]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: do_wait_for_common: use signal_pending_state()
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
d7876a08 99 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 100 */
d6322faf 101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 102
6aa645ea
IM
103#define NICE_0_LOAD SCHED_LOAD_SCALE
104#define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
1da177e4
LT
106/*
107 * These are the 'tuning knobs' of the scheduler:
108 *
a4ec24b4 109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
110 * Timeslices get refilled after they expire.
111 */
1da177e4 112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
d0b27fa7
PZ
114/*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117#define RUNTIME_INF ((u64)~0ULL)
118
5517d86b
ED
119#ifdef CONFIG_SMP
120/*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125{
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127}
128
129/*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134{
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137}
138#endif
139
e05606d3
IM
140static inline int rt_policy(int policy)
141{
3f33a7ce 142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
143 return 1;
144 return 0;
145}
146
147static inline int task_has_rt_policy(struct task_struct *p)
148{
149 return rt_policy(p->policy);
150}
151
1da177e4 152/*
6aa645ea 153 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 154 */
6aa645ea
IM
155struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158};
159
d0b27fa7 160struct rt_bandwidth {
ea736ed5
IM
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
d0b27fa7
PZ
166};
167
168static struct rt_bandwidth def_rt_bandwidth;
169
170static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173{
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191}
192
193static
194void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195{
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
ac086bc2
PZ
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
d0b27fa7
PZ
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205}
206
207static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208{
209 ktime_t now;
210
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
213
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
216
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
221
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
227 }
228 spin_unlock(&rt_b->rt_runtime_lock);
229}
230
231#ifdef CONFIG_RT_GROUP_SCHED
232static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233{
234 hrtimer_cancel(&rt_b->rt_period_timer);
235}
236#endif
237
712555ee
HC
238/*
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
241 */
242static DEFINE_MUTEX(sched_domains_mutex);
243
052f1dc7 244#ifdef CONFIG_GROUP_SCHED
29f59db3 245
68318b8e
SV
246#include <linux/cgroup.h>
247
29f59db3
SV
248struct cfs_rq;
249
6f505b16
PZ
250static LIST_HEAD(task_groups);
251
29f59db3 252/* task group related information */
4cf86d77 253struct task_group {
052f1dc7 254#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
255 struct cgroup_subsys_state css;
256#endif
052f1dc7
PZ
257
258#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
052f1dc7
PZ
264#endif
265
266#ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
269
d0b27fa7 270 struct rt_bandwidth rt_bandwidth;
052f1dc7 271#endif
6b2d7700 272
ae8393e5 273 struct rcu_head rcu;
6f505b16 274 struct list_head list;
f473aa5e
PZ
275
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
29f59db3
SV
279};
280
354d60c2 281#ifdef CONFIG_USER_SCHED
eff766a6
PZ
282
283/*
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
287 */
288struct task_group root_task_group;
289
052f1dc7 290#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
291/* Default task group's sched entity on each cpu */
292static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293/* Default task group's cfs_rq on each cpu */
294static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 295#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
296
297#ifdef CONFIG_RT_GROUP_SCHED
298static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
300#endif /* CONFIG_RT_GROUP_SCHED */
301#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 302#define root_task_group init_task_group
6d6bc0ad 303#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 304
8ed36996 305/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
306 * a task group's cpu shares.
307 */
8ed36996 308static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 309
052f1dc7 310#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
311#ifdef CONFIG_USER_SCHED
312# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 313#else /* !CONFIG_USER_SCHED */
052f1dc7 314# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 315#endif /* CONFIG_USER_SCHED */
052f1dc7 316
cb4ad1ff 317/*
2e084786
LJ
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
cb4ad1ff
MX
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
324 */
18d95a28 325#define MIN_SHARES 2
2e084786 326#define MAX_SHARES (1UL << 18)
18d95a28 327
052f1dc7
PZ
328static int init_task_group_load = INIT_TASK_GROUP_LOAD;
329#endif
330
29f59db3 331/* Default task group.
3a252015 332 * Every task in system belong to this group at bootup.
29f59db3 333 */
434d53b0 334struct task_group init_task_group;
29f59db3
SV
335
336/* return group to which a task belongs */
4cf86d77 337static inline struct task_group *task_group(struct task_struct *p)
29f59db3 338{
4cf86d77 339 struct task_group *tg;
9b5b7751 340
052f1dc7 341#ifdef CONFIG_USER_SCHED
24e377a8 342 tg = p->user->tg;
052f1dc7 343#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
344 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
345 struct task_group, css);
24e377a8 346#else
41a2d6cf 347 tg = &init_task_group;
24e377a8 348#endif
9b5b7751 349 return tg;
29f59db3
SV
350}
351
352/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 353static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 354{
052f1dc7 355#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
356 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
357 p->se.parent = task_group(p)->se[cpu];
052f1dc7 358#endif
6f505b16 359
052f1dc7 360#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
361 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
362 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 363#endif
29f59db3
SV
364}
365
366#else
367
6f505b16 368static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
369static inline struct task_group *task_group(struct task_struct *p)
370{
371 return NULL;
372}
29f59db3 373
052f1dc7 374#endif /* CONFIG_GROUP_SCHED */
29f59db3 375
6aa645ea
IM
376/* CFS-related fields in a runqueue */
377struct cfs_rq {
378 struct load_weight load;
379 unsigned long nr_running;
380
6aa645ea 381 u64 exec_clock;
e9acbff6 382 u64 min_vruntime;
103638d9 383 u64 pair_start;
6aa645ea
IM
384
385 struct rb_root tasks_timeline;
386 struct rb_node *rb_leftmost;
4a55bd5e
PZ
387
388 struct list_head tasks;
389 struct list_head *balance_iterator;
390
391 /*
392 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
393 * It is set to NULL otherwise (i.e when none are currently running).
394 */
aa2ac252 395 struct sched_entity *curr, *next;
ddc97297
PZ
396
397 unsigned long nr_spread_over;
398
62160e3f 399#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
400 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
401
41a2d6cf
IM
402 /*
403 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
404 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405 * (like users, containers etc.)
406 *
407 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408 * list is used during load balance.
409 */
41a2d6cf
IM
410 struct list_head leaf_cfs_rq_list;
411 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
412
413#ifdef CONFIG_SMP
c09595f6 414 /*
c8cba857 415 * the part of load.weight contributed by tasks
c09595f6 416 */
c8cba857 417 unsigned long task_weight;
c09595f6 418
c8cba857
PZ
419 /*
420 * h_load = weight * f(tg)
421 *
422 * Where f(tg) is the recursive weight fraction assigned to
423 * this group.
424 */
425 unsigned long h_load;
c09595f6 426
c8cba857
PZ
427 /*
428 * this cpu's part of tg->shares
429 */
430 unsigned long shares;
f1d239f7
PZ
431
432 /*
433 * load.weight at the time we set shares
434 */
435 unsigned long rq_weight;
c09595f6 436#endif
6aa645ea
IM
437#endif
438};
1da177e4 439
6aa645ea
IM
440/* Real-Time classes' related field in a runqueue: */
441struct rt_rq {
442 struct rt_prio_array active;
63489e45 443 unsigned long rt_nr_running;
052f1dc7 444#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
445 int highest_prio; /* highest queued rt task prio */
446#endif
fa85ae24 447#ifdef CONFIG_SMP
73fe6aae 448 unsigned long rt_nr_migratory;
a22d7fc1 449 int overloaded;
fa85ae24 450#endif
6f505b16 451 int rt_throttled;
fa85ae24 452 u64 rt_time;
ac086bc2 453 u64 rt_runtime;
ea736ed5 454 /* Nests inside the rq lock: */
ac086bc2 455 spinlock_t rt_runtime_lock;
6f505b16 456
052f1dc7 457#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
458 unsigned long rt_nr_boosted;
459
6f505b16
PZ
460 struct rq *rq;
461 struct list_head leaf_rt_rq_list;
462 struct task_group *tg;
463 struct sched_rt_entity *rt_se;
464#endif
6aa645ea
IM
465};
466
57d885fe
GH
467#ifdef CONFIG_SMP
468
469/*
470 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
473 * exclusive cpuset is created, we also create and attach a new root-domain
474 * object.
475 *
57d885fe
GH
476 */
477struct root_domain {
478 atomic_t refcount;
479 cpumask_t span;
480 cpumask_t online;
637f5085 481
0eab9146 482 /*
637f5085
GH
483 * The "RT overload" flag: it gets set if a CPU has more than
484 * one runnable RT task.
485 */
486 cpumask_t rto_mask;
0eab9146 487 atomic_t rto_count;
6e0534f2
GH
488#ifdef CONFIG_SMP
489 struct cpupri cpupri;
490#endif
57d885fe
GH
491};
492
dc938520
GH
493/*
494 * By default the system creates a single root-domain with all cpus as
495 * members (mimicking the global state we have today).
496 */
57d885fe
GH
497static struct root_domain def_root_domain;
498
499#endif
500
1da177e4
LT
501/*
502 * This is the main, per-CPU runqueue data structure.
503 *
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
507 */
70b97a7f 508struct rq {
d8016491
IM
509 /* runqueue lock: */
510 spinlock_t lock;
1da177e4
LT
511
512 /*
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
515 */
516 unsigned long nr_running;
6aa645ea
IM
517 #define CPU_LOAD_IDX_MAX 5
518 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 519 unsigned char idle_at_tick;
46cb4b7c 520#ifdef CONFIG_NO_HZ
15934a37 521 unsigned long last_tick_seen;
46cb4b7c
SS
522 unsigned char in_nohz_recently;
523#endif
d8016491
IM
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load;
6aa645ea
IM
526 unsigned long nr_load_updates;
527 u64 nr_switches;
528
529 struct cfs_rq cfs;
6f505b16 530 struct rt_rq rt;
6f505b16 531
6aa645ea 532#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
535#endif
536#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 537 struct list_head leaf_rt_rq_list;
1da177e4 538#endif
1da177e4
LT
539
540 /*
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
545 */
546 unsigned long nr_uninterruptible;
547
36c8b586 548 struct task_struct *curr, *idle;
c9819f45 549 unsigned long next_balance;
1da177e4 550 struct mm_struct *prev_mm;
6aa645ea 551
3e51f33f 552 u64 clock;
6aa645ea 553
1da177e4
LT
554 atomic_t nr_iowait;
555
556#ifdef CONFIG_SMP
0eab9146 557 struct root_domain *rd;
1da177e4
LT
558 struct sched_domain *sd;
559
560 /* For active balancing */
561 int active_balance;
562 int push_cpu;
d8016491
IM
563 /* cpu of this runqueue: */
564 int cpu;
1f11eb6a 565 int online;
1da177e4 566
a8a51d5e 567 unsigned long avg_load_per_task;
1da177e4 568
36c8b586 569 struct task_struct *migration_thread;
1da177e4
LT
570 struct list_head migration_queue;
571#endif
572
8f4d37ec 573#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
574#ifdef CONFIG_SMP
575 int hrtick_csd_pending;
576 struct call_single_data hrtick_csd;
577#endif
8f4d37ec
PZ
578 struct hrtimer hrtick_timer;
579#endif
580
1da177e4
LT
581#ifdef CONFIG_SCHEDSTATS
582 /* latency stats */
583 struct sched_info rq_sched_info;
584
585 /* sys_sched_yield() stats */
480b9434
KC
586 unsigned int yld_exp_empty;
587 unsigned int yld_act_empty;
588 unsigned int yld_both_empty;
589 unsigned int yld_count;
1da177e4
LT
590
591 /* schedule() stats */
480b9434
KC
592 unsigned int sched_switch;
593 unsigned int sched_count;
594 unsigned int sched_goidle;
1da177e4
LT
595
596 /* try_to_wake_up() stats */
480b9434
KC
597 unsigned int ttwu_count;
598 unsigned int ttwu_local;
b8efb561
IM
599
600 /* BKL stats */
480b9434 601 unsigned int bkl_count;
1da177e4
LT
602#endif
603};
604
f34e3b61 605static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 606
dd41f596
IM
607static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
608{
609 rq->curr->sched_class->check_preempt_curr(rq, p);
610}
611
0a2966b4
CL
612static inline int cpu_of(struct rq *rq)
613{
614#ifdef CONFIG_SMP
615 return rq->cpu;
616#else
617 return 0;
618#endif
619}
620
674311d5
NP
621/*
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 623 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
624 *
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
627 */
48f24c4d
IM
628#define for_each_domain(cpu, __sd) \
629 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
630
631#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632#define this_rq() (&__get_cpu_var(runqueues))
633#define task_rq(p) cpu_rq(task_cpu(p))
634#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
635
3e51f33f
PZ
636static inline void update_rq_clock(struct rq *rq)
637{
638 rq->clock = sched_clock_cpu(cpu_of(rq));
639}
640
bf5c91ba
IM
641/*
642 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
643 */
644#ifdef CONFIG_SCHED_DEBUG
645# define const_debug __read_mostly
646#else
647# define const_debug static const
648#endif
649
017730c1
IM
650/**
651 * runqueue_is_locked
652 *
653 * Returns true if the current cpu runqueue is locked.
654 * This interface allows printk to be called with the runqueue lock
655 * held and know whether or not it is OK to wake up the klogd.
656 */
657int runqueue_is_locked(void)
658{
659 int cpu = get_cpu();
660 struct rq *rq = cpu_rq(cpu);
661 int ret;
662
663 ret = spin_is_locked(&rq->lock);
664 put_cpu();
665 return ret;
666}
667
bf5c91ba
IM
668/*
669 * Debugging: various feature bits
670 */
f00b45c1
PZ
671
672#define SCHED_FEAT(name, enabled) \
673 __SCHED_FEAT_##name ,
674
bf5c91ba 675enum {
f00b45c1 676#include "sched_features.h"
bf5c91ba
IM
677};
678
f00b45c1
PZ
679#undef SCHED_FEAT
680
681#define SCHED_FEAT(name, enabled) \
682 (1UL << __SCHED_FEAT_##name) * enabled |
683
bf5c91ba 684const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
685#include "sched_features.h"
686 0;
687
688#undef SCHED_FEAT
689
690#ifdef CONFIG_SCHED_DEBUG
691#define SCHED_FEAT(name, enabled) \
692 #name ,
693
983ed7a6 694static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
695#include "sched_features.h"
696 NULL
697};
698
699#undef SCHED_FEAT
700
983ed7a6 701static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
702{
703 filp->private_data = inode->i_private;
704 return 0;
705}
706
707static ssize_t
708sched_feat_read(struct file *filp, char __user *ubuf,
709 size_t cnt, loff_t *ppos)
710{
711 char *buf;
712 int r = 0;
713 int len = 0;
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
717 len += strlen(sched_feat_names[i]);
718 len += 4;
719 }
720
721 buf = kmalloc(len + 2, GFP_KERNEL);
722 if (!buf)
723 return -ENOMEM;
724
725 for (i = 0; sched_feat_names[i]; i++) {
726 if (sysctl_sched_features & (1UL << i))
727 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
728 else
c24b7c52 729 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
730 }
731
732 r += sprintf(buf + r, "\n");
733 WARN_ON(r >= len + 2);
734
735 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
736
737 kfree(buf);
738
739 return r;
740}
741
742static ssize_t
743sched_feat_write(struct file *filp, const char __user *ubuf,
744 size_t cnt, loff_t *ppos)
745{
746 char buf[64];
747 char *cmp = buf;
748 int neg = 0;
749 int i;
750
751 if (cnt > 63)
752 cnt = 63;
753
754 if (copy_from_user(&buf, ubuf, cnt))
755 return -EFAULT;
756
757 buf[cnt] = 0;
758
c24b7c52 759 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
760 neg = 1;
761 cmp += 3;
762 }
763
764 for (i = 0; sched_feat_names[i]; i++) {
765 int len = strlen(sched_feat_names[i]);
766
767 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
768 if (neg)
769 sysctl_sched_features &= ~(1UL << i);
770 else
771 sysctl_sched_features |= (1UL << i);
772 break;
773 }
774 }
775
776 if (!sched_feat_names[i])
777 return -EINVAL;
778
779 filp->f_pos += cnt;
780
781 return cnt;
782}
783
784static struct file_operations sched_feat_fops = {
785 .open = sched_feat_open,
786 .read = sched_feat_read,
787 .write = sched_feat_write,
788};
789
790static __init int sched_init_debug(void)
791{
f00b45c1
PZ
792 debugfs_create_file("sched_features", 0644, NULL, NULL,
793 &sched_feat_fops);
794
795 return 0;
796}
797late_initcall(sched_init_debug);
798
799#endif
800
801#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 802
b82d9fdd
PZ
803/*
804 * Number of tasks to iterate in a single balance run.
805 * Limited because this is done with IRQs disabled.
806 */
807const_debug unsigned int sysctl_sched_nr_migrate = 32;
808
2398f2c6
PZ
809/*
810 * ratelimit for updating the group shares.
811 * default: 0.5ms
812 */
813const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
814
fa85ae24 815/*
9f0c1e56 816 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
817 * default: 1s
818 */
9f0c1e56 819unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 820
6892b75e
IM
821static __read_mostly int scheduler_running;
822
9f0c1e56
PZ
823/*
824 * part of the period that we allow rt tasks to run in us.
825 * default: 0.95s
826 */
827int sysctl_sched_rt_runtime = 950000;
fa85ae24 828
d0b27fa7
PZ
829static inline u64 global_rt_period(void)
830{
831 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
832}
833
834static inline u64 global_rt_runtime(void)
835{
e26873bb 836 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
837 return RUNTIME_INF;
838
839 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
840}
fa85ae24 841
1da177e4 842#ifndef prepare_arch_switch
4866cde0
NP
843# define prepare_arch_switch(next) do { } while (0)
844#endif
845#ifndef finish_arch_switch
846# define finish_arch_switch(prev) do { } while (0)
847#endif
848
051a1d1a
DA
849static inline int task_current(struct rq *rq, struct task_struct *p)
850{
851 return rq->curr == p;
852}
853
4866cde0 854#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 855static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 856{
051a1d1a 857 return task_current(rq, p);
4866cde0
NP
858}
859
70b97a7f 860static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
861{
862}
863
70b97a7f 864static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 865{
da04c035
IM
866#ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
869#endif
8a25d5de
IM
870 /*
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
873 * prev into current:
874 */
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
876
4866cde0
NP
877 spin_unlock_irq(&rq->lock);
878}
879
880#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 881static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
882{
883#ifdef CONFIG_SMP
884 return p->oncpu;
885#else
051a1d1a 886 return task_current(rq, p);
4866cde0
NP
887#endif
888}
889
70b97a7f 890static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
891{
892#ifdef CONFIG_SMP
893 /*
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
896 * here.
897 */
898 next->oncpu = 1;
899#endif
900#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 spin_unlock_irq(&rq->lock);
902#else
903 spin_unlock(&rq->lock);
904#endif
905}
906
70b97a7f 907static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
908{
909#ifdef CONFIG_SMP
910 /*
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
913 * finished.
914 */
915 smp_wmb();
916 prev->oncpu = 0;
917#endif
918#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 local_irq_enable();
1da177e4 920#endif
4866cde0
NP
921}
922#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 923
b29739f9
IM
924/*
925 * __task_rq_lock - lock the runqueue a given task resides on.
926 * Must be called interrupts disabled.
927 */
70b97a7f 928static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
929 __acquires(rq->lock)
930{
3a5c359a
AK
931 for (;;) {
932 struct rq *rq = task_rq(p);
933 spin_lock(&rq->lock);
934 if (likely(rq == task_rq(p)))
935 return rq;
b29739f9 936 spin_unlock(&rq->lock);
b29739f9 937 }
b29739f9
IM
938}
939
1da177e4
LT
940/*
941 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 942 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
943 * explicitly disabling preemption.
944 */
70b97a7f 945static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
946 __acquires(rq->lock)
947{
70b97a7f 948 struct rq *rq;
1da177e4 949
3a5c359a
AK
950 for (;;) {
951 local_irq_save(*flags);
952 rq = task_rq(p);
953 spin_lock(&rq->lock);
954 if (likely(rq == task_rq(p)))
955 return rq;
1da177e4 956 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 957 }
1da177e4
LT
958}
959
a9957449 960static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
961 __releases(rq->lock)
962{
963 spin_unlock(&rq->lock);
964}
965
70b97a7f 966static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
967 __releases(rq->lock)
968{
969 spin_unlock_irqrestore(&rq->lock, *flags);
970}
971
1da177e4 972/*
cc2a73b5 973 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 974 */
a9957449 975static struct rq *this_rq_lock(void)
1da177e4
LT
976 __acquires(rq->lock)
977{
70b97a7f 978 struct rq *rq;
1da177e4
LT
979
980 local_irq_disable();
981 rq = this_rq();
982 spin_lock(&rq->lock);
983
984 return rq;
985}
986
8f4d37ec
PZ
987#ifdef CONFIG_SCHED_HRTICK
988/*
989 * Use HR-timers to deliver accurate preemption points.
990 *
991 * Its all a bit involved since we cannot program an hrt while holding the
992 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
993 * reschedule event.
994 *
995 * When we get rescheduled we reprogram the hrtick_timer outside of the
996 * rq->lock.
997 */
8f4d37ec
PZ
998
999/*
1000 * Use hrtick when:
1001 * - enabled by features
1002 * - hrtimer is actually high res
1003 */
1004static inline int hrtick_enabled(struct rq *rq)
1005{
1006 if (!sched_feat(HRTICK))
1007 return 0;
ba42059f 1008 if (!cpu_active(cpu_of(rq)))
b328ca18 1009 return 0;
8f4d37ec
PZ
1010 return hrtimer_is_hres_active(&rq->hrtick_timer);
1011}
1012
8f4d37ec
PZ
1013static void hrtick_clear(struct rq *rq)
1014{
1015 if (hrtimer_active(&rq->hrtick_timer))
1016 hrtimer_cancel(&rq->hrtick_timer);
1017}
1018
8f4d37ec
PZ
1019/*
1020 * High-resolution timer tick.
1021 * Runs from hardirq context with interrupts disabled.
1022 */
1023static enum hrtimer_restart hrtick(struct hrtimer *timer)
1024{
1025 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1026
1027 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1028
1029 spin_lock(&rq->lock);
3e51f33f 1030 update_rq_clock(rq);
8f4d37ec
PZ
1031 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1032 spin_unlock(&rq->lock);
1033
1034 return HRTIMER_NORESTART;
1035}
1036
95e904c7 1037#ifdef CONFIG_SMP
31656519
PZ
1038/*
1039 * called from hardirq (IPI) context
1040 */
1041static void __hrtick_start(void *arg)
b328ca18 1042{
31656519 1043 struct rq *rq = arg;
b328ca18 1044
31656519
PZ
1045 spin_lock(&rq->lock);
1046 hrtimer_restart(&rq->hrtick_timer);
1047 rq->hrtick_csd_pending = 0;
1048 spin_unlock(&rq->lock);
b328ca18
PZ
1049}
1050
31656519
PZ
1051/*
1052 * Called to set the hrtick timer state.
1053 *
1054 * called with rq->lock held and irqs disabled
1055 */
1056static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1057{
31656519
PZ
1058 struct hrtimer *timer = &rq->hrtick_timer;
1059 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1060
31656519
PZ
1061 timer->expires = time;
1062
1063 if (rq == this_rq()) {
1064 hrtimer_restart(timer);
1065 } else if (!rq->hrtick_csd_pending) {
1066 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1067 rq->hrtick_csd_pending = 1;
1068 }
b328ca18
PZ
1069}
1070
1071static int
1072hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1073{
1074 int cpu = (int)(long)hcpu;
1075
1076 switch (action) {
1077 case CPU_UP_CANCELED:
1078 case CPU_UP_CANCELED_FROZEN:
1079 case CPU_DOWN_PREPARE:
1080 case CPU_DOWN_PREPARE_FROZEN:
1081 case CPU_DEAD:
1082 case CPU_DEAD_FROZEN:
31656519 1083 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1084 return NOTIFY_OK;
1085 }
1086
1087 return NOTIFY_DONE;
1088}
1089
1090static void init_hrtick(void)
1091{
1092 hotcpu_notifier(hotplug_hrtick, 0);
1093}
31656519
PZ
1094#else
1095/*
1096 * Called to set the hrtick timer state.
1097 *
1098 * called with rq->lock held and irqs disabled
1099 */
1100static void hrtick_start(struct rq *rq, u64 delay)
1101{
1102 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1103}
b328ca18 1104
31656519 1105static void init_hrtick(void)
8f4d37ec 1106{
8f4d37ec 1107}
31656519 1108#endif /* CONFIG_SMP */
8f4d37ec 1109
31656519 1110static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1111{
31656519
PZ
1112#ifdef CONFIG_SMP
1113 rq->hrtick_csd_pending = 0;
8f4d37ec 1114
31656519
PZ
1115 rq->hrtick_csd.flags = 0;
1116 rq->hrtick_csd.func = __hrtick_start;
1117 rq->hrtick_csd.info = rq;
1118#endif
8f4d37ec 1119
31656519
PZ
1120 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1121 rq->hrtick_timer.function = hrtick;
1122 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
8f4d37ec
PZ
1123}
1124#else
1125static inline void hrtick_clear(struct rq *rq)
1126{
1127}
1128
8f4d37ec
PZ
1129static inline void init_rq_hrtick(struct rq *rq)
1130{
1131}
1132
b328ca18
PZ
1133static inline void init_hrtick(void)
1134{
1135}
8f4d37ec
PZ
1136#endif
1137
c24d20db
IM
1138/*
1139 * resched_task - mark a task 'to be rescheduled now'.
1140 *
1141 * On UP this means the setting of the need_resched flag, on SMP it
1142 * might also involve a cross-CPU call to trigger the scheduler on
1143 * the target CPU.
1144 */
1145#ifdef CONFIG_SMP
1146
1147#ifndef tsk_is_polling
1148#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1149#endif
1150
31656519 1151static void resched_task(struct task_struct *p)
c24d20db
IM
1152{
1153 int cpu;
1154
1155 assert_spin_locked(&task_rq(p)->lock);
1156
31656519 1157 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1158 return;
1159
31656519 1160 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1161
1162 cpu = task_cpu(p);
1163 if (cpu == smp_processor_id())
1164 return;
1165
1166 /* NEED_RESCHED must be visible before we test polling */
1167 smp_mb();
1168 if (!tsk_is_polling(p))
1169 smp_send_reschedule(cpu);
1170}
1171
1172static void resched_cpu(int cpu)
1173{
1174 struct rq *rq = cpu_rq(cpu);
1175 unsigned long flags;
1176
1177 if (!spin_trylock_irqsave(&rq->lock, flags))
1178 return;
1179 resched_task(cpu_curr(cpu));
1180 spin_unlock_irqrestore(&rq->lock, flags);
1181}
06d8308c
TG
1182
1183#ifdef CONFIG_NO_HZ
1184/*
1185 * When add_timer_on() enqueues a timer into the timer wheel of an
1186 * idle CPU then this timer might expire before the next timer event
1187 * which is scheduled to wake up that CPU. In case of a completely
1188 * idle system the next event might even be infinite time into the
1189 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1190 * leaves the inner idle loop so the newly added timer is taken into
1191 * account when the CPU goes back to idle and evaluates the timer
1192 * wheel for the next timer event.
1193 */
1194void wake_up_idle_cpu(int cpu)
1195{
1196 struct rq *rq = cpu_rq(cpu);
1197
1198 if (cpu == smp_processor_id())
1199 return;
1200
1201 /*
1202 * This is safe, as this function is called with the timer
1203 * wheel base lock of (cpu) held. When the CPU is on the way
1204 * to idle and has not yet set rq->curr to idle then it will
1205 * be serialized on the timer wheel base lock and take the new
1206 * timer into account automatically.
1207 */
1208 if (rq->curr != rq->idle)
1209 return;
1210
1211 /*
1212 * We can set TIF_RESCHED on the idle task of the other CPU
1213 * lockless. The worst case is that the other CPU runs the
1214 * idle task through an additional NOOP schedule()
1215 */
1216 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1217
1218 /* NEED_RESCHED must be visible before we test polling */
1219 smp_mb();
1220 if (!tsk_is_polling(rq->idle))
1221 smp_send_reschedule(cpu);
1222}
6d6bc0ad 1223#endif /* CONFIG_NO_HZ */
06d8308c 1224
6d6bc0ad 1225#else /* !CONFIG_SMP */
31656519 1226static void resched_task(struct task_struct *p)
c24d20db
IM
1227{
1228 assert_spin_locked(&task_rq(p)->lock);
31656519 1229 set_tsk_need_resched(p);
c24d20db 1230}
6d6bc0ad 1231#endif /* CONFIG_SMP */
c24d20db 1232
45bf76df
IM
1233#if BITS_PER_LONG == 32
1234# define WMULT_CONST (~0UL)
1235#else
1236# define WMULT_CONST (1UL << 32)
1237#endif
1238
1239#define WMULT_SHIFT 32
1240
194081eb
IM
1241/*
1242 * Shift right and round:
1243 */
cf2ab469 1244#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1245
a7be37ac
PZ
1246/*
1247 * delta *= weight / lw
1248 */
cb1c4fc9 1249static unsigned long
45bf76df
IM
1250calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1251 struct load_weight *lw)
1252{
1253 u64 tmp;
1254
7a232e03
LJ
1255 if (!lw->inv_weight) {
1256 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1257 lw->inv_weight = 1;
1258 else
1259 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1260 / (lw->weight+1);
1261 }
45bf76df
IM
1262
1263 tmp = (u64)delta_exec * weight;
1264 /*
1265 * Check whether we'd overflow the 64-bit multiplication:
1266 */
194081eb 1267 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1268 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1269 WMULT_SHIFT/2);
1270 else
cf2ab469 1271 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1272
ecf691da 1273 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1274}
1275
1091985b 1276static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1277{
1278 lw->weight += inc;
e89996ae 1279 lw->inv_weight = 0;
45bf76df
IM
1280}
1281
1091985b 1282static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1283{
1284 lw->weight -= dec;
e89996ae 1285 lw->inv_weight = 0;
45bf76df
IM
1286}
1287
2dd73a4f
PW
1288/*
1289 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1290 * of tasks with abnormal "nice" values across CPUs the contribution that
1291 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1292 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1293 * scaled version of the new time slice allocation that they receive on time
1294 * slice expiry etc.
1295 */
1296
dd41f596
IM
1297#define WEIGHT_IDLEPRIO 2
1298#define WMULT_IDLEPRIO (1 << 31)
1299
1300/*
1301 * Nice levels are multiplicative, with a gentle 10% change for every
1302 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1303 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1304 * that remained on nice 0.
1305 *
1306 * The "10% effect" is relative and cumulative: from _any_ nice level,
1307 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1308 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1309 * If a task goes up by ~10% and another task goes down by ~10% then
1310 * the relative distance between them is ~25%.)
dd41f596
IM
1311 */
1312static const int prio_to_weight[40] = {
254753dc
IM
1313 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1314 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1315 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1316 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1317 /* 0 */ 1024, 820, 655, 526, 423,
1318 /* 5 */ 335, 272, 215, 172, 137,
1319 /* 10 */ 110, 87, 70, 56, 45,
1320 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1321};
1322
5714d2de
IM
1323/*
1324 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1325 *
1326 * In cases where the weight does not change often, we can use the
1327 * precalculated inverse to speed up arithmetics by turning divisions
1328 * into multiplications:
1329 */
dd41f596 1330static const u32 prio_to_wmult[40] = {
254753dc
IM
1331 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1332 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1333 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1334 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1335 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1336 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1337 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1338 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1339};
2dd73a4f 1340
dd41f596
IM
1341static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1342
1343/*
1344 * runqueue iterator, to support SMP load-balancing between different
1345 * scheduling classes, without having to expose their internal data
1346 * structures to the load-balancing proper:
1347 */
1348struct rq_iterator {
1349 void *arg;
1350 struct task_struct *(*start)(void *);
1351 struct task_struct *(*next)(void *);
1352};
1353
e1d1484f
PW
1354#ifdef CONFIG_SMP
1355static unsigned long
1356balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1357 unsigned long max_load_move, struct sched_domain *sd,
1358 enum cpu_idle_type idle, int *all_pinned,
1359 int *this_best_prio, struct rq_iterator *iterator);
1360
1361static int
1362iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1363 struct sched_domain *sd, enum cpu_idle_type idle,
1364 struct rq_iterator *iterator);
e1d1484f 1365#endif
dd41f596 1366
d842de87
SV
1367#ifdef CONFIG_CGROUP_CPUACCT
1368static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1369#else
1370static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1371#endif
1372
18d95a28
PZ
1373static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1374{
1375 update_load_add(&rq->load, load);
1376}
1377
1378static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1379{
1380 update_load_sub(&rq->load, load);
1381}
1382
e7693a36
GH
1383#ifdef CONFIG_SMP
1384static unsigned long source_load(int cpu, int type);
1385static unsigned long target_load(int cpu, int type);
e7693a36 1386static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
c09595f6 1387
a8a51d5e
PZ
1388static unsigned long cpu_avg_load_per_task(int cpu)
1389{
1390 struct rq *rq = cpu_rq(cpu);
1391
1392 if (rq->nr_running)
1393 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1394
1395 return rq->avg_load_per_task;
1396}
18d95a28
PZ
1397
1398#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1399
c8cba857 1400typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
c09595f6
PZ
1401
1402/*
1403 * Iterate the full tree, calling @down when first entering a node and @up when
1404 * leaving it for the final time.
1405 */
c8cba857
PZ
1406static void
1407walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
c09595f6
PZ
1408{
1409 struct task_group *parent, *child;
1410
1411 rcu_read_lock();
1412 parent = &root_task_group;
1413down:
b6a86c74 1414 (*down)(parent, cpu, sd);
c09595f6
PZ
1415 list_for_each_entry_rcu(child, &parent->children, siblings) {
1416 parent = child;
1417 goto down;
1418
1419up:
1420 continue;
1421 }
b6a86c74 1422 (*up)(parent, cpu, sd);
c09595f6
PZ
1423
1424 child = parent;
1425 parent = parent->parent;
1426 if (parent)
1427 goto up;
1428 rcu_read_unlock();
1429}
1430
c09595f6
PZ
1431static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1432
1433/*
1434 * Calculate and set the cpu's group shares.
1435 */
1436static void
b6a86c74 1437__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1438 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1439{
c09595f6
PZ
1440 int boost = 0;
1441 unsigned long shares;
1442 unsigned long rq_weight;
1443
c8cba857 1444 if (!tg->se[cpu])
c09595f6
PZ
1445 return;
1446
c8cba857 1447 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1448
1449 /*
1450 * If there are currently no tasks on the cpu pretend there is one of
1451 * average load so that when a new task gets to run here it will not
1452 * get delayed by group starvation.
1453 */
1454 if (!rq_weight) {
1455 boost = 1;
1456 rq_weight = NICE_0_LOAD;
1457 }
1458
c8cba857
PZ
1459 if (unlikely(rq_weight > sd_rq_weight))
1460 rq_weight = sd_rq_weight;
1461
c09595f6
PZ
1462 /*
1463 * \Sum shares * rq_weight
1464 * shares = -----------------------
1465 * \Sum rq_weight
1466 *
1467 */
c8cba857 1468 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1469
1470 /*
1471 * record the actual number of shares, not the boosted amount.
1472 */
c8cba857 1473 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
f1d239f7 1474 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6
PZ
1475
1476 if (shares < MIN_SHARES)
1477 shares = MIN_SHARES;
1478 else if (shares > MAX_SHARES)
1479 shares = MAX_SHARES;
1480
c8cba857 1481 __set_se_shares(tg->se[cpu], shares);
18d95a28 1482}
c09595f6
PZ
1483
1484/*
c8cba857
PZ
1485 * Re-compute the task group their per cpu shares over the given domain.
1486 * This needs to be done in a bottom-up fashion because the rq weight of a
1487 * parent group depends on the shares of its child groups.
c09595f6
PZ
1488 */
1489static void
c8cba857 1490tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1491{
c8cba857
PZ
1492 unsigned long rq_weight = 0;
1493 unsigned long shares = 0;
1494 int i;
c09595f6 1495
c8cba857
PZ
1496 for_each_cpu_mask(i, sd->span) {
1497 rq_weight += tg->cfs_rq[i]->load.weight;
1498 shares += tg->cfs_rq[i]->shares;
c09595f6 1499 }
c09595f6 1500
c8cba857
PZ
1501 if ((!shares && rq_weight) || shares > tg->shares)
1502 shares = tg->shares;
1503
1504 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1505 shares = tg->shares;
c09595f6 1506
cd80917e
PZ
1507 if (!rq_weight)
1508 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1509
c09595f6
PZ
1510 for_each_cpu_mask(i, sd->span) {
1511 struct rq *rq = cpu_rq(i);
1512 unsigned long flags;
1513
1514 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1515 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1516 spin_unlock_irqrestore(&rq->lock, flags);
1517 }
c09595f6
PZ
1518}
1519
1520/*
c8cba857
PZ
1521 * Compute the cpu's hierarchical load factor for each task group.
1522 * This needs to be done in a top-down fashion because the load of a child
1523 * group is a fraction of its parents load.
c09595f6 1524 */
b6a86c74 1525static void
c8cba857 1526tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1527{
c8cba857 1528 unsigned long load;
c09595f6 1529
c8cba857
PZ
1530 if (!tg->parent) {
1531 load = cpu_rq(cpu)->load.weight;
1532 } else {
1533 load = tg->parent->cfs_rq[cpu]->h_load;
1534 load *= tg->cfs_rq[cpu]->shares;
1535 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1536 }
c09595f6 1537
c8cba857 1538 tg->cfs_rq[cpu]->h_load = load;
c09595f6
PZ
1539}
1540
c8cba857
PZ
1541static void
1542tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1543{
c09595f6
PZ
1544}
1545
c8cba857 1546static void update_shares(struct sched_domain *sd)
4d8d595d 1547{
2398f2c6
PZ
1548 u64 now = cpu_clock(raw_smp_processor_id());
1549 s64 elapsed = now - sd->last_update;
1550
1551 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1552 sd->last_update = now;
1553 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1554 }
4d8d595d
PZ
1555}
1556
3e5459b4
PZ
1557static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1558{
1559 spin_unlock(&rq->lock);
1560 update_shares(sd);
1561 spin_lock(&rq->lock);
1562}
1563
c8cba857 1564static void update_h_load(int cpu)
c09595f6 1565{
c8cba857 1566 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
c09595f6
PZ
1567}
1568
c09595f6
PZ
1569#else
1570
c8cba857 1571static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1572{
1573}
1574
3e5459b4
PZ
1575static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1576{
1577}
1578
18d95a28
PZ
1579#endif
1580
18d95a28
PZ
1581#endif
1582
30432094 1583#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1584static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1585{
30432094 1586#ifdef CONFIG_SMP
34e83e85
IM
1587 cfs_rq->shares = shares;
1588#endif
1589}
30432094 1590#endif
e7693a36 1591
dd41f596 1592#include "sched_stats.h"
dd41f596 1593#include "sched_idletask.c"
5522d5d5
IM
1594#include "sched_fair.c"
1595#include "sched_rt.c"
dd41f596
IM
1596#ifdef CONFIG_SCHED_DEBUG
1597# include "sched_debug.c"
1598#endif
1599
1600#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1601#define for_each_class(class) \
1602 for (class = sched_class_highest; class; class = class->next)
dd41f596 1603
c09595f6 1604static void inc_nr_running(struct rq *rq)
9c217245
IM
1605{
1606 rq->nr_running++;
9c217245
IM
1607}
1608
c09595f6 1609static void dec_nr_running(struct rq *rq)
9c217245
IM
1610{
1611 rq->nr_running--;
9c217245
IM
1612}
1613
45bf76df
IM
1614static void set_load_weight(struct task_struct *p)
1615{
1616 if (task_has_rt_policy(p)) {
dd41f596
IM
1617 p->se.load.weight = prio_to_weight[0] * 2;
1618 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1619 return;
1620 }
45bf76df 1621
dd41f596
IM
1622 /*
1623 * SCHED_IDLE tasks get minimal weight:
1624 */
1625 if (p->policy == SCHED_IDLE) {
1626 p->se.load.weight = WEIGHT_IDLEPRIO;
1627 p->se.load.inv_weight = WMULT_IDLEPRIO;
1628 return;
1629 }
71f8bd46 1630
dd41f596
IM
1631 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1632 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1633}
1634
2087a1ad
GH
1635static void update_avg(u64 *avg, u64 sample)
1636{
1637 s64 diff = sample - *avg;
1638 *avg += diff >> 3;
1639}
1640
8159f87e 1641static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1642{
dd41f596 1643 sched_info_queued(p);
fd390f6a 1644 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1645 p->se.on_rq = 1;
71f8bd46
IM
1646}
1647
69be72c1 1648static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1649{
2087a1ad
GH
1650 if (sleep && p->se.last_wakeup) {
1651 update_avg(&p->se.avg_overlap,
1652 p->se.sum_exec_runtime - p->se.last_wakeup);
1653 p->se.last_wakeup = 0;
1654 }
1655
46ac22ba 1656 sched_info_dequeued(p);
f02231e5 1657 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1658 p->se.on_rq = 0;
71f8bd46
IM
1659}
1660
14531189 1661/*
dd41f596 1662 * __normal_prio - return the priority that is based on the static prio
14531189 1663 */
14531189
IM
1664static inline int __normal_prio(struct task_struct *p)
1665{
dd41f596 1666 return p->static_prio;
14531189
IM
1667}
1668
b29739f9
IM
1669/*
1670 * Calculate the expected normal priority: i.e. priority
1671 * without taking RT-inheritance into account. Might be
1672 * boosted by interactivity modifiers. Changes upon fork,
1673 * setprio syscalls, and whenever the interactivity
1674 * estimator recalculates.
1675 */
36c8b586 1676static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1677{
1678 int prio;
1679
e05606d3 1680 if (task_has_rt_policy(p))
b29739f9
IM
1681 prio = MAX_RT_PRIO-1 - p->rt_priority;
1682 else
1683 prio = __normal_prio(p);
1684 return prio;
1685}
1686
1687/*
1688 * Calculate the current priority, i.e. the priority
1689 * taken into account by the scheduler. This value might
1690 * be boosted by RT tasks, or might be boosted by
1691 * interactivity modifiers. Will be RT if the task got
1692 * RT-boosted. If not then it returns p->normal_prio.
1693 */
36c8b586 1694static int effective_prio(struct task_struct *p)
b29739f9
IM
1695{
1696 p->normal_prio = normal_prio(p);
1697 /*
1698 * If we are RT tasks or we were boosted to RT priority,
1699 * keep the priority unchanged. Otherwise, update priority
1700 * to the normal priority:
1701 */
1702 if (!rt_prio(p->prio))
1703 return p->normal_prio;
1704 return p->prio;
1705}
1706
1da177e4 1707/*
dd41f596 1708 * activate_task - move a task to the runqueue.
1da177e4 1709 */
dd41f596 1710static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1711{
d9514f6c 1712 if (task_contributes_to_load(p))
dd41f596 1713 rq->nr_uninterruptible--;
1da177e4 1714
8159f87e 1715 enqueue_task(rq, p, wakeup);
c09595f6 1716 inc_nr_running(rq);
1da177e4
LT
1717}
1718
1da177e4
LT
1719/*
1720 * deactivate_task - remove a task from the runqueue.
1721 */
2e1cb74a 1722static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1723{
d9514f6c 1724 if (task_contributes_to_load(p))
dd41f596
IM
1725 rq->nr_uninterruptible++;
1726
69be72c1 1727 dequeue_task(rq, p, sleep);
c09595f6 1728 dec_nr_running(rq);
1da177e4
LT
1729}
1730
1da177e4
LT
1731/**
1732 * task_curr - is this task currently executing on a CPU?
1733 * @p: the task in question.
1734 */
36c8b586 1735inline int task_curr(const struct task_struct *p)
1da177e4
LT
1736{
1737 return cpu_curr(task_cpu(p)) == p;
1738}
1739
dd41f596
IM
1740static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1741{
6f505b16 1742 set_task_rq(p, cpu);
dd41f596 1743#ifdef CONFIG_SMP
ce96b5ac
DA
1744 /*
1745 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1746 * successfuly executed on another CPU. We must ensure that updates of
1747 * per-task data have been completed by this moment.
1748 */
1749 smp_wmb();
dd41f596 1750 task_thread_info(p)->cpu = cpu;
dd41f596 1751#endif
2dd73a4f
PW
1752}
1753
cb469845
SR
1754static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1755 const struct sched_class *prev_class,
1756 int oldprio, int running)
1757{
1758 if (prev_class != p->sched_class) {
1759 if (prev_class->switched_from)
1760 prev_class->switched_from(rq, p, running);
1761 p->sched_class->switched_to(rq, p, running);
1762 } else
1763 p->sched_class->prio_changed(rq, p, oldprio, running);
1764}
1765
1da177e4 1766#ifdef CONFIG_SMP
c65cc870 1767
e958b360
TG
1768/* Used instead of source_load when we know the type == 0 */
1769static unsigned long weighted_cpuload(const int cpu)
1770{
1771 return cpu_rq(cpu)->load.weight;
1772}
1773
cc367732
IM
1774/*
1775 * Is this task likely cache-hot:
1776 */
e7693a36 1777static int
cc367732
IM
1778task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1779{
1780 s64 delta;
1781
f540a608
IM
1782 /*
1783 * Buddy candidates are cache hot:
1784 */
d25ce4cd 1785 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1786 return 1;
1787
cc367732
IM
1788 if (p->sched_class != &fair_sched_class)
1789 return 0;
1790
6bc1665b
IM
1791 if (sysctl_sched_migration_cost == -1)
1792 return 1;
1793 if (sysctl_sched_migration_cost == 0)
1794 return 0;
1795
cc367732
IM
1796 delta = now - p->se.exec_start;
1797
1798 return delta < (s64)sysctl_sched_migration_cost;
1799}
1800
1801
dd41f596 1802void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1803{
dd41f596
IM
1804 int old_cpu = task_cpu(p);
1805 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1806 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1807 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1808 u64 clock_offset;
dd41f596
IM
1809
1810 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1811
1812#ifdef CONFIG_SCHEDSTATS
1813 if (p->se.wait_start)
1814 p->se.wait_start -= clock_offset;
dd41f596
IM
1815 if (p->se.sleep_start)
1816 p->se.sleep_start -= clock_offset;
1817 if (p->se.block_start)
1818 p->se.block_start -= clock_offset;
cc367732
IM
1819 if (old_cpu != new_cpu) {
1820 schedstat_inc(p, se.nr_migrations);
1821 if (task_hot(p, old_rq->clock, NULL))
1822 schedstat_inc(p, se.nr_forced2_migrations);
1823 }
6cfb0d5d 1824#endif
2830cf8c
SV
1825 p->se.vruntime -= old_cfsrq->min_vruntime -
1826 new_cfsrq->min_vruntime;
dd41f596
IM
1827
1828 __set_task_cpu(p, new_cpu);
c65cc870
IM
1829}
1830
70b97a7f 1831struct migration_req {
1da177e4 1832 struct list_head list;
1da177e4 1833
36c8b586 1834 struct task_struct *task;
1da177e4
LT
1835 int dest_cpu;
1836
1da177e4 1837 struct completion done;
70b97a7f 1838};
1da177e4
LT
1839
1840/*
1841 * The task's runqueue lock must be held.
1842 * Returns true if you have to wait for migration thread.
1843 */
36c8b586 1844static int
70b97a7f 1845migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1846{
70b97a7f 1847 struct rq *rq = task_rq(p);
1da177e4
LT
1848
1849 /*
1850 * If the task is not on a runqueue (and not running), then
1851 * it is sufficient to simply update the task's cpu field.
1852 */
dd41f596 1853 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1854 set_task_cpu(p, dest_cpu);
1855 return 0;
1856 }
1857
1858 init_completion(&req->done);
1da177e4
LT
1859 req->task = p;
1860 req->dest_cpu = dest_cpu;
1861 list_add(&req->list, &rq->migration_queue);
48f24c4d 1862
1da177e4
LT
1863 return 1;
1864}
1865
1866/*
1867 * wait_task_inactive - wait for a thread to unschedule.
1868 *
85ba2d86
RM
1869 * If @match_state is nonzero, it's the @p->state value just checked and
1870 * not expected to change. If it changes, i.e. @p might have woken up,
1871 * then return zero. When we succeed in waiting for @p to be off its CPU,
1872 * we return a positive number (its total switch count). If a second call
1873 * a short while later returns the same number, the caller can be sure that
1874 * @p has remained unscheduled the whole time.
1875 *
1da177e4
LT
1876 * The caller must ensure that the task *will* unschedule sometime soon,
1877 * else this function might spin for a *long* time. This function can't
1878 * be called with interrupts off, or it may introduce deadlock with
1879 * smp_call_function() if an IPI is sent by the same process we are
1880 * waiting to become inactive.
1881 */
85ba2d86 1882unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1883{
1884 unsigned long flags;
dd41f596 1885 int running, on_rq;
85ba2d86 1886 unsigned long ncsw;
70b97a7f 1887 struct rq *rq;
1da177e4 1888
3a5c359a
AK
1889 for (;;) {
1890 /*
1891 * We do the initial early heuristics without holding
1892 * any task-queue locks at all. We'll only try to get
1893 * the runqueue lock when things look like they will
1894 * work out!
1895 */
1896 rq = task_rq(p);
fa490cfd 1897
3a5c359a
AK
1898 /*
1899 * If the task is actively running on another CPU
1900 * still, just relax and busy-wait without holding
1901 * any locks.
1902 *
1903 * NOTE! Since we don't hold any locks, it's not
1904 * even sure that "rq" stays as the right runqueue!
1905 * But we don't care, since "task_running()" will
1906 * return false if the runqueue has changed and p
1907 * is actually now running somewhere else!
1908 */
85ba2d86
RM
1909 while (task_running(rq, p)) {
1910 if (match_state && unlikely(p->state != match_state))
1911 return 0;
3a5c359a 1912 cpu_relax();
85ba2d86 1913 }
fa490cfd 1914
3a5c359a
AK
1915 /*
1916 * Ok, time to look more closely! We need the rq
1917 * lock now, to be *sure*. If we're wrong, we'll
1918 * just go back and repeat.
1919 */
1920 rq = task_rq_lock(p, &flags);
1921 running = task_running(rq, p);
1922 on_rq = p->se.on_rq;
85ba2d86
RM
1923 ncsw = 0;
1924 if (!match_state || p->state == match_state) {
1925 ncsw = p->nivcsw + p->nvcsw;
1926 if (unlikely(!ncsw))
1927 ncsw = 1;
1928 }
3a5c359a 1929 task_rq_unlock(rq, &flags);
fa490cfd 1930
85ba2d86
RM
1931 /*
1932 * If it changed from the expected state, bail out now.
1933 */
1934 if (unlikely(!ncsw))
1935 break;
1936
3a5c359a
AK
1937 /*
1938 * Was it really running after all now that we
1939 * checked with the proper locks actually held?
1940 *
1941 * Oops. Go back and try again..
1942 */
1943 if (unlikely(running)) {
1944 cpu_relax();
1945 continue;
1946 }
fa490cfd 1947
3a5c359a
AK
1948 /*
1949 * It's not enough that it's not actively running,
1950 * it must be off the runqueue _entirely_, and not
1951 * preempted!
1952 *
1953 * So if it wa still runnable (but just not actively
1954 * running right now), it's preempted, and we should
1955 * yield - it could be a while.
1956 */
1957 if (unlikely(on_rq)) {
1958 schedule_timeout_uninterruptible(1);
1959 continue;
1960 }
fa490cfd 1961
3a5c359a
AK
1962 /*
1963 * Ahh, all good. It wasn't running, and it wasn't
1964 * runnable, which means that it will never become
1965 * running in the future either. We're all done!
1966 */
1967 break;
1968 }
85ba2d86
RM
1969
1970 return ncsw;
1da177e4
LT
1971}
1972
1973/***
1974 * kick_process - kick a running thread to enter/exit the kernel
1975 * @p: the to-be-kicked thread
1976 *
1977 * Cause a process which is running on another CPU to enter
1978 * kernel-mode, without any delay. (to get signals handled.)
1979 *
1980 * NOTE: this function doesnt have to take the runqueue lock,
1981 * because all it wants to ensure is that the remote task enters
1982 * the kernel. If the IPI races and the task has been migrated
1983 * to another CPU then no harm is done and the purpose has been
1984 * achieved as well.
1985 */
36c8b586 1986void kick_process(struct task_struct *p)
1da177e4
LT
1987{
1988 int cpu;
1989
1990 preempt_disable();
1991 cpu = task_cpu(p);
1992 if ((cpu != smp_processor_id()) && task_curr(p))
1993 smp_send_reschedule(cpu);
1994 preempt_enable();
1995}
1996
1997/*
2dd73a4f
PW
1998 * Return a low guess at the load of a migration-source cpu weighted
1999 * according to the scheduling class and "nice" value.
1da177e4
LT
2000 *
2001 * We want to under-estimate the load of migration sources, to
2002 * balance conservatively.
2003 */
a9957449 2004static unsigned long source_load(int cpu, int type)
1da177e4 2005{
70b97a7f 2006 struct rq *rq = cpu_rq(cpu);
dd41f596 2007 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2008
93b75217 2009 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2010 return total;
b910472d 2011
dd41f596 2012 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2013}
2014
2015/*
2dd73a4f
PW
2016 * Return a high guess at the load of a migration-target cpu weighted
2017 * according to the scheduling class and "nice" value.
1da177e4 2018 */
a9957449 2019static unsigned long target_load(int cpu, int type)
1da177e4 2020{
70b97a7f 2021 struct rq *rq = cpu_rq(cpu);
dd41f596 2022 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2023
93b75217 2024 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2025 return total;
3b0bd9bc 2026
dd41f596 2027 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2028}
2029
147cbb4b
NP
2030/*
2031 * find_idlest_group finds and returns the least busy CPU group within the
2032 * domain.
2033 */
2034static struct sched_group *
2035find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2036{
2037 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2038 unsigned long min_load = ULONG_MAX, this_load = 0;
2039 int load_idx = sd->forkexec_idx;
2040 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2041
2042 do {
2043 unsigned long load, avg_load;
2044 int local_group;
2045 int i;
2046
da5a5522
BD
2047 /* Skip over this group if it has no CPUs allowed */
2048 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2049 continue;
da5a5522 2050
147cbb4b 2051 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2052
2053 /* Tally up the load of all CPUs in the group */
2054 avg_load = 0;
2055
363ab6f1 2056 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2057 /* Bias balancing toward cpus of our domain */
2058 if (local_group)
2059 load = source_load(i, load_idx);
2060 else
2061 load = target_load(i, load_idx);
2062
2063 avg_load += load;
2064 }
2065
2066 /* Adjust by relative CPU power of the group */
5517d86b
ED
2067 avg_load = sg_div_cpu_power(group,
2068 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2069
2070 if (local_group) {
2071 this_load = avg_load;
2072 this = group;
2073 } else if (avg_load < min_load) {
2074 min_load = avg_load;
2075 idlest = group;
2076 }
3a5c359a 2077 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2078
2079 if (!idlest || 100*this_load < imbalance*min_load)
2080 return NULL;
2081 return idlest;
2082}
2083
2084/*
0feaece9 2085 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2086 */
95cdf3b7 2087static int
7c16ec58
MT
2088find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2089 cpumask_t *tmp)
147cbb4b
NP
2090{
2091 unsigned long load, min_load = ULONG_MAX;
2092 int idlest = -1;
2093 int i;
2094
da5a5522 2095 /* Traverse only the allowed CPUs */
7c16ec58 2096 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2097
363ab6f1 2098 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2099 load = weighted_cpuload(i);
147cbb4b
NP
2100
2101 if (load < min_load || (load == min_load && i == this_cpu)) {
2102 min_load = load;
2103 idlest = i;
2104 }
2105 }
2106
2107 return idlest;
2108}
2109
476d139c
NP
2110/*
2111 * sched_balance_self: balance the current task (running on cpu) in domains
2112 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2113 * SD_BALANCE_EXEC.
2114 *
2115 * Balance, ie. select the least loaded group.
2116 *
2117 * Returns the target CPU number, or the same CPU if no balancing is needed.
2118 *
2119 * preempt must be disabled.
2120 */
2121static int sched_balance_self(int cpu, int flag)
2122{
2123 struct task_struct *t = current;
2124 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2125
c96d145e 2126 for_each_domain(cpu, tmp) {
9761eea8
IM
2127 /*
2128 * If power savings logic is enabled for a domain, stop there.
2129 */
5c45bf27
SS
2130 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2131 break;
476d139c
NP
2132 if (tmp->flags & flag)
2133 sd = tmp;
c96d145e 2134 }
476d139c 2135
039a1c41
PZ
2136 if (sd)
2137 update_shares(sd);
2138
476d139c 2139 while (sd) {
7c16ec58 2140 cpumask_t span, tmpmask;
476d139c 2141 struct sched_group *group;
1a848870
SS
2142 int new_cpu, weight;
2143
2144 if (!(sd->flags & flag)) {
2145 sd = sd->child;
2146 continue;
2147 }
476d139c
NP
2148
2149 span = sd->span;
2150 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2151 if (!group) {
2152 sd = sd->child;
2153 continue;
2154 }
476d139c 2155
7c16ec58 2156 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2157 if (new_cpu == -1 || new_cpu == cpu) {
2158 /* Now try balancing at a lower domain level of cpu */
2159 sd = sd->child;
2160 continue;
2161 }
476d139c 2162
1a848870 2163 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2164 cpu = new_cpu;
476d139c
NP
2165 sd = NULL;
2166 weight = cpus_weight(span);
2167 for_each_domain(cpu, tmp) {
2168 if (weight <= cpus_weight(tmp->span))
2169 break;
2170 if (tmp->flags & flag)
2171 sd = tmp;
2172 }
2173 /* while loop will break here if sd == NULL */
2174 }
2175
2176 return cpu;
2177}
2178
2179#endif /* CONFIG_SMP */
1da177e4 2180
1da177e4
LT
2181/***
2182 * try_to_wake_up - wake up a thread
2183 * @p: the to-be-woken-up thread
2184 * @state: the mask of task states that can be woken
2185 * @sync: do a synchronous wakeup?
2186 *
2187 * Put it on the run-queue if it's not already there. The "current"
2188 * thread is always on the run-queue (except when the actual
2189 * re-schedule is in progress), and as such you're allowed to do
2190 * the simpler "current->state = TASK_RUNNING" to mark yourself
2191 * runnable without the overhead of this.
2192 *
2193 * returns failure only if the task is already active.
2194 */
36c8b586 2195static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2196{
cc367732 2197 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2198 unsigned long flags;
2199 long old_state;
70b97a7f 2200 struct rq *rq;
1da177e4 2201
b85d0667
IM
2202 if (!sched_feat(SYNC_WAKEUPS))
2203 sync = 0;
2204
2398f2c6
PZ
2205#ifdef CONFIG_SMP
2206 if (sched_feat(LB_WAKEUP_UPDATE)) {
2207 struct sched_domain *sd;
2208
2209 this_cpu = raw_smp_processor_id();
2210 cpu = task_cpu(p);
2211
2212 for_each_domain(this_cpu, sd) {
2213 if (cpu_isset(cpu, sd->span)) {
2214 update_shares(sd);
2215 break;
2216 }
2217 }
2218 }
2219#endif
2220
04e2f174 2221 smp_wmb();
1da177e4
LT
2222 rq = task_rq_lock(p, &flags);
2223 old_state = p->state;
2224 if (!(old_state & state))
2225 goto out;
2226
dd41f596 2227 if (p->se.on_rq)
1da177e4
LT
2228 goto out_running;
2229
2230 cpu = task_cpu(p);
cc367732 2231 orig_cpu = cpu;
1da177e4
LT
2232 this_cpu = smp_processor_id();
2233
2234#ifdef CONFIG_SMP
2235 if (unlikely(task_running(rq, p)))
2236 goto out_activate;
2237
5d2f5a61
DA
2238 cpu = p->sched_class->select_task_rq(p, sync);
2239 if (cpu != orig_cpu) {
2240 set_task_cpu(p, cpu);
1da177e4
LT
2241 task_rq_unlock(rq, &flags);
2242 /* might preempt at this point */
2243 rq = task_rq_lock(p, &flags);
2244 old_state = p->state;
2245 if (!(old_state & state))
2246 goto out;
dd41f596 2247 if (p->se.on_rq)
1da177e4
LT
2248 goto out_running;
2249
2250 this_cpu = smp_processor_id();
2251 cpu = task_cpu(p);
2252 }
2253
e7693a36
GH
2254#ifdef CONFIG_SCHEDSTATS
2255 schedstat_inc(rq, ttwu_count);
2256 if (cpu == this_cpu)
2257 schedstat_inc(rq, ttwu_local);
2258 else {
2259 struct sched_domain *sd;
2260 for_each_domain(this_cpu, sd) {
2261 if (cpu_isset(cpu, sd->span)) {
2262 schedstat_inc(sd, ttwu_wake_remote);
2263 break;
2264 }
2265 }
2266 }
6d6bc0ad 2267#endif /* CONFIG_SCHEDSTATS */
e7693a36 2268
1da177e4
LT
2269out_activate:
2270#endif /* CONFIG_SMP */
cc367732
IM
2271 schedstat_inc(p, se.nr_wakeups);
2272 if (sync)
2273 schedstat_inc(p, se.nr_wakeups_sync);
2274 if (orig_cpu != cpu)
2275 schedstat_inc(p, se.nr_wakeups_migrate);
2276 if (cpu == this_cpu)
2277 schedstat_inc(p, se.nr_wakeups_local);
2278 else
2279 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2280 update_rq_clock(rq);
dd41f596 2281 activate_task(rq, p, 1);
1da177e4
LT
2282 success = 1;
2283
2284out_running:
5b82a1b0
MD
2285 trace_mark(kernel_sched_wakeup,
2286 "pid %d state %ld ## rq %p task %p rq->curr %p",
2287 p->pid, p->state, rq, p, rq->curr);
4ae7d5ce
IM
2288 check_preempt_curr(rq, p);
2289
1da177e4 2290 p->state = TASK_RUNNING;
9a897c5a
SR
2291#ifdef CONFIG_SMP
2292 if (p->sched_class->task_wake_up)
2293 p->sched_class->task_wake_up(rq, p);
2294#endif
1da177e4 2295out:
2087a1ad
GH
2296 current->se.last_wakeup = current->se.sum_exec_runtime;
2297
1da177e4
LT
2298 task_rq_unlock(rq, &flags);
2299
2300 return success;
2301}
2302
7ad5b3a5 2303int wake_up_process(struct task_struct *p)
1da177e4 2304{
d9514f6c 2305 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2306}
1da177e4
LT
2307EXPORT_SYMBOL(wake_up_process);
2308
7ad5b3a5 2309int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2310{
2311 return try_to_wake_up(p, state, 0);
2312}
2313
1da177e4
LT
2314/*
2315 * Perform scheduler related setup for a newly forked process p.
2316 * p is forked by current.
dd41f596
IM
2317 *
2318 * __sched_fork() is basic setup used by init_idle() too:
2319 */
2320static void __sched_fork(struct task_struct *p)
2321{
dd41f596
IM
2322 p->se.exec_start = 0;
2323 p->se.sum_exec_runtime = 0;
f6cf891c 2324 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2325 p->se.last_wakeup = 0;
2326 p->se.avg_overlap = 0;
6cfb0d5d
IM
2327
2328#ifdef CONFIG_SCHEDSTATS
2329 p->se.wait_start = 0;
dd41f596
IM
2330 p->se.sum_sleep_runtime = 0;
2331 p->se.sleep_start = 0;
dd41f596
IM
2332 p->se.block_start = 0;
2333 p->se.sleep_max = 0;
2334 p->se.block_max = 0;
2335 p->se.exec_max = 0;
eba1ed4b 2336 p->se.slice_max = 0;
dd41f596 2337 p->se.wait_max = 0;
6cfb0d5d 2338#endif
476d139c 2339
fa717060 2340 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2341 p->se.on_rq = 0;
4a55bd5e 2342 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2343
e107be36
AK
2344#ifdef CONFIG_PREEMPT_NOTIFIERS
2345 INIT_HLIST_HEAD(&p->preempt_notifiers);
2346#endif
2347
1da177e4
LT
2348 /*
2349 * We mark the process as running here, but have not actually
2350 * inserted it onto the runqueue yet. This guarantees that
2351 * nobody will actually run it, and a signal or other external
2352 * event cannot wake it up and insert it on the runqueue either.
2353 */
2354 p->state = TASK_RUNNING;
dd41f596
IM
2355}
2356
2357/*
2358 * fork()/clone()-time setup:
2359 */
2360void sched_fork(struct task_struct *p, int clone_flags)
2361{
2362 int cpu = get_cpu();
2363
2364 __sched_fork(p);
2365
2366#ifdef CONFIG_SMP
2367 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2368#endif
02e4bac2 2369 set_task_cpu(p, cpu);
b29739f9
IM
2370
2371 /*
2372 * Make sure we do not leak PI boosting priority to the child:
2373 */
2374 p->prio = current->normal_prio;
2ddbf952
HS
2375 if (!rt_prio(p->prio))
2376 p->sched_class = &fair_sched_class;
b29739f9 2377
52f17b6c 2378#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2379 if (likely(sched_info_on()))
52f17b6c 2380 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2381#endif
d6077cb8 2382#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2383 p->oncpu = 0;
2384#endif
1da177e4 2385#ifdef CONFIG_PREEMPT
4866cde0 2386 /* Want to start with kernel preemption disabled. */
a1261f54 2387 task_thread_info(p)->preempt_count = 1;
1da177e4 2388#endif
476d139c 2389 put_cpu();
1da177e4
LT
2390}
2391
2392/*
2393 * wake_up_new_task - wake up a newly created task for the first time.
2394 *
2395 * This function will do some initial scheduler statistics housekeeping
2396 * that must be done for every newly created context, then puts the task
2397 * on the runqueue and wakes it.
2398 */
7ad5b3a5 2399void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2400{
2401 unsigned long flags;
dd41f596 2402 struct rq *rq;
1da177e4
LT
2403
2404 rq = task_rq_lock(p, &flags);
147cbb4b 2405 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2406 update_rq_clock(rq);
1da177e4
LT
2407
2408 p->prio = effective_prio(p);
2409
b9dca1e0 2410 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2411 activate_task(rq, p, 0);
1da177e4 2412 } else {
1da177e4 2413 /*
dd41f596
IM
2414 * Let the scheduling class do new task startup
2415 * management (if any):
1da177e4 2416 */
ee0827d8 2417 p->sched_class->task_new(rq, p);
c09595f6 2418 inc_nr_running(rq);
1da177e4 2419 }
5b82a1b0
MD
2420 trace_mark(kernel_sched_wakeup_new,
2421 "pid %d state %ld ## rq %p task %p rq->curr %p",
2422 p->pid, p->state, rq, p, rq->curr);
dd41f596 2423 check_preempt_curr(rq, p);
9a897c5a
SR
2424#ifdef CONFIG_SMP
2425 if (p->sched_class->task_wake_up)
2426 p->sched_class->task_wake_up(rq, p);
2427#endif
dd41f596 2428 task_rq_unlock(rq, &flags);
1da177e4
LT
2429}
2430
e107be36
AK
2431#ifdef CONFIG_PREEMPT_NOTIFIERS
2432
2433/**
421cee29
RD
2434 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2435 * @notifier: notifier struct to register
e107be36
AK
2436 */
2437void preempt_notifier_register(struct preempt_notifier *notifier)
2438{
2439 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2440}
2441EXPORT_SYMBOL_GPL(preempt_notifier_register);
2442
2443/**
2444 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2445 * @notifier: notifier struct to unregister
e107be36
AK
2446 *
2447 * This is safe to call from within a preemption notifier.
2448 */
2449void preempt_notifier_unregister(struct preempt_notifier *notifier)
2450{
2451 hlist_del(&notifier->link);
2452}
2453EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2454
2455static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2456{
2457 struct preempt_notifier *notifier;
2458 struct hlist_node *node;
2459
2460 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2461 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2462}
2463
2464static void
2465fire_sched_out_preempt_notifiers(struct task_struct *curr,
2466 struct task_struct *next)
2467{
2468 struct preempt_notifier *notifier;
2469 struct hlist_node *node;
2470
2471 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2472 notifier->ops->sched_out(notifier, next);
2473}
2474
6d6bc0ad 2475#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2476
2477static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2478{
2479}
2480
2481static void
2482fire_sched_out_preempt_notifiers(struct task_struct *curr,
2483 struct task_struct *next)
2484{
2485}
2486
6d6bc0ad 2487#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2488
4866cde0
NP
2489/**
2490 * prepare_task_switch - prepare to switch tasks
2491 * @rq: the runqueue preparing to switch
421cee29 2492 * @prev: the current task that is being switched out
4866cde0
NP
2493 * @next: the task we are going to switch to.
2494 *
2495 * This is called with the rq lock held and interrupts off. It must
2496 * be paired with a subsequent finish_task_switch after the context
2497 * switch.
2498 *
2499 * prepare_task_switch sets up locking and calls architecture specific
2500 * hooks.
2501 */
e107be36
AK
2502static inline void
2503prepare_task_switch(struct rq *rq, struct task_struct *prev,
2504 struct task_struct *next)
4866cde0 2505{
e107be36 2506 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2507 prepare_lock_switch(rq, next);
2508 prepare_arch_switch(next);
2509}
2510
1da177e4
LT
2511/**
2512 * finish_task_switch - clean up after a task-switch
344babaa 2513 * @rq: runqueue associated with task-switch
1da177e4
LT
2514 * @prev: the thread we just switched away from.
2515 *
4866cde0
NP
2516 * finish_task_switch must be called after the context switch, paired
2517 * with a prepare_task_switch call before the context switch.
2518 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2519 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2520 *
2521 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2522 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2523 * with the lock held can cause deadlocks; see schedule() for
2524 * details.)
2525 */
a9957449 2526static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2527 __releases(rq->lock)
2528{
1da177e4 2529 struct mm_struct *mm = rq->prev_mm;
55a101f8 2530 long prev_state;
1da177e4
LT
2531
2532 rq->prev_mm = NULL;
2533
2534 /*
2535 * A task struct has one reference for the use as "current".
c394cc9f 2536 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2537 * schedule one last time. The schedule call will never return, and
2538 * the scheduled task must drop that reference.
c394cc9f 2539 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2540 * still held, otherwise prev could be scheduled on another cpu, die
2541 * there before we look at prev->state, and then the reference would
2542 * be dropped twice.
2543 * Manfred Spraul <manfred@colorfullife.com>
2544 */
55a101f8 2545 prev_state = prev->state;
4866cde0
NP
2546 finish_arch_switch(prev);
2547 finish_lock_switch(rq, prev);
9a897c5a
SR
2548#ifdef CONFIG_SMP
2549 if (current->sched_class->post_schedule)
2550 current->sched_class->post_schedule(rq);
2551#endif
e8fa1362 2552
e107be36 2553 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2554 if (mm)
2555 mmdrop(mm);
c394cc9f 2556 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2557 /*
2558 * Remove function-return probe instances associated with this
2559 * task and put them back on the free list.
9761eea8 2560 */
c6fd91f0 2561 kprobe_flush_task(prev);
1da177e4 2562 put_task_struct(prev);
c6fd91f0 2563 }
1da177e4
LT
2564}
2565
2566/**
2567 * schedule_tail - first thing a freshly forked thread must call.
2568 * @prev: the thread we just switched away from.
2569 */
36c8b586 2570asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2571 __releases(rq->lock)
2572{
70b97a7f
IM
2573 struct rq *rq = this_rq();
2574
4866cde0
NP
2575 finish_task_switch(rq, prev);
2576#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2577 /* In this case, finish_task_switch does not reenable preemption */
2578 preempt_enable();
2579#endif
1da177e4 2580 if (current->set_child_tid)
b488893a 2581 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2582}
2583
2584/*
2585 * context_switch - switch to the new MM and the new
2586 * thread's register state.
2587 */
dd41f596 2588static inline void
70b97a7f 2589context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2590 struct task_struct *next)
1da177e4 2591{
dd41f596 2592 struct mm_struct *mm, *oldmm;
1da177e4 2593
e107be36 2594 prepare_task_switch(rq, prev, next);
5b82a1b0
MD
2595 trace_mark(kernel_sched_schedule,
2596 "prev_pid %d next_pid %d prev_state %ld "
2597 "## rq %p prev %p next %p",
2598 prev->pid, next->pid, prev->state,
2599 rq, prev, next);
dd41f596
IM
2600 mm = next->mm;
2601 oldmm = prev->active_mm;
9226d125
ZA
2602 /*
2603 * For paravirt, this is coupled with an exit in switch_to to
2604 * combine the page table reload and the switch backend into
2605 * one hypercall.
2606 */
2607 arch_enter_lazy_cpu_mode();
2608
dd41f596 2609 if (unlikely(!mm)) {
1da177e4
LT
2610 next->active_mm = oldmm;
2611 atomic_inc(&oldmm->mm_count);
2612 enter_lazy_tlb(oldmm, next);
2613 } else
2614 switch_mm(oldmm, mm, next);
2615
dd41f596 2616 if (unlikely(!prev->mm)) {
1da177e4 2617 prev->active_mm = NULL;
1da177e4
LT
2618 rq->prev_mm = oldmm;
2619 }
3a5f5e48
IM
2620 /*
2621 * Since the runqueue lock will be released by the next
2622 * task (which is an invalid locking op but in the case
2623 * of the scheduler it's an obvious special-case), so we
2624 * do an early lockdep release here:
2625 */
2626#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2627 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2628#endif
1da177e4
LT
2629
2630 /* Here we just switch the register state and the stack. */
2631 switch_to(prev, next, prev);
2632
dd41f596
IM
2633 barrier();
2634 /*
2635 * this_rq must be evaluated again because prev may have moved
2636 * CPUs since it called schedule(), thus the 'rq' on its stack
2637 * frame will be invalid.
2638 */
2639 finish_task_switch(this_rq(), prev);
1da177e4
LT
2640}
2641
2642/*
2643 * nr_running, nr_uninterruptible and nr_context_switches:
2644 *
2645 * externally visible scheduler statistics: current number of runnable
2646 * threads, current number of uninterruptible-sleeping threads, total
2647 * number of context switches performed since bootup.
2648 */
2649unsigned long nr_running(void)
2650{
2651 unsigned long i, sum = 0;
2652
2653 for_each_online_cpu(i)
2654 sum += cpu_rq(i)->nr_running;
2655
2656 return sum;
2657}
2658
2659unsigned long nr_uninterruptible(void)
2660{
2661 unsigned long i, sum = 0;
2662
0a945022 2663 for_each_possible_cpu(i)
1da177e4
LT
2664 sum += cpu_rq(i)->nr_uninterruptible;
2665
2666 /*
2667 * Since we read the counters lockless, it might be slightly
2668 * inaccurate. Do not allow it to go below zero though:
2669 */
2670 if (unlikely((long)sum < 0))
2671 sum = 0;
2672
2673 return sum;
2674}
2675
2676unsigned long long nr_context_switches(void)
2677{
cc94abfc
SR
2678 int i;
2679 unsigned long long sum = 0;
1da177e4 2680
0a945022 2681 for_each_possible_cpu(i)
1da177e4
LT
2682 sum += cpu_rq(i)->nr_switches;
2683
2684 return sum;
2685}
2686
2687unsigned long nr_iowait(void)
2688{
2689 unsigned long i, sum = 0;
2690
0a945022 2691 for_each_possible_cpu(i)
1da177e4
LT
2692 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2693
2694 return sum;
2695}
2696
db1b1fef
JS
2697unsigned long nr_active(void)
2698{
2699 unsigned long i, running = 0, uninterruptible = 0;
2700
2701 for_each_online_cpu(i) {
2702 running += cpu_rq(i)->nr_running;
2703 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2704 }
2705
2706 if (unlikely((long)uninterruptible < 0))
2707 uninterruptible = 0;
2708
2709 return running + uninterruptible;
2710}
2711
48f24c4d 2712/*
dd41f596
IM
2713 * Update rq->cpu_load[] statistics. This function is usually called every
2714 * scheduler tick (TICK_NSEC).
48f24c4d 2715 */
dd41f596 2716static void update_cpu_load(struct rq *this_rq)
48f24c4d 2717{
495eca49 2718 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2719 int i, scale;
2720
2721 this_rq->nr_load_updates++;
dd41f596
IM
2722
2723 /* Update our load: */
2724 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2725 unsigned long old_load, new_load;
2726
2727 /* scale is effectively 1 << i now, and >> i divides by scale */
2728
2729 old_load = this_rq->cpu_load[i];
2730 new_load = this_load;
a25707f3
IM
2731 /*
2732 * Round up the averaging division if load is increasing. This
2733 * prevents us from getting stuck on 9 if the load is 10, for
2734 * example.
2735 */
2736 if (new_load > old_load)
2737 new_load += scale-1;
dd41f596
IM
2738 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2739 }
48f24c4d
IM
2740}
2741
dd41f596
IM
2742#ifdef CONFIG_SMP
2743
1da177e4
LT
2744/*
2745 * double_rq_lock - safely lock two runqueues
2746 *
2747 * Note this does not disable interrupts like task_rq_lock,
2748 * you need to do so manually before calling.
2749 */
70b97a7f 2750static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2751 __acquires(rq1->lock)
2752 __acquires(rq2->lock)
2753{
054b9108 2754 BUG_ON(!irqs_disabled());
1da177e4
LT
2755 if (rq1 == rq2) {
2756 spin_lock(&rq1->lock);
2757 __acquire(rq2->lock); /* Fake it out ;) */
2758 } else {
c96d145e 2759 if (rq1 < rq2) {
1da177e4 2760 spin_lock(&rq1->lock);
5e710e37 2761 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2762 } else {
2763 spin_lock(&rq2->lock);
5e710e37 2764 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2765 }
2766 }
6e82a3be
IM
2767 update_rq_clock(rq1);
2768 update_rq_clock(rq2);
1da177e4
LT
2769}
2770
2771/*
2772 * double_rq_unlock - safely unlock two runqueues
2773 *
2774 * Note this does not restore interrupts like task_rq_unlock,
2775 * you need to do so manually after calling.
2776 */
70b97a7f 2777static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2778 __releases(rq1->lock)
2779 __releases(rq2->lock)
2780{
2781 spin_unlock(&rq1->lock);
2782 if (rq1 != rq2)
2783 spin_unlock(&rq2->lock);
2784 else
2785 __release(rq2->lock);
2786}
2787
2788/*
2789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2790 */
e8fa1362 2791static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2792 __releases(this_rq->lock)
2793 __acquires(busiest->lock)
2794 __acquires(this_rq->lock)
2795{
e8fa1362
SR
2796 int ret = 0;
2797
054b9108
KK
2798 if (unlikely(!irqs_disabled())) {
2799 /* printk() doesn't work good under rq->lock */
2800 spin_unlock(&this_rq->lock);
2801 BUG_ON(1);
2802 }
1da177e4 2803 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2804 if (busiest < this_rq) {
1da177e4
LT
2805 spin_unlock(&this_rq->lock);
2806 spin_lock(&busiest->lock);
5e710e37 2807 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2808 ret = 1;
1da177e4 2809 } else
5e710e37 2810 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2811 }
e8fa1362 2812 return ret;
1da177e4
LT
2813}
2814
1b12bbc7
PZ
2815static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2816 __releases(busiest->lock)
2817{
2818 spin_unlock(&busiest->lock);
2819 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2820}
2821
1da177e4
LT
2822/*
2823 * If dest_cpu is allowed for this process, migrate the task to it.
2824 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2825 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2826 * the cpu_allowed mask is restored.
2827 */
36c8b586 2828static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2829{
70b97a7f 2830 struct migration_req req;
1da177e4 2831 unsigned long flags;
70b97a7f 2832 struct rq *rq;
1da177e4
LT
2833
2834 rq = task_rq_lock(p, &flags);
2835 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2836 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2837 goto out;
2838
2839 /* force the process onto the specified CPU */
2840 if (migrate_task(p, dest_cpu, &req)) {
2841 /* Need to wait for migration thread (might exit: take ref). */
2842 struct task_struct *mt = rq->migration_thread;
36c8b586 2843
1da177e4
LT
2844 get_task_struct(mt);
2845 task_rq_unlock(rq, &flags);
2846 wake_up_process(mt);
2847 put_task_struct(mt);
2848 wait_for_completion(&req.done);
36c8b586 2849
1da177e4
LT
2850 return;
2851 }
2852out:
2853 task_rq_unlock(rq, &flags);
2854}
2855
2856/*
476d139c
NP
2857 * sched_exec - execve() is a valuable balancing opportunity, because at
2858 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2859 */
2860void sched_exec(void)
2861{
1da177e4 2862 int new_cpu, this_cpu = get_cpu();
476d139c 2863 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2864 put_cpu();
476d139c
NP
2865 if (new_cpu != this_cpu)
2866 sched_migrate_task(current, new_cpu);
1da177e4
LT
2867}
2868
2869/*
2870 * pull_task - move a task from a remote runqueue to the local runqueue.
2871 * Both runqueues must be locked.
2872 */
dd41f596
IM
2873static void pull_task(struct rq *src_rq, struct task_struct *p,
2874 struct rq *this_rq, int this_cpu)
1da177e4 2875{
2e1cb74a 2876 deactivate_task(src_rq, p, 0);
1da177e4 2877 set_task_cpu(p, this_cpu);
dd41f596 2878 activate_task(this_rq, p, 0);
1da177e4
LT
2879 /*
2880 * Note that idle threads have a prio of MAX_PRIO, for this test
2881 * to be always true for them.
2882 */
dd41f596 2883 check_preempt_curr(this_rq, p);
1da177e4
LT
2884}
2885
2886/*
2887 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2888 */
858119e1 2889static
70b97a7f 2890int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2891 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2892 int *all_pinned)
1da177e4
LT
2893{
2894 /*
2895 * We do not migrate tasks that are:
2896 * 1) running (obviously), or
2897 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2898 * 3) are cache-hot on their current CPU.
2899 */
cc367732
IM
2900 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2901 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2902 return 0;
cc367732 2903 }
81026794
NP
2904 *all_pinned = 0;
2905
cc367732
IM
2906 if (task_running(rq, p)) {
2907 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2908 return 0;
cc367732 2909 }
1da177e4 2910
da84d961
IM
2911 /*
2912 * Aggressive migration if:
2913 * 1) task is cache cold, or
2914 * 2) too many balance attempts have failed.
2915 */
2916
6bc1665b
IM
2917 if (!task_hot(p, rq->clock, sd) ||
2918 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2919#ifdef CONFIG_SCHEDSTATS
cc367732 2920 if (task_hot(p, rq->clock, sd)) {
da84d961 2921 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2922 schedstat_inc(p, se.nr_forced_migrations);
2923 }
da84d961
IM
2924#endif
2925 return 1;
2926 }
2927
cc367732
IM
2928 if (task_hot(p, rq->clock, sd)) {
2929 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2930 return 0;
cc367732 2931 }
1da177e4
LT
2932 return 1;
2933}
2934
e1d1484f
PW
2935static unsigned long
2936balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2937 unsigned long max_load_move, struct sched_domain *sd,
2938 enum cpu_idle_type idle, int *all_pinned,
2939 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2940{
051c6764 2941 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2942 struct task_struct *p;
2943 long rem_load_move = max_load_move;
1da177e4 2944
e1d1484f 2945 if (max_load_move == 0)
1da177e4
LT
2946 goto out;
2947
81026794
NP
2948 pinned = 1;
2949
1da177e4 2950 /*
dd41f596 2951 * Start the load-balancing iterator:
1da177e4 2952 */
dd41f596
IM
2953 p = iterator->start(iterator->arg);
2954next:
b82d9fdd 2955 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2956 goto out;
051c6764
PZ
2957
2958 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2959 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2960 p = iterator->next(iterator->arg);
2961 goto next;
1da177e4
LT
2962 }
2963
dd41f596 2964 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2965 pulled++;
dd41f596 2966 rem_load_move -= p->se.load.weight;
1da177e4 2967
2dd73a4f 2968 /*
b82d9fdd 2969 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2970 */
e1d1484f 2971 if (rem_load_move > 0) {
a4ac01c3
PW
2972 if (p->prio < *this_best_prio)
2973 *this_best_prio = p->prio;
dd41f596
IM
2974 p = iterator->next(iterator->arg);
2975 goto next;
1da177e4
LT
2976 }
2977out:
2978 /*
e1d1484f 2979 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2980 * so we can safely collect pull_task() stats here rather than
2981 * inside pull_task().
2982 */
2983 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2984
2985 if (all_pinned)
2986 *all_pinned = pinned;
e1d1484f
PW
2987
2988 return max_load_move - rem_load_move;
1da177e4
LT
2989}
2990
dd41f596 2991/*
43010659
PW
2992 * move_tasks tries to move up to max_load_move weighted load from busiest to
2993 * this_rq, as part of a balancing operation within domain "sd".
2994 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2995 *
2996 * Called with both runqueues locked.
2997 */
2998static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2999 unsigned long max_load_move,
dd41f596
IM
3000 struct sched_domain *sd, enum cpu_idle_type idle,
3001 int *all_pinned)
3002{
5522d5d5 3003 const struct sched_class *class = sched_class_highest;
43010659 3004 unsigned long total_load_moved = 0;
a4ac01c3 3005 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3006
3007 do {
43010659
PW
3008 total_load_moved +=
3009 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3010 max_load_move - total_load_moved,
a4ac01c3 3011 sd, idle, all_pinned, &this_best_prio);
dd41f596 3012 class = class->next;
c4acb2c0
GH
3013
3014 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3015 break;
3016
43010659 3017 } while (class && max_load_move > total_load_moved);
dd41f596 3018
43010659
PW
3019 return total_load_moved > 0;
3020}
3021
e1d1484f
PW
3022static int
3023iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3024 struct sched_domain *sd, enum cpu_idle_type idle,
3025 struct rq_iterator *iterator)
3026{
3027 struct task_struct *p = iterator->start(iterator->arg);
3028 int pinned = 0;
3029
3030 while (p) {
3031 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3032 pull_task(busiest, p, this_rq, this_cpu);
3033 /*
3034 * Right now, this is only the second place pull_task()
3035 * is called, so we can safely collect pull_task()
3036 * stats here rather than inside pull_task().
3037 */
3038 schedstat_inc(sd, lb_gained[idle]);
3039
3040 return 1;
3041 }
3042 p = iterator->next(iterator->arg);
3043 }
3044
3045 return 0;
3046}
3047
43010659
PW
3048/*
3049 * move_one_task tries to move exactly one task from busiest to this_rq, as
3050 * part of active balancing operations within "domain".
3051 * Returns 1 if successful and 0 otherwise.
3052 *
3053 * Called with both runqueues locked.
3054 */
3055static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3056 struct sched_domain *sd, enum cpu_idle_type idle)
3057{
5522d5d5 3058 const struct sched_class *class;
43010659
PW
3059
3060 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3061 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3062 return 1;
3063
3064 return 0;
dd41f596
IM
3065}
3066
1da177e4
LT
3067/*
3068 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3069 * domain. It calculates and returns the amount of weighted load which
3070 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3071 */
3072static struct sched_group *
3073find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3074 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3075 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3076{
3077 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3078 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3079 unsigned long max_pull;
2dd73a4f
PW
3080 unsigned long busiest_load_per_task, busiest_nr_running;
3081 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3082 int load_idx, group_imb = 0;
5c45bf27
SS
3083#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3084 int power_savings_balance = 1;
3085 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3086 unsigned long min_nr_running = ULONG_MAX;
3087 struct sched_group *group_min = NULL, *group_leader = NULL;
3088#endif
1da177e4
LT
3089
3090 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3091 busiest_load_per_task = busiest_nr_running = 0;
3092 this_load_per_task = this_nr_running = 0;
408ed066 3093
d15bcfdb 3094 if (idle == CPU_NOT_IDLE)
7897986b 3095 load_idx = sd->busy_idx;
d15bcfdb 3096 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3097 load_idx = sd->newidle_idx;
3098 else
3099 load_idx = sd->idle_idx;
1da177e4
LT
3100
3101 do {
908a7c1b 3102 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3103 int local_group;
3104 int i;
908a7c1b 3105 int __group_imb = 0;
783609c6 3106 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3107 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3108 unsigned long sum_avg_load_per_task;
3109 unsigned long avg_load_per_task;
1da177e4
LT
3110
3111 local_group = cpu_isset(this_cpu, group->cpumask);
3112
783609c6
SS
3113 if (local_group)
3114 balance_cpu = first_cpu(group->cpumask);
3115
1da177e4 3116 /* Tally up the load of all CPUs in the group */
2dd73a4f 3117 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3118 sum_avg_load_per_task = avg_load_per_task = 0;
3119
908a7c1b
KC
3120 max_cpu_load = 0;
3121 min_cpu_load = ~0UL;
1da177e4 3122
363ab6f1 3123 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3124 struct rq *rq;
3125
3126 if (!cpu_isset(i, *cpus))
3127 continue;
3128
3129 rq = cpu_rq(i);
2dd73a4f 3130
9439aab8 3131 if (*sd_idle && rq->nr_running)
5969fe06
NP
3132 *sd_idle = 0;
3133
1da177e4 3134 /* Bias balancing toward cpus of our domain */
783609c6
SS
3135 if (local_group) {
3136 if (idle_cpu(i) && !first_idle_cpu) {
3137 first_idle_cpu = 1;
3138 balance_cpu = i;
3139 }
3140
a2000572 3141 load = target_load(i, load_idx);
908a7c1b 3142 } else {
a2000572 3143 load = source_load(i, load_idx);
908a7c1b
KC
3144 if (load > max_cpu_load)
3145 max_cpu_load = load;
3146 if (min_cpu_load > load)
3147 min_cpu_load = load;
3148 }
1da177e4
LT
3149
3150 avg_load += load;
2dd73a4f 3151 sum_nr_running += rq->nr_running;
dd41f596 3152 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3153
3154 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3155 }
3156
783609c6
SS
3157 /*
3158 * First idle cpu or the first cpu(busiest) in this sched group
3159 * is eligible for doing load balancing at this and above
9439aab8
SS
3160 * domains. In the newly idle case, we will allow all the cpu's
3161 * to do the newly idle load balance.
783609c6 3162 */
9439aab8
SS
3163 if (idle != CPU_NEWLY_IDLE && local_group &&
3164 balance_cpu != this_cpu && balance) {
783609c6
SS
3165 *balance = 0;
3166 goto ret;
3167 }
3168
1da177e4 3169 total_load += avg_load;
5517d86b 3170 total_pwr += group->__cpu_power;
1da177e4
LT
3171
3172 /* Adjust by relative CPU power of the group */
5517d86b
ED
3173 avg_load = sg_div_cpu_power(group,
3174 avg_load * SCHED_LOAD_SCALE);
1da177e4 3175
408ed066
PZ
3176
3177 /*
3178 * Consider the group unbalanced when the imbalance is larger
3179 * than the average weight of two tasks.
3180 *
3181 * APZ: with cgroup the avg task weight can vary wildly and
3182 * might not be a suitable number - should we keep a
3183 * normalized nr_running number somewhere that negates
3184 * the hierarchy?
3185 */
3186 avg_load_per_task = sg_div_cpu_power(group,
3187 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3188
3189 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3190 __group_imb = 1;
3191
5517d86b 3192 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3193
1da177e4
LT
3194 if (local_group) {
3195 this_load = avg_load;
3196 this = group;
2dd73a4f
PW
3197 this_nr_running = sum_nr_running;
3198 this_load_per_task = sum_weighted_load;
3199 } else if (avg_load > max_load &&
908a7c1b 3200 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3201 max_load = avg_load;
3202 busiest = group;
2dd73a4f
PW
3203 busiest_nr_running = sum_nr_running;
3204 busiest_load_per_task = sum_weighted_load;
908a7c1b 3205 group_imb = __group_imb;
1da177e4 3206 }
5c45bf27
SS
3207
3208#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3209 /*
3210 * Busy processors will not participate in power savings
3211 * balance.
3212 */
dd41f596
IM
3213 if (idle == CPU_NOT_IDLE ||
3214 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3215 goto group_next;
5c45bf27
SS
3216
3217 /*
3218 * If the local group is idle or completely loaded
3219 * no need to do power savings balance at this domain
3220 */
3221 if (local_group && (this_nr_running >= group_capacity ||
3222 !this_nr_running))
3223 power_savings_balance = 0;
3224
dd41f596 3225 /*
5c45bf27
SS
3226 * If a group is already running at full capacity or idle,
3227 * don't include that group in power savings calculations
dd41f596
IM
3228 */
3229 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3230 || !sum_nr_running)
dd41f596 3231 goto group_next;
5c45bf27 3232
dd41f596 3233 /*
5c45bf27 3234 * Calculate the group which has the least non-idle load.
dd41f596
IM
3235 * This is the group from where we need to pick up the load
3236 * for saving power
3237 */
3238 if ((sum_nr_running < min_nr_running) ||
3239 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3240 first_cpu(group->cpumask) <
3241 first_cpu(group_min->cpumask))) {
dd41f596
IM
3242 group_min = group;
3243 min_nr_running = sum_nr_running;
5c45bf27
SS
3244 min_load_per_task = sum_weighted_load /
3245 sum_nr_running;
dd41f596 3246 }
5c45bf27 3247
dd41f596 3248 /*
5c45bf27 3249 * Calculate the group which is almost near its
dd41f596
IM
3250 * capacity but still has some space to pick up some load
3251 * from other group and save more power
3252 */
3253 if (sum_nr_running <= group_capacity - 1) {
3254 if (sum_nr_running > leader_nr_running ||
3255 (sum_nr_running == leader_nr_running &&
3256 first_cpu(group->cpumask) >
3257 first_cpu(group_leader->cpumask))) {
3258 group_leader = group;
3259 leader_nr_running = sum_nr_running;
3260 }
48f24c4d 3261 }
5c45bf27
SS
3262group_next:
3263#endif
1da177e4
LT
3264 group = group->next;
3265 } while (group != sd->groups);
3266
2dd73a4f 3267 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3268 goto out_balanced;
3269
3270 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3271
3272 if (this_load >= avg_load ||
3273 100*max_load <= sd->imbalance_pct*this_load)
3274 goto out_balanced;
3275
2dd73a4f 3276 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3277 if (group_imb)
3278 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3279
1da177e4
LT
3280 /*
3281 * We're trying to get all the cpus to the average_load, so we don't
3282 * want to push ourselves above the average load, nor do we wish to
3283 * reduce the max loaded cpu below the average load, as either of these
3284 * actions would just result in more rebalancing later, and ping-pong
3285 * tasks around. Thus we look for the minimum possible imbalance.
3286 * Negative imbalances (*we* are more loaded than anyone else) will
3287 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3288 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3289 * appear as very large values with unsigned longs.
3290 */
2dd73a4f
PW
3291 if (max_load <= busiest_load_per_task)
3292 goto out_balanced;
3293
3294 /*
3295 * In the presence of smp nice balancing, certain scenarios can have
3296 * max load less than avg load(as we skip the groups at or below
3297 * its cpu_power, while calculating max_load..)
3298 */
3299 if (max_load < avg_load) {
3300 *imbalance = 0;
3301 goto small_imbalance;
3302 }
0c117f1b
SS
3303
3304 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3305 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3306
1da177e4 3307 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3308 *imbalance = min(max_pull * busiest->__cpu_power,
3309 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3310 / SCHED_LOAD_SCALE;
3311
2dd73a4f
PW
3312 /*
3313 * if *imbalance is less than the average load per runnable task
3314 * there is no gaurantee that any tasks will be moved so we'll have
3315 * a think about bumping its value to force at least one task to be
3316 * moved
3317 */
7fd0d2dd 3318 if (*imbalance < busiest_load_per_task) {
48f24c4d 3319 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3320 unsigned int imbn;
3321
3322small_imbalance:
3323 pwr_move = pwr_now = 0;
3324 imbn = 2;
3325 if (this_nr_running) {
3326 this_load_per_task /= this_nr_running;
3327 if (busiest_load_per_task > this_load_per_task)
3328 imbn = 1;
3329 } else
408ed066 3330 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3331
408ed066 3332 if (max_load - this_load + 2*busiest_load_per_task >=
dd41f596 3333 busiest_load_per_task * imbn) {
2dd73a4f 3334 *imbalance = busiest_load_per_task;
1da177e4
LT
3335 return busiest;
3336 }
3337
3338 /*
3339 * OK, we don't have enough imbalance to justify moving tasks,
3340 * however we may be able to increase total CPU power used by
3341 * moving them.
3342 */
3343
5517d86b
ED
3344 pwr_now += busiest->__cpu_power *
3345 min(busiest_load_per_task, max_load);
3346 pwr_now += this->__cpu_power *
3347 min(this_load_per_task, this_load);
1da177e4
LT
3348 pwr_now /= SCHED_LOAD_SCALE;
3349
3350 /* Amount of load we'd subtract */
5517d86b
ED
3351 tmp = sg_div_cpu_power(busiest,
3352 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3353 if (max_load > tmp)
5517d86b 3354 pwr_move += busiest->__cpu_power *
2dd73a4f 3355 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3356
3357 /* Amount of load we'd add */
5517d86b 3358 if (max_load * busiest->__cpu_power <
33859f7f 3359 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3360 tmp = sg_div_cpu_power(this,
3361 max_load * busiest->__cpu_power);
1da177e4 3362 else
5517d86b
ED
3363 tmp = sg_div_cpu_power(this,
3364 busiest_load_per_task * SCHED_LOAD_SCALE);
3365 pwr_move += this->__cpu_power *
3366 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3367 pwr_move /= SCHED_LOAD_SCALE;
3368
3369 /* Move if we gain throughput */
7fd0d2dd
SS
3370 if (pwr_move > pwr_now)
3371 *imbalance = busiest_load_per_task;
1da177e4
LT
3372 }
3373
1da177e4
LT
3374 return busiest;
3375
3376out_balanced:
5c45bf27 3377#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3378 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3379 goto ret;
1da177e4 3380
5c45bf27
SS
3381 if (this == group_leader && group_leader != group_min) {
3382 *imbalance = min_load_per_task;
3383 return group_min;
3384 }
5c45bf27 3385#endif
783609c6 3386ret:
1da177e4
LT
3387 *imbalance = 0;
3388 return NULL;
3389}
3390
3391/*
3392 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3393 */
70b97a7f 3394static struct rq *
d15bcfdb 3395find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3396 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3397{
70b97a7f 3398 struct rq *busiest = NULL, *rq;
2dd73a4f 3399 unsigned long max_load = 0;
1da177e4
LT
3400 int i;
3401
363ab6f1 3402 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3403 unsigned long wl;
0a2966b4
CL
3404
3405 if (!cpu_isset(i, *cpus))
3406 continue;
3407
48f24c4d 3408 rq = cpu_rq(i);
dd41f596 3409 wl = weighted_cpuload(i);
2dd73a4f 3410
dd41f596 3411 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3412 continue;
1da177e4 3413
dd41f596
IM
3414 if (wl > max_load) {
3415 max_load = wl;
48f24c4d 3416 busiest = rq;
1da177e4
LT
3417 }
3418 }
3419
3420 return busiest;
3421}
3422
77391d71
NP
3423/*
3424 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3425 * so long as it is large enough.
3426 */
3427#define MAX_PINNED_INTERVAL 512
3428
1da177e4
LT
3429/*
3430 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3431 * tasks if there is an imbalance.
1da177e4 3432 */
70b97a7f 3433static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3434 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3435 int *balance, cpumask_t *cpus)
1da177e4 3436{
43010659 3437 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3438 struct sched_group *group;
1da177e4 3439 unsigned long imbalance;
70b97a7f 3440 struct rq *busiest;
fe2eea3f 3441 unsigned long flags;
5969fe06 3442
7c16ec58
MT
3443 cpus_setall(*cpus);
3444
89c4710e
SS
3445 /*
3446 * When power savings policy is enabled for the parent domain, idle
3447 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3448 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3449 * portraying it as CPU_NOT_IDLE.
89c4710e 3450 */
d15bcfdb 3451 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3452 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3453 sd_idle = 1;
1da177e4 3454
2d72376b 3455 schedstat_inc(sd, lb_count[idle]);
1da177e4 3456
0a2966b4 3457redo:
c8cba857 3458 update_shares(sd);
0a2966b4 3459 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3460 cpus, balance);
783609c6 3461
06066714 3462 if (*balance == 0)
783609c6 3463 goto out_balanced;
783609c6 3464
1da177e4
LT
3465 if (!group) {
3466 schedstat_inc(sd, lb_nobusyg[idle]);
3467 goto out_balanced;
3468 }
3469
7c16ec58 3470 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3471 if (!busiest) {
3472 schedstat_inc(sd, lb_nobusyq[idle]);
3473 goto out_balanced;
3474 }
3475
db935dbd 3476 BUG_ON(busiest == this_rq);
1da177e4
LT
3477
3478 schedstat_add(sd, lb_imbalance[idle], imbalance);
3479
43010659 3480 ld_moved = 0;
1da177e4
LT
3481 if (busiest->nr_running > 1) {
3482 /*
3483 * Attempt to move tasks. If find_busiest_group has found
3484 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3485 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3486 * correctly treated as an imbalance.
3487 */
fe2eea3f 3488 local_irq_save(flags);
e17224bf 3489 double_rq_lock(this_rq, busiest);
43010659 3490 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3491 imbalance, sd, idle, &all_pinned);
e17224bf 3492 double_rq_unlock(this_rq, busiest);
fe2eea3f 3493 local_irq_restore(flags);
81026794 3494
46cb4b7c
SS
3495 /*
3496 * some other cpu did the load balance for us.
3497 */
43010659 3498 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3499 resched_cpu(this_cpu);
3500
81026794 3501 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3502 if (unlikely(all_pinned)) {
7c16ec58
MT
3503 cpu_clear(cpu_of(busiest), *cpus);
3504 if (!cpus_empty(*cpus))
0a2966b4 3505 goto redo;
81026794 3506 goto out_balanced;
0a2966b4 3507 }
1da177e4 3508 }
81026794 3509
43010659 3510 if (!ld_moved) {
1da177e4
LT
3511 schedstat_inc(sd, lb_failed[idle]);
3512 sd->nr_balance_failed++;
3513
3514 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3515
fe2eea3f 3516 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3517
3518 /* don't kick the migration_thread, if the curr
3519 * task on busiest cpu can't be moved to this_cpu
3520 */
3521 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3522 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3523 all_pinned = 1;
3524 goto out_one_pinned;
3525 }
3526
1da177e4
LT
3527 if (!busiest->active_balance) {
3528 busiest->active_balance = 1;
3529 busiest->push_cpu = this_cpu;
81026794 3530 active_balance = 1;
1da177e4 3531 }
fe2eea3f 3532 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3533 if (active_balance)
1da177e4
LT
3534 wake_up_process(busiest->migration_thread);
3535
3536 /*
3537 * We've kicked active balancing, reset the failure
3538 * counter.
3539 */
39507451 3540 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3541 }
81026794 3542 } else
1da177e4
LT
3543 sd->nr_balance_failed = 0;
3544
81026794 3545 if (likely(!active_balance)) {
1da177e4
LT
3546 /* We were unbalanced, so reset the balancing interval */
3547 sd->balance_interval = sd->min_interval;
81026794
NP
3548 } else {
3549 /*
3550 * If we've begun active balancing, start to back off. This
3551 * case may not be covered by the all_pinned logic if there
3552 * is only 1 task on the busy runqueue (because we don't call
3553 * move_tasks).
3554 */
3555 if (sd->balance_interval < sd->max_interval)
3556 sd->balance_interval *= 2;
1da177e4
LT
3557 }
3558
43010659 3559 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3560 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3561 ld_moved = -1;
3562
3563 goto out;
1da177e4
LT
3564
3565out_balanced:
1da177e4
LT
3566 schedstat_inc(sd, lb_balanced[idle]);
3567
16cfb1c0 3568 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3569
3570out_one_pinned:
1da177e4 3571 /* tune up the balancing interval */
77391d71
NP
3572 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3573 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3574 sd->balance_interval *= 2;
3575
48f24c4d 3576 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3577 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3578 ld_moved = -1;
3579 else
3580 ld_moved = 0;
3581out:
c8cba857
PZ
3582 if (ld_moved)
3583 update_shares(sd);
c09595f6 3584 return ld_moved;
1da177e4
LT
3585}
3586
3587/*
3588 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3589 * tasks if there is an imbalance.
3590 *
d15bcfdb 3591 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3592 * this_rq is locked.
3593 */
48f24c4d 3594static int
7c16ec58
MT
3595load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3596 cpumask_t *cpus)
1da177e4
LT
3597{
3598 struct sched_group *group;
70b97a7f 3599 struct rq *busiest = NULL;
1da177e4 3600 unsigned long imbalance;
43010659 3601 int ld_moved = 0;
5969fe06 3602 int sd_idle = 0;
969bb4e4 3603 int all_pinned = 0;
7c16ec58
MT
3604
3605 cpus_setall(*cpus);
5969fe06 3606
89c4710e
SS
3607 /*
3608 * When power savings policy is enabled for the parent domain, idle
3609 * sibling can pick up load irrespective of busy siblings. In this case,
3610 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3611 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3612 */
3613 if (sd->flags & SD_SHARE_CPUPOWER &&
3614 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3615 sd_idle = 1;
1da177e4 3616
2d72376b 3617 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3618redo:
3e5459b4 3619 update_shares_locked(this_rq, sd);
d15bcfdb 3620 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3621 &sd_idle, cpus, NULL);
1da177e4 3622 if (!group) {
d15bcfdb 3623 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3624 goto out_balanced;
1da177e4
LT
3625 }
3626
7c16ec58 3627 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3628 if (!busiest) {
d15bcfdb 3629 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3630 goto out_balanced;
1da177e4
LT
3631 }
3632
db935dbd
NP
3633 BUG_ON(busiest == this_rq);
3634
d15bcfdb 3635 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3636
43010659 3637 ld_moved = 0;
d6d5cfaf
NP
3638 if (busiest->nr_running > 1) {
3639 /* Attempt to move tasks */
3640 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3641 /* this_rq->clock is already updated */
3642 update_rq_clock(busiest);
43010659 3643 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3644 imbalance, sd, CPU_NEWLY_IDLE,
3645 &all_pinned);
1b12bbc7 3646 double_unlock_balance(this_rq, busiest);
0a2966b4 3647
969bb4e4 3648 if (unlikely(all_pinned)) {
7c16ec58
MT
3649 cpu_clear(cpu_of(busiest), *cpus);
3650 if (!cpus_empty(*cpus))
0a2966b4
CL
3651 goto redo;
3652 }
d6d5cfaf
NP
3653 }
3654
43010659 3655 if (!ld_moved) {
d15bcfdb 3656 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3657 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3658 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3659 return -1;
3660 } else
16cfb1c0 3661 sd->nr_balance_failed = 0;
1da177e4 3662
3e5459b4 3663 update_shares_locked(this_rq, sd);
43010659 3664 return ld_moved;
16cfb1c0
NP
3665
3666out_balanced:
d15bcfdb 3667 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3668 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3669 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3670 return -1;
16cfb1c0 3671 sd->nr_balance_failed = 0;
48f24c4d 3672
16cfb1c0 3673 return 0;
1da177e4
LT
3674}
3675
3676/*
3677 * idle_balance is called by schedule() if this_cpu is about to become
3678 * idle. Attempts to pull tasks from other CPUs.
3679 */
70b97a7f 3680static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3681{
3682 struct sched_domain *sd;
dd41f596
IM
3683 int pulled_task = -1;
3684 unsigned long next_balance = jiffies + HZ;
7c16ec58 3685 cpumask_t tmpmask;
1da177e4
LT
3686
3687 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3688 unsigned long interval;
3689
3690 if (!(sd->flags & SD_LOAD_BALANCE))
3691 continue;
3692
3693 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3694 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3695 pulled_task = load_balance_newidle(this_cpu, this_rq,
3696 sd, &tmpmask);
92c4ca5c
CL
3697
3698 interval = msecs_to_jiffies(sd->balance_interval);
3699 if (time_after(next_balance, sd->last_balance + interval))
3700 next_balance = sd->last_balance + interval;
3701 if (pulled_task)
3702 break;
1da177e4 3703 }
dd41f596 3704 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3705 /*
3706 * We are going idle. next_balance may be set based on
3707 * a busy processor. So reset next_balance.
3708 */
3709 this_rq->next_balance = next_balance;
dd41f596 3710 }
1da177e4
LT
3711}
3712
3713/*
3714 * active_load_balance is run by migration threads. It pushes running tasks
3715 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3716 * running on each physical CPU where possible, and avoids physical /
3717 * logical imbalances.
3718 *
3719 * Called with busiest_rq locked.
3720 */
70b97a7f 3721static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3722{
39507451 3723 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3724 struct sched_domain *sd;
3725 struct rq *target_rq;
39507451 3726
48f24c4d 3727 /* Is there any task to move? */
39507451 3728 if (busiest_rq->nr_running <= 1)
39507451
NP
3729 return;
3730
3731 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3732
3733 /*
39507451 3734 * This condition is "impossible", if it occurs
41a2d6cf 3735 * we need to fix it. Originally reported by
39507451 3736 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3737 */
39507451 3738 BUG_ON(busiest_rq == target_rq);
1da177e4 3739
39507451
NP
3740 /* move a task from busiest_rq to target_rq */
3741 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3742 update_rq_clock(busiest_rq);
3743 update_rq_clock(target_rq);
39507451
NP
3744
3745 /* Search for an sd spanning us and the target CPU. */
c96d145e 3746 for_each_domain(target_cpu, sd) {
39507451 3747 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3748 cpu_isset(busiest_cpu, sd->span))
39507451 3749 break;
c96d145e 3750 }
39507451 3751
48f24c4d 3752 if (likely(sd)) {
2d72376b 3753 schedstat_inc(sd, alb_count);
39507451 3754
43010659
PW
3755 if (move_one_task(target_rq, target_cpu, busiest_rq,
3756 sd, CPU_IDLE))
48f24c4d
IM
3757 schedstat_inc(sd, alb_pushed);
3758 else
3759 schedstat_inc(sd, alb_failed);
3760 }
1b12bbc7 3761 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3762}
3763
46cb4b7c
SS
3764#ifdef CONFIG_NO_HZ
3765static struct {
3766 atomic_t load_balancer;
41a2d6cf 3767 cpumask_t cpu_mask;
46cb4b7c
SS
3768} nohz ____cacheline_aligned = {
3769 .load_balancer = ATOMIC_INIT(-1),
3770 .cpu_mask = CPU_MASK_NONE,
3771};
3772
7835b98b 3773/*
46cb4b7c
SS
3774 * This routine will try to nominate the ilb (idle load balancing)
3775 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3776 * load balancing on behalf of all those cpus. If all the cpus in the system
3777 * go into this tickless mode, then there will be no ilb owner (as there is
3778 * no need for one) and all the cpus will sleep till the next wakeup event
3779 * arrives...
3780 *
3781 * For the ilb owner, tick is not stopped. And this tick will be used
3782 * for idle load balancing. ilb owner will still be part of
3783 * nohz.cpu_mask..
7835b98b 3784 *
46cb4b7c
SS
3785 * While stopping the tick, this cpu will become the ilb owner if there
3786 * is no other owner. And will be the owner till that cpu becomes busy
3787 * or if all cpus in the system stop their ticks at which point
3788 * there is no need for ilb owner.
3789 *
3790 * When the ilb owner becomes busy, it nominates another owner, during the
3791 * next busy scheduler_tick()
3792 */
3793int select_nohz_load_balancer(int stop_tick)
3794{
3795 int cpu = smp_processor_id();
3796
3797 if (stop_tick) {
3798 cpu_set(cpu, nohz.cpu_mask);
3799 cpu_rq(cpu)->in_nohz_recently = 1;
3800
3801 /*
3802 * If we are going offline and still the leader, give up!
3803 */
e761b772 3804 if (!cpu_active(cpu) &&
46cb4b7c
SS
3805 atomic_read(&nohz.load_balancer) == cpu) {
3806 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3807 BUG();
3808 return 0;
3809 }
3810
3811 /* time for ilb owner also to sleep */
3812 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3813 if (atomic_read(&nohz.load_balancer) == cpu)
3814 atomic_set(&nohz.load_balancer, -1);
3815 return 0;
3816 }
3817
3818 if (atomic_read(&nohz.load_balancer) == -1) {
3819 /* make me the ilb owner */
3820 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3821 return 1;
3822 } else if (atomic_read(&nohz.load_balancer) == cpu)
3823 return 1;
3824 } else {
3825 if (!cpu_isset(cpu, nohz.cpu_mask))
3826 return 0;
3827
3828 cpu_clear(cpu, nohz.cpu_mask);
3829
3830 if (atomic_read(&nohz.load_balancer) == cpu)
3831 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3832 BUG();
3833 }
3834 return 0;
3835}
3836#endif
3837
3838static DEFINE_SPINLOCK(balancing);
3839
3840/*
7835b98b
CL
3841 * It checks each scheduling domain to see if it is due to be balanced,
3842 * and initiates a balancing operation if so.
3843 *
3844 * Balancing parameters are set up in arch_init_sched_domains.
3845 */
a9957449 3846static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3847{
46cb4b7c
SS
3848 int balance = 1;
3849 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3850 unsigned long interval;
3851 struct sched_domain *sd;
46cb4b7c 3852 /* Earliest time when we have to do rebalance again */
c9819f45 3853 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3854 int update_next_balance = 0;
d07355f5 3855 int need_serialize;
7c16ec58 3856 cpumask_t tmp;
1da177e4 3857
46cb4b7c 3858 for_each_domain(cpu, sd) {
1da177e4
LT
3859 if (!(sd->flags & SD_LOAD_BALANCE))
3860 continue;
3861
3862 interval = sd->balance_interval;
d15bcfdb 3863 if (idle != CPU_IDLE)
1da177e4
LT
3864 interval *= sd->busy_factor;
3865
3866 /* scale ms to jiffies */
3867 interval = msecs_to_jiffies(interval);
3868 if (unlikely(!interval))
3869 interval = 1;
dd41f596
IM
3870 if (interval > HZ*NR_CPUS/10)
3871 interval = HZ*NR_CPUS/10;
3872
d07355f5 3873 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3874
d07355f5 3875 if (need_serialize) {
08c183f3
CL
3876 if (!spin_trylock(&balancing))
3877 goto out;
3878 }
3879
c9819f45 3880 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3881 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3882 /*
3883 * We've pulled tasks over so either we're no
5969fe06
NP
3884 * longer idle, or one of our SMT siblings is
3885 * not idle.
3886 */
d15bcfdb 3887 idle = CPU_NOT_IDLE;
1da177e4 3888 }
1bd77f2d 3889 sd->last_balance = jiffies;
1da177e4 3890 }
d07355f5 3891 if (need_serialize)
08c183f3
CL
3892 spin_unlock(&balancing);
3893out:
f549da84 3894 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3895 next_balance = sd->last_balance + interval;
f549da84
SS
3896 update_next_balance = 1;
3897 }
783609c6
SS
3898
3899 /*
3900 * Stop the load balance at this level. There is another
3901 * CPU in our sched group which is doing load balancing more
3902 * actively.
3903 */
3904 if (!balance)
3905 break;
1da177e4 3906 }
f549da84
SS
3907
3908 /*
3909 * next_balance will be updated only when there is a need.
3910 * When the cpu is attached to null domain for ex, it will not be
3911 * updated.
3912 */
3913 if (likely(update_next_balance))
3914 rq->next_balance = next_balance;
46cb4b7c
SS
3915}
3916
3917/*
3918 * run_rebalance_domains is triggered when needed from the scheduler tick.
3919 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3920 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3921 */
3922static void run_rebalance_domains(struct softirq_action *h)
3923{
dd41f596
IM
3924 int this_cpu = smp_processor_id();
3925 struct rq *this_rq = cpu_rq(this_cpu);
3926 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3927 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3928
dd41f596 3929 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3930
3931#ifdef CONFIG_NO_HZ
3932 /*
3933 * If this cpu is the owner for idle load balancing, then do the
3934 * balancing on behalf of the other idle cpus whose ticks are
3935 * stopped.
3936 */
dd41f596
IM
3937 if (this_rq->idle_at_tick &&
3938 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3939 cpumask_t cpus = nohz.cpu_mask;
3940 struct rq *rq;
3941 int balance_cpu;
3942
dd41f596 3943 cpu_clear(this_cpu, cpus);
363ab6f1 3944 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3945 /*
3946 * If this cpu gets work to do, stop the load balancing
3947 * work being done for other cpus. Next load
3948 * balancing owner will pick it up.
3949 */
3950 if (need_resched())
3951 break;
3952
de0cf899 3953 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3954
3955 rq = cpu_rq(balance_cpu);
dd41f596
IM
3956 if (time_after(this_rq->next_balance, rq->next_balance))
3957 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3958 }
3959 }
3960#endif
3961}
3962
3963/*
3964 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3965 *
3966 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3967 * idle load balancing owner or decide to stop the periodic load balancing,
3968 * if the whole system is idle.
3969 */
dd41f596 3970static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3971{
46cb4b7c
SS
3972#ifdef CONFIG_NO_HZ
3973 /*
3974 * If we were in the nohz mode recently and busy at the current
3975 * scheduler tick, then check if we need to nominate new idle
3976 * load balancer.
3977 */
3978 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3979 rq->in_nohz_recently = 0;
3980
3981 if (atomic_read(&nohz.load_balancer) == cpu) {
3982 cpu_clear(cpu, nohz.cpu_mask);
3983 atomic_set(&nohz.load_balancer, -1);
3984 }
3985
3986 if (atomic_read(&nohz.load_balancer) == -1) {
3987 /*
3988 * simple selection for now: Nominate the
3989 * first cpu in the nohz list to be the next
3990 * ilb owner.
3991 *
3992 * TBD: Traverse the sched domains and nominate
3993 * the nearest cpu in the nohz.cpu_mask.
3994 */
3995 int ilb = first_cpu(nohz.cpu_mask);
3996
434d53b0 3997 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3998 resched_cpu(ilb);
3999 }
4000 }
4001
4002 /*
4003 * If this cpu is idle and doing idle load balancing for all the
4004 * cpus with ticks stopped, is it time for that to stop?
4005 */
4006 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4007 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4008 resched_cpu(cpu);
4009 return;
4010 }
4011
4012 /*
4013 * If this cpu is idle and the idle load balancing is done by
4014 * someone else, then no need raise the SCHED_SOFTIRQ
4015 */
4016 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4017 cpu_isset(cpu, nohz.cpu_mask))
4018 return;
4019#endif
4020 if (time_after_eq(jiffies, rq->next_balance))
4021 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4022}
dd41f596
IM
4023
4024#else /* CONFIG_SMP */
4025
1da177e4
LT
4026/*
4027 * on UP we do not need to balance between CPUs:
4028 */
70b97a7f 4029static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4030{
4031}
dd41f596 4032
1da177e4
LT
4033#endif
4034
1da177e4
LT
4035DEFINE_PER_CPU(struct kernel_stat, kstat);
4036
4037EXPORT_PER_CPU_SYMBOL(kstat);
4038
4039/*
41b86e9c
IM
4040 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4041 * that have not yet been banked in case the task is currently running.
1da177e4 4042 */
41b86e9c 4043unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4044{
1da177e4 4045 unsigned long flags;
41b86e9c
IM
4046 u64 ns, delta_exec;
4047 struct rq *rq;
48f24c4d 4048
41b86e9c
IM
4049 rq = task_rq_lock(p, &flags);
4050 ns = p->se.sum_exec_runtime;
051a1d1a 4051 if (task_current(rq, p)) {
a8e504d2
IM
4052 update_rq_clock(rq);
4053 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4054 if ((s64)delta_exec > 0)
4055 ns += delta_exec;
4056 }
4057 task_rq_unlock(rq, &flags);
48f24c4d 4058
1da177e4
LT
4059 return ns;
4060}
4061
1da177e4
LT
4062/*
4063 * Account user cpu time to a process.
4064 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4065 * @cputime: the cpu time spent in user space since the last update
4066 */
4067void account_user_time(struct task_struct *p, cputime_t cputime)
4068{
4069 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4070 cputime64_t tmp;
4071
4072 p->utime = cputime_add(p->utime, cputime);
4073
4074 /* Add user time to cpustat. */
4075 tmp = cputime_to_cputime64(cputime);
4076 if (TASK_NICE(p) > 0)
4077 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4078 else
4079 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4080 /* Account for user time used */
4081 acct_update_integrals(p);
1da177e4
LT
4082}
4083
94886b84
LV
4084/*
4085 * Account guest cpu time to a process.
4086 * @p: the process that the cpu time gets accounted to
4087 * @cputime: the cpu time spent in virtual machine since the last update
4088 */
f7402e03 4089static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4090{
4091 cputime64_t tmp;
4092 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4093
4094 tmp = cputime_to_cputime64(cputime);
4095
4096 p->utime = cputime_add(p->utime, cputime);
4097 p->gtime = cputime_add(p->gtime, cputime);
4098
4099 cpustat->user = cputime64_add(cpustat->user, tmp);
4100 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4101}
4102
c66f08be
MN
4103/*
4104 * Account scaled user cpu time to a process.
4105 * @p: the process that the cpu time gets accounted to
4106 * @cputime: the cpu time spent in user space since the last update
4107 */
4108void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4109{
4110 p->utimescaled = cputime_add(p->utimescaled, cputime);
4111}
4112
1da177e4
LT
4113/*
4114 * Account system cpu time to a process.
4115 * @p: the process that the cpu time gets accounted to
4116 * @hardirq_offset: the offset to subtract from hardirq_count()
4117 * @cputime: the cpu time spent in kernel space since the last update
4118 */
4119void account_system_time(struct task_struct *p, int hardirq_offset,
4120 cputime_t cputime)
4121{
4122 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4123 struct rq *rq = this_rq();
1da177e4
LT
4124 cputime64_t tmp;
4125
983ed7a6
HH
4126 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4127 account_guest_time(p, cputime);
4128 return;
4129 }
94886b84 4130
1da177e4
LT
4131 p->stime = cputime_add(p->stime, cputime);
4132
4133 /* Add system time to cpustat. */
4134 tmp = cputime_to_cputime64(cputime);
4135 if (hardirq_count() - hardirq_offset)
4136 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4137 else if (softirq_count())
4138 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4139 else if (p != rq->idle)
1da177e4 4140 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4141 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4142 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4143 else
4144 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4145 /* Account for system time used */
4146 acct_update_integrals(p);
1da177e4
LT
4147}
4148
c66f08be
MN
4149/*
4150 * Account scaled system cpu time to a process.
4151 * @p: the process that the cpu time gets accounted to
4152 * @hardirq_offset: the offset to subtract from hardirq_count()
4153 * @cputime: the cpu time spent in kernel space since the last update
4154 */
4155void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4156{
4157 p->stimescaled = cputime_add(p->stimescaled, cputime);
4158}
4159
1da177e4
LT
4160/*
4161 * Account for involuntary wait time.
4162 * @p: the process from which the cpu time has been stolen
4163 * @steal: the cpu time spent in involuntary wait
4164 */
4165void account_steal_time(struct task_struct *p, cputime_t steal)
4166{
4167 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4168 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4169 struct rq *rq = this_rq();
1da177e4
LT
4170
4171 if (p == rq->idle) {
4172 p->stime = cputime_add(p->stime, steal);
4173 if (atomic_read(&rq->nr_iowait) > 0)
4174 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4175 else
4176 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4177 } else
1da177e4
LT
4178 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4179}
4180
7835b98b
CL
4181/*
4182 * This function gets called by the timer code, with HZ frequency.
4183 * We call it with interrupts disabled.
4184 *
4185 * It also gets called by the fork code, when changing the parent's
4186 * timeslices.
4187 */
4188void scheduler_tick(void)
4189{
7835b98b
CL
4190 int cpu = smp_processor_id();
4191 struct rq *rq = cpu_rq(cpu);
dd41f596 4192 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4193
4194 sched_clock_tick();
dd41f596
IM
4195
4196 spin_lock(&rq->lock);
3e51f33f 4197 update_rq_clock(rq);
f1a438d8 4198 update_cpu_load(rq);
fa85ae24 4199 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4200 spin_unlock(&rq->lock);
7835b98b 4201
e418e1c2 4202#ifdef CONFIG_SMP
dd41f596
IM
4203 rq->idle_at_tick = idle_cpu(cpu);
4204 trigger_load_balance(rq, cpu);
e418e1c2 4205#endif
1da177e4
LT
4206}
4207
6cd8a4bb
SR
4208#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4209 defined(CONFIG_PREEMPT_TRACER))
4210
4211static inline unsigned long get_parent_ip(unsigned long addr)
4212{
4213 if (in_lock_functions(addr)) {
4214 addr = CALLER_ADDR2;
4215 if (in_lock_functions(addr))
4216 addr = CALLER_ADDR3;
4217 }
4218 return addr;
4219}
1da177e4 4220
43627582 4221void __kprobes add_preempt_count(int val)
1da177e4 4222{
6cd8a4bb 4223#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4224 /*
4225 * Underflow?
4226 */
9a11b49a
IM
4227 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4228 return;
6cd8a4bb 4229#endif
1da177e4 4230 preempt_count() += val;
6cd8a4bb 4231#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4232 /*
4233 * Spinlock count overflowing soon?
4234 */
33859f7f
MOS
4235 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4236 PREEMPT_MASK - 10);
6cd8a4bb
SR
4237#endif
4238 if (preempt_count() == val)
4239 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4240}
4241EXPORT_SYMBOL(add_preempt_count);
4242
43627582 4243void __kprobes sub_preempt_count(int val)
1da177e4 4244{
6cd8a4bb 4245#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4246 /*
4247 * Underflow?
4248 */
9a11b49a
IM
4249 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4250 return;
1da177e4
LT
4251 /*
4252 * Is the spinlock portion underflowing?
4253 */
9a11b49a
IM
4254 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4255 !(preempt_count() & PREEMPT_MASK)))
4256 return;
6cd8a4bb 4257#endif
9a11b49a 4258
6cd8a4bb
SR
4259 if (preempt_count() == val)
4260 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4261 preempt_count() -= val;
4262}
4263EXPORT_SYMBOL(sub_preempt_count);
4264
4265#endif
4266
4267/*
dd41f596 4268 * Print scheduling while atomic bug:
1da177e4 4269 */
dd41f596 4270static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4271{
838225b4
SS
4272 struct pt_regs *regs = get_irq_regs();
4273
4274 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4275 prev->comm, prev->pid, preempt_count());
4276
dd41f596 4277 debug_show_held_locks(prev);
e21f5b15 4278 print_modules();
dd41f596
IM
4279 if (irqs_disabled())
4280 print_irqtrace_events(prev);
838225b4
SS
4281
4282 if (regs)
4283 show_regs(regs);
4284 else
4285 dump_stack();
dd41f596 4286}
1da177e4 4287
dd41f596
IM
4288/*
4289 * Various schedule()-time debugging checks and statistics:
4290 */
4291static inline void schedule_debug(struct task_struct *prev)
4292{
1da177e4 4293 /*
41a2d6cf 4294 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4295 * schedule() atomically, we ignore that path for now.
4296 * Otherwise, whine if we are scheduling when we should not be.
4297 */
3f33a7ce 4298 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4299 __schedule_bug(prev);
4300
1da177e4
LT
4301 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4302
2d72376b 4303 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4304#ifdef CONFIG_SCHEDSTATS
4305 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4306 schedstat_inc(this_rq(), bkl_count);
4307 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4308 }
4309#endif
dd41f596
IM
4310}
4311
4312/*
4313 * Pick up the highest-prio task:
4314 */
4315static inline struct task_struct *
ff95f3df 4316pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4317{
5522d5d5 4318 const struct sched_class *class;
dd41f596 4319 struct task_struct *p;
1da177e4
LT
4320
4321 /*
dd41f596
IM
4322 * Optimization: we know that if all tasks are in
4323 * the fair class we can call that function directly:
1da177e4 4324 */
dd41f596 4325 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4326 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4327 if (likely(p))
4328 return p;
1da177e4
LT
4329 }
4330
dd41f596
IM
4331 class = sched_class_highest;
4332 for ( ; ; ) {
fb8d4724 4333 p = class->pick_next_task(rq);
dd41f596
IM
4334 if (p)
4335 return p;
4336 /*
4337 * Will never be NULL as the idle class always
4338 * returns a non-NULL p:
4339 */
4340 class = class->next;
4341 }
4342}
1da177e4 4343
dd41f596
IM
4344/*
4345 * schedule() is the main scheduler function.
4346 */
4347asmlinkage void __sched schedule(void)
4348{
4349 struct task_struct *prev, *next;
67ca7bde 4350 unsigned long *switch_count;
dd41f596 4351 struct rq *rq;
31656519 4352 int cpu;
dd41f596
IM
4353
4354need_resched:
4355 preempt_disable();
4356 cpu = smp_processor_id();
4357 rq = cpu_rq(cpu);
4358 rcu_qsctr_inc(cpu);
4359 prev = rq->curr;
4360 switch_count = &prev->nivcsw;
4361
4362 release_kernel_lock(prev);
4363need_resched_nonpreemptible:
4364
4365 schedule_debug(prev);
1da177e4 4366
31656519 4367 if (sched_feat(HRTICK))
f333fdc9 4368 hrtick_clear(rq);
8f4d37ec 4369
1e819950
IM
4370 /*
4371 * Do the rq-clock update outside the rq lock:
4372 */
4373 local_irq_disable();
3e51f33f 4374 update_rq_clock(rq);
1e819950
IM
4375 spin_lock(&rq->lock);
4376 clear_tsk_need_resched(prev);
1da177e4 4377
1da177e4 4378 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4379 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4380 prev->state = TASK_RUNNING;
16882c1e 4381 else
2e1cb74a 4382 deactivate_task(rq, prev, 1);
dd41f596 4383 switch_count = &prev->nvcsw;
1da177e4
LT
4384 }
4385
9a897c5a
SR
4386#ifdef CONFIG_SMP
4387 if (prev->sched_class->pre_schedule)
4388 prev->sched_class->pre_schedule(rq, prev);
4389#endif
f65eda4f 4390
dd41f596 4391 if (unlikely(!rq->nr_running))
1da177e4 4392 idle_balance(cpu, rq);
1da177e4 4393
31ee529c 4394 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4395 next = pick_next_task(rq, prev);
1da177e4 4396
1da177e4 4397 if (likely(prev != next)) {
673a90a1
DS
4398 sched_info_switch(prev, next);
4399
1da177e4
LT
4400 rq->nr_switches++;
4401 rq->curr = next;
4402 ++*switch_count;
4403
dd41f596 4404 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4405 /*
4406 * the context switch might have flipped the stack from under
4407 * us, hence refresh the local variables.
4408 */
4409 cpu = smp_processor_id();
4410 rq = cpu_rq(cpu);
1da177e4
LT
4411 } else
4412 spin_unlock_irq(&rq->lock);
4413
8f4d37ec 4414 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4415 goto need_resched_nonpreemptible;
8f4d37ec 4416
1da177e4
LT
4417 preempt_enable_no_resched();
4418 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4419 goto need_resched;
4420}
1da177e4
LT
4421EXPORT_SYMBOL(schedule);
4422
4423#ifdef CONFIG_PREEMPT
4424/*
2ed6e34f 4425 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4426 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4427 * occur there and call schedule directly.
4428 */
4429asmlinkage void __sched preempt_schedule(void)
4430{
4431 struct thread_info *ti = current_thread_info();
6478d880 4432
1da177e4
LT
4433 /*
4434 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4435 * we do not want to preempt the current task. Just return..
1da177e4 4436 */
beed33a8 4437 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4438 return;
4439
3a5c359a
AK
4440 do {
4441 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4442 schedule();
3a5c359a 4443 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4444
3a5c359a
AK
4445 /*
4446 * Check again in case we missed a preemption opportunity
4447 * between schedule and now.
4448 */
4449 barrier();
4450 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4451}
1da177e4
LT
4452EXPORT_SYMBOL(preempt_schedule);
4453
4454/*
2ed6e34f 4455 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4456 * off of irq context.
4457 * Note, that this is called and return with irqs disabled. This will
4458 * protect us against recursive calling from irq.
4459 */
4460asmlinkage void __sched preempt_schedule_irq(void)
4461{
4462 struct thread_info *ti = current_thread_info();
6478d880 4463
2ed6e34f 4464 /* Catch callers which need to be fixed */
1da177e4
LT
4465 BUG_ON(ti->preempt_count || !irqs_disabled());
4466
3a5c359a
AK
4467 do {
4468 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4469 local_irq_enable();
4470 schedule();
4471 local_irq_disable();
3a5c359a 4472 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4473
3a5c359a
AK
4474 /*
4475 * Check again in case we missed a preemption opportunity
4476 * between schedule and now.
4477 */
4478 barrier();
4479 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4480}
4481
4482#endif /* CONFIG_PREEMPT */
4483
95cdf3b7
IM
4484int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4485 void *key)
1da177e4 4486{
48f24c4d 4487 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4488}
1da177e4
LT
4489EXPORT_SYMBOL(default_wake_function);
4490
4491/*
41a2d6cf
IM
4492 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4493 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4494 * number) then we wake all the non-exclusive tasks and one exclusive task.
4495 *
4496 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4497 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4498 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4499 */
4500static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4501 int nr_exclusive, int sync, void *key)
4502{
2e45874c 4503 wait_queue_t *curr, *next;
1da177e4 4504
2e45874c 4505 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4506 unsigned flags = curr->flags;
4507
1da177e4 4508 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4509 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4510 break;
4511 }
4512}
4513
4514/**
4515 * __wake_up - wake up threads blocked on a waitqueue.
4516 * @q: the waitqueue
4517 * @mode: which threads
4518 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4519 * @key: is directly passed to the wakeup function
1da177e4 4520 */
7ad5b3a5 4521void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4522 int nr_exclusive, void *key)
1da177e4
LT
4523{
4524 unsigned long flags;
4525
4526 spin_lock_irqsave(&q->lock, flags);
4527 __wake_up_common(q, mode, nr_exclusive, 0, key);
4528 spin_unlock_irqrestore(&q->lock, flags);
4529}
1da177e4
LT
4530EXPORT_SYMBOL(__wake_up);
4531
4532/*
4533 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4534 */
7ad5b3a5 4535void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4536{
4537 __wake_up_common(q, mode, 1, 0, NULL);
4538}
4539
4540/**
67be2dd1 4541 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4542 * @q: the waitqueue
4543 * @mode: which threads
4544 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4545 *
4546 * The sync wakeup differs that the waker knows that it will schedule
4547 * away soon, so while the target thread will be woken up, it will not
4548 * be migrated to another CPU - ie. the two threads are 'synchronized'
4549 * with each other. This can prevent needless bouncing between CPUs.
4550 *
4551 * On UP it can prevent extra preemption.
4552 */
7ad5b3a5 4553void
95cdf3b7 4554__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4555{
4556 unsigned long flags;
4557 int sync = 1;
4558
4559 if (unlikely(!q))
4560 return;
4561
4562 if (unlikely(!nr_exclusive))
4563 sync = 0;
4564
4565 spin_lock_irqsave(&q->lock, flags);
4566 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4567 spin_unlock_irqrestore(&q->lock, flags);
4568}
4569EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4570
b15136e9 4571void complete(struct completion *x)
1da177e4
LT
4572{
4573 unsigned long flags;
4574
4575 spin_lock_irqsave(&x->wait.lock, flags);
4576 x->done++;
d9514f6c 4577 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4578 spin_unlock_irqrestore(&x->wait.lock, flags);
4579}
4580EXPORT_SYMBOL(complete);
4581
b15136e9 4582void complete_all(struct completion *x)
1da177e4
LT
4583{
4584 unsigned long flags;
4585
4586 spin_lock_irqsave(&x->wait.lock, flags);
4587 x->done += UINT_MAX/2;
d9514f6c 4588 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4589 spin_unlock_irqrestore(&x->wait.lock, flags);
4590}
4591EXPORT_SYMBOL(complete_all);
4592
8cbbe86d
AK
4593static inline long __sched
4594do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4595{
1da177e4
LT
4596 if (!x->done) {
4597 DECLARE_WAITQUEUE(wait, current);
4598
4599 wait.flags |= WQ_FLAG_EXCLUSIVE;
4600 __add_wait_queue_tail(&x->wait, &wait);
4601 do {
94d3d824 4602 if (signal_pending_state(state, current)) {
ea71a546
ON
4603 timeout = -ERESTARTSYS;
4604 break;
8cbbe86d
AK
4605 }
4606 __set_current_state(state);
1da177e4
LT
4607 spin_unlock_irq(&x->wait.lock);
4608 timeout = schedule_timeout(timeout);
4609 spin_lock_irq(&x->wait.lock);
ea71a546 4610 } while (!x->done && timeout);
1da177e4 4611 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4612 if (!x->done)
4613 return timeout;
1da177e4
LT
4614 }
4615 x->done--;
ea71a546 4616 return timeout ?: 1;
1da177e4 4617}
1da177e4 4618
8cbbe86d
AK
4619static long __sched
4620wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4621{
1da177e4
LT
4622 might_sleep();
4623
4624 spin_lock_irq(&x->wait.lock);
8cbbe86d 4625 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4626 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4627 return timeout;
4628}
1da177e4 4629
b15136e9 4630void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4631{
4632 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4633}
8cbbe86d 4634EXPORT_SYMBOL(wait_for_completion);
1da177e4 4635
b15136e9 4636unsigned long __sched
8cbbe86d 4637wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4638{
8cbbe86d 4639 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4640}
8cbbe86d 4641EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4642
8cbbe86d 4643int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4644{
51e97990
AK
4645 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4646 if (t == -ERESTARTSYS)
4647 return t;
4648 return 0;
0fec171c 4649}
8cbbe86d 4650EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4651
b15136e9 4652unsigned long __sched
8cbbe86d
AK
4653wait_for_completion_interruptible_timeout(struct completion *x,
4654 unsigned long timeout)
0fec171c 4655{
8cbbe86d 4656 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4657}
8cbbe86d 4658EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4659
009e577e
MW
4660int __sched wait_for_completion_killable(struct completion *x)
4661{
4662 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4663 if (t == -ERESTARTSYS)
4664 return t;
4665 return 0;
4666}
4667EXPORT_SYMBOL(wait_for_completion_killable);
4668
8cbbe86d
AK
4669static long __sched
4670sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4671{
0fec171c
IM
4672 unsigned long flags;
4673 wait_queue_t wait;
4674
4675 init_waitqueue_entry(&wait, current);
1da177e4 4676
8cbbe86d 4677 __set_current_state(state);
1da177e4 4678
8cbbe86d
AK
4679 spin_lock_irqsave(&q->lock, flags);
4680 __add_wait_queue(q, &wait);
4681 spin_unlock(&q->lock);
4682 timeout = schedule_timeout(timeout);
4683 spin_lock_irq(&q->lock);
4684 __remove_wait_queue(q, &wait);
4685 spin_unlock_irqrestore(&q->lock, flags);
4686
4687 return timeout;
4688}
4689
4690void __sched interruptible_sleep_on(wait_queue_head_t *q)
4691{
4692 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4693}
1da177e4
LT
4694EXPORT_SYMBOL(interruptible_sleep_on);
4695
0fec171c 4696long __sched
95cdf3b7 4697interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4698{
8cbbe86d 4699 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4700}
1da177e4
LT
4701EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4702
0fec171c 4703void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4704{
8cbbe86d 4705 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4706}
1da177e4
LT
4707EXPORT_SYMBOL(sleep_on);
4708
0fec171c 4709long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4710{
8cbbe86d 4711 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4712}
1da177e4
LT
4713EXPORT_SYMBOL(sleep_on_timeout);
4714
b29739f9
IM
4715#ifdef CONFIG_RT_MUTEXES
4716
4717/*
4718 * rt_mutex_setprio - set the current priority of a task
4719 * @p: task
4720 * @prio: prio value (kernel-internal form)
4721 *
4722 * This function changes the 'effective' priority of a task. It does
4723 * not touch ->normal_prio like __setscheduler().
4724 *
4725 * Used by the rt_mutex code to implement priority inheritance logic.
4726 */
36c8b586 4727void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4728{
4729 unsigned long flags;
83b699ed 4730 int oldprio, on_rq, running;
70b97a7f 4731 struct rq *rq;
cb469845 4732 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4733
4734 BUG_ON(prio < 0 || prio > MAX_PRIO);
4735
4736 rq = task_rq_lock(p, &flags);
a8e504d2 4737 update_rq_clock(rq);
b29739f9 4738
d5f9f942 4739 oldprio = p->prio;
dd41f596 4740 on_rq = p->se.on_rq;
051a1d1a 4741 running = task_current(rq, p);
0e1f3483 4742 if (on_rq)
69be72c1 4743 dequeue_task(rq, p, 0);
0e1f3483
HS
4744 if (running)
4745 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4746
4747 if (rt_prio(prio))
4748 p->sched_class = &rt_sched_class;
4749 else
4750 p->sched_class = &fair_sched_class;
4751
b29739f9
IM
4752 p->prio = prio;
4753
0e1f3483
HS
4754 if (running)
4755 p->sched_class->set_curr_task(rq);
dd41f596 4756 if (on_rq) {
8159f87e 4757 enqueue_task(rq, p, 0);
cb469845
SR
4758
4759 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4760 }
4761 task_rq_unlock(rq, &flags);
4762}
4763
4764#endif
4765
36c8b586 4766void set_user_nice(struct task_struct *p, long nice)
1da177e4 4767{
dd41f596 4768 int old_prio, delta, on_rq;
1da177e4 4769 unsigned long flags;
70b97a7f 4770 struct rq *rq;
1da177e4
LT
4771
4772 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4773 return;
4774 /*
4775 * We have to be careful, if called from sys_setpriority(),
4776 * the task might be in the middle of scheduling on another CPU.
4777 */
4778 rq = task_rq_lock(p, &flags);
a8e504d2 4779 update_rq_clock(rq);
1da177e4
LT
4780 /*
4781 * The RT priorities are set via sched_setscheduler(), but we still
4782 * allow the 'normal' nice value to be set - but as expected
4783 * it wont have any effect on scheduling until the task is
dd41f596 4784 * SCHED_FIFO/SCHED_RR:
1da177e4 4785 */
e05606d3 4786 if (task_has_rt_policy(p)) {
1da177e4
LT
4787 p->static_prio = NICE_TO_PRIO(nice);
4788 goto out_unlock;
4789 }
dd41f596 4790 on_rq = p->se.on_rq;
c09595f6 4791 if (on_rq)
69be72c1 4792 dequeue_task(rq, p, 0);
1da177e4 4793
1da177e4 4794 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4795 set_load_weight(p);
b29739f9
IM
4796 old_prio = p->prio;
4797 p->prio = effective_prio(p);
4798 delta = p->prio - old_prio;
1da177e4 4799
dd41f596 4800 if (on_rq) {
8159f87e 4801 enqueue_task(rq, p, 0);
1da177e4 4802 /*
d5f9f942
AM
4803 * If the task increased its priority or is running and
4804 * lowered its priority, then reschedule its CPU:
1da177e4 4805 */
d5f9f942 4806 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4807 resched_task(rq->curr);
4808 }
4809out_unlock:
4810 task_rq_unlock(rq, &flags);
4811}
1da177e4
LT
4812EXPORT_SYMBOL(set_user_nice);
4813
e43379f1
MM
4814/*
4815 * can_nice - check if a task can reduce its nice value
4816 * @p: task
4817 * @nice: nice value
4818 */
36c8b586 4819int can_nice(const struct task_struct *p, const int nice)
e43379f1 4820{
024f4747
MM
4821 /* convert nice value [19,-20] to rlimit style value [1,40] */
4822 int nice_rlim = 20 - nice;
48f24c4d 4823
e43379f1
MM
4824 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4825 capable(CAP_SYS_NICE));
4826}
4827
1da177e4
LT
4828#ifdef __ARCH_WANT_SYS_NICE
4829
4830/*
4831 * sys_nice - change the priority of the current process.
4832 * @increment: priority increment
4833 *
4834 * sys_setpriority is a more generic, but much slower function that
4835 * does similar things.
4836 */
4837asmlinkage long sys_nice(int increment)
4838{
48f24c4d 4839 long nice, retval;
1da177e4
LT
4840
4841 /*
4842 * Setpriority might change our priority at the same moment.
4843 * We don't have to worry. Conceptually one call occurs first
4844 * and we have a single winner.
4845 */
e43379f1
MM
4846 if (increment < -40)
4847 increment = -40;
1da177e4
LT
4848 if (increment > 40)
4849 increment = 40;
4850
4851 nice = PRIO_TO_NICE(current->static_prio) + increment;
4852 if (nice < -20)
4853 nice = -20;
4854 if (nice > 19)
4855 nice = 19;
4856
e43379f1
MM
4857 if (increment < 0 && !can_nice(current, nice))
4858 return -EPERM;
4859
1da177e4
LT
4860 retval = security_task_setnice(current, nice);
4861 if (retval)
4862 return retval;
4863
4864 set_user_nice(current, nice);
4865 return 0;
4866}
4867
4868#endif
4869
4870/**
4871 * task_prio - return the priority value of a given task.
4872 * @p: the task in question.
4873 *
4874 * This is the priority value as seen by users in /proc.
4875 * RT tasks are offset by -200. Normal tasks are centered
4876 * around 0, value goes from -16 to +15.
4877 */
36c8b586 4878int task_prio(const struct task_struct *p)
1da177e4
LT
4879{
4880 return p->prio - MAX_RT_PRIO;
4881}
4882
4883/**
4884 * task_nice - return the nice value of a given task.
4885 * @p: the task in question.
4886 */
36c8b586 4887int task_nice(const struct task_struct *p)
1da177e4
LT
4888{
4889 return TASK_NICE(p);
4890}
150d8bed 4891EXPORT_SYMBOL(task_nice);
1da177e4
LT
4892
4893/**
4894 * idle_cpu - is a given cpu idle currently?
4895 * @cpu: the processor in question.
4896 */
4897int idle_cpu(int cpu)
4898{
4899 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4900}
4901
1da177e4
LT
4902/**
4903 * idle_task - return the idle task for a given cpu.
4904 * @cpu: the processor in question.
4905 */
36c8b586 4906struct task_struct *idle_task(int cpu)
1da177e4
LT
4907{
4908 return cpu_rq(cpu)->idle;
4909}
4910
4911/**
4912 * find_process_by_pid - find a process with a matching PID value.
4913 * @pid: the pid in question.
4914 */
a9957449 4915static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4916{
228ebcbe 4917 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4918}
4919
4920/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4921static void
4922__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4923{
dd41f596 4924 BUG_ON(p->se.on_rq);
48f24c4d 4925
1da177e4 4926 p->policy = policy;
dd41f596
IM
4927 switch (p->policy) {
4928 case SCHED_NORMAL:
4929 case SCHED_BATCH:
4930 case SCHED_IDLE:
4931 p->sched_class = &fair_sched_class;
4932 break;
4933 case SCHED_FIFO:
4934 case SCHED_RR:
4935 p->sched_class = &rt_sched_class;
4936 break;
4937 }
4938
1da177e4 4939 p->rt_priority = prio;
b29739f9
IM
4940 p->normal_prio = normal_prio(p);
4941 /* we are holding p->pi_lock already */
4942 p->prio = rt_mutex_getprio(p);
2dd73a4f 4943 set_load_weight(p);
1da177e4
LT
4944}
4945
961ccddd
RR
4946static int __sched_setscheduler(struct task_struct *p, int policy,
4947 struct sched_param *param, bool user)
1da177e4 4948{
83b699ed 4949 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4950 unsigned long flags;
cb469845 4951 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4952 struct rq *rq;
1da177e4 4953
66e5393a
SR
4954 /* may grab non-irq protected spin_locks */
4955 BUG_ON(in_interrupt());
1da177e4
LT
4956recheck:
4957 /* double check policy once rq lock held */
4958 if (policy < 0)
4959 policy = oldpolicy = p->policy;
4960 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4961 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4962 policy != SCHED_IDLE)
b0a9499c 4963 return -EINVAL;
1da177e4
LT
4964 /*
4965 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4966 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4967 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4968 */
4969 if (param->sched_priority < 0 ||
95cdf3b7 4970 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4971 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4972 return -EINVAL;
e05606d3 4973 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4974 return -EINVAL;
4975
37e4ab3f
OC
4976 /*
4977 * Allow unprivileged RT tasks to decrease priority:
4978 */
961ccddd 4979 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4980 if (rt_policy(policy)) {
8dc3e909 4981 unsigned long rlim_rtprio;
8dc3e909
ON
4982
4983 if (!lock_task_sighand(p, &flags))
4984 return -ESRCH;
4985 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4986 unlock_task_sighand(p, &flags);
4987
4988 /* can't set/change the rt policy */
4989 if (policy != p->policy && !rlim_rtprio)
4990 return -EPERM;
4991
4992 /* can't increase priority */
4993 if (param->sched_priority > p->rt_priority &&
4994 param->sched_priority > rlim_rtprio)
4995 return -EPERM;
4996 }
dd41f596
IM
4997 /*
4998 * Like positive nice levels, dont allow tasks to
4999 * move out of SCHED_IDLE either:
5000 */
5001 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5002 return -EPERM;
5fe1d75f 5003
37e4ab3f
OC
5004 /* can't change other user's priorities */
5005 if ((current->euid != p->euid) &&
5006 (current->euid != p->uid))
5007 return -EPERM;
5008 }
1da177e4 5009
725aad24 5010 if (user) {
b68aa230 5011#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5012 /*
5013 * Do not allow realtime tasks into groups that have no runtime
5014 * assigned.
5015 */
5016 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5017 return -EPERM;
b68aa230
PZ
5018#endif
5019
725aad24
JF
5020 retval = security_task_setscheduler(p, policy, param);
5021 if (retval)
5022 return retval;
5023 }
5024
b29739f9
IM
5025 /*
5026 * make sure no PI-waiters arrive (or leave) while we are
5027 * changing the priority of the task:
5028 */
5029 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5030 /*
5031 * To be able to change p->policy safely, the apropriate
5032 * runqueue lock must be held.
5033 */
b29739f9 5034 rq = __task_rq_lock(p);
1da177e4
LT
5035 /* recheck policy now with rq lock held */
5036 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5037 policy = oldpolicy = -1;
b29739f9
IM
5038 __task_rq_unlock(rq);
5039 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5040 goto recheck;
5041 }
2daa3577 5042 update_rq_clock(rq);
dd41f596 5043 on_rq = p->se.on_rq;
051a1d1a 5044 running = task_current(rq, p);
0e1f3483 5045 if (on_rq)
2e1cb74a 5046 deactivate_task(rq, p, 0);
0e1f3483
HS
5047 if (running)
5048 p->sched_class->put_prev_task(rq, p);
f6b53205 5049
1da177e4 5050 oldprio = p->prio;
dd41f596 5051 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5052
0e1f3483
HS
5053 if (running)
5054 p->sched_class->set_curr_task(rq);
dd41f596
IM
5055 if (on_rq) {
5056 activate_task(rq, p, 0);
cb469845
SR
5057
5058 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5059 }
b29739f9
IM
5060 __task_rq_unlock(rq);
5061 spin_unlock_irqrestore(&p->pi_lock, flags);
5062
95e02ca9
TG
5063 rt_mutex_adjust_pi(p);
5064
1da177e4
LT
5065 return 0;
5066}
961ccddd
RR
5067
5068/**
5069 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5070 * @p: the task in question.
5071 * @policy: new policy.
5072 * @param: structure containing the new RT priority.
5073 *
5074 * NOTE that the task may be already dead.
5075 */
5076int sched_setscheduler(struct task_struct *p, int policy,
5077 struct sched_param *param)
5078{
5079 return __sched_setscheduler(p, policy, param, true);
5080}
1da177e4
LT
5081EXPORT_SYMBOL_GPL(sched_setscheduler);
5082
961ccddd
RR
5083/**
5084 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5085 * @p: the task in question.
5086 * @policy: new policy.
5087 * @param: structure containing the new RT priority.
5088 *
5089 * Just like sched_setscheduler, only don't bother checking if the
5090 * current context has permission. For example, this is needed in
5091 * stop_machine(): we create temporary high priority worker threads,
5092 * but our caller might not have that capability.
5093 */
5094int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5095 struct sched_param *param)
5096{
5097 return __sched_setscheduler(p, policy, param, false);
5098}
5099
95cdf3b7
IM
5100static int
5101do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5102{
1da177e4
LT
5103 struct sched_param lparam;
5104 struct task_struct *p;
36c8b586 5105 int retval;
1da177e4
LT
5106
5107 if (!param || pid < 0)
5108 return -EINVAL;
5109 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5110 return -EFAULT;
5fe1d75f
ON
5111
5112 rcu_read_lock();
5113 retval = -ESRCH;
1da177e4 5114 p = find_process_by_pid(pid);
5fe1d75f
ON
5115 if (p != NULL)
5116 retval = sched_setscheduler(p, policy, &lparam);
5117 rcu_read_unlock();
36c8b586 5118
1da177e4
LT
5119 return retval;
5120}
5121
5122/**
5123 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5124 * @pid: the pid in question.
5125 * @policy: new policy.
5126 * @param: structure containing the new RT priority.
5127 */
41a2d6cf
IM
5128asmlinkage long
5129sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5130{
c21761f1
JB
5131 /* negative values for policy are not valid */
5132 if (policy < 0)
5133 return -EINVAL;
5134
1da177e4
LT
5135 return do_sched_setscheduler(pid, policy, param);
5136}
5137
5138/**
5139 * sys_sched_setparam - set/change the RT priority of a thread
5140 * @pid: the pid in question.
5141 * @param: structure containing the new RT priority.
5142 */
5143asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5144{
5145 return do_sched_setscheduler(pid, -1, param);
5146}
5147
5148/**
5149 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5150 * @pid: the pid in question.
5151 */
5152asmlinkage long sys_sched_getscheduler(pid_t pid)
5153{
36c8b586 5154 struct task_struct *p;
3a5c359a 5155 int retval;
1da177e4
LT
5156
5157 if (pid < 0)
3a5c359a 5158 return -EINVAL;
1da177e4
LT
5159
5160 retval = -ESRCH;
5161 read_lock(&tasklist_lock);
5162 p = find_process_by_pid(pid);
5163 if (p) {
5164 retval = security_task_getscheduler(p);
5165 if (!retval)
5166 retval = p->policy;
5167 }
5168 read_unlock(&tasklist_lock);
1da177e4
LT
5169 return retval;
5170}
5171
5172/**
5173 * sys_sched_getscheduler - get the RT priority of a thread
5174 * @pid: the pid in question.
5175 * @param: structure containing the RT priority.
5176 */
5177asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5178{
5179 struct sched_param lp;
36c8b586 5180 struct task_struct *p;
3a5c359a 5181 int retval;
1da177e4
LT
5182
5183 if (!param || pid < 0)
3a5c359a 5184 return -EINVAL;
1da177e4
LT
5185
5186 read_lock(&tasklist_lock);
5187 p = find_process_by_pid(pid);
5188 retval = -ESRCH;
5189 if (!p)
5190 goto out_unlock;
5191
5192 retval = security_task_getscheduler(p);
5193 if (retval)
5194 goto out_unlock;
5195
5196 lp.sched_priority = p->rt_priority;
5197 read_unlock(&tasklist_lock);
5198
5199 /*
5200 * This one might sleep, we cannot do it with a spinlock held ...
5201 */
5202 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5203
1da177e4
LT
5204 return retval;
5205
5206out_unlock:
5207 read_unlock(&tasklist_lock);
5208 return retval;
5209}
5210
b53e921b 5211long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5212{
1da177e4 5213 cpumask_t cpus_allowed;
b53e921b 5214 cpumask_t new_mask = *in_mask;
36c8b586
IM
5215 struct task_struct *p;
5216 int retval;
1da177e4 5217
95402b38 5218 get_online_cpus();
1da177e4
LT
5219 read_lock(&tasklist_lock);
5220
5221 p = find_process_by_pid(pid);
5222 if (!p) {
5223 read_unlock(&tasklist_lock);
95402b38 5224 put_online_cpus();
1da177e4
LT
5225 return -ESRCH;
5226 }
5227
5228 /*
5229 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5230 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5231 * usage count and then drop tasklist_lock.
5232 */
5233 get_task_struct(p);
5234 read_unlock(&tasklist_lock);
5235
5236 retval = -EPERM;
5237 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5238 !capable(CAP_SYS_NICE))
5239 goto out_unlock;
5240
e7834f8f
DQ
5241 retval = security_task_setscheduler(p, 0, NULL);
5242 if (retval)
5243 goto out_unlock;
5244
f9a86fcb 5245 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5246 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5247 again:
7c16ec58 5248 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5249
8707d8b8 5250 if (!retval) {
f9a86fcb 5251 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5252 if (!cpus_subset(new_mask, cpus_allowed)) {
5253 /*
5254 * We must have raced with a concurrent cpuset
5255 * update. Just reset the cpus_allowed to the
5256 * cpuset's cpus_allowed
5257 */
5258 new_mask = cpus_allowed;
5259 goto again;
5260 }
5261 }
1da177e4
LT
5262out_unlock:
5263 put_task_struct(p);
95402b38 5264 put_online_cpus();
1da177e4
LT
5265 return retval;
5266}
5267
5268static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5269 cpumask_t *new_mask)
5270{
5271 if (len < sizeof(cpumask_t)) {
5272 memset(new_mask, 0, sizeof(cpumask_t));
5273 } else if (len > sizeof(cpumask_t)) {
5274 len = sizeof(cpumask_t);
5275 }
5276 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5277}
5278
5279/**
5280 * sys_sched_setaffinity - set the cpu affinity of a process
5281 * @pid: pid of the process
5282 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5283 * @user_mask_ptr: user-space pointer to the new cpu mask
5284 */
5285asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5286 unsigned long __user *user_mask_ptr)
5287{
5288 cpumask_t new_mask;
5289 int retval;
5290
5291 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5292 if (retval)
5293 return retval;
5294
b53e921b 5295 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5296}
5297
1da177e4
LT
5298long sched_getaffinity(pid_t pid, cpumask_t *mask)
5299{
36c8b586 5300 struct task_struct *p;
1da177e4 5301 int retval;
1da177e4 5302
95402b38 5303 get_online_cpus();
1da177e4
LT
5304 read_lock(&tasklist_lock);
5305
5306 retval = -ESRCH;
5307 p = find_process_by_pid(pid);
5308 if (!p)
5309 goto out_unlock;
5310
e7834f8f
DQ
5311 retval = security_task_getscheduler(p);
5312 if (retval)
5313 goto out_unlock;
5314
2f7016d9 5315 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5316
5317out_unlock:
5318 read_unlock(&tasklist_lock);
95402b38 5319 put_online_cpus();
1da177e4 5320
9531b62f 5321 return retval;
1da177e4
LT
5322}
5323
5324/**
5325 * sys_sched_getaffinity - get the cpu affinity of a process
5326 * @pid: pid of the process
5327 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5328 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5329 */
5330asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5331 unsigned long __user *user_mask_ptr)
5332{
5333 int ret;
5334 cpumask_t mask;
5335
5336 if (len < sizeof(cpumask_t))
5337 return -EINVAL;
5338
5339 ret = sched_getaffinity(pid, &mask);
5340 if (ret < 0)
5341 return ret;
5342
5343 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5344 return -EFAULT;
5345
5346 return sizeof(cpumask_t);
5347}
5348
5349/**
5350 * sys_sched_yield - yield the current processor to other threads.
5351 *
dd41f596
IM
5352 * This function yields the current CPU to other tasks. If there are no
5353 * other threads running on this CPU then this function will return.
1da177e4
LT
5354 */
5355asmlinkage long sys_sched_yield(void)
5356{
70b97a7f 5357 struct rq *rq = this_rq_lock();
1da177e4 5358
2d72376b 5359 schedstat_inc(rq, yld_count);
4530d7ab 5360 current->sched_class->yield_task(rq);
1da177e4
LT
5361
5362 /*
5363 * Since we are going to call schedule() anyway, there's
5364 * no need to preempt or enable interrupts:
5365 */
5366 __release(rq->lock);
8a25d5de 5367 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5368 _raw_spin_unlock(&rq->lock);
5369 preempt_enable_no_resched();
5370
5371 schedule();
5372
5373 return 0;
5374}
5375
e7b38404 5376static void __cond_resched(void)
1da177e4 5377{
8e0a43d8
IM
5378#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5379 __might_sleep(__FILE__, __LINE__);
5380#endif
5bbcfd90
IM
5381 /*
5382 * The BKS might be reacquired before we have dropped
5383 * PREEMPT_ACTIVE, which could trigger a second
5384 * cond_resched() call.
5385 */
1da177e4
LT
5386 do {
5387 add_preempt_count(PREEMPT_ACTIVE);
5388 schedule();
5389 sub_preempt_count(PREEMPT_ACTIVE);
5390 } while (need_resched());
5391}
5392
02b67cc3 5393int __sched _cond_resched(void)
1da177e4 5394{
9414232f
IM
5395 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5396 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5397 __cond_resched();
5398 return 1;
5399 }
5400 return 0;
5401}
02b67cc3 5402EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5403
5404/*
5405 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5406 * call schedule, and on return reacquire the lock.
5407 *
41a2d6cf 5408 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5409 * operations here to prevent schedule() from being called twice (once via
5410 * spin_unlock(), once by hand).
5411 */
95cdf3b7 5412int cond_resched_lock(spinlock_t *lock)
1da177e4 5413{
95c354fe 5414 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5415 int ret = 0;
5416
95c354fe 5417 if (spin_needbreak(lock) || resched) {
1da177e4 5418 spin_unlock(lock);
95c354fe
NP
5419 if (resched && need_resched())
5420 __cond_resched();
5421 else
5422 cpu_relax();
6df3cecb 5423 ret = 1;
1da177e4 5424 spin_lock(lock);
1da177e4 5425 }
6df3cecb 5426 return ret;
1da177e4 5427}
1da177e4
LT
5428EXPORT_SYMBOL(cond_resched_lock);
5429
5430int __sched cond_resched_softirq(void)
5431{
5432 BUG_ON(!in_softirq());
5433
9414232f 5434 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5435 local_bh_enable();
1da177e4
LT
5436 __cond_resched();
5437 local_bh_disable();
5438 return 1;
5439 }
5440 return 0;
5441}
1da177e4
LT
5442EXPORT_SYMBOL(cond_resched_softirq);
5443
1da177e4
LT
5444/**
5445 * yield - yield the current processor to other threads.
5446 *
72fd4a35 5447 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5448 * thread runnable and calls sys_sched_yield().
5449 */
5450void __sched yield(void)
5451{
5452 set_current_state(TASK_RUNNING);
5453 sys_sched_yield();
5454}
1da177e4
LT
5455EXPORT_SYMBOL(yield);
5456
5457/*
41a2d6cf 5458 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5459 * that process accounting knows that this is a task in IO wait state.
5460 *
5461 * But don't do that if it is a deliberate, throttling IO wait (this task
5462 * has set its backing_dev_info: the queue against which it should throttle)
5463 */
5464void __sched io_schedule(void)
5465{
70b97a7f 5466 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5467
0ff92245 5468 delayacct_blkio_start();
1da177e4
LT
5469 atomic_inc(&rq->nr_iowait);
5470 schedule();
5471 atomic_dec(&rq->nr_iowait);
0ff92245 5472 delayacct_blkio_end();
1da177e4 5473}
1da177e4
LT
5474EXPORT_SYMBOL(io_schedule);
5475
5476long __sched io_schedule_timeout(long timeout)
5477{
70b97a7f 5478 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5479 long ret;
5480
0ff92245 5481 delayacct_blkio_start();
1da177e4
LT
5482 atomic_inc(&rq->nr_iowait);
5483 ret = schedule_timeout(timeout);
5484 atomic_dec(&rq->nr_iowait);
0ff92245 5485 delayacct_blkio_end();
1da177e4
LT
5486 return ret;
5487}
5488
5489/**
5490 * sys_sched_get_priority_max - return maximum RT priority.
5491 * @policy: scheduling class.
5492 *
5493 * this syscall returns the maximum rt_priority that can be used
5494 * by a given scheduling class.
5495 */
5496asmlinkage long sys_sched_get_priority_max(int policy)
5497{
5498 int ret = -EINVAL;
5499
5500 switch (policy) {
5501 case SCHED_FIFO:
5502 case SCHED_RR:
5503 ret = MAX_USER_RT_PRIO-1;
5504 break;
5505 case SCHED_NORMAL:
b0a9499c 5506 case SCHED_BATCH:
dd41f596 5507 case SCHED_IDLE:
1da177e4
LT
5508 ret = 0;
5509 break;
5510 }
5511 return ret;
5512}
5513
5514/**
5515 * sys_sched_get_priority_min - return minimum RT priority.
5516 * @policy: scheduling class.
5517 *
5518 * this syscall returns the minimum rt_priority that can be used
5519 * by a given scheduling class.
5520 */
5521asmlinkage long sys_sched_get_priority_min(int policy)
5522{
5523 int ret = -EINVAL;
5524
5525 switch (policy) {
5526 case SCHED_FIFO:
5527 case SCHED_RR:
5528 ret = 1;
5529 break;
5530 case SCHED_NORMAL:
b0a9499c 5531 case SCHED_BATCH:
dd41f596 5532 case SCHED_IDLE:
1da177e4
LT
5533 ret = 0;
5534 }
5535 return ret;
5536}
5537
5538/**
5539 * sys_sched_rr_get_interval - return the default timeslice of a process.
5540 * @pid: pid of the process.
5541 * @interval: userspace pointer to the timeslice value.
5542 *
5543 * this syscall writes the default timeslice value of a given process
5544 * into the user-space timespec buffer. A value of '0' means infinity.
5545 */
5546asmlinkage
5547long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5548{
36c8b586 5549 struct task_struct *p;
a4ec24b4 5550 unsigned int time_slice;
3a5c359a 5551 int retval;
1da177e4 5552 struct timespec t;
1da177e4
LT
5553
5554 if (pid < 0)
3a5c359a 5555 return -EINVAL;
1da177e4
LT
5556
5557 retval = -ESRCH;
5558 read_lock(&tasklist_lock);
5559 p = find_process_by_pid(pid);
5560 if (!p)
5561 goto out_unlock;
5562
5563 retval = security_task_getscheduler(p);
5564 if (retval)
5565 goto out_unlock;
5566
77034937
IM
5567 /*
5568 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5569 * tasks that are on an otherwise idle runqueue:
5570 */
5571 time_slice = 0;
5572 if (p->policy == SCHED_RR) {
a4ec24b4 5573 time_slice = DEF_TIMESLICE;
1868f958 5574 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5575 struct sched_entity *se = &p->se;
5576 unsigned long flags;
5577 struct rq *rq;
5578
5579 rq = task_rq_lock(p, &flags);
77034937
IM
5580 if (rq->cfs.load.weight)
5581 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5582 task_rq_unlock(rq, &flags);
5583 }
1da177e4 5584 read_unlock(&tasklist_lock);
a4ec24b4 5585 jiffies_to_timespec(time_slice, &t);
1da177e4 5586 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5587 return retval;
3a5c359a 5588
1da177e4
LT
5589out_unlock:
5590 read_unlock(&tasklist_lock);
5591 return retval;
5592}
5593
7c731e0a 5594static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5595
82a1fcb9 5596void sched_show_task(struct task_struct *p)
1da177e4 5597{
1da177e4 5598 unsigned long free = 0;
36c8b586 5599 unsigned state;
1da177e4 5600
1da177e4 5601 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5602 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5603 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5604#if BITS_PER_LONG == 32
1da177e4 5605 if (state == TASK_RUNNING)
cc4ea795 5606 printk(KERN_CONT " running ");
1da177e4 5607 else
cc4ea795 5608 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5609#else
5610 if (state == TASK_RUNNING)
cc4ea795 5611 printk(KERN_CONT " running task ");
1da177e4 5612 else
cc4ea795 5613 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5614#endif
5615#ifdef CONFIG_DEBUG_STACK_USAGE
5616 {
10ebffde 5617 unsigned long *n = end_of_stack(p);
1da177e4
LT
5618 while (!*n)
5619 n++;
10ebffde 5620 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5621 }
5622#endif
ba25f9dc 5623 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5624 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5625
5fb5e6de 5626 show_stack(p, NULL);
1da177e4
LT
5627}
5628
e59e2ae2 5629void show_state_filter(unsigned long state_filter)
1da177e4 5630{
36c8b586 5631 struct task_struct *g, *p;
1da177e4 5632
4bd77321
IM
5633#if BITS_PER_LONG == 32
5634 printk(KERN_INFO
5635 " task PC stack pid father\n");
1da177e4 5636#else
4bd77321
IM
5637 printk(KERN_INFO
5638 " task PC stack pid father\n");
1da177e4
LT
5639#endif
5640 read_lock(&tasklist_lock);
5641 do_each_thread(g, p) {
5642 /*
5643 * reset the NMI-timeout, listing all files on a slow
5644 * console might take alot of time:
5645 */
5646 touch_nmi_watchdog();
39bc89fd 5647 if (!state_filter || (p->state & state_filter))
82a1fcb9 5648 sched_show_task(p);
1da177e4
LT
5649 } while_each_thread(g, p);
5650
04c9167f
JF
5651 touch_all_softlockup_watchdogs();
5652
dd41f596
IM
5653#ifdef CONFIG_SCHED_DEBUG
5654 sysrq_sched_debug_show();
5655#endif
1da177e4 5656 read_unlock(&tasklist_lock);
e59e2ae2
IM
5657 /*
5658 * Only show locks if all tasks are dumped:
5659 */
5660 if (state_filter == -1)
5661 debug_show_all_locks();
1da177e4
LT
5662}
5663
1df21055
IM
5664void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5665{
dd41f596 5666 idle->sched_class = &idle_sched_class;
1df21055
IM
5667}
5668
f340c0d1
IM
5669/**
5670 * init_idle - set up an idle thread for a given CPU
5671 * @idle: task in question
5672 * @cpu: cpu the idle task belongs to
5673 *
5674 * NOTE: this function does not set the idle thread's NEED_RESCHED
5675 * flag, to make booting more robust.
5676 */
5c1e1767 5677void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5678{
70b97a7f 5679 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5680 unsigned long flags;
5681
dd41f596
IM
5682 __sched_fork(idle);
5683 idle->se.exec_start = sched_clock();
5684
b29739f9 5685 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5686 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5687 __set_task_cpu(idle, cpu);
1da177e4
LT
5688
5689 spin_lock_irqsave(&rq->lock, flags);
5690 rq->curr = rq->idle = idle;
4866cde0
NP
5691#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5692 idle->oncpu = 1;
5693#endif
1da177e4
LT
5694 spin_unlock_irqrestore(&rq->lock, flags);
5695
5696 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5697#if defined(CONFIG_PREEMPT)
5698 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5699#else
a1261f54 5700 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5701#endif
dd41f596
IM
5702 /*
5703 * The idle tasks have their own, simple scheduling class:
5704 */
5705 idle->sched_class = &idle_sched_class;
1da177e4
LT
5706}
5707
5708/*
5709 * In a system that switches off the HZ timer nohz_cpu_mask
5710 * indicates which cpus entered this state. This is used
5711 * in the rcu update to wait only for active cpus. For system
5712 * which do not switch off the HZ timer nohz_cpu_mask should
5713 * always be CPU_MASK_NONE.
5714 */
5715cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5716
19978ca6
IM
5717/*
5718 * Increase the granularity value when there are more CPUs,
5719 * because with more CPUs the 'effective latency' as visible
5720 * to users decreases. But the relationship is not linear,
5721 * so pick a second-best guess by going with the log2 of the
5722 * number of CPUs.
5723 *
5724 * This idea comes from the SD scheduler of Con Kolivas:
5725 */
5726static inline void sched_init_granularity(void)
5727{
5728 unsigned int factor = 1 + ilog2(num_online_cpus());
5729 const unsigned long limit = 200000000;
5730
5731 sysctl_sched_min_granularity *= factor;
5732 if (sysctl_sched_min_granularity > limit)
5733 sysctl_sched_min_granularity = limit;
5734
5735 sysctl_sched_latency *= factor;
5736 if (sysctl_sched_latency > limit)
5737 sysctl_sched_latency = limit;
5738
5739 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5740}
5741
1da177e4
LT
5742#ifdef CONFIG_SMP
5743/*
5744 * This is how migration works:
5745 *
70b97a7f 5746 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5747 * runqueue and wake up that CPU's migration thread.
5748 * 2) we down() the locked semaphore => thread blocks.
5749 * 3) migration thread wakes up (implicitly it forces the migrated
5750 * thread off the CPU)
5751 * 4) it gets the migration request and checks whether the migrated
5752 * task is still in the wrong runqueue.
5753 * 5) if it's in the wrong runqueue then the migration thread removes
5754 * it and puts it into the right queue.
5755 * 6) migration thread up()s the semaphore.
5756 * 7) we wake up and the migration is done.
5757 */
5758
5759/*
5760 * Change a given task's CPU affinity. Migrate the thread to a
5761 * proper CPU and schedule it away if the CPU it's executing on
5762 * is removed from the allowed bitmask.
5763 *
5764 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5765 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5766 * call is not atomic; no spinlocks may be held.
5767 */
cd8ba7cd 5768int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5769{
70b97a7f 5770 struct migration_req req;
1da177e4 5771 unsigned long flags;
70b97a7f 5772 struct rq *rq;
48f24c4d 5773 int ret = 0;
1da177e4
LT
5774
5775 rq = task_rq_lock(p, &flags);
cd8ba7cd 5776 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5777 ret = -EINVAL;
5778 goto out;
5779 }
5780
9985b0ba
DR
5781 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5782 !cpus_equal(p->cpus_allowed, *new_mask))) {
5783 ret = -EINVAL;
5784 goto out;
5785 }
5786
73fe6aae 5787 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5788 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5789 else {
cd8ba7cd
MT
5790 p->cpus_allowed = *new_mask;
5791 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5792 }
5793
1da177e4 5794 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5795 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5796 goto out;
5797
cd8ba7cd 5798 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5799 /* Need help from migration thread: drop lock and wait. */
5800 task_rq_unlock(rq, &flags);
5801 wake_up_process(rq->migration_thread);
5802 wait_for_completion(&req.done);
5803 tlb_migrate_finish(p->mm);
5804 return 0;
5805 }
5806out:
5807 task_rq_unlock(rq, &flags);
48f24c4d 5808
1da177e4
LT
5809 return ret;
5810}
cd8ba7cd 5811EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5812
5813/*
41a2d6cf 5814 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5815 * this because either it can't run here any more (set_cpus_allowed()
5816 * away from this CPU, or CPU going down), or because we're
5817 * attempting to rebalance this task on exec (sched_exec).
5818 *
5819 * So we race with normal scheduler movements, but that's OK, as long
5820 * as the task is no longer on this CPU.
efc30814
KK
5821 *
5822 * Returns non-zero if task was successfully migrated.
1da177e4 5823 */
efc30814 5824static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5825{
70b97a7f 5826 struct rq *rq_dest, *rq_src;
dd41f596 5827 int ret = 0, on_rq;
1da177e4 5828
e761b772 5829 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5830 return ret;
1da177e4
LT
5831
5832 rq_src = cpu_rq(src_cpu);
5833 rq_dest = cpu_rq(dest_cpu);
5834
5835 double_rq_lock(rq_src, rq_dest);
5836 /* Already moved. */
5837 if (task_cpu(p) != src_cpu)
b1e38734 5838 goto done;
1da177e4
LT
5839 /* Affinity changed (again). */
5840 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 5841 goto fail;
1da177e4 5842
dd41f596 5843 on_rq = p->se.on_rq;
6e82a3be 5844 if (on_rq)
2e1cb74a 5845 deactivate_task(rq_src, p, 0);
6e82a3be 5846
1da177e4 5847 set_task_cpu(p, dest_cpu);
dd41f596
IM
5848 if (on_rq) {
5849 activate_task(rq_dest, p, 0);
5850 check_preempt_curr(rq_dest, p);
1da177e4 5851 }
b1e38734 5852done:
efc30814 5853 ret = 1;
b1e38734 5854fail:
1da177e4 5855 double_rq_unlock(rq_src, rq_dest);
efc30814 5856 return ret;
1da177e4
LT
5857}
5858
5859/*
5860 * migration_thread - this is a highprio system thread that performs
5861 * thread migration by bumping thread off CPU then 'pushing' onto
5862 * another runqueue.
5863 */
95cdf3b7 5864static int migration_thread(void *data)
1da177e4 5865{
1da177e4 5866 int cpu = (long)data;
70b97a7f 5867 struct rq *rq;
1da177e4
LT
5868
5869 rq = cpu_rq(cpu);
5870 BUG_ON(rq->migration_thread != current);
5871
5872 set_current_state(TASK_INTERRUPTIBLE);
5873 while (!kthread_should_stop()) {
70b97a7f 5874 struct migration_req *req;
1da177e4 5875 struct list_head *head;
1da177e4 5876
1da177e4
LT
5877 spin_lock_irq(&rq->lock);
5878
5879 if (cpu_is_offline(cpu)) {
5880 spin_unlock_irq(&rq->lock);
5881 goto wait_to_die;
5882 }
5883
5884 if (rq->active_balance) {
5885 active_load_balance(rq, cpu);
5886 rq->active_balance = 0;
5887 }
5888
5889 head = &rq->migration_queue;
5890
5891 if (list_empty(head)) {
5892 spin_unlock_irq(&rq->lock);
5893 schedule();
5894 set_current_state(TASK_INTERRUPTIBLE);
5895 continue;
5896 }
70b97a7f 5897 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5898 list_del_init(head->next);
5899
674311d5
NP
5900 spin_unlock(&rq->lock);
5901 __migrate_task(req->task, cpu, req->dest_cpu);
5902 local_irq_enable();
1da177e4
LT
5903
5904 complete(&req->done);
5905 }
5906 __set_current_state(TASK_RUNNING);
5907 return 0;
5908
5909wait_to_die:
5910 /* Wait for kthread_stop */
5911 set_current_state(TASK_INTERRUPTIBLE);
5912 while (!kthread_should_stop()) {
5913 schedule();
5914 set_current_state(TASK_INTERRUPTIBLE);
5915 }
5916 __set_current_state(TASK_RUNNING);
5917 return 0;
5918}
5919
5920#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5921
5922static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5923{
5924 int ret;
5925
5926 local_irq_disable();
5927 ret = __migrate_task(p, src_cpu, dest_cpu);
5928 local_irq_enable();
5929 return ret;
5930}
5931
054b9108 5932/*
3a4fa0a2 5933 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5934 * NOTE: interrupts should be disabled by the caller
5935 */
48f24c4d 5936static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5937{
efc30814 5938 unsigned long flags;
1da177e4 5939 cpumask_t mask;
70b97a7f
IM
5940 struct rq *rq;
5941 int dest_cpu;
1da177e4 5942
3a5c359a
AK
5943 do {
5944 /* On same node? */
5945 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5946 cpus_and(mask, mask, p->cpus_allowed);
5947 dest_cpu = any_online_cpu(mask);
5948
5949 /* On any allowed CPU? */
434d53b0 5950 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5951 dest_cpu = any_online_cpu(p->cpus_allowed);
5952
5953 /* No more Mr. Nice Guy. */
434d53b0 5954 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5955 cpumask_t cpus_allowed;
5956
5957 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5958 /*
5959 * Try to stay on the same cpuset, where the
5960 * current cpuset may be a subset of all cpus.
5961 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5962 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5963 * called within calls to cpuset_lock/cpuset_unlock.
5964 */
3a5c359a 5965 rq = task_rq_lock(p, &flags);
470fd646 5966 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5967 dest_cpu = any_online_cpu(p->cpus_allowed);
5968 task_rq_unlock(rq, &flags);
1da177e4 5969
3a5c359a
AK
5970 /*
5971 * Don't tell them about moving exiting tasks or
5972 * kernel threads (both mm NULL), since they never
5973 * leave kernel.
5974 */
41a2d6cf 5975 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5976 printk(KERN_INFO "process %d (%s) no "
5977 "longer affine to cpu%d\n",
41a2d6cf
IM
5978 task_pid_nr(p), p->comm, dead_cpu);
5979 }
3a5c359a 5980 }
f7b4cddc 5981 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5982}
5983
5984/*
5985 * While a dead CPU has no uninterruptible tasks queued at this point,
5986 * it might still have a nonzero ->nr_uninterruptible counter, because
5987 * for performance reasons the counter is not stricly tracking tasks to
5988 * their home CPUs. So we just add the counter to another CPU's counter,
5989 * to keep the global sum constant after CPU-down:
5990 */
70b97a7f 5991static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5992{
7c16ec58 5993 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5994 unsigned long flags;
5995
5996 local_irq_save(flags);
5997 double_rq_lock(rq_src, rq_dest);
5998 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5999 rq_src->nr_uninterruptible = 0;
6000 double_rq_unlock(rq_src, rq_dest);
6001 local_irq_restore(flags);
6002}
6003
6004/* Run through task list and migrate tasks from the dead cpu. */
6005static void migrate_live_tasks(int src_cpu)
6006{
48f24c4d 6007 struct task_struct *p, *t;
1da177e4 6008
f7b4cddc 6009 read_lock(&tasklist_lock);
1da177e4 6010
48f24c4d
IM
6011 do_each_thread(t, p) {
6012 if (p == current)
1da177e4
LT
6013 continue;
6014
48f24c4d
IM
6015 if (task_cpu(p) == src_cpu)
6016 move_task_off_dead_cpu(src_cpu, p);
6017 } while_each_thread(t, p);
1da177e4 6018
f7b4cddc 6019 read_unlock(&tasklist_lock);
1da177e4
LT
6020}
6021
dd41f596
IM
6022/*
6023 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6024 * It does so by boosting its priority to highest possible.
6025 * Used by CPU offline code.
1da177e4
LT
6026 */
6027void sched_idle_next(void)
6028{
48f24c4d 6029 int this_cpu = smp_processor_id();
70b97a7f 6030 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6031 struct task_struct *p = rq->idle;
6032 unsigned long flags;
6033
6034 /* cpu has to be offline */
48f24c4d 6035 BUG_ON(cpu_online(this_cpu));
1da177e4 6036
48f24c4d
IM
6037 /*
6038 * Strictly not necessary since rest of the CPUs are stopped by now
6039 * and interrupts disabled on the current cpu.
1da177e4
LT
6040 */
6041 spin_lock_irqsave(&rq->lock, flags);
6042
dd41f596 6043 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6044
94bc9a7b
DA
6045 update_rq_clock(rq);
6046 activate_task(rq, p, 0);
1da177e4
LT
6047
6048 spin_unlock_irqrestore(&rq->lock, flags);
6049}
6050
48f24c4d
IM
6051/*
6052 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6053 * offline.
6054 */
6055void idle_task_exit(void)
6056{
6057 struct mm_struct *mm = current->active_mm;
6058
6059 BUG_ON(cpu_online(smp_processor_id()));
6060
6061 if (mm != &init_mm)
6062 switch_mm(mm, &init_mm, current);
6063 mmdrop(mm);
6064}
6065
054b9108 6066/* called under rq->lock with disabled interrupts */
36c8b586 6067static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6068{
70b97a7f 6069 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6070
6071 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6072 BUG_ON(!p->exit_state);
1da177e4
LT
6073
6074 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6075 BUG_ON(p->state == TASK_DEAD);
1da177e4 6076
48f24c4d 6077 get_task_struct(p);
1da177e4
LT
6078
6079 /*
6080 * Drop lock around migration; if someone else moves it,
41a2d6cf 6081 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6082 * fine.
6083 */
f7b4cddc 6084 spin_unlock_irq(&rq->lock);
48f24c4d 6085 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6086 spin_lock_irq(&rq->lock);
1da177e4 6087
48f24c4d 6088 put_task_struct(p);
1da177e4
LT
6089}
6090
6091/* release_task() removes task from tasklist, so we won't find dead tasks. */
6092static void migrate_dead_tasks(unsigned int dead_cpu)
6093{
70b97a7f 6094 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6095 struct task_struct *next;
48f24c4d 6096
dd41f596
IM
6097 for ( ; ; ) {
6098 if (!rq->nr_running)
6099 break;
a8e504d2 6100 update_rq_clock(rq);
ff95f3df 6101 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6102 if (!next)
6103 break;
79c53799 6104 next->sched_class->put_prev_task(rq, next);
dd41f596 6105 migrate_dead(dead_cpu, next);
e692ab53 6106
1da177e4
LT
6107 }
6108}
6109#endif /* CONFIG_HOTPLUG_CPU */
6110
e692ab53
NP
6111#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6112
6113static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6114 {
6115 .procname = "sched_domain",
c57baf1e 6116 .mode = 0555,
e0361851 6117 },
38605cae 6118 {0, },
e692ab53
NP
6119};
6120
6121static struct ctl_table sd_ctl_root[] = {
e0361851 6122 {
c57baf1e 6123 .ctl_name = CTL_KERN,
e0361851 6124 .procname = "kernel",
c57baf1e 6125 .mode = 0555,
e0361851
AD
6126 .child = sd_ctl_dir,
6127 },
38605cae 6128 {0, },
e692ab53
NP
6129};
6130
6131static struct ctl_table *sd_alloc_ctl_entry(int n)
6132{
6133 struct ctl_table *entry =
5cf9f062 6134 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6135
e692ab53
NP
6136 return entry;
6137}
6138
6382bc90
MM
6139static void sd_free_ctl_entry(struct ctl_table **tablep)
6140{
cd790076 6141 struct ctl_table *entry;
6382bc90 6142
cd790076
MM
6143 /*
6144 * In the intermediate directories, both the child directory and
6145 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6146 * will always be set. In the lowest directory the names are
cd790076
MM
6147 * static strings and all have proc handlers.
6148 */
6149 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6150 if (entry->child)
6151 sd_free_ctl_entry(&entry->child);
cd790076
MM
6152 if (entry->proc_handler == NULL)
6153 kfree(entry->procname);
6154 }
6382bc90
MM
6155
6156 kfree(*tablep);
6157 *tablep = NULL;
6158}
6159
e692ab53 6160static void
e0361851 6161set_table_entry(struct ctl_table *entry,
e692ab53
NP
6162 const char *procname, void *data, int maxlen,
6163 mode_t mode, proc_handler *proc_handler)
6164{
e692ab53
NP
6165 entry->procname = procname;
6166 entry->data = data;
6167 entry->maxlen = maxlen;
6168 entry->mode = mode;
6169 entry->proc_handler = proc_handler;
6170}
6171
6172static struct ctl_table *
6173sd_alloc_ctl_domain_table(struct sched_domain *sd)
6174{
ace8b3d6 6175 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6176
ad1cdc1d
MM
6177 if (table == NULL)
6178 return NULL;
6179
e0361851 6180 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6181 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6182 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6183 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6184 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6185 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6186 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6187 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6188 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6189 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6190 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6191 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6192 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6193 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6194 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6195 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6196 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6197 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6198 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6199 &sd->cache_nice_tries,
6200 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6201 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6202 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6203 /* &table[11] is terminator */
e692ab53
NP
6204
6205 return table;
6206}
6207
9a4e7159 6208static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6209{
6210 struct ctl_table *entry, *table;
6211 struct sched_domain *sd;
6212 int domain_num = 0, i;
6213 char buf[32];
6214
6215 for_each_domain(cpu, sd)
6216 domain_num++;
6217 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6218 if (table == NULL)
6219 return NULL;
e692ab53
NP
6220
6221 i = 0;
6222 for_each_domain(cpu, sd) {
6223 snprintf(buf, 32, "domain%d", i);
e692ab53 6224 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6225 entry->mode = 0555;
e692ab53
NP
6226 entry->child = sd_alloc_ctl_domain_table(sd);
6227 entry++;
6228 i++;
6229 }
6230 return table;
6231}
6232
6233static struct ctl_table_header *sd_sysctl_header;
6382bc90 6234static void register_sched_domain_sysctl(void)
e692ab53
NP
6235{
6236 int i, cpu_num = num_online_cpus();
6237 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6238 char buf[32];
6239
7378547f
MM
6240 WARN_ON(sd_ctl_dir[0].child);
6241 sd_ctl_dir[0].child = entry;
6242
ad1cdc1d
MM
6243 if (entry == NULL)
6244 return;
6245
97b6ea7b 6246 for_each_online_cpu(i) {
e692ab53 6247 snprintf(buf, 32, "cpu%d", i);
e692ab53 6248 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6249 entry->mode = 0555;
e692ab53 6250 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6251 entry++;
e692ab53 6252 }
7378547f
MM
6253
6254 WARN_ON(sd_sysctl_header);
e692ab53
NP
6255 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6256}
6382bc90 6257
7378547f 6258/* may be called multiple times per register */
6382bc90
MM
6259static void unregister_sched_domain_sysctl(void)
6260{
7378547f
MM
6261 if (sd_sysctl_header)
6262 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6263 sd_sysctl_header = NULL;
7378547f
MM
6264 if (sd_ctl_dir[0].child)
6265 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6266}
e692ab53 6267#else
6382bc90
MM
6268static void register_sched_domain_sysctl(void)
6269{
6270}
6271static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6272{
6273}
6274#endif
6275
1f11eb6a
GH
6276static void set_rq_online(struct rq *rq)
6277{
6278 if (!rq->online) {
6279 const struct sched_class *class;
6280
6281 cpu_set(rq->cpu, rq->rd->online);
6282 rq->online = 1;
6283
6284 for_each_class(class) {
6285 if (class->rq_online)
6286 class->rq_online(rq);
6287 }
6288 }
6289}
6290
6291static void set_rq_offline(struct rq *rq)
6292{
6293 if (rq->online) {
6294 const struct sched_class *class;
6295
6296 for_each_class(class) {
6297 if (class->rq_offline)
6298 class->rq_offline(rq);
6299 }
6300
6301 cpu_clear(rq->cpu, rq->rd->online);
6302 rq->online = 0;
6303 }
6304}
6305
1da177e4
LT
6306/*
6307 * migration_call - callback that gets triggered when a CPU is added.
6308 * Here we can start up the necessary migration thread for the new CPU.
6309 */
48f24c4d
IM
6310static int __cpuinit
6311migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6312{
1da177e4 6313 struct task_struct *p;
48f24c4d 6314 int cpu = (long)hcpu;
1da177e4 6315 unsigned long flags;
70b97a7f 6316 struct rq *rq;
1da177e4
LT
6317
6318 switch (action) {
5be9361c 6319
1da177e4 6320 case CPU_UP_PREPARE:
8bb78442 6321 case CPU_UP_PREPARE_FROZEN:
dd41f596 6322 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6323 if (IS_ERR(p))
6324 return NOTIFY_BAD;
1da177e4
LT
6325 kthread_bind(p, cpu);
6326 /* Must be high prio: stop_machine expects to yield to it. */
6327 rq = task_rq_lock(p, &flags);
dd41f596 6328 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6329 task_rq_unlock(rq, &flags);
6330 cpu_rq(cpu)->migration_thread = p;
6331 break;
48f24c4d 6332
1da177e4 6333 case CPU_ONLINE:
8bb78442 6334 case CPU_ONLINE_FROZEN:
3a4fa0a2 6335 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6336 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6337
6338 /* Update our root-domain */
6339 rq = cpu_rq(cpu);
6340 spin_lock_irqsave(&rq->lock, flags);
6341 if (rq->rd) {
6342 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6343
6344 set_rq_online(rq);
1f94ef59
GH
6345 }
6346 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6347 break;
48f24c4d 6348
1da177e4
LT
6349#ifdef CONFIG_HOTPLUG_CPU
6350 case CPU_UP_CANCELED:
8bb78442 6351 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6352 if (!cpu_rq(cpu)->migration_thread)
6353 break;
41a2d6cf 6354 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6355 kthread_bind(cpu_rq(cpu)->migration_thread,
6356 any_online_cpu(cpu_online_map));
1da177e4
LT
6357 kthread_stop(cpu_rq(cpu)->migration_thread);
6358 cpu_rq(cpu)->migration_thread = NULL;
6359 break;
48f24c4d 6360
1da177e4 6361 case CPU_DEAD:
8bb78442 6362 case CPU_DEAD_FROZEN:
470fd646 6363 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6364 migrate_live_tasks(cpu);
6365 rq = cpu_rq(cpu);
6366 kthread_stop(rq->migration_thread);
6367 rq->migration_thread = NULL;
6368 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6369 spin_lock_irq(&rq->lock);
a8e504d2 6370 update_rq_clock(rq);
2e1cb74a 6371 deactivate_task(rq, rq->idle, 0);
1da177e4 6372 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6373 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6374 rq->idle->sched_class = &idle_sched_class;
1da177e4 6375 migrate_dead_tasks(cpu);
d2da272a 6376 spin_unlock_irq(&rq->lock);
470fd646 6377 cpuset_unlock();
1da177e4
LT
6378 migrate_nr_uninterruptible(rq);
6379 BUG_ON(rq->nr_running != 0);
6380
41a2d6cf
IM
6381 /*
6382 * No need to migrate the tasks: it was best-effort if
6383 * they didn't take sched_hotcpu_mutex. Just wake up
6384 * the requestors.
6385 */
1da177e4
LT
6386 spin_lock_irq(&rq->lock);
6387 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6388 struct migration_req *req;
6389
1da177e4 6390 req = list_entry(rq->migration_queue.next,
70b97a7f 6391 struct migration_req, list);
1da177e4
LT
6392 list_del_init(&req->list);
6393 complete(&req->done);
6394 }
6395 spin_unlock_irq(&rq->lock);
6396 break;
57d885fe 6397
08f503b0
GH
6398 case CPU_DYING:
6399 case CPU_DYING_FROZEN:
57d885fe
GH
6400 /* Update our root-domain */
6401 rq = cpu_rq(cpu);
6402 spin_lock_irqsave(&rq->lock, flags);
6403 if (rq->rd) {
6404 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6405 set_rq_offline(rq);
57d885fe
GH
6406 }
6407 spin_unlock_irqrestore(&rq->lock, flags);
6408 break;
1da177e4
LT
6409#endif
6410 }
6411 return NOTIFY_OK;
6412}
6413
6414/* Register at highest priority so that task migration (migrate_all_tasks)
6415 * happens before everything else.
6416 */
26c2143b 6417static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6418 .notifier_call = migration_call,
6419 .priority = 10
6420};
6421
7babe8db 6422static int __init migration_init(void)
1da177e4
LT
6423{
6424 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6425 int err;
48f24c4d
IM
6426
6427 /* Start one for the boot CPU: */
07dccf33
AM
6428 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6429 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6430 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6431 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6432
6433 return err;
1da177e4 6434}
7babe8db 6435early_initcall(migration_init);
1da177e4
LT
6436#endif
6437
6438#ifdef CONFIG_SMP
476f3534 6439
3e9830dc 6440#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6441
099f98c8
GS
6442static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6443{
6444 switch (lvl) {
6445 case SD_LV_NONE:
6446 return "NONE";
6447 case SD_LV_SIBLING:
6448 return "SIBLING";
6449 case SD_LV_MC:
6450 return "MC";
6451 case SD_LV_CPU:
6452 return "CPU";
6453 case SD_LV_NODE:
6454 return "NODE";
6455 case SD_LV_ALLNODES:
6456 return "ALLNODES";
6457 case SD_LV_MAX:
6458 return "MAX";
6459
6460 }
6461 return "MAX";
6462}
6463
7c16ec58
MT
6464static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6465 cpumask_t *groupmask)
1da177e4 6466{
4dcf6aff 6467 struct sched_group *group = sd->groups;
434d53b0 6468 char str[256];
1da177e4 6469
434d53b0 6470 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6471 cpus_clear(*groupmask);
4dcf6aff
IM
6472
6473 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6474
6475 if (!(sd->flags & SD_LOAD_BALANCE)) {
6476 printk("does not load-balance\n");
6477 if (sd->parent)
6478 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6479 " has parent");
6480 return -1;
41c7ce9a
NP
6481 }
6482
099f98c8
GS
6483 printk(KERN_CONT "span %s level %s\n",
6484 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6485
6486 if (!cpu_isset(cpu, sd->span)) {
6487 printk(KERN_ERR "ERROR: domain->span does not contain "
6488 "CPU%d\n", cpu);
6489 }
6490 if (!cpu_isset(cpu, group->cpumask)) {
6491 printk(KERN_ERR "ERROR: domain->groups does not contain"
6492 " CPU%d\n", cpu);
6493 }
1da177e4 6494
4dcf6aff 6495 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6496 do {
4dcf6aff
IM
6497 if (!group) {
6498 printk("\n");
6499 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6500 break;
6501 }
6502
4dcf6aff
IM
6503 if (!group->__cpu_power) {
6504 printk(KERN_CONT "\n");
6505 printk(KERN_ERR "ERROR: domain->cpu_power not "
6506 "set\n");
6507 break;
6508 }
1da177e4 6509
4dcf6aff
IM
6510 if (!cpus_weight(group->cpumask)) {
6511 printk(KERN_CONT "\n");
6512 printk(KERN_ERR "ERROR: empty group\n");
6513 break;
6514 }
1da177e4 6515
7c16ec58 6516 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6517 printk(KERN_CONT "\n");
6518 printk(KERN_ERR "ERROR: repeated CPUs\n");
6519 break;
6520 }
1da177e4 6521
7c16ec58 6522 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6523
434d53b0 6524 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6525 printk(KERN_CONT " %s", str);
1da177e4 6526
4dcf6aff
IM
6527 group = group->next;
6528 } while (group != sd->groups);
6529 printk(KERN_CONT "\n");
1da177e4 6530
7c16ec58 6531 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6532 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6533
7c16ec58 6534 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6535 printk(KERN_ERR "ERROR: parent span is not a superset "
6536 "of domain->span\n");
6537 return 0;
6538}
1da177e4 6539
4dcf6aff
IM
6540static void sched_domain_debug(struct sched_domain *sd, int cpu)
6541{
7c16ec58 6542 cpumask_t *groupmask;
4dcf6aff 6543 int level = 0;
1da177e4 6544
4dcf6aff
IM
6545 if (!sd) {
6546 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6547 return;
6548 }
1da177e4 6549
4dcf6aff
IM
6550 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6551
7c16ec58
MT
6552 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6553 if (!groupmask) {
6554 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6555 return;
6556 }
6557
4dcf6aff 6558 for (;;) {
7c16ec58 6559 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6560 break;
1da177e4
LT
6561 level++;
6562 sd = sd->parent;
33859f7f 6563 if (!sd)
4dcf6aff
IM
6564 break;
6565 }
7c16ec58 6566 kfree(groupmask);
1da177e4 6567}
6d6bc0ad 6568#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6569# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6570#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6571
1a20ff27 6572static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6573{
6574 if (cpus_weight(sd->span) == 1)
6575 return 1;
6576
6577 /* Following flags need at least 2 groups */
6578 if (sd->flags & (SD_LOAD_BALANCE |
6579 SD_BALANCE_NEWIDLE |
6580 SD_BALANCE_FORK |
89c4710e
SS
6581 SD_BALANCE_EXEC |
6582 SD_SHARE_CPUPOWER |
6583 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6584 if (sd->groups != sd->groups->next)
6585 return 0;
6586 }
6587
6588 /* Following flags don't use groups */
6589 if (sd->flags & (SD_WAKE_IDLE |
6590 SD_WAKE_AFFINE |
6591 SD_WAKE_BALANCE))
6592 return 0;
6593
6594 return 1;
6595}
6596
48f24c4d
IM
6597static int
6598sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6599{
6600 unsigned long cflags = sd->flags, pflags = parent->flags;
6601
6602 if (sd_degenerate(parent))
6603 return 1;
6604
6605 if (!cpus_equal(sd->span, parent->span))
6606 return 0;
6607
6608 /* Does parent contain flags not in child? */
6609 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6610 if (cflags & SD_WAKE_AFFINE)
6611 pflags &= ~SD_WAKE_BALANCE;
6612 /* Flags needing groups don't count if only 1 group in parent */
6613 if (parent->groups == parent->groups->next) {
6614 pflags &= ~(SD_LOAD_BALANCE |
6615 SD_BALANCE_NEWIDLE |
6616 SD_BALANCE_FORK |
89c4710e
SS
6617 SD_BALANCE_EXEC |
6618 SD_SHARE_CPUPOWER |
6619 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6620 }
6621 if (~cflags & pflags)
6622 return 0;
6623
6624 return 1;
6625}
6626
57d885fe
GH
6627static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6628{
6629 unsigned long flags;
57d885fe
GH
6630
6631 spin_lock_irqsave(&rq->lock, flags);
6632
6633 if (rq->rd) {
6634 struct root_domain *old_rd = rq->rd;
6635
1f11eb6a
GH
6636 if (cpu_isset(rq->cpu, old_rd->online))
6637 set_rq_offline(rq);
57d885fe 6638
dc938520 6639 cpu_clear(rq->cpu, old_rd->span);
dc938520 6640
57d885fe
GH
6641 if (atomic_dec_and_test(&old_rd->refcount))
6642 kfree(old_rd);
6643 }
6644
6645 atomic_inc(&rd->refcount);
6646 rq->rd = rd;
6647
dc938520 6648 cpu_set(rq->cpu, rd->span);
1f94ef59 6649 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6650 set_rq_online(rq);
57d885fe
GH
6651
6652 spin_unlock_irqrestore(&rq->lock, flags);
6653}
6654
dc938520 6655static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6656{
6657 memset(rd, 0, sizeof(*rd));
6658
dc938520
GH
6659 cpus_clear(rd->span);
6660 cpus_clear(rd->online);
6e0534f2
GH
6661
6662 cpupri_init(&rd->cpupri);
57d885fe
GH
6663}
6664
6665static void init_defrootdomain(void)
6666{
dc938520 6667 init_rootdomain(&def_root_domain);
57d885fe
GH
6668 atomic_set(&def_root_domain.refcount, 1);
6669}
6670
dc938520 6671static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6672{
6673 struct root_domain *rd;
6674
6675 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6676 if (!rd)
6677 return NULL;
6678
dc938520 6679 init_rootdomain(rd);
57d885fe
GH
6680
6681 return rd;
6682}
6683
1da177e4 6684/*
0eab9146 6685 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6686 * hold the hotplug lock.
6687 */
0eab9146
IM
6688static void
6689cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6690{
70b97a7f 6691 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6692 struct sched_domain *tmp;
6693
6694 /* Remove the sched domains which do not contribute to scheduling. */
6695 for (tmp = sd; tmp; tmp = tmp->parent) {
6696 struct sched_domain *parent = tmp->parent;
6697 if (!parent)
6698 break;
1a848870 6699 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6700 tmp->parent = parent->parent;
1a848870
SS
6701 if (parent->parent)
6702 parent->parent->child = tmp;
6703 }
245af2c7
SS
6704 }
6705
1a848870 6706 if (sd && sd_degenerate(sd)) {
245af2c7 6707 sd = sd->parent;
1a848870
SS
6708 if (sd)
6709 sd->child = NULL;
6710 }
1da177e4
LT
6711
6712 sched_domain_debug(sd, cpu);
6713
57d885fe 6714 rq_attach_root(rq, rd);
674311d5 6715 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6716}
6717
6718/* cpus with isolated domains */
67af63a6 6719static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6720
6721/* Setup the mask of cpus configured for isolated domains */
6722static int __init isolated_cpu_setup(char *str)
6723{
13b40c1e
MT
6724 static int __initdata ints[NR_CPUS];
6725 int i;
1da177e4
LT
6726
6727 str = get_options(str, ARRAY_SIZE(ints), ints);
6728 cpus_clear(cpu_isolated_map);
6729 for (i = 1; i <= ints[0]; i++)
6730 if (ints[i] < NR_CPUS)
6731 cpu_set(ints[i], cpu_isolated_map);
6732 return 1;
6733}
6734
8927f494 6735__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6736
6737/*
6711cab4
SS
6738 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6739 * to a function which identifies what group(along with sched group) a CPU
6740 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6741 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6742 *
6743 * init_sched_build_groups will build a circular linked list of the groups
6744 * covered by the given span, and will set each group's ->cpumask correctly,
6745 * and ->cpu_power to 0.
6746 */
a616058b 6747static void
7c16ec58 6748init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6749 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6750 struct sched_group **sg,
6751 cpumask_t *tmpmask),
6752 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6753{
6754 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6755 int i;
6756
7c16ec58
MT
6757 cpus_clear(*covered);
6758
363ab6f1 6759 for_each_cpu_mask_nr(i, *span) {
6711cab4 6760 struct sched_group *sg;
7c16ec58 6761 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6762 int j;
6763
7c16ec58 6764 if (cpu_isset(i, *covered))
1da177e4
LT
6765 continue;
6766
7c16ec58 6767 cpus_clear(sg->cpumask);
5517d86b 6768 sg->__cpu_power = 0;
1da177e4 6769
363ab6f1 6770 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6771 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6772 continue;
6773
7c16ec58 6774 cpu_set(j, *covered);
1da177e4
LT
6775 cpu_set(j, sg->cpumask);
6776 }
6777 if (!first)
6778 first = sg;
6779 if (last)
6780 last->next = sg;
6781 last = sg;
6782 }
6783 last->next = first;
6784}
6785
9c1cfda2 6786#define SD_NODES_PER_DOMAIN 16
1da177e4 6787
9c1cfda2 6788#ifdef CONFIG_NUMA
198e2f18 6789
9c1cfda2
JH
6790/**
6791 * find_next_best_node - find the next node to include in a sched_domain
6792 * @node: node whose sched_domain we're building
6793 * @used_nodes: nodes already in the sched_domain
6794 *
41a2d6cf 6795 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6796 * finds the closest node not already in the @used_nodes map.
6797 *
6798 * Should use nodemask_t.
6799 */
c5f59f08 6800static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6801{
6802 int i, n, val, min_val, best_node = 0;
6803
6804 min_val = INT_MAX;
6805
076ac2af 6806 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6807 /* Start at @node */
076ac2af 6808 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6809
6810 if (!nr_cpus_node(n))
6811 continue;
6812
6813 /* Skip already used nodes */
c5f59f08 6814 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6815 continue;
6816
6817 /* Simple min distance search */
6818 val = node_distance(node, n);
6819
6820 if (val < min_val) {
6821 min_val = val;
6822 best_node = n;
6823 }
6824 }
6825
c5f59f08 6826 node_set(best_node, *used_nodes);
9c1cfda2
JH
6827 return best_node;
6828}
6829
6830/**
6831 * sched_domain_node_span - get a cpumask for a node's sched_domain
6832 * @node: node whose cpumask we're constructing
73486722 6833 * @span: resulting cpumask
9c1cfda2 6834 *
41a2d6cf 6835 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6836 * should be one that prevents unnecessary balancing, but also spreads tasks
6837 * out optimally.
6838 */
4bdbaad3 6839static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6840{
c5f59f08 6841 nodemask_t used_nodes;
c5f59f08 6842 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6843 int i;
9c1cfda2 6844
4bdbaad3 6845 cpus_clear(*span);
c5f59f08 6846 nodes_clear(used_nodes);
9c1cfda2 6847
4bdbaad3 6848 cpus_or(*span, *span, *nodemask);
c5f59f08 6849 node_set(node, used_nodes);
9c1cfda2
JH
6850
6851 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6852 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6853
c5f59f08 6854 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6855 cpus_or(*span, *span, *nodemask);
9c1cfda2 6856 }
9c1cfda2 6857}
6d6bc0ad 6858#endif /* CONFIG_NUMA */
9c1cfda2 6859
5c45bf27 6860int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6861
9c1cfda2 6862/*
48f24c4d 6863 * SMT sched-domains:
9c1cfda2 6864 */
1da177e4
LT
6865#ifdef CONFIG_SCHED_SMT
6866static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6867static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6868
41a2d6cf 6869static int
7c16ec58
MT
6870cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6871 cpumask_t *unused)
1da177e4 6872{
6711cab4
SS
6873 if (sg)
6874 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6875 return cpu;
6876}
6d6bc0ad 6877#endif /* CONFIG_SCHED_SMT */
1da177e4 6878
48f24c4d
IM
6879/*
6880 * multi-core sched-domains:
6881 */
1e9f28fa
SS
6882#ifdef CONFIG_SCHED_MC
6883static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6884static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6885#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6886
6887#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6888static int
7c16ec58
MT
6889cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6890 cpumask_t *mask)
1e9f28fa 6891{
6711cab4 6892 int group;
7c16ec58
MT
6893
6894 *mask = per_cpu(cpu_sibling_map, cpu);
6895 cpus_and(*mask, *mask, *cpu_map);
6896 group = first_cpu(*mask);
6711cab4
SS
6897 if (sg)
6898 *sg = &per_cpu(sched_group_core, group);
6899 return group;
1e9f28fa
SS
6900}
6901#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6902static int
7c16ec58
MT
6903cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6904 cpumask_t *unused)
1e9f28fa 6905{
6711cab4
SS
6906 if (sg)
6907 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6908 return cpu;
6909}
6910#endif
6911
1da177e4 6912static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6913static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6914
41a2d6cf 6915static int
7c16ec58
MT
6916cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6917 cpumask_t *mask)
1da177e4 6918{
6711cab4 6919 int group;
48f24c4d 6920#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6921 *mask = cpu_coregroup_map(cpu);
6922 cpus_and(*mask, *mask, *cpu_map);
6923 group = first_cpu(*mask);
1e9f28fa 6924#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6925 *mask = per_cpu(cpu_sibling_map, cpu);
6926 cpus_and(*mask, *mask, *cpu_map);
6927 group = first_cpu(*mask);
1da177e4 6928#else
6711cab4 6929 group = cpu;
1da177e4 6930#endif
6711cab4
SS
6931 if (sg)
6932 *sg = &per_cpu(sched_group_phys, group);
6933 return group;
1da177e4
LT
6934}
6935
6936#ifdef CONFIG_NUMA
1da177e4 6937/*
9c1cfda2
JH
6938 * The init_sched_build_groups can't handle what we want to do with node
6939 * groups, so roll our own. Now each node has its own list of groups which
6940 * gets dynamically allocated.
1da177e4 6941 */
9c1cfda2 6942static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6943static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6944
9c1cfda2 6945static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6946static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6947
6711cab4 6948static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6949 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6950{
6711cab4
SS
6951 int group;
6952
7c16ec58
MT
6953 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6954 cpus_and(*nodemask, *nodemask, *cpu_map);
6955 group = first_cpu(*nodemask);
6711cab4
SS
6956
6957 if (sg)
6958 *sg = &per_cpu(sched_group_allnodes, group);
6959 return group;
1da177e4 6960}
6711cab4 6961
08069033
SS
6962static void init_numa_sched_groups_power(struct sched_group *group_head)
6963{
6964 struct sched_group *sg = group_head;
6965 int j;
6966
6967 if (!sg)
6968 return;
3a5c359a 6969 do {
363ab6f1 6970 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 6971 struct sched_domain *sd;
08069033 6972
3a5c359a
AK
6973 sd = &per_cpu(phys_domains, j);
6974 if (j != first_cpu(sd->groups->cpumask)) {
6975 /*
6976 * Only add "power" once for each
6977 * physical package.
6978 */
6979 continue;
6980 }
08069033 6981
3a5c359a
AK
6982 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6983 }
6984 sg = sg->next;
6985 } while (sg != group_head);
08069033 6986}
6d6bc0ad 6987#endif /* CONFIG_NUMA */
1da177e4 6988
a616058b 6989#ifdef CONFIG_NUMA
51888ca2 6990/* Free memory allocated for various sched_group structures */
7c16ec58 6991static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6992{
a616058b 6993 int cpu, i;
51888ca2 6994
363ab6f1 6995 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
6996 struct sched_group **sched_group_nodes
6997 = sched_group_nodes_bycpu[cpu];
6998
51888ca2
SV
6999 if (!sched_group_nodes)
7000 continue;
7001
076ac2af 7002 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7003 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7004
7c16ec58
MT
7005 *nodemask = node_to_cpumask(i);
7006 cpus_and(*nodemask, *nodemask, *cpu_map);
7007 if (cpus_empty(*nodemask))
51888ca2
SV
7008 continue;
7009
7010 if (sg == NULL)
7011 continue;
7012 sg = sg->next;
7013next_sg:
7014 oldsg = sg;
7015 sg = sg->next;
7016 kfree(oldsg);
7017 if (oldsg != sched_group_nodes[i])
7018 goto next_sg;
7019 }
7020 kfree(sched_group_nodes);
7021 sched_group_nodes_bycpu[cpu] = NULL;
7022 }
51888ca2 7023}
6d6bc0ad 7024#else /* !CONFIG_NUMA */
7c16ec58 7025static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7026{
7027}
6d6bc0ad 7028#endif /* CONFIG_NUMA */
51888ca2 7029
89c4710e
SS
7030/*
7031 * Initialize sched groups cpu_power.
7032 *
7033 * cpu_power indicates the capacity of sched group, which is used while
7034 * distributing the load between different sched groups in a sched domain.
7035 * Typically cpu_power for all the groups in a sched domain will be same unless
7036 * there are asymmetries in the topology. If there are asymmetries, group
7037 * having more cpu_power will pickup more load compared to the group having
7038 * less cpu_power.
7039 *
7040 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7041 * the maximum number of tasks a group can handle in the presence of other idle
7042 * or lightly loaded groups in the same sched domain.
7043 */
7044static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7045{
7046 struct sched_domain *child;
7047 struct sched_group *group;
7048
7049 WARN_ON(!sd || !sd->groups);
7050
7051 if (cpu != first_cpu(sd->groups->cpumask))
7052 return;
7053
7054 child = sd->child;
7055
5517d86b
ED
7056 sd->groups->__cpu_power = 0;
7057
89c4710e
SS
7058 /*
7059 * For perf policy, if the groups in child domain share resources
7060 * (for example cores sharing some portions of the cache hierarchy
7061 * or SMT), then set this domain groups cpu_power such that each group
7062 * can handle only one task, when there are other idle groups in the
7063 * same sched domain.
7064 */
7065 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7066 (child->flags &
7067 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7068 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7069 return;
7070 }
7071
89c4710e
SS
7072 /*
7073 * add cpu_power of each child group to this groups cpu_power
7074 */
7075 group = child->groups;
7076 do {
5517d86b 7077 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7078 group = group->next;
7079 } while (group != child->groups);
7080}
7081
7c16ec58
MT
7082/*
7083 * Initializers for schedule domains
7084 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7085 */
7086
7087#define SD_INIT(sd, type) sd_init_##type(sd)
7088#define SD_INIT_FUNC(type) \
7089static noinline void sd_init_##type(struct sched_domain *sd) \
7090{ \
7091 memset(sd, 0, sizeof(*sd)); \
7092 *sd = SD_##type##_INIT; \
1d3504fc 7093 sd->level = SD_LV_##type; \
7c16ec58
MT
7094}
7095
7096SD_INIT_FUNC(CPU)
7097#ifdef CONFIG_NUMA
7098 SD_INIT_FUNC(ALLNODES)
7099 SD_INIT_FUNC(NODE)
7100#endif
7101#ifdef CONFIG_SCHED_SMT
7102 SD_INIT_FUNC(SIBLING)
7103#endif
7104#ifdef CONFIG_SCHED_MC
7105 SD_INIT_FUNC(MC)
7106#endif
7107
7108/*
7109 * To minimize stack usage kmalloc room for cpumasks and share the
7110 * space as the usage in build_sched_domains() dictates. Used only
7111 * if the amount of space is significant.
7112 */
7113struct allmasks {
7114 cpumask_t tmpmask; /* make this one first */
7115 union {
7116 cpumask_t nodemask;
7117 cpumask_t this_sibling_map;
7118 cpumask_t this_core_map;
7119 };
7120 cpumask_t send_covered;
7121
7122#ifdef CONFIG_NUMA
7123 cpumask_t domainspan;
7124 cpumask_t covered;
7125 cpumask_t notcovered;
7126#endif
7127};
7128
7129#if NR_CPUS > 128
7130#define SCHED_CPUMASK_ALLOC 1
7131#define SCHED_CPUMASK_FREE(v) kfree(v)
7132#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7133#else
7134#define SCHED_CPUMASK_ALLOC 0
7135#define SCHED_CPUMASK_FREE(v)
7136#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7137#endif
7138
7139#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7140 ((unsigned long)(a) + offsetof(struct allmasks, v))
7141
1d3504fc
HS
7142static int default_relax_domain_level = -1;
7143
7144static int __init setup_relax_domain_level(char *str)
7145{
30e0e178
LZ
7146 unsigned long val;
7147
7148 val = simple_strtoul(str, NULL, 0);
7149 if (val < SD_LV_MAX)
7150 default_relax_domain_level = val;
7151
1d3504fc
HS
7152 return 1;
7153}
7154__setup("relax_domain_level=", setup_relax_domain_level);
7155
7156static void set_domain_attribute(struct sched_domain *sd,
7157 struct sched_domain_attr *attr)
7158{
7159 int request;
7160
7161 if (!attr || attr->relax_domain_level < 0) {
7162 if (default_relax_domain_level < 0)
7163 return;
7164 else
7165 request = default_relax_domain_level;
7166 } else
7167 request = attr->relax_domain_level;
7168 if (request < sd->level) {
7169 /* turn off idle balance on this domain */
7170 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7171 } else {
7172 /* turn on idle balance on this domain */
7173 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7174 }
7175}
7176
1da177e4 7177/*
1a20ff27
DG
7178 * Build sched domains for a given set of cpus and attach the sched domains
7179 * to the individual cpus
1da177e4 7180 */
1d3504fc
HS
7181static int __build_sched_domains(const cpumask_t *cpu_map,
7182 struct sched_domain_attr *attr)
1da177e4
LT
7183{
7184 int i;
57d885fe 7185 struct root_domain *rd;
7c16ec58
MT
7186 SCHED_CPUMASK_DECLARE(allmasks);
7187 cpumask_t *tmpmask;
d1b55138
JH
7188#ifdef CONFIG_NUMA
7189 struct sched_group **sched_group_nodes = NULL;
6711cab4 7190 int sd_allnodes = 0;
d1b55138
JH
7191
7192 /*
7193 * Allocate the per-node list of sched groups
7194 */
076ac2af 7195 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7196 GFP_KERNEL);
d1b55138
JH
7197 if (!sched_group_nodes) {
7198 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7199 return -ENOMEM;
d1b55138 7200 }
d1b55138 7201#endif
1da177e4 7202
dc938520 7203 rd = alloc_rootdomain();
57d885fe
GH
7204 if (!rd) {
7205 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7206#ifdef CONFIG_NUMA
7207 kfree(sched_group_nodes);
7208#endif
57d885fe
GH
7209 return -ENOMEM;
7210 }
7211
7c16ec58
MT
7212#if SCHED_CPUMASK_ALLOC
7213 /* get space for all scratch cpumask variables */
7214 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7215 if (!allmasks) {
7216 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7217 kfree(rd);
7218#ifdef CONFIG_NUMA
7219 kfree(sched_group_nodes);
7220#endif
7221 return -ENOMEM;
7222 }
7223#endif
7224 tmpmask = (cpumask_t *)allmasks;
7225
7226
7227#ifdef CONFIG_NUMA
7228 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7229#endif
7230
1da177e4 7231 /*
1a20ff27 7232 * Set up domains for cpus specified by the cpu_map.
1da177e4 7233 */
363ab6f1 7234 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7235 struct sched_domain *sd = NULL, *p;
7c16ec58 7236 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7237
7c16ec58
MT
7238 *nodemask = node_to_cpumask(cpu_to_node(i));
7239 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7240
7241#ifdef CONFIG_NUMA
dd41f596 7242 if (cpus_weight(*cpu_map) >
7c16ec58 7243 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7244 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7245 SD_INIT(sd, ALLNODES);
1d3504fc 7246 set_domain_attribute(sd, attr);
9c1cfda2 7247 sd->span = *cpu_map;
7c16ec58 7248 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7249 p = sd;
6711cab4 7250 sd_allnodes = 1;
9c1cfda2
JH
7251 } else
7252 p = NULL;
7253
1da177e4 7254 sd = &per_cpu(node_domains, i);
7c16ec58 7255 SD_INIT(sd, NODE);
1d3504fc 7256 set_domain_attribute(sd, attr);
4bdbaad3 7257 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7258 sd->parent = p;
1a848870
SS
7259 if (p)
7260 p->child = sd;
9c1cfda2 7261 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7262#endif
7263
7264 p = sd;
7265 sd = &per_cpu(phys_domains, i);
7c16ec58 7266 SD_INIT(sd, CPU);
1d3504fc 7267 set_domain_attribute(sd, attr);
7c16ec58 7268 sd->span = *nodemask;
1da177e4 7269 sd->parent = p;
1a848870
SS
7270 if (p)
7271 p->child = sd;
7c16ec58 7272 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7273
1e9f28fa
SS
7274#ifdef CONFIG_SCHED_MC
7275 p = sd;
7276 sd = &per_cpu(core_domains, i);
7c16ec58 7277 SD_INIT(sd, MC);
1d3504fc 7278 set_domain_attribute(sd, attr);
1e9f28fa
SS
7279 sd->span = cpu_coregroup_map(i);
7280 cpus_and(sd->span, sd->span, *cpu_map);
7281 sd->parent = p;
1a848870 7282 p->child = sd;
7c16ec58 7283 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7284#endif
7285
1da177e4
LT
7286#ifdef CONFIG_SCHED_SMT
7287 p = sd;
7288 sd = &per_cpu(cpu_domains, i);
7c16ec58 7289 SD_INIT(sd, SIBLING);
1d3504fc 7290 set_domain_attribute(sd, attr);
d5a7430d 7291 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7292 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7293 sd->parent = p;
1a848870 7294 p->child = sd;
7c16ec58 7295 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7296#endif
7297 }
7298
7299#ifdef CONFIG_SCHED_SMT
7300 /* Set up CPU (sibling) groups */
363ab6f1 7301 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7302 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7303 SCHED_CPUMASK_VAR(send_covered, allmasks);
7304
7305 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7306 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7307 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7308 continue;
7309
dd41f596 7310 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7311 &cpu_to_cpu_group,
7312 send_covered, tmpmask);
1da177e4
LT
7313 }
7314#endif
7315
1e9f28fa
SS
7316#ifdef CONFIG_SCHED_MC
7317 /* Set up multi-core groups */
363ab6f1 7318 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7319 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7320 SCHED_CPUMASK_VAR(send_covered, allmasks);
7321
7322 *this_core_map = cpu_coregroup_map(i);
7323 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7324 if (i != first_cpu(*this_core_map))
1e9f28fa 7325 continue;
7c16ec58 7326
dd41f596 7327 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7328 &cpu_to_core_group,
7329 send_covered, tmpmask);
1e9f28fa
SS
7330 }
7331#endif
7332
1da177e4 7333 /* Set up physical groups */
076ac2af 7334 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7335 SCHED_CPUMASK_VAR(nodemask, allmasks);
7336 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7337
7c16ec58
MT
7338 *nodemask = node_to_cpumask(i);
7339 cpus_and(*nodemask, *nodemask, *cpu_map);
7340 if (cpus_empty(*nodemask))
1da177e4
LT
7341 continue;
7342
7c16ec58
MT
7343 init_sched_build_groups(nodemask, cpu_map,
7344 &cpu_to_phys_group,
7345 send_covered, tmpmask);
1da177e4
LT
7346 }
7347
7348#ifdef CONFIG_NUMA
7349 /* Set up node groups */
7c16ec58
MT
7350 if (sd_allnodes) {
7351 SCHED_CPUMASK_VAR(send_covered, allmasks);
7352
7353 init_sched_build_groups(cpu_map, cpu_map,
7354 &cpu_to_allnodes_group,
7355 send_covered, tmpmask);
7356 }
9c1cfda2 7357
076ac2af 7358 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7359 /* Set up node groups */
7360 struct sched_group *sg, *prev;
7c16ec58
MT
7361 SCHED_CPUMASK_VAR(nodemask, allmasks);
7362 SCHED_CPUMASK_VAR(domainspan, allmasks);
7363 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7364 int j;
7365
7c16ec58
MT
7366 *nodemask = node_to_cpumask(i);
7367 cpus_clear(*covered);
7368
7369 cpus_and(*nodemask, *nodemask, *cpu_map);
7370 if (cpus_empty(*nodemask)) {
d1b55138 7371 sched_group_nodes[i] = NULL;
9c1cfda2 7372 continue;
d1b55138 7373 }
9c1cfda2 7374
4bdbaad3 7375 sched_domain_node_span(i, domainspan);
7c16ec58 7376 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7377
15f0b676 7378 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7379 if (!sg) {
7380 printk(KERN_WARNING "Can not alloc domain group for "
7381 "node %d\n", i);
7382 goto error;
7383 }
9c1cfda2 7384 sched_group_nodes[i] = sg;
363ab6f1 7385 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7386 struct sched_domain *sd;
9761eea8 7387
9c1cfda2
JH
7388 sd = &per_cpu(node_domains, j);
7389 sd->groups = sg;
9c1cfda2 7390 }
5517d86b 7391 sg->__cpu_power = 0;
7c16ec58 7392 sg->cpumask = *nodemask;
51888ca2 7393 sg->next = sg;
7c16ec58 7394 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7395 prev = sg;
7396
076ac2af 7397 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7398 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7399 int n = (i + j) % nr_node_ids;
c5f59f08 7400 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7401
7c16ec58
MT
7402 cpus_complement(*notcovered, *covered);
7403 cpus_and(*tmpmask, *notcovered, *cpu_map);
7404 cpus_and(*tmpmask, *tmpmask, *domainspan);
7405 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7406 break;
7407
7c16ec58
MT
7408 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7409 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7410 continue;
7411
15f0b676
SV
7412 sg = kmalloc_node(sizeof(struct sched_group),
7413 GFP_KERNEL, i);
9c1cfda2
JH
7414 if (!sg) {
7415 printk(KERN_WARNING
7416 "Can not alloc domain group for node %d\n", j);
51888ca2 7417 goto error;
9c1cfda2 7418 }
5517d86b 7419 sg->__cpu_power = 0;
7c16ec58 7420 sg->cpumask = *tmpmask;
51888ca2 7421 sg->next = prev->next;
7c16ec58 7422 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7423 prev->next = sg;
7424 prev = sg;
7425 }
9c1cfda2 7426 }
1da177e4
LT
7427#endif
7428
7429 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7430#ifdef CONFIG_SCHED_SMT
363ab6f1 7431 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7432 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7433
89c4710e 7434 init_sched_groups_power(i, sd);
5c45bf27 7435 }
1da177e4 7436#endif
1e9f28fa 7437#ifdef CONFIG_SCHED_MC
363ab6f1 7438 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7439 struct sched_domain *sd = &per_cpu(core_domains, i);
7440
89c4710e 7441 init_sched_groups_power(i, sd);
5c45bf27
SS
7442 }
7443#endif
1e9f28fa 7444
363ab6f1 7445 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7446 struct sched_domain *sd = &per_cpu(phys_domains, i);
7447
89c4710e 7448 init_sched_groups_power(i, sd);
1da177e4
LT
7449 }
7450
9c1cfda2 7451#ifdef CONFIG_NUMA
076ac2af 7452 for (i = 0; i < nr_node_ids; i++)
08069033 7453 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7454
6711cab4
SS
7455 if (sd_allnodes) {
7456 struct sched_group *sg;
f712c0c7 7457
7c16ec58
MT
7458 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7459 tmpmask);
f712c0c7
SS
7460 init_numa_sched_groups_power(sg);
7461 }
9c1cfda2
JH
7462#endif
7463
1da177e4 7464 /* Attach the domains */
363ab6f1 7465 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7466 struct sched_domain *sd;
7467#ifdef CONFIG_SCHED_SMT
7468 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7469#elif defined(CONFIG_SCHED_MC)
7470 sd = &per_cpu(core_domains, i);
1da177e4
LT
7471#else
7472 sd = &per_cpu(phys_domains, i);
7473#endif
57d885fe 7474 cpu_attach_domain(sd, rd, i);
1da177e4 7475 }
51888ca2 7476
7c16ec58 7477 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7478 return 0;
7479
a616058b 7480#ifdef CONFIG_NUMA
51888ca2 7481error:
7c16ec58
MT
7482 free_sched_groups(cpu_map, tmpmask);
7483 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7484 return -ENOMEM;
a616058b 7485#endif
1da177e4 7486}
029190c5 7487
1d3504fc
HS
7488static int build_sched_domains(const cpumask_t *cpu_map)
7489{
7490 return __build_sched_domains(cpu_map, NULL);
7491}
7492
029190c5
PJ
7493static cpumask_t *doms_cur; /* current sched domains */
7494static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7495static struct sched_domain_attr *dattr_cur;
7496 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7497
7498/*
7499 * Special case: If a kmalloc of a doms_cur partition (array of
7500 * cpumask_t) fails, then fallback to a single sched domain,
7501 * as determined by the single cpumask_t fallback_doms.
7502 */
7503static cpumask_t fallback_doms;
7504
22e52b07
HC
7505void __attribute__((weak)) arch_update_cpu_topology(void)
7506{
7507}
7508
1a20ff27 7509/*
41a2d6cf 7510 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7511 * For now this just excludes isolated cpus, but could be used to
7512 * exclude other special cases in the future.
1a20ff27 7513 */
51888ca2 7514static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7515{
7378547f
MM
7516 int err;
7517
22e52b07 7518 arch_update_cpu_topology();
029190c5
PJ
7519 ndoms_cur = 1;
7520 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7521 if (!doms_cur)
7522 doms_cur = &fallback_doms;
7523 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7524 dattr_cur = NULL;
7378547f 7525 err = build_sched_domains(doms_cur);
6382bc90 7526 register_sched_domain_sysctl();
7378547f
MM
7527
7528 return err;
1a20ff27
DG
7529}
7530
7c16ec58
MT
7531static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7532 cpumask_t *tmpmask)
1da177e4 7533{
7c16ec58 7534 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7535}
1da177e4 7536
1a20ff27
DG
7537/*
7538 * Detach sched domains from a group of cpus specified in cpu_map
7539 * These cpus will now be attached to the NULL domain
7540 */
858119e1 7541static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7542{
7c16ec58 7543 cpumask_t tmpmask;
1a20ff27
DG
7544 int i;
7545
6382bc90
MM
7546 unregister_sched_domain_sysctl();
7547
363ab6f1 7548 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7549 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7550 synchronize_sched();
7c16ec58 7551 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7552}
7553
1d3504fc
HS
7554/* handle null as "default" */
7555static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7556 struct sched_domain_attr *new, int idx_new)
7557{
7558 struct sched_domain_attr tmp;
7559
7560 /* fast path */
7561 if (!new && !cur)
7562 return 1;
7563
7564 tmp = SD_ATTR_INIT;
7565 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7566 new ? (new + idx_new) : &tmp,
7567 sizeof(struct sched_domain_attr));
7568}
7569
029190c5
PJ
7570/*
7571 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7572 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7573 * doms_new[] to the current sched domain partitioning, doms_cur[].
7574 * It destroys each deleted domain and builds each new domain.
7575 *
7576 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7577 * The masks don't intersect (don't overlap.) We should setup one
7578 * sched domain for each mask. CPUs not in any of the cpumasks will
7579 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7580 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7581 * it as it is.
7582 *
41a2d6cf
IM
7583 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7584 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7585 * failed the kmalloc call, then it can pass in doms_new == NULL,
7586 * and partition_sched_domains() will fallback to the single partition
e761b772 7587 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5
PJ
7588 *
7589 * Call with hotplug lock held
7590 */
1d3504fc
HS
7591void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7592 struct sched_domain_attr *dattr_new)
029190c5
PJ
7593{
7594 int i, j;
7595
712555ee 7596 mutex_lock(&sched_domains_mutex);
a1835615 7597
7378547f
MM
7598 /* always unregister in case we don't destroy any domains */
7599 unregister_sched_domain_sysctl();
7600
e761b772
MK
7601 if (doms_new == NULL)
7602 ndoms_new = 0;
029190c5
PJ
7603
7604 /* Destroy deleted domains */
7605 for (i = 0; i < ndoms_cur; i++) {
7606 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7607 if (cpus_equal(doms_cur[i], doms_new[j])
7608 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7609 goto match1;
7610 }
7611 /* no match - a current sched domain not in new doms_new[] */
7612 detach_destroy_domains(doms_cur + i);
7613match1:
7614 ;
7615 }
7616
e761b772
MK
7617 if (doms_new == NULL) {
7618 ndoms_cur = 0;
7619 ndoms_new = 1;
7620 doms_new = &fallback_doms;
7621 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7622 dattr_new = NULL;
7623 }
7624
029190c5
PJ
7625 /* Build new domains */
7626 for (i = 0; i < ndoms_new; i++) {
7627 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7628 if (cpus_equal(doms_new[i], doms_cur[j])
7629 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7630 goto match2;
7631 }
7632 /* no match - add a new doms_new */
1d3504fc
HS
7633 __build_sched_domains(doms_new + i,
7634 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7635match2:
7636 ;
7637 }
7638
7639 /* Remember the new sched domains */
7640 if (doms_cur != &fallback_doms)
7641 kfree(doms_cur);
1d3504fc 7642 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7643 doms_cur = doms_new;
1d3504fc 7644 dattr_cur = dattr_new;
029190c5 7645 ndoms_cur = ndoms_new;
7378547f
MM
7646
7647 register_sched_domain_sysctl();
a1835615 7648
712555ee 7649 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7650}
7651
5c45bf27 7652#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7653int arch_reinit_sched_domains(void)
5c45bf27 7654{
95402b38 7655 get_online_cpus();
e761b772 7656 rebuild_sched_domains();
95402b38 7657 put_online_cpus();
e761b772 7658 return 0;
5c45bf27
SS
7659}
7660
7661static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7662{
7663 int ret;
7664
7665 if (buf[0] != '0' && buf[0] != '1')
7666 return -EINVAL;
7667
7668 if (smt)
7669 sched_smt_power_savings = (buf[0] == '1');
7670 else
7671 sched_mc_power_savings = (buf[0] == '1');
7672
7673 ret = arch_reinit_sched_domains();
7674
7675 return ret ? ret : count;
7676}
7677
5c45bf27 7678#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7679static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7680 char *page)
5c45bf27
SS
7681{
7682 return sprintf(page, "%u\n", sched_mc_power_savings);
7683}
f718cd4a 7684static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7685 const char *buf, size_t count)
5c45bf27
SS
7686{
7687 return sched_power_savings_store(buf, count, 0);
7688}
f718cd4a
AK
7689static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7690 sched_mc_power_savings_show,
7691 sched_mc_power_savings_store);
5c45bf27
SS
7692#endif
7693
7694#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7695static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7696 char *page)
5c45bf27
SS
7697{
7698 return sprintf(page, "%u\n", sched_smt_power_savings);
7699}
f718cd4a 7700static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7701 const char *buf, size_t count)
5c45bf27
SS
7702{
7703 return sched_power_savings_store(buf, count, 1);
7704}
f718cd4a
AK
7705static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7706 sched_smt_power_savings_show,
6707de00
AB
7707 sched_smt_power_savings_store);
7708#endif
7709
7710int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7711{
7712 int err = 0;
7713
7714#ifdef CONFIG_SCHED_SMT
7715 if (smt_capable())
7716 err = sysfs_create_file(&cls->kset.kobj,
7717 &attr_sched_smt_power_savings.attr);
7718#endif
7719#ifdef CONFIG_SCHED_MC
7720 if (!err && mc_capable())
7721 err = sysfs_create_file(&cls->kset.kobj,
7722 &attr_sched_mc_power_savings.attr);
7723#endif
7724 return err;
7725}
6d6bc0ad 7726#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7727
e761b772 7728#ifndef CONFIG_CPUSETS
1da177e4 7729/*
e761b772
MK
7730 * Add online and remove offline CPUs from the scheduler domains.
7731 * When cpusets are enabled they take over this function.
1da177e4
LT
7732 */
7733static int update_sched_domains(struct notifier_block *nfb,
7734 unsigned long action, void *hcpu)
e761b772
MK
7735{
7736 switch (action) {
7737 case CPU_ONLINE:
7738 case CPU_ONLINE_FROZEN:
7739 case CPU_DEAD:
7740 case CPU_DEAD_FROZEN:
7741 partition_sched_domains(0, NULL, NULL);
7742 return NOTIFY_OK;
7743
7744 default:
7745 return NOTIFY_DONE;
7746 }
7747}
7748#endif
7749
7750static int update_runtime(struct notifier_block *nfb,
7751 unsigned long action, void *hcpu)
1da177e4 7752{
7def2be1
PZ
7753 int cpu = (int)(long)hcpu;
7754
1da177e4 7755 switch (action) {
1da177e4 7756 case CPU_DOWN_PREPARE:
8bb78442 7757 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7758 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7759 return NOTIFY_OK;
7760
1da177e4 7761 case CPU_DOWN_FAILED:
8bb78442 7762 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7763 case CPU_ONLINE:
8bb78442 7764 case CPU_ONLINE_FROZEN:
7def2be1 7765 enable_runtime(cpu_rq(cpu));
e761b772
MK
7766 return NOTIFY_OK;
7767
1da177e4
LT
7768 default:
7769 return NOTIFY_DONE;
7770 }
1da177e4 7771}
1da177e4
LT
7772
7773void __init sched_init_smp(void)
7774{
5c1e1767
NP
7775 cpumask_t non_isolated_cpus;
7776
434d53b0
MT
7777#if defined(CONFIG_NUMA)
7778 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7779 GFP_KERNEL);
7780 BUG_ON(sched_group_nodes_bycpu == NULL);
7781#endif
95402b38 7782 get_online_cpus();
712555ee 7783 mutex_lock(&sched_domains_mutex);
1a20ff27 7784 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7785 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7786 if (cpus_empty(non_isolated_cpus))
7787 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7788 mutex_unlock(&sched_domains_mutex);
95402b38 7789 put_online_cpus();
e761b772
MK
7790
7791#ifndef CONFIG_CPUSETS
1da177e4
LT
7792 /* XXX: Theoretical race here - CPU may be hotplugged now */
7793 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7794#endif
7795
7796 /* RT runtime code needs to handle some hotplug events */
7797 hotcpu_notifier(update_runtime, 0);
7798
b328ca18 7799 init_hrtick();
5c1e1767
NP
7800
7801 /* Move init over to a non-isolated CPU */
7c16ec58 7802 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7803 BUG();
19978ca6 7804 sched_init_granularity();
1da177e4
LT
7805}
7806#else
7807void __init sched_init_smp(void)
7808{
19978ca6 7809 sched_init_granularity();
1da177e4
LT
7810}
7811#endif /* CONFIG_SMP */
7812
7813int in_sched_functions(unsigned long addr)
7814{
1da177e4
LT
7815 return in_lock_functions(addr) ||
7816 (addr >= (unsigned long)__sched_text_start
7817 && addr < (unsigned long)__sched_text_end);
7818}
7819
a9957449 7820static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7821{
7822 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7823 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7824#ifdef CONFIG_FAIR_GROUP_SCHED
7825 cfs_rq->rq = rq;
7826#endif
67e9fb2a 7827 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7828}
7829
fa85ae24
PZ
7830static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7831{
7832 struct rt_prio_array *array;
7833 int i;
7834
7835 array = &rt_rq->active;
7836 for (i = 0; i < MAX_RT_PRIO; i++) {
7837 INIT_LIST_HEAD(array->queue + i);
7838 __clear_bit(i, array->bitmap);
7839 }
7840 /* delimiter for bitsearch: */
7841 __set_bit(MAX_RT_PRIO, array->bitmap);
7842
052f1dc7 7843#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7844 rt_rq->highest_prio = MAX_RT_PRIO;
7845#endif
fa85ae24
PZ
7846#ifdef CONFIG_SMP
7847 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7848 rt_rq->overloaded = 0;
7849#endif
7850
7851 rt_rq->rt_time = 0;
7852 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7853 rt_rq->rt_runtime = 0;
7854 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7855
052f1dc7 7856#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7857 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7858 rt_rq->rq = rq;
7859#endif
fa85ae24
PZ
7860}
7861
6f505b16 7862#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7863static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7864 struct sched_entity *se, int cpu, int add,
7865 struct sched_entity *parent)
6f505b16 7866{
ec7dc8ac 7867 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7868 tg->cfs_rq[cpu] = cfs_rq;
7869 init_cfs_rq(cfs_rq, rq);
7870 cfs_rq->tg = tg;
7871 if (add)
7872 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7873
7874 tg->se[cpu] = se;
354d60c2
DG
7875 /* se could be NULL for init_task_group */
7876 if (!se)
7877 return;
7878
ec7dc8ac
DG
7879 if (!parent)
7880 se->cfs_rq = &rq->cfs;
7881 else
7882 se->cfs_rq = parent->my_q;
7883
6f505b16
PZ
7884 se->my_q = cfs_rq;
7885 se->load.weight = tg->shares;
e05510d0 7886 se->load.inv_weight = 0;
ec7dc8ac 7887 se->parent = parent;
6f505b16 7888}
052f1dc7 7889#endif
6f505b16 7890
052f1dc7 7891#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7892static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7893 struct sched_rt_entity *rt_se, int cpu, int add,
7894 struct sched_rt_entity *parent)
6f505b16 7895{
ec7dc8ac
DG
7896 struct rq *rq = cpu_rq(cpu);
7897
6f505b16
PZ
7898 tg->rt_rq[cpu] = rt_rq;
7899 init_rt_rq(rt_rq, rq);
7900 rt_rq->tg = tg;
7901 rt_rq->rt_se = rt_se;
ac086bc2 7902 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7903 if (add)
7904 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7905
7906 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7907 if (!rt_se)
7908 return;
7909
ec7dc8ac
DG
7910 if (!parent)
7911 rt_se->rt_rq = &rq->rt;
7912 else
7913 rt_se->rt_rq = parent->my_q;
7914
6f505b16 7915 rt_se->my_q = rt_rq;
ec7dc8ac 7916 rt_se->parent = parent;
6f505b16
PZ
7917 INIT_LIST_HEAD(&rt_se->run_list);
7918}
7919#endif
7920
1da177e4
LT
7921void __init sched_init(void)
7922{
dd41f596 7923 int i, j;
434d53b0
MT
7924 unsigned long alloc_size = 0, ptr;
7925
7926#ifdef CONFIG_FAIR_GROUP_SCHED
7927 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7928#endif
7929#ifdef CONFIG_RT_GROUP_SCHED
7930 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7931#endif
7932#ifdef CONFIG_USER_SCHED
7933 alloc_size *= 2;
434d53b0
MT
7934#endif
7935 /*
7936 * As sched_init() is called before page_alloc is setup,
7937 * we use alloc_bootmem().
7938 */
7939 if (alloc_size) {
5a9d3225 7940 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7941
7942#ifdef CONFIG_FAIR_GROUP_SCHED
7943 init_task_group.se = (struct sched_entity **)ptr;
7944 ptr += nr_cpu_ids * sizeof(void **);
7945
7946 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7947 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7948
7949#ifdef CONFIG_USER_SCHED
7950 root_task_group.se = (struct sched_entity **)ptr;
7951 ptr += nr_cpu_ids * sizeof(void **);
7952
7953 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7954 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7955#endif /* CONFIG_USER_SCHED */
7956#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7957#ifdef CONFIG_RT_GROUP_SCHED
7958 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7959 ptr += nr_cpu_ids * sizeof(void **);
7960
7961 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7962 ptr += nr_cpu_ids * sizeof(void **);
7963
7964#ifdef CONFIG_USER_SCHED
7965 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7966 ptr += nr_cpu_ids * sizeof(void **);
7967
7968 root_task_group.rt_rq = (struct rt_rq **)ptr;
7969 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7970#endif /* CONFIG_USER_SCHED */
7971#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 7972 }
dd41f596 7973
57d885fe
GH
7974#ifdef CONFIG_SMP
7975 init_defrootdomain();
7976#endif
7977
d0b27fa7
PZ
7978 init_rt_bandwidth(&def_rt_bandwidth,
7979 global_rt_period(), global_rt_runtime());
7980
7981#ifdef CONFIG_RT_GROUP_SCHED
7982 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7983 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7984#ifdef CONFIG_USER_SCHED
7985 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7986 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7987#endif /* CONFIG_USER_SCHED */
7988#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7989
052f1dc7 7990#ifdef CONFIG_GROUP_SCHED
6f505b16 7991 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7992 INIT_LIST_HEAD(&init_task_group.children);
7993
7994#ifdef CONFIG_USER_SCHED
7995 INIT_LIST_HEAD(&root_task_group.children);
7996 init_task_group.parent = &root_task_group;
7997 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7998#endif /* CONFIG_USER_SCHED */
7999#endif /* CONFIG_GROUP_SCHED */
6f505b16 8000
0a945022 8001 for_each_possible_cpu(i) {
70b97a7f 8002 struct rq *rq;
1da177e4
LT
8003
8004 rq = cpu_rq(i);
8005 spin_lock_init(&rq->lock);
7897986b 8006 rq->nr_running = 0;
dd41f596 8007 init_cfs_rq(&rq->cfs, rq);
6f505b16 8008 init_rt_rq(&rq->rt, rq);
dd41f596 8009#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8010 init_task_group.shares = init_task_group_load;
6f505b16 8011 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8012#ifdef CONFIG_CGROUP_SCHED
8013 /*
8014 * How much cpu bandwidth does init_task_group get?
8015 *
8016 * In case of task-groups formed thr' the cgroup filesystem, it
8017 * gets 100% of the cpu resources in the system. This overall
8018 * system cpu resource is divided among the tasks of
8019 * init_task_group and its child task-groups in a fair manner,
8020 * based on each entity's (task or task-group's) weight
8021 * (se->load.weight).
8022 *
8023 * In other words, if init_task_group has 10 tasks of weight
8024 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8025 * then A0's share of the cpu resource is:
8026 *
8027 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8028 *
8029 * We achieve this by letting init_task_group's tasks sit
8030 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8031 */
ec7dc8ac 8032 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8033#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8034 root_task_group.shares = NICE_0_LOAD;
8035 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8036 /*
8037 * In case of task-groups formed thr' the user id of tasks,
8038 * init_task_group represents tasks belonging to root user.
8039 * Hence it forms a sibling of all subsequent groups formed.
8040 * In this case, init_task_group gets only a fraction of overall
8041 * system cpu resource, based on the weight assigned to root
8042 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8043 * by letting tasks of init_task_group sit in a separate cfs_rq
8044 * (init_cfs_rq) and having one entity represent this group of
8045 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8046 */
ec7dc8ac 8047 init_tg_cfs_entry(&init_task_group,
6f505b16 8048 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8049 &per_cpu(init_sched_entity, i), i, 1,
8050 root_task_group.se[i]);
6f505b16 8051
052f1dc7 8052#endif
354d60c2
DG
8053#endif /* CONFIG_FAIR_GROUP_SCHED */
8054
8055 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8056#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8057 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8058#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8059 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8060#elif defined CONFIG_USER_SCHED
eff766a6 8061 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8062 init_tg_rt_entry(&init_task_group,
6f505b16 8063 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8064 &per_cpu(init_sched_rt_entity, i), i, 1,
8065 root_task_group.rt_se[i]);
354d60c2 8066#endif
dd41f596 8067#endif
1da177e4 8068
dd41f596
IM
8069 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8070 rq->cpu_load[j] = 0;
1da177e4 8071#ifdef CONFIG_SMP
41c7ce9a 8072 rq->sd = NULL;
57d885fe 8073 rq->rd = NULL;
1da177e4 8074 rq->active_balance = 0;
dd41f596 8075 rq->next_balance = jiffies;
1da177e4 8076 rq->push_cpu = 0;
0a2966b4 8077 rq->cpu = i;
1f11eb6a 8078 rq->online = 0;
1da177e4
LT
8079 rq->migration_thread = NULL;
8080 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8081 rq_attach_root(rq, &def_root_domain);
1da177e4 8082#endif
8f4d37ec 8083 init_rq_hrtick(rq);
1da177e4 8084 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8085 }
8086
2dd73a4f 8087 set_load_weight(&init_task);
b50f60ce 8088
e107be36
AK
8089#ifdef CONFIG_PREEMPT_NOTIFIERS
8090 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8091#endif
8092
c9819f45 8093#ifdef CONFIG_SMP
962cf36c 8094 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8095#endif
8096
b50f60ce
HC
8097#ifdef CONFIG_RT_MUTEXES
8098 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8099#endif
8100
1da177e4
LT
8101 /*
8102 * The boot idle thread does lazy MMU switching as well:
8103 */
8104 atomic_inc(&init_mm.mm_count);
8105 enter_lazy_tlb(&init_mm, current);
8106
8107 /*
8108 * Make us the idle thread. Technically, schedule() should not be
8109 * called from this thread, however somewhere below it might be,
8110 * but because we are the idle thread, we just pick up running again
8111 * when this runqueue becomes "idle".
8112 */
8113 init_idle(current, smp_processor_id());
dd41f596
IM
8114 /*
8115 * During early bootup we pretend to be a normal task:
8116 */
8117 current->sched_class = &fair_sched_class;
6892b75e
IM
8118
8119 scheduler_running = 1;
1da177e4
LT
8120}
8121
8122#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8123void __might_sleep(char *file, int line)
8124{
48f24c4d 8125#ifdef in_atomic
1da177e4
LT
8126 static unsigned long prev_jiffy; /* ratelimiting */
8127
8128 if ((in_atomic() || irqs_disabled()) &&
8129 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8130 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8131 return;
8132 prev_jiffy = jiffies;
91368d73 8133 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8134 " context at %s:%d\n", file, line);
8135 printk("in_atomic():%d, irqs_disabled():%d\n",
8136 in_atomic(), irqs_disabled());
a4c410f0 8137 debug_show_held_locks(current);
3117df04
IM
8138 if (irqs_disabled())
8139 print_irqtrace_events(current);
1da177e4
LT
8140 dump_stack();
8141 }
8142#endif
8143}
8144EXPORT_SYMBOL(__might_sleep);
8145#endif
8146
8147#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8148static void normalize_task(struct rq *rq, struct task_struct *p)
8149{
8150 int on_rq;
3e51f33f 8151
3a5e4dc1
AK
8152 update_rq_clock(rq);
8153 on_rq = p->se.on_rq;
8154 if (on_rq)
8155 deactivate_task(rq, p, 0);
8156 __setscheduler(rq, p, SCHED_NORMAL, 0);
8157 if (on_rq) {
8158 activate_task(rq, p, 0);
8159 resched_task(rq->curr);
8160 }
8161}
8162
1da177e4
LT
8163void normalize_rt_tasks(void)
8164{
a0f98a1c 8165 struct task_struct *g, *p;
1da177e4 8166 unsigned long flags;
70b97a7f 8167 struct rq *rq;
1da177e4 8168
4cf5d77a 8169 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8170 do_each_thread(g, p) {
178be793
IM
8171 /*
8172 * Only normalize user tasks:
8173 */
8174 if (!p->mm)
8175 continue;
8176
6cfb0d5d 8177 p->se.exec_start = 0;
6cfb0d5d 8178#ifdef CONFIG_SCHEDSTATS
dd41f596 8179 p->se.wait_start = 0;
dd41f596 8180 p->se.sleep_start = 0;
dd41f596 8181 p->se.block_start = 0;
6cfb0d5d 8182#endif
dd41f596
IM
8183
8184 if (!rt_task(p)) {
8185 /*
8186 * Renice negative nice level userspace
8187 * tasks back to 0:
8188 */
8189 if (TASK_NICE(p) < 0 && p->mm)
8190 set_user_nice(p, 0);
1da177e4 8191 continue;
dd41f596 8192 }
1da177e4 8193
4cf5d77a 8194 spin_lock(&p->pi_lock);
b29739f9 8195 rq = __task_rq_lock(p);
1da177e4 8196
178be793 8197 normalize_task(rq, p);
3a5e4dc1 8198
b29739f9 8199 __task_rq_unlock(rq);
4cf5d77a 8200 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8201 } while_each_thread(g, p);
8202
4cf5d77a 8203 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8204}
8205
8206#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8207
8208#ifdef CONFIG_IA64
8209/*
8210 * These functions are only useful for the IA64 MCA handling.
8211 *
8212 * They can only be called when the whole system has been
8213 * stopped - every CPU needs to be quiescent, and no scheduling
8214 * activity can take place. Using them for anything else would
8215 * be a serious bug, and as a result, they aren't even visible
8216 * under any other configuration.
8217 */
8218
8219/**
8220 * curr_task - return the current task for a given cpu.
8221 * @cpu: the processor in question.
8222 *
8223 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8224 */
36c8b586 8225struct task_struct *curr_task(int cpu)
1df5c10a
LT
8226{
8227 return cpu_curr(cpu);
8228}
8229
8230/**
8231 * set_curr_task - set the current task for a given cpu.
8232 * @cpu: the processor in question.
8233 * @p: the task pointer to set.
8234 *
8235 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8236 * are serviced on a separate stack. It allows the architecture to switch the
8237 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8238 * must be called with all CPU's synchronized, and interrupts disabled, the
8239 * and caller must save the original value of the current task (see
8240 * curr_task() above) and restore that value before reenabling interrupts and
8241 * re-starting the system.
8242 *
8243 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8244 */
36c8b586 8245void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8246{
8247 cpu_curr(cpu) = p;
8248}
8249
8250#endif
29f59db3 8251
bccbe08a
PZ
8252#ifdef CONFIG_FAIR_GROUP_SCHED
8253static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8254{
8255 int i;
8256
8257 for_each_possible_cpu(i) {
8258 if (tg->cfs_rq)
8259 kfree(tg->cfs_rq[i]);
8260 if (tg->se)
8261 kfree(tg->se[i]);
6f505b16
PZ
8262 }
8263
8264 kfree(tg->cfs_rq);
8265 kfree(tg->se);
6f505b16
PZ
8266}
8267
ec7dc8ac
DG
8268static
8269int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8270{
29f59db3 8271 struct cfs_rq *cfs_rq;
ec7dc8ac 8272 struct sched_entity *se, *parent_se;
9b5b7751 8273 struct rq *rq;
29f59db3
SV
8274 int i;
8275
434d53b0 8276 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8277 if (!tg->cfs_rq)
8278 goto err;
434d53b0 8279 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8280 if (!tg->se)
8281 goto err;
052f1dc7
PZ
8282
8283 tg->shares = NICE_0_LOAD;
29f59db3
SV
8284
8285 for_each_possible_cpu(i) {
9b5b7751 8286 rq = cpu_rq(i);
29f59db3 8287
6f505b16
PZ
8288 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8289 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8290 if (!cfs_rq)
8291 goto err;
8292
6f505b16
PZ
8293 se = kmalloc_node(sizeof(struct sched_entity),
8294 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8295 if (!se)
8296 goto err;
8297
ec7dc8ac
DG
8298 parent_se = parent ? parent->se[i] : NULL;
8299 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8300 }
8301
8302 return 1;
8303
8304 err:
8305 return 0;
8306}
8307
8308static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8309{
8310 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8311 &cpu_rq(cpu)->leaf_cfs_rq_list);
8312}
8313
8314static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8315{
8316 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8317}
6d6bc0ad 8318#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8319static inline void free_fair_sched_group(struct task_group *tg)
8320{
8321}
8322
ec7dc8ac
DG
8323static inline
8324int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8325{
8326 return 1;
8327}
8328
8329static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8330{
8331}
8332
8333static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8334{
8335}
6d6bc0ad 8336#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8337
8338#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8339static void free_rt_sched_group(struct task_group *tg)
8340{
8341 int i;
8342
d0b27fa7
PZ
8343 destroy_rt_bandwidth(&tg->rt_bandwidth);
8344
bccbe08a
PZ
8345 for_each_possible_cpu(i) {
8346 if (tg->rt_rq)
8347 kfree(tg->rt_rq[i]);
8348 if (tg->rt_se)
8349 kfree(tg->rt_se[i]);
8350 }
8351
8352 kfree(tg->rt_rq);
8353 kfree(tg->rt_se);
8354}
8355
ec7dc8ac
DG
8356static
8357int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8358{
8359 struct rt_rq *rt_rq;
ec7dc8ac 8360 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8361 struct rq *rq;
8362 int i;
8363
434d53b0 8364 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8365 if (!tg->rt_rq)
8366 goto err;
434d53b0 8367 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8368 if (!tg->rt_se)
8369 goto err;
8370
d0b27fa7
PZ
8371 init_rt_bandwidth(&tg->rt_bandwidth,
8372 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8373
8374 for_each_possible_cpu(i) {
8375 rq = cpu_rq(i);
8376
6f505b16
PZ
8377 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8378 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8379 if (!rt_rq)
8380 goto err;
29f59db3 8381
6f505b16
PZ
8382 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8383 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8384 if (!rt_se)
8385 goto err;
29f59db3 8386
ec7dc8ac
DG
8387 parent_se = parent ? parent->rt_se[i] : NULL;
8388 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8389 }
8390
bccbe08a
PZ
8391 return 1;
8392
8393 err:
8394 return 0;
8395}
8396
8397static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8398{
8399 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8400 &cpu_rq(cpu)->leaf_rt_rq_list);
8401}
8402
8403static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8404{
8405 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8406}
6d6bc0ad 8407#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8408static inline void free_rt_sched_group(struct task_group *tg)
8409{
8410}
8411
ec7dc8ac
DG
8412static inline
8413int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8414{
8415 return 1;
8416}
8417
8418static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8419{
8420}
8421
8422static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8423{
8424}
6d6bc0ad 8425#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8426
d0b27fa7 8427#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8428static void free_sched_group(struct task_group *tg)
8429{
8430 free_fair_sched_group(tg);
8431 free_rt_sched_group(tg);
8432 kfree(tg);
8433}
8434
8435/* allocate runqueue etc for a new task group */
ec7dc8ac 8436struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8437{
8438 struct task_group *tg;
8439 unsigned long flags;
8440 int i;
8441
8442 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8443 if (!tg)
8444 return ERR_PTR(-ENOMEM);
8445
ec7dc8ac 8446 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8447 goto err;
8448
ec7dc8ac 8449 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8450 goto err;
8451
8ed36996 8452 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8453 for_each_possible_cpu(i) {
bccbe08a
PZ
8454 register_fair_sched_group(tg, i);
8455 register_rt_sched_group(tg, i);
9b5b7751 8456 }
6f505b16 8457 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8458
8459 WARN_ON(!parent); /* root should already exist */
8460
8461 tg->parent = parent;
8462 list_add_rcu(&tg->siblings, &parent->children);
8463 INIT_LIST_HEAD(&tg->children);
8ed36996 8464 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8465
9b5b7751 8466 return tg;
29f59db3
SV
8467
8468err:
6f505b16 8469 free_sched_group(tg);
29f59db3
SV
8470 return ERR_PTR(-ENOMEM);
8471}
8472
9b5b7751 8473/* rcu callback to free various structures associated with a task group */
6f505b16 8474static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8475{
29f59db3 8476 /* now it should be safe to free those cfs_rqs */
6f505b16 8477 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8478}
8479
9b5b7751 8480/* Destroy runqueue etc associated with a task group */
4cf86d77 8481void sched_destroy_group(struct task_group *tg)
29f59db3 8482{
8ed36996 8483 unsigned long flags;
9b5b7751 8484 int i;
29f59db3 8485
8ed36996 8486 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8487 for_each_possible_cpu(i) {
bccbe08a
PZ
8488 unregister_fair_sched_group(tg, i);
8489 unregister_rt_sched_group(tg, i);
9b5b7751 8490 }
6f505b16 8491 list_del_rcu(&tg->list);
f473aa5e 8492 list_del_rcu(&tg->siblings);
8ed36996 8493 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8494
9b5b7751 8495 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8496 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8497}
8498
9b5b7751 8499/* change task's runqueue when it moves between groups.
3a252015
IM
8500 * The caller of this function should have put the task in its new group
8501 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8502 * reflect its new group.
9b5b7751
SV
8503 */
8504void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8505{
8506 int on_rq, running;
8507 unsigned long flags;
8508 struct rq *rq;
8509
8510 rq = task_rq_lock(tsk, &flags);
8511
29f59db3
SV
8512 update_rq_clock(rq);
8513
051a1d1a 8514 running = task_current(rq, tsk);
29f59db3
SV
8515 on_rq = tsk->se.on_rq;
8516
0e1f3483 8517 if (on_rq)
29f59db3 8518 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8519 if (unlikely(running))
8520 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8521
6f505b16 8522 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8523
810b3817
PZ
8524#ifdef CONFIG_FAIR_GROUP_SCHED
8525 if (tsk->sched_class->moved_group)
8526 tsk->sched_class->moved_group(tsk);
8527#endif
8528
0e1f3483
HS
8529 if (unlikely(running))
8530 tsk->sched_class->set_curr_task(rq);
8531 if (on_rq)
7074badb 8532 enqueue_task(rq, tsk, 0);
29f59db3 8533
29f59db3
SV
8534 task_rq_unlock(rq, &flags);
8535}
6d6bc0ad 8536#endif /* CONFIG_GROUP_SCHED */
29f59db3 8537
052f1dc7 8538#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8539static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8540{
8541 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8542 int on_rq;
8543
29f59db3 8544 on_rq = se->on_rq;
62fb1851 8545 if (on_rq)
29f59db3
SV
8546 dequeue_entity(cfs_rq, se, 0);
8547
8548 se->load.weight = shares;
e05510d0 8549 se->load.inv_weight = 0;
29f59db3 8550
62fb1851 8551 if (on_rq)
29f59db3 8552 enqueue_entity(cfs_rq, se, 0);
c09595f6 8553}
62fb1851 8554
c09595f6
PZ
8555static void set_se_shares(struct sched_entity *se, unsigned long shares)
8556{
8557 struct cfs_rq *cfs_rq = se->cfs_rq;
8558 struct rq *rq = cfs_rq->rq;
8559 unsigned long flags;
8560
8561 spin_lock_irqsave(&rq->lock, flags);
8562 __set_se_shares(se, shares);
8563 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8564}
8565
8ed36996
PZ
8566static DEFINE_MUTEX(shares_mutex);
8567
4cf86d77 8568int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8569{
8570 int i;
8ed36996 8571 unsigned long flags;
c61935fd 8572
ec7dc8ac
DG
8573 /*
8574 * We can't change the weight of the root cgroup.
8575 */
8576 if (!tg->se[0])
8577 return -EINVAL;
8578
18d95a28
PZ
8579 if (shares < MIN_SHARES)
8580 shares = MIN_SHARES;
cb4ad1ff
MX
8581 else if (shares > MAX_SHARES)
8582 shares = MAX_SHARES;
62fb1851 8583
8ed36996 8584 mutex_lock(&shares_mutex);
9b5b7751 8585 if (tg->shares == shares)
5cb350ba 8586 goto done;
29f59db3 8587
8ed36996 8588 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8589 for_each_possible_cpu(i)
8590 unregister_fair_sched_group(tg, i);
f473aa5e 8591 list_del_rcu(&tg->siblings);
8ed36996 8592 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8593
8594 /* wait for any ongoing reference to this group to finish */
8595 synchronize_sched();
8596
8597 /*
8598 * Now we are free to modify the group's share on each cpu
8599 * w/o tripping rebalance_share or load_balance_fair.
8600 */
9b5b7751 8601 tg->shares = shares;
c09595f6
PZ
8602 for_each_possible_cpu(i) {
8603 /*
8604 * force a rebalance
8605 */
8606 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8607 set_se_shares(tg->se[i], shares);
c09595f6 8608 }
29f59db3 8609
6b2d7700
SV
8610 /*
8611 * Enable load balance activity on this group, by inserting it back on
8612 * each cpu's rq->leaf_cfs_rq_list.
8613 */
8ed36996 8614 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8615 for_each_possible_cpu(i)
8616 register_fair_sched_group(tg, i);
f473aa5e 8617 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8618 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8619done:
8ed36996 8620 mutex_unlock(&shares_mutex);
9b5b7751 8621 return 0;
29f59db3
SV
8622}
8623
5cb350ba
DG
8624unsigned long sched_group_shares(struct task_group *tg)
8625{
8626 return tg->shares;
8627}
052f1dc7 8628#endif
5cb350ba 8629
052f1dc7 8630#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8631/*
9f0c1e56 8632 * Ensure that the real time constraints are schedulable.
6f505b16 8633 */
9f0c1e56
PZ
8634static DEFINE_MUTEX(rt_constraints_mutex);
8635
8636static unsigned long to_ratio(u64 period, u64 runtime)
8637{
8638 if (runtime == RUNTIME_INF)
8639 return 1ULL << 16;
8640
6f6d6a1a 8641 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8642}
8643
b40b2e8e
PZ
8644#ifdef CONFIG_CGROUP_SCHED
8645static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8646{
10b612f4 8647 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8648 unsigned long total = 0;
8649
8650 if (!parent) {
8651 if (global_rt_period() < period)
8652 return 0;
8653
8654 return to_ratio(period, runtime) <
8655 to_ratio(global_rt_period(), global_rt_runtime());
8656 }
8657
8658 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8659 return 0;
8660
8661 rcu_read_lock();
8662 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8663 if (tgi == tg)
8664 continue;
8665
8666 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8667 tgi->rt_bandwidth.rt_runtime);
8668 }
8669 rcu_read_unlock();
8670
10b612f4 8671 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8672 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8673 parent->rt_bandwidth.rt_runtime);
8674}
8675#elif defined CONFIG_USER_SCHED
9f0c1e56 8676static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8677{
8678 struct task_group *tgi;
8679 unsigned long total = 0;
9f0c1e56 8680 unsigned long global_ratio =
d0b27fa7 8681 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8682
8683 rcu_read_lock();
9f0c1e56
PZ
8684 list_for_each_entry_rcu(tgi, &task_groups, list) {
8685 if (tgi == tg)
8686 continue;
6f505b16 8687
d0b27fa7
PZ
8688 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8689 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8690 }
8691 rcu_read_unlock();
6f505b16 8692
9f0c1e56 8693 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8694}
b40b2e8e 8695#endif
6f505b16 8696
521f1a24
DG
8697/* Must be called with tasklist_lock held */
8698static inline int tg_has_rt_tasks(struct task_group *tg)
8699{
8700 struct task_struct *g, *p;
8701 do_each_thread(g, p) {
8702 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8703 return 1;
8704 } while_each_thread(g, p);
8705 return 0;
8706}
8707
d0b27fa7
PZ
8708static int tg_set_bandwidth(struct task_group *tg,
8709 u64 rt_period, u64 rt_runtime)
6f505b16 8710{
ac086bc2 8711 int i, err = 0;
9f0c1e56 8712
9f0c1e56 8713 mutex_lock(&rt_constraints_mutex);
521f1a24 8714 read_lock(&tasklist_lock);
ac086bc2 8715 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8716 err = -EBUSY;
8717 goto unlock;
8718 }
9f0c1e56
PZ
8719 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8720 err = -EINVAL;
8721 goto unlock;
8722 }
ac086bc2
PZ
8723
8724 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8725 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8726 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8727
8728 for_each_possible_cpu(i) {
8729 struct rt_rq *rt_rq = tg->rt_rq[i];
8730
8731 spin_lock(&rt_rq->rt_runtime_lock);
8732 rt_rq->rt_runtime = rt_runtime;
8733 spin_unlock(&rt_rq->rt_runtime_lock);
8734 }
8735 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8736 unlock:
521f1a24 8737 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8738 mutex_unlock(&rt_constraints_mutex);
8739
8740 return err;
6f505b16
PZ
8741}
8742
d0b27fa7
PZ
8743int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8744{
8745 u64 rt_runtime, rt_period;
8746
8747 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8748 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8749 if (rt_runtime_us < 0)
8750 rt_runtime = RUNTIME_INF;
8751
8752 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8753}
8754
9f0c1e56
PZ
8755long sched_group_rt_runtime(struct task_group *tg)
8756{
8757 u64 rt_runtime_us;
8758
d0b27fa7 8759 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8760 return -1;
8761
d0b27fa7 8762 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8763 do_div(rt_runtime_us, NSEC_PER_USEC);
8764 return rt_runtime_us;
8765}
d0b27fa7
PZ
8766
8767int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8768{
8769 u64 rt_runtime, rt_period;
8770
8771 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8772 rt_runtime = tg->rt_bandwidth.rt_runtime;
8773
619b0488
R
8774 if (rt_period == 0)
8775 return -EINVAL;
8776
d0b27fa7
PZ
8777 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8778}
8779
8780long sched_group_rt_period(struct task_group *tg)
8781{
8782 u64 rt_period_us;
8783
8784 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8785 do_div(rt_period_us, NSEC_PER_USEC);
8786 return rt_period_us;
8787}
8788
8789static int sched_rt_global_constraints(void)
8790{
10b612f4
PZ
8791 struct task_group *tg = &root_task_group;
8792 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8793 int ret = 0;
8794
10b612f4
PZ
8795 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8796 rt_runtime = tg->rt_bandwidth.rt_runtime;
8797
d0b27fa7 8798 mutex_lock(&rt_constraints_mutex);
10b612f4 8799 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8800 ret = -EINVAL;
8801 mutex_unlock(&rt_constraints_mutex);
8802
8803 return ret;
8804}
6d6bc0ad 8805#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8806static int sched_rt_global_constraints(void)
8807{
ac086bc2
PZ
8808 unsigned long flags;
8809 int i;
8810
8811 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8812 for_each_possible_cpu(i) {
8813 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8814
8815 spin_lock(&rt_rq->rt_runtime_lock);
8816 rt_rq->rt_runtime = global_rt_runtime();
8817 spin_unlock(&rt_rq->rt_runtime_lock);
8818 }
8819 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8820
d0b27fa7
PZ
8821 return 0;
8822}
6d6bc0ad 8823#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8824
8825int sched_rt_handler(struct ctl_table *table, int write,
8826 struct file *filp, void __user *buffer, size_t *lenp,
8827 loff_t *ppos)
8828{
8829 int ret;
8830 int old_period, old_runtime;
8831 static DEFINE_MUTEX(mutex);
8832
8833 mutex_lock(&mutex);
8834 old_period = sysctl_sched_rt_period;
8835 old_runtime = sysctl_sched_rt_runtime;
8836
8837 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8838
8839 if (!ret && write) {
8840 ret = sched_rt_global_constraints();
8841 if (ret) {
8842 sysctl_sched_rt_period = old_period;
8843 sysctl_sched_rt_runtime = old_runtime;
8844 } else {
8845 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8846 def_rt_bandwidth.rt_period =
8847 ns_to_ktime(global_rt_period());
8848 }
8849 }
8850 mutex_unlock(&mutex);
8851
8852 return ret;
8853}
68318b8e 8854
052f1dc7 8855#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8856
8857/* return corresponding task_group object of a cgroup */
2b01dfe3 8858static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8859{
2b01dfe3
PM
8860 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8861 struct task_group, css);
68318b8e
SV
8862}
8863
8864static struct cgroup_subsys_state *
2b01dfe3 8865cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8866{
ec7dc8ac 8867 struct task_group *tg, *parent;
68318b8e 8868
2b01dfe3 8869 if (!cgrp->parent) {
68318b8e 8870 /* This is early initialization for the top cgroup */
2b01dfe3 8871 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8872 return &init_task_group.css;
8873 }
8874
ec7dc8ac
DG
8875 parent = cgroup_tg(cgrp->parent);
8876 tg = sched_create_group(parent);
68318b8e
SV
8877 if (IS_ERR(tg))
8878 return ERR_PTR(-ENOMEM);
8879
8880 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8881 tg->css.cgroup = cgrp;
68318b8e
SV
8882
8883 return &tg->css;
8884}
8885
41a2d6cf
IM
8886static void
8887cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8888{
2b01dfe3 8889 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8890
8891 sched_destroy_group(tg);
8892}
8893
41a2d6cf
IM
8894static int
8895cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8896 struct task_struct *tsk)
68318b8e 8897{
b68aa230
PZ
8898#ifdef CONFIG_RT_GROUP_SCHED
8899 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8900 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8901 return -EINVAL;
8902#else
68318b8e
SV
8903 /* We don't support RT-tasks being in separate groups */
8904 if (tsk->sched_class != &fair_sched_class)
8905 return -EINVAL;
b68aa230 8906#endif
68318b8e
SV
8907
8908 return 0;
8909}
8910
8911static void
2b01dfe3 8912cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8913 struct cgroup *old_cont, struct task_struct *tsk)
8914{
8915 sched_move_task(tsk);
8916}
8917
052f1dc7 8918#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8919static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8920 u64 shareval)
68318b8e 8921{
2b01dfe3 8922 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8923}
8924
f4c753b7 8925static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8926{
2b01dfe3 8927 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8928
8929 return (u64) tg->shares;
8930}
6d6bc0ad 8931#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8932
052f1dc7 8933#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8934static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8935 s64 val)
6f505b16 8936{
06ecb27c 8937 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8938}
8939
06ecb27c 8940static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8941{
06ecb27c 8942 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8943}
d0b27fa7
PZ
8944
8945static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8946 u64 rt_period_us)
8947{
8948 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8949}
8950
8951static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8952{
8953 return sched_group_rt_period(cgroup_tg(cgrp));
8954}
6d6bc0ad 8955#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8956
fe5c7cc2 8957static struct cftype cpu_files[] = {
052f1dc7 8958#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8959 {
8960 .name = "shares",
f4c753b7
PM
8961 .read_u64 = cpu_shares_read_u64,
8962 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8963 },
052f1dc7
PZ
8964#endif
8965#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8966 {
9f0c1e56 8967 .name = "rt_runtime_us",
06ecb27c
PM
8968 .read_s64 = cpu_rt_runtime_read,
8969 .write_s64 = cpu_rt_runtime_write,
6f505b16 8970 },
d0b27fa7
PZ
8971 {
8972 .name = "rt_period_us",
f4c753b7
PM
8973 .read_u64 = cpu_rt_period_read_uint,
8974 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8975 },
052f1dc7 8976#endif
68318b8e
SV
8977};
8978
8979static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8980{
fe5c7cc2 8981 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8982}
8983
8984struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8985 .name = "cpu",
8986 .create = cpu_cgroup_create,
8987 .destroy = cpu_cgroup_destroy,
8988 .can_attach = cpu_cgroup_can_attach,
8989 .attach = cpu_cgroup_attach,
8990 .populate = cpu_cgroup_populate,
8991 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8992 .early_init = 1,
8993};
8994
052f1dc7 8995#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8996
8997#ifdef CONFIG_CGROUP_CPUACCT
8998
8999/*
9000 * CPU accounting code for task groups.
9001 *
9002 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9003 * (balbir@in.ibm.com).
9004 */
9005
9006/* track cpu usage of a group of tasks */
9007struct cpuacct {
9008 struct cgroup_subsys_state css;
9009 /* cpuusage holds pointer to a u64-type object on every cpu */
9010 u64 *cpuusage;
9011};
9012
9013struct cgroup_subsys cpuacct_subsys;
9014
9015/* return cpu accounting group corresponding to this container */
32cd756a 9016static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9017{
32cd756a 9018 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9019 struct cpuacct, css);
9020}
9021
9022/* return cpu accounting group to which this task belongs */
9023static inline struct cpuacct *task_ca(struct task_struct *tsk)
9024{
9025 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9026 struct cpuacct, css);
9027}
9028
9029/* create a new cpu accounting group */
9030static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9031 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9032{
9033 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9034
9035 if (!ca)
9036 return ERR_PTR(-ENOMEM);
9037
9038 ca->cpuusage = alloc_percpu(u64);
9039 if (!ca->cpuusage) {
9040 kfree(ca);
9041 return ERR_PTR(-ENOMEM);
9042 }
9043
9044 return &ca->css;
9045}
9046
9047/* destroy an existing cpu accounting group */
41a2d6cf 9048static void
32cd756a 9049cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9050{
32cd756a 9051 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9052
9053 free_percpu(ca->cpuusage);
9054 kfree(ca);
9055}
9056
9057/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9058static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9059{
32cd756a 9060 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9061 u64 totalcpuusage = 0;
9062 int i;
9063
9064 for_each_possible_cpu(i) {
9065 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9066
9067 /*
9068 * Take rq->lock to make 64-bit addition safe on 32-bit
9069 * platforms.
9070 */
9071 spin_lock_irq(&cpu_rq(i)->lock);
9072 totalcpuusage += *cpuusage;
9073 spin_unlock_irq(&cpu_rq(i)->lock);
9074 }
9075
9076 return totalcpuusage;
9077}
9078
0297b803
DG
9079static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9080 u64 reset)
9081{
9082 struct cpuacct *ca = cgroup_ca(cgrp);
9083 int err = 0;
9084 int i;
9085
9086 if (reset) {
9087 err = -EINVAL;
9088 goto out;
9089 }
9090
9091 for_each_possible_cpu(i) {
9092 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9093
9094 spin_lock_irq(&cpu_rq(i)->lock);
9095 *cpuusage = 0;
9096 spin_unlock_irq(&cpu_rq(i)->lock);
9097 }
9098out:
9099 return err;
9100}
9101
d842de87
SV
9102static struct cftype files[] = {
9103 {
9104 .name = "usage",
f4c753b7
PM
9105 .read_u64 = cpuusage_read,
9106 .write_u64 = cpuusage_write,
d842de87
SV
9107 },
9108};
9109
32cd756a 9110static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9111{
32cd756a 9112 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9113}
9114
9115/*
9116 * charge this task's execution time to its accounting group.
9117 *
9118 * called with rq->lock held.
9119 */
9120static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9121{
9122 struct cpuacct *ca;
9123
9124 if (!cpuacct_subsys.active)
9125 return;
9126
9127 ca = task_ca(tsk);
9128 if (ca) {
9129 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9130
9131 *cpuusage += cputime;
9132 }
9133}
9134
9135struct cgroup_subsys cpuacct_subsys = {
9136 .name = "cpuacct",
9137 .create = cpuacct_create,
9138 .destroy = cpuacct_destroy,
9139 .populate = cpuacct_populate,
9140 .subsys_id = cpuacct_subsys_id,
9141};
9142#endif /* CONFIG_CGROUP_CPUACCT */