]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: Move kthread_bind() back to kthread.c
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
663997d4
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
1da177e4
LT
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/nmi.h>
34#include <linux/init.h>
dff06c15 35#include <linux/uaccess.h>
1da177e4
LT
36#include <linux/highmem.h>
37#include <linux/smp_lock.h>
38#include <asm/mmu_context.h>
39#include <linux/interrupt.h>
c59ede7b 40#include <linux/capability.h>
1da177e4
LT
41#include <linux/completion.h>
42#include <linux/kernel_stat.h>
9a11b49a 43#include <linux/debug_locks.h>
cdd6c482 44#include <linux/perf_event.h>
1da177e4
LT
45#include <linux/security.h>
46#include <linux/notifier.h>
47#include <linux/profile.h>
7dfb7103 48#include <linux/freezer.h>
198e2f18 49#include <linux/vmalloc.h>
1da177e4
LT
50#include <linux/blkdev.h>
51#include <linux/delay.h>
b488893a 52#include <linux/pid_namespace.h>
1da177e4
LT
53#include <linux/smp.h>
54#include <linux/threads.h>
55#include <linux/timer.h>
56#include <linux/rcupdate.h>
57#include <linux/cpu.h>
58#include <linux/cpuset.h>
59#include <linux/percpu.h>
60#include <linux/kthread.h>
b5aadf7f 61#include <linux/proc_fs.h>
1da177e4 62#include <linux/seq_file.h>
e692ab53 63#include <linux/sysctl.h>
1da177e4
LT
64#include <linux/syscalls.h>
65#include <linux/times.h>
8f0ab514 66#include <linux/tsacct_kern.h>
c6fd91f0 67#include <linux/kprobes.h>
0ff92245 68#include <linux/delayacct.h>
dff06c15 69#include <linux/unistd.h>
f5ff8422 70#include <linux/pagemap.h>
8f4d37ec 71#include <linux/hrtimer.h>
30914a58 72#include <linux/tick.h>
f00b45c1
PZ
73#include <linux/debugfs.h>
74#include <linux/ctype.h>
6cd8a4bb 75#include <linux/ftrace.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
052f1dc7 238#ifdef CONFIG_GROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
052f1dc7 248#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
249 struct cgroup_subsys_state css;
250#endif
052f1dc7 251
6c415b92
AB
252#ifdef CONFIG_USER_SCHED
253 uid_t uid;
254#endif
255
052f1dc7 256#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
f473aa5e
PZ
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
29f59db3
SV
277};
278
354d60c2 279#ifdef CONFIG_USER_SCHED
eff766a6 280
6c415b92
AB
281/* Helper function to pass uid information to create_sched_user() */
282void set_tg_uid(struct user_struct *user)
283{
284 user->tg->uid = user->uid;
285}
286
eff766a6
PZ
287/*
288 * Root task group.
84e9dabf
AS
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
eff766a6
PZ
291 */
292struct task_group root_task_group;
293
052f1dc7 294#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
295/* Default task group's sched entity on each cpu */
296static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297/* Default task group's cfs_rq on each cpu */
ada3fa15 298static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 299#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
300
301#ifdef CONFIG_RT_GROUP_SCHED
302static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
1871e52c 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
6d6bc0ad 304#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 305#else /* !CONFIG_USER_SCHED */
eff766a6 306#define root_task_group init_task_group
9a7e0b18 307#endif /* CONFIG_USER_SCHED */
6f505b16 308
8ed36996 309/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
310 * a task group's cpu shares.
311 */
8ed36996 312static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 313
e9036b36
CG
314#ifdef CONFIG_FAIR_GROUP_SCHED
315
57310a98
PZ
316#ifdef CONFIG_SMP
317static int root_task_group_empty(void)
318{
319 return list_empty(&root_task_group.children);
320}
321#endif
322
052f1dc7
PZ
323#ifdef CONFIG_USER_SCHED
324# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 325#else /* !CONFIG_USER_SCHED */
052f1dc7 326# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 327#endif /* CONFIG_USER_SCHED */
052f1dc7 328
cb4ad1ff 329/*
2e084786
LJ
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
cb4ad1ff
MX
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
18d95a28 337#define MIN_SHARES 2
2e084786 338#define MAX_SHARES (1UL << 18)
18d95a28 339
052f1dc7
PZ
340static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341#endif
342
29f59db3 343/* Default task group.
3a252015 344 * Every task in system belong to this group at bootup.
29f59db3 345 */
434d53b0 346struct task_group init_task_group;
29f59db3
SV
347
348/* return group to which a task belongs */
4cf86d77 349static inline struct task_group *task_group(struct task_struct *p)
29f59db3 350{
4cf86d77 351 struct task_group *tg;
9b5b7751 352
052f1dc7 353#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
354 rcu_read_lock();
355 tg = __task_cred(p)->user->tg;
356 rcu_read_unlock();
052f1dc7 357#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
358 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
359 struct task_group, css);
24e377a8 360#else
41a2d6cf 361 tg = &init_task_group;
24e377a8 362#endif
9b5b7751 363 return tg;
29f59db3
SV
364}
365
366/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 368{
052f1dc7 369#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
370 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
371 p->se.parent = task_group(p)->se[cpu];
052f1dc7 372#endif
6f505b16 373
052f1dc7 374#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
375 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
376 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 377#endif
29f59db3
SV
378}
379
380#else
381
6f505b16 382static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
383static inline struct task_group *task_group(struct task_struct *p)
384{
385 return NULL;
386}
29f59db3 387
052f1dc7 388#endif /* CONFIG_GROUP_SCHED */
29f59db3 389
6aa645ea
IM
390/* CFS-related fields in a runqueue */
391struct cfs_rq {
392 struct load_weight load;
393 unsigned long nr_running;
394
6aa645ea 395 u64 exec_clock;
e9acbff6 396 u64 min_vruntime;
6aa645ea
IM
397
398 struct rb_root tasks_timeline;
399 struct rb_node *rb_leftmost;
4a55bd5e
PZ
400
401 struct list_head tasks;
402 struct list_head *balance_iterator;
403
404 /*
405 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
406 * It is set to NULL otherwise (i.e when none are currently running).
407 */
4793241b 408 struct sched_entity *curr, *next, *last;
ddc97297 409
5ac5c4d6 410 unsigned int nr_spread_over;
ddc97297 411
62160e3f 412#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
413 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414
41a2d6cf
IM
415 /*
416 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
417 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
418 * (like users, containers etc.)
419 *
420 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
421 * list is used during load balance.
422 */
41a2d6cf
IM
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
425
426#ifdef CONFIG_SMP
c09595f6 427 /*
c8cba857 428 * the part of load.weight contributed by tasks
c09595f6 429 */
c8cba857 430 unsigned long task_weight;
c09595f6 431
c8cba857
PZ
432 /*
433 * h_load = weight * f(tg)
434 *
435 * Where f(tg) is the recursive weight fraction assigned to
436 * this group.
437 */
438 unsigned long h_load;
c09595f6 439
c8cba857
PZ
440 /*
441 * this cpu's part of tg->shares
442 */
443 unsigned long shares;
f1d239f7
PZ
444
445 /*
446 * load.weight at the time we set shares
447 */
448 unsigned long rq_weight;
c09595f6 449#endif
6aa645ea
IM
450#endif
451};
1da177e4 452
6aa645ea
IM
453/* Real-Time classes' related field in a runqueue: */
454struct rt_rq {
455 struct rt_prio_array active;
63489e45 456 unsigned long rt_nr_running;
052f1dc7 457#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
458 struct {
459 int curr; /* highest queued rt task prio */
398a153b 460#ifdef CONFIG_SMP
e864c499 461 int next; /* next highest */
398a153b 462#endif
e864c499 463 } highest_prio;
6f505b16 464#endif
fa85ae24 465#ifdef CONFIG_SMP
73fe6aae 466 unsigned long rt_nr_migratory;
a1ba4d8b 467 unsigned long rt_nr_total;
a22d7fc1 468 int overloaded;
917b627d 469 struct plist_head pushable_tasks;
fa85ae24 470#endif
6f505b16 471 int rt_throttled;
fa85ae24 472 u64 rt_time;
ac086bc2 473 u64 rt_runtime;
ea736ed5 474 /* Nests inside the rq lock: */
0986b11b 475 raw_spinlock_t rt_runtime_lock;
6f505b16 476
052f1dc7 477#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
478 unsigned long rt_nr_boosted;
479
6f505b16
PZ
480 struct rq *rq;
481 struct list_head leaf_rt_rq_list;
482 struct task_group *tg;
483 struct sched_rt_entity *rt_se;
484#endif
6aa645ea
IM
485};
486
57d885fe
GH
487#ifdef CONFIG_SMP
488
489/*
490 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
491 * variables. Each exclusive cpuset essentially defines an island domain by
492 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
493 * exclusive cpuset is created, we also create and attach a new root-domain
494 * object.
495 *
57d885fe
GH
496 */
497struct root_domain {
498 atomic_t refcount;
c6c4927b
RR
499 cpumask_var_t span;
500 cpumask_var_t online;
637f5085 501
0eab9146 502 /*
637f5085
GH
503 * The "RT overload" flag: it gets set if a CPU has more than
504 * one runnable RT task.
505 */
c6c4927b 506 cpumask_var_t rto_mask;
0eab9146 507 atomic_t rto_count;
6e0534f2
GH
508#ifdef CONFIG_SMP
509 struct cpupri cpupri;
510#endif
57d885fe
GH
511};
512
dc938520
GH
513/*
514 * By default the system creates a single root-domain with all cpus as
515 * members (mimicking the global state we have today).
516 */
57d885fe
GH
517static struct root_domain def_root_domain;
518
519#endif
520
1da177e4
LT
521/*
522 * This is the main, per-CPU runqueue data structure.
523 *
524 * Locking rule: those places that want to lock multiple runqueues
525 * (such as the load balancing or the thread migration code), lock
526 * acquire operations must be ordered by ascending &runqueue.
527 */
70b97a7f 528struct rq {
d8016491 529 /* runqueue lock: */
05fa785c 530 raw_spinlock_t lock;
1da177e4
LT
531
532 /*
533 * nr_running and cpu_load should be in the same cacheline because
534 * remote CPUs use both these fields when doing load calculation.
535 */
536 unsigned long nr_running;
6aa645ea
IM
537 #define CPU_LOAD_IDX_MAX 5
538 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
539#ifdef CONFIG_NO_HZ
540 unsigned char in_nohz_recently;
541#endif
d8016491
IM
542 /* capture load from *all* tasks on this cpu: */
543 struct load_weight load;
6aa645ea
IM
544 unsigned long nr_load_updates;
545 u64 nr_switches;
546
547 struct cfs_rq cfs;
6f505b16 548 struct rt_rq rt;
6f505b16 549
6aa645ea 550#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
553#endif
554#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 555 struct list_head leaf_rt_rq_list;
1da177e4 556#endif
1da177e4
LT
557
558 /*
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
563 */
564 unsigned long nr_uninterruptible;
565
36c8b586 566 struct task_struct *curr, *idle;
c9819f45 567 unsigned long next_balance;
1da177e4 568 struct mm_struct *prev_mm;
6aa645ea 569
3e51f33f 570 u64 clock;
6aa645ea 571
1da177e4
LT
572 atomic_t nr_iowait;
573
574#ifdef CONFIG_SMP
0eab9146 575 struct root_domain *rd;
1da177e4
LT
576 struct sched_domain *sd;
577
a0a522ce 578 unsigned char idle_at_tick;
1da177e4 579 /* For active balancing */
3f029d3c 580 int post_schedule;
1da177e4
LT
581 int active_balance;
582 int push_cpu;
d8016491
IM
583 /* cpu of this runqueue: */
584 int cpu;
1f11eb6a 585 int online;
1da177e4 586
a8a51d5e 587 unsigned long avg_load_per_task;
1da177e4 588
36c8b586 589 struct task_struct *migration_thread;
1da177e4 590 struct list_head migration_queue;
e9e9250b
PZ
591
592 u64 rt_avg;
593 u64 age_stamp;
1b9508f6
MG
594 u64 idle_stamp;
595 u64 avg_idle;
1da177e4
LT
596#endif
597
dce48a84
TG
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
601
8f4d37ec 602#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
603#ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606#endif
8f4d37ec
PZ
607 struct hrtimer hrtick_timer;
608#endif
609
1da177e4
LT
610#ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
9c2c4802
KC
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
615
616 /* sys_sched_yield() stats */
480b9434 617 unsigned int yld_count;
1da177e4
LT
618
619 /* schedule() stats */
480b9434
KC
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
1da177e4
LT
623
624 /* try_to_wake_up() stats */
480b9434
KC
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
b8efb561
IM
627
628 /* BKL stats */
480b9434 629 unsigned int bkl_count;
1da177e4
LT
630#endif
631};
632
f34e3b61 633static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 634
7d478721
PZ
635static inline
636void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 637{
7d478721 638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
639}
640
0a2966b4
CL
641static inline int cpu_of(struct rq *rq)
642{
643#ifdef CONFIG_SMP
644 return rq->cpu;
645#else
646 return 0;
647#endif
648}
649
674311d5
NP
650/*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 652 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
48f24c4d
IM
657#define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
659
660#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661#define this_rq() (&__get_cpu_var(runqueues))
662#define task_rq(p) cpu_rq(task_cpu(p))
663#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 664#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 665
aa9c4c0f 666inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
667{
668 rq->clock = sched_clock_cpu(cpu_of(rq));
669}
670
bf5c91ba
IM
671/*
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 */
674#ifdef CONFIG_SCHED_DEBUG
675# define const_debug __read_mostly
676#else
677# define const_debug static const
678#endif
679
017730c1
IM
680/**
681 * runqueue_is_locked
e17b38bf 682 * @cpu: the processor in question.
017730c1
IM
683 *
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
89f19f04 688int runqueue_is_locked(int cpu)
017730c1 689{
05fa785c 690 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
691}
692
bf5c91ba
IM
693/*
694 * Debugging: various feature bits
695 */
f00b45c1
PZ
696
697#define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
bf5c91ba 700enum {
f00b45c1 701#include "sched_features.h"
bf5c91ba
IM
702};
703
f00b45c1
PZ
704#undef SCHED_FEAT
705
706#define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
bf5c91ba 709const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
710#include "sched_features.h"
711 0;
712
713#undef SCHED_FEAT
714
715#ifdef CONFIG_SCHED_DEBUG
716#define SCHED_FEAT(name, enabled) \
717 #name ,
718
983ed7a6 719static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
720#include "sched_features.h"
721 NULL
722};
723
724#undef SCHED_FEAT
725
34f3a814 726static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 727{
f00b45c1
PZ
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 734 }
34f3a814 735 seq_puts(m, "\n");
f00b45c1 736
34f3a814 737 return 0;
f00b45c1
PZ
738}
739
740static ssize_t
741sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743{
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756
c24b7c52 757 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
758 neg = 1;
759 cmp += 3;
760 }
761
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
764
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
42994724 777 *ppos += cnt;
f00b45c1
PZ
778
779 return cnt;
780}
781
34f3a814
LZ
782static int sched_feat_open(struct inode *inode, struct file *filp)
783{
784 return single_open(filp, sched_feat_show, NULL);
785}
786
828c0950 787static const struct file_operations sched_feat_fops = {
34f3a814
LZ
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
f00b45c1
PZ
793};
794
795static __init int sched_init_debug(void)
796{
f00b45c1
PZ
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 807
b82d9fdd
PZ
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
2398f2c6
PZ
814/*
815 * ratelimit for updating the group shares.
55cd5340 816 * default: 0.25ms
2398f2c6 817 */
55cd5340 818unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 819unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 820
ffda12a1
PZ
821/*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826unsigned int sysctl_sched_shares_thresh = 4;
827
e9e9250b
PZ
828/*
829 * period over which we average the RT time consumption, measured
830 * in ms.
831 *
832 * default: 1s
833 */
834const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835
fa85ae24 836/*
9f0c1e56 837 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
838 * default: 1s
839 */
9f0c1e56 840unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 841
6892b75e
IM
842static __read_mostly int scheduler_running;
843
9f0c1e56
PZ
844/*
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
847 */
848int sysctl_sched_rt_runtime = 950000;
fa85ae24 849
d0b27fa7
PZ
850static inline u64 global_rt_period(void)
851{
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853}
854
855static inline u64 global_rt_runtime(void)
856{
e26873bb 857 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
858 return RUNTIME_INF;
859
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861}
fa85ae24 862
1da177e4 863#ifndef prepare_arch_switch
4866cde0
NP
864# define prepare_arch_switch(next) do { } while (0)
865#endif
866#ifndef finish_arch_switch
867# define finish_arch_switch(prev) do { } while (0)
868#endif
869
051a1d1a
DA
870static inline int task_current(struct rq *rq, struct task_struct *p)
871{
872 return rq->curr == p;
873}
874
4866cde0 875#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 876static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 877{
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879}
880
70b97a7f 881static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
882{
883}
884
70b97a7f 885static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 886{
da04c035
IM
887#ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890#endif
8a25d5de
IM
891 /*
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
895 */
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897
05fa785c 898 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
899}
900
901#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 902static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 return p->oncpu;
906#else
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908#endif
909}
910
70b97a7f 911static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
912{
913#ifdef CONFIG_SMP
914 /*
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
918 */
919 next->oncpu = 1;
920#endif
921#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 922 raw_spin_unlock_irq(&rq->lock);
4866cde0 923#else
05fa785c 924 raw_spin_unlock(&rq->lock);
4866cde0
NP
925#endif
926}
927
70b97a7f 928static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
929{
930#ifdef CONFIG_SMP
931 /*
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
935 */
936 smp_wmb();
937 prev->oncpu = 0;
938#endif
939#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
1da177e4 941#endif
4866cde0
NP
942}
943#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 944
b29739f9
IM
945/*
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
948 */
70b97a7f 949static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
950 __acquires(rq->lock)
951{
3a5c359a
AK
952 for (;;) {
953 struct rq *rq = task_rq(p);
05fa785c 954 raw_spin_lock(&rq->lock);
3a5c359a
AK
955 if (likely(rq == task_rq(p)))
956 return rq;
05fa785c 957 raw_spin_unlock(&rq->lock);
b29739f9 958 }
b29739f9
IM
959}
960
1da177e4
LT
961/*
962 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 963 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
964 * explicitly disabling preemption.
965 */
70b97a7f 966static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
967 __acquires(rq->lock)
968{
70b97a7f 969 struct rq *rq;
1da177e4 970
3a5c359a
AK
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
05fa785c 974 raw_spin_lock(&rq->lock);
3a5c359a
AK
975 if (likely(rq == task_rq(p)))
976 return rq;
05fa785c 977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 978 }
1da177e4
LT
979}
980
ad474cac
ON
981void task_rq_unlock_wait(struct task_struct *p)
982{
983 struct rq *rq = task_rq(p);
984
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 986 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
987}
988
a9957449 989static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
990 __releases(rq->lock)
991{
05fa785c 992 raw_spin_unlock(&rq->lock);
b29739f9
IM
993}
994
70b97a7f 995static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
996 __releases(rq->lock)
997{
05fa785c 998 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
999}
1000
1da177e4 1001/*
cc2a73b5 1002 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1003 */
a9957449 1004static struct rq *this_rq_lock(void)
1da177e4
LT
1005 __acquires(rq->lock)
1006{
70b97a7f 1007 struct rq *rq;
1da177e4
LT
1008
1009 local_irq_disable();
1010 rq = this_rq();
05fa785c 1011 raw_spin_lock(&rq->lock);
1da177e4
LT
1012
1013 return rq;
1014}
1015
8f4d37ec
PZ
1016#ifdef CONFIG_SCHED_HRTICK
1017/*
1018 * Use HR-timers to deliver accurate preemption points.
1019 *
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1023 *
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1026 */
8f4d37ec
PZ
1027
1028/*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033static inline int hrtick_enabled(struct rq *rq)
1034{
1035 if (!sched_feat(HRTICK))
1036 return 0;
ba42059f 1037 if (!cpu_active(cpu_of(rq)))
b328ca18 1038 return 0;
8f4d37ec
PZ
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040}
1041
8f4d37ec
PZ
1042static void hrtick_clear(struct rq *rq)
1043{
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1046}
1047
8f4d37ec
PZ
1048/*
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1051 */
1052static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053{
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057
05fa785c 1058 raw_spin_lock(&rq->lock);
3e51f33f 1059 update_rq_clock(rq);
8f4d37ec 1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1061 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1062
1063 return HRTIMER_NORESTART;
1064}
1065
95e904c7 1066#ifdef CONFIG_SMP
31656519
PZ
1067/*
1068 * called from hardirq (IPI) context
1069 */
1070static void __hrtick_start(void *arg)
b328ca18 1071{
31656519 1072 struct rq *rq = arg;
b328ca18 1073
05fa785c 1074 raw_spin_lock(&rq->lock);
31656519
PZ
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
05fa785c 1077 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1078}
1079
31656519
PZ
1080/*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1086{
31656519
PZ
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1089
cc584b21 1090 hrtimer_set_expires(timer, time);
31656519
PZ
1091
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
6e275637 1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1096 rq->hrtick_csd_pending = 1;
1097 }
b328ca18
PZ
1098}
1099
1100static int
1101hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102{
1103 int cpu = (int)(long)hcpu;
1104
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
31656519 1112 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1113 return NOTIFY_OK;
1114 }
1115
1116 return NOTIFY_DONE;
1117}
1118
fa748203 1119static __init void init_hrtick(void)
b328ca18
PZ
1120{
1121 hotcpu_notifier(hotplug_hrtick, 0);
1122}
31656519
PZ
1123#else
1124/*
1125 * Called to set the hrtick timer state.
1126 *
1127 * called with rq->lock held and irqs disabled
1128 */
1129static void hrtick_start(struct rq *rq, u64 delay)
1130{
7f1e2ca9 1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1132 HRTIMER_MODE_REL_PINNED, 0);
31656519 1133}
b328ca18 1134
006c75f1 1135static inline void init_hrtick(void)
8f4d37ec 1136{
8f4d37ec 1137}
31656519 1138#endif /* CONFIG_SMP */
8f4d37ec 1139
31656519 1140static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1141{
31656519
PZ
1142#ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
8f4d37ec 1144
31656519
PZ
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148#endif
8f4d37ec 1149
31656519
PZ
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
8f4d37ec 1152}
006c75f1 1153#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1154static inline void hrtick_clear(struct rq *rq)
1155{
1156}
1157
8f4d37ec
PZ
1158static inline void init_rq_hrtick(struct rq *rq)
1159{
1160}
1161
b328ca18
PZ
1162static inline void init_hrtick(void)
1163{
1164}
006c75f1 1165#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1166
c24d20db
IM
1167/*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174#ifdef CONFIG_SMP
1175
1176#ifndef tsk_is_polling
1177#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178#endif
1179
31656519 1180static void resched_task(struct task_struct *p)
c24d20db
IM
1181{
1182 int cpu;
1183
05fa785c 1184 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1185
5ed0cec0 1186 if (test_tsk_need_resched(p))
c24d20db
IM
1187 return;
1188
5ed0cec0 1189 set_tsk_need_resched(p);
c24d20db
IM
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199}
1200
1201static void resched_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
05fa785c 1206 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1207 return;
1208 resched_task(cpu_curr(cpu));
05fa785c 1209 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1210}
06d8308c
TG
1211
1212#ifdef CONFIG_NO_HZ
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
5ed0cec0 1245 set_tsk_need_resched(rq->idle);
06d8308c
TG
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
6d6bc0ad 1252#endif /* CONFIG_NO_HZ */
06d8308c 1253
e9e9250b
PZ
1254static u64 sched_avg_period(void)
1255{
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257}
1258
1259static void sched_avg_update(struct rq *rq)
1260{
1261 s64 period = sched_avg_period();
1262
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1266 }
1267}
1268
1269static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270{
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1273}
1274
6d6bc0ad 1275#else /* !CONFIG_SMP */
31656519 1276static void resched_task(struct task_struct *p)
c24d20db 1277{
05fa785c 1278 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1279 set_tsk_need_resched(p);
c24d20db 1280}
e9e9250b
PZ
1281
1282static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283{
1284}
6d6bc0ad 1285#endif /* CONFIG_SMP */
c24d20db 1286
45bf76df
IM
1287#if BITS_PER_LONG == 32
1288# define WMULT_CONST (~0UL)
1289#else
1290# define WMULT_CONST (1UL << 32)
1291#endif
1292
1293#define WMULT_SHIFT 32
1294
194081eb
IM
1295/*
1296 * Shift right and round:
1297 */
cf2ab469 1298#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1299
a7be37ac
PZ
1300/*
1301 * delta *= weight / lw
1302 */
cb1c4fc9 1303static unsigned long
45bf76df
IM
1304calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306{
1307 u64 tmp;
1308
7a232e03
LJ
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
45bf76df
IM
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
194081eb 1321 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1323 WMULT_SHIFT/2);
1324 else
cf2ab469 1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1326
ecf691da 1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1328}
1329
1091985b 1330static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1331{
1332 lw->weight += inc;
e89996ae 1333 lw->inv_weight = 0;
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1337{
1338 lw->weight -= dec;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
2dd73a4f
PW
1342/*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
cce7ade8
PZ
1351#define WEIGHT_IDLEPRIO 3
1352#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1353
1354/*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
dd41f596
IM
1365 */
1366static const int prio_to_weight[40] = {
254753dc
IM
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1375};
1376
5714d2de
IM
1377/*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
dd41f596 1384static const u32 prio_to_wmult[40] = {
254753dc
IM
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1393};
2dd73a4f 1394
dd41f596
IM
1395static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397/*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406};
1407
e1d1484f
PW
1408#ifdef CONFIG_SMP
1409static unsigned long
1410balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415static int
1416iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
e1d1484f 1419#endif
dd41f596 1420
ef12fefa
BR
1421/* Time spent by the tasks of the cpu accounting group executing in ... */
1422enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427};
1428
d842de87
SV
1429#ifdef CONFIG_CGROUP_CPUACCT
1430static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1431static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1433#else
1434static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1435static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1437#endif
1438
18d95a28
PZ
1439static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_add(&rq->load, load);
1442}
1443
1444static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445{
1446 update_load_sub(&rq->load, load);
1447}
1448
7940ca36 1449#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1450typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1451
1452/*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
eb755805 1456static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1457{
1458 struct task_group *parent, *child;
eb755805 1459 int ret;
c09595f6
PZ
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463down:
eb755805
PZ
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
c09595f6
PZ
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471up:
1472 continue;
1473 }
eb755805
PZ
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
c09595f6
PZ
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
eb755805 1482out_unlock:
c09595f6 1483 rcu_read_unlock();
eb755805
PZ
1484
1485 return ret;
c09595f6
PZ
1486}
1487
eb755805
PZ
1488static int tg_nop(struct task_group *tg, void *data)
1489{
1490 return 0;
c09595f6 1491}
eb755805
PZ
1492#endif
1493
1494#ifdef CONFIG_SMP
f5f08f39
PZ
1495/* Used instead of source_load when we know the type == 0 */
1496static unsigned long weighted_cpuload(const int cpu)
1497{
1498 return cpu_rq(cpu)->load.weight;
1499}
1500
1501/*
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 *
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1507 */
1508static unsigned long source_load(int cpu, int type)
1509{
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1512
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1515
1516 return min(rq->cpu_load[type-1], total);
1517}
1518
1519/*
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1522 */
1523static unsigned long target_load(int cpu, int type)
1524{
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return max(rq->cpu_load[type-1], total);
1532}
1533
ae154be1
PZ
1534static struct sched_group *group_of(int cpu)
1535{
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537
1538 if (!sd)
1539 return NULL;
1540
1541 return sd->groups;
1542}
1543
1544static unsigned long power_of(int cpu)
1545{
1546 struct sched_group *group = group_of(cpu);
1547
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1550
1551 return group->cpu_power;
1552}
1553
eb755805
PZ
1554static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555
1556static unsigned long cpu_avg_load_per_task(int cpu)
1557{
1558 struct rq *rq = cpu_rq(cpu);
af6d596f 1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1560
4cd42620
SR
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1563 else
1564 rq->avg_load_per_task = 0;
eb755805
PZ
1565
1566 return rq->avg_load_per_task;
1567}
1568
1569#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1570
4a6cc4bd 1571static __read_mostly unsigned long *update_shares_data;
34d76c41 1572
c09595f6
PZ
1573static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575/*
1576 * Calculate and set the cpu's group shares.
1577 */
34d76c41
PZ
1578static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
4a6cc4bd 1581 unsigned long *usd_rq_weight)
18d95a28 1582{
34d76c41 1583 unsigned long shares, rq_weight;
a5004278 1584 int boost = 0;
c09595f6 1585
4a6cc4bd 1586 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
c8cba857 1591
c09595f6 1592 /*
a8af7246
PZ
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
c09595f6 1596 */
ec4e0e2f 1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1599
ffda12a1
PZ
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
c09595f6 1604
05fa785c 1605 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1608 __set_se_shares(tg->se[cpu], shares);
05fa785c 1609 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1610 }
18d95a28 1611}
c09595f6
PZ
1612
1613/*
c8cba857
PZ
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
c09595f6 1617 */
eb755805 1618static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1619{
cd8ad40d 1620 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1621 unsigned long *usd_rq_weight;
eb755805 1622 struct sched_domain *sd = data;
34d76c41 1623 unsigned long flags;
c8cba857 1624 int i;
c09595f6 1625
34d76c41
PZ
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
4a6cc4bd 1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1631
758b2cdc 1632 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1633 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1634 usd_rq_weight[i] = weight;
34d76c41 1635
cd8ad40d 1636 rq_weight += weight;
ec4e0e2f
KC
1637 /*
1638 * If there are currently no tasks on the cpu pretend there
1639 * is one of average load so that when a new task gets to
1640 * run here it will not get delayed by group starvation.
1641 */
ec4e0e2f
KC
1642 if (!weight)
1643 weight = NICE_0_LOAD;
1644
cd8ad40d 1645 sum_weight += weight;
c8cba857 1646 shares += tg->cfs_rq[i]->shares;
c09595f6 1647 }
c09595f6 1648
cd8ad40d
PZ
1649 if (!rq_weight)
1650 rq_weight = sum_weight;
1651
c8cba857
PZ
1652 if ((!shares && rq_weight) || shares > tg->shares)
1653 shares = tg->shares;
1654
1655 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1656 shares = tg->shares;
c09595f6 1657
758b2cdc 1658 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1659 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1660
1661 local_irq_restore(flags);
eb755805
PZ
1662
1663 return 0;
c09595f6
PZ
1664}
1665
1666/*
c8cba857
PZ
1667 * Compute the cpu's hierarchical load factor for each task group.
1668 * This needs to be done in a top-down fashion because the load of a child
1669 * group is a fraction of its parents load.
c09595f6 1670 */
eb755805 1671static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1672{
c8cba857 1673 unsigned long load;
eb755805 1674 long cpu = (long)data;
c09595f6 1675
c8cba857
PZ
1676 if (!tg->parent) {
1677 load = cpu_rq(cpu)->load.weight;
1678 } else {
1679 load = tg->parent->cfs_rq[cpu]->h_load;
1680 load *= tg->cfs_rq[cpu]->shares;
1681 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1682 }
c09595f6 1683
c8cba857 1684 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1685
eb755805 1686 return 0;
c09595f6
PZ
1687}
1688
c8cba857 1689static void update_shares(struct sched_domain *sd)
4d8d595d 1690{
e7097159
PZ
1691 s64 elapsed;
1692 u64 now;
1693
1694 if (root_task_group_empty())
1695 return;
1696
1697 now = cpu_clock(raw_smp_processor_id());
1698 elapsed = now - sd->last_update;
2398f2c6
PZ
1699
1700 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1701 sd->last_update = now;
eb755805 1702 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1703 }
4d8d595d
PZ
1704}
1705
3e5459b4
PZ
1706static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1707{
e7097159
PZ
1708 if (root_task_group_empty())
1709 return;
1710
05fa785c 1711 raw_spin_unlock(&rq->lock);
3e5459b4 1712 update_shares(sd);
05fa785c 1713 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1714}
1715
eb755805 1716static void update_h_load(long cpu)
c09595f6 1717{
e7097159
PZ
1718 if (root_task_group_empty())
1719 return;
1720
eb755805 1721 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1722}
1723
c09595f6
PZ
1724#else
1725
c8cba857 1726static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1727{
1728}
1729
3e5459b4
PZ
1730static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1731{
1732}
1733
18d95a28
PZ
1734#endif
1735
8f45e2b5
GH
1736#ifdef CONFIG_PREEMPT
1737
b78bb868
PZ
1738static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739
70574a99 1740/*
8f45e2b5
GH
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
70574a99 1747 */
8f45e2b5
GH
1748static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1752{
05fa785c 1753 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1754 double_rq_lock(this_rq, busiest);
1755
1756 return 1;
1757}
1758
1759#else
1760/*
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1766 */
1767static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1771{
1772 int ret = 0;
1773
05fa785c 1774 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1775 if (busiest < this_rq) {
05fa785c
TG
1776 raw_spin_unlock(&this_rq->lock);
1777 raw_spin_lock(&busiest->lock);
1778 raw_spin_lock_nested(&this_rq->lock,
1779 SINGLE_DEPTH_NESTING);
70574a99
AD
1780 ret = 1;
1781 } else
05fa785c
TG
1782 raw_spin_lock_nested(&busiest->lock,
1783 SINGLE_DEPTH_NESTING);
70574a99
AD
1784 }
1785 return ret;
1786}
1787
8f45e2b5
GH
1788#endif /* CONFIG_PREEMPT */
1789
1790/*
1791 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1792 */
1793static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1794{
1795 if (unlikely(!irqs_disabled())) {
1796 /* printk() doesn't work good under rq->lock */
05fa785c 1797 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1798 BUG_ON(1);
1799 }
1800
1801 return _double_lock_balance(this_rq, busiest);
1802}
1803
70574a99
AD
1804static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 __releases(busiest->lock)
1806{
05fa785c 1807 raw_spin_unlock(&busiest->lock);
70574a99
AD
1808 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1809}
18d95a28
PZ
1810#endif
1811
30432094 1812#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1813static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1814{
30432094 1815#ifdef CONFIG_SMP
34e83e85
IM
1816 cfs_rq->shares = shares;
1817#endif
1818}
30432094 1819#endif
e7693a36 1820
dce48a84 1821static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1822static void update_sysctl(void);
acb4a848 1823static int get_update_sysctl_factor(void);
dce48a84 1824
cd29fe6f
PZ
1825static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1826{
1827 set_task_rq(p, cpu);
1828#ifdef CONFIG_SMP
1829 /*
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1833 */
1834 smp_wmb();
1835 task_thread_info(p)->cpu = cpu;
1836#endif
1837}
dce48a84 1838
dd41f596 1839#include "sched_stats.h"
dd41f596 1840#include "sched_idletask.c"
5522d5d5
IM
1841#include "sched_fair.c"
1842#include "sched_rt.c"
dd41f596
IM
1843#ifdef CONFIG_SCHED_DEBUG
1844# include "sched_debug.c"
1845#endif
1846
1847#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1848#define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
dd41f596 1850
c09595f6 1851static void inc_nr_running(struct rq *rq)
9c217245
IM
1852{
1853 rq->nr_running++;
9c217245
IM
1854}
1855
c09595f6 1856static void dec_nr_running(struct rq *rq)
9c217245
IM
1857{
1858 rq->nr_running--;
9c217245
IM
1859}
1860
45bf76df
IM
1861static void set_load_weight(struct task_struct *p)
1862{
1863 if (task_has_rt_policy(p)) {
dd41f596
IM
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
45bf76df 1868
dd41f596
IM
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
71f8bd46 1877
dd41f596
IM
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1880}
1881
2087a1ad
GH
1882static void update_avg(u64 *avg, u64 sample)
1883{
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886}
1887
8159f87e 1888static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1889{
831451ac
PZ
1890 if (wakeup)
1891 p->se.start_runtime = p->se.sum_exec_runtime;
1892
dd41f596 1893 sched_info_queued(p);
fd390f6a 1894 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1895 p->se.on_rq = 1;
71f8bd46
IM
1896}
1897
69be72c1 1898static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1899{
831451ac
PZ
1900 if (sleep) {
1901 if (p->se.last_wakeup) {
1902 update_avg(&p->se.avg_overlap,
1903 p->se.sum_exec_runtime - p->se.last_wakeup);
1904 p->se.last_wakeup = 0;
1905 } else {
1906 update_avg(&p->se.avg_wakeup,
1907 sysctl_sched_wakeup_granularity);
1908 }
2087a1ad
GH
1909 }
1910
46ac22ba 1911 sched_info_dequeued(p);
f02231e5 1912 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1913 p->se.on_rq = 0;
71f8bd46
IM
1914}
1915
14531189 1916/*
dd41f596 1917 * __normal_prio - return the priority that is based on the static prio
14531189 1918 */
14531189
IM
1919static inline int __normal_prio(struct task_struct *p)
1920{
dd41f596 1921 return p->static_prio;
14531189
IM
1922}
1923
b29739f9
IM
1924/*
1925 * Calculate the expected normal priority: i.e. priority
1926 * without taking RT-inheritance into account. Might be
1927 * boosted by interactivity modifiers. Changes upon fork,
1928 * setprio syscalls, and whenever the interactivity
1929 * estimator recalculates.
1930 */
36c8b586 1931static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1932{
1933 int prio;
1934
e05606d3 1935 if (task_has_rt_policy(p))
b29739f9
IM
1936 prio = MAX_RT_PRIO-1 - p->rt_priority;
1937 else
1938 prio = __normal_prio(p);
1939 return prio;
1940}
1941
1942/*
1943 * Calculate the current priority, i.e. the priority
1944 * taken into account by the scheduler. This value might
1945 * be boosted by RT tasks, or might be boosted by
1946 * interactivity modifiers. Will be RT if the task got
1947 * RT-boosted. If not then it returns p->normal_prio.
1948 */
36c8b586 1949static int effective_prio(struct task_struct *p)
b29739f9
IM
1950{
1951 p->normal_prio = normal_prio(p);
1952 /*
1953 * If we are RT tasks or we were boosted to RT priority,
1954 * keep the priority unchanged. Otherwise, update priority
1955 * to the normal priority:
1956 */
1957 if (!rt_prio(p->prio))
1958 return p->normal_prio;
1959 return p->prio;
1960}
1961
1da177e4 1962/*
dd41f596 1963 * activate_task - move a task to the runqueue.
1da177e4 1964 */
dd41f596 1965static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1966{
d9514f6c 1967 if (task_contributes_to_load(p))
dd41f596 1968 rq->nr_uninterruptible--;
1da177e4 1969
8159f87e 1970 enqueue_task(rq, p, wakeup);
c09595f6 1971 inc_nr_running(rq);
1da177e4
LT
1972}
1973
1da177e4
LT
1974/*
1975 * deactivate_task - remove a task from the runqueue.
1976 */
2e1cb74a 1977static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1978{
d9514f6c 1979 if (task_contributes_to_load(p))
dd41f596
IM
1980 rq->nr_uninterruptible++;
1981
69be72c1 1982 dequeue_task(rq, p, sleep);
c09595f6 1983 dec_nr_running(rq);
1da177e4
LT
1984}
1985
1da177e4
LT
1986/**
1987 * task_curr - is this task currently executing on a CPU?
1988 * @p: the task in question.
1989 */
36c8b586 1990inline int task_curr(const struct task_struct *p)
1da177e4
LT
1991{
1992 return cpu_curr(task_cpu(p)) == p;
1993}
1994
cb469845
SR
1995static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1996 const struct sched_class *prev_class,
1997 int oldprio, int running)
1998{
1999 if (prev_class != p->sched_class) {
2000 if (prev_class->switched_from)
2001 prev_class->switched_from(rq, p, running);
2002 p->sched_class->switched_to(rq, p, running);
2003 } else
2004 p->sched_class->prio_changed(rq, p, oldprio, running);
2005}
2006
1da177e4 2007#ifdef CONFIG_SMP
cc367732
IM
2008/*
2009 * Is this task likely cache-hot:
2010 */
e7693a36 2011static int
cc367732
IM
2012task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2013{
2014 s64 delta;
2015
e6c8fba7
PZ
2016 if (p->sched_class != &fair_sched_class)
2017 return 0;
2018
f540a608
IM
2019 /*
2020 * Buddy candidates are cache hot:
2021 */
f685ceac 2022 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2023 (&p->se == cfs_rq_of(&p->se)->next ||
2024 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2025 return 1;
2026
6bc1665b
IM
2027 if (sysctl_sched_migration_cost == -1)
2028 return 1;
2029 if (sysctl_sched_migration_cost == 0)
2030 return 0;
2031
cc367732
IM
2032 delta = now - p->se.exec_start;
2033
2034 return delta < (s64)sysctl_sched_migration_cost;
2035}
2036
2037
dd41f596 2038void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2039{
dd41f596 2040 int old_cpu = task_cpu(p);
2830cf8c
SV
2041 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2042 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
6cfb0d5d 2043
e2912009
PZ
2044#ifdef CONFIG_SCHED_DEBUG
2045 /*
2046 * We should never call set_task_cpu() on a blocked task,
2047 * ttwu() will sort out the placement.
2048 */
2049 WARN_ON(p->state != TASK_RUNNING && p->state != TASK_WAKING);
2050#endif
2051
de1d7286 2052 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2053
cc367732 2054 if (old_cpu != new_cpu) {
6c594c21 2055 p->se.nr_migrations++;
cdd6c482 2056 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2057 1, 1, NULL, 0);
6c594c21 2058 }
2830cf8c
SV
2059 p->se.vruntime -= old_cfsrq->min_vruntime -
2060 new_cfsrq->min_vruntime;
dd41f596
IM
2061
2062 __set_task_cpu(p, new_cpu);
c65cc870
IM
2063}
2064
70b97a7f 2065struct migration_req {
1da177e4 2066 struct list_head list;
1da177e4 2067
36c8b586 2068 struct task_struct *task;
1da177e4
LT
2069 int dest_cpu;
2070
1da177e4 2071 struct completion done;
70b97a7f 2072};
1da177e4
LT
2073
2074/*
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2077 */
36c8b586 2078static int
70b97a7f 2079migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2080{
70b97a7f 2081 struct rq *rq = task_rq(p);
1da177e4
LT
2082
2083 /*
2084 * If the task is not on a runqueue (and not running), then
e2912009 2085 * the next wake-up will properly place the task.
1da177e4 2086 */
e2912009 2087 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2088 return 0;
1da177e4
LT
2089
2090 init_completion(&req->done);
1da177e4
LT
2091 req->task = p;
2092 req->dest_cpu = dest_cpu;
2093 list_add(&req->list, &rq->migration_queue);
48f24c4d 2094
1da177e4
LT
2095 return 1;
2096}
2097
a26b89f0
MM
2098/*
2099 * wait_task_context_switch - wait for a thread to complete at least one
2100 * context switch.
2101 *
2102 * @p must not be current.
2103 */
2104void wait_task_context_switch(struct task_struct *p)
2105{
2106 unsigned long nvcsw, nivcsw, flags;
2107 int running;
2108 struct rq *rq;
2109
2110 nvcsw = p->nvcsw;
2111 nivcsw = p->nivcsw;
2112 for (;;) {
2113 /*
2114 * The runqueue is assigned before the actual context
2115 * switch. We need to take the runqueue lock.
2116 *
2117 * We could check initially without the lock but it is
2118 * very likely that we need to take the lock in every
2119 * iteration.
2120 */
2121 rq = task_rq_lock(p, &flags);
2122 running = task_running(rq, p);
2123 task_rq_unlock(rq, &flags);
2124
2125 if (likely(!running))
2126 break;
2127 /*
2128 * The switch count is incremented before the actual
2129 * context switch. We thus wait for two switches to be
2130 * sure at least one completed.
2131 */
2132 if ((p->nvcsw - nvcsw) > 1)
2133 break;
2134 if ((p->nivcsw - nivcsw) > 1)
2135 break;
2136
2137 cpu_relax();
2138 }
2139}
2140
1da177e4
LT
2141/*
2142 * wait_task_inactive - wait for a thread to unschedule.
2143 *
85ba2d86
RM
2144 * If @match_state is nonzero, it's the @p->state value just checked and
2145 * not expected to change. If it changes, i.e. @p might have woken up,
2146 * then return zero. When we succeed in waiting for @p to be off its CPU,
2147 * we return a positive number (its total switch count). If a second call
2148 * a short while later returns the same number, the caller can be sure that
2149 * @p has remained unscheduled the whole time.
2150 *
1da177e4
LT
2151 * The caller must ensure that the task *will* unschedule sometime soon,
2152 * else this function might spin for a *long* time. This function can't
2153 * be called with interrupts off, or it may introduce deadlock with
2154 * smp_call_function() if an IPI is sent by the same process we are
2155 * waiting to become inactive.
2156 */
85ba2d86 2157unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2158{
2159 unsigned long flags;
dd41f596 2160 int running, on_rq;
85ba2d86 2161 unsigned long ncsw;
70b97a7f 2162 struct rq *rq;
1da177e4 2163
3a5c359a
AK
2164 for (;;) {
2165 /*
2166 * We do the initial early heuristics without holding
2167 * any task-queue locks at all. We'll only try to get
2168 * the runqueue lock when things look like they will
2169 * work out!
2170 */
2171 rq = task_rq(p);
fa490cfd 2172
3a5c359a
AK
2173 /*
2174 * If the task is actively running on another CPU
2175 * still, just relax and busy-wait without holding
2176 * any locks.
2177 *
2178 * NOTE! Since we don't hold any locks, it's not
2179 * even sure that "rq" stays as the right runqueue!
2180 * But we don't care, since "task_running()" will
2181 * return false if the runqueue has changed and p
2182 * is actually now running somewhere else!
2183 */
85ba2d86
RM
2184 while (task_running(rq, p)) {
2185 if (match_state && unlikely(p->state != match_state))
2186 return 0;
3a5c359a 2187 cpu_relax();
85ba2d86 2188 }
fa490cfd 2189
3a5c359a
AK
2190 /*
2191 * Ok, time to look more closely! We need the rq
2192 * lock now, to be *sure*. If we're wrong, we'll
2193 * just go back and repeat.
2194 */
2195 rq = task_rq_lock(p, &flags);
0a16b607 2196 trace_sched_wait_task(rq, p);
3a5c359a
AK
2197 running = task_running(rq, p);
2198 on_rq = p->se.on_rq;
85ba2d86 2199 ncsw = 0;
f31e11d8 2200 if (!match_state || p->state == match_state)
93dcf55f 2201 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2202 task_rq_unlock(rq, &flags);
fa490cfd 2203
85ba2d86
RM
2204 /*
2205 * If it changed from the expected state, bail out now.
2206 */
2207 if (unlikely(!ncsw))
2208 break;
2209
3a5c359a
AK
2210 /*
2211 * Was it really running after all now that we
2212 * checked with the proper locks actually held?
2213 *
2214 * Oops. Go back and try again..
2215 */
2216 if (unlikely(running)) {
2217 cpu_relax();
2218 continue;
2219 }
fa490cfd 2220
3a5c359a
AK
2221 /*
2222 * It's not enough that it's not actively running,
2223 * it must be off the runqueue _entirely_, and not
2224 * preempted!
2225 *
80dd99b3 2226 * So if it was still runnable (but just not actively
3a5c359a
AK
2227 * running right now), it's preempted, and we should
2228 * yield - it could be a while.
2229 */
2230 if (unlikely(on_rq)) {
2231 schedule_timeout_uninterruptible(1);
2232 continue;
2233 }
fa490cfd 2234
3a5c359a
AK
2235 /*
2236 * Ahh, all good. It wasn't running, and it wasn't
2237 * runnable, which means that it will never become
2238 * running in the future either. We're all done!
2239 */
2240 break;
2241 }
85ba2d86
RM
2242
2243 return ncsw;
1da177e4
LT
2244}
2245
2246/***
2247 * kick_process - kick a running thread to enter/exit the kernel
2248 * @p: the to-be-kicked thread
2249 *
2250 * Cause a process which is running on another CPU to enter
2251 * kernel-mode, without any delay. (to get signals handled.)
2252 *
2253 * NOTE: this function doesnt have to take the runqueue lock,
2254 * because all it wants to ensure is that the remote task enters
2255 * the kernel. If the IPI races and the task has been migrated
2256 * to another CPU then no harm is done and the purpose has been
2257 * achieved as well.
2258 */
36c8b586 2259void kick_process(struct task_struct *p)
1da177e4
LT
2260{
2261 int cpu;
2262
2263 preempt_disable();
2264 cpu = task_cpu(p);
2265 if ((cpu != smp_processor_id()) && task_curr(p))
2266 smp_send_reschedule(cpu);
2267 preempt_enable();
2268}
b43e3521 2269EXPORT_SYMBOL_GPL(kick_process);
476d139c 2270#endif /* CONFIG_SMP */
1da177e4 2271
0793a61d
TG
2272/**
2273 * task_oncpu_function_call - call a function on the cpu on which a task runs
2274 * @p: the task to evaluate
2275 * @func: the function to be called
2276 * @info: the function call argument
2277 *
2278 * Calls the function @func when the task is currently running. This might
2279 * be on the current CPU, which just calls the function directly
2280 */
2281void task_oncpu_function_call(struct task_struct *p,
2282 void (*func) (void *info), void *info)
2283{
2284 int cpu;
2285
2286 preempt_disable();
2287 cpu = task_cpu(p);
2288 if (task_curr(p))
2289 smp_call_function_single(cpu, func, info, 1);
2290 preempt_enable();
2291}
2292
970b13ba 2293#ifdef CONFIG_SMP
5da9a0fb
PZ
2294static int select_fallback_rq(int cpu, struct task_struct *p)
2295{
2296 int dest_cpu;
2297 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2298
2299 /* Look for allowed, online CPU in same node. */
2300 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2301 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2302 return dest_cpu;
2303
2304 /* Any allowed, online CPU? */
2305 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2306 if (dest_cpu < nr_cpu_ids)
2307 return dest_cpu;
2308
2309 /* No more Mr. Nice Guy. */
2310 if (dest_cpu >= nr_cpu_ids) {
2311 rcu_read_lock();
2312 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2313 rcu_read_unlock();
2314 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2315
2316 /*
2317 * Don't tell them about moving exiting tasks or
2318 * kernel threads (both mm NULL), since they never
2319 * leave kernel.
2320 */
2321 if (p->mm && printk_ratelimit()) {
2322 printk(KERN_INFO "process %d (%s) no "
2323 "longer affine to cpu%d\n",
2324 task_pid_nr(p), p->comm, cpu);
2325 }
2326 }
2327
2328 return dest_cpu;
2329}
2330
e2912009
PZ
2331/*
2332 * Called from:
2333 *
2334 * - fork, @p is stable because it isn't on the tasklist yet
2335 *
38022906 2336 * - exec, @p is unstable, retry loop
e2912009
PZ
2337 *
2338 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2339 * we should be good.
2340 */
970b13ba
PZ
2341static inline
2342int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2343{
e2912009
PZ
2344 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2345
2346 /*
2347 * In order not to call set_task_cpu() on a blocking task we need
2348 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2349 * cpu.
2350 *
2351 * Since this is common to all placement strategies, this lives here.
2352 *
2353 * [ this allows ->select_task() to simply return task_cpu(p) and
2354 * not worry about this generic constraint ]
2355 */
2356 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
5da9a0fb
PZ
2357 !cpu_active(cpu)))
2358 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2359
2360 return cpu;
970b13ba
PZ
2361}
2362#endif
2363
1da177e4
LT
2364/***
2365 * try_to_wake_up - wake up a thread
2366 * @p: the to-be-woken-up thread
2367 * @state: the mask of task states that can be woken
2368 * @sync: do a synchronous wakeup?
2369 *
2370 * Put it on the run-queue if it's not already there. The "current"
2371 * thread is always on the run-queue (except when the actual
2372 * re-schedule is in progress), and as such you're allowed to do
2373 * the simpler "current->state = TASK_RUNNING" to mark yourself
2374 * runnable without the overhead of this.
2375 *
2376 * returns failure only if the task is already active.
2377 */
7d478721
PZ
2378static int try_to_wake_up(struct task_struct *p, unsigned int state,
2379 int wake_flags)
1da177e4 2380{
cc367732 2381 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2382 unsigned long flags;
f5dc3753 2383 struct rq *rq, *orig_rq;
1da177e4 2384
b85d0667 2385 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2386 wake_flags &= ~WF_SYNC;
2398f2c6 2387
e9c84311 2388 this_cpu = get_cpu();
2398f2c6 2389
04e2f174 2390 smp_wmb();
f5dc3753 2391 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2392 update_rq_clock(rq);
e9c84311 2393 if (!(p->state & state))
1da177e4
LT
2394 goto out;
2395
dd41f596 2396 if (p->se.on_rq)
1da177e4
LT
2397 goto out_running;
2398
2399 cpu = task_cpu(p);
cc367732 2400 orig_cpu = cpu;
1da177e4
LT
2401
2402#ifdef CONFIG_SMP
2403 if (unlikely(task_running(rq, p)))
2404 goto out_activate;
2405
e9c84311
PZ
2406 /*
2407 * In order to handle concurrent wakeups and release the rq->lock
2408 * we put the task in TASK_WAKING state.
eb24073b
IM
2409 *
2410 * First fix up the nr_uninterruptible count:
e9c84311 2411 */
eb24073b
IM
2412 if (task_contributes_to_load(p))
2413 rq->nr_uninterruptible--;
e9c84311 2414 p->state = TASK_WAKING;
ab19cb23 2415 __task_rq_unlock(rq);
e9c84311 2416
970b13ba 2417 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2418 if (cpu != orig_cpu)
5d2f5a61 2419 set_task_cpu(p, cpu);
ab19cb23
PZ
2420
2421 rq = __task_rq_lock(p);
2422 update_rq_clock(rq);
f5dc3753 2423
e9c84311
PZ
2424 WARN_ON(p->state != TASK_WAKING);
2425 cpu = task_cpu(p);
1da177e4 2426
e7693a36
GH
2427#ifdef CONFIG_SCHEDSTATS
2428 schedstat_inc(rq, ttwu_count);
2429 if (cpu == this_cpu)
2430 schedstat_inc(rq, ttwu_local);
2431 else {
2432 struct sched_domain *sd;
2433 for_each_domain(this_cpu, sd) {
758b2cdc 2434 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2435 schedstat_inc(sd, ttwu_wake_remote);
2436 break;
2437 }
2438 }
2439 }
6d6bc0ad 2440#endif /* CONFIG_SCHEDSTATS */
e7693a36 2441
1da177e4
LT
2442out_activate:
2443#endif /* CONFIG_SMP */
cc367732 2444 schedstat_inc(p, se.nr_wakeups);
7d478721 2445 if (wake_flags & WF_SYNC)
cc367732
IM
2446 schedstat_inc(p, se.nr_wakeups_sync);
2447 if (orig_cpu != cpu)
2448 schedstat_inc(p, se.nr_wakeups_migrate);
2449 if (cpu == this_cpu)
2450 schedstat_inc(p, se.nr_wakeups_local);
2451 else
2452 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2453 activate_task(rq, p, 1);
1da177e4
LT
2454 success = 1;
2455
831451ac
PZ
2456 /*
2457 * Only attribute actual wakeups done by this task.
2458 */
2459 if (!in_interrupt()) {
2460 struct sched_entity *se = &current->se;
2461 u64 sample = se->sum_exec_runtime;
2462
2463 if (se->last_wakeup)
2464 sample -= se->last_wakeup;
2465 else
2466 sample -= se->start_runtime;
2467 update_avg(&se->avg_wakeup, sample);
2468
2469 se->last_wakeup = se->sum_exec_runtime;
2470 }
2471
1da177e4 2472out_running:
468a15bb 2473 trace_sched_wakeup(rq, p, success);
7d478721 2474 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2475
1da177e4 2476 p->state = TASK_RUNNING;
9a897c5a
SR
2477#ifdef CONFIG_SMP
2478 if (p->sched_class->task_wake_up)
2479 p->sched_class->task_wake_up(rq, p);
eae0c9df
MG
2480
2481 if (unlikely(rq->idle_stamp)) {
2482 u64 delta = rq->clock - rq->idle_stamp;
2483 u64 max = 2*sysctl_sched_migration_cost;
2484
2485 if (delta > max)
2486 rq->avg_idle = max;
2487 else
2488 update_avg(&rq->avg_idle, delta);
2489 rq->idle_stamp = 0;
2490 }
9a897c5a 2491#endif
1da177e4
LT
2492out:
2493 task_rq_unlock(rq, &flags);
e9c84311 2494 put_cpu();
1da177e4
LT
2495
2496 return success;
2497}
2498
50fa610a
DH
2499/**
2500 * wake_up_process - Wake up a specific process
2501 * @p: The process to be woken up.
2502 *
2503 * Attempt to wake up the nominated process and move it to the set of runnable
2504 * processes. Returns 1 if the process was woken up, 0 if it was already
2505 * running.
2506 *
2507 * It may be assumed that this function implies a write memory barrier before
2508 * changing the task state if and only if any tasks are woken up.
2509 */
7ad5b3a5 2510int wake_up_process(struct task_struct *p)
1da177e4 2511{
d9514f6c 2512 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2513}
1da177e4
LT
2514EXPORT_SYMBOL(wake_up_process);
2515
7ad5b3a5 2516int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2517{
2518 return try_to_wake_up(p, state, 0);
2519}
2520
1da177e4
LT
2521/*
2522 * Perform scheduler related setup for a newly forked process p.
2523 * p is forked by current.
dd41f596
IM
2524 *
2525 * __sched_fork() is basic setup used by init_idle() too:
2526 */
2527static void __sched_fork(struct task_struct *p)
2528{
dd41f596
IM
2529 p->se.exec_start = 0;
2530 p->se.sum_exec_runtime = 0;
f6cf891c 2531 p->se.prev_sum_exec_runtime = 0;
6c594c21 2532 p->se.nr_migrations = 0;
4ae7d5ce
IM
2533 p->se.last_wakeup = 0;
2534 p->se.avg_overlap = 0;
831451ac
PZ
2535 p->se.start_runtime = 0;
2536 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2537
2538#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2539 p->se.wait_start = 0;
2540 p->se.wait_max = 0;
2541 p->se.wait_count = 0;
2542 p->se.wait_sum = 0;
2543
2544 p->se.sleep_start = 0;
2545 p->se.sleep_max = 0;
2546 p->se.sum_sleep_runtime = 0;
2547
2548 p->se.block_start = 0;
2549 p->se.block_max = 0;
2550 p->se.exec_max = 0;
2551 p->se.slice_max = 0;
2552
2553 p->se.nr_migrations_cold = 0;
2554 p->se.nr_failed_migrations_affine = 0;
2555 p->se.nr_failed_migrations_running = 0;
2556 p->se.nr_failed_migrations_hot = 0;
2557 p->se.nr_forced_migrations = 0;
7793527b
LDM
2558
2559 p->se.nr_wakeups = 0;
2560 p->se.nr_wakeups_sync = 0;
2561 p->se.nr_wakeups_migrate = 0;
2562 p->se.nr_wakeups_local = 0;
2563 p->se.nr_wakeups_remote = 0;
2564 p->se.nr_wakeups_affine = 0;
2565 p->se.nr_wakeups_affine_attempts = 0;
2566 p->se.nr_wakeups_passive = 0;
2567 p->se.nr_wakeups_idle = 0;
2568
6cfb0d5d 2569#endif
476d139c 2570
fa717060 2571 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2572 p->se.on_rq = 0;
4a55bd5e 2573 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2574
e107be36
AK
2575#ifdef CONFIG_PREEMPT_NOTIFIERS
2576 INIT_HLIST_HEAD(&p->preempt_notifiers);
2577#endif
dd41f596
IM
2578}
2579
2580/*
2581 * fork()/clone()-time setup:
2582 */
2583void sched_fork(struct task_struct *p, int clone_flags)
2584{
2585 int cpu = get_cpu();
2586
2587 __sched_fork(p);
06b83b5f
PZ
2588 /*
2589 * We mark the process as waking here. This guarantees that
2590 * nobody will actually run it, and a signal or other external
2591 * event cannot wake it up and insert it on the runqueue either.
2592 */
2593 p->state = TASK_WAKING;
dd41f596 2594
b9dc29e7
MG
2595 /*
2596 * Revert to default priority/policy on fork if requested.
2597 */
2598 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2599 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2600 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2601 p->normal_prio = p->static_prio;
2602 }
b9dc29e7 2603
6c697bdf
MG
2604 if (PRIO_TO_NICE(p->static_prio) < 0) {
2605 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2606 p->normal_prio = p->static_prio;
6c697bdf
MG
2607 set_load_weight(p);
2608 }
2609
b9dc29e7
MG
2610 /*
2611 * We don't need the reset flag anymore after the fork. It has
2612 * fulfilled its duty:
2613 */
2614 p->sched_reset_on_fork = 0;
2615 }
ca94c442 2616
f83f9ac2
PW
2617 /*
2618 * Make sure we do not leak PI boosting priority to the child.
2619 */
2620 p->prio = current->normal_prio;
2621
2ddbf952
HS
2622 if (!rt_prio(p->prio))
2623 p->sched_class = &fair_sched_class;
b29739f9 2624
cd29fe6f
PZ
2625 if (p->sched_class->task_fork)
2626 p->sched_class->task_fork(p);
2627
5f3edc1b 2628#ifdef CONFIG_SMP
970b13ba 2629 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2630#endif
2631 set_task_cpu(p, cpu);
2632
52f17b6c 2633#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2634 if (likely(sched_info_on()))
52f17b6c 2635 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2636#endif
d6077cb8 2637#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2638 p->oncpu = 0;
2639#endif
1da177e4 2640#ifdef CONFIG_PREEMPT
4866cde0 2641 /* Want to start with kernel preemption disabled. */
a1261f54 2642 task_thread_info(p)->preempt_count = 1;
1da177e4 2643#endif
917b627d
GH
2644 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2645
476d139c 2646 put_cpu();
1da177e4
LT
2647}
2648
2649/*
2650 * wake_up_new_task - wake up a newly created task for the first time.
2651 *
2652 * This function will do some initial scheduler statistics housekeeping
2653 * that must be done for every newly created context, then puts the task
2654 * on the runqueue and wakes it.
2655 */
7ad5b3a5 2656void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2657{
2658 unsigned long flags;
dd41f596 2659 struct rq *rq;
1da177e4
LT
2660
2661 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2662 BUG_ON(p->state != TASK_WAKING);
2663 p->state = TASK_RUNNING;
a8e504d2 2664 update_rq_clock(rq);
cd29fe6f 2665 activate_task(rq, p, 0);
c71dd42d 2666 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2667 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2668#ifdef CONFIG_SMP
2669 if (p->sched_class->task_wake_up)
2670 p->sched_class->task_wake_up(rq, p);
2671#endif
dd41f596 2672 task_rq_unlock(rq, &flags);
1da177e4
LT
2673}
2674
e107be36
AK
2675#ifdef CONFIG_PREEMPT_NOTIFIERS
2676
2677/**
80dd99b3 2678 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2679 * @notifier: notifier struct to register
e107be36
AK
2680 */
2681void preempt_notifier_register(struct preempt_notifier *notifier)
2682{
2683 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2684}
2685EXPORT_SYMBOL_GPL(preempt_notifier_register);
2686
2687/**
2688 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2689 * @notifier: notifier struct to unregister
e107be36
AK
2690 *
2691 * This is safe to call from within a preemption notifier.
2692 */
2693void preempt_notifier_unregister(struct preempt_notifier *notifier)
2694{
2695 hlist_del(&notifier->link);
2696}
2697EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2698
2699static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2700{
2701 struct preempt_notifier *notifier;
2702 struct hlist_node *node;
2703
2704 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2705 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2706}
2707
2708static void
2709fire_sched_out_preempt_notifiers(struct task_struct *curr,
2710 struct task_struct *next)
2711{
2712 struct preempt_notifier *notifier;
2713 struct hlist_node *node;
2714
2715 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2716 notifier->ops->sched_out(notifier, next);
2717}
2718
6d6bc0ad 2719#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2720
2721static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2722{
2723}
2724
2725static void
2726fire_sched_out_preempt_notifiers(struct task_struct *curr,
2727 struct task_struct *next)
2728{
2729}
2730
6d6bc0ad 2731#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2732
4866cde0
NP
2733/**
2734 * prepare_task_switch - prepare to switch tasks
2735 * @rq: the runqueue preparing to switch
421cee29 2736 * @prev: the current task that is being switched out
4866cde0
NP
2737 * @next: the task we are going to switch to.
2738 *
2739 * This is called with the rq lock held and interrupts off. It must
2740 * be paired with a subsequent finish_task_switch after the context
2741 * switch.
2742 *
2743 * prepare_task_switch sets up locking and calls architecture specific
2744 * hooks.
2745 */
e107be36
AK
2746static inline void
2747prepare_task_switch(struct rq *rq, struct task_struct *prev,
2748 struct task_struct *next)
4866cde0 2749{
e107be36 2750 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2751 prepare_lock_switch(rq, next);
2752 prepare_arch_switch(next);
2753}
2754
1da177e4
LT
2755/**
2756 * finish_task_switch - clean up after a task-switch
344babaa 2757 * @rq: runqueue associated with task-switch
1da177e4
LT
2758 * @prev: the thread we just switched away from.
2759 *
4866cde0
NP
2760 * finish_task_switch must be called after the context switch, paired
2761 * with a prepare_task_switch call before the context switch.
2762 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2763 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2764 *
2765 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2766 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2767 * with the lock held can cause deadlocks; see schedule() for
2768 * details.)
2769 */
a9957449 2770static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2771 __releases(rq->lock)
2772{
1da177e4 2773 struct mm_struct *mm = rq->prev_mm;
55a101f8 2774 long prev_state;
1da177e4
LT
2775
2776 rq->prev_mm = NULL;
2777
2778 /*
2779 * A task struct has one reference for the use as "current".
c394cc9f 2780 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2781 * schedule one last time. The schedule call will never return, and
2782 * the scheduled task must drop that reference.
c394cc9f 2783 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2784 * still held, otherwise prev could be scheduled on another cpu, die
2785 * there before we look at prev->state, and then the reference would
2786 * be dropped twice.
2787 * Manfred Spraul <manfred@colorfullife.com>
2788 */
55a101f8 2789 prev_state = prev->state;
4866cde0 2790 finish_arch_switch(prev);
cdd6c482 2791 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2792 finish_lock_switch(rq, prev);
e8fa1362 2793
e107be36 2794 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2795 if (mm)
2796 mmdrop(mm);
c394cc9f 2797 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2798 /*
2799 * Remove function-return probe instances associated with this
2800 * task and put them back on the free list.
9761eea8 2801 */
c6fd91f0 2802 kprobe_flush_task(prev);
1da177e4 2803 put_task_struct(prev);
c6fd91f0 2804 }
1da177e4
LT
2805}
2806
3f029d3c
GH
2807#ifdef CONFIG_SMP
2808
2809/* assumes rq->lock is held */
2810static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2811{
2812 if (prev->sched_class->pre_schedule)
2813 prev->sched_class->pre_schedule(rq, prev);
2814}
2815
2816/* rq->lock is NOT held, but preemption is disabled */
2817static inline void post_schedule(struct rq *rq)
2818{
2819 if (rq->post_schedule) {
2820 unsigned long flags;
2821
05fa785c 2822 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2823 if (rq->curr->sched_class->post_schedule)
2824 rq->curr->sched_class->post_schedule(rq);
05fa785c 2825 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2826
2827 rq->post_schedule = 0;
2828 }
2829}
2830
2831#else
da19ab51 2832
3f029d3c
GH
2833static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2834{
2835}
2836
2837static inline void post_schedule(struct rq *rq)
2838{
1da177e4
LT
2839}
2840
3f029d3c
GH
2841#endif
2842
1da177e4
LT
2843/**
2844 * schedule_tail - first thing a freshly forked thread must call.
2845 * @prev: the thread we just switched away from.
2846 */
36c8b586 2847asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2848 __releases(rq->lock)
2849{
70b97a7f
IM
2850 struct rq *rq = this_rq();
2851
4866cde0 2852 finish_task_switch(rq, prev);
da19ab51 2853
3f029d3c
GH
2854 /*
2855 * FIXME: do we need to worry about rq being invalidated by the
2856 * task_switch?
2857 */
2858 post_schedule(rq);
70b97a7f 2859
4866cde0
NP
2860#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2861 /* In this case, finish_task_switch does not reenable preemption */
2862 preempt_enable();
2863#endif
1da177e4 2864 if (current->set_child_tid)
b488893a 2865 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2866}
2867
2868/*
2869 * context_switch - switch to the new MM and the new
2870 * thread's register state.
2871 */
dd41f596 2872static inline void
70b97a7f 2873context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2874 struct task_struct *next)
1da177e4 2875{
dd41f596 2876 struct mm_struct *mm, *oldmm;
1da177e4 2877
e107be36 2878 prepare_task_switch(rq, prev, next);
0a16b607 2879 trace_sched_switch(rq, prev, next);
dd41f596
IM
2880 mm = next->mm;
2881 oldmm = prev->active_mm;
9226d125
ZA
2882 /*
2883 * For paravirt, this is coupled with an exit in switch_to to
2884 * combine the page table reload and the switch backend into
2885 * one hypercall.
2886 */
224101ed 2887 arch_start_context_switch(prev);
9226d125 2888
710390d9 2889 if (likely(!mm)) {
1da177e4
LT
2890 next->active_mm = oldmm;
2891 atomic_inc(&oldmm->mm_count);
2892 enter_lazy_tlb(oldmm, next);
2893 } else
2894 switch_mm(oldmm, mm, next);
2895
710390d9 2896 if (likely(!prev->mm)) {
1da177e4 2897 prev->active_mm = NULL;
1da177e4
LT
2898 rq->prev_mm = oldmm;
2899 }
3a5f5e48
IM
2900 /*
2901 * Since the runqueue lock will be released by the next
2902 * task (which is an invalid locking op but in the case
2903 * of the scheduler it's an obvious special-case), so we
2904 * do an early lockdep release here:
2905 */
2906#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2907 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2908#endif
1da177e4
LT
2909
2910 /* Here we just switch the register state and the stack. */
2911 switch_to(prev, next, prev);
2912
dd41f596
IM
2913 barrier();
2914 /*
2915 * this_rq must be evaluated again because prev may have moved
2916 * CPUs since it called schedule(), thus the 'rq' on its stack
2917 * frame will be invalid.
2918 */
2919 finish_task_switch(this_rq(), prev);
1da177e4
LT
2920}
2921
2922/*
2923 * nr_running, nr_uninterruptible and nr_context_switches:
2924 *
2925 * externally visible scheduler statistics: current number of runnable
2926 * threads, current number of uninterruptible-sleeping threads, total
2927 * number of context switches performed since bootup.
2928 */
2929unsigned long nr_running(void)
2930{
2931 unsigned long i, sum = 0;
2932
2933 for_each_online_cpu(i)
2934 sum += cpu_rq(i)->nr_running;
2935
2936 return sum;
2937}
2938
2939unsigned long nr_uninterruptible(void)
2940{
2941 unsigned long i, sum = 0;
2942
0a945022 2943 for_each_possible_cpu(i)
1da177e4
LT
2944 sum += cpu_rq(i)->nr_uninterruptible;
2945
2946 /*
2947 * Since we read the counters lockless, it might be slightly
2948 * inaccurate. Do not allow it to go below zero though:
2949 */
2950 if (unlikely((long)sum < 0))
2951 sum = 0;
2952
2953 return sum;
2954}
2955
2956unsigned long long nr_context_switches(void)
2957{
cc94abfc
SR
2958 int i;
2959 unsigned long long sum = 0;
1da177e4 2960
0a945022 2961 for_each_possible_cpu(i)
1da177e4
LT
2962 sum += cpu_rq(i)->nr_switches;
2963
2964 return sum;
2965}
2966
2967unsigned long nr_iowait(void)
2968{
2969 unsigned long i, sum = 0;
2970
0a945022 2971 for_each_possible_cpu(i)
1da177e4
LT
2972 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2973
2974 return sum;
2975}
2976
69d25870
AV
2977unsigned long nr_iowait_cpu(void)
2978{
2979 struct rq *this = this_rq();
2980 return atomic_read(&this->nr_iowait);
2981}
2982
2983unsigned long this_cpu_load(void)
2984{
2985 struct rq *this = this_rq();
2986 return this->cpu_load[0];
2987}
2988
2989
dce48a84
TG
2990/* Variables and functions for calc_load */
2991static atomic_long_t calc_load_tasks;
2992static unsigned long calc_load_update;
2993unsigned long avenrun[3];
2994EXPORT_SYMBOL(avenrun);
2995
2d02494f
TG
2996/**
2997 * get_avenrun - get the load average array
2998 * @loads: pointer to dest load array
2999 * @offset: offset to add
3000 * @shift: shift count to shift the result left
3001 *
3002 * These values are estimates at best, so no need for locking.
3003 */
3004void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3005{
3006 loads[0] = (avenrun[0] + offset) << shift;
3007 loads[1] = (avenrun[1] + offset) << shift;
3008 loads[2] = (avenrun[2] + offset) << shift;
3009}
3010
dce48a84
TG
3011static unsigned long
3012calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3013{
dce48a84
TG
3014 load *= exp;
3015 load += active * (FIXED_1 - exp);
3016 return load >> FSHIFT;
3017}
db1b1fef 3018
dce48a84
TG
3019/*
3020 * calc_load - update the avenrun load estimates 10 ticks after the
3021 * CPUs have updated calc_load_tasks.
3022 */
3023void calc_global_load(void)
3024{
3025 unsigned long upd = calc_load_update + 10;
3026 long active;
3027
3028 if (time_before(jiffies, upd))
3029 return;
db1b1fef 3030
dce48a84
TG
3031 active = atomic_long_read(&calc_load_tasks);
3032 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3033
dce48a84
TG
3034 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3035 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3036 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3037
3038 calc_load_update += LOAD_FREQ;
3039}
3040
3041/*
3042 * Either called from update_cpu_load() or from a cpu going idle
3043 */
3044static void calc_load_account_active(struct rq *this_rq)
3045{
3046 long nr_active, delta;
3047
3048 nr_active = this_rq->nr_running;
3049 nr_active += (long) this_rq->nr_uninterruptible;
3050
3051 if (nr_active != this_rq->calc_load_active) {
3052 delta = nr_active - this_rq->calc_load_active;
3053 this_rq->calc_load_active = nr_active;
3054 atomic_long_add(delta, &calc_load_tasks);
3055 }
db1b1fef
JS
3056}
3057
48f24c4d 3058/*
dd41f596
IM
3059 * Update rq->cpu_load[] statistics. This function is usually called every
3060 * scheduler tick (TICK_NSEC).
48f24c4d 3061 */
dd41f596 3062static void update_cpu_load(struct rq *this_rq)
48f24c4d 3063{
495eca49 3064 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3065 int i, scale;
3066
3067 this_rq->nr_load_updates++;
dd41f596
IM
3068
3069 /* Update our load: */
3070 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3071 unsigned long old_load, new_load;
3072
3073 /* scale is effectively 1 << i now, and >> i divides by scale */
3074
3075 old_load = this_rq->cpu_load[i];
3076 new_load = this_load;
a25707f3
IM
3077 /*
3078 * Round up the averaging division if load is increasing. This
3079 * prevents us from getting stuck on 9 if the load is 10, for
3080 * example.
3081 */
3082 if (new_load > old_load)
3083 new_load += scale-1;
dd41f596
IM
3084 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3085 }
dce48a84
TG
3086
3087 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3088 this_rq->calc_load_update += LOAD_FREQ;
3089 calc_load_account_active(this_rq);
3090 }
48f24c4d
IM
3091}
3092
dd41f596
IM
3093#ifdef CONFIG_SMP
3094
1da177e4
LT
3095/*
3096 * double_rq_lock - safely lock two runqueues
3097 *
3098 * Note this does not disable interrupts like task_rq_lock,
3099 * you need to do so manually before calling.
3100 */
70b97a7f 3101static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3102 __acquires(rq1->lock)
3103 __acquires(rq2->lock)
3104{
054b9108 3105 BUG_ON(!irqs_disabled());
1da177e4 3106 if (rq1 == rq2) {
05fa785c 3107 raw_spin_lock(&rq1->lock);
1da177e4
LT
3108 __acquire(rq2->lock); /* Fake it out ;) */
3109 } else {
c96d145e 3110 if (rq1 < rq2) {
05fa785c
TG
3111 raw_spin_lock(&rq1->lock);
3112 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4 3113 } else {
05fa785c
TG
3114 raw_spin_lock(&rq2->lock);
3115 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3116 }
3117 }
6e82a3be
IM
3118 update_rq_clock(rq1);
3119 update_rq_clock(rq2);
1da177e4
LT
3120}
3121
3122/*
3123 * double_rq_unlock - safely unlock two runqueues
3124 *
3125 * Note this does not restore interrupts like task_rq_unlock,
3126 * you need to do so manually after calling.
3127 */
70b97a7f 3128static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3129 __releases(rq1->lock)
3130 __releases(rq2->lock)
3131{
05fa785c 3132 raw_spin_unlock(&rq1->lock);
1da177e4 3133 if (rq1 != rq2)
05fa785c 3134 raw_spin_unlock(&rq2->lock);
1da177e4
LT
3135 else
3136 __release(rq2->lock);
3137}
3138
1da177e4 3139/*
38022906
PZ
3140 * sched_exec - execve() is a valuable balancing opportunity, because at
3141 * this point the task has the smallest effective memory and cache footprint.
1da177e4 3142 */
38022906 3143void sched_exec(void)
1da177e4 3144{
38022906 3145 struct task_struct *p = current;
70b97a7f 3146 struct migration_req req;
38022906 3147 int dest_cpu, this_cpu;
1da177e4 3148 unsigned long flags;
70b97a7f 3149 struct rq *rq;
1da177e4 3150
38022906
PZ
3151again:
3152 this_cpu = get_cpu();
3153 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3154 if (dest_cpu == this_cpu) {
3155 put_cpu();
3156 return;
3157 }
3158
1da177e4 3159 rq = task_rq_lock(p, &flags);
38022906
PZ
3160 put_cpu();
3161
3162 /*
3163 * select_task_rq() can race against ->cpus_allowed
3164 */
96f874e2 3165 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3166 || unlikely(!cpu_active(dest_cpu))) {
3167 task_rq_unlock(rq, &flags);
3168 goto again;
3169 }
1da177e4
LT
3170
3171 /* force the process onto the specified CPU */
3172 if (migrate_task(p, dest_cpu, &req)) {
3173 /* Need to wait for migration thread (might exit: take ref). */
3174 struct task_struct *mt = rq->migration_thread;
36c8b586 3175
1da177e4
LT
3176 get_task_struct(mt);
3177 task_rq_unlock(rq, &flags);
3178 wake_up_process(mt);
3179 put_task_struct(mt);
3180 wait_for_completion(&req.done);
36c8b586 3181
1da177e4
LT
3182 return;
3183 }
1da177e4
LT
3184 task_rq_unlock(rq, &flags);
3185}
3186
1da177e4
LT
3187/*
3188 * pull_task - move a task from a remote runqueue to the local runqueue.
3189 * Both runqueues must be locked.
3190 */
dd41f596
IM
3191static void pull_task(struct rq *src_rq, struct task_struct *p,
3192 struct rq *this_rq, int this_cpu)
1da177e4 3193{
2e1cb74a 3194 deactivate_task(src_rq, p, 0);
1da177e4 3195 set_task_cpu(p, this_cpu);
dd41f596 3196 activate_task(this_rq, p, 0);
15afe09b 3197 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3198}
3199
3200/*
3201 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3202 */
858119e1 3203static
70b97a7f 3204int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3205 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3206 int *all_pinned)
1da177e4 3207{
708dc512 3208 int tsk_cache_hot = 0;
1da177e4
LT
3209 /*
3210 * We do not migrate tasks that are:
3211 * 1) running (obviously), or
3212 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3213 * 3) are cache-hot on their current CPU.
3214 */
96f874e2 3215 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3216 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3217 return 0;
cc367732 3218 }
81026794
NP
3219 *all_pinned = 0;
3220
cc367732
IM
3221 if (task_running(rq, p)) {
3222 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3223 return 0;
cc367732 3224 }
1da177e4 3225
da84d961
IM
3226 /*
3227 * Aggressive migration if:
3228 * 1) task is cache cold, or
3229 * 2) too many balance attempts have failed.
3230 */
3231
708dc512
LH
3232 tsk_cache_hot = task_hot(p, rq->clock, sd);
3233 if (!tsk_cache_hot ||
3234 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3235#ifdef CONFIG_SCHEDSTATS
708dc512 3236 if (tsk_cache_hot) {
da84d961 3237 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3238 schedstat_inc(p, se.nr_forced_migrations);
3239 }
da84d961
IM
3240#endif
3241 return 1;
3242 }
3243
708dc512 3244 if (tsk_cache_hot) {
cc367732 3245 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3246 return 0;
cc367732 3247 }
1da177e4
LT
3248 return 1;
3249}
3250
e1d1484f
PW
3251static unsigned long
3252balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3253 unsigned long max_load_move, struct sched_domain *sd,
3254 enum cpu_idle_type idle, int *all_pinned,
3255 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3256{
051c6764 3257 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3258 struct task_struct *p;
3259 long rem_load_move = max_load_move;
1da177e4 3260
e1d1484f 3261 if (max_load_move == 0)
1da177e4
LT
3262 goto out;
3263
81026794
NP
3264 pinned = 1;
3265
1da177e4 3266 /*
dd41f596 3267 * Start the load-balancing iterator:
1da177e4 3268 */
dd41f596
IM
3269 p = iterator->start(iterator->arg);
3270next:
b82d9fdd 3271 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3272 goto out;
051c6764
PZ
3273
3274 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3275 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3276 p = iterator->next(iterator->arg);
3277 goto next;
1da177e4
LT
3278 }
3279
dd41f596 3280 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3281 pulled++;
dd41f596 3282 rem_load_move -= p->se.load.weight;
1da177e4 3283
7e96fa58
GH
3284#ifdef CONFIG_PREEMPT
3285 /*
3286 * NEWIDLE balancing is a source of latency, so preemptible kernels
3287 * will stop after the first task is pulled to minimize the critical
3288 * section.
3289 */
3290 if (idle == CPU_NEWLY_IDLE)
3291 goto out;
3292#endif
3293
2dd73a4f 3294 /*
b82d9fdd 3295 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3296 */
e1d1484f 3297 if (rem_load_move > 0) {
a4ac01c3
PW
3298 if (p->prio < *this_best_prio)
3299 *this_best_prio = p->prio;
dd41f596
IM
3300 p = iterator->next(iterator->arg);
3301 goto next;
1da177e4
LT
3302 }
3303out:
3304 /*
e1d1484f 3305 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3306 * so we can safely collect pull_task() stats here rather than
3307 * inside pull_task().
3308 */
3309 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3310
3311 if (all_pinned)
3312 *all_pinned = pinned;
e1d1484f
PW
3313
3314 return max_load_move - rem_load_move;
1da177e4
LT
3315}
3316
dd41f596 3317/*
43010659
PW
3318 * move_tasks tries to move up to max_load_move weighted load from busiest to
3319 * this_rq, as part of a balancing operation within domain "sd".
3320 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3321 *
3322 * Called with both runqueues locked.
3323 */
3324static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3325 unsigned long max_load_move,
dd41f596
IM
3326 struct sched_domain *sd, enum cpu_idle_type idle,
3327 int *all_pinned)
3328{
5522d5d5 3329 const struct sched_class *class = sched_class_highest;
43010659 3330 unsigned long total_load_moved = 0;
a4ac01c3 3331 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3332
3333 do {
43010659
PW
3334 total_load_moved +=
3335 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3336 max_load_move - total_load_moved,
a4ac01c3 3337 sd, idle, all_pinned, &this_best_prio);
dd41f596 3338 class = class->next;
c4acb2c0 3339
7e96fa58
GH
3340#ifdef CONFIG_PREEMPT
3341 /*
3342 * NEWIDLE balancing is a source of latency, so preemptible
3343 * kernels will stop after the first task is pulled to minimize
3344 * the critical section.
3345 */
c4acb2c0
GH
3346 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3347 break;
7e96fa58 3348#endif
43010659 3349 } while (class && max_load_move > total_load_moved);
dd41f596 3350
43010659
PW
3351 return total_load_moved > 0;
3352}
3353
e1d1484f
PW
3354static int
3355iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3356 struct sched_domain *sd, enum cpu_idle_type idle,
3357 struct rq_iterator *iterator)
3358{
3359 struct task_struct *p = iterator->start(iterator->arg);
3360 int pinned = 0;
3361
3362 while (p) {
3363 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3364 pull_task(busiest, p, this_rq, this_cpu);
3365 /*
3366 * Right now, this is only the second place pull_task()
3367 * is called, so we can safely collect pull_task()
3368 * stats here rather than inside pull_task().
3369 */
3370 schedstat_inc(sd, lb_gained[idle]);
3371
3372 return 1;
3373 }
3374 p = iterator->next(iterator->arg);
3375 }
3376
3377 return 0;
3378}
3379
43010659
PW
3380/*
3381 * move_one_task tries to move exactly one task from busiest to this_rq, as
3382 * part of active balancing operations within "domain".
3383 * Returns 1 if successful and 0 otherwise.
3384 *
3385 * Called with both runqueues locked.
3386 */
3387static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3388 struct sched_domain *sd, enum cpu_idle_type idle)
3389{
5522d5d5 3390 const struct sched_class *class;
43010659 3391
cde7e5ca 3392 for_each_class(class) {
e1d1484f 3393 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3394 return 1;
cde7e5ca 3395 }
43010659
PW
3396
3397 return 0;
dd41f596 3398}
67bb6c03 3399/********** Helpers for find_busiest_group ************************/
1da177e4 3400/*
222d656d
GS
3401 * sd_lb_stats - Structure to store the statistics of a sched_domain
3402 * during load balancing.
1da177e4 3403 */
222d656d
GS
3404struct sd_lb_stats {
3405 struct sched_group *busiest; /* Busiest group in this sd */
3406 struct sched_group *this; /* Local group in this sd */
3407 unsigned long total_load; /* Total load of all groups in sd */
3408 unsigned long total_pwr; /* Total power of all groups in sd */
3409 unsigned long avg_load; /* Average load across all groups in sd */
3410
3411 /** Statistics of this group */
3412 unsigned long this_load;
3413 unsigned long this_load_per_task;
3414 unsigned long this_nr_running;
3415
3416 /* Statistics of the busiest group */
3417 unsigned long max_load;
3418 unsigned long busiest_load_per_task;
3419 unsigned long busiest_nr_running;
3420
3421 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3422#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3423 int power_savings_balance; /* Is powersave balance needed for this sd */
3424 struct sched_group *group_min; /* Least loaded group in sd */
3425 struct sched_group *group_leader; /* Group which relieves group_min */
3426 unsigned long min_load_per_task; /* load_per_task in group_min */
3427 unsigned long leader_nr_running; /* Nr running of group_leader */
3428 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3429#endif
222d656d 3430};
1da177e4 3431
d5ac537e 3432/*
381be78f
GS
3433 * sg_lb_stats - stats of a sched_group required for load_balancing
3434 */
3435struct sg_lb_stats {
3436 unsigned long avg_load; /*Avg load across the CPUs of the group */
3437 unsigned long group_load; /* Total load over the CPUs of the group */
3438 unsigned long sum_nr_running; /* Nr tasks running in the group */
3439 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3440 unsigned long group_capacity;
3441 int group_imb; /* Is there an imbalance in the group ? */
3442};
408ed066 3443
67bb6c03
GS
3444/**
3445 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3446 * @group: The group whose first cpu is to be returned.
3447 */
3448static inline unsigned int group_first_cpu(struct sched_group *group)
3449{
3450 return cpumask_first(sched_group_cpus(group));
3451}
3452
3453/**
3454 * get_sd_load_idx - Obtain the load index for a given sched domain.
3455 * @sd: The sched_domain whose load_idx is to be obtained.
3456 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3457 */
3458static inline int get_sd_load_idx(struct sched_domain *sd,
3459 enum cpu_idle_type idle)
3460{
3461 int load_idx;
3462
3463 switch (idle) {
3464 case CPU_NOT_IDLE:
7897986b 3465 load_idx = sd->busy_idx;
67bb6c03
GS
3466 break;
3467
3468 case CPU_NEWLY_IDLE:
7897986b 3469 load_idx = sd->newidle_idx;
67bb6c03
GS
3470 break;
3471 default:
7897986b 3472 load_idx = sd->idle_idx;
67bb6c03
GS
3473 break;
3474 }
1da177e4 3475
67bb6c03
GS
3476 return load_idx;
3477}
1da177e4 3478
1da177e4 3479
c071df18
GS
3480#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3481/**
3482 * init_sd_power_savings_stats - Initialize power savings statistics for
3483 * the given sched_domain, during load balancing.
3484 *
3485 * @sd: Sched domain whose power-savings statistics are to be initialized.
3486 * @sds: Variable containing the statistics for sd.
3487 * @idle: Idle status of the CPU at which we're performing load-balancing.
3488 */
3489static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3490 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3491{
3492 /*
3493 * Busy processors will not participate in power savings
3494 * balance.
3495 */
3496 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3497 sds->power_savings_balance = 0;
3498 else {
3499 sds->power_savings_balance = 1;
3500 sds->min_nr_running = ULONG_MAX;
3501 sds->leader_nr_running = 0;
3502 }
3503}
783609c6 3504
c071df18
GS
3505/**
3506 * update_sd_power_savings_stats - Update the power saving stats for a
3507 * sched_domain while performing load balancing.
3508 *
3509 * @group: sched_group belonging to the sched_domain under consideration.
3510 * @sds: Variable containing the statistics of the sched_domain
3511 * @local_group: Does group contain the CPU for which we're performing
3512 * load balancing ?
3513 * @sgs: Variable containing the statistics of the group.
3514 */
3515static inline void update_sd_power_savings_stats(struct sched_group *group,
3516 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3517{
408ed066 3518
c071df18
GS
3519 if (!sds->power_savings_balance)
3520 return;
1da177e4 3521
c071df18
GS
3522 /*
3523 * If the local group is idle or completely loaded
3524 * no need to do power savings balance at this domain
3525 */
3526 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3527 !sds->this_nr_running))
3528 sds->power_savings_balance = 0;
2dd73a4f 3529
c071df18
GS
3530 /*
3531 * If a group is already running at full capacity or idle,
3532 * don't include that group in power savings calculations
3533 */
3534 if (!sds->power_savings_balance ||
3535 sgs->sum_nr_running >= sgs->group_capacity ||
3536 !sgs->sum_nr_running)
3537 return;
5969fe06 3538
c071df18
GS
3539 /*
3540 * Calculate the group which has the least non-idle load.
3541 * This is the group from where we need to pick up the load
3542 * for saving power
3543 */
3544 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3545 (sgs->sum_nr_running == sds->min_nr_running &&
3546 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3547 sds->group_min = group;
3548 sds->min_nr_running = sgs->sum_nr_running;
3549 sds->min_load_per_task = sgs->sum_weighted_load /
3550 sgs->sum_nr_running;
3551 }
783609c6 3552
c071df18
GS
3553 /*
3554 * Calculate the group which is almost near its
3555 * capacity but still has some space to pick up some load
3556 * from other group and save more power
3557 */
d899a789 3558 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3559 return;
1da177e4 3560
c071df18
GS
3561 if (sgs->sum_nr_running > sds->leader_nr_running ||
3562 (sgs->sum_nr_running == sds->leader_nr_running &&
3563 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3564 sds->group_leader = group;
3565 sds->leader_nr_running = sgs->sum_nr_running;
3566 }
3567}
408ed066 3568
c071df18 3569/**
d5ac537e 3570 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3571 * @sds: Variable containing the statistics of the sched_domain
3572 * under consideration.
3573 * @this_cpu: Cpu at which we're currently performing load-balancing.
3574 * @imbalance: Variable to store the imbalance.
3575 *
d5ac537e
RD
3576 * Description:
3577 * Check if we have potential to perform some power-savings balance.
3578 * If yes, set the busiest group to be the least loaded group in the
3579 * sched_domain, so that it's CPUs can be put to idle.
3580 *
c071df18
GS
3581 * Returns 1 if there is potential to perform power-savings balance.
3582 * Else returns 0.
3583 */
3584static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3585 int this_cpu, unsigned long *imbalance)
3586{
3587 if (!sds->power_savings_balance)
3588 return 0;
1da177e4 3589
c071df18
GS
3590 if (sds->this != sds->group_leader ||
3591 sds->group_leader == sds->group_min)
3592 return 0;
783609c6 3593
c071df18
GS
3594 *imbalance = sds->min_load_per_task;
3595 sds->busiest = sds->group_min;
1da177e4 3596
c071df18 3597 return 1;
1da177e4 3598
c071df18
GS
3599}
3600#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3601static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3602 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3603{
3604 return;
3605}
408ed066 3606
c071df18
GS
3607static inline void update_sd_power_savings_stats(struct sched_group *group,
3608 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3609{
3610 return;
3611}
3612
3613static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3614 int this_cpu, unsigned long *imbalance)
3615{
3616 return 0;
3617}
3618#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3619
d6a59aa3
PZ
3620
3621unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3622{
3623 return SCHED_LOAD_SCALE;
3624}
3625
3626unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3627{
3628 return default_scale_freq_power(sd, cpu);
3629}
3630
3631unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3632{
3633 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3634 unsigned long smt_gain = sd->smt_gain;
3635
3636 smt_gain /= weight;
3637
3638 return smt_gain;
3639}
3640
d6a59aa3
PZ
3641unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3642{
3643 return default_scale_smt_power(sd, cpu);
3644}
3645
e9e9250b
PZ
3646unsigned long scale_rt_power(int cpu)
3647{
3648 struct rq *rq = cpu_rq(cpu);
3649 u64 total, available;
3650
3651 sched_avg_update(rq);
3652
3653 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3654 available = total - rq->rt_avg;
3655
3656 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3657 total = SCHED_LOAD_SCALE;
3658
3659 total >>= SCHED_LOAD_SHIFT;
3660
3661 return div_u64(available, total);
3662}
3663
ab29230e
PZ
3664static void update_cpu_power(struct sched_domain *sd, int cpu)
3665{
3666 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3667 unsigned long power = SCHED_LOAD_SCALE;
3668 struct sched_group *sdg = sd->groups;
ab29230e 3669
8e6598af
PZ
3670 if (sched_feat(ARCH_POWER))
3671 power *= arch_scale_freq_power(sd, cpu);
3672 else
3673 power *= default_scale_freq_power(sd, cpu);
3674
d6a59aa3 3675 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3676
3677 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3678 if (sched_feat(ARCH_POWER))
3679 power *= arch_scale_smt_power(sd, cpu);
3680 else
3681 power *= default_scale_smt_power(sd, cpu);
3682
ab29230e
PZ
3683 power >>= SCHED_LOAD_SHIFT;
3684 }
3685
e9e9250b
PZ
3686 power *= scale_rt_power(cpu);
3687 power >>= SCHED_LOAD_SHIFT;
3688
3689 if (!power)
3690 power = 1;
ab29230e 3691
18a3885f 3692 sdg->cpu_power = power;
ab29230e
PZ
3693}
3694
3695static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3696{
3697 struct sched_domain *child = sd->child;
3698 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3699 unsigned long power;
cc9fba7d
PZ
3700
3701 if (!child) {
ab29230e 3702 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3703 return;
3704 }
3705
d7ea17a7 3706 power = 0;
cc9fba7d
PZ
3707
3708 group = child->groups;
3709 do {
d7ea17a7 3710 power += group->cpu_power;
cc9fba7d
PZ
3711 group = group->next;
3712 } while (group != child->groups);
d7ea17a7
IM
3713
3714 sdg->cpu_power = power;
cc9fba7d 3715}
c071df18 3716
1f8c553d
GS
3717/**
3718 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3719 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3720 * @group: sched_group whose statistics are to be updated.
3721 * @this_cpu: Cpu for which load balance is currently performed.
3722 * @idle: Idle status of this_cpu
3723 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3724 * @sd_idle: Idle status of the sched_domain containing group.
3725 * @local_group: Does group contain this_cpu.
3726 * @cpus: Set of cpus considered for load balancing.
3727 * @balance: Should we balance.
3728 * @sgs: variable to hold the statistics for this group.
3729 */
cc9fba7d
PZ
3730static inline void update_sg_lb_stats(struct sched_domain *sd,
3731 struct sched_group *group, int this_cpu,
1f8c553d
GS
3732 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3733 int local_group, const struct cpumask *cpus,
3734 int *balance, struct sg_lb_stats *sgs)
3735{
3736 unsigned long load, max_cpu_load, min_cpu_load;
3737 int i;
3738 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3739 unsigned long sum_avg_load_per_task;
3740 unsigned long avg_load_per_task;
3741
cc9fba7d 3742 if (local_group) {
1f8c553d 3743 balance_cpu = group_first_cpu(group);
cc9fba7d 3744 if (balance_cpu == this_cpu)
ab29230e 3745 update_group_power(sd, this_cpu);
cc9fba7d 3746 }
1f8c553d
GS
3747
3748 /* Tally up the load of all CPUs in the group */
3749 sum_avg_load_per_task = avg_load_per_task = 0;
3750 max_cpu_load = 0;
3751 min_cpu_load = ~0UL;
408ed066 3752
1f8c553d
GS
3753 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3754 struct rq *rq = cpu_rq(i);
908a7c1b 3755
1f8c553d
GS
3756 if (*sd_idle && rq->nr_running)
3757 *sd_idle = 0;
5c45bf27 3758
1f8c553d 3759 /* Bias balancing toward cpus of our domain */
1da177e4 3760 if (local_group) {
1f8c553d
GS
3761 if (idle_cpu(i) && !first_idle_cpu) {
3762 first_idle_cpu = 1;
3763 balance_cpu = i;
3764 }
3765
3766 load = target_load(i, load_idx);
3767 } else {
3768 load = source_load(i, load_idx);
3769 if (load > max_cpu_load)
3770 max_cpu_load = load;
3771 if (min_cpu_load > load)
3772 min_cpu_load = load;
1da177e4 3773 }
5c45bf27 3774
1f8c553d
GS
3775 sgs->group_load += load;
3776 sgs->sum_nr_running += rq->nr_running;
3777 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3778
1f8c553d
GS
3779 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3780 }
5c45bf27 3781
1f8c553d
GS
3782 /*
3783 * First idle cpu or the first cpu(busiest) in this sched group
3784 * is eligible for doing load balancing at this and above
3785 * domains. In the newly idle case, we will allow all the cpu's
3786 * to do the newly idle load balance.
3787 */
3788 if (idle != CPU_NEWLY_IDLE && local_group &&
3789 balance_cpu != this_cpu && balance) {
3790 *balance = 0;
3791 return;
3792 }
5c45bf27 3793
1f8c553d 3794 /* Adjust by relative CPU power of the group */
18a3885f 3795 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3796
1f8c553d
GS
3797
3798 /*
3799 * Consider the group unbalanced when the imbalance is larger
3800 * than the average weight of two tasks.
3801 *
3802 * APZ: with cgroup the avg task weight can vary wildly and
3803 * might not be a suitable number - should we keep a
3804 * normalized nr_running number somewhere that negates
3805 * the hierarchy?
3806 */
18a3885f
PZ
3807 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3808 group->cpu_power;
1f8c553d
GS
3809
3810 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3811 sgs->group_imb = 1;
3812
bdb94aa5 3813 sgs->group_capacity =
18a3885f 3814 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3815}
dd41f596 3816
37abe198
GS
3817/**
3818 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3819 * @sd: sched_domain whose statistics are to be updated.
3820 * @this_cpu: Cpu for which load balance is currently performed.
3821 * @idle: Idle status of this_cpu
3822 * @sd_idle: Idle status of the sched_domain containing group.
3823 * @cpus: Set of cpus considered for load balancing.
3824 * @balance: Should we balance.
3825 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3826 */
37abe198
GS
3827static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3828 enum cpu_idle_type idle, int *sd_idle,
3829 const struct cpumask *cpus, int *balance,
3830 struct sd_lb_stats *sds)
1da177e4 3831{
b5d978e0 3832 struct sched_domain *child = sd->child;
222d656d 3833 struct sched_group *group = sd->groups;
37abe198 3834 struct sg_lb_stats sgs;
b5d978e0
PZ
3835 int load_idx, prefer_sibling = 0;
3836
3837 if (child && child->flags & SD_PREFER_SIBLING)
3838 prefer_sibling = 1;
222d656d 3839
c071df18 3840 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3841 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3842
3843 do {
1da177e4 3844 int local_group;
1da177e4 3845
758b2cdc
RR
3846 local_group = cpumask_test_cpu(this_cpu,
3847 sched_group_cpus(group));
381be78f 3848 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3849 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3850 local_group, cpus, balance, &sgs);
1da177e4 3851
37abe198
GS
3852 if (local_group && balance && !(*balance))
3853 return;
783609c6 3854
37abe198 3855 sds->total_load += sgs.group_load;
18a3885f 3856 sds->total_pwr += group->cpu_power;
1da177e4 3857
b5d978e0
PZ
3858 /*
3859 * In case the child domain prefers tasks go to siblings
3860 * first, lower the group capacity to one so that we'll try
3861 * and move all the excess tasks away.
3862 */
3863 if (prefer_sibling)
bdb94aa5 3864 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3865
1da177e4 3866 if (local_group) {
37abe198
GS
3867 sds->this_load = sgs.avg_load;
3868 sds->this = group;
3869 sds->this_nr_running = sgs.sum_nr_running;
3870 sds->this_load_per_task = sgs.sum_weighted_load;
3871 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3872 (sgs.sum_nr_running > sgs.group_capacity ||
3873 sgs.group_imb)) {
37abe198
GS
3874 sds->max_load = sgs.avg_load;
3875 sds->busiest = group;
3876 sds->busiest_nr_running = sgs.sum_nr_running;
3877 sds->busiest_load_per_task = sgs.sum_weighted_load;
3878 sds->group_imb = sgs.group_imb;
48f24c4d 3879 }
5c45bf27 3880
c071df18 3881 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3882 group = group->next;
3883 } while (group != sd->groups);
37abe198 3884}
1da177e4 3885
2e6f44ae
GS
3886/**
3887 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3888 * amongst the groups of a sched_domain, during
3889 * load balancing.
2e6f44ae
GS
3890 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3891 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3892 * @imbalance: Variable to store the imbalance.
3893 */
3894static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3895 int this_cpu, unsigned long *imbalance)
3896{
3897 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3898 unsigned int imbn = 2;
3899
3900 if (sds->this_nr_running) {
3901 sds->this_load_per_task /= sds->this_nr_running;
3902 if (sds->busiest_load_per_task >
3903 sds->this_load_per_task)
3904 imbn = 1;
3905 } else
3906 sds->this_load_per_task =
3907 cpu_avg_load_per_task(this_cpu);
1da177e4 3908
2e6f44ae
GS
3909 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3910 sds->busiest_load_per_task * imbn) {
3911 *imbalance = sds->busiest_load_per_task;
3912 return;
3913 }
908a7c1b 3914
1da177e4 3915 /*
2e6f44ae
GS
3916 * OK, we don't have enough imbalance to justify moving tasks,
3917 * however we may be able to increase total CPU power used by
3918 * moving them.
1da177e4 3919 */
2dd73a4f 3920
18a3885f 3921 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3922 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3923 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3924 min(sds->this_load_per_task, sds->this_load);
3925 pwr_now /= SCHED_LOAD_SCALE;
3926
3927 /* Amount of load we'd subtract */
18a3885f
PZ
3928 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3929 sds->busiest->cpu_power;
2e6f44ae 3930 if (sds->max_load > tmp)
18a3885f 3931 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3932 min(sds->busiest_load_per_task, sds->max_load - tmp);
3933
3934 /* Amount of load we'd add */
18a3885f 3935 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3936 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3937 tmp = (sds->max_load * sds->busiest->cpu_power) /
3938 sds->this->cpu_power;
2e6f44ae 3939 else
18a3885f
PZ
3940 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3941 sds->this->cpu_power;
3942 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3943 min(sds->this_load_per_task, sds->this_load + tmp);
3944 pwr_move /= SCHED_LOAD_SCALE;
3945
3946 /* Move if we gain throughput */
3947 if (pwr_move > pwr_now)
3948 *imbalance = sds->busiest_load_per_task;
3949}
dbc523a3
GS
3950
3951/**
3952 * calculate_imbalance - Calculate the amount of imbalance present within the
3953 * groups of a given sched_domain during load balance.
3954 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3955 * @this_cpu: Cpu for which currently load balance is being performed.
3956 * @imbalance: The variable to store the imbalance.
3957 */
3958static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3959 unsigned long *imbalance)
3960{
3961 unsigned long max_pull;
2dd73a4f
PW
3962 /*
3963 * In the presence of smp nice balancing, certain scenarios can have
3964 * max load less than avg load(as we skip the groups at or below
3965 * its cpu_power, while calculating max_load..)
3966 */
dbc523a3 3967 if (sds->max_load < sds->avg_load) {
2dd73a4f 3968 *imbalance = 0;
dbc523a3 3969 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3970 }
0c117f1b
SS
3971
3972 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3973 max_pull = min(sds->max_load - sds->avg_load,
3974 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3975
1da177e4 3976 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3977 *imbalance = min(max_pull * sds->busiest->cpu_power,
3978 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3979 / SCHED_LOAD_SCALE;
3980
2dd73a4f
PW
3981 /*
3982 * if *imbalance is less than the average load per runnable task
3983 * there is no gaurantee that any tasks will be moved so we'll have
3984 * a think about bumping its value to force at least one task to be
3985 * moved
3986 */
dbc523a3
GS
3987 if (*imbalance < sds->busiest_load_per_task)
3988 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3989
dbc523a3 3990}
37abe198 3991/******* find_busiest_group() helpers end here *********************/
1da177e4 3992
b7bb4c9b
GS
3993/**
3994 * find_busiest_group - Returns the busiest group within the sched_domain
3995 * if there is an imbalance. If there isn't an imbalance, and
3996 * the user has opted for power-savings, it returns a group whose
3997 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3998 * such a group exists.
3999 *
4000 * Also calculates the amount of weighted load which should be moved
4001 * to restore balance.
4002 *
4003 * @sd: The sched_domain whose busiest group is to be returned.
4004 * @this_cpu: The cpu for which load balancing is currently being performed.
4005 * @imbalance: Variable which stores amount of weighted load which should
4006 * be moved to restore balance/put a group to idle.
4007 * @idle: The idle status of this_cpu.
4008 * @sd_idle: The idleness of sd
4009 * @cpus: The set of CPUs under consideration for load-balancing.
4010 * @balance: Pointer to a variable indicating if this_cpu
4011 * is the appropriate cpu to perform load balancing at this_level.
4012 *
4013 * Returns: - the busiest group if imbalance exists.
4014 * - If no imbalance and user has opted for power-savings balance,
4015 * return the least loaded group whose CPUs can be
4016 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4017 */
4018static struct sched_group *
4019find_busiest_group(struct sched_domain *sd, int this_cpu,
4020 unsigned long *imbalance, enum cpu_idle_type idle,
4021 int *sd_idle, const struct cpumask *cpus, int *balance)
4022{
4023 struct sd_lb_stats sds;
1da177e4 4024
37abe198 4025 memset(&sds, 0, sizeof(sds));
1da177e4 4026
37abe198
GS
4027 /*
4028 * Compute the various statistics relavent for load balancing at
4029 * this level.
4030 */
4031 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4032 balance, &sds);
4033
b7bb4c9b
GS
4034 /* Cases where imbalance does not exist from POV of this_cpu */
4035 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4036 * at this level.
4037 * 2) There is no busy sibling group to pull from.
4038 * 3) This group is the busiest group.
4039 * 4) This group is more busy than the avg busieness at this
4040 * sched_domain.
4041 * 5) The imbalance is within the specified limit.
4042 * 6) Any rebalance would lead to ping-pong
4043 */
37abe198
GS
4044 if (balance && !(*balance))
4045 goto ret;
1da177e4 4046
b7bb4c9b
GS
4047 if (!sds.busiest || sds.busiest_nr_running == 0)
4048 goto out_balanced;
1da177e4 4049
b7bb4c9b 4050 if (sds.this_load >= sds.max_load)
1da177e4 4051 goto out_balanced;
1da177e4 4052
222d656d 4053 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4054
b7bb4c9b
GS
4055 if (sds.this_load >= sds.avg_load)
4056 goto out_balanced;
4057
4058 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4059 goto out_balanced;
4060
222d656d
GS
4061 sds.busiest_load_per_task /= sds.busiest_nr_running;
4062 if (sds.group_imb)
4063 sds.busiest_load_per_task =
4064 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4065
1da177e4
LT
4066 /*
4067 * We're trying to get all the cpus to the average_load, so we don't
4068 * want to push ourselves above the average load, nor do we wish to
4069 * reduce the max loaded cpu below the average load, as either of these
4070 * actions would just result in more rebalancing later, and ping-pong
4071 * tasks around. Thus we look for the minimum possible imbalance.
4072 * Negative imbalances (*we* are more loaded than anyone else) will
4073 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4074 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4075 * appear as very large values with unsigned longs.
4076 */
222d656d 4077 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4078 goto out_balanced;
4079
dbc523a3
GS
4080 /* Looks like there is an imbalance. Compute it */
4081 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4082 return sds.busiest;
1da177e4
LT
4083
4084out_balanced:
c071df18
GS
4085 /*
4086 * There is no obvious imbalance. But check if we can do some balancing
4087 * to save power.
4088 */
4089 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4090 return sds.busiest;
783609c6 4091ret:
1da177e4
LT
4092 *imbalance = 0;
4093 return NULL;
4094}
4095
4096/*
4097 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4098 */
70b97a7f 4099static struct rq *
d15bcfdb 4100find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4101 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4102{
70b97a7f 4103 struct rq *busiest = NULL, *rq;
2dd73a4f 4104 unsigned long max_load = 0;
1da177e4
LT
4105 int i;
4106
758b2cdc 4107 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4108 unsigned long power = power_of(i);
4109 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4110 unsigned long wl;
0a2966b4 4111
96f874e2 4112 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4113 continue;
4114
48f24c4d 4115 rq = cpu_rq(i);
bdb94aa5
PZ
4116 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4117 wl /= power;
2dd73a4f 4118
bdb94aa5 4119 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4120 continue;
1da177e4 4121
dd41f596
IM
4122 if (wl > max_load) {
4123 max_load = wl;
48f24c4d 4124 busiest = rq;
1da177e4
LT
4125 }
4126 }
4127
4128 return busiest;
4129}
4130
77391d71
NP
4131/*
4132 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4133 * so long as it is large enough.
4134 */
4135#define MAX_PINNED_INTERVAL 512
4136
df7c8e84
RR
4137/* Working cpumask for load_balance and load_balance_newidle. */
4138static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4139
1da177e4
LT
4140/*
4141 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4142 * tasks if there is an imbalance.
1da177e4 4143 */
70b97a7f 4144static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4145 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4146 int *balance)
1da177e4 4147{
43010659 4148 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4149 struct sched_group *group;
1da177e4 4150 unsigned long imbalance;
70b97a7f 4151 struct rq *busiest;
fe2eea3f 4152 unsigned long flags;
df7c8e84 4153 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4154
6ad4c188 4155 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4156
89c4710e
SS
4157 /*
4158 * When power savings policy is enabled for the parent domain, idle
4159 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4160 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4161 * portraying it as CPU_NOT_IDLE.
89c4710e 4162 */
d15bcfdb 4163 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4164 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4165 sd_idle = 1;
1da177e4 4166
2d72376b 4167 schedstat_inc(sd, lb_count[idle]);
1da177e4 4168
0a2966b4 4169redo:
c8cba857 4170 update_shares(sd);
0a2966b4 4171 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4172 cpus, balance);
783609c6 4173
06066714 4174 if (*balance == 0)
783609c6 4175 goto out_balanced;
783609c6 4176
1da177e4
LT
4177 if (!group) {
4178 schedstat_inc(sd, lb_nobusyg[idle]);
4179 goto out_balanced;
4180 }
4181
7c16ec58 4182 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4183 if (!busiest) {
4184 schedstat_inc(sd, lb_nobusyq[idle]);
4185 goto out_balanced;
4186 }
4187
db935dbd 4188 BUG_ON(busiest == this_rq);
1da177e4
LT
4189
4190 schedstat_add(sd, lb_imbalance[idle], imbalance);
4191
43010659 4192 ld_moved = 0;
1da177e4
LT
4193 if (busiest->nr_running > 1) {
4194 /*
4195 * Attempt to move tasks. If find_busiest_group has found
4196 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4197 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4198 * correctly treated as an imbalance.
4199 */
fe2eea3f 4200 local_irq_save(flags);
e17224bf 4201 double_rq_lock(this_rq, busiest);
43010659 4202 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4203 imbalance, sd, idle, &all_pinned);
e17224bf 4204 double_rq_unlock(this_rq, busiest);
fe2eea3f 4205 local_irq_restore(flags);
81026794 4206
46cb4b7c
SS
4207 /*
4208 * some other cpu did the load balance for us.
4209 */
43010659 4210 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4211 resched_cpu(this_cpu);
4212
81026794 4213 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4214 if (unlikely(all_pinned)) {
96f874e2
RR
4215 cpumask_clear_cpu(cpu_of(busiest), cpus);
4216 if (!cpumask_empty(cpus))
0a2966b4 4217 goto redo;
81026794 4218 goto out_balanced;
0a2966b4 4219 }
1da177e4 4220 }
81026794 4221
43010659 4222 if (!ld_moved) {
1da177e4
LT
4223 schedstat_inc(sd, lb_failed[idle]);
4224 sd->nr_balance_failed++;
4225
4226 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4227
05fa785c 4228 raw_spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4229
4230 /* don't kick the migration_thread, if the curr
4231 * task on busiest cpu can't be moved to this_cpu
4232 */
96f874e2
RR
4233 if (!cpumask_test_cpu(this_cpu,
4234 &busiest->curr->cpus_allowed)) {
05fa785c
TG
4235 raw_spin_unlock_irqrestore(&busiest->lock,
4236 flags);
fa3b6ddc
SS
4237 all_pinned = 1;
4238 goto out_one_pinned;
4239 }
4240
1da177e4
LT
4241 if (!busiest->active_balance) {
4242 busiest->active_balance = 1;
4243 busiest->push_cpu = this_cpu;
81026794 4244 active_balance = 1;
1da177e4 4245 }
05fa785c 4246 raw_spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4247 if (active_balance)
1da177e4
LT
4248 wake_up_process(busiest->migration_thread);
4249
4250 /*
4251 * We've kicked active balancing, reset the failure
4252 * counter.
4253 */
39507451 4254 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4255 }
81026794 4256 } else
1da177e4
LT
4257 sd->nr_balance_failed = 0;
4258
81026794 4259 if (likely(!active_balance)) {
1da177e4
LT
4260 /* We were unbalanced, so reset the balancing interval */
4261 sd->balance_interval = sd->min_interval;
81026794
NP
4262 } else {
4263 /*
4264 * If we've begun active balancing, start to back off. This
4265 * case may not be covered by the all_pinned logic if there
4266 * is only 1 task on the busy runqueue (because we don't call
4267 * move_tasks).
4268 */
4269 if (sd->balance_interval < sd->max_interval)
4270 sd->balance_interval *= 2;
1da177e4
LT
4271 }
4272
43010659 4273 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4274 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4275 ld_moved = -1;
4276
4277 goto out;
1da177e4
LT
4278
4279out_balanced:
1da177e4
LT
4280 schedstat_inc(sd, lb_balanced[idle]);
4281
16cfb1c0 4282 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4283
4284out_one_pinned:
1da177e4 4285 /* tune up the balancing interval */
77391d71
NP
4286 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4287 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4288 sd->balance_interval *= 2;
4289
48f24c4d 4290 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4291 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4292 ld_moved = -1;
4293 else
4294 ld_moved = 0;
4295out:
c8cba857
PZ
4296 if (ld_moved)
4297 update_shares(sd);
c09595f6 4298 return ld_moved;
1da177e4
LT
4299}
4300
4301/*
4302 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4303 * tasks if there is an imbalance.
4304 *
d15bcfdb 4305 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4306 * this_rq is locked.
4307 */
48f24c4d 4308static int
df7c8e84 4309load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4310{
4311 struct sched_group *group;
70b97a7f 4312 struct rq *busiest = NULL;
1da177e4 4313 unsigned long imbalance;
43010659 4314 int ld_moved = 0;
5969fe06 4315 int sd_idle = 0;
969bb4e4 4316 int all_pinned = 0;
df7c8e84 4317 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4318
6ad4c188 4319 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4320
89c4710e
SS
4321 /*
4322 * When power savings policy is enabled for the parent domain, idle
4323 * sibling can pick up load irrespective of busy siblings. In this case,
4324 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4325 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4326 */
4327 if (sd->flags & SD_SHARE_CPUPOWER &&
4328 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4329 sd_idle = 1;
1da177e4 4330
2d72376b 4331 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4332redo:
3e5459b4 4333 update_shares_locked(this_rq, sd);
d15bcfdb 4334 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4335 &sd_idle, cpus, NULL);
1da177e4 4336 if (!group) {
d15bcfdb 4337 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4338 goto out_balanced;
1da177e4
LT
4339 }
4340
7c16ec58 4341 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4342 if (!busiest) {
d15bcfdb 4343 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4344 goto out_balanced;
1da177e4
LT
4345 }
4346
db935dbd
NP
4347 BUG_ON(busiest == this_rq);
4348
d15bcfdb 4349 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4350
43010659 4351 ld_moved = 0;
d6d5cfaf
NP
4352 if (busiest->nr_running > 1) {
4353 /* Attempt to move tasks */
4354 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4355 /* this_rq->clock is already updated */
4356 update_rq_clock(busiest);
43010659 4357 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4358 imbalance, sd, CPU_NEWLY_IDLE,
4359 &all_pinned);
1b12bbc7 4360 double_unlock_balance(this_rq, busiest);
0a2966b4 4361
969bb4e4 4362 if (unlikely(all_pinned)) {
96f874e2
RR
4363 cpumask_clear_cpu(cpu_of(busiest), cpus);
4364 if (!cpumask_empty(cpus))
0a2966b4
CL
4365 goto redo;
4366 }
d6d5cfaf
NP
4367 }
4368
43010659 4369 if (!ld_moved) {
36dffab6 4370 int active_balance = 0;
ad273b32 4371
d15bcfdb 4372 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4373 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4374 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4375 return -1;
ad273b32
VS
4376
4377 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4378 return -1;
4379
4380 if (sd->nr_balance_failed++ < 2)
4381 return -1;
4382
4383 /*
4384 * The only task running in a non-idle cpu can be moved to this
4385 * cpu in an attempt to completely freeup the other CPU
4386 * package. The same method used to move task in load_balance()
4387 * have been extended for load_balance_newidle() to speedup
4388 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4389 *
4390 * The package power saving logic comes from
4391 * find_busiest_group(). If there are no imbalance, then
4392 * f_b_g() will return NULL. However when sched_mc={1,2} then
4393 * f_b_g() will select a group from which a running task may be
4394 * pulled to this cpu in order to make the other package idle.
4395 * If there is no opportunity to make a package idle and if
4396 * there are no imbalance, then f_b_g() will return NULL and no
4397 * action will be taken in load_balance_newidle().
4398 *
4399 * Under normal task pull operation due to imbalance, there
4400 * will be more than one task in the source run queue and
4401 * move_tasks() will succeed. ld_moved will be true and this
4402 * active balance code will not be triggered.
4403 */
4404
4405 /* Lock busiest in correct order while this_rq is held */
4406 double_lock_balance(this_rq, busiest);
4407
4408 /*
4409 * don't kick the migration_thread, if the curr
4410 * task on busiest cpu can't be moved to this_cpu
4411 */
6ca09dfc 4412 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4413 double_unlock_balance(this_rq, busiest);
4414 all_pinned = 1;
4415 return ld_moved;
4416 }
4417
4418 if (!busiest->active_balance) {
4419 busiest->active_balance = 1;
4420 busiest->push_cpu = this_cpu;
4421 active_balance = 1;
4422 }
4423
4424 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4425 /*
4426 * Should not call ttwu while holding a rq->lock
4427 */
05fa785c 4428 raw_spin_unlock(&this_rq->lock);
ad273b32
VS
4429 if (active_balance)
4430 wake_up_process(busiest->migration_thread);
05fa785c 4431 raw_spin_lock(&this_rq->lock);
ad273b32 4432
5969fe06 4433 } else
16cfb1c0 4434 sd->nr_balance_failed = 0;
1da177e4 4435
3e5459b4 4436 update_shares_locked(this_rq, sd);
43010659 4437 return ld_moved;
16cfb1c0
NP
4438
4439out_balanced:
d15bcfdb 4440 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4441 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4442 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4443 return -1;
16cfb1c0 4444 sd->nr_balance_failed = 0;
48f24c4d 4445
16cfb1c0 4446 return 0;
1da177e4
LT
4447}
4448
4449/*
4450 * idle_balance is called by schedule() if this_cpu is about to become
4451 * idle. Attempts to pull tasks from other CPUs.
4452 */
70b97a7f 4453static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4454{
4455 struct sched_domain *sd;
efbe027e 4456 int pulled_task = 0;
dd41f596 4457 unsigned long next_balance = jiffies + HZ;
1da177e4 4458
1b9508f6
MG
4459 this_rq->idle_stamp = this_rq->clock;
4460
4461 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4462 return;
4463
1da177e4 4464 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4465 unsigned long interval;
4466
4467 if (!(sd->flags & SD_LOAD_BALANCE))
4468 continue;
4469
4470 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4471 /* If we've pulled tasks over stop searching: */
7c16ec58 4472 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4473 sd);
92c4ca5c
CL
4474
4475 interval = msecs_to_jiffies(sd->balance_interval);
4476 if (time_after(next_balance, sd->last_balance + interval))
4477 next_balance = sd->last_balance + interval;
1b9508f6
MG
4478 if (pulled_task) {
4479 this_rq->idle_stamp = 0;
92c4ca5c 4480 break;
1b9508f6 4481 }
1da177e4 4482 }
dd41f596 4483 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4484 /*
4485 * We are going idle. next_balance may be set based on
4486 * a busy processor. So reset next_balance.
4487 */
4488 this_rq->next_balance = next_balance;
dd41f596 4489 }
1da177e4
LT
4490}
4491
4492/*
4493 * active_load_balance is run by migration threads. It pushes running tasks
4494 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4495 * running on each physical CPU where possible, and avoids physical /
4496 * logical imbalances.
4497 *
4498 * Called with busiest_rq locked.
4499 */
70b97a7f 4500static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4501{
39507451 4502 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4503 struct sched_domain *sd;
4504 struct rq *target_rq;
39507451 4505
48f24c4d 4506 /* Is there any task to move? */
39507451 4507 if (busiest_rq->nr_running <= 1)
39507451
NP
4508 return;
4509
4510 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4511
4512 /*
39507451 4513 * This condition is "impossible", if it occurs
41a2d6cf 4514 * we need to fix it. Originally reported by
39507451 4515 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4516 */
39507451 4517 BUG_ON(busiest_rq == target_rq);
1da177e4 4518
39507451
NP
4519 /* move a task from busiest_rq to target_rq */
4520 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4521 update_rq_clock(busiest_rq);
4522 update_rq_clock(target_rq);
39507451
NP
4523
4524 /* Search for an sd spanning us and the target CPU. */
c96d145e 4525 for_each_domain(target_cpu, sd) {
39507451 4526 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4527 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4528 break;
c96d145e 4529 }
39507451 4530
48f24c4d 4531 if (likely(sd)) {
2d72376b 4532 schedstat_inc(sd, alb_count);
39507451 4533
43010659
PW
4534 if (move_one_task(target_rq, target_cpu, busiest_rq,
4535 sd, CPU_IDLE))
48f24c4d
IM
4536 schedstat_inc(sd, alb_pushed);
4537 else
4538 schedstat_inc(sd, alb_failed);
4539 }
1b12bbc7 4540 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4541}
4542
46cb4b7c
SS
4543#ifdef CONFIG_NO_HZ
4544static struct {
4545 atomic_t load_balancer;
7d1e6a9b 4546 cpumask_var_t cpu_mask;
f711f609 4547 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4548} nohz ____cacheline_aligned = {
4549 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4550};
4551
eea08f32
AB
4552int get_nohz_load_balancer(void)
4553{
4554 return atomic_read(&nohz.load_balancer);
4555}
4556
f711f609
GS
4557#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4558/**
4559 * lowest_flag_domain - Return lowest sched_domain containing flag.
4560 * @cpu: The cpu whose lowest level of sched domain is to
4561 * be returned.
4562 * @flag: The flag to check for the lowest sched_domain
4563 * for the given cpu.
4564 *
4565 * Returns the lowest sched_domain of a cpu which contains the given flag.
4566 */
4567static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4568{
4569 struct sched_domain *sd;
4570
4571 for_each_domain(cpu, sd)
4572 if (sd && (sd->flags & flag))
4573 break;
4574
4575 return sd;
4576}
4577
4578/**
4579 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4580 * @cpu: The cpu whose domains we're iterating over.
4581 * @sd: variable holding the value of the power_savings_sd
4582 * for cpu.
4583 * @flag: The flag to filter the sched_domains to be iterated.
4584 *
4585 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4586 * set, starting from the lowest sched_domain to the highest.
4587 */
4588#define for_each_flag_domain(cpu, sd, flag) \
4589 for (sd = lowest_flag_domain(cpu, flag); \
4590 (sd && (sd->flags & flag)); sd = sd->parent)
4591
4592/**
4593 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4594 * @ilb_group: group to be checked for semi-idleness
4595 *
4596 * Returns: 1 if the group is semi-idle. 0 otherwise.
4597 *
4598 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4599 * and atleast one non-idle CPU. This helper function checks if the given
4600 * sched_group is semi-idle or not.
4601 */
4602static inline int is_semi_idle_group(struct sched_group *ilb_group)
4603{
4604 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4605 sched_group_cpus(ilb_group));
4606
4607 /*
4608 * A sched_group is semi-idle when it has atleast one busy cpu
4609 * and atleast one idle cpu.
4610 */
4611 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4612 return 0;
4613
4614 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4615 return 0;
4616
4617 return 1;
4618}
4619/**
4620 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4621 * @cpu: The cpu which is nominating a new idle_load_balancer.
4622 *
4623 * Returns: Returns the id of the idle load balancer if it exists,
4624 * Else, returns >= nr_cpu_ids.
4625 *
4626 * This algorithm picks the idle load balancer such that it belongs to a
4627 * semi-idle powersavings sched_domain. The idea is to try and avoid
4628 * completely idle packages/cores just for the purpose of idle load balancing
4629 * when there are other idle cpu's which are better suited for that job.
4630 */
4631static int find_new_ilb(int cpu)
4632{
4633 struct sched_domain *sd;
4634 struct sched_group *ilb_group;
4635
4636 /*
4637 * Have idle load balancer selection from semi-idle packages only
4638 * when power-aware load balancing is enabled
4639 */
4640 if (!(sched_smt_power_savings || sched_mc_power_savings))
4641 goto out_done;
4642
4643 /*
4644 * Optimize for the case when we have no idle CPUs or only one
4645 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4646 */
4647 if (cpumask_weight(nohz.cpu_mask) < 2)
4648 goto out_done;
4649
4650 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4651 ilb_group = sd->groups;
4652
4653 do {
4654 if (is_semi_idle_group(ilb_group))
4655 return cpumask_first(nohz.ilb_grp_nohz_mask);
4656
4657 ilb_group = ilb_group->next;
4658
4659 } while (ilb_group != sd->groups);
4660 }
4661
4662out_done:
4663 return cpumask_first(nohz.cpu_mask);
4664}
4665#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4666static inline int find_new_ilb(int call_cpu)
4667{
6e29ec57 4668 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4669}
4670#endif
4671
7835b98b 4672/*
46cb4b7c
SS
4673 * This routine will try to nominate the ilb (idle load balancing)
4674 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4675 * load balancing on behalf of all those cpus. If all the cpus in the system
4676 * go into this tickless mode, then there will be no ilb owner (as there is
4677 * no need for one) and all the cpus will sleep till the next wakeup event
4678 * arrives...
4679 *
4680 * For the ilb owner, tick is not stopped. And this tick will be used
4681 * for idle load balancing. ilb owner will still be part of
4682 * nohz.cpu_mask..
7835b98b 4683 *
46cb4b7c
SS
4684 * While stopping the tick, this cpu will become the ilb owner if there
4685 * is no other owner. And will be the owner till that cpu becomes busy
4686 * or if all cpus in the system stop their ticks at which point
4687 * there is no need for ilb owner.
4688 *
4689 * When the ilb owner becomes busy, it nominates another owner, during the
4690 * next busy scheduler_tick()
4691 */
4692int select_nohz_load_balancer(int stop_tick)
4693{
4694 int cpu = smp_processor_id();
4695
4696 if (stop_tick) {
46cb4b7c
SS
4697 cpu_rq(cpu)->in_nohz_recently = 1;
4698
483b4ee6
SS
4699 if (!cpu_active(cpu)) {
4700 if (atomic_read(&nohz.load_balancer) != cpu)
4701 return 0;
4702
4703 /*
4704 * If we are going offline and still the leader,
4705 * give up!
4706 */
46cb4b7c
SS
4707 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4708 BUG();
483b4ee6 4709
46cb4b7c
SS
4710 return 0;
4711 }
4712
483b4ee6
SS
4713 cpumask_set_cpu(cpu, nohz.cpu_mask);
4714
46cb4b7c 4715 /* time for ilb owner also to sleep */
6ad4c188 4716 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4717 if (atomic_read(&nohz.load_balancer) == cpu)
4718 atomic_set(&nohz.load_balancer, -1);
4719 return 0;
4720 }
4721
4722 if (atomic_read(&nohz.load_balancer) == -1) {
4723 /* make me the ilb owner */
4724 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4725 return 1;
e790fb0b
GS
4726 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4727 int new_ilb;
4728
4729 if (!(sched_smt_power_savings ||
4730 sched_mc_power_savings))
4731 return 1;
4732 /*
4733 * Check to see if there is a more power-efficient
4734 * ilb.
4735 */
4736 new_ilb = find_new_ilb(cpu);
4737 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4738 atomic_set(&nohz.load_balancer, -1);
4739 resched_cpu(new_ilb);
4740 return 0;
4741 }
46cb4b7c 4742 return 1;
e790fb0b 4743 }
46cb4b7c 4744 } else {
7d1e6a9b 4745 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4746 return 0;
4747
7d1e6a9b 4748 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4749
4750 if (atomic_read(&nohz.load_balancer) == cpu)
4751 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4752 BUG();
4753 }
4754 return 0;
4755}
4756#endif
4757
4758static DEFINE_SPINLOCK(balancing);
4759
4760/*
7835b98b
CL
4761 * It checks each scheduling domain to see if it is due to be balanced,
4762 * and initiates a balancing operation if so.
4763 *
4764 * Balancing parameters are set up in arch_init_sched_domains.
4765 */
a9957449 4766static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4767{
46cb4b7c
SS
4768 int balance = 1;
4769 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4770 unsigned long interval;
4771 struct sched_domain *sd;
46cb4b7c 4772 /* Earliest time when we have to do rebalance again */
c9819f45 4773 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4774 int update_next_balance = 0;
d07355f5 4775 int need_serialize;
1da177e4 4776
46cb4b7c 4777 for_each_domain(cpu, sd) {
1da177e4
LT
4778 if (!(sd->flags & SD_LOAD_BALANCE))
4779 continue;
4780
4781 interval = sd->balance_interval;
d15bcfdb 4782 if (idle != CPU_IDLE)
1da177e4
LT
4783 interval *= sd->busy_factor;
4784
4785 /* scale ms to jiffies */
4786 interval = msecs_to_jiffies(interval);
4787 if (unlikely(!interval))
4788 interval = 1;
dd41f596
IM
4789 if (interval > HZ*NR_CPUS/10)
4790 interval = HZ*NR_CPUS/10;
4791
d07355f5 4792 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4793
d07355f5 4794 if (need_serialize) {
08c183f3
CL
4795 if (!spin_trylock(&balancing))
4796 goto out;
4797 }
4798
c9819f45 4799 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4800 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4801 /*
4802 * We've pulled tasks over so either we're no
5969fe06
NP
4803 * longer idle, or one of our SMT siblings is
4804 * not idle.
4805 */
d15bcfdb 4806 idle = CPU_NOT_IDLE;
1da177e4 4807 }
1bd77f2d 4808 sd->last_balance = jiffies;
1da177e4 4809 }
d07355f5 4810 if (need_serialize)
08c183f3
CL
4811 spin_unlock(&balancing);
4812out:
f549da84 4813 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4814 next_balance = sd->last_balance + interval;
f549da84
SS
4815 update_next_balance = 1;
4816 }
783609c6
SS
4817
4818 /*
4819 * Stop the load balance at this level. There is another
4820 * CPU in our sched group which is doing load balancing more
4821 * actively.
4822 */
4823 if (!balance)
4824 break;
1da177e4 4825 }
f549da84
SS
4826
4827 /*
4828 * next_balance will be updated only when there is a need.
4829 * When the cpu is attached to null domain for ex, it will not be
4830 * updated.
4831 */
4832 if (likely(update_next_balance))
4833 rq->next_balance = next_balance;
46cb4b7c
SS
4834}
4835
4836/*
4837 * run_rebalance_domains is triggered when needed from the scheduler tick.
4838 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4839 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4840 */
4841static void run_rebalance_domains(struct softirq_action *h)
4842{
dd41f596
IM
4843 int this_cpu = smp_processor_id();
4844 struct rq *this_rq = cpu_rq(this_cpu);
4845 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4846 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4847
dd41f596 4848 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4849
4850#ifdef CONFIG_NO_HZ
4851 /*
4852 * If this cpu is the owner for idle load balancing, then do the
4853 * balancing on behalf of the other idle cpus whose ticks are
4854 * stopped.
4855 */
dd41f596
IM
4856 if (this_rq->idle_at_tick &&
4857 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4858 struct rq *rq;
4859 int balance_cpu;
4860
7d1e6a9b
RR
4861 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4862 if (balance_cpu == this_cpu)
4863 continue;
4864
46cb4b7c
SS
4865 /*
4866 * If this cpu gets work to do, stop the load balancing
4867 * work being done for other cpus. Next load
4868 * balancing owner will pick it up.
4869 */
4870 if (need_resched())
4871 break;
4872
de0cf899 4873 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4874
4875 rq = cpu_rq(balance_cpu);
dd41f596
IM
4876 if (time_after(this_rq->next_balance, rq->next_balance))
4877 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4878 }
4879 }
4880#endif
4881}
4882
8a0be9ef
FW
4883static inline int on_null_domain(int cpu)
4884{
4885 return !rcu_dereference(cpu_rq(cpu)->sd);
4886}
4887
46cb4b7c
SS
4888/*
4889 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4890 *
4891 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4892 * idle load balancing owner or decide to stop the periodic load balancing,
4893 * if the whole system is idle.
4894 */
dd41f596 4895static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4896{
46cb4b7c
SS
4897#ifdef CONFIG_NO_HZ
4898 /*
4899 * If we were in the nohz mode recently and busy at the current
4900 * scheduler tick, then check if we need to nominate new idle
4901 * load balancer.
4902 */
4903 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4904 rq->in_nohz_recently = 0;
4905
4906 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4907 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4908 atomic_set(&nohz.load_balancer, -1);
4909 }
4910
4911 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4912 int ilb = find_new_ilb(cpu);
46cb4b7c 4913
434d53b0 4914 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4915 resched_cpu(ilb);
4916 }
4917 }
4918
4919 /*
4920 * If this cpu is idle and doing idle load balancing for all the
4921 * cpus with ticks stopped, is it time for that to stop?
4922 */
4923 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4924 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4925 resched_cpu(cpu);
4926 return;
4927 }
4928
4929 /*
4930 * If this cpu is idle and the idle load balancing is done by
4931 * someone else, then no need raise the SCHED_SOFTIRQ
4932 */
4933 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4934 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4935 return;
4936#endif
8a0be9ef
FW
4937 /* Don't need to rebalance while attached to NULL domain */
4938 if (time_after_eq(jiffies, rq->next_balance) &&
4939 likely(!on_null_domain(cpu)))
46cb4b7c 4940 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4941}
dd41f596
IM
4942
4943#else /* CONFIG_SMP */
4944
1da177e4
LT
4945/*
4946 * on UP we do not need to balance between CPUs:
4947 */
70b97a7f 4948static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4949{
4950}
dd41f596 4951
1da177e4
LT
4952#endif
4953
1da177e4
LT
4954DEFINE_PER_CPU(struct kernel_stat, kstat);
4955
4956EXPORT_PER_CPU_SYMBOL(kstat);
4957
4958/*
c5f8d995 4959 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4960 * @p in case that task is currently running.
c5f8d995
HS
4961 *
4962 * Called with task_rq_lock() held on @rq.
1da177e4 4963 */
c5f8d995
HS
4964static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4965{
4966 u64 ns = 0;
4967
4968 if (task_current(rq, p)) {
4969 update_rq_clock(rq);
4970 ns = rq->clock - p->se.exec_start;
4971 if ((s64)ns < 0)
4972 ns = 0;
4973 }
4974
4975 return ns;
4976}
4977
bb34d92f 4978unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4979{
1da177e4 4980 unsigned long flags;
41b86e9c 4981 struct rq *rq;
bb34d92f 4982 u64 ns = 0;
48f24c4d 4983
41b86e9c 4984 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4985 ns = do_task_delta_exec(p, rq);
4986 task_rq_unlock(rq, &flags);
1508487e 4987
c5f8d995
HS
4988 return ns;
4989}
f06febc9 4990
c5f8d995
HS
4991/*
4992 * Return accounted runtime for the task.
4993 * In case the task is currently running, return the runtime plus current's
4994 * pending runtime that have not been accounted yet.
4995 */
4996unsigned long long task_sched_runtime(struct task_struct *p)
4997{
4998 unsigned long flags;
4999 struct rq *rq;
5000 u64 ns = 0;
5001
5002 rq = task_rq_lock(p, &flags);
5003 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5004 task_rq_unlock(rq, &flags);
5005
5006 return ns;
5007}
48f24c4d 5008
c5f8d995
HS
5009/*
5010 * Return sum_exec_runtime for the thread group.
5011 * In case the task is currently running, return the sum plus current's
5012 * pending runtime that have not been accounted yet.
5013 *
5014 * Note that the thread group might have other running tasks as well,
5015 * so the return value not includes other pending runtime that other
5016 * running tasks might have.
5017 */
5018unsigned long long thread_group_sched_runtime(struct task_struct *p)
5019{
5020 struct task_cputime totals;
5021 unsigned long flags;
5022 struct rq *rq;
5023 u64 ns;
5024
5025 rq = task_rq_lock(p, &flags);
5026 thread_group_cputime(p, &totals);
5027 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5028 task_rq_unlock(rq, &flags);
48f24c4d 5029
1da177e4
LT
5030 return ns;
5031}
5032
1da177e4
LT
5033/*
5034 * Account user cpu time to a process.
5035 * @p: the process that the cpu time gets accounted to
1da177e4 5036 * @cputime: the cpu time spent in user space since the last update
457533a7 5037 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5038 */
457533a7
MS
5039void account_user_time(struct task_struct *p, cputime_t cputime,
5040 cputime_t cputime_scaled)
1da177e4
LT
5041{
5042 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5043 cputime64_t tmp;
5044
457533a7 5045 /* Add user time to process. */
1da177e4 5046 p->utime = cputime_add(p->utime, cputime);
457533a7 5047 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5048 account_group_user_time(p, cputime);
1da177e4
LT
5049
5050 /* Add user time to cpustat. */
5051 tmp = cputime_to_cputime64(cputime);
5052 if (TASK_NICE(p) > 0)
5053 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5054 else
5055 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5056
5057 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5058 /* Account for user time used */
5059 acct_update_integrals(p);
1da177e4
LT
5060}
5061
94886b84
LV
5062/*
5063 * Account guest cpu time to a process.
5064 * @p: the process that the cpu time gets accounted to
5065 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5066 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5067 */
457533a7
MS
5068static void account_guest_time(struct task_struct *p, cputime_t cputime,
5069 cputime_t cputime_scaled)
94886b84
LV
5070{
5071 cputime64_t tmp;
5072 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5073
5074 tmp = cputime_to_cputime64(cputime);
5075
457533a7 5076 /* Add guest time to process. */
94886b84 5077 p->utime = cputime_add(p->utime, cputime);
457533a7 5078 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5079 account_group_user_time(p, cputime);
94886b84
LV
5080 p->gtime = cputime_add(p->gtime, cputime);
5081
457533a7 5082 /* Add guest time to cpustat. */
ce0e7b28
RO
5083 if (TASK_NICE(p) > 0) {
5084 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5085 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5086 } else {
5087 cpustat->user = cputime64_add(cpustat->user, tmp);
5088 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5089 }
94886b84
LV
5090}
5091
1da177e4
LT
5092/*
5093 * Account system cpu time to a process.
5094 * @p: the process that the cpu time gets accounted to
5095 * @hardirq_offset: the offset to subtract from hardirq_count()
5096 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5097 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5098 */
5099void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5100 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5101{
5102 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5103 cputime64_t tmp;
5104
983ed7a6 5105 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5106 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5107 return;
5108 }
94886b84 5109
457533a7 5110 /* Add system time to process. */
1da177e4 5111 p->stime = cputime_add(p->stime, cputime);
457533a7 5112 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5113 account_group_system_time(p, cputime);
1da177e4
LT
5114
5115 /* Add system time to cpustat. */
5116 tmp = cputime_to_cputime64(cputime);
5117 if (hardirq_count() - hardirq_offset)
5118 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5119 else if (softirq_count())
5120 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5121 else
79741dd3
MS
5122 cpustat->system = cputime64_add(cpustat->system, tmp);
5123
ef12fefa
BR
5124 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5125
1da177e4
LT
5126 /* Account for system time used */
5127 acct_update_integrals(p);
1da177e4
LT
5128}
5129
c66f08be 5130/*
1da177e4 5131 * Account for involuntary wait time.
1da177e4 5132 * @steal: the cpu time spent in involuntary wait
c66f08be 5133 */
79741dd3 5134void account_steal_time(cputime_t cputime)
c66f08be 5135{
79741dd3
MS
5136 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5137 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5138
5139 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5140}
5141
1da177e4 5142/*
79741dd3
MS
5143 * Account for idle time.
5144 * @cputime: the cpu time spent in idle wait
1da177e4 5145 */
79741dd3 5146void account_idle_time(cputime_t cputime)
1da177e4
LT
5147{
5148 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5149 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5150 struct rq *rq = this_rq();
1da177e4 5151
79741dd3
MS
5152 if (atomic_read(&rq->nr_iowait) > 0)
5153 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5154 else
5155 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5156}
5157
79741dd3
MS
5158#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5159
5160/*
5161 * Account a single tick of cpu time.
5162 * @p: the process that the cpu time gets accounted to
5163 * @user_tick: indicates if the tick is a user or a system tick
5164 */
5165void account_process_tick(struct task_struct *p, int user_tick)
5166{
a42548a1 5167 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5168 struct rq *rq = this_rq();
5169
5170 if (user_tick)
a42548a1 5171 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5172 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5173 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5174 one_jiffy_scaled);
5175 else
a42548a1 5176 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5177}
5178
5179/*
5180 * Account multiple ticks of steal time.
5181 * @p: the process from which the cpu time has been stolen
5182 * @ticks: number of stolen ticks
5183 */
5184void account_steal_ticks(unsigned long ticks)
5185{
5186 account_steal_time(jiffies_to_cputime(ticks));
5187}
5188
5189/*
5190 * Account multiple ticks of idle time.
5191 * @ticks: number of stolen ticks
5192 */
5193void account_idle_ticks(unsigned long ticks)
5194{
5195 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5196}
5197
79741dd3
MS
5198#endif
5199
49048622
BS
5200/*
5201 * Use precise platform statistics if available:
5202 */
5203#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5204void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5205{
d99ca3b9
HS
5206 *ut = p->utime;
5207 *st = p->stime;
49048622
BS
5208}
5209
0cf55e1e 5210void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5211{
0cf55e1e
HS
5212 struct task_cputime cputime;
5213
5214 thread_group_cputime(p, &cputime);
5215
5216 *ut = cputime.utime;
5217 *st = cputime.stime;
49048622
BS
5218}
5219#else
761b1d26
HS
5220
5221#ifndef nsecs_to_cputime
b7b20df9 5222# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5223#endif
5224
d180c5bc 5225void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5226{
d99ca3b9 5227 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5228
5229 /*
5230 * Use CFS's precise accounting:
5231 */
d180c5bc 5232 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5233
5234 if (total) {
d180c5bc
HS
5235 u64 temp;
5236
5237 temp = (u64)(rtime * utime);
49048622 5238 do_div(temp, total);
d180c5bc
HS
5239 utime = (cputime_t)temp;
5240 } else
5241 utime = rtime;
49048622 5242
d180c5bc
HS
5243 /*
5244 * Compare with previous values, to keep monotonicity:
5245 */
761b1d26 5246 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5247 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5248
d99ca3b9
HS
5249 *ut = p->prev_utime;
5250 *st = p->prev_stime;
49048622
BS
5251}
5252
0cf55e1e
HS
5253/*
5254 * Must be called with siglock held.
5255 */
5256void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5257{
0cf55e1e
HS
5258 struct signal_struct *sig = p->signal;
5259 struct task_cputime cputime;
5260 cputime_t rtime, utime, total;
49048622 5261
0cf55e1e 5262 thread_group_cputime(p, &cputime);
49048622 5263
0cf55e1e
HS
5264 total = cputime_add(cputime.utime, cputime.stime);
5265 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5266
0cf55e1e
HS
5267 if (total) {
5268 u64 temp;
49048622 5269
0cf55e1e
HS
5270 temp = (u64)(rtime * cputime.utime);
5271 do_div(temp, total);
5272 utime = (cputime_t)temp;
5273 } else
5274 utime = rtime;
5275
5276 sig->prev_utime = max(sig->prev_utime, utime);
5277 sig->prev_stime = max(sig->prev_stime,
5278 cputime_sub(rtime, sig->prev_utime));
5279
5280 *ut = sig->prev_utime;
5281 *st = sig->prev_stime;
49048622 5282}
49048622 5283#endif
49048622 5284
7835b98b
CL
5285/*
5286 * This function gets called by the timer code, with HZ frequency.
5287 * We call it with interrupts disabled.
5288 *
5289 * It also gets called by the fork code, when changing the parent's
5290 * timeslices.
5291 */
5292void scheduler_tick(void)
5293{
7835b98b
CL
5294 int cpu = smp_processor_id();
5295 struct rq *rq = cpu_rq(cpu);
dd41f596 5296 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5297
5298 sched_clock_tick();
dd41f596 5299
05fa785c 5300 raw_spin_lock(&rq->lock);
3e51f33f 5301 update_rq_clock(rq);
f1a438d8 5302 update_cpu_load(rq);
fa85ae24 5303 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 5304 raw_spin_unlock(&rq->lock);
7835b98b 5305
cdd6c482 5306 perf_event_task_tick(curr, cpu);
e220d2dc 5307
e418e1c2 5308#ifdef CONFIG_SMP
dd41f596
IM
5309 rq->idle_at_tick = idle_cpu(cpu);
5310 trigger_load_balance(rq, cpu);
e418e1c2 5311#endif
1da177e4
LT
5312}
5313
132380a0 5314notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5315{
5316 if (in_lock_functions(addr)) {
5317 addr = CALLER_ADDR2;
5318 if (in_lock_functions(addr))
5319 addr = CALLER_ADDR3;
5320 }
5321 return addr;
5322}
1da177e4 5323
7e49fcce
SR
5324#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5325 defined(CONFIG_PREEMPT_TRACER))
5326
43627582 5327void __kprobes add_preempt_count(int val)
1da177e4 5328{
6cd8a4bb 5329#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5330 /*
5331 * Underflow?
5332 */
9a11b49a
IM
5333 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5334 return;
6cd8a4bb 5335#endif
1da177e4 5336 preempt_count() += val;
6cd8a4bb 5337#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5338 /*
5339 * Spinlock count overflowing soon?
5340 */
33859f7f
MOS
5341 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5342 PREEMPT_MASK - 10);
6cd8a4bb
SR
5343#endif
5344 if (preempt_count() == val)
5345 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5346}
5347EXPORT_SYMBOL(add_preempt_count);
5348
43627582 5349void __kprobes sub_preempt_count(int val)
1da177e4 5350{
6cd8a4bb 5351#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5352 /*
5353 * Underflow?
5354 */
01e3eb82 5355 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5356 return;
1da177e4
LT
5357 /*
5358 * Is the spinlock portion underflowing?
5359 */
9a11b49a
IM
5360 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5361 !(preempt_count() & PREEMPT_MASK)))
5362 return;
6cd8a4bb 5363#endif
9a11b49a 5364
6cd8a4bb
SR
5365 if (preempt_count() == val)
5366 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5367 preempt_count() -= val;
5368}
5369EXPORT_SYMBOL(sub_preempt_count);
5370
5371#endif
5372
5373/*
dd41f596 5374 * Print scheduling while atomic bug:
1da177e4 5375 */
dd41f596 5376static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5377{
838225b4
SS
5378 struct pt_regs *regs = get_irq_regs();
5379
663997d4
JP
5380 pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
5381 prev->comm, prev->pid, preempt_count());
838225b4 5382
dd41f596 5383 debug_show_held_locks(prev);
e21f5b15 5384 print_modules();
dd41f596
IM
5385 if (irqs_disabled())
5386 print_irqtrace_events(prev);
838225b4
SS
5387
5388 if (regs)
5389 show_regs(regs);
5390 else
5391 dump_stack();
dd41f596 5392}
1da177e4 5393
dd41f596
IM
5394/*
5395 * Various schedule()-time debugging checks and statistics:
5396 */
5397static inline void schedule_debug(struct task_struct *prev)
5398{
1da177e4 5399 /*
41a2d6cf 5400 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5401 * schedule() atomically, we ignore that path for now.
5402 * Otherwise, whine if we are scheduling when we should not be.
5403 */
3f33a7ce 5404 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5405 __schedule_bug(prev);
5406
1da177e4
LT
5407 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5408
2d72376b 5409 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5410#ifdef CONFIG_SCHEDSTATS
5411 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5412 schedstat_inc(this_rq(), bkl_count);
5413 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5414 }
5415#endif
dd41f596
IM
5416}
5417
6cecd084 5418static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5419{
6cecd084
PZ
5420 if (prev->state == TASK_RUNNING) {
5421 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5422
6cecd084
PZ
5423 runtime -= prev->se.prev_sum_exec_runtime;
5424 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5425
5426 /*
5427 * In order to avoid avg_overlap growing stale when we are
5428 * indeed overlapping and hence not getting put to sleep, grow
5429 * the avg_overlap on preemption.
5430 *
5431 * We use the average preemption runtime because that
5432 * correlates to the amount of cache footprint a task can
5433 * build up.
5434 */
6cecd084 5435 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5436 }
6cecd084 5437 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5438}
5439
dd41f596
IM
5440/*
5441 * Pick up the highest-prio task:
5442 */
5443static inline struct task_struct *
b67802ea 5444pick_next_task(struct rq *rq)
dd41f596 5445{
5522d5d5 5446 const struct sched_class *class;
dd41f596 5447 struct task_struct *p;
1da177e4
LT
5448
5449 /*
dd41f596
IM
5450 * Optimization: we know that if all tasks are in
5451 * the fair class we can call that function directly:
1da177e4 5452 */
dd41f596 5453 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5454 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5455 if (likely(p))
5456 return p;
1da177e4
LT
5457 }
5458
dd41f596
IM
5459 class = sched_class_highest;
5460 for ( ; ; ) {
fb8d4724 5461 p = class->pick_next_task(rq);
dd41f596
IM
5462 if (p)
5463 return p;
5464 /*
5465 * Will never be NULL as the idle class always
5466 * returns a non-NULL p:
5467 */
5468 class = class->next;
5469 }
5470}
1da177e4 5471
dd41f596
IM
5472/*
5473 * schedule() is the main scheduler function.
5474 */
ff743345 5475asmlinkage void __sched schedule(void)
dd41f596
IM
5476{
5477 struct task_struct *prev, *next;
67ca7bde 5478 unsigned long *switch_count;
dd41f596 5479 struct rq *rq;
31656519 5480 int cpu;
dd41f596 5481
ff743345
PZ
5482need_resched:
5483 preempt_disable();
dd41f596
IM
5484 cpu = smp_processor_id();
5485 rq = cpu_rq(cpu);
d6714c22 5486 rcu_sched_qs(cpu);
dd41f596
IM
5487 prev = rq->curr;
5488 switch_count = &prev->nivcsw;
5489
5490 release_kernel_lock(prev);
5491need_resched_nonpreemptible:
5492
5493 schedule_debug(prev);
1da177e4 5494
31656519 5495 if (sched_feat(HRTICK))
f333fdc9 5496 hrtick_clear(rq);
8f4d37ec 5497
05fa785c 5498 raw_spin_lock_irq(&rq->lock);
3e51f33f 5499 update_rq_clock(rq);
1e819950 5500 clear_tsk_need_resched(prev);
1da177e4 5501
1da177e4 5502 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5503 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5504 prev->state = TASK_RUNNING;
16882c1e 5505 else
2e1cb74a 5506 deactivate_task(rq, prev, 1);
dd41f596 5507 switch_count = &prev->nvcsw;
1da177e4
LT
5508 }
5509
3f029d3c 5510 pre_schedule(rq, prev);
f65eda4f 5511
dd41f596 5512 if (unlikely(!rq->nr_running))
1da177e4 5513 idle_balance(cpu, rq);
1da177e4 5514
df1c99d4 5515 put_prev_task(rq, prev);
b67802ea 5516 next = pick_next_task(rq);
1da177e4 5517
1da177e4 5518 if (likely(prev != next)) {
673a90a1 5519 sched_info_switch(prev, next);
cdd6c482 5520 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5521
1da177e4
LT
5522 rq->nr_switches++;
5523 rq->curr = next;
5524 ++*switch_count;
5525
dd41f596 5526 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5527 /*
5528 * the context switch might have flipped the stack from under
5529 * us, hence refresh the local variables.
5530 */
5531 cpu = smp_processor_id();
5532 rq = cpu_rq(cpu);
1da177e4 5533 } else
05fa785c 5534 raw_spin_unlock_irq(&rq->lock);
1da177e4 5535
3f029d3c 5536 post_schedule(rq);
1da177e4 5537
8f4d37ec 5538 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5539 goto need_resched_nonpreemptible;
8f4d37ec 5540
1da177e4 5541 preempt_enable_no_resched();
ff743345 5542 if (need_resched())
1da177e4
LT
5543 goto need_resched;
5544}
1da177e4
LT
5545EXPORT_SYMBOL(schedule);
5546
c08f7829 5547#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5548/*
5549 * Look out! "owner" is an entirely speculative pointer
5550 * access and not reliable.
5551 */
5552int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5553{
5554 unsigned int cpu;
5555 struct rq *rq;
5556
5557 if (!sched_feat(OWNER_SPIN))
5558 return 0;
5559
5560#ifdef CONFIG_DEBUG_PAGEALLOC
5561 /*
5562 * Need to access the cpu field knowing that
5563 * DEBUG_PAGEALLOC could have unmapped it if
5564 * the mutex owner just released it and exited.
5565 */
5566 if (probe_kernel_address(&owner->cpu, cpu))
5567 goto out;
5568#else
5569 cpu = owner->cpu;
5570#endif
5571
5572 /*
5573 * Even if the access succeeded (likely case),
5574 * the cpu field may no longer be valid.
5575 */
5576 if (cpu >= nr_cpumask_bits)
5577 goto out;
5578
5579 /*
5580 * We need to validate that we can do a
5581 * get_cpu() and that we have the percpu area.
5582 */
5583 if (!cpu_online(cpu))
5584 goto out;
5585
5586 rq = cpu_rq(cpu);
5587
5588 for (;;) {
5589 /*
5590 * Owner changed, break to re-assess state.
5591 */
5592 if (lock->owner != owner)
5593 break;
5594
5595 /*
5596 * Is that owner really running on that cpu?
5597 */
5598 if (task_thread_info(rq->curr) != owner || need_resched())
5599 return 0;
5600
5601 cpu_relax();
5602 }
5603out:
5604 return 1;
5605}
5606#endif
5607
1da177e4
LT
5608#ifdef CONFIG_PREEMPT
5609/*
2ed6e34f 5610 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5611 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5612 * occur there and call schedule directly.
5613 */
5614asmlinkage void __sched preempt_schedule(void)
5615{
5616 struct thread_info *ti = current_thread_info();
6478d880 5617
1da177e4
LT
5618 /*
5619 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5620 * we do not want to preempt the current task. Just return..
1da177e4 5621 */
beed33a8 5622 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5623 return;
5624
3a5c359a
AK
5625 do {
5626 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5627 schedule();
3a5c359a 5628 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5629
3a5c359a
AK
5630 /*
5631 * Check again in case we missed a preemption opportunity
5632 * between schedule and now.
5633 */
5634 barrier();
5ed0cec0 5635 } while (need_resched());
1da177e4 5636}
1da177e4
LT
5637EXPORT_SYMBOL(preempt_schedule);
5638
5639/*
2ed6e34f 5640 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5641 * off of irq context.
5642 * Note, that this is called and return with irqs disabled. This will
5643 * protect us against recursive calling from irq.
5644 */
5645asmlinkage void __sched preempt_schedule_irq(void)
5646{
5647 struct thread_info *ti = current_thread_info();
6478d880 5648
2ed6e34f 5649 /* Catch callers which need to be fixed */
1da177e4
LT
5650 BUG_ON(ti->preempt_count || !irqs_disabled());
5651
3a5c359a
AK
5652 do {
5653 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5654 local_irq_enable();
5655 schedule();
5656 local_irq_disable();
3a5c359a 5657 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5658
3a5c359a
AK
5659 /*
5660 * Check again in case we missed a preemption opportunity
5661 * between schedule and now.
5662 */
5663 barrier();
5ed0cec0 5664 } while (need_resched());
1da177e4
LT
5665}
5666
5667#endif /* CONFIG_PREEMPT */
5668
63859d4f 5669int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5670 void *key)
1da177e4 5671{
63859d4f 5672 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5673}
1da177e4
LT
5674EXPORT_SYMBOL(default_wake_function);
5675
5676/*
41a2d6cf
IM
5677 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5678 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5679 * number) then we wake all the non-exclusive tasks and one exclusive task.
5680 *
5681 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5682 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5683 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5684 */
78ddb08f 5685static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5686 int nr_exclusive, int wake_flags, void *key)
1da177e4 5687{
2e45874c 5688 wait_queue_t *curr, *next;
1da177e4 5689
2e45874c 5690 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5691 unsigned flags = curr->flags;
5692
63859d4f 5693 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5694 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5695 break;
5696 }
5697}
5698
5699/**
5700 * __wake_up - wake up threads blocked on a waitqueue.
5701 * @q: the waitqueue
5702 * @mode: which threads
5703 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5704 * @key: is directly passed to the wakeup function
50fa610a
DH
5705 *
5706 * It may be assumed that this function implies a write memory barrier before
5707 * changing the task state if and only if any tasks are woken up.
1da177e4 5708 */
7ad5b3a5 5709void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5710 int nr_exclusive, void *key)
1da177e4
LT
5711{
5712 unsigned long flags;
5713
5714 spin_lock_irqsave(&q->lock, flags);
5715 __wake_up_common(q, mode, nr_exclusive, 0, key);
5716 spin_unlock_irqrestore(&q->lock, flags);
5717}
1da177e4
LT
5718EXPORT_SYMBOL(__wake_up);
5719
5720/*
5721 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5722 */
7ad5b3a5 5723void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5724{
5725 __wake_up_common(q, mode, 1, 0, NULL);
5726}
5727
4ede816a
DL
5728void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5729{
5730 __wake_up_common(q, mode, 1, 0, key);
5731}
5732
1da177e4 5733/**
4ede816a 5734 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5735 * @q: the waitqueue
5736 * @mode: which threads
5737 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5738 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5739 *
5740 * The sync wakeup differs that the waker knows that it will schedule
5741 * away soon, so while the target thread will be woken up, it will not
5742 * be migrated to another CPU - ie. the two threads are 'synchronized'
5743 * with each other. This can prevent needless bouncing between CPUs.
5744 *
5745 * On UP it can prevent extra preemption.
50fa610a
DH
5746 *
5747 * It may be assumed that this function implies a write memory barrier before
5748 * changing the task state if and only if any tasks are woken up.
1da177e4 5749 */
4ede816a
DL
5750void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5751 int nr_exclusive, void *key)
1da177e4
LT
5752{
5753 unsigned long flags;
7d478721 5754 int wake_flags = WF_SYNC;
1da177e4
LT
5755
5756 if (unlikely(!q))
5757 return;
5758
5759 if (unlikely(!nr_exclusive))
7d478721 5760 wake_flags = 0;
1da177e4
LT
5761
5762 spin_lock_irqsave(&q->lock, flags);
7d478721 5763 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5764 spin_unlock_irqrestore(&q->lock, flags);
5765}
4ede816a
DL
5766EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5767
5768/*
5769 * __wake_up_sync - see __wake_up_sync_key()
5770 */
5771void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5772{
5773 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5774}
1da177e4
LT
5775EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5776
65eb3dc6
KD
5777/**
5778 * complete: - signals a single thread waiting on this completion
5779 * @x: holds the state of this particular completion
5780 *
5781 * This will wake up a single thread waiting on this completion. Threads will be
5782 * awakened in the same order in which they were queued.
5783 *
5784 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5785 *
5786 * It may be assumed that this function implies a write memory barrier before
5787 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5788 */
b15136e9 5789void complete(struct completion *x)
1da177e4
LT
5790{
5791 unsigned long flags;
5792
5793 spin_lock_irqsave(&x->wait.lock, flags);
5794 x->done++;
d9514f6c 5795 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5796 spin_unlock_irqrestore(&x->wait.lock, flags);
5797}
5798EXPORT_SYMBOL(complete);
5799
65eb3dc6
KD
5800/**
5801 * complete_all: - signals all threads waiting on this completion
5802 * @x: holds the state of this particular completion
5803 *
5804 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5805 *
5806 * It may be assumed that this function implies a write memory barrier before
5807 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5808 */
b15136e9 5809void complete_all(struct completion *x)
1da177e4
LT
5810{
5811 unsigned long flags;
5812
5813 spin_lock_irqsave(&x->wait.lock, flags);
5814 x->done += UINT_MAX/2;
d9514f6c 5815 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5816 spin_unlock_irqrestore(&x->wait.lock, flags);
5817}
5818EXPORT_SYMBOL(complete_all);
5819
8cbbe86d
AK
5820static inline long __sched
5821do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5822{
1da177e4
LT
5823 if (!x->done) {
5824 DECLARE_WAITQUEUE(wait, current);
5825
5826 wait.flags |= WQ_FLAG_EXCLUSIVE;
5827 __add_wait_queue_tail(&x->wait, &wait);
5828 do {
94d3d824 5829 if (signal_pending_state(state, current)) {
ea71a546
ON
5830 timeout = -ERESTARTSYS;
5831 break;
8cbbe86d
AK
5832 }
5833 __set_current_state(state);
1da177e4
LT
5834 spin_unlock_irq(&x->wait.lock);
5835 timeout = schedule_timeout(timeout);
5836 spin_lock_irq(&x->wait.lock);
ea71a546 5837 } while (!x->done && timeout);
1da177e4 5838 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5839 if (!x->done)
5840 return timeout;
1da177e4
LT
5841 }
5842 x->done--;
ea71a546 5843 return timeout ?: 1;
1da177e4 5844}
1da177e4 5845
8cbbe86d
AK
5846static long __sched
5847wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5848{
1da177e4
LT
5849 might_sleep();
5850
5851 spin_lock_irq(&x->wait.lock);
8cbbe86d 5852 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5853 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5854 return timeout;
5855}
1da177e4 5856
65eb3dc6
KD
5857/**
5858 * wait_for_completion: - waits for completion of a task
5859 * @x: holds the state of this particular completion
5860 *
5861 * This waits to be signaled for completion of a specific task. It is NOT
5862 * interruptible and there is no timeout.
5863 *
5864 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5865 * and interrupt capability. Also see complete().
5866 */
b15136e9 5867void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5868{
5869 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5870}
8cbbe86d 5871EXPORT_SYMBOL(wait_for_completion);
1da177e4 5872
65eb3dc6
KD
5873/**
5874 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5875 * @x: holds the state of this particular completion
5876 * @timeout: timeout value in jiffies
5877 *
5878 * This waits for either a completion of a specific task to be signaled or for a
5879 * specified timeout to expire. The timeout is in jiffies. It is not
5880 * interruptible.
5881 */
b15136e9 5882unsigned long __sched
8cbbe86d 5883wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5884{
8cbbe86d 5885 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5886}
8cbbe86d 5887EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5888
65eb3dc6
KD
5889/**
5890 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5891 * @x: holds the state of this particular completion
5892 *
5893 * This waits for completion of a specific task to be signaled. It is
5894 * interruptible.
5895 */
8cbbe86d 5896int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5897{
51e97990
AK
5898 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5899 if (t == -ERESTARTSYS)
5900 return t;
5901 return 0;
0fec171c 5902}
8cbbe86d 5903EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5904
65eb3dc6
KD
5905/**
5906 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5907 * @x: holds the state of this particular completion
5908 * @timeout: timeout value in jiffies
5909 *
5910 * This waits for either a completion of a specific task to be signaled or for a
5911 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5912 */
b15136e9 5913unsigned long __sched
8cbbe86d
AK
5914wait_for_completion_interruptible_timeout(struct completion *x,
5915 unsigned long timeout)
0fec171c 5916{
8cbbe86d 5917 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5918}
8cbbe86d 5919EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5920
65eb3dc6
KD
5921/**
5922 * wait_for_completion_killable: - waits for completion of a task (killable)
5923 * @x: holds the state of this particular completion
5924 *
5925 * This waits to be signaled for completion of a specific task. It can be
5926 * interrupted by a kill signal.
5927 */
009e577e
MW
5928int __sched wait_for_completion_killable(struct completion *x)
5929{
5930 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5931 if (t == -ERESTARTSYS)
5932 return t;
5933 return 0;
5934}
5935EXPORT_SYMBOL(wait_for_completion_killable);
5936
be4de352
DC
5937/**
5938 * try_wait_for_completion - try to decrement a completion without blocking
5939 * @x: completion structure
5940 *
5941 * Returns: 0 if a decrement cannot be done without blocking
5942 * 1 if a decrement succeeded.
5943 *
5944 * If a completion is being used as a counting completion,
5945 * attempt to decrement the counter without blocking. This
5946 * enables us to avoid waiting if the resource the completion
5947 * is protecting is not available.
5948 */
5949bool try_wait_for_completion(struct completion *x)
5950{
7539a3b3 5951 unsigned long flags;
be4de352
DC
5952 int ret = 1;
5953
7539a3b3 5954 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5955 if (!x->done)
5956 ret = 0;
5957 else
5958 x->done--;
7539a3b3 5959 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5960 return ret;
5961}
5962EXPORT_SYMBOL(try_wait_for_completion);
5963
5964/**
5965 * completion_done - Test to see if a completion has any waiters
5966 * @x: completion structure
5967 *
5968 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5969 * 1 if there are no waiters.
5970 *
5971 */
5972bool completion_done(struct completion *x)
5973{
7539a3b3 5974 unsigned long flags;
be4de352
DC
5975 int ret = 1;
5976
7539a3b3 5977 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5978 if (!x->done)
5979 ret = 0;
7539a3b3 5980 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5981 return ret;
5982}
5983EXPORT_SYMBOL(completion_done);
5984
8cbbe86d
AK
5985static long __sched
5986sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5987{
0fec171c
IM
5988 unsigned long flags;
5989 wait_queue_t wait;
5990
5991 init_waitqueue_entry(&wait, current);
1da177e4 5992
8cbbe86d 5993 __set_current_state(state);
1da177e4 5994
8cbbe86d
AK
5995 spin_lock_irqsave(&q->lock, flags);
5996 __add_wait_queue(q, &wait);
5997 spin_unlock(&q->lock);
5998 timeout = schedule_timeout(timeout);
5999 spin_lock_irq(&q->lock);
6000 __remove_wait_queue(q, &wait);
6001 spin_unlock_irqrestore(&q->lock, flags);
6002
6003 return timeout;
6004}
6005
6006void __sched interruptible_sleep_on(wait_queue_head_t *q)
6007{
6008 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6009}
1da177e4
LT
6010EXPORT_SYMBOL(interruptible_sleep_on);
6011
0fec171c 6012long __sched
95cdf3b7 6013interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6014{
8cbbe86d 6015 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 6016}
1da177e4
LT
6017EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6018
0fec171c 6019void __sched sleep_on(wait_queue_head_t *q)
1da177e4 6020{
8cbbe86d 6021 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6022}
1da177e4
LT
6023EXPORT_SYMBOL(sleep_on);
6024
0fec171c 6025long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6026{
8cbbe86d 6027 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6028}
1da177e4
LT
6029EXPORT_SYMBOL(sleep_on_timeout);
6030
b29739f9
IM
6031#ifdef CONFIG_RT_MUTEXES
6032
6033/*
6034 * rt_mutex_setprio - set the current priority of a task
6035 * @p: task
6036 * @prio: prio value (kernel-internal form)
6037 *
6038 * This function changes the 'effective' priority of a task. It does
6039 * not touch ->normal_prio like __setscheduler().
6040 *
6041 * Used by the rt_mutex code to implement priority inheritance logic.
6042 */
36c8b586 6043void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6044{
6045 unsigned long flags;
83b699ed 6046 int oldprio, on_rq, running;
70b97a7f 6047 struct rq *rq;
cb469845 6048 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6049
6050 BUG_ON(prio < 0 || prio > MAX_PRIO);
6051
6052 rq = task_rq_lock(p, &flags);
a8e504d2 6053 update_rq_clock(rq);
b29739f9 6054
d5f9f942 6055 oldprio = p->prio;
dd41f596 6056 on_rq = p->se.on_rq;
051a1d1a 6057 running = task_current(rq, p);
0e1f3483 6058 if (on_rq)
69be72c1 6059 dequeue_task(rq, p, 0);
0e1f3483
HS
6060 if (running)
6061 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6062
6063 if (rt_prio(prio))
6064 p->sched_class = &rt_sched_class;
6065 else
6066 p->sched_class = &fair_sched_class;
6067
b29739f9
IM
6068 p->prio = prio;
6069
0e1f3483
HS
6070 if (running)
6071 p->sched_class->set_curr_task(rq);
dd41f596 6072 if (on_rq) {
8159f87e 6073 enqueue_task(rq, p, 0);
cb469845
SR
6074
6075 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6076 }
6077 task_rq_unlock(rq, &flags);
6078}
6079
6080#endif
6081
36c8b586 6082void set_user_nice(struct task_struct *p, long nice)
1da177e4 6083{
dd41f596 6084 int old_prio, delta, on_rq;
1da177e4 6085 unsigned long flags;
70b97a7f 6086 struct rq *rq;
1da177e4
LT
6087
6088 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6089 return;
6090 /*
6091 * We have to be careful, if called from sys_setpriority(),
6092 * the task might be in the middle of scheduling on another CPU.
6093 */
6094 rq = task_rq_lock(p, &flags);
a8e504d2 6095 update_rq_clock(rq);
1da177e4
LT
6096 /*
6097 * The RT priorities are set via sched_setscheduler(), but we still
6098 * allow the 'normal' nice value to be set - but as expected
6099 * it wont have any effect on scheduling until the task is
dd41f596 6100 * SCHED_FIFO/SCHED_RR:
1da177e4 6101 */
e05606d3 6102 if (task_has_rt_policy(p)) {
1da177e4
LT
6103 p->static_prio = NICE_TO_PRIO(nice);
6104 goto out_unlock;
6105 }
dd41f596 6106 on_rq = p->se.on_rq;
c09595f6 6107 if (on_rq)
69be72c1 6108 dequeue_task(rq, p, 0);
1da177e4 6109
1da177e4 6110 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6111 set_load_weight(p);
b29739f9
IM
6112 old_prio = p->prio;
6113 p->prio = effective_prio(p);
6114 delta = p->prio - old_prio;
1da177e4 6115
dd41f596 6116 if (on_rq) {
8159f87e 6117 enqueue_task(rq, p, 0);
1da177e4 6118 /*
d5f9f942
AM
6119 * If the task increased its priority or is running and
6120 * lowered its priority, then reschedule its CPU:
1da177e4 6121 */
d5f9f942 6122 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6123 resched_task(rq->curr);
6124 }
6125out_unlock:
6126 task_rq_unlock(rq, &flags);
6127}
1da177e4
LT
6128EXPORT_SYMBOL(set_user_nice);
6129
e43379f1
MM
6130/*
6131 * can_nice - check if a task can reduce its nice value
6132 * @p: task
6133 * @nice: nice value
6134 */
36c8b586 6135int can_nice(const struct task_struct *p, const int nice)
e43379f1 6136{
024f4747
MM
6137 /* convert nice value [19,-20] to rlimit style value [1,40] */
6138 int nice_rlim = 20 - nice;
48f24c4d 6139
e43379f1
MM
6140 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6141 capable(CAP_SYS_NICE));
6142}
6143
1da177e4
LT
6144#ifdef __ARCH_WANT_SYS_NICE
6145
6146/*
6147 * sys_nice - change the priority of the current process.
6148 * @increment: priority increment
6149 *
6150 * sys_setpriority is a more generic, but much slower function that
6151 * does similar things.
6152 */
5add95d4 6153SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6154{
48f24c4d 6155 long nice, retval;
1da177e4
LT
6156
6157 /*
6158 * Setpriority might change our priority at the same moment.
6159 * We don't have to worry. Conceptually one call occurs first
6160 * and we have a single winner.
6161 */
e43379f1
MM
6162 if (increment < -40)
6163 increment = -40;
1da177e4
LT
6164 if (increment > 40)
6165 increment = 40;
6166
2b8f836f 6167 nice = TASK_NICE(current) + increment;
1da177e4
LT
6168 if (nice < -20)
6169 nice = -20;
6170 if (nice > 19)
6171 nice = 19;
6172
e43379f1
MM
6173 if (increment < 0 && !can_nice(current, nice))
6174 return -EPERM;
6175
1da177e4
LT
6176 retval = security_task_setnice(current, nice);
6177 if (retval)
6178 return retval;
6179
6180 set_user_nice(current, nice);
6181 return 0;
6182}
6183
6184#endif
6185
6186/**
6187 * task_prio - return the priority value of a given task.
6188 * @p: the task in question.
6189 *
6190 * This is the priority value as seen by users in /proc.
6191 * RT tasks are offset by -200. Normal tasks are centered
6192 * around 0, value goes from -16 to +15.
6193 */
36c8b586 6194int task_prio(const struct task_struct *p)
1da177e4
LT
6195{
6196 return p->prio - MAX_RT_PRIO;
6197}
6198
6199/**
6200 * task_nice - return the nice value of a given task.
6201 * @p: the task in question.
6202 */
36c8b586 6203int task_nice(const struct task_struct *p)
1da177e4
LT
6204{
6205 return TASK_NICE(p);
6206}
150d8bed 6207EXPORT_SYMBOL(task_nice);
1da177e4
LT
6208
6209/**
6210 * idle_cpu - is a given cpu idle currently?
6211 * @cpu: the processor in question.
6212 */
6213int idle_cpu(int cpu)
6214{
6215 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6216}
6217
1da177e4
LT
6218/**
6219 * idle_task - return the idle task for a given cpu.
6220 * @cpu: the processor in question.
6221 */
36c8b586 6222struct task_struct *idle_task(int cpu)
1da177e4
LT
6223{
6224 return cpu_rq(cpu)->idle;
6225}
6226
6227/**
6228 * find_process_by_pid - find a process with a matching PID value.
6229 * @pid: the pid in question.
6230 */
a9957449 6231static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6232{
228ebcbe 6233 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6234}
6235
6236/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6237static void
6238__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6239{
dd41f596 6240 BUG_ON(p->se.on_rq);
48f24c4d 6241
1da177e4
LT
6242 p->policy = policy;
6243 p->rt_priority = prio;
b29739f9
IM
6244 p->normal_prio = normal_prio(p);
6245 /* we are holding p->pi_lock already */
6246 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6247 if (rt_prio(p->prio))
6248 p->sched_class = &rt_sched_class;
6249 else
6250 p->sched_class = &fair_sched_class;
2dd73a4f 6251 set_load_weight(p);
1da177e4
LT
6252}
6253
c69e8d9c
DH
6254/*
6255 * check the target process has a UID that matches the current process's
6256 */
6257static bool check_same_owner(struct task_struct *p)
6258{
6259 const struct cred *cred = current_cred(), *pcred;
6260 bool match;
6261
6262 rcu_read_lock();
6263 pcred = __task_cred(p);
6264 match = (cred->euid == pcred->euid ||
6265 cred->euid == pcred->uid);
6266 rcu_read_unlock();
6267 return match;
6268}
6269
961ccddd
RR
6270static int __sched_setscheduler(struct task_struct *p, int policy,
6271 struct sched_param *param, bool user)
1da177e4 6272{
83b699ed 6273 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6274 unsigned long flags;
cb469845 6275 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6276 struct rq *rq;
ca94c442 6277 int reset_on_fork;
1da177e4 6278
66e5393a
SR
6279 /* may grab non-irq protected spin_locks */
6280 BUG_ON(in_interrupt());
1da177e4
LT
6281recheck:
6282 /* double check policy once rq lock held */
ca94c442
LP
6283 if (policy < 0) {
6284 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6285 policy = oldpolicy = p->policy;
ca94c442
LP
6286 } else {
6287 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6288 policy &= ~SCHED_RESET_ON_FORK;
6289
6290 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6291 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6292 policy != SCHED_IDLE)
6293 return -EINVAL;
6294 }
6295
1da177e4
LT
6296 /*
6297 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6298 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6299 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6300 */
6301 if (param->sched_priority < 0 ||
95cdf3b7 6302 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6303 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6304 return -EINVAL;
e05606d3 6305 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6306 return -EINVAL;
6307
37e4ab3f
OC
6308 /*
6309 * Allow unprivileged RT tasks to decrease priority:
6310 */
961ccddd 6311 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6312 if (rt_policy(policy)) {
8dc3e909 6313 unsigned long rlim_rtprio;
8dc3e909
ON
6314
6315 if (!lock_task_sighand(p, &flags))
6316 return -ESRCH;
6317 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6318 unlock_task_sighand(p, &flags);
6319
6320 /* can't set/change the rt policy */
6321 if (policy != p->policy && !rlim_rtprio)
6322 return -EPERM;
6323
6324 /* can't increase priority */
6325 if (param->sched_priority > p->rt_priority &&
6326 param->sched_priority > rlim_rtprio)
6327 return -EPERM;
6328 }
dd41f596
IM
6329 /*
6330 * Like positive nice levels, dont allow tasks to
6331 * move out of SCHED_IDLE either:
6332 */
6333 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6334 return -EPERM;
5fe1d75f 6335
37e4ab3f 6336 /* can't change other user's priorities */
c69e8d9c 6337 if (!check_same_owner(p))
37e4ab3f 6338 return -EPERM;
ca94c442
LP
6339
6340 /* Normal users shall not reset the sched_reset_on_fork flag */
6341 if (p->sched_reset_on_fork && !reset_on_fork)
6342 return -EPERM;
37e4ab3f 6343 }
1da177e4 6344
725aad24 6345 if (user) {
b68aa230 6346#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6347 /*
6348 * Do not allow realtime tasks into groups that have no runtime
6349 * assigned.
6350 */
9a7e0b18
PZ
6351 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6352 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6353 return -EPERM;
b68aa230
PZ
6354#endif
6355
725aad24
JF
6356 retval = security_task_setscheduler(p, policy, param);
6357 if (retval)
6358 return retval;
6359 }
6360
b29739f9
IM
6361 /*
6362 * make sure no PI-waiters arrive (or leave) while we are
6363 * changing the priority of the task:
6364 */
1d615482 6365 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6366 /*
6367 * To be able to change p->policy safely, the apropriate
6368 * runqueue lock must be held.
6369 */
b29739f9 6370 rq = __task_rq_lock(p);
1da177e4
LT
6371 /* recheck policy now with rq lock held */
6372 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6373 policy = oldpolicy = -1;
b29739f9 6374 __task_rq_unlock(rq);
1d615482 6375 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6376 goto recheck;
6377 }
2daa3577 6378 update_rq_clock(rq);
dd41f596 6379 on_rq = p->se.on_rq;
051a1d1a 6380 running = task_current(rq, p);
0e1f3483 6381 if (on_rq)
2e1cb74a 6382 deactivate_task(rq, p, 0);
0e1f3483
HS
6383 if (running)
6384 p->sched_class->put_prev_task(rq, p);
f6b53205 6385
ca94c442
LP
6386 p->sched_reset_on_fork = reset_on_fork;
6387
1da177e4 6388 oldprio = p->prio;
dd41f596 6389 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6390
0e1f3483
HS
6391 if (running)
6392 p->sched_class->set_curr_task(rq);
dd41f596
IM
6393 if (on_rq) {
6394 activate_task(rq, p, 0);
cb469845
SR
6395
6396 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6397 }
b29739f9 6398 __task_rq_unlock(rq);
1d615482 6399 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 6400
95e02ca9
TG
6401 rt_mutex_adjust_pi(p);
6402
1da177e4
LT
6403 return 0;
6404}
961ccddd
RR
6405
6406/**
6407 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6408 * @p: the task in question.
6409 * @policy: new policy.
6410 * @param: structure containing the new RT priority.
6411 *
6412 * NOTE that the task may be already dead.
6413 */
6414int sched_setscheduler(struct task_struct *p, int policy,
6415 struct sched_param *param)
6416{
6417 return __sched_setscheduler(p, policy, param, true);
6418}
1da177e4
LT
6419EXPORT_SYMBOL_GPL(sched_setscheduler);
6420
961ccddd
RR
6421/**
6422 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6423 * @p: the task in question.
6424 * @policy: new policy.
6425 * @param: structure containing the new RT priority.
6426 *
6427 * Just like sched_setscheduler, only don't bother checking if the
6428 * current context has permission. For example, this is needed in
6429 * stop_machine(): we create temporary high priority worker threads,
6430 * but our caller might not have that capability.
6431 */
6432int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6433 struct sched_param *param)
6434{
6435 return __sched_setscheduler(p, policy, param, false);
6436}
6437
95cdf3b7
IM
6438static int
6439do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6440{
1da177e4
LT
6441 struct sched_param lparam;
6442 struct task_struct *p;
36c8b586 6443 int retval;
1da177e4
LT
6444
6445 if (!param || pid < 0)
6446 return -EINVAL;
6447 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6448 return -EFAULT;
5fe1d75f
ON
6449
6450 rcu_read_lock();
6451 retval = -ESRCH;
1da177e4 6452 p = find_process_by_pid(pid);
5fe1d75f
ON
6453 if (p != NULL)
6454 retval = sched_setscheduler(p, policy, &lparam);
6455 rcu_read_unlock();
36c8b586 6456
1da177e4
LT
6457 return retval;
6458}
6459
6460/**
6461 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6462 * @pid: the pid in question.
6463 * @policy: new policy.
6464 * @param: structure containing the new RT priority.
6465 */
5add95d4
HC
6466SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6467 struct sched_param __user *, param)
1da177e4 6468{
c21761f1
JB
6469 /* negative values for policy are not valid */
6470 if (policy < 0)
6471 return -EINVAL;
6472
1da177e4
LT
6473 return do_sched_setscheduler(pid, policy, param);
6474}
6475
6476/**
6477 * sys_sched_setparam - set/change the RT priority of a thread
6478 * @pid: the pid in question.
6479 * @param: structure containing the new RT priority.
6480 */
5add95d4 6481SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6482{
6483 return do_sched_setscheduler(pid, -1, param);
6484}
6485
6486/**
6487 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6488 * @pid: the pid in question.
6489 */
5add95d4 6490SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6491{
36c8b586 6492 struct task_struct *p;
3a5c359a 6493 int retval;
1da177e4
LT
6494
6495 if (pid < 0)
3a5c359a 6496 return -EINVAL;
1da177e4
LT
6497
6498 retval = -ESRCH;
5fe85be0 6499 rcu_read_lock();
1da177e4
LT
6500 p = find_process_by_pid(pid);
6501 if (p) {
6502 retval = security_task_getscheduler(p);
6503 if (!retval)
ca94c442
LP
6504 retval = p->policy
6505 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6506 }
5fe85be0 6507 rcu_read_unlock();
1da177e4
LT
6508 return retval;
6509}
6510
6511/**
ca94c442 6512 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6513 * @pid: the pid in question.
6514 * @param: structure containing the RT priority.
6515 */
5add95d4 6516SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6517{
6518 struct sched_param lp;
36c8b586 6519 struct task_struct *p;
3a5c359a 6520 int retval;
1da177e4
LT
6521
6522 if (!param || pid < 0)
3a5c359a 6523 return -EINVAL;
1da177e4 6524
5fe85be0 6525 rcu_read_lock();
1da177e4
LT
6526 p = find_process_by_pid(pid);
6527 retval = -ESRCH;
6528 if (!p)
6529 goto out_unlock;
6530
6531 retval = security_task_getscheduler(p);
6532 if (retval)
6533 goto out_unlock;
6534
6535 lp.sched_priority = p->rt_priority;
5fe85be0 6536 rcu_read_unlock();
1da177e4
LT
6537
6538 /*
6539 * This one might sleep, we cannot do it with a spinlock held ...
6540 */
6541 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6542
1da177e4
LT
6543 return retval;
6544
6545out_unlock:
5fe85be0 6546 rcu_read_unlock();
1da177e4
LT
6547 return retval;
6548}
6549
96f874e2 6550long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6551{
5a16f3d3 6552 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6553 struct task_struct *p;
6554 int retval;
1da177e4 6555
95402b38 6556 get_online_cpus();
23f5d142 6557 rcu_read_lock();
1da177e4
LT
6558
6559 p = find_process_by_pid(pid);
6560 if (!p) {
23f5d142 6561 rcu_read_unlock();
95402b38 6562 put_online_cpus();
1da177e4
LT
6563 return -ESRCH;
6564 }
6565
23f5d142 6566 /* Prevent p going away */
1da177e4 6567 get_task_struct(p);
23f5d142 6568 rcu_read_unlock();
1da177e4 6569
5a16f3d3
RR
6570 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6571 retval = -ENOMEM;
6572 goto out_put_task;
6573 }
6574 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6575 retval = -ENOMEM;
6576 goto out_free_cpus_allowed;
6577 }
1da177e4 6578 retval = -EPERM;
c69e8d9c 6579 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6580 goto out_unlock;
6581
e7834f8f
DQ
6582 retval = security_task_setscheduler(p, 0, NULL);
6583 if (retval)
6584 goto out_unlock;
6585
5a16f3d3
RR
6586 cpuset_cpus_allowed(p, cpus_allowed);
6587 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6588 again:
5a16f3d3 6589 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6590
8707d8b8 6591 if (!retval) {
5a16f3d3
RR
6592 cpuset_cpus_allowed(p, cpus_allowed);
6593 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6594 /*
6595 * We must have raced with a concurrent cpuset
6596 * update. Just reset the cpus_allowed to the
6597 * cpuset's cpus_allowed
6598 */
5a16f3d3 6599 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6600 goto again;
6601 }
6602 }
1da177e4 6603out_unlock:
5a16f3d3
RR
6604 free_cpumask_var(new_mask);
6605out_free_cpus_allowed:
6606 free_cpumask_var(cpus_allowed);
6607out_put_task:
1da177e4 6608 put_task_struct(p);
95402b38 6609 put_online_cpus();
1da177e4
LT
6610 return retval;
6611}
6612
6613static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6614 struct cpumask *new_mask)
1da177e4 6615{
96f874e2
RR
6616 if (len < cpumask_size())
6617 cpumask_clear(new_mask);
6618 else if (len > cpumask_size())
6619 len = cpumask_size();
6620
1da177e4
LT
6621 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6622}
6623
6624/**
6625 * sys_sched_setaffinity - set the cpu affinity of a process
6626 * @pid: pid of the process
6627 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6628 * @user_mask_ptr: user-space pointer to the new cpu mask
6629 */
5add95d4
HC
6630SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6631 unsigned long __user *, user_mask_ptr)
1da177e4 6632{
5a16f3d3 6633 cpumask_var_t new_mask;
1da177e4
LT
6634 int retval;
6635
5a16f3d3
RR
6636 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6637 return -ENOMEM;
1da177e4 6638
5a16f3d3
RR
6639 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6640 if (retval == 0)
6641 retval = sched_setaffinity(pid, new_mask);
6642 free_cpumask_var(new_mask);
6643 return retval;
1da177e4
LT
6644}
6645
96f874e2 6646long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6647{
36c8b586 6648 struct task_struct *p;
31605683
TG
6649 unsigned long flags;
6650 struct rq *rq;
1da177e4 6651 int retval;
1da177e4 6652
95402b38 6653 get_online_cpus();
23f5d142 6654 rcu_read_lock();
1da177e4
LT
6655
6656 retval = -ESRCH;
6657 p = find_process_by_pid(pid);
6658 if (!p)
6659 goto out_unlock;
6660
e7834f8f
DQ
6661 retval = security_task_getscheduler(p);
6662 if (retval)
6663 goto out_unlock;
6664
31605683 6665 rq = task_rq_lock(p, &flags);
96f874e2 6666 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6667 task_rq_unlock(rq, &flags);
1da177e4
LT
6668
6669out_unlock:
23f5d142 6670 rcu_read_unlock();
95402b38 6671 put_online_cpus();
1da177e4 6672
9531b62f 6673 return retval;
1da177e4
LT
6674}
6675
6676/**
6677 * sys_sched_getaffinity - get the cpu affinity of a process
6678 * @pid: pid of the process
6679 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6680 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6681 */
5add95d4
HC
6682SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6683 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6684{
6685 int ret;
f17c8607 6686 cpumask_var_t mask;
1da177e4 6687
f17c8607 6688 if (len < cpumask_size())
1da177e4
LT
6689 return -EINVAL;
6690
f17c8607
RR
6691 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6692 return -ENOMEM;
1da177e4 6693
f17c8607
RR
6694 ret = sched_getaffinity(pid, mask);
6695 if (ret == 0) {
6696 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6697 ret = -EFAULT;
6698 else
6699 ret = cpumask_size();
6700 }
6701 free_cpumask_var(mask);
1da177e4 6702
f17c8607 6703 return ret;
1da177e4
LT
6704}
6705
6706/**
6707 * sys_sched_yield - yield the current processor to other threads.
6708 *
dd41f596
IM
6709 * This function yields the current CPU to other tasks. If there are no
6710 * other threads running on this CPU then this function will return.
1da177e4 6711 */
5add95d4 6712SYSCALL_DEFINE0(sched_yield)
1da177e4 6713{
70b97a7f 6714 struct rq *rq = this_rq_lock();
1da177e4 6715
2d72376b 6716 schedstat_inc(rq, yld_count);
4530d7ab 6717 current->sched_class->yield_task(rq);
1da177e4
LT
6718
6719 /*
6720 * Since we are going to call schedule() anyway, there's
6721 * no need to preempt or enable interrupts:
6722 */
6723 __release(rq->lock);
8a25d5de 6724 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 6725 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
6726 preempt_enable_no_resched();
6727
6728 schedule();
6729
6730 return 0;
6731}
6732
d86ee480
PZ
6733static inline int should_resched(void)
6734{
6735 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6736}
6737
e7b38404 6738static void __cond_resched(void)
1da177e4 6739{
e7aaaa69
FW
6740 add_preempt_count(PREEMPT_ACTIVE);
6741 schedule();
6742 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6743}
6744
02b67cc3 6745int __sched _cond_resched(void)
1da177e4 6746{
d86ee480 6747 if (should_resched()) {
1da177e4
LT
6748 __cond_resched();
6749 return 1;
6750 }
6751 return 0;
6752}
02b67cc3 6753EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6754
6755/*
613afbf8 6756 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6757 * call schedule, and on return reacquire the lock.
6758 *
41a2d6cf 6759 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6760 * operations here to prevent schedule() from being called twice (once via
6761 * spin_unlock(), once by hand).
6762 */
613afbf8 6763int __cond_resched_lock(spinlock_t *lock)
1da177e4 6764{
d86ee480 6765 int resched = should_resched();
6df3cecb
JK
6766 int ret = 0;
6767
f607c668
PZ
6768 lockdep_assert_held(lock);
6769
95c354fe 6770 if (spin_needbreak(lock) || resched) {
1da177e4 6771 spin_unlock(lock);
d86ee480 6772 if (resched)
95c354fe
NP
6773 __cond_resched();
6774 else
6775 cpu_relax();
6df3cecb 6776 ret = 1;
1da177e4 6777 spin_lock(lock);
1da177e4 6778 }
6df3cecb 6779 return ret;
1da177e4 6780}
613afbf8 6781EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6782
613afbf8 6783int __sched __cond_resched_softirq(void)
1da177e4
LT
6784{
6785 BUG_ON(!in_softirq());
6786
d86ee480 6787 if (should_resched()) {
98d82567 6788 local_bh_enable();
1da177e4
LT
6789 __cond_resched();
6790 local_bh_disable();
6791 return 1;
6792 }
6793 return 0;
6794}
613afbf8 6795EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6796
1da177e4
LT
6797/**
6798 * yield - yield the current processor to other threads.
6799 *
72fd4a35 6800 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6801 * thread runnable and calls sys_sched_yield().
6802 */
6803void __sched yield(void)
6804{
6805 set_current_state(TASK_RUNNING);
6806 sys_sched_yield();
6807}
1da177e4
LT
6808EXPORT_SYMBOL(yield);
6809
6810/*
41a2d6cf 6811 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6812 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6813 */
6814void __sched io_schedule(void)
6815{
54d35f29 6816 struct rq *rq = raw_rq();
1da177e4 6817
0ff92245 6818 delayacct_blkio_start();
1da177e4 6819 atomic_inc(&rq->nr_iowait);
8f0dfc34 6820 current->in_iowait = 1;
1da177e4 6821 schedule();
8f0dfc34 6822 current->in_iowait = 0;
1da177e4 6823 atomic_dec(&rq->nr_iowait);
0ff92245 6824 delayacct_blkio_end();
1da177e4 6825}
1da177e4
LT
6826EXPORT_SYMBOL(io_schedule);
6827
6828long __sched io_schedule_timeout(long timeout)
6829{
54d35f29 6830 struct rq *rq = raw_rq();
1da177e4
LT
6831 long ret;
6832
0ff92245 6833 delayacct_blkio_start();
1da177e4 6834 atomic_inc(&rq->nr_iowait);
8f0dfc34 6835 current->in_iowait = 1;
1da177e4 6836 ret = schedule_timeout(timeout);
8f0dfc34 6837 current->in_iowait = 0;
1da177e4 6838 atomic_dec(&rq->nr_iowait);
0ff92245 6839 delayacct_blkio_end();
1da177e4
LT
6840 return ret;
6841}
6842
6843/**
6844 * sys_sched_get_priority_max - return maximum RT priority.
6845 * @policy: scheduling class.
6846 *
6847 * this syscall returns the maximum rt_priority that can be used
6848 * by a given scheduling class.
6849 */
5add95d4 6850SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6851{
6852 int ret = -EINVAL;
6853
6854 switch (policy) {
6855 case SCHED_FIFO:
6856 case SCHED_RR:
6857 ret = MAX_USER_RT_PRIO-1;
6858 break;
6859 case SCHED_NORMAL:
b0a9499c 6860 case SCHED_BATCH:
dd41f596 6861 case SCHED_IDLE:
1da177e4
LT
6862 ret = 0;
6863 break;
6864 }
6865 return ret;
6866}
6867
6868/**
6869 * sys_sched_get_priority_min - return minimum RT priority.
6870 * @policy: scheduling class.
6871 *
6872 * this syscall returns the minimum rt_priority that can be used
6873 * by a given scheduling class.
6874 */
5add95d4 6875SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6876{
6877 int ret = -EINVAL;
6878
6879 switch (policy) {
6880 case SCHED_FIFO:
6881 case SCHED_RR:
6882 ret = 1;
6883 break;
6884 case SCHED_NORMAL:
b0a9499c 6885 case SCHED_BATCH:
dd41f596 6886 case SCHED_IDLE:
1da177e4
LT
6887 ret = 0;
6888 }
6889 return ret;
6890}
6891
6892/**
6893 * sys_sched_rr_get_interval - return the default timeslice of a process.
6894 * @pid: pid of the process.
6895 * @interval: userspace pointer to the timeslice value.
6896 *
6897 * this syscall writes the default timeslice value of a given process
6898 * into the user-space timespec buffer. A value of '0' means infinity.
6899 */
17da2bd9 6900SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6901 struct timespec __user *, interval)
1da177e4 6902{
36c8b586 6903 struct task_struct *p;
a4ec24b4 6904 unsigned int time_slice;
dba091b9
TG
6905 unsigned long flags;
6906 struct rq *rq;
3a5c359a 6907 int retval;
1da177e4 6908 struct timespec t;
1da177e4
LT
6909
6910 if (pid < 0)
3a5c359a 6911 return -EINVAL;
1da177e4
LT
6912
6913 retval = -ESRCH;
1a551ae7 6914 rcu_read_lock();
1da177e4
LT
6915 p = find_process_by_pid(pid);
6916 if (!p)
6917 goto out_unlock;
6918
6919 retval = security_task_getscheduler(p);
6920 if (retval)
6921 goto out_unlock;
6922
dba091b9
TG
6923 rq = task_rq_lock(p, &flags);
6924 time_slice = p->sched_class->get_rr_interval(rq, p);
6925 task_rq_unlock(rq, &flags);
a4ec24b4 6926
1a551ae7 6927 rcu_read_unlock();
a4ec24b4 6928 jiffies_to_timespec(time_slice, &t);
1da177e4 6929 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6930 return retval;
3a5c359a 6931
1da177e4 6932out_unlock:
1a551ae7 6933 rcu_read_unlock();
1da177e4
LT
6934 return retval;
6935}
6936
7c731e0a 6937static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6938
82a1fcb9 6939void sched_show_task(struct task_struct *p)
1da177e4 6940{
1da177e4 6941 unsigned long free = 0;
36c8b586 6942 unsigned state;
1da177e4 6943
1da177e4 6944 state = p->state ? __ffs(p->state) + 1 : 0;
663997d4 6945 pr_info("%-13.13s %c", p->comm,
2ed6e34f 6946 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6947#if BITS_PER_LONG == 32
1da177e4 6948 if (state == TASK_RUNNING)
663997d4 6949 pr_cont(" running ");
1da177e4 6950 else
663997d4 6951 pr_cont(" %08lx ", thread_saved_pc(p));
1da177e4
LT
6952#else
6953 if (state == TASK_RUNNING)
663997d4 6954 pr_cont(" running task ");
1da177e4 6955 else
663997d4 6956 pr_cont(" %016lx ", thread_saved_pc(p));
1da177e4
LT
6957#endif
6958#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6959 free = stack_not_used(p);
1da177e4 6960#endif
663997d4 6961 pr_cont("%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6962 task_pid_nr(p), task_pid_nr(p->real_parent),
6963 (unsigned long)task_thread_info(p)->flags);
1da177e4 6964
5fb5e6de 6965 show_stack(p, NULL);
1da177e4
LT
6966}
6967
e59e2ae2 6968void show_state_filter(unsigned long state_filter)
1da177e4 6969{
36c8b586 6970 struct task_struct *g, *p;
1da177e4 6971
4bd77321 6972#if BITS_PER_LONG == 32
663997d4 6973 pr_info(" task PC stack pid father\n");
1da177e4 6974#else
663997d4 6975 pr_info(" task PC stack pid father\n");
1da177e4
LT
6976#endif
6977 read_lock(&tasklist_lock);
6978 do_each_thread(g, p) {
6979 /*
6980 * reset the NMI-timeout, listing all files on a slow
6981 * console might take alot of time:
6982 */
6983 touch_nmi_watchdog();
39bc89fd 6984 if (!state_filter || (p->state & state_filter))
82a1fcb9 6985 sched_show_task(p);
1da177e4
LT
6986 } while_each_thread(g, p);
6987
04c9167f
JF
6988 touch_all_softlockup_watchdogs();
6989
dd41f596
IM
6990#ifdef CONFIG_SCHED_DEBUG
6991 sysrq_sched_debug_show();
6992#endif
1da177e4 6993 read_unlock(&tasklist_lock);
e59e2ae2
IM
6994 /*
6995 * Only show locks if all tasks are dumped:
6996 */
93335a21 6997 if (!state_filter)
e59e2ae2 6998 debug_show_all_locks();
1da177e4
LT
6999}
7000
1df21055
IM
7001void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7002{
dd41f596 7003 idle->sched_class = &idle_sched_class;
1df21055
IM
7004}
7005
f340c0d1
IM
7006/**
7007 * init_idle - set up an idle thread for a given CPU
7008 * @idle: task in question
7009 * @cpu: cpu the idle task belongs to
7010 *
7011 * NOTE: this function does not set the idle thread's NEED_RESCHED
7012 * flag, to make booting more robust.
7013 */
5c1e1767 7014void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 7015{
70b97a7f 7016 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7017 unsigned long flags;
7018
05fa785c 7019 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 7020
dd41f596 7021 __sched_fork(idle);
06b83b5f 7022 idle->state = TASK_RUNNING;
dd41f596
IM
7023 idle->se.exec_start = sched_clock();
7024
96f874e2 7025 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7026 __set_task_cpu(idle, cpu);
1da177e4 7027
1da177e4 7028 rq->curr = rq->idle = idle;
4866cde0
NP
7029#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7030 idle->oncpu = 1;
7031#endif
05fa785c 7032 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7033
7034 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7035#if defined(CONFIG_PREEMPT)
7036 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7037#else
a1261f54 7038 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7039#endif
dd41f596
IM
7040 /*
7041 * The idle tasks have their own, simple scheduling class:
7042 */
7043 idle->sched_class = &idle_sched_class;
fb52607a 7044 ftrace_graph_init_task(idle);
1da177e4
LT
7045}
7046
7047/*
7048 * In a system that switches off the HZ timer nohz_cpu_mask
7049 * indicates which cpus entered this state. This is used
7050 * in the rcu update to wait only for active cpus. For system
7051 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7052 * always be CPU_BITS_NONE.
1da177e4 7053 */
6a7b3dc3 7054cpumask_var_t nohz_cpu_mask;
1da177e4 7055
19978ca6
IM
7056/*
7057 * Increase the granularity value when there are more CPUs,
7058 * because with more CPUs the 'effective latency' as visible
7059 * to users decreases. But the relationship is not linear,
7060 * so pick a second-best guess by going with the log2 of the
7061 * number of CPUs.
7062 *
7063 * This idea comes from the SD scheduler of Con Kolivas:
7064 */
acb4a848 7065static int get_update_sysctl_factor(void)
19978ca6 7066{
4ca3ef71 7067 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7068 unsigned int factor;
7069
7070 switch (sysctl_sched_tunable_scaling) {
7071 case SCHED_TUNABLESCALING_NONE:
7072 factor = 1;
7073 break;
7074 case SCHED_TUNABLESCALING_LINEAR:
7075 factor = cpus;
7076 break;
7077 case SCHED_TUNABLESCALING_LOG:
7078 default:
7079 factor = 1 + ilog2(cpus);
7080 break;
7081 }
19978ca6 7082
acb4a848
CE
7083 return factor;
7084}
19978ca6 7085
acb4a848
CE
7086static void update_sysctl(void)
7087{
7088 unsigned int factor = get_update_sysctl_factor();
19978ca6 7089
0bcdcf28
CE
7090#define SET_SYSCTL(name) \
7091 (sysctl_##name = (factor) * normalized_sysctl_##name)
7092 SET_SYSCTL(sched_min_granularity);
7093 SET_SYSCTL(sched_latency);
7094 SET_SYSCTL(sched_wakeup_granularity);
7095 SET_SYSCTL(sched_shares_ratelimit);
7096#undef SET_SYSCTL
7097}
55cd5340 7098
0bcdcf28
CE
7099static inline void sched_init_granularity(void)
7100{
7101 update_sysctl();
19978ca6
IM
7102}
7103
1da177e4
LT
7104#ifdef CONFIG_SMP
7105/*
7106 * This is how migration works:
7107 *
70b97a7f 7108 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7109 * runqueue and wake up that CPU's migration thread.
7110 * 2) we down() the locked semaphore => thread blocks.
7111 * 3) migration thread wakes up (implicitly it forces the migrated
7112 * thread off the CPU)
7113 * 4) it gets the migration request and checks whether the migrated
7114 * task is still in the wrong runqueue.
7115 * 5) if it's in the wrong runqueue then the migration thread removes
7116 * it and puts it into the right queue.
7117 * 6) migration thread up()s the semaphore.
7118 * 7) we wake up and the migration is done.
7119 */
7120
7121/*
7122 * Change a given task's CPU affinity. Migrate the thread to a
7123 * proper CPU and schedule it away if the CPU it's executing on
7124 * is removed from the allowed bitmask.
7125 *
7126 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7127 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7128 * call is not atomic; no spinlocks may be held.
7129 */
96f874e2 7130int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7131{
70b97a7f 7132 struct migration_req req;
1da177e4 7133 unsigned long flags;
70b97a7f 7134 struct rq *rq;
48f24c4d 7135 int ret = 0;
1da177e4 7136
e2912009
PZ
7137 /*
7138 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7139 * the ->cpus_allowed mask from under waking tasks, which would be
7140 * possible when we change rq->lock in ttwu(), so synchronize against
7141 * TASK_WAKING to avoid that.
7142 */
7143again:
7144 while (p->state == TASK_WAKING)
7145 cpu_relax();
7146
1da177e4 7147 rq = task_rq_lock(p, &flags);
e2912009
PZ
7148
7149 if (p->state == TASK_WAKING) {
7150 task_rq_unlock(rq, &flags);
7151 goto again;
7152 }
7153
6ad4c188 7154 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7155 ret = -EINVAL;
7156 goto out;
7157 }
7158
9985b0ba 7159 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7160 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7161 ret = -EINVAL;
7162 goto out;
7163 }
7164
73fe6aae 7165 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7166 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7167 else {
96f874e2
RR
7168 cpumask_copy(&p->cpus_allowed, new_mask);
7169 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7170 }
7171
1da177e4 7172 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7173 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7174 goto out;
7175
6ad4c188 7176 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7177 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7178 struct task_struct *mt = rq->migration_thread;
7179
7180 get_task_struct(mt);
1da177e4
LT
7181 task_rq_unlock(rq, &flags);
7182 wake_up_process(rq->migration_thread);
693525e3 7183 put_task_struct(mt);
1da177e4
LT
7184 wait_for_completion(&req.done);
7185 tlb_migrate_finish(p->mm);
7186 return 0;
7187 }
7188out:
7189 task_rq_unlock(rq, &flags);
48f24c4d 7190
1da177e4
LT
7191 return ret;
7192}
cd8ba7cd 7193EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7194
7195/*
41a2d6cf 7196 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7197 * this because either it can't run here any more (set_cpus_allowed()
7198 * away from this CPU, or CPU going down), or because we're
7199 * attempting to rebalance this task on exec (sched_exec).
7200 *
7201 * So we race with normal scheduler movements, but that's OK, as long
7202 * as the task is no longer on this CPU.
efc30814
KK
7203 *
7204 * Returns non-zero if task was successfully migrated.
1da177e4 7205 */
efc30814 7206static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7207{
70b97a7f 7208 struct rq *rq_dest, *rq_src;
e2912009 7209 int ret = 0;
1da177e4 7210
e761b772 7211 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7212 return ret;
1da177e4
LT
7213
7214 rq_src = cpu_rq(src_cpu);
7215 rq_dest = cpu_rq(dest_cpu);
7216
7217 double_rq_lock(rq_src, rq_dest);
7218 /* Already moved. */
7219 if (task_cpu(p) != src_cpu)
b1e38734 7220 goto done;
1da177e4 7221 /* Affinity changed (again). */
96f874e2 7222 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7223 goto fail;
1da177e4 7224
e2912009
PZ
7225 /*
7226 * If we're not on a rq, the next wake-up will ensure we're
7227 * placed properly.
7228 */
7229 if (p->se.on_rq) {
2e1cb74a 7230 deactivate_task(rq_src, p, 0);
e2912009 7231 set_task_cpu(p, dest_cpu);
dd41f596 7232 activate_task(rq_dest, p, 0);
15afe09b 7233 check_preempt_curr(rq_dest, p, 0);
1da177e4 7234 }
b1e38734 7235done:
efc30814 7236 ret = 1;
b1e38734 7237fail:
1da177e4 7238 double_rq_unlock(rq_src, rq_dest);
efc30814 7239 return ret;
1da177e4
LT
7240}
7241
03b042bf
PM
7242#define RCU_MIGRATION_IDLE 0
7243#define RCU_MIGRATION_NEED_QS 1
7244#define RCU_MIGRATION_GOT_QS 2
7245#define RCU_MIGRATION_MUST_SYNC 3
7246
1da177e4
LT
7247/*
7248 * migration_thread - this is a highprio system thread that performs
7249 * thread migration by bumping thread off CPU then 'pushing' onto
7250 * another runqueue.
7251 */
95cdf3b7 7252static int migration_thread(void *data)
1da177e4 7253{
03b042bf 7254 int badcpu;
1da177e4 7255 int cpu = (long)data;
70b97a7f 7256 struct rq *rq;
1da177e4
LT
7257
7258 rq = cpu_rq(cpu);
7259 BUG_ON(rq->migration_thread != current);
7260
7261 set_current_state(TASK_INTERRUPTIBLE);
7262 while (!kthread_should_stop()) {
70b97a7f 7263 struct migration_req *req;
1da177e4 7264 struct list_head *head;
1da177e4 7265
05fa785c 7266 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
7267
7268 if (cpu_is_offline(cpu)) {
05fa785c 7269 raw_spin_unlock_irq(&rq->lock);
371cbb38 7270 break;
1da177e4
LT
7271 }
7272
7273 if (rq->active_balance) {
7274 active_load_balance(rq, cpu);
7275 rq->active_balance = 0;
7276 }
7277
7278 head = &rq->migration_queue;
7279
7280 if (list_empty(head)) {
05fa785c 7281 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
7282 schedule();
7283 set_current_state(TASK_INTERRUPTIBLE);
7284 continue;
7285 }
70b97a7f 7286 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7287 list_del_init(head->next);
7288
03b042bf 7289 if (req->task != NULL) {
05fa785c 7290 raw_spin_unlock(&rq->lock);
03b042bf
PM
7291 __migrate_task(req->task, cpu, req->dest_cpu);
7292 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7293 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 7294 raw_spin_unlock(&rq->lock);
03b042bf
PM
7295 } else {
7296 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 7297 raw_spin_unlock(&rq->lock);
03b042bf
PM
7298 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7299 }
674311d5 7300 local_irq_enable();
1da177e4
LT
7301
7302 complete(&req->done);
7303 }
7304 __set_current_state(TASK_RUNNING);
1da177e4 7305
1da177e4
LT
7306 return 0;
7307}
7308
7309#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7310
7311static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7312{
7313 int ret;
7314
7315 local_irq_disable();
7316 ret = __migrate_task(p, src_cpu, dest_cpu);
7317 local_irq_enable();
7318 return ret;
7319}
7320
054b9108 7321/*
3a4fa0a2 7322 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7323 */
48f24c4d 7324static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7325{
70b97a7f 7326 int dest_cpu;
e76bd8d9
RR
7327
7328again:
5da9a0fb 7329 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 7330
e76bd8d9
RR
7331 /* It can have affinity changed while we were choosing. */
7332 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7333 goto again;
1da177e4
LT
7334}
7335
7336/*
7337 * While a dead CPU has no uninterruptible tasks queued at this point,
7338 * it might still have a nonzero ->nr_uninterruptible counter, because
7339 * for performance reasons the counter is not stricly tracking tasks to
7340 * their home CPUs. So we just add the counter to another CPU's counter,
7341 * to keep the global sum constant after CPU-down:
7342 */
70b97a7f 7343static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7344{
6ad4c188 7345 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7346 unsigned long flags;
7347
7348 local_irq_save(flags);
7349 double_rq_lock(rq_src, rq_dest);
7350 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7351 rq_src->nr_uninterruptible = 0;
7352 double_rq_unlock(rq_src, rq_dest);
7353 local_irq_restore(flags);
7354}
7355
7356/* Run through task list and migrate tasks from the dead cpu. */
7357static void migrate_live_tasks(int src_cpu)
7358{
48f24c4d 7359 struct task_struct *p, *t;
1da177e4 7360
f7b4cddc 7361 read_lock(&tasklist_lock);
1da177e4 7362
48f24c4d
IM
7363 do_each_thread(t, p) {
7364 if (p == current)
1da177e4
LT
7365 continue;
7366
48f24c4d
IM
7367 if (task_cpu(p) == src_cpu)
7368 move_task_off_dead_cpu(src_cpu, p);
7369 } while_each_thread(t, p);
1da177e4 7370
f7b4cddc 7371 read_unlock(&tasklist_lock);
1da177e4
LT
7372}
7373
dd41f596
IM
7374/*
7375 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7376 * It does so by boosting its priority to highest possible.
7377 * Used by CPU offline code.
1da177e4
LT
7378 */
7379void sched_idle_next(void)
7380{
48f24c4d 7381 int this_cpu = smp_processor_id();
70b97a7f 7382 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7383 struct task_struct *p = rq->idle;
7384 unsigned long flags;
7385
7386 /* cpu has to be offline */
48f24c4d 7387 BUG_ON(cpu_online(this_cpu));
1da177e4 7388
48f24c4d
IM
7389 /*
7390 * Strictly not necessary since rest of the CPUs are stopped by now
7391 * and interrupts disabled on the current cpu.
1da177e4 7392 */
05fa785c 7393 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 7394
dd41f596 7395 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7396
94bc9a7b
DA
7397 update_rq_clock(rq);
7398 activate_task(rq, p, 0);
1da177e4 7399
05fa785c 7400 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7401}
7402
48f24c4d
IM
7403/*
7404 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7405 * offline.
7406 */
7407void idle_task_exit(void)
7408{
7409 struct mm_struct *mm = current->active_mm;
7410
7411 BUG_ON(cpu_online(smp_processor_id()));
7412
7413 if (mm != &init_mm)
7414 switch_mm(mm, &init_mm, current);
7415 mmdrop(mm);
7416}
7417
054b9108 7418/* called under rq->lock with disabled interrupts */
36c8b586 7419static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7420{
70b97a7f 7421 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7422
7423 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7424 BUG_ON(!p->exit_state);
1da177e4
LT
7425
7426 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7427 BUG_ON(p->state == TASK_DEAD);
1da177e4 7428
48f24c4d 7429 get_task_struct(p);
1da177e4
LT
7430
7431 /*
7432 * Drop lock around migration; if someone else moves it,
41a2d6cf 7433 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7434 * fine.
7435 */
05fa785c 7436 raw_spin_unlock_irq(&rq->lock);
48f24c4d 7437 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 7438 raw_spin_lock_irq(&rq->lock);
1da177e4 7439
48f24c4d 7440 put_task_struct(p);
1da177e4
LT
7441}
7442
7443/* release_task() removes task from tasklist, so we won't find dead tasks. */
7444static void migrate_dead_tasks(unsigned int dead_cpu)
7445{
70b97a7f 7446 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7447 struct task_struct *next;
48f24c4d 7448
dd41f596
IM
7449 for ( ; ; ) {
7450 if (!rq->nr_running)
7451 break;
a8e504d2 7452 update_rq_clock(rq);
b67802ea 7453 next = pick_next_task(rq);
dd41f596
IM
7454 if (!next)
7455 break;
79c53799 7456 next->sched_class->put_prev_task(rq, next);
dd41f596 7457 migrate_dead(dead_cpu, next);
e692ab53 7458
1da177e4
LT
7459 }
7460}
dce48a84
TG
7461
7462/*
7463 * remove the tasks which were accounted by rq from calc_load_tasks.
7464 */
7465static void calc_global_load_remove(struct rq *rq)
7466{
7467 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7468 rq->calc_load_active = 0;
dce48a84 7469}
1da177e4
LT
7470#endif /* CONFIG_HOTPLUG_CPU */
7471
e692ab53
NP
7472#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7473
7474static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7475 {
7476 .procname = "sched_domain",
c57baf1e 7477 .mode = 0555,
e0361851 7478 },
56992309 7479 {}
e692ab53
NP
7480};
7481
7482static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7483 {
7484 .procname = "kernel",
c57baf1e 7485 .mode = 0555,
e0361851
AD
7486 .child = sd_ctl_dir,
7487 },
56992309 7488 {}
e692ab53
NP
7489};
7490
7491static struct ctl_table *sd_alloc_ctl_entry(int n)
7492{
7493 struct ctl_table *entry =
5cf9f062 7494 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7495
e692ab53
NP
7496 return entry;
7497}
7498
6382bc90
MM
7499static void sd_free_ctl_entry(struct ctl_table **tablep)
7500{
cd790076 7501 struct ctl_table *entry;
6382bc90 7502
cd790076
MM
7503 /*
7504 * In the intermediate directories, both the child directory and
7505 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7506 * will always be set. In the lowest directory the names are
cd790076
MM
7507 * static strings and all have proc handlers.
7508 */
7509 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7510 if (entry->child)
7511 sd_free_ctl_entry(&entry->child);
cd790076
MM
7512 if (entry->proc_handler == NULL)
7513 kfree(entry->procname);
7514 }
6382bc90
MM
7515
7516 kfree(*tablep);
7517 *tablep = NULL;
7518}
7519
e692ab53 7520static void
e0361851 7521set_table_entry(struct ctl_table *entry,
e692ab53
NP
7522 const char *procname, void *data, int maxlen,
7523 mode_t mode, proc_handler *proc_handler)
7524{
e692ab53
NP
7525 entry->procname = procname;
7526 entry->data = data;
7527 entry->maxlen = maxlen;
7528 entry->mode = mode;
7529 entry->proc_handler = proc_handler;
7530}
7531
7532static struct ctl_table *
7533sd_alloc_ctl_domain_table(struct sched_domain *sd)
7534{
a5d8c348 7535 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7536
ad1cdc1d
MM
7537 if (table == NULL)
7538 return NULL;
7539
e0361851 7540 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7541 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7542 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7543 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7544 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7545 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7546 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7547 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7548 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7549 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7550 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7551 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7552 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7553 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7554 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7555 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7556 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7557 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7558 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7559 &sd->cache_nice_tries,
7560 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7561 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7562 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7563 set_table_entry(&table[11], "name", sd->name,
7564 CORENAME_MAX_SIZE, 0444, proc_dostring);
7565 /* &table[12] is terminator */
e692ab53
NP
7566
7567 return table;
7568}
7569
9a4e7159 7570static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7571{
7572 struct ctl_table *entry, *table;
7573 struct sched_domain *sd;
7574 int domain_num = 0, i;
7575 char buf[32];
7576
7577 for_each_domain(cpu, sd)
7578 domain_num++;
7579 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7580 if (table == NULL)
7581 return NULL;
e692ab53
NP
7582
7583 i = 0;
7584 for_each_domain(cpu, sd) {
7585 snprintf(buf, 32, "domain%d", i);
e692ab53 7586 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7587 entry->mode = 0555;
e692ab53
NP
7588 entry->child = sd_alloc_ctl_domain_table(sd);
7589 entry++;
7590 i++;
7591 }
7592 return table;
7593}
7594
7595static struct ctl_table_header *sd_sysctl_header;
6382bc90 7596static void register_sched_domain_sysctl(void)
e692ab53 7597{
6ad4c188 7598 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7599 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7600 char buf[32];
7601
7378547f
MM
7602 WARN_ON(sd_ctl_dir[0].child);
7603 sd_ctl_dir[0].child = entry;
7604
ad1cdc1d
MM
7605 if (entry == NULL)
7606 return;
7607
6ad4c188 7608 for_each_possible_cpu(i) {
e692ab53 7609 snprintf(buf, 32, "cpu%d", i);
e692ab53 7610 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7611 entry->mode = 0555;
e692ab53 7612 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7613 entry++;
e692ab53 7614 }
7378547f
MM
7615
7616 WARN_ON(sd_sysctl_header);
e692ab53
NP
7617 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7618}
6382bc90 7619
7378547f 7620/* may be called multiple times per register */
6382bc90
MM
7621static void unregister_sched_domain_sysctl(void)
7622{
7378547f
MM
7623 if (sd_sysctl_header)
7624 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7625 sd_sysctl_header = NULL;
7378547f
MM
7626 if (sd_ctl_dir[0].child)
7627 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7628}
e692ab53 7629#else
6382bc90
MM
7630static void register_sched_domain_sysctl(void)
7631{
7632}
7633static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7634{
7635}
7636#endif
7637
1f11eb6a
GH
7638static void set_rq_online(struct rq *rq)
7639{
7640 if (!rq->online) {
7641 const struct sched_class *class;
7642
c6c4927b 7643 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7644 rq->online = 1;
7645
7646 for_each_class(class) {
7647 if (class->rq_online)
7648 class->rq_online(rq);
7649 }
7650 }
7651}
7652
7653static void set_rq_offline(struct rq *rq)
7654{
7655 if (rq->online) {
7656 const struct sched_class *class;
7657
7658 for_each_class(class) {
7659 if (class->rq_offline)
7660 class->rq_offline(rq);
7661 }
7662
c6c4927b 7663 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7664 rq->online = 0;
7665 }
7666}
7667
1da177e4
LT
7668/*
7669 * migration_call - callback that gets triggered when a CPU is added.
7670 * Here we can start up the necessary migration thread for the new CPU.
7671 */
48f24c4d
IM
7672static int __cpuinit
7673migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7674{
1da177e4 7675 struct task_struct *p;
48f24c4d 7676 int cpu = (long)hcpu;
1da177e4 7677 unsigned long flags;
70b97a7f 7678 struct rq *rq;
1da177e4
LT
7679
7680 switch (action) {
5be9361c 7681
1da177e4 7682 case CPU_UP_PREPARE:
8bb78442 7683 case CPU_UP_PREPARE_FROZEN:
dd41f596 7684 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7685 if (IS_ERR(p))
7686 return NOTIFY_BAD;
1da177e4
LT
7687 kthread_bind(p, cpu);
7688 /* Must be high prio: stop_machine expects to yield to it. */
7689 rq = task_rq_lock(p, &flags);
dd41f596 7690 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7691 task_rq_unlock(rq, &flags);
371cbb38 7692 get_task_struct(p);
1da177e4 7693 cpu_rq(cpu)->migration_thread = p;
a468d389 7694 rq->calc_load_update = calc_load_update;
1da177e4 7695 break;
48f24c4d 7696
1da177e4 7697 case CPU_ONLINE:
8bb78442 7698 case CPU_ONLINE_FROZEN:
3a4fa0a2 7699 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7700 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7701
7702 /* Update our root-domain */
7703 rq = cpu_rq(cpu);
05fa785c 7704 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 7705 if (rq->rd) {
c6c4927b 7706 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7707
7708 set_rq_online(rq);
1f94ef59 7709 }
05fa785c 7710 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7711 break;
48f24c4d 7712
1da177e4
LT
7713#ifdef CONFIG_HOTPLUG_CPU
7714 case CPU_UP_CANCELED:
8bb78442 7715 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7716 if (!cpu_rq(cpu)->migration_thread)
7717 break;
41a2d6cf 7718 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7719 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7720 cpumask_any(cpu_online_mask));
1da177e4 7721 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7722 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7723 cpu_rq(cpu)->migration_thread = NULL;
7724 break;
48f24c4d 7725
1da177e4 7726 case CPU_DEAD:
8bb78442 7727 case CPU_DEAD_FROZEN:
470fd646 7728 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7729 migrate_live_tasks(cpu);
7730 rq = cpu_rq(cpu);
7731 kthread_stop(rq->migration_thread);
371cbb38 7732 put_task_struct(rq->migration_thread);
1da177e4
LT
7733 rq->migration_thread = NULL;
7734 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 7735 raw_spin_lock_irq(&rq->lock);
a8e504d2 7736 update_rq_clock(rq);
2e1cb74a 7737 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7738 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7739 rq->idle->sched_class = &idle_sched_class;
1da177e4 7740 migrate_dead_tasks(cpu);
05fa785c 7741 raw_spin_unlock_irq(&rq->lock);
470fd646 7742 cpuset_unlock();
1da177e4
LT
7743 migrate_nr_uninterruptible(rq);
7744 BUG_ON(rq->nr_running != 0);
dce48a84 7745 calc_global_load_remove(rq);
41a2d6cf
IM
7746 /*
7747 * No need to migrate the tasks: it was best-effort if
7748 * they didn't take sched_hotcpu_mutex. Just wake up
7749 * the requestors.
7750 */
05fa785c 7751 raw_spin_lock_irq(&rq->lock);
1da177e4 7752 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7753 struct migration_req *req;
7754
1da177e4 7755 req = list_entry(rq->migration_queue.next,
70b97a7f 7756 struct migration_req, list);
1da177e4 7757 list_del_init(&req->list);
05fa785c 7758 raw_spin_unlock_irq(&rq->lock);
1da177e4 7759 complete(&req->done);
05fa785c 7760 raw_spin_lock_irq(&rq->lock);
1da177e4 7761 }
05fa785c 7762 raw_spin_unlock_irq(&rq->lock);
1da177e4 7763 break;
57d885fe 7764
08f503b0
GH
7765 case CPU_DYING:
7766 case CPU_DYING_FROZEN:
57d885fe
GH
7767 /* Update our root-domain */
7768 rq = cpu_rq(cpu);
05fa785c 7769 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 7770 if (rq->rd) {
c6c4927b 7771 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7772 set_rq_offline(rq);
57d885fe 7773 }
05fa785c 7774 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 7775 break;
1da177e4
LT
7776#endif
7777 }
7778 return NOTIFY_OK;
7779}
7780
f38b0820
PM
7781/*
7782 * Register at high priority so that task migration (migrate_all_tasks)
7783 * happens before everything else. This has to be lower priority than
cdd6c482 7784 * the notifier in the perf_event subsystem, though.
1da177e4 7785 */
26c2143b 7786static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7787 .notifier_call = migration_call,
7788 .priority = 10
7789};
7790
7babe8db 7791static int __init migration_init(void)
1da177e4
LT
7792{
7793 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7794 int err;
48f24c4d
IM
7795
7796 /* Start one for the boot CPU: */
07dccf33
AM
7797 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7798 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7799 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7800 register_cpu_notifier(&migration_notifier);
7babe8db 7801
a004cd42 7802 return 0;
1da177e4 7803}
7babe8db 7804early_initcall(migration_init);
1da177e4
LT
7805#endif
7806
7807#ifdef CONFIG_SMP
476f3534 7808
3e9830dc 7809#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7810
f6630114
MT
7811static __read_mostly int sched_domain_debug_enabled;
7812
7813static int __init sched_domain_debug_setup(char *str)
7814{
7815 sched_domain_debug_enabled = 1;
7816
7817 return 0;
7818}
7819early_param("sched_debug", sched_domain_debug_setup);
7820
7c16ec58 7821static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7822 struct cpumask *groupmask)
1da177e4 7823{
4dcf6aff 7824 struct sched_group *group = sd->groups;
434d53b0 7825 char str[256];
1da177e4 7826
968ea6d8 7827 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7828 cpumask_clear(groupmask);
4dcf6aff
IM
7829
7830 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7831
7832 if (!(sd->flags & SD_LOAD_BALANCE)) {
663997d4 7833 pr_cont("does not load-balance\n");
4dcf6aff 7834 if (sd->parent)
663997d4 7835 pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
4dcf6aff 7836 return -1;
41c7ce9a
NP
7837 }
7838
663997d4 7839 pr_cont("span %s level %s\n", str, sd->name);
4dcf6aff 7840
758b2cdc 7841 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
663997d4 7842 pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
4dcf6aff 7843 }
758b2cdc 7844 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
663997d4 7845 pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
4dcf6aff 7846 }
1da177e4 7847
4dcf6aff 7848 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7849 do {
4dcf6aff 7850 if (!group) {
663997d4
JP
7851 pr_cont("\n");
7852 pr_err("ERROR: group is NULL\n");
1da177e4
LT
7853 break;
7854 }
7855
18a3885f 7856 if (!group->cpu_power) {
663997d4
JP
7857 pr_cont("\n");
7858 pr_err("ERROR: domain->cpu_power not set\n");
4dcf6aff
IM
7859 break;
7860 }
1da177e4 7861
758b2cdc 7862 if (!cpumask_weight(sched_group_cpus(group))) {
663997d4
JP
7863 pr_cont("\n");
7864 pr_err("ERROR: empty group\n");
4dcf6aff
IM
7865 break;
7866 }
1da177e4 7867
758b2cdc 7868 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
663997d4
JP
7869 pr_cont("\n");
7870 pr_err("ERROR: repeated CPUs\n");
4dcf6aff
IM
7871 break;
7872 }
1da177e4 7873
758b2cdc 7874 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7875
968ea6d8 7876 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 7877
663997d4 7878 pr_cont(" %s", str);
18a3885f 7879 if (group->cpu_power != SCHED_LOAD_SCALE) {
663997d4 7880 pr_cont(" (cpu_power = %d)", group->cpu_power);
381512cf 7881 }
1da177e4 7882
4dcf6aff
IM
7883 group = group->next;
7884 } while (group != sd->groups);
663997d4 7885 pr_cont("\n");
1da177e4 7886
758b2cdc 7887 if (!cpumask_equal(sched_domain_span(sd), groupmask))
663997d4 7888 pr_err("ERROR: groups don't span domain->span\n");
1da177e4 7889
758b2cdc
RR
7890 if (sd->parent &&
7891 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
663997d4 7892 pr_err("ERROR: parent span is not a superset of domain->span\n");
4dcf6aff
IM
7893 return 0;
7894}
1da177e4 7895
4dcf6aff
IM
7896static void sched_domain_debug(struct sched_domain *sd, int cpu)
7897{
d5dd3db1 7898 cpumask_var_t groupmask;
4dcf6aff 7899 int level = 0;
1da177e4 7900
f6630114
MT
7901 if (!sched_domain_debug_enabled)
7902 return;
7903
4dcf6aff
IM
7904 if (!sd) {
7905 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7906 return;
7907 }
1da177e4 7908
4dcf6aff
IM
7909 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7910
d5dd3db1 7911 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7912 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7913 return;
7914 }
7915
4dcf6aff 7916 for (;;) {
7c16ec58 7917 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7918 break;
1da177e4
LT
7919 level++;
7920 sd = sd->parent;
33859f7f 7921 if (!sd)
4dcf6aff
IM
7922 break;
7923 }
d5dd3db1 7924 free_cpumask_var(groupmask);
1da177e4 7925}
6d6bc0ad 7926#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7927# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7928#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7929
1a20ff27 7930static int sd_degenerate(struct sched_domain *sd)
245af2c7 7931{
758b2cdc 7932 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7933 return 1;
7934
7935 /* Following flags need at least 2 groups */
7936 if (sd->flags & (SD_LOAD_BALANCE |
7937 SD_BALANCE_NEWIDLE |
7938 SD_BALANCE_FORK |
89c4710e
SS
7939 SD_BALANCE_EXEC |
7940 SD_SHARE_CPUPOWER |
7941 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7942 if (sd->groups != sd->groups->next)
7943 return 0;
7944 }
7945
7946 /* Following flags don't use groups */
c88d5910 7947 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7948 return 0;
7949
7950 return 1;
7951}
7952
48f24c4d
IM
7953static int
7954sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7955{
7956 unsigned long cflags = sd->flags, pflags = parent->flags;
7957
7958 if (sd_degenerate(parent))
7959 return 1;
7960
758b2cdc 7961 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7962 return 0;
7963
245af2c7
SS
7964 /* Flags needing groups don't count if only 1 group in parent */
7965 if (parent->groups == parent->groups->next) {
7966 pflags &= ~(SD_LOAD_BALANCE |
7967 SD_BALANCE_NEWIDLE |
7968 SD_BALANCE_FORK |
89c4710e
SS
7969 SD_BALANCE_EXEC |
7970 SD_SHARE_CPUPOWER |
7971 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7972 if (nr_node_ids == 1)
7973 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7974 }
7975 if (~cflags & pflags)
7976 return 0;
7977
7978 return 1;
7979}
7980
c6c4927b
RR
7981static void free_rootdomain(struct root_domain *rd)
7982{
047106ad
PZ
7983 synchronize_sched();
7984
68e74568
RR
7985 cpupri_cleanup(&rd->cpupri);
7986
c6c4927b
RR
7987 free_cpumask_var(rd->rto_mask);
7988 free_cpumask_var(rd->online);
7989 free_cpumask_var(rd->span);
7990 kfree(rd);
7991}
7992
57d885fe
GH
7993static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7994{
a0490fa3 7995 struct root_domain *old_rd = NULL;
57d885fe 7996 unsigned long flags;
57d885fe 7997
05fa785c 7998 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
7999
8000 if (rq->rd) {
a0490fa3 8001 old_rd = rq->rd;
57d885fe 8002
c6c4927b 8003 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 8004 set_rq_offline(rq);
57d885fe 8005
c6c4927b 8006 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 8007
a0490fa3
IM
8008 /*
8009 * If we dont want to free the old_rt yet then
8010 * set old_rd to NULL to skip the freeing later
8011 * in this function:
8012 */
8013 if (!atomic_dec_and_test(&old_rd->refcount))
8014 old_rd = NULL;
57d885fe
GH
8015 }
8016
8017 atomic_inc(&rd->refcount);
8018 rq->rd = rd;
8019
c6c4927b 8020 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8021 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8022 set_rq_online(rq);
57d885fe 8023
05fa785c 8024 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8025
8026 if (old_rd)
8027 free_rootdomain(old_rd);
57d885fe
GH
8028}
8029
fd5e1b5d 8030static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8031{
36b7b6d4
PE
8032 gfp_t gfp = GFP_KERNEL;
8033
57d885fe
GH
8034 memset(rd, 0, sizeof(*rd));
8035
36b7b6d4
PE
8036 if (bootmem)
8037 gfp = GFP_NOWAIT;
c6c4927b 8038
36b7b6d4 8039 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8040 goto out;
36b7b6d4 8041 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8042 goto free_span;
36b7b6d4 8043 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8044 goto free_online;
6e0534f2 8045
0fb53029 8046 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8047 goto free_rto_mask;
c6c4927b 8048 return 0;
6e0534f2 8049
68e74568
RR
8050free_rto_mask:
8051 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8052free_online:
8053 free_cpumask_var(rd->online);
8054free_span:
8055 free_cpumask_var(rd->span);
0c910d28 8056out:
c6c4927b 8057 return -ENOMEM;
57d885fe
GH
8058}
8059
8060static void init_defrootdomain(void)
8061{
c6c4927b
RR
8062 init_rootdomain(&def_root_domain, true);
8063
57d885fe
GH
8064 atomic_set(&def_root_domain.refcount, 1);
8065}
8066
dc938520 8067static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8068{
8069 struct root_domain *rd;
8070
8071 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8072 if (!rd)
8073 return NULL;
8074
c6c4927b
RR
8075 if (init_rootdomain(rd, false) != 0) {
8076 kfree(rd);
8077 return NULL;
8078 }
57d885fe
GH
8079
8080 return rd;
8081}
8082
1da177e4 8083/*
0eab9146 8084 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8085 * hold the hotplug lock.
8086 */
0eab9146
IM
8087static void
8088cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8089{
70b97a7f 8090 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8091 struct sched_domain *tmp;
8092
8093 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8094 for (tmp = sd; tmp; ) {
245af2c7
SS
8095 struct sched_domain *parent = tmp->parent;
8096 if (!parent)
8097 break;
f29c9b1c 8098
1a848870 8099 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8100 tmp->parent = parent->parent;
1a848870
SS
8101 if (parent->parent)
8102 parent->parent->child = tmp;
f29c9b1c
LZ
8103 } else
8104 tmp = tmp->parent;
245af2c7
SS
8105 }
8106
1a848870 8107 if (sd && sd_degenerate(sd)) {
245af2c7 8108 sd = sd->parent;
1a848870
SS
8109 if (sd)
8110 sd->child = NULL;
8111 }
1da177e4
LT
8112
8113 sched_domain_debug(sd, cpu);
8114
57d885fe 8115 rq_attach_root(rq, rd);
674311d5 8116 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8117}
8118
8119/* cpus with isolated domains */
dcc30a35 8120static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8121
8122/* Setup the mask of cpus configured for isolated domains */
8123static int __init isolated_cpu_setup(char *str)
8124{
bdddd296 8125 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8126 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8127 return 1;
8128}
8129
8927f494 8130__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8131
8132/*
6711cab4
SS
8133 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8134 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8135 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8136 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8137 *
8138 * init_sched_build_groups will build a circular linked list of the groups
8139 * covered by the given span, and will set each group's ->cpumask correctly,
8140 * and ->cpu_power to 0.
8141 */
a616058b 8142static void
96f874e2
RR
8143init_sched_build_groups(const struct cpumask *span,
8144 const struct cpumask *cpu_map,
8145 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8146 struct sched_group **sg,
96f874e2
RR
8147 struct cpumask *tmpmask),
8148 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8149{
8150 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8151 int i;
8152
96f874e2 8153 cpumask_clear(covered);
7c16ec58 8154
abcd083a 8155 for_each_cpu(i, span) {
6711cab4 8156 struct sched_group *sg;
7c16ec58 8157 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8158 int j;
8159
758b2cdc 8160 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8161 continue;
8162
758b2cdc 8163 cpumask_clear(sched_group_cpus(sg));
18a3885f 8164 sg->cpu_power = 0;
1da177e4 8165
abcd083a 8166 for_each_cpu(j, span) {
7c16ec58 8167 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8168 continue;
8169
96f874e2 8170 cpumask_set_cpu(j, covered);
758b2cdc 8171 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8172 }
8173 if (!first)
8174 first = sg;
8175 if (last)
8176 last->next = sg;
8177 last = sg;
8178 }
8179 last->next = first;
8180}
8181
9c1cfda2 8182#define SD_NODES_PER_DOMAIN 16
1da177e4 8183
9c1cfda2 8184#ifdef CONFIG_NUMA
198e2f18 8185
9c1cfda2
JH
8186/**
8187 * find_next_best_node - find the next node to include in a sched_domain
8188 * @node: node whose sched_domain we're building
8189 * @used_nodes: nodes already in the sched_domain
8190 *
41a2d6cf 8191 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8192 * finds the closest node not already in the @used_nodes map.
8193 *
8194 * Should use nodemask_t.
8195 */
c5f59f08 8196static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8197{
8198 int i, n, val, min_val, best_node = 0;
8199
8200 min_val = INT_MAX;
8201
076ac2af 8202 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8203 /* Start at @node */
076ac2af 8204 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8205
8206 if (!nr_cpus_node(n))
8207 continue;
8208
8209 /* Skip already used nodes */
c5f59f08 8210 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8211 continue;
8212
8213 /* Simple min distance search */
8214 val = node_distance(node, n);
8215
8216 if (val < min_val) {
8217 min_val = val;
8218 best_node = n;
8219 }
8220 }
8221
c5f59f08 8222 node_set(best_node, *used_nodes);
9c1cfda2
JH
8223 return best_node;
8224}
8225
8226/**
8227 * sched_domain_node_span - get a cpumask for a node's sched_domain
8228 * @node: node whose cpumask we're constructing
73486722 8229 * @span: resulting cpumask
9c1cfda2 8230 *
41a2d6cf 8231 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8232 * should be one that prevents unnecessary balancing, but also spreads tasks
8233 * out optimally.
8234 */
96f874e2 8235static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8236{
c5f59f08 8237 nodemask_t used_nodes;
48f24c4d 8238 int i;
9c1cfda2 8239
6ca09dfc 8240 cpumask_clear(span);
c5f59f08 8241 nodes_clear(used_nodes);
9c1cfda2 8242
6ca09dfc 8243 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8244 node_set(node, used_nodes);
9c1cfda2
JH
8245
8246 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8247 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8248
6ca09dfc 8249 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8250 }
9c1cfda2 8251}
6d6bc0ad 8252#endif /* CONFIG_NUMA */
9c1cfda2 8253
5c45bf27 8254int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8255
6c99e9ad
RR
8256/*
8257 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8258 *
8259 * ( See the the comments in include/linux/sched.h:struct sched_group
8260 * and struct sched_domain. )
6c99e9ad
RR
8261 */
8262struct static_sched_group {
8263 struct sched_group sg;
8264 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8265};
8266
8267struct static_sched_domain {
8268 struct sched_domain sd;
8269 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8270};
8271
49a02c51
AH
8272struct s_data {
8273#ifdef CONFIG_NUMA
8274 int sd_allnodes;
8275 cpumask_var_t domainspan;
8276 cpumask_var_t covered;
8277 cpumask_var_t notcovered;
8278#endif
8279 cpumask_var_t nodemask;
8280 cpumask_var_t this_sibling_map;
8281 cpumask_var_t this_core_map;
8282 cpumask_var_t send_covered;
8283 cpumask_var_t tmpmask;
8284 struct sched_group **sched_group_nodes;
8285 struct root_domain *rd;
8286};
8287
2109b99e
AH
8288enum s_alloc {
8289 sa_sched_groups = 0,
8290 sa_rootdomain,
8291 sa_tmpmask,
8292 sa_send_covered,
8293 sa_this_core_map,
8294 sa_this_sibling_map,
8295 sa_nodemask,
8296 sa_sched_group_nodes,
8297#ifdef CONFIG_NUMA
8298 sa_notcovered,
8299 sa_covered,
8300 sa_domainspan,
8301#endif
8302 sa_none,
8303};
8304
9c1cfda2 8305/*
48f24c4d 8306 * SMT sched-domains:
9c1cfda2 8307 */
1da177e4 8308#ifdef CONFIG_SCHED_SMT
6c99e9ad 8309static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 8310static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 8311
41a2d6cf 8312static int
96f874e2
RR
8313cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8314 struct sched_group **sg, struct cpumask *unused)
1da177e4 8315{
6711cab4 8316 if (sg)
1871e52c 8317 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
8318 return cpu;
8319}
6d6bc0ad 8320#endif /* CONFIG_SCHED_SMT */
1da177e4 8321
48f24c4d
IM
8322/*
8323 * multi-core sched-domains:
8324 */
1e9f28fa 8325#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8326static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8327static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8328#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8329
8330#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8331static int
96f874e2
RR
8332cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8333 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8334{
6711cab4 8335 int group;
7c16ec58 8336
c69fc56d 8337 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8338 group = cpumask_first(mask);
6711cab4 8339 if (sg)
6c99e9ad 8340 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8341 return group;
1e9f28fa
SS
8342}
8343#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8344static int
96f874e2
RR
8345cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8346 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8347{
6711cab4 8348 if (sg)
6c99e9ad 8349 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8350 return cpu;
8351}
8352#endif
8353
6c99e9ad
RR
8354static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8355static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8356
41a2d6cf 8357static int
96f874e2
RR
8358cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8359 struct sched_group **sg, struct cpumask *mask)
1da177e4 8360{
6711cab4 8361 int group;
48f24c4d 8362#ifdef CONFIG_SCHED_MC
6ca09dfc 8363 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8364 group = cpumask_first(mask);
1e9f28fa 8365#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8366 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8367 group = cpumask_first(mask);
1da177e4 8368#else
6711cab4 8369 group = cpu;
1da177e4 8370#endif
6711cab4 8371 if (sg)
6c99e9ad 8372 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8373 return group;
1da177e4
LT
8374}
8375
8376#ifdef CONFIG_NUMA
1da177e4 8377/*
9c1cfda2
JH
8378 * The init_sched_build_groups can't handle what we want to do with node
8379 * groups, so roll our own. Now each node has its own list of groups which
8380 * gets dynamically allocated.
1da177e4 8381 */
62ea9ceb 8382static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8383static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8384
62ea9ceb 8385static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8386static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8387
96f874e2
RR
8388static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8389 struct sched_group **sg,
8390 struct cpumask *nodemask)
9c1cfda2 8391{
6711cab4
SS
8392 int group;
8393
6ca09dfc 8394 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8395 group = cpumask_first(nodemask);
6711cab4
SS
8396
8397 if (sg)
6c99e9ad 8398 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8399 return group;
1da177e4 8400}
6711cab4 8401
08069033
SS
8402static void init_numa_sched_groups_power(struct sched_group *group_head)
8403{
8404 struct sched_group *sg = group_head;
8405 int j;
8406
8407 if (!sg)
8408 return;
3a5c359a 8409 do {
758b2cdc 8410 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8411 struct sched_domain *sd;
08069033 8412
6c99e9ad 8413 sd = &per_cpu(phys_domains, j).sd;
13318a71 8414 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8415 /*
8416 * Only add "power" once for each
8417 * physical package.
8418 */
8419 continue;
8420 }
08069033 8421
18a3885f 8422 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8423 }
8424 sg = sg->next;
8425 } while (sg != group_head);
08069033 8426}
0601a88d
AH
8427
8428static int build_numa_sched_groups(struct s_data *d,
8429 const struct cpumask *cpu_map, int num)
8430{
8431 struct sched_domain *sd;
8432 struct sched_group *sg, *prev;
8433 int n, j;
8434
8435 cpumask_clear(d->covered);
8436 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8437 if (cpumask_empty(d->nodemask)) {
8438 d->sched_group_nodes[num] = NULL;
8439 goto out;
8440 }
8441
8442 sched_domain_node_span(num, d->domainspan);
8443 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8444
8445 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8446 GFP_KERNEL, num);
8447 if (!sg) {
663997d4 8448 pr_warning("Can not alloc domain group for node %d\n", num);
0601a88d
AH
8449 return -ENOMEM;
8450 }
8451 d->sched_group_nodes[num] = sg;
8452
8453 for_each_cpu(j, d->nodemask) {
8454 sd = &per_cpu(node_domains, j).sd;
8455 sd->groups = sg;
8456 }
8457
18a3885f 8458 sg->cpu_power = 0;
0601a88d
AH
8459 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8460 sg->next = sg;
8461 cpumask_or(d->covered, d->covered, d->nodemask);
8462
8463 prev = sg;
8464 for (j = 0; j < nr_node_ids; j++) {
8465 n = (num + j) % nr_node_ids;
8466 cpumask_complement(d->notcovered, d->covered);
8467 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8468 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8469 if (cpumask_empty(d->tmpmask))
8470 break;
8471 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8472 if (cpumask_empty(d->tmpmask))
8473 continue;
8474 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8475 GFP_KERNEL, num);
8476 if (!sg) {
663997d4
JP
8477 pr_warning("Can not alloc domain group for node %d\n",
8478 j);
0601a88d
AH
8479 return -ENOMEM;
8480 }
18a3885f 8481 sg->cpu_power = 0;
0601a88d
AH
8482 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8483 sg->next = prev->next;
8484 cpumask_or(d->covered, d->covered, d->tmpmask);
8485 prev->next = sg;
8486 prev = sg;
8487 }
8488out:
8489 return 0;
8490}
6d6bc0ad 8491#endif /* CONFIG_NUMA */
1da177e4 8492
a616058b 8493#ifdef CONFIG_NUMA
51888ca2 8494/* Free memory allocated for various sched_group structures */
96f874e2
RR
8495static void free_sched_groups(const struct cpumask *cpu_map,
8496 struct cpumask *nodemask)
51888ca2 8497{
a616058b 8498 int cpu, i;
51888ca2 8499
abcd083a 8500 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8501 struct sched_group **sched_group_nodes
8502 = sched_group_nodes_bycpu[cpu];
8503
51888ca2
SV
8504 if (!sched_group_nodes)
8505 continue;
8506
076ac2af 8507 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8508 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8509
6ca09dfc 8510 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8511 if (cpumask_empty(nodemask))
51888ca2
SV
8512 continue;
8513
8514 if (sg == NULL)
8515 continue;
8516 sg = sg->next;
8517next_sg:
8518 oldsg = sg;
8519 sg = sg->next;
8520 kfree(oldsg);
8521 if (oldsg != sched_group_nodes[i])
8522 goto next_sg;
8523 }
8524 kfree(sched_group_nodes);
8525 sched_group_nodes_bycpu[cpu] = NULL;
8526 }
51888ca2 8527}
6d6bc0ad 8528#else /* !CONFIG_NUMA */
96f874e2
RR
8529static void free_sched_groups(const struct cpumask *cpu_map,
8530 struct cpumask *nodemask)
a616058b
SS
8531{
8532}
6d6bc0ad 8533#endif /* CONFIG_NUMA */
51888ca2 8534
89c4710e
SS
8535/*
8536 * Initialize sched groups cpu_power.
8537 *
8538 * cpu_power indicates the capacity of sched group, which is used while
8539 * distributing the load between different sched groups in a sched domain.
8540 * Typically cpu_power for all the groups in a sched domain will be same unless
8541 * there are asymmetries in the topology. If there are asymmetries, group
8542 * having more cpu_power will pickup more load compared to the group having
8543 * less cpu_power.
89c4710e
SS
8544 */
8545static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8546{
8547 struct sched_domain *child;
8548 struct sched_group *group;
f93e65c1
PZ
8549 long power;
8550 int weight;
89c4710e
SS
8551
8552 WARN_ON(!sd || !sd->groups);
8553
13318a71 8554 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8555 return;
8556
8557 child = sd->child;
8558
18a3885f 8559 sd->groups->cpu_power = 0;
5517d86b 8560
f93e65c1
PZ
8561 if (!child) {
8562 power = SCHED_LOAD_SCALE;
8563 weight = cpumask_weight(sched_domain_span(sd));
8564 /*
8565 * SMT siblings share the power of a single core.
a52bfd73
PZ
8566 * Usually multiple threads get a better yield out of
8567 * that one core than a single thread would have,
8568 * reflect that in sd->smt_gain.
f93e65c1 8569 */
a52bfd73
PZ
8570 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8571 power *= sd->smt_gain;
f93e65c1 8572 power /= weight;
a52bfd73
PZ
8573 power >>= SCHED_LOAD_SHIFT;
8574 }
18a3885f 8575 sd->groups->cpu_power += power;
89c4710e
SS
8576 return;
8577 }
8578
89c4710e 8579 /*
f93e65c1 8580 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8581 */
8582 group = child->groups;
8583 do {
18a3885f 8584 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8585 group = group->next;
8586 } while (group != child->groups);
8587}
8588
7c16ec58
MT
8589/*
8590 * Initializers for schedule domains
8591 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8592 */
8593
a5d8c348
IM
8594#ifdef CONFIG_SCHED_DEBUG
8595# define SD_INIT_NAME(sd, type) sd->name = #type
8596#else
8597# define SD_INIT_NAME(sd, type) do { } while (0)
8598#endif
8599
7c16ec58 8600#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8601
7c16ec58
MT
8602#define SD_INIT_FUNC(type) \
8603static noinline void sd_init_##type(struct sched_domain *sd) \
8604{ \
8605 memset(sd, 0, sizeof(*sd)); \
8606 *sd = SD_##type##_INIT; \
1d3504fc 8607 sd->level = SD_LV_##type; \
a5d8c348 8608 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8609}
8610
8611SD_INIT_FUNC(CPU)
8612#ifdef CONFIG_NUMA
8613 SD_INIT_FUNC(ALLNODES)
8614 SD_INIT_FUNC(NODE)
8615#endif
8616#ifdef CONFIG_SCHED_SMT
8617 SD_INIT_FUNC(SIBLING)
8618#endif
8619#ifdef CONFIG_SCHED_MC
8620 SD_INIT_FUNC(MC)
8621#endif
8622
1d3504fc
HS
8623static int default_relax_domain_level = -1;
8624
8625static int __init setup_relax_domain_level(char *str)
8626{
30e0e178
LZ
8627 unsigned long val;
8628
8629 val = simple_strtoul(str, NULL, 0);
8630 if (val < SD_LV_MAX)
8631 default_relax_domain_level = val;
8632
1d3504fc
HS
8633 return 1;
8634}
8635__setup("relax_domain_level=", setup_relax_domain_level);
8636
8637static void set_domain_attribute(struct sched_domain *sd,
8638 struct sched_domain_attr *attr)
8639{
8640 int request;
8641
8642 if (!attr || attr->relax_domain_level < 0) {
8643 if (default_relax_domain_level < 0)
8644 return;
8645 else
8646 request = default_relax_domain_level;
8647 } else
8648 request = attr->relax_domain_level;
8649 if (request < sd->level) {
8650 /* turn off idle balance on this domain */
c88d5910 8651 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8652 } else {
8653 /* turn on idle balance on this domain */
c88d5910 8654 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8655 }
8656}
8657
2109b99e
AH
8658static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8659 const struct cpumask *cpu_map)
8660{
8661 switch (what) {
8662 case sa_sched_groups:
8663 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8664 d->sched_group_nodes = NULL;
8665 case sa_rootdomain:
8666 free_rootdomain(d->rd); /* fall through */
8667 case sa_tmpmask:
8668 free_cpumask_var(d->tmpmask); /* fall through */
8669 case sa_send_covered:
8670 free_cpumask_var(d->send_covered); /* fall through */
8671 case sa_this_core_map:
8672 free_cpumask_var(d->this_core_map); /* fall through */
8673 case sa_this_sibling_map:
8674 free_cpumask_var(d->this_sibling_map); /* fall through */
8675 case sa_nodemask:
8676 free_cpumask_var(d->nodemask); /* fall through */
8677 case sa_sched_group_nodes:
d1b55138 8678#ifdef CONFIG_NUMA
2109b99e
AH
8679 kfree(d->sched_group_nodes); /* fall through */
8680 case sa_notcovered:
8681 free_cpumask_var(d->notcovered); /* fall through */
8682 case sa_covered:
8683 free_cpumask_var(d->covered); /* fall through */
8684 case sa_domainspan:
8685 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8686#endif
2109b99e
AH
8687 case sa_none:
8688 break;
8689 }
8690}
3404c8d9 8691
2109b99e
AH
8692static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8693 const struct cpumask *cpu_map)
8694{
3404c8d9 8695#ifdef CONFIG_NUMA
2109b99e
AH
8696 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8697 return sa_none;
8698 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8699 return sa_domainspan;
8700 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8701 return sa_covered;
8702 /* Allocate the per-node list of sched groups */
8703 d->sched_group_nodes = kcalloc(nr_node_ids,
8704 sizeof(struct sched_group *), GFP_KERNEL);
8705 if (!d->sched_group_nodes) {
663997d4 8706 pr_warning("Can not alloc sched group node list\n");
2109b99e 8707 return sa_notcovered;
d1b55138 8708 }
2109b99e 8709 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8710#endif
2109b99e
AH
8711 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8712 return sa_sched_group_nodes;
8713 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8714 return sa_nodemask;
8715 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8716 return sa_this_sibling_map;
8717 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8718 return sa_this_core_map;
8719 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8720 return sa_send_covered;
8721 d->rd = alloc_rootdomain();
8722 if (!d->rd) {
663997d4 8723 pr_warning("Cannot alloc root domain\n");
2109b99e 8724 return sa_tmpmask;
57d885fe 8725 }
2109b99e
AH
8726 return sa_rootdomain;
8727}
57d885fe 8728
7f4588f3
AH
8729static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8730 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8731{
8732 struct sched_domain *sd = NULL;
7c16ec58 8733#ifdef CONFIG_NUMA
7f4588f3 8734 struct sched_domain *parent;
1da177e4 8735
7f4588f3
AH
8736 d->sd_allnodes = 0;
8737 if (cpumask_weight(cpu_map) >
8738 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8739 sd = &per_cpu(allnodes_domains, i).sd;
8740 SD_INIT(sd, ALLNODES);
1d3504fc 8741 set_domain_attribute(sd, attr);
7f4588f3
AH
8742 cpumask_copy(sched_domain_span(sd), cpu_map);
8743 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8744 d->sd_allnodes = 1;
8745 }
8746 parent = sd;
8747
8748 sd = &per_cpu(node_domains, i).sd;
8749 SD_INIT(sd, NODE);
8750 set_domain_attribute(sd, attr);
8751 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8752 sd->parent = parent;
8753 if (parent)
8754 parent->child = sd;
8755 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8756#endif
7f4588f3
AH
8757 return sd;
8758}
1da177e4 8759
87cce662
AH
8760static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8761 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8762 struct sched_domain *parent, int i)
8763{
8764 struct sched_domain *sd;
8765 sd = &per_cpu(phys_domains, i).sd;
8766 SD_INIT(sd, CPU);
8767 set_domain_attribute(sd, attr);
8768 cpumask_copy(sched_domain_span(sd), d->nodemask);
8769 sd->parent = parent;
8770 if (parent)
8771 parent->child = sd;
8772 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8773 return sd;
8774}
1da177e4 8775
410c4081
AH
8776static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8777 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8778 struct sched_domain *parent, int i)
8779{
8780 struct sched_domain *sd = parent;
1e9f28fa 8781#ifdef CONFIG_SCHED_MC
410c4081
AH
8782 sd = &per_cpu(core_domains, i).sd;
8783 SD_INIT(sd, MC);
8784 set_domain_attribute(sd, attr);
8785 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8786 sd->parent = parent;
8787 parent->child = sd;
8788 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8789#endif
410c4081
AH
8790 return sd;
8791}
1e9f28fa 8792
d8173535
AH
8793static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8794 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8795 struct sched_domain *parent, int i)
8796{
8797 struct sched_domain *sd = parent;
1da177e4 8798#ifdef CONFIG_SCHED_SMT
d8173535
AH
8799 sd = &per_cpu(cpu_domains, i).sd;
8800 SD_INIT(sd, SIBLING);
8801 set_domain_attribute(sd, attr);
8802 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8803 sd->parent = parent;
8804 parent->child = sd;
8805 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8806#endif
d8173535
AH
8807 return sd;
8808}
1da177e4 8809
0e8e85c9
AH
8810static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8811 const struct cpumask *cpu_map, int cpu)
8812{
8813 switch (l) {
1da177e4 8814#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8815 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8816 cpumask_and(d->this_sibling_map, cpu_map,
8817 topology_thread_cpumask(cpu));
8818 if (cpu == cpumask_first(d->this_sibling_map))
8819 init_sched_build_groups(d->this_sibling_map, cpu_map,
8820 &cpu_to_cpu_group,
8821 d->send_covered, d->tmpmask);
8822 break;
1da177e4 8823#endif
1e9f28fa 8824#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8825 case SD_LV_MC: /* set up multi-core groups */
8826 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8827 if (cpu == cpumask_first(d->this_core_map))
8828 init_sched_build_groups(d->this_core_map, cpu_map,
8829 &cpu_to_core_group,
8830 d->send_covered, d->tmpmask);
8831 break;
1e9f28fa 8832#endif
86548096
AH
8833 case SD_LV_CPU: /* set up physical groups */
8834 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8835 if (!cpumask_empty(d->nodemask))
8836 init_sched_build_groups(d->nodemask, cpu_map,
8837 &cpu_to_phys_group,
8838 d->send_covered, d->tmpmask);
8839 break;
1da177e4 8840#ifdef CONFIG_NUMA
de616e36
AH
8841 case SD_LV_ALLNODES:
8842 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8843 d->send_covered, d->tmpmask);
8844 break;
8845#endif
0e8e85c9
AH
8846 default:
8847 break;
7c16ec58 8848 }
0e8e85c9 8849}
9c1cfda2 8850
2109b99e
AH
8851/*
8852 * Build sched domains for a given set of cpus and attach the sched domains
8853 * to the individual cpus
8854 */
8855static int __build_sched_domains(const struct cpumask *cpu_map,
8856 struct sched_domain_attr *attr)
8857{
8858 enum s_alloc alloc_state = sa_none;
8859 struct s_data d;
294b0c96 8860 struct sched_domain *sd;
2109b99e 8861 int i;
7c16ec58 8862#ifdef CONFIG_NUMA
2109b99e 8863 d.sd_allnodes = 0;
7c16ec58 8864#endif
9c1cfda2 8865
2109b99e
AH
8866 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8867 if (alloc_state != sa_rootdomain)
8868 goto error;
8869 alloc_state = sa_sched_groups;
9c1cfda2 8870
1da177e4 8871 /*
1a20ff27 8872 * Set up domains for cpus specified by the cpu_map.
1da177e4 8873 */
abcd083a 8874 for_each_cpu(i, cpu_map) {
49a02c51
AH
8875 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8876 cpu_map);
9761eea8 8877
7f4588f3 8878 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8879 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8880 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8881 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8882 }
9c1cfda2 8883
abcd083a 8884 for_each_cpu(i, cpu_map) {
0e8e85c9 8885 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8886 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8887 }
9c1cfda2 8888
1da177e4 8889 /* Set up physical groups */
86548096
AH
8890 for (i = 0; i < nr_node_ids; i++)
8891 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8892
1da177e4
LT
8893#ifdef CONFIG_NUMA
8894 /* Set up node groups */
de616e36
AH
8895 if (d.sd_allnodes)
8896 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8897
0601a88d
AH
8898 for (i = 0; i < nr_node_ids; i++)
8899 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8900 goto error;
1da177e4
LT
8901#endif
8902
8903 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8904#ifdef CONFIG_SCHED_SMT
abcd083a 8905 for_each_cpu(i, cpu_map) {
294b0c96 8906 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8907 init_sched_groups_power(i, sd);
5c45bf27 8908 }
1da177e4 8909#endif
1e9f28fa 8910#ifdef CONFIG_SCHED_MC
abcd083a 8911 for_each_cpu(i, cpu_map) {
294b0c96 8912 sd = &per_cpu(core_domains, i).sd;
89c4710e 8913 init_sched_groups_power(i, sd);
5c45bf27
SS
8914 }
8915#endif
1e9f28fa 8916
abcd083a 8917 for_each_cpu(i, cpu_map) {
294b0c96 8918 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8919 init_sched_groups_power(i, sd);
1da177e4
LT
8920 }
8921
9c1cfda2 8922#ifdef CONFIG_NUMA
076ac2af 8923 for (i = 0; i < nr_node_ids; i++)
49a02c51 8924 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8925
49a02c51 8926 if (d.sd_allnodes) {
6711cab4 8927 struct sched_group *sg;
f712c0c7 8928
96f874e2 8929 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8930 d.tmpmask);
f712c0c7
SS
8931 init_numa_sched_groups_power(sg);
8932 }
9c1cfda2
JH
8933#endif
8934
1da177e4 8935 /* Attach the domains */
abcd083a 8936 for_each_cpu(i, cpu_map) {
1da177e4 8937#ifdef CONFIG_SCHED_SMT
6c99e9ad 8938 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8939#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8940 sd = &per_cpu(core_domains, i).sd;
1da177e4 8941#else
6c99e9ad 8942 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8943#endif
49a02c51 8944 cpu_attach_domain(sd, d.rd, i);
1da177e4 8945 }
51888ca2 8946
2109b99e
AH
8947 d.sched_group_nodes = NULL; /* don't free this we still need it */
8948 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8949 return 0;
51888ca2 8950
51888ca2 8951error:
2109b99e
AH
8952 __free_domain_allocs(&d, alloc_state, cpu_map);
8953 return -ENOMEM;
1da177e4 8954}
029190c5 8955
96f874e2 8956static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8957{
8958 return __build_sched_domains(cpu_map, NULL);
8959}
8960
acc3f5d7 8961static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8962static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8963static struct sched_domain_attr *dattr_cur;
8964 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8965
8966/*
8967 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8968 * cpumask) fails, then fallback to a single sched domain,
8969 * as determined by the single cpumask fallback_doms.
029190c5 8970 */
4212823f 8971static cpumask_var_t fallback_doms;
029190c5 8972
ee79d1bd
HC
8973/*
8974 * arch_update_cpu_topology lets virtualized architectures update the
8975 * cpu core maps. It is supposed to return 1 if the topology changed
8976 * or 0 if it stayed the same.
8977 */
8978int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8979{
ee79d1bd 8980 return 0;
22e52b07
HC
8981}
8982
acc3f5d7
RR
8983cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8984{
8985 int i;
8986 cpumask_var_t *doms;
8987
8988 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8989 if (!doms)
8990 return NULL;
8991 for (i = 0; i < ndoms; i++) {
8992 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8993 free_sched_domains(doms, i);
8994 return NULL;
8995 }
8996 }
8997 return doms;
8998}
8999
9000void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9001{
9002 unsigned int i;
9003 for (i = 0; i < ndoms; i++)
9004 free_cpumask_var(doms[i]);
9005 kfree(doms);
9006}
9007
1a20ff27 9008/*
41a2d6cf 9009 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
9010 * For now this just excludes isolated cpus, but could be used to
9011 * exclude other special cases in the future.
1a20ff27 9012 */
96f874e2 9013static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 9014{
7378547f
MM
9015 int err;
9016
22e52b07 9017 arch_update_cpu_topology();
029190c5 9018 ndoms_cur = 1;
acc3f5d7 9019 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9020 if (!doms_cur)
acc3f5d7
RR
9021 doms_cur = &fallback_doms;
9022 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9023 dattr_cur = NULL;
acc3f5d7 9024 err = build_sched_domains(doms_cur[0]);
6382bc90 9025 register_sched_domain_sysctl();
7378547f
MM
9026
9027 return err;
1a20ff27
DG
9028}
9029
96f874e2
RR
9030static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9031 struct cpumask *tmpmask)
1da177e4 9032{
7c16ec58 9033 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9034}
1da177e4 9035
1a20ff27
DG
9036/*
9037 * Detach sched domains from a group of cpus specified in cpu_map
9038 * These cpus will now be attached to the NULL domain
9039 */
96f874e2 9040static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9041{
96f874e2
RR
9042 /* Save because hotplug lock held. */
9043 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9044 int i;
9045
abcd083a 9046 for_each_cpu(i, cpu_map)
57d885fe 9047 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9048 synchronize_sched();
96f874e2 9049 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9050}
9051
1d3504fc
HS
9052/* handle null as "default" */
9053static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9054 struct sched_domain_attr *new, int idx_new)
9055{
9056 struct sched_domain_attr tmp;
9057
9058 /* fast path */
9059 if (!new && !cur)
9060 return 1;
9061
9062 tmp = SD_ATTR_INIT;
9063 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9064 new ? (new + idx_new) : &tmp,
9065 sizeof(struct sched_domain_attr));
9066}
9067
029190c5
PJ
9068/*
9069 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9070 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9071 * doms_new[] to the current sched domain partitioning, doms_cur[].
9072 * It destroys each deleted domain and builds each new domain.
9073 *
acc3f5d7 9074 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9075 * The masks don't intersect (don't overlap.) We should setup one
9076 * sched domain for each mask. CPUs not in any of the cpumasks will
9077 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9078 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9079 * it as it is.
9080 *
acc3f5d7
RR
9081 * The passed in 'doms_new' should be allocated using
9082 * alloc_sched_domains. This routine takes ownership of it and will
9083 * free_sched_domains it when done with it. If the caller failed the
9084 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9085 * and partition_sched_domains() will fallback to the single partition
9086 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9087 *
96f874e2 9088 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9089 * ndoms_new == 0 is a special case for destroying existing domains,
9090 * and it will not create the default domain.
dfb512ec 9091 *
029190c5
PJ
9092 * Call with hotplug lock held
9093 */
acc3f5d7 9094void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9095 struct sched_domain_attr *dattr_new)
029190c5 9096{
dfb512ec 9097 int i, j, n;
d65bd5ec 9098 int new_topology;
029190c5 9099
712555ee 9100 mutex_lock(&sched_domains_mutex);
a1835615 9101
7378547f
MM
9102 /* always unregister in case we don't destroy any domains */
9103 unregister_sched_domain_sysctl();
9104
d65bd5ec
HC
9105 /* Let architecture update cpu core mappings. */
9106 new_topology = arch_update_cpu_topology();
9107
dfb512ec 9108 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9109
9110 /* Destroy deleted domains */
9111 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9112 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9113 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9114 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9115 goto match1;
9116 }
9117 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9118 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9119match1:
9120 ;
9121 }
9122
e761b772
MK
9123 if (doms_new == NULL) {
9124 ndoms_cur = 0;
acc3f5d7 9125 doms_new = &fallback_doms;
6ad4c188 9126 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9127 WARN_ON_ONCE(dattr_new);
e761b772
MK
9128 }
9129
029190c5
PJ
9130 /* Build new domains */
9131 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9132 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9133 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9134 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9135 goto match2;
9136 }
9137 /* no match - add a new doms_new */
acc3f5d7 9138 __build_sched_domains(doms_new[i],
1d3504fc 9139 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9140match2:
9141 ;
9142 }
9143
9144 /* Remember the new sched domains */
acc3f5d7
RR
9145 if (doms_cur != &fallback_doms)
9146 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9147 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9148 doms_cur = doms_new;
1d3504fc 9149 dattr_cur = dattr_new;
029190c5 9150 ndoms_cur = ndoms_new;
7378547f
MM
9151
9152 register_sched_domain_sysctl();
a1835615 9153
712555ee 9154 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9155}
9156
5c45bf27 9157#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9158static void arch_reinit_sched_domains(void)
5c45bf27 9159{
95402b38 9160 get_online_cpus();
dfb512ec
MK
9161
9162 /* Destroy domains first to force the rebuild */
9163 partition_sched_domains(0, NULL, NULL);
9164
e761b772 9165 rebuild_sched_domains();
95402b38 9166 put_online_cpus();
5c45bf27
SS
9167}
9168
9169static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9170{
afb8a9b7 9171 unsigned int level = 0;
5c45bf27 9172
afb8a9b7
GS
9173 if (sscanf(buf, "%u", &level) != 1)
9174 return -EINVAL;
9175
9176 /*
9177 * level is always be positive so don't check for
9178 * level < POWERSAVINGS_BALANCE_NONE which is 0
9179 * What happens on 0 or 1 byte write,
9180 * need to check for count as well?
9181 */
9182
9183 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9184 return -EINVAL;
9185
9186 if (smt)
afb8a9b7 9187 sched_smt_power_savings = level;
5c45bf27 9188 else
afb8a9b7 9189 sched_mc_power_savings = level;
5c45bf27 9190
c70f22d2 9191 arch_reinit_sched_domains();
5c45bf27 9192
c70f22d2 9193 return count;
5c45bf27
SS
9194}
9195
5c45bf27 9196#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9197static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9198 char *page)
5c45bf27
SS
9199{
9200 return sprintf(page, "%u\n", sched_mc_power_savings);
9201}
f718cd4a 9202static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9203 const char *buf, size_t count)
5c45bf27
SS
9204{
9205 return sched_power_savings_store(buf, count, 0);
9206}
f718cd4a
AK
9207static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9208 sched_mc_power_savings_show,
9209 sched_mc_power_savings_store);
5c45bf27
SS
9210#endif
9211
9212#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9213static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9214 char *page)
5c45bf27
SS
9215{
9216 return sprintf(page, "%u\n", sched_smt_power_savings);
9217}
f718cd4a 9218static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9219 const char *buf, size_t count)
5c45bf27
SS
9220{
9221 return sched_power_savings_store(buf, count, 1);
9222}
f718cd4a
AK
9223static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9224 sched_smt_power_savings_show,
6707de00
AB
9225 sched_smt_power_savings_store);
9226#endif
9227
39aac648 9228int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9229{
9230 int err = 0;
9231
9232#ifdef CONFIG_SCHED_SMT
9233 if (smt_capable())
9234 err = sysfs_create_file(&cls->kset.kobj,
9235 &attr_sched_smt_power_savings.attr);
9236#endif
9237#ifdef CONFIG_SCHED_MC
9238 if (!err && mc_capable())
9239 err = sysfs_create_file(&cls->kset.kobj,
9240 &attr_sched_mc_power_savings.attr);
9241#endif
9242 return err;
9243}
6d6bc0ad 9244#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9245
e761b772 9246#ifndef CONFIG_CPUSETS
1da177e4 9247/*
e761b772
MK
9248 * Add online and remove offline CPUs from the scheduler domains.
9249 * When cpusets are enabled they take over this function.
1da177e4
LT
9250 */
9251static int update_sched_domains(struct notifier_block *nfb,
9252 unsigned long action, void *hcpu)
e761b772
MK
9253{
9254 switch (action) {
9255 case CPU_ONLINE:
9256 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9257 case CPU_DOWN_PREPARE:
9258 case CPU_DOWN_PREPARE_FROZEN:
9259 case CPU_DOWN_FAILED:
9260 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9261 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9262 return NOTIFY_OK;
9263
9264 default:
9265 return NOTIFY_DONE;
9266 }
9267}
9268#endif
9269
9270static int update_runtime(struct notifier_block *nfb,
9271 unsigned long action, void *hcpu)
1da177e4 9272{
7def2be1
PZ
9273 int cpu = (int)(long)hcpu;
9274
1da177e4 9275 switch (action) {
1da177e4 9276 case CPU_DOWN_PREPARE:
8bb78442 9277 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9278 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9279 return NOTIFY_OK;
9280
1da177e4 9281 case CPU_DOWN_FAILED:
8bb78442 9282 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9283 case CPU_ONLINE:
8bb78442 9284 case CPU_ONLINE_FROZEN:
7def2be1 9285 enable_runtime(cpu_rq(cpu));
e761b772
MK
9286 return NOTIFY_OK;
9287
1da177e4
LT
9288 default:
9289 return NOTIFY_DONE;
9290 }
1da177e4 9291}
1da177e4
LT
9292
9293void __init sched_init_smp(void)
9294{
dcc30a35
RR
9295 cpumask_var_t non_isolated_cpus;
9296
9297 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9298 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9299
434d53b0
MT
9300#if defined(CONFIG_NUMA)
9301 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9302 GFP_KERNEL);
9303 BUG_ON(sched_group_nodes_bycpu == NULL);
9304#endif
95402b38 9305 get_online_cpus();
712555ee 9306 mutex_lock(&sched_domains_mutex);
6ad4c188 9307 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9308 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9309 if (cpumask_empty(non_isolated_cpus))
9310 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9311 mutex_unlock(&sched_domains_mutex);
95402b38 9312 put_online_cpus();
e761b772
MK
9313
9314#ifndef CONFIG_CPUSETS
1da177e4
LT
9315 /* XXX: Theoretical race here - CPU may be hotplugged now */
9316 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9317#endif
9318
9319 /* RT runtime code needs to handle some hotplug events */
9320 hotcpu_notifier(update_runtime, 0);
9321
b328ca18 9322 init_hrtick();
5c1e1767
NP
9323
9324 /* Move init over to a non-isolated CPU */
dcc30a35 9325 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9326 BUG();
19978ca6 9327 sched_init_granularity();
dcc30a35 9328 free_cpumask_var(non_isolated_cpus);
4212823f 9329
0e3900e6 9330 init_sched_rt_class();
1da177e4
LT
9331}
9332#else
9333void __init sched_init_smp(void)
9334{
19978ca6 9335 sched_init_granularity();
1da177e4
LT
9336}
9337#endif /* CONFIG_SMP */
9338
cd1bb94b
AB
9339const_debug unsigned int sysctl_timer_migration = 1;
9340
1da177e4
LT
9341int in_sched_functions(unsigned long addr)
9342{
1da177e4
LT
9343 return in_lock_functions(addr) ||
9344 (addr >= (unsigned long)__sched_text_start
9345 && addr < (unsigned long)__sched_text_end);
9346}
9347
a9957449 9348static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9349{
9350 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9351 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9352#ifdef CONFIG_FAIR_GROUP_SCHED
9353 cfs_rq->rq = rq;
9354#endif
67e9fb2a 9355 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9356}
9357
fa85ae24
PZ
9358static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9359{
9360 struct rt_prio_array *array;
9361 int i;
9362
9363 array = &rt_rq->active;
9364 for (i = 0; i < MAX_RT_PRIO; i++) {
9365 INIT_LIST_HEAD(array->queue + i);
9366 __clear_bit(i, array->bitmap);
9367 }
9368 /* delimiter for bitsearch: */
9369 __set_bit(MAX_RT_PRIO, array->bitmap);
9370
052f1dc7 9371#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9372 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9373#ifdef CONFIG_SMP
e864c499 9374 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9375#endif
48d5e258 9376#endif
fa85ae24
PZ
9377#ifdef CONFIG_SMP
9378 rt_rq->rt_nr_migratory = 0;
fa85ae24 9379 rt_rq->overloaded = 0;
05fa785c 9380 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9381#endif
9382
9383 rt_rq->rt_time = 0;
9384 rt_rq->rt_throttled = 0;
ac086bc2 9385 rt_rq->rt_runtime = 0;
0986b11b 9386 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9387
052f1dc7 9388#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9389 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9390 rt_rq->rq = rq;
9391#endif
fa85ae24
PZ
9392}
9393
6f505b16 9394#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9395static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9396 struct sched_entity *se, int cpu, int add,
9397 struct sched_entity *parent)
6f505b16 9398{
ec7dc8ac 9399 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9400 tg->cfs_rq[cpu] = cfs_rq;
9401 init_cfs_rq(cfs_rq, rq);
9402 cfs_rq->tg = tg;
9403 if (add)
9404 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9405
9406 tg->se[cpu] = se;
354d60c2
DG
9407 /* se could be NULL for init_task_group */
9408 if (!se)
9409 return;
9410
ec7dc8ac
DG
9411 if (!parent)
9412 se->cfs_rq = &rq->cfs;
9413 else
9414 se->cfs_rq = parent->my_q;
9415
6f505b16
PZ
9416 se->my_q = cfs_rq;
9417 se->load.weight = tg->shares;
e05510d0 9418 se->load.inv_weight = 0;
ec7dc8ac 9419 se->parent = parent;
6f505b16 9420}
052f1dc7 9421#endif
6f505b16 9422
052f1dc7 9423#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9424static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9425 struct sched_rt_entity *rt_se, int cpu, int add,
9426 struct sched_rt_entity *parent)
6f505b16 9427{
ec7dc8ac
DG
9428 struct rq *rq = cpu_rq(cpu);
9429
6f505b16
PZ
9430 tg->rt_rq[cpu] = rt_rq;
9431 init_rt_rq(rt_rq, rq);
9432 rt_rq->tg = tg;
9433 rt_rq->rt_se = rt_se;
ac086bc2 9434 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9435 if (add)
9436 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9437
9438 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9439 if (!rt_se)
9440 return;
9441
ec7dc8ac
DG
9442 if (!parent)
9443 rt_se->rt_rq = &rq->rt;
9444 else
9445 rt_se->rt_rq = parent->my_q;
9446
6f505b16 9447 rt_se->my_q = rt_rq;
ec7dc8ac 9448 rt_se->parent = parent;
6f505b16
PZ
9449 INIT_LIST_HEAD(&rt_se->run_list);
9450}
9451#endif
9452
1da177e4
LT
9453void __init sched_init(void)
9454{
dd41f596 9455 int i, j;
434d53b0
MT
9456 unsigned long alloc_size = 0, ptr;
9457
9458#ifdef CONFIG_FAIR_GROUP_SCHED
9459 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9460#endif
9461#ifdef CONFIG_RT_GROUP_SCHED
9462 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9463#endif
9464#ifdef CONFIG_USER_SCHED
9465 alloc_size *= 2;
df7c8e84
RR
9466#endif
9467#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9468 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9469#endif
434d53b0 9470 if (alloc_size) {
36b7b6d4 9471 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9472
9473#ifdef CONFIG_FAIR_GROUP_SCHED
9474 init_task_group.se = (struct sched_entity **)ptr;
9475 ptr += nr_cpu_ids * sizeof(void **);
9476
9477 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9478 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9479
9480#ifdef CONFIG_USER_SCHED
9481 root_task_group.se = (struct sched_entity **)ptr;
9482 ptr += nr_cpu_ids * sizeof(void **);
9483
9484 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9485 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9486#endif /* CONFIG_USER_SCHED */
9487#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9488#ifdef CONFIG_RT_GROUP_SCHED
9489 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9490 ptr += nr_cpu_ids * sizeof(void **);
9491
9492 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9493 ptr += nr_cpu_ids * sizeof(void **);
9494
9495#ifdef CONFIG_USER_SCHED
9496 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9497 ptr += nr_cpu_ids * sizeof(void **);
9498
9499 root_task_group.rt_rq = (struct rt_rq **)ptr;
9500 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9501#endif /* CONFIG_USER_SCHED */
9502#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9503#ifdef CONFIG_CPUMASK_OFFSTACK
9504 for_each_possible_cpu(i) {
9505 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9506 ptr += cpumask_size();
9507 }
9508#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9509 }
dd41f596 9510
57d885fe
GH
9511#ifdef CONFIG_SMP
9512 init_defrootdomain();
9513#endif
9514
d0b27fa7
PZ
9515 init_rt_bandwidth(&def_rt_bandwidth,
9516 global_rt_period(), global_rt_runtime());
9517
9518#ifdef CONFIG_RT_GROUP_SCHED
9519 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9520 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9521#ifdef CONFIG_USER_SCHED
9522 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9523 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9524#endif /* CONFIG_USER_SCHED */
9525#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9526
052f1dc7 9527#ifdef CONFIG_GROUP_SCHED
6f505b16 9528 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9529 INIT_LIST_HEAD(&init_task_group.children);
9530
9531#ifdef CONFIG_USER_SCHED
9532 INIT_LIST_HEAD(&root_task_group.children);
9533 init_task_group.parent = &root_task_group;
9534 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9535#endif /* CONFIG_USER_SCHED */
9536#endif /* CONFIG_GROUP_SCHED */
6f505b16 9537
4a6cc4bd
JK
9538#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9539 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9540 __alignof__(unsigned long));
9541#endif
0a945022 9542 for_each_possible_cpu(i) {
70b97a7f 9543 struct rq *rq;
1da177e4
LT
9544
9545 rq = cpu_rq(i);
05fa785c 9546 raw_spin_lock_init(&rq->lock);
7897986b 9547 rq->nr_running = 0;
dce48a84
TG
9548 rq->calc_load_active = 0;
9549 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9550 init_cfs_rq(&rq->cfs, rq);
6f505b16 9551 init_rt_rq(&rq->rt, rq);
dd41f596 9552#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9553 init_task_group.shares = init_task_group_load;
6f505b16 9554 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9555#ifdef CONFIG_CGROUP_SCHED
9556 /*
9557 * How much cpu bandwidth does init_task_group get?
9558 *
9559 * In case of task-groups formed thr' the cgroup filesystem, it
9560 * gets 100% of the cpu resources in the system. This overall
9561 * system cpu resource is divided among the tasks of
9562 * init_task_group and its child task-groups in a fair manner,
9563 * based on each entity's (task or task-group's) weight
9564 * (se->load.weight).
9565 *
9566 * In other words, if init_task_group has 10 tasks of weight
9567 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9568 * then A0's share of the cpu resource is:
9569 *
0d905bca 9570 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9571 *
9572 * We achieve this by letting init_task_group's tasks sit
9573 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9574 */
ec7dc8ac 9575 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9576#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9577 root_task_group.shares = NICE_0_LOAD;
9578 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9579 /*
9580 * In case of task-groups formed thr' the user id of tasks,
9581 * init_task_group represents tasks belonging to root user.
9582 * Hence it forms a sibling of all subsequent groups formed.
9583 * In this case, init_task_group gets only a fraction of overall
9584 * system cpu resource, based on the weight assigned to root
9585 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9586 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9587 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9588 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9589 */
ec7dc8ac 9590 init_tg_cfs_entry(&init_task_group,
84e9dabf 9591 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9592 &per_cpu(init_sched_entity, i), i, 1,
9593 root_task_group.se[i]);
6f505b16 9594
052f1dc7 9595#endif
354d60c2
DG
9596#endif /* CONFIG_FAIR_GROUP_SCHED */
9597
9598 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9599#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9600 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9601#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9602 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9603#elif defined CONFIG_USER_SCHED
eff766a6 9604 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9605 init_tg_rt_entry(&init_task_group,
1871e52c 9606 &per_cpu(init_rt_rq_var, i),
eff766a6
PZ
9607 &per_cpu(init_sched_rt_entity, i), i, 1,
9608 root_task_group.rt_se[i]);
354d60c2 9609#endif
dd41f596 9610#endif
1da177e4 9611
dd41f596
IM
9612 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9613 rq->cpu_load[j] = 0;
1da177e4 9614#ifdef CONFIG_SMP
41c7ce9a 9615 rq->sd = NULL;
57d885fe 9616 rq->rd = NULL;
3f029d3c 9617 rq->post_schedule = 0;
1da177e4 9618 rq->active_balance = 0;
dd41f596 9619 rq->next_balance = jiffies;
1da177e4 9620 rq->push_cpu = 0;
0a2966b4 9621 rq->cpu = i;
1f11eb6a 9622 rq->online = 0;
1da177e4 9623 rq->migration_thread = NULL;
eae0c9df
MG
9624 rq->idle_stamp = 0;
9625 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9626 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9627 rq_attach_root(rq, &def_root_domain);
1da177e4 9628#endif
8f4d37ec 9629 init_rq_hrtick(rq);
1da177e4 9630 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9631 }
9632
2dd73a4f 9633 set_load_weight(&init_task);
b50f60ce 9634
e107be36
AK
9635#ifdef CONFIG_PREEMPT_NOTIFIERS
9636 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9637#endif
9638
c9819f45 9639#ifdef CONFIG_SMP
962cf36c 9640 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9641#endif
9642
b50f60ce 9643#ifdef CONFIG_RT_MUTEXES
1d615482 9644 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
9645#endif
9646
1da177e4
LT
9647 /*
9648 * The boot idle thread does lazy MMU switching as well:
9649 */
9650 atomic_inc(&init_mm.mm_count);
9651 enter_lazy_tlb(&init_mm, current);
9652
9653 /*
9654 * Make us the idle thread. Technically, schedule() should not be
9655 * called from this thread, however somewhere below it might be,
9656 * but because we are the idle thread, we just pick up running again
9657 * when this runqueue becomes "idle".
9658 */
9659 init_idle(current, smp_processor_id());
dce48a84
TG
9660
9661 calc_load_update = jiffies + LOAD_FREQ;
9662
dd41f596
IM
9663 /*
9664 * During early bootup we pretend to be a normal task:
9665 */
9666 current->sched_class = &fair_sched_class;
6892b75e 9667
6a7b3dc3 9668 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9669 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9670#ifdef CONFIG_SMP
7d1e6a9b 9671#ifdef CONFIG_NO_HZ
49557e62 9672 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9673 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9674#endif
bdddd296
RR
9675 /* May be allocated at isolcpus cmdline parse time */
9676 if (cpu_isolated_map == NULL)
9677 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9678#endif /* SMP */
6a7b3dc3 9679
cdd6c482 9680 perf_event_init();
0d905bca 9681
6892b75e 9682 scheduler_running = 1;
1da177e4
LT
9683}
9684
9685#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9686static inline int preempt_count_equals(int preempt_offset)
9687{
9688 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9689
9690 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9691}
9692
9693void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9694{
48f24c4d 9695#ifdef in_atomic
1da177e4
LT
9696 static unsigned long prev_jiffy; /* ratelimiting */
9697
e4aafea2
FW
9698 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9699 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9700 return;
9701 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9702 return;
9703 prev_jiffy = jiffies;
9704
663997d4
JP
9705 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9706 file, line);
9707 pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9708 in_atomic(), irqs_disabled(),
9709 current->pid, current->comm);
aef745fc
IM
9710
9711 debug_show_held_locks(current);
9712 if (irqs_disabled())
9713 print_irqtrace_events(current);
9714 dump_stack();
1da177e4
LT
9715#endif
9716}
9717EXPORT_SYMBOL(__might_sleep);
9718#endif
9719
9720#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9721static void normalize_task(struct rq *rq, struct task_struct *p)
9722{
9723 int on_rq;
3e51f33f 9724
3a5e4dc1
AK
9725 update_rq_clock(rq);
9726 on_rq = p->se.on_rq;
9727 if (on_rq)
9728 deactivate_task(rq, p, 0);
9729 __setscheduler(rq, p, SCHED_NORMAL, 0);
9730 if (on_rq) {
9731 activate_task(rq, p, 0);
9732 resched_task(rq->curr);
9733 }
9734}
9735
1da177e4
LT
9736void normalize_rt_tasks(void)
9737{
a0f98a1c 9738 struct task_struct *g, *p;
1da177e4 9739 unsigned long flags;
70b97a7f 9740 struct rq *rq;
1da177e4 9741
4cf5d77a 9742 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9743 do_each_thread(g, p) {
178be793
IM
9744 /*
9745 * Only normalize user tasks:
9746 */
9747 if (!p->mm)
9748 continue;
9749
6cfb0d5d 9750 p->se.exec_start = 0;
6cfb0d5d 9751#ifdef CONFIG_SCHEDSTATS
dd41f596 9752 p->se.wait_start = 0;
dd41f596 9753 p->se.sleep_start = 0;
dd41f596 9754 p->se.block_start = 0;
6cfb0d5d 9755#endif
dd41f596
IM
9756
9757 if (!rt_task(p)) {
9758 /*
9759 * Renice negative nice level userspace
9760 * tasks back to 0:
9761 */
9762 if (TASK_NICE(p) < 0 && p->mm)
9763 set_user_nice(p, 0);
1da177e4 9764 continue;
dd41f596 9765 }
1da177e4 9766
1d615482 9767 raw_spin_lock(&p->pi_lock);
b29739f9 9768 rq = __task_rq_lock(p);
1da177e4 9769
178be793 9770 normalize_task(rq, p);
3a5e4dc1 9771
b29739f9 9772 __task_rq_unlock(rq);
1d615482 9773 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
9774 } while_each_thread(g, p);
9775
4cf5d77a 9776 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9777}
9778
9779#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9780
9781#ifdef CONFIG_IA64
9782/*
9783 * These functions are only useful for the IA64 MCA handling.
9784 *
9785 * They can only be called when the whole system has been
9786 * stopped - every CPU needs to be quiescent, and no scheduling
9787 * activity can take place. Using them for anything else would
9788 * be a serious bug, and as a result, they aren't even visible
9789 * under any other configuration.
9790 */
9791
9792/**
9793 * curr_task - return the current task for a given cpu.
9794 * @cpu: the processor in question.
9795 *
9796 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9797 */
36c8b586 9798struct task_struct *curr_task(int cpu)
1df5c10a
LT
9799{
9800 return cpu_curr(cpu);
9801}
9802
9803/**
9804 * set_curr_task - set the current task for a given cpu.
9805 * @cpu: the processor in question.
9806 * @p: the task pointer to set.
9807 *
9808 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9809 * are serviced on a separate stack. It allows the architecture to switch the
9810 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9811 * must be called with all CPU's synchronized, and interrupts disabled, the
9812 * and caller must save the original value of the current task (see
9813 * curr_task() above) and restore that value before reenabling interrupts and
9814 * re-starting the system.
9815 *
9816 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9817 */
36c8b586 9818void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9819{
9820 cpu_curr(cpu) = p;
9821}
9822
9823#endif
29f59db3 9824
bccbe08a
PZ
9825#ifdef CONFIG_FAIR_GROUP_SCHED
9826static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9827{
9828 int i;
9829
9830 for_each_possible_cpu(i) {
9831 if (tg->cfs_rq)
9832 kfree(tg->cfs_rq[i]);
9833 if (tg->se)
9834 kfree(tg->se[i]);
6f505b16
PZ
9835 }
9836
9837 kfree(tg->cfs_rq);
9838 kfree(tg->se);
6f505b16
PZ
9839}
9840
ec7dc8ac
DG
9841static
9842int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9843{
29f59db3 9844 struct cfs_rq *cfs_rq;
eab17229 9845 struct sched_entity *se;
9b5b7751 9846 struct rq *rq;
29f59db3
SV
9847 int i;
9848
434d53b0 9849 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9850 if (!tg->cfs_rq)
9851 goto err;
434d53b0 9852 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9853 if (!tg->se)
9854 goto err;
052f1dc7
PZ
9855
9856 tg->shares = NICE_0_LOAD;
29f59db3
SV
9857
9858 for_each_possible_cpu(i) {
9b5b7751 9859 rq = cpu_rq(i);
29f59db3 9860
eab17229
LZ
9861 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9862 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9863 if (!cfs_rq)
9864 goto err;
9865
eab17229
LZ
9866 se = kzalloc_node(sizeof(struct sched_entity),
9867 GFP_KERNEL, cpu_to_node(i));
29f59db3 9868 if (!se)
dfc12eb2 9869 goto err_free_rq;
29f59db3 9870
eab17229 9871 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9872 }
9873
9874 return 1;
9875
dfc12eb2
PC
9876 err_free_rq:
9877 kfree(cfs_rq);
bccbe08a
PZ
9878 err:
9879 return 0;
9880}
9881
9882static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9883{
9884 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9885 &cpu_rq(cpu)->leaf_cfs_rq_list);
9886}
9887
9888static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9889{
9890 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9891}
6d6bc0ad 9892#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9893static inline void free_fair_sched_group(struct task_group *tg)
9894{
9895}
9896
ec7dc8ac
DG
9897static inline
9898int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9899{
9900 return 1;
9901}
9902
9903static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9904{
9905}
9906
9907static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9908{
9909}
6d6bc0ad 9910#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9911
9912#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9913static void free_rt_sched_group(struct task_group *tg)
9914{
9915 int i;
9916
d0b27fa7
PZ
9917 destroy_rt_bandwidth(&tg->rt_bandwidth);
9918
bccbe08a
PZ
9919 for_each_possible_cpu(i) {
9920 if (tg->rt_rq)
9921 kfree(tg->rt_rq[i]);
9922 if (tg->rt_se)
9923 kfree(tg->rt_se[i]);
9924 }
9925
9926 kfree(tg->rt_rq);
9927 kfree(tg->rt_se);
9928}
9929
ec7dc8ac
DG
9930static
9931int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9932{
9933 struct rt_rq *rt_rq;
eab17229 9934 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9935 struct rq *rq;
9936 int i;
9937
434d53b0 9938 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9939 if (!tg->rt_rq)
9940 goto err;
434d53b0 9941 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9942 if (!tg->rt_se)
9943 goto err;
9944
d0b27fa7
PZ
9945 init_rt_bandwidth(&tg->rt_bandwidth,
9946 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9947
9948 for_each_possible_cpu(i) {
9949 rq = cpu_rq(i);
9950
eab17229
LZ
9951 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9952 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9953 if (!rt_rq)
9954 goto err;
29f59db3 9955
eab17229
LZ
9956 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9957 GFP_KERNEL, cpu_to_node(i));
6f505b16 9958 if (!rt_se)
dfc12eb2 9959 goto err_free_rq;
29f59db3 9960
eab17229 9961 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9962 }
9963
bccbe08a
PZ
9964 return 1;
9965
dfc12eb2
PC
9966 err_free_rq:
9967 kfree(rt_rq);
bccbe08a
PZ
9968 err:
9969 return 0;
9970}
9971
9972static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9973{
9974 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9975 &cpu_rq(cpu)->leaf_rt_rq_list);
9976}
9977
9978static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9979{
9980 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9981}
6d6bc0ad 9982#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9983static inline void free_rt_sched_group(struct task_group *tg)
9984{
9985}
9986
ec7dc8ac
DG
9987static inline
9988int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9989{
9990 return 1;
9991}
9992
9993static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9994{
9995}
9996
9997static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9998{
9999}
6d6bc0ad 10000#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 10001
d0b27fa7 10002#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
10003static void free_sched_group(struct task_group *tg)
10004{
10005 free_fair_sched_group(tg);
10006 free_rt_sched_group(tg);
10007 kfree(tg);
10008}
10009
10010/* allocate runqueue etc for a new task group */
ec7dc8ac 10011struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10012{
10013 struct task_group *tg;
10014 unsigned long flags;
10015 int i;
10016
10017 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10018 if (!tg)
10019 return ERR_PTR(-ENOMEM);
10020
ec7dc8ac 10021 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10022 goto err;
10023
ec7dc8ac 10024 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10025 goto err;
10026
8ed36996 10027 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10028 for_each_possible_cpu(i) {
bccbe08a
PZ
10029 register_fair_sched_group(tg, i);
10030 register_rt_sched_group(tg, i);
9b5b7751 10031 }
6f505b16 10032 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10033
10034 WARN_ON(!parent); /* root should already exist */
10035
10036 tg->parent = parent;
f473aa5e 10037 INIT_LIST_HEAD(&tg->children);
09f2724a 10038 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10039 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10040
9b5b7751 10041 return tg;
29f59db3
SV
10042
10043err:
6f505b16 10044 free_sched_group(tg);
29f59db3
SV
10045 return ERR_PTR(-ENOMEM);
10046}
10047
9b5b7751 10048/* rcu callback to free various structures associated with a task group */
6f505b16 10049static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10050{
29f59db3 10051 /* now it should be safe to free those cfs_rqs */
6f505b16 10052 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10053}
10054
9b5b7751 10055/* Destroy runqueue etc associated with a task group */
4cf86d77 10056void sched_destroy_group(struct task_group *tg)
29f59db3 10057{
8ed36996 10058 unsigned long flags;
9b5b7751 10059 int i;
29f59db3 10060
8ed36996 10061 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10062 for_each_possible_cpu(i) {
bccbe08a
PZ
10063 unregister_fair_sched_group(tg, i);
10064 unregister_rt_sched_group(tg, i);
9b5b7751 10065 }
6f505b16 10066 list_del_rcu(&tg->list);
f473aa5e 10067 list_del_rcu(&tg->siblings);
8ed36996 10068 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10069
9b5b7751 10070 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10071 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10072}
10073
9b5b7751 10074/* change task's runqueue when it moves between groups.
3a252015
IM
10075 * The caller of this function should have put the task in its new group
10076 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10077 * reflect its new group.
9b5b7751
SV
10078 */
10079void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10080{
10081 int on_rq, running;
10082 unsigned long flags;
10083 struct rq *rq;
10084
10085 rq = task_rq_lock(tsk, &flags);
10086
29f59db3
SV
10087 update_rq_clock(rq);
10088
051a1d1a 10089 running = task_current(rq, tsk);
29f59db3
SV
10090 on_rq = tsk->se.on_rq;
10091
0e1f3483 10092 if (on_rq)
29f59db3 10093 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10094 if (unlikely(running))
10095 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10096
6f505b16 10097 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10098
810b3817
PZ
10099#ifdef CONFIG_FAIR_GROUP_SCHED
10100 if (tsk->sched_class->moved_group)
10101 tsk->sched_class->moved_group(tsk);
10102#endif
10103
0e1f3483
HS
10104 if (unlikely(running))
10105 tsk->sched_class->set_curr_task(rq);
10106 if (on_rq)
7074badb 10107 enqueue_task(rq, tsk, 0);
29f59db3 10108
29f59db3
SV
10109 task_rq_unlock(rq, &flags);
10110}
6d6bc0ad 10111#endif /* CONFIG_GROUP_SCHED */
29f59db3 10112
052f1dc7 10113#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10114static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10115{
10116 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10117 int on_rq;
10118
29f59db3 10119 on_rq = se->on_rq;
62fb1851 10120 if (on_rq)
29f59db3
SV
10121 dequeue_entity(cfs_rq, se, 0);
10122
10123 se->load.weight = shares;
e05510d0 10124 se->load.inv_weight = 0;
29f59db3 10125
62fb1851 10126 if (on_rq)
29f59db3 10127 enqueue_entity(cfs_rq, se, 0);
c09595f6 10128}
62fb1851 10129
c09595f6
PZ
10130static void set_se_shares(struct sched_entity *se, unsigned long shares)
10131{
10132 struct cfs_rq *cfs_rq = se->cfs_rq;
10133 struct rq *rq = cfs_rq->rq;
10134 unsigned long flags;
10135
05fa785c 10136 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 10137 __set_se_shares(se, shares);
05fa785c 10138 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10139}
10140
8ed36996
PZ
10141static DEFINE_MUTEX(shares_mutex);
10142
4cf86d77 10143int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10144{
10145 int i;
8ed36996 10146 unsigned long flags;
c61935fd 10147
ec7dc8ac
DG
10148 /*
10149 * We can't change the weight of the root cgroup.
10150 */
10151 if (!tg->se[0])
10152 return -EINVAL;
10153
18d95a28
PZ
10154 if (shares < MIN_SHARES)
10155 shares = MIN_SHARES;
cb4ad1ff
MX
10156 else if (shares > MAX_SHARES)
10157 shares = MAX_SHARES;
62fb1851 10158
8ed36996 10159 mutex_lock(&shares_mutex);
9b5b7751 10160 if (tg->shares == shares)
5cb350ba 10161 goto done;
29f59db3 10162
8ed36996 10163 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10164 for_each_possible_cpu(i)
10165 unregister_fair_sched_group(tg, i);
f473aa5e 10166 list_del_rcu(&tg->siblings);
8ed36996 10167 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10168
10169 /* wait for any ongoing reference to this group to finish */
10170 synchronize_sched();
10171
10172 /*
10173 * Now we are free to modify the group's share on each cpu
10174 * w/o tripping rebalance_share or load_balance_fair.
10175 */
9b5b7751 10176 tg->shares = shares;
c09595f6
PZ
10177 for_each_possible_cpu(i) {
10178 /*
10179 * force a rebalance
10180 */
10181 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10182 set_se_shares(tg->se[i], shares);
c09595f6 10183 }
29f59db3 10184
6b2d7700
SV
10185 /*
10186 * Enable load balance activity on this group, by inserting it back on
10187 * each cpu's rq->leaf_cfs_rq_list.
10188 */
8ed36996 10189 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10190 for_each_possible_cpu(i)
10191 register_fair_sched_group(tg, i);
f473aa5e 10192 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10193 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10194done:
8ed36996 10195 mutex_unlock(&shares_mutex);
9b5b7751 10196 return 0;
29f59db3
SV
10197}
10198
5cb350ba
DG
10199unsigned long sched_group_shares(struct task_group *tg)
10200{
10201 return tg->shares;
10202}
052f1dc7 10203#endif
5cb350ba 10204
052f1dc7 10205#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10206/*
9f0c1e56 10207 * Ensure that the real time constraints are schedulable.
6f505b16 10208 */
9f0c1e56
PZ
10209static DEFINE_MUTEX(rt_constraints_mutex);
10210
10211static unsigned long to_ratio(u64 period, u64 runtime)
10212{
10213 if (runtime == RUNTIME_INF)
9a7e0b18 10214 return 1ULL << 20;
9f0c1e56 10215
9a7e0b18 10216 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10217}
10218
9a7e0b18
PZ
10219/* Must be called with tasklist_lock held */
10220static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10221{
9a7e0b18 10222 struct task_struct *g, *p;
b40b2e8e 10223
9a7e0b18
PZ
10224 do_each_thread(g, p) {
10225 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10226 return 1;
10227 } while_each_thread(g, p);
b40b2e8e 10228
9a7e0b18
PZ
10229 return 0;
10230}
b40b2e8e 10231
9a7e0b18
PZ
10232struct rt_schedulable_data {
10233 struct task_group *tg;
10234 u64 rt_period;
10235 u64 rt_runtime;
10236};
b40b2e8e 10237
9a7e0b18
PZ
10238static int tg_schedulable(struct task_group *tg, void *data)
10239{
10240 struct rt_schedulable_data *d = data;
10241 struct task_group *child;
10242 unsigned long total, sum = 0;
10243 u64 period, runtime;
b40b2e8e 10244
9a7e0b18
PZ
10245 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10246 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10247
9a7e0b18
PZ
10248 if (tg == d->tg) {
10249 period = d->rt_period;
10250 runtime = d->rt_runtime;
b40b2e8e 10251 }
b40b2e8e 10252
98a4826b
PZ
10253#ifdef CONFIG_USER_SCHED
10254 if (tg == &root_task_group) {
10255 period = global_rt_period();
10256 runtime = global_rt_runtime();
10257 }
10258#endif
10259
4653f803
PZ
10260 /*
10261 * Cannot have more runtime than the period.
10262 */
10263 if (runtime > period && runtime != RUNTIME_INF)
10264 return -EINVAL;
6f505b16 10265
4653f803
PZ
10266 /*
10267 * Ensure we don't starve existing RT tasks.
10268 */
9a7e0b18
PZ
10269 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10270 return -EBUSY;
6f505b16 10271
9a7e0b18 10272 total = to_ratio(period, runtime);
6f505b16 10273
4653f803
PZ
10274 /*
10275 * Nobody can have more than the global setting allows.
10276 */
10277 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10278 return -EINVAL;
6f505b16 10279
4653f803
PZ
10280 /*
10281 * The sum of our children's runtime should not exceed our own.
10282 */
9a7e0b18
PZ
10283 list_for_each_entry_rcu(child, &tg->children, siblings) {
10284 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10285 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10286
9a7e0b18
PZ
10287 if (child == d->tg) {
10288 period = d->rt_period;
10289 runtime = d->rt_runtime;
10290 }
6f505b16 10291
9a7e0b18 10292 sum += to_ratio(period, runtime);
9f0c1e56 10293 }
6f505b16 10294
9a7e0b18
PZ
10295 if (sum > total)
10296 return -EINVAL;
10297
10298 return 0;
6f505b16
PZ
10299}
10300
9a7e0b18 10301static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10302{
9a7e0b18
PZ
10303 struct rt_schedulable_data data = {
10304 .tg = tg,
10305 .rt_period = period,
10306 .rt_runtime = runtime,
10307 };
10308
10309 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10310}
10311
d0b27fa7
PZ
10312static int tg_set_bandwidth(struct task_group *tg,
10313 u64 rt_period, u64 rt_runtime)
6f505b16 10314{
ac086bc2 10315 int i, err = 0;
9f0c1e56 10316
9f0c1e56 10317 mutex_lock(&rt_constraints_mutex);
521f1a24 10318 read_lock(&tasklist_lock);
9a7e0b18
PZ
10319 err = __rt_schedulable(tg, rt_period, rt_runtime);
10320 if (err)
9f0c1e56 10321 goto unlock;
ac086bc2 10322
0986b11b 10323 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10324 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10325 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10326
10327 for_each_possible_cpu(i) {
10328 struct rt_rq *rt_rq = tg->rt_rq[i];
10329
0986b11b 10330 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10331 rt_rq->rt_runtime = rt_runtime;
0986b11b 10332 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10333 }
0986b11b 10334 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10335 unlock:
521f1a24 10336 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10337 mutex_unlock(&rt_constraints_mutex);
10338
10339 return err;
6f505b16
PZ
10340}
10341
d0b27fa7
PZ
10342int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10343{
10344 u64 rt_runtime, rt_period;
10345
10346 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10347 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10348 if (rt_runtime_us < 0)
10349 rt_runtime = RUNTIME_INF;
10350
10351 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10352}
10353
9f0c1e56
PZ
10354long sched_group_rt_runtime(struct task_group *tg)
10355{
10356 u64 rt_runtime_us;
10357
d0b27fa7 10358 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10359 return -1;
10360
d0b27fa7 10361 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10362 do_div(rt_runtime_us, NSEC_PER_USEC);
10363 return rt_runtime_us;
10364}
d0b27fa7
PZ
10365
10366int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10367{
10368 u64 rt_runtime, rt_period;
10369
10370 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10371 rt_runtime = tg->rt_bandwidth.rt_runtime;
10372
619b0488
R
10373 if (rt_period == 0)
10374 return -EINVAL;
10375
d0b27fa7
PZ
10376 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10377}
10378
10379long sched_group_rt_period(struct task_group *tg)
10380{
10381 u64 rt_period_us;
10382
10383 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10384 do_div(rt_period_us, NSEC_PER_USEC);
10385 return rt_period_us;
10386}
10387
10388static int sched_rt_global_constraints(void)
10389{
4653f803 10390 u64 runtime, period;
d0b27fa7
PZ
10391 int ret = 0;
10392
ec5d4989
HS
10393 if (sysctl_sched_rt_period <= 0)
10394 return -EINVAL;
10395
4653f803
PZ
10396 runtime = global_rt_runtime();
10397 period = global_rt_period();
10398
10399 /*
10400 * Sanity check on the sysctl variables.
10401 */
10402 if (runtime > period && runtime != RUNTIME_INF)
10403 return -EINVAL;
10b612f4 10404
d0b27fa7 10405 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10406 read_lock(&tasklist_lock);
4653f803 10407 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10408 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10409 mutex_unlock(&rt_constraints_mutex);
10410
10411 return ret;
10412}
54e99124
DG
10413
10414int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10415{
10416 /* Don't accept realtime tasks when there is no way for them to run */
10417 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10418 return 0;
10419
10420 return 1;
10421}
10422
6d6bc0ad 10423#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10424static int sched_rt_global_constraints(void)
10425{
ac086bc2
PZ
10426 unsigned long flags;
10427 int i;
10428
ec5d4989
HS
10429 if (sysctl_sched_rt_period <= 0)
10430 return -EINVAL;
10431
60aa605d
PZ
10432 /*
10433 * There's always some RT tasks in the root group
10434 * -- migration, kstopmachine etc..
10435 */
10436 if (sysctl_sched_rt_runtime == 0)
10437 return -EBUSY;
10438
0986b11b 10439 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
10440 for_each_possible_cpu(i) {
10441 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10442
0986b11b 10443 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10444 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 10445 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10446 }
0986b11b 10447 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 10448
d0b27fa7
PZ
10449 return 0;
10450}
6d6bc0ad 10451#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10452
10453int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10454 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10455 loff_t *ppos)
10456{
10457 int ret;
10458 int old_period, old_runtime;
10459 static DEFINE_MUTEX(mutex);
10460
10461 mutex_lock(&mutex);
10462 old_period = sysctl_sched_rt_period;
10463 old_runtime = sysctl_sched_rt_runtime;
10464
8d65af78 10465 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10466
10467 if (!ret && write) {
10468 ret = sched_rt_global_constraints();
10469 if (ret) {
10470 sysctl_sched_rt_period = old_period;
10471 sysctl_sched_rt_runtime = old_runtime;
10472 } else {
10473 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10474 def_rt_bandwidth.rt_period =
10475 ns_to_ktime(global_rt_period());
10476 }
10477 }
10478 mutex_unlock(&mutex);
10479
10480 return ret;
10481}
68318b8e 10482
052f1dc7 10483#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10484
10485/* return corresponding task_group object of a cgroup */
2b01dfe3 10486static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10487{
2b01dfe3
PM
10488 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10489 struct task_group, css);
68318b8e
SV
10490}
10491
10492static struct cgroup_subsys_state *
2b01dfe3 10493cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10494{
ec7dc8ac 10495 struct task_group *tg, *parent;
68318b8e 10496
2b01dfe3 10497 if (!cgrp->parent) {
68318b8e 10498 /* This is early initialization for the top cgroup */
68318b8e
SV
10499 return &init_task_group.css;
10500 }
10501
ec7dc8ac
DG
10502 parent = cgroup_tg(cgrp->parent);
10503 tg = sched_create_group(parent);
68318b8e
SV
10504 if (IS_ERR(tg))
10505 return ERR_PTR(-ENOMEM);
10506
68318b8e
SV
10507 return &tg->css;
10508}
10509
41a2d6cf
IM
10510static void
10511cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10512{
2b01dfe3 10513 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10514
10515 sched_destroy_group(tg);
10516}
10517
41a2d6cf 10518static int
be367d09 10519cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10520{
b68aa230 10521#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10522 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10523 return -EINVAL;
10524#else
68318b8e
SV
10525 /* We don't support RT-tasks being in separate groups */
10526 if (tsk->sched_class != &fair_sched_class)
10527 return -EINVAL;
b68aa230 10528#endif
be367d09
BB
10529 return 0;
10530}
68318b8e 10531
be367d09
BB
10532static int
10533cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10534 struct task_struct *tsk, bool threadgroup)
10535{
10536 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10537 if (retval)
10538 return retval;
10539 if (threadgroup) {
10540 struct task_struct *c;
10541 rcu_read_lock();
10542 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10543 retval = cpu_cgroup_can_attach_task(cgrp, c);
10544 if (retval) {
10545 rcu_read_unlock();
10546 return retval;
10547 }
10548 }
10549 rcu_read_unlock();
10550 }
68318b8e
SV
10551 return 0;
10552}
10553
10554static void
2b01dfe3 10555cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10556 struct cgroup *old_cont, struct task_struct *tsk,
10557 bool threadgroup)
68318b8e
SV
10558{
10559 sched_move_task(tsk);
be367d09
BB
10560 if (threadgroup) {
10561 struct task_struct *c;
10562 rcu_read_lock();
10563 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10564 sched_move_task(c);
10565 }
10566 rcu_read_unlock();
10567 }
68318b8e
SV
10568}
10569
052f1dc7 10570#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10571static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10572 u64 shareval)
68318b8e 10573{
2b01dfe3 10574 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10575}
10576
f4c753b7 10577static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10578{
2b01dfe3 10579 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10580
10581 return (u64) tg->shares;
10582}
6d6bc0ad 10583#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10584
052f1dc7 10585#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10586static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10587 s64 val)
6f505b16 10588{
06ecb27c 10589 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10590}
10591
06ecb27c 10592static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10593{
06ecb27c 10594 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10595}
d0b27fa7
PZ
10596
10597static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10598 u64 rt_period_us)
10599{
10600 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10601}
10602
10603static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10604{
10605 return sched_group_rt_period(cgroup_tg(cgrp));
10606}
6d6bc0ad 10607#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10608
fe5c7cc2 10609static struct cftype cpu_files[] = {
052f1dc7 10610#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10611 {
10612 .name = "shares",
f4c753b7
PM
10613 .read_u64 = cpu_shares_read_u64,
10614 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10615 },
052f1dc7
PZ
10616#endif
10617#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10618 {
9f0c1e56 10619 .name = "rt_runtime_us",
06ecb27c
PM
10620 .read_s64 = cpu_rt_runtime_read,
10621 .write_s64 = cpu_rt_runtime_write,
6f505b16 10622 },
d0b27fa7
PZ
10623 {
10624 .name = "rt_period_us",
f4c753b7
PM
10625 .read_u64 = cpu_rt_period_read_uint,
10626 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10627 },
052f1dc7 10628#endif
68318b8e
SV
10629};
10630
10631static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10632{
fe5c7cc2 10633 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10634}
10635
10636struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10637 .name = "cpu",
10638 .create = cpu_cgroup_create,
10639 .destroy = cpu_cgroup_destroy,
10640 .can_attach = cpu_cgroup_can_attach,
10641 .attach = cpu_cgroup_attach,
10642 .populate = cpu_cgroup_populate,
10643 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10644 .early_init = 1,
10645};
10646
052f1dc7 10647#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10648
10649#ifdef CONFIG_CGROUP_CPUACCT
10650
10651/*
10652 * CPU accounting code for task groups.
10653 *
10654 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10655 * (balbir@in.ibm.com).
10656 */
10657
934352f2 10658/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10659struct cpuacct {
10660 struct cgroup_subsys_state css;
10661 /* cpuusage holds pointer to a u64-type object on every cpu */
10662 u64 *cpuusage;
ef12fefa 10663 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10664 struct cpuacct *parent;
d842de87
SV
10665};
10666
10667struct cgroup_subsys cpuacct_subsys;
10668
10669/* return cpu accounting group corresponding to this container */
32cd756a 10670static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10671{
32cd756a 10672 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10673 struct cpuacct, css);
10674}
10675
10676/* return cpu accounting group to which this task belongs */
10677static inline struct cpuacct *task_ca(struct task_struct *tsk)
10678{
10679 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10680 struct cpuacct, css);
10681}
10682
10683/* create a new cpu accounting group */
10684static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10685 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10686{
10687 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10688 int i;
d842de87
SV
10689
10690 if (!ca)
ef12fefa 10691 goto out;
d842de87
SV
10692
10693 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10694 if (!ca->cpuusage)
10695 goto out_free_ca;
10696
10697 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10698 if (percpu_counter_init(&ca->cpustat[i], 0))
10699 goto out_free_counters;
d842de87 10700
934352f2
BR
10701 if (cgrp->parent)
10702 ca->parent = cgroup_ca(cgrp->parent);
10703
d842de87 10704 return &ca->css;
ef12fefa
BR
10705
10706out_free_counters:
10707 while (--i >= 0)
10708 percpu_counter_destroy(&ca->cpustat[i]);
10709 free_percpu(ca->cpuusage);
10710out_free_ca:
10711 kfree(ca);
10712out:
10713 return ERR_PTR(-ENOMEM);
d842de87
SV
10714}
10715
10716/* destroy an existing cpu accounting group */
41a2d6cf 10717static void
32cd756a 10718cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10719{
32cd756a 10720 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10721 int i;
d842de87 10722
ef12fefa
BR
10723 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10724 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10725 free_percpu(ca->cpuusage);
10726 kfree(ca);
10727}
10728
720f5498
KC
10729static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10730{
b36128c8 10731 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10732 u64 data;
10733
10734#ifndef CONFIG_64BIT
10735 /*
10736 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10737 */
05fa785c 10738 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10739 data = *cpuusage;
05fa785c 10740 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10741#else
10742 data = *cpuusage;
10743#endif
10744
10745 return data;
10746}
10747
10748static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10749{
b36128c8 10750 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10751
10752#ifndef CONFIG_64BIT
10753 /*
10754 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10755 */
05fa785c 10756 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10757 *cpuusage = val;
05fa785c 10758 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10759#else
10760 *cpuusage = val;
10761#endif
10762}
10763
d842de87 10764/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10765static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10766{
32cd756a 10767 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10768 u64 totalcpuusage = 0;
10769 int i;
10770
720f5498
KC
10771 for_each_present_cpu(i)
10772 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10773
10774 return totalcpuusage;
10775}
10776
0297b803
DG
10777static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10778 u64 reset)
10779{
10780 struct cpuacct *ca = cgroup_ca(cgrp);
10781 int err = 0;
10782 int i;
10783
10784 if (reset) {
10785 err = -EINVAL;
10786 goto out;
10787 }
10788
720f5498
KC
10789 for_each_present_cpu(i)
10790 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10791
0297b803
DG
10792out:
10793 return err;
10794}
10795
e9515c3c
KC
10796static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10797 struct seq_file *m)
10798{
10799 struct cpuacct *ca = cgroup_ca(cgroup);
10800 u64 percpu;
10801 int i;
10802
10803 for_each_present_cpu(i) {
10804 percpu = cpuacct_cpuusage_read(ca, i);
10805 seq_printf(m, "%llu ", (unsigned long long) percpu);
10806 }
10807 seq_printf(m, "\n");
10808 return 0;
10809}
10810
ef12fefa
BR
10811static const char *cpuacct_stat_desc[] = {
10812 [CPUACCT_STAT_USER] = "user",
10813 [CPUACCT_STAT_SYSTEM] = "system",
10814};
10815
10816static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10817 struct cgroup_map_cb *cb)
10818{
10819 struct cpuacct *ca = cgroup_ca(cgrp);
10820 int i;
10821
10822 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10823 s64 val = percpu_counter_read(&ca->cpustat[i]);
10824 val = cputime64_to_clock_t(val);
10825 cb->fill(cb, cpuacct_stat_desc[i], val);
10826 }
10827 return 0;
10828}
10829
d842de87
SV
10830static struct cftype files[] = {
10831 {
10832 .name = "usage",
f4c753b7
PM
10833 .read_u64 = cpuusage_read,
10834 .write_u64 = cpuusage_write,
d842de87 10835 },
e9515c3c
KC
10836 {
10837 .name = "usage_percpu",
10838 .read_seq_string = cpuacct_percpu_seq_read,
10839 },
ef12fefa
BR
10840 {
10841 .name = "stat",
10842 .read_map = cpuacct_stats_show,
10843 },
d842de87
SV
10844};
10845
32cd756a 10846static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10847{
32cd756a 10848 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10849}
10850
10851/*
10852 * charge this task's execution time to its accounting group.
10853 *
10854 * called with rq->lock held.
10855 */
10856static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10857{
10858 struct cpuacct *ca;
934352f2 10859 int cpu;
d842de87 10860
c40c6f85 10861 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10862 return;
10863
934352f2 10864 cpu = task_cpu(tsk);
a18b83b7
BR
10865
10866 rcu_read_lock();
10867
d842de87 10868 ca = task_ca(tsk);
d842de87 10869
934352f2 10870 for (; ca; ca = ca->parent) {
b36128c8 10871 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10872 *cpuusage += cputime;
10873 }
a18b83b7
BR
10874
10875 rcu_read_unlock();
d842de87
SV
10876}
10877
ef12fefa
BR
10878/*
10879 * Charge the system/user time to the task's accounting group.
10880 */
10881static void cpuacct_update_stats(struct task_struct *tsk,
10882 enum cpuacct_stat_index idx, cputime_t val)
10883{
10884 struct cpuacct *ca;
10885
10886 if (unlikely(!cpuacct_subsys.active))
10887 return;
10888
10889 rcu_read_lock();
10890 ca = task_ca(tsk);
10891
10892 do {
10893 percpu_counter_add(&ca->cpustat[idx], val);
10894 ca = ca->parent;
10895 } while (ca);
10896 rcu_read_unlock();
10897}
10898
d842de87
SV
10899struct cgroup_subsys cpuacct_subsys = {
10900 .name = "cpuacct",
10901 .create = cpuacct_create,
10902 .destroy = cpuacct_destroy,
10903 .populate = cpuacct_populate,
10904 .subsys_id = cpuacct_subsys_id,
10905};
10906#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10907
10908#ifndef CONFIG_SMP
10909
10910int rcu_expedited_torture_stats(char *page)
10911{
10912 return 0;
10913}
10914EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10915
10916void synchronize_sched_expedited(void)
10917{
10918}
10919EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10920
10921#else /* #ifndef CONFIG_SMP */
10922
10923static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10924static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10925
10926#define RCU_EXPEDITED_STATE_POST -2
10927#define RCU_EXPEDITED_STATE_IDLE -1
10928
10929static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10930
10931int rcu_expedited_torture_stats(char *page)
10932{
10933 int cnt = 0;
10934 int cpu;
10935
10936 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10937 for_each_online_cpu(cpu) {
10938 cnt += sprintf(&page[cnt], " %d:%d",
10939 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10940 }
10941 cnt += sprintf(&page[cnt], "\n");
10942 return cnt;
10943}
10944EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10945
10946static long synchronize_sched_expedited_count;
10947
10948/*
10949 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10950 * approach to force grace period to end quickly. This consumes
10951 * significant time on all CPUs, and is thus not recommended for
10952 * any sort of common-case code.
10953 *
10954 * Note that it is illegal to call this function while holding any
10955 * lock that is acquired by a CPU-hotplug notifier. Failing to
10956 * observe this restriction will result in deadlock.
10957 */
10958void synchronize_sched_expedited(void)
10959{
10960 int cpu;
10961 unsigned long flags;
10962 bool need_full_sync = 0;
10963 struct rq *rq;
10964 struct migration_req *req;
10965 long snap;
10966 int trycount = 0;
10967
10968 smp_mb(); /* ensure prior mod happens before capturing snap. */
10969 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10970 get_online_cpus();
10971 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10972 put_online_cpus();
10973 if (trycount++ < 10)
10974 udelay(trycount * num_online_cpus());
10975 else {
10976 synchronize_sched();
10977 return;
10978 }
10979 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10980 smp_mb(); /* ensure test happens before caller kfree */
10981 return;
10982 }
10983 get_online_cpus();
10984 }
10985 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10986 for_each_online_cpu(cpu) {
10987 rq = cpu_rq(cpu);
10988 req = &per_cpu(rcu_migration_req, cpu);
10989 init_completion(&req->done);
10990 req->task = NULL;
10991 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 10992 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 10993 list_add(&req->list, &rq->migration_queue);
05fa785c 10994 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
10995 wake_up_process(rq->migration_thread);
10996 }
10997 for_each_online_cpu(cpu) {
10998 rcu_expedited_state = cpu;
10999 req = &per_cpu(rcu_migration_req, cpu);
11000 rq = cpu_rq(cpu);
11001 wait_for_completion(&req->done);
05fa785c 11002 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
11003 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11004 need_full_sync = 1;
11005 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 11006 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11007 }
11008 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 11009 synchronize_sched_expedited_count++;
03b042bf
PM
11010 mutex_unlock(&rcu_sched_expedited_mutex);
11011 put_online_cpus();
11012 if (need_full_sync)
11013 synchronize_sched();
11014}
11015EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11016
11017#endif /* #else #ifndef CONFIG_SMP */