]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
cpu-hotplug: replace lock_cpu_hotplug() with get_online_cpus()
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
b488893a 47#include <linux/pid_namespace.h>
1da177e4
LT
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
55#include <linux/kthread.h>
56#include <linux/seq_file.h>
e692ab53 57#include <linux/sysctl.h>
1da177e4
LT
58#include <linux/syscalls.h>
59#include <linux/times.h>
8f0ab514 60#include <linux/tsacct_kern.h>
c6fd91f0 61#include <linux/kprobes.h>
0ff92245 62#include <linux/delayacct.h>
5517d86b 63#include <linux/reciprocal_div.h>
dff06c15 64#include <linux/unistd.h>
f5ff8422 65#include <linux/pagemap.h>
1da177e4 66
5517d86b 67#include <asm/tlb.h>
838225b4 68#include <asm/irq_regs.h>
1da177e4 69
b035b6de
AD
70/*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75unsigned long long __attribute__((weak)) sched_clock(void)
76{
d6322faf 77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
78}
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
d6322faf
ED
101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
1da177e4 103
6aa645ea
IM
104#define NICE_0_LOAD SCHED_LOAD_SCALE
105#define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
1da177e4
LT
107/*
108 * These are the 'tuning knobs' of the scheduler:
109 *
a4ec24b4 110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
111 * Timeslices get refilled after they expire.
112 */
1da177e4 113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
e05606d3
IM
136static inline int rt_policy(int policy)
137{
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141}
142
143static inline int task_has_rt_policy(struct task_struct *p)
144{
145 return rt_policy(p->policy);
146}
147
1da177e4 148/*
6aa645ea 149 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 150 */
6aa645ea
IM
151struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154};
155
29f59db3
SV
156#ifdef CONFIG_FAIR_GROUP_SCHED
157
68318b8e
SV
158#include <linux/cgroup.h>
159
29f59db3
SV
160struct cfs_rq;
161
162/* task group related information */
4cf86d77 163struct task_group {
68318b8e
SV
164#ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166#endif
29f59db3
SV
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
6b2d7700
SV
171
172 /*
173 * shares assigned to a task group governs how much of cpu bandwidth
174 * is allocated to the group. The more shares a group has, the more is
175 * the cpu bandwidth allocated to it.
176 *
177 * For ex, lets say that there are three task groups, A, B and C which
178 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
179 * cpu bandwidth allocated by the scheduler to task groups A, B and C
180 * should be:
181 *
182 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
183 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
184 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
185 *
186 * The weight assigned to a task group's schedulable entities on every
187 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
188 * group's shares. For ex: lets say that task group A has been
189 * assigned shares of 1000 and there are two CPUs in a system. Then,
190 *
191 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
192 *
193 * Note: It's not necessary that each of a task's group schedulable
194 * entity have the same weight on all CPUs. If the group
195 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
196 * better distribution of weight could be:
197 *
198 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
199 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
200 *
201 * rebalance_shares() is responsible for distributing the shares of a
202 * task groups like this among the group's schedulable entities across
203 * cpus.
204 *
205 */
29f59db3 206 unsigned long shares;
6b2d7700 207
ae8393e5 208 struct rcu_head rcu;
29f59db3
SV
209};
210
211/* Default task group's sched entity on each cpu */
212static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
213/* Default task group's cfs_rq on each cpu */
214static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
215
9b5b7751
SV
216static struct sched_entity *init_sched_entity_p[NR_CPUS];
217static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3 218
ec2c507f
SV
219/* task_group_mutex serializes add/remove of task groups and also changes to
220 * a task group's cpu shares.
221 */
222static DEFINE_MUTEX(task_group_mutex);
223
a1835615
SV
224/* doms_cur_mutex serializes access to doms_cur[] array */
225static DEFINE_MUTEX(doms_cur_mutex);
226
6b2d7700
SV
227#ifdef CONFIG_SMP
228/* kernel thread that runs rebalance_shares() periodically */
229static struct task_struct *lb_monitor_task;
230static int load_balance_monitor(void *unused);
231#endif
232
233static void set_se_shares(struct sched_entity *se, unsigned long shares);
234
29f59db3 235/* Default task group.
3a252015 236 * Every task in system belong to this group at bootup.
29f59db3 237 */
4cf86d77 238struct task_group init_task_group = {
3a252015
IM
239 .se = init_sched_entity_p,
240 .cfs_rq = init_cfs_rq_p,
241};
9b5b7751 242
24e377a8 243#ifdef CONFIG_FAIR_USER_SCHED
93f992cc 244# define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
24e377a8 245#else
93f992cc 246# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
24e377a8
SV
247#endif
248
6b2d7700
SV
249#define MIN_GROUP_SHARES 2
250
93f992cc 251static int init_task_group_load = INIT_TASK_GROUP_LOAD;
29f59db3
SV
252
253/* return group to which a task belongs */
4cf86d77 254static inline struct task_group *task_group(struct task_struct *p)
29f59db3 255{
4cf86d77 256 struct task_group *tg;
9b5b7751 257
24e377a8
SV
258#ifdef CONFIG_FAIR_USER_SCHED
259 tg = p->user->tg;
68318b8e
SV
260#elif defined(CONFIG_FAIR_CGROUP_SCHED)
261 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
262 struct task_group, css);
24e377a8 263#else
41a2d6cf 264 tg = &init_task_group;
24e377a8 265#endif
9b5b7751 266 return tg;
29f59db3
SV
267}
268
269/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
ce96b5ac 270static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
29f59db3 271{
ce96b5ac
DA
272 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
273 p->se.parent = task_group(p)->se[cpu];
29f59db3
SV
274}
275
ec2c507f
SV
276static inline void lock_task_group_list(void)
277{
278 mutex_lock(&task_group_mutex);
279}
280
281static inline void unlock_task_group_list(void)
282{
283 mutex_unlock(&task_group_mutex);
284}
285
a1835615
SV
286static inline void lock_doms_cur(void)
287{
288 mutex_lock(&doms_cur_mutex);
289}
290
291static inline void unlock_doms_cur(void)
292{
293 mutex_unlock(&doms_cur_mutex);
294}
295
29f59db3
SV
296#else
297
ce96b5ac 298static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
ec2c507f
SV
299static inline void lock_task_group_list(void) { }
300static inline void unlock_task_group_list(void) { }
a1835615
SV
301static inline void lock_doms_cur(void) { }
302static inline void unlock_doms_cur(void) { }
29f59db3
SV
303
304#endif /* CONFIG_FAIR_GROUP_SCHED */
305
6aa645ea
IM
306/* CFS-related fields in a runqueue */
307struct cfs_rq {
308 struct load_weight load;
309 unsigned long nr_running;
310
6aa645ea 311 u64 exec_clock;
e9acbff6 312 u64 min_vruntime;
6aa645ea
IM
313
314 struct rb_root tasks_timeline;
315 struct rb_node *rb_leftmost;
316 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
317 /* 'curr' points to currently running entity on this cfs_rq.
318 * It is set to NULL otherwise (i.e when none are currently running).
319 */
320 struct sched_entity *curr;
ddc97297
PZ
321
322 unsigned long nr_spread_over;
323
62160e3f 324#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
325 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
326
41a2d6cf
IM
327 /*
328 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
329 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
330 * (like users, containers etc.)
331 *
332 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
333 * list is used during load balance.
334 */
41a2d6cf
IM
335 struct list_head leaf_cfs_rq_list;
336 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
337#endif
338};
1da177e4 339
6aa645ea
IM
340/* Real-Time classes' related field in a runqueue: */
341struct rt_rq {
342 struct rt_prio_array active;
343 int rt_load_balance_idx;
344 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
345};
346
1da177e4
LT
347/*
348 * This is the main, per-CPU runqueue data structure.
349 *
350 * Locking rule: those places that want to lock multiple runqueues
351 * (such as the load balancing or the thread migration code), lock
352 * acquire operations must be ordered by ascending &runqueue.
353 */
70b97a7f 354struct rq {
d8016491
IM
355 /* runqueue lock: */
356 spinlock_t lock;
1da177e4
LT
357
358 /*
359 * nr_running and cpu_load should be in the same cacheline because
360 * remote CPUs use both these fields when doing load calculation.
361 */
362 unsigned long nr_running;
6aa645ea
IM
363 #define CPU_LOAD_IDX_MAX 5
364 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 365 unsigned char idle_at_tick;
46cb4b7c
SS
366#ifdef CONFIG_NO_HZ
367 unsigned char in_nohz_recently;
368#endif
d8016491
IM
369 /* capture load from *all* tasks on this cpu: */
370 struct load_weight load;
6aa645ea
IM
371 unsigned long nr_load_updates;
372 u64 nr_switches;
373
374 struct cfs_rq cfs;
375#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
376 /* list of leaf cfs_rq on this cpu: */
377 struct list_head leaf_cfs_rq_list;
1da177e4 378#endif
41a2d6cf 379 struct rt_rq rt;
1da177e4
LT
380
381 /*
382 * This is part of a global counter where only the total sum
383 * over all CPUs matters. A task can increase this counter on
384 * one CPU and if it got migrated afterwards it may decrease
385 * it on another CPU. Always updated under the runqueue lock:
386 */
387 unsigned long nr_uninterruptible;
388
36c8b586 389 struct task_struct *curr, *idle;
c9819f45 390 unsigned long next_balance;
1da177e4 391 struct mm_struct *prev_mm;
6aa645ea 392
6aa645ea
IM
393 u64 clock, prev_clock_raw;
394 s64 clock_max_delta;
395
396 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
397 u64 idle_clock;
398 unsigned int clock_deep_idle_events;
529c7726 399 u64 tick_timestamp;
6aa645ea 400
1da177e4
LT
401 atomic_t nr_iowait;
402
403#ifdef CONFIG_SMP
404 struct sched_domain *sd;
405
406 /* For active balancing */
407 int active_balance;
408 int push_cpu;
d8016491
IM
409 /* cpu of this runqueue: */
410 int cpu;
1da177e4 411
36c8b586 412 struct task_struct *migration_thread;
1da177e4
LT
413 struct list_head migration_queue;
414#endif
415
416#ifdef CONFIG_SCHEDSTATS
417 /* latency stats */
418 struct sched_info rq_sched_info;
419
420 /* sys_sched_yield() stats */
480b9434
KC
421 unsigned int yld_exp_empty;
422 unsigned int yld_act_empty;
423 unsigned int yld_both_empty;
424 unsigned int yld_count;
1da177e4
LT
425
426 /* schedule() stats */
480b9434
KC
427 unsigned int sched_switch;
428 unsigned int sched_count;
429 unsigned int sched_goidle;
1da177e4
LT
430
431 /* try_to_wake_up() stats */
480b9434
KC
432 unsigned int ttwu_count;
433 unsigned int ttwu_local;
b8efb561
IM
434
435 /* BKL stats */
480b9434 436 unsigned int bkl_count;
1da177e4 437#endif
fcb99371 438 struct lock_class_key rq_lock_key;
1da177e4
LT
439};
440
f34e3b61 441static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 442static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 443
dd41f596
IM
444static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
445{
446 rq->curr->sched_class->check_preempt_curr(rq, p);
447}
448
0a2966b4
CL
449static inline int cpu_of(struct rq *rq)
450{
451#ifdef CONFIG_SMP
452 return rq->cpu;
453#else
454 return 0;
455#endif
456}
457
20d315d4 458/*
b04a0f4c
IM
459 * Update the per-runqueue clock, as finegrained as the platform can give
460 * us, but without assuming monotonicity, etc.:
20d315d4 461 */
b04a0f4c 462static void __update_rq_clock(struct rq *rq)
20d315d4
IM
463{
464 u64 prev_raw = rq->prev_clock_raw;
465 u64 now = sched_clock();
466 s64 delta = now - prev_raw;
467 u64 clock = rq->clock;
468
b04a0f4c
IM
469#ifdef CONFIG_SCHED_DEBUG
470 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
471#endif
20d315d4
IM
472 /*
473 * Protect against sched_clock() occasionally going backwards:
474 */
475 if (unlikely(delta < 0)) {
476 clock++;
477 rq->clock_warps++;
478 } else {
479 /*
480 * Catch too large forward jumps too:
481 */
529c7726
IM
482 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
483 if (clock < rq->tick_timestamp + TICK_NSEC)
484 clock = rq->tick_timestamp + TICK_NSEC;
485 else
486 clock++;
20d315d4
IM
487 rq->clock_overflows++;
488 } else {
489 if (unlikely(delta > rq->clock_max_delta))
490 rq->clock_max_delta = delta;
491 clock += delta;
492 }
493 }
494
495 rq->prev_clock_raw = now;
496 rq->clock = clock;
b04a0f4c 497}
20d315d4 498
b04a0f4c
IM
499static void update_rq_clock(struct rq *rq)
500{
501 if (likely(smp_processor_id() == cpu_of(rq)))
502 __update_rq_clock(rq);
20d315d4
IM
503}
504
674311d5
NP
505/*
506 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 507 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
508 *
509 * The domain tree of any CPU may only be accessed from within
510 * preempt-disabled sections.
511 */
48f24c4d
IM
512#define for_each_domain(cpu, __sd) \
513 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
514
515#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
516#define this_rq() (&__get_cpu_var(runqueues))
517#define task_rq(p) cpu_rq(task_cpu(p))
518#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
519
bf5c91ba
IM
520/*
521 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
522 */
523#ifdef CONFIG_SCHED_DEBUG
524# define const_debug __read_mostly
525#else
526# define const_debug static const
527#endif
528
529/*
530 * Debugging: various feature bits
531 */
532enum {
bbdba7c0 533 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
534 SCHED_FEAT_WAKEUP_PREEMPT = 2,
535 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
536 SCHED_FEAT_TREE_AVG = 8,
537 SCHED_FEAT_APPROX_AVG = 16,
bf5c91ba
IM
538};
539
540const_debug unsigned int sysctl_sched_features =
8401f775 541 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 542 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
543 SCHED_FEAT_START_DEBIT * 1 |
544 SCHED_FEAT_TREE_AVG * 0 |
9612633a 545 SCHED_FEAT_APPROX_AVG * 0;
bf5c91ba
IM
546
547#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
548
b82d9fdd
PZ
549/*
550 * Number of tasks to iterate in a single balance run.
551 * Limited because this is done with IRQs disabled.
552 */
553const_debug unsigned int sysctl_sched_nr_migrate = 32;
554
e436d800
IM
555/*
556 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
557 * clock constructed from sched_clock():
558 */
559unsigned long long cpu_clock(int cpu)
560{
e436d800
IM
561 unsigned long long now;
562 unsigned long flags;
b04a0f4c 563 struct rq *rq;
e436d800 564
2cd4d0ea 565 local_irq_save(flags);
b04a0f4c 566 rq = cpu_rq(cpu);
8ced5f69
IM
567 /*
568 * Only call sched_clock() if the scheduler has already been
569 * initialized (some code might call cpu_clock() very early):
570 */
571 if (rq->idle)
572 update_rq_clock(rq);
b04a0f4c 573 now = rq->clock;
2cd4d0ea 574 local_irq_restore(flags);
e436d800
IM
575
576 return now;
577}
a58f6f25 578EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 579
1da177e4 580#ifndef prepare_arch_switch
4866cde0
NP
581# define prepare_arch_switch(next) do { } while (0)
582#endif
583#ifndef finish_arch_switch
584# define finish_arch_switch(prev) do { } while (0)
585#endif
586
051a1d1a
DA
587static inline int task_current(struct rq *rq, struct task_struct *p)
588{
589 return rq->curr == p;
590}
591
4866cde0 592#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 593static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 594{
051a1d1a 595 return task_current(rq, p);
4866cde0
NP
596}
597
70b97a7f 598static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
599{
600}
601
70b97a7f 602static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 603{
da04c035
IM
604#ifdef CONFIG_DEBUG_SPINLOCK
605 /* this is a valid case when another task releases the spinlock */
606 rq->lock.owner = current;
607#endif
8a25d5de
IM
608 /*
609 * If we are tracking spinlock dependencies then we have to
610 * fix up the runqueue lock - which gets 'carried over' from
611 * prev into current:
612 */
613 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
614
4866cde0
NP
615 spin_unlock_irq(&rq->lock);
616}
617
618#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 619static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
620{
621#ifdef CONFIG_SMP
622 return p->oncpu;
623#else
051a1d1a 624 return task_current(rq, p);
4866cde0
NP
625#endif
626}
627
70b97a7f 628static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
629{
630#ifdef CONFIG_SMP
631 /*
632 * We can optimise this out completely for !SMP, because the
633 * SMP rebalancing from interrupt is the only thing that cares
634 * here.
635 */
636 next->oncpu = 1;
637#endif
638#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
639 spin_unlock_irq(&rq->lock);
640#else
641 spin_unlock(&rq->lock);
642#endif
643}
644
70b97a7f 645static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
646{
647#ifdef CONFIG_SMP
648 /*
649 * After ->oncpu is cleared, the task can be moved to a different CPU.
650 * We must ensure this doesn't happen until the switch is completely
651 * finished.
652 */
653 smp_wmb();
654 prev->oncpu = 0;
655#endif
656#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
657 local_irq_enable();
1da177e4 658#endif
4866cde0
NP
659}
660#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 661
b29739f9
IM
662/*
663 * __task_rq_lock - lock the runqueue a given task resides on.
664 * Must be called interrupts disabled.
665 */
70b97a7f 666static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
667 __acquires(rq->lock)
668{
3a5c359a
AK
669 for (;;) {
670 struct rq *rq = task_rq(p);
671 spin_lock(&rq->lock);
672 if (likely(rq == task_rq(p)))
673 return rq;
b29739f9 674 spin_unlock(&rq->lock);
b29739f9 675 }
b29739f9
IM
676}
677
1da177e4
LT
678/*
679 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 680 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
681 * explicitly disabling preemption.
682 */
70b97a7f 683static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
684 __acquires(rq->lock)
685{
70b97a7f 686 struct rq *rq;
1da177e4 687
3a5c359a
AK
688 for (;;) {
689 local_irq_save(*flags);
690 rq = task_rq(p);
691 spin_lock(&rq->lock);
692 if (likely(rq == task_rq(p)))
693 return rq;
1da177e4 694 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 695 }
1da177e4
LT
696}
697
a9957449 698static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
699 __releases(rq->lock)
700{
701 spin_unlock(&rq->lock);
702}
703
70b97a7f 704static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
705 __releases(rq->lock)
706{
707 spin_unlock_irqrestore(&rq->lock, *flags);
708}
709
1da177e4 710/*
cc2a73b5 711 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 712 */
a9957449 713static struct rq *this_rq_lock(void)
1da177e4
LT
714 __acquires(rq->lock)
715{
70b97a7f 716 struct rq *rq;
1da177e4
LT
717
718 local_irq_disable();
719 rq = this_rq();
720 spin_lock(&rq->lock);
721
722 return rq;
723}
724
1b9f19c2 725/*
2aa44d05 726 * We are going deep-idle (irqs are disabled):
1b9f19c2 727 */
2aa44d05 728void sched_clock_idle_sleep_event(void)
1b9f19c2 729{
2aa44d05
IM
730 struct rq *rq = cpu_rq(smp_processor_id());
731
732 spin_lock(&rq->lock);
733 __update_rq_clock(rq);
734 spin_unlock(&rq->lock);
735 rq->clock_deep_idle_events++;
736}
737EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
738
739/*
740 * We just idled delta nanoseconds (called with irqs disabled):
741 */
742void sched_clock_idle_wakeup_event(u64 delta_ns)
743{
744 struct rq *rq = cpu_rq(smp_processor_id());
745 u64 now = sched_clock();
1b9f19c2 746
2bacec8c 747 touch_softlockup_watchdog();
2aa44d05
IM
748 rq->idle_clock += delta_ns;
749 /*
750 * Override the previous timestamp and ignore all
751 * sched_clock() deltas that occured while we idled,
752 * and use the PM-provided delta_ns to advance the
753 * rq clock:
754 */
755 spin_lock(&rq->lock);
756 rq->prev_clock_raw = now;
757 rq->clock += delta_ns;
758 spin_unlock(&rq->lock);
1b9f19c2 759}
2aa44d05 760EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 761
c24d20db
IM
762/*
763 * resched_task - mark a task 'to be rescheduled now'.
764 *
765 * On UP this means the setting of the need_resched flag, on SMP it
766 * might also involve a cross-CPU call to trigger the scheduler on
767 * the target CPU.
768 */
769#ifdef CONFIG_SMP
770
771#ifndef tsk_is_polling
772#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
773#endif
774
775static void resched_task(struct task_struct *p)
776{
777 int cpu;
778
779 assert_spin_locked(&task_rq(p)->lock);
780
781 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
782 return;
783
784 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
785
786 cpu = task_cpu(p);
787 if (cpu == smp_processor_id())
788 return;
789
790 /* NEED_RESCHED must be visible before we test polling */
791 smp_mb();
792 if (!tsk_is_polling(p))
793 smp_send_reschedule(cpu);
794}
795
796static void resched_cpu(int cpu)
797{
798 struct rq *rq = cpu_rq(cpu);
799 unsigned long flags;
800
801 if (!spin_trylock_irqsave(&rq->lock, flags))
802 return;
803 resched_task(cpu_curr(cpu));
804 spin_unlock_irqrestore(&rq->lock, flags);
805}
806#else
807static inline void resched_task(struct task_struct *p)
808{
809 assert_spin_locked(&task_rq(p)->lock);
810 set_tsk_need_resched(p);
811}
812#endif
813
45bf76df
IM
814#if BITS_PER_LONG == 32
815# define WMULT_CONST (~0UL)
816#else
817# define WMULT_CONST (1UL << 32)
818#endif
819
820#define WMULT_SHIFT 32
821
194081eb
IM
822/*
823 * Shift right and round:
824 */
cf2ab469 825#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 826
cb1c4fc9 827static unsigned long
45bf76df
IM
828calc_delta_mine(unsigned long delta_exec, unsigned long weight,
829 struct load_weight *lw)
830{
831 u64 tmp;
832
833 if (unlikely(!lw->inv_weight))
194081eb 834 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
835
836 tmp = (u64)delta_exec * weight;
837 /*
838 * Check whether we'd overflow the 64-bit multiplication:
839 */
194081eb 840 if (unlikely(tmp > WMULT_CONST))
cf2ab469 841 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
842 WMULT_SHIFT/2);
843 else
cf2ab469 844 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 845
ecf691da 846 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
847}
848
849static inline unsigned long
850calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
851{
852 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
853}
854
1091985b 855static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
856{
857 lw->weight += inc;
45bf76df
IM
858}
859
1091985b 860static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
861{
862 lw->weight -= dec;
45bf76df
IM
863}
864
2dd73a4f
PW
865/*
866 * To aid in avoiding the subversion of "niceness" due to uneven distribution
867 * of tasks with abnormal "nice" values across CPUs the contribution that
868 * each task makes to its run queue's load is weighted according to its
41a2d6cf 869 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
870 * scaled version of the new time slice allocation that they receive on time
871 * slice expiry etc.
872 */
873
dd41f596
IM
874#define WEIGHT_IDLEPRIO 2
875#define WMULT_IDLEPRIO (1 << 31)
876
877/*
878 * Nice levels are multiplicative, with a gentle 10% change for every
879 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
880 * nice 1, it will get ~10% less CPU time than another CPU-bound task
881 * that remained on nice 0.
882 *
883 * The "10% effect" is relative and cumulative: from _any_ nice level,
884 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
885 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
886 * If a task goes up by ~10% and another task goes down by ~10% then
887 * the relative distance between them is ~25%.)
dd41f596
IM
888 */
889static const int prio_to_weight[40] = {
254753dc
IM
890 /* -20 */ 88761, 71755, 56483, 46273, 36291,
891 /* -15 */ 29154, 23254, 18705, 14949, 11916,
892 /* -10 */ 9548, 7620, 6100, 4904, 3906,
893 /* -5 */ 3121, 2501, 1991, 1586, 1277,
894 /* 0 */ 1024, 820, 655, 526, 423,
895 /* 5 */ 335, 272, 215, 172, 137,
896 /* 10 */ 110, 87, 70, 56, 45,
897 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
898};
899
5714d2de
IM
900/*
901 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
902 *
903 * In cases where the weight does not change often, we can use the
904 * precalculated inverse to speed up arithmetics by turning divisions
905 * into multiplications:
906 */
dd41f596 907static const u32 prio_to_wmult[40] = {
254753dc
IM
908 /* -20 */ 48388, 59856, 76040, 92818, 118348,
909 /* -15 */ 147320, 184698, 229616, 287308, 360437,
910 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
911 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
912 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
913 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
914 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
915 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 916};
2dd73a4f 917
dd41f596
IM
918static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
919
920/*
921 * runqueue iterator, to support SMP load-balancing between different
922 * scheduling classes, without having to expose their internal data
923 * structures to the load-balancing proper:
924 */
925struct rq_iterator {
926 void *arg;
927 struct task_struct *(*start)(void *);
928 struct task_struct *(*next)(void *);
929};
930
e1d1484f
PW
931#ifdef CONFIG_SMP
932static unsigned long
933balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
934 unsigned long max_load_move, struct sched_domain *sd,
935 enum cpu_idle_type idle, int *all_pinned,
936 int *this_best_prio, struct rq_iterator *iterator);
937
938static int
939iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
940 struct sched_domain *sd, enum cpu_idle_type idle,
941 struct rq_iterator *iterator);
e1d1484f 942#endif
dd41f596 943
d842de87
SV
944#ifdef CONFIG_CGROUP_CPUACCT
945static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
946#else
947static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
948#endif
949
58e2d4ca
SV
950static inline void inc_cpu_load(struct rq *rq, unsigned long load)
951{
952 update_load_add(&rq->load, load);
953}
954
955static inline void dec_cpu_load(struct rq *rq, unsigned long load)
956{
957 update_load_sub(&rq->load, load);
958}
959
dd41f596 960#include "sched_stats.h"
dd41f596 961#include "sched_idletask.c"
5522d5d5
IM
962#include "sched_fair.c"
963#include "sched_rt.c"
dd41f596
IM
964#ifdef CONFIG_SCHED_DEBUG
965# include "sched_debug.c"
966#endif
967
968#define sched_class_highest (&rt_sched_class)
969
e5fa2237 970static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
971{
972 rq->nr_running++;
9c217245
IM
973}
974
db53181e 975static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
976{
977 rq->nr_running--;
9c217245
IM
978}
979
45bf76df
IM
980static void set_load_weight(struct task_struct *p)
981{
982 if (task_has_rt_policy(p)) {
dd41f596
IM
983 p->se.load.weight = prio_to_weight[0] * 2;
984 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
985 return;
986 }
45bf76df 987
dd41f596
IM
988 /*
989 * SCHED_IDLE tasks get minimal weight:
990 */
991 if (p->policy == SCHED_IDLE) {
992 p->se.load.weight = WEIGHT_IDLEPRIO;
993 p->se.load.inv_weight = WMULT_IDLEPRIO;
994 return;
995 }
71f8bd46 996
dd41f596
IM
997 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
998 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
999}
1000
8159f87e 1001static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1002{
dd41f596 1003 sched_info_queued(p);
fd390f6a 1004 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1005 p->se.on_rq = 1;
71f8bd46
IM
1006}
1007
69be72c1 1008static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1009{
f02231e5 1010 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1011 p->se.on_rq = 0;
71f8bd46
IM
1012}
1013
14531189 1014/*
dd41f596 1015 * __normal_prio - return the priority that is based on the static prio
14531189 1016 */
14531189
IM
1017static inline int __normal_prio(struct task_struct *p)
1018{
dd41f596 1019 return p->static_prio;
14531189
IM
1020}
1021
b29739f9
IM
1022/*
1023 * Calculate the expected normal priority: i.e. priority
1024 * without taking RT-inheritance into account. Might be
1025 * boosted by interactivity modifiers. Changes upon fork,
1026 * setprio syscalls, and whenever the interactivity
1027 * estimator recalculates.
1028 */
36c8b586 1029static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1030{
1031 int prio;
1032
e05606d3 1033 if (task_has_rt_policy(p))
b29739f9
IM
1034 prio = MAX_RT_PRIO-1 - p->rt_priority;
1035 else
1036 prio = __normal_prio(p);
1037 return prio;
1038}
1039
1040/*
1041 * Calculate the current priority, i.e. the priority
1042 * taken into account by the scheduler. This value might
1043 * be boosted by RT tasks, or might be boosted by
1044 * interactivity modifiers. Will be RT if the task got
1045 * RT-boosted. If not then it returns p->normal_prio.
1046 */
36c8b586 1047static int effective_prio(struct task_struct *p)
b29739f9
IM
1048{
1049 p->normal_prio = normal_prio(p);
1050 /*
1051 * If we are RT tasks or we were boosted to RT priority,
1052 * keep the priority unchanged. Otherwise, update priority
1053 * to the normal priority:
1054 */
1055 if (!rt_prio(p->prio))
1056 return p->normal_prio;
1057 return p->prio;
1058}
1059
1da177e4 1060/*
dd41f596 1061 * activate_task - move a task to the runqueue.
1da177e4 1062 */
dd41f596 1063static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1064{
dd41f596
IM
1065 if (p->state == TASK_UNINTERRUPTIBLE)
1066 rq->nr_uninterruptible--;
1da177e4 1067
8159f87e 1068 enqueue_task(rq, p, wakeup);
e5fa2237 1069 inc_nr_running(p, rq);
1da177e4
LT
1070}
1071
1da177e4
LT
1072/*
1073 * deactivate_task - remove a task from the runqueue.
1074 */
2e1cb74a 1075static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1076{
dd41f596
IM
1077 if (p->state == TASK_UNINTERRUPTIBLE)
1078 rq->nr_uninterruptible++;
1079
69be72c1 1080 dequeue_task(rq, p, sleep);
db53181e 1081 dec_nr_running(p, rq);
1da177e4
LT
1082}
1083
1da177e4
LT
1084/**
1085 * task_curr - is this task currently executing on a CPU?
1086 * @p: the task in question.
1087 */
36c8b586 1088inline int task_curr(const struct task_struct *p)
1da177e4
LT
1089{
1090 return cpu_curr(task_cpu(p)) == p;
1091}
1092
2dd73a4f
PW
1093/* Used instead of source_load when we know the type == 0 */
1094unsigned long weighted_cpuload(const int cpu)
1095{
495eca49 1096 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1097}
1098
1099static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1100{
ce96b5ac 1101 set_task_cfs_rq(p, cpu);
dd41f596 1102#ifdef CONFIG_SMP
ce96b5ac
DA
1103 /*
1104 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1105 * successfuly executed on another CPU. We must ensure that updates of
1106 * per-task data have been completed by this moment.
1107 */
1108 smp_wmb();
dd41f596 1109 task_thread_info(p)->cpu = cpu;
dd41f596 1110#endif
2dd73a4f
PW
1111}
1112
1da177e4 1113#ifdef CONFIG_SMP
c65cc870 1114
cc367732
IM
1115/*
1116 * Is this task likely cache-hot:
1117 */
1118static inline int
1119task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1120{
1121 s64 delta;
1122
1123 if (p->sched_class != &fair_sched_class)
1124 return 0;
1125
6bc1665b
IM
1126 if (sysctl_sched_migration_cost == -1)
1127 return 1;
1128 if (sysctl_sched_migration_cost == 0)
1129 return 0;
1130
cc367732
IM
1131 delta = now - p->se.exec_start;
1132
1133 return delta < (s64)sysctl_sched_migration_cost;
1134}
1135
1136
dd41f596 1137void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1138{
dd41f596
IM
1139 int old_cpu = task_cpu(p);
1140 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1141 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1142 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1143 u64 clock_offset;
dd41f596
IM
1144
1145 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1146
1147#ifdef CONFIG_SCHEDSTATS
1148 if (p->se.wait_start)
1149 p->se.wait_start -= clock_offset;
dd41f596
IM
1150 if (p->se.sleep_start)
1151 p->se.sleep_start -= clock_offset;
1152 if (p->se.block_start)
1153 p->se.block_start -= clock_offset;
cc367732
IM
1154 if (old_cpu != new_cpu) {
1155 schedstat_inc(p, se.nr_migrations);
1156 if (task_hot(p, old_rq->clock, NULL))
1157 schedstat_inc(p, se.nr_forced2_migrations);
1158 }
6cfb0d5d 1159#endif
2830cf8c
SV
1160 p->se.vruntime -= old_cfsrq->min_vruntime -
1161 new_cfsrq->min_vruntime;
dd41f596
IM
1162
1163 __set_task_cpu(p, new_cpu);
c65cc870
IM
1164}
1165
70b97a7f 1166struct migration_req {
1da177e4 1167 struct list_head list;
1da177e4 1168
36c8b586 1169 struct task_struct *task;
1da177e4
LT
1170 int dest_cpu;
1171
1da177e4 1172 struct completion done;
70b97a7f 1173};
1da177e4
LT
1174
1175/*
1176 * The task's runqueue lock must be held.
1177 * Returns true if you have to wait for migration thread.
1178 */
36c8b586 1179static int
70b97a7f 1180migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1181{
70b97a7f 1182 struct rq *rq = task_rq(p);
1da177e4
LT
1183
1184 /*
1185 * If the task is not on a runqueue (and not running), then
1186 * it is sufficient to simply update the task's cpu field.
1187 */
dd41f596 1188 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1189 set_task_cpu(p, dest_cpu);
1190 return 0;
1191 }
1192
1193 init_completion(&req->done);
1da177e4
LT
1194 req->task = p;
1195 req->dest_cpu = dest_cpu;
1196 list_add(&req->list, &rq->migration_queue);
48f24c4d 1197
1da177e4
LT
1198 return 1;
1199}
1200
1201/*
1202 * wait_task_inactive - wait for a thread to unschedule.
1203 *
1204 * The caller must ensure that the task *will* unschedule sometime soon,
1205 * else this function might spin for a *long* time. This function can't
1206 * be called with interrupts off, or it may introduce deadlock with
1207 * smp_call_function() if an IPI is sent by the same process we are
1208 * waiting to become inactive.
1209 */
36c8b586 1210void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1211{
1212 unsigned long flags;
dd41f596 1213 int running, on_rq;
70b97a7f 1214 struct rq *rq;
1da177e4 1215
3a5c359a
AK
1216 for (;;) {
1217 /*
1218 * We do the initial early heuristics without holding
1219 * any task-queue locks at all. We'll only try to get
1220 * the runqueue lock when things look like they will
1221 * work out!
1222 */
1223 rq = task_rq(p);
fa490cfd 1224
3a5c359a
AK
1225 /*
1226 * If the task is actively running on another CPU
1227 * still, just relax and busy-wait without holding
1228 * any locks.
1229 *
1230 * NOTE! Since we don't hold any locks, it's not
1231 * even sure that "rq" stays as the right runqueue!
1232 * But we don't care, since "task_running()" will
1233 * return false if the runqueue has changed and p
1234 * is actually now running somewhere else!
1235 */
1236 while (task_running(rq, p))
1237 cpu_relax();
fa490cfd 1238
3a5c359a
AK
1239 /*
1240 * Ok, time to look more closely! We need the rq
1241 * lock now, to be *sure*. If we're wrong, we'll
1242 * just go back and repeat.
1243 */
1244 rq = task_rq_lock(p, &flags);
1245 running = task_running(rq, p);
1246 on_rq = p->se.on_rq;
1247 task_rq_unlock(rq, &flags);
fa490cfd 1248
3a5c359a
AK
1249 /*
1250 * Was it really running after all now that we
1251 * checked with the proper locks actually held?
1252 *
1253 * Oops. Go back and try again..
1254 */
1255 if (unlikely(running)) {
1256 cpu_relax();
1257 continue;
1258 }
fa490cfd 1259
3a5c359a
AK
1260 /*
1261 * It's not enough that it's not actively running,
1262 * it must be off the runqueue _entirely_, and not
1263 * preempted!
1264 *
1265 * So if it wa still runnable (but just not actively
1266 * running right now), it's preempted, and we should
1267 * yield - it could be a while.
1268 */
1269 if (unlikely(on_rq)) {
1270 schedule_timeout_uninterruptible(1);
1271 continue;
1272 }
fa490cfd 1273
3a5c359a
AK
1274 /*
1275 * Ahh, all good. It wasn't running, and it wasn't
1276 * runnable, which means that it will never become
1277 * running in the future either. We're all done!
1278 */
1279 break;
1280 }
1da177e4
LT
1281}
1282
1283/***
1284 * kick_process - kick a running thread to enter/exit the kernel
1285 * @p: the to-be-kicked thread
1286 *
1287 * Cause a process which is running on another CPU to enter
1288 * kernel-mode, without any delay. (to get signals handled.)
1289 *
1290 * NOTE: this function doesnt have to take the runqueue lock,
1291 * because all it wants to ensure is that the remote task enters
1292 * the kernel. If the IPI races and the task has been migrated
1293 * to another CPU then no harm is done and the purpose has been
1294 * achieved as well.
1295 */
36c8b586 1296void kick_process(struct task_struct *p)
1da177e4
LT
1297{
1298 int cpu;
1299
1300 preempt_disable();
1301 cpu = task_cpu(p);
1302 if ((cpu != smp_processor_id()) && task_curr(p))
1303 smp_send_reschedule(cpu);
1304 preempt_enable();
1305}
1306
1307/*
2dd73a4f
PW
1308 * Return a low guess at the load of a migration-source cpu weighted
1309 * according to the scheduling class and "nice" value.
1da177e4
LT
1310 *
1311 * We want to under-estimate the load of migration sources, to
1312 * balance conservatively.
1313 */
a9957449 1314static unsigned long source_load(int cpu, int type)
1da177e4 1315{
70b97a7f 1316 struct rq *rq = cpu_rq(cpu);
dd41f596 1317 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1318
3b0bd9bc 1319 if (type == 0)
dd41f596 1320 return total;
b910472d 1321
dd41f596 1322 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1323}
1324
1325/*
2dd73a4f
PW
1326 * Return a high guess at the load of a migration-target cpu weighted
1327 * according to the scheduling class and "nice" value.
1da177e4 1328 */
a9957449 1329static unsigned long target_load(int cpu, int type)
1da177e4 1330{
70b97a7f 1331 struct rq *rq = cpu_rq(cpu);
dd41f596 1332 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1333
7897986b 1334 if (type == 0)
dd41f596 1335 return total;
3b0bd9bc 1336
dd41f596 1337 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1338}
1339
1340/*
1341 * Return the average load per task on the cpu's run queue
1342 */
1343static inline unsigned long cpu_avg_load_per_task(int cpu)
1344{
70b97a7f 1345 struct rq *rq = cpu_rq(cpu);
dd41f596 1346 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1347 unsigned long n = rq->nr_running;
1348
dd41f596 1349 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1350}
1351
147cbb4b
NP
1352/*
1353 * find_idlest_group finds and returns the least busy CPU group within the
1354 * domain.
1355 */
1356static struct sched_group *
1357find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1358{
1359 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1360 unsigned long min_load = ULONG_MAX, this_load = 0;
1361 int load_idx = sd->forkexec_idx;
1362 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1363
1364 do {
1365 unsigned long load, avg_load;
1366 int local_group;
1367 int i;
1368
da5a5522
BD
1369 /* Skip over this group if it has no CPUs allowed */
1370 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1371 continue;
da5a5522 1372
147cbb4b 1373 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1374
1375 /* Tally up the load of all CPUs in the group */
1376 avg_load = 0;
1377
1378 for_each_cpu_mask(i, group->cpumask) {
1379 /* Bias balancing toward cpus of our domain */
1380 if (local_group)
1381 load = source_load(i, load_idx);
1382 else
1383 load = target_load(i, load_idx);
1384
1385 avg_load += load;
1386 }
1387
1388 /* Adjust by relative CPU power of the group */
5517d86b
ED
1389 avg_load = sg_div_cpu_power(group,
1390 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1391
1392 if (local_group) {
1393 this_load = avg_load;
1394 this = group;
1395 } else if (avg_load < min_load) {
1396 min_load = avg_load;
1397 idlest = group;
1398 }
3a5c359a 1399 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1400
1401 if (!idlest || 100*this_load < imbalance*min_load)
1402 return NULL;
1403 return idlest;
1404}
1405
1406/*
0feaece9 1407 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1408 */
95cdf3b7
IM
1409static int
1410find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1411{
da5a5522 1412 cpumask_t tmp;
147cbb4b
NP
1413 unsigned long load, min_load = ULONG_MAX;
1414 int idlest = -1;
1415 int i;
1416
da5a5522
BD
1417 /* Traverse only the allowed CPUs */
1418 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1419
1420 for_each_cpu_mask(i, tmp) {
2dd73a4f 1421 load = weighted_cpuload(i);
147cbb4b
NP
1422
1423 if (load < min_load || (load == min_load && i == this_cpu)) {
1424 min_load = load;
1425 idlest = i;
1426 }
1427 }
1428
1429 return idlest;
1430}
1431
476d139c
NP
1432/*
1433 * sched_balance_self: balance the current task (running on cpu) in domains
1434 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1435 * SD_BALANCE_EXEC.
1436 *
1437 * Balance, ie. select the least loaded group.
1438 *
1439 * Returns the target CPU number, or the same CPU if no balancing is needed.
1440 *
1441 * preempt must be disabled.
1442 */
1443static int sched_balance_self(int cpu, int flag)
1444{
1445 struct task_struct *t = current;
1446 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1447
c96d145e 1448 for_each_domain(cpu, tmp) {
9761eea8
IM
1449 /*
1450 * If power savings logic is enabled for a domain, stop there.
1451 */
5c45bf27
SS
1452 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1453 break;
476d139c
NP
1454 if (tmp->flags & flag)
1455 sd = tmp;
c96d145e 1456 }
476d139c
NP
1457
1458 while (sd) {
1459 cpumask_t span;
1460 struct sched_group *group;
1a848870
SS
1461 int new_cpu, weight;
1462
1463 if (!(sd->flags & flag)) {
1464 sd = sd->child;
1465 continue;
1466 }
476d139c
NP
1467
1468 span = sd->span;
1469 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1470 if (!group) {
1471 sd = sd->child;
1472 continue;
1473 }
476d139c 1474
da5a5522 1475 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1476 if (new_cpu == -1 || new_cpu == cpu) {
1477 /* Now try balancing at a lower domain level of cpu */
1478 sd = sd->child;
1479 continue;
1480 }
476d139c 1481
1a848870 1482 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1483 cpu = new_cpu;
476d139c
NP
1484 sd = NULL;
1485 weight = cpus_weight(span);
1486 for_each_domain(cpu, tmp) {
1487 if (weight <= cpus_weight(tmp->span))
1488 break;
1489 if (tmp->flags & flag)
1490 sd = tmp;
1491 }
1492 /* while loop will break here if sd == NULL */
1493 }
1494
1495 return cpu;
1496}
1497
1498#endif /* CONFIG_SMP */
1da177e4
LT
1499
1500/*
1501 * wake_idle() will wake a task on an idle cpu if task->cpu is
1502 * not idle and an idle cpu is available. The span of cpus to
1503 * search starts with cpus closest then further out as needed,
1504 * so we always favor a closer, idle cpu.
1505 *
1506 * Returns the CPU we should wake onto.
1507 */
1508#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1509static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1510{
1511 cpumask_t tmp;
1512 struct sched_domain *sd;
1513 int i;
1514
4953198b
SS
1515 /*
1516 * If it is idle, then it is the best cpu to run this task.
1517 *
1518 * This cpu is also the best, if it has more than one task already.
1519 * Siblings must be also busy(in most cases) as they didn't already
1520 * pickup the extra load from this cpu and hence we need not check
1521 * sibling runqueue info. This will avoid the checks and cache miss
1522 * penalities associated with that.
1523 */
1524 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1525 return cpu;
1526
1527 for_each_domain(cpu, sd) {
1528 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1529 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4 1530 for_each_cpu_mask(i, tmp) {
cc367732
IM
1531 if (idle_cpu(i)) {
1532 if (i != task_cpu(p)) {
1533 schedstat_inc(p,
1534 se.nr_wakeups_idle);
1535 }
1da177e4 1536 return i;
cc367732 1537 }
1da177e4 1538 }
9761eea8 1539 } else {
e0f364f4 1540 break;
9761eea8 1541 }
1da177e4
LT
1542 }
1543 return cpu;
1544}
1545#else
36c8b586 1546static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1547{
1548 return cpu;
1549}
1550#endif
1551
1552/***
1553 * try_to_wake_up - wake up a thread
1554 * @p: the to-be-woken-up thread
1555 * @state: the mask of task states that can be woken
1556 * @sync: do a synchronous wakeup?
1557 *
1558 * Put it on the run-queue if it's not already there. The "current"
1559 * thread is always on the run-queue (except when the actual
1560 * re-schedule is in progress), and as such you're allowed to do
1561 * the simpler "current->state = TASK_RUNNING" to mark yourself
1562 * runnable without the overhead of this.
1563 *
1564 * returns failure only if the task is already active.
1565 */
36c8b586 1566static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1567{
cc367732 1568 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1569 unsigned long flags;
1570 long old_state;
70b97a7f 1571 struct rq *rq;
1da177e4 1572#ifdef CONFIG_SMP
7897986b 1573 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1574 unsigned long load, this_load;
1da177e4
LT
1575 int new_cpu;
1576#endif
1577
1578 rq = task_rq_lock(p, &flags);
1579 old_state = p->state;
1580 if (!(old_state & state))
1581 goto out;
1582
dd41f596 1583 if (p->se.on_rq)
1da177e4
LT
1584 goto out_running;
1585
1586 cpu = task_cpu(p);
cc367732 1587 orig_cpu = cpu;
1da177e4
LT
1588 this_cpu = smp_processor_id();
1589
1590#ifdef CONFIG_SMP
1591 if (unlikely(task_running(rq, p)))
1592 goto out_activate;
1593
7897986b
NP
1594 new_cpu = cpu;
1595
2d72376b 1596 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1597 if (cpu == this_cpu) {
1598 schedstat_inc(rq, ttwu_local);
7897986b
NP
1599 goto out_set_cpu;
1600 }
1601
1602 for_each_domain(this_cpu, sd) {
1603 if (cpu_isset(cpu, sd->span)) {
1604 schedstat_inc(sd, ttwu_wake_remote);
1605 this_sd = sd;
1606 break;
1da177e4
LT
1607 }
1608 }
1da177e4 1609
7897986b 1610 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1611 goto out_set_cpu;
1612
1da177e4 1613 /*
7897986b 1614 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1615 */
7897986b
NP
1616 if (this_sd) {
1617 int idx = this_sd->wake_idx;
1618 unsigned int imbalance;
1da177e4 1619
a3f21bce
NP
1620 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1621
7897986b
NP
1622 load = source_load(cpu, idx);
1623 this_load = target_load(this_cpu, idx);
1da177e4 1624
7897986b
NP
1625 new_cpu = this_cpu; /* Wake to this CPU if we can */
1626
a3f21bce
NP
1627 if (this_sd->flags & SD_WAKE_AFFINE) {
1628 unsigned long tl = this_load;
33859f7f
MOS
1629 unsigned long tl_per_task;
1630
71e20f18
IM
1631 /*
1632 * Attract cache-cold tasks on sync wakeups:
1633 */
1634 if (sync && !task_hot(p, rq->clock, this_sd))
1635 goto out_set_cpu;
1636
cc367732 1637 schedstat_inc(p, se.nr_wakeups_affine_attempts);
33859f7f 1638 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1639
1da177e4 1640 /*
a3f21bce
NP
1641 * If sync wakeup then subtract the (maximum possible)
1642 * effect of the currently running task from the load
1643 * of the current CPU:
1da177e4 1644 */
a3f21bce 1645 if (sync)
dd41f596 1646 tl -= current->se.load.weight;
a3f21bce
NP
1647
1648 if ((tl <= load &&
2dd73a4f 1649 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1650 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1651 /*
1652 * This domain has SD_WAKE_AFFINE and
1653 * p is cache cold in this domain, and
1654 * there is no bad imbalance.
1655 */
1656 schedstat_inc(this_sd, ttwu_move_affine);
cc367732 1657 schedstat_inc(p, se.nr_wakeups_affine);
a3f21bce
NP
1658 goto out_set_cpu;
1659 }
1660 }
1661
1662 /*
1663 * Start passive balancing when half the imbalance_pct
1664 * limit is reached.
1665 */
1666 if (this_sd->flags & SD_WAKE_BALANCE) {
1667 if (imbalance*this_load <= 100*load) {
1668 schedstat_inc(this_sd, ttwu_move_balance);
cc367732 1669 schedstat_inc(p, se.nr_wakeups_passive);
a3f21bce
NP
1670 goto out_set_cpu;
1671 }
1da177e4
LT
1672 }
1673 }
1674
1675 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1676out_set_cpu:
1677 new_cpu = wake_idle(new_cpu, p);
1678 if (new_cpu != cpu) {
1679 set_task_cpu(p, new_cpu);
1680 task_rq_unlock(rq, &flags);
1681 /* might preempt at this point */
1682 rq = task_rq_lock(p, &flags);
1683 old_state = p->state;
1684 if (!(old_state & state))
1685 goto out;
dd41f596 1686 if (p->se.on_rq)
1da177e4
LT
1687 goto out_running;
1688
1689 this_cpu = smp_processor_id();
1690 cpu = task_cpu(p);
1691 }
1692
1693out_activate:
1694#endif /* CONFIG_SMP */
cc367732
IM
1695 schedstat_inc(p, se.nr_wakeups);
1696 if (sync)
1697 schedstat_inc(p, se.nr_wakeups_sync);
1698 if (orig_cpu != cpu)
1699 schedstat_inc(p, se.nr_wakeups_migrate);
1700 if (cpu == this_cpu)
1701 schedstat_inc(p, se.nr_wakeups_local);
1702 else
1703 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1704 update_rq_clock(rq);
dd41f596 1705 activate_task(rq, p, 1);
9c63d9c0 1706 check_preempt_curr(rq, p);
1da177e4
LT
1707 success = 1;
1708
1709out_running:
1710 p->state = TASK_RUNNING;
1711out:
1712 task_rq_unlock(rq, &flags);
1713
1714 return success;
1715}
1716
36c8b586 1717int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1718{
1719 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1720 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1721}
1da177e4
LT
1722EXPORT_SYMBOL(wake_up_process);
1723
36c8b586 1724int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1725{
1726 return try_to_wake_up(p, state, 0);
1727}
1728
1da177e4
LT
1729/*
1730 * Perform scheduler related setup for a newly forked process p.
1731 * p is forked by current.
dd41f596
IM
1732 *
1733 * __sched_fork() is basic setup used by init_idle() too:
1734 */
1735static void __sched_fork(struct task_struct *p)
1736{
dd41f596
IM
1737 p->se.exec_start = 0;
1738 p->se.sum_exec_runtime = 0;
f6cf891c 1739 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1740
1741#ifdef CONFIG_SCHEDSTATS
1742 p->se.wait_start = 0;
dd41f596
IM
1743 p->se.sum_sleep_runtime = 0;
1744 p->se.sleep_start = 0;
dd41f596
IM
1745 p->se.block_start = 0;
1746 p->se.sleep_max = 0;
1747 p->se.block_max = 0;
1748 p->se.exec_max = 0;
eba1ed4b 1749 p->se.slice_max = 0;
dd41f596 1750 p->se.wait_max = 0;
6cfb0d5d 1751#endif
476d139c 1752
dd41f596
IM
1753 INIT_LIST_HEAD(&p->run_list);
1754 p->se.on_rq = 0;
476d139c 1755
e107be36
AK
1756#ifdef CONFIG_PREEMPT_NOTIFIERS
1757 INIT_HLIST_HEAD(&p->preempt_notifiers);
1758#endif
1759
1da177e4
LT
1760 /*
1761 * We mark the process as running here, but have not actually
1762 * inserted it onto the runqueue yet. This guarantees that
1763 * nobody will actually run it, and a signal or other external
1764 * event cannot wake it up and insert it on the runqueue either.
1765 */
1766 p->state = TASK_RUNNING;
dd41f596
IM
1767}
1768
1769/*
1770 * fork()/clone()-time setup:
1771 */
1772void sched_fork(struct task_struct *p, int clone_flags)
1773{
1774 int cpu = get_cpu();
1775
1776 __sched_fork(p);
1777
1778#ifdef CONFIG_SMP
1779 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1780#endif
02e4bac2 1781 set_task_cpu(p, cpu);
b29739f9
IM
1782
1783 /*
1784 * Make sure we do not leak PI boosting priority to the child:
1785 */
1786 p->prio = current->normal_prio;
2ddbf952
HS
1787 if (!rt_prio(p->prio))
1788 p->sched_class = &fair_sched_class;
b29739f9 1789
52f17b6c 1790#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1791 if (likely(sched_info_on()))
52f17b6c 1792 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1793#endif
d6077cb8 1794#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1795 p->oncpu = 0;
1796#endif
1da177e4 1797#ifdef CONFIG_PREEMPT
4866cde0 1798 /* Want to start with kernel preemption disabled. */
a1261f54 1799 task_thread_info(p)->preempt_count = 1;
1da177e4 1800#endif
476d139c 1801 put_cpu();
1da177e4
LT
1802}
1803
1804/*
1805 * wake_up_new_task - wake up a newly created task for the first time.
1806 *
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1810 */
36c8b586 1811void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1812{
1813 unsigned long flags;
dd41f596 1814 struct rq *rq;
1da177e4
LT
1815
1816 rq = task_rq_lock(p, &flags);
147cbb4b 1817 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1818 update_rq_clock(rq);
1da177e4
LT
1819
1820 p->prio = effective_prio(p);
1821
b9dca1e0 1822 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1823 activate_task(rq, p, 0);
1da177e4 1824 } else {
1da177e4 1825 /*
dd41f596
IM
1826 * Let the scheduling class do new task startup
1827 * management (if any):
1da177e4 1828 */
ee0827d8 1829 p->sched_class->task_new(rq, p);
e5fa2237 1830 inc_nr_running(p, rq);
1da177e4 1831 }
dd41f596
IM
1832 check_preempt_curr(rq, p);
1833 task_rq_unlock(rq, &flags);
1da177e4
LT
1834}
1835
e107be36
AK
1836#ifdef CONFIG_PREEMPT_NOTIFIERS
1837
1838/**
421cee29
RD
1839 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1840 * @notifier: notifier struct to register
e107be36
AK
1841 */
1842void preempt_notifier_register(struct preempt_notifier *notifier)
1843{
1844 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1845}
1846EXPORT_SYMBOL_GPL(preempt_notifier_register);
1847
1848/**
1849 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1850 * @notifier: notifier struct to unregister
e107be36
AK
1851 *
1852 * This is safe to call from within a preemption notifier.
1853 */
1854void preempt_notifier_unregister(struct preempt_notifier *notifier)
1855{
1856 hlist_del(&notifier->link);
1857}
1858EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1859
1860static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1861{
1862 struct preempt_notifier *notifier;
1863 struct hlist_node *node;
1864
1865 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1866 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1867}
1868
1869static void
1870fire_sched_out_preempt_notifiers(struct task_struct *curr,
1871 struct task_struct *next)
1872{
1873 struct preempt_notifier *notifier;
1874 struct hlist_node *node;
1875
1876 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1877 notifier->ops->sched_out(notifier, next);
1878}
1879
1880#else
1881
1882static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1883{
1884}
1885
1886static void
1887fire_sched_out_preempt_notifiers(struct task_struct *curr,
1888 struct task_struct *next)
1889{
1890}
1891
1892#endif
1893
4866cde0
NP
1894/**
1895 * prepare_task_switch - prepare to switch tasks
1896 * @rq: the runqueue preparing to switch
421cee29 1897 * @prev: the current task that is being switched out
4866cde0
NP
1898 * @next: the task we are going to switch to.
1899 *
1900 * This is called with the rq lock held and interrupts off. It must
1901 * be paired with a subsequent finish_task_switch after the context
1902 * switch.
1903 *
1904 * prepare_task_switch sets up locking and calls architecture specific
1905 * hooks.
1906 */
e107be36
AK
1907static inline void
1908prepare_task_switch(struct rq *rq, struct task_struct *prev,
1909 struct task_struct *next)
4866cde0 1910{
e107be36 1911 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1912 prepare_lock_switch(rq, next);
1913 prepare_arch_switch(next);
1914}
1915
1da177e4
LT
1916/**
1917 * finish_task_switch - clean up after a task-switch
344babaa 1918 * @rq: runqueue associated with task-switch
1da177e4
LT
1919 * @prev: the thread we just switched away from.
1920 *
4866cde0
NP
1921 * finish_task_switch must be called after the context switch, paired
1922 * with a prepare_task_switch call before the context switch.
1923 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1924 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1925 *
1926 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1927 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1928 * with the lock held can cause deadlocks; see schedule() for
1929 * details.)
1930 */
a9957449 1931static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1932 __releases(rq->lock)
1933{
1da177e4 1934 struct mm_struct *mm = rq->prev_mm;
55a101f8 1935 long prev_state;
1da177e4
LT
1936
1937 rq->prev_mm = NULL;
1938
1939 /*
1940 * A task struct has one reference for the use as "current".
c394cc9f 1941 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1942 * schedule one last time. The schedule call will never return, and
1943 * the scheduled task must drop that reference.
c394cc9f 1944 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1945 * still held, otherwise prev could be scheduled on another cpu, die
1946 * there before we look at prev->state, and then the reference would
1947 * be dropped twice.
1948 * Manfred Spraul <manfred@colorfullife.com>
1949 */
55a101f8 1950 prev_state = prev->state;
4866cde0
NP
1951 finish_arch_switch(prev);
1952 finish_lock_switch(rq, prev);
e107be36 1953 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1954 if (mm)
1955 mmdrop(mm);
c394cc9f 1956 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1957 /*
1958 * Remove function-return probe instances associated with this
1959 * task and put them back on the free list.
9761eea8 1960 */
c6fd91f0 1961 kprobe_flush_task(prev);
1da177e4 1962 put_task_struct(prev);
c6fd91f0 1963 }
1da177e4
LT
1964}
1965
1966/**
1967 * schedule_tail - first thing a freshly forked thread must call.
1968 * @prev: the thread we just switched away from.
1969 */
36c8b586 1970asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1971 __releases(rq->lock)
1972{
70b97a7f
IM
1973 struct rq *rq = this_rq();
1974
4866cde0
NP
1975 finish_task_switch(rq, prev);
1976#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1977 /* In this case, finish_task_switch does not reenable preemption */
1978 preempt_enable();
1979#endif
1da177e4 1980 if (current->set_child_tid)
b488893a 1981 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1982}
1983
1984/*
1985 * context_switch - switch to the new MM and the new
1986 * thread's register state.
1987 */
dd41f596 1988static inline void
70b97a7f 1989context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1990 struct task_struct *next)
1da177e4 1991{
dd41f596 1992 struct mm_struct *mm, *oldmm;
1da177e4 1993
e107be36 1994 prepare_task_switch(rq, prev, next);
dd41f596
IM
1995 mm = next->mm;
1996 oldmm = prev->active_mm;
9226d125
ZA
1997 /*
1998 * For paravirt, this is coupled with an exit in switch_to to
1999 * combine the page table reload and the switch backend into
2000 * one hypercall.
2001 */
2002 arch_enter_lazy_cpu_mode();
2003
dd41f596 2004 if (unlikely(!mm)) {
1da177e4
LT
2005 next->active_mm = oldmm;
2006 atomic_inc(&oldmm->mm_count);
2007 enter_lazy_tlb(oldmm, next);
2008 } else
2009 switch_mm(oldmm, mm, next);
2010
dd41f596 2011 if (unlikely(!prev->mm)) {
1da177e4 2012 prev->active_mm = NULL;
1da177e4
LT
2013 rq->prev_mm = oldmm;
2014 }
3a5f5e48
IM
2015 /*
2016 * Since the runqueue lock will be released by the next
2017 * task (which is an invalid locking op but in the case
2018 * of the scheduler it's an obvious special-case), so we
2019 * do an early lockdep release here:
2020 */
2021#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2022 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2023#endif
1da177e4
LT
2024
2025 /* Here we just switch the register state and the stack. */
2026 switch_to(prev, next, prev);
2027
dd41f596
IM
2028 barrier();
2029 /*
2030 * this_rq must be evaluated again because prev may have moved
2031 * CPUs since it called schedule(), thus the 'rq' on its stack
2032 * frame will be invalid.
2033 */
2034 finish_task_switch(this_rq(), prev);
1da177e4
LT
2035}
2036
2037/*
2038 * nr_running, nr_uninterruptible and nr_context_switches:
2039 *
2040 * externally visible scheduler statistics: current number of runnable
2041 * threads, current number of uninterruptible-sleeping threads, total
2042 * number of context switches performed since bootup.
2043 */
2044unsigned long nr_running(void)
2045{
2046 unsigned long i, sum = 0;
2047
2048 for_each_online_cpu(i)
2049 sum += cpu_rq(i)->nr_running;
2050
2051 return sum;
2052}
2053
2054unsigned long nr_uninterruptible(void)
2055{
2056 unsigned long i, sum = 0;
2057
0a945022 2058 for_each_possible_cpu(i)
1da177e4
LT
2059 sum += cpu_rq(i)->nr_uninterruptible;
2060
2061 /*
2062 * Since we read the counters lockless, it might be slightly
2063 * inaccurate. Do not allow it to go below zero though:
2064 */
2065 if (unlikely((long)sum < 0))
2066 sum = 0;
2067
2068 return sum;
2069}
2070
2071unsigned long long nr_context_switches(void)
2072{
cc94abfc
SR
2073 int i;
2074 unsigned long long sum = 0;
1da177e4 2075
0a945022 2076 for_each_possible_cpu(i)
1da177e4
LT
2077 sum += cpu_rq(i)->nr_switches;
2078
2079 return sum;
2080}
2081
2082unsigned long nr_iowait(void)
2083{
2084 unsigned long i, sum = 0;
2085
0a945022 2086 for_each_possible_cpu(i)
1da177e4
LT
2087 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2088
2089 return sum;
2090}
2091
db1b1fef
JS
2092unsigned long nr_active(void)
2093{
2094 unsigned long i, running = 0, uninterruptible = 0;
2095
2096 for_each_online_cpu(i) {
2097 running += cpu_rq(i)->nr_running;
2098 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2099 }
2100
2101 if (unlikely((long)uninterruptible < 0))
2102 uninterruptible = 0;
2103
2104 return running + uninterruptible;
2105}
2106
48f24c4d 2107/*
dd41f596
IM
2108 * Update rq->cpu_load[] statistics. This function is usually called every
2109 * scheduler tick (TICK_NSEC).
48f24c4d 2110 */
dd41f596 2111static void update_cpu_load(struct rq *this_rq)
48f24c4d 2112{
495eca49 2113 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2114 int i, scale;
2115
2116 this_rq->nr_load_updates++;
dd41f596
IM
2117
2118 /* Update our load: */
2119 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2120 unsigned long old_load, new_load;
2121
2122 /* scale is effectively 1 << i now, and >> i divides by scale */
2123
2124 old_load = this_rq->cpu_load[i];
2125 new_load = this_load;
a25707f3
IM
2126 /*
2127 * Round up the averaging division if load is increasing. This
2128 * prevents us from getting stuck on 9 if the load is 10, for
2129 * example.
2130 */
2131 if (new_load > old_load)
2132 new_load += scale-1;
dd41f596
IM
2133 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2134 }
48f24c4d
IM
2135}
2136
dd41f596
IM
2137#ifdef CONFIG_SMP
2138
1da177e4
LT
2139/*
2140 * double_rq_lock - safely lock two runqueues
2141 *
2142 * Note this does not disable interrupts like task_rq_lock,
2143 * you need to do so manually before calling.
2144 */
70b97a7f 2145static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2146 __acquires(rq1->lock)
2147 __acquires(rq2->lock)
2148{
054b9108 2149 BUG_ON(!irqs_disabled());
1da177e4
LT
2150 if (rq1 == rq2) {
2151 spin_lock(&rq1->lock);
2152 __acquire(rq2->lock); /* Fake it out ;) */
2153 } else {
c96d145e 2154 if (rq1 < rq2) {
1da177e4
LT
2155 spin_lock(&rq1->lock);
2156 spin_lock(&rq2->lock);
2157 } else {
2158 spin_lock(&rq2->lock);
2159 spin_lock(&rq1->lock);
2160 }
2161 }
6e82a3be
IM
2162 update_rq_clock(rq1);
2163 update_rq_clock(rq2);
1da177e4
LT
2164}
2165
2166/*
2167 * double_rq_unlock - safely unlock two runqueues
2168 *
2169 * Note this does not restore interrupts like task_rq_unlock,
2170 * you need to do so manually after calling.
2171 */
70b97a7f 2172static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2173 __releases(rq1->lock)
2174 __releases(rq2->lock)
2175{
2176 spin_unlock(&rq1->lock);
2177 if (rq1 != rq2)
2178 spin_unlock(&rq2->lock);
2179 else
2180 __release(rq2->lock);
2181}
2182
2183/*
2184 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2185 */
70b97a7f 2186static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2187 __releases(this_rq->lock)
2188 __acquires(busiest->lock)
2189 __acquires(this_rq->lock)
2190{
054b9108
KK
2191 if (unlikely(!irqs_disabled())) {
2192 /* printk() doesn't work good under rq->lock */
2193 spin_unlock(&this_rq->lock);
2194 BUG_ON(1);
2195 }
1da177e4 2196 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2197 if (busiest < this_rq) {
1da177e4
LT
2198 spin_unlock(&this_rq->lock);
2199 spin_lock(&busiest->lock);
2200 spin_lock(&this_rq->lock);
2201 } else
2202 spin_lock(&busiest->lock);
2203 }
2204}
2205
1da177e4
LT
2206/*
2207 * If dest_cpu is allowed for this process, migrate the task to it.
2208 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2209 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2210 * the cpu_allowed mask is restored.
2211 */
36c8b586 2212static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2213{
70b97a7f 2214 struct migration_req req;
1da177e4 2215 unsigned long flags;
70b97a7f 2216 struct rq *rq;
1da177e4
LT
2217
2218 rq = task_rq_lock(p, &flags);
2219 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2220 || unlikely(cpu_is_offline(dest_cpu)))
2221 goto out;
2222
2223 /* force the process onto the specified CPU */
2224 if (migrate_task(p, dest_cpu, &req)) {
2225 /* Need to wait for migration thread (might exit: take ref). */
2226 struct task_struct *mt = rq->migration_thread;
36c8b586 2227
1da177e4
LT
2228 get_task_struct(mt);
2229 task_rq_unlock(rq, &flags);
2230 wake_up_process(mt);
2231 put_task_struct(mt);
2232 wait_for_completion(&req.done);
36c8b586 2233
1da177e4
LT
2234 return;
2235 }
2236out:
2237 task_rq_unlock(rq, &flags);
2238}
2239
2240/*
476d139c
NP
2241 * sched_exec - execve() is a valuable balancing opportunity, because at
2242 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2243 */
2244void sched_exec(void)
2245{
1da177e4 2246 int new_cpu, this_cpu = get_cpu();
476d139c 2247 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2248 put_cpu();
476d139c
NP
2249 if (new_cpu != this_cpu)
2250 sched_migrate_task(current, new_cpu);
1da177e4
LT
2251}
2252
2253/*
2254 * pull_task - move a task from a remote runqueue to the local runqueue.
2255 * Both runqueues must be locked.
2256 */
dd41f596
IM
2257static void pull_task(struct rq *src_rq, struct task_struct *p,
2258 struct rq *this_rq, int this_cpu)
1da177e4 2259{
2e1cb74a 2260 deactivate_task(src_rq, p, 0);
1da177e4 2261 set_task_cpu(p, this_cpu);
dd41f596 2262 activate_task(this_rq, p, 0);
1da177e4
LT
2263 /*
2264 * Note that idle threads have a prio of MAX_PRIO, for this test
2265 * to be always true for them.
2266 */
dd41f596 2267 check_preempt_curr(this_rq, p);
1da177e4
LT
2268}
2269
2270/*
2271 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2272 */
858119e1 2273static
70b97a7f 2274int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2275 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2276 int *all_pinned)
1da177e4
LT
2277{
2278 /*
2279 * We do not migrate tasks that are:
2280 * 1) running (obviously), or
2281 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2282 * 3) are cache-hot on their current CPU.
2283 */
cc367732
IM
2284 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2285 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2286 return 0;
cc367732 2287 }
81026794
NP
2288 *all_pinned = 0;
2289
cc367732
IM
2290 if (task_running(rq, p)) {
2291 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2292 return 0;
cc367732 2293 }
1da177e4 2294
da84d961
IM
2295 /*
2296 * Aggressive migration if:
2297 * 1) task is cache cold, or
2298 * 2) too many balance attempts have failed.
2299 */
2300
6bc1665b
IM
2301 if (!task_hot(p, rq->clock, sd) ||
2302 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2303#ifdef CONFIG_SCHEDSTATS
cc367732 2304 if (task_hot(p, rq->clock, sd)) {
da84d961 2305 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2306 schedstat_inc(p, se.nr_forced_migrations);
2307 }
da84d961
IM
2308#endif
2309 return 1;
2310 }
2311
cc367732
IM
2312 if (task_hot(p, rq->clock, sd)) {
2313 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2314 return 0;
cc367732 2315 }
1da177e4
LT
2316 return 1;
2317}
2318
e1d1484f
PW
2319static unsigned long
2320balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2321 unsigned long max_load_move, struct sched_domain *sd,
2322 enum cpu_idle_type idle, int *all_pinned,
2323 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2324{
b82d9fdd 2325 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2326 struct task_struct *p;
2327 long rem_load_move = max_load_move;
1da177e4 2328
e1d1484f 2329 if (max_load_move == 0)
1da177e4
LT
2330 goto out;
2331
81026794
NP
2332 pinned = 1;
2333
1da177e4 2334 /*
dd41f596 2335 * Start the load-balancing iterator:
1da177e4 2336 */
dd41f596
IM
2337 p = iterator->start(iterator->arg);
2338next:
b82d9fdd 2339 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2340 goto out;
50ddd969 2341 /*
b82d9fdd 2342 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2343 * skip a task if it will be the highest priority task (i.e. smallest
2344 * prio value) on its new queue regardless of its load weight
2345 */
dd41f596
IM
2346 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2347 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2348 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2349 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2350 p = iterator->next(iterator->arg);
2351 goto next;
1da177e4
LT
2352 }
2353
dd41f596 2354 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2355 pulled++;
dd41f596 2356 rem_load_move -= p->se.load.weight;
1da177e4 2357
2dd73a4f 2358 /*
b82d9fdd 2359 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2360 */
e1d1484f 2361 if (rem_load_move > 0) {
a4ac01c3
PW
2362 if (p->prio < *this_best_prio)
2363 *this_best_prio = p->prio;
dd41f596
IM
2364 p = iterator->next(iterator->arg);
2365 goto next;
1da177e4
LT
2366 }
2367out:
2368 /*
e1d1484f 2369 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2370 * so we can safely collect pull_task() stats here rather than
2371 * inside pull_task().
2372 */
2373 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2374
2375 if (all_pinned)
2376 *all_pinned = pinned;
e1d1484f
PW
2377
2378 return max_load_move - rem_load_move;
1da177e4
LT
2379}
2380
dd41f596 2381/*
43010659
PW
2382 * move_tasks tries to move up to max_load_move weighted load from busiest to
2383 * this_rq, as part of a balancing operation within domain "sd".
2384 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2385 *
2386 * Called with both runqueues locked.
2387 */
2388static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2389 unsigned long max_load_move,
dd41f596
IM
2390 struct sched_domain *sd, enum cpu_idle_type idle,
2391 int *all_pinned)
2392{
5522d5d5 2393 const struct sched_class *class = sched_class_highest;
43010659 2394 unsigned long total_load_moved = 0;
a4ac01c3 2395 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2396
2397 do {
43010659
PW
2398 total_load_moved +=
2399 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2400 max_load_move - total_load_moved,
a4ac01c3 2401 sd, idle, all_pinned, &this_best_prio);
dd41f596 2402 class = class->next;
43010659 2403 } while (class && max_load_move > total_load_moved);
dd41f596 2404
43010659
PW
2405 return total_load_moved > 0;
2406}
2407
e1d1484f
PW
2408static int
2409iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2410 struct sched_domain *sd, enum cpu_idle_type idle,
2411 struct rq_iterator *iterator)
2412{
2413 struct task_struct *p = iterator->start(iterator->arg);
2414 int pinned = 0;
2415
2416 while (p) {
2417 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2418 pull_task(busiest, p, this_rq, this_cpu);
2419 /*
2420 * Right now, this is only the second place pull_task()
2421 * is called, so we can safely collect pull_task()
2422 * stats here rather than inside pull_task().
2423 */
2424 schedstat_inc(sd, lb_gained[idle]);
2425
2426 return 1;
2427 }
2428 p = iterator->next(iterator->arg);
2429 }
2430
2431 return 0;
2432}
2433
43010659
PW
2434/*
2435 * move_one_task tries to move exactly one task from busiest to this_rq, as
2436 * part of active balancing operations within "domain".
2437 * Returns 1 if successful and 0 otherwise.
2438 *
2439 * Called with both runqueues locked.
2440 */
2441static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2442 struct sched_domain *sd, enum cpu_idle_type idle)
2443{
5522d5d5 2444 const struct sched_class *class;
43010659
PW
2445
2446 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2447 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2448 return 1;
2449
2450 return 0;
dd41f596
IM
2451}
2452
1da177e4
LT
2453/*
2454 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2455 * domain. It calculates and returns the amount of weighted load which
2456 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2457 */
2458static struct sched_group *
2459find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2460 unsigned long *imbalance, enum cpu_idle_type idle,
2461 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2462{
2463 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2464 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2465 unsigned long max_pull;
2dd73a4f
PW
2466 unsigned long busiest_load_per_task, busiest_nr_running;
2467 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2468 int load_idx, group_imb = 0;
5c45bf27
SS
2469#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2470 int power_savings_balance = 1;
2471 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2472 unsigned long min_nr_running = ULONG_MAX;
2473 struct sched_group *group_min = NULL, *group_leader = NULL;
2474#endif
1da177e4
LT
2475
2476 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2477 busiest_load_per_task = busiest_nr_running = 0;
2478 this_load_per_task = this_nr_running = 0;
d15bcfdb 2479 if (idle == CPU_NOT_IDLE)
7897986b 2480 load_idx = sd->busy_idx;
d15bcfdb 2481 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2482 load_idx = sd->newidle_idx;
2483 else
2484 load_idx = sd->idle_idx;
1da177e4
LT
2485
2486 do {
908a7c1b 2487 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2488 int local_group;
2489 int i;
908a7c1b 2490 int __group_imb = 0;
783609c6 2491 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2492 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2493
2494 local_group = cpu_isset(this_cpu, group->cpumask);
2495
783609c6
SS
2496 if (local_group)
2497 balance_cpu = first_cpu(group->cpumask);
2498
1da177e4 2499 /* Tally up the load of all CPUs in the group */
2dd73a4f 2500 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2501 max_cpu_load = 0;
2502 min_cpu_load = ~0UL;
1da177e4
LT
2503
2504 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2505 struct rq *rq;
2506
2507 if (!cpu_isset(i, *cpus))
2508 continue;
2509
2510 rq = cpu_rq(i);
2dd73a4f 2511
9439aab8 2512 if (*sd_idle && rq->nr_running)
5969fe06
NP
2513 *sd_idle = 0;
2514
1da177e4 2515 /* Bias balancing toward cpus of our domain */
783609c6
SS
2516 if (local_group) {
2517 if (idle_cpu(i) && !first_idle_cpu) {
2518 first_idle_cpu = 1;
2519 balance_cpu = i;
2520 }
2521
a2000572 2522 load = target_load(i, load_idx);
908a7c1b 2523 } else {
a2000572 2524 load = source_load(i, load_idx);
908a7c1b
KC
2525 if (load > max_cpu_load)
2526 max_cpu_load = load;
2527 if (min_cpu_load > load)
2528 min_cpu_load = load;
2529 }
1da177e4
LT
2530
2531 avg_load += load;
2dd73a4f 2532 sum_nr_running += rq->nr_running;
dd41f596 2533 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2534 }
2535
783609c6
SS
2536 /*
2537 * First idle cpu or the first cpu(busiest) in this sched group
2538 * is eligible for doing load balancing at this and above
9439aab8
SS
2539 * domains. In the newly idle case, we will allow all the cpu's
2540 * to do the newly idle load balance.
783609c6 2541 */
9439aab8
SS
2542 if (idle != CPU_NEWLY_IDLE && local_group &&
2543 balance_cpu != this_cpu && balance) {
783609c6
SS
2544 *balance = 0;
2545 goto ret;
2546 }
2547
1da177e4 2548 total_load += avg_load;
5517d86b 2549 total_pwr += group->__cpu_power;
1da177e4
LT
2550
2551 /* Adjust by relative CPU power of the group */
5517d86b
ED
2552 avg_load = sg_div_cpu_power(group,
2553 avg_load * SCHED_LOAD_SCALE);
1da177e4 2554
908a7c1b
KC
2555 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2556 __group_imb = 1;
2557
5517d86b 2558 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2559
1da177e4
LT
2560 if (local_group) {
2561 this_load = avg_load;
2562 this = group;
2dd73a4f
PW
2563 this_nr_running = sum_nr_running;
2564 this_load_per_task = sum_weighted_load;
2565 } else if (avg_load > max_load &&
908a7c1b 2566 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2567 max_load = avg_load;
2568 busiest = group;
2dd73a4f
PW
2569 busiest_nr_running = sum_nr_running;
2570 busiest_load_per_task = sum_weighted_load;
908a7c1b 2571 group_imb = __group_imb;
1da177e4 2572 }
5c45bf27
SS
2573
2574#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2575 /*
2576 * Busy processors will not participate in power savings
2577 * balance.
2578 */
dd41f596
IM
2579 if (idle == CPU_NOT_IDLE ||
2580 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2581 goto group_next;
5c45bf27
SS
2582
2583 /*
2584 * If the local group is idle or completely loaded
2585 * no need to do power savings balance at this domain
2586 */
2587 if (local_group && (this_nr_running >= group_capacity ||
2588 !this_nr_running))
2589 power_savings_balance = 0;
2590
dd41f596 2591 /*
5c45bf27
SS
2592 * If a group is already running at full capacity or idle,
2593 * don't include that group in power savings calculations
dd41f596
IM
2594 */
2595 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2596 || !sum_nr_running)
dd41f596 2597 goto group_next;
5c45bf27 2598
dd41f596 2599 /*
5c45bf27 2600 * Calculate the group which has the least non-idle load.
dd41f596
IM
2601 * This is the group from where we need to pick up the load
2602 * for saving power
2603 */
2604 if ((sum_nr_running < min_nr_running) ||
2605 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2606 first_cpu(group->cpumask) <
2607 first_cpu(group_min->cpumask))) {
dd41f596
IM
2608 group_min = group;
2609 min_nr_running = sum_nr_running;
5c45bf27
SS
2610 min_load_per_task = sum_weighted_load /
2611 sum_nr_running;
dd41f596 2612 }
5c45bf27 2613
dd41f596 2614 /*
5c45bf27 2615 * Calculate the group which is almost near its
dd41f596
IM
2616 * capacity but still has some space to pick up some load
2617 * from other group and save more power
2618 */
2619 if (sum_nr_running <= group_capacity - 1) {
2620 if (sum_nr_running > leader_nr_running ||
2621 (sum_nr_running == leader_nr_running &&
2622 first_cpu(group->cpumask) >
2623 first_cpu(group_leader->cpumask))) {
2624 group_leader = group;
2625 leader_nr_running = sum_nr_running;
2626 }
48f24c4d 2627 }
5c45bf27
SS
2628group_next:
2629#endif
1da177e4
LT
2630 group = group->next;
2631 } while (group != sd->groups);
2632
2dd73a4f 2633 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2634 goto out_balanced;
2635
2636 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2637
2638 if (this_load >= avg_load ||
2639 100*max_load <= sd->imbalance_pct*this_load)
2640 goto out_balanced;
2641
2dd73a4f 2642 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2643 if (group_imb)
2644 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2645
1da177e4
LT
2646 /*
2647 * We're trying to get all the cpus to the average_load, so we don't
2648 * want to push ourselves above the average load, nor do we wish to
2649 * reduce the max loaded cpu below the average load, as either of these
2650 * actions would just result in more rebalancing later, and ping-pong
2651 * tasks around. Thus we look for the minimum possible imbalance.
2652 * Negative imbalances (*we* are more loaded than anyone else) will
2653 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2654 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2655 * appear as very large values with unsigned longs.
2656 */
2dd73a4f
PW
2657 if (max_load <= busiest_load_per_task)
2658 goto out_balanced;
2659
2660 /*
2661 * In the presence of smp nice balancing, certain scenarios can have
2662 * max load less than avg load(as we skip the groups at or below
2663 * its cpu_power, while calculating max_load..)
2664 */
2665 if (max_load < avg_load) {
2666 *imbalance = 0;
2667 goto small_imbalance;
2668 }
0c117f1b
SS
2669
2670 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2671 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2672
1da177e4 2673 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2674 *imbalance = min(max_pull * busiest->__cpu_power,
2675 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2676 / SCHED_LOAD_SCALE;
2677
2dd73a4f
PW
2678 /*
2679 * if *imbalance is less than the average load per runnable task
2680 * there is no gaurantee that any tasks will be moved so we'll have
2681 * a think about bumping its value to force at least one task to be
2682 * moved
2683 */
7fd0d2dd 2684 if (*imbalance < busiest_load_per_task) {
48f24c4d 2685 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2686 unsigned int imbn;
2687
2688small_imbalance:
2689 pwr_move = pwr_now = 0;
2690 imbn = 2;
2691 if (this_nr_running) {
2692 this_load_per_task /= this_nr_running;
2693 if (busiest_load_per_task > this_load_per_task)
2694 imbn = 1;
2695 } else
2696 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2697
dd41f596
IM
2698 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2699 busiest_load_per_task * imbn) {
2dd73a4f 2700 *imbalance = busiest_load_per_task;
1da177e4
LT
2701 return busiest;
2702 }
2703
2704 /*
2705 * OK, we don't have enough imbalance to justify moving tasks,
2706 * however we may be able to increase total CPU power used by
2707 * moving them.
2708 */
2709
5517d86b
ED
2710 pwr_now += busiest->__cpu_power *
2711 min(busiest_load_per_task, max_load);
2712 pwr_now += this->__cpu_power *
2713 min(this_load_per_task, this_load);
1da177e4
LT
2714 pwr_now /= SCHED_LOAD_SCALE;
2715
2716 /* Amount of load we'd subtract */
5517d86b
ED
2717 tmp = sg_div_cpu_power(busiest,
2718 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2719 if (max_load > tmp)
5517d86b 2720 pwr_move += busiest->__cpu_power *
2dd73a4f 2721 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2722
2723 /* Amount of load we'd add */
5517d86b 2724 if (max_load * busiest->__cpu_power <
33859f7f 2725 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2726 tmp = sg_div_cpu_power(this,
2727 max_load * busiest->__cpu_power);
1da177e4 2728 else
5517d86b
ED
2729 tmp = sg_div_cpu_power(this,
2730 busiest_load_per_task * SCHED_LOAD_SCALE);
2731 pwr_move += this->__cpu_power *
2732 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2733 pwr_move /= SCHED_LOAD_SCALE;
2734
2735 /* Move if we gain throughput */
7fd0d2dd
SS
2736 if (pwr_move > pwr_now)
2737 *imbalance = busiest_load_per_task;
1da177e4
LT
2738 }
2739
1da177e4
LT
2740 return busiest;
2741
2742out_balanced:
5c45bf27 2743#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2744 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2745 goto ret;
1da177e4 2746
5c45bf27
SS
2747 if (this == group_leader && group_leader != group_min) {
2748 *imbalance = min_load_per_task;
2749 return group_min;
2750 }
5c45bf27 2751#endif
783609c6 2752ret:
1da177e4
LT
2753 *imbalance = 0;
2754 return NULL;
2755}
2756
2757/*
2758 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2759 */
70b97a7f 2760static struct rq *
d15bcfdb 2761find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2762 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2763{
70b97a7f 2764 struct rq *busiest = NULL, *rq;
2dd73a4f 2765 unsigned long max_load = 0;
1da177e4
LT
2766 int i;
2767
2768 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2769 unsigned long wl;
0a2966b4
CL
2770
2771 if (!cpu_isset(i, *cpus))
2772 continue;
2773
48f24c4d 2774 rq = cpu_rq(i);
dd41f596 2775 wl = weighted_cpuload(i);
2dd73a4f 2776
dd41f596 2777 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2778 continue;
1da177e4 2779
dd41f596
IM
2780 if (wl > max_load) {
2781 max_load = wl;
48f24c4d 2782 busiest = rq;
1da177e4
LT
2783 }
2784 }
2785
2786 return busiest;
2787}
2788
77391d71
NP
2789/*
2790 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2791 * so long as it is large enough.
2792 */
2793#define MAX_PINNED_INTERVAL 512
2794
1da177e4
LT
2795/*
2796 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2797 * tasks if there is an imbalance.
1da177e4 2798 */
70b97a7f 2799static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2800 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2801 int *balance)
1da177e4 2802{
43010659 2803 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2804 struct sched_group *group;
1da177e4 2805 unsigned long imbalance;
70b97a7f 2806 struct rq *busiest;
0a2966b4 2807 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2808 unsigned long flags;
5969fe06 2809
89c4710e
SS
2810 /*
2811 * When power savings policy is enabled for the parent domain, idle
2812 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2813 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2814 * portraying it as CPU_NOT_IDLE.
89c4710e 2815 */
d15bcfdb 2816 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2817 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2818 sd_idle = 1;
1da177e4 2819
2d72376b 2820 schedstat_inc(sd, lb_count[idle]);
1da177e4 2821
0a2966b4
CL
2822redo:
2823 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2824 &cpus, balance);
2825
06066714 2826 if (*balance == 0)
783609c6 2827 goto out_balanced;
783609c6 2828
1da177e4
LT
2829 if (!group) {
2830 schedstat_inc(sd, lb_nobusyg[idle]);
2831 goto out_balanced;
2832 }
2833
0a2966b4 2834 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2835 if (!busiest) {
2836 schedstat_inc(sd, lb_nobusyq[idle]);
2837 goto out_balanced;
2838 }
2839
db935dbd 2840 BUG_ON(busiest == this_rq);
1da177e4
LT
2841
2842 schedstat_add(sd, lb_imbalance[idle], imbalance);
2843
43010659 2844 ld_moved = 0;
1da177e4
LT
2845 if (busiest->nr_running > 1) {
2846 /*
2847 * Attempt to move tasks. If find_busiest_group has found
2848 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2849 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2850 * correctly treated as an imbalance.
2851 */
fe2eea3f 2852 local_irq_save(flags);
e17224bf 2853 double_rq_lock(this_rq, busiest);
43010659 2854 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2855 imbalance, sd, idle, &all_pinned);
e17224bf 2856 double_rq_unlock(this_rq, busiest);
fe2eea3f 2857 local_irq_restore(flags);
81026794 2858
46cb4b7c
SS
2859 /*
2860 * some other cpu did the load balance for us.
2861 */
43010659 2862 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2863 resched_cpu(this_cpu);
2864
81026794 2865 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2866 if (unlikely(all_pinned)) {
2867 cpu_clear(cpu_of(busiest), cpus);
2868 if (!cpus_empty(cpus))
2869 goto redo;
81026794 2870 goto out_balanced;
0a2966b4 2871 }
1da177e4 2872 }
81026794 2873
43010659 2874 if (!ld_moved) {
1da177e4
LT
2875 schedstat_inc(sd, lb_failed[idle]);
2876 sd->nr_balance_failed++;
2877
2878 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2879
fe2eea3f 2880 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2881
2882 /* don't kick the migration_thread, if the curr
2883 * task on busiest cpu can't be moved to this_cpu
2884 */
2885 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2886 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2887 all_pinned = 1;
2888 goto out_one_pinned;
2889 }
2890
1da177e4
LT
2891 if (!busiest->active_balance) {
2892 busiest->active_balance = 1;
2893 busiest->push_cpu = this_cpu;
81026794 2894 active_balance = 1;
1da177e4 2895 }
fe2eea3f 2896 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2897 if (active_balance)
1da177e4
LT
2898 wake_up_process(busiest->migration_thread);
2899
2900 /*
2901 * We've kicked active balancing, reset the failure
2902 * counter.
2903 */
39507451 2904 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2905 }
81026794 2906 } else
1da177e4
LT
2907 sd->nr_balance_failed = 0;
2908
81026794 2909 if (likely(!active_balance)) {
1da177e4
LT
2910 /* We were unbalanced, so reset the balancing interval */
2911 sd->balance_interval = sd->min_interval;
81026794
NP
2912 } else {
2913 /*
2914 * If we've begun active balancing, start to back off. This
2915 * case may not be covered by the all_pinned logic if there
2916 * is only 1 task on the busy runqueue (because we don't call
2917 * move_tasks).
2918 */
2919 if (sd->balance_interval < sd->max_interval)
2920 sd->balance_interval *= 2;
1da177e4
LT
2921 }
2922
43010659 2923 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2924 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2925 return -1;
43010659 2926 return ld_moved;
1da177e4
LT
2927
2928out_balanced:
1da177e4
LT
2929 schedstat_inc(sd, lb_balanced[idle]);
2930
16cfb1c0 2931 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2932
2933out_one_pinned:
1da177e4 2934 /* tune up the balancing interval */
77391d71
NP
2935 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2936 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2937 sd->balance_interval *= 2;
2938
48f24c4d 2939 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2940 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2941 return -1;
1da177e4
LT
2942 return 0;
2943}
2944
2945/*
2946 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2947 * tasks if there is an imbalance.
2948 *
d15bcfdb 2949 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2950 * this_rq is locked.
2951 */
48f24c4d 2952static int
70b97a7f 2953load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2954{
2955 struct sched_group *group;
70b97a7f 2956 struct rq *busiest = NULL;
1da177e4 2957 unsigned long imbalance;
43010659 2958 int ld_moved = 0;
5969fe06 2959 int sd_idle = 0;
969bb4e4 2960 int all_pinned = 0;
0a2966b4 2961 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2962
89c4710e
SS
2963 /*
2964 * When power savings policy is enabled for the parent domain, idle
2965 * sibling can pick up load irrespective of busy siblings. In this case,
2966 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2967 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2968 */
2969 if (sd->flags & SD_SHARE_CPUPOWER &&
2970 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2971 sd_idle = 1;
1da177e4 2972
2d72376b 2973 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2974redo:
d15bcfdb 2975 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2976 &sd_idle, &cpus, NULL);
1da177e4 2977 if (!group) {
d15bcfdb 2978 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2979 goto out_balanced;
1da177e4
LT
2980 }
2981
d15bcfdb 2982 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2983 &cpus);
db935dbd 2984 if (!busiest) {
d15bcfdb 2985 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2986 goto out_balanced;
1da177e4
LT
2987 }
2988
db935dbd
NP
2989 BUG_ON(busiest == this_rq);
2990
d15bcfdb 2991 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2992
43010659 2993 ld_moved = 0;
d6d5cfaf
NP
2994 if (busiest->nr_running > 1) {
2995 /* Attempt to move tasks */
2996 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2997 /* this_rq->clock is already updated */
2998 update_rq_clock(busiest);
43010659 2999 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3000 imbalance, sd, CPU_NEWLY_IDLE,
3001 &all_pinned);
d6d5cfaf 3002 spin_unlock(&busiest->lock);
0a2966b4 3003
969bb4e4 3004 if (unlikely(all_pinned)) {
0a2966b4
CL
3005 cpu_clear(cpu_of(busiest), cpus);
3006 if (!cpus_empty(cpus))
3007 goto redo;
3008 }
d6d5cfaf
NP
3009 }
3010
43010659 3011 if (!ld_moved) {
d15bcfdb 3012 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3013 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3014 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3015 return -1;
3016 } else
16cfb1c0 3017 sd->nr_balance_failed = 0;
1da177e4 3018
43010659 3019 return ld_moved;
16cfb1c0
NP
3020
3021out_balanced:
d15bcfdb 3022 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3023 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3024 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3025 return -1;
16cfb1c0 3026 sd->nr_balance_failed = 0;
48f24c4d 3027
16cfb1c0 3028 return 0;
1da177e4
LT
3029}
3030
3031/*
3032 * idle_balance is called by schedule() if this_cpu is about to become
3033 * idle. Attempts to pull tasks from other CPUs.
3034 */
70b97a7f 3035static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3036{
3037 struct sched_domain *sd;
dd41f596
IM
3038 int pulled_task = -1;
3039 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
3040
3041 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3042 unsigned long interval;
3043
3044 if (!(sd->flags & SD_LOAD_BALANCE))
3045 continue;
3046
3047 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3048 /* If we've pulled tasks over stop searching: */
1bd77f2d 3049 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
3050 this_rq, sd);
3051
3052 interval = msecs_to_jiffies(sd->balance_interval);
3053 if (time_after(next_balance, sd->last_balance + interval))
3054 next_balance = sd->last_balance + interval;
3055 if (pulled_task)
3056 break;
1da177e4 3057 }
dd41f596 3058 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3059 /*
3060 * We are going idle. next_balance may be set based on
3061 * a busy processor. So reset next_balance.
3062 */
3063 this_rq->next_balance = next_balance;
dd41f596 3064 }
1da177e4
LT
3065}
3066
3067/*
3068 * active_load_balance is run by migration threads. It pushes running tasks
3069 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3070 * running on each physical CPU where possible, and avoids physical /
3071 * logical imbalances.
3072 *
3073 * Called with busiest_rq locked.
3074 */
70b97a7f 3075static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3076{
39507451 3077 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3078 struct sched_domain *sd;
3079 struct rq *target_rq;
39507451 3080
48f24c4d 3081 /* Is there any task to move? */
39507451 3082 if (busiest_rq->nr_running <= 1)
39507451
NP
3083 return;
3084
3085 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3086
3087 /*
39507451 3088 * This condition is "impossible", if it occurs
41a2d6cf 3089 * we need to fix it. Originally reported by
39507451 3090 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3091 */
39507451 3092 BUG_ON(busiest_rq == target_rq);
1da177e4 3093
39507451
NP
3094 /* move a task from busiest_rq to target_rq */
3095 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3096 update_rq_clock(busiest_rq);
3097 update_rq_clock(target_rq);
39507451
NP
3098
3099 /* Search for an sd spanning us and the target CPU. */
c96d145e 3100 for_each_domain(target_cpu, sd) {
39507451 3101 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3102 cpu_isset(busiest_cpu, sd->span))
39507451 3103 break;
c96d145e 3104 }
39507451 3105
48f24c4d 3106 if (likely(sd)) {
2d72376b 3107 schedstat_inc(sd, alb_count);
39507451 3108
43010659
PW
3109 if (move_one_task(target_rq, target_cpu, busiest_rq,
3110 sd, CPU_IDLE))
48f24c4d
IM
3111 schedstat_inc(sd, alb_pushed);
3112 else
3113 schedstat_inc(sd, alb_failed);
3114 }
39507451 3115 spin_unlock(&target_rq->lock);
1da177e4
LT
3116}
3117
46cb4b7c
SS
3118#ifdef CONFIG_NO_HZ
3119static struct {
3120 atomic_t load_balancer;
41a2d6cf 3121 cpumask_t cpu_mask;
46cb4b7c
SS
3122} nohz ____cacheline_aligned = {
3123 .load_balancer = ATOMIC_INIT(-1),
3124 .cpu_mask = CPU_MASK_NONE,
3125};
3126
7835b98b 3127/*
46cb4b7c
SS
3128 * This routine will try to nominate the ilb (idle load balancing)
3129 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3130 * load balancing on behalf of all those cpus. If all the cpus in the system
3131 * go into this tickless mode, then there will be no ilb owner (as there is
3132 * no need for one) and all the cpus will sleep till the next wakeup event
3133 * arrives...
3134 *
3135 * For the ilb owner, tick is not stopped. And this tick will be used
3136 * for idle load balancing. ilb owner will still be part of
3137 * nohz.cpu_mask..
7835b98b 3138 *
46cb4b7c
SS
3139 * While stopping the tick, this cpu will become the ilb owner if there
3140 * is no other owner. And will be the owner till that cpu becomes busy
3141 * or if all cpus in the system stop their ticks at which point
3142 * there is no need for ilb owner.
3143 *
3144 * When the ilb owner becomes busy, it nominates another owner, during the
3145 * next busy scheduler_tick()
3146 */
3147int select_nohz_load_balancer(int stop_tick)
3148{
3149 int cpu = smp_processor_id();
3150
3151 if (stop_tick) {
3152 cpu_set(cpu, nohz.cpu_mask);
3153 cpu_rq(cpu)->in_nohz_recently = 1;
3154
3155 /*
3156 * If we are going offline and still the leader, give up!
3157 */
3158 if (cpu_is_offline(cpu) &&
3159 atomic_read(&nohz.load_balancer) == cpu) {
3160 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3161 BUG();
3162 return 0;
3163 }
3164
3165 /* time for ilb owner also to sleep */
3166 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3167 if (atomic_read(&nohz.load_balancer) == cpu)
3168 atomic_set(&nohz.load_balancer, -1);
3169 return 0;
3170 }
3171
3172 if (atomic_read(&nohz.load_balancer) == -1) {
3173 /* make me the ilb owner */
3174 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3175 return 1;
3176 } else if (atomic_read(&nohz.load_balancer) == cpu)
3177 return 1;
3178 } else {
3179 if (!cpu_isset(cpu, nohz.cpu_mask))
3180 return 0;
3181
3182 cpu_clear(cpu, nohz.cpu_mask);
3183
3184 if (atomic_read(&nohz.load_balancer) == cpu)
3185 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3186 BUG();
3187 }
3188 return 0;
3189}
3190#endif
3191
3192static DEFINE_SPINLOCK(balancing);
3193
3194/*
7835b98b
CL
3195 * It checks each scheduling domain to see if it is due to be balanced,
3196 * and initiates a balancing operation if so.
3197 *
3198 * Balancing parameters are set up in arch_init_sched_domains.
3199 */
a9957449 3200static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3201{
46cb4b7c
SS
3202 int balance = 1;
3203 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3204 unsigned long interval;
3205 struct sched_domain *sd;
46cb4b7c 3206 /* Earliest time when we have to do rebalance again */
c9819f45 3207 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3208 int update_next_balance = 0;
1da177e4 3209
46cb4b7c 3210 for_each_domain(cpu, sd) {
1da177e4
LT
3211 if (!(sd->flags & SD_LOAD_BALANCE))
3212 continue;
3213
3214 interval = sd->balance_interval;
d15bcfdb 3215 if (idle != CPU_IDLE)
1da177e4
LT
3216 interval *= sd->busy_factor;
3217
3218 /* scale ms to jiffies */
3219 interval = msecs_to_jiffies(interval);
3220 if (unlikely(!interval))
3221 interval = 1;
dd41f596
IM
3222 if (interval > HZ*NR_CPUS/10)
3223 interval = HZ*NR_CPUS/10;
3224
1da177e4 3225
08c183f3
CL
3226 if (sd->flags & SD_SERIALIZE) {
3227 if (!spin_trylock(&balancing))
3228 goto out;
3229 }
3230
c9819f45 3231 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3232 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3233 /*
3234 * We've pulled tasks over so either we're no
5969fe06
NP
3235 * longer idle, or one of our SMT siblings is
3236 * not idle.
3237 */
d15bcfdb 3238 idle = CPU_NOT_IDLE;
1da177e4 3239 }
1bd77f2d 3240 sd->last_balance = jiffies;
1da177e4 3241 }
08c183f3
CL
3242 if (sd->flags & SD_SERIALIZE)
3243 spin_unlock(&balancing);
3244out:
f549da84 3245 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3246 next_balance = sd->last_balance + interval;
f549da84
SS
3247 update_next_balance = 1;
3248 }
783609c6
SS
3249
3250 /*
3251 * Stop the load balance at this level. There is another
3252 * CPU in our sched group which is doing load balancing more
3253 * actively.
3254 */
3255 if (!balance)
3256 break;
1da177e4 3257 }
f549da84
SS
3258
3259 /*
3260 * next_balance will be updated only when there is a need.
3261 * When the cpu is attached to null domain for ex, it will not be
3262 * updated.
3263 */
3264 if (likely(update_next_balance))
3265 rq->next_balance = next_balance;
46cb4b7c
SS
3266}
3267
3268/*
3269 * run_rebalance_domains is triggered when needed from the scheduler tick.
3270 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3271 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3272 */
3273static void run_rebalance_domains(struct softirq_action *h)
3274{
dd41f596
IM
3275 int this_cpu = smp_processor_id();
3276 struct rq *this_rq = cpu_rq(this_cpu);
3277 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3278 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3279
dd41f596 3280 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3281
3282#ifdef CONFIG_NO_HZ
3283 /*
3284 * If this cpu is the owner for idle load balancing, then do the
3285 * balancing on behalf of the other idle cpus whose ticks are
3286 * stopped.
3287 */
dd41f596
IM
3288 if (this_rq->idle_at_tick &&
3289 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3290 cpumask_t cpus = nohz.cpu_mask;
3291 struct rq *rq;
3292 int balance_cpu;
3293
dd41f596 3294 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3295 for_each_cpu_mask(balance_cpu, cpus) {
3296 /*
3297 * If this cpu gets work to do, stop the load balancing
3298 * work being done for other cpus. Next load
3299 * balancing owner will pick it up.
3300 */
3301 if (need_resched())
3302 break;
3303
de0cf899 3304 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3305
3306 rq = cpu_rq(balance_cpu);
dd41f596
IM
3307 if (time_after(this_rq->next_balance, rq->next_balance))
3308 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3309 }
3310 }
3311#endif
3312}
3313
3314/*
3315 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3316 *
3317 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3318 * idle load balancing owner or decide to stop the periodic load balancing,
3319 * if the whole system is idle.
3320 */
dd41f596 3321static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3322{
46cb4b7c
SS
3323#ifdef CONFIG_NO_HZ
3324 /*
3325 * If we were in the nohz mode recently and busy at the current
3326 * scheduler tick, then check if we need to nominate new idle
3327 * load balancer.
3328 */
3329 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3330 rq->in_nohz_recently = 0;
3331
3332 if (atomic_read(&nohz.load_balancer) == cpu) {
3333 cpu_clear(cpu, nohz.cpu_mask);
3334 atomic_set(&nohz.load_balancer, -1);
3335 }
3336
3337 if (atomic_read(&nohz.load_balancer) == -1) {
3338 /*
3339 * simple selection for now: Nominate the
3340 * first cpu in the nohz list to be the next
3341 * ilb owner.
3342 *
3343 * TBD: Traverse the sched domains and nominate
3344 * the nearest cpu in the nohz.cpu_mask.
3345 */
3346 int ilb = first_cpu(nohz.cpu_mask);
3347
3348 if (ilb != NR_CPUS)
3349 resched_cpu(ilb);
3350 }
3351 }
3352
3353 /*
3354 * If this cpu is idle and doing idle load balancing for all the
3355 * cpus with ticks stopped, is it time for that to stop?
3356 */
3357 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3358 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3359 resched_cpu(cpu);
3360 return;
3361 }
3362
3363 /*
3364 * If this cpu is idle and the idle load balancing is done by
3365 * someone else, then no need raise the SCHED_SOFTIRQ
3366 */
3367 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3368 cpu_isset(cpu, nohz.cpu_mask))
3369 return;
3370#endif
3371 if (time_after_eq(jiffies, rq->next_balance))
3372 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3373}
dd41f596
IM
3374
3375#else /* CONFIG_SMP */
3376
1da177e4
LT
3377/*
3378 * on UP we do not need to balance between CPUs:
3379 */
70b97a7f 3380static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3381{
3382}
dd41f596 3383
1da177e4
LT
3384#endif
3385
1da177e4
LT
3386DEFINE_PER_CPU(struct kernel_stat, kstat);
3387
3388EXPORT_PER_CPU_SYMBOL(kstat);
3389
3390/*
41b86e9c
IM
3391 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3392 * that have not yet been banked in case the task is currently running.
1da177e4 3393 */
41b86e9c 3394unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3395{
1da177e4 3396 unsigned long flags;
41b86e9c
IM
3397 u64 ns, delta_exec;
3398 struct rq *rq;
48f24c4d 3399
41b86e9c
IM
3400 rq = task_rq_lock(p, &flags);
3401 ns = p->se.sum_exec_runtime;
051a1d1a 3402 if (task_current(rq, p)) {
a8e504d2
IM
3403 update_rq_clock(rq);
3404 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3405 if ((s64)delta_exec > 0)
3406 ns += delta_exec;
3407 }
3408 task_rq_unlock(rq, &flags);
48f24c4d 3409
1da177e4
LT
3410 return ns;
3411}
3412
1da177e4
LT
3413/*
3414 * Account user cpu time to a process.
3415 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3416 * @cputime: the cpu time spent in user space since the last update
3417 */
3418void account_user_time(struct task_struct *p, cputime_t cputime)
3419{
3420 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3421 cputime64_t tmp;
3422
3423 p->utime = cputime_add(p->utime, cputime);
3424
3425 /* Add user time to cpustat. */
3426 tmp = cputime_to_cputime64(cputime);
3427 if (TASK_NICE(p) > 0)
3428 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3429 else
3430 cpustat->user = cputime64_add(cpustat->user, tmp);
3431}
3432
94886b84
LV
3433/*
3434 * Account guest cpu time to a process.
3435 * @p: the process that the cpu time gets accounted to
3436 * @cputime: the cpu time spent in virtual machine since the last update
3437 */
f7402e03 3438static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3439{
3440 cputime64_t tmp;
3441 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3442
3443 tmp = cputime_to_cputime64(cputime);
3444
3445 p->utime = cputime_add(p->utime, cputime);
3446 p->gtime = cputime_add(p->gtime, cputime);
3447
3448 cpustat->user = cputime64_add(cpustat->user, tmp);
3449 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3450}
3451
c66f08be
MN
3452/*
3453 * Account scaled user cpu time to a process.
3454 * @p: the process that the cpu time gets accounted to
3455 * @cputime: the cpu time spent in user space since the last update
3456 */
3457void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3458{
3459 p->utimescaled = cputime_add(p->utimescaled, cputime);
3460}
3461
1da177e4
LT
3462/*
3463 * Account system cpu time to a process.
3464 * @p: the process that the cpu time gets accounted to
3465 * @hardirq_offset: the offset to subtract from hardirq_count()
3466 * @cputime: the cpu time spent in kernel space since the last update
3467 */
3468void account_system_time(struct task_struct *p, int hardirq_offset,
3469 cputime_t cputime)
3470{
3471 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3472 struct rq *rq = this_rq();
1da177e4
LT
3473 cputime64_t tmp;
3474
9778385d
CB
3475 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3476 return account_guest_time(p, cputime);
94886b84 3477
1da177e4
LT
3478 p->stime = cputime_add(p->stime, cputime);
3479
3480 /* Add system time to cpustat. */
3481 tmp = cputime_to_cputime64(cputime);
3482 if (hardirq_count() - hardirq_offset)
3483 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3484 else if (softirq_count())
3485 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3486 else if (p != rq->idle)
1da177e4 3487 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3488 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3489 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3490 else
3491 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3492 /* Account for system time used */
3493 acct_update_integrals(p);
1da177e4
LT
3494}
3495
c66f08be
MN
3496/*
3497 * Account scaled system cpu time to a process.
3498 * @p: the process that the cpu time gets accounted to
3499 * @hardirq_offset: the offset to subtract from hardirq_count()
3500 * @cputime: the cpu time spent in kernel space since the last update
3501 */
3502void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3503{
3504 p->stimescaled = cputime_add(p->stimescaled, cputime);
3505}
3506
1da177e4
LT
3507/*
3508 * Account for involuntary wait time.
3509 * @p: the process from which the cpu time has been stolen
3510 * @steal: the cpu time spent in involuntary wait
3511 */
3512void account_steal_time(struct task_struct *p, cputime_t steal)
3513{
3514 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3515 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3516 struct rq *rq = this_rq();
1da177e4
LT
3517
3518 if (p == rq->idle) {
3519 p->stime = cputime_add(p->stime, steal);
3520 if (atomic_read(&rq->nr_iowait) > 0)
3521 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3522 else
3523 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3524 } else
1da177e4
LT
3525 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3526}
3527
7835b98b
CL
3528/*
3529 * This function gets called by the timer code, with HZ frequency.
3530 * We call it with interrupts disabled.
3531 *
3532 * It also gets called by the fork code, when changing the parent's
3533 * timeslices.
3534 */
3535void scheduler_tick(void)
3536{
7835b98b
CL
3537 int cpu = smp_processor_id();
3538 struct rq *rq = cpu_rq(cpu);
dd41f596 3539 struct task_struct *curr = rq->curr;
529c7726 3540 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3541
3542 spin_lock(&rq->lock);
546fe3c9 3543 __update_rq_clock(rq);
529c7726
IM
3544 /*
3545 * Let rq->clock advance by at least TICK_NSEC:
3546 */
3547 if (unlikely(rq->clock < next_tick))
3548 rq->clock = next_tick;
3549 rq->tick_timestamp = rq->clock;
f1a438d8 3550 update_cpu_load(rq);
dd41f596
IM
3551 if (curr != rq->idle) /* FIXME: needed? */
3552 curr->sched_class->task_tick(rq, curr);
dd41f596 3553 spin_unlock(&rq->lock);
7835b98b 3554
e418e1c2 3555#ifdef CONFIG_SMP
dd41f596
IM
3556 rq->idle_at_tick = idle_cpu(cpu);
3557 trigger_load_balance(rq, cpu);
e418e1c2 3558#endif
1da177e4
LT
3559}
3560
1da177e4
LT
3561#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3562
3563void fastcall add_preempt_count(int val)
3564{
3565 /*
3566 * Underflow?
3567 */
9a11b49a
IM
3568 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3569 return;
1da177e4
LT
3570 preempt_count() += val;
3571 /*
3572 * Spinlock count overflowing soon?
3573 */
33859f7f
MOS
3574 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3575 PREEMPT_MASK - 10);
1da177e4
LT
3576}
3577EXPORT_SYMBOL(add_preempt_count);
3578
3579void fastcall sub_preempt_count(int val)
3580{
3581 /*
3582 * Underflow?
3583 */
9a11b49a
IM
3584 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3585 return;
1da177e4
LT
3586 /*
3587 * Is the spinlock portion underflowing?
3588 */
9a11b49a
IM
3589 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3590 !(preempt_count() & PREEMPT_MASK)))
3591 return;
3592
1da177e4
LT
3593 preempt_count() -= val;
3594}
3595EXPORT_SYMBOL(sub_preempt_count);
3596
3597#endif
3598
3599/*
dd41f596 3600 * Print scheduling while atomic bug:
1da177e4 3601 */
dd41f596 3602static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3603{
838225b4
SS
3604 struct pt_regs *regs = get_irq_regs();
3605
3606 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3607 prev->comm, prev->pid, preempt_count());
3608
dd41f596
IM
3609 debug_show_held_locks(prev);
3610 if (irqs_disabled())
3611 print_irqtrace_events(prev);
838225b4
SS
3612
3613 if (regs)
3614 show_regs(regs);
3615 else
3616 dump_stack();
dd41f596 3617}
1da177e4 3618
dd41f596
IM
3619/*
3620 * Various schedule()-time debugging checks and statistics:
3621 */
3622static inline void schedule_debug(struct task_struct *prev)
3623{
1da177e4 3624 /*
41a2d6cf 3625 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3626 * schedule() atomically, we ignore that path for now.
3627 * Otherwise, whine if we are scheduling when we should not be.
3628 */
dd41f596
IM
3629 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3630 __schedule_bug(prev);
3631
1da177e4
LT
3632 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3633
2d72376b 3634 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3635#ifdef CONFIG_SCHEDSTATS
3636 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3637 schedstat_inc(this_rq(), bkl_count);
3638 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3639 }
3640#endif
dd41f596
IM
3641}
3642
3643/*
3644 * Pick up the highest-prio task:
3645 */
3646static inline struct task_struct *
ff95f3df 3647pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3648{
5522d5d5 3649 const struct sched_class *class;
dd41f596 3650 struct task_struct *p;
1da177e4
LT
3651
3652 /*
dd41f596
IM
3653 * Optimization: we know that if all tasks are in
3654 * the fair class we can call that function directly:
1da177e4 3655 */
dd41f596 3656 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3657 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3658 if (likely(p))
3659 return p;
1da177e4
LT
3660 }
3661
dd41f596
IM
3662 class = sched_class_highest;
3663 for ( ; ; ) {
fb8d4724 3664 p = class->pick_next_task(rq);
dd41f596
IM
3665 if (p)
3666 return p;
3667 /*
3668 * Will never be NULL as the idle class always
3669 * returns a non-NULL p:
3670 */
3671 class = class->next;
3672 }
3673}
1da177e4 3674
dd41f596
IM
3675/*
3676 * schedule() is the main scheduler function.
3677 */
3678asmlinkage void __sched schedule(void)
3679{
3680 struct task_struct *prev, *next;
3681 long *switch_count;
3682 struct rq *rq;
dd41f596
IM
3683 int cpu;
3684
3685need_resched:
3686 preempt_disable();
3687 cpu = smp_processor_id();
3688 rq = cpu_rq(cpu);
3689 rcu_qsctr_inc(cpu);
3690 prev = rq->curr;
3691 switch_count = &prev->nivcsw;
3692
3693 release_kernel_lock(prev);
3694need_resched_nonpreemptible:
3695
3696 schedule_debug(prev);
1da177e4 3697
1e819950
IM
3698 /*
3699 * Do the rq-clock update outside the rq lock:
3700 */
3701 local_irq_disable();
c1b3da3e 3702 __update_rq_clock(rq);
1e819950
IM
3703 spin_lock(&rq->lock);
3704 clear_tsk_need_resched(prev);
1da177e4 3705
1da177e4 3706 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3707 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3708 unlikely(signal_pending(prev)))) {
1da177e4 3709 prev->state = TASK_RUNNING;
dd41f596 3710 } else {
2e1cb74a 3711 deactivate_task(rq, prev, 1);
1da177e4 3712 }
dd41f596 3713 switch_count = &prev->nvcsw;
1da177e4
LT
3714 }
3715
dd41f596 3716 if (unlikely(!rq->nr_running))
1da177e4 3717 idle_balance(cpu, rq);
1da177e4 3718
31ee529c 3719 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3720 next = pick_next_task(rq, prev);
1da177e4
LT
3721
3722 sched_info_switch(prev, next);
dd41f596 3723
1da177e4 3724 if (likely(prev != next)) {
1da177e4
LT
3725 rq->nr_switches++;
3726 rq->curr = next;
3727 ++*switch_count;
3728
dd41f596 3729 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3730 } else
3731 spin_unlock_irq(&rq->lock);
3732
dd41f596
IM
3733 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3734 cpu = smp_processor_id();
3735 rq = cpu_rq(cpu);
1da177e4 3736 goto need_resched_nonpreemptible;
dd41f596 3737 }
1da177e4
LT
3738 preempt_enable_no_resched();
3739 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3740 goto need_resched;
3741}
1da177e4
LT
3742EXPORT_SYMBOL(schedule);
3743
3744#ifdef CONFIG_PREEMPT
3745/*
2ed6e34f 3746 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3747 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3748 * occur there and call schedule directly.
3749 */
3750asmlinkage void __sched preempt_schedule(void)
3751{
3752 struct thread_info *ti = current_thread_info();
3753#ifdef CONFIG_PREEMPT_BKL
3754 struct task_struct *task = current;
3755 int saved_lock_depth;
3756#endif
3757 /*
3758 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3759 * we do not want to preempt the current task. Just return..
1da177e4 3760 */
beed33a8 3761 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3762 return;
3763
3a5c359a
AK
3764 do {
3765 add_preempt_count(PREEMPT_ACTIVE);
3766
3767 /*
3768 * We keep the big kernel semaphore locked, but we
3769 * clear ->lock_depth so that schedule() doesnt
3770 * auto-release the semaphore:
3771 */
1da177e4 3772#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3773 saved_lock_depth = task->lock_depth;
3774 task->lock_depth = -1;
1da177e4 3775#endif
3a5c359a 3776 schedule();
1da177e4 3777#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3778 task->lock_depth = saved_lock_depth;
1da177e4 3779#endif
3a5c359a 3780 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3781
3a5c359a
AK
3782 /*
3783 * Check again in case we missed a preemption opportunity
3784 * between schedule and now.
3785 */
3786 barrier();
3787 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3788}
1da177e4
LT
3789EXPORT_SYMBOL(preempt_schedule);
3790
3791/*
2ed6e34f 3792 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3793 * off of irq context.
3794 * Note, that this is called and return with irqs disabled. This will
3795 * protect us against recursive calling from irq.
3796 */
3797asmlinkage void __sched preempt_schedule_irq(void)
3798{
3799 struct thread_info *ti = current_thread_info();
3800#ifdef CONFIG_PREEMPT_BKL
3801 struct task_struct *task = current;
3802 int saved_lock_depth;
3803#endif
2ed6e34f 3804 /* Catch callers which need to be fixed */
1da177e4
LT
3805 BUG_ON(ti->preempt_count || !irqs_disabled());
3806
3a5c359a
AK
3807 do {
3808 add_preempt_count(PREEMPT_ACTIVE);
3809
3810 /*
3811 * We keep the big kernel semaphore locked, but we
3812 * clear ->lock_depth so that schedule() doesnt
3813 * auto-release the semaphore:
3814 */
1da177e4 3815#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3816 saved_lock_depth = task->lock_depth;
3817 task->lock_depth = -1;
1da177e4 3818#endif
3a5c359a
AK
3819 local_irq_enable();
3820 schedule();
3821 local_irq_disable();
1da177e4 3822#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3823 task->lock_depth = saved_lock_depth;
1da177e4 3824#endif
3a5c359a 3825 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3826
3a5c359a
AK
3827 /*
3828 * Check again in case we missed a preemption opportunity
3829 * between schedule and now.
3830 */
3831 barrier();
3832 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3833}
3834
3835#endif /* CONFIG_PREEMPT */
3836
95cdf3b7
IM
3837int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3838 void *key)
1da177e4 3839{
48f24c4d 3840 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3841}
1da177e4
LT
3842EXPORT_SYMBOL(default_wake_function);
3843
3844/*
41a2d6cf
IM
3845 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3846 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3847 * number) then we wake all the non-exclusive tasks and one exclusive task.
3848 *
3849 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3850 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3851 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3852 */
3853static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3854 int nr_exclusive, int sync, void *key)
3855{
2e45874c 3856 wait_queue_t *curr, *next;
1da177e4 3857
2e45874c 3858 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3859 unsigned flags = curr->flags;
3860
1da177e4 3861 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3862 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3863 break;
3864 }
3865}
3866
3867/**
3868 * __wake_up - wake up threads blocked on a waitqueue.
3869 * @q: the waitqueue
3870 * @mode: which threads
3871 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3872 * @key: is directly passed to the wakeup function
1da177e4
LT
3873 */
3874void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3875 int nr_exclusive, void *key)
1da177e4
LT
3876{
3877 unsigned long flags;
3878
3879 spin_lock_irqsave(&q->lock, flags);
3880 __wake_up_common(q, mode, nr_exclusive, 0, key);
3881 spin_unlock_irqrestore(&q->lock, flags);
3882}
1da177e4
LT
3883EXPORT_SYMBOL(__wake_up);
3884
3885/*
3886 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3887 */
3888void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3889{
3890 __wake_up_common(q, mode, 1, 0, NULL);
3891}
3892
3893/**
67be2dd1 3894 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3895 * @q: the waitqueue
3896 * @mode: which threads
3897 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3898 *
3899 * The sync wakeup differs that the waker knows that it will schedule
3900 * away soon, so while the target thread will be woken up, it will not
3901 * be migrated to another CPU - ie. the two threads are 'synchronized'
3902 * with each other. This can prevent needless bouncing between CPUs.
3903 *
3904 * On UP it can prevent extra preemption.
3905 */
95cdf3b7
IM
3906void fastcall
3907__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3908{
3909 unsigned long flags;
3910 int sync = 1;
3911
3912 if (unlikely(!q))
3913 return;
3914
3915 if (unlikely(!nr_exclusive))
3916 sync = 0;
3917
3918 spin_lock_irqsave(&q->lock, flags);
3919 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3920 spin_unlock_irqrestore(&q->lock, flags);
3921}
3922EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3923
b15136e9 3924void complete(struct completion *x)
1da177e4
LT
3925{
3926 unsigned long flags;
3927
3928 spin_lock_irqsave(&x->wait.lock, flags);
3929 x->done++;
3930 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3931 1, 0, NULL);
3932 spin_unlock_irqrestore(&x->wait.lock, flags);
3933}
3934EXPORT_SYMBOL(complete);
3935
b15136e9 3936void complete_all(struct completion *x)
1da177e4
LT
3937{
3938 unsigned long flags;
3939
3940 spin_lock_irqsave(&x->wait.lock, flags);
3941 x->done += UINT_MAX/2;
3942 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3943 0, 0, NULL);
3944 spin_unlock_irqrestore(&x->wait.lock, flags);
3945}
3946EXPORT_SYMBOL(complete_all);
3947
8cbbe86d
AK
3948static inline long __sched
3949do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3950{
1da177e4
LT
3951 if (!x->done) {
3952 DECLARE_WAITQUEUE(wait, current);
3953
3954 wait.flags |= WQ_FLAG_EXCLUSIVE;
3955 __add_wait_queue_tail(&x->wait, &wait);
3956 do {
8cbbe86d
AK
3957 if (state == TASK_INTERRUPTIBLE &&
3958 signal_pending(current)) {
3959 __remove_wait_queue(&x->wait, &wait);
3960 return -ERESTARTSYS;
3961 }
3962 __set_current_state(state);
1da177e4
LT
3963 spin_unlock_irq(&x->wait.lock);
3964 timeout = schedule_timeout(timeout);
3965 spin_lock_irq(&x->wait.lock);
3966 if (!timeout) {
3967 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3968 return timeout;
1da177e4
LT
3969 }
3970 } while (!x->done);
3971 __remove_wait_queue(&x->wait, &wait);
3972 }
3973 x->done--;
1da177e4
LT
3974 return timeout;
3975}
1da177e4 3976
8cbbe86d
AK
3977static long __sched
3978wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3979{
1da177e4
LT
3980 might_sleep();
3981
3982 spin_lock_irq(&x->wait.lock);
8cbbe86d 3983 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3984 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3985 return timeout;
3986}
1da177e4 3987
b15136e9 3988void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3989{
3990 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3991}
8cbbe86d 3992EXPORT_SYMBOL(wait_for_completion);
1da177e4 3993
b15136e9 3994unsigned long __sched
8cbbe86d 3995wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3996{
8cbbe86d 3997 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3998}
8cbbe86d 3999EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4000
8cbbe86d 4001int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4002{
51e97990
AK
4003 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4004 if (t == -ERESTARTSYS)
4005 return t;
4006 return 0;
0fec171c 4007}
8cbbe86d 4008EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4009
b15136e9 4010unsigned long __sched
8cbbe86d
AK
4011wait_for_completion_interruptible_timeout(struct completion *x,
4012 unsigned long timeout)
0fec171c 4013{
8cbbe86d 4014 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4015}
8cbbe86d 4016EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4017
8cbbe86d
AK
4018static long __sched
4019sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4020{
0fec171c
IM
4021 unsigned long flags;
4022 wait_queue_t wait;
4023
4024 init_waitqueue_entry(&wait, current);
1da177e4 4025
8cbbe86d 4026 __set_current_state(state);
1da177e4 4027
8cbbe86d
AK
4028 spin_lock_irqsave(&q->lock, flags);
4029 __add_wait_queue(q, &wait);
4030 spin_unlock(&q->lock);
4031 timeout = schedule_timeout(timeout);
4032 spin_lock_irq(&q->lock);
4033 __remove_wait_queue(q, &wait);
4034 spin_unlock_irqrestore(&q->lock, flags);
4035
4036 return timeout;
4037}
4038
4039void __sched interruptible_sleep_on(wait_queue_head_t *q)
4040{
4041 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4042}
1da177e4
LT
4043EXPORT_SYMBOL(interruptible_sleep_on);
4044
0fec171c 4045long __sched
95cdf3b7 4046interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4047{
8cbbe86d 4048 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4049}
1da177e4
LT
4050EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4051
0fec171c 4052void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4053{
8cbbe86d 4054 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4055}
1da177e4
LT
4056EXPORT_SYMBOL(sleep_on);
4057
0fec171c 4058long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4059{
8cbbe86d 4060 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4061}
1da177e4
LT
4062EXPORT_SYMBOL(sleep_on_timeout);
4063
b29739f9
IM
4064#ifdef CONFIG_RT_MUTEXES
4065
4066/*
4067 * rt_mutex_setprio - set the current priority of a task
4068 * @p: task
4069 * @prio: prio value (kernel-internal form)
4070 *
4071 * This function changes the 'effective' priority of a task. It does
4072 * not touch ->normal_prio like __setscheduler().
4073 *
4074 * Used by the rt_mutex code to implement priority inheritance logic.
4075 */
36c8b586 4076void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4077{
4078 unsigned long flags;
83b699ed 4079 int oldprio, on_rq, running;
70b97a7f 4080 struct rq *rq;
b29739f9
IM
4081
4082 BUG_ON(prio < 0 || prio > MAX_PRIO);
4083
4084 rq = task_rq_lock(p, &flags);
a8e504d2 4085 update_rq_clock(rq);
b29739f9 4086
d5f9f942 4087 oldprio = p->prio;
dd41f596 4088 on_rq = p->se.on_rq;
051a1d1a 4089 running = task_current(rq, p);
83b699ed 4090 if (on_rq) {
69be72c1 4091 dequeue_task(rq, p, 0);
83b699ed
SV
4092 if (running)
4093 p->sched_class->put_prev_task(rq, p);
4094 }
dd41f596
IM
4095
4096 if (rt_prio(prio))
4097 p->sched_class = &rt_sched_class;
4098 else
4099 p->sched_class = &fair_sched_class;
4100
b29739f9
IM
4101 p->prio = prio;
4102
dd41f596 4103 if (on_rq) {
83b699ed
SV
4104 if (running)
4105 p->sched_class->set_curr_task(rq);
8159f87e 4106 enqueue_task(rq, p, 0);
b29739f9
IM
4107 /*
4108 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4109 * our priority decreased, or if we are not currently running on
4110 * this runqueue and our priority is higher than the current's
b29739f9 4111 */
83b699ed 4112 if (running) {
d5f9f942
AM
4113 if (p->prio > oldprio)
4114 resched_task(rq->curr);
dd41f596
IM
4115 } else {
4116 check_preempt_curr(rq, p);
4117 }
b29739f9
IM
4118 }
4119 task_rq_unlock(rq, &flags);
4120}
4121
4122#endif
4123
36c8b586 4124void set_user_nice(struct task_struct *p, long nice)
1da177e4 4125{
dd41f596 4126 int old_prio, delta, on_rq;
1da177e4 4127 unsigned long flags;
70b97a7f 4128 struct rq *rq;
1da177e4
LT
4129
4130 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4131 return;
4132 /*
4133 * We have to be careful, if called from sys_setpriority(),
4134 * the task might be in the middle of scheduling on another CPU.
4135 */
4136 rq = task_rq_lock(p, &flags);
a8e504d2 4137 update_rq_clock(rq);
1da177e4
LT
4138 /*
4139 * The RT priorities are set via sched_setscheduler(), but we still
4140 * allow the 'normal' nice value to be set - but as expected
4141 * it wont have any effect on scheduling until the task is
dd41f596 4142 * SCHED_FIFO/SCHED_RR:
1da177e4 4143 */
e05606d3 4144 if (task_has_rt_policy(p)) {
1da177e4
LT
4145 p->static_prio = NICE_TO_PRIO(nice);
4146 goto out_unlock;
4147 }
dd41f596 4148 on_rq = p->se.on_rq;
58e2d4ca 4149 if (on_rq)
69be72c1 4150 dequeue_task(rq, p, 0);
1da177e4 4151
1da177e4 4152 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4153 set_load_weight(p);
b29739f9
IM
4154 old_prio = p->prio;
4155 p->prio = effective_prio(p);
4156 delta = p->prio - old_prio;
1da177e4 4157
dd41f596 4158 if (on_rq) {
8159f87e 4159 enqueue_task(rq, p, 0);
1da177e4 4160 /*
d5f9f942
AM
4161 * If the task increased its priority or is running and
4162 * lowered its priority, then reschedule its CPU:
1da177e4 4163 */
d5f9f942 4164 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4165 resched_task(rq->curr);
4166 }
4167out_unlock:
4168 task_rq_unlock(rq, &flags);
4169}
1da177e4
LT
4170EXPORT_SYMBOL(set_user_nice);
4171
e43379f1
MM
4172/*
4173 * can_nice - check if a task can reduce its nice value
4174 * @p: task
4175 * @nice: nice value
4176 */
36c8b586 4177int can_nice(const struct task_struct *p, const int nice)
e43379f1 4178{
024f4747
MM
4179 /* convert nice value [19,-20] to rlimit style value [1,40] */
4180 int nice_rlim = 20 - nice;
48f24c4d 4181
e43379f1
MM
4182 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4183 capable(CAP_SYS_NICE));
4184}
4185
1da177e4
LT
4186#ifdef __ARCH_WANT_SYS_NICE
4187
4188/*
4189 * sys_nice - change the priority of the current process.
4190 * @increment: priority increment
4191 *
4192 * sys_setpriority is a more generic, but much slower function that
4193 * does similar things.
4194 */
4195asmlinkage long sys_nice(int increment)
4196{
48f24c4d 4197 long nice, retval;
1da177e4
LT
4198
4199 /*
4200 * Setpriority might change our priority at the same moment.
4201 * We don't have to worry. Conceptually one call occurs first
4202 * and we have a single winner.
4203 */
e43379f1
MM
4204 if (increment < -40)
4205 increment = -40;
1da177e4
LT
4206 if (increment > 40)
4207 increment = 40;
4208
4209 nice = PRIO_TO_NICE(current->static_prio) + increment;
4210 if (nice < -20)
4211 nice = -20;
4212 if (nice > 19)
4213 nice = 19;
4214
e43379f1
MM
4215 if (increment < 0 && !can_nice(current, nice))
4216 return -EPERM;
4217
1da177e4
LT
4218 retval = security_task_setnice(current, nice);
4219 if (retval)
4220 return retval;
4221
4222 set_user_nice(current, nice);
4223 return 0;
4224}
4225
4226#endif
4227
4228/**
4229 * task_prio - return the priority value of a given task.
4230 * @p: the task in question.
4231 *
4232 * This is the priority value as seen by users in /proc.
4233 * RT tasks are offset by -200. Normal tasks are centered
4234 * around 0, value goes from -16 to +15.
4235 */
36c8b586 4236int task_prio(const struct task_struct *p)
1da177e4
LT
4237{
4238 return p->prio - MAX_RT_PRIO;
4239}
4240
4241/**
4242 * task_nice - return the nice value of a given task.
4243 * @p: the task in question.
4244 */
36c8b586 4245int task_nice(const struct task_struct *p)
1da177e4
LT
4246{
4247 return TASK_NICE(p);
4248}
1da177e4 4249EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4250
4251/**
4252 * idle_cpu - is a given cpu idle currently?
4253 * @cpu: the processor in question.
4254 */
4255int idle_cpu(int cpu)
4256{
4257 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4258}
4259
1da177e4
LT
4260/**
4261 * idle_task - return the idle task for a given cpu.
4262 * @cpu: the processor in question.
4263 */
36c8b586 4264struct task_struct *idle_task(int cpu)
1da177e4
LT
4265{
4266 return cpu_rq(cpu)->idle;
4267}
4268
4269/**
4270 * find_process_by_pid - find a process with a matching PID value.
4271 * @pid: the pid in question.
4272 */
a9957449 4273static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4274{
228ebcbe 4275 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4276}
4277
4278/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4279static void
4280__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4281{
dd41f596 4282 BUG_ON(p->se.on_rq);
48f24c4d 4283
1da177e4 4284 p->policy = policy;
dd41f596
IM
4285 switch (p->policy) {
4286 case SCHED_NORMAL:
4287 case SCHED_BATCH:
4288 case SCHED_IDLE:
4289 p->sched_class = &fair_sched_class;
4290 break;
4291 case SCHED_FIFO:
4292 case SCHED_RR:
4293 p->sched_class = &rt_sched_class;
4294 break;
4295 }
4296
1da177e4 4297 p->rt_priority = prio;
b29739f9
IM
4298 p->normal_prio = normal_prio(p);
4299 /* we are holding p->pi_lock already */
4300 p->prio = rt_mutex_getprio(p);
2dd73a4f 4301 set_load_weight(p);
1da177e4
LT
4302}
4303
4304/**
72fd4a35 4305 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4306 * @p: the task in question.
4307 * @policy: new policy.
4308 * @param: structure containing the new RT priority.
5fe1d75f 4309 *
72fd4a35 4310 * NOTE that the task may be already dead.
1da177e4 4311 */
95cdf3b7
IM
4312int sched_setscheduler(struct task_struct *p, int policy,
4313 struct sched_param *param)
1da177e4 4314{
83b699ed 4315 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4316 unsigned long flags;
70b97a7f 4317 struct rq *rq;
1da177e4 4318
66e5393a
SR
4319 /* may grab non-irq protected spin_locks */
4320 BUG_ON(in_interrupt());
1da177e4
LT
4321recheck:
4322 /* double check policy once rq lock held */
4323 if (policy < 0)
4324 policy = oldpolicy = p->policy;
4325 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4326 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4327 policy != SCHED_IDLE)
b0a9499c 4328 return -EINVAL;
1da177e4
LT
4329 /*
4330 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4331 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4332 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4333 */
4334 if (param->sched_priority < 0 ||
95cdf3b7 4335 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4336 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4337 return -EINVAL;
e05606d3 4338 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4339 return -EINVAL;
4340
37e4ab3f
OC
4341 /*
4342 * Allow unprivileged RT tasks to decrease priority:
4343 */
4344 if (!capable(CAP_SYS_NICE)) {
e05606d3 4345 if (rt_policy(policy)) {
8dc3e909 4346 unsigned long rlim_rtprio;
8dc3e909
ON
4347
4348 if (!lock_task_sighand(p, &flags))
4349 return -ESRCH;
4350 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4351 unlock_task_sighand(p, &flags);
4352
4353 /* can't set/change the rt policy */
4354 if (policy != p->policy && !rlim_rtprio)
4355 return -EPERM;
4356
4357 /* can't increase priority */
4358 if (param->sched_priority > p->rt_priority &&
4359 param->sched_priority > rlim_rtprio)
4360 return -EPERM;
4361 }
dd41f596
IM
4362 /*
4363 * Like positive nice levels, dont allow tasks to
4364 * move out of SCHED_IDLE either:
4365 */
4366 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4367 return -EPERM;
5fe1d75f 4368
37e4ab3f
OC
4369 /* can't change other user's priorities */
4370 if ((current->euid != p->euid) &&
4371 (current->euid != p->uid))
4372 return -EPERM;
4373 }
1da177e4
LT
4374
4375 retval = security_task_setscheduler(p, policy, param);
4376 if (retval)
4377 return retval;
b29739f9
IM
4378 /*
4379 * make sure no PI-waiters arrive (or leave) while we are
4380 * changing the priority of the task:
4381 */
4382 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4383 /*
4384 * To be able to change p->policy safely, the apropriate
4385 * runqueue lock must be held.
4386 */
b29739f9 4387 rq = __task_rq_lock(p);
1da177e4
LT
4388 /* recheck policy now with rq lock held */
4389 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4390 policy = oldpolicy = -1;
b29739f9
IM
4391 __task_rq_unlock(rq);
4392 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4393 goto recheck;
4394 }
2daa3577 4395 update_rq_clock(rq);
dd41f596 4396 on_rq = p->se.on_rq;
051a1d1a 4397 running = task_current(rq, p);
83b699ed 4398 if (on_rq) {
2e1cb74a 4399 deactivate_task(rq, p, 0);
83b699ed
SV
4400 if (running)
4401 p->sched_class->put_prev_task(rq, p);
4402 }
f6b53205 4403
1da177e4 4404 oldprio = p->prio;
dd41f596 4405 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4406
dd41f596 4407 if (on_rq) {
83b699ed
SV
4408 if (running)
4409 p->sched_class->set_curr_task(rq);
dd41f596 4410 activate_task(rq, p, 0);
1da177e4
LT
4411 /*
4412 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4413 * our priority decreased, or if we are not currently running on
4414 * this runqueue and our priority is higher than the current's
1da177e4 4415 */
83b699ed 4416 if (running) {
d5f9f942
AM
4417 if (p->prio > oldprio)
4418 resched_task(rq->curr);
dd41f596
IM
4419 } else {
4420 check_preempt_curr(rq, p);
4421 }
1da177e4 4422 }
b29739f9
IM
4423 __task_rq_unlock(rq);
4424 spin_unlock_irqrestore(&p->pi_lock, flags);
4425
95e02ca9
TG
4426 rt_mutex_adjust_pi(p);
4427
1da177e4
LT
4428 return 0;
4429}
4430EXPORT_SYMBOL_GPL(sched_setscheduler);
4431
95cdf3b7
IM
4432static int
4433do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4434{
1da177e4
LT
4435 struct sched_param lparam;
4436 struct task_struct *p;
36c8b586 4437 int retval;
1da177e4
LT
4438
4439 if (!param || pid < 0)
4440 return -EINVAL;
4441 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4442 return -EFAULT;
5fe1d75f
ON
4443
4444 rcu_read_lock();
4445 retval = -ESRCH;
1da177e4 4446 p = find_process_by_pid(pid);
5fe1d75f
ON
4447 if (p != NULL)
4448 retval = sched_setscheduler(p, policy, &lparam);
4449 rcu_read_unlock();
36c8b586 4450
1da177e4
LT
4451 return retval;
4452}
4453
4454/**
4455 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4456 * @pid: the pid in question.
4457 * @policy: new policy.
4458 * @param: structure containing the new RT priority.
4459 */
41a2d6cf
IM
4460asmlinkage long
4461sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4462{
c21761f1
JB
4463 /* negative values for policy are not valid */
4464 if (policy < 0)
4465 return -EINVAL;
4466
1da177e4
LT
4467 return do_sched_setscheduler(pid, policy, param);
4468}
4469
4470/**
4471 * sys_sched_setparam - set/change the RT priority of a thread
4472 * @pid: the pid in question.
4473 * @param: structure containing the new RT priority.
4474 */
4475asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4476{
4477 return do_sched_setscheduler(pid, -1, param);
4478}
4479
4480/**
4481 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4482 * @pid: the pid in question.
4483 */
4484asmlinkage long sys_sched_getscheduler(pid_t pid)
4485{
36c8b586 4486 struct task_struct *p;
3a5c359a 4487 int retval;
1da177e4
LT
4488
4489 if (pid < 0)
3a5c359a 4490 return -EINVAL;
1da177e4
LT
4491
4492 retval = -ESRCH;
4493 read_lock(&tasklist_lock);
4494 p = find_process_by_pid(pid);
4495 if (p) {
4496 retval = security_task_getscheduler(p);
4497 if (!retval)
4498 retval = p->policy;
4499 }
4500 read_unlock(&tasklist_lock);
1da177e4
LT
4501 return retval;
4502}
4503
4504/**
4505 * sys_sched_getscheduler - get the RT priority of a thread
4506 * @pid: the pid in question.
4507 * @param: structure containing the RT priority.
4508 */
4509asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4510{
4511 struct sched_param lp;
36c8b586 4512 struct task_struct *p;
3a5c359a 4513 int retval;
1da177e4
LT
4514
4515 if (!param || pid < 0)
3a5c359a 4516 return -EINVAL;
1da177e4
LT
4517
4518 read_lock(&tasklist_lock);
4519 p = find_process_by_pid(pid);
4520 retval = -ESRCH;
4521 if (!p)
4522 goto out_unlock;
4523
4524 retval = security_task_getscheduler(p);
4525 if (retval)
4526 goto out_unlock;
4527
4528 lp.sched_priority = p->rt_priority;
4529 read_unlock(&tasklist_lock);
4530
4531 /*
4532 * This one might sleep, we cannot do it with a spinlock held ...
4533 */
4534 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4535
1da177e4
LT
4536 return retval;
4537
4538out_unlock:
4539 read_unlock(&tasklist_lock);
4540 return retval;
4541}
4542
4543long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4544{
1da177e4 4545 cpumask_t cpus_allowed;
36c8b586
IM
4546 struct task_struct *p;
4547 int retval;
1da177e4 4548
5be9361c 4549 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4550 read_lock(&tasklist_lock);
4551
4552 p = find_process_by_pid(pid);
4553 if (!p) {
4554 read_unlock(&tasklist_lock);
5be9361c 4555 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4556 return -ESRCH;
4557 }
4558
4559 /*
4560 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4561 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4562 * usage count and then drop tasklist_lock.
4563 */
4564 get_task_struct(p);
4565 read_unlock(&tasklist_lock);
4566
4567 retval = -EPERM;
4568 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4569 !capable(CAP_SYS_NICE))
4570 goto out_unlock;
4571
e7834f8f
DQ
4572 retval = security_task_setscheduler(p, 0, NULL);
4573 if (retval)
4574 goto out_unlock;
4575
1da177e4
LT
4576 cpus_allowed = cpuset_cpus_allowed(p);
4577 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4578 again:
1da177e4
LT
4579 retval = set_cpus_allowed(p, new_mask);
4580
8707d8b8
PM
4581 if (!retval) {
4582 cpus_allowed = cpuset_cpus_allowed(p);
4583 if (!cpus_subset(new_mask, cpus_allowed)) {
4584 /*
4585 * We must have raced with a concurrent cpuset
4586 * update. Just reset the cpus_allowed to the
4587 * cpuset's cpus_allowed
4588 */
4589 new_mask = cpus_allowed;
4590 goto again;
4591 }
4592 }
1da177e4
LT
4593out_unlock:
4594 put_task_struct(p);
5be9361c 4595 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4596 return retval;
4597}
4598
4599static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4600 cpumask_t *new_mask)
4601{
4602 if (len < sizeof(cpumask_t)) {
4603 memset(new_mask, 0, sizeof(cpumask_t));
4604 } else if (len > sizeof(cpumask_t)) {
4605 len = sizeof(cpumask_t);
4606 }
4607 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4608}
4609
4610/**
4611 * sys_sched_setaffinity - set the cpu affinity of a process
4612 * @pid: pid of the process
4613 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4614 * @user_mask_ptr: user-space pointer to the new cpu mask
4615 */
4616asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4617 unsigned long __user *user_mask_ptr)
4618{
4619 cpumask_t new_mask;
4620 int retval;
4621
4622 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4623 if (retval)
4624 return retval;
4625
4626 return sched_setaffinity(pid, new_mask);
4627}
4628
4629/*
4630 * Represents all cpu's present in the system
4631 * In systems capable of hotplug, this map could dynamically grow
4632 * as new cpu's are detected in the system via any platform specific
4633 * method, such as ACPI for e.g.
4634 */
4635
4cef0c61 4636cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4637EXPORT_SYMBOL(cpu_present_map);
4638
4639#ifndef CONFIG_SMP
4cef0c61 4640cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4641EXPORT_SYMBOL(cpu_online_map);
4642
4cef0c61 4643cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4644EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4645#endif
4646
4647long sched_getaffinity(pid_t pid, cpumask_t *mask)
4648{
36c8b586 4649 struct task_struct *p;
1da177e4 4650 int retval;
1da177e4 4651
5be9361c 4652 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4653 read_lock(&tasklist_lock);
4654
4655 retval = -ESRCH;
4656 p = find_process_by_pid(pid);
4657 if (!p)
4658 goto out_unlock;
4659
e7834f8f
DQ
4660 retval = security_task_getscheduler(p);
4661 if (retval)
4662 goto out_unlock;
4663
2f7016d9 4664 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4665
4666out_unlock:
4667 read_unlock(&tasklist_lock);
5be9361c 4668 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4669
9531b62f 4670 return retval;
1da177e4
LT
4671}
4672
4673/**
4674 * sys_sched_getaffinity - get the cpu affinity of a process
4675 * @pid: pid of the process
4676 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4677 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4678 */
4679asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4680 unsigned long __user *user_mask_ptr)
4681{
4682 int ret;
4683 cpumask_t mask;
4684
4685 if (len < sizeof(cpumask_t))
4686 return -EINVAL;
4687
4688 ret = sched_getaffinity(pid, &mask);
4689 if (ret < 0)
4690 return ret;
4691
4692 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4693 return -EFAULT;
4694
4695 return sizeof(cpumask_t);
4696}
4697
4698/**
4699 * sys_sched_yield - yield the current processor to other threads.
4700 *
dd41f596
IM
4701 * This function yields the current CPU to other tasks. If there are no
4702 * other threads running on this CPU then this function will return.
1da177e4
LT
4703 */
4704asmlinkage long sys_sched_yield(void)
4705{
70b97a7f 4706 struct rq *rq = this_rq_lock();
1da177e4 4707
2d72376b 4708 schedstat_inc(rq, yld_count);
4530d7ab 4709 current->sched_class->yield_task(rq);
1da177e4
LT
4710
4711 /*
4712 * Since we are going to call schedule() anyway, there's
4713 * no need to preempt or enable interrupts:
4714 */
4715 __release(rq->lock);
8a25d5de 4716 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4717 _raw_spin_unlock(&rq->lock);
4718 preempt_enable_no_resched();
4719
4720 schedule();
4721
4722 return 0;
4723}
4724
e7b38404 4725static void __cond_resched(void)
1da177e4 4726{
8e0a43d8
IM
4727#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4728 __might_sleep(__FILE__, __LINE__);
4729#endif
5bbcfd90
IM
4730 /*
4731 * The BKS might be reacquired before we have dropped
4732 * PREEMPT_ACTIVE, which could trigger a second
4733 * cond_resched() call.
4734 */
1da177e4
LT
4735 do {
4736 add_preempt_count(PREEMPT_ACTIVE);
4737 schedule();
4738 sub_preempt_count(PREEMPT_ACTIVE);
4739 } while (need_resched());
4740}
4741
4742int __sched cond_resched(void)
4743{
9414232f
IM
4744 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4745 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4746 __cond_resched();
4747 return 1;
4748 }
4749 return 0;
4750}
1da177e4
LT
4751EXPORT_SYMBOL(cond_resched);
4752
4753/*
4754 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4755 * call schedule, and on return reacquire the lock.
4756 *
41a2d6cf 4757 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4758 * operations here to prevent schedule() from being called twice (once via
4759 * spin_unlock(), once by hand).
4760 */
95cdf3b7 4761int cond_resched_lock(spinlock_t *lock)
1da177e4 4762{
6df3cecb
JK
4763 int ret = 0;
4764
1da177e4
LT
4765 if (need_lockbreak(lock)) {
4766 spin_unlock(lock);
4767 cpu_relax();
6df3cecb 4768 ret = 1;
1da177e4
LT
4769 spin_lock(lock);
4770 }
9414232f 4771 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4772 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4773 _raw_spin_unlock(lock);
4774 preempt_enable_no_resched();
4775 __cond_resched();
6df3cecb 4776 ret = 1;
1da177e4 4777 spin_lock(lock);
1da177e4 4778 }
6df3cecb 4779 return ret;
1da177e4 4780}
1da177e4
LT
4781EXPORT_SYMBOL(cond_resched_lock);
4782
4783int __sched cond_resched_softirq(void)
4784{
4785 BUG_ON(!in_softirq());
4786
9414232f 4787 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4788 local_bh_enable();
1da177e4
LT
4789 __cond_resched();
4790 local_bh_disable();
4791 return 1;
4792 }
4793 return 0;
4794}
1da177e4
LT
4795EXPORT_SYMBOL(cond_resched_softirq);
4796
1da177e4
LT
4797/**
4798 * yield - yield the current processor to other threads.
4799 *
72fd4a35 4800 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4801 * thread runnable and calls sys_sched_yield().
4802 */
4803void __sched yield(void)
4804{
4805 set_current_state(TASK_RUNNING);
4806 sys_sched_yield();
4807}
1da177e4
LT
4808EXPORT_SYMBOL(yield);
4809
4810/*
41a2d6cf 4811 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4812 * that process accounting knows that this is a task in IO wait state.
4813 *
4814 * But don't do that if it is a deliberate, throttling IO wait (this task
4815 * has set its backing_dev_info: the queue against which it should throttle)
4816 */
4817void __sched io_schedule(void)
4818{
70b97a7f 4819 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4820
0ff92245 4821 delayacct_blkio_start();
1da177e4
LT
4822 atomic_inc(&rq->nr_iowait);
4823 schedule();
4824 atomic_dec(&rq->nr_iowait);
0ff92245 4825 delayacct_blkio_end();
1da177e4 4826}
1da177e4
LT
4827EXPORT_SYMBOL(io_schedule);
4828
4829long __sched io_schedule_timeout(long timeout)
4830{
70b97a7f 4831 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4832 long ret;
4833
0ff92245 4834 delayacct_blkio_start();
1da177e4
LT
4835 atomic_inc(&rq->nr_iowait);
4836 ret = schedule_timeout(timeout);
4837 atomic_dec(&rq->nr_iowait);
0ff92245 4838 delayacct_blkio_end();
1da177e4
LT
4839 return ret;
4840}
4841
4842/**
4843 * sys_sched_get_priority_max - return maximum RT priority.
4844 * @policy: scheduling class.
4845 *
4846 * this syscall returns the maximum rt_priority that can be used
4847 * by a given scheduling class.
4848 */
4849asmlinkage long sys_sched_get_priority_max(int policy)
4850{
4851 int ret = -EINVAL;
4852
4853 switch (policy) {
4854 case SCHED_FIFO:
4855 case SCHED_RR:
4856 ret = MAX_USER_RT_PRIO-1;
4857 break;
4858 case SCHED_NORMAL:
b0a9499c 4859 case SCHED_BATCH:
dd41f596 4860 case SCHED_IDLE:
1da177e4
LT
4861 ret = 0;
4862 break;
4863 }
4864 return ret;
4865}
4866
4867/**
4868 * sys_sched_get_priority_min - return minimum RT priority.
4869 * @policy: scheduling class.
4870 *
4871 * this syscall returns the minimum rt_priority that can be used
4872 * by a given scheduling class.
4873 */
4874asmlinkage long sys_sched_get_priority_min(int policy)
4875{
4876 int ret = -EINVAL;
4877
4878 switch (policy) {
4879 case SCHED_FIFO:
4880 case SCHED_RR:
4881 ret = 1;
4882 break;
4883 case SCHED_NORMAL:
b0a9499c 4884 case SCHED_BATCH:
dd41f596 4885 case SCHED_IDLE:
1da177e4
LT
4886 ret = 0;
4887 }
4888 return ret;
4889}
4890
4891/**
4892 * sys_sched_rr_get_interval - return the default timeslice of a process.
4893 * @pid: pid of the process.
4894 * @interval: userspace pointer to the timeslice value.
4895 *
4896 * this syscall writes the default timeslice value of a given process
4897 * into the user-space timespec buffer. A value of '0' means infinity.
4898 */
4899asmlinkage
4900long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4901{
36c8b586 4902 struct task_struct *p;
a4ec24b4 4903 unsigned int time_slice;
3a5c359a 4904 int retval;
1da177e4 4905 struct timespec t;
1da177e4
LT
4906
4907 if (pid < 0)
3a5c359a 4908 return -EINVAL;
1da177e4
LT
4909
4910 retval = -ESRCH;
4911 read_lock(&tasklist_lock);
4912 p = find_process_by_pid(pid);
4913 if (!p)
4914 goto out_unlock;
4915
4916 retval = security_task_getscheduler(p);
4917 if (retval)
4918 goto out_unlock;
4919
77034937
IM
4920 /*
4921 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4922 * tasks that are on an otherwise idle runqueue:
4923 */
4924 time_slice = 0;
4925 if (p->policy == SCHED_RR) {
a4ec24b4 4926 time_slice = DEF_TIMESLICE;
77034937 4927 } else {
a4ec24b4
DA
4928 struct sched_entity *se = &p->se;
4929 unsigned long flags;
4930 struct rq *rq;
4931
4932 rq = task_rq_lock(p, &flags);
77034937
IM
4933 if (rq->cfs.load.weight)
4934 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
4935 task_rq_unlock(rq, &flags);
4936 }
1da177e4 4937 read_unlock(&tasklist_lock);
a4ec24b4 4938 jiffies_to_timespec(time_slice, &t);
1da177e4 4939 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4940 return retval;
3a5c359a 4941
1da177e4
LT
4942out_unlock:
4943 read_unlock(&tasklist_lock);
4944 return retval;
4945}
4946
2ed6e34f 4947static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4948
4949static void show_task(struct task_struct *p)
1da177e4 4950{
1da177e4 4951 unsigned long free = 0;
36c8b586 4952 unsigned state;
1da177e4 4953
1da177e4 4954 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4955 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4956 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4957#if BITS_PER_LONG == 32
1da177e4 4958 if (state == TASK_RUNNING)
cc4ea795 4959 printk(KERN_CONT " running ");
1da177e4 4960 else
cc4ea795 4961 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4962#else
4963 if (state == TASK_RUNNING)
cc4ea795 4964 printk(KERN_CONT " running task ");
1da177e4 4965 else
cc4ea795 4966 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4967#endif
4968#ifdef CONFIG_DEBUG_STACK_USAGE
4969 {
10ebffde 4970 unsigned long *n = end_of_stack(p);
1da177e4
LT
4971 while (!*n)
4972 n++;
10ebffde 4973 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4974 }
4975#endif
ba25f9dc 4976 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 4977 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4
LT
4978
4979 if (state != TASK_RUNNING)
4980 show_stack(p, NULL);
4981}
4982
e59e2ae2 4983void show_state_filter(unsigned long state_filter)
1da177e4 4984{
36c8b586 4985 struct task_struct *g, *p;
1da177e4 4986
4bd77321
IM
4987#if BITS_PER_LONG == 32
4988 printk(KERN_INFO
4989 " task PC stack pid father\n");
1da177e4 4990#else
4bd77321
IM
4991 printk(KERN_INFO
4992 " task PC stack pid father\n");
1da177e4
LT
4993#endif
4994 read_lock(&tasklist_lock);
4995 do_each_thread(g, p) {
4996 /*
4997 * reset the NMI-timeout, listing all files on a slow
4998 * console might take alot of time:
4999 */
5000 touch_nmi_watchdog();
39bc89fd 5001 if (!state_filter || (p->state & state_filter))
e59e2ae2 5002 show_task(p);
1da177e4
LT
5003 } while_each_thread(g, p);
5004
04c9167f
JF
5005 touch_all_softlockup_watchdogs();
5006
dd41f596
IM
5007#ifdef CONFIG_SCHED_DEBUG
5008 sysrq_sched_debug_show();
5009#endif
1da177e4 5010 read_unlock(&tasklist_lock);
e59e2ae2
IM
5011 /*
5012 * Only show locks if all tasks are dumped:
5013 */
5014 if (state_filter == -1)
5015 debug_show_all_locks();
1da177e4
LT
5016}
5017
1df21055
IM
5018void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5019{
dd41f596 5020 idle->sched_class = &idle_sched_class;
1df21055
IM
5021}
5022
f340c0d1
IM
5023/**
5024 * init_idle - set up an idle thread for a given CPU
5025 * @idle: task in question
5026 * @cpu: cpu the idle task belongs to
5027 *
5028 * NOTE: this function does not set the idle thread's NEED_RESCHED
5029 * flag, to make booting more robust.
5030 */
5c1e1767 5031void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5032{
70b97a7f 5033 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5034 unsigned long flags;
5035
dd41f596
IM
5036 __sched_fork(idle);
5037 idle->se.exec_start = sched_clock();
5038
b29739f9 5039 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5040 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5041 __set_task_cpu(idle, cpu);
1da177e4
LT
5042
5043 spin_lock_irqsave(&rq->lock, flags);
5044 rq->curr = rq->idle = idle;
4866cde0
NP
5045#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5046 idle->oncpu = 1;
5047#endif
1da177e4
LT
5048 spin_unlock_irqrestore(&rq->lock, flags);
5049
5050 /* Set the preempt count _outside_ the spinlocks! */
5051#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 5052 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 5053#else
a1261f54 5054 task_thread_info(idle)->preempt_count = 0;
1da177e4 5055#endif
dd41f596
IM
5056 /*
5057 * The idle tasks have their own, simple scheduling class:
5058 */
5059 idle->sched_class = &idle_sched_class;
1da177e4
LT
5060}
5061
5062/*
5063 * In a system that switches off the HZ timer nohz_cpu_mask
5064 * indicates which cpus entered this state. This is used
5065 * in the rcu update to wait only for active cpus. For system
5066 * which do not switch off the HZ timer nohz_cpu_mask should
5067 * always be CPU_MASK_NONE.
5068 */
5069cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5070
19978ca6
IM
5071/*
5072 * Increase the granularity value when there are more CPUs,
5073 * because with more CPUs the 'effective latency' as visible
5074 * to users decreases. But the relationship is not linear,
5075 * so pick a second-best guess by going with the log2 of the
5076 * number of CPUs.
5077 *
5078 * This idea comes from the SD scheduler of Con Kolivas:
5079 */
5080static inline void sched_init_granularity(void)
5081{
5082 unsigned int factor = 1 + ilog2(num_online_cpus());
5083 const unsigned long limit = 200000000;
5084
5085 sysctl_sched_min_granularity *= factor;
5086 if (sysctl_sched_min_granularity > limit)
5087 sysctl_sched_min_granularity = limit;
5088
5089 sysctl_sched_latency *= factor;
5090 if (sysctl_sched_latency > limit)
5091 sysctl_sched_latency = limit;
5092
5093 sysctl_sched_wakeup_granularity *= factor;
5094 sysctl_sched_batch_wakeup_granularity *= factor;
5095}
5096
1da177e4
LT
5097#ifdef CONFIG_SMP
5098/*
5099 * This is how migration works:
5100 *
70b97a7f 5101 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5102 * runqueue and wake up that CPU's migration thread.
5103 * 2) we down() the locked semaphore => thread blocks.
5104 * 3) migration thread wakes up (implicitly it forces the migrated
5105 * thread off the CPU)
5106 * 4) it gets the migration request and checks whether the migrated
5107 * task is still in the wrong runqueue.
5108 * 5) if it's in the wrong runqueue then the migration thread removes
5109 * it and puts it into the right queue.
5110 * 6) migration thread up()s the semaphore.
5111 * 7) we wake up and the migration is done.
5112 */
5113
5114/*
5115 * Change a given task's CPU affinity. Migrate the thread to a
5116 * proper CPU and schedule it away if the CPU it's executing on
5117 * is removed from the allowed bitmask.
5118 *
5119 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5120 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5121 * call is not atomic; no spinlocks may be held.
5122 */
36c8b586 5123int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5124{
70b97a7f 5125 struct migration_req req;
1da177e4 5126 unsigned long flags;
70b97a7f 5127 struct rq *rq;
48f24c4d 5128 int ret = 0;
1da177e4
LT
5129
5130 rq = task_rq_lock(p, &flags);
5131 if (!cpus_intersects(new_mask, cpu_online_map)) {
5132 ret = -EINVAL;
5133 goto out;
5134 }
5135
5136 p->cpus_allowed = new_mask;
5137 /* Can the task run on the task's current CPU? If so, we're done */
5138 if (cpu_isset(task_cpu(p), new_mask))
5139 goto out;
5140
5141 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5142 /* Need help from migration thread: drop lock and wait. */
5143 task_rq_unlock(rq, &flags);
5144 wake_up_process(rq->migration_thread);
5145 wait_for_completion(&req.done);
5146 tlb_migrate_finish(p->mm);
5147 return 0;
5148 }
5149out:
5150 task_rq_unlock(rq, &flags);
48f24c4d 5151
1da177e4
LT
5152 return ret;
5153}
1da177e4
LT
5154EXPORT_SYMBOL_GPL(set_cpus_allowed);
5155
5156/*
41a2d6cf 5157 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5158 * this because either it can't run here any more (set_cpus_allowed()
5159 * away from this CPU, or CPU going down), or because we're
5160 * attempting to rebalance this task on exec (sched_exec).
5161 *
5162 * So we race with normal scheduler movements, but that's OK, as long
5163 * as the task is no longer on this CPU.
efc30814
KK
5164 *
5165 * Returns non-zero if task was successfully migrated.
1da177e4 5166 */
efc30814 5167static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5168{
70b97a7f 5169 struct rq *rq_dest, *rq_src;
dd41f596 5170 int ret = 0, on_rq;
1da177e4
LT
5171
5172 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5173 return ret;
1da177e4
LT
5174
5175 rq_src = cpu_rq(src_cpu);
5176 rq_dest = cpu_rq(dest_cpu);
5177
5178 double_rq_lock(rq_src, rq_dest);
5179 /* Already moved. */
5180 if (task_cpu(p) != src_cpu)
5181 goto out;
5182 /* Affinity changed (again). */
5183 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5184 goto out;
5185
dd41f596 5186 on_rq = p->se.on_rq;
6e82a3be 5187 if (on_rq)
2e1cb74a 5188 deactivate_task(rq_src, p, 0);
6e82a3be 5189
1da177e4 5190 set_task_cpu(p, dest_cpu);
dd41f596
IM
5191 if (on_rq) {
5192 activate_task(rq_dest, p, 0);
5193 check_preempt_curr(rq_dest, p);
1da177e4 5194 }
efc30814 5195 ret = 1;
1da177e4
LT
5196out:
5197 double_rq_unlock(rq_src, rq_dest);
efc30814 5198 return ret;
1da177e4
LT
5199}
5200
5201/*
5202 * migration_thread - this is a highprio system thread that performs
5203 * thread migration by bumping thread off CPU then 'pushing' onto
5204 * another runqueue.
5205 */
95cdf3b7 5206static int migration_thread(void *data)
1da177e4 5207{
1da177e4 5208 int cpu = (long)data;
70b97a7f 5209 struct rq *rq;
1da177e4
LT
5210
5211 rq = cpu_rq(cpu);
5212 BUG_ON(rq->migration_thread != current);
5213
5214 set_current_state(TASK_INTERRUPTIBLE);
5215 while (!kthread_should_stop()) {
70b97a7f 5216 struct migration_req *req;
1da177e4 5217 struct list_head *head;
1da177e4 5218
1da177e4
LT
5219 spin_lock_irq(&rq->lock);
5220
5221 if (cpu_is_offline(cpu)) {
5222 spin_unlock_irq(&rq->lock);
5223 goto wait_to_die;
5224 }
5225
5226 if (rq->active_balance) {
5227 active_load_balance(rq, cpu);
5228 rq->active_balance = 0;
5229 }
5230
5231 head = &rq->migration_queue;
5232
5233 if (list_empty(head)) {
5234 spin_unlock_irq(&rq->lock);
5235 schedule();
5236 set_current_state(TASK_INTERRUPTIBLE);
5237 continue;
5238 }
70b97a7f 5239 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5240 list_del_init(head->next);
5241
674311d5
NP
5242 spin_unlock(&rq->lock);
5243 __migrate_task(req->task, cpu, req->dest_cpu);
5244 local_irq_enable();
1da177e4
LT
5245
5246 complete(&req->done);
5247 }
5248 __set_current_state(TASK_RUNNING);
5249 return 0;
5250
5251wait_to_die:
5252 /* Wait for kthread_stop */
5253 set_current_state(TASK_INTERRUPTIBLE);
5254 while (!kthread_should_stop()) {
5255 schedule();
5256 set_current_state(TASK_INTERRUPTIBLE);
5257 }
5258 __set_current_state(TASK_RUNNING);
5259 return 0;
5260}
5261
5262#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5263
5264static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5265{
5266 int ret;
5267
5268 local_irq_disable();
5269 ret = __migrate_task(p, src_cpu, dest_cpu);
5270 local_irq_enable();
5271 return ret;
5272}
5273
054b9108 5274/*
3a4fa0a2 5275 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5276 * NOTE: interrupts should be disabled by the caller
5277 */
48f24c4d 5278static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5279{
efc30814 5280 unsigned long flags;
1da177e4 5281 cpumask_t mask;
70b97a7f
IM
5282 struct rq *rq;
5283 int dest_cpu;
1da177e4 5284
3a5c359a
AK
5285 do {
5286 /* On same node? */
5287 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5288 cpus_and(mask, mask, p->cpus_allowed);
5289 dest_cpu = any_online_cpu(mask);
5290
5291 /* On any allowed CPU? */
5292 if (dest_cpu == NR_CPUS)
5293 dest_cpu = any_online_cpu(p->cpus_allowed);
5294
5295 /* No more Mr. Nice Guy. */
5296 if (dest_cpu == NR_CPUS) {
470fd646
CW
5297 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5298 /*
5299 * Try to stay on the same cpuset, where the
5300 * current cpuset may be a subset of all cpus.
5301 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5302 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5303 * called within calls to cpuset_lock/cpuset_unlock.
5304 */
3a5c359a 5305 rq = task_rq_lock(p, &flags);
470fd646 5306 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5307 dest_cpu = any_online_cpu(p->cpus_allowed);
5308 task_rq_unlock(rq, &flags);
1da177e4 5309
3a5c359a
AK
5310 /*
5311 * Don't tell them about moving exiting tasks or
5312 * kernel threads (both mm NULL), since they never
5313 * leave kernel.
5314 */
41a2d6cf 5315 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5316 printk(KERN_INFO "process %d (%s) no "
5317 "longer affine to cpu%d\n",
41a2d6cf
IM
5318 task_pid_nr(p), p->comm, dead_cpu);
5319 }
3a5c359a 5320 }
f7b4cddc 5321 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5322}
5323
5324/*
5325 * While a dead CPU has no uninterruptible tasks queued at this point,
5326 * it might still have a nonzero ->nr_uninterruptible counter, because
5327 * for performance reasons the counter is not stricly tracking tasks to
5328 * their home CPUs. So we just add the counter to another CPU's counter,
5329 * to keep the global sum constant after CPU-down:
5330 */
70b97a7f 5331static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5332{
70b97a7f 5333 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5334 unsigned long flags;
5335
5336 local_irq_save(flags);
5337 double_rq_lock(rq_src, rq_dest);
5338 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5339 rq_src->nr_uninterruptible = 0;
5340 double_rq_unlock(rq_src, rq_dest);
5341 local_irq_restore(flags);
5342}
5343
5344/* Run through task list and migrate tasks from the dead cpu. */
5345static void migrate_live_tasks(int src_cpu)
5346{
48f24c4d 5347 struct task_struct *p, *t;
1da177e4 5348
f7b4cddc 5349 read_lock(&tasklist_lock);
1da177e4 5350
48f24c4d
IM
5351 do_each_thread(t, p) {
5352 if (p == current)
1da177e4
LT
5353 continue;
5354
48f24c4d
IM
5355 if (task_cpu(p) == src_cpu)
5356 move_task_off_dead_cpu(src_cpu, p);
5357 } while_each_thread(t, p);
1da177e4 5358
f7b4cddc 5359 read_unlock(&tasklist_lock);
1da177e4
LT
5360}
5361
dd41f596
IM
5362/*
5363 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5364 * It does so by boosting its priority to highest possible.
5365 * Used by CPU offline code.
1da177e4
LT
5366 */
5367void sched_idle_next(void)
5368{
48f24c4d 5369 int this_cpu = smp_processor_id();
70b97a7f 5370 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5371 struct task_struct *p = rq->idle;
5372 unsigned long flags;
5373
5374 /* cpu has to be offline */
48f24c4d 5375 BUG_ON(cpu_online(this_cpu));
1da177e4 5376
48f24c4d
IM
5377 /*
5378 * Strictly not necessary since rest of the CPUs are stopped by now
5379 * and interrupts disabled on the current cpu.
1da177e4
LT
5380 */
5381 spin_lock_irqsave(&rq->lock, flags);
5382
dd41f596 5383 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5384
94bc9a7b
DA
5385 update_rq_clock(rq);
5386 activate_task(rq, p, 0);
1da177e4
LT
5387
5388 spin_unlock_irqrestore(&rq->lock, flags);
5389}
5390
48f24c4d
IM
5391/*
5392 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5393 * offline.
5394 */
5395void idle_task_exit(void)
5396{
5397 struct mm_struct *mm = current->active_mm;
5398
5399 BUG_ON(cpu_online(smp_processor_id()));
5400
5401 if (mm != &init_mm)
5402 switch_mm(mm, &init_mm, current);
5403 mmdrop(mm);
5404}
5405
054b9108 5406/* called under rq->lock with disabled interrupts */
36c8b586 5407static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5408{
70b97a7f 5409 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5410
5411 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5412 BUG_ON(!p->exit_state);
1da177e4
LT
5413
5414 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5415 BUG_ON(p->state == TASK_DEAD);
1da177e4 5416
48f24c4d 5417 get_task_struct(p);
1da177e4
LT
5418
5419 /*
5420 * Drop lock around migration; if someone else moves it,
41a2d6cf 5421 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5422 * fine.
5423 */
f7b4cddc 5424 spin_unlock_irq(&rq->lock);
48f24c4d 5425 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5426 spin_lock_irq(&rq->lock);
1da177e4 5427
48f24c4d 5428 put_task_struct(p);
1da177e4
LT
5429}
5430
5431/* release_task() removes task from tasklist, so we won't find dead tasks. */
5432static void migrate_dead_tasks(unsigned int dead_cpu)
5433{
70b97a7f 5434 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5435 struct task_struct *next;
48f24c4d 5436
dd41f596
IM
5437 for ( ; ; ) {
5438 if (!rq->nr_running)
5439 break;
a8e504d2 5440 update_rq_clock(rq);
ff95f3df 5441 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5442 if (!next)
5443 break;
5444 migrate_dead(dead_cpu, next);
e692ab53 5445
1da177e4
LT
5446 }
5447}
5448#endif /* CONFIG_HOTPLUG_CPU */
5449
e692ab53
NP
5450#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5451
5452static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5453 {
5454 .procname = "sched_domain",
c57baf1e 5455 .mode = 0555,
e0361851 5456 },
38605cae 5457 {0, },
e692ab53
NP
5458};
5459
5460static struct ctl_table sd_ctl_root[] = {
e0361851 5461 {
c57baf1e 5462 .ctl_name = CTL_KERN,
e0361851 5463 .procname = "kernel",
c57baf1e 5464 .mode = 0555,
e0361851
AD
5465 .child = sd_ctl_dir,
5466 },
38605cae 5467 {0, },
e692ab53
NP
5468};
5469
5470static struct ctl_table *sd_alloc_ctl_entry(int n)
5471{
5472 struct ctl_table *entry =
5cf9f062 5473 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5474
e692ab53
NP
5475 return entry;
5476}
5477
6382bc90
MM
5478static void sd_free_ctl_entry(struct ctl_table **tablep)
5479{
cd790076 5480 struct ctl_table *entry;
6382bc90 5481
cd790076
MM
5482 /*
5483 * In the intermediate directories, both the child directory and
5484 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5485 * will always be set. In the lowest directory the names are
cd790076
MM
5486 * static strings and all have proc handlers.
5487 */
5488 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5489 if (entry->child)
5490 sd_free_ctl_entry(&entry->child);
cd790076
MM
5491 if (entry->proc_handler == NULL)
5492 kfree(entry->procname);
5493 }
6382bc90
MM
5494
5495 kfree(*tablep);
5496 *tablep = NULL;
5497}
5498
e692ab53 5499static void
e0361851 5500set_table_entry(struct ctl_table *entry,
e692ab53
NP
5501 const char *procname, void *data, int maxlen,
5502 mode_t mode, proc_handler *proc_handler)
5503{
e692ab53
NP
5504 entry->procname = procname;
5505 entry->data = data;
5506 entry->maxlen = maxlen;
5507 entry->mode = mode;
5508 entry->proc_handler = proc_handler;
5509}
5510
5511static struct ctl_table *
5512sd_alloc_ctl_domain_table(struct sched_domain *sd)
5513{
ace8b3d6 5514 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5515
ad1cdc1d
MM
5516 if (table == NULL)
5517 return NULL;
5518
e0361851 5519 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5520 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5521 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5522 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5523 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5524 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5525 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5526 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5527 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5528 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5529 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5530 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5531 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5532 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5533 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5534 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5535 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5536 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5537 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5538 &sd->cache_nice_tries,
5539 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5540 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5541 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5542 /* &table[11] is terminator */
e692ab53
NP
5543
5544 return table;
5545}
5546
9a4e7159 5547static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5548{
5549 struct ctl_table *entry, *table;
5550 struct sched_domain *sd;
5551 int domain_num = 0, i;
5552 char buf[32];
5553
5554 for_each_domain(cpu, sd)
5555 domain_num++;
5556 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5557 if (table == NULL)
5558 return NULL;
e692ab53
NP
5559
5560 i = 0;
5561 for_each_domain(cpu, sd) {
5562 snprintf(buf, 32, "domain%d", i);
e692ab53 5563 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5564 entry->mode = 0555;
e692ab53
NP
5565 entry->child = sd_alloc_ctl_domain_table(sd);
5566 entry++;
5567 i++;
5568 }
5569 return table;
5570}
5571
5572static struct ctl_table_header *sd_sysctl_header;
6382bc90 5573static void register_sched_domain_sysctl(void)
e692ab53
NP
5574{
5575 int i, cpu_num = num_online_cpus();
5576 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5577 char buf[32];
5578
7378547f
MM
5579 WARN_ON(sd_ctl_dir[0].child);
5580 sd_ctl_dir[0].child = entry;
5581
ad1cdc1d
MM
5582 if (entry == NULL)
5583 return;
5584
97b6ea7b 5585 for_each_online_cpu(i) {
e692ab53 5586 snprintf(buf, 32, "cpu%d", i);
e692ab53 5587 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5588 entry->mode = 0555;
e692ab53 5589 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5590 entry++;
e692ab53 5591 }
7378547f
MM
5592
5593 WARN_ON(sd_sysctl_header);
e692ab53
NP
5594 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5595}
6382bc90 5596
7378547f 5597/* may be called multiple times per register */
6382bc90
MM
5598static void unregister_sched_domain_sysctl(void)
5599{
7378547f
MM
5600 if (sd_sysctl_header)
5601 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5602 sd_sysctl_header = NULL;
7378547f
MM
5603 if (sd_ctl_dir[0].child)
5604 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5605}
e692ab53 5606#else
6382bc90
MM
5607static void register_sched_domain_sysctl(void)
5608{
5609}
5610static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5611{
5612}
5613#endif
5614
1da177e4
LT
5615/*
5616 * migration_call - callback that gets triggered when a CPU is added.
5617 * Here we can start up the necessary migration thread for the new CPU.
5618 */
48f24c4d
IM
5619static int __cpuinit
5620migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5621{
1da177e4 5622 struct task_struct *p;
48f24c4d 5623 int cpu = (long)hcpu;
1da177e4 5624 unsigned long flags;
70b97a7f 5625 struct rq *rq;
1da177e4
LT
5626
5627 switch (action) {
5be9361c
GS
5628 case CPU_LOCK_ACQUIRE:
5629 mutex_lock(&sched_hotcpu_mutex);
5630 break;
5631
1da177e4 5632 case CPU_UP_PREPARE:
8bb78442 5633 case CPU_UP_PREPARE_FROZEN:
dd41f596 5634 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5635 if (IS_ERR(p))
5636 return NOTIFY_BAD;
1da177e4
LT
5637 kthread_bind(p, cpu);
5638 /* Must be high prio: stop_machine expects to yield to it. */
5639 rq = task_rq_lock(p, &flags);
dd41f596 5640 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5641 task_rq_unlock(rq, &flags);
5642 cpu_rq(cpu)->migration_thread = p;
5643 break;
48f24c4d 5644
1da177e4 5645 case CPU_ONLINE:
8bb78442 5646 case CPU_ONLINE_FROZEN:
3a4fa0a2 5647 /* Strictly unnecessary, as first user will wake it. */
1da177e4
LT
5648 wake_up_process(cpu_rq(cpu)->migration_thread);
5649 break;
48f24c4d 5650
1da177e4
LT
5651#ifdef CONFIG_HOTPLUG_CPU
5652 case CPU_UP_CANCELED:
8bb78442 5653 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5654 if (!cpu_rq(cpu)->migration_thread)
5655 break;
41a2d6cf 5656 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5657 kthread_bind(cpu_rq(cpu)->migration_thread,
5658 any_online_cpu(cpu_online_map));
1da177e4
LT
5659 kthread_stop(cpu_rq(cpu)->migration_thread);
5660 cpu_rq(cpu)->migration_thread = NULL;
5661 break;
48f24c4d 5662
1da177e4 5663 case CPU_DEAD:
8bb78442 5664 case CPU_DEAD_FROZEN:
470fd646 5665 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5666 migrate_live_tasks(cpu);
5667 rq = cpu_rq(cpu);
5668 kthread_stop(rq->migration_thread);
5669 rq->migration_thread = NULL;
5670 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5671 spin_lock_irq(&rq->lock);
a8e504d2 5672 update_rq_clock(rq);
2e1cb74a 5673 deactivate_task(rq, rq->idle, 0);
1da177e4 5674 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5675 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5676 rq->idle->sched_class = &idle_sched_class;
1da177e4 5677 migrate_dead_tasks(cpu);
d2da272a 5678 spin_unlock_irq(&rq->lock);
470fd646 5679 cpuset_unlock();
1da177e4
LT
5680 migrate_nr_uninterruptible(rq);
5681 BUG_ON(rq->nr_running != 0);
5682
41a2d6cf
IM
5683 /*
5684 * No need to migrate the tasks: it was best-effort if
5685 * they didn't take sched_hotcpu_mutex. Just wake up
5686 * the requestors.
5687 */
1da177e4
LT
5688 spin_lock_irq(&rq->lock);
5689 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5690 struct migration_req *req;
5691
1da177e4 5692 req = list_entry(rq->migration_queue.next,
70b97a7f 5693 struct migration_req, list);
1da177e4
LT
5694 list_del_init(&req->list);
5695 complete(&req->done);
5696 }
5697 spin_unlock_irq(&rq->lock);
5698 break;
5699#endif
5be9361c
GS
5700 case CPU_LOCK_RELEASE:
5701 mutex_unlock(&sched_hotcpu_mutex);
5702 break;
1da177e4
LT
5703 }
5704 return NOTIFY_OK;
5705}
5706
5707/* Register at highest priority so that task migration (migrate_all_tasks)
5708 * happens before everything else.
5709 */
26c2143b 5710static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5711 .notifier_call = migration_call,
5712 .priority = 10
5713};
5714
e6fe6649 5715void __init migration_init(void)
1da177e4
LT
5716{
5717 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5718 int err;
48f24c4d
IM
5719
5720 /* Start one for the boot CPU: */
07dccf33
AM
5721 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5722 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5723 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5724 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5725}
5726#endif
5727
5728#ifdef CONFIG_SMP
476f3534
CL
5729
5730/* Number of possible processor ids */
5731int nr_cpu_ids __read_mostly = NR_CPUS;
5732EXPORT_SYMBOL(nr_cpu_ids);
5733
3e9830dc 5734#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5735
5736static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5737{
4dcf6aff
IM
5738 struct sched_group *group = sd->groups;
5739 cpumask_t groupmask;
5740 char str[NR_CPUS];
1da177e4 5741
4dcf6aff
IM
5742 cpumask_scnprintf(str, NR_CPUS, sd->span);
5743 cpus_clear(groupmask);
5744
5745 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5746
5747 if (!(sd->flags & SD_LOAD_BALANCE)) {
5748 printk("does not load-balance\n");
5749 if (sd->parent)
5750 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5751 " has parent");
5752 return -1;
41c7ce9a
NP
5753 }
5754
4dcf6aff
IM
5755 printk(KERN_CONT "span %s\n", str);
5756
5757 if (!cpu_isset(cpu, sd->span)) {
5758 printk(KERN_ERR "ERROR: domain->span does not contain "
5759 "CPU%d\n", cpu);
5760 }
5761 if (!cpu_isset(cpu, group->cpumask)) {
5762 printk(KERN_ERR "ERROR: domain->groups does not contain"
5763 " CPU%d\n", cpu);
5764 }
1da177e4 5765
4dcf6aff 5766 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5767 do {
4dcf6aff
IM
5768 if (!group) {
5769 printk("\n");
5770 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5771 break;
5772 }
5773
4dcf6aff
IM
5774 if (!group->__cpu_power) {
5775 printk(KERN_CONT "\n");
5776 printk(KERN_ERR "ERROR: domain->cpu_power not "
5777 "set\n");
5778 break;
5779 }
1da177e4 5780
4dcf6aff
IM
5781 if (!cpus_weight(group->cpumask)) {
5782 printk(KERN_CONT "\n");
5783 printk(KERN_ERR "ERROR: empty group\n");
5784 break;
5785 }
1da177e4 5786
4dcf6aff
IM
5787 if (cpus_intersects(groupmask, group->cpumask)) {
5788 printk(KERN_CONT "\n");
5789 printk(KERN_ERR "ERROR: repeated CPUs\n");
5790 break;
5791 }
1da177e4 5792
4dcf6aff 5793 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5794
4dcf6aff
IM
5795 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5796 printk(KERN_CONT " %s", str);
1da177e4 5797
4dcf6aff
IM
5798 group = group->next;
5799 } while (group != sd->groups);
5800 printk(KERN_CONT "\n");
1da177e4 5801
4dcf6aff
IM
5802 if (!cpus_equal(sd->span, groupmask))
5803 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5804
4dcf6aff
IM
5805 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5806 printk(KERN_ERR "ERROR: parent span is not a superset "
5807 "of domain->span\n");
5808 return 0;
5809}
1da177e4 5810
4dcf6aff
IM
5811static void sched_domain_debug(struct sched_domain *sd, int cpu)
5812{
5813 int level = 0;
1da177e4 5814
4dcf6aff
IM
5815 if (!sd) {
5816 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5817 return;
5818 }
1da177e4 5819
4dcf6aff
IM
5820 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5821
5822 for (;;) {
5823 if (sched_domain_debug_one(sd, cpu, level))
5824 break;
1da177e4
LT
5825 level++;
5826 sd = sd->parent;
33859f7f 5827 if (!sd)
4dcf6aff
IM
5828 break;
5829 }
1da177e4
LT
5830}
5831#else
48f24c4d 5832# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5833#endif
5834
1a20ff27 5835static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5836{
5837 if (cpus_weight(sd->span) == 1)
5838 return 1;
5839
5840 /* Following flags need at least 2 groups */
5841 if (sd->flags & (SD_LOAD_BALANCE |
5842 SD_BALANCE_NEWIDLE |
5843 SD_BALANCE_FORK |
89c4710e
SS
5844 SD_BALANCE_EXEC |
5845 SD_SHARE_CPUPOWER |
5846 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5847 if (sd->groups != sd->groups->next)
5848 return 0;
5849 }
5850
5851 /* Following flags don't use groups */
5852 if (sd->flags & (SD_WAKE_IDLE |
5853 SD_WAKE_AFFINE |
5854 SD_WAKE_BALANCE))
5855 return 0;
5856
5857 return 1;
5858}
5859
48f24c4d
IM
5860static int
5861sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5862{
5863 unsigned long cflags = sd->flags, pflags = parent->flags;
5864
5865 if (sd_degenerate(parent))
5866 return 1;
5867
5868 if (!cpus_equal(sd->span, parent->span))
5869 return 0;
5870
5871 /* Does parent contain flags not in child? */
5872 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5873 if (cflags & SD_WAKE_AFFINE)
5874 pflags &= ~SD_WAKE_BALANCE;
5875 /* Flags needing groups don't count if only 1 group in parent */
5876 if (parent->groups == parent->groups->next) {
5877 pflags &= ~(SD_LOAD_BALANCE |
5878 SD_BALANCE_NEWIDLE |
5879 SD_BALANCE_FORK |
89c4710e
SS
5880 SD_BALANCE_EXEC |
5881 SD_SHARE_CPUPOWER |
5882 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5883 }
5884 if (~cflags & pflags)
5885 return 0;
5886
5887 return 1;
5888}
5889
1da177e4
LT
5890/*
5891 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5892 * hold the hotplug lock.
5893 */
9c1cfda2 5894static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5895{
70b97a7f 5896 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5897 struct sched_domain *tmp;
5898
5899 /* Remove the sched domains which do not contribute to scheduling. */
5900 for (tmp = sd; tmp; tmp = tmp->parent) {
5901 struct sched_domain *parent = tmp->parent;
5902 if (!parent)
5903 break;
1a848870 5904 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5905 tmp->parent = parent->parent;
1a848870
SS
5906 if (parent->parent)
5907 parent->parent->child = tmp;
5908 }
245af2c7
SS
5909 }
5910
1a848870 5911 if (sd && sd_degenerate(sd)) {
245af2c7 5912 sd = sd->parent;
1a848870
SS
5913 if (sd)
5914 sd->child = NULL;
5915 }
1da177e4
LT
5916
5917 sched_domain_debug(sd, cpu);
5918
674311d5 5919 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5920}
5921
5922/* cpus with isolated domains */
67af63a6 5923static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5924
5925/* Setup the mask of cpus configured for isolated domains */
5926static int __init isolated_cpu_setup(char *str)
5927{
5928 int ints[NR_CPUS], i;
5929
5930 str = get_options(str, ARRAY_SIZE(ints), ints);
5931 cpus_clear(cpu_isolated_map);
5932 for (i = 1; i <= ints[0]; i++)
5933 if (ints[i] < NR_CPUS)
5934 cpu_set(ints[i], cpu_isolated_map);
5935 return 1;
5936}
5937
8927f494 5938__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5939
5940/*
6711cab4
SS
5941 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5942 * to a function which identifies what group(along with sched group) a CPU
5943 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5944 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5945 *
5946 * init_sched_build_groups will build a circular linked list of the groups
5947 * covered by the given span, and will set each group's ->cpumask correctly,
5948 * and ->cpu_power to 0.
5949 */
a616058b 5950static void
6711cab4
SS
5951init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5952 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5953 struct sched_group **sg))
1da177e4
LT
5954{
5955 struct sched_group *first = NULL, *last = NULL;
5956 cpumask_t covered = CPU_MASK_NONE;
5957 int i;
5958
5959 for_each_cpu_mask(i, span) {
6711cab4
SS
5960 struct sched_group *sg;
5961 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5962 int j;
5963
5964 if (cpu_isset(i, covered))
5965 continue;
5966
5967 sg->cpumask = CPU_MASK_NONE;
5517d86b 5968 sg->__cpu_power = 0;
1da177e4
LT
5969
5970 for_each_cpu_mask(j, span) {
6711cab4 5971 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5972 continue;
5973
5974 cpu_set(j, covered);
5975 cpu_set(j, sg->cpumask);
5976 }
5977 if (!first)
5978 first = sg;
5979 if (last)
5980 last->next = sg;
5981 last = sg;
5982 }
5983 last->next = first;
5984}
5985
9c1cfda2 5986#define SD_NODES_PER_DOMAIN 16
1da177e4 5987
9c1cfda2 5988#ifdef CONFIG_NUMA
198e2f18 5989
9c1cfda2
JH
5990/**
5991 * find_next_best_node - find the next node to include in a sched_domain
5992 * @node: node whose sched_domain we're building
5993 * @used_nodes: nodes already in the sched_domain
5994 *
41a2d6cf 5995 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5996 * finds the closest node not already in the @used_nodes map.
5997 *
5998 * Should use nodemask_t.
5999 */
6000static int find_next_best_node(int node, unsigned long *used_nodes)
6001{
6002 int i, n, val, min_val, best_node = 0;
6003
6004 min_val = INT_MAX;
6005
6006 for (i = 0; i < MAX_NUMNODES; i++) {
6007 /* Start at @node */
6008 n = (node + i) % MAX_NUMNODES;
6009
6010 if (!nr_cpus_node(n))
6011 continue;
6012
6013 /* Skip already used nodes */
6014 if (test_bit(n, used_nodes))
6015 continue;
6016
6017 /* Simple min distance search */
6018 val = node_distance(node, n);
6019
6020 if (val < min_val) {
6021 min_val = val;
6022 best_node = n;
6023 }
6024 }
6025
6026 set_bit(best_node, used_nodes);
6027 return best_node;
6028}
6029
6030/**
6031 * sched_domain_node_span - get a cpumask for a node's sched_domain
6032 * @node: node whose cpumask we're constructing
6033 * @size: number of nodes to include in this span
6034 *
41a2d6cf 6035 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6036 * should be one that prevents unnecessary balancing, but also spreads tasks
6037 * out optimally.
6038 */
6039static cpumask_t sched_domain_node_span(int node)
6040{
9c1cfda2 6041 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6042 cpumask_t span, nodemask;
6043 int i;
9c1cfda2
JH
6044
6045 cpus_clear(span);
6046 bitmap_zero(used_nodes, MAX_NUMNODES);
6047
6048 nodemask = node_to_cpumask(node);
6049 cpus_or(span, span, nodemask);
6050 set_bit(node, used_nodes);
6051
6052 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6053 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6054
9c1cfda2
JH
6055 nodemask = node_to_cpumask(next_node);
6056 cpus_or(span, span, nodemask);
6057 }
6058
6059 return span;
6060}
6061#endif
6062
5c45bf27 6063int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6064
9c1cfda2 6065/*
48f24c4d 6066 * SMT sched-domains:
9c1cfda2 6067 */
1da177e4
LT
6068#ifdef CONFIG_SCHED_SMT
6069static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6070static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6071
41a2d6cf
IM
6072static int
6073cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6074{
6711cab4
SS
6075 if (sg)
6076 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6077 return cpu;
6078}
6079#endif
6080
48f24c4d
IM
6081/*
6082 * multi-core sched-domains:
6083 */
1e9f28fa
SS
6084#ifdef CONFIG_SCHED_MC
6085static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6086static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6087#endif
6088
6089#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6090static int
6091cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6092{
6711cab4 6093 int group;
d5a7430d 6094 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6095 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6096 group = first_cpu(mask);
6097 if (sg)
6098 *sg = &per_cpu(sched_group_core, group);
6099 return group;
1e9f28fa
SS
6100}
6101#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6102static int
6103cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6104{
6711cab4
SS
6105 if (sg)
6106 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6107 return cpu;
6108}
6109#endif
6110
1da177e4 6111static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6112static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6113
41a2d6cf
IM
6114static int
6115cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6116{
6711cab4 6117 int group;
48f24c4d 6118#ifdef CONFIG_SCHED_MC
1e9f28fa 6119 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6120 cpus_and(mask, mask, *cpu_map);
6711cab4 6121 group = first_cpu(mask);
1e9f28fa 6122#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6123 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6124 cpus_and(mask, mask, *cpu_map);
6711cab4 6125 group = first_cpu(mask);
1da177e4 6126#else
6711cab4 6127 group = cpu;
1da177e4 6128#endif
6711cab4
SS
6129 if (sg)
6130 *sg = &per_cpu(sched_group_phys, group);
6131 return group;
1da177e4
LT
6132}
6133
6134#ifdef CONFIG_NUMA
1da177e4 6135/*
9c1cfda2
JH
6136 * The init_sched_build_groups can't handle what we want to do with node
6137 * groups, so roll our own. Now each node has its own list of groups which
6138 * gets dynamically allocated.
1da177e4 6139 */
9c1cfda2 6140static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6141static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6142
9c1cfda2 6143static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6144static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6145
6711cab4
SS
6146static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6147 struct sched_group **sg)
9c1cfda2 6148{
6711cab4
SS
6149 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6150 int group;
6151
6152 cpus_and(nodemask, nodemask, *cpu_map);
6153 group = first_cpu(nodemask);
6154
6155 if (sg)
6156 *sg = &per_cpu(sched_group_allnodes, group);
6157 return group;
1da177e4 6158}
6711cab4 6159
08069033
SS
6160static void init_numa_sched_groups_power(struct sched_group *group_head)
6161{
6162 struct sched_group *sg = group_head;
6163 int j;
6164
6165 if (!sg)
6166 return;
3a5c359a
AK
6167 do {
6168 for_each_cpu_mask(j, sg->cpumask) {
6169 struct sched_domain *sd;
08069033 6170
3a5c359a
AK
6171 sd = &per_cpu(phys_domains, j);
6172 if (j != first_cpu(sd->groups->cpumask)) {
6173 /*
6174 * Only add "power" once for each
6175 * physical package.
6176 */
6177 continue;
6178 }
08069033 6179
3a5c359a
AK
6180 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6181 }
6182 sg = sg->next;
6183 } while (sg != group_head);
08069033 6184}
1da177e4
LT
6185#endif
6186
a616058b 6187#ifdef CONFIG_NUMA
51888ca2
SV
6188/* Free memory allocated for various sched_group structures */
6189static void free_sched_groups(const cpumask_t *cpu_map)
6190{
a616058b 6191 int cpu, i;
51888ca2
SV
6192
6193 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6194 struct sched_group **sched_group_nodes
6195 = sched_group_nodes_bycpu[cpu];
6196
51888ca2
SV
6197 if (!sched_group_nodes)
6198 continue;
6199
6200 for (i = 0; i < MAX_NUMNODES; i++) {
6201 cpumask_t nodemask = node_to_cpumask(i);
6202 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6203
6204 cpus_and(nodemask, nodemask, *cpu_map);
6205 if (cpus_empty(nodemask))
6206 continue;
6207
6208 if (sg == NULL)
6209 continue;
6210 sg = sg->next;
6211next_sg:
6212 oldsg = sg;
6213 sg = sg->next;
6214 kfree(oldsg);
6215 if (oldsg != sched_group_nodes[i])
6216 goto next_sg;
6217 }
6218 kfree(sched_group_nodes);
6219 sched_group_nodes_bycpu[cpu] = NULL;
6220 }
51888ca2 6221}
a616058b
SS
6222#else
6223static void free_sched_groups(const cpumask_t *cpu_map)
6224{
6225}
6226#endif
51888ca2 6227
89c4710e
SS
6228/*
6229 * Initialize sched groups cpu_power.
6230 *
6231 * cpu_power indicates the capacity of sched group, which is used while
6232 * distributing the load between different sched groups in a sched domain.
6233 * Typically cpu_power for all the groups in a sched domain will be same unless
6234 * there are asymmetries in the topology. If there are asymmetries, group
6235 * having more cpu_power will pickup more load compared to the group having
6236 * less cpu_power.
6237 *
6238 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6239 * the maximum number of tasks a group can handle in the presence of other idle
6240 * or lightly loaded groups in the same sched domain.
6241 */
6242static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6243{
6244 struct sched_domain *child;
6245 struct sched_group *group;
6246
6247 WARN_ON(!sd || !sd->groups);
6248
6249 if (cpu != first_cpu(sd->groups->cpumask))
6250 return;
6251
6252 child = sd->child;
6253
5517d86b
ED
6254 sd->groups->__cpu_power = 0;
6255
89c4710e
SS
6256 /*
6257 * For perf policy, if the groups in child domain share resources
6258 * (for example cores sharing some portions of the cache hierarchy
6259 * or SMT), then set this domain groups cpu_power such that each group
6260 * can handle only one task, when there are other idle groups in the
6261 * same sched domain.
6262 */
6263 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6264 (child->flags &
6265 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6266 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6267 return;
6268 }
6269
89c4710e
SS
6270 /*
6271 * add cpu_power of each child group to this groups cpu_power
6272 */
6273 group = child->groups;
6274 do {
5517d86b 6275 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6276 group = group->next;
6277 } while (group != child->groups);
6278}
6279
1da177e4 6280/*
1a20ff27
DG
6281 * Build sched domains for a given set of cpus and attach the sched domains
6282 * to the individual cpus
1da177e4 6283 */
51888ca2 6284static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6285{
6286 int i;
d1b55138
JH
6287#ifdef CONFIG_NUMA
6288 struct sched_group **sched_group_nodes = NULL;
6711cab4 6289 int sd_allnodes = 0;
d1b55138
JH
6290
6291 /*
6292 * Allocate the per-node list of sched groups
6293 */
5cf9f062 6294 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6295 GFP_KERNEL);
d1b55138
JH
6296 if (!sched_group_nodes) {
6297 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6298 return -ENOMEM;
d1b55138
JH
6299 }
6300 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6301#endif
1da177e4
LT
6302
6303 /*
1a20ff27 6304 * Set up domains for cpus specified by the cpu_map.
1da177e4 6305 */
1a20ff27 6306 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6307 struct sched_domain *sd = NULL, *p;
6308 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6309
1a20ff27 6310 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6311
6312#ifdef CONFIG_NUMA
dd41f596
IM
6313 if (cpus_weight(*cpu_map) >
6314 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6315 sd = &per_cpu(allnodes_domains, i);
6316 *sd = SD_ALLNODES_INIT;
6317 sd->span = *cpu_map;
6711cab4 6318 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6319 p = sd;
6711cab4 6320 sd_allnodes = 1;
9c1cfda2
JH
6321 } else
6322 p = NULL;
6323
1da177e4 6324 sd = &per_cpu(node_domains, i);
1da177e4 6325 *sd = SD_NODE_INIT;
9c1cfda2
JH
6326 sd->span = sched_domain_node_span(cpu_to_node(i));
6327 sd->parent = p;
1a848870
SS
6328 if (p)
6329 p->child = sd;
9c1cfda2 6330 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6331#endif
6332
6333 p = sd;
6334 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6335 *sd = SD_CPU_INIT;
6336 sd->span = nodemask;
6337 sd->parent = p;
1a848870
SS
6338 if (p)
6339 p->child = sd;
6711cab4 6340 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6341
1e9f28fa
SS
6342#ifdef CONFIG_SCHED_MC
6343 p = sd;
6344 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6345 *sd = SD_MC_INIT;
6346 sd->span = cpu_coregroup_map(i);
6347 cpus_and(sd->span, sd->span, *cpu_map);
6348 sd->parent = p;
1a848870 6349 p->child = sd;
6711cab4 6350 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6351#endif
6352
1da177e4
LT
6353#ifdef CONFIG_SCHED_SMT
6354 p = sd;
6355 sd = &per_cpu(cpu_domains, i);
1da177e4 6356 *sd = SD_SIBLING_INIT;
d5a7430d 6357 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6358 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6359 sd->parent = p;
1a848870 6360 p->child = sd;
6711cab4 6361 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6362#endif
6363 }
6364
6365#ifdef CONFIG_SCHED_SMT
6366 /* Set up CPU (sibling) groups */
9c1cfda2 6367 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6368 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6369 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6370 if (i != first_cpu(this_sibling_map))
6371 continue;
6372
dd41f596
IM
6373 init_sched_build_groups(this_sibling_map, cpu_map,
6374 &cpu_to_cpu_group);
1da177e4
LT
6375 }
6376#endif
6377
1e9f28fa
SS
6378#ifdef CONFIG_SCHED_MC
6379 /* Set up multi-core groups */
6380 for_each_cpu_mask(i, *cpu_map) {
6381 cpumask_t this_core_map = cpu_coregroup_map(i);
6382 cpus_and(this_core_map, this_core_map, *cpu_map);
6383 if (i != first_cpu(this_core_map))
6384 continue;
dd41f596
IM
6385 init_sched_build_groups(this_core_map, cpu_map,
6386 &cpu_to_core_group);
1e9f28fa
SS
6387 }
6388#endif
6389
1da177e4
LT
6390 /* Set up physical groups */
6391 for (i = 0; i < MAX_NUMNODES; i++) {
6392 cpumask_t nodemask = node_to_cpumask(i);
6393
1a20ff27 6394 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6395 if (cpus_empty(nodemask))
6396 continue;
6397
6711cab4 6398 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6399 }
6400
6401#ifdef CONFIG_NUMA
6402 /* Set up node groups */
6711cab4 6403 if (sd_allnodes)
dd41f596
IM
6404 init_sched_build_groups(*cpu_map, cpu_map,
6405 &cpu_to_allnodes_group);
9c1cfda2
JH
6406
6407 for (i = 0; i < MAX_NUMNODES; i++) {
6408 /* Set up node groups */
6409 struct sched_group *sg, *prev;
6410 cpumask_t nodemask = node_to_cpumask(i);
6411 cpumask_t domainspan;
6412 cpumask_t covered = CPU_MASK_NONE;
6413 int j;
6414
6415 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6416 if (cpus_empty(nodemask)) {
6417 sched_group_nodes[i] = NULL;
9c1cfda2 6418 continue;
d1b55138 6419 }
9c1cfda2
JH
6420
6421 domainspan = sched_domain_node_span(i);
6422 cpus_and(domainspan, domainspan, *cpu_map);
6423
15f0b676 6424 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6425 if (!sg) {
6426 printk(KERN_WARNING "Can not alloc domain group for "
6427 "node %d\n", i);
6428 goto error;
6429 }
9c1cfda2
JH
6430 sched_group_nodes[i] = sg;
6431 for_each_cpu_mask(j, nodemask) {
6432 struct sched_domain *sd;
9761eea8 6433
9c1cfda2
JH
6434 sd = &per_cpu(node_domains, j);
6435 sd->groups = sg;
9c1cfda2 6436 }
5517d86b 6437 sg->__cpu_power = 0;
9c1cfda2 6438 sg->cpumask = nodemask;
51888ca2 6439 sg->next = sg;
9c1cfda2
JH
6440 cpus_or(covered, covered, nodemask);
6441 prev = sg;
6442
6443 for (j = 0; j < MAX_NUMNODES; j++) {
6444 cpumask_t tmp, notcovered;
6445 int n = (i + j) % MAX_NUMNODES;
6446
6447 cpus_complement(notcovered, covered);
6448 cpus_and(tmp, notcovered, *cpu_map);
6449 cpus_and(tmp, tmp, domainspan);
6450 if (cpus_empty(tmp))
6451 break;
6452
6453 nodemask = node_to_cpumask(n);
6454 cpus_and(tmp, tmp, nodemask);
6455 if (cpus_empty(tmp))
6456 continue;
6457
15f0b676
SV
6458 sg = kmalloc_node(sizeof(struct sched_group),
6459 GFP_KERNEL, i);
9c1cfda2
JH
6460 if (!sg) {
6461 printk(KERN_WARNING
6462 "Can not alloc domain group for node %d\n", j);
51888ca2 6463 goto error;
9c1cfda2 6464 }
5517d86b 6465 sg->__cpu_power = 0;
9c1cfda2 6466 sg->cpumask = tmp;
51888ca2 6467 sg->next = prev->next;
9c1cfda2
JH
6468 cpus_or(covered, covered, tmp);
6469 prev->next = sg;
6470 prev = sg;
6471 }
9c1cfda2 6472 }
1da177e4
LT
6473#endif
6474
6475 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6476#ifdef CONFIG_SCHED_SMT
1a20ff27 6477 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6478 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6479
89c4710e 6480 init_sched_groups_power(i, sd);
5c45bf27 6481 }
1da177e4 6482#endif
1e9f28fa 6483#ifdef CONFIG_SCHED_MC
5c45bf27 6484 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6485 struct sched_domain *sd = &per_cpu(core_domains, i);
6486
89c4710e 6487 init_sched_groups_power(i, sd);
5c45bf27
SS
6488 }
6489#endif
1e9f28fa 6490
5c45bf27 6491 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6492 struct sched_domain *sd = &per_cpu(phys_domains, i);
6493
89c4710e 6494 init_sched_groups_power(i, sd);
1da177e4
LT
6495 }
6496
9c1cfda2 6497#ifdef CONFIG_NUMA
08069033
SS
6498 for (i = 0; i < MAX_NUMNODES; i++)
6499 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6500
6711cab4
SS
6501 if (sd_allnodes) {
6502 struct sched_group *sg;
f712c0c7 6503
6711cab4 6504 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6505 init_numa_sched_groups_power(sg);
6506 }
9c1cfda2
JH
6507#endif
6508
1da177e4 6509 /* Attach the domains */
1a20ff27 6510 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6511 struct sched_domain *sd;
6512#ifdef CONFIG_SCHED_SMT
6513 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6514#elif defined(CONFIG_SCHED_MC)
6515 sd = &per_cpu(core_domains, i);
1da177e4
LT
6516#else
6517 sd = &per_cpu(phys_domains, i);
6518#endif
6519 cpu_attach_domain(sd, i);
6520 }
51888ca2
SV
6521
6522 return 0;
6523
a616058b 6524#ifdef CONFIG_NUMA
51888ca2
SV
6525error:
6526 free_sched_groups(cpu_map);
6527 return -ENOMEM;
a616058b 6528#endif
1da177e4 6529}
029190c5
PJ
6530
6531static cpumask_t *doms_cur; /* current sched domains */
6532static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6533
6534/*
6535 * Special case: If a kmalloc of a doms_cur partition (array of
6536 * cpumask_t) fails, then fallback to a single sched domain,
6537 * as determined by the single cpumask_t fallback_doms.
6538 */
6539static cpumask_t fallback_doms;
6540
1a20ff27 6541/*
41a2d6cf 6542 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6543 * For now this just excludes isolated cpus, but could be used to
6544 * exclude other special cases in the future.
1a20ff27 6545 */
51888ca2 6546static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6547{
7378547f
MM
6548 int err;
6549
029190c5
PJ
6550 ndoms_cur = 1;
6551 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6552 if (!doms_cur)
6553 doms_cur = &fallback_doms;
6554 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6555 err = build_sched_domains(doms_cur);
6382bc90 6556 register_sched_domain_sysctl();
7378547f
MM
6557
6558 return err;
1a20ff27
DG
6559}
6560
6561static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6562{
51888ca2 6563 free_sched_groups(cpu_map);
9c1cfda2 6564}
1da177e4 6565
1a20ff27
DG
6566/*
6567 * Detach sched domains from a group of cpus specified in cpu_map
6568 * These cpus will now be attached to the NULL domain
6569 */
858119e1 6570static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6571{
6572 int i;
6573
6382bc90
MM
6574 unregister_sched_domain_sysctl();
6575
1a20ff27
DG
6576 for_each_cpu_mask(i, *cpu_map)
6577 cpu_attach_domain(NULL, i);
6578 synchronize_sched();
6579 arch_destroy_sched_domains(cpu_map);
6580}
6581
029190c5
PJ
6582/*
6583 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6584 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6585 * doms_new[] to the current sched domain partitioning, doms_cur[].
6586 * It destroys each deleted domain and builds each new domain.
6587 *
6588 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6589 * The masks don't intersect (don't overlap.) We should setup one
6590 * sched domain for each mask. CPUs not in any of the cpumasks will
6591 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6592 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6593 * it as it is.
6594 *
41a2d6cf
IM
6595 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6596 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6597 * failed the kmalloc call, then it can pass in doms_new == NULL,
6598 * and partition_sched_domains() will fallback to the single partition
6599 * 'fallback_doms'.
6600 *
6601 * Call with hotplug lock held
6602 */
6603void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6604{
6605 int i, j;
6606
a1835615
SV
6607 lock_doms_cur();
6608
7378547f
MM
6609 /* always unregister in case we don't destroy any domains */
6610 unregister_sched_domain_sysctl();
6611
029190c5
PJ
6612 if (doms_new == NULL) {
6613 ndoms_new = 1;
6614 doms_new = &fallback_doms;
6615 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6616 }
6617
6618 /* Destroy deleted domains */
6619 for (i = 0; i < ndoms_cur; i++) {
6620 for (j = 0; j < ndoms_new; j++) {
6621 if (cpus_equal(doms_cur[i], doms_new[j]))
6622 goto match1;
6623 }
6624 /* no match - a current sched domain not in new doms_new[] */
6625 detach_destroy_domains(doms_cur + i);
6626match1:
6627 ;
6628 }
6629
6630 /* Build new domains */
6631 for (i = 0; i < ndoms_new; i++) {
6632 for (j = 0; j < ndoms_cur; j++) {
6633 if (cpus_equal(doms_new[i], doms_cur[j]))
6634 goto match2;
6635 }
6636 /* no match - add a new doms_new */
6637 build_sched_domains(doms_new + i);
6638match2:
6639 ;
6640 }
6641
6642 /* Remember the new sched domains */
6643 if (doms_cur != &fallback_doms)
6644 kfree(doms_cur);
6645 doms_cur = doms_new;
6646 ndoms_cur = ndoms_new;
7378547f
MM
6647
6648 register_sched_domain_sysctl();
a1835615
SV
6649
6650 unlock_doms_cur();
029190c5
PJ
6651}
6652
5c45bf27 6653#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6654static int arch_reinit_sched_domains(void)
5c45bf27
SS
6655{
6656 int err;
6657
5be9361c 6658 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6659 detach_destroy_domains(&cpu_online_map);
6660 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6661 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6662
6663 return err;
6664}
6665
6666static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6667{
6668 int ret;
6669
6670 if (buf[0] != '0' && buf[0] != '1')
6671 return -EINVAL;
6672
6673 if (smt)
6674 sched_smt_power_savings = (buf[0] == '1');
6675 else
6676 sched_mc_power_savings = (buf[0] == '1');
6677
6678 ret = arch_reinit_sched_domains();
6679
6680 return ret ? ret : count;
6681}
6682
5c45bf27
SS
6683#ifdef CONFIG_SCHED_MC
6684static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6685{
6686 return sprintf(page, "%u\n", sched_mc_power_savings);
6687}
48f24c4d
IM
6688static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6689 const char *buf, size_t count)
5c45bf27
SS
6690{
6691 return sched_power_savings_store(buf, count, 0);
6692}
6707de00
AB
6693static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6694 sched_mc_power_savings_store);
5c45bf27
SS
6695#endif
6696
6697#ifdef CONFIG_SCHED_SMT
6698static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6699{
6700 return sprintf(page, "%u\n", sched_smt_power_savings);
6701}
48f24c4d
IM
6702static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6703 const char *buf, size_t count)
5c45bf27
SS
6704{
6705 return sched_power_savings_store(buf, count, 1);
6706}
6707de00
AB
6707static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6708 sched_smt_power_savings_store);
6709#endif
6710
6711int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6712{
6713 int err = 0;
6714
6715#ifdef CONFIG_SCHED_SMT
6716 if (smt_capable())
6717 err = sysfs_create_file(&cls->kset.kobj,
6718 &attr_sched_smt_power_savings.attr);
6719#endif
6720#ifdef CONFIG_SCHED_MC
6721 if (!err && mc_capable())
6722 err = sysfs_create_file(&cls->kset.kobj,
6723 &attr_sched_mc_power_savings.attr);
6724#endif
6725 return err;
6726}
5c45bf27
SS
6727#endif
6728
1da177e4 6729/*
41a2d6cf 6730 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6731 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6732 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6733 * which will prevent rebalancing while the sched domains are recalculated.
6734 */
6735static int update_sched_domains(struct notifier_block *nfb,
6736 unsigned long action, void *hcpu)
6737{
1da177e4
LT
6738 switch (action) {
6739 case CPU_UP_PREPARE:
8bb78442 6740 case CPU_UP_PREPARE_FROZEN:
1da177e4 6741 case CPU_DOWN_PREPARE:
8bb78442 6742 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6743 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6744 return NOTIFY_OK;
6745
6746 case CPU_UP_CANCELED:
8bb78442 6747 case CPU_UP_CANCELED_FROZEN:
1da177e4 6748 case CPU_DOWN_FAILED:
8bb78442 6749 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6750 case CPU_ONLINE:
8bb78442 6751 case CPU_ONLINE_FROZEN:
1da177e4 6752 case CPU_DEAD:
8bb78442 6753 case CPU_DEAD_FROZEN:
1da177e4
LT
6754 /*
6755 * Fall through and re-initialise the domains.
6756 */
6757 break;
6758 default:
6759 return NOTIFY_DONE;
6760 }
6761
6762 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6763 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6764
6765 return NOTIFY_OK;
6766}
1da177e4
LT
6767
6768void __init sched_init_smp(void)
6769{
5c1e1767
NP
6770 cpumask_t non_isolated_cpus;
6771
5be9361c 6772 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6773 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6774 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6775 if (cpus_empty(non_isolated_cpus))
6776 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6777 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6778 /* XXX: Theoretical race here - CPU may be hotplugged now */
6779 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6780
6781 /* Move init over to a non-isolated CPU */
6782 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6783 BUG();
19978ca6 6784 sched_init_granularity();
6b2d7700
SV
6785
6786#ifdef CONFIG_FAIR_GROUP_SCHED
6787 if (nr_cpu_ids == 1)
6788 return;
6789
6790 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6791 "group_balance");
6792 if (!IS_ERR(lb_monitor_task)) {
6793 lb_monitor_task->flags |= PF_NOFREEZE;
6794 wake_up_process(lb_monitor_task);
6795 } else {
6796 printk(KERN_ERR "Could not create load balance monitor thread"
6797 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6798 }
6799#endif
1da177e4
LT
6800}
6801#else
6802void __init sched_init_smp(void)
6803{
19978ca6 6804 sched_init_granularity();
1da177e4
LT
6805}
6806#endif /* CONFIG_SMP */
6807
6808int in_sched_functions(unsigned long addr)
6809{
1da177e4
LT
6810 return in_lock_functions(addr) ||
6811 (addr >= (unsigned long)__sched_text_start
6812 && addr < (unsigned long)__sched_text_end);
6813}
6814
a9957449 6815static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6816{
6817 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6818#ifdef CONFIG_FAIR_GROUP_SCHED
6819 cfs_rq->rq = rq;
6820#endif
67e9fb2a 6821 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6822}
6823
1da177e4
LT
6824void __init sched_init(void)
6825{
476f3534 6826 int highest_cpu = 0;
dd41f596
IM
6827 int i, j;
6828
0a945022 6829 for_each_possible_cpu(i) {
dd41f596 6830 struct rt_prio_array *array;
70b97a7f 6831 struct rq *rq;
1da177e4
LT
6832
6833 rq = cpu_rq(i);
6834 spin_lock_init(&rq->lock);
fcb99371 6835 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6836 rq->nr_running = 0;
dd41f596
IM
6837 rq->clock = 1;
6838 init_cfs_rq(&rq->cfs, rq);
6839#ifdef CONFIG_FAIR_GROUP_SCHED
6840 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6841 {
6842 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6843 struct sched_entity *se =
6844 &per_cpu(init_sched_entity, i);
6845
6846 init_cfs_rq_p[i] = cfs_rq;
6847 init_cfs_rq(cfs_rq, rq);
4cf86d77 6848 cfs_rq->tg = &init_task_group;
3a252015 6849 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6850 &rq->leaf_cfs_rq_list);
6851
3a252015
IM
6852 init_sched_entity_p[i] = se;
6853 se->cfs_rq = &rq->cfs;
6854 se->my_q = cfs_rq;
4cf86d77 6855 se->load.weight = init_task_group_load;
9b5b7751 6856 se->load.inv_weight =
4cf86d77 6857 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6858 se->parent = NULL;
6859 }
4cf86d77 6860 init_task_group.shares = init_task_group_load;
dd41f596 6861#endif
1da177e4 6862
dd41f596
IM
6863 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6864 rq->cpu_load[j] = 0;
1da177e4 6865#ifdef CONFIG_SMP
41c7ce9a 6866 rq->sd = NULL;
1da177e4 6867 rq->active_balance = 0;
dd41f596 6868 rq->next_balance = jiffies;
1da177e4 6869 rq->push_cpu = 0;
0a2966b4 6870 rq->cpu = i;
1da177e4
LT
6871 rq->migration_thread = NULL;
6872 INIT_LIST_HEAD(&rq->migration_queue);
6873#endif
6874 atomic_set(&rq->nr_iowait, 0);
6875
dd41f596
IM
6876 array = &rq->rt.active;
6877 for (j = 0; j < MAX_RT_PRIO; j++) {
6878 INIT_LIST_HEAD(array->queue + j);
6879 __clear_bit(j, array->bitmap);
1da177e4 6880 }
476f3534 6881 highest_cpu = i;
dd41f596
IM
6882 /* delimiter for bitsearch: */
6883 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6884 }
6885
2dd73a4f 6886 set_load_weight(&init_task);
b50f60ce 6887
e107be36
AK
6888#ifdef CONFIG_PREEMPT_NOTIFIERS
6889 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6890#endif
6891
c9819f45 6892#ifdef CONFIG_SMP
476f3534 6893 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6894 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6895#endif
6896
b50f60ce
HC
6897#ifdef CONFIG_RT_MUTEXES
6898 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6899#endif
6900
1da177e4
LT
6901 /*
6902 * The boot idle thread does lazy MMU switching as well:
6903 */
6904 atomic_inc(&init_mm.mm_count);
6905 enter_lazy_tlb(&init_mm, current);
6906
6907 /*
6908 * Make us the idle thread. Technically, schedule() should not be
6909 * called from this thread, however somewhere below it might be,
6910 * but because we are the idle thread, we just pick up running again
6911 * when this runqueue becomes "idle".
6912 */
6913 init_idle(current, smp_processor_id());
dd41f596
IM
6914 /*
6915 * During early bootup we pretend to be a normal task:
6916 */
6917 current->sched_class = &fair_sched_class;
1da177e4
LT
6918}
6919
6920#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6921void __might_sleep(char *file, int line)
6922{
48f24c4d 6923#ifdef in_atomic
1da177e4
LT
6924 static unsigned long prev_jiffy; /* ratelimiting */
6925
6926 if ((in_atomic() || irqs_disabled()) &&
6927 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6928 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6929 return;
6930 prev_jiffy = jiffies;
91368d73 6931 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6932 " context at %s:%d\n", file, line);
6933 printk("in_atomic():%d, irqs_disabled():%d\n",
6934 in_atomic(), irqs_disabled());
a4c410f0 6935 debug_show_held_locks(current);
3117df04
IM
6936 if (irqs_disabled())
6937 print_irqtrace_events(current);
1da177e4
LT
6938 dump_stack();
6939 }
6940#endif
6941}
6942EXPORT_SYMBOL(__might_sleep);
6943#endif
6944
6945#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6946static void normalize_task(struct rq *rq, struct task_struct *p)
6947{
6948 int on_rq;
6949 update_rq_clock(rq);
6950 on_rq = p->se.on_rq;
6951 if (on_rq)
6952 deactivate_task(rq, p, 0);
6953 __setscheduler(rq, p, SCHED_NORMAL, 0);
6954 if (on_rq) {
6955 activate_task(rq, p, 0);
6956 resched_task(rq->curr);
6957 }
6958}
6959
1da177e4
LT
6960void normalize_rt_tasks(void)
6961{
a0f98a1c 6962 struct task_struct *g, *p;
1da177e4 6963 unsigned long flags;
70b97a7f 6964 struct rq *rq;
1da177e4
LT
6965
6966 read_lock_irq(&tasklist_lock);
a0f98a1c 6967 do_each_thread(g, p) {
178be793
IM
6968 /*
6969 * Only normalize user tasks:
6970 */
6971 if (!p->mm)
6972 continue;
6973
6cfb0d5d 6974 p->se.exec_start = 0;
6cfb0d5d 6975#ifdef CONFIG_SCHEDSTATS
dd41f596 6976 p->se.wait_start = 0;
dd41f596 6977 p->se.sleep_start = 0;
dd41f596 6978 p->se.block_start = 0;
6cfb0d5d 6979#endif
dd41f596
IM
6980 task_rq(p)->clock = 0;
6981
6982 if (!rt_task(p)) {
6983 /*
6984 * Renice negative nice level userspace
6985 * tasks back to 0:
6986 */
6987 if (TASK_NICE(p) < 0 && p->mm)
6988 set_user_nice(p, 0);
1da177e4 6989 continue;
dd41f596 6990 }
1da177e4 6991
b29739f9
IM
6992 spin_lock_irqsave(&p->pi_lock, flags);
6993 rq = __task_rq_lock(p);
1da177e4 6994
178be793 6995 normalize_task(rq, p);
3a5e4dc1 6996
b29739f9
IM
6997 __task_rq_unlock(rq);
6998 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6999 } while_each_thread(g, p);
7000
1da177e4
LT
7001 read_unlock_irq(&tasklist_lock);
7002}
7003
7004#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7005
7006#ifdef CONFIG_IA64
7007/*
7008 * These functions are only useful for the IA64 MCA handling.
7009 *
7010 * They can only be called when the whole system has been
7011 * stopped - every CPU needs to be quiescent, and no scheduling
7012 * activity can take place. Using them for anything else would
7013 * be a serious bug, and as a result, they aren't even visible
7014 * under any other configuration.
7015 */
7016
7017/**
7018 * curr_task - return the current task for a given cpu.
7019 * @cpu: the processor in question.
7020 *
7021 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7022 */
36c8b586 7023struct task_struct *curr_task(int cpu)
1df5c10a
LT
7024{
7025 return cpu_curr(cpu);
7026}
7027
7028/**
7029 * set_curr_task - set the current task for a given cpu.
7030 * @cpu: the processor in question.
7031 * @p: the task pointer to set.
7032 *
7033 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7034 * are serviced on a separate stack. It allows the architecture to switch the
7035 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7036 * must be called with all CPU's synchronized, and interrupts disabled, the
7037 * and caller must save the original value of the current task (see
7038 * curr_task() above) and restore that value before reenabling interrupts and
7039 * re-starting the system.
7040 *
7041 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7042 */
36c8b586 7043void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7044{
7045 cpu_curr(cpu) = p;
7046}
7047
7048#endif
29f59db3
SV
7049
7050#ifdef CONFIG_FAIR_GROUP_SCHED
7051
6b2d7700
SV
7052#ifdef CONFIG_SMP
7053/*
7054 * distribute shares of all task groups among their schedulable entities,
7055 * to reflect load distrbution across cpus.
7056 */
7057static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7058{
7059 struct cfs_rq *cfs_rq;
7060 struct rq *rq = cpu_rq(this_cpu);
7061 cpumask_t sdspan = sd->span;
7062 int balanced = 1;
7063
7064 /* Walk thr' all the task groups that we have */
7065 for_each_leaf_cfs_rq(rq, cfs_rq) {
7066 int i;
7067 unsigned long total_load = 0, total_shares;
7068 struct task_group *tg = cfs_rq->tg;
7069
7070 /* Gather total task load of this group across cpus */
7071 for_each_cpu_mask(i, sdspan)
7072 total_load += tg->cfs_rq[i]->load.weight;
7073
7074 /* Nothing to do if this group has no load */
7075 if (!total_load)
7076 continue;
7077
7078 /*
7079 * tg->shares represents the number of cpu shares the task group
7080 * is eligible to hold on a single cpu. On N cpus, it is
7081 * eligible to hold (N * tg->shares) number of cpu shares.
7082 */
7083 total_shares = tg->shares * cpus_weight(sdspan);
7084
7085 /*
7086 * redistribute total_shares across cpus as per the task load
7087 * distribution.
7088 */
7089 for_each_cpu_mask(i, sdspan) {
7090 unsigned long local_load, local_shares;
7091
7092 local_load = tg->cfs_rq[i]->load.weight;
7093 local_shares = (local_load * total_shares) / total_load;
7094 if (!local_shares)
7095 local_shares = MIN_GROUP_SHARES;
7096 if (local_shares == tg->se[i]->load.weight)
7097 continue;
7098
7099 spin_lock_irq(&cpu_rq(i)->lock);
7100 set_se_shares(tg->se[i], local_shares);
7101 spin_unlock_irq(&cpu_rq(i)->lock);
7102 balanced = 0;
7103 }
7104 }
7105
7106 return balanced;
7107}
7108
7109/*
7110 * How frequently should we rebalance_shares() across cpus?
7111 *
7112 * The more frequently we rebalance shares, the more accurate is the fairness
7113 * of cpu bandwidth distribution between task groups. However higher frequency
7114 * also implies increased scheduling overhead.
7115 *
7116 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7117 * consecutive calls to rebalance_shares() in the same sched domain.
7118 *
7119 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7120 * consecutive calls to rebalance_shares() in the same sched domain.
7121 *
7122 * These settings allows for the appropriate tradeoff between accuracy of
7123 * fairness and the associated overhead.
7124 *
7125 */
7126
7127/* default: 8ms, units: milliseconds */
7128const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7129
7130/* default: 128ms, units: milliseconds */
7131const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7132
7133/* kernel thread that runs rebalance_shares() periodically */
7134static int load_balance_monitor(void *unused)
7135{
7136 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7137 struct sched_param schedparm;
7138 int ret;
7139
7140 /*
7141 * We don't want this thread's execution to be limited by the shares
7142 * assigned to default group (init_task_group). Hence make it run
7143 * as a SCHED_RR RT task at the lowest priority.
7144 */
7145 schedparm.sched_priority = 1;
7146 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7147 if (ret)
7148 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7149 " monitor thread (error = %d) \n", ret);
7150
7151 while (!kthread_should_stop()) {
7152 int i, cpu, balanced = 1;
7153
7154 /* Prevent cpus going down or coming up */
86ef5c9a 7155 get_online_cpus();
6b2d7700
SV
7156 /* lockout changes to doms_cur[] array */
7157 lock_doms_cur();
7158 /*
7159 * Enter a rcu read-side critical section to safely walk rq->sd
7160 * chain on various cpus and to walk task group list
7161 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7162 */
7163 rcu_read_lock();
7164
7165 for (i = 0; i < ndoms_cur; i++) {
7166 cpumask_t cpumap = doms_cur[i];
7167 struct sched_domain *sd = NULL, *sd_prev = NULL;
7168
7169 cpu = first_cpu(cpumap);
7170
7171 /* Find the highest domain at which to balance shares */
7172 for_each_domain(cpu, sd) {
7173 if (!(sd->flags & SD_LOAD_BALANCE))
7174 continue;
7175 sd_prev = sd;
7176 }
7177
7178 sd = sd_prev;
7179 /* sd == NULL? No load balance reqd in this domain */
7180 if (!sd)
7181 continue;
7182
7183 balanced &= rebalance_shares(sd, cpu);
7184 }
7185
7186 rcu_read_unlock();
7187
7188 unlock_doms_cur();
86ef5c9a 7189 put_online_cpus();
6b2d7700
SV
7190
7191 if (!balanced)
7192 timeout = sysctl_sched_min_bal_int_shares;
7193 else if (timeout < sysctl_sched_max_bal_int_shares)
7194 timeout *= 2;
7195
7196 msleep_interruptible(timeout);
7197 }
7198
7199 return 0;
7200}
7201#endif /* CONFIG_SMP */
7202
29f59db3 7203/* allocate runqueue etc for a new task group */
4cf86d77 7204struct task_group *sched_create_group(void)
29f59db3 7205{
4cf86d77 7206 struct task_group *tg;
29f59db3
SV
7207 struct cfs_rq *cfs_rq;
7208 struct sched_entity *se;
9b5b7751 7209 struct rq *rq;
29f59db3
SV
7210 int i;
7211
29f59db3
SV
7212 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7213 if (!tg)
7214 return ERR_PTR(-ENOMEM);
7215
9b5b7751 7216 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7217 if (!tg->cfs_rq)
7218 goto err;
9b5b7751 7219 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7220 if (!tg->se)
7221 goto err;
7222
7223 for_each_possible_cpu(i) {
9b5b7751 7224 rq = cpu_rq(i);
29f59db3
SV
7225
7226 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7227 cpu_to_node(i));
7228 if (!cfs_rq)
7229 goto err;
7230
7231 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7232 cpu_to_node(i));
7233 if (!se)
7234 goto err;
7235
7236 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7237 memset(se, 0, sizeof(struct sched_entity));
7238
7239 tg->cfs_rq[i] = cfs_rq;
7240 init_cfs_rq(cfs_rq, rq);
7241 cfs_rq->tg = tg;
29f59db3
SV
7242
7243 tg->se[i] = se;
7244 se->cfs_rq = &rq->cfs;
7245 se->my_q = cfs_rq;
7246 se->load.weight = NICE_0_LOAD;
7247 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7248 se->parent = NULL;
7249 }
7250
ec2c507f
SV
7251 tg->shares = NICE_0_LOAD;
7252
7253 lock_task_group_list();
9b5b7751
SV
7254 for_each_possible_cpu(i) {
7255 rq = cpu_rq(i);
7256 cfs_rq = tg->cfs_rq[i];
7257 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7258 }
ec2c507f 7259 unlock_task_group_list();
29f59db3 7260
9b5b7751 7261 return tg;
29f59db3
SV
7262
7263err:
7264 for_each_possible_cpu(i) {
a65914b3 7265 if (tg->cfs_rq)
29f59db3 7266 kfree(tg->cfs_rq[i]);
a65914b3 7267 if (tg->se)
29f59db3
SV
7268 kfree(tg->se[i]);
7269 }
a65914b3
IM
7270 kfree(tg->cfs_rq);
7271 kfree(tg->se);
7272 kfree(tg);
29f59db3
SV
7273
7274 return ERR_PTR(-ENOMEM);
7275}
7276
9b5b7751
SV
7277/* rcu callback to free various structures associated with a task group */
7278static void free_sched_group(struct rcu_head *rhp)
29f59db3 7279{
ae8393e5
SV
7280 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7281 struct cfs_rq *cfs_rq;
29f59db3
SV
7282 struct sched_entity *se;
7283 int i;
7284
29f59db3
SV
7285 /* now it should be safe to free those cfs_rqs */
7286 for_each_possible_cpu(i) {
7287 cfs_rq = tg->cfs_rq[i];
7288 kfree(cfs_rq);
7289
7290 se = tg->se[i];
7291 kfree(se);
7292 }
7293
7294 kfree(tg->cfs_rq);
7295 kfree(tg->se);
7296 kfree(tg);
7297}
7298
9b5b7751 7299/* Destroy runqueue etc associated with a task group */
4cf86d77 7300void sched_destroy_group(struct task_group *tg)
29f59db3 7301{
7bae49d4 7302 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7303 int i;
29f59db3 7304
ec2c507f 7305 lock_task_group_list();
9b5b7751
SV
7306 for_each_possible_cpu(i) {
7307 cfs_rq = tg->cfs_rq[i];
7308 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7309 }
ec2c507f 7310 unlock_task_group_list();
9b5b7751 7311
7bae49d4 7312 BUG_ON(!cfs_rq);
9b5b7751
SV
7313
7314 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7315 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7316}
7317
9b5b7751 7318/* change task's runqueue when it moves between groups.
3a252015
IM
7319 * The caller of this function should have put the task in its new group
7320 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7321 * reflect its new group.
9b5b7751
SV
7322 */
7323void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7324{
7325 int on_rq, running;
7326 unsigned long flags;
7327 struct rq *rq;
7328
7329 rq = task_rq_lock(tsk, &flags);
7330
dae51f56 7331 if (tsk->sched_class != &fair_sched_class) {
ce96b5ac 7332 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7333 goto done;
dae51f56 7334 }
29f59db3
SV
7335
7336 update_rq_clock(rq);
7337
051a1d1a 7338 running = task_current(rq, tsk);
29f59db3
SV
7339 on_rq = tsk->se.on_rq;
7340
83b699ed 7341 if (on_rq) {
29f59db3 7342 dequeue_task(rq, tsk, 0);
83b699ed
SV
7343 if (unlikely(running))
7344 tsk->sched_class->put_prev_task(rq, tsk);
7345 }
29f59db3 7346
ce96b5ac 7347 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7348
83b699ed
SV
7349 if (on_rq) {
7350 if (unlikely(running))
7351 tsk->sched_class->set_curr_task(rq);
7074badb 7352 enqueue_task(rq, tsk, 0);
83b699ed 7353 }
29f59db3
SV
7354
7355done:
7356 task_rq_unlock(rq, &flags);
7357}
7358
6b2d7700 7359/* rq->lock to be locked by caller */
29f59db3
SV
7360static void set_se_shares(struct sched_entity *se, unsigned long shares)
7361{
7362 struct cfs_rq *cfs_rq = se->cfs_rq;
7363 struct rq *rq = cfs_rq->rq;
7364 int on_rq;
7365
6b2d7700
SV
7366 if (!shares)
7367 shares = MIN_GROUP_SHARES;
29f59db3
SV
7368
7369 on_rq = se->on_rq;
6b2d7700 7370 if (on_rq) {
29f59db3 7371 dequeue_entity(cfs_rq, se, 0);
6b2d7700
SV
7372 dec_cpu_load(rq, se->load.weight);
7373 }
29f59db3
SV
7374
7375 se->load.weight = shares;
7376 se->load.inv_weight = div64_64((1ULL<<32), shares);
7377
6b2d7700 7378 if (on_rq) {
29f59db3 7379 enqueue_entity(cfs_rq, se, 0);
6b2d7700
SV
7380 inc_cpu_load(rq, se->load.weight);
7381 }
29f59db3
SV
7382}
7383
4cf86d77 7384int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7385{
7386 int i;
6b2d7700
SV
7387 struct cfs_rq *cfs_rq;
7388 struct rq *rq;
c61935fd 7389
ec2c507f 7390 lock_task_group_list();
9b5b7751 7391 if (tg->shares == shares)
5cb350ba 7392 goto done;
29f59db3 7393
6b2d7700
SV
7394 if (shares < MIN_GROUP_SHARES)
7395 shares = MIN_GROUP_SHARES;
7396
7397 /*
7398 * Prevent any load balance activity (rebalance_shares,
7399 * load_balance_fair) from referring to this group first,
7400 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7401 */
7402 for_each_possible_cpu(i) {
7403 cfs_rq = tg->cfs_rq[i];
7404 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7405 }
7406
7407 /* wait for any ongoing reference to this group to finish */
7408 synchronize_sched();
7409
7410 /*
7411 * Now we are free to modify the group's share on each cpu
7412 * w/o tripping rebalance_share or load_balance_fair.
7413 */
9b5b7751 7414 tg->shares = shares;
6b2d7700
SV
7415 for_each_possible_cpu(i) {
7416 spin_lock_irq(&cpu_rq(i)->lock);
9b5b7751 7417 set_se_shares(tg->se[i], shares);
6b2d7700
SV
7418 spin_unlock_irq(&cpu_rq(i)->lock);
7419 }
29f59db3 7420
6b2d7700
SV
7421 /*
7422 * Enable load balance activity on this group, by inserting it back on
7423 * each cpu's rq->leaf_cfs_rq_list.
7424 */
7425 for_each_possible_cpu(i) {
7426 rq = cpu_rq(i);
7427 cfs_rq = tg->cfs_rq[i];
7428 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7429 }
5cb350ba 7430done:
ec2c507f 7431 unlock_task_group_list();
9b5b7751 7432 return 0;
29f59db3
SV
7433}
7434
5cb350ba
DG
7435unsigned long sched_group_shares(struct task_group *tg)
7436{
7437 return tg->shares;
7438}
7439
3a252015 7440#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7441
7442#ifdef CONFIG_FAIR_CGROUP_SCHED
7443
7444/* return corresponding task_group object of a cgroup */
2b01dfe3 7445static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7446{
2b01dfe3
PM
7447 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7448 struct task_group, css);
68318b8e
SV
7449}
7450
7451static struct cgroup_subsys_state *
2b01dfe3 7452cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7453{
7454 struct task_group *tg;
7455
2b01dfe3 7456 if (!cgrp->parent) {
68318b8e 7457 /* This is early initialization for the top cgroup */
2b01dfe3 7458 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7459 return &init_task_group.css;
7460 }
7461
7462 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7463 if (cgrp->parent->parent)
68318b8e
SV
7464 return ERR_PTR(-EINVAL);
7465
7466 tg = sched_create_group();
7467 if (IS_ERR(tg))
7468 return ERR_PTR(-ENOMEM);
7469
7470 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7471 tg->css.cgroup = cgrp;
68318b8e
SV
7472
7473 return &tg->css;
7474}
7475
41a2d6cf
IM
7476static void
7477cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7478{
2b01dfe3 7479 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7480
7481 sched_destroy_group(tg);
7482}
7483
41a2d6cf
IM
7484static int
7485cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7486 struct task_struct *tsk)
68318b8e
SV
7487{
7488 /* We don't support RT-tasks being in separate groups */
7489 if (tsk->sched_class != &fair_sched_class)
7490 return -EINVAL;
7491
7492 return 0;
7493}
7494
7495static void
2b01dfe3 7496cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7497 struct cgroup *old_cont, struct task_struct *tsk)
7498{
7499 sched_move_task(tsk);
7500}
7501
2b01dfe3
PM
7502static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7503 u64 shareval)
68318b8e 7504{
2b01dfe3 7505 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7506}
7507
2b01dfe3 7508static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7509{
2b01dfe3 7510 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7511
7512 return (u64) tg->shares;
7513}
7514
fe5c7cc2
PM
7515static struct cftype cpu_files[] = {
7516 {
7517 .name = "shares",
7518 .read_uint = cpu_shares_read_uint,
7519 .write_uint = cpu_shares_write_uint,
7520 },
68318b8e
SV
7521};
7522
7523static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7524{
fe5c7cc2 7525 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7526}
7527
7528struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7529 .name = "cpu",
7530 .create = cpu_cgroup_create,
7531 .destroy = cpu_cgroup_destroy,
7532 .can_attach = cpu_cgroup_can_attach,
7533 .attach = cpu_cgroup_attach,
7534 .populate = cpu_cgroup_populate,
7535 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7536 .early_init = 1,
7537};
7538
7539#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7540
7541#ifdef CONFIG_CGROUP_CPUACCT
7542
7543/*
7544 * CPU accounting code for task groups.
7545 *
7546 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7547 * (balbir@in.ibm.com).
7548 */
7549
7550/* track cpu usage of a group of tasks */
7551struct cpuacct {
7552 struct cgroup_subsys_state css;
7553 /* cpuusage holds pointer to a u64-type object on every cpu */
7554 u64 *cpuusage;
7555};
7556
7557struct cgroup_subsys cpuacct_subsys;
7558
7559/* return cpu accounting group corresponding to this container */
7560static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7561{
7562 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7563 struct cpuacct, css);
7564}
7565
7566/* return cpu accounting group to which this task belongs */
7567static inline struct cpuacct *task_ca(struct task_struct *tsk)
7568{
7569 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7570 struct cpuacct, css);
7571}
7572
7573/* create a new cpu accounting group */
7574static struct cgroup_subsys_state *cpuacct_create(
7575 struct cgroup_subsys *ss, struct cgroup *cont)
7576{
7577 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7578
7579 if (!ca)
7580 return ERR_PTR(-ENOMEM);
7581
7582 ca->cpuusage = alloc_percpu(u64);
7583 if (!ca->cpuusage) {
7584 kfree(ca);
7585 return ERR_PTR(-ENOMEM);
7586 }
7587
7588 return &ca->css;
7589}
7590
7591/* destroy an existing cpu accounting group */
41a2d6cf
IM
7592static void
7593cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7594{
7595 struct cpuacct *ca = cgroup_ca(cont);
7596
7597 free_percpu(ca->cpuusage);
7598 kfree(ca);
7599}
7600
7601/* return total cpu usage (in nanoseconds) of a group */
7602static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7603{
7604 struct cpuacct *ca = cgroup_ca(cont);
7605 u64 totalcpuusage = 0;
7606 int i;
7607
7608 for_each_possible_cpu(i) {
7609 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7610
7611 /*
7612 * Take rq->lock to make 64-bit addition safe on 32-bit
7613 * platforms.
7614 */
7615 spin_lock_irq(&cpu_rq(i)->lock);
7616 totalcpuusage += *cpuusage;
7617 spin_unlock_irq(&cpu_rq(i)->lock);
7618 }
7619
7620 return totalcpuusage;
7621}
7622
7623static struct cftype files[] = {
7624 {
7625 .name = "usage",
7626 .read_uint = cpuusage_read,
7627 },
7628};
7629
7630static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7631{
7632 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7633}
7634
7635/*
7636 * charge this task's execution time to its accounting group.
7637 *
7638 * called with rq->lock held.
7639 */
7640static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7641{
7642 struct cpuacct *ca;
7643
7644 if (!cpuacct_subsys.active)
7645 return;
7646
7647 ca = task_ca(tsk);
7648 if (ca) {
7649 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7650
7651 *cpuusage += cputime;
7652 }
7653}
7654
7655struct cgroup_subsys cpuacct_subsys = {
7656 .name = "cpuacct",
7657 .create = cpuacct_create,
7658 .destroy = cpuacct_destroy,
7659 .populate = cpuacct_populate,
7660 .subsys_id = cpuacct_subsys_id,
7661};
7662#endif /* CONFIG_CGROUP_CPUACCT */