish(p->mm);
6075 return 0;
6076 }
6077out:
6078 task_rq_unlock(rq, &flags);
48f24c4d 6079
1da177e4
LT
6080 return ret;
6081}
cd8ba7cd 6082EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6083
6084/*
41a2d6cf 6085 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6086 * this because either it can't run here any more (set_cpus_allowed()
6087 * away from this CPU, or CPU going down), or because we're
6088 * attempting to rebalance this task on exec (sched_exec).
6089 *
6090 * So we race with normal scheduler movements, but that's OK, as long
6091 * as the task is no longer on this CPU.
efc30814
KK
6092 *
6093 * Returns non-zero if task was successfully migrated.
1da177e4 6094 */
efc30814 6095static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6096{
70b97a7f 6097 struct rq *rq_dest, *rq_src;
dd41f596 6098 int ret = 0, on_rq;
1da177e4 6099
e761b772 6100 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6101 return ret;
1da177e4
LT
6102
6103 rq_src = cpu_rq(src_cpu);
6104 rq_dest = cpu_rq(dest_cpu);
6105
6106 double_rq_lock(rq_src, rq_dest);
6107 /* Already moved. */
6108 if (task_cpu(p) != src_cpu)
b1e38734 6109 goto done;
1da177e4 6110 /* Affinity changed (again). */
96f874e2 6111 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6112 goto fail;
1da177e4 6113
dd41f596 6114 on_rq = p->se.on_rq;
6e82a3be 6115 if (on_rq)
2e1cb74a 6116 deactivate_task(rq_src, p, 0);
6e82a3be 6117
1da177e4 6118 set_task_cpu(p, dest_cpu);
dd41f596
IM
6119 if (on_rq) {
6120 activate_task(rq_dest, p, 0);
15afe09b 6121 check_preempt_curr(rq_dest, p, 0);
1da177e4 6122 }
b1e38734 6123done:
efc30814 6124 ret = 1;
b1e38734 6125fail:
1da177e4 6126 double_rq_unlock(rq_src, rq_dest);
efc30814 6127 return ret;
1da177e4
LT
6128}
6129
6130/*
6131 * migration_thread - this is a highprio system thread that performs
6132 * thread migration by bumping thread off CPU then 'pushing' onto
6133 * another runqueue.
6134 */
95cdf3b7 6135static int migration_thread(void *data)
1da177e4 6136{
1da177e4 6137 int cpu = (long)data;
70b97a7f 6138 struct rq *rq;
1da177e4
LT
6139
6140 rq = cpu_rq(cpu);
6141 BUG_ON(rq->migration_thread != current);
6142
6143 set_current_state(TASK_INTERRUPTIBLE);
6144 while (!kthread_should_stop()) {
70b97a7f 6145 struct migration_req *req;
1da177e4 6146 struct list_head *head;
1da177e4 6147
1da177e4
LT
6148 spin_lock_irq(&rq->lock);
6149
6150 if (cpu_is_offline(cpu)) {
6151 spin_unlock_irq(&rq->lock);
6152 goto wait_to_die;
6153 }
6154
6155 if (rq->active_balance) {
6156 active_load_balance(rq, cpu);
6157 rq->active_balance = 0;
6158 }
6159
6160 head = &rq->migration_queue;
6161
6162 if (list_empty(head)) {
6163 spin_unlock_irq(&rq->lock);
6164 schedule();
6165 set_current_state(TASK_INTERRUPTIBLE);
6166 continue;
6167 }
70b97a7f 6168 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6169 list_del_init(head->next);
6170
674311d5
NP
6171 spin_unlock(&rq->lock);
6172 __migrate_task(req->task, cpu, req->dest_cpu);
6173 local_irq_enable();
1da177e4
LT
6174
6175 complete(&req->done);
6176 }
6177 __set_current_state(TASK_RUNNING);
6178 return 0;
6179
6180wait_to_die:
6181 /* Wait for kthread_stop */
6182 set_current_state(TASK_INTERRUPTIBLE);
6183 while (!kthread_should_stop()) {
6184 schedule();
6185 set_current_state(TASK_INTERRUPTIBLE);
6186 }
6187 __set_current_state(TASK_RUNNING);
6188 return 0;
6189}
6190
6191#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6192
6193static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6194{
6195 int ret;
6196
6197 local_irq_disable();
6198 ret = __migrate_task(p, src_cpu, dest_cpu);
6199 local_irq_enable();
6200 return ret;
6201}
6202
054b9108 6203/*
3a4fa0a2 6204 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6205 */
48f24c4d 6206static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6207{
70b97a7f 6208 int dest_cpu;
e76bd8d9
RR
6209 /* FIXME: Use cpumask_of_node here. */
6210 cpumask_t _nodemask = node_to_cpumask(cpu_to_node(dead_cpu));
6211 const struct cpumask *nodemask = &_nodemask;
6212
6213again:
6214 /* Look for allowed, online CPU in same node. */
6215 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6216 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6217 goto move;
6218
6219 /* Any allowed, online CPU? */
6220 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6221 if (dest_cpu < nr_cpu_ids)
6222 goto move;
6223
6224 /* No more Mr. Nice Guy. */
6225 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6226 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6227 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6228
e76bd8d9
RR
6229 /*
6230 * Don't tell them about moving exiting tasks or
6231 * kernel threads (both mm NULL), since they never
6232 * leave kernel.
6233 */
6234 if (p->mm && printk_ratelimit()) {
6235 printk(KERN_INFO "process %d (%s) no "
6236 "longer affine to cpu%d\n",
6237 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6238 }
e76bd8d9
RR
6239 }
6240
6241move:
6242 /* It can have affinity changed while we were choosing. */
6243 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6244 goto again;
1da177e4
LT
6245}
6246
6247/*
6248 * While a dead CPU has no uninterruptible tasks queued at this point,
6249 * it might still have a nonzero ->nr_uninterruptible counter, because
6250 * for performance reasons the counter is not stricly tracking tasks to
6251 * their home CPUs. So we just add the counter to another CPU's counter,
6252 * to keep the global sum constant after CPU-down:
6253 */
70b97a7f 6254static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6255{
1e5ce4f4 6256 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6257 unsigned long flags;
6258
6259 local_irq_save(flags);
6260 double_rq_lock(rq_src, rq_dest);
6261 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6262 rq_src->nr_uninterruptible = 0;
6263 double_rq_unlock(rq_src, rq_dest);
6264 local_irq_restore(flags);
6265}
6266
6267/* Run through task list and migrate tasks from the dead cpu. */
6268static void migrate_live_tasks(int src_cpu)
6269{
48f24c4d 6270 struct task_struct *p, *t;
1da177e4 6271
f7b4cddc 6272 read_lock(&tasklist_lock);
1da177e4 6273
48f24c4d
IM
6274 do_each_thread(t, p) {
6275 if (p == current)
1da177e4
LT
6276 continue;
6277
48f24c4d
IM
6278 if (task_cpu(p) == src_cpu)
6279 move_task_off_dead_cpu(src_cpu, p);
6280 } while_each_thread(t, p);
1da177e4 6281
f7b4cddc 6282 read_unlock(&tasklist_lock);
1da177e4
LT
6283}
6284
dd41f596
IM
6285/*
6286 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6287 * It does so by boosting its priority to highest possible.
6288 * Used by CPU offline code.
1da177e4
LT
6289 */
6290void sched_idle_next(void)
6291{
48f24c4d 6292 int this_cpu = smp_processor_id();
70b97a7f 6293 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6294 struct task_struct *p = rq->idle;
6295 unsigned long flags;
6296
6297 /* cpu has to be offline */
48f24c4d 6298 BUG_ON(cpu_online(this_cpu));
1da177e4 6299
48f24c4d
IM
6300 /*
6301 * Strictly not necessary since rest of the CPUs are stopped by now
6302 * and interrupts disabled on the current cpu.
1da177e4
LT
6303 */
6304 spin_lock_irqsave(&rq->lock, flags);
6305
dd41f596 6306 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6307
94bc9a7b
DA
6308 update_rq_clock(rq);
6309 activate_task(rq, p, 0);
1da177e4
LT
6310
6311 spin_unlock_irqrestore(&rq->lock, flags);
6312}
6313
48f24c4d
IM
6314/*
6315 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6316 * offline.
6317 */
6318void idle_task_exit(void)
6319{
6320 struct mm_struct *mm = current->active_mm;
6321
6322 BUG_ON(cpu_online(smp_processor_id()));
6323
6324 if (mm != &init_mm)
6325 switch_mm(mm, &init_mm, current);
6326 mmdrop(mm);
6327}
6328
054b9108 6329/* called under rq->lock with disabled interrupts */
36c8b586 6330static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6331{
70b97a7f 6332 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6333
6334 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6335 BUG_ON(!p->exit_state);
1da177e4
LT
6336
6337 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6338 BUG_ON(p->state == TASK_DEAD);
1da177e4 6339
48f24c4d 6340 get_task_struct(p);
1da177e4
LT
6341
6342 /*
6343 * Drop lock around migration; if someone else moves it,
41a2d6cf 6344 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6345 * fine.
6346 */
f7b4cddc 6347 spin_unlock_irq(&rq->lock);
48f24c4d 6348 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6349 spin_lock_irq(&rq->lock);
1da177e4 6350
48f24c4d 6351 put_task_struct(p);
1da177e4
LT
6352}
6353
6354/* release_task() removes task from tasklist, so we won't find dead tasks. */
6355static void migrate_dead_tasks(unsigned int dead_cpu)
6356{
70b97a7f 6357 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6358 struct task_struct *next;
48f24c4d 6359
dd41f596
IM
6360 for ( ; ; ) {
6361 if (!rq->nr_running)
6362 break;
a8e504d2 6363 update_rq_clock(rq);
ff95f3df 6364 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6365 if (!next)
6366 break;
79c53799 6367 next->sched_class->put_prev_task(rq, next);
dd41f596 6368 migrate_dead(dead_cpu, next);
e692ab53 6369
1da177e4
LT
6370 }
6371}
6372#endif /* CONFIG_HOTPLUG_CPU */
6373
e692ab53
NP
6374#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6375
6376static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6377 {
6378 .procname = "sched_domain",
c57baf1e 6379 .mode = 0555,
e0361851 6380 },
38605cae 6381 {0, },
e692ab53
NP
6382};
6383
6384static struct ctl_table sd_ctl_root[] = {
e0361851 6385 {
c57baf1e 6386 .ctl_name = CTL_KERN,
e0361851 6387 .procname = "kernel",
c57baf1e 6388 .mode = 0555,
e0361851
AD
6389 .child = sd_ctl_dir,
6390 },
38605cae 6391 {0, },
e692ab53
NP
6392};
6393
6394static struct ctl_table *sd_alloc_ctl_entry(int n)
6395{
6396 struct ctl_table *entry =
5cf9f062 6397 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6398
e692ab53
NP
6399 return entry;
6400}
6401
6382bc90
MM
6402static void sd_free_ctl_entry(struct ctl_table **tablep)
6403{
cd790076 6404 struct ctl_table *entry;
6382bc90 6405
cd790076
MM
6406 /*
6407 * In the intermediate directories, both the child directory and
6408 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6409 * will always be set. In the lowest directory the names are
cd790076
MM
6410 * static strings and all have proc handlers.
6411 */
6412 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6413 if (entry->child)
6414 sd_free_ctl_entry(&entry->child);
cd790076
MM
6415 if (entry->proc_handler == NULL)
6416 kfree(entry->procname);
6417 }
6382bc90
MM
6418
6419 kfree(*tablep);
6420 *tablep = NULL;
6421}
6422
e692ab53 6423static void
e0361851 6424set_table_entry(struct ctl_table *entry,
e692ab53
NP
6425 const char *procname, void *data, int maxlen,
6426 mode_t mode, proc_handler *proc_handler)
6427{
e692ab53
NP
6428 entry->procname = procname;
6429 entry->data = data;
6430 entry->maxlen = maxlen;
6431 entry->mode = mode;
6432 entry->proc_handler = proc_handler;
6433}
6434
6435static struct ctl_table *
6436sd_alloc_ctl_domain_table(struct sched_domain *sd)
6437{
a5d8c348 6438 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6439
ad1cdc1d
MM
6440 if (table == NULL)
6441 return NULL;
6442
e0361851 6443 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6444 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6445 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6446 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6447 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6448 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6449 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6450 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6451 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6452 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6453 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6454 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6455 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6456 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6457 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6458 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6459 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6460 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6461 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6462 &sd->cache_nice_tries,
6463 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6464 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6465 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6466 set_table_entry(&table[11], "name", sd->name,
6467 CORENAME_MAX_SIZE, 0444, proc_dostring);
6468 /* &table[12] is terminator */
e692ab53
NP
6469
6470 return table;
6471}
6472
9a4e7159 6473static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6474{
6475 struct ctl_table *entry, *table;
6476 struct sched_domain *sd;
6477 int domain_num = 0, i;
6478 char buf[32];
6479
6480 for_each_domain(cpu, sd)
6481 domain_num++;
6482 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6483 if (table == NULL)
6484 return NULL;
e692ab53
NP
6485
6486 i = 0;
6487 for_each_domain(cpu, sd) {
6488 snprintf(buf, 32, "domain%d", i);
e692ab53 6489 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6490 entry->mode = 0555;
e692ab53
NP
6491 entry->child = sd_alloc_ctl_domain_table(sd);
6492 entry++;
6493 i++;
6494 }
6495 return table;
6496}
6497
6498static struct ctl_table_header *sd_sysctl_header;
6382bc90 6499static void register_sched_domain_sysctl(void)
e692ab53
NP
6500{
6501 int i, cpu_num = num_online_cpus();
6502 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6503 char buf[32];
6504
7378547f
MM
6505 WARN_ON(sd_ctl_dir[0].child);
6506 sd_ctl_dir[0].child = entry;
6507
ad1cdc1d
MM
6508 if (entry == NULL)
6509 return;
6510
97b6ea7b 6511 for_each_online_cpu(i) {
e692ab53 6512 snprintf(buf, 32, "cpu%d", i);
e692ab53 6513 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6514 entry->mode = 0555;
e692ab53 6515 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6516 entry++;
e692ab53 6517 }
7378547f
MM
6518
6519 WARN_ON(sd_sysctl_header);
e692ab53
NP
6520 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6521}
6382bc90 6522
7378547f 6523/* may be called multiple times per register */
6382bc90
MM
6524static void unregister_sched_domain_sysctl(void)
6525{
7378547f
MM
6526 if (sd_sysctl_header)
6527 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6528 sd_sysctl_header = NULL;
7378547f
MM
6529 if (sd_ctl_dir[0].child)
6530 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6531}
e692ab53 6532#else
6382bc90
MM
6533static void register_sched_domain_sysctl(void)
6534{
6535}
6536static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6537{
6538}
6539#endif
6540
1f11eb6a
GH
6541static void set_rq_online(struct rq *rq)
6542{
6543 if (!rq->online) {
6544 const struct sched_class *class;
6545
c6c4927b 6546 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6547 rq->online = 1;
6548
6549 for_each_class(class) {
6550 if (class->rq_online)
6551 class->rq_online(rq);
6552 }
6553 }
6554}
6555
6556static void set_rq_offline(struct rq *rq)
6557{
6558 if (rq->online) {
6559 const struct sched_class *class;
6560
6561 for_each_class(class) {
6562 if (class->rq_offline)
6563 class->rq_offline(rq);
6564 }
6565
c6c4927b 6566 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6567 rq->online = 0;
6568 }
6569}
6570
1da177e4
LT
6571/*
6572 * migration_call - callback that gets triggered when a CPU is added.
6573 * Here we can start up the necessary migration thread for the new CPU.
6574 */
48f24c4d
IM
6575static int __cpuinit
6576migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6577{
1da177e4 6578 struct task_struct *p;
48f24c4d 6579 int cpu = (long)hcpu;
1da177e4 6580 unsigned long flags;
70b97a7f 6581 struct rq *rq;
1da177e4
LT
6582
6583 switch (action) {
5be9361c 6584
1da177e4 6585 case CPU_UP_PREPARE:
8bb78442 6586 case CPU_UP_PREPARE_FROZEN:
dd41f596 6587 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6588 if (IS_ERR(p))
6589 return NOTIFY_BAD;
1da177e4
LT
6590 kthread_bind(p, cpu);
6591 /* Must be high prio: stop_machine expects to yield to it. */
6592 rq = task_rq_lock(p, &flags);
dd41f596 6593 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6594 task_rq_unlock(rq, &flags);
6595 cpu_rq(cpu)->migration_thread = p;
6596 break;
48f24c4d 6597
1da177e4 6598 case CPU_ONLINE:
8bb78442 6599 case CPU_ONLINE_FROZEN:
3a4fa0a2 6600 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6601 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6602
6603 /* Update our root-domain */
6604 rq = cpu_rq(cpu);
6605 spin_lock_irqsave(&rq->lock, flags);
6606 if (rq->rd) {
c6c4927b 6607 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6608
6609 set_rq_online(rq);
1f94ef59
GH
6610 }
6611 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6612 break;
48f24c4d 6613
1da177e4
LT
6614#ifdef CONFIG_HOTPLUG_CPU
6615 case CPU_UP_CANCELED:
8bb78442 6616 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6617 if (!cpu_rq(cpu)->migration_thread)
6618 break;
41a2d6cf 6619 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6620 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6621 cpumask_any(cpu_online_mask));
1da177e4
LT
6622 kthread_stop(cpu_rq(cpu)->migration_thread);
6623 cpu_rq(cpu)->migration_thread = NULL;
6624 break;
48f24c4d 6625
1da177e4 6626 case CPU_DEAD:
8bb78442 6627 case CPU_DEAD_FROZEN:
470fd646 6628 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6629 migrate_live_tasks(cpu);
6630 rq = cpu_rq(cpu);
6631 kthread_stop(rq->migration_thread);
6632 rq->migration_thread = NULL;
6633 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6634 spin_lock_irq(&rq->lock);
a8e504d2 6635 update_rq_clock(rq);
2e1cb74a 6636 deactivate_task(rq, rq->idle, 0);
1da177e4 6637 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6638 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6639 rq->idle->sched_class = &idle_sched_class;
1da177e4 6640 migrate_dead_tasks(cpu);
d2da272a 6641 spin_unlock_irq(&rq->lock);
470fd646 6642 cpuset_unlock();
1da177e4
LT
6643 migrate_nr_uninterruptible(rq);
6644 BUG_ON(rq->nr_running != 0);
6645
41a2d6cf
IM
6646 /*
6647 * No need to migrate the tasks: it was best-effort if
6648 * they didn't take sched_hotcpu_mutex. Just wake up
6649 * the requestors.
6650 */
1da177e4
LT
6651 spin_lock_irq(&rq->lock);
6652 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6653 struct migration_req *req;
6654
1da177e4 6655 req = list_entry(rq->migration_queue.next,
70b97a7f 6656 struct migration_req, list);
1da177e4 6657 list_del_init(&req->list);
9a2bd244 6658 spin_unlock_irq(&rq->lock);
1da177e4 6659 complete(&req->done);
9a2bd244 6660 spin_lock_irq(&rq->lock);
1da177e4
LT
6661 }
6662 spin_unlock_irq(&rq->lock);
6663 break;
57d885fe 6664
08f503b0
GH
6665 case CPU_DYING:
6666 case CPU_DYING_FROZEN:
57d885fe
GH
6667 /* Update our root-domain */
6668 rq = cpu_rq(cpu);
6669 spin_lock_irqsave(&rq->lock, flags);
6670 if (rq->rd) {
c6c4927b 6671 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6672 set_rq_offline(rq);
57d885fe
GH
6673 }
6674 spin_unlock_irqrestore(&rq->lock, flags);
6675 break;
1da177e4
LT
6676#endif
6677 }
6678 return NOTIFY_OK;
6679}
6680
6681/* Register at highest priority so that task migration (migrate_all_tasks)
6682 * happens before everything else.
6683 */
26c2143b 6684static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6685 .notifier_call = migration_call,
6686 .priority = 10
6687};
6688
7babe8db 6689static int __init migration_init(void)
1da177e4
LT
6690{
6691 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6692 int err;
48f24c4d
IM
6693
6694 /* Start one for the boot CPU: */
07dccf33
AM
6695 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6696 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6697 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6698 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6699
6700 return err;
1da177e4 6701}
7babe8db 6702early_initcall(migration_init);
1da177e4
LT
6703#endif
6704
6705#ifdef CONFIG_SMP
476f3534 6706
3e9830dc 6707#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6708
7c16ec58 6709static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6710 struct cpumask *groupmask)
1da177e4 6711{
4dcf6aff 6712 struct sched_group *group = sd->groups;
434d53b0 6713 char str[256];
1da177e4 6714
968ea6d8 6715 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6716 cpumask_clear(groupmask);
4dcf6aff
IM
6717
6718 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6719
6720 if (!(sd->flags & SD_LOAD_BALANCE)) {
6721 printk("does not load-balance\n");
6722 if (sd->parent)
6723 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6724 " has parent");
6725 return -1;
41c7ce9a
NP
6726 }
6727
eefd796a 6728 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6729
758b2cdc 6730 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6731 printk(KERN_ERR "ERROR: domain->span does not contain "
6732 "CPU%d\n", cpu);
6733 }
758b2cdc 6734 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6735 printk(KERN_ERR "ERROR: domain->groups does not contain"
6736 " CPU%d\n", cpu);
6737 }
1da177e4 6738
4dcf6aff 6739 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6740 do {
4dcf6aff
IM
6741 if (!group) {
6742 printk("\n");
6743 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6744 break;
6745 }
6746
4dcf6aff
IM
6747 if (!group->__cpu_power) {
6748 printk(KERN_CONT "\n");
6749 printk(KERN_ERR "ERROR: domain->cpu_power not "
6750 "set\n");
6751 break;
6752 }
1da177e4 6753
758b2cdc 6754 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6755 printk(KERN_CONT "\n");
6756 printk(KERN_ERR "ERROR: empty group\n");
6757 break;
6758 }
1da177e4 6759
758b2cdc 6760 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6761 printk(KERN_CONT "\n");
6762 printk(KERN_ERR "ERROR: repeated CPUs\n");
6763 break;
6764 }
1da177e4 6765
758b2cdc 6766 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6767
968ea6d8 6768 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6769 printk(KERN_CONT " %s", str);
1da177e4 6770
4dcf6aff
IM
6771 group = group->next;
6772 } while (group != sd->groups);
6773 printk(KERN_CONT "\n");
1da177e4 6774
758b2cdc 6775 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6776 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6777
758b2cdc
RR
6778 if (sd->parent &&
6779 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6780 printk(KERN_ERR "ERROR: parent span is not a superset "
6781 "of domain->span\n");
6782 return 0;
6783}
1da177e4 6784
4dcf6aff
IM
6785static void sched_domain_debug(struct sched_domain *sd, int cpu)
6786{
d5dd3db1 6787 cpumask_var_t groupmask;
4dcf6aff 6788 int level = 0;
1da177e4 6789
4dcf6aff
IM
6790 if (!sd) {
6791 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6792 return;
6793 }
1da177e4 6794
4dcf6aff
IM
6795 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6796
d5dd3db1 6797 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6798 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6799 return;
6800 }
6801
4dcf6aff 6802 for (;;) {
7c16ec58 6803 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6804 break;
1da177e4
LT
6805 level++;
6806 sd = sd->parent;
33859f7f 6807 if (!sd)
4dcf6aff
IM
6808 break;
6809 }
d5dd3db1 6810 free_cpumask_var(groupmask);
1da177e4 6811}
6d6bc0ad 6812#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6813# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6814#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6815
1a20ff27 6816static int sd_degenerate(struct sched_domain *sd)
245af2c7 6817{
758b2cdc 6818 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6819 return 1;
6820
6821 /* Following flags need at least 2 groups */
6822 if (sd->flags & (SD_LOAD_BALANCE |
6823 SD_BALANCE_NEWIDLE |
6824 SD_BALANCE_FORK |
89c4710e
SS
6825 SD_BALANCE_EXEC |
6826 SD_SHARE_CPUPOWER |
6827 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6828 if (sd->groups != sd->groups->next)
6829 return 0;
6830 }
6831
6832 /* Following flags don't use groups */
6833 if (sd->flags & (SD_WAKE_IDLE |
6834 SD_WAKE_AFFINE |
6835 SD_WAKE_BALANCE))
6836 return 0;
6837
6838 return 1;
6839}
6840
48f24c4d
IM
6841static int
6842sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6843{
6844 unsigned long cflags = sd->flags, pflags = parent->flags;
6845
6846 if (sd_degenerate(parent))
6847 return 1;
6848
758b2cdc 6849 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6850 return 0;
6851
6852 /* Does parent contain flags not in child? */
6853 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6854 if (cflags & SD_WAKE_AFFINE)
6855 pflags &= ~SD_WAKE_BALANCE;
6856 /* Flags needing groups don't count if only 1 group in parent */
6857 if (parent->groups == parent->groups->next) {
6858 pflags &= ~(SD_LOAD_BALANCE |
6859 SD_BALANCE_NEWIDLE |
6860 SD_BALANCE_FORK |
89c4710e
SS
6861 SD_BALANCE_EXEC |
6862 SD_SHARE_CPUPOWER |
6863 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6864 if (nr_node_ids == 1)
6865 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6866 }
6867 if (~cflags & pflags)
6868 return 0;
6869
6870 return 1;
6871}
6872
c6c4927b
RR
6873static void free_rootdomain(struct root_domain *rd)
6874{
68e74568
RR
6875 cpupri_cleanup(&rd->cpupri);
6876
c6c4927b
RR
6877 free_cpumask_var(rd->rto_mask);
6878 free_cpumask_var(rd->online);
6879 free_cpumask_var(rd->span);
6880 kfree(rd);
6881}
6882
57d885fe
GH
6883static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6884{
6885 unsigned long flags;
57d885fe
GH
6886
6887 spin_lock_irqsave(&rq->lock, flags);
6888
6889 if (rq->rd) {
6890 struct root_domain *old_rd = rq->rd;
6891
c6c4927b 6892 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6893 set_rq_offline(rq);
57d885fe 6894
c6c4927b 6895 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6896
57d885fe 6897 if (atomic_dec_and_test(&old_rd->refcount))
c6c4927b 6898 free_rootdomain(old_rd);
57d885fe
GH
6899 }
6900
6901 atomic_inc(&rd->refcount);
6902 rq->rd = rd;
6903
c6c4927b
RR
6904 cpumask_set_cpu(rq->cpu, rd->span);
6905 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 6906 set_rq_online(rq);
57d885fe
GH
6907
6908 spin_unlock_irqrestore(&rq->lock, flags);
6909}
6910
c6c4927b 6911static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
6912{
6913 memset(rd, 0, sizeof(*rd));
6914
c6c4927b
RR
6915 if (bootmem) {
6916 alloc_bootmem_cpumask_var(&def_root_domain.span);
6917 alloc_bootmem_cpumask_var(&def_root_domain.online);
6918 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 6919 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
6920 return 0;
6921 }
6922
6923 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6924 goto free_rd;
6925 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6926 goto free_span;
6927 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6928 goto free_online;
6e0534f2 6929
68e74568
RR
6930 if (cpupri_init(&rd->cpupri, false) != 0)
6931 goto free_rto_mask;
c6c4927b 6932 return 0;
6e0534f2 6933
68e74568
RR
6934free_rto_mask:
6935 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6936free_online:
6937 free_cpumask_var(rd->online);
6938free_span:
6939 free_cpumask_var(rd->span);
6940free_rd:
6941 kfree(rd);
6942 return -ENOMEM;
57d885fe
GH
6943}
6944
6945static void init_defrootdomain(void)
6946{
c6c4927b
RR
6947 init_rootdomain(&def_root_domain, true);
6948
57d885fe
GH
6949 atomic_set(&def_root_domain.refcount, 1);
6950}
6951
dc938520 6952static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6953{
6954 struct root_domain *rd;
6955
6956 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6957 if (!rd)
6958 return NULL;
6959
c6c4927b
RR
6960 if (init_rootdomain(rd, false) != 0) {
6961 kfree(rd);
6962 return NULL;
6963 }
57d885fe
GH
6964
6965 return rd;
6966}
6967
1da177e4 6968/*
0eab9146 6969 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6970 * hold the hotplug lock.
6971 */
0eab9146
IM
6972static void
6973cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6974{
70b97a7f 6975 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6976 struct sched_domain *tmp;
6977
6978 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6979 for (tmp = sd; tmp; ) {
245af2c7
SS
6980 struct sched_domain *parent = tmp->parent;
6981 if (!parent)
6982 break;
f29c9b1c 6983
1a848870 6984 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6985 tmp->parent = parent->parent;
1a848870
SS
6986 if (parent->parent)
6987 parent->parent->child = tmp;
f29c9b1c
LZ
6988 } else
6989 tmp = tmp->parent;
245af2c7
SS
6990 }
6991
1a848870 6992 if (sd && sd_degenerate(sd)) {
245af2c7 6993 sd = sd->parent;
1a848870
SS
6994 if (sd)
6995 sd->child = NULL;
6996 }
1da177e4
LT
6997
6998 sched_domain_debug(sd, cpu);
6999
57d885fe 7000 rq_attach_root(rq, rd);
674311d5 7001 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7002}
7003
7004/* cpus with isolated domains */
dcc30a35 7005static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7006
7007/* Setup the mask of cpus configured for isolated domains */
7008static int __init isolated_cpu_setup(char *str)
7009{
968ea6d8 7010 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7011 return 1;
7012}
7013
8927f494 7014__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7015
7016/*
6711cab4
SS
7017 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7018 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7019 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7020 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7021 *
7022 * init_sched_build_groups will build a circular linked list of the groups
7023 * covered by the given span, and will set each group's ->cpumask correctly,
7024 * and ->cpu_power to 0.
7025 */
a616058b 7026static void
96f874e2
RR
7027init_sched_build_groups(const struct cpumask *span,
7028 const struct cpumask *cpu_map,
7029 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7030 struct sched_group **sg,
96f874e2
RR
7031 struct cpumask *tmpmask),
7032 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7033{
7034 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7035 int i;
7036
96f874e2 7037 cpumask_clear(covered);
7c16ec58 7038
abcd083a 7039 for_each_cpu(i, span) {
6711cab4 7040 struct sched_group *sg;
7c16ec58 7041 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7042 int j;
7043
758b2cdc 7044 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7045 continue;
7046
758b2cdc 7047 cpumask_clear(sched_group_cpus(sg));
5517d86b 7048 sg->__cpu_power = 0;
1da177e4 7049
abcd083a 7050 for_each_cpu(j, span) {
7c16ec58 7051 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7052 continue;
7053
96f874e2 7054 cpumask_set_cpu(j, covered);
758b2cdc 7055 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7056 }
7057 if (!first)
7058 first = sg;
7059 if (last)
7060 last->next = sg;
7061 last = sg;
7062 }
7063 last->next = first;
7064}
7065
9c1cfda2 7066#define SD_NODES_PER_DOMAIN 16
1da177e4 7067
9c1cfda2 7068#ifdef CONFIG_NUMA
198e2f18 7069
9c1cfda2
JH
7070/**
7071 * find_next_best_node - find the next node to include in a sched_domain
7072 * @node: node whose sched_domain we're building
7073 * @used_nodes: nodes already in the sched_domain
7074 *
41a2d6cf 7075 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7076 * finds the closest node not already in the @used_nodes map.
7077 *
7078 * Should use nodemask_t.
7079 */
c5f59f08 7080static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7081{
7082 int i, n, val, min_val, best_node = 0;
7083
7084 min_val = INT_MAX;
7085
076ac2af 7086 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7087 /* Start at @node */
076ac2af 7088 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7089
7090 if (!nr_cpus_node(n))
7091 continue;
7092
7093 /* Skip already used nodes */
c5f59f08 7094 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7095 continue;
7096
7097 /* Simple min distance search */
7098 val = node_distance(node, n);
7099
7100 if (val < min_val) {
7101 min_val = val;
7102 best_node = n;
7103 }
7104 }
7105
c5f59f08 7106 node_set(best_node, *used_nodes);
9c1cfda2
JH
7107 return best_node;
7108}
7109
7110/**
7111 * sched_domain_node_span - get a cpumask for a node's sched_domain
7112 * @node: node whose cpumask we're constructing
73486722 7113 * @span: resulting cpumask
9c1cfda2 7114 *
41a2d6cf 7115 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7116 * should be one that prevents unnecessary balancing, but also spreads tasks
7117 * out optimally.
7118 */
96f874e2 7119static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7120{
c5f59f08 7121 nodemask_t used_nodes;
96f874e2 7122 /* FIXME: use cpumask_of_node() */
c5f59f08 7123 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7124 int i;
9c1cfda2 7125
4bdbaad3 7126 cpus_clear(*span);
c5f59f08 7127 nodes_clear(used_nodes);
9c1cfda2 7128
4bdbaad3 7129 cpus_or(*span, *span, *nodemask);
c5f59f08 7130 node_set(node, used_nodes);
9c1cfda2
JH
7131
7132 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7133 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7134
c5f59f08 7135 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7136 cpus_or(*span, *span, *nodemask);
9c1cfda2 7137 }
9c1cfda2 7138}
6d6bc0ad 7139#endif /* CONFIG_NUMA */
9c1cfda2 7140
5c45bf27 7141int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7142
6c99e9ad
RR
7143/*
7144 * The cpus mask in sched_group and sched_domain hangs off the end.
7145 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7146 * for nr_cpu_ids < CONFIG_NR_CPUS.
7147 */
7148struct static_sched_group {
7149 struct sched_group sg;
7150 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7151};
7152
7153struct static_sched_domain {
7154 struct sched_domain sd;
7155 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7156};
7157
9c1cfda2 7158/*
48f24c4d 7159 * SMT sched-domains:
9c1cfda2 7160 */
1da177e4 7161#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7162static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7163static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7164
41a2d6cf 7165static int
96f874e2
RR
7166cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7167 struct sched_group **sg, struct cpumask *unused)
1da177e4 7168{
6711cab4 7169 if (sg)
6c99e9ad 7170 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7171 return cpu;
7172}
6d6bc0ad 7173#endif /* CONFIG_SCHED_SMT */
1da177e4 7174
48f24c4d
IM
7175/*
7176 * multi-core sched-domains:
7177 */
1e9f28fa 7178#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7179static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7180static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7181#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7182
7183#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7184static int
96f874e2
RR
7185cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7186 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7187{
6711cab4 7188 int group;
7c16ec58 7189
96f874e2
RR
7190 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7191 group = cpumask_first(mask);
6711cab4 7192 if (sg)
6c99e9ad 7193 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7194 return group;
1e9f28fa
SS
7195}
7196#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7197static int
96f874e2
RR
7198cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7199 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7200{
6711cab4 7201 if (sg)
6c99e9ad 7202 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7203 return cpu;
7204}
7205#endif
7206
6c99e9ad
RR
7207static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7208static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7209
41a2d6cf 7210static int
96f874e2
RR
7211cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7212 struct sched_group **sg, struct cpumask *mask)
1da177e4 7213{
6711cab4 7214 int group;
48f24c4d 7215#ifdef CONFIG_SCHED_MC
96f874e2 7216 /* FIXME: Use cpu_coregroup_mask. */
7c16ec58
MT
7217 *mask = cpu_coregroup_map(cpu);
7218 cpus_and(*mask, *mask, *cpu_map);
96f874e2 7219 group = cpumask_first(mask);
1e9f28fa 7220#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7221 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7222 group = cpumask_first(mask);
1da177e4 7223#else
6711cab4 7224 group = cpu;
1da177e4 7225#endif
6711cab4 7226 if (sg)
6c99e9ad 7227 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7228 return group;
1da177e4
LT
7229}
7230
7231#ifdef CONFIG_NUMA
1da177e4 7232/*
9c1cfda2
JH
7233 * The init_sched_build_groups can't handle what we want to do with node
7234 * groups, so roll our own. Now each node has its own list of groups which
7235 * gets dynamically allocated.
1da177e4 7236 */
9c1cfda2 7237static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7238static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7239
9c1cfda2 7240static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6c99e9ad 7241static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7242
96f874e2
RR
7243static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7244 struct sched_group **sg,
7245 struct cpumask *nodemask)
9c1cfda2 7246{
6711cab4 7247 int group;
96f874e2 7248 /* FIXME: use cpumask_of_node */
ea6f18ed 7249 node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
6711cab4 7250
96f874e2
RR
7251 cpumask_and(nodemask, pnodemask, cpu_map);
7252 group = cpumask_first(nodemask);
6711cab4
SS
7253
7254 if (sg)
6c99e9ad 7255 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7256 return group;
1da177e4 7257}
6711cab4 7258
08069033
SS
7259static void init_numa_sched_groups_power(struct sched_group *group_head)
7260{
7261 struct sched_group *sg = group_head;
7262 int j;
7263
7264 if (!sg)
7265 return;
3a5c359a 7266 do {
758b2cdc 7267 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7268 struct sched_domain *sd;
08069033 7269
6c99e9ad 7270 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7271 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7272 /*
7273 * Only add "power" once for each
7274 * physical package.
7275 */
7276 continue;
7277 }
08069033 7278
3a5c359a
AK
7279 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7280 }
7281 sg = sg->next;
7282 } while (sg != group_head);
08069033 7283}
6d6bc0ad 7284#endif /* CONFIG_NUMA */
1da177e4 7285
a616058b 7286#ifdef CONFIG_NUMA
51888ca2 7287/* Free memory allocated for various sched_group structures */
96f874e2
RR
7288static void free_sched_groups(const struct cpumask *cpu_map,
7289 struct cpumask *nodemask)
51888ca2 7290{
a616058b 7291 int cpu, i;
51888ca2 7292
abcd083a 7293 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7294 struct sched_group **sched_group_nodes
7295 = sched_group_nodes_bycpu[cpu];
7296
51888ca2
SV
7297 if (!sched_group_nodes)
7298 continue;
7299
076ac2af 7300 for (i = 0; i < nr_node_ids; i++) {
51888ca2 7301 struct sched_group *oldsg, *sg = sched_group_nodes[i];
96f874e2 7302 /* FIXME: Use cpumask_of_node */
ea6f18ed 7303 node_to_cpumask_ptr(pnodemask, i);
51888ca2 7304
ea6f18ed 7305 cpus_and(*nodemask, *pnodemask, *cpu_map);
96f874e2 7306 if (cpumask_empty(nodemask))
51888ca2
SV
7307 continue;
7308
7309 if (sg == NULL)
7310 continue;
7311 sg = sg->next;
7312next_sg:
7313 oldsg = sg;
7314 sg = sg->next;
7315 kfree(oldsg);
7316 if (oldsg != sched_group_nodes[i])
7317 goto next_sg;
7318 }
7319 kfree(sched_group_nodes);
7320 sched_group_nodes_bycpu[cpu] = NULL;
7321 }
51888ca2 7322}
6d6bc0ad 7323#else /* !CONFIG_NUMA */
96f874e2
RR
7324static void free_sched_groups(const struct cpumask *cpu_map,
7325 struct cpumask *nodemask)
a616058b
SS
7326{
7327}
6d6bc0ad 7328#endif /* CONFIG_NUMA */
51888ca2 7329
89c4710e
SS
7330/*
7331 * Initialize sched groups cpu_power.
7332 *
7333 * cpu_power indicates the capacity of sched group, which is used while
7334 * distributing the load between different sched groups in a sched domain.
7335 * Typically cpu_power for all the groups in a sched domain will be same unless
7336 * there are asymmetries in the topology. If there are asymmetries, group
7337 * having more cpu_power will pickup more load compared to the group having
7338 * less cpu_power.
7339 *
7340 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7341 * the maximum number of tasks a group can handle in the presence of other idle
7342 * or lightly loaded groups in the same sched domain.
7343 */
7344static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7345{
7346 struct sched_domain *child;
7347 struct sched_group *group;
7348
7349 WARN_ON(!sd || !sd->groups);
7350
758b2cdc 7351 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7352 return;
7353
7354 child = sd->child;
7355
5517d86b
ED
7356 sd->groups->__cpu_power = 0;
7357
89c4710e
SS
7358 /*
7359 * For perf policy, if the groups in child domain share resources
7360 * (for example cores sharing some portions of the cache hierarchy
7361 * or SMT), then set this domain groups cpu_power such that each group
7362 * can handle only one task, when there are other idle groups in the
7363 * same sched domain.
7364 */
7365 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7366 (child->flags &
7367 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7368 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7369 return;
7370 }
7371
89c4710e
SS
7372 /*
7373 * add cpu_power of each child group to this groups cpu_power
7374 */
7375 group = child->groups;
7376 do {
5517d86b 7377 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7378 group = group->next;
7379 } while (group != child->groups);
7380}
7381
7c16ec58
MT
7382/*
7383 * Initializers for schedule domains
7384 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7385 */
7386
a5d8c348
IM
7387#ifdef CONFIG_SCHED_DEBUG
7388# define SD_INIT_NAME(sd, type) sd->name = #type
7389#else
7390# define SD_INIT_NAME(sd, type) do { } while (0)
7391#endif
7392
7c16ec58 7393#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7394
7c16ec58
MT
7395#define SD_INIT_FUNC(type) \
7396static noinline void sd_init_##type(struct sched_domain *sd) \
7397{ \
7398 memset(sd, 0, sizeof(*sd)); \
7399 *sd = SD_##type##_INIT; \
1d3504fc 7400 sd->level = SD_LV_##type; \
a5d8c348 7401 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7402}
7403
7404SD_INIT_FUNC(CPU)
7405#ifdef CONFIG_NUMA
7406 SD_INIT_FUNC(ALLNODES)
7407 SD_INIT_FUNC(NODE)
7408#endif
7409#ifdef CONFIG_SCHED_SMT
7410 SD_INIT_FUNC(SIBLING)
7411#endif
7412#ifdef CONFIG_SCHED_MC
7413 SD_INIT_FUNC(MC)
7414#endif
7415
1d3504fc
HS
7416static int default_relax_domain_level = -1;
7417
7418static int __init setup_relax_domain_level(char *str)
7419{
30e0e178
LZ
7420 unsigned long val;
7421
7422 val = simple_strtoul(str, NULL, 0);
7423 if (val < SD_LV_MAX)
7424 default_relax_domain_level = val;
7425
1d3504fc
HS
7426 return 1;
7427}
7428__setup("relax_domain_level=", setup_relax_domain_level);
7429
7430static void set_domain_attribute(struct sched_domain *sd,
7431 struct sched_domain_attr *attr)
7432{
7433 int request;
7434
7435 if (!attr || attr->relax_domain_level < 0) {
7436 if (default_relax_domain_level < 0)
7437 return;
7438 else
7439 request = default_relax_domain_level;
7440 } else
7441 request = attr->relax_domain_level;
7442 if (request < sd->level) {
7443 /* turn off idle balance on this domain */
7444 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7445 } else {
7446 /* turn on idle balance on this domain */
7447 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7448 }
7449}
7450
1da177e4 7451/*
1a20ff27
DG
7452 * Build sched domains for a given set of cpus and attach the sched domains
7453 * to the individual cpus
1da177e4 7454 */
96f874e2 7455static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7456 struct sched_domain_attr *attr)
1da177e4 7457{
3404c8d9 7458 int i, err = -ENOMEM;
57d885fe 7459 struct root_domain *rd;
3404c8d9
RR
7460 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7461 tmpmask;
d1b55138 7462#ifdef CONFIG_NUMA
3404c8d9 7463 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7464 struct sched_group **sched_group_nodes = NULL;
6711cab4 7465 int sd_allnodes = 0;
d1b55138 7466
3404c8d9
RR
7467 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7468 goto out;
7469 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7470 goto free_domainspan;
7471 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7472 goto free_covered;
7473#endif
7474
7475 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7476 goto free_notcovered;
7477 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7478 goto free_nodemask;
7479 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7480 goto free_this_sibling_map;
7481 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7482 goto free_this_core_map;
7483 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7484 goto free_send_covered;
7485
7486#ifdef CONFIG_NUMA
d1b55138
JH
7487 /*
7488 * Allocate the per-node list of sched groups
7489 */
076ac2af 7490 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7491 GFP_KERNEL);
d1b55138
JH
7492 if (!sched_group_nodes) {
7493 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7494 goto free_tmpmask;
d1b55138 7495 }
d1b55138 7496#endif
1da177e4 7497
dc938520 7498 rd = alloc_rootdomain();
57d885fe
GH
7499 if (!rd) {
7500 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7501 goto free_sched_groups;
57d885fe
GH
7502 }
7503
7c16ec58 7504#ifdef CONFIG_NUMA
96f874e2 7505 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7506#endif
7507
1da177e4 7508 /*
1a20ff27 7509 * Set up domains for cpus specified by the cpu_map.
1da177e4 7510 */
abcd083a 7511 for_each_cpu(i, cpu_map) {
1da177e4 7512 struct sched_domain *sd = NULL, *p;
1da177e4 7513
96f874e2 7514 /* FIXME: use cpumask_of_node */
7c16ec58
MT
7515 *nodemask = node_to_cpumask(cpu_to_node(i));
7516 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7517
7518#ifdef CONFIG_NUMA
96f874e2
RR
7519 if (cpumask_weight(cpu_map) >
7520 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
9c1cfda2 7521 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7522 SD_INIT(sd, ALLNODES);
1d3504fc 7523 set_domain_attribute(sd, attr);
758b2cdc 7524 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7525 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7526 p = sd;
6711cab4 7527 sd_allnodes = 1;
9c1cfda2
JH
7528 } else
7529 p = NULL;
7530
1da177e4 7531 sd = &per_cpu(node_domains, i);
7c16ec58 7532 SD_INIT(sd, NODE);
1d3504fc 7533 set_domain_attribute(sd, attr);
758b2cdc 7534 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7535 sd->parent = p;
1a848870
SS
7536 if (p)
7537 p->child = sd;
758b2cdc
RR
7538 cpumask_and(sched_domain_span(sd),
7539 sched_domain_span(sd), cpu_map);
1da177e4
LT
7540#endif
7541
7542 p = sd;
6c99e9ad 7543 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7544 SD_INIT(sd, CPU);
1d3504fc 7545 set_domain_attribute(sd, attr);
758b2cdc 7546 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7547 sd->parent = p;
1a848870
SS
7548 if (p)
7549 p->child = sd;
7c16ec58 7550 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7551
1e9f28fa
SS
7552#ifdef CONFIG_SCHED_MC
7553 p = sd;
6c99e9ad 7554 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7555 SD_INIT(sd, MC);
1d3504fc 7556 set_domain_attribute(sd, attr);
758b2cdc
RR
7557 *sched_domain_span(sd) = cpu_coregroup_map(i);
7558 cpumask_and(sched_domain_span(sd),
7559 sched_domain_span(sd), cpu_map);
1e9f28fa 7560 sd->parent = p;
1a848870 7561 p->child = sd;
7c16ec58 7562 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7563#endif
7564
1da177e4
LT
7565#ifdef CONFIG_SCHED_SMT
7566 p = sd;
6c99e9ad 7567 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7568 SD_INIT(sd, SIBLING);
1d3504fc 7569 set_domain_attribute(sd, attr);
758b2cdc
RR
7570 cpumask_and(sched_domain_span(sd),
7571 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7572 sd->parent = p;
1a848870 7573 p->child = sd;
7c16ec58 7574 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7575#endif
7576 }
7577
7578#ifdef CONFIG_SCHED_SMT
7579 /* Set up CPU (sibling) groups */
abcd083a 7580 for_each_cpu(i, cpu_map) {
96f874e2
RR
7581 cpumask_and(this_sibling_map,
7582 &per_cpu(cpu_sibling_map, i), cpu_map);
7583 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7584 continue;
7585
dd41f596 7586 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7587 &cpu_to_cpu_group,
7588 send_covered, tmpmask);
1da177e4
LT
7589 }
7590#endif
7591
1e9f28fa
SS
7592#ifdef CONFIG_SCHED_MC
7593 /* Set up multi-core groups */
abcd083a 7594 for_each_cpu(i, cpu_map) {
96f874e2 7595 /* FIXME: Use cpu_coregroup_mask */
7c16ec58
MT
7596 *this_core_map = cpu_coregroup_map(i);
7597 cpus_and(*this_core_map, *this_core_map, *cpu_map);
96f874e2 7598 if (i != cpumask_first(this_core_map))
1e9f28fa 7599 continue;
7c16ec58 7600
dd41f596 7601 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7602 &cpu_to_core_group,
7603 send_covered, tmpmask);
1e9f28fa
SS
7604 }
7605#endif
7606
1da177e4 7607 /* Set up physical groups */
076ac2af 7608 for (i = 0; i < nr_node_ids; i++) {
96f874e2 7609 /* FIXME: Use cpumask_of_node */
7c16ec58
MT
7610 *nodemask = node_to_cpumask(i);
7611 cpus_and(*nodemask, *nodemask, *cpu_map);
96f874e2 7612 if (cpumask_empty(nodemask))
1da177e4
LT
7613 continue;
7614
7c16ec58
MT
7615 init_sched_build_groups(nodemask, cpu_map,
7616 &cpu_to_phys_group,
7617 send_covered, tmpmask);
1da177e4
LT
7618 }
7619
7620#ifdef CONFIG_NUMA
7621 /* Set up node groups */
7c16ec58 7622 if (sd_allnodes) {
7c16ec58
MT
7623 init_sched_build_groups(cpu_map, cpu_map,
7624 &cpu_to_allnodes_group,
7625 send_covered, tmpmask);
7626 }
9c1cfda2 7627
076ac2af 7628 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7629 /* Set up node groups */
7630 struct sched_group *sg, *prev;
9c1cfda2
JH
7631 int j;
7632
96f874e2 7633 /* FIXME: Use cpumask_of_node */
7c16ec58 7634 *nodemask = node_to_cpumask(i);
96f874e2 7635 cpumask_clear(covered);
7c16ec58
MT
7636
7637 cpus_and(*nodemask, *nodemask, *cpu_map);
96f874e2 7638 if (cpumask_empty(nodemask)) {
d1b55138 7639 sched_group_nodes[i] = NULL;
9c1cfda2 7640 continue;
d1b55138 7641 }
9c1cfda2 7642
4bdbaad3 7643 sched_domain_node_span(i, domainspan);
96f874e2 7644 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7645
6c99e9ad
RR
7646 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7647 GFP_KERNEL, i);
51888ca2
SV
7648 if (!sg) {
7649 printk(KERN_WARNING "Can not alloc domain group for "
7650 "node %d\n", i);
7651 goto error;
7652 }
9c1cfda2 7653 sched_group_nodes[i] = sg;
abcd083a 7654 for_each_cpu(j, nodemask) {
9c1cfda2 7655 struct sched_domain *sd;
9761eea8 7656
9c1cfda2
JH
7657 sd = &per_cpu(node_domains, j);
7658 sd->groups = sg;
9c1cfda2 7659 }
5517d86b 7660 sg->__cpu_power = 0;
758b2cdc 7661 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7662 sg->next = sg;
96f874e2 7663 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7664 prev = sg;
7665
076ac2af 7666 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7667 int n = (i + j) % nr_node_ids;
96f874e2 7668 /* FIXME: Use cpumask_of_node */
c5f59f08 7669 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7670
96f874e2
RR
7671 cpumask_complement(notcovered, covered);
7672 cpumask_and(tmpmask, notcovered, cpu_map);
7673 cpumask_and(tmpmask, tmpmask, domainspan);
7674 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7675 break;
7676
96f874e2
RR
7677 cpumask_and(tmpmask, tmpmask, pnodemask);
7678 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7679 continue;
7680
6c99e9ad
RR
7681 sg = kmalloc_node(sizeof(struct sched_group) +
7682 cpumask_size(),
15f0b676 7683 GFP_KERNEL, i);
9c1cfda2
JH
7684 if (!sg) {
7685 printk(KERN_WARNING
7686 "Can not alloc domain group for node %d\n", j);
51888ca2 7687 goto error;
9c1cfda2 7688 }
5517d86b 7689 sg->__cpu_power = 0;
758b2cdc 7690 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7691 sg->next = prev->next;
96f874e2 7692 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7693 prev->next = sg;
7694 prev = sg;
7695 }
9c1cfda2 7696 }
1da177e4
LT
7697#endif
7698
7699 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7700#ifdef CONFIG_SCHED_SMT
abcd083a 7701 for_each_cpu(i, cpu_map) {
6c99e9ad 7702 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7703
89c4710e 7704 init_sched_groups_power(i, sd);
5c45bf27 7705 }
1da177e4 7706#endif
1e9f28fa 7707#ifdef CONFIG_SCHED_MC
abcd083a 7708 for_each_cpu(i, cpu_map) {
6c99e9ad 7709 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7710
89c4710e 7711 init_sched_groups_power(i, sd);
5c45bf27
SS
7712 }
7713#endif
1e9f28fa 7714
abcd083a 7715 for_each_cpu(i, cpu_map) {
6c99e9ad 7716 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7717
89c4710e 7718 init_sched_groups_power(i, sd);
1da177e4
LT
7719 }
7720
9c1cfda2 7721#ifdef CONFIG_NUMA
076ac2af 7722 for (i = 0; i < nr_node_ids; i++)
08069033 7723 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7724
6711cab4
SS
7725 if (sd_allnodes) {
7726 struct sched_group *sg;
f712c0c7 7727
96f874e2 7728 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7729 tmpmask);
f712c0c7
SS
7730 init_numa_sched_groups_power(sg);
7731 }
9c1cfda2
JH
7732#endif
7733
1da177e4 7734 /* Attach the domains */
abcd083a 7735 for_each_cpu(i, cpu_map) {
1da177e4
LT
7736 struct sched_domain *sd;
7737#ifdef CONFIG_SCHED_SMT
6c99e9ad 7738 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7739#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7740 sd = &per_cpu(core_domains, i).sd;
1da177e4 7741#else
6c99e9ad 7742 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7743#endif
57d885fe 7744 cpu_attach_domain(sd, rd, i);
1da177e4 7745 }
51888ca2 7746
3404c8d9
RR
7747 err = 0;
7748
7749free_tmpmask:
7750 free_cpumask_var(tmpmask);
7751free_send_covered:
7752 free_cpumask_var(send_covered);
7753free_this_core_map:
7754 free_cpumask_var(this_core_map);
7755free_this_sibling_map:
7756 free_cpumask_var(this_sibling_map);
7757free_nodemask:
7758 free_cpumask_var(nodemask);
7759free_notcovered:
7760#ifdef CONFIG_NUMA
7761 free_cpumask_var(notcovered);
7762free_covered:
7763 free_cpumask_var(covered);
7764free_domainspan:
7765 free_cpumask_var(domainspan);
7766out:
7767#endif
7768 return err;
7769
7770free_sched_groups:
7771#ifdef CONFIG_NUMA
7772 kfree(sched_group_nodes);
7773#endif
7774 goto free_tmpmask;
51888ca2 7775
a616058b 7776#ifdef CONFIG_NUMA
51888ca2 7777error:
7c16ec58 7778 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7779 free_rootdomain(rd);
3404c8d9 7780 goto free_tmpmask;
a616058b 7781#endif
1da177e4 7782}
029190c5 7783
96f874e2 7784static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7785{
7786 return __build_sched_domains(cpu_map, NULL);
7787}
7788
96f874e2 7789static struct cpumask *doms_cur; /* current sched domains */
029190c5 7790static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7791static struct sched_domain_attr *dattr_cur;
7792 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7793
7794/*
7795 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7796 * cpumask) fails, then fallback to a single sched domain,
7797 * as determined by the single cpumask fallback_doms.
029190c5 7798 */
4212823f 7799static cpumask_var_t fallback_doms;
029190c5 7800
ee79d1bd
HC
7801/*
7802 * arch_update_cpu_topology lets virtualized architectures update the
7803 * cpu core maps. It is supposed to return 1 if the topology changed
7804 * or 0 if it stayed the same.
7805 */
7806int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7807{
ee79d1bd 7808 return 0;
22e52b07
HC
7809}
7810
1a20ff27 7811/*
41a2d6cf 7812 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7813 * For now this just excludes isolated cpus, but could be used to
7814 * exclude other special cases in the future.
1a20ff27 7815 */
96f874e2 7816static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7817{
7378547f
MM
7818 int err;
7819
22e52b07 7820 arch_update_cpu_topology();
029190c5 7821 ndoms_cur = 1;
96f874e2 7822 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7823 if (!doms_cur)
4212823f 7824 doms_cur = fallback_doms;
dcc30a35 7825 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7826 dattr_cur = NULL;
7378547f 7827 err = build_sched_domains(doms_cur);
6382bc90 7828 register_sched_domain_sysctl();
7378547f
MM
7829
7830 return err;
1a20ff27
DG
7831}
7832
96f874e2
RR
7833static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7834 struct cpumask *tmpmask)
1da177e4 7835{
7c16ec58 7836 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7837}
1da177e4 7838
1a20ff27
DG
7839/*
7840 * Detach sched domains from a group of cpus specified in cpu_map
7841 * These cpus will now be attached to the NULL domain
7842 */
96f874e2 7843static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7844{
96f874e2
RR
7845 /* Save because hotplug lock held. */
7846 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7847 int i;
7848
abcd083a 7849 for_each_cpu(i, cpu_map)
57d885fe 7850 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7851 synchronize_sched();
96f874e2 7852 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7853}
7854
1d3504fc
HS
7855/* handle null as "default" */
7856static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7857 struct sched_domain_attr *new, int idx_new)
7858{
7859 struct sched_domain_attr tmp;
7860
7861 /* fast path */
7862 if (!new && !cur)
7863 return 1;
7864
7865 tmp = SD_ATTR_INIT;
7866 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7867 new ? (new + idx_new) : &tmp,
7868 sizeof(struct sched_domain_attr));
7869}
7870
029190c5
PJ
7871/*
7872 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7873 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7874 * doms_new[] to the current sched domain partitioning, doms_cur[].
7875 * It destroys each deleted domain and builds each new domain.
7876 *
96f874e2 7877 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
7878 * The masks don't intersect (don't overlap.) We should setup one
7879 * sched domain for each mask. CPUs not in any of the cpumasks will
7880 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7881 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7882 * it as it is.
7883 *
41a2d6cf
IM
7884 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7885 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7886 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7887 * ndoms_new == 1, and partition_sched_domains() will fallback to
7888 * the single partition 'fallback_doms', it also forces the domains
7889 * to be rebuilt.
029190c5 7890 *
96f874e2 7891 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7892 * ndoms_new == 0 is a special case for destroying existing domains,
7893 * and it will not create the default domain.
dfb512ec 7894 *
029190c5
PJ
7895 * Call with hotplug lock held
7896 */
96f874e2
RR
7897/* FIXME: Change to struct cpumask *doms_new[] */
7898void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 7899 struct sched_domain_attr *dattr_new)
029190c5 7900{
dfb512ec 7901 int i, j, n;
d65bd5ec 7902 int new_topology;
029190c5 7903
712555ee 7904 mutex_lock(&sched_domains_mutex);
a1835615 7905
7378547f
MM
7906 /* always unregister in case we don't destroy any domains */
7907 unregister_sched_domain_sysctl();
7908
d65bd5ec
HC
7909 /* Let architecture update cpu core mappings. */
7910 new_topology = arch_update_cpu_topology();
7911
dfb512ec 7912 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7913
7914 /* Destroy deleted domains */
7915 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7916 for (j = 0; j < n && !new_topology; j++) {
96f874e2 7917 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 7918 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7919 goto match1;
7920 }
7921 /* no match - a current sched domain not in new doms_new[] */
7922 detach_destroy_domains(doms_cur + i);
7923match1:
7924 ;
7925 }
7926
e761b772
MK
7927 if (doms_new == NULL) {
7928 ndoms_cur = 0;
4212823f 7929 doms_new = fallback_doms;
dcc30a35 7930 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 7931 WARN_ON_ONCE(dattr_new);
e761b772
MK
7932 }
7933
029190c5
PJ
7934 /* Build new domains */
7935 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7936 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 7937 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 7938 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7939 goto match2;
7940 }
7941 /* no match - add a new doms_new */
1d3504fc
HS
7942 __build_sched_domains(doms_new + i,
7943 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7944match2:
7945 ;
7946 }
7947
7948 /* Remember the new sched domains */
4212823f 7949 if (doms_cur != fallback_doms)
029190c5 7950 kfree(doms_cur);
1d3504fc 7951 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7952 doms_cur = doms_new;
1d3504fc 7953 dattr_cur = dattr_new;
029190c5 7954 ndoms_cur = ndoms_new;
7378547f
MM
7955
7956 register_sched_domain_sysctl();
a1835615 7957
712555ee 7958 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7959}
7960
5c45bf27 7961#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7962int arch_reinit_sched_domains(void)
5c45bf27 7963{
95402b38 7964 get_online_cpus();
dfb512ec
MK
7965
7966 /* Destroy domains first to force the rebuild */
7967 partition_sched_domains(0, NULL, NULL);
7968
e761b772 7969 rebuild_sched_domains();
95402b38 7970 put_online_cpus();
dfb512ec 7971
e761b772 7972 return 0;
5c45bf27
SS
7973}
7974
7975static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7976{
7977 int ret;
afb8a9b7 7978 unsigned int level = 0;
5c45bf27 7979
afb8a9b7
GS
7980 if (sscanf(buf, "%u", &level) != 1)
7981 return -EINVAL;
7982
7983 /*
7984 * level is always be positive so don't check for
7985 * level < POWERSAVINGS_BALANCE_NONE which is 0
7986 * What happens on 0 or 1 byte write,
7987 * need to check for count as well?
7988 */
7989
7990 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7991 return -EINVAL;
7992
7993 if (smt)
afb8a9b7 7994 sched_smt_power_savings = level;
5c45bf27 7995 else
afb8a9b7 7996 sched_mc_power_savings = level;
5c45bf27
SS
7997
7998 ret = arch_reinit_sched_domains();
7999
8000 return ret ? ret : count;
8001}
8002
5c45bf27 8003#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8004static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8005 char *page)
5c45bf27
SS
8006{
8007 return sprintf(page, "%u\n", sched_mc_power_savings);
8008}
f718cd4a 8009static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8010 const char *buf, size_t count)
5c45bf27
SS
8011{
8012 return sched_power_savings_store(buf, count, 0);
8013}
f718cd4a
AK
8014static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8015 sched_mc_power_savings_show,
8016 sched_mc_power_savings_store);
5c45bf27
SS
8017#endif
8018
8019#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8020static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8021 char *page)
5c45bf27
SS
8022{
8023 return sprintf(page, "%u\n", sched_smt_power_savings);
8024}
f718cd4a 8025static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8026 const char *buf, size_t count)
5c45bf27
SS
8027{
8028 return sched_power_savings_store(buf, count, 1);
8029}
f718cd4a
AK
8030static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8031 sched_smt_power_savings_show,
6707de00
AB
8032 sched_smt_power_savings_store);
8033#endif
8034
8035int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8036{
8037 int err = 0;
8038
8039#ifdef CONFIG_SCHED_SMT
8040 if (smt_capable())
8041 err = sysfs_create_file(&cls->kset.kobj,
8042 &attr_sched_smt_power_savings.attr);
8043#endif
8044#ifdef CONFIG_SCHED_MC
8045 if (!err && mc_capable())
8046 err = sysfs_create_file(&cls->kset.kobj,
8047 &attr_sched_mc_power_savings.attr);
8048#endif
8049 return err;
8050}
6d6bc0ad 8051#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8052
e761b772 8053#ifndef CONFIG_CPUSETS
1da177e4 8054/*
e761b772
MK
8055 * Add online and remove offline CPUs from the scheduler domains.
8056 * When cpusets are enabled they take over this function.
1da177e4
LT
8057 */
8058static int update_sched_domains(struct notifier_block *nfb,
8059 unsigned long action, void *hcpu)
e761b772
MK
8060{
8061 switch (action) {
8062 case CPU_ONLINE:
8063 case CPU_ONLINE_FROZEN:
8064 case CPU_DEAD:
8065 case CPU_DEAD_FROZEN:
dfb512ec 8066 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8067 return NOTIFY_OK;
8068
8069 default:
8070 return NOTIFY_DONE;
8071 }
8072}
8073#endif
8074
8075static int update_runtime(struct notifier_block *nfb,
8076 unsigned long action, void *hcpu)
1da177e4 8077{
7def2be1
PZ
8078 int cpu = (int)(long)hcpu;
8079
1da177e4 8080 switch (action) {
1da177e4 8081 case CPU_DOWN_PREPARE:
8bb78442 8082 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8083 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8084 return NOTIFY_OK;
8085
1da177e4 8086 case CPU_DOWN_FAILED:
8bb78442 8087 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8088 case CPU_ONLINE:
8bb78442 8089 case CPU_ONLINE_FROZEN:
7def2be1 8090 enable_runtime(cpu_rq(cpu));
e761b772
MK
8091 return NOTIFY_OK;
8092
1da177e4
LT
8093 default:
8094 return NOTIFY_DONE;
8095 }
1da177e4 8096}
1da177e4
LT
8097
8098void __init sched_init_smp(void)
8099{
dcc30a35
RR
8100 cpumask_var_t non_isolated_cpus;
8101
8102 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8103
434d53b0
MT
8104#if defined(CONFIG_NUMA)
8105 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8106 GFP_KERNEL);
8107 BUG_ON(sched_group_nodes_bycpu == NULL);
8108#endif
95402b38 8109 get_online_cpus();
712555ee 8110 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8111 arch_init_sched_domains(cpu_online_mask);
8112 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8113 if (cpumask_empty(non_isolated_cpus))
8114 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8115 mutex_unlock(&sched_domains_mutex);
95402b38 8116 put_online_cpus();
e761b772
MK
8117
8118#ifndef CONFIG_CPUSETS
1da177e4
LT
8119 /* XXX: Theoretical race here - CPU may be hotplugged now */
8120 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8121#endif
8122
8123 /* RT runtime code needs to handle some hotplug events */
8124 hotcpu_notifier(update_runtime, 0);
8125
b328ca18 8126 init_hrtick();
5c1e1767
NP
8127
8128 /* Move init over to a non-isolated CPU */
dcc30a35 8129 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8130 BUG();
19978ca6 8131 sched_init_granularity();
dcc30a35 8132 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8133
8134 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8135 init_sched_rt_class();
1da177e4
LT
8136}
8137#else
8138void __init sched_init_smp(void)
8139{
19978ca6 8140 sched_init_granularity();
1da177e4
LT
8141}
8142#endif /* CONFIG_SMP */
8143
8144int in_sched_functions(unsigned long addr)
8145{
1da177e4
LT
8146 return in_lock_functions(addr) ||
8147 (addr >= (unsigned long)__sched_text_start
8148 && addr < (unsigned long)__sched_text_end);
8149}
8150
a9957449 8151static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8152{
8153 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8154 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8155#ifdef CONFIG_FAIR_GROUP_SCHED
8156 cfs_rq->rq = rq;
8157#endif
67e9fb2a 8158 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8159}
8160
fa85ae24
PZ
8161static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8162{
8163 struct rt_prio_array *array;
8164 int i;
8165
8166 array = &rt_rq->active;
8167 for (i = 0; i < MAX_RT_PRIO; i++) {
8168 INIT_LIST_HEAD(array->queue + i);
8169 __clear_bit(i, array->bitmap);
8170 }
8171 /* delimiter for bitsearch: */
8172 __set_bit(MAX_RT_PRIO, array->bitmap);
8173
052f1dc7 8174#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
8175 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8176 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8177#endif
fa85ae24
PZ
8178#ifdef CONFIG_SMP
8179 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8180 rt_rq->overloaded = 0;
8181#endif
8182
8183 rt_rq->rt_time = 0;
8184 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8185 rt_rq->rt_runtime = 0;
8186 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8187
052f1dc7 8188#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8189 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8190 rt_rq->rq = rq;
8191#endif
fa85ae24
PZ
8192}
8193
6f505b16 8194#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8195static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8196 struct sched_entity *se, int cpu, int add,
8197 struct sched_entity *parent)
6f505b16 8198{
ec7dc8ac 8199 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8200 tg->cfs_rq[cpu] = cfs_rq;
8201 init_cfs_rq(cfs_rq, rq);
8202 cfs_rq->tg = tg;
8203 if (add)
8204 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8205
8206 tg->se[cpu] = se;
354d60c2
DG
8207 /* se could be NULL for init_task_group */
8208 if (!se)
8209 return;
8210
ec7dc8ac
DG
8211 if (!parent)
8212 se->cfs_rq = &rq->cfs;
8213 else
8214 se->cfs_rq = parent->my_q;
8215
6f505b16
PZ
8216 se->my_q = cfs_rq;
8217 se->load.weight = tg->shares;
e05510d0 8218 se->load.inv_weight = 0;
ec7dc8ac 8219 se->parent = parent;
6f505b16 8220}
052f1dc7 8221#endif
6f505b16 8222
052f1dc7 8223#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8224static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8225 struct sched_rt_entity *rt_se, int cpu, int add,
8226 struct sched_rt_entity *parent)
6f505b16 8227{
ec7dc8ac
DG
8228 struct rq *rq = cpu_rq(cpu);
8229
6f505b16
PZ
8230 tg->rt_rq[cpu] = rt_rq;
8231 init_rt_rq(rt_rq, rq);
8232 rt_rq->tg = tg;
8233 rt_rq->rt_se = rt_se;
ac086bc2 8234 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8235 if (add)
8236 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8237
8238 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8239 if (!rt_se)
8240 return;
8241
ec7dc8ac
DG
8242 if (!parent)
8243 rt_se->rt_rq = &rq->rt;
8244 else
8245 rt_se->rt_rq = parent->my_q;
8246
6f505b16 8247 rt_se->my_q = rt_rq;
ec7dc8ac 8248 rt_se->parent = parent;
6f505b16
PZ
8249 INIT_LIST_HEAD(&rt_se->run_list);
8250}
8251#endif
8252
1da177e4
LT
8253void __init sched_init(void)
8254{
dd41f596 8255 int i, j;
434d53b0
MT
8256 unsigned long alloc_size = 0, ptr;
8257
8258#ifdef CONFIG_FAIR_GROUP_SCHED
8259 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8260#endif
8261#ifdef CONFIG_RT_GROUP_SCHED
8262 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8263#endif
8264#ifdef CONFIG_USER_SCHED
8265 alloc_size *= 2;
434d53b0
MT
8266#endif
8267 /*
8268 * As sched_init() is called before page_alloc is setup,
8269 * we use alloc_bootmem().
8270 */
8271 if (alloc_size) {
5a9d3225 8272 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8273
8274#ifdef CONFIG_FAIR_GROUP_SCHED
8275 init_task_group.se = (struct sched_entity **)ptr;
8276 ptr += nr_cpu_ids * sizeof(void **);
8277
8278 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8279 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8280
8281#ifdef CONFIG_USER_SCHED
8282 root_task_group.se = (struct sched_entity **)ptr;
8283 ptr += nr_cpu_ids * sizeof(void **);
8284
8285 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8286 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8287#endif /* CONFIG_USER_SCHED */
8288#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8289#ifdef CONFIG_RT_GROUP_SCHED
8290 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8291 ptr += nr_cpu_ids * sizeof(void **);
8292
8293 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8294 ptr += nr_cpu_ids * sizeof(void **);
8295
8296#ifdef CONFIG_USER_SCHED
8297 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8298 ptr += nr_cpu_ids * sizeof(void **);
8299
8300 root_task_group.rt_rq = (struct rt_rq **)ptr;
8301 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8302#endif /* CONFIG_USER_SCHED */
8303#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8304 }
dd41f596 8305
57d885fe
GH
8306#ifdef CONFIG_SMP
8307 init_defrootdomain();
8308#endif
8309
d0b27fa7
PZ
8310 init_rt_bandwidth(&def_rt_bandwidth,
8311 global_rt_period(), global_rt_runtime());
8312
8313#ifdef CONFIG_RT_GROUP_SCHED
8314 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8315 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8316#ifdef CONFIG_USER_SCHED
8317 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8318 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8319#endif /* CONFIG_USER_SCHED */
8320#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8321
052f1dc7 8322#ifdef CONFIG_GROUP_SCHED
6f505b16 8323 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8324 INIT_LIST_HEAD(&init_task_group.children);
8325
8326#ifdef CONFIG_USER_SCHED
8327 INIT_LIST_HEAD(&root_task_group.children);
8328 init_task_group.parent = &root_task_group;
8329 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8330#endif /* CONFIG_USER_SCHED */
8331#endif /* CONFIG_GROUP_SCHED */
6f505b16 8332
0a945022 8333 for_each_possible_cpu(i) {
70b97a7f 8334 struct rq *rq;
1da177e4
LT
8335
8336 rq = cpu_rq(i);
8337 spin_lock_init(&rq->lock);
7897986b 8338 rq->nr_running = 0;
dd41f596 8339 init_cfs_rq(&rq->cfs, rq);
6f505b16 8340 init_rt_rq(&rq->rt, rq);
dd41f596 8341#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8342 init_task_group.shares = init_task_group_load;
6f505b16 8343 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8344#ifdef CONFIG_CGROUP_SCHED
8345 /*
8346 * How much cpu bandwidth does init_task_group get?
8347 *
8348 * In case of task-groups formed thr' the cgroup filesystem, it
8349 * gets 100% of the cpu resources in the system. This overall
8350 * system cpu resource is divided among the tasks of
8351 * init_task_group and its child task-groups in a fair manner,
8352 * based on each entity's (task or task-group's) weight
8353 * (se->load.weight).
8354 *
8355 * In other words, if init_task_group has 10 tasks of weight
8356 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8357 * then A0's share of the cpu resource is:
8358 *
8359 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8360 *
8361 * We achieve this by letting init_task_group's tasks sit
8362 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8363 */
ec7dc8ac 8364 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8365#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8366 root_task_group.shares = NICE_0_LOAD;
8367 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8368 /*
8369 * In case of task-groups formed thr' the user id of tasks,
8370 * init_task_group represents tasks belonging to root user.
8371 * Hence it forms a sibling of all subsequent groups formed.
8372 * In this case, init_task_group gets only a fraction of overall
8373 * system cpu resource, based on the weight assigned to root
8374 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8375 * by letting tasks of init_task_group sit in a separate cfs_rq
8376 * (init_cfs_rq) and having one entity represent this group of
8377 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8378 */
ec7dc8ac 8379 init_tg_cfs_entry(&init_task_group,
6f505b16 8380 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8381 &per_cpu(init_sched_entity, i), i, 1,
8382 root_task_group.se[i]);
6f505b16 8383
052f1dc7 8384#endif
354d60c2
DG
8385#endif /* CONFIG_FAIR_GROUP_SCHED */
8386
8387 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8388#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8389 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8390#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8391 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8392#elif defined CONFIG_USER_SCHED
eff766a6 8393 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8394 init_tg_rt_entry(&init_task_group,
6f505b16 8395 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8396 &per_cpu(init_sched_rt_entity, i), i, 1,
8397 root_task_group.rt_se[i]);
354d60c2 8398#endif
dd41f596 8399#endif
1da177e4 8400
dd41f596
IM
8401 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8402 rq->cpu_load[j] = 0;
1da177e4 8403#ifdef CONFIG_SMP
41c7ce9a 8404 rq->sd = NULL;
57d885fe 8405 rq->rd = NULL;
1da177e4 8406 rq->active_balance = 0;
dd41f596 8407 rq->next_balance = jiffies;
1da177e4 8408 rq->push_cpu = 0;
0a2966b4 8409 rq->cpu = i;
1f11eb6a 8410 rq->online = 0;
1da177e4
LT
8411 rq->migration_thread = NULL;
8412 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8413 rq_attach_root(rq, &def_root_domain);
1da177e4 8414#endif
8f4d37ec 8415 init_rq_hrtick(rq);
1da177e4 8416 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8417 }
8418
2dd73a4f 8419 set_load_weight(&init_task);
b50f60ce 8420
e107be36
AK
8421#ifdef CONFIG_PREEMPT_NOTIFIERS
8422 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8423#endif
8424
c9819f45 8425#ifdef CONFIG_SMP
962cf36c 8426 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8427#endif
8428
b50f60ce
HC
8429#ifdef CONFIG_RT_MUTEXES
8430 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8431#endif
8432
1da177e4
LT
8433 /*
8434 * The boot idle thread does lazy MMU switching as well:
8435 */
8436 atomic_inc(&init_mm.mm_count);
8437 enter_lazy_tlb(&init_mm, current);
8438
8439 /*
8440 * Make us the idle thread. Technically, schedule() should not be
8441 * called from this thread, however somewhere below it might be,
8442 * but because we are the idle thread, we just pick up running again
8443 * when this runqueue becomes "idle".
8444 */
8445 init_idle(current, smp_processor_id());
dd41f596
IM
8446 /*
8447 * During early bootup we pretend to be a normal task:
8448 */
8449 current->sched_class = &fair_sched_class;
6892b75e 8450
6a7b3dc3
RR
8451 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8452 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8453#ifdef CONFIG_SMP
7d1e6a9b
RR
8454#ifdef CONFIG_NO_HZ
8455 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8456#endif
dcc30a35 8457 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8458#endif /* SMP */
6a7b3dc3 8459
6892b75e 8460 scheduler_running = 1;
1da177e4
LT
8461}
8462
8463#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8464void __might_sleep(char *file, int line)
8465{
48f24c4d 8466#ifdef in_atomic
1da177e4
LT
8467 static unsigned long prev_jiffy; /* ratelimiting */
8468
aef745fc
IM
8469 if ((!in_atomic() && !irqs_disabled()) ||
8470 system_state != SYSTEM_RUNNING || oops_in_progress)
8471 return;
8472 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8473 return;
8474 prev_jiffy = jiffies;
8475
8476 printk(KERN_ERR
8477 "BUG: sleeping function called from invalid context at %s:%d\n",
8478 file, line);
8479 printk(KERN_ERR
8480 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8481 in_atomic(), irqs_disabled(),
8482 current->pid, current->comm);
8483
8484 debug_show_held_locks(current);
8485 if (irqs_disabled())
8486 print_irqtrace_events(current);
8487 dump_stack();
1da177e4
LT
8488#endif
8489}
8490EXPORT_SYMBOL(__might_sleep);
8491#endif
8492
8493#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8494static void normalize_task(struct rq *rq, struct task_struct *p)
8495{
8496 int on_rq;
3e51f33f 8497
3a5e4dc1
AK
8498 update_rq_clock(rq);
8499 on_rq = p->se.on_rq;
8500 if (on_rq)
8501 deactivate_task(rq, p, 0);
8502 __setscheduler(rq, p, SCHED_NORMAL, 0);
8503 if (on_rq) {
8504 activate_task(rq, p, 0);
8505 resched_task(rq->curr);
8506 }
8507}
8508
1da177e4
LT
8509void normalize_rt_tasks(void)
8510{
a0f98a1c 8511 struct task_struct *g, *p;
1da177e4 8512 unsigned long flags;
70b97a7f 8513 struct rq *rq;
1da177e4 8514
4cf5d77a 8515 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8516 do_each_thread(g, p) {
178be793
IM
8517 /*
8518 * Only normalize user tasks:
8519 */
8520 if (!p->mm)
8521 continue;
8522
6cfb0d5d 8523 p->se.exec_start = 0;
6cfb0d5d 8524#ifdef CONFIG_SCHEDSTATS
dd41f596 8525 p->se.wait_start = 0;
dd41f596 8526 p->se.sleep_start = 0;
dd41f596 8527 p->se.block_start = 0;
6cfb0d5d 8528#endif
dd41f596
IM
8529
8530 if (!rt_task(p)) {
8531 /*
8532 * Renice negative nice level userspace
8533 * tasks back to 0:
8534 */
8535 if (TASK_NICE(p) < 0 && p->mm)
8536 set_user_nice(p, 0);
1da177e4 8537 continue;
dd41f596 8538 }
1da177e4 8539
4cf5d77a 8540 spin_lock(&p->pi_lock);
b29739f9 8541 rq = __task_rq_lock(p);
1da177e4 8542
178be793 8543 normalize_task(rq, p);
3a5e4dc1 8544
b29739f9 8545 __task_rq_unlock(rq);
4cf5d77a 8546 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8547 } while_each_thread(g, p);
8548
4cf5d77a 8549 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8550}
8551
8552#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8553
8554#ifdef CONFIG_IA64
8555/*
8556 * These functions are only useful for the IA64 MCA handling.
8557 *
8558 * They can only be called when the whole system has been
8559 * stopped - every CPU needs to be quiescent, and no scheduling
8560 * activity can take place. Using them for anything else would
8561 * be a serious bug, and as a result, they aren't even visible
8562 * under any other configuration.
8563 */
8564
8565/**
8566 * curr_task - return the current task for a given cpu.
8567 * @cpu: the processor in question.
8568 *
8569 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8570 */
36c8b586 8571struct task_struct *curr_task(int cpu)
1df5c10a
LT
8572{
8573 return cpu_curr(cpu);
8574}
8575
8576/**
8577 * set_curr_task - set the current task for a given cpu.
8578 * @cpu: the processor in question.
8579 * @p: the task pointer to set.
8580 *
8581 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8582 * are serviced on a separate stack. It allows the architecture to switch the
8583 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8584 * must be called with all CPU's synchronized, and interrupts disabled, the
8585 * and caller must save the original value of the current task (see
8586 * curr_task() above) and restore that value before reenabling interrupts and
8587 * re-starting the system.
8588 *
8589 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8590 */
36c8b586 8591void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8592{
8593 cpu_curr(cpu) = p;
8594}
8595
8596#endif
29f59db3 8597
bccbe08a
PZ
8598#ifdef CONFIG_FAIR_GROUP_SCHED
8599static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8600{
8601 int i;
8602
8603 for_each_possible_cpu(i) {
8604 if (tg->cfs_rq)
8605 kfree(tg->cfs_rq[i]);
8606 if (tg->se)
8607 kfree(tg->se[i]);
6f505b16
PZ
8608 }
8609
8610 kfree(tg->cfs_rq);
8611 kfree(tg->se);
6f505b16
PZ
8612}
8613
ec7dc8ac
DG
8614static
8615int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8616{
29f59db3 8617 struct cfs_rq *cfs_rq;
eab17229 8618 struct sched_entity *se;
9b5b7751 8619 struct rq *rq;
29f59db3
SV
8620 int i;
8621
434d53b0 8622 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8623 if (!tg->cfs_rq)
8624 goto err;
434d53b0 8625 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8626 if (!tg->se)
8627 goto err;
052f1dc7
PZ
8628
8629 tg->shares = NICE_0_LOAD;
29f59db3
SV
8630
8631 for_each_possible_cpu(i) {
9b5b7751 8632 rq = cpu_rq(i);
29f59db3 8633
eab17229
LZ
8634 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8635 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8636 if (!cfs_rq)
8637 goto err;
8638
eab17229
LZ
8639 se = kzalloc_node(sizeof(struct sched_entity),
8640 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8641 if (!se)
8642 goto err;
8643
eab17229 8644 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8645 }
8646
8647 return 1;
8648
8649 err:
8650 return 0;
8651}
8652
8653static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8654{
8655 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8656 &cpu_rq(cpu)->leaf_cfs_rq_list);
8657}
8658
8659static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8660{
8661 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8662}
6d6bc0ad 8663#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8664static inline void free_fair_sched_group(struct task_group *tg)
8665{
8666}
8667
ec7dc8ac
DG
8668static inline
8669int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8670{
8671 return 1;
8672}
8673
8674static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8675{
8676}
8677
8678static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8679{
8680}
6d6bc0ad 8681#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8682
8683#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8684static void free_rt_sched_group(struct task_group *tg)
8685{
8686 int i;
8687
d0b27fa7
PZ
8688 destroy_rt_bandwidth(&tg->rt_bandwidth);
8689
bccbe08a
PZ
8690 for_each_possible_cpu(i) {
8691 if (tg->rt_rq)
8692 kfree(tg->rt_rq[i]);
8693 if (tg->rt_se)
8694 kfree(tg->rt_se[i]);
8695 }
8696
8697 kfree(tg->rt_rq);
8698 kfree(tg->rt_se);
8699}
8700
ec7dc8ac
DG
8701static
8702int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8703{
8704 struct rt_rq *rt_rq;
eab17229 8705 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8706 struct rq *rq;
8707 int i;
8708
434d53b0 8709 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8710 if (!tg->rt_rq)
8711 goto err;
434d53b0 8712 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8713 if (!tg->rt_se)
8714 goto err;
8715
d0b27fa7
PZ
8716 init_rt_bandwidth(&tg->rt_bandwidth,
8717 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8718
8719 for_each_possible_cpu(i) {
8720 rq = cpu_rq(i);
8721
eab17229
LZ
8722 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8723 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8724 if (!rt_rq)
8725 goto err;
29f59db3 8726
eab17229
LZ
8727 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8728 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8729 if (!rt_se)
8730 goto err;
29f59db3 8731
eab17229 8732 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8733 }
8734
bccbe08a
PZ
8735 return 1;
8736
8737 err:
8738 return 0;
8739}
8740
8741static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8742{
8743 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8744 &cpu_rq(cpu)->leaf_rt_rq_list);
8745}
8746
8747static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8748{
8749 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8750}
6d6bc0ad 8751#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8752static inline void free_rt_sched_group(struct task_group *tg)
8753{
8754}
8755
ec7dc8ac
DG
8756static inline
8757int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8758{
8759 return 1;
8760}
8761
8762static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8763{
8764}
8765
8766static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8767{
8768}
6d6bc0ad 8769#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8770
d0b27fa7 8771#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8772static void free_sched_group(struct task_group *tg)
8773{
8774 free_fair_sched_group(tg);
8775 free_rt_sched_group(tg);
8776 kfree(tg);
8777}
8778
8779/* allocate runqueue etc for a new task group */
ec7dc8ac 8780struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8781{
8782 struct task_group *tg;
8783 unsigned long flags;
8784 int i;
8785
8786 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8787 if (!tg)
8788 return ERR_PTR(-ENOMEM);
8789
ec7dc8ac 8790 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8791 goto err;
8792
ec7dc8ac 8793 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8794 goto err;
8795
8ed36996 8796 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8797 for_each_possible_cpu(i) {
bccbe08a
PZ
8798 register_fair_sched_group(tg, i);
8799 register_rt_sched_group(tg, i);
9b5b7751 8800 }
6f505b16 8801 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8802
8803 WARN_ON(!parent); /* root should already exist */
8804
8805 tg->parent = parent;
f473aa5e 8806 INIT_LIST_HEAD(&tg->children);
09f2724a 8807 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8808 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8809
9b5b7751 8810 return tg;
29f59db3
SV
8811
8812err:
6f505b16 8813 free_sched_group(tg);
29f59db3
SV
8814 return ERR_PTR(-ENOMEM);
8815}
8816
9b5b7751 8817/* rcu callback to free various structures associated with a task group */
6f505b16 8818static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8819{
29f59db3 8820 /* now it should be safe to free those cfs_rqs */
6f505b16 8821 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8822}
8823
9b5b7751 8824/* Destroy runqueue etc associated with a task group */
4cf86d77 8825void sched_destroy_group(struct task_group *tg)
29f59db3 8826{
8ed36996 8827 unsigned long flags;
9b5b7751 8828 int i;
29f59db3 8829
8ed36996 8830 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8831 for_each_possible_cpu(i) {
bccbe08a
PZ
8832 unregister_fair_sched_group(tg, i);
8833 unregister_rt_sched_group(tg, i);
9b5b7751 8834 }
6f505b16 8835 list_del_rcu(&tg->list);
f473aa5e 8836 list_del_rcu(&tg->siblings);
8ed36996 8837 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8838
9b5b7751 8839 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8840 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8841}
8842
9b5b7751 8843/* change task's runqueue when it moves between groups.
3a252015
IM
8844 * The caller of this function should have put the task in its new group
8845 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8846 * reflect its new group.
9b5b7751
SV
8847 */
8848void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8849{
8850 int on_rq, running;
8851 unsigned long flags;
8852 struct rq *rq;
8853
8854 rq = task_rq_lock(tsk, &flags);
8855
29f59db3
SV
8856 update_rq_clock(rq);
8857
051a1d1a 8858 running = task_current(rq, tsk);
29f59db3
SV
8859 on_rq = tsk->se.on_rq;
8860
0e1f3483 8861 if (on_rq)
29f59db3 8862 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8863 if (unlikely(running))
8864 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8865
6f505b16 8866 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8867
810b3817
PZ
8868#ifdef CONFIG_FAIR_GROUP_SCHED
8869 if (tsk->sched_class->moved_group)
8870 tsk->sched_class->moved_group(tsk);
8871#endif
8872
0e1f3483
HS
8873 if (unlikely(running))
8874 tsk->sched_class->set_curr_task(rq);
8875 if (on_rq)
7074badb 8876 enqueue_task(rq, tsk, 0);
29f59db3 8877
29f59db3
SV
8878 task_rq_unlock(rq, &flags);
8879}
6d6bc0ad 8880#endif /* CONFIG_GROUP_SCHED */
29f59db3 8881
052f1dc7 8882#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8883static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8884{
8885 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8886 int on_rq;
8887
29f59db3 8888 on_rq = se->on_rq;
62fb1851 8889 if (on_rq)
29f59db3
SV
8890 dequeue_entity(cfs_rq, se, 0);
8891
8892 se->load.weight = shares;
e05510d0 8893 se->load.inv_weight = 0;
29f59db3 8894
62fb1851 8895 if (on_rq)
29f59db3 8896 enqueue_entity(cfs_rq, se, 0);
c09595f6 8897}
62fb1851 8898
c09595f6
PZ
8899static void set_se_shares(struct sched_entity *se, unsigned long shares)
8900{
8901 struct cfs_rq *cfs_rq = se->cfs_rq;
8902 struct rq *rq = cfs_rq->rq;
8903 unsigned long flags;
8904
8905 spin_lock_irqsave(&rq->lock, flags);
8906 __set_se_shares(se, shares);
8907 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8908}
8909
8ed36996
PZ
8910static DEFINE_MUTEX(shares_mutex);
8911
4cf86d77 8912int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8913{
8914 int i;
8ed36996 8915 unsigned long flags;
c61935fd 8916
ec7dc8ac
DG
8917 /*
8918 * We can't change the weight of the root cgroup.
8919 */
8920 if (!tg->se[0])
8921 return -EINVAL;
8922
18d95a28
PZ
8923 if (shares < MIN_SHARES)
8924 shares = MIN_SHARES;
cb4ad1ff
MX
8925 else if (shares > MAX_SHARES)
8926 shares = MAX_SHARES;
62fb1851 8927
8ed36996 8928 mutex_lock(&shares_mutex);
9b5b7751 8929 if (tg->shares == shares)
5cb350ba 8930 goto done;
29f59db3 8931
8ed36996 8932 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8933 for_each_possible_cpu(i)
8934 unregister_fair_sched_group(tg, i);
f473aa5e 8935 list_del_rcu(&tg->siblings);
8ed36996 8936 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8937
8938 /* wait for any ongoing reference to this group to finish */
8939 synchronize_sched();
8940
8941 /*
8942 * Now we are free to modify the group's share on each cpu
8943 * w/o tripping rebalance_share or load_balance_fair.
8944 */
9b5b7751 8945 tg->shares = shares;
c09595f6
PZ
8946 for_each_possible_cpu(i) {
8947 /*
8948 * force a rebalance
8949 */
8950 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8951 set_se_shares(tg->se[i], shares);
c09595f6 8952 }
29f59db3 8953
6b2d7700
SV
8954 /*
8955 * Enable load balance activity on this group, by inserting it back on
8956 * each cpu's rq->leaf_cfs_rq_list.
8957 */
8ed36996 8958 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8959 for_each_possible_cpu(i)
8960 register_fair_sched_group(tg, i);
f473aa5e 8961 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8962 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8963done:
8ed36996 8964 mutex_unlock(&shares_mutex);
9b5b7751 8965 return 0;
29f59db3
SV
8966}
8967
5cb350ba
DG
8968unsigned long sched_group_shares(struct task_group *tg)
8969{
8970 return tg->shares;
8971}
052f1dc7 8972#endif
5cb350ba 8973
052f1dc7 8974#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8975/*
9f0c1e56 8976 * Ensure that the real time constraints are schedulable.
6f505b16 8977 */
9f0c1e56
PZ
8978static DEFINE_MUTEX(rt_constraints_mutex);
8979
8980static unsigned long to_ratio(u64 period, u64 runtime)
8981{
8982 if (runtime == RUNTIME_INF)
9a7e0b18 8983 return 1ULL << 20;
9f0c1e56 8984
9a7e0b18 8985 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8986}
8987
9a7e0b18
PZ
8988/* Must be called with tasklist_lock held */
8989static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8990{
9a7e0b18 8991 struct task_struct *g, *p;
b40b2e8e 8992
9a7e0b18
PZ
8993 do_each_thread(g, p) {
8994 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8995 return 1;
8996 } while_each_thread(g, p);
b40b2e8e 8997
9a7e0b18
PZ
8998 return 0;
8999}
b40b2e8e 9000
9a7e0b18
PZ
9001struct rt_schedulable_data {
9002 struct task_group *tg;
9003 u64 rt_period;
9004 u64 rt_runtime;
9005};
b40b2e8e 9006
9a7e0b18
PZ
9007static int tg_schedulable(struct task_group *tg, void *data)
9008{
9009 struct rt_schedulable_data *d = data;
9010 struct task_group *child;
9011 unsigned long total, sum = 0;
9012 u64 period, runtime;
b40b2e8e 9013
9a7e0b18
PZ
9014 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9015 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9016
9a7e0b18
PZ
9017 if (tg == d->tg) {
9018 period = d->rt_period;
9019 runtime = d->rt_runtime;
b40b2e8e 9020 }
b40b2e8e 9021
4653f803
PZ
9022 /*
9023 * Cannot have more runtime than the period.
9024 */
9025 if (runtime > period && runtime != RUNTIME_INF)
9026 return -EINVAL;
6f505b16 9027
4653f803
PZ
9028 /*
9029 * Ensure we don't starve existing RT tasks.
9030 */
9a7e0b18
PZ
9031 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9032 return -EBUSY;
6f505b16 9033
9a7e0b18 9034 total = to_ratio(period, runtime);
6f505b16 9035
4653f803
PZ
9036 /*
9037 * Nobody can have more than the global setting allows.
9038 */
9039 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9040 return -EINVAL;
6f505b16 9041
4653f803
PZ
9042 /*
9043 * The sum of our children's runtime should not exceed our own.
9044 */
9a7e0b18
PZ
9045 list_for_each_entry_rcu(child, &tg->children, siblings) {
9046 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9047 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9048
9a7e0b18
PZ
9049 if (child == d->tg) {
9050 period = d->rt_period;
9051 runtime = d->rt_runtime;
9052 }
6f505b16 9053
9a7e0b18 9054 sum += to_ratio(period, runtime);
9f0c1e56 9055 }
6f505b16 9056
9a7e0b18
PZ
9057 if (sum > total)
9058 return -EINVAL;
9059
9060 return 0;
6f505b16
PZ
9061}
9062
9a7e0b18 9063static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9064{
9a7e0b18
PZ
9065 struct rt_schedulable_data data = {
9066 .tg = tg,
9067 .rt_period = period,
9068 .rt_runtime = runtime,
9069 };
9070
9071 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9072}
9073
d0b27fa7
PZ
9074static int tg_set_bandwidth(struct task_group *tg,
9075 u64 rt_period, u64 rt_runtime)
6f505b16 9076{
ac086bc2 9077 int i, err = 0;
9f0c1e56 9078
9f0c1e56 9079 mutex_lock(&rt_constraints_mutex);
521f1a24 9080 read_lock(&tasklist_lock);
9a7e0b18
PZ
9081 err = __rt_schedulable(tg, rt_period, rt_runtime);
9082 if (err)
9f0c1e56 9083 goto unlock;
ac086bc2
PZ
9084
9085 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9086 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9087 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9088
9089 for_each_possible_cpu(i) {
9090 struct rt_rq *rt_rq = tg->rt_rq[i];
9091
9092 spin_lock(&rt_rq->rt_runtime_lock);
9093 rt_rq->rt_runtime = rt_runtime;
9094 spin_unlock(&rt_rq->rt_runtime_lock);
9095 }
9096 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9097 unlock:
521f1a24 9098 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9099 mutex_unlock(&rt_constraints_mutex);
9100
9101 return err;
6f505b16
PZ
9102}
9103
d0b27fa7
PZ
9104int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9105{
9106 u64 rt_runtime, rt_period;
9107
9108 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9109 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9110 if (rt_runtime_us < 0)
9111 rt_runtime = RUNTIME_INF;
9112
9113 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9114}
9115
9f0c1e56
PZ
9116long sched_group_rt_runtime(struct task_group *tg)
9117{
9118 u64 rt_runtime_us;
9119
d0b27fa7 9120 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9121 return -1;
9122
d0b27fa7 9123 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9124 do_div(rt_runtime_us, NSEC_PER_USEC);
9125 return rt_runtime_us;
9126}
d0b27fa7
PZ
9127
9128int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9129{
9130 u64 rt_runtime, rt_period;
9131
9132 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9133 rt_runtime = tg->rt_bandwidth.rt_runtime;
9134
619b0488
R
9135 if (rt_period == 0)
9136 return -EINVAL;
9137
d0b27fa7
PZ
9138 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9139}
9140
9141long sched_group_rt_period(struct task_group *tg)
9142{
9143 u64 rt_period_us;
9144
9145 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9146 do_div(rt_period_us, NSEC_PER_USEC);
9147 return rt_period_us;
9148}
9149
9150static int sched_rt_global_constraints(void)
9151{
4653f803 9152 u64 runtime, period;
d0b27fa7
PZ
9153 int ret = 0;
9154
ec5d4989
HS
9155 if (sysctl_sched_rt_period <= 0)
9156 return -EINVAL;
9157
4653f803
PZ
9158 runtime = global_rt_runtime();
9159 period = global_rt_period();
9160
9161 /*
9162 * Sanity check on the sysctl variables.
9163 */
9164 if (runtime > period && runtime != RUNTIME_INF)
9165 return -EINVAL;
10b612f4 9166
d0b27fa7 9167 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9168 read_lock(&tasklist_lock);
4653f803 9169 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9170 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9171 mutex_unlock(&rt_constraints_mutex);
9172
9173 return ret;
9174}
6d6bc0ad 9175#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9176static int sched_rt_global_constraints(void)
9177{
ac086bc2
PZ
9178 unsigned long flags;
9179 int i;
9180
ec5d4989
HS
9181 if (sysctl_sched_rt_period <= 0)
9182 return -EINVAL;
9183
ac086bc2
PZ
9184 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9185 for_each_possible_cpu(i) {
9186 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9187
9188 spin_lock(&rt_rq->rt_runtime_lock);
9189 rt_rq->rt_runtime = global_rt_runtime();
9190 spin_unlock(&rt_rq->rt_runtime_lock);
9191 }
9192 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9193
d0b27fa7
PZ
9194 return 0;
9195}
6d6bc0ad 9196#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9197
9198int sched_rt_handler(struct ctl_table *table, int write,
9199 struct file *filp, void __user *buffer, size_t *lenp,
9200 loff_t *ppos)
9201{
9202 int ret;
9203 int old_period, old_runtime;
9204 static DEFINE_MUTEX(mutex);
9205
9206 mutex_lock(&mutex);
9207 old_period = sysctl_sched_rt_period;
9208 old_runtime = sysctl_sched_rt_runtime;
9209
9210 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9211
9212 if (!ret && write) {
9213 ret = sched_rt_global_constraints();
9214 if (ret) {
9215 sysctl_sched_rt_period = old_period;
9216 sysctl_sched_rt_runtime = old_runtime;
9217 } else {
9218 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9219 def_rt_bandwidth.rt_period =
9220 ns_to_ktime(global_rt_period());
9221 }
9222 }
9223 mutex_unlock(&mutex);
9224
9225 return ret;
9226}
68318b8e 9227
052f1dc7 9228#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9229
9230/* return corresponding task_group object of a cgroup */
2b01dfe3 9231static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9232{
2b01dfe3
PM
9233 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9234 struct task_group, css);
68318b8e
SV
9235}
9236
9237static struct cgroup_subsys_state *
2b01dfe3 9238cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9239{
ec7dc8ac 9240 struct task_group *tg, *parent;
68318b8e 9241
2b01dfe3 9242 if (!cgrp->parent) {
68318b8e 9243 /* This is early initialization for the top cgroup */
68318b8e
SV
9244 return &init_task_group.css;
9245 }
9246
ec7dc8ac
DG
9247 parent = cgroup_tg(cgrp->parent);
9248 tg = sched_create_group(parent);
68318b8e
SV
9249 if (IS_ERR(tg))
9250 return ERR_PTR(-ENOMEM);
9251
68318b8e
SV
9252 return &tg->css;
9253}
9254
41a2d6cf
IM
9255static void
9256cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9257{
2b01dfe3 9258 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9259
9260 sched_destroy_group(tg);
9261}
9262
41a2d6cf
IM
9263static int
9264cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9265 struct task_struct *tsk)
68318b8e 9266{
b68aa230
PZ
9267#ifdef CONFIG_RT_GROUP_SCHED
9268 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9269 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9270 return -EINVAL;
9271#else
68318b8e
SV
9272 /* We don't support RT-tasks being in separate groups */
9273 if (tsk->sched_class != &fair_sched_class)
9274 return -EINVAL;
b68aa230 9275#endif
68318b8e
SV
9276
9277 return 0;
9278}
9279
9280static void
2b01dfe3 9281cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9282 struct cgroup *old_cont, struct task_struct *tsk)
9283{
9284 sched_move_task(tsk);
9285}
9286
052f1dc7 9287#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9288static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9289 u64 shareval)
68318b8e 9290{
2b01dfe3 9291 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9292}
9293
f4c753b7 9294static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9295{
2b01dfe3 9296 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9297
9298 return (u64) tg->shares;
9299}
6d6bc0ad 9300#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9301
052f1dc7 9302#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9303static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9304 s64 val)
6f505b16 9305{
06ecb27c 9306 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9307}
9308
06ecb27c 9309static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9310{
06ecb27c 9311 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9312}
d0b27fa7
PZ
9313
9314static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9315 u64 rt_period_us)
9316{
9317 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9318}
9319
9320static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9321{
9322 return sched_group_rt_period(cgroup_tg(cgrp));
9323}
6d6bc0ad 9324#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9325
fe5c7cc2 9326static struct cftype cpu_files[] = {
052f1dc7 9327#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9328 {
9329 .name = "shares",
f4c753b7
PM
9330 .read_u64 = cpu_shares_read_u64,
9331 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9332 },
052f1dc7
PZ
9333#endif
9334#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9335 {
9f0c1e56 9336 .name = "rt_runtime_us",
06ecb27c
PM
9337 .read_s64 = cpu_rt_runtime_read,
9338 .write_s64 = cpu_rt_runtime_write,
6f505b16 9339 },
d0b27fa7
PZ
9340 {
9341 .name = "rt_period_us",
f4c753b7
PM
9342 .read_u64 = cpu_rt_period_read_uint,
9343 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9344 },
052f1dc7 9345#endif
68318b8e
SV
9346};
9347
9348static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9349{
fe5c7cc2 9350 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9351}
9352
9353struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9354 .name = "cpu",
9355 .create = cpu_cgroup_create,
9356 .destroy = cpu_cgroup_destroy,
9357 .can_attach = cpu_cgroup_can_attach,
9358 .attach = cpu_cgroup_attach,
9359 .populate = cpu_cgroup_populate,
9360 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9361 .early_init = 1,
9362};
9363
052f1dc7 9364#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9365
9366#ifdef CONFIG_CGROUP_CPUACCT
9367
9368/*
9369 * CPU accounting code for task groups.
9370 *
9371 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9372 * (balbir@in.ibm.com).
9373 */
9374
934352f2 9375/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9376struct cpuacct {
9377 struct cgroup_subsys_state css;
9378 /* cpuusage holds pointer to a u64-type object on every cpu */
9379 u64 *cpuusage;
934352f2 9380 struct cpuacct *parent;
d842de87
SV
9381};
9382
9383struct cgroup_subsys cpuacct_subsys;
9384
9385/* return cpu accounting group corresponding to this container */
32cd756a 9386static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9387{
32cd756a 9388 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9389 struct cpuacct, css);
9390}
9391
9392/* return cpu accounting group to which this task belongs */
9393static inline struct cpuacct *task_ca(struct task_struct *tsk)
9394{
9395 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9396 struct cpuacct, css);
9397}
9398
9399/* create a new cpu accounting group */
9400static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9401 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9402{
9403 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9404
9405 if (!ca)
9406 return ERR_PTR(-ENOMEM);
9407
9408 ca->cpuusage = alloc_percpu(u64);
9409 if (!ca->cpuusage) {
9410 kfree(ca);
9411 return ERR_PTR(-ENOMEM);
9412 }
9413
934352f2
BR
9414 if (cgrp->parent)
9415 ca->parent = cgroup_ca(cgrp->parent);
9416
d842de87
SV
9417 return &ca->css;
9418}
9419
9420/* destroy an existing cpu accounting group */
41a2d6cf 9421static void
32cd756a 9422cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9423{
32cd756a 9424 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9425
9426 free_percpu(ca->cpuusage);
9427 kfree(ca);
9428}
9429
9430/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9431static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9432{
32cd756a 9433 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9434 u64 totalcpuusage = 0;
9435 int i;
9436
9437 for_each_possible_cpu(i) {
9438 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9439
9440 /*
9441 * Take rq->lock to make 64-bit addition safe on 32-bit
9442 * platforms.
9443 */
9444 spin_lock_irq(&cpu_rq(i)->lock);
9445 totalcpuusage += *cpuusage;
9446 spin_unlock_irq(&cpu_rq(i)->lock);
9447 }
9448
9449 return totalcpuusage;
9450}
9451
0297b803
DG
9452static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9453 u64 reset)
9454{
9455 struct cpuacct *ca = cgroup_ca(cgrp);
9456 int err = 0;
9457 int i;
9458
9459 if (reset) {
9460 err = -EINVAL;
9461 goto out;
9462 }
9463
9464 for_each_possible_cpu(i) {
9465 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9466
9467 spin_lock_irq(&cpu_rq(i)->lock);
9468 *cpuusage = 0;
9469 spin_unlock_irq(&cpu_rq(i)->lock);
9470 }
9471out:
9472 return err;
9473}
9474
d842de87
SV
9475static struct cftype files[] = {
9476 {
9477 .name = "usage",
f4c753b7
PM
9478 .read_u64 = cpuusage_read,
9479 .write_u64 = cpuusage_write,
d842de87
SV
9480 },
9481};
9482
32cd756a 9483static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9484{
32cd756a 9485 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9486}
9487
9488/*
9489 * charge this task's execution time to its accounting group.
9490 *
9491 * called with rq->lock held.
9492 */
9493static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9494{
9495 struct cpuacct *ca;
934352f2 9496 int cpu;
d842de87
SV
9497
9498 if (!cpuacct_subsys.active)
9499 return;
9500
934352f2 9501 cpu = task_cpu(tsk);
d842de87 9502 ca = task_ca(tsk);
d842de87 9503
934352f2
BR
9504 for (; ca; ca = ca->parent) {
9505 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9506 *cpuusage += cputime;
9507 }
9508}
9509
9510struct cgroup_subsys cpuacct_subsys = {
9511 .name = "cpuacct",
9512 .create = cpuacct_create,
9513 .destroy = cpuacct_destroy,
9514 .populate = cpuacct_populate,
9515 .subsys_id = cpuacct_subsys_id,
9516};
9517#endif /* CONFIG_CGROUP_CPUACCT */