]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: Fix SMT scheduler regression in find_busiest_queue()
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
1871e52c 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
0986b11b 473 raw_spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491 527 /* runqueue lock: */
05fa785c 528 raw_spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
537#ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1b9508f6
MG
592 u64 idle_stamp;
593 u64 avg_idle;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
674311d5
NP
648/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 650 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
48f24c4d
IM
655#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
657
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues))
660#define task_rq(p) cpu_rq(task_cpu(p))
661#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 662#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 663
aa9c4c0f 664inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
665{
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667}
668
bf5c91ba
IM
669/*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672#ifdef CONFIG_SCHED_DEBUG
673# define const_debug __read_mostly
674#else
675# define const_debug static const
676#endif
677
017730c1
IM
678/**
679 * runqueue_is_locked
e17b38bf 680 * @cpu: the processor in question.
017730c1
IM
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
05fa785c 688 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
c24b7c52 755 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
42994724 775 *ppos += cnt;
f00b45c1
PZ
776
777 return cnt;
778}
779
34f3a814
LZ
780static int sched_feat_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, sched_feat_show, NULL);
783}
784
828c0950 785static const struct file_operations sched_feat_fops = {
34f3a814
LZ
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
f00b45c1
PZ
791};
792
793static __init int sched_init_debug(void)
794{
f00b45c1
PZ
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799}
800late_initcall(sched_init_debug);
801
802#endif
803
804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 805
b82d9fdd
PZ
806/*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
2398f2c6
PZ
812/*
813 * ratelimit for updating the group shares.
55cd5340 814 * default: 0.25ms
2398f2c6 815 */
55cd5340 816unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 817unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 818
ffda12a1
PZ
819/*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824unsigned int sysctl_sched_shares_thresh = 4;
825
e9e9250b
PZ
826/*
827 * period over which we average the RT time consumption, measured
828 * in ms.
829 *
830 * default: 1s
831 */
832const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833
fa85ae24 834/*
9f0c1e56 835 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
836 * default: 1s
837 */
9f0c1e56 838unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 839
6892b75e
IM
840static __read_mostly int scheduler_running;
841
9f0c1e56
PZ
842/*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846int sysctl_sched_rt_runtime = 950000;
fa85ae24 847
d0b27fa7
PZ
848static inline u64 global_rt_period(void)
849{
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851}
852
853static inline u64 global_rt_runtime(void)
854{
e26873bb 855 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859}
fa85ae24 860
1da177e4 861#ifndef prepare_arch_switch
4866cde0
NP
862# define prepare_arch_switch(next) do { } while (0)
863#endif
864#ifndef finish_arch_switch
865# define finish_arch_switch(prev) do { } while (0)
866#endif
867
051a1d1a
DA
868static inline int task_current(struct rq *rq, struct task_struct *p)
869{
870 return rq->curr == p;
871}
872
4866cde0 873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 875{
051a1d1a 876 return task_current(rq, p);
4866cde0
NP
877}
878
70b97a7f 879static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
880{
881}
882
70b97a7f 883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 884{
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
05fa785c 896 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 return p->oncpu;
904#else
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918#endif
919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 920 raw_spin_unlock_irq(&rq->lock);
4866cde0 921#else
05fa785c 922 raw_spin_unlock(&rq->lock);
4866cde0
NP
923#endif
924}
925
70b97a7f 926static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
927{
928#ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936#endif
937#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
1da177e4 939#endif
4866cde0
NP
940}
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 942
b29739f9
IM
943/*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
70b97a7f 947static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
948 __acquires(rq->lock)
949{
3a5c359a
AK
950 for (;;) {
951 struct rq *rq = task_rq(p);
05fa785c 952 raw_spin_lock(&rq->lock);
3a5c359a
AK
953 if (likely(rq == task_rq(p)))
954 return rq;
05fa785c 955 raw_spin_unlock(&rq->lock);
b29739f9 956 }
b29739f9
IM
957}
958
1da177e4
LT
959/*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 961 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
962 * explicitly disabling preemption.
963 */
70b97a7f 964static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
965 __acquires(rq->lock)
966{
70b97a7f 967 struct rq *rq;
1da177e4 968
3a5c359a
AK
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
05fa785c 972 raw_spin_lock(&rq->lock);
3a5c359a
AK
973 if (likely(rq == task_rq(p)))
974 return rq;
05fa785c 975 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 976 }
1da177e4
LT
977}
978
ad474cac
ON
979void task_rq_unlock_wait(struct task_struct *p)
980{
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 984 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
985}
986
a9957449 987static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
988 __releases(rq->lock)
989{
05fa785c 990 raw_spin_unlock(&rq->lock);
b29739f9
IM
991}
992
70b97a7f 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
994 __releases(rq->lock)
995{
05fa785c 996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
997}
998
1da177e4 999/*
cc2a73b5 1000 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1001 */
a9957449 1002static struct rq *this_rq_lock(void)
1da177e4
LT
1003 __acquires(rq->lock)
1004{
70b97a7f 1005 struct rq *rq;
1da177e4
LT
1006
1007 local_irq_disable();
1008 rq = this_rq();
05fa785c 1009 raw_spin_lock(&rq->lock);
1da177e4
LT
1010
1011 return rq;
1012}
1013
8f4d37ec
PZ
1014#ifdef CONFIG_SCHED_HRTICK
1015/*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
8f4d37ec
PZ
1025
1026/*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031static inline int hrtick_enabled(struct rq *rq)
1032{
1033 if (!sched_feat(HRTICK))
1034 return 0;
ba42059f 1035 if (!cpu_active(cpu_of(rq)))
b328ca18 1036 return 0;
8f4d37ec
PZ
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
8f4d37ec
PZ
1040static void hrtick_clear(struct rq *rq)
1041{
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044}
1045
8f4d37ec
PZ
1046/*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051{
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
05fa785c 1056 raw_spin_lock(&rq->lock);
3e51f33f 1057 update_rq_clock(rq);
8f4d37ec 1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1059 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1060
1061 return HRTIMER_NORESTART;
1062}
1063
95e904c7 1064#ifdef CONFIG_SMP
31656519
PZ
1065/*
1066 * called from hardirq (IPI) context
1067 */
1068static void __hrtick_start(void *arg)
b328ca18 1069{
31656519 1070 struct rq *rq = arg;
b328ca18 1071
05fa785c 1072 raw_spin_lock(&rq->lock);
31656519
PZ
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
05fa785c 1075 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1076}
1077
31656519
PZ
1078/*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1084{
31656519
PZ
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1087
cc584b21 1088 hrtimer_set_expires(timer, time);
31656519
PZ
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
6e275637 1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1094 rq->hrtick_csd_pending = 1;
1095 }
b328ca18
PZ
1096}
1097
1098static int
1099hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100{
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
31656519 1110 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115}
1116
fa748203 1117static __init void init_hrtick(void)
b328ca18
PZ
1118{
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120}
31656519
PZ
1121#else
1122/*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127static void hrtick_start(struct rq *rq, u64 delay)
1128{
7f1e2ca9 1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1130 HRTIMER_MODE_REL_PINNED, 0);
31656519 1131}
b328ca18 1132
006c75f1 1133static inline void init_hrtick(void)
8f4d37ec 1134{
8f4d37ec 1135}
31656519 1136#endif /* CONFIG_SMP */
8f4d37ec 1137
31656519 1138static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1139{
31656519
PZ
1140#ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
8f4d37ec 1142
31656519
PZ
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146#endif
8f4d37ec 1147
31656519
PZ
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
8f4d37ec 1150}
006c75f1 1151#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1152static inline void hrtick_clear(struct rq *rq)
1153{
1154}
1155
8f4d37ec
PZ
1156static inline void init_rq_hrtick(struct rq *rq)
1157{
1158}
1159
b328ca18
PZ
1160static inline void init_hrtick(void)
1161{
1162}
006c75f1 1163#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1164
c24d20db
IM
1165/*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172#ifdef CONFIG_SMP
1173
1174#ifndef tsk_is_polling
1175#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176#endif
1177
31656519 1178static void resched_task(struct task_struct *p)
c24d20db
IM
1179{
1180 int cpu;
1181
05fa785c 1182 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1183
5ed0cec0 1184 if (test_tsk_need_resched(p))
c24d20db
IM
1185 return;
1186
5ed0cec0 1187 set_tsk_need_resched(p);
c24d20db
IM
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197}
1198
1199static void resched_cpu(int cpu)
1200{
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
05fa785c 1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1205 return;
1206 resched_task(cpu_curr(cpu));
05fa785c 1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1208}
06d8308c
TG
1209
1210#ifdef CONFIG_NO_HZ
1211/*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221void wake_up_idle_cpu(int cpu)
1222{
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
5ed0cec0 1243 set_tsk_need_resched(rq->idle);
06d8308c
TG
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249}
6d6bc0ad 1250#endif /* CONFIG_NO_HZ */
06d8308c 1251
e9e9250b
PZ
1252static u64 sched_avg_period(void)
1253{
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255}
1256
1257static void sched_avg_update(struct rq *rq)
1258{
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265}
1266
1267static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268{
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271}
1272
6d6bc0ad 1273#else /* !CONFIG_SMP */
31656519 1274static void resched_task(struct task_struct *p)
c24d20db 1275{
05fa785c 1276 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1277 set_tsk_need_resched(p);
c24d20db 1278}
e9e9250b
PZ
1279
1280static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281{
1282}
6d6bc0ad 1283#endif /* CONFIG_SMP */
c24d20db 1284
45bf76df
IM
1285#if BITS_PER_LONG == 32
1286# define WMULT_CONST (~0UL)
1287#else
1288# define WMULT_CONST (1UL << 32)
1289#endif
1290
1291#define WMULT_SHIFT 32
1292
194081eb
IM
1293/*
1294 * Shift right and round:
1295 */
cf2ab469 1296#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1297
a7be37ac
PZ
1298/*
1299 * delta *= weight / lw
1300 */
cb1c4fc9 1301static unsigned long
45bf76df
IM
1302calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1304{
1305 u64 tmp;
1306
7a232e03
LJ
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1313 }
45bf76df
IM
1314
1315 tmp = (u64)delta_exec * weight;
1316 /*
1317 * Check whether we'd overflow the 64-bit multiplication:
1318 */
194081eb 1319 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1321 WMULT_SHIFT/2);
1322 else
cf2ab469 1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1324
ecf691da 1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1329{
1330 lw->weight += inc;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1335{
1336 lw->weight -= dec;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
2dd73a4f
PW
1340/*
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1347 */
1348
cce7ade8
PZ
1349#define WEIGHT_IDLEPRIO 3
1350#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1351
1352/*
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1357 *
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
dd41f596
IM
1363 */
1364static const int prio_to_weight[40] = {
254753dc
IM
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1373};
1374
5714d2de
IM
1375/*
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 *
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1381 */
dd41f596 1382static const u32 prio_to_wmult[40] = {
254753dc
IM
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1391};
2dd73a4f 1392
dd41f596
IM
1393static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395/*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404};
1405
e1d1484f
PW
1406#ifdef CONFIG_SMP
1407static unsigned long
1408balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413static int
1414iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
e1d1484f 1417#endif
dd41f596 1418
ef12fefa
BR
1419/* Time spent by the tasks of the cpu accounting group executing in ... */
1420enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1423
1424 CPUACCT_STAT_NSTATS,
1425};
1426
d842de87
SV
1427#ifdef CONFIG_CGROUP_CPUACCT
1428static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1429static void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1431#else
1432static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1433static inline void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1435#endif
1436
18d95a28
PZ
1437static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1438{
1439 update_load_add(&rq->load, load);
1440}
1441
1442static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1443{
1444 update_load_sub(&rq->load, load);
1445}
1446
7940ca36 1447#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1448typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1449
1450/*
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1453 */
eb755805 1454static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1455{
1456 struct task_group *parent, *child;
eb755805 1457 int ret;
c09595f6
PZ
1458
1459 rcu_read_lock();
1460 parent = &root_task_group;
1461down:
eb755805
PZ
1462 ret = (*down)(parent, data);
1463 if (ret)
1464 goto out_unlock;
c09595f6
PZ
1465 list_for_each_entry_rcu(child, &parent->children, siblings) {
1466 parent = child;
1467 goto down;
1468
1469up:
1470 continue;
1471 }
eb755805
PZ
1472 ret = (*up)(parent, data);
1473 if (ret)
1474 goto out_unlock;
c09595f6
PZ
1475
1476 child = parent;
1477 parent = parent->parent;
1478 if (parent)
1479 goto up;
eb755805 1480out_unlock:
c09595f6 1481 rcu_read_unlock();
eb755805
PZ
1482
1483 return ret;
c09595f6
PZ
1484}
1485
eb755805
PZ
1486static int tg_nop(struct task_group *tg, void *data)
1487{
1488 return 0;
c09595f6 1489}
eb755805
PZ
1490#endif
1491
1492#ifdef CONFIG_SMP
f5f08f39
PZ
1493/* Used instead of source_load when we know the type == 0 */
1494static unsigned long weighted_cpuload(const int cpu)
1495{
1496 return cpu_rq(cpu)->load.weight;
1497}
1498
1499/*
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1502 *
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1505 */
1506static unsigned long source_load(int cpu, int type)
1507{
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return min(rq->cpu_load[type-1], total);
1515}
1516
1517/*
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 */
1521static unsigned long target_load(int cpu, int type)
1522{
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long total = weighted_cpuload(cpu);
1525
1526 if (type == 0 || !sched_feat(LB_BIAS))
1527 return total;
1528
1529 return max(rq->cpu_load[type-1], total);
1530}
1531
ae154be1
PZ
1532static struct sched_group *group_of(int cpu)
1533{
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1535
1536 if (!sd)
1537 return NULL;
1538
1539 return sd->groups;
1540}
1541
1542static unsigned long power_of(int cpu)
1543{
1544 struct sched_group *group = group_of(cpu);
1545
1546 if (!group)
1547 return SCHED_LOAD_SCALE;
1548
1549 return group->cpu_power;
1550}
1551
eb755805
PZ
1552static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1553
1554static unsigned long cpu_avg_load_per_task(int cpu)
1555{
1556 struct rq *rq = cpu_rq(cpu);
af6d596f 1557 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1558
4cd42620
SR
1559 if (nr_running)
1560 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1561 else
1562 rq->avg_load_per_task = 0;
eb755805
PZ
1563
1564 return rq->avg_load_per_task;
1565}
1566
1567#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1568
4a6cc4bd 1569static __read_mostly unsigned long *update_shares_data;
34d76c41 1570
c09595f6
PZ
1571static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572
1573/*
1574 * Calculate and set the cpu's group shares.
1575 */
34d76c41
PZ
1576static void update_group_shares_cpu(struct task_group *tg, int cpu,
1577 unsigned long sd_shares,
1578 unsigned long sd_rq_weight,
4a6cc4bd 1579 unsigned long *usd_rq_weight)
18d95a28 1580{
34d76c41 1581 unsigned long shares, rq_weight;
a5004278 1582 int boost = 0;
c09595f6 1583
4a6cc4bd 1584 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1585 if (!rq_weight) {
1586 boost = 1;
1587 rq_weight = NICE_0_LOAD;
1588 }
c8cba857 1589
c09595f6 1590 /*
a8af7246
PZ
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
c09595f6 1594 */
ec4e0e2f 1595 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1596 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1597
ffda12a1
PZ
1598 if (abs(shares - tg->se[cpu]->load.weight) >
1599 sysctl_sched_shares_thresh) {
1600 struct rq *rq = cpu_rq(cpu);
1601 unsigned long flags;
c09595f6 1602
05fa785c 1603 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1606 __set_se_shares(tg->se[cpu], shares);
05fa785c 1607 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1608 }
18d95a28 1609}
c09595f6
PZ
1610
1611/*
c8cba857
PZ
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
c09595f6 1615 */
eb755805 1616static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1617{
cd8ad40d 1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1619 unsigned long *usd_rq_weight;
eb755805 1620 struct sched_domain *sd = data;
34d76c41 1621 unsigned long flags;
c8cba857 1622 int i;
c09595f6 1623
34d76c41
PZ
1624 if (!tg->se[0])
1625 return 0;
1626
1627 local_irq_save(flags);
4a6cc4bd 1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1629
758b2cdc 1630 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1631 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1632 usd_rq_weight[i] = weight;
34d76c41 1633
cd8ad40d 1634 rq_weight += weight;
ec4e0e2f
KC
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
ec4e0e2f
KC
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
cd8ad40d 1643 sum_weight += weight;
c8cba857 1644 shares += tg->cfs_rq[i]->shares;
c09595f6 1645 }
c09595f6 1646
cd8ad40d
PZ
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
c8cba857
PZ
1650 if ((!shares && rq_weight) || shares > tg->shares)
1651 shares = tg->shares;
1652
1653 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1654 shares = tg->shares;
c09595f6 1655
758b2cdc 1656 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1658
1659 local_irq_restore(flags);
eb755805
PZ
1660
1661 return 0;
c09595f6
PZ
1662}
1663
1664/*
c8cba857
PZ
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
c09595f6 1668 */
eb755805 1669static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1670{
c8cba857 1671 unsigned long load;
eb755805 1672 long cpu = (long)data;
c09595f6 1673
c8cba857
PZ
1674 if (!tg->parent) {
1675 load = cpu_rq(cpu)->load.weight;
1676 } else {
1677 load = tg->parent->cfs_rq[cpu]->h_load;
1678 load *= tg->cfs_rq[cpu]->shares;
1679 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 }
c09595f6 1681
c8cba857 1682 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1683
eb755805 1684 return 0;
c09595f6
PZ
1685}
1686
c8cba857 1687static void update_shares(struct sched_domain *sd)
4d8d595d 1688{
e7097159
PZ
1689 s64 elapsed;
1690 u64 now;
1691
1692 if (root_task_group_empty())
1693 return;
1694
1695 now = cpu_clock(raw_smp_processor_id());
1696 elapsed = now - sd->last_update;
2398f2c6
PZ
1697
1698 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1699 sd->last_update = now;
eb755805 1700 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1701 }
4d8d595d
PZ
1702}
1703
3e5459b4
PZ
1704static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705{
e7097159
PZ
1706 if (root_task_group_empty())
1707 return;
1708
05fa785c 1709 raw_spin_unlock(&rq->lock);
3e5459b4 1710 update_shares(sd);
05fa785c 1711 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1712}
1713
eb755805 1714static void update_h_load(long cpu)
c09595f6 1715{
e7097159
PZ
1716 if (root_task_group_empty())
1717 return;
1718
eb755805 1719 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1720}
1721
c09595f6
PZ
1722#else
1723
c8cba857 1724static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1725{
1726}
1727
3e5459b4
PZ
1728static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729{
1730}
1731
18d95a28
PZ
1732#endif
1733
8f45e2b5
GH
1734#ifdef CONFIG_PREEMPT
1735
b78bb868
PZ
1736static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737
70574a99 1738/*
8f45e2b5
GH
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
70574a99 1745 */
8f45e2b5
GH
1746static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 __releases(this_rq->lock)
1748 __acquires(busiest->lock)
1749 __acquires(this_rq->lock)
1750{
05fa785c 1751 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1752 double_rq_lock(this_rq, busiest);
1753
1754 return 1;
1755}
1756
1757#else
1758/*
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1764 */
1765static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1766 __releases(this_rq->lock)
1767 __acquires(busiest->lock)
1768 __acquires(this_rq->lock)
1769{
1770 int ret = 0;
1771
05fa785c 1772 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1773 if (busiest < this_rq) {
05fa785c
TG
1774 raw_spin_unlock(&this_rq->lock);
1775 raw_spin_lock(&busiest->lock);
1776 raw_spin_lock_nested(&this_rq->lock,
1777 SINGLE_DEPTH_NESTING);
70574a99
AD
1778 ret = 1;
1779 } else
05fa785c
TG
1780 raw_spin_lock_nested(&busiest->lock,
1781 SINGLE_DEPTH_NESTING);
70574a99
AD
1782 }
1783 return ret;
1784}
1785
8f45e2b5
GH
1786#endif /* CONFIG_PREEMPT */
1787
1788/*
1789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1790 */
1791static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1792{
1793 if (unlikely(!irqs_disabled())) {
1794 /* printk() doesn't work good under rq->lock */
05fa785c 1795 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1796 BUG_ON(1);
1797 }
1798
1799 return _double_lock_balance(this_rq, busiest);
1800}
1801
70574a99
AD
1802static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1803 __releases(busiest->lock)
1804{
05fa785c 1805 raw_spin_unlock(&busiest->lock);
70574a99
AD
1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1807}
18d95a28
PZ
1808#endif
1809
30432094 1810#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1811static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812{
30432094 1813#ifdef CONFIG_SMP
34e83e85
IM
1814 cfs_rq->shares = shares;
1815#endif
1816}
30432094 1817#endif
e7693a36 1818
dce48a84 1819static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1820static void update_sysctl(void);
acb4a848 1821static int get_update_sysctl_factor(void);
dce48a84 1822
cd29fe6f
PZ
1823static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824{
1825 set_task_rq(p, cpu);
1826#ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834#endif
1835}
dce48a84 1836
dd41f596 1837#include "sched_stats.h"
dd41f596 1838#include "sched_idletask.c"
5522d5d5
IM
1839#include "sched_fair.c"
1840#include "sched_rt.c"
dd41f596
IM
1841#ifdef CONFIG_SCHED_DEBUG
1842# include "sched_debug.c"
1843#endif
1844
1845#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1846#define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
dd41f596 1848
c09595f6 1849static void inc_nr_running(struct rq *rq)
9c217245
IM
1850{
1851 rq->nr_running++;
9c217245
IM
1852}
1853
c09595f6 1854static void dec_nr_running(struct rq *rq)
9c217245
IM
1855{
1856 rq->nr_running--;
9c217245
IM
1857}
1858
45bf76df
IM
1859static void set_load_weight(struct task_struct *p)
1860{
1861 if (task_has_rt_policy(p)) {
dd41f596
IM
1862 p->se.load.weight = prio_to_weight[0] * 2;
1863 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1864 return;
1865 }
45bf76df 1866
dd41f596
IM
1867 /*
1868 * SCHED_IDLE tasks get minimal weight:
1869 */
1870 if (p->policy == SCHED_IDLE) {
1871 p->se.load.weight = WEIGHT_IDLEPRIO;
1872 p->se.load.inv_weight = WMULT_IDLEPRIO;
1873 return;
1874 }
71f8bd46 1875
dd41f596
IM
1876 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1877 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1878}
1879
2087a1ad
GH
1880static void update_avg(u64 *avg, u64 sample)
1881{
1882 s64 diff = sample - *avg;
1883 *avg += diff >> 3;
1884}
1885
8159f87e 1886static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1887{
831451ac
PZ
1888 if (wakeup)
1889 p->se.start_runtime = p->se.sum_exec_runtime;
1890
dd41f596 1891 sched_info_queued(p);
fd390f6a 1892 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1893 p->se.on_rq = 1;
71f8bd46
IM
1894}
1895
69be72c1 1896static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1897{
831451ac
PZ
1898 if (sleep) {
1899 if (p->se.last_wakeup) {
1900 update_avg(&p->se.avg_overlap,
1901 p->se.sum_exec_runtime - p->se.last_wakeup);
1902 p->se.last_wakeup = 0;
1903 } else {
1904 update_avg(&p->se.avg_wakeup,
1905 sysctl_sched_wakeup_granularity);
1906 }
2087a1ad
GH
1907 }
1908
46ac22ba 1909 sched_info_dequeued(p);
f02231e5 1910 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1911 p->se.on_rq = 0;
71f8bd46
IM
1912}
1913
14531189 1914/*
dd41f596 1915 * __normal_prio - return the priority that is based on the static prio
14531189 1916 */
14531189
IM
1917static inline int __normal_prio(struct task_struct *p)
1918{
dd41f596 1919 return p->static_prio;
14531189
IM
1920}
1921
b29739f9
IM
1922/*
1923 * Calculate the expected normal priority: i.e. priority
1924 * without taking RT-inheritance into account. Might be
1925 * boosted by interactivity modifiers. Changes upon fork,
1926 * setprio syscalls, and whenever the interactivity
1927 * estimator recalculates.
1928 */
36c8b586 1929static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1930{
1931 int prio;
1932
e05606d3 1933 if (task_has_rt_policy(p))
b29739f9
IM
1934 prio = MAX_RT_PRIO-1 - p->rt_priority;
1935 else
1936 prio = __normal_prio(p);
1937 return prio;
1938}
1939
1940/*
1941 * Calculate the current priority, i.e. the priority
1942 * taken into account by the scheduler. This value might
1943 * be boosted by RT tasks, or might be boosted by
1944 * interactivity modifiers. Will be RT if the task got
1945 * RT-boosted. If not then it returns p->normal_prio.
1946 */
36c8b586 1947static int effective_prio(struct task_struct *p)
b29739f9
IM
1948{
1949 p->normal_prio = normal_prio(p);
1950 /*
1951 * If we are RT tasks or we were boosted to RT priority,
1952 * keep the priority unchanged. Otherwise, update priority
1953 * to the normal priority:
1954 */
1955 if (!rt_prio(p->prio))
1956 return p->normal_prio;
1957 return p->prio;
1958}
1959
1da177e4 1960/*
dd41f596 1961 * activate_task - move a task to the runqueue.
1da177e4 1962 */
dd41f596 1963static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1964{
d9514f6c 1965 if (task_contributes_to_load(p))
dd41f596 1966 rq->nr_uninterruptible--;
1da177e4 1967
8159f87e 1968 enqueue_task(rq, p, wakeup);
c09595f6 1969 inc_nr_running(rq);
1da177e4
LT
1970}
1971
1da177e4
LT
1972/*
1973 * deactivate_task - remove a task from the runqueue.
1974 */
2e1cb74a 1975static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1976{
d9514f6c 1977 if (task_contributes_to_load(p))
dd41f596
IM
1978 rq->nr_uninterruptible++;
1979
69be72c1 1980 dequeue_task(rq, p, sleep);
c09595f6 1981 dec_nr_running(rq);
1da177e4
LT
1982}
1983
1da177e4
LT
1984/**
1985 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question.
1987 */
36c8b586 1988inline int task_curr(const struct task_struct *p)
1da177e4
LT
1989{
1990 return cpu_curr(task_cpu(p)) == p;
1991}
1992
cb469845
SR
1993static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1994 const struct sched_class *prev_class,
1995 int oldprio, int running)
1996{
1997 if (prev_class != p->sched_class) {
1998 if (prev_class->switched_from)
1999 prev_class->switched_from(rq, p, running);
2000 p->sched_class->switched_to(rq, p, running);
2001 } else
2002 p->sched_class->prio_changed(rq, p, oldprio, running);
2003}
2004
1da177e4 2005#ifdef CONFIG_SMP
cc367732
IM
2006/*
2007 * Is this task likely cache-hot:
2008 */
e7693a36 2009static int
cc367732
IM
2010task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2011{
2012 s64 delta;
2013
e6c8fba7
PZ
2014 if (p->sched_class != &fair_sched_class)
2015 return 0;
2016
f540a608
IM
2017 /*
2018 * Buddy candidates are cache hot:
2019 */
f685ceac 2020 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2021 (&p->se == cfs_rq_of(&p->se)->next ||
2022 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2023 return 1;
2024
6bc1665b
IM
2025 if (sysctl_sched_migration_cost == -1)
2026 return 1;
2027 if (sysctl_sched_migration_cost == 0)
2028 return 0;
2029
cc367732
IM
2030 delta = now - p->se.exec_start;
2031
2032 return delta < (s64)sysctl_sched_migration_cost;
2033}
2034
dd41f596 2035void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2036{
e2912009
PZ
2037#ifdef CONFIG_SCHED_DEBUG
2038 /*
2039 * We should never call set_task_cpu() on a blocked task,
2040 * ttwu() will sort out the placement.
2041 */
077614ee
PZ
2042 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2043 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2044#endif
2045
de1d7286 2046 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2047
0c69774e
PZ
2048 if (task_cpu(p) != new_cpu) {
2049 p->se.nr_migrations++;
2050 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2051 }
dd41f596
IM
2052
2053 __set_task_cpu(p, new_cpu);
c65cc870
IM
2054}
2055
70b97a7f 2056struct migration_req {
1da177e4 2057 struct list_head list;
1da177e4 2058
36c8b586 2059 struct task_struct *task;
1da177e4
LT
2060 int dest_cpu;
2061
1da177e4 2062 struct completion done;
70b97a7f 2063};
1da177e4
LT
2064
2065/*
2066 * The task's runqueue lock must be held.
2067 * Returns true if you have to wait for migration thread.
2068 */
36c8b586 2069static int
70b97a7f 2070migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2071{
70b97a7f 2072 struct rq *rq = task_rq(p);
1da177e4
LT
2073
2074 /*
2075 * If the task is not on a runqueue (and not running), then
e2912009 2076 * the next wake-up will properly place the task.
1da177e4 2077 */
e2912009 2078 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2079 return 0;
1da177e4
LT
2080
2081 init_completion(&req->done);
1da177e4
LT
2082 req->task = p;
2083 req->dest_cpu = dest_cpu;
2084 list_add(&req->list, &rq->migration_queue);
48f24c4d 2085
1da177e4
LT
2086 return 1;
2087}
2088
a26b89f0
MM
2089/*
2090 * wait_task_context_switch - wait for a thread to complete at least one
2091 * context switch.
2092 *
2093 * @p must not be current.
2094 */
2095void wait_task_context_switch(struct task_struct *p)
2096{
2097 unsigned long nvcsw, nivcsw, flags;
2098 int running;
2099 struct rq *rq;
2100
2101 nvcsw = p->nvcsw;
2102 nivcsw = p->nivcsw;
2103 for (;;) {
2104 /*
2105 * The runqueue is assigned before the actual context
2106 * switch. We need to take the runqueue lock.
2107 *
2108 * We could check initially without the lock but it is
2109 * very likely that we need to take the lock in every
2110 * iteration.
2111 */
2112 rq = task_rq_lock(p, &flags);
2113 running = task_running(rq, p);
2114 task_rq_unlock(rq, &flags);
2115
2116 if (likely(!running))
2117 break;
2118 /*
2119 * The switch count is incremented before the actual
2120 * context switch. We thus wait for two switches to be
2121 * sure at least one completed.
2122 */
2123 if ((p->nvcsw - nvcsw) > 1)
2124 break;
2125 if ((p->nivcsw - nivcsw) > 1)
2126 break;
2127
2128 cpu_relax();
2129 }
2130}
2131
1da177e4
LT
2132/*
2133 * wait_task_inactive - wait for a thread to unschedule.
2134 *
85ba2d86
RM
2135 * If @match_state is nonzero, it's the @p->state value just checked and
2136 * not expected to change. If it changes, i.e. @p might have woken up,
2137 * then return zero. When we succeed in waiting for @p to be off its CPU,
2138 * we return a positive number (its total switch count). If a second call
2139 * a short while later returns the same number, the caller can be sure that
2140 * @p has remained unscheduled the whole time.
2141 *
1da177e4
LT
2142 * The caller must ensure that the task *will* unschedule sometime soon,
2143 * else this function might spin for a *long* time. This function can't
2144 * be called with interrupts off, or it may introduce deadlock with
2145 * smp_call_function() if an IPI is sent by the same process we are
2146 * waiting to become inactive.
2147 */
85ba2d86 2148unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2149{
2150 unsigned long flags;
dd41f596 2151 int running, on_rq;
85ba2d86 2152 unsigned long ncsw;
70b97a7f 2153 struct rq *rq;
1da177e4 2154
3a5c359a
AK
2155 for (;;) {
2156 /*
2157 * We do the initial early heuristics without holding
2158 * any task-queue locks at all. We'll only try to get
2159 * the runqueue lock when things look like they will
2160 * work out!
2161 */
2162 rq = task_rq(p);
fa490cfd 2163
3a5c359a
AK
2164 /*
2165 * If the task is actively running on another CPU
2166 * still, just relax and busy-wait without holding
2167 * any locks.
2168 *
2169 * NOTE! Since we don't hold any locks, it's not
2170 * even sure that "rq" stays as the right runqueue!
2171 * But we don't care, since "task_running()" will
2172 * return false if the runqueue has changed and p
2173 * is actually now running somewhere else!
2174 */
85ba2d86
RM
2175 while (task_running(rq, p)) {
2176 if (match_state && unlikely(p->state != match_state))
2177 return 0;
3a5c359a 2178 cpu_relax();
85ba2d86 2179 }
fa490cfd 2180
3a5c359a
AK
2181 /*
2182 * Ok, time to look more closely! We need the rq
2183 * lock now, to be *sure*. If we're wrong, we'll
2184 * just go back and repeat.
2185 */
2186 rq = task_rq_lock(p, &flags);
0a16b607 2187 trace_sched_wait_task(rq, p);
3a5c359a
AK
2188 running = task_running(rq, p);
2189 on_rq = p->se.on_rq;
85ba2d86 2190 ncsw = 0;
f31e11d8 2191 if (!match_state || p->state == match_state)
93dcf55f 2192 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2193 task_rq_unlock(rq, &flags);
fa490cfd 2194
85ba2d86
RM
2195 /*
2196 * If it changed from the expected state, bail out now.
2197 */
2198 if (unlikely(!ncsw))
2199 break;
2200
3a5c359a
AK
2201 /*
2202 * Was it really running after all now that we
2203 * checked with the proper locks actually held?
2204 *
2205 * Oops. Go back and try again..
2206 */
2207 if (unlikely(running)) {
2208 cpu_relax();
2209 continue;
2210 }
fa490cfd 2211
3a5c359a
AK
2212 /*
2213 * It's not enough that it's not actively running,
2214 * it must be off the runqueue _entirely_, and not
2215 * preempted!
2216 *
80dd99b3 2217 * So if it was still runnable (but just not actively
3a5c359a
AK
2218 * running right now), it's preempted, and we should
2219 * yield - it could be a while.
2220 */
2221 if (unlikely(on_rq)) {
2222 schedule_timeout_uninterruptible(1);
2223 continue;
2224 }
fa490cfd 2225
3a5c359a
AK
2226 /*
2227 * Ahh, all good. It wasn't running, and it wasn't
2228 * runnable, which means that it will never become
2229 * running in the future either. We're all done!
2230 */
2231 break;
2232 }
85ba2d86
RM
2233
2234 return ncsw;
1da177e4
LT
2235}
2236
2237/***
2238 * kick_process - kick a running thread to enter/exit the kernel
2239 * @p: the to-be-kicked thread
2240 *
2241 * Cause a process which is running on another CPU to enter
2242 * kernel-mode, without any delay. (to get signals handled.)
2243 *
2244 * NOTE: this function doesnt have to take the runqueue lock,
2245 * because all it wants to ensure is that the remote task enters
2246 * the kernel. If the IPI races and the task has been migrated
2247 * to another CPU then no harm is done and the purpose has been
2248 * achieved as well.
2249 */
36c8b586 2250void kick_process(struct task_struct *p)
1da177e4
LT
2251{
2252 int cpu;
2253
2254 preempt_disable();
2255 cpu = task_cpu(p);
2256 if ((cpu != smp_processor_id()) && task_curr(p))
2257 smp_send_reschedule(cpu);
2258 preempt_enable();
2259}
b43e3521 2260EXPORT_SYMBOL_GPL(kick_process);
476d139c 2261#endif /* CONFIG_SMP */
1da177e4 2262
0793a61d
TG
2263/**
2264 * task_oncpu_function_call - call a function on the cpu on which a task runs
2265 * @p: the task to evaluate
2266 * @func: the function to be called
2267 * @info: the function call argument
2268 *
2269 * Calls the function @func when the task is currently running. This might
2270 * be on the current CPU, which just calls the function directly
2271 */
2272void task_oncpu_function_call(struct task_struct *p,
2273 void (*func) (void *info), void *info)
2274{
2275 int cpu;
2276
2277 preempt_disable();
2278 cpu = task_cpu(p);
2279 if (task_curr(p))
2280 smp_call_function_single(cpu, func, info, 1);
2281 preempt_enable();
2282}
2283
970b13ba 2284#ifdef CONFIG_SMP
5da9a0fb
PZ
2285static int select_fallback_rq(int cpu, struct task_struct *p)
2286{
2287 int dest_cpu;
2288 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2289
2290 /* Look for allowed, online CPU in same node. */
2291 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2292 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2293 return dest_cpu;
2294
2295 /* Any allowed, online CPU? */
2296 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2297 if (dest_cpu < nr_cpu_ids)
2298 return dest_cpu;
2299
2300 /* No more Mr. Nice Guy. */
2301 if (dest_cpu >= nr_cpu_ids) {
2302 rcu_read_lock();
2303 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2304 rcu_read_unlock();
2305 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2306
2307 /*
2308 * Don't tell them about moving exiting tasks or
2309 * kernel threads (both mm NULL), since they never
2310 * leave kernel.
2311 */
2312 if (p->mm && printk_ratelimit()) {
2313 printk(KERN_INFO "process %d (%s) no "
2314 "longer affine to cpu%d\n",
2315 task_pid_nr(p), p->comm, cpu);
2316 }
2317 }
2318
2319 return dest_cpu;
2320}
2321
e2912009 2322/*
fabf318e
PZ
2323 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2324 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2325 * by:
e2912009 2326 *
fabf318e
PZ
2327 * exec: is unstable, retry loop
2328 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
e2912009 2329 */
970b13ba
PZ
2330static inline
2331int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2332{
e2912009
PZ
2333 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2334
2335 /*
2336 * In order not to call set_task_cpu() on a blocking task we need
2337 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2338 * cpu.
2339 *
2340 * Since this is common to all placement strategies, this lives here.
2341 *
2342 * [ this allows ->select_task() to simply return task_cpu(p) and
2343 * not worry about this generic constraint ]
2344 */
2345 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2346 !cpu_online(cpu)))
5da9a0fb 2347 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2348
2349 return cpu;
970b13ba
PZ
2350}
2351#endif
2352
1da177e4
LT
2353/***
2354 * try_to_wake_up - wake up a thread
2355 * @p: the to-be-woken-up thread
2356 * @state: the mask of task states that can be woken
2357 * @sync: do a synchronous wakeup?
2358 *
2359 * Put it on the run-queue if it's not already there. The "current"
2360 * thread is always on the run-queue (except when the actual
2361 * re-schedule is in progress), and as such you're allowed to do
2362 * the simpler "current->state = TASK_RUNNING" to mark yourself
2363 * runnable without the overhead of this.
2364 *
2365 * returns failure only if the task is already active.
2366 */
7d478721
PZ
2367static int try_to_wake_up(struct task_struct *p, unsigned int state,
2368 int wake_flags)
1da177e4 2369{
cc367732 2370 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2371 unsigned long flags;
f5dc3753 2372 struct rq *rq, *orig_rq;
1da177e4 2373
b85d0667 2374 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2375 wake_flags &= ~WF_SYNC;
2398f2c6 2376
e9c84311 2377 this_cpu = get_cpu();
2398f2c6 2378
04e2f174 2379 smp_wmb();
f5dc3753 2380 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2381 update_rq_clock(rq);
e9c84311 2382 if (!(p->state & state))
1da177e4
LT
2383 goto out;
2384
dd41f596 2385 if (p->se.on_rq)
1da177e4
LT
2386 goto out_running;
2387
2388 cpu = task_cpu(p);
cc367732 2389 orig_cpu = cpu;
1da177e4
LT
2390
2391#ifdef CONFIG_SMP
2392 if (unlikely(task_running(rq, p)))
2393 goto out_activate;
2394
e9c84311
PZ
2395 /*
2396 * In order to handle concurrent wakeups and release the rq->lock
2397 * we put the task in TASK_WAKING state.
eb24073b
IM
2398 *
2399 * First fix up the nr_uninterruptible count:
e9c84311 2400 */
eb24073b
IM
2401 if (task_contributes_to_load(p))
2402 rq->nr_uninterruptible--;
e9c84311 2403 p->state = TASK_WAKING;
efbbd05a
PZ
2404
2405 if (p->sched_class->task_waking)
2406 p->sched_class->task_waking(rq, p);
2407
ab19cb23 2408 __task_rq_unlock(rq);
e9c84311 2409
970b13ba 2410 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2411 if (cpu != orig_cpu)
5d2f5a61 2412 set_task_cpu(p, cpu);
ab19cb23
PZ
2413
2414 rq = __task_rq_lock(p);
2415 update_rq_clock(rq);
f5dc3753 2416
e9c84311
PZ
2417 WARN_ON(p->state != TASK_WAKING);
2418 cpu = task_cpu(p);
1da177e4 2419
e7693a36
GH
2420#ifdef CONFIG_SCHEDSTATS
2421 schedstat_inc(rq, ttwu_count);
2422 if (cpu == this_cpu)
2423 schedstat_inc(rq, ttwu_local);
2424 else {
2425 struct sched_domain *sd;
2426 for_each_domain(this_cpu, sd) {
758b2cdc 2427 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2428 schedstat_inc(sd, ttwu_wake_remote);
2429 break;
2430 }
2431 }
2432 }
6d6bc0ad 2433#endif /* CONFIG_SCHEDSTATS */
e7693a36 2434
1da177e4
LT
2435out_activate:
2436#endif /* CONFIG_SMP */
cc367732 2437 schedstat_inc(p, se.nr_wakeups);
7d478721 2438 if (wake_flags & WF_SYNC)
cc367732
IM
2439 schedstat_inc(p, se.nr_wakeups_sync);
2440 if (orig_cpu != cpu)
2441 schedstat_inc(p, se.nr_wakeups_migrate);
2442 if (cpu == this_cpu)
2443 schedstat_inc(p, se.nr_wakeups_local);
2444 else
2445 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2446 activate_task(rq, p, 1);
1da177e4
LT
2447 success = 1;
2448
831451ac
PZ
2449 /*
2450 * Only attribute actual wakeups done by this task.
2451 */
2452 if (!in_interrupt()) {
2453 struct sched_entity *se = &current->se;
2454 u64 sample = se->sum_exec_runtime;
2455
2456 if (se->last_wakeup)
2457 sample -= se->last_wakeup;
2458 else
2459 sample -= se->start_runtime;
2460 update_avg(&se->avg_wakeup, sample);
2461
2462 se->last_wakeup = se->sum_exec_runtime;
2463 }
2464
1da177e4 2465out_running:
468a15bb 2466 trace_sched_wakeup(rq, p, success);
7d478721 2467 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2468
1da177e4 2469 p->state = TASK_RUNNING;
9a897c5a 2470#ifdef CONFIG_SMP
efbbd05a
PZ
2471 if (p->sched_class->task_woken)
2472 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2473
2474 if (unlikely(rq->idle_stamp)) {
2475 u64 delta = rq->clock - rq->idle_stamp;
2476 u64 max = 2*sysctl_sched_migration_cost;
2477
2478 if (delta > max)
2479 rq->avg_idle = max;
2480 else
2481 update_avg(&rq->avg_idle, delta);
2482 rq->idle_stamp = 0;
2483 }
9a897c5a 2484#endif
1da177e4
LT
2485out:
2486 task_rq_unlock(rq, &flags);
e9c84311 2487 put_cpu();
1da177e4
LT
2488
2489 return success;
2490}
2491
50fa610a
DH
2492/**
2493 * wake_up_process - Wake up a specific process
2494 * @p: The process to be woken up.
2495 *
2496 * Attempt to wake up the nominated process and move it to the set of runnable
2497 * processes. Returns 1 if the process was woken up, 0 if it was already
2498 * running.
2499 *
2500 * It may be assumed that this function implies a write memory barrier before
2501 * changing the task state if and only if any tasks are woken up.
2502 */
7ad5b3a5 2503int wake_up_process(struct task_struct *p)
1da177e4 2504{
d9514f6c 2505 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2506}
1da177e4
LT
2507EXPORT_SYMBOL(wake_up_process);
2508
7ad5b3a5 2509int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2510{
2511 return try_to_wake_up(p, state, 0);
2512}
2513
1da177e4
LT
2514/*
2515 * Perform scheduler related setup for a newly forked process p.
2516 * p is forked by current.
dd41f596
IM
2517 *
2518 * __sched_fork() is basic setup used by init_idle() too:
2519 */
2520static void __sched_fork(struct task_struct *p)
2521{
dd41f596
IM
2522 p->se.exec_start = 0;
2523 p->se.sum_exec_runtime = 0;
f6cf891c 2524 p->se.prev_sum_exec_runtime = 0;
6c594c21 2525 p->se.nr_migrations = 0;
4ae7d5ce
IM
2526 p->se.last_wakeup = 0;
2527 p->se.avg_overlap = 0;
831451ac
PZ
2528 p->se.start_runtime = 0;
2529 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2530
2531#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2532 p->se.wait_start = 0;
2533 p->se.wait_max = 0;
2534 p->se.wait_count = 0;
2535 p->se.wait_sum = 0;
2536
2537 p->se.sleep_start = 0;
2538 p->se.sleep_max = 0;
2539 p->se.sum_sleep_runtime = 0;
2540
2541 p->se.block_start = 0;
2542 p->se.block_max = 0;
2543 p->se.exec_max = 0;
2544 p->se.slice_max = 0;
2545
2546 p->se.nr_migrations_cold = 0;
2547 p->se.nr_failed_migrations_affine = 0;
2548 p->se.nr_failed_migrations_running = 0;
2549 p->se.nr_failed_migrations_hot = 0;
2550 p->se.nr_forced_migrations = 0;
7793527b
LDM
2551
2552 p->se.nr_wakeups = 0;
2553 p->se.nr_wakeups_sync = 0;
2554 p->se.nr_wakeups_migrate = 0;
2555 p->se.nr_wakeups_local = 0;
2556 p->se.nr_wakeups_remote = 0;
2557 p->se.nr_wakeups_affine = 0;
2558 p->se.nr_wakeups_affine_attempts = 0;
2559 p->se.nr_wakeups_passive = 0;
2560 p->se.nr_wakeups_idle = 0;
2561
6cfb0d5d 2562#endif
476d139c 2563
fa717060 2564 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2565 p->se.on_rq = 0;
4a55bd5e 2566 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2567
e107be36
AK
2568#ifdef CONFIG_PREEMPT_NOTIFIERS
2569 INIT_HLIST_HEAD(&p->preempt_notifiers);
2570#endif
dd41f596
IM
2571}
2572
2573/*
2574 * fork()/clone()-time setup:
2575 */
2576void sched_fork(struct task_struct *p, int clone_flags)
2577{
2578 int cpu = get_cpu();
2579
2580 __sched_fork(p);
06b83b5f
PZ
2581 /*
2582 * We mark the process as waking here. This guarantees that
2583 * nobody will actually run it, and a signal or other external
2584 * event cannot wake it up and insert it on the runqueue either.
2585 */
2586 p->state = TASK_WAKING;
dd41f596 2587
b9dc29e7
MG
2588 /*
2589 * Revert to default priority/policy on fork if requested.
2590 */
2591 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2592 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2593 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2594 p->normal_prio = p->static_prio;
2595 }
b9dc29e7 2596
6c697bdf
MG
2597 if (PRIO_TO_NICE(p->static_prio) < 0) {
2598 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2599 p->normal_prio = p->static_prio;
6c697bdf
MG
2600 set_load_weight(p);
2601 }
2602
b9dc29e7
MG
2603 /*
2604 * We don't need the reset flag anymore after the fork. It has
2605 * fulfilled its duty:
2606 */
2607 p->sched_reset_on_fork = 0;
2608 }
ca94c442 2609
f83f9ac2
PW
2610 /*
2611 * Make sure we do not leak PI boosting priority to the child.
2612 */
2613 p->prio = current->normal_prio;
2614
2ddbf952
HS
2615 if (!rt_prio(p->prio))
2616 p->sched_class = &fair_sched_class;
b29739f9 2617
cd29fe6f
PZ
2618 if (p->sched_class->task_fork)
2619 p->sched_class->task_fork(p);
2620
5f3edc1b
PZ
2621 set_task_cpu(p, cpu);
2622
52f17b6c 2623#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2624 if (likely(sched_info_on()))
52f17b6c 2625 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2626#endif
d6077cb8 2627#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2628 p->oncpu = 0;
2629#endif
1da177e4 2630#ifdef CONFIG_PREEMPT
4866cde0 2631 /* Want to start with kernel preemption disabled. */
a1261f54 2632 task_thread_info(p)->preempt_count = 1;
1da177e4 2633#endif
917b627d
GH
2634 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2635
476d139c 2636 put_cpu();
1da177e4
LT
2637}
2638
2639/*
2640 * wake_up_new_task - wake up a newly created task for the first time.
2641 *
2642 * This function will do some initial scheduler statistics housekeeping
2643 * that must be done for every newly created context, then puts the task
2644 * on the runqueue and wakes it.
2645 */
7ad5b3a5 2646void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2647{
2648 unsigned long flags;
dd41f596 2649 struct rq *rq;
50200df4 2650 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2651
2652#ifdef CONFIG_SMP
2653 /*
2654 * Fork balancing, do it here and not earlier because:
2655 * - cpus_allowed can change in the fork path
2656 * - any previously selected cpu might disappear through hotplug
2657 *
2658 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2659 * ->cpus_allowed is stable, we have preemption disabled, meaning
2660 * cpu_online_mask is stable.
2661 */
2662 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2663 set_task_cpu(p, cpu);
2664#endif
1da177e4
LT
2665
2666 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2667 BUG_ON(p->state != TASK_WAKING);
2668 p->state = TASK_RUNNING;
a8e504d2 2669 update_rq_clock(rq);
cd29fe6f 2670 activate_task(rq, p, 0);
c71dd42d 2671 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2672 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2673#ifdef CONFIG_SMP
efbbd05a
PZ
2674 if (p->sched_class->task_woken)
2675 p->sched_class->task_woken(rq, p);
9a897c5a 2676#endif
dd41f596 2677 task_rq_unlock(rq, &flags);
fabf318e 2678 put_cpu();
1da177e4
LT
2679}
2680
e107be36
AK
2681#ifdef CONFIG_PREEMPT_NOTIFIERS
2682
2683/**
80dd99b3 2684 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2685 * @notifier: notifier struct to register
e107be36
AK
2686 */
2687void preempt_notifier_register(struct preempt_notifier *notifier)
2688{
2689 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2690}
2691EXPORT_SYMBOL_GPL(preempt_notifier_register);
2692
2693/**
2694 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2695 * @notifier: notifier struct to unregister
e107be36
AK
2696 *
2697 * This is safe to call from within a preemption notifier.
2698 */
2699void preempt_notifier_unregister(struct preempt_notifier *notifier)
2700{
2701 hlist_del(&notifier->link);
2702}
2703EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2704
2705static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2706{
2707 struct preempt_notifier *notifier;
2708 struct hlist_node *node;
2709
2710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2711 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2712}
2713
2714static void
2715fire_sched_out_preempt_notifiers(struct task_struct *curr,
2716 struct task_struct *next)
2717{
2718 struct preempt_notifier *notifier;
2719 struct hlist_node *node;
2720
2721 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2722 notifier->ops->sched_out(notifier, next);
2723}
2724
6d6bc0ad 2725#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2726
2727static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2728{
2729}
2730
2731static void
2732fire_sched_out_preempt_notifiers(struct task_struct *curr,
2733 struct task_struct *next)
2734{
2735}
2736
6d6bc0ad 2737#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2738
4866cde0
NP
2739/**
2740 * prepare_task_switch - prepare to switch tasks
2741 * @rq: the runqueue preparing to switch
421cee29 2742 * @prev: the current task that is being switched out
4866cde0
NP
2743 * @next: the task we are going to switch to.
2744 *
2745 * This is called with the rq lock held and interrupts off. It must
2746 * be paired with a subsequent finish_task_switch after the context
2747 * switch.
2748 *
2749 * prepare_task_switch sets up locking and calls architecture specific
2750 * hooks.
2751 */
e107be36
AK
2752static inline void
2753prepare_task_switch(struct rq *rq, struct task_struct *prev,
2754 struct task_struct *next)
4866cde0 2755{
e107be36 2756 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2757 prepare_lock_switch(rq, next);
2758 prepare_arch_switch(next);
2759}
2760
1da177e4
LT
2761/**
2762 * finish_task_switch - clean up after a task-switch
344babaa 2763 * @rq: runqueue associated with task-switch
1da177e4
LT
2764 * @prev: the thread we just switched away from.
2765 *
4866cde0
NP
2766 * finish_task_switch must be called after the context switch, paired
2767 * with a prepare_task_switch call before the context switch.
2768 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2769 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2770 *
2771 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2772 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2773 * with the lock held can cause deadlocks; see schedule() for
2774 * details.)
2775 */
a9957449 2776static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2777 __releases(rq->lock)
2778{
1da177e4 2779 struct mm_struct *mm = rq->prev_mm;
55a101f8 2780 long prev_state;
1da177e4
LT
2781
2782 rq->prev_mm = NULL;
2783
2784 /*
2785 * A task struct has one reference for the use as "current".
c394cc9f 2786 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2787 * schedule one last time. The schedule call will never return, and
2788 * the scheduled task must drop that reference.
c394cc9f 2789 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2790 * still held, otherwise prev could be scheduled on another cpu, die
2791 * there before we look at prev->state, and then the reference would
2792 * be dropped twice.
2793 * Manfred Spraul <manfred@colorfullife.com>
2794 */
55a101f8 2795 prev_state = prev->state;
4866cde0 2796 finish_arch_switch(prev);
cdd6c482 2797 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2798 finish_lock_switch(rq, prev);
e8fa1362 2799
e107be36 2800 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2801 if (mm)
2802 mmdrop(mm);
c394cc9f 2803 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2804 /*
2805 * Remove function-return probe instances associated with this
2806 * task and put them back on the free list.
9761eea8 2807 */
c6fd91f0 2808 kprobe_flush_task(prev);
1da177e4 2809 put_task_struct(prev);
c6fd91f0 2810 }
1da177e4
LT
2811}
2812
3f029d3c
GH
2813#ifdef CONFIG_SMP
2814
2815/* assumes rq->lock is held */
2816static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2817{
2818 if (prev->sched_class->pre_schedule)
2819 prev->sched_class->pre_schedule(rq, prev);
2820}
2821
2822/* rq->lock is NOT held, but preemption is disabled */
2823static inline void post_schedule(struct rq *rq)
2824{
2825 if (rq->post_schedule) {
2826 unsigned long flags;
2827
05fa785c 2828 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2829 if (rq->curr->sched_class->post_schedule)
2830 rq->curr->sched_class->post_schedule(rq);
05fa785c 2831 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2832
2833 rq->post_schedule = 0;
2834 }
2835}
2836
2837#else
da19ab51 2838
3f029d3c
GH
2839static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2840{
2841}
2842
2843static inline void post_schedule(struct rq *rq)
2844{
1da177e4
LT
2845}
2846
3f029d3c
GH
2847#endif
2848
1da177e4
LT
2849/**
2850 * schedule_tail - first thing a freshly forked thread must call.
2851 * @prev: the thread we just switched away from.
2852 */
36c8b586 2853asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2854 __releases(rq->lock)
2855{
70b97a7f
IM
2856 struct rq *rq = this_rq();
2857
4866cde0 2858 finish_task_switch(rq, prev);
da19ab51 2859
3f029d3c
GH
2860 /*
2861 * FIXME: do we need to worry about rq being invalidated by the
2862 * task_switch?
2863 */
2864 post_schedule(rq);
70b97a7f 2865
4866cde0
NP
2866#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2867 /* In this case, finish_task_switch does not reenable preemption */
2868 preempt_enable();
2869#endif
1da177e4 2870 if (current->set_child_tid)
b488893a 2871 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2872}
2873
2874/*
2875 * context_switch - switch to the new MM and the new
2876 * thread's register state.
2877 */
dd41f596 2878static inline void
70b97a7f 2879context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2880 struct task_struct *next)
1da177e4 2881{
dd41f596 2882 struct mm_struct *mm, *oldmm;
1da177e4 2883
e107be36 2884 prepare_task_switch(rq, prev, next);
0a16b607 2885 trace_sched_switch(rq, prev, next);
dd41f596
IM
2886 mm = next->mm;
2887 oldmm = prev->active_mm;
9226d125
ZA
2888 /*
2889 * For paravirt, this is coupled with an exit in switch_to to
2890 * combine the page table reload and the switch backend into
2891 * one hypercall.
2892 */
224101ed 2893 arch_start_context_switch(prev);
9226d125 2894
710390d9 2895 if (likely(!mm)) {
1da177e4
LT
2896 next->active_mm = oldmm;
2897 atomic_inc(&oldmm->mm_count);
2898 enter_lazy_tlb(oldmm, next);
2899 } else
2900 switch_mm(oldmm, mm, next);
2901
710390d9 2902 if (likely(!prev->mm)) {
1da177e4 2903 prev->active_mm = NULL;
1da177e4
LT
2904 rq->prev_mm = oldmm;
2905 }
3a5f5e48
IM
2906 /*
2907 * Since the runqueue lock will be released by the next
2908 * task (which is an invalid locking op but in the case
2909 * of the scheduler it's an obvious special-case), so we
2910 * do an early lockdep release here:
2911 */
2912#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2913 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2914#endif
1da177e4
LT
2915
2916 /* Here we just switch the register state and the stack. */
2917 switch_to(prev, next, prev);
2918
dd41f596
IM
2919 barrier();
2920 /*
2921 * this_rq must be evaluated again because prev may have moved
2922 * CPUs since it called schedule(), thus the 'rq' on its stack
2923 * frame will be invalid.
2924 */
2925 finish_task_switch(this_rq(), prev);
1da177e4
LT
2926}
2927
2928/*
2929 * nr_running, nr_uninterruptible and nr_context_switches:
2930 *
2931 * externally visible scheduler statistics: current number of runnable
2932 * threads, current number of uninterruptible-sleeping threads, total
2933 * number of context switches performed since bootup.
2934 */
2935unsigned long nr_running(void)
2936{
2937 unsigned long i, sum = 0;
2938
2939 for_each_online_cpu(i)
2940 sum += cpu_rq(i)->nr_running;
2941
2942 return sum;
2943}
2944
2945unsigned long nr_uninterruptible(void)
2946{
2947 unsigned long i, sum = 0;
2948
0a945022 2949 for_each_possible_cpu(i)
1da177e4
LT
2950 sum += cpu_rq(i)->nr_uninterruptible;
2951
2952 /*
2953 * Since we read the counters lockless, it might be slightly
2954 * inaccurate. Do not allow it to go below zero though:
2955 */
2956 if (unlikely((long)sum < 0))
2957 sum = 0;
2958
2959 return sum;
2960}
2961
2962unsigned long long nr_context_switches(void)
2963{
cc94abfc
SR
2964 int i;
2965 unsigned long long sum = 0;
1da177e4 2966
0a945022 2967 for_each_possible_cpu(i)
1da177e4
LT
2968 sum += cpu_rq(i)->nr_switches;
2969
2970 return sum;
2971}
2972
2973unsigned long nr_iowait(void)
2974{
2975 unsigned long i, sum = 0;
2976
0a945022 2977 for_each_possible_cpu(i)
1da177e4
LT
2978 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2979
2980 return sum;
2981}
2982
69d25870
AV
2983unsigned long nr_iowait_cpu(void)
2984{
2985 struct rq *this = this_rq();
2986 return atomic_read(&this->nr_iowait);
2987}
2988
2989unsigned long this_cpu_load(void)
2990{
2991 struct rq *this = this_rq();
2992 return this->cpu_load[0];
2993}
2994
2995
dce48a84
TG
2996/* Variables and functions for calc_load */
2997static atomic_long_t calc_load_tasks;
2998static unsigned long calc_load_update;
2999unsigned long avenrun[3];
3000EXPORT_SYMBOL(avenrun);
3001
2d02494f
TG
3002/**
3003 * get_avenrun - get the load average array
3004 * @loads: pointer to dest load array
3005 * @offset: offset to add
3006 * @shift: shift count to shift the result left
3007 *
3008 * These values are estimates at best, so no need for locking.
3009 */
3010void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3011{
3012 loads[0] = (avenrun[0] + offset) << shift;
3013 loads[1] = (avenrun[1] + offset) << shift;
3014 loads[2] = (avenrun[2] + offset) << shift;
3015}
3016
dce48a84
TG
3017static unsigned long
3018calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3019{
dce48a84
TG
3020 load *= exp;
3021 load += active * (FIXED_1 - exp);
3022 return load >> FSHIFT;
3023}
db1b1fef 3024
dce48a84
TG
3025/*
3026 * calc_load - update the avenrun load estimates 10 ticks after the
3027 * CPUs have updated calc_load_tasks.
3028 */
3029void calc_global_load(void)
3030{
3031 unsigned long upd = calc_load_update + 10;
3032 long active;
3033
3034 if (time_before(jiffies, upd))
3035 return;
db1b1fef 3036
dce48a84
TG
3037 active = atomic_long_read(&calc_load_tasks);
3038 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3039
dce48a84
TG
3040 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3041 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3042 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3043
3044 calc_load_update += LOAD_FREQ;
3045}
3046
3047/*
3048 * Either called from update_cpu_load() or from a cpu going idle
3049 */
3050static void calc_load_account_active(struct rq *this_rq)
3051{
3052 long nr_active, delta;
3053
3054 nr_active = this_rq->nr_running;
3055 nr_active += (long) this_rq->nr_uninterruptible;
3056
3057 if (nr_active != this_rq->calc_load_active) {
3058 delta = nr_active - this_rq->calc_load_active;
3059 this_rq->calc_load_active = nr_active;
3060 atomic_long_add(delta, &calc_load_tasks);
3061 }
db1b1fef
JS
3062}
3063
48f24c4d 3064/*
dd41f596
IM
3065 * Update rq->cpu_load[] statistics. This function is usually called every
3066 * scheduler tick (TICK_NSEC).
48f24c4d 3067 */
dd41f596 3068static void update_cpu_load(struct rq *this_rq)
48f24c4d 3069{
495eca49 3070 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3071 int i, scale;
3072
3073 this_rq->nr_load_updates++;
dd41f596
IM
3074
3075 /* Update our load: */
3076 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3077 unsigned long old_load, new_load;
3078
3079 /* scale is effectively 1 << i now, and >> i divides by scale */
3080
3081 old_load = this_rq->cpu_load[i];
3082 new_load = this_load;
a25707f3
IM
3083 /*
3084 * Round up the averaging division if load is increasing. This
3085 * prevents us from getting stuck on 9 if the load is 10, for
3086 * example.
3087 */
3088 if (new_load > old_load)
3089 new_load += scale-1;
dd41f596
IM
3090 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3091 }
dce48a84
TG
3092
3093 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3094 this_rq->calc_load_update += LOAD_FREQ;
3095 calc_load_account_active(this_rq);
3096 }
48f24c4d
IM
3097}
3098
dd41f596
IM
3099#ifdef CONFIG_SMP
3100
1da177e4
LT
3101/*
3102 * double_rq_lock - safely lock two runqueues
3103 *
3104 * Note this does not disable interrupts like task_rq_lock,
3105 * you need to do so manually before calling.
3106 */
70b97a7f 3107static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3108 __acquires(rq1->lock)
3109 __acquires(rq2->lock)
3110{
054b9108 3111 BUG_ON(!irqs_disabled());
1da177e4 3112 if (rq1 == rq2) {
05fa785c 3113 raw_spin_lock(&rq1->lock);
1da177e4
LT
3114 __acquire(rq2->lock); /* Fake it out ;) */
3115 } else {
c96d145e 3116 if (rq1 < rq2) {
05fa785c
TG
3117 raw_spin_lock(&rq1->lock);
3118 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4 3119 } else {
05fa785c
TG
3120 raw_spin_lock(&rq2->lock);
3121 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3122 }
3123 }
6e82a3be
IM
3124 update_rq_clock(rq1);
3125 update_rq_clock(rq2);
1da177e4
LT
3126}
3127
3128/*
3129 * double_rq_unlock - safely unlock two runqueues
3130 *
3131 * Note this does not restore interrupts like task_rq_unlock,
3132 * you need to do so manually after calling.
3133 */
70b97a7f 3134static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3135 __releases(rq1->lock)
3136 __releases(rq2->lock)
3137{
05fa785c 3138 raw_spin_unlock(&rq1->lock);
1da177e4 3139 if (rq1 != rq2)
05fa785c 3140 raw_spin_unlock(&rq2->lock);
1da177e4
LT
3141 else
3142 __release(rq2->lock);
3143}
3144
1da177e4 3145/*
38022906
PZ
3146 * sched_exec - execve() is a valuable balancing opportunity, because at
3147 * this point the task has the smallest effective memory and cache footprint.
1da177e4 3148 */
38022906 3149void sched_exec(void)
1da177e4 3150{
38022906 3151 struct task_struct *p = current;
70b97a7f 3152 struct migration_req req;
38022906 3153 int dest_cpu, this_cpu;
1da177e4 3154 unsigned long flags;
70b97a7f 3155 struct rq *rq;
1da177e4 3156
38022906
PZ
3157again:
3158 this_cpu = get_cpu();
3159 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3160 if (dest_cpu == this_cpu) {
3161 put_cpu();
3162 return;
3163 }
3164
1da177e4 3165 rq = task_rq_lock(p, &flags);
38022906
PZ
3166 put_cpu();
3167
3168 /*
3169 * select_task_rq() can race against ->cpus_allowed
3170 */
96f874e2 3171 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3172 || unlikely(!cpu_active(dest_cpu))) {
3173 task_rq_unlock(rq, &flags);
3174 goto again;
3175 }
1da177e4
LT
3176
3177 /* force the process onto the specified CPU */
3178 if (migrate_task(p, dest_cpu, &req)) {
3179 /* Need to wait for migration thread (might exit: take ref). */
3180 struct task_struct *mt = rq->migration_thread;
36c8b586 3181
1da177e4
LT
3182 get_task_struct(mt);
3183 task_rq_unlock(rq, &flags);
3184 wake_up_process(mt);
3185 put_task_struct(mt);
3186 wait_for_completion(&req.done);
36c8b586 3187
1da177e4
LT
3188 return;
3189 }
1da177e4
LT
3190 task_rq_unlock(rq, &flags);
3191}
3192
1da177e4
LT
3193/*
3194 * pull_task - move a task from a remote runqueue to the local runqueue.
3195 * Both runqueues must be locked.
3196 */
dd41f596
IM
3197static void pull_task(struct rq *src_rq, struct task_struct *p,
3198 struct rq *this_rq, int this_cpu)
1da177e4 3199{
2e1cb74a 3200 deactivate_task(src_rq, p, 0);
1da177e4 3201 set_task_cpu(p, this_cpu);
dd41f596 3202 activate_task(this_rq, p, 0);
15afe09b 3203 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3204}
3205
3206/*
3207 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3208 */
858119e1 3209static
70b97a7f 3210int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3211 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3212 int *all_pinned)
1da177e4 3213{
708dc512 3214 int tsk_cache_hot = 0;
1da177e4
LT
3215 /*
3216 * We do not migrate tasks that are:
3217 * 1) running (obviously), or
3218 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3219 * 3) are cache-hot on their current CPU.
3220 */
96f874e2 3221 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3222 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3223 return 0;
cc367732 3224 }
81026794
NP
3225 *all_pinned = 0;
3226
cc367732
IM
3227 if (task_running(rq, p)) {
3228 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3229 return 0;
cc367732 3230 }
1da177e4 3231
da84d961
IM
3232 /*
3233 * Aggressive migration if:
3234 * 1) task is cache cold, or
3235 * 2) too many balance attempts have failed.
3236 */
3237
708dc512
LH
3238 tsk_cache_hot = task_hot(p, rq->clock, sd);
3239 if (!tsk_cache_hot ||
3240 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3241#ifdef CONFIG_SCHEDSTATS
708dc512 3242 if (tsk_cache_hot) {
da84d961 3243 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3244 schedstat_inc(p, se.nr_forced_migrations);
3245 }
da84d961
IM
3246#endif
3247 return 1;
3248 }
3249
708dc512 3250 if (tsk_cache_hot) {
cc367732 3251 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3252 return 0;
cc367732 3253 }
1da177e4
LT
3254 return 1;
3255}
3256
e1d1484f
PW
3257static unsigned long
3258balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3259 unsigned long max_load_move, struct sched_domain *sd,
3260 enum cpu_idle_type idle, int *all_pinned,
3261 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3262{
051c6764 3263 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3264 struct task_struct *p;
3265 long rem_load_move = max_load_move;
1da177e4 3266
e1d1484f 3267 if (max_load_move == 0)
1da177e4
LT
3268 goto out;
3269
81026794
NP
3270 pinned = 1;
3271
1da177e4 3272 /*
dd41f596 3273 * Start the load-balancing iterator:
1da177e4 3274 */
dd41f596
IM
3275 p = iterator->start(iterator->arg);
3276next:
b82d9fdd 3277 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3278 goto out;
051c6764
PZ
3279
3280 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3281 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3282 p = iterator->next(iterator->arg);
3283 goto next;
1da177e4
LT
3284 }
3285
dd41f596 3286 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3287 pulled++;
dd41f596 3288 rem_load_move -= p->se.load.weight;
1da177e4 3289
7e96fa58
GH
3290#ifdef CONFIG_PREEMPT
3291 /*
3292 * NEWIDLE balancing is a source of latency, so preemptible kernels
3293 * will stop after the first task is pulled to minimize the critical
3294 * section.
3295 */
3296 if (idle == CPU_NEWLY_IDLE)
3297 goto out;
3298#endif
3299
2dd73a4f 3300 /*
b82d9fdd 3301 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3302 */
e1d1484f 3303 if (rem_load_move > 0) {
a4ac01c3
PW
3304 if (p->prio < *this_best_prio)
3305 *this_best_prio = p->prio;
dd41f596
IM
3306 p = iterator->next(iterator->arg);
3307 goto next;
1da177e4
LT
3308 }
3309out:
3310 /*
e1d1484f 3311 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3312 * so we can safely collect pull_task() stats here rather than
3313 * inside pull_task().
3314 */
3315 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3316
3317 if (all_pinned)
3318 *all_pinned = pinned;
e1d1484f
PW
3319
3320 return max_load_move - rem_load_move;
1da177e4
LT
3321}
3322
dd41f596 3323/*
43010659
PW
3324 * move_tasks tries to move up to max_load_move weighted load from busiest to
3325 * this_rq, as part of a balancing operation within domain "sd".
3326 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3327 *
3328 * Called with both runqueues locked.
3329 */
3330static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3331 unsigned long max_load_move,
dd41f596
IM
3332 struct sched_domain *sd, enum cpu_idle_type idle,
3333 int *all_pinned)
3334{
5522d5d5 3335 const struct sched_class *class = sched_class_highest;
43010659 3336 unsigned long total_load_moved = 0;
a4ac01c3 3337 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3338
3339 do {
43010659
PW
3340 total_load_moved +=
3341 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3342 max_load_move - total_load_moved,
a4ac01c3 3343 sd, idle, all_pinned, &this_best_prio);
dd41f596 3344 class = class->next;
c4acb2c0 3345
7e96fa58
GH
3346#ifdef CONFIG_PREEMPT
3347 /*
3348 * NEWIDLE balancing is a source of latency, so preemptible
3349 * kernels will stop after the first task is pulled to minimize
3350 * the critical section.
3351 */
c4acb2c0
GH
3352 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3353 break;
7e96fa58 3354#endif
43010659 3355 } while (class && max_load_move > total_load_moved);
dd41f596 3356
43010659
PW
3357 return total_load_moved > 0;
3358}
3359
e1d1484f
PW
3360static int
3361iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3362 struct sched_domain *sd, enum cpu_idle_type idle,
3363 struct rq_iterator *iterator)
3364{
3365 struct task_struct *p = iterator->start(iterator->arg);
3366 int pinned = 0;
3367
3368 while (p) {
3369 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3370 pull_task(busiest, p, this_rq, this_cpu);
3371 /*
3372 * Right now, this is only the second place pull_task()
3373 * is called, so we can safely collect pull_task()
3374 * stats here rather than inside pull_task().
3375 */
3376 schedstat_inc(sd, lb_gained[idle]);
3377
3378 return 1;
3379 }
3380 p = iterator->next(iterator->arg);
3381 }
3382
3383 return 0;
3384}
3385
43010659
PW
3386/*
3387 * move_one_task tries to move exactly one task from busiest to this_rq, as
3388 * part of active balancing operations within "domain".
3389 * Returns 1 if successful and 0 otherwise.
3390 *
3391 * Called with both runqueues locked.
3392 */
3393static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3394 struct sched_domain *sd, enum cpu_idle_type idle)
3395{
5522d5d5 3396 const struct sched_class *class;
43010659 3397
cde7e5ca 3398 for_each_class(class) {
e1d1484f 3399 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3400 return 1;
cde7e5ca 3401 }
43010659
PW
3402
3403 return 0;
dd41f596 3404}
67bb6c03 3405/********** Helpers for find_busiest_group ************************/
1da177e4 3406/*
222d656d
GS
3407 * sd_lb_stats - Structure to store the statistics of a sched_domain
3408 * during load balancing.
1da177e4 3409 */
222d656d
GS
3410struct sd_lb_stats {
3411 struct sched_group *busiest; /* Busiest group in this sd */
3412 struct sched_group *this; /* Local group in this sd */
3413 unsigned long total_load; /* Total load of all groups in sd */
3414 unsigned long total_pwr; /* Total power of all groups in sd */
3415 unsigned long avg_load; /* Average load across all groups in sd */
3416
3417 /** Statistics of this group */
3418 unsigned long this_load;
3419 unsigned long this_load_per_task;
3420 unsigned long this_nr_running;
3421
3422 /* Statistics of the busiest group */
3423 unsigned long max_load;
3424 unsigned long busiest_load_per_task;
3425 unsigned long busiest_nr_running;
3426
3427 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3428#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3429 int power_savings_balance; /* Is powersave balance needed for this sd */
3430 struct sched_group *group_min; /* Least loaded group in sd */
3431 struct sched_group *group_leader; /* Group which relieves group_min */
3432 unsigned long min_load_per_task; /* load_per_task in group_min */
3433 unsigned long leader_nr_running; /* Nr running of group_leader */
3434 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3435#endif
222d656d 3436};
1da177e4 3437
d5ac537e 3438/*
381be78f
GS
3439 * sg_lb_stats - stats of a sched_group required for load_balancing
3440 */
3441struct sg_lb_stats {
3442 unsigned long avg_load; /*Avg load across the CPUs of the group */
3443 unsigned long group_load; /* Total load over the CPUs of the group */
3444 unsigned long sum_nr_running; /* Nr tasks running in the group */
3445 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3446 unsigned long group_capacity;
3447 int group_imb; /* Is there an imbalance in the group ? */
3448};
408ed066 3449
67bb6c03
GS
3450/**
3451 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3452 * @group: The group whose first cpu is to be returned.
3453 */
3454static inline unsigned int group_first_cpu(struct sched_group *group)
3455{
3456 return cpumask_first(sched_group_cpus(group));
3457}
3458
3459/**
3460 * get_sd_load_idx - Obtain the load index for a given sched domain.
3461 * @sd: The sched_domain whose load_idx is to be obtained.
3462 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3463 */
3464static inline int get_sd_load_idx(struct sched_domain *sd,
3465 enum cpu_idle_type idle)
3466{
3467 int load_idx;
3468
3469 switch (idle) {
3470 case CPU_NOT_IDLE:
7897986b 3471 load_idx = sd->busy_idx;
67bb6c03
GS
3472 break;
3473
3474 case CPU_NEWLY_IDLE:
7897986b 3475 load_idx = sd->newidle_idx;
67bb6c03
GS
3476 break;
3477 default:
7897986b 3478 load_idx = sd->idle_idx;
67bb6c03
GS
3479 break;
3480 }
1da177e4 3481
67bb6c03
GS
3482 return load_idx;
3483}
1da177e4 3484
1da177e4 3485
c071df18
GS
3486#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3487/**
3488 * init_sd_power_savings_stats - Initialize power savings statistics for
3489 * the given sched_domain, during load balancing.
3490 *
3491 * @sd: Sched domain whose power-savings statistics are to be initialized.
3492 * @sds: Variable containing the statistics for sd.
3493 * @idle: Idle status of the CPU at which we're performing load-balancing.
3494 */
3495static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3496 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3497{
3498 /*
3499 * Busy processors will not participate in power savings
3500 * balance.
3501 */
3502 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3503 sds->power_savings_balance = 0;
3504 else {
3505 sds->power_savings_balance = 1;
3506 sds->min_nr_running = ULONG_MAX;
3507 sds->leader_nr_running = 0;
3508 }
3509}
783609c6 3510
c071df18
GS
3511/**
3512 * update_sd_power_savings_stats - Update the power saving stats for a
3513 * sched_domain while performing load balancing.
3514 *
3515 * @group: sched_group belonging to the sched_domain under consideration.
3516 * @sds: Variable containing the statistics of the sched_domain
3517 * @local_group: Does group contain the CPU for which we're performing
3518 * load balancing ?
3519 * @sgs: Variable containing the statistics of the group.
3520 */
3521static inline void update_sd_power_savings_stats(struct sched_group *group,
3522 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3523{
408ed066 3524
c071df18
GS
3525 if (!sds->power_savings_balance)
3526 return;
1da177e4 3527
c071df18
GS
3528 /*
3529 * If the local group is idle or completely loaded
3530 * no need to do power savings balance at this domain
3531 */
3532 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3533 !sds->this_nr_running))
3534 sds->power_savings_balance = 0;
2dd73a4f 3535
c071df18
GS
3536 /*
3537 * If a group is already running at full capacity or idle,
3538 * don't include that group in power savings calculations
3539 */
3540 if (!sds->power_savings_balance ||
3541 sgs->sum_nr_running >= sgs->group_capacity ||
3542 !sgs->sum_nr_running)
3543 return;
5969fe06 3544
c071df18
GS
3545 /*
3546 * Calculate the group which has the least non-idle load.
3547 * This is the group from where we need to pick up the load
3548 * for saving power
3549 */
3550 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3551 (sgs->sum_nr_running == sds->min_nr_running &&
3552 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3553 sds->group_min = group;
3554 sds->min_nr_running = sgs->sum_nr_running;
3555 sds->min_load_per_task = sgs->sum_weighted_load /
3556 sgs->sum_nr_running;
3557 }
783609c6 3558
c071df18
GS
3559 /*
3560 * Calculate the group which is almost near its
3561 * capacity but still has some space to pick up some load
3562 * from other group and save more power
3563 */
d899a789 3564 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3565 return;
1da177e4 3566
c071df18
GS
3567 if (sgs->sum_nr_running > sds->leader_nr_running ||
3568 (sgs->sum_nr_running == sds->leader_nr_running &&
3569 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3570 sds->group_leader = group;
3571 sds->leader_nr_running = sgs->sum_nr_running;
3572 }
3573}
408ed066 3574
c071df18 3575/**
d5ac537e 3576 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3577 * @sds: Variable containing the statistics of the sched_domain
3578 * under consideration.
3579 * @this_cpu: Cpu at which we're currently performing load-balancing.
3580 * @imbalance: Variable to store the imbalance.
3581 *
d5ac537e
RD
3582 * Description:
3583 * Check if we have potential to perform some power-savings balance.
3584 * If yes, set the busiest group to be the least loaded group in the
3585 * sched_domain, so that it's CPUs can be put to idle.
3586 *
c071df18
GS
3587 * Returns 1 if there is potential to perform power-savings balance.
3588 * Else returns 0.
3589 */
3590static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3591 int this_cpu, unsigned long *imbalance)
3592{
3593 if (!sds->power_savings_balance)
3594 return 0;
1da177e4 3595
c071df18
GS
3596 if (sds->this != sds->group_leader ||
3597 sds->group_leader == sds->group_min)
3598 return 0;
783609c6 3599
c071df18
GS
3600 *imbalance = sds->min_load_per_task;
3601 sds->busiest = sds->group_min;
1da177e4 3602
c071df18 3603 return 1;
1da177e4 3604
c071df18
GS
3605}
3606#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3607static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3608 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3609{
3610 return;
3611}
408ed066 3612
c071df18
GS
3613static inline void update_sd_power_savings_stats(struct sched_group *group,
3614 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3615{
3616 return;
3617}
3618
3619static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3620 int this_cpu, unsigned long *imbalance)
3621{
3622 return 0;
3623}
3624#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3625
d6a59aa3
PZ
3626
3627unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3628{
3629 return SCHED_LOAD_SCALE;
3630}
3631
3632unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3633{
3634 return default_scale_freq_power(sd, cpu);
3635}
3636
3637unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3638{
3639 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3640 unsigned long smt_gain = sd->smt_gain;
3641
3642 smt_gain /= weight;
3643
3644 return smt_gain;
3645}
3646
d6a59aa3
PZ
3647unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3648{
3649 return default_scale_smt_power(sd, cpu);
3650}
3651
e9e9250b
PZ
3652unsigned long scale_rt_power(int cpu)
3653{
3654 struct rq *rq = cpu_rq(cpu);
3655 u64 total, available;
3656
3657 sched_avg_update(rq);
3658
3659 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3660 available = total - rq->rt_avg;
3661
3662 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3663 total = SCHED_LOAD_SCALE;
3664
3665 total >>= SCHED_LOAD_SHIFT;
3666
3667 return div_u64(available, total);
3668}
3669
ab29230e
PZ
3670static void update_cpu_power(struct sched_domain *sd, int cpu)
3671{
3672 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3673 unsigned long power = SCHED_LOAD_SCALE;
3674 struct sched_group *sdg = sd->groups;
ab29230e 3675
8e6598af
PZ
3676 if (sched_feat(ARCH_POWER))
3677 power *= arch_scale_freq_power(sd, cpu);
3678 else
3679 power *= default_scale_freq_power(sd, cpu);
3680
d6a59aa3 3681 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3682
3683 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3684 if (sched_feat(ARCH_POWER))
3685 power *= arch_scale_smt_power(sd, cpu);
3686 else
3687 power *= default_scale_smt_power(sd, cpu);
3688
ab29230e
PZ
3689 power >>= SCHED_LOAD_SHIFT;
3690 }
3691
e9e9250b
PZ
3692 power *= scale_rt_power(cpu);
3693 power >>= SCHED_LOAD_SHIFT;
3694
3695 if (!power)
3696 power = 1;
ab29230e 3697
18a3885f 3698 sdg->cpu_power = power;
ab29230e
PZ
3699}
3700
3701static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3702{
3703 struct sched_domain *child = sd->child;
3704 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3705 unsigned long power;
cc9fba7d
PZ
3706
3707 if (!child) {
ab29230e 3708 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3709 return;
3710 }
3711
d7ea17a7 3712 power = 0;
cc9fba7d
PZ
3713
3714 group = child->groups;
3715 do {
d7ea17a7 3716 power += group->cpu_power;
cc9fba7d
PZ
3717 group = group->next;
3718 } while (group != child->groups);
d7ea17a7
IM
3719
3720 sdg->cpu_power = power;
cc9fba7d 3721}
c071df18 3722
1f8c553d
GS
3723/**
3724 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3725 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3726 * @group: sched_group whose statistics are to be updated.
3727 * @this_cpu: Cpu for which load balance is currently performed.
3728 * @idle: Idle status of this_cpu
3729 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3730 * @sd_idle: Idle status of the sched_domain containing group.
3731 * @local_group: Does group contain this_cpu.
3732 * @cpus: Set of cpus considered for load balancing.
3733 * @balance: Should we balance.
3734 * @sgs: variable to hold the statistics for this group.
3735 */
cc9fba7d
PZ
3736static inline void update_sg_lb_stats(struct sched_domain *sd,
3737 struct sched_group *group, int this_cpu,
1f8c553d
GS
3738 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3739 int local_group, const struct cpumask *cpus,
3740 int *balance, struct sg_lb_stats *sgs)
3741{
3742 unsigned long load, max_cpu_load, min_cpu_load;
3743 int i;
3744 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3745 unsigned long sum_avg_load_per_task;
3746 unsigned long avg_load_per_task;
3747
cc9fba7d 3748 if (local_group) {
1f8c553d 3749 balance_cpu = group_first_cpu(group);
cc9fba7d 3750 if (balance_cpu == this_cpu)
ab29230e 3751 update_group_power(sd, this_cpu);
cc9fba7d 3752 }
1f8c553d
GS
3753
3754 /* Tally up the load of all CPUs in the group */
3755 sum_avg_load_per_task = avg_load_per_task = 0;
3756 max_cpu_load = 0;
3757 min_cpu_load = ~0UL;
408ed066 3758
1f8c553d
GS
3759 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3760 struct rq *rq = cpu_rq(i);
908a7c1b 3761
1f8c553d
GS
3762 if (*sd_idle && rq->nr_running)
3763 *sd_idle = 0;
5c45bf27 3764
1f8c553d 3765 /* Bias balancing toward cpus of our domain */
1da177e4 3766 if (local_group) {
1f8c553d
GS
3767 if (idle_cpu(i) && !first_idle_cpu) {
3768 first_idle_cpu = 1;
3769 balance_cpu = i;
3770 }
3771
3772 load = target_load(i, load_idx);
3773 } else {
3774 load = source_load(i, load_idx);
3775 if (load > max_cpu_load)
3776 max_cpu_load = load;
3777 if (min_cpu_load > load)
3778 min_cpu_load = load;
1da177e4 3779 }
5c45bf27 3780
1f8c553d
GS
3781 sgs->group_load += load;
3782 sgs->sum_nr_running += rq->nr_running;
3783 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3784
1f8c553d
GS
3785 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3786 }
5c45bf27 3787
1f8c553d
GS
3788 /*
3789 * First idle cpu or the first cpu(busiest) in this sched group
3790 * is eligible for doing load balancing at this and above
3791 * domains. In the newly idle case, we will allow all the cpu's
3792 * to do the newly idle load balance.
3793 */
3794 if (idle != CPU_NEWLY_IDLE && local_group &&
3795 balance_cpu != this_cpu && balance) {
3796 *balance = 0;
3797 return;
3798 }
5c45bf27 3799
1f8c553d 3800 /* Adjust by relative CPU power of the group */
18a3885f 3801 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3802
1f8c553d
GS
3803
3804 /*
3805 * Consider the group unbalanced when the imbalance is larger
3806 * than the average weight of two tasks.
3807 *
3808 * APZ: with cgroup the avg task weight can vary wildly and
3809 * might not be a suitable number - should we keep a
3810 * normalized nr_running number somewhere that negates
3811 * the hierarchy?
3812 */
18a3885f
PZ
3813 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3814 group->cpu_power;
1f8c553d
GS
3815
3816 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3817 sgs->group_imb = 1;
3818
bdb94aa5 3819 sgs->group_capacity =
18a3885f 3820 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3821}
dd41f596 3822
37abe198
GS
3823/**
3824 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3825 * @sd: sched_domain whose statistics are to be updated.
3826 * @this_cpu: Cpu for which load balance is currently performed.
3827 * @idle: Idle status of this_cpu
3828 * @sd_idle: Idle status of the sched_domain containing group.
3829 * @cpus: Set of cpus considered for load balancing.
3830 * @balance: Should we balance.
3831 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3832 */
37abe198
GS
3833static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3834 enum cpu_idle_type idle, int *sd_idle,
3835 const struct cpumask *cpus, int *balance,
3836 struct sd_lb_stats *sds)
1da177e4 3837{
b5d978e0 3838 struct sched_domain *child = sd->child;
222d656d 3839 struct sched_group *group = sd->groups;
37abe198 3840 struct sg_lb_stats sgs;
b5d978e0
PZ
3841 int load_idx, prefer_sibling = 0;
3842
3843 if (child && child->flags & SD_PREFER_SIBLING)
3844 prefer_sibling = 1;
222d656d 3845
c071df18 3846 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3847 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3848
3849 do {
1da177e4 3850 int local_group;
1da177e4 3851
758b2cdc
RR
3852 local_group = cpumask_test_cpu(this_cpu,
3853 sched_group_cpus(group));
381be78f 3854 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3855 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3856 local_group, cpus, balance, &sgs);
1da177e4 3857
37abe198
GS
3858 if (local_group && balance && !(*balance))
3859 return;
783609c6 3860
37abe198 3861 sds->total_load += sgs.group_load;
18a3885f 3862 sds->total_pwr += group->cpu_power;
1da177e4 3863
b5d978e0
PZ
3864 /*
3865 * In case the child domain prefers tasks go to siblings
3866 * first, lower the group capacity to one so that we'll try
3867 * and move all the excess tasks away.
3868 */
3869 if (prefer_sibling)
bdb94aa5 3870 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3871
1da177e4 3872 if (local_group) {
37abe198
GS
3873 sds->this_load = sgs.avg_load;
3874 sds->this = group;
3875 sds->this_nr_running = sgs.sum_nr_running;
3876 sds->this_load_per_task = sgs.sum_weighted_load;
3877 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3878 (sgs.sum_nr_running > sgs.group_capacity ||
3879 sgs.group_imb)) {
37abe198
GS
3880 sds->max_load = sgs.avg_load;
3881 sds->busiest = group;
3882 sds->busiest_nr_running = sgs.sum_nr_running;
3883 sds->busiest_load_per_task = sgs.sum_weighted_load;
3884 sds->group_imb = sgs.group_imb;
48f24c4d 3885 }
5c45bf27 3886
c071df18 3887 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3888 group = group->next;
3889 } while (group != sd->groups);
37abe198 3890}
1da177e4 3891
2e6f44ae
GS
3892/**
3893 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3894 * amongst the groups of a sched_domain, during
3895 * load balancing.
2e6f44ae
GS
3896 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3897 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3898 * @imbalance: Variable to store the imbalance.
3899 */
3900static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3901 int this_cpu, unsigned long *imbalance)
3902{
3903 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3904 unsigned int imbn = 2;
3905
3906 if (sds->this_nr_running) {
3907 sds->this_load_per_task /= sds->this_nr_running;
3908 if (sds->busiest_load_per_task >
3909 sds->this_load_per_task)
3910 imbn = 1;
3911 } else
3912 sds->this_load_per_task =
3913 cpu_avg_load_per_task(this_cpu);
1da177e4 3914
2e6f44ae
GS
3915 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3916 sds->busiest_load_per_task * imbn) {
3917 *imbalance = sds->busiest_load_per_task;
3918 return;
3919 }
908a7c1b 3920
1da177e4 3921 /*
2e6f44ae
GS
3922 * OK, we don't have enough imbalance to justify moving tasks,
3923 * however we may be able to increase total CPU power used by
3924 * moving them.
1da177e4 3925 */
2dd73a4f 3926
18a3885f 3927 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3928 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3929 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3930 min(sds->this_load_per_task, sds->this_load);
3931 pwr_now /= SCHED_LOAD_SCALE;
3932
3933 /* Amount of load we'd subtract */
18a3885f
PZ
3934 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3935 sds->busiest->cpu_power;
2e6f44ae 3936 if (sds->max_load > tmp)
18a3885f 3937 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3938 min(sds->busiest_load_per_task, sds->max_load - tmp);
3939
3940 /* Amount of load we'd add */
18a3885f 3941 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3942 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3943 tmp = (sds->max_load * sds->busiest->cpu_power) /
3944 sds->this->cpu_power;
2e6f44ae 3945 else
18a3885f
PZ
3946 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3947 sds->this->cpu_power;
3948 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3949 min(sds->this_load_per_task, sds->this_load + tmp);
3950 pwr_move /= SCHED_LOAD_SCALE;
3951
3952 /* Move if we gain throughput */
3953 if (pwr_move > pwr_now)
3954 *imbalance = sds->busiest_load_per_task;
3955}
dbc523a3
GS
3956
3957/**
3958 * calculate_imbalance - Calculate the amount of imbalance present within the
3959 * groups of a given sched_domain during load balance.
3960 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3961 * @this_cpu: Cpu for which currently load balance is being performed.
3962 * @imbalance: The variable to store the imbalance.
3963 */
3964static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3965 unsigned long *imbalance)
3966{
3967 unsigned long max_pull;
2dd73a4f
PW
3968 /*
3969 * In the presence of smp nice balancing, certain scenarios can have
3970 * max load less than avg load(as we skip the groups at or below
3971 * its cpu_power, while calculating max_load..)
3972 */
dbc523a3 3973 if (sds->max_load < sds->avg_load) {
2dd73a4f 3974 *imbalance = 0;
dbc523a3 3975 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3976 }
0c117f1b
SS
3977
3978 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3979 max_pull = min(sds->max_load - sds->avg_load,
3980 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3981
1da177e4 3982 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3983 *imbalance = min(max_pull * sds->busiest->cpu_power,
3984 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3985 / SCHED_LOAD_SCALE;
3986
2dd73a4f
PW
3987 /*
3988 * if *imbalance is less than the average load per runnable task
3989 * there is no gaurantee that any tasks will be moved so we'll have
3990 * a think about bumping its value to force at least one task to be
3991 * moved
3992 */
dbc523a3
GS
3993 if (*imbalance < sds->busiest_load_per_task)
3994 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3995
dbc523a3 3996}
37abe198 3997/******* find_busiest_group() helpers end here *********************/
1da177e4 3998
b7bb4c9b
GS
3999/**
4000 * find_busiest_group - Returns the busiest group within the sched_domain
4001 * if there is an imbalance. If there isn't an imbalance, and
4002 * the user has opted for power-savings, it returns a group whose
4003 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4004 * such a group exists.
4005 *
4006 * Also calculates the amount of weighted load which should be moved
4007 * to restore balance.
4008 *
4009 * @sd: The sched_domain whose busiest group is to be returned.
4010 * @this_cpu: The cpu for which load balancing is currently being performed.
4011 * @imbalance: Variable which stores amount of weighted load which should
4012 * be moved to restore balance/put a group to idle.
4013 * @idle: The idle status of this_cpu.
4014 * @sd_idle: The idleness of sd
4015 * @cpus: The set of CPUs under consideration for load-balancing.
4016 * @balance: Pointer to a variable indicating if this_cpu
4017 * is the appropriate cpu to perform load balancing at this_level.
4018 *
4019 * Returns: - the busiest group if imbalance exists.
4020 * - If no imbalance and user has opted for power-savings balance,
4021 * return the least loaded group whose CPUs can be
4022 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4023 */
4024static struct sched_group *
4025find_busiest_group(struct sched_domain *sd, int this_cpu,
4026 unsigned long *imbalance, enum cpu_idle_type idle,
4027 int *sd_idle, const struct cpumask *cpus, int *balance)
4028{
4029 struct sd_lb_stats sds;
1da177e4 4030
37abe198 4031 memset(&sds, 0, sizeof(sds));
1da177e4 4032
37abe198
GS
4033 /*
4034 * Compute the various statistics relavent for load balancing at
4035 * this level.
4036 */
4037 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4038 balance, &sds);
4039
b7bb4c9b
GS
4040 /* Cases where imbalance does not exist from POV of this_cpu */
4041 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4042 * at this level.
4043 * 2) There is no busy sibling group to pull from.
4044 * 3) This group is the busiest group.
4045 * 4) This group is more busy than the avg busieness at this
4046 * sched_domain.
4047 * 5) The imbalance is within the specified limit.
4048 * 6) Any rebalance would lead to ping-pong
4049 */
37abe198
GS
4050 if (balance && !(*balance))
4051 goto ret;
1da177e4 4052
b7bb4c9b
GS
4053 if (!sds.busiest || sds.busiest_nr_running == 0)
4054 goto out_balanced;
1da177e4 4055
b7bb4c9b 4056 if (sds.this_load >= sds.max_load)
1da177e4 4057 goto out_balanced;
1da177e4 4058
222d656d 4059 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4060
b7bb4c9b
GS
4061 if (sds.this_load >= sds.avg_load)
4062 goto out_balanced;
4063
4064 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4065 goto out_balanced;
4066
222d656d
GS
4067 sds.busiest_load_per_task /= sds.busiest_nr_running;
4068 if (sds.group_imb)
4069 sds.busiest_load_per_task =
4070 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4071
1da177e4
LT
4072 /*
4073 * We're trying to get all the cpus to the average_load, so we don't
4074 * want to push ourselves above the average load, nor do we wish to
4075 * reduce the max loaded cpu below the average load, as either of these
4076 * actions would just result in more rebalancing later, and ping-pong
4077 * tasks around. Thus we look for the minimum possible imbalance.
4078 * Negative imbalances (*we* are more loaded than anyone else) will
4079 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4080 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4081 * appear as very large values with unsigned longs.
4082 */
222d656d 4083 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4084 goto out_balanced;
4085
dbc523a3
GS
4086 /* Looks like there is an imbalance. Compute it */
4087 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4088 return sds.busiest;
1da177e4
LT
4089
4090out_balanced:
c071df18
GS
4091 /*
4092 * There is no obvious imbalance. But check if we can do some balancing
4093 * to save power.
4094 */
4095 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4096 return sds.busiest;
783609c6 4097ret:
1da177e4
LT
4098 *imbalance = 0;
4099 return NULL;
4100}
4101
4102/*
4103 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4104 */
70b97a7f 4105static struct rq *
d15bcfdb 4106find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4107 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4108{
70b97a7f 4109 struct rq *busiest = NULL, *rq;
2dd73a4f 4110 unsigned long max_load = 0;
1da177e4
LT
4111 int i;
4112
758b2cdc 4113 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4114 unsigned long power = power_of(i);
4115 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4116 unsigned long wl;
0a2966b4 4117
96f874e2 4118 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4119 continue;
4120
48f24c4d 4121 rq = cpu_rq(i);
9000f05c 4122 wl = weighted_cpuload(i);
2dd73a4f 4123
9000f05c
SS
4124 /*
4125 * When comparing with imbalance, use weighted_cpuload()
4126 * which is not scaled with the cpu power.
4127 */
bdb94aa5 4128 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4129 continue;
1da177e4 4130
9000f05c
SS
4131 /*
4132 * For the load comparisons with the other cpu's, consider
4133 * the weighted_cpuload() scaled with the cpu power, so that
4134 * the load can be moved away from the cpu that is potentially
4135 * running at a lower capacity.
4136 */
4137 wl = (wl * SCHED_LOAD_SCALE) / power;
4138
dd41f596
IM
4139 if (wl > max_load) {
4140 max_load = wl;
48f24c4d 4141 busiest = rq;
1da177e4
LT
4142 }
4143 }
4144
4145 return busiest;
4146}
4147
77391d71
NP
4148/*
4149 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4150 * so long as it is large enough.
4151 */
4152#define MAX_PINNED_INTERVAL 512
4153
df7c8e84
RR
4154/* Working cpumask for load_balance and load_balance_newidle. */
4155static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4156
1da177e4
LT
4157/*
4158 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4159 * tasks if there is an imbalance.
1da177e4 4160 */
70b97a7f 4161static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4162 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4163 int *balance)
1da177e4 4164{
43010659 4165 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4166 struct sched_group *group;
1da177e4 4167 unsigned long imbalance;
70b97a7f 4168 struct rq *busiest;
fe2eea3f 4169 unsigned long flags;
df7c8e84 4170 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4171
6ad4c188 4172 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4173
89c4710e
SS
4174 /*
4175 * When power savings policy is enabled for the parent domain, idle
4176 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4177 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4178 * portraying it as CPU_NOT_IDLE.
89c4710e 4179 */
d15bcfdb 4180 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4181 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4182 sd_idle = 1;
1da177e4 4183
2d72376b 4184 schedstat_inc(sd, lb_count[idle]);
1da177e4 4185
0a2966b4 4186redo:
c8cba857 4187 update_shares(sd);
0a2966b4 4188 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4189 cpus, balance);
783609c6 4190
06066714 4191 if (*balance == 0)
783609c6 4192 goto out_balanced;
783609c6 4193
1da177e4
LT
4194 if (!group) {
4195 schedstat_inc(sd, lb_nobusyg[idle]);
4196 goto out_balanced;
4197 }
4198
7c16ec58 4199 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4200 if (!busiest) {
4201 schedstat_inc(sd, lb_nobusyq[idle]);
4202 goto out_balanced;
4203 }
4204
db935dbd 4205 BUG_ON(busiest == this_rq);
1da177e4
LT
4206
4207 schedstat_add(sd, lb_imbalance[idle], imbalance);
4208
43010659 4209 ld_moved = 0;
1da177e4
LT
4210 if (busiest->nr_running > 1) {
4211 /*
4212 * Attempt to move tasks. If find_busiest_group has found
4213 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4214 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4215 * correctly treated as an imbalance.
4216 */
fe2eea3f 4217 local_irq_save(flags);
e17224bf 4218 double_rq_lock(this_rq, busiest);
43010659 4219 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4220 imbalance, sd, idle, &all_pinned);
e17224bf 4221 double_rq_unlock(this_rq, busiest);
fe2eea3f 4222 local_irq_restore(flags);
81026794 4223
46cb4b7c
SS
4224 /*
4225 * some other cpu did the load balance for us.
4226 */
43010659 4227 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4228 resched_cpu(this_cpu);
4229
81026794 4230 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4231 if (unlikely(all_pinned)) {
96f874e2
RR
4232 cpumask_clear_cpu(cpu_of(busiest), cpus);
4233 if (!cpumask_empty(cpus))
0a2966b4 4234 goto redo;
81026794 4235 goto out_balanced;
0a2966b4 4236 }
1da177e4 4237 }
81026794 4238
43010659 4239 if (!ld_moved) {
1da177e4
LT
4240 schedstat_inc(sd, lb_failed[idle]);
4241 sd->nr_balance_failed++;
4242
4243 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4244
05fa785c 4245 raw_spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4246
4247 /* don't kick the migration_thread, if the curr
4248 * task on busiest cpu can't be moved to this_cpu
4249 */
96f874e2
RR
4250 if (!cpumask_test_cpu(this_cpu,
4251 &busiest->curr->cpus_allowed)) {
05fa785c
TG
4252 raw_spin_unlock_irqrestore(&busiest->lock,
4253 flags);
fa3b6ddc
SS
4254 all_pinned = 1;
4255 goto out_one_pinned;
4256 }
4257
1da177e4
LT
4258 if (!busiest->active_balance) {
4259 busiest->active_balance = 1;
4260 busiest->push_cpu = this_cpu;
81026794 4261 active_balance = 1;
1da177e4 4262 }
05fa785c 4263 raw_spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4264 if (active_balance)
1da177e4
LT
4265 wake_up_process(busiest->migration_thread);
4266
4267 /*
4268 * We've kicked active balancing, reset the failure
4269 * counter.
4270 */
39507451 4271 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4272 }
81026794 4273 } else
1da177e4
LT
4274 sd->nr_balance_failed = 0;
4275
81026794 4276 if (likely(!active_balance)) {
1da177e4
LT
4277 /* We were unbalanced, so reset the balancing interval */
4278 sd->balance_interval = sd->min_interval;
81026794
NP
4279 } else {
4280 /*
4281 * If we've begun active balancing, start to back off. This
4282 * case may not be covered by the all_pinned logic if there
4283 * is only 1 task on the busy runqueue (because we don't call
4284 * move_tasks).
4285 */
4286 if (sd->balance_interval < sd->max_interval)
4287 sd->balance_interval *= 2;
1da177e4
LT
4288 }
4289
43010659 4290 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4291 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4292 ld_moved = -1;
4293
4294 goto out;
1da177e4
LT
4295
4296out_balanced:
1da177e4
LT
4297 schedstat_inc(sd, lb_balanced[idle]);
4298
16cfb1c0 4299 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4300
4301out_one_pinned:
1da177e4 4302 /* tune up the balancing interval */
77391d71
NP
4303 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4304 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4305 sd->balance_interval *= 2;
4306
48f24c4d 4307 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4308 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4309 ld_moved = -1;
4310 else
4311 ld_moved = 0;
4312out:
c8cba857
PZ
4313 if (ld_moved)
4314 update_shares(sd);
c09595f6 4315 return ld_moved;
1da177e4
LT
4316}
4317
4318/*
4319 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4320 * tasks if there is an imbalance.
4321 *
d15bcfdb 4322 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4323 * this_rq is locked.
4324 */
48f24c4d 4325static int
df7c8e84 4326load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4327{
4328 struct sched_group *group;
70b97a7f 4329 struct rq *busiest = NULL;
1da177e4 4330 unsigned long imbalance;
43010659 4331 int ld_moved = 0;
5969fe06 4332 int sd_idle = 0;
969bb4e4 4333 int all_pinned = 0;
df7c8e84 4334 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4335
6ad4c188 4336 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4337
89c4710e
SS
4338 /*
4339 * When power savings policy is enabled for the parent domain, idle
4340 * sibling can pick up load irrespective of busy siblings. In this case,
4341 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4342 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4343 */
4344 if (sd->flags & SD_SHARE_CPUPOWER &&
4345 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4346 sd_idle = 1;
1da177e4 4347
2d72376b 4348 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4349redo:
3e5459b4 4350 update_shares_locked(this_rq, sd);
d15bcfdb 4351 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4352 &sd_idle, cpus, NULL);
1da177e4 4353 if (!group) {
d15bcfdb 4354 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4355 goto out_balanced;
1da177e4
LT
4356 }
4357
7c16ec58 4358 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4359 if (!busiest) {
d15bcfdb 4360 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4361 goto out_balanced;
1da177e4
LT
4362 }
4363
db935dbd
NP
4364 BUG_ON(busiest == this_rq);
4365
d15bcfdb 4366 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4367
43010659 4368 ld_moved = 0;
d6d5cfaf
NP
4369 if (busiest->nr_running > 1) {
4370 /* Attempt to move tasks */
4371 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4372 /* this_rq->clock is already updated */
4373 update_rq_clock(busiest);
43010659 4374 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4375 imbalance, sd, CPU_NEWLY_IDLE,
4376 &all_pinned);
1b12bbc7 4377 double_unlock_balance(this_rq, busiest);
0a2966b4 4378
969bb4e4 4379 if (unlikely(all_pinned)) {
96f874e2
RR
4380 cpumask_clear_cpu(cpu_of(busiest), cpus);
4381 if (!cpumask_empty(cpus))
0a2966b4
CL
4382 goto redo;
4383 }
d6d5cfaf
NP
4384 }
4385
43010659 4386 if (!ld_moved) {
36dffab6 4387 int active_balance = 0;
ad273b32 4388
d15bcfdb 4389 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4390 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4391 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4392 return -1;
ad273b32
VS
4393
4394 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4395 return -1;
4396
4397 if (sd->nr_balance_failed++ < 2)
4398 return -1;
4399
4400 /*
4401 * The only task running in a non-idle cpu can be moved to this
4402 * cpu in an attempt to completely freeup the other CPU
4403 * package. The same method used to move task in load_balance()
4404 * have been extended for load_balance_newidle() to speedup
4405 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4406 *
4407 * The package power saving logic comes from
4408 * find_busiest_group(). If there are no imbalance, then
4409 * f_b_g() will return NULL. However when sched_mc={1,2} then
4410 * f_b_g() will select a group from which a running task may be
4411 * pulled to this cpu in order to make the other package idle.
4412 * If there is no opportunity to make a package idle and if
4413 * there are no imbalance, then f_b_g() will return NULL and no
4414 * action will be taken in load_balance_newidle().
4415 *
4416 * Under normal task pull operation due to imbalance, there
4417 * will be more than one task in the source run queue and
4418 * move_tasks() will succeed. ld_moved will be true and this
4419 * active balance code will not be triggered.
4420 */
4421
4422 /* Lock busiest in correct order while this_rq is held */
4423 double_lock_balance(this_rq, busiest);
4424
4425 /*
4426 * don't kick the migration_thread, if the curr
4427 * task on busiest cpu can't be moved to this_cpu
4428 */
6ca09dfc 4429 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4430 double_unlock_balance(this_rq, busiest);
4431 all_pinned = 1;
4432 return ld_moved;
4433 }
4434
4435 if (!busiest->active_balance) {
4436 busiest->active_balance = 1;
4437 busiest->push_cpu = this_cpu;
4438 active_balance = 1;
4439 }
4440
4441 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4442 /*
4443 * Should not call ttwu while holding a rq->lock
4444 */
05fa785c 4445 raw_spin_unlock(&this_rq->lock);
ad273b32
VS
4446 if (active_balance)
4447 wake_up_process(busiest->migration_thread);
05fa785c 4448 raw_spin_lock(&this_rq->lock);
ad273b32 4449
5969fe06 4450 } else
16cfb1c0 4451 sd->nr_balance_failed = 0;
1da177e4 4452
3e5459b4 4453 update_shares_locked(this_rq, sd);
43010659 4454 return ld_moved;
16cfb1c0
NP
4455
4456out_balanced:
d15bcfdb 4457 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4458 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4459 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4460 return -1;
16cfb1c0 4461 sd->nr_balance_failed = 0;
48f24c4d 4462
16cfb1c0 4463 return 0;
1da177e4
LT
4464}
4465
4466/*
4467 * idle_balance is called by schedule() if this_cpu is about to become
4468 * idle. Attempts to pull tasks from other CPUs.
4469 */
70b97a7f 4470static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4471{
4472 struct sched_domain *sd;
efbe027e 4473 int pulled_task = 0;
dd41f596 4474 unsigned long next_balance = jiffies + HZ;
1da177e4 4475
1b9508f6
MG
4476 this_rq->idle_stamp = this_rq->clock;
4477
4478 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4479 return;
4480
1da177e4 4481 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4482 unsigned long interval;
4483
4484 if (!(sd->flags & SD_LOAD_BALANCE))
4485 continue;
4486
4487 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4488 /* If we've pulled tasks over stop searching: */
7c16ec58 4489 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4490 sd);
92c4ca5c
CL
4491
4492 interval = msecs_to_jiffies(sd->balance_interval);
4493 if (time_after(next_balance, sd->last_balance + interval))
4494 next_balance = sd->last_balance + interval;
1b9508f6
MG
4495 if (pulled_task) {
4496 this_rq->idle_stamp = 0;
92c4ca5c 4497 break;
1b9508f6 4498 }
1da177e4 4499 }
dd41f596 4500 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4501 /*
4502 * We are going idle. next_balance may be set based on
4503 * a busy processor. So reset next_balance.
4504 */
4505 this_rq->next_balance = next_balance;
dd41f596 4506 }
1da177e4
LT
4507}
4508
4509/*
4510 * active_load_balance is run by migration threads. It pushes running tasks
4511 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4512 * running on each physical CPU where possible, and avoids physical /
4513 * logical imbalances.
4514 *
4515 * Called with busiest_rq locked.
4516 */
70b97a7f 4517static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4518{
39507451 4519 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4520 struct sched_domain *sd;
4521 struct rq *target_rq;
39507451 4522
48f24c4d 4523 /* Is there any task to move? */
39507451 4524 if (busiest_rq->nr_running <= 1)
39507451
NP
4525 return;
4526
4527 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4528
4529 /*
39507451 4530 * This condition is "impossible", if it occurs
41a2d6cf 4531 * we need to fix it. Originally reported by
39507451 4532 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4533 */
39507451 4534 BUG_ON(busiest_rq == target_rq);
1da177e4 4535
39507451
NP
4536 /* move a task from busiest_rq to target_rq */
4537 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4538 update_rq_clock(busiest_rq);
4539 update_rq_clock(target_rq);
39507451
NP
4540
4541 /* Search for an sd spanning us and the target CPU. */
c96d145e 4542 for_each_domain(target_cpu, sd) {
39507451 4543 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4544 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4545 break;
c96d145e 4546 }
39507451 4547
48f24c4d 4548 if (likely(sd)) {
2d72376b 4549 schedstat_inc(sd, alb_count);
39507451 4550
43010659
PW
4551 if (move_one_task(target_rq, target_cpu, busiest_rq,
4552 sd, CPU_IDLE))
48f24c4d
IM
4553 schedstat_inc(sd, alb_pushed);
4554 else
4555 schedstat_inc(sd, alb_failed);
4556 }
1b12bbc7 4557 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4558}
4559
46cb4b7c
SS
4560#ifdef CONFIG_NO_HZ
4561static struct {
4562 atomic_t load_balancer;
7d1e6a9b 4563 cpumask_var_t cpu_mask;
f711f609 4564 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4565} nohz ____cacheline_aligned = {
4566 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4567};
4568
eea08f32
AB
4569int get_nohz_load_balancer(void)
4570{
4571 return atomic_read(&nohz.load_balancer);
4572}
4573
f711f609
GS
4574#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4575/**
4576 * lowest_flag_domain - Return lowest sched_domain containing flag.
4577 * @cpu: The cpu whose lowest level of sched domain is to
4578 * be returned.
4579 * @flag: The flag to check for the lowest sched_domain
4580 * for the given cpu.
4581 *
4582 * Returns the lowest sched_domain of a cpu which contains the given flag.
4583 */
4584static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4585{
4586 struct sched_domain *sd;
4587
4588 for_each_domain(cpu, sd)
4589 if (sd && (sd->flags & flag))
4590 break;
4591
4592 return sd;
4593}
4594
4595/**
4596 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4597 * @cpu: The cpu whose domains we're iterating over.
4598 * @sd: variable holding the value of the power_savings_sd
4599 * for cpu.
4600 * @flag: The flag to filter the sched_domains to be iterated.
4601 *
4602 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4603 * set, starting from the lowest sched_domain to the highest.
4604 */
4605#define for_each_flag_domain(cpu, sd, flag) \
4606 for (sd = lowest_flag_domain(cpu, flag); \
4607 (sd && (sd->flags & flag)); sd = sd->parent)
4608
4609/**
4610 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4611 * @ilb_group: group to be checked for semi-idleness
4612 *
4613 * Returns: 1 if the group is semi-idle. 0 otherwise.
4614 *
4615 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4616 * and atleast one non-idle CPU. This helper function checks if the given
4617 * sched_group is semi-idle or not.
4618 */
4619static inline int is_semi_idle_group(struct sched_group *ilb_group)
4620{
4621 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4622 sched_group_cpus(ilb_group));
4623
4624 /*
4625 * A sched_group is semi-idle when it has atleast one busy cpu
4626 * and atleast one idle cpu.
4627 */
4628 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4629 return 0;
4630
4631 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4632 return 0;
4633
4634 return 1;
4635}
4636/**
4637 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4638 * @cpu: The cpu which is nominating a new idle_load_balancer.
4639 *
4640 * Returns: Returns the id of the idle load balancer if it exists,
4641 * Else, returns >= nr_cpu_ids.
4642 *
4643 * This algorithm picks the idle load balancer such that it belongs to a
4644 * semi-idle powersavings sched_domain. The idea is to try and avoid
4645 * completely idle packages/cores just for the purpose of idle load balancing
4646 * when there are other idle cpu's which are better suited for that job.
4647 */
4648static int find_new_ilb(int cpu)
4649{
4650 struct sched_domain *sd;
4651 struct sched_group *ilb_group;
4652
4653 /*
4654 * Have idle load balancer selection from semi-idle packages only
4655 * when power-aware load balancing is enabled
4656 */
4657 if (!(sched_smt_power_savings || sched_mc_power_savings))
4658 goto out_done;
4659
4660 /*
4661 * Optimize for the case when we have no idle CPUs or only one
4662 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4663 */
4664 if (cpumask_weight(nohz.cpu_mask) < 2)
4665 goto out_done;
4666
4667 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4668 ilb_group = sd->groups;
4669
4670 do {
4671 if (is_semi_idle_group(ilb_group))
4672 return cpumask_first(nohz.ilb_grp_nohz_mask);
4673
4674 ilb_group = ilb_group->next;
4675
4676 } while (ilb_group != sd->groups);
4677 }
4678
4679out_done:
4680 return cpumask_first(nohz.cpu_mask);
4681}
4682#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4683static inline int find_new_ilb(int call_cpu)
4684{
6e29ec57 4685 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4686}
4687#endif
4688
7835b98b 4689/*
46cb4b7c
SS
4690 * This routine will try to nominate the ilb (idle load balancing)
4691 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4692 * load balancing on behalf of all those cpus. If all the cpus in the system
4693 * go into this tickless mode, then there will be no ilb owner (as there is
4694 * no need for one) and all the cpus will sleep till the next wakeup event
4695 * arrives...
4696 *
4697 * For the ilb owner, tick is not stopped. And this tick will be used
4698 * for idle load balancing. ilb owner will still be part of
4699 * nohz.cpu_mask..
7835b98b 4700 *
46cb4b7c
SS
4701 * While stopping the tick, this cpu will become the ilb owner if there
4702 * is no other owner. And will be the owner till that cpu becomes busy
4703 * or if all cpus in the system stop their ticks at which point
4704 * there is no need for ilb owner.
4705 *
4706 * When the ilb owner becomes busy, it nominates another owner, during the
4707 * next busy scheduler_tick()
4708 */
4709int select_nohz_load_balancer(int stop_tick)
4710{
4711 int cpu = smp_processor_id();
4712
4713 if (stop_tick) {
46cb4b7c
SS
4714 cpu_rq(cpu)->in_nohz_recently = 1;
4715
483b4ee6
SS
4716 if (!cpu_active(cpu)) {
4717 if (atomic_read(&nohz.load_balancer) != cpu)
4718 return 0;
4719
4720 /*
4721 * If we are going offline and still the leader,
4722 * give up!
4723 */
46cb4b7c
SS
4724 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4725 BUG();
483b4ee6 4726
46cb4b7c
SS
4727 return 0;
4728 }
4729
483b4ee6
SS
4730 cpumask_set_cpu(cpu, nohz.cpu_mask);
4731
46cb4b7c 4732 /* time for ilb owner also to sleep */
6ad4c188 4733 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4734 if (atomic_read(&nohz.load_balancer) == cpu)
4735 atomic_set(&nohz.load_balancer, -1);
4736 return 0;
4737 }
4738
4739 if (atomic_read(&nohz.load_balancer) == -1) {
4740 /* make me the ilb owner */
4741 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4742 return 1;
e790fb0b
GS
4743 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4744 int new_ilb;
4745
4746 if (!(sched_smt_power_savings ||
4747 sched_mc_power_savings))
4748 return 1;
4749 /*
4750 * Check to see if there is a more power-efficient
4751 * ilb.
4752 */
4753 new_ilb = find_new_ilb(cpu);
4754 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4755 atomic_set(&nohz.load_balancer, -1);
4756 resched_cpu(new_ilb);
4757 return 0;
4758 }
46cb4b7c 4759 return 1;
e790fb0b 4760 }
46cb4b7c 4761 } else {
7d1e6a9b 4762 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4763 return 0;
4764
7d1e6a9b 4765 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4766
4767 if (atomic_read(&nohz.load_balancer) == cpu)
4768 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4769 BUG();
4770 }
4771 return 0;
4772}
4773#endif
4774
4775static DEFINE_SPINLOCK(balancing);
4776
4777/*
7835b98b
CL
4778 * It checks each scheduling domain to see if it is due to be balanced,
4779 * and initiates a balancing operation if so.
4780 *
4781 * Balancing parameters are set up in arch_init_sched_domains.
4782 */
a9957449 4783static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4784{
46cb4b7c
SS
4785 int balance = 1;
4786 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4787 unsigned long interval;
4788 struct sched_domain *sd;
46cb4b7c 4789 /* Earliest time when we have to do rebalance again */
c9819f45 4790 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4791 int update_next_balance = 0;
d07355f5 4792 int need_serialize;
1da177e4 4793
46cb4b7c 4794 for_each_domain(cpu, sd) {
1da177e4
LT
4795 if (!(sd->flags & SD_LOAD_BALANCE))
4796 continue;
4797
4798 interval = sd->balance_interval;
d15bcfdb 4799 if (idle != CPU_IDLE)
1da177e4
LT
4800 interval *= sd->busy_factor;
4801
4802 /* scale ms to jiffies */
4803 interval = msecs_to_jiffies(interval);
4804 if (unlikely(!interval))
4805 interval = 1;
dd41f596
IM
4806 if (interval > HZ*NR_CPUS/10)
4807 interval = HZ*NR_CPUS/10;
4808
d07355f5 4809 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4810
d07355f5 4811 if (need_serialize) {
08c183f3
CL
4812 if (!spin_trylock(&balancing))
4813 goto out;
4814 }
4815
c9819f45 4816 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4817 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4818 /*
4819 * We've pulled tasks over so either we're no
5969fe06
NP
4820 * longer idle, or one of our SMT siblings is
4821 * not idle.
4822 */
d15bcfdb 4823 idle = CPU_NOT_IDLE;
1da177e4 4824 }
1bd77f2d 4825 sd->last_balance = jiffies;
1da177e4 4826 }
d07355f5 4827 if (need_serialize)
08c183f3
CL
4828 spin_unlock(&balancing);
4829out:
f549da84 4830 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4831 next_balance = sd->last_balance + interval;
f549da84
SS
4832 update_next_balance = 1;
4833 }
783609c6
SS
4834
4835 /*
4836 * Stop the load balance at this level. There is another
4837 * CPU in our sched group which is doing load balancing more
4838 * actively.
4839 */
4840 if (!balance)
4841 break;
1da177e4 4842 }
f549da84
SS
4843
4844 /*
4845 * next_balance will be updated only when there is a need.
4846 * When the cpu is attached to null domain for ex, it will not be
4847 * updated.
4848 */
4849 if (likely(update_next_balance))
4850 rq->next_balance = next_balance;
46cb4b7c
SS
4851}
4852
4853/*
4854 * run_rebalance_domains is triggered when needed from the scheduler tick.
4855 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4856 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4857 */
4858static void run_rebalance_domains(struct softirq_action *h)
4859{
dd41f596
IM
4860 int this_cpu = smp_processor_id();
4861 struct rq *this_rq = cpu_rq(this_cpu);
4862 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4863 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4864
dd41f596 4865 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4866
4867#ifdef CONFIG_NO_HZ
4868 /*
4869 * If this cpu is the owner for idle load balancing, then do the
4870 * balancing on behalf of the other idle cpus whose ticks are
4871 * stopped.
4872 */
dd41f596
IM
4873 if (this_rq->idle_at_tick &&
4874 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4875 struct rq *rq;
4876 int balance_cpu;
4877
7d1e6a9b
RR
4878 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4879 if (balance_cpu == this_cpu)
4880 continue;
4881
46cb4b7c
SS
4882 /*
4883 * If this cpu gets work to do, stop the load balancing
4884 * work being done for other cpus. Next load
4885 * balancing owner will pick it up.
4886 */
4887 if (need_resched())
4888 break;
4889
de0cf899 4890 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4891
4892 rq = cpu_rq(balance_cpu);
dd41f596
IM
4893 if (time_after(this_rq->next_balance, rq->next_balance))
4894 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4895 }
4896 }
4897#endif
4898}
4899
8a0be9ef
FW
4900static inline int on_null_domain(int cpu)
4901{
4902 return !rcu_dereference(cpu_rq(cpu)->sd);
4903}
4904
46cb4b7c
SS
4905/*
4906 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4907 *
4908 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4909 * idle load balancing owner or decide to stop the periodic load balancing,
4910 * if the whole system is idle.
4911 */
dd41f596 4912static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4913{
46cb4b7c
SS
4914#ifdef CONFIG_NO_HZ
4915 /*
4916 * If we were in the nohz mode recently and busy at the current
4917 * scheduler tick, then check if we need to nominate new idle
4918 * load balancer.
4919 */
4920 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4921 rq->in_nohz_recently = 0;
4922
4923 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4924 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4925 atomic_set(&nohz.load_balancer, -1);
4926 }
4927
4928 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4929 int ilb = find_new_ilb(cpu);
46cb4b7c 4930
434d53b0 4931 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4932 resched_cpu(ilb);
4933 }
4934 }
4935
4936 /*
4937 * If this cpu is idle and doing idle load balancing for all the
4938 * cpus with ticks stopped, is it time for that to stop?
4939 */
4940 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4941 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4942 resched_cpu(cpu);
4943 return;
4944 }
4945
4946 /*
4947 * If this cpu is idle and the idle load balancing is done by
4948 * someone else, then no need raise the SCHED_SOFTIRQ
4949 */
4950 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4951 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4952 return;
4953#endif
8a0be9ef
FW
4954 /* Don't need to rebalance while attached to NULL domain */
4955 if (time_after_eq(jiffies, rq->next_balance) &&
4956 likely(!on_null_domain(cpu)))
46cb4b7c 4957 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4958}
dd41f596
IM
4959
4960#else /* CONFIG_SMP */
4961
1da177e4
LT
4962/*
4963 * on UP we do not need to balance between CPUs:
4964 */
70b97a7f 4965static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4966{
4967}
dd41f596 4968
1da177e4
LT
4969#endif
4970
1da177e4
LT
4971DEFINE_PER_CPU(struct kernel_stat, kstat);
4972
4973EXPORT_PER_CPU_SYMBOL(kstat);
4974
4975/*
c5f8d995 4976 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4977 * @p in case that task is currently running.
c5f8d995
HS
4978 *
4979 * Called with task_rq_lock() held on @rq.
1da177e4 4980 */
c5f8d995
HS
4981static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4982{
4983 u64 ns = 0;
4984
4985 if (task_current(rq, p)) {
4986 update_rq_clock(rq);
4987 ns = rq->clock - p->se.exec_start;
4988 if ((s64)ns < 0)
4989 ns = 0;
4990 }
4991
4992 return ns;
4993}
4994
bb34d92f 4995unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4996{
1da177e4 4997 unsigned long flags;
41b86e9c 4998 struct rq *rq;
bb34d92f 4999 u64 ns = 0;
48f24c4d 5000
41b86e9c 5001 rq = task_rq_lock(p, &flags);
c5f8d995
HS
5002 ns = do_task_delta_exec(p, rq);
5003 task_rq_unlock(rq, &flags);
1508487e 5004
c5f8d995
HS
5005 return ns;
5006}
f06febc9 5007
c5f8d995
HS
5008/*
5009 * Return accounted runtime for the task.
5010 * In case the task is currently running, return the runtime plus current's
5011 * pending runtime that have not been accounted yet.
5012 */
5013unsigned long long task_sched_runtime(struct task_struct *p)
5014{
5015 unsigned long flags;
5016 struct rq *rq;
5017 u64 ns = 0;
5018
5019 rq = task_rq_lock(p, &flags);
5020 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5021 task_rq_unlock(rq, &flags);
5022
5023 return ns;
5024}
48f24c4d 5025
c5f8d995
HS
5026/*
5027 * Return sum_exec_runtime for the thread group.
5028 * In case the task is currently running, return the sum plus current's
5029 * pending runtime that have not been accounted yet.
5030 *
5031 * Note that the thread group might have other running tasks as well,
5032 * so the return value not includes other pending runtime that other
5033 * running tasks might have.
5034 */
5035unsigned long long thread_group_sched_runtime(struct task_struct *p)
5036{
5037 struct task_cputime totals;
5038 unsigned long flags;
5039 struct rq *rq;
5040 u64 ns;
5041
5042 rq = task_rq_lock(p, &flags);
5043 thread_group_cputime(p, &totals);
5044 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5045 task_rq_unlock(rq, &flags);
48f24c4d 5046
1da177e4
LT
5047 return ns;
5048}
5049
1da177e4
LT
5050/*
5051 * Account user cpu time to a process.
5052 * @p: the process that the cpu time gets accounted to
1da177e4 5053 * @cputime: the cpu time spent in user space since the last update
457533a7 5054 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5055 */
457533a7
MS
5056void account_user_time(struct task_struct *p, cputime_t cputime,
5057 cputime_t cputime_scaled)
1da177e4
LT
5058{
5059 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5060 cputime64_t tmp;
5061
457533a7 5062 /* Add user time to process. */
1da177e4 5063 p->utime = cputime_add(p->utime, cputime);
457533a7 5064 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5065 account_group_user_time(p, cputime);
1da177e4
LT
5066
5067 /* Add user time to cpustat. */
5068 tmp = cputime_to_cputime64(cputime);
5069 if (TASK_NICE(p) > 0)
5070 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5071 else
5072 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5073
5074 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5075 /* Account for user time used */
5076 acct_update_integrals(p);
1da177e4
LT
5077}
5078
94886b84
LV
5079/*
5080 * Account guest cpu time to a process.
5081 * @p: the process that the cpu time gets accounted to
5082 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5083 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5084 */
457533a7
MS
5085static void account_guest_time(struct task_struct *p, cputime_t cputime,
5086 cputime_t cputime_scaled)
94886b84
LV
5087{
5088 cputime64_t tmp;
5089 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5090
5091 tmp = cputime_to_cputime64(cputime);
5092
457533a7 5093 /* Add guest time to process. */
94886b84 5094 p->utime = cputime_add(p->utime, cputime);
457533a7 5095 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5096 account_group_user_time(p, cputime);
94886b84
LV
5097 p->gtime = cputime_add(p->gtime, cputime);
5098
457533a7 5099 /* Add guest time to cpustat. */
ce0e7b28
RO
5100 if (TASK_NICE(p) > 0) {
5101 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5102 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5103 } else {
5104 cpustat->user = cputime64_add(cpustat->user, tmp);
5105 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5106 }
94886b84
LV
5107}
5108
1da177e4
LT
5109/*
5110 * Account system cpu time to a process.
5111 * @p: the process that the cpu time gets accounted to
5112 * @hardirq_offset: the offset to subtract from hardirq_count()
5113 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5114 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5115 */
5116void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5117 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5118{
5119 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5120 cputime64_t tmp;
5121
983ed7a6 5122 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5123 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5124 return;
5125 }
94886b84 5126
457533a7 5127 /* Add system time to process. */
1da177e4 5128 p->stime = cputime_add(p->stime, cputime);
457533a7 5129 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5130 account_group_system_time(p, cputime);
1da177e4
LT
5131
5132 /* Add system time to cpustat. */
5133 tmp = cputime_to_cputime64(cputime);
5134 if (hardirq_count() - hardirq_offset)
5135 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5136 else if (softirq_count())
5137 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5138 else
79741dd3
MS
5139 cpustat->system = cputime64_add(cpustat->system, tmp);
5140
ef12fefa
BR
5141 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5142
1da177e4
LT
5143 /* Account for system time used */
5144 acct_update_integrals(p);
1da177e4
LT
5145}
5146
c66f08be 5147/*
1da177e4 5148 * Account for involuntary wait time.
1da177e4 5149 * @steal: the cpu time spent in involuntary wait
c66f08be 5150 */
79741dd3 5151void account_steal_time(cputime_t cputime)
c66f08be 5152{
79741dd3
MS
5153 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5154 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5155
5156 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5157}
5158
1da177e4 5159/*
79741dd3
MS
5160 * Account for idle time.
5161 * @cputime: the cpu time spent in idle wait
1da177e4 5162 */
79741dd3 5163void account_idle_time(cputime_t cputime)
1da177e4
LT
5164{
5165 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5166 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5167 struct rq *rq = this_rq();
1da177e4 5168
79741dd3
MS
5169 if (atomic_read(&rq->nr_iowait) > 0)
5170 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5171 else
5172 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5173}
5174
79741dd3
MS
5175#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5176
5177/*
5178 * Account a single tick of cpu time.
5179 * @p: the process that the cpu time gets accounted to
5180 * @user_tick: indicates if the tick is a user or a system tick
5181 */
5182void account_process_tick(struct task_struct *p, int user_tick)
5183{
a42548a1 5184 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5185 struct rq *rq = this_rq();
5186
5187 if (user_tick)
a42548a1 5188 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5189 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5190 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5191 one_jiffy_scaled);
5192 else
a42548a1 5193 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5194}
5195
5196/*
5197 * Account multiple ticks of steal time.
5198 * @p: the process from which the cpu time has been stolen
5199 * @ticks: number of stolen ticks
5200 */
5201void account_steal_ticks(unsigned long ticks)
5202{
5203 account_steal_time(jiffies_to_cputime(ticks));
5204}
5205
5206/*
5207 * Account multiple ticks of idle time.
5208 * @ticks: number of stolen ticks
5209 */
5210void account_idle_ticks(unsigned long ticks)
5211{
5212 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5213}
5214
79741dd3
MS
5215#endif
5216
49048622
BS
5217/*
5218 * Use precise platform statistics if available:
5219 */
5220#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5221void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5222{
d99ca3b9
HS
5223 *ut = p->utime;
5224 *st = p->stime;
49048622
BS
5225}
5226
0cf55e1e 5227void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5228{
0cf55e1e
HS
5229 struct task_cputime cputime;
5230
5231 thread_group_cputime(p, &cputime);
5232
5233 *ut = cputime.utime;
5234 *st = cputime.stime;
49048622
BS
5235}
5236#else
761b1d26
HS
5237
5238#ifndef nsecs_to_cputime
b7b20df9 5239# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5240#endif
5241
d180c5bc 5242void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5243{
d99ca3b9 5244 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5245
5246 /*
5247 * Use CFS's precise accounting:
5248 */
d180c5bc 5249 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5250
5251 if (total) {
d180c5bc
HS
5252 u64 temp;
5253
5254 temp = (u64)(rtime * utime);
49048622 5255 do_div(temp, total);
d180c5bc
HS
5256 utime = (cputime_t)temp;
5257 } else
5258 utime = rtime;
49048622 5259
d180c5bc
HS
5260 /*
5261 * Compare with previous values, to keep monotonicity:
5262 */
761b1d26 5263 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5264 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5265
d99ca3b9
HS
5266 *ut = p->prev_utime;
5267 *st = p->prev_stime;
49048622
BS
5268}
5269
0cf55e1e
HS
5270/*
5271 * Must be called with siglock held.
5272 */
5273void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5274{
0cf55e1e
HS
5275 struct signal_struct *sig = p->signal;
5276 struct task_cputime cputime;
5277 cputime_t rtime, utime, total;
49048622 5278
0cf55e1e 5279 thread_group_cputime(p, &cputime);
49048622 5280
0cf55e1e
HS
5281 total = cputime_add(cputime.utime, cputime.stime);
5282 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5283
0cf55e1e
HS
5284 if (total) {
5285 u64 temp;
49048622 5286
0cf55e1e
HS
5287 temp = (u64)(rtime * cputime.utime);
5288 do_div(temp, total);
5289 utime = (cputime_t)temp;
5290 } else
5291 utime = rtime;
5292
5293 sig->prev_utime = max(sig->prev_utime, utime);
5294 sig->prev_stime = max(sig->prev_stime,
5295 cputime_sub(rtime, sig->prev_utime));
5296
5297 *ut = sig->prev_utime;
5298 *st = sig->prev_stime;
49048622 5299}
49048622 5300#endif
49048622 5301
7835b98b
CL
5302/*
5303 * This function gets called by the timer code, with HZ frequency.
5304 * We call it with interrupts disabled.
5305 *
5306 * It also gets called by the fork code, when changing the parent's
5307 * timeslices.
5308 */
5309void scheduler_tick(void)
5310{
7835b98b
CL
5311 int cpu = smp_processor_id();
5312 struct rq *rq = cpu_rq(cpu);
dd41f596 5313 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5314
5315 sched_clock_tick();
dd41f596 5316
05fa785c 5317 raw_spin_lock(&rq->lock);
3e51f33f 5318 update_rq_clock(rq);
f1a438d8 5319 update_cpu_load(rq);
fa85ae24 5320 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 5321 raw_spin_unlock(&rq->lock);
7835b98b 5322
cdd6c482 5323 perf_event_task_tick(curr, cpu);
e220d2dc 5324
e418e1c2 5325#ifdef CONFIG_SMP
dd41f596
IM
5326 rq->idle_at_tick = idle_cpu(cpu);
5327 trigger_load_balance(rq, cpu);
e418e1c2 5328#endif
1da177e4
LT
5329}
5330
132380a0 5331notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5332{
5333 if (in_lock_functions(addr)) {
5334 addr = CALLER_ADDR2;
5335 if (in_lock_functions(addr))
5336 addr = CALLER_ADDR3;
5337 }
5338 return addr;
5339}
1da177e4 5340
7e49fcce
SR
5341#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5342 defined(CONFIG_PREEMPT_TRACER))
5343
43627582 5344void __kprobes add_preempt_count(int val)
1da177e4 5345{
6cd8a4bb 5346#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5347 /*
5348 * Underflow?
5349 */
9a11b49a
IM
5350 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5351 return;
6cd8a4bb 5352#endif
1da177e4 5353 preempt_count() += val;
6cd8a4bb 5354#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5355 /*
5356 * Spinlock count overflowing soon?
5357 */
33859f7f
MOS
5358 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5359 PREEMPT_MASK - 10);
6cd8a4bb
SR
5360#endif
5361 if (preempt_count() == val)
5362 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5363}
5364EXPORT_SYMBOL(add_preempt_count);
5365
43627582 5366void __kprobes sub_preempt_count(int val)
1da177e4 5367{
6cd8a4bb 5368#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5369 /*
5370 * Underflow?
5371 */
01e3eb82 5372 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5373 return;
1da177e4
LT
5374 /*
5375 * Is the spinlock portion underflowing?
5376 */
9a11b49a
IM
5377 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5378 !(preempt_count() & PREEMPT_MASK)))
5379 return;
6cd8a4bb 5380#endif
9a11b49a 5381
6cd8a4bb
SR
5382 if (preempt_count() == val)
5383 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5384 preempt_count() -= val;
5385}
5386EXPORT_SYMBOL(sub_preempt_count);
5387
5388#endif
5389
5390/*
dd41f596 5391 * Print scheduling while atomic bug:
1da177e4 5392 */
dd41f596 5393static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5394{
838225b4
SS
5395 struct pt_regs *regs = get_irq_regs();
5396
3df0fc5b
PZ
5397 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5398 prev->comm, prev->pid, preempt_count());
838225b4 5399
dd41f596 5400 debug_show_held_locks(prev);
e21f5b15 5401 print_modules();
dd41f596
IM
5402 if (irqs_disabled())
5403 print_irqtrace_events(prev);
838225b4
SS
5404
5405 if (regs)
5406 show_regs(regs);
5407 else
5408 dump_stack();
dd41f596 5409}
1da177e4 5410
dd41f596
IM
5411/*
5412 * Various schedule()-time debugging checks and statistics:
5413 */
5414static inline void schedule_debug(struct task_struct *prev)
5415{
1da177e4 5416 /*
41a2d6cf 5417 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5418 * schedule() atomically, we ignore that path for now.
5419 * Otherwise, whine if we are scheduling when we should not be.
5420 */
3f33a7ce 5421 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5422 __schedule_bug(prev);
5423
1da177e4
LT
5424 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5425
2d72376b 5426 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5427#ifdef CONFIG_SCHEDSTATS
5428 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5429 schedstat_inc(this_rq(), bkl_count);
5430 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5431 }
5432#endif
dd41f596
IM
5433}
5434
6cecd084 5435static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5436{
6cecd084
PZ
5437 if (prev->state == TASK_RUNNING) {
5438 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5439
6cecd084
PZ
5440 runtime -= prev->se.prev_sum_exec_runtime;
5441 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5442
5443 /*
5444 * In order to avoid avg_overlap growing stale when we are
5445 * indeed overlapping and hence not getting put to sleep, grow
5446 * the avg_overlap on preemption.
5447 *
5448 * We use the average preemption runtime because that
5449 * correlates to the amount of cache footprint a task can
5450 * build up.
5451 */
6cecd084 5452 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5453 }
6cecd084 5454 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5455}
5456
dd41f596
IM
5457/*
5458 * Pick up the highest-prio task:
5459 */
5460static inline struct task_struct *
b67802ea 5461pick_next_task(struct rq *rq)
dd41f596 5462{
5522d5d5 5463 const struct sched_class *class;
dd41f596 5464 struct task_struct *p;
1da177e4
LT
5465
5466 /*
dd41f596
IM
5467 * Optimization: we know that if all tasks are in
5468 * the fair class we can call that function directly:
1da177e4 5469 */
dd41f596 5470 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5471 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5472 if (likely(p))
5473 return p;
1da177e4
LT
5474 }
5475
dd41f596
IM
5476 class = sched_class_highest;
5477 for ( ; ; ) {
fb8d4724 5478 p = class->pick_next_task(rq);
dd41f596
IM
5479 if (p)
5480 return p;
5481 /*
5482 * Will never be NULL as the idle class always
5483 * returns a non-NULL p:
5484 */
5485 class = class->next;
5486 }
5487}
1da177e4 5488
dd41f596
IM
5489/*
5490 * schedule() is the main scheduler function.
5491 */
ff743345 5492asmlinkage void __sched schedule(void)
dd41f596
IM
5493{
5494 struct task_struct *prev, *next;
67ca7bde 5495 unsigned long *switch_count;
dd41f596 5496 struct rq *rq;
31656519 5497 int cpu;
dd41f596 5498
ff743345
PZ
5499need_resched:
5500 preempt_disable();
dd41f596
IM
5501 cpu = smp_processor_id();
5502 rq = cpu_rq(cpu);
d6714c22 5503 rcu_sched_qs(cpu);
dd41f596
IM
5504 prev = rq->curr;
5505 switch_count = &prev->nivcsw;
5506
5507 release_kernel_lock(prev);
5508need_resched_nonpreemptible:
5509
5510 schedule_debug(prev);
1da177e4 5511
31656519 5512 if (sched_feat(HRTICK))
f333fdc9 5513 hrtick_clear(rq);
8f4d37ec 5514
05fa785c 5515 raw_spin_lock_irq(&rq->lock);
3e51f33f 5516 update_rq_clock(rq);
1e819950 5517 clear_tsk_need_resched(prev);
1da177e4 5518
1da177e4 5519 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5520 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5521 prev->state = TASK_RUNNING;
16882c1e 5522 else
2e1cb74a 5523 deactivate_task(rq, prev, 1);
dd41f596 5524 switch_count = &prev->nvcsw;
1da177e4
LT
5525 }
5526
3f029d3c 5527 pre_schedule(rq, prev);
f65eda4f 5528
dd41f596 5529 if (unlikely(!rq->nr_running))
1da177e4 5530 idle_balance(cpu, rq);
1da177e4 5531
df1c99d4 5532 put_prev_task(rq, prev);
b67802ea 5533 next = pick_next_task(rq);
1da177e4 5534
1da177e4 5535 if (likely(prev != next)) {
673a90a1 5536 sched_info_switch(prev, next);
cdd6c482 5537 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5538
1da177e4
LT
5539 rq->nr_switches++;
5540 rq->curr = next;
5541 ++*switch_count;
5542
dd41f596 5543 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5544 /*
5545 * the context switch might have flipped the stack from under
5546 * us, hence refresh the local variables.
5547 */
5548 cpu = smp_processor_id();
5549 rq = cpu_rq(cpu);
1da177e4 5550 } else
05fa785c 5551 raw_spin_unlock_irq(&rq->lock);
1da177e4 5552
3f029d3c 5553 post_schedule(rq);
1da177e4 5554
6d558c3a
YZ
5555 if (unlikely(reacquire_kernel_lock(current) < 0)) {
5556 prev = rq->curr;
5557 switch_count = &prev->nivcsw;
1da177e4 5558 goto need_resched_nonpreemptible;
6d558c3a 5559 }
8f4d37ec 5560
1da177e4 5561 preempt_enable_no_resched();
ff743345 5562 if (need_resched())
1da177e4
LT
5563 goto need_resched;
5564}
1da177e4
LT
5565EXPORT_SYMBOL(schedule);
5566
c08f7829 5567#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5568/*
5569 * Look out! "owner" is an entirely speculative pointer
5570 * access and not reliable.
5571 */
5572int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5573{
5574 unsigned int cpu;
5575 struct rq *rq;
5576
5577 if (!sched_feat(OWNER_SPIN))
5578 return 0;
5579
5580#ifdef CONFIG_DEBUG_PAGEALLOC
5581 /*
5582 * Need to access the cpu field knowing that
5583 * DEBUG_PAGEALLOC could have unmapped it if
5584 * the mutex owner just released it and exited.
5585 */
5586 if (probe_kernel_address(&owner->cpu, cpu))
5587 goto out;
5588#else
5589 cpu = owner->cpu;
5590#endif
5591
5592 /*
5593 * Even if the access succeeded (likely case),
5594 * the cpu field may no longer be valid.
5595 */
5596 if (cpu >= nr_cpumask_bits)
5597 goto out;
5598
5599 /*
5600 * We need to validate that we can do a
5601 * get_cpu() and that we have the percpu area.
5602 */
5603 if (!cpu_online(cpu))
5604 goto out;
5605
5606 rq = cpu_rq(cpu);
5607
5608 for (;;) {
5609 /*
5610 * Owner changed, break to re-assess state.
5611 */
5612 if (lock->owner != owner)
5613 break;
5614
5615 /*
5616 * Is that owner really running on that cpu?
5617 */
5618 if (task_thread_info(rq->curr) != owner || need_resched())
5619 return 0;
5620
5621 cpu_relax();
5622 }
5623out:
5624 return 1;
5625}
5626#endif
5627
1da177e4
LT
5628#ifdef CONFIG_PREEMPT
5629/*
2ed6e34f 5630 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5631 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5632 * occur there and call schedule directly.
5633 */
5634asmlinkage void __sched preempt_schedule(void)
5635{
5636 struct thread_info *ti = current_thread_info();
6478d880 5637
1da177e4
LT
5638 /*
5639 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5640 * we do not want to preempt the current task. Just return..
1da177e4 5641 */
beed33a8 5642 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5643 return;
5644
3a5c359a
AK
5645 do {
5646 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5647 schedule();
3a5c359a 5648 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5649
3a5c359a
AK
5650 /*
5651 * Check again in case we missed a preemption opportunity
5652 * between schedule and now.
5653 */
5654 barrier();
5ed0cec0 5655 } while (need_resched());
1da177e4 5656}
1da177e4
LT
5657EXPORT_SYMBOL(preempt_schedule);
5658
5659/*
2ed6e34f 5660 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5661 * off of irq context.
5662 * Note, that this is called and return with irqs disabled. This will
5663 * protect us against recursive calling from irq.
5664 */
5665asmlinkage void __sched preempt_schedule_irq(void)
5666{
5667 struct thread_info *ti = current_thread_info();
6478d880 5668
2ed6e34f 5669 /* Catch callers which need to be fixed */
1da177e4
LT
5670 BUG_ON(ti->preempt_count || !irqs_disabled());
5671
3a5c359a
AK
5672 do {
5673 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5674 local_irq_enable();
5675 schedule();
5676 local_irq_disable();
3a5c359a 5677 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5678
3a5c359a
AK
5679 /*
5680 * Check again in case we missed a preemption opportunity
5681 * between schedule and now.
5682 */
5683 barrier();
5ed0cec0 5684 } while (need_resched());
1da177e4
LT
5685}
5686
5687#endif /* CONFIG_PREEMPT */
5688
63859d4f 5689int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5690 void *key)
1da177e4 5691{
63859d4f 5692 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5693}
1da177e4
LT
5694EXPORT_SYMBOL(default_wake_function);
5695
5696/*
41a2d6cf
IM
5697 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5698 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5699 * number) then we wake all the non-exclusive tasks and one exclusive task.
5700 *
5701 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5702 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5703 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5704 */
78ddb08f 5705static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5706 int nr_exclusive, int wake_flags, void *key)
1da177e4 5707{
2e45874c 5708 wait_queue_t *curr, *next;
1da177e4 5709
2e45874c 5710 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5711 unsigned flags = curr->flags;
5712
63859d4f 5713 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5714 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5715 break;
5716 }
5717}
5718
5719/**
5720 * __wake_up - wake up threads blocked on a waitqueue.
5721 * @q: the waitqueue
5722 * @mode: which threads
5723 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5724 * @key: is directly passed to the wakeup function
50fa610a
DH
5725 *
5726 * It may be assumed that this function implies a write memory barrier before
5727 * changing the task state if and only if any tasks are woken up.
1da177e4 5728 */
7ad5b3a5 5729void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5730 int nr_exclusive, void *key)
1da177e4
LT
5731{
5732 unsigned long flags;
5733
5734 spin_lock_irqsave(&q->lock, flags);
5735 __wake_up_common(q, mode, nr_exclusive, 0, key);
5736 spin_unlock_irqrestore(&q->lock, flags);
5737}
1da177e4
LT
5738EXPORT_SYMBOL(__wake_up);
5739
5740/*
5741 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5742 */
7ad5b3a5 5743void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5744{
5745 __wake_up_common(q, mode, 1, 0, NULL);
5746}
5747
4ede816a
DL
5748void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5749{
5750 __wake_up_common(q, mode, 1, 0, key);
5751}
5752
1da177e4 5753/**
4ede816a 5754 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5755 * @q: the waitqueue
5756 * @mode: which threads
5757 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5758 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5759 *
5760 * The sync wakeup differs that the waker knows that it will schedule
5761 * away soon, so while the target thread will be woken up, it will not
5762 * be migrated to another CPU - ie. the two threads are 'synchronized'
5763 * with each other. This can prevent needless bouncing between CPUs.
5764 *
5765 * On UP it can prevent extra preemption.
50fa610a
DH
5766 *
5767 * It may be assumed that this function implies a write memory barrier before
5768 * changing the task state if and only if any tasks are woken up.
1da177e4 5769 */
4ede816a
DL
5770void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5771 int nr_exclusive, void *key)
1da177e4
LT
5772{
5773 unsigned long flags;
7d478721 5774 int wake_flags = WF_SYNC;
1da177e4
LT
5775
5776 if (unlikely(!q))
5777 return;
5778
5779 if (unlikely(!nr_exclusive))
7d478721 5780 wake_flags = 0;
1da177e4
LT
5781
5782 spin_lock_irqsave(&q->lock, flags);
7d478721 5783 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5784 spin_unlock_irqrestore(&q->lock, flags);
5785}
4ede816a
DL
5786EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5787
5788/*
5789 * __wake_up_sync - see __wake_up_sync_key()
5790 */
5791void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5792{
5793 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5794}
1da177e4
LT
5795EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5796
65eb3dc6
KD
5797/**
5798 * complete: - signals a single thread waiting on this completion
5799 * @x: holds the state of this particular completion
5800 *
5801 * This will wake up a single thread waiting on this completion. Threads will be
5802 * awakened in the same order in which they were queued.
5803 *
5804 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5805 *
5806 * It may be assumed that this function implies a write memory barrier before
5807 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5808 */
b15136e9 5809void complete(struct completion *x)
1da177e4
LT
5810{
5811 unsigned long flags;
5812
5813 spin_lock_irqsave(&x->wait.lock, flags);
5814 x->done++;
d9514f6c 5815 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5816 spin_unlock_irqrestore(&x->wait.lock, flags);
5817}
5818EXPORT_SYMBOL(complete);
5819
65eb3dc6
KD
5820/**
5821 * complete_all: - signals all threads waiting on this completion
5822 * @x: holds the state of this particular completion
5823 *
5824 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5825 *
5826 * It may be assumed that this function implies a write memory barrier before
5827 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5828 */
b15136e9 5829void complete_all(struct completion *x)
1da177e4
LT
5830{
5831 unsigned long flags;
5832
5833 spin_lock_irqsave(&x->wait.lock, flags);
5834 x->done += UINT_MAX/2;
d9514f6c 5835 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5836 spin_unlock_irqrestore(&x->wait.lock, flags);
5837}
5838EXPORT_SYMBOL(complete_all);
5839
8cbbe86d
AK
5840static inline long __sched
5841do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5842{
1da177e4
LT
5843 if (!x->done) {
5844 DECLARE_WAITQUEUE(wait, current);
5845
5846 wait.flags |= WQ_FLAG_EXCLUSIVE;
5847 __add_wait_queue_tail(&x->wait, &wait);
5848 do {
94d3d824 5849 if (signal_pending_state(state, current)) {
ea71a546
ON
5850 timeout = -ERESTARTSYS;
5851 break;
8cbbe86d
AK
5852 }
5853 __set_current_state(state);
1da177e4
LT
5854 spin_unlock_irq(&x->wait.lock);
5855 timeout = schedule_timeout(timeout);
5856 spin_lock_irq(&x->wait.lock);
ea71a546 5857 } while (!x->done && timeout);
1da177e4 5858 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5859 if (!x->done)
5860 return timeout;
1da177e4
LT
5861 }
5862 x->done--;
ea71a546 5863 return timeout ?: 1;
1da177e4 5864}
1da177e4 5865
8cbbe86d
AK
5866static long __sched
5867wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5868{
1da177e4
LT
5869 might_sleep();
5870
5871 spin_lock_irq(&x->wait.lock);
8cbbe86d 5872 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5873 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5874 return timeout;
5875}
1da177e4 5876
65eb3dc6
KD
5877/**
5878 * wait_for_completion: - waits for completion of a task
5879 * @x: holds the state of this particular completion
5880 *
5881 * This waits to be signaled for completion of a specific task. It is NOT
5882 * interruptible and there is no timeout.
5883 *
5884 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5885 * and interrupt capability. Also see complete().
5886 */
b15136e9 5887void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5888{
5889 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5890}
8cbbe86d 5891EXPORT_SYMBOL(wait_for_completion);
1da177e4 5892
65eb3dc6
KD
5893/**
5894 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5895 * @x: holds the state of this particular completion
5896 * @timeout: timeout value in jiffies
5897 *
5898 * This waits for either a completion of a specific task to be signaled or for a
5899 * specified timeout to expire. The timeout is in jiffies. It is not
5900 * interruptible.
5901 */
b15136e9 5902unsigned long __sched
8cbbe86d 5903wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5904{
8cbbe86d 5905 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5906}
8cbbe86d 5907EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5908
65eb3dc6
KD
5909/**
5910 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5911 * @x: holds the state of this particular completion
5912 *
5913 * This waits for completion of a specific task to be signaled. It is
5914 * interruptible.
5915 */
8cbbe86d 5916int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5917{
51e97990
AK
5918 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5919 if (t == -ERESTARTSYS)
5920 return t;
5921 return 0;
0fec171c 5922}
8cbbe86d 5923EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5924
65eb3dc6
KD
5925/**
5926 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5927 * @x: holds the state of this particular completion
5928 * @timeout: timeout value in jiffies
5929 *
5930 * This waits for either a completion of a specific task to be signaled or for a
5931 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5932 */
b15136e9 5933unsigned long __sched
8cbbe86d
AK
5934wait_for_completion_interruptible_timeout(struct completion *x,
5935 unsigned long timeout)
0fec171c 5936{
8cbbe86d 5937 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5938}
8cbbe86d 5939EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5940
65eb3dc6
KD
5941/**
5942 * wait_for_completion_killable: - waits for completion of a task (killable)
5943 * @x: holds the state of this particular completion
5944 *
5945 * This waits to be signaled for completion of a specific task. It can be
5946 * interrupted by a kill signal.
5947 */
009e577e
MW
5948int __sched wait_for_completion_killable(struct completion *x)
5949{
5950 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5951 if (t == -ERESTARTSYS)
5952 return t;
5953 return 0;
5954}
5955EXPORT_SYMBOL(wait_for_completion_killable);
5956
be4de352
DC
5957/**
5958 * try_wait_for_completion - try to decrement a completion without blocking
5959 * @x: completion structure
5960 *
5961 * Returns: 0 if a decrement cannot be done without blocking
5962 * 1 if a decrement succeeded.
5963 *
5964 * If a completion is being used as a counting completion,
5965 * attempt to decrement the counter without blocking. This
5966 * enables us to avoid waiting if the resource the completion
5967 * is protecting is not available.
5968 */
5969bool try_wait_for_completion(struct completion *x)
5970{
7539a3b3 5971 unsigned long flags;
be4de352
DC
5972 int ret = 1;
5973
7539a3b3 5974 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5975 if (!x->done)
5976 ret = 0;
5977 else
5978 x->done--;
7539a3b3 5979 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5980 return ret;
5981}
5982EXPORT_SYMBOL(try_wait_for_completion);
5983
5984/**
5985 * completion_done - Test to see if a completion has any waiters
5986 * @x: completion structure
5987 *
5988 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5989 * 1 if there are no waiters.
5990 *
5991 */
5992bool completion_done(struct completion *x)
5993{
7539a3b3 5994 unsigned long flags;
be4de352
DC
5995 int ret = 1;
5996
7539a3b3 5997 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5998 if (!x->done)
5999 ret = 0;
7539a3b3 6000 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
6001 return ret;
6002}
6003EXPORT_SYMBOL(completion_done);
6004
8cbbe86d
AK
6005static long __sched
6006sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 6007{
0fec171c
IM
6008 unsigned long flags;
6009 wait_queue_t wait;
6010
6011 init_waitqueue_entry(&wait, current);
1da177e4 6012
8cbbe86d 6013 __set_current_state(state);
1da177e4 6014
8cbbe86d
AK
6015 spin_lock_irqsave(&q->lock, flags);
6016 __add_wait_queue(q, &wait);
6017 spin_unlock(&q->lock);
6018 timeout = schedule_timeout(timeout);
6019 spin_lock_irq(&q->lock);
6020 __remove_wait_queue(q, &wait);
6021 spin_unlock_irqrestore(&q->lock, flags);
6022
6023 return timeout;
6024}
6025
6026void __sched interruptible_sleep_on(wait_queue_head_t *q)
6027{
6028 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6029}
1da177e4
LT
6030EXPORT_SYMBOL(interruptible_sleep_on);
6031
0fec171c 6032long __sched
95cdf3b7 6033interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6034{
8cbbe86d 6035 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 6036}
1da177e4
LT
6037EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6038
0fec171c 6039void __sched sleep_on(wait_queue_head_t *q)
1da177e4 6040{
8cbbe86d 6041 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6042}
1da177e4
LT
6043EXPORT_SYMBOL(sleep_on);
6044
0fec171c 6045long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6046{
8cbbe86d 6047 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6048}
1da177e4
LT
6049EXPORT_SYMBOL(sleep_on_timeout);
6050
b29739f9
IM
6051#ifdef CONFIG_RT_MUTEXES
6052
6053/*
6054 * rt_mutex_setprio - set the current priority of a task
6055 * @p: task
6056 * @prio: prio value (kernel-internal form)
6057 *
6058 * This function changes the 'effective' priority of a task. It does
6059 * not touch ->normal_prio like __setscheduler().
6060 *
6061 * Used by the rt_mutex code to implement priority inheritance logic.
6062 */
36c8b586 6063void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6064{
6065 unsigned long flags;
83b699ed 6066 int oldprio, on_rq, running;
70b97a7f 6067 struct rq *rq;
cb469845 6068 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6069
6070 BUG_ON(prio < 0 || prio > MAX_PRIO);
6071
6072 rq = task_rq_lock(p, &flags);
a8e504d2 6073 update_rq_clock(rq);
b29739f9 6074
d5f9f942 6075 oldprio = p->prio;
dd41f596 6076 on_rq = p->se.on_rq;
051a1d1a 6077 running = task_current(rq, p);
0e1f3483 6078 if (on_rq)
69be72c1 6079 dequeue_task(rq, p, 0);
0e1f3483
HS
6080 if (running)
6081 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6082
6083 if (rt_prio(prio))
6084 p->sched_class = &rt_sched_class;
6085 else
6086 p->sched_class = &fair_sched_class;
6087
b29739f9
IM
6088 p->prio = prio;
6089
0e1f3483
HS
6090 if (running)
6091 p->sched_class->set_curr_task(rq);
dd41f596 6092 if (on_rq) {
8159f87e 6093 enqueue_task(rq, p, 0);
cb469845
SR
6094
6095 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6096 }
6097 task_rq_unlock(rq, &flags);
6098}
6099
6100#endif
6101
36c8b586 6102void set_user_nice(struct task_struct *p, long nice)
1da177e4 6103{
dd41f596 6104 int old_prio, delta, on_rq;
1da177e4 6105 unsigned long flags;
70b97a7f 6106 struct rq *rq;
1da177e4
LT
6107
6108 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6109 return;
6110 /*
6111 * We have to be careful, if called from sys_setpriority(),
6112 * the task might be in the middle of scheduling on another CPU.
6113 */
6114 rq = task_rq_lock(p, &flags);
a8e504d2 6115 update_rq_clock(rq);
1da177e4
LT
6116 /*
6117 * The RT priorities are set via sched_setscheduler(), but we still
6118 * allow the 'normal' nice value to be set - but as expected
6119 * it wont have any effect on scheduling until the task is
dd41f596 6120 * SCHED_FIFO/SCHED_RR:
1da177e4 6121 */
e05606d3 6122 if (task_has_rt_policy(p)) {
1da177e4
LT
6123 p->static_prio = NICE_TO_PRIO(nice);
6124 goto out_unlock;
6125 }
dd41f596 6126 on_rq = p->se.on_rq;
c09595f6 6127 if (on_rq)
69be72c1 6128 dequeue_task(rq, p, 0);
1da177e4 6129
1da177e4 6130 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6131 set_load_weight(p);
b29739f9
IM
6132 old_prio = p->prio;
6133 p->prio = effective_prio(p);
6134 delta = p->prio - old_prio;
1da177e4 6135
dd41f596 6136 if (on_rq) {
8159f87e 6137 enqueue_task(rq, p, 0);
1da177e4 6138 /*
d5f9f942
AM
6139 * If the task increased its priority or is running and
6140 * lowered its priority, then reschedule its CPU:
1da177e4 6141 */
d5f9f942 6142 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6143 resched_task(rq->curr);
6144 }
6145out_unlock:
6146 task_rq_unlock(rq, &flags);
6147}
1da177e4
LT
6148EXPORT_SYMBOL(set_user_nice);
6149
e43379f1
MM
6150/*
6151 * can_nice - check if a task can reduce its nice value
6152 * @p: task
6153 * @nice: nice value
6154 */
36c8b586 6155int can_nice(const struct task_struct *p, const int nice)
e43379f1 6156{
024f4747
MM
6157 /* convert nice value [19,-20] to rlimit style value [1,40] */
6158 int nice_rlim = 20 - nice;
48f24c4d 6159
e43379f1
MM
6160 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6161 capable(CAP_SYS_NICE));
6162}
6163
1da177e4
LT
6164#ifdef __ARCH_WANT_SYS_NICE
6165
6166/*
6167 * sys_nice - change the priority of the current process.
6168 * @increment: priority increment
6169 *
6170 * sys_setpriority is a more generic, but much slower function that
6171 * does similar things.
6172 */
5add95d4 6173SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6174{
48f24c4d 6175 long nice, retval;
1da177e4
LT
6176
6177 /*
6178 * Setpriority might change our priority at the same moment.
6179 * We don't have to worry. Conceptually one call occurs first
6180 * and we have a single winner.
6181 */
e43379f1
MM
6182 if (increment < -40)
6183 increment = -40;
1da177e4
LT
6184 if (increment > 40)
6185 increment = 40;
6186
2b8f836f 6187 nice = TASK_NICE(current) + increment;
1da177e4
LT
6188 if (nice < -20)
6189 nice = -20;
6190 if (nice > 19)
6191 nice = 19;
6192
e43379f1
MM
6193 if (increment < 0 && !can_nice(current, nice))
6194 return -EPERM;
6195
1da177e4
LT
6196 retval = security_task_setnice(current, nice);
6197 if (retval)
6198 return retval;
6199
6200 set_user_nice(current, nice);
6201 return 0;
6202}
6203
6204#endif
6205
6206/**
6207 * task_prio - return the priority value of a given task.
6208 * @p: the task in question.
6209 *
6210 * This is the priority value as seen by users in /proc.
6211 * RT tasks are offset by -200. Normal tasks are centered
6212 * around 0, value goes from -16 to +15.
6213 */
36c8b586 6214int task_prio(const struct task_struct *p)
1da177e4
LT
6215{
6216 return p->prio - MAX_RT_PRIO;
6217}
6218
6219/**
6220 * task_nice - return the nice value of a given task.
6221 * @p: the task in question.
6222 */
36c8b586 6223int task_nice(const struct task_struct *p)
1da177e4
LT
6224{
6225 return TASK_NICE(p);
6226}
150d8bed 6227EXPORT_SYMBOL(task_nice);
1da177e4
LT
6228
6229/**
6230 * idle_cpu - is a given cpu idle currently?
6231 * @cpu: the processor in question.
6232 */
6233int idle_cpu(int cpu)
6234{
6235 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6236}
6237
1da177e4
LT
6238/**
6239 * idle_task - return the idle task for a given cpu.
6240 * @cpu: the processor in question.
6241 */
36c8b586 6242struct task_struct *idle_task(int cpu)
1da177e4
LT
6243{
6244 return cpu_rq(cpu)->idle;
6245}
6246
6247/**
6248 * find_process_by_pid - find a process with a matching PID value.
6249 * @pid: the pid in question.
6250 */
a9957449 6251static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6252{
228ebcbe 6253 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6254}
6255
6256/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6257static void
6258__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6259{
dd41f596 6260 BUG_ON(p->se.on_rq);
48f24c4d 6261
1da177e4
LT
6262 p->policy = policy;
6263 p->rt_priority = prio;
b29739f9
IM
6264 p->normal_prio = normal_prio(p);
6265 /* we are holding p->pi_lock already */
6266 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6267 if (rt_prio(p->prio))
6268 p->sched_class = &rt_sched_class;
6269 else
6270 p->sched_class = &fair_sched_class;
2dd73a4f 6271 set_load_weight(p);
1da177e4
LT
6272}
6273
c69e8d9c
DH
6274/*
6275 * check the target process has a UID that matches the current process's
6276 */
6277static bool check_same_owner(struct task_struct *p)
6278{
6279 const struct cred *cred = current_cred(), *pcred;
6280 bool match;
6281
6282 rcu_read_lock();
6283 pcred = __task_cred(p);
6284 match = (cred->euid == pcred->euid ||
6285 cred->euid == pcred->uid);
6286 rcu_read_unlock();
6287 return match;
6288}
6289
961ccddd
RR
6290static int __sched_setscheduler(struct task_struct *p, int policy,
6291 struct sched_param *param, bool user)
1da177e4 6292{
83b699ed 6293 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6294 unsigned long flags;
cb469845 6295 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6296 struct rq *rq;
ca94c442 6297 int reset_on_fork;
1da177e4 6298
66e5393a
SR
6299 /* may grab non-irq protected spin_locks */
6300 BUG_ON(in_interrupt());
1da177e4
LT
6301recheck:
6302 /* double check policy once rq lock held */
ca94c442
LP
6303 if (policy < 0) {
6304 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6305 policy = oldpolicy = p->policy;
ca94c442
LP
6306 } else {
6307 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6308 policy &= ~SCHED_RESET_ON_FORK;
6309
6310 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6311 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6312 policy != SCHED_IDLE)
6313 return -EINVAL;
6314 }
6315
1da177e4
LT
6316 /*
6317 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6318 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6319 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6320 */
6321 if (param->sched_priority < 0 ||
95cdf3b7 6322 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6323 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6324 return -EINVAL;
e05606d3 6325 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6326 return -EINVAL;
6327
37e4ab3f
OC
6328 /*
6329 * Allow unprivileged RT tasks to decrease priority:
6330 */
961ccddd 6331 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6332 if (rt_policy(policy)) {
8dc3e909 6333 unsigned long rlim_rtprio;
8dc3e909
ON
6334
6335 if (!lock_task_sighand(p, &flags))
6336 return -ESRCH;
6337 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6338 unlock_task_sighand(p, &flags);
6339
6340 /* can't set/change the rt policy */
6341 if (policy != p->policy && !rlim_rtprio)
6342 return -EPERM;
6343
6344 /* can't increase priority */
6345 if (param->sched_priority > p->rt_priority &&
6346 param->sched_priority > rlim_rtprio)
6347 return -EPERM;
6348 }
dd41f596
IM
6349 /*
6350 * Like positive nice levels, dont allow tasks to
6351 * move out of SCHED_IDLE either:
6352 */
6353 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6354 return -EPERM;
5fe1d75f 6355
37e4ab3f 6356 /* can't change other user's priorities */
c69e8d9c 6357 if (!check_same_owner(p))
37e4ab3f 6358 return -EPERM;
ca94c442
LP
6359
6360 /* Normal users shall not reset the sched_reset_on_fork flag */
6361 if (p->sched_reset_on_fork && !reset_on_fork)
6362 return -EPERM;
37e4ab3f 6363 }
1da177e4 6364
725aad24 6365 if (user) {
b68aa230 6366#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6367 /*
6368 * Do not allow realtime tasks into groups that have no runtime
6369 * assigned.
6370 */
9a7e0b18
PZ
6371 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6372 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6373 return -EPERM;
b68aa230
PZ
6374#endif
6375
725aad24
JF
6376 retval = security_task_setscheduler(p, policy, param);
6377 if (retval)
6378 return retval;
6379 }
6380
b29739f9
IM
6381 /*
6382 * make sure no PI-waiters arrive (or leave) while we are
6383 * changing the priority of the task:
6384 */
1d615482 6385 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6386 /*
6387 * To be able to change p->policy safely, the apropriate
6388 * runqueue lock must be held.
6389 */
b29739f9 6390 rq = __task_rq_lock(p);
1da177e4
LT
6391 /* recheck policy now with rq lock held */
6392 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6393 policy = oldpolicy = -1;
b29739f9 6394 __task_rq_unlock(rq);
1d615482 6395 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6396 goto recheck;
6397 }
2daa3577 6398 update_rq_clock(rq);
dd41f596 6399 on_rq = p->se.on_rq;
051a1d1a 6400 running = task_current(rq, p);
0e1f3483 6401 if (on_rq)
2e1cb74a 6402 deactivate_task(rq, p, 0);
0e1f3483
HS
6403 if (running)
6404 p->sched_class->put_prev_task(rq, p);
f6b53205 6405
ca94c442
LP
6406 p->sched_reset_on_fork = reset_on_fork;
6407
1da177e4 6408 oldprio = p->prio;
dd41f596 6409 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6410
0e1f3483
HS
6411 if (running)
6412 p->sched_class->set_curr_task(rq);
dd41f596
IM
6413 if (on_rq) {
6414 activate_task(rq, p, 0);
cb469845
SR
6415
6416 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6417 }
b29739f9 6418 __task_rq_unlock(rq);
1d615482 6419 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 6420
95e02ca9
TG
6421 rt_mutex_adjust_pi(p);
6422
1da177e4
LT
6423 return 0;
6424}
961ccddd
RR
6425
6426/**
6427 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6428 * @p: the task in question.
6429 * @policy: new policy.
6430 * @param: structure containing the new RT priority.
6431 *
6432 * NOTE that the task may be already dead.
6433 */
6434int sched_setscheduler(struct task_struct *p, int policy,
6435 struct sched_param *param)
6436{
6437 return __sched_setscheduler(p, policy, param, true);
6438}
1da177e4
LT
6439EXPORT_SYMBOL_GPL(sched_setscheduler);
6440
961ccddd
RR
6441/**
6442 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6443 * @p: the task in question.
6444 * @policy: new policy.
6445 * @param: structure containing the new RT priority.
6446 *
6447 * Just like sched_setscheduler, only don't bother checking if the
6448 * current context has permission. For example, this is needed in
6449 * stop_machine(): we create temporary high priority worker threads,
6450 * but our caller might not have that capability.
6451 */
6452int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6453 struct sched_param *param)
6454{
6455 return __sched_setscheduler(p, policy, param, false);
6456}
6457
95cdf3b7
IM
6458static int
6459do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6460{
1da177e4
LT
6461 struct sched_param lparam;
6462 struct task_struct *p;
36c8b586 6463 int retval;
1da177e4
LT
6464
6465 if (!param || pid < 0)
6466 return -EINVAL;
6467 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6468 return -EFAULT;
5fe1d75f
ON
6469
6470 rcu_read_lock();
6471 retval = -ESRCH;
1da177e4 6472 p = find_process_by_pid(pid);
5fe1d75f
ON
6473 if (p != NULL)
6474 retval = sched_setscheduler(p, policy, &lparam);
6475 rcu_read_unlock();
36c8b586 6476
1da177e4
LT
6477 return retval;
6478}
6479
6480/**
6481 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6482 * @pid: the pid in question.
6483 * @policy: new policy.
6484 * @param: structure containing the new RT priority.
6485 */
5add95d4
HC
6486SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6487 struct sched_param __user *, param)
1da177e4 6488{
c21761f1
JB
6489 /* negative values for policy are not valid */
6490 if (policy < 0)
6491 return -EINVAL;
6492
1da177e4
LT
6493 return do_sched_setscheduler(pid, policy, param);
6494}
6495
6496/**
6497 * sys_sched_setparam - set/change the RT priority of a thread
6498 * @pid: the pid in question.
6499 * @param: structure containing the new RT priority.
6500 */
5add95d4 6501SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6502{
6503 return do_sched_setscheduler(pid, -1, param);
6504}
6505
6506/**
6507 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6508 * @pid: the pid in question.
6509 */
5add95d4 6510SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6511{
36c8b586 6512 struct task_struct *p;
3a5c359a 6513 int retval;
1da177e4
LT
6514
6515 if (pid < 0)
3a5c359a 6516 return -EINVAL;
1da177e4
LT
6517
6518 retval = -ESRCH;
5fe85be0 6519 rcu_read_lock();
1da177e4
LT
6520 p = find_process_by_pid(pid);
6521 if (p) {
6522 retval = security_task_getscheduler(p);
6523 if (!retval)
ca94c442
LP
6524 retval = p->policy
6525 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6526 }
5fe85be0 6527 rcu_read_unlock();
1da177e4
LT
6528 return retval;
6529}
6530
6531/**
ca94c442 6532 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6533 * @pid: the pid in question.
6534 * @param: structure containing the RT priority.
6535 */
5add95d4 6536SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6537{
6538 struct sched_param lp;
36c8b586 6539 struct task_struct *p;
3a5c359a 6540 int retval;
1da177e4
LT
6541
6542 if (!param || pid < 0)
3a5c359a 6543 return -EINVAL;
1da177e4 6544
5fe85be0 6545 rcu_read_lock();
1da177e4
LT
6546 p = find_process_by_pid(pid);
6547 retval = -ESRCH;
6548 if (!p)
6549 goto out_unlock;
6550
6551 retval = security_task_getscheduler(p);
6552 if (retval)
6553 goto out_unlock;
6554
6555 lp.sched_priority = p->rt_priority;
5fe85be0 6556 rcu_read_unlock();
1da177e4
LT
6557
6558 /*
6559 * This one might sleep, we cannot do it with a spinlock held ...
6560 */
6561 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6562
1da177e4
LT
6563 return retval;
6564
6565out_unlock:
5fe85be0 6566 rcu_read_unlock();
1da177e4
LT
6567 return retval;
6568}
6569
96f874e2 6570long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6571{
5a16f3d3 6572 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6573 struct task_struct *p;
6574 int retval;
1da177e4 6575
95402b38 6576 get_online_cpus();
23f5d142 6577 rcu_read_lock();
1da177e4
LT
6578
6579 p = find_process_by_pid(pid);
6580 if (!p) {
23f5d142 6581 rcu_read_unlock();
95402b38 6582 put_online_cpus();
1da177e4
LT
6583 return -ESRCH;
6584 }
6585
23f5d142 6586 /* Prevent p going away */
1da177e4 6587 get_task_struct(p);
23f5d142 6588 rcu_read_unlock();
1da177e4 6589
5a16f3d3
RR
6590 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6591 retval = -ENOMEM;
6592 goto out_put_task;
6593 }
6594 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6595 retval = -ENOMEM;
6596 goto out_free_cpus_allowed;
6597 }
1da177e4 6598 retval = -EPERM;
c69e8d9c 6599 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6600 goto out_unlock;
6601
e7834f8f
DQ
6602 retval = security_task_setscheduler(p, 0, NULL);
6603 if (retval)
6604 goto out_unlock;
6605
5a16f3d3
RR
6606 cpuset_cpus_allowed(p, cpus_allowed);
6607 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6608 again:
5a16f3d3 6609 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6610
8707d8b8 6611 if (!retval) {
5a16f3d3
RR
6612 cpuset_cpus_allowed(p, cpus_allowed);
6613 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6614 /*
6615 * We must have raced with a concurrent cpuset
6616 * update. Just reset the cpus_allowed to the
6617 * cpuset's cpus_allowed
6618 */
5a16f3d3 6619 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6620 goto again;
6621 }
6622 }
1da177e4 6623out_unlock:
5a16f3d3
RR
6624 free_cpumask_var(new_mask);
6625out_free_cpus_allowed:
6626 free_cpumask_var(cpus_allowed);
6627out_put_task:
1da177e4 6628 put_task_struct(p);
95402b38 6629 put_online_cpus();
1da177e4
LT
6630 return retval;
6631}
6632
6633static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6634 struct cpumask *new_mask)
1da177e4 6635{
96f874e2
RR
6636 if (len < cpumask_size())
6637 cpumask_clear(new_mask);
6638 else if (len > cpumask_size())
6639 len = cpumask_size();
6640
1da177e4
LT
6641 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6642}
6643
6644/**
6645 * sys_sched_setaffinity - set the cpu affinity of a process
6646 * @pid: pid of the process
6647 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6648 * @user_mask_ptr: user-space pointer to the new cpu mask
6649 */
5add95d4
HC
6650SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6651 unsigned long __user *, user_mask_ptr)
1da177e4 6652{
5a16f3d3 6653 cpumask_var_t new_mask;
1da177e4
LT
6654 int retval;
6655
5a16f3d3
RR
6656 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6657 return -ENOMEM;
1da177e4 6658
5a16f3d3
RR
6659 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6660 if (retval == 0)
6661 retval = sched_setaffinity(pid, new_mask);
6662 free_cpumask_var(new_mask);
6663 return retval;
1da177e4
LT
6664}
6665
96f874e2 6666long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6667{
36c8b586 6668 struct task_struct *p;
31605683
TG
6669 unsigned long flags;
6670 struct rq *rq;
1da177e4 6671 int retval;
1da177e4 6672
95402b38 6673 get_online_cpus();
23f5d142 6674 rcu_read_lock();
1da177e4
LT
6675
6676 retval = -ESRCH;
6677 p = find_process_by_pid(pid);
6678 if (!p)
6679 goto out_unlock;
6680
e7834f8f
DQ
6681 retval = security_task_getscheduler(p);
6682 if (retval)
6683 goto out_unlock;
6684
31605683 6685 rq = task_rq_lock(p, &flags);
96f874e2 6686 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6687 task_rq_unlock(rq, &flags);
1da177e4
LT
6688
6689out_unlock:
23f5d142 6690 rcu_read_unlock();
95402b38 6691 put_online_cpus();
1da177e4 6692
9531b62f 6693 return retval;
1da177e4
LT
6694}
6695
6696/**
6697 * sys_sched_getaffinity - get the cpu affinity of a process
6698 * @pid: pid of the process
6699 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6700 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6701 */
5add95d4
HC
6702SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6703 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6704{
6705 int ret;
f17c8607 6706 cpumask_var_t mask;
1da177e4 6707
f17c8607 6708 if (len < cpumask_size())
1da177e4
LT
6709 return -EINVAL;
6710
f17c8607
RR
6711 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6712 return -ENOMEM;
1da177e4 6713
f17c8607
RR
6714 ret = sched_getaffinity(pid, mask);
6715 if (ret == 0) {
6716 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6717 ret = -EFAULT;
6718 else
6719 ret = cpumask_size();
6720 }
6721 free_cpumask_var(mask);
1da177e4 6722
f17c8607 6723 return ret;
1da177e4
LT
6724}
6725
6726/**
6727 * sys_sched_yield - yield the current processor to other threads.
6728 *
dd41f596
IM
6729 * This function yields the current CPU to other tasks. If there are no
6730 * other threads running on this CPU then this function will return.
1da177e4 6731 */
5add95d4 6732SYSCALL_DEFINE0(sched_yield)
1da177e4 6733{
70b97a7f 6734 struct rq *rq = this_rq_lock();
1da177e4 6735
2d72376b 6736 schedstat_inc(rq, yld_count);
4530d7ab 6737 current->sched_class->yield_task(rq);
1da177e4
LT
6738
6739 /*
6740 * Since we are going to call schedule() anyway, there's
6741 * no need to preempt or enable interrupts:
6742 */
6743 __release(rq->lock);
8a25d5de 6744 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 6745 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
6746 preempt_enable_no_resched();
6747
6748 schedule();
6749
6750 return 0;
6751}
6752
d86ee480
PZ
6753static inline int should_resched(void)
6754{
6755 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6756}
6757
e7b38404 6758static void __cond_resched(void)
1da177e4 6759{
e7aaaa69
FW
6760 add_preempt_count(PREEMPT_ACTIVE);
6761 schedule();
6762 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6763}
6764
02b67cc3 6765int __sched _cond_resched(void)
1da177e4 6766{
d86ee480 6767 if (should_resched()) {
1da177e4
LT
6768 __cond_resched();
6769 return 1;
6770 }
6771 return 0;
6772}
02b67cc3 6773EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6774
6775/*
613afbf8 6776 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6777 * call schedule, and on return reacquire the lock.
6778 *
41a2d6cf 6779 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6780 * operations here to prevent schedule() from being called twice (once via
6781 * spin_unlock(), once by hand).
6782 */
613afbf8 6783int __cond_resched_lock(spinlock_t *lock)
1da177e4 6784{
d86ee480 6785 int resched = should_resched();
6df3cecb
JK
6786 int ret = 0;
6787
f607c668
PZ
6788 lockdep_assert_held(lock);
6789
95c354fe 6790 if (spin_needbreak(lock) || resched) {
1da177e4 6791 spin_unlock(lock);
d86ee480 6792 if (resched)
95c354fe
NP
6793 __cond_resched();
6794 else
6795 cpu_relax();
6df3cecb 6796 ret = 1;
1da177e4 6797 spin_lock(lock);
1da177e4 6798 }
6df3cecb 6799 return ret;
1da177e4 6800}
613afbf8 6801EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6802
613afbf8 6803int __sched __cond_resched_softirq(void)
1da177e4
LT
6804{
6805 BUG_ON(!in_softirq());
6806
d86ee480 6807 if (should_resched()) {
98d82567 6808 local_bh_enable();
1da177e4
LT
6809 __cond_resched();
6810 local_bh_disable();
6811 return 1;
6812 }
6813 return 0;
6814}
613afbf8 6815EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6816
1da177e4
LT
6817/**
6818 * yield - yield the current processor to other threads.
6819 *
72fd4a35 6820 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6821 * thread runnable and calls sys_sched_yield().
6822 */
6823void __sched yield(void)
6824{
6825 set_current_state(TASK_RUNNING);
6826 sys_sched_yield();
6827}
1da177e4
LT
6828EXPORT_SYMBOL(yield);
6829
6830/*
41a2d6cf 6831 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6832 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6833 */
6834void __sched io_schedule(void)
6835{
54d35f29 6836 struct rq *rq = raw_rq();
1da177e4 6837
0ff92245 6838 delayacct_blkio_start();
1da177e4 6839 atomic_inc(&rq->nr_iowait);
8f0dfc34 6840 current->in_iowait = 1;
1da177e4 6841 schedule();
8f0dfc34 6842 current->in_iowait = 0;
1da177e4 6843 atomic_dec(&rq->nr_iowait);
0ff92245 6844 delayacct_blkio_end();
1da177e4 6845}
1da177e4
LT
6846EXPORT_SYMBOL(io_schedule);
6847
6848long __sched io_schedule_timeout(long timeout)
6849{
54d35f29 6850 struct rq *rq = raw_rq();
1da177e4
LT
6851 long ret;
6852
0ff92245 6853 delayacct_blkio_start();
1da177e4 6854 atomic_inc(&rq->nr_iowait);
8f0dfc34 6855 current->in_iowait = 1;
1da177e4 6856 ret = schedule_timeout(timeout);
8f0dfc34 6857 current->in_iowait = 0;
1da177e4 6858 atomic_dec(&rq->nr_iowait);
0ff92245 6859 delayacct_blkio_end();
1da177e4
LT
6860 return ret;
6861}
6862
6863/**
6864 * sys_sched_get_priority_max - return maximum RT priority.
6865 * @policy: scheduling class.
6866 *
6867 * this syscall returns the maximum rt_priority that can be used
6868 * by a given scheduling class.
6869 */
5add95d4 6870SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6871{
6872 int ret = -EINVAL;
6873
6874 switch (policy) {
6875 case SCHED_FIFO:
6876 case SCHED_RR:
6877 ret = MAX_USER_RT_PRIO-1;
6878 break;
6879 case SCHED_NORMAL:
b0a9499c 6880 case SCHED_BATCH:
dd41f596 6881 case SCHED_IDLE:
1da177e4
LT
6882 ret = 0;
6883 break;
6884 }
6885 return ret;
6886}
6887
6888/**
6889 * sys_sched_get_priority_min - return minimum RT priority.
6890 * @policy: scheduling class.
6891 *
6892 * this syscall returns the minimum rt_priority that can be used
6893 * by a given scheduling class.
6894 */
5add95d4 6895SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6896{
6897 int ret = -EINVAL;
6898
6899 switch (policy) {
6900 case SCHED_FIFO:
6901 case SCHED_RR:
6902 ret = 1;
6903 break;
6904 case SCHED_NORMAL:
b0a9499c 6905 case SCHED_BATCH:
dd41f596 6906 case SCHED_IDLE:
1da177e4
LT
6907 ret = 0;
6908 }
6909 return ret;
6910}
6911
6912/**
6913 * sys_sched_rr_get_interval - return the default timeslice of a process.
6914 * @pid: pid of the process.
6915 * @interval: userspace pointer to the timeslice value.
6916 *
6917 * this syscall writes the default timeslice value of a given process
6918 * into the user-space timespec buffer. A value of '0' means infinity.
6919 */
17da2bd9 6920SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6921 struct timespec __user *, interval)
1da177e4 6922{
36c8b586 6923 struct task_struct *p;
a4ec24b4 6924 unsigned int time_slice;
dba091b9
TG
6925 unsigned long flags;
6926 struct rq *rq;
3a5c359a 6927 int retval;
1da177e4 6928 struct timespec t;
1da177e4
LT
6929
6930 if (pid < 0)
3a5c359a 6931 return -EINVAL;
1da177e4
LT
6932
6933 retval = -ESRCH;
1a551ae7 6934 rcu_read_lock();
1da177e4
LT
6935 p = find_process_by_pid(pid);
6936 if (!p)
6937 goto out_unlock;
6938
6939 retval = security_task_getscheduler(p);
6940 if (retval)
6941 goto out_unlock;
6942
dba091b9
TG
6943 rq = task_rq_lock(p, &flags);
6944 time_slice = p->sched_class->get_rr_interval(rq, p);
6945 task_rq_unlock(rq, &flags);
a4ec24b4 6946
1a551ae7 6947 rcu_read_unlock();
a4ec24b4 6948 jiffies_to_timespec(time_slice, &t);
1da177e4 6949 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6950 return retval;
3a5c359a 6951
1da177e4 6952out_unlock:
1a551ae7 6953 rcu_read_unlock();
1da177e4
LT
6954 return retval;
6955}
6956
7c731e0a 6957static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6958
82a1fcb9 6959void sched_show_task(struct task_struct *p)
1da177e4 6960{
1da177e4 6961 unsigned long free = 0;
36c8b586 6962 unsigned state;
1da177e4 6963
1da177e4 6964 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 6965 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6966 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6967#if BITS_PER_LONG == 32
1da177e4 6968 if (state == TASK_RUNNING)
3df0fc5b 6969 printk(KERN_CONT " running ");
1da177e4 6970 else
3df0fc5b 6971 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6972#else
6973 if (state == TASK_RUNNING)
3df0fc5b 6974 printk(KERN_CONT " running task ");
1da177e4 6975 else
3df0fc5b 6976 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6977#endif
6978#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6979 free = stack_not_used(p);
1da177e4 6980#endif
3df0fc5b 6981 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6982 task_pid_nr(p), task_pid_nr(p->real_parent),
6983 (unsigned long)task_thread_info(p)->flags);
1da177e4 6984
5fb5e6de 6985 show_stack(p, NULL);
1da177e4
LT
6986}
6987
e59e2ae2 6988void show_state_filter(unsigned long state_filter)
1da177e4 6989{
36c8b586 6990 struct task_struct *g, *p;
1da177e4 6991
4bd77321 6992#if BITS_PER_LONG == 32
3df0fc5b
PZ
6993 printk(KERN_INFO
6994 " task PC stack pid father\n");
1da177e4 6995#else
3df0fc5b
PZ
6996 printk(KERN_INFO
6997 " task PC stack pid father\n");
1da177e4
LT
6998#endif
6999 read_lock(&tasklist_lock);
7000 do_each_thread(g, p) {
7001 /*
7002 * reset the NMI-timeout, listing all files on a slow
7003 * console might take alot of time:
7004 */
7005 touch_nmi_watchdog();
39bc89fd 7006 if (!state_filter || (p->state & state_filter))
82a1fcb9 7007 sched_show_task(p);
1da177e4
LT
7008 } while_each_thread(g, p);
7009
04c9167f
JF
7010 touch_all_softlockup_watchdogs();
7011
dd41f596
IM
7012#ifdef CONFIG_SCHED_DEBUG
7013 sysrq_sched_debug_show();
7014#endif
1da177e4 7015 read_unlock(&tasklist_lock);
e59e2ae2
IM
7016 /*
7017 * Only show locks if all tasks are dumped:
7018 */
93335a21 7019 if (!state_filter)
e59e2ae2 7020 debug_show_all_locks();
1da177e4
LT
7021}
7022
1df21055
IM
7023void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7024{
dd41f596 7025 idle->sched_class = &idle_sched_class;
1df21055
IM
7026}
7027
f340c0d1
IM
7028/**
7029 * init_idle - set up an idle thread for a given CPU
7030 * @idle: task in question
7031 * @cpu: cpu the idle task belongs to
7032 *
7033 * NOTE: this function does not set the idle thread's NEED_RESCHED
7034 * flag, to make booting more robust.
7035 */
5c1e1767 7036void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 7037{
70b97a7f 7038 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7039 unsigned long flags;
7040
05fa785c 7041 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 7042
dd41f596 7043 __sched_fork(idle);
06b83b5f 7044 idle->state = TASK_RUNNING;
dd41f596
IM
7045 idle->se.exec_start = sched_clock();
7046
96f874e2 7047 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7048 __set_task_cpu(idle, cpu);
1da177e4 7049
1da177e4 7050 rq->curr = rq->idle = idle;
4866cde0
NP
7051#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7052 idle->oncpu = 1;
7053#endif
05fa785c 7054 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7055
7056 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7057#if defined(CONFIG_PREEMPT)
7058 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7059#else
a1261f54 7060 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7061#endif
dd41f596
IM
7062 /*
7063 * The idle tasks have their own, simple scheduling class:
7064 */
7065 idle->sched_class = &idle_sched_class;
fb52607a 7066 ftrace_graph_init_task(idle);
1da177e4
LT
7067}
7068
7069/*
7070 * In a system that switches off the HZ timer nohz_cpu_mask
7071 * indicates which cpus entered this state. This is used
7072 * in the rcu update to wait only for active cpus. For system
7073 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7074 * always be CPU_BITS_NONE.
1da177e4 7075 */
6a7b3dc3 7076cpumask_var_t nohz_cpu_mask;
1da177e4 7077
19978ca6
IM
7078/*
7079 * Increase the granularity value when there are more CPUs,
7080 * because with more CPUs the 'effective latency' as visible
7081 * to users decreases. But the relationship is not linear,
7082 * so pick a second-best guess by going with the log2 of the
7083 * number of CPUs.
7084 *
7085 * This idea comes from the SD scheduler of Con Kolivas:
7086 */
acb4a848 7087static int get_update_sysctl_factor(void)
19978ca6 7088{
4ca3ef71 7089 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7090 unsigned int factor;
7091
7092 switch (sysctl_sched_tunable_scaling) {
7093 case SCHED_TUNABLESCALING_NONE:
7094 factor = 1;
7095 break;
7096 case SCHED_TUNABLESCALING_LINEAR:
7097 factor = cpus;
7098 break;
7099 case SCHED_TUNABLESCALING_LOG:
7100 default:
7101 factor = 1 + ilog2(cpus);
7102 break;
7103 }
19978ca6 7104
acb4a848
CE
7105 return factor;
7106}
19978ca6 7107
acb4a848
CE
7108static void update_sysctl(void)
7109{
7110 unsigned int factor = get_update_sysctl_factor();
19978ca6 7111
0bcdcf28
CE
7112#define SET_SYSCTL(name) \
7113 (sysctl_##name = (factor) * normalized_sysctl_##name)
7114 SET_SYSCTL(sched_min_granularity);
7115 SET_SYSCTL(sched_latency);
7116 SET_SYSCTL(sched_wakeup_granularity);
7117 SET_SYSCTL(sched_shares_ratelimit);
7118#undef SET_SYSCTL
7119}
55cd5340 7120
0bcdcf28
CE
7121static inline void sched_init_granularity(void)
7122{
7123 update_sysctl();
19978ca6
IM
7124}
7125
1da177e4
LT
7126#ifdef CONFIG_SMP
7127/*
7128 * This is how migration works:
7129 *
70b97a7f 7130 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7131 * runqueue and wake up that CPU's migration thread.
7132 * 2) we down() the locked semaphore => thread blocks.
7133 * 3) migration thread wakes up (implicitly it forces the migrated
7134 * thread off the CPU)
7135 * 4) it gets the migration request and checks whether the migrated
7136 * task is still in the wrong runqueue.
7137 * 5) if it's in the wrong runqueue then the migration thread removes
7138 * it and puts it into the right queue.
7139 * 6) migration thread up()s the semaphore.
7140 * 7) we wake up and the migration is done.
7141 */
7142
7143/*
7144 * Change a given task's CPU affinity. Migrate the thread to a
7145 * proper CPU and schedule it away if the CPU it's executing on
7146 * is removed from the allowed bitmask.
7147 *
7148 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7149 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7150 * call is not atomic; no spinlocks may be held.
7151 */
96f874e2 7152int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7153{
70b97a7f 7154 struct migration_req req;
1da177e4 7155 unsigned long flags;
70b97a7f 7156 struct rq *rq;
48f24c4d 7157 int ret = 0;
1da177e4 7158
e2912009
PZ
7159 /*
7160 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7161 * the ->cpus_allowed mask from under waking tasks, which would be
7162 * possible when we change rq->lock in ttwu(), so synchronize against
7163 * TASK_WAKING to avoid that.
fabf318e
PZ
7164 *
7165 * Make an exception for freshly cloned tasks, since cpuset namespaces
7166 * might move the task about, we have to validate the target in
7167 * wake_up_new_task() anyway since the cpu might have gone away.
e2912009
PZ
7168 */
7169again:
fabf318e 7170 while (p->state == TASK_WAKING && !(p->flags & PF_STARTING))
e2912009
PZ
7171 cpu_relax();
7172
1da177e4 7173 rq = task_rq_lock(p, &flags);
e2912009 7174
fabf318e 7175 if (p->state == TASK_WAKING && !(p->flags & PF_STARTING)) {
e2912009
PZ
7176 task_rq_unlock(rq, &flags);
7177 goto again;
7178 }
7179
6ad4c188 7180 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7181 ret = -EINVAL;
7182 goto out;
7183 }
7184
9985b0ba 7185 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7186 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7187 ret = -EINVAL;
7188 goto out;
7189 }
7190
73fe6aae 7191 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7192 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7193 else {
96f874e2
RR
7194 cpumask_copy(&p->cpus_allowed, new_mask);
7195 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7196 }
7197
1da177e4 7198 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7199 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7200 goto out;
7201
6ad4c188 7202 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7203 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7204 struct task_struct *mt = rq->migration_thread;
7205
7206 get_task_struct(mt);
1da177e4
LT
7207 task_rq_unlock(rq, &flags);
7208 wake_up_process(rq->migration_thread);
693525e3 7209 put_task_struct(mt);
1da177e4
LT
7210 wait_for_completion(&req.done);
7211 tlb_migrate_finish(p->mm);
7212 return 0;
7213 }
7214out:
7215 task_rq_unlock(rq, &flags);
48f24c4d 7216
1da177e4
LT
7217 return ret;
7218}
cd8ba7cd 7219EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7220
7221/*
41a2d6cf 7222 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7223 * this because either it can't run here any more (set_cpus_allowed()
7224 * away from this CPU, or CPU going down), or because we're
7225 * attempting to rebalance this task on exec (sched_exec).
7226 *
7227 * So we race with normal scheduler movements, but that's OK, as long
7228 * as the task is no longer on this CPU.
efc30814
KK
7229 *
7230 * Returns non-zero if task was successfully migrated.
1da177e4 7231 */
efc30814 7232static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7233{
70b97a7f 7234 struct rq *rq_dest, *rq_src;
e2912009 7235 int ret = 0;
1da177e4 7236
e761b772 7237 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7238 return ret;
1da177e4
LT
7239
7240 rq_src = cpu_rq(src_cpu);
7241 rq_dest = cpu_rq(dest_cpu);
7242
7243 double_rq_lock(rq_src, rq_dest);
7244 /* Already moved. */
7245 if (task_cpu(p) != src_cpu)
b1e38734 7246 goto done;
1da177e4 7247 /* Affinity changed (again). */
96f874e2 7248 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7249 goto fail;
1da177e4 7250
e2912009
PZ
7251 /*
7252 * If we're not on a rq, the next wake-up will ensure we're
7253 * placed properly.
7254 */
7255 if (p->se.on_rq) {
2e1cb74a 7256 deactivate_task(rq_src, p, 0);
e2912009 7257 set_task_cpu(p, dest_cpu);
dd41f596 7258 activate_task(rq_dest, p, 0);
15afe09b 7259 check_preempt_curr(rq_dest, p, 0);
1da177e4 7260 }
b1e38734 7261done:
efc30814 7262 ret = 1;
b1e38734 7263fail:
1da177e4 7264 double_rq_unlock(rq_src, rq_dest);
efc30814 7265 return ret;
1da177e4
LT
7266}
7267
03b042bf
PM
7268#define RCU_MIGRATION_IDLE 0
7269#define RCU_MIGRATION_NEED_QS 1
7270#define RCU_MIGRATION_GOT_QS 2
7271#define RCU_MIGRATION_MUST_SYNC 3
7272
1da177e4
LT
7273/*
7274 * migration_thread - this is a highprio system thread that performs
7275 * thread migration by bumping thread off CPU then 'pushing' onto
7276 * another runqueue.
7277 */
95cdf3b7 7278static int migration_thread(void *data)
1da177e4 7279{
03b042bf 7280 int badcpu;
1da177e4 7281 int cpu = (long)data;
70b97a7f 7282 struct rq *rq;
1da177e4
LT
7283
7284 rq = cpu_rq(cpu);
7285 BUG_ON(rq->migration_thread != current);
7286
7287 set_current_state(TASK_INTERRUPTIBLE);
7288 while (!kthread_should_stop()) {
70b97a7f 7289 struct migration_req *req;
1da177e4 7290 struct list_head *head;
1da177e4 7291
05fa785c 7292 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
7293
7294 if (cpu_is_offline(cpu)) {
05fa785c 7295 raw_spin_unlock_irq(&rq->lock);
371cbb38 7296 break;
1da177e4
LT
7297 }
7298
7299 if (rq->active_balance) {
7300 active_load_balance(rq, cpu);
7301 rq->active_balance = 0;
7302 }
7303
7304 head = &rq->migration_queue;
7305
7306 if (list_empty(head)) {
05fa785c 7307 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
7308 schedule();
7309 set_current_state(TASK_INTERRUPTIBLE);
7310 continue;
7311 }
70b97a7f 7312 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7313 list_del_init(head->next);
7314
03b042bf 7315 if (req->task != NULL) {
05fa785c 7316 raw_spin_unlock(&rq->lock);
03b042bf
PM
7317 __migrate_task(req->task, cpu, req->dest_cpu);
7318 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7319 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 7320 raw_spin_unlock(&rq->lock);
03b042bf
PM
7321 } else {
7322 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 7323 raw_spin_unlock(&rq->lock);
03b042bf
PM
7324 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7325 }
674311d5 7326 local_irq_enable();
1da177e4
LT
7327
7328 complete(&req->done);
7329 }
7330 __set_current_state(TASK_RUNNING);
1da177e4 7331
1da177e4
LT
7332 return 0;
7333}
7334
7335#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7336
7337static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7338{
7339 int ret;
7340
7341 local_irq_disable();
7342 ret = __migrate_task(p, src_cpu, dest_cpu);
7343 local_irq_enable();
7344 return ret;
7345}
7346
054b9108 7347/*
3a4fa0a2 7348 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7349 */
48f24c4d 7350static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7351{
70b97a7f 7352 int dest_cpu;
e76bd8d9
RR
7353
7354again:
5da9a0fb 7355 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 7356
e76bd8d9
RR
7357 /* It can have affinity changed while we were choosing. */
7358 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7359 goto again;
1da177e4
LT
7360}
7361
7362/*
7363 * While a dead CPU has no uninterruptible tasks queued at this point,
7364 * it might still have a nonzero ->nr_uninterruptible counter, because
7365 * for performance reasons the counter is not stricly tracking tasks to
7366 * their home CPUs. So we just add the counter to another CPU's counter,
7367 * to keep the global sum constant after CPU-down:
7368 */
70b97a7f 7369static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7370{
6ad4c188 7371 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7372 unsigned long flags;
7373
7374 local_irq_save(flags);
7375 double_rq_lock(rq_src, rq_dest);
7376 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7377 rq_src->nr_uninterruptible = 0;
7378 double_rq_unlock(rq_src, rq_dest);
7379 local_irq_restore(flags);
7380}
7381
7382/* Run through task list and migrate tasks from the dead cpu. */
7383static void migrate_live_tasks(int src_cpu)
7384{
48f24c4d 7385 struct task_struct *p, *t;
1da177e4 7386
f7b4cddc 7387 read_lock(&tasklist_lock);
1da177e4 7388
48f24c4d
IM
7389 do_each_thread(t, p) {
7390 if (p == current)
1da177e4
LT
7391 continue;
7392
48f24c4d
IM
7393 if (task_cpu(p) == src_cpu)
7394 move_task_off_dead_cpu(src_cpu, p);
7395 } while_each_thread(t, p);
1da177e4 7396
f7b4cddc 7397 read_unlock(&tasklist_lock);
1da177e4
LT
7398}
7399
dd41f596
IM
7400/*
7401 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7402 * It does so by boosting its priority to highest possible.
7403 * Used by CPU offline code.
1da177e4
LT
7404 */
7405void sched_idle_next(void)
7406{
48f24c4d 7407 int this_cpu = smp_processor_id();
70b97a7f 7408 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7409 struct task_struct *p = rq->idle;
7410 unsigned long flags;
7411
7412 /* cpu has to be offline */
48f24c4d 7413 BUG_ON(cpu_online(this_cpu));
1da177e4 7414
48f24c4d
IM
7415 /*
7416 * Strictly not necessary since rest of the CPUs are stopped by now
7417 * and interrupts disabled on the current cpu.
1da177e4 7418 */
05fa785c 7419 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 7420
dd41f596 7421 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7422
94bc9a7b
DA
7423 update_rq_clock(rq);
7424 activate_task(rq, p, 0);
1da177e4 7425
05fa785c 7426 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7427}
7428
48f24c4d
IM
7429/*
7430 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7431 * offline.
7432 */
7433void idle_task_exit(void)
7434{
7435 struct mm_struct *mm = current->active_mm;
7436
7437 BUG_ON(cpu_online(smp_processor_id()));
7438
7439 if (mm != &init_mm)
7440 switch_mm(mm, &init_mm, current);
7441 mmdrop(mm);
7442}
7443
054b9108 7444/* called under rq->lock with disabled interrupts */
36c8b586 7445static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7446{
70b97a7f 7447 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7448
7449 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7450 BUG_ON(!p->exit_state);
1da177e4
LT
7451
7452 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7453 BUG_ON(p->state == TASK_DEAD);
1da177e4 7454
48f24c4d 7455 get_task_struct(p);
1da177e4
LT
7456
7457 /*
7458 * Drop lock around migration; if someone else moves it,
41a2d6cf 7459 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7460 * fine.
7461 */
05fa785c 7462 raw_spin_unlock_irq(&rq->lock);
48f24c4d 7463 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 7464 raw_spin_lock_irq(&rq->lock);
1da177e4 7465
48f24c4d 7466 put_task_struct(p);
1da177e4
LT
7467}
7468
7469/* release_task() removes task from tasklist, so we won't find dead tasks. */
7470static void migrate_dead_tasks(unsigned int dead_cpu)
7471{
70b97a7f 7472 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7473 struct task_struct *next;
48f24c4d 7474
dd41f596
IM
7475 for ( ; ; ) {
7476 if (!rq->nr_running)
7477 break;
a8e504d2 7478 update_rq_clock(rq);
b67802ea 7479 next = pick_next_task(rq);
dd41f596
IM
7480 if (!next)
7481 break;
79c53799 7482 next->sched_class->put_prev_task(rq, next);
dd41f596 7483 migrate_dead(dead_cpu, next);
e692ab53 7484
1da177e4
LT
7485 }
7486}
dce48a84
TG
7487
7488/*
7489 * remove the tasks which were accounted by rq from calc_load_tasks.
7490 */
7491static void calc_global_load_remove(struct rq *rq)
7492{
7493 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7494 rq->calc_load_active = 0;
dce48a84 7495}
1da177e4
LT
7496#endif /* CONFIG_HOTPLUG_CPU */
7497
e692ab53
NP
7498#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7499
7500static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7501 {
7502 .procname = "sched_domain",
c57baf1e 7503 .mode = 0555,
e0361851 7504 },
56992309 7505 {}
e692ab53
NP
7506};
7507
7508static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7509 {
7510 .procname = "kernel",
c57baf1e 7511 .mode = 0555,
e0361851
AD
7512 .child = sd_ctl_dir,
7513 },
56992309 7514 {}
e692ab53
NP
7515};
7516
7517static struct ctl_table *sd_alloc_ctl_entry(int n)
7518{
7519 struct ctl_table *entry =
5cf9f062 7520 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7521
e692ab53
NP
7522 return entry;
7523}
7524
6382bc90
MM
7525static void sd_free_ctl_entry(struct ctl_table **tablep)
7526{
cd790076 7527 struct ctl_table *entry;
6382bc90 7528
cd790076
MM
7529 /*
7530 * In the intermediate directories, both the child directory and
7531 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7532 * will always be set. In the lowest directory the names are
cd790076
MM
7533 * static strings and all have proc handlers.
7534 */
7535 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7536 if (entry->child)
7537 sd_free_ctl_entry(&entry->child);
cd790076
MM
7538 if (entry->proc_handler == NULL)
7539 kfree(entry->procname);
7540 }
6382bc90
MM
7541
7542 kfree(*tablep);
7543 *tablep = NULL;
7544}
7545
e692ab53 7546static void
e0361851 7547set_table_entry(struct ctl_table *entry,
e692ab53
NP
7548 const char *procname, void *data, int maxlen,
7549 mode_t mode, proc_handler *proc_handler)
7550{
e692ab53
NP
7551 entry->procname = procname;
7552 entry->data = data;
7553 entry->maxlen = maxlen;
7554 entry->mode = mode;
7555 entry->proc_handler = proc_handler;
7556}
7557
7558static struct ctl_table *
7559sd_alloc_ctl_domain_table(struct sched_domain *sd)
7560{
a5d8c348 7561 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7562
ad1cdc1d
MM
7563 if (table == NULL)
7564 return NULL;
7565
e0361851 7566 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7567 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7568 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7569 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7570 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7571 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7572 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7573 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7574 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7575 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7576 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7577 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7578 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7579 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7580 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7581 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7582 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7583 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7584 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7585 &sd->cache_nice_tries,
7586 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7587 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7588 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7589 set_table_entry(&table[11], "name", sd->name,
7590 CORENAME_MAX_SIZE, 0444, proc_dostring);
7591 /* &table[12] is terminator */
e692ab53
NP
7592
7593 return table;
7594}
7595
9a4e7159 7596static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7597{
7598 struct ctl_table *entry, *table;
7599 struct sched_domain *sd;
7600 int domain_num = 0, i;
7601 char buf[32];
7602
7603 for_each_domain(cpu, sd)
7604 domain_num++;
7605 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7606 if (table == NULL)
7607 return NULL;
e692ab53
NP
7608
7609 i = 0;
7610 for_each_domain(cpu, sd) {
7611 snprintf(buf, 32, "domain%d", i);
e692ab53 7612 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7613 entry->mode = 0555;
e692ab53
NP
7614 entry->child = sd_alloc_ctl_domain_table(sd);
7615 entry++;
7616 i++;
7617 }
7618 return table;
7619}
7620
7621static struct ctl_table_header *sd_sysctl_header;
6382bc90 7622static void register_sched_domain_sysctl(void)
e692ab53 7623{
6ad4c188 7624 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7625 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7626 char buf[32];
7627
7378547f
MM
7628 WARN_ON(sd_ctl_dir[0].child);
7629 sd_ctl_dir[0].child = entry;
7630
ad1cdc1d
MM
7631 if (entry == NULL)
7632 return;
7633
6ad4c188 7634 for_each_possible_cpu(i) {
e692ab53 7635 snprintf(buf, 32, "cpu%d", i);
e692ab53 7636 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7637 entry->mode = 0555;
e692ab53 7638 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7639 entry++;
e692ab53 7640 }
7378547f
MM
7641
7642 WARN_ON(sd_sysctl_header);
e692ab53
NP
7643 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7644}
6382bc90 7645
7378547f 7646/* may be called multiple times per register */
6382bc90
MM
7647static void unregister_sched_domain_sysctl(void)
7648{
7378547f
MM
7649 if (sd_sysctl_header)
7650 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7651 sd_sysctl_header = NULL;
7378547f
MM
7652 if (sd_ctl_dir[0].child)
7653 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7654}
e692ab53 7655#else
6382bc90
MM
7656static void register_sched_domain_sysctl(void)
7657{
7658}
7659static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7660{
7661}
7662#endif
7663
1f11eb6a
GH
7664static void set_rq_online(struct rq *rq)
7665{
7666 if (!rq->online) {
7667 const struct sched_class *class;
7668
c6c4927b 7669 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7670 rq->online = 1;
7671
7672 for_each_class(class) {
7673 if (class->rq_online)
7674 class->rq_online(rq);
7675 }
7676 }
7677}
7678
7679static void set_rq_offline(struct rq *rq)
7680{
7681 if (rq->online) {
7682 const struct sched_class *class;
7683
7684 for_each_class(class) {
7685 if (class->rq_offline)
7686 class->rq_offline(rq);
7687 }
7688
c6c4927b 7689 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7690 rq->online = 0;
7691 }
7692}
7693
1da177e4
LT
7694/*
7695 * migration_call - callback that gets triggered when a CPU is added.
7696 * Here we can start up the necessary migration thread for the new CPU.
7697 */
48f24c4d
IM
7698static int __cpuinit
7699migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7700{
1da177e4 7701 struct task_struct *p;
48f24c4d 7702 int cpu = (long)hcpu;
1da177e4 7703 unsigned long flags;
70b97a7f 7704 struct rq *rq;
1da177e4
LT
7705
7706 switch (action) {
5be9361c 7707
1da177e4 7708 case CPU_UP_PREPARE:
8bb78442 7709 case CPU_UP_PREPARE_FROZEN:
dd41f596 7710 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7711 if (IS_ERR(p))
7712 return NOTIFY_BAD;
1da177e4
LT
7713 kthread_bind(p, cpu);
7714 /* Must be high prio: stop_machine expects to yield to it. */
7715 rq = task_rq_lock(p, &flags);
dd41f596 7716 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7717 task_rq_unlock(rq, &flags);
371cbb38 7718 get_task_struct(p);
1da177e4 7719 cpu_rq(cpu)->migration_thread = p;
a468d389 7720 rq->calc_load_update = calc_load_update;
1da177e4 7721 break;
48f24c4d 7722
1da177e4 7723 case CPU_ONLINE:
8bb78442 7724 case CPU_ONLINE_FROZEN:
3a4fa0a2 7725 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7726 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7727
7728 /* Update our root-domain */
7729 rq = cpu_rq(cpu);
05fa785c 7730 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 7731 if (rq->rd) {
c6c4927b 7732 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7733
7734 set_rq_online(rq);
1f94ef59 7735 }
05fa785c 7736 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7737 break;
48f24c4d 7738
1da177e4
LT
7739#ifdef CONFIG_HOTPLUG_CPU
7740 case CPU_UP_CANCELED:
8bb78442 7741 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7742 if (!cpu_rq(cpu)->migration_thread)
7743 break;
41a2d6cf 7744 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7745 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7746 cpumask_any(cpu_online_mask));
1da177e4 7747 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7748 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7749 cpu_rq(cpu)->migration_thread = NULL;
7750 break;
48f24c4d 7751
1da177e4 7752 case CPU_DEAD:
8bb78442 7753 case CPU_DEAD_FROZEN:
470fd646 7754 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7755 migrate_live_tasks(cpu);
7756 rq = cpu_rq(cpu);
7757 kthread_stop(rq->migration_thread);
371cbb38 7758 put_task_struct(rq->migration_thread);
1da177e4
LT
7759 rq->migration_thread = NULL;
7760 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 7761 raw_spin_lock_irq(&rq->lock);
a8e504d2 7762 update_rq_clock(rq);
2e1cb74a 7763 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7764 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7765 rq->idle->sched_class = &idle_sched_class;
1da177e4 7766 migrate_dead_tasks(cpu);
05fa785c 7767 raw_spin_unlock_irq(&rq->lock);
470fd646 7768 cpuset_unlock();
1da177e4
LT
7769 migrate_nr_uninterruptible(rq);
7770 BUG_ON(rq->nr_running != 0);
dce48a84 7771 calc_global_load_remove(rq);
41a2d6cf
IM
7772 /*
7773 * No need to migrate the tasks: it was best-effort if
7774 * they didn't take sched_hotcpu_mutex. Just wake up
7775 * the requestors.
7776 */
05fa785c 7777 raw_spin_lock_irq(&rq->lock);
1da177e4 7778 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7779 struct migration_req *req;
7780
1da177e4 7781 req = list_entry(rq->migration_queue.next,
70b97a7f 7782 struct migration_req, list);
1da177e4 7783 list_del_init(&req->list);
05fa785c 7784 raw_spin_unlock_irq(&rq->lock);
1da177e4 7785 complete(&req->done);
05fa785c 7786 raw_spin_lock_irq(&rq->lock);
1da177e4 7787 }
05fa785c 7788 raw_spin_unlock_irq(&rq->lock);
1da177e4 7789 break;
57d885fe 7790
08f503b0
GH
7791 case CPU_DYING:
7792 case CPU_DYING_FROZEN:
57d885fe
GH
7793 /* Update our root-domain */
7794 rq = cpu_rq(cpu);
05fa785c 7795 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 7796 if (rq->rd) {
c6c4927b 7797 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7798 set_rq_offline(rq);
57d885fe 7799 }
05fa785c 7800 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 7801 break;
1da177e4
LT
7802#endif
7803 }
7804 return NOTIFY_OK;
7805}
7806
f38b0820
PM
7807/*
7808 * Register at high priority so that task migration (migrate_all_tasks)
7809 * happens before everything else. This has to be lower priority than
cdd6c482 7810 * the notifier in the perf_event subsystem, though.
1da177e4 7811 */
26c2143b 7812static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7813 .notifier_call = migration_call,
7814 .priority = 10
7815};
7816
7babe8db 7817static int __init migration_init(void)
1da177e4
LT
7818{
7819 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7820 int err;
48f24c4d
IM
7821
7822 /* Start one for the boot CPU: */
07dccf33
AM
7823 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7824 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7825 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7826 register_cpu_notifier(&migration_notifier);
7babe8db 7827
a004cd42 7828 return 0;
1da177e4 7829}
7babe8db 7830early_initcall(migration_init);
1da177e4
LT
7831#endif
7832
7833#ifdef CONFIG_SMP
476f3534 7834
3e9830dc 7835#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7836
f6630114
MT
7837static __read_mostly int sched_domain_debug_enabled;
7838
7839static int __init sched_domain_debug_setup(char *str)
7840{
7841 sched_domain_debug_enabled = 1;
7842
7843 return 0;
7844}
7845early_param("sched_debug", sched_domain_debug_setup);
7846
7c16ec58 7847static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7848 struct cpumask *groupmask)
1da177e4 7849{
4dcf6aff 7850 struct sched_group *group = sd->groups;
434d53b0 7851 char str[256];
1da177e4 7852
968ea6d8 7853 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7854 cpumask_clear(groupmask);
4dcf6aff
IM
7855
7856 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7857
7858 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 7859 printk("does not load-balance\n");
4dcf6aff 7860 if (sd->parent)
3df0fc5b
PZ
7861 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7862 " has parent");
4dcf6aff 7863 return -1;
41c7ce9a
NP
7864 }
7865
3df0fc5b 7866 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7867
758b2cdc 7868 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
7869 printk(KERN_ERR "ERROR: domain->span does not contain "
7870 "CPU%d\n", cpu);
4dcf6aff 7871 }
758b2cdc 7872 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
7873 printk(KERN_ERR "ERROR: domain->groups does not contain"
7874 " CPU%d\n", cpu);
4dcf6aff 7875 }
1da177e4 7876
4dcf6aff 7877 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7878 do {
4dcf6aff 7879 if (!group) {
3df0fc5b
PZ
7880 printk("\n");
7881 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7882 break;
7883 }
7884
18a3885f 7885 if (!group->cpu_power) {
3df0fc5b
PZ
7886 printk(KERN_CONT "\n");
7887 printk(KERN_ERR "ERROR: domain->cpu_power not "
7888 "set\n");
4dcf6aff
IM
7889 break;
7890 }
1da177e4 7891
758b2cdc 7892 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
7893 printk(KERN_CONT "\n");
7894 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
7895 break;
7896 }
1da177e4 7897
758b2cdc 7898 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
7899 printk(KERN_CONT "\n");
7900 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
7901 break;
7902 }
1da177e4 7903
758b2cdc 7904 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7905
968ea6d8 7906 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 7907
3df0fc5b 7908 printk(KERN_CONT " %s", str);
18a3885f 7909 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
7910 printk(KERN_CONT " (cpu_power = %d)",
7911 group->cpu_power);
381512cf 7912 }
1da177e4 7913
4dcf6aff
IM
7914 group = group->next;
7915 } while (group != sd->groups);
3df0fc5b 7916 printk(KERN_CONT "\n");
1da177e4 7917
758b2cdc 7918 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 7919 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7920
758b2cdc
RR
7921 if (sd->parent &&
7922 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
7923 printk(KERN_ERR "ERROR: parent span is not a superset "
7924 "of domain->span\n");
4dcf6aff
IM
7925 return 0;
7926}
1da177e4 7927
4dcf6aff
IM
7928static void sched_domain_debug(struct sched_domain *sd, int cpu)
7929{
d5dd3db1 7930 cpumask_var_t groupmask;
4dcf6aff 7931 int level = 0;
1da177e4 7932
f6630114
MT
7933 if (!sched_domain_debug_enabled)
7934 return;
7935
4dcf6aff
IM
7936 if (!sd) {
7937 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7938 return;
7939 }
1da177e4 7940
4dcf6aff
IM
7941 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7942
d5dd3db1 7943 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7944 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7945 return;
7946 }
7947
4dcf6aff 7948 for (;;) {
7c16ec58 7949 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7950 break;
1da177e4
LT
7951 level++;
7952 sd = sd->parent;
33859f7f 7953 if (!sd)
4dcf6aff
IM
7954 break;
7955 }
d5dd3db1 7956 free_cpumask_var(groupmask);
1da177e4 7957}
6d6bc0ad 7958#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7959# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7960#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7961
1a20ff27 7962static int sd_degenerate(struct sched_domain *sd)
245af2c7 7963{
758b2cdc 7964 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7965 return 1;
7966
7967 /* Following flags need at least 2 groups */
7968 if (sd->flags & (SD_LOAD_BALANCE |
7969 SD_BALANCE_NEWIDLE |
7970 SD_BALANCE_FORK |
89c4710e
SS
7971 SD_BALANCE_EXEC |
7972 SD_SHARE_CPUPOWER |
7973 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7974 if (sd->groups != sd->groups->next)
7975 return 0;
7976 }
7977
7978 /* Following flags don't use groups */
c88d5910 7979 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7980 return 0;
7981
7982 return 1;
7983}
7984
48f24c4d
IM
7985static int
7986sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7987{
7988 unsigned long cflags = sd->flags, pflags = parent->flags;
7989
7990 if (sd_degenerate(parent))
7991 return 1;
7992
758b2cdc 7993 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7994 return 0;
7995
245af2c7
SS
7996 /* Flags needing groups don't count if only 1 group in parent */
7997 if (parent->groups == parent->groups->next) {
7998 pflags &= ~(SD_LOAD_BALANCE |
7999 SD_BALANCE_NEWIDLE |
8000 SD_BALANCE_FORK |
89c4710e
SS
8001 SD_BALANCE_EXEC |
8002 SD_SHARE_CPUPOWER |
8003 SD_SHARE_PKG_RESOURCES);
5436499e
KC
8004 if (nr_node_ids == 1)
8005 pflags &= ~SD_SERIALIZE;
245af2c7
SS
8006 }
8007 if (~cflags & pflags)
8008 return 0;
8009
8010 return 1;
8011}
8012
c6c4927b
RR
8013static void free_rootdomain(struct root_domain *rd)
8014{
047106ad
PZ
8015 synchronize_sched();
8016
68e74568
RR
8017 cpupri_cleanup(&rd->cpupri);
8018
c6c4927b
RR
8019 free_cpumask_var(rd->rto_mask);
8020 free_cpumask_var(rd->online);
8021 free_cpumask_var(rd->span);
8022 kfree(rd);
8023}
8024
57d885fe
GH
8025static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8026{
a0490fa3 8027 struct root_domain *old_rd = NULL;
57d885fe 8028 unsigned long flags;
57d885fe 8029
05fa785c 8030 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
8031
8032 if (rq->rd) {
a0490fa3 8033 old_rd = rq->rd;
57d885fe 8034
c6c4927b 8035 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 8036 set_rq_offline(rq);
57d885fe 8037
c6c4927b 8038 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 8039
a0490fa3
IM
8040 /*
8041 * If we dont want to free the old_rt yet then
8042 * set old_rd to NULL to skip the freeing later
8043 * in this function:
8044 */
8045 if (!atomic_dec_and_test(&old_rd->refcount))
8046 old_rd = NULL;
57d885fe
GH
8047 }
8048
8049 atomic_inc(&rd->refcount);
8050 rq->rd = rd;
8051
c6c4927b 8052 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8053 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8054 set_rq_online(rq);
57d885fe 8055
05fa785c 8056 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8057
8058 if (old_rd)
8059 free_rootdomain(old_rd);
57d885fe
GH
8060}
8061
fd5e1b5d 8062static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8063{
36b7b6d4
PE
8064 gfp_t gfp = GFP_KERNEL;
8065
57d885fe
GH
8066 memset(rd, 0, sizeof(*rd));
8067
36b7b6d4
PE
8068 if (bootmem)
8069 gfp = GFP_NOWAIT;
c6c4927b 8070
36b7b6d4 8071 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8072 goto out;
36b7b6d4 8073 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8074 goto free_span;
36b7b6d4 8075 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8076 goto free_online;
6e0534f2 8077
0fb53029 8078 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8079 goto free_rto_mask;
c6c4927b 8080 return 0;
6e0534f2 8081
68e74568
RR
8082free_rto_mask:
8083 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8084free_online:
8085 free_cpumask_var(rd->online);
8086free_span:
8087 free_cpumask_var(rd->span);
0c910d28 8088out:
c6c4927b 8089 return -ENOMEM;
57d885fe
GH
8090}
8091
8092static void init_defrootdomain(void)
8093{
c6c4927b
RR
8094 init_rootdomain(&def_root_domain, true);
8095
57d885fe
GH
8096 atomic_set(&def_root_domain.refcount, 1);
8097}
8098
dc938520 8099static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8100{
8101 struct root_domain *rd;
8102
8103 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8104 if (!rd)
8105 return NULL;
8106
c6c4927b
RR
8107 if (init_rootdomain(rd, false) != 0) {
8108 kfree(rd);
8109 return NULL;
8110 }
57d885fe
GH
8111
8112 return rd;
8113}
8114
1da177e4 8115/*
0eab9146 8116 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8117 * hold the hotplug lock.
8118 */
0eab9146
IM
8119static void
8120cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8121{
70b97a7f 8122 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8123 struct sched_domain *tmp;
8124
8125 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8126 for (tmp = sd; tmp; ) {
245af2c7
SS
8127 struct sched_domain *parent = tmp->parent;
8128 if (!parent)
8129 break;
f29c9b1c 8130
1a848870 8131 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8132 tmp->parent = parent->parent;
1a848870
SS
8133 if (parent->parent)
8134 parent->parent->child = tmp;
f29c9b1c
LZ
8135 } else
8136 tmp = tmp->parent;
245af2c7
SS
8137 }
8138
1a848870 8139 if (sd && sd_degenerate(sd)) {
245af2c7 8140 sd = sd->parent;
1a848870
SS
8141 if (sd)
8142 sd->child = NULL;
8143 }
1da177e4
LT
8144
8145 sched_domain_debug(sd, cpu);
8146
57d885fe 8147 rq_attach_root(rq, rd);
674311d5 8148 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8149}
8150
8151/* cpus with isolated domains */
dcc30a35 8152static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8153
8154/* Setup the mask of cpus configured for isolated domains */
8155static int __init isolated_cpu_setup(char *str)
8156{
bdddd296 8157 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8158 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8159 return 1;
8160}
8161
8927f494 8162__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8163
8164/*
6711cab4
SS
8165 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8166 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8167 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8168 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8169 *
8170 * init_sched_build_groups will build a circular linked list of the groups
8171 * covered by the given span, and will set each group's ->cpumask correctly,
8172 * and ->cpu_power to 0.
8173 */
a616058b 8174static void
96f874e2
RR
8175init_sched_build_groups(const struct cpumask *span,
8176 const struct cpumask *cpu_map,
8177 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8178 struct sched_group **sg,
96f874e2
RR
8179 struct cpumask *tmpmask),
8180 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8181{
8182 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8183 int i;
8184
96f874e2 8185 cpumask_clear(covered);
7c16ec58 8186
abcd083a 8187 for_each_cpu(i, span) {
6711cab4 8188 struct sched_group *sg;
7c16ec58 8189 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8190 int j;
8191
758b2cdc 8192 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8193 continue;
8194
758b2cdc 8195 cpumask_clear(sched_group_cpus(sg));
18a3885f 8196 sg->cpu_power = 0;
1da177e4 8197
abcd083a 8198 for_each_cpu(j, span) {
7c16ec58 8199 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8200 continue;
8201
96f874e2 8202 cpumask_set_cpu(j, covered);
758b2cdc 8203 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8204 }
8205 if (!first)
8206 first = sg;
8207 if (last)
8208 last->next = sg;
8209 last = sg;
8210 }
8211 last->next = first;
8212}
8213
9c1cfda2 8214#define SD_NODES_PER_DOMAIN 16
1da177e4 8215
9c1cfda2 8216#ifdef CONFIG_NUMA
198e2f18 8217
9c1cfda2
JH
8218/**
8219 * find_next_best_node - find the next node to include in a sched_domain
8220 * @node: node whose sched_domain we're building
8221 * @used_nodes: nodes already in the sched_domain
8222 *
41a2d6cf 8223 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8224 * finds the closest node not already in the @used_nodes map.
8225 *
8226 * Should use nodemask_t.
8227 */
c5f59f08 8228static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8229{
8230 int i, n, val, min_val, best_node = 0;
8231
8232 min_val = INT_MAX;
8233
076ac2af 8234 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8235 /* Start at @node */
076ac2af 8236 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8237
8238 if (!nr_cpus_node(n))
8239 continue;
8240
8241 /* Skip already used nodes */
c5f59f08 8242 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8243 continue;
8244
8245 /* Simple min distance search */
8246 val = node_distance(node, n);
8247
8248 if (val < min_val) {
8249 min_val = val;
8250 best_node = n;
8251 }
8252 }
8253
c5f59f08 8254 node_set(best_node, *used_nodes);
9c1cfda2
JH
8255 return best_node;
8256}
8257
8258/**
8259 * sched_domain_node_span - get a cpumask for a node's sched_domain
8260 * @node: node whose cpumask we're constructing
73486722 8261 * @span: resulting cpumask
9c1cfda2 8262 *
41a2d6cf 8263 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8264 * should be one that prevents unnecessary balancing, but also spreads tasks
8265 * out optimally.
8266 */
96f874e2 8267static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8268{
c5f59f08 8269 nodemask_t used_nodes;
48f24c4d 8270 int i;
9c1cfda2 8271
6ca09dfc 8272 cpumask_clear(span);
c5f59f08 8273 nodes_clear(used_nodes);
9c1cfda2 8274
6ca09dfc 8275 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8276 node_set(node, used_nodes);
9c1cfda2
JH
8277
8278 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8279 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8280
6ca09dfc 8281 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8282 }
9c1cfda2 8283}
6d6bc0ad 8284#endif /* CONFIG_NUMA */
9c1cfda2 8285
5c45bf27 8286int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8287
6c99e9ad
RR
8288/*
8289 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8290 *
8291 * ( See the the comments in include/linux/sched.h:struct sched_group
8292 * and struct sched_domain. )
6c99e9ad
RR
8293 */
8294struct static_sched_group {
8295 struct sched_group sg;
8296 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8297};
8298
8299struct static_sched_domain {
8300 struct sched_domain sd;
8301 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8302};
8303
49a02c51
AH
8304struct s_data {
8305#ifdef CONFIG_NUMA
8306 int sd_allnodes;
8307 cpumask_var_t domainspan;
8308 cpumask_var_t covered;
8309 cpumask_var_t notcovered;
8310#endif
8311 cpumask_var_t nodemask;
8312 cpumask_var_t this_sibling_map;
8313 cpumask_var_t this_core_map;
8314 cpumask_var_t send_covered;
8315 cpumask_var_t tmpmask;
8316 struct sched_group **sched_group_nodes;
8317 struct root_domain *rd;
8318};
8319
2109b99e
AH
8320enum s_alloc {
8321 sa_sched_groups = 0,
8322 sa_rootdomain,
8323 sa_tmpmask,
8324 sa_send_covered,
8325 sa_this_core_map,
8326 sa_this_sibling_map,
8327 sa_nodemask,
8328 sa_sched_group_nodes,
8329#ifdef CONFIG_NUMA
8330 sa_notcovered,
8331 sa_covered,
8332 sa_domainspan,
8333#endif
8334 sa_none,
8335};
8336
9c1cfda2 8337/*
48f24c4d 8338 * SMT sched-domains:
9c1cfda2 8339 */
1da177e4 8340#ifdef CONFIG_SCHED_SMT
6c99e9ad 8341static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 8342static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 8343
41a2d6cf 8344static int
96f874e2
RR
8345cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8346 struct sched_group **sg, struct cpumask *unused)
1da177e4 8347{
6711cab4 8348 if (sg)
1871e52c 8349 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
8350 return cpu;
8351}
6d6bc0ad 8352#endif /* CONFIG_SCHED_SMT */
1da177e4 8353
48f24c4d
IM
8354/*
8355 * multi-core sched-domains:
8356 */
1e9f28fa 8357#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8358static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8359static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8360#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8361
8362#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8363static int
96f874e2
RR
8364cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8365 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8366{
6711cab4 8367 int group;
7c16ec58 8368
c69fc56d 8369 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8370 group = cpumask_first(mask);
6711cab4 8371 if (sg)
6c99e9ad 8372 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8373 return group;
1e9f28fa
SS
8374}
8375#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8376static int
96f874e2
RR
8377cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8378 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8379{
6711cab4 8380 if (sg)
6c99e9ad 8381 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8382 return cpu;
8383}
8384#endif
8385
6c99e9ad
RR
8386static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8387static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8388
41a2d6cf 8389static int
96f874e2
RR
8390cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8391 struct sched_group **sg, struct cpumask *mask)
1da177e4 8392{
6711cab4 8393 int group;
48f24c4d 8394#ifdef CONFIG_SCHED_MC
6ca09dfc 8395 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8396 group = cpumask_first(mask);
1e9f28fa 8397#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8398 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8399 group = cpumask_first(mask);
1da177e4 8400#else
6711cab4 8401 group = cpu;
1da177e4 8402#endif
6711cab4 8403 if (sg)
6c99e9ad 8404 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8405 return group;
1da177e4
LT
8406}
8407
8408#ifdef CONFIG_NUMA
1da177e4 8409/*
9c1cfda2
JH
8410 * The init_sched_build_groups can't handle what we want to do with node
8411 * groups, so roll our own. Now each node has its own list of groups which
8412 * gets dynamically allocated.
1da177e4 8413 */
62ea9ceb 8414static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8415static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8416
62ea9ceb 8417static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8418static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8419
96f874e2
RR
8420static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8421 struct sched_group **sg,
8422 struct cpumask *nodemask)
9c1cfda2 8423{
6711cab4
SS
8424 int group;
8425
6ca09dfc 8426 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8427 group = cpumask_first(nodemask);
6711cab4
SS
8428
8429 if (sg)
6c99e9ad 8430 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8431 return group;
1da177e4 8432}
6711cab4 8433
08069033
SS
8434static void init_numa_sched_groups_power(struct sched_group *group_head)
8435{
8436 struct sched_group *sg = group_head;
8437 int j;
8438
8439 if (!sg)
8440 return;
3a5c359a 8441 do {
758b2cdc 8442 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8443 struct sched_domain *sd;
08069033 8444
6c99e9ad 8445 sd = &per_cpu(phys_domains, j).sd;
13318a71 8446 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8447 /*
8448 * Only add "power" once for each
8449 * physical package.
8450 */
8451 continue;
8452 }
08069033 8453
18a3885f 8454 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8455 }
8456 sg = sg->next;
8457 } while (sg != group_head);
08069033 8458}
0601a88d
AH
8459
8460static int build_numa_sched_groups(struct s_data *d,
8461 const struct cpumask *cpu_map, int num)
8462{
8463 struct sched_domain *sd;
8464 struct sched_group *sg, *prev;
8465 int n, j;
8466
8467 cpumask_clear(d->covered);
8468 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8469 if (cpumask_empty(d->nodemask)) {
8470 d->sched_group_nodes[num] = NULL;
8471 goto out;
8472 }
8473
8474 sched_domain_node_span(num, d->domainspan);
8475 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8476
8477 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8478 GFP_KERNEL, num);
8479 if (!sg) {
3df0fc5b
PZ
8480 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8481 num);
0601a88d
AH
8482 return -ENOMEM;
8483 }
8484 d->sched_group_nodes[num] = sg;
8485
8486 for_each_cpu(j, d->nodemask) {
8487 sd = &per_cpu(node_domains, j).sd;
8488 sd->groups = sg;
8489 }
8490
18a3885f 8491 sg->cpu_power = 0;
0601a88d
AH
8492 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8493 sg->next = sg;
8494 cpumask_or(d->covered, d->covered, d->nodemask);
8495
8496 prev = sg;
8497 for (j = 0; j < nr_node_ids; j++) {
8498 n = (num + j) % nr_node_ids;
8499 cpumask_complement(d->notcovered, d->covered);
8500 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8501 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8502 if (cpumask_empty(d->tmpmask))
8503 break;
8504 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8505 if (cpumask_empty(d->tmpmask))
8506 continue;
8507 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8508 GFP_KERNEL, num);
8509 if (!sg) {
3df0fc5b
PZ
8510 printk(KERN_WARNING
8511 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
8512 return -ENOMEM;
8513 }
18a3885f 8514 sg->cpu_power = 0;
0601a88d
AH
8515 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8516 sg->next = prev->next;
8517 cpumask_or(d->covered, d->covered, d->tmpmask);
8518 prev->next = sg;
8519 prev = sg;
8520 }
8521out:
8522 return 0;
8523}
6d6bc0ad 8524#endif /* CONFIG_NUMA */
1da177e4 8525
a616058b 8526#ifdef CONFIG_NUMA
51888ca2 8527/* Free memory allocated for various sched_group structures */
96f874e2
RR
8528static void free_sched_groups(const struct cpumask *cpu_map,
8529 struct cpumask *nodemask)
51888ca2 8530{
a616058b 8531 int cpu, i;
51888ca2 8532
abcd083a 8533 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8534 struct sched_group **sched_group_nodes
8535 = sched_group_nodes_bycpu[cpu];
8536
51888ca2
SV
8537 if (!sched_group_nodes)
8538 continue;
8539
076ac2af 8540 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8541 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8542
6ca09dfc 8543 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8544 if (cpumask_empty(nodemask))
51888ca2
SV
8545 continue;
8546
8547 if (sg == NULL)
8548 continue;
8549 sg = sg->next;
8550next_sg:
8551 oldsg = sg;
8552 sg = sg->next;
8553 kfree(oldsg);
8554 if (oldsg != sched_group_nodes[i])
8555 goto next_sg;
8556 }
8557 kfree(sched_group_nodes);
8558 sched_group_nodes_bycpu[cpu] = NULL;
8559 }
51888ca2 8560}
6d6bc0ad 8561#else /* !CONFIG_NUMA */
96f874e2
RR
8562static void free_sched_groups(const struct cpumask *cpu_map,
8563 struct cpumask *nodemask)
a616058b
SS
8564{
8565}
6d6bc0ad 8566#endif /* CONFIG_NUMA */
51888ca2 8567
89c4710e
SS
8568/*
8569 * Initialize sched groups cpu_power.
8570 *
8571 * cpu_power indicates the capacity of sched group, which is used while
8572 * distributing the load between different sched groups in a sched domain.
8573 * Typically cpu_power for all the groups in a sched domain will be same unless
8574 * there are asymmetries in the topology. If there are asymmetries, group
8575 * having more cpu_power will pickup more load compared to the group having
8576 * less cpu_power.
89c4710e
SS
8577 */
8578static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8579{
8580 struct sched_domain *child;
8581 struct sched_group *group;
f93e65c1
PZ
8582 long power;
8583 int weight;
89c4710e
SS
8584
8585 WARN_ON(!sd || !sd->groups);
8586
13318a71 8587 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8588 return;
8589
8590 child = sd->child;
8591
18a3885f 8592 sd->groups->cpu_power = 0;
5517d86b 8593
f93e65c1
PZ
8594 if (!child) {
8595 power = SCHED_LOAD_SCALE;
8596 weight = cpumask_weight(sched_domain_span(sd));
8597 /*
8598 * SMT siblings share the power of a single core.
a52bfd73
PZ
8599 * Usually multiple threads get a better yield out of
8600 * that one core than a single thread would have,
8601 * reflect that in sd->smt_gain.
f93e65c1 8602 */
a52bfd73
PZ
8603 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8604 power *= sd->smt_gain;
f93e65c1 8605 power /= weight;
a52bfd73
PZ
8606 power >>= SCHED_LOAD_SHIFT;
8607 }
18a3885f 8608 sd->groups->cpu_power += power;
89c4710e
SS
8609 return;
8610 }
8611
89c4710e 8612 /*
f93e65c1 8613 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8614 */
8615 group = child->groups;
8616 do {
18a3885f 8617 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8618 group = group->next;
8619 } while (group != child->groups);
8620}
8621
7c16ec58
MT
8622/*
8623 * Initializers for schedule domains
8624 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8625 */
8626
a5d8c348
IM
8627#ifdef CONFIG_SCHED_DEBUG
8628# define SD_INIT_NAME(sd, type) sd->name = #type
8629#else
8630# define SD_INIT_NAME(sd, type) do { } while (0)
8631#endif
8632
7c16ec58 8633#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8634
7c16ec58
MT
8635#define SD_INIT_FUNC(type) \
8636static noinline void sd_init_##type(struct sched_domain *sd) \
8637{ \
8638 memset(sd, 0, sizeof(*sd)); \
8639 *sd = SD_##type##_INIT; \
1d3504fc 8640 sd->level = SD_LV_##type; \
a5d8c348 8641 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8642}
8643
8644SD_INIT_FUNC(CPU)
8645#ifdef CONFIG_NUMA
8646 SD_INIT_FUNC(ALLNODES)
8647 SD_INIT_FUNC(NODE)
8648#endif
8649#ifdef CONFIG_SCHED_SMT
8650 SD_INIT_FUNC(SIBLING)
8651#endif
8652#ifdef CONFIG_SCHED_MC
8653 SD_INIT_FUNC(MC)
8654#endif
8655
1d3504fc
HS
8656static int default_relax_domain_level = -1;
8657
8658static int __init setup_relax_domain_level(char *str)
8659{
30e0e178
LZ
8660 unsigned long val;
8661
8662 val = simple_strtoul(str, NULL, 0);
8663 if (val < SD_LV_MAX)
8664 default_relax_domain_level = val;
8665
1d3504fc
HS
8666 return 1;
8667}
8668__setup("relax_domain_level=", setup_relax_domain_level);
8669
8670static void set_domain_attribute(struct sched_domain *sd,
8671 struct sched_domain_attr *attr)
8672{
8673 int request;
8674
8675 if (!attr || attr->relax_domain_level < 0) {
8676 if (default_relax_domain_level < 0)
8677 return;
8678 else
8679 request = default_relax_domain_level;
8680 } else
8681 request = attr->relax_domain_level;
8682 if (request < sd->level) {
8683 /* turn off idle balance on this domain */
c88d5910 8684 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8685 } else {
8686 /* turn on idle balance on this domain */
c88d5910 8687 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8688 }
8689}
8690
2109b99e
AH
8691static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8692 const struct cpumask *cpu_map)
8693{
8694 switch (what) {
8695 case sa_sched_groups:
8696 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8697 d->sched_group_nodes = NULL;
8698 case sa_rootdomain:
8699 free_rootdomain(d->rd); /* fall through */
8700 case sa_tmpmask:
8701 free_cpumask_var(d->tmpmask); /* fall through */
8702 case sa_send_covered:
8703 free_cpumask_var(d->send_covered); /* fall through */
8704 case sa_this_core_map:
8705 free_cpumask_var(d->this_core_map); /* fall through */
8706 case sa_this_sibling_map:
8707 free_cpumask_var(d->this_sibling_map); /* fall through */
8708 case sa_nodemask:
8709 free_cpumask_var(d->nodemask); /* fall through */
8710 case sa_sched_group_nodes:
d1b55138 8711#ifdef CONFIG_NUMA
2109b99e
AH
8712 kfree(d->sched_group_nodes); /* fall through */
8713 case sa_notcovered:
8714 free_cpumask_var(d->notcovered); /* fall through */
8715 case sa_covered:
8716 free_cpumask_var(d->covered); /* fall through */
8717 case sa_domainspan:
8718 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8719#endif
2109b99e
AH
8720 case sa_none:
8721 break;
8722 }
8723}
3404c8d9 8724
2109b99e
AH
8725static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8726 const struct cpumask *cpu_map)
8727{
3404c8d9 8728#ifdef CONFIG_NUMA
2109b99e
AH
8729 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8730 return sa_none;
8731 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8732 return sa_domainspan;
8733 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8734 return sa_covered;
8735 /* Allocate the per-node list of sched groups */
8736 d->sched_group_nodes = kcalloc(nr_node_ids,
8737 sizeof(struct sched_group *), GFP_KERNEL);
8738 if (!d->sched_group_nodes) {
3df0fc5b 8739 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8740 return sa_notcovered;
d1b55138 8741 }
2109b99e 8742 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8743#endif
2109b99e
AH
8744 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8745 return sa_sched_group_nodes;
8746 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8747 return sa_nodemask;
8748 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8749 return sa_this_sibling_map;
8750 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8751 return sa_this_core_map;
8752 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8753 return sa_send_covered;
8754 d->rd = alloc_rootdomain();
8755 if (!d->rd) {
3df0fc5b 8756 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8757 return sa_tmpmask;
57d885fe 8758 }
2109b99e
AH
8759 return sa_rootdomain;
8760}
57d885fe 8761
7f4588f3
AH
8762static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8763 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8764{
8765 struct sched_domain *sd = NULL;
7c16ec58 8766#ifdef CONFIG_NUMA
7f4588f3 8767 struct sched_domain *parent;
1da177e4 8768
7f4588f3
AH
8769 d->sd_allnodes = 0;
8770 if (cpumask_weight(cpu_map) >
8771 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8772 sd = &per_cpu(allnodes_domains, i).sd;
8773 SD_INIT(sd, ALLNODES);
1d3504fc 8774 set_domain_attribute(sd, attr);
7f4588f3
AH
8775 cpumask_copy(sched_domain_span(sd), cpu_map);
8776 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8777 d->sd_allnodes = 1;
8778 }
8779 parent = sd;
8780
8781 sd = &per_cpu(node_domains, i).sd;
8782 SD_INIT(sd, NODE);
8783 set_domain_attribute(sd, attr);
8784 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8785 sd->parent = parent;
8786 if (parent)
8787 parent->child = sd;
8788 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8789#endif
7f4588f3
AH
8790 return sd;
8791}
1da177e4 8792
87cce662
AH
8793static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8794 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8795 struct sched_domain *parent, int i)
8796{
8797 struct sched_domain *sd;
8798 sd = &per_cpu(phys_domains, i).sd;
8799 SD_INIT(sd, CPU);
8800 set_domain_attribute(sd, attr);
8801 cpumask_copy(sched_domain_span(sd), d->nodemask);
8802 sd->parent = parent;
8803 if (parent)
8804 parent->child = sd;
8805 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8806 return sd;
8807}
1da177e4 8808
410c4081
AH
8809static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8810 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8811 struct sched_domain *parent, int i)
8812{
8813 struct sched_domain *sd = parent;
1e9f28fa 8814#ifdef CONFIG_SCHED_MC
410c4081
AH
8815 sd = &per_cpu(core_domains, i).sd;
8816 SD_INIT(sd, MC);
8817 set_domain_attribute(sd, attr);
8818 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8819 sd->parent = parent;
8820 parent->child = sd;
8821 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8822#endif
410c4081
AH
8823 return sd;
8824}
1e9f28fa 8825
d8173535
AH
8826static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8827 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8828 struct sched_domain *parent, int i)
8829{
8830 struct sched_domain *sd = parent;
1da177e4 8831#ifdef CONFIG_SCHED_SMT
d8173535
AH
8832 sd = &per_cpu(cpu_domains, i).sd;
8833 SD_INIT(sd, SIBLING);
8834 set_domain_attribute(sd, attr);
8835 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8836 sd->parent = parent;
8837 parent->child = sd;
8838 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8839#endif
d8173535
AH
8840 return sd;
8841}
1da177e4 8842
0e8e85c9
AH
8843static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8844 const struct cpumask *cpu_map, int cpu)
8845{
8846 switch (l) {
1da177e4 8847#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8848 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8849 cpumask_and(d->this_sibling_map, cpu_map,
8850 topology_thread_cpumask(cpu));
8851 if (cpu == cpumask_first(d->this_sibling_map))
8852 init_sched_build_groups(d->this_sibling_map, cpu_map,
8853 &cpu_to_cpu_group,
8854 d->send_covered, d->tmpmask);
8855 break;
1da177e4 8856#endif
1e9f28fa 8857#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8858 case SD_LV_MC: /* set up multi-core groups */
8859 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8860 if (cpu == cpumask_first(d->this_core_map))
8861 init_sched_build_groups(d->this_core_map, cpu_map,
8862 &cpu_to_core_group,
8863 d->send_covered, d->tmpmask);
8864 break;
1e9f28fa 8865#endif
86548096
AH
8866 case SD_LV_CPU: /* set up physical groups */
8867 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8868 if (!cpumask_empty(d->nodemask))
8869 init_sched_build_groups(d->nodemask, cpu_map,
8870 &cpu_to_phys_group,
8871 d->send_covered, d->tmpmask);
8872 break;
1da177e4 8873#ifdef CONFIG_NUMA
de616e36
AH
8874 case SD_LV_ALLNODES:
8875 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8876 d->send_covered, d->tmpmask);
8877 break;
8878#endif
0e8e85c9
AH
8879 default:
8880 break;
7c16ec58 8881 }
0e8e85c9 8882}
9c1cfda2 8883
2109b99e
AH
8884/*
8885 * Build sched domains for a given set of cpus and attach the sched domains
8886 * to the individual cpus
8887 */
8888static int __build_sched_domains(const struct cpumask *cpu_map,
8889 struct sched_domain_attr *attr)
8890{
8891 enum s_alloc alloc_state = sa_none;
8892 struct s_data d;
294b0c96 8893 struct sched_domain *sd;
2109b99e 8894 int i;
7c16ec58 8895#ifdef CONFIG_NUMA
2109b99e 8896 d.sd_allnodes = 0;
7c16ec58 8897#endif
9c1cfda2 8898
2109b99e
AH
8899 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8900 if (alloc_state != sa_rootdomain)
8901 goto error;
8902 alloc_state = sa_sched_groups;
9c1cfda2 8903
1da177e4 8904 /*
1a20ff27 8905 * Set up domains for cpus specified by the cpu_map.
1da177e4 8906 */
abcd083a 8907 for_each_cpu(i, cpu_map) {
49a02c51
AH
8908 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8909 cpu_map);
9761eea8 8910
7f4588f3 8911 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8912 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8913 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8914 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8915 }
9c1cfda2 8916
abcd083a 8917 for_each_cpu(i, cpu_map) {
0e8e85c9 8918 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8919 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8920 }
9c1cfda2 8921
1da177e4 8922 /* Set up physical groups */
86548096
AH
8923 for (i = 0; i < nr_node_ids; i++)
8924 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8925
1da177e4
LT
8926#ifdef CONFIG_NUMA
8927 /* Set up node groups */
de616e36
AH
8928 if (d.sd_allnodes)
8929 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8930
0601a88d
AH
8931 for (i = 0; i < nr_node_ids; i++)
8932 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8933 goto error;
1da177e4
LT
8934#endif
8935
8936 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8937#ifdef CONFIG_SCHED_SMT
abcd083a 8938 for_each_cpu(i, cpu_map) {
294b0c96 8939 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8940 init_sched_groups_power(i, sd);
5c45bf27 8941 }
1da177e4 8942#endif
1e9f28fa 8943#ifdef CONFIG_SCHED_MC
abcd083a 8944 for_each_cpu(i, cpu_map) {
294b0c96 8945 sd = &per_cpu(core_domains, i).sd;
89c4710e 8946 init_sched_groups_power(i, sd);
5c45bf27
SS
8947 }
8948#endif
1e9f28fa 8949
abcd083a 8950 for_each_cpu(i, cpu_map) {
294b0c96 8951 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8952 init_sched_groups_power(i, sd);
1da177e4
LT
8953 }
8954
9c1cfda2 8955#ifdef CONFIG_NUMA
076ac2af 8956 for (i = 0; i < nr_node_ids; i++)
49a02c51 8957 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8958
49a02c51 8959 if (d.sd_allnodes) {
6711cab4 8960 struct sched_group *sg;
f712c0c7 8961
96f874e2 8962 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8963 d.tmpmask);
f712c0c7
SS
8964 init_numa_sched_groups_power(sg);
8965 }
9c1cfda2
JH
8966#endif
8967
1da177e4 8968 /* Attach the domains */
abcd083a 8969 for_each_cpu(i, cpu_map) {
1da177e4 8970#ifdef CONFIG_SCHED_SMT
6c99e9ad 8971 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8972#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8973 sd = &per_cpu(core_domains, i).sd;
1da177e4 8974#else
6c99e9ad 8975 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8976#endif
49a02c51 8977 cpu_attach_domain(sd, d.rd, i);
1da177e4 8978 }
51888ca2 8979
2109b99e
AH
8980 d.sched_group_nodes = NULL; /* don't free this we still need it */
8981 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8982 return 0;
51888ca2 8983
51888ca2 8984error:
2109b99e
AH
8985 __free_domain_allocs(&d, alloc_state, cpu_map);
8986 return -ENOMEM;
1da177e4 8987}
029190c5 8988
96f874e2 8989static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8990{
8991 return __build_sched_domains(cpu_map, NULL);
8992}
8993
acc3f5d7 8994static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8995static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8996static struct sched_domain_attr *dattr_cur;
8997 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8998
8999/*
9000 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
9001 * cpumask) fails, then fallback to a single sched domain,
9002 * as determined by the single cpumask fallback_doms.
029190c5 9003 */
4212823f 9004static cpumask_var_t fallback_doms;
029190c5 9005
ee79d1bd
HC
9006/*
9007 * arch_update_cpu_topology lets virtualized architectures update the
9008 * cpu core maps. It is supposed to return 1 if the topology changed
9009 * or 0 if it stayed the same.
9010 */
9011int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 9012{
ee79d1bd 9013 return 0;
22e52b07
HC
9014}
9015
acc3f5d7
RR
9016cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
9017{
9018 int i;
9019 cpumask_var_t *doms;
9020
9021 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
9022 if (!doms)
9023 return NULL;
9024 for (i = 0; i < ndoms; i++) {
9025 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
9026 free_sched_domains(doms, i);
9027 return NULL;
9028 }
9029 }
9030 return doms;
9031}
9032
9033void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9034{
9035 unsigned int i;
9036 for (i = 0; i < ndoms; i++)
9037 free_cpumask_var(doms[i]);
9038 kfree(doms);
9039}
9040
1a20ff27 9041/*
41a2d6cf 9042 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
9043 * For now this just excludes isolated cpus, but could be used to
9044 * exclude other special cases in the future.
1a20ff27 9045 */
96f874e2 9046static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 9047{
7378547f
MM
9048 int err;
9049
22e52b07 9050 arch_update_cpu_topology();
029190c5 9051 ndoms_cur = 1;
acc3f5d7 9052 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9053 if (!doms_cur)
acc3f5d7
RR
9054 doms_cur = &fallback_doms;
9055 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9056 dattr_cur = NULL;
acc3f5d7 9057 err = build_sched_domains(doms_cur[0]);
6382bc90 9058 register_sched_domain_sysctl();
7378547f
MM
9059
9060 return err;
1a20ff27
DG
9061}
9062
96f874e2
RR
9063static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9064 struct cpumask *tmpmask)
1da177e4 9065{
7c16ec58 9066 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9067}
1da177e4 9068
1a20ff27
DG
9069/*
9070 * Detach sched domains from a group of cpus specified in cpu_map
9071 * These cpus will now be attached to the NULL domain
9072 */
96f874e2 9073static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9074{
96f874e2
RR
9075 /* Save because hotplug lock held. */
9076 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9077 int i;
9078
abcd083a 9079 for_each_cpu(i, cpu_map)
57d885fe 9080 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9081 synchronize_sched();
96f874e2 9082 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9083}
9084
1d3504fc
HS
9085/* handle null as "default" */
9086static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9087 struct sched_domain_attr *new, int idx_new)
9088{
9089 struct sched_domain_attr tmp;
9090
9091 /* fast path */
9092 if (!new && !cur)
9093 return 1;
9094
9095 tmp = SD_ATTR_INIT;
9096 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9097 new ? (new + idx_new) : &tmp,
9098 sizeof(struct sched_domain_attr));
9099}
9100
029190c5
PJ
9101/*
9102 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9103 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9104 * doms_new[] to the current sched domain partitioning, doms_cur[].
9105 * It destroys each deleted domain and builds each new domain.
9106 *
acc3f5d7 9107 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9108 * The masks don't intersect (don't overlap.) We should setup one
9109 * sched domain for each mask. CPUs not in any of the cpumasks will
9110 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9111 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9112 * it as it is.
9113 *
acc3f5d7
RR
9114 * The passed in 'doms_new' should be allocated using
9115 * alloc_sched_domains. This routine takes ownership of it and will
9116 * free_sched_domains it when done with it. If the caller failed the
9117 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9118 * and partition_sched_domains() will fallback to the single partition
9119 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9120 *
96f874e2 9121 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9122 * ndoms_new == 0 is a special case for destroying existing domains,
9123 * and it will not create the default domain.
dfb512ec 9124 *
029190c5
PJ
9125 * Call with hotplug lock held
9126 */
acc3f5d7 9127void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9128 struct sched_domain_attr *dattr_new)
029190c5 9129{
dfb512ec 9130 int i, j, n;
d65bd5ec 9131 int new_topology;
029190c5 9132
712555ee 9133 mutex_lock(&sched_domains_mutex);
a1835615 9134
7378547f
MM
9135 /* always unregister in case we don't destroy any domains */
9136 unregister_sched_domain_sysctl();
9137
d65bd5ec
HC
9138 /* Let architecture update cpu core mappings. */
9139 new_topology = arch_update_cpu_topology();
9140
dfb512ec 9141 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9142
9143 /* Destroy deleted domains */
9144 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9145 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9146 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9147 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9148 goto match1;
9149 }
9150 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9151 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9152match1:
9153 ;
9154 }
9155
e761b772
MK
9156 if (doms_new == NULL) {
9157 ndoms_cur = 0;
acc3f5d7 9158 doms_new = &fallback_doms;
6ad4c188 9159 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9160 WARN_ON_ONCE(dattr_new);
e761b772
MK
9161 }
9162
029190c5
PJ
9163 /* Build new domains */
9164 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9165 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9166 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9167 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9168 goto match2;
9169 }
9170 /* no match - add a new doms_new */
acc3f5d7 9171 __build_sched_domains(doms_new[i],
1d3504fc 9172 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9173match2:
9174 ;
9175 }
9176
9177 /* Remember the new sched domains */
acc3f5d7
RR
9178 if (doms_cur != &fallback_doms)
9179 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9180 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9181 doms_cur = doms_new;
1d3504fc 9182 dattr_cur = dattr_new;
029190c5 9183 ndoms_cur = ndoms_new;
7378547f
MM
9184
9185 register_sched_domain_sysctl();
a1835615 9186
712555ee 9187 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9188}
9189
5c45bf27 9190#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9191static void arch_reinit_sched_domains(void)
5c45bf27 9192{
95402b38 9193 get_online_cpus();
dfb512ec
MK
9194
9195 /* Destroy domains first to force the rebuild */
9196 partition_sched_domains(0, NULL, NULL);
9197
e761b772 9198 rebuild_sched_domains();
95402b38 9199 put_online_cpus();
5c45bf27
SS
9200}
9201
9202static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9203{
afb8a9b7 9204 unsigned int level = 0;
5c45bf27 9205
afb8a9b7
GS
9206 if (sscanf(buf, "%u", &level) != 1)
9207 return -EINVAL;
9208
9209 /*
9210 * level is always be positive so don't check for
9211 * level < POWERSAVINGS_BALANCE_NONE which is 0
9212 * What happens on 0 or 1 byte write,
9213 * need to check for count as well?
9214 */
9215
9216 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9217 return -EINVAL;
9218
9219 if (smt)
afb8a9b7 9220 sched_smt_power_savings = level;
5c45bf27 9221 else
afb8a9b7 9222 sched_mc_power_savings = level;
5c45bf27 9223
c70f22d2 9224 arch_reinit_sched_domains();
5c45bf27 9225
c70f22d2 9226 return count;
5c45bf27
SS
9227}
9228
5c45bf27 9229#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9230static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9231 char *page)
5c45bf27
SS
9232{
9233 return sprintf(page, "%u\n", sched_mc_power_savings);
9234}
f718cd4a 9235static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9236 const char *buf, size_t count)
5c45bf27
SS
9237{
9238 return sched_power_savings_store(buf, count, 0);
9239}
f718cd4a
AK
9240static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9241 sched_mc_power_savings_show,
9242 sched_mc_power_savings_store);
5c45bf27
SS
9243#endif
9244
9245#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9246static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9247 char *page)
5c45bf27
SS
9248{
9249 return sprintf(page, "%u\n", sched_smt_power_savings);
9250}
f718cd4a 9251static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9252 const char *buf, size_t count)
5c45bf27
SS
9253{
9254 return sched_power_savings_store(buf, count, 1);
9255}
f718cd4a
AK
9256static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9257 sched_smt_power_savings_show,
6707de00
AB
9258 sched_smt_power_savings_store);
9259#endif
9260
39aac648 9261int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9262{
9263 int err = 0;
9264
9265#ifdef CONFIG_SCHED_SMT
9266 if (smt_capable())
9267 err = sysfs_create_file(&cls->kset.kobj,
9268 &attr_sched_smt_power_savings.attr);
9269#endif
9270#ifdef CONFIG_SCHED_MC
9271 if (!err && mc_capable())
9272 err = sysfs_create_file(&cls->kset.kobj,
9273 &attr_sched_mc_power_savings.attr);
9274#endif
9275 return err;
9276}
6d6bc0ad 9277#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9278
e761b772 9279#ifndef CONFIG_CPUSETS
1da177e4 9280/*
e761b772
MK
9281 * Add online and remove offline CPUs from the scheduler domains.
9282 * When cpusets are enabled they take over this function.
1da177e4
LT
9283 */
9284static int update_sched_domains(struct notifier_block *nfb,
9285 unsigned long action, void *hcpu)
e761b772
MK
9286{
9287 switch (action) {
9288 case CPU_ONLINE:
9289 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9290 case CPU_DOWN_PREPARE:
9291 case CPU_DOWN_PREPARE_FROZEN:
9292 case CPU_DOWN_FAILED:
9293 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9294 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9295 return NOTIFY_OK;
9296
9297 default:
9298 return NOTIFY_DONE;
9299 }
9300}
9301#endif
9302
9303static int update_runtime(struct notifier_block *nfb,
9304 unsigned long action, void *hcpu)
1da177e4 9305{
7def2be1
PZ
9306 int cpu = (int)(long)hcpu;
9307
1da177e4 9308 switch (action) {
1da177e4 9309 case CPU_DOWN_PREPARE:
8bb78442 9310 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9311 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9312 return NOTIFY_OK;
9313
1da177e4 9314 case CPU_DOWN_FAILED:
8bb78442 9315 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9316 case CPU_ONLINE:
8bb78442 9317 case CPU_ONLINE_FROZEN:
7def2be1 9318 enable_runtime(cpu_rq(cpu));
e761b772
MK
9319 return NOTIFY_OK;
9320
1da177e4
LT
9321 default:
9322 return NOTIFY_DONE;
9323 }
1da177e4 9324}
1da177e4
LT
9325
9326void __init sched_init_smp(void)
9327{
dcc30a35
RR
9328 cpumask_var_t non_isolated_cpus;
9329
9330 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9331 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9332
434d53b0
MT
9333#if defined(CONFIG_NUMA)
9334 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9335 GFP_KERNEL);
9336 BUG_ON(sched_group_nodes_bycpu == NULL);
9337#endif
95402b38 9338 get_online_cpus();
712555ee 9339 mutex_lock(&sched_domains_mutex);
6ad4c188 9340 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9341 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9342 if (cpumask_empty(non_isolated_cpus))
9343 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9344 mutex_unlock(&sched_domains_mutex);
95402b38 9345 put_online_cpus();
e761b772
MK
9346
9347#ifndef CONFIG_CPUSETS
1da177e4
LT
9348 /* XXX: Theoretical race here - CPU may be hotplugged now */
9349 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9350#endif
9351
9352 /* RT runtime code needs to handle some hotplug events */
9353 hotcpu_notifier(update_runtime, 0);
9354
b328ca18 9355 init_hrtick();
5c1e1767
NP
9356
9357 /* Move init over to a non-isolated CPU */
dcc30a35 9358 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9359 BUG();
19978ca6 9360 sched_init_granularity();
dcc30a35 9361 free_cpumask_var(non_isolated_cpus);
4212823f 9362
0e3900e6 9363 init_sched_rt_class();
1da177e4
LT
9364}
9365#else
9366void __init sched_init_smp(void)
9367{
19978ca6 9368 sched_init_granularity();
1da177e4
LT
9369}
9370#endif /* CONFIG_SMP */
9371
cd1bb94b
AB
9372const_debug unsigned int sysctl_timer_migration = 1;
9373
1da177e4
LT
9374int in_sched_functions(unsigned long addr)
9375{
1da177e4
LT
9376 return in_lock_functions(addr) ||
9377 (addr >= (unsigned long)__sched_text_start
9378 && addr < (unsigned long)__sched_text_end);
9379}
9380
a9957449 9381static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9382{
9383 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9384 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9385#ifdef CONFIG_FAIR_GROUP_SCHED
9386 cfs_rq->rq = rq;
9387#endif
67e9fb2a 9388 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9389}
9390
fa85ae24
PZ
9391static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9392{
9393 struct rt_prio_array *array;
9394 int i;
9395
9396 array = &rt_rq->active;
9397 for (i = 0; i < MAX_RT_PRIO; i++) {
9398 INIT_LIST_HEAD(array->queue + i);
9399 __clear_bit(i, array->bitmap);
9400 }
9401 /* delimiter for bitsearch: */
9402 __set_bit(MAX_RT_PRIO, array->bitmap);
9403
052f1dc7 9404#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9405 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9406#ifdef CONFIG_SMP
e864c499 9407 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9408#endif
48d5e258 9409#endif
fa85ae24
PZ
9410#ifdef CONFIG_SMP
9411 rt_rq->rt_nr_migratory = 0;
fa85ae24 9412 rt_rq->overloaded = 0;
05fa785c 9413 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9414#endif
9415
9416 rt_rq->rt_time = 0;
9417 rt_rq->rt_throttled = 0;
ac086bc2 9418 rt_rq->rt_runtime = 0;
0986b11b 9419 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9420
052f1dc7 9421#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9422 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9423 rt_rq->rq = rq;
9424#endif
fa85ae24
PZ
9425}
9426
6f505b16 9427#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9428static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9429 struct sched_entity *se, int cpu, int add,
9430 struct sched_entity *parent)
6f505b16 9431{
ec7dc8ac 9432 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9433 tg->cfs_rq[cpu] = cfs_rq;
9434 init_cfs_rq(cfs_rq, rq);
9435 cfs_rq->tg = tg;
9436 if (add)
9437 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9438
9439 tg->se[cpu] = se;
354d60c2
DG
9440 /* se could be NULL for init_task_group */
9441 if (!se)
9442 return;
9443
ec7dc8ac
DG
9444 if (!parent)
9445 se->cfs_rq = &rq->cfs;
9446 else
9447 se->cfs_rq = parent->my_q;
9448
6f505b16
PZ
9449 se->my_q = cfs_rq;
9450 se->load.weight = tg->shares;
e05510d0 9451 se->load.inv_weight = 0;
ec7dc8ac 9452 se->parent = parent;
6f505b16 9453}
052f1dc7 9454#endif
6f505b16 9455
052f1dc7 9456#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9457static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9458 struct sched_rt_entity *rt_se, int cpu, int add,
9459 struct sched_rt_entity *parent)
6f505b16 9460{
ec7dc8ac
DG
9461 struct rq *rq = cpu_rq(cpu);
9462
6f505b16
PZ
9463 tg->rt_rq[cpu] = rt_rq;
9464 init_rt_rq(rt_rq, rq);
9465 rt_rq->tg = tg;
9466 rt_rq->rt_se = rt_se;
ac086bc2 9467 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9468 if (add)
9469 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9470
9471 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9472 if (!rt_se)
9473 return;
9474
ec7dc8ac
DG
9475 if (!parent)
9476 rt_se->rt_rq = &rq->rt;
9477 else
9478 rt_se->rt_rq = parent->my_q;
9479
6f505b16 9480 rt_se->my_q = rt_rq;
ec7dc8ac 9481 rt_se->parent = parent;
6f505b16
PZ
9482 INIT_LIST_HEAD(&rt_se->run_list);
9483}
9484#endif
9485
1da177e4
LT
9486void __init sched_init(void)
9487{
dd41f596 9488 int i, j;
434d53b0
MT
9489 unsigned long alloc_size = 0, ptr;
9490
9491#ifdef CONFIG_FAIR_GROUP_SCHED
9492 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9493#endif
9494#ifdef CONFIG_RT_GROUP_SCHED
9495 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9496#endif
9497#ifdef CONFIG_USER_SCHED
9498 alloc_size *= 2;
df7c8e84
RR
9499#endif
9500#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9501 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9502#endif
434d53b0 9503 if (alloc_size) {
36b7b6d4 9504 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9505
9506#ifdef CONFIG_FAIR_GROUP_SCHED
9507 init_task_group.se = (struct sched_entity **)ptr;
9508 ptr += nr_cpu_ids * sizeof(void **);
9509
9510 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9511 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9512
9513#ifdef CONFIG_USER_SCHED
9514 root_task_group.se = (struct sched_entity **)ptr;
9515 ptr += nr_cpu_ids * sizeof(void **);
9516
9517 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9518 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9519#endif /* CONFIG_USER_SCHED */
9520#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9521#ifdef CONFIG_RT_GROUP_SCHED
9522 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9523 ptr += nr_cpu_ids * sizeof(void **);
9524
9525 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9526 ptr += nr_cpu_ids * sizeof(void **);
9527
9528#ifdef CONFIG_USER_SCHED
9529 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9530 ptr += nr_cpu_ids * sizeof(void **);
9531
9532 root_task_group.rt_rq = (struct rt_rq **)ptr;
9533 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9534#endif /* CONFIG_USER_SCHED */
9535#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9536#ifdef CONFIG_CPUMASK_OFFSTACK
9537 for_each_possible_cpu(i) {
9538 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9539 ptr += cpumask_size();
9540 }
9541#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9542 }
dd41f596 9543
57d885fe
GH
9544#ifdef CONFIG_SMP
9545 init_defrootdomain();
9546#endif
9547
d0b27fa7
PZ
9548 init_rt_bandwidth(&def_rt_bandwidth,
9549 global_rt_period(), global_rt_runtime());
9550
9551#ifdef CONFIG_RT_GROUP_SCHED
9552 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9553 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9554#ifdef CONFIG_USER_SCHED
9555 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9556 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9557#endif /* CONFIG_USER_SCHED */
9558#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9559
052f1dc7 9560#ifdef CONFIG_GROUP_SCHED
6f505b16 9561 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9562 INIT_LIST_HEAD(&init_task_group.children);
9563
9564#ifdef CONFIG_USER_SCHED
9565 INIT_LIST_HEAD(&root_task_group.children);
9566 init_task_group.parent = &root_task_group;
9567 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9568#endif /* CONFIG_USER_SCHED */
9569#endif /* CONFIG_GROUP_SCHED */
6f505b16 9570
4a6cc4bd
JK
9571#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9572 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9573 __alignof__(unsigned long));
9574#endif
0a945022 9575 for_each_possible_cpu(i) {
70b97a7f 9576 struct rq *rq;
1da177e4
LT
9577
9578 rq = cpu_rq(i);
05fa785c 9579 raw_spin_lock_init(&rq->lock);
7897986b 9580 rq->nr_running = 0;
dce48a84
TG
9581 rq->calc_load_active = 0;
9582 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9583 init_cfs_rq(&rq->cfs, rq);
6f505b16 9584 init_rt_rq(&rq->rt, rq);
dd41f596 9585#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9586 init_task_group.shares = init_task_group_load;
6f505b16 9587 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9588#ifdef CONFIG_CGROUP_SCHED
9589 /*
9590 * How much cpu bandwidth does init_task_group get?
9591 *
9592 * In case of task-groups formed thr' the cgroup filesystem, it
9593 * gets 100% of the cpu resources in the system. This overall
9594 * system cpu resource is divided among the tasks of
9595 * init_task_group and its child task-groups in a fair manner,
9596 * based on each entity's (task or task-group's) weight
9597 * (se->load.weight).
9598 *
9599 * In other words, if init_task_group has 10 tasks of weight
9600 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9601 * then A0's share of the cpu resource is:
9602 *
0d905bca 9603 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9604 *
9605 * We achieve this by letting init_task_group's tasks sit
9606 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9607 */
ec7dc8ac 9608 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9609#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9610 root_task_group.shares = NICE_0_LOAD;
9611 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9612 /*
9613 * In case of task-groups formed thr' the user id of tasks,
9614 * init_task_group represents tasks belonging to root user.
9615 * Hence it forms a sibling of all subsequent groups formed.
9616 * In this case, init_task_group gets only a fraction of overall
9617 * system cpu resource, based on the weight assigned to root
9618 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9619 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9620 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9621 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9622 */
ec7dc8ac 9623 init_tg_cfs_entry(&init_task_group,
84e9dabf 9624 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9625 &per_cpu(init_sched_entity, i), i, 1,
9626 root_task_group.se[i]);
6f505b16 9627
052f1dc7 9628#endif
354d60c2
DG
9629#endif /* CONFIG_FAIR_GROUP_SCHED */
9630
9631 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9632#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9633 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9634#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9635 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9636#elif defined CONFIG_USER_SCHED
eff766a6 9637 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9638 init_tg_rt_entry(&init_task_group,
1871e52c 9639 &per_cpu(init_rt_rq_var, i),
eff766a6
PZ
9640 &per_cpu(init_sched_rt_entity, i), i, 1,
9641 root_task_group.rt_se[i]);
354d60c2 9642#endif
dd41f596 9643#endif
1da177e4 9644
dd41f596
IM
9645 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9646 rq->cpu_load[j] = 0;
1da177e4 9647#ifdef CONFIG_SMP
41c7ce9a 9648 rq->sd = NULL;
57d885fe 9649 rq->rd = NULL;
3f029d3c 9650 rq->post_schedule = 0;
1da177e4 9651 rq->active_balance = 0;
dd41f596 9652 rq->next_balance = jiffies;
1da177e4 9653 rq->push_cpu = 0;
0a2966b4 9654 rq->cpu = i;
1f11eb6a 9655 rq->online = 0;
1da177e4 9656 rq->migration_thread = NULL;
eae0c9df
MG
9657 rq->idle_stamp = 0;
9658 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9659 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9660 rq_attach_root(rq, &def_root_domain);
1da177e4 9661#endif
8f4d37ec 9662 init_rq_hrtick(rq);
1da177e4 9663 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9664 }
9665
2dd73a4f 9666 set_load_weight(&init_task);
b50f60ce 9667
e107be36
AK
9668#ifdef CONFIG_PREEMPT_NOTIFIERS
9669 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9670#endif
9671
c9819f45 9672#ifdef CONFIG_SMP
962cf36c 9673 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9674#endif
9675
b50f60ce 9676#ifdef CONFIG_RT_MUTEXES
1d615482 9677 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
9678#endif
9679
1da177e4
LT
9680 /*
9681 * The boot idle thread does lazy MMU switching as well:
9682 */
9683 atomic_inc(&init_mm.mm_count);
9684 enter_lazy_tlb(&init_mm, current);
9685
9686 /*
9687 * Make us the idle thread. Technically, schedule() should not be
9688 * called from this thread, however somewhere below it might be,
9689 * but because we are the idle thread, we just pick up running again
9690 * when this runqueue becomes "idle".
9691 */
9692 init_idle(current, smp_processor_id());
dce48a84
TG
9693
9694 calc_load_update = jiffies + LOAD_FREQ;
9695
dd41f596
IM
9696 /*
9697 * During early bootup we pretend to be a normal task:
9698 */
9699 current->sched_class = &fair_sched_class;
6892b75e 9700
6a7b3dc3 9701 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9702 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9703#ifdef CONFIG_SMP
7d1e6a9b 9704#ifdef CONFIG_NO_HZ
49557e62 9705 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9706 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9707#endif
bdddd296
RR
9708 /* May be allocated at isolcpus cmdline parse time */
9709 if (cpu_isolated_map == NULL)
9710 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9711#endif /* SMP */
6a7b3dc3 9712
cdd6c482 9713 perf_event_init();
0d905bca 9714
6892b75e 9715 scheduler_running = 1;
1da177e4
LT
9716}
9717
9718#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9719static inline int preempt_count_equals(int preempt_offset)
9720{
234da7bc 9721 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
9722
9723 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9724}
9725
9726void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9727{
48f24c4d 9728#ifdef in_atomic
1da177e4
LT
9729 static unsigned long prev_jiffy; /* ratelimiting */
9730
e4aafea2
FW
9731 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9732 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9733 return;
9734 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9735 return;
9736 prev_jiffy = jiffies;
9737
3df0fc5b
PZ
9738 printk(KERN_ERR
9739 "BUG: sleeping function called from invalid context at %s:%d\n",
9740 file, line);
9741 printk(KERN_ERR
9742 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9743 in_atomic(), irqs_disabled(),
9744 current->pid, current->comm);
aef745fc
IM
9745
9746 debug_show_held_locks(current);
9747 if (irqs_disabled())
9748 print_irqtrace_events(current);
9749 dump_stack();
1da177e4
LT
9750#endif
9751}
9752EXPORT_SYMBOL(__might_sleep);
9753#endif
9754
9755#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9756static void normalize_task(struct rq *rq, struct task_struct *p)
9757{
9758 int on_rq;
3e51f33f 9759
3a5e4dc1
AK
9760 update_rq_clock(rq);
9761 on_rq = p->se.on_rq;
9762 if (on_rq)
9763 deactivate_task(rq, p, 0);
9764 __setscheduler(rq, p, SCHED_NORMAL, 0);
9765 if (on_rq) {
9766 activate_task(rq, p, 0);
9767 resched_task(rq->curr);
9768 }
9769}
9770
1da177e4
LT
9771void normalize_rt_tasks(void)
9772{
a0f98a1c 9773 struct task_struct *g, *p;
1da177e4 9774 unsigned long flags;
70b97a7f 9775 struct rq *rq;
1da177e4 9776
4cf5d77a 9777 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9778 do_each_thread(g, p) {
178be793
IM
9779 /*
9780 * Only normalize user tasks:
9781 */
9782 if (!p->mm)
9783 continue;
9784
6cfb0d5d 9785 p->se.exec_start = 0;
6cfb0d5d 9786#ifdef CONFIG_SCHEDSTATS
dd41f596 9787 p->se.wait_start = 0;
dd41f596 9788 p->se.sleep_start = 0;
dd41f596 9789 p->se.block_start = 0;
6cfb0d5d 9790#endif
dd41f596
IM
9791
9792 if (!rt_task(p)) {
9793 /*
9794 * Renice negative nice level userspace
9795 * tasks back to 0:
9796 */
9797 if (TASK_NICE(p) < 0 && p->mm)
9798 set_user_nice(p, 0);
1da177e4 9799 continue;
dd41f596 9800 }
1da177e4 9801
1d615482 9802 raw_spin_lock(&p->pi_lock);
b29739f9 9803 rq = __task_rq_lock(p);
1da177e4 9804
178be793 9805 normalize_task(rq, p);
3a5e4dc1 9806
b29739f9 9807 __task_rq_unlock(rq);
1d615482 9808 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
9809 } while_each_thread(g, p);
9810
4cf5d77a 9811 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9812}
9813
9814#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9815
9816#ifdef CONFIG_IA64
9817/*
9818 * These functions are only useful for the IA64 MCA handling.
9819 *
9820 * They can only be called when the whole system has been
9821 * stopped - every CPU needs to be quiescent, and no scheduling
9822 * activity can take place. Using them for anything else would
9823 * be a serious bug, and as a result, they aren't even visible
9824 * under any other configuration.
9825 */
9826
9827/**
9828 * curr_task - return the current task for a given cpu.
9829 * @cpu: the processor in question.
9830 *
9831 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9832 */
36c8b586 9833struct task_struct *curr_task(int cpu)
1df5c10a
LT
9834{
9835 return cpu_curr(cpu);
9836}
9837
9838/**
9839 * set_curr_task - set the current task for a given cpu.
9840 * @cpu: the processor in question.
9841 * @p: the task pointer to set.
9842 *
9843 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9844 * are serviced on a separate stack. It allows the architecture to switch the
9845 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9846 * must be called with all CPU's synchronized, and interrupts disabled, the
9847 * and caller must save the original value of the current task (see
9848 * curr_task() above) and restore that value before reenabling interrupts and
9849 * re-starting the system.
9850 *
9851 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9852 */
36c8b586 9853void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9854{
9855 cpu_curr(cpu) = p;
9856}
9857
9858#endif
29f59db3 9859
bccbe08a
PZ
9860#ifdef CONFIG_FAIR_GROUP_SCHED
9861static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9862{
9863 int i;
9864
9865 for_each_possible_cpu(i) {
9866 if (tg->cfs_rq)
9867 kfree(tg->cfs_rq[i]);
9868 if (tg->se)
9869 kfree(tg->se[i]);
6f505b16
PZ
9870 }
9871
9872 kfree(tg->cfs_rq);
9873 kfree(tg->se);
6f505b16
PZ
9874}
9875
ec7dc8ac
DG
9876static
9877int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9878{
29f59db3 9879 struct cfs_rq *cfs_rq;
eab17229 9880 struct sched_entity *se;
9b5b7751 9881 struct rq *rq;
29f59db3
SV
9882 int i;
9883
434d53b0 9884 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9885 if (!tg->cfs_rq)
9886 goto err;
434d53b0 9887 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9888 if (!tg->se)
9889 goto err;
052f1dc7
PZ
9890
9891 tg->shares = NICE_0_LOAD;
29f59db3
SV
9892
9893 for_each_possible_cpu(i) {
9b5b7751 9894 rq = cpu_rq(i);
29f59db3 9895
eab17229
LZ
9896 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9897 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9898 if (!cfs_rq)
9899 goto err;
9900
eab17229
LZ
9901 se = kzalloc_node(sizeof(struct sched_entity),
9902 GFP_KERNEL, cpu_to_node(i));
29f59db3 9903 if (!se)
dfc12eb2 9904 goto err_free_rq;
29f59db3 9905
eab17229 9906 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9907 }
9908
9909 return 1;
9910
dfc12eb2
PC
9911 err_free_rq:
9912 kfree(cfs_rq);
bccbe08a
PZ
9913 err:
9914 return 0;
9915}
9916
9917static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9918{
9919 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9920 &cpu_rq(cpu)->leaf_cfs_rq_list);
9921}
9922
9923static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9924{
9925 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9926}
6d6bc0ad 9927#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9928static inline void free_fair_sched_group(struct task_group *tg)
9929{
9930}
9931
ec7dc8ac
DG
9932static inline
9933int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9934{
9935 return 1;
9936}
9937
9938static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9939{
9940}
9941
9942static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9943{
9944}
6d6bc0ad 9945#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9946
9947#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9948static void free_rt_sched_group(struct task_group *tg)
9949{
9950 int i;
9951
d0b27fa7
PZ
9952 destroy_rt_bandwidth(&tg->rt_bandwidth);
9953
bccbe08a
PZ
9954 for_each_possible_cpu(i) {
9955 if (tg->rt_rq)
9956 kfree(tg->rt_rq[i]);
9957 if (tg->rt_se)
9958 kfree(tg->rt_se[i]);
9959 }
9960
9961 kfree(tg->rt_rq);
9962 kfree(tg->rt_se);
9963}
9964
ec7dc8ac
DG
9965static
9966int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9967{
9968 struct rt_rq *rt_rq;
eab17229 9969 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9970 struct rq *rq;
9971 int i;
9972
434d53b0 9973 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9974 if (!tg->rt_rq)
9975 goto err;
434d53b0 9976 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9977 if (!tg->rt_se)
9978 goto err;
9979
d0b27fa7
PZ
9980 init_rt_bandwidth(&tg->rt_bandwidth,
9981 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9982
9983 for_each_possible_cpu(i) {
9984 rq = cpu_rq(i);
9985
eab17229
LZ
9986 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9987 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9988 if (!rt_rq)
9989 goto err;
29f59db3 9990
eab17229
LZ
9991 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9992 GFP_KERNEL, cpu_to_node(i));
6f505b16 9993 if (!rt_se)
dfc12eb2 9994 goto err_free_rq;
29f59db3 9995
eab17229 9996 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9997 }
9998
bccbe08a
PZ
9999 return 1;
10000
dfc12eb2
PC
10001 err_free_rq:
10002 kfree(rt_rq);
bccbe08a
PZ
10003 err:
10004 return 0;
10005}
10006
10007static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10008{
10009 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
10010 &cpu_rq(cpu)->leaf_rt_rq_list);
10011}
10012
10013static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10014{
10015 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
10016}
6d6bc0ad 10017#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
10018static inline void free_rt_sched_group(struct task_group *tg)
10019{
10020}
10021
ec7dc8ac
DG
10022static inline
10023int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
10024{
10025 return 1;
10026}
10027
10028static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10029{
10030}
10031
10032static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10033{
10034}
6d6bc0ad 10035#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 10036
d0b27fa7 10037#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
10038static void free_sched_group(struct task_group *tg)
10039{
10040 free_fair_sched_group(tg);
10041 free_rt_sched_group(tg);
10042 kfree(tg);
10043}
10044
10045/* allocate runqueue etc for a new task group */
ec7dc8ac 10046struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10047{
10048 struct task_group *tg;
10049 unsigned long flags;
10050 int i;
10051
10052 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10053 if (!tg)
10054 return ERR_PTR(-ENOMEM);
10055
ec7dc8ac 10056 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10057 goto err;
10058
ec7dc8ac 10059 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10060 goto err;
10061
8ed36996 10062 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10063 for_each_possible_cpu(i) {
bccbe08a
PZ
10064 register_fair_sched_group(tg, i);
10065 register_rt_sched_group(tg, i);
9b5b7751 10066 }
6f505b16 10067 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10068
10069 WARN_ON(!parent); /* root should already exist */
10070
10071 tg->parent = parent;
f473aa5e 10072 INIT_LIST_HEAD(&tg->children);
09f2724a 10073 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10074 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10075
9b5b7751 10076 return tg;
29f59db3
SV
10077
10078err:
6f505b16 10079 free_sched_group(tg);
29f59db3
SV
10080 return ERR_PTR(-ENOMEM);
10081}
10082
9b5b7751 10083/* rcu callback to free various structures associated with a task group */
6f505b16 10084static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10085{
29f59db3 10086 /* now it should be safe to free those cfs_rqs */
6f505b16 10087 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10088}
10089
9b5b7751 10090/* Destroy runqueue etc associated with a task group */
4cf86d77 10091void sched_destroy_group(struct task_group *tg)
29f59db3 10092{
8ed36996 10093 unsigned long flags;
9b5b7751 10094 int i;
29f59db3 10095
8ed36996 10096 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10097 for_each_possible_cpu(i) {
bccbe08a
PZ
10098 unregister_fair_sched_group(tg, i);
10099 unregister_rt_sched_group(tg, i);
9b5b7751 10100 }
6f505b16 10101 list_del_rcu(&tg->list);
f473aa5e 10102 list_del_rcu(&tg->siblings);
8ed36996 10103 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10104
9b5b7751 10105 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10106 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10107}
10108
9b5b7751 10109/* change task's runqueue when it moves between groups.
3a252015
IM
10110 * The caller of this function should have put the task in its new group
10111 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10112 * reflect its new group.
9b5b7751
SV
10113 */
10114void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10115{
10116 int on_rq, running;
10117 unsigned long flags;
10118 struct rq *rq;
10119
10120 rq = task_rq_lock(tsk, &flags);
10121
29f59db3
SV
10122 update_rq_clock(rq);
10123
051a1d1a 10124 running = task_current(rq, tsk);
29f59db3
SV
10125 on_rq = tsk->se.on_rq;
10126
0e1f3483 10127 if (on_rq)
29f59db3 10128 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10129 if (unlikely(running))
10130 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10131
6f505b16 10132 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10133
810b3817
PZ
10134#ifdef CONFIG_FAIR_GROUP_SCHED
10135 if (tsk->sched_class->moved_group)
88ec22d3 10136 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
10137#endif
10138
0e1f3483
HS
10139 if (unlikely(running))
10140 tsk->sched_class->set_curr_task(rq);
10141 if (on_rq)
7074badb 10142 enqueue_task(rq, tsk, 0);
29f59db3 10143
29f59db3
SV
10144 task_rq_unlock(rq, &flags);
10145}
6d6bc0ad 10146#endif /* CONFIG_GROUP_SCHED */
29f59db3 10147
052f1dc7 10148#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10149static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10150{
10151 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10152 int on_rq;
10153
29f59db3 10154 on_rq = se->on_rq;
62fb1851 10155 if (on_rq)
29f59db3
SV
10156 dequeue_entity(cfs_rq, se, 0);
10157
10158 se->load.weight = shares;
e05510d0 10159 se->load.inv_weight = 0;
29f59db3 10160
62fb1851 10161 if (on_rq)
29f59db3 10162 enqueue_entity(cfs_rq, se, 0);
c09595f6 10163}
62fb1851 10164
c09595f6
PZ
10165static void set_se_shares(struct sched_entity *se, unsigned long shares)
10166{
10167 struct cfs_rq *cfs_rq = se->cfs_rq;
10168 struct rq *rq = cfs_rq->rq;
10169 unsigned long flags;
10170
05fa785c 10171 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 10172 __set_se_shares(se, shares);
05fa785c 10173 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10174}
10175
8ed36996
PZ
10176static DEFINE_MUTEX(shares_mutex);
10177
4cf86d77 10178int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10179{
10180 int i;
8ed36996 10181 unsigned long flags;
c61935fd 10182
ec7dc8ac
DG
10183 /*
10184 * We can't change the weight of the root cgroup.
10185 */
10186 if (!tg->se[0])
10187 return -EINVAL;
10188
18d95a28
PZ
10189 if (shares < MIN_SHARES)
10190 shares = MIN_SHARES;
cb4ad1ff
MX
10191 else if (shares > MAX_SHARES)
10192 shares = MAX_SHARES;
62fb1851 10193
8ed36996 10194 mutex_lock(&shares_mutex);
9b5b7751 10195 if (tg->shares == shares)
5cb350ba 10196 goto done;
29f59db3 10197
8ed36996 10198 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10199 for_each_possible_cpu(i)
10200 unregister_fair_sched_group(tg, i);
f473aa5e 10201 list_del_rcu(&tg->siblings);
8ed36996 10202 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10203
10204 /* wait for any ongoing reference to this group to finish */
10205 synchronize_sched();
10206
10207 /*
10208 * Now we are free to modify the group's share on each cpu
10209 * w/o tripping rebalance_share or load_balance_fair.
10210 */
9b5b7751 10211 tg->shares = shares;
c09595f6
PZ
10212 for_each_possible_cpu(i) {
10213 /*
10214 * force a rebalance
10215 */
10216 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10217 set_se_shares(tg->se[i], shares);
c09595f6 10218 }
29f59db3 10219
6b2d7700
SV
10220 /*
10221 * Enable load balance activity on this group, by inserting it back on
10222 * each cpu's rq->leaf_cfs_rq_list.
10223 */
8ed36996 10224 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10225 for_each_possible_cpu(i)
10226 register_fair_sched_group(tg, i);
f473aa5e 10227 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10228 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10229done:
8ed36996 10230 mutex_unlock(&shares_mutex);
9b5b7751 10231 return 0;
29f59db3
SV
10232}
10233
5cb350ba
DG
10234unsigned long sched_group_shares(struct task_group *tg)
10235{
10236 return tg->shares;
10237}
052f1dc7 10238#endif
5cb350ba 10239
052f1dc7 10240#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10241/*
9f0c1e56 10242 * Ensure that the real time constraints are schedulable.
6f505b16 10243 */
9f0c1e56
PZ
10244static DEFINE_MUTEX(rt_constraints_mutex);
10245
10246static unsigned long to_ratio(u64 period, u64 runtime)
10247{
10248 if (runtime == RUNTIME_INF)
9a7e0b18 10249 return 1ULL << 20;
9f0c1e56 10250
9a7e0b18 10251 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10252}
10253
9a7e0b18
PZ
10254/* Must be called with tasklist_lock held */
10255static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10256{
9a7e0b18 10257 struct task_struct *g, *p;
b40b2e8e 10258
9a7e0b18
PZ
10259 do_each_thread(g, p) {
10260 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10261 return 1;
10262 } while_each_thread(g, p);
b40b2e8e 10263
9a7e0b18
PZ
10264 return 0;
10265}
b40b2e8e 10266
9a7e0b18
PZ
10267struct rt_schedulable_data {
10268 struct task_group *tg;
10269 u64 rt_period;
10270 u64 rt_runtime;
10271};
b40b2e8e 10272
9a7e0b18
PZ
10273static int tg_schedulable(struct task_group *tg, void *data)
10274{
10275 struct rt_schedulable_data *d = data;
10276 struct task_group *child;
10277 unsigned long total, sum = 0;
10278 u64 period, runtime;
b40b2e8e 10279
9a7e0b18
PZ
10280 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10281 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10282
9a7e0b18
PZ
10283 if (tg == d->tg) {
10284 period = d->rt_period;
10285 runtime = d->rt_runtime;
b40b2e8e 10286 }
b40b2e8e 10287
98a4826b
PZ
10288#ifdef CONFIG_USER_SCHED
10289 if (tg == &root_task_group) {
10290 period = global_rt_period();
10291 runtime = global_rt_runtime();
10292 }
10293#endif
10294
4653f803
PZ
10295 /*
10296 * Cannot have more runtime than the period.
10297 */
10298 if (runtime > period && runtime != RUNTIME_INF)
10299 return -EINVAL;
6f505b16 10300
4653f803
PZ
10301 /*
10302 * Ensure we don't starve existing RT tasks.
10303 */
9a7e0b18
PZ
10304 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10305 return -EBUSY;
6f505b16 10306
9a7e0b18 10307 total = to_ratio(period, runtime);
6f505b16 10308
4653f803
PZ
10309 /*
10310 * Nobody can have more than the global setting allows.
10311 */
10312 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10313 return -EINVAL;
6f505b16 10314
4653f803
PZ
10315 /*
10316 * The sum of our children's runtime should not exceed our own.
10317 */
9a7e0b18
PZ
10318 list_for_each_entry_rcu(child, &tg->children, siblings) {
10319 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10320 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10321
9a7e0b18
PZ
10322 if (child == d->tg) {
10323 period = d->rt_period;
10324 runtime = d->rt_runtime;
10325 }
6f505b16 10326
9a7e0b18 10327 sum += to_ratio(period, runtime);
9f0c1e56 10328 }
6f505b16 10329
9a7e0b18
PZ
10330 if (sum > total)
10331 return -EINVAL;
10332
10333 return 0;
6f505b16
PZ
10334}
10335
9a7e0b18 10336static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10337{
9a7e0b18
PZ
10338 struct rt_schedulable_data data = {
10339 .tg = tg,
10340 .rt_period = period,
10341 .rt_runtime = runtime,
10342 };
10343
10344 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10345}
10346
d0b27fa7
PZ
10347static int tg_set_bandwidth(struct task_group *tg,
10348 u64 rt_period, u64 rt_runtime)
6f505b16 10349{
ac086bc2 10350 int i, err = 0;
9f0c1e56 10351
9f0c1e56 10352 mutex_lock(&rt_constraints_mutex);
521f1a24 10353 read_lock(&tasklist_lock);
9a7e0b18
PZ
10354 err = __rt_schedulable(tg, rt_period, rt_runtime);
10355 if (err)
9f0c1e56 10356 goto unlock;
ac086bc2 10357
0986b11b 10358 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10359 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10360 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10361
10362 for_each_possible_cpu(i) {
10363 struct rt_rq *rt_rq = tg->rt_rq[i];
10364
0986b11b 10365 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10366 rt_rq->rt_runtime = rt_runtime;
0986b11b 10367 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10368 }
0986b11b 10369 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10370 unlock:
521f1a24 10371 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10372 mutex_unlock(&rt_constraints_mutex);
10373
10374 return err;
6f505b16
PZ
10375}
10376
d0b27fa7
PZ
10377int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10378{
10379 u64 rt_runtime, rt_period;
10380
10381 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10382 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10383 if (rt_runtime_us < 0)
10384 rt_runtime = RUNTIME_INF;
10385
10386 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10387}
10388
9f0c1e56
PZ
10389long sched_group_rt_runtime(struct task_group *tg)
10390{
10391 u64 rt_runtime_us;
10392
d0b27fa7 10393 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10394 return -1;
10395
d0b27fa7 10396 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10397 do_div(rt_runtime_us, NSEC_PER_USEC);
10398 return rt_runtime_us;
10399}
d0b27fa7
PZ
10400
10401int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10402{
10403 u64 rt_runtime, rt_period;
10404
10405 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10406 rt_runtime = tg->rt_bandwidth.rt_runtime;
10407
619b0488
R
10408 if (rt_period == 0)
10409 return -EINVAL;
10410
d0b27fa7
PZ
10411 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10412}
10413
10414long sched_group_rt_period(struct task_group *tg)
10415{
10416 u64 rt_period_us;
10417
10418 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10419 do_div(rt_period_us, NSEC_PER_USEC);
10420 return rt_period_us;
10421}
10422
10423static int sched_rt_global_constraints(void)
10424{
4653f803 10425 u64 runtime, period;
d0b27fa7
PZ
10426 int ret = 0;
10427
ec5d4989
HS
10428 if (sysctl_sched_rt_period <= 0)
10429 return -EINVAL;
10430
4653f803
PZ
10431 runtime = global_rt_runtime();
10432 period = global_rt_period();
10433
10434 /*
10435 * Sanity check on the sysctl variables.
10436 */
10437 if (runtime > period && runtime != RUNTIME_INF)
10438 return -EINVAL;
10b612f4 10439
d0b27fa7 10440 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10441 read_lock(&tasklist_lock);
4653f803 10442 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10443 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10444 mutex_unlock(&rt_constraints_mutex);
10445
10446 return ret;
10447}
54e99124
DG
10448
10449int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10450{
10451 /* Don't accept realtime tasks when there is no way for them to run */
10452 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10453 return 0;
10454
10455 return 1;
10456}
10457
6d6bc0ad 10458#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10459static int sched_rt_global_constraints(void)
10460{
ac086bc2
PZ
10461 unsigned long flags;
10462 int i;
10463
ec5d4989
HS
10464 if (sysctl_sched_rt_period <= 0)
10465 return -EINVAL;
10466
60aa605d
PZ
10467 /*
10468 * There's always some RT tasks in the root group
10469 * -- migration, kstopmachine etc..
10470 */
10471 if (sysctl_sched_rt_runtime == 0)
10472 return -EBUSY;
10473
0986b11b 10474 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
10475 for_each_possible_cpu(i) {
10476 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10477
0986b11b 10478 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10479 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 10480 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10481 }
0986b11b 10482 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 10483
d0b27fa7
PZ
10484 return 0;
10485}
6d6bc0ad 10486#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10487
10488int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10489 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10490 loff_t *ppos)
10491{
10492 int ret;
10493 int old_period, old_runtime;
10494 static DEFINE_MUTEX(mutex);
10495
10496 mutex_lock(&mutex);
10497 old_period = sysctl_sched_rt_period;
10498 old_runtime = sysctl_sched_rt_runtime;
10499
8d65af78 10500 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10501
10502 if (!ret && write) {
10503 ret = sched_rt_global_constraints();
10504 if (ret) {
10505 sysctl_sched_rt_period = old_period;
10506 sysctl_sched_rt_runtime = old_runtime;
10507 } else {
10508 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10509 def_rt_bandwidth.rt_period =
10510 ns_to_ktime(global_rt_period());
10511 }
10512 }
10513 mutex_unlock(&mutex);
10514
10515 return ret;
10516}
68318b8e 10517
052f1dc7 10518#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10519
10520/* return corresponding task_group object of a cgroup */
2b01dfe3 10521static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10522{
2b01dfe3
PM
10523 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10524 struct task_group, css);
68318b8e
SV
10525}
10526
10527static struct cgroup_subsys_state *
2b01dfe3 10528cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10529{
ec7dc8ac 10530 struct task_group *tg, *parent;
68318b8e 10531
2b01dfe3 10532 if (!cgrp->parent) {
68318b8e 10533 /* This is early initialization for the top cgroup */
68318b8e
SV
10534 return &init_task_group.css;
10535 }
10536
ec7dc8ac
DG
10537 parent = cgroup_tg(cgrp->parent);
10538 tg = sched_create_group(parent);
68318b8e
SV
10539 if (IS_ERR(tg))
10540 return ERR_PTR(-ENOMEM);
10541
68318b8e
SV
10542 return &tg->css;
10543}
10544
41a2d6cf
IM
10545static void
10546cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10547{
2b01dfe3 10548 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10549
10550 sched_destroy_group(tg);
10551}
10552
41a2d6cf 10553static int
be367d09 10554cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10555{
b68aa230 10556#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10557 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10558 return -EINVAL;
10559#else
68318b8e
SV
10560 /* We don't support RT-tasks being in separate groups */
10561 if (tsk->sched_class != &fair_sched_class)
10562 return -EINVAL;
b68aa230 10563#endif
be367d09
BB
10564 return 0;
10565}
68318b8e 10566
be367d09
BB
10567static int
10568cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10569 struct task_struct *tsk, bool threadgroup)
10570{
10571 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10572 if (retval)
10573 return retval;
10574 if (threadgroup) {
10575 struct task_struct *c;
10576 rcu_read_lock();
10577 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10578 retval = cpu_cgroup_can_attach_task(cgrp, c);
10579 if (retval) {
10580 rcu_read_unlock();
10581 return retval;
10582 }
10583 }
10584 rcu_read_unlock();
10585 }
68318b8e
SV
10586 return 0;
10587}
10588
10589static void
2b01dfe3 10590cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10591 struct cgroup *old_cont, struct task_struct *tsk,
10592 bool threadgroup)
68318b8e
SV
10593{
10594 sched_move_task(tsk);
be367d09
BB
10595 if (threadgroup) {
10596 struct task_struct *c;
10597 rcu_read_lock();
10598 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10599 sched_move_task(c);
10600 }
10601 rcu_read_unlock();
10602 }
68318b8e
SV
10603}
10604
052f1dc7 10605#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10606static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10607 u64 shareval)
68318b8e 10608{
2b01dfe3 10609 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10610}
10611
f4c753b7 10612static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10613{
2b01dfe3 10614 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10615
10616 return (u64) tg->shares;
10617}
6d6bc0ad 10618#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10619
052f1dc7 10620#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10621static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10622 s64 val)
6f505b16 10623{
06ecb27c 10624 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10625}
10626
06ecb27c 10627static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10628{
06ecb27c 10629 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10630}
d0b27fa7
PZ
10631
10632static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10633 u64 rt_period_us)
10634{
10635 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10636}
10637
10638static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10639{
10640 return sched_group_rt_period(cgroup_tg(cgrp));
10641}
6d6bc0ad 10642#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10643
fe5c7cc2 10644static struct cftype cpu_files[] = {
052f1dc7 10645#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10646 {
10647 .name = "shares",
f4c753b7
PM
10648 .read_u64 = cpu_shares_read_u64,
10649 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10650 },
052f1dc7
PZ
10651#endif
10652#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10653 {
9f0c1e56 10654 .name = "rt_runtime_us",
06ecb27c
PM
10655 .read_s64 = cpu_rt_runtime_read,
10656 .write_s64 = cpu_rt_runtime_write,
6f505b16 10657 },
d0b27fa7
PZ
10658 {
10659 .name = "rt_period_us",
f4c753b7
PM
10660 .read_u64 = cpu_rt_period_read_uint,
10661 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10662 },
052f1dc7 10663#endif
68318b8e
SV
10664};
10665
10666static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10667{
fe5c7cc2 10668 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10669}
10670
10671struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10672 .name = "cpu",
10673 .create = cpu_cgroup_create,
10674 .destroy = cpu_cgroup_destroy,
10675 .can_attach = cpu_cgroup_can_attach,
10676 .attach = cpu_cgroup_attach,
10677 .populate = cpu_cgroup_populate,
10678 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10679 .early_init = 1,
10680};
10681
052f1dc7 10682#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10683
10684#ifdef CONFIG_CGROUP_CPUACCT
10685
10686/*
10687 * CPU accounting code for task groups.
10688 *
10689 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10690 * (balbir@in.ibm.com).
10691 */
10692
934352f2 10693/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10694struct cpuacct {
10695 struct cgroup_subsys_state css;
10696 /* cpuusage holds pointer to a u64-type object on every cpu */
10697 u64 *cpuusage;
ef12fefa 10698 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10699 struct cpuacct *parent;
d842de87
SV
10700};
10701
10702struct cgroup_subsys cpuacct_subsys;
10703
10704/* return cpu accounting group corresponding to this container */
32cd756a 10705static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10706{
32cd756a 10707 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10708 struct cpuacct, css);
10709}
10710
10711/* return cpu accounting group to which this task belongs */
10712static inline struct cpuacct *task_ca(struct task_struct *tsk)
10713{
10714 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10715 struct cpuacct, css);
10716}
10717
10718/* create a new cpu accounting group */
10719static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10720 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10721{
10722 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10723 int i;
d842de87
SV
10724
10725 if (!ca)
ef12fefa 10726 goto out;
d842de87
SV
10727
10728 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10729 if (!ca->cpuusage)
10730 goto out_free_ca;
10731
10732 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10733 if (percpu_counter_init(&ca->cpustat[i], 0))
10734 goto out_free_counters;
d842de87 10735
934352f2
BR
10736 if (cgrp->parent)
10737 ca->parent = cgroup_ca(cgrp->parent);
10738
d842de87 10739 return &ca->css;
ef12fefa
BR
10740
10741out_free_counters:
10742 while (--i >= 0)
10743 percpu_counter_destroy(&ca->cpustat[i]);
10744 free_percpu(ca->cpuusage);
10745out_free_ca:
10746 kfree(ca);
10747out:
10748 return ERR_PTR(-ENOMEM);
d842de87
SV
10749}
10750
10751/* destroy an existing cpu accounting group */
41a2d6cf 10752static void
32cd756a 10753cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10754{
32cd756a 10755 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10756 int i;
d842de87 10757
ef12fefa
BR
10758 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10759 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10760 free_percpu(ca->cpuusage);
10761 kfree(ca);
10762}
10763
720f5498
KC
10764static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10765{
b36128c8 10766 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10767 u64 data;
10768
10769#ifndef CONFIG_64BIT
10770 /*
10771 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10772 */
05fa785c 10773 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10774 data = *cpuusage;
05fa785c 10775 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10776#else
10777 data = *cpuusage;
10778#endif
10779
10780 return data;
10781}
10782
10783static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10784{
b36128c8 10785 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10786
10787#ifndef CONFIG_64BIT
10788 /*
10789 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10790 */
05fa785c 10791 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10792 *cpuusage = val;
05fa785c 10793 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10794#else
10795 *cpuusage = val;
10796#endif
10797}
10798
d842de87 10799/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10800static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10801{
32cd756a 10802 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10803 u64 totalcpuusage = 0;
10804 int i;
10805
720f5498
KC
10806 for_each_present_cpu(i)
10807 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10808
10809 return totalcpuusage;
10810}
10811
0297b803
DG
10812static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10813 u64 reset)
10814{
10815 struct cpuacct *ca = cgroup_ca(cgrp);
10816 int err = 0;
10817 int i;
10818
10819 if (reset) {
10820 err = -EINVAL;
10821 goto out;
10822 }
10823
720f5498
KC
10824 for_each_present_cpu(i)
10825 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10826
0297b803
DG
10827out:
10828 return err;
10829}
10830
e9515c3c
KC
10831static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10832 struct seq_file *m)
10833{
10834 struct cpuacct *ca = cgroup_ca(cgroup);
10835 u64 percpu;
10836 int i;
10837
10838 for_each_present_cpu(i) {
10839 percpu = cpuacct_cpuusage_read(ca, i);
10840 seq_printf(m, "%llu ", (unsigned long long) percpu);
10841 }
10842 seq_printf(m, "\n");
10843 return 0;
10844}
10845
ef12fefa
BR
10846static const char *cpuacct_stat_desc[] = {
10847 [CPUACCT_STAT_USER] = "user",
10848 [CPUACCT_STAT_SYSTEM] = "system",
10849};
10850
10851static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10852 struct cgroup_map_cb *cb)
10853{
10854 struct cpuacct *ca = cgroup_ca(cgrp);
10855 int i;
10856
10857 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10858 s64 val = percpu_counter_read(&ca->cpustat[i]);
10859 val = cputime64_to_clock_t(val);
10860 cb->fill(cb, cpuacct_stat_desc[i], val);
10861 }
10862 return 0;
10863}
10864
d842de87
SV
10865static struct cftype files[] = {
10866 {
10867 .name = "usage",
f4c753b7
PM
10868 .read_u64 = cpuusage_read,
10869 .write_u64 = cpuusage_write,
d842de87 10870 },
e9515c3c
KC
10871 {
10872 .name = "usage_percpu",
10873 .read_seq_string = cpuacct_percpu_seq_read,
10874 },
ef12fefa
BR
10875 {
10876 .name = "stat",
10877 .read_map = cpuacct_stats_show,
10878 },
d842de87
SV
10879};
10880
32cd756a 10881static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10882{
32cd756a 10883 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10884}
10885
10886/*
10887 * charge this task's execution time to its accounting group.
10888 *
10889 * called with rq->lock held.
10890 */
10891static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10892{
10893 struct cpuacct *ca;
934352f2 10894 int cpu;
d842de87 10895
c40c6f85 10896 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10897 return;
10898
934352f2 10899 cpu = task_cpu(tsk);
a18b83b7
BR
10900
10901 rcu_read_lock();
10902
d842de87 10903 ca = task_ca(tsk);
d842de87 10904
934352f2 10905 for (; ca; ca = ca->parent) {
b36128c8 10906 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10907 *cpuusage += cputime;
10908 }
a18b83b7
BR
10909
10910 rcu_read_unlock();
d842de87
SV
10911}
10912
ef12fefa
BR
10913/*
10914 * Charge the system/user time to the task's accounting group.
10915 */
10916static void cpuacct_update_stats(struct task_struct *tsk,
10917 enum cpuacct_stat_index idx, cputime_t val)
10918{
10919 struct cpuacct *ca;
10920
10921 if (unlikely(!cpuacct_subsys.active))
10922 return;
10923
10924 rcu_read_lock();
10925 ca = task_ca(tsk);
10926
10927 do {
10928 percpu_counter_add(&ca->cpustat[idx], val);
10929 ca = ca->parent;
10930 } while (ca);
10931 rcu_read_unlock();
10932}
10933
d842de87
SV
10934struct cgroup_subsys cpuacct_subsys = {
10935 .name = "cpuacct",
10936 .create = cpuacct_create,
10937 .destroy = cpuacct_destroy,
10938 .populate = cpuacct_populate,
10939 .subsys_id = cpuacct_subsys_id,
10940};
10941#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10942
10943#ifndef CONFIG_SMP
10944
10945int rcu_expedited_torture_stats(char *page)
10946{
10947 return 0;
10948}
10949EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10950
10951void synchronize_sched_expedited(void)
10952{
10953}
10954EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10955
10956#else /* #ifndef CONFIG_SMP */
10957
10958static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10959static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10960
10961#define RCU_EXPEDITED_STATE_POST -2
10962#define RCU_EXPEDITED_STATE_IDLE -1
10963
10964static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10965
10966int rcu_expedited_torture_stats(char *page)
10967{
10968 int cnt = 0;
10969 int cpu;
10970
10971 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10972 for_each_online_cpu(cpu) {
10973 cnt += sprintf(&page[cnt], " %d:%d",
10974 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10975 }
10976 cnt += sprintf(&page[cnt], "\n");
10977 return cnt;
10978}
10979EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10980
10981static long synchronize_sched_expedited_count;
10982
10983/*
10984 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10985 * approach to force grace period to end quickly. This consumes
10986 * significant time on all CPUs, and is thus not recommended for
10987 * any sort of common-case code.
10988 *
10989 * Note that it is illegal to call this function while holding any
10990 * lock that is acquired by a CPU-hotplug notifier. Failing to
10991 * observe this restriction will result in deadlock.
10992 */
10993void synchronize_sched_expedited(void)
10994{
10995 int cpu;
10996 unsigned long flags;
10997 bool need_full_sync = 0;
10998 struct rq *rq;
10999 struct migration_req *req;
11000 long snap;
11001 int trycount = 0;
11002
11003 smp_mb(); /* ensure prior mod happens before capturing snap. */
11004 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
11005 get_online_cpus();
11006 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
11007 put_online_cpus();
11008 if (trycount++ < 10)
11009 udelay(trycount * num_online_cpus());
11010 else {
11011 synchronize_sched();
11012 return;
11013 }
11014 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
11015 smp_mb(); /* ensure test happens before caller kfree */
11016 return;
11017 }
11018 get_online_cpus();
11019 }
11020 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
11021 for_each_online_cpu(cpu) {
11022 rq = cpu_rq(cpu);
11023 req = &per_cpu(rcu_migration_req, cpu);
11024 init_completion(&req->done);
11025 req->task = NULL;
11026 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 11027 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 11028 list_add(&req->list, &rq->migration_queue);
05fa785c 11029 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11030 wake_up_process(rq->migration_thread);
11031 }
11032 for_each_online_cpu(cpu) {
11033 rcu_expedited_state = cpu;
11034 req = &per_cpu(rcu_migration_req, cpu);
11035 rq = cpu_rq(cpu);
11036 wait_for_completion(&req->done);
05fa785c 11037 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
11038 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11039 need_full_sync = 1;
11040 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 11041 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11042 }
11043 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 11044 synchronize_sched_expedited_count++;
03b042bf
PM
11045 mutex_unlock(&rcu_sched_expedited_mutex);
11046 put_online_cpus();
11047 if (need_full_sync)
11048 synchronize_sched();
11049}
11050EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11051
11052#endif /* #else #ifndef CONFIG_SMP */