]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched.c
sched: Avoid division by zero
[mirror_ubuntu-jammy-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 243 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
321static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a1ba4d8b 496 unsigned long rt_nr_total;
a22d7fc1 497 int overloaded;
917b627d 498 struct plist_head pushable_tasks;
fa85ae24 499#endif
6f505b16 500 int rt_throttled;
fa85ae24 501 u64 rt_time;
ac086bc2 502 u64 rt_runtime;
ea736ed5 503 /* Nests inside the rq lock: */
ac086bc2 504 spinlock_t rt_runtime_lock;
6f505b16 505
052f1dc7 506#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
507 unsigned long rt_nr_boosted;
508
6f505b16
PZ
509 struct rq *rq;
510 struct list_head leaf_rt_rq_list;
511 struct task_group *tg;
512 struct sched_rt_entity *rt_se;
513#endif
6aa645ea
IM
514};
515
57d885fe
GH
516#ifdef CONFIG_SMP
517
518/*
519 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
520 * variables. Each exclusive cpuset essentially defines an island domain by
521 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
522 * exclusive cpuset is created, we also create and attach a new root-domain
523 * object.
524 *
57d885fe
GH
525 */
526struct root_domain {
527 atomic_t refcount;
c6c4927b
RR
528 cpumask_var_t span;
529 cpumask_var_t online;
637f5085 530
0eab9146 531 /*
637f5085
GH
532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
534 */
c6c4927b 535 cpumask_var_t rto_mask;
0eab9146 536 atomic_t rto_count;
6e0534f2
GH
537#ifdef CONFIG_SMP
538 struct cpupri cpupri;
539#endif
7a09b1a2
VS
540#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 /*
542 * Preferred wake up cpu nominated by sched_mc balance that will be
543 * used when most cpus are idle in the system indicating overall very
544 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 */
546 unsigned int sched_mc_preferred_wakeup_cpu;
547#endif
57d885fe
GH
548};
549
dc938520
GH
550/*
551 * By default the system creates a single root-domain with all cpus as
552 * members (mimicking the global state we have today).
553 */
57d885fe
GH
554static struct root_domain def_root_domain;
555
556#endif
557
1da177e4
LT
558/*
559 * This is the main, per-CPU runqueue data structure.
560 *
561 * Locking rule: those places that want to lock multiple runqueues
562 * (such as the load balancing or the thread migration code), lock
563 * acquire operations must be ordered by ascending &runqueue.
564 */
70b97a7f 565struct rq {
d8016491
IM
566 /* runqueue lock: */
567 spinlock_t lock;
1da177e4
LT
568
569 /*
570 * nr_running and cpu_load should be in the same cacheline because
571 * remote CPUs use both these fields when doing load calculation.
572 */
573 unsigned long nr_running;
6aa645ea
IM
574 #define CPU_LOAD_IDX_MAX 5
575 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 576#ifdef CONFIG_NO_HZ
15934a37 577 unsigned long last_tick_seen;
46cb4b7c
SS
578 unsigned char in_nohz_recently;
579#endif
d8016491
IM
580 /* capture load from *all* tasks on this cpu: */
581 struct load_weight load;
6aa645ea
IM
582 unsigned long nr_load_updates;
583 u64 nr_switches;
23a185ca 584 u64 nr_migrations_in;
6aa645ea
IM
585
586 struct cfs_rq cfs;
6f505b16 587 struct rt_rq rt;
6f505b16 588
6aa645ea 589#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
590 /* list of leaf cfs_rq on this cpu: */
591 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
592#endif
593#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 594 struct list_head leaf_rt_rq_list;
1da177e4 595#endif
1da177e4
LT
596
597 /*
598 * This is part of a global counter where only the total sum
599 * over all CPUs matters. A task can increase this counter on
600 * one CPU and if it got migrated afterwards it may decrease
601 * it on another CPU. Always updated under the runqueue lock:
602 */
603 unsigned long nr_uninterruptible;
604
36c8b586 605 struct task_struct *curr, *idle;
c9819f45 606 unsigned long next_balance;
1da177e4 607 struct mm_struct *prev_mm;
6aa645ea 608
3e51f33f 609 u64 clock;
6aa645ea 610
1da177e4
LT
611 atomic_t nr_iowait;
612
613#ifdef CONFIG_SMP
0eab9146 614 struct root_domain *rd;
1da177e4
LT
615 struct sched_domain *sd;
616
a0a522ce 617 unsigned char idle_at_tick;
1da177e4 618 /* For active balancing */
3f029d3c 619 int post_schedule;
1da177e4
LT
620 int active_balance;
621 int push_cpu;
d8016491
IM
622 /* cpu of this runqueue: */
623 int cpu;
1f11eb6a 624 int online;
1da177e4 625
a8a51d5e 626 unsigned long avg_load_per_task;
1da177e4 627
36c8b586 628 struct task_struct *migration_thread;
1da177e4
LT
629 struct list_head migration_queue;
630#endif
631
dce48a84
TG
632 /* calc_load related fields */
633 unsigned long calc_load_update;
634 long calc_load_active;
635
8f4d37ec 636#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
637#ifdef CONFIG_SMP
638 int hrtick_csd_pending;
639 struct call_single_data hrtick_csd;
640#endif
8f4d37ec
PZ
641 struct hrtimer hrtick_timer;
642#endif
643
1da177e4
LT
644#ifdef CONFIG_SCHEDSTATS
645 /* latency stats */
646 struct sched_info rq_sched_info;
9c2c4802
KC
647 unsigned long long rq_cpu_time;
648 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
649
650 /* sys_sched_yield() stats */
480b9434 651 unsigned int yld_count;
1da177e4
LT
652
653 /* schedule() stats */
480b9434
KC
654 unsigned int sched_switch;
655 unsigned int sched_count;
656 unsigned int sched_goidle;
1da177e4
LT
657
658 /* try_to_wake_up() stats */
480b9434
KC
659 unsigned int ttwu_count;
660 unsigned int ttwu_local;
b8efb561
IM
661
662 /* BKL stats */
480b9434 663 unsigned int bkl_count;
1da177e4
LT
664#endif
665};
666
f34e3b61 667static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 668
15afe09b 669static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 670{
15afe09b 671 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
672}
673
0a2966b4
CL
674static inline int cpu_of(struct rq *rq)
675{
676#ifdef CONFIG_SMP
677 return rq->cpu;
678#else
679 return 0;
680#endif
681}
682
674311d5
NP
683/*
684 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 685 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
686 *
687 * The domain tree of any CPU may only be accessed from within
688 * preempt-disabled sections.
689 */
48f24c4d
IM
690#define for_each_domain(cpu, __sd) \
691 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
692
693#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
694#define this_rq() (&__get_cpu_var(runqueues))
695#define task_rq(p) cpu_rq(task_cpu(p))
696#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 697#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 698
aa9c4c0f 699inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
700{
701 rq->clock = sched_clock_cpu(cpu_of(rq));
702}
703
bf5c91ba
IM
704/*
705 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
706 */
707#ifdef CONFIG_SCHED_DEBUG
708# define const_debug __read_mostly
709#else
710# define const_debug static const
711#endif
712
017730c1
IM
713/**
714 * runqueue_is_locked
715 *
716 * Returns true if the current cpu runqueue is locked.
717 * This interface allows printk to be called with the runqueue lock
718 * held and know whether or not it is OK to wake up the klogd.
719 */
720int runqueue_is_locked(void)
721{
722 int cpu = get_cpu();
723 struct rq *rq = cpu_rq(cpu);
724 int ret;
725
726 ret = spin_is_locked(&rq->lock);
727 put_cpu();
728 return ret;
729}
730
bf5c91ba
IM
731/*
732 * Debugging: various feature bits
733 */
f00b45c1
PZ
734
735#define SCHED_FEAT(name, enabled) \
736 __SCHED_FEAT_##name ,
737
bf5c91ba 738enum {
f00b45c1 739#include "sched_features.h"
bf5c91ba
IM
740};
741
f00b45c1
PZ
742#undef SCHED_FEAT
743
744#define SCHED_FEAT(name, enabled) \
745 (1UL << __SCHED_FEAT_##name) * enabled |
746
bf5c91ba 747const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
748#include "sched_features.h"
749 0;
750
751#undef SCHED_FEAT
752
753#ifdef CONFIG_SCHED_DEBUG
754#define SCHED_FEAT(name, enabled) \
755 #name ,
756
983ed7a6 757static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
758#include "sched_features.h"
759 NULL
760};
761
762#undef SCHED_FEAT
763
34f3a814 764static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 765{
f00b45c1
PZ
766 int i;
767
768 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
769 if (!(sysctl_sched_features & (1UL << i)))
770 seq_puts(m, "NO_");
771 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 772 }
34f3a814 773 seq_puts(m, "\n");
f00b45c1 774
34f3a814 775 return 0;
f00b45c1
PZ
776}
777
778static ssize_t
779sched_feat_write(struct file *filp, const char __user *ubuf,
780 size_t cnt, loff_t *ppos)
781{
782 char buf[64];
783 char *cmp = buf;
784 int neg = 0;
785 int i;
786
787 if (cnt > 63)
788 cnt = 63;
789
790 if (copy_from_user(&buf, ubuf, cnt))
791 return -EFAULT;
792
793 buf[cnt] = 0;
794
c24b7c52 795 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
796 neg = 1;
797 cmp += 3;
798 }
799
800 for (i = 0; sched_feat_names[i]; i++) {
801 int len = strlen(sched_feat_names[i]);
802
803 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
804 if (neg)
805 sysctl_sched_features &= ~(1UL << i);
806 else
807 sysctl_sched_features |= (1UL << i);
808 break;
809 }
810 }
811
812 if (!sched_feat_names[i])
813 return -EINVAL;
814
815 filp->f_pos += cnt;
816
817 return cnt;
818}
819
34f3a814
LZ
820static int sched_feat_open(struct inode *inode, struct file *filp)
821{
822 return single_open(filp, sched_feat_show, NULL);
823}
824
f00b45c1 825static struct file_operations sched_feat_fops = {
34f3a814
LZ
826 .open = sched_feat_open,
827 .write = sched_feat_write,
828 .read = seq_read,
829 .llseek = seq_lseek,
830 .release = single_release,
f00b45c1
PZ
831};
832
833static __init int sched_init_debug(void)
834{
f00b45c1
PZ
835 debugfs_create_file("sched_features", 0644, NULL, NULL,
836 &sched_feat_fops);
837
838 return 0;
839}
840late_initcall(sched_init_debug);
841
842#endif
843
844#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 845
b82d9fdd
PZ
846/*
847 * Number of tasks to iterate in a single balance run.
848 * Limited because this is done with IRQs disabled.
849 */
850const_debug unsigned int sysctl_sched_nr_migrate = 32;
851
2398f2c6
PZ
852/*
853 * ratelimit for updating the group shares.
55cd5340 854 * default: 0.25ms
2398f2c6 855 */
55cd5340 856unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 857
ffda12a1
PZ
858/*
859 * Inject some fuzzyness into changing the per-cpu group shares
860 * this avoids remote rq-locks at the expense of fairness.
861 * default: 4
862 */
863unsigned int sysctl_sched_shares_thresh = 4;
864
fa85ae24 865/*
9f0c1e56 866 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
867 * default: 1s
868 */
9f0c1e56 869unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 870
6892b75e
IM
871static __read_mostly int scheduler_running;
872
9f0c1e56
PZ
873/*
874 * part of the period that we allow rt tasks to run in us.
875 * default: 0.95s
876 */
877int sysctl_sched_rt_runtime = 950000;
fa85ae24 878
d0b27fa7
PZ
879static inline u64 global_rt_period(void)
880{
881 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
882}
883
884static inline u64 global_rt_runtime(void)
885{
e26873bb 886 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
887 return RUNTIME_INF;
888
889 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
890}
fa85ae24 891
1da177e4 892#ifndef prepare_arch_switch
4866cde0
NP
893# define prepare_arch_switch(next) do { } while (0)
894#endif
895#ifndef finish_arch_switch
896# define finish_arch_switch(prev) do { } while (0)
897#endif
898
051a1d1a
DA
899static inline int task_current(struct rq *rq, struct task_struct *p)
900{
901 return rq->curr == p;
902}
903
4866cde0 904#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 905static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 906{
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908}
909
70b97a7f 910static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
911{
912}
913
70b97a7f 914static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 915{
da04c035
IM
916#ifdef CONFIG_DEBUG_SPINLOCK
917 /* this is a valid case when another task releases the spinlock */
918 rq->lock.owner = current;
919#endif
8a25d5de
IM
920 /*
921 * If we are tracking spinlock dependencies then we have to
922 * fix up the runqueue lock - which gets 'carried over' from
923 * prev into current:
924 */
925 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
926
4866cde0
NP
927 spin_unlock_irq(&rq->lock);
928}
929
930#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 931static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
932{
933#ifdef CONFIG_SMP
934 return p->oncpu;
935#else
051a1d1a 936 return task_current(rq, p);
4866cde0
NP
937#endif
938}
939
70b97a7f 940static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
941{
942#ifdef CONFIG_SMP
943 /*
944 * We can optimise this out completely for !SMP, because the
945 * SMP rebalancing from interrupt is the only thing that cares
946 * here.
947 */
948 next->oncpu = 1;
949#endif
950#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
951 spin_unlock_irq(&rq->lock);
952#else
953 spin_unlock(&rq->lock);
954#endif
955}
956
70b97a7f 957static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
958{
959#ifdef CONFIG_SMP
960 /*
961 * After ->oncpu is cleared, the task can be moved to a different CPU.
962 * We must ensure this doesn't happen until the switch is completely
963 * finished.
964 */
965 smp_wmb();
966 prev->oncpu = 0;
967#endif
968#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
969 local_irq_enable();
1da177e4 970#endif
4866cde0
NP
971}
972#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 973
b29739f9
IM
974/*
975 * __task_rq_lock - lock the runqueue a given task resides on.
976 * Must be called interrupts disabled.
977 */
70b97a7f 978static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
979 __acquires(rq->lock)
980{
3a5c359a
AK
981 for (;;) {
982 struct rq *rq = task_rq(p);
983 spin_lock(&rq->lock);
984 if (likely(rq == task_rq(p)))
985 return rq;
b29739f9 986 spin_unlock(&rq->lock);
b29739f9 987 }
b29739f9
IM
988}
989
1da177e4
LT
990/*
991 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 992 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
993 * explicitly disabling preemption.
994 */
70b97a7f 995static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
996 __acquires(rq->lock)
997{
70b97a7f 998 struct rq *rq;
1da177e4 999
3a5c359a
AK
1000 for (;;) {
1001 local_irq_save(*flags);
1002 rq = task_rq(p);
1003 spin_lock(&rq->lock);
1004 if (likely(rq == task_rq(p)))
1005 return rq;
1da177e4 1006 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1007 }
1da177e4
LT
1008}
1009
ad474cac
ON
1010void task_rq_unlock_wait(struct task_struct *p)
1011{
1012 struct rq *rq = task_rq(p);
1013
1014 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1015 spin_unlock_wait(&rq->lock);
1016}
1017
a9957449 1018static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1019 __releases(rq->lock)
1020{
1021 spin_unlock(&rq->lock);
1022}
1023
70b97a7f 1024static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1025 __releases(rq->lock)
1026{
1027 spin_unlock_irqrestore(&rq->lock, *flags);
1028}
1029
1da177e4 1030/*
cc2a73b5 1031 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1032 */
a9957449 1033static struct rq *this_rq_lock(void)
1da177e4
LT
1034 __acquires(rq->lock)
1035{
70b97a7f 1036 struct rq *rq;
1da177e4
LT
1037
1038 local_irq_disable();
1039 rq = this_rq();
1040 spin_lock(&rq->lock);
1041
1042 return rq;
1043}
1044
8f4d37ec
PZ
1045#ifdef CONFIG_SCHED_HRTICK
1046/*
1047 * Use HR-timers to deliver accurate preemption points.
1048 *
1049 * Its all a bit involved since we cannot program an hrt while holding the
1050 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1051 * reschedule event.
1052 *
1053 * When we get rescheduled we reprogram the hrtick_timer outside of the
1054 * rq->lock.
1055 */
8f4d37ec
PZ
1056
1057/*
1058 * Use hrtick when:
1059 * - enabled by features
1060 * - hrtimer is actually high res
1061 */
1062static inline int hrtick_enabled(struct rq *rq)
1063{
1064 if (!sched_feat(HRTICK))
1065 return 0;
ba42059f 1066 if (!cpu_active(cpu_of(rq)))
b328ca18 1067 return 0;
8f4d37ec
PZ
1068 return hrtimer_is_hres_active(&rq->hrtick_timer);
1069}
1070
8f4d37ec
PZ
1071static void hrtick_clear(struct rq *rq)
1072{
1073 if (hrtimer_active(&rq->hrtick_timer))
1074 hrtimer_cancel(&rq->hrtick_timer);
1075}
1076
8f4d37ec
PZ
1077/*
1078 * High-resolution timer tick.
1079 * Runs from hardirq context with interrupts disabled.
1080 */
1081static enum hrtimer_restart hrtick(struct hrtimer *timer)
1082{
1083 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1084
1085 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1086
1087 spin_lock(&rq->lock);
3e51f33f 1088 update_rq_clock(rq);
8f4d37ec
PZ
1089 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1090 spin_unlock(&rq->lock);
1091
1092 return HRTIMER_NORESTART;
1093}
1094
95e904c7 1095#ifdef CONFIG_SMP
31656519
PZ
1096/*
1097 * called from hardirq (IPI) context
1098 */
1099static void __hrtick_start(void *arg)
b328ca18 1100{
31656519 1101 struct rq *rq = arg;
b328ca18 1102
31656519
PZ
1103 spin_lock(&rq->lock);
1104 hrtimer_restart(&rq->hrtick_timer);
1105 rq->hrtick_csd_pending = 0;
1106 spin_unlock(&rq->lock);
b328ca18
PZ
1107}
1108
31656519
PZ
1109/*
1110 * Called to set the hrtick timer state.
1111 *
1112 * called with rq->lock held and irqs disabled
1113 */
1114static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1115{
31656519
PZ
1116 struct hrtimer *timer = &rq->hrtick_timer;
1117 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1118
cc584b21 1119 hrtimer_set_expires(timer, time);
31656519
PZ
1120
1121 if (rq == this_rq()) {
1122 hrtimer_restart(timer);
1123 } else if (!rq->hrtick_csd_pending) {
6e275637 1124 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1125 rq->hrtick_csd_pending = 1;
1126 }
b328ca18
PZ
1127}
1128
1129static int
1130hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1131{
1132 int cpu = (int)(long)hcpu;
1133
1134 switch (action) {
1135 case CPU_UP_CANCELED:
1136 case CPU_UP_CANCELED_FROZEN:
1137 case CPU_DOWN_PREPARE:
1138 case CPU_DOWN_PREPARE_FROZEN:
1139 case CPU_DEAD:
1140 case CPU_DEAD_FROZEN:
31656519 1141 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1142 return NOTIFY_OK;
1143 }
1144
1145 return NOTIFY_DONE;
1146}
1147
fa748203 1148static __init void init_hrtick(void)
b328ca18
PZ
1149{
1150 hotcpu_notifier(hotplug_hrtick, 0);
1151}
31656519
PZ
1152#else
1153/*
1154 * Called to set the hrtick timer state.
1155 *
1156 * called with rq->lock held and irqs disabled
1157 */
1158static void hrtick_start(struct rq *rq, u64 delay)
1159{
7f1e2ca9 1160 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1161 HRTIMER_MODE_REL_PINNED, 0);
31656519 1162}
b328ca18 1163
006c75f1 1164static inline void init_hrtick(void)
8f4d37ec 1165{
8f4d37ec 1166}
31656519 1167#endif /* CONFIG_SMP */
8f4d37ec 1168
31656519 1169static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1170{
31656519
PZ
1171#ifdef CONFIG_SMP
1172 rq->hrtick_csd_pending = 0;
8f4d37ec 1173
31656519
PZ
1174 rq->hrtick_csd.flags = 0;
1175 rq->hrtick_csd.func = __hrtick_start;
1176 rq->hrtick_csd.info = rq;
1177#endif
8f4d37ec 1178
31656519
PZ
1179 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1180 rq->hrtick_timer.function = hrtick;
8f4d37ec 1181}
006c75f1 1182#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1183static inline void hrtick_clear(struct rq *rq)
1184{
1185}
1186
8f4d37ec
PZ
1187static inline void init_rq_hrtick(struct rq *rq)
1188{
1189}
1190
b328ca18
PZ
1191static inline void init_hrtick(void)
1192{
1193}
006c75f1 1194#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1195
c24d20db
IM
1196/*
1197 * resched_task - mark a task 'to be rescheduled now'.
1198 *
1199 * On UP this means the setting of the need_resched flag, on SMP it
1200 * might also involve a cross-CPU call to trigger the scheduler on
1201 * the target CPU.
1202 */
1203#ifdef CONFIG_SMP
1204
1205#ifndef tsk_is_polling
1206#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1207#endif
1208
31656519 1209static void resched_task(struct task_struct *p)
c24d20db
IM
1210{
1211 int cpu;
1212
1213 assert_spin_locked(&task_rq(p)->lock);
1214
5ed0cec0 1215 if (test_tsk_need_resched(p))
c24d20db
IM
1216 return;
1217
5ed0cec0 1218 set_tsk_need_resched(p);
c24d20db
IM
1219
1220 cpu = task_cpu(p);
1221 if (cpu == smp_processor_id())
1222 return;
1223
1224 /* NEED_RESCHED must be visible before we test polling */
1225 smp_mb();
1226 if (!tsk_is_polling(p))
1227 smp_send_reschedule(cpu);
1228}
1229
1230static void resched_cpu(int cpu)
1231{
1232 struct rq *rq = cpu_rq(cpu);
1233 unsigned long flags;
1234
1235 if (!spin_trylock_irqsave(&rq->lock, flags))
1236 return;
1237 resched_task(cpu_curr(cpu));
1238 spin_unlock_irqrestore(&rq->lock, flags);
1239}
06d8308c
TG
1240
1241#ifdef CONFIG_NO_HZ
1242/*
1243 * When add_timer_on() enqueues a timer into the timer wheel of an
1244 * idle CPU then this timer might expire before the next timer event
1245 * which is scheduled to wake up that CPU. In case of a completely
1246 * idle system the next event might even be infinite time into the
1247 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1248 * leaves the inner idle loop so the newly added timer is taken into
1249 * account when the CPU goes back to idle and evaluates the timer
1250 * wheel for the next timer event.
1251 */
1252void wake_up_idle_cpu(int cpu)
1253{
1254 struct rq *rq = cpu_rq(cpu);
1255
1256 if (cpu == smp_processor_id())
1257 return;
1258
1259 /*
1260 * This is safe, as this function is called with the timer
1261 * wheel base lock of (cpu) held. When the CPU is on the way
1262 * to idle and has not yet set rq->curr to idle then it will
1263 * be serialized on the timer wheel base lock and take the new
1264 * timer into account automatically.
1265 */
1266 if (rq->curr != rq->idle)
1267 return;
1268
1269 /*
1270 * We can set TIF_RESCHED on the idle task of the other CPU
1271 * lockless. The worst case is that the other CPU runs the
1272 * idle task through an additional NOOP schedule()
1273 */
5ed0cec0 1274 set_tsk_need_resched(rq->idle);
06d8308c
TG
1275
1276 /* NEED_RESCHED must be visible before we test polling */
1277 smp_mb();
1278 if (!tsk_is_polling(rq->idle))
1279 smp_send_reschedule(cpu);
1280}
6d6bc0ad 1281#endif /* CONFIG_NO_HZ */
06d8308c 1282
6d6bc0ad 1283#else /* !CONFIG_SMP */
31656519 1284static void resched_task(struct task_struct *p)
c24d20db
IM
1285{
1286 assert_spin_locked(&task_rq(p)->lock);
31656519 1287 set_tsk_need_resched(p);
c24d20db 1288}
6d6bc0ad 1289#endif /* CONFIG_SMP */
c24d20db 1290
45bf76df
IM
1291#if BITS_PER_LONG == 32
1292# define WMULT_CONST (~0UL)
1293#else
1294# define WMULT_CONST (1UL << 32)
1295#endif
1296
1297#define WMULT_SHIFT 32
1298
194081eb
IM
1299/*
1300 * Shift right and round:
1301 */
cf2ab469 1302#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1303
a7be37ac
PZ
1304/*
1305 * delta *= weight / lw
1306 */
cb1c4fc9 1307static unsigned long
45bf76df
IM
1308calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1309 struct load_weight *lw)
1310{
1311 u64 tmp;
1312
7a232e03
LJ
1313 if (!lw->inv_weight) {
1314 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1315 lw->inv_weight = 1;
1316 else
1317 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1318 / (lw->weight+1);
1319 }
45bf76df
IM
1320
1321 tmp = (u64)delta_exec * weight;
1322 /*
1323 * Check whether we'd overflow the 64-bit multiplication:
1324 */
194081eb 1325 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1326 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1327 WMULT_SHIFT/2);
1328 else
cf2ab469 1329 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1330
ecf691da 1331 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1335{
1336 lw->weight += inc;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
1091985b 1340static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1341{
1342 lw->weight -= dec;
e89996ae 1343 lw->inv_weight = 0;
45bf76df
IM
1344}
1345
2dd73a4f
PW
1346/*
1347 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1348 * of tasks with abnormal "nice" values across CPUs the contribution that
1349 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1350 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1351 * scaled version of the new time slice allocation that they receive on time
1352 * slice expiry etc.
1353 */
1354
cce7ade8
PZ
1355#define WEIGHT_IDLEPRIO 3
1356#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1357
1358/*
1359 * Nice levels are multiplicative, with a gentle 10% change for every
1360 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1361 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1362 * that remained on nice 0.
1363 *
1364 * The "10% effect" is relative and cumulative: from _any_ nice level,
1365 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1366 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1367 * If a task goes up by ~10% and another task goes down by ~10% then
1368 * the relative distance between them is ~25%.)
dd41f596
IM
1369 */
1370static const int prio_to_weight[40] = {
254753dc
IM
1371 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1372 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1373 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1374 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1375 /* 0 */ 1024, 820, 655, 526, 423,
1376 /* 5 */ 335, 272, 215, 172, 137,
1377 /* 10 */ 110, 87, 70, 56, 45,
1378 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1379};
1380
5714d2de
IM
1381/*
1382 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1383 *
1384 * In cases where the weight does not change often, we can use the
1385 * precalculated inverse to speed up arithmetics by turning divisions
1386 * into multiplications:
1387 */
dd41f596 1388static const u32 prio_to_wmult[40] = {
254753dc
IM
1389 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1390 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1391 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1392 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1393 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1394 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1395 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1396 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1397};
2dd73a4f 1398
dd41f596
IM
1399static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1400
1401/*
1402 * runqueue iterator, to support SMP load-balancing between different
1403 * scheduling classes, without having to expose their internal data
1404 * structures to the load-balancing proper:
1405 */
1406struct rq_iterator {
1407 void *arg;
1408 struct task_struct *(*start)(void *);
1409 struct task_struct *(*next)(void *);
1410};
1411
e1d1484f
PW
1412#ifdef CONFIG_SMP
1413static unsigned long
1414balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 unsigned long max_load_move, struct sched_domain *sd,
1416 enum cpu_idle_type idle, int *all_pinned,
1417 int *this_best_prio, struct rq_iterator *iterator);
1418
1419static int
1420iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1421 struct sched_domain *sd, enum cpu_idle_type idle,
1422 struct rq_iterator *iterator);
e1d1484f 1423#endif
dd41f596 1424
ef12fefa
BR
1425/* Time spent by the tasks of the cpu accounting group executing in ... */
1426enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431};
1432
d842de87
SV
1433#ifdef CONFIG_CGROUP_CPUACCT
1434static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1435static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1437#else
1438static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1439static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1441#endif
1442
18d95a28
PZ
1443static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444{
1445 update_load_add(&rq->load, load);
1446}
1447
1448static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449{
1450 update_load_sub(&rq->load, load);
1451}
1452
7940ca36 1453#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1454typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1455
1456/*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
eb755805 1460static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1461{
1462 struct task_group *parent, *child;
eb755805 1463 int ret;
c09595f6
PZ
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467down:
eb755805
PZ
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
c09595f6
PZ
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475up:
1476 continue;
1477 }
eb755805
PZ
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
c09595f6
PZ
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
eb755805 1486out_unlock:
c09595f6 1487 rcu_read_unlock();
eb755805
PZ
1488
1489 return ret;
c09595f6
PZ
1490}
1491
eb755805
PZ
1492static int tg_nop(struct task_group *tg, void *data)
1493{
1494 return 0;
c09595f6 1495}
eb755805
PZ
1496#endif
1497
1498#ifdef CONFIG_SMP
1499static unsigned long source_load(int cpu, int type);
1500static unsigned long target_load(int cpu, int type);
1501static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1502
1503static unsigned long cpu_avg_load_per_task(int cpu)
1504{
1505 struct rq *rq = cpu_rq(cpu);
af6d596f 1506 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1507
4cd42620
SR
1508 if (nr_running)
1509 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1510 else
1511 rq->avg_load_per_task = 0;
eb755805
PZ
1512
1513 return rq->avg_load_per_task;
1514}
1515
1516#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1517
c09595f6
PZ
1518static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1519
1520/*
1521 * Calculate and set the cpu's group shares.
1522 */
1523static void
ffda12a1 1524update_group_shares_cpu(struct task_group *tg, int cpu,
a8af7246
PZ
1525 unsigned long sd_shares, unsigned long sd_rq_weight,
1526 unsigned long sd_eff_weight)
18d95a28 1527{
c09595f6 1528 unsigned long rq_weight;
a5004278
PZ
1529 unsigned long shares;
1530 int boost = 0;
c09595f6 1531
c8cba857 1532 if (!tg->se[cpu])
c09595f6
PZ
1533 return;
1534
ec4e0e2f 1535 rq_weight = tg->cfs_rq[cpu]->rq_weight;
a5004278
PZ
1536 if (!rq_weight) {
1537 boost = 1;
1538 rq_weight = NICE_0_LOAD;
a8af7246
PZ
1539 if (sd_rq_weight == sd_eff_weight)
1540 sd_eff_weight += NICE_0_LOAD;
1541 sd_rq_weight = sd_eff_weight;
a5004278 1542 }
c8cba857 1543
c09595f6 1544 /*
a8af7246
PZ
1545 * \Sum_j shares_j * rq_weight_i
1546 * shares_i = -----------------------------
1547 * \Sum_j rq_weight_j
c09595f6 1548 */
ec4e0e2f 1549 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1550 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1551
ffda12a1
PZ
1552 if (abs(shares - tg->se[cpu]->load.weight) >
1553 sysctl_sched_shares_thresh) {
1554 struct rq *rq = cpu_rq(cpu);
1555 unsigned long flags;
c09595f6 1556
ffda12a1 1557 spin_lock_irqsave(&rq->lock, flags);
a5004278 1558 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1559 __set_se_shares(tg->se[cpu], shares);
1560 spin_unlock_irqrestore(&rq->lock, flags);
1561 }
18d95a28 1562}
c09595f6
PZ
1563
1564/*
c8cba857
PZ
1565 * Re-compute the task group their per cpu shares over the given domain.
1566 * This needs to be done in a bottom-up fashion because the rq weight of a
1567 * parent group depends on the shares of its child groups.
c09595f6 1568 */
eb755805 1569static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1570{
a5004278 1571 unsigned long weight, rq_weight = 0, eff_weight = 0;
c8cba857 1572 unsigned long shares = 0;
eb755805 1573 struct sched_domain *sd = data;
c8cba857 1574 int i;
c09595f6 1575
758b2cdc 1576 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1577 /*
1578 * If there are currently no tasks on the cpu pretend there
1579 * is one of average load so that when a new task gets to
1580 * run here it will not get delayed by group starvation.
1581 */
1582 weight = tg->cfs_rq[i]->load.weight;
a5004278
PZ
1583 tg->cfs_rq[i]->rq_weight = weight;
1584 rq_weight += weight;
1585
ec4e0e2f
KC
1586 if (!weight)
1587 weight = NICE_0_LOAD;
1588
a5004278 1589 eff_weight += weight;
c8cba857 1590 shares += tg->cfs_rq[i]->shares;
c09595f6 1591 }
c09595f6 1592
c8cba857
PZ
1593 if ((!shares && rq_weight) || shares > tg->shares)
1594 shares = tg->shares;
1595
1596 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1597 shares = tg->shares;
c09595f6 1598
a8af7246
PZ
1599 for_each_cpu(i, sched_domain_span(sd))
1600 update_group_shares_cpu(tg, i, shares, rq_weight, eff_weight);
eb755805
PZ
1601
1602 return 0;
c09595f6
PZ
1603}
1604
1605/*
c8cba857
PZ
1606 * Compute the cpu's hierarchical load factor for each task group.
1607 * This needs to be done in a top-down fashion because the load of a child
1608 * group is a fraction of its parents load.
c09595f6 1609 */
eb755805 1610static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1611{
c8cba857 1612 unsigned long load;
eb755805 1613 long cpu = (long)data;
c09595f6 1614
c8cba857
PZ
1615 if (!tg->parent) {
1616 load = cpu_rq(cpu)->load.weight;
1617 } else {
1618 load = tg->parent->cfs_rq[cpu]->h_load;
1619 load *= tg->cfs_rq[cpu]->shares;
1620 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1621 }
c09595f6 1622
c8cba857 1623 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1624
eb755805 1625 return 0;
c09595f6
PZ
1626}
1627
c8cba857 1628static void update_shares(struct sched_domain *sd)
4d8d595d 1629{
e7097159
PZ
1630 s64 elapsed;
1631 u64 now;
1632
1633 if (root_task_group_empty())
1634 return;
1635
1636 now = cpu_clock(raw_smp_processor_id());
1637 elapsed = now - sd->last_update;
2398f2c6
PZ
1638
1639 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1640 sd->last_update = now;
eb755805 1641 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1642 }
4d8d595d
PZ
1643}
1644
3e5459b4
PZ
1645static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1646{
e7097159
PZ
1647 if (root_task_group_empty())
1648 return;
1649
3e5459b4
PZ
1650 spin_unlock(&rq->lock);
1651 update_shares(sd);
1652 spin_lock(&rq->lock);
1653}
1654
eb755805 1655static void update_h_load(long cpu)
c09595f6 1656{
e7097159
PZ
1657 if (root_task_group_empty())
1658 return;
1659
eb755805 1660 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1661}
1662
c09595f6
PZ
1663#else
1664
c8cba857 1665static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1666{
1667}
1668
3e5459b4
PZ
1669static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1670{
1671}
1672
18d95a28
PZ
1673#endif
1674
8f45e2b5
GH
1675#ifdef CONFIG_PREEMPT
1676
70574a99 1677/*
8f45e2b5
GH
1678 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1679 * way at the expense of forcing extra atomic operations in all
1680 * invocations. This assures that the double_lock is acquired using the
1681 * same underlying policy as the spinlock_t on this architecture, which
1682 * reduces latency compared to the unfair variant below. However, it
1683 * also adds more overhead and therefore may reduce throughput.
70574a99 1684 */
8f45e2b5
GH
1685static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1686 __releases(this_rq->lock)
1687 __acquires(busiest->lock)
1688 __acquires(this_rq->lock)
1689{
1690 spin_unlock(&this_rq->lock);
1691 double_rq_lock(this_rq, busiest);
1692
1693 return 1;
1694}
1695
1696#else
1697/*
1698 * Unfair double_lock_balance: Optimizes throughput at the expense of
1699 * latency by eliminating extra atomic operations when the locks are
1700 * already in proper order on entry. This favors lower cpu-ids and will
1701 * grant the double lock to lower cpus over higher ids under contention,
1702 * regardless of entry order into the function.
1703 */
1704static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1705 __releases(this_rq->lock)
1706 __acquires(busiest->lock)
1707 __acquires(this_rq->lock)
1708{
1709 int ret = 0;
1710
70574a99
AD
1711 if (unlikely(!spin_trylock(&busiest->lock))) {
1712 if (busiest < this_rq) {
1713 spin_unlock(&this_rq->lock);
1714 spin_lock(&busiest->lock);
1715 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1716 ret = 1;
1717 } else
1718 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1719 }
1720 return ret;
1721}
1722
8f45e2b5
GH
1723#endif /* CONFIG_PREEMPT */
1724
1725/*
1726 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1727 */
1728static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1729{
1730 if (unlikely(!irqs_disabled())) {
1731 /* printk() doesn't work good under rq->lock */
1732 spin_unlock(&this_rq->lock);
1733 BUG_ON(1);
1734 }
1735
1736 return _double_lock_balance(this_rq, busiest);
1737}
1738
70574a99
AD
1739static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1740 __releases(busiest->lock)
1741{
1742 spin_unlock(&busiest->lock);
1743 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1744}
18d95a28
PZ
1745#endif
1746
30432094 1747#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1748static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1749{
30432094 1750#ifdef CONFIG_SMP
34e83e85
IM
1751 cfs_rq->shares = shares;
1752#endif
1753}
30432094 1754#endif
e7693a36 1755
dce48a84
TG
1756static void calc_load_account_active(struct rq *this_rq);
1757
dd41f596 1758#include "sched_stats.h"
dd41f596 1759#include "sched_idletask.c"
5522d5d5
IM
1760#include "sched_fair.c"
1761#include "sched_rt.c"
dd41f596
IM
1762#ifdef CONFIG_SCHED_DEBUG
1763# include "sched_debug.c"
1764#endif
1765
1766#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1767#define for_each_class(class) \
1768 for (class = sched_class_highest; class; class = class->next)
dd41f596 1769
c09595f6 1770static void inc_nr_running(struct rq *rq)
9c217245
IM
1771{
1772 rq->nr_running++;
9c217245
IM
1773}
1774
c09595f6 1775static void dec_nr_running(struct rq *rq)
9c217245
IM
1776{
1777 rq->nr_running--;
9c217245
IM
1778}
1779
45bf76df
IM
1780static void set_load_weight(struct task_struct *p)
1781{
1782 if (task_has_rt_policy(p)) {
dd41f596
IM
1783 p->se.load.weight = prio_to_weight[0] * 2;
1784 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1785 return;
1786 }
45bf76df 1787
dd41f596
IM
1788 /*
1789 * SCHED_IDLE tasks get minimal weight:
1790 */
1791 if (p->policy == SCHED_IDLE) {
1792 p->se.load.weight = WEIGHT_IDLEPRIO;
1793 p->se.load.inv_weight = WMULT_IDLEPRIO;
1794 return;
1795 }
71f8bd46 1796
dd41f596
IM
1797 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1798 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1799}
1800
2087a1ad
GH
1801static void update_avg(u64 *avg, u64 sample)
1802{
1803 s64 diff = sample - *avg;
1804 *avg += diff >> 3;
1805}
1806
8159f87e 1807static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1808{
831451ac
PZ
1809 if (wakeup)
1810 p->se.start_runtime = p->se.sum_exec_runtime;
1811
dd41f596 1812 sched_info_queued(p);
fd390f6a 1813 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1814 p->se.on_rq = 1;
71f8bd46
IM
1815}
1816
69be72c1 1817static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1818{
831451ac
PZ
1819 if (sleep) {
1820 if (p->se.last_wakeup) {
1821 update_avg(&p->se.avg_overlap,
1822 p->se.sum_exec_runtime - p->se.last_wakeup);
1823 p->se.last_wakeup = 0;
1824 } else {
1825 update_avg(&p->se.avg_wakeup,
1826 sysctl_sched_wakeup_granularity);
1827 }
2087a1ad
GH
1828 }
1829
46ac22ba 1830 sched_info_dequeued(p);
f02231e5 1831 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1832 p->se.on_rq = 0;
71f8bd46
IM
1833}
1834
14531189 1835/*
dd41f596 1836 * __normal_prio - return the priority that is based on the static prio
14531189 1837 */
14531189
IM
1838static inline int __normal_prio(struct task_struct *p)
1839{
dd41f596 1840 return p->static_prio;
14531189
IM
1841}
1842
b29739f9
IM
1843/*
1844 * Calculate the expected normal priority: i.e. priority
1845 * without taking RT-inheritance into account. Might be
1846 * boosted by interactivity modifiers. Changes upon fork,
1847 * setprio syscalls, and whenever the interactivity
1848 * estimator recalculates.
1849 */
36c8b586 1850static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1851{
1852 int prio;
1853
e05606d3 1854 if (task_has_rt_policy(p))
b29739f9
IM
1855 prio = MAX_RT_PRIO-1 - p->rt_priority;
1856 else
1857 prio = __normal_prio(p);
1858 return prio;
1859}
1860
1861/*
1862 * Calculate the current priority, i.e. the priority
1863 * taken into account by the scheduler. This value might
1864 * be boosted by RT tasks, or might be boosted by
1865 * interactivity modifiers. Will be RT if the task got
1866 * RT-boosted. If not then it returns p->normal_prio.
1867 */
36c8b586 1868static int effective_prio(struct task_struct *p)
b29739f9
IM
1869{
1870 p->normal_prio = normal_prio(p);
1871 /*
1872 * If we are RT tasks or we were boosted to RT priority,
1873 * keep the priority unchanged. Otherwise, update priority
1874 * to the normal priority:
1875 */
1876 if (!rt_prio(p->prio))
1877 return p->normal_prio;
1878 return p->prio;
1879}
1880
1da177e4 1881/*
dd41f596 1882 * activate_task - move a task to the runqueue.
1da177e4 1883 */
dd41f596 1884static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1885{
d9514f6c 1886 if (task_contributes_to_load(p))
dd41f596 1887 rq->nr_uninterruptible--;
1da177e4 1888
8159f87e 1889 enqueue_task(rq, p, wakeup);
c09595f6 1890 inc_nr_running(rq);
1da177e4
LT
1891}
1892
1da177e4
LT
1893/*
1894 * deactivate_task - remove a task from the runqueue.
1895 */
2e1cb74a 1896static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1897{
d9514f6c 1898 if (task_contributes_to_load(p))
dd41f596
IM
1899 rq->nr_uninterruptible++;
1900
69be72c1 1901 dequeue_task(rq, p, sleep);
c09595f6 1902 dec_nr_running(rq);
1da177e4
LT
1903}
1904
1da177e4
LT
1905/**
1906 * task_curr - is this task currently executing on a CPU?
1907 * @p: the task in question.
1908 */
36c8b586 1909inline int task_curr(const struct task_struct *p)
1da177e4
LT
1910{
1911 return cpu_curr(task_cpu(p)) == p;
1912}
1913
dd41f596
IM
1914static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1915{
6f505b16 1916 set_task_rq(p, cpu);
dd41f596 1917#ifdef CONFIG_SMP
ce96b5ac
DA
1918 /*
1919 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1920 * successfuly executed on another CPU. We must ensure that updates of
1921 * per-task data have been completed by this moment.
1922 */
1923 smp_wmb();
dd41f596 1924 task_thread_info(p)->cpu = cpu;
dd41f596 1925#endif
2dd73a4f
PW
1926}
1927
cb469845
SR
1928static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1929 const struct sched_class *prev_class,
1930 int oldprio, int running)
1931{
1932 if (prev_class != p->sched_class) {
1933 if (prev_class->switched_from)
1934 prev_class->switched_from(rq, p, running);
1935 p->sched_class->switched_to(rq, p, running);
1936 } else
1937 p->sched_class->prio_changed(rq, p, oldprio, running);
1938}
1939
1da177e4 1940#ifdef CONFIG_SMP
c65cc870 1941
e958b360
TG
1942/* Used instead of source_load when we know the type == 0 */
1943static unsigned long weighted_cpuload(const int cpu)
1944{
1945 return cpu_rq(cpu)->load.weight;
1946}
1947
cc367732
IM
1948/*
1949 * Is this task likely cache-hot:
1950 */
e7693a36 1951static int
cc367732
IM
1952task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1953{
1954 s64 delta;
1955
f540a608
IM
1956 /*
1957 * Buddy candidates are cache hot:
1958 */
4793241b
PZ
1959 if (sched_feat(CACHE_HOT_BUDDY) &&
1960 (&p->se == cfs_rq_of(&p->se)->next ||
1961 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1962 return 1;
1963
cc367732
IM
1964 if (p->sched_class != &fair_sched_class)
1965 return 0;
1966
6bc1665b
IM
1967 if (sysctl_sched_migration_cost == -1)
1968 return 1;
1969 if (sysctl_sched_migration_cost == 0)
1970 return 0;
1971
cc367732
IM
1972 delta = now - p->se.exec_start;
1973
1974 return delta < (s64)sysctl_sched_migration_cost;
1975}
1976
1977
dd41f596 1978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1979{
dd41f596
IM
1980 int old_cpu = task_cpu(p);
1981 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1982 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1983 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1984 u64 clock_offset;
dd41f596
IM
1985
1986 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1987
de1d7286 1988 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1989
6cfb0d5d
IM
1990#ifdef CONFIG_SCHEDSTATS
1991 if (p->se.wait_start)
1992 p->se.wait_start -= clock_offset;
dd41f596
IM
1993 if (p->se.sleep_start)
1994 p->se.sleep_start -= clock_offset;
1995 if (p->se.block_start)
1996 p->se.block_start -= clock_offset;
6c594c21 1997#endif
cc367732 1998 if (old_cpu != new_cpu) {
6c594c21 1999 p->se.nr_migrations++;
23a185ca 2000 new_rq->nr_migrations_in++;
6c594c21 2001#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2002 if (task_hot(p, old_rq->clock, NULL))
2003 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2004#endif
e5289d4a
PZ
2005 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2006 1, 1, NULL, 0);
6c594c21 2007 }
2830cf8c
SV
2008 p->se.vruntime -= old_cfsrq->min_vruntime -
2009 new_cfsrq->min_vruntime;
dd41f596
IM
2010
2011 __set_task_cpu(p, new_cpu);
c65cc870
IM
2012}
2013
70b97a7f 2014struct migration_req {
1da177e4 2015 struct list_head list;
1da177e4 2016
36c8b586 2017 struct task_struct *task;
1da177e4
LT
2018 int dest_cpu;
2019
1da177e4 2020 struct completion done;
70b97a7f 2021};
1da177e4
LT
2022
2023/*
2024 * The task's runqueue lock must be held.
2025 * Returns true if you have to wait for migration thread.
2026 */
36c8b586 2027static int
70b97a7f 2028migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2029{
70b97a7f 2030 struct rq *rq = task_rq(p);
1da177e4
LT
2031
2032 /*
2033 * If the task is not on a runqueue (and not running), then
2034 * it is sufficient to simply update the task's cpu field.
2035 */
dd41f596 2036 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2037 set_task_cpu(p, dest_cpu);
2038 return 0;
2039 }
2040
2041 init_completion(&req->done);
1da177e4
LT
2042 req->task = p;
2043 req->dest_cpu = dest_cpu;
2044 list_add(&req->list, &rq->migration_queue);
48f24c4d 2045
1da177e4
LT
2046 return 1;
2047}
2048
a26b89f0
MM
2049/*
2050 * wait_task_context_switch - wait for a thread to complete at least one
2051 * context switch.
2052 *
2053 * @p must not be current.
2054 */
2055void wait_task_context_switch(struct task_struct *p)
2056{
2057 unsigned long nvcsw, nivcsw, flags;
2058 int running;
2059 struct rq *rq;
2060
2061 nvcsw = p->nvcsw;
2062 nivcsw = p->nivcsw;
2063 for (;;) {
2064 /*
2065 * The runqueue is assigned before the actual context
2066 * switch. We need to take the runqueue lock.
2067 *
2068 * We could check initially without the lock but it is
2069 * very likely that we need to take the lock in every
2070 * iteration.
2071 */
2072 rq = task_rq_lock(p, &flags);
2073 running = task_running(rq, p);
2074 task_rq_unlock(rq, &flags);
2075
2076 if (likely(!running))
2077 break;
2078 /*
2079 * The switch count is incremented before the actual
2080 * context switch. We thus wait for two switches to be
2081 * sure at least one completed.
2082 */
2083 if ((p->nvcsw - nvcsw) > 1)
2084 break;
2085 if ((p->nivcsw - nivcsw) > 1)
2086 break;
2087
2088 cpu_relax();
2089 }
2090}
2091
1da177e4
LT
2092/*
2093 * wait_task_inactive - wait for a thread to unschedule.
2094 *
85ba2d86
RM
2095 * If @match_state is nonzero, it's the @p->state value just checked and
2096 * not expected to change. If it changes, i.e. @p might have woken up,
2097 * then return zero. When we succeed in waiting for @p to be off its CPU,
2098 * we return a positive number (its total switch count). If a second call
2099 * a short while later returns the same number, the caller can be sure that
2100 * @p has remained unscheduled the whole time.
2101 *
1da177e4
LT
2102 * The caller must ensure that the task *will* unschedule sometime soon,
2103 * else this function might spin for a *long* time. This function can't
2104 * be called with interrupts off, or it may introduce deadlock with
2105 * smp_call_function() if an IPI is sent by the same process we are
2106 * waiting to become inactive.
2107 */
85ba2d86 2108unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2109{
2110 unsigned long flags;
dd41f596 2111 int running, on_rq;
85ba2d86 2112 unsigned long ncsw;
70b97a7f 2113 struct rq *rq;
1da177e4 2114
3a5c359a
AK
2115 for (;;) {
2116 /*
2117 * We do the initial early heuristics without holding
2118 * any task-queue locks at all. We'll only try to get
2119 * the runqueue lock when things look like they will
2120 * work out!
2121 */
2122 rq = task_rq(p);
fa490cfd 2123
3a5c359a
AK
2124 /*
2125 * If the task is actively running on another CPU
2126 * still, just relax and busy-wait without holding
2127 * any locks.
2128 *
2129 * NOTE! Since we don't hold any locks, it's not
2130 * even sure that "rq" stays as the right runqueue!
2131 * But we don't care, since "task_running()" will
2132 * return false if the runqueue has changed and p
2133 * is actually now running somewhere else!
2134 */
85ba2d86
RM
2135 while (task_running(rq, p)) {
2136 if (match_state && unlikely(p->state != match_state))
2137 return 0;
3a5c359a 2138 cpu_relax();
85ba2d86 2139 }
fa490cfd 2140
3a5c359a
AK
2141 /*
2142 * Ok, time to look more closely! We need the rq
2143 * lock now, to be *sure*. If we're wrong, we'll
2144 * just go back and repeat.
2145 */
2146 rq = task_rq_lock(p, &flags);
0a16b607 2147 trace_sched_wait_task(rq, p);
3a5c359a
AK
2148 running = task_running(rq, p);
2149 on_rq = p->se.on_rq;
85ba2d86 2150 ncsw = 0;
f31e11d8 2151 if (!match_state || p->state == match_state)
93dcf55f 2152 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2153 task_rq_unlock(rq, &flags);
fa490cfd 2154
85ba2d86
RM
2155 /*
2156 * If it changed from the expected state, bail out now.
2157 */
2158 if (unlikely(!ncsw))
2159 break;
2160
3a5c359a
AK
2161 /*
2162 * Was it really running after all now that we
2163 * checked with the proper locks actually held?
2164 *
2165 * Oops. Go back and try again..
2166 */
2167 if (unlikely(running)) {
2168 cpu_relax();
2169 continue;
2170 }
fa490cfd 2171
3a5c359a
AK
2172 /*
2173 * It's not enough that it's not actively running,
2174 * it must be off the runqueue _entirely_, and not
2175 * preempted!
2176 *
80dd99b3 2177 * So if it was still runnable (but just not actively
3a5c359a
AK
2178 * running right now), it's preempted, and we should
2179 * yield - it could be a while.
2180 */
2181 if (unlikely(on_rq)) {
2182 schedule_timeout_uninterruptible(1);
2183 continue;
2184 }
fa490cfd 2185
3a5c359a
AK
2186 /*
2187 * Ahh, all good. It wasn't running, and it wasn't
2188 * runnable, which means that it will never become
2189 * running in the future either. We're all done!
2190 */
2191 break;
2192 }
85ba2d86
RM
2193
2194 return ncsw;
1da177e4
LT
2195}
2196
2197/***
2198 * kick_process - kick a running thread to enter/exit the kernel
2199 * @p: the to-be-kicked thread
2200 *
2201 * Cause a process which is running on another CPU to enter
2202 * kernel-mode, without any delay. (to get signals handled.)
2203 *
2204 * NOTE: this function doesnt have to take the runqueue lock,
2205 * because all it wants to ensure is that the remote task enters
2206 * the kernel. If the IPI races and the task has been migrated
2207 * to another CPU then no harm is done and the purpose has been
2208 * achieved as well.
2209 */
36c8b586 2210void kick_process(struct task_struct *p)
1da177e4
LT
2211{
2212 int cpu;
2213
2214 preempt_disable();
2215 cpu = task_cpu(p);
2216 if ((cpu != smp_processor_id()) && task_curr(p))
2217 smp_send_reschedule(cpu);
2218 preempt_enable();
2219}
b43e3521 2220EXPORT_SYMBOL_GPL(kick_process);
1da177e4
LT
2221
2222/*
2dd73a4f
PW
2223 * Return a low guess at the load of a migration-source cpu weighted
2224 * according to the scheduling class and "nice" value.
1da177e4
LT
2225 *
2226 * We want to under-estimate the load of migration sources, to
2227 * balance conservatively.
2228 */
a9957449 2229static unsigned long source_load(int cpu, int type)
1da177e4 2230{
70b97a7f 2231 struct rq *rq = cpu_rq(cpu);
dd41f596 2232 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2233
93b75217 2234 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2235 return total;
b910472d 2236
dd41f596 2237 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2238}
2239
2240/*
2dd73a4f
PW
2241 * Return a high guess at the load of a migration-target cpu weighted
2242 * according to the scheduling class and "nice" value.
1da177e4 2243 */
a9957449 2244static unsigned long target_load(int cpu, int type)
1da177e4 2245{
70b97a7f 2246 struct rq *rq = cpu_rq(cpu);
dd41f596 2247 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2248
93b75217 2249 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2250 return total;
3b0bd9bc 2251
dd41f596 2252 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2253}
2254
147cbb4b
NP
2255/*
2256 * find_idlest_group finds and returns the least busy CPU group within the
2257 * domain.
2258 */
2259static struct sched_group *
2260find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2261{
2262 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2263 unsigned long min_load = ULONG_MAX, this_load = 0;
2264 int load_idx = sd->forkexec_idx;
2265 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2266
2267 do {
2268 unsigned long load, avg_load;
2269 int local_group;
2270 int i;
2271
da5a5522 2272 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2273 if (!cpumask_intersects(sched_group_cpus(group),
2274 &p->cpus_allowed))
3a5c359a 2275 continue;
da5a5522 2276
758b2cdc
RR
2277 local_group = cpumask_test_cpu(this_cpu,
2278 sched_group_cpus(group));
147cbb4b
NP
2279
2280 /* Tally up the load of all CPUs in the group */
2281 avg_load = 0;
2282
758b2cdc 2283 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2284 /* Bias balancing toward cpus of our domain */
2285 if (local_group)
2286 load = source_load(i, load_idx);
2287 else
2288 load = target_load(i, load_idx);
2289
2290 avg_load += load;
2291 }
2292
2293 /* Adjust by relative CPU power of the group */
5517d86b
ED
2294 avg_load = sg_div_cpu_power(group,
2295 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2296
2297 if (local_group) {
2298 this_load = avg_load;
2299 this = group;
2300 } else if (avg_load < min_load) {
2301 min_load = avg_load;
2302 idlest = group;
2303 }
3a5c359a 2304 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2305
2306 if (!idlest || 100*this_load < imbalance*min_load)
2307 return NULL;
2308 return idlest;
2309}
2310
2311/*
0feaece9 2312 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2313 */
95cdf3b7 2314static int
758b2cdc 2315find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2316{
2317 unsigned long load, min_load = ULONG_MAX;
2318 int idlest = -1;
2319 int i;
2320
da5a5522 2321 /* Traverse only the allowed CPUs */
758b2cdc 2322 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2323 load = weighted_cpuload(i);
147cbb4b
NP
2324
2325 if (load < min_load || (load == min_load && i == this_cpu)) {
2326 min_load = load;
2327 idlest = i;
2328 }
2329 }
2330
2331 return idlest;
2332}
2333
476d139c
NP
2334/*
2335 * sched_balance_self: balance the current task (running on cpu) in domains
2336 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2337 * SD_BALANCE_EXEC.
2338 *
2339 * Balance, ie. select the least loaded group.
2340 *
2341 * Returns the target CPU number, or the same CPU if no balancing is needed.
2342 *
2343 * preempt must be disabled.
2344 */
2345static int sched_balance_self(int cpu, int flag)
2346{
2347 struct task_struct *t = current;
2348 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2349
c96d145e 2350 for_each_domain(cpu, tmp) {
9761eea8
IM
2351 /*
2352 * If power savings logic is enabled for a domain, stop there.
2353 */
5c45bf27
SS
2354 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2355 break;
476d139c
NP
2356 if (tmp->flags & flag)
2357 sd = tmp;
c96d145e 2358 }
476d139c 2359
039a1c41
PZ
2360 if (sd)
2361 update_shares(sd);
2362
476d139c 2363 while (sd) {
476d139c 2364 struct sched_group *group;
1a848870
SS
2365 int new_cpu, weight;
2366
2367 if (!(sd->flags & flag)) {
2368 sd = sd->child;
2369 continue;
2370 }
476d139c 2371
476d139c 2372 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2373 if (!group) {
2374 sd = sd->child;
2375 continue;
2376 }
476d139c 2377
758b2cdc 2378 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2379 if (new_cpu == -1 || new_cpu == cpu) {
2380 /* Now try balancing at a lower domain level of cpu */
2381 sd = sd->child;
2382 continue;
2383 }
476d139c 2384
1a848870 2385 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2386 cpu = new_cpu;
758b2cdc 2387 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2388 sd = NULL;
476d139c 2389 for_each_domain(cpu, tmp) {
758b2cdc 2390 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2391 break;
2392 if (tmp->flags & flag)
2393 sd = tmp;
2394 }
2395 /* while loop will break here if sd == NULL */
2396 }
2397
2398 return cpu;
2399}
2400
2401#endif /* CONFIG_SMP */
1da177e4 2402
0793a61d
TG
2403/**
2404 * task_oncpu_function_call - call a function on the cpu on which a task runs
2405 * @p: the task to evaluate
2406 * @func: the function to be called
2407 * @info: the function call argument
2408 *
2409 * Calls the function @func when the task is currently running. This might
2410 * be on the current CPU, which just calls the function directly
2411 */
2412void task_oncpu_function_call(struct task_struct *p,
2413 void (*func) (void *info), void *info)
2414{
2415 int cpu;
2416
2417 preempt_disable();
2418 cpu = task_cpu(p);
2419 if (task_curr(p))
2420 smp_call_function_single(cpu, func, info, 1);
2421 preempt_enable();
2422}
2423
1da177e4
LT
2424/***
2425 * try_to_wake_up - wake up a thread
2426 * @p: the to-be-woken-up thread
2427 * @state: the mask of task states that can be woken
2428 * @sync: do a synchronous wakeup?
2429 *
2430 * Put it on the run-queue if it's not already there. The "current"
2431 * thread is always on the run-queue (except when the actual
2432 * re-schedule is in progress), and as such you're allowed to do
2433 * the simpler "current->state = TASK_RUNNING" to mark yourself
2434 * runnable without the overhead of this.
2435 *
2436 * returns failure only if the task is already active.
2437 */
36c8b586 2438static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2439{
cc367732 2440 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2441 unsigned long flags;
2442 long old_state;
70b97a7f 2443 struct rq *rq;
1da177e4 2444
b85d0667
IM
2445 if (!sched_feat(SYNC_WAKEUPS))
2446 sync = 0;
2447
2398f2c6 2448#ifdef CONFIG_SMP
57310a98 2449 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2450 struct sched_domain *sd;
2451
2452 this_cpu = raw_smp_processor_id();
2453 cpu = task_cpu(p);
2454
2455 for_each_domain(this_cpu, sd) {
758b2cdc 2456 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2457 update_shares(sd);
2458 break;
2459 }
2460 }
2461 }
2462#endif
2463
04e2f174 2464 smp_wmb();
1da177e4 2465 rq = task_rq_lock(p, &flags);
03e89e45 2466 update_rq_clock(rq);
1da177e4
LT
2467 old_state = p->state;
2468 if (!(old_state & state))
2469 goto out;
2470
dd41f596 2471 if (p->se.on_rq)
1da177e4
LT
2472 goto out_running;
2473
2474 cpu = task_cpu(p);
cc367732 2475 orig_cpu = cpu;
1da177e4
LT
2476 this_cpu = smp_processor_id();
2477
2478#ifdef CONFIG_SMP
2479 if (unlikely(task_running(rq, p)))
2480 goto out_activate;
2481
5d2f5a61
DA
2482 cpu = p->sched_class->select_task_rq(p, sync);
2483 if (cpu != orig_cpu) {
2484 set_task_cpu(p, cpu);
1da177e4
LT
2485 task_rq_unlock(rq, &flags);
2486 /* might preempt at this point */
2487 rq = task_rq_lock(p, &flags);
2488 old_state = p->state;
2489 if (!(old_state & state))
2490 goto out;
dd41f596 2491 if (p->se.on_rq)
1da177e4
LT
2492 goto out_running;
2493
2494 this_cpu = smp_processor_id();
2495 cpu = task_cpu(p);
2496 }
2497
e7693a36
GH
2498#ifdef CONFIG_SCHEDSTATS
2499 schedstat_inc(rq, ttwu_count);
2500 if (cpu == this_cpu)
2501 schedstat_inc(rq, ttwu_local);
2502 else {
2503 struct sched_domain *sd;
2504 for_each_domain(this_cpu, sd) {
758b2cdc 2505 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2506 schedstat_inc(sd, ttwu_wake_remote);
2507 break;
2508 }
2509 }
2510 }
6d6bc0ad 2511#endif /* CONFIG_SCHEDSTATS */
e7693a36 2512
1da177e4
LT
2513out_activate:
2514#endif /* CONFIG_SMP */
cc367732
IM
2515 schedstat_inc(p, se.nr_wakeups);
2516 if (sync)
2517 schedstat_inc(p, se.nr_wakeups_sync);
2518 if (orig_cpu != cpu)
2519 schedstat_inc(p, se.nr_wakeups_migrate);
2520 if (cpu == this_cpu)
2521 schedstat_inc(p, se.nr_wakeups_local);
2522 else
2523 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2524 activate_task(rq, p, 1);
1da177e4
LT
2525 success = 1;
2526
831451ac
PZ
2527 /*
2528 * Only attribute actual wakeups done by this task.
2529 */
2530 if (!in_interrupt()) {
2531 struct sched_entity *se = &current->se;
2532 u64 sample = se->sum_exec_runtime;
2533
2534 if (se->last_wakeup)
2535 sample -= se->last_wakeup;
2536 else
2537 sample -= se->start_runtime;
2538 update_avg(&se->avg_wakeup, sample);
2539
2540 se->last_wakeup = se->sum_exec_runtime;
2541 }
2542
1da177e4 2543out_running:
468a15bb 2544 trace_sched_wakeup(rq, p, success);
15afe09b 2545 check_preempt_curr(rq, p, sync);
4ae7d5ce 2546
1da177e4 2547 p->state = TASK_RUNNING;
9a897c5a
SR
2548#ifdef CONFIG_SMP
2549 if (p->sched_class->task_wake_up)
2550 p->sched_class->task_wake_up(rq, p);
2551#endif
1da177e4
LT
2552out:
2553 task_rq_unlock(rq, &flags);
2554
2555 return success;
2556}
2557
50fa610a
DH
2558/**
2559 * wake_up_process - Wake up a specific process
2560 * @p: The process to be woken up.
2561 *
2562 * Attempt to wake up the nominated process and move it to the set of runnable
2563 * processes. Returns 1 if the process was woken up, 0 if it was already
2564 * running.
2565 *
2566 * It may be assumed that this function implies a write memory barrier before
2567 * changing the task state if and only if any tasks are woken up.
2568 */
7ad5b3a5 2569int wake_up_process(struct task_struct *p)
1da177e4 2570{
d9514f6c 2571 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2572}
1da177e4
LT
2573EXPORT_SYMBOL(wake_up_process);
2574
7ad5b3a5 2575int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2576{
2577 return try_to_wake_up(p, state, 0);
2578}
2579
1da177e4
LT
2580/*
2581 * Perform scheduler related setup for a newly forked process p.
2582 * p is forked by current.
dd41f596
IM
2583 *
2584 * __sched_fork() is basic setup used by init_idle() too:
2585 */
2586static void __sched_fork(struct task_struct *p)
2587{
dd41f596
IM
2588 p->se.exec_start = 0;
2589 p->se.sum_exec_runtime = 0;
f6cf891c 2590 p->se.prev_sum_exec_runtime = 0;
6c594c21 2591 p->se.nr_migrations = 0;
4ae7d5ce
IM
2592 p->se.last_wakeup = 0;
2593 p->se.avg_overlap = 0;
831451ac
PZ
2594 p->se.start_runtime = 0;
2595 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2596
2597#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2598 p->se.wait_start = 0;
2599 p->se.wait_max = 0;
2600 p->se.wait_count = 0;
2601 p->se.wait_sum = 0;
2602
2603 p->se.sleep_start = 0;
2604 p->se.sleep_max = 0;
2605 p->se.sum_sleep_runtime = 0;
2606
2607 p->se.block_start = 0;
2608 p->se.block_max = 0;
2609 p->se.exec_max = 0;
2610 p->se.slice_max = 0;
2611
2612 p->se.nr_migrations_cold = 0;
2613 p->se.nr_failed_migrations_affine = 0;
2614 p->se.nr_failed_migrations_running = 0;
2615 p->se.nr_failed_migrations_hot = 0;
2616 p->se.nr_forced_migrations = 0;
2617 p->se.nr_forced2_migrations = 0;
2618
2619 p->se.nr_wakeups = 0;
2620 p->se.nr_wakeups_sync = 0;
2621 p->se.nr_wakeups_migrate = 0;
2622 p->se.nr_wakeups_local = 0;
2623 p->se.nr_wakeups_remote = 0;
2624 p->se.nr_wakeups_affine = 0;
2625 p->se.nr_wakeups_affine_attempts = 0;
2626 p->se.nr_wakeups_passive = 0;
2627 p->se.nr_wakeups_idle = 0;
2628
6cfb0d5d 2629#endif
476d139c 2630
fa717060 2631 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2632 p->se.on_rq = 0;
4a55bd5e 2633 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2634
e107be36
AK
2635#ifdef CONFIG_PREEMPT_NOTIFIERS
2636 INIT_HLIST_HEAD(&p->preempt_notifiers);
2637#endif
2638
1da177e4
LT
2639 /*
2640 * We mark the process as running here, but have not actually
2641 * inserted it onto the runqueue yet. This guarantees that
2642 * nobody will actually run it, and a signal or other external
2643 * event cannot wake it up and insert it on the runqueue either.
2644 */
2645 p->state = TASK_RUNNING;
dd41f596
IM
2646}
2647
2648/*
2649 * fork()/clone()-time setup:
2650 */
2651void sched_fork(struct task_struct *p, int clone_flags)
2652{
2653 int cpu = get_cpu();
2654
2655 __sched_fork(p);
2656
2657#ifdef CONFIG_SMP
2658 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2659#endif
02e4bac2 2660 set_task_cpu(p, cpu);
b29739f9
IM
2661
2662 /*
b9dc29e7 2663 * Make sure we do not leak PI boosting priority to the child.
b29739f9 2664 */
b9dc29e7 2665 p->prio = current->normal_prio;
ca94c442 2666
b9dc29e7
MG
2667 /*
2668 * Revert to default priority/policy on fork if requested.
2669 */
2670 if (unlikely(p->sched_reset_on_fork)) {
2671 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2672 p->policy = SCHED_NORMAL;
2673
2674 if (p->normal_prio < DEFAULT_PRIO)
2675 p->prio = DEFAULT_PRIO;
2676
6c697bdf
MG
2677 if (PRIO_TO_NICE(p->static_prio) < 0) {
2678 p->static_prio = NICE_TO_PRIO(0);
2679 set_load_weight(p);
2680 }
2681
b9dc29e7
MG
2682 /*
2683 * We don't need the reset flag anymore after the fork. It has
2684 * fulfilled its duty:
2685 */
2686 p->sched_reset_on_fork = 0;
2687 }
ca94c442 2688
2ddbf952
HS
2689 if (!rt_prio(p->prio))
2690 p->sched_class = &fair_sched_class;
b29739f9 2691
52f17b6c 2692#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2693 if (likely(sched_info_on()))
52f17b6c 2694 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2695#endif
d6077cb8 2696#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2697 p->oncpu = 0;
2698#endif
1da177e4 2699#ifdef CONFIG_PREEMPT
4866cde0 2700 /* Want to start with kernel preemption disabled. */
a1261f54 2701 task_thread_info(p)->preempt_count = 1;
1da177e4 2702#endif
917b627d
GH
2703 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2704
476d139c 2705 put_cpu();
1da177e4
LT
2706}
2707
2708/*
2709 * wake_up_new_task - wake up a newly created task for the first time.
2710 *
2711 * This function will do some initial scheduler statistics housekeeping
2712 * that must be done for every newly created context, then puts the task
2713 * on the runqueue and wakes it.
2714 */
7ad5b3a5 2715void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2716{
2717 unsigned long flags;
dd41f596 2718 struct rq *rq;
1da177e4
LT
2719
2720 rq = task_rq_lock(p, &flags);
147cbb4b 2721 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2722 update_rq_clock(rq);
1da177e4
LT
2723
2724 p->prio = effective_prio(p);
2725
b9dca1e0 2726 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2727 activate_task(rq, p, 0);
1da177e4 2728 } else {
1da177e4 2729 /*
dd41f596
IM
2730 * Let the scheduling class do new task startup
2731 * management (if any):
1da177e4 2732 */
ee0827d8 2733 p->sched_class->task_new(rq, p);
c09595f6 2734 inc_nr_running(rq);
1da177e4 2735 }
c71dd42d 2736 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2737 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2738#ifdef CONFIG_SMP
2739 if (p->sched_class->task_wake_up)
2740 p->sched_class->task_wake_up(rq, p);
2741#endif
dd41f596 2742 task_rq_unlock(rq, &flags);
1da177e4
LT
2743}
2744
e107be36
AK
2745#ifdef CONFIG_PREEMPT_NOTIFIERS
2746
2747/**
80dd99b3 2748 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2749 * @notifier: notifier struct to register
e107be36
AK
2750 */
2751void preempt_notifier_register(struct preempt_notifier *notifier)
2752{
2753 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2754}
2755EXPORT_SYMBOL_GPL(preempt_notifier_register);
2756
2757/**
2758 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2759 * @notifier: notifier struct to unregister
e107be36
AK
2760 *
2761 * This is safe to call from within a preemption notifier.
2762 */
2763void preempt_notifier_unregister(struct preempt_notifier *notifier)
2764{
2765 hlist_del(&notifier->link);
2766}
2767EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2768
2769static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2770{
2771 struct preempt_notifier *notifier;
2772 struct hlist_node *node;
2773
2774 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2775 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2776}
2777
2778static void
2779fire_sched_out_preempt_notifiers(struct task_struct *curr,
2780 struct task_struct *next)
2781{
2782 struct preempt_notifier *notifier;
2783 struct hlist_node *node;
2784
2785 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2786 notifier->ops->sched_out(notifier, next);
2787}
2788
6d6bc0ad 2789#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2790
2791static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2792{
2793}
2794
2795static void
2796fire_sched_out_preempt_notifiers(struct task_struct *curr,
2797 struct task_struct *next)
2798{
2799}
2800
6d6bc0ad 2801#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2802
4866cde0
NP
2803/**
2804 * prepare_task_switch - prepare to switch tasks
2805 * @rq: the runqueue preparing to switch
421cee29 2806 * @prev: the current task that is being switched out
4866cde0
NP
2807 * @next: the task we are going to switch to.
2808 *
2809 * This is called with the rq lock held and interrupts off. It must
2810 * be paired with a subsequent finish_task_switch after the context
2811 * switch.
2812 *
2813 * prepare_task_switch sets up locking and calls architecture specific
2814 * hooks.
2815 */
e107be36
AK
2816static inline void
2817prepare_task_switch(struct rq *rq, struct task_struct *prev,
2818 struct task_struct *next)
4866cde0 2819{
e107be36 2820 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2821 prepare_lock_switch(rq, next);
2822 prepare_arch_switch(next);
2823}
2824
1da177e4
LT
2825/**
2826 * finish_task_switch - clean up after a task-switch
344babaa 2827 * @rq: runqueue associated with task-switch
1da177e4
LT
2828 * @prev: the thread we just switched away from.
2829 *
4866cde0
NP
2830 * finish_task_switch must be called after the context switch, paired
2831 * with a prepare_task_switch call before the context switch.
2832 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2833 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2834 *
2835 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2836 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2837 * with the lock held can cause deadlocks; see schedule() for
2838 * details.)
2839 */
3f029d3c 2840static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2841 __releases(rq->lock)
2842{
1da177e4 2843 struct mm_struct *mm = rq->prev_mm;
55a101f8 2844 long prev_state;
1da177e4
LT
2845
2846 rq->prev_mm = NULL;
2847
2848 /*
2849 * A task struct has one reference for the use as "current".
c394cc9f 2850 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2851 * schedule one last time. The schedule call will never return, and
2852 * the scheduled task must drop that reference.
c394cc9f 2853 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2854 * still held, otherwise prev could be scheduled on another cpu, die
2855 * there before we look at prev->state, and then the reference would
2856 * be dropped twice.
2857 * Manfred Spraul <manfred@colorfullife.com>
2858 */
55a101f8 2859 prev_state = prev->state;
4866cde0 2860 finish_arch_switch(prev);
0793a61d 2861 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2862 finish_lock_switch(rq, prev);
e8fa1362 2863
e107be36 2864 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2865 if (mm)
2866 mmdrop(mm);
c394cc9f 2867 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2868 /*
2869 * Remove function-return probe instances associated with this
2870 * task and put them back on the free list.
9761eea8 2871 */
c6fd91f0 2872 kprobe_flush_task(prev);
1da177e4 2873 put_task_struct(prev);
c6fd91f0 2874 }
3f029d3c
GH
2875}
2876
2877#ifdef CONFIG_SMP
2878
2879/* assumes rq->lock is held */
2880static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2881{
2882 if (prev->sched_class->pre_schedule)
2883 prev->sched_class->pre_schedule(rq, prev);
2884}
2885
2886/* rq->lock is NOT held, but preemption is disabled */
2887static inline void post_schedule(struct rq *rq)
2888{
2889 if (rq->post_schedule) {
2890 unsigned long flags;
2891
2892 spin_lock_irqsave(&rq->lock, flags);
2893 if (rq->curr->sched_class->post_schedule)
2894 rq->curr->sched_class->post_schedule(rq);
2895 spin_unlock_irqrestore(&rq->lock, flags);
2896
2897 rq->post_schedule = 0;
2898 }
2899}
2900
2901#else
da19ab51 2902
3f029d3c
GH
2903static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2904{
2905}
2906
2907static inline void post_schedule(struct rq *rq)
2908{
1da177e4
LT
2909}
2910
3f029d3c
GH
2911#endif
2912
1da177e4
LT
2913/**
2914 * schedule_tail - first thing a freshly forked thread must call.
2915 * @prev: the thread we just switched away from.
2916 */
36c8b586 2917asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2918 __releases(rq->lock)
2919{
70b97a7f 2920 struct rq *rq = this_rq();
da19ab51 2921
3f029d3c 2922 finish_task_switch(rq, prev);
da19ab51 2923
3f029d3c
GH
2924 /*
2925 * FIXME: do we need to worry about rq being invalidated by the
2926 * task_switch?
2927 */
2928 post_schedule(rq);
70b97a7f 2929
4866cde0
NP
2930#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2931 /* In this case, finish_task_switch does not reenable preemption */
2932 preempt_enable();
2933#endif
1da177e4 2934 if (current->set_child_tid)
b488893a 2935 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2936}
2937
2938/*
2939 * context_switch - switch to the new MM and the new
2940 * thread's register state.
2941 */
3f029d3c 2942static inline void
70b97a7f 2943context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2944 struct task_struct *next)
1da177e4 2945{
dd41f596 2946 struct mm_struct *mm, *oldmm;
1da177e4 2947
e107be36 2948 prepare_task_switch(rq, prev, next);
0a16b607 2949 trace_sched_switch(rq, prev, next);
dd41f596
IM
2950 mm = next->mm;
2951 oldmm = prev->active_mm;
9226d125
ZA
2952 /*
2953 * For paravirt, this is coupled with an exit in switch_to to
2954 * combine the page table reload and the switch backend into
2955 * one hypercall.
2956 */
224101ed 2957 arch_start_context_switch(prev);
9226d125 2958
dd41f596 2959 if (unlikely(!mm)) {
1da177e4
LT
2960 next->active_mm = oldmm;
2961 atomic_inc(&oldmm->mm_count);
2962 enter_lazy_tlb(oldmm, next);
2963 } else
2964 switch_mm(oldmm, mm, next);
2965
dd41f596 2966 if (unlikely(!prev->mm)) {
1da177e4 2967 prev->active_mm = NULL;
1da177e4
LT
2968 rq->prev_mm = oldmm;
2969 }
3a5f5e48
IM
2970 /*
2971 * Since the runqueue lock will be released by the next
2972 * task (which is an invalid locking op but in the case
2973 * of the scheduler it's an obvious special-case), so we
2974 * do an early lockdep release here:
2975 */
2976#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2977 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2978#endif
1da177e4
LT
2979
2980 /* Here we just switch the register state and the stack. */
2981 switch_to(prev, next, prev);
2982
dd41f596
IM
2983 barrier();
2984 /*
2985 * this_rq must be evaluated again because prev may have moved
2986 * CPUs since it called schedule(), thus the 'rq' on its stack
2987 * frame will be invalid.
2988 */
3f029d3c 2989 finish_task_switch(this_rq(), prev);
1da177e4
LT
2990}
2991
2992/*
2993 * nr_running, nr_uninterruptible and nr_context_switches:
2994 *
2995 * externally visible scheduler statistics: current number of runnable
2996 * threads, current number of uninterruptible-sleeping threads, total
2997 * number of context switches performed since bootup.
2998 */
2999unsigned long nr_running(void)
3000{
3001 unsigned long i, sum = 0;
3002
3003 for_each_online_cpu(i)
3004 sum += cpu_rq(i)->nr_running;
3005
3006 return sum;
3007}
3008
3009unsigned long nr_uninterruptible(void)
3010{
3011 unsigned long i, sum = 0;
3012
0a945022 3013 for_each_possible_cpu(i)
1da177e4
LT
3014 sum += cpu_rq(i)->nr_uninterruptible;
3015
3016 /*
3017 * Since we read the counters lockless, it might be slightly
3018 * inaccurate. Do not allow it to go below zero though:
3019 */
3020 if (unlikely((long)sum < 0))
3021 sum = 0;
3022
3023 return sum;
3024}
3025
3026unsigned long long nr_context_switches(void)
3027{
cc94abfc
SR
3028 int i;
3029 unsigned long long sum = 0;
1da177e4 3030
0a945022 3031 for_each_possible_cpu(i)
1da177e4
LT
3032 sum += cpu_rq(i)->nr_switches;
3033
3034 return sum;
3035}
3036
3037unsigned long nr_iowait(void)
3038{
3039 unsigned long i, sum = 0;
3040
0a945022 3041 for_each_possible_cpu(i)
1da177e4
LT
3042 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3043
3044 return sum;
3045}
3046
dce48a84
TG
3047/* Variables and functions for calc_load */
3048static atomic_long_t calc_load_tasks;
3049static unsigned long calc_load_update;
3050unsigned long avenrun[3];
3051EXPORT_SYMBOL(avenrun);
3052
2d02494f
TG
3053/**
3054 * get_avenrun - get the load average array
3055 * @loads: pointer to dest load array
3056 * @offset: offset to add
3057 * @shift: shift count to shift the result left
3058 *
3059 * These values are estimates at best, so no need for locking.
3060 */
3061void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3062{
3063 loads[0] = (avenrun[0] + offset) << shift;
3064 loads[1] = (avenrun[1] + offset) << shift;
3065 loads[2] = (avenrun[2] + offset) << shift;
3066}
3067
dce48a84
TG
3068static unsigned long
3069calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3070{
dce48a84
TG
3071 load *= exp;
3072 load += active * (FIXED_1 - exp);
3073 return load >> FSHIFT;
3074}
db1b1fef 3075
dce48a84
TG
3076/*
3077 * calc_load - update the avenrun load estimates 10 ticks after the
3078 * CPUs have updated calc_load_tasks.
3079 */
3080void calc_global_load(void)
3081{
3082 unsigned long upd = calc_load_update + 10;
3083 long active;
3084
3085 if (time_before(jiffies, upd))
3086 return;
db1b1fef 3087
dce48a84
TG
3088 active = atomic_long_read(&calc_load_tasks);
3089 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3090
dce48a84
TG
3091 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3092 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3093 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3094
3095 calc_load_update += LOAD_FREQ;
3096}
3097
3098/*
3099 * Either called from update_cpu_load() or from a cpu going idle
3100 */
3101static void calc_load_account_active(struct rq *this_rq)
3102{
3103 long nr_active, delta;
3104
3105 nr_active = this_rq->nr_running;
3106 nr_active += (long) this_rq->nr_uninterruptible;
3107
3108 if (nr_active != this_rq->calc_load_active) {
3109 delta = nr_active - this_rq->calc_load_active;
3110 this_rq->calc_load_active = nr_active;
3111 atomic_long_add(delta, &calc_load_tasks);
3112 }
db1b1fef
JS
3113}
3114
23a185ca
PM
3115/*
3116 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3117 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3118 */
23a185ca
PM
3119u64 cpu_nr_migrations(int cpu)
3120{
3121 return cpu_rq(cpu)->nr_migrations_in;
3122}
3123
48f24c4d 3124/*
dd41f596
IM
3125 * Update rq->cpu_load[] statistics. This function is usually called every
3126 * scheduler tick (TICK_NSEC).
48f24c4d 3127 */
dd41f596 3128static void update_cpu_load(struct rq *this_rq)
48f24c4d 3129{
495eca49 3130 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3131 int i, scale;
3132
3133 this_rq->nr_load_updates++;
dd41f596
IM
3134
3135 /* Update our load: */
3136 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3137 unsigned long old_load, new_load;
3138
3139 /* scale is effectively 1 << i now, and >> i divides by scale */
3140
3141 old_load = this_rq->cpu_load[i];
3142 new_load = this_load;
a25707f3
IM
3143 /*
3144 * Round up the averaging division if load is increasing. This
3145 * prevents us from getting stuck on 9 if the load is 10, for
3146 * example.
3147 */
3148 if (new_load > old_load)
3149 new_load += scale-1;
dd41f596
IM
3150 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3151 }
dce48a84
TG
3152
3153 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3154 this_rq->calc_load_update += LOAD_FREQ;
3155 calc_load_account_active(this_rq);
3156 }
48f24c4d
IM
3157}
3158
dd41f596
IM
3159#ifdef CONFIG_SMP
3160
1da177e4
LT
3161/*
3162 * double_rq_lock - safely lock two runqueues
3163 *
3164 * Note this does not disable interrupts like task_rq_lock,
3165 * you need to do so manually before calling.
3166 */
70b97a7f 3167static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3168 __acquires(rq1->lock)
3169 __acquires(rq2->lock)
3170{
054b9108 3171 BUG_ON(!irqs_disabled());
1da177e4
LT
3172 if (rq1 == rq2) {
3173 spin_lock(&rq1->lock);
3174 __acquire(rq2->lock); /* Fake it out ;) */
3175 } else {
c96d145e 3176 if (rq1 < rq2) {
1da177e4 3177 spin_lock(&rq1->lock);
5e710e37 3178 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3179 } else {
3180 spin_lock(&rq2->lock);
5e710e37 3181 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3182 }
3183 }
6e82a3be
IM
3184 update_rq_clock(rq1);
3185 update_rq_clock(rq2);
1da177e4
LT
3186}
3187
3188/*
3189 * double_rq_unlock - safely unlock two runqueues
3190 *
3191 * Note this does not restore interrupts like task_rq_unlock,
3192 * you need to do so manually after calling.
3193 */
70b97a7f 3194static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3195 __releases(rq1->lock)
3196 __releases(rq2->lock)
3197{
3198 spin_unlock(&rq1->lock);
3199 if (rq1 != rq2)
3200 spin_unlock(&rq2->lock);
3201 else
3202 __release(rq2->lock);
3203}
3204
1da177e4
LT
3205/*
3206 * If dest_cpu is allowed for this process, migrate the task to it.
3207 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3208 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3209 * the cpu_allowed mask is restored.
3210 */
36c8b586 3211static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3212{
70b97a7f 3213 struct migration_req req;
1da177e4 3214 unsigned long flags;
70b97a7f 3215 struct rq *rq;
1da177e4
LT
3216
3217 rq = task_rq_lock(p, &flags);
96f874e2 3218 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3219 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3220 goto out;
3221
3222 /* force the process onto the specified CPU */
3223 if (migrate_task(p, dest_cpu, &req)) {
3224 /* Need to wait for migration thread (might exit: take ref). */
3225 struct task_struct *mt = rq->migration_thread;
36c8b586 3226
1da177e4
LT
3227 get_task_struct(mt);
3228 task_rq_unlock(rq, &flags);
3229 wake_up_process(mt);
3230 put_task_struct(mt);
3231 wait_for_completion(&req.done);
36c8b586 3232
1da177e4
LT
3233 return;
3234 }
3235out:
3236 task_rq_unlock(rq, &flags);
3237}
3238
3239/*
476d139c
NP
3240 * sched_exec - execve() is a valuable balancing opportunity, because at
3241 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3242 */
3243void sched_exec(void)
3244{
1da177e4 3245 int new_cpu, this_cpu = get_cpu();
476d139c 3246 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3247 put_cpu();
476d139c
NP
3248 if (new_cpu != this_cpu)
3249 sched_migrate_task(current, new_cpu);
1da177e4
LT
3250}
3251
3252/*
3253 * pull_task - move a task from a remote runqueue to the local runqueue.
3254 * Both runqueues must be locked.
3255 */
dd41f596
IM
3256static void pull_task(struct rq *src_rq, struct task_struct *p,
3257 struct rq *this_rq, int this_cpu)
1da177e4 3258{
2e1cb74a 3259 deactivate_task(src_rq, p, 0);
1da177e4 3260 set_task_cpu(p, this_cpu);
dd41f596 3261 activate_task(this_rq, p, 0);
1da177e4
LT
3262 /*
3263 * Note that idle threads have a prio of MAX_PRIO, for this test
3264 * to be always true for them.
3265 */
15afe09b 3266 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3267}
3268
3269/*
3270 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3271 */
858119e1 3272static
70b97a7f 3273int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3274 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3275 int *all_pinned)
1da177e4 3276{
708dc512 3277 int tsk_cache_hot = 0;
1da177e4
LT
3278 /*
3279 * We do not migrate tasks that are:
3280 * 1) running (obviously), or
3281 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3282 * 3) are cache-hot on their current CPU.
3283 */
96f874e2 3284 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3285 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3286 return 0;
cc367732 3287 }
81026794
NP
3288 *all_pinned = 0;
3289
cc367732
IM
3290 if (task_running(rq, p)) {
3291 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3292 return 0;
cc367732 3293 }
1da177e4 3294
da84d961
IM
3295 /*
3296 * Aggressive migration if:
3297 * 1) task is cache cold, or
3298 * 2) too many balance attempts have failed.
3299 */
3300
708dc512
LH
3301 tsk_cache_hot = task_hot(p, rq->clock, sd);
3302 if (!tsk_cache_hot ||
3303 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3304#ifdef CONFIG_SCHEDSTATS
708dc512 3305 if (tsk_cache_hot) {
da84d961 3306 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3307 schedstat_inc(p, se.nr_forced_migrations);
3308 }
da84d961
IM
3309#endif
3310 return 1;
3311 }
3312
708dc512 3313 if (tsk_cache_hot) {
cc367732 3314 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3315 return 0;
cc367732 3316 }
1da177e4
LT
3317 return 1;
3318}
3319
e1d1484f
PW
3320static unsigned long
3321balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3322 unsigned long max_load_move, struct sched_domain *sd,
3323 enum cpu_idle_type idle, int *all_pinned,
3324 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3325{
051c6764 3326 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3327 struct task_struct *p;
3328 long rem_load_move = max_load_move;
1da177e4 3329
e1d1484f 3330 if (max_load_move == 0)
1da177e4
LT
3331 goto out;
3332
81026794
NP
3333 pinned = 1;
3334
1da177e4 3335 /*
dd41f596 3336 * Start the load-balancing iterator:
1da177e4 3337 */
dd41f596
IM
3338 p = iterator->start(iterator->arg);
3339next:
b82d9fdd 3340 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3341 goto out;
051c6764
PZ
3342
3343 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3344 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3345 p = iterator->next(iterator->arg);
3346 goto next;
1da177e4
LT
3347 }
3348
dd41f596 3349 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3350 pulled++;
dd41f596 3351 rem_load_move -= p->se.load.weight;
1da177e4 3352
7e96fa58
GH
3353#ifdef CONFIG_PREEMPT
3354 /*
3355 * NEWIDLE balancing is a source of latency, so preemptible kernels
3356 * will stop after the first task is pulled to minimize the critical
3357 * section.
3358 */
3359 if (idle == CPU_NEWLY_IDLE)
3360 goto out;
3361#endif
3362
2dd73a4f 3363 /*
b82d9fdd 3364 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3365 */
e1d1484f 3366 if (rem_load_move > 0) {
a4ac01c3
PW
3367 if (p->prio < *this_best_prio)
3368 *this_best_prio = p->prio;
dd41f596
IM
3369 p = iterator->next(iterator->arg);
3370 goto next;
1da177e4
LT
3371 }
3372out:
3373 /*
e1d1484f 3374 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3375 * so we can safely collect pull_task() stats here rather than
3376 * inside pull_task().
3377 */
3378 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3379
3380 if (all_pinned)
3381 *all_pinned = pinned;
e1d1484f
PW
3382
3383 return max_load_move - rem_load_move;
1da177e4
LT
3384}
3385
dd41f596 3386/*
43010659
PW
3387 * move_tasks tries to move up to max_load_move weighted load from busiest to
3388 * this_rq, as part of a balancing operation within domain "sd".
3389 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3390 *
3391 * Called with both runqueues locked.
3392 */
3393static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3394 unsigned long max_load_move,
dd41f596
IM
3395 struct sched_domain *sd, enum cpu_idle_type idle,
3396 int *all_pinned)
3397{
5522d5d5 3398 const struct sched_class *class = sched_class_highest;
43010659 3399 unsigned long total_load_moved = 0;
a4ac01c3 3400 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3401
3402 do {
43010659
PW
3403 total_load_moved +=
3404 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3405 max_load_move - total_load_moved,
a4ac01c3 3406 sd, idle, all_pinned, &this_best_prio);
dd41f596 3407 class = class->next;
c4acb2c0 3408
7e96fa58
GH
3409#ifdef CONFIG_PREEMPT
3410 /*
3411 * NEWIDLE balancing is a source of latency, so preemptible
3412 * kernels will stop after the first task is pulled to minimize
3413 * the critical section.
3414 */
c4acb2c0
GH
3415 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3416 break;
7e96fa58 3417#endif
43010659 3418 } while (class && max_load_move > total_load_moved);
dd41f596 3419
43010659
PW
3420 return total_load_moved > 0;
3421}
3422
e1d1484f
PW
3423static int
3424iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3425 struct sched_domain *sd, enum cpu_idle_type idle,
3426 struct rq_iterator *iterator)
3427{
3428 struct task_struct *p = iterator->start(iterator->arg);
3429 int pinned = 0;
3430
3431 while (p) {
3432 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3433 pull_task(busiest, p, this_rq, this_cpu);
3434 /*
3435 * Right now, this is only the second place pull_task()
3436 * is called, so we can safely collect pull_task()
3437 * stats here rather than inside pull_task().
3438 */
3439 schedstat_inc(sd, lb_gained[idle]);
3440
3441 return 1;
3442 }
3443 p = iterator->next(iterator->arg);
3444 }
3445
3446 return 0;
3447}
3448
43010659
PW
3449/*
3450 * move_one_task tries to move exactly one task from busiest to this_rq, as
3451 * part of active balancing operations within "domain".
3452 * Returns 1 if successful and 0 otherwise.
3453 *
3454 * Called with both runqueues locked.
3455 */
3456static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3457 struct sched_domain *sd, enum cpu_idle_type idle)
3458{
5522d5d5 3459 const struct sched_class *class;
43010659 3460
cde7e5ca 3461 for_each_class(class) {
e1d1484f 3462 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3463 return 1;
cde7e5ca 3464 }
43010659
PW
3465
3466 return 0;
dd41f596 3467}
67bb6c03 3468/********** Helpers for find_busiest_group ************************/
1da177e4 3469/*
222d656d
GS
3470 * sd_lb_stats - Structure to store the statistics of a sched_domain
3471 * during load balancing.
1da177e4 3472 */
222d656d
GS
3473struct sd_lb_stats {
3474 struct sched_group *busiest; /* Busiest group in this sd */
3475 struct sched_group *this; /* Local group in this sd */
3476 unsigned long total_load; /* Total load of all groups in sd */
3477 unsigned long total_pwr; /* Total power of all groups in sd */
3478 unsigned long avg_load; /* Average load across all groups in sd */
3479
3480 /** Statistics of this group */
3481 unsigned long this_load;
3482 unsigned long this_load_per_task;
3483 unsigned long this_nr_running;
3484
3485 /* Statistics of the busiest group */
3486 unsigned long max_load;
3487 unsigned long busiest_load_per_task;
3488 unsigned long busiest_nr_running;
3489
3490 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3491#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3492 int power_savings_balance; /* Is powersave balance needed for this sd */
3493 struct sched_group *group_min; /* Least loaded group in sd */
3494 struct sched_group *group_leader; /* Group which relieves group_min */
3495 unsigned long min_load_per_task; /* load_per_task in group_min */
3496 unsigned long leader_nr_running; /* Nr running of group_leader */
3497 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3498#endif
222d656d 3499};
1da177e4 3500
d5ac537e 3501/*
381be78f
GS
3502 * sg_lb_stats - stats of a sched_group required for load_balancing
3503 */
3504struct sg_lb_stats {
3505 unsigned long avg_load; /*Avg load across the CPUs of the group */
3506 unsigned long group_load; /* Total load over the CPUs of the group */
3507 unsigned long sum_nr_running; /* Nr tasks running in the group */
3508 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3509 unsigned long group_capacity;
3510 int group_imb; /* Is there an imbalance in the group ? */
3511};
408ed066 3512
67bb6c03
GS
3513/**
3514 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3515 * @group: The group whose first cpu is to be returned.
3516 */
3517static inline unsigned int group_first_cpu(struct sched_group *group)
3518{
3519 return cpumask_first(sched_group_cpus(group));
3520}
3521
3522/**
3523 * get_sd_load_idx - Obtain the load index for a given sched domain.
3524 * @sd: The sched_domain whose load_idx is to be obtained.
3525 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3526 */
3527static inline int get_sd_load_idx(struct sched_domain *sd,
3528 enum cpu_idle_type idle)
3529{
3530 int load_idx;
3531
3532 switch (idle) {
3533 case CPU_NOT_IDLE:
7897986b 3534 load_idx = sd->busy_idx;
67bb6c03
GS
3535 break;
3536
3537 case CPU_NEWLY_IDLE:
7897986b 3538 load_idx = sd->newidle_idx;
67bb6c03
GS
3539 break;
3540 default:
7897986b 3541 load_idx = sd->idle_idx;
67bb6c03
GS
3542 break;
3543 }
1da177e4 3544
67bb6c03
GS
3545 return load_idx;
3546}
1da177e4 3547
1da177e4 3548
c071df18
GS
3549#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3550/**
3551 * init_sd_power_savings_stats - Initialize power savings statistics for
3552 * the given sched_domain, during load balancing.
3553 *
3554 * @sd: Sched domain whose power-savings statistics are to be initialized.
3555 * @sds: Variable containing the statistics for sd.
3556 * @idle: Idle status of the CPU at which we're performing load-balancing.
3557 */
3558static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3559 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3560{
3561 /*
3562 * Busy processors will not participate in power savings
3563 * balance.
3564 */
3565 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3566 sds->power_savings_balance = 0;
3567 else {
3568 sds->power_savings_balance = 1;
3569 sds->min_nr_running = ULONG_MAX;
3570 sds->leader_nr_running = 0;
3571 }
3572}
783609c6 3573
c071df18
GS
3574/**
3575 * update_sd_power_savings_stats - Update the power saving stats for a
3576 * sched_domain while performing load balancing.
3577 *
3578 * @group: sched_group belonging to the sched_domain under consideration.
3579 * @sds: Variable containing the statistics of the sched_domain
3580 * @local_group: Does group contain the CPU for which we're performing
3581 * load balancing ?
3582 * @sgs: Variable containing the statistics of the group.
3583 */
3584static inline void update_sd_power_savings_stats(struct sched_group *group,
3585 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3586{
408ed066 3587
c071df18
GS
3588 if (!sds->power_savings_balance)
3589 return;
1da177e4 3590
c071df18
GS
3591 /*
3592 * If the local group is idle or completely loaded
3593 * no need to do power savings balance at this domain
3594 */
3595 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3596 !sds->this_nr_running))
3597 sds->power_savings_balance = 0;
2dd73a4f 3598
c071df18
GS
3599 /*
3600 * If a group is already running at full capacity or idle,
3601 * don't include that group in power savings calculations
3602 */
3603 if (!sds->power_savings_balance ||
3604 sgs->sum_nr_running >= sgs->group_capacity ||
3605 !sgs->sum_nr_running)
3606 return;
5969fe06 3607
c071df18
GS
3608 /*
3609 * Calculate the group which has the least non-idle load.
3610 * This is the group from where we need to pick up the load
3611 * for saving power
3612 */
3613 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3614 (sgs->sum_nr_running == sds->min_nr_running &&
3615 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3616 sds->group_min = group;
3617 sds->min_nr_running = sgs->sum_nr_running;
3618 sds->min_load_per_task = sgs->sum_weighted_load /
3619 sgs->sum_nr_running;
3620 }
783609c6 3621
c071df18
GS
3622 /*
3623 * Calculate the group which is almost near its
3624 * capacity but still has some space to pick up some load
3625 * from other group and save more power
3626 */
3627 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3628 return;
1da177e4 3629
c071df18
GS
3630 if (sgs->sum_nr_running > sds->leader_nr_running ||
3631 (sgs->sum_nr_running == sds->leader_nr_running &&
3632 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3633 sds->group_leader = group;
3634 sds->leader_nr_running = sgs->sum_nr_running;
3635 }
3636}
408ed066 3637
c071df18 3638/**
d5ac537e 3639 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3640 * @sds: Variable containing the statistics of the sched_domain
3641 * under consideration.
3642 * @this_cpu: Cpu at which we're currently performing load-balancing.
3643 * @imbalance: Variable to store the imbalance.
3644 *
d5ac537e
RD
3645 * Description:
3646 * Check if we have potential to perform some power-savings balance.
3647 * If yes, set the busiest group to be the least loaded group in the
3648 * sched_domain, so that it's CPUs can be put to idle.
3649 *
c071df18
GS
3650 * Returns 1 if there is potential to perform power-savings balance.
3651 * Else returns 0.
3652 */
3653static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3654 int this_cpu, unsigned long *imbalance)
3655{
3656 if (!sds->power_savings_balance)
3657 return 0;
1da177e4 3658
c071df18
GS
3659 if (sds->this != sds->group_leader ||
3660 sds->group_leader == sds->group_min)
3661 return 0;
783609c6 3662
c071df18
GS
3663 *imbalance = sds->min_load_per_task;
3664 sds->busiest = sds->group_min;
1da177e4 3665
c071df18
GS
3666 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3667 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3668 group_first_cpu(sds->group_leader);
3669 }
3670
3671 return 1;
1da177e4 3672
c071df18
GS
3673}
3674#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3675static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3676 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3677{
3678 return;
3679}
408ed066 3680
c071df18
GS
3681static inline void update_sd_power_savings_stats(struct sched_group *group,
3682 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3683{
3684 return;
3685}
3686
3687static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3688 int this_cpu, unsigned long *imbalance)
3689{
3690 return 0;
3691}
3692#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3693
3694
1f8c553d
GS
3695/**
3696 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3697 * @group: sched_group whose statistics are to be updated.
3698 * @this_cpu: Cpu for which load balance is currently performed.
3699 * @idle: Idle status of this_cpu
3700 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3701 * @sd_idle: Idle status of the sched_domain containing group.
3702 * @local_group: Does group contain this_cpu.
3703 * @cpus: Set of cpus considered for load balancing.
3704 * @balance: Should we balance.
3705 * @sgs: variable to hold the statistics for this group.
3706 */
3707static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3708 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3709 int local_group, const struct cpumask *cpus,
3710 int *balance, struct sg_lb_stats *sgs)
3711{
3712 unsigned long load, max_cpu_load, min_cpu_load;
3713 int i;
3714 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3715 unsigned long sum_avg_load_per_task;
3716 unsigned long avg_load_per_task;
3717
3718 if (local_group)
3719 balance_cpu = group_first_cpu(group);
3720
3721 /* Tally up the load of all CPUs in the group */
3722 sum_avg_load_per_task = avg_load_per_task = 0;
3723 max_cpu_load = 0;
3724 min_cpu_load = ~0UL;
408ed066 3725
1f8c553d
GS
3726 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3727 struct rq *rq = cpu_rq(i);
908a7c1b 3728
1f8c553d
GS
3729 if (*sd_idle && rq->nr_running)
3730 *sd_idle = 0;
5c45bf27 3731
1f8c553d 3732 /* Bias balancing toward cpus of our domain */
1da177e4 3733 if (local_group) {
1f8c553d
GS
3734 if (idle_cpu(i) && !first_idle_cpu) {
3735 first_idle_cpu = 1;
3736 balance_cpu = i;
3737 }
3738
3739 load = target_load(i, load_idx);
3740 } else {
3741 load = source_load(i, load_idx);
3742 if (load > max_cpu_load)
3743 max_cpu_load = load;
3744 if (min_cpu_load > load)
3745 min_cpu_load = load;
1da177e4 3746 }
5c45bf27 3747
1f8c553d
GS
3748 sgs->group_load += load;
3749 sgs->sum_nr_running += rq->nr_running;
3750 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3751
1f8c553d
GS
3752 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3753 }
5c45bf27 3754
1f8c553d
GS
3755 /*
3756 * First idle cpu or the first cpu(busiest) in this sched group
3757 * is eligible for doing load balancing at this and above
3758 * domains. In the newly idle case, we will allow all the cpu's
3759 * to do the newly idle load balance.
3760 */
3761 if (idle != CPU_NEWLY_IDLE && local_group &&
3762 balance_cpu != this_cpu && balance) {
3763 *balance = 0;
3764 return;
3765 }
5c45bf27 3766
1f8c553d
GS
3767 /* Adjust by relative CPU power of the group */
3768 sgs->avg_load = sg_div_cpu_power(group,
3769 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3770
1f8c553d
GS
3771
3772 /*
3773 * Consider the group unbalanced when the imbalance is larger
3774 * than the average weight of two tasks.
3775 *
3776 * APZ: with cgroup the avg task weight can vary wildly and
3777 * might not be a suitable number - should we keep a
3778 * normalized nr_running number somewhere that negates
3779 * the hierarchy?
3780 */
3781 avg_load_per_task = sg_div_cpu_power(group,
3782 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3783
3784 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3785 sgs->group_imb = 1;
3786
3787 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3788
3789}
dd41f596 3790
37abe198
GS
3791/**
3792 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3793 * @sd: sched_domain whose statistics are to be updated.
3794 * @this_cpu: Cpu for which load balance is currently performed.
3795 * @idle: Idle status of this_cpu
3796 * @sd_idle: Idle status of the sched_domain containing group.
3797 * @cpus: Set of cpus considered for load balancing.
3798 * @balance: Should we balance.
3799 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3800 */
37abe198
GS
3801static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3802 enum cpu_idle_type idle, int *sd_idle,
3803 const struct cpumask *cpus, int *balance,
3804 struct sd_lb_stats *sds)
1da177e4 3805{
222d656d 3806 struct sched_group *group = sd->groups;
37abe198 3807 struct sg_lb_stats sgs;
222d656d
GS
3808 int load_idx;
3809
c071df18 3810 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3811 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3812
3813 do {
1da177e4 3814 int local_group;
1da177e4 3815
758b2cdc
RR
3816 local_group = cpumask_test_cpu(this_cpu,
3817 sched_group_cpus(group));
381be78f 3818 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3819 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3820 local_group, cpus, balance, &sgs);
1da177e4 3821
37abe198
GS
3822 if (local_group && balance && !(*balance))
3823 return;
783609c6 3824
37abe198
GS
3825 sds->total_load += sgs.group_load;
3826 sds->total_pwr += group->__cpu_power;
1da177e4 3827
1da177e4 3828 if (local_group) {
37abe198
GS
3829 sds->this_load = sgs.avg_load;
3830 sds->this = group;
3831 sds->this_nr_running = sgs.sum_nr_running;
3832 sds->this_load_per_task = sgs.sum_weighted_load;
3833 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3834 (sgs.sum_nr_running > sgs.group_capacity ||
3835 sgs.group_imb)) {
37abe198
GS
3836 sds->max_load = sgs.avg_load;
3837 sds->busiest = group;
3838 sds->busiest_nr_running = sgs.sum_nr_running;
3839 sds->busiest_load_per_task = sgs.sum_weighted_load;
3840 sds->group_imb = sgs.group_imb;
48f24c4d 3841 }
5c45bf27 3842
c071df18 3843 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3844 group = group->next;
3845 } while (group != sd->groups);
3846
37abe198 3847}
1da177e4 3848
2e6f44ae
GS
3849/**
3850 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3851 * amongst the groups of a sched_domain, during
3852 * load balancing.
2e6f44ae
GS
3853 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3854 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3855 * @imbalance: Variable to store the imbalance.
3856 */
3857static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3858 int this_cpu, unsigned long *imbalance)
3859{
3860 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3861 unsigned int imbn = 2;
3862
3863 if (sds->this_nr_running) {
3864 sds->this_load_per_task /= sds->this_nr_running;
3865 if (sds->busiest_load_per_task >
3866 sds->this_load_per_task)
3867 imbn = 1;
3868 } else
3869 sds->this_load_per_task =
3870 cpu_avg_load_per_task(this_cpu);
1da177e4 3871
2e6f44ae
GS
3872 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3873 sds->busiest_load_per_task * imbn) {
3874 *imbalance = sds->busiest_load_per_task;
3875 return;
3876 }
908a7c1b 3877
1da177e4 3878 /*
2e6f44ae
GS
3879 * OK, we don't have enough imbalance to justify moving tasks,
3880 * however we may be able to increase total CPU power used by
3881 * moving them.
1da177e4 3882 */
2dd73a4f 3883
2e6f44ae
GS
3884 pwr_now += sds->busiest->__cpu_power *
3885 min(sds->busiest_load_per_task, sds->max_load);
3886 pwr_now += sds->this->__cpu_power *
3887 min(sds->this_load_per_task, sds->this_load);
3888 pwr_now /= SCHED_LOAD_SCALE;
3889
3890 /* Amount of load we'd subtract */
3891 tmp = sg_div_cpu_power(sds->busiest,
3892 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3893 if (sds->max_load > tmp)
3894 pwr_move += sds->busiest->__cpu_power *
3895 min(sds->busiest_load_per_task, sds->max_load - tmp);
3896
3897 /* Amount of load we'd add */
3898 if (sds->max_load * sds->busiest->__cpu_power <
3899 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3900 tmp = sg_div_cpu_power(sds->this,
3901 sds->max_load * sds->busiest->__cpu_power);
3902 else
3903 tmp = sg_div_cpu_power(sds->this,
3904 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3905 pwr_move += sds->this->__cpu_power *
3906 min(sds->this_load_per_task, sds->this_load + tmp);
3907 pwr_move /= SCHED_LOAD_SCALE;
3908
3909 /* Move if we gain throughput */
3910 if (pwr_move > pwr_now)
3911 *imbalance = sds->busiest_load_per_task;
3912}
dbc523a3
GS
3913
3914/**
3915 * calculate_imbalance - Calculate the amount of imbalance present within the
3916 * groups of a given sched_domain during load balance.
3917 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3918 * @this_cpu: Cpu for which currently load balance is being performed.
3919 * @imbalance: The variable to store the imbalance.
3920 */
3921static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3922 unsigned long *imbalance)
3923{
3924 unsigned long max_pull;
2dd73a4f
PW
3925 /*
3926 * In the presence of smp nice balancing, certain scenarios can have
3927 * max load less than avg load(as we skip the groups at or below
3928 * its cpu_power, while calculating max_load..)
3929 */
dbc523a3 3930 if (sds->max_load < sds->avg_load) {
2dd73a4f 3931 *imbalance = 0;
dbc523a3 3932 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3933 }
0c117f1b
SS
3934
3935 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3936 max_pull = min(sds->max_load - sds->avg_load,
3937 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3938
1da177e4 3939 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3940 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3941 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3942 / SCHED_LOAD_SCALE;
3943
2dd73a4f
PW
3944 /*
3945 * if *imbalance is less than the average load per runnable task
3946 * there is no gaurantee that any tasks will be moved so we'll have
3947 * a think about bumping its value to force at least one task to be
3948 * moved
3949 */
dbc523a3
GS
3950 if (*imbalance < sds->busiest_load_per_task)
3951 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3952
dbc523a3 3953}
37abe198 3954/******* find_busiest_group() helpers end here *********************/
1da177e4 3955
b7bb4c9b
GS
3956/**
3957 * find_busiest_group - Returns the busiest group within the sched_domain
3958 * if there is an imbalance. If there isn't an imbalance, and
3959 * the user has opted for power-savings, it returns a group whose
3960 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3961 * such a group exists.
3962 *
3963 * Also calculates the amount of weighted load which should be moved
3964 * to restore balance.
3965 *
3966 * @sd: The sched_domain whose busiest group is to be returned.
3967 * @this_cpu: The cpu for which load balancing is currently being performed.
3968 * @imbalance: Variable which stores amount of weighted load which should
3969 * be moved to restore balance/put a group to idle.
3970 * @idle: The idle status of this_cpu.
3971 * @sd_idle: The idleness of sd
3972 * @cpus: The set of CPUs under consideration for load-balancing.
3973 * @balance: Pointer to a variable indicating if this_cpu
3974 * is the appropriate cpu to perform load balancing at this_level.
3975 *
3976 * Returns: - the busiest group if imbalance exists.
3977 * - If no imbalance and user has opted for power-savings balance,
3978 * return the least loaded group whose CPUs can be
3979 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3980 */
3981static struct sched_group *
3982find_busiest_group(struct sched_domain *sd, int this_cpu,
3983 unsigned long *imbalance, enum cpu_idle_type idle,
3984 int *sd_idle, const struct cpumask *cpus, int *balance)
3985{
3986 struct sd_lb_stats sds;
1da177e4 3987
37abe198 3988 memset(&sds, 0, sizeof(sds));
1da177e4 3989
37abe198
GS
3990 /*
3991 * Compute the various statistics relavent for load balancing at
3992 * this level.
3993 */
3994 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3995 balance, &sds);
3996
b7bb4c9b
GS
3997 /* Cases where imbalance does not exist from POV of this_cpu */
3998 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3999 * at this level.
4000 * 2) There is no busy sibling group to pull from.
4001 * 3) This group is the busiest group.
4002 * 4) This group is more busy than the avg busieness at this
4003 * sched_domain.
4004 * 5) The imbalance is within the specified limit.
4005 * 6) Any rebalance would lead to ping-pong
4006 */
37abe198
GS
4007 if (balance && !(*balance))
4008 goto ret;
1da177e4 4009
b7bb4c9b
GS
4010 if (!sds.busiest || sds.busiest_nr_running == 0)
4011 goto out_balanced;
1da177e4 4012
b7bb4c9b 4013 if (sds.this_load >= sds.max_load)
1da177e4 4014 goto out_balanced;
1da177e4 4015
222d656d 4016 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4017
b7bb4c9b
GS
4018 if (sds.this_load >= sds.avg_load)
4019 goto out_balanced;
4020
4021 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4022 goto out_balanced;
4023
222d656d
GS
4024 sds.busiest_load_per_task /= sds.busiest_nr_running;
4025 if (sds.group_imb)
4026 sds.busiest_load_per_task =
4027 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4028
1da177e4
LT
4029 /*
4030 * We're trying to get all the cpus to the average_load, so we don't
4031 * want to push ourselves above the average load, nor do we wish to
4032 * reduce the max loaded cpu below the average load, as either of these
4033 * actions would just result in more rebalancing later, and ping-pong
4034 * tasks around. Thus we look for the minimum possible imbalance.
4035 * Negative imbalances (*we* are more loaded than anyone else) will
4036 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4037 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4038 * appear as very large values with unsigned longs.
4039 */
222d656d 4040 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4041 goto out_balanced;
4042
dbc523a3
GS
4043 /* Looks like there is an imbalance. Compute it */
4044 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4045 return sds.busiest;
1da177e4
LT
4046
4047out_balanced:
c071df18
GS
4048 /*
4049 * There is no obvious imbalance. But check if we can do some balancing
4050 * to save power.
4051 */
4052 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4053 return sds.busiest;
783609c6 4054ret:
1da177e4
LT
4055 *imbalance = 0;
4056 return NULL;
4057}
4058
4059/*
4060 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4061 */
70b97a7f 4062static struct rq *
d15bcfdb 4063find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4064 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4065{
70b97a7f 4066 struct rq *busiest = NULL, *rq;
2dd73a4f 4067 unsigned long max_load = 0;
1da177e4
LT
4068 int i;
4069
758b2cdc 4070 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 4071 unsigned long wl;
0a2966b4 4072
96f874e2 4073 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4074 continue;
4075
48f24c4d 4076 rq = cpu_rq(i);
dd41f596 4077 wl = weighted_cpuload(i);
2dd73a4f 4078
dd41f596 4079 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4080 continue;
1da177e4 4081
dd41f596
IM
4082 if (wl > max_load) {
4083 max_load = wl;
48f24c4d 4084 busiest = rq;
1da177e4
LT
4085 }
4086 }
4087
4088 return busiest;
4089}
4090
77391d71
NP
4091/*
4092 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4093 * so long as it is large enough.
4094 */
4095#define MAX_PINNED_INTERVAL 512
4096
df7c8e84
RR
4097/* Working cpumask for load_balance and load_balance_newidle. */
4098static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4099
1da177e4
LT
4100/*
4101 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4102 * tasks if there is an imbalance.
1da177e4 4103 */
70b97a7f 4104static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4105 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4106 int *balance)
1da177e4 4107{
43010659 4108 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4109 struct sched_group *group;
1da177e4 4110 unsigned long imbalance;
70b97a7f 4111 struct rq *busiest;
fe2eea3f 4112 unsigned long flags;
df7c8e84 4113 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4114
96f874e2 4115 cpumask_setall(cpus);
7c16ec58 4116
89c4710e
SS
4117 /*
4118 * When power savings policy is enabled for the parent domain, idle
4119 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4120 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4121 * portraying it as CPU_NOT_IDLE.
89c4710e 4122 */
d15bcfdb 4123 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4124 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4125 sd_idle = 1;
1da177e4 4126
2d72376b 4127 schedstat_inc(sd, lb_count[idle]);
1da177e4 4128
0a2966b4 4129redo:
c8cba857 4130 update_shares(sd);
0a2966b4 4131 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4132 cpus, balance);
783609c6 4133
06066714 4134 if (*balance == 0)
783609c6 4135 goto out_balanced;
783609c6 4136
1da177e4
LT
4137 if (!group) {
4138 schedstat_inc(sd, lb_nobusyg[idle]);
4139 goto out_balanced;
4140 }
4141
7c16ec58 4142 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4143 if (!busiest) {
4144 schedstat_inc(sd, lb_nobusyq[idle]);
4145 goto out_balanced;
4146 }
4147
db935dbd 4148 BUG_ON(busiest == this_rq);
1da177e4
LT
4149
4150 schedstat_add(sd, lb_imbalance[idle], imbalance);
4151
43010659 4152 ld_moved = 0;
1da177e4
LT
4153 if (busiest->nr_running > 1) {
4154 /*
4155 * Attempt to move tasks. If find_busiest_group has found
4156 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4157 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4158 * correctly treated as an imbalance.
4159 */
fe2eea3f 4160 local_irq_save(flags);
e17224bf 4161 double_rq_lock(this_rq, busiest);
43010659 4162 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4163 imbalance, sd, idle, &all_pinned);
e17224bf 4164 double_rq_unlock(this_rq, busiest);
fe2eea3f 4165 local_irq_restore(flags);
81026794 4166
46cb4b7c
SS
4167 /*
4168 * some other cpu did the load balance for us.
4169 */
43010659 4170 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4171 resched_cpu(this_cpu);
4172
81026794 4173 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4174 if (unlikely(all_pinned)) {
96f874e2
RR
4175 cpumask_clear_cpu(cpu_of(busiest), cpus);
4176 if (!cpumask_empty(cpus))
0a2966b4 4177 goto redo;
81026794 4178 goto out_balanced;
0a2966b4 4179 }
1da177e4 4180 }
81026794 4181
43010659 4182 if (!ld_moved) {
1da177e4
LT
4183 schedstat_inc(sd, lb_failed[idle]);
4184 sd->nr_balance_failed++;
4185
4186 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4187
fe2eea3f 4188 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4189
4190 /* don't kick the migration_thread, if the curr
4191 * task on busiest cpu can't be moved to this_cpu
4192 */
96f874e2
RR
4193 if (!cpumask_test_cpu(this_cpu,
4194 &busiest->curr->cpus_allowed)) {
fe2eea3f 4195 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4196 all_pinned = 1;
4197 goto out_one_pinned;
4198 }
4199
1da177e4
LT
4200 if (!busiest->active_balance) {
4201 busiest->active_balance = 1;
4202 busiest->push_cpu = this_cpu;
81026794 4203 active_balance = 1;
1da177e4 4204 }
fe2eea3f 4205 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4206 if (active_balance)
1da177e4
LT
4207 wake_up_process(busiest->migration_thread);
4208
4209 /*
4210 * We've kicked active balancing, reset the failure
4211 * counter.
4212 */
39507451 4213 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4214 }
81026794 4215 } else
1da177e4
LT
4216 sd->nr_balance_failed = 0;
4217
81026794 4218 if (likely(!active_balance)) {
1da177e4
LT
4219 /* We were unbalanced, so reset the balancing interval */
4220 sd->balance_interval = sd->min_interval;
81026794
NP
4221 } else {
4222 /*
4223 * If we've begun active balancing, start to back off. This
4224 * case may not be covered by the all_pinned logic if there
4225 * is only 1 task on the busy runqueue (because we don't call
4226 * move_tasks).
4227 */
4228 if (sd->balance_interval < sd->max_interval)
4229 sd->balance_interval *= 2;
1da177e4
LT
4230 }
4231
43010659 4232 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4233 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4234 ld_moved = -1;
4235
4236 goto out;
1da177e4
LT
4237
4238out_balanced:
1da177e4
LT
4239 schedstat_inc(sd, lb_balanced[idle]);
4240
16cfb1c0 4241 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4242
4243out_one_pinned:
1da177e4 4244 /* tune up the balancing interval */
77391d71
NP
4245 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4246 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4247 sd->balance_interval *= 2;
4248
48f24c4d 4249 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4250 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4251 ld_moved = -1;
4252 else
4253 ld_moved = 0;
4254out:
c8cba857
PZ
4255 if (ld_moved)
4256 update_shares(sd);
c09595f6 4257 return ld_moved;
1da177e4
LT
4258}
4259
4260/*
4261 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4262 * tasks if there is an imbalance.
4263 *
d15bcfdb 4264 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4265 * this_rq is locked.
4266 */
48f24c4d 4267static int
df7c8e84 4268load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4269{
4270 struct sched_group *group;
70b97a7f 4271 struct rq *busiest = NULL;
1da177e4 4272 unsigned long imbalance;
43010659 4273 int ld_moved = 0;
5969fe06 4274 int sd_idle = 0;
969bb4e4 4275 int all_pinned = 0;
df7c8e84 4276 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4277
96f874e2 4278 cpumask_setall(cpus);
5969fe06 4279
89c4710e
SS
4280 /*
4281 * When power savings policy is enabled for the parent domain, idle
4282 * sibling can pick up load irrespective of busy siblings. In this case,
4283 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4284 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4285 */
4286 if (sd->flags & SD_SHARE_CPUPOWER &&
4287 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4288 sd_idle = 1;
1da177e4 4289
2d72376b 4290 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4291redo:
3e5459b4 4292 update_shares_locked(this_rq, sd);
d15bcfdb 4293 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4294 &sd_idle, cpus, NULL);
1da177e4 4295 if (!group) {
d15bcfdb 4296 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4297 goto out_balanced;
1da177e4
LT
4298 }
4299
7c16ec58 4300 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4301 if (!busiest) {
d15bcfdb 4302 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4303 goto out_balanced;
1da177e4
LT
4304 }
4305
db935dbd
NP
4306 BUG_ON(busiest == this_rq);
4307
d15bcfdb 4308 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4309
43010659 4310 ld_moved = 0;
d6d5cfaf
NP
4311 if (busiest->nr_running > 1) {
4312 /* Attempt to move tasks */
4313 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4314 /* this_rq->clock is already updated */
4315 update_rq_clock(busiest);
43010659 4316 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4317 imbalance, sd, CPU_NEWLY_IDLE,
4318 &all_pinned);
1b12bbc7 4319 double_unlock_balance(this_rq, busiest);
0a2966b4 4320
969bb4e4 4321 if (unlikely(all_pinned)) {
96f874e2
RR
4322 cpumask_clear_cpu(cpu_of(busiest), cpus);
4323 if (!cpumask_empty(cpus))
0a2966b4
CL
4324 goto redo;
4325 }
d6d5cfaf
NP
4326 }
4327
43010659 4328 if (!ld_moved) {
36dffab6 4329 int active_balance = 0;
ad273b32 4330
d15bcfdb 4331 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4332 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4333 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4334 return -1;
ad273b32
VS
4335
4336 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4337 return -1;
4338
4339 if (sd->nr_balance_failed++ < 2)
4340 return -1;
4341
4342 /*
4343 * The only task running in a non-idle cpu can be moved to this
4344 * cpu in an attempt to completely freeup the other CPU
4345 * package. The same method used to move task in load_balance()
4346 * have been extended for load_balance_newidle() to speedup
4347 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4348 *
4349 * The package power saving logic comes from
4350 * find_busiest_group(). If there are no imbalance, then
4351 * f_b_g() will return NULL. However when sched_mc={1,2} then
4352 * f_b_g() will select a group from which a running task may be
4353 * pulled to this cpu in order to make the other package idle.
4354 * If there is no opportunity to make a package idle and if
4355 * there are no imbalance, then f_b_g() will return NULL and no
4356 * action will be taken in load_balance_newidle().
4357 *
4358 * Under normal task pull operation due to imbalance, there
4359 * will be more than one task in the source run queue and
4360 * move_tasks() will succeed. ld_moved will be true and this
4361 * active balance code will not be triggered.
4362 */
4363
4364 /* Lock busiest in correct order while this_rq is held */
4365 double_lock_balance(this_rq, busiest);
4366
4367 /*
4368 * don't kick the migration_thread, if the curr
4369 * task on busiest cpu can't be moved to this_cpu
4370 */
6ca09dfc 4371 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4372 double_unlock_balance(this_rq, busiest);
4373 all_pinned = 1;
4374 return ld_moved;
4375 }
4376
4377 if (!busiest->active_balance) {
4378 busiest->active_balance = 1;
4379 busiest->push_cpu = this_cpu;
4380 active_balance = 1;
4381 }
4382
4383 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4384 /*
4385 * Should not call ttwu while holding a rq->lock
4386 */
4387 spin_unlock(&this_rq->lock);
ad273b32
VS
4388 if (active_balance)
4389 wake_up_process(busiest->migration_thread);
da8d5089 4390 spin_lock(&this_rq->lock);
ad273b32 4391
5969fe06 4392 } else
16cfb1c0 4393 sd->nr_balance_failed = 0;
1da177e4 4394
3e5459b4 4395 update_shares_locked(this_rq, sd);
43010659 4396 return ld_moved;
16cfb1c0
NP
4397
4398out_balanced:
d15bcfdb 4399 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4400 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4401 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4402 return -1;
16cfb1c0 4403 sd->nr_balance_failed = 0;
48f24c4d 4404
16cfb1c0 4405 return 0;
1da177e4
LT
4406}
4407
4408/*
4409 * idle_balance is called by schedule() if this_cpu is about to become
4410 * idle. Attempts to pull tasks from other CPUs.
4411 */
70b97a7f 4412static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4413{
4414 struct sched_domain *sd;
efbe027e 4415 int pulled_task = 0;
dd41f596 4416 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4417
4418 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4419 unsigned long interval;
4420
4421 if (!(sd->flags & SD_LOAD_BALANCE))
4422 continue;
4423
4424 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4425 /* If we've pulled tasks over stop searching: */
7c16ec58 4426 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4427 sd);
92c4ca5c
CL
4428
4429 interval = msecs_to_jiffies(sd->balance_interval);
4430 if (time_after(next_balance, sd->last_balance + interval))
4431 next_balance = sd->last_balance + interval;
4432 if (pulled_task)
4433 break;
1da177e4 4434 }
dd41f596 4435 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4436 /*
4437 * We are going idle. next_balance may be set based on
4438 * a busy processor. So reset next_balance.
4439 */
4440 this_rq->next_balance = next_balance;
dd41f596 4441 }
1da177e4
LT
4442}
4443
4444/*
4445 * active_load_balance is run by migration threads. It pushes running tasks
4446 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4447 * running on each physical CPU where possible, and avoids physical /
4448 * logical imbalances.
4449 *
4450 * Called with busiest_rq locked.
4451 */
70b97a7f 4452static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4453{
39507451 4454 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4455 struct sched_domain *sd;
4456 struct rq *target_rq;
39507451 4457
48f24c4d 4458 /* Is there any task to move? */
39507451 4459 if (busiest_rq->nr_running <= 1)
39507451
NP
4460 return;
4461
4462 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4463
4464 /*
39507451 4465 * This condition is "impossible", if it occurs
41a2d6cf 4466 * we need to fix it. Originally reported by
39507451 4467 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4468 */
39507451 4469 BUG_ON(busiest_rq == target_rq);
1da177e4 4470
39507451
NP
4471 /* move a task from busiest_rq to target_rq */
4472 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4473 update_rq_clock(busiest_rq);
4474 update_rq_clock(target_rq);
39507451
NP
4475
4476 /* Search for an sd spanning us and the target CPU. */
c96d145e 4477 for_each_domain(target_cpu, sd) {
39507451 4478 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4479 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4480 break;
c96d145e 4481 }
39507451 4482
48f24c4d 4483 if (likely(sd)) {
2d72376b 4484 schedstat_inc(sd, alb_count);
39507451 4485
43010659
PW
4486 if (move_one_task(target_rq, target_cpu, busiest_rq,
4487 sd, CPU_IDLE))
48f24c4d
IM
4488 schedstat_inc(sd, alb_pushed);
4489 else
4490 schedstat_inc(sd, alb_failed);
4491 }
1b12bbc7 4492 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4493}
4494
46cb4b7c
SS
4495#ifdef CONFIG_NO_HZ
4496static struct {
4497 atomic_t load_balancer;
7d1e6a9b 4498 cpumask_var_t cpu_mask;
f711f609 4499 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4500} nohz ____cacheline_aligned = {
4501 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4502};
4503
eea08f32
AB
4504int get_nohz_load_balancer(void)
4505{
4506 return atomic_read(&nohz.load_balancer);
4507}
4508
f711f609
GS
4509#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4510/**
4511 * lowest_flag_domain - Return lowest sched_domain containing flag.
4512 * @cpu: The cpu whose lowest level of sched domain is to
4513 * be returned.
4514 * @flag: The flag to check for the lowest sched_domain
4515 * for the given cpu.
4516 *
4517 * Returns the lowest sched_domain of a cpu which contains the given flag.
4518 */
4519static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4520{
4521 struct sched_domain *sd;
4522
4523 for_each_domain(cpu, sd)
4524 if (sd && (sd->flags & flag))
4525 break;
4526
4527 return sd;
4528}
4529
4530/**
4531 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4532 * @cpu: The cpu whose domains we're iterating over.
4533 * @sd: variable holding the value of the power_savings_sd
4534 * for cpu.
4535 * @flag: The flag to filter the sched_domains to be iterated.
4536 *
4537 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4538 * set, starting from the lowest sched_domain to the highest.
4539 */
4540#define for_each_flag_domain(cpu, sd, flag) \
4541 for (sd = lowest_flag_domain(cpu, flag); \
4542 (sd && (sd->flags & flag)); sd = sd->parent)
4543
4544/**
4545 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4546 * @ilb_group: group to be checked for semi-idleness
4547 *
4548 * Returns: 1 if the group is semi-idle. 0 otherwise.
4549 *
4550 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4551 * and atleast one non-idle CPU. This helper function checks if the given
4552 * sched_group is semi-idle or not.
4553 */
4554static inline int is_semi_idle_group(struct sched_group *ilb_group)
4555{
4556 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4557 sched_group_cpus(ilb_group));
4558
4559 /*
4560 * A sched_group is semi-idle when it has atleast one busy cpu
4561 * and atleast one idle cpu.
4562 */
4563 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4564 return 0;
4565
4566 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4567 return 0;
4568
4569 return 1;
4570}
4571/**
4572 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4573 * @cpu: The cpu which is nominating a new idle_load_balancer.
4574 *
4575 * Returns: Returns the id of the idle load balancer if it exists,
4576 * Else, returns >= nr_cpu_ids.
4577 *
4578 * This algorithm picks the idle load balancer such that it belongs to a
4579 * semi-idle powersavings sched_domain. The idea is to try and avoid
4580 * completely idle packages/cores just for the purpose of idle load balancing
4581 * when there are other idle cpu's which are better suited for that job.
4582 */
4583static int find_new_ilb(int cpu)
4584{
4585 struct sched_domain *sd;
4586 struct sched_group *ilb_group;
4587
4588 /*
4589 * Have idle load balancer selection from semi-idle packages only
4590 * when power-aware load balancing is enabled
4591 */
4592 if (!(sched_smt_power_savings || sched_mc_power_savings))
4593 goto out_done;
4594
4595 /*
4596 * Optimize for the case when we have no idle CPUs or only one
4597 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4598 */
4599 if (cpumask_weight(nohz.cpu_mask) < 2)
4600 goto out_done;
4601
4602 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4603 ilb_group = sd->groups;
4604
4605 do {
4606 if (is_semi_idle_group(ilb_group))
4607 return cpumask_first(nohz.ilb_grp_nohz_mask);
4608
4609 ilb_group = ilb_group->next;
4610
4611 } while (ilb_group != sd->groups);
4612 }
4613
4614out_done:
4615 return cpumask_first(nohz.cpu_mask);
4616}
4617#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4618static inline int find_new_ilb(int call_cpu)
4619{
6e29ec57 4620 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4621}
4622#endif
4623
7835b98b 4624/*
46cb4b7c
SS
4625 * This routine will try to nominate the ilb (idle load balancing)
4626 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4627 * load balancing on behalf of all those cpus. If all the cpus in the system
4628 * go into this tickless mode, then there will be no ilb owner (as there is
4629 * no need for one) and all the cpus will sleep till the next wakeup event
4630 * arrives...
4631 *
4632 * For the ilb owner, tick is not stopped. And this tick will be used
4633 * for idle load balancing. ilb owner will still be part of
4634 * nohz.cpu_mask..
7835b98b 4635 *
46cb4b7c
SS
4636 * While stopping the tick, this cpu will become the ilb owner if there
4637 * is no other owner. And will be the owner till that cpu becomes busy
4638 * or if all cpus in the system stop their ticks at which point
4639 * there is no need for ilb owner.
4640 *
4641 * When the ilb owner becomes busy, it nominates another owner, during the
4642 * next busy scheduler_tick()
4643 */
4644int select_nohz_load_balancer(int stop_tick)
4645{
4646 int cpu = smp_processor_id();
4647
4648 if (stop_tick) {
46cb4b7c
SS
4649 cpu_rq(cpu)->in_nohz_recently = 1;
4650
483b4ee6
SS
4651 if (!cpu_active(cpu)) {
4652 if (atomic_read(&nohz.load_balancer) != cpu)
4653 return 0;
4654
4655 /*
4656 * If we are going offline and still the leader,
4657 * give up!
4658 */
46cb4b7c
SS
4659 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4660 BUG();
483b4ee6 4661
46cb4b7c
SS
4662 return 0;
4663 }
4664
483b4ee6
SS
4665 cpumask_set_cpu(cpu, nohz.cpu_mask);
4666
46cb4b7c 4667 /* time for ilb owner also to sleep */
7d1e6a9b 4668 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4669 if (atomic_read(&nohz.load_balancer) == cpu)
4670 atomic_set(&nohz.load_balancer, -1);
4671 return 0;
4672 }
4673
4674 if (atomic_read(&nohz.load_balancer) == -1) {
4675 /* make me the ilb owner */
4676 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4677 return 1;
e790fb0b
GS
4678 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4679 int new_ilb;
4680
4681 if (!(sched_smt_power_savings ||
4682 sched_mc_power_savings))
4683 return 1;
4684 /*
4685 * Check to see if there is a more power-efficient
4686 * ilb.
4687 */
4688 new_ilb = find_new_ilb(cpu);
4689 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4690 atomic_set(&nohz.load_balancer, -1);
4691 resched_cpu(new_ilb);
4692 return 0;
4693 }
46cb4b7c 4694 return 1;
e790fb0b 4695 }
46cb4b7c 4696 } else {
7d1e6a9b 4697 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4698 return 0;
4699
7d1e6a9b 4700 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4701
4702 if (atomic_read(&nohz.load_balancer) == cpu)
4703 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4704 BUG();
4705 }
4706 return 0;
4707}
4708#endif
4709
4710static DEFINE_SPINLOCK(balancing);
4711
4712/*
7835b98b
CL
4713 * It checks each scheduling domain to see if it is due to be balanced,
4714 * and initiates a balancing operation if so.
4715 *
4716 * Balancing parameters are set up in arch_init_sched_domains.
4717 */
a9957449 4718static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4719{
46cb4b7c
SS
4720 int balance = 1;
4721 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4722 unsigned long interval;
4723 struct sched_domain *sd;
46cb4b7c 4724 /* Earliest time when we have to do rebalance again */
c9819f45 4725 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4726 int update_next_balance = 0;
d07355f5 4727 int need_serialize;
1da177e4 4728
46cb4b7c 4729 for_each_domain(cpu, sd) {
1da177e4
LT
4730 if (!(sd->flags & SD_LOAD_BALANCE))
4731 continue;
4732
4733 interval = sd->balance_interval;
d15bcfdb 4734 if (idle != CPU_IDLE)
1da177e4
LT
4735 interval *= sd->busy_factor;
4736
4737 /* scale ms to jiffies */
4738 interval = msecs_to_jiffies(interval);
4739 if (unlikely(!interval))
4740 interval = 1;
dd41f596
IM
4741 if (interval > HZ*NR_CPUS/10)
4742 interval = HZ*NR_CPUS/10;
4743
d07355f5 4744 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4745
d07355f5 4746 if (need_serialize) {
08c183f3
CL
4747 if (!spin_trylock(&balancing))
4748 goto out;
4749 }
4750
c9819f45 4751 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4752 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4753 /*
4754 * We've pulled tasks over so either we're no
5969fe06
NP
4755 * longer idle, or one of our SMT siblings is
4756 * not idle.
4757 */
d15bcfdb 4758 idle = CPU_NOT_IDLE;
1da177e4 4759 }
1bd77f2d 4760 sd->last_balance = jiffies;
1da177e4 4761 }
d07355f5 4762 if (need_serialize)
08c183f3
CL
4763 spin_unlock(&balancing);
4764out:
f549da84 4765 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4766 next_balance = sd->last_balance + interval;
f549da84
SS
4767 update_next_balance = 1;
4768 }
783609c6
SS
4769
4770 /*
4771 * Stop the load balance at this level. There is another
4772 * CPU in our sched group which is doing load balancing more
4773 * actively.
4774 */
4775 if (!balance)
4776 break;
1da177e4 4777 }
f549da84
SS
4778
4779 /*
4780 * next_balance will be updated only when there is a need.
4781 * When the cpu is attached to null domain for ex, it will not be
4782 * updated.
4783 */
4784 if (likely(update_next_balance))
4785 rq->next_balance = next_balance;
46cb4b7c
SS
4786}
4787
4788/*
4789 * run_rebalance_domains is triggered when needed from the scheduler tick.
4790 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4791 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4792 */
4793static void run_rebalance_domains(struct softirq_action *h)
4794{
dd41f596
IM
4795 int this_cpu = smp_processor_id();
4796 struct rq *this_rq = cpu_rq(this_cpu);
4797 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4798 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4799
dd41f596 4800 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4801
4802#ifdef CONFIG_NO_HZ
4803 /*
4804 * If this cpu is the owner for idle load balancing, then do the
4805 * balancing on behalf of the other idle cpus whose ticks are
4806 * stopped.
4807 */
dd41f596
IM
4808 if (this_rq->idle_at_tick &&
4809 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4810 struct rq *rq;
4811 int balance_cpu;
4812
7d1e6a9b
RR
4813 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4814 if (balance_cpu == this_cpu)
4815 continue;
4816
46cb4b7c
SS
4817 /*
4818 * If this cpu gets work to do, stop the load balancing
4819 * work being done for other cpus. Next load
4820 * balancing owner will pick it up.
4821 */
4822 if (need_resched())
4823 break;
4824
de0cf899 4825 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4826
4827 rq = cpu_rq(balance_cpu);
dd41f596
IM
4828 if (time_after(this_rq->next_balance, rq->next_balance))
4829 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4830 }
4831 }
4832#endif
4833}
4834
8a0be9ef
FW
4835static inline int on_null_domain(int cpu)
4836{
4837 return !rcu_dereference(cpu_rq(cpu)->sd);
4838}
4839
46cb4b7c
SS
4840/*
4841 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4842 *
4843 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4844 * idle load balancing owner or decide to stop the periodic load balancing,
4845 * if the whole system is idle.
4846 */
dd41f596 4847static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4848{
46cb4b7c
SS
4849#ifdef CONFIG_NO_HZ
4850 /*
4851 * If we were in the nohz mode recently and busy at the current
4852 * scheduler tick, then check if we need to nominate new idle
4853 * load balancer.
4854 */
4855 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4856 rq->in_nohz_recently = 0;
4857
4858 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4859 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4860 atomic_set(&nohz.load_balancer, -1);
4861 }
4862
4863 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4864 int ilb = find_new_ilb(cpu);
46cb4b7c 4865
434d53b0 4866 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4867 resched_cpu(ilb);
4868 }
4869 }
4870
4871 /*
4872 * If this cpu is idle and doing idle load balancing for all the
4873 * cpus with ticks stopped, is it time for that to stop?
4874 */
4875 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4876 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4877 resched_cpu(cpu);
4878 return;
4879 }
4880
4881 /*
4882 * If this cpu is idle and the idle load balancing is done by
4883 * someone else, then no need raise the SCHED_SOFTIRQ
4884 */
4885 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4886 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4887 return;
4888#endif
8a0be9ef
FW
4889 /* Don't need to rebalance while attached to NULL domain */
4890 if (time_after_eq(jiffies, rq->next_balance) &&
4891 likely(!on_null_domain(cpu)))
46cb4b7c 4892 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4893}
dd41f596
IM
4894
4895#else /* CONFIG_SMP */
4896
1da177e4
LT
4897/*
4898 * on UP we do not need to balance between CPUs:
4899 */
70b97a7f 4900static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4901{
4902}
dd41f596 4903
1da177e4
LT
4904#endif
4905
1da177e4
LT
4906DEFINE_PER_CPU(struct kernel_stat, kstat);
4907
4908EXPORT_PER_CPU_SYMBOL(kstat);
4909
4910/*
c5f8d995 4911 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4912 * @p in case that task is currently running.
c5f8d995
HS
4913 *
4914 * Called with task_rq_lock() held on @rq.
1da177e4 4915 */
c5f8d995
HS
4916static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4917{
4918 u64 ns = 0;
4919
4920 if (task_current(rq, p)) {
4921 update_rq_clock(rq);
4922 ns = rq->clock - p->se.exec_start;
4923 if ((s64)ns < 0)
4924 ns = 0;
4925 }
4926
4927 return ns;
4928}
4929
bb34d92f 4930unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4931{
1da177e4 4932 unsigned long flags;
41b86e9c 4933 struct rq *rq;
bb34d92f 4934 u64 ns = 0;
48f24c4d 4935
41b86e9c 4936 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4937 ns = do_task_delta_exec(p, rq);
4938 task_rq_unlock(rq, &flags);
1508487e 4939
c5f8d995
HS
4940 return ns;
4941}
f06febc9 4942
c5f8d995
HS
4943/*
4944 * Return accounted runtime for the task.
4945 * In case the task is currently running, return the runtime plus current's
4946 * pending runtime that have not been accounted yet.
4947 */
4948unsigned long long task_sched_runtime(struct task_struct *p)
4949{
4950 unsigned long flags;
4951 struct rq *rq;
4952 u64 ns = 0;
4953
4954 rq = task_rq_lock(p, &flags);
4955 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4956 task_rq_unlock(rq, &flags);
4957
4958 return ns;
4959}
48f24c4d 4960
c5f8d995
HS
4961/*
4962 * Return sum_exec_runtime for the thread group.
4963 * In case the task is currently running, return the sum plus current's
4964 * pending runtime that have not been accounted yet.
4965 *
4966 * Note that the thread group might have other running tasks as well,
4967 * so the return value not includes other pending runtime that other
4968 * running tasks might have.
4969 */
4970unsigned long long thread_group_sched_runtime(struct task_struct *p)
4971{
4972 struct task_cputime totals;
4973 unsigned long flags;
4974 struct rq *rq;
4975 u64 ns;
4976
4977 rq = task_rq_lock(p, &flags);
4978 thread_group_cputime(p, &totals);
4979 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4980 task_rq_unlock(rq, &flags);
48f24c4d 4981
1da177e4
LT
4982 return ns;
4983}
4984
1da177e4
LT
4985/*
4986 * Account user cpu time to a process.
4987 * @p: the process that the cpu time gets accounted to
1da177e4 4988 * @cputime: the cpu time spent in user space since the last update
457533a7 4989 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4990 */
457533a7
MS
4991void account_user_time(struct task_struct *p, cputime_t cputime,
4992 cputime_t cputime_scaled)
1da177e4
LT
4993{
4994 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4995 cputime64_t tmp;
4996
457533a7 4997 /* Add user time to process. */
1da177e4 4998 p->utime = cputime_add(p->utime, cputime);
457533a7 4999 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5000 account_group_user_time(p, cputime);
1da177e4
LT
5001
5002 /* Add user time to cpustat. */
5003 tmp = cputime_to_cputime64(cputime);
5004 if (TASK_NICE(p) > 0)
5005 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5006 else
5007 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5008
5009 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5010 /* Account for user time used */
5011 acct_update_integrals(p);
1da177e4
LT
5012}
5013
94886b84
LV
5014/*
5015 * Account guest cpu time to a process.
5016 * @p: the process that the cpu time gets accounted to
5017 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5018 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5019 */
457533a7
MS
5020static void account_guest_time(struct task_struct *p, cputime_t cputime,
5021 cputime_t cputime_scaled)
94886b84
LV
5022{
5023 cputime64_t tmp;
5024 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5025
5026 tmp = cputime_to_cputime64(cputime);
5027
457533a7 5028 /* Add guest time to process. */
94886b84 5029 p->utime = cputime_add(p->utime, cputime);
457533a7 5030 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5031 account_group_user_time(p, cputime);
94886b84
LV
5032 p->gtime = cputime_add(p->gtime, cputime);
5033
457533a7 5034 /* Add guest time to cpustat. */
94886b84
LV
5035 cpustat->user = cputime64_add(cpustat->user, tmp);
5036 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5037}
5038
1da177e4
LT
5039/*
5040 * Account system cpu time to a process.
5041 * @p: the process that the cpu time gets accounted to
5042 * @hardirq_offset: the offset to subtract from hardirq_count()
5043 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5044 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5045 */
5046void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5047 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5048{
5049 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5050 cputime64_t tmp;
5051
983ed7a6 5052 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5053 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5054 return;
5055 }
94886b84 5056
457533a7 5057 /* Add system time to process. */
1da177e4 5058 p->stime = cputime_add(p->stime, cputime);
457533a7 5059 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5060 account_group_system_time(p, cputime);
1da177e4
LT
5061
5062 /* Add system time to cpustat. */
5063 tmp = cputime_to_cputime64(cputime);
5064 if (hardirq_count() - hardirq_offset)
5065 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5066 else if (softirq_count())
5067 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5068 else
79741dd3
MS
5069 cpustat->system = cputime64_add(cpustat->system, tmp);
5070
ef12fefa
BR
5071 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5072
1da177e4
LT
5073 /* Account for system time used */
5074 acct_update_integrals(p);
1da177e4
LT
5075}
5076
c66f08be 5077/*
1da177e4 5078 * Account for involuntary wait time.
1da177e4 5079 * @steal: the cpu time spent in involuntary wait
c66f08be 5080 */
79741dd3 5081void account_steal_time(cputime_t cputime)
c66f08be 5082{
79741dd3
MS
5083 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5084 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5085
5086 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5087}
5088
1da177e4 5089/*
79741dd3
MS
5090 * Account for idle time.
5091 * @cputime: the cpu time spent in idle wait
1da177e4 5092 */
79741dd3 5093void account_idle_time(cputime_t cputime)
1da177e4
LT
5094{
5095 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5096 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5097 struct rq *rq = this_rq();
1da177e4 5098
79741dd3
MS
5099 if (atomic_read(&rq->nr_iowait) > 0)
5100 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5101 else
5102 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5103}
5104
79741dd3
MS
5105#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5106
5107/*
5108 * Account a single tick of cpu time.
5109 * @p: the process that the cpu time gets accounted to
5110 * @user_tick: indicates if the tick is a user or a system tick
5111 */
5112void account_process_tick(struct task_struct *p, int user_tick)
5113{
5114 cputime_t one_jiffy = jiffies_to_cputime(1);
5115 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5116 struct rq *rq = this_rq();
5117
5118 if (user_tick)
5119 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5120 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5121 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5122 one_jiffy_scaled);
5123 else
5124 account_idle_time(one_jiffy);
5125}
5126
5127/*
5128 * Account multiple ticks of steal time.
5129 * @p: the process from which the cpu time has been stolen
5130 * @ticks: number of stolen ticks
5131 */
5132void account_steal_ticks(unsigned long ticks)
5133{
5134 account_steal_time(jiffies_to_cputime(ticks));
5135}
5136
5137/*
5138 * Account multiple ticks of idle time.
5139 * @ticks: number of stolen ticks
5140 */
5141void account_idle_ticks(unsigned long ticks)
5142{
5143 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5144}
5145
79741dd3
MS
5146#endif
5147
49048622
BS
5148/*
5149 * Use precise platform statistics if available:
5150 */
5151#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5152cputime_t task_utime(struct task_struct *p)
5153{
5154 return p->utime;
5155}
5156
5157cputime_t task_stime(struct task_struct *p)
5158{
5159 return p->stime;
5160}
5161#else
5162cputime_t task_utime(struct task_struct *p)
5163{
5164 clock_t utime = cputime_to_clock_t(p->utime),
5165 total = utime + cputime_to_clock_t(p->stime);
5166 u64 temp;
5167
5168 /*
5169 * Use CFS's precise accounting:
5170 */
5171 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5172
5173 if (total) {
5174 temp *= utime;
5175 do_div(temp, total);
5176 }
5177 utime = (clock_t)temp;
5178
5179 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5180 return p->prev_utime;
5181}
5182
5183cputime_t task_stime(struct task_struct *p)
5184{
5185 clock_t stime;
5186
5187 /*
5188 * Use CFS's precise accounting. (we subtract utime from
5189 * the total, to make sure the total observed by userspace
5190 * grows monotonically - apps rely on that):
5191 */
5192 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5193 cputime_to_clock_t(task_utime(p));
5194
5195 if (stime >= 0)
5196 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5197
5198 return p->prev_stime;
5199}
5200#endif
5201
5202inline cputime_t task_gtime(struct task_struct *p)
5203{
5204 return p->gtime;
5205}
5206
7835b98b
CL
5207/*
5208 * This function gets called by the timer code, with HZ frequency.
5209 * We call it with interrupts disabled.
5210 *
5211 * It also gets called by the fork code, when changing the parent's
5212 * timeslices.
5213 */
5214void scheduler_tick(void)
5215{
7835b98b
CL
5216 int cpu = smp_processor_id();
5217 struct rq *rq = cpu_rq(cpu);
dd41f596 5218 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5219
5220 sched_clock_tick();
dd41f596
IM
5221
5222 spin_lock(&rq->lock);
3e51f33f 5223 update_rq_clock(rq);
f1a438d8 5224 update_cpu_load(rq);
fa85ae24 5225 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5226 spin_unlock(&rq->lock);
7835b98b 5227
e220d2dc
PZ
5228 perf_counter_task_tick(curr, cpu);
5229
e418e1c2 5230#ifdef CONFIG_SMP
dd41f596
IM
5231 rq->idle_at_tick = idle_cpu(cpu);
5232 trigger_load_balance(rq, cpu);
e418e1c2 5233#endif
1da177e4
LT
5234}
5235
132380a0 5236notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5237{
5238 if (in_lock_functions(addr)) {
5239 addr = CALLER_ADDR2;
5240 if (in_lock_functions(addr))
5241 addr = CALLER_ADDR3;
5242 }
5243 return addr;
5244}
1da177e4 5245
7e49fcce
SR
5246#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5247 defined(CONFIG_PREEMPT_TRACER))
5248
43627582 5249void __kprobes add_preempt_count(int val)
1da177e4 5250{
6cd8a4bb 5251#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5252 /*
5253 * Underflow?
5254 */
9a11b49a
IM
5255 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5256 return;
6cd8a4bb 5257#endif
1da177e4 5258 preempt_count() += val;
6cd8a4bb 5259#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5260 /*
5261 * Spinlock count overflowing soon?
5262 */
33859f7f
MOS
5263 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5264 PREEMPT_MASK - 10);
6cd8a4bb
SR
5265#endif
5266 if (preempt_count() == val)
5267 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5268}
5269EXPORT_SYMBOL(add_preempt_count);
5270
43627582 5271void __kprobes sub_preempt_count(int val)
1da177e4 5272{
6cd8a4bb 5273#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5274 /*
5275 * Underflow?
5276 */
01e3eb82 5277 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5278 return;
1da177e4
LT
5279 /*
5280 * Is the spinlock portion underflowing?
5281 */
9a11b49a
IM
5282 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5283 !(preempt_count() & PREEMPT_MASK)))
5284 return;
6cd8a4bb 5285#endif
9a11b49a 5286
6cd8a4bb
SR
5287 if (preempt_count() == val)
5288 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5289 preempt_count() -= val;
5290}
5291EXPORT_SYMBOL(sub_preempt_count);
5292
5293#endif
5294
5295/*
dd41f596 5296 * Print scheduling while atomic bug:
1da177e4 5297 */
dd41f596 5298static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5299{
838225b4
SS
5300 struct pt_regs *regs = get_irq_regs();
5301
5302 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5303 prev->comm, prev->pid, preempt_count());
5304
dd41f596 5305 debug_show_held_locks(prev);
e21f5b15 5306 print_modules();
dd41f596
IM
5307 if (irqs_disabled())
5308 print_irqtrace_events(prev);
838225b4
SS
5309
5310 if (regs)
5311 show_regs(regs);
5312 else
5313 dump_stack();
dd41f596 5314}
1da177e4 5315
dd41f596
IM
5316/*
5317 * Various schedule()-time debugging checks and statistics:
5318 */
5319static inline void schedule_debug(struct task_struct *prev)
5320{
1da177e4 5321 /*
41a2d6cf 5322 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5323 * schedule() atomically, we ignore that path for now.
5324 * Otherwise, whine if we are scheduling when we should not be.
5325 */
3f33a7ce 5326 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5327 __schedule_bug(prev);
5328
1da177e4
LT
5329 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5330
2d72376b 5331 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5332#ifdef CONFIG_SCHEDSTATS
5333 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5334 schedstat_inc(this_rq(), bkl_count);
5335 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5336 }
5337#endif
dd41f596
IM
5338}
5339
df1c99d4
MG
5340static void put_prev_task(struct rq *rq, struct task_struct *prev)
5341{
5342 if (prev->state == TASK_RUNNING) {
5343 u64 runtime = prev->se.sum_exec_runtime;
5344
5345 runtime -= prev->se.prev_sum_exec_runtime;
5346 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5347
5348 /*
5349 * In order to avoid avg_overlap growing stale when we are
5350 * indeed overlapping and hence not getting put to sleep, grow
5351 * the avg_overlap on preemption.
5352 *
5353 * We use the average preemption runtime because that
5354 * correlates to the amount of cache footprint a task can
5355 * build up.
5356 */
5357 update_avg(&prev->se.avg_overlap, runtime);
5358 }
5359 prev->sched_class->put_prev_task(rq, prev);
5360}
5361
dd41f596
IM
5362/*
5363 * Pick up the highest-prio task:
5364 */
5365static inline struct task_struct *
b67802ea 5366pick_next_task(struct rq *rq)
dd41f596 5367{
5522d5d5 5368 const struct sched_class *class;
dd41f596 5369 struct task_struct *p;
1da177e4
LT
5370
5371 /*
dd41f596
IM
5372 * Optimization: we know that if all tasks are in
5373 * the fair class we can call that function directly:
1da177e4 5374 */
dd41f596 5375 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5376 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5377 if (likely(p))
5378 return p;
1da177e4
LT
5379 }
5380
dd41f596
IM
5381 class = sched_class_highest;
5382 for ( ; ; ) {
fb8d4724 5383 p = class->pick_next_task(rq);
dd41f596
IM
5384 if (p)
5385 return p;
5386 /*
5387 * Will never be NULL as the idle class always
5388 * returns a non-NULL p:
5389 */
5390 class = class->next;
5391 }
5392}
1da177e4 5393
dd41f596
IM
5394/*
5395 * schedule() is the main scheduler function.
5396 */
ff743345 5397asmlinkage void __sched schedule(void)
dd41f596
IM
5398{
5399 struct task_struct *prev, *next;
67ca7bde 5400 unsigned long *switch_count;
dd41f596 5401 struct rq *rq;
31656519 5402 int cpu;
dd41f596 5403
ff743345
PZ
5404need_resched:
5405 preempt_disable();
dd41f596
IM
5406 cpu = smp_processor_id();
5407 rq = cpu_rq(cpu);
5408 rcu_qsctr_inc(cpu);
5409 prev = rq->curr;
5410 switch_count = &prev->nivcsw;
5411
5412 release_kernel_lock(prev);
5413need_resched_nonpreemptible:
5414
5415 schedule_debug(prev);
1da177e4 5416
31656519 5417 if (sched_feat(HRTICK))
f333fdc9 5418 hrtick_clear(rq);
8f4d37ec 5419
8cd162ce 5420 spin_lock_irq(&rq->lock);
3e51f33f 5421 update_rq_clock(rq);
1e819950 5422 clear_tsk_need_resched(prev);
1da177e4 5423
1da177e4 5424 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5425 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5426 prev->state = TASK_RUNNING;
16882c1e 5427 else
2e1cb74a 5428 deactivate_task(rq, prev, 1);
dd41f596 5429 switch_count = &prev->nvcsw;
1da177e4
LT
5430 }
5431
3f029d3c 5432 pre_schedule(rq, prev);
f65eda4f 5433
dd41f596 5434 if (unlikely(!rq->nr_running))
1da177e4 5435 idle_balance(cpu, rq);
1da177e4 5436
df1c99d4 5437 put_prev_task(rq, prev);
b67802ea 5438 next = pick_next_task(rq);
1da177e4 5439
1da177e4 5440 if (likely(prev != next)) {
673a90a1 5441 sched_info_switch(prev, next);
564c2b21 5442 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5443
1da177e4
LT
5444 rq->nr_switches++;
5445 rq->curr = next;
5446 ++*switch_count;
5447
3f029d3c 5448 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5449 /*
5450 * the context switch might have flipped the stack from under
5451 * us, hence refresh the local variables.
5452 */
5453 cpu = smp_processor_id();
5454 rq = cpu_rq(cpu);
3f029d3c 5455 } else
1da177e4 5456 spin_unlock_irq(&rq->lock);
da19ab51 5457
3f029d3c 5458 post_schedule(rq);
1da177e4 5459
8f4d37ec 5460 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5461 goto need_resched_nonpreemptible;
8f4d37ec 5462
1da177e4 5463 preempt_enable_no_resched();
ff743345 5464 if (need_resched())
1da177e4
LT
5465 goto need_resched;
5466}
1da177e4
LT
5467EXPORT_SYMBOL(schedule);
5468
0d66bf6d
PZ
5469#ifdef CONFIG_SMP
5470/*
5471 * Look out! "owner" is an entirely speculative pointer
5472 * access and not reliable.
5473 */
5474int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5475{
5476 unsigned int cpu;
5477 struct rq *rq;
5478
5479 if (!sched_feat(OWNER_SPIN))
5480 return 0;
5481
5482#ifdef CONFIG_DEBUG_PAGEALLOC
5483 /*
5484 * Need to access the cpu field knowing that
5485 * DEBUG_PAGEALLOC could have unmapped it if
5486 * the mutex owner just released it and exited.
5487 */
5488 if (probe_kernel_address(&owner->cpu, cpu))
5489 goto out;
5490#else
5491 cpu = owner->cpu;
5492#endif
5493
5494 /*
5495 * Even if the access succeeded (likely case),
5496 * the cpu field may no longer be valid.
5497 */
5498 if (cpu >= nr_cpumask_bits)
5499 goto out;
5500
5501 /*
5502 * We need to validate that we can do a
5503 * get_cpu() and that we have the percpu area.
5504 */
5505 if (!cpu_online(cpu))
5506 goto out;
5507
5508 rq = cpu_rq(cpu);
5509
5510 for (;;) {
5511 /*
5512 * Owner changed, break to re-assess state.
5513 */
5514 if (lock->owner != owner)
5515 break;
5516
5517 /*
5518 * Is that owner really running on that cpu?
5519 */
5520 if (task_thread_info(rq->curr) != owner || need_resched())
5521 return 0;
5522
5523 cpu_relax();
5524 }
5525out:
5526 return 1;
5527}
5528#endif
5529
1da177e4
LT
5530#ifdef CONFIG_PREEMPT
5531/*
2ed6e34f 5532 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5533 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5534 * occur there and call schedule directly.
5535 */
5536asmlinkage void __sched preempt_schedule(void)
5537{
5538 struct thread_info *ti = current_thread_info();
6478d880 5539
1da177e4
LT
5540 /*
5541 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5542 * we do not want to preempt the current task. Just return..
1da177e4 5543 */
beed33a8 5544 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5545 return;
5546
3a5c359a
AK
5547 do {
5548 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5549 schedule();
3a5c359a 5550 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5551
3a5c359a
AK
5552 /*
5553 * Check again in case we missed a preemption opportunity
5554 * between schedule and now.
5555 */
5556 barrier();
5ed0cec0 5557 } while (need_resched());
1da177e4 5558}
1da177e4
LT
5559EXPORT_SYMBOL(preempt_schedule);
5560
5561/*
2ed6e34f 5562 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5563 * off of irq context.
5564 * Note, that this is called and return with irqs disabled. This will
5565 * protect us against recursive calling from irq.
5566 */
5567asmlinkage void __sched preempt_schedule_irq(void)
5568{
5569 struct thread_info *ti = current_thread_info();
6478d880 5570
2ed6e34f 5571 /* Catch callers which need to be fixed */
1da177e4
LT
5572 BUG_ON(ti->preempt_count || !irqs_disabled());
5573
3a5c359a
AK
5574 do {
5575 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5576 local_irq_enable();
5577 schedule();
5578 local_irq_disable();
3a5c359a 5579 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5580
3a5c359a
AK
5581 /*
5582 * Check again in case we missed a preemption opportunity
5583 * between schedule and now.
5584 */
5585 barrier();
5ed0cec0 5586 } while (need_resched());
1da177e4
LT
5587}
5588
5589#endif /* CONFIG_PREEMPT */
5590
95cdf3b7
IM
5591int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5592 void *key)
1da177e4 5593{
48f24c4d 5594 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5595}
1da177e4
LT
5596EXPORT_SYMBOL(default_wake_function);
5597
5598/*
41a2d6cf
IM
5599 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5600 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5601 * number) then we wake all the non-exclusive tasks and one exclusive task.
5602 *
5603 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5604 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5605 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5606 */
78ddb08f 5607static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5608 int nr_exclusive, int sync, void *key)
1da177e4 5609{
2e45874c 5610 wait_queue_t *curr, *next;
1da177e4 5611
2e45874c 5612 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5613 unsigned flags = curr->flags;
5614
1da177e4 5615 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5616 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5617 break;
5618 }
5619}
5620
5621/**
5622 * __wake_up - wake up threads blocked on a waitqueue.
5623 * @q: the waitqueue
5624 * @mode: which threads
5625 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5626 * @key: is directly passed to the wakeup function
50fa610a
DH
5627 *
5628 * It may be assumed that this function implies a write memory barrier before
5629 * changing the task state if and only if any tasks are woken up.
1da177e4 5630 */
7ad5b3a5 5631void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5632 int nr_exclusive, void *key)
1da177e4
LT
5633{
5634 unsigned long flags;
5635
5636 spin_lock_irqsave(&q->lock, flags);
5637 __wake_up_common(q, mode, nr_exclusive, 0, key);
5638 spin_unlock_irqrestore(&q->lock, flags);
5639}
1da177e4
LT
5640EXPORT_SYMBOL(__wake_up);
5641
5642/*
5643 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5644 */
7ad5b3a5 5645void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5646{
5647 __wake_up_common(q, mode, 1, 0, NULL);
5648}
5649
4ede816a
DL
5650void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5651{
5652 __wake_up_common(q, mode, 1, 0, key);
5653}
5654
1da177e4 5655/**
4ede816a 5656 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5657 * @q: the waitqueue
5658 * @mode: which threads
5659 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5660 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5661 *
5662 * The sync wakeup differs that the waker knows that it will schedule
5663 * away soon, so while the target thread will be woken up, it will not
5664 * be migrated to another CPU - ie. the two threads are 'synchronized'
5665 * with each other. This can prevent needless bouncing between CPUs.
5666 *
5667 * On UP it can prevent extra preemption.
50fa610a
DH
5668 *
5669 * It may be assumed that this function implies a write memory barrier before
5670 * changing the task state if and only if any tasks are woken up.
1da177e4 5671 */
4ede816a
DL
5672void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5673 int nr_exclusive, void *key)
1da177e4
LT
5674{
5675 unsigned long flags;
5676 int sync = 1;
5677
5678 if (unlikely(!q))
5679 return;
5680
5681 if (unlikely(!nr_exclusive))
5682 sync = 0;
5683
5684 spin_lock_irqsave(&q->lock, flags);
4ede816a 5685 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5686 spin_unlock_irqrestore(&q->lock, flags);
5687}
4ede816a
DL
5688EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5689
5690/*
5691 * __wake_up_sync - see __wake_up_sync_key()
5692 */
5693void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5694{
5695 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5696}
1da177e4
LT
5697EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5698
65eb3dc6
KD
5699/**
5700 * complete: - signals a single thread waiting on this completion
5701 * @x: holds the state of this particular completion
5702 *
5703 * This will wake up a single thread waiting on this completion. Threads will be
5704 * awakened in the same order in which they were queued.
5705 *
5706 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5707 *
5708 * It may be assumed that this function implies a write memory barrier before
5709 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5710 */
b15136e9 5711void complete(struct completion *x)
1da177e4
LT
5712{
5713 unsigned long flags;
5714
5715 spin_lock_irqsave(&x->wait.lock, flags);
5716 x->done++;
d9514f6c 5717 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5718 spin_unlock_irqrestore(&x->wait.lock, flags);
5719}
5720EXPORT_SYMBOL(complete);
5721
65eb3dc6
KD
5722/**
5723 * complete_all: - signals all threads waiting on this completion
5724 * @x: holds the state of this particular completion
5725 *
5726 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5727 *
5728 * It may be assumed that this function implies a write memory barrier before
5729 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5730 */
b15136e9 5731void complete_all(struct completion *x)
1da177e4
LT
5732{
5733 unsigned long flags;
5734
5735 spin_lock_irqsave(&x->wait.lock, flags);
5736 x->done += UINT_MAX/2;
d9514f6c 5737 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5738 spin_unlock_irqrestore(&x->wait.lock, flags);
5739}
5740EXPORT_SYMBOL(complete_all);
5741
8cbbe86d
AK
5742static inline long __sched
5743do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5744{
1da177e4
LT
5745 if (!x->done) {
5746 DECLARE_WAITQUEUE(wait, current);
5747
5748 wait.flags |= WQ_FLAG_EXCLUSIVE;
5749 __add_wait_queue_tail(&x->wait, &wait);
5750 do {
94d3d824 5751 if (signal_pending_state(state, current)) {
ea71a546
ON
5752 timeout = -ERESTARTSYS;
5753 break;
8cbbe86d
AK
5754 }
5755 __set_current_state(state);
1da177e4
LT
5756 spin_unlock_irq(&x->wait.lock);
5757 timeout = schedule_timeout(timeout);
5758 spin_lock_irq(&x->wait.lock);
ea71a546 5759 } while (!x->done && timeout);
1da177e4 5760 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5761 if (!x->done)
5762 return timeout;
1da177e4
LT
5763 }
5764 x->done--;
ea71a546 5765 return timeout ?: 1;
1da177e4 5766}
1da177e4 5767
8cbbe86d
AK
5768static long __sched
5769wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5770{
1da177e4
LT
5771 might_sleep();
5772
5773 spin_lock_irq(&x->wait.lock);
8cbbe86d 5774 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5775 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5776 return timeout;
5777}
1da177e4 5778
65eb3dc6
KD
5779/**
5780 * wait_for_completion: - waits for completion of a task
5781 * @x: holds the state of this particular completion
5782 *
5783 * This waits to be signaled for completion of a specific task. It is NOT
5784 * interruptible and there is no timeout.
5785 *
5786 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5787 * and interrupt capability. Also see complete().
5788 */
b15136e9 5789void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5790{
5791 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5792}
8cbbe86d 5793EXPORT_SYMBOL(wait_for_completion);
1da177e4 5794
65eb3dc6
KD
5795/**
5796 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5797 * @x: holds the state of this particular completion
5798 * @timeout: timeout value in jiffies
5799 *
5800 * This waits for either a completion of a specific task to be signaled or for a
5801 * specified timeout to expire. The timeout is in jiffies. It is not
5802 * interruptible.
5803 */
b15136e9 5804unsigned long __sched
8cbbe86d 5805wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5806{
8cbbe86d 5807 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5808}
8cbbe86d 5809EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5810
65eb3dc6
KD
5811/**
5812 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5813 * @x: holds the state of this particular completion
5814 *
5815 * This waits for completion of a specific task to be signaled. It is
5816 * interruptible.
5817 */
8cbbe86d 5818int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5819{
51e97990
AK
5820 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5821 if (t == -ERESTARTSYS)
5822 return t;
5823 return 0;
0fec171c 5824}
8cbbe86d 5825EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5826
65eb3dc6
KD
5827/**
5828 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5829 * @x: holds the state of this particular completion
5830 * @timeout: timeout value in jiffies
5831 *
5832 * This waits for either a completion of a specific task to be signaled or for a
5833 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5834 */
b15136e9 5835unsigned long __sched
8cbbe86d
AK
5836wait_for_completion_interruptible_timeout(struct completion *x,
5837 unsigned long timeout)
0fec171c 5838{
8cbbe86d 5839 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5840}
8cbbe86d 5841EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5842
65eb3dc6
KD
5843/**
5844 * wait_for_completion_killable: - waits for completion of a task (killable)
5845 * @x: holds the state of this particular completion
5846 *
5847 * This waits to be signaled for completion of a specific task. It can be
5848 * interrupted by a kill signal.
5849 */
009e577e
MW
5850int __sched wait_for_completion_killable(struct completion *x)
5851{
5852 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5853 if (t == -ERESTARTSYS)
5854 return t;
5855 return 0;
5856}
5857EXPORT_SYMBOL(wait_for_completion_killable);
5858
be4de352
DC
5859/**
5860 * try_wait_for_completion - try to decrement a completion without blocking
5861 * @x: completion structure
5862 *
5863 * Returns: 0 if a decrement cannot be done without blocking
5864 * 1 if a decrement succeeded.
5865 *
5866 * If a completion is being used as a counting completion,
5867 * attempt to decrement the counter without blocking. This
5868 * enables us to avoid waiting if the resource the completion
5869 * is protecting is not available.
5870 */
5871bool try_wait_for_completion(struct completion *x)
5872{
5873 int ret = 1;
5874
5875 spin_lock_irq(&x->wait.lock);
5876 if (!x->done)
5877 ret = 0;
5878 else
5879 x->done--;
5880 spin_unlock_irq(&x->wait.lock);
5881 return ret;
5882}
5883EXPORT_SYMBOL(try_wait_for_completion);
5884
5885/**
5886 * completion_done - Test to see if a completion has any waiters
5887 * @x: completion structure
5888 *
5889 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5890 * 1 if there are no waiters.
5891 *
5892 */
5893bool completion_done(struct completion *x)
5894{
5895 int ret = 1;
5896
5897 spin_lock_irq(&x->wait.lock);
5898 if (!x->done)
5899 ret = 0;
5900 spin_unlock_irq(&x->wait.lock);
5901 return ret;
5902}
5903EXPORT_SYMBOL(completion_done);
5904
8cbbe86d
AK
5905static long __sched
5906sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5907{
0fec171c
IM
5908 unsigned long flags;
5909 wait_queue_t wait;
5910
5911 init_waitqueue_entry(&wait, current);
1da177e4 5912
8cbbe86d 5913 __set_current_state(state);
1da177e4 5914
8cbbe86d
AK
5915 spin_lock_irqsave(&q->lock, flags);
5916 __add_wait_queue(q, &wait);
5917 spin_unlock(&q->lock);
5918 timeout = schedule_timeout(timeout);
5919 spin_lock_irq(&q->lock);
5920 __remove_wait_queue(q, &wait);
5921 spin_unlock_irqrestore(&q->lock, flags);
5922
5923 return timeout;
5924}
5925
5926void __sched interruptible_sleep_on(wait_queue_head_t *q)
5927{
5928 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5929}
1da177e4
LT
5930EXPORT_SYMBOL(interruptible_sleep_on);
5931
0fec171c 5932long __sched
95cdf3b7 5933interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5934{
8cbbe86d 5935 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5936}
1da177e4
LT
5937EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5938
0fec171c 5939void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5940{
8cbbe86d 5941 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5942}
1da177e4
LT
5943EXPORT_SYMBOL(sleep_on);
5944
0fec171c 5945long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5946{
8cbbe86d 5947 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5948}
1da177e4
LT
5949EXPORT_SYMBOL(sleep_on_timeout);
5950
b29739f9
IM
5951#ifdef CONFIG_RT_MUTEXES
5952
5953/*
5954 * rt_mutex_setprio - set the current priority of a task
5955 * @p: task
5956 * @prio: prio value (kernel-internal form)
5957 *
5958 * This function changes the 'effective' priority of a task. It does
5959 * not touch ->normal_prio like __setscheduler().
5960 *
5961 * Used by the rt_mutex code to implement priority inheritance logic.
5962 */
36c8b586 5963void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5964{
5965 unsigned long flags;
83b699ed 5966 int oldprio, on_rq, running;
70b97a7f 5967 struct rq *rq;
cb469845 5968 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5969
5970 BUG_ON(prio < 0 || prio > MAX_PRIO);
5971
5972 rq = task_rq_lock(p, &flags);
a8e504d2 5973 update_rq_clock(rq);
b29739f9 5974
d5f9f942 5975 oldprio = p->prio;
dd41f596 5976 on_rq = p->se.on_rq;
051a1d1a 5977 running = task_current(rq, p);
0e1f3483 5978 if (on_rq)
69be72c1 5979 dequeue_task(rq, p, 0);
0e1f3483
HS
5980 if (running)
5981 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5982
5983 if (rt_prio(prio))
5984 p->sched_class = &rt_sched_class;
5985 else
5986 p->sched_class = &fair_sched_class;
5987
b29739f9
IM
5988 p->prio = prio;
5989
0e1f3483
HS
5990 if (running)
5991 p->sched_class->set_curr_task(rq);
dd41f596 5992 if (on_rq) {
8159f87e 5993 enqueue_task(rq, p, 0);
cb469845
SR
5994
5995 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5996 }
5997 task_rq_unlock(rq, &flags);
5998}
5999
6000#endif
6001
36c8b586 6002void set_user_nice(struct task_struct *p, long nice)
1da177e4 6003{
dd41f596 6004 int old_prio, delta, on_rq;
1da177e4 6005 unsigned long flags;
70b97a7f 6006 struct rq *rq;
1da177e4
LT
6007
6008 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6009 return;
6010 /*
6011 * We have to be careful, if called from sys_setpriority(),
6012 * the task might be in the middle of scheduling on another CPU.
6013 */
6014 rq = task_rq_lock(p, &flags);
a8e504d2 6015 update_rq_clock(rq);
1da177e4
LT
6016 /*
6017 * The RT priorities are set via sched_setscheduler(), but we still
6018 * allow the 'normal' nice value to be set - but as expected
6019 * it wont have any effect on scheduling until the task is
dd41f596 6020 * SCHED_FIFO/SCHED_RR:
1da177e4 6021 */
e05606d3 6022 if (task_has_rt_policy(p)) {
1da177e4
LT
6023 p->static_prio = NICE_TO_PRIO(nice);
6024 goto out_unlock;
6025 }
dd41f596 6026 on_rq = p->se.on_rq;
c09595f6 6027 if (on_rq)
69be72c1 6028 dequeue_task(rq, p, 0);
1da177e4 6029
1da177e4 6030 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6031 set_load_weight(p);
b29739f9
IM
6032 old_prio = p->prio;
6033 p->prio = effective_prio(p);
6034 delta = p->prio - old_prio;
1da177e4 6035
dd41f596 6036 if (on_rq) {
8159f87e 6037 enqueue_task(rq, p, 0);
1da177e4 6038 /*
d5f9f942
AM
6039 * If the task increased its priority or is running and
6040 * lowered its priority, then reschedule its CPU:
1da177e4 6041 */
d5f9f942 6042 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6043 resched_task(rq->curr);
6044 }
6045out_unlock:
6046 task_rq_unlock(rq, &flags);
6047}
1da177e4
LT
6048EXPORT_SYMBOL(set_user_nice);
6049
e43379f1
MM
6050/*
6051 * can_nice - check if a task can reduce its nice value
6052 * @p: task
6053 * @nice: nice value
6054 */
36c8b586 6055int can_nice(const struct task_struct *p, const int nice)
e43379f1 6056{
024f4747
MM
6057 /* convert nice value [19,-20] to rlimit style value [1,40] */
6058 int nice_rlim = 20 - nice;
48f24c4d 6059
e43379f1
MM
6060 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6061 capable(CAP_SYS_NICE));
6062}
6063
1da177e4
LT
6064#ifdef __ARCH_WANT_SYS_NICE
6065
6066/*
6067 * sys_nice - change the priority of the current process.
6068 * @increment: priority increment
6069 *
6070 * sys_setpriority is a more generic, but much slower function that
6071 * does similar things.
6072 */
5add95d4 6073SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6074{
48f24c4d 6075 long nice, retval;
1da177e4
LT
6076
6077 /*
6078 * Setpriority might change our priority at the same moment.
6079 * We don't have to worry. Conceptually one call occurs first
6080 * and we have a single winner.
6081 */
e43379f1
MM
6082 if (increment < -40)
6083 increment = -40;
1da177e4
LT
6084 if (increment > 40)
6085 increment = 40;
6086
2b8f836f 6087 nice = TASK_NICE(current) + increment;
1da177e4
LT
6088 if (nice < -20)
6089 nice = -20;
6090 if (nice > 19)
6091 nice = 19;
6092
e43379f1
MM
6093 if (increment < 0 && !can_nice(current, nice))
6094 return -EPERM;
6095
1da177e4
LT
6096 retval = security_task_setnice(current, nice);
6097 if (retval)
6098 return retval;
6099
6100 set_user_nice(current, nice);
6101 return 0;
6102}
6103
6104#endif
6105
6106/**
6107 * task_prio - return the priority value of a given task.
6108 * @p: the task in question.
6109 *
6110 * This is the priority value as seen by users in /proc.
6111 * RT tasks are offset by -200. Normal tasks are centered
6112 * around 0, value goes from -16 to +15.
6113 */
36c8b586 6114int task_prio(const struct task_struct *p)
1da177e4
LT
6115{
6116 return p->prio - MAX_RT_PRIO;
6117}
6118
6119/**
6120 * task_nice - return the nice value of a given task.
6121 * @p: the task in question.
6122 */
36c8b586 6123int task_nice(const struct task_struct *p)
1da177e4
LT
6124{
6125 return TASK_NICE(p);
6126}
150d8bed 6127EXPORT_SYMBOL(task_nice);
1da177e4
LT
6128
6129/**
6130 * idle_cpu - is a given cpu idle currently?
6131 * @cpu: the processor in question.
6132 */
6133int idle_cpu(int cpu)
6134{
6135 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6136}
6137
1da177e4
LT
6138/**
6139 * idle_task - return the idle task for a given cpu.
6140 * @cpu: the processor in question.
6141 */
36c8b586 6142struct task_struct *idle_task(int cpu)
1da177e4
LT
6143{
6144 return cpu_rq(cpu)->idle;
6145}
6146
6147/**
6148 * find_process_by_pid - find a process with a matching PID value.
6149 * @pid: the pid in question.
6150 */
a9957449 6151static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6152{
228ebcbe 6153 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6154}
6155
6156/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6157static void
6158__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6159{
dd41f596 6160 BUG_ON(p->se.on_rq);
48f24c4d 6161
1da177e4 6162 p->policy = policy;
dd41f596
IM
6163 switch (p->policy) {
6164 case SCHED_NORMAL:
6165 case SCHED_BATCH:
6166 case SCHED_IDLE:
6167 p->sched_class = &fair_sched_class;
6168 break;
6169 case SCHED_FIFO:
6170 case SCHED_RR:
6171 p->sched_class = &rt_sched_class;
6172 break;
6173 }
6174
1da177e4 6175 p->rt_priority = prio;
b29739f9
IM
6176 p->normal_prio = normal_prio(p);
6177 /* we are holding p->pi_lock already */
6178 p->prio = rt_mutex_getprio(p);
2dd73a4f 6179 set_load_weight(p);
1da177e4
LT
6180}
6181
c69e8d9c
DH
6182/*
6183 * check the target process has a UID that matches the current process's
6184 */
6185static bool check_same_owner(struct task_struct *p)
6186{
6187 const struct cred *cred = current_cred(), *pcred;
6188 bool match;
6189
6190 rcu_read_lock();
6191 pcred = __task_cred(p);
6192 match = (cred->euid == pcred->euid ||
6193 cred->euid == pcred->uid);
6194 rcu_read_unlock();
6195 return match;
6196}
6197
961ccddd
RR
6198static int __sched_setscheduler(struct task_struct *p, int policy,
6199 struct sched_param *param, bool user)
1da177e4 6200{
83b699ed 6201 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6202 unsigned long flags;
cb469845 6203 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6204 struct rq *rq;
ca94c442 6205 int reset_on_fork;
1da177e4 6206
66e5393a
SR
6207 /* may grab non-irq protected spin_locks */
6208 BUG_ON(in_interrupt());
1da177e4
LT
6209recheck:
6210 /* double check policy once rq lock held */
ca94c442
LP
6211 if (policy < 0) {
6212 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6213 policy = oldpolicy = p->policy;
ca94c442
LP
6214 } else {
6215 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6216 policy &= ~SCHED_RESET_ON_FORK;
6217
6218 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6219 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6220 policy != SCHED_IDLE)
6221 return -EINVAL;
6222 }
6223
1da177e4
LT
6224 /*
6225 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6226 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6227 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6228 */
6229 if (param->sched_priority < 0 ||
95cdf3b7 6230 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6231 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6232 return -EINVAL;
e05606d3 6233 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6234 return -EINVAL;
6235
37e4ab3f
OC
6236 /*
6237 * Allow unprivileged RT tasks to decrease priority:
6238 */
961ccddd 6239 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6240 if (rt_policy(policy)) {
8dc3e909 6241 unsigned long rlim_rtprio;
8dc3e909
ON
6242
6243 if (!lock_task_sighand(p, &flags))
6244 return -ESRCH;
6245 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6246 unlock_task_sighand(p, &flags);
6247
6248 /* can't set/change the rt policy */
6249 if (policy != p->policy && !rlim_rtprio)
6250 return -EPERM;
6251
6252 /* can't increase priority */
6253 if (param->sched_priority > p->rt_priority &&
6254 param->sched_priority > rlim_rtprio)
6255 return -EPERM;
6256 }
dd41f596
IM
6257 /*
6258 * Like positive nice levels, dont allow tasks to
6259 * move out of SCHED_IDLE either:
6260 */
6261 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6262 return -EPERM;
5fe1d75f 6263
37e4ab3f 6264 /* can't change other user's priorities */
c69e8d9c 6265 if (!check_same_owner(p))
37e4ab3f 6266 return -EPERM;
ca94c442
LP
6267
6268 /* Normal users shall not reset the sched_reset_on_fork flag */
6269 if (p->sched_reset_on_fork && !reset_on_fork)
6270 return -EPERM;
37e4ab3f 6271 }
1da177e4 6272
725aad24 6273 if (user) {
b68aa230 6274#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6275 /*
6276 * Do not allow realtime tasks into groups that have no runtime
6277 * assigned.
6278 */
9a7e0b18
PZ
6279 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6280 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6281 return -EPERM;
b68aa230
PZ
6282#endif
6283
725aad24
JF
6284 retval = security_task_setscheduler(p, policy, param);
6285 if (retval)
6286 return retval;
6287 }
6288
b29739f9
IM
6289 /*
6290 * make sure no PI-waiters arrive (or leave) while we are
6291 * changing the priority of the task:
6292 */
6293 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6294 /*
6295 * To be able to change p->policy safely, the apropriate
6296 * runqueue lock must be held.
6297 */
b29739f9 6298 rq = __task_rq_lock(p);
1da177e4
LT
6299 /* recheck policy now with rq lock held */
6300 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6301 policy = oldpolicy = -1;
b29739f9
IM
6302 __task_rq_unlock(rq);
6303 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6304 goto recheck;
6305 }
2daa3577 6306 update_rq_clock(rq);
dd41f596 6307 on_rq = p->se.on_rq;
051a1d1a 6308 running = task_current(rq, p);
0e1f3483 6309 if (on_rq)
2e1cb74a 6310 deactivate_task(rq, p, 0);
0e1f3483
HS
6311 if (running)
6312 p->sched_class->put_prev_task(rq, p);
f6b53205 6313
ca94c442
LP
6314 p->sched_reset_on_fork = reset_on_fork;
6315
1da177e4 6316 oldprio = p->prio;
dd41f596 6317 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6318
0e1f3483
HS
6319 if (running)
6320 p->sched_class->set_curr_task(rq);
dd41f596
IM
6321 if (on_rq) {
6322 activate_task(rq, p, 0);
cb469845
SR
6323
6324 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6325 }
b29739f9
IM
6326 __task_rq_unlock(rq);
6327 spin_unlock_irqrestore(&p->pi_lock, flags);
6328
95e02ca9
TG
6329 rt_mutex_adjust_pi(p);
6330
1da177e4
LT
6331 return 0;
6332}
961ccddd
RR
6333
6334/**
6335 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6336 * @p: the task in question.
6337 * @policy: new policy.
6338 * @param: structure containing the new RT priority.
6339 *
6340 * NOTE that the task may be already dead.
6341 */
6342int sched_setscheduler(struct task_struct *p, int policy,
6343 struct sched_param *param)
6344{
6345 return __sched_setscheduler(p, policy, param, true);
6346}
1da177e4
LT
6347EXPORT_SYMBOL_GPL(sched_setscheduler);
6348
961ccddd
RR
6349/**
6350 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6351 * @p: the task in question.
6352 * @policy: new policy.
6353 * @param: structure containing the new RT priority.
6354 *
6355 * Just like sched_setscheduler, only don't bother checking if the
6356 * current context has permission. For example, this is needed in
6357 * stop_machine(): we create temporary high priority worker threads,
6358 * but our caller might not have that capability.
6359 */
6360int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6361 struct sched_param *param)
6362{
6363 return __sched_setscheduler(p, policy, param, false);
6364}
6365
95cdf3b7
IM
6366static int
6367do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6368{
1da177e4
LT
6369 struct sched_param lparam;
6370 struct task_struct *p;
36c8b586 6371 int retval;
1da177e4
LT
6372
6373 if (!param || pid < 0)
6374 return -EINVAL;
6375 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6376 return -EFAULT;
5fe1d75f
ON
6377
6378 rcu_read_lock();
6379 retval = -ESRCH;
1da177e4 6380 p = find_process_by_pid(pid);
5fe1d75f
ON
6381 if (p != NULL)
6382 retval = sched_setscheduler(p, policy, &lparam);
6383 rcu_read_unlock();
36c8b586 6384
1da177e4
LT
6385 return retval;
6386}
6387
6388/**
6389 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6390 * @pid: the pid in question.
6391 * @policy: new policy.
6392 * @param: structure containing the new RT priority.
6393 */
5add95d4
HC
6394SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6395 struct sched_param __user *, param)
1da177e4 6396{
c21761f1
JB
6397 /* negative values for policy are not valid */
6398 if (policy < 0)
6399 return -EINVAL;
6400
1da177e4
LT
6401 return do_sched_setscheduler(pid, policy, param);
6402}
6403
6404/**
6405 * sys_sched_setparam - set/change the RT priority of a thread
6406 * @pid: the pid in question.
6407 * @param: structure containing the new RT priority.
6408 */
5add95d4 6409SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6410{
6411 return do_sched_setscheduler(pid, -1, param);
6412}
6413
6414/**
6415 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6416 * @pid: the pid in question.
6417 */
5add95d4 6418SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6419{
36c8b586 6420 struct task_struct *p;
3a5c359a 6421 int retval;
1da177e4
LT
6422
6423 if (pid < 0)
3a5c359a 6424 return -EINVAL;
1da177e4
LT
6425
6426 retval = -ESRCH;
6427 read_lock(&tasklist_lock);
6428 p = find_process_by_pid(pid);
6429 if (p) {
6430 retval = security_task_getscheduler(p);
6431 if (!retval)
ca94c442
LP
6432 retval = p->policy
6433 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6434 }
6435 read_unlock(&tasklist_lock);
1da177e4
LT
6436 return retval;
6437}
6438
6439/**
ca94c442 6440 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6441 * @pid: the pid in question.
6442 * @param: structure containing the RT priority.
6443 */
5add95d4 6444SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6445{
6446 struct sched_param lp;
36c8b586 6447 struct task_struct *p;
3a5c359a 6448 int retval;
1da177e4
LT
6449
6450 if (!param || pid < 0)
3a5c359a 6451 return -EINVAL;
1da177e4
LT
6452
6453 read_lock(&tasklist_lock);
6454 p = find_process_by_pid(pid);
6455 retval = -ESRCH;
6456 if (!p)
6457 goto out_unlock;
6458
6459 retval = security_task_getscheduler(p);
6460 if (retval)
6461 goto out_unlock;
6462
6463 lp.sched_priority = p->rt_priority;
6464 read_unlock(&tasklist_lock);
6465
6466 /*
6467 * This one might sleep, we cannot do it with a spinlock held ...
6468 */
6469 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6470
1da177e4
LT
6471 return retval;
6472
6473out_unlock:
6474 read_unlock(&tasklist_lock);
6475 return retval;
6476}
6477
96f874e2 6478long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6479{
5a16f3d3 6480 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6481 struct task_struct *p;
6482 int retval;
1da177e4 6483
95402b38 6484 get_online_cpus();
1da177e4
LT
6485 read_lock(&tasklist_lock);
6486
6487 p = find_process_by_pid(pid);
6488 if (!p) {
6489 read_unlock(&tasklist_lock);
95402b38 6490 put_online_cpus();
1da177e4
LT
6491 return -ESRCH;
6492 }
6493
6494 /*
6495 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6496 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6497 * usage count and then drop tasklist_lock.
6498 */
6499 get_task_struct(p);
6500 read_unlock(&tasklist_lock);
6501
5a16f3d3
RR
6502 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6503 retval = -ENOMEM;
6504 goto out_put_task;
6505 }
6506 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6507 retval = -ENOMEM;
6508 goto out_free_cpus_allowed;
6509 }
1da177e4 6510 retval = -EPERM;
c69e8d9c 6511 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6512 goto out_unlock;
6513
e7834f8f
DQ
6514 retval = security_task_setscheduler(p, 0, NULL);
6515 if (retval)
6516 goto out_unlock;
6517
5a16f3d3
RR
6518 cpuset_cpus_allowed(p, cpus_allowed);
6519 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6520 again:
5a16f3d3 6521 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6522
8707d8b8 6523 if (!retval) {
5a16f3d3
RR
6524 cpuset_cpus_allowed(p, cpus_allowed);
6525 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6526 /*
6527 * We must have raced with a concurrent cpuset
6528 * update. Just reset the cpus_allowed to the
6529 * cpuset's cpus_allowed
6530 */
5a16f3d3 6531 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6532 goto again;
6533 }
6534 }
1da177e4 6535out_unlock:
5a16f3d3
RR
6536 free_cpumask_var(new_mask);
6537out_free_cpus_allowed:
6538 free_cpumask_var(cpus_allowed);
6539out_put_task:
1da177e4 6540 put_task_struct(p);
95402b38 6541 put_online_cpus();
1da177e4
LT
6542 return retval;
6543}
6544
6545static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6546 struct cpumask *new_mask)
1da177e4 6547{
96f874e2
RR
6548 if (len < cpumask_size())
6549 cpumask_clear(new_mask);
6550 else if (len > cpumask_size())
6551 len = cpumask_size();
6552
1da177e4
LT
6553 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6554}
6555
6556/**
6557 * sys_sched_setaffinity - set the cpu affinity of a process
6558 * @pid: pid of the process
6559 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6560 * @user_mask_ptr: user-space pointer to the new cpu mask
6561 */
5add95d4
HC
6562SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6563 unsigned long __user *, user_mask_ptr)
1da177e4 6564{
5a16f3d3 6565 cpumask_var_t new_mask;
1da177e4
LT
6566 int retval;
6567
5a16f3d3
RR
6568 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6569 return -ENOMEM;
1da177e4 6570
5a16f3d3
RR
6571 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6572 if (retval == 0)
6573 retval = sched_setaffinity(pid, new_mask);
6574 free_cpumask_var(new_mask);
6575 return retval;
1da177e4
LT
6576}
6577
96f874e2 6578long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6579{
36c8b586 6580 struct task_struct *p;
1da177e4 6581 int retval;
1da177e4 6582
95402b38 6583 get_online_cpus();
1da177e4
LT
6584 read_lock(&tasklist_lock);
6585
6586 retval = -ESRCH;
6587 p = find_process_by_pid(pid);
6588 if (!p)
6589 goto out_unlock;
6590
e7834f8f
DQ
6591 retval = security_task_getscheduler(p);
6592 if (retval)
6593 goto out_unlock;
6594
96f874e2 6595 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6596
6597out_unlock:
6598 read_unlock(&tasklist_lock);
95402b38 6599 put_online_cpus();
1da177e4 6600
9531b62f 6601 return retval;
1da177e4
LT
6602}
6603
6604/**
6605 * sys_sched_getaffinity - get the cpu affinity of a process
6606 * @pid: pid of the process
6607 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6608 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6609 */
5add95d4
HC
6610SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6611 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6612{
6613 int ret;
f17c8607 6614 cpumask_var_t mask;
1da177e4 6615
f17c8607 6616 if (len < cpumask_size())
1da177e4
LT
6617 return -EINVAL;
6618
f17c8607
RR
6619 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6620 return -ENOMEM;
1da177e4 6621
f17c8607
RR
6622 ret = sched_getaffinity(pid, mask);
6623 if (ret == 0) {
6624 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6625 ret = -EFAULT;
6626 else
6627 ret = cpumask_size();
6628 }
6629 free_cpumask_var(mask);
1da177e4 6630
f17c8607 6631 return ret;
1da177e4
LT
6632}
6633
6634/**
6635 * sys_sched_yield - yield the current processor to other threads.
6636 *
dd41f596
IM
6637 * This function yields the current CPU to other tasks. If there are no
6638 * other threads running on this CPU then this function will return.
1da177e4 6639 */
5add95d4 6640SYSCALL_DEFINE0(sched_yield)
1da177e4 6641{
70b97a7f 6642 struct rq *rq = this_rq_lock();
1da177e4 6643
2d72376b 6644 schedstat_inc(rq, yld_count);
4530d7ab 6645 current->sched_class->yield_task(rq);
1da177e4
LT
6646
6647 /*
6648 * Since we are going to call schedule() anyway, there's
6649 * no need to preempt or enable interrupts:
6650 */
6651 __release(rq->lock);
8a25d5de 6652 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6653 _raw_spin_unlock(&rq->lock);
6654 preempt_enable_no_resched();
6655
6656 schedule();
6657
6658 return 0;
6659}
6660
d86ee480
PZ
6661static inline int should_resched(void)
6662{
6663 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6664}
6665
e7b38404 6666static void __cond_resched(void)
1da177e4 6667{
e7aaaa69
FW
6668 add_preempt_count(PREEMPT_ACTIVE);
6669 schedule();
6670 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6671}
6672
02b67cc3 6673int __sched _cond_resched(void)
1da177e4 6674{
d86ee480 6675 if (should_resched()) {
1da177e4
LT
6676 __cond_resched();
6677 return 1;
6678 }
6679 return 0;
6680}
02b67cc3 6681EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6682
6683/*
613afbf8 6684 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6685 * call schedule, and on return reacquire the lock.
6686 *
41a2d6cf 6687 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6688 * operations here to prevent schedule() from being called twice (once via
6689 * spin_unlock(), once by hand).
6690 */
613afbf8 6691int __cond_resched_lock(spinlock_t *lock)
1da177e4 6692{
d86ee480 6693 int resched = should_resched();
6df3cecb
JK
6694 int ret = 0;
6695
95c354fe 6696 if (spin_needbreak(lock) || resched) {
1da177e4 6697 spin_unlock(lock);
d86ee480 6698 if (resched)
95c354fe
NP
6699 __cond_resched();
6700 else
6701 cpu_relax();
6df3cecb 6702 ret = 1;
1da177e4 6703 spin_lock(lock);
1da177e4 6704 }
6df3cecb 6705 return ret;
1da177e4 6706}
613afbf8 6707EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6708
613afbf8 6709int __sched __cond_resched_softirq(void)
1da177e4
LT
6710{
6711 BUG_ON(!in_softirq());
6712
d86ee480 6713 if (should_resched()) {
98d82567 6714 local_bh_enable();
1da177e4
LT
6715 __cond_resched();
6716 local_bh_disable();
6717 return 1;
6718 }
6719 return 0;
6720}
613afbf8 6721EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6722
1da177e4
LT
6723/**
6724 * yield - yield the current processor to other threads.
6725 *
72fd4a35 6726 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6727 * thread runnable and calls sys_sched_yield().
6728 */
6729void __sched yield(void)
6730{
6731 set_current_state(TASK_RUNNING);
6732 sys_sched_yield();
6733}
1da177e4
LT
6734EXPORT_SYMBOL(yield);
6735
6736/*
41a2d6cf 6737 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6738 * that process accounting knows that this is a task in IO wait state.
6739 *
6740 * But don't do that if it is a deliberate, throttling IO wait (this task
6741 * has set its backing_dev_info: the queue against which it should throttle)
6742 */
6743void __sched io_schedule(void)
6744{
54d35f29 6745 struct rq *rq = raw_rq();
1da177e4 6746
0ff92245 6747 delayacct_blkio_start();
1da177e4
LT
6748 atomic_inc(&rq->nr_iowait);
6749 schedule();
6750 atomic_dec(&rq->nr_iowait);
0ff92245 6751 delayacct_blkio_end();
1da177e4 6752}
1da177e4
LT
6753EXPORT_SYMBOL(io_schedule);
6754
6755long __sched io_schedule_timeout(long timeout)
6756{
54d35f29 6757 struct rq *rq = raw_rq();
1da177e4
LT
6758 long ret;
6759
0ff92245 6760 delayacct_blkio_start();
1da177e4
LT
6761 atomic_inc(&rq->nr_iowait);
6762 ret = schedule_timeout(timeout);
6763 atomic_dec(&rq->nr_iowait);
0ff92245 6764 delayacct_blkio_end();
1da177e4
LT
6765 return ret;
6766}
6767
6768/**
6769 * sys_sched_get_priority_max - return maximum RT priority.
6770 * @policy: scheduling class.
6771 *
6772 * this syscall returns the maximum rt_priority that can be used
6773 * by a given scheduling class.
6774 */
5add95d4 6775SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6776{
6777 int ret = -EINVAL;
6778
6779 switch (policy) {
6780 case SCHED_FIFO:
6781 case SCHED_RR:
6782 ret = MAX_USER_RT_PRIO-1;
6783 break;
6784 case SCHED_NORMAL:
b0a9499c 6785 case SCHED_BATCH:
dd41f596 6786 case SCHED_IDLE:
1da177e4
LT
6787 ret = 0;
6788 break;
6789 }
6790 return ret;
6791}
6792
6793/**
6794 * sys_sched_get_priority_min - return minimum RT priority.
6795 * @policy: scheduling class.
6796 *
6797 * this syscall returns the minimum rt_priority that can be used
6798 * by a given scheduling class.
6799 */
5add95d4 6800SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6801{
6802 int ret = -EINVAL;
6803
6804 switch (policy) {
6805 case SCHED_FIFO:
6806 case SCHED_RR:
6807 ret = 1;
6808 break;
6809 case SCHED_NORMAL:
b0a9499c 6810 case SCHED_BATCH:
dd41f596 6811 case SCHED_IDLE:
1da177e4
LT
6812 ret = 0;
6813 }
6814 return ret;
6815}
6816
6817/**
6818 * sys_sched_rr_get_interval - return the default timeslice of a process.
6819 * @pid: pid of the process.
6820 * @interval: userspace pointer to the timeslice value.
6821 *
6822 * this syscall writes the default timeslice value of a given process
6823 * into the user-space timespec buffer. A value of '0' means infinity.
6824 */
17da2bd9 6825SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6826 struct timespec __user *, interval)
1da177e4 6827{
36c8b586 6828 struct task_struct *p;
a4ec24b4 6829 unsigned int time_slice;
3a5c359a 6830 int retval;
1da177e4 6831 struct timespec t;
1da177e4
LT
6832
6833 if (pid < 0)
3a5c359a 6834 return -EINVAL;
1da177e4
LT
6835
6836 retval = -ESRCH;
6837 read_lock(&tasklist_lock);
6838 p = find_process_by_pid(pid);
6839 if (!p)
6840 goto out_unlock;
6841
6842 retval = security_task_getscheduler(p);
6843 if (retval)
6844 goto out_unlock;
6845
77034937
IM
6846 /*
6847 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6848 * tasks that are on an otherwise idle runqueue:
6849 */
6850 time_slice = 0;
6851 if (p->policy == SCHED_RR) {
a4ec24b4 6852 time_slice = DEF_TIMESLICE;
1868f958 6853 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6854 struct sched_entity *se = &p->se;
6855 unsigned long flags;
6856 struct rq *rq;
6857
6858 rq = task_rq_lock(p, &flags);
77034937
IM
6859 if (rq->cfs.load.weight)
6860 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6861 task_rq_unlock(rq, &flags);
6862 }
1da177e4 6863 read_unlock(&tasklist_lock);
a4ec24b4 6864 jiffies_to_timespec(time_slice, &t);
1da177e4 6865 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6866 return retval;
3a5c359a 6867
1da177e4
LT
6868out_unlock:
6869 read_unlock(&tasklist_lock);
6870 return retval;
6871}
6872
7c731e0a 6873static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6874
82a1fcb9 6875void sched_show_task(struct task_struct *p)
1da177e4 6876{
1da177e4 6877 unsigned long free = 0;
36c8b586 6878 unsigned state;
1da177e4 6879
1da177e4 6880 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6881 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6882 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6883#if BITS_PER_LONG == 32
1da177e4 6884 if (state == TASK_RUNNING)
cc4ea795 6885 printk(KERN_CONT " running ");
1da177e4 6886 else
cc4ea795 6887 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6888#else
6889 if (state == TASK_RUNNING)
cc4ea795 6890 printk(KERN_CONT " running task ");
1da177e4 6891 else
cc4ea795 6892 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6893#endif
6894#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6895 free = stack_not_used(p);
1da177e4 6896#endif
aa47b7e0
DR
6897 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6898 task_pid_nr(p), task_pid_nr(p->real_parent),
6899 (unsigned long)task_thread_info(p)->flags);
1da177e4 6900
5fb5e6de 6901 show_stack(p, NULL);
1da177e4
LT
6902}
6903
e59e2ae2 6904void show_state_filter(unsigned long state_filter)
1da177e4 6905{
36c8b586 6906 struct task_struct *g, *p;
1da177e4 6907
4bd77321
IM
6908#if BITS_PER_LONG == 32
6909 printk(KERN_INFO
6910 " task PC stack pid father\n");
1da177e4 6911#else
4bd77321
IM
6912 printk(KERN_INFO
6913 " task PC stack pid father\n");
1da177e4
LT
6914#endif
6915 read_lock(&tasklist_lock);
6916 do_each_thread(g, p) {
6917 /*
6918 * reset the NMI-timeout, listing all files on a slow
6919 * console might take alot of time:
6920 */
6921 touch_nmi_watchdog();
39bc89fd 6922 if (!state_filter || (p->state & state_filter))
82a1fcb9 6923 sched_show_task(p);
1da177e4
LT
6924 } while_each_thread(g, p);
6925
04c9167f
JF
6926 touch_all_softlockup_watchdogs();
6927
dd41f596
IM
6928#ifdef CONFIG_SCHED_DEBUG
6929 sysrq_sched_debug_show();
6930#endif
1da177e4 6931 read_unlock(&tasklist_lock);
e59e2ae2
IM
6932 /*
6933 * Only show locks if all tasks are dumped:
6934 */
6935 if (state_filter == -1)
6936 debug_show_all_locks();
1da177e4
LT
6937}
6938
1df21055
IM
6939void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6940{
dd41f596 6941 idle->sched_class = &idle_sched_class;
1df21055
IM
6942}
6943
f340c0d1
IM
6944/**
6945 * init_idle - set up an idle thread for a given CPU
6946 * @idle: task in question
6947 * @cpu: cpu the idle task belongs to
6948 *
6949 * NOTE: this function does not set the idle thread's NEED_RESCHED
6950 * flag, to make booting more robust.
6951 */
5c1e1767 6952void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6953{
70b97a7f 6954 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6955 unsigned long flags;
6956
5cbd54ef
IM
6957 spin_lock_irqsave(&rq->lock, flags);
6958
dd41f596
IM
6959 __sched_fork(idle);
6960 idle->se.exec_start = sched_clock();
6961
b29739f9 6962 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6963 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6964 __set_task_cpu(idle, cpu);
1da177e4 6965
1da177e4 6966 rq->curr = rq->idle = idle;
4866cde0
NP
6967#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6968 idle->oncpu = 1;
6969#endif
1da177e4
LT
6970 spin_unlock_irqrestore(&rq->lock, flags);
6971
6972 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6973#if defined(CONFIG_PREEMPT)
6974 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6975#else
a1261f54 6976 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6977#endif
dd41f596
IM
6978 /*
6979 * The idle tasks have their own, simple scheduling class:
6980 */
6981 idle->sched_class = &idle_sched_class;
fb52607a 6982 ftrace_graph_init_task(idle);
1da177e4
LT
6983}
6984
6985/*
6986 * In a system that switches off the HZ timer nohz_cpu_mask
6987 * indicates which cpus entered this state. This is used
6988 * in the rcu update to wait only for active cpus. For system
6989 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6990 * always be CPU_BITS_NONE.
1da177e4 6991 */
6a7b3dc3 6992cpumask_var_t nohz_cpu_mask;
1da177e4 6993
19978ca6
IM
6994/*
6995 * Increase the granularity value when there are more CPUs,
6996 * because with more CPUs the 'effective latency' as visible
6997 * to users decreases. But the relationship is not linear,
6998 * so pick a second-best guess by going with the log2 of the
6999 * number of CPUs.
7000 *
7001 * This idea comes from the SD scheduler of Con Kolivas:
7002 */
7003static inline void sched_init_granularity(void)
7004{
7005 unsigned int factor = 1 + ilog2(num_online_cpus());
7006 const unsigned long limit = 200000000;
7007
7008 sysctl_sched_min_granularity *= factor;
7009 if (sysctl_sched_min_granularity > limit)
7010 sysctl_sched_min_granularity = limit;
7011
7012 sysctl_sched_latency *= factor;
7013 if (sysctl_sched_latency > limit)
7014 sysctl_sched_latency = limit;
7015
7016 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7017
7018 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7019}
7020
1da177e4
LT
7021#ifdef CONFIG_SMP
7022/*
7023 * This is how migration works:
7024 *
70b97a7f 7025 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7026 * runqueue and wake up that CPU's migration thread.
7027 * 2) we down() the locked semaphore => thread blocks.
7028 * 3) migration thread wakes up (implicitly it forces the migrated
7029 * thread off the CPU)
7030 * 4) it gets the migration request and checks whether the migrated
7031 * task is still in the wrong runqueue.
7032 * 5) if it's in the wrong runqueue then the migration thread removes
7033 * it and puts it into the right queue.
7034 * 6) migration thread up()s the semaphore.
7035 * 7) we wake up and the migration is done.
7036 */
7037
7038/*
7039 * Change a given task's CPU affinity. Migrate the thread to a
7040 * proper CPU and schedule it away if the CPU it's executing on
7041 * is removed from the allowed bitmask.
7042 *
7043 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7044 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7045 * call is not atomic; no spinlocks may be held.
7046 */
96f874e2 7047int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7048{
70b97a7f 7049 struct migration_req req;
1da177e4 7050 unsigned long flags;
70b97a7f 7051 struct rq *rq;
48f24c4d 7052 int ret = 0;
1da177e4
LT
7053
7054 rq = task_rq_lock(p, &flags);
96f874e2 7055 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7056 ret = -EINVAL;
7057 goto out;
7058 }
7059
9985b0ba 7060 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7061 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7062 ret = -EINVAL;
7063 goto out;
7064 }
7065
73fe6aae 7066 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7067 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7068 else {
96f874e2
RR
7069 cpumask_copy(&p->cpus_allowed, new_mask);
7070 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7071 }
7072
1da177e4 7073 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7074 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7075 goto out;
7076
1e5ce4f4 7077 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7078 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7079 struct task_struct *mt = rq->migration_thread;
7080
7081 get_task_struct(mt);
1da177e4
LT
7082 task_rq_unlock(rq, &flags);
7083 wake_up_process(rq->migration_thread);
693525e3 7084 put_task_struct(mt);
1da177e4
LT
7085 wait_for_completion(&req.done);
7086 tlb_migrate_finish(p->mm);
7087 return 0;
7088 }
7089out:
7090 task_rq_unlock(rq, &flags);
48f24c4d 7091
1da177e4
LT
7092 return ret;
7093}
cd8ba7cd 7094EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7095
7096/*
41a2d6cf 7097 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7098 * this because either it can't run here any more (set_cpus_allowed()
7099 * away from this CPU, or CPU going down), or because we're
7100 * attempting to rebalance this task on exec (sched_exec).
7101 *
7102 * So we race with normal scheduler movements, but that's OK, as long
7103 * as the task is no longer on this CPU.
efc30814
KK
7104 *
7105 * Returns non-zero if task was successfully migrated.
1da177e4 7106 */
efc30814 7107static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7108{
70b97a7f 7109 struct rq *rq_dest, *rq_src;
dd41f596 7110 int ret = 0, on_rq;
1da177e4 7111
e761b772 7112 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7113 return ret;
1da177e4
LT
7114
7115 rq_src = cpu_rq(src_cpu);
7116 rq_dest = cpu_rq(dest_cpu);
7117
7118 double_rq_lock(rq_src, rq_dest);
7119 /* Already moved. */
7120 if (task_cpu(p) != src_cpu)
b1e38734 7121 goto done;
1da177e4 7122 /* Affinity changed (again). */
96f874e2 7123 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7124 goto fail;
1da177e4 7125
dd41f596 7126 on_rq = p->se.on_rq;
6e82a3be 7127 if (on_rq)
2e1cb74a 7128 deactivate_task(rq_src, p, 0);
6e82a3be 7129
1da177e4 7130 set_task_cpu(p, dest_cpu);
dd41f596
IM
7131 if (on_rq) {
7132 activate_task(rq_dest, p, 0);
15afe09b 7133 check_preempt_curr(rq_dest, p, 0);
1da177e4 7134 }
b1e38734 7135done:
efc30814 7136 ret = 1;
b1e38734 7137fail:
1da177e4 7138 double_rq_unlock(rq_src, rq_dest);
efc30814 7139 return ret;
1da177e4
LT
7140}
7141
7142/*
7143 * migration_thread - this is a highprio system thread that performs
7144 * thread migration by bumping thread off CPU then 'pushing' onto
7145 * another runqueue.
7146 */
95cdf3b7 7147static int migration_thread(void *data)
1da177e4 7148{
1da177e4 7149 int cpu = (long)data;
70b97a7f 7150 struct rq *rq;
1da177e4
LT
7151
7152 rq = cpu_rq(cpu);
7153 BUG_ON(rq->migration_thread != current);
7154
7155 set_current_state(TASK_INTERRUPTIBLE);
7156 while (!kthread_should_stop()) {
70b97a7f 7157 struct migration_req *req;
1da177e4 7158 struct list_head *head;
1da177e4 7159
1da177e4
LT
7160 spin_lock_irq(&rq->lock);
7161
7162 if (cpu_is_offline(cpu)) {
7163 spin_unlock_irq(&rq->lock);
371cbb38 7164 break;
1da177e4
LT
7165 }
7166
7167 if (rq->active_balance) {
7168 active_load_balance(rq, cpu);
7169 rq->active_balance = 0;
7170 }
7171
7172 head = &rq->migration_queue;
7173
7174 if (list_empty(head)) {
7175 spin_unlock_irq(&rq->lock);
7176 schedule();
7177 set_current_state(TASK_INTERRUPTIBLE);
7178 continue;
7179 }
70b97a7f 7180 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7181 list_del_init(head->next);
7182
674311d5
NP
7183 spin_unlock(&rq->lock);
7184 __migrate_task(req->task, cpu, req->dest_cpu);
7185 local_irq_enable();
1da177e4
LT
7186
7187 complete(&req->done);
7188 }
7189 __set_current_state(TASK_RUNNING);
1da177e4 7190
1da177e4
LT
7191 return 0;
7192}
7193
7194#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7195
7196static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7197{
7198 int ret;
7199
7200 local_irq_disable();
7201 ret = __migrate_task(p, src_cpu, dest_cpu);
7202 local_irq_enable();
7203 return ret;
7204}
7205
054b9108 7206/*
3a4fa0a2 7207 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7208 */
48f24c4d 7209static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7210{
70b97a7f 7211 int dest_cpu;
6ca09dfc 7212 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7213
7214again:
7215 /* Look for allowed, online CPU in same node. */
7216 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7217 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7218 goto move;
7219
7220 /* Any allowed, online CPU? */
7221 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7222 if (dest_cpu < nr_cpu_ids)
7223 goto move;
7224
7225 /* No more Mr. Nice Guy. */
7226 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7227 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7228 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7229
e76bd8d9
RR
7230 /*
7231 * Don't tell them about moving exiting tasks or
7232 * kernel threads (both mm NULL), since they never
7233 * leave kernel.
7234 */
7235 if (p->mm && printk_ratelimit()) {
7236 printk(KERN_INFO "process %d (%s) no "
7237 "longer affine to cpu%d\n",
7238 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7239 }
e76bd8d9
RR
7240 }
7241
7242move:
7243 /* It can have affinity changed while we were choosing. */
7244 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7245 goto again;
1da177e4
LT
7246}
7247
7248/*
7249 * While a dead CPU has no uninterruptible tasks queued at this point,
7250 * it might still have a nonzero ->nr_uninterruptible counter, because
7251 * for performance reasons the counter is not stricly tracking tasks to
7252 * their home CPUs. So we just add the counter to another CPU's counter,
7253 * to keep the global sum constant after CPU-down:
7254 */
70b97a7f 7255static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7256{
1e5ce4f4 7257 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7258 unsigned long flags;
7259
7260 local_irq_save(flags);
7261 double_rq_lock(rq_src, rq_dest);
7262 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7263 rq_src->nr_uninterruptible = 0;
7264 double_rq_unlock(rq_src, rq_dest);
7265 local_irq_restore(flags);
7266}
7267
7268/* Run through task list and migrate tasks from the dead cpu. */
7269static void migrate_live_tasks(int src_cpu)
7270{
48f24c4d 7271 struct task_struct *p, *t;
1da177e4 7272
f7b4cddc 7273 read_lock(&tasklist_lock);
1da177e4 7274
48f24c4d
IM
7275 do_each_thread(t, p) {
7276 if (p == current)
1da177e4
LT
7277 continue;
7278
48f24c4d
IM
7279 if (task_cpu(p) == src_cpu)
7280 move_task_off_dead_cpu(src_cpu, p);
7281 } while_each_thread(t, p);
1da177e4 7282
f7b4cddc 7283 read_unlock(&tasklist_lock);
1da177e4
LT
7284}
7285
dd41f596
IM
7286/*
7287 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7288 * It does so by boosting its priority to highest possible.
7289 * Used by CPU offline code.
1da177e4
LT
7290 */
7291void sched_idle_next(void)
7292{
48f24c4d 7293 int this_cpu = smp_processor_id();
70b97a7f 7294 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7295 struct task_struct *p = rq->idle;
7296 unsigned long flags;
7297
7298 /* cpu has to be offline */
48f24c4d 7299 BUG_ON(cpu_online(this_cpu));
1da177e4 7300
48f24c4d
IM
7301 /*
7302 * Strictly not necessary since rest of the CPUs are stopped by now
7303 * and interrupts disabled on the current cpu.
1da177e4
LT
7304 */
7305 spin_lock_irqsave(&rq->lock, flags);
7306
dd41f596 7307 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7308
94bc9a7b
DA
7309 update_rq_clock(rq);
7310 activate_task(rq, p, 0);
1da177e4
LT
7311
7312 spin_unlock_irqrestore(&rq->lock, flags);
7313}
7314
48f24c4d
IM
7315/*
7316 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7317 * offline.
7318 */
7319void idle_task_exit(void)
7320{
7321 struct mm_struct *mm = current->active_mm;
7322
7323 BUG_ON(cpu_online(smp_processor_id()));
7324
7325 if (mm != &init_mm)
7326 switch_mm(mm, &init_mm, current);
7327 mmdrop(mm);
7328}
7329
054b9108 7330/* called under rq->lock with disabled interrupts */
36c8b586 7331static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7332{
70b97a7f 7333 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7334
7335 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7336 BUG_ON(!p->exit_state);
1da177e4
LT
7337
7338 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7339 BUG_ON(p->state == TASK_DEAD);
1da177e4 7340
48f24c4d 7341 get_task_struct(p);
1da177e4
LT
7342
7343 /*
7344 * Drop lock around migration; if someone else moves it,
41a2d6cf 7345 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7346 * fine.
7347 */
f7b4cddc 7348 spin_unlock_irq(&rq->lock);
48f24c4d 7349 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7350 spin_lock_irq(&rq->lock);
1da177e4 7351
48f24c4d 7352 put_task_struct(p);
1da177e4
LT
7353}
7354
7355/* release_task() removes task from tasklist, so we won't find dead tasks. */
7356static void migrate_dead_tasks(unsigned int dead_cpu)
7357{
70b97a7f 7358 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7359 struct task_struct *next;
48f24c4d 7360
dd41f596
IM
7361 for ( ; ; ) {
7362 if (!rq->nr_running)
7363 break;
a8e504d2 7364 update_rq_clock(rq);
b67802ea 7365 next = pick_next_task(rq);
dd41f596
IM
7366 if (!next)
7367 break;
79c53799 7368 next->sched_class->put_prev_task(rq, next);
dd41f596 7369 migrate_dead(dead_cpu, next);
e692ab53 7370
1da177e4
LT
7371 }
7372}
dce48a84
TG
7373
7374/*
7375 * remove the tasks which were accounted by rq from calc_load_tasks.
7376 */
7377static void calc_global_load_remove(struct rq *rq)
7378{
7379 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7380 rq->calc_load_active = 0;
dce48a84 7381}
1da177e4
LT
7382#endif /* CONFIG_HOTPLUG_CPU */
7383
e692ab53
NP
7384#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7385
7386static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7387 {
7388 .procname = "sched_domain",
c57baf1e 7389 .mode = 0555,
e0361851 7390 },
38605cae 7391 {0, },
e692ab53
NP
7392};
7393
7394static struct ctl_table sd_ctl_root[] = {
e0361851 7395 {
c57baf1e 7396 .ctl_name = CTL_KERN,
e0361851 7397 .procname = "kernel",
c57baf1e 7398 .mode = 0555,
e0361851
AD
7399 .child = sd_ctl_dir,
7400 },
38605cae 7401 {0, },
e692ab53
NP
7402};
7403
7404static struct ctl_table *sd_alloc_ctl_entry(int n)
7405{
7406 struct ctl_table *entry =
5cf9f062 7407 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7408
e692ab53
NP
7409 return entry;
7410}
7411
6382bc90
MM
7412static void sd_free_ctl_entry(struct ctl_table **tablep)
7413{
cd790076 7414 struct ctl_table *entry;
6382bc90 7415
cd790076
MM
7416 /*
7417 * In the intermediate directories, both the child directory and
7418 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7419 * will always be set. In the lowest directory the names are
cd790076
MM
7420 * static strings and all have proc handlers.
7421 */
7422 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7423 if (entry->child)
7424 sd_free_ctl_entry(&entry->child);
cd790076
MM
7425 if (entry->proc_handler == NULL)
7426 kfree(entry->procname);
7427 }
6382bc90
MM
7428
7429 kfree(*tablep);
7430 *tablep = NULL;
7431}
7432
e692ab53 7433static void
e0361851 7434set_table_entry(struct ctl_table *entry,
e692ab53
NP
7435 const char *procname, void *data, int maxlen,
7436 mode_t mode, proc_handler *proc_handler)
7437{
e692ab53
NP
7438 entry->procname = procname;
7439 entry->data = data;
7440 entry->maxlen = maxlen;
7441 entry->mode = mode;
7442 entry->proc_handler = proc_handler;
7443}
7444
7445static struct ctl_table *
7446sd_alloc_ctl_domain_table(struct sched_domain *sd)
7447{
a5d8c348 7448 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7449
ad1cdc1d
MM
7450 if (table == NULL)
7451 return NULL;
7452
e0361851 7453 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7454 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7455 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7456 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7457 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7458 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7459 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7460 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7461 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7462 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7463 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7464 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7465 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7466 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7467 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7468 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7469 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7470 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7471 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7472 &sd->cache_nice_tries,
7473 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7474 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7475 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7476 set_table_entry(&table[11], "name", sd->name,
7477 CORENAME_MAX_SIZE, 0444, proc_dostring);
7478 /* &table[12] is terminator */
e692ab53
NP
7479
7480 return table;
7481}
7482
9a4e7159 7483static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7484{
7485 struct ctl_table *entry, *table;
7486 struct sched_domain *sd;
7487 int domain_num = 0, i;
7488 char buf[32];
7489
7490 for_each_domain(cpu, sd)
7491 domain_num++;
7492 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7493 if (table == NULL)
7494 return NULL;
e692ab53
NP
7495
7496 i = 0;
7497 for_each_domain(cpu, sd) {
7498 snprintf(buf, 32, "domain%d", i);
e692ab53 7499 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7500 entry->mode = 0555;
e692ab53
NP
7501 entry->child = sd_alloc_ctl_domain_table(sd);
7502 entry++;
7503 i++;
7504 }
7505 return table;
7506}
7507
7508static struct ctl_table_header *sd_sysctl_header;
6382bc90 7509static void register_sched_domain_sysctl(void)
e692ab53
NP
7510{
7511 int i, cpu_num = num_online_cpus();
7512 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7513 char buf[32];
7514
7378547f
MM
7515 WARN_ON(sd_ctl_dir[0].child);
7516 sd_ctl_dir[0].child = entry;
7517
ad1cdc1d
MM
7518 if (entry == NULL)
7519 return;
7520
97b6ea7b 7521 for_each_online_cpu(i) {
e692ab53 7522 snprintf(buf, 32, "cpu%d", i);
e692ab53 7523 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7524 entry->mode = 0555;
e692ab53 7525 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7526 entry++;
e692ab53 7527 }
7378547f
MM
7528
7529 WARN_ON(sd_sysctl_header);
e692ab53
NP
7530 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7531}
6382bc90 7532
7378547f 7533/* may be called multiple times per register */
6382bc90
MM
7534static void unregister_sched_domain_sysctl(void)
7535{
7378547f
MM
7536 if (sd_sysctl_header)
7537 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7538 sd_sysctl_header = NULL;
7378547f
MM
7539 if (sd_ctl_dir[0].child)
7540 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7541}
e692ab53 7542#else
6382bc90
MM
7543static void register_sched_domain_sysctl(void)
7544{
7545}
7546static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7547{
7548}
7549#endif
7550
1f11eb6a
GH
7551static void set_rq_online(struct rq *rq)
7552{
7553 if (!rq->online) {
7554 const struct sched_class *class;
7555
c6c4927b 7556 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7557 rq->online = 1;
7558
7559 for_each_class(class) {
7560 if (class->rq_online)
7561 class->rq_online(rq);
7562 }
7563 }
7564}
7565
7566static void set_rq_offline(struct rq *rq)
7567{
7568 if (rq->online) {
7569 const struct sched_class *class;
7570
7571 for_each_class(class) {
7572 if (class->rq_offline)
7573 class->rq_offline(rq);
7574 }
7575
c6c4927b 7576 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7577 rq->online = 0;
7578 }
7579}
7580
1da177e4
LT
7581/*
7582 * migration_call - callback that gets triggered when a CPU is added.
7583 * Here we can start up the necessary migration thread for the new CPU.
7584 */
48f24c4d
IM
7585static int __cpuinit
7586migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7587{
1da177e4 7588 struct task_struct *p;
48f24c4d 7589 int cpu = (long)hcpu;
1da177e4 7590 unsigned long flags;
70b97a7f 7591 struct rq *rq;
1da177e4
LT
7592
7593 switch (action) {
5be9361c 7594
1da177e4 7595 case CPU_UP_PREPARE:
8bb78442 7596 case CPU_UP_PREPARE_FROZEN:
dd41f596 7597 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7598 if (IS_ERR(p))
7599 return NOTIFY_BAD;
1da177e4
LT
7600 kthread_bind(p, cpu);
7601 /* Must be high prio: stop_machine expects to yield to it. */
7602 rq = task_rq_lock(p, &flags);
dd41f596 7603 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7604 task_rq_unlock(rq, &flags);
371cbb38 7605 get_task_struct(p);
1da177e4 7606 cpu_rq(cpu)->migration_thread = p;
a468d389 7607 rq->calc_load_update = calc_load_update;
1da177e4 7608 break;
48f24c4d 7609
1da177e4 7610 case CPU_ONLINE:
8bb78442 7611 case CPU_ONLINE_FROZEN:
3a4fa0a2 7612 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7613 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7614
7615 /* Update our root-domain */
7616 rq = cpu_rq(cpu);
7617 spin_lock_irqsave(&rq->lock, flags);
7618 if (rq->rd) {
c6c4927b 7619 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7620
7621 set_rq_online(rq);
1f94ef59
GH
7622 }
7623 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7624 break;
48f24c4d 7625
1da177e4
LT
7626#ifdef CONFIG_HOTPLUG_CPU
7627 case CPU_UP_CANCELED:
8bb78442 7628 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7629 if (!cpu_rq(cpu)->migration_thread)
7630 break;
41a2d6cf 7631 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7632 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7633 cpumask_any(cpu_online_mask));
1da177e4 7634 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7635 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7636 cpu_rq(cpu)->migration_thread = NULL;
7637 break;
48f24c4d 7638
1da177e4 7639 case CPU_DEAD:
8bb78442 7640 case CPU_DEAD_FROZEN:
470fd646 7641 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7642 migrate_live_tasks(cpu);
7643 rq = cpu_rq(cpu);
7644 kthread_stop(rq->migration_thread);
371cbb38 7645 put_task_struct(rq->migration_thread);
1da177e4
LT
7646 rq->migration_thread = NULL;
7647 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7648 spin_lock_irq(&rq->lock);
a8e504d2 7649 update_rq_clock(rq);
2e1cb74a 7650 deactivate_task(rq, rq->idle, 0);
1da177e4 7651 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7652 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7653 rq->idle->sched_class = &idle_sched_class;
1da177e4 7654 migrate_dead_tasks(cpu);
d2da272a 7655 spin_unlock_irq(&rq->lock);
470fd646 7656 cpuset_unlock();
1da177e4
LT
7657 migrate_nr_uninterruptible(rq);
7658 BUG_ON(rq->nr_running != 0);
dce48a84 7659 calc_global_load_remove(rq);
41a2d6cf
IM
7660 /*
7661 * No need to migrate the tasks: it was best-effort if
7662 * they didn't take sched_hotcpu_mutex. Just wake up
7663 * the requestors.
7664 */
1da177e4
LT
7665 spin_lock_irq(&rq->lock);
7666 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7667 struct migration_req *req;
7668
1da177e4 7669 req = list_entry(rq->migration_queue.next,
70b97a7f 7670 struct migration_req, list);
1da177e4 7671 list_del_init(&req->list);
9a2bd244 7672 spin_unlock_irq(&rq->lock);
1da177e4 7673 complete(&req->done);
9a2bd244 7674 spin_lock_irq(&rq->lock);
1da177e4
LT
7675 }
7676 spin_unlock_irq(&rq->lock);
7677 break;
57d885fe 7678
08f503b0
GH
7679 case CPU_DYING:
7680 case CPU_DYING_FROZEN:
57d885fe
GH
7681 /* Update our root-domain */
7682 rq = cpu_rq(cpu);
7683 spin_lock_irqsave(&rq->lock, flags);
7684 if (rq->rd) {
c6c4927b 7685 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7686 set_rq_offline(rq);
57d885fe
GH
7687 }
7688 spin_unlock_irqrestore(&rq->lock, flags);
7689 break;
1da177e4
LT
7690#endif
7691 }
7692 return NOTIFY_OK;
7693}
7694
f38b0820
PM
7695/*
7696 * Register at high priority so that task migration (migrate_all_tasks)
7697 * happens before everything else. This has to be lower priority than
7698 * the notifier in the perf_counter subsystem, though.
1da177e4 7699 */
26c2143b 7700static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7701 .notifier_call = migration_call,
7702 .priority = 10
7703};
7704
7babe8db 7705static int __init migration_init(void)
1da177e4
LT
7706{
7707 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7708 int err;
48f24c4d
IM
7709
7710 /* Start one for the boot CPU: */
07dccf33
AM
7711 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7712 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7713 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7714 register_cpu_notifier(&migration_notifier);
7babe8db 7715
a004cd42 7716 return 0;
1da177e4 7717}
7babe8db 7718early_initcall(migration_init);
1da177e4
LT
7719#endif
7720
7721#ifdef CONFIG_SMP
476f3534 7722
3e9830dc 7723#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7724
7c16ec58 7725static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7726 struct cpumask *groupmask)
1da177e4 7727{
4dcf6aff 7728 struct sched_group *group = sd->groups;
434d53b0 7729 char str[256];
1da177e4 7730
968ea6d8 7731 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7732 cpumask_clear(groupmask);
4dcf6aff
IM
7733
7734 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7735
7736 if (!(sd->flags & SD_LOAD_BALANCE)) {
7737 printk("does not load-balance\n");
7738 if (sd->parent)
7739 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7740 " has parent");
7741 return -1;
41c7ce9a
NP
7742 }
7743
eefd796a 7744 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7745
758b2cdc 7746 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7747 printk(KERN_ERR "ERROR: domain->span does not contain "
7748 "CPU%d\n", cpu);
7749 }
758b2cdc 7750 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7751 printk(KERN_ERR "ERROR: domain->groups does not contain"
7752 " CPU%d\n", cpu);
7753 }
1da177e4 7754
4dcf6aff 7755 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7756 do {
4dcf6aff
IM
7757 if (!group) {
7758 printk("\n");
7759 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7760 break;
7761 }
7762
4dcf6aff
IM
7763 if (!group->__cpu_power) {
7764 printk(KERN_CONT "\n");
7765 printk(KERN_ERR "ERROR: domain->cpu_power not "
7766 "set\n");
7767 break;
7768 }
1da177e4 7769
758b2cdc 7770 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7771 printk(KERN_CONT "\n");
7772 printk(KERN_ERR "ERROR: empty group\n");
7773 break;
7774 }
1da177e4 7775
758b2cdc 7776 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7777 printk(KERN_CONT "\n");
7778 printk(KERN_ERR "ERROR: repeated CPUs\n");
7779 break;
7780 }
1da177e4 7781
758b2cdc 7782 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7783
968ea6d8 7784 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7785
7786 printk(KERN_CONT " %s", str);
7787 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7788 printk(KERN_CONT " (__cpu_power = %d)",
7789 group->__cpu_power);
7790 }
1da177e4 7791
4dcf6aff
IM
7792 group = group->next;
7793 } while (group != sd->groups);
7794 printk(KERN_CONT "\n");
1da177e4 7795
758b2cdc 7796 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7797 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7798
758b2cdc
RR
7799 if (sd->parent &&
7800 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7801 printk(KERN_ERR "ERROR: parent span is not a superset "
7802 "of domain->span\n");
7803 return 0;
7804}
1da177e4 7805
4dcf6aff
IM
7806static void sched_domain_debug(struct sched_domain *sd, int cpu)
7807{
d5dd3db1 7808 cpumask_var_t groupmask;
4dcf6aff 7809 int level = 0;
1da177e4 7810
4dcf6aff
IM
7811 if (!sd) {
7812 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7813 return;
7814 }
1da177e4 7815
4dcf6aff
IM
7816 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7817
d5dd3db1 7818 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7819 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7820 return;
7821 }
7822
4dcf6aff 7823 for (;;) {
7c16ec58 7824 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7825 break;
1da177e4
LT
7826 level++;
7827 sd = sd->parent;
33859f7f 7828 if (!sd)
4dcf6aff
IM
7829 break;
7830 }
d5dd3db1 7831 free_cpumask_var(groupmask);
1da177e4 7832}
6d6bc0ad 7833#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7834# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7835#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7836
1a20ff27 7837static int sd_degenerate(struct sched_domain *sd)
245af2c7 7838{
758b2cdc 7839 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7840 return 1;
7841
7842 /* Following flags need at least 2 groups */
7843 if (sd->flags & (SD_LOAD_BALANCE |
7844 SD_BALANCE_NEWIDLE |
7845 SD_BALANCE_FORK |
89c4710e
SS
7846 SD_BALANCE_EXEC |
7847 SD_SHARE_CPUPOWER |
7848 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7849 if (sd->groups != sd->groups->next)
7850 return 0;
7851 }
7852
7853 /* Following flags don't use groups */
7854 if (sd->flags & (SD_WAKE_IDLE |
7855 SD_WAKE_AFFINE |
7856 SD_WAKE_BALANCE))
7857 return 0;
7858
7859 return 1;
7860}
7861
48f24c4d
IM
7862static int
7863sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7864{
7865 unsigned long cflags = sd->flags, pflags = parent->flags;
7866
7867 if (sd_degenerate(parent))
7868 return 1;
7869
758b2cdc 7870 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7871 return 0;
7872
7873 /* Does parent contain flags not in child? */
7874 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7875 if (cflags & SD_WAKE_AFFINE)
7876 pflags &= ~SD_WAKE_BALANCE;
7877 /* Flags needing groups don't count if only 1 group in parent */
7878 if (parent->groups == parent->groups->next) {
7879 pflags &= ~(SD_LOAD_BALANCE |
7880 SD_BALANCE_NEWIDLE |
7881 SD_BALANCE_FORK |
89c4710e
SS
7882 SD_BALANCE_EXEC |
7883 SD_SHARE_CPUPOWER |
7884 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7885 if (nr_node_ids == 1)
7886 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7887 }
7888 if (~cflags & pflags)
7889 return 0;
7890
7891 return 1;
7892}
7893
c6c4927b
RR
7894static void free_rootdomain(struct root_domain *rd)
7895{
68e74568
RR
7896 cpupri_cleanup(&rd->cpupri);
7897
c6c4927b
RR
7898 free_cpumask_var(rd->rto_mask);
7899 free_cpumask_var(rd->online);
7900 free_cpumask_var(rd->span);
7901 kfree(rd);
7902}
7903
57d885fe
GH
7904static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7905{
a0490fa3 7906 struct root_domain *old_rd = NULL;
57d885fe 7907 unsigned long flags;
57d885fe
GH
7908
7909 spin_lock_irqsave(&rq->lock, flags);
7910
7911 if (rq->rd) {
a0490fa3 7912 old_rd = rq->rd;
57d885fe 7913
c6c4927b 7914 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7915 set_rq_offline(rq);
57d885fe 7916
c6c4927b 7917 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7918
a0490fa3
IM
7919 /*
7920 * If we dont want to free the old_rt yet then
7921 * set old_rd to NULL to skip the freeing later
7922 * in this function:
7923 */
7924 if (!atomic_dec_and_test(&old_rd->refcount))
7925 old_rd = NULL;
57d885fe
GH
7926 }
7927
7928 atomic_inc(&rd->refcount);
7929 rq->rd = rd;
7930
c6c4927b 7931 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7932 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7933 set_rq_online(rq);
57d885fe
GH
7934
7935 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7936
7937 if (old_rd)
7938 free_rootdomain(old_rd);
57d885fe
GH
7939}
7940
fd5e1b5d 7941static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7942{
36b7b6d4
PE
7943 gfp_t gfp = GFP_KERNEL;
7944
57d885fe
GH
7945 memset(rd, 0, sizeof(*rd));
7946
36b7b6d4
PE
7947 if (bootmem)
7948 gfp = GFP_NOWAIT;
c6c4927b 7949
36b7b6d4 7950 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7951 goto out;
36b7b6d4 7952 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7953 goto free_span;
36b7b6d4 7954 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7955 goto free_online;
6e0534f2 7956
0fb53029 7957 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7958 goto free_rto_mask;
c6c4927b 7959 return 0;
6e0534f2 7960
68e74568
RR
7961free_rto_mask:
7962 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7963free_online:
7964 free_cpumask_var(rd->online);
7965free_span:
7966 free_cpumask_var(rd->span);
0c910d28 7967out:
c6c4927b 7968 return -ENOMEM;
57d885fe
GH
7969}
7970
7971static void init_defrootdomain(void)
7972{
c6c4927b
RR
7973 init_rootdomain(&def_root_domain, true);
7974
57d885fe
GH
7975 atomic_set(&def_root_domain.refcount, 1);
7976}
7977
dc938520 7978static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7979{
7980 struct root_domain *rd;
7981
7982 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7983 if (!rd)
7984 return NULL;
7985
c6c4927b
RR
7986 if (init_rootdomain(rd, false) != 0) {
7987 kfree(rd);
7988 return NULL;
7989 }
57d885fe
GH
7990
7991 return rd;
7992}
7993
1da177e4 7994/*
0eab9146 7995 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7996 * hold the hotplug lock.
7997 */
0eab9146
IM
7998static void
7999cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8000{
70b97a7f 8001 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8002 struct sched_domain *tmp;
8003
8004 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8005 for (tmp = sd; tmp; ) {
245af2c7
SS
8006 struct sched_domain *parent = tmp->parent;
8007 if (!parent)
8008 break;
f29c9b1c 8009
1a848870 8010 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8011 tmp->parent = parent->parent;
1a848870
SS
8012 if (parent->parent)
8013 parent->parent->child = tmp;
f29c9b1c
LZ
8014 } else
8015 tmp = tmp->parent;
245af2c7
SS
8016 }
8017
1a848870 8018 if (sd && sd_degenerate(sd)) {
245af2c7 8019 sd = sd->parent;
1a848870
SS
8020 if (sd)
8021 sd->child = NULL;
8022 }
1da177e4
LT
8023
8024 sched_domain_debug(sd, cpu);
8025
57d885fe 8026 rq_attach_root(rq, rd);
674311d5 8027 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8028}
8029
8030/* cpus with isolated domains */
dcc30a35 8031static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8032
8033/* Setup the mask of cpus configured for isolated domains */
8034static int __init isolated_cpu_setup(char *str)
8035{
968ea6d8 8036 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8037 return 1;
8038}
8039
8927f494 8040__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8041
8042/*
6711cab4
SS
8043 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8044 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8045 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8046 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8047 *
8048 * init_sched_build_groups will build a circular linked list of the groups
8049 * covered by the given span, and will set each group's ->cpumask correctly,
8050 * and ->cpu_power to 0.
8051 */
a616058b 8052static void
96f874e2
RR
8053init_sched_build_groups(const struct cpumask *span,
8054 const struct cpumask *cpu_map,
8055 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8056 struct sched_group **sg,
96f874e2
RR
8057 struct cpumask *tmpmask),
8058 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8059{
8060 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8061 int i;
8062
96f874e2 8063 cpumask_clear(covered);
7c16ec58 8064
abcd083a 8065 for_each_cpu(i, span) {
6711cab4 8066 struct sched_group *sg;
7c16ec58 8067 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8068 int j;
8069
758b2cdc 8070 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8071 continue;
8072
758b2cdc 8073 cpumask_clear(sched_group_cpus(sg));
5517d86b 8074 sg->__cpu_power = 0;
1da177e4 8075
abcd083a 8076 for_each_cpu(j, span) {
7c16ec58 8077 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8078 continue;
8079
96f874e2 8080 cpumask_set_cpu(j, covered);
758b2cdc 8081 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8082 }
8083 if (!first)
8084 first = sg;
8085 if (last)
8086 last->next = sg;
8087 last = sg;
8088 }
8089 last->next = first;
8090}
8091
9c1cfda2 8092#define SD_NODES_PER_DOMAIN 16
1da177e4 8093
9c1cfda2 8094#ifdef CONFIG_NUMA
198e2f18 8095
9c1cfda2
JH
8096/**
8097 * find_next_best_node - find the next node to include in a sched_domain
8098 * @node: node whose sched_domain we're building
8099 * @used_nodes: nodes already in the sched_domain
8100 *
41a2d6cf 8101 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8102 * finds the closest node not already in the @used_nodes map.
8103 *
8104 * Should use nodemask_t.
8105 */
c5f59f08 8106static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8107{
8108 int i, n, val, min_val, best_node = 0;
8109
8110 min_val = INT_MAX;
8111
076ac2af 8112 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8113 /* Start at @node */
076ac2af 8114 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8115
8116 if (!nr_cpus_node(n))
8117 continue;
8118
8119 /* Skip already used nodes */
c5f59f08 8120 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8121 continue;
8122
8123 /* Simple min distance search */
8124 val = node_distance(node, n);
8125
8126 if (val < min_val) {
8127 min_val = val;
8128 best_node = n;
8129 }
8130 }
8131
c5f59f08 8132 node_set(best_node, *used_nodes);
9c1cfda2
JH
8133 return best_node;
8134}
8135
8136/**
8137 * sched_domain_node_span - get a cpumask for a node's sched_domain
8138 * @node: node whose cpumask we're constructing
73486722 8139 * @span: resulting cpumask
9c1cfda2 8140 *
41a2d6cf 8141 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8142 * should be one that prevents unnecessary balancing, but also spreads tasks
8143 * out optimally.
8144 */
96f874e2 8145static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8146{
c5f59f08 8147 nodemask_t used_nodes;
48f24c4d 8148 int i;
9c1cfda2 8149
6ca09dfc 8150 cpumask_clear(span);
c5f59f08 8151 nodes_clear(used_nodes);
9c1cfda2 8152
6ca09dfc 8153 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8154 node_set(node, used_nodes);
9c1cfda2
JH
8155
8156 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8157 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8158
6ca09dfc 8159 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8160 }
9c1cfda2 8161}
6d6bc0ad 8162#endif /* CONFIG_NUMA */
9c1cfda2 8163
5c45bf27 8164int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8165
6c99e9ad
RR
8166/*
8167 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8168 *
8169 * ( See the the comments in include/linux/sched.h:struct sched_group
8170 * and struct sched_domain. )
6c99e9ad
RR
8171 */
8172struct static_sched_group {
8173 struct sched_group sg;
8174 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8175};
8176
8177struct static_sched_domain {
8178 struct sched_domain sd;
8179 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8180};
8181
9c1cfda2 8182/*
48f24c4d 8183 * SMT sched-domains:
9c1cfda2 8184 */
1da177e4 8185#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8186static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8187static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8188
41a2d6cf 8189static int
96f874e2
RR
8190cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8191 struct sched_group **sg, struct cpumask *unused)
1da177e4 8192{
6711cab4 8193 if (sg)
6c99e9ad 8194 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8195 return cpu;
8196}
6d6bc0ad 8197#endif /* CONFIG_SCHED_SMT */
1da177e4 8198
48f24c4d
IM
8199/*
8200 * multi-core sched-domains:
8201 */
1e9f28fa 8202#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8203static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8204static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8205#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8206
8207#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8208static int
96f874e2
RR
8209cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8210 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8211{
6711cab4 8212 int group;
7c16ec58 8213
c69fc56d 8214 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8215 group = cpumask_first(mask);
6711cab4 8216 if (sg)
6c99e9ad 8217 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8218 return group;
1e9f28fa
SS
8219}
8220#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8221static int
96f874e2
RR
8222cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8223 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8224{
6711cab4 8225 if (sg)
6c99e9ad 8226 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8227 return cpu;
8228}
8229#endif
8230
6c99e9ad
RR
8231static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8232static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8233
41a2d6cf 8234static int
96f874e2
RR
8235cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8236 struct sched_group **sg, struct cpumask *mask)
1da177e4 8237{
6711cab4 8238 int group;
48f24c4d 8239#ifdef CONFIG_SCHED_MC
6ca09dfc 8240 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8241 group = cpumask_first(mask);
1e9f28fa 8242#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8243 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8244 group = cpumask_first(mask);
1da177e4 8245#else
6711cab4 8246 group = cpu;
1da177e4 8247#endif
6711cab4 8248 if (sg)
6c99e9ad 8249 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8250 return group;
1da177e4
LT
8251}
8252
8253#ifdef CONFIG_NUMA
1da177e4 8254/*
9c1cfda2
JH
8255 * The init_sched_build_groups can't handle what we want to do with node
8256 * groups, so roll our own. Now each node has its own list of groups which
8257 * gets dynamically allocated.
1da177e4 8258 */
62ea9ceb 8259static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8260static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8261
62ea9ceb 8262static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8263static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8264
96f874e2
RR
8265static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8266 struct sched_group **sg,
8267 struct cpumask *nodemask)
9c1cfda2 8268{
6711cab4
SS
8269 int group;
8270
6ca09dfc 8271 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8272 group = cpumask_first(nodemask);
6711cab4
SS
8273
8274 if (sg)
6c99e9ad 8275 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8276 return group;
1da177e4 8277}
6711cab4 8278
08069033
SS
8279static void init_numa_sched_groups_power(struct sched_group *group_head)
8280{
8281 struct sched_group *sg = group_head;
8282 int j;
8283
8284 if (!sg)
8285 return;
3a5c359a 8286 do {
758b2cdc 8287 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8288 struct sched_domain *sd;
08069033 8289
6c99e9ad 8290 sd = &per_cpu(phys_domains, j).sd;
13318a71 8291 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8292 /*
8293 * Only add "power" once for each
8294 * physical package.
8295 */
8296 continue;
8297 }
08069033 8298
3a5c359a
AK
8299 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8300 }
8301 sg = sg->next;
8302 } while (sg != group_head);
08069033 8303}
6d6bc0ad 8304#endif /* CONFIG_NUMA */
1da177e4 8305
a616058b 8306#ifdef CONFIG_NUMA
51888ca2 8307/* Free memory allocated for various sched_group structures */
96f874e2
RR
8308static void free_sched_groups(const struct cpumask *cpu_map,
8309 struct cpumask *nodemask)
51888ca2 8310{
a616058b 8311 int cpu, i;
51888ca2 8312
abcd083a 8313 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8314 struct sched_group **sched_group_nodes
8315 = sched_group_nodes_bycpu[cpu];
8316
51888ca2
SV
8317 if (!sched_group_nodes)
8318 continue;
8319
076ac2af 8320 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8321 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8322
6ca09dfc 8323 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8324 if (cpumask_empty(nodemask))
51888ca2
SV
8325 continue;
8326
8327 if (sg == NULL)
8328 continue;
8329 sg = sg->next;
8330next_sg:
8331 oldsg = sg;
8332 sg = sg->next;
8333 kfree(oldsg);
8334 if (oldsg != sched_group_nodes[i])
8335 goto next_sg;
8336 }
8337 kfree(sched_group_nodes);
8338 sched_group_nodes_bycpu[cpu] = NULL;
8339 }
51888ca2 8340}
6d6bc0ad 8341#else /* !CONFIG_NUMA */
96f874e2
RR
8342static void free_sched_groups(const struct cpumask *cpu_map,
8343 struct cpumask *nodemask)
a616058b
SS
8344{
8345}
6d6bc0ad 8346#endif /* CONFIG_NUMA */
51888ca2 8347
89c4710e
SS
8348/*
8349 * Initialize sched groups cpu_power.
8350 *
8351 * cpu_power indicates the capacity of sched group, which is used while
8352 * distributing the load between different sched groups in a sched domain.
8353 * Typically cpu_power for all the groups in a sched domain will be same unless
8354 * there are asymmetries in the topology. If there are asymmetries, group
8355 * having more cpu_power will pickup more load compared to the group having
8356 * less cpu_power.
8357 *
8358 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8359 * the maximum number of tasks a group can handle in the presence of other idle
8360 * or lightly loaded groups in the same sched domain.
8361 */
8362static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8363{
8364 struct sched_domain *child;
8365 struct sched_group *group;
8366
8367 WARN_ON(!sd || !sd->groups);
8368
13318a71 8369 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8370 return;
8371
8372 child = sd->child;
8373
5517d86b
ED
8374 sd->groups->__cpu_power = 0;
8375
89c4710e
SS
8376 /*
8377 * For perf policy, if the groups in child domain share resources
8378 * (for example cores sharing some portions of the cache hierarchy
8379 * or SMT), then set this domain groups cpu_power such that each group
8380 * can handle only one task, when there are other idle groups in the
8381 * same sched domain.
8382 */
8383 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8384 (child->flags &
8385 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8386 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8387 return;
8388 }
8389
89c4710e
SS
8390 /*
8391 * add cpu_power of each child group to this groups cpu_power
8392 */
8393 group = child->groups;
8394 do {
5517d86b 8395 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8396 group = group->next;
8397 } while (group != child->groups);
8398}
8399
7c16ec58
MT
8400/*
8401 * Initializers for schedule domains
8402 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8403 */
8404
a5d8c348
IM
8405#ifdef CONFIG_SCHED_DEBUG
8406# define SD_INIT_NAME(sd, type) sd->name = #type
8407#else
8408# define SD_INIT_NAME(sd, type) do { } while (0)
8409#endif
8410
7c16ec58 8411#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8412
7c16ec58
MT
8413#define SD_INIT_FUNC(type) \
8414static noinline void sd_init_##type(struct sched_domain *sd) \
8415{ \
8416 memset(sd, 0, sizeof(*sd)); \
8417 *sd = SD_##type##_INIT; \
1d3504fc 8418 sd->level = SD_LV_##type; \
a5d8c348 8419 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8420}
8421
8422SD_INIT_FUNC(CPU)
8423#ifdef CONFIG_NUMA
8424 SD_INIT_FUNC(ALLNODES)
8425 SD_INIT_FUNC(NODE)
8426#endif
8427#ifdef CONFIG_SCHED_SMT
8428 SD_INIT_FUNC(SIBLING)
8429#endif
8430#ifdef CONFIG_SCHED_MC
8431 SD_INIT_FUNC(MC)
8432#endif
8433
1d3504fc
HS
8434static int default_relax_domain_level = -1;
8435
8436static int __init setup_relax_domain_level(char *str)
8437{
30e0e178
LZ
8438 unsigned long val;
8439
8440 val = simple_strtoul(str, NULL, 0);
8441 if (val < SD_LV_MAX)
8442 default_relax_domain_level = val;
8443
1d3504fc
HS
8444 return 1;
8445}
8446__setup("relax_domain_level=", setup_relax_domain_level);
8447
8448static void set_domain_attribute(struct sched_domain *sd,
8449 struct sched_domain_attr *attr)
8450{
8451 int request;
8452
8453 if (!attr || attr->relax_domain_level < 0) {
8454 if (default_relax_domain_level < 0)
8455 return;
8456 else
8457 request = default_relax_domain_level;
8458 } else
8459 request = attr->relax_domain_level;
8460 if (request < sd->level) {
8461 /* turn off idle balance on this domain */
8462 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8463 } else {
8464 /* turn on idle balance on this domain */
8465 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8466 }
8467}
8468
1da177e4 8469/*
1a20ff27
DG
8470 * Build sched domains for a given set of cpus and attach the sched domains
8471 * to the individual cpus
1da177e4 8472 */
96f874e2 8473static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8474 struct sched_domain_attr *attr)
1da177e4 8475{
3404c8d9 8476 int i, err = -ENOMEM;
57d885fe 8477 struct root_domain *rd;
3404c8d9
RR
8478 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8479 tmpmask;
d1b55138 8480#ifdef CONFIG_NUMA
3404c8d9 8481 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8482 struct sched_group **sched_group_nodes = NULL;
6711cab4 8483 int sd_allnodes = 0;
d1b55138 8484
3404c8d9
RR
8485 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8486 goto out;
8487 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8488 goto free_domainspan;
8489 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8490 goto free_covered;
8491#endif
8492
8493 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8494 goto free_notcovered;
8495 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8496 goto free_nodemask;
8497 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8498 goto free_this_sibling_map;
8499 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8500 goto free_this_core_map;
8501 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8502 goto free_send_covered;
8503
8504#ifdef CONFIG_NUMA
d1b55138
JH
8505 /*
8506 * Allocate the per-node list of sched groups
8507 */
076ac2af 8508 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8509 GFP_KERNEL);
d1b55138
JH
8510 if (!sched_group_nodes) {
8511 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8512 goto free_tmpmask;
d1b55138 8513 }
d1b55138 8514#endif
1da177e4 8515
dc938520 8516 rd = alloc_rootdomain();
57d885fe
GH
8517 if (!rd) {
8518 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8519 goto free_sched_groups;
57d885fe
GH
8520 }
8521
7c16ec58 8522#ifdef CONFIG_NUMA
96f874e2 8523 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8524#endif
8525
1da177e4 8526 /*
1a20ff27 8527 * Set up domains for cpus specified by the cpu_map.
1da177e4 8528 */
abcd083a 8529 for_each_cpu(i, cpu_map) {
1da177e4 8530 struct sched_domain *sd = NULL, *p;
1da177e4 8531
6ca09dfc 8532 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8533
8534#ifdef CONFIG_NUMA
96f874e2
RR
8535 if (cpumask_weight(cpu_map) >
8536 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8537 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8538 SD_INIT(sd, ALLNODES);
1d3504fc 8539 set_domain_attribute(sd, attr);
758b2cdc 8540 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8541 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8542 p = sd;
6711cab4 8543 sd_allnodes = 1;
9c1cfda2
JH
8544 } else
8545 p = NULL;
8546
62ea9ceb 8547 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8548 SD_INIT(sd, NODE);
1d3504fc 8549 set_domain_attribute(sd, attr);
758b2cdc 8550 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8551 sd->parent = p;
1a848870
SS
8552 if (p)
8553 p->child = sd;
758b2cdc
RR
8554 cpumask_and(sched_domain_span(sd),
8555 sched_domain_span(sd), cpu_map);
1da177e4
LT
8556#endif
8557
8558 p = sd;
6c99e9ad 8559 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8560 SD_INIT(sd, CPU);
1d3504fc 8561 set_domain_attribute(sd, attr);
758b2cdc 8562 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8563 sd->parent = p;
1a848870
SS
8564 if (p)
8565 p->child = sd;
7c16ec58 8566 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8567
1e9f28fa
SS
8568#ifdef CONFIG_SCHED_MC
8569 p = sd;
6c99e9ad 8570 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8571 SD_INIT(sd, MC);
1d3504fc 8572 set_domain_attribute(sd, attr);
6ca09dfc
MT
8573 cpumask_and(sched_domain_span(sd), cpu_map,
8574 cpu_coregroup_mask(i));
1e9f28fa 8575 sd->parent = p;
1a848870 8576 p->child = sd;
7c16ec58 8577 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8578#endif
8579
1da177e4
LT
8580#ifdef CONFIG_SCHED_SMT
8581 p = sd;
6c99e9ad 8582 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8583 SD_INIT(sd, SIBLING);
1d3504fc 8584 set_domain_attribute(sd, attr);
758b2cdc 8585 cpumask_and(sched_domain_span(sd),
c69fc56d 8586 topology_thread_cpumask(i), cpu_map);
1da177e4 8587 sd->parent = p;
1a848870 8588 p->child = sd;
7c16ec58 8589 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8590#endif
8591 }
8592
8593#ifdef CONFIG_SCHED_SMT
8594 /* Set up CPU (sibling) groups */
abcd083a 8595 for_each_cpu(i, cpu_map) {
96f874e2 8596 cpumask_and(this_sibling_map,
c69fc56d 8597 topology_thread_cpumask(i), cpu_map);
96f874e2 8598 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8599 continue;
8600
dd41f596 8601 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8602 &cpu_to_cpu_group,
8603 send_covered, tmpmask);
1da177e4
LT
8604 }
8605#endif
8606
1e9f28fa
SS
8607#ifdef CONFIG_SCHED_MC
8608 /* Set up multi-core groups */
abcd083a 8609 for_each_cpu(i, cpu_map) {
6ca09dfc 8610 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8611 if (i != cpumask_first(this_core_map))
1e9f28fa 8612 continue;
7c16ec58 8613
dd41f596 8614 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8615 &cpu_to_core_group,
8616 send_covered, tmpmask);
1e9f28fa
SS
8617 }
8618#endif
8619
1da177e4 8620 /* Set up physical groups */
076ac2af 8621 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8622 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8623 if (cpumask_empty(nodemask))
1da177e4
LT
8624 continue;
8625
7c16ec58
MT
8626 init_sched_build_groups(nodemask, cpu_map,
8627 &cpu_to_phys_group,
8628 send_covered, tmpmask);
1da177e4
LT
8629 }
8630
8631#ifdef CONFIG_NUMA
8632 /* Set up node groups */
7c16ec58 8633 if (sd_allnodes) {
7c16ec58
MT
8634 init_sched_build_groups(cpu_map, cpu_map,
8635 &cpu_to_allnodes_group,
8636 send_covered, tmpmask);
8637 }
9c1cfda2 8638
076ac2af 8639 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8640 /* Set up node groups */
8641 struct sched_group *sg, *prev;
9c1cfda2
JH
8642 int j;
8643
96f874e2 8644 cpumask_clear(covered);
6ca09dfc 8645 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8646 if (cpumask_empty(nodemask)) {
d1b55138 8647 sched_group_nodes[i] = NULL;
9c1cfda2 8648 continue;
d1b55138 8649 }
9c1cfda2 8650
4bdbaad3 8651 sched_domain_node_span(i, domainspan);
96f874e2 8652 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8653
6c99e9ad
RR
8654 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8655 GFP_KERNEL, i);
51888ca2
SV
8656 if (!sg) {
8657 printk(KERN_WARNING "Can not alloc domain group for "
8658 "node %d\n", i);
8659 goto error;
8660 }
9c1cfda2 8661 sched_group_nodes[i] = sg;
abcd083a 8662 for_each_cpu(j, nodemask) {
9c1cfda2 8663 struct sched_domain *sd;
9761eea8 8664
62ea9ceb 8665 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8666 sd->groups = sg;
9c1cfda2 8667 }
5517d86b 8668 sg->__cpu_power = 0;
758b2cdc 8669 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8670 sg->next = sg;
96f874e2 8671 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8672 prev = sg;
8673
076ac2af 8674 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8675 int n = (i + j) % nr_node_ids;
9c1cfda2 8676
96f874e2
RR
8677 cpumask_complement(notcovered, covered);
8678 cpumask_and(tmpmask, notcovered, cpu_map);
8679 cpumask_and(tmpmask, tmpmask, domainspan);
8680 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8681 break;
8682
6ca09dfc 8683 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8684 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8685 continue;
8686
6c99e9ad
RR
8687 sg = kmalloc_node(sizeof(struct sched_group) +
8688 cpumask_size(),
15f0b676 8689 GFP_KERNEL, i);
9c1cfda2
JH
8690 if (!sg) {
8691 printk(KERN_WARNING
8692 "Can not alloc domain group for node %d\n", j);
51888ca2 8693 goto error;
9c1cfda2 8694 }
5517d86b 8695 sg->__cpu_power = 0;
758b2cdc 8696 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8697 sg->next = prev->next;
96f874e2 8698 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8699 prev->next = sg;
8700 prev = sg;
8701 }
9c1cfda2 8702 }
1da177e4
LT
8703#endif
8704
8705 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8706#ifdef CONFIG_SCHED_SMT
abcd083a 8707 for_each_cpu(i, cpu_map) {
6c99e9ad 8708 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8709
89c4710e 8710 init_sched_groups_power(i, sd);
5c45bf27 8711 }
1da177e4 8712#endif
1e9f28fa 8713#ifdef CONFIG_SCHED_MC
abcd083a 8714 for_each_cpu(i, cpu_map) {
6c99e9ad 8715 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8716
89c4710e 8717 init_sched_groups_power(i, sd);
5c45bf27
SS
8718 }
8719#endif
1e9f28fa 8720
abcd083a 8721 for_each_cpu(i, cpu_map) {
6c99e9ad 8722 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8723
89c4710e 8724 init_sched_groups_power(i, sd);
1da177e4
LT
8725 }
8726
9c1cfda2 8727#ifdef CONFIG_NUMA
076ac2af 8728 for (i = 0; i < nr_node_ids; i++)
08069033 8729 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8730
6711cab4
SS
8731 if (sd_allnodes) {
8732 struct sched_group *sg;
f712c0c7 8733
96f874e2 8734 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8735 tmpmask);
f712c0c7
SS
8736 init_numa_sched_groups_power(sg);
8737 }
9c1cfda2
JH
8738#endif
8739
1da177e4 8740 /* Attach the domains */
abcd083a 8741 for_each_cpu(i, cpu_map) {
1da177e4
LT
8742 struct sched_domain *sd;
8743#ifdef CONFIG_SCHED_SMT
6c99e9ad 8744 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8745#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8746 sd = &per_cpu(core_domains, i).sd;
1da177e4 8747#else
6c99e9ad 8748 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8749#endif
57d885fe 8750 cpu_attach_domain(sd, rd, i);
1da177e4 8751 }
51888ca2 8752
3404c8d9
RR
8753 err = 0;
8754
8755free_tmpmask:
8756 free_cpumask_var(tmpmask);
8757free_send_covered:
8758 free_cpumask_var(send_covered);
8759free_this_core_map:
8760 free_cpumask_var(this_core_map);
8761free_this_sibling_map:
8762 free_cpumask_var(this_sibling_map);
8763free_nodemask:
8764 free_cpumask_var(nodemask);
8765free_notcovered:
8766#ifdef CONFIG_NUMA
8767 free_cpumask_var(notcovered);
8768free_covered:
8769 free_cpumask_var(covered);
8770free_domainspan:
8771 free_cpumask_var(domainspan);
8772out:
8773#endif
8774 return err;
8775
8776free_sched_groups:
8777#ifdef CONFIG_NUMA
8778 kfree(sched_group_nodes);
8779#endif
8780 goto free_tmpmask;
51888ca2 8781
a616058b 8782#ifdef CONFIG_NUMA
51888ca2 8783error:
7c16ec58 8784 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8785 free_rootdomain(rd);
3404c8d9 8786 goto free_tmpmask;
a616058b 8787#endif
1da177e4 8788}
029190c5 8789
96f874e2 8790static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8791{
8792 return __build_sched_domains(cpu_map, NULL);
8793}
8794
96f874e2 8795static struct cpumask *doms_cur; /* current sched domains */
029190c5 8796static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8797static struct sched_domain_attr *dattr_cur;
8798 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8799
8800/*
8801 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8802 * cpumask) fails, then fallback to a single sched domain,
8803 * as determined by the single cpumask fallback_doms.
029190c5 8804 */
4212823f 8805static cpumask_var_t fallback_doms;
029190c5 8806
ee79d1bd
HC
8807/*
8808 * arch_update_cpu_topology lets virtualized architectures update the
8809 * cpu core maps. It is supposed to return 1 if the topology changed
8810 * or 0 if it stayed the same.
8811 */
8812int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8813{
ee79d1bd 8814 return 0;
22e52b07
HC
8815}
8816
1a20ff27 8817/*
41a2d6cf 8818 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8819 * For now this just excludes isolated cpus, but could be used to
8820 * exclude other special cases in the future.
1a20ff27 8821 */
96f874e2 8822static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8823{
7378547f
MM
8824 int err;
8825
22e52b07 8826 arch_update_cpu_topology();
029190c5 8827 ndoms_cur = 1;
96f874e2 8828 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8829 if (!doms_cur)
4212823f 8830 doms_cur = fallback_doms;
dcc30a35 8831 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8832 dattr_cur = NULL;
7378547f 8833 err = build_sched_domains(doms_cur);
6382bc90 8834 register_sched_domain_sysctl();
7378547f
MM
8835
8836 return err;
1a20ff27
DG
8837}
8838
96f874e2
RR
8839static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8840 struct cpumask *tmpmask)
1da177e4 8841{
7c16ec58 8842 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8843}
1da177e4 8844
1a20ff27
DG
8845/*
8846 * Detach sched domains from a group of cpus specified in cpu_map
8847 * These cpus will now be attached to the NULL domain
8848 */
96f874e2 8849static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8850{
96f874e2
RR
8851 /* Save because hotplug lock held. */
8852 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8853 int i;
8854
abcd083a 8855 for_each_cpu(i, cpu_map)
57d885fe 8856 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8857 synchronize_sched();
96f874e2 8858 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8859}
8860
1d3504fc
HS
8861/* handle null as "default" */
8862static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8863 struct sched_domain_attr *new, int idx_new)
8864{
8865 struct sched_domain_attr tmp;
8866
8867 /* fast path */
8868 if (!new && !cur)
8869 return 1;
8870
8871 tmp = SD_ATTR_INIT;
8872 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8873 new ? (new + idx_new) : &tmp,
8874 sizeof(struct sched_domain_attr));
8875}
8876
029190c5
PJ
8877/*
8878 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8879 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8880 * doms_new[] to the current sched domain partitioning, doms_cur[].
8881 * It destroys each deleted domain and builds each new domain.
8882 *
96f874e2 8883 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8884 * The masks don't intersect (don't overlap.) We should setup one
8885 * sched domain for each mask. CPUs not in any of the cpumasks will
8886 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8887 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8888 * it as it is.
8889 *
41a2d6cf
IM
8890 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8891 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8892 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8893 * ndoms_new == 1, and partition_sched_domains() will fallback to
8894 * the single partition 'fallback_doms', it also forces the domains
8895 * to be rebuilt.
029190c5 8896 *
96f874e2 8897 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8898 * ndoms_new == 0 is a special case for destroying existing domains,
8899 * and it will not create the default domain.
dfb512ec 8900 *
029190c5
PJ
8901 * Call with hotplug lock held
8902 */
96f874e2
RR
8903/* FIXME: Change to struct cpumask *doms_new[] */
8904void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8905 struct sched_domain_attr *dattr_new)
029190c5 8906{
dfb512ec 8907 int i, j, n;
d65bd5ec 8908 int new_topology;
029190c5 8909
712555ee 8910 mutex_lock(&sched_domains_mutex);
a1835615 8911
7378547f
MM
8912 /* always unregister in case we don't destroy any domains */
8913 unregister_sched_domain_sysctl();
8914
d65bd5ec
HC
8915 /* Let architecture update cpu core mappings. */
8916 new_topology = arch_update_cpu_topology();
8917
dfb512ec 8918 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8919
8920 /* Destroy deleted domains */
8921 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8922 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8923 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8924 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8925 goto match1;
8926 }
8927 /* no match - a current sched domain not in new doms_new[] */
8928 detach_destroy_domains(doms_cur + i);
8929match1:
8930 ;
8931 }
8932
e761b772
MK
8933 if (doms_new == NULL) {
8934 ndoms_cur = 0;
4212823f 8935 doms_new = fallback_doms;
dcc30a35 8936 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8937 WARN_ON_ONCE(dattr_new);
e761b772
MK
8938 }
8939
029190c5
PJ
8940 /* Build new domains */
8941 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8942 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8943 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8944 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8945 goto match2;
8946 }
8947 /* no match - add a new doms_new */
1d3504fc
HS
8948 __build_sched_domains(doms_new + i,
8949 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8950match2:
8951 ;
8952 }
8953
8954 /* Remember the new sched domains */
4212823f 8955 if (doms_cur != fallback_doms)
029190c5 8956 kfree(doms_cur);
1d3504fc 8957 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8958 doms_cur = doms_new;
1d3504fc 8959 dattr_cur = dattr_new;
029190c5 8960 ndoms_cur = ndoms_new;
7378547f
MM
8961
8962 register_sched_domain_sysctl();
a1835615 8963
712555ee 8964 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8965}
8966
5c45bf27 8967#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8968static void arch_reinit_sched_domains(void)
5c45bf27 8969{
95402b38 8970 get_online_cpus();
dfb512ec
MK
8971
8972 /* Destroy domains first to force the rebuild */
8973 partition_sched_domains(0, NULL, NULL);
8974
e761b772 8975 rebuild_sched_domains();
95402b38 8976 put_online_cpus();
5c45bf27
SS
8977}
8978
8979static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8980{
afb8a9b7 8981 unsigned int level = 0;
5c45bf27 8982
afb8a9b7
GS
8983 if (sscanf(buf, "%u", &level) != 1)
8984 return -EINVAL;
8985
8986 /*
8987 * level is always be positive so don't check for
8988 * level < POWERSAVINGS_BALANCE_NONE which is 0
8989 * What happens on 0 or 1 byte write,
8990 * need to check for count as well?
8991 */
8992
8993 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8994 return -EINVAL;
8995
8996 if (smt)
afb8a9b7 8997 sched_smt_power_savings = level;
5c45bf27 8998 else
afb8a9b7 8999 sched_mc_power_savings = level;
5c45bf27 9000
c70f22d2 9001 arch_reinit_sched_domains();
5c45bf27 9002
c70f22d2 9003 return count;
5c45bf27
SS
9004}
9005
5c45bf27 9006#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9007static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9008 char *page)
5c45bf27
SS
9009{
9010 return sprintf(page, "%u\n", sched_mc_power_savings);
9011}
f718cd4a 9012static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9013 const char *buf, size_t count)
5c45bf27
SS
9014{
9015 return sched_power_savings_store(buf, count, 0);
9016}
f718cd4a
AK
9017static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9018 sched_mc_power_savings_show,
9019 sched_mc_power_savings_store);
5c45bf27
SS
9020#endif
9021
9022#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9023static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9024 char *page)
5c45bf27
SS
9025{
9026 return sprintf(page, "%u\n", sched_smt_power_savings);
9027}
f718cd4a 9028static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9029 const char *buf, size_t count)
5c45bf27
SS
9030{
9031 return sched_power_savings_store(buf, count, 1);
9032}
f718cd4a
AK
9033static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9034 sched_smt_power_savings_show,
6707de00
AB
9035 sched_smt_power_savings_store);
9036#endif
9037
39aac648 9038int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9039{
9040 int err = 0;
9041
9042#ifdef CONFIG_SCHED_SMT
9043 if (smt_capable())
9044 err = sysfs_create_file(&cls->kset.kobj,
9045 &attr_sched_smt_power_savings.attr);
9046#endif
9047#ifdef CONFIG_SCHED_MC
9048 if (!err && mc_capable())
9049 err = sysfs_create_file(&cls->kset.kobj,
9050 &attr_sched_mc_power_savings.attr);
9051#endif
9052 return err;
9053}
6d6bc0ad 9054#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9055
e761b772 9056#ifndef CONFIG_CPUSETS
1da177e4 9057/*
e761b772
MK
9058 * Add online and remove offline CPUs from the scheduler domains.
9059 * When cpusets are enabled they take over this function.
1da177e4
LT
9060 */
9061static int update_sched_domains(struct notifier_block *nfb,
9062 unsigned long action, void *hcpu)
e761b772
MK
9063{
9064 switch (action) {
9065 case CPU_ONLINE:
9066 case CPU_ONLINE_FROZEN:
9067 case CPU_DEAD:
9068 case CPU_DEAD_FROZEN:
dfb512ec 9069 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9070 return NOTIFY_OK;
9071
9072 default:
9073 return NOTIFY_DONE;
9074 }
9075}
9076#endif
9077
9078static int update_runtime(struct notifier_block *nfb,
9079 unsigned long action, void *hcpu)
1da177e4 9080{
7def2be1
PZ
9081 int cpu = (int)(long)hcpu;
9082
1da177e4 9083 switch (action) {
1da177e4 9084 case CPU_DOWN_PREPARE:
8bb78442 9085 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9086 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9087 return NOTIFY_OK;
9088
1da177e4 9089 case CPU_DOWN_FAILED:
8bb78442 9090 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9091 case CPU_ONLINE:
8bb78442 9092 case CPU_ONLINE_FROZEN:
7def2be1 9093 enable_runtime(cpu_rq(cpu));
e761b772
MK
9094 return NOTIFY_OK;
9095
1da177e4
LT
9096 default:
9097 return NOTIFY_DONE;
9098 }
1da177e4 9099}
1da177e4
LT
9100
9101void __init sched_init_smp(void)
9102{
dcc30a35
RR
9103 cpumask_var_t non_isolated_cpus;
9104
9105 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9106
434d53b0
MT
9107#if defined(CONFIG_NUMA)
9108 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9109 GFP_KERNEL);
9110 BUG_ON(sched_group_nodes_bycpu == NULL);
9111#endif
95402b38 9112 get_online_cpus();
712555ee 9113 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9114 arch_init_sched_domains(cpu_online_mask);
9115 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9116 if (cpumask_empty(non_isolated_cpus))
9117 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9118 mutex_unlock(&sched_domains_mutex);
95402b38 9119 put_online_cpus();
e761b772
MK
9120
9121#ifndef CONFIG_CPUSETS
1da177e4
LT
9122 /* XXX: Theoretical race here - CPU may be hotplugged now */
9123 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9124#endif
9125
9126 /* RT runtime code needs to handle some hotplug events */
9127 hotcpu_notifier(update_runtime, 0);
9128
b328ca18 9129 init_hrtick();
5c1e1767
NP
9130
9131 /* Move init over to a non-isolated CPU */
dcc30a35 9132 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9133 BUG();
19978ca6 9134 sched_init_granularity();
dcc30a35 9135 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9136
9137 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9138 init_sched_rt_class();
1da177e4
LT
9139}
9140#else
9141void __init sched_init_smp(void)
9142{
19978ca6 9143 sched_init_granularity();
1da177e4
LT
9144}
9145#endif /* CONFIG_SMP */
9146
cd1bb94b
AB
9147const_debug unsigned int sysctl_timer_migration = 1;
9148
1da177e4
LT
9149int in_sched_functions(unsigned long addr)
9150{
1da177e4
LT
9151 return in_lock_functions(addr) ||
9152 (addr >= (unsigned long)__sched_text_start
9153 && addr < (unsigned long)__sched_text_end);
9154}
9155
a9957449 9156static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9157{
9158 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9159 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9160#ifdef CONFIG_FAIR_GROUP_SCHED
9161 cfs_rq->rq = rq;
9162#endif
67e9fb2a 9163 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9164}
9165
fa85ae24
PZ
9166static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9167{
9168 struct rt_prio_array *array;
9169 int i;
9170
9171 array = &rt_rq->active;
9172 for (i = 0; i < MAX_RT_PRIO; i++) {
9173 INIT_LIST_HEAD(array->queue + i);
9174 __clear_bit(i, array->bitmap);
9175 }
9176 /* delimiter for bitsearch: */
9177 __set_bit(MAX_RT_PRIO, array->bitmap);
9178
052f1dc7 9179#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9180 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9181#ifdef CONFIG_SMP
e864c499 9182 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9183#endif
48d5e258 9184#endif
fa85ae24
PZ
9185#ifdef CONFIG_SMP
9186 rt_rq->rt_nr_migratory = 0;
fa85ae24 9187 rt_rq->overloaded = 0;
c20b08e3 9188 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9189#endif
9190
9191 rt_rq->rt_time = 0;
9192 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9193 rt_rq->rt_runtime = 0;
9194 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9195
052f1dc7 9196#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9197 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9198 rt_rq->rq = rq;
9199#endif
fa85ae24
PZ
9200}
9201
6f505b16 9202#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9203static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9204 struct sched_entity *se, int cpu, int add,
9205 struct sched_entity *parent)
6f505b16 9206{
ec7dc8ac 9207 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9208 tg->cfs_rq[cpu] = cfs_rq;
9209 init_cfs_rq(cfs_rq, rq);
9210 cfs_rq->tg = tg;
9211 if (add)
9212 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9213
9214 tg->se[cpu] = se;
354d60c2
DG
9215 /* se could be NULL for init_task_group */
9216 if (!se)
9217 return;
9218
ec7dc8ac
DG
9219 if (!parent)
9220 se->cfs_rq = &rq->cfs;
9221 else
9222 se->cfs_rq = parent->my_q;
9223
6f505b16
PZ
9224 se->my_q = cfs_rq;
9225 se->load.weight = tg->shares;
e05510d0 9226 se->load.inv_weight = 0;
ec7dc8ac 9227 se->parent = parent;
6f505b16 9228}
052f1dc7 9229#endif
6f505b16 9230
052f1dc7 9231#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9232static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9233 struct sched_rt_entity *rt_se, int cpu, int add,
9234 struct sched_rt_entity *parent)
6f505b16 9235{
ec7dc8ac
DG
9236 struct rq *rq = cpu_rq(cpu);
9237
6f505b16
PZ
9238 tg->rt_rq[cpu] = rt_rq;
9239 init_rt_rq(rt_rq, rq);
9240 rt_rq->tg = tg;
9241 rt_rq->rt_se = rt_se;
ac086bc2 9242 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9243 if (add)
9244 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9245
9246 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9247 if (!rt_se)
9248 return;
9249
ec7dc8ac
DG
9250 if (!parent)
9251 rt_se->rt_rq = &rq->rt;
9252 else
9253 rt_se->rt_rq = parent->my_q;
9254
6f505b16 9255 rt_se->my_q = rt_rq;
ec7dc8ac 9256 rt_se->parent = parent;
6f505b16
PZ
9257 INIT_LIST_HEAD(&rt_se->run_list);
9258}
9259#endif
9260
1da177e4
LT
9261void __init sched_init(void)
9262{
dd41f596 9263 int i, j;
434d53b0
MT
9264 unsigned long alloc_size = 0, ptr;
9265
9266#ifdef CONFIG_FAIR_GROUP_SCHED
9267 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9268#endif
9269#ifdef CONFIG_RT_GROUP_SCHED
9270 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9271#endif
9272#ifdef CONFIG_USER_SCHED
9273 alloc_size *= 2;
df7c8e84
RR
9274#endif
9275#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9276 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9277#endif
9278 /*
9279 * As sched_init() is called before page_alloc is setup,
9280 * we use alloc_bootmem().
9281 */
9282 if (alloc_size) {
36b7b6d4 9283 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9284
9285#ifdef CONFIG_FAIR_GROUP_SCHED
9286 init_task_group.se = (struct sched_entity **)ptr;
9287 ptr += nr_cpu_ids * sizeof(void **);
9288
9289 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9290 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9291
9292#ifdef CONFIG_USER_SCHED
9293 root_task_group.se = (struct sched_entity **)ptr;
9294 ptr += nr_cpu_ids * sizeof(void **);
9295
9296 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9297 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9298#endif /* CONFIG_USER_SCHED */
9299#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9300#ifdef CONFIG_RT_GROUP_SCHED
9301 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9302 ptr += nr_cpu_ids * sizeof(void **);
9303
9304 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9305 ptr += nr_cpu_ids * sizeof(void **);
9306
9307#ifdef CONFIG_USER_SCHED
9308 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9309 ptr += nr_cpu_ids * sizeof(void **);
9310
9311 root_task_group.rt_rq = (struct rt_rq **)ptr;
9312 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9313#endif /* CONFIG_USER_SCHED */
9314#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9315#ifdef CONFIG_CPUMASK_OFFSTACK
9316 for_each_possible_cpu(i) {
9317 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9318 ptr += cpumask_size();
9319 }
9320#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9321 }
dd41f596 9322
57d885fe
GH
9323#ifdef CONFIG_SMP
9324 init_defrootdomain();
9325#endif
9326
d0b27fa7
PZ
9327 init_rt_bandwidth(&def_rt_bandwidth,
9328 global_rt_period(), global_rt_runtime());
9329
9330#ifdef CONFIG_RT_GROUP_SCHED
9331 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9332 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9333#ifdef CONFIG_USER_SCHED
9334 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9335 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9336#endif /* CONFIG_USER_SCHED */
9337#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9338
052f1dc7 9339#ifdef CONFIG_GROUP_SCHED
6f505b16 9340 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9341 INIT_LIST_HEAD(&init_task_group.children);
9342
9343#ifdef CONFIG_USER_SCHED
9344 INIT_LIST_HEAD(&root_task_group.children);
9345 init_task_group.parent = &root_task_group;
9346 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9347#endif /* CONFIG_USER_SCHED */
9348#endif /* CONFIG_GROUP_SCHED */
6f505b16 9349
0a945022 9350 for_each_possible_cpu(i) {
70b97a7f 9351 struct rq *rq;
1da177e4
LT
9352
9353 rq = cpu_rq(i);
9354 spin_lock_init(&rq->lock);
7897986b 9355 rq->nr_running = 0;
dce48a84
TG
9356 rq->calc_load_active = 0;
9357 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9358 init_cfs_rq(&rq->cfs, rq);
6f505b16 9359 init_rt_rq(&rq->rt, rq);
dd41f596 9360#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9361 init_task_group.shares = init_task_group_load;
6f505b16 9362 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9363#ifdef CONFIG_CGROUP_SCHED
9364 /*
9365 * How much cpu bandwidth does init_task_group get?
9366 *
9367 * In case of task-groups formed thr' the cgroup filesystem, it
9368 * gets 100% of the cpu resources in the system. This overall
9369 * system cpu resource is divided among the tasks of
9370 * init_task_group and its child task-groups in a fair manner,
9371 * based on each entity's (task or task-group's) weight
9372 * (se->load.weight).
9373 *
9374 * In other words, if init_task_group has 10 tasks of weight
9375 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9376 * then A0's share of the cpu resource is:
9377 *
0d905bca 9378 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9379 *
9380 * We achieve this by letting init_task_group's tasks sit
9381 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9382 */
ec7dc8ac 9383 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9384#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9385 root_task_group.shares = NICE_0_LOAD;
9386 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9387 /*
9388 * In case of task-groups formed thr' the user id of tasks,
9389 * init_task_group represents tasks belonging to root user.
9390 * Hence it forms a sibling of all subsequent groups formed.
9391 * In this case, init_task_group gets only a fraction of overall
9392 * system cpu resource, based on the weight assigned to root
9393 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9394 * by letting tasks of init_task_group sit in a separate cfs_rq
9395 * (init_cfs_rq) and having one entity represent this group of
9396 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9397 */
ec7dc8ac 9398 init_tg_cfs_entry(&init_task_group,
6f505b16 9399 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9400 &per_cpu(init_sched_entity, i), i, 1,
9401 root_task_group.se[i]);
6f505b16 9402
052f1dc7 9403#endif
354d60c2
DG
9404#endif /* CONFIG_FAIR_GROUP_SCHED */
9405
9406 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9407#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9408 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9409#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9410 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9411#elif defined CONFIG_USER_SCHED
eff766a6 9412 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9413 init_tg_rt_entry(&init_task_group,
6f505b16 9414 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9415 &per_cpu(init_sched_rt_entity, i), i, 1,
9416 root_task_group.rt_se[i]);
354d60c2 9417#endif
dd41f596 9418#endif
1da177e4 9419
dd41f596
IM
9420 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9421 rq->cpu_load[j] = 0;
1da177e4 9422#ifdef CONFIG_SMP
41c7ce9a 9423 rq->sd = NULL;
57d885fe 9424 rq->rd = NULL;
3f029d3c 9425 rq->post_schedule = 0;
1da177e4 9426 rq->active_balance = 0;
dd41f596 9427 rq->next_balance = jiffies;
1da177e4 9428 rq->push_cpu = 0;
0a2966b4 9429 rq->cpu = i;
1f11eb6a 9430 rq->online = 0;
1da177e4
LT
9431 rq->migration_thread = NULL;
9432 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9433 rq_attach_root(rq, &def_root_domain);
1da177e4 9434#endif
8f4d37ec 9435 init_rq_hrtick(rq);
1da177e4 9436 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9437 }
9438
2dd73a4f 9439 set_load_weight(&init_task);
b50f60ce 9440
e107be36
AK
9441#ifdef CONFIG_PREEMPT_NOTIFIERS
9442 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9443#endif
9444
c9819f45 9445#ifdef CONFIG_SMP
962cf36c 9446 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9447#endif
9448
b50f60ce
HC
9449#ifdef CONFIG_RT_MUTEXES
9450 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9451#endif
9452
1da177e4
LT
9453 /*
9454 * The boot idle thread does lazy MMU switching as well:
9455 */
9456 atomic_inc(&init_mm.mm_count);
9457 enter_lazy_tlb(&init_mm, current);
9458
9459 /*
9460 * Make us the idle thread. Technically, schedule() should not be
9461 * called from this thread, however somewhere below it might be,
9462 * but because we are the idle thread, we just pick up running again
9463 * when this runqueue becomes "idle".
9464 */
9465 init_idle(current, smp_processor_id());
dce48a84
TG
9466
9467 calc_load_update = jiffies + LOAD_FREQ;
9468
dd41f596
IM
9469 /*
9470 * During early bootup we pretend to be a normal task:
9471 */
9472 current->sched_class = &fair_sched_class;
6892b75e 9473
6a7b3dc3 9474 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9475 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9476#ifdef CONFIG_SMP
7d1e6a9b 9477#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9478 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9479 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9480#endif
4bdddf8f 9481 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9482#endif /* SMP */
6a7b3dc3 9483
0d905bca
IM
9484 perf_counter_init();
9485
6892b75e 9486 scheduler_running = 1;
1da177e4
LT
9487}
9488
9489#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9490static inline int preempt_count_equals(int preempt_offset)
9491{
9492 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9493
9494 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9495}
9496
9497void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9498{
48f24c4d 9499#ifdef in_atomic
1da177e4
LT
9500 static unsigned long prev_jiffy; /* ratelimiting */
9501
e4aafea2
FW
9502 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9503 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9504 return;
9505 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9506 return;
9507 prev_jiffy = jiffies;
9508
9509 printk(KERN_ERR
9510 "BUG: sleeping function called from invalid context at %s:%d\n",
9511 file, line);
9512 printk(KERN_ERR
9513 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9514 in_atomic(), irqs_disabled(),
9515 current->pid, current->comm);
9516
9517 debug_show_held_locks(current);
9518 if (irqs_disabled())
9519 print_irqtrace_events(current);
9520 dump_stack();
1da177e4
LT
9521#endif
9522}
9523EXPORT_SYMBOL(__might_sleep);
9524#endif
9525
9526#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9527static void normalize_task(struct rq *rq, struct task_struct *p)
9528{
9529 int on_rq;
3e51f33f 9530
3a5e4dc1
AK
9531 update_rq_clock(rq);
9532 on_rq = p->se.on_rq;
9533 if (on_rq)
9534 deactivate_task(rq, p, 0);
9535 __setscheduler(rq, p, SCHED_NORMAL, 0);
9536 if (on_rq) {
9537 activate_task(rq, p, 0);
9538 resched_task(rq->curr);
9539 }
9540}
9541
1da177e4
LT
9542void normalize_rt_tasks(void)
9543{
a0f98a1c 9544 struct task_struct *g, *p;
1da177e4 9545 unsigned long flags;
70b97a7f 9546 struct rq *rq;
1da177e4 9547
4cf5d77a 9548 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9549 do_each_thread(g, p) {
178be793
IM
9550 /*
9551 * Only normalize user tasks:
9552 */
9553 if (!p->mm)
9554 continue;
9555
6cfb0d5d 9556 p->se.exec_start = 0;
6cfb0d5d 9557#ifdef CONFIG_SCHEDSTATS
dd41f596 9558 p->se.wait_start = 0;
dd41f596 9559 p->se.sleep_start = 0;
dd41f596 9560 p->se.block_start = 0;
6cfb0d5d 9561#endif
dd41f596
IM
9562
9563 if (!rt_task(p)) {
9564 /*
9565 * Renice negative nice level userspace
9566 * tasks back to 0:
9567 */
9568 if (TASK_NICE(p) < 0 && p->mm)
9569 set_user_nice(p, 0);
1da177e4 9570 continue;
dd41f596 9571 }
1da177e4 9572
4cf5d77a 9573 spin_lock(&p->pi_lock);
b29739f9 9574 rq = __task_rq_lock(p);
1da177e4 9575
178be793 9576 normalize_task(rq, p);
3a5e4dc1 9577
b29739f9 9578 __task_rq_unlock(rq);
4cf5d77a 9579 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9580 } while_each_thread(g, p);
9581
4cf5d77a 9582 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9583}
9584
9585#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9586
9587#ifdef CONFIG_IA64
9588/*
9589 * These functions are only useful for the IA64 MCA handling.
9590 *
9591 * They can only be called when the whole system has been
9592 * stopped - every CPU needs to be quiescent, and no scheduling
9593 * activity can take place. Using them for anything else would
9594 * be a serious bug, and as a result, they aren't even visible
9595 * under any other configuration.
9596 */
9597
9598/**
9599 * curr_task - return the current task for a given cpu.
9600 * @cpu: the processor in question.
9601 *
9602 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9603 */
36c8b586 9604struct task_struct *curr_task(int cpu)
1df5c10a
LT
9605{
9606 return cpu_curr(cpu);
9607}
9608
9609/**
9610 * set_curr_task - set the current task for a given cpu.
9611 * @cpu: the processor in question.
9612 * @p: the task pointer to set.
9613 *
9614 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9615 * are serviced on a separate stack. It allows the architecture to switch the
9616 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9617 * must be called with all CPU's synchronized, and interrupts disabled, the
9618 * and caller must save the original value of the current task (see
9619 * curr_task() above) and restore that value before reenabling interrupts and
9620 * re-starting the system.
9621 *
9622 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9623 */
36c8b586 9624void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9625{
9626 cpu_curr(cpu) = p;
9627}
9628
9629#endif
29f59db3 9630
bccbe08a
PZ
9631#ifdef CONFIG_FAIR_GROUP_SCHED
9632static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9633{
9634 int i;
9635
9636 for_each_possible_cpu(i) {
9637 if (tg->cfs_rq)
9638 kfree(tg->cfs_rq[i]);
9639 if (tg->se)
9640 kfree(tg->se[i]);
6f505b16
PZ
9641 }
9642
9643 kfree(tg->cfs_rq);
9644 kfree(tg->se);
6f505b16
PZ
9645}
9646
ec7dc8ac
DG
9647static
9648int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9649{
29f59db3 9650 struct cfs_rq *cfs_rq;
eab17229 9651 struct sched_entity *se;
9b5b7751 9652 struct rq *rq;
29f59db3
SV
9653 int i;
9654
434d53b0 9655 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9656 if (!tg->cfs_rq)
9657 goto err;
434d53b0 9658 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9659 if (!tg->se)
9660 goto err;
052f1dc7
PZ
9661
9662 tg->shares = NICE_0_LOAD;
29f59db3
SV
9663
9664 for_each_possible_cpu(i) {
9b5b7751 9665 rq = cpu_rq(i);
29f59db3 9666
eab17229
LZ
9667 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9668 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9669 if (!cfs_rq)
9670 goto err;
9671
eab17229
LZ
9672 se = kzalloc_node(sizeof(struct sched_entity),
9673 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9674 if (!se)
9675 goto err;
9676
eab17229 9677 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9678 }
9679
9680 return 1;
9681
9682 err:
9683 return 0;
9684}
9685
9686static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9687{
9688 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9689 &cpu_rq(cpu)->leaf_cfs_rq_list);
9690}
9691
9692static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9693{
9694 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9695}
6d6bc0ad 9696#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9697static inline void free_fair_sched_group(struct task_group *tg)
9698{
9699}
9700
ec7dc8ac
DG
9701static inline
9702int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9703{
9704 return 1;
9705}
9706
9707static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9708{
9709}
9710
9711static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9712{
9713}
6d6bc0ad 9714#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9715
9716#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9717static void free_rt_sched_group(struct task_group *tg)
9718{
9719 int i;
9720
d0b27fa7
PZ
9721 destroy_rt_bandwidth(&tg->rt_bandwidth);
9722
bccbe08a
PZ
9723 for_each_possible_cpu(i) {
9724 if (tg->rt_rq)
9725 kfree(tg->rt_rq[i]);
9726 if (tg->rt_se)
9727 kfree(tg->rt_se[i]);
9728 }
9729
9730 kfree(tg->rt_rq);
9731 kfree(tg->rt_se);
9732}
9733
ec7dc8ac
DG
9734static
9735int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9736{
9737 struct rt_rq *rt_rq;
eab17229 9738 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9739 struct rq *rq;
9740 int i;
9741
434d53b0 9742 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9743 if (!tg->rt_rq)
9744 goto err;
434d53b0 9745 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9746 if (!tg->rt_se)
9747 goto err;
9748
d0b27fa7
PZ
9749 init_rt_bandwidth(&tg->rt_bandwidth,
9750 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9751
9752 for_each_possible_cpu(i) {
9753 rq = cpu_rq(i);
9754
eab17229
LZ
9755 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9756 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9757 if (!rt_rq)
9758 goto err;
29f59db3 9759
eab17229
LZ
9760 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9761 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9762 if (!rt_se)
9763 goto err;
29f59db3 9764
eab17229 9765 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9766 }
9767
bccbe08a
PZ
9768 return 1;
9769
9770 err:
9771 return 0;
9772}
9773
9774static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9775{
9776 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9777 &cpu_rq(cpu)->leaf_rt_rq_list);
9778}
9779
9780static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9781{
9782 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9783}
6d6bc0ad 9784#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9785static inline void free_rt_sched_group(struct task_group *tg)
9786{
9787}
9788
ec7dc8ac
DG
9789static inline
9790int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9791{
9792 return 1;
9793}
9794
9795static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9796{
9797}
9798
9799static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9800{
9801}
6d6bc0ad 9802#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9803
d0b27fa7 9804#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9805static void free_sched_group(struct task_group *tg)
9806{
9807 free_fair_sched_group(tg);
9808 free_rt_sched_group(tg);
9809 kfree(tg);
9810}
9811
9812/* allocate runqueue etc for a new task group */
ec7dc8ac 9813struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9814{
9815 struct task_group *tg;
9816 unsigned long flags;
9817 int i;
9818
9819 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9820 if (!tg)
9821 return ERR_PTR(-ENOMEM);
9822
ec7dc8ac 9823 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9824 goto err;
9825
ec7dc8ac 9826 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9827 goto err;
9828
8ed36996 9829 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9830 for_each_possible_cpu(i) {
bccbe08a
PZ
9831 register_fair_sched_group(tg, i);
9832 register_rt_sched_group(tg, i);
9b5b7751 9833 }
6f505b16 9834 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9835
9836 WARN_ON(!parent); /* root should already exist */
9837
9838 tg->parent = parent;
f473aa5e 9839 INIT_LIST_HEAD(&tg->children);
09f2724a 9840 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9841 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9842
9b5b7751 9843 return tg;
29f59db3
SV
9844
9845err:
6f505b16 9846 free_sched_group(tg);
29f59db3
SV
9847 return ERR_PTR(-ENOMEM);
9848}
9849
9b5b7751 9850/* rcu callback to free various structures associated with a task group */
6f505b16 9851static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9852{
29f59db3 9853 /* now it should be safe to free those cfs_rqs */
6f505b16 9854 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9855}
9856
9b5b7751 9857/* Destroy runqueue etc associated with a task group */
4cf86d77 9858void sched_destroy_group(struct task_group *tg)
29f59db3 9859{
8ed36996 9860 unsigned long flags;
9b5b7751 9861 int i;
29f59db3 9862
8ed36996 9863 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9864 for_each_possible_cpu(i) {
bccbe08a
PZ
9865 unregister_fair_sched_group(tg, i);
9866 unregister_rt_sched_group(tg, i);
9b5b7751 9867 }
6f505b16 9868 list_del_rcu(&tg->list);
f473aa5e 9869 list_del_rcu(&tg->siblings);
8ed36996 9870 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9871
9b5b7751 9872 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9873 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9874}
9875
9b5b7751 9876/* change task's runqueue when it moves between groups.
3a252015
IM
9877 * The caller of this function should have put the task in its new group
9878 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9879 * reflect its new group.
9b5b7751
SV
9880 */
9881void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9882{
9883 int on_rq, running;
9884 unsigned long flags;
9885 struct rq *rq;
9886
9887 rq = task_rq_lock(tsk, &flags);
9888
29f59db3
SV
9889 update_rq_clock(rq);
9890
051a1d1a 9891 running = task_current(rq, tsk);
29f59db3
SV
9892 on_rq = tsk->se.on_rq;
9893
0e1f3483 9894 if (on_rq)
29f59db3 9895 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9896 if (unlikely(running))
9897 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9898
6f505b16 9899 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9900
810b3817
PZ
9901#ifdef CONFIG_FAIR_GROUP_SCHED
9902 if (tsk->sched_class->moved_group)
9903 tsk->sched_class->moved_group(tsk);
9904#endif
9905
0e1f3483
HS
9906 if (unlikely(running))
9907 tsk->sched_class->set_curr_task(rq);
9908 if (on_rq)
7074badb 9909 enqueue_task(rq, tsk, 0);
29f59db3 9910
29f59db3
SV
9911 task_rq_unlock(rq, &flags);
9912}
6d6bc0ad 9913#endif /* CONFIG_GROUP_SCHED */
29f59db3 9914
052f1dc7 9915#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9916static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9917{
9918 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9919 int on_rq;
9920
29f59db3 9921 on_rq = se->on_rq;
62fb1851 9922 if (on_rq)
29f59db3
SV
9923 dequeue_entity(cfs_rq, se, 0);
9924
9925 se->load.weight = shares;
e05510d0 9926 se->load.inv_weight = 0;
29f59db3 9927
62fb1851 9928 if (on_rq)
29f59db3 9929 enqueue_entity(cfs_rq, se, 0);
c09595f6 9930}
62fb1851 9931
c09595f6
PZ
9932static void set_se_shares(struct sched_entity *se, unsigned long shares)
9933{
9934 struct cfs_rq *cfs_rq = se->cfs_rq;
9935 struct rq *rq = cfs_rq->rq;
9936 unsigned long flags;
9937
9938 spin_lock_irqsave(&rq->lock, flags);
9939 __set_se_shares(se, shares);
9940 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9941}
9942
8ed36996
PZ
9943static DEFINE_MUTEX(shares_mutex);
9944
4cf86d77 9945int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9946{
9947 int i;
8ed36996 9948 unsigned long flags;
c61935fd 9949
ec7dc8ac
DG
9950 /*
9951 * We can't change the weight of the root cgroup.
9952 */
9953 if (!tg->se[0])
9954 return -EINVAL;
9955
18d95a28
PZ
9956 if (shares < MIN_SHARES)
9957 shares = MIN_SHARES;
cb4ad1ff
MX
9958 else if (shares > MAX_SHARES)
9959 shares = MAX_SHARES;
62fb1851 9960
8ed36996 9961 mutex_lock(&shares_mutex);
9b5b7751 9962 if (tg->shares == shares)
5cb350ba 9963 goto done;
29f59db3 9964
8ed36996 9965 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9966 for_each_possible_cpu(i)
9967 unregister_fair_sched_group(tg, i);
f473aa5e 9968 list_del_rcu(&tg->siblings);
8ed36996 9969 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9970
9971 /* wait for any ongoing reference to this group to finish */
9972 synchronize_sched();
9973
9974 /*
9975 * Now we are free to modify the group's share on each cpu
9976 * w/o tripping rebalance_share or load_balance_fair.
9977 */
9b5b7751 9978 tg->shares = shares;
c09595f6
PZ
9979 for_each_possible_cpu(i) {
9980 /*
9981 * force a rebalance
9982 */
9983 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9984 set_se_shares(tg->se[i], shares);
c09595f6 9985 }
29f59db3 9986
6b2d7700
SV
9987 /*
9988 * Enable load balance activity on this group, by inserting it back on
9989 * each cpu's rq->leaf_cfs_rq_list.
9990 */
8ed36996 9991 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9992 for_each_possible_cpu(i)
9993 register_fair_sched_group(tg, i);
f473aa5e 9994 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9995 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9996done:
8ed36996 9997 mutex_unlock(&shares_mutex);
9b5b7751 9998 return 0;
29f59db3
SV
9999}
10000
5cb350ba
DG
10001unsigned long sched_group_shares(struct task_group *tg)
10002{
10003 return tg->shares;
10004}
052f1dc7 10005#endif
5cb350ba 10006
052f1dc7 10007#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10008/*
9f0c1e56 10009 * Ensure that the real time constraints are schedulable.
6f505b16 10010 */
9f0c1e56
PZ
10011static DEFINE_MUTEX(rt_constraints_mutex);
10012
10013static unsigned long to_ratio(u64 period, u64 runtime)
10014{
10015 if (runtime == RUNTIME_INF)
9a7e0b18 10016 return 1ULL << 20;
9f0c1e56 10017
9a7e0b18 10018 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10019}
10020
9a7e0b18
PZ
10021/* Must be called with tasklist_lock held */
10022static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10023{
9a7e0b18 10024 struct task_struct *g, *p;
b40b2e8e 10025
9a7e0b18
PZ
10026 do_each_thread(g, p) {
10027 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10028 return 1;
10029 } while_each_thread(g, p);
b40b2e8e 10030
9a7e0b18
PZ
10031 return 0;
10032}
b40b2e8e 10033
9a7e0b18
PZ
10034struct rt_schedulable_data {
10035 struct task_group *tg;
10036 u64 rt_period;
10037 u64 rt_runtime;
10038};
b40b2e8e 10039
9a7e0b18
PZ
10040static int tg_schedulable(struct task_group *tg, void *data)
10041{
10042 struct rt_schedulable_data *d = data;
10043 struct task_group *child;
10044 unsigned long total, sum = 0;
10045 u64 period, runtime;
b40b2e8e 10046
9a7e0b18
PZ
10047 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10048 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10049
9a7e0b18
PZ
10050 if (tg == d->tg) {
10051 period = d->rt_period;
10052 runtime = d->rt_runtime;
b40b2e8e 10053 }
b40b2e8e 10054
98a4826b
PZ
10055#ifdef CONFIG_USER_SCHED
10056 if (tg == &root_task_group) {
10057 period = global_rt_period();
10058 runtime = global_rt_runtime();
10059 }
10060#endif
10061
4653f803
PZ
10062 /*
10063 * Cannot have more runtime than the period.
10064 */
10065 if (runtime > period && runtime != RUNTIME_INF)
10066 return -EINVAL;
6f505b16 10067
4653f803
PZ
10068 /*
10069 * Ensure we don't starve existing RT tasks.
10070 */
9a7e0b18
PZ
10071 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10072 return -EBUSY;
6f505b16 10073
9a7e0b18 10074 total = to_ratio(period, runtime);
6f505b16 10075
4653f803
PZ
10076 /*
10077 * Nobody can have more than the global setting allows.
10078 */
10079 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10080 return -EINVAL;
6f505b16 10081
4653f803
PZ
10082 /*
10083 * The sum of our children's runtime should not exceed our own.
10084 */
9a7e0b18
PZ
10085 list_for_each_entry_rcu(child, &tg->children, siblings) {
10086 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10087 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10088
9a7e0b18
PZ
10089 if (child == d->tg) {
10090 period = d->rt_period;
10091 runtime = d->rt_runtime;
10092 }
6f505b16 10093
9a7e0b18 10094 sum += to_ratio(period, runtime);
9f0c1e56 10095 }
6f505b16 10096
9a7e0b18
PZ
10097 if (sum > total)
10098 return -EINVAL;
10099
10100 return 0;
6f505b16
PZ
10101}
10102
9a7e0b18 10103static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10104{
9a7e0b18
PZ
10105 struct rt_schedulable_data data = {
10106 .tg = tg,
10107 .rt_period = period,
10108 .rt_runtime = runtime,
10109 };
10110
10111 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10112}
10113
d0b27fa7
PZ
10114static int tg_set_bandwidth(struct task_group *tg,
10115 u64 rt_period, u64 rt_runtime)
6f505b16 10116{
ac086bc2 10117 int i, err = 0;
9f0c1e56 10118
9f0c1e56 10119 mutex_lock(&rt_constraints_mutex);
521f1a24 10120 read_lock(&tasklist_lock);
9a7e0b18
PZ
10121 err = __rt_schedulable(tg, rt_period, rt_runtime);
10122 if (err)
9f0c1e56 10123 goto unlock;
ac086bc2
PZ
10124
10125 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10126 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10127 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10128
10129 for_each_possible_cpu(i) {
10130 struct rt_rq *rt_rq = tg->rt_rq[i];
10131
10132 spin_lock(&rt_rq->rt_runtime_lock);
10133 rt_rq->rt_runtime = rt_runtime;
10134 spin_unlock(&rt_rq->rt_runtime_lock);
10135 }
10136 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10137 unlock:
521f1a24 10138 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10139 mutex_unlock(&rt_constraints_mutex);
10140
10141 return err;
6f505b16
PZ
10142}
10143
d0b27fa7
PZ
10144int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10145{
10146 u64 rt_runtime, rt_period;
10147
10148 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10149 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10150 if (rt_runtime_us < 0)
10151 rt_runtime = RUNTIME_INF;
10152
10153 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10154}
10155
9f0c1e56
PZ
10156long sched_group_rt_runtime(struct task_group *tg)
10157{
10158 u64 rt_runtime_us;
10159
d0b27fa7 10160 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10161 return -1;
10162
d0b27fa7 10163 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10164 do_div(rt_runtime_us, NSEC_PER_USEC);
10165 return rt_runtime_us;
10166}
d0b27fa7
PZ
10167
10168int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10169{
10170 u64 rt_runtime, rt_period;
10171
10172 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10173 rt_runtime = tg->rt_bandwidth.rt_runtime;
10174
619b0488
R
10175 if (rt_period == 0)
10176 return -EINVAL;
10177
d0b27fa7
PZ
10178 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10179}
10180
10181long sched_group_rt_period(struct task_group *tg)
10182{
10183 u64 rt_period_us;
10184
10185 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10186 do_div(rt_period_us, NSEC_PER_USEC);
10187 return rt_period_us;
10188}
10189
10190static int sched_rt_global_constraints(void)
10191{
4653f803 10192 u64 runtime, period;
d0b27fa7
PZ
10193 int ret = 0;
10194
ec5d4989
HS
10195 if (sysctl_sched_rt_period <= 0)
10196 return -EINVAL;
10197
4653f803
PZ
10198 runtime = global_rt_runtime();
10199 period = global_rt_period();
10200
10201 /*
10202 * Sanity check on the sysctl variables.
10203 */
10204 if (runtime > period && runtime != RUNTIME_INF)
10205 return -EINVAL;
10b612f4 10206
d0b27fa7 10207 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10208 read_lock(&tasklist_lock);
4653f803 10209 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10210 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10211 mutex_unlock(&rt_constraints_mutex);
10212
10213 return ret;
10214}
54e99124
DG
10215
10216int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10217{
10218 /* Don't accept realtime tasks when there is no way for them to run */
10219 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10220 return 0;
10221
10222 return 1;
10223}
10224
6d6bc0ad 10225#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10226static int sched_rt_global_constraints(void)
10227{
ac086bc2
PZ
10228 unsigned long flags;
10229 int i;
10230
ec5d4989
HS
10231 if (sysctl_sched_rt_period <= 0)
10232 return -EINVAL;
10233
60aa605d
PZ
10234 /*
10235 * There's always some RT tasks in the root group
10236 * -- migration, kstopmachine etc..
10237 */
10238 if (sysctl_sched_rt_runtime == 0)
10239 return -EBUSY;
10240
ac086bc2
PZ
10241 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10242 for_each_possible_cpu(i) {
10243 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10244
10245 spin_lock(&rt_rq->rt_runtime_lock);
10246 rt_rq->rt_runtime = global_rt_runtime();
10247 spin_unlock(&rt_rq->rt_runtime_lock);
10248 }
10249 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10250
d0b27fa7
PZ
10251 return 0;
10252}
6d6bc0ad 10253#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10254
10255int sched_rt_handler(struct ctl_table *table, int write,
10256 struct file *filp, void __user *buffer, size_t *lenp,
10257 loff_t *ppos)
10258{
10259 int ret;
10260 int old_period, old_runtime;
10261 static DEFINE_MUTEX(mutex);
10262
10263 mutex_lock(&mutex);
10264 old_period = sysctl_sched_rt_period;
10265 old_runtime = sysctl_sched_rt_runtime;
10266
10267 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10268
10269 if (!ret && write) {
10270 ret = sched_rt_global_constraints();
10271 if (ret) {
10272 sysctl_sched_rt_period = old_period;
10273 sysctl_sched_rt_runtime = old_runtime;
10274 } else {
10275 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10276 def_rt_bandwidth.rt_period =
10277 ns_to_ktime(global_rt_period());
10278 }
10279 }
10280 mutex_unlock(&mutex);
10281
10282 return ret;
10283}
68318b8e 10284
052f1dc7 10285#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10286
10287/* return corresponding task_group object of a cgroup */
2b01dfe3 10288static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10289{
2b01dfe3
PM
10290 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10291 struct task_group, css);
68318b8e
SV
10292}
10293
10294static struct cgroup_subsys_state *
2b01dfe3 10295cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10296{
ec7dc8ac 10297 struct task_group *tg, *parent;
68318b8e 10298
2b01dfe3 10299 if (!cgrp->parent) {
68318b8e 10300 /* This is early initialization for the top cgroup */
68318b8e
SV
10301 return &init_task_group.css;
10302 }
10303
ec7dc8ac
DG
10304 parent = cgroup_tg(cgrp->parent);
10305 tg = sched_create_group(parent);
68318b8e
SV
10306 if (IS_ERR(tg))
10307 return ERR_PTR(-ENOMEM);
10308
68318b8e
SV
10309 return &tg->css;
10310}
10311
41a2d6cf
IM
10312static void
10313cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10314{
2b01dfe3 10315 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10316
10317 sched_destroy_group(tg);
10318}
10319
41a2d6cf
IM
10320static int
10321cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10322 struct task_struct *tsk)
68318b8e 10323{
b68aa230 10324#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10325 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10326 return -EINVAL;
10327#else
68318b8e
SV
10328 /* We don't support RT-tasks being in separate groups */
10329 if (tsk->sched_class != &fair_sched_class)
10330 return -EINVAL;
b68aa230 10331#endif
68318b8e
SV
10332
10333 return 0;
10334}
10335
10336static void
2b01dfe3 10337cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10338 struct cgroup *old_cont, struct task_struct *tsk)
10339{
10340 sched_move_task(tsk);
10341}
10342
052f1dc7 10343#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10344static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10345 u64 shareval)
68318b8e 10346{
2b01dfe3 10347 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10348}
10349
f4c753b7 10350static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10351{
2b01dfe3 10352 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10353
10354 return (u64) tg->shares;
10355}
6d6bc0ad 10356#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10357
052f1dc7 10358#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10359static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10360 s64 val)
6f505b16 10361{
06ecb27c 10362 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10363}
10364
06ecb27c 10365static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10366{
06ecb27c 10367 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10368}
d0b27fa7
PZ
10369
10370static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10371 u64 rt_period_us)
10372{
10373 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10374}
10375
10376static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10377{
10378 return sched_group_rt_period(cgroup_tg(cgrp));
10379}
6d6bc0ad 10380#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10381
fe5c7cc2 10382static struct cftype cpu_files[] = {
052f1dc7 10383#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10384 {
10385 .name = "shares",
f4c753b7
PM
10386 .read_u64 = cpu_shares_read_u64,
10387 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10388 },
052f1dc7
PZ
10389#endif
10390#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10391 {
9f0c1e56 10392 .name = "rt_runtime_us",
06ecb27c
PM
10393 .read_s64 = cpu_rt_runtime_read,
10394 .write_s64 = cpu_rt_runtime_write,
6f505b16 10395 },
d0b27fa7
PZ
10396 {
10397 .name = "rt_period_us",
f4c753b7
PM
10398 .read_u64 = cpu_rt_period_read_uint,
10399 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10400 },
052f1dc7 10401#endif
68318b8e
SV
10402};
10403
10404static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10405{
fe5c7cc2 10406 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10407}
10408
10409struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10410 .name = "cpu",
10411 .create = cpu_cgroup_create,
10412 .destroy = cpu_cgroup_destroy,
10413 .can_attach = cpu_cgroup_can_attach,
10414 .attach = cpu_cgroup_attach,
10415 .populate = cpu_cgroup_populate,
10416 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10417 .early_init = 1,
10418};
10419
052f1dc7 10420#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10421
10422#ifdef CONFIG_CGROUP_CPUACCT
10423
10424/*
10425 * CPU accounting code for task groups.
10426 *
10427 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10428 * (balbir@in.ibm.com).
10429 */
10430
934352f2 10431/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10432struct cpuacct {
10433 struct cgroup_subsys_state css;
10434 /* cpuusage holds pointer to a u64-type object on every cpu */
10435 u64 *cpuusage;
ef12fefa 10436 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10437 struct cpuacct *parent;
d842de87
SV
10438};
10439
10440struct cgroup_subsys cpuacct_subsys;
10441
10442/* return cpu accounting group corresponding to this container */
32cd756a 10443static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10444{
32cd756a 10445 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10446 struct cpuacct, css);
10447}
10448
10449/* return cpu accounting group to which this task belongs */
10450static inline struct cpuacct *task_ca(struct task_struct *tsk)
10451{
10452 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10453 struct cpuacct, css);
10454}
10455
10456/* create a new cpu accounting group */
10457static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10458 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10459{
10460 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10461 int i;
d842de87
SV
10462
10463 if (!ca)
ef12fefa 10464 goto out;
d842de87
SV
10465
10466 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10467 if (!ca->cpuusage)
10468 goto out_free_ca;
10469
10470 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10471 if (percpu_counter_init(&ca->cpustat[i], 0))
10472 goto out_free_counters;
d842de87 10473
934352f2
BR
10474 if (cgrp->parent)
10475 ca->parent = cgroup_ca(cgrp->parent);
10476
d842de87 10477 return &ca->css;
ef12fefa
BR
10478
10479out_free_counters:
10480 while (--i >= 0)
10481 percpu_counter_destroy(&ca->cpustat[i]);
10482 free_percpu(ca->cpuusage);
10483out_free_ca:
10484 kfree(ca);
10485out:
10486 return ERR_PTR(-ENOMEM);
d842de87
SV
10487}
10488
10489/* destroy an existing cpu accounting group */
41a2d6cf 10490static void
32cd756a 10491cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10492{
32cd756a 10493 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10494 int i;
d842de87 10495
ef12fefa
BR
10496 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10497 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10498 free_percpu(ca->cpuusage);
10499 kfree(ca);
10500}
10501
720f5498
KC
10502static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10503{
b36128c8 10504 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10505 u64 data;
10506
10507#ifndef CONFIG_64BIT
10508 /*
10509 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10510 */
10511 spin_lock_irq(&cpu_rq(cpu)->lock);
10512 data = *cpuusage;
10513 spin_unlock_irq(&cpu_rq(cpu)->lock);
10514#else
10515 data = *cpuusage;
10516#endif
10517
10518 return data;
10519}
10520
10521static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10522{
b36128c8 10523 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10524
10525#ifndef CONFIG_64BIT
10526 /*
10527 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10528 */
10529 spin_lock_irq(&cpu_rq(cpu)->lock);
10530 *cpuusage = val;
10531 spin_unlock_irq(&cpu_rq(cpu)->lock);
10532#else
10533 *cpuusage = val;
10534#endif
10535}
10536
d842de87 10537/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10538static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10539{
32cd756a 10540 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10541 u64 totalcpuusage = 0;
10542 int i;
10543
720f5498
KC
10544 for_each_present_cpu(i)
10545 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10546
10547 return totalcpuusage;
10548}
10549
0297b803
DG
10550static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10551 u64 reset)
10552{
10553 struct cpuacct *ca = cgroup_ca(cgrp);
10554 int err = 0;
10555 int i;
10556
10557 if (reset) {
10558 err = -EINVAL;
10559 goto out;
10560 }
10561
720f5498
KC
10562 for_each_present_cpu(i)
10563 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10564
0297b803
DG
10565out:
10566 return err;
10567}
10568
e9515c3c
KC
10569static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10570 struct seq_file *m)
10571{
10572 struct cpuacct *ca = cgroup_ca(cgroup);
10573 u64 percpu;
10574 int i;
10575
10576 for_each_present_cpu(i) {
10577 percpu = cpuacct_cpuusage_read(ca, i);
10578 seq_printf(m, "%llu ", (unsigned long long) percpu);
10579 }
10580 seq_printf(m, "\n");
10581 return 0;
10582}
10583
ef12fefa
BR
10584static const char *cpuacct_stat_desc[] = {
10585 [CPUACCT_STAT_USER] = "user",
10586 [CPUACCT_STAT_SYSTEM] = "system",
10587};
10588
10589static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10590 struct cgroup_map_cb *cb)
10591{
10592 struct cpuacct *ca = cgroup_ca(cgrp);
10593 int i;
10594
10595 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10596 s64 val = percpu_counter_read(&ca->cpustat[i]);
10597 val = cputime64_to_clock_t(val);
10598 cb->fill(cb, cpuacct_stat_desc[i], val);
10599 }
10600 return 0;
10601}
10602
d842de87
SV
10603static struct cftype files[] = {
10604 {
10605 .name = "usage",
f4c753b7
PM
10606 .read_u64 = cpuusage_read,
10607 .write_u64 = cpuusage_write,
d842de87 10608 },
e9515c3c
KC
10609 {
10610 .name = "usage_percpu",
10611 .read_seq_string = cpuacct_percpu_seq_read,
10612 },
ef12fefa
BR
10613 {
10614 .name = "stat",
10615 .read_map = cpuacct_stats_show,
10616 },
d842de87
SV
10617};
10618
32cd756a 10619static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10620{
32cd756a 10621 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10622}
10623
10624/*
10625 * charge this task's execution time to its accounting group.
10626 *
10627 * called with rq->lock held.
10628 */
10629static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10630{
10631 struct cpuacct *ca;
934352f2 10632 int cpu;
d842de87 10633
c40c6f85 10634 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10635 return;
10636
934352f2 10637 cpu = task_cpu(tsk);
a18b83b7
BR
10638
10639 rcu_read_lock();
10640
d842de87 10641 ca = task_ca(tsk);
d842de87 10642
934352f2 10643 for (; ca; ca = ca->parent) {
b36128c8 10644 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10645 *cpuusage += cputime;
10646 }
a18b83b7
BR
10647
10648 rcu_read_unlock();
d842de87
SV
10649}
10650
ef12fefa
BR
10651/*
10652 * Charge the system/user time to the task's accounting group.
10653 */
10654static void cpuacct_update_stats(struct task_struct *tsk,
10655 enum cpuacct_stat_index idx, cputime_t val)
10656{
10657 struct cpuacct *ca;
10658
10659 if (unlikely(!cpuacct_subsys.active))
10660 return;
10661
10662 rcu_read_lock();
10663 ca = task_ca(tsk);
10664
10665 do {
10666 percpu_counter_add(&ca->cpustat[idx], val);
10667 ca = ca->parent;
10668 } while (ca);
10669 rcu_read_unlock();
10670}
10671
d842de87
SV
10672struct cgroup_subsys cpuacct_subsys = {
10673 .name = "cpuacct",
10674 .create = cpuacct_create,
10675 .destroy = cpuacct_destroy,
10676 .populate = cpuacct_populate,
10677 .subsys_id = cpuacct_subsys_id,
10678};
10679#endif /* CONFIG_CGROUP_CPUACCT */