]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched.c
sched: Allow SCHED_BATCH to preempt SCHED_IDLE tasks
[mirror_ubuntu-zesty-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
335d7afb 78#include <asm/mutex.h>
1da177e4 79
6e0534f2 80#include "sched_cpupri.h"
21aa9af0 81#include "workqueue_sched.h"
5091faa4 82#include "sched_autogroup.h"
6e0534f2 83
a8d154b0 84#define CREATE_TRACE_POINTS
ad8d75ff 85#include <trace/events/sched.h>
a8d154b0 86
1da177e4
LT
87/*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96/*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105/*
d7876a08 106 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 107 */
d6322faf 108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 109
6aa645ea
IM
110#define NICE_0_LOAD SCHED_LOAD_SCALE
111#define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
1da177e4
LT
113/*
114 * These are the 'tuning knobs' of the scheduler:
115 *
a4ec24b4 116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
117 * Timeslices get refilled after they expire.
118 */
1da177e4 119#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 120
d0b27fa7
PZ
121/*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124#define RUNTIME_INF ((u64)~0ULL)
125
e05606d3
IM
126static inline int rt_policy(int policy)
127{
3f33a7ce 128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
129 return 1;
130 return 0;
131}
132
133static inline int task_has_rt_policy(struct task_struct *p)
134{
135 return rt_policy(p->policy);
136}
137
1da177e4 138/*
6aa645ea 139 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 140 */
6aa645ea
IM
141struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144};
145
d0b27fa7 146struct rt_bandwidth {
ea736ed5 147 /* nests inside the rq lock: */
0986b11b 148 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
d0b27fa7
PZ
152};
153
154static struct rt_bandwidth def_rt_bandwidth;
155
156static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159{
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
165
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170 if (!overrun)
171 break;
172
173 idle = do_sched_rt_period_timer(rt_b, overrun);
174 }
175
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177}
178
179static
180void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181{
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
184
0986b11b 185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 186
d0b27fa7
PZ
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
190}
191
c8bfff6d
KH
192static inline int rt_bandwidth_enabled(void)
193{
194 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
195}
196
197static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198{
199 ktime_t now;
200
cac64d00 201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
202 return;
203
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
206
0986b11b 207 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 208 for (;;) {
7f1e2ca9
PZ
209 unsigned long delta;
210 ktime_t soft, hard;
211
d0b27fa7
PZ
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
214
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
217
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 222 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 223 }
0986b11b 224 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
225}
226
227#ifdef CONFIG_RT_GROUP_SCHED
228static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229{
230 hrtimer_cancel(&rt_b->rt_period_timer);
231}
232#endif
233
712555ee
HC
234/*
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
237 */
238static DEFINE_MUTEX(sched_domains_mutex);
239
7c941438 240#ifdef CONFIG_CGROUP_SCHED
29f59db3 241
68318b8e
SV
242#include <linux/cgroup.h>
243
29f59db3
SV
244struct cfs_rq;
245
6f505b16
PZ
246static LIST_HEAD(task_groups);
247
29f59db3 248/* task group related information */
4cf86d77 249struct task_group {
68318b8e 250 struct cgroup_subsys_state css;
6c415b92 251
052f1dc7 252#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
2069dd75
PZ
258
259 atomic_t load_weight;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
5091faa4
MG
275
276#ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278#endif
29f59db3
SV
279};
280
3d4b47b4 281/* task_group_lock serializes the addition/removal of task groups */
8ed36996 282static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 283
e9036b36
CG
284#ifdef CONFIG_FAIR_GROUP_SCHED
285
07e06b01 286# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 287
cb4ad1ff 288/*
2e084786
LJ
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
cb4ad1ff
MX
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
295 */
18d95a28 296#define MIN_SHARES 2
2e084786 297#define MAX_SHARES (1UL << 18)
18d95a28 298
07e06b01 299static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
300#endif
301
29f59db3 302/* Default task group.
3a252015 303 * Every task in system belong to this group at bootup.
29f59db3 304 */
07e06b01 305struct task_group root_task_group;
29f59db3 306
7c941438 307#endif /* CONFIG_CGROUP_SCHED */
29f59db3 308
6aa645ea
IM
309/* CFS-related fields in a runqueue */
310struct cfs_rq {
311 struct load_weight load;
312 unsigned long nr_running;
313
6aa645ea 314 u64 exec_clock;
e9acbff6 315 u64 min_vruntime;
6aa645ea
IM
316
317 struct rb_root tasks_timeline;
318 struct rb_node *rb_leftmost;
4a55bd5e
PZ
319
320 struct list_head tasks;
321 struct list_head *balance_iterator;
322
323 /*
324 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
325 * It is set to NULL otherwise (i.e when none are currently running).
326 */
ac53db59 327 struct sched_entity *curr, *next, *last, *skip;
ddc97297 328
5ac5c4d6 329 unsigned int nr_spread_over;
ddc97297 330
62160e3f 331#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
332 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
333
41a2d6cf
IM
334 /*
335 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
336 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
337 * (like users, containers etc.)
338 *
339 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
340 * list is used during load balance.
341 */
3d4b47b4 342 int on_list;
41a2d6cf
IM
343 struct list_head leaf_cfs_rq_list;
344 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
345
346#ifdef CONFIG_SMP
c09595f6 347 /*
c8cba857 348 * the part of load.weight contributed by tasks
c09595f6 349 */
c8cba857 350 unsigned long task_weight;
c09595f6 351
c8cba857
PZ
352 /*
353 * h_load = weight * f(tg)
354 *
355 * Where f(tg) is the recursive weight fraction assigned to
356 * this group.
357 */
358 unsigned long h_load;
c09595f6 359
c8cba857 360 /*
3b3d190e
PT
361 * Maintaining per-cpu shares distribution for group scheduling
362 *
363 * load_stamp is the last time we updated the load average
364 * load_last is the last time we updated the load average and saw load
365 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 366 */
2069dd75
PZ
367 u64 load_avg;
368 u64 load_period;
3b3d190e 369 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 370
2069dd75 371 unsigned long load_contribution;
c09595f6 372#endif
6aa645ea
IM
373#endif
374};
1da177e4 375
6aa645ea
IM
376/* Real-Time classes' related field in a runqueue: */
377struct rt_rq {
378 struct rt_prio_array active;
63489e45 379 unsigned long rt_nr_running;
052f1dc7 380#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
381 struct {
382 int curr; /* highest queued rt task prio */
398a153b 383#ifdef CONFIG_SMP
e864c499 384 int next; /* next highest */
398a153b 385#endif
e864c499 386 } highest_prio;
6f505b16 387#endif
fa85ae24 388#ifdef CONFIG_SMP
73fe6aae 389 unsigned long rt_nr_migratory;
a1ba4d8b 390 unsigned long rt_nr_total;
a22d7fc1 391 int overloaded;
917b627d 392 struct plist_head pushable_tasks;
fa85ae24 393#endif
6f505b16 394 int rt_throttled;
fa85ae24 395 u64 rt_time;
ac086bc2 396 u64 rt_runtime;
ea736ed5 397 /* Nests inside the rq lock: */
0986b11b 398 raw_spinlock_t rt_runtime_lock;
6f505b16 399
052f1dc7 400#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
401 unsigned long rt_nr_boosted;
402
6f505b16
PZ
403 struct rq *rq;
404 struct list_head leaf_rt_rq_list;
405 struct task_group *tg;
6f505b16 406#endif
6aa645ea
IM
407};
408
57d885fe
GH
409#ifdef CONFIG_SMP
410
411/*
412 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
413 * variables. Each exclusive cpuset essentially defines an island domain by
414 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
415 * exclusive cpuset is created, we also create and attach a new root-domain
416 * object.
417 *
57d885fe
GH
418 */
419struct root_domain {
420 atomic_t refcount;
c6c4927b
RR
421 cpumask_var_t span;
422 cpumask_var_t online;
637f5085 423
0eab9146 424 /*
637f5085
GH
425 * The "RT overload" flag: it gets set if a CPU has more than
426 * one runnable RT task.
427 */
c6c4927b 428 cpumask_var_t rto_mask;
0eab9146 429 atomic_t rto_count;
6e0534f2 430 struct cpupri cpupri;
57d885fe
GH
431};
432
dc938520
GH
433/*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
57d885fe
GH
437static struct root_domain def_root_domain;
438
ed2d372c 439#endif /* CONFIG_SMP */
57d885fe 440
1da177e4
LT
441/*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
70b97a7f 448struct rq {
d8016491 449 /* runqueue lock: */
05fa785c 450 raw_spinlock_t lock;
1da177e4
LT
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
6aa645ea
IM
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 459 unsigned long last_load_update_tick;
46cb4b7c 460#ifdef CONFIG_NO_HZ
39c0cbe2 461 u64 nohz_stamp;
83cd4fe2 462 unsigned char nohz_balance_kick;
46cb4b7c 463#endif
a64692a3
MG
464 unsigned int skip_clock_update;
465
d8016491
IM
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
6aa645ea
IM
468 unsigned long nr_load_updates;
469 u64 nr_switches;
470
471 struct cfs_rq cfs;
6f505b16 472 struct rt_rq rt;
6f505b16 473
6aa645ea 474#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
477#endif
478#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 479 struct list_head leaf_rt_rq_list;
1da177e4 480#endif
1da177e4
LT
481
482 /*
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
487 */
488 unsigned long nr_uninterruptible;
489
34f971f6 490 struct task_struct *curr, *idle, *stop;
c9819f45 491 unsigned long next_balance;
1da177e4 492 struct mm_struct *prev_mm;
6aa645ea 493
3e51f33f 494 u64 clock;
305e6835 495 u64 clock_task;
6aa645ea 496
1da177e4
LT
497 atomic_t nr_iowait;
498
499#ifdef CONFIG_SMP
0eab9146 500 struct root_domain *rd;
1da177e4
LT
501 struct sched_domain *sd;
502
e51fd5e2
PZ
503 unsigned long cpu_power;
504
a0a522ce 505 unsigned char idle_at_tick;
1da177e4 506 /* For active balancing */
3f029d3c 507 int post_schedule;
1da177e4
LT
508 int active_balance;
509 int push_cpu;
969c7921 510 struct cpu_stop_work active_balance_work;
d8016491
IM
511 /* cpu of this runqueue: */
512 int cpu;
1f11eb6a 513 int online;
1da177e4 514
a8a51d5e 515 unsigned long avg_load_per_task;
1da177e4 516
e9e9250b
PZ
517 u64 rt_avg;
518 u64 age_stamp;
1b9508f6
MG
519 u64 idle_stamp;
520 u64 avg_idle;
1da177e4
LT
521#endif
522
aa483808
VP
523#ifdef CONFIG_IRQ_TIME_ACCOUNTING
524 u64 prev_irq_time;
525#endif
526
dce48a84
TG
527 /* calc_load related fields */
528 unsigned long calc_load_update;
529 long calc_load_active;
530
8f4d37ec 531#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
532#ifdef CONFIG_SMP
533 int hrtick_csd_pending;
534 struct call_single_data hrtick_csd;
535#endif
8f4d37ec
PZ
536 struct hrtimer hrtick_timer;
537#endif
538
1da177e4
LT
539#ifdef CONFIG_SCHEDSTATS
540 /* latency stats */
541 struct sched_info rq_sched_info;
9c2c4802
KC
542 unsigned long long rq_cpu_time;
543 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
544
545 /* sys_sched_yield() stats */
480b9434 546 unsigned int yld_count;
1da177e4
LT
547
548 /* schedule() stats */
480b9434
KC
549 unsigned int sched_switch;
550 unsigned int sched_count;
551 unsigned int sched_goidle;
1da177e4
LT
552
553 /* try_to_wake_up() stats */
480b9434
KC
554 unsigned int ttwu_count;
555 unsigned int ttwu_local;
1da177e4
LT
556#endif
557};
558
f34e3b61 559static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 560
a64692a3 561
1e5a7405 562static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 563
0a2966b4
CL
564static inline int cpu_of(struct rq *rq)
565{
566#ifdef CONFIG_SMP
567 return rq->cpu;
568#else
569 return 0;
570#endif
571}
572
497f0ab3 573#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
574 rcu_dereference_check((p), \
575 rcu_read_lock_sched_held() || \
576 lockdep_is_held(&sched_domains_mutex))
577
674311d5
NP
578/*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 580 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
48f24c4d 585#define for_each_domain(cpu, __sd) \
497f0ab3 586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
587
588#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589#define this_rq() (&__get_cpu_var(runqueues))
590#define task_rq(p) cpu_rq(task_cpu(p))
591#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 592#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 593
dc61b1d6
PZ
594#ifdef CONFIG_CGROUP_SCHED
595
596/*
597 * Return the group to which this tasks belongs.
598 *
599 * We use task_subsys_state_check() and extend the RCU verification
600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601 * holds that lock for each task it moves into the cgroup. Therefore
602 * by holding that lock, we pin the task to the current cgroup.
603 */
604static inline struct task_group *task_group(struct task_struct *p)
605{
5091faa4 606 struct task_group *tg;
dc61b1d6
PZ
607 struct cgroup_subsys_state *css;
608
068c5cc5
PZ
609 if (p->flags & PF_EXITING)
610 return &root_task_group;
611
dc61b1d6
PZ
612 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
613 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
614 tg = container_of(css, struct task_group, css);
615
616 return autogroup_task_group(p, tg);
dc61b1d6
PZ
617}
618
619/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
620static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
621{
622#ifdef CONFIG_FAIR_GROUP_SCHED
623 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
624 p->se.parent = task_group(p)->se[cpu];
625#endif
626
627#ifdef CONFIG_RT_GROUP_SCHED
628 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
629 p->rt.parent = task_group(p)->rt_se[cpu];
630#endif
631}
632
633#else /* CONFIG_CGROUP_SCHED */
634
635static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
636static inline struct task_group *task_group(struct task_struct *p)
637{
638 return NULL;
639}
640
641#endif /* CONFIG_CGROUP_SCHED */
642
fe44d621 643static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 644
fe44d621 645static void update_rq_clock(struct rq *rq)
3e51f33f 646{
fe44d621 647 s64 delta;
305e6835 648
f26f9aff
MG
649 if (rq->skip_clock_update)
650 return;
aa483808 651
fe44d621
PZ
652 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
653 rq->clock += delta;
654 update_rq_clock_task(rq, delta);
3e51f33f
PZ
655}
656
bf5c91ba
IM
657/*
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659 */
660#ifdef CONFIG_SCHED_DEBUG
661# define const_debug __read_mostly
662#else
663# define const_debug static const
664#endif
665
017730c1
IM
666/**
667 * runqueue_is_locked
e17b38bf 668 * @cpu: the processor in question.
017730c1
IM
669 *
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
673 */
89f19f04 674int runqueue_is_locked(int cpu)
017730c1 675{
05fa785c 676 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
677}
678
bf5c91ba
IM
679/*
680 * Debugging: various feature bits
681 */
f00b45c1
PZ
682
683#define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
bf5c91ba 686enum {
f00b45c1 687#include "sched_features.h"
bf5c91ba
IM
688};
689
f00b45c1
PZ
690#undef SCHED_FEAT
691
692#define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
bf5c91ba 695const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
696#include "sched_features.h"
697 0;
698
699#undef SCHED_FEAT
700
701#ifdef CONFIG_SCHED_DEBUG
702#define SCHED_FEAT(name, enabled) \
703 #name ,
704
983ed7a6 705static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
706#include "sched_features.h"
707 NULL
708};
709
710#undef SCHED_FEAT
711
34f3a814 712static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 713{
f00b45c1
PZ
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
717 if (!(sysctl_sched_features & (1UL << i)))
718 seq_puts(m, "NO_");
719 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 720 }
34f3a814 721 seq_puts(m, "\n");
f00b45c1 722
34f3a814 723 return 0;
f00b45c1
PZ
724}
725
726static ssize_t
727sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
729{
730 char buf[64];
7740191c 731 char *cmp;
f00b45c1
PZ
732 int neg = 0;
733 int i;
734
735 if (cnt > 63)
736 cnt = 63;
737
738 if (copy_from_user(&buf, ubuf, cnt))
739 return -EFAULT;
740
741 buf[cnt] = 0;
7740191c 742 cmp = strstrip(buf);
f00b45c1 743
524429c3 744 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
745 neg = 1;
746 cmp += 3;
747 }
748
749 for (i = 0; sched_feat_names[i]; i++) {
7740191c 750 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
751 if (neg)
752 sysctl_sched_features &= ~(1UL << i);
753 else
754 sysctl_sched_features |= (1UL << i);
755 break;
756 }
757 }
758
759 if (!sched_feat_names[i])
760 return -EINVAL;
761
42994724 762 *ppos += cnt;
f00b45c1
PZ
763
764 return cnt;
765}
766
34f3a814
LZ
767static int sched_feat_open(struct inode *inode, struct file *filp)
768{
769 return single_open(filp, sched_feat_show, NULL);
770}
771
828c0950 772static const struct file_operations sched_feat_fops = {
34f3a814
LZ
773 .open = sched_feat_open,
774 .write = sched_feat_write,
775 .read = seq_read,
776 .llseek = seq_lseek,
777 .release = single_release,
f00b45c1
PZ
778};
779
780static __init int sched_init_debug(void)
781{
f00b45c1
PZ
782 debugfs_create_file("sched_features", 0644, NULL, NULL,
783 &sched_feat_fops);
784
785 return 0;
786}
787late_initcall(sched_init_debug);
788
789#endif
790
791#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 792
b82d9fdd
PZ
793/*
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
796 */
797const_debug unsigned int sysctl_sched_nr_migrate = 32;
798
e9e9250b
PZ
799/*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
05fa785c 869 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0 894#else
05fa785c 895 raw_spin_unlock(&rq->lock);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
0970d299 916/*
65cc8e48
PZ
917 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
918 * against ttwu().
0970d299
PZ
919 */
920static inline int task_is_waking(struct task_struct *p)
921{
0017d735 922 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
923}
924
b29739f9
IM
925/*
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
928 */
70b97a7f 929static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
930 __acquires(rq->lock)
931{
0970d299
PZ
932 struct rq *rq;
933
3a5c359a 934 for (;;) {
0970d299 935 rq = task_rq(p);
05fa785c 936 raw_spin_lock(&rq->lock);
65cc8e48 937 if (likely(rq == task_rq(p)))
3a5c359a 938 return rq;
05fa785c 939 raw_spin_unlock(&rq->lock);
b29739f9 940 }
b29739f9
IM
941}
942
1da177e4
LT
943/*
944 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 945 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
946 * explicitly disabling preemption.
947 */
70b97a7f 948static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
949 __acquires(rq->lock)
950{
70b97a7f 951 struct rq *rq;
1da177e4 952
3a5c359a
AK
953 for (;;) {
954 local_irq_save(*flags);
955 rq = task_rq(p);
05fa785c 956 raw_spin_lock(&rq->lock);
65cc8e48 957 if (likely(rq == task_rq(p)))
3a5c359a 958 return rq;
05fa785c 959 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 960 }
1da177e4
LT
961}
962
a9957449 963static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
964 __releases(rq->lock)
965{
05fa785c 966 raw_spin_unlock(&rq->lock);
b29739f9
IM
967}
968
70b97a7f 969static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
970 __releases(rq->lock)
971{
05fa785c 972 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
973}
974
1da177e4 975/*
cc2a73b5 976 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 977 */
a9957449 978static struct rq *this_rq_lock(void)
1da177e4
LT
979 __acquires(rq->lock)
980{
70b97a7f 981 struct rq *rq;
1da177e4
LT
982
983 local_irq_disable();
984 rq = this_rq();
05fa785c 985 raw_spin_lock(&rq->lock);
1da177e4
LT
986
987 return rq;
988}
989
8f4d37ec
PZ
990#ifdef CONFIG_SCHED_HRTICK
991/*
992 * Use HR-timers to deliver accurate preemption points.
993 *
994 * Its all a bit involved since we cannot program an hrt while holding the
995 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
996 * reschedule event.
997 *
998 * When we get rescheduled we reprogram the hrtick_timer outside of the
999 * rq->lock.
1000 */
8f4d37ec
PZ
1001
1002/*
1003 * Use hrtick when:
1004 * - enabled by features
1005 * - hrtimer is actually high res
1006 */
1007static inline int hrtick_enabled(struct rq *rq)
1008{
1009 if (!sched_feat(HRTICK))
1010 return 0;
ba42059f 1011 if (!cpu_active(cpu_of(rq)))
b328ca18 1012 return 0;
8f4d37ec
PZ
1013 return hrtimer_is_hres_active(&rq->hrtick_timer);
1014}
1015
8f4d37ec
PZ
1016static void hrtick_clear(struct rq *rq)
1017{
1018 if (hrtimer_active(&rq->hrtick_timer))
1019 hrtimer_cancel(&rq->hrtick_timer);
1020}
1021
8f4d37ec
PZ
1022/*
1023 * High-resolution timer tick.
1024 * Runs from hardirq context with interrupts disabled.
1025 */
1026static enum hrtimer_restart hrtick(struct hrtimer *timer)
1027{
1028 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1029
1030 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1031
05fa785c 1032 raw_spin_lock(&rq->lock);
3e51f33f 1033 update_rq_clock(rq);
8f4d37ec 1034 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1035 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1036
1037 return HRTIMER_NORESTART;
1038}
1039
95e904c7 1040#ifdef CONFIG_SMP
31656519
PZ
1041/*
1042 * called from hardirq (IPI) context
1043 */
1044static void __hrtick_start(void *arg)
b328ca18 1045{
31656519 1046 struct rq *rq = arg;
b328ca18 1047
05fa785c 1048 raw_spin_lock(&rq->lock);
31656519
PZ
1049 hrtimer_restart(&rq->hrtick_timer);
1050 rq->hrtick_csd_pending = 0;
05fa785c 1051 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1052}
1053
31656519
PZ
1054/*
1055 * Called to set the hrtick timer state.
1056 *
1057 * called with rq->lock held and irqs disabled
1058 */
1059static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1060{
31656519
PZ
1061 struct hrtimer *timer = &rq->hrtick_timer;
1062 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1063
cc584b21 1064 hrtimer_set_expires(timer, time);
31656519
PZ
1065
1066 if (rq == this_rq()) {
1067 hrtimer_restart(timer);
1068 } else if (!rq->hrtick_csd_pending) {
6e275637 1069 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1070 rq->hrtick_csd_pending = 1;
1071 }
b328ca18
PZ
1072}
1073
1074static int
1075hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1076{
1077 int cpu = (int)(long)hcpu;
1078
1079 switch (action) {
1080 case CPU_UP_CANCELED:
1081 case CPU_UP_CANCELED_FROZEN:
1082 case CPU_DOWN_PREPARE:
1083 case CPU_DOWN_PREPARE_FROZEN:
1084 case CPU_DEAD:
1085 case CPU_DEAD_FROZEN:
31656519 1086 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1087 return NOTIFY_OK;
1088 }
1089
1090 return NOTIFY_DONE;
1091}
1092
fa748203 1093static __init void init_hrtick(void)
b328ca18
PZ
1094{
1095 hotcpu_notifier(hotplug_hrtick, 0);
1096}
31656519
PZ
1097#else
1098/*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103static void hrtick_start(struct rq *rq, u64 delay)
1104{
7f1e2ca9 1105 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1106 HRTIMER_MODE_REL_PINNED, 0);
31656519 1107}
b328ca18 1108
006c75f1 1109static inline void init_hrtick(void)
8f4d37ec 1110{
8f4d37ec 1111}
31656519 1112#endif /* CONFIG_SMP */
8f4d37ec 1113
31656519 1114static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1115{
31656519
PZ
1116#ifdef CONFIG_SMP
1117 rq->hrtick_csd_pending = 0;
8f4d37ec 1118
31656519
PZ
1119 rq->hrtick_csd.flags = 0;
1120 rq->hrtick_csd.func = __hrtick_start;
1121 rq->hrtick_csd.info = rq;
1122#endif
8f4d37ec 1123
31656519
PZ
1124 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1125 rq->hrtick_timer.function = hrtick;
8f4d37ec 1126}
006c75f1 1127#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1128static inline void hrtick_clear(struct rq *rq)
1129{
1130}
1131
8f4d37ec
PZ
1132static inline void init_rq_hrtick(struct rq *rq)
1133{
1134}
1135
b328ca18
PZ
1136static inline void init_hrtick(void)
1137{
1138}
006c75f1 1139#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1140
c24d20db
IM
1141/*
1142 * resched_task - mark a task 'to be rescheduled now'.
1143 *
1144 * On UP this means the setting of the need_resched flag, on SMP it
1145 * might also involve a cross-CPU call to trigger the scheduler on
1146 * the target CPU.
1147 */
1148#ifdef CONFIG_SMP
1149
1150#ifndef tsk_is_polling
1151#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1152#endif
1153
31656519 1154static void resched_task(struct task_struct *p)
c24d20db
IM
1155{
1156 int cpu;
1157
05fa785c 1158 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1159
5ed0cec0 1160 if (test_tsk_need_resched(p))
c24d20db
IM
1161 return;
1162
5ed0cec0 1163 set_tsk_need_resched(p);
c24d20db
IM
1164
1165 cpu = task_cpu(p);
1166 if (cpu == smp_processor_id())
1167 return;
1168
1169 /* NEED_RESCHED must be visible before we test polling */
1170 smp_mb();
1171 if (!tsk_is_polling(p))
1172 smp_send_reschedule(cpu);
1173}
1174
1175static void resched_cpu(int cpu)
1176{
1177 struct rq *rq = cpu_rq(cpu);
1178 unsigned long flags;
1179
05fa785c 1180 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1181 return;
1182 resched_task(cpu_curr(cpu));
05fa785c 1183 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1184}
06d8308c
TG
1185
1186#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1187/*
1188 * In the semi idle case, use the nearest busy cpu for migrating timers
1189 * from an idle cpu. This is good for power-savings.
1190 *
1191 * We don't do similar optimization for completely idle system, as
1192 * selecting an idle cpu will add more delays to the timers than intended
1193 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1194 */
1195int get_nohz_timer_target(void)
1196{
1197 int cpu = smp_processor_id();
1198 int i;
1199 struct sched_domain *sd;
1200
1201 for_each_domain(cpu, sd) {
1202 for_each_cpu(i, sched_domain_span(sd))
1203 if (!idle_cpu(i))
1204 return i;
1205 }
1206 return cpu;
1207}
06d8308c
TG
1208/*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218void wake_up_idle_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
5ed0cec0 1240 set_tsk_need_resched(rq->idle);
06d8308c
TG
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246}
39c0cbe2 1247
6d6bc0ad 1248#endif /* CONFIG_NO_HZ */
06d8308c 1249
e9e9250b
PZ
1250static u64 sched_avg_period(void)
1251{
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253}
1254
1255static void sched_avg_update(struct rq *rq)
1256{
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1260 /*
1261 * Inline assembly required to prevent the compiler
1262 * optimising this loop into a divmod call.
1263 * See __iter_div_u64_rem() for another example of this.
1264 */
1265 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1266 rq->age_stamp += period;
1267 rq->rt_avg /= 2;
1268 }
1269}
1270
1271static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272{
1273 rq->rt_avg += rt_delta;
1274 sched_avg_update(rq);
1275}
1276
6d6bc0ad 1277#else /* !CONFIG_SMP */
31656519 1278static void resched_task(struct task_struct *p)
c24d20db 1279{
05fa785c 1280 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1281 set_tsk_need_resched(p);
c24d20db 1282}
e9e9250b
PZ
1283
1284static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285{
1286}
da2b71ed
SS
1287
1288static void sched_avg_update(struct rq *rq)
1289{
1290}
6d6bc0ad 1291#endif /* CONFIG_SMP */
c24d20db 1292
45bf76df
IM
1293#if BITS_PER_LONG == 32
1294# define WMULT_CONST (~0UL)
1295#else
1296# define WMULT_CONST (1UL << 32)
1297#endif
1298
1299#define WMULT_SHIFT 32
1300
194081eb
IM
1301/*
1302 * Shift right and round:
1303 */
cf2ab469 1304#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1305
a7be37ac
PZ
1306/*
1307 * delta *= weight / lw
1308 */
cb1c4fc9 1309static unsigned long
45bf76df
IM
1310calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1311 struct load_weight *lw)
1312{
1313 u64 tmp;
1314
7a232e03
LJ
1315 if (!lw->inv_weight) {
1316 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1317 lw->inv_weight = 1;
1318 else
1319 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1320 / (lw->weight+1);
1321 }
45bf76df
IM
1322
1323 tmp = (u64)delta_exec * weight;
1324 /*
1325 * Check whether we'd overflow the 64-bit multiplication:
1326 */
194081eb 1327 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1328 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1329 WMULT_SHIFT/2);
1330 else
cf2ab469 1331 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1332
ecf691da 1333 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1337{
1338 lw->weight += inc;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
1091985b 1342static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1343{
1344 lw->weight -= dec;
e89996ae 1345 lw->inv_weight = 0;
45bf76df
IM
1346}
1347
2069dd75
PZ
1348static inline void update_load_set(struct load_weight *lw, unsigned long w)
1349{
1350 lw->weight = w;
1351 lw->inv_weight = 0;
1352}
1353
2dd73a4f
PW
1354/*
1355 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356 * of tasks with abnormal "nice" values across CPUs the contribution that
1357 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1358 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1359 * scaled version of the new time slice allocation that they receive on time
1360 * slice expiry etc.
1361 */
1362
cce7ade8
PZ
1363#define WEIGHT_IDLEPRIO 3
1364#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1365
1366/*
1367 * Nice levels are multiplicative, with a gentle 10% change for every
1368 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370 * that remained on nice 0.
1371 *
1372 * The "10% effect" is relative and cumulative: from _any_ nice level,
1373 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1374 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375 * If a task goes up by ~10% and another task goes down by ~10% then
1376 * the relative distance between them is ~25%.)
dd41f596
IM
1377 */
1378static const int prio_to_weight[40] = {
254753dc
IM
1379 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1380 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1381 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1382 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1383 /* 0 */ 1024, 820, 655, 526, 423,
1384 /* 5 */ 335, 272, 215, 172, 137,
1385 /* 10 */ 110, 87, 70, 56, 45,
1386 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1387};
1388
5714d2de
IM
1389/*
1390 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1391 *
1392 * In cases where the weight does not change often, we can use the
1393 * precalculated inverse to speed up arithmetics by turning divisions
1394 * into multiplications:
1395 */
dd41f596 1396static const u32 prio_to_wmult[40] = {
254753dc
IM
1397 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1398 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1399 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1400 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1401 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1402 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1403 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1404 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1405};
2dd73a4f 1406
ef12fefa
BR
1407/* Time spent by the tasks of the cpu accounting group executing in ... */
1408enum cpuacct_stat_index {
1409 CPUACCT_STAT_USER, /* ... user mode */
1410 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1411
1412 CPUACCT_STAT_NSTATS,
1413};
1414
d842de87
SV
1415#ifdef CONFIG_CGROUP_CPUACCT
1416static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1417static void cpuacct_update_stats(struct task_struct *tsk,
1418 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1419#else
1420static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1421static inline void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1423#endif
1424
18d95a28
PZ
1425static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1426{
1427 update_load_add(&rq->load, load);
1428}
1429
1430static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1431{
1432 update_load_sub(&rq->load, load);
1433}
1434
7940ca36 1435#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1436typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1437
1438/*
1439 * Iterate the full tree, calling @down when first entering a node and @up when
1440 * leaving it for the final time.
1441 */
eb755805 1442static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1443{
1444 struct task_group *parent, *child;
eb755805 1445 int ret;
c09595f6
PZ
1446
1447 rcu_read_lock();
1448 parent = &root_task_group;
1449down:
eb755805
PZ
1450 ret = (*down)(parent, data);
1451 if (ret)
1452 goto out_unlock;
c09595f6
PZ
1453 list_for_each_entry_rcu(child, &parent->children, siblings) {
1454 parent = child;
1455 goto down;
1456
1457up:
1458 continue;
1459 }
eb755805
PZ
1460 ret = (*up)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463
1464 child = parent;
1465 parent = parent->parent;
1466 if (parent)
1467 goto up;
eb755805 1468out_unlock:
c09595f6 1469 rcu_read_unlock();
eb755805
PZ
1470
1471 return ret;
c09595f6
PZ
1472}
1473
eb755805
PZ
1474static int tg_nop(struct task_group *tg, void *data)
1475{
1476 return 0;
c09595f6 1477}
eb755805
PZ
1478#endif
1479
1480#ifdef CONFIG_SMP
f5f08f39
PZ
1481/* Used instead of source_load when we know the type == 0 */
1482static unsigned long weighted_cpuload(const int cpu)
1483{
1484 return cpu_rq(cpu)->load.weight;
1485}
1486
1487/*
1488 * Return a low guess at the load of a migration-source cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 *
1491 * We want to under-estimate the load of migration sources, to
1492 * balance conservatively.
1493 */
1494static unsigned long source_load(int cpu, int type)
1495{
1496 struct rq *rq = cpu_rq(cpu);
1497 unsigned long total = weighted_cpuload(cpu);
1498
1499 if (type == 0 || !sched_feat(LB_BIAS))
1500 return total;
1501
1502 return min(rq->cpu_load[type-1], total);
1503}
1504
1505/*
1506 * Return a high guess at the load of a migration-target cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 */
1509static unsigned long target_load(int cpu, int type)
1510{
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return max(rq->cpu_load[type-1], total);
1518}
1519
ae154be1
PZ
1520static unsigned long power_of(int cpu)
1521{
e51fd5e2 1522 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1523}
1524
eb755805
PZ
1525static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526
1527static unsigned long cpu_avg_load_per_task(int cpu)
1528{
1529 struct rq *rq = cpu_rq(cpu);
af6d596f 1530 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1531
4cd42620
SR
1532 if (nr_running)
1533 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1534 else
1535 rq->avg_load_per_task = 0;
eb755805
PZ
1536
1537 return rq->avg_load_per_task;
1538}
1539
1540#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1541
c09595f6 1542/*
c8cba857
PZ
1543 * Compute the cpu's hierarchical load factor for each task group.
1544 * This needs to be done in a top-down fashion because the load of a child
1545 * group is a fraction of its parents load.
c09595f6 1546 */
eb755805 1547static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1548{
c8cba857 1549 unsigned long load;
eb755805 1550 long cpu = (long)data;
c09595f6 1551
c8cba857
PZ
1552 if (!tg->parent) {
1553 load = cpu_rq(cpu)->load.weight;
1554 } else {
1555 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1556 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1557 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1558 }
c09595f6 1559
c8cba857 1560 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1561
eb755805 1562 return 0;
c09595f6
PZ
1563}
1564
eb755805 1565static void update_h_load(long cpu)
c09595f6 1566{
eb755805 1567 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1568}
1569
18d95a28
PZ
1570#endif
1571
8f45e2b5
GH
1572#ifdef CONFIG_PREEMPT
1573
b78bb868
PZ
1574static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1575
70574a99 1576/*
8f45e2b5
GH
1577 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1578 * way at the expense of forcing extra atomic operations in all
1579 * invocations. This assures that the double_lock is acquired using the
1580 * same underlying policy as the spinlock_t on this architecture, which
1581 * reduces latency compared to the unfair variant below. However, it
1582 * also adds more overhead and therefore may reduce throughput.
70574a99 1583 */
8f45e2b5
GH
1584static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1585 __releases(this_rq->lock)
1586 __acquires(busiest->lock)
1587 __acquires(this_rq->lock)
1588{
05fa785c 1589 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1590 double_rq_lock(this_rq, busiest);
1591
1592 return 1;
1593}
1594
1595#else
1596/*
1597 * Unfair double_lock_balance: Optimizes throughput at the expense of
1598 * latency by eliminating extra atomic operations when the locks are
1599 * already in proper order on entry. This favors lower cpu-ids and will
1600 * grant the double lock to lower cpus over higher ids under contention,
1601 * regardless of entry order into the function.
1602 */
1603static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1604 __releases(this_rq->lock)
1605 __acquires(busiest->lock)
1606 __acquires(this_rq->lock)
1607{
1608 int ret = 0;
1609
05fa785c 1610 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1611 if (busiest < this_rq) {
05fa785c
TG
1612 raw_spin_unlock(&this_rq->lock);
1613 raw_spin_lock(&busiest->lock);
1614 raw_spin_lock_nested(&this_rq->lock,
1615 SINGLE_DEPTH_NESTING);
70574a99
AD
1616 ret = 1;
1617 } else
05fa785c
TG
1618 raw_spin_lock_nested(&busiest->lock,
1619 SINGLE_DEPTH_NESTING);
70574a99
AD
1620 }
1621 return ret;
1622}
1623
8f45e2b5
GH
1624#endif /* CONFIG_PREEMPT */
1625
1626/*
1627 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1628 */
1629static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1630{
1631 if (unlikely(!irqs_disabled())) {
1632 /* printk() doesn't work good under rq->lock */
05fa785c 1633 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1634 BUG_ON(1);
1635 }
1636
1637 return _double_lock_balance(this_rq, busiest);
1638}
1639
70574a99
AD
1640static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642{
05fa785c 1643 raw_spin_unlock(&busiest->lock);
70574a99
AD
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645}
1e3c88bd
PZ
1646
1647/*
1648 * double_rq_lock - safely lock two runqueues
1649 *
1650 * Note this does not disable interrupts like task_rq_lock,
1651 * you need to do so manually before calling.
1652 */
1653static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1654 __acquires(rq1->lock)
1655 __acquires(rq2->lock)
1656{
1657 BUG_ON(!irqs_disabled());
1658 if (rq1 == rq2) {
1659 raw_spin_lock(&rq1->lock);
1660 __acquire(rq2->lock); /* Fake it out ;) */
1661 } else {
1662 if (rq1 < rq2) {
1663 raw_spin_lock(&rq1->lock);
1664 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1665 } else {
1666 raw_spin_lock(&rq2->lock);
1667 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1668 }
1669 }
1e3c88bd
PZ
1670}
1671
1672/*
1673 * double_rq_unlock - safely unlock two runqueues
1674 *
1675 * Note this does not restore interrupts like task_rq_unlock,
1676 * you need to do so manually after calling.
1677 */
1678static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1679 __releases(rq1->lock)
1680 __releases(rq2->lock)
1681{
1682 raw_spin_unlock(&rq1->lock);
1683 if (rq1 != rq2)
1684 raw_spin_unlock(&rq2->lock);
1685 else
1686 __release(rq2->lock);
1687}
1688
d95f4122
MG
1689#else /* CONFIG_SMP */
1690
1691/*
1692 * double_rq_lock - safely lock two runqueues
1693 *
1694 * Note this does not disable interrupts like task_rq_lock,
1695 * you need to do so manually before calling.
1696 */
1697static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1698 __acquires(rq1->lock)
1699 __acquires(rq2->lock)
1700{
1701 BUG_ON(!irqs_disabled());
1702 BUG_ON(rq1 != rq2);
1703 raw_spin_lock(&rq1->lock);
1704 __acquire(rq2->lock); /* Fake it out ;) */
1705}
1706
1707/*
1708 * double_rq_unlock - safely unlock two runqueues
1709 *
1710 * Note this does not restore interrupts like task_rq_unlock,
1711 * you need to do so manually after calling.
1712 */
1713static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1714 __releases(rq1->lock)
1715 __releases(rq2->lock)
1716{
1717 BUG_ON(rq1 != rq2);
1718 raw_spin_unlock(&rq1->lock);
1719 __release(rq2->lock);
1720}
1721
18d95a28
PZ
1722#endif
1723
74f5187a 1724static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1725static void update_sysctl(void);
acb4a848 1726static int get_update_sysctl_factor(void);
fdf3e95d 1727static void update_cpu_load(struct rq *this_rq);
dce48a84 1728
cd29fe6f
PZ
1729static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1730{
1731 set_task_rq(p, cpu);
1732#ifdef CONFIG_SMP
1733 /*
1734 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1735 * successfuly executed on another CPU. We must ensure that updates of
1736 * per-task data have been completed by this moment.
1737 */
1738 smp_wmb();
1739 task_thread_info(p)->cpu = cpu;
1740#endif
1741}
dce48a84 1742
1e3c88bd 1743static const struct sched_class rt_sched_class;
dd41f596 1744
34f971f6 1745#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1746#define for_each_class(class) \
1747 for (class = sched_class_highest; class; class = class->next)
dd41f596 1748
1e3c88bd
PZ
1749#include "sched_stats.h"
1750
c09595f6 1751static void inc_nr_running(struct rq *rq)
9c217245
IM
1752{
1753 rq->nr_running++;
9c217245
IM
1754}
1755
c09595f6 1756static void dec_nr_running(struct rq *rq)
9c217245
IM
1757{
1758 rq->nr_running--;
9c217245
IM
1759}
1760
45bf76df
IM
1761static void set_load_weight(struct task_struct *p)
1762{
dd41f596
IM
1763 /*
1764 * SCHED_IDLE tasks get minimal weight:
1765 */
1766 if (p->policy == SCHED_IDLE) {
1767 p->se.load.weight = WEIGHT_IDLEPRIO;
1768 p->se.load.inv_weight = WMULT_IDLEPRIO;
1769 return;
1770 }
71f8bd46 1771
dd41f596
IM
1772 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1773 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1774}
1775
371fd7e7 1776static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1777{
a64692a3 1778 update_rq_clock(rq);
dd41f596 1779 sched_info_queued(p);
371fd7e7 1780 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1781 p->se.on_rq = 1;
71f8bd46
IM
1782}
1783
371fd7e7 1784static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1785{
a64692a3 1786 update_rq_clock(rq);
46ac22ba 1787 sched_info_dequeued(p);
371fd7e7 1788 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1789 p->se.on_rq = 0;
71f8bd46
IM
1790}
1791
1e3c88bd
PZ
1792/*
1793 * activate_task - move a task to the runqueue.
1794 */
371fd7e7 1795static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1796{
1797 if (task_contributes_to_load(p))
1798 rq->nr_uninterruptible--;
1799
371fd7e7 1800 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1801 inc_nr_running(rq);
1802}
1803
1804/*
1805 * deactivate_task - remove a task from the runqueue.
1806 */
371fd7e7 1807static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1808{
1809 if (task_contributes_to_load(p))
1810 rq->nr_uninterruptible++;
1811
371fd7e7 1812 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1813 dec_nr_running(rq);
1814}
1815
b52bfee4
VP
1816#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1817
305e6835
VP
1818/*
1819 * There are no locks covering percpu hardirq/softirq time.
1820 * They are only modified in account_system_vtime, on corresponding CPU
1821 * with interrupts disabled. So, writes are safe.
1822 * They are read and saved off onto struct rq in update_rq_clock().
1823 * This may result in other CPU reading this CPU's irq time and can
1824 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1825 * or new value with a side effect of accounting a slice of irq time to wrong
1826 * task when irq is in progress while we read rq->clock. That is a worthy
1827 * compromise in place of having locks on each irq in account_system_time.
305e6835 1828 */
b52bfee4
VP
1829static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1830static DEFINE_PER_CPU(u64, cpu_softirq_time);
1831
1832static DEFINE_PER_CPU(u64, irq_start_time);
1833static int sched_clock_irqtime;
1834
1835void enable_sched_clock_irqtime(void)
1836{
1837 sched_clock_irqtime = 1;
1838}
1839
1840void disable_sched_clock_irqtime(void)
1841{
1842 sched_clock_irqtime = 0;
1843}
1844
8e92c201
PZ
1845#ifndef CONFIG_64BIT
1846static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1847
1848static inline void irq_time_write_begin(void)
1849{
1850 __this_cpu_inc(irq_time_seq.sequence);
1851 smp_wmb();
1852}
1853
1854static inline void irq_time_write_end(void)
1855{
1856 smp_wmb();
1857 __this_cpu_inc(irq_time_seq.sequence);
1858}
1859
1860static inline u64 irq_time_read(int cpu)
1861{
1862 u64 irq_time;
1863 unsigned seq;
1864
1865 do {
1866 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1867 irq_time = per_cpu(cpu_softirq_time, cpu) +
1868 per_cpu(cpu_hardirq_time, cpu);
1869 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1870
1871 return irq_time;
1872}
1873#else /* CONFIG_64BIT */
1874static inline void irq_time_write_begin(void)
1875{
1876}
1877
1878static inline void irq_time_write_end(void)
1879{
1880}
1881
1882static inline u64 irq_time_read(int cpu)
305e6835 1883{
305e6835
VP
1884 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1885}
8e92c201 1886#endif /* CONFIG_64BIT */
305e6835 1887
fe44d621
PZ
1888/*
1889 * Called before incrementing preempt_count on {soft,}irq_enter
1890 * and before decrementing preempt_count on {soft,}irq_exit.
1891 */
b52bfee4
VP
1892void account_system_vtime(struct task_struct *curr)
1893{
1894 unsigned long flags;
fe44d621 1895 s64 delta;
b52bfee4 1896 int cpu;
b52bfee4
VP
1897
1898 if (!sched_clock_irqtime)
1899 return;
1900
1901 local_irq_save(flags);
1902
b52bfee4 1903 cpu = smp_processor_id();
fe44d621
PZ
1904 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1905 __this_cpu_add(irq_start_time, delta);
1906
8e92c201 1907 irq_time_write_begin();
b52bfee4
VP
1908 /*
1909 * We do not account for softirq time from ksoftirqd here.
1910 * We want to continue accounting softirq time to ksoftirqd thread
1911 * in that case, so as not to confuse scheduler with a special task
1912 * that do not consume any time, but still wants to run.
1913 */
1914 if (hardirq_count())
fe44d621 1915 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1916 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1917 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1918
8e92c201 1919 irq_time_write_end();
b52bfee4
VP
1920 local_irq_restore(flags);
1921}
b7dadc38 1922EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1923
fe44d621 1924static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1925{
fe44d621
PZ
1926 s64 irq_delta;
1927
8e92c201 1928 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1929
1930 /*
1931 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1932 * this case when a previous update_rq_clock() happened inside a
1933 * {soft,}irq region.
1934 *
1935 * When this happens, we stop ->clock_task and only update the
1936 * prev_irq_time stamp to account for the part that fit, so that a next
1937 * update will consume the rest. This ensures ->clock_task is
1938 * monotonic.
1939 *
1940 * It does however cause some slight miss-attribution of {soft,}irq
1941 * time, a more accurate solution would be to update the irq_time using
1942 * the current rq->clock timestamp, except that would require using
1943 * atomic ops.
1944 */
1945 if (irq_delta > delta)
1946 irq_delta = delta;
1947
1948 rq->prev_irq_time += irq_delta;
1949 delta -= irq_delta;
1950 rq->clock_task += delta;
1951
1952 if (irq_delta && sched_feat(NONIRQ_POWER))
1953 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1954}
1955
abb74cef
VP
1956static int irqtime_account_hi_update(void)
1957{
1958 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1959 unsigned long flags;
1960 u64 latest_ns;
1961 int ret = 0;
1962
1963 local_irq_save(flags);
1964 latest_ns = this_cpu_read(cpu_hardirq_time);
1965 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1966 ret = 1;
1967 local_irq_restore(flags);
1968 return ret;
1969}
1970
1971static int irqtime_account_si_update(void)
1972{
1973 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1974 unsigned long flags;
1975 u64 latest_ns;
1976 int ret = 0;
1977
1978 local_irq_save(flags);
1979 latest_ns = this_cpu_read(cpu_softirq_time);
1980 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1981 ret = 1;
1982 local_irq_restore(flags);
1983 return ret;
1984}
1985
fe44d621 1986#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1987
abb74cef
VP
1988#define sched_clock_irqtime (0)
1989
fe44d621 1990static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1991{
fe44d621 1992 rq->clock_task += delta;
305e6835
VP
1993}
1994
fe44d621 1995#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1996
1e3c88bd
PZ
1997#include "sched_idletask.c"
1998#include "sched_fair.c"
1999#include "sched_rt.c"
5091faa4 2000#include "sched_autogroup.c"
34f971f6 2001#include "sched_stoptask.c"
1e3c88bd
PZ
2002#ifdef CONFIG_SCHED_DEBUG
2003# include "sched_debug.c"
2004#endif
2005
34f971f6
PZ
2006void sched_set_stop_task(int cpu, struct task_struct *stop)
2007{
2008 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2009 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2010
2011 if (stop) {
2012 /*
2013 * Make it appear like a SCHED_FIFO task, its something
2014 * userspace knows about and won't get confused about.
2015 *
2016 * Also, it will make PI more or less work without too
2017 * much confusion -- but then, stop work should not
2018 * rely on PI working anyway.
2019 */
2020 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2021
2022 stop->sched_class = &stop_sched_class;
2023 }
2024
2025 cpu_rq(cpu)->stop = stop;
2026
2027 if (old_stop) {
2028 /*
2029 * Reset it back to a normal scheduling class so that
2030 * it can die in pieces.
2031 */
2032 old_stop->sched_class = &rt_sched_class;
2033 }
2034}
2035
14531189 2036/*
dd41f596 2037 * __normal_prio - return the priority that is based on the static prio
14531189 2038 */
14531189
IM
2039static inline int __normal_prio(struct task_struct *p)
2040{
dd41f596 2041 return p->static_prio;
14531189
IM
2042}
2043
b29739f9
IM
2044/*
2045 * Calculate the expected normal priority: i.e. priority
2046 * without taking RT-inheritance into account. Might be
2047 * boosted by interactivity modifiers. Changes upon fork,
2048 * setprio syscalls, and whenever the interactivity
2049 * estimator recalculates.
2050 */
36c8b586 2051static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2052{
2053 int prio;
2054
e05606d3 2055 if (task_has_rt_policy(p))
b29739f9
IM
2056 prio = MAX_RT_PRIO-1 - p->rt_priority;
2057 else
2058 prio = __normal_prio(p);
2059 return prio;
2060}
2061
2062/*
2063 * Calculate the current priority, i.e. the priority
2064 * taken into account by the scheduler. This value might
2065 * be boosted by RT tasks, or might be boosted by
2066 * interactivity modifiers. Will be RT if the task got
2067 * RT-boosted. If not then it returns p->normal_prio.
2068 */
36c8b586 2069static int effective_prio(struct task_struct *p)
b29739f9
IM
2070{
2071 p->normal_prio = normal_prio(p);
2072 /*
2073 * If we are RT tasks or we were boosted to RT priority,
2074 * keep the priority unchanged. Otherwise, update priority
2075 * to the normal priority:
2076 */
2077 if (!rt_prio(p->prio))
2078 return p->normal_prio;
2079 return p->prio;
2080}
2081
1da177e4
LT
2082/**
2083 * task_curr - is this task currently executing on a CPU?
2084 * @p: the task in question.
2085 */
36c8b586 2086inline int task_curr(const struct task_struct *p)
1da177e4
LT
2087{
2088 return cpu_curr(task_cpu(p)) == p;
2089}
2090
cb469845
SR
2091static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2092 const struct sched_class *prev_class,
da7a735e 2093 int oldprio)
cb469845
SR
2094{
2095 if (prev_class != p->sched_class) {
2096 if (prev_class->switched_from)
da7a735e
PZ
2097 prev_class->switched_from(rq, p);
2098 p->sched_class->switched_to(rq, p);
2099 } else if (oldprio != p->prio)
2100 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2101}
2102
1e5a7405
PZ
2103static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2104{
2105 const struct sched_class *class;
2106
2107 if (p->sched_class == rq->curr->sched_class) {
2108 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2109 } else {
2110 for_each_class(class) {
2111 if (class == rq->curr->sched_class)
2112 break;
2113 if (class == p->sched_class) {
2114 resched_task(rq->curr);
2115 break;
2116 }
2117 }
2118 }
2119
2120 /*
2121 * A queue event has occurred, and we're going to schedule. In
2122 * this case, we can save a useless back to back clock update.
2123 */
f26f9aff 2124 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2125 rq->skip_clock_update = 1;
2126}
2127
1da177e4 2128#ifdef CONFIG_SMP
cc367732
IM
2129/*
2130 * Is this task likely cache-hot:
2131 */
e7693a36 2132static int
cc367732
IM
2133task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2134{
2135 s64 delta;
2136
e6c8fba7
PZ
2137 if (p->sched_class != &fair_sched_class)
2138 return 0;
2139
ef8002f6
NR
2140 if (unlikely(p->policy == SCHED_IDLE))
2141 return 0;
2142
f540a608
IM
2143 /*
2144 * Buddy candidates are cache hot:
2145 */
f685ceac 2146 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2147 (&p->se == cfs_rq_of(&p->se)->next ||
2148 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2149 return 1;
2150
6bc1665b
IM
2151 if (sysctl_sched_migration_cost == -1)
2152 return 1;
2153 if (sysctl_sched_migration_cost == 0)
2154 return 0;
2155
cc367732
IM
2156 delta = now - p->se.exec_start;
2157
2158 return delta < (s64)sysctl_sched_migration_cost;
2159}
2160
dd41f596 2161void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2162{
e2912009
PZ
2163#ifdef CONFIG_SCHED_DEBUG
2164 /*
2165 * We should never call set_task_cpu() on a blocked task,
2166 * ttwu() will sort out the placement.
2167 */
077614ee
PZ
2168 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2169 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2170#endif
2171
de1d7286 2172 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2173
0c69774e
PZ
2174 if (task_cpu(p) != new_cpu) {
2175 p->se.nr_migrations++;
2176 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2177 }
dd41f596
IM
2178
2179 __set_task_cpu(p, new_cpu);
c65cc870
IM
2180}
2181
969c7921 2182struct migration_arg {
36c8b586 2183 struct task_struct *task;
1da177e4 2184 int dest_cpu;
70b97a7f 2185};
1da177e4 2186
969c7921
TH
2187static int migration_cpu_stop(void *data);
2188
1da177e4
LT
2189/*
2190 * The task's runqueue lock must be held.
2191 * Returns true if you have to wait for migration thread.
2192 */
b7a2b39d 2193static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2194{
1da177e4
LT
2195 /*
2196 * If the task is not on a runqueue (and not running), then
e2912009 2197 * the next wake-up will properly place the task.
1da177e4 2198 */
969c7921 2199 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2200}
2201
2202/*
2203 * wait_task_inactive - wait for a thread to unschedule.
2204 *
85ba2d86
RM
2205 * If @match_state is nonzero, it's the @p->state value just checked and
2206 * not expected to change. If it changes, i.e. @p might have woken up,
2207 * then return zero. When we succeed in waiting for @p to be off its CPU,
2208 * we return a positive number (its total switch count). If a second call
2209 * a short while later returns the same number, the caller can be sure that
2210 * @p has remained unscheduled the whole time.
2211 *
1da177e4
LT
2212 * The caller must ensure that the task *will* unschedule sometime soon,
2213 * else this function might spin for a *long* time. This function can't
2214 * be called with interrupts off, or it may introduce deadlock with
2215 * smp_call_function() if an IPI is sent by the same process we are
2216 * waiting to become inactive.
2217 */
85ba2d86 2218unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2219{
2220 unsigned long flags;
dd41f596 2221 int running, on_rq;
85ba2d86 2222 unsigned long ncsw;
70b97a7f 2223 struct rq *rq;
1da177e4 2224
3a5c359a
AK
2225 for (;;) {
2226 /*
2227 * We do the initial early heuristics without holding
2228 * any task-queue locks at all. We'll only try to get
2229 * the runqueue lock when things look like they will
2230 * work out!
2231 */
2232 rq = task_rq(p);
fa490cfd 2233
3a5c359a
AK
2234 /*
2235 * If the task is actively running on another CPU
2236 * still, just relax and busy-wait without holding
2237 * any locks.
2238 *
2239 * NOTE! Since we don't hold any locks, it's not
2240 * even sure that "rq" stays as the right runqueue!
2241 * But we don't care, since "task_running()" will
2242 * return false if the runqueue has changed and p
2243 * is actually now running somewhere else!
2244 */
85ba2d86
RM
2245 while (task_running(rq, p)) {
2246 if (match_state && unlikely(p->state != match_state))
2247 return 0;
3a5c359a 2248 cpu_relax();
85ba2d86 2249 }
fa490cfd 2250
3a5c359a
AK
2251 /*
2252 * Ok, time to look more closely! We need the rq
2253 * lock now, to be *sure*. If we're wrong, we'll
2254 * just go back and repeat.
2255 */
2256 rq = task_rq_lock(p, &flags);
27a9da65 2257 trace_sched_wait_task(p);
3a5c359a
AK
2258 running = task_running(rq, p);
2259 on_rq = p->se.on_rq;
85ba2d86 2260 ncsw = 0;
f31e11d8 2261 if (!match_state || p->state == match_state)
93dcf55f 2262 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2263 task_rq_unlock(rq, &flags);
fa490cfd 2264
85ba2d86
RM
2265 /*
2266 * If it changed from the expected state, bail out now.
2267 */
2268 if (unlikely(!ncsw))
2269 break;
2270
3a5c359a
AK
2271 /*
2272 * Was it really running after all now that we
2273 * checked with the proper locks actually held?
2274 *
2275 * Oops. Go back and try again..
2276 */
2277 if (unlikely(running)) {
2278 cpu_relax();
2279 continue;
2280 }
fa490cfd 2281
3a5c359a
AK
2282 /*
2283 * It's not enough that it's not actively running,
2284 * it must be off the runqueue _entirely_, and not
2285 * preempted!
2286 *
80dd99b3 2287 * So if it was still runnable (but just not actively
3a5c359a
AK
2288 * running right now), it's preempted, and we should
2289 * yield - it could be a while.
2290 */
2291 if (unlikely(on_rq)) {
2292 schedule_timeout_uninterruptible(1);
2293 continue;
2294 }
fa490cfd 2295
3a5c359a
AK
2296 /*
2297 * Ahh, all good. It wasn't running, and it wasn't
2298 * runnable, which means that it will never become
2299 * running in the future either. We're all done!
2300 */
2301 break;
2302 }
85ba2d86
RM
2303
2304 return ncsw;
1da177e4
LT
2305}
2306
2307/***
2308 * kick_process - kick a running thread to enter/exit the kernel
2309 * @p: the to-be-kicked thread
2310 *
2311 * Cause a process which is running on another CPU to enter
2312 * kernel-mode, without any delay. (to get signals handled.)
2313 *
2314 * NOTE: this function doesnt have to take the runqueue lock,
2315 * because all it wants to ensure is that the remote task enters
2316 * the kernel. If the IPI races and the task has been migrated
2317 * to another CPU then no harm is done and the purpose has been
2318 * achieved as well.
2319 */
36c8b586 2320void kick_process(struct task_struct *p)
1da177e4
LT
2321{
2322 int cpu;
2323
2324 preempt_disable();
2325 cpu = task_cpu(p);
2326 if ((cpu != smp_processor_id()) && task_curr(p))
2327 smp_send_reschedule(cpu);
2328 preempt_enable();
2329}
b43e3521 2330EXPORT_SYMBOL_GPL(kick_process);
476d139c 2331#endif /* CONFIG_SMP */
1da177e4 2332
0793a61d
TG
2333/**
2334 * task_oncpu_function_call - call a function on the cpu on which a task runs
2335 * @p: the task to evaluate
2336 * @func: the function to be called
2337 * @info: the function call argument
2338 *
2339 * Calls the function @func when the task is currently running. This might
2340 * be on the current CPU, which just calls the function directly
2341 */
2342void task_oncpu_function_call(struct task_struct *p,
2343 void (*func) (void *info), void *info)
2344{
2345 int cpu;
2346
2347 preempt_disable();
2348 cpu = task_cpu(p);
2349 if (task_curr(p))
2350 smp_call_function_single(cpu, func, info, 1);
2351 preempt_enable();
2352}
2353
970b13ba 2354#ifdef CONFIG_SMP
30da688e
ON
2355/*
2356 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2357 */
5da9a0fb
PZ
2358static int select_fallback_rq(int cpu, struct task_struct *p)
2359{
2360 int dest_cpu;
2361 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2362
2363 /* Look for allowed, online CPU in same node. */
2364 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2365 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2366 return dest_cpu;
2367
2368 /* Any allowed, online CPU? */
2369 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2370 if (dest_cpu < nr_cpu_ids)
2371 return dest_cpu;
2372
2373 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2374 dest_cpu = cpuset_cpus_allowed_fallback(p);
2375 /*
2376 * Don't tell them about moving exiting tasks or
2377 * kernel threads (both mm NULL), since they never
2378 * leave kernel.
2379 */
2380 if (p->mm && printk_ratelimit()) {
2381 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2382 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2383 }
2384
2385 return dest_cpu;
2386}
2387
e2912009 2388/*
30da688e 2389 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2390 */
970b13ba 2391static inline
0017d735 2392int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2393{
0017d735 2394 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2395
2396 /*
2397 * In order not to call set_task_cpu() on a blocking task we need
2398 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2399 * cpu.
2400 *
2401 * Since this is common to all placement strategies, this lives here.
2402 *
2403 * [ this allows ->select_task() to simply return task_cpu(p) and
2404 * not worry about this generic constraint ]
2405 */
2406 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2407 !cpu_online(cpu)))
5da9a0fb 2408 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2409
2410 return cpu;
970b13ba 2411}
09a40af5
MG
2412
2413static void update_avg(u64 *avg, u64 sample)
2414{
2415 s64 diff = sample - *avg;
2416 *avg += diff >> 3;
2417}
970b13ba
PZ
2418#endif
2419
9ed3811a
TH
2420static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2421 bool is_sync, bool is_migrate, bool is_local,
2422 unsigned long en_flags)
2423{
2424 schedstat_inc(p, se.statistics.nr_wakeups);
2425 if (is_sync)
2426 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2427 if (is_migrate)
2428 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2429 if (is_local)
2430 schedstat_inc(p, se.statistics.nr_wakeups_local);
2431 else
2432 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2433
2434 activate_task(rq, p, en_flags);
2435}
2436
2437static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2438 int wake_flags, bool success)
2439{
2440 trace_sched_wakeup(p, success);
2441 check_preempt_curr(rq, p, wake_flags);
2442
2443 p->state = TASK_RUNNING;
2444#ifdef CONFIG_SMP
2445 if (p->sched_class->task_woken)
2446 p->sched_class->task_woken(rq, p);
2447
2448 if (unlikely(rq->idle_stamp)) {
2449 u64 delta = rq->clock - rq->idle_stamp;
2450 u64 max = 2*sysctl_sched_migration_cost;
2451
2452 if (delta > max)
2453 rq->avg_idle = max;
2454 else
2455 update_avg(&rq->avg_idle, delta);
2456 rq->idle_stamp = 0;
2457 }
2458#endif
21aa9af0
TH
2459 /* if a worker is waking up, notify workqueue */
2460 if ((p->flags & PF_WQ_WORKER) && success)
2461 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2462}
2463
2464/**
1da177e4 2465 * try_to_wake_up - wake up a thread
9ed3811a 2466 * @p: the thread to be awakened
1da177e4 2467 * @state: the mask of task states that can be woken
9ed3811a 2468 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2469 *
2470 * Put it on the run-queue if it's not already there. The "current"
2471 * thread is always on the run-queue (except when the actual
2472 * re-schedule is in progress), and as such you're allowed to do
2473 * the simpler "current->state = TASK_RUNNING" to mark yourself
2474 * runnable without the overhead of this.
2475 *
9ed3811a
TH
2476 * Returns %true if @p was woken up, %false if it was already running
2477 * or @state didn't match @p's state.
1da177e4 2478 */
7d478721
PZ
2479static int try_to_wake_up(struct task_struct *p, unsigned int state,
2480 int wake_flags)
1da177e4 2481{
cc367732 2482 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2483 unsigned long flags;
371fd7e7 2484 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2485 struct rq *rq;
1da177e4 2486
e9c84311 2487 this_cpu = get_cpu();
2398f2c6 2488
04e2f174 2489 smp_wmb();
ab3b3aa5 2490 rq = task_rq_lock(p, &flags);
e9c84311 2491 if (!(p->state & state))
1da177e4
LT
2492 goto out;
2493
dd41f596 2494 if (p->se.on_rq)
1da177e4
LT
2495 goto out_running;
2496
2497 cpu = task_cpu(p);
cc367732 2498 orig_cpu = cpu;
1da177e4
LT
2499
2500#ifdef CONFIG_SMP
2501 if (unlikely(task_running(rq, p)))
2502 goto out_activate;
2503
e9c84311
PZ
2504 /*
2505 * In order to handle concurrent wakeups and release the rq->lock
2506 * we put the task in TASK_WAKING state.
eb24073b
IM
2507 *
2508 * First fix up the nr_uninterruptible count:
e9c84311 2509 */
cc87f76a
PZ
2510 if (task_contributes_to_load(p)) {
2511 if (likely(cpu_online(orig_cpu)))
2512 rq->nr_uninterruptible--;
2513 else
2514 this_rq()->nr_uninterruptible--;
2515 }
e9c84311 2516 p->state = TASK_WAKING;
efbbd05a 2517
371fd7e7 2518 if (p->sched_class->task_waking) {
efbbd05a 2519 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2520 en_flags |= ENQUEUE_WAKING;
2521 }
efbbd05a 2522
0017d735
PZ
2523 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2524 if (cpu != orig_cpu)
5d2f5a61 2525 set_task_cpu(p, cpu);
0017d735 2526 __task_rq_unlock(rq);
ab19cb23 2527
0970d299
PZ
2528 rq = cpu_rq(cpu);
2529 raw_spin_lock(&rq->lock);
f5dc3753 2530
0970d299
PZ
2531 /*
2532 * We migrated the task without holding either rq->lock, however
2533 * since the task is not on the task list itself, nobody else
2534 * will try and migrate the task, hence the rq should match the
2535 * cpu we just moved it to.
2536 */
2537 WARN_ON(task_cpu(p) != cpu);
e9c84311 2538 WARN_ON(p->state != TASK_WAKING);
1da177e4 2539
e7693a36
GH
2540#ifdef CONFIG_SCHEDSTATS
2541 schedstat_inc(rq, ttwu_count);
2542 if (cpu == this_cpu)
2543 schedstat_inc(rq, ttwu_local);
2544 else {
2545 struct sched_domain *sd;
2546 for_each_domain(this_cpu, sd) {
758b2cdc 2547 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2548 schedstat_inc(sd, ttwu_wake_remote);
2549 break;
2550 }
2551 }
2552 }
6d6bc0ad 2553#endif /* CONFIG_SCHEDSTATS */
e7693a36 2554
1da177e4
LT
2555out_activate:
2556#endif /* CONFIG_SMP */
9ed3811a
TH
2557 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2558 cpu == this_cpu, en_flags);
1da177e4 2559 success = 1;
1da177e4 2560out_running:
9ed3811a 2561 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2562out:
2563 task_rq_unlock(rq, &flags);
e9c84311 2564 put_cpu();
1da177e4
LT
2565
2566 return success;
2567}
2568
21aa9af0
TH
2569/**
2570 * try_to_wake_up_local - try to wake up a local task with rq lock held
2571 * @p: the thread to be awakened
2572 *
b595076a 2573 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2574 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2575 * the current task. this_rq() stays locked over invocation.
2576 */
2577static void try_to_wake_up_local(struct task_struct *p)
2578{
2579 struct rq *rq = task_rq(p);
2580 bool success = false;
2581
2582 BUG_ON(rq != this_rq());
2583 BUG_ON(p == current);
2584 lockdep_assert_held(&rq->lock);
2585
2586 if (!(p->state & TASK_NORMAL))
2587 return;
2588
2589 if (!p->se.on_rq) {
2590 if (likely(!task_running(rq, p))) {
2591 schedstat_inc(rq, ttwu_count);
2592 schedstat_inc(rq, ttwu_local);
2593 }
2594 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2595 success = true;
2596 }
2597 ttwu_post_activation(p, rq, 0, success);
2598}
2599
50fa610a
DH
2600/**
2601 * wake_up_process - Wake up a specific process
2602 * @p: The process to be woken up.
2603 *
2604 * Attempt to wake up the nominated process and move it to the set of runnable
2605 * processes. Returns 1 if the process was woken up, 0 if it was already
2606 * running.
2607 *
2608 * It may be assumed that this function implies a write memory barrier before
2609 * changing the task state if and only if any tasks are woken up.
2610 */
7ad5b3a5 2611int wake_up_process(struct task_struct *p)
1da177e4 2612{
d9514f6c 2613 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2614}
1da177e4
LT
2615EXPORT_SYMBOL(wake_up_process);
2616
7ad5b3a5 2617int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2618{
2619 return try_to_wake_up(p, state, 0);
2620}
2621
1da177e4
LT
2622/*
2623 * Perform scheduler related setup for a newly forked process p.
2624 * p is forked by current.
dd41f596
IM
2625 *
2626 * __sched_fork() is basic setup used by init_idle() too:
2627 */
2628static void __sched_fork(struct task_struct *p)
2629{
dd41f596
IM
2630 p->se.exec_start = 0;
2631 p->se.sum_exec_runtime = 0;
f6cf891c 2632 p->se.prev_sum_exec_runtime = 0;
6c594c21 2633 p->se.nr_migrations = 0;
da7a735e 2634 p->se.vruntime = 0;
6cfb0d5d
IM
2635
2636#ifdef CONFIG_SCHEDSTATS
41acab88 2637 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2638#endif
476d139c 2639
fa717060 2640 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2641 p->se.on_rq = 0;
4a55bd5e 2642 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2643
e107be36
AK
2644#ifdef CONFIG_PREEMPT_NOTIFIERS
2645 INIT_HLIST_HEAD(&p->preempt_notifiers);
2646#endif
dd41f596
IM
2647}
2648
2649/*
2650 * fork()/clone()-time setup:
2651 */
2652void sched_fork(struct task_struct *p, int clone_flags)
2653{
2654 int cpu = get_cpu();
2655
2656 __sched_fork(p);
06b83b5f 2657 /*
0017d735 2658 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2659 * nobody will actually run it, and a signal or other external
2660 * event cannot wake it up and insert it on the runqueue either.
2661 */
0017d735 2662 p->state = TASK_RUNNING;
dd41f596 2663
b9dc29e7
MG
2664 /*
2665 * Revert to default priority/policy on fork if requested.
2666 */
2667 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2668 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2669 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2670 p->normal_prio = p->static_prio;
2671 }
b9dc29e7 2672
6c697bdf
MG
2673 if (PRIO_TO_NICE(p->static_prio) < 0) {
2674 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2675 p->normal_prio = p->static_prio;
6c697bdf
MG
2676 set_load_weight(p);
2677 }
2678
b9dc29e7
MG
2679 /*
2680 * We don't need the reset flag anymore after the fork. It has
2681 * fulfilled its duty:
2682 */
2683 p->sched_reset_on_fork = 0;
2684 }
ca94c442 2685
f83f9ac2
PW
2686 /*
2687 * Make sure we do not leak PI boosting priority to the child.
2688 */
2689 p->prio = current->normal_prio;
2690
2ddbf952
HS
2691 if (!rt_prio(p->prio))
2692 p->sched_class = &fair_sched_class;
b29739f9 2693
cd29fe6f
PZ
2694 if (p->sched_class->task_fork)
2695 p->sched_class->task_fork(p);
2696
86951599
PZ
2697 /*
2698 * The child is not yet in the pid-hash so no cgroup attach races,
2699 * and the cgroup is pinned to this child due to cgroup_fork()
2700 * is ran before sched_fork().
2701 *
2702 * Silence PROVE_RCU.
2703 */
2704 rcu_read_lock();
5f3edc1b 2705 set_task_cpu(p, cpu);
86951599 2706 rcu_read_unlock();
5f3edc1b 2707
52f17b6c 2708#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2709 if (likely(sched_info_on()))
52f17b6c 2710 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2711#endif
d6077cb8 2712#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2713 p->oncpu = 0;
2714#endif
1da177e4 2715#ifdef CONFIG_PREEMPT
4866cde0 2716 /* Want to start with kernel preemption disabled. */
a1261f54 2717 task_thread_info(p)->preempt_count = 1;
1da177e4 2718#endif
806c09a7 2719#ifdef CONFIG_SMP
917b627d 2720 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2721#endif
917b627d 2722
476d139c 2723 put_cpu();
1da177e4
LT
2724}
2725
2726/*
2727 * wake_up_new_task - wake up a newly created task for the first time.
2728 *
2729 * This function will do some initial scheduler statistics housekeeping
2730 * that must be done for every newly created context, then puts the task
2731 * on the runqueue and wakes it.
2732 */
7ad5b3a5 2733void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2734{
2735 unsigned long flags;
dd41f596 2736 struct rq *rq;
c890692b 2737 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2738
2739#ifdef CONFIG_SMP
0017d735
PZ
2740 rq = task_rq_lock(p, &flags);
2741 p->state = TASK_WAKING;
2742
fabf318e
PZ
2743 /*
2744 * Fork balancing, do it here and not earlier because:
2745 * - cpus_allowed can change in the fork path
2746 * - any previously selected cpu might disappear through hotplug
2747 *
0017d735
PZ
2748 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2749 * without people poking at ->cpus_allowed.
fabf318e 2750 */
0017d735 2751 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2752 set_task_cpu(p, cpu);
1da177e4 2753
06b83b5f 2754 p->state = TASK_RUNNING;
0017d735
PZ
2755 task_rq_unlock(rq, &flags);
2756#endif
2757
2758 rq = task_rq_lock(p, &flags);
cd29fe6f 2759 activate_task(rq, p, 0);
27a9da65 2760 trace_sched_wakeup_new(p, 1);
a7558e01 2761 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2762#ifdef CONFIG_SMP
efbbd05a
PZ
2763 if (p->sched_class->task_woken)
2764 p->sched_class->task_woken(rq, p);
9a897c5a 2765#endif
dd41f596 2766 task_rq_unlock(rq, &flags);
fabf318e 2767 put_cpu();
1da177e4
LT
2768}
2769
e107be36
AK
2770#ifdef CONFIG_PREEMPT_NOTIFIERS
2771
2772/**
80dd99b3 2773 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2774 * @notifier: notifier struct to register
e107be36
AK
2775 */
2776void preempt_notifier_register(struct preempt_notifier *notifier)
2777{
2778 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2779}
2780EXPORT_SYMBOL_GPL(preempt_notifier_register);
2781
2782/**
2783 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2784 * @notifier: notifier struct to unregister
e107be36
AK
2785 *
2786 * This is safe to call from within a preemption notifier.
2787 */
2788void preempt_notifier_unregister(struct preempt_notifier *notifier)
2789{
2790 hlist_del(&notifier->link);
2791}
2792EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2793
2794static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2795{
2796 struct preempt_notifier *notifier;
2797 struct hlist_node *node;
2798
2799 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2800 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2801}
2802
2803static void
2804fire_sched_out_preempt_notifiers(struct task_struct *curr,
2805 struct task_struct *next)
2806{
2807 struct preempt_notifier *notifier;
2808 struct hlist_node *node;
2809
2810 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2811 notifier->ops->sched_out(notifier, next);
2812}
2813
6d6bc0ad 2814#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2815
2816static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2817{
2818}
2819
2820static void
2821fire_sched_out_preempt_notifiers(struct task_struct *curr,
2822 struct task_struct *next)
2823{
2824}
2825
6d6bc0ad 2826#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2827
4866cde0
NP
2828/**
2829 * prepare_task_switch - prepare to switch tasks
2830 * @rq: the runqueue preparing to switch
421cee29 2831 * @prev: the current task that is being switched out
4866cde0
NP
2832 * @next: the task we are going to switch to.
2833 *
2834 * This is called with the rq lock held and interrupts off. It must
2835 * be paired with a subsequent finish_task_switch after the context
2836 * switch.
2837 *
2838 * prepare_task_switch sets up locking and calls architecture specific
2839 * hooks.
2840 */
e107be36
AK
2841static inline void
2842prepare_task_switch(struct rq *rq, struct task_struct *prev,
2843 struct task_struct *next)
4866cde0 2844{
e107be36 2845 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2846 prepare_lock_switch(rq, next);
2847 prepare_arch_switch(next);
2848}
2849
1da177e4
LT
2850/**
2851 * finish_task_switch - clean up after a task-switch
344babaa 2852 * @rq: runqueue associated with task-switch
1da177e4
LT
2853 * @prev: the thread we just switched away from.
2854 *
4866cde0
NP
2855 * finish_task_switch must be called after the context switch, paired
2856 * with a prepare_task_switch call before the context switch.
2857 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2858 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2859 *
2860 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2861 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2862 * with the lock held can cause deadlocks; see schedule() for
2863 * details.)
2864 */
a9957449 2865static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2866 __releases(rq->lock)
2867{
1da177e4 2868 struct mm_struct *mm = rq->prev_mm;
55a101f8 2869 long prev_state;
1da177e4
LT
2870
2871 rq->prev_mm = NULL;
2872
2873 /*
2874 * A task struct has one reference for the use as "current".
c394cc9f 2875 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2876 * schedule one last time. The schedule call will never return, and
2877 * the scheduled task must drop that reference.
c394cc9f 2878 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2879 * still held, otherwise prev could be scheduled on another cpu, die
2880 * there before we look at prev->state, and then the reference would
2881 * be dropped twice.
2882 * Manfred Spraul <manfred@colorfullife.com>
2883 */
55a101f8 2884 prev_state = prev->state;
4866cde0 2885 finish_arch_switch(prev);
8381f65d
JI
2886#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2887 local_irq_disable();
2888#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2889 perf_event_task_sched_in(current);
8381f65d
JI
2890#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2891 local_irq_enable();
2892#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2893 finish_lock_switch(rq, prev);
e8fa1362 2894
e107be36 2895 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2896 if (mm)
2897 mmdrop(mm);
c394cc9f 2898 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2899 /*
2900 * Remove function-return probe instances associated with this
2901 * task and put them back on the free list.
9761eea8 2902 */
c6fd91f0 2903 kprobe_flush_task(prev);
1da177e4 2904 put_task_struct(prev);
c6fd91f0 2905 }
1da177e4
LT
2906}
2907
3f029d3c
GH
2908#ifdef CONFIG_SMP
2909
2910/* assumes rq->lock is held */
2911static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2912{
2913 if (prev->sched_class->pre_schedule)
2914 prev->sched_class->pre_schedule(rq, prev);
2915}
2916
2917/* rq->lock is NOT held, but preemption is disabled */
2918static inline void post_schedule(struct rq *rq)
2919{
2920 if (rq->post_schedule) {
2921 unsigned long flags;
2922
05fa785c 2923 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2924 if (rq->curr->sched_class->post_schedule)
2925 rq->curr->sched_class->post_schedule(rq);
05fa785c 2926 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2927
2928 rq->post_schedule = 0;
2929 }
2930}
2931
2932#else
da19ab51 2933
3f029d3c
GH
2934static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2935{
2936}
2937
2938static inline void post_schedule(struct rq *rq)
2939{
1da177e4
LT
2940}
2941
3f029d3c
GH
2942#endif
2943
1da177e4
LT
2944/**
2945 * schedule_tail - first thing a freshly forked thread must call.
2946 * @prev: the thread we just switched away from.
2947 */
36c8b586 2948asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2949 __releases(rq->lock)
2950{
70b97a7f
IM
2951 struct rq *rq = this_rq();
2952
4866cde0 2953 finish_task_switch(rq, prev);
da19ab51 2954
3f029d3c
GH
2955 /*
2956 * FIXME: do we need to worry about rq being invalidated by the
2957 * task_switch?
2958 */
2959 post_schedule(rq);
70b97a7f 2960
4866cde0
NP
2961#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2962 /* In this case, finish_task_switch does not reenable preemption */
2963 preempt_enable();
2964#endif
1da177e4 2965 if (current->set_child_tid)
b488893a 2966 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2967}
2968
2969/*
2970 * context_switch - switch to the new MM and the new
2971 * thread's register state.
2972 */
dd41f596 2973static inline void
70b97a7f 2974context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2975 struct task_struct *next)
1da177e4 2976{
dd41f596 2977 struct mm_struct *mm, *oldmm;
1da177e4 2978
e107be36 2979 prepare_task_switch(rq, prev, next);
27a9da65 2980 trace_sched_switch(prev, next);
dd41f596
IM
2981 mm = next->mm;
2982 oldmm = prev->active_mm;
9226d125
ZA
2983 /*
2984 * For paravirt, this is coupled with an exit in switch_to to
2985 * combine the page table reload and the switch backend into
2986 * one hypercall.
2987 */
224101ed 2988 arch_start_context_switch(prev);
9226d125 2989
31915ab4 2990 if (!mm) {
1da177e4
LT
2991 next->active_mm = oldmm;
2992 atomic_inc(&oldmm->mm_count);
2993 enter_lazy_tlb(oldmm, next);
2994 } else
2995 switch_mm(oldmm, mm, next);
2996
31915ab4 2997 if (!prev->mm) {
1da177e4 2998 prev->active_mm = NULL;
1da177e4
LT
2999 rq->prev_mm = oldmm;
3000 }
3a5f5e48
IM
3001 /*
3002 * Since the runqueue lock will be released by the next
3003 * task (which is an invalid locking op but in the case
3004 * of the scheduler it's an obvious special-case), so we
3005 * do an early lockdep release here:
3006 */
3007#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3008 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3009#endif
1da177e4
LT
3010
3011 /* Here we just switch the register state and the stack. */
3012 switch_to(prev, next, prev);
3013
dd41f596
IM
3014 barrier();
3015 /*
3016 * this_rq must be evaluated again because prev may have moved
3017 * CPUs since it called schedule(), thus the 'rq' on its stack
3018 * frame will be invalid.
3019 */
3020 finish_task_switch(this_rq(), prev);
1da177e4
LT
3021}
3022
3023/*
3024 * nr_running, nr_uninterruptible and nr_context_switches:
3025 *
3026 * externally visible scheduler statistics: current number of runnable
3027 * threads, current number of uninterruptible-sleeping threads, total
3028 * number of context switches performed since bootup.
3029 */
3030unsigned long nr_running(void)
3031{
3032 unsigned long i, sum = 0;
3033
3034 for_each_online_cpu(i)
3035 sum += cpu_rq(i)->nr_running;
3036
3037 return sum;
f711f609 3038}
1da177e4
LT
3039
3040unsigned long nr_uninterruptible(void)
f711f609 3041{
1da177e4 3042 unsigned long i, sum = 0;
f711f609 3043
0a945022 3044 for_each_possible_cpu(i)
1da177e4 3045 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3046
3047 /*
1da177e4
LT
3048 * Since we read the counters lockless, it might be slightly
3049 * inaccurate. Do not allow it to go below zero though:
f711f609 3050 */
1da177e4
LT
3051 if (unlikely((long)sum < 0))
3052 sum = 0;
f711f609 3053
1da177e4 3054 return sum;
f711f609 3055}
f711f609 3056
1da177e4 3057unsigned long long nr_context_switches(void)
46cb4b7c 3058{
cc94abfc
SR
3059 int i;
3060 unsigned long long sum = 0;
46cb4b7c 3061
0a945022 3062 for_each_possible_cpu(i)
1da177e4 3063 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3064
1da177e4
LT
3065 return sum;
3066}
483b4ee6 3067
1da177e4
LT
3068unsigned long nr_iowait(void)
3069{
3070 unsigned long i, sum = 0;
483b4ee6 3071
0a945022 3072 for_each_possible_cpu(i)
1da177e4 3073 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3074
1da177e4
LT
3075 return sum;
3076}
483b4ee6 3077
8c215bd3 3078unsigned long nr_iowait_cpu(int cpu)
69d25870 3079{
8c215bd3 3080 struct rq *this = cpu_rq(cpu);
69d25870
AV
3081 return atomic_read(&this->nr_iowait);
3082}
46cb4b7c 3083
69d25870
AV
3084unsigned long this_cpu_load(void)
3085{
3086 struct rq *this = this_rq();
3087 return this->cpu_load[0];
3088}
e790fb0b 3089
46cb4b7c 3090
dce48a84
TG
3091/* Variables and functions for calc_load */
3092static atomic_long_t calc_load_tasks;
3093static unsigned long calc_load_update;
3094unsigned long avenrun[3];
3095EXPORT_SYMBOL(avenrun);
46cb4b7c 3096
74f5187a
PZ
3097static long calc_load_fold_active(struct rq *this_rq)
3098{
3099 long nr_active, delta = 0;
3100
3101 nr_active = this_rq->nr_running;
3102 nr_active += (long) this_rq->nr_uninterruptible;
3103
3104 if (nr_active != this_rq->calc_load_active) {
3105 delta = nr_active - this_rq->calc_load_active;
3106 this_rq->calc_load_active = nr_active;
3107 }
3108
3109 return delta;
3110}
3111
0f004f5a
PZ
3112static unsigned long
3113calc_load(unsigned long load, unsigned long exp, unsigned long active)
3114{
3115 load *= exp;
3116 load += active * (FIXED_1 - exp);
3117 load += 1UL << (FSHIFT - 1);
3118 return load >> FSHIFT;
3119}
3120
74f5187a
PZ
3121#ifdef CONFIG_NO_HZ
3122/*
3123 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3124 *
3125 * When making the ILB scale, we should try to pull this in as well.
3126 */
3127static atomic_long_t calc_load_tasks_idle;
3128
3129static void calc_load_account_idle(struct rq *this_rq)
3130{
3131 long delta;
3132
3133 delta = calc_load_fold_active(this_rq);
3134 if (delta)
3135 atomic_long_add(delta, &calc_load_tasks_idle);
3136}
3137
3138static long calc_load_fold_idle(void)
3139{
3140 long delta = 0;
3141
3142 /*
3143 * Its got a race, we don't care...
3144 */
3145 if (atomic_long_read(&calc_load_tasks_idle))
3146 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3147
3148 return delta;
3149}
0f004f5a
PZ
3150
3151/**
3152 * fixed_power_int - compute: x^n, in O(log n) time
3153 *
3154 * @x: base of the power
3155 * @frac_bits: fractional bits of @x
3156 * @n: power to raise @x to.
3157 *
3158 * By exploiting the relation between the definition of the natural power
3159 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3160 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3161 * (where: n_i \elem {0, 1}, the binary vector representing n),
3162 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3163 * of course trivially computable in O(log_2 n), the length of our binary
3164 * vector.
3165 */
3166static unsigned long
3167fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3168{
3169 unsigned long result = 1UL << frac_bits;
3170
3171 if (n) for (;;) {
3172 if (n & 1) {
3173 result *= x;
3174 result += 1UL << (frac_bits - 1);
3175 result >>= frac_bits;
3176 }
3177 n >>= 1;
3178 if (!n)
3179 break;
3180 x *= x;
3181 x += 1UL << (frac_bits - 1);
3182 x >>= frac_bits;
3183 }
3184
3185 return result;
3186}
3187
3188/*
3189 * a1 = a0 * e + a * (1 - e)
3190 *
3191 * a2 = a1 * e + a * (1 - e)
3192 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3193 * = a0 * e^2 + a * (1 - e) * (1 + e)
3194 *
3195 * a3 = a2 * e + a * (1 - e)
3196 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3197 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3198 *
3199 * ...
3200 *
3201 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3202 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3203 * = a0 * e^n + a * (1 - e^n)
3204 *
3205 * [1] application of the geometric series:
3206 *
3207 * n 1 - x^(n+1)
3208 * S_n := \Sum x^i = -------------
3209 * i=0 1 - x
3210 */
3211static unsigned long
3212calc_load_n(unsigned long load, unsigned long exp,
3213 unsigned long active, unsigned int n)
3214{
3215
3216 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3217}
3218
3219/*
3220 * NO_HZ can leave us missing all per-cpu ticks calling
3221 * calc_load_account_active(), but since an idle CPU folds its delta into
3222 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3223 * in the pending idle delta if our idle period crossed a load cycle boundary.
3224 *
3225 * Once we've updated the global active value, we need to apply the exponential
3226 * weights adjusted to the number of cycles missed.
3227 */
3228static void calc_global_nohz(unsigned long ticks)
3229{
3230 long delta, active, n;
3231
3232 if (time_before(jiffies, calc_load_update))
3233 return;
3234
3235 /*
3236 * If we crossed a calc_load_update boundary, make sure to fold
3237 * any pending idle changes, the respective CPUs might have
3238 * missed the tick driven calc_load_account_active() update
3239 * due to NO_HZ.
3240 */
3241 delta = calc_load_fold_idle();
3242 if (delta)
3243 atomic_long_add(delta, &calc_load_tasks);
3244
3245 /*
3246 * If we were idle for multiple load cycles, apply them.
3247 */
3248 if (ticks >= LOAD_FREQ) {
3249 n = ticks / LOAD_FREQ;
3250
3251 active = atomic_long_read(&calc_load_tasks);
3252 active = active > 0 ? active * FIXED_1 : 0;
3253
3254 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3255 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3256 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3257
3258 calc_load_update += n * LOAD_FREQ;
3259 }
3260
3261 /*
3262 * Its possible the remainder of the above division also crosses
3263 * a LOAD_FREQ period, the regular check in calc_global_load()
3264 * which comes after this will take care of that.
3265 *
3266 * Consider us being 11 ticks before a cycle completion, and us
3267 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3268 * age us 4 cycles, and the test in calc_global_load() will
3269 * pick up the final one.
3270 */
3271}
74f5187a
PZ
3272#else
3273static void calc_load_account_idle(struct rq *this_rq)
3274{
3275}
3276
3277static inline long calc_load_fold_idle(void)
3278{
3279 return 0;
3280}
0f004f5a
PZ
3281
3282static void calc_global_nohz(unsigned long ticks)
3283{
3284}
74f5187a
PZ
3285#endif
3286
2d02494f
TG
3287/**
3288 * get_avenrun - get the load average array
3289 * @loads: pointer to dest load array
3290 * @offset: offset to add
3291 * @shift: shift count to shift the result left
3292 *
3293 * These values are estimates at best, so no need for locking.
3294 */
3295void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3296{
3297 loads[0] = (avenrun[0] + offset) << shift;
3298 loads[1] = (avenrun[1] + offset) << shift;
3299 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3300}
46cb4b7c 3301
46cb4b7c 3302/*
dce48a84
TG
3303 * calc_load - update the avenrun load estimates 10 ticks after the
3304 * CPUs have updated calc_load_tasks.
7835b98b 3305 */
0f004f5a 3306void calc_global_load(unsigned long ticks)
7835b98b 3307{
dce48a84 3308 long active;
1da177e4 3309
0f004f5a
PZ
3310 calc_global_nohz(ticks);
3311
3312 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3313 return;
1da177e4 3314
dce48a84
TG
3315 active = atomic_long_read(&calc_load_tasks);
3316 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3317
dce48a84
TG
3318 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3319 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3320 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3321
dce48a84
TG
3322 calc_load_update += LOAD_FREQ;
3323}
1da177e4 3324
dce48a84 3325/*
74f5187a
PZ
3326 * Called from update_cpu_load() to periodically update this CPU's
3327 * active count.
dce48a84
TG
3328 */
3329static void calc_load_account_active(struct rq *this_rq)
3330{
74f5187a 3331 long delta;
08c183f3 3332
74f5187a
PZ
3333 if (time_before(jiffies, this_rq->calc_load_update))
3334 return;
783609c6 3335
74f5187a
PZ
3336 delta = calc_load_fold_active(this_rq);
3337 delta += calc_load_fold_idle();
3338 if (delta)
dce48a84 3339 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3340
3341 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3342}
3343
fdf3e95d
VP
3344/*
3345 * The exact cpuload at various idx values, calculated at every tick would be
3346 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3347 *
3348 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3349 * on nth tick when cpu may be busy, then we have:
3350 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3351 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3352 *
3353 * decay_load_missed() below does efficient calculation of
3354 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3355 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3356 *
3357 * The calculation is approximated on a 128 point scale.
3358 * degrade_zero_ticks is the number of ticks after which load at any
3359 * particular idx is approximated to be zero.
3360 * degrade_factor is a precomputed table, a row for each load idx.
3361 * Each column corresponds to degradation factor for a power of two ticks,
3362 * based on 128 point scale.
3363 * Example:
3364 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3365 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3366 *
3367 * With this power of 2 load factors, we can degrade the load n times
3368 * by looking at 1 bits in n and doing as many mult/shift instead of
3369 * n mult/shifts needed by the exact degradation.
3370 */
3371#define DEGRADE_SHIFT 7
3372static const unsigned char
3373 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3374static const unsigned char
3375 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3376 {0, 0, 0, 0, 0, 0, 0, 0},
3377 {64, 32, 8, 0, 0, 0, 0, 0},
3378 {96, 72, 40, 12, 1, 0, 0},
3379 {112, 98, 75, 43, 15, 1, 0},
3380 {120, 112, 98, 76, 45, 16, 2} };
3381
3382/*
3383 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3384 * would be when CPU is idle and so we just decay the old load without
3385 * adding any new load.
3386 */
3387static unsigned long
3388decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3389{
3390 int j = 0;
3391
3392 if (!missed_updates)
3393 return load;
3394
3395 if (missed_updates >= degrade_zero_ticks[idx])
3396 return 0;
3397
3398 if (idx == 1)
3399 return load >> missed_updates;
3400
3401 while (missed_updates) {
3402 if (missed_updates % 2)
3403 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3404
3405 missed_updates >>= 1;
3406 j++;
3407 }
3408 return load;
3409}
3410
46cb4b7c 3411/*
dd41f596 3412 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3413 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3414 * every tick. We fix it up based on jiffies.
46cb4b7c 3415 */
dd41f596 3416static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3417{
495eca49 3418 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3419 unsigned long curr_jiffies = jiffies;
3420 unsigned long pending_updates;
dd41f596 3421 int i, scale;
46cb4b7c 3422
dd41f596 3423 this_rq->nr_load_updates++;
46cb4b7c 3424
fdf3e95d
VP
3425 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3426 if (curr_jiffies == this_rq->last_load_update_tick)
3427 return;
3428
3429 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3430 this_rq->last_load_update_tick = curr_jiffies;
3431
dd41f596 3432 /* Update our load: */
fdf3e95d
VP
3433 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3434 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3435 unsigned long old_load, new_load;
7d1e6a9b 3436
dd41f596 3437 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3438
dd41f596 3439 old_load = this_rq->cpu_load[i];
fdf3e95d 3440 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3441 new_load = this_load;
a25707f3
IM
3442 /*
3443 * Round up the averaging division if load is increasing. This
3444 * prevents us from getting stuck on 9 if the load is 10, for
3445 * example.
3446 */
3447 if (new_load > old_load)
fdf3e95d
VP
3448 new_load += scale - 1;
3449
3450 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3451 }
da2b71ed
SS
3452
3453 sched_avg_update(this_rq);
fdf3e95d
VP
3454}
3455
3456static void update_cpu_load_active(struct rq *this_rq)
3457{
3458 update_cpu_load(this_rq);
46cb4b7c 3459
74f5187a 3460 calc_load_account_active(this_rq);
46cb4b7c
SS
3461}
3462
dd41f596 3463#ifdef CONFIG_SMP
8a0be9ef 3464
46cb4b7c 3465/*
38022906
PZ
3466 * sched_exec - execve() is a valuable balancing opportunity, because at
3467 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3468 */
38022906 3469void sched_exec(void)
46cb4b7c 3470{
38022906 3471 struct task_struct *p = current;
1da177e4 3472 unsigned long flags;
70b97a7f 3473 struct rq *rq;
0017d735 3474 int dest_cpu;
46cb4b7c 3475
1da177e4 3476 rq = task_rq_lock(p, &flags);
0017d735
PZ
3477 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3478 if (dest_cpu == smp_processor_id())
3479 goto unlock;
38022906 3480
46cb4b7c 3481 /*
38022906 3482 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3483 */
30da688e 3484 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3485 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3486 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3487
1da177e4 3488 task_rq_unlock(rq, &flags);
969c7921 3489 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3490 return;
3491 }
0017d735 3492unlock:
1da177e4 3493 task_rq_unlock(rq, &flags);
1da177e4 3494}
dd41f596 3495
1da177e4
LT
3496#endif
3497
1da177e4
LT
3498DEFINE_PER_CPU(struct kernel_stat, kstat);
3499
3500EXPORT_PER_CPU_SYMBOL(kstat);
3501
3502/*
c5f8d995 3503 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3504 * @p in case that task is currently running.
c5f8d995
HS
3505 *
3506 * Called with task_rq_lock() held on @rq.
1da177e4 3507 */
c5f8d995
HS
3508static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3509{
3510 u64 ns = 0;
3511
3512 if (task_current(rq, p)) {
3513 update_rq_clock(rq);
305e6835 3514 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3515 if ((s64)ns < 0)
3516 ns = 0;
3517 }
3518
3519 return ns;
3520}
3521
bb34d92f 3522unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3523{
1da177e4 3524 unsigned long flags;
41b86e9c 3525 struct rq *rq;
bb34d92f 3526 u64 ns = 0;
48f24c4d 3527
41b86e9c 3528 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3529 ns = do_task_delta_exec(p, rq);
3530 task_rq_unlock(rq, &flags);
1508487e 3531
c5f8d995
HS
3532 return ns;
3533}
f06febc9 3534
c5f8d995
HS
3535/*
3536 * Return accounted runtime for the task.
3537 * In case the task is currently running, return the runtime plus current's
3538 * pending runtime that have not been accounted yet.
3539 */
3540unsigned long long task_sched_runtime(struct task_struct *p)
3541{
3542 unsigned long flags;
3543 struct rq *rq;
3544 u64 ns = 0;
3545
3546 rq = task_rq_lock(p, &flags);
3547 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3548 task_rq_unlock(rq, &flags);
3549
3550 return ns;
3551}
48f24c4d 3552
c5f8d995
HS
3553/*
3554 * Return sum_exec_runtime for the thread group.
3555 * In case the task is currently running, return the sum plus current's
3556 * pending runtime that have not been accounted yet.
3557 *
3558 * Note that the thread group might have other running tasks as well,
3559 * so the return value not includes other pending runtime that other
3560 * running tasks might have.
3561 */
3562unsigned long long thread_group_sched_runtime(struct task_struct *p)
3563{
3564 struct task_cputime totals;
3565 unsigned long flags;
3566 struct rq *rq;
3567 u64 ns;
3568
3569 rq = task_rq_lock(p, &flags);
3570 thread_group_cputime(p, &totals);
3571 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3572 task_rq_unlock(rq, &flags);
48f24c4d 3573
1da177e4
LT
3574 return ns;
3575}
3576
1da177e4
LT
3577/*
3578 * Account user cpu time to a process.
3579 * @p: the process that the cpu time gets accounted to
1da177e4 3580 * @cputime: the cpu time spent in user space since the last update
457533a7 3581 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3582 */
457533a7
MS
3583void account_user_time(struct task_struct *p, cputime_t cputime,
3584 cputime_t cputime_scaled)
1da177e4
LT
3585{
3586 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3587 cputime64_t tmp;
3588
457533a7 3589 /* Add user time to process. */
1da177e4 3590 p->utime = cputime_add(p->utime, cputime);
457533a7 3591 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3592 account_group_user_time(p, cputime);
1da177e4
LT
3593
3594 /* Add user time to cpustat. */
3595 tmp = cputime_to_cputime64(cputime);
3596 if (TASK_NICE(p) > 0)
3597 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3598 else
3599 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3600
3601 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3602 /* Account for user time used */
3603 acct_update_integrals(p);
1da177e4
LT
3604}
3605
94886b84
LV
3606/*
3607 * Account guest cpu time to a process.
3608 * @p: the process that the cpu time gets accounted to
3609 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3610 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3611 */
457533a7
MS
3612static void account_guest_time(struct task_struct *p, cputime_t cputime,
3613 cputime_t cputime_scaled)
94886b84
LV
3614{
3615 cputime64_t tmp;
3616 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3617
3618 tmp = cputime_to_cputime64(cputime);
3619
457533a7 3620 /* Add guest time to process. */
94886b84 3621 p->utime = cputime_add(p->utime, cputime);
457533a7 3622 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3623 account_group_user_time(p, cputime);
94886b84
LV
3624 p->gtime = cputime_add(p->gtime, cputime);
3625
457533a7 3626 /* Add guest time to cpustat. */
ce0e7b28
RO
3627 if (TASK_NICE(p) > 0) {
3628 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3629 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3630 } else {
3631 cpustat->user = cputime64_add(cpustat->user, tmp);
3632 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3633 }
94886b84
LV
3634}
3635
70a89a66
VP
3636/*
3637 * Account system cpu time to a process and desired cpustat field
3638 * @p: the process that the cpu time gets accounted to
3639 * @cputime: the cpu time spent in kernel space since the last update
3640 * @cputime_scaled: cputime scaled by cpu frequency
3641 * @target_cputime64: pointer to cpustat field that has to be updated
3642 */
3643static inline
3644void __account_system_time(struct task_struct *p, cputime_t cputime,
3645 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3646{
3647 cputime64_t tmp = cputime_to_cputime64(cputime);
3648
3649 /* Add system time to process. */
3650 p->stime = cputime_add(p->stime, cputime);
3651 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3652 account_group_system_time(p, cputime);
3653
3654 /* Add system time to cpustat. */
3655 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3656 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3657
3658 /* Account for system time used */
3659 acct_update_integrals(p);
3660}
3661
1da177e4
LT
3662/*
3663 * Account system cpu time to a process.
3664 * @p: the process that the cpu time gets accounted to
3665 * @hardirq_offset: the offset to subtract from hardirq_count()
3666 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3667 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3668 */
3669void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3670 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3671{
3672 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3673 cputime64_t *target_cputime64;
1da177e4 3674
983ed7a6 3675 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3676 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3677 return;
3678 }
94886b84 3679
1da177e4 3680 if (hardirq_count() - hardirq_offset)
70a89a66 3681 target_cputime64 = &cpustat->irq;
75e1056f 3682 else if (in_serving_softirq())
70a89a66 3683 target_cputime64 = &cpustat->softirq;
1da177e4 3684 else
70a89a66 3685 target_cputime64 = &cpustat->system;
79741dd3 3686
70a89a66 3687 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3688}
3689
544b4a1f
VP
3690/*
3691 * Account for involuntary wait time.
3692 * @cputime: the cpu time spent in involuntary wait
3693 */
3694void account_steal_time(cputime_t cputime)
3695{
3696 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3697 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3698
3699 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3700}
3701
3702/*
3703 * Account for idle time.
3704 * @cputime: the cpu time spent in idle wait
3705 */
3706void account_idle_time(cputime_t cputime)
3707{
3708 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3709 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3710 struct rq *rq = this_rq();
3711
3712 if (atomic_read(&rq->nr_iowait) > 0)
3713 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3714 else
3715 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3716}
3717
7e949870 3718#ifndef CONFIG_VIRT_CPU_ACCOUNTING
544b4a1f 3719
abb74cef
VP
3720#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3721/*
3722 * Account a tick to a process and cpustat
3723 * @p: the process that the cpu time gets accounted to
3724 * @user_tick: is the tick from userspace
3725 * @rq: the pointer to rq
3726 *
3727 * Tick demultiplexing follows the order
3728 * - pending hardirq update
3729 * - pending softirq update
3730 * - user_time
3731 * - idle_time
3732 * - system time
3733 * - check for guest_time
3734 * - else account as system_time
3735 *
3736 * Check for hardirq is done both for system and user time as there is
3737 * no timer going off while we are on hardirq and hence we may never get an
3738 * opportunity to update it solely in system time.
3739 * p->stime and friends are only updated on system time and not on irq
3740 * softirq as those do not count in task exec_runtime any more.
3741 */
3742static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3743 struct rq *rq)
3744{
3745 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3746 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3747 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3748
3749 if (irqtime_account_hi_update()) {
3750 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3751 } else if (irqtime_account_si_update()) {
3752 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3753 } else if (this_cpu_ksoftirqd() == p) {
3754 /*
3755 * ksoftirqd time do not get accounted in cpu_softirq_time.
3756 * So, we have to handle it separately here.
3757 * Also, p->stime needs to be updated for ksoftirqd.
3758 */
3759 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3760 &cpustat->softirq);
abb74cef
VP
3761 } else if (user_tick) {
3762 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3763 } else if (p == rq->idle) {
3764 account_idle_time(cputime_one_jiffy);
3765 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3766 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3767 } else {
3768 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3769 &cpustat->system);
3770 }
3771}
3772
3773static void irqtime_account_idle_ticks(int ticks)
3774{
3775 int i;
3776 struct rq *rq = this_rq();
3777
3778 for (i = 0; i < ticks; i++)
3779 irqtime_account_process_tick(current, 0, rq);
3780}
544b4a1f 3781#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3782static void irqtime_account_idle_ticks(int ticks) {}
3783static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3784 struct rq *rq) {}
544b4a1f 3785#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3786
3787/*
3788 * Account a single tick of cpu time.
3789 * @p: the process that the cpu time gets accounted to
3790 * @user_tick: indicates if the tick is a user or a system tick
3791 */
3792void account_process_tick(struct task_struct *p, int user_tick)
3793{
a42548a1 3794 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3795 struct rq *rq = this_rq();
3796
abb74cef
VP
3797 if (sched_clock_irqtime) {
3798 irqtime_account_process_tick(p, user_tick, rq);
3799 return;
3800 }
3801
79741dd3 3802 if (user_tick)
a42548a1 3803 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3804 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3805 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3806 one_jiffy_scaled);
3807 else
a42548a1 3808 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3809}
3810
3811/*
3812 * Account multiple ticks of steal time.
3813 * @p: the process from which the cpu time has been stolen
3814 * @ticks: number of stolen ticks
3815 */
3816void account_steal_ticks(unsigned long ticks)
3817{
3818 account_steal_time(jiffies_to_cputime(ticks));
3819}
3820
3821/*
3822 * Account multiple ticks of idle time.
3823 * @ticks: number of stolen ticks
3824 */
3825void account_idle_ticks(unsigned long ticks)
3826{
abb74cef
VP
3827
3828 if (sched_clock_irqtime) {
3829 irqtime_account_idle_ticks(ticks);
3830 return;
3831 }
3832
79741dd3 3833 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3834}
3835
79741dd3
MS
3836#endif
3837
49048622
BS
3838/*
3839 * Use precise platform statistics if available:
3840 */
3841#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3842void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3843{
d99ca3b9
HS
3844 *ut = p->utime;
3845 *st = p->stime;
49048622
BS
3846}
3847
0cf55e1e 3848void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3849{
0cf55e1e
HS
3850 struct task_cputime cputime;
3851
3852 thread_group_cputime(p, &cputime);
3853
3854 *ut = cputime.utime;
3855 *st = cputime.stime;
49048622
BS
3856}
3857#else
761b1d26
HS
3858
3859#ifndef nsecs_to_cputime
b7b20df9 3860# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3861#endif
3862
d180c5bc 3863void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3864{
d99ca3b9 3865 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3866
3867 /*
3868 * Use CFS's precise accounting:
3869 */
d180c5bc 3870 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3871
3872 if (total) {
e75e863d 3873 u64 temp = rtime;
d180c5bc 3874
e75e863d 3875 temp *= utime;
49048622 3876 do_div(temp, total);
d180c5bc
HS
3877 utime = (cputime_t)temp;
3878 } else
3879 utime = rtime;
49048622 3880
d180c5bc
HS
3881 /*
3882 * Compare with previous values, to keep monotonicity:
3883 */
761b1d26 3884 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3885 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3886
d99ca3b9
HS
3887 *ut = p->prev_utime;
3888 *st = p->prev_stime;
49048622
BS
3889}
3890
0cf55e1e
HS
3891/*
3892 * Must be called with siglock held.
3893 */
3894void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3895{
0cf55e1e
HS
3896 struct signal_struct *sig = p->signal;
3897 struct task_cputime cputime;
3898 cputime_t rtime, utime, total;
49048622 3899
0cf55e1e 3900 thread_group_cputime(p, &cputime);
49048622 3901
0cf55e1e
HS
3902 total = cputime_add(cputime.utime, cputime.stime);
3903 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3904
0cf55e1e 3905 if (total) {
e75e863d 3906 u64 temp = rtime;
49048622 3907
e75e863d 3908 temp *= cputime.utime;
0cf55e1e
HS
3909 do_div(temp, total);
3910 utime = (cputime_t)temp;
3911 } else
3912 utime = rtime;
3913
3914 sig->prev_utime = max(sig->prev_utime, utime);
3915 sig->prev_stime = max(sig->prev_stime,
3916 cputime_sub(rtime, sig->prev_utime));
3917
3918 *ut = sig->prev_utime;
3919 *st = sig->prev_stime;
49048622 3920}
49048622 3921#endif
49048622 3922
7835b98b
CL
3923/*
3924 * This function gets called by the timer code, with HZ frequency.
3925 * We call it with interrupts disabled.
3926 *
3927 * It also gets called by the fork code, when changing the parent's
3928 * timeslices.
3929 */
3930void scheduler_tick(void)
3931{
7835b98b
CL
3932 int cpu = smp_processor_id();
3933 struct rq *rq = cpu_rq(cpu);
dd41f596 3934 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3935
3936 sched_clock_tick();
dd41f596 3937
05fa785c 3938 raw_spin_lock(&rq->lock);
3e51f33f 3939 update_rq_clock(rq);
fdf3e95d 3940 update_cpu_load_active(rq);
fa85ae24 3941 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3942 raw_spin_unlock(&rq->lock);
7835b98b 3943
e9d2b064 3944 perf_event_task_tick();
e220d2dc 3945
e418e1c2 3946#ifdef CONFIG_SMP
dd41f596
IM
3947 rq->idle_at_tick = idle_cpu(cpu);
3948 trigger_load_balance(rq, cpu);
e418e1c2 3949#endif
1da177e4
LT
3950}
3951
132380a0 3952notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3953{
3954 if (in_lock_functions(addr)) {
3955 addr = CALLER_ADDR2;
3956 if (in_lock_functions(addr))
3957 addr = CALLER_ADDR3;
3958 }
3959 return addr;
3960}
1da177e4 3961
7e49fcce
SR
3962#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3963 defined(CONFIG_PREEMPT_TRACER))
3964
43627582 3965void __kprobes add_preempt_count(int val)
1da177e4 3966{
6cd8a4bb 3967#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3968 /*
3969 * Underflow?
3970 */
9a11b49a
IM
3971 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3972 return;
6cd8a4bb 3973#endif
1da177e4 3974 preempt_count() += val;
6cd8a4bb 3975#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3976 /*
3977 * Spinlock count overflowing soon?
3978 */
33859f7f
MOS
3979 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3980 PREEMPT_MASK - 10);
6cd8a4bb
SR
3981#endif
3982 if (preempt_count() == val)
3983 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3984}
3985EXPORT_SYMBOL(add_preempt_count);
3986
43627582 3987void __kprobes sub_preempt_count(int val)
1da177e4 3988{
6cd8a4bb 3989#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3990 /*
3991 * Underflow?
3992 */
01e3eb82 3993 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3994 return;
1da177e4
LT
3995 /*
3996 * Is the spinlock portion underflowing?
3997 */
9a11b49a
IM
3998 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3999 !(preempt_count() & PREEMPT_MASK)))
4000 return;
6cd8a4bb 4001#endif
9a11b49a 4002
6cd8a4bb
SR
4003 if (preempt_count() == val)
4004 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4005 preempt_count() -= val;
4006}
4007EXPORT_SYMBOL(sub_preempt_count);
4008
4009#endif
4010
4011/*
dd41f596 4012 * Print scheduling while atomic bug:
1da177e4 4013 */
dd41f596 4014static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4015{
838225b4
SS
4016 struct pt_regs *regs = get_irq_regs();
4017
3df0fc5b
PZ
4018 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4019 prev->comm, prev->pid, preempt_count());
838225b4 4020
dd41f596 4021 debug_show_held_locks(prev);
e21f5b15 4022 print_modules();
dd41f596
IM
4023 if (irqs_disabled())
4024 print_irqtrace_events(prev);
838225b4
SS
4025
4026 if (regs)
4027 show_regs(regs);
4028 else
4029 dump_stack();
dd41f596 4030}
1da177e4 4031
dd41f596
IM
4032/*
4033 * Various schedule()-time debugging checks and statistics:
4034 */
4035static inline void schedule_debug(struct task_struct *prev)
4036{
1da177e4 4037 /*
41a2d6cf 4038 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4039 * schedule() atomically, we ignore that path for now.
4040 * Otherwise, whine if we are scheduling when we should not be.
4041 */
3f33a7ce 4042 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4043 __schedule_bug(prev);
4044
1da177e4
LT
4045 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4046
2d72376b 4047 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4048#ifdef CONFIG_SCHEDSTATS
4049 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4050 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4051 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4052 }
4053#endif
dd41f596
IM
4054}
4055
6cecd084 4056static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4057{
a64692a3
MG
4058 if (prev->se.on_rq)
4059 update_rq_clock(rq);
6cecd084 4060 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4061}
4062
dd41f596
IM
4063/*
4064 * Pick up the highest-prio task:
4065 */
4066static inline struct task_struct *
b67802ea 4067pick_next_task(struct rq *rq)
dd41f596 4068{
5522d5d5 4069 const struct sched_class *class;
dd41f596 4070 struct task_struct *p;
1da177e4
LT
4071
4072 /*
dd41f596
IM
4073 * Optimization: we know that if all tasks are in
4074 * the fair class we can call that function directly:
1da177e4 4075 */
dd41f596 4076 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4077 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4078 if (likely(p))
4079 return p;
1da177e4
LT
4080 }
4081
34f971f6 4082 for_each_class(class) {
fb8d4724 4083 p = class->pick_next_task(rq);
dd41f596
IM
4084 if (p)
4085 return p;
dd41f596 4086 }
34f971f6
PZ
4087
4088 BUG(); /* the idle class will always have a runnable task */
dd41f596 4089}
1da177e4 4090
dd41f596
IM
4091/*
4092 * schedule() is the main scheduler function.
4093 */
ff743345 4094asmlinkage void __sched schedule(void)
dd41f596
IM
4095{
4096 struct task_struct *prev, *next;
67ca7bde 4097 unsigned long *switch_count;
dd41f596 4098 struct rq *rq;
31656519 4099 int cpu;
dd41f596 4100
ff743345
PZ
4101need_resched:
4102 preempt_disable();
dd41f596
IM
4103 cpu = smp_processor_id();
4104 rq = cpu_rq(cpu);
25502a6c 4105 rcu_note_context_switch(cpu);
dd41f596 4106 prev = rq->curr;
dd41f596
IM
4107
4108 release_kernel_lock(prev);
4109need_resched_nonpreemptible:
4110
4111 schedule_debug(prev);
1da177e4 4112
31656519 4113 if (sched_feat(HRTICK))
f333fdc9 4114 hrtick_clear(rq);
8f4d37ec 4115
05fa785c 4116 raw_spin_lock_irq(&rq->lock);
1da177e4 4117
246d86b5 4118 switch_count = &prev->nivcsw;
1da177e4 4119 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4120 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4121 prev->state = TASK_RUNNING;
21aa9af0
TH
4122 } else {
4123 /*
4124 * If a worker is going to sleep, notify and
4125 * ask workqueue whether it wants to wake up a
4126 * task to maintain concurrency. If so, wake
4127 * up the task.
4128 */
4129 if (prev->flags & PF_WQ_WORKER) {
4130 struct task_struct *to_wakeup;
4131
4132 to_wakeup = wq_worker_sleeping(prev, cpu);
4133 if (to_wakeup)
4134 try_to_wake_up_local(to_wakeup);
4135 }
371fd7e7 4136 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 4137 }
dd41f596 4138 switch_count = &prev->nvcsw;
1da177e4
LT
4139 }
4140
3f029d3c 4141 pre_schedule(rq, prev);
f65eda4f 4142
dd41f596 4143 if (unlikely(!rq->nr_running))
1da177e4 4144 idle_balance(cpu, rq);
1da177e4 4145
df1c99d4 4146 put_prev_task(rq, prev);
b67802ea 4147 next = pick_next_task(rq);
f26f9aff
MG
4148 clear_tsk_need_resched(prev);
4149 rq->skip_clock_update = 0;
1da177e4 4150
1da177e4 4151 if (likely(prev != next)) {
673a90a1 4152 sched_info_switch(prev, next);
49f47433 4153 perf_event_task_sched_out(prev, next);
673a90a1 4154
1da177e4
LT
4155 rq->nr_switches++;
4156 rq->curr = next;
4157 ++*switch_count;
4158
dd41f596 4159 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4160 /*
246d86b5
ON
4161 * The context switch have flipped the stack from under us
4162 * and restored the local variables which were saved when
4163 * this task called schedule() in the past. prev == current
4164 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4165 */
4166 cpu = smp_processor_id();
4167 rq = cpu_rq(cpu);
1da177e4 4168 } else
05fa785c 4169 raw_spin_unlock_irq(&rq->lock);
1da177e4 4170
3f029d3c 4171 post_schedule(rq);
1da177e4 4172
246d86b5 4173 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 4174 goto need_resched_nonpreemptible;
8f4d37ec 4175
1da177e4 4176 preempt_enable_no_resched();
ff743345 4177 if (need_resched())
1da177e4
LT
4178 goto need_resched;
4179}
1da177e4
LT
4180EXPORT_SYMBOL(schedule);
4181
c08f7829 4182#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4183/*
4184 * Look out! "owner" is an entirely speculative pointer
4185 * access and not reliable.
4186 */
4187int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4188{
4189 unsigned int cpu;
4190 struct rq *rq;
4191
4192 if (!sched_feat(OWNER_SPIN))
4193 return 0;
4194
4195#ifdef CONFIG_DEBUG_PAGEALLOC
4196 /*
4197 * Need to access the cpu field knowing that
4198 * DEBUG_PAGEALLOC could have unmapped it if
4199 * the mutex owner just released it and exited.
4200 */
4201 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4202 return 0;
0d66bf6d
PZ
4203#else
4204 cpu = owner->cpu;
4205#endif
4206
4207 /*
4208 * Even if the access succeeded (likely case),
4209 * the cpu field may no longer be valid.
4210 */
4211 if (cpu >= nr_cpumask_bits)
4b402210 4212 return 0;
0d66bf6d
PZ
4213
4214 /*
4215 * We need to validate that we can do a
4216 * get_cpu() and that we have the percpu area.
4217 */
4218 if (!cpu_online(cpu))
4b402210 4219 return 0;
0d66bf6d
PZ
4220
4221 rq = cpu_rq(cpu);
4222
4223 for (;;) {
4224 /*
4225 * Owner changed, break to re-assess state.
4226 */
9d0f4dcc
TC
4227 if (lock->owner != owner) {
4228 /*
4229 * If the lock has switched to a different owner,
4230 * we likely have heavy contention. Return 0 to quit
4231 * optimistic spinning and not contend further:
4232 */
4233 if (lock->owner)
4234 return 0;
0d66bf6d 4235 break;
9d0f4dcc 4236 }
0d66bf6d
PZ
4237
4238 /*
4239 * Is that owner really running on that cpu?
4240 */
4241 if (task_thread_info(rq->curr) != owner || need_resched())
4242 return 0;
4243
335d7afb 4244 arch_mutex_cpu_relax();
0d66bf6d 4245 }
4b402210 4246
0d66bf6d
PZ
4247 return 1;
4248}
4249#endif
4250
1da177e4
LT
4251#ifdef CONFIG_PREEMPT
4252/*
2ed6e34f 4253 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4254 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4255 * occur there and call schedule directly.
4256 */
d1f74e20 4257asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4258{
4259 struct thread_info *ti = current_thread_info();
6478d880 4260
1da177e4
LT
4261 /*
4262 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4263 * we do not want to preempt the current task. Just return..
1da177e4 4264 */
beed33a8 4265 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4266 return;
4267
3a5c359a 4268 do {
d1f74e20 4269 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4270 schedule();
d1f74e20 4271 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4272
3a5c359a
AK
4273 /*
4274 * Check again in case we missed a preemption opportunity
4275 * between schedule and now.
4276 */
4277 barrier();
5ed0cec0 4278 } while (need_resched());
1da177e4 4279}
1da177e4
LT
4280EXPORT_SYMBOL(preempt_schedule);
4281
4282/*
2ed6e34f 4283 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4284 * off of irq context.
4285 * Note, that this is called and return with irqs disabled. This will
4286 * protect us against recursive calling from irq.
4287 */
4288asmlinkage void __sched preempt_schedule_irq(void)
4289{
4290 struct thread_info *ti = current_thread_info();
6478d880 4291
2ed6e34f 4292 /* Catch callers which need to be fixed */
1da177e4
LT
4293 BUG_ON(ti->preempt_count || !irqs_disabled());
4294
3a5c359a
AK
4295 do {
4296 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4297 local_irq_enable();
4298 schedule();
4299 local_irq_disable();
3a5c359a 4300 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4301
3a5c359a
AK
4302 /*
4303 * Check again in case we missed a preemption opportunity
4304 * between schedule and now.
4305 */
4306 barrier();
5ed0cec0 4307 } while (need_resched());
1da177e4
LT
4308}
4309
4310#endif /* CONFIG_PREEMPT */
4311
63859d4f 4312int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4313 void *key)
1da177e4 4314{
63859d4f 4315 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4316}
1da177e4
LT
4317EXPORT_SYMBOL(default_wake_function);
4318
4319/*
41a2d6cf
IM
4320 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4321 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4322 * number) then we wake all the non-exclusive tasks and one exclusive task.
4323 *
4324 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4325 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4326 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4327 */
78ddb08f 4328static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4329 int nr_exclusive, int wake_flags, void *key)
1da177e4 4330{
2e45874c 4331 wait_queue_t *curr, *next;
1da177e4 4332
2e45874c 4333 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4334 unsigned flags = curr->flags;
4335
63859d4f 4336 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4337 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4338 break;
4339 }
4340}
4341
4342/**
4343 * __wake_up - wake up threads blocked on a waitqueue.
4344 * @q: the waitqueue
4345 * @mode: which threads
4346 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4347 * @key: is directly passed to the wakeup function
50fa610a
DH
4348 *
4349 * It may be assumed that this function implies a write memory barrier before
4350 * changing the task state if and only if any tasks are woken up.
1da177e4 4351 */
7ad5b3a5 4352void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4353 int nr_exclusive, void *key)
1da177e4
LT
4354{
4355 unsigned long flags;
4356
4357 spin_lock_irqsave(&q->lock, flags);
4358 __wake_up_common(q, mode, nr_exclusive, 0, key);
4359 spin_unlock_irqrestore(&q->lock, flags);
4360}
1da177e4
LT
4361EXPORT_SYMBOL(__wake_up);
4362
4363/*
4364 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4365 */
7ad5b3a5 4366void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4367{
4368 __wake_up_common(q, mode, 1, 0, NULL);
4369}
22c43c81 4370EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4371
4ede816a
DL
4372void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4373{
4374 __wake_up_common(q, mode, 1, 0, key);
4375}
4376
1da177e4 4377/**
4ede816a 4378 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4379 * @q: the waitqueue
4380 * @mode: which threads
4381 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4382 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4383 *
4384 * The sync wakeup differs that the waker knows that it will schedule
4385 * away soon, so while the target thread will be woken up, it will not
4386 * be migrated to another CPU - ie. the two threads are 'synchronized'
4387 * with each other. This can prevent needless bouncing between CPUs.
4388 *
4389 * On UP it can prevent extra preemption.
50fa610a
DH
4390 *
4391 * It may be assumed that this function implies a write memory barrier before
4392 * changing the task state if and only if any tasks are woken up.
1da177e4 4393 */
4ede816a
DL
4394void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4395 int nr_exclusive, void *key)
1da177e4
LT
4396{
4397 unsigned long flags;
7d478721 4398 int wake_flags = WF_SYNC;
1da177e4
LT
4399
4400 if (unlikely(!q))
4401 return;
4402
4403 if (unlikely(!nr_exclusive))
7d478721 4404 wake_flags = 0;
1da177e4
LT
4405
4406 spin_lock_irqsave(&q->lock, flags);
7d478721 4407 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4408 spin_unlock_irqrestore(&q->lock, flags);
4409}
4ede816a
DL
4410EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4411
4412/*
4413 * __wake_up_sync - see __wake_up_sync_key()
4414 */
4415void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4416{
4417 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4418}
1da177e4
LT
4419EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4420
65eb3dc6
KD
4421/**
4422 * complete: - signals a single thread waiting on this completion
4423 * @x: holds the state of this particular completion
4424 *
4425 * This will wake up a single thread waiting on this completion. Threads will be
4426 * awakened in the same order in which they were queued.
4427 *
4428 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4429 *
4430 * It may be assumed that this function implies a write memory barrier before
4431 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4432 */
b15136e9 4433void complete(struct completion *x)
1da177e4
LT
4434{
4435 unsigned long flags;
4436
4437 spin_lock_irqsave(&x->wait.lock, flags);
4438 x->done++;
d9514f6c 4439 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4440 spin_unlock_irqrestore(&x->wait.lock, flags);
4441}
4442EXPORT_SYMBOL(complete);
4443
65eb3dc6
KD
4444/**
4445 * complete_all: - signals all threads waiting on this completion
4446 * @x: holds the state of this particular completion
4447 *
4448 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4449 *
4450 * It may be assumed that this function implies a write memory barrier before
4451 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4452 */
b15136e9 4453void complete_all(struct completion *x)
1da177e4
LT
4454{
4455 unsigned long flags;
4456
4457 spin_lock_irqsave(&x->wait.lock, flags);
4458 x->done += UINT_MAX/2;
d9514f6c 4459 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4460 spin_unlock_irqrestore(&x->wait.lock, flags);
4461}
4462EXPORT_SYMBOL(complete_all);
4463
8cbbe86d
AK
4464static inline long __sched
4465do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4466{
1da177e4
LT
4467 if (!x->done) {
4468 DECLARE_WAITQUEUE(wait, current);
4469
a93d2f17 4470 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4471 do {
94d3d824 4472 if (signal_pending_state(state, current)) {
ea71a546
ON
4473 timeout = -ERESTARTSYS;
4474 break;
8cbbe86d
AK
4475 }
4476 __set_current_state(state);
1da177e4
LT
4477 spin_unlock_irq(&x->wait.lock);
4478 timeout = schedule_timeout(timeout);
4479 spin_lock_irq(&x->wait.lock);
ea71a546 4480 } while (!x->done && timeout);
1da177e4 4481 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4482 if (!x->done)
4483 return timeout;
1da177e4
LT
4484 }
4485 x->done--;
ea71a546 4486 return timeout ?: 1;
1da177e4 4487}
1da177e4 4488
8cbbe86d
AK
4489static long __sched
4490wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4491{
1da177e4
LT
4492 might_sleep();
4493
4494 spin_lock_irq(&x->wait.lock);
8cbbe86d 4495 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4496 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4497 return timeout;
4498}
1da177e4 4499
65eb3dc6
KD
4500/**
4501 * wait_for_completion: - waits for completion of a task
4502 * @x: holds the state of this particular completion
4503 *
4504 * This waits to be signaled for completion of a specific task. It is NOT
4505 * interruptible and there is no timeout.
4506 *
4507 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4508 * and interrupt capability. Also see complete().
4509 */
b15136e9 4510void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4511{
4512 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4513}
8cbbe86d 4514EXPORT_SYMBOL(wait_for_completion);
1da177e4 4515
65eb3dc6
KD
4516/**
4517 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4518 * @x: holds the state of this particular completion
4519 * @timeout: timeout value in jiffies
4520 *
4521 * This waits for either a completion of a specific task to be signaled or for a
4522 * specified timeout to expire. The timeout is in jiffies. It is not
4523 * interruptible.
4524 */
b15136e9 4525unsigned long __sched
8cbbe86d 4526wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4527{
8cbbe86d 4528 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4529}
8cbbe86d 4530EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4531
65eb3dc6
KD
4532/**
4533 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4534 * @x: holds the state of this particular completion
4535 *
4536 * This waits for completion of a specific task to be signaled. It is
4537 * interruptible.
4538 */
8cbbe86d 4539int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4540{
51e97990
AK
4541 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4542 if (t == -ERESTARTSYS)
4543 return t;
4544 return 0;
0fec171c 4545}
8cbbe86d 4546EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4547
65eb3dc6
KD
4548/**
4549 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4550 * @x: holds the state of this particular completion
4551 * @timeout: timeout value in jiffies
4552 *
4553 * This waits for either a completion of a specific task to be signaled or for a
4554 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4555 */
6bf41237 4556long __sched
8cbbe86d
AK
4557wait_for_completion_interruptible_timeout(struct completion *x,
4558 unsigned long timeout)
0fec171c 4559{
8cbbe86d 4560 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4561}
8cbbe86d 4562EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4563
65eb3dc6
KD
4564/**
4565 * wait_for_completion_killable: - waits for completion of a task (killable)
4566 * @x: holds the state of this particular completion
4567 *
4568 * This waits to be signaled for completion of a specific task. It can be
4569 * interrupted by a kill signal.
4570 */
009e577e
MW
4571int __sched wait_for_completion_killable(struct completion *x)
4572{
4573 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4574 if (t == -ERESTARTSYS)
4575 return t;
4576 return 0;
4577}
4578EXPORT_SYMBOL(wait_for_completion_killable);
4579
0aa12fb4
SW
4580/**
4581 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4582 * @x: holds the state of this particular completion
4583 * @timeout: timeout value in jiffies
4584 *
4585 * This waits for either a completion of a specific task to be
4586 * signaled or for a specified timeout to expire. It can be
4587 * interrupted by a kill signal. The timeout is in jiffies.
4588 */
6bf41237 4589long __sched
0aa12fb4
SW
4590wait_for_completion_killable_timeout(struct completion *x,
4591 unsigned long timeout)
4592{
4593 return wait_for_common(x, timeout, TASK_KILLABLE);
4594}
4595EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4596
be4de352
DC
4597/**
4598 * try_wait_for_completion - try to decrement a completion without blocking
4599 * @x: completion structure
4600 *
4601 * Returns: 0 if a decrement cannot be done without blocking
4602 * 1 if a decrement succeeded.
4603 *
4604 * If a completion is being used as a counting completion,
4605 * attempt to decrement the counter without blocking. This
4606 * enables us to avoid waiting if the resource the completion
4607 * is protecting is not available.
4608 */
4609bool try_wait_for_completion(struct completion *x)
4610{
7539a3b3 4611 unsigned long flags;
be4de352
DC
4612 int ret = 1;
4613
7539a3b3 4614 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4615 if (!x->done)
4616 ret = 0;
4617 else
4618 x->done--;
7539a3b3 4619 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4620 return ret;
4621}
4622EXPORT_SYMBOL(try_wait_for_completion);
4623
4624/**
4625 * completion_done - Test to see if a completion has any waiters
4626 * @x: completion structure
4627 *
4628 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4629 * 1 if there are no waiters.
4630 *
4631 */
4632bool completion_done(struct completion *x)
4633{
7539a3b3 4634 unsigned long flags;
be4de352
DC
4635 int ret = 1;
4636
7539a3b3 4637 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4638 if (!x->done)
4639 ret = 0;
7539a3b3 4640 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4641 return ret;
4642}
4643EXPORT_SYMBOL(completion_done);
4644
8cbbe86d
AK
4645static long __sched
4646sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4647{
0fec171c
IM
4648 unsigned long flags;
4649 wait_queue_t wait;
4650
4651 init_waitqueue_entry(&wait, current);
1da177e4 4652
8cbbe86d 4653 __set_current_state(state);
1da177e4 4654
8cbbe86d
AK
4655 spin_lock_irqsave(&q->lock, flags);
4656 __add_wait_queue(q, &wait);
4657 spin_unlock(&q->lock);
4658 timeout = schedule_timeout(timeout);
4659 spin_lock_irq(&q->lock);
4660 __remove_wait_queue(q, &wait);
4661 spin_unlock_irqrestore(&q->lock, flags);
4662
4663 return timeout;
4664}
4665
4666void __sched interruptible_sleep_on(wait_queue_head_t *q)
4667{
4668 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4669}
1da177e4
LT
4670EXPORT_SYMBOL(interruptible_sleep_on);
4671
0fec171c 4672long __sched
95cdf3b7 4673interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4674{
8cbbe86d 4675 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4676}
1da177e4
LT
4677EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4678
0fec171c 4679void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4680{
8cbbe86d 4681 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4682}
1da177e4
LT
4683EXPORT_SYMBOL(sleep_on);
4684
0fec171c 4685long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4686{
8cbbe86d 4687 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4688}
1da177e4
LT
4689EXPORT_SYMBOL(sleep_on_timeout);
4690
b29739f9
IM
4691#ifdef CONFIG_RT_MUTEXES
4692
4693/*
4694 * rt_mutex_setprio - set the current priority of a task
4695 * @p: task
4696 * @prio: prio value (kernel-internal form)
4697 *
4698 * This function changes the 'effective' priority of a task. It does
4699 * not touch ->normal_prio like __setscheduler().
4700 *
4701 * Used by the rt_mutex code to implement priority inheritance logic.
4702 */
36c8b586 4703void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4704{
4705 unsigned long flags;
83b699ed 4706 int oldprio, on_rq, running;
70b97a7f 4707 struct rq *rq;
83ab0aa0 4708 const struct sched_class *prev_class;
b29739f9
IM
4709
4710 BUG_ON(prio < 0 || prio > MAX_PRIO);
4711
4712 rq = task_rq_lock(p, &flags);
4713
a8027073 4714 trace_sched_pi_setprio(p, prio);
d5f9f942 4715 oldprio = p->prio;
83ab0aa0 4716 prev_class = p->sched_class;
dd41f596 4717 on_rq = p->se.on_rq;
051a1d1a 4718 running = task_current(rq, p);
0e1f3483 4719 if (on_rq)
69be72c1 4720 dequeue_task(rq, p, 0);
0e1f3483
HS
4721 if (running)
4722 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4723
4724 if (rt_prio(prio))
4725 p->sched_class = &rt_sched_class;
4726 else
4727 p->sched_class = &fair_sched_class;
4728
b29739f9
IM
4729 p->prio = prio;
4730
0e1f3483
HS
4731 if (running)
4732 p->sched_class->set_curr_task(rq);
da7a735e 4733 if (on_rq)
371fd7e7 4734 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4735
da7a735e 4736 check_class_changed(rq, p, prev_class, oldprio);
b29739f9
IM
4737 task_rq_unlock(rq, &flags);
4738}
4739
4740#endif
4741
36c8b586 4742void set_user_nice(struct task_struct *p, long nice)
1da177e4 4743{
dd41f596 4744 int old_prio, delta, on_rq;
1da177e4 4745 unsigned long flags;
70b97a7f 4746 struct rq *rq;
1da177e4
LT
4747
4748 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4749 return;
4750 /*
4751 * We have to be careful, if called from sys_setpriority(),
4752 * the task might be in the middle of scheduling on another CPU.
4753 */
4754 rq = task_rq_lock(p, &flags);
4755 /*
4756 * The RT priorities are set via sched_setscheduler(), but we still
4757 * allow the 'normal' nice value to be set - but as expected
4758 * it wont have any effect on scheduling until the task is
dd41f596 4759 * SCHED_FIFO/SCHED_RR:
1da177e4 4760 */
e05606d3 4761 if (task_has_rt_policy(p)) {
1da177e4
LT
4762 p->static_prio = NICE_TO_PRIO(nice);
4763 goto out_unlock;
4764 }
dd41f596 4765 on_rq = p->se.on_rq;
c09595f6 4766 if (on_rq)
69be72c1 4767 dequeue_task(rq, p, 0);
1da177e4 4768
1da177e4 4769 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4770 set_load_weight(p);
b29739f9
IM
4771 old_prio = p->prio;
4772 p->prio = effective_prio(p);
4773 delta = p->prio - old_prio;
1da177e4 4774
dd41f596 4775 if (on_rq) {
371fd7e7 4776 enqueue_task(rq, p, 0);
1da177e4 4777 /*
d5f9f942
AM
4778 * If the task increased its priority or is running and
4779 * lowered its priority, then reschedule its CPU:
1da177e4 4780 */
d5f9f942 4781 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4782 resched_task(rq->curr);
4783 }
4784out_unlock:
4785 task_rq_unlock(rq, &flags);
4786}
1da177e4
LT
4787EXPORT_SYMBOL(set_user_nice);
4788
e43379f1
MM
4789/*
4790 * can_nice - check if a task can reduce its nice value
4791 * @p: task
4792 * @nice: nice value
4793 */
36c8b586 4794int can_nice(const struct task_struct *p, const int nice)
e43379f1 4795{
024f4747
MM
4796 /* convert nice value [19,-20] to rlimit style value [1,40] */
4797 int nice_rlim = 20 - nice;
48f24c4d 4798
78d7d407 4799 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4800 capable(CAP_SYS_NICE));
4801}
4802
1da177e4
LT
4803#ifdef __ARCH_WANT_SYS_NICE
4804
4805/*
4806 * sys_nice - change the priority of the current process.
4807 * @increment: priority increment
4808 *
4809 * sys_setpriority is a more generic, but much slower function that
4810 * does similar things.
4811 */
5add95d4 4812SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4813{
48f24c4d 4814 long nice, retval;
1da177e4
LT
4815
4816 /*
4817 * Setpriority might change our priority at the same moment.
4818 * We don't have to worry. Conceptually one call occurs first
4819 * and we have a single winner.
4820 */
e43379f1
MM
4821 if (increment < -40)
4822 increment = -40;
1da177e4
LT
4823 if (increment > 40)
4824 increment = 40;
4825
2b8f836f 4826 nice = TASK_NICE(current) + increment;
1da177e4
LT
4827 if (nice < -20)
4828 nice = -20;
4829 if (nice > 19)
4830 nice = 19;
4831
e43379f1
MM
4832 if (increment < 0 && !can_nice(current, nice))
4833 return -EPERM;
4834
1da177e4
LT
4835 retval = security_task_setnice(current, nice);
4836 if (retval)
4837 return retval;
4838
4839 set_user_nice(current, nice);
4840 return 0;
4841}
4842
4843#endif
4844
4845/**
4846 * task_prio - return the priority value of a given task.
4847 * @p: the task in question.
4848 *
4849 * This is the priority value as seen by users in /proc.
4850 * RT tasks are offset by -200. Normal tasks are centered
4851 * around 0, value goes from -16 to +15.
4852 */
36c8b586 4853int task_prio(const struct task_struct *p)
1da177e4
LT
4854{
4855 return p->prio - MAX_RT_PRIO;
4856}
4857
4858/**
4859 * task_nice - return the nice value of a given task.
4860 * @p: the task in question.
4861 */
36c8b586 4862int task_nice(const struct task_struct *p)
1da177e4
LT
4863{
4864 return TASK_NICE(p);
4865}
150d8bed 4866EXPORT_SYMBOL(task_nice);
1da177e4
LT
4867
4868/**
4869 * idle_cpu - is a given cpu idle currently?
4870 * @cpu: the processor in question.
4871 */
4872int idle_cpu(int cpu)
4873{
4874 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4875}
4876
1da177e4
LT
4877/**
4878 * idle_task - return the idle task for a given cpu.
4879 * @cpu: the processor in question.
4880 */
36c8b586 4881struct task_struct *idle_task(int cpu)
1da177e4
LT
4882{
4883 return cpu_rq(cpu)->idle;
4884}
4885
4886/**
4887 * find_process_by_pid - find a process with a matching PID value.
4888 * @pid: the pid in question.
4889 */
a9957449 4890static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4891{
228ebcbe 4892 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4893}
4894
4895/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4896static void
4897__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4898{
dd41f596 4899 BUG_ON(p->se.on_rq);
48f24c4d 4900
1da177e4
LT
4901 p->policy = policy;
4902 p->rt_priority = prio;
b29739f9
IM
4903 p->normal_prio = normal_prio(p);
4904 /* we are holding p->pi_lock already */
4905 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4906 if (rt_prio(p->prio))
4907 p->sched_class = &rt_sched_class;
4908 else
4909 p->sched_class = &fair_sched_class;
2dd73a4f 4910 set_load_weight(p);
1da177e4
LT
4911}
4912
c69e8d9c
DH
4913/*
4914 * check the target process has a UID that matches the current process's
4915 */
4916static bool check_same_owner(struct task_struct *p)
4917{
4918 const struct cred *cred = current_cred(), *pcred;
4919 bool match;
4920
4921 rcu_read_lock();
4922 pcred = __task_cred(p);
4923 match = (cred->euid == pcred->euid ||
4924 cred->euid == pcred->uid);
4925 rcu_read_unlock();
4926 return match;
4927}
4928
961ccddd 4929static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4930 const struct sched_param *param, bool user)
1da177e4 4931{
83b699ed 4932 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4933 unsigned long flags;
83ab0aa0 4934 const struct sched_class *prev_class;
70b97a7f 4935 struct rq *rq;
ca94c442 4936 int reset_on_fork;
1da177e4 4937
66e5393a
SR
4938 /* may grab non-irq protected spin_locks */
4939 BUG_ON(in_interrupt());
1da177e4
LT
4940recheck:
4941 /* double check policy once rq lock held */
ca94c442
LP
4942 if (policy < 0) {
4943 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4944 policy = oldpolicy = p->policy;
ca94c442
LP
4945 } else {
4946 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4947 policy &= ~SCHED_RESET_ON_FORK;
4948
4949 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4950 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4951 policy != SCHED_IDLE)
4952 return -EINVAL;
4953 }
4954
1da177e4
LT
4955 /*
4956 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4957 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4958 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4959 */
4960 if (param->sched_priority < 0 ||
95cdf3b7 4961 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4962 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4963 return -EINVAL;
e05606d3 4964 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4965 return -EINVAL;
4966
37e4ab3f
OC
4967 /*
4968 * Allow unprivileged RT tasks to decrease priority:
4969 */
961ccddd 4970 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4971 if (rt_policy(policy)) {
a44702e8
ON
4972 unsigned long rlim_rtprio =
4973 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4974
4975 /* can't set/change the rt policy */
4976 if (policy != p->policy && !rlim_rtprio)
4977 return -EPERM;
4978
4979 /* can't increase priority */
4980 if (param->sched_priority > p->rt_priority &&
4981 param->sched_priority > rlim_rtprio)
4982 return -EPERM;
4983 }
dd41f596
IM
4984 /*
4985 * Like positive nice levels, dont allow tasks to
4986 * move out of SCHED_IDLE either:
4987 */
4988 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4989 return -EPERM;
5fe1d75f 4990
37e4ab3f 4991 /* can't change other user's priorities */
c69e8d9c 4992 if (!check_same_owner(p))
37e4ab3f 4993 return -EPERM;
ca94c442
LP
4994
4995 /* Normal users shall not reset the sched_reset_on_fork flag */
4996 if (p->sched_reset_on_fork && !reset_on_fork)
4997 return -EPERM;
37e4ab3f 4998 }
1da177e4 4999
725aad24 5000 if (user) {
b0ae1981 5001 retval = security_task_setscheduler(p);
725aad24
JF
5002 if (retval)
5003 return retval;
5004 }
5005
b29739f9
IM
5006 /*
5007 * make sure no PI-waiters arrive (or leave) while we are
5008 * changing the priority of the task:
5009 */
1d615482 5010 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5011 /*
5012 * To be able to change p->policy safely, the apropriate
5013 * runqueue lock must be held.
5014 */
b29739f9 5015 rq = __task_rq_lock(p);
dc61b1d6 5016
34f971f6
PZ
5017 /*
5018 * Changing the policy of the stop threads its a very bad idea
5019 */
5020 if (p == rq->stop) {
5021 __task_rq_unlock(rq);
5022 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5023 return -EINVAL;
5024 }
5025
dc61b1d6
PZ
5026#ifdef CONFIG_RT_GROUP_SCHED
5027 if (user) {
5028 /*
5029 * Do not allow realtime tasks into groups that have no runtime
5030 * assigned.
5031 */
5032 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5033 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5034 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
5035 __task_rq_unlock(rq);
5036 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5037 return -EPERM;
5038 }
5039 }
5040#endif
5041
1da177e4
LT
5042 /* recheck policy now with rq lock held */
5043 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5044 policy = oldpolicy = -1;
b29739f9 5045 __task_rq_unlock(rq);
1d615482 5046 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5047 goto recheck;
5048 }
dd41f596 5049 on_rq = p->se.on_rq;
051a1d1a 5050 running = task_current(rq, p);
0e1f3483 5051 if (on_rq)
2e1cb74a 5052 deactivate_task(rq, p, 0);
0e1f3483
HS
5053 if (running)
5054 p->sched_class->put_prev_task(rq, p);
f6b53205 5055
ca94c442
LP
5056 p->sched_reset_on_fork = reset_on_fork;
5057
1da177e4 5058 oldprio = p->prio;
83ab0aa0 5059 prev_class = p->sched_class;
dd41f596 5060 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5061
0e1f3483
HS
5062 if (running)
5063 p->sched_class->set_curr_task(rq);
da7a735e 5064 if (on_rq)
dd41f596 5065 activate_task(rq, p, 0);
cb469845 5066
da7a735e 5067 check_class_changed(rq, p, prev_class, oldprio);
b29739f9 5068 __task_rq_unlock(rq);
1d615482 5069 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5070
95e02ca9
TG
5071 rt_mutex_adjust_pi(p);
5072
1da177e4
LT
5073 return 0;
5074}
961ccddd
RR
5075
5076/**
5077 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5078 * @p: the task in question.
5079 * @policy: new policy.
5080 * @param: structure containing the new RT priority.
5081 *
5082 * NOTE that the task may be already dead.
5083 */
5084int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5085 const struct sched_param *param)
961ccddd
RR
5086{
5087 return __sched_setscheduler(p, policy, param, true);
5088}
1da177e4
LT
5089EXPORT_SYMBOL_GPL(sched_setscheduler);
5090
961ccddd
RR
5091/**
5092 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5093 * @p: the task in question.
5094 * @policy: new policy.
5095 * @param: structure containing the new RT priority.
5096 *
5097 * Just like sched_setscheduler, only don't bother checking if the
5098 * current context has permission. For example, this is needed in
5099 * stop_machine(): we create temporary high priority worker threads,
5100 * but our caller might not have that capability.
5101 */
5102int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5103 const struct sched_param *param)
961ccddd
RR
5104{
5105 return __sched_setscheduler(p, policy, param, false);
5106}
5107
95cdf3b7
IM
5108static int
5109do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5110{
1da177e4
LT
5111 struct sched_param lparam;
5112 struct task_struct *p;
36c8b586 5113 int retval;
1da177e4
LT
5114
5115 if (!param || pid < 0)
5116 return -EINVAL;
5117 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5118 return -EFAULT;
5fe1d75f
ON
5119
5120 rcu_read_lock();
5121 retval = -ESRCH;
1da177e4 5122 p = find_process_by_pid(pid);
5fe1d75f
ON
5123 if (p != NULL)
5124 retval = sched_setscheduler(p, policy, &lparam);
5125 rcu_read_unlock();
36c8b586 5126
1da177e4
LT
5127 return retval;
5128}
5129
5130/**
5131 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5132 * @pid: the pid in question.
5133 * @policy: new policy.
5134 * @param: structure containing the new RT priority.
5135 */
5add95d4
HC
5136SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5137 struct sched_param __user *, param)
1da177e4 5138{
c21761f1
JB
5139 /* negative values for policy are not valid */
5140 if (policy < 0)
5141 return -EINVAL;
5142
1da177e4
LT
5143 return do_sched_setscheduler(pid, policy, param);
5144}
5145
5146/**
5147 * sys_sched_setparam - set/change the RT priority of a thread
5148 * @pid: the pid in question.
5149 * @param: structure containing the new RT priority.
5150 */
5add95d4 5151SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5152{
5153 return do_sched_setscheduler(pid, -1, param);
5154}
5155
5156/**
5157 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5158 * @pid: the pid in question.
5159 */
5add95d4 5160SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5161{
36c8b586 5162 struct task_struct *p;
3a5c359a 5163 int retval;
1da177e4
LT
5164
5165 if (pid < 0)
3a5c359a 5166 return -EINVAL;
1da177e4
LT
5167
5168 retval = -ESRCH;
5fe85be0 5169 rcu_read_lock();
1da177e4
LT
5170 p = find_process_by_pid(pid);
5171 if (p) {
5172 retval = security_task_getscheduler(p);
5173 if (!retval)
ca94c442
LP
5174 retval = p->policy
5175 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5176 }
5fe85be0 5177 rcu_read_unlock();
1da177e4
LT
5178 return retval;
5179}
5180
5181/**
ca94c442 5182 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5183 * @pid: the pid in question.
5184 * @param: structure containing the RT priority.
5185 */
5add95d4 5186SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5187{
5188 struct sched_param lp;
36c8b586 5189 struct task_struct *p;
3a5c359a 5190 int retval;
1da177e4
LT
5191
5192 if (!param || pid < 0)
3a5c359a 5193 return -EINVAL;
1da177e4 5194
5fe85be0 5195 rcu_read_lock();
1da177e4
LT
5196 p = find_process_by_pid(pid);
5197 retval = -ESRCH;
5198 if (!p)
5199 goto out_unlock;
5200
5201 retval = security_task_getscheduler(p);
5202 if (retval)
5203 goto out_unlock;
5204
5205 lp.sched_priority = p->rt_priority;
5fe85be0 5206 rcu_read_unlock();
1da177e4
LT
5207
5208 /*
5209 * This one might sleep, we cannot do it with a spinlock held ...
5210 */
5211 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5212
1da177e4
LT
5213 return retval;
5214
5215out_unlock:
5fe85be0 5216 rcu_read_unlock();
1da177e4
LT
5217 return retval;
5218}
5219
96f874e2 5220long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5221{
5a16f3d3 5222 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5223 struct task_struct *p;
5224 int retval;
1da177e4 5225
95402b38 5226 get_online_cpus();
23f5d142 5227 rcu_read_lock();
1da177e4
LT
5228
5229 p = find_process_by_pid(pid);
5230 if (!p) {
23f5d142 5231 rcu_read_unlock();
95402b38 5232 put_online_cpus();
1da177e4
LT
5233 return -ESRCH;
5234 }
5235
23f5d142 5236 /* Prevent p going away */
1da177e4 5237 get_task_struct(p);
23f5d142 5238 rcu_read_unlock();
1da177e4 5239
5a16f3d3
RR
5240 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5241 retval = -ENOMEM;
5242 goto out_put_task;
5243 }
5244 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5245 retval = -ENOMEM;
5246 goto out_free_cpus_allowed;
5247 }
1da177e4 5248 retval = -EPERM;
c69e8d9c 5249 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5250 goto out_unlock;
5251
b0ae1981 5252 retval = security_task_setscheduler(p);
e7834f8f
DQ
5253 if (retval)
5254 goto out_unlock;
5255
5a16f3d3
RR
5256 cpuset_cpus_allowed(p, cpus_allowed);
5257 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5258again:
5a16f3d3 5259 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5260
8707d8b8 5261 if (!retval) {
5a16f3d3
RR
5262 cpuset_cpus_allowed(p, cpus_allowed);
5263 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5264 /*
5265 * We must have raced with a concurrent cpuset
5266 * update. Just reset the cpus_allowed to the
5267 * cpuset's cpus_allowed
5268 */
5a16f3d3 5269 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5270 goto again;
5271 }
5272 }
1da177e4 5273out_unlock:
5a16f3d3
RR
5274 free_cpumask_var(new_mask);
5275out_free_cpus_allowed:
5276 free_cpumask_var(cpus_allowed);
5277out_put_task:
1da177e4 5278 put_task_struct(p);
95402b38 5279 put_online_cpus();
1da177e4
LT
5280 return retval;
5281}
5282
5283static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5284 struct cpumask *new_mask)
1da177e4 5285{
96f874e2
RR
5286 if (len < cpumask_size())
5287 cpumask_clear(new_mask);
5288 else if (len > cpumask_size())
5289 len = cpumask_size();
5290
1da177e4
LT
5291 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5292}
5293
5294/**
5295 * sys_sched_setaffinity - set the cpu affinity of a process
5296 * @pid: pid of the process
5297 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5298 * @user_mask_ptr: user-space pointer to the new cpu mask
5299 */
5add95d4
HC
5300SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5301 unsigned long __user *, user_mask_ptr)
1da177e4 5302{
5a16f3d3 5303 cpumask_var_t new_mask;
1da177e4
LT
5304 int retval;
5305
5a16f3d3
RR
5306 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5307 return -ENOMEM;
1da177e4 5308
5a16f3d3
RR
5309 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5310 if (retval == 0)
5311 retval = sched_setaffinity(pid, new_mask);
5312 free_cpumask_var(new_mask);
5313 return retval;
1da177e4
LT
5314}
5315
96f874e2 5316long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5317{
36c8b586 5318 struct task_struct *p;
31605683
TG
5319 unsigned long flags;
5320 struct rq *rq;
1da177e4 5321 int retval;
1da177e4 5322
95402b38 5323 get_online_cpus();
23f5d142 5324 rcu_read_lock();
1da177e4
LT
5325
5326 retval = -ESRCH;
5327 p = find_process_by_pid(pid);
5328 if (!p)
5329 goto out_unlock;
5330
e7834f8f
DQ
5331 retval = security_task_getscheduler(p);
5332 if (retval)
5333 goto out_unlock;
5334
31605683 5335 rq = task_rq_lock(p, &flags);
96f874e2 5336 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5337 task_rq_unlock(rq, &flags);
1da177e4
LT
5338
5339out_unlock:
23f5d142 5340 rcu_read_unlock();
95402b38 5341 put_online_cpus();
1da177e4 5342
9531b62f 5343 return retval;
1da177e4
LT
5344}
5345
5346/**
5347 * sys_sched_getaffinity - get the cpu affinity of a process
5348 * @pid: pid of the process
5349 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5350 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5351 */
5add95d4
HC
5352SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5353 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5354{
5355 int ret;
f17c8607 5356 cpumask_var_t mask;
1da177e4 5357
84fba5ec 5358 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5359 return -EINVAL;
5360 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5361 return -EINVAL;
5362
f17c8607
RR
5363 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5364 return -ENOMEM;
1da177e4 5365
f17c8607
RR
5366 ret = sched_getaffinity(pid, mask);
5367 if (ret == 0) {
8bc037fb 5368 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5369
5370 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5371 ret = -EFAULT;
5372 else
cd3d8031 5373 ret = retlen;
f17c8607
RR
5374 }
5375 free_cpumask_var(mask);
1da177e4 5376
f17c8607 5377 return ret;
1da177e4
LT
5378}
5379
5380/**
5381 * sys_sched_yield - yield the current processor to other threads.
5382 *
dd41f596
IM
5383 * This function yields the current CPU to other tasks. If there are no
5384 * other threads running on this CPU then this function will return.
1da177e4 5385 */
5add95d4 5386SYSCALL_DEFINE0(sched_yield)
1da177e4 5387{
70b97a7f 5388 struct rq *rq = this_rq_lock();
1da177e4 5389
2d72376b 5390 schedstat_inc(rq, yld_count);
4530d7ab 5391 current->sched_class->yield_task(rq);
1da177e4
LT
5392
5393 /*
5394 * Since we are going to call schedule() anyway, there's
5395 * no need to preempt or enable interrupts:
5396 */
5397 __release(rq->lock);
8a25d5de 5398 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5399 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5400 preempt_enable_no_resched();
5401
5402 schedule();
5403
5404 return 0;
5405}
5406
d86ee480
PZ
5407static inline int should_resched(void)
5408{
5409 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5410}
5411
e7b38404 5412static void __cond_resched(void)
1da177e4 5413{
e7aaaa69
FW
5414 add_preempt_count(PREEMPT_ACTIVE);
5415 schedule();
5416 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5417}
5418
02b67cc3 5419int __sched _cond_resched(void)
1da177e4 5420{
d86ee480 5421 if (should_resched()) {
1da177e4
LT
5422 __cond_resched();
5423 return 1;
5424 }
5425 return 0;
5426}
02b67cc3 5427EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5428
5429/*
613afbf8 5430 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5431 * call schedule, and on return reacquire the lock.
5432 *
41a2d6cf 5433 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5434 * operations here to prevent schedule() from being called twice (once via
5435 * spin_unlock(), once by hand).
5436 */
613afbf8 5437int __cond_resched_lock(spinlock_t *lock)
1da177e4 5438{
d86ee480 5439 int resched = should_resched();
6df3cecb
JK
5440 int ret = 0;
5441
f607c668
PZ
5442 lockdep_assert_held(lock);
5443
95c354fe 5444 if (spin_needbreak(lock) || resched) {
1da177e4 5445 spin_unlock(lock);
d86ee480 5446 if (resched)
95c354fe
NP
5447 __cond_resched();
5448 else
5449 cpu_relax();
6df3cecb 5450 ret = 1;
1da177e4 5451 spin_lock(lock);
1da177e4 5452 }
6df3cecb 5453 return ret;
1da177e4 5454}
613afbf8 5455EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5456
613afbf8 5457int __sched __cond_resched_softirq(void)
1da177e4
LT
5458{
5459 BUG_ON(!in_softirq());
5460
d86ee480 5461 if (should_resched()) {
98d82567 5462 local_bh_enable();
1da177e4
LT
5463 __cond_resched();
5464 local_bh_disable();
5465 return 1;
5466 }
5467 return 0;
5468}
613afbf8 5469EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5470
1da177e4
LT
5471/**
5472 * yield - yield the current processor to other threads.
5473 *
72fd4a35 5474 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5475 * thread runnable and calls sys_sched_yield().
5476 */
5477void __sched yield(void)
5478{
5479 set_current_state(TASK_RUNNING);
5480 sys_sched_yield();
5481}
1da177e4
LT
5482EXPORT_SYMBOL(yield);
5483
d95f4122
MG
5484/**
5485 * yield_to - yield the current processor to another thread in
5486 * your thread group, or accelerate that thread toward the
5487 * processor it's on.
5488 *
5489 * It's the caller's job to ensure that the target task struct
5490 * can't go away on us before we can do any checks.
5491 *
5492 * Returns true if we indeed boosted the target task.
5493 */
5494bool __sched yield_to(struct task_struct *p, bool preempt)
5495{
5496 struct task_struct *curr = current;
5497 struct rq *rq, *p_rq;
5498 unsigned long flags;
5499 bool yielded = 0;
5500
5501 local_irq_save(flags);
5502 rq = this_rq();
5503
5504again:
5505 p_rq = task_rq(p);
5506 double_rq_lock(rq, p_rq);
5507 while (task_rq(p) != p_rq) {
5508 double_rq_unlock(rq, p_rq);
5509 goto again;
5510 }
5511
5512 if (!curr->sched_class->yield_to_task)
5513 goto out;
5514
5515 if (curr->sched_class != p->sched_class)
5516 goto out;
5517
5518 if (task_running(p_rq, p) || p->state)
5519 goto out;
5520
5521 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5522 if (yielded)
5523 schedstat_inc(rq, yld_count);
5524
5525out:
5526 double_rq_unlock(rq, p_rq);
5527 local_irq_restore(flags);
5528
5529 if (yielded)
5530 schedule();
5531
5532 return yielded;
5533}
5534EXPORT_SYMBOL_GPL(yield_to);
5535
1da177e4 5536/*
41a2d6cf 5537 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5538 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5539 */
5540void __sched io_schedule(void)
5541{
54d35f29 5542 struct rq *rq = raw_rq();
1da177e4 5543
0ff92245 5544 delayacct_blkio_start();
1da177e4 5545 atomic_inc(&rq->nr_iowait);
8f0dfc34 5546 current->in_iowait = 1;
1da177e4 5547 schedule();
8f0dfc34 5548 current->in_iowait = 0;
1da177e4 5549 atomic_dec(&rq->nr_iowait);
0ff92245 5550 delayacct_blkio_end();
1da177e4 5551}
1da177e4
LT
5552EXPORT_SYMBOL(io_schedule);
5553
5554long __sched io_schedule_timeout(long timeout)
5555{
54d35f29 5556 struct rq *rq = raw_rq();
1da177e4
LT
5557 long ret;
5558
0ff92245 5559 delayacct_blkio_start();
1da177e4 5560 atomic_inc(&rq->nr_iowait);
8f0dfc34 5561 current->in_iowait = 1;
1da177e4 5562 ret = schedule_timeout(timeout);
8f0dfc34 5563 current->in_iowait = 0;
1da177e4 5564 atomic_dec(&rq->nr_iowait);
0ff92245 5565 delayacct_blkio_end();
1da177e4
LT
5566 return ret;
5567}
5568
5569/**
5570 * sys_sched_get_priority_max - return maximum RT priority.
5571 * @policy: scheduling class.
5572 *
5573 * this syscall returns the maximum rt_priority that can be used
5574 * by a given scheduling class.
5575 */
5add95d4 5576SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5577{
5578 int ret = -EINVAL;
5579
5580 switch (policy) {
5581 case SCHED_FIFO:
5582 case SCHED_RR:
5583 ret = MAX_USER_RT_PRIO-1;
5584 break;
5585 case SCHED_NORMAL:
b0a9499c 5586 case SCHED_BATCH:
dd41f596 5587 case SCHED_IDLE:
1da177e4
LT
5588 ret = 0;
5589 break;
5590 }
5591 return ret;
5592}
5593
5594/**
5595 * sys_sched_get_priority_min - return minimum RT priority.
5596 * @policy: scheduling class.
5597 *
5598 * this syscall returns the minimum rt_priority that can be used
5599 * by a given scheduling class.
5600 */
5add95d4 5601SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5602{
5603 int ret = -EINVAL;
5604
5605 switch (policy) {
5606 case SCHED_FIFO:
5607 case SCHED_RR:
5608 ret = 1;
5609 break;
5610 case SCHED_NORMAL:
b0a9499c 5611 case SCHED_BATCH:
dd41f596 5612 case SCHED_IDLE:
1da177e4
LT
5613 ret = 0;
5614 }
5615 return ret;
5616}
5617
5618/**
5619 * sys_sched_rr_get_interval - return the default timeslice of a process.
5620 * @pid: pid of the process.
5621 * @interval: userspace pointer to the timeslice value.
5622 *
5623 * this syscall writes the default timeslice value of a given process
5624 * into the user-space timespec buffer. A value of '0' means infinity.
5625 */
17da2bd9 5626SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5627 struct timespec __user *, interval)
1da177e4 5628{
36c8b586 5629 struct task_struct *p;
a4ec24b4 5630 unsigned int time_slice;
dba091b9
TG
5631 unsigned long flags;
5632 struct rq *rq;
3a5c359a 5633 int retval;
1da177e4 5634 struct timespec t;
1da177e4
LT
5635
5636 if (pid < 0)
3a5c359a 5637 return -EINVAL;
1da177e4
LT
5638
5639 retval = -ESRCH;
1a551ae7 5640 rcu_read_lock();
1da177e4
LT
5641 p = find_process_by_pid(pid);
5642 if (!p)
5643 goto out_unlock;
5644
5645 retval = security_task_getscheduler(p);
5646 if (retval)
5647 goto out_unlock;
5648
dba091b9
TG
5649 rq = task_rq_lock(p, &flags);
5650 time_slice = p->sched_class->get_rr_interval(rq, p);
5651 task_rq_unlock(rq, &flags);
a4ec24b4 5652
1a551ae7 5653 rcu_read_unlock();
a4ec24b4 5654 jiffies_to_timespec(time_slice, &t);
1da177e4 5655 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5656 return retval;
3a5c359a 5657
1da177e4 5658out_unlock:
1a551ae7 5659 rcu_read_unlock();
1da177e4
LT
5660 return retval;
5661}
5662
7c731e0a 5663static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5664
82a1fcb9 5665void sched_show_task(struct task_struct *p)
1da177e4 5666{
1da177e4 5667 unsigned long free = 0;
36c8b586 5668 unsigned state;
1da177e4 5669
1da177e4 5670 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5671 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5672 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5673#if BITS_PER_LONG == 32
1da177e4 5674 if (state == TASK_RUNNING)
3df0fc5b 5675 printk(KERN_CONT " running ");
1da177e4 5676 else
3df0fc5b 5677 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5678#else
5679 if (state == TASK_RUNNING)
3df0fc5b 5680 printk(KERN_CONT " running task ");
1da177e4 5681 else
3df0fc5b 5682 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5683#endif
5684#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5685 free = stack_not_used(p);
1da177e4 5686#endif
3df0fc5b 5687 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5688 task_pid_nr(p), task_pid_nr(p->real_parent),
5689 (unsigned long)task_thread_info(p)->flags);
1da177e4 5690
5fb5e6de 5691 show_stack(p, NULL);
1da177e4
LT
5692}
5693
e59e2ae2 5694void show_state_filter(unsigned long state_filter)
1da177e4 5695{
36c8b586 5696 struct task_struct *g, *p;
1da177e4 5697
4bd77321 5698#if BITS_PER_LONG == 32
3df0fc5b
PZ
5699 printk(KERN_INFO
5700 " task PC stack pid father\n");
1da177e4 5701#else
3df0fc5b
PZ
5702 printk(KERN_INFO
5703 " task PC stack pid father\n");
1da177e4
LT
5704#endif
5705 read_lock(&tasklist_lock);
5706 do_each_thread(g, p) {
5707 /*
5708 * reset the NMI-timeout, listing all files on a slow
5709 * console might take alot of time:
5710 */
5711 touch_nmi_watchdog();
39bc89fd 5712 if (!state_filter || (p->state & state_filter))
82a1fcb9 5713 sched_show_task(p);
1da177e4
LT
5714 } while_each_thread(g, p);
5715
04c9167f
JF
5716 touch_all_softlockup_watchdogs();
5717
dd41f596
IM
5718#ifdef CONFIG_SCHED_DEBUG
5719 sysrq_sched_debug_show();
5720#endif
1da177e4 5721 read_unlock(&tasklist_lock);
e59e2ae2
IM
5722 /*
5723 * Only show locks if all tasks are dumped:
5724 */
93335a21 5725 if (!state_filter)
e59e2ae2 5726 debug_show_all_locks();
1da177e4
LT
5727}
5728
1df21055
IM
5729void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5730{
dd41f596 5731 idle->sched_class = &idle_sched_class;
1df21055
IM
5732}
5733
f340c0d1
IM
5734/**
5735 * init_idle - set up an idle thread for a given CPU
5736 * @idle: task in question
5737 * @cpu: cpu the idle task belongs to
5738 *
5739 * NOTE: this function does not set the idle thread's NEED_RESCHED
5740 * flag, to make booting more robust.
5741 */
5c1e1767 5742void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5743{
70b97a7f 5744 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5745 unsigned long flags;
5746
05fa785c 5747 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5748
dd41f596 5749 __sched_fork(idle);
06b83b5f 5750 idle->state = TASK_RUNNING;
dd41f596
IM
5751 idle->se.exec_start = sched_clock();
5752
96f874e2 5753 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5754 /*
5755 * We're having a chicken and egg problem, even though we are
5756 * holding rq->lock, the cpu isn't yet set to this cpu so the
5757 * lockdep check in task_group() will fail.
5758 *
5759 * Similar case to sched_fork(). / Alternatively we could
5760 * use task_rq_lock() here and obtain the other rq->lock.
5761 *
5762 * Silence PROVE_RCU
5763 */
5764 rcu_read_lock();
dd41f596 5765 __set_task_cpu(idle, cpu);
6506cf6c 5766 rcu_read_unlock();
1da177e4 5767
1da177e4 5768 rq->curr = rq->idle = idle;
4866cde0
NP
5769#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5770 idle->oncpu = 1;
5771#endif
05fa785c 5772 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5773
5774 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5775#if defined(CONFIG_PREEMPT)
5776 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5777#else
a1261f54 5778 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5779#endif
dd41f596
IM
5780 /*
5781 * The idle tasks have their own, simple scheduling class:
5782 */
5783 idle->sched_class = &idle_sched_class;
fb52607a 5784 ftrace_graph_init_task(idle);
1da177e4
LT
5785}
5786
5787/*
5788 * In a system that switches off the HZ timer nohz_cpu_mask
5789 * indicates which cpus entered this state. This is used
5790 * in the rcu update to wait only for active cpus. For system
5791 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5792 * always be CPU_BITS_NONE.
1da177e4 5793 */
6a7b3dc3 5794cpumask_var_t nohz_cpu_mask;
1da177e4 5795
19978ca6
IM
5796/*
5797 * Increase the granularity value when there are more CPUs,
5798 * because with more CPUs the 'effective latency' as visible
5799 * to users decreases. But the relationship is not linear,
5800 * so pick a second-best guess by going with the log2 of the
5801 * number of CPUs.
5802 *
5803 * This idea comes from the SD scheduler of Con Kolivas:
5804 */
acb4a848 5805static int get_update_sysctl_factor(void)
19978ca6 5806{
4ca3ef71 5807 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5808 unsigned int factor;
5809
5810 switch (sysctl_sched_tunable_scaling) {
5811 case SCHED_TUNABLESCALING_NONE:
5812 factor = 1;
5813 break;
5814 case SCHED_TUNABLESCALING_LINEAR:
5815 factor = cpus;
5816 break;
5817 case SCHED_TUNABLESCALING_LOG:
5818 default:
5819 factor = 1 + ilog2(cpus);
5820 break;
5821 }
19978ca6 5822
acb4a848
CE
5823 return factor;
5824}
19978ca6 5825
acb4a848
CE
5826static void update_sysctl(void)
5827{
5828 unsigned int factor = get_update_sysctl_factor();
19978ca6 5829
0bcdcf28
CE
5830#define SET_SYSCTL(name) \
5831 (sysctl_##name = (factor) * normalized_sysctl_##name)
5832 SET_SYSCTL(sched_min_granularity);
5833 SET_SYSCTL(sched_latency);
5834 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5835#undef SET_SYSCTL
5836}
55cd5340 5837
0bcdcf28
CE
5838static inline void sched_init_granularity(void)
5839{
5840 update_sysctl();
19978ca6
IM
5841}
5842
1da177e4
LT
5843#ifdef CONFIG_SMP
5844/*
5845 * This is how migration works:
5846 *
969c7921
TH
5847 * 1) we invoke migration_cpu_stop() on the target CPU using
5848 * stop_one_cpu().
5849 * 2) stopper starts to run (implicitly forcing the migrated thread
5850 * off the CPU)
5851 * 3) it checks whether the migrated task is still in the wrong runqueue.
5852 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5853 * it and puts it into the right queue.
969c7921
TH
5854 * 5) stopper completes and stop_one_cpu() returns and the migration
5855 * is done.
1da177e4
LT
5856 */
5857
5858/*
5859 * Change a given task's CPU affinity. Migrate the thread to a
5860 * proper CPU and schedule it away if the CPU it's executing on
5861 * is removed from the allowed bitmask.
5862 *
5863 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5864 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5865 * call is not atomic; no spinlocks may be held.
5866 */
96f874e2 5867int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5868{
5869 unsigned long flags;
70b97a7f 5870 struct rq *rq;
969c7921 5871 unsigned int dest_cpu;
48f24c4d 5872 int ret = 0;
1da177e4 5873
65cc8e48
PZ
5874 /*
5875 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5876 * drop the rq->lock and still rely on ->cpus_allowed.
5877 */
5878again:
5879 while (task_is_waking(p))
5880 cpu_relax();
1da177e4 5881 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5882 if (task_is_waking(p)) {
5883 task_rq_unlock(rq, &flags);
5884 goto again;
5885 }
e2912009 5886
6ad4c188 5887 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5888 ret = -EINVAL;
5889 goto out;
5890 }
5891
9985b0ba 5892 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5893 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5894 ret = -EINVAL;
5895 goto out;
5896 }
5897
73fe6aae 5898 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5899 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5900 else {
96f874e2
RR
5901 cpumask_copy(&p->cpus_allowed, new_mask);
5902 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5903 }
5904
1da177e4 5905 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5906 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5907 goto out;
5908
969c7921 5909 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5910 if (migrate_task(p, rq)) {
969c7921 5911 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5912 /* Need help from migration thread: drop lock and wait. */
5913 task_rq_unlock(rq, &flags);
969c7921 5914 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5915 tlb_migrate_finish(p->mm);
5916 return 0;
5917 }
5918out:
5919 task_rq_unlock(rq, &flags);
48f24c4d 5920
1da177e4
LT
5921 return ret;
5922}
cd8ba7cd 5923EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5924
5925/*
41a2d6cf 5926 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5927 * this because either it can't run here any more (set_cpus_allowed()
5928 * away from this CPU, or CPU going down), or because we're
5929 * attempting to rebalance this task on exec (sched_exec).
5930 *
5931 * So we race with normal scheduler movements, but that's OK, as long
5932 * as the task is no longer on this CPU.
efc30814
KK
5933 *
5934 * Returns non-zero if task was successfully migrated.
1da177e4 5935 */
efc30814 5936static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5937{
70b97a7f 5938 struct rq *rq_dest, *rq_src;
e2912009 5939 int ret = 0;
1da177e4 5940
e761b772 5941 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5942 return ret;
1da177e4
LT
5943
5944 rq_src = cpu_rq(src_cpu);
5945 rq_dest = cpu_rq(dest_cpu);
5946
5947 double_rq_lock(rq_src, rq_dest);
5948 /* Already moved. */
5949 if (task_cpu(p) != src_cpu)
b1e38734 5950 goto done;
1da177e4 5951 /* Affinity changed (again). */
96f874e2 5952 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5953 goto fail;
1da177e4 5954
e2912009
PZ
5955 /*
5956 * If we're not on a rq, the next wake-up will ensure we're
5957 * placed properly.
5958 */
5959 if (p->se.on_rq) {
2e1cb74a 5960 deactivate_task(rq_src, p, 0);
e2912009 5961 set_task_cpu(p, dest_cpu);
dd41f596 5962 activate_task(rq_dest, p, 0);
15afe09b 5963 check_preempt_curr(rq_dest, p, 0);
1da177e4 5964 }
b1e38734 5965done:
efc30814 5966 ret = 1;
b1e38734 5967fail:
1da177e4 5968 double_rq_unlock(rq_src, rq_dest);
efc30814 5969 return ret;
1da177e4
LT
5970}
5971
5972/*
969c7921
TH
5973 * migration_cpu_stop - this will be executed by a highprio stopper thread
5974 * and performs thread migration by bumping thread off CPU then
5975 * 'pushing' onto another runqueue.
1da177e4 5976 */
969c7921 5977static int migration_cpu_stop(void *data)
1da177e4 5978{
969c7921 5979 struct migration_arg *arg = data;
f7b4cddc 5980
969c7921
TH
5981 /*
5982 * The original target cpu might have gone down and we might
5983 * be on another cpu but it doesn't matter.
5984 */
f7b4cddc 5985 local_irq_disable();
969c7921 5986 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5987 local_irq_enable();
1da177e4 5988 return 0;
f7b4cddc
ON
5989}
5990
1da177e4 5991#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5992
054b9108 5993/*
48c5ccae
PZ
5994 * Ensures that the idle task is using init_mm right before its cpu goes
5995 * offline.
054b9108 5996 */
48c5ccae 5997void idle_task_exit(void)
1da177e4 5998{
48c5ccae 5999 struct mm_struct *mm = current->active_mm;
e76bd8d9 6000
48c5ccae 6001 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6002
48c5ccae
PZ
6003 if (mm != &init_mm)
6004 switch_mm(mm, &init_mm, current);
6005 mmdrop(mm);
1da177e4
LT
6006}
6007
6008/*
6009 * While a dead CPU has no uninterruptible tasks queued at this point,
6010 * it might still have a nonzero ->nr_uninterruptible counter, because
6011 * for performance reasons the counter is not stricly tracking tasks to
6012 * their home CPUs. So we just add the counter to another CPU's counter,
6013 * to keep the global sum constant after CPU-down:
6014 */
70b97a7f 6015static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6016{
6ad4c188 6017 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6018
1da177e4
LT
6019 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6020 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6021}
6022
dd41f596 6023/*
48c5ccae 6024 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6025 */
48c5ccae 6026static void calc_global_load_remove(struct rq *rq)
1da177e4 6027{
48c5ccae
PZ
6028 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6029 rq->calc_load_active = 0;
1da177e4
LT
6030}
6031
48f24c4d 6032/*
48c5ccae
PZ
6033 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6034 * try_to_wake_up()->select_task_rq().
6035 *
6036 * Called with rq->lock held even though we'er in stop_machine() and
6037 * there's no concurrency possible, we hold the required locks anyway
6038 * because of lock validation efforts.
1da177e4 6039 */
48c5ccae 6040static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6041{
70b97a7f 6042 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6043 struct task_struct *next, *stop = rq->stop;
6044 int dest_cpu;
1da177e4
LT
6045
6046 /*
48c5ccae
PZ
6047 * Fudge the rq selection such that the below task selection loop
6048 * doesn't get stuck on the currently eligible stop task.
6049 *
6050 * We're currently inside stop_machine() and the rq is either stuck
6051 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6052 * either way we should never end up calling schedule() until we're
6053 * done here.
1da177e4 6054 */
48c5ccae 6055 rq->stop = NULL;
48f24c4d 6056
dd41f596 6057 for ( ; ; ) {
48c5ccae
PZ
6058 /*
6059 * There's this thread running, bail when that's the only
6060 * remaining thread.
6061 */
6062 if (rq->nr_running == 1)
dd41f596 6063 break;
48c5ccae 6064
b67802ea 6065 next = pick_next_task(rq);
48c5ccae 6066 BUG_ON(!next);
79c53799 6067 next->sched_class->put_prev_task(rq, next);
e692ab53 6068
48c5ccae
PZ
6069 /* Find suitable destination for @next, with force if needed. */
6070 dest_cpu = select_fallback_rq(dead_cpu, next);
6071 raw_spin_unlock(&rq->lock);
6072
6073 __migrate_task(next, dead_cpu, dest_cpu);
6074
6075 raw_spin_lock(&rq->lock);
1da177e4 6076 }
dce48a84 6077
48c5ccae 6078 rq->stop = stop;
dce48a84 6079}
48c5ccae 6080
1da177e4
LT
6081#endif /* CONFIG_HOTPLUG_CPU */
6082
e692ab53
NP
6083#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6084
6085static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6086 {
6087 .procname = "sched_domain",
c57baf1e 6088 .mode = 0555,
e0361851 6089 },
56992309 6090 {}
e692ab53
NP
6091};
6092
6093static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6094 {
6095 .procname = "kernel",
c57baf1e 6096 .mode = 0555,
e0361851
AD
6097 .child = sd_ctl_dir,
6098 },
56992309 6099 {}
e692ab53
NP
6100};
6101
6102static struct ctl_table *sd_alloc_ctl_entry(int n)
6103{
6104 struct ctl_table *entry =
5cf9f062 6105 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6106
e692ab53
NP
6107 return entry;
6108}
6109
6382bc90
MM
6110static void sd_free_ctl_entry(struct ctl_table **tablep)
6111{
cd790076 6112 struct ctl_table *entry;
6382bc90 6113
cd790076
MM
6114 /*
6115 * In the intermediate directories, both the child directory and
6116 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6117 * will always be set. In the lowest directory the names are
cd790076
MM
6118 * static strings and all have proc handlers.
6119 */
6120 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6121 if (entry->child)
6122 sd_free_ctl_entry(&entry->child);
cd790076
MM
6123 if (entry->proc_handler == NULL)
6124 kfree(entry->procname);
6125 }
6382bc90
MM
6126
6127 kfree(*tablep);
6128 *tablep = NULL;
6129}
6130
e692ab53 6131static void
e0361851 6132set_table_entry(struct ctl_table *entry,
e692ab53
NP
6133 const char *procname, void *data, int maxlen,
6134 mode_t mode, proc_handler *proc_handler)
6135{
e692ab53
NP
6136 entry->procname = procname;
6137 entry->data = data;
6138 entry->maxlen = maxlen;
6139 entry->mode = mode;
6140 entry->proc_handler = proc_handler;
6141}
6142
6143static struct ctl_table *
6144sd_alloc_ctl_domain_table(struct sched_domain *sd)
6145{
a5d8c348 6146 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6147
ad1cdc1d
MM
6148 if (table == NULL)
6149 return NULL;
6150
e0361851 6151 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6152 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6153 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6154 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6155 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6156 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6157 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6158 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6159 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6160 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6161 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6162 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6163 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6164 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6165 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6166 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6167 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6168 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6169 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6170 &sd->cache_nice_tries,
6171 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6172 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6173 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6174 set_table_entry(&table[11], "name", sd->name,
6175 CORENAME_MAX_SIZE, 0444, proc_dostring);
6176 /* &table[12] is terminator */
e692ab53
NP
6177
6178 return table;
6179}
6180
9a4e7159 6181static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6182{
6183 struct ctl_table *entry, *table;
6184 struct sched_domain *sd;
6185 int domain_num = 0, i;
6186 char buf[32];
6187
6188 for_each_domain(cpu, sd)
6189 domain_num++;
6190 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6191 if (table == NULL)
6192 return NULL;
e692ab53
NP
6193
6194 i = 0;
6195 for_each_domain(cpu, sd) {
6196 snprintf(buf, 32, "domain%d", i);
e692ab53 6197 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6198 entry->mode = 0555;
e692ab53
NP
6199 entry->child = sd_alloc_ctl_domain_table(sd);
6200 entry++;
6201 i++;
6202 }
6203 return table;
6204}
6205
6206static struct ctl_table_header *sd_sysctl_header;
6382bc90 6207static void register_sched_domain_sysctl(void)
e692ab53 6208{
6ad4c188 6209 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6210 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6211 char buf[32];
6212
7378547f
MM
6213 WARN_ON(sd_ctl_dir[0].child);
6214 sd_ctl_dir[0].child = entry;
6215
ad1cdc1d
MM
6216 if (entry == NULL)
6217 return;
6218
6ad4c188 6219 for_each_possible_cpu(i) {
e692ab53 6220 snprintf(buf, 32, "cpu%d", i);
e692ab53 6221 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6222 entry->mode = 0555;
e692ab53 6223 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6224 entry++;
e692ab53 6225 }
7378547f
MM
6226
6227 WARN_ON(sd_sysctl_header);
e692ab53
NP
6228 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6229}
6382bc90 6230
7378547f 6231/* may be called multiple times per register */
6382bc90
MM
6232static void unregister_sched_domain_sysctl(void)
6233{
7378547f
MM
6234 if (sd_sysctl_header)
6235 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6236 sd_sysctl_header = NULL;
7378547f
MM
6237 if (sd_ctl_dir[0].child)
6238 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6239}
e692ab53 6240#else
6382bc90
MM
6241static void register_sched_domain_sysctl(void)
6242{
6243}
6244static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6245{
6246}
6247#endif
6248
1f11eb6a
GH
6249static void set_rq_online(struct rq *rq)
6250{
6251 if (!rq->online) {
6252 const struct sched_class *class;
6253
c6c4927b 6254 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6255 rq->online = 1;
6256
6257 for_each_class(class) {
6258 if (class->rq_online)
6259 class->rq_online(rq);
6260 }
6261 }
6262}
6263
6264static void set_rq_offline(struct rq *rq)
6265{
6266 if (rq->online) {
6267 const struct sched_class *class;
6268
6269 for_each_class(class) {
6270 if (class->rq_offline)
6271 class->rq_offline(rq);
6272 }
6273
c6c4927b 6274 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6275 rq->online = 0;
6276 }
6277}
6278
1da177e4
LT
6279/*
6280 * migration_call - callback that gets triggered when a CPU is added.
6281 * Here we can start up the necessary migration thread for the new CPU.
6282 */
48f24c4d
IM
6283static int __cpuinit
6284migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6285{
48f24c4d 6286 int cpu = (long)hcpu;
1da177e4 6287 unsigned long flags;
969c7921 6288 struct rq *rq = cpu_rq(cpu);
1da177e4 6289
48c5ccae 6290 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6291
1da177e4 6292 case CPU_UP_PREPARE:
a468d389 6293 rq->calc_load_update = calc_load_update;
1da177e4 6294 break;
48f24c4d 6295
1da177e4 6296 case CPU_ONLINE:
1f94ef59 6297 /* Update our root-domain */
05fa785c 6298 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6299 if (rq->rd) {
c6c4927b 6300 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6301
6302 set_rq_online(rq);
1f94ef59 6303 }
05fa785c 6304 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6305 break;
48f24c4d 6306
1da177e4 6307#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6308 case CPU_DYING:
57d885fe 6309 /* Update our root-domain */
05fa785c 6310 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6311 if (rq->rd) {
c6c4927b 6312 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6313 set_rq_offline(rq);
57d885fe 6314 }
48c5ccae
PZ
6315 migrate_tasks(cpu);
6316 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6317 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6318
6319 migrate_nr_uninterruptible(rq);
6320 calc_global_load_remove(rq);
57d885fe 6321 break;
1da177e4
LT
6322#endif
6323 }
6324 return NOTIFY_OK;
6325}
6326
f38b0820
PM
6327/*
6328 * Register at high priority so that task migration (migrate_all_tasks)
6329 * happens before everything else. This has to be lower priority than
cdd6c482 6330 * the notifier in the perf_event subsystem, though.
1da177e4 6331 */
26c2143b 6332static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6333 .notifier_call = migration_call,
50a323b7 6334 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6335};
6336
3a101d05
TH
6337static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6338 unsigned long action, void *hcpu)
6339{
6340 switch (action & ~CPU_TASKS_FROZEN) {
6341 case CPU_ONLINE:
6342 case CPU_DOWN_FAILED:
6343 set_cpu_active((long)hcpu, true);
6344 return NOTIFY_OK;
6345 default:
6346 return NOTIFY_DONE;
6347 }
6348}
6349
6350static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6351 unsigned long action, void *hcpu)
6352{
6353 switch (action & ~CPU_TASKS_FROZEN) {
6354 case CPU_DOWN_PREPARE:
6355 set_cpu_active((long)hcpu, false);
6356 return NOTIFY_OK;
6357 default:
6358 return NOTIFY_DONE;
6359 }
6360}
6361
7babe8db 6362static int __init migration_init(void)
1da177e4
LT
6363{
6364 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6365 int err;
48f24c4d 6366
3a101d05 6367 /* Initialize migration for the boot CPU */
07dccf33
AM
6368 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6369 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6370 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6371 register_cpu_notifier(&migration_notifier);
7babe8db 6372
3a101d05
TH
6373 /* Register cpu active notifiers */
6374 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6375 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6376
a004cd42 6377 return 0;
1da177e4 6378}
7babe8db 6379early_initcall(migration_init);
1da177e4
LT
6380#endif
6381
6382#ifdef CONFIG_SMP
476f3534 6383
3e9830dc 6384#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6385
f6630114
MT
6386static __read_mostly int sched_domain_debug_enabled;
6387
6388static int __init sched_domain_debug_setup(char *str)
6389{
6390 sched_domain_debug_enabled = 1;
6391
6392 return 0;
6393}
6394early_param("sched_debug", sched_domain_debug_setup);
6395
7c16ec58 6396static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6397 struct cpumask *groupmask)
1da177e4 6398{
4dcf6aff 6399 struct sched_group *group = sd->groups;
434d53b0 6400 char str[256];
1da177e4 6401
968ea6d8 6402 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6403 cpumask_clear(groupmask);
4dcf6aff
IM
6404
6405 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6406
6407 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6408 printk("does not load-balance\n");
4dcf6aff 6409 if (sd->parent)
3df0fc5b
PZ
6410 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6411 " has parent");
4dcf6aff 6412 return -1;
41c7ce9a
NP
6413 }
6414
3df0fc5b 6415 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6416
758b2cdc 6417 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6418 printk(KERN_ERR "ERROR: domain->span does not contain "
6419 "CPU%d\n", cpu);
4dcf6aff 6420 }
758b2cdc 6421 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6422 printk(KERN_ERR "ERROR: domain->groups does not contain"
6423 " CPU%d\n", cpu);
4dcf6aff 6424 }
1da177e4 6425
4dcf6aff 6426 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6427 do {
4dcf6aff 6428 if (!group) {
3df0fc5b
PZ
6429 printk("\n");
6430 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6431 break;
6432 }
6433
18a3885f 6434 if (!group->cpu_power) {
3df0fc5b
PZ
6435 printk(KERN_CONT "\n");
6436 printk(KERN_ERR "ERROR: domain->cpu_power not "
6437 "set\n");
4dcf6aff
IM
6438 break;
6439 }
1da177e4 6440
758b2cdc 6441 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6442 printk(KERN_CONT "\n");
6443 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6444 break;
6445 }
1da177e4 6446
758b2cdc 6447 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6448 printk(KERN_CONT "\n");
6449 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6450 break;
6451 }
1da177e4 6452
758b2cdc 6453 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6454
968ea6d8 6455 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6456
3df0fc5b 6457 printk(KERN_CONT " %s", str);
18a3885f 6458 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6459 printk(KERN_CONT " (cpu_power = %d)",
6460 group->cpu_power);
381512cf 6461 }
1da177e4 6462
4dcf6aff
IM
6463 group = group->next;
6464 } while (group != sd->groups);
3df0fc5b 6465 printk(KERN_CONT "\n");
1da177e4 6466
758b2cdc 6467 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6468 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6469
758b2cdc
RR
6470 if (sd->parent &&
6471 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6472 printk(KERN_ERR "ERROR: parent span is not a superset "
6473 "of domain->span\n");
4dcf6aff
IM
6474 return 0;
6475}
1da177e4 6476
4dcf6aff
IM
6477static void sched_domain_debug(struct sched_domain *sd, int cpu)
6478{
d5dd3db1 6479 cpumask_var_t groupmask;
4dcf6aff 6480 int level = 0;
1da177e4 6481
f6630114
MT
6482 if (!sched_domain_debug_enabled)
6483 return;
6484
4dcf6aff
IM
6485 if (!sd) {
6486 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6487 return;
6488 }
1da177e4 6489
4dcf6aff
IM
6490 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6491
d5dd3db1 6492 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6493 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6494 return;
6495 }
6496
4dcf6aff 6497 for (;;) {
7c16ec58 6498 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6499 break;
1da177e4
LT
6500 level++;
6501 sd = sd->parent;
33859f7f 6502 if (!sd)
4dcf6aff
IM
6503 break;
6504 }
d5dd3db1 6505 free_cpumask_var(groupmask);
1da177e4 6506}
6d6bc0ad 6507#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6508# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6509#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6510
1a20ff27 6511static int sd_degenerate(struct sched_domain *sd)
245af2c7 6512{
758b2cdc 6513 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6514 return 1;
6515
6516 /* Following flags need at least 2 groups */
6517 if (sd->flags & (SD_LOAD_BALANCE |
6518 SD_BALANCE_NEWIDLE |
6519 SD_BALANCE_FORK |
89c4710e
SS
6520 SD_BALANCE_EXEC |
6521 SD_SHARE_CPUPOWER |
6522 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6523 if (sd->groups != sd->groups->next)
6524 return 0;
6525 }
6526
6527 /* Following flags don't use groups */
c88d5910 6528 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6529 return 0;
6530
6531 return 1;
6532}
6533
48f24c4d
IM
6534static int
6535sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6536{
6537 unsigned long cflags = sd->flags, pflags = parent->flags;
6538
6539 if (sd_degenerate(parent))
6540 return 1;
6541
758b2cdc 6542 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6543 return 0;
6544
245af2c7
SS
6545 /* Flags needing groups don't count if only 1 group in parent */
6546 if (parent->groups == parent->groups->next) {
6547 pflags &= ~(SD_LOAD_BALANCE |
6548 SD_BALANCE_NEWIDLE |
6549 SD_BALANCE_FORK |
89c4710e
SS
6550 SD_BALANCE_EXEC |
6551 SD_SHARE_CPUPOWER |
6552 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6553 if (nr_node_ids == 1)
6554 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6555 }
6556 if (~cflags & pflags)
6557 return 0;
6558
6559 return 1;
6560}
6561
c6c4927b
RR
6562static void free_rootdomain(struct root_domain *rd)
6563{
047106ad
PZ
6564 synchronize_sched();
6565
68e74568
RR
6566 cpupri_cleanup(&rd->cpupri);
6567
c6c4927b
RR
6568 free_cpumask_var(rd->rto_mask);
6569 free_cpumask_var(rd->online);
6570 free_cpumask_var(rd->span);
6571 kfree(rd);
6572}
6573
57d885fe
GH
6574static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6575{
a0490fa3 6576 struct root_domain *old_rd = NULL;
57d885fe 6577 unsigned long flags;
57d885fe 6578
05fa785c 6579 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6580
6581 if (rq->rd) {
a0490fa3 6582 old_rd = rq->rd;
57d885fe 6583
c6c4927b 6584 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6585 set_rq_offline(rq);
57d885fe 6586
c6c4927b 6587 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6588
a0490fa3
IM
6589 /*
6590 * If we dont want to free the old_rt yet then
6591 * set old_rd to NULL to skip the freeing later
6592 * in this function:
6593 */
6594 if (!atomic_dec_and_test(&old_rd->refcount))
6595 old_rd = NULL;
57d885fe
GH
6596 }
6597
6598 atomic_inc(&rd->refcount);
6599 rq->rd = rd;
6600
c6c4927b 6601 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6602 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6603 set_rq_online(rq);
57d885fe 6604
05fa785c 6605 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6606
6607 if (old_rd)
6608 free_rootdomain(old_rd);
57d885fe
GH
6609}
6610
68c38fc3 6611static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6612{
6613 memset(rd, 0, sizeof(*rd));
6614
68c38fc3 6615 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6616 goto out;
68c38fc3 6617 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6618 goto free_span;
68c38fc3 6619 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6620 goto free_online;
6e0534f2 6621
68c38fc3 6622 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6623 goto free_rto_mask;
c6c4927b 6624 return 0;
6e0534f2 6625
68e74568
RR
6626free_rto_mask:
6627 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6628free_online:
6629 free_cpumask_var(rd->online);
6630free_span:
6631 free_cpumask_var(rd->span);
0c910d28 6632out:
c6c4927b 6633 return -ENOMEM;
57d885fe
GH
6634}
6635
6636static void init_defrootdomain(void)
6637{
68c38fc3 6638 init_rootdomain(&def_root_domain);
c6c4927b 6639
57d885fe
GH
6640 atomic_set(&def_root_domain.refcount, 1);
6641}
6642
dc938520 6643static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6644{
6645 struct root_domain *rd;
6646
6647 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6648 if (!rd)
6649 return NULL;
6650
68c38fc3 6651 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6652 kfree(rd);
6653 return NULL;
6654 }
57d885fe
GH
6655
6656 return rd;
6657}
6658
1da177e4 6659/*
0eab9146 6660 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6661 * hold the hotplug lock.
6662 */
0eab9146
IM
6663static void
6664cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6665{
70b97a7f 6666 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6667 struct sched_domain *tmp;
6668
669c55e9
PZ
6669 for (tmp = sd; tmp; tmp = tmp->parent)
6670 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6671
245af2c7 6672 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6673 for (tmp = sd; tmp; ) {
245af2c7
SS
6674 struct sched_domain *parent = tmp->parent;
6675 if (!parent)
6676 break;
f29c9b1c 6677
1a848870 6678 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6679 tmp->parent = parent->parent;
1a848870
SS
6680 if (parent->parent)
6681 parent->parent->child = tmp;
f29c9b1c
LZ
6682 } else
6683 tmp = tmp->parent;
245af2c7
SS
6684 }
6685
1a848870 6686 if (sd && sd_degenerate(sd)) {
245af2c7 6687 sd = sd->parent;
1a848870
SS
6688 if (sd)
6689 sd->child = NULL;
6690 }
1da177e4
LT
6691
6692 sched_domain_debug(sd, cpu);
6693
57d885fe 6694 rq_attach_root(rq, rd);
674311d5 6695 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6696}
6697
6698/* cpus with isolated domains */
dcc30a35 6699static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6700
6701/* Setup the mask of cpus configured for isolated domains */
6702static int __init isolated_cpu_setup(char *str)
6703{
bdddd296 6704 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6705 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6706 return 1;
6707}
6708
8927f494 6709__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6710
6711/*
6711cab4
SS
6712 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6713 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6714 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6715 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6716 *
6717 * init_sched_build_groups will build a circular linked list of the groups
6718 * covered by the given span, and will set each group's ->cpumask correctly,
6719 * and ->cpu_power to 0.
6720 */
a616058b 6721static void
96f874e2
RR
6722init_sched_build_groups(const struct cpumask *span,
6723 const struct cpumask *cpu_map,
6724 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6725 struct sched_group **sg,
96f874e2
RR
6726 struct cpumask *tmpmask),
6727 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6728{
6729 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6730 int i;
6731
96f874e2 6732 cpumask_clear(covered);
7c16ec58 6733
abcd083a 6734 for_each_cpu(i, span) {
6711cab4 6735 struct sched_group *sg;
7c16ec58 6736 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6737 int j;
6738
758b2cdc 6739 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6740 continue;
6741
758b2cdc 6742 cpumask_clear(sched_group_cpus(sg));
18a3885f 6743 sg->cpu_power = 0;
1da177e4 6744
abcd083a 6745 for_each_cpu(j, span) {
7c16ec58 6746 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6747 continue;
6748
96f874e2 6749 cpumask_set_cpu(j, covered);
758b2cdc 6750 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6751 }
6752 if (!first)
6753 first = sg;
6754 if (last)
6755 last->next = sg;
6756 last = sg;
6757 }
6758 last->next = first;
6759}
6760
9c1cfda2 6761#define SD_NODES_PER_DOMAIN 16
1da177e4 6762
9c1cfda2 6763#ifdef CONFIG_NUMA
198e2f18 6764
9c1cfda2
JH
6765/**
6766 * find_next_best_node - find the next node to include in a sched_domain
6767 * @node: node whose sched_domain we're building
6768 * @used_nodes: nodes already in the sched_domain
6769 *
41a2d6cf 6770 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6771 * finds the closest node not already in the @used_nodes map.
6772 *
6773 * Should use nodemask_t.
6774 */
c5f59f08 6775static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6776{
6777 int i, n, val, min_val, best_node = 0;
6778
6779 min_val = INT_MAX;
6780
076ac2af 6781 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6782 /* Start at @node */
076ac2af 6783 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6784
6785 if (!nr_cpus_node(n))
6786 continue;
6787
6788 /* Skip already used nodes */
c5f59f08 6789 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6790 continue;
6791
6792 /* Simple min distance search */
6793 val = node_distance(node, n);
6794
6795 if (val < min_val) {
6796 min_val = val;
6797 best_node = n;
6798 }
6799 }
6800
c5f59f08 6801 node_set(best_node, *used_nodes);
9c1cfda2
JH
6802 return best_node;
6803}
6804
6805/**
6806 * sched_domain_node_span - get a cpumask for a node's sched_domain
6807 * @node: node whose cpumask we're constructing
73486722 6808 * @span: resulting cpumask
9c1cfda2 6809 *
41a2d6cf 6810 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6811 * should be one that prevents unnecessary balancing, but also spreads tasks
6812 * out optimally.
6813 */
96f874e2 6814static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6815{
c5f59f08 6816 nodemask_t used_nodes;
48f24c4d 6817 int i;
9c1cfda2 6818
6ca09dfc 6819 cpumask_clear(span);
c5f59f08 6820 nodes_clear(used_nodes);
9c1cfda2 6821
6ca09dfc 6822 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6823 node_set(node, used_nodes);
9c1cfda2
JH
6824
6825 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6826 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6827
6ca09dfc 6828 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6829 }
9c1cfda2 6830}
6d6bc0ad 6831#endif /* CONFIG_NUMA */
9c1cfda2 6832
5c45bf27 6833int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6834
6c99e9ad
RR
6835/*
6836 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6837 *
6838 * ( See the the comments in include/linux/sched.h:struct sched_group
6839 * and struct sched_domain. )
6c99e9ad
RR
6840 */
6841struct static_sched_group {
6842 struct sched_group sg;
6843 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6844};
6845
6846struct static_sched_domain {
6847 struct sched_domain sd;
6848 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6849};
6850
49a02c51
AH
6851struct s_data {
6852#ifdef CONFIG_NUMA
6853 int sd_allnodes;
6854 cpumask_var_t domainspan;
6855 cpumask_var_t covered;
6856 cpumask_var_t notcovered;
6857#endif
6858 cpumask_var_t nodemask;
6859 cpumask_var_t this_sibling_map;
6860 cpumask_var_t this_core_map;
01a08546 6861 cpumask_var_t this_book_map;
49a02c51
AH
6862 cpumask_var_t send_covered;
6863 cpumask_var_t tmpmask;
6864 struct sched_group **sched_group_nodes;
6865 struct root_domain *rd;
6866};
6867
2109b99e
AH
6868enum s_alloc {
6869 sa_sched_groups = 0,
6870 sa_rootdomain,
6871 sa_tmpmask,
6872 sa_send_covered,
01a08546 6873 sa_this_book_map,
2109b99e
AH
6874 sa_this_core_map,
6875 sa_this_sibling_map,
6876 sa_nodemask,
6877 sa_sched_group_nodes,
6878#ifdef CONFIG_NUMA
6879 sa_notcovered,
6880 sa_covered,
6881 sa_domainspan,
6882#endif
6883 sa_none,
6884};
6885
9c1cfda2 6886/*
48f24c4d 6887 * SMT sched-domains:
9c1cfda2 6888 */
1da177e4 6889#ifdef CONFIG_SCHED_SMT
6c99e9ad 6890static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6891static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6892
41a2d6cf 6893static int
96f874e2
RR
6894cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6895 struct sched_group **sg, struct cpumask *unused)
1da177e4 6896{
6711cab4 6897 if (sg)
1871e52c 6898 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6899 return cpu;
6900}
6d6bc0ad 6901#endif /* CONFIG_SCHED_SMT */
1da177e4 6902
48f24c4d
IM
6903/*
6904 * multi-core sched-domains:
6905 */
1e9f28fa 6906#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6907static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6908static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6909
41a2d6cf 6910static int
96f874e2
RR
6911cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6912 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6913{
6711cab4 6914 int group;
f269893c 6915#ifdef CONFIG_SCHED_SMT
c69fc56d 6916 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6917 group = cpumask_first(mask);
f269893c
HC
6918#else
6919 group = cpu;
6920#endif
6711cab4 6921 if (sg)
6c99e9ad 6922 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6923 return group;
1e9f28fa 6924}
f269893c 6925#endif /* CONFIG_SCHED_MC */
1e9f28fa 6926
01a08546
HC
6927/*
6928 * book sched-domains:
6929 */
6930#ifdef CONFIG_SCHED_BOOK
6931static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6932static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6933
41a2d6cf 6934static int
01a08546
HC
6935cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6936 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6937{
01a08546
HC
6938 int group = cpu;
6939#ifdef CONFIG_SCHED_MC
6940 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6941 group = cpumask_first(mask);
6942#elif defined(CONFIG_SCHED_SMT)
6943 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6944 group = cpumask_first(mask);
6945#endif
6711cab4 6946 if (sg)
01a08546
HC
6947 *sg = &per_cpu(sched_group_book, group).sg;
6948 return group;
1e9f28fa 6949}
01a08546 6950#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6951
6c99e9ad
RR
6952static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6953static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6954
41a2d6cf 6955static int
96f874e2
RR
6956cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6957 struct sched_group **sg, struct cpumask *mask)
1da177e4 6958{
6711cab4 6959 int group;
01a08546
HC
6960#ifdef CONFIG_SCHED_BOOK
6961 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6962 group = cpumask_first(mask);
6963#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6964 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6965 group = cpumask_first(mask);
1e9f28fa 6966#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6967 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6968 group = cpumask_first(mask);
1da177e4 6969#else
6711cab4 6970 group = cpu;
1da177e4 6971#endif
6711cab4 6972 if (sg)
6c99e9ad 6973 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6974 return group;
1da177e4
LT
6975}
6976
6977#ifdef CONFIG_NUMA
1da177e4 6978/*
9c1cfda2
JH
6979 * The init_sched_build_groups can't handle what we want to do with node
6980 * groups, so roll our own. Now each node has its own list of groups which
6981 * gets dynamically allocated.
1da177e4 6982 */
62ea9ceb 6983static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6984static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6985
62ea9ceb 6986static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6987static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6988
96f874e2
RR
6989static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6990 struct sched_group **sg,
6991 struct cpumask *nodemask)
9c1cfda2 6992{
6711cab4
SS
6993 int group;
6994
6ca09dfc 6995 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6996 group = cpumask_first(nodemask);
6711cab4
SS
6997
6998 if (sg)
6c99e9ad 6999 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7000 return group;
1da177e4 7001}
6711cab4 7002
08069033
SS
7003static void init_numa_sched_groups_power(struct sched_group *group_head)
7004{
7005 struct sched_group *sg = group_head;
7006 int j;
7007
7008 if (!sg)
7009 return;
3a5c359a 7010 do {
758b2cdc 7011 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7012 struct sched_domain *sd;
08069033 7013
6c99e9ad 7014 sd = &per_cpu(phys_domains, j).sd;
13318a71 7015 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
7016 /*
7017 * Only add "power" once for each
7018 * physical package.
7019 */
7020 continue;
7021 }
08069033 7022
18a3885f 7023 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
7024 }
7025 sg = sg->next;
7026 } while (sg != group_head);
08069033 7027}
0601a88d
AH
7028
7029static int build_numa_sched_groups(struct s_data *d,
7030 const struct cpumask *cpu_map, int num)
7031{
7032 struct sched_domain *sd;
7033 struct sched_group *sg, *prev;
7034 int n, j;
7035
7036 cpumask_clear(d->covered);
7037 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7038 if (cpumask_empty(d->nodemask)) {
7039 d->sched_group_nodes[num] = NULL;
7040 goto out;
7041 }
7042
7043 sched_domain_node_span(num, d->domainspan);
7044 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7045
7046 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7047 GFP_KERNEL, num);
7048 if (!sg) {
3df0fc5b
PZ
7049 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7050 num);
0601a88d
AH
7051 return -ENOMEM;
7052 }
7053 d->sched_group_nodes[num] = sg;
7054
7055 for_each_cpu(j, d->nodemask) {
7056 sd = &per_cpu(node_domains, j).sd;
7057 sd->groups = sg;
7058 }
7059
18a3885f 7060 sg->cpu_power = 0;
0601a88d
AH
7061 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7062 sg->next = sg;
7063 cpumask_or(d->covered, d->covered, d->nodemask);
7064
7065 prev = sg;
7066 for (j = 0; j < nr_node_ids; j++) {
7067 n = (num + j) % nr_node_ids;
7068 cpumask_complement(d->notcovered, d->covered);
7069 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7070 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7071 if (cpumask_empty(d->tmpmask))
7072 break;
7073 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7074 if (cpumask_empty(d->tmpmask))
7075 continue;
7076 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7077 GFP_KERNEL, num);
7078 if (!sg) {
3df0fc5b
PZ
7079 printk(KERN_WARNING
7080 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7081 return -ENOMEM;
7082 }
18a3885f 7083 sg->cpu_power = 0;
0601a88d
AH
7084 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7085 sg->next = prev->next;
7086 cpumask_or(d->covered, d->covered, d->tmpmask);
7087 prev->next = sg;
7088 prev = sg;
7089 }
7090out:
7091 return 0;
7092}
6d6bc0ad 7093#endif /* CONFIG_NUMA */
1da177e4 7094
a616058b 7095#ifdef CONFIG_NUMA
51888ca2 7096/* Free memory allocated for various sched_group structures */
96f874e2
RR
7097static void free_sched_groups(const struct cpumask *cpu_map,
7098 struct cpumask *nodemask)
51888ca2 7099{
a616058b 7100 int cpu, i;
51888ca2 7101
abcd083a 7102 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7103 struct sched_group **sched_group_nodes
7104 = sched_group_nodes_bycpu[cpu];
7105
51888ca2
SV
7106 if (!sched_group_nodes)
7107 continue;
7108
076ac2af 7109 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7110 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7111
6ca09dfc 7112 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7113 if (cpumask_empty(nodemask))
51888ca2
SV
7114 continue;
7115
7116 if (sg == NULL)
7117 continue;
7118 sg = sg->next;
7119next_sg:
7120 oldsg = sg;
7121 sg = sg->next;
7122 kfree(oldsg);
7123 if (oldsg != sched_group_nodes[i])
7124 goto next_sg;
7125 }
7126 kfree(sched_group_nodes);
7127 sched_group_nodes_bycpu[cpu] = NULL;
7128 }
51888ca2 7129}
6d6bc0ad 7130#else /* !CONFIG_NUMA */
96f874e2
RR
7131static void free_sched_groups(const struct cpumask *cpu_map,
7132 struct cpumask *nodemask)
a616058b
SS
7133{
7134}
6d6bc0ad 7135#endif /* CONFIG_NUMA */
51888ca2 7136
89c4710e
SS
7137/*
7138 * Initialize sched groups cpu_power.
7139 *
7140 * cpu_power indicates the capacity of sched group, which is used while
7141 * distributing the load between different sched groups in a sched domain.
7142 * Typically cpu_power for all the groups in a sched domain will be same unless
7143 * there are asymmetries in the topology. If there are asymmetries, group
7144 * having more cpu_power will pickup more load compared to the group having
7145 * less cpu_power.
89c4710e
SS
7146 */
7147static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7148{
7149 struct sched_domain *child;
7150 struct sched_group *group;
f93e65c1
PZ
7151 long power;
7152 int weight;
89c4710e
SS
7153
7154 WARN_ON(!sd || !sd->groups);
7155
13318a71 7156 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7157 return;
7158
aae6d3dd
SS
7159 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7160
89c4710e
SS
7161 child = sd->child;
7162
18a3885f 7163 sd->groups->cpu_power = 0;
5517d86b 7164
f93e65c1
PZ
7165 if (!child) {
7166 power = SCHED_LOAD_SCALE;
7167 weight = cpumask_weight(sched_domain_span(sd));
7168 /*
7169 * SMT siblings share the power of a single core.
a52bfd73
PZ
7170 * Usually multiple threads get a better yield out of
7171 * that one core than a single thread would have,
7172 * reflect that in sd->smt_gain.
f93e65c1 7173 */
a52bfd73
PZ
7174 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7175 power *= sd->smt_gain;
f93e65c1 7176 power /= weight;
a52bfd73
PZ
7177 power >>= SCHED_LOAD_SHIFT;
7178 }
18a3885f 7179 sd->groups->cpu_power += power;
89c4710e
SS
7180 return;
7181 }
7182
89c4710e 7183 /*
f93e65c1 7184 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7185 */
7186 group = child->groups;
7187 do {
18a3885f 7188 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7189 group = group->next;
7190 } while (group != child->groups);
7191}
7192
7c16ec58
MT
7193/*
7194 * Initializers for schedule domains
7195 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7196 */
7197
a5d8c348
IM
7198#ifdef CONFIG_SCHED_DEBUG
7199# define SD_INIT_NAME(sd, type) sd->name = #type
7200#else
7201# define SD_INIT_NAME(sd, type) do { } while (0)
7202#endif
7203
7c16ec58 7204#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7205
7c16ec58
MT
7206#define SD_INIT_FUNC(type) \
7207static noinline void sd_init_##type(struct sched_domain *sd) \
7208{ \
7209 memset(sd, 0, sizeof(*sd)); \
7210 *sd = SD_##type##_INIT; \
1d3504fc 7211 sd->level = SD_LV_##type; \
a5d8c348 7212 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7213}
7214
7215SD_INIT_FUNC(CPU)
7216#ifdef CONFIG_NUMA
7217 SD_INIT_FUNC(ALLNODES)
7218 SD_INIT_FUNC(NODE)
7219#endif
7220#ifdef CONFIG_SCHED_SMT
7221 SD_INIT_FUNC(SIBLING)
7222#endif
7223#ifdef CONFIG_SCHED_MC
7224 SD_INIT_FUNC(MC)
7225#endif
01a08546
HC
7226#ifdef CONFIG_SCHED_BOOK
7227 SD_INIT_FUNC(BOOK)
7228#endif
7c16ec58 7229
1d3504fc
HS
7230static int default_relax_domain_level = -1;
7231
7232static int __init setup_relax_domain_level(char *str)
7233{
30e0e178
LZ
7234 unsigned long val;
7235
7236 val = simple_strtoul(str, NULL, 0);
7237 if (val < SD_LV_MAX)
7238 default_relax_domain_level = val;
7239
1d3504fc
HS
7240 return 1;
7241}
7242__setup("relax_domain_level=", setup_relax_domain_level);
7243
7244static void set_domain_attribute(struct sched_domain *sd,
7245 struct sched_domain_attr *attr)
7246{
7247 int request;
7248
7249 if (!attr || attr->relax_domain_level < 0) {
7250 if (default_relax_domain_level < 0)
7251 return;
7252 else
7253 request = default_relax_domain_level;
7254 } else
7255 request = attr->relax_domain_level;
7256 if (request < sd->level) {
7257 /* turn off idle balance on this domain */
c88d5910 7258 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7259 } else {
7260 /* turn on idle balance on this domain */
c88d5910 7261 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7262 }
7263}
7264
2109b99e
AH
7265static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7266 const struct cpumask *cpu_map)
7267{
7268 switch (what) {
7269 case sa_sched_groups:
7270 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7271 d->sched_group_nodes = NULL;
7272 case sa_rootdomain:
7273 free_rootdomain(d->rd); /* fall through */
7274 case sa_tmpmask:
7275 free_cpumask_var(d->tmpmask); /* fall through */
7276 case sa_send_covered:
7277 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7278 case sa_this_book_map:
7279 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7280 case sa_this_core_map:
7281 free_cpumask_var(d->this_core_map); /* fall through */
7282 case sa_this_sibling_map:
7283 free_cpumask_var(d->this_sibling_map); /* fall through */
7284 case sa_nodemask:
7285 free_cpumask_var(d->nodemask); /* fall through */
7286 case sa_sched_group_nodes:
d1b55138 7287#ifdef CONFIG_NUMA
2109b99e
AH
7288 kfree(d->sched_group_nodes); /* fall through */
7289 case sa_notcovered:
7290 free_cpumask_var(d->notcovered); /* fall through */
7291 case sa_covered:
7292 free_cpumask_var(d->covered); /* fall through */
7293 case sa_domainspan:
7294 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7295#endif
2109b99e
AH
7296 case sa_none:
7297 break;
7298 }
7299}
3404c8d9 7300
2109b99e
AH
7301static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7302 const struct cpumask *cpu_map)
7303{
3404c8d9 7304#ifdef CONFIG_NUMA
2109b99e
AH
7305 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7306 return sa_none;
7307 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7308 return sa_domainspan;
7309 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7310 return sa_covered;
7311 /* Allocate the per-node list of sched groups */
7312 d->sched_group_nodes = kcalloc(nr_node_ids,
7313 sizeof(struct sched_group *), GFP_KERNEL);
7314 if (!d->sched_group_nodes) {
3df0fc5b 7315 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7316 return sa_notcovered;
d1b55138 7317 }
2109b99e 7318 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7319#endif
2109b99e
AH
7320 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7321 return sa_sched_group_nodes;
7322 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7323 return sa_nodemask;
7324 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7325 return sa_this_sibling_map;
01a08546 7326 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7327 return sa_this_core_map;
01a08546
HC
7328 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7329 return sa_this_book_map;
2109b99e
AH
7330 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7331 return sa_send_covered;
7332 d->rd = alloc_rootdomain();
7333 if (!d->rd) {
3df0fc5b 7334 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7335 return sa_tmpmask;
57d885fe 7336 }
2109b99e
AH
7337 return sa_rootdomain;
7338}
57d885fe 7339
7f4588f3
AH
7340static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7341 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7342{
7343 struct sched_domain *sd = NULL;
7c16ec58 7344#ifdef CONFIG_NUMA
7f4588f3 7345 struct sched_domain *parent;
1da177e4 7346
7f4588f3
AH
7347 d->sd_allnodes = 0;
7348 if (cpumask_weight(cpu_map) >
7349 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7350 sd = &per_cpu(allnodes_domains, i).sd;
7351 SD_INIT(sd, ALLNODES);
1d3504fc 7352 set_domain_attribute(sd, attr);
7f4588f3
AH
7353 cpumask_copy(sched_domain_span(sd), cpu_map);
7354 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7355 d->sd_allnodes = 1;
7356 }
7357 parent = sd;
7358
7359 sd = &per_cpu(node_domains, i).sd;
7360 SD_INIT(sd, NODE);
7361 set_domain_attribute(sd, attr);
7362 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7363 sd->parent = parent;
7364 if (parent)
7365 parent->child = sd;
7366 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7367#endif
7f4588f3
AH
7368 return sd;
7369}
1da177e4 7370
87cce662
AH
7371static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7372 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7373 struct sched_domain *parent, int i)
7374{
7375 struct sched_domain *sd;
7376 sd = &per_cpu(phys_domains, i).sd;
7377 SD_INIT(sd, CPU);
7378 set_domain_attribute(sd, attr);
7379 cpumask_copy(sched_domain_span(sd), d->nodemask);
7380 sd->parent = parent;
7381 if (parent)
7382 parent->child = sd;
7383 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7384 return sd;
7385}
1da177e4 7386
01a08546
HC
7387static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7388 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7389 struct sched_domain *parent, int i)
7390{
7391 struct sched_domain *sd = parent;
7392#ifdef CONFIG_SCHED_BOOK
7393 sd = &per_cpu(book_domains, i).sd;
7394 SD_INIT(sd, BOOK);
7395 set_domain_attribute(sd, attr);
7396 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7397 sd->parent = parent;
7398 parent->child = sd;
7399 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7400#endif
7401 return sd;
7402}
7403
410c4081
AH
7404static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7405 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7406 struct sched_domain *parent, int i)
7407{
7408 struct sched_domain *sd = parent;
1e9f28fa 7409#ifdef CONFIG_SCHED_MC
410c4081
AH
7410 sd = &per_cpu(core_domains, i).sd;
7411 SD_INIT(sd, MC);
7412 set_domain_attribute(sd, attr);
7413 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7414 sd->parent = parent;
7415 parent->child = sd;
7416 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7417#endif
410c4081
AH
7418 return sd;
7419}
1e9f28fa 7420
d8173535
AH
7421static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7422 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7423 struct sched_domain *parent, int i)
7424{
7425 struct sched_domain *sd = parent;
1da177e4 7426#ifdef CONFIG_SCHED_SMT
d8173535
AH
7427 sd = &per_cpu(cpu_domains, i).sd;
7428 SD_INIT(sd, SIBLING);
7429 set_domain_attribute(sd, attr);
7430 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7431 sd->parent = parent;
7432 parent->child = sd;
7433 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7434#endif
d8173535
AH
7435 return sd;
7436}
1da177e4 7437
0e8e85c9
AH
7438static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7439 const struct cpumask *cpu_map, int cpu)
7440{
7441 switch (l) {
1da177e4 7442#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7443 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7444 cpumask_and(d->this_sibling_map, cpu_map,
7445 topology_thread_cpumask(cpu));
7446 if (cpu == cpumask_first(d->this_sibling_map))
7447 init_sched_build_groups(d->this_sibling_map, cpu_map,
7448 &cpu_to_cpu_group,
7449 d->send_covered, d->tmpmask);
7450 break;
1da177e4 7451#endif
1e9f28fa 7452#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7453 case SD_LV_MC: /* set up multi-core groups */
7454 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7455 if (cpu == cpumask_first(d->this_core_map))
7456 init_sched_build_groups(d->this_core_map, cpu_map,
7457 &cpu_to_core_group,
7458 d->send_covered, d->tmpmask);
7459 break;
01a08546
HC
7460#endif
7461#ifdef CONFIG_SCHED_BOOK
7462 case SD_LV_BOOK: /* set up book groups */
7463 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7464 if (cpu == cpumask_first(d->this_book_map))
7465 init_sched_build_groups(d->this_book_map, cpu_map,
7466 &cpu_to_book_group,
7467 d->send_covered, d->tmpmask);
7468 break;
1e9f28fa 7469#endif
86548096
AH
7470 case SD_LV_CPU: /* set up physical groups */
7471 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7472 if (!cpumask_empty(d->nodemask))
7473 init_sched_build_groups(d->nodemask, cpu_map,
7474 &cpu_to_phys_group,
7475 d->send_covered, d->tmpmask);
7476 break;
1da177e4 7477#ifdef CONFIG_NUMA
de616e36
AH
7478 case SD_LV_ALLNODES:
7479 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7480 d->send_covered, d->tmpmask);
7481 break;
7482#endif
0e8e85c9
AH
7483 default:
7484 break;
7c16ec58 7485 }
0e8e85c9 7486}
9c1cfda2 7487
2109b99e
AH
7488/*
7489 * Build sched domains for a given set of cpus and attach the sched domains
7490 * to the individual cpus
7491 */
7492static int __build_sched_domains(const struct cpumask *cpu_map,
7493 struct sched_domain_attr *attr)
7494{
7495 enum s_alloc alloc_state = sa_none;
7496 struct s_data d;
294b0c96 7497 struct sched_domain *sd;
2109b99e 7498 int i;
7c16ec58 7499#ifdef CONFIG_NUMA
2109b99e 7500 d.sd_allnodes = 0;
7c16ec58 7501#endif
9c1cfda2 7502
2109b99e
AH
7503 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7504 if (alloc_state != sa_rootdomain)
7505 goto error;
7506 alloc_state = sa_sched_groups;
9c1cfda2 7507
1da177e4 7508 /*
1a20ff27 7509 * Set up domains for cpus specified by the cpu_map.
1da177e4 7510 */
abcd083a 7511 for_each_cpu(i, cpu_map) {
49a02c51
AH
7512 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7513 cpu_map);
9761eea8 7514
7f4588f3 7515 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7516 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7517 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7518 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7519 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7520 }
9c1cfda2 7521
abcd083a 7522 for_each_cpu(i, cpu_map) {
0e8e85c9 7523 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7524 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7525 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7526 }
9c1cfda2 7527
1da177e4 7528 /* Set up physical groups */
86548096
AH
7529 for (i = 0; i < nr_node_ids; i++)
7530 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7531
1da177e4
LT
7532#ifdef CONFIG_NUMA
7533 /* Set up node groups */
de616e36
AH
7534 if (d.sd_allnodes)
7535 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7536
0601a88d
AH
7537 for (i = 0; i < nr_node_ids; i++)
7538 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7539 goto error;
1da177e4
LT
7540#endif
7541
7542 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7543#ifdef CONFIG_SCHED_SMT
abcd083a 7544 for_each_cpu(i, cpu_map) {
294b0c96 7545 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7546 init_sched_groups_power(i, sd);
5c45bf27 7547 }
1da177e4 7548#endif
1e9f28fa 7549#ifdef CONFIG_SCHED_MC
abcd083a 7550 for_each_cpu(i, cpu_map) {
294b0c96 7551 sd = &per_cpu(core_domains, i).sd;
89c4710e 7552 init_sched_groups_power(i, sd);
5c45bf27
SS
7553 }
7554#endif
01a08546
HC
7555#ifdef CONFIG_SCHED_BOOK
7556 for_each_cpu(i, cpu_map) {
7557 sd = &per_cpu(book_domains, i).sd;
7558 init_sched_groups_power(i, sd);
7559 }
7560#endif
1e9f28fa 7561
abcd083a 7562 for_each_cpu(i, cpu_map) {
294b0c96 7563 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7564 init_sched_groups_power(i, sd);
1da177e4
LT
7565 }
7566
9c1cfda2 7567#ifdef CONFIG_NUMA
076ac2af 7568 for (i = 0; i < nr_node_ids; i++)
49a02c51 7569 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7570
49a02c51 7571 if (d.sd_allnodes) {
6711cab4 7572 struct sched_group *sg;
f712c0c7 7573
96f874e2 7574 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7575 d.tmpmask);
f712c0c7
SS
7576 init_numa_sched_groups_power(sg);
7577 }
9c1cfda2
JH
7578#endif
7579
1da177e4 7580 /* Attach the domains */
abcd083a 7581 for_each_cpu(i, cpu_map) {
1da177e4 7582#ifdef CONFIG_SCHED_SMT
6c99e9ad 7583 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7584#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7585 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7586#elif defined(CONFIG_SCHED_BOOK)
7587 sd = &per_cpu(book_domains, i).sd;
1da177e4 7588#else
6c99e9ad 7589 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7590#endif
49a02c51 7591 cpu_attach_domain(sd, d.rd, i);
1da177e4 7592 }
51888ca2 7593
2109b99e
AH
7594 d.sched_group_nodes = NULL; /* don't free this we still need it */
7595 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7596 return 0;
51888ca2 7597
51888ca2 7598error:
2109b99e
AH
7599 __free_domain_allocs(&d, alloc_state, cpu_map);
7600 return -ENOMEM;
1da177e4 7601}
029190c5 7602
96f874e2 7603static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7604{
7605 return __build_sched_domains(cpu_map, NULL);
7606}
7607
acc3f5d7 7608static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7609static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7610static struct sched_domain_attr *dattr_cur;
7611 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7612
7613/*
7614 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7615 * cpumask) fails, then fallback to a single sched domain,
7616 * as determined by the single cpumask fallback_doms.
029190c5 7617 */
4212823f 7618static cpumask_var_t fallback_doms;
029190c5 7619
ee79d1bd
HC
7620/*
7621 * arch_update_cpu_topology lets virtualized architectures update the
7622 * cpu core maps. It is supposed to return 1 if the topology changed
7623 * or 0 if it stayed the same.
7624 */
7625int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7626{
ee79d1bd 7627 return 0;
22e52b07
HC
7628}
7629
acc3f5d7
RR
7630cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7631{
7632 int i;
7633 cpumask_var_t *doms;
7634
7635 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7636 if (!doms)
7637 return NULL;
7638 for (i = 0; i < ndoms; i++) {
7639 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7640 free_sched_domains(doms, i);
7641 return NULL;
7642 }
7643 }
7644 return doms;
7645}
7646
7647void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7648{
7649 unsigned int i;
7650 for (i = 0; i < ndoms; i++)
7651 free_cpumask_var(doms[i]);
7652 kfree(doms);
7653}
7654
1a20ff27 7655/*
41a2d6cf 7656 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7657 * For now this just excludes isolated cpus, but could be used to
7658 * exclude other special cases in the future.
1a20ff27 7659 */
96f874e2 7660static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7661{
7378547f
MM
7662 int err;
7663
22e52b07 7664 arch_update_cpu_topology();
029190c5 7665 ndoms_cur = 1;
acc3f5d7 7666 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7667 if (!doms_cur)
acc3f5d7
RR
7668 doms_cur = &fallback_doms;
7669 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7670 dattr_cur = NULL;
acc3f5d7 7671 err = build_sched_domains(doms_cur[0]);
6382bc90 7672 register_sched_domain_sysctl();
7378547f
MM
7673
7674 return err;
1a20ff27
DG
7675}
7676
96f874e2
RR
7677static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7678 struct cpumask *tmpmask)
1da177e4 7679{
7c16ec58 7680 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7681}
1da177e4 7682
1a20ff27
DG
7683/*
7684 * Detach sched domains from a group of cpus specified in cpu_map
7685 * These cpus will now be attached to the NULL domain
7686 */
96f874e2 7687static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7688{
96f874e2
RR
7689 /* Save because hotplug lock held. */
7690 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7691 int i;
7692
abcd083a 7693 for_each_cpu(i, cpu_map)
57d885fe 7694 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7695 synchronize_sched();
96f874e2 7696 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7697}
7698
1d3504fc
HS
7699/* handle null as "default" */
7700static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7701 struct sched_domain_attr *new, int idx_new)
7702{
7703 struct sched_domain_attr tmp;
7704
7705 /* fast path */
7706 if (!new && !cur)
7707 return 1;
7708
7709 tmp = SD_ATTR_INIT;
7710 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7711 new ? (new + idx_new) : &tmp,
7712 sizeof(struct sched_domain_attr));
7713}
7714
029190c5
PJ
7715/*
7716 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7717 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7718 * doms_new[] to the current sched domain partitioning, doms_cur[].
7719 * It destroys each deleted domain and builds each new domain.
7720 *
acc3f5d7 7721 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7722 * The masks don't intersect (don't overlap.) We should setup one
7723 * sched domain for each mask. CPUs not in any of the cpumasks will
7724 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7725 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7726 * it as it is.
7727 *
acc3f5d7
RR
7728 * The passed in 'doms_new' should be allocated using
7729 * alloc_sched_domains. This routine takes ownership of it and will
7730 * free_sched_domains it when done with it. If the caller failed the
7731 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7732 * and partition_sched_domains() will fallback to the single partition
7733 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7734 *
96f874e2 7735 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7736 * ndoms_new == 0 is a special case for destroying existing domains,
7737 * and it will not create the default domain.
dfb512ec 7738 *
029190c5
PJ
7739 * Call with hotplug lock held
7740 */
acc3f5d7 7741void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7742 struct sched_domain_attr *dattr_new)
029190c5 7743{
dfb512ec 7744 int i, j, n;
d65bd5ec 7745 int new_topology;
029190c5 7746
712555ee 7747 mutex_lock(&sched_domains_mutex);
a1835615 7748
7378547f
MM
7749 /* always unregister in case we don't destroy any domains */
7750 unregister_sched_domain_sysctl();
7751
d65bd5ec
HC
7752 /* Let architecture update cpu core mappings. */
7753 new_topology = arch_update_cpu_topology();
7754
dfb512ec 7755 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7756
7757 /* Destroy deleted domains */
7758 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7759 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7760 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7761 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7762 goto match1;
7763 }
7764 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7765 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7766match1:
7767 ;
7768 }
7769
e761b772
MK
7770 if (doms_new == NULL) {
7771 ndoms_cur = 0;
acc3f5d7 7772 doms_new = &fallback_doms;
6ad4c188 7773 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7774 WARN_ON_ONCE(dattr_new);
e761b772
MK
7775 }
7776
029190c5
PJ
7777 /* Build new domains */
7778 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7779 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7780 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7781 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7782 goto match2;
7783 }
7784 /* no match - add a new doms_new */
acc3f5d7 7785 __build_sched_domains(doms_new[i],
1d3504fc 7786 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7787match2:
7788 ;
7789 }
7790
7791 /* Remember the new sched domains */
acc3f5d7
RR
7792 if (doms_cur != &fallback_doms)
7793 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7794 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7795 doms_cur = doms_new;
1d3504fc 7796 dattr_cur = dattr_new;
029190c5 7797 ndoms_cur = ndoms_new;
7378547f
MM
7798
7799 register_sched_domain_sysctl();
a1835615 7800
712555ee 7801 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7802}
7803
5c45bf27 7804#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7805static void arch_reinit_sched_domains(void)
5c45bf27 7806{
95402b38 7807 get_online_cpus();
dfb512ec
MK
7808
7809 /* Destroy domains first to force the rebuild */
7810 partition_sched_domains(0, NULL, NULL);
7811
e761b772 7812 rebuild_sched_domains();
95402b38 7813 put_online_cpus();
5c45bf27
SS
7814}
7815
7816static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7817{
afb8a9b7 7818 unsigned int level = 0;
5c45bf27 7819
afb8a9b7
GS
7820 if (sscanf(buf, "%u", &level) != 1)
7821 return -EINVAL;
7822
7823 /*
7824 * level is always be positive so don't check for
7825 * level < POWERSAVINGS_BALANCE_NONE which is 0
7826 * What happens on 0 or 1 byte write,
7827 * need to check for count as well?
7828 */
7829
7830 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7831 return -EINVAL;
7832
7833 if (smt)
afb8a9b7 7834 sched_smt_power_savings = level;
5c45bf27 7835 else
afb8a9b7 7836 sched_mc_power_savings = level;
5c45bf27 7837
c70f22d2 7838 arch_reinit_sched_domains();
5c45bf27 7839
c70f22d2 7840 return count;
5c45bf27
SS
7841}
7842
5c45bf27 7843#ifdef CONFIG_SCHED_MC
f718cd4a 7844static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7845 struct sysdev_class_attribute *attr,
f718cd4a 7846 char *page)
5c45bf27
SS
7847{
7848 return sprintf(page, "%u\n", sched_mc_power_savings);
7849}
f718cd4a 7850static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7851 struct sysdev_class_attribute *attr,
48f24c4d 7852 const char *buf, size_t count)
5c45bf27
SS
7853{
7854 return sched_power_savings_store(buf, count, 0);
7855}
f718cd4a
AK
7856static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7857 sched_mc_power_savings_show,
7858 sched_mc_power_savings_store);
5c45bf27
SS
7859#endif
7860
7861#ifdef CONFIG_SCHED_SMT
f718cd4a 7862static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7863 struct sysdev_class_attribute *attr,
f718cd4a 7864 char *page)
5c45bf27
SS
7865{
7866 return sprintf(page, "%u\n", sched_smt_power_savings);
7867}
f718cd4a 7868static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7869 struct sysdev_class_attribute *attr,
48f24c4d 7870 const char *buf, size_t count)
5c45bf27
SS
7871{
7872 return sched_power_savings_store(buf, count, 1);
7873}
f718cd4a
AK
7874static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7875 sched_smt_power_savings_show,
6707de00
AB
7876 sched_smt_power_savings_store);
7877#endif
7878
39aac648 7879int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7880{
7881 int err = 0;
7882
7883#ifdef CONFIG_SCHED_SMT
7884 if (smt_capable())
7885 err = sysfs_create_file(&cls->kset.kobj,
7886 &attr_sched_smt_power_savings.attr);
7887#endif
7888#ifdef CONFIG_SCHED_MC
7889 if (!err && mc_capable())
7890 err = sysfs_create_file(&cls->kset.kobj,
7891 &attr_sched_mc_power_savings.attr);
7892#endif
7893 return err;
7894}
6d6bc0ad 7895#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7896
1da177e4 7897/*
3a101d05
TH
7898 * Update cpusets according to cpu_active mask. If cpusets are
7899 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7900 * around partition_sched_domains().
1da177e4 7901 */
0b2e918a
TH
7902static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7903 void *hcpu)
e761b772 7904{
3a101d05 7905 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7906 case CPU_ONLINE:
6ad4c188 7907 case CPU_DOWN_FAILED:
3a101d05 7908 cpuset_update_active_cpus();
e761b772 7909 return NOTIFY_OK;
3a101d05
TH
7910 default:
7911 return NOTIFY_DONE;
7912 }
7913}
e761b772 7914
0b2e918a
TH
7915static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7916 void *hcpu)
3a101d05
TH
7917{
7918 switch (action & ~CPU_TASKS_FROZEN) {
7919 case CPU_DOWN_PREPARE:
7920 cpuset_update_active_cpus();
7921 return NOTIFY_OK;
e761b772
MK
7922 default:
7923 return NOTIFY_DONE;
7924 }
7925}
e761b772
MK
7926
7927static int update_runtime(struct notifier_block *nfb,
7928 unsigned long action, void *hcpu)
1da177e4 7929{
7def2be1
PZ
7930 int cpu = (int)(long)hcpu;
7931
1da177e4 7932 switch (action) {
1da177e4 7933 case CPU_DOWN_PREPARE:
8bb78442 7934 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7935 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7936 return NOTIFY_OK;
7937
1da177e4 7938 case CPU_DOWN_FAILED:
8bb78442 7939 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7940 case CPU_ONLINE:
8bb78442 7941 case CPU_ONLINE_FROZEN:
7def2be1 7942 enable_runtime(cpu_rq(cpu));
e761b772
MK
7943 return NOTIFY_OK;
7944
1da177e4
LT
7945 default:
7946 return NOTIFY_DONE;
7947 }
1da177e4 7948}
1da177e4
LT
7949
7950void __init sched_init_smp(void)
7951{
dcc30a35
RR
7952 cpumask_var_t non_isolated_cpus;
7953
7954 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7955 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7956
434d53b0
MT
7957#if defined(CONFIG_NUMA)
7958 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7959 GFP_KERNEL);
7960 BUG_ON(sched_group_nodes_bycpu == NULL);
7961#endif
95402b38 7962 get_online_cpus();
712555ee 7963 mutex_lock(&sched_domains_mutex);
6ad4c188 7964 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7965 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7966 if (cpumask_empty(non_isolated_cpus))
7967 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7968 mutex_unlock(&sched_domains_mutex);
95402b38 7969 put_online_cpus();
e761b772 7970
3a101d05
TH
7971 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7972 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7973
7974 /* RT runtime code needs to handle some hotplug events */
7975 hotcpu_notifier(update_runtime, 0);
7976
b328ca18 7977 init_hrtick();
5c1e1767
NP
7978
7979 /* Move init over to a non-isolated CPU */
dcc30a35 7980 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7981 BUG();
19978ca6 7982 sched_init_granularity();
dcc30a35 7983 free_cpumask_var(non_isolated_cpus);
4212823f 7984
0e3900e6 7985 init_sched_rt_class();
1da177e4
LT
7986}
7987#else
7988void __init sched_init_smp(void)
7989{
19978ca6 7990 sched_init_granularity();
1da177e4
LT
7991}
7992#endif /* CONFIG_SMP */
7993
cd1bb94b
AB
7994const_debug unsigned int sysctl_timer_migration = 1;
7995
1da177e4
LT
7996int in_sched_functions(unsigned long addr)
7997{
1da177e4
LT
7998 return in_lock_functions(addr) ||
7999 (addr >= (unsigned long)__sched_text_start
8000 && addr < (unsigned long)__sched_text_end);
8001}
8002
a9957449 8003static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8004{
8005 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8006 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8007#ifdef CONFIG_FAIR_GROUP_SCHED
8008 cfs_rq->rq = rq;
f07333bf 8009 /* allow initial update_cfs_load() to truncate */
6ea72f12 8010#ifdef CONFIG_SMP
f07333bf 8011 cfs_rq->load_stamp = 1;
6ea72f12 8012#endif
dd41f596 8013#endif
67e9fb2a 8014 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8015}
8016
fa85ae24
PZ
8017static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8018{
8019 struct rt_prio_array *array;
8020 int i;
8021
8022 array = &rt_rq->active;
8023 for (i = 0; i < MAX_RT_PRIO; i++) {
8024 INIT_LIST_HEAD(array->queue + i);
8025 __clear_bit(i, array->bitmap);
8026 }
8027 /* delimiter for bitsearch: */
8028 __set_bit(MAX_RT_PRIO, array->bitmap);
8029
052f1dc7 8030#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8031 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8032#ifdef CONFIG_SMP
e864c499 8033 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8034#endif
48d5e258 8035#endif
fa85ae24
PZ
8036#ifdef CONFIG_SMP
8037 rt_rq->rt_nr_migratory = 0;
fa85ae24 8038 rt_rq->overloaded = 0;
05fa785c 8039 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
8040#endif
8041
8042 rt_rq->rt_time = 0;
8043 rt_rq->rt_throttled = 0;
ac086bc2 8044 rt_rq->rt_runtime = 0;
0986b11b 8045 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8046
052f1dc7 8047#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8048 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8049 rt_rq->rq = rq;
8050#endif
fa85ae24
PZ
8051}
8052
6f505b16 8053#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8054static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8055 struct sched_entity *se, int cpu,
ec7dc8ac 8056 struct sched_entity *parent)
6f505b16 8057{
ec7dc8ac 8058 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8059 tg->cfs_rq[cpu] = cfs_rq;
8060 init_cfs_rq(cfs_rq, rq);
8061 cfs_rq->tg = tg;
6f505b16
PZ
8062
8063 tg->se[cpu] = se;
07e06b01 8064 /* se could be NULL for root_task_group */
354d60c2
DG
8065 if (!se)
8066 return;
8067
ec7dc8ac
DG
8068 if (!parent)
8069 se->cfs_rq = &rq->cfs;
8070 else
8071 se->cfs_rq = parent->my_q;
8072
6f505b16 8073 se->my_q = cfs_rq;
9437178f 8074 update_load_set(&se->load, 0);
ec7dc8ac 8075 se->parent = parent;
6f505b16 8076}
052f1dc7 8077#endif
6f505b16 8078
052f1dc7 8079#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8080static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8081 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8082 struct sched_rt_entity *parent)
6f505b16 8083{
ec7dc8ac
DG
8084 struct rq *rq = cpu_rq(cpu);
8085
6f505b16
PZ
8086 tg->rt_rq[cpu] = rt_rq;
8087 init_rt_rq(rt_rq, rq);
8088 rt_rq->tg = tg;
ac086bc2 8089 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8090
8091 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8092 if (!rt_se)
8093 return;
8094
ec7dc8ac
DG
8095 if (!parent)
8096 rt_se->rt_rq = &rq->rt;
8097 else
8098 rt_se->rt_rq = parent->my_q;
8099
6f505b16 8100 rt_se->my_q = rt_rq;
ec7dc8ac 8101 rt_se->parent = parent;
6f505b16
PZ
8102 INIT_LIST_HEAD(&rt_se->run_list);
8103}
8104#endif
8105
1da177e4
LT
8106void __init sched_init(void)
8107{
dd41f596 8108 int i, j;
434d53b0
MT
8109 unsigned long alloc_size = 0, ptr;
8110
8111#ifdef CONFIG_FAIR_GROUP_SCHED
8112 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8113#endif
8114#ifdef CONFIG_RT_GROUP_SCHED
8115 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8116#endif
df7c8e84 8117#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8118 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8119#endif
434d53b0 8120 if (alloc_size) {
36b7b6d4 8121 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8122
8123#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8124 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8125 ptr += nr_cpu_ids * sizeof(void **);
8126
07e06b01 8127 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8128 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8129
6d6bc0ad 8130#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8131#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8132 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8133 ptr += nr_cpu_ids * sizeof(void **);
8134
07e06b01 8135 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8136 ptr += nr_cpu_ids * sizeof(void **);
8137
6d6bc0ad 8138#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8139#ifdef CONFIG_CPUMASK_OFFSTACK
8140 for_each_possible_cpu(i) {
8141 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8142 ptr += cpumask_size();
8143 }
8144#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8145 }
dd41f596 8146
57d885fe
GH
8147#ifdef CONFIG_SMP
8148 init_defrootdomain();
8149#endif
8150
d0b27fa7
PZ
8151 init_rt_bandwidth(&def_rt_bandwidth,
8152 global_rt_period(), global_rt_runtime());
8153
8154#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8155 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8156 global_rt_period(), global_rt_runtime());
6d6bc0ad 8157#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8158
7c941438 8159#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8160 list_add(&root_task_group.list, &task_groups);
8161 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8162 autogroup_init(&init_task);
7c941438 8163#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8164
0a945022 8165 for_each_possible_cpu(i) {
70b97a7f 8166 struct rq *rq;
1da177e4
LT
8167
8168 rq = cpu_rq(i);
05fa785c 8169 raw_spin_lock_init(&rq->lock);
7897986b 8170 rq->nr_running = 0;
dce48a84
TG
8171 rq->calc_load_active = 0;
8172 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8173 init_cfs_rq(&rq->cfs, rq);
6f505b16 8174 init_rt_rq(&rq->rt, rq);
dd41f596 8175#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8176 root_task_group.shares = root_task_group_load;
6f505b16 8177 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8178 /*
07e06b01 8179 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8180 *
8181 * In case of task-groups formed thr' the cgroup filesystem, it
8182 * gets 100% of the cpu resources in the system. This overall
8183 * system cpu resource is divided among the tasks of
07e06b01 8184 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8185 * based on each entity's (task or task-group's) weight
8186 * (se->load.weight).
8187 *
07e06b01 8188 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8189 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8190 * then A0's share of the cpu resource is:
8191 *
0d905bca 8192 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8193 *
07e06b01
YZ
8194 * We achieve this by letting root_task_group's tasks sit
8195 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8196 */
07e06b01 8197 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8198#endif /* CONFIG_FAIR_GROUP_SCHED */
8199
8200 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8201#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8202 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8203 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8204#endif
1da177e4 8205
dd41f596
IM
8206 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8207 rq->cpu_load[j] = 0;
fdf3e95d
VP
8208
8209 rq->last_load_update_tick = jiffies;
8210
1da177e4 8211#ifdef CONFIG_SMP
41c7ce9a 8212 rq->sd = NULL;
57d885fe 8213 rq->rd = NULL;
e51fd5e2 8214 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8215 rq->post_schedule = 0;
1da177e4 8216 rq->active_balance = 0;
dd41f596 8217 rq->next_balance = jiffies;
1da177e4 8218 rq->push_cpu = 0;
0a2966b4 8219 rq->cpu = i;
1f11eb6a 8220 rq->online = 0;
eae0c9df
MG
8221 rq->idle_stamp = 0;
8222 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8223 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8224#ifdef CONFIG_NO_HZ
8225 rq->nohz_balance_kick = 0;
8226 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8227#endif
1da177e4 8228#endif
8f4d37ec 8229 init_rq_hrtick(rq);
1da177e4 8230 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8231 }
8232
2dd73a4f 8233 set_load_weight(&init_task);
b50f60ce 8234
e107be36
AK
8235#ifdef CONFIG_PREEMPT_NOTIFIERS
8236 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8237#endif
8238
c9819f45 8239#ifdef CONFIG_SMP
962cf36c 8240 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8241#endif
8242
b50f60ce 8243#ifdef CONFIG_RT_MUTEXES
1d615482 8244 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8245#endif
8246
1da177e4
LT
8247 /*
8248 * The boot idle thread does lazy MMU switching as well:
8249 */
8250 atomic_inc(&init_mm.mm_count);
8251 enter_lazy_tlb(&init_mm, current);
8252
8253 /*
8254 * Make us the idle thread. Technically, schedule() should not be
8255 * called from this thread, however somewhere below it might be,
8256 * but because we are the idle thread, we just pick up running again
8257 * when this runqueue becomes "idle".
8258 */
8259 init_idle(current, smp_processor_id());
dce48a84
TG
8260
8261 calc_load_update = jiffies + LOAD_FREQ;
8262
dd41f596
IM
8263 /*
8264 * During early bootup we pretend to be a normal task:
8265 */
8266 current->sched_class = &fair_sched_class;
6892b75e 8267
6a7b3dc3 8268 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8269 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8270#ifdef CONFIG_SMP
7d1e6a9b 8271#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8272 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8273 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8274 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8275 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8276 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8277#endif
bdddd296
RR
8278 /* May be allocated at isolcpus cmdline parse time */
8279 if (cpu_isolated_map == NULL)
8280 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8281#endif /* SMP */
6a7b3dc3 8282
6892b75e 8283 scheduler_running = 1;
1da177e4
LT
8284}
8285
8286#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8287static inline int preempt_count_equals(int preempt_offset)
8288{
234da7bc 8289 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8290
8291 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8292}
8293
d894837f 8294void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8295{
48f24c4d 8296#ifdef in_atomic
1da177e4
LT
8297 static unsigned long prev_jiffy; /* ratelimiting */
8298
e4aafea2
FW
8299 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8300 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8301 return;
8302 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8303 return;
8304 prev_jiffy = jiffies;
8305
3df0fc5b
PZ
8306 printk(KERN_ERR
8307 "BUG: sleeping function called from invalid context at %s:%d\n",
8308 file, line);
8309 printk(KERN_ERR
8310 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8311 in_atomic(), irqs_disabled(),
8312 current->pid, current->comm);
aef745fc
IM
8313
8314 debug_show_held_locks(current);
8315 if (irqs_disabled())
8316 print_irqtrace_events(current);
8317 dump_stack();
1da177e4
LT
8318#endif
8319}
8320EXPORT_SYMBOL(__might_sleep);
8321#endif
8322
8323#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8324static void normalize_task(struct rq *rq, struct task_struct *p)
8325{
da7a735e
PZ
8326 const struct sched_class *prev_class = p->sched_class;
8327 int old_prio = p->prio;
3a5e4dc1 8328 int on_rq;
3e51f33f 8329
3a5e4dc1
AK
8330 on_rq = p->se.on_rq;
8331 if (on_rq)
8332 deactivate_task(rq, p, 0);
8333 __setscheduler(rq, p, SCHED_NORMAL, 0);
8334 if (on_rq) {
8335 activate_task(rq, p, 0);
8336 resched_task(rq->curr);
8337 }
da7a735e
PZ
8338
8339 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8340}
8341
1da177e4
LT
8342void normalize_rt_tasks(void)
8343{
a0f98a1c 8344 struct task_struct *g, *p;
1da177e4 8345 unsigned long flags;
70b97a7f 8346 struct rq *rq;
1da177e4 8347
4cf5d77a 8348 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8349 do_each_thread(g, p) {
178be793
IM
8350 /*
8351 * Only normalize user tasks:
8352 */
8353 if (!p->mm)
8354 continue;
8355
6cfb0d5d 8356 p->se.exec_start = 0;
6cfb0d5d 8357#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8358 p->se.statistics.wait_start = 0;
8359 p->se.statistics.sleep_start = 0;
8360 p->se.statistics.block_start = 0;
6cfb0d5d 8361#endif
dd41f596
IM
8362
8363 if (!rt_task(p)) {
8364 /*
8365 * Renice negative nice level userspace
8366 * tasks back to 0:
8367 */
8368 if (TASK_NICE(p) < 0 && p->mm)
8369 set_user_nice(p, 0);
1da177e4 8370 continue;
dd41f596 8371 }
1da177e4 8372
1d615482 8373 raw_spin_lock(&p->pi_lock);
b29739f9 8374 rq = __task_rq_lock(p);
1da177e4 8375
178be793 8376 normalize_task(rq, p);
3a5e4dc1 8377
b29739f9 8378 __task_rq_unlock(rq);
1d615482 8379 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8380 } while_each_thread(g, p);
8381
4cf5d77a 8382 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8383}
8384
8385#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8386
67fc4e0c 8387#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8388/*
67fc4e0c 8389 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8390 *
8391 * They can only be called when the whole system has been
8392 * stopped - every CPU needs to be quiescent, and no scheduling
8393 * activity can take place. Using them for anything else would
8394 * be a serious bug, and as a result, they aren't even visible
8395 * under any other configuration.
8396 */
8397
8398/**
8399 * curr_task - return the current task for a given cpu.
8400 * @cpu: the processor in question.
8401 *
8402 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8403 */
36c8b586 8404struct task_struct *curr_task(int cpu)
1df5c10a
LT
8405{
8406 return cpu_curr(cpu);
8407}
8408
67fc4e0c
JW
8409#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8410
8411#ifdef CONFIG_IA64
1df5c10a
LT
8412/**
8413 * set_curr_task - set the current task for a given cpu.
8414 * @cpu: the processor in question.
8415 * @p: the task pointer to set.
8416 *
8417 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8418 * are serviced on a separate stack. It allows the architecture to switch the
8419 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8420 * must be called with all CPU's synchronized, and interrupts disabled, the
8421 * and caller must save the original value of the current task (see
8422 * curr_task() above) and restore that value before reenabling interrupts and
8423 * re-starting the system.
8424 *
8425 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8426 */
36c8b586 8427void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8428{
8429 cpu_curr(cpu) = p;
8430}
8431
8432#endif
29f59db3 8433
bccbe08a
PZ
8434#ifdef CONFIG_FAIR_GROUP_SCHED
8435static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8436{
8437 int i;
8438
8439 for_each_possible_cpu(i) {
8440 if (tg->cfs_rq)
8441 kfree(tg->cfs_rq[i]);
8442 if (tg->se)
8443 kfree(tg->se[i]);
6f505b16
PZ
8444 }
8445
8446 kfree(tg->cfs_rq);
8447 kfree(tg->se);
6f505b16
PZ
8448}
8449
ec7dc8ac
DG
8450static
8451int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8452{
29f59db3 8453 struct cfs_rq *cfs_rq;
eab17229 8454 struct sched_entity *se;
9b5b7751 8455 struct rq *rq;
29f59db3
SV
8456 int i;
8457
434d53b0 8458 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8459 if (!tg->cfs_rq)
8460 goto err;
434d53b0 8461 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8462 if (!tg->se)
8463 goto err;
052f1dc7
PZ
8464
8465 tg->shares = NICE_0_LOAD;
29f59db3
SV
8466
8467 for_each_possible_cpu(i) {
9b5b7751 8468 rq = cpu_rq(i);
29f59db3 8469
eab17229
LZ
8470 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8471 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8472 if (!cfs_rq)
8473 goto err;
8474
eab17229
LZ
8475 se = kzalloc_node(sizeof(struct sched_entity),
8476 GFP_KERNEL, cpu_to_node(i));
29f59db3 8477 if (!se)
dfc12eb2 8478 goto err_free_rq;
29f59db3 8479
3d4b47b4 8480 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8481 }
8482
8483 return 1;
8484
49246274 8485err_free_rq:
dfc12eb2 8486 kfree(cfs_rq);
49246274 8487err:
bccbe08a
PZ
8488 return 0;
8489}
8490
bccbe08a
PZ
8491static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8492{
3d4b47b4
PZ
8493 struct rq *rq = cpu_rq(cpu);
8494 unsigned long flags;
3d4b47b4
PZ
8495
8496 /*
8497 * Only empty task groups can be destroyed; so we can speculatively
8498 * check on_list without danger of it being re-added.
8499 */
8500 if (!tg->cfs_rq[cpu]->on_list)
8501 return;
8502
8503 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8504 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8505 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8506}
6d6bc0ad 8507#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8508static inline void free_fair_sched_group(struct task_group *tg)
8509{
8510}
8511
ec7dc8ac
DG
8512static inline
8513int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8514{
8515 return 1;
8516}
8517
bccbe08a
PZ
8518static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8519{
8520}
6d6bc0ad 8521#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8522
8523#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8524static void free_rt_sched_group(struct task_group *tg)
8525{
8526 int i;
8527
d0b27fa7
PZ
8528 destroy_rt_bandwidth(&tg->rt_bandwidth);
8529
bccbe08a
PZ
8530 for_each_possible_cpu(i) {
8531 if (tg->rt_rq)
8532 kfree(tg->rt_rq[i]);
8533 if (tg->rt_se)
8534 kfree(tg->rt_se[i]);
8535 }
8536
8537 kfree(tg->rt_rq);
8538 kfree(tg->rt_se);
8539}
8540
ec7dc8ac
DG
8541static
8542int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8543{
8544 struct rt_rq *rt_rq;
eab17229 8545 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8546 struct rq *rq;
8547 int i;
8548
434d53b0 8549 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8550 if (!tg->rt_rq)
8551 goto err;
434d53b0 8552 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8553 if (!tg->rt_se)
8554 goto err;
8555
d0b27fa7
PZ
8556 init_rt_bandwidth(&tg->rt_bandwidth,
8557 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8558
8559 for_each_possible_cpu(i) {
8560 rq = cpu_rq(i);
8561
eab17229
LZ
8562 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8563 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8564 if (!rt_rq)
8565 goto err;
29f59db3 8566
eab17229
LZ
8567 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8568 GFP_KERNEL, cpu_to_node(i));
6f505b16 8569 if (!rt_se)
dfc12eb2 8570 goto err_free_rq;
29f59db3 8571
3d4b47b4 8572 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8573 }
8574
bccbe08a
PZ
8575 return 1;
8576
49246274 8577err_free_rq:
dfc12eb2 8578 kfree(rt_rq);
49246274 8579err:
bccbe08a
PZ
8580 return 0;
8581}
6d6bc0ad 8582#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8583static inline void free_rt_sched_group(struct task_group *tg)
8584{
8585}
8586
ec7dc8ac
DG
8587static inline
8588int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8589{
8590 return 1;
8591}
6d6bc0ad 8592#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8593
7c941438 8594#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8595static void free_sched_group(struct task_group *tg)
8596{
8597 free_fair_sched_group(tg);
8598 free_rt_sched_group(tg);
e9aa1dd1 8599 autogroup_free(tg);
bccbe08a
PZ
8600 kfree(tg);
8601}
8602
8603/* allocate runqueue etc for a new task group */
ec7dc8ac 8604struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8605{
8606 struct task_group *tg;
8607 unsigned long flags;
bccbe08a
PZ
8608
8609 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8610 if (!tg)
8611 return ERR_PTR(-ENOMEM);
8612
ec7dc8ac 8613 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8614 goto err;
8615
ec7dc8ac 8616 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8617 goto err;
8618
8ed36996 8619 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8620 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8621
8622 WARN_ON(!parent); /* root should already exist */
8623
8624 tg->parent = parent;
f473aa5e 8625 INIT_LIST_HEAD(&tg->children);
09f2724a 8626 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8627 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8628
9b5b7751 8629 return tg;
29f59db3
SV
8630
8631err:
6f505b16 8632 free_sched_group(tg);
29f59db3
SV
8633 return ERR_PTR(-ENOMEM);
8634}
8635
9b5b7751 8636/* rcu callback to free various structures associated with a task group */
6f505b16 8637static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8638{
29f59db3 8639 /* now it should be safe to free those cfs_rqs */
6f505b16 8640 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8641}
8642
9b5b7751 8643/* Destroy runqueue etc associated with a task group */
4cf86d77 8644void sched_destroy_group(struct task_group *tg)
29f59db3 8645{
8ed36996 8646 unsigned long flags;
9b5b7751 8647 int i;
29f59db3 8648
3d4b47b4
PZ
8649 /* end participation in shares distribution */
8650 for_each_possible_cpu(i)
bccbe08a 8651 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8652
8653 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8654 list_del_rcu(&tg->list);
f473aa5e 8655 list_del_rcu(&tg->siblings);
8ed36996 8656 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8657
9b5b7751 8658 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8659 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8660}
8661
9b5b7751 8662/* change task's runqueue when it moves between groups.
3a252015
IM
8663 * The caller of this function should have put the task in its new group
8664 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8665 * reflect its new group.
9b5b7751
SV
8666 */
8667void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8668{
8669 int on_rq, running;
8670 unsigned long flags;
8671 struct rq *rq;
8672
8673 rq = task_rq_lock(tsk, &flags);
8674
051a1d1a 8675 running = task_current(rq, tsk);
29f59db3
SV
8676 on_rq = tsk->se.on_rq;
8677
0e1f3483 8678 if (on_rq)
29f59db3 8679 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8680 if (unlikely(running))
8681 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8682
810b3817 8683#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8684 if (tsk->sched_class->task_move_group)
8685 tsk->sched_class->task_move_group(tsk, on_rq);
8686 else
810b3817 8687#endif
b2b5ce02 8688 set_task_rq(tsk, task_cpu(tsk));
810b3817 8689
0e1f3483
HS
8690 if (unlikely(running))
8691 tsk->sched_class->set_curr_task(rq);
8692 if (on_rq)
371fd7e7 8693 enqueue_task(rq, tsk, 0);
29f59db3 8694
29f59db3
SV
8695 task_rq_unlock(rq, &flags);
8696}
7c941438 8697#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8698
052f1dc7 8699#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8700static DEFINE_MUTEX(shares_mutex);
8701
4cf86d77 8702int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8703{
8704 int i;
8ed36996 8705 unsigned long flags;
c61935fd 8706
ec7dc8ac
DG
8707 /*
8708 * We can't change the weight of the root cgroup.
8709 */
8710 if (!tg->se[0])
8711 return -EINVAL;
8712
18d95a28
PZ
8713 if (shares < MIN_SHARES)
8714 shares = MIN_SHARES;
cb4ad1ff
MX
8715 else if (shares > MAX_SHARES)
8716 shares = MAX_SHARES;
62fb1851 8717
8ed36996 8718 mutex_lock(&shares_mutex);
9b5b7751 8719 if (tg->shares == shares)
5cb350ba 8720 goto done;
29f59db3 8721
9b5b7751 8722 tg->shares = shares;
c09595f6 8723 for_each_possible_cpu(i) {
9437178f
PT
8724 struct rq *rq = cpu_rq(i);
8725 struct sched_entity *se;
8726
8727 se = tg->se[i];
8728 /* Propagate contribution to hierarchy */
8729 raw_spin_lock_irqsave(&rq->lock, flags);
8730 for_each_sched_entity(se)
6d5ab293 8731 update_cfs_shares(group_cfs_rq(se));
9437178f 8732 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8733 }
29f59db3 8734
5cb350ba 8735done:
8ed36996 8736 mutex_unlock(&shares_mutex);
9b5b7751 8737 return 0;
29f59db3
SV
8738}
8739
5cb350ba
DG
8740unsigned long sched_group_shares(struct task_group *tg)
8741{
8742 return tg->shares;
8743}
052f1dc7 8744#endif
5cb350ba 8745
052f1dc7 8746#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8747/*
9f0c1e56 8748 * Ensure that the real time constraints are schedulable.
6f505b16 8749 */
9f0c1e56
PZ
8750static DEFINE_MUTEX(rt_constraints_mutex);
8751
8752static unsigned long to_ratio(u64 period, u64 runtime)
8753{
8754 if (runtime == RUNTIME_INF)
9a7e0b18 8755 return 1ULL << 20;
9f0c1e56 8756
9a7e0b18 8757 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8758}
8759
9a7e0b18
PZ
8760/* Must be called with tasklist_lock held */
8761static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8762{
9a7e0b18 8763 struct task_struct *g, *p;
b40b2e8e 8764
9a7e0b18
PZ
8765 do_each_thread(g, p) {
8766 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8767 return 1;
8768 } while_each_thread(g, p);
b40b2e8e 8769
9a7e0b18
PZ
8770 return 0;
8771}
b40b2e8e 8772
9a7e0b18
PZ
8773struct rt_schedulable_data {
8774 struct task_group *tg;
8775 u64 rt_period;
8776 u64 rt_runtime;
8777};
b40b2e8e 8778
9a7e0b18
PZ
8779static int tg_schedulable(struct task_group *tg, void *data)
8780{
8781 struct rt_schedulable_data *d = data;
8782 struct task_group *child;
8783 unsigned long total, sum = 0;
8784 u64 period, runtime;
b40b2e8e 8785
9a7e0b18
PZ
8786 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8787 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8788
9a7e0b18
PZ
8789 if (tg == d->tg) {
8790 period = d->rt_period;
8791 runtime = d->rt_runtime;
b40b2e8e 8792 }
b40b2e8e 8793
4653f803
PZ
8794 /*
8795 * Cannot have more runtime than the period.
8796 */
8797 if (runtime > period && runtime != RUNTIME_INF)
8798 return -EINVAL;
6f505b16 8799
4653f803
PZ
8800 /*
8801 * Ensure we don't starve existing RT tasks.
8802 */
9a7e0b18
PZ
8803 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8804 return -EBUSY;
6f505b16 8805
9a7e0b18 8806 total = to_ratio(period, runtime);
6f505b16 8807
4653f803
PZ
8808 /*
8809 * Nobody can have more than the global setting allows.
8810 */
8811 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8812 return -EINVAL;
6f505b16 8813
4653f803
PZ
8814 /*
8815 * The sum of our children's runtime should not exceed our own.
8816 */
9a7e0b18
PZ
8817 list_for_each_entry_rcu(child, &tg->children, siblings) {
8818 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8819 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8820
9a7e0b18
PZ
8821 if (child == d->tg) {
8822 period = d->rt_period;
8823 runtime = d->rt_runtime;
8824 }
6f505b16 8825
9a7e0b18 8826 sum += to_ratio(period, runtime);
9f0c1e56 8827 }
6f505b16 8828
9a7e0b18
PZ
8829 if (sum > total)
8830 return -EINVAL;
8831
8832 return 0;
6f505b16
PZ
8833}
8834
9a7e0b18 8835static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8836{
9a7e0b18
PZ
8837 struct rt_schedulable_data data = {
8838 .tg = tg,
8839 .rt_period = period,
8840 .rt_runtime = runtime,
8841 };
8842
8843 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8844}
8845
d0b27fa7
PZ
8846static int tg_set_bandwidth(struct task_group *tg,
8847 u64 rt_period, u64 rt_runtime)
6f505b16 8848{
ac086bc2 8849 int i, err = 0;
9f0c1e56 8850
9f0c1e56 8851 mutex_lock(&rt_constraints_mutex);
521f1a24 8852 read_lock(&tasklist_lock);
9a7e0b18
PZ
8853 err = __rt_schedulable(tg, rt_period, rt_runtime);
8854 if (err)
9f0c1e56 8855 goto unlock;
ac086bc2 8856
0986b11b 8857 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8858 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8859 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8860
8861 for_each_possible_cpu(i) {
8862 struct rt_rq *rt_rq = tg->rt_rq[i];
8863
0986b11b 8864 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8865 rt_rq->rt_runtime = rt_runtime;
0986b11b 8866 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8867 }
0986b11b 8868 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8869unlock:
521f1a24 8870 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8871 mutex_unlock(&rt_constraints_mutex);
8872
8873 return err;
6f505b16
PZ
8874}
8875
d0b27fa7
PZ
8876int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8877{
8878 u64 rt_runtime, rt_period;
8879
8880 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8881 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8882 if (rt_runtime_us < 0)
8883 rt_runtime = RUNTIME_INF;
8884
8885 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8886}
8887
9f0c1e56
PZ
8888long sched_group_rt_runtime(struct task_group *tg)
8889{
8890 u64 rt_runtime_us;
8891
d0b27fa7 8892 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8893 return -1;
8894
d0b27fa7 8895 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8896 do_div(rt_runtime_us, NSEC_PER_USEC);
8897 return rt_runtime_us;
8898}
d0b27fa7
PZ
8899
8900int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8901{
8902 u64 rt_runtime, rt_period;
8903
8904 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8905 rt_runtime = tg->rt_bandwidth.rt_runtime;
8906
619b0488
R
8907 if (rt_period == 0)
8908 return -EINVAL;
8909
d0b27fa7
PZ
8910 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8911}
8912
8913long sched_group_rt_period(struct task_group *tg)
8914{
8915 u64 rt_period_us;
8916
8917 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8918 do_div(rt_period_us, NSEC_PER_USEC);
8919 return rt_period_us;
8920}
8921
8922static int sched_rt_global_constraints(void)
8923{
4653f803 8924 u64 runtime, period;
d0b27fa7
PZ
8925 int ret = 0;
8926
ec5d4989
HS
8927 if (sysctl_sched_rt_period <= 0)
8928 return -EINVAL;
8929
4653f803
PZ
8930 runtime = global_rt_runtime();
8931 period = global_rt_period();
8932
8933 /*
8934 * Sanity check on the sysctl variables.
8935 */
8936 if (runtime > period && runtime != RUNTIME_INF)
8937 return -EINVAL;
10b612f4 8938
d0b27fa7 8939 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8940 read_lock(&tasklist_lock);
4653f803 8941 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8942 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8943 mutex_unlock(&rt_constraints_mutex);
8944
8945 return ret;
8946}
54e99124
DG
8947
8948int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8949{
8950 /* Don't accept realtime tasks when there is no way for them to run */
8951 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8952 return 0;
8953
8954 return 1;
8955}
8956
6d6bc0ad 8957#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8958static int sched_rt_global_constraints(void)
8959{
ac086bc2
PZ
8960 unsigned long flags;
8961 int i;
8962
ec5d4989
HS
8963 if (sysctl_sched_rt_period <= 0)
8964 return -EINVAL;
8965
60aa605d
PZ
8966 /*
8967 * There's always some RT tasks in the root group
8968 * -- migration, kstopmachine etc..
8969 */
8970 if (sysctl_sched_rt_runtime == 0)
8971 return -EBUSY;
8972
0986b11b 8973 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8974 for_each_possible_cpu(i) {
8975 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8976
0986b11b 8977 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8978 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8979 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8980 }
0986b11b 8981 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8982
d0b27fa7
PZ
8983 return 0;
8984}
6d6bc0ad 8985#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8986
8987int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8988 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8989 loff_t *ppos)
8990{
8991 int ret;
8992 int old_period, old_runtime;
8993 static DEFINE_MUTEX(mutex);
8994
8995 mutex_lock(&mutex);
8996 old_period = sysctl_sched_rt_period;
8997 old_runtime = sysctl_sched_rt_runtime;
8998
8d65af78 8999 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9000
9001 if (!ret && write) {
9002 ret = sched_rt_global_constraints();
9003 if (ret) {
9004 sysctl_sched_rt_period = old_period;
9005 sysctl_sched_rt_runtime = old_runtime;
9006 } else {
9007 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9008 def_rt_bandwidth.rt_period =
9009 ns_to_ktime(global_rt_period());
9010 }
9011 }
9012 mutex_unlock(&mutex);
9013
9014 return ret;
9015}
68318b8e 9016
052f1dc7 9017#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9018
9019/* return corresponding task_group object of a cgroup */
2b01dfe3 9020static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9021{
2b01dfe3
PM
9022 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9023 struct task_group, css);
68318b8e
SV
9024}
9025
9026static struct cgroup_subsys_state *
2b01dfe3 9027cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9028{
ec7dc8ac 9029 struct task_group *tg, *parent;
68318b8e 9030
2b01dfe3 9031 if (!cgrp->parent) {
68318b8e 9032 /* This is early initialization for the top cgroup */
07e06b01 9033 return &root_task_group.css;
68318b8e
SV
9034 }
9035
ec7dc8ac
DG
9036 parent = cgroup_tg(cgrp->parent);
9037 tg = sched_create_group(parent);
68318b8e
SV
9038 if (IS_ERR(tg))
9039 return ERR_PTR(-ENOMEM);
9040
68318b8e
SV
9041 return &tg->css;
9042}
9043
41a2d6cf
IM
9044static void
9045cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9046{
2b01dfe3 9047 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9048
9049 sched_destroy_group(tg);
9050}
9051
41a2d6cf 9052static int
be367d09 9053cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9054{
b68aa230 9055#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9056 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9057 return -EINVAL;
9058#else
68318b8e
SV
9059 /* We don't support RT-tasks being in separate groups */
9060 if (tsk->sched_class != &fair_sched_class)
9061 return -EINVAL;
b68aa230 9062#endif
be367d09
BB
9063 return 0;
9064}
68318b8e 9065
be367d09
BB
9066static int
9067cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9068 struct task_struct *tsk, bool threadgroup)
9069{
9070 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9071 if (retval)
9072 return retval;
9073 if (threadgroup) {
9074 struct task_struct *c;
9075 rcu_read_lock();
9076 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9077 retval = cpu_cgroup_can_attach_task(cgrp, c);
9078 if (retval) {
9079 rcu_read_unlock();
9080 return retval;
9081 }
9082 }
9083 rcu_read_unlock();
9084 }
68318b8e
SV
9085 return 0;
9086}
9087
9088static void
2b01dfe3 9089cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9090 struct cgroup *old_cont, struct task_struct *tsk,
9091 bool threadgroup)
68318b8e
SV
9092{
9093 sched_move_task(tsk);
be367d09
BB
9094 if (threadgroup) {
9095 struct task_struct *c;
9096 rcu_read_lock();
9097 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9098 sched_move_task(c);
9099 }
9100 rcu_read_unlock();
9101 }
68318b8e
SV
9102}
9103
068c5cc5
PZ
9104static void
9105cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
9106{
9107 /*
9108 * cgroup_exit() is called in the copy_process() failure path.
9109 * Ignore this case since the task hasn't ran yet, this avoids
9110 * trying to poke a half freed task state from generic code.
9111 */
9112 if (!(task->flags & PF_EXITING))
9113 return;
9114
9115 sched_move_task(task);
9116}
9117
052f1dc7 9118#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9119static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9120 u64 shareval)
68318b8e 9121{
2b01dfe3 9122 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9123}
9124
f4c753b7 9125static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9126{
2b01dfe3 9127 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9128
9129 return (u64) tg->shares;
9130}
6d6bc0ad 9131#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9132
052f1dc7 9133#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9134static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9135 s64 val)
6f505b16 9136{
06ecb27c 9137 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9138}
9139
06ecb27c 9140static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9141{
06ecb27c 9142 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9143}
d0b27fa7
PZ
9144
9145static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9146 u64 rt_period_us)
9147{
9148 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9149}
9150
9151static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9152{
9153 return sched_group_rt_period(cgroup_tg(cgrp));
9154}
6d6bc0ad 9155#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9156
fe5c7cc2 9157static struct cftype cpu_files[] = {
052f1dc7 9158#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9159 {
9160 .name = "shares",
f4c753b7
PM
9161 .read_u64 = cpu_shares_read_u64,
9162 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9163 },
052f1dc7
PZ
9164#endif
9165#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9166 {
9f0c1e56 9167 .name = "rt_runtime_us",
06ecb27c
PM
9168 .read_s64 = cpu_rt_runtime_read,
9169 .write_s64 = cpu_rt_runtime_write,
6f505b16 9170 },
d0b27fa7
PZ
9171 {
9172 .name = "rt_period_us",
f4c753b7
PM
9173 .read_u64 = cpu_rt_period_read_uint,
9174 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9175 },
052f1dc7 9176#endif
68318b8e
SV
9177};
9178
9179static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9180{
fe5c7cc2 9181 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9182}
9183
9184struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9185 .name = "cpu",
9186 .create = cpu_cgroup_create,
9187 .destroy = cpu_cgroup_destroy,
9188 .can_attach = cpu_cgroup_can_attach,
9189 .attach = cpu_cgroup_attach,
068c5cc5 9190 .exit = cpu_cgroup_exit,
38605cae
IM
9191 .populate = cpu_cgroup_populate,
9192 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9193 .early_init = 1,
9194};
9195
052f1dc7 9196#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9197
9198#ifdef CONFIG_CGROUP_CPUACCT
9199
9200/*
9201 * CPU accounting code for task groups.
9202 *
9203 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9204 * (balbir@in.ibm.com).
9205 */
9206
934352f2 9207/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9208struct cpuacct {
9209 struct cgroup_subsys_state css;
9210 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9211 u64 __percpu *cpuusage;
ef12fefa 9212 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9213 struct cpuacct *parent;
d842de87
SV
9214};
9215
9216struct cgroup_subsys cpuacct_subsys;
9217
9218/* return cpu accounting group corresponding to this container */
32cd756a 9219static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9220{
32cd756a 9221 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9222 struct cpuacct, css);
9223}
9224
9225/* return cpu accounting group to which this task belongs */
9226static inline struct cpuacct *task_ca(struct task_struct *tsk)
9227{
9228 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9229 struct cpuacct, css);
9230}
9231
9232/* create a new cpu accounting group */
9233static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9234 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9235{
9236 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9237 int i;
d842de87
SV
9238
9239 if (!ca)
ef12fefa 9240 goto out;
d842de87
SV
9241
9242 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9243 if (!ca->cpuusage)
9244 goto out_free_ca;
9245
9246 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9247 if (percpu_counter_init(&ca->cpustat[i], 0))
9248 goto out_free_counters;
d842de87 9249
934352f2
BR
9250 if (cgrp->parent)
9251 ca->parent = cgroup_ca(cgrp->parent);
9252
d842de87 9253 return &ca->css;
ef12fefa
BR
9254
9255out_free_counters:
9256 while (--i >= 0)
9257 percpu_counter_destroy(&ca->cpustat[i]);
9258 free_percpu(ca->cpuusage);
9259out_free_ca:
9260 kfree(ca);
9261out:
9262 return ERR_PTR(-ENOMEM);
d842de87
SV
9263}
9264
9265/* destroy an existing cpu accounting group */
41a2d6cf 9266static void
32cd756a 9267cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9268{
32cd756a 9269 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9270 int i;
d842de87 9271
ef12fefa
BR
9272 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9273 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9274 free_percpu(ca->cpuusage);
9275 kfree(ca);
9276}
9277
720f5498
KC
9278static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9279{
b36128c8 9280 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9281 u64 data;
9282
9283#ifndef CONFIG_64BIT
9284 /*
9285 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9286 */
05fa785c 9287 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9288 data = *cpuusage;
05fa785c 9289 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9290#else
9291 data = *cpuusage;
9292#endif
9293
9294 return data;
9295}
9296
9297static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9298{
b36128c8 9299 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9300
9301#ifndef CONFIG_64BIT
9302 /*
9303 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9304 */
05fa785c 9305 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9306 *cpuusage = val;
05fa785c 9307 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9308#else
9309 *cpuusage = val;
9310#endif
9311}
9312
d842de87 9313/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9314static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9315{
32cd756a 9316 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9317 u64 totalcpuusage = 0;
9318 int i;
9319
720f5498
KC
9320 for_each_present_cpu(i)
9321 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9322
9323 return totalcpuusage;
9324}
9325
0297b803
DG
9326static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9327 u64 reset)
9328{
9329 struct cpuacct *ca = cgroup_ca(cgrp);
9330 int err = 0;
9331 int i;
9332
9333 if (reset) {
9334 err = -EINVAL;
9335 goto out;
9336 }
9337
720f5498
KC
9338 for_each_present_cpu(i)
9339 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9340
0297b803
DG
9341out:
9342 return err;
9343}
9344
e9515c3c
KC
9345static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9346 struct seq_file *m)
9347{
9348 struct cpuacct *ca = cgroup_ca(cgroup);
9349 u64 percpu;
9350 int i;
9351
9352 for_each_present_cpu(i) {
9353 percpu = cpuacct_cpuusage_read(ca, i);
9354 seq_printf(m, "%llu ", (unsigned long long) percpu);
9355 }
9356 seq_printf(m, "\n");
9357 return 0;
9358}
9359
ef12fefa
BR
9360static const char *cpuacct_stat_desc[] = {
9361 [CPUACCT_STAT_USER] = "user",
9362 [CPUACCT_STAT_SYSTEM] = "system",
9363};
9364
9365static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9366 struct cgroup_map_cb *cb)
9367{
9368 struct cpuacct *ca = cgroup_ca(cgrp);
9369 int i;
9370
9371 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9372 s64 val = percpu_counter_read(&ca->cpustat[i]);
9373 val = cputime64_to_clock_t(val);
9374 cb->fill(cb, cpuacct_stat_desc[i], val);
9375 }
9376 return 0;
9377}
9378
d842de87
SV
9379static struct cftype files[] = {
9380 {
9381 .name = "usage",
f4c753b7
PM
9382 .read_u64 = cpuusage_read,
9383 .write_u64 = cpuusage_write,
d842de87 9384 },
e9515c3c
KC
9385 {
9386 .name = "usage_percpu",
9387 .read_seq_string = cpuacct_percpu_seq_read,
9388 },
ef12fefa
BR
9389 {
9390 .name = "stat",
9391 .read_map = cpuacct_stats_show,
9392 },
d842de87
SV
9393};
9394
32cd756a 9395static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9396{
32cd756a 9397 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9398}
9399
9400/*
9401 * charge this task's execution time to its accounting group.
9402 *
9403 * called with rq->lock held.
9404 */
9405static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9406{
9407 struct cpuacct *ca;
934352f2 9408 int cpu;
d842de87 9409
c40c6f85 9410 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9411 return;
9412
934352f2 9413 cpu = task_cpu(tsk);
a18b83b7
BR
9414
9415 rcu_read_lock();
9416
d842de87 9417 ca = task_ca(tsk);
d842de87 9418
934352f2 9419 for (; ca; ca = ca->parent) {
b36128c8 9420 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9421 *cpuusage += cputime;
9422 }
a18b83b7
BR
9423
9424 rcu_read_unlock();
d842de87
SV
9425}
9426
fa535a77
AB
9427/*
9428 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9429 * in cputime_t units. As a result, cpuacct_update_stats calls
9430 * percpu_counter_add with values large enough to always overflow the
9431 * per cpu batch limit causing bad SMP scalability.
9432 *
9433 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9434 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9435 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9436 */
9437#ifdef CONFIG_SMP
9438#define CPUACCT_BATCH \
9439 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9440#else
9441#define CPUACCT_BATCH 0
9442#endif
9443
ef12fefa
BR
9444/*
9445 * Charge the system/user time to the task's accounting group.
9446 */
9447static void cpuacct_update_stats(struct task_struct *tsk,
9448 enum cpuacct_stat_index idx, cputime_t val)
9449{
9450 struct cpuacct *ca;
fa535a77 9451 int batch = CPUACCT_BATCH;
ef12fefa
BR
9452
9453 if (unlikely(!cpuacct_subsys.active))
9454 return;
9455
9456 rcu_read_lock();
9457 ca = task_ca(tsk);
9458
9459 do {
fa535a77 9460 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9461 ca = ca->parent;
9462 } while (ca);
9463 rcu_read_unlock();
9464}
9465
d842de87
SV
9466struct cgroup_subsys cpuacct_subsys = {
9467 .name = "cpuacct",
9468 .create = cpuacct_create,
9469 .destroy = cpuacct_destroy,
9470 .populate = cpuacct_populate,
9471 .subsys_id = cpuacct_subsys_id,
9472};
9473#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9474