]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched.c
sched: Remove unused 'this_best_prio arg' from balance_tasks()
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee 233/*
c4a8849a 234 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
3fe1698b
PZ
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
ac53db59 329 struct sched_entity *curr, *next, *last, *skip;
ddc97297 330
5ac5c4d6 331 unsigned int nr_spread_over;
ddc97297 332
62160e3f 333#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
335
41a2d6cf
IM
336 /*
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
340 *
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
343 */
3d4b47b4 344 int on_list;
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857 362 /*
3b3d190e
PT
363 * Maintaining per-cpu shares distribution for group scheduling
364 *
365 * load_stamp is the last time we updated the load average
366 * load_last is the last time we updated the load average and saw load
367 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 368 */
2069dd75
PZ
369 u64 load_avg;
370 u64 load_period;
3b3d190e 371 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 372
2069dd75 373 unsigned long load_contribution;
c09595f6 374#endif
6aa645ea
IM
375#endif
376};
1da177e4 377
6aa645ea
IM
378/* Real-Time classes' related field in a runqueue: */
379struct rt_rq {
380 struct rt_prio_array active;
63489e45 381 unsigned long rt_nr_running;
052f1dc7 382#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
383 struct {
384 int curr; /* highest queued rt task prio */
398a153b 385#ifdef CONFIG_SMP
e864c499 386 int next; /* next highest */
398a153b 387#endif
e864c499 388 } highest_prio;
6f505b16 389#endif
fa85ae24 390#ifdef CONFIG_SMP
73fe6aae 391 unsigned long rt_nr_migratory;
a1ba4d8b 392 unsigned long rt_nr_total;
a22d7fc1 393 int overloaded;
917b627d 394 struct plist_head pushable_tasks;
fa85ae24 395#endif
6f505b16 396 int rt_throttled;
fa85ae24 397 u64 rt_time;
ac086bc2 398 u64 rt_runtime;
ea736ed5 399 /* Nests inside the rq lock: */
0986b11b 400 raw_spinlock_t rt_runtime_lock;
6f505b16 401
052f1dc7 402#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
403 unsigned long rt_nr_boosted;
404
6f505b16
PZ
405 struct rq *rq;
406 struct list_head leaf_rt_rq_list;
407 struct task_group *tg;
6f505b16 408#endif
6aa645ea
IM
409};
410
57d885fe
GH
411#ifdef CONFIG_SMP
412
413/*
414 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
415 * variables. Each exclusive cpuset essentially defines an island domain by
416 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
417 * exclusive cpuset is created, we also create and attach a new root-domain
418 * object.
419 *
57d885fe
GH
420 */
421struct root_domain {
422 atomic_t refcount;
dce840a0 423 struct rcu_head rcu;
c6c4927b
RR
424 cpumask_var_t span;
425 cpumask_var_t online;
637f5085 426
0eab9146 427 /*
637f5085
GH
428 * The "RT overload" flag: it gets set if a CPU has more than
429 * one runnable RT task.
430 */
c6c4927b 431 cpumask_var_t rto_mask;
0eab9146 432 atomic_t rto_count;
6e0534f2 433 struct cpupri cpupri;
57d885fe
GH
434};
435
dc938520
GH
436/*
437 * By default the system creates a single root-domain with all cpus as
438 * members (mimicking the global state we have today).
439 */
57d885fe
GH
440static struct root_domain def_root_domain;
441
ed2d372c 442#endif /* CONFIG_SMP */
57d885fe 443
1da177e4
LT
444/*
445 * This is the main, per-CPU runqueue data structure.
446 *
447 * Locking rule: those places that want to lock multiple runqueues
448 * (such as the load balancing or the thread migration code), lock
449 * acquire operations must be ordered by ascending &runqueue.
450 */
70b97a7f 451struct rq {
d8016491 452 /* runqueue lock: */
05fa785c 453 raw_spinlock_t lock;
1da177e4
LT
454
455 /*
456 * nr_running and cpu_load should be in the same cacheline because
457 * remote CPUs use both these fields when doing load calculation.
458 */
459 unsigned long nr_running;
6aa645ea
IM
460 #define CPU_LOAD_IDX_MAX 5
461 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 462 unsigned long last_load_update_tick;
46cb4b7c 463#ifdef CONFIG_NO_HZ
39c0cbe2 464 u64 nohz_stamp;
83cd4fe2 465 unsigned char nohz_balance_kick;
46cb4b7c 466#endif
a64692a3
MG
467 unsigned int skip_clock_update;
468
d8016491
IM
469 /* capture load from *all* tasks on this cpu: */
470 struct load_weight load;
6aa645ea
IM
471 unsigned long nr_load_updates;
472 u64 nr_switches;
473
474 struct cfs_rq cfs;
6f505b16 475 struct rt_rq rt;
6f505b16 476
6aa645ea 477#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
478 /* list of leaf cfs_rq on this cpu: */
479 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
480#endif
481#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 482 struct list_head leaf_rt_rq_list;
1da177e4 483#endif
1da177e4
LT
484
485 /*
486 * This is part of a global counter where only the total sum
487 * over all CPUs matters. A task can increase this counter on
488 * one CPU and if it got migrated afterwards it may decrease
489 * it on another CPU. Always updated under the runqueue lock:
490 */
491 unsigned long nr_uninterruptible;
492
34f971f6 493 struct task_struct *curr, *idle, *stop;
c9819f45 494 unsigned long next_balance;
1da177e4 495 struct mm_struct *prev_mm;
6aa645ea 496
3e51f33f 497 u64 clock;
305e6835 498 u64 clock_task;
6aa645ea 499
1da177e4
LT
500 atomic_t nr_iowait;
501
502#ifdef CONFIG_SMP
0eab9146 503 struct root_domain *rd;
1da177e4
LT
504 struct sched_domain *sd;
505
e51fd5e2
PZ
506 unsigned long cpu_power;
507
a0a522ce 508 unsigned char idle_at_tick;
1da177e4 509 /* For active balancing */
3f029d3c 510 int post_schedule;
1da177e4
LT
511 int active_balance;
512 int push_cpu;
969c7921 513 struct cpu_stop_work active_balance_work;
d8016491
IM
514 /* cpu of this runqueue: */
515 int cpu;
1f11eb6a 516 int online;
1da177e4 517
a8a51d5e 518 unsigned long avg_load_per_task;
1da177e4 519
e9e9250b
PZ
520 u64 rt_avg;
521 u64 age_stamp;
1b9508f6
MG
522 u64 idle_stamp;
523 u64 avg_idle;
1da177e4
LT
524#endif
525
aa483808
VP
526#ifdef CONFIG_IRQ_TIME_ACCOUNTING
527 u64 prev_irq_time;
528#endif
529
dce48a84
TG
530 /* calc_load related fields */
531 unsigned long calc_load_update;
532 long calc_load_active;
533
8f4d37ec 534#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
535#ifdef CONFIG_SMP
536 int hrtick_csd_pending;
537 struct call_single_data hrtick_csd;
538#endif
8f4d37ec
PZ
539 struct hrtimer hrtick_timer;
540#endif
541
1da177e4
LT
542#ifdef CONFIG_SCHEDSTATS
543 /* latency stats */
544 struct sched_info rq_sched_info;
9c2c4802
KC
545 unsigned long long rq_cpu_time;
546 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
547
548 /* sys_sched_yield() stats */
480b9434 549 unsigned int yld_count;
1da177e4
LT
550
551 /* schedule() stats */
480b9434
KC
552 unsigned int sched_switch;
553 unsigned int sched_count;
554 unsigned int sched_goidle;
1da177e4
LT
555
556 /* try_to_wake_up() stats */
480b9434
KC
557 unsigned int ttwu_count;
558 unsigned int ttwu_local;
1da177e4 559#endif
317f3941
PZ
560
561#ifdef CONFIG_SMP
562 struct task_struct *wake_list;
563#endif
1da177e4
LT
564};
565
f34e3b61 566static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 567
a64692a3 568
1e5a7405 569static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 570
0a2966b4
CL
571static inline int cpu_of(struct rq *rq)
572{
573#ifdef CONFIG_SMP
574 return rq->cpu;
575#else
576 return 0;
577#endif
578}
579
497f0ab3 580#define rcu_dereference_check_sched_domain(p) \
d11c563d 581 rcu_dereference_check((p), \
dce840a0 582 rcu_read_lock_held() || \
d11c563d
PM
583 lockdep_is_held(&sched_domains_mutex))
584
674311d5
NP
585/*
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 587 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
588 *
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
591 */
48f24c4d 592#define for_each_domain(cpu, __sd) \
497f0ab3 593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
594
595#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596#define this_rq() (&__get_cpu_var(runqueues))
597#define task_rq(p) cpu_rq(task_cpu(p))
598#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 599#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 600
dc61b1d6
PZ
601#ifdef CONFIG_CGROUP_SCHED
602
603/*
604 * Return the group to which this tasks belongs.
605 *
606 * We use task_subsys_state_check() and extend the RCU verification
0122ec5b 607 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
dc61b1d6
PZ
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
610 */
611static inline struct task_group *task_group(struct task_struct *p)
612{
5091faa4 613 struct task_group *tg;
dc61b1d6
PZ
614 struct cgroup_subsys_state *css;
615
616 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
0122ec5b 617 lockdep_is_held(&p->pi_lock));
5091faa4
MG
618 tg = container_of(css, struct task_group, css);
619
620 return autogroup_task_group(p, tg);
dc61b1d6
PZ
621}
622
623/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
624static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
625{
626#ifdef CONFIG_FAIR_GROUP_SCHED
627 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
628 p->se.parent = task_group(p)->se[cpu];
629#endif
630
631#ifdef CONFIG_RT_GROUP_SCHED
632 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
633 p->rt.parent = task_group(p)->rt_se[cpu];
634#endif
635}
636
637#else /* CONFIG_CGROUP_SCHED */
638
639static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
640static inline struct task_group *task_group(struct task_struct *p)
641{
642 return NULL;
643}
644
645#endif /* CONFIG_CGROUP_SCHED */
646
fe44d621 647static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 648
fe44d621 649static void update_rq_clock(struct rq *rq)
3e51f33f 650{
fe44d621 651 s64 delta;
305e6835 652
f26f9aff
MG
653 if (rq->skip_clock_update)
654 return;
aa483808 655
fe44d621
PZ
656 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
657 rq->clock += delta;
658 update_rq_clock_task(rq, delta);
3e51f33f
PZ
659}
660
bf5c91ba
IM
661/*
662 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
663 */
664#ifdef CONFIG_SCHED_DEBUG
665# define const_debug __read_mostly
666#else
667# define const_debug static const
668#endif
669
017730c1 670/**
1fd06bb1 671 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 672 * @cpu: the processor in question.
017730c1 673 *
017730c1
IM
674 * This interface allows printk to be called with the runqueue lock
675 * held and know whether or not it is OK to wake up the klogd.
676 */
89f19f04 677int runqueue_is_locked(int cpu)
017730c1 678{
05fa785c 679 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
680}
681
bf5c91ba
IM
682/*
683 * Debugging: various feature bits
684 */
f00b45c1
PZ
685
686#define SCHED_FEAT(name, enabled) \
687 __SCHED_FEAT_##name ,
688
bf5c91ba 689enum {
f00b45c1 690#include "sched_features.h"
bf5c91ba
IM
691};
692
f00b45c1
PZ
693#undef SCHED_FEAT
694
695#define SCHED_FEAT(name, enabled) \
696 (1UL << __SCHED_FEAT_##name) * enabled |
697
bf5c91ba 698const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
699#include "sched_features.h"
700 0;
701
702#undef SCHED_FEAT
703
704#ifdef CONFIG_SCHED_DEBUG
705#define SCHED_FEAT(name, enabled) \
706 #name ,
707
983ed7a6 708static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
709#include "sched_features.h"
710 NULL
711};
712
713#undef SCHED_FEAT
714
34f3a814 715static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 716{
f00b45c1
PZ
717 int i;
718
719 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
720 if (!(sysctl_sched_features & (1UL << i)))
721 seq_puts(m, "NO_");
722 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 723 }
34f3a814 724 seq_puts(m, "\n");
f00b45c1 725
34f3a814 726 return 0;
f00b45c1
PZ
727}
728
729static ssize_t
730sched_feat_write(struct file *filp, const char __user *ubuf,
731 size_t cnt, loff_t *ppos)
732{
733 char buf[64];
7740191c 734 char *cmp;
f00b45c1
PZ
735 int neg = 0;
736 int i;
737
738 if (cnt > 63)
739 cnt = 63;
740
741 if (copy_from_user(&buf, ubuf, cnt))
742 return -EFAULT;
743
744 buf[cnt] = 0;
7740191c 745 cmp = strstrip(buf);
f00b45c1 746
524429c3 747 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
748 neg = 1;
749 cmp += 3;
750 }
751
752 for (i = 0; sched_feat_names[i]; i++) {
7740191c 753 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
754 if (neg)
755 sysctl_sched_features &= ~(1UL << i);
756 else
757 sysctl_sched_features |= (1UL << i);
758 break;
759 }
760 }
761
762 if (!sched_feat_names[i])
763 return -EINVAL;
764
42994724 765 *ppos += cnt;
f00b45c1
PZ
766
767 return cnt;
768}
769
34f3a814
LZ
770static int sched_feat_open(struct inode *inode, struct file *filp)
771{
772 return single_open(filp, sched_feat_show, NULL);
773}
774
828c0950 775static const struct file_operations sched_feat_fops = {
34f3a814
LZ
776 .open = sched_feat_open,
777 .write = sched_feat_write,
778 .read = seq_read,
779 .llseek = seq_lseek,
780 .release = single_release,
f00b45c1
PZ
781};
782
783static __init int sched_init_debug(void)
784{
f00b45c1
PZ
785 debugfs_create_file("sched_features", 0644, NULL, NULL,
786 &sched_feat_fops);
787
788 return 0;
789}
790late_initcall(sched_init_debug);
791
792#endif
793
794#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 795
b82d9fdd
PZ
796/*
797 * Number of tasks to iterate in a single balance run.
798 * Limited because this is done with IRQs disabled.
799 */
800const_debug unsigned int sysctl_sched_nr_migrate = 32;
801
e9e9250b
PZ
802/*
803 * period over which we average the RT time consumption, measured
804 * in ms.
805 *
806 * default: 1s
807 */
808const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
809
fa85ae24 810/*
9f0c1e56 811 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
812 * default: 1s
813 */
9f0c1e56 814unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 815
6892b75e
IM
816static __read_mostly int scheduler_running;
817
9f0c1e56
PZ
818/*
819 * part of the period that we allow rt tasks to run in us.
820 * default: 0.95s
821 */
822int sysctl_sched_rt_runtime = 950000;
fa85ae24 823
d0b27fa7
PZ
824static inline u64 global_rt_period(void)
825{
826 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
827}
828
829static inline u64 global_rt_runtime(void)
830{
e26873bb 831 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
832 return RUNTIME_INF;
833
834 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
835}
fa85ae24 836
1da177e4 837#ifndef prepare_arch_switch
4866cde0
NP
838# define prepare_arch_switch(next) do { } while (0)
839#endif
840#ifndef finish_arch_switch
841# define finish_arch_switch(prev) do { } while (0)
842#endif
843
051a1d1a
DA
844static inline int task_current(struct rq *rq, struct task_struct *p)
845{
846 return rq->curr == p;
847}
848
70b97a7f 849static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 850{
3ca7a440
PZ
851#ifdef CONFIG_SMP
852 return p->on_cpu;
853#else
051a1d1a 854 return task_current(rq, p);
3ca7a440 855#endif
4866cde0
NP
856}
857
3ca7a440 858#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 859static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 860{
3ca7a440
PZ
861#ifdef CONFIG_SMP
862 /*
863 * We can optimise this out completely for !SMP, because the
864 * SMP rebalancing from interrupt is the only thing that cares
865 * here.
866 */
867 next->on_cpu = 1;
868#endif
4866cde0
NP
869}
870
70b97a7f 871static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 872{
3ca7a440
PZ
873#ifdef CONFIG_SMP
874 /*
875 * After ->on_cpu is cleared, the task can be moved to a different CPU.
876 * We must ensure this doesn't happen until the switch is completely
877 * finished.
878 */
879 smp_wmb();
880 prev->on_cpu = 0;
881#endif
da04c035
IM
882#ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885#endif
8a25d5de
IM
886 /*
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
890 */
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
894}
895
896#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 897static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
898{
899#ifdef CONFIG_SMP
900 /*
901 * We can optimise this out completely for !SMP, because the
902 * SMP rebalancing from interrupt is the only thing that cares
903 * here.
904 */
3ca7a440 905 next->on_cpu = 1;
4866cde0
NP
906#endif
907#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 908 raw_spin_unlock_irq(&rq->lock);
4866cde0 909#else
05fa785c 910 raw_spin_unlock(&rq->lock);
4866cde0
NP
911#endif
912}
913
70b97a7f 914static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
915{
916#ifdef CONFIG_SMP
917 /*
3ca7a440 918 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
919 * We must ensure this doesn't happen until the switch is completely
920 * finished.
921 */
922 smp_wmb();
3ca7a440 923 prev->on_cpu = 0;
4866cde0
NP
924#endif
925#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
926 local_irq_enable();
1da177e4 927#endif
4866cde0
NP
928}
929#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 930
0970d299 931/*
0122ec5b 932 * __task_rq_lock - lock the rq @p resides on.
b29739f9 933 */
70b97a7f 934static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
935 __acquires(rq->lock)
936{
0970d299
PZ
937 struct rq *rq;
938
0122ec5b
PZ
939 lockdep_assert_held(&p->pi_lock);
940
3a5c359a 941 for (;;) {
0970d299 942 rq = task_rq(p);
05fa785c 943 raw_spin_lock(&rq->lock);
65cc8e48 944 if (likely(rq == task_rq(p)))
3a5c359a 945 return rq;
05fa785c 946 raw_spin_unlock(&rq->lock);
b29739f9 947 }
b29739f9
IM
948}
949
1da177e4 950/*
0122ec5b 951 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 952 */
70b97a7f 953static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 954 __acquires(p->pi_lock)
1da177e4
LT
955 __acquires(rq->lock)
956{
70b97a7f 957 struct rq *rq;
1da177e4 958
3a5c359a 959 for (;;) {
0122ec5b 960 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 961 rq = task_rq(p);
05fa785c 962 raw_spin_lock(&rq->lock);
65cc8e48 963 if (likely(rq == task_rq(p)))
3a5c359a 964 return rq;
0122ec5b
PZ
965 raw_spin_unlock(&rq->lock);
966 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 967 }
1da177e4
LT
968}
969
a9957449 970static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
971 __releases(rq->lock)
972{
05fa785c 973 raw_spin_unlock(&rq->lock);
b29739f9
IM
974}
975
0122ec5b
PZ
976static inline void
977task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 978 __releases(rq->lock)
0122ec5b 979 __releases(p->pi_lock)
1da177e4 980{
0122ec5b
PZ
981 raw_spin_unlock(&rq->lock);
982 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
983}
984
1da177e4 985/*
cc2a73b5 986 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 987 */
a9957449 988static struct rq *this_rq_lock(void)
1da177e4
LT
989 __acquires(rq->lock)
990{
70b97a7f 991 struct rq *rq;
1da177e4
LT
992
993 local_irq_disable();
994 rq = this_rq();
05fa785c 995 raw_spin_lock(&rq->lock);
1da177e4
LT
996
997 return rq;
998}
999
8f4d37ec
PZ
1000#ifdef CONFIG_SCHED_HRTICK
1001/*
1002 * Use HR-timers to deliver accurate preemption points.
1003 *
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1006 * reschedule event.
1007 *
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * rq->lock.
1010 */
8f4d37ec
PZ
1011
1012/*
1013 * Use hrtick when:
1014 * - enabled by features
1015 * - hrtimer is actually high res
1016 */
1017static inline int hrtick_enabled(struct rq *rq)
1018{
1019 if (!sched_feat(HRTICK))
1020 return 0;
ba42059f 1021 if (!cpu_active(cpu_of(rq)))
b328ca18 1022 return 0;
8f4d37ec
PZ
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1024}
1025
8f4d37ec
PZ
1026static void hrtick_clear(struct rq *rq)
1027{
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032/*
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1035 */
1036static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037{
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041
05fa785c 1042 raw_spin_lock(&rq->lock);
3e51f33f 1043 update_rq_clock(rq);
8f4d37ec 1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1045 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1046
1047 return HRTIMER_NORESTART;
1048}
1049
95e904c7 1050#ifdef CONFIG_SMP
31656519
PZ
1051/*
1052 * called from hardirq (IPI) context
1053 */
1054static void __hrtick_start(void *arg)
b328ca18 1055{
31656519 1056 struct rq *rq = arg;
b328ca18 1057
05fa785c 1058 raw_spin_lock(&rq->lock);
31656519
PZ
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
05fa785c 1061 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1062}
1063
31656519
PZ
1064/*
1065 * Called to set the hrtick timer state.
1066 *
1067 * called with rq->lock held and irqs disabled
1068 */
1069static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1070{
31656519
PZ
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1073
cc584b21 1074 hrtimer_set_expires(timer, time);
31656519
PZ
1075
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
6e275637 1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1080 rq->hrtick_csd_pending = 1;
1081 }
b328ca18
PZ
1082}
1083
1084static int
1085hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086{
1087 int cpu = (int)(long)hcpu;
1088
1089 switch (action) {
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1094 case CPU_DEAD:
1095 case CPU_DEAD_FROZEN:
31656519 1096 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1097 return NOTIFY_OK;
1098 }
1099
1100 return NOTIFY_DONE;
1101}
1102
fa748203 1103static __init void init_hrtick(void)
b328ca18
PZ
1104{
1105 hotcpu_notifier(hotplug_hrtick, 0);
1106}
31656519
PZ
1107#else
1108/*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113static void hrtick_start(struct rq *rq, u64 delay)
1114{
7f1e2ca9 1115 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1116 HRTIMER_MODE_REL_PINNED, 0);
31656519 1117}
b328ca18 1118
006c75f1 1119static inline void init_hrtick(void)
8f4d37ec 1120{
8f4d37ec 1121}
31656519 1122#endif /* CONFIG_SMP */
8f4d37ec 1123
31656519 1124static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1125{
31656519
PZ
1126#ifdef CONFIG_SMP
1127 rq->hrtick_csd_pending = 0;
8f4d37ec 1128
31656519
PZ
1129 rq->hrtick_csd.flags = 0;
1130 rq->hrtick_csd.func = __hrtick_start;
1131 rq->hrtick_csd.info = rq;
1132#endif
8f4d37ec 1133
31656519
PZ
1134 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 rq->hrtick_timer.function = hrtick;
8f4d37ec 1136}
006c75f1 1137#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1138static inline void hrtick_clear(struct rq *rq)
1139{
1140}
1141
8f4d37ec
PZ
1142static inline void init_rq_hrtick(struct rq *rq)
1143{
1144}
1145
b328ca18
PZ
1146static inline void init_hrtick(void)
1147{
1148}
006c75f1 1149#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1150
c24d20db
IM
1151/*
1152 * resched_task - mark a task 'to be rescheduled now'.
1153 *
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1156 * the target CPU.
1157 */
1158#ifdef CONFIG_SMP
1159
1160#ifndef tsk_is_polling
1161#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1162#endif
1163
31656519 1164static void resched_task(struct task_struct *p)
c24d20db
IM
1165{
1166 int cpu;
1167
05fa785c 1168 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1169
5ed0cec0 1170 if (test_tsk_need_resched(p))
c24d20db
IM
1171 return;
1172
5ed0cec0 1173 set_tsk_need_resched(p);
c24d20db
IM
1174
1175 cpu = task_cpu(p);
1176 if (cpu == smp_processor_id())
1177 return;
1178
1179 /* NEED_RESCHED must be visible before we test polling */
1180 smp_mb();
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1183}
1184
1185static void resched_cpu(int cpu)
1186{
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1189
05fa785c 1190 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1191 return;
1192 resched_task(cpu_curr(cpu));
05fa785c 1193 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1194}
06d8308c
TG
1195
1196#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1197/*
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1200 *
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1204 */
1205int get_nohz_timer_target(void)
1206{
1207 int cpu = smp_processor_id();
1208 int i;
1209 struct sched_domain *sd;
1210
057f3fad 1211 rcu_read_lock();
83cd4fe2 1212 for_each_domain(cpu, sd) {
057f3fad
PZ
1213 for_each_cpu(i, sched_domain_span(sd)) {
1214 if (!idle_cpu(i)) {
1215 cpu = i;
1216 goto unlock;
1217 }
1218 }
83cd4fe2 1219 }
057f3fad
PZ
1220unlock:
1221 rcu_read_unlock();
83cd4fe2
VP
1222 return cpu;
1223}
06d8308c
TG
1224/*
1225 * When add_timer_on() enqueues a timer into the timer wheel of an
1226 * idle CPU then this timer might expire before the next timer event
1227 * which is scheduled to wake up that CPU. In case of a completely
1228 * idle system the next event might even be infinite time into the
1229 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1230 * leaves the inner idle loop so the newly added timer is taken into
1231 * account when the CPU goes back to idle and evaluates the timer
1232 * wheel for the next timer event.
1233 */
1234void wake_up_idle_cpu(int cpu)
1235{
1236 struct rq *rq = cpu_rq(cpu);
1237
1238 if (cpu == smp_processor_id())
1239 return;
1240
1241 /*
1242 * This is safe, as this function is called with the timer
1243 * wheel base lock of (cpu) held. When the CPU is on the way
1244 * to idle and has not yet set rq->curr to idle then it will
1245 * be serialized on the timer wheel base lock and take the new
1246 * timer into account automatically.
1247 */
1248 if (rq->curr != rq->idle)
1249 return;
1250
1251 /*
1252 * We can set TIF_RESCHED on the idle task of the other CPU
1253 * lockless. The worst case is that the other CPU runs the
1254 * idle task through an additional NOOP schedule()
1255 */
5ed0cec0 1256 set_tsk_need_resched(rq->idle);
06d8308c
TG
1257
1258 /* NEED_RESCHED must be visible before we test polling */
1259 smp_mb();
1260 if (!tsk_is_polling(rq->idle))
1261 smp_send_reschedule(cpu);
1262}
39c0cbe2 1263
6d6bc0ad 1264#endif /* CONFIG_NO_HZ */
06d8308c 1265
e9e9250b
PZ
1266static u64 sched_avg_period(void)
1267{
1268 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1269}
1270
1271static void sched_avg_update(struct rq *rq)
1272{
1273 s64 period = sched_avg_period();
1274
1275 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1276 /*
1277 * Inline assembly required to prevent the compiler
1278 * optimising this loop into a divmod call.
1279 * See __iter_div_u64_rem() for another example of this.
1280 */
1281 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1282 rq->age_stamp += period;
1283 rq->rt_avg /= 2;
1284 }
1285}
1286
1287static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1288{
1289 rq->rt_avg += rt_delta;
1290 sched_avg_update(rq);
1291}
1292
6d6bc0ad 1293#else /* !CONFIG_SMP */
31656519 1294static void resched_task(struct task_struct *p)
c24d20db 1295{
05fa785c 1296 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1297 set_tsk_need_resched(p);
c24d20db 1298}
e9e9250b
PZ
1299
1300static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1301{
1302}
da2b71ed
SS
1303
1304static void sched_avg_update(struct rq *rq)
1305{
1306}
6d6bc0ad 1307#endif /* CONFIG_SMP */
c24d20db 1308
45bf76df
IM
1309#if BITS_PER_LONG == 32
1310# define WMULT_CONST (~0UL)
1311#else
1312# define WMULT_CONST (1UL << 32)
1313#endif
1314
1315#define WMULT_SHIFT 32
1316
194081eb
IM
1317/*
1318 * Shift right and round:
1319 */
cf2ab469 1320#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1321
a7be37ac
PZ
1322/*
1323 * delta *= weight / lw
1324 */
cb1c4fc9 1325static unsigned long
45bf76df
IM
1326calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1327 struct load_weight *lw)
1328{
1329 u64 tmp;
1330
7a232e03
LJ
1331 if (!lw->inv_weight) {
1332 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1333 lw->inv_weight = 1;
1334 else
1335 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1336 / (lw->weight+1);
1337 }
45bf76df
IM
1338
1339 tmp = (u64)delta_exec * weight;
1340 /*
1341 * Check whether we'd overflow the 64-bit multiplication:
1342 */
194081eb 1343 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1344 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1345 WMULT_SHIFT/2);
1346 else
cf2ab469 1347 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1348
ecf691da 1349 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1350}
1351
1091985b 1352static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1353{
1354 lw->weight += inc;
e89996ae 1355 lw->inv_weight = 0;
45bf76df
IM
1356}
1357
1091985b 1358static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1359{
1360 lw->weight -= dec;
e89996ae 1361 lw->inv_weight = 0;
45bf76df
IM
1362}
1363
2069dd75
PZ
1364static inline void update_load_set(struct load_weight *lw, unsigned long w)
1365{
1366 lw->weight = w;
1367 lw->inv_weight = 0;
1368}
1369
2dd73a4f
PW
1370/*
1371 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1372 * of tasks with abnormal "nice" values across CPUs the contribution that
1373 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1374 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1375 * scaled version of the new time slice allocation that they receive on time
1376 * slice expiry etc.
1377 */
1378
cce7ade8
PZ
1379#define WEIGHT_IDLEPRIO 3
1380#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1381
1382/*
1383 * Nice levels are multiplicative, with a gentle 10% change for every
1384 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1385 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1386 * that remained on nice 0.
1387 *
1388 * The "10% effect" is relative and cumulative: from _any_ nice level,
1389 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1390 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1391 * If a task goes up by ~10% and another task goes down by ~10% then
1392 * the relative distance between them is ~25%.)
dd41f596
IM
1393 */
1394static const int prio_to_weight[40] = {
254753dc
IM
1395 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1396 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1397 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1398 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1399 /* 0 */ 1024, 820, 655, 526, 423,
1400 /* 5 */ 335, 272, 215, 172, 137,
1401 /* 10 */ 110, 87, 70, 56, 45,
1402 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1403};
1404
5714d2de
IM
1405/*
1406 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1407 *
1408 * In cases where the weight does not change often, we can use the
1409 * precalculated inverse to speed up arithmetics by turning divisions
1410 * into multiplications:
1411 */
dd41f596 1412static const u32 prio_to_wmult[40] = {
254753dc
IM
1413 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1414 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1415 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1416 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1417 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1418 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1419 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1420 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1421};
2dd73a4f 1422
ef12fefa
BR
1423/* Time spent by the tasks of the cpu accounting group executing in ... */
1424enum cpuacct_stat_index {
1425 CPUACCT_STAT_USER, /* ... user mode */
1426 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1427
1428 CPUACCT_STAT_NSTATS,
1429};
1430
d842de87
SV
1431#ifdef CONFIG_CGROUP_CPUACCT
1432static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1433static void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1435#else
1436static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1437static inline void cpuacct_update_stats(struct task_struct *tsk,
1438 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1439#endif
1440
18d95a28
PZ
1441static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1442{
1443 update_load_add(&rq->load, load);
1444}
1445
1446static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1447{
1448 update_load_sub(&rq->load, load);
1449}
1450
7940ca36 1451#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1452typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1453
1454/*
1455 * Iterate the full tree, calling @down when first entering a node and @up when
1456 * leaving it for the final time.
1457 */
eb755805 1458static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1459{
1460 struct task_group *parent, *child;
eb755805 1461 int ret;
c09595f6
PZ
1462
1463 rcu_read_lock();
1464 parent = &root_task_group;
1465down:
eb755805
PZ
1466 ret = (*down)(parent, data);
1467 if (ret)
1468 goto out_unlock;
c09595f6
PZ
1469 list_for_each_entry_rcu(child, &parent->children, siblings) {
1470 parent = child;
1471 goto down;
1472
1473up:
1474 continue;
1475 }
eb755805
PZ
1476 ret = (*up)(parent, data);
1477 if (ret)
1478 goto out_unlock;
c09595f6
PZ
1479
1480 child = parent;
1481 parent = parent->parent;
1482 if (parent)
1483 goto up;
eb755805 1484out_unlock:
c09595f6 1485 rcu_read_unlock();
eb755805
PZ
1486
1487 return ret;
c09595f6
PZ
1488}
1489
eb755805
PZ
1490static int tg_nop(struct task_group *tg, void *data)
1491{
1492 return 0;
c09595f6 1493}
eb755805
PZ
1494#endif
1495
1496#ifdef CONFIG_SMP
f5f08f39
PZ
1497/* Used instead of source_load when we know the type == 0 */
1498static unsigned long weighted_cpuload(const int cpu)
1499{
1500 return cpu_rq(cpu)->load.weight;
1501}
1502
1503/*
1504 * Return a low guess at the load of a migration-source cpu weighted
1505 * according to the scheduling class and "nice" value.
1506 *
1507 * We want to under-estimate the load of migration sources, to
1508 * balance conservatively.
1509 */
1510static unsigned long source_load(int cpu, int type)
1511{
1512 struct rq *rq = cpu_rq(cpu);
1513 unsigned long total = weighted_cpuload(cpu);
1514
1515 if (type == 0 || !sched_feat(LB_BIAS))
1516 return total;
1517
1518 return min(rq->cpu_load[type-1], total);
1519}
1520
1521/*
1522 * Return a high guess at the load of a migration-target cpu weighted
1523 * according to the scheduling class and "nice" value.
1524 */
1525static unsigned long target_load(int cpu, int type)
1526{
1527 struct rq *rq = cpu_rq(cpu);
1528 unsigned long total = weighted_cpuload(cpu);
1529
1530 if (type == 0 || !sched_feat(LB_BIAS))
1531 return total;
1532
1533 return max(rq->cpu_load[type-1], total);
1534}
1535
ae154be1
PZ
1536static unsigned long power_of(int cpu)
1537{
e51fd5e2 1538 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1539}
1540
eb755805
PZ
1541static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1542
1543static unsigned long cpu_avg_load_per_task(int cpu)
1544{
1545 struct rq *rq = cpu_rq(cpu);
af6d596f 1546 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1547
4cd42620
SR
1548 if (nr_running)
1549 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1550 else
1551 rq->avg_load_per_task = 0;
eb755805
PZ
1552
1553 return rq->avg_load_per_task;
1554}
1555
1556#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1557
c09595f6 1558/*
c8cba857
PZ
1559 * Compute the cpu's hierarchical load factor for each task group.
1560 * This needs to be done in a top-down fashion because the load of a child
1561 * group is a fraction of its parents load.
c09595f6 1562 */
eb755805 1563static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1564{
c8cba857 1565 unsigned long load;
eb755805 1566 long cpu = (long)data;
c09595f6 1567
c8cba857
PZ
1568 if (!tg->parent) {
1569 load = cpu_rq(cpu)->load.weight;
1570 } else {
1571 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1572 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1573 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1574 }
c09595f6 1575
c8cba857 1576 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1577
eb755805 1578 return 0;
c09595f6
PZ
1579}
1580
eb755805 1581static void update_h_load(long cpu)
c09595f6 1582{
eb755805 1583 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1584}
1585
18d95a28
PZ
1586#endif
1587
8f45e2b5
GH
1588#ifdef CONFIG_PREEMPT
1589
b78bb868
PZ
1590static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1591
70574a99 1592/*
8f45e2b5
GH
1593 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1594 * way at the expense of forcing extra atomic operations in all
1595 * invocations. This assures that the double_lock is acquired using the
1596 * same underlying policy as the spinlock_t on this architecture, which
1597 * reduces latency compared to the unfair variant below. However, it
1598 * also adds more overhead and therefore may reduce throughput.
70574a99 1599 */
8f45e2b5
GH
1600static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1601 __releases(this_rq->lock)
1602 __acquires(busiest->lock)
1603 __acquires(this_rq->lock)
1604{
05fa785c 1605 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1606 double_rq_lock(this_rq, busiest);
1607
1608 return 1;
1609}
1610
1611#else
1612/*
1613 * Unfair double_lock_balance: Optimizes throughput at the expense of
1614 * latency by eliminating extra atomic operations when the locks are
1615 * already in proper order on entry. This favors lower cpu-ids and will
1616 * grant the double lock to lower cpus over higher ids under contention,
1617 * regardless of entry order into the function.
1618 */
1619static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1620 __releases(this_rq->lock)
1621 __acquires(busiest->lock)
1622 __acquires(this_rq->lock)
1623{
1624 int ret = 0;
1625
05fa785c 1626 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1627 if (busiest < this_rq) {
05fa785c
TG
1628 raw_spin_unlock(&this_rq->lock);
1629 raw_spin_lock(&busiest->lock);
1630 raw_spin_lock_nested(&this_rq->lock,
1631 SINGLE_DEPTH_NESTING);
70574a99
AD
1632 ret = 1;
1633 } else
05fa785c
TG
1634 raw_spin_lock_nested(&busiest->lock,
1635 SINGLE_DEPTH_NESTING);
70574a99
AD
1636 }
1637 return ret;
1638}
1639
8f45e2b5
GH
1640#endif /* CONFIG_PREEMPT */
1641
1642/*
1643 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1644 */
1645static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1646{
1647 if (unlikely(!irqs_disabled())) {
1648 /* printk() doesn't work good under rq->lock */
05fa785c 1649 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1650 BUG_ON(1);
1651 }
1652
1653 return _double_lock_balance(this_rq, busiest);
1654}
1655
70574a99
AD
1656static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1657 __releases(busiest->lock)
1658{
05fa785c 1659 raw_spin_unlock(&busiest->lock);
70574a99
AD
1660 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1661}
1e3c88bd
PZ
1662
1663/*
1664 * double_rq_lock - safely lock two runqueues
1665 *
1666 * Note this does not disable interrupts like task_rq_lock,
1667 * you need to do so manually before calling.
1668 */
1669static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1670 __acquires(rq1->lock)
1671 __acquires(rq2->lock)
1672{
1673 BUG_ON(!irqs_disabled());
1674 if (rq1 == rq2) {
1675 raw_spin_lock(&rq1->lock);
1676 __acquire(rq2->lock); /* Fake it out ;) */
1677 } else {
1678 if (rq1 < rq2) {
1679 raw_spin_lock(&rq1->lock);
1680 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1681 } else {
1682 raw_spin_lock(&rq2->lock);
1683 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1684 }
1685 }
1e3c88bd
PZ
1686}
1687
1688/*
1689 * double_rq_unlock - safely unlock two runqueues
1690 *
1691 * Note this does not restore interrupts like task_rq_unlock,
1692 * you need to do so manually after calling.
1693 */
1694static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1695 __releases(rq1->lock)
1696 __releases(rq2->lock)
1697{
1698 raw_spin_unlock(&rq1->lock);
1699 if (rq1 != rq2)
1700 raw_spin_unlock(&rq2->lock);
1701 else
1702 __release(rq2->lock);
1703}
1704
d95f4122
MG
1705#else /* CONFIG_SMP */
1706
1707/*
1708 * double_rq_lock - safely lock two runqueues
1709 *
1710 * Note this does not disable interrupts like task_rq_lock,
1711 * you need to do so manually before calling.
1712 */
1713static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1714 __acquires(rq1->lock)
1715 __acquires(rq2->lock)
1716{
1717 BUG_ON(!irqs_disabled());
1718 BUG_ON(rq1 != rq2);
1719 raw_spin_lock(&rq1->lock);
1720 __acquire(rq2->lock); /* Fake it out ;) */
1721}
1722
1723/*
1724 * double_rq_unlock - safely unlock two runqueues
1725 *
1726 * Note this does not restore interrupts like task_rq_unlock,
1727 * you need to do so manually after calling.
1728 */
1729static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1730 __releases(rq1->lock)
1731 __releases(rq2->lock)
1732{
1733 BUG_ON(rq1 != rq2);
1734 raw_spin_unlock(&rq1->lock);
1735 __release(rq2->lock);
1736}
1737
18d95a28
PZ
1738#endif
1739
74f5187a 1740static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1741static void update_sysctl(void);
acb4a848 1742static int get_update_sysctl_factor(void);
fdf3e95d 1743static void update_cpu_load(struct rq *this_rq);
dce48a84 1744
cd29fe6f
PZ
1745static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1746{
1747 set_task_rq(p, cpu);
1748#ifdef CONFIG_SMP
1749 /*
1750 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1751 * successfuly executed on another CPU. We must ensure that updates of
1752 * per-task data have been completed by this moment.
1753 */
1754 smp_wmb();
1755 task_thread_info(p)->cpu = cpu;
1756#endif
1757}
dce48a84 1758
1e3c88bd 1759static const struct sched_class rt_sched_class;
dd41f596 1760
34f971f6 1761#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1762#define for_each_class(class) \
1763 for (class = sched_class_highest; class; class = class->next)
dd41f596 1764
1e3c88bd
PZ
1765#include "sched_stats.h"
1766
c09595f6 1767static void inc_nr_running(struct rq *rq)
9c217245
IM
1768{
1769 rq->nr_running++;
9c217245
IM
1770}
1771
c09595f6 1772static void dec_nr_running(struct rq *rq)
9c217245
IM
1773{
1774 rq->nr_running--;
9c217245
IM
1775}
1776
45bf76df
IM
1777static void set_load_weight(struct task_struct *p)
1778{
dd41f596
IM
1779 /*
1780 * SCHED_IDLE tasks get minimal weight:
1781 */
1782 if (p->policy == SCHED_IDLE) {
1783 p->se.load.weight = WEIGHT_IDLEPRIO;
1784 p->se.load.inv_weight = WMULT_IDLEPRIO;
1785 return;
1786 }
71f8bd46 1787
dd41f596
IM
1788 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1789 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1790}
1791
371fd7e7 1792static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1793{
a64692a3 1794 update_rq_clock(rq);
dd41f596 1795 sched_info_queued(p);
371fd7e7 1796 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1797}
1798
371fd7e7 1799static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1800{
a64692a3 1801 update_rq_clock(rq);
46ac22ba 1802 sched_info_dequeued(p);
371fd7e7 1803 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1804}
1805
1e3c88bd
PZ
1806/*
1807 * activate_task - move a task to the runqueue.
1808 */
371fd7e7 1809static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1810{
1811 if (task_contributes_to_load(p))
1812 rq->nr_uninterruptible--;
1813
371fd7e7 1814 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1815 inc_nr_running(rq);
1816}
1817
1818/*
1819 * deactivate_task - remove a task from the runqueue.
1820 */
371fd7e7 1821static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1822{
1823 if (task_contributes_to_load(p))
1824 rq->nr_uninterruptible++;
1825
371fd7e7 1826 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1827 dec_nr_running(rq);
1828}
1829
b52bfee4
VP
1830#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1831
305e6835
VP
1832/*
1833 * There are no locks covering percpu hardirq/softirq time.
1834 * They are only modified in account_system_vtime, on corresponding CPU
1835 * with interrupts disabled. So, writes are safe.
1836 * They are read and saved off onto struct rq in update_rq_clock().
1837 * This may result in other CPU reading this CPU's irq time and can
1838 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1839 * or new value with a side effect of accounting a slice of irq time to wrong
1840 * task when irq is in progress while we read rq->clock. That is a worthy
1841 * compromise in place of having locks on each irq in account_system_time.
305e6835 1842 */
b52bfee4
VP
1843static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1844static DEFINE_PER_CPU(u64, cpu_softirq_time);
1845
1846static DEFINE_PER_CPU(u64, irq_start_time);
1847static int sched_clock_irqtime;
1848
1849void enable_sched_clock_irqtime(void)
1850{
1851 sched_clock_irqtime = 1;
1852}
1853
1854void disable_sched_clock_irqtime(void)
1855{
1856 sched_clock_irqtime = 0;
1857}
1858
8e92c201
PZ
1859#ifndef CONFIG_64BIT
1860static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1861
1862static inline void irq_time_write_begin(void)
1863{
1864 __this_cpu_inc(irq_time_seq.sequence);
1865 smp_wmb();
1866}
1867
1868static inline void irq_time_write_end(void)
1869{
1870 smp_wmb();
1871 __this_cpu_inc(irq_time_seq.sequence);
1872}
1873
1874static inline u64 irq_time_read(int cpu)
1875{
1876 u64 irq_time;
1877 unsigned seq;
1878
1879 do {
1880 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1881 irq_time = per_cpu(cpu_softirq_time, cpu) +
1882 per_cpu(cpu_hardirq_time, cpu);
1883 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1884
1885 return irq_time;
1886}
1887#else /* CONFIG_64BIT */
1888static inline void irq_time_write_begin(void)
1889{
1890}
1891
1892static inline void irq_time_write_end(void)
1893{
1894}
1895
1896static inline u64 irq_time_read(int cpu)
305e6835 1897{
305e6835
VP
1898 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1899}
8e92c201 1900#endif /* CONFIG_64BIT */
305e6835 1901
fe44d621
PZ
1902/*
1903 * Called before incrementing preempt_count on {soft,}irq_enter
1904 * and before decrementing preempt_count on {soft,}irq_exit.
1905 */
b52bfee4
VP
1906void account_system_vtime(struct task_struct *curr)
1907{
1908 unsigned long flags;
fe44d621 1909 s64 delta;
b52bfee4 1910 int cpu;
b52bfee4
VP
1911
1912 if (!sched_clock_irqtime)
1913 return;
1914
1915 local_irq_save(flags);
1916
b52bfee4 1917 cpu = smp_processor_id();
fe44d621
PZ
1918 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1919 __this_cpu_add(irq_start_time, delta);
1920
8e92c201 1921 irq_time_write_begin();
b52bfee4
VP
1922 /*
1923 * We do not account for softirq time from ksoftirqd here.
1924 * We want to continue accounting softirq time to ksoftirqd thread
1925 * in that case, so as not to confuse scheduler with a special task
1926 * that do not consume any time, but still wants to run.
1927 */
1928 if (hardirq_count())
fe44d621 1929 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1930 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1931 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1932
8e92c201 1933 irq_time_write_end();
b52bfee4
VP
1934 local_irq_restore(flags);
1935}
b7dadc38 1936EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1937
fe44d621 1938static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1939{
fe44d621
PZ
1940 s64 irq_delta;
1941
8e92c201 1942 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1943
1944 /*
1945 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1946 * this case when a previous update_rq_clock() happened inside a
1947 * {soft,}irq region.
1948 *
1949 * When this happens, we stop ->clock_task and only update the
1950 * prev_irq_time stamp to account for the part that fit, so that a next
1951 * update will consume the rest. This ensures ->clock_task is
1952 * monotonic.
1953 *
1954 * It does however cause some slight miss-attribution of {soft,}irq
1955 * time, a more accurate solution would be to update the irq_time using
1956 * the current rq->clock timestamp, except that would require using
1957 * atomic ops.
1958 */
1959 if (irq_delta > delta)
1960 irq_delta = delta;
1961
1962 rq->prev_irq_time += irq_delta;
1963 delta -= irq_delta;
1964 rq->clock_task += delta;
1965
1966 if (irq_delta && sched_feat(NONIRQ_POWER))
1967 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1968}
1969
abb74cef
VP
1970static int irqtime_account_hi_update(void)
1971{
1972 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1973 unsigned long flags;
1974 u64 latest_ns;
1975 int ret = 0;
1976
1977 local_irq_save(flags);
1978 latest_ns = this_cpu_read(cpu_hardirq_time);
1979 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1980 ret = 1;
1981 local_irq_restore(flags);
1982 return ret;
1983}
1984
1985static int irqtime_account_si_update(void)
1986{
1987 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1988 unsigned long flags;
1989 u64 latest_ns;
1990 int ret = 0;
1991
1992 local_irq_save(flags);
1993 latest_ns = this_cpu_read(cpu_softirq_time);
1994 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1995 ret = 1;
1996 local_irq_restore(flags);
1997 return ret;
1998}
1999
fe44d621 2000#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2001
abb74cef
VP
2002#define sched_clock_irqtime (0)
2003
fe44d621 2004static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 2005{
fe44d621 2006 rq->clock_task += delta;
305e6835
VP
2007}
2008
fe44d621 2009#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2010
1e3c88bd
PZ
2011#include "sched_idletask.c"
2012#include "sched_fair.c"
2013#include "sched_rt.c"
5091faa4 2014#include "sched_autogroup.c"
34f971f6 2015#include "sched_stoptask.c"
1e3c88bd
PZ
2016#ifdef CONFIG_SCHED_DEBUG
2017# include "sched_debug.c"
2018#endif
2019
34f971f6
PZ
2020void sched_set_stop_task(int cpu, struct task_struct *stop)
2021{
2022 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2023 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2024
2025 if (stop) {
2026 /*
2027 * Make it appear like a SCHED_FIFO task, its something
2028 * userspace knows about and won't get confused about.
2029 *
2030 * Also, it will make PI more or less work without too
2031 * much confusion -- but then, stop work should not
2032 * rely on PI working anyway.
2033 */
2034 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2035
2036 stop->sched_class = &stop_sched_class;
2037 }
2038
2039 cpu_rq(cpu)->stop = stop;
2040
2041 if (old_stop) {
2042 /*
2043 * Reset it back to a normal scheduling class so that
2044 * it can die in pieces.
2045 */
2046 old_stop->sched_class = &rt_sched_class;
2047 }
2048}
2049
14531189 2050/*
dd41f596 2051 * __normal_prio - return the priority that is based on the static prio
14531189 2052 */
14531189
IM
2053static inline int __normal_prio(struct task_struct *p)
2054{
dd41f596 2055 return p->static_prio;
14531189
IM
2056}
2057
b29739f9
IM
2058/*
2059 * Calculate the expected normal priority: i.e. priority
2060 * without taking RT-inheritance into account. Might be
2061 * boosted by interactivity modifiers. Changes upon fork,
2062 * setprio syscalls, and whenever the interactivity
2063 * estimator recalculates.
2064 */
36c8b586 2065static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2066{
2067 int prio;
2068
e05606d3 2069 if (task_has_rt_policy(p))
b29739f9
IM
2070 prio = MAX_RT_PRIO-1 - p->rt_priority;
2071 else
2072 prio = __normal_prio(p);
2073 return prio;
2074}
2075
2076/*
2077 * Calculate the current priority, i.e. the priority
2078 * taken into account by the scheduler. This value might
2079 * be boosted by RT tasks, or might be boosted by
2080 * interactivity modifiers. Will be RT if the task got
2081 * RT-boosted. If not then it returns p->normal_prio.
2082 */
36c8b586 2083static int effective_prio(struct task_struct *p)
b29739f9
IM
2084{
2085 p->normal_prio = normal_prio(p);
2086 /*
2087 * If we are RT tasks or we were boosted to RT priority,
2088 * keep the priority unchanged. Otherwise, update priority
2089 * to the normal priority:
2090 */
2091 if (!rt_prio(p->prio))
2092 return p->normal_prio;
2093 return p->prio;
2094}
2095
1da177e4
LT
2096/**
2097 * task_curr - is this task currently executing on a CPU?
2098 * @p: the task in question.
2099 */
36c8b586 2100inline int task_curr(const struct task_struct *p)
1da177e4
LT
2101{
2102 return cpu_curr(task_cpu(p)) == p;
2103}
2104
cb469845
SR
2105static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2106 const struct sched_class *prev_class,
da7a735e 2107 int oldprio)
cb469845
SR
2108{
2109 if (prev_class != p->sched_class) {
2110 if (prev_class->switched_from)
da7a735e
PZ
2111 prev_class->switched_from(rq, p);
2112 p->sched_class->switched_to(rq, p);
2113 } else if (oldprio != p->prio)
2114 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2115}
2116
1e5a7405
PZ
2117static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2118{
2119 const struct sched_class *class;
2120
2121 if (p->sched_class == rq->curr->sched_class) {
2122 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2123 } else {
2124 for_each_class(class) {
2125 if (class == rq->curr->sched_class)
2126 break;
2127 if (class == p->sched_class) {
2128 resched_task(rq->curr);
2129 break;
2130 }
2131 }
2132 }
2133
2134 /*
2135 * A queue event has occurred, and we're going to schedule. In
2136 * this case, we can save a useless back to back clock update.
2137 */
fd2f4419 2138 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2139 rq->skip_clock_update = 1;
2140}
2141
1da177e4 2142#ifdef CONFIG_SMP
cc367732
IM
2143/*
2144 * Is this task likely cache-hot:
2145 */
e7693a36 2146static int
cc367732
IM
2147task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2148{
2149 s64 delta;
2150
e6c8fba7
PZ
2151 if (p->sched_class != &fair_sched_class)
2152 return 0;
2153
ef8002f6
NR
2154 if (unlikely(p->policy == SCHED_IDLE))
2155 return 0;
2156
f540a608
IM
2157 /*
2158 * Buddy candidates are cache hot:
2159 */
f685ceac 2160 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2161 (&p->se == cfs_rq_of(&p->se)->next ||
2162 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2163 return 1;
2164
6bc1665b
IM
2165 if (sysctl_sched_migration_cost == -1)
2166 return 1;
2167 if (sysctl_sched_migration_cost == 0)
2168 return 0;
2169
cc367732
IM
2170 delta = now - p->se.exec_start;
2171
2172 return delta < (s64)sysctl_sched_migration_cost;
2173}
2174
dd41f596 2175void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2176{
e2912009
PZ
2177#ifdef CONFIG_SCHED_DEBUG
2178 /*
2179 * We should never call set_task_cpu() on a blocked task,
2180 * ttwu() will sort out the placement.
2181 */
077614ee
PZ
2182 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2183 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2184
2185#ifdef CONFIG_LOCKDEP
2186 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2187 lockdep_is_held(&task_rq(p)->lock)));
2188#endif
e2912009
PZ
2189#endif
2190
de1d7286 2191 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2192
0c69774e
PZ
2193 if (task_cpu(p) != new_cpu) {
2194 p->se.nr_migrations++;
2195 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2196 }
dd41f596
IM
2197
2198 __set_task_cpu(p, new_cpu);
c65cc870
IM
2199}
2200
969c7921 2201struct migration_arg {
36c8b586 2202 struct task_struct *task;
1da177e4 2203 int dest_cpu;
70b97a7f 2204};
1da177e4 2205
969c7921
TH
2206static int migration_cpu_stop(void *data);
2207
1da177e4
LT
2208/*
2209 * wait_task_inactive - wait for a thread to unschedule.
2210 *
85ba2d86
RM
2211 * If @match_state is nonzero, it's the @p->state value just checked and
2212 * not expected to change. If it changes, i.e. @p might have woken up,
2213 * then return zero. When we succeed in waiting for @p to be off its CPU,
2214 * we return a positive number (its total switch count). If a second call
2215 * a short while later returns the same number, the caller can be sure that
2216 * @p has remained unscheduled the whole time.
2217 *
1da177e4
LT
2218 * The caller must ensure that the task *will* unschedule sometime soon,
2219 * else this function might spin for a *long* time. This function can't
2220 * be called with interrupts off, or it may introduce deadlock with
2221 * smp_call_function() if an IPI is sent by the same process we are
2222 * waiting to become inactive.
2223 */
85ba2d86 2224unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2225{
2226 unsigned long flags;
dd41f596 2227 int running, on_rq;
85ba2d86 2228 unsigned long ncsw;
70b97a7f 2229 struct rq *rq;
1da177e4 2230
3a5c359a
AK
2231 for (;;) {
2232 /*
2233 * We do the initial early heuristics without holding
2234 * any task-queue locks at all. We'll only try to get
2235 * the runqueue lock when things look like they will
2236 * work out!
2237 */
2238 rq = task_rq(p);
fa490cfd 2239
3a5c359a
AK
2240 /*
2241 * If the task is actively running on another CPU
2242 * still, just relax and busy-wait without holding
2243 * any locks.
2244 *
2245 * NOTE! Since we don't hold any locks, it's not
2246 * even sure that "rq" stays as the right runqueue!
2247 * But we don't care, since "task_running()" will
2248 * return false if the runqueue has changed and p
2249 * is actually now running somewhere else!
2250 */
85ba2d86
RM
2251 while (task_running(rq, p)) {
2252 if (match_state && unlikely(p->state != match_state))
2253 return 0;
3a5c359a 2254 cpu_relax();
85ba2d86 2255 }
fa490cfd 2256
3a5c359a
AK
2257 /*
2258 * Ok, time to look more closely! We need the rq
2259 * lock now, to be *sure*. If we're wrong, we'll
2260 * just go back and repeat.
2261 */
2262 rq = task_rq_lock(p, &flags);
27a9da65 2263 trace_sched_wait_task(p);
3a5c359a 2264 running = task_running(rq, p);
fd2f4419 2265 on_rq = p->on_rq;
85ba2d86 2266 ncsw = 0;
f31e11d8 2267 if (!match_state || p->state == match_state)
93dcf55f 2268 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2269 task_rq_unlock(rq, p, &flags);
fa490cfd 2270
85ba2d86
RM
2271 /*
2272 * If it changed from the expected state, bail out now.
2273 */
2274 if (unlikely(!ncsw))
2275 break;
2276
3a5c359a
AK
2277 /*
2278 * Was it really running after all now that we
2279 * checked with the proper locks actually held?
2280 *
2281 * Oops. Go back and try again..
2282 */
2283 if (unlikely(running)) {
2284 cpu_relax();
2285 continue;
2286 }
fa490cfd 2287
3a5c359a
AK
2288 /*
2289 * It's not enough that it's not actively running,
2290 * it must be off the runqueue _entirely_, and not
2291 * preempted!
2292 *
80dd99b3 2293 * So if it was still runnable (but just not actively
3a5c359a
AK
2294 * running right now), it's preempted, and we should
2295 * yield - it could be a while.
2296 */
2297 if (unlikely(on_rq)) {
8eb90c30
TG
2298 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2299
2300 set_current_state(TASK_UNINTERRUPTIBLE);
2301 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2302 continue;
2303 }
fa490cfd 2304
3a5c359a
AK
2305 /*
2306 * Ahh, all good. It wasn't running, and it wasn't
2307 * runnable, which means that it will never become
2308 * running in the future either. We're all done!
2309 */
2310 break;
2311 }
85ba2d86
RM
2312
2313 return ncsw;
1da177e4
LT
2314}
2315
2316/***
2317 * kick_process - kick a running thread to enter/exit the kernel
2318 * @p: the to-be-kicked thread
2319 *
2320 * Cause a process which is running on another CPU to enter
2321 * kernel-mode, without any delay. (to get signals handled.)
2322 *
25985edc 2323 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2324 * because all it wants to ensure is that the remote task enters
2325 * the kernel. If the IPI races and the task has been migrated
2326 * to another CPU then no harm is done and the purpose has been
2327 * achieved as well.
2328 */
36c8b586 2329void kick_process(struct task_struct *p)
1da177e4
LT
2330{
2331 int cpu;
2332
2333 preempt_disable();
2334 cpu = task_cpu(p);
2335 if ((cpu != smp_processor_id()) && task_curr(p))
2336 smp_send_reschedule(cpu);
2337 preempt_enable();
2338}
b43e3521 2339EXPORT_SYMBOL_GPL(kick_process);
476d139c 2340#endif /* CONFIG_SMP */
1da177e4 2341
970b13ba 2342#ifdef CONFIG_SMP
30da688e 2343/*
013fdb80 2344 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2345 */
5da9a0fb
PZ
2346static int select_fallback_rq(int cpu, struct task_struct *p)
2347{
2348 int dest_cpu;
2349 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2350
2351 /* Look for allowed, online CPU in same node. */
2352 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2353 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2354 return dest_cpu;
2355
2356 /* Any allowed, online CPU? */
2357 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2358 if (dest_cpu < nr_cpu_ids)
2359 return dest_cpu;
2360
2361 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2362 dest_cpu = cpuset_cpus_allowed_fallback(p);
2363 /*
2364 * Don't tell them about moving exiting tasks or
2365 * kernel threads (both mm NULL), since they never
2366 * leave kernel.
2367 */
2368 if (p->mm && printk_ratelimit()) {
2369 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2370 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2371 }
2372
2373 return dest_cpu;
2374}
2375
e2912009 2376/*
013fdb80 2377 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2378 */
970b13ba 2379static inline
7608dec2 2380int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2381{
7608dec2 2382 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2383
2384 /*
2385 * In order not to call set_task_cpu() on a blocking task we need
2386 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2387 * cpu.
2388 *
2389 * Since this is common to all placement strategies, this lives here.
2390 *
2391 * [ this allows ->select_task() to simply return task_cpu(p) and
2392 * not worry about this generic constraint ]
2393 */
2394 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2395 !cpu_online(cpu)))
5da9a0fb 2396 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2397
2398 return cpu;
970b13ba 2399}
09a40af5
MG
2400
2401static void update_avg(u64 *avg, u64 sample)
2402{
2403 s64 diff = sample - *avg;
2404 *avg += diff >> 3;
2405}
970b13ba
PZ
2406#endif
2407
d7c01d27 2408static void
b84cb5df 2409ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2410{
d7c01d27 2411#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2412 struct rq *rq = this_rq();
2413
d7c01d27
PZ
2414#ifdef CONFIG_SMP
2415 int this_cpu = smp_processor_id();
2416
2417 if (cpu == this_cpu) {
2418 schedstat_inc(rq, ttwu_local);
2419 schedstat_inc(p, se.statistics.nr_wakeups_local);
2420 } else {
2421 struct sched_domain *sd;
2422
2423 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2424 rcu_read_lock();
d7c01d27
PZ
2425 for_each_domain(this_cpu, sd) {
2426 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2427 schedstat_inc(sd, ttwu_wake_remote);
2428 break;
2429 }
2430 }
057f3fad 2431 rcu_read_unlock();
d7c01d27
PZ
2432 }
2433#endif /* CONFIG_SMP */
2434
2435 schedstat_inc(rq, ttwu_count);
9ed3811a 2436 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2437
2438 if (wake_flags & WF_SYNC)
9ed3811a 2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2440
2441 if (cpu != task_cpu(p))
9ed3811a 2442 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
9ed3811a 2443
d7c01d27
PZ
2444#endif /* CONFIG_SCHEDSTATS */
2445}
2446
2447static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2448{
9ed3811a 2449 activate_task(rq, p, en_flags);
fd2f4419 2450 p->on_rq = 1;
c2f7115e
PZ
2451
2452 /* if a worker is waking up, notify workqueue */
2453 if (p->flags & PF_WQ_WORKER)
2454 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2455}
2456
23f41eeb
PZ
2457/*
2458 * Mark the task runnable and perform wakeup-preemption.
2459 */
89363381 2460static void
23f41eeb 2461ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2462{
89363381 2463 trace_sched_wakeup(p, true);
9ed3811a
TH
2464 check_preempt_curr(rq, p, wake_flags);
2465
2466 p->state = TASK_RUNNING;
2467#ifdef CONFIG_SMP
2468 if (p->sched_class->task_woken)
2469 p->sched_class->task_woken(rq, p);
2470
2471 if (unlikely(rq->idle_stamp)) {
2472 u64 delta = rq->clock - rq->idle_stamp;
2473 u64 max = 2*sysctl_sched_migration_cost;
2474
2475 if (delta > max)
2476 rq->avg_idle = max;
2477 else
2478 update_avg(&rq->avg_idle, delta);
2479 rq->idle_stamp = 0;
2480 }
2481#endif
2482}
2483
c05fbafb
PZ
2484static void
2485ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2486{
2487#ifdef CONFIG_SMP
2488 if (p->sched_contributes_to_load)
2489 rq->nr_uninterruptible--;
2490#endif
2491
2492 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2493 ttwu_do_wakeup(rq, p, wake_flags);
2494}
2495
2496/*
2497 * Called in case the task @p isn't fully descheduled from its runqueue,
2498 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2499 * since all we need to do is flip p->state to TASK_RUNNING, since
2500 * the task is still ->on_rq.
2501 */
2502static int ttwu_remote(struct task_struct *p, int wake_flags)
2503{
2504 struct rq *rq;
2505 int ret = 0;
2506
2507 rq = __task_rq_lock(p);
2508 if (p->on_rq) {
2509 ttwu_do_wakeup(rq, p, wake_flags);
2510 ret = 1;
2511 }
2512 __task_rq_unlock(rq);
2513
2514 return ret;
2515}
2516
317f3941
PZ
2517#ifdef CONFIG_SMP
2518static void sched_ttwu_pending(void)
2519{
2520 struct rq *rq = this_rq();
2521 struct task_struct *list = xchg(&rq->wake_list, NULL);
2522
2523 if (!list)
2524 return;
2525
2526 raw_spin_lock(&rq->lock);
2527
2528 while (list) {
2529 struct task_struct *p = list;
2530 list = list->wake_entry;
2531 ttwu_do_activate(rq, p, 0);
2532 }
2533
2534 raw_spin_unlock(&rq->lock);
2535}
2536
2537void scheduler_ipi(void)
2538{
2539 sched_ttwu_pending();
2540}
2541
2542static void ttwu_queue_remote(struct task_struct *p, int cpu)
2543{
2544 struct rq *rq = cpu_rq(cpu);
2545 struct task_struct *next = rq->wake_list;
2546
2547 for (;;) {
2548 struct task_struct *old = next;
2549
2550 p->wake_entry = next;
2551 next = cmpxchg(&rq->wake_list, old, p);
2552 if (next == old)
2553 break;
2554 }
2555
2556 if (!next)
2557 smp_send_reschedule(cpu);
2558}
2559#endif
2560
c05fbafb
PZ
2561static void ttwu_queue(struct task_struct *p, int cpu)
2562{
2563 struct rq *rq = cpu_rq(cpu);
2564
317f3941
PZ
2565#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_TTWU_QUEUE)
2566 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2567 ttwu_queue_remote(p, cpu);
2568 return;
2569 }
2570#endif
2571
c05fbafb
PZ
2572 raw_spin_lock(&rq->lock);
2573 ttwu_do_activate(rq, p, 0);
2574 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2575}
2576
2577/**
1da177e4 2578 * try_to_wake_up - wake up a thread
9ed3811a 2579 * @p: the thread to be awakened
1da177e4 2580 * @state: the mask of task states that can be woken
9ed3811a 2581 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2582 *
2583 * Put it on the run-queue if it's not already there. The "current"
2584 * thread is always on the run-queue (except when the actual
2585 * re-schedule is in progress), and as such you're allowed to do
2586 * the simpler "current->state = TASK_RUNNING" to mark yourself
2587 * runnable without the overhead of this.
2588 *
9ed3811a
TH
2589 * Returns %true if @p was woken up, %false if it was already running
2590 * or @state didn't match @p's state.
1da177e4 2591 */
e4a52bcb
PZ
2592static int
2593try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2594{
1da177e4 2595 unsigned long flags;
c05fbafb 2596 int cpu, success = 0;
2398f2c6 2597
04e2f174 2598 smp_wmb();
013fdb80 2599 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2600 if (!(p->state & state))
1da177e4
LT
2601 goto out;
2602
c05fbafb 2603 success = 1; /* we're going to change ->state */
1da177e4 2604 cpu = task_cpu(p);
1da177e4 2605
c05fbafb
PZ
2606 if (p->on_rq && ttwu_remote(p, wake_flags))
2607 goto stat;
1da177e4 2608
1da177e4 2609#ifdef CONFIG_SMP
e9c84311 2610 /*
c05fbafb
PZ
2611 * If the owning (remote) cpu is still in the middle of schedule() with
2612 * this task as prev, wait until its done referencing the task.
e9c84311 2613 */
e4a52bcb
PZ
2614 while (p->on_cpu) {
2615#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2616 /*
2617 * If called from interrupt context we could have landed in the
2618 * middle of schedule(), in this case we should take care not
2619 * to spin on ->on_cpu if p is current, since that would
2620 * deadlock.
2621 */
c05fbafb
PZ
2622 if (p == current) {
2623 ttwu_queue(p, cpu);
2624 goto stat;
2625 }
e4a52bcb
PZ
2626#endif
2627 cpu_relax();
371fd7e7 2628 }
0970d299 2629 /*
e4a52bcb 2630 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2631 */
e4a52bcb 2632 smp_rmb();
1da177e4 2633
a8e4f2ea 2634 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2635 p->state = TASK_WAKING;
e7693a36 2636
e4a52bcb 2637 if (p->sched_class->task_waking)
74f8e4b2 2638 p->sched_class->task_waking(p);
efbbd05a 2639
7608dec2 2640 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
c05fbafb 2641 if (task_cpu(p) != cpu)
e4a52bcb 2642 set_task_cpu(p, cpu);
1da177e4 2643#endif /* CONFIG_SMP */
1da177e4 2644
c05fbafb
PZ
2645 ttwu_queue(p, cpu);
2646stat:
b84cb5df 2647 ttwu_stat(p, cpu, wake_flags);
1da177e4 2648out:
013fdb80 2649 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2650
2651 return success;
2652}
2653
21aa9af0
TH
2654/**
2655 * try_to_wake_up_local - try to wake up a local task with rq lock held
2656 * @p: the thread to be awakened
2657 *
2acca55e 2658 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2659 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2660 * the current task.
21aa9af0
TH
2661 */
2662static void try_to_wake_up_local(struct task_struct *p)
2663{
2664 struct rq *rq = task_rq(p);
21aa9af0
TH
2665
2666 BUG_ON(rq != this_rq());
2667 BUG_ON(p == current);
2668 lockdep_assert_held(&rq->lock);
2669
2acca55e
PZ
2670 if (!raw_spin_trylock(&p->pi_lock)) {
2671 raw_spin_unlock(&rq->lock);
2672 raw_spin_lock(&p->pi_lock);
2673 raw_spin_lock(&rq->lock);
2674 }
2675
21aa9af0 2676 if (!(p->state & TASK_NORMAL))
2acca55e 2677 goto out;
21aa9af0 2678
fd2f4419 2679 if (!p->on_rq)
d7c01d27
PZ
2680 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2681
23f41eeb 2682 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2683 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2684out:
2685 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2686}
2687
50fa610a
DH
2688/**
2689 * wake_up_process - Wake up a specific process
2690 * @p: The process to be woken up.
2691 *
2692 * Attempt to wake up the nominated process and move it to the set of runnable
2693 * processes. Returns 1 if the process was woken up, 0 if it was already
2694 * running.
2695 *
2696 * It may be assumed that this function implies a write memory barrier before
2697 * changing the task state if and only if any tasks are woken up.
2698 */
7ad5b3a5 2699int wake_up_process(struct task_struct *p)
1da177e4 2700{
d9514f6c 2701 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2702}
1da177e4
LT
2703EXPORT_SYMBOL(wake_up_process);
2704
7ad5b3a5 2705int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2706{
2707 return try_to_wake_up(p, state, 0);
2708}
2709
1da177e4
LT
2710/*
2711 * Perform scheduler related setup for a newly forked process p.
2712 * p is forked by current.
dd41f596
IM
2713 *
2714 * __sched_fork() is basic setup used by init_idle() too:
2715 */
2716static void __sched_fork(struct task_struct *p)
2717{
fd2f4419
PZ
2718 p->on_rq = 0;
2719
2720 p->se.on_rq = 0;
dd41f596
IM
2721 p->se.exec_start = 0;
2722 p->se.sum_exec_runtime = 0;
f6cf891c 2723 p->se.prev_sum_exec_runtime = 0;
6c594c21 2724 p->se.nr_migrations = 0;
da7a735e 2725 p->se.vruntime = 0;
fd2f4419 2726 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2727
2728#ifdef CONFIG_SCHEDSTATS
41acab88 2729 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2730#endif
476d139c 2731
fa717060 2732 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2733
e107be36
AK
2734#ifdef CONFIG_PREEMPT_NOTIFIERS
2735 INIT_HLIST_HEAD(&p->preempt_notifiers);
2736#endif
dd41f596
IM
2737}
2738
2739/*
2740 * fork()/clone()-time setup:
2741 */
2742void sched_fork(struct task_struct *p, int clone_flags)
2743{
0122ec5b 2744 unsigned long flags;
dd41f596
IM
2745 int cpu = get_cpu();
2746
2747 __sched_fork(p);
06b83b5f 2748 /*
0017d735 2749 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2750 * nobody will actually run it, and a signal or other external
2751 * event cannot wake it up and insert it on the runqueue either.
2752 */
0017d735 2753 p->state = TASK_RUNNING;
dd41f596 2754
b9dc29e7
MG
2755 /*
2756 * Revert to default priority/policy on fork if requested.
2757 */
2758 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2759 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2760 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2761 p->normal_prio = p->static_prio;
2762 }
b9dc29e7 2763
6c697bdf
MG
2764 if (PRIO_TO_NICE(p->static_prio) < 0) {
2765 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2766 p->normal_prio = p->static_prio;
6c697bdf
MG
2767 set_load_weight(p);
2768 }
2769
b9dc29e7
MG
2770 /*
2771 * We don't need the reset flag anymore after the fork. It has
2772 * fulfilled its duty:
2773 */
2774 p->sched_reset_on_fork = 0;
2775 }
ca94c442 2776
f83f9ac2
PW
2777 /*
2778 * Make sure we do not leak PI boosting priority to the child.
2779 */
2780 p->prio = current->normal_prio;
2781
2ddbf952
HS
2782 if (!rt_prio(p->prio))
2783 p->sched_class = &fair_sched_class;
b29739f9 2784
cd29fe6f
PZ
2785 if (p->sched_class->task_fork)
2786 p->sched_class->task_fork(p);
2787
86951599
PZ
2788 /*
2789 * The child is not yet in the pid-hash so no cgroup attach races,
2790 * and the cgroup is pinned to this child due to cgroup_fork()
2791 * is ran before sched_fork().
2792 *
2793 * Silence PROVE_RCU.
2794 */
0122ec5b 2795 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2796 set_task_cpu(p, cpu);
0122ec5b 2797 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2798
52f17b6c 2799#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2800 if (likely(sched_info_on()))
52f17b6c 2801 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2802#endif
3ca7a440
PZ
2803#if defined(CONFIG_SMP)
2804 p->on_cpu = 0;
4866cde0 2805#endif
1da177e4 2806#ifdef CONFIG_PREEMPT
4866cde0 2807 /* Want to start with kernel preemption disabled. */
a1261f54 2808 task_thread_info(p)->preempt_count = 1;
1da177e4 2809#endif
806c09a7 2810#ifdef CONFIG_SMP
917b627d 2811 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2812#endif
917b627d 2813
476d139c 2814 put_cpu();
1da177e4
LT
2815}
2816
2817/*
2818 * wake_up_new_task - wake up a newly created task for the first time.
2819 *
2820 * This function will do some initial scheduler statistics housekeeping
2821 * that must be done for every newly created context, then puts the task
2822 * on the runqueue and wakes it.
2823 */
7ad5b3a5 2824void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2825{
2826 unsigned long flags;
dd41f596 2827 struct rq *rq;
fabf318e 2828
ab2515c4 2829 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2830#ifdef CONFIG_SMP
2831 /*
2832 * Fork balancing, do it here and not earlier because:
2833 * - cpus_allowed can change in the fork path
2834 * - any previously selected cpu might disappear through hotplug
fabf318e 2835 */
ab2515c4 2836 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
2837#endif
2838
ab2515c4 2839 rq = __task_rq_lock(p);
cd29fe6f 2840 activate_task(rq, p, 0);
fd2f4419 2841 p->on_rq = 1;
89363381 2842 trace_sched_wakeup_new(p, true);
a7558e01 2843 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2844#ifdef CONFIG_SMP
efbbd05a
PZ
2845 if (p->sched_class->task_woken)
2846 p->sched_class->task_woken(rq, p);
9a897c5a 2847#endif
0122ec5b 2848 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2849}
2850
e107be36
AK
2851#ifdef CONFIG_PREEMPT_NOTIFIERS
2852
2853/**
80dd99b3 2854 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2855 * @notifier: notifier struct to register
e107be36
AK
2856 */
2857void preempt_notifier_register(struct preempt_notifier *notifier)
2858{
2859 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2860}
2861EXPORT_SYMBOL_GPL(preempt_notifier_register);
2862
2863/**
2864 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2865 * @notifier: notifier struct to unregister
e107be36
AK
2866 *
2867 * This is safe to call from within a preemption notifier.
2868 */
2869void preempt_notifier_unregister(struct preempt_notifier *notifier)
2870{
2871 hlist_del(&notifier->link);
2872}
2873EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2874
2875static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2876{
2877 struct preempt_notifier *notifier;
2878 struct hlist_node *node;
2879
2880 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2881 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2882}
2883
2884static void
2885fire_sched_out_preempt_notifiers(struct task_struct *curr,
2886 struct task_struct *next)
2887{
2888 struct preempt_notifier *notifier;
2889 struct hlist_node *node;
2890
2891 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2892 notifier->ops->sched_out(notifier, next);
2893}
2894
6d6bc0ad 2895#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2896
2897static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2898{
2899}
2900
2901static void
2902fire_sched_out_preempt_notifiers(struct task_struct *curr,
2903 struct task_struct *next)
2904{
2905}
2906
6d6bc0ad 2907#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2908
4866cde0
NP
2909/**
2910 * prepare_task_switch - prepare to switch tasks
2911 * @rq: the runqueue preparing to switch
421cee29 2912 * @prev: the current task that is being switched out
4866cde0
NP
2913 * @next: the task we are going to switch to.
2914 *
2915 * This is called with the rq lock held and interrupts off. It must
2916 * be paired with a subsequent finish_task_switch after the context
2917 * switch.
2918 *
2919 * prepare_task_switch sets up locking and calls architecture specific
2920 * hooks.
2921 */
e107be36
AK
2922static inline void
2923prepare_task_switch(struct rq *rq, struct task_struct *prev,
2924 struct task_struct *next)
4866cde0 2925{
fe4b04fa
PZ
2926 sched_info_switch(prev, next);
2927 perf_event_task_sched_out(prev, next);
e107be36 2928 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2929 prepare_lock_switch(rq, next);
2930 prepare_arch_switch(next);
fe4b04fa 2931 trace_sched_switch(prev, next);
4866cde0
NP
2932}
2933
1da177e4
LT
2934/**
2935 * finish_task_switch - clean up after a task-switch
344babaa 2936 * @rq: runqueue associated with task-switch
1da177e4
LT
2937 * @prev: the thread we just switched away from.
2938 *
4866cde0
NP
2939 * finish_task_switch must be called after the context switch, paired
2940 * with a prepare_task_switch call before the context switch.
2941 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2942 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2943 *
2944 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2945 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2946 * with the lock held can cause deadlocks; see schedule() for
2947 * details.)
2948 */
a9957449 2949static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2950 __releases(rq->lock)
2951{
1da177e4 2952 struct mm_struct *mm = rq->prev_mm;
55a101f8 2953 long prev_state;
1da177e4
LT
2954
2955 rq->prev_mm = NULL;
2956
2957 /*
2958 * A task struct has one reference for the use as "current".
c394cc9f 2959 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2960 * schedule one last time. The schedule call will never return, and
2961 * the scheduled task must drop that reference.
c394cc9f 2962 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2963 * still held, otherwise prev could be scheduled on another cpu, die
2964 * there before we look at prev->state, and then the reference would
2965 * be dropped twice.
2966 * Manfred Spraul <manfred@colorfullife.com>
2967 */
55a101f8 2968 prev_state = prev->state;
4866cde0 2969 finish_arch_switch(prev);
8381f65d
JI
2970#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2971 local_irq_disable();
2972#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2973 perf_event_task_sched_in(current);
8381f65d
JI
2974#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2975 local_irq_enable();
2976#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2977 finish_lock_switch(rq, prev);
e8fa1362 2978
e107be36 2979 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2980 if (mm)
2981 mmdrop(mm);
c394cc9f 2982 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2983 /*
2984 * Remove function-return probe instances associated with this
2985 * task and put them back on the free list.
9761eea8 2986 */
c6fd91f0 2987 kprobe_flush_task(prev);
1da177e4 2988 put_task_struct(prev);
c6fd91f0 2989 }
1da177e4
LT
2990}
2991
3f029d3c
GH
2992#ifdef CONFIG_SMP
2993
2994/* assumes rq->lock is held */
2995static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2996{
2997 if (prev->sched_class->pre_schedule)
2998 prev->sched_class->pre_schedule(rq, prev);
2999}
3000
3001/* rq->lock is NOT held, but preemption is disabled */
3002static inline void post_schedule(struct rq *rq)
3003{
3004 if (rq->post_schedule) {
3005 unsigned long flags;
3006
05fa785c 3007 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3008 if (rq->curr->sched_class->post_schedule)
3009 rq->curr->sched_class->post_schedule(rq);
05fa785c 3010 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3011
3012 rq->post_schedule = 0;
3013 }
3014}
3015
3016#else
da19ab51 3017
3f029d3c
GH
3018static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3019{
3020}
3021
3022static inline void post_schedule(struct rq *rq)
3023{
1da177e4
LT
3024}
3025
3f029d3c
GH
3026#endif
3027
1da177e4
LT
3028/**
3029 * schedule_tail - first thing a freshly forked thread must call.
3030 * @prev: the thread we just switched away from.
3031 */
36c8b586 3032asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3033 __releases(rq->lock)
3034{
70b97a7f
IM
3035 struct rq *rq = this_rq();
3036
4866cde0 3037 finish_task_switch(rq, prev);
da19ab51 3038
3f029d3c
GH
3039 /*
3040 * FIXME: do we need to worry about rq being invalidated by the
3041 * task_switch?
3042 */
3043 post_schedule(rq);
70b97a7f 3044
4866cde0
NP
3045#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3046 /* In this case, finish_task_switch does not reenable preemption */
3047 preempt_enable();
3048#endif
1da177e4 3049 if (current->set_child_tid)
b488893a 3050 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3051}
3052
3053/*
3054 * context_switch - switch to the new MM and the new
3055 * thread's register state.
3056 */
dd41f596 3057static inline void
70b97a7f 3058context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3059 struct task_struct *next)
1da177e4 3060{
dd41f596 3061 struct mm_struct *mm, *oldmm;
1da177e4 3062
e107be36 3063 prepare_task_switch(rq, prev, next);
fe4b04fa 3064
dd41f596
IM
3065 mm = next->mm;
3066 oldmm = prev->active_mm;
9226d125
ZA
3067 /*
3068 * For paravirt, this is coupled with an exit in switch_to to
3069 * combine the page table reload and the switch backend into
3070 * one hypercall.
3071 */
224101ed 3072 arch_start_context_switch(prev);
9226d125 3073
31915ab4 3074 if (!mm) {
1da177e4
LT
3075 next->active_mm = oldmm;
3076 atomic_inc(&oldmm->mm_count);
3077 enter_lazy_tlb(oldmm, next);
3078 } else
3079 switch_mm(oldmm, mm, next);
3080
31915ab4 3081 if (!prev->mm) {
1da177e4 3082 prev->active_mm = NULL;
1da177e4
LT
3083 rq->prev_mm = oldmm;
3084 }
3a5f5e48
IM
3085 /*
3086 * Since the runqueue lock will be released by the next
3087 * task (which is an invalid locking op but in the case
3088 * of the scheduler it's an obvious special-case), so we
3089 * do an early lockdep release here:
3090 */
3091#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3092 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3093#endif
1da177e4
LT
3094
3095 /* Here we just switch the register state and the stack. */
3096 switch_to(prev, next, prev);
3097
dd41f596
IM
3098 barrier();
3099 /*
3100 * this_rq must be evaluated again because prev may have moved
3101 * CPUs since it called schedule(), thus the 'rq' on its stack
3102 * frame will be invalid.
3103 */
3104 finish_task_switch(this_rq(), prev);
1da177e4
LT
3105}
3106
3107/*
3108 * nr_running, nr_uninterruptible and nr_context_switches:
3109 *
3110 * externally visible scheduler statistics: current number of runnable
3111 * threads, current number of uninterruptible-sleeping threads, total
3112 * number of context switches performed since bootup.
3113 */
3114unsigned long nr_running(void)
3115{
3116 unsigned long i, sum = 0;
3117
3118 for_each_online_cpu(i)
3119 sum += cpu_rq(i)->nr_running;
3120
3121 return sum;
f711f609 3122}
1da177e4
LT
3123
3124unsigned long nr_uninterruptible(void)
f711f609 3125{
1da177e4 3126 unsigned long i, sum = 0;
f711f609 3127
0a945022 3128 for_each_possible_cpu(i)
1da177e4 3129 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3130
3131 /*
1da177e4
LT
3132 * Since we read the counters lockless, it might be slightly
3133 * inaccurate. Do not allow it to go below zero though:
f711f609 3134 */
1da177e4
LT
3135 if (unlikely((long)sum < 0))
3136 sum = 0;
f711f609 3137
1da177e4 3138 return sum;
f711f609 3139}
f711f609 3140
1da177e4 3141unsigned long long nr_context_switches(void)
46cb4b7c 3142{
cc94abfc
SR
3143 int i;
3144 unsigned long long sum = 0;
46cb4b7c 3145
0a945022 3146 for_each_possible_cpu(i)
1da177e4 3147 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3148
1da177e4
LT
3149 return sum;
3150}
483b4ee6 3151
1da177e4
LT
3152unsigned long nr_iowait(void)
3153{
3154 unsigned long i, sum = 0;
483b4ee6 3155
0a945022 3156 for_each_possible_cpu(i)
1da177e4 3157 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3158
1da177e4
LT
3159 return sum;
3160}
483b4ee6 3161
8c215bd3 3162unsigned long nr_iowait_cpu(int cpu)
69d25870 3163{
8c215bd3 3164 struct rq *this = cpu_rq(cpu);
69d25870
AV
3165 return atomic_read(&this->nr_iowait);
3166}
46cb4b7c 3167
69d25870
AV
3168unsigned long this_cpu_load(void)
3169{
3170 struct rq *this = this_rq();
3171 return this->cpu_load[0];
3172}
e790fb0b 3173
46cb4b7c 3174
dce48a84
TG
3175/* Variables and functions for calc_load */
3176static atomic_long_t calc_load_tasks;
3177static unsigned long calc_load_update;
3178unsigned long avenrun[3];
3179EXPORT_SYMBOL(avenrun);
46cb4b7c 3180
74f5187a
PZ
3181static long calc_load_fold_active(struct rq *this_rq)
3182{
3183 long nr_active, delta = 0;
3184
3185 nr_active = this_rq->nr_running;
3186 nr_active += (long) this_rq->nr_uninterruptible;
3187
3188 if (nr_active != this_rq->calc_load_active) {
3189 delta = nr_active - this_rq->calc_load_active;
3190 this_rq->calc_load_active = nr_active;
3191 }
3192
3193 return delta;
3194}
3195
0f004f5a
PZ
3196static unsigned long
3197calc_load(unsigned long load, unsigned long exp, unsigned long active)
3198{
3199 load *= exp;
3200 load += active * (FIXED_1 - exp);
3201 load += 1UL << (FSHIFT - 1);
3202 return load >> FSHIFT;
3203}
3204
74f5187a
PZ
3205#ifdef CONFIG_NO_HZ
3206/*
3207 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3208 *
3209 * When making the ILB scale, we should try to pull this in as well.
3210 */
3211static atomic_long_t calc_load_tasks_idle;
3212
3213static void calc_load_account_idle(struct rq *this_rq)
3214{
3215 long delta;
3216
3217 delta = calc_load_fold_active(this_rq);
3218 if (delta)
3219 atomic_long_add(delta, &calc_load_tasks_idle);
3220}
3221
3222static long calc_load_fold_idle(void)
3223{
3224 long delta = 0;
3225
3226 /*
3227 * Its got a race, we don't care...
3228 */
3229 if (atomic_long_read(&calc_load_tasks_idle))
3230 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3231
3232 return delta;
3233}
0f004f5a
PZ
3234
3235/**
3236 * fixed_power_int - compute: x^n, in O(log n) time
3237 *
3238 * @x: base of the power
3239 * @frac_bits: fractional bits of @x
3240 * @n: power to raise @x to.
3241 *
3242 * By exploiting the relation between the definition of the natural power
3243 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3244 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3245 * (where: n_i \elem {0, 1}, the binary vector representing n),
3246 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3247 * of course trivially computable in O(log_2 n), the length of our binary
3248 * vector.
3249 */
3250static unsigned long
3251fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3252{
3253 unsigned long result = 1UL << frac_bits;
3254
3255 if (n) for (;;) {
3256 if (n & 1) {
3257 result *= x;
3258 result += 1UL << (frac_bits - 1);
3259 result >>= frac_bits;
3260 }
3261 n >>= 1;
3262 if (!n)
3263 break;
3264 x *= x;
3265 x += 1UL << (frac_bits - 1);
3266 x >>= frac_bits;
3267 }
3268
3269 return result;
3270}
3271
3272/*
3273 * a1 = a0 * e + a * (1 - e)
3274 *
3275 * a2 = a1 * e + a * (1 - e)
3276 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3277 * = a0 * e^2 + a * (1 - e) * (1 + e)
3278 *
3279 * a3 = a2 * e + a * (1 - e)
3280 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3281 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3282 *
3283 * ...
3284 *
3285 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3286 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3287 * = a0 * e^n + a * (1 - e^n)
3288 *
3289 * [1] application of the geometric series:
3290 *
3291 * n 1 - x^(n+1)
3292 * S_n := \Sum x^i = -------------
3293 * i=0 1 - x
3294 */
3295static unsigned long
3296calc_load_n(unsigned long load, unsigned long exp,
3297 unsigned long active, unsigned int n)
3298{
3299
3300 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3301}
3302
3303/*
3304 * NO_HZ can leave us missing all per-cpu ticks calling
3305 * calc_load_account_active(), but since an idle CPU folds its delta into
3306 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3307 * in the pending idle delta if our idle period crossed a load cycle boundary.
3308 *
3309 * Once we've updated the global active value, we need to apply the exponential
3310 * weights adjusted to the number of cycles missed.
3311 */
3312static void calc_global_nohz(unsigned long ticks)
3313{
3314 long delta, active, n;
3315
3316 if (time_before(jiffies, calc_load_update))
3317 return;
3318
3319 /*
3320 * If we crossed a calc_load_update boundary, make sure to fold
3321 * any pending idle changes, the respective CPUs might have
3322 * missed the tick driven calc_load_account_active() update
3323 * due to NO_HZ.
3324 */
3325 delta = calc_load_fold_idle();
3326 if (delta)
3327 atomic_long_add(delta, &calc_load_tasks);
3328
3329 /*
3330 * If we were idle for multiple load cycles, apply them.
3331 */
3332 if (ticks >= LOAD_FREQ) {
3333 n = ticks / LOAD_FREQ;
3334
3335 active = atomic_long_read(&calc_load_tasks);
3336 active = active > 0 ? active * FIXED_1 : 0;
3337
3338 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3339 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3340 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3341
3342 calc_load_update += n * LOAD_FREQ;
3343 }
3344
3345 /*
3346 * Its possible the remainder of the above division also crosses
3347 * a LOAD_FREQ period, the regular check in calc_global_load()
3348 * which comes after this will take care of that.
3349 *
3350 * Consider us being 11 ticks before a cycle completion, and us
3351 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3352 * age us 4 cycles, and the test in calc_global_load() will
3353 * pick up the final one.
3354 */
3355}
74f5187a
PZ
3356#else
3357static void calc_load_account_idle(struct rq *this_rq)
3358{
3359}
3360
3361static inline long calc_load_fold_idle(void)
3362{
3363 return 0;
3364}
0f004f5a
PZ
3365
3366static void calc_global_nohz(unsigned long ticks)
3367{
3368}
74f5187a
PZ
3369#endif
3370
2d02494f
TG
3371/**
3372 * get_avenrun - get the load average array
3373 * @loads: pointer to dest load array
3374 * @offset: offset to add
3375 * @shift: shift count to shift the result left
3376 *
3377 * These values are estimates at best, so no need for locking.
3378 */
3379void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3380{
3381 loads[0] = (avenrun[0] + offset) << shift;
3382 loads[1] = (avenrun[1] + offset) << shift;
3383 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3384}
46cb4b7c 3385
46cb4b7c 3386/*
dce48a84
TG
3387 * calc_load - update the avenrun load estimates 10 ticks after the
3388 * CPUs have updated calc_load_tasks.
7835b98b 3389 */
0f004f5a 3390void calc_global_load(unsigned long ticks)
7835b98b 3391{
dce48a84 3392 long active;
1da177e4 3393
0f004f5a
PZ
3394 calc_global_nohz(ticks);
3395
3396 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3397 return;
1da177e4 3398
dce48a84
TG
3399 active = atomic_long_read(&calc_load_tasks);
3400 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3401
dce48a84
TG
3402 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3403 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3404 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3405
dce48a84
TG
3406 calc_load_update += LOAD_FREQ;
3407}
1da177e4 3408
dce48a84 3409/*
74f5187a
PZ
3410 * Called from update_cpu_load() to periodically update this CPU's
3411 * active count.
dce48a84
TG
3412 */
3413static void calc_load_account_active(struct rq *this_rq)
3414{
74f5187a 3415 long delta;
08c183f3 3416
74f5187a
PZ
3417 if (time_before(jiffies, this_rq->calc_load_update))
3418 return;
783609c6 3419
74f5187a
PZ
3420 delta = calc_load_fold_active(this_rq);
3421 delta += calc_load_fold_idle();
3422 if (delta)
dce48a84 3423 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3424
3425 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3426}
3427
fdf3e95d
VP
3428/*
3429 * The exact cpuload at various idx values, calculated at every tick would be
3430 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3431 *
3432 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3433 * on nth tick when cpu may be busy, then we have:
3434 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3435 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3436 *
3437 * decay_load_missed() below does efficient calculation of
3438 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3439 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3440 *
3441 * The calculation is approximated on a 128 point scale.
3442 * degrade_zero_ticks is the number of ticks after which load at any
3443 * particular idx is approximated to be zero.
3444 * degrade_factor is a precomputed table, a row for each load idx.
3445 * Each column corresponds to degradation factor for a power of two ticks,
3446 * based on 128 point scale.
3447 * Example:
3448 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3449 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3450 *
3451 * With this power of 2 load factors, we can degrade the load n times
3452 * by looking at 1 bits in n and doing as many mult/shift instead of
3453 * n mult/shifts needed by the exact degradation.
3454 */
3455#define DEGRADE_SHIFT 7
3456static const unsigned char
3457 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3458static const unsigned char
3459 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3460 {0, 0, 0, 0, 0, 0, 0, 0},
3461 {64, 32, 8, 0, 0, 0, 0, 0},
3462 {96, 72, 40, 12, 1, 0, 0},
3463 {112, 98, 75, 43, 15, 1, 0},
3464 {120, 112, 98, 76, 45, 16, 2} };
3465
3466/*
3467 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3468 * would be when CPU is idle and so we just decay the old load without
3469 * adding any new load.
3470 */
3471static unsigned long
3472decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3473{
3474 int j = 0;
3475
3476 if (!missed_updates)
3477 return load;
3478
3479 if (missed_updates >= degrade_zero_ticks[idx])
3480 return 0;
3481
3482 if (idx == 1)
3483 return load >> missed_updates;
3484
3485 while (missed_updates) {
3486 if (missed_updates % 2)
3487 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3488
3489 missed_updates >>= 1;
3490 j++;
3491 }
3492 return load;
3493}
3494
46cb4b7c 3495/*
dd41f596 3496 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3497 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3498 * every tick. We fix it up based on jiffies.
46cb4b7c 3499 */
dd41f596 3500static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3501{
495eca49 3502 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3503 unsigned long curr_jiffies = jiffies;
3504 unsigned long pending_updates;
dd41f596 3505 int i, scale;
46cb4b7c 3506
dd41f596 3507 this_rq->nr_load_updates++;
46cb4b7c 3508
fdf3e95d
VP
3509 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3510 if (curr_jiffies == this_rq->last_load_update_tick)
3511 return;
3512
3513 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3514 this_rq->last_load_update_tick = curr_jiffies;
3515
dd41f596 3516 /* Update our load: */
fdf3e95d
VP
3517 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3518 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3519 unsigned long old_load, new_load;
7d1e6a9b 3520
dd41f596 3521 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3522
dd41f596 3523 old_load = this_rq->cpu_load[i];
fdf3e95d 3524 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3525 new_load = this_load;
a25707f3
IM
3526 /*
3527 * Round up the averaging division if load is increasing. This
3528 * prevents us from getting stuck on 9 if the load is 10, for
3529 * example.
3530 */
3531 if (new_load > old_load)
fdf3e95d
VP
3532 new_load += scale - 1;
3533
3534 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3535 }
da2b71ed
SS
3536
3537 sched_avg_update(this_rq);
fdf3e95d
VP
3538}
3539
3540static void update_cpu_load_active(struct rq *this_rq)
3541{
3542 update_cpu_load(this_rq);
46cb4b7c 3543
74f5187a 3544 calc_load_account_active(this_rq);
46cb4b7c
SS
3545}
3546
dd41f596 3547#ifdef CONFIG_SMP
8a0be9ef 3548
46cb4b7c 3549/*
38022906
PZ
3550 * sched_exec - execve() is a valuable balancing opportunity, because at
3551 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3552 */
38022906 3553void sched_exec(void)
46cb4b7c 3554{
38022906 3555 struct task_struct *p = current;
1da177e4 3556 unsigned long flags;
0017d735 3557 int dest_cpu;
46cb4b7c 3558
8f42ced9 3559 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3560 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3561 if (dest_cpu == smp_processor_id())
3562 goto unlock;
38022906 3563
8f42ced9 3564 if (likely(cpu_active(dest_cpu))) {
969c7921 3565 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3566
8f42ced9
PZ
3567 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3568 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3569 return;
3570 }
0017d735 3571unlock:
8f42ced9 3572 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3573}
dd41f596 3574
1da177e4
LT
3575#endif
3576
1da177e4
LT
3577DEFINE_PER_CPU(struct kernel_stat, kstat);
3578
3579EXPORT_PER_CPU_SYMBOL(kstat);
3580
3581/*
c5f8d995 3582 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3583 * @p in case that task is currently running.
c5f8d995
HS
3584 *
3585 * Called with task_rq_lock() held on @rq.
1da177e4 3586 */
c5f8d995
HS
3587static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3588{
3589 u64 ns = 0;
3590
3591 if (task_current(rq, p)) {
3592 update_rq_clock(rq);
305e6835 3593 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3594 if ((s64)ns < 0)
3595 ns = 0;
3596 }
3597
3598 return ns;
3599}
3600
bb34d92f 3601unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3602{
1da177e4 3603 unsigned long flags;
41b86e9c 3604 struct rq *rq;
bb34d92f 3605 u64 ns = 0;
48f24c4d 3606
41b86e9c 3607 rq = task_rq_lock(p, &flags);
c5f8d995 3608 ns = do_task_delta_exec(p, rq);
0122ec5b 3609 task_rq_unlock(rq, p, &flags);
1508487e 3610
c5f8d995
HS
3611 return ns;
3612}
f06febc9 3613
c5f8d995
HS
3614/*
3615 * Return accounted runtime for the task.
3616 * In case the task is currently running, return the runtime plus current's
3617 * pending runtime that have not been accounted yet.
3618 */
3619unsigned long long task_sched_runtime(struct task_struct *p)
3620{
3621 unsigned long flags;
3622 struct rq *rq;
3623 u64 ns = 0;
3624
3625 rq = task_rq_lock(p, &flags);
3626 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3627 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3628
3629 return ns;
3630}
48f24c4d 3631
c5f8d995
HS
3632/*
3633 * Return sum_exec_runtime for the thread group.
3634 * In case the task is currently running, return the sum plus current's
3635 * pending runtime that have not been accounted yet.
3636 *
3637 * Note that the thread group might have other running tasks as well,
3638 * so the return value not includes other pending runtime that other
3639 * running tasks might have.
3640 */
3641unsigned long long thread_group_sched_runtime(struct task_struct *p)
3642{
3643 struct task_cputime totals;
3644 unsigned long flags;
3645 struct rq *rq;
3646 u64 ns;
3647
3648 rq = task_rq_lock(p, &flags);
3649 thread_group_cputime(p, &totals);
3650 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3651 task_rq_unlock(rq, p, &flags);
48f24c4d 3652
1da177e4
LT
3653 return ns;
3654}
3655
1da177e4
LT
3656/*
3657 * Account user cpu time to a process.
3658 * @p: the process that the cpu time gets accounted to
1da177e4 3659 * @cputime: the cpu time spent in user space since the last update
457533a7 3660 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3661 */
457533a7
MS
3662void account_user_time(struct task_struct *p, cputime_t cputime,
3663 cputime_t cputime_scaled)
1da177e4
LT
3664{
3665 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3666 cputime64_t tmp;
3667
457533a7 3668 /* Add user time to process. */
1da177e4 3669 p->utime = cputime_add(p->utime, cputime);
457533a7 3670 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3671 account_group_user_time(p, cputime);
1da177e4
LT
3672
3673 /* Add user time to cpustat. */
3674 tmp = cputime_to_cputime64(cputime);
3675 if (TASK_NICE(p) > 0)
3676 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3677 else
3678 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3679
3680 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3681 /* Account for user time used */
3682 acct_update_integrals(p);
1da177e4
LT
3683}
3684
94886b84
LV
3685/*
3686 * Account guest cpu time to a process.
3687 * @p: the process that the cpu time gets accounted to
3688 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3689 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3690 */
457533a7
MS
3691static void account_guest_time(struct task_struct *p, cputime_t cputime,
3692 cputime_t cputime_scaled)
94886b84
LV
3693{
3694 cputime64_t tmp;
3695 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3696
3697 tmp = cputime_to_cputime64(cputime);
3698
457533a7 3699 /* Add guest time to process. */
94886b84 3700 p->utime = cputime_add(p->utime, cputime);
457533a7 3701 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3702 account_group_user_time(p, cputime);
94886b84
LV
3703 p->gtime = cputime_add(p->gtime, cputime);
3704
457533a7 3705 /* Add guest time to cpustat. */
ce0e7b28
RO
3706 if (TASK_NICE(p) > 0) {
3707 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3708 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3709 } else {
3710 cpustat->user = cputime64_add(cpustat->user, tmp);
3711 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3712 }
94886b84
LV
3713}
3714
70a89a66
VP
3715/*
3716 * Account system cpu time to a process and desired cpustat field
3717 * @p: the process that the cpu time gets accounted to
3718 * @cputime: the cpu time spent in kernel space since the last update
3719 * @cputime_scaled: cputime scaled by cpu frequency
3720 * @target_cputime64: pointer to cpustat field that has to be updated
3721 */
3722static inline
3723void __account_system_time(struct task_struct *p, cputime_t cputime,
3724 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3725{
3726 cputime64_t tmp = cputime_to_cputime64(cputime);
3727
3728 /* Add system time to process. */
3729 p->stime = cputime_add(p->stime, cputime);
3730 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3731 account_group_system_time(p, cputime);
3732
3733 /* Add system time to cpustat. */
3734 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3735 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3736
3737 /* Account for system time used */
3738 acct_update_integrals(p);
3739}
3740
1da177e4
LT
3741/*
3742 * Account system cpu time to a process.
3743 * @p: the process that the cpu time gets accounted to
3744 * @hardirq_offset: the offset to subtract from hardirq_count()
3745 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3746 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3747 */
3748void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3749 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3750{
3751 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3752 cputime64_t *target_cputime64;
1da177e4 3753
983ed7a6 3754 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3755 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3756 return;
3757 }
94886b84 3758
1da177e4 3759 if (hardirq_count() - hardirq_offset)
70a89a66 3760 target_cputime64 = &cpustat->irq;
75e1056f 3761 else if (in_serving_softirq())
70a89a66 3762 target_cputime64 = &cpustat->softirq;
1da177e4 3763 else
70a89a66 3764 target_cputime64 = &cpustat->system;
ef12fefa 3765
70a89a66 3766 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3767}
3768
c66f08be 3769/*
1da177e4 3770 * Account for involuntary wait time.
544b4a1f 3771 * @cputime: the cpu time spent in involuntary wait
c66f08be 3772 */
79741dd3 3773void account_steal_time(cputime_t cputime)
c66f08be 3774{
79741dd3
MS
3775 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3776 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3777
3778 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3779}
3780
1da177e4 3781/*
79741dd3
MS
3782 * Account for idle time.
3783 * @cputime: the cpu time spent in idle wait
1da177e4 3784 */
79741dd3 3785void account_idle_time(cputime_t cputime)
1da177e4
LT
3786{
3787 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3788 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3789 struct rq *rq = this_rq();
1da177e4 3790
79741dd3
MS
3791 if (atomic_read(&rq->nr_iowait) > 0)
3792 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3793 else
3794 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3795}
3796
79741dd3
MS
3797#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3798
abb74cef
VP
3799#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3800/*
3801 * Account a tick to a process and cpustat
3802 * @p: the process that the cpu time gets accounted to
3803 * @user_tick: is the tick from userspace
3804 * @rq: the pointer to rq
3805 *
3806 * Tick demultiplexing follows the order
3807 * - pending hardirq update
3808 * - pending softirq update
3809 * - user_time
3810 * - idle_time
3811 * - system time
3812 * - check for guest_time
3813 * - else account as system_time
3814 *
3815 * Check for hardirq is done both for system and user time as there is
3816 * no timer going off while we are on hardirq and hence we may never get an
3817 * opportunity to update it solely in system time.
3818 * p->stime and friends are only updated on system time and not on irq
3819 * softirq as those do not count in task exec_runtime any more.
3820 */
3821static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3822 struct rq *rq)
3823{
3824 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3825 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3826 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3827
3828 if (irqtime_account_hi_update()) {
3829 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3830 } else if (irqtime_account_si_update()) {
3831 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3832 } else if (this_cpu_ksoftirqd() == p) {
3833 /*
3834 * ksoftirqd time do not get accounted in cpu_softirq_time.
3835 * So, we have to handle it separately here.
3836 * Also, p->stime needs to be updated for ksoftirqd.
3837 */
3838 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3839 &cpustat->softirq);
abb74cef
VP
3840 } else if (user_tick) {
3841 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3842 } else if (p == rq->idle) {
3843 account_idle_time(cputime_one_jiffy);
3844 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3845 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3846 } else {
3847 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3848 &cpustat->system);
3849 }
3850}
3851
3852static void irqtime_account_idle_ticks(int ticks)
3853{
3854 int i;
3855 struct rq *rq = this_rq();
3856
3857 for (i = 0; i < ticks; i++)
3858 irqtime_account_process_tick(current, 0, rq);
3859}
544b4a1f 3860#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3861static void irqtime_account_idle_ticks(int ticks) {}
3862static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3863 struct rq *rq) {}
544b4a1f 3864#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3865
3866/*
3867 * Account a single tick of cpu time.
3868 * @p: the process that the cpu time gets accounted to
3869 * @user_tick: indicates if the tick is a user or a system tick
3870 */
3871void account_process_tick(struct task_struct *p, int user_tick)
3872{
a42548a1 3873 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3874 struct rq *rq = this_rq();
3875
abb74cef
VP
3876 if (sched_clock_irqtime) {
3877 irqtime_account_process_tick(p, user_tick, rq);
3878 return;
3879 }
3880
79741dd3 3881 if (user_tick)
a42548a1 3882 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3883 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3884 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3885 one_jiffy_scaled);
3886 else
a42548a1 3887 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3888}
3889
3890/*
3891 * Account multiple ticks of steal time.
3892 * @p: the process from which the cpu time has been stolen
3893 * @ticks: number of stolen ticks
3894 */
3895void account_steal_ticks(unsigned long ticks)
3896{
3897 account_steal_time(jiffies_to_cputime(ticks));
3898}
3899
3900/*
3901 * Account multiple ticks of idle time.
3902 * @ticks: number of stolen ticks
3903 */
3904void account_idle_ticks(unsigned long ticks)
3905{
abb74cef
VP
3906
3907 if (sched_clock_irqtime) {
3908 irqtime_account_idle_ticks(ticks);
3909 return;
3910 }
3911
79741dd3 3912 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3913}
3914
79741dd3
MS
3915#endif
3916
49048622
BS
3917/*
3918 * Use precise platform statistics if available:
3919 */
3920#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3921void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3922{
d99ca3b9
HS
3923 *ut = p->utime;
3924 *st = p->stime;
49048622
BS
3925}
3926
0cf55e1e 3927void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3928{
0cf55e1e
HS
3929 struct task_cputime cputime;
3930
3931 thread_group_cputime(p, &cputime);
3932
3933 *ut = cputime.utime;
3934 *st = cputime.stime;
49048622
BS
3935}
3936#else
761b1d26
HS
3937
3938#ifndef nsecs_to_cputime
b7b20df9 3939# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3940#endif
3941
d180c5bc 3942void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3943{
d99ca3b9 3944 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3945
3946 /*
3947 * Use CFS's precise accounting:
3948 */
d180c5bc 3949 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3950
3951 if (total) {
e75e863d 3952 u64 temp = rtime;
d180c5bc 3953
e75e863d 3954 temp *= utime;
49048622 3955 do_div(temp, total);
d180c5bc
HS
3956 utime = (cputime_t)temp;
3957 } else
3958 utime = rtime;
49048622 3959
d180c5bc
HS
3960 /*
3961 * Compare with previous values, to keep monotonicity:
3962 */
761b1d26 3963 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3964 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3965
d99ca3b9
HS
3966 *ut = p->prev_utime;
3967 *st = p->prev_stime;
49048622
BS
3968}
3969
0cf55e1e
HS
3970/*
3971 * Must be called with siglock held.
3972 */
3973void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3974{
0cf55e1e
HS
3975 struct signal_struct *sig = p->signal;
3976 struct task_cputime cputime;
3977 cputime_t rtime, utime, total;
49048622 3978
0cf55e1e 3979 thread_group_cputime(p, &cputime);
49048622 3980
0cf55e1e
HS
3981 total = cputime_add(cputime.utime, cputime.stime);
3982 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3983
0cf55e1e 3984 if (total) {
e75e863d 3985 u64 temp = rtime;
49048622 3986
e75e863d 3987 temp *= cputime.utime;
0cf55e1e
HS
3988 do_div(temp, total);
3989 utime = (cputime_t)temp;
3990 } else
3991 utime = rtime;
3992
3993 sig->prev_utime = max(sig->prev_utime, utime);
3994 sig->prev_stime = max(sig->prev_stime,
3995 cputime_sub(rtime, sig->prev_utime));
3996
3997 *ut = sig->prev_utime;
3998 *st = sig->prev_stime;
49048622 3999}
49048622 4000#endif
49048622 4001
7835b98b
CL
4002/*
4003 * This function gets called by the timer code, with HZ frequency.
4004 * We call it with interrupts disabled.
7835b98b
CL
4005 */
4006void scheduler_tick(void)
4007{
7835b98b
CL
4008 int cpu = smp_processor_id();
4009 struct rq *rq = cpu_rq(cpu);
dd41f596 4010 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4011
4012 sched_clock_tick();
dd41f596 4013
05fa785c 4014 raw_spin_lock(&rq->lock);
3e51f33f 4015 update_rq_clock(rq);
fdf3e95d 4016 update_cpu_load_active(rq);
fa85ae24 4017 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4018 raw_spin_unlock(&rq->lock);
7835b98b 4019
e9d2b064 4020 perf_event_task_tick();
e220d2dc 4021
e418e1c2 4022#ifdef CONFIG_SMP
dd41f596
IM
4023 rq->idle_at_tick = idle_cpu(cpu);
4024 trigger_load_balance(rq, cpu);
e418e1c2 4025#endif
1da177e4
LT
4026}
4027
132380a0 4028notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4029{
4030 if (in_lock_functions(addr)) {
4031 addr = CALLER_ADDR2;
4032 if (in_lock_functions(addr))
4033 addr = CALLER_ADDR3;
4034 }
4035 return addr;
4036}
1da177e4 4037
7e49fcce
SR
4038#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4039 defined(CONFIG_PREEMPT_TRACER))
4040
43627582 4041void __kprobes add_preempt_count(int val)
1da177e4 4042{
6cd8a4bb 4043#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4044 /*
4045 * Underflow?
4046 */
9a11b49a
IM
4047 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4048 return;
6cd8a4bb 4049#endif
1da177e4 4050 preempt_count() += val;
6cd8a4bb 4051#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4052 /*
4053 * Spinlock count overflowing soon?
4054 */
33859f7f
MOS
4055 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4056 PREEMPT_MASK - 10);
6cd8a4bb
SR
4057#endif
4058 if (preempt_count() == val)
4059 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4060}
4061EXPORT_SYMBOL(add_preempt_count);
4062
43627582 4063void __kprobes sub_preempt_count(int val)
1da177e4 4064{
6cd8a4bb 4065#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4066 /*
4067 * Underflow?
4068 */
01e3eb82 4069 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4070 return;
1da177e4
LT
4071 /*
4072 * Is the spinlock portion underflowing?
4073 */
9a11b49a
IM
4074 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4075 !(preempt_count() & PREEMPT_MASK)))
4076 return;
6cd8a4bb 4077#endif
9a11b49a 4078
6cd8a4bb
SR
4079 if (preempt_count() == val)
4080 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4081 preempt_count() -= val;
4082}
4083EXPORT_SYMBOL(sub_preempt_count);
4084
4085#endif
4086
4087/*
dd41f596 4088 * Print scheduling while atomic bug:
1da177e4 4089 */
dd41f596 4090static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4091{
838225b4
SS
4092 struct pt_regs *regs = get_irq_regs();
4093
3df0fc5b
PZ
4094 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4095 prev->comm, prev->pid, preempt_count());
838225b4 4096
dd41f596 4097 debug_show_held_locks(prev);
e21f5b15 4098 print_modules();
dd41f596
IM
4099 if (irqs_disabled())
4100 print_irqtrace_events(prev);
838225b4
SS
4101
4102 if (regs)
4103 show_regs(regs);
4104 else
4105 dump_stack();
dd41f596 4106}
1da177e4 4107
dd41f596
IM
4108/*
4109 * Various schedule()-time debugging checks and statistics:
4110 */
4111static inline void schedule_debug(struct task_struct *prev)
4112{
1da177e4 4113 /*
41a2d6cf 4114 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4115 * schedule() atomically, we ignore that path for now.
4116 * Otherwise, whine if we are scheduling when we should not be.
4117 */
3f33a7ce 4118 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4119 __schedule_bug(prev);
4120
1da177e4
LT
4121 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4122
2d72376b 4123 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4124}
4125
6cecd084 4126static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4127{
fd2f4419 4128 if (prev->on_rq)
a64692a3 4129 update_rq_clock(rq);
6cecd084 4130 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4131}
4132
dd41f596
IM
4133/*
4134 * Pick up the highest-prio task:
4135 */
4136static inline struct task_struct *
b67802ea 4137pick_next_task(struct rq *rq)
dd41f596 4138{
5522d5d5 4139 const struct sched_class *class;
dd41f596 4140 struct task_struct *p;
1da177e4
LT
4141
4142 /*
dd41f596
IM
4143 * Optimization: we know that if all tasks are in
4144 * the fair class we can call that function directly:
1da177e4 4145 */
dd41f596 4146 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4147 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4148 if (likely(p))
4149 return p;
1da177e4
LT
4150 }
4151
34f971f6 4152 for_each_class(class) {
fb8d4724 4153 p = class->pick_next_task(rq);
dd41f596
IM
4154 if (p)
4155 return p;
dd41f596 4156 }
34f971f6
PZ
4157
4158 BUG(); /* the idle class will always have a runnable task */
dd41f596 4159}
1da177e4 4160
dd41f596
IM
4161/*
4162 * schedule() is the main scheduler function.
4163 */
ff743345 4164asmlinkage void __sched schedule(void)
dd41f596
IM
4165{
4166 struct task_struct *prev, *next;
67ca7bde 4167 unsigned long *switch_count;
dd41f596 4168 struct rq *rq;
31656519 4169 int cpu;
dd41f596 4170
ff743345
PZ
4171need_resched:
4172 preempt_disable();
dd41f596
IM
4173 cpu = smp_processor_id();
4174 rq = cpu_rq(cpu);
25502a6c 4175 rcu_note_context_switch(cpu);
dd41f596 4176 prev = rq->curr;
dd41f596 4177
dd41f596 4178 schedule_debug(prev);
1da177e4 4179
31656519 4180 if (sched_feat(HRTICK))
f333fdc9 4181 hrtick_clear(rq);
8f4d37ec 4182
05fa785c 4183 raw_spin_lock_irq(&rq->lock);
1da177e4 4184
246d86b5 4185 switch_count = &prev->nivcsw;
1da177e4 4186 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4187 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4188 prev->state = TASK_RUNNING;
21aa9af0 4189 } else {
2acca55e
PZ
4190 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4191 prev->on_rq = 0;
4192
21aa9af0 4193 /*
2acca55e
PZ
4194 * If a worker went to sleep, notify and ask workqueue
4195 * whether it wants to wake up a task to maintain
4196 * concurrency.
21aa9af0
TH
4197 */
4198 if (prev->flags & PF_WQ_WORKER) {
4199 struct task_struct *to_wakeup;
4200
4201 to_wakeup = wq_worker_sleeping(prev, cpu);
4202 if (to_wakeup)
4203 try_to_wake_up_local(to_wakeup);
4204 }
fd2f4419 4205
6631e635 4206 /*
2acca55e
PZ
4207 * If we are going to sleep and we have plugged IO
4208 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4209 */
4210 if (blk_needs_flush_plug(prev)) {
4211 raw_spin_unlock(&rq->lock);
a237c1c5 4212 blk_schedule_flush_plug(prev);
6631e635
LT
4213 raw_spin_lock(&rq->lock);
4214 }
21aa9af0 4215 }
dd41f596 4216 switch_count = &prev->nvcsw;
1da177e4
LT
4217 }
4218
3f029d3c 4219 pre_schedule(rq, prev);
f65eda4f 4220
dd41f596 4221 if (unlikely(!rq->nr_running))
1da177e4 4222 idle_balance(cpu, rq);
1da177e4 4223
df1c99d4 4224 put_prev_task(rq, prev);
b67802ea 4225 next = pick_next_task(rq);
f26f9aff
MG
4226 clear_tsk_need_resched(prev);
4227 rq->skip_clock_update = 0;
1da177e4 4228
1da177e4 4229 if (likely(prev != next)) {
1da177e4
LT
4230 rq->nr_switches++;
4231 rq->curr = next;
4232 ++*switch_count;
4233
dd41f596 4234 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4235 /*
246d86b5
ON
4236 * The context switch have flipped the stack from under us
4237 * and restored the local variables which were saved when
4238 * this task called schedule() in the past. prev == current
4239 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4240 */
4241 cpu = smp_processor_id();
4242 rq = cpu_rq(cpu);
1da177e4 4243 } else
05fa785c 4244 raw_spin_unlock_irq(&rq->lock);
1da177e4 4245
3f029d3c 4246 post_schedule(rq);
1da177e4 4247
1da177e4 4248 preempt_enable_no_resched();
ff743345 4249 if (need_resched())
1da177e4
LT
4250 goto need_resched;
4251}
1da177e4
LT
4252EXPORT_SYMBOL(schedule);
4253
c08f7829 4254#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4255
c6eb3dda
PZ
4256static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4257{
4258 bool ret = false;
0d66bf6d 4259
c6eb3dda
PZ
4260 rcu_read_lock();
4261 if (lock->owner != owner)
4262 goto fail;
0d66bf6d
PZ
4263
4264 /*
c6eb3dda
PZ
4265 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4266 * lock->owner still matches owner, if that fails, owner might
4267 * point to free()d memory, if it still matches, the rcu_read_lock()
4268 * ensures the memory stays valid.
0d66bf6d 4269 */
c6eb3dda 4270 barrier();
0d66bf6d 4271
c6eb3dda
PZ
4272 ret = owner->on_cpu;
4273fail:
4274 rcu_read_unlock();
0d66bf6d 4275
c6eb3dda
PZ
4276 return ret;
4277}
0d66bf6d 4278
c6eb3dda
PZ
4279/*
4280 * Look out! "owner" is an entirely speculative pointer
4281 * access and not reliable.
4282 */
4283int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4284{
4285 if (!sched_feat(OWNER_SPIN))
4286 return 0;
0d66bf6d 4287
c6eb3dda
PZ
4288 while (owner_running(lock, owner)) {
4289 if (need_resched())
0d66bf6d
PZ
4290 return 0;
4291
335d7afb 4292 arch_mutex_cpu_relax();
0d66bf6d 4293 }
4b402210 4294
c6eb3dda
PZ
4295 /*
4296 * If the owner changed to another task there is likely
4297 * heavy contention, stop spinning.
4298 */
4299 if (lock->owner)
4300 return 0;
4301
0d66bf6d
PZ
4302 return 1;
4303}
4304#endif
4305
1da177e4
LT
4306#ifdef CONFIG_PREEMPT
4307/*
2ed6e34f 4308 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4309 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4310 * occur there and call schedule directly.
4311 */
d1f74e20 4312asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4313{
4314 struct thread_info *ti = current_thread_info();
6478d880 4315
1da177e4
LT
4316 /*
4317 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4318 * we do not want to preempt the current task. Just return..
1da177e4 4319 */
beed33a8 4320 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4321 return;
4322
3a5c359a 4323 do {
d1f74e20 4324 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4325 schedule();
d1f74e20 4326 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4327
3a5c359a
AK
4328 /*
4329 * Check again in case we missed a preemption opportunity
4330 * between schedule and now.
4331 */
4332 barrier();
5ed0cec0 4333 } while (need_resched());
1da177e4 4334}
1da177e4
LT
4335EXPORT_SYMBOL(preempt_schedule);
4336
4337/*
2ed6e34f 4338 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4339 * off of irq context.
4340 * Note, that this is called and return with irqs disabled. This will
4341 * protect us against recursive calling from irq.
4342 */
4343asmlinkage void __sched preempt_schedule_irq(void)
4344{
4345 struct thread_info *ti = current_thread_info();
6478d880 4346
2ed6e34f 4347 /* Catch callers which need to be fixed */
1da177e4
LT
4348 BUG_ON(ti->preempt_count || !irqs_disabled());
4349
3a5c359a
AK
4350 do {
4351 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4352 local_irq_enable();
4353 schedule();
4354 local_irq_disable();
3a5c359a 4355 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4356
3a5c359a
AK
4357 /*
4358 * Check again in case we missed a preemption opportunity
4359 * between schedule and now.
4360 */
4361 barrier();
5ed0cec0 4362 } while (need_resched());
1da177e4
LT
4363}
4364
4365#endif /* CONFIG_PREEMPT */
4366
63859d4f 4367int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4368 void *key)
1da177e4 4369{
63859d4f 4370 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4371}
1da177e4
LT
4372EXPORT_SYMBOL(default_wake_function);
4373
4374/*
41a2d6cf
IM
4375 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4376 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4377 * number) then we wake all the non-exclusive tasks and one exclusive task.
4378 *
4379 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4380 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4381 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4382 */
78ddb08f 4383static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4384 int nr_exclusive, int wake_flags, void *key)
1da177e4 4385{
2e45874c 4386 wait_queue_t *curr, *next;
1da177e4 4387
2e45874c 4388 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4389 unsigned flags = curr->flags;
4390
63859d4f 4391 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4392 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4393 break;
4394 }
4395}
4396
4397/**
4398 * __wake_up - wake up threads blocked on a waitqueue.
4399 * @q: the waitqueue
4400 * @mode: which threads
4401 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4402 * @key: is directly passed to the wakeup function
50fa610a
DH
4403 *
4404 * It may be assumed that this function implies a write memory barrier before
4405 * changing the task state if and only if any tasks are woken up.
1da177e4 4406 */
7ad5b3a5 4407void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4408 int nr_exclusive, void *key)
1da177e4
LT
4409{
4410 unsigned long flags;
4411
4412 spin_lock_irqsave(&q->lock, flags);
4413 __wake_up_common(q, mode, nr_exclusive, 0, key);
4414 spin_unlock_irqrestore(&q->lock, flags);
4415}
1da177e4
LT
4416EXPORT_SYMBOL(__wake_up);
4417
4418/*
4419 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4420 */
7ad5b3a5 4421void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4422{
4423 __wake_up_common(q, mode, 1, 0, NULL);
4424}
22c43c81 4425EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4426
4ede816a
DL
4427void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4428{
4429 __wake_up_common(q, mode, 1, 0, key);
4430}
bf294b41 4431EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4432
1da177e4 4433/**
4ede816a 4434 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4435 * @q: the waitqueue
4436 * @mode: which threads
4437 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4438 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4439 *
4440 * The sync wakeup differs that the waker knows that it will schedule
4441 * away soon, so while the target thread will be woken up, it will not
4442 * be migrated to another CPU - ie. the two threads are 'synchronized'
4443 * with each other. This can prevent needless bouncing between CPUs.
4444 *
4445 * On UP it can prevent extra preemption.
50fa610a
DH
4446 *
4447 * It may be assumed that this function implies a write memory barrier before
4448 * changing the task state if and only if any tasks are woken up.
1da177e4 4449 */
4ede816a
DL
4450void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4451 int nr_exclusive, void *key)
1da177e4
LT
4452{
4453 unsigned long flags;
7d478721 4454 int wake_flags = WF_SYNC;
1da177e4
LT
4455
4456 if (unlikely(!q))
4457 return;
4458
4459 if (unlikely(!nr_exclusive))
7d478721 4460 wake_flags = 0;
1da177e4
LT
4461
4462 spin_lock_irqsave(&q->lock, flags);
7d478721 4463 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4464 spin_unlock_irqrestore(&q->lock, flags);
4465}
4ede816a
DL
4466EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4467
4468/*
4469 * __wake_up_sync - see __wake_up_sync_key()
4470 */
4471void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4472{
4473 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4474}
1da177e4
LT
4475EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4476
65eb3dc6
KD
4477/**
4478 * complete: - signals a single thread waiting on this completion
4479 * @x: holds the state of this particular completion
4480 *
4481 * This will wake up a single thread waiting on this completion. Threads will be
4482 * awakened in the same order in which they were queued.
4483 *
4484 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4485 *
4486 * It may be assumed that this function implies a write memory barrier before
4487 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4488 */
b15136e9 4489void complete(struct completion *x)
1da177e4
LT
4490{
4491 unsigned long flags;
4492
4493 spin_lock_irqsave(&x->wait.lock, flags);
4494 x->done++;
d9514f6c 4495 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4496 spin_unlock_irqrestore(&x->wait.lock, flags);
4497}
4498EXPORT_SYMBOL(complete);
4499
65eb3dc6
KD
4500/**
4501 * complete_all: - signals all threads waiting on this completion
4502 * @x: holds the state of this particular completion
4503 *
4504 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4505 *
4506 * It may be assumed that this function implies a write memory barrier before
4507 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4508 */
b15136e9 4509void complete_all(struct completion *x)
1da177e4
LT
4510{
4511 unsigned long flags;
4512
4513 spin_lock_irqsave(&x->wait.lock, flags);
4514 x->done += UINT_MAX/2;
d9514f6c 4515 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4516 spin_unlock_irqrestore(&x->wait.lock, flags);
4517}
4518EXPORT_SYMBOL(complete_all);
4519
8cbbe86d
AK
4520static inline long __sched
4521do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4522{
1da177e4
LT
4523 if (!x->done) {
4524 DECLARE_WAITQUEUE(wait, current);
4525
a93d2f17 4526 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4527 do {
94d3d824 4528 if (signal_pending_state(state, current)) {
ea71a546
ON
4529 timeout = -ERESTARTSYS;
4530 break;
8cbbe86d
AK
4531 }
4532 __set_current_state(state);
1da177e4
LT
4533 spin_unlock_irq(&x->wait.lock);
4534 timeout = schedule_timeout(timeout);
4535 spin_lock_irq(&x->wait.lock);
ea71a546 4536 } while (!x->done && timeout);
1da177e4 4537 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4538 if (!x->done)
4539 return timeout;
1da177e4
LT
4540 }
4541 x->done--;
ea71a546 4542 return timeout ?: 1;
1da177e4 4543}
1da177e4 4544
8cbbe86d
AK
4545static long __sched
4546wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4547{
1da177e4
LT
4548 might_sleep();
4549
4550 spin_lock_irq(&x->wait.lock);
8cbbe86d 4551 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4552 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4553 return timeout;
4554}
1da177e4 4555
65eb3dc6
KD
4556/**
4557 * wait_for_completion: - waits for completion of a task
4558 * @x: holds the state of this particular completion
4559 *
4560 * This waits to be signaled for completion of a specific task. It is NOT
4561 * interruptible and there is no timeout.
4562 *
4563 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4564 * and interrupt capability. Also see complete().
4565 */
b15136e9 4566void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4567{
4568 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4569}
8cbbe86d 4570EXPORT_SYMBOL(wait_for_completion);
1da177e4 4571
65eb3dc6
KD
4572/**
4573 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4574 * @x: holds the state of this particular completion
4575 * @timeout: timeout value in jiffies
4576 *
4577 * This waits for either a completion of a specific task to be signaled or for a
4578 * specified timeout to expire. The timeout is in jiffies. It is not
4579 * interruptible.
4580 */
b15136e9 4581unsigned long __sched
8cbbe86d 4582wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4583{
8cbbe86d 4584 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4585}
8cbbe86d 4586EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4587
65eb3dc6
KD
4588/**
4589 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4590 * @x: holds the state of this particular completion
4591 *
4592 * This waits for completion of a specific task to be signaled. It is
4593 * interruptible.
4594 */
8cbbe86d 4595int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4596{
51e97990
AK
4597 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4598 if (t == -ERESTARTSYS)
4599 return t;
4600 return 0;
0fec171c 4601}
8cbbe86d 4602EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4603
65eb3dc6
KD
4604/**
4605 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4606 * @x: holds the state of this particular completion
4607 * @timeout: timeout value in jiffies
4608 *
4609 * This waits for either a completion of a specific task to be signaled or for a
4610 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4611 */
6bf41237 4612long __sched
8cbbe86d
AK
4613wait_for_completion_interruptible_timeout(struct completion *x,
4614 unsigned long timeout)
0fec171c 4615{
8cbbe86d 4616 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4617}
8cbbe86d 4618EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4619
65eb3dc6
KD
4620/**
4621 * wait_for_completion_killable: - waits for completion of a task (killable)
4622 * @x: holds the state of this particular completion
4623 *
4624 * This waits to be signaled for completion of a specific task. It can be
4625 * interrupted by a kill signal.
4626 */
009e577e
MW
4627int __sched wait_for_completion_killable(struct completion *x)
4628{
4629 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4630 if (t == -ERESTARTSYS)
4631 return t;
4632 return 0;
4633}
4634EXPORT_SYMBOL(wait_for_completion_killable);
4635
0aa12fb4
SW
4636/**
4637 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4638 * @x: holds the state of this particular completion
4639 * @timeout: timeout value in jiffies
4640 *
4641 * This waits for either a completion of a specific task to be
4642 * signaled or for a specified timeout to expire. It can be
4643 * interrupted by a kill signal. The timeout is in jiffies.
4644 */
6bf41237 4645long __sched
0aa12fb4
SW
4646wait_for_completion_killable_timeout(struct completion *x,
4647 unsigned long timeout)
4648{
4649 return wait_for_common(x, timeout, TASK_KILLABLE);
4650}
4651EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4652
be4de352
DC
4653/**
4654 * try_wait_for_completion - try to decrement a completion without blocking
4655 * @x: completion structure
4656 *
4657 * Returns: 0 if a decrement cannot be done without blocking
4658 * 1 if a decrement succeeded.
4659 *
4660 * If a completion is being used as a counting completion,
4661 * attempt to decrement the counter without blocking. This
4662 * enables us to avoid waiting if the resource the completion
4663 * is protecting is not available.
4664 */
4665bool try_wait_for_completion(struct completion *x)
4666{
7539a3b3 4667 unsigned long flags;
be4de352
DC
4668 int ret = 1;
4669
7539a3b3 4670 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4671 if (!x->done)
4672 ret = 0;
4673 else
4674 x->done--;
7539a3b3 4675 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4676 return ret;
4677}
4678EXPORT_SYMBOL(try_wait_for_completion);
4679
4680/**
4681 * completion_done - Test to see if a completion has any waiters
4682 * @x: completion structure
4683 *
4684 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4685 * 1 if there are no waiters.
4686 *
4687 */
4688bool completion_done(struct completion *x)
4689{
7539a3b3 4690 unsigned long flags;
be4de352
DC
4691 int ret = 1;
4692
7539a3b3 4693 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4694 if (!x->done)
4695 ret = 0;
7539a3b3 4696 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4697 return ret;
4698}
4699EXPORT_SYMBOL(completion_done);
4700
8cbbe86d
AK
4701static long __sched
4702sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4703{
0fec171c
IM
4704 unsigned long flags;
4705 wait_queue_t wait;
4706
4707 init_waitqueue_entry(&wait, current);
1da177e4 4708
8cbbe86d 4709 __set_current_state(state);
1da177e4 4710
8cbbe86d
AK
4711 spin_lock_irqsave(&q->lock, flags);
4712 __add_wait_queue(q, &wait);
4713 spin_unlock(&q->lock);
4714 timeout = schedule_timeout(timeout);
4715 spin_lock_irq(&q->lock);
4716 __remove_wait_queue(q, &wait);
4717 spin_unlock_irqrestore(&q->lock, flags);
4718
4719 return timeout;
4720}
4721
4722void __sched interruptible_sleep_on(wait_queue_head_t *q)
4723{
4724 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4725}
1da177e4
LT
4726EXPORT_SYMBOL(interruptible_sleep_on);
4727
0fec171c 4728long __sched
95cdf3b7 4729interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4730{
8cbbe86d 4731 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4732}
1da177e4
LT
4733EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4734
0fec171c 4735void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4736{
8cbbe86d 4737 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4738}
1da177e4
LT
4739EXPORT_SYMBOL(sleep_on);
4740
0fec171c 4741long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4742{
8cbbe86d 4743 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4744}
1da177e4
LT
4745EXPORT_SYMBOL(sleep_on_timeout);
4746
b29739f9
IM
4747#ifdef CONFIG_RT_MUTEXES
4748
4749/*
4750 * rt_mutex_setprio - set the current priority of a task
4751 * @p: task
4752 * @prio: prio value (kernel-internal form)
4753 *
4754 * This function changes the 'effective' priority of a task. It does
4755 * not touch ->normal_prio like __setscheduler().
4756 *
4757 * Used by the rt_mutex code to implement priority inheritance logic.
4758 */
36c8b586 4759void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4760{
83b699ed 4761 int oldprio, on_rq, running;
70b97a7f 4762 struct rq *rq;
83ab0aa0 4763 const struct sched_class *prev_class;
b29739f9
IM
4764
4765 BUG_ON(prio < 0 || prio > MAX_PRIO);
4766
0122ec5b 4767 rq = __task_rq_lock(p);
b29739f9 4768
a8027073 4769 trace_sched_pi_setprio(p, prio);
d5f9f942 4770 oldprio = p->prio;
83ab0aa0 4771 prev_class = p->sched_class;
fd2f4419 4772 on_rq = p->on_rq;
051a1d1a 4773 running = task_current(rq, p);
0e1f3483 4774 if (on_rq)
69be72c1 4775 dequeue_task(rq, p, 0);
0e1f3483
HS
4776 if (running)
4777 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4778
4779 if (rt_prio(prio))
4780 p->sched_class = &rt_sched_class;
4781 else
4782 p->sched_class = &fair_sched_class;
4783
b29739f9
IM
4784 p->prio = prio;
4785
0e1f3483
HS
4786 if (running)
4787 p->sched_class->set_curr_task(rq);
da7a735e 4788 if (on_rq)
371fd7e7 4789 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4790
da7a735e 4791 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4792 __task_rq_unlock(rq);
b29739f9
IM
4793}
4794
4795#endif
4796
36c8b586 4797void set_user_nice(struct task_struct *p, long nice)
1da177e4 4798{
dd41f596 4799 int old_prio, delta, on_rq;
1da177e4 4800 unsigned long flags;
70b97a7f 4801 struct rq *rq;
1da177e4
LT
4802
4803 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4804 return;
4805 /*
4806 * We have to be careful, if called from sys_setpriority(),
4807 * the task might be in the middle of scheduling on another CPU.
4808 */
4809 rq = task_rq_lock(p, &flags);
4810 /*
4811 * The RT priorities are set via sched_setscheduler(), but we still
4812 * allow the 'normal' nice value to be set - but as expected
4813 * it wont have any effect on scheduling until the task is
dd41f596 4814 * SCHED_FIFO/SCHED_RR:
1da177e4 4815 */
e05606d3 4816 if (task_has_rt_policy(p)) {
1da177e4
LT
4817 p->static_prio = NICE_TO_PRIO(nice);
4818 goto out_unlock;
4819 }
fd2f4419 4820 on_rq = p->on_rq;
c09595f6 4821 if (on_rq)
69be72c1 4822 dequeue_task(rq, p, 0);
1da177e4 4823
1da177e4 4824 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4825 set_load_weight(p);
b29739f9
IM
4826 old_prio = p->prio;
4827 p->prio = effective_prio(p);
4828 delta = p->prio - old_prio;
1da177e4 4829
dd41f596 4830 if (on_rq) {
371fd7e7 4831 enqueue_task(rq, p, 0);
1da177e4 4832 /*
d5f9f942
AM
4833 * If the task increased its priority or is running and
4834 * lowered its priority, then reschedule its CPU:
1da177e4 4835 */
d5f9f942 4836 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4837 resched_task(rq->curr);
4838 }
4839out_unlock:
0122ec5b 4840 task_rq_unlock(rq, p, &flags);
1da177e4 4841}
1da177e4
LT
4842EXPORT_SYMBOL(set_user_nice);
4843
e43379f1
MM
4844/*
4845 * can_nice - check if a task can reduce its nice value
4846 * @p: task
4847 * @nice: nice value
4848 */
36c8b586 4849int can_nice(const struct task_struct *p, const int nice)
e43379f1 4850{
024f4747
MM
4851 /* convert nice value [19,-20] to rlimit style value [1,40] */
4852 int nice_rlim = 20 - nice;
48f24c4d 4853
78d7d407 4854 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4855 capable(CAP_SYS_NICE));
4856}
4857
1da177e4
LT
4858#ifdef __ARCH_WANT_SYS_NICE
4859
4860/*
4861 * sys_nice - change the priority of the current process.
4862 * @increment: priority increment
4863 *
4864 * sys_setpriority is a more generic, but much slower function that
4865 * does similar things.
4866 */
5add95d4 4867SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4868{
48f24c4d 4869 long nice, retval;
1da177e4
LT
4870
4871 /*
4872 * Setpriority might change our priority at the same moment.
4873 * We don't have to worry. Conceptually one call occurs first
4874 * and we have a single winner.
4875 */
e43379f1
MM
4876 if (increment < -40)
4877 increment = -40;
1da177e4
LT
4878 if (increment > 40)
4879 increment = 40;
4880
2b8f836f 4881 nice = TASK_NICE(current) + increment;
1da177e4
LT
4882 if (nice < -20)
4883 nice = -20;
4884 if (nice > 19)
4885 nice = 19;
4886
e43379f1
MM
4887 if (increment < 0 && !can_nice(current, nice))
4888 return -EPERM;
4889
1da177e4
LT
4890 retval = security_task_setnice(current, nice);
4891 if (retval)
4892 return retval;
4893
4894 set_user_nice(current, nice);
4895 return 0;
4896}
4897
4898#endif
4899
4900/**
4901 * task_prio - return the priority value of a given task.
4902 * @p: the task in question.
4903 *
4904 * This is the priority value as seen by users in /proc.
4905 * RT tasks are offset by -200. Normal tasks are centered
4906 * around 0, value goes from -16 to +15.
4907 */
36c8b586 4908int task_prio(const struct task_struct *p)
1da177e4
LT
4909{
4910 return p->prio - MAX_RT_PRIO;
4911}
4912
4913/**
4914 * task_nice - return the nice value of a given task.
4915 * @p: the task in question.
4916 */
36c8b586 4917int task_nice(const struct task_struct *p)
1da177e4
LT
4918{
4919 return TASK_NICE(p);
4920}
150d8bed 4921EXPORT_SYMBOL(task_nice);
1da177e4
LT
4922
4923/**
4924 * idle_cpu - is a given cpu idle currently?
4925 * @cpu: the processor in question.
4926 */
4927int idle_cpu(int cpu)
4928{
4929 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4930}
4931
1da177e4
LT
4932/**
4933 * idle_task - return the idle task for a given cpu.
4934 * @cpu: the processor in question.
4935 */
36c8b586 4936struct task_struct *idle_task(int cpu)
1da177e4
LT
4937{
4938 return cpu_rq(cpu)->idle;
4939}
4940
4941/**
4942 * find_process_by_pid - find a process with a matching PID value.
4943 * @pid: the pid in question.
4944 */
a9957449 4945static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4946{
228ebcbe 4947 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4948}
4949
4950/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4951static void
4952__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4953{
1da177e4
LT
4954 p->policy = policy;
4955 p->rt_priority = prio;
b29739f9
IM
4956 p->normal_prio = normal_prio(p);
4957 /* we are holding p->pi_lock already */
4958 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4959 if (rt_prio(p->prio))
4960 p->sched_class = &rt_sched_class;
4961 else
4962 p->sched_class = &fair_sched_class;
2dd73a4f 4963 set_load_weight(p);
1da177e4
LT
4964}
4965
c69e8d9c
DH
4966/*
4967 * check the target process has a UID that matches the current process's
4968 */
4969static bool check_same_owner(struct task_struct *p)
4970{
4971 const struct cred *cred = current_cred(), *pcred;
4972 bool match;
4973
4974 rcu_read_lock();
4975 pcred = __task_cred(p);
b0e77598
SH
4976 if (cred->user->user_ns == pcred->user->user_ns)
4977 match = (cred->euid == pcred->euid ||
4978 cred->euid == pcred->uid);
4979 else
4980 match = false;
c69e8d9c
DH
4981 rcu_read_unlock();
4982 return match;
4983}
4984
961ccddd 4985static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4986 const struct sched_param *param, bool user)
1da177e4 4987{
83b699ed 4988 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4989 unsigned long flags;
83ab0aa0 4990 const struct sched_class *prev_class;
70b97a7f 4991 struct rq *rq;
ca94c442 4992 int reset_on_fork;
1da177e4 4993
66e5393a
SR
4994 /* may grab non-irq protected spin_locks */
4995 BUG_ON(in_interrupt());
1da177e4
LT
4996recheck:
4997 /* double check policy once rq lock held */
ca94c442
LP
4998 if (policy < 0) {
4999 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5000 policy = oldpolicy = p->policy;
ca94c442
LP
5001 } else {
5002 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5003 policy &= ~SCHED_RESET_ON_FORK;
5004
5005 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5006 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5007 policy != SCHED_IDLE)
5008 return -EINVAL;
5009 }
5010
1da177e4
LT
5011 /*
5012 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5013 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5014 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5015 */
5016 if (param->sched_priority < 0 ||
95cdf3b7 5017 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5018 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5019 return -EINVAL;
e05606d3 5020 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5021 return -EINVAL;
5022
37e4ab3f
OC
5023 /*
5024 * Allow unprivileged RT tasks to decrease priority:
5025 */
961ccddd 5026 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5027 if (rt_policy(policy)) {
a44702e8
ON
5028 unsigned long rlim_rtprio =
5029 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5030
5031 /* can't set/change the rt policy */
5032 if (policy != p->policy && !rlim_rtprio)
5033 return -EPERM;
5034
5035 /* can't increase priority */
5036 if (param->sched_priority > p->rt_priority &&
5037 param->sched_priority > rlim_rtprio)
5038 return -EPERM;
5039 }
c02aa73b 5040
dd41f596 5041 /*
c02aa73b
DH
5042 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5043 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5044 */
c02aa73b
DH
5045 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5046 if (!can_nice(p, TASK_NICE(p)))
5047 return -EPERM;
5048 }
5fe1d75f 5049
37e4ab3f 5050 /* can't change other user's priorities */
c69e8d9c 5051 if (!check_same_owner(p))
37e4ab3f 5052 return -EPERM;
ca94c442
LP
5053
5054 /* Normal users shall not reset the sched_reset_on_fork flag */
5055 if (p->sched_reset_on_fork && !reset_on_fork)
5056 return -EPERM;
37e4ab3f 5057 }
1da177e4 5058
725aad24 5059 if (user) {
b0ae1981 5060 retval = security_task_setscheduler(p);
725aad24
JF
5061 if (retval)
5062 return retval;
5063 }
5064
b29739f9
IM
5065 /*
5066 * make sure no PI-waiters arrive (or leave) while we are
5067 * changing the priority of the task:
0122ec5b 5068 *
25985edc 5069 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5070 * runqueue lock must be held.
5071 */
0122ec5b 5072 rq = task_rq_lock(p, &flags);
dc61b1d6 5073
34f971f6
PZ
5074 /*
5075 * Changing the policy of the stop threads its a very bad idea
5076 */
5077 if (p == rq->stop) {
0122ec5b 5078 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5079 return -EINVAL;
5080 }
5081
a51e9198
DF
5082 /*
5083 * If not changing anything there's no need to proceed further:
5084 */
5085 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5086 param->sched_priority == p->rt_priority))) {
5087
5088 __task_rq_unlock(rq);
5089 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5090 return 0;
5091 }
5092
dc61b1d6
PZ
5093#ifdef CONFIG_RT_GROUP_SCHED
5094 if (user) {
5095 /*
5096 * Do not allow realtime tasks into groups that have no runtime
5097 * assigned.
5098 */
5099 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5100 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5101 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5102 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5103 return -EPERM;
5104 }
5105 }
5106#endif
5107
1da177e4
LT
5108 /* recheck policy now with rq lock held */
5109 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5110 policy = oldpolicy = -1;
0122ec5b 5111 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5112 goto recheck;
5113 }
fd2f4419 5114 on_rq = p->on_rq;
051a1d1a 5115 running = task_current(rq, p);
0e1f3483 5116 if (on_rq)
2e1cb74a 5117 deactivate_task(rq, p, 0);
0e1f3483
HS
5118 if (running)
5119 p->sched_class->put_prev_task(rq, p);
f6b53205 5120
ca94c442
LP
5121 p->sched_reset_on_fork = reset_on_fork;
5122
1da177e4 5123 oldprio = p->prio;
83ab0aa0 5124 prev_class = p->sched_class;
dd41f596 5125 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5126
0e1f3483
HS
5127 if (running)
5128 p->sched_class->set_curr_task(rq);
da7a735e 5129 if (on_rq)
dd41f596 5130 activate_task(rq, p, 0);
cb469845 5131
da7a735e 5132 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5133 task_rq_unlock(rq, p, &flags);
b29739f9 5134
95e02ca9
TG
5135 rt_mutex_adjust_pi(p);
5136
1da177e4
LT
5137 return 0;
5138}
961ccddd
RR
5139
5140/**
5141 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5142 * @p: the task in question.
5143 * @policy: new policy.
5144 * @param: structure containing the new RT priority.
5145 *
5146 * NOTE that the task may be already dead.
5147 */
5148int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5149 const struct sched_param *param)
961ccddd
RR
5150{
5151 return __sched_setscheduler(p, policy, param, true);
5152}
1da177e4
LT
5153EXPORT_SYMBOL_GPL(sched_setscheduler);
5154
961ccddd
RR
5155/**
5156 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5157 * @p: the task in question.
5158 * @policy: new policy.
5159 * @param: structure containing the new RT priority.
5160 *
5161 * Just like sched_setscheduler, only don't bother checking if the
5162 * current context has permission. For example, this is needed in
5163 * stop_machine(): we create temporary high priority worker threads,
5164 * but our caller might not have that capability.
5165 */
5166int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5167 const struct sched_param *param)
961ccddd
RR
5168{
5169 return __sched_setscheduler(p, policy, param, false);
5170}
5171
95cdf3b7
IM
5172static int
5173do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5174{
1da177e4
LT
5175 struct sched_param lparam;
5176 struct task_struct *p;
36c8b586 5177 int retval;
1da177e4
LT
5178
5179 if (!param || pid < 0)
5180 return -EINVAL;
5181 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5182 return -EFAULT;
5fe1d75f
ON
5183
5184 rcu_read_lock();
5185 retval = -ESRCH;
1da177e4 5186 p = find_process_by_pid(pid);
5fe1d75f
ON
5187 if (p != NULL)
5188 retval = sched_setscheduler(p, policy, &lparam);
5189 rcu_read_unlock();
36c8b586 5190
1da177e4
LT
5191 return retval;
5192}
5193
5194/**
5195 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5196 * @pid: the pid in question.
5197 * @policy: new policy.
5198 * @param: structure containing the new RT priority.
5199 */
5add95d4
HC
5200SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5201 struct sched_param __user *, param)
1da177e4 5202{
c21761f1
JB
5203 /* negative values for policy are not valid */
5204 if (policy < 0)
5205 return -EINVAL;
5206
1da177e4
LT
5207 return do_sched_setscheduler(pid, policy, param);
5208}
5209
5210/**
5211 * sys_sched_setparam - set/change the RT priority of a thread
5212 * @pid: the pid in question.
5213 * @param: structure containing the new RT priority.
5214 */
5add95d4 5215SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5216{
5217 return do_sched_setscheduler(pid, -1, param);
5218}
5219
5220/**
5221 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5222 * @pid: the pid in question.
5223 */
5add95d4 5224SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5225{
36c8b586 5226 struct task_struct *p;
3a5c359a 5227 int retval;
1da177e4
LT
5228
5229 if (pid < 0)
3a5c359a 5230 return -EINVAL;
1da177e4
LT
5231
5232 retval = -ESRCH;
5fe85be0 5233 rcu_read_lock();
1da177e4
LT
5234 p = find_process_by_pid(pid);
5235 if (p) {
5236 retval = security_task_getscheduler(p);
5237 if (!retval)
ca94c442
LP
5238 retval = p->policy
5239 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5240 }
5fe85be0 5241 rcu_read_unlock();
1da177e4
LT
5242 return retval;
5243}
5244
5245/**
ca94c442 5246 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5247 * @pid: the pid in question.
5248 * @param: structure containing the RT priority.
5249 */
5add95d4 5250SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5251{
5252 struct sched_param lp;
36c8b586 5253 struct task_struct *p;
3a5c359a 5254 int retval;
1da177e4
LT
5255
5256 if (!param || pid < 0)
3a5c359a 5257 return -EINVAL;
1da177e4 5258
5fe85be0 5259 rcu_read_lock();
1da177e4
LT
5260 p = find_process_by_pid(pid);
5261 retval = -ESRCH;
5262 if (!p)
5263 goto out_unlock;
5264
5265 retval = security_task_getscheduler(p);
5266 if (retval)
5267 goto out_unlock;
5268
5269 lp.sched_priority = p->rt_priority;
5fe85be0 5270 rcu_read_unlock();
1da177e4
LT
5271
5272 /*
5273 * This one might sleep, we cannot do it with a spinlock held ...
5274 */
5275 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5276
1da177e4
LT
5277 return retval;
5278
5279out_unlock:
5fe85be0 5280 rcu_read_unlock();
1da177e4
LT
5281 return retval;
5282}
5283
96f874e2 5284long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5285{
5a16f3d3 5286 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5287 struct task_struct *p;
5288 int retval;
1da177e4 5289
95402b38 5290 get_online_cpus();
23f5d142 5291 rcu_read_lock();
1da177e4
LT
5292
5293 p = find_process_by_pid(pid);
5294 if (!p) {
23f5d142 5295 rcu_read_unlock();
95402b38 5296 put_online_cpus();
1da177e4
LT
5297 return -ESRCH;
5298 }
5299
23f5d142 5300 /* Prevent p going away */
1da177e4 5301 get_task_struct(p);
23f5d142 5302 rcu_read_unlock();
1da177e4 5303
5a16f3d3
RR
5304 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5305 retval = -ENOMEM;
5306 goto out_put_task;
5307 }
5308 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5309 retval = -ENOMEM;
5310 goto out_free_cpus_allowed;
5311 }
1da177e4 5312 retval = -EPERM;
b0e77598 5313 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5314 goto out_unlock;
5315
b0ae1981 5316 retval = security_task_setscheduler(p);
e7834f8f
DQ
5317 if (retval)
5318 goto out_unlock;
5319
5a16f3d3
RR
5320 cpuset_cpus_allowed(p, cpus_allowed);
5321 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5322again:
5a16f3d3 5323 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5324
8707d8b8 5325 if (!retval) {
5a16f3d3
RR
5326 cpuset_cpus_allowed(p, cpus_allowed);
5327 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5328 /*
5329 * We must have raced with a concurrent cpuset
5330 * update. Just reset the cpus_allowed to the
5331 * cpuset's cpus_allowed
5332 */
5a16f3d3 5333 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5334 goto again;
5335 }
5336 }
1da177e4 5337out_unlock:
5a16f3d3
RR
5338 free_cpumask_var(new_mask);
5339out_free_cpus_allowed:
5340 free_cpumask_var(cpus_allowed);
5341out_put_task:
1da177e4 5342 put_task_struct(p);
95402b38 5343 put_online_cpus();
1da177e4
LT
5344 return retval;
5345}
5346
5347static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5348 struct cpumask *new_mask)
1da177e4 5349{
96f874e2
RR
5350 if (len < cpumask_size())
5351 cpumask_clear(new_mask);
5352 else if (len > cpumask_size())
5353 len = cpumask_size();
5354
1da177e4
LT
5355 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5356}
5357
5358/**
5359 * sys_sched_setaffinity - set the cpu affinity of a process
5360 * @pid: pid of the process
5361 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5362 * @user_mask_ptr: user-space pointer to the new cpu mask
5363 */
5add95d4
HC
5364SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5365 unsigned long __user *, user_mask_ptr)
1da177e4 5366{
5a16f3d3 5367 cpumask_var_t new_mask;
1da177e4
LT
5368 int retval;
5369
5a16f3d3
RR
5370 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5371 return -ENOMEM;
1da177e4 5372
5a16f3d3
RR
5373 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5374 if (retval == 0)
5375 retval = sched_setaffinity(pid, new_mask);
5376 free_cpumask_var(new_mask);
5377 return retval;
1da177e4
LT
5378}
5379
96f874e2 5380long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5381{
36c8b586 5382 struct task_struct *p;
31605683 5383 unsigned long flags;
1da177e4 5384 int retval;
1da177e4 5385
95402b38 5386 get_online_cpus();
23f5d142 5387 rcu_read_lock();
1da177e4
LT
5388
5389 retval = -ESRCH;
5390 p = find_process_by_pid(pid);
5391 if (!p)
5392 goto out_unlock;
5393
e7834f8f
DQ
5394 retval = security_task_getscheduler(p);
5395 if (retval)
5396 goto out_unlock;
5397
013fdb80 5398 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5399 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5400 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5401
5402out_unlock:
23f5d142 5403 rcu_read_unlock();
95402b38 5404 put_online_cpus();
1da177e4 5405
9531b62f 5406 return retval;
1da177e4
LT
5407}
5408
5409/**
5410 * sys_sched_getaffinity - get the cpu affinity of a process
5411 * @pid: pid of the process
5412 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5413 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5414 */
5add95d4
HC
5415SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5416 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5417{
5418 int ret;
f17c8607 5419 cpumask_var_t mask;
1da177e4 5420
84fba5ec 5421 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5422 return -EINVAL;
5423 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5424 return -EINVAL;
5425
f17c8607
RR
5426 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5427 return -ENOMEM;
1da177e4 5428
f17c8607
RR
5429 ret = sched_getaffinity(pid, mask);
5430 if (ret == 0) {
8bc037fb 5431 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5432
5433 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5434 ret = -EFAULT;
5435 else
cd3d8031 5436 ret = retlen;
f17c8607
RR
5437 }
5438 free_cpumask_var(mask);
1da177e4 5439
f17c8607 5440 return ret;
1da177e4
LT
5441}
5442
5443/**
5444 * sys_sched_yield - yield the current processor to other threads.
5445 *
dd41f596
IM
5446 * This function yields the current CPU to other tasks. If there are no
5447 * other threads running on this CPU then this function will return.
1da177e4 5448 */
5add95d4 5449SYSCALL_DEFINE0(sched_yield)
1da177e4 5450{
70b97a7f 5451 struct rq *rq = this_rq_lock();
1da177e4 5452
2d72376b 5453 schedstat_inc(rq, yld_count);
4530d7ab 5454 current->sched_class->yield_task(rq);
1da177e4
LT
5455
5456 /*
5457 * Since we are going to call schedule() anyway, there's
5458 * no need to preempt or enable interrupts:
5459 */
5460 __release(rq->lock);
8a25d5de 5461 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5462 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5463 preempt_enable_no_resched();
5464
5465 schedule();
5466
5467 return 0;
5468}
5469
d86ee480
PZ
5470static inline int should_resched(void)
5471{
5472 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5473}
5474
e7b38404 5475static void __cond_resched(void)
1da177e4 5476{
e7aaaa69
FW
5477 add_preempt_count(PREEMPT_ACTIVE);
5478 schedule();
5479 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5480}
5481
02b67cc3 5482int __sched _cond_resched(void)
1da177e4 5483{
d86ee480 5484 if (should_resched()) {
1da177e4
LT
5485 __cond_resched();
5486 return 1;
5487 }
5488 return 0;
5489}
02b67cc3 5490EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5491
5492/*
613afbf8 5493 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5494 * call schedule, and on return reacquire the lock.
5495 *
41a2d6cf 5496 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5497 * operations here to prevent schedule() from being called twice (once via
5498 * spin_unlock(), once by hand).
5499 */
613afbf8 5500int __cond_resched_lock(spinlock_t *lock)
1da177e4 5501{
d86ee480 5502 int resched = should_resched();
6df3cecb
JK
5503 int ret = 0;
5504
f607c668
PZ
5505 lockdep_assert_held(lock);
5506
95c354fe 5507 if (spin_needbreak(lock) || resched) {
1da177e4 5508 spin_unlock(lock);
d86ee480 5509 if (resched)
95c354fe
NP
5510 __cond_resched();
5511 else
5512 cpu_relax();
6df3cecb 5513 ret = 1;
1da177e4 5514 spin_lock(lock);
1da177e4 5515 }
6df3cecb 5516 return ret;
1da177e4 5517}
613afbf8 5518EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5519
613afbf8 5520int __sched __cond_resched_softirq(void)
1da177e4
LT
5521{
5522 BUG_ON(!in_softirq());
5523
d86ee480 5524 if (should_resched()) {
98d82567 5525 local_bh_enable();
1da177e4
LT
5526 __cond_resched();
5527 local_bh_disable();
5528 return 1;
5529 }
5530 return 0;
5531}
613afbf8 5532EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5533
1da177e4
LT
5534/**
5535 * yield - yield the current processor to other threads.
5536 *
72fd4a35 5537 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5538 * thread runnable and calls sys_sched_yield().
5539 */
5540void __sched yield(void)
5541{
5542 set_current_state(TASK_RUNNING);
5543 sys_sched_yield();
5544}
1da177e4
LT
5545EXPORT_SYMBOL(yield);
5546
d95f4122
MG
5547/**
5548 * yield_to - yield the current processor to another thread in
5549 * your thread group, or accelerate that thread toward the
5550 * processor it's on.
16addf95
RD
5551 * @p: target task
5552 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5553 *
5554 * It's the caller's job to ensure that the target task struct
5555 * can't go away on us before we can do any checks.
5556 *
5557 * Returns true if we indeed boosted the target task.
5558 */
5559bool __sched yield_to(struct task_struct *p, bool preempt)
5560{
5561 struct task_struct *curr = current;
5562 struct rq *rq, *p_rq;
5563 unsigned long flags;
5564 bool yielded = 0;
5565
5566 local_irq_save(flags);
5567 rq = this_rq();
5568
5569again:
5570 p_rq = task_rq(p);
5571 double_rq_lock(rq, p_rq);
5572 while (task_rq(p) != p_rq) {
5573 double_rq_unlock(rq, p_rq);
5574 goto again;
5575 }
5576
5577 if (!curr->sched_class->yield_to_task)
5578 goto out;
5579
5580 if (curr->sched_class != p->sched_class)
5581 goto out;
5582
5583 if (task_running(p_rq, p) || p->state)
5584 goto out;
5585
5586 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5587 if (yielded) {
d95f4122 5588 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5589 /*
5590 * Make p's CPU reschedule; pick_next_entity takes care of
5591 * fairness.
5592 */
5593 if (preempt && rq != p_rq)
5594 resched_task(p_rq->curr);
5595 }
d95f4122
MG
5596
5597out:
5598 double_rq_unlock(rq, p_rq);
5599 local_irq_restore(flags);
5600
5601 if (yielded)
5602 schedule();
5603
5604 return yielded;
5605}
5606EXPORT_SYMBOL_GPL(yield_to);
5607
1da177e4 5608/*
41a2d6cf 5609 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5610 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5611 */
5612void __sched io_schedule(void)
5613{
54d35f29 5614 struct rq *rq = raw_rq();
1da177e4 5615
0ff92245 5616 delayacct_blkio_start();
1da177e4 5617 atomic_inc(&rq->nr_iowait);
73c10101 5618 blk_flush_plug(current);
8f0dfc34 5619 current->in_iowait = 1;
1da177e4 5620 schedule();
8f0dfc34 5621 current->in_iowait = 0;
1da177e4 5622 atomic_dec(&rq->nr_iowait);
0ff92245 5623 delayacct_blkio_end();
1da177e4 5624}
1da177e4
LT
5625EXPORT_SYMBOL(io_schedule);
5626
5627long __sched io_schedule_timeout(long timeout)
5628{
54d35f29 5629 struct rq *rq = raw_rq();
1da177e4
LT
5630 long ret;
5631
0ff92245 5632 delayacct_blkio_start();
1da177e4 5633 atomic_inc(&rq->nr_iowait);
73c10101 5634 blk_flush_plug(current);
8f0dfc34 5635 current->in_iowait = 1;
1da177e4 5636 ret = schedule_timeout(timeout);
8f0dfc34 5637 current->in_iowait = 0;
1da177e4 5638 atomic_dec(&rq->nr_iowait);
0ff92245 5639 delayacct_blkio_end();
1da177e4
LT
5640 return ret;
5641}
5642
5643/**
5644 * sys_sched_get_priority_max - return maximum RT priority.
5645 * @policy: scheduling class.
5646 *
5647 * this syscall returns the maximum rt_priority that can be used
5648 * by a given scheduling class.
5649 */
5add95d4 5650SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5651{
5652 int ret = -EINVAL;
5653
5654 switch (policy) {
5655 case SCHED_FIFO:
5656 case SCHED_RR:
5657 ret = MAX_USER_RT_PRIO-1;
5658 break;
5659 case SCHED_NORMAL:
b0a9499c 5660 case SCHED_BATCH:
dd41f596 5661 case SCHED_IDLE:
1da177e4
LT
5662 ret = 0;
5663 break;
5664 }
5665 return ret;
5666}
5667
5668/**
5669 * sys_sched_get_priority_min - return minimum RT priority.
5670 * @policy: scheduling class.
5671 *
5672 * this syscall returns the minimum rt_priority that can be used
5673 * by a given scheduling class.
5674 */
5add95d4 5675SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5676{
5677 int ret = -EINVAL;
5678
5679 switch (policy) {
5680 case SCHED_FIFO:
5681 case SCHED_RR:
5682 ret = 1;
5683 break;
5684 case SCHED_NORMAL:
b0a9499c 5685 case SCHED_BATCH:
dd41f596 5686 case SCHED_IDLE:
1da177e4
LT
5687 ret = 0;
5688 }
5689 return ret;
5690}
5691
5692/**
5693 * sys_sched_rr_get_interval - return the default timeslice of a process.
5694 * @pid: pid of the process.
5695 * @interval: userspace pointer to the timeslice value.
5696 *
5697 * this syscall writes the default timeslice value of a given process
5698 * into the user-space timespec buffer. A value of '0' means infinity.
5699 */
17da2bd9 5700SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5701 struct timespec __user *, interval)
1da177e4 5702{
36c8b586 5703 struct task_struct *p;
a4ec24b4 5704 unsigned int time_slice;
dba091b9
TG
5705 unsigned long flags;
5706 struct rq *rq;
3a5c359a 5707 int retval;
1da177e4 5708 struct timespec t;
1da177e4
LT
5709
5710 if (pid < 0)
3a5c359a 5711 return -EINVAL;
1da177e4
LT
5712
5713 retval = -ESRCH;
1a551ae7 5714 rcu_read_lock();
1da177e4
LT
5715 p = find_process_by_pid(pid);
5716 if (!p)
5717 goto out_unlock;
5718
5719 retval = security_task_getscheduler(p);
5720 if (retval)
5721 goto out_unlock;
5722
dba091b9
TG
5723 rq = task_rq_lock(p, &flags);
5724 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5725 task_rq_unlock(rq, p, &flags);
a4ec24b4 5726
1a551ae7 5727 rcu_read_unlock();
a4ec24b4 5728 jiffies_to_timespec(time_slice, &t);
1da177e4 5729 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5730 return retval;
3a5c359a 5731
1da177e4 5732out_unlock:
1a551ae7 5733 rcu_read_unlock();
1da177e4
LT
5734 return retval;
5735}
5736
7c731e0a 5737static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5738
82a1fcb9 5739void sched_show_task(struct task_struct *p)
1da177e4 5740{
1da177e4 5741 unsigned long free = 0;
36c8b586 5742 unsigned state;
1da177e4 5743
1da177e4 5744 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5745 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5746 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5747#if BITS_PER_LONG == 32
1da177e4 5748 if (state == TASK_RUNNING)
3df0fc5b 5749 printk(KERN_CONT " running ");
1da177e4 5750 else
3df0fc5b 5751 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5752#else
5753 if (state == TASK_RUNNING)
3df0fc5b 5754 printk(KERN_CONT " running task ");
1da177e4 5755 else
3df0fc5b 5756 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5757#endif
5758#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5759 free = stack_not_used(p);
1da177e4 5760#endif
3df0fc5b 5761 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5762 task_pid_nr(p), task_pid_nr(p->real_parent),
5763 (unsigned long)task_thread_info(p)->flags);
1da177e4 5764
5fb5e6de 5765 show_stack(p, NULL);
1da177e4
LT
5766}
5767
e59e2ae2 5768void show_state_filter(unsigned long state_filter)
1da177e4 5769{
36c8b586 5770 struct task_struct *g, *p;
1da177e4 5771
4bd77321 5772#if BITS_PER_LONG == 32
3df0fc5b
PZ
5773 printk(KERN_INFO
5774 " task PC stack pid father\n");
1da177e4 5775#else
3df0fc5b
PZ
5776 printk(KERN_INFO
5777 " task PC stack pid father\n");
1da177e4
LT
5778#endif
5779 read_lock(&tasklist_lock);
5780 do_each_thread(g, p) {
5781 /*
5782 * reset the NMI-timeout, listing all files on a slow
25985edc 5783 * console might take a lot of time:
1da177e4
LT
5784 */
5785 touch_nmi_watchdog();
39bc89fd 5786 if (!state_filter || (p->state & state_filter))
82a1fcb9 5787 sched_show_task(p);
1da177e4
LT
5788 } while_each_thread(g, p);
5789
04c9167f
JF
5790 touch_all_softlockup_watchdogs();
5791
dd41f596
IM
5792#ifdef CONFIG_SCHED_DEBUG
5793 sysrq_sched_debug_show();
5794#endif
1da177e4 5795 read_unlock(&tasklist_lock);
e59e2ae2
IM
5796 /*
5797 * Only show locks if all tasks are dumped:
5798 */
93335a21 5799 if (!state_filter)
e59e2ae2 5800 debug_show_all_locks();
1da177e4
LT
5801}
5802
1df21055
IM
5803void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5804{
dd41f596 5805 idle->sched_class = &idle_sched_class;
1df21055
IM
5806}
5807
f340c0d1
IM
5808/**
5809 * init_idle - set up an idle thread for a given CPU
5810 * @idle: task in question
5811 * @cpu: cpu the idle task belongs to
5812 *
5813 * NOTE: this function does not set the idle thread's NEED_RESCHED
5814 * flag, to make booting more robust.
5815 */
5c1e1767 5816void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5817{
70b97a7f 5818 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5819 unsigned long flags;
5820
05fa785c 5821 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5822
dd41f596 5823 __sched_fork(idle);
06b83b5f 5824 idle->state = TASK_RUNNING;
dd41f596
IM
5825 idle->se.exec_start = sched_clock();
5826
96f874e2 5827 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5828 /*
5829 * We're having a chicken and egg problem, even though we are
5830 * holding rq->lock, the cpu isn't yet set to this cpu so the
5831 * lockdep check in task_group() will fail.
5832 *
5833 * Similar case to sched_fork(). / Alternatively we could
5834 * use task_rq_lock() here and obtain the other rq->lock.
5835 *
5836 * Silence PROVE_RCU
5837 */
5838 rcu_read_lock();
dd41f596 5839 __set_task_cpu(idle, cpu);
6506cf6c 5840 rcu_read_unlock();
1da177e4 5841
1da177e4 5842 rq->curr = rq->idle = idle;
3ca7a440
PZ
5843#if defined(CONFIG_SMP)
5844 idle->on_cpu = 1;
4866cde0 5845#endif
05fa785c 5846 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5847
5848 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5849 task_thread_info(idle)->preempt_count = 0;
625f2a37 5850
dd41f596
IM
5851 /*
5852 * The idle tasks have their own, simple scheduling class:
5853 */
5854 idle->sched_class = &idle_sched_class;
868baf07 5855 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5856}
5857
5858/*
5859 * In a system that switches off the HZ timer nohz_cpu_mask
5860 * indicates which cpus entered this state. This is used
5861 * in the rcu update to wait only for active cpus. For system
5862 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5863 * always be CPU_BITS_NONE.
1da177e4 5864 */
6a7b3dc3 5865cpumask_var_t nohz_cpu_mask;
1da177e4 5866
19978ca6
IM
5867/*
5868 * Increase the granularity value when there are more CPUs,
5869 * because with more CPUs the 'effective latency' as visible
5870 * to users decreases. But the relationship is not linear,
5871 * so pick a second-best guess by going with the log2 of the
5872 * number of CPUs.
5873 *
5874 * This idea comes from the SD scheduler of Con Kolivas:
5875 */
acb4a848 5876static int get_update_sysctl_factor(void)
19978ca6 5877{
4ca3ef71 5878 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5879 unsigned int factor;
5880
5881 switch (sysctl_sched_tunable_scaling) {
5882 case SCHED_TUNABLESCALING_NONE:
5883 factor = 1;
5884 break;
5885 case SCHED_TUNABLESCALING_LINEAR:
5886 factor = cpus;
5887 break;
5888 case SCHED_TUNABLESCALING_LOG:
5889 default:
5890 factor = 1 + ilog2(cpus);
5891 break;
5892 }
19978ca6 5893
acb4a848
CE
5894 return factor;
5895}
19978ca6 5896
acb4a848
CE
5897static void update_sysctl(void)
5898{
5899 unsigned int factor = get_update_sysctl_factor();
19978ca6 5900
0bcdcf28
CE
5901#define SET_SYSCTL(name) \
5902 (sysctl_##name = (factor) * normalized_sysctl_##name)
5903 SET_SYSCTL(sched_min_granularity);
5904 SET_SYSCTL(sched_latency);
5905 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5906#undef SET_SYSCTL
5907}
55cd5340 5908
0bcdcf28
CE
5909static inline void sched_init_granularity(void)
5910{
5911 update_sysctl();
19978ca6
IM
5912}
5913
1da177e4
LT
5914#ifdef CONFIG_SMP
5915/*
5916 * This is how migration works:
5917 *
969c7921
TH
5918 * 1) we invoke migration_cpu_stop() on the target CPU using
5919 * stop_one_cpu().
5920 * 2) stopper starts to run (implicitly forcing the migrated thread
5921 * off the CPU)
5922 * 3) it checks whether the migrated task is still in the wrong runqueue.
5923 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5924 * it and puts it into the right queue.
969c7921
TH
5925 * 5) stopper completes and stop_one_cpu() returns and the migration
5926 * is done.
1da177e4
LT
5927 */
5928
5929/*
5930 * Change a given task's CPU affinity. Migrate the thread to a
5931 * proper CPU and schedule it away if the CPU it's executing on
5932 * is removed from the allowed bitmask.
5933 *
5934 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5935 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5936 * call is not atomic; no spinlocks may be held.
5937 */
96f874e2 5938int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5939{
5940 unsigned long flags;
70b97a7f 5941 struct rq *rq;
969c7921 5942 unsigned int dest_cpu;
48f24c4d 5943 int ret = 0;
1da177e4
LT
5944
5945 rq = task_rq_lock(p, &flags);
e2912009 5946
6ad4c188 5947 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5948 ret = -EINVAL;
5949 goto out;
5950 }
5951
9985b0ba 5952 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5953 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5954 ret = -EINVAL;
5955 goto out;
5956 }
5957
73fe6aae 5958 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5959 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5960 else {
96f874e2
RR
5961 cpumask_copy(&p->cpus_allowed, new_mask);
5962 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5963 }
5964
1da177e4 5965 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5966 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5967 goto out;
5968
969c7921 5969 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 5970 if (p->on_rq) {
969c7921 5971 struct migration_arg arg = { p, dest_cpu };
1da177e4 5972 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5973 task_rq_unlock(rq, p, &flags);
969c7921 5974 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5975 tlb_migrate_finish(p->mm);
5976 return 0;
5977 }
5978out:
0122ec5b 5979 task_rq_unlock(rq, p, &flags);
48f24c4d 5980
1da177e4
LT
5981 return ret;
5982}
cd8ba7cd 5983EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5984
5985/*
41a2d6cf 5986 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5987 * this because either it can't run here any more (set_cpus_allowed()
5988 * away from this CPU, or CPU going down), or because we're
5989 * attempting to rebalance this task on exec (sched_exec).
5990 *
5991 * So we race with normal scheduler movements, but that's OK, as long
5992 * as the task is no longer on this CPU.
efc30814
KK
5993 *
5994 * Returns non-zero if task was successfully migrated.
1da177e4 5995 */
efc30814 5996static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5997{
70b97a7f 5998 struct rq *rq_dest, *rq_src;
e2912009 5999 int ret = 0;
1da177e4 6000
e761b772 6001 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6002 return ret;
1da177e4
LT
6003
6004 rq_src = cpu_rq(src_cpu);
6005 rq_dest = cpu_rq(dest_cpu);
6006
0122ec5b 6007 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6008 double_rq_lock(rq_src, rq_dest);
6009 /* Already moved. */
6010 if (task_cpu(p) != src_cpu)
b1e38734 6011 goto done;
1da177e4 6012 /* Affinity changed (again). */
96f874e2 6013 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6014 goto fail;
1da177e4 6015
e2912009
PZ
6016 /*
6017 * If we're not on a rq, the next wake-up will ensure we're
6018 * placed properly.
6019 */
fd2f4419 6020 if (p->on_rq) {
2e1cb74a 6021 deactivate_task(rq_src, p, 0);
e2912009 6022 set_task_cpu(p, dest_cpu);
dd41f596 6023 activate_task(rq_dest, p, 0);
15afe09b 6024 check_preempt_curr(rq_dest, p, 0);
1da177e4 6025 }
b1e38734 6026done:
efc30814 6027 ret = 1;
b1e38734 6028fail:
1da177e4 6029 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6030 raw_spin_unlock(&p->pi_lock);
efc30814 6031 return ret;
1da177e4
LT
6032}
6033
6034/*
969c7921
TH
6035 * migration_cpu_stop - this will be executed by a highprio stopper thread
6036 * and performs thread migration by bumping thread off CPU then
6037 * 'pushing' onto another runqueue.
1da177e4 6038 */
969c7921 6039static int migration_cpu_stop(void *data)
1da177e4 6040{
969c7921 6041 struct migration_arg *arg = data;
f7b4cddc 6042
969c7921
TH
6043 /*
6044 * The original target cpu might have gone down and we might
6045 * be on another cpu but it doesn't matter.
6046 */
f7b4cddc 6047 local_irq_disable();
969c7921 6048 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6049 local_irq_enable();
1da177e4 6050 return 0;
f7b4cddc
ON
6051}
6052
1da177e4 6053#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6054
054b9108 6055/*
48c5ccae
PZ
6056 * Ensures that the idle task is using init_mm right before its cpu goes
6057 * offline.
054b9108 6058 */
48c5ccae 6059void idle_task_exit(void)
1da177e4 6060{
48c5ccae 6061 struct mm_struct *mm = current->active_mm;
e76bd8d9 6062
48c5ccae 6063 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6064
48c5ccae
PZ
6065 if (mm != &init_mm)
6066 switch_mm(mm, &init_mm, current);
6067 mmdrop(mm);
1da177e4
LT
6068}
6069
6070/*
6071 * While a dead CPU has no uninterruptible tasks queued at this point,
6072 * it might still have a nonzero ->nr_uninterruptible counter, because
6073 * for performance reasons the counter is not stricly tracking tasks to
6074 * their home CPUs. So we just add the counter to another CPU's counter,
6075 * to keep the global sum constant after CPU-down:
6076 */
70b97a7f 6077static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6078{
6ad4c188 6079 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6080
1da177e4
LT
6081 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6082 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6083}
6084
dd41f596 6085/*
48c5ccae 6086 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6087 */
48c5ccae 6088static void calc_global_load_remove(struct rq *rq)
1da177e4 6089{
48c5ccae
PZ
6090 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6091 rq->calc_load_active = 0;
1da177e4
LT
6092}
6093
48f24c4d 6094/*
48c5ccae
PZ
6095 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6096 * try_to_wake_up()->select_task_rq().
6097 *
6098 * Called with rq->lock held even though we'er in stop_machine() and
6099 * there's no concurrency possible, we hold the required locks anyway
6100 * because of lock validation efforts.
1da177e4 6101 */
48c5ccae 6102static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6103{
70b97a7f 6104 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6105 struct task_struct *next, *stop = rq->stop;
6106 int dest_cpu;
1da177e4
LT
6107
6108 /*
48c5ccae
PZ
6109 * Fudge the rq selection such that the below task selection loop
6110 * doesn't get stuck on the currently eligible stop task.
6111 *
6112 * We're currently inside stop_machine() and the rq is either stuck
6113 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6114 * either way we should never end up calling schedule() until we're
6115 * done here.
1da177e4 6116 */
48c5ccae 6117 rq->stop = NULL;
48f24c4d 6118
dd41f596 6119 for ( ; ; ) {
48c5ccae
PZ
6120 /*
6121 * There's this thread running, bail when that's the only
6122 * remaining thread.
6123 */
6124 if (rq->nr_running == 1)
dd41f596 6125 break;
48c5ccae 6126
b67802ea 6127 next = pick_next_task(rq);
48c5ccae 6128 BUG_ON(!next);
79c53799 6129 next->sched_class->put_prev_task(rq, next);
e692ab53 6130
48c5ccae
PZ
6131 /* Find suitable destination for @next, with force if needed. */
6132 dest_cpu = select_fallback_rq(dead_cpu, next);
6133 raw_spin_unlock(&rq->lock);
6134
6135 __migrate_task(next, dead_cpu, dest_cpu);
6136
6137 raw_spin_lock(&rq->lock);
1da177e4 6138 }
dce48a84 6139
48c5ccae 6140 rq->stop = stop;
dce48a84 6141}
48c5ccae 6142
1da177e4
LT
6143#endif /* CONFIG_HOTPLUG_CPU */
6144
e692ab53
NP
6145#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6146
6147static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6148 {
6149 .procname = "sched_domain",
c57baf1e 6150 .mode = 0555,
e0361851 6151 },
56992309 6152 {}
e692ab53
NP
6153};
6154
6155static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6156 {
6157 .procname = "kernel",
c57baf1e 6158 .mode = 0555,
e0361851
AD
6159 .child = sd_ctl_dir,
6160 },
56992309 6161 {}
e692ab53
NP
6162};
6163
6164static struct ctl_table *sd_alloc_ctl_entry(int n)
6165{
6166 struct ctl_table *entry =
5cf9f062 6167 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6168
e692ab53
NP
6169 return entry;
6170}
6171
6382bc90
MM
6172static void sd_free_ctl_entry(struct ctl_table **tablep)
6173{
cd790076 6174 struct ctl_table *entry;
6382bc90 6175
cd790076
MM
6176 /*
6177 * In the intermediate directories, both the child directory and
6178 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6179 * will always be set. In the lowest directory the names are
cd790076
MM
6180 * static strings and all have proc handlers.
6181 */
6182 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6183 if (entry->child)
6184 sd_free_ctl_entry(&entry->child);
cd790076
MM
6185 if (entry->proc_handler == NULL)
6186 kfree(entry->procname);
6187 }
6382bc90
MM
6188
6189 kfree(*tablep);
6190 *tablep = NULL;
6191}
6192
e692ab53 6193static void
e0361851 6194set_table_entry(struct ctl_table *entry,
e692ab53
NP
6195 const char *procname, void *data, int maxlen,
6196 mode_t mode, proc_handler *proc_handler)
6197{
e692ab53
NP
6198 entry->procname = procname;
6199 entry->data = data;
6200 entry->maxlen = maxlen;
6201 entry->mode = mode;
6202 entry->proc_handler = proc_handler;
6203}
6204
6205static struct ctl_table *
6206sd_alloc_ctl_domain_table(struct sched_domain *sd)
6207{
a5d8c348 6208 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6209
ad1cdc1d
MM
6210 if (table == NULL)
6211 return NULL;
6212
e0361851 6213 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6214 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6215 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6216 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6217 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6218 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6219 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6220 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6221 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6222 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6223 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6224 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6225 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6226 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6227 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6228 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6229 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6230 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6231 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6232 &sd->cache_nice_tries,
6233 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6234 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6235 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6236 set_table_entry(&table[11], "name", sd->name,
6237 CORENAME_MAX_SIZE, 0444, proc_dostring);
6238 /* &table[12] is terminator */
e692ab53
NP
6239
6240 return table;
6241}
6242
9a4e7159 6243static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6244{
6245 struct ctl_table *entry, *table;
6246 struct sched_domain *sd;
6247 int domain_num = 0, i;
6248 char buf[32];
6249
6250 for_each_domain(cpu, sd)
6251 domain_num++;
6252 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6253 if (table == NULL)
6254 return NULL;
e692ab53
NP
6255
6256 i = 0;
6257 for_each_domain(cpu, sd) {
6258 snprintf(buf, 32, "domain%d", i);
e692ab53 6259 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6260 entry->mode = 0555;
e692ab53
NP
6261 entry->child = sd_alloc_ctl_domain_table(sd);
6262 entry++;
6263 i++;
6264 }
6265 return table;
6266}
6267
6268static struct ctl_table_header *sd_sysctl_header;
6382bc90 6269static void register_sched_domain_sysctl(void)
e692ab53 6270{
6ad4c188 6271 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6272 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6273 char buf[32];
6274
7378547f
MM
6275 WARN_ON(sd_ctl_dir[0].child);
6276 sd_ctl_dir[0].child = entry;
6277
ad1cdc1d
MM
6278 if (entry == NULL)
6279 return;
6280
6ad4c188 6281 for_each_possible_cpu(i) {
e692ab53 6282 snprintf(buf, 32, "cpu%d", i);
e692ab53 6283 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6284 entry->mode = 0555;
e692ab53 6285 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6286 entry++;
e692ab53 6287 }
7378547f
MM
6288
6289 WARN_ON(sd_sysctl_header);
e692ab53
NP
6290 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6291}
6382bc90 6292
7378547f 6293/* may be called multiple times per register */
6382bc90
MM
6294static void unregister_sched_domain_sysctl(void)
6295{
7378547f
MM
6296 if (sd_sysctl_header)
6297 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6298 sd_sysctl_header = NULL;
7378547f
MM
6299 if (sd_ctl_dir[0].child)
6300 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6301}
e692ab53 6302#else
6382bc90
MM
6303static void register_sched_domain_sysctl(void)
6304{
6305}
6306static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6307{
6308}
6309#endif
6310
1f11eb6a
GH
6311static void set_rq_online(struct rq *rq)
6312{
6313 if (!rq->online) {
6314 const struct sched_class *class;
6315
c6c4927b 6316 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6317 rq->online = 1;
6318
6319 for_each_class(class) {
6320 if (class->rq_online)
6321 class->rq_online(rq);
6322 }
6323 }
6324}
6325
6326static void set_rq_offline(struct rq *rq)
6327{
6328 if (rq->online) {
6329 const struct sched_class *class;
6330
6331 for_each_class(class) {
6332 if (class->rq_offline)
6333 class->rq_offline(rq);
6334 }
6335
c6c4927b 6336 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6337 rq->online = 0;
6338 }
6339}
6340
1da177e4
LT
6341/*
6342 * migration_call - callback that gets triggered when a CPU is added.
6343 * Here we can start up the necessary migration thread for the new CPU.
6344 */
48f24c4d
IM
6345static int __cpuinit
6346migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6347{
48f24c4d 6348 int cpu = (long)hcpu;
1da177e4 6349 unsigned long flags;
969c7921 6350 struct rq *rq = cpu_rq(cpu);
1da177e4 6351
48c5ccae 6352 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6353
1da177e4 6354 case CPU_UP_PREPARE:
a468d389 6355 rq->calc_load_update = calc_load_update;
1da177e4 6356 break;
48f24c4d 6357
1da177e4 6358 case CPU_ONLINE:
1f94ef59 6359 /* Update our root-domain */
05fa785c 6360 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6361 if (rq->rd) {
c6c4927b 6362 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6363
6364 set_rq_online(rq);
1f94ef59 6365 }
05fa785c 6366 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6367 break;
48f24c4d 6368
1da177e4 6369#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6370 case CPU_DYING:
317f3941 6371 sched_ttwu_pending();
57d885fe 6372 /* Update our root-domain */
05fa785c 6373 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6374 if (rq->rd) {
c6c4927b 6375 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6376 set_rq_offline(rq);
57d885fe 6377 }
48c5ccae
PZ
6378 migrate_tasks(cpu);
6379 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6380 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6381
6382 migrate_nr_uninterruptible(rq);
6383 calc_global_load_remove(rq);
57d885fe 6384 break;
1da177e4
LT
6385#endif
6386 }
49c022e6
PZ
6387
6388 update_max_interval();
6389
1da177e4
LT
6390 return NOTIFY_OK;
6391}
6392
f38b0820
PM
6393/*
6394 * Register at high priority so that task migration (migrate_all_tasks)
6395 * happens before everything else. This has to be lower priority than
cdd6c482 6396 * the notifier in the perf_event subsystem, though.
1da177e4 6397 */
26c2143b 6398static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6399 .notifier_call = migration_call,
50a323b7 6400 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6401};
6402
3a101d05
TH
6403static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6404 unsigned long action, void *hcpu)
6405{
6406 switch (action & ~CPU_TASKS_FROZEN) {
6407 case CPU_ONLINE:
6408 case CPU_DOWN_FAILED:
6409 set_cpu_active((long)hcpu, true);
6410 return NOTIFY_OK;
6411 default:
6412 return NOTIFY_DONE;
6413 }
6414}
6415
6416static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6417 unsigned long action, void *hcpu)
6418{
6419 switch (action & ~CPU_TASKS_FROZEN) {
6420 case CPU_DOWN_PREPARE:
6421 set_cpu_active((long)hcpu, false);
6422 return NOTIFY_OK;
6423 default:
6424 return NOTIFY_DONE;
6425 }
6426}
6427
7babe8db 6428static int __init migration_init(void)
1da177e4
LT
6429{
6430 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6431 int err;
48f24c4d 6432
3a101d05 6433 /* Initialize migration for the boot CPU */
07dccf33
AM
6434 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6435 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6436 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6437 register_cpu_notifier(&migration_notifier);
7babe8db 6438
3a101d05
TH
6439 /* Register cpu active notifiers */
6440 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6441 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6442
a004cd42 6443 return 0;
1da177e4 6444}
7babe8db 6445early_initcall(migration_init);
1da177e4
LT
6446#endif
6447
6448#ifdef CONFIG_SMP
476f3534 6449
4cb98839
PZ
6450static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6451
3e9830dc 6452#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6453
f6630114
MT
6454static __read_mostly int sched_domain_debug_enabled;
6455
6456static int __init sched_domain_debug_setup(char *str)
6457{
6458 sched_domain_debug_enabled = 1;
6459
6460 return 0;
6461}
6462early_param("sched_debug", sched_domain_debug_setup);
6463
7c16ec58 6464static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6465 struct cpumask *groupmask)
1da177e4 6466{
4dcf6aff 6467 struct sched_group *group = sd->groups;
434d53b0 6468 char str[256];
1da177e4 6469
968ea6d8 6470 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6471 cpumask_clear(groupmask);
4dcf6aff
IM
6472
6473 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6474
6475 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6476 printk("does not load-balance\n");
4dcf6aff 6477 if (sd->parent)
3df0fc5b
PZ
6478 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6479 " has parent");
4dcf6aff 6480 return -1;
41c7ce9a
NP
6481 }
6482
3df0fc5b 6483 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6484
758b2cdc 6485 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6486 printk(KERN_ERR "ERROR: domain->span does not contain "
6487 "CPU%d\n", cpu);
4dcf6aff 6488 }
758b2cdc 6489 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6490 printk(KERN_ERR "ERROR: domain->groups does not contain"
6491 " CPU%d\n", cpu);
4dcf6aff 6492 }
1da177e4 6493
4dcf6aff 6494 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6495 do {
4dcf6aff 6496 if (!group) {
3df0fc5b
PZ
6497 printk("\n");
6498 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6499 break;
6500 }
6501
18a3885f 6502 if (!group->cpu_power) {
3df0fc5b
PZ
6503 printk(KERN_CONT "\n");
6504 printk(KERN_ERR "ERROR: domain->cpu_power not "
6505 "set\n");
4dcf6aff
IM
6506 break;
6507 }
1da177e4 6508
758b2cdc 6509 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6510 printk(KERN_CONT "\n");
6511 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6512 break;
6513 }
1da177e4 6514
758b2cdc 6515 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6516 printk(KERN_CONT "\n");
6517 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6518 break;
6519 }
1da177e4 6520
758b2cdc 6521 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6522
968ea6d8 6523 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6524
3df0fc5b 6525 printk(KERN_CONT " %s", str);
18a3885f 6526 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6527 printk(KERN_CONT " (cpu_power = %d)",
6528 group->cpu_power);
381512cf 6529 }
1da177e4 6530
4dcf6aff
IM
6531 group = group->next;
6532 } while (group != sd->groups);
3df0fc5b 6533 printk(KERN_CONT "\n");
1da177e4 6534
758b2cdc 6535 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6536 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6537
758b2cdc
RR
6538 if (sd->parent &&
6539 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6540 printk(KERN_ERR "ERROR: parent span is not a superset "
6541 "of domain->span\n");
4dcf6aff
IM
6542 return 0;
6543}
1da177e4 6544
4dcf6aff
IM
6545static void sched_domain_debug(struct sched_domain *sd, int cpu)
6546{
6547 int level = 0;
1da177e4 6548
f6630114
MT
6549 if (!sched_domain_debug_enabled)
6550 return;
6551
4dcf6aff
IM
6552 if (!sd) {
6553 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6554 return;
6555 }
1da177e4 6556
4dcf6aff
IM
6557 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6558
6559 for (;;) {
4cb98839 6560 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6561 break;
1da177e4
LT
6562 level++;
6563 sd = sd->parent;
33859f7f 6564 if (!sd)
4dcf6aff
IM
6565 break;
6566 }
1da177e4 6567}
6d6bc0ad 6568#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6569# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6570#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6571
1a20ff27 6572static int sd_degenerate(struct sched_domain *sd)
245af2c7 6573{
758b2cdc 6574 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6575 return 1;
6576
6577 /* Following flags need at least 2 groups */
6578 if (sd->flags & (SD_LOAD_BALANCE |
6579 SD_BALANCE_NEWIDLE |
6580 SD_BALANCE_FORK |
89c4710e
SS
6581 SD_BALANCE_EXEC |
6582 SD_SHARE_CPUPOWER |
6583 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6584 if (sd->groups != sd->groups->next)
6585 return 0;
6586 }
6587
6588 /* Following flags don't use groups */
c88d5910 6589 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6590 return 0;
6591
6592 return 1;
6593}
6594
48f24c4d
IM
6595static int
6596sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6597{
6598 unsigned long cflags = sd->flags, pflags = parent->flags;
6599
6600 if (sd_degenerate(parent))
6601 return 1;
6602
758b2cdc 6603 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6604 return 0;
6605
245af2c7
SS
6606 /* Flags needing groups don't count if only 1 group in parent */
6607 if (parent->groups == parent->groups->next) {
6608 pflags &= ~(SD_LOAD_BALANCE |
6609 SD_BALANCE_NEWIDLE |
6610 SD_BALANCE_FORK |
89c4710e
SS
6611 SD_BALANCE_EXEC |
6612 SD_SHARE_CPUPOWER |
6613 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6614 if (nr_node_ids == 1)
6615 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6616 }
6617 if (~cflags & pflags)
6618 return 0;
6619
6620 return 1;
6621}
6622
dce840a0 6623static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6624{
dce840a0 6625 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6626
68e74568 6627 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6628 free_cpumask_var(rd->rto_mask);
6629 free_cpumask_var(rd->online);
6630 free_cpumask_var(rd->span);
6631 kfree(rd);
6632}
6633
57d885fe
GH
6634static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6635{
a0490fa3 6636 struct root_domain *old_rd = NULL;
57d885fe 6637 unsigned long flags;
57d885fe 6638
05fa785c 6639 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6640
6641 if (rq->rd) {
a0490fa3 6642 old_rd = rq->rd;
57d885fe 6643
c6c4927b 6644 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6645 set_rq_offline(rq);
57d885fe 6646
c6c4927b 6647 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6648
a0490fa3
IM
6649 /*
6650 * If we dont want to free the old_rt yet then
6651 * set old_rd to NULL to skip the freeing later
6652 * in this function:
6653 */
6654 if (!atomic_dec_and_test(&old_rd->refcount))
6655 old_rd = NULL;
57d885fe
GH
6656 }
6657
6658 atomic_inc(&rd->refcount);
6659 rq->rd = rd;
6660
c6c4927b 6661 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6662 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6663 set_rq_online(rq);
57d885fe 6664
05fa785c 6665 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6666
6667 if (old_rd)
dce840a0 6668 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6669}
6670
68c38fc3 6671static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6672{
6673 memset(rd, 0, sizeof(*rd));
6674
68c38fc3 6675 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6676 goto out;
68c38fc3 6677 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6678 goto free_span;
68c38fc3 6679 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6680 goto free_online;
6e0534f2 6681
68c38fc3 6682 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6683 goto free_rto_mask;
c6c4927b 6684 return 0;
6e0534f2 6685
68e74568
RR
6686free_rto_mask:
6687 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6688free_online:
6689 free_cpumask_var(rd->online);
6690free_span:
6691 free_cpumask_var(rd->span);
0c910d28 6692out:
c6c4927b 6693 return -ENOMEM;
57d885fe
GH
6694}
6695
6696static void init_defrootdomain(void)
6697{
68c38fc3 6698 init_rootdomain(&def_root_domain);
c6c4927b 6699
57d885fe
GH
6700 atomic_set(&def_root_domain.refcount, 1);
6701}
6702
dc938520 6703static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6704{
6705 struct root_domain *rd;
6706
6707 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6708 if (!rd)
6709 return NULL;
6710
68c38fc3 6711 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6712 kfree(rd);
6713 return NULL;
6714 }
57d885fe
GH
6715
6716 return rd;
6717}
6718
dce840a0
PZ
6719static void free_sched_domain(struct rcu_head *rcu)
6720{
6721 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6722 if (atomic_dec_and_test(&sd->groups->ref))
6723 kfree(sd->groups);
6724 kfree(sd);
6725}
6726
6727static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6728{
6729 call_rcu(&sd->rcu, free_sched_domain);
6730}
6731
6732static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6733{
6734 for (; sd; sd = sd->parent)
6735 destroy_sched_domain(sd, cpu);
6736}
6737
1da177e4 6738/*
0eab9146 6739 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6740 * hold the hotplug lock.
6741 */
0eab9146
IM
6742static void
6743cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6744{
70b97a7f 6745 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6746 struct sched_domain *tmp;
6747
6748 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6749 for (tmp = sd; tmp; ) {
245af2c7
SS
6750 struct sched_domain *parent = tmp->parent;
6751 if (!parent)
6752 break;
f29c9b1c 6753
1a848870 6754 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6755 tmp->parent = parent->parent;
1a848870
SS
6756 if (parent->parent)
6757 parent->parent->child = tmp;
dce840a0 6758 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6759 } else
6760 tmp = tmp->parent;
245af2c7
SS
6761 }
6762
1a848870 6763 if (sd && sd_degenerate(sd)) {
dce840a0 6764 tmp = sd;
245af2c7 6765 sd = sd->parent;
dce840a0 6766 destroy_sched_domain(tmp, cpu);
1a848870
SS
6767 if (sd)
6768 sd->child = NULL;
6769 }
1da177e4 6770
4cb98839 6771 sched_domain_debug(sd, cpu);
1da177e4 6772
57d885fe 6773 rq_attach_root(rq, rd);
dce840a0 6774 tmp = rq->sd;
674311d5 6775 rcu_assign_pointer(rq->sd, sd);
dce840a0 6776 destroy_sched_domains(tmp, cpu);
1da177e4
LT
6777}
6778
6779/* cpus with isolated domains */
dcc30a35 6780static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6781
6782/* Setup the mask of cpus configured for isolated domains */
6783static int __init isolated_cpu_setup(char *str)
6784{
bdddd296 6785 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6786 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6787 return 1;
6788}
6789
8927f494 6790__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6791
9c1cfda2 6792#define SD_NODES_PER_DOMAIN 16
1da177e4 6793
9c1cfda2 6794#ifdef CONFIG_NUMA
198e2f18 6795
9c1cfda2
JH
6796/**
6797 * find_next_best_node - find the next node to include in a sched_domain
6798 * @node: node whose sched_domain we're building
6799 * @used_nodes: nodes already in the sched_domain
6800 *
41a2d6cf 6801 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6802 * finds the closest node not already in the @used_nodes map.
6803 *
6804 * Should use nodemask_t.
6805 */
c5f59f08 6806static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6807{
6808 int i, n, val, min_val, best_node = 0;
6809
6810 min_val = INT_MAX;
6811
076ac2af 6812 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6813 /* Start at @node */
076ac2af 6814 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6815
6816 if (!nr_cpus_node(n))
6817 continue;
6818
6819 /* Skip already used nodes */
c5f59f08 6820 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6821 continue;
6822
6823 /* Simple min distance search */
6824 val = node_distance(node, n);
6825
6826 if (val < min_val) {
6827 min_val = val;
6828 best_node = n;
6829 }
6830 }
6831
c5f59f08 6832 node_set(best_node, *used_nodes);
9c1cfda2
JH
6833 return best_node;
6834}
6835
6836/**
6837 * sched_domain_node_span - get a cpumask for a node's sched_domain
6838 * @node: node whose cpumask we're constructing
73486722 6839 * @span: resulting cpumask
9c1cfda2 6840 *
41a2d6cf 6841 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6842 * should be one that prevents unnecessary balancing, but also spreads tasks
6843 * out optimally.
6844 */
96f874e2 6845static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6846{
c5f59f08 6847 nodemask_t used_nodes;
48f24c4d 6848 int i;
9c1cfda2 6849
6ca09dfc 6850 cpumask_clear(span);
c5f59f08 6851 nodes_clear(used_nodes);
9c1cfda2 6852
6ca09dfc 6853 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6854 node_set(node, used_nodes);
9c1cfda2
JH
6855
6856 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6857 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6858
6ca09dfc 6859 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6860 }
9c1cfda2 6861}
d3081f52
PZ
6862
6863static const struct cpumask *cpu_node_mask(int cpu)
6864{
6865 lockdep_assert_held(&sched_domains_mutex);
6866
6867 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6868
6869 return sched_domains_tmpmask;
6870}
2c402dc3
PZ
6871
6872static const struct cpumask *cpu_allnodes_mask(int cpu)
6873{
6874 return cpu_possible_mask;
6875}
6d6bc0ad 6876#endif /* CONFIG_NUMA */
9c1cfda2 6877
d3081f52
PZ
6878static const struct cpumask *cpu_cpu_mask(int cpu)
6879{
6880 return cpumask_of_node(cpu_to_node(cpu));
6881}
6882
5c45bf27 6883int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6884
dce840a0
PZ
6885struct sd_data {
6886 struct sched_domain **__percpu sd;
6887 struct sched_group **__percpu sg;
6888};
6889
49a02c51 6890struct s_data {
21d42ccf 6891 struct sched_domain ** __percpu sd;
49a02c51
AH
6892 struct root_domain *rd;
6893};
6894
2109b99e 6895enum s_alloc {
2109b99e 6896 sa_rootdomain,
21d42ccf 6897 sa_sd,
dce840a0 6898 sa_sd_storage,
2109b99e
AH
6899 sa_none,
6900};
6901
54ab4ff4
PZ
6902struct sched_domain_topology_level;
6903
6904typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
6905typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6906
6907struct sched_domain_topology_level {
2c402dc3
PZ
6908 sched_domain_init_f init;
6909 sched_domain_mask_f mask;
54ab4ff4 6910 struct sd_data data;
eb7a74e6
PZ
6911};
6912
9c1cfda2 6913/*
dce840a0 6914 * Assumes the sched_domain tree is fully constructed
9c1cfda2 6915 */
dce840a0 6916static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6917{
dce840a0
PZ
6918 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6919 struct sched_domain *child = sd->child;
1da177e4 6920
dce840a0
PZ
6921 if (child)
6922 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6923
6711cab4 6924 if (sg)
dce840a0
PZ
6925 *sg = *per_cpu_ptr(sdd->sg, cpu);
6926
6927 return cpu;
1e9f28fa 6928}
1e9f28fa 6929
01a08546 6930/*
dce840a0
PZ
6931 * build_sched_groups takes the cpumask we wish to span, and a pointer
6932 * to a function which identifies what group(along with sched group) a CPU
6933 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6934 * (due to the fact that we keep track of groups covered with a struct cpumask).
6935 *
6936 * build_sched_groups will build a circular linked list of the groups
6937 * covered by the given span, and will set each group's ->cpumask correctly,
6938 * and ->cpu_power to 0.
01a08546 6939 */
dce840a0 6940static void
f96225fd 6941build_sched_groups(struct sched_domain *sd)
1da177e4 6942{
dce840a0
PZ
6943 struct sched_group *first = NULL, *last = NULL;
6944 struct sd_data *sdd = sd->private;
6945 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6946 struct cpumask *covered;
dce840a0 6947 int i;
9c1cfda2 6948
f96225fd
PZ
6949 lockdep_assert_held(&sched_domains_mutex);
6950 covered = sched_domains_tmpmask;
6951
dce840a0 6952 cpumask_clear(covered);
6711cab4 6953
dce840a0
PZ
6954 for_each_cpu(i, span) {
6955 struct sched_group *sg;
6956 int group = get_group(i, sdd, &sg);
6957 int j;
6711cab4 6958
dce840a0
PZ
6959 if (cpumask_test_cpu(i, covered))
6960 continue;
6711cab4 6961
dce840a0
PZ
6962 cpumask_clear(sched_group_cpus(sg));
6963 sg->cpu_power = 0;
0601a88d 6964
dce840a0
PZ
6965 for_each_cpu(j, span) {
6966 if (get_group(j, sdd, NULL) != group)
6967 continue;
0601a88d 6968
dce840a0
PZ
6969 cpumask_set_cpu(j, covered);
6970 cpumask_set_cpu(j, sched_group_cpus(sg));
6971 }
0601a88d 6972
dce840a0
PZ
6973 if (!first)
6974 first = sg;
6975 if (last)
6976 last->next = sg;
6977 last = sg;
6978 }
6979 last->next = first;
0601a88d 6980}
51888ca2 6981
89c4710e
SS
6982/*
6983 * Initialize sched groups cpu_power.
6984 *
6985 * cpu_power indicates the capacity of sched group, which is used while
6986 * distributing the load between different sched groups in a sched domain.
6987 * Typically cpu_power for all the groups in a sched domain will be same unless
6988 * there are asymmetries in the topology. If there are asymmetries, group
6989 * having more cpu_power will pickup more load compared to the group having
6990 * less cpu_power.
89c4710e
SS
6991 */
6992static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6993{
89c4710e
SS
6994 WARN_ON(!sd || !sd->groups);
6995
13318a71 6996 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6997 return;
6998
aae6d3dd
SS
6999 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7000
d274cb30 7001 update_group_power(sd, cpu);
89c4710e
SS
7002}
7003
7c16ec58
MT
7004/*
7005 * Initializers for schedule domains
7006 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7007 */
7008
a5d8c348
IM
7009#ifdef CONFIG_SCHED_DEBUG
7010# define SD_INIT_NAME(sd, type) sd->name = #type
7011#else
7012# define SD_INIT_NAME(sd, type) do { } while (0)
7013#endif
7014
54ab4ff4
PZ
7015#define SD_INIT_FUNC(type) \
7016static noinline struct sched_domain * \
7017sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7018{ \
7019 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7020 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7021 SD_INIT_NAME(sd, type); \
7022 sd->private = &tl->data; \
7023 return sd; \
7c16ec58
MT
7024}
7025
7026SD_INIT_FUNC(CPU)
7027#ifdef CONFIG_NUMA
7028 SD_INIT_FUNC(ALLNODES)
7029 SD_INIT_FUNC(NODE)
7030#endif
7031#ifdef CONFIG_SCHED_SMT
7032 SD_INIT_FUNC(SIBLING)
7033#endif
7034#ifdef CONFIG_SCHED_MC
7035 SD_INIT_FUNC(MC)
7036#endif
01a08546
HC
7037#ifdef CONFIG_SCHED_BOOK
7038 SD_INIT_FUNC(BOOK)
7039#endif
7c16ec58 7040
1d3504fc 7041static int default_relax_domain_level = -1;
60495e77 7042int sched_domain_level_max;
1d3504fc
HS
7043
7044static int __init setup_relax_domain_level(char *str)
7045{
30e0e178
LZ
7046 unsigned long val;
7047
7048 val = simple_strtoul(str, NULL, 0);
60495e77 7049 if (val < sched_domain_level_max)
30e0e178
LZ
7050 default_relax_domain_level = val;
7051
1d3504fc
HS
7052 return 1;
7053}
7054__setup("relax_domain_level=", setup_relax_domain_level);
7055
7056static void set_domain_attribute(struct sched_domain *sd,
7057 struct sched_domain_attr *attr)
7058{
7059 int request;
7060
7061 if (!attr || attr->relax_domain_level < 0) {
7062 if (default_relax_domain_level < 0)
7063 return;
7064 else
7065 request = default_relax_domain_level;
7066 } else
7067 request = attr->relax_domain_level;
7068 if (request < sd->level) {
7069 /* turn off idle balance on this domain */
c88d5910 7070 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7071 } else {
7072 /* turn on idle balance on this domain */
c88d5910 7073 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7074 }
7075}
7076
54ab4ff4
PZ
7077static void __sdt_free(const struct cpumask *cpu_map);
7078static int __sdt_alloc(const struct cpumask *cpu_map);
7079
2109b99e
AH
7080static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7081 const struct cpumask *cpu_map)
7082{
7083 switch (what) {
2109b99e 7084 case sa_rootdomain:
822ff793
PZ
7085 if (!atomic_read(&d->rd->refcount))
7086 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7087 case sa_sd:
7088 free_percpu(d->sd); /* fall through */
dce840a0 7089 case sa_sd_storage:
54ab4ff4 7090 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7091 case sa_none:
7092 break;
7093 }
7094}
3404c8d9 7095
2109b99e
AH
7096static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7097 const struct cpumask *cpu_map)
7098{
dce840a0
PZ
7099 memset(d, 0, sizeof(*d));
7100
54ab4ff4
PZ
7101 if (__sdt_alloc(cpu_map))
7102 return sa_sd_storage;
dce840a0
PZ
7103 d->sd = alloc_percpu(struct sched_domain *);
7104 if (!d->sd)
7105 return sa_sd_storage;
2109b99e 7106 d->rd = alloc_rootdomain();
dce840a0 7107 if (!d->rd)
21d42ccf 7108 return sa_sd;
2109b99e
AH
7109 return sa_rootdomain;
7110}
57d885fe 7111
dce840a0
PZ
7112/*
7113 * NULL the sd_data elements we've used to build the sched_domain and
7114 * sched_group structure so that the subsequent __free_domain_allocs()
7115 * will not free the data we're using.
7116 */
7117static void claim_allocations(int cpu, struct sched_domain *sd)
7118{
7119 struct sd_data *sdd = sd->private;
7120 struct sched_group *sg = sd->groups;
7121
7122 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7123 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7124
7125 if (cpu == cpumask_first(sched_group_cpus(sg))) {
7126 WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
7127 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7128 }
7129}
7130
2c402dc3
PZ
7131#ifdef CONFIG_SCHED_SMT
7132static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7133{
2c402dc3 7134 return topology_thread_cpumask(cpu);
3bd65a80 7135}
2c402dc3 7136#endif
7f4588f3 7137
d069b916
PZ
7138/*
7139 * Topology list, bottom-up.
7140 */
2c402dc3 7141static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7142#ifdef CONFIG_SCHED_SMT
7143 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7144#endif
1e9f28fa 7145#ifdef CONFIG_SCHED_MC
2c402dc3 7146 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7147#endif
d069b916
PZ
7148#ifdef CONFIG_SCHED_BOOK
7149 { sd_init_BOOK, cpu_book_mask, },
7150#endif
7151 { sd_init_CPU, cpu_cpu_mask, },
7152#ifdef CONFIG_NUMA
7153 { sd_init_NODE, cpu_node_mask, },
7154 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7155#endif
eb7a74e6
PZ
7156 { NULL, },
7157};
7158
7159static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7160
54ab4ff4
PZ
7161static int __sdt_alloc(const struct cpumask *cpu_map)
7162{
7163 struct sched_domain_topology_level *tl;
7164 int j;
7165
7166 for (tl = sched_domain_topology; tl->init; tl++) {
7167 struct sd_data *sdd = &tl->data;
7168
7169 sdd->sd = alloc_percpu(struct sched_domain *);
7170 if (!sdd->sd)
7171 return -ENOMEM;
7172
7173 sdd->sg = alloc_percpu(struct sched_group *);
7174 if (!sdd->sg)
7175 return -ENOMEM;
7176
7177 for_each_cpu(j, cpu_map) {
7178 struct sched_domain *sd;
7179 struct sched_group *sg;
7180
7181 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7182 GFP_KERNEL, cpu_to_node(j));
7183 if (!sd)
7184 return -ENOMEM;
7185
7186 *per_cpu_ptr(sdd->sd, j) = sd;
7187
7188 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7189 GFP_KERNEL, cpu_to_node(j));
7190 if (!sg)
7191 return -ENOMEM;
7192
7193 *per_cpu_ptr(sdd->sg, j) = sg;
7194 }
7195 }
7196
7197 return 0;
7198}
7199
7200static void __sdt_free(const struct cpumask *cpu_map)
7201{
7202 struct sched_domain_topology_level *tl;
7203 int j;
7204
7205 for (tl = sched_domain_topology; tl->init; tl++) {
7206 struct sd_data *sdd = &tl->data;
7207
7208 for_each_cpu(j, cpu_map) {
7209 kfree(*per_cpu_ptr(sdd->sd, j));
7210 kfree(*per_cpu_ptr(sdd->sg, j));
7211 }
7212 free_percpu(sdd->sd);
7213 free_percpu(sdd->sg);
7214 }
7215}
7216
2c402dc3
PZ
7217struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7218 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7219 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7220 int cpu)
7221{
54ab4ff4 7222 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7223 if (!sd)
d069b916 7224 return child;
2c402dc3
PZ
7225
7226 set_domain_attribute(sd, attr);
7227 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7228 if (child) {
7229 sd->level = child->level + 1;
7230 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7231 child->parent = sd;
60495e77 7232 }
d069b916 7233 sd->child = child;
2c402dc3
PZ
7234
7235 return sd;
7236}
7237
2109b99e
AH
7238/*
7239 * Build sched domains for a given set of cpus and attach the sched domains
7240 * to the individual cpus
7241 */
dce840a0
PZ
7242static int build_sched_domains(const struct cpumask *cpu_map,
7243 struct sched_domain_attr *attr)
2109b99e
AH
7244{
7245 enum s_alloc alloc_state = sa_none;
dce840a0 7246 struct sched_domain *sd;
2109b99e 7247 struct s_data d;
822ff793 7248 int i, ret = -ENOMEM;
9c1cfda2 7249
2109b99e
AH
7250 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7251 if (alloc_state != sa_rootdomain)
7252 goto error;
9c1cfda2 7253
dce840a0 7254 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7255 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7256 struct sched_domain_topology_level *tl;
7257
3bd65a80 7258 sd = NULL;
2c402dc3
PZ
7259 for (tl = sched_domain_topology; tl->init; tl++)
7260 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
d274cb30 7261
d069b916
PZ
7262 while (sd->child)
7263 sd = sd->child;
7264
21d42ccf 7265 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7266 }
7267
7268 /* Build the groups for the domains */
7269 for_each_cpu(i, cpu_map) {
7270 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7271 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7272 get_group(i, sd->private, &sd->groups);
7273 atomic_inc(&sd->groups->ref);
21d42ccf 7274
dce840a0
PZ
7275 if (i != cpumask_first(sched_domain_span(sd)))
7276 continue;
7277
f96225fd 7278 build_sched_groups(sd);
1cf51902 7279 }
a06dadbe 7280 }
9c1cfda2 7281
1da177e4 7282 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7283 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7284 if (!cpumask_test_cpu(i, cpu_map))
7285 continue;
9c1cfda2 7286
dce840a0
PZ
7287 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7288 claim_allocations(i, sd);
cd4ea6ae 7289 init_sched_groups_power(i, sd);
dce840a0 7290 }
f712c0c7 7291 }
9c1cfda2 7292
1da177e4 7293 /* Attach the domains */
dce840a0 7294 rcu_read_lock();
abcd083a 7295 for_each_cpu(i, cpu_map) {
21d42ccf 7296 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7297 cpu_attach_domain(sd, d.rd, i);
1da177e4 7298 }
dce840a0 7299 rcu_read_unlock();
51888ca2 7300
822ff793 7301 ret = 0;
51888ca2 7302error:
2109b99e 7303 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7304 return ret;
1da177e4 7305}
029190c5 7306
acc3f5d7 7307static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7308static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7309static struct sched_domain_attr *dattr_cur;
7310 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7311
7312/*
7313 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7314 * cpumask) fails, then fallback to a single sched domain,
7315 * as determined by the single cpumask fallback_doms.
029190c5 7316 */
4212823f 7317static cpumask_var_t fallback_doms;
029190c5 7318
ee79d1bd
HC
7319/*
7320 * arch_update_cpu_topology lets virtualized architectures update the
7321 * cpu core maps. It is supposed to return 1 if the topology changed
7322 * or 0 if it stayed the same.
7323 */
7324int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7325{
ee79d1bd 7326 return 0;
22e52b07
HC
7327}
7328
acc3f5d7
RR
7329cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7330{
7331 int i;
7332 cpumask_var_t *doms;
7333
7334 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7335 if (!doms)
7336 return NULL;
7337 for (i = 0; i < ndoms; i++) {
7338 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7339 free_sched_domains(doms, i);
7340 return NULL;
7341 }
7342 }
7343 return doms;
7344}
7345
7346void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7347{
7348 unsigned int i;
7349 for (i = 0; i < ndoms; i++)
7350 free_cpumask_var(doms[i]);
7351 kfree(doms);
7352}
7353
1a20ff27 7354/*
41a2d6cf 7355 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7356 * For now this just excludes isolated cpus, but could be used to
7357 * exclude other special cases in the future.
1a20ff27 7358 */
c4a8849a 7359static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7360{
7378547f
MM
7361 int err;
7362
22e52b07 7363 arch_update_cpu_topology();
029190c5 7364 ndoms_cur = 1;
acc3f5d7 7365 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7366 if (!doms_cur)
acc3f5d7
RR
7367 doms_cur = &fallback_doms;
7368 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7369 dattr_cur = NULL;
dce840a0 7370 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7371 register_sched_domain_sysctl();
7378547f
MM
7372
7373 return err;
1a20ff27
DG
7374}
7375
1a20ff27
DG
7376/*
7377 * Detach sched domains from a group of cpus specified in cpu_map
7378 * These cpus will now be attached to the NULL domain
7379 */
96f874e2 7380static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7381{
7382 int i;
7383
dce840a0 7384 rcu_read_lock();
abcd083a 7385 for_each_cpu(i, cpu_map)
57d885fe 7386 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7387 rcu_read_unlock();
1a20ff27
DG
7388}
7389
1d3504fc
HS
7390/* handle null as "default" */
7391static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7392 struct sched_domain_attr *new, int idx_new)
7393{
7394 struct sched_domain_attr tmp;
7395
7396 /* fast path */
7397 if (!new && !cur)
7398 return 1;
7399
7400 tmp = SD_ATTR_INIT;
7401 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7402 new ? (new + idx_new) : &tmp,
7403 sizeof(struct sched_domain_attr));
7404}
7405
029190c5
PJ
7406/*
7407 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7408 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7409 * doms_new[] to the current sched domain partitioning, doms_cur[].
7410 * It destroys each deleted domain and builds each new domain.
7411 *
acc3f5d7 7412 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7413 * The masks don't intersect (don't overlap.) We should setup one
7414 * sched domain for each mask. CPUs not in any of the cpumasks will
7415 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7416 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7417 * it as it is.
7418 *
acc3f5d7
RR
7419 * The passed in 'doms_new' should be allocated using
7420 * alloc_sched_domains. This routine takes ownership of it and will
7421 * free_sched_domains it when done with it. If the caller failed the
7422 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7423 * and partition_sched_domains() will fallback to the single partition
7424 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7425 *
96f874e2 7426 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7427 * ndoms_new == 0 is a special case for destroying existing domains,
7428 * and it will not create the default domain.
dfb512ec 7429 *
029190c5
PJ
7430 * Call with hotplug lock held
7431 */
acc3f5d7 7432void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7433 struct sched_domain_attr *dattr_new)
029190c5 7434{
dfb512ec 7435 int i, j, n;
d65bd5ec 7436 int new_topology;
029190c5 7437
712555ee 7438 mutex_lock(&sched_domains_mutex);
a1835615 7439
7378547f
MM
7440 /* always unregister in case we don't destroy any domains */
7441 unregister_sched_domain_sysctl();
7442
d65bd5ec
HC
7443 /* Let architecture update cpu core mappings. */
7444 new_topology = arch_update_cpu_topology();
7445
dfb512ec 7446 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7447
7448 /* Destroy deleted domains */
7449 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7450 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7451 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7452 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7453 goto match1;
7454 }
7455 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7456 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7457match1:
7458 ;
7459 }
7460
e761b772
MK
7461 if (doms_new == NULL) {
7462 ndoms_cur = 0;
acc3f5d7 7463 doms_new = &fallback_doms;
6ad4c188 7464 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7465 WARN_ON_ONCE(dattr_new);
e761b772
MK
7466 }
7467
029190c5
PJ
7468 /* Build new domains */
7469 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7470 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7471 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7472 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7473 goto match2;
7474 }
7475 /* no match - add a new doms_new */
dce840a0 7476 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7477match2:
7478 ;
7479 }
7480
7481 /* Remember the new sched domains */
acc3f5d7
RR
7482 if (doms_cur != &fallback_doms)
7483 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7484 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7485 doms_cur = doms_new;
1d3504fc 7486 dattr_cur = dattr_new;
029190c5 7487 ndoms_cur = ndoms_new;
7378547f
MM
7488
7489 register_sched_domain_sysctl();
a1835615 7490
712555ee 7491 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7492}
7493
5c45bf27 7494#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7495static void reinit_sched_domains(void)
5c45bf27 7496{
95402b38 7497 get_online_cpus();
dfb512ec
MK
7498
7499 /* Destroy domains first to force the rebuild */
7500 partition_sched_domains(0, NULL, NULL);
7501
e761b772 7502 rebuild_sched_domains();
95402b38 7503 put_online_cpus();
5c45bf27
SS
7504}
7505
7506static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7507{
afb8a9b7 7508 unsigned int level = 0;
5c45bf27 7509
afb8a9b7
GS
7510 if (sscanf(buf, "%u", &level) != 1)
7511 return -EINVAL;
7512
7513 /*
7514 * level is always be positive so don't check for
7515 * level < POWERSAVINGS_BALANCE_NONE which is 0
7516 * What happens on 0 or 1 byte write,
7517 * need to check for count as well?
7518 */
7519
7520 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7521 return -EINVAL;
7522
7523 if (smt)
afb8a9b7 7524 sched_smt_power_savings = level;
5c45bf27 7525 else
afb8a9b7 7526 sched_mc_power_savings = level;
5c45bf27 7527
c4a8849a 7528 reinit_sched_domains();
5c45bf27 7529
c70f22d2 7530 return count;
5c45bf27
SS
7531}
7532
5c45bf27 7533#ifdef CONFIG_SCHED_MC
f718cd4a 7534static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7535 struct sysdev_class_attribute *attr,
f718cd4a 7536 char *page)
5c45bf27
SS
7537{
7538 return sprintf(page, "%u\n", sched_mc_power_savings);
7539}
f718cd4a 7540static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7541 struct sysdev_class_attribute *attr,
48f24c4d 7542 const char *buf, size_t count)
5c45bf27
SS
7543{
7544 return sched_power_savings_store(buf, count, 0);
7545}
f718cd4a
AK
7546static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7547 sched_mc_power_savings_show,
7548 sched_mc_power_savings_store);
5c45bf27
SS
7549#endif
7550
7551#ifdef CONFIG_SCHED_SMT
f718cd4a 7552static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7553 struct sysdev_class_attribute *attr,
f718cd4a 7554 char *page)
5c45bf27
SS
7555{
7556 return sprintf(page, "%u\n", sched_smt_power_savings);
7557}
f718cd4a 7558static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7559 struct sysdev_class_attribute *attr,
48f24c4d 7560 const char *buf, size_t count)
5c45bf27
SS
7561{
7562 return sched_power_savings_store(buf, count, 1);
7563}
f718cd4a
AK
7564static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7565 sched_smt_power_savings_show,
6707de00
AB
7566 sched_smt_power_savings_store);
7567#endif
7568
39aac648 7569int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7570{
7571 int err = 0;
7572
7573#ifdef CONFIG_SCHED_SMT
7574 if (smt_capable())
7575 err = sysfs_create_file(&cls->kset.kobj,
7576 &attr_sched_smt_power_savings.attr);
7577#endif
7578#ifdef CONFIG_SCHED_MC
7579 if (!err && mc_capable())
7580 err = sysfs_create_file(&cls->kset.kobj,
7581 &attr_sched_mc_power_savings.attr);
7582#endif
7583 return err;
7584}
6d6bc0ad 7585#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7586
1da177e4 7587/*
3a101d05
TH
7588 * Update cpusets according to cpu_active mask. If cpusets are
7589 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7590 * around partition_sched_domains().
1da177e4 7591 */
0b2e918a
TH
7592static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7593 void *hcpu)
e761b772 7594{
3a101d05 7595 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7596 case CPU_ONLINE:
6ad4c188 7597 case CPU_DOWN_FAILED:
3a101d05 7598 cpuset_update_active_cpus();
e761b772 7599 return NOTIFY_OK;
3a101d05
TH
7600 default:
7601 return NOTIFY_DONE;
7602 }
7603}
e761b772 7604
0b2e918a
TH
7605static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7606 void *hcpu)
3a101d05
TH
7607{
7608 switch (action & ~CPU_TASKS_FROZEN) {
7609 case CPU_DOWN_PREPARE:
7610 cpuset_update_active_cpus();
7611 return NOTIFY_OK;
e761b772
MK
7612 default:
7613 return NOTIFY_DONE;
7614 }
7615}
e761b772
MK
7616
7617static int update_runtime(struct notifier_block *nfb,
7618 unsigned long action, void *hcpu)
1da177e4 7619{
7def2be1
PZ
7620 int cpu = (int)(long)hcpu;
7621
1da177e4 7622 switch (action) {
1da177e4 7623 case CPU_DOWN_PREPARE:
8bb78442 7624 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7625 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7626 return NOTIFY_OK;
7627
1da177e4 7628 case CPU_DOWN_FAILED:
8bb78442 7629 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7630 case CPU_ONLINE:
8bb78442 7631 case CPU_ONLINE_FROZEN:
7def2be1 7632 enable_runtime(cpu_rq(cpu));
e761b772
MK
7633 return NOTIFY_OK;
7634
1da177e4
LT
7635 default:
7636 return NOTIFY_DONE;
7637 }
1da177e4 7638}
1da177e4
LT
7639
7640void __init sched_init_smp(void)
7641{
dcc30a35
RR
7642 cpumask_var_t non_isolated_cpus;
7643
7644 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7645 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7646
95402b38 7647 get_online_cpus();
712555ee 7648 mutex_lock(&sched_domains_mutex);
c4a8849a 7649 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7650 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7651 if (cpumask_empty(non_isolated_cpus))
7652 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7653 mutex_unlock(&sched_domains_mutex);
95402b38 7654 put_online_cpus();
e761b772 7655
3a101d05
TH
7656 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7657 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7658
7659 /* RT runtime code needs to handle some hotplug events */
7660 hotcpu_notifier(update_runtime, 0);
7661
b328ca18 7662 init_hrtick();
5c1e1767
NP
7663
7664 /* Move init over to a non-isolated CPU */
dcc30a35 7665 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7666 BUG();
19978ca6 7667 sched_init_granularity();
dcc30a35 7668 free_cpumask_var(non_isolated_cpus);
4212823f 7669
0e3900e6 7670 init_sched_rt_class();
1da177e4
LT
7671}
7672#else
7673void __init sched_init_smp(void)
7674{
19978ca6 7675 sched_init_granularity();
1da177e4
LT
7676}
7677#endif /* CONFIG_SMP */
7678
cd1bb94b
AB
7679const_debug unsigned int sysctl_timer_migration = 1;
7680
1da177e4
LT
7681int in_sched_functions(unsigned long addr)
7682{
1da177e4
LT
7683 return in_lock_functions(addr) ||
7684 (addr >= (unsigned long)__sched_text_start
7685 && addr < (unsigned long)__sched_text_end);
7686}
7687
a9957449 7688static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7689{
7690 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7691 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7692#ifdef CONFIG_FAIR_GROUP_SCHED
7693 cfs_rq->rq = rq;
f07333bf 7694 /* allow initial update_cfs_load() to truncate */
6ea72f12 7695#ifdef CONFIG_SMP
f07333bf 7696 cfs_rq->load_stamp = 1;
6ea72f12 7697#endif
dd41f596 7698#endif
67e9fb2a 7699 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7700}
7701
fa85ae24
PZ
7702static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7703{
7704 struct rt_prio_array *array;
7705 int i;
7706
7707 array = &rt_rq->active;
7708 for (i = 0; i < MAX_RT_PRIO; i++) {
7709 INIT_LIST_HEAD(array->queue + i);
7710 __clear_bit(i, array->bitmap);
7711 }
7712 /* delimiter for bitsearch: */
7713 __set_bit(MAX_RT_PRIO, array->bitmap);
7714
052f1dc7 7715#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7716 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7717#ifdef CONFIG_SMP
e864c499 7718 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7719#endif
48d5e258 7720#endif
fa85ae24
PZ
7721#ifdef CONFIG_SMP
7722 rt_rq->rt_nr_migratory = 0;
fa85ae24 7723 rt_rq->overloaded = 0;
05fa785c 7724 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7725#endif
7726
7727 rt_rq->rt_time = 0;
7728 rt_rq->rt_throttled = 0;
ac086bc2 7729 rt_rq->rt_runtime = 0;
0986b11b 7730 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7731
052f1dc7 7732#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7733 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7734 rt_rq->rq = rq;
7735#endif
fa85ae24
PZ
7736}
7737
6f505b16 7738#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7739static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7740 struct sched_entity *se, int cpu,
ec7dc8ac 7741 struct sched_entity *parent)
6f505b16 7742{
ec7dc8ac 7743 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7744 tg->cfs_rq[cpu] = cfs_rq;
7745 init_cfs_rq(cfs_rq, rq);
7746 cfs_rq->tg = tg;
6f505b16
PZ
7747
7748 tg->se[cpu] = se;
07e06b01 7749 /* se could be NULL for root_task_group */
354d60c2
DG
7750 if (!se)
7751 return;
7752
ec7dc8ac
DG
7753 if (!parent)
7754 se->cfs_rq = &rq->cfs;
7755 else
7756 se->cfs_rq = parent->my_q;
7757
6f505b16 7758 se->my_q = cfs_rq;
9437178f 7759 update_load_set(&se->load, 0);
ec7dc8ac 7760 se->parent = parent;
6f505b16 7761}
052f1dc7 7762#endif
6f505b16 7763
052f1dc7 7764#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7765static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7766 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7767 struct sched_rt_entity *parent)
6f505b16 7768{
ec7dc8ac
DG
7769 struct rq *rq = cpu_rq(cpu);
7770
6f505b16
PZ
7771 tg->rt_rq[cpu] = rt_rq;
7772 init_rt_rq(rt_rq, rq);
7773 rt_rq->tg = tg;
ac086bc2 7774 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7775
7776 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7777 if (!rt_se)
7778 return;
7779
ec7dc8ac
DG
7780 if (!parent)
7781 rt_se->rt_rq = &rq->rt;
7782 else
7783 rt_se->rt_rq = parent->my_q;
7784
6f505b16 7785 rt_se->my_q = rt_rq;
ec7dc8ac 7786 rt_se->parent = parent;
6f505b16
PZ
7787 INIT_LIST_HEAD(&rt_se->run_list);
7788}
7789#endif
7790
1da177e4
LT
7791void __init sched_init(void)
7792{
dd41f596 7793 int i, j;
434d53b0
MT
7794 unsigned long alloc_size = 0, ptr;
7795
7796#ifdef CONFIG_FAIR_GROUP_SCHED
7797 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7798#endif
7799#ifdef CONFIG_RT_GROUP_SCHED
7800 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7801#endif
df7c8e84 7802#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7803 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7804#endif
434d53b0 7805 if (alloc_size) {
36b7b6d4 7806 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7807
7808#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7809 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7810 ptr += nr_cpu_ids * sizeof(void **);
7811
07e06b01 7812 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7813 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7814
6d6bc0ad 7815#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7816#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7817 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7818 ptr += nr_cpu_ids * sizeof(void **);
7819
07e06b01 7820 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7821 ptr += nr_cpu_ids * sizeof(void **);
7822
6d6bc0ad 7823#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7824#ifdef CONFIG_CPUMASK_OFFSTACK
7825 for_each_possible_cpu(i) {
7826 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7827 ptr += cpumask_size();
7828 }
7829#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7830 }
dd41f596 7831
57d885fe
GH
7832#ifdef CONFIG_SMP
7833 init_defrootdomain();
7834#endif
7835
d0b27fa7
PZ
7836 init_rt_bandwidth(&def_rt_bandwidth,
7837 global_rt_period(), global_rt_runtime());
7838
7839#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7840 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7841 global_rt_period(), global_rt_runtime());
6d6bc0ad 7842#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7843
7c941438 7844#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7845 list_add(&root_task_group.list, &task_groups);
7846 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 7847 autogroup_init(&init_task);
7c941438 7848#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7849
0a945022 7850 for_each_possible_cpu(i) {
70b97a7f 7851 struct rq *rq;
1da177e4
LT
7852
7853 rq = cpu_rq(i);
05fa785c 7854 raw_spin_lock_init(&rq->lock);
7897986b 7855 rq->nr_running = 0;
dce48a84
TG
7856 rq->calc_load_active = 0;
7857 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7858 init_cfs_rq(&rq->cfs, rq);
6f505b16 7859 init_rt_rq(&rq->rt, rq);
dd41f596 7860#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7861 root_task_group.shares = root_task_group_load;
6f505b16 7862 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7863 /*
07e06b01 7864 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7865 *
7866 * In case of task-groups formed thr' the cgroup filesystem, it
7867 * gets 100% of the cpu resources in the system. This overall
7868 * system cpu resource is divided among the tasks of
07e06b01 7869 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7870 * based on each entity's (task or task-group's) weight
7871 * (se->load.weight).
7872 *
07e06b01 7873 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7874 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7875 * then A0's share of the cpu resource is:
7876 *
0d905bca 7877 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7878 *
07e06b01
YZ
7879 * We achieve this by letting root_task_group's tasks sit
7880 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7881 */
07e06b01 7882 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7883#endif /* CONFIG_FAIR_GROUP_SCHED */
7884
7885 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7886#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7887 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7888 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7889#endif
1da177e4 7890
dd41f596
IM
7891 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7892 rq->cpu_load[j] = 0;
fdf3e95d
VP
7893
7894 rq->last_load_update_tick = jiffies;
7895
1da177e4 7896#ifdef CONFIG_SMP
41c7ce9a 7897 rq->sd = NULL;
57d885fe 7898 rq->rd = NULL;
e51fd5e2 7899 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7900 rq->post_schedule = 0;
1da177e4 7901 rq->active_balance = 0;
dd41f596 7902 rq->next_balance = jiffies;
1da177e4 7903 rq->push_cpu = 0;
0a2966b4 7904 rq->cpu = i;
1f11eb6a 7905 rq->online = 0;
eae0c9df
MG
7906 rq->idle_stamp = 0;
7907 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7908 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7909#ifdef CONFIG_NO_HZ
7910 rq->nohz_balance_kick = 0;
7911 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7912#endif
1da177e4 7913#endif
8f4d37ec 7914 init_rq_hrtick(rq);
1da177e4 7915 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7916 }
7917
2dd73a4f 7918 set_load_weight(&init_task);
b50f60ce 7919
e107be36
AK
7920#ifdef CONFIG_PREEMPT_NOTIFIERS
7921 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7922#endif
7923
c9819f45 7924#ifdef CONFIG_SMP
962cf36c 7925 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7926#endif
7927
b50f60ce 7928#ifdef CONFIG_RT_MUTEXES
1d615482 7929 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7930#endif
7931
1da177e4
LT
7932 /*
7933 * The boot idle thread does lazy MMU switching as well:
7934 */
7935 atomic_inc(&init_mm.mm_count);
7936 enter_lazy_tlb(&init_mm, current);
7937
7938 /*
7939 * Make us the idle thread. Technically, schedule() should not be
7940 * called from this thread, however somewhere below it might be,
7941 * but because we are the idle thread, we just pick up running again
7942 * when this runqueue becomes "idle".
7943 */
7944 init_idle(current, smp_processor_id());
dce48a84
TG
7945
7946 calc_load_update = jiffies + LOAD_FREQ;
7947
dd41f596
IM
7948 /*
7949 * During early bootup we pretend to be a normal task:
7950 */
7951 current->sched_class = &fair_sched_class;
6892b75e 7952
6a7b3dc3 7953 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7954 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7955#ifdef CONFIG_SMP
4cb98839 7956 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 7957#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7958 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7959 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7960 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7961 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7962 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 7963#endif
bdddd296
RR
7964 /* May be allocated at isolcpus cmdline parse time */
7965 if (cpu_isolated_map == NULL)
7966 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7967#endif /* SMP */
6a7b3dc3 7968
6892b75e 7969 scheduler_running = 1;
1da177e4
LT
7970}
7971
7972#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7973static inline int preempt_count_equals(int preempt_offset)
7974{
234da7bc 7975 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7976
4ba8216c 7977 return (nested == preempt_offset);
e4aafea2
FW
7978}
7979
d894837f 7980void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7981{
48f24c4d 7982#ifdef in_atomic
1da177e4
LT
7983 static unsigned long prev_jiffy; /* ratelimiting */
7984
e4aafea2
FW
7985 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7986 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7987 return;
7988 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7989 return;
7990 prev_jiffy = jiffies;
7991
3df0fc5b
PZ
7992 printk(KERN_ERR
7993 "BUG: sleeping function called from invalid context at %s:%d\n",
7994 file, line);
7995 printk(KERN_ERR
7996 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7997 in_atomic(), irqs_disabled(),
7998 current->pid, current->comm);
aef745fc
IM
7999
8000 debug_show_held_locks(current);
8001 if (irqs_disabled())
8002 print_irqtrace_events(current);
8003 dump_stack();
1da177e4
LT
8004#endif
8005}
8006EXPORT_SYMBOL(__might_sleep);
8007#endif
8008
8009#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8010static void normalize_task(struct rq *rq, struct task_struct *p)
8011{
da7a735e
PZ
8012 const struct sched_class *prev_class = p->sched_class;
8013 int old_prio = p->prio;
3a5e4dc1 8014 int on_rq;
3e51f33f 8015
fd2f4419 8016 on_rq = p->on_rq;
3a5e4dc1
AK
8017 if (on_rq)
8018 deactivate_task(rq, p, 0);
8019 __setscheduler(rq, p, SCHED_NORMAL, 0);
8020 if (on_rq) {
8021 activate_task(rq, p, 0);
8022 resched_task(rq->curr);
8023 }
da7a735e
PZ
8024
8025 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8026}
8027
1da177e4
LT
8028void normalize_rt_tasks(void)
8029{
a0f98a1c 8030 struct task_struct *g, *p;
1da177e4 8031 unsigned long flags;
70b97a7f 8032 struct rq *rq;
1da177e4 8033
4cf5d77a 8034 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8035 do_each_thread(g, p) {
178be793
IM
8036 /*
8037 * Only normalize user tasks:
8038 */
8039 if (!p->mm)
8040 continue;
8041
6cfb0d5d 8042 p->se.exec_start = 0;
6cfb0d5d 8043#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8044 p->se.statistics.wait_start = 0;
8045 p->se.statistics.sleep_start = 0;
8046 p->se.statistics.block_start = 0;
6cfb0d5d 8047#endif
dd41f596
IM
8048
8049 if (!rt_task(p)) {
8050 /*
8051 * Renice negative nice level userspace
8052 * tasks back to 0:
8053 */
8054 if (TASK_NICE(p) < 0 && p->mm)
8055 set_user_nice(p, 0);
1da177e4 8056 continue;
dd41f596 8057 }
1da177e4 8058
1d615482 8059 raw_spin_lock(&p->pi_lock);
b29739f9 8060 rq = __task_rq_lock(p);
1da177e4 8061
178be793 8062 normalize_task(rq, p);
3a5e4dc1 8063
b29739f9 8064 __task_rq_unlock(rq);
1d615482 8065 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8066 } while_each_thread(g, p);
8067
4cf5d77a 8068 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8069}
8070
8071#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8072
67fc4e0c 8073#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8074/*
67fc4e0c 8075 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8076 *
8077 * They can only be called when the whole system has been
8078 * stopped - every CPU needs to be quiescent, and no scheduling
8079 * activity can take place. Using them for anything else would
8080 * be a serious bug, and as a result, they aren't even visible
8081 * under any other configuration.
8082 */
8083
8084/**
8085 * curr_task - return the current task for a given cpu.
8086 * @cpu: the processor in question.
8087 *
8088 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8089 */
36c8b586 8090struct task_struct *curr_task(int cpu)
1df5c10a
LT
8091{
8092 return cpu_curr(cpu);
8093}
8094
67fc4e0c
JW
8095#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8096
8097#ifdef CONFIG_IA64
1df5c10a
LT
8098/**
8099 * set_curr_task - set the current task for a given cpu.
8100 * @cpu: the processor in question.
8101 * @p: the task pointer to set.
8102 *
8103 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8104 * are serviced on a separate stack. It allows the architecture to switch the
8105 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8106 * must be called with all CPU's synchronized, and interrupts disabled, the
8107 * and caller must save the original value of the current task (see
8108 * curr_task() above) and restore that value before reenabling interrupts and
8109 * re-starting the system.
8110 *
8111 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8112 */
36c8b586 8113void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8114{
8115 cpu_curr(cpu) = p;
8116}
8117
8118#endif
29f59db3 8119
bccbe08a
PZ
8120#ifdef CONFIG_FAIR_GROUP_SCHED
8121static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8122{
8123 int i;
8124
8125 for_each_possible_cpu(i) {
8126 if (tg->cfs_rq)
8127 kfree(tg->cfs_rq[i]);
8128 if (tg->se)
8129 kfree(tg->se[i]);
6f505b16
PZ
8130 }
8131
8132 kfree(tg->cfs_rq);
8133 kfree(tg->se);
6f505b16
PZ
8134}
8135
ec7dc8ac
DG
8136static
8137int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8138{
29f59db3 8139 struct cfs_rq *cfs_rq;
eab17229 8140 struct sched_entity *se;
29f59db3
SV
8141 int i;
8142
434d53b0 8143 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8144 if (!tg->cfs_rq)
8145 goto err;
434d53b0 8146 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8147 if (!tg->se)
8148 goto err;
052f1dc7
PZ
8149
8150 tg->shares = NICE_0_LOAD;
29f59db3
SV
8151
8152 for_each_possible_cpu(i) {
eab17229
LZ
8153 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8154 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8155 if (!cfs_rq)
8156 goto err;
8157
eab17229
LZ
8158 se = kzalloc_node(sizeof(struct sched_entity),
8159 GFP_KERNEL, cpu_to_node(i));
29f59db3 8160 if (!se)
dfc12eb2 8161 goto err_free_rq;
29f59db3 8162
3d4b47b4 8163 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8164 }
8165
8166 return 1;
8167
49246274 8168err_free_rq:
dfc12eb2 8169 kfree(cfs_rq);
49246274 8170err:
bccbe08a
PZ
8171 return 0;
8172}
8173
bccbe08a
PZ
8174static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8175{
3d4b47b4
PZ
8176 struct rq *rq = cpu_rq(cpu);
8177 unsigned long flags;
3d4b47b4
PZ
8178
8179 /*
8180 * Only empty task groups can be destroyed; so we can speculatively
8181 * check on_list without danger of it being re-added.
8182 */
8183 if (!tg->cfs_rq[cpu]->on_list)
8184 return;
8185
8186 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8187 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8188 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8189}
6d6bc0ad 8190#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8191static inline void free_fair_sched_group(struct task_group *tg)
8192{
8193}
8194
ec7dc8ac
DG
8195static inline
8196int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8197{
8198 return 1;
8199}
8200
bccbe08a
PZ
8201static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8202{
8203}
6d6bc0ad 8204#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8205
8206#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8207static void free_rt_sched_group(struct task_group *tg)
8208{
8209 int i;
8210
d0b27fa7
PZ
8211 destroy_rt_bandwidth(&tg->rt_bandwidth);
8212
bccbe08a
PZ
8213 for_each_possible_cpu(i) {
8214 if (tg->rt_rq)
8215 kfree(tg->rt_rq[i]);
8216 if (tg->rt_se)
8217 kfree(tg->rt_se[i]);
8218 }
8219
8220 kfree(tg->rt_rq);
8221 kfree(tg->rt_se);
8222}
8223
ec7dc8ac
DG
8224static
8225int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8226{
8227 struct rt_rq *rt_rq;
eab17229 8228 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8229 int i;
8230
434d53b0 8231 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8232 if (!tg->rt_rq)
8233 goto err;
434d53b0 8234 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8235 if (!tg->rt_se)
8236 goto err;
8237
d0b27fa7
PZ
8238 init_rt_bandwidth(&tg->rt_bandwidth,
8239 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8240
8241 for_each_possible_cpu(i) {
eab17229
LZ
8242 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8243 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8244 if (!rt_rq)
8245 goto err;
29f59db3 8246
eab17229
LZ
8247 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8248 GFP_KERNEL, cpu_to_node(i));
6f505b16 8249 if (!rt_se)
dfc12eb2 8250 goto err_free_rq;
29f59db3 8251
3d4b47b4 8252 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8253 }
8254
bccbe08a
PZ
8255 return 1;
8256
49246274 8257err_free_rq:
dfc12eb2 8258 kfree(rt_rq);
49246274 8259err:
bccbe08a
PZ
8260 return 0;
8261}
6d6bc0ad 8262#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8263static inline void free_rt_sched_group(struct task_group *tg)
8264{
8265}
8266
ec7dc8ac
DG
8267static inline
8268int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8269{
8270 return 1;
8271}
6d6bc0ad 8272#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8273
7c941438 8274#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8275static void free_sched_group(struct task_group *tg)
8276{
8277 free_fair_sched_group(tg);
8278 free_rt_sched_group(tg);
e9aa1dd1 8279 autogroup_free(tg);
bccbe08a
PZ
8280 kfree(tg);
8281}
8282
8283/* allocate runqueue etc for a new task group */
ec7dc8ac 8284struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8285{
8286 struct task_group *tg;
8287 unsigned long flags;
bccbe08a
PZ
8288
8289 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8290 if (!tg)
8291 return ERR_PTR(-ENOMEM);
8292
ec7dc8ac 8293 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8294 goto err;
8295
ec7dc8ac 8296 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8297 goto err;
8298
8ed36996 8299 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8300 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8301
8302 WARN_ON(!parent); /* root should already exist */
8303
8304 tg->parent = parent;
f473aa5e 8305 INIT_LIST_HEAD(&tg->children);
09f2724a 8306 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8307 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8308
9b5b7751 8309 return tg;
29f59db3
SV
8310
8311err:
6f505b16 8312 free_sched_group(tg);
29f59db3
SV
8313 return ERR_PTR(-ENOMEM);
8314}
8315
9b5b7751 8316/* rcu callback to free various structures associated with a task group */
6f505b16 8317static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8318{
29f59db3 8319 /* now it should be safe to free those cfs_rqs */
6f505b16 8320 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8321}
8322
9b5b7751 8323/* Destroy runqueue etc associated with a task group */
4cf86d77 8324void sched_destroy_group(struct task_group *tg)
29f59db3 8325{
8ed36996 8326 unsigned long flags;
9b5b7751 8327 int i;
29f59db3 8328
3d4b47b4
PZ
8329 /* end participation in shares distribution */
8330 for_each_possible_cpu(i)
bccbe08a 8331 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8332
8333 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8334 list_del_rcu(&tg->list);
f473aa5e 8335 list_del_rcu(&tg->siblings);
8ed36996 8336 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8337
9b5b7751 8338 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8339 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8340}
8341
9b5b7751 8342/* change task's runqueue when it moves between groups.
3a252015
IM
8343 * The caller of this function should have put the task in its new group
8344 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8345 * reflect its new group.
9b5b7751
SV
8346 */
8347void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8348{
8349 int on_rq, running;
8350 unsigned long flags;
8351 struct rq *rq;
8352
8353 rq = task_rq_lock(tsk, &flags);
8354
051a1d1a 8355 running = task_current(rq, tsk);
fd2f4419 8356 on_rq = tsk->on_rq;
29f59db3 8357
0e1f3483 8358 if (on_rq)
29f59db3 8359 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8360 if (unlikely(running))
8361 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8362
810b3817 8363#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8364 if (tsk->sched_class->task_move_group)
8365 tsk->sched_class->task_move_group(tsk, on_rq);
8366 else
810b3817 8367#endif
b2b5ce02 8368 set_task_rq(tsk, task_cpu(tsk));
810b3817 8369
0e1f3483
HS
8370 if (unlikely(running))
8371 tsk->sched_class->set_curr_task(rq);
8372 if (on_rq)
371fd7e7 8373 enqueue_task(rq, tsk, 0);
29f59db3 8374
0122ec5b 8375 task_rq_unlock(rq, tsk, &flags);
29f59db3 8376}
7c941438 8377#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8378
052f1dc7 8379#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8380static DEFINE_MUTEX(shares_mutex);
8381
4cf86d77 8382int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8383{
8384 int i;
8ed36996 8385 unsigned long flags;
c61935fd 8386
ec7dc8ac
DG
8387 /*
8388 * We can't change the weight of the root cgroup.
8389 */
8390 if (!tg->se[0])
8391 return -EINVAL;
8392
18d95a28
PZ
8393 if (shares < MIN_SHARES)
8394 shares = MIN_SHARES;
cb4ad1ff
MX
8395 else if (shares > MAX_SHARES)
8396 shares = MAX_SHARES;
62fb1851 8397
8ed36996 8398 mutex_lock(&shares_mutex);
9b5b7751 8399 if (tg->shares == shares)
5cb350ba 8400 goto done;
29f59db3 8401
9b5b7751 8402 tg->shares = shares;
c09595f6 8403 for_each_possible_cpu(i) {
9437178f
PT
8404 struct rq *rq = cpu_rq(i);
8405 struct sched_entity *se;
8406
8407 se = tg->se[i];
8408 /* Propagate contribution to hierarchy */
8409 raw_spin_lock_irqsave(&rq->lock, flags);
8410 for_each_sched_entity(se)
6d5ab293 8411 update_cfs_shares(group_cfs_rq(se));
9437178f 8412 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8413 }
29f59db3 8414
5cb350ba 8415done:
8ed36996 8416 mutex_unlock(&shares_mutex);
9b5b7751 8417 return 0;
29f59db3
SV
8418}
8419
5cb350ba
DG
8420unsigned long sched_group_shares(struct task_group *tg)
8421{
8422 return tg->shares;
8423}
052f1dc7 8424#endif
5cb350ba 8425
052f1dc7 8426#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8427/*
9f0c1e56 8428 * Ensure that the real time constraints are schedulable.
6f505b16 8429 */
9f0c1e56
PZ
8430static DEFINE_MUTEX(rt_constraints_mutex);
8431
8432static unsigned long to_ratio(u64 period, u64 runtime)
8433{
8434 if (runtime == RUNTIME_INF)
9a7e0b18 8435 return 1ULL << 20;
9f0c1e56 8436
9a7e0b18 8437 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8438}
8439
9a7e0b18
PZ
8440/* Must be called with tasklist_lock held */
8441static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8442{
9a7e0b18 8443 struct task_struct *g, *p;
b40b2e8e 8444
9a7e0b18
PZ
8445 do_each_thread(g, p) {
8446 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8447 return 1;
8448 } while_each_thread(g, p);
b40b2e8e 8449
9a7e0b18
PZ
8450 return 0;
8451}
b40b2e8e 8452
9a7e0b18
PZ
8453struct rt_schedulable_data {
8454 struct task_group *tg;
8455 u64 rt_period;
8456 u64 rt_runtime;
8457};
b40b2e8e 8458
9a7e0b18
PZ
8459static int tg_schedulable(struct task_group *tg, void *data)
8460{
8461 struct rt_schedulable_data *d = data;
8462 struct task_group *child;
8463 unsigned long total, sum = 0;
8464 u64 period, runtime;
b40b2e8e 8465
9a7e0b18
PZ
8466 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8467 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8468
9a7e0b18
PZ
8469 if (tg == d->tg) {
8470 period = d->rt_period;
8471 runtime = d->rt_runtime;
b40b2e8e 8472 }
b40b2e8e 8473
4653f803
PZ
8474 /*
8475 * Cannot have more runtime than the period.
8476 */
8477 if (runtime > period && runtime != RUNTIME_INF)
8478 return -EINVAL;
6f505b16 8479
4653f803
PZ
8480 /*
8481 * Ensure we don't starve existing RT tasks.
8482 */
9a7e0b18
PZ
8483 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8484 return -EBUSY;
6f505b16 8485
9a7e0b18 8486 total = to_ratio(period, runtime);
6f505b16 8487
4653f803
PZ
8488 /*
8489 * Nobody can have more than the global setting allows.
8490 */
8491 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8492 return -EINVAL;
6f505b16 8493
4653f803
PZ
8494 /*
8495 * The sum of our children's runtime should not exceed our own.
8496 */
9a7e0b18
PZ
8497 list_for_each_entry_rcu(child, &tg->children, siblings) {
8498 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8499 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8500
9a7e0b18
PZ
8501 if (child == d->tg) {
8502 period = d->rt_period;
8503 runtime = d->rt_runtime;
8504 }
6f505b16 8505
9a7e0b18 8506 sum += to_ratio(period, runtime);
9f0c1e56 8507 }
6f505b16 8508
9a7e0b18
PZ
8509 if (sum > total)
8510 return -EINVAL;
8511
8512 return 0;
6f505b16
PZ
8513}
8514
9a7e0b18 8515static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8516{
9a7e0b18
PZ
8517 struct rt_schedulable_data data = {
8518 .tg = tg,
8519 .rt_period = period,
8520 .rt_runtime = runtime,
8521 };
8522
8523 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8524}
8525
d0b27fa7
PZ
8526static int tg_set_bandwidth(struct task_group *tg,
8527 u64 rt_period, u64 rt_runtime)
6f505b16 8528{
ac086bc2 8529 int i, err = 0;
9f0c1e56 8530
9f0c1e56 8531 mutex_lock(&rt_constraints_mutex);
521f1a24 8532 read_lock(&tasklist_lock);
9a7e0b18
PZ
8533 err = __rt_schedulable(tg, rt_period, rt_runtime);
8534 if (err)
9f0c1e56 8535 goto unlock;
ac086bc2 8536
0986b11b 8537 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8538 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8539 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8540
8541 for_each_possible_cpu(i) {
8542 struct rt_rq *rt_rq = tg->rt_rq[i];
8543
0986b11b 8544 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8545 rt_rq->rt_runtime = rt_runtime;
0986b11b 8546 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8547 }
0986b11b 8548 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8549unlock:
521f1a24 8550 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8551 mutex_unlock(&rt_constraints_mutex);
8552
8553 return err;
6f505b16
PZ
8554}
8555
d0b27fa7
PZ
8556int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8557{
8558 u64 rt_runtime, rt_period;
8559
8560 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8561 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8562 if (rt_runtime_us < 0)
8563 rt_runtime = RUNTIME_INF;
8564
8565 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8566}
8567
9f0c1e56
PZ
8568long sched_group_rt_runtime(struct task_group *tg)
8569{
8570 u64 rt_runtime_us;
8571
d0b27fa7 8572 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8573 return -1;
8574
d0b27fa7 8575 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8576 do_div(rt_runtime_us, NSEC_PER_USEC);
8577 return rt_runtime_us;
8578}
d0b27fa7
PZ
8579
8580int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8581{
8582 u64 rt_runtime, rt_period;
8583
8584 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8585 rt_runtime = tg->rt_bandwidth.rt_runtime;
8586
619b0488
R
8587 if (rt_period == 0)
8588 return -EINVAL;
8589
d0b27fa7
PZ
8590 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8591}
8592
8593long sched_group_rt_period(struct task_group *tg)
8594{
8595 u64 rt_period_us;
8596
8597 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8598 do_div(rt_period_us, NSEC_PER_USEC);
8599 return rt_period_us;
8600}
8601
8602static int sched_rt_global_constraints(void)
8603{
4653f803 8604 u64 runtime, period;
d0b27fa7
PZ
8605 int ret = 0;
8606
ec5d4989
HS
8607 if (sysctl_sched_rt_period <= 0)
8608 return -EINVAL;
8609
4653f803
PZ
8610 runtime = global_rt_runtime();
8611 period = global_rt_period();
8612
8613 /*
8614 * Sanity check on the sysctl variables.
8615 */
8616 if (runtime > period && runtime != RUNTIME_INF)
8617 return -EINVAL;
10b612f4 8618
d0b27fa7 8619 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8620 read_lock(&tasklist_lock);
4653f803 8621 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8622 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8623 mutex_unlock(&rt_constraints_mutex);
8624
8625 return ret;
8626}
54e99124
DG
8627
8628int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8629{
8630 /* Don't accept realtime tasks when there is no way for them to run */
8631 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8632 return 0;
8633
8634 return 1;
8635}
8636
6d6bc0ad 8637#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8638static int sched_rt_global_constraints(void)
8639{
ac086bc2
PZ
8640 unsigned long flags;
8641 int i;
8642
ec5d4989
HS
8643 if (sysctl_sched_rt_period <= 0)
8644 return -EINVAL;
8645
60aa605d
PZ
8646 /*
8647 * There's always some RT tasks in the root group
8648 * -- migration, kstopmachine etc..
8649 */
8650 if (sysctl_sched_rt_runtime == 0)
8651 return -EBUSY;
8652
0986b11b 8653 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8654 for_each_possible_cpu(i) {
8655 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8656
0986b11b 8657 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8658 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8659 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8660 }
0986b11b 8661 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8662
d0b27fa7
PZ
8663 return 0;
8664}
6d6bc0ad 8665#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8666
8667int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8668 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8669 loff_t *ppos)
8670{
8671 int ret;
8672 int old_period, old_runtime;
8673 static DEFINE_MUTEX(mutex);
8674
8675 mutex_lock(&mutex);
8676 old_period = sysctl_sched_rt_period;
8677 old_runtime = sysctl_sched_rt_runtime;
8678
8d65af78 8679 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8680
8681 if (!ret && write) {
8682 ret = sched_rt_global_constraints();
8683 if (ret) {
8684 sysctl_sched_rt_period = old_period;
8685 sysctl_sched_rt_runtime = old_runtime;
8686 } else {
8687 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8688 def_rt_bandwidth.rt_period =
8689 ns_to_ktime(global_rt_period());
8690 }
8691 }
8692 mutex_unlock(&mutex);
8693
8694 return ret;
8695}
68318b8e 8696
052f1dc7 8697#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8698
8699/* return corresponding task_group object of a cgroup */
2b01dfe3 8700static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8701{
2b01dfe3
PM
8702 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8703 struct task_group, css);
68318b8e
SV
8704}
8705
8706static struct cgroup_subsys_state *
2b01dfe3 8707cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8708{
ec7dc8ac 8709 struct task_group *tg, *parent;
68318b8e 8710
2b01dfe3 8711 if (!cgrp->parent) {
68318b8e 8712 /* This is early initialization for the top cgroup */
07e06b01 8713 return &root_task_group.css;
68318b8e
SV
8714 }
8715
ec7dc8ac
DG
8716 parent = cgroup_tg(cgrp->parent);
8717 tg = sched_create_group(parent);
68318b8e
SV
8718 if (IS_ERR(tg))
8719 return ERR_PTR(-ENOMEM);
8720
68318b8e
SV
8721 return &tg->css;
8722}
8723
41a2d6cf
IM
8724static void
8725cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8726{
2b01dfe3 8727 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8728
8729 sched_destroy_group(tg);
8730}
8731
41a2d6cf 8732static int
be367d09 8733cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8734{
b68aa230 8735#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8736 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8737 return -EINVAL;
8738#else
68318b8e
SV
8739 /* We don't support RT-tasks being in separate groups */
8740 if (tsk->sched_class != &fair_sched_class)
8741 return -EINVAL;
b68aa230 8742#endif
be367d09
BB
8743 return 0;
8744}
68318b8e 8745
be367d09
BB
8746static int
8747cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8748 struct task_struct *tsk, bool threadgroup)
8749{
8750 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8751 if (retval)
8752 return retval;
8753 if (threadgroup) {
8754 struct task_struct *c;
8755 rcu_read_lock();
8756 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8757 retval = cpu_cgroup_can_attach_task(cgrp, c);
8758 if (retval) {
8759 rcu_read_unlock();
8760 return retval;
8761 }
8762 }
8763 rcu_read_unlock();
8764 }
68318b8e
SV
8765 return 0;
8766}
8767
8768static void
2b01dfe3 8769cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8770 struct cgroup *old_cont, struct task_struct *tsk,
8771 bool threadgroup)
68318b8e
SV
8772{
8773 sched_move_task(tsk);
be367d09
BB
8774 if (threadgroup) {
8775 struct task_struct *c;
8776 rcu_read_lock();
8777 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8778 sched_move_task(c);
8779 }
8780 rcu_read_unlock();
8781 }
68318b8e
SV
8782}
8783
068c5cc5 8784static void
d41d5a01
PZ
8785cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8786 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
8787{
8788 /*
8789 * cgroup_exit() is called in the copy_process() failure path.
8790 * Ignore this case since the task hasn't ran yet, this avoids
8791 * trying to poke a half freed task state from generic code.
8792 */
8793 if (!(task->flags & PF_EXITING))
8794 return;
8795
8796 sched_move_task(task);
8797}
8798
052f1dc7 8799#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8800static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8801 u64 shareval)
68318b8e 8802{
2b01dfe3 8803 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8804}
8805
f4c753b7 8806static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8807{
2b01dfe3 8808 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8809
8810 return (u64) tg->shares;
8811}
6d6bc0ad 8812#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8813
052f1dc7 8814#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8815static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8816 s64 val)
6f505b16 8817{
06ecb27c 8818 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8819}
8820
06ecb27c 8821static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8822{
06ecb27c 8823 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8824}
d0b27fa7
PZ
8825
8826static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8827 u64 rt_period_us)
8828{
8829 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8830}
8831
8832static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8833{
8834 return sched_group_rt_period(cgroup_tg(cgrp));
8835}
6d6bc0ad 8836#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8837
fe5c7cc2 8838static struct cftype cpu_files[] = {
052f1dc7 8839#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8840 {
8841 .name = "shares",
f4c753b7
PM
8842 .read_u64 = cpu_shares_read_u64,
8843 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8844 },
052f1dc7
PZ
8845#endif
8846#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8847 {
9f0c1e56 8848 .name = "rt_runtime_us",
06ecb27c
PM
8849 .read_s64 = cpu_rt_runtime_read,
8850 .write_s64 = cpu_rt_runtime_write,
6f505b16 8851 },
d0b27fa7
PZ
8852 {
8853 .name = "rt_period_us",
f4c753b7
PM
8854 .read_u64 = cpu_rt_period_read_uint,
8855 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8856 },
052f1dc7 8857#endif
68318b8e
SV
8858};
8859
8860static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8861{
fe5c7cc2 8862 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8863}
8864
8865struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8866 .name = "cpu",
8867 .create = cpu_cgroup_create,
8868 .destroy = cpu_cgroup_destroy,
8869 .can_attach = cpu_cgroup_can_attach,
8870 .attach = cpu_cgroup_attach,
068c5cc5 8871 .exit = cpu_cgroup_exit,
38605cae
IM
8872 .populate = cpu_cgroup_populate,
8873 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8874 .early_init = 1,
8875};
8876
052f1dc7 8877#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8878
8879#ifdef CONFIG_CGROUP_CPUACCT
8880
8881/*
8882 * CPU accounting code for task groups.
8883 *
8884 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8885 * (balbir@in.ibm.com).
8886 */
8887
934352f2 8888/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8889struct cpuacct {
8890 struct cgroup_subsys_state css;
8891 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8892 u64 __percpu *cpuusage;
ef12fefa 8893 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8894 struct cpuacct *parent;
d842de87
SV
8895};
8896
8897struct cgroup_subsys cpuacct_subsys;
8898
8899/* return cpu accounting group corresponding to this container */
32cd756a 8900static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8901{
32cd756a 8902 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8903 struct cpuacct, css);
8904}
8905
8906/* return cpu accounting group to which this task belongs */
8907static inline struct cpuacct *task_ca(struct task_struct *tsk)
8908{
8909 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8910 struct cpuacct, css);
8911}
8912
8913/* create a new cpu accounting group */
8914static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8915 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8916{
8917 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8918 int i;
d842de87
SV
8919
8920 if (!ca)
ef12fefa 8921 goto out;
d842de87
SV
8922
8923 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8924 if (!ca->cpuusage)
8925 goto out_free_ca;
8926
8927 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8928 if (percpu_counter_init(&ca->cpustat[i], 0))
8929 goto out_free_counters;
d842de87 8930
934352f2
BR
8931 if (cgrp->parent)
8932 ca->parent = cgroup_ca(cgrp->parent);
8933
d842de87 8934 return &ca->css;
ef12fefa
BR
8935
8936out_free_counters:
8937 while (--i >= 0)
8938 percpu_counter_destroy(&ca->cpustat[i]);
8939 free_percpu(ca->cpuusage);
8940out_free_ca:
8941 kfree(ca);
8942out:
8943 return ERR_PTR(-ENOMEM);
d842de87
SV
8944}
8945
8946/* destroy an existing cpu accounting group */
41a2d6cf 8947static void
32cd756a 8948cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8949{
32cd756a 8950 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8951 int i;
d842de87 8952
ef12fefa
BR
8953 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8954 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8955 free_percpu(ca->cpuusage);
8956 kfree(ca);
8957}
8958
720f5498
KC
8959static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8960{
b36128c8 8961 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8962 u64 data;
8963
8964#ifndef CONFIG_64BIT
8965 /*
8966 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8967 */
05fa785c 8968 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8969 data = *cpuusage;
05fa785c 8970 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8971#else
8972 data = *cpuusage;
8973#endif
8974
8975 return data;
8976}
8977
8978static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8979{
b36128c8 8980 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8981
8982#ifndef CONFIG_64BIT
8983 /*
8984 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8985 */
05fa785c 8986 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8987 *cpuusage = val;
05fa785c 8988 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8989#else
8990 *cpuusage = val;
8991#endif
8992}
8993
d842de87 8994/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8995static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8996{
32cd756a 8997 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8998 u64 totalcpuusage = 0;
8999 int i;
9000
720f5498
KC
9001 for_each_present_cpu(i)
9002 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9003
9004 return totalcpuusage;
9005}
9006
0297b803
DG
9007static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9008 u64 reset)
9009{
9010 struct cpuacct *ca = cgroup_ca(cgrp);
9011 int err = 0;
9012 int i;
9013
9014 if (reset) {
9015 err = -EINVAL;
9016 goto out;
9017 }
9018
720f5498
KC
9019 for_each_present_cpu(i)
9020 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9021
0297b803
DG
9022out:
9023 return err;
9024}
9025
e9515c3c
KC
9026static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9027 struct seq_file *m)
9028{
9029 struct cpuacct *ca = cgroup_ca(cgroup);
9030 u64 percpu;
9031 int i;
9032
9033 for_each_present_cpu(i) {
9034 percpu = cpuacct_cpuusage_read(ca, i);
9035 seq_printf(m, "%llu ", (unsigned long long) percpu);
9036 }
9037 seq_printf(m, "\n");
9038 return 0;
9039}
9040
ef12fefa
BR
9041static const char *cpuacct_stat_desc[] = {
9042 [CPUACCT_STAT_USER] = "user",
9043 [CPUACCT_STAT_SYSTEM] = "system",
9044};
9045
9046static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9047 struct cgroup_map_cb *cb)
9048{
9049 struct cpuacct *ca = cgroup_ca(cgrp);
9050 int i;
9051
9052 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9053 s64 val = percpu_counter_read(&ca->cpustat[i]);
9054 val = cputime64_to_clock_t(val);
9055 cb->fill(cb, cpuacct_stat_desc[i], val);
9056 }
9057 return 0;
9058}
9059
d842de87
SV
9060static struct cftype files[] = {
9061 {
9062 .name = "usage",
f4c753b7
PM
9063 .read_u64 = cpuusage_read,
9064 .write_u64 = cpuusage_write,
d842de87 9065 },
e9515c3c
KC
9066 {
9067 .name = "usage_percpu",
9068 .read_seq_string = cpuacct_percpu_seq_read,
9069 },
ef12fefa
BR
9070 {
9071 .name = "stat",
9072 .read_map = cpuacct_stats_show,
9073 },
d842de87
SV
9074};
9075
32cd756a 9076static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9077{
32cd756a 9078 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9079}
9080
9081/*
9082 * charge this task's execution time to its accounting group.
9083 *
9084 * called with rq->lock held.
9085 */
9086static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9087{
9088 struct cpuacct *ca;
934352f2 9089 int cpu;
d842de87 9090
c40c6f85 9091 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9092 return;
9093
934352f2 9094 cpu = task_cpu(tsk);
a18b83b7
BR
9095
9096 rcu_read_lock();
9097
d842de87 9098 ca = task_ca(tsk);
d842de87 9099
934352f2 9100 for (; ca; ca = ca->parent) {
b36128c8 9101 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9102 *cpuusage += cputime;
9103 }
a18b83b7
BR
9104
9105 rcu_read_unlock();
d842de87
SV
9106}
9107
fa535a77
AB
9108/*
9109 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9110 * in cputime_t units. As a result, cpuacct_update_stats calls
9111 * percpu_counter_add with values large enough to always overflow the
9112 * per cpu batch limit causing bad SMP scalability.
9113 *
9114 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9115 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9116 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9117 */
9118#ifdef CONFIG_SMP
9119#define CPUACCT_BATCH \
9120 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9121#else
9122#define CPUACCT_BATCH 0
9123#endif
9124
ef12fefa
BR
9125/*
9126 * Charge the system/user time to the task's accounting group.
9127 */
9128static void cpuacct_update_stats(struct task_struct *tsk,
9129 enum cpuacct_stat_index idx, cputime_t val)
9130{
9131 struct cpuacct *ca;
fa535a77 9132 int batch = CPUACCT_BATCH;
ef12fefa
BR
9133
9134 if (unlikely(!cpuacct_subsys.active))
9135 return;
9136
9137 rcu_read_lock();
9138 ca = task_ca(tsk);
9139
9140 do {
fa535a77 9141 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9142 ca = ca->parent;
9143 } while (ca);
9144 rcu_read_unlock();
9145}
9146
d842de87
SV
9147struct cgroup_subsys cpuacct_subsys = {
9148 .name = "cpuacct",
9149 .create = cpuacct_create,
9150 .destroy = cpuacct_destroy,
9151 .populate = cpuacct_populate,
9152 .subsys_id = cpuacct_subsys_id,
9153};
9154#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9155