]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
[PATCH] sched: extract load calculation from rebalance_tick
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
9a11b49a 33#include <linux/debug_locks.h>
1da177e4
LT
34#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
7dfb7103 37#include <linux/freezer.h>
198e2f18 38#include <linux/vmalloc.h>
1da177e4
LT
39#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
8f0ab514 52#include <linux/tsacct_kern.h>
c6fd91f0 53#include <linux/kprobes.h>
0ff92245 54#include <linux/delayacct.h>
1da177e4
LT
55#include <asm/tlb.h>
56
57#include <asm/unistd.h>
58
59/*
60 * Convert user-nice values [ -20 ... 0 ... 19 ]
61 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 * and back.
63 */
64#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
65#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
66#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67
68/*
69 * 'User priority' is the nice value converted to something we
70 * can work with better when scaling various scheduler parameters,
71 * it's a [ 0 ... 39 ] range.
72 */
73#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
74#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
75#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76
77/*
78 * Some helpers for converting nanosecond timing to jiffy resolution
79 */
80#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
81#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82
83/*
84 * These are the 'tuning knobs' of the scheduler:
85 *
86 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
87 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
88 * Timeslices get refilled after they expire.
89 */
90#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
91#define DEF_TIMESLICE (100 * HZ / 1000)
92#define ON_RUNQUEUE_WEIGHT 30
93#define CHILD_PENALTY 95
94#define PARENT_PENALTY 100
95#define EXIT_WEIGHT 3
96#define PRIO_BONUS_RATIO 25
97#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
98#define INTERACTIVE_DELTA 2
99#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
100#define STARVATION_LIMIT (MAX_SLEEP_AVG)
101#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102
103/*
104 * If a task is 'interactive' then we reinsert it in the active
105 * array after it has expired its current timeslice. (it will not
106 * continue to run immediately, it will still roundrobin with
107 * other interactive tasks.)
108 *
109 * This part scales the interactivity limit depending on niceness.
110 *
111 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
112 * Here are a few examples of different nice levels:
113 *
114 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
115 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
116 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
118 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
119 *
120 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
121 * priority range a task can explore, a value of '1' means the
122 * task is rated interactive.)
123 *
124 * Ie. nice +19 tasks can never get 'interactive' enough to be
125 * reinserted into the active array. And only heavily CPU-hog nice -20
126 * tasks will be expired. Default nice 0 tasks are somewhere between,
127 * it takes some effort for them to get interactive, but it's not
128 * too hard.
129 */
130
131#define CURRENT_BONUS(p) \
132 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 MAX_SLEEP_AVG)
134
135#define GRANULARITY (10 * HZ / 1000 ? : 1)
136
137#ifdef CONFIG_SMP
138#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 num_online_cpus())
141#else
142#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
143 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144#endif
145
146#define SCALE(v1,v1_max,v2_max) \
147 (v1) * (v2_max) / (v1_max)
148
149#define DELTA(p) \
013d3868
MA
150 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 INTERACTIVE_DELTA)
1da177e4
LT
152
153#define TASK_INTERACTIVE(p) \
154 ((p)->prio <= (p)->static_prio - DELTA(p))
155
156#define INTERACTIVE_SLEEP(p) \
157 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
158 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
159
160#define TASK_PREEMPTS_CURR(p, rq) \
161 ((p)->prio < (rq)->curr->prio)
162
1da177e4 163#define SCALE_PRIO(x, prio) \
2dd73a4f 164 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
1da177e4 165
2dd73a4f 166static unsigned int static_prio_timeslice(int static_prio)
1da177e4 167{
2dd73a4f
PW
168 if (static_prio < NICE_TO_PRIO(0))
169 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
1da177e4 170 else
2dd73a4f 171 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
1da177e4 172}
2dd73a4f 173
91fcdd4e
BP
174/*
175 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
176 * to time slice values: [800ms ... 100ms ... 5ms]
177 *
178 * The higher a thread's priority, the bigger timeslices
179 * it gets during one round of execution. But even the lowest
180 * priority thread gets MIN_TIMESLICE worth of execution time.
181 */
182
36c8b586 183static inline unsigned int task_timeslice(struct task_struct *p)
2dd73a4f
PW
184{
185 return static_prio_timeslice(p->static_prio);
186}
187
1da177e4
LT
188/*
189 * These are the runqueue data structures:
190 */
191
1da177e4
LT
192struct prio_array {
193 unsigned int nr_active;
d444886e 194 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
1da177e4
LT
195 struct list_head queue[MAX_PRIO];
196};
197
198/*
199 * This is the main, per-CPU runqueue data structure.
200 *
201 * Locking rule: those places that want to lock multiple runqueues
202 * (such as the load balancing or the thread migration code), lock
203 * acquire operations must be ordered by ascending &runqueue.
204 */
70b97a7f 205struct rq {
1da177e4
LT
206 spinlock_t lock;
207
208 /*
209 * nr_running and cpu_load should be in the same cacheline because
210 * remote CPUs use both these fields when doing load calculation.
211 */
212 unsigned long nr_running;
2dd73a4f 213 unsigned long raw_weighted_load;
1da177e4 214#ifdef CONFIG_SMP
7897986b 215 unsigned long cpu_load[3];
1da177e4
LT
216#endif
217 unsigned long long nr_switches;
218
219 /*
220 * This is part of a global counter where only the total sum
221 * over all CPUs matters. A task can increase this counter on
222 * one CPU and if it got migrated afterwards it may decrease
223 * it on another CPU. Always updated under the runqueue lock:
224 */
225 unsigned long nr_uninterruptible;
226
227 unsigned long expired_timestamp;
228 unsigned long long timestamp_last_tick;
36c8b586 229 struct task_struct *curr, *idle;
1da177e4 230 struct mm_struct *prev_mm;
70b97a7f 231 struct prio_array *active, *expired, arrays[2];
1da177e4
LT
232 int best_expired_prio;
233 atomic_t nr_iowait;
234
235#ifdef CONFIG_SMP
236 struct sched_domain *sd;
237
238 /* For active balancing */
239 int active_balance;
240 int push_cpu;
0a2966b4 241 int cpu; /* cpu of this runqueue */
1da177e4 242
36c8b586 243 struct task_struct *migration_thread;
1da177e4
LT
244 struct list_head migration_queue;
245#endif
246
247#ifdef CONFIG_SCHEDSTATS
248 /* latency stats */
249 struct sched_info rq_sched_info;
250
251 /* sys_sched_yield() stats */
252 unsigned long yld_exp_empty;
253 unsigned long yld_act_empty;
254 unsigned long yld_both_empty;
255 unsigned long yld_cnt;
256
257 /* schedule() stats */
258 unsigned long sched_switch;
259 unsigned long sched_cnt;
260 unsigned long sched_goidle;
261
262 /* try_to_wake_up() stats */
263 unsigned long ttwu_cnt;
264 unsigned long ttwu_local;
265#endif
fcb99371 266 struct lock_class_key rq_lock_key;
1da177e4
LT
267};
268
70b97a7f 269static DEFINE_PER_CPU(struct rq, runqueues);
1da177e4 270
0a2966b4
CL
271static inline int cpu_of(struct rq *rq)
272{
273#ifdef CONFIG_SMP
274 return rq->cpu;
275#else
276 return 0;
277#endif
278}
279
674311d5
NP
280/*
281 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 282 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
283 *
284 * The domain tree of any CPU may only be accessed from within
285 * preempt-disabled sections.
286 */
48f24c4d
IM
287#define for_each_domain(cpu, __sd) \
288 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
289
290#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
291#define this_rq() (&__get_cpu_var(runqueues))
292#define task_rq(p) cpu_rq(task_cpu(p))
293#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
294
1da177e4 295#ifndef prepare_arch_switch
4866cde0
NP
296# define prepare_arch_switch(next) do { } while (0)
297#endif
298#ifndef finish_arch_switch
299# define finish_arch_switch(prev) do { } while (0)
300#endif
301
302#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 303static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
304{
305 return rq->curr == p;
306}
307
70b97a7f 308static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
309{
310}
311
70b97a7f 312static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 313{
da04c035
IM
314#ifdef CONFIG_DEBUG_SPINLOCK
315 /* this is a valid case when another task releases the spinlock */
316 rq->lock.owner = current;
317#endif
8a25d5de
IM
318 /*
319 * If we are tracking spinlock dependencies then we have to
320 * fix up the runqueue lock - which gets 'carried over' from
321 * prev into current:
322 */
323 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
324
4866cde0
NP
325 spin_unlock_irq(&rq->lock);
326}
327
328#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 329static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
330{
331#ifdef CONFIG_SMP
332 return p->oncpu;
333#else
334 return rq->curr == p;
335#endif
336}
337
70b97a7f 338static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
339{
340#ifdef CONFIG_SMP
341 /*
342 * We can optimise this out completely for !SMP, because the
343 * SMP rebalancing from interrupt is the only thing that cares
344 * here.
345 */
346 next->oncpu = 1;
347#endif
348#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
349 spin_unlock_irq(&rq->lock);
350#else
351 spin_unlock(&rq->lock);
352#endif
353}
354
70b97a7f 355static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
356{
357#ifdef CONFIG_SMP
358 /*
359 * After ->oncpu is cleared, the task can be moved to a different CPU.
360 * We must ensure this doesn't happen until the switch is completely
361 * finished.
362 */
363 smp_wmb();
364 prev->oncpu = 0;
365#endif
366#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
367 local_irq_enable();
1da177e4 368#endif
4866cde0
NP
369}
370#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 371
b29739f9
IM
372/*
373 * __task_rq_lock - lock the runqueue a given task resides on.
374 * Must be called interrupts disabled.
375 */
70b97a7f 376static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
377 __acquires(rq->lock)
378{
70b97a7f 379 struct rq *rq;
b29739f9
IM
380
381repeat_lock_task:
382 rq = task_rq(p);
383 spin_lock(&rq->lock);
384 if (unlikely(rq != task_rq(p))) {
385 spin_unlock(&rq->lock);
386 goto repeat_lock_task;
387 }
388 return rq;
389}
390
1da177e4
LT
391/*
392 * task_rq_lock - lock the runqueue a given task resides on and disable
393 * interrupts. Note the ordering: we can safely lookup the task_rq without
394 * explicitly disabling preemption.
395 */
70b97a7f 396static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
397 __acquires(rq->lock)
398{
70b97a7f 399 struct rq *rq;
1da177e4
LT
400
401repeat_lock_task:
402 local_irq_save(*flags);
403 rq = task_rq(p);
404 spin_lock(&rq->lock);
405 if (unlikely(rq != task_rq(p))) {
406 spin_unlock_irqrestore(&rq->lock, *flags);
407 goto repeat_lock_task;
408 }
409 return rq;
410}
411
70b97a7f 412static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
413 __releases(rq->lock)
414{
415 spin_unlock(&rq->lock);
416}
417
70b97a7f 418static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
419 __releases(rq->lock)
420{
421 spin_unlock_irqrestore(&rq->lock, *flags);
422}
423
424#ifdef CONFIG_SCHEDSTATS
425/*
426 * bump this up when changing the output format or the meaning of an existing
427 * format, so that tools can adapt (or abort)
428 */
68767a0a 429#define SCHEDSTAT_VERSION 12
1da177e4
LT
430
431static int show_schedstat(struct seq_file *seq, void *v)
432{
433 int cpu;
434
435 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
436 seq_printf(seq, "timestamp %lu\n", jiffies);
437 for_each_online_cpu(cpu) {
70b97a7f 438 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
439#ifdef CONFIG_SMP
440 struct sched_domain *sd;
441 int dcnt = 0;
442#endif
443
444 /* runqueue-specific stats */
445 seq_printf(seq,
446 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
447 cpu, rq->yld_both_empty,
448 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
449 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
450 rq->ttwu_cnt, rq->ttwu_local,
451 rq->rq_sched_info.cpu_time,
452 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
453
454 seq_printf(seq, "\n");
455
456#ifdef CONFIG_SMP
457 /* domain-specific stats */
674311d5 458 preempt_disable();
1da177e4
LT
459 for_each_domain(cpu, sd) {
460 enum idle_type itype;
461 char mask_str[NR_CPUS];
462
463 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
464 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
465 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
466 itype++) {
467 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
468 sd->lb_cnt[itype],
469 sd->lb_balanced[itype],
470 sd->lb_failed[itype],
471 sd->lb_imbalance[itype],
472 sd->lb_gained[itype],
473 sd->lb_hot_gained[itype],
474 sd->lb_nobusyq[itype],
475 sd->lb_nobusyg[itype]);
476 }
68767a0a 477 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 478 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
479 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
480 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
481 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
482 }
674311d5 483 preempt_enable();
1da177e4
LT
484#endif
485 }
486 return 0;
487}
488
489static int schedstat_open(struct inode *inode, struct file *file)
490{
491 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
492 char *buf = kmalloc(size, GFP_KERNEL);
493 struct seq_file *m;
494 int res;
495
496 if (!buf)
497 return -ENOMEM;
498 res = single_open(file, show_schedstat, NULL);
499 if (!res) {
500 m = file->private_data;
501 m->buf = buf;
502 m->size = size;
503 } else
504 kfree(buf);
505 return res;
506}
507
15ad7cdc 508const struct file_operations proc_schedstat_operations = {
1da177e4
LT
509 .open = schedstat_open,
510 .read = seq_read,
511 .llseek = seq_lseek,
512 .release = single_release,
513};
514
52f17b6c
CS
515/*
516 * Expects runqueue lock to be held for atomicity of update
517 */
518static inline void
519rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
520{
521 if (rq) {
522 rq->rq_sched_info.run_delay += delta_jiffies;
523 rq->rq_sched_info.pcnt++;
524 }
525}
526
527/*
528 * Expects runqueue lock to be held for atomicity of update
529 */
530static inline void
531rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
532{
533 if (rq)
534 rq->rq_sched_info.cpu_time += delta_jiffies;
535}
1da177e4
LT
536# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
537# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
538#else /* !CONFIG_SCHEDSTATS */
52f17b6c
CS
539static inline void
540rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
541{}
542static inline void
543rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
544{}
1da177e4
LT
545# define schedstat_inc(rq, field) do { } while (0)
546# define schedstat_add(rq, field, amt) do { } while (0)
547#endif
548
549/*
cc2a73b5 550 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 551 */
70b97a7f 552static inline struct rq *this_rq_lock(void)
1da177e4
LT
553 __acquires(rq->lock)
554{
70b97a7f 555 struct rq *rq;
1da177e4
LT
556
557 local_irq_disable();
558 rq = this_rq();
559 spin_lock(&rq->lock);
560
561 return rq;
562}
563
52f17b6c 564#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
565/*
566 * Called when a process is dequeued from the active array and given
567 * the cpu. We should note that with the exception of interactive
568 * tasks, the expired queue will become the active queue after the active
569 * queue is empty, without explicitly dequeuing and requeuing tasks in the
570 * expired queue. (Interactive tasks may be requeued directly to the
571 * active queue, thus delaying tasks in the expired queue from running;
572 * see scheduler_tick()).
573 *
574 * This function is only called from sched_info_arrive(), rather than
575 * dequeue_task(). Even though a task may be queued and dequeued multiple
576 * times as it is shuffled about, we're really interested in knowing how
577 * long it was from the *first* time it was queued to the time that it
578 * finally hit a cpu.
579 */
36c8b586 580static inline void sched_info_dequeued(struct task_struct *t)
1da177e4
LT
581{
582 t->sched_info.last_queued = 0;
583}
584
585/*
586 * Called when a task finally hits the cpu. We can now calculate how
587 * long it was waiting to run. We also note when it began so that we
588 * can keep stats on how long its timeslice is.
589 */
36c8b586 590static void sched_info_arrive(struct task_struct *t)
1da177e4 591{
52f17b6c 592 unsigned long now = jiffies, delta_jiffies = 0;
1da177e4
LT
593
594 if (t->sched_info.last_queued)
52f17b6c 595 delta_jiffies = now - t->sched_info.last_queued;
1da177e4 596 sched_info_dequeued(t);
52f17b6c 597 t->sched_info.run_delay += delta_jiffies;
1da177e4
LT
598 t->sched_info.last_arrival = now;
599 t->sched_info.pcnt++;
600
52f17b6c 601 rq_sched_info_arrive(task_rq(t), delta_jiffies);
1da177e4
LT
602}
603
604/*
605 * Called when a process is queued into either the active or expired
606 * array. The time is noted and later used to determine how long we
607 * had to wait for us to reach the cpu. Since the expired queue will
608 * become the active queue after active queue is empty, without dequeuing
609 * and requeuing any tasks, we are interested in queuing to either. It
610 * is unusual but not impossible for tasks to be dequeued and immediately
611 * requeued in the same or another array: this can happen in sched_yield(),
612 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
613 * to runqueue.
614 *
615 * This function is only called from enqueue_task(), but also only updates
616 * the timestamp if it is already not set. It's assumed that
617 * sched_info_dequeued() will clear that stamp when appropriate.
618 */
36c8b586 619static inline void sched_info_queued(struct task_struct *t)
1da177e4 620{
52f17b6c
CS
621 if (unlikely(sched_info_on()))
622 if (!t->sched_info.last_queued)
623 t->sched_info.last_queued = jiffies;
1da177e4
LT
624}
625
626/*
627 * Called when a process ceases being the active-running process, either
628 * voluntarily or involuntarily. Now we can calculate how long we ran.
629 */
36c8b586 630static inline void sched_info_depart(struct task_struct *t)
1da177e4 631{
52f17b6c 632 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
1da177e4 633
52f17b6c
CS
634 t->sched_info.cpu_time += delta_jiffies;
635 rq_sched_info_depart(task_rq(t), delta_jiffies);
1da177e4
LT
636}
637
638/*
639 * Called when tasks are switched involuntarily due, typically, to expiring
640 * their time slice. (This may also be called when switching to or from
641 * the idle task.) We are only called when prev != next.
642 */
36c8b586 643static inline void
52f17b6c 644__sched_info_switch(struct task_struct *prev, struct task_struct *next)
1da177e4 645{
70b97a7f 646 struct rq *rq = task_rq(prev);
1da177e4
LT
647
648 /*
649 * prev now departs the cpu. It's not interesting to record
650 * stats about how efficient we were at scheduling the idle
651 * process, however.
652 */
653 if (prev != rq->idle)
654 sched_info_depart(prev);
655
656 if (next != rq->idle)
657 sched_info_arrive(next);
658}
52f17b6c
CS
659static inline void
660sched_info_switch(struct task_struct *prev, struct task_struct *next)
661{
662 if (unlikely(sched_info_on()))
663 __sched_info_switch(prev, next);
664}
1da177e4
LT
665#else
666#define sched_info_queued(t) do { } while (0)
667#define sched_info_switch(t, next) do { } while (0)
52f17b6c 668#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
1da177e4
LT
669
670/*
671 * Adding/removing a task to/from a priority array:
672 */
70b97a7f 673static void dequeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
674{
675 array->nr_active--;
676 list_del(&p->run_list);
677 if (list_empty(array->queue + p->prio))
678 __clear_bit(p->prio, array->bitmap);
679}
680
70b97a7f 681static void enqueue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
682{
683 sched_info_queued(p);
684 list_add_tail(&p->run_list, array->queue + p->prio);
685 __set_bit(p->prio, array->bitmap);
686 array->nr_active++;
687 p->array = array;
688}
689
690/*
691 * Put task to the end of the run list without the overhead of dequeue
692 * followed by enqueue.
693 */
70b97a7f 694static void requeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
695{
696 list_move_tail(&p->run_list, array->queue + p->prio);
697}
698
70b97a7f
IM
699static inline void
700enqueue_task_head(struct task_struct *p, struct prio_array *array)
1da177e4
LT
701{
702 list_add(&p->run_list, array->queue + p->prio);
703 __set_bit(p->prio, array->bitmap);
704 array->nr_active++;
705 p->array = array;
706}
707
708/*
b29739f9 709 * __normal_prio - return the priority that is based on the static
1da177e4
LT
710 * priority but is modified by bonuses/penalties.
711 *
712 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
713 * into the -5 ... 0 ... +5 bonus/penalty range.
714 *
715 * We use 25% of the full 0...39 priority range so that:
716 *
717 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
718 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
719 *
720 * Both properties are important to certain workloads.
721 */
b29739f9 722
36c8b586 723static inline int __normal_prio(struct task_struct *p)
1da177e4
LT
724{
725 int bonus, prio;
726
1da177e4
LT
727 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
728
729 prio = p->static_prio - bonus;
730 if (prio < MAX_RT_PRIO)
731 prio = MAX_RT_PRIO;
732 if (prio > MAX_PRIO-1)
733 prio = MAX_PRIO-1;
734 return prio;
735}
736
2dd73a4f
PW
737/*
738 * To aid in avoiding the subversion of "niceness" due to uneven distribution
739 * of tasks with abnormal "nice" values across CPUs the contribution that
740 * each task makes to its run queue's load is weighted according to its
741 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
742 * scaled version of the new time slice allocation that they receive on time
743 * slice expiry etc.
744 */
745
746/*
747 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
748 * If static_prio_timeslice() is ever changed to break this assumption then
749 * this code will need modification
750 */
751#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
752#define LOAD_WEIGHT(lp) \
753 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
754#define PRIO_TO_LOAD_WEIGHT(prio) \
755 LOAD_WEIGHT(static_prio_timeslice(prio))
756#define RTPRIO_TO_LOAD_WEIGHT(rp) \
757 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
758
36c8b586 759static void set_load_weight(struct task_struct *p)
2dd73a4f 760{
b29739f9 761 if (has_rt_policy(p)) {
2dd73a4f
PW
762#ifdef CONFIG_SMP
763 if (p == task_rq(p)->migration_thread)
764 /*
765 * The migration thread does the actual balancing.
766 * Giving its load any weight will skew balancing
767 * adversely.
768 */
769 p->load_weight = 0;
770 else
771#endif
772 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
773 } else
774 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
775}
776
36c8b586 777static inline void
70b97a7f 778inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
779{
780 rq->raw_weighted_load += p->load_weight;
781}
782
36c8b586 783static inline void
70b97a7f 784dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
785{
786 rq->raw_weighted_load -= p->load_weight;
787}
788
70b97a7f 789static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
790{
791 rq->nr_running++;
792 inc_raw_weighted_load(rq, p);
793}
794
70b97a7f 795static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
796{
797 rq->nr_running--;
798 dec_raw_weighted_load(rq, p);
799}
800
b29739f9
IM
801/*
802 * Calculate the expected normal priority: i.e. priority
803 * without taking RT-inheritance into account. Might be
804 * boosted by interactivity modifiers. Changes upon fork,
805 * setprio syscalls, and whenever the interactivity
806 * estimator recalculates.
807 */
36c8b586 808static inline int normal_prio(struct task_struct *p)
b29739f9
IM
809{
810 int prio;
811
812 if (has_rt_policy(p))
813 prio = MAX_RT_PRIO-1 - p->rt_priority;
814 else
815 prio = __normal_prio(p);
816 return prio;
817}
818
819/*
820 * Calculate the current priority, i.e. the priority
821 * taken into account by the scheduler. This value might
822 * be boosted by RT tasks, or might be boosted by
823 * interactivity modifiers. Will be RT if the task got
824 * RT-boosted. If not then it returns p->normal_prio.
825 */
36c8b586 826static int effective_prio(struct task_struct *p)
b29739f9
IM
827{
828 p->normal_prio = normal_prio(p);
829 /*
830 * If we are RT tasks or we were boosted to RT priority,
831 * keep the priority unchanged. Otherwise, update priority
832 * to the normal priority:
833 */
834 if (!rt_prio(p->prio))
835 return p->normal_prio;
836 return p->prio;
837}
838
1da177e4
LT
839/*
840 * __activate_task - move a task to the runqueue.
841 */
70b97a7f 842static void __activate_task(struct task_struct *p, struct rq *rq)
1da177e4 843{
70b97a7f 844 struct prio_array *target = rq->active;
d425b274 845
f1adad78 846 if (batch_task(p))
d425b274
CK
847 target = rq->expired;
848 enqueue_task(p, target);
2dd73a4f 849 inc_nr_running(p, rq);
1da177e4
LT
850}
851
852/*
853 * __activate_idle_task - move idle task to the _front_ of runqueue.
854 */
70b97a7f 855static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4
LT
856{
857 enqueue_task_head(p, rq->active);
2dd73a4f 858 inc_nr_running(p, rq);
1da177e4
LT
859}
860
b29739f9
IM
861/*
862 * Recalculate p->normal_prio and p->prio after having slept,
863 * updating the sleep-average too:
864 */
36c8b586 865static int recalc_task_prio(struct task_struct *p, unsigned long long now)
1da177e4
LT
866{
867 /* Caller must always ensure 'now >= p->timestamp' */
72d2854d 868 unsigned long sleep_time = now - p->timestamp;
1da177e4 869
d425b274 870 if (batch_task(p))
b0a9499c 871 sleep_time = 0;
1da177e4
LT
872
873 if (likely(sleep_time > 0)) {
874 /*
72d2854d
CK
875 * This ceiling is set to the lowest priority that would allow
876 * a task to be reinserted into the active array on timeslice
877 * completion.
1da177e4 878 */
72d2854d 879 unsigned long ceiling = INTERACTIVE_SLEEP(p);
e72ff0bb 880
72d2854d
CK
881 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
882 /*
883 * Prevents user tasks from achieving best priority
884 * with one single large enough sleep.
885 */
886 p->sleep_avg = ceiling;
887 /*
888 * Using INTERACTIVE_SLEEP() as a ceiling places a
889 * nice(0) task 1ms sleep away from promotion, and
890 * gives it 700ms to round-robin with no chance of
891 * being demoted. This is more than generous, so
892 * mark this sleep as non-interactive to prevent the
893 * on-runqueue bonus logic from intervening should
894 * this task not receive cpu immediately.
895 */
896 p->sleep_type = SLEEP_NONINTERACTIVE;
1da177e4 897 } else {
1da177e4
LT
898 /*
899 * Tasks waking from uninterruptible sleep are
900 * limited in their sleep_avg rise as they
901 * are likely to be waiting on I/O
902 */
3dee386e 903 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
72d2854d 904 if (p->sleep_avg >= ceiling)
1da177e4
LT
905 sleep_time = 0;
906 else if (p->sleep_avg + sleep_time >=
72d2854d
CK
907 ceiling) {
908 p->sleep_avg = ceiling;
909 sleep_time = 0;
1da177e4
LT
910 }
911 }
912
913 /*
914 * This code gives a bonus to interactive tasks.
915 *
916 * The boost works by updating the 'average sleep time'
917 * value here, based on ->timestamp. The more time a
918 * task spends sleeping, the higher the average gets -
919 * and the higher the priority boost gets as well.
920 */
921 p->sleep_avg += sleep_time;
922
1da177e4 923 }
72d2854d
CK
924 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
925 p->sleep_avg = NS_MAX_SLEEP_AVG;
1da177e4
LT
926 }
927
a3464a10 928 return effective_prio(p);
1da177e4
LT
929}
930
931/*
932 * activate_task - move a task to the runqueue and do priority recalculation
933 *
934 * Update all the scheduling statistics stuff. (sleep average
935 * calculation, priority modifiers, etc.)
936 */
70b97a7f 937static void activate_task(struct task_struct *p, struct rq *rq, int local)
1da177e4
LT
938{
939 unsigned long long now;
940
941 now = sched_clock();
942#ifdef CONFIG_SMP
943 if (!local) {
944 /* Compensate for drifting sched_clock */
70b97a7f 945 struct rq *this_rq = this_rq();
1da177e4
LT
946 now = (now - this_rq->timestamp_last_tick)
947 + rq->timestamp_last_tick;
948 }
949#endif
950
ece8a684
IM
951 /*
952 * Sleep time is in units of nanosecs, so shift by 20 to get a
953 * milliseconds-range estimation of the amount of time that the task
954 * spent sleeping:
955 */
956 if (unlikely(prof_on == SLEEP_PROFILING)) {
957 if (p->state == TASK_UNINTERRUPTIBLE)
958 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
959 (now - p->timestamp) >> 20);
960 }
961
a47ab937
KC
962 if (!rt_task(p))
963 p->prio = recalc_task_prio(p, now);
1da177e4
LT
964
965 /*
966 * This checks to make sure it's not an uninterruptible task
967 * that is now waking up.
968 */
3dee386e 969 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
970 /*
971 * Tasks which were woken up by interrupts (ie. hw events)
972 * are most likely of interactive nature. So we give them
973 * the credit of extending their sleep time to the period
974 * of time they spend on the runqueue, waiting for execution
975 * on a CPU, first time around:
976 */
977 if (in_interrupt())
3dee386e 978 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
979 else {
980 /*
981 * Normal first-time wakeups get a credit too for
982 * on-runqueue time, but it will be weighted down:
983 */
3dee386e 984 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
985 }
986 }
987 p->timestamp = now;
988
989 __activate_task(p, rq);
990}
991
992/*
993 * deactivate_task - remove a task from the runqueue.
994 */
70b97a7f 995static void deactivate_task(struct task_struct *p, struct rq *rq)
1da177e4 996{
2dd73a4f 997 dec_nr_running(p, rq);
1da177e4
LT
998 dequeue_task(p, p->array);
999 p->array = NULL;
1000}
1001
1002/*
1003 * resched_task - mark a task 'to be rescheduled now'.
1004 *
1005 * On UP this means the setting of the need_resched flag, on SMP it
1006 * might also involve a cross-CPU call to trigger the scheduler on
1007 * the target CPU.
1008 */
1009#ifdef CONFIG_SMP
495ab9c0
AK
1010
1011#ifndef tsk_is_polling
1012#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1013#endif
1014
36c8b586 1015static void resched_task(struct task_struct *p)
1da177e4 1016{
64c7c8f8 1017 int cpu;
1da177e4
LT
1018
1019 assert_spin_locked(&task_rq(p)->lock);
1020
64c7c8f8
NP
1021 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1022 return;
1023
1024 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 1025
64c7c8f8
NP
1026 cpu = task_cpu(p);
1027 if (cpu == smp_processor_id())
1028 return;
1029
495ab9c0 1030 /* NEED_RESCHED must be visible before we test polling */
64c7c8f8 1031 smp_mb();
495ab9c0 1032 if (!tsk_is_polling(p))
64c7c8f8 1033 smp_send_reschedule(cpu);
1da177e4
LT
1034}
1035#else
36c8b586 1036static inline void resched_task(struct task_struct *p)
1da177e4 1037{
64c7c8f8 1038 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
1039 set_tsk_need_resched(p);
1040}
1041#endif
1042
1043/**
1044 * task_curr - is this task currently executing on a CPU?
1045 * @p: the task in question.
1046 */
36c8b586 1047inline int task_curr(const struct task_struct *p)
1da177e4
LT
1048{
1049 return cpu_curr(task_cpu(p)) == p;
1050}
1051
2dd73a4f
PW
1052/* Used instead of source_load when we know the type == 0 */
1053unsigned long weighted_cpuload(const int cpu)
1054{
1055 return cpu_rq(cpu)->raw_weighted_load;
1056}
1057
1da177e4 1058#ifdef CONFIG_SMP
70b97a7f 1059struct migration_req {
1da177e4 1060 struct list_head list;
1da177e4 1061
36c8b586 1062 struct task_struct *task;
1da177e4
LT
1063 int dest_cpu;
1064
1da177e4 1065 struct completion done;
70b97a7f 1066};
1da177e4
LT
1067
1068/*
1069 * The task's runqueue lock must be held.
1070 * Returns true if you have to wait for migration thread.
1071 */
36c8b586 1072static int
70b97a7f 1073migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1074{
70b97a7f 1075 struct rq *rq = task_rq(p);
1da177e4
LT
1076
1077 /*
1078 * If the task is not on a runqueue (and not running), then
1079 * it is sufficient to simply update the task's cpu field.
1080 */
1081 if (!p->array && !task_running(rq, p)) {
1082 set_task_cpu(p, dest_cpu);
1083 return 0;
1084 }
1085
1086 init_completion(&req->done);
1da177e4
LT
1087 req->task = p;
1088 req->dest_cpu = dest_cpu;
1089 list_add(&req->list, &rq->migration_queue);
48f24c4d 1090
1da177e4
LT
1091 return 1;
1092}
1093
1094/*
1095 * wait_task_inactive - wait for a thread to unschedule.
1096 *
1097 * The caller must ensure that the task *will* unschedule sometime soon,
1098 * else this function might spin for a *long* time. This function can't
1099 * be called with interrupts off, or it may introduce deadlock with
1100 * smp_call_function() if an IPI is sent by the same process we are
1101 * waiting to become inactive.
1102 */
36c8b586 1103void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1104{
1105 unsigned long flags;
70b97a7f 1106 struct rq *rq;
1da177e4
LT
1107 int preempted;
1108
1109repeat:
1110 rq = task_rq_lock(p, &flags);
1111 /* Must be off runqueue entirely, not preempted. */
1112 if (unlikely(p->array || task_running(rq, p))) {
1113 /* If it's preempted, we yield. It could be a while. */
1114 preempted = !task_running(rq, p);
1115 task_rq_unlock(rq, &flags);
1116 cpu_relax();
1117 if (preempted)
1118 yield();
1119 goto repeat;
1120 }
1121 task_rq_unlock(rq, &flags);
1122}
1123
1124/***
1125 * kick_process - kick a running thread to enter/exit the kernel
1126 * @p: the to-be-kicked thread
1127 *
1128 * Cause a process which is running on another CPU to enter
1129 * kernel-mode, without any delay. (to get signals handled.)
1130 *
1131 * NOTE: this function doesnt have to take the runqueue lock,
1132 * because all it wants to ensure is that the remote task enters
1133 * the kernel. If the IPI races and the task has been migrated
1134 * to another CPU then no harm is done and the purpose has been
1135 * achieved as well.
1136 */
36c8b586 1137void kick_process(struct task_struct *p)
1da177e4
LT
1138{
1139 int cpu;
1140
1141 preempt_disable();
1142 cpu = task_cpu(p);
1143 if ((cpu != smp_processor_id()) && task_curr(p))
1144 smp_send_reschedule(cpu);
1145 preempt_enable();
1146}
1147
1148/*
2dd73a4f
PW
1149 * Return a low guess at the load of a migration-source cpu weighted
1150 * according to the scheduling class and "nice" value.
1da177e4
LT
1151 *
1152 * We want to under-estimate the load of migration sources, to
1153 * balance conservatively.
1154 */
a2000572 1155static inline unsigned long source_load(int cpu, int type)
1da177e4 1156{
70b97a7f 1157 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1158
3b0bd9bc 1159 if (type == 0)
2dd73a4f 1160 return rq->raw_weighted_load;
b910472d 1161
2dd73a4f 1162 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1da177e4
LT
1163}
1164
1165/*
2dd73a4f
PW
1166 * Return a high guess at the load of a migration-target cpu weighted
1167 * according to the scheduling class and "nice" value.
1da177e4 1168 */
a2000572 1169static inline unsigned long target_load(int cpu, int type)
1da177e4 1170{
70b97a7f 1171 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1172
7897986b 1173 if (type == 0)
2dd73a4f 1174 return rq->raw_weighted_load;
3b0bd9bc 1175
2dd73a4f
PW
1176 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1177}
1178
1179/*
1180 * Return the average load per task on the cpu's run queue
1181 */
1182static inline unsigned long cpu_avg_load_per_task(int cpu)
1183{
70b97a7f 1184 struct rq *rq = cpu_rq(cpu);
2dd73a4f
PW
1185 unsigned long n = rq->nr_running;
1186
48f24c4d 1187 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1da177e4
LT
1188}
1189
147cbb4b
NP
1190/*
1191 * find_idlest_group finds and returns the least busy CPU group within the
1192 * domain.
1193 */
1194static struct sched_group *
1195find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1196{
1197 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1198 unsigned long min_load = ULONG_MAX, this_load = 0;
1199 int load_idx = sd->forkexec_idx;
1200 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1201
1202 do {
1203 unsigned long load, avg_load;
1204 int local_group;
1205 int i;
1206
da5a5522
BD
1207 /* Skip over this group if it has no CPUs allowed */
1208 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1209 goto nextgroup;
1210
147cbb4b 1211 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1212
1213 /* Tally up the load of all CPUs in the group */
1214 avg_load = 0;
1215
1216 for_each_cpu_mask(i, group->cpumask) {
1217 /* Bias balancing toward cpus of our domain */
1218 if (local_group)
1219 load = source_load(i, load_idx);
1220 else
1221 load = target_load(i, load_idx);
1222
1223 avg_load += load;
1224 }
1225
1226 /* Adjust by relative CPU power of the group */
1227 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1228
1229 if (local_group) {
1230 this_load = avg_load;
1231 this = group;
1232 } else if (avg_load < min_load) {
1233 min_load = avg_load;
1234 idlest = group;
1235 }
da5a5522 1236nextgroup:
147cbb4b
NP
1237 group = group->next;
1238 } while (group != sd->groups);
1239
1240 if (!idlest || 100*this_load < imbalance*min_load)
1241 return NULL;
1242 return idlest;
1243}
1244
1245/*
0feaece9 1246 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1247 */
95cdf3b7
IM
1248static int
1249find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1250{
da5a5522 1251 cpumask_t tmp;
147cbb4b
NP
1252 unsigned long load, min_load = ULONG_MAX;
1253 int idlest = -1;
1254 int i;
1255
da5a5522
BD
1256 /* Traverse only the allowed CPUs */
1257 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1258
1259 for_each_cpu_mask(i, tmp) {
2dd73a4f 1260 load = weighted_cpuload(i);
147cbb4b
NP
1261
1262 if (load < min_load || (load == min_load && i == this_cpu)) {
1263 min_load = load;
1264 idlest = i;
1265 }
1266 }
1267
1268 return idlest;
1269}
1270
476d139c
NP
1271/*
1272 * sched_balance_self: balance the current task (running on cpu) in domains
1273 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1274 * SD_BALANCE_EXEC.
1275 *
1276 * Balance, ie. select the least loaded group.
1277 *
1278 * Returns the target CPU number, or the same CPU if no balancing is needed.
1279 *
1280 * preempt must be disabled.
1281 */
1282static int sched_balance_self(int cpu, int flag)
1283{
1284 struct task_struct *t = current;
1285 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1286
c96d145e 1287 for_each_domain(cpu, tmp) {
5c45bf27
SS
1288 /*
1289 * If power savings logic is enabled for a domain, stop there.
1290 */
1291 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1292 break;
476d139c
NP
1293 if (tmp->flags & flag)
1294 sd = tmp;
c96d145e 1295 }
476d139c
NP
1296
1297 while (sd) {
1298 cpumask_t span;
1299 struct sched_group *group;
1a848870
SS
1300 int new_cpu, weight;
1301
1302 if (!(sd->flags & flag)) {
1303 sd = sd->child;
1304 continue;
1305 }
476d139c
NP
1306
1307 span = sd->span;
1308 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1309 if (!group) {
1310 sd = sd->child;
1311 continue;
1312 }
476d139c 1313
da5a5522 1314 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1315 if (new_cpu == -1 || new_cpu == cpu) {
1316 /* Now try balancing at a lower domain level of cpu */
1317 sd = sd->child;
1318 continue;
1319 }
476d139c 1320
1a848870 1321 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1322 cpu = new_cpu;
476d139c
NP
1323 sd = NULL;
1324 weight = cpus_weight(span);
1325 for_each_domain(cpu, tmp) {
1326 if (weight <= cpus_weight(tmp->span))
1327 break;
1328 if (tmp->flags & flag)
1329 sd = tmp;
1330 }
1331 /* while loop will break here if sd == NULL */
1332 }
1333
1334 return cpu;
1335}
1336
1337#endif /* CONFIG_SMP */
1da177e4
LT
1338
1339/*
1340 * wake_idle() will wake a task on an idle cpu if task->cpu is
1341 * not idle and an idle cpu is available. The span of cpus to
1342 * search starts with cpus closest then further out as needed,
1343 * so we always favor a closer, idle cpu.
1344 *
1345 * Returns the CPU we should wake onto.
1346 */
1347#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1348static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1349{
1350 cpumask_t tmp;
1351 struct sched_domain *sd;
1352 int i;
1353
1354 if (idle_cpu(cpu))
1355 return cpu;
1356
1357 for_each_domain(cpu, sd) {
1358 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1359 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1360 for_each_cpu_mask(i, tmp) {
1361 if (idle_cpu(i))
1362 return i;
1363 }
1364 }
e0f364f4
NP
1365 else
1366 break;
1da177e4
LT
1367 }
1368 return cpu;
1369}
1370#else
36c8b586 1371static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1372{
1373 return cpu;
1374}
1375#endif
1376
1377/***
1378 * try_to_wake_up - wake up a thread
1379 * @p: the to-be-woken-up thread
1380 * @state: the mask of task states that can be woken
1381 * @sync: do a synchronous wakeup?
1382 *
1383 * Put it on the run-queue if it's not already there. The "current"
1384 * thread is always on the run-queue (except when the actual
1385 * re-schedule is in progress), and as such you're allowed to do
1386 * the simpler "current->state = TASK_RUNNING" to mark yourself
1387 * runnable without the overhead of this.
1388 *
1389 * returns failure only if the task is already active.
1390 */
36c8b586 1391static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1392{
1393 int cpu, this_cpu, success = 0;
1394 unsigned long flags;
1395 long old_state;
70b97a7f 1396 struct rq *rq;
1da177e4 1397#ifdef CONFIG_SMP
7897986b 1398 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1399 unsigned long load, this_load;
1da177e4
LT
1400 int new_cpu;
1401#endif
1402
1403 rq = task_rq_lock(p, &flags);
1404 old_state = p->state;
1405 if (!(old_state & state))
1406 goto out;
1407
1408 if (p->array)
1409 goto out_running;
1410
1411 cpu = task_cpu(p);
1412 this_cpu = smp_processor_id();
1413
1414#ifdef CONFIG_SMP
1415 if (unlikely(task_running(rq, p)))
1416 goto out_activate;
1417
7897986b
NP
1418 new_cpu = cpu;
1419
1da177e4
LT
1420 schedstat_inc(rq, ttwu_cnt);
1421 if (cpu == this_cpu) {
1422 schedstat_inc(rq, ttwu_local);
7897986b
NP
1423 goto out_set_cpu;
1424 }
1425
1426 for_each_domain(this_cpu, sd) {
1427 if (cpu_isset(cpu, sd->span)) {
1428 schedstat_inc(sd, ttwu_wake_remote);
1429 this_sd = sd;
1430 break;
1da177e4
LT
1431 }
1432 }
1da177e4 1433
7897986b 1434 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1435 goto out_set_cpu;
1436
1da177e4 1437 /*
7897986b 1438 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1439 */
7897986b
NP
1440 if (this_sd) {
1441 int idx = this_sd->wake_idx;
1442 unsigned int imbalance;
1da177e4 1443
a3f21bce
NP
1444 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1445
7897986b
NP
1446 load = source_load(cpu, idx);
1447 this_load = target_load(this_cpu, idx);
1da177e4 1448
7897986b
NP
1449 new_cpu = this_cpu; /* Wake to this CPU if we can */
1450
a3f21bce
NP
1451 if (this_sd->flags & SD_WAKE_AFFINE) {
1452 unsigned long tl = this_load;
2dd73a4f
PW
1453 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1454
1da177e4 1455 /*
a3f21bce
NP
1456 * If sync wakeup then subtract the (maximum possible)
1457 * effect of the currently running task from the load
1458 * of the current CPU:
1da177e4 1459 */
a3f21bce 1460 if (sync)
2dd73a4f 1461 tl -= current->load_weight;
a3f21bce
NP
1462
1463 if ((tl <= load &&
2dd73a4f
PW
1464 tl + target_load(cpu, idx) <= tl_per_task) ||
1465 100*(tl + p->load_weight) <= imbalance*load) {
a3f21bce
NP
1466 /*
1467 * This domain has SD_WAKE_AFFINE and
1468 * p is cache cold in this domain, and
1469 * there is no bad imbalance.
1470 */
1471 schedstat_inc(this_sd, ttwu_move_affine);
1472 goto out_set_cpu;
1473 }
1474 }
1475
1476 /*
1477 * Start passive balancing when half the imbalance_pct
1478 * limit is reached.
1479 */
1480 if (this_sd->flags & SD_WAKE_BALANCE) {
1481 if (imbalance*this_load <= 100*load) {
1482 schedstat_inc(this_sd, ttwu_move_balance);
1483 goto out_set_cpu;
1484 }
1da177e4
LT
1485 }
1486 }
1487
1488 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1489out_set_cpu:
1490 new_cpu = wake_idle(new_cpu, p);
1491 if (new_cpu != cpu) {
1492 set_task_cpu(p, new_cpu);
1493 task_rq_unlock(rq, &flags);
1494 /* might preempt at this point */
1495 rq = task_rq_lock(p, &flags);
1496 old_state = p->state;
1497 if (!(old_state & state))
1498 goto out;
1499 if (p->array)
1500 goto out_running;
1501
1502 this_cpu = smp_processor_id();
1503 cpu = task_cpu(p);
1504 }
1505
1506out_activate:
1507#endif /* CONFIG_SMP */
1508 if (old_state == TASK_UNINTERRUPTIBLE) {
1509 rq->nr_uninterruptible--;
1510 /*
1511 * Tasks on involuntary sleep don't earn
1512 * sleep_avg beyond just interactive state.
1513 */
3dee386e 1514 p->sleep_type = SLEEP_NONINTERACTIVE;
e7c38cb4 1515 } else
1da177e4 1516
d79fc0fc
IM
1517 /*
1518 * Tasks that have marked their sleep as noninteractive get
e7c38cb4
CK
1519 * woken up with their sleep average not weighted in an
1520 * interactive way.
d79fc0fc 1521 */
e7c38cb4
CK
1522 if (old_state & TASK_NONINTERACTIVE)
1523 p->sleep_type = SLEEP_NONINTERACTIVE;
1524
1525
1526 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1527 /*
1528 * Sync wakeups (i.e. those types of wakeups where the waker
1529 * has indicated that it will leave the CPU in short order)
1530 * don't trigger a preemption, if the woken up task will run on
1531 * this cpu. (in this case the 'I will reschedule' promise of
1532 * the waker guarantees that the freshly woken up task is going
1533 * to be considered on this CPU.)
1534 */
1da177e4
LT
1535 if (!sync || cpu != this_cpu) {
1536 if (TASK_PREEMPTS_CURR(p, rq))
1537 resched_task(rq->curr);
1538 }
1539 success = 1;
1540
1541out_running:
1542 p->state = TASK_RUNNING;
1543out:
1544 task_rq_unlock(rq, &flags);
1545
1546 return success;
1547}
1548
36c8b586 1549int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1550{
1551 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1552 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1553}
1da177e4
LT
1554EXPORT_SYMBOL(wake_up_process);
1555
36c8b586 1556int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1557{
1558 return try_to_wake_up(p, state, 0);
1559}
1560
1da177e4
LT
1561/*
1562 * Perform scheduler related setup for a newly forked process p.
1563 * p is forked by current.
1564 */
36c8b586 1565void fastcall sched_fork(struct task_struct *p, int clone_flags)
1da177e4 1566{
476d139c
NP
1567 int cpu = get_cpu();
1568
1569#ifdef CONFIG_SMP
1570 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1571#endif
1572 set_task_cpu(p, cpu);
1573
1da177e4
LT
1574 /*
1575 * We mark the process as running here, but have not actually
1576 * inserted it onto the runqueue yet. This guarantees that
1577 * nobody will actually run it, and a signal or other external
1578 * event cannot wake it up and insert it on the runqueue either.
1579 */
1580 p->state = TASK_RUNNING;
b29739f9
IM
1581
1582 /*
1583 * Make sure we do not leak PI boosting priority to the child:
1584 */
1585 p->prio = current->normal_prio;
1586
1da177e4
LT
1587 INIT_LIST_HEAD(&p->run_list);
1588 p->array = NULL;
52f17b6c
CS
1589#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1590 if (unlikely(sched_info_on()))
1591 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1592#endif
d6077cb8 1593#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1594 p->oncpu = 0;
1595#endif
1da177e4 1596#ifdef CONFIG_PREEMPT
4866cde0 1597 /* Want to start with kernel preemption disabled. */
a1261f54 1598 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1599#endif
1600 /*
1601 * Share the timeslice between parent and child, thus the
1602 * total amount of pending timeslices in the system doesn't change,
1603 * resulting in more scheduling fairness.
1604 */
1605 local_irq_disable();
1606 p->time_slice = (current->time_slice + 1) >> 1;
1607 /*
1608 * The remainder of the first timeslice might be recovered by
1609 * the parent if the child exits early enough.
1610 */
1611 p->first_time_slice = 1;
1612 current->time_slice >>= 1;
1613 p->timestamp = sched_clock();
1614 if (unlikely(!current->time_slice)) {
1615 /*
1616 * This case is rare, it happens when the parent has only
1617 * a single jiffy left from its timeslice. Taking the
1618 * runqueue lock is not a problem.
1619 */
1620 current->time_slice = 1;
1da177e4 1621 scheduler_tick();
476d139c
NP
1622 }
1623 local_irq_enable();
1624 put_cpu();
1da177e4
LT
1625}
1626
1627/*
1628 * wake_up_new_task - wake up a newly created task for the first time.
1629 *
1630 * This function will do some initial scheduler statistics housekeeping
1631 * that must be done for every newly created context, then puts the task
1632 * on the runqueue and wakes it.
1633 */
36c8b586 1634void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4 1635{
70b97a7f 1636 struct rq *rq, *this_rq;
1da177e4
LT
1637 unsigned long flags;
1638 int this_cpu, cpu;
1da177e4
LT
1639
1640 rq = task_rq_lock(p, &flags);
147cbb4b 1641 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1642 this_cpu = smp_processor_id();
147cbb4b 1643 cpu = task_cpu(p);
1da177e4 1644
1da177e4
LT
1645 /*
1646 * We decrease the sleep average of forking parents
1647 * and children as well, to keep max-interactive tasks
1648 * from forking tasks that are max-interactive. The parent
1649 * (current) is done further down, under its lock.
1650 */
1651 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1652 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1653
1654 p->prio = effective_prio(p);
1655
1656 if (likely(cpu == this_cpu)) {
1657 if (!(clone_flags & CLONE_VM)) {
1658 /*
1659 * The VM isn't cloned, so we're in a good position to
1660 * do child-runs-first in anticipation of an exec. This
1661 * usually avoids a lot of COW overhead.
1662 */
1663 if (unlikely(!current->array))
1664 __activate_task(p, rq);
1665 else {
1666 p->prio = current->prio;
b29739f9 1667 p->normal_prio = current->normal_prio;
1da177e4
LT
1668 list_add_tail(&p->run_list, &current->run_list);
1669 p->array = current->array;
1670 p->array->nr_active++;
2dd73a4f 1671 inc_nr_running(p, rq);
1da177e4
LT
1672 }
1673 set_need_resched();
1674 } else
1675 /* Run child last */
1676 __activate_task(p, rq);
1677 /*
1678 * We skip the following code due to cpu == this_cpu
1679 *
1680 * task_rq_unlock(rq, &flags);
1681 * this_rq = task_rq_lock(current, &flags);
1682 */
1683 this_rq = rq;
1684 } else {
1685 this_rq = cpu_rq(this_cpu);
1686
1687 /*
1688 * Not the local CPU - must adjust timestamp. This should
1689 * get optimised away in the !CONFIG_SMP case.
1690 */
1691 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1692 + rq->timestamp_last_tick;
1693 __activate_task(p, rq);
1694 if (TASK_PREEMPTS_CURR(p, rq))
1695 resched_task(rq->curr);
1696
1697 /*
1698 * Parent and child are on different CPUs, now get the
1699 * parent runqueue to update the parent's ->sleep_avg:
1700 */
1701 task_rq_unlock(rq, &flags);
1702 this_rq = task_rq_lock(current, &flags);
1703 }
1704 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1705 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1706 task_rq_unlock(this_rq, &flags);
1707}
1708
1709/*
1710 * Potentially available exiting-child timeslices are
1711 * retrieved here - this way the parent does not get
1712 * penalized for creating too many threads.
1713 *
1714 * (this cannot be used to 'generate' timeslices
1715 * artificially, because any timeslice recovered here
1716 * was given away by the parent in the first place.)
1717 */
36c8b586 1718void fastcall sched_exit(struct task_struct *p)
1da177e4
LT
1719{
1720 unsigned long flags;
70b97a7f 1721 struct rq *rq;
1da177e4
LT
1722
1723 /*
1724 * If the child was a (relative-) CPU hog then decrease
1725 * the sleep_avg of the parent as well.
1726 */
1727 rq = task_rq_lock(p->parent, &flags);
889dfafe 1728 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1729 p->parent->time_slice += p->time_slice;
1730 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1731 p->parent->time_slice = task_timeslice(p);
1732 }
1733 if (p->sleep_avg < p->parent->sleep_avg)
1734 p->parent->sleep_avg = p->parent->sleep_avg /
1735 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1736 (EXIT_WEIGHT + 1);
1737 task_rq_unlock(rq, &flags);
1738}
1739
4866cde0
NP
1740/**
1741 * prepare_task_switch - prepare to switch tasks
1742 * @rq: the runqueue preparing to switch
1743 * @next: the task we are going to switch to.
1744 *
1745 * This is called with the rq lock held and interrupts off. It must
1746 * be paired with a subsequent finish_task_switch after the context
1747 * switch.
1748 *
1749 * prepare_task_switch sets up locking and calls architecture specific
1750 * hooks.
1751 */
70b97a7f 1752static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1753{
1754 prepare_lock_switch(rq, next);
1755 prepare_arch_switch(next);
1756}
1757
1da177e4
LT
1758/**
1759 * finish_task_switch - clean up after a task-switch
344babaa 1760 * @rq: runqueue associated with task-switch
1da177e4
LT
1761 * @prev: the thread we just switched away from.
1762 *
4866cde0
NP
1763 * finish_task_switch must be called after the context switch, paired
1764 * with a prepare_task_switch call before the context switch.
1765 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1766 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1767 *
1768 * Note that we may have delayed dropping an mm in context_switch(). If
1769 * so, we finish that here outside of the runqueue lock. (Doing it
1770 * with the lock held can cause deadlocks; see schedule() for
1771 * details.)
1772 */
70b97a7f 1773static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1774 __releases(rq->lock)
1775{
1da177e4 1776 struct mm_struct *mm = rq->prev_mm;
55a101f8 1777 long prev_state;
1da177e4
LT
1778
1779 rq->prev_mm = NULL;
1780
1781 /*
1782 * A task struct has one reference for the use as "current".
c394cc9f 1783 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1784 * schedule one last time. The schedule call will never return, and
1785 * the scheduled task must drop that reference.
c394cc9f 1786 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1787 * still held, otherwise prev could be scheduled on another cpu, die
1788 * there before we look at prev->state, and then the reference would
1789 * be dropped twice.
1790 * Manfred Spraul <manfred@colorfullife.com>
1791 */
55a101f8 1792 prev_state = prev->state;
4866cde0
NP
1793 finish_arch_switch(prev);
1794 finish_lock_switch(rq, prev);
1da177e4
LT
1795 if (mm)
1796 mmdrop(mm);
c394cc9f 1797 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1798 /*
1799 * Remove function-return probe instances associated with this
1800 * task and put them back on the free list.
1801 */
1802 kprobe_flush_task(prev);
1da177e4 1803 put_task_struct(prev);
c6fd91f0 1804 }
1da177e4
LT
1805}
1806
1807/**
1808 * schedule_tail - first thing a freshly forked thread must call.
1809 * @prev: the thread we just switched away from.
1810 */
36c8b586 1811asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1812 __releases(rq->lock)
1813{
70b97a7f
IM
1814 struct rq *rq = this_rq();
1815
4866cde0
NP
1816 finish_task_switch(rq, prev);
1817#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1818 /* In this case, finish_task_switch does not reenable preemption */
1819 preempt_enable();
1820#endif
1da177e4
LT
1821 if (current->set_child_tid)
1822 put_user(current->pid, current->set_child_tid);
1823}
1824
1825/*
1826 * context_switch - switch to the new MM and the new
1827 * thread's register state.
1828 */
36c8b586 1829static inline struct task_struct *
70b97a7f 1830context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1831 struct task_struct *next)
1da177e4
LT
1832{
1833 struct mm_struct *mm = next->mm;
1834 struct mm_struct *oldmm = prev->active_mm;
1835
beed33a8 1836 if (!mm) {
1da177e4
LT
1837 next->active_mm = oldmm;
1838 atomic_inc(&oldmm->mm_count);
1839 enter_lazy_tlb(oldmm, next);
1840 } else
1841 switch_mm(oldmm, mm, next);
1842
beed33a8 1843 if (!prev->mm) {
1da177e4
LT
1844 prev->active_mm = NULL;
1845 WARN_ON(rq->prev_mm);
1846 rq->prev_mm = oldmm;
1847 }
3a5f5e48
IM
1848 /*
1849 * Since the runqueue lock will be released by the next
1850 * task (which is an invalid locking op but in the case
1851 * of the scheduler it's an obvious special-case), so we
1852 * do an early lockdep release here:
1853 */
1854#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1855 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1856#endif
1da177e4
LT
1857
1858 /* Here we just switch the register state and the stack. */
1859 switch_to(prev, next, prev);
1860
1861 return prev;
1862}
1863
1864/*
1865 * nr_running, nr_uninterruptible and nr_context_switches:
1866 *
1867 * externally visible scheduler statistics: current number of runnable
1868 * threads, current number of uninterruptible-sleeping threads, total
1869 * number of context switches performed since bootup.
1870 */
1871unsigned long nr_running(void)
1872{
1873 unsigned long i, sum = 0;
1874
1875 for_each_online_cpu(i)
1876 sum += cpu_rq(i)->nr_running;
1877
1878 return sum;
1879}
1880
1881unsigned long nr_uninterruptible(void)
1882{
1883 unsigned long i, sum = 0;
1884
0a945022 1885 for_each_possible_cpu(i)
1da177e4
LT
1886 sum += cpu_rq(i)->nr_uninterruptible;
1887
1888 /*
1889 * Since we read the counters lockless, it might be slightly
1890 * inaccurate. Do not allow it to go below zero though:
1891 */
1892 if (unlikely((long)sum < 0))
1893 sum = 0;
1894
1895 return sum;
1896}
1897
1898unsigned long long nr_context_switches(void)
1899{
cc94abfc
SR
1900 int i;
1901 unsigned long long sum = 0;
1da177e4 1902
0a945022 1903 for_each_possible_cpu(i)
1da177e4
LT
1904 sum += cpu_rq(i)->nr_switches;
1905
1906 return sum;
1907}
1908
1909unsigned long nr_iowait(void)
1910{
1911 unsigned long i, sum = 0;
1912
0a945022 1913 for_each_possible_cpu(i)
1da177e4
LT
1914 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1915
1916 return sum;
1917}
1918
db1b1fef
JS
1919unsigned long nr_active(void)
1920{
1921 unsigned long i, running = 0, uninterruptible = 0;
1922
1923 for_each_online_cpu(i) {
1924 running += cpu_rq(i)->nr_running;
1925 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1926 }
1927
1928 if (unlikely((long)uninterruptible < 0))
1929 uninterruptible = 0;
1930
1931 return running + uninterruptible;
1932}
1933
1da177e4
LT
1934#ifdef CONFIG_SMP
1935
48f24c4d
IM
1936/*
1937 * Is this task likely cache-hot:
1938 */
1939static inline int
1940task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1941{
1942 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1943}
1944
1da177e4
LT
1945/*
1946 * double_rq_lock - safely lock two runqueues
1947 *
1948 * Note this does not disable interrupts like task_rq_lock,
1949 * you need to do so manually before calling.
1950 */
70b97a7f 1951static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1952 __acquires(rq1->lock)
1953 __acquires(rq2->lock)
1954{
054b9108 1955 BUG_ON(!irqs_disabled());
1da177e4
LT
1956 if (rq1 == rq2) {
1957 spin_lock(&rq1->lock);
1958 __acquire(rq2->lock); /* Fake it out ;) */
1959 } else {
c96d145e 1960 if (rq1 < rq2) {
1da177e4
LT
1961 spin_lock(&rq1->lock);
1962 spin_lock(&rq2->lock);
1963 } else {
1964 spin_lock(&rq2->lock);
1965 spin_lock(&rq1->lock);
1966 }
1967 }
1968}
1969
1970/*
1971 * double_rq_unlock - safely unlock two runqueues
1972 *
1973 * Note this does not restore interrupts like task_rq_unlock,
1974 * you need to do so manually after calling.
1975 */
70b97a7f 1976static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1977 __releases(rq1->lock)
1978 __releases(rq2->lock)
1979{
1980 spin_unlock(&rq1->lock);
1981 if (rq1 != rq2)
1982 spin_unlock(&rq2->lock);
1983 else
1984 __release(rq2->lock);
1985}
1986
1987/*
1988 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1989 */
70b97a7f 1990static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
1991 __releases(this_rq->lock)
1992 __acquires(busiest->lock)
1993 __acquires(this_rq->lock)
1994{
054b9108
KK
1995 if (unlikely(!irqs_disabled())) {
1996 /* printk() doesn't work good under rq->lock */
1997 spin_unlock(&this_rq->lock);
1998 BUG_ON(1);
1999 }
1da177e4 2000 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2001 if (busiest < this_rq) {
1da177e4
LT
2002 spin_unlock(&this_rq->lock);
2003 spin_lock(&busiest->lock);
2004 spin_lock(&this_rq->lock);
2005 } else
2006 spin_lock(&busiest->lock);
2007 }
2008}
2009
1da177e4
LT
2010/*
2011 * If dest_cpu is allowed for this process, migrate the task to it.
2012 * This is accomplished by forcing the cpu_allowed mask to only
2013 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2014 * the cpu_allowed mask is restored.
2015 */
36c8b586 2016static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2017{
70b97a7f 2018 struct migration_req req;
1da177e4 2019 unsigned long flags;
70b97a7f 2020 struct rq *rq;
1da177e4
LT
2021
2022 rq = task_rq_lock(p, &flags);
2023 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2024 || unlikely(cpu_is_offline(dest_cpu)))
2025 goto out;
2026
2027 /* force the process onto the specified CPU */
2028 if (migrate_task(p, dest_cpu, &req)) {
2029 /* Need to wait for migration thread (might exit: take ref). */
2030 struct task_struct *mt = rq->migration_thread;
36c8b586 2031
1da177e4
LT
2032 get_task_struct(mt);
2033 task_rq_unlock(rq, &flags);
2034 wake_up_process(mt);
2035 put_task_struct(mt);
2036 wait_for_completion(&req.done);
36c8b586 2037
1da177e4
LT
2038 return;
2039 }
2040out:
2041 task_rq_unlock(rq, &flags);
2042}
2043
2044/*
476d139c
NP
2045 * sched_exec - execve() is a valuable balancing opportunity, because at
2046 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2047 */
2048void sched_exec(void)
2049{
1da177e4 2050 int new_cpu, this_cpu = get_cpu();
476d139c 2051 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2052 put_cpu();
476d139c
NP
2053 if (new_cpu != this_cpu)
2054 sched_migrate_task(current, new_cpu);
1da177e4
LT
2055}
2056
2057/*
2058 * pull_task - move a task from a remote runqueue to the local runqueue.
2059 * Both runqueues must be locked.
2060 */
70b97a7f
IM
2061static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2062 struct task_struct *p, struct rq *this_rq,
2063 struct prio_array *this_array, int this_cpu)
1da177e4
LT
2064{
2065 dequeue_task(p, src_array);
2dd73a4f 2066 dec_nr_running(p, src_rq);
1da177e4 2067 set_task_cpu(p, this_cpu);
2dd73a4f 2068 inc_nr_running(p, this_rq);
1da177e4
LT
2069 enqueue_task(p, this_array);
2070 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
2071 + this_rq->timestamp_last_tick;
2072 /*
2073 * Note that idle threads have a prio of MAX_PRIO, for this test
2074 * to be always true for them.
2075 */
2076 if (TASK_PREEMPTS_CURR(p, this_rq))
2077 resched_task(this_rq->curr);
2078}
2079
2080/*
2081 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2082 */
858119e1 2083static
70b97a7f 2084int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
95cdf3b7
IM
2085 struct sched_domain *sd, enum idle_type idle,
2086 int *all_pinned)
1da177e4
LT
2087{
2088 /*
2089 * We do not migrate tasks that are:
2090 * 1) running (obviously), or
2091 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2092 * 3) are cache-hot on their current CPU.
2093 */
1da177e4
LT
2094 if (!cpu_isset(this_cpu, p->cpus_allowed))
2095 return 0;
81026794
NP
2096 *all_pinned = 0;
2097
2098 if (task_running(rq, p))
2099 return 0;
1da177e4
LT
2100
2101 /*
2102 * Aggressive migration if:
cafb20c1 2103 * 1) task is cache cold, or
1da177e4
LT
2104 * 2) too many balance attempts have failed.
2105 */
2106
cafb20c1 2107 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2108 return 1;
2109
2110 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 2111 return 0;
1da177e4
LT
2112 return 1;
2113}
2114
615052dc 2115#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
48f24c4d 2116
1da177e4 2117/*
2dd73a4f
PW
2118 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2119 * load from busiest to this_rq, as part of a balancing operation within
2120 * "domain". Returns the number of tasks moved.
1da177e4
LT
2121 *
2122 * Called with both runqueues locked.
2123 */
70b97a7f 2124static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f
PW
2125 unsigned long max_nr_move, unsigned long max_load_move,
2126 struct sched_domain *sd, enum idle_type idle,
2127 int *all_pinned)
1da177e4 2128{
48f24c4d
IM
2129 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2130 best_prio_seen, skip_for_load;
70b97a7f 2131 struct prio_array *array, *dst_array;
1da177e4 2132 struct list_head *head, *curr;
36c8b586 2133 struct task_struct *tmp;
2dd73a4f 2134 long rem_load_move;
1da177e4 2135
2dd73a4f 2136 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2137 goto out;
2138
2dd73a4f 2139 rem_load_move = max_load_move;
81026794 2140 pinned = 1;
615052dc 2141 this_best_prio = rq_best_prio(this_rq);
48f24c4d 2142 best_prio = rq_best_prio(busiest);
615052dc
PW
2143 /*
2144 * Enable handling of the case where there is more than one task
2145 * with the best priority. If the current running task is one
48f24c4d 2146 * of those with prio==best_prio we know it won't be moved
615052dc
PW
2147 * and therefore it's safe to override the skip (based on load) of
2148 * any task we find with that prio.
2149 */
48f24c4d 2150 best_prio_seen = best_prio == busiest->curr->prio;
81026794 2151
1da177e4
LT
2152 /*
2153 * We first consider expired tasks. Those will likely not be
2154 * executed in the near future, and they are most likely to
2155 * be cache-cold, thus switching CPUs has the least effect
2156 * on them.
2157 */
2158 if (busiest->expired->nr_active) {
2159 array = busiest->expired;
2160 dst_array = this_rq->expired;
2161 } else {
2162 array = busiest->active;
2163 dst_array = this_rq->active;
2164 }
2165
2166new_array:
2167 /* Start searching at priority 0: */
2168 idx = 0;
2169skip_bitmap:
2170 if (!idx)
2171 idx = sched_find_first_bit(array->bitmap);
2172 else
2173 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2174 if (idx >= MAX_PRIO) {
2175 if (array == busiest->expired && busiest->active->nr_active) {
2176 array = busiest->active;
2177 dst_array = this_rq->active;
2178 goto new_array;
2179 }
2180 goto out;
2181 }
2182
2183 head = array->queue + idx;
2184 curr = head->prev;
2185skip_queue:
36c8b586 2186 tmp = list_entry(curr, struct task_struct, run_list);
1da177e4
LT
2187
2188 curr = curr->prev;
2189
50ddd969
PW
2190 /*
2191 * To help distribute high priority tasks accross CPUs we don't
2192 * skip a task if it will be the highest priority task (i.e. smallest
2193 * prio value) on its new queue regardless of its load weight
2194 */
615052dc
PW
2195 skip_for_load = tmp->load_weight > rem_load_move;
2196 if (skip_for_load && idx < this_best_prio)
48f24c4d 2197 skip_for_load = !best_prio_seen && idx == best_prio;
615052dc 2198 if (skip_for_load ||
2dd73a4f 2199 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d
IM
2200
2201 best_prio_seen |= idx == best_prio;
1da177e4
LT
2202 if (curr != head)
2203 goto skip_queue;
2204 idx++;
2205 goto skip_bitmap;
2206 }
2207
2208#ifdef CONFIG_SCHEDSTATS
2209 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2210 schedstat_inc(sd, lb_hot_gained[idle]);
2211#endif
2212
2213 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2214 pulled++;
2dd73a4f 2215 rem_load_move -= tmp->load_weight;
1da177e4 2216
2dd73a4f
PW
2217 /*
2218 * We only want to steal up to the prescribed number of tasks
2219 * and the prescribed amount of weighted load.
2220 */
2221 if (pulled < max_nr_move && rem_load_move > 0) {
615052dc
PW
2222 if (idx < this_best_prio)
2223 this_best_prio = idx;
1da177e4
LT
2224 if (curr != head)
2225 goto skip_queue;
2226 idx++;
2227 goto skip_bitmap;
2228 }
2229out:
2230 /*
2231 * Right now, this is the only place pull_task() is called,
2232 * so we can safely collect pull_task() stats here rather than
2233 * inside pull_task().
2234 */
2235 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2236
2237 if (all_pinned)
2238 *all_pinned = pinned;
1da177e4
LT
2239 return pulled;
2240}
2241
2242/*
2243 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2244 * domain. It calculates and returns the amount of weighted load which
2245 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2246 */
2247static struct sched_group *
2248find_busiest_group(struct sched_domain *sd, int this_cpu,
0a2966b4
CL
2249 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2250 cpumask_t *cpus)
1da177e4
LT
2251{
2252 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2253 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2254 unsigned long max_pull;
2dd73a4f
PW
2255 unsigned long busiest_load_per_task, busiest_nr_running;
2256 unsigned long this_load_per_task, this_nr_running;
7897986b 2257 int load_idx;
5c45bf27
SS
2258#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2259 int power_savings_balance = 1;
2260 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2261 unsigned long min_nr_running = ULONG_MAX;
2262 struct sched_group *group_min = NULL, *group_leader = NULL;
2263#endif
1da177e4
LT
2264
2265 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2266 busiest_load_per_task = busiest_nr_running = 0;
2267 this_load_per_task = this_nr_running = 0;
7897986b
NP
2268 if (idle == NOT_IDLE)
2269 load_idx = sd->busy_idx;
2270 else if (idle == NEWLY_IDLE)
2271 load_idx = sd->newidle_idx;
2272 else
2273 load_idx = sd->idle_idx;
1da177e4
LT
2274
2275 do {
5c45bf27 2276 unsigned long load, group_capacity;
1da177e4
LT
2277 int local_group;
2278 int i;
2dd73a4f 2279 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2280
2281 local_group = cpu_isset(this_cpu, group->cpumask);
2282
2283 /* Tally up the load of all CPUs in the group */
2dd73a4f 2284 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2285
2286 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2287 struct rq *rq;
2288
2289 if (!cpu_isset(i, *cpus))
2290 continue;
2291
2292 rq = cpu_rq(i);
2dd73a4f 2293
5969fe06
NP
2294 if (*sd_idle && !idle_cpu(i))
2295 *sd_idle = 0;
2296
1da177e4
LT
2297 /* Bias balancing toward cpus of our domain */
2298 if (local_group)
a2000572 2299 load = target_load(i, load_idx);
1da177e4 2300 else
a2000572 2301 load = source_load(i, load_idx);
1da177e4
LT
2302
2303 avg_load += load;
2dd73a4f
PW
2304 sum_nr_running += rq->nr_running;
2305 sum_weighted_load += rq->raw_weighted_load;
1da177e4
LT
2306 }
2307
2308 total_load += avg_load;
2309 total_pwr += group->cpu_power;
2310
2311 /* Adjust by relative CPU power of the group */
2312 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2313
5c45bf27
SS
2314 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2315
1da177e4
LT
2316 if (local_group) {
2317 this_load = avg_load;
2318 this = group;
2dd73a4f
PW
2319 this_nr_running = sum_nr_running;
2320 this_load_per_task = sum_weighted_load;
2321 } else if (avg_load > max_load &&
5c45bf27 2322 sum_nr_running > group_capacity) {
1da177e4
LT
2323 max_load = avg_load;
2324 busiest = group;
2dd73a4f
PW
2325 busiest_nr_running = sum_nr_running;
2326 busiest_load_per_task = sum_weighted_load;
1da177e4 2327 }
5c45bf27
SS
2328
2329#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2330 /*
2331 * Busy processors will not participate in power savings
2332 * balance.
2333 */
2334 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2335 goto group_next;
2336
2337 /*
2338 * If the local group is idle or completely loaded
2339 * no need to do power savings balance at this domain
2340 */
2341 if (local_group && (this_nr_running >= group_capacity ||
2342 !this_nr_running))
2343 power_savings_balance = 0;
2344
2345 /*
2346 * If a group is already running at full capacity or idle,
2347 * don't include that group in power savings calculations
2348 */
2349 if (!power_savings_balance || sum_nr_running >= group_capacity
2350 || !sum_nr_running)
2351 goto group_next;
2352
2353 /*
2354 * Calculate the group which has the least non-idle load.
2355 * This is the group from where we need to pick up the load
2356 * for saving power
2357 */
2358 if ((sum_nr_running < min_nr_running) ||
2359 (sum_nr_running == min_nr_running &&
2360 first_cpu(group->cpumask) <
2361 first_cpu(group_min->cpumask))) {
2362 group_min = group;
2363 min_nr_running = sum_nr_running;
2364 min_load_per_task = sum_weighted_load /
2365 sum_nr_running;
2366 }
2367
2368 /*
2369 * Calculate the group which is almost near its
2370 * capacity but still has some space to pick up some load
2371 * from other group and save more power
2372 */
48f24c4d 2373 if (sum_nr_running <= group_capacity - 1) {
5c45bf27
SS
2374 if (sum_nr_running > leader_nr_running ||
2375 (sum_nr_running == leader_nr_running &&
2376 first_cpu(group->cpumask) >
2377 first_cpu(group_leader->cpumask))) {
2378 group_leader = group;
2379 leader_nr_running = sum_nr_running;
2380 }
48f24c4d 2381 }
5c45bf27
SS
2382group_next:
2383#endif
1da177e4
LT
2384 group = group->next;
2385 } while (group != sd->groups);
2386
2dd73a4f 2387 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2388 goto out_balanced;
2389
2390 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2391
2392 if (this_load >= avg_load ||
2393 100*max_load <= sd->imbalance_pct*this_load)
2394 goto out_balanced;
2395
2dd73a4f 2396 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2397 /*
2398 * We're trying to get all the cpus to the average_load, so we don't
2399 * want to push ourselves above the average load, nor do we wish to
2400 * reduce the max loaded cpu below the average load, as either of these
2401 * actions would just result in more rebalancing later, and ping-pong
2402 * tasks around. Thus we look for the minimum possible imbalance.
2403 * Negative imbalances (*we* are more loaded than anyone else) will
2404 * be counted as no imbalance for these purposes -- we can't fix that
2405 * by pulling tasks to us. Be careful of negative numbers as they'll
2406 * appear as very large values with unsigned longs.
2407 */
2dd73a4f
PW
2408 if (max_load <= busiest_load_per_task)
2409 goto out_balanced;
2410
2411 /*
2412 * In the presence of smp nice balancing, certain scenarios can have
2413 * max load less than avg load(as we skip the groups at or below
2414 * its cpu_power, while calculating max_load..)
2415 */
2416 if (max_load < avg_load) {
2417 *imbalance = 0;
2418 goto small_imbalance;
2419 }
0c117f1b
SS
2420
2421 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2422 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2423
1da177e4 2424 /* How much load to actually move to equalise the imbalance */
0c117f1b 2425 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2426 (avg_load - this_load) * this->cpu_power)
2427 / SCHED_LOAD_SCALE;
2428
2dd73a4f
PW
2429 /*
2430 * if *imbalance is less than the average load per runnable task
2431 * there is no gaurantee that any tasks will be moved so we'll have
2432 * a think about bumping its value to force at least one task to be
2433 * moved
2434 */
2435 if (*imbalance < busiest_load_per_task) {
48f24c4d 2436 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2437 unsigned int imbn;
2438
2439small_imbalance:
2440 pwr_move = pwr_now = 0;
2441 imbn = 2;
2442 if (this_nr_running) {
2443 this_load_per_task /= this_nr_running;
2444 if (busiest_load_per_task > this_load_per_task)
2445 imbn = 1;
2446 } else
2447 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2448
2dd73a4f
PW
2449 if (max_load - this_load >= busiest_load_per_task * imbn) {
2450 *imbalance = busiest_load_per_task;
1da177e4
LT
2451 return busiest;
2452 }
2453
2454 /*
2455 * OK, we don't have enough imbalance to justify moving tasks,
2456 * however we may be able to increase total CPU power used by
2457 * moving them.
2458 */
2459
2dd73a4f
PW
2460 pwr_now += busiest->cpu_power *
2461 min(busiest_load_per_task, max_load);
2462 pwr_now += this->cpu_power *
2463 min(this_load_per_task, this_load);
1da177e4
LT
2464 pwr_now /= SCHED_LOAD_SCALE;
2465
2466 /* Amount of load we'd subtract */
2dd73a4f 2467 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
1da177e4 2468 if (max_load > tmp)
2dd73a4f
PW
2469 pwr_move += busiest->cpu_power *
2470 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2471
2472 /* Amount of load we'd add */
2473 if (max_load*busiest->cpu_power <
2dd73a4f 2474 busiest_load_per_task*SCHED_LOAD_SCALE)
1da177e4
LT
2475 tmp = max_load*busiest->cpu_power/this->cpu_power;
2476 else
2dd73a4f
PW
2477 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2478 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
1da177e4
LT
2479 pwr_move /= SCHED_LOAD_SCALE;
2480
2481 /* Move if we gain throughput */
2482 if (pwr_move <= pwr_now)
2483 goto out_balanced;
2484
2dd73a4f 2485 *imbalance = busiest_load_per_task;
1da177e4
LT
2486 }
2487
1da177e4
LT
2488 return busiest;
2489
2490out_balanced:
5c45bf27
SS
2491#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2492 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2493 goto ret;
1da177e4 2494
5c45bf27
SS
2495 if (this == group_leader && group_leader != group_min) {
2496 *imbalance = min_load_per_task;
2497 return group_min;
2498 }
2499ret:
2500#endif
1da177e4
LT
2501 *imbalance = 0;
2502 return NULL;
2503}
2504
2505/*
2506 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2507 */
70b97a7f 2508static struct rq *
48f24c4d 2509find_busiest_queue(struct sched_group *group, enum idle_type idle,
0a2966b4 2510 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2511{
70b97a7f 2512 struct rq *busiest = NULL, *rq;
2dd73a4f 2513 unsigned long max_load = 0;
1da177e4
LT
2514 int i;
2515
2516 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2517
2518 if (!cpu_isset(i, *cpus))
2519 continue;
2520
48f24c4d 2521 rq = cpu_rq(i);
2dd73a4f 2522
48f24c4d 2523 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2dd73a4f 2524 continue;
1da177e4 2525
48f24c4d
IM
2526 if (rq->raw_weighted_load > max_load) {
2527 max_load = rq->raw_weighted_load;
2528 busiest = rq;
1da177e4
LT
2529 }
2530 }
2531
2532 return busiest;
2533}
2534
77391d71
NP
2535/*
2536 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2537 * so long as it is large enough.
2538 */
2539#define MAX_PINNED_INTERVAL 512
2540
48f24c4d
IM
2541static inline unsigned long minus_1_or_zero(unsigned long n)
2542{
2543 return n > 0 ? n - 1 : 0;
2544}
2545
1da177e4
LT
2546/*
2547 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2548 * tasks if there is an imbalance.
1da177e4 2549 */
70b97a7f 2550static int load_balance(int this_cpu, struct rq *this_rq,
1da177e4
LT
2551 struct sched_domain *sd, enum idle_type idle)
2552{
48f24c4d 2553 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2554 struct sched_group *group;
1da177e4 2555 unsigned long imbalance;
70b97a7f 2556 struct rq *busiest;
0a2966b4 2557 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2558 unsigned long flags;
5969fe06 2559
89c4710e
SS
2560 /*
2561 * When power savings policy is enabled for the parent domain, idle
2562 * sibling can pick up load irrespective of busy siblings. In this case,
2563 * let the state of idle sibling percolate up as IDLE, instead of
2564 * portraying it as NOT_IDLE.
2565 */
5c45bf27 2566 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2567 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2568 sd_idle = 1;
1da177e4 2569
1da177e4
LT
2570 schedstat_inc(sd, lb_cnt[idle]);
2571
0a2966b4
CL
2572redo:
2573 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2574 &cpus);
1da177e4
LT
2575 if (!group) {
2576 schedstat_inc(sd, lb_nobusyg[idle]);
2577 goto out_balanced;
2578 }
2579
0a2966b4 2580 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2581 if (!busiest) {
2582 schedstat_inc(sd, lb_nobusyq[idle]);
2583 goto out_balanced;
2584 }
2585
db935dbd 2586 BUG_ON(busiest == this_rq);
1da177e4
LT
2587
2588 schedstat_add(sd, lb_imbalance[idle], imbalance);
2589
2590 nr_moved = 0;
2591 if (busiest->nr_running > 1) {
2592 /*
2593 * Attempt to move tasks. If find_busiest_group has found
2594 * an imbalance but busiest->nr_running <= 1, the group is
2595 * still unbalanced. nr_moved simply stays zero, so it is
2596 * correctly treated as an imbalance.
2597 */
fe2eea3f 2598 local_irq_save(flags);
e17224bf 2599 double_rq_lock(this_rq, busiest);
1da177e4 2600 nr_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d
IM
2601 minus_1_or_zero(busiest->nr_running),
2602 imbalance, sd, idle, &all_pinned);
e17224bf 2603 double_rq_unlock(this_rq, busiest);
fe2eea3f 2604 local_irq_restore(flags);
81026794
NP
2605
2606 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2607 if (unlikely(all_pinned)) {
2608 cpu_clear(cpu_of(busiest), cpus);
2609 if (!cpus_empty(cpus))
2610 goto redo;
81026794 2611 goto out_balanced;
0a2966b4 2612 }
1da177e4 2613 }
81026794 2614
1da177e4
LT
2615 if (!nr_moved) {
2616 schedstat_inc(sd, lb_failed[idle]);
2617 sd->nr_balance_failed++;
2618
2619 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2620
fe2eea3f 2621 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2622
2623 /* don't kick the migration_thread, if the curr
2624 * task on busiest cpu can't be moved to this_cpu
2625 */
2626 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2627 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2628 all_pinned = 1;
2629 goto out_one_pinned;
2630 }
2631
1da177e4
LT
2632 if (!busiest->active_balance) {
2633 busiest->active_balance = 1;
2634 busiest->push_cpu = this_cpu;
81026794 2635 active_balance = 1;
1da177e4 2636 }
fe2eea3f 2637 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2638 if (active_balance)
1da177e4
LT
2639 wake_up_process(busiest->migration_thread);
2640
2641 /*
2642 * We've kicked active balancing, reset the failure
2643 * counter.
2644 */
39507451 2645 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2646 }
81026794 2647 } else
1da177e4
LT
2648 sd->nr_balance_failed = 0;
2649
81026794 2650 if (likely(!active_balance)) {
1da177e4
LT
2651 /* We were unbalanced, so reset the balancing interval */
2652 sd->balance_interval = sd->min_interval;
81026794
NP
2653 } else {
2654 /*
2655 * If we've begun active balancing, start to back off. This
2656 * case may not be covered by the all_pinned logic if there
2657 * is only 1 task on the busy runqueue (because we don't call
2658 * move_tasks).
2659 */
2660 if (sd->balance_interval < sd->max_interval)
2661 sd->balance_interval *= 2;
1da177e4
LT
2662 }
2663
5c45bf27 2664 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2665 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2666 return -1;
1da177e4
LT
2667 return nr_moved;
2668
2669out_balanced:
1da177e4
LT
2670 schedstat_inc(sd, lb_balanced[idle]);
2671
16cfb1c0 2672 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2673
2674out_one_pinned:
1da177e4 2675 /* tune up the balancing interval */
77391d71
NP
2676 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2677 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2678 sd->balance_interval *= 2;
2679
48f24c4d 2680 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2681 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2682 return -1;
1da177e4
LT
2683 return 0;
2684}
2685
2686/*
2687 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2688 * tasks if there is an imbalance.
2689 *
2690 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2691 * this_rq is locked.
2692 */
48f24c4d 2693static int
70b97a7f 2694load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2695{
2696 struct sched_group *group;
70b97a7f 2697 struct rq *busiest = NULL;
1da177e4
LT
2698 unsigned long imbalance;
2699 int nr_moved = 0;
5969fe06 2700 int sd_idle = 0;
0a2966b4 2701 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2702
89c4710e
SS
2703 /*
2704 * When power savings policy is enabled for the parent domain, idle
2705 * sibling can pick up load irrespective of busy siblings. In this case,
2706 * let the state of idle sibling percolate up as IDLE, instead of
2707 * portraying it as NOT_IDLE.
2708 */
2709 if (sd->flags & SD_SHARE_CPUPOWER &&
2710 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2711 sd_idle = 1;
1da177e4
LT
2712
2713 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
0a2966b4
CL
2714redo:
2715 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2716 &sd_idle, &cpus);
1da177e4 2717 if (!group) {
1da177e4 2718 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2719 goto out_balanced;
1da177e4
LT
2720 }
2721
0a2966b4
CL
2722 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2723 &cpus);
db935dbd 2724 if (!busiest) {
1da177e4 2725 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2726 goto out_balanced;
1da177e4
LT
2727 }
2728
db935dbd
NP
2729 BUG_ON(busiest == this_rq);
2730
1da177e4 2731 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2732
2733 nr_moved = 0;
2734 if (busiest->nr_running > 1) {
2735 /* Attempt to move tasks */
2736 double_lock_balance(this_rq, busiest);
2737 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2738 minus_1_or_zero(busiest->nr_running),
81026794 2739 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf 2740 spin_unlock(&busiest->lock);
0a2966b4
CL
2741
2742 if (!nr_moved) {
2743 cpu_clear(cpu_of(busiest), cpus);
2744 if (!cpus_empty(cpus))
2745 goto redo;
2746 }
d6d5cfaf
NP
2747 }
2748
5969fe06 2749 if (!nr_moved) {
1da177e4 2750 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
89c4710e
SS
2751 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2752 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2753 return -1;
2754 } else
16cfb1c0 2755 sd->nr_balance_failed = 0;
1da177e4 2756
1da177e4 2757 return nr_moved;
16cfb1c0
NP
2758
2759out_balanced:
2760 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
48f24c4d 2761 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2762 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2763 return -1;
16cfb1c0 2764 sd->nr_balance_failed = 0;
48f24c4d 2765
16cfb1c0 2766 return 0;
1da177e4
LT
2767}
2768
2769/*
2770 * idle_balance is called by schedule() if this_cpu is about to become
2771 * idle. Attempts to pull tasks from other CPUs.
2772 */
70b97a7f 2773static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2774{
2775 struct sched_domain *sd;
2776
2777 for_each_domain(this_cpu, sd) {
2778 if (sd->flags & SD_BALANCE_NEWIDLE) {
48f24c4d
IM
2779 /* If we've pulled tasks over stop searching: */
2780 if (load_balance_newidle(this_cpu, this_rq, sd))
1da177e4 2781 break;
1da177e4
LT
2782 }
2783 }
2784}
2785
2786/*
2787 * active_load_balance is run by migration threads. It pushes running tasks
2788 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2789 * running on each physical CPU where possible, and avoids physical /
2790 * logical imbalances.
2791 *
2792 * Called with busiest_rq locked.
2793 */
70b97a7f 2794static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2795{
39507451 2796 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2797 struct sched_domain *sd;
2798 struct rq *target_rq;
39507451 2799
48f24c4d 2800 /* Is there any task to move? */
39507451 2801 if (busiest_rq->nr_running <= 1)
39507451
NP
2802 return;
2803
2804 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2805
2806 /*
39507451
NP
2807 * This condition is "impossible", if it occurs
2808 * we need to fix it. Originally reported by
2809 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2810 */
39507451 2811 BUG_ON(busiest_rq == target_rq);
1da177e4 2812
39507451
NP
2813 /* move a task from busiest_rq to target_rq */
2814 double_lock_balance(busiest_rq, target_rq);
2815
2816 /* Search for an sd spanning us and the target CPU. */
c96d145e 2817 for_each_domain(target_cpu, sd) {
39507451 2818 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2819 cpu_isset(busiest_cpu, sd->span))
39507451 2820 break;
c96d145e 2821 }
39507451 2822
48f24c4d
IM
2823 if (likely(sd)) {
2824 schedstat_inc(sd, alb_cnt);
39507451 2825
48f24c4d
IM
2826 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2827 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2828 NULL))
2829 schedstat_inc(sd, alb_pushed);
2830 else
2831 schedstat_inc(sd, alb_failed);
2832 }
39507451 2833 spin_unlock(&target_rq->lock);
1da177e4
LT
2834}
2835
7835b98b 2836static void update_load(struct rq *this_rq)
1da177e4 2837{
7835b98b 2838 unsigned long this_load;
48f24c4d 2839 int i, scale;
1da177e4 2840
2dd73a4f 2841 this_load = this_rq->raw_weighted_load;
48f24c4d
IM
2842
2843 /* Update our load: */
2844 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2845 unsigned long old_load, new_load;
2846
7897986b 2847 old_load = this_rq->cpu_load[i];
48f24c4d 2848 new_load = this_load;
7897986b
NP
2849 /*
2850 * Round up the averaging division if load is increasing. This
2851 * prevents us from getting stuck on 9 if the load is 10, for
2852 * example.
2853 */
2854 if (new_load > old_load)
2855 new_load += scale-1;
2856 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2857 }
7835b98b
CL
2858}
2859
2860/*
2861 * rebalance_tick will get called every timer tick, on every CPU.
2862 *
2863 * It checks each scheduling domain to see if it is due to be balanced,
2864 * and initiates a balancing operation if so.
2865 *
2866 * Balancing parameters are set up in arch_init_sched_domains.
2867 */
2868
2869static void
2870rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle)
2871{
2872 unsigned long interval;
2873 struct sched_domain *sd;
1da177e4
LT
2874
2875 for_each_domain(this_cpu, sd) {
1da177e4
LT
2876 if (!(sd->flags & SD_LOAD_BALANCE))
2877 continue;
2878
2879 interval = sd->balance_interval;
2880 if (idle != SCHED_IDLE)
2881 interval *= sd->busy_factor;
2882
2883 /* scale ms to jiffies */
2884 interval = msecs_to_jiffies(interval);
2885 if (unlikely(!interval))
2886 interval = 1;
2887
4211a9a2 2888 if (jiffies - sd->last_balance >= interval) {
1da177e4 2889 if (load_balance(this_cpu, this_rq, sd, idle)) {
fa3b6ddc
SS
2890 /*
2891 * We've pulled tasks over so either we're no
5969fe06
NP
2892 * longer idle, or one of our SMT siblings is
2893 * not idle.
2894 */
1da177e4
LT
2895 idle = NOT_IDLE;
2896 }
2897 sd->last_balance += interval;
2898 }
2899 }
2900}
2901#else
2902/*
2903 * on UP we do not need to balance between CPUs:
2904 */
7835b98b 2905static inline void rebalance_tick(int cpu, struct rq *rq)
1da177e4
LT
2906{
2907}
70b97a7f 2908static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
2909{
2910}
7835b98b
CL
2911static inline void update_load(struct rq *this_rq)
2912{
2913}
1da177e4
LT
2914#endif
2915
70b97a7f 2916static inline int wake_priority_sleeper(struct rq *rq)
1da177e4
LT
2917{
2918 int ret = 0;
48f24c4d 2919
1da177e4 2920#ifdef CONFIG_SCHED_SMT
571f6d2f
CL
2921 if (!rq->nr_running)
2922 return 0;
2923
1da177e4
LT
2924 spin_lock(&rq->lock);
2925 /*
2926 * If an SMT sibling task has been put to sleep for priority
2927 * reasons reschedule the idle task to see if it can now run.
2928 */
2929 if (rq->nr_running) {
2930 resched_task(rq->idle);
2931 ret = 1;
2932 }
2933 spin_unlock(&rq->lock);
2934#endif
2935 return ret;
2936}
2937
2938DEFINE_PER_CPU(struct kernel_stat, kstat);
2939
2940EXPORT_PER_CPU_SYMBOL(kstat);
2941
2942/*
2943 * This is called on clock ticks and on context switches.
2944 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2945 */
48f24c4d 2946static inline void
70b97a7f 2947update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
1da177e4 2948{
48f24c4d 2949 p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
1da177e4
LT
2950}
2951
2952/*
2953 * Return current->sched_time plus any more ns on the sched_clock
2954 * that have not yet been banked.
2955 */
36c8b586 2956unsigned long long current_sched_time(const struct task_struct *p)
1da177e4
LT
2957{
2958 unsigned long long ns;
2959 unsigned long flags;
48f24c4d 2960
1da177e4 2961 local_irq_save(flags);
48f24c4d
IM
2962 ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
2963 ns = p->sched_time + sched_clock() - ns;
1da177e4 2964 local_irq_restore(flags);
48f24c4d 2965
1da177e4
LT
2966 return ns;
2967}
2968
f1adad78
LT
2969/*
2970 * We place interactive tasks back into the active array, if possible.
2971 *
2972 * To guarantee that this does not starve expired tasks we ignore the
2973 * interactivity of a task if the first expired task had to wait more
2974 * than a 'reasonable' amount of time. This deadline timeout is
2975 * load-dependent, as the frequency of array switched decreases with
2976 * increasing number of running tasks. We also ignore the interactivity
2977 * if a better static_prio task has expired:
2978 */
70b97a7f 2979static inline int expired_starving(struct rq *rq)
48f24c4d
IM
2980{
2981 if (rq->curr->static_prio > rq->best_expired_prio)
2982 return 1;
2983 if (!STARVATION_LIMIT || !rq->expired_timestamp)
2984 return 0;
2985 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
2986 return 1;
2987 return 0;
2988}
f1adad78 2989
1da177e4
LT
2990/*
2991 * Account user cpu time to a process.
2992 * @p: the process that the cpu time gets accounted to
2993 * @hardirq_offset: the offset to subtract from hardirq_count()
2994 * @cputime: the cpu time spent in user space since the last update
2995 */
2996void account_user_time(struct task_struct *p, cputime_t cputime)
2997{
2998 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2999 cputime64_t tmp;
3000
3001 p->utime = cputime_add(p->utime, cputime);
3002
3003 /* Add user time to cpustat. */
3004 tmp = cputime_to_cputime64(cputime);
3005 if (TASK_NICE(p) > 0)
3006 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3007 else
3008 cpustat->user = cputime64_add(cpustat->user, tmp);
3009}
3010
3011/*
3012 * Account system cpu time to a process.
3013 * @p: the process that the cpu time gets accounted to
3014 * @hardirq_offset: the offset to subtract from hardirq_count()
3015 * @cputime: the cpu time spent in kernel space since the last update
3016 */
3017void account_system_time(struct task_struct *p, int hardirq_offset,
3018 cputime_t cputime)
3019{
3020 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3021 struct rq *rq = this_rq();
1da177e4
LT
3022 cputime64_t tmp;
3023
3024 p->stime = cputime_add(p->stime, cputime);
3025
3026 /* Add system time to cpustat. */
3027 tmp = cputime_to_cputime64(cputime);
3028 if (hardirq_count() - hardirq_offset)
3029 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3030 else if (softirq_count())
3031 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3032 else if (p != rq->idle)
3033 cpustat->system = cputime64_add(cpustat->system, tmp);
3034 else if (atomic_read(&rq->nr_iowait) > 0)
3035 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3036 else
3037 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3038 /* Account for system time used */
3039 acct_update_integrals(p);
1da177e4
LT
3040}
3041
3042/*
3043 * Account for involuntary wait time.
3044 * @p: the process from which the cpu time has been stolen
3045 * @steal: the cpu time spent in involuntary wait
3046 */
3047void account_steal_time(struct task_struct *p, cputime_t steal)
3048{
3049 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3050 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3051 struct rq *rq = this_rq();
1da177e4
LT
3052
3053 if (p == rq->idle) {
3054 p->stime = cputime_add(p->stime, steal);
3055 if (atomic_read(&rq->nr_iowait) > 0)
3056 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3057 else
3058 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3059 } else
3060 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3061}
3062
7835b98b 3063static void task_running_tick(struct rq *rq, struct task_struct *p)
1da177e4 3064{
1da177e4 3065 if (p->array != rq->active) {
7835b98b 3066 /* Task has expired but was not scheduled yet */
1da177e4 3067 set_tsk_need_resched(p);
7835b98b 3068 return;
1da177e4
LT
3069 }
3070 spin_lock(&rq->lock);
3071 /*
3072 * The task was running during this tick - update the
3073 * time slice counter. Note: we do not update a thread's
3074 * priority until it either goes to sleep or uses up its
3075 * timeslice. This makes it possible for interactive tasks
3076 * to use up their timeslices at their highest priority levels.
3077 */
3078 if (rt_task(p)) {
3079 /*
3080 * RR tasks need a special form of timeslice management.
3081 * FIFO tasks have no timeslices.
3082 */
3083 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3084 p->time_slice = task_timeslice(p);
3085 p->first_time_slice = 0;
3086 set_tsk_need_resched(p);
3087
3088 /* put it at the end of the queue: */
3089 requeue_task(p, rq->active);
3090 }
3091 goto out_unlock;
3092 }
3093 if (!--p->time_slice) {
3094 dequeue_task(p, rq->active);
3095 set_tsk_need_resched(p);
3096 p->prio = effective_prio(p);
3097 p->time_slice = task_timeslice(p);
3098 p->first_time_slice = 0;
3099
3100 if (!rq->expired_timestamp)
3101 rq->expired_timestamp = jiffies;
48f24c4d 3102 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
1da177e4
LT
3103 enqueue_task(p, rq->expired);
3104 if (p->static_prio < rq->best_expired_prio)
3105 rq->best_expired_prio = p->static_prio;
3106 } else
3107 enqueue_task(p, rq->active);
3108 } else {
3109 /*
3110 * Prevent a too long timeslice allowing a task to monopolize
3111 * the CPU. We do this by splitting up the timeslice into
3112 * smaller pieces.
3113 *
3114 * Note: this does not mean the task's timeslices expire or
3115 * get lost in any way, they just might be preempted by
3116 * another task of equal priority. (one with higher
3117 * priority would have preempted this task already.) We
3118 * requeue this task to the end of the list on this priority
3119 * level, which is in essence a round-robin of tasks with
3120 * equal priority.
3121 *
3122 * This only applies to tasks in the interactive
3123 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3124 */
3125 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3126 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3127 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3128 (p->array == rq->active)) {
3129
3130 requeue_task(p, rq->active);
3131 set_tsk_need_resched(p);
3132 }
3133 }
3134out_unlock:
3135 spin_unlock(&rq->lock);
7835b98b
CL
3136}
3137
3138/*
3139 * This function gets called by the timer code, with HZ frequency.
3140 * We call it with interrupts disabled.
3141 *
3142 * It also gets called by the fork code, when changing the parent's
3143 * timeslices.
3144 */
3145void scheduler_tick(void)
3146{
3147 unsigned long long now = sched_clock();
3148 struct task_struct *p = current;
3149 int cpu = smp_processor_id();
3150 struct rq *rq = cpu_rq(cpu);
3151 enum idle_type idle = NOT_IDLE;
3152
3153 update_cpu_clock(p, rq, now);
3154
3155 rq->timestamp_last_tick = now;
3156
3157 if (p == rq->idle) {
3158 /* Task on the idle queue */
3159 if (!wake_priority_sleeper(rq))
3160 idle = SCHED_IDLE;
3161 } else
3162 task_running_tick(rq, p);
3163 update_load(rq);
3164 rebalance_tick(cpu, rq, idle);
1da177e4
LT
3165}
3166
3167#ifdef CONFIG_SCHED_SMT
70b97a7f 3168static inline void wakeup_busy_runqueue(struct rq *rq)
fc38ed75
CK
3169{
3170 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3171 if (rq->curr == rq->idle && rq->nr_running)
3172 resched_task(rq->idle);
3173}
3174
c96d145e
KC
3175/*
3176 * Called with interrupt disabled and this_rq's runqueue locked.
3177 */
3178static void wake_sleeping_dependent(int this_cpu)
1da177e4 3179{
41c7ce9a 3180 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
3181 int i;
3182
c96d145e
KC
3183 for_each_domain(this_cpu, tmp) {
3184 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3185 sd = tmp;
c96d145e
KC
3186 break;
3187 }
3188 }
41c7ce9a
NP
3189
3190 if (!sd)
1da177e4
LT
3191 return;
3192
c96d145e 3193 for_each_cpu_mask(i, sd->span) {
70b97a7f 3194 struct rq *smt_rq = cpu_rq(i);
1da177e4 3195
c96d145e
KC
3196 if (i == this_cpu)
3197 continue;
3198 if (unlikely(!spin_trylock(&smt_rq->lock)))
3199 continue;
3200
fc38ed75 3201 wakeup_busy_runqueue(smt_rq);
c96d145e 3202 spin_unlock(&smt_rq->lock);
1da177e4 3203 }
1da177e4
LT
3204}
3205
67f9a619
IM
3206/*
3207 * number of 'lost' timeslices this task wont be able to fully
3208 * utilize, if another task runs on a sibling. This models the
3209 * slowdown effect of other tasks running on siblings:
3210 */
36c8b586
IM
3211static inline unsigned long
3212smt_slice(struct task_struct *p, struct sched_domain *sd)
67f9a619
IM
3213{
3214 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3215}
3216
c96d145e
KC
3217/*
3218 * To minimise lock contention and not have to drop this_rq's runlock we only
3219 * trylock the sibling runqueues and bypass those runqueues if we fail to
3220 * acquire their lock. As we only trylock the normal locking order does not
3221 * need to be obeyed.
3222 */
36c8b586 3223static int
70b97a7f 3224dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
1da177e4 3225{
41c7ce9a 3226 struct sched_domain *tmp, *sd = NULL;
1da177e4 3227 int ret = 0, i;
1da177e4 3228
c96d145e
KC
3229 /* kernel/rt threads do not participate in dependent sleeping */
3230 if (!p->mm || rt_task(p))
3231 return 0;
3232
3233 for_each_domain(this_cpu, tmp) {
3234 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3235 sd = tmp;
c96d145e
KC
3236 break;
3237 }
3238 }
41c7ce9a
NP
3239
3240 if (!sd)
1da177e4
LT
3241 return 0;
3242
c96d145e 3243 for_each_cpu_mask(i, sd->span) {
36c8b586 3244 struct task_struct *smt_curr;
70b97a7f 3245 struct rq *smt_rq;
1da177e4 3246
c96d145e
KC
3247 if (i == this_cpu)
3248 continue;
1da177e4 3249
c96d145e
KC
3250 smt_rq = cpu_rq(i);
3251 if (unlikely(!spin_trylock(&smt_rq->lock)))
3252 continue;
1da177e4 3253
c96d145e 3254 smt_curr = smt_rq->curr;
1da177e4 3255
c96d145e
KC
3256 if (!smt_curr->mm)
3257 goto unlock;
fc38ed75 3258
1da177e4
LT
3259 /*
3260 * If a user task with lower static priority than the
3261 * running task on the SMT sibling is trying to schedule,
3262 * delay it till there is proportionately less timeslice
3263 * left of the sibling task to prevent a lower priority
3264 * task from using an unfair proportion of the
3265 * physical cpu's resources. -ck
3266 */
fc38ed75
CK
3267 if (rt_task(smt_curr)) {
3268 /*
3269 * With real time tasks we run non-rt tasks only
3270 * per_cpu_gain% of the time.
3271 */
3272 if ((jiffies % DEF_TIMESLICE) >
3273 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3274 ret = 1;
c96d145e 3275 } else {
67f9a619
IM
3276 if (smt_curr->static_prio < p->static_prio &&
3277 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3278 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75 3279 ret = 1;
fc38ed75 3280 }
c96d145e
KC
3281unlock:
3282 spin_unlock(&smt_rq->lock);
1da177e4 3283 }
1da177e4
LT
3284 return ret;
3285}
3286#else
c96d145e 3287static inline void wake_sleeping_dependent(int this_cpu)
1da177e4
LT
3288{
3289}
48f24c4d 3290static inline int
70b97a7f 3291dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
1da177e4
LT
3292{
3293 return 0;
3294}
3295#endif
3296
3297#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3298
3299void fastcall add_preempt_count(int val)
3300{
3301 /*
3302 * Underflow?
3303 */
9a11b49a
IM
3304 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3305 return;
1da177e4
LT
3306 preempt_count() += val;
3307 /*
3308 * Spinlock count overflowing soon?
3309 */
9a11b49a 3310 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
1da177e4
LT
3311}
3312EXPORT_SYMBOL(add_preempt_count);
3313
3314void fastcall sub_preempt_count(int val)
3315{
3316 /*
3317 * Underflow?
3318 */
9a11b49a
IM
3319 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3320 return;
1da177e4
LT
3321 /*
3322 * Is the spinlock portion underflowing?
3323 */
9a11b49a
IM
3324 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3325 !(preempt_count() & PREEMPT_MASK)))
3326 return;
3327
1da177e4
LT
3328 preempt_count() -= val;
3329}
3330EXPORT_SYMBOL(sub_preempt_count);
3331
3332#endif
3333
3dee386e
CK
3334static inline int interactive_sleep(enum sleep_type sleep_type)
3335{
3336 return (sleep_type == SLEEP_INTERACTIVE ||
3337 sleep_type == SLEEP_INTERRUPTED);
3338}
3339
1da177e4
LT
3340/*
3341 * schedule() is the main scheduler function.
3342 */
3343asmlinkage void __sched schedule(void)
3344{
36c8b586 3345 struct task_struct *prev, *next;
70b97a7f 3346 struct prio_array *array;
1da177e4
LT
3347 struct list_head *queue;
3348 unsigned long long now;
3349 unsigned long run_time;
a3464a10 3350 int cpu, idx, new_prio;
48f24c4d 3351 long *switch_count;
70b97a7f 3352 struct rq *rq;
1da177e4
LT
3353
3354 /*
3355 * Test if we are atomic. Since do_exit() needs to call into
3356 * schedule() atomically, we ignore that path for now.
3357 * Otherwise, whine if we are scheduling when we should not be.
3358 */
77e4bfbc
AM
3359 if (unlikely(in_atomic() && !current->exit_state)) {
3360 printk(KERN_ERR "BUG: scheduling while atomic: "
3361 "%s/0x%08x/%d\n",
3362 current->comm, preempt_count(), current->pid);
a4c410f0 3363 debug_show_held_locks(current);
77e4bfbc 3364 dump_stack();
1da177e4
LT
3365 }
3366 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3367
3368need_resched:
3369 preempt_disable();
3370 prev = current;
3371 release_kernel_lock(prev);
3372need_resched_nonpreemptible:
3373 rq = this_rq();
3374
3375 /*
3376 * The idle thread is not allowed to schedule!
3377 * Remove this check after it has been exercised a bit.
3378 */
3379 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3380 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3381 dump_stack();
3382 }
3383
3384 schedstat_inc(rq, sched_cnt);
3385 now = sched_clock();
238628ed 3386 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 3387 run_time = now - prev->timestamp;
238628ed 3388 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
3389 run_time = 0;
3390 } else
3391 run_time = NS_MAX_SLEEP_AVG;
3392
3393 /*
3394 * Tasks charged proportionately less run_time at high sleep_avg to
3395 * delay them losing their interactive status
3396 */
3397 run_time /= (CURRENT_BONUS(prev) ? : 1);
3398
3399 spin_lock_irq(&rq->lock);
3400
1da177e4
LT
3401 switch_count = &prev->nivcsw;
3402 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3403 switch_count = &prev->nvcsw;
3404 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3405 unlikely(signal_pending(prev))))
3406 prev->state = TASK_RUNNING;
3407 else {
3408 if (prev->state == TASK_UNINTERRUPTIBLE)
3409 rq->nr_uninterruptible++;
3410 deactivate_task(prev, rq);
3411 }
3412 }
3413
3414 cpu = smp_processor_id();
3415 if (unlikely(!rq->nr_running)) {
1da177e4
LT
3416 idle_balance(cpu, rq);
3417 if (!rq->nr_running) {
3418 next = rq->idle;
3419 rq->expired_timestamp = 0;
c96d145e 3420 wake_sleeping_dependent(cpu);
1da177e4
LT
3421 goto switch_tasks;
3422 }
1da177e4
LT
3423 }
3424
3425 array = rq->active;
3426 if (unlikely(!array->nr_active)) {
3427 /*
3428 * Switch the active and expired arrays.
3429 */
3430 schedstat_inc(rq, sched_switch);
3431 rq->active = rq->expired;
3432 rq->expired = array;
3433 array = rq->active;
3434 rq->expired_timestamp = 0;
3435 rq->best_expired_prio = MAX_PRIO;
3436 }
3437
3438 idx = sched_find_first_bit(array->bitmap);
3439 queue = array->queue + idx;
36c8b586 3440 next = list_entry(queue->next, struct task_struct, run_list);
1da177e4 3441
3dee386e 3442 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3443 unsigned long long delta = now - next->timestamp;
238628ed 3444 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3445 delta = 0;
3446
3dee386e 3447 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3448 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3449
3450 array = next->array;
a3464a10
CS
3451 new_prio = recalc_task_prio(next, next->timestamp + delta);
3452
3453 if (unlikely(next->prio != new_prio)) {
3454 dequeue_task(next, array);
3455 next->prio = new_prio;
3456 enqueue_task(next, array);
7c4bb1f9 3457 }
1da177e4 3458 }
3dee386e 3459 next->sleep_type = SLEEP_NORMAL;
c96d145e
KC
3460 if (dependent_sleeper(cpu, rq, next))
3461 next = rq->idle;
1da177e4
LT
3462switch_tasks:
3463 if (next == rq->idle)
3464 schedstat_inc(rq, sched_goidle);
3465 prefetch(next);
383f2835 3466 prefetch_stack(next);
1da177e4
LT
3467 clear_tsk_need_resched(prev);
3468 rcu_qsctr_inc(task_cpu(prev));
3469
3470 update_cpu_clock(prev, rq, now);
3471
3472 prev->sleep_avg -= run_time;
3473 if ((long)prev->sleep_avg <= 0)
3474 prev->sleep_avg = 0;
3475 prev->timestamp = prev->last_ran = now;
3476
3477 sched_info_switch(prev, next);
3478 if (likely(prev != next)) {
3479 next->timestamp = now;
3480 rq->nr_switches++;
3481 rq->curr = next;
3482 ++*switch_count;
3483
4866cde0 3484 prepare_task_switch(rq, next);
1da177e4
LT
3485 prev = context_switch(rq, prev, next);
3486 barrier();
4866cde0
NP
3487 /*
3488 * this_rq must be evaluated again because prev may have moved
3489 * CPUs since it called schedule(), thus the 'rq' on its stack
3490 * frame will be invalid.
3491 */
3492 finish_task_switch(this_rq(), prev);
1da177e4
LT
3493 } else
3494 spin_unlock_irq(&rq->lock);
3495
3496 prev = current;
3497 if (unlikely(reacquire_kernel_lock(prev) < 0))
3498 goto need_resched_nonpreemptible;
3499 preempt_enable_no_resched();
3500 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3501 goto need_resched;
3502}
1da177e4
LT
3503EXPORT_SYMBOL(schedule);
3504
3505#ifdef CONFIG_PREEMPT
3506/*
2ed6e34f 3507 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3508 * off of preempt_enable. Kernel preemptions off return from interrupt
3509 * occur there and call schedule directly.
3510 */
3511asmlinkage void __sched preempt_schedule(void)
3512{
3513 struct thread_info *ti = current_thread_info();
3514#ifdef CONFIG_PREEMPT_BKL
3515 struct task_struct *task = current;
3516 int saved_lock_depth;
3517#endif
3518 /*
3519 * If there is a non-zero preempt_count or interrupts are disabled,
3520 * we do not want to preempt the current task. Just return..
3521 */
beed33a8 3522 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3523 return;
3524
3525need_resched:
3526 add_preempt_count(PREEMPT_ACTIVE);
3527 /*
3528 * We keep the big kernel semaphore locked, but we
3529 * clear ->lock_depth so that schedule() doesnt
3530 * auto-release the semaphore:
3531 */
3532#ifdef CONFIG_PREEMPT_BKL
3533 saved_lock_depth = task->lock_depth;
3534 task->lock_depth = -1;
3535#endif
3536 schedule();
3537#ifdef CONFIG_PREEMPT_BKL
3538 task->lock_depth = saved_lock_depth;
3539#endif
3540 sub_preempt_count(PREEMPT_ACTIVE);
3541
3542 /* we could miss a preemption opportunity between schedule and now */
3543 barrier();
3544 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3545 goto need_resched;
3546}
1da177e4
LT
3547EXPORT_SYMBOL(preempt_schedule);
3548
3549/*
2ed6e34f 3550 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3551 * off of irq context.
3552 * Note, that this is called and return with irqs disabled. This will
3553 * protect us against recursive calling from irq.
3554 */
3555asmlinkage void __sched preempt_schedule_irq(void)
3556{
3557 struct thread_info *ti = current_thread_info();
3558#ifdef CONFIG_PREEMPT_BKL
3559 struct task_struct *task = current;
3560 int saved_lock_depth;
3561#endif
2ed6e34f 3562 /* Catch callers which need to be fixed */
1da177e4
LT
3563 BUG_ON(ti->preempt_count || !irqs_disabled());
3564
3565need_resched:
3566 add_preempt_count(PREEMPT_ACTIVE);
3567 /*
3568 * We keep the big kernel semaphore locked, but we
3569 * clear ->lock_depth so that schedule() doesnt
3570 * auto-release the semaphore:
3571 */
3572#ifdef CONFIG_PREEMPT_BKL
3573 saved_lock_depth = task->lock_depth;
3574 task->lock_depth = -1;
3575#endif
3576 local_irq_enable();
3577 schedule();
3578 local_irq_disable();
3579#ifdef CONFIG_PREEMPT_BKL
3580 task->lock_depth = saved_lock_depth;
3581#endif
3582 sub_preempt_count(PREEMPT_ACTIVE);
3583
3584 /* we could miss a preemption opportunity between schedule and now */
3585 barrier();
3586 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3587 goto need_resched;
3588}
3589
3590#endif /* CONFIG_PREEMPT */
3591
95cdf3b7
IM
3592int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3593 void *key)
1da177e4 3594{
48f24c4d 3595 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3596}
1da177e4
LT
3597EXPORT_SYMBOL(default_wake_function);
3598
3599/*
3600 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3601 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3602 * number) then we wake all the non-exclusive tasks and one exclusive task.
3603 *
3604 * There are circumstances in which we can try to wake a task which has already
3605 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3606 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3607 */
3608static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3609 int nr_exclusive, int sync, void *key)
3610{
3611 struct list_head *tmp, *next;
3612
3613 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3614 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3615 unsigned flags = curr->flags;
3616
1da177e4 3617 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3618 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3619 break;
3620 }
3621}
3622
3623/**
3624 * __wake_up - wake up threads blocked on a waitqueue.
3625 * @q: the waitqueue
3626 * @mode: which threads
3627 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3628 * @key: is directly passed to the wakeup function
1da177e4
LT
3629 */
3630void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3631 int nr_exclusive, void *key)
1da177e4
LT
3632{
3633 unsigned long flags;
3634
3635 spin_lock_irqsave(&q->lock, flags);
3636 __wake_up_common(q, mode, nr_exclusive, 0, key);
3637 spin_unlock_irqrestore(&q->lock, flags);
3638}
1da177e4
LT
3639EXPORT_SYMBOL(__wake_up);
3640
3641/*
3642 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3643 */
3644void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3645{
3646 __wake_up_common(q, mode, 1, 0, NULL);
3647}
3648
3649/**
67be2dd1 3650 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3651 * @q: the waitqueue
3652 * @mode: which threads
3653 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3654 *
3655 * The sync wakeup differs that the waker knows that it will schedule
3656 * away soon, so while the target thread will be woken up, it will not
3657 * be migrated to another CPU - ie. the two threads are 'synchronized'
3658 * with each other. This can prevent needless bouncing between CPUs.
3659 *
3660 * On UP it can prevent extra preemption.
3661 */
95cdf3b7
IM
3662void fastcall
3663__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3664{
3665 unsigned long flags;
3666 int sync = 1;
3667
3668 if (unlikely(!q))
3669 return;
3670
3671 if (unlikely(!nr_exclusive))
3672 sync = 0;
3673
3674 spin_lock_irqsave(&q->lock, flags);
3675 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3676 spin_unlock_irqrestore(&q->lock, flags);
3677}
3678EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3679
3680void fastcall complete(struct completion *x)
3681{
3682 unsigned long flags;
3683
3684 spin_lock_irqsave(&x->wait.lock, flags);
3685 x->done++;
3686 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3687 1, 0, NULL);
3688 spin_unlock_irqrestore(&x->wait.lock, flags);
3689}
3690EXPORT_SYMBOL(complete);
3691
3692void fastcall complete_all(struct completion *x)
3693{
3694 unsigned long flags;
3695
3696 spin_lock_irqsave(&x->wait.lock, flags);
3697 x->done += UINT_MAX/2;
3698 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3699 0, 0, NULL);
3700 spin_unlock_irqrestore(&x->wait.lock, flags);
3701}
3702EXPORT_SYMBOL(complete_all);
3703
3704void fastcall __sched wait_for_completion(struct completion *x)
3705{
3706 might_sleep();
48f24c4d 3707
1da177e4
LT
3708 spin_lock_irq(&x->wait.lock);
3709 if (!x->done) {
3710 DECLARE_WAITQUEUE(wait, current);
3711
3712 wait.flags |= WQ_FLAG_EXCLUSIVE;
3713 __add_wait_queue_tail(&x->wait, &wait);
3714 do {
3715 __set_current_state(TASK_UNINTERRUPTIBLE);
3716 spin_unlock_irq(&x->wait.lock);
3717 schedule();
3718 spin_lock_irq(&x->wait.lock);
3719 } while (!x->done);
3720 __remove_wait_queue(&x->wait, &wait);
3721 }
3722 x->done--;
3723 spin_unlock_irq(&x->wait.lock);
3724}
3725EXPORT_SYMBOL(wait_for_completion);
3726
3727unsigned long fastcall __sched
3728wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3729{
3730 might_sleep();
3731
3732 spin_lock_irq(&x->wait.lock);
3733 if (!x->done) {
3734 DECLARE_WAITQUEUE(wait, current);
3735
3736 wait.flags |= WQ_FLAG_EXCLUSIVE;
3737 __add_wait_queue_tail(&x->wait, &wait);
3738 do {
3739 __set_current_state(TASK_UNINTERRUPTIBLE);
3740 spin_unlock_irq(&x->wait.lock);
3741 timeout = schedule_timeout(timeout);
3742 spin_lock_irq(&x->wait.lock);
3743 if (!timeout) {
3744 __remove_wait_queue(&x->wait, &wait);
3745 goto out;
3746 }
3747 } while (!x->done);
3748 __remove_wait_queue(&x->wait, &wait);
3749 }
3750 x->done--;
3751out:
3752 spin_unlock_irq(&x->wait.lock);
3753 return timeout;
3754}
3755EXPORT_SYMBOL(wait_for_completion_timeout);
3756
3757int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3758{
3759 int ret = 0;
3760
3761 might_sleep();
3762
3763 spin_lock_irq(&x->wait.lock);
3764 if (!x->done) {
3765 DECLARE_WAITQUEUE(wait, current);
3766
3767 wait.flags |= WQ_FLAG_EXCLUSIVE;
3768 __add_wait_queue_tail(&x->wait, &wait);
3769 do {
3770 if (signal_pending(current)) {
3771 ret = -ERESTARTSYS;
3772 __remove_wait_queue(&x->wait, &wait);
3773 goto out;
3774 }
3775 __set_current_state(TASK_INTERRUPTIBLE);
3776 spin_unlock_irq(&x->wait.lock);
3777 schedule();
3778 spin_lock_irq(&x->wait.lock);
3779 } while (!x->done);
3780 __remove_wait_queue(&x->wait, &wait);
3781 }
3782 x->done--;
3783out:
3784 spin_unlock_irq(&x->wait.lock);
3785
3786 return ret;
3787}
3788EXPORT_SYMBOL(wait_for_completion_interruptible);
3789
3790unsigned long fastcall __sched
3791wait_for_completion_interruptible_timeout(struct completion *x,
3792 unsigned long timeout)
3793{
3794 might_sleep();
3795
3796 spin_lock_irq(&x->wait.lock);
3797 if (!x->done) {
3798 DECLARE_WAITQUEUE(wait, current);
3799
3800 wait.flags |= WQ_FLAG_EXCLUSIVE;
3801 __add_wait_queue_tail(&x->wait, &wait);
3802 do {
3803 if (signal_pending(current)) {
3804 timeout = -ERESTARTSYS;
3805 __remove_wait_queue(&x->wait, &wait);
3806 goto out;
3807 }
3808 __set_current_state(TASK_INTERRUPTIBLE);
3809 spin_unlock_irq(&x->wait.lock);
3810 timeout = schedule_timeout(timeout);
3811 spin_lock_irq(&x->wait.lock);
3812 if (!timeout) {
3813 __remove_wait_queue(&x->wait, &wait);
3814 goto out;
3815 }
3816 } while (!x->done);
3817 __remove_wait_queue(&x->wait, &wait);
3818 }
3819 x->done--;
3820out:
3821 spin_unlock_irq(&x->wait.lock);
3822 return timeout;
3823}
3824EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3825
3826
3827#define SLEEP_ON_VAR \
3828 unsigned long flags; \
3829 wait_queue_t wait; \
3830 init_waitqueue_entry(&wait, current);
3831
3832#define SLEEP_ON_HEAD \
3833 spin_lock_irqsave(&q->lock,flags); \
3834 __add_wait_queue(q, &wait); \
3835 spin_unlock(&q->lock);
3836
3837#define SLEEP_ON_TAIL \
3838 spin_lock_irq(&q->lock); \
3839 __remove_wait_queue(q, &wait); \
3840 spin_unlock_irqrestore(&q->lock, flags);
3841
3842void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3843{
3844 SLEEP_ON_VAR
3845
3846 current->state = TASK_INTERRUPTIBLE;
3847
3848 SLEEP_ON_HEAD
3849 schedule();
3850 SLEEP_ON_TAIL
3851}
1da177e4
LT
3852EXPORT_SYMBOL(interruptible_sleep_on);
3853
95cdf3b7
IM
3854long fastcall __sched
3855interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3856{
3857 SLEEP_ON_VAR
3858
3859 current->state = TASK_INTERRUPTIBLE;
3860
3861 SLEEP_ON_HEAD
3862 timeout = schedule_timeout(timeout);
3863 SLEEP_ON_TAIL
3864
3865 return timeout;
3866}
1da177e4
LT
3867EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3868
3869void fastcall __sched sleep_on(wait_queue_head_t *q)
3870{
3871 SLEEP_ON_VAR
3872
3873 current->state = TASK_UNINTERRUPTIBLE;
3874
3875 SLEEP_ON_HEAD
3876 schedule();
3877 SLEEP_ON_TAIL
3878}
1da177e4
LT
3879EXPORT_SYMBOL(sleep_on);
3880
3881long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3882{
3883 SLEEP_ON_VAR
3884
3885 current->state = TASK_UNINTERRUPTIBLE;
3886
3887 SLEEP_ON_HEAD
3888 timeout = schedule_timeout(timeout);
3889 SLEEP_ON_TAIL
3890
3891 return timeout;
3892}
3893
3894EXPORT_SYMBOL(sleep_on_timeout);
3895
b29739f9
IM
3896#ifdef CONFIG_RT_MUTEXES
3897
3898/*
3899 * rt_mutex_setprio - set the current priority of a task
3900 * @p: task
3901 * @prio: prio value (kernel-internal form)
3902 *
3903 * This function changes the 'effective' priority of a task. It does
3904 * not touch ->normal_prio like __setscheduler().
3905 *
3906 * Used by the rt_mutex code to implement priority inheritance logic.
3907 */
36c8b586 3908void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3909{
70b97a7f 3910 struct prio_array *array;
b29739f9 3911 unsigned long flags;
70b97a7f 3912 struct rq *rq;
b29739f9
IM
3913 int oldprio;
3914
3915 BUG_ON(prio < 0 || prio > MAX_PRIO);
3916
3917 rq = task_rq_lock(p, &flags);
3918
3919 oldprio = p->prio;
3920 array = p->array;
3921 if (array)
3922 dequeue_task(p, array);
3923 p->prio = prio;
3924
3925 if (array) {
3926 /*
3927 * If changing to an RT priority then queue it
3928 * in the active array!
3929 */
3930 if (rt_task(p))
3931 array = rq->active;
3932 enqueue_task(p, array);
3933 /*
3934 * Reschedule if we are currently running on this runqueue and
3935 * our priority decreased, or if we are not currently running on
3936 * this runqueue and our priority is higher than the current's
3937 */
3938 if (task_running(rq, p)) {
3939 if (p->prio > oldprio)
3940 resched_task(rq->curr);
3941 } else if (TASK_PREEMPTS_CURR(p, rq))
3942 resched_task(rq->curr);
3943 }
3944 task_rq_unlock(rq, &flags);
3945}
3946
3947#endif
3948
36c8b586 3949void set_user_nice(struct task_struct *p, long nice)
1da177e4 3950{
70b97a7f 3951 struct prio_array *array;
48f24c4d 3952 int old_prio, delta;
1da177e4 3953 unsigned long flags;
70b97a7f 3954 struct rq *rq;
1da177e4
LT
3955
3956 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3957 return;
3958 /*
3959 * We have to be careful, if called from sys_setpriority(),
3960 * the task might be in the middle of scheduling on another CPU.
3961 */
3962 rq = task_rq_lock(p, &flags);
3963 /*
3964 * The RT priorities are set via sched_setscheduler(), but we still
3965 * allow the 'normal' nice value to be set - but as expected
3966 * it wont have any effect on scheduling until the task is
b0a9499c 3967 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4 3968 */
b29739f9 3969 if (has_rt_policy(p)) {
1da177e4
LT
3970 p->static_prio = NICE_TO_PRIO(nice);
3971 goto out_unlock;
3972 }
3973 array = p->array;
2dd73a4f 3974 if (array) {
1da177e4 3975 dequeue_task(p, array);
2dd73a4f
PW
3976 dec_raw_weighted_load(rq, p);
3977 }
1da177e4 3978
1da177e4 3979 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3980 set_load_weight(p);
b29739f9
IM
3981 old_prio = p->prio;
3982 p->prio = effective_prio(p);
3983 delta = p->prio - old_prio;
1da177e4
LT
3984
3985 if (array) {
3986 enqueue_task(p, array);
2dd73a4f 3987 inc_raw_weighted_load(rq, p);
1da177e4
LT
3988 /*
3989 * If the task increased its priority or is running and
3990 * lowered its priority, then reschedule its CPU:
3991 */
3992 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3993 resched_task(rq->curr);
3994 }
3995out_unlock:
3996 task_rq_unlock(rq, &flags);
3997}
1da177e4
LT
3998EXPORT_SYMBOL(set_user_nice);
3999
e43379f1
MM
4000/*
4001 * can_nice - check if a task can reduce its nice value
4002 * @p: task
4003 * @nice: nice value
4004 */
36c8b586 4005int can_nice(const struct task_struct *p, const int nice)
e43379f1 4006{
024f4747
MM
4007 /* convert nice value [19,-20] to rlimit style value [1,40] */
4008 int nice_rlim = 20 - nice;
48f24c4d 4009
e43379f1
MM
4010 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4011 capable(CAP_SYS_NICE));
4012}
4013
1da177e4
LT
4014#ifdef __ARCH_WANT_SYS_NICE
4015
4016/*
4017 * sys_nice - change the priority of the current process.
4018 * @increment: priority increment
4019 *
4020 * sys_setpriority is a more generic, but much slower function that
4021 * does similar things.
4022 */
4023asmlinkage long sys_nice(int increment)
4024{
48f24c4d 4025 long nice, retval;
1da177e4
LT
4026
4027 /*
4028 * Setpriority might change our priority at the same moment.
4029 * We don't have to worry. Conceptually one call occurs first
4030 * and we have a single winner.
4031 */
e43379f1
MM
4032 if (increment < -40)
4033 increment = -40;
1da177e4
LT
4034 if (increment > 40)
4035 increment = 40;
4036
4037 nice = PRIO_TO_NICE(current->static_prio) + increment;
4038 if (nice < -20)
4039 nice = -20;
4040 if (nice > 19)
4041 nice = 19;
4042
e43379f1
MM
4043 if (increment < 0 && !can_nice(current, nice))
4044 return -EPERM;
4045
1da177e4
LT
4046 retval = security_task_setnice(current, nice);
4047 if (retval)
4048 return retval;
4049
4050 set_user_nice(current, nice);
4051 return 0;
4052}
4053
4054#endif
4055
4056/**
4057 * task_prio - return the priority value of a given task.
4058 * @p: the task in question.
4059 *
4060 * This is the priority value as seen by users in /proc.
4061 * RT tasks are offset by -200. Normal tasks are centered
4062 * around 0, value goes from -16 to +15.
4063 */
36c8b586 4064int task_prio(const struct task_struct *p)
1da177e4
LT
4065{
4066 return p->prio - MAX_RT_PRIO;
4067}
4068
4069/**
4070 * task_nice - return the nice value of a given task.
4071 * @p: the task in question.
4072 */
36c8b586 4073int task_nice(const struct task_struct *p)
1da177e4
LT
4074{
4075 return TASK_NICE(p);
4076}
1da177e4 4077EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4078
4079/**
4080 * idle_cpu - is a given cpu idle currently?
4081 * @cpu: the processor in question.
4082 */
4083int idle_cpu(int cpu)
4084{
4085 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4086}
4087
1da177e4
LT
4088/**
4089 * idle_task - return the idle task for a given cpu.
4090 * @cpu: the processor in question.
4091 */
36c8b586 4092struct task_struct *idle_task(int cpu)
1da177e4
LT
4093{
4094 return cpu_rq(cpu)->idle;
4095}
4096
4097/**
4098 * find_process_by_pid - find a process with a matching PID value.
4099 * @pid: the pid in question.
4100 */
36c8b586 4101static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4102{
4103 return pid ? find_task_by_pid(pid) : current;
4104}
4105
4106/* Actually do priority change: must hold rq lock. */
4107static void __setscheduler(struct task_struct *p, int policy, int prio)
4108{
4109 BUG_ON(p->array);
48f24c4d 4110
1da177e4
LT
4111 p->policy = policy;
4112 p->rt_priority = prio;
b29739f9
IM
4113 p->normal_prio = normal_prio(p);
4114 /* we are holding p->pi_lock already */
4115 p->prio = rt_mutex_getprio(p);
4116 /*
4117 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4118 */
4119 if (policy == SCHED_BATCH)
4120 p->sleep_avg = 0;
2dd73a4f 4121 set_load_weight(p);
1da177e4
LT
4122}
4123
4124/**
4125 * sched_setscheduler - change the scheduling policy and/or RT priority of
4126 * a thread.
4127 * @p: the task in question.
4128 * @policy: new policy.
4129 * @param: structure containing the new RT priority.
5fe1d75f
ON
4130 *
4131 * NOTE: the task may be already dead
1da177e4 4132 */
95cdf3b7
IM
4133int sched_setscheduler(struct task_struct *p, int policy,
4134 struct sched_param *param)
1da177e4 4135{
48f24c4d 4136 int retval, oldprio, oldpolicy = -1;
70b97a7f 4137 struct prio_array *array;
1da177e4 4138 unsigned long flags;
70b97a7f 4139 struct rq *rq;
1da177e4 4140
66e5393a
SR
4141 /* may grab non-irq protected spin_locks */
4142 BUG_ON(in_interrupt());
1da177e4
LT
4143recheck:
4144 /* double check policy once rq lock held */
4145 if (policy < 0)
4146 policy = oldpolicy = p->policy;
4147 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
4148 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4149 return -EINVAL;
1da177e4
LT
4150 /*
4151 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
4152 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4153 * SCHED_BATCH is 0.
1da177e4
LT
4154 */
4155 if (param->sched_priority < 0 ||
95cdf3b7 4156 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4157 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4158 return -EINVAL;
57a6f51c 4159 if (is_rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4160 return -EINVAL;
4161
37e4ab3f
OC
4162 /*
4163 * Allow unprivileged RT tasks to decrease priority:
4164 */
4165 if (!capable(CAP_SYS_NICE)) {
8dc3e909
ON
4166 if (is_rt_policy(policy)) {
4167 unsigned long rlim_rtprio;
4168 unsigned long flags;
4169
4170 if (!lock_task_sighand(p, &flags))
4171 return -ESRCH;
4172 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4173 unlock_task_sighand(p, &flags);
4174
4175 /* can't set/change the rt policy */
4176 if (policy != p->policy && !rlim_rtprio)
4177 return -EPERM;
4178
4179 /* can't increase priority */
4180 if (param->sched_priority > p->rt_priority &&
4181 param->sched_priority > rlim_rtprio)
4182 return -EPERM;
4183 }
5fe1d75f 4184
37e4ab3f
OC
4185 /* can't change other user's priorities */
4186 if ((current->euid != p->euid) &&
4187 (current->euid != p->uid))
4188 return -EPERM;
4189 }
1da177e4
LT
4190
4191 retval = security_task_setscheduler(p, policy, param);
4192 if (retval)
4193 return retval;
b29739f9
IM
4194 /*
4195 * make sure no PI-waiters arrive (or leave) while we are
4196 * changing the priority of the task:
4197 */
4198 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4199 /*
4200 * To be able to change p->policy safely, the apropriate
4201 * runqueue lock must be held.
4202 */
b29739f9 4203 rq = __task_rq_lock(p);
1da177e4
LT
4204 /* recheck policy now with rq lock held */
4205 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4206 policy = oldpolicy = -1;
b29739f9
IM
4207 __task_rq_unlock(rq);
4208 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4209 goto recheck;
4210 }
4211 array = p->array;
4212 if (array)
4213 deactivate_task(p, rq);
4214 oldprio = p->prio;
4215 __setscheduler(p, policy, param->sched_priority);
4216 if (array) {
4217 __activate_task(p, rq);
4218 /*
4219 * Reschedule if we are currently running on this runqueue and
4220 * our priority decreased, or if we are not currently running on
4221 * this runqueue and our priority is higher than the current's
4222 */
4223 if (task_running(rq, p)) {
4224 if (p->prio > oldprio)
4225 resched_task(rq->curr);
4226 } else if (TASK_PREEMPTS_CURR(p, rq))
4227 resched_task(rq->curr);
4228 }
b29739f9
IM
4229 __task_rq_unlock(rq);
4230 spin_unlock_irqrestore(&p->pi_lock, flags);
4231
95e02ca9
TG
4232 rt_mutex_adjust_pi(p);
4233
1da177e4
LT
4234 return 0;
4235}
4236EXPORT_SYMBOL_GPL(sched_setscheduler);
4237
95cdf3b7
IM
4238static int
4239do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4240{
1da177e4
LT
4241 struct sched_param lparam;
4242 struct task_struct *p;
36c8b586 4243 int retval;
1da177e4
LT
4244
4245 if (!param || pid < 0)
4246 return -EINVAL;
4247 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4248 return -EFAULT;
5fe1d75f
ON
4249
4250 rcu_read_lock();
4251 retval = -ESRCH;
1da177e4 4252 p = find_process_by_pid(pid);
5fe1d75f
ON
4253 if (p != NULL)
4254 retval = sched_setscheduler(p, policy, &lparam);
4255 rcu_read_unlock();
36c8b586 4256
1da177e4
LT
4257 return retval;
4258}
4259
4260/**
4261 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4262 * @pid: the pid in question.
4263 * @policy: new policy.
4264 * @param: structure containing the new RT priority.
4265 */
4266asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4267 struct sched_param __user *param)
4268{
c21761f1
JB
4269 /* negative values for policy are not valid */
4270 if (policy < 0)
4271 return -EINVAL;
4272
1da177e4
LT
4273 return do_sched_setscheduler(pid, policy, param);
4274}
4275
4276/**
4277 * sys_sched_setparam - set/change the RT priority of a thread
4278 * @pid: the pid in question.
4279 * @param: structure containing the new RT priority.
4280 */
4281asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4282{
4283 return do_sched_setscheduler(pid, -1, param);
4284}
4285
4286/**
4287 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4288 * @pid: the pid in question.
4289 */
4290asmlinkage long sys_sched_getscheduler(pid_t pid)
4291{
36c8b586 4292 struct task_struct *p;
1da177e4 4293 int retval = -EINVAL;
1da177e4
LT
4294
4295 if (pid < 0)
4296 goto out_nounlock;
4297
4298 retval = -ESRCH;
4299 read_lock(&tasklist_lock);
4300 p = find_process_by_pid(pid);
4301 if (p) {
4302 retval = security_task_getscheduler(p);
4303 if (!retval)
4304 retval = p->policy;
4305 }
4306 read_unlock(&tasklist_lock);
4307
4308out_nounlock:
4309 return retval;
4310}
4311
4312/**
4313 * sys_sched_getscheduler - get the RT priority of a thread
4314 * @pid: the pid in question.
4315 * @param: structure containing the RT priority.
4316 */
4317asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4318{
4319 struct sched_param lp;
36c8b586 4320 struct task_struct *p;
1da177e4 4321 int retval = -EINVAL;
1da177e4
LT
4322
4323 if (!param || pid < 0)
4324 goto out_nounlock;
4325
4326 read_lock(&tasklist_lock);
4327 p = find_process_by_pid(pid);
4328 retval = -ESRCH;
4329 if (!p)
4330 goto out_unlock;
4331
4332 retval = security_task_getscheduler(p);
4333 if (retval)
4334 goto out_unlock;
4335
4336 lp.sched_priority = p->rt_priority;
4337 read_unlock(&tasklist_lock);
4338
4339 /*
4340 * This one might sleep, we cannot do it with a spinlock held ...
4341 */
4342 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4343
4344out_nounlock:
4345 return retval;
4346
4347out_unlock:
4348 read_unlock(&tasklist_lock);
4349 return retval;
4350}
4351
4352long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4353{
1da177e4 4354 cpumask_t cpus_allowed;
36c8b586
IM
4355 struct task_struct *p;
4356 int retval;
1da177e4
LT
4357
4358 lock_cpu_hotplug();
4359 read_lock(&tasklist_lock);
4360
4361 p = find_process_by_pid(pid);
4362 if (!p) {
4363 read_unlock(&tasklist_lock);
4364 unlock_cpu_hotplug();
4365 return -ESRCH;
4366 }
4367
4368 /*
4369 * It is not safe to call set_cpus_allowed with the
4370 * tasklist_lock held. We will bump the task_struct's
4371 * usage count and then drop tasklist_lock.
4372 */
4373 get_task_struct(p);
4374 read_unlock(&tasklist_lock);
4375
4376 retval = -EPERM;
4377 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4378 !capable(CAP_SYS_NICE))
4379 goto out_unlock;
4380
e7834f8f
DQ
4381 retval = security_task_setscheduler(p, 0, NULL);
4382 if (retval)
4383 goto out_unlock;
4384
1da177e4
LT
4385 cpus_allowed = cpuset_cpus_allowed(p);
4386 cpus_and(new_mask, new_mask, cpus_allowed);
4387 retval = set_cpus_allowed(p, new_mask);
4388
4389out_unlock:
4390 put_task_struct(p);
4391 unlock_cpu_hotplug();
4392 return retval;
4393}
4394
4395static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4396 cpumask_t *new_mask)
4397{
4398 if (len < sizeof(cpumask_t)) {
4399 memset(new_mask, 0, sizeof(cpumask_t));
4400 } else if (len > sizeof(cpumask_t)) {
4401 len = sizeof(cpumask_t);
4402 }
4403 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4404}
4405
4406/**
4407 * sys_sched_setaffinity - set the cpu affinity of a process
4408 * @pid: pid of the process
4409 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4410 * @user_mask_ptr: user-space pointer to the new cpu mask
4411 */
4412asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4413 unsigned long __user *user_mask_ptr)
4414{
4415 cpumask_t new_mask;
4416 int retval;
4417
4418 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4419 if (retval)
4420 return retval;
4421
4422 return sched_setaffinity(pid, new_mask);
4423}
4424
4425/*
4426 * Represents all cpu's present in the system
4427 * In systems capable of hotplug, this map could dynamically grow
4428 * as new cpu's are detected in the system via any platform specific
4429 * method, such as ACPI for e.g.
4430 */
4431
4cef0c61 4432cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4433EXPORT_SYMBOL(cpu_present_map);
4434
4435#ifndef CONFIG_SMP
4cef0c61 4436cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4437EXPORT_SYMBOL(cpu_online_map);
4438
4cef0c61 4439cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4440EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4441#endif
4442
4443long sched_getaffinity(pid_t pid, cpumask_t *mask)
4444{
36c8b586 4445 struct task_struct *p;
1da177e4 4446 int retval;
1da177e4
LT
4447
4448 lock_cpu_hotplug();
4449 read_lock(&tasklist_lock);
4450
4451 retval = -ESRCH;
4452 p = find_process_by_pid(pid);
4453 if (!p)
4454 goto out_unlock;
4455
e7834f8f
DQ
4456 retval = security_task_getscheduler(p);
4457 if (retval)
4458 goto out_unlock;
4459
2f7016d9 4460 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4461
4462out_unlock:
4463 read_unlock(&tasklist_lock);
4464 unlock_cpu_hotplug();
4465 if (retval)
4466 return retval;
4467
4468 return 0;
4469}
4470
4471/**
4472 * sys_sched_getaffinity - get the cpu affinity of a process
4473 * @pid: pid of the process
4474 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4475 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4476 */
4477asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4478 unsigned long __user *user_mask_ptr)
4479{
4480 int ret;
4481 cpumask_t mask;
4482
4483 if (len < sizeof(cpumask_t))
4484 return -EINVAL;
4485
4486 ret = sched_getaffinity(pid, &mask);
4487 if (ret < 0)
4488 return ret;
4489
4490 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4491 return -EFAULT;
4492
4493 return sizeof(cpumask_t);
4494}
4495
4496/**
4497 * sys_sched_yield - yield the current processor to other threads.
4498 *
4499 * this function yields the current CPU by moving the calling thread
4500 * to the expired array. If there are no other threads running on this
4501 * CPU then this function will return.
4502 */
4503asmlinkage long sys_sched_yield(void)
4504{
70b97a7f
IM
4505 struct rq *rq = this_rq_lock();
4506 struct prio_array *array = current->array, *target = rq->expired;
1da177e4
LT
4507
4508 schedstat_inc(rq, yld_cnt);
4509 /*
4510 * We implement yielding by moving the task into the expired
4511 * queue.
4512 *
4513 * (special rule: RT tasks will just roundrobin in the active
4514 * array.)
4515 */
4516 if (rt_task(current))
4517 target = rq->active;
4518
5927ad78 4519 if (array->nr_active == 1) {
1da177e4
LT
4520 schedstat_inc(rq, yld_act_empty);
4521 if (!rq->expired->nr_active)
4522 schedstat_inc(rq, yld_both_empty);
4523 } else if (!rq->expired->nr_active)
4524 schedstat_inc(rq, yld_exp_empty);
4525
4526 if (array != target) {
4527 dequeue_task(current, array);
4528 enqueue_task(current, target);
4529 } else
4530 /*
4531 * requeue_task is cheaper so perform that if possible.
4532 */
4533 requeue_task(current, array);
4534
4535 /*
4536 * Since we are going to call schedule() anyway, there's
4537 * no need to preempt or enable interrupts:
4538 */
4539 __release(rq->lock);
8a25d5de 4540 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4541 _raw_spin_unlock(&rq->lock);
4542 preempt_enable_no_resched();
4543
4544 schedule();
4545
4546 return 0;
4547}
4548
2d7d2535 4549static inline int __resched_legal(int expected_preempt_count)
e7b38404 4550{
2d7d2535 4551 if (unlikely(preempt_count() != expected_preempt_count))
e7b38404
AM
4552 return 0;
4553 if (unlikely(system_state != SYSTEM_RUNNING))
4554 return 0;
4555 return 1;
4556}
4557
4558static void __cond_resched(void)
1da177e4 4559{
8e0a43d8
IM
4560#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4561 __might_sleep(__FILE__, __LINE__);
4562#endif
5bbcfd90
IM
4563 /*
4564 * The BKS might be reacquired before we have dropped
4565 * PREEMPT_ACTIVE, which could trigger a second
4566 * cond_resched() call.
4567 */
1da177e4
LT
4568 do {
4569 add_preempt_count(PREEMPT_ACTIVE);
4570 schedule();
4571 sub_preempt_count(PREEMPT_ACTIVE);
4572 } while (need_resched());
4573}
4574
4575int __sched cond_resched(void)
4576{
2d7d2535 4577 if (need_resched() && __resched_legal(0)) {
1da177e4
LT
4578 __cond_resched();
4579 return 1;
4580 }
4581 return 0;
4582}
1da177e4
LT
4583EXPORT_SYMBOL(cond_resched);
4584
4585/*
4586 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4587 * call schedule, and on return reacquire the lock.
4588 *
4589 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4590 * operations here to prevent schedule() from being called twice (once via
4591 * spin_unlock(), once by hand).
4592 */
95cdf3b7 4593int cond_resched_lock(spinlock_t *lock)
1da177e4 4594{
6df3cecb
JK
4595 int ret = 0;
4596
1da177e4
LT
4597 if (need_lockbreak(lock)) {
4598 spin_unlock(lock);
4599 cpu_relax();
6df3cecb 4600 ret = 1;
1da177e4
LT
4601 spin_lock(lock);
4602 }
2d7d2535 4603 if (need_resched() && __resched_legal(1)) {
8a25d5de 4604 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4605 _raw_spin_unlock(lock);
4606 preempt_enable_no_resched();
4607 __cond_resched();
6df3cecb 4608 ret = 1;
1da177e4 4609 spin_lock(lock);
1da177e4 4610 }
6df3cecb 4611 return ret;
1da177e4 4612}
1da177e4
LT
4613EXPORT_SYMBOL(cond_resched_lock);
4614
4615int __sched cond_resched_softirq(void)
4616{
4617 BUG_ON(!in_softirq());
4618
2d7d2535 4619 if (need_resched() && __resched_legal(0)) {
de30a2b3
IM
4620 raw_local_irq_disable();
4621 _local_bh_enable();
4622 raw_local_irq_enable();
1da177e4
LT
4623 __cond_resched();
4624 local_bh_disable();
4625 return 1;
4626 }
4627 return 0;
4628}
1da177e4
LT
4629EXPORT_SYMBOL(cond_resched_softirq);
4630
1da177e4
LT
4631/**
4632 * yield - yield the current processor to other threads.
4633 *
4634 * this is a shortcut for kernel-space yielding - it marks the
4635 * thread runnable and calls sys_sched_yield().
4636 */
4637void __sched yield(void)
4638{
4639 set_current_state(TASK_RUNNING);
4640 sys_sched_yield();
4641}
1da177e4
LT
4642EXPORT_SYMBOL(yield);
4643
4644/*
4645 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4646 * that process accounting knows that this is a task in IO wait state.
4647 *
4648 * But don't do that if it is a deliberate, throttling IO wait (this task
4649 * has set its backing_dev_info: the queue against which it should throttle)
4650 */
4651void __sched io_schedule(void)
4652{
70b97a7f 4653 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4654
0ff92245 4655 delayacct_blkio_start();
1da177e4
LT
4656 atomic_inc(&rq->nr_iowait);
4657 schedule();
4658 atomic_dec(&rq->nr_iowait);
0ff92245 4659 delayacct_blkio_end();
1da177e4 4660}
1da177e4
LT
4661EXPORT_SYMBOL(io_schedule);
4662
4663long __sched io_schedule_timeout(long timeout)
4664{
70b97a7f 4665 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4666 long ret;
4667
0ff92245 4668 delayacct_blkio_start();
1da177e4
LT
4669 atomic_inc(&rq->nr_iowait);
4670 ret = schedule_timeout(timeout);
4671 atomic_dec(&rq->nr_iowait);
0ff92245 4672 delayacct_blkio_end();
1da177e4
LT
4673 return ret;
4674}
4675
4676/**
4677 * sys_sched_get_priority_max - return maximum RT priority.
4678 * @policy: scheduling class.
4679 *
4680 * this syscall returns the maximum rt_priority that can be used
4681 * by a given scheduling class.
4682 */
4683asmlinkage long sys_sched_get_priority_max(int policy)
4684{
4685 int ret = -EINVAL;
4686
4687 switch (policy) {
4688 case SCHED_FIFO:
4689 case SCHED_RR:
4690 ret = MAX_USER_RT_PRIO-1;
4691 break;
4692 case SCHED_NORMAL:
b0a9499c 4693 case SCHED_BATCH:
1da177e4
LT
4694 ret = 0;
4695 break;
4696 }
4697 return ret;
4698}
4699
4700/**
4701 * sys_sched_get_priority_min - return minimum RT priority.
4702 * @policy: scheduling class.
4703 *
4704 * this syscall returns the minimum rt_priority that can be used
4705 * by a given scheduling class.
4706 */
4707asmlinkage long sys_sched_get_priority_min(int policy)
4708{
4709 int ret = -EINVAL;
4710
4711 switch (policy) {
4712 case SCHED_FIFO:
4713 case SCHED_RR:
4714 ret = 1;
4715 break;
4716 case SCHED_NORMAL:
b0a9499c 4717 case SCHED_BATCH:
1da177e4
LT
4718 ret = 0;
4719 }
4720 return ret;
4721}
4722
4723/**
4724 * sys_sched_rr_get_interval - return the default timeslice of a process.
4725 * @pid: pid of the process.
4726 * @interval: userspace pointer to the timeslice value.
4727 *
4728 * this syscall writes the default timeslice value of a given process
4729 * into the user-space timespec buffer. A value of '0' means infinity.
4730 */
4731asmlinkage
4732long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4733{
36c8b586 4734 struct task_struct *p;
1da177e4
LT
4735 int retval = -EINVAL;
4736 struct timespec t;
1da177e4
LT
4737
4738 if (pid < 0)
4739 goto out_nounlock;
4740
4741 retval = -ESRCH;
4742 read_lock(&tasklist_lock);
4743 p = find_process_by_pid(pid);
4744 if (!p)
4745 goto out_unlock;
4746
4747 retval = security_task_getscheduler(p);
4748 if (retval)
4749 goto out_unlock;
4750
b78709cf 4751 jiffies_to_timespec(p->policy == SCHED_FIFO ?
1da177e4
LT
4752 0 : task_timeslice(p), &t);
4753 read_unlock(&tasklist_lock);
4754 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4755out_nounlock:
4756 return retval;
4757out_unlock:
4758 read_unlock(&tasklist_lock);
4759 return retval;
4760}
4761
4762static inline struct task_struct *eldest_child(struct task_struct *p)
4763{
48f24c4d
IM
4764 if (list_empty(&p->children))
4765 return NULL;
1da177e4
LT
4766 return list_entry(p->children.next,struct task_struct,sibling);
4767}
4768
4769static inline struct task_struct *older_sibling(struct task_struct *p)
4770{
48f24c4d
IM
4771 if (p->sibling.prev==&p->parent->children)
4772 return NULL;
1da177e4
LT
4773 return list_entry(p->sibling.prev,struct task_struct,sibling);
4774}
4775
4776static inline struct task_struct *younger_sibling(struct task_struct *p)
4777{
48f24c4d
IM
4778 if (p->sibling.next==&p->parent->children)
4779 return NULL;
1da177e4
LT
4780 return list_entry(p->sibling.next,struct task_struct,sibling);
4781}
4782
2ed6e34f 4783static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4784
4785static void show_task(struct task_struct *p)
1da177e4 4786{
36c8b586 4787 struct task_struct *relative;
1da177e4 4788 unsigned long free = 0;
36c8b586 4789 unsigned state;
1da177e4 4790
1da177e4 4791 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4792 printk("%-13.13s %c", p->comm,
4793 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4
LT
4794#if (BITS_PER_LONG == 32)
4795 if (state == TASK_RUNNING)
4796 printk(" running ");
4797 else
4798 printk(" %08lX ", thread_saved_pc(p));
4799#else
4800 if (state == TASK_RUNNING)
4801 printk(" running task ");
4802 else
4803 printk(" %016lx ", thread_saved_pc(p));
4804#endif
4805#ifdef CONFIG_DEBUG_STACK_USAGE
4806 {
10ebffde 4807 unsigned long *n = end_of_stack(p);
1da177e4
LT
4808 while (!*n)
4809 n++;
10ebffde 4810 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4811 }
4812#endif
4813 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4814 if ((relative = eldest_child(p)))
4815 printk("%5d ", relative->pid);
4816 else
4817 printk(" ");
4818 if ((relative = younger_sibling(p)))
4819 printk("%7d", relative->pid);
4820 else
4821 printk(" ");
4822 if ((relative = older_sibling(p)))
4823 printk(" %5d", relative->pid);
4824 else
4825 printk(" ");
4826 if (!p->mm)
4827 printk(" (L-TLB)\n");
4828 else
4829 printk(" (NOTLB)\n");
4830
4831 if (state != TASK_RUNNING)
4832 show_stack(p, NULL);
4833}
4834
e59e2ae2 4835void show_state_filter(unsigned long state_filter)
1da177e4 4836{
36c8b586 4837 struct task_struct *g, *p;
1da177e4
LT
4838
4839#if (BITS_PER_LONG == 32)
4840 printk("\n"
301827ac
CC
4841 " free sibling\n");
4842 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4843#else
4844 printk("\n"
301827ac
CC
4845 " free sibling\n");
4846 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4847#endif
4848 read_lock(&tasklist_lock);
4849 do_each_thread(g, p) {
4850 /*
4851 * reset the NMI-timeout, listing all files on a slow
4852 * console might take alot of time:
4853 */
4854 touch_nmi_watchdog();
e59e2ae2
IM
4855 if (p->state & state_filter)
4856 show_task(p);
1da177e4
LT
4857 } while_each_thread(g, p);
4858
4859 read_unlock(&tasklist_lock);
e59e2ae2
IM
4860 /*
4861 * Only show locks if all tasks are dumped:
4862 */
4863 if (state_filter == -1)
4864 debug_show_all_locks();
1da177e4
LT
4865}
4866
f340c0d1
IM
4867/**
4868 * init_idle - set up an idle thread for a given CPU
4869 * @idle: task in question
4870 * @cpu: cpu the idle task belongs to
4871 *
4872 * NOTE: this function does not set the idle thread's NEED_RESCHED
4873 * flag, to make booting more robust.
4874 */
5c1e1767 4875void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4876{
70b97a7f 4877 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4878 unsigned long flags;
4879
81c29a85 4880 idle->timestamp = sched_clock();
1da177e4
LT
4881 idle->sleep_avg = 0;
4882 idle->array = NULL;
b29739f9 4883 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4
LT
4884 idle->state = TASK_RUNNING;
4885 idle->cpus_allowed = cpumask_of_cpu(cpu);
4886 set_task_cpu(idle, cpu);
4887
4888 spin_lock_irqsave(&rq->lock, flags);
4889 rq->curr = rq->idle = idle;
4866cde0
NP
4890#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4891 idle->oncpu = 1;
4892#endif
1da177e4
LT
4893 spin_unlock_irqrestore(&rq->lock, flags);
4894
4895 /* Set the preempt count _outside_ the spinlocks! */
4896#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4897 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4898#else
a1261f54 4899 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4900#endif
4901}
4902
4903/*
4904 * In a system that switches off the HZ timer nohz_cpu_mask
4905 * indicates which cpus entered this state. This is used
4906 * in the rcu update to wait only for active cpus. For system
4907 * which do not switch off the HZ timer nohz_cpu_mask should
4908 * always be CPU_MASK_NONE.
4909 */
4910cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4911
4912#ifdef CONFIG_SMP
4913/*
4914 * This is how migration works:
4915 *
70b97a7f 4916 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4917 * runqueue and wake up that CPU's migration thread.
4918 * 2) we down() the locked semaphore => thread blocks.
4919 * 3) migration thread wakes up (implicitly it forces the migrated
4920 * thread off the CPU)
4921 * 4) it gets the migration request and checks whether the migrated
4922 * task is still in the wrong runqueue.
4923 * 5) if it's in the wrong runqueue then the migration thread removes
4924 * it and puts it into the right queue.
4925 * 6) migration thread up()s the semaphore.
4926 * 7) we wake up and the migration is done.
4927 */
4928
4929/*
4930 * Change a given task's CPU affinity. Migrate the thread to a
4931 * proper CPU and schedule it away if the CPU it's executing on
4932 * is removed from the allowed bitmask.
4933 *
4934 * NOTE: the caller must have a valid reference to the task, the
4935 * task must not exit() & deallocate itself prematurely. The
4936 * call is not atomic; no spinlocks may be held.
4937 */
36c8b586 4938int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4939{
70b97a7f 4940 struct migration_req req;
1da177e4 4941 unsigned long flags;
70b97a7f 4942 struct rq *rq;
48f24c4d 4943 int ret = 0;
1da177e4
LT
4944
4945 rq = task_rq_lock(p, &flags);
4946 if (!cpus_intersects(new_mask, cpu_online_map)) {
4947 ret = -EINVAL;
4948 goto out;
4949 }
4950
4951 p->cpus_allowed = new_mask;
4952 /* Can the task run on the task's current CPU? If so, we're done */
4953 if (cpu_isset(task_cpu(p), new_mask))
4954 goto out;
4955
4956 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4957 /* Need help from migration thread: drop lock and wait. */
4958 task_rq_unlock(rq, &flags);
4959 wake_up_process(rq->migration_thread);
4960 wait_for_completion(&req.done);
4961 tlb_migrate_finish(p->mm);
4962 return 0;
4963 }
4964out:
4965 task_rq_unlock(rq, &flags);
48f24c4d 4966
1da177e4
LT
4967 return ret;
4968}
1da177e4
LT
4969EXPORT_SYMBOL_GPL(set_cpus_allowed);
4970
4971/*
4972 * Move (not current) task off this cpu, onto dest cpu. We're doing
4973 * this because either it can't run here any more (set_cpus_allowed()
4974 * away from this CPU, or CPU going down), or because we're
4975 * attempting to rebalance this task on exec (sched_exec).
4976 *
4977 * So we race with normal scheduler movements, but that's OK, as long
4978 * as the task is no longer on this CPU.
efc30814
KK
4979 *
4980 * Returns non-zero if task was successfully migrated.
1da177e4 4981 */
efc30814 4982static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4983{
70b97a7f 4984 struct rq *rq_dest, *rq_src;
efc30814 4985 int ret = 0;
1da177e4
LT
4986
4987 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4988 return ret;
1da177e4
LT
4989
4990 rq_src = cpu_rq(src_cpu);
4991 rq_dest = cpu_rq(dest_cpu);
4992
4993 double_rq_lock(rq_src, rq_dest);
4994 /* Already moved. */
4995 if (task_cpu(p) != src_cpu)
4996 goto out;
4997 /* Affinity changed (again). */
4998 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4999 goto out;
5000
5001 set_task_cpu(p, dest_cpu);
5002 if (p->array) {
5003 /*
5004 * Sync timestamp with rq_dest's before activating.
5005 * The same thing could be achieved by doing this step
5006 * afterwards, and pretending it was a local activate.
5007 * This way is cleaner and logically correct.
5008 */
5009 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
5010 + rq_dest->timestamp_last_tick;
5011 deactivate_task(p, rq_src);
0a565f79 5012 __activate_task(p, rq_dest);
1da177e4
LT
5013 if (TASK_PREEMPTS_CURR(p, rq_dest))
5014 resched_task(rq_dest->curr);
5015 }
efc30814 5016 ret = 1;
1da177e4
LT
5017out:
5018 double_rq_unlock(rq_src, rq_dest);
efc30814 5019 return ret;
1da177e4
LT
5020}
5021
5022/*
5023 * migration_thread - this is a highprio system thread that performs
5024 * thread migration by bumping thread off CPU then 'pushing' onto
5025 * another runqueue.
5026 */
95cdf3b7 5027static int migration_thread(void *data)
1da177e4 5028{
1da177e4 5029 int cpu = (long)data;
70b97a7f 5030 struct rq *rq;
1da177e4
LT
5031
5032 rq = cpu_rq(cpu);
5033 BUG_ON(rq->migration_thread != current);
5034
5035 set_current_state(TASK_INTERRUPTIBLE);
5036 while (!kthread_should_stop()) {
70b97a7f 5037 struct migration_req *req;
1da177e4 5038 struct list_head *head;
1da177e4 5039
3e1d1d28 5040 try_to_freeze();
1da177e4
LT
5041
5042 spin_lock_irq(&rq->lock);
5043
5044 if (cpu_is_offline(cpu)) {
5045 spin_unlock_irq(&rq->lock);
5046 goto wait_to_die;
5047 }
5048
5049 if (rq->active_balance) {
5050 active_load_balance(rq, cpu);
5051 rq->active_balance = 0;
5052 }
5053
5054 head = &rq->migration_queue;
5055
5056 if (list_empty(head)) {
5057 spin_unlock_irq(&rq->lock);
5058 schedule();
5059 set_current_state(TASK_INTERRUPTIBLE);
5060 continue;
5061 }
70b97a7f 5062 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5063 list_del_init(head->next);
5064
674311d5
NP
5065 spin_unlock(&rq->lock);
5066 __migrate_task(req->task, cpu, req->dest_cpu);
5067 local_irq_enable();
1da177e4
LT
5068
5069 complete(&req->done);
5070 }
5071 __set_current_state(TASK_RUNNING);
5072 return 0;
5073
5074wait_to_die:
5075 /* Wait for kthread_stop */
5076 set_current_state(TASK_INTERRUPTIBLE);
5077 while (!kthread_should_stop()) {
5078 schedule();
5079 set_current_state(TASK_INTERRUPTIBLE);
5080 }
5081 __set_current_state(TASK_RUNNING);
5082 return 0;
5083}
5084
5085#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5086/*
5087 * Figure out where task on dead CPU should go, use force if neccessary.
5088 * NOTE: interrupts should be disabled by the caller
5089 */
48f24c4d 5090static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5091{
efc30814 5092 unsigned long flags;
1da177e4 5093 cpumask_t mask;
70b97a7f
IM
5094 struct rq *rq;
5095 int dest_cpu;
1da177e4 5096
efc30814 5097restart:
1da177e4
LT
5098 /* On same node? */
5099 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5100 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5101 dest_cpu = any_online_cpu(mask);
5102
5103 /* On any allowed CPU? */
5104 if (dest_cpu == NR_CPUS)
48f24c4d 5105 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5106
5107 /* No more Mr. Nice Guy. */
5108 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5109 rq = task_rq_lock(p, &flags);
5110 cpus_setall(p->cpus_allowed);
5111 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5112 task_rq_unlock(rq, &flags);
1da177e4
LT
5113
5114 /*
5115 * Don't tell them about moving exiting tasks or
5116 * kernel threads (both mm NULL), since they never
5117 * leave kernel.
5118 */
48f24c4d 5119 if (p->mm && printk_ratelimit())
1da177e4
LT
5120 printk(KERN_INFO "process %d (%s) no "
5121 "longer affine to cpu%d\n",
48f24c4d 5122 p->pid, p->comm, dead_cpu);
1da177e4 5123 }
48f24c4d 5124 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5125 goto restart;
1da177e4
LT
5126}
5127
5128/*
5129 * While a dead CPU has no uninterruptible tasks queued at this point,
5130 * it might still have a nonzero ->nr_uninterruptible counter, because
5131 * for performance reasons the counter is not stricly tracking tasks to
5132 * their home CPUs. So we just add the counter to another CPU's counter,
5133 * to keep the global sum constant after CPU-down:
5134 */
70b97a7f 5135static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5136{
70b97a7f 5137 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5138 unsigned long flags;
5139
5140 local_irq_save(flags);
5141 double_rq_lock(rq_src, rq_dest);
5142 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5143 rq_src->nr_uninterruptible = 0;
5144 double_rq_unlock(rq_src, rq_dest);
5145 local_irq_restore(flags);
5146}
5147
5148/* Run through task list and migrate tasks from the dead cpu. */
5149static void migrate_live_tasks(int src_cpu)
5150{
48f24c4d 5151 struct task_struct *p, *t;
1da177e4
LT
5152
5153 write_lock_irq(&tasklist_lock);
5154
48f24c4d
IM
5155 do_each_thread(t, p) {
5156 if (p == current)
1da177e4
LT
5157 continue;
5158
48f24c4d
IM
5159 if (task_cpu(p) == src_cpu)
5160 move_task_off_dead_cpu(src_cpu, p);
5161 } while_each_thread(t, p);
1da177e4
LT
5162
5163 write_unlock_irq(&tasklist_lock);
5164}
5165
5166/* Schedules idle task to be the next runnable task on current CPU.
5167 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5168 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5169 */
5170void sched_idle_next(void)
5171{
48f24c4d 5172 int this_cpu = smp_processor_id();
70b97a7f 5173 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5174 struct task_struct *p = rq->idle;
5175 unsigned long flags;
5176
5177 /* cpu has to be offline */
48f24c4d 5178 BUG_ON(cpu_online(this_cpu));
1da177e4 5179
48f24c4d
IM
5180 /*
5181 * Strictly not necessary since rest of the CPUs are stopped by now
5182 * and interrupts disabled on the current cpu.
1da177e4
LT
5183 */
5184 spin_lock_irqsave(&rq->lock, flags);
5185
5186 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5187
5188 /* Add idle task to the _front_ of its priority queue: */
1da177e4
LT
5189 __activate_idle_task(p, rq);
5190
5191 spin_unlock_irqrestore(&rq->lock, flags);
5192}
5193
48f24c4d
IM
5194/*
5195 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5196 * offline.
5197 */
5198void idle_task_exit(void)
5199{
5200 struct mm_struct *mm = current->active_mm;
5201
5202 BUG_ON(cpu_online(smp_processor_id()));
5203
5204 if (mm != &init_mm)
5205 switch_mm(mm, &init_mm, current);
5206 mmdrop(mm);
5207}
5208
054b9108 5209/* called under rq->lock with disabled interrupts */
36c8b586 5210static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5211{
70b97a7f 5212 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5213
5214 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5215 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5216
5217 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5218 BUG_ON(p->state == TASK_DEAD);
1da177e4 5219
48f24c4d 5220 get_task_struct(p);
1da177e4
LT
5221
5222 /*
5223 * Drop lock around migration; if someone else moves it,
5224 * that's OK. No task can be added to this CPU, so iteration is
5225 * fine.
054b9108 5226 * NOTE: interrupts should be left disabled --dev@
1da177e4 5227 */
054b9108 5228 spin_unlock(&rq->lock);
48f24c4d 5229 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5230 spin_lock(&rq->lock);
1da177e4 5231
48f24c4d 5232 put_task_struct(p);
1da177e4
LT
5233}
5234
5235/* release_task() removes task from tasklist, so we won't find dead tasks. */
5236static void migrate_dead_tasks(unsigned int dead_cpu)
5237{
70b97a7f 5238 struct rq *rq = cpu_rq(dead_cpu);
48f24c4d 5239 unsigned int arr, i;
1da177e4
LT
5240
5241 for (arr = 0; arr < 2; arr++) {
5242 for (i = 0; i < MAX_PRIO; i++) {
5243 struct list_head *list = &rq->arrays[arr].queue[i];
48f24c4d 5244
1da177e4 5245 while (!list_empty(list))
36c8b586
IM
5246 migrate_dead(dead_cpu, list_entry(list->next,
5247 struct task_struct, run_list));
1da177e4
LT
5248 }
5249 }
5250}
5251#endif /* CONFIG_HOTPLUG_CPU */
5252
5253/*
5254 * migration_call - callback that gets triggered when a CPU is added.
5255 * Here we can start up the necessary migration thread for the new CPU.
5256 */
48f24c4d
IM
5257static int __cpuinit
5258migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5259{
1da177e4 5260 struct task_struct *p;
48f24c4d 5261 int cpu = (long)hcpu;
1da177e4 5262 unsigned long flags;
70b97a7f 5263 struct rq *rq;
1da177e4
LT
5264
5265 switch (action) {
5266 case CPU_UP_PREPARE:
5267 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5268 if (IS_ERR(p))
5269 return NOTIFY_BAD;
5270 p->flags |= PF_NOFREEZE;
5271 kthread_bind(p, cpu);
5272 /* Must be high prio: stop_machine expects to yield to it. */
5273 rq = task_rq_lock(p, &flags);
5274 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5275 task_rq_unlock(rq, &flags);
5276 cpu_rq(cpu)->migration_thread = p;
5277 break;
48f24c4d 5278
1da177e4
LT
5279 case CPU_ONLINE:
5280 /* Strictly unneccessary, as first user will wake it. */
5281 wake_up_process(cpu_rq(cpu)->migration_thread);
5282 break;
48f24c4d 5283
1da177e4
LT
5284#ifdef CONFIG_HOTPLUG_CPU
5285 case CPU_UP_CANCELED:
fc75cdfa
HC
5286 if (!cpu_rq(cpu)->migration_thread)
5287 break;
1da177e4 5288 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5289 kthread_bind(cpu_rq(cpu)->migration_thread,
5290 any_online_cpu(cpu_online_map));
1da177e4
LT
5291 kthread_stop(cpu_rq(cpu)->migration_thread);
5292 cpu_rq(cpu)->migration_thread = NULL;
5293 break;
48f24c4d 5294
1da177e4
LT
5295 case CPU_DEAD:
5296 migrate_live_tasks(cpu);
5297 rq = cpu_rq(cpu);
5298 kthread_stop(rq->migration_thread);
5299 rq->migration_thread = NULL;
5300 /* Idle task back to normal (off runqueue, low prio) */
5301 rq = task_rq_lock(rq->idle, &flags);
5302 deactivate_task(rq->idle, rq);
5303 rq->idle->static_prio = MAX_PRIO;
5304 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5305 migrate_dead_tasks(cpu);
5306 task_rq_unlock(rq, &flags);
5307 migrate_nr_uninterruptible(rq);
5308 BUG_ON(rq->nr_running != 0);
5309
5310 /* No need to migrate the tasks: it was best-effort if
5311 * they didn't do lock_cpu_hotplug(). Just wake up
5312 * the requestors. */
5313 spin_lock_irq(&rq->lock);
5314 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5315 struct migration_req *req;
5316
1da177e4 5317 req = list_entry(rq->migration_queue.next,
70b97a7f 5318 struct migration_req, list);
1da177e4
LT
5319 list_del_init(&req->list);
5320 complete(&req->done);
5321 }
5322 spin_unlock_irq(&rq->lock);
5323 break;
5324#endif
5325 }
5326 return NOTIFY_OK;
5327}
5328
5329/* Register at highest priority so that task migration (migrate_all_tasks)
5330 * happens before everything else.
5331 */
26c2143b 5332static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5333 .notifier_call = migration_call,
5334 .priority = 10
5335};
5336
5337int __init migration_init(void)
5338{
5339 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5340 int err;
48f24c4d
IM
5341
5342 /* Start one for the boot CPU: */
07dccf33
AM
5343 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5344 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5345 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5346 register_cpu_notifier(&migration_notifier);
48f24c4d 5347
1da177e4
LT
5348 return 0;
5349}
5350#endif
5351
5352#ifdef CONFIG_SMP
1a20ff27 5353#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5354#ifdef SCHED_DOMAIN_DEBUG
5355static void sched_domain_debug(struct sched_domain *sd, int cpu)
5356{
5357 int level = 0;
5358
41c7ce9a
NP
5359 if (!sd) {
5360 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5361 return;
5362 }
5363
1da177e4
LT
5364 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5365
5366 do {
5367 int i;
5368 char str[NR_CPUS];
5369 struct sched_group *group = sd->groups;
5370 cpumask_t groupmask;
5371
5372 cpumask_scnprintf(str, NR_CPUS, sd->span);
5373 cpus_clear(groupmask);
5374
5375 printk(KERN_DEBUG);
5376 for (i = 0; i < level + 1; i++)
5377 printk(" ");
5378 printk("domain %d: ", level);
5379
5380 if (!(sd->flags & SD_LOAD_BALANCE)) {
5381 printk("does not load-balance\n");
5382 if (sd->parent)
5383 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5384 break;
5385 }
5386
5387 printk("span %s\n", str);
5388
5389 if (!cpu_isset(cpu, sd->span))
5390 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5391 if (!cpu_isset(cpu, group->cpumask))
5392 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5393
5394 printk(KERN_DEBUG);
5395 for (i = 0; i < level + 2; i++)
5396 printk(" ");
5397 printk("groups:");
5398 do {
5399 if (!group) {
5400 printk("\n");
5401 printk(KERN_ERR "ERROR: group is NULL\n");
5402 break;
5403 }
5404
5405 if (!group->cpu_power) {
5406 printk("\n");
5407 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5408 }
5409
5410 if (!cpus_weight(group->cpumask)) {
5411 printk("\n");
5412 printk(KERN_ERR "ERROR: empty group\n");
5413 }
5414
5415 if (cpus_intersects(groupmask, group->cpumask)) {
5416 printk("\n");
5417 printk(KERN_ERR "ERROR: repeated CPUs\n");
5418 }
5419
5420 cpus_or(groupmask, groupmask, group->cpumask);
5421
5422 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5423 printk(" %s", str);
5424
5425 group = group->next;
5426 } while (group != sd->groups);
5427 printk("\n");
5428
5429 if (!cpus_equal(sd->span, groupmask))
5430 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5431
5432 level++;
5433 sd = sd->parent;
5434
5435 if (sd) {
5436 if (!cpus_subset(groupmask, sd->span))
5437 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5438 }
5439
5440 } while (sd);
5441}
5442#else
48f24c4d 5443# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5444#endif
5445
1a20ff27 5446static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5447{
5448 if (cpus_weight(sd->span) == 1)
5449 return 1;
5450
5451 /* Following flags need at least 2 groups */
5452 if (sd->flags & (SD_LOAD_BALANCE |
5453 SD_BALANCE_NEWIDLE |
5454 SD_BALANCE_FORK |
89c4710e
SS
5455 SD_BALANCE_EXEC |
5456 SD_SHARE_CPUPOWER |
5457 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5458 if (sd->groups != sd->groups->next)
5459 return 0;
5460 }
5461
5462 /* Following flags don't use groups */
5463 if (sd->flags & (SD_WAKE_IDLE |
5464 SD_WAKE_AFFINE |
5465 SD_WAKE_BALANCE))
5466 return 0;
5467
5468 return 1;
5469}
5470
48f24c4d
IM
5471static int
5472sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5473{
5474 unsigned long cflags = sd->flags, pflags = parent->flags;
5475
5476 if (sd_degenerate(parent))
5477 return 1;
5478
5479 if (!cpus_equal(sd->span, parent->span))
5480 return 0;
5481
5482 /* Does parent contain flags not in child? */
5483 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5484 if (cflags & SD_WAKE_AFFINE)
5485 pflags &= ~SD_WAKE_BALANCE;
5486 /* Flags needing groups don't count if only 1 group in parent */
5487 if (parent->groups == parent->groups->next) {
5488 pflags &= ~(SD_LOAD_BALANCE |
5489 SD_BALANCE_NEWIDLE |
5490 SD_BALANCE_FORK |
89c4710e
SS
5491 SD_BALANCE_EXEC |
5492 SD_SHARE_CPUPOWER |
5493 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5494 }
5495 if (~cflags & pflags)
5496 return 0;
5497
5498 return 1;
5499}
5500
1da177e4
LT
5501/*
5502 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5503 * hold the hotplug lock.
5504 */
9c1cfda2 5505static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5506{
70b97a7f 5507 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5508 struct sched_domain *tmp;
5509
5510 /* Remove the sched domains which do not contribute to scheduling. */
5511 for (tmp = sd; tmp; tmp = tmp->parent) {
5512 struct sched_domain *parent = tmp->parent;
5513 if (!parent)
5514 break;
1a848870 5515 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5516 tmp->parent = parent->parent;
1a848870
SS
5517 if (parent->parent)
5518 parent->parent->child = tmp;
5519 }
245af2c7
SS
5520 }
5521
1a848870 5522 if (sd && sd_degenerate(sd)) {
245af2c7 5523 sd = sd->parent;
1a848870
SS
5524 if (sd)
5525 sd->child = NULL;
5526 }
1da177e4
LT
5527
5528 sched_domain_debug(sd, cpu);
5529
674311d5 5530 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5531}
5532
5533/* cpus with isolated domains */
5c1e1767 5534static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5535
5536/* Setup the mask of cpus configured for isolated domains */
5537static int __init isolated_cpu_setup(char *str)
5538{
5539 int ints[NR_CPUS], i;
5540
5541 str = get_options(str, ARRAY_SIZE(ints), ints);
5542 cpus_clear(cpu_isolated_map);
5543 for (i = 1; i <= ints[0]; i++)
5544 if (ints[i] < NR_CPUS)
5545 cpu_set(ints[i], cpu_isolated_map);
5546 return 1;
5547}
5548
5549__setup ("isolcpus=", isolated_cpu_setup);
5550
5551/*
6711cab4
SS
5552 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5553 * to a function which identifies what group(along with sched group) a CPU
5554 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5555 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5556 *
5557 * init_sched_build_groups will build a circular linked list of the groups
5558 * covered by the given span, and will set each group's ->cpumask correctly,
5559 * and ->cpu_power to 0.
5560 */
a616058b 5561static void
6711cab4
SS
5562init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5563 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5564 struct sched_group **sg))
1da177e4
LT
5565{
5566 struct sched_group *first = NULL, *last = NULL;
5567 cpumask_t covered = CPU_MASK_NONE;
5568 int i;
5569
5570 for_each_cpu_mask(i, span) {
6711cab4
SS
5571 struct sched_group *sg;
5572 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5573 int j;
5574
5575 if (cpu_isset(i, covered))
5576 continue;
5577
5578 sg->cpumask = CPU_MASK_NONE;
5579 sg->cpu_power = 0;
5580
5581 for_each_cpu_mask(j, span) {
6711cab4 5582 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5583 continue;
5584
5585 cpu_set(j, covered);
5586 cpu_set(j, sg->cpumask);
5587 }
5588 if (!first)
5589 first = sg;
5590 if (last)
5591 last->next = sg;
5592 last = sg;
5593 }
5594 last->next = first;
5595}
5596
9c1cfda2 5597#define SD_NODES_PER_DOMAIN 16
1da177e4 5598
198e2f18 5599/*
5600 * Self-tuning task migration cost measurement between source and target CPUs.
5601 *
5602 * This is done by measuring the cost of manipulating buffers of varying
5603 * sizes. For a given buffer-size here are the steps that are taken:
5604 *
5605 * 1) the source CPU reads+dirties a shared buffer
5606 * 2) the target CPU reads+dirties the same shared buffer
5607 *
5608 * We measure how long they take, in the following 4 scenarios:
5609 *
5610 * - source: CPU1, target: CPU2 | cost1
5611 * - source: CPU2, target: CPU1 | cost2
5612 * - source: CPU1, target: CPU1 | cost3
5613 * - source: CPU2, target: CPU2 | cost4
5614 *
5615 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5616 * the cost of migration.
5617 *
5618 * We then start off from a small buffer-size and iterate up to larger
5619 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5620 * doing a maximum search for the cost. (The maximum cost for a migration
5621 * normally occurs when the working set size is around the effective cache
5622 * size.)
5623 */
5624#define SEARCH_SCOPE 2
5625#define MIN_CACHE_SIZE (64*1024U)
5626#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5627#define ITERATIONS 1
198e2f18 5628#define SIZE_THRESH 130
5629#define COST_THRESH 130
5630
5631/*
5632 * The migration cost is a function of 'domain distance'. Domain
5633 * distance is the number of steps a CPU has to iterate down its
5634 * domain tree to share a domain with the other CPU. The farther
5635 * two CPUs are from each other, the larger the distance gets.
5636 *
5637 * Note that we use the distance only to cache measurement results,
5638 * the distance value is not used numerically otherwise. When two
5639 * CPUs have the same distance it is assumed that the migration
5640 * cost is the same. (this is a simplification but quite practical)
5641 */
5642#define MAX_DOMAIN_DISTANCE 32
5643
5644static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5645 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5646/*
5647 * Architectures may override the migration cost and thus avoid
5648 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5649 * virtualized hardware:
5650 */
5651#ifdef CONFIG_DEFAULT_MIGRATION_COST
5652 CONFIG_DEFAULT_MIGRATION_COST
5653#else
5654 -1LL
5655#endif
5656};
198e2f18 5657
5658/*
5659 * Allow override of migration cost - in units of microseconds.
5660 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5661 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5662 */
5663static int __init migration_cost_setup(char *str)
5664{
5665 int ints[MAX_DOMAIN_DISTANCE+1], i;
5666
5667 str = get_options(str, ARRAY_SIZE(ints), ints);
5668
5669 printk("#ints: %d\n", ints[0]);
5670 for (i = 1; i <= ints[0]; i++) {
5671 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5672 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5673 }
5674 return 1;
5675}
5676
5677__setup ("migration_cost=", migration_cost_setup);
5678
5679/*
5680 * Global multiplier (divisor) for migration-cutoff values,
5681 * in percentiles. E.g. use a value of 150 to get 1.5 times
5682 * longer cache-hot cutoff times.
5683 *
5684 * (We scale it from 100 to 128 to long long handling easier.)
5685 */
5686
5687#define MIGRATION_FACTOR_SCALE 128
5688
5689static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5690
5691static int __init setup_migration_factor(char *str)
5692{
5693 get_option(&str, &migration_factor);
5694 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5695 return 1;
5696}
5697
5698__setup("migration_factor=", setup_migration_factor);
5699
5700/*
5701 * Estimated distance of two CPUs, measured via the number of domains
5702 * we have to pass for the two CPUs to be in the same span:
5703 */
5704static unsigned long domain_distance(int cpu1, int cpu2)
5705{
5706 unsigned long distance = 0;
5707 struct sched_domain *sd;
5708
5709 for_each_domain(cpu1, sd) {
5710 WARN_ON(!cpu_isset(cpu1, sd->span));
5711 if (cpu_isset(cpu2, sd->span))
5712 return distance;
5713 distance++;
5714 }
5715 if (distance >= MAX_DOMAIN_DISTANCE) {
5716 WARN_ON(1);
5717 distance = MAX_DOMAIN_DISTANCE-1;
5718 }
5719
5720 return distance;
5721}
5722
5723static unsigned int migration_debug;
5724
5725static int __init setup_migration_debug(char *str)
5726{
5727 get_option(&str, &migration_debug);
5728 return 1;
5729}
5730
5731__setup("migration_debug=", setup_migration_debug);
5732
5733/*
5734 * Maximum cache-size that the scheduler should try to measure.
5735 * Architectures with larger caches should tune this up during
5736 * bootup. Gets used in the domain-setup code (i.e. during SMP
5737 * bootup).
5738 */
5739unsigned int max_cache_size;
5740
5741static int __init setup_max_cache_size(char *str)
5742{
5743 get_option(&str, &max_cache_size);
5744 return 1;
5745}
5746
5747__setup("max_cache_size=", setup_max_cache_size);
5748
5749/*
5750 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5751 * is the operation that is timed, so we try to generate unpredictable
5752 * cachemisses that still end up filling the L2 cache:
5753 */
5754static void touch_cache(void *__cache, unsigned long __size)
5755{
5756 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5757 chunk2 = 2*size/3;
5758 unsigned long *cache = __cache;
5759 int i;
5760
5761 for (i = 0; i < size/6; i += 8) {
5762 switch (i % 6) {
5763 case 0: cache[i]++;
5764 case 1: cache[size-1-i]++;
5765 case 2: cache[chunk1-i]++;
5766 case 3: cache[chunk1+i]++;
5767 case 4: cache[chunk2-i]++;
5768 case 5: cache[chunk2+i]++;
5769 }
5770 }
5771}
5772
5773/*
5774 * Measure the cache-cost of one task migration. Returns in units of nsec.
5775 */
48f24c4d
IM
5776static unsigned long long
5777measure_one(void *cache, unsigned long size, int source, int target)
198e2f18 5778{
5779 cpumask_t mask, saved_mask;
5780 unsigned long long t0, t1, t2, t3, cost;
5781
5782 saved_mask = current->cpus_allowed;
5783
5784 /*
5785 * Flush source caches to RAM and invalidate them:
5786 */
5787 sched_cacheflush();
5788
5789 /*
5790 * Migrate to the source CPU:
5791 */
5792 mask = cpumask_of_cpu(source);
5793 set_cpus_allowed(current, mask);
5794 WARN_ON(smp_processor_id() != source);
5795
5796 /*
5797 * Dirty the working set:
5798 */
5799 t0 = sched_clock();
5800 touch_cache(cache, size);
5801 t1 = sched_clock();
5802
5803 /*
5804 * Migrate to the target CPU, dirty the L2 cache and access
5805 * the shared buffer. (which represents the working set
5806 * of a migrated task.)
5807 */
5808 mask = cpumask_of_cpu(target);
5809 set_cpus_allowed(current, mask);
5810 WARN_ON(smp_processor_id() != target);
5811
5812 t2 = sched_clock();
5813 touch_cache(cache, size);
5814 t3 = sched_clock();
5815
5816 cost = t1-t0 + t3-t2;
5817
5818 if (migration_debug >= 2)
5819 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5820 source, target, t1-t0, t1-t0, t3-t2, cost);
5821 /*
5822 * Flush target caches to RAM and invalidate them:
5823 */
5824 sched_cacheflush();
5825
5826 set_cpus_allowed(current, saved_mask);
5827
5828 return cost;
5829}
5830
5831/*
5832 * Measure a series of task migrations and return the average
5833 * result. Since this code runs early during bootup the system
5834 * is 'undisturbed' and the average latency makes sense.
5835 *
5836 * The algorithm in essence auto-detects the relevant cache-size,
5837 * so it will properly detect different cachesizes for different
5838 * cache-hierarchies, depending on how the CPUs are connected.
5839 *
5840 * Architectures can prime the upper limit of the search range via
5841 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5842 */
5843static unsigned long long
5844measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5845{
5846 unsigned long long cost1, cost2;
5847 int i;
5848
5849 /*
5850 * Measure the migration cost of 'size' bytes, over an
5851 * average of 10 runs:
5852 *
5853 * (We perturb the cache size by a small (0..4k)
5854 * value to compensate size/alignment related artifacts.
5855 * We also subtract the cost of the operation done on
5856 * the same CPU.)
5857 */
5858 cost1 = 0;
5859
5860 /*
5861 * dry run, to make sure we start off cache-cold on cpu1,
5862 * and to get any vmalloc pagefaults in advance:
5863 */
5864 measure_one(cache, size, cpu1, cpu2);
5865 for (i = 0; i < ITERATIONS; i++)
5866 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5867
5868 measure_one(cache, size, cpu2, cpu1);
5869 for (i = 0; i < ITERATIONS; i++)
5870 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5871
5872 /*
5873 * (We measure the non-migrating [cached] cost on both
5874 * cpu1 and cpu2, to handle CPUs with different speeds)
5875 */
5876 cost2 = 0;
5877
5878 measure_one(cache, size, cpu1, cpu1);
5879 for (i = 0; i < ITERATIONS; i++)
5880 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5881
5882 measure_one(cache, size, cpu2, cpu2);
5883 for (i = 0; i < ITERATIONS; i++)
5884 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5885
5886 /*
5887 * Get the per-iteration migration cost:
5888 */
5889 do_div(cost1, 2*ITERATIONS);
5890 do_div(cost2, 2*ITERATIONS);
5891
5892 return cost1 - cost2;
5893}
5894
5895static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5896{
5897 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5898 unsigned int max_size, size, size_found = 0;
5899 long long cost = 0, prev_cost;
5900 void *cache;
5901
5902 /*
5903 * Search from max_cache_size*5 down to 64K - the real relevant
5904 * cachesize has to lie somewhere inbetween.
5905 */
5906 if (max_cache_size) {
5907 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5908 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5909 } else {
5910 /*
5911 * Since we have no estimation about the relevant
5912 * search range
5913 */
5914 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5915 size = MIN_CACHE_SIZE;
5916 }
5917
5918 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5919 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5920 return 0;
5921 }
5922
5923 /*
5924 * Allocate the working set:
5925 */
5926 cache = vmalloc(max_size);
5927 if (!cache) {
5928 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
2ed6e34f 5929 return 1000000; /* return 1 msec on very small boxen */
198e2f18 5930 }
5931
5932 while (size <= max_size) {
5933 prev_cost = cost;
5934 cost = measure_cost(cpu1, cpu2, cache, size);
5935
5936 /*
5937 * Update the max:
5938 */
5939 if (cost > 0) {
5940 if (max_cost < cost) {
5941 max_cost = cost;
5942 size_found = size;
5943 }
5944 }
5945 /*
5946 * Calculate average fluctuation, we use this to prevent
5947 * noise from triggering an early break out of the loop:
5948 */
5949 fluct = abs(cost - prev_cost);
5950 avg_fluct = (avg_fluct + fluct)/2;
5951
5952 if (migration_debug)
5953 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5954 cpu1, cpu2, size,
5955 (long)cost / 1000000,
5956 ((long)cost / 100000) % 10,
5957 (long)max_cost / 1000000,
5958 ((long)max_cost / 100000) % 10,
5959 domain_distance(cpu1, cpu2),
5960 cost, avg_fluct);
5961
5962 /*
5963 * If we iterated at least 20% past the previous maximum,
5964 * and the cost has dropped by more than 20% already,
5965 * (taking fluctuations into account) then we assume to
5966 * have found the maximum and break out of the loop early:
5967 */
5968 if (size_found && (size*100 > size_found*SIZE_THRESH))
5969 if (cost+avg_fluct <= 0 ||
5970 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5971
5972 if (migration_debug)
5973 printk("-> found max.\n");
5974 break;
5975 }
5976 /*
70b4d63e 5977 * Increase the cachesize in 10% steps:
198e2f18 5978 */
70b4d63e 5979 size = size * 10 / 9;
198e2f18 5980 }
5981
5982 if (migration_debug)
5983 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5984 cpu1, cpu2, size_found, max_cost);
5985
5986 vfree(cache);
5987
5988 /*
5989 * A task is considered 'cache cold' if at least 2 times
5990 * the worst-case cost of migration has passed.
5991 *
5992 * (this limit is only listened to if the load-balancing
5993 * situation is 'nice' - if there is a large imbalance we
5994 * ignore it for the sake of CPU utilization and
5995 * processing fairness.)
5996 */
5997 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5998}
5999
6000static void calibrate_migration_costs(const cpumask_t *cpu_map)
6001{
6002 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6003 unsigned long j0, j1, distance, max_distance = 0;
6004 struct sched_domain *sd;
6005
6006 j0 = jiffies;
6007
6008 /*
6009 * First pass - calculate the cacheflush times:
6010 */
6011 for_each_cpu_mask(cpu1, *cpu_map) {
6012 for_each_cpu_mask(cpu2, *cpu_map) {
6013 if (cpu1 == cpu2)
6014 continue;
6015 distance = domain_distance(cpu1, cpu2);
6016 max_distance = max(max_distance, distance);
6017 /*
6018 * No result cached yet?
6019 */
6020 if (migration_cost[distance] == -1LL)
6021 migration_cost[distance] =
6022 measure_migration_cost(cpu1, cpu2);
6023 }
6024 }
6025 /*
6026 * Second pass - update the sched domain hierarchy with
6027 * the new cache-hot-time estimations:
6028 */
6029 for_each_cpu_mask(cpu, *cpu_map) {
6030 distance = 0;
6031 for_each_domain(cpu, sd) {
6032 sd->cache_hot_time = migration_cost[distance];
6033 distance++;
6034 }
6035 }
6036 /*
6037 * Print the matrix:
6038 */
6039 if (migration_debug)
6040 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6041 max_cache_size,
6042#ifdef CONFIG_X86
6043 cpu_khz/1000
6044#else
6045 -1
6046#endif
6047 );
bd576c95 6048 if (system_state == SYSTEM_BOOTING) {
74732646
DJ
6049 if (num_online_cpus() > 1) {
6050 printk("migration_cost=");
6051 for (distance = 0; distance <= max_distance; distance++) {
6052 if (distance)
6053 printk(",");
6054 printk("%ld", (long)migration_cost[distance] / 1000);
6055 }
6056 printk("\n");
bd576c95 6057 }
198e2f18 6058 }
198e2f18 6059 j1 = jiffies;
6060 if (migration_debug)
6061 printk("migration: %ld seconds\n", (j1-j0)/HZ);
6062
6063 /*
6064 * Move back to the original CPU. NUMA-Q gets confused
6065 * if we migrate to another quad during bootup.
6066 */
6067 if (raw_smp_processor_id() != orig_cpu) {
6068 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6069 saved_mask = current->cpus_allowed;
6070
6071 set_cpus_allowed(current, mask);
6072 set_cpus_allowed(current, saved_mask);
6073 }
6074}
6075
9c1cfda2 6076#ifdef CONFIG_NUMA
198e2f18 6077
9c1cfda2
JH
6078/**
6079 * find_next_best_node - find the next node to include in a sched_domain
6080 * @node: node whose sched_domain we're building
6081 * @used_nodes: nodes already in the sched_domain
6082 *
6083 * Find the next node to include in a given scheduling domain. Simply
6084 * finds the closest node not already in the @used_nodes map.
6085 *
6086 * Should use nodemask_t.
6087 */
6088static int find_next_best_node(int node, unsigned long *used_nodes)
6089{
6090 int i, n, val, min_val, best_node = 0;
6091
6092 min_val = INT_MAX;
6093
6094 for (i = 0; i < MAX_NUMNODES; i++) {
6095 /* Start at @node */
6096 n = (node + i) % MAX_NUMNODES;
6097
6098 if (!nr_cpus_node(n))
6099 continue;
6100
6101 /* Skip already used nodes */
6102 if (test_bit(n, used_nodes))
6103 continue;
6104
6105 /* Simple min distance search */
6106 val = node_distance(node, n);
6107
6108 if (val < min_val) {
6109 min_val = val;
6110 best_node = n;
6111 }
6112 }
6113
6114 set_bit(best_node, used_nodes);
6115 return best_node;
6116}
6117
6118/**
6119 * sched_domain_node_span - get a cpumask for a node's sched_domain
6120 * @node: node whose cpumask we're constructing
6121 * @size: number of nodes to include in this span
6122 *
6123 * Given a node, construct a good cpumask for its sched_domain to span. It
6124 * should be one that prevents unnecessary balancing, but also spreads tasks
6125 * out optimally.
6126 */
6127static cpumask_t sched_domain_node_span(int node)
6128{
9c1cfda2 6129 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6130 cpumask_t span, nodemask;
6131 int i;
9c1cfda2
JH
6132
6133 cpus_clear(span);
6134 bitmap_zero(used_nodes, MAX_NUMNODES);
6135
6136 nodemask = node_to_cpumask(node);
6137 cpus_or(span, span, nodemask);
6138 set_bit(node, used_nodes);
6139
6140 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6141 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6142
9c1cfda2
JH
6143 nodemask = node_to_cpumask(next_node);
6144 cpus_or(span, span, nodemask);
6145 }
6146
6147 return span;
6148}
6149#endif
6150
5c45bf27 6151int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6152
9c1cfda2 6153/*
48f24c4d 6154 * SMT sched-domains:
9c1cfda2 6155 */
1da177e4
LT
6156#ifdef CONFIG_SCHED_SMT
6157static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6158static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6159
6711cab4
SS
6160static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6161 struct sched_group **sg)
1da177e4 6162{
6711cab4
SS
6163 if (sg)
6164 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6165 return cpu;
6166}
6167#endif
6168
48f24c4d
IM
6169/*
6170 * multi-core sched-domains:
6171 */
1e9f28fa
SS
6172#ifdef CONFIG_SCHED_MC
6173static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6174static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6175#endif
6176
6177#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
6178static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6179 struct sched_group **sg)
1e9f28fa 6180{
6711cab4 6181 int group;
a616058b
SS
6182 cpumask_t mask = cpu_sibling_map[cpu];
6183 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6184 group = first_cpu(mask);
6185 if (sg)
6186 *sg = &per_cpu(sched_group_core, group);
6187 return group;
1e9f28fa
SS
6188}
6189#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
6190static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6191 struct sched_group **sg)
1e9f28fa 6192{
6711cab4
SS
6193 if (sg)
6194 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6195 return cpu;
6196}
6197#endif
6198
1da177e4 6199static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6200static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6201
6711cab4
SS
6202static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6203 struct sched_group **sg)
1da177e4 6204{
6711cab4 6205 int group;
48f24c4d 6206#ifdef CONFIG_SCHED_MC
1e9f28fa 6207 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6208 cpus_and(mask, mask, *cpu_map);
6711cab4 6209 group = first_cpu(mask);
1e9f28fa 6210#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
6211 cpumask_t mask = cpu_sibling_map[cpu];
6212 cpus_and(mask, mask, *cpu_map);
6711cab4 6213 group = first_cpu(mask);
1da177e4 6214#else
6711cab4 6215 group = cpu;
1da177e4 6216#endif
6711cab4
SS
6217 if (sg)
6218 *sg = &per_cpu(sched_group_phys, group);
6219 return group;
1da177e4
LT
6220}
6221
6222#ifdef CONFIG_NUMA
1da177e4 6223/*
9c1cfda2
JH
6224 * The init_sched_build_groups can't handle what we want to do with node
6225 * groups, so roll our own. Now each node has its own list of groups which
6226 * gets dynamically allocated.
1da177e4 6227 */
9c1cfda2 6228static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6229static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6230
9c1cfda2 6231static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6232static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6233
6711cab4
SS
6234static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6235 struct sched_group **sg)
9c1cfda2 6236{
6711cab4
SS
6237 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6238 int group;
6239
6240 cpus_and(nodemask, nodemask, *cpu_map);
6241 group = first_cpu(nodemask);
6242
6243 if (sg)
6244 *sg = &per_cpu(sched_group_allnodes, group);
6245 return group;
1da177e4 6246}
6711cab4 6247
08069033
SS
6248static void init_numa_sched_groups_power(struct sched_group *group_head)
6249{
6250 struct sched_group *sg = group_head;
6251 int j;
6252
6253 if (!sg)
6254 return;
6255next_sg:
6256 for_each_cpu_mask(j, sg->cpumask) {
6257 struct sched_domain *sd;
6258
6259 sd = &per_cpu(phys_domains, j);
6260 if (j != first_cpu(sd->groups->cpumask)) {
6261 /*
6262 * Only add "power" once for each
6263 * physical package.
6264 */
6265 continue;
6266 }
6267
6268 sg->cpu_power += sd->groups->cpu_power;
6269 }
6270 sg = sg->next;
6271 if (sg != group_head)
6272 goto next_sg;
6273}
1da177e4
LT
6274#endif
6275
a616058b 6276#ifdef CONFIG_NUMA
51888ca2
SV
6277/* Free memory allocated for various sched_group structures */
6278static void free_sched_groups(const cpumask_t *cpu_map)
6279{
a616058b 6280 int cpu, i;
51888ca2
SV
6281
6282 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6283 struct sched_group **sched_group_nodes
6284 = sched_group_nodes_bycpu[cpu];
6285
51888ca2
SV
6286 if (!sched_group_nodes)
6287 continue;
6288
6289 for (i = 0; i < MAX_NUMNODES; i++) {
6290 cpumask_t nodemask = node_to_cpumask(i);
6291 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6292
6293 cpus_and(nodemask, nodemask, *cpu_map);
6294 if (cpus_empty(nodemask))
6295 continue;
6296
6297 if (sg == NULL)
6298 continue;
6299 sg = sg->next;
6300next_sg:
6301 oldsg = sg;
6302 sg = sg->next;
6303 kfree(oldsg);
6304 if (oldsg != sched_group_nodes[i])
6305 goto next_sg;
6306 }
6307 kfree(sched_group_nodes);
6308 sched_group_nodes_bycpu[cpu] = NULL;
6309 }
51888ca2 6310}
a616058b
SS
6311#else
6312static void free_sched_groups(const cpumask_t *cpu_map)
6313{
6314}
6315#endif
51888ca2 6316
89c4710e
SS
6317/*
6318 * Initialize sched groups cpu_power.
6319 *
6320 * cpu_power indicates the capacity of sched group, which is used while
6321 * distributing the load between different sched groups in a sched domain.
6322 * Typically cpu_power for all the groups in a sched domain will be same unless
6323 * there are asymmetries in the topology. If there are asymmetries, group
6324 * having more cpu_power will pickup more load compared to the group having
6325 * less cpu_power.
6326 *
6327 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6328 * the maximum number of tasks a group can handle in the presence of other idle
6329 * or lightly loaded groups in the same sched domain.
6330 */
6331static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6332{
6333 struct sched_domain *child;
6334 struct sched_group *group;
6335
6336 WARN_ON(!sd || !sd->groups);
6337
6338 if (cpu != first_cpu(sd->groups->cpumask))
6339 return;
6340
6341 child = sd->child;
6342
6343 /*
6344 * For perf policy, if the groups in child domain share resources
6345 * (for example cores sharing some portions of the cache hierarchy
6346 * or SMT), then set this domain groups cpu_power such that each group
6347 * can handle only one task, when there are other idle groups in the
6348 * same sched domain.
6349 */
6350 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6351 (child->flags &
6352 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6353 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6354 return;
6355 }
6356
6357 sd->groups->cpu_power = 0;
6358
6359 /*
6360 * add cpu_power of each child group to this groups cpu_power
6361 */
6362 group = child->groups;
6363 do {
6364 sd->groups->cpu_power += group->cpu_power;
6365 group = group->next;
6366 } while (group != child->groups);
6367}
6368
1da177e4 6369/*
1a20ff27
DG
6370 * Build sched domains for a given set of cpus and attach the sched domains
6371 * to the individual cpus
1da177e4 6372 */
51888ca2 6373static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6374{
6375 int i;
89c4710e 6376 struct sched_domain *sd;
d1b55138
JH
6377#ifdef CONFIG_NUMA
6378 struct sched_group **sched_group_nodes = NULL;
6711cab4 6379 int sd_allnodes = 0;
d1b55138
JH
6380
6381 /*
6382 * Allocate the per-node list of sched groups
6383 */
51888ca2 6384 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
d3a5aa98 6385 GFP_KERNEL);
d1b55138
JH
6386 if (!sched_group_nodes) {
6387 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6388 return -ENOMEM;
d1b55138
JH
6389 }
6390 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6391#endif
1da177e4
LT
6392
6393 /*
1a20ff27 6394 * Set up domains for cpus specified by the cpu_map.
1da177e4 6395 */
1a20ff27 6396 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6397 struct sched_domain *sd = NULL, *p;
6398 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6399
1a20ff27 6400 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6401
6402#ifdef CONFIG_NUMA
d1b55138 6403 if (cpus_weight(*cpu_map)
9c1cfda2
JH
6404 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6405 sd = &per_cpu(allnodes_domains, i);
6406 *sd = SD_ALLNODES_INIT;
6407 sd->span = *cpu_map;
6711cab4 6408 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6409 p = sd;
6711cab4 6410 sd_allnodes = 1;
9c1cfda2
JH
6411 } else
6412 p = NULL;
6413
1da177e4 6414 sd = &per_cpu(node_domains, i);
1da177e4 6415 *sd = SD_NODE_INIT;
9c1cfda2
JH
6416 sd->span = sched_domain_node_span(cpu_to_node(i));
6417 sd->parent = p;
1a848870
SS
6418 if (p)
6419 p->child = sd;
9c1cfda2 6420 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6421#endif
6422
6423 p = sd;
6424 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6425 *sd = SD_CPU_INIT;
6426 sd->span = nodemask;
6427 sd->parent = p;
1a848870
SS
6428 if (p)
6429 p->child = sd;
6711cab4 6430 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6431
1e9f28fa
SS
6432#ifdef CONFIG_SCHED_MC
6433 p = sd;
6434 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6435 *sd = SD_MC_INIT;
6436 sd->span = cpu_coregroup_map(i);
6437 cpus_and(sd->span, sd->span, *cpu_map);
6438 sd->parent = p;
1a848870 6439 p->child = sd;
6711cab4 6440 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6441#endif
6442
1da177e4
LT
6443#ifdef CONFIG_SCHED_SMT
6444 p = sd;
6445 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6446 *sd = SD_SIBLING_INIT;
6447 sd->span = cpu_sibling_map[i];
1a20ff27 6448 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6449 sd->parent = p;
1a848870 6450 p->child = sd;
6711cab4 6451 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6452#endif
6453 }
6454
6455#ifdef CONFIG_SCHED_SMT
6456 /* Set up CPU (sibling) groups */
9c1cfda2 6457 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6458 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6459 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6460 if (i != first_cpu(this_sibling_map))
6461 continue;
6462
6711cab4 6463 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
1da177e4
LT
6464 }
6465#endif
6466
1e9f28fa
SS
6467#ifdef CONFIG_SCHED_MC
6468 /* Set up multi-core groups */
6469 for_each_cpu_mask(i, *cpu_map) {
6470 cpumask_t this_core_map = cpu_coregroup_map(i);
6471 cpus_and(this_core_map, this_core_map, *cpu_map);
6472 if (i != first_cpu(this_core_map))
6473 continue;
6711cab4 6474 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
1e9f28fa
SS
6475 }
6476#endif
6477
6478
1da177e4
LT
6479 /* Set up physical groups */
6480 for (i = 0; i < MAX_NUMNODES; i++) {
6481 cpumask_t nodemask = node_to_cpumask(i);
6482
1a20ff27 6483 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6484 if (cpus_empty(nodemask))
6485 continue;
6486
6711cab4 6487 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6488 }
6489
6490#ifdef CONFIG_NUMA
6491 /* Set up node groups */
6711cab4
SS
6492 if (sd_allnodes)
6493 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
9c1cfda2
JH
6494
6495 for (i = 0; i < MAX_NUMNODES; i++) {
6496 /* Set up node groups */
6497 struct sched_group *sg, *prev;
6498 cpumask_t nodemask = node_to_cpumask(i);
6499 cpumask_t domainspan;
6500 cpumask_t covered = CPU_MASK_NONE;
6501 int j;
6502
6503 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6504 if (cpus_empty(nodemask)) {
6505 sched_group_nodes[i] = NULL;
9c1cfda2 6506 continue;
d1b55138 6507 }
9c1cfda2
JH
6508
6509 domainspan = sched_domain_node_span(i);
6510 cpus_and(domainspan, domainspan, *cpu_map);
6511
15f0b676 6512 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6513 if (!sg) {
6514 printk(KERN_WARNING "Can not alloc domain group for "
6515 "node %d\n", i);
6516 goto error;
6517 }
9c1cfda2
JH
6518 sched_group_nodes[i] = sg;
6519 for_each_cpu_mask(j, nodemask) {
6520 struct sched_domain *sd;
6521 sd = &per_cpu(node_domains, j);
6522 sd->groups = sg;
9c1cfda2
JH
6523 }
6524 sg->cpu_power = 0;
6525 sg->cpumask = nodemask;
51888ca2 6526 sg->next = sg;
9c1cfda2
JH
6527 cpus_or(covered, covered, nodemask);
6528 prev = sg;
6529
6530 for (j = 0; j < MAX_NUMNODES; j++) {
6531 cpumask_t tmp, notcovered;
6532 int n = (i + j) % MAX_NUMNODES;
6533
6534 cpus_complement(notcovered, covered);
6535 cpus_and(tmp, notcovered, *cpu_map);
6536 cpus_and(tmp, tmp, domainspan);
6537 if (cpus_empty(tmp))
6538 break;
6539
6540 nodemask = node_to_cpumask(n);
6541 cpus_and(tmp, tmp, nodemask);
6542 if (cpus_empty(tmp))
6543 continue;
6544
15f0b676
SV
6545 sg = kmalloc_node(sizeof(struct sched_group),
6546 GFP_KERNEL, i);
9c1cfda2
JH
6547 if (!sg) {
6548 printk(KERN_WARNING
6549 "Can not alloc domain group for node %d\n", j);
51888ca2 6550 goto error;
9c1cfda2
JH
6551 }
6552 sg->cpu_power = 0;
6553 sg->cpumask = tmp;
51888ca2 6554 sg->next = prev->next;
9c1cfda2
JH
6555 cpus_or(covered, covered, tmp);
6556 prev->next = sg;
6557 prev = sg;
6558 }
9c1cfda2 6559 }
1da177e4
LT
6560#endif
6561
6562 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6563#ifdef CONFIG_SCHED_SMT
1a20ff27 6564 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6565 sd = &per_cpu(cpu_domains, i);
89c4710e 6566 init_sched_groups_power(i, sd);
5c45bf27 6567 }
1da177e4 6568#endif
1e9f28fa 6569#ifdef CONFIG_SCHED_MC
5c45bf27 6570 for_each_cpu_mask(i, *cpu_map) {
1e9f28fa 6571 sd = &per_cpu(core_domains, i);
89c4710e 6572 init_sched_groups_power(i, sd);
5c45bf27
SS
6573 }
6574#endif
1e9f28fa 6575
5c45bf27 6576 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6577 sd = &per_cpu(phys_domains, i);
89c4710e 6578 init_sched_groups_power(i, sd);
1da177e4
LT
6579 }
6580
9c1cfda2 6581#ifdef CONFIG_NUMA
08069033
SS
6582 for (i = 0; i < MAX_NUMNODES; i++)
6583 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6584
6711cab4
SS
6585 if (sd_allnodes) {
6586 struct sched_group *sg;
f712c0c7 6587
6711cab4 6588 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6589 init_numa_sched_groups_power(sg);
6590 }
9c1cfda2
JH
6591#endif
6592
1da177e4 6593 /* Attach the domains */
1a20ff27 6594 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6595 struct sched_domain *sd;
6596#ifdef CONFIG_SCHED_SMT
6597 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6598#elif defined(CONFIG_SCHED_MC)
6599 sd = &per_cpu(core_domains, i);
1da177e4
LT
6600#else
6601 sd = &per_cpu(phys_domains, i);
6602#endif
6603 cpu_attach_domain(sd, i);
6604 }
198e2f18 6605 /*
6606 * Tune cache-hot values:
6607 */
6608 calibrate_migration_costs(cpu_map);
51888ca2
SV
6609
6610 return 0;
6611
a616058b 6612#ifdef CONFIG_NUMA
51888ca2
SV
6613error:
6614 free_sched_groups(cpu_map);
6615 return -ENOMEM;
a616058b 6616#endif
1da177e4 6617}
1a20ff27
DG
6618/*
6619 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6620 */
51888ca2 6621static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6622{
6623 cpumask_t cpu_default_map;
51888ca2 6624 int err;
1da177e4 6625
1a20ff27
DG
6626 /*
6627 * Setup mask for cpus without special case scheduling requirements.
6628 * For now this just excludes isolated cpus, but could be used to
6629 * exclude other special cases in the future.
6630 */
6631 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6632
51888ca2
SV
6633 err = build_sched_domains(&cpu_default_map);
6634
6635 return err;
1a20ff27
DG
6636}
6637
6638static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6639{
51888ca2 6640 free_sched_groups(cpu_map);
9c1cfda2 6641}
1da177e4 6642
1a20ff27
DG
6643/*
6644 * Detach sched domains from a group of cpus specified in cpu_map
6645 * These cpus will now be attached to the NULL domain
6646 */
858119e1 6647static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6648{
6649 int i;
6650
6651 for_each_cpu_mask(i, *cpu_map)
6652 cpu_attach_domain(NULL, i);
6653 synchronize_sched();
6654 arch_destroy_sched_domains(cpu_map);
6655}
6656
6657/*
6658 * Partition sched domains as specified by the cpumasks below.
6659 * This attaches all cpus from the cpumasks to the NULL domain,
6660 * waits for a RCU quiescent period, recalculates sched
6661 * domain information and then attaches them back to the
6662 * correct sched domains
6663 * Call with hotplug lock held
6664 */
51888ca2 6665int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6666{
6667 cpumask_t change_map;
51888ca2 6668 int err = 0;
1a20ff27
DG
6669
6670 cpus_and(*partition1, *partition1, cpu_online_map);
6671 cpus_and(*partition2, *partition2, cpu_online_map);
6672 cpus_or(change_map, *partition1, *partition2);
6673
6674 /* Detach sched domains from all of the affected cpus */
6675 detach_destroy_domains(&change_map);
6676 if (!cpus_empty(*partition1))
51888ca2
SV
6677 err = build_sched_domains(partition1);
6678 if (!err && !cpus_empty(*partition2))
6679 err = build_sched_domains(partition2);
6680
6681 return err;
1a20ff27
DG
6682}
6683
5c45bf27
SS
6684#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6685int arch_reinit_sched_domains(void)
6686{
6687 int err;
6688
6689 lock_cpu_hotplug();
6690 detach_destroy_domains(&cpu_online_map);
6691 err = arch_init_sched_domains(&cpu_online_map);
6692 unlock_cpu_hotplug();
6693
6694 return err;
6695}
6696
6697static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6698{
6699 int ret;
6700
6701 if (buf[0] != '0' && buf[0] != '1')
6702 return -EINVAL;
6703
6704 if (smt)
6705 sched_smt_power_savings = (buf[0] == '1');
6706 else
6707 sched_mc_power_savings = (buf[0] == '1');
6708
6709 ret = arch_reinit_sched_domains();
6710
6711 return ret ? ret : count;
6712}
6713
6714int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6715{
6716 int err = 0;
48f24c4d 6717
5c45bf27
SS
6718#ifdef CONFIG_SCHED_SMT
6719 if (smt_capable())
6720 err = sysfs_create_file(&cls->kset.kobj,
6721 &attr_sched_smt_power_savings.attr);
6722#endif
6723#ifdef CONFIG_SCHED_MC
6724 if (!err && mc_capable())
6725 err = sysfs_create_file(&cls->kset.kobj,
6726 &attr_sched_mc_power_savings.attr);
6727#endif
6728 return err;
6729}
6730#endif
6731
6732#ifdef CONFIG_SCHED_MC
6733static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6734{
6735 return sprintf(page, "%u\n", sched_mc_power_savings);
6736}
48f24c4d
IM
6737static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6738 const char *buf, size_t count)
5c45bf27
SS
6739{
6740 return sched_power_savings_store(buf, count, 0);
6741}
6742SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6743 sched_mc_power_savings_store);
6744#endif
6745
6746#ifdef CONFIG_SCHED_SMT
6747static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6748{
6749 return sprintf(page, "%u\n", sched_smt_power_savings);
6750}
48f24c4d
IM
6751static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6752 const char *buf, size_t count)
5c45bf27
SS
6753{
6754 return sched_power_savings_store(buf, count, 1);
6755}
6756SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6757 sched_smt_power_savings_store);
6758#endif
6759
1da177e4
LT
6760/*
6761 * Force a reinitialization of the sched domains hierarchy. The domains
6762 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6763 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6764 * which will prevent rebalancing while the sched domains are recalculated.
6765 */
6766static int update_sched_domains(struct notifier_block *nfb,
6767 unsigned long action, void *hcpu)
6768{
1da177e4
LT
6769 switch (action) {
6770 case CPU_UP_PREPARE:
6771 case CPU_DOWN_PREPARE:
1a20ff27 6772 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6773 return NOTIFY_OK;
6774
6775 case CPU_UP_CANCELED:
6776 case CPU_DOWN_FAILED:
6777 case CPU_ONLINE:
6778 case CPU_DEAD:
6779 /*
6780 * Fall through and re-initialise the domains.
6781 */
6782 break;
6783 default:
6784 return NOTIFY_DONE;
6785 }
6786
6787 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6788 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6789
6790 return NOTIFY_OK;
6791}
1da177e4
LT
6792
6793void __init sched_init_smp(void)
6794{
5c1e1767
NP
6795 cpumask_t non_isolated_cpus;
6796
1da177e4 6797 lock_cpu_hotplug();
1a20ff27 6798 arch_init_sched_domains(&cpu_online_map);
5c1e1767
NP
6799 cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
6800 if (cpus_empty(non_isolated_cpus))
6801 cpu_set(smp_processor_id(), non_isolated_cpus);
1da177e4
LT
6802 unlock_cpu_hotplug();
6803 /* XXX: Theoretical race here - CPU may be hotplugged now */
6804 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6805
6806 /* Move init over to a non-isolated CPU */
6807 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6808 BUG();
1da177e4
LT
6809}
6810#else
6811void __init sched_init_smp(void)
6812{
6813}
6814#endif /* CONFIG_SMP */
6815
6816int in_sched_functions(unsigned long addr)
6817{
6818 /* Linker adds these: start and end of __sched functions */
6819 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6820
1da177e4
LT
6821 return in_lock_functions(addr) ||
6822 (addr >= (unsigned long)__sched_text_start
6823 && addr < (unsigned long)__sched_text_end);
6824}
6825
6826void __init sched_init(void)
6827{
1da177e4
LT
6828 int i, j, k;
6829
0a945022 6830 for_each_possible_cpu(i) {
70b97a7f
IM
6831 struct prio_array *array;
6832 struct rq *rq;
1da177e4
LT
6833
6834 rq = cpu_rq(i);
6835 spin_lock_init(&rq->lock);
fcb99371 6836 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6837 rq->nr_running = 0;
1da177e4
LT
6838 rq->active = rq->arrays;
6839 rq->expired = rq->arrays + 1;
6840 rq->best_expired_prio = MAX_PRIO;
6841
6842#ifdef CONFIG_SMP
41c7ce9a 6843 rq->sd = NULL;
7897986b
NP
6844 for (j = 1; j < 3; j++)
6845 rq->cpu_load[j] = 0;
1da177e4
LT
6846 rq->active_balance = 0;
6847 rq->push_cpu = 0;
0a2966b4 6848 rq->cpu = i;
1da177e4
LT
6849 rq->migration_thread = NULL;
6850 INIT_LIST_HEAD(&rq->migration_queue);
6851#endif
6852 atomic_set(&rq->nr_iowait, 0);
6853
6854 for (j = 0; j < 2; j++) {
6855 array = rq->arrays + j;
6856 for (k = 0; k < MAX_PRIO; k++) {
6857 INIT_LIST_HEAD(array->queue + k);
6858 __clear_bit(k, array->bitmap);
6859 }
6860 // delimiter for bitsearch
6861 __set_bit(MAX_PRIO, array->bitmap);
6862 }
6863 }
6864
2dd73a4f 6865 set_load_weight(&init_task);
b50f60ce
HC
6866
6867#ifdef CONFIG_RT_MUTEXES
6868 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6869#endif
6870
1da177e4
LT
6871 /*
6872 * The boot idle thread does lazy MMU switching as well:
6873 */
6874 atomic_inc(&init_mm.mm_count);
6875 enter_lazy_tlb(&init_mm, current);
6876
6877 /*
6878 * Make us the idle thread. Technically, schedule() should not be
6879 * called from this thread, however somewhere below it might be,
6880 * but because we are the idle thread, we just pick up running again
6881 * when this runqueue becomes "idle".
6882 */
6883 init_idle(current, smp_processor_id());
6884}
6885
6886#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6887void __might_sleep(char *file, int line)
6888{
48f24c4d 6889#ifdef in_atomic
1da177e4
LT
6890 static unsigned long prev_jiffy; /* ratelimiting */
6891
6892 if ((in_atomic() || irqs_disabled()) &&
6893 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6894 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6895 return;
6896 prev_jiffy = jiffies;
91368d73 6897 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6898 " context at %s:%d\n", file, line);
6899 printk("in_atomic():%d, irqs_disabled():%d\n",
6900 in_atomic(), irqs_disabled());
a4c410f0 6901 debug_show_held_locks(current);
1da177e4
LT
6902 dump_stack();
6903 }
6904#endif
6905}
6906EXPORT_SYMBOL(__might_sleep);
6907#endif
6908
6909#ifdef CONFIG_MAGIC_SYSRQ
6910void normalize_rt_tasks(void)
6911{
70b97a7f 6912 struct prio_array *array;
1da177e4 6913 struct task_struct *p;
1da177e4 6914 unsigned long flags;
70b97a7f 6915 struct rq *rq;
1da177e4
LT
6916
6917 read_lock_irq(&tasklist_lock);
c96d145e 6918 for_each_process(p) {
1da177e4
LT
6919 if (!rt_task(p))
6920 continue;
6921
b29739f9
IM
6922 spin_lock_irqsave(&p->pi_lock, flags);
6923 rq = __task_rq_lock(p);
1da177e4
LT
6924
6925 array = p->array;
6926 if (array)
6927 deactivate_task(p, task_rq(p));
6928 __setscheduler(p, SCHED_NORMAL, 0);
6929 if (array) {
6930 __activate_task(p, task_rq(p));
6931 resched_task(rq->curr);
6932 }
6933
b29739f9
IM
6934 __task_rq_unlock(rq);
6935 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6936 }
6937 read_unlock_irq(&tasklist_lock);
6938}
6939
6940#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6941
6942#ifdef CONFIG_IA64
6943/*
6944 * These functions are only useful for the IA64 MCA handling.
6945 *
6946 * They can only be called when the whole system has been
6947 * stopped - every CPU needs to be quiescent, and no scheduling
6948 * activity can take place. Using them for anything else would
6949 * be a serious bug, and as a result, they aren't even visible
6950 * under any other configuration.
6951 */
6952
6953/**
6954 * curr_task - return the current task for a given cpu.
6955 * @cpu: the processor in question.
6956 *
6957 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6958 */
36c8b586 6959struct task_struct *curr_task(int cpu)
1df5c10a
LT
6960{
6961 return cpu_curr(cpu);
6962}
6963
6964/**
6965 * set_curr_task - set the current task for a given cpu.
6966 * @cpu: the processor in question.
6967 * @p: the task pointer to set.
6968 *
6969 * Description: This function must only be used when non-maskable interrupts
6970 * are serviced on a separate stack. It allows the architecture to switch the
6971 * notion of the current task on a cpu in a non-blocking manner. This function
6972 * must be called with all CPU's synchronized, and interrupts disabled, the
6973 * and caller must save the original value of the current task (see
6974 * curr_task() above) and restore that value before reenabling interrupts and
6975 * re-starting the system.
6976 *
6977 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6978 */
36c8b586 6979void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6980{
6981 cpu_curr(cpu) = p;
6982}
6983
6984#endif