]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched.c
sched: Delay task_contributes_to_load()
[mirror_ubuntu-jammy-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee
HC
233/*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
3fe1698b
PZ
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
ac53db59 329 struct sched_entity *curr, *next, *last, *skip;
ddc97297 330
5ac5c4d6 331 unsigned int nr_spread_over;
ddc97297 332
62160e3f 333#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
335
41a2d6cf
IM
336 /*
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
340 *
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
343 */
3d4b47b4 344 int on_list;
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857 362 /*
3b3d190e
PT
363 * Maintaining per-cpu shares distribution for group scheduling
364 *
365 * load_stamp is the last time we updated the load average
366 * load_last is the last time we updated the load average and saw load
367 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 368 */
2069dd75
PZ
369 u64 load_avg;
370 u64 load_period;
3b3d190e 371 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 372
2069dd75 373 unsigned long load_contribution;
c09595f6 374#endif
6aa645ea
IM
375#endif
376};
1da177e4 377
6aa645ea
IM
378/* Real-Time classes' related field in a runqueue: */
379struct rt_rq {
380 struct rt_prio_array active;
63489e45 381 unsigned long rt_nr_running;
052f1dc7 382#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
383 struct {
384 int curr; /* highest queued rt task prio */
398a153b 385#ifdef CONFIG_SMP
e864c499 386 int next; /* next highest */
398a153b 387#endif
e864c499 388 } highest_prio;
6f505b16 389#endif
fa85ae24 390#ifdef CONFIG_SMP
73fe6aae 391 unsigned long rt_nr_migratory;
a1ba4d8b 392 unsigned long rt_nr_total;
a22d7fc1 393 int overloaded;
917b627d 394 struct plist_head pushable_tasks;
fa85ae24 395#endif
6f505b16 396 int rt_throttled;
fa85ae24 397 u64 rt_time;
ac086bc2 398 u64 rt_runtime;
ea736ed5 399 /* Nests inside the rq lock: */
0986b11b 400 raw_spinlock_t rt_runtime_lock;
6f505b16 401
052f1dc7 402#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
403 unsigned long rt_nr_boosted;
404
6f505b16
PZ
405 struct rq *rq;
406 struct list_head leaf_rt_rq_list;
407 struct task_group *tg;
6f505b16 408#endif
6aa645ea
IM
409};
410
57d885fe
GH
411#ifdef CONFIG_SMP
412
413/*
414 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
415 * variables. Each exclusive cpuset essentially defines an island domain by
416 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
417 * exclusive cpuset is created, we also create and attach a new root-domain
418 * object.
419 *
57d885fe
GH
420 */
421struct root_domain {
422 atomic_t refcount;
c6c4927b
RR
423 cpumask_var_t span;
424 cpumask_var_t online;
637f5085 425
0eab9146 426 /*
637f5085
GH
427 * The "RT overload" flag: it gets set if a CPU has more than
428 * one runnable RT task.
429 */
c6c4927b 430 cpumask_var_t rto_mask;
0eab9146 431 atomic_t rto_count;
6e0534f2 432 struct cpupri cpupri;
57d885fe
GH
433};
434
dc938520
GH
435/*
436 * By default the system creates a single root-domain with all cpus as
437 * members (mimicking the global state we have today).
438 */
57d885fe
GH
439static struct root_domain def_root_domain;
440
ed2d372c 441#endif /* CONFIG_SMP */
57d885fe 442
1da177e4
LT
443/*
444 * This is the main, per-CPU runqueue data structure.
445 *
446 * Locking rule: those places that want to lock multiple runqueues
447 * (such as the load balancing or the thread migration code), lock
448 * acquire operations must be ordered by ascending &runqueue.
449 */
70b97a7f 450struct rq {
d8016491 451 /* runqueue lock: */
05fa785c 452 raw_spinlock_t lock;
1da177e4
LT
453
454 /*
455 * nr_running and cpu_load should be in the same cacheline because
456 * remote CPUs use both these fields when doing load calculation.
457 */
458 unsigned long nr_running;
6aa645ea
IM
459 #define CPU_LOAD_IDX_MAX 5
460 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 461 unsigned long last_load_update_tick;
46cb4b7c 462#ifdef CONFIG_NO_HZ
39c0cbe2 463 u64 nohz_stamp;
83cd4fe2 464 unsigned char nohz_balance_kick;
46cb4b7c 465#endif
a64692a3
MG
466 unsigned int skip_clock_update;
467
d8016491
IM
468 /* capture load from *all* tasks on this cpu: */
469 struct load_weight load;
6aa645ea
IM
470 unsigned long nr_load_updates;
471 u64 nr_switches;
472
473 struct cfs_rq cfs;
6f505b16 474 struct rt_rq rt;
6f505b16 475
6aa645ea 476#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
477 /* list of leaf cfs_rq on this cpu: */
478 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
479#endif
480#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 481 struct list_head leaf_rt_rq_list;
1da177e4 482#endif
1da177e4
LT
483
484 /*
485 * This is part of a global counter where only the total sum
486 * over all CPUs matters. A task can increase this counter on
487 * one CPU and if it got migrated afterwards it may decrease
488 * it on another CPU. Always updated under the runqueue lock:
489 */
490 unsigned long nr_uninterruptible;
491
34f971f6 492 struct task_struct *curr, *idle, *stop;
c9819f45 493 unsigned long next_balance;
1da177e4 494 struct mm_struct *prev_mm;
6aa645ea 495
3e51f33f 496 u64 clock;
305e6835 497 u64 clock_task;
6aa645ea 498
1da177e4
LT
499 atomic_t nr_iowait;
500
501#ifdef CONFIG_SMP
0eab9146 502 struct root_domain *rd;
1da177e4
LT
503 struct sched_domain *sd;
504
e51fd5e2
PZ
505 unsigned long cpu_power;
506
a0a522ce 507 unsigned char idle_at_tick;
1da177e4 508 /* For active balancing */
3f029d3c 509 int post_schedule;
1da177e4
LT
510 int active_balance;
511 int push_cpu;
969c7921 512 struct cpu_stop_work active_balance_work;
d8016491
IM
513 /* cpu of this runqueue: */
514 int cpu;
1f11eb6a 515 int online;
1da177e4 516
a8a51d5e 517 unsigned long avg_load_per_task;
1da177e4 518
e9e9250b
PZ
519 u64 rt_avg;
520 u64 age_stamp;
1b9508f6
MG
521 u64 idle_stamp;
522 u64 avg_idle;
1da177e4
LT
523#endif
524
aa483808
VP
525#ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 u64 prev_irq_time;
527#endif
528
dce48a84
TG
529 /* calc_load related fields */
530 unsigned long calc_load_update;
531 long calc_load_active;
532
8f4d37ec 533#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
534#ifdef CONFIG_SMP
535 int hrtick_csd_pending;
536 struct call_single_data hrtick_csd;
537#endif
8f4d37ec
PZ
538 struct hrtimer hrtick_timer;
539#endif
540
1da177e4
LT
541#ifdef CONFIG_SCHEDSTATS
542 /* latency stats */
543 struct sched_info rq_sched_info;
9c2c4802
KC
544 unsigned long long rq_cpu_time;
545 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
546
547 /* sys_sched_yield() stats */
480b9434 548 unsigned int yld_count;
1da177e4
LT
549
550 /* schedule() stats */
480b9434
KC
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
1da177e4
LT
554
555 /* try_to_wake_up() stats */
480b9434
KC
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
1da177e4
LT
558#endif
559};
560
f34e3b61 561static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 562
a64692a3 563
1e5a7405 564static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 565
0a2966b4
CL
566static inline int cpu_of(struct rq *rq)
567{
568#ifdef CONFIG_SMP
569 return rq->cpu;
570#else
571 return 0;
572#endif
573}
574
497f0ab3 575#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
579
674311d5
NP
580/*
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 582 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
583 *
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
586 */
48f24c4d 587#define for_each_domain(cpu, __sd) \
497f0ab3 588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
589
590#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591#define this_rq() (&__get_cpu_var(runqueues))
592#define task_rq(p) cpu_rq(task_cpu(p))
593#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 594#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 595
dc61b1d6
PZ
596#ifdef CONFIG_CGROUP_SCHED
597
598/*
599 * Return the group to which this tasks belongs.
600 *
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
605 */
606static inline struct task_group *task_group(struct task_struct *p)
607{
5091faa4 608 struct task_group *tg;
dc61b1d6
PZ
609 struct cgroup_subsys_state *css;
610
611 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
612 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
613 tg = container_of(css, struct task_group, css);
614
615 return autogroup_task_group(p, tg);
dc61b1d6
PZ
616}
617
618/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
619static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
620{
621#ifdef CONFIG_FAIR_GROUP_SCHED
622 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
623 p->se.parent = task_group(p)->se[cpu];
624#endif
625
626#ifdef CONFIG_RT_GROUP_SCHED
627 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
628 p->rt.parent = task_group(p)->rt_se[cpu];
629#endif
630}
631
632#else /* CONFIG_CGROUP_SCHED */
633
634static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
635static inline struct task_group *task_group(struct task_struct *p)
636{
637 return NULL;
638}
639
640#endif /* CONFIG_CGROUP_SCHED */
641
fe44d621 642static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 643
fe44d621 644static void update_rq_clock(struct rq *rq)
3e51f33f 645{
fe44d621 646 s64 delta;
305e6835 647
f26f9aff
MG
648 if (rq->skip_clock_update)
649 return;
aa483808 650
fe44d621
PZ
651 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
652 rq->clock += delta;
653 update_rq_clock_task(rq, delta);
3e51f33f
PZ
654}
655
bf5c91ba
IM
656/*
657 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
658 */
659#ifdef CONFIG_SCHED_DEBUG
660# define const_debug __read_mostly
661#else
662# define const_debug static const
663#endif
664
017730c1 665/**
1fd06bb1 666 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 667 * @cpu: the processor in question.
017730c1 668 *
017730c1
IM
669 * This interface allows printk to be called with the runqueue lock
670 * held and know whether or not it is OK to wake up the klogd.
671 */
89f19f04 672int runqueue_is_locked(int cpu)
017730c1 673{
05fa785c 674 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
675}
676
bf5c91ba
IM
677/*
678 * Debugging: various feature bits
679 */
f00b45c1
PZ
680
681#define SCHED_FEAT(name, enabled) \
682 __SCHED_FEAT_##name ,
683
bf5c91ba 684enum {
f00b45c1 685#include "sched_features.h"
bf5c91ba
IM
686};
687
f00b45c1
PZ
688#undef SCHED_FEAT
689
690#define SCHED_FEAT(name, enabled) \
691 (1UL << __SCHED_FEAT_##name) * enabled |
692
bf5c91ba 693const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
694#include "sched_features.h"
695 0;
696
697#undef SCHED_FEAT
698
699#ifdef CONFIG_SCHED_DEBUG
700#define SCHED_FEAT(name, enabled) \
701 #name ,
702
983ed7a6 703static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
704#include "sched_features.h"
705 NULL
706};
707
708#undef SCHED_FEAT
709
34f3a814 710static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 711{
f00b45c1
PZ
712 int i;
713
714 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
715 if (!(sysctl_sched_features & (1UL << i)))
716 seq_puts(m, "NO_");
717 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 718 }
34f3a814 719 seq_puts(m, "\n");
f00b45c1 720
34f3a814 721 return 0;
f00b45c1
PZ
722}
723
724static ssize_t
725sched_feat_write(struct file *filp, const char __user *ubuf,
726 size_t cnt, loff_t *ppos)
727{
728 char buf[64];
7740191c 729 char *cmp;
f00b45c1
PZ
730 int neg = 0;
731 int i;
732
733 if (cnt > 63)
734 cnt = 63;
735
736 if (copy_from_user(&buf, ubuf, cnt))
737 return -EFAULT;
738
739 buf[cnt] = 0;
7740191c 740 cmp = strstrip(buf);
f00b45c1 741
524429c3 742 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
743 neg = 1;
744 cmp += 3;
745 }
746
747 for (i = 0; sched_feat_names[i]; i++) {
7740191c 748 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
749 if (neg)
750 sysctl_sched_features &= ~(1UL << i);
751 else
752 sysctl_sched_features |= (1UL << i);
753 break;
754 }
755 }
756
757 if (!sched_feat_names[i])
758 return -EINVAL;
759
42994724 760 *ppos += cnt;
f00b45c1
PZ
761
762 return cnt;
763}
764
34f3a814
LZ
765static int sched_feat_open(struct inode *inode, struct file *filp)
766{
767 return single_open(filp, sched_feat_show, NULL);
768}
769
828c0950 770static const struct file_operations sched_feat_fops = {
34f3a814
LZ
771 .open = sched_feat_open,
772 .write = sched_feat_write,
773 .read = seq_read,
774 .llseek = seq_lseek,
775 .release = single_release,
f00b45c1
PZ
776};
777
778static __init int sched_init_debug(void)
779{
f00b45c1
PZ
780 debugfs_create_file("sched_features", 0644, NULL, NULL,
781 &sched_feat_fops);
782
783 return 0;
784}
785late_initcall(sched_init_debug);
786
787#endif
788
789#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 790
b82d9fdd
PZ
791/*
792 * Number of tasks to iterate in a single balance run.
793 * Limited because this is done with IRQs disabled.
794 */
795const_debug unsigned int sysctl_sched_nr_migrate = 32;
796
e9e9250b
PZ
797/*
798 * period over which we average the RT time consumption, measured
799 * in ms.
800 *
801 * default: 1s
802 */
803const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
804
fa85ae24 805/*
9f0c1e56 806 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
807 * default: 1s
808 */
9f0c1e56 809unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 810
6892b75e
IM
811static __read_mostly int scheduler_running;
812
9f0c1e56
PZ
813/*
814 * part of the period that we allow rt tasks to run in us.
815 * default: 0.95s
816 */
817int sysctl_sched_rt_runtime = 950000;
fa85ae24 818
d0b27fa7
PZ
819static inline u64 global_rt_period(void)
820{
821 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
822}
823
824static inline u64 global_rt_runtime(void)
825{
e26873bb 826 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
827 return RUNTIME_INF;
828
829 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
830}
fa85ae24 831
1da177e4 832#ifndef prepare_arch_switch
4866cde0
NP
833# define prepare_arch_switch(next) do { } while (0)
834#endif
835#ifndef finish_arch_switch
836# define finish_arch_switch(prev) do { } while (0)
837#endif
838
051a1d1a
DA
839static inline int task_current(struct rq *rq, struct task_struct *p)
840{
841 return rq->curr == p;
842}
843
70b97a7f 844static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 845{
3ca7a440
PZ
846#ifdef CONFIG_SMP
847 return p->on_cpu;
848#else
051a1d1a 849 return task_current(rq, p);
3ca7a440 850#endif
4866cde0
NP
851}
852
3ca7a440 853#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 854static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 855{
3ca7a440
PZ
856#ifdef CONFIG_SMP
857 /*
858 * We can optimise this out completely for !SMP, because the
859 * SMP rebalancing from interrupt is the only thing that cares
860 * here.
861 */
862 next->on_cpu = 1;
863#endif
4866cde0
NP
864}
865
70b97a7f 866static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 867{
3ca7a440
PZ
868#ifdef CONFIG_SMP
869 /*
870 * After ->on_cpu is cleared, the task can be moved to a different CPU.
871 * We must ensure this doesn't happen until the switch is completely
872 * finished.
873 */
874 smp_wmb();
875 prev->on_cpu = 0;
876#endif
da04c035
IM
877#ifdef CONFIG_DEBUG_SPINLOCK
878 /* this is a valid case when another task releases the spinlock */
879 rq->lock.owner = current;
880#endif
8a25d5de
IM
881 /*
882 * If we are tracking spinlock dependencies then we have to
883 * fix up the runqueue lock - which gets 'carried over' from
884 * prev into current:
885 */
886 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
887
05fa785c 888 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
889}
890
891#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 892static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
893{
894#ifdef CONFIG_SMP
895 /*
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
898 * here.
899 */
3ca7a440 900 next->on_cpu = 1;
4866cde0
NP
901#endif
902#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 903 raw_spin_unlock_irq(&rq->lock);
4866cde0 904#else
05fa785c 905 raw_spin_unlock(&rq->lock);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
3ca7a440 913 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
916 */
917 smp_wmb();
3ca7a440 918 prev->on_cpu = 0;
4866cde0
NP
919#endif
920#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 local_irq_enable();
1da177e4 922#endif
4866cde0
NP
923}
924#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 925
0970d299 926/*
65cc8e48
PZ
927 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
928 * against ttwu().
0970d299
PZ
929 */
930static inline int task_is_waking(struct task_struct *p)
931{
0017d735 932 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
933}
934
b29739f9
IM
935/*
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
938 */
70b97a7f 939static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
940 __acquires(rq->lock)
941{
0970d299
PZ
942 struct rq *rq;
943
3a5c359a 944 for (;;) {
0970d299 945 rq = task_rq(p);
05fa785c 946 raw_spin_lock(&rq->lock);
65cc8e48 947 if (likely(rq == task_rq(p)))
3a5c359a 948 return rq;
05fa785c 949 raw_spin_unlock(&rq->lock);
b29739f9 950 }
b29739f9
IM
951}
952
1da177e4
LT
953/*
954 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 955 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
956 * explicitly disabling preemption.
957 */
70b97a7f 958static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
959 __acquires(rq->lock)
960{
70b97a7f 961 struct rq *rq;
1da177e4 962
3a5c359a
AK
963 for (;;) {
964 local_irq_save(*flags);
965 rq = task_rq(p);
05fa785c 966 raw_spin_lock(&rq->lock);
65cc8e48 967 if (likely(rq == task_rq(p)))
3a5c359a 968 return rq;
05fa785c 969 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 970 }
1da177e4
LT
971}
972
a9957449 973static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
974 __releases(rq->lock)
975{
05fa785c 976 raw_spin_unlock(&rq->lock);
b29739f9
IM
977}
978
70b97a7f 979static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
980 __releases(rq->lock)
981{
05fa785c 982 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
983}
984
1da177e4 985/*
cc2a73b5 986 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 987 */
a9957449 988static struct rq *this_rq_lock(void)
1da177e4
LT
989 __acquires(rq->lock)
990{
70b97a7f 991 struct rq *rq;
1da177e4
LT
992
993 local_irq_disable();
994 rq = this_rq();
05fa785c 995 raw_spin_lock(&rq->lock);
1da177e4
LT
996
997 return rq;
998}
999
8f4d37ec
PZ
1000#ifdef CONFIG_SCHED_HRTICK
1001/*
1002 * Use HR-timers to deliver accurate preemption points.
1003 *
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1006 * reschedule event.
1007 *
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * rq->lock.
1010 */
8f4d37ec
PZ
1011
1012/*
1013 * Use hrtick when:
1014 * - enabled by features
1015 * - hrtimer is actually high res
1016 */
1017static inline int hrtick_enabled(struct rq *rq)
1018{
1019 if (!sched_feat(HRTICK))
1020 return 0;
ba42059f 1021 if (!cpu_active(cpu_of(rq)))
b328ca18 1022 return 0;
8f4d37ec
PZ
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1024}
1025
8f4d37ec
PZ
1026static void hrtick_clear(struct rq *rq)
1027{
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032/*
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1035 */
1036static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037{
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041
05fa785c 1042 raw_spin_lock(&rq->lock);
3e51f33f 1043 update_rq_clock(rq);
8f4d37ec 1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1045 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1046
1047 return HRTIMER_NORESTART;
1048}
1049
95e904c7 1050#ifdef CONFIG_SMP
31656519
PZ
1051/*
1052 * called from hardirq (IPI) context
1053 */
1054static void __hrtick_start(void *arg)
b328ca18 1055{
31656519 1056 struct rq *rq = arg;
b328ca18 1057
05fa785c 1058 raw_spin_lock(&rq->lock);
31656519
PZ
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
05fa785c 1061 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1062}
1063
31656519
PZ
1064/*
1065 * Called to set the hrtick timer state.
1066 *
1067 * called with rq->lock held and irqs disabled
1068 */
1069static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1070{
31656519
PZ
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1073
cc584b21 1074 hrtimer_set_expires(timer, time);
31656519
PZ
1075
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
6e275637 1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1080 rq->hrtick_csd_pending = 1;
1081 }
b328ca18
PZ
1082}
1083
1084static int
1085hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086{
1087 int cpu = (int)(long)hcpu;
1088
1089 switch (action) {
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1094 case CPU_DEAD:
1095 case CPU_DEAD_FROZEN:
31656519 1096 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1097 return NOTIFY_OK;
1098 }
1099
1100 return NOTIFY_DONE;
1101}
1102
fa748203 1103static __init void init_hrtick(void)
b328ca18
PZ
1104{
1105 hotcpu_notifier(hotplug_hrtick, 0);
1106}
31656519
PZ
1107#else
1108/*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113static void hrtick_start(struct rq *rq, u64 delay)
1114{
7f1e2ca9 1115 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1116 HRTIMER_MODE_REL_PINNED, 0);
31656519 1117}
b328ca18 1118
006c75f1 1119static inline void init_hrtick(void)
8f4d37ec 1120{
8f4d37ec 1121}
31656519 1122#endif /* CONFIG_SMP */
8f4d37ec 1123
31656519 1124static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1125{
31656519
PZ
1126#ifdef CONFIG_SMP
1127 rq->hrtick_csd_pending = 0;
8f4d37ec 1128
31656519
PZ
1129 rq->hrtick_csd.flags = 0;
1130 rq->hrtick_csd.func = __hrtick_start;
1131 rq->hrtick_csd.info = rq;
1132#endif
8f4d37ec 1133
31656519
PZ
1134 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 rq->hrtick_timer.function = hrtick;
8f4d37ec 1136}
006c75f1 1137#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1138static inline void hrtick_clear(struct rq *rq)
1139{
1140}
1141
8f4d37ec
PZ
1142static inline void init_rq_hrtick(struct rq *rq)
1143{
1144}
1145
b328ca18
PZ
1146static inline void init_hrtick(void)
1147{
1148}
006c75f1 1149#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1150
c24d20db
IM
1151/*
1152 * resched_task - mark a task 'to be rescheduled now'.
1153 *
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1156 * the target CPU.
1157 */
1158#ifdef CONFIG_SMP
1159
1160#ifndef tsk_is_polling
1161#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1162#endif
1163
31656519 1164static void resched_task(struct task_struct *p)
c24d20db
IM
1165{
1166 int cpu;
1167
05fa785c 1168 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1169
5ed0cec0 1170 if (test_tsk_need_resched(p))
c24d20db
IM
1171 return;
1172
5ed0cec0 1173 set_tsk_need_resched(p);
c24d20db
IM
1174
1175 cpu = task_cpu(p);
1176 if (cpu == smp_processor_id())
1177 return;
1178
1179 /* NEED_RESCHED must be visible before we test polling */
1180 smp_mb();
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1183}
1184
1185static void resched_cpu(int cpu)
1186{
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1189
05fa785c 1190 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1191 return;
1192 resched_task(cpu_curr(cpu));
05fa785c 1193 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1194}
06d8308c
TG
1195
1196#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1197/*
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1200 *
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1204 */
1205int get_nohz_timer_target(void)
1206{
1207 int cpu = smp_processor_id();
1208 int i;
1209 struct sched_domain *sd;
1210
1211 for_each_domain(cpu, sd) {
1212 for_each_cpu(i, sched_domain_span(sd))
1213 if (!idle_cpu(i))
1214 return i;
1215 }
1216 return cpu;
1217}
06d8308c
TG
1218/*
1219 * When add_timer_on() enqueues a timer into the timer wheel of an
1220 * idle CPU then this timer might expire before the next timer event
1221 * which is scheduled to wake up that CPU. In case of a completely
1222 * idle system the next event might even be infinite time into the
1223 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224 * leaves the inner idle loop so the newly added timer is taken into
1225 * account when the CPU goes back to idle and evaluates the timer
1226 * wheel for the next timer event.
1227 */
1228void wake_up_idle_cpu(int cpu)
1229{
1230 struct rq *rq = cpu_rq(cpu);
1231
1232 if (cpu == smp_processor_id())
1233 return;
1234
1235 /*
1236 * This is safe, as this function is called with the timer
1237 * wheel base lock of (cpu) held. When the CPU is on the way
1238 * to idle and has not yet set rq->curr to idle then it will
1239 * be serialized on the timer wheel base lock and take the new
1240 * timer into account automatically.
1241 */
1242 if (rq->curr != rq->idle)
1243 return;
1244
1245 /*
1246 * We can set TIF_RESCHED on the idle task of the other CPU
1247 * lockless. The worst case is that the other CPU runs the
1248 * idle task through an additional NOOP schedule()
1249 */
5ed0cec0 1250 set_tsk_need_resched(rq->idle);
06d8308c
TG
1251
1252 /* NEED_RESCHED must be visible before we test polling */
1253 smp_mb();
1254 if (!tsk_is_polling(rq->idle))
1255 smp_send_reschedule(cpu);
1256}
39c0cbe2 1257
6d6bc0ad 1258#endif /* CONFIG_NO_HZ */
06d8308c 1259
e9e9250b
PZ
1260static u64 sched_avg_period(void)
1261{
1262 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1263}
1264
1265static void sched_avg_update(struct rq *rq)
1266{
1267 s64 period = sched_avg_period();
1268
1269 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1270 /*
1271 * Inline assembly required to prevent the compiler
1272 * optimising this loop into a divmod call.
1273 * See __iter_div_u64_rem() for another example of this.
1274 */
1275 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1276 rq->age_stamp += period;
1277 rq->rt_avg /= 2;
1278 }
1279}
1280
1281static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1282{
1283 rq->rt_avg += rt_delta;
1284 sched_avg_update(rq);
1285}
1286
6d6bc0ad 1287#else /* !CONFIG_SMP */
31656519 1288static void resched_task(struct task_struct *p)
c24d20db 1289{
05fa785c 1290 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1291 set_tsk_need_resched(p);
c24d20db 1292}
e9e9250b
PZ
1293
1294static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1295{
1296}
da2b71ed
SS
1297
1298static void sched_avg_update(struct rq *rq)
1299{
1300}
6d6bc0ad 1301#endif /* CONFIG_SMP */
c24d20db 1302
45bf76df
IM
1303#if BITS_PER_LONG == 32
1304# define WMULT_CONST (~0UL)
1305#else
1306# define WMULT_CONST (1UL << 32)
1307#endif
1308
1309#define WMULT_SHIFT 32
1310
194081eb
IM
1311/*
1312 * Shift right and round:
1313 */
cf2ab469 1314#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1315
a7be37ac
PZ
1316/*
1317 * delta *= weight / lw
1318 */
cb1c4fc9 1319static unsigned long
45bf76df
IM
1320calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1321 struct load_weight *lw)
1322{
1323 u64 tmp;
1324
7a232e03
LJ
1325 if (!lw->inv_weight) {
1326 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1327 lw->inv_weight = 1;
1328 else
1329 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1330 / (lw->weight+1);
1331 }
45bf76df
IM
1332
1333 tmp = (u64)delta_exec * weight;
1334 /*
1335 * Check whether we'd overflow the 64-bit multiplication:
1336 */
194081eb 1337 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1338 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1339 WMULT_SHIFT/2);
1340 else
cf2ab469 1341 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1342
ecf691da 1343 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1344}
1345
1091985b 1346static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1347{
1348 lw->weight += inc;
e89996ae 1349 lw->inv_weight = 0;
45bf76df
IM
1350}
1351
1091985b 1352static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1353{
1354 lw->weight -= dec;
e89996ae 1355 lw->inv_weight = 0;
45bf76df
IM
1356}
1357
2069dd75
PZ
1358static inline void update_load_set(struct load_weight *lw, unsigned long w)
1359{
1360 lw->weight = w;
1361 lw->inv_weight = 0;
1362}
1363
2dd73a4f
PW
1364/*
1365 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1366 * of tasks with abnormal "nice" values across CPUs the contribution that
1367 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1368 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1369 * scaled version of the new time slice allocation that they receive on time
1370 * slice expiry etc.
1371 */
1372
cce7ade8
PZ
1373#define WEIGHT_IDLEPRIO 3
1374#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1375
1376/*
1377 * Nice levels are multiplicative, with a gentle 10% change for every
1378 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1379 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1380 * that remained on nice 0.
1381 *
1382 * The "10% effect" is relative and cumulative: from _any_ nice level,
1383 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1384 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1385 * If a task goes up by ~10% and another task goes down by ~10% then
1386 * the relative distance between them is ~25%.)
dd41f596
IM
1387 */
1388static const int prio_to_weight[40] = {
254753dc
IM
1389 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1390 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1391 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1392 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1393 /* 0 */ 1024, 820, 655, 526, 423,
1394 /* 5 */ 335, 272, 215, 172, 137,
1395 /* 10 */ 110, 87, 70, 56, 45,
1396 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1397};
1398
5714d2de
IM
1399/*
1400 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1401 *
1402 * In cases where the weight does not change often, we can use the
1403 * precalculated inverse to speed up arithmetics by turning divisions
1404 * into multiplications:
1405 */
dd41f596 1406static const u32 prio_to_wmult[40] = {
254753dc
IM
1407 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1408 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1409 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1410 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1411 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1412 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1413 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1414 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1415};
2dd73a4f 1416
ef12fefa
BR
1417/* Time spent by the tasks of the cpu accounting group executing in ... */
1418enum cpuacct_stat_index {
1419 CPUACCT_STAT_USER, /* ... user mode */
1420 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1421
1422 CPUACCT_STAT_NSTATS,
1423};
1424
d842de87
SV
1425#ifdef CONFIG_CGROUP_CPUACCT
1426static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1427static void cpuacct_update_stats(struct task_struct *tsk,
1428 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1429#else
1430static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1431static inline void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1433#endif
1434
18d95a28
PZ
1435static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1436{
1437 update_load_add(&rq->load, load);
1438}
1439
1440static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1441{
1442 update_load_sub(&rq->load, load);
1443}
1444
7940ca36 1445#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1446typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1447
1448/*
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1451 */
eb755805 1452static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1453{
1454 struct task_group *parent, *child;
eb755805 1455 int ret;
c09595f6
PZ
1456
1457 rcu_read_lock();
1458 parent = &root_task_group;
1459down:
eb755805
PZ
1460 ret = (*down)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463 list_for_each_entry_rcu(child, &parent->children, siblings) {
1464 parent = child;
1465 goto down;
1466
1467up:
1468 continue;
1469 }
eb755805
PZ
1470 ret = (*up)(parent, data);
1471 if (ret)
1472 goto out_unlock;
c09595f6
PZ
1473
1474 child = parent;
1475 parent = parent->parent;
1476 if (parent)
1477 goto up;
eb755805 1478out_unlock:
c09595f6 1479 rcu_read_unlock();
eb755805
PZ
1480
1481 return ret;
c09595f6
PZ
1482}
1483
eb755805
PZ
1484static int tg_nop(struct task_group *tg, void *data)
1485{
1486 return 0;
c09595f6 1487}
eb755805
PZ
1488#endif
1489
1490#ifdef CONFIG_SMP
f5f08f39
PZ
1491/* Used instead of source_load when we know the type == 0 */
1492static unsigned long weighted_cpuload(const int cpu)
1493{
1494 return cpu_rq(cpu)->load.weight;
1495}
1496
1497/*
1498 * Return a low guess at the load of a migration-source cpu weighted
1499 * according to the scheduling class and "nice" value.
1500 *
1501 * We want to under-estimate the load of migration sources, to
1502 * balance conservatively.
1503 */
1504static unsigned long source_load(int cpu, int type)
1505{
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long total = weighted_cpuload(cpu);
1508
1509 if (type == 0 || !sched_feat(LB_BIAS))
1510 return total;
1511
1512 return min(rq->cpu_load[type-1], total);
1513}
1514
1515/*
1516 * Return a high guess at the load of a migration-target cpu weighted
1517 * according to the scheduling class and "nice" value.
1518 */
1519static unsigned long target_load(int cpu, int type)
1520{
1521 struct rq *rq = cpu_rq(cpu);
1522 unsigned long total = weighted_cpuload(cpu);
1523
1524 if (type == 0 || !sched_feat(LB_BIAS))
1525 return total;
1526
1527 return max(rq->cpu_load[type-1], total);
1528}
1529
ae154be1
PZ
1530static unsigned long power_of(int cpu)
1531{
e51fd5e2 1532 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1533}
1534
eb755805
PZ
1535static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1536
1537static unsigned long cpu_avg_load_per_task(int cpu)
1538{
1539 struct rq *rq = cpu_rq(cpu);
af6d596f 1540 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1541
4cd42620
SR
1542 if (nr_running)
1543 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1544 else
1545 rq->avg_load_per_task = 0;
eb755805
PZ
1546
1547 return rq->avg_load_per_task;
1548}
1549
1550#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1551
c09595f6 1552/*
c8cba857
PZ
1553 * Compute the cpu's hierarchical load factor for each task group.
1554 * This needs to be done in a top-down fashion because the load of a child
1555 * group is a fraction of its parents load.
c09595f6 1556 */
eb755805 1557static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1558{
c8cba857 1559 unsigned long load;
eb755805 1560 long cpu = (long)data;
c09595f6 1561
c8cba857
PZ
1562 if (!tg->parent) {
1563 load = cpu_rq(cpu)->load.weight;
1564 } else {
1565 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1566 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1567 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1568 }
c09595f6 1569
c8cba857 1570 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1571
eb755805 1572 return 0;
c09595f6
PZ
1573}
1574
eb755805 1575static void update_h_load(long cpu)
c09595f6 1576{
eb755805 1577 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1578}
1579
18d95a28
PZ
1580#endif
1581
8f45e2b5
GH
1582#ifdef CONFIG_PREEMPT
1583
b78bb868
PZ
1584static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1585
70574a99 1586/*
8f45e2b5
GH
1587 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1588 * way at the expense of forcing extra atomic operations in all
1589 * invocations. This assures that the double_lock is acquired using the
1590 * same underlying policy as the spinlock_t on this architecture, which
1591 * reduces latency compared to the unfair variant below. However, it
1592 * also adds more overhead and therefore may reduce throughput.
70574a99 1593 */
8f45e2b5
GH
1594static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1595 __releases(this_rq->lock)
1596 __acquires(busiest->lock)
1597 __acquires(this_rq->lock)
1598{
05fa785c 1599 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1600 double_rq_lock(this_rq, busiest);
1601
1602 return 1;
1603}
1604
1605#else
1606/*
1607 * Unfair double_lock_balance: Optimizes throughput at the expense of
1608 * latency by eliminating extra atomic operations when the locks are
1609 * already in proper order on entry. This favors lower cpu-ids and will
1610 * grant the double lock to lower cpus over higher ids under contention,
1611 * regardless of entry order into the function.
1612 */
1613static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1614 __releases(this_rq->lock)
1615 __acquires(busiest->lock)
1616 __acquires(this_rq->lock)
1617{
1618 int ret = 0;
1619
05fa785c 1620 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1621 if (busiest < this_rq) {
05fa785c
TG
1622 raw_spin_unlock(&this_rq->lock);
1623 raw_spin_lock(&busiest->lock);
1624 raw_spin_lock_nested(&this_rq->lock,
1625 SINGLE_DEPTH_NESTING);
70574a99
AD
1626 ret = 1;
1627 } else
05fa785c
TG
1628 raw_spin_lock_nested(&busiest->lock,
1629 SINGLE_DEPTH_NESTING);
70574a99
AD
1630 }
1631 return ret;
1632}
1633
8f45e2b5
GH
1634#endif /* CONFIG_PREEMPT */
1635
1636/*
1637 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1638 */
1639static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1640{
1641 if (unlikely(!irqs_disabled())) {
1642 /* printk() doesn't work good under rq->lock */
05fa785c 1643 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1644 BUG_ON(1);
1645 }
1646
1647 return _double_lock_balance(this_rq, busiest);
1648}
1649
70574a99
AD
1650static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1651 __releases(busiest->lock)
1652{
05fa785c 1653 raw_spin_unlock(&busiest->lock);
70574a99
AD
1654 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1655}
1e3c88bd
PZ
1656
1657/*
1658 * double_rq_lock - safely lock two runqueues
1659 *
1660 * Note this does not disable interrupts like task_rq_lock,
1661 * you need to do so manually before calling.
1662 */
1663static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1664 __acquires(rq1->lock)
1665 __acquires(rq2->lock)
1666{
1667 BUG_ON(!irqs_disabled());
1668 if (rq1 == rq2) {
1669 raw_spin_lock(&rq1->lock);
1670 __acquire(rq2->lock); /* Fake it out ;) */
1671 } else {
1672 if (rq1 < rq2) {
1673 raw_spin_lock(&rq1->lock);
1674 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1675 } else {
1676 raw_spin_lock(&rq2->lock);
1677 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1678 }
1679 }
1e3c88bd
PZ
1680}
1681
1682/*
1683 * double_rq_unlock - safely unlock two runqueues
1684 *
1685 * Note this does not restore interrupts like task_rq_unlock,
1686 * you need to do so manually after calling.
1687 */
1688static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1689 __releases(rq1->lock)
1690 __releases(rq2->lock)
1691{
1692 raw_spin_unlock(&rq1->lock);
1693 if (rq1 != rq2)
1694 raw_spin_unlock(&rq2->lock);
1695 else
1696 __release(rq2->lock);
1697}
1698
d95f4122
MG
1699#else /* CONFIG_SMP */
1700
1701/*
1702 * double_rq_lock - safely lock two runqueues
1703 *
1704 * Note this does not disable interrupts like task_rq_lock,
1705 * you need to do so manually before calling.
1706 */
1707static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1708 __acquires(rq1->lock)
1709 __acquires(rq2->lock)
1710{
1711 BUG_ON(!irqs_disabled());
1712 BUG_ON(rq1 != rq2);
1713 raw_spin_lock(&rq1->lock);
1714 __acquire(rq2->lock); /* Fake it out ;) */
1715}
1716
1717/*
1718 * double_rq_unlock - safely unlock two runqueues
1719 *
1720 * Note this does not restore interrupts like task_rq_unlock,
1721 * you need to do so manually after calling.
1722 */
1723static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1724 __releases(rq1->lock)
1725 __releases(rq2->lock)
1726{
1727 BUG_ON(rq1 != rq2);
1728 raw_spin_unlock(&rq1->lock);
1729 __release(rq2->lock);
1730}
1731
18d95a28
PZ
1732#endif
1733
74f5187a 1734static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1735static void update_sysctl(void);
acb4a848 1736static int get_update_sysctl_factor(void);
fdf3e95d 1737static void update_cpu_load(struct rq *this_rq);
dce48a84 1738
cd29fe6f
PZ
1739static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1740{
1741 set_task_rq(p, cpu);
1742#ifdef CONFIG_SMP
1743 /*
1744 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1745 * successfuly executed on another CPU. We must ensure that updates of
1746 * per-task data have been completed by this moment.
1747 */
1748 smp_wmb();
1749 task_thread_info(p)->cpu = cpu;
1750#endif
1751}
dce48a84 1752
1e3c88bd 1753static const struct sched_class rt_sched_class;
dd41f596 1754
34f971f6 1755#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1756#define for_each_class(class) \
1757 for (class = sched_class_highest; class; class = class->next)
dd41f596 1758
1e3c88bd
PZ
1759#include "sched_stats.h"
1760
c09595f6 1761static void inc_nr_running(struct rq *rq)
9c217245
IM
1762{
1763 rq->nr_running++;
9c217245
IM
1764}
1765
c09595f6 1766static void dec_nr_running(struct rq *rq)
9c217245
IM
1767{
1768 rq->nr_running--;
9c217245
IM
1769}
1770
45bf76df
IM
1771static void set_load_weight(struct task_struct *p)
1772{
dd41f596
IM
1773 /*
1774 * SCHED_IDLE tasks get minimal weight:
1775 */
1776 if (p->policy == SCHED_IDLE) {
1777 p->se.load.weight = WEIGHT_IDLEPRIO;
1778 p->se.load.inv_weight = WMULT_IDLEPRIO;
1779 return;
1780 }
71f8bd46 1781
dd41f596
IM
1782 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1783 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1784}
1785
371fd7e7 1786static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1787{
a64692a3 1788 update_rq_clock(rq);
dd41f596 1789 sched_info_queued(p);
371fd7e7 1790 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1791}
1792
371fd7e7 1793static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1794{
a64692a3 1795 update_rq_clock(rq);
46ac22ba 1796 sched_info_dequeued(p);
371fd7e7 1797 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1798}
1799
1e3c88bd
PZ
1800/*
1801 * activate_task - move a task to the runqueue.
1802 */
371fd7e7 1803static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1804{
1805 if (task_contributes_to_load(p))
1806 rq->nr_uninterruptible--;
1807
371fd7e7 1808 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1809 inc_nr_running(rq);
1810}
1811
1812/*
1813 * deactivate_task - remove a task from the runqueue.
1814 */
371fd7e7 1815static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1816{
1817 if (task_contributes_to_load(p))
1818 rq->nr_uninterruptible++;
1819
371fd7e7 1820 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1821 dec_nr_running(rq);
1822}
1823
b52bfee4
VP
1824#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1825
305e6835
VP
1826/*
1827 * There are no locks covering percpu hardirq/softirq time.
1828 * They are only modified in account_system_vtime, on corresponding CPU
1829 * with interrupts disabled. So, writes are safe.
1830 * They are read and saved off onto struct rq in update_rq_clock().
1831 * This may result in other CPU reading this CPU's irq time and can
1832 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1833 * or new value with a side effect of accounting a slice of irq time to wrong
1834 * task when irq is in progress while we read rq->clock. That is a worthy
1835 * compromise in place of having locks on each irq in account_system_time.
305e6835 1836 */
b52bfee4
VP
1837static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1838static DEFINE_PER_CPU(u64, cpu_softirq_time);
1839
1840static DEFINE_PER_CPU(u64, irq_start_time);
1841static int sched_clock_irqtime;
1842
1843void enable_sched_clock_irqtime(void)
1844{
1845 sched_clock_irqtime = 1;
1846}
1847
1848void disable_sched_clock_irqtime(void)
1849{
1850 sched_clock_irqtime = 0;
1851}
1852
8e92c201
PZ
1853#ifndef CONFIG_64BIT
1854static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1855
1856static inline void irq_time_write_begin(void)
1857{
1858 __this_cpu_inc(irq_time_seq.sequence);
1859 smp_wmb();
1860}
1861
1862static inline void irq_time_write_end(void)
1863{
1864 smp_wmb();
1865 __this_cpu_inc(irq_time_seq.sequence);
1866}
1867
1868static inline u64 irq_time_read(int cpu)
1869{
1870 u64 irq_time;
1871 unsigned seq;
1872
1873 do {
1874 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1875 irq_time = per_cpu(cpu_softirq_time, cpu) +
1876 per_cpu(cpu_hardirq_time, cpu);
1877 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1878
1879 return irq_time;
1880}
1881#else /* CONFIG_64BIT */
1882static inline void irq_time_write_begin(void)
1883{
1884}
1885
1886static inline void irq_time_write_end(void)
1887{
1888}
1889
1890static inline u64 irq_time_read(int cpu)
305e6835 1891{
305e6835
VP
1892 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1893}
8e92c201 1894#endif /* CONFIG_64BIT */
305e6835 1895
fe44d621
PZ
1896/*
1897 * Called before incrementing preempt_count on {soft,}irq_enter
1898 * and before decrementing preempt_count on {soft,}irq_exit.
1899 */
b52bfee4
VP
1900void account_system_vtime(struct task_struct *curr)
1901{
1902 unsigned long flags;
fe44d621 1903 s64 delta;
b52bfee4 1904 int cpu;
b52bfee4
VP
1905
1906 if (!sched_clock_irqtime)
1907 return;
1908
1909 local_irq_save(flags);
1910
b52bfee4 1911 cpu = smp_processor_id();
fe44d621
PZ
1912 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1913 __this_cpu_add(irq_start_time, delta);
1914
8e92c201 1915 irq_time_write_begin();
b52bfee4
VP
1916 /*
1917 * We do not account for softirq time from ksoftirqd here.
1918 * We want to continue accounting softirq time to ksoftirqd thread
1919 * in that case, so as not to confuse scheduler with a special task
1920 * that do not consume any time, but still wants to run.
1921 */
1922 if (hardirq_count())
fe44d621 1923 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1924 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1925 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1926
8e92c201 1927 irq_time_write_end();
b52bfee4
VP
1928 local_irq_restore(flags);
1929}
b7dadc38 1930EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1931
fe44d621 1932static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1933{
fe44d621
PZ
1934 s64 irq_delta;
1935
8e92c201 1936 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1937
1938 /*
1939 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1940 * this case when a previous update_rq_clock() happened inside a
1941 * {soft,}irq region.
1942 *
1943 * When this happens, we stop ->clock_task and only update the
1944 * prev_irq_time stamp to account for the part that fit, so that a next
1945 * update will consume the rest. This ensures ->clock_task is
1946 * monotonic.
1947 *
1948 * It does however cause some slight miss-attribution of {soft,}irq
1949 * time, a more accurate solution would be to update the irq_time using
1950 * the current rq->clock timestamp, except that would require using
1951 * atomic ops.
1952 */
1953 if (irq_delta > delta)
1954 irq_delta = delta;
1955
1956 rq->prev_irq_time += irq_delta;
1957 delta -= irq_delta;
1958 rq->clock_task += delta;
1959
1960 if (irq_delta && sched_feat(NONIRQ_POWER))
1961 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1962}
1963
abb74cef
VP
1964static int irqtime_account_hi_update(void)
1965{
1966 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1967 unsigned long flags;
1968 u64 latest_ns;
1969 int ret = 0;
1970
1971 local_irq_save(flags);
1972 latest_ns = this_cpu_read(cpu_hardirq_time);
1973 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1974 ret = 1;
1975 local_irq_restore(flags);
1976 return ret;
1977}
1978
1979static int irqtime_account_si_update(void)
1980{
1981 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1982 unsigned long flags;
1983 u64 latest_ns;
1984 int ret = 0;
1985
1986 local_irq_save(flags);
1987 latest_ns = this_cpu_read(cpu_softirq_time);
1988 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1989 ret = 1;
1990 local_irq_restore(flags);
1991 return ret;
1992}
1993
fe44d621 1994#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1995
abb74cef
VP
1996#define sched_clock_irqtime (0)
1997
fe44d621 1998static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1999{
fe44d621 2000 rq->clock_task += delta;
305e6835
VP
2001}
2002
fe44d621 2003#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2004
1e3c88bd
PZ
2005#include "sched_idletask.c"
2006#include "sched_fair.c"
2007#include "sched_rt.c"
5091faa4 2008#include "sched_autogroup.c"
34f971f6 2009#include "sched_stoptask.c"
1e3c88bd
PZ
2010#ifdef CONFIG_SCHED_DEBUG
2011# include "sched_debug.c"
2012#endif
2013
34f971f6
PZ
2014void sched_set_stop_task(int cpu, struct task_struct *stop)
2015{
2016 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2017 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2018
2019 if (stop) {
2020 /*
2021 * Make it appear like a SCHED_FIFO task, its something
2022 * userspace knows about and won't get confused about.
2023 *
2024 * Also, it will make PI more or less work without too
2025 * much confusion -- but then, stop work should not
2026 * rely on PI working anyway.
2027 */
2028 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2029
2030 stop->sched_class = &stop_sched_class;
2031 }
2032
2033 cpu_rq(cpu)->stop = stop;
2034
2035 if (old_stop) {
2036 /*
2037 * Reset it back to a normal scheduling class so that
2038 * it can die in pieces.
2039 */
2040 old_stop->sched_class = &rt_sched_class;
2041 }
2042}
2043
14531189 2044/*
dd41f596 2045 * __normal_prio - return the priority that is based on the static prio
14531189 2046 */
14531189
IM
2047static inline int __normal_prio(struct task_struct *p)
2048{
dd41f596 2049 return p->static_prio;
14531189
IM
2050}
2051
b29739f9
IM
2052/*
2053 * Calculate the expected normal priority: i.e. priority
2054 * without taking RT-inheritance into account. Might be
2055 * boosted by interactivity modifiers. Changes upon fork,
2056 * setprio syscalls, and whenever the interactivity
2057 * estimator recalculates.
2058 */
36c8b586 2059static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2060{
2061 int prio;
2062
e05606d3 2063 if (task_has_rt_policy(p))
b29739f9
IM
2064 prio = MAX_RT_PRIO-1 - p->rt_priority;
2065 else
2066 prio = __normal_prio(p);
2067 return prio;
2068}
2069
2070/*
2071 * Calculate the current priority, i.e. the priority
2072 * taken into account by the scheduler. This value might
2073 * be boosted by RT tasks, or might be boosted by
2074 * interactivity modifiers. Will be RT if the task got
2075 * RT-boosted. If not then it returns p->normal_prio.
2076 */
36c8b586 2077static int effective_prio(struct task_struct *p)
b29739f9
IM
2078{
2079 p->normal_prio = normal_prio(p);
2080 /*
2081 * If we are RT tasks or we were boosted to RT priority,
2082 * keep the priority unchanged. Otherwise, update priority
2083 * to the normal priority:
2084 */
2085 if (!rt_prio(p->prio))
2086 return p->normal_prio;
2087 return p->prio;
2088}
2089
1da177e4
LT
2090/**
2091 * task_curr - is this task currently executing on a CPU?
2092 * @p: the task in question.
2093 */
36c8b586 2094inline int task_curr(const struct task_struct *p)
1da177e4
LT
2095{
2096 return cpu_curr(task_cpu(p)) == p;
2097}
2098
cb469845
SR
2099static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2100 const struct sched_class *prev_class,
da7a735e 2101 int oldprio)
cb469845
SR
2102{
2103 if (prev_class != p->sched_class) {
2104 if (prev_class->switched_from)
da7a735e
PZ
2105 prev_class->switched_from(rq, p);
2106 p->sched_class->switched_to(rq, p);
2107 } else if (oldprio != p->prio)
2108 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2109}
2110
1e5a7405
PZ
2111static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2112{
2113 const struct sched_class *class;
2114
2115 if (p->sched_class == rq->curr->sched_class) {
2116 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2117 } else {
2118 for_each_class(class) {
2119 if (class == rq->curr->sched_class)
2120 break;
2121 if (class == p->sched_class) {
2122 resched_task(rq->curr);
2123 break;
2124 }
2125 }
2126 }
2127
2128 /*
2129 * A queue event has occurred, and we're going to schedule. In
2130 * this case, we can save a useless back to back clock update.
2131 */
fd2f4419 2132 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2133 rq->skip_clock_update = 1;
2134}
2135
1da177e4 2136#ifdef CONFIG_SMP
cc367732
IM
2137/*
2138 * Is this task likely cache-hot:
2139 */
e7693a36 2140static int
cc367732
IM
2141task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2142{
2143 s64 delta;
2144
e6c8fba7
PZ
2145 if (p->sched_class != &fair_sched_class)
2146 return 0;
2147
ef8002f6
NR
2148 if (unlikely(p->policy == SCHED_IDLE))
2149 return 0;
2150
f540a608
IM
2151 /*
2152 * Buddy candidates are cache hot:
2153 */
f685ceac 2154 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2155 (&p->se == cfs_rq_of(&p->se)->next ||
2156 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2157 return 1;
2158
6bc1665b
IM
2159 if (sysctl_sched_migration_cost == -1)
2160 return 1;
2161 if (sysctl_sched_migration_cost == 0)
2162 return 0;
2163
cc367732
IM
2164 delta = now - p->se.exec_start;
2165
2166 return delta < (s64)sysctl_sched_migration_cost;
2167}
2168
dd41f596 2169void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2170{
e2912009
PZ
2171#ifdef CONFIG_SCHED_DEBUG
2172 /*
2173 * We should never call set_task_cpu() on a blocked task,
2174 * ttwu() will sort out the placement.
2175 */
077614ee
PZ
2176 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2177 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2178#endif
2179
de1d7286 2180 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2181
0c69774e
PZ
2182 if (task_cpu(p) != new_cpu) {
2183 p->se.nr_migrations++;
2184 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2185 }
dd41f596
IM
2186
2187 __set_task_cpu(p, new_cpu);
c65cc870
IM
2188}
2189
969c7921 2190struct migration_arg {
36c8b586 2191 struct task_struct *task;
1da177e4 2192 int dest_cpu;
70b97a7f 2193};
1da177e4 2194
969c7921
TH
2195static int migration_cpu_stop(void *data);
2196
1da177e4
LT
2197/*
2198 * The task's runqueue lock must be held.
2199 * Returns true if you have to wait for migration thread.
2200 */
7608dec2 2201static bool need_migrate_task(struct task_struct *p)
1da177e4 2202{
1da177e4
LT
2203 /*
2204 * If the task is not on a runqueue (and not running), then
e2912009 2205 * the next wake-up will properly place the task.
1da177e4 2206 */
7608dec2
PZ
2207 bool running = p->on_rq || p->on_cpu;
2208 smp_rmb(); /* finish_lock_switch() */
2209 return running;
1da177e4
LT
2210}
2211
2212/*
2213 * wait_task_inactive - wait for a thread to unschedule.
2214 *
85ba2d86
RM
2215 * If @match_state is nonzero, it's the @p->state value just checked and
2216 * not expected to change. If it changes, i.e. @p might have woken up,
2217 * then return zero. When we succeed in waiting for @p to be off its CPU,
2218 * we return a positive number (its total switch count). If a second call
2219 * a short while later returns the same number, the caller can be sure that
2220 * @p has remained unscheduled the whole time.
2221 *
1da177e4
LT
2222 * The caller must ensure that the task *will* unschedule sometime soon,
2223 * else this function might spin for a *long* time. This function can't
2224 * be called with interrupts off, or it may introduce deadlock with
2225 * smp_call_function() if an IPI is sent by the same process we are
2226 * waiting to become inactive.
2227 */
85ba2d86 2228unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2229{
2230 unsigned long flags;
dd41f596 2231 int running, on_rq;
85ba2d86 2232 unsigned long ncsw;
70b97a7f 2233 struct rq *rq;
1da177e4 2234
3a5c359a
AK
2235 for (;;) {
2236 /*
2237 * We do the initial early heuristics without holding
2238 * any task-queue locks at all. We'll only try to get
2239 * the runqueue lock when things look like they will
2240 * work out!
2241 */
2242 rq = task_rq(p);
fa490cfd 2243
3a5c359a
AK
2244 /*
2245 * If the task is actively running on another CPU
2246 * still, just relax and busy-wait without holding
2247 * any locks.
2248 *
2249 * NOTE! Since we don't hold any locks, it's not
2250 * even sure that "rq" stays as the right runqueue!
2251 * But we don't care, since "task_running()" will
2252 * return false if the runqueue has changed and p
2253 * is actually now running somewhere else!
2254 */
85ba2d86
RM
2255 while (task_running(rq, p)) {
2256 if (match_state && unlikely(p->state != match_state))
2257 return 0;
3a5c359a 2258 cpu_relax();
85ba2d86 2259 }
fa490cfd 2260
3a5c359a
AK
2261 /*
2262 * Ok, time to look more closely! We need the rq
2263 * lock now, to be *sure*. If we're wrong, we'll
2264 * just go back and repeat.
2265 */
2266 rq = task_rq_lock(p, &flags);
27a9da65 2267 trace_sched_wait_task(p);
3a5c359a 2268 running = task_running(rq, p);
fd2f4419 2269 on_rq = p->on_rq;
85ba2d86 2270 ncsw = 0;
f31e11d8 2271 if (!match_state || p->state == match_state)
93dcf55f 2272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2273 task_rq_unlock(rq, &flags);
fa490cfd 2274
85ba2d86
RM
2275 /*
2276 * If it changed from the expected state, bail out now.
2277 */
2278 if (unlikely(!ncsw))
2279 break;
2280
3a5c359a
AK
2281 /*
2282 * Was it really running after all now that we
2283 * checked with the proper locks actually held?
2284 *
2285 * Oops. Go back and try again..
2286 */
2287 if (unlikely(running)) {
2288 cpu_relax();
2289 continue;
2290 }
fa490cfd 2291
3a5c359a
AK
2292 /*
2293 * It's not enough that it's not actively running,
2294 * it must be off the runqueue _entirely_, and not
2295 * preempted!
2296 *
80dd99b3 2297 * So if it was still runnable (but just not actively
3a5c359a
AK
2298 * running right now), it's preempted, and we should
2299 * yield - it could be a while.
2300 */
2301 if (unlikely(on_rq)) {
8eb90c30
TG
2302 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2303
2304 set_current_state(TASK_UNINTERRUPTIBLE);
2305 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2306 continue;
2307 }
fa490cfd 2308
3a5c359a
AK
2309 /*
2310 * Ahh, all good. It wasn't running, and it wasn't
2311 * runnable, which means that it will never become
2312 * running in the future either. We're all done!
2313 */
2314 break;
2315 }
85ba2d86
RM
2316
2317 return ncsw;
1da177e4
LT
2318}
2319
2320/***
2321 * kick_process - kick a running thread to enter/exit the kernel
2322 * @p: the to-be-kicked thread
2323 *
2324 * Cause a process which is running on another CPU to enter
2325 * kernel-mode, without any delay. (to get signals handled.)
2326 *
25985edc 2327 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2328 * because all it wants to ensure is that the remote task enters
2329 * the kernel. If the IPI races and the task has been migrated
2330 * to another CPU then no harm is done and the purpose has been
2331 * achieved as well.
2332 */
36c8b586 2333void kick_process(struct task_struct *p)
1da177e4
LT
2334{
2335 int cpu;
2336
2337 preempt_disable();
2338 cpu = task_cpu(p);
2339 if ((cpu != smp_processor_id()) && task_curr(p))
2340 smp_send_reschedule(cpu);
2341 preempt_enable();
2342}
b43e3521 2343EXPORT_SYMBOL_GPL(kick_process);
476d139c 2344#endif /* CONFIG_SMP */
1da177e4 2345
970b13ba 2346#ifdef CONFIG_SMP
30da688e 2347/*
013fdb80 2348 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2349 */
5da9a0fb
PZ
2350static int select_fallback_rq(int cpu, struct task_struct *p)
2351{
2352 int dest_cpu;
2353 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2354
2355 /* Look for allowed, online CPU in same node. */
2356 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2357 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2358 return dest_cpu;
2359
2360 /* Any allowed, online CPU? */
2361 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2362 if (dest_cpu < nr_cpu_ids)
2363 return dest_cpu;
2364
2365 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2366 dest_cpu = cpuset_cpus_allowed_fallback(p);
2367 /*
2368 * Don't tell them about moving exiting tasks or
2369 * kernel threads (both mm NULL), since they never
2370 * leave kernel.
2371 */
2372 if (p->mm && printk_ratelimit()) {
2373 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2374 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2375 }
2376
2377 return dest_cpu;
2378}
2379
e2912009 2380/*
013fdb80 2381 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2382 */
970b13ba 2383static inline
7608dec2 2384int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2385{
7608dec2 2386 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2387
2388 /*
2389 * In order not to call set_task_cpu() on a blocking task we need
2390 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2391 * cpu.
2392 *
2393 * Since this is common to all placement strategies, this lives here.
2394 *
2395 * [ this allows ->select_task() to simply return task_cpu(p) and
2396 * not worry about this generic constraint ]
2397 */
2398 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2399 !cpu_online(cpu)))
5da9a0fb 2400 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2401
2402 return cpu;
970b13ba 2403}
09a40af5
MG
2404
2405static void update_avg(u64 *avg, u64 sample)
2406{
2407 s64 diff = sample - *avg;
2408 *avg += diff >> 3;
2409}
970b13ba
PZ
2410#endif
2411
d7c01d27
PZ
2412static void
2413ttwu_stat(struct rq *rq, struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2414{
d7c01d27
PZ
2415#ifdef CONFIG_SCHEDSTATS
2416#ifdef CONFIG_SMP
2417 int this_cpu = smp_processor_id();
2418
2419 if (cpu == this_cpu) {
2420 schedstat_inc(rq, ttwu_local);
2421 schedstat_inc(p, se.statistics.nr_wakeups_local);
2422 } else {
2423 struct sched_domain *sd;
2424
2425 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2426 for_each_domain(this_cpu, sd) {
2427 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2428 schedstat_inc(sd, ttwu_wake_remote);
2429 break;
2430 }
2431 }
2432 }
2433#endif /* CONFIG_SMP */
2434
2435 schedstat_inc(rq, ttwu_count);
9ed3811a 2436 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2437
2438 if (wake_flags & WF_SYNC)
9ed3811a 2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2440
2441 if (cpu != task_cpu(p))
9ed3811a 2442 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
9ed3811a 2443
d7c01d27
PZ
2444#endif /* CONFIG_SCHEDSTATS */
2445}
2446
2447static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2448{
9ed3811a 2449 activate_task(rq, p, en_flags);
fd2f4419 2450 p->on_rq = 1;
c2f7115e
PZ
2451
2452 /* if a worker is waking up, notify workqueue */
2453 if (p->flags & PF_WQ_WORKER)
2454 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2455}
2456
89363381
PZ
2457static void
2458ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
9ed3811a 2459{
89363381 2460 trace_sched_wakeup(p, true);
9ed3811a
TH
2461 check_preempt_curr(rq, p, wake_flags);
2462
2463 p->state = TASK_RUNNING;
2464#ifdef CONFIG_SMP
2465 if (p->sched_class->task_woken)
2466 p->sched_class->task_woken(rq, p);
2467
2468 if (unlikely(rq->idle_stamp)) {
2469 u64 delta = rq->clock - rq->idle_stamp;
2470 u64 max = 2*sysctl_sched_migration_cost;
2471
2472 if (delta > max)
2473 rq->avg_idle = max;
2474 else
2475 update_avg(&rq->avg_idle, delta);
2476 rq->idle_stamp = 0;
2477 }
2478#endif
2479}
2480
2481/**
1da177e4 2482 * try_to_wake_up - wake up a thread
9ed3811a 2483 * @p: the thread to be awakened
1da177e4 2484 * @state: the mask of task states that can be woken
9ed3811a 2485 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2486 *
2487 * Put it on the run-queue if it's not already there. The "current"
2488 * thread is always on the run-queue (except when the actual
2489 * re-schedule is in progress), and as such you're allowed to do
2490 * the simpler "current->state = TASK_RUNNING" to mark yourself
2491 * runnable without the overhead of this.
2492 *
9ed3811a
TH
2493 * Returns %true if @p was woken up, %false if it was already running
2494 * or @state didn't match @p's state.
1da177e4 2495 */
7d478721
PZ
2496static int try_to_wake_up(struct task_struct *p, unsigned int state,
2497 int wake_flags)
1da177e4 2498{
cc367732 2499 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2500 unsigned long flags;
371fd7e7 2501 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2502 struct rq *rq;
1da177e4 2503
e9c84311 2504 this_cpu = get_cpu();
2398f2c6 2505
04e2f174 2506 smp_wmb();
013fdb80
PZ
2507 raw_spin_lock_irqsave(&p->pi_lock, flags);
2508 rq = __task_rq_lock(p);
e9c84311 2509 if (!(p->state & state))
1da177e4
LT
2510 goto out;
2511
d7c01d27
PZ
2512 cpu = task_cpu(p);
2513
fd2f4419 2514 if (p->on_rq)
1da177e4
LT
2515 goto out_running;
2516
cc367732 2517 orig_cpu = cpu;
1da177e4
LT
2518#ifdef CONFIG_SMP
2519 if (unlikely(task_running(rq, p)))
2520 goto out_activate;
2521
a8e4f2ea 2522 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2523 p->state = TASK_WAKING;
efbbd05a 2524
371fd7e7 2525 if (p->sched_class->task_waking) {
74f8e4b2 2526 p->sched_class->task_waking(p);
371fd7e7
PZ
2527 en_flags |= ENQUEUE_WAKING;
2528 }
efbbd05a 2529
7608dec2 2530 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
0017d735 2531 if (cpu != orig_cpu)
5d2f5a61 2532 set_task_cpu(p, cpu);
0017d735 2533 __task_rq_unlock(rq);
ab19cb23 2534
0970d299
PZ
2535 rq = cpu_rq(cpu);
2536 raw_spin_lock(&rq->lock);
f5dc3753 2537
0970d299
PZ
2538 /*
2539 * We migrated the task without holding either rq->lock, however
2540 * since the task is not on the task list itself, nobody else
2541 * will try and migrate the task, hence the rq should match the
2542 * cpu we just moved it to.
2543 */
2544 WARN_ON(task_cpu(p) != cpu);
e9c84311 2545 WARN_ON(p->state != TASK_WAKING);
1da177e4 2546
a8e4f2ea
PZ
2547 if (p->sched_contributes_to_load)
2548 rq->nr_uninterruptible--;
2549
1da177e4
LT
2550out_activate:
2551#endif /* CONFIG_SMP */
d7c01d27 2552 ttwu_activate(rq, p, en_flags);
1da177e4 2553out_running:
89363381 2554 ttwu_post_activation(p, rq, wake_flags);
d7c01d27 2555 ttwu_stat(rq, p, cpu, wake_flags);
89363381 2556 success = 1;
1da177e4 2557out:
013fdb80
PZ
2558 __task_rq_unlock(rq);
2559 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
e9c84311 2560 put_cpu();
1da177e4
LT
2561
2562 return success;
2563}
2564
21aa9af0
TH
2565/**
2566 * try_to_wake_up_local - try to wake up a local task with rq lock held
2567 * @p: the thread to be awakened
2568 *
b595076a 2569 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2570 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2571 * the current task. this_rq() stays locked over invocation.
2572 */
2573static void try_to_wake_up_local(struct task_struct *p)
2574{
2575 struct rq *rq = task_rq(p);
21aa9af0
TH
2576
2577 BUG_ON(rq != this_rq());
2578 BUG_ON(p == current);
2579 lockdep_assert_held(&rq->lock);
2580
2581 if (!(p->state & TASK_NORMAL))
2582 return;
2583
fd2f4419 2584 if (!p->on_rq)
d7c01d27
PZ
2585 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2586
89363381 2587 ttwu_post_activation(p, rq, 0);
d7c01d27 2588 ttwu_stat(rq, p, smp_processor_id(), 0);
21aa9af0
TH
2589}
2590
50fa610a
DH
2591/**
2592 * wake_up_process - Wake up a specific process
2593 * @p: The process to be woken up.
2594 *
2595 * Attempt to wake up the nominated process and move it to the set of runnable
2596 * processes. Returns 1 if the process was woken up, 0 if it was already
2597 * running.
2598 *
2599 * It may be assumed that this function implies a write memory barrier before
2600 * changing the task state if and only if any tasks are woken up.
2601 */
7ad5b3a5 2602int wake_up_process(struct task_struct *p)
1da177e4 2603{
d9514f6c 2604 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2605}
1da177e4
LT
2606EXPORT_SYMBOL(wake_up_process);
2607
7ad5b3a5 2608int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2609{
2610 return try_to_wake_up(p, state, 0);
2611}
2612
1da177e4
LT
2613/*
2614 * Perform scheduler related setup for a newly forked process p.
2615 * p is forked by current.
dd41f596
IM
2616 *
2617 * __sched_fork() is basic setup used by init_idle() too:
2618 */
2619static void __sched_fork(struct task_struct *p)
2620{
fd2f4419
PZ
2621 p->on_rq = 0;
2622
2623 p->se.on_rq = 0;
dd41f596
IM
2624 p->se.exec_start = 0;
2625 p->se.sum_exec_runtime = 0;
f6cf891c 2626 p->se.prev_sum_exec_runtime = 0;
6c594c21 2627 p->se.nr_migrations = 0;
da7a735e 2628 p->se.vruntime = 0;
fd2f4419 2629 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2630
2631#ifdef CONFIG_SCHEDSTATS
41acab88 2632 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2633#endif
476d139c 2634
fa717060 2635 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2636
e107be36
AK
2637#ifdef CONFIG_PREEMPT_NOTIFIERS
2638 INIT_HLIST_HEAD(&p->preempt_notifiers);
2639#endif
dd41f596
IM
2640}
2641
2642/*
2643 * fork()/clone()-time setup:
2644 */
2645void sched_fork(struct task_struct *p, int clone_flags)
2646{
2647 int cpu = get_cpu();
2648
2649 __sched_fork(p);
06b83b5f 2650 /*
0017d735 2651 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2652 * nobody will actually run it, and a signal or other external
2653 * event cannot wake it up and insert it on the runqueue either.
2654 */
0017d735 2655 p->state = TASK_RUNNING;
dd41f596 2656
b9dc29e7
MG
2657 /*
2658 * Revert to default priority/policy on fork if requested.
2659 */
2660 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2661 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2662 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2663 p->normal_prio = p->static_prio;
2664 }
b9dc29e7 2665
6c697bdf
MG
2666 if (PRIO_TO_NICE(p->static_prio) < 0) {
2667 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2668 p->normal_prio = p->static_prio;
6c697bdf
MG
2669 set_load_weight(p);
2670 }
2671
b9dc29e7
MG
2672 /*
2673 * We don't need the reset flag anymore after the fork. It has
2674 * fulfilled its duty:
2675 */
2676 p->sched_reset_on_fork = 0;
2677 }
ca94c442 2678
f83f9ac2
PW
2679 /*
2680 * Make sure we do not leak PI boosting priority to the child.
2681 */
2682 p->prio = current->normal_prio;
2683
2ddbf952
HS
2684 if (!rt_prio(p->prio))
2685 p->sched_class = &fair_sched_class;
b29739f9 2686
cd29fe6f
PZ
2687 if (p->sched_class->task_fork)
2688 p->sched_class->task_fork(p);
2689
86951599
PZ
2690 /*
2691 * The child is not yet in the pid-hash so no cgroup attach races,
2692 * and the cgroup is pinned to this child due to cgroup_fork()
2693 * is ran before sched_fork().
2694 *
2695 * Silence PROVE_RCU.
2696 */
2697 rcu_read_lock();
5f3edc1b 2698 set_task_cpu(p, cpu);
86951599 2699 rcu_read_unlock();
5f3edc1b 2700
52f17b6c 2701#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2702 if (likely(sched_info_on()))
52f17b6c 2703 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2704#endif
3ca7a440
PZ
2705#if defined(CONFIG_SMP)
2706 p->on_cpu = 0;
4866cde0 2707#endif
1da177e4 2708#ifdef CONFIG_PREEMPT
4866cde0 2709 /* Want to start with kernel preemption disabled. */
a1261f54 2710 task_thread_info(p)->preempt_count = 1;
1da177e4 2711#endif
806c09a7 2712#ifdef CONFIG_SMP
917b627d 2713 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2714#endif
917b627d 2715
476d139c 2716 put_cpu();
1da177e4
LT
2717}
2718
2719/*
2720 * wake_up_new_task - wake up a newly created task for the first time.
2721 *
2722 * This function will do some initial scheduler statistics housekeeping
2723 * that must be done for every newly created context, then puts the task
2724 * on the runqueue and wakes it.
2725 */
7ad5b3a5 2726void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2727{
2728 unsigned long flags;
dd41f596 2729 struct rq *rq;
c890692b 2730 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2731
2732#ifdef CONFIG_SMP
0017d735
PZ
2733 rq = task_rq_lock(p, &flags);
2734 p->state = TASK_WAKING;
2735
fabf318e
PZ
2736 /*
2737 * Fork balancing, do it here and not earlier because:
2738 * - cpus_allowed can change in the fork path
2739 * - any previously selected cpu might disappear through hotplug
2740 *
0017d735
PZ
2741 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2742 * without people poking at ->cpus_allowed.
fabf318e 2743 */
7608dec2 2744 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
fabf318e 2745 set_task_cpu(p, cpu);
1da177e4 2746
06b83b5f 2747 p->state = TASK_RUNNING;
0017d735
PZ
2748 task_rq_unlock(rq, &flags);
2749#endif
2750
2751 rq = task_rq_lock(p, &flags);
cd29fe6f 2752 activate_task(rq, p, 0);
fd2f4419 2753 p->on_rq = 1;
89363381 2754 trace_sched_wakeup_new(p, true);
a7558e01 2755 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2756#ifdef CONFIG_SMP
efbbd05a
PZ
2757 if (p->sched_class->task_woken)
2758 p->sched_class->task_woken(rq, p);
9a897c5a 2759#endif
dd41f596 2760 task_rq_unlock(rq, &flags);
fabf318e 2761 put_cpu();
1da177e4
LT
2762}
2763
e107be36
AK
2764#ifdef CONFIG_PREEMPT_NOTIFIERS
2765
2766/**
80dd99b3 2767 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2768 * @notifier: notifier struct to register
e107be36
AK
2769 */
2770void preempt_notifier_register(struct preempt_notifier *notifier)
2771{
2772 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2773}
2774EXPORT_SYMBOL_GPL(preempt_notifier_register);
2775
2776/**
2777 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2778 * @notifier: notifier struct to unregister
e107be36
AK
2779 *
2780 * This is safe to call from within a preemption notifier.
2781 */
2782void preempt_notifier_unregister(struct preempt_notifier *notifier)
2783{
2784 hlist_del(&notifier->link);
2785}
2786EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2787
2788static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2789{
2790 struct preempt_notifier *notifier;
2791 struct hlist_node *node;
2792
2793 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2794 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2795}
2796
2797static void
2798fire_sched_out_preempt_notifiers(struct task_struct *curr,
2799 struct task_struct *next)
2800{
2801 struct preempt_notifier *notifier;
2802 struct hlist_node *node;
2803
2804 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2805 notifier->ops->sched_out(notifier, next);
2806}
2807
6d6bc0ad 2808#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2809
2810static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2811{
2812}
2813
2814static void
2815fire_sched_out_preempt_notifiers(struct task_struct *curr,
2816 struct task_struct *next)
2817{
2818}
2819
6d6bc0ad 2820#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2821
4866cde0
NP
2822/**
2823 * prepare_task_switch - prepare to switch tasks
2824 * @rq: the runqueue preparing to switch
421cee29 2825 * @prev: the current task that is being switched out
4866cde0
NP
2826 * @next: the task we are going to switch to.
2827 *
2828 * This is called with the rq lock held and interrupts off. It must
2829 * be paired with a subsequent finish_task_switch after the context
2830 * switch.
2831 *
2832 * prepare_task_switch sets up locking and calls architecture specific
2833 * hooks.
2834 */
e107be36
AK
2835static inline void
2836prepare_task_switch(struct rq *rq, struct task_struct *prev,
2837 struct task_struct *next)
4866cde0 2838{
fe4b04fa
PZ
2839 sched_info_switch(prev, next);
2840 perf_event_task_sched_out(prev, next);
e107be36 2841 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2842 prepare_lock_switch(rq, next);
2843 prepare_arch_switch(next);
fe4b04fa 2844 trace_sched_switch(prev, next);
4866cde0
NP
2845}
2846
1da177e4
LT
2847/**
2848 * finish_task_switch - clean up after a task-switch
344babaa 2849 * @rq: runqueue associated with task-switch
1da177e4
LT
2850 * @prev: the thread we just switched away from.
2851 *
4866cde0
NP
2852 * finish_task_switch must be called after the context switch, paired
2853 * with a prepare_task_switch call before the context switch.
2854 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2855 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2856 *
2857 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2858 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2859 * with the lock held can cause deadlocks; see schedule() for
2860 * details.)
2861 */
a9957449 2862static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2863 __releases(rq->lock)
2864{
1da177e4 2865 struct mm_struct *mm = rq->prev_mm;
55a101f8 2866 long prev_state;
1da177e4
LT
2867
2868 rq->prev_mm = NULL;
2869
2870 /*
2871 * A task struct has one reference for the use as "current".
c394cc9f 2872 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2873 * schedule one last time. The schedule call will never return, and
2874 * the scheduled task must drop that reference.
c394cc9f 2875 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2876 * still held, otherwise prev could be scheduled on another cpu, die
2877 * there before we look at prev->state, and then the reference would
2878 * be dropped twice.
2879 * Manfred Spraul <manfred@colorfullife.com>
2880 */
55a101f8 2881 prev_state = prev->state;
4866cde0 2882 finish_arch_switch(prev);
8381f65d
JI
2883#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2884 local_irq_disable();
2885#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2886 perf_event_task_sched_in(current);
8381f65d
JI
2887#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2888 local_irq_enable();
2889#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2890 finish_lock_switch(rq, prev);
e8fa1362 2891
e107be36 2892 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2893 if (mm)
2894 mmdrop(mm);
c394cc9f 2895 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2896 /*
2897 * Remove function-return probe instances associated with this
2898 * task and put them back on the free list.
9761eea8 2899 */
c6fd91f0 2900 kprobe_flush_task(prev);
1da177e4 2901 put_task_struct(prev);
c6fd91f0 2902 }
1da177e4
LT
2903}
2904
3f029d3c
GH
2905#ifdef CONFIG_SMP
2906
2907/* assumes rq->lock is held */
2908static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2909{
2910 if (prev->sched_class->pre_schedule)
2911 prev->sched_class->pre_schedule(rq, prev);
2912}
2913
2914/* rq->lock is NOT held, but preemption is disabled */
2915static inline void post_schedule(struct rq *rq)
2916{
2917 if (rq->post_schedule) {
2918 unsigned long flags;
2919
05fa785c 2920 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2921 if (rq->curr->sched_class->post_schedule)
2922 rq->curr->sched_class->post_schedule(rq);
05fa785c 2923 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2924
2925 rq->post_schedule = 0;
2926 }
2927}
2928
2929#else
da19ab51 2930
3f029d3c
GH
2931static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2932{
2933}
2934
2935static inline void post_schedule(struct rq *rq)
2936{
1da177e4
LT
2937}
2938
3f029d3c
GH
2939#endif
2940
1da177e4
LT
2941/**
2942 * schedule_tail - first thing a freshly forked thread must call.
2943 * @prev: the thread we just switched away from.
2944 */
36c8b586 2945asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2946 __releases(rq->lock)
2947{
70b97a7f
IM
2948 struct rq *rq = this_rq();
2949
4866cde0 2950 finish_task_switch(rq, prev);
da19ab51 2951
3f029d3c
GH
2952 /*
2953 * FIXME: do we need to worry about rq being invalidated by the
2954 * task_switch?
2955 */
2956 post_schedule(rq);
70b97a7f 2957
4866cde0
NP
2958#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2959 /* In this case, finish_task_switch does not reenable preemption */
2960 preempt_enable();
2961#endif
1da177e4 2962 if (current->set_child_tid)
b488893a 2963 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2964}
2965
2966/*
2967 * context_switch - switch to the new MM and the new
2968 * thread's register state.
2969 */
dd41f596 2970static inline void
70b97a7f 2971context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2972 struct task_struct *next)
1da177e4 2973{
dd41f596 2974 struct mm_struct *mm, *oldmm;
1da177e4 2975
e107be36 2976 prepare_task_switch(rq, prev, next);
fe4b04fa 2977
dd41f596
IM
2978 mm = next->mm;
2979 oldmm = prev->active_mm;
9226d125
ZA
2980 /*
2981 * For paravirt, this is coupled with an exit in switch_to to
2982 * combine the page table reload and the switch backend into
2983 * one hypercall.
2984 */
224101ed 2985 arch_start_context_switch(prev);
9226d125 2986
31915ab4 2987 if (!mm) {
1da177e4
LT
2988 next->active_mm = oldmm;
2989 atomic_inc(&oldmm->mm_count);
2990 enter_lazy_tlb(oldmm, next);
2991 } else
2992 switch_mm(oldmm, mm, next);
2993
31915ab4 2994 if (!prev->mm) {
1da177e4 2995 prev->active_mm = NULL;
1da177e4
LT
2996 rq->prev_mm = oldmm;
2997 }
3a5f5e48
IM
2998 /*
2999 * Since the runqueue lock will be released by the next
3000 * task (which is an invalid locking op but in the case
3001 * of the scheduler it's an obvious special-case), so we
3002 * do an early lockdep release here:
3003 */
3004#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3005 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3006#endif
1da177e4
LT
3007
3008 /* Here we just switch the register state and the stack. */
3009 switch_to(prev, next, prev);
3010
dd41f596
IM
3011 barrier();
3012 /*
3013 * this_rq must be evaluated again because prev may have moved
3014 * CPUs since it called schedule(), thus the 'rq' on its stack
3015 * frame will be invalid.
3016 */
3017 finish_task_switch(this_rq(), prev);
1da177e4
LT
3018}
3019
3020/*
3021 * nr_running, nr_uninterruptible and nr_context_switches:
3022 *
3023 * externally visible scheduler statistics: current number of runnable
3024 * threads, current number of uninterruptible-sleeping threads, total
3025 * number of context switches performed since bootup.
3026 */
3027unsigned long nr_running(void)
3028{
3029 unsigned long i, sum = 0;
3030
3031 for_each_online_cpu(i)
3032 sum += cpu_rq(i)->nr_running;
3033
3034 return sum;
f711f609 3035}
1da177e4
LT
3036
3037unsigned long nr_uninterruptible(void)
f711f609 3038{
1da177e4 3039 unsigned long i, sum = 0;
f711f609 3040
0a945022 3041 for_each_possible_cpu(i)
1da177e4 3042 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3043
3044 /*
1da177e4
LT
3045 * Since we read the counters lockless, it might be slightly
3046 * inaccurate. Do not allow it to go below zero though:
f711f609 3047 */
1da177e4
LT
3048 if (unlikely((long)sum < 0))
3049 sum = 0;
f711f609 3050
1da177e4 3051 return sum;
f711f609 3052}
f711f609 3053
1da177e4 3054unsigned long long nr_context_switches(void)
46cb4b7c 3055{
cc94abfc
SR
3056 int i;
3057 unsigned long long sum = 0;
46cb4b7c 3058
0a945022 3059 for_each_possible_cpu(i)
1da177e4 3060 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3061
1da177e4
LT
3062 return sum;
3063}
483b4ee6 3064
1da177e4
LT
3065unsigned long nr_iowait(void)
3066{
3067 unsigned long i, sum = 0;
483b4ee6 3068
0a945022 3069 for_each_possible_cpu(i)
1da177e4 3070 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3071
1da177e4
LT
3072 return sum;
3073}
483b4ee6 3074
8c215bd3 3075unsigned long nr_iowait_cpu(int cpu)
69d25870 3076{
8c215bd3 3077 struct rq *this = cpu_rq(cpu);
69d25870
AV
3078 return atomic_read(&this->nr_iowait);
3079}
46cb4b7c 3080
69d25870
AV
3081unsigned long this_cpu_load(void)
3082{
3083 struct rq *this = this_rq();
3084 return this->cpu_load[0];
3085}
e790fb0b 3086
46cb4b7c 3087
dce48a84
TG
3088/* Variables and functions for calc_load */
3089static atomic_long_t calc_load_tasks;
3090static unsigned long calc_load_update;
3091unsigned long avenrun[3];
3092EXPORT_SYMBOL(avenrun);
46cb4b7c 3093
74f5187a
PZ
3094static long calc_load_fold_active(struct rq *this_rq)
3095{
3096 long nr_active, delta = 0;
3097
3098 nr_active = this_rq->nr_running;
3099 nr_active += (long) this_rq->nr_uninterruptible;
3100
3101 if (nr_active != this_rq->calc_load_active) {
3102 delta = nr_active - this_rq->calc_load_active;
3103 this_rq->calc_load_active = nr_active;
3104 }
3105
3106 return delta;
3107}
3108
0f004f5a
PZ
3109static unsigned long
3110calc_load(unsigned long load, unsigned long exp, unsigned long active)
3111{
3112 load *= exp;
3113 load += active * (FIXED_1 - exp);
3114 load += 1UL << (FSHIFT - 1);
3115 return load >> FSHIFT;
3116}
3117
74f5187a
PZ
3118#ifdef CONFIG_NO_HZ
3119/*
3120 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3121 *
3122 * When making the ILB scale, we should try to pull this in as well.
3123 */
3124static atomic_long_t calc_load_tasks_idle;
3125
3126static void calc_load_account_idle(struct rq *this_rq)
3127{
3128 long delta;
3129
3130 delta = calc_load_fold_active(this_rq);
3131 if (delta)
3132 atomic_long_add(delta, &calc_load_tasks_idle);
3133}
3134
3135static long calc_load_fold_idle(void)
3136{
3137 long delta = 0;
3138
3139 /*
3140 * Its got a race, we don't care...
3141 */
3142 if (atomic_long_read(&calc_load_tasks_idle))
3143 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3144
3145 return delta;
3146}
0f004f5a
PZ
3147
3148/**
3149 * fixed_power_int - compute: x^n, in O(log n) time
3150 *
3151 * @x: base of the power
3152 * @frac_bits: fractional bits of @x
3153 * @n: power to raise @x to.
3154 *
3155 * By exploiting the relation between the definition of the natural power
3156 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3157 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3158 * (where: n_i \elem {0, 1}, the binary vector representing n),
3159 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3160 * of course trivially computable in O(log_2 n), the length of our binary
3161 * vector.
3162 */
3163static unsigned long
3164fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3165{
3166 unsigned long result = 1UL << frac_bits;
3167
3168 if (n) for (;;) {
3169 if (n & 1) {
3170 result *= x;
3171 result += 1UL << (frac_bits - 1);
3172 result >>= frac_bits;
3173 }
3174 n >>= 1;
3175 if (!n)
3176 break;
3177 x *= x;
3178 x += 1UL << (frac_bits - 1);
3179 x >>= frac_bits;
3180 }
3181
3182 return result;
3183}
3184
3185/*
3186 * a1 = a0 * e + a * (1 - e)
3187 *
3188 * a2 = a1 * e + a * (1 - e)
3189 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3190 * = a0 * e^2 + a * (1 - e) * (1 + e)
3191 *
3192 * a3 = a2 * e + a * (1 - e)
3193 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3194 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3195 *
3196 * ...
3197 *
3198 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3199 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3200 * = a0 * e^n + a * (1 - e^n)
3201 *
3202 * [1] application of the geometric series:
3203 *
3204 * n 1 - x^(n+1)
3205 * S_n := \Sum x^i = -------------
3206 * i=0 1 - x
3207 */
3208static unsigned long
3209calc_load_n(unsigned long load, unsigned long exp,
3210 unsigned long active, unsigned int n)
3211{
3212
3213 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3214}
3215
3216/*
3217 * NO_HZ can leave us missing all per-cpu ticks calling
3218 * calc_load_account_active(), but since an idle CPU folds its delta into
3219 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3220 * in the pending idle delta if our idle period crossed a load cycle boundary.
3221 *
3222 * Once we've updated the global active value, we need to apply the exponential
3223 * weights adjusted to the number of cycles missed.
3224 */
3225static void calc_global_nohz(unsigned long ticks)
3226{
3227 long delta, active, n;
3228
3229 if (time_before(jiffies, calc_load_update))
3230 return;
3231
3232 /*
3233 * If we crossed a calc_load_update boundary, make sure to fold
3234 * any pending idle changes, the respective CPUs might have
3235 * missed the tick driven calc_load_account_active() update
3236 * due to NO_HZ.
3237 */
3238 delta = calc_load_fold_idle();
3239 if (delta)
3240 atomic_long_add(delta, &calc_load_tasks);
3241
3242 /*
3243 * If we were idle for multiple load cycles, apply them.
3244 */
3245 if (ticks >= LOAD_FREQ) {
3246 n = ticks / LOAD_FREQ;
3247
3248 active = atomic_long_read(&calc_load_tasks);
3249 active = active > 0 ? active * FIXED_1 : 0;
3250
3251 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3252 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3253 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3254
3255 calc_load_update += n * LOAD_FREQ;
3256 }
3257
3258 /*
3259 * Its possible the remainder of the above division also crosses
3260 * a LOAD_FREQ period, the regular check in calc_global_load()
3261 * which comes after this will take care of that.
3262 *
3263 * Consider us being 11 ticks before a cycle completion, and us
3264 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3265 * age us 4 cycles, and the test in calc_global_load() will
3266 * pick up the final one.
3267 */
3268}
74f5187a
PZ
3269#else
3270static void calc_load_account_idle(struct rq *this_rq)
3271{
3272}
3273
3274static inline long calc_load_fold_idle(void)
3275{
3276 return 0;
3277}
0f004f5a
PZ
3278
3279static void calc_global_nohz(unsigned long ticks)
3280{
3281}
74f5187a
PZ
3282#endif
3283
2d02494f
TG
3284/**
3285 * get_avenrun - get the load average array
3286 * @loads: pointer to dest load array
3287 * @offset: offset to add
3288 * @shift: shift count to shift the result left
3289 *
3290 * These values are estimates at best, so no need for locking.
3291 */
3292void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3293{
3294 loads[0] = (avenrun[0] + offset) << shift;
3295 loads[1] = (avenrun[1] + offset) << shift;
3296 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3297}
46cb4b7c 3298
46cb4b7c 3299/*
dce48a84
TG
3300 * calc_load - update the avenrun load estimates 10 ticks after the
3301 * CPUs have updated calc_load_tasks.
7835b98b 3302 */
0f004f5a 3303void calc_global_load(unsigned long ticks)
7835b98b 3304{
dce48a84 3305 long active;
1da177e4 3306
0f004f5a
PZ
3307 calc_global_nohz(ticks);
3308
3309 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3310 return;
1da177e4 3311
dce48a84
TG
3312 active = atomic_long_read(&calc_load_tasks);
3313 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3314
dce48a84
TG
3315 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3316 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3317 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3318
dce48a84
TG
3319 calc_load_update += LOAD_FREQ;
3320}
1da177e4 3321
dce48a84 3322/*
74f5187a
PZ
3323 * Called from update_cpu_load() to periodically update this CPU's
3324 * active count.
dce48a84
TG
3325 */
3326static void calc_load_account_active(struct rq *this_rq)
3327{
74f5187a 3328 long delta;
08c183f3 3329
74f5187a
PZ
3330 if (time_before(jiffies, this_rq->calc_load_update))
3331 return;
783609c6 3332
74f5187a
PZ
3333 delta = calc_load_fold_active(this_rq);
3334 delta += calc_load_fold_idle();
3335 if (delta)
dce48a84 3336 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3337
3338 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3339}
3340
fdf3e95d
VP
3341/*
3342 * The exact cpuload at various idx values, calculated at every tick would be
3343 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3344 *
3345 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3346 * on nth tick when cpu may be busy, then we have:
3347 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3348 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3349 *
3350 * decay_load_missed() below does efficient calculation of
3351 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3352 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3353 *
3354 * The calculation is approximated on a 128 point scale.
3355 * degrade_zero_ticks is the number of ticks after which load at any
3356 * particular idx is approximated to be zero.
3357 * degrade_factor is a precomputed table, a row for each load idx.
3358 * Each column corresponds to degradation factor for a power of two ticks,
3359 * based on 128 point scale.
3360 * Example:
3361 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3362 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3363 *
3364 * With this power of 2 load factors, we can degrade the load n times
3365 * by looking at 1 bits in n and doing as many mult/shift instead of
3366 * n mult/shifts needed by the exact degradation.
3367 */
3368#define DEGRADE_SHIFT 7
3369static const unsigned char
3370 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3371static const unsigned char
3372 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3373 {0, 0, 0, 0, 0, 0, 0, 0},
3374 {64, 32, 8, 0, 0, 0, 0, 0},
3375 {96, 72, 40, 12, 1, 0, 0},
3376 {112, 98, 75, 43, 15, 1, 0},
3377 {120, 112, 98, 76, 45, 16, 2} };
3378
3379/*
3380 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3381 * would be when CPU is idle and so we just decay the old load without
3382 * adding any new load.
3383 */
3384static unsigned long
3385decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3386{
3387 int j = 0;
3388
3389 if (!missed_updates)
3390 return load;
3391
3392 if (missed_updates >= degrade_zero_ticks[idx])
3393 return 0;
3394
3395 if (idx == 1)
3396 return load >> missed_updates;
3397
3398 while (missed_updates) {
3399 if (missed_updates % 2)
3400 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3401
3402 missed_updates >>= 1;
3403 j++;
3404 }
3405 return load;
3406}
3407
46cb4b7c 3408/*
dd41f596 3409 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3410 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3411 * every tick. We fix it up based on jiffies.
46cb4b7c 3412 */
dd41f596 3413static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3414{
495eca49 3415 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3416 unsigned long curr_jiffies = jiffies;
3417 unsigned long pending_updates;
dd41f596 3418 int i, scale;
46cb4b7c 3419
dd41f596 3420 this_rq->nr_load_updates++;
46cb4b7c 3421
fdf3e95d
VP
3422 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3423 if (curr_jiffies == this_rq->last_load_update_tick)
3424 return;
3425
3426 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3427 this_rq->last_load_update_tick = curr_jiffies;
3428
dd41f596 3429 /* Update our load: */
fdf3e95d
VP
3430 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3431 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3432 unsigned long old_load, new_load;
7d1e6a9b 3433
dd41f596 3434 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3435
dd41f596 3436 old_load = this_rq->cpu_load[i];
fdf3e95d 3437 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3438 new_load = this_load;
a25707f3
IM
3439 /*
3440 * Round up the averaging division if load is increasing. This
3441 * prevents us from getting stuck on 9 if the load is 10, for
3442 * example.
3443 */
3444 if (new_load > old_load)
fdf3e95d
VP
3445 new_load += scale - 1;
3446
3447 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3448 }
da2b71ed
SS
3449
3450 sched_avg_update(this_rq);
fdf3e95d
VP
3451}
3452
3453static void update_cpu_load_active(struct rq *this_rq)
3454{
3455 update_cpu_load(this_rq);
46cb4b7c 3456
74f5187a 3457 calc_load_account_active(this_rq);
46cb4b7c
SS
3458}
3459
dd41f596 3460#ifdef CONFIG_SMP
8a0be9ef 3461
46cb4b7c 3462/*
38022906
PZ
3463 * sched_exec - execve() is a valuable balancing opportunity, because at
3464 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3465 */
38022906 3466void sched_exec(void)
46cb4b7c 3467{
38022906 3468 struct task_struct *p = current;
1da177e4 3469 unsigned long flags;
70b97a7f 3470 struct rq *rq;
0017d735 3471 int dest_cpu;
46cb4b7c 3472
1da177e4 3473 rq = task_rq_lock(p, &flags);
7608dec2 3474 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3475 if (dest_cpu == smp_processor_id())
3476 goto unlock;
38022906 3477
46cb4b7c 3478 /*
38022906 3479 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3480 */
30da688e 3481 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
7608dec2 3482 likely(cpu_active(dest_cpu)) && need_migrate_task(p)) {
969c7921 3483 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3484
1da177e4 3485 task_rq_unlock(rq, &flags);
969c7921 3486 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3487 return;
3488 }
0017d735 3489unlock:
1da177e4 3490 task_rq_unlock(rq, &flags);
1da177e4 3491}
dd41f596 3492
1da177e4
LT
3493#endif
3494
1da177e4
LT
3495DEFINE_PER_CPU(struct kernel_stat, kstat);
3496
3497EXPORT_PER_CPU_SYMBOL(kstat);
3498
3499/*
c5f8d995 3500 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3501 * @p in case that task is currently running.
c5f8d995
HS
3502 *
3503 * Called with task_rq_lock() held on @rq.
1da177e4 3504 */
c5f8d995
HS
3505static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3506{
3507 u64 ns = 0;
3508
3509 if (task_current(rq, p)) {
3510 update_rq_clock(rq);
305e6835 3511 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3512 if ((s64)ns < 0)
3513 ns = 0;
3514 }
3515
3516 return ns;
3517}
3518
bb34d92f 3519unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3520{
1da177e4 3521 unsigned long flags;
41b86e9c 3522 struct rq *rq;
bb34d92f 3523 u64 ns = 0;
48f24c4d 3524
41b86e9c 3525 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3526 ns = do_task_delta_exec(p, rq);
3527 task_rq_unlock(rq, &flags);
1508487e 3528
c5f8d995
HS
3529 return ns;
3530}
f06febc9 3531
c5f8d995
HS
3532/*
3533 * Return accounted runtime for the task.
3534 * In case the task is currently running, return the runtime plus current's
3535 * pending runtime that have not been accounted yet.
3536 */
3537unsigned long long task_sched_runtime(struct task_struct *p)
3538{
3539 unsigned long flags;
3540 struct rq *rq;
3541 u64 ns = 0;
3542
3543 rq = task_rq_lock(p, &flags);
3544 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3545 task_rq_unlock(rq, &flags);
3546
3547 return ns;
3548}
48f24c4d 3549
c5f8d995
HS
3550/*
3551 * Return sum_exec_runtime for the thread group.
3552 * In case the task is currently running, return the sum plus current's
3553 * pending runtime that have not been accounted yet.
3554 *
3555 * Note that the thread group might have other running tasks as well,
3556 * so the return value not includes other pending runtime that other
3557 * running tasks might have.
3558 */
3559unsigned long long thread_group_sched_runtime(struct task_struct *p)
3560{
3561 struct task_cputime totals;
3562 unsigned long flags;
3563 struct rq *rq;
3564 u64 ns;
3565
3566 rq = task_rq_lock(p, &flags);
3567 thread_group_cputime(p, &totals);
3568 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3569 task_rq_unlock(rq, &flags);
48f24c4d 3570
1da177e4
LT
3571 return ns;
3572}
3573
1da177e4
LT
3574/*
3575 * Account user cpu time to a process.
3576 * @p: the process that the cpu time gets accounted to
1da177e4 3577 * @cputime: the cpu time spent in user space since the last update
457533a7 3578 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3579 */
457533a7
MS
3580void account_user_time(struct task_struct *p, cputime_t cputime,
3581 cputime_t cputime_scaled)
1da177e4
LT
3582{
3583 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3584 cputime64_t tmp;
3585
457533a7 3586 /* Add user time to process. */
1da177e4 3587 p->utime = cputime_add(p->utime, cputime);
457533a7 3588 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3589 account_group_user_time(p, cputime);
1da177e4
LT
3590
3591 /* Add user time to cpustat. */
3592 tmp = cputime_to_cputime64(cputime);
3593 if (TASK_NICE(p) > 0)
3594 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3595 else
3596 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3597
3598 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3599 /* Account for user time used */
3600 acct_update_integrals(p);
1da177e4
LT
3601}
3602
94886b84
LV
3603/*
3604 * Account guest cpu time to a process.
3605 * @p: the process that the cpu time gets accounted to
3606 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3607 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3608 */
457533a7
MS
3609static void account_guest_time(struct task_struct *p, cputime_t cputime,
3610 cputime_t cputime_scaled)
94886b84
LV
3611{
3612 cputime64_t tmp;
3613 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3614
3615 tmp = cputime_to_cputime64(cputime);
3616
457533a7 3617 /* Add guest time to process. */
94886b84 3618 p->utime = cputime_add(p->utime, cputime);
457533a7 3619 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3620 account_group_user_time(p, cputime);
94886b84
LV
3621 p->gtime = cputime_add(p->gtime, cputime);
3622
457533a7 3623 /* Add guest time to cpustat. */
ce0e7b28
RO
3624 if (TASK_NICE(p) > 0) {
3625 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3626 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3627 } else {
3628 cpustat->user = cputime64_add(cpustat->user, tmp);
3629 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3630 }
94886b84
LV
3631}
3632
70a89a66
VP
3633/*
3634 * Account system cpu time to a process and desired cpustat field
3635 * @p: the process that the cpu time gets accounted to
3636 * @cputime: the cpu time spent in kernel space since the last update
3637 * @cputime_scaled: cputime scaled by cpu frequency
3638 * @target_cputime64: pointer to cpustat field that has to be updated
3639 */
3640static inline
3641void __account_system_time(struct task_struct *p, cputime_t cputime,
3642 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3643{
3644 cputime64_t tmp = cputime_to_cputime64(cputime);
3645
3646 /* Add system time to process. */
3647 p->stime = cputime_add(p->stime, cputime);
3648 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3649 account_group_system_time(p, cputime);
3650
3651 /* Add system time to cpustat. */
3652 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3653 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3654
3655 /* Account for system time used */
3656 acct_update_integrals(p);
3657}
3658
1da177e4
LT
3659/*
3660 * Account system cpu time to a process.
3661 * @p: the process that the cpu time gets accounted to
3662 * @hardirq_offset: the offset to subtract from hardirq_count()
3663 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3664 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3665 */
3666void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3667 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3668{
3669 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3670 cputime64_t *target_cputime64;
1da177e4 3671
983ed7a6 3672 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3673 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3674 return;
3675 }
94886b84 3676
1da177e4 3677 if (hardirq_count() - hardirq_offset)
70a89a66 3678 target_cputime64 = &cpustat->irq;
75e1056f 3679 else if (in_serving_softirq())
70a89a66 3680 target_cputime64 = &cpustat->softirq;
1da177e4 3681 else
70a89a66 3682 target_cputime64 = &cpustat->system;
ef12fefa 3683
70a89a66 3684 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3685}
3686
c66f08be 3687/*
1da177e4 3688 * Account for involuntary wait time.
544b4a1f 3689 * @cputime: the cpu time spent in involuntary wait
c66f08be 3690 */
79741dd3 3691void account_steal_time(cputime_t cputime)
c66f08be 3692{
79741dd3
MS
3693 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3694 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3695
3696 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3697}
3698
1da177e4 3699/*
79741dd3
MS
3700 * Account for idle time.
3701 * @cputime: the cpu time spent in idle wait
1da177e4 3702 */
79741dd3 3703void account_idle_time(cputime_t cputime)
1da177e4
LT
3704{
3705 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3706 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3707 struct rq *rq = this_rq();
1da177e4 3708
79741dd3
MS
3709 if (atomic_read(&rq->nr_iowait) > 0)
3710 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3711 else
3712 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3713}
3714
79741dd3
MS
3715#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3716
abb74cef
VP
3717#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3718/*
3719 * Account a tick to a process and cpustat
3720 * @p: the process that the cpu time gets accounted to
3721 * @user_tick: is the tick from userspace
3722 * @rq: the pointer to rq
3723 *
3724 * Tick demultiplexing follows the order
3725 * - pending hardirq update
3726 * - pending softirq update
3727 * - user_time
3728 * - idle_time
3729 * - system time
3730 * - check for guest_time
3731 * - else account as system_time
3732 *
3733 * Check for hardirq is done both for system and user time as there is
3734 * no timer going off while we are on hardirq and hence we may never get an
3735 * opportunity to update it solely in system time.
3736 * p->stime and friends are only updated on system time and not on irq
3737 * softirq as those do not count in task exec_runtime any more.
3738 */
3739static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3740 struct rq *rq)
3741{
3742 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3743 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3744 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3745
3746 if (irqtime_account_hi_update()) {
3747 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3748 } else if (irqtime_account_si_update()) {
3749 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3750 } else if (this_cpu_ksoftirqd() == p) {
3751 /*
3752 * ksoftirqd time do not get accounted in cpu_softirq_time.
3753 * So, we have to handle it separately here.
3754 * Also, p->stime needs to be updated for ksoftirqd.
3755 */
3756 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3757 &cpustat->softirq);
abb74cef
VP
3758 } else if (user_tick) {
3759 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3760 } else if (p == rq->idle) {
3761 account_idle_time(cputime_one_jiffy);
3762 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3763 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3764 } else {
3765 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3766 &cpustat->system);
3767 }
3768}
3769
3770static void irqtime_account_idle_ticks(int ticks)
3771{
3772 int i;
3773 struct rq *rq = this_rq();
3774
3775 for (i = 0; i < ticks; i++)
3776 irqtime_account_process_tick(current, 0, rq);
3777}
544b4a1f 3778#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3779static void irqtime_account_idle_ticks(int ticks) {}
3780static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3781 struct rq *rq) {}
544b4a1f 3782#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3783
3784/*
3785 * Account a single tick of cpu time.
3786 * @p: the process that the cpu time gets accounted to
3787 * @user_tick: indicates if the tick is a user or a system tick
3788 */
3789void account_process_tick(struct task_struct *p, int user_tick)
3790{
a42548a1 3791 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3792 struct rq *rq = this_rq();
3793
abb74cef
VP
3794 if (sched_clock_irqtime) {
3795 irqtime_account_process_tick(p, user_tick, rq);
3796 return;
3797 }
3798
79741dd3 3799 if (user_tick)
a42548a1 3800 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3801 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3802 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3803 one_jiffy_scaled);
3804 else
a42548a1 3805 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3806}
3807
3808/*
3809 * Account multiple ticks of steal time.
3810 * @p: the process from which the cpu time has been stolen
3811 * @ticks: number of stolen ticks
3812 */
3813void account_steal_ticks(unsigned long ticks)
3814{
3815 account_steal_time(jiffies_to_cputime(ticks));
3816}
3817
3818/*
3819 * Account multiple ticks of idle time.
3820 * @ticks: number of stolen ticks
3821 */
3822void account_idle_ticks(unsigned long ticks)
3823{
abb74cef
VP
3824
3825 if (sched_clock_irqtime) {
3826 irqtime_account_idle_ticks(ticks);
3827 return;
3828 }
3829
79741dd3 3830 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3831}
3832
79741dd3
MS
3833#endif
3834
49048622
BS
3835/*
3836 * Use precise platform statistics if available:
3837 */
3838#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3839void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3840{
d99ca3b9
HS
3841 *ut = p->utime;
3842 *st = p->stime;
49048622
BS
3843}
3844
0cf55e1e 3845void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3846{
0cf55e1e
HS
3847 struct task_cputime cputime;
3848
3849 thread_group_cputime(p, &cputime);
3850
3851 *ut = cputime.utime;
3852 *st = cputime.stime;
49048622
BS
3853}
3854#else
761b1d26
HS
3855
3856#ifndef nsecs_to_cputime
b7b20df9 3857# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3858#endif
3859
d180c5bc 3860void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3861{
d99ca3b9 3862 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3863
3864 /*
3865 * Use CFS's precise accounting:
3866 */
d180c5bc 3867 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3868
3869 if (total) {
e75e863d 3870 u64 temp = rtime;
d180c5bc 3871
e75e863d 3872 temp *= utime;
49048622 3873 do_div(temp, total);
d180c5bc
HS
3874 utime = (cputime_t)temp;
3875 } else
3876 utime = rtime;
49048622 3877
d180c5bc
HS
3878 /*
3879 * Compare with previous values, to keep monotonicity:
3880 */
761b1d26 3881 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3882 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3883
d99ca3b9
HS
3884 *ut = p->prev_utime;
3885 *st = p->prev_stime;
49048622
BS
3886}
3887
0cf55e1e
HS
3888/*
3889 * Must be called with siglock held.
3890 */
3891void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3892{
0cf55e1e
HS
3893 struct signal_struct *sig = p->signal;
3894 struct task_cputime cputime;
3895 cputime_t rtime, utime, total;
49048622 3896
0cf55e1e 3897 thread_group_cputime(p, &cputime);
49048622 3898
0cf55e1e
HS
3899 total = cputime_add(cputime.utime, cputime.stime);
3900 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3901
0cf55e1e 3902 if (total) {
e75e863d 3903 u64 temp = rtime;
49048622 3904
e75e863d 3905 temp *= cputime.utime;
0cf55e1e
HS
3906 do_div(temp, total);
3907 utime = (cputime_t)temp;
3908 } else
3909 utime = rtime;
3910
3911 sig->prev_utime = max(sig->prev_utime, utime);
3912 sig->prev_stime = max(sig->prev_stime,
3913 cputime_sub(rtime, sig->prev_utime));
3914
3915 *ut = sig->prev_utime;
3916 *st = sig->prev_stime;
49048622 3917}
49048622 3918#endif
49048622 3919
7835b98b
CL
3920/*
3921 * This function gets called by the timer code, with HZ frequency.
3922 * We call it with interrupts disabled.
3923 *
3924 * It also gets called by the fork code, when changing the parent's
3925 * timeslices.
3926 */
3927void scheduler_tick(void)
3928{
7835b98b
CL
3929 int cpu = smp_processor_id();
3930 struct rq *rq = cpu_rq(cpu);
dd41f596 3931 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3932
3933 sched_clock_tick();
dd41f596 3934
05fa785c 3935 raw_spin_lock(&rq->lock);
3e51f33f 3936 update_rq_clock(rq);
fdf3e95d 3937 update_cpu_load_active(rq);
fa85ae24 3938 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3939 raw_spin_unlock(&rq->lock);
7835b98b 3940
e9d2b064 3941 perf_event_task_tick();
e220d2dc 3942
e418e1c2 3943#ifdef CONFIG_SMP
dd41f596
IM
3944 rq->idle_at_tick = idle_cpu(cpu);
3945 trigger_load_balance(rq, cpu);
e418e1c2 3946#endif
1da177e4
LT
3947}
3948
132380a0 3949notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3950{
3951 if (in_lock_functions(addr)) {
3952 addr = CALLER_ADDR2;
3953 if (in_lock_functions(addr))
3954 addr = CALLER_ADDR3;
3955 }
3956 return addr;
3957}
1da177e4 3958
7e49fcce
SR
3959#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3960 defined(CONFIG_PREEMPT_TRACER))
3961
43627582 3962void __kprobes add_preempt_count(int val)
1da177e4 3963{
6cd8a4bb 3964#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3965 /*
3966 * Underflow?
3967 */
9a11b49a
IM
3968 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3969 return;
6cd8a4bb 3970#endif
1da177e4 3971 preempt_count() += val;
6cd8a4bb 3972#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3973 /*
3974 * Spinlock count overflowing soon?
3975 */
33859f7f
MOS
3976 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3977 PREEMPT_MASK - 10);
6cd8a4bb
SR
3978#endif
3979 if (preempt_count() == val)
3980 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3981}
3982EXPORT_SYMBOL(add_preempt_count);
3983
43627582 3984void __kprobes sub_preempt_count(int val)
1da177e4 3985{
6cd8a4bb 3986#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3987 /*
3988 * Underflow?
3989 */
01e3eb82 3990 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3991 return;
1da177e4
LT
3992 /*
3993 * Is the spinlock portion underflowing?
3994 */
9a11b49a
IM
3995 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3996 !(preempt_count() & PREEMPT_MASK)))
3997 return;
6cd8a4bb 3998#endif
9a11b49a 3999
6cd8a4bb
SR
4000 if (preempt_count() == val)
4001 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4002 preempt_count() -= val;
4003}
4004EXPORT_SYMBOL(sub_preempt_count);
4005
4006#endif
4007
4008/*
dd41f596 4009 * Print scheduling while atomic bug:
1da177e4 4010 */
dd41f596 4011static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4012{
838225b4
SS
4013 struct pt_regs *regs = get_irq_regs();
4014
3df0fc5b
PZ
4015 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4016 prev->comm, prev->pid, preempt_count());
838225b4 4017
dd41f596 4018 debug_show_held_locks(prev);
e21f5b15 4019 print_modules();
dd41f596
IM
4020 if (irqs_disabled())
4021 print_irqtrace_events(prev);
838225b4
SS
4022
4023 if (regs)
4024 show_regs(regs);
4025 else
4026 dump_stack();
dd41f596 4027}
1da177e4 4028
dd41f596
IM
4029/*
4030 * Various schedule()-time debugging checks and statistics:
4031 */
4032static inline void schedule_debug(struct task_struct *prev)
4033{
1da177e4 4034 /*
41a2d6cf 4035 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4036 * schedule() atomically, we ignore that path for now.
4037 * Otherwise, whine if we are scheduling when we should not be.
4038 */
3f33a7ce 4039 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4040 __schedule_bug(prev);
4041
1da177e4
LT
4042 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4043
2d72376b 4044 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4045#ifdef CONFIG_SCHEDSTATS
4046 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4047 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4048 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4049 }
4050#endif
dd41f596
IM
4051}
4052
6cecd084 4053static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4054{
fd2f4419 4055 if (prev->on_rq)
a64692a3 4056 update_rq_clock(rq);
6cecd084 4057 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4058}
4059
dd41f596
IM
4060/*
4061 * Pick up the highest-prio task:
4062 */
4063static inline struct task_struct *
b67802ea 4064pick_next_task(struct rq *rq)
dd41f596 4065{
5522d5d5 4066 const struct sched_class *class;
dd41f596 4067 struct task_struct *p;
1da177e4
LT
4068
4069 /*
dd41f596
IM
4070 * Optimization: we know that if all tasks are in
4071 * the fair class we can call that function directly:
1da177e4 4072 */
dd41f596 4073 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4074 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4075 if (likely(p))
4076 return p;
1da177e4
LT
4077 }
4078
34f971f6 4079 for_each_class(class) {
fb8d4724 4080 p = class->pick_next_task(rq);
dd41f596
IM
4081 if (p)
4082 return p;
dd41f596 4083 }
34f971f6
PZ
4084
4085 BUG(); /* the idle class will always have a runnable task */
dd41f596 4086}
1da177e4 4087
dd41f596
IM
4088/*
4089 * schedule() is the main scheduler function.
4090 */
ff743345 4091asmlinkage void __sched schedule(void)
dd41f596
IM
4092{
4093 struct task_struct *prev, *next;
67ca7bde 4094 unsigned long *switch_count;
dd41f596 4095 struct rq *rq;
31656519 4096 int cpu;
dd41f596 4097
ff743345
PZ
4098need_resched:
4099 preempt_disable();
dd41f596
IM
4100 cpu = smp_processor_id();
4101 rq = cpu_rq(cpu);
25502a6c 4102 rcu_note_context_switch(cpu);
dd41f596 4103 prev = rq->curr;
dd41f596 4104
dd41f596 4105 schedule_debug(prev);
1da177e4 4106
31656519 4107 if (sched_feat(HRTICK))
f333fdc9 4108 hrtick_clear(rq);
8f4d37ec 4109
05fa785c 4110 raw_spin_lock_irq(&rq->lock);
1da177e4 4111
246d86b5 4112 switch_count = &prev->nivcsw;
1da177e4 4113 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4114 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4115 prev->state = TASK_RUNNING;
21aa9af0
TH
4116 } else {
4117 /*
4118 * If a worker is going to sleep, notify and
4119 * ask workqueue whether it wants to wake up a
4120 * task to maintain concurrency. If so, wake
4121 * up the task.
4122 */
4123 if (prev->flags & PF_WQ_WORKER) {
4124 struct task_struct *to_wakeup;
4125
4126 to_wakeup = wq_worker_sleeping(prev, cpu);
4127 if (to_wakeup)
4128 try_to_wake_up_local(to_wakeup);
4129 }
fd2f4419 4130
371fd7e7 4131 deactivate_task(rq, prev, DEQUEUE_SLEEP);
fd2f4419 4132 prev->on_rq = 0;
6631e635
LT
4133
4134 /*
4135 * If we are going to sleep and we have plugged IO queued, make
4136 * sure to submit it to avoid deadlocks.
4137 */
4138 if (blk_needs_flush_plug(prev)) {
4139 raw_spin_unlock(&rq->lock);
4140 blk_flush_plug(prev);
4141 raw_spin_lock(&rq->lock);
4142 }
21aa9af0 4143 }
dd41f596 4144 switch_count = &prev->nvcsw;
1da177e4
LT
4145 }
4146
3f029d3c 4147 pre_schedule(rq, prev);
f65eda4f 4148
dd41f596 4149 if (unlikely(!rq->nr_running))
1da177e4 4150 idle_balance(cpu, rq);
1da177e4 4151
df1c99d4 4152 put_prev_task(rq, prev);
b67802ea 4153 next = pick_next_task(rq);
f26f9aff
MG
4154 clear_tsk_need_resched(prev);
4155 rq->skip_clock_update = 0;
1da177e4 4156
1da177e4 4157 if (likely(prev != next)) {
1da177e4
LT
4158 rq->nr_switches++;
4159 rq->curr = next;
4160 ++*switch_count;
4161
dd41f596 4162 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4163 /*
246d86b5
ON
4164 * The context switch have flipped the stack from under us
4165 * and restored the local variables which were saved when
4166 * this task called schedule() in the past. prev == current
4167 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4168 */
4169 cpu = smp_processor_id();
4170 rq = cpu_rq(cpu);
1da177e4 4171 } else
05fa785c 4172 raw_spin_unlock_irq(&rq->lock);
1da177e4 4173
3f029d3c 4174 post_schedule(rq);
1da177e4 4175
1da177e4 4176 preempt_enable_no_resched();
ff743345 4177 if (need_resched())
1da177e4
LT
4178 goto need_resched;
4179}
1da177e4
LT
4180EXPORT_SYMBOL(schedule);
4181
c08f7829 4182#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4183
c6eb3dda
PZ
4184static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4185{
4186 bool ret = false;
0d66bf6d 4187
c6eb3dda
PZ
4188 rcu_read_lock();
4189 if (lock->owner != owner)
4190 goto fail;
0d66bf6d
PZ
4191
4192 /*
c6eb3dda
PZ
4193 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4194 * lock->owner still matches owner, if that fails, owner might
4195 * point to free()d memory, if it still matches, the rcu_read_lock()
4196 * ensures the memory stays valid.
0d66bf6d 4197 */
c6eb3dda 4198 barrier();
0d66bf6d 4199
c6eb3dda
PZ
4200 ret = owner->on_cpu;
4201fail:
4202 rcu_read_unlock();
0d66bf6d 4203
c6eb3dda
PZ
4204 return ret;
4205}
0d66bf6d 4206
c6eb3dda
PZ
4207/*
4208 * Look out! "owner" is an entirely speculative pointer
4209 * access and not reliable.
4210 */
4211int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4212{
4213 if (!sched_feat(OWNER_SPIN))
4214 return 0;
0d66bf6d 4215
c6eb3dda
PZ
4216 while (owner_running(lock, owner)) {
4217 if (need_resched())
0d66bf6d
PZ
4218 return 0;
4219
335d7afb 4220 arch_mutex_cpu_relax();
0d66bf6d 4221 }
4b402210 4222
c6eb3dda
PZ
4223 /*
4224 * If the owner changed to another task there is likely
4225 * heavy contention, stop spinning.
4226 */
4227 if (lock->owner)
4228 return 0;
4229
0d66bf6d
PZ
4230 return 1;
4231}
4232#endif
4233
1da177e4
LT
4234#ifdef CONFIG_PREEMPT
4235/*
2ed6e34f 4236 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4237 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4238 * occur there and call schedule directly.
4239 */
d1f74e20 4240asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4241{
4242 struct thread_info *ti = current_thread_info();
6478d880 4243
1da177e4
LT
4244 /*
4245 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4246 * we do not want to preempt the current task. Just return..
1da177e4 4247 */
beed33a8 4248 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4249 return;
4250
3a5c359a 4251 do {
d1f74e20 4252 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4253 schedule();
d1f74e20 4254 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4255
3a5c359a
AK
4256 /*
4257 * Check again in case we missed a preemption opportunity
4258 * between schedule and now.
4259 */
4260 barrier();
5ed0cec0 4261 } while (need_resched());
1da177e4 4262}
1da177e4
LT
4263EXPORT_SYMBOL(preempt_schedule);
4264
4265/*
2ed6e34f 4266 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4267 * off of irq context.
4268 * Note, that this is called and return with irqs disabled. This will
4269 * protect us against recursive calling from irq.
4270 */
4271asmlinkage void __sched preempt_schedule_irq(void)
4272{
4273 struct thread_info *ti = current_thread_info();
6478d880 4274
2ed6e34f 4275 /* Catch callers which need to be fixed */
1da177e4
LT
4276 BUG_ON(ti->preempt_count || !irqs_disabled());
4277
3a5c359a
AK
4278 do {
4279 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4280 local_irq_enable();
4281 schedule();
4282 local_irq_disable();
3a5c359a 4283 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4284
3a5c359a
AK
4285 /*
4286 * Check again in case we missed a preemption opportunity
4287 * between schedule and now.
4288 */
4289 barrier();
5ed0cec0 4290 } while (need_resched());
1da177e4
LT
4291}
4292
4293#endif /* CONFIG_PREEMPT */
4294
63859d4f 4295int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4296 void *key)
1da177e4 4297{
63859d4f 4298 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4299}
1da177e4
LT
4300EXPORT_SYMBOL(default_wake_function);
4301
4302/*
41a2d6cf
IM
4303 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4304 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4305 * number) then we wake all the non-exclusive tasks and one exclusive task.
4306 *
4307 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4308 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4309 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4310 */
78ddb08f 4311static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4312 int nr_exclusive, int wake_flags, void *key)
1da177e4 4313{
2e45874c 4314 wait_queue_t *curr, *next;
1da177e4 4315
2e45874c 4316 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4317 unsigned flags = curr->flags;
4318
63859d4f 4319 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4320 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4321 break;
4322 }
4323}
4324
4325/**
4326 * __wake_up - wake up threads blocked on a waitqueue.
4327 * @q: the waitqueue
4328 * @mode: which threads
4329 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4330 * @key: is directly passed to the wakeup function
50fa610a
DH
4331 *
4332 * It may be assumed that this function implies a write memory barrier before
4333 * changing the task state if and only if any tasks are woken up.
1da177e4 4334 */
7ad5b3a5 4335void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4336 int nr_exclusive, void *key)
1da177e4
LT
4337{
4338 unsigned long flags;
4339
4340 spin_lock_irqsave(&q->lock, flags);
4341 __wake_up_common(q, mode, nr_exclusive, 0, key);
4342 spin_unlock_irqrestore(&q->lock, flags);
4343}
1da177e4
LT
4344EXPORT_SYMBOL(__wake_up);
4345
4346/*
4347 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4348 */
7ad5b3a5 4349void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4350{
4351 __wake_up_common(q, mode, 1, 0, NULL);
4352}
22c43c81 4353EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4354
4ede816a
DL
4355void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4356{
4357 __wake_up_common(q, mode, 1, 0, key);
4358}
bf294b41 4359EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4360
1da177e4 4361/**
4ede816a 4362 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4363 * @q: the waitqueue
4364 * @mode: which threads
4365 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4366 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4367 *
4368 * The sync wakeup differs that the waker knows that it will schedule
4369 * away soon, so while the target thread will be woken up, it will not
4370 * be migrated to another CPU - ie. the two threads are 'synchronized'
4371 * with each other. This can prevent needless bouncing between CPUs.
4372 *
4373 * On UP it can prevent extra preemption.
50fa610a
DH
4374 *
4375 * It may be assumed that this function implies a write memory barrier before
4376 * changing the task state if and only if any tasks are woken up.
1da177e4 4377 */
4ede816a
DL
4378void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4379 int nr_exclusive, void *key)
1da177e4
LT
4380{
4381 unsigned long flags;
7d478721 4382 int wake_flags = WF_SYNC;
1da177e4
LT
4383
4384 if (unlikely(!q))
4385 return;
4386
4387 if (unlikely(!nr_exclusive))
7d478721 4388 wake_flags = 0;
1da177e4
LT
4389
4390 spin_lock_irqsave(&q->lock, flags);
7d478721 4391 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4392 spin_unlock_irqrestore(&q->lock, flags);
4393}
4ede816a
DL
4394EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4395
4396/*
4397 * __wake_up_sync - see __wake_up_sync_key()
4398 */
4399void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4400{
4401 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4402}
1da177e4
LT
4403EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4404
65eb3dc6
KD
4405/**
4406 * complete: - signals a single thread waiting on this completion
4407 * @x: holds the state of this particular completion
4408 *
4409 * This will wake up a single thread waiting on this completion. Threads will be
4410 * awakened in the same order in which they were queued.
4411 *
4412 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4413 *
4414 * It may be assumed that this function implies a write memory barrier before
4415 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4416 */
b15136e9 4417void complete(struct completion *x)
1da177e4
LT
4418{
4419 unsigned long flags;
4420
4421 spin_lock_irqsave(&x->wait.lock, flags);
4422 x->done++;
d9514f6c 4423 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4424 spin_unlock_irqrestore(&x->wait.lock, flags);
4425}
4426EXPORT_SYMBOL(complete);
4427
65eb3dc6
KD
4428/**
4429 * complete_all: - signals all threads waiting on this completion
4430 * @x: holds the state of this particular completion
4431 *
4432 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4433 *
4434 * It may be assumed that this function implies a write memory barrier before
4435 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4436 */
b15136e9 4437void complete_all(struct completion *x)
1da177e4
LT
4438{
4439 unsigned long flags;
4440
4441 spin_lock_irqsave(&x->wait.lock, flags);
4442 x->done += UINT_MAX/2;
d9514f6c 4443 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4444 spin_unlock_irqrestore(&x->wait.lock, flags);
4445}
4446EXPORT_SYMBOL(complete_all);
4447
8cbbe86d
AK
4448static inline long __sched
4449do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4450{
1da177e4
LT
4451 if (!x->done) {
4452 DECLARE_WAITQUEUE(wait, current);
4453
a93d2f17 4454 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4455 do {
94d3d824 4456 if (signal_pending_state(state, current)) {
ea71a546
ON
4457 timeout = -ERESTARTSYS;
4458 break;
8cbbe86d
AK
4459 }
4460 __set_current_state(state);
1da177e4
LT
4461 spin_unlock_irq(&x->wait.lock);
4462 timeout = schedule_timeout(timeout);
4463 spin_lock_irq(&x->wait.lock);
ea71a546 4464 } while (!x->done && timeout);
1da177e4 4465 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4466 if (!x->done)
4467 return timeout;
1da177e4
LT
4468 }
4469 x->done--;
ea71a546 4470 return timeout ?: 1;
1da177e4 4471}
1da177e4 4472
8cbbe86d
AK
4473static long __sched
4474wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4475{
1da177e4
LT
4476 might_sleep();
4477
4478 spin_lock_irq(&x->wait.lock);
8cbbe86d 4479 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4480 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4481 return timeout;
4482}
1da177e4 4483
65eb3dc6
KD
4484/**
4485 * wait_for_completion: - waits for completion of a task
4486 * @x: holds the state of this particular completion
4487 *
4488 * This waits to be signaled for completion of a specific task. It is NOT
4489 * interruptible and there is no timeout.
4490 *
4491 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4492 * and interrupt capability. Also see complete().
4493 */
b15136e9 4494void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4495{
4496 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4497}
8cbbe86d 4498EXPORT_SYMBOL(wait_for_completion);
1da177e4 4499
65eb3dc6
KD
4500/**
4501 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4502 * @x: holds the state of this particular completion
4503 * @timeout: timeout value in jiffies
4504 *
4505 * This waits for either a completion of a specific task to be signaled or for a
4506 * specified timeout to expire. The timeout is in jiffies. It is not
4507 * interruptible.
4508 */
b15136e9 4509unsigned long __sched
8cbbe86d 4510wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4511{
8cbbe86d 4512 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4513}
8cbbe86d 4514EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4515
65eb3dc6
KD
4516/**
4517 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4518 * @x: holds the state of this particular completion
4519 *
4520 * This waits for completion of a specific task to be signaled. It is
4521 * interruptible.
4522 */
8cbbe86d 4523int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4524{
51e97990
AK
4525 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4526 if (t == -ERESTARTSYS)
4527 return t;
4528 return 0;
0fec171c 4529}
8cbbe86d 4530EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4531
65eb3dc6
KD
4532/**
4533 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4534 * @x: holds the state of this particular completion
4535 * @timeout: timeout value in jiffies
4536 *
4537 * This waits for either a completion of a specific task to be signaled or for a
4538 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4539 */
6bf41237 4540long __sched
8cbbe86d
AK
4541wait_for_completion_interruptible_timeout(struct completion *x,
4542 unsigned long timeout)
0fec171c 4543{
8cbbe86d 4544 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4545}
8cbbe86d 4546EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4547
65eb3dc6
KD
4548/**
4549 * wait_for_completion_killable: - waits for completion of a task (killable)
4550 * @x: holds the state of this particular completion
4551 *
4552 * This waits to be signaled for completion of a specific task. It can be
4553 * interrupted by a kill signal.
4554 */
009e577e
MW
4555int __sched wait_for_completion_killable(struct completion *x)
4556{
4557 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4558 if (t == -ERESTARTSYS)
4559 return t;
4560 return 0;
4561}
4562EXPORT_SYMBOL(wait_for_completion_killable);
4563
0aa12fb4
SW
4564/**
4565 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4566 * @x: holds the state of this particular completion
4567 * @timeout: timeout value in jiffies
4568 *
4569 * This waits for either a completion of a specific task to be
4570 * signaled or for a specified timeout to expire. It can be
4571 * interrupted by a kill signal. The timeout is in jiffies.
4572 */
6bf41237 4573long __sched
0aa12fb4
SW
4574wait_for_completion_killable_timeout(struct completion *x,
4575 unsigned long timeout)
4576{
4577 return wait_for_common(x, timeout, TASK_KILLABLE);
4578}
4579EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4580
be4de352
DC
4581/**
4582 * try_wait_for_completion - try to decrement a completion without blocking
4583 * @x: completion structure
4584 *
4585 * Returns: 0 if a decrement cannot be done without blocking
4586 * 1 if a decrement succeeded.
4587 *
4588 * If a completion is being used as a counting completion,
4589 * attempt to decrement the counter without blocking. This
4590 * enables us to avoid waiting if the resource the completion
4591 * is protecting is not available.
4592 */
4593bool try_wait_for_completion(struct completion *x)
4594{
7539a3b3 4595 unsigned long flags;
be4de352
DC
4596 int ret = 1;
4597
7539a3b3 4598 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4599 if (!x->done)
4600 ret = 0;
4601 else
4602 x->done--;
7539a3b3 4603 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4604 return ret;
4605}
4606EXPORT_SYMBOL(try_wait_for_completion);
4607
4608/**
4609 * completion_done - Test to see if a completion has any waiters
4610 * @x: completion structure
4611 *
4612 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4613 * 1 if there are no waiters.
4614 *
4615 */
4616bool completion_done(struct completion *x)
4617{
7539a3b3 4618 unsigned long flags;
be4de352
DC
4619 int ret = 1;
4620
7539a3b3 4621 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4622 if (!x->done)
4623 ret = 0;
7539a3b3 4624 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4625 return ret;
4626}
4627EXPORT_SYMBOL(completion_done);
4628
8cbbe86d
AK
4629static long __sched
4630sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4631{
0fec171c
IM
4632 unsigned long flags;
4633 wait_queue_t wait;
4634
4635 init_waitqueue_entry(&wait, current);
1da177e4 4636
8cbbe86d 4637 __set_current_state(state);
1da177e4 4638
8cbbe86d
AK
4639 spin_lock_irqsave(&q->lock, flags);
4640 __add_wait_queue(q, &wait);
4641 spin_unlock(&q->lock);
4642 timeout = schedule_timeout(timeout);
4643 spin_lock_irq(&q->lock);
4644 __remove_wait_queue(q, &wait);
4645 spin_unlock_irqrestore(&q->lock, flags);
4646
4647 return timeout;
4648}
4649
4650void __sched interruptible_sleep_on(wait_queue_head_t *q)
4651{
4652 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4653}
1da177e4
LT
4654EXPORT_SYMBOL(interruptible_sleep_on);
4655
0fec171c 4656long __sched
95cdf3b7 4657interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4658{
8cbbe86d 4659 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4660}
1da177e4
LT
4661EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4662
0fec171c 4663void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4664{
8cbbe86d 4665 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4666}
1da177e4
LT
4667EXPORT_SYMBOL(sleep_on);
4668
0fec171c 4669long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4670{
8cbbe86d 4671 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4672}
1da177e4
LT
4673EXPORT_SYMBOL(sleep_on_timeout);
4674
b29739f9
IM
4675#ifdef CONFIG_RT_MUTEXES
4676
4677/*
4678 * rt_mutex_setprio - set the current priority of a task
4679 * @p: task
4680 * @prio: prio value (kernel-internal form)
4681 *
4682 * This function changes the 'effective' priority of a task. It does
4683 * not touch ->normal_prio like __setscheduler().
4684 *
4685 * Used by the rt_mutex code to implement priority inheritance logic.
4686 */
36c8b586 4687void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4688{
4689 unsigned long flags;
83b699ed 4690 int oldprio, on_rq, running;
70b97a7f 4691 struct rq *rq;
83ab0aa0 4692 const struct sched_class *prev_class;
b29739f9
IM
4693
4694 BUG_ON(prio < 0 || prio > MAX_PRIO);
4695
013fdb80
PZ
4696 lockdep_assert_held(&p->pi_lock);
4697
b29739f9
IM
4698 rq = task_rq_lock(p, &flags);
4699
a8027073 4700 trace_sched_pi_setprio(p, prio);
d5f9f942 4701 oldprio = p->prio;
83ab0aa0 4702 prev_class = p->sched_class;
fd2f4419 4703 on_rq = p->on_rq;
051a1d1a 4704 running = task_current(rq, p);
0e1f3483 4705 if (on_rq)
69be72c1 4706 dequeue_task(rq, p, 0);
0e1f3483
HS
4707 if (running)
4708 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4709
4710 if (rt_prio(prio))
4711 p->sched_class = &rt_sched_class;
4712 else
4713 p->sched_class = &fair_sched_class;
4714
b29739f9
IM
4715 p->prio = prio;
4716
0e1f3483
HS
4717 if (running)
4718 p->sched_class->set_curr_task(rq);
da7a735e 4719 if (on_rq)
371fd7e7 4720 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4721
da7a735e 4722 check_class_changed(rq, p, prev_class, oldprio);
b29739f9
IM
4723 task_rq_unlock(rq, &flags);
4724}
4725
4726#endif
4727
36c8b586 4728void set_user_nice(struct task_struct *p, long nice)
1da177e4 4729{
dd41f596 4730 int old_prio, delta, on_rq;
1da177e4 4731 unsigned long flags;
70b97a7f 4732 struct rq *rq;
1da177e4
LT
4733
4734 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4735 return;
4736 /*
4737 * We have to be careful, if called from sys_setpriority(),
4738 * the task might be in the middle of scheduling on another CPU.
4739 */
4740 rq = task_rq_lock(p, &flags);
4741 /*
4742 * The RT priorities are set via sched_setscheduler(), but we still
4743 * allow the 'normal' nice value to be set - but as expected
4744 * it wont have any effect on scheduling until the task is
dd41f596 4745 * SCHED_FIFO/SCHED_RR:
1da177e4 4746 */
e05606d3 4747 if (task_has_rt_policy(p)) {
1da177e4
LT
4748 p->static_prio = NICE_TO_PRIO(nice);
4749 goto out_unlock;
4750 }
fd2f4419 4751 on_rq = p->on_rq;
c09595f6 4752 if (on_rq)
69be72c1 4753 dequeue_task(rq, p, 0);
1da177e4 4754
1da177e4 4755 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4756 set_load_weight(p);
b29739f9
IM
4757 old_prio = p->prio;
4758 p->prio = effective_prio(p);
4759 delta = p->prio - old_prio;
1da177e4 4760
dd41f596 4761 if (on_rq) {
371fd7e7 4762 enqueue_task(rq, p, 0);
1da177e4 4763 /*
d5f9f942
AM
4764 * If the task increased its priority or is running and
4765 * lowered its priority, then reschedule its CPU:
1da177e4 4766 */
d5f9f942 4767 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4768 resched_task(rq->curr);
4769 }
4770out_unlock:
4771 task_rq_unlock(rq, &flags);
4772}
1da177e4
LT
4773EXPORT_SYMBOL(set_user_nice);
4774
e43379f1
MM
4775/*
4776 * can_nice - check if a task can reduce its nice value
4777 * @p: task
4778 * @nice: nice value
4779 */
36c8b586 4780int can_nice(const struct task_struct *p, const int nice)
e43379f1 4781{
024f4747
MM
4782 /* convert nice value [19,-20] to rlimit style value [1,40] */
4783 int nice_rlim = 20 - nice;
48f24c4d 4784
78d7d407 4785 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4786 capable(CAP_SYS_NICE));
4787}
4788
1da177e4
LT
4789#ifdef __ARCH_WANT_SYS_NICE
4790
4791/*
4792 * sys_nice - change the priority of the current process.
4793 * @increment: priority increment
4794 *
4795 * sys_setpriority is a more generic, but much slower function that
4796 * does similar things.
4797 */
5add95d4 4798SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4799{
48f24c4d 4800 long nice, retval;
1da177e4
LT
4801
4802 /*
4803 * Setpriority might change our priority at the same moment.
4804 * We don't have to worry. Conceptually one call occurs first
4805 * and we have a single winner.
4806 */
e43379f1
MM
4807 if (increment < -40)
4808 increment = -40;
1da177e4
LT
4809 if (increment > 40)
4810 increment = 40;
4811
2b8f836f 4812 nice = TASK_NICE(current) + increment;
1da177e4
LT
4813 if (nice < -20)
4814 nice = -20;
4815 if (nice > 19)
4816 nice = 19;
4817
e43379f1
MM
4818 if (increment < 0 && !can_nice(current, nice))
4819 return -EPERM;
4820
1da177e4
LT
4821 retval = security_task_setnice(current, nice);
4822 if (retval)
4823 return retval;
4824
4825 set_user_nice(current, nice);
4826 return 0;
4827}
4828
4829#endif
4830
4831/**
4832 * task_prio - return the priority value of a given task.
4833 * @p: the task in question.
4834 *
4835 * This is the priority value as seen by users in /proc.
4836 * RT tasks are offset by -200. Normal tasks are centered
4837 * around 0, value goes from -16 to +15.
4838 */
36c8b586 4839int task_prio(const struct task_struct *p)
1da177e4
LT
4840{
4841 return p->prio - MAX_RT_PRIO;
4842}
4843
4844/**
4845 * task_nice - return the nice value of a given task.
4846 * @p: the task in question.
4847 */
36c8b586 4848int task_nice(const struct task_struct *p)
1da177e4
LT
4849{
4850 return TASK_NICE(p);
4851}
150d8bed 4852EXPORT_SYMBOL(task_nice);
1da177e4
LT
4853
4854/**
4855 * idle_cpu - is a given cpu idle currently?
4856 * @cpu: the processor in question.
4857 */
4858int idle_cpu(int cpu)
4859{
4860 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4861}
4862
1da177e4
LT
4863/**
4864 * idle_task - return the idle task for a given cpu.
4865 * @cpu: the processor in question.
4866 */
36c8b586 4867struct task_struct *idle_task(int cpu)
1da177e4
LT
4868{
4869 return cpu_rq(cpu)->idle;
4870}
4871
4872/**
4873 * find_process_by_pid - find a process with a matching PID value.
4874 * @pid: the pid in question.
4875 */
a9957449 4876static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4877{
228ebcbe 4878 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4879}
4880
4881/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4882static void
4883__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4884{
1da177e4
LT
4885 p->policy = policy;
4886 p->rt_priority = prio;
b29739f9
IM
4887 p->normal_prio = normal_prio(p);
4888 /* we are holding p->pi_lock already */
4889 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4890 if (rt_prio(p->prio))
4891 p->sched_class = &rt_sched_class;
4892 else
4893 p->sched_class = &fair_sched_class;
2dd73a4f 4894 set_load_weight(p);
1da177e4
LT
4895}
4896
c69e8d9c
DH
4897/*
4898 * check the target process has a UID that matches the current process's
4899 */
4900static bool check_same_owner(struct task_struct *p)
4901{
4902 const struct cred *cred = current_cred(), *pcred;
4903 bool match;
4904
4905 rcu_read_lock();
4906 pcred = __task_cred(p);
b0e77598
SH
4907 if (cred->user->user_ns == pcred->user->user_ns)
4908 match = (cred->euid == pcred->euid ||
4909 cred->euid == pcred->uid);
4910 else
4911 match = false;
c69e8d9c
DH
4912 rcu_read_unlock();
4913 return match;
4914}
4915
961ccddd 4916static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4917 const struct sched_param *param, bool user)
1da177e4 4918{
83b699ed 4919 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4920 unsigned long flags;
83ab0aa0 4921 const struct sched_class *prev_class;
70b97a7f 4922 struct rq *rq;
ca94c442 4923 int reset_on_fork;
1da177e4 4924
66e5393a
SR
4925 /* may grab non-irq protected spin_locks */
4926 BUG_ON(in_interrupt());
1da177e4
LT
4927recheck:
4928 /* double check policy once rq lock held */
ca94c442
LP
4929 if (policy < 0) {
4930 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4931 policy = oldpolicy = p->policy;
ca94c442
LP
4932 } else {
4933 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4934 policy &= ~SCHED_RESET_ON_FORK;
4935
4936 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4937 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4938 policy != SCHED_IDLE)
4939 return -EINVAL;
4940 }
4941
1da177e4
LT
4942 /*
4943 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4944 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4945 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4946 */
4947 if (param->sched_priority < 0 ||
95cdf3b7 4948 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4949 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4950 return -EINVAL;
e05606d3 4951 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4952 return -EINVAL;
4953
37e4ab3f
OC
4954 /*
4955 * Allow unprivileged RT tasks to decrease priority:
4956 */
961ccddd 4957 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4958 if (rt_policy(policy)) {
a44702e8
ON
4959 unsigned long rlim_rtprio =
4960 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4961
4962 /* can't set/change the rt policy */
4963 if (policy != p->policy && !rlim_rtprio)
4964 return -EPERM;
4965
4966 /* can't increase priority */
4967 if (param->sched_priority > p->rt_priority &&
4968 param->sched_priority > rlim_rtprio)
4969 return -EPERM;
4970 }
c02aa73b 4971
dd41f596 4972 /*
c02aa73b
DH
4973 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4974 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4975 */
c02aa73b
DH
4976 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4977 if (!can_nice(p, TASK_NICE(p)))
4978 return -EPERM;
4979 }
5fe1d75f 4980
37e4ab3f 4981 /* can't change other user's priorities */
c69e8d9c 4982 if (!check_same_owner(p))
37e4ab3f 4983 return -EPERM;
ca94c442
LP
4984
4985 /* Normal users shall not reset the sched_reset_on_fork flag */
4986 if (p->sched_reset_on_fork && !reset_on_fork)
4987 return -EPERM;
37e4ab3f 4988 }
1da177e4 4989
725aad24 4990 if (user) {
b0ae1981 4991 retval = security_task_setscheduler(p);
725aad24
JF
4992 if (retval)
4993 return retval;
4994 }
4995
b29739f9
IM
4996 /*
4997 * make sure no PI-waiters arrive (or leave) while we are
4998 * changing the priority of the task:
4999 */
1d615482 5000 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4 5001 /*
25985edc 5002 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5003 * runqueue lock must be held.
5004 */
b29739f9 5005 rq = __task_rq_lock(p);
dc61b1d6 5006
34f971f6
PZ
5007 /*
5008 * Changing the policy of the stop threads its a very bad idea
5009 */
5010 if (p == rq->stop) {
5011 __task_rq_unlock(rq);
5012 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5013 return -EINVAL;
5014 }
5015
a51e9198
DF
5016 /*
5017 * If not changing anything there's no need to proceed further:
5018 */
5019 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5020 param->sched_priority == p->rt_priority))) {
5021
5022 __task_rq_unlock(rq);
5023 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5024 return 0;
5025 }
5026
dc61b1d6
PZ
5027#ifdef CONFIG_RT_GROUP_SCHED
5028 if (user) {
5029 /*
5030 * Do not allow realtime tasks into groups that have no runtime
5031 * assigned.
5032 */
5033 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5034 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5035 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
5036 __task_rq_unlock(rq);
5037 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5038 return -EPERM;
5039 }
5040 }
5041#endif
5042
1da177e4
LT
5043 /* recheck policy now with rq lock held */
5044 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5045 policy = oldpolicy = -1;
b29739f9 5046 __task_rq_unlock(rq);
1d615482 5047 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5048 goto recheck;
5049 }
fd2f4419 5050 on_rq = p->on_rq;
051a1d1a 5051 running = task_current(rq, p);
0e1f3483 5052 if (on_rq)
2e1cb74a 5053 deactivate_task(rq, p, 0);
0e1f3483
HS
5054 if (running)
5055 p->sched_class->put_prev_task(rq, p);
f6b53205 5056
ca94c442
LP
5057 p->sched_reset_on_fork = reset_on_fork;
5058
1da177e4 5059 oldprio = p->prio;
83ab0aa0 5060 prev_class = p->sched_class;
dd41f596 5061 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5062
0e1f3483
HS
5063 if (running)
5064 p->sched_class->set_curr_task(rq);
da7a735e 5065 if (on_rq)
dd41f596 5066 activate_task(rq, p, 0);
cb469845 5067
da7a735e 5068 check_class_changed(rq, p, prev_class, oldprio);
b29739f9 5069 __task_rq_unlock(rq);
1d615482 5070 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5071
95e02ca9
TG
5072 rt_mutex_adjust_pi(p);
5073
1da177e4
LT
5074 return 0;
5075}
961ccddd
RR
5076
5077/**
5078 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5079 * @p: the task in question.
5080 * @policy: new policy.
5081 * @param: structure containing the new RT priority.
5082 *
5083 * NOTE that the task may be already dead.
5084 */
5085int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5086 const struct sched_param *param)
961ccddd
RR
5087{
5088 return __sched_setscheduler(p, policy, param, true);
5089}
1da177e4
LT
5090EXPORT_SYMBOL_GPL(sched_setscheduler);
5091
961ccddd
RR
5092/**
5093 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5094 * @p: the task in question.
5095 * @policy: new policy.
5096 * @param: structure containing the new RT priority.
5097 *
5098 * Just like sched_setscheduler, only don't bother checking if the
5099 * current context has permission. For example, this is needed in
5100 * stop_machine(): we create temporary high priority worker threads,
5101 * but our caller might not have that capability.
5102 */
5103int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5104 const struct sched_param *param)
961ccddd
RR
5105{
5106 return __sched_setscheduler(p, policy, param, false);
5107}
5108
95cdf3b7
IM
5109static int
5110do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5111{
1da177e4
LT
5112 struct sched_param lparam;
5113 struct task_struct *p;
36c8b586 5114 int retval;
1da177e4
LT
5115
5116 if (!param || pid < 0)
5117 return -EINVAL;
5118 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5119 return -EFAULT;
5fe1d75f
ON
5120
5121 rcu_read_lock();
5122 retval = -ESRCH;
1da177e4 5123 p = find_process_by_pid(pid);
5fe1d75f
ON
5124 if (p != NULL)
5125 retval = sched_setscheduler(p, policy, &lparam);
5126 rcu_read_unlock();
36c8b586 5127
1da177e4
LT
5128 return retval;
5129}
5130
5131/**
5132 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5133 * @pid: the pid in question.
5134 * @policy: new policy.
5135 * @param: structure containing the new RT priority.
5136 */
5add95d4
HC
5137SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5138 struct sched_param __user *, param)
1da177e4 5139{
c21761f1
JB
5140 /* negative values for policy are not valid */
5141 if (policy < 0)
5142 return -EINVAL;
5143
1da177e4
LT
5144 return do_sched_setscheduler(pid, policy, param);
5145}
5146
5147/**
5148 * sys_sched_setparam - set/change the RT priority of a thread
5149 * @pid: the pid in question.
5150 * @param: structure containing the new RT priority.
5151 */
5add95d4 5152SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5153{
5154 return do_sched_setscheduler(pid, -1, param);
5155}
5156
5157/**
5158 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5159 * @pid: the pid in question.
5160 */
5add95d4 5161SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5162{
36c8b586 5163 struct task_struct *p;
3a5c359a 5164 int retval;
1da177e4
LT
5165
5166 if (pid < 0)
3a5c359a 5167 return -EINVAL;
1da177e4
LT
5168
5169 retval = -ESRCH;
5fe85be0 5170 rcu_read_lock();
1da177e4
LT
5171 p = find_process_by_pid(pid);
5172 if (p) {
5173 retval = security_task_getscheduler(p);
5174 if (!retval)
ca94c442
LP
5175 retval = p->policy
5176 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5177 }
5fe85be0 5178 rcu_read_unlock();
1da177e4
LT
5179 return retval;
5180}
5181
5182/**
ca94c442 5183 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5184 * @pid: the pid in question.
5185 * @param: structure containing the RT priority.
5186 */
5add95d4 5187SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5188{
5189 struct sched_param lp;
36c8b586 5190 struct task_struct *p;
3a5c359a 5191 int retval;
1da177e4
LT
5192
5193 if (!param || pid < 0)
3a5c359a 5194 return -EINVAL;
1da177e4 5195
5fe85be0 5196 rcu_read_lock();
1da177e4
LT
5197 p = find_process_by_pid(pid);
5198 retval = -ESRCH;
5199 if (!p)
5200 goto out_unlock;
5201
5202 retval = security_task_getscheduler(p);
5203 if (retval)
5204 goto out_unlock;
5205
5206 lp.sched_priority = p->rt_priority;
5fe85be0 5207 rcu_read_unlock();
1da177e4
LT
5208
5209 /*
5210 * This one might sleep, we cannot do it with a spinlock held ...
5211 */
5212 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5213
1da177e4
LT
5214 return retval;
5215
5216out_unlock:
5fe85be0 5217 rcu_read_unlock();
1da177e4
LT
5218 return retval;
5219}
5220
96f874e2 5221long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5222{
5a16f3d3 5223 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5224 struct task_struct *p;
5225 int retval;
1da177e4 5226
95402b38 5227 get_online_cpus();
23f5d142 5228 rcu_read_lock();
1da177e4
LT
5229
5230 p = find_process_by_pid(pid);
5231 if (!p) {
23f5d142 5232 rcu_read_unlock();
95402b38 5233 put_online_cpus();
1da177e4
LT
5234 return -ESRCH;
5235 }
5236
23f5d142 5237 /* Prevent p going away */
1da177e4 5238 get_task_struct(p);
23f5d142 5239 rcu_read_unlock();
1da177e4 5240
5a16f3d3
RR
5241 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5242 retval = -ENOMEM;
5243 goto out_put_task;
5244 }
5245 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5246 retval = -ENOMEM;
5247 goto out_free_cpus_allowed;
5248 }
1da177e4 5249 retval = -EPERM;
b0e77598 5250 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5251 goto out_unlock;
5252
b0ae1981 5253 retval = security_task_setscheduler(p);
e7834f8f
DQ
5254 if (retval)
5255 goto out_unlock;
5256
5a16f3d3
RR
5257 cpuset_cpus_allowed(p, cpus_allowed);
5258 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5259again:
5a16f3d3 5260 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5261
8707d8b8 5262 if (!retval) {
5a16f3d3
RR
5263 cpuset_cpus_allowed(p, cpus_allowed);
5264 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5265 /*
5266 * We must have raced with a concurrent cpuset
5267 * update. Just reset the cpus_allowed to the
5268 * cpuset's cpus_allowed
5269 */
5a16f3d3 5270 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5271 goto again;
5272 }
5273 }
1da177e4 5274out_unlock:
5a16f3d3
RR
5275 free_cpumask_var(new_mask);
5276out_free_cpus_allowed:
5277 free_cpumask_var(cpus_allowed);
5278out_put_task:
1da177e4 5279 put_task_struct(p);
95402b38 5280 put_online_cpus();
1da177e4
LT
5281 return retval;
5282}
5283
5284static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5285 struct cpumask *new_mask)
1da177e4 5286{
96f874e2
RR
5287 if (len < cpumask_size())
5288 cpumask_clear(new_mask);
5289 else if (len > cpumask_size())
5290 len = cpumask_size();
5291
1da177e4
LT
5292 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5293}
5294
5295/**
5296 * sys_sched_setaffinity - set the cpu affinity of a process
5297 * @pid: pid of the process
5298 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5299 * @user_mask_ptr: user-space pointer to the new cpu mask
5300 */
5add95d4
HC
5301SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5302 unsigned long __user *, user_mask_ptr)
1da177e4 5303{
5a16f3d3 5304 cpumask_var_t new_mask;
1da177e4
LT
5305 int retval;
5306
5a16f3d3
RR
5307 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5308 return -ENOMEM;
1da177e4 5309
5a16f3d3
RR
5310 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5311 if (retval == 0)
5312 retval = sched_setaffinity(pid, new_mask);
5313 free_cpumask_var(new_mask);
5314 return retval;
1da177e4
LT
5315}
5316
96f874e2 5317long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5318{
36c8b586 5319 struct task_struct *p;
31605683 5320 unsigned long flags;
1da177e4 5321 int retval;
1da177e4 5322
95402b38 5323 get_online_cpus();
23f5d142 5324 rcu_read_lock();
1da177e4
LT
5325
5326 retval = -ESRCH;
5327 p = find_process_by_pid(pid);
5328 if (!p)
5329 goto out_unlock;
5330
e7834f8f
DQ
5331 retval = security_task_getscheduler(p);
5332 if (retval)
5333 goto out_unlock;
5334
013fdb80 5335 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5336 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5337 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5338
5339out_unlock:
23f5d142 5340 rcu_read_unlock();
95402b38 5341 put_online_cpus();
1da177e4 5342
9531b62f 5343 return retval;
1da177e4
LT
5344}
5345
5346/**
5347 * sys_sched_getaffinity - get the cpu affinity of a process
5348 * @pid: pid of the process
5349 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5350 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5351 */
5add95d4
HC
5352SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5353 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5354{
5355 int ret;
f17c8607 5356 cpumask_var_t mask;
1da177e4 5357
84fba5ec 5358 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5359 return -EINVAL;
5360 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5361 return -EINVAL;
5362
f17c8607
RR
5363 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5364 return -ENOMEM;
1da177e4 5365
f17c8607
RR
5366 ret = sched_getaffinity(pid, mask);
5367 if (ret == 0) {
8bc037fb 5368 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5369
5370 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5371 ret = -EFAULT;
5372 else
cd3d8031 5373 ret = retlen;
f17c8607
RR
5374 }
5375 free_cpumask_var(mask);
1da177e4 5376
f17c8607 5377 return ret;
1da177e4
LT
5378}
5379
5380/**
5381 * sys_sched_yield - yield the current processor to other threads.
5382 *
dd41f596
IM
5383 * This function yields the current CPU to other tasks. If there are no
5384 * other threads running on this CPU then this function will return.
1da177e4 5385 */
5add95d4 5386SYSCALL_DEFINE0(sched_yield)
1da177e4 5387{
70b97a7f 5388 struct rq *rq = this_rq_lock();
1da177e4 5389
2d72376b 5390 schedstat_inc(rq, yld_count);
4530d7ab 5391 current->sched_class->yield_task(rq);
1da177e4
LT
5392
5393 /*
5394 * Since we are going to call schedule() anyway, there's
5395 * no need to preempt or enable interrupts:
5396 */
5397 __release(rq->lock);
8a25d5de 5398 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5399 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5400 preempt_enable_no_resched();
5401
5402 schedule();
5403
5404 return 0;
5405}
5406
d86ee480
PZ
5407static inline int should_resched(void)
5408{
5409 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5410}
5411
e7b38404 5412static void __cond_resched(void)
1da177e4 5413{
e7aaaa69
FW
5414 add_preempt_count(PREEMPT_ACTIVE);
5415 schedule();
5416 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5417}
5418
02b67cc3 5419int __sched _cond_resched(void)
1da177e4 5420{
d86ee480 5421 if (should_resched()) {
1da177e4
LT
5422 __cond_resched();
5423 return 1;
5424 }
5425 return 0;
5426}
02b67cc3 5427EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5428
5429/*
613afbf8 5430 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5431 * call schedule, and on return reacquire the lock.
5432 *
41a2d6cf 5433 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5434 * operations here to prevent schedule() from being called twice (once via
5435 * spin_unlock(), once by hand).
5436 */
613afbf8 5437int __cond_resched_lock(spinlock_t *lock)
1da177e4 5438{
d86ee480 5439 int resched = should_resched();
6df3cecb
JK
5440 int ret = 0;
5441
f607c668
PZ
5442 lockdep_assert_held(lock);
5443
95c354fe 5444 if (spin_needbreak(lock) || resched) {
1da177e4 5445 spin_unlock(lock);
d86ee480 5446 if (resched)
95c354fe
NP
5447 __cond_resched();
5448 else
5449 cpu_relax();
6df3cecb 5450 ret = 1;
1da177e4 5451 spin_lock(lock);
1da177e4 5452 }
6df3cecb 5453 return ret;
1da177e4 5454}
613afbf8 5455EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5456
613afbf8 5457int __sched __cond_resched_softirq(void)
1da177e4
LT
5458{
5459 BUG_ON(!in_softirq());
5460
d86ee480 5461 if (should_resched()) {
98d82567 5462 local_bh_enable();
1da177e4
LT
5463 __cond_resched();
5464 local_bh_disable();
5465 return 1;
5466 }
5467 return 0;
5468}
613afbf8 5469EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5470
1da177e4
LT
5471/**
5472 * yield - yield the current processor to other threads.
5473 *
72fd4a35 5474 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5475 * thread runnable and calls sys_sched_yield().
5476 */
5477void __sched yield(void)
5478{
5479 set_current_state(TASK_RUNNING);
5480 sys_sched_yield();
5481}
1da177e4
LT
5482EXPORT_SYMBOL(yield);
5483
d95f4122
MG
5484/**
5485 * yield_to - yield the current processor to another thread in
5486 * your thread group, or accelerate that thread toward the
5487 * processor it's on.
16addf95
RD
5488 * @p: target task
5489 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5490 *
5491 * It's the caller's job to ensure that the target task struct
5492 * can't go away on us before we can do any checks.
5493 *
5494 * Returns true if we indeed boosted the target task.
5495 */
5496bool __sched yield_to(struct task_struct *p, bool preempt)
5497{
5498 struct task_struct *curr = current;
5499 struct rq *rq, *p_rq;
5500 unsigned long flags;
5501 bool yielded = 0;
5502
5503 local_irq_save(flags);
5504 rq = this_rq();
5505
5506again:
5507 p_rq = task_rq(p);
5508 double_rq_lock(rq, p_rq);
5509 while (task_rq(p) != p_rq) {
5510 double_rq_unlock(rq, p_rq);
5511 goto again;
5512 }
5513
5514 if (!curr->sched_class->yield_to_task)
5515 goto out;
5516
5517 if (curr->sched_class != p->sched_class)
5518 goto out;
5519
5520 if (task_running(p_rq, p) || p->state)
5521 goto out;
5522
5523 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5524 if (yielded) {
d95f4122 5525 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5526 /*
5527 * Make p's CPU reschedule; pick_next_entity takes care of
5528 * fairness.
5529 */
5530 if (preempt && rq != p_rq)
5531 resched_task(p_rq->curr);
5532 }
d95f4122
MG
5533
5534out:
5535 double_rq_unlock(rq, p_rq);
5536 local_irq_restore(flags);
5537
5538 if (yielded)
5539 schedule();
5540
5541 return yielded;
5542}
5543EXPORT_SYMBOL_GPL(yield_to);
5544
1da177e4 5545/*
41a2d6cf 5546 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5547 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5548 */
5549void __sched io_schedule(void)
5550{
54d35f29 5551 struct rq *rq = raw_rq();
1da177e4 5552
0ff92245 5553 delayacct_blkio_start();
1da177e4 5554 atomic_inc(&rq->nr_iowait);
73c10101 5555 blk_flush_plug(current);
8f0dfc34 5556 current->in_iowait = 1;
1da177e4 5557 schedule();
8f0dfc34 5558 current->in_iowait = 0;
1da177e4 5559 atomic_dec(&rq->nr_iowait);
0ff92245 5560 delayacct_blkio_end();
1da177e4 5561}
1da177e4
LT
5562EXPORT_SYMBOL(io_schedule);
5563
5564long __sched io_schedule_timeout(long timeout)
5565{
54d35f29 5566 struct rq *rq = raw_rq();
1da177e4
LT
5567 long ret;
5568
0ff92245 5569 delayacct_blkio_start();
1da177e4 5570 atomic_inc(&rq->nr_iowait);
73c10101 5571 blk_flush_plug(current);
8f0dfc34 5572 current->in_iowait = 1;
1da177e4 5573 ret = schedule_timeout(timeout);
8f0dfc34 5574 current->in_iowait = 0;
1da177e4 5575 atomic_dec(&rq->nr_iowait);
0ff92245 5576 delayacct_blkio_end();
1da177e4
LT
5577 return ret;
5578}
5579
5580/**
5581 * sys_sched_get_priority_max - return maximum RT priority.
5582 * @policy: scheduling class.
5583 *
5584 * this syscall returns the maximum rt_priority that can be used
5585 * by a given scheduling class.
5586 */
5add95d4 5587SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5588{
5589 int ret = -EINVAL;
5590
5591 switch (policy) {
5592 case SCHED_FIFO:
5593 case SCHED_RR:
5594 ret = MAX_USER_RT_PRIO-1;
5595 break;
5596 case SCHED_NORMAL:
b0a9499c 5597 case SCHED_BATCH:
dd41f596 5598 case SCHED_IDLE:
1da177e4
LT
5599 ret = 0;
5600 break;
5601 }
5602 return ret;
5603}
5604
5605/**
5606 * sys_sched_get_priority_min - return minimum RT priority.
5607 * @policy: scheduling class.
5608 *
5609 * this syscall returns the minimum rt_priority that can be used
5610 * by a given scheduling class.
5611 */
5add95d4 5612SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5613{
5614 int ret = -EINVAL;
5615
5616 switch (policy) {
5617 case SCHED_FIFO:
5618 case SCHED_RR:
5619 ret = 1;
5620 break;
5621 case SCHED_NORMAL:
b0a9499c 5622 case SCHED_BATCH:
dd41f596 5623 case SCHED_IDLE:
1da177e4
LT
5624 ret = 0;
5625 }
5626 return ret;
5627}
5628
5629/**
5630 * sys_sched_rr_get_interval - return the default timeslice of a process.
5631 * @pid: pid of the process.
5632 * @interval: userspace pointer to the timeslice value.
5633 *
5634 * this syscall writes the default timeslice value of a given process
5635 * into the user-space timespec buffer. A value of '0' means infinity.
5636 */
17da2bd9 5637SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5638 struct timespec __user *, interval)
1da177e4 5639{
36c8b586 5640 struct task_struct *p;
a4ec24b4 5641 unsigned int time_slice;
dba091b9
TG
5642 unsigned long flags;
5643 struct rq *rq;
3a5c359a 5644 int retval;
1da177e4 5645 struct timespec t;
1da177e4
LT
5646
5647 if (pid < 0)
3a5c359a 5648 return -EINVAL;
1da177e4
LT
5649
5650 retval = -ESRCH;
1a551ae7 5651 rcu_read_lock();
1da177e4
LT
5652 p = find_process_by_pid(pid);
5653 if (!p)
5654 goto out_unlock;
5655
5656 retval = security_task_getscheduler(p);
5657 if (retval)
5658 goto out_unlock;
5659
dba091b9
TG
5660 rq = task_rq_lock(p, &flags);
5661 time_slice = p->sched_class->get_rr_interval(rq, p);
5662 task_rq_unlock(rq, &flags);
a4ec24b4 5663
1a551ae7 5664 rcu_read_unlock();
a4ec24b4 5665 jiffies_to_timespec(time_slice, &t);
1da177e4 5666 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5667 return retval;
3a5c359a 5668
1da177e4 5669out_unlock:
1a551ae7 5670 rcu_read_unlock();
1da177e4
LT
5671 return retval;
5672}
5673
7c731e0a 5674static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5675
82a1fcb9 5676void sched_show_task(struct task_struct *p)
1da177e4 5677{
1da177e4 5678 unsigned long free = 0;
36c8b586 5679 unsigned state;
1da177e4 5680
1da177e4 5681 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5682 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5683 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5684#if BITS_PER_LONG == 32
1da177e4 5685 if (state == TASK_RUNNING)
3df0fc5b 5686 printk(KERN_CONT " running ");
1da177e4 5687 else
3df0fc5b 5688 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5689#else
5690 if (state == TASK_RUNNING)
3df0fc5b 5691 printk(KERN_CONT " running task ");
1da177e4 5692 else
3df0fc5b 5693 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5694#endif
5695#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5696 free = stack_not_used(p);
1da177e4 5697#endif
3df0fc5b 5698 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5699 task_pid_nr(p), task_pid_nr(p->real_parent),
5700 (unsigned long)task_thread_info(p)->flags);
1da177e4 5701
5fb5e6de 5702 show_stack(p, NULL);
1da177e4
LT
5703}
5704
e59e2ae2 5705void show_state_filter(unsigned long state_filter)
1da177e4 5706{
36c8b586 5707 struct task_struct *g, *p;
1da177e4 5708
4bd77321 5709#if BITS_PER_LONG == 32
3df0fc5b
PZ
5710 printk(KERN_INFO
5711 " task PC stack pid father\n");
1da177e4 5712#else
3df0fc5b
PZ
5713 printk(KERN_INFO
5714 " task PC stack pid father\n");
1da177e4
LT
5715#endif
5716 read_lock(&tasklist_lock);
5717 do_each_thread(g, p) {
5718 /*
5719 * reset the NMI-timeout, listing all files on a slow
25985edc 5720 * console might take a lot of time:
1da177e4
LT
5721 */
5722 touch_nmi_watchdog();
39bc89fd 5723 if (!state_filter || (p->state & state_filter))
82a1fcb9 5724 sched_show_task(p);
1da177e4
LT
5725 } while_each_thread(g, p);
5726
04c9167f
JF
5727 touch_all_softlockup_watchdogs();
5728
dd41f596
IM
5729#ifdef CONFIG_SCHED_DEBUG
5730 sysrq_sched_debug_show();
5731#endif
1da177e4 5732 read_unlock(&tasklist_lock);
e59e2ae2
IM
5733 /*
5734 * Only show locks if all tasks are dumped:
5735 */
93335a21 5736 if (!state_filter)
e59e2ae2 5737 debug_show_all_locks();
1da177e4
LT
5738}
5739
1df21055
IM
5740void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5741{
dd41f596 5742 idle->sched_class = &idle_sched_class;
1df21055
IM
5743}
5744
f340c0d1
IM
5745/**
5746 * init_idle - set up an idle thread for a given CPU
5747 * @idle: task in question
5748 * @cpu: cpu the idle task belongs to
5749 *
5750 * NOTE: this function does not set the idle thread's NEED_RESCHED
5751 * flag, to make booting more robust.
5752 */
5c1e1767 5753void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5754{
70b97a7f 5755 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5756 unsigned long flags;
5757
05fa785c 5758 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5759
dd41f596 5760 __sched_fork(idle);
06b83b5f 5761 idle->state = TASK_RUNNING;
dd41f596
IM
5762 idle->se.exec_start = sched_clock();
5763
96f874e2 5764 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5765 /*
5766 * We're having a chicken and egg problem, even though we are
5767 * holding rq->lock, the cpu isn't yet set to this cpu so the
5768 * lockdep check in task_group() will fail.
5769 *
5770 * Similar case to sched_fork(). / Alternatively we could
5771 * use task_rq_lock() here and obtain the other rq->lock.
5772 *
5773 * Silence PROVE_RCU
5774 */
5775 rcu_read_lock();
dd41f596 5776 __set_task_cpu(idle, cpu);
6506cf6c 5777 rcu_read_unlock();
1da177e4 5778
1da177e4 5779 rq->curr = rq->idle = idle;
3ca7a440
PZ
5780#if defined(CONFIG_SMP)
5781 idle->on_cpu = 1;
4866cde0 5782#endif
05fa785c 5783 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5784
5785 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5786#if defined(CONFIG_PREEMPT)
5787 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5788#else
a1261f54 5789 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5790#endif
dd41f596
IM
5791 /*
5792 * The idle tasks have their own, simple scheduling class:
5793 */
5794 idle->sched_class = &idle_sched_class;
868baf07 5795 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5796}
5797
5798/*
5799 * In a system that switches off the HZ timer nohz_cpu_mask
5800 * indicates which cpus entered this state. This is used
5801 * in the rcu update to wait only for active cpus. For system
5802 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5803 * always be CPU_BITS_NONE.
1da177e4 5804 */
6a7b3dc3 5805cpumask_var_t nohz_cpu_mask;
1da177e4 5806
19978ca6
IM
5807/*
5808 * Increase the granularity value when there are more CPUs,
5809 * because with more CPUs the 'effective latency' as visible
5810 * to users decreases. But the relationship is not linear,
5811 * so pick a second-best guess by going with the log2 of the
5812 * number of CPUs.
5813 *
5814 * This idea comes from the SD scheduler of Con Kolivas:
5815 */
acb4a848 5816static int get_update_sysctl_factor(void)
19978ca6 5817{
4ca3ef71 5818 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5819 unsigned int factor;
5820
5821 switch (sysctl_sched_tunable_scaling) {
5822 case SCHED_TUNABLESCALING_NONE:
5823 factor = 1;
5824 break;
5825 case SCHED_TUNABLESCALING_LINEAR:
5826 factor = cpus;
5827 break;
5828 case SCHED_TUNABLESCALING_LOG:
5829 default:
5830 factor = 1 + ilog2(cpus);
5831 break;
5832 }
19978ca6 5833
acb4a848
CE
5834 return factor;
5835}
19978ca6 5836
acb4a848
CE
5837static void update_sysctl(void)
5838{
5839 unsigned int factor = get_update_sysctl_factor();
19978ca6 5840
0bcdcf28
CE
5841#define SET_SYSCTL(name) \
5842 (sysctl_##name = (factor) * normalized_sysctl_##name)
5843 SET_SYSCTL(sched_min_granularity);
5844 SET_SYSCTL(sched_latency);
5845 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5846#undef SET_SYSCTL
5847}
55cd5340 5848
0bcdcf28
CE
5849static inline void sched_init_granularity(void)
5850{
5851 update_sysctl();
19978ca6
IM
5852}
5853
1da177e4
LT
5854#ifdef CONFIG_SMP
5855/*
5856 * This is how migration works:
5857 *
969c7921
TH
5858 * 1) we invoke migration_cpu_stop() on the target CPU using
5859 * stop_one_cpu().
5860 * 2) stopper starts to run (implicitly forcing the migrated thread
5861 * off the CPU)
5862 * 3) it checks whether the migrated task is still in the wrong runqueue.
5863 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5864 * it and puts it into the right queue.
969c7921
TH
5865 * 5) stopper completes and stop_one_cpu() returns and the migration
5866 * is done.
1da177e4
LT
5867 */
5868
5869/*
5870 * Change a given task's CPU affinity. Migrate the thread to a
5871 * proper CPU and schedule it away if the CPU it's executing on
5872 * is removed from the allowed bitmask.
5873 *
5874 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5875 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5876 * call is not atomic; no spinlocks may be held.
5877 */
96f874e2 5878int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5879{
5880 unsigned long flags;
70b97a7f 5881 struct rq *rq;
969c7921 5882 unsigned int dest_cpu;
48f24c4d 5883 int ret = 0;
1da177e4 5884
013fdb80
PZ
5885 raw_spin_lock_irqsave(&p->pi_lock, flags);
5886 rq = __task_rq_lock(p);
e2912009 5887
6ad4c188 5888 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5889 ret = -EINVAL;
5890 goto out;
5891 }
5892
9985b0ba 5893 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5894 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5895 ret = -EINVAL;
5896 goto out;
5897 }
5898
73fe6aae 5899 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5900 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5901 else {
96f874e2
RR
5902 cpumask_copy(&p->cpus_allowed, new_mask);
5903 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5904 }
5905
1da177e4 5906 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5907 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5908 goto out;
5909
969c7921 5910 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
7608dec2 5911 if (need_migrate_task(p)) {
969c7921 5912 struct migration_arg arg = { p, dest_cpu };
1da177e4 5913 /* Need help from migration thread: drop lock and wait. */
013fdb80
PZ
5914 __task_rq_unlock(rq);
5915 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
969c7921 5916 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5917 tlb_migrate_finish(p->mm);
5918 return 0;
5919 }
5920out:
013fdb80
PZ
5921 __task_rq_unlock(rq);
5922 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
48f24c4d 5923
1da177e4
LT
5924 return ret;
5925}
cd8ba7cd 5926EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5927
5928/*
41a2d6cf 5929 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5930 * this because either it can't run here any more (set_cpus_allowed()
5931 * away from this CPU, or CPU going down), or because we're
5932 * attempting to rebalance this task on exec (sched_exec).
5933 *
5934 * So we race with normal scheduler movements, but that's OK, as long
5935 * as the task is no longer on this CPU.
efc30814
KK
5936 *
5937 * Returns non-zero if task was successfully migrated.
1da177e4 5938 */
efc30814 5939static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5940{
70b97a7f 5941 struct rq *rq_dest, *rq_src;
e2912009 5942 int ret = 0;
1da177e4 5943
e761b772 5944 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5945 return ret;
1da177e4
LT
5946
5947 rq_src = cpu_rq(src_cpu);
5948 rq_dest = cpu_rq(dest_cpu);
5949
5950 double_rq_lock(rq_src, rq_dest);
5951 /* Already moved. */
5952 if (task_cpu(p) != src_cpu)
b1e38734 5953 goto done;
1da177e4 5954 /* Affinity changed (again). */
96f874e2 5955 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5956 goto fail;
1da177e4 5957
e2912009
PZ
5958 /*
5959 * If we're not on a rq, the next wake-up will ensure we're
5960 * placed properly.
5961 */
fd2f4419 5962 if (p->on_rq) {
2e1cb74a 5963 deactivate_task(rq_src, p, 0);
e2912009 5964 set_task_cpu(p, dest_cpu);
dd41f596 5965 activate_task(rq_dest, p, 0);
15afe09b 5966 check_preempt_curr(rq_dest, p, 0);
1da177e4 5967 }
b1e38734 5968done:
efc30814 5969 ret = 1;
b1e38734 5970fail:
1da177e4 5971 double_rq_unlock(rq_src, rq_dest);
efc30814 5972 return ret;
1da177e4
LT
5973}
5974
5975/*
969c7921
TH
5976 * migration_cpu_stop - this will be executed by a highprio stopper thread
5977 * and performs thread migration by bumping thread off CPU then
5978 * 'pushing' onto another runqueue.
1da177e4 5979 */
969c7921 5980static int migration_cpu_stop(void *data)
1da177e4 5981{
969c7921 5982 struct migration_arg *arg = data;
f7b4cddc 5983
969c7921
TH
5984 /*
5985 * The original target cpu might have gone down and we might
5986 * be on another cpu but it doesn't matter.
5987 */
f7b4cddc 5988 local_irq_disable();
969c7921 5989 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5990 local_irq_enable();
1da177e4 5991 return 0;
f7b4cddc
ON
5992}
5993
1da177e4 5994#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5995
054b9108 5996/*
48c5ccae
PZ
5997 * Ensures that the idle task is using init_mm right before its cpu goes
5998 * offline.
054b9108 5999 */
48c5ccae 6000void idle_task_exit(void)
1da177e4 6001{
48c5ccae 6002 struct mm_struct *mm = current->active_mm;
e76bd8d9 6003
48c5ccae 6004 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6005
48c5ccae
PZ
6006 if (mm != &init_mm)
6007 switch_mm(mm, &init_mm, current);
6008 mmdrop(mm);
1da177e4
LT
6009}
6010
6011/*
6012 * While a dead CPU has no uninterruptible tasks queued at this point,
6013 * it might still have a nonzero ->nr_uninterruptible counter, because
6014 * for performance reasons the counter is not stricly tracking tasks to
6015 * their home CPUs. So we just add the counter to another CPU's counter,
6016 * to keep the global sum constant after CPU-down:
6017 */
70b97a7f 6018static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6019{
6ad4c188 6020 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6021
1da177e4
LT
6022 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6023 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6024}
6025
dd41f596 6026/*
48c5ccae 6027 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6028 */
48c5ccae 6029static void calc_global_load_remove(struct rq *rq)
1da177e4 6030{
48c5ccae
PZ
6031 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6032 rq->calc_load_active = 0;
1da177e4
LT
6033}
6034
48f24c4d 6035/*
48c5ccae
PZ
6036 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6037 * try_to_wake_up()->select_task_rq().
6038 *
6039 * Called with rq->lock held even though we'er in stop_machine() and
6040 * there's no concurrency possible, we hold the required locks anyway
6041 * because of lock validation efforts.
1da177e4 6042 */
48c5ccae 6043static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6044{
70b97a7f 6045 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6046 struct task_struct *next, *stop = rq->stop;
6047 int dest_cpu;
1da177e4
LT
6048
6049 /*
48c5ccae
PZ
6050 * Fudge the rq selection such that the below task selection loop
6051 * doesn't get stuck on the currently eligible stop task.
6052 *
6053 * We're currently inside stop_machine() and the rq is either stuck
6054 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6055 * either way we should never end up calling schedule() until we're
6056 * done here.
1da177e4 6057 */
48c5ccae 6058 rq->stop = NULL;
48f24c4d 6059
dd41f596 6060 for ( ; ; ) {
48c5ccae
PZ
6061 /*
6062 * There's this thread running, bail when that's the only
6063 * remaining thread.
6064 */
6065 if (rq->nr_running == 1)
dd41f596 6066 break;
48c5ccae 6067
b67802ea 6068 next = pick_next_task(rq);
48c5ccae 6069 BUG_ON(!next);
79c53799 6070 next->sched_class->put_prev_task(rq, next);
e692ab53 6071
48c5ccae
PZ
6072 /* Find suitable destination for @next, with force if needed. */
6073 dest_cpu = select_fallback_rq(dead_cpu, next);
6074 raw_spin_unlock(&rq->lock);
6075
6076 __migrate_task(next, dead_cpu, dest_cpu);
6077
6078 raw_spin_lock(&rq->lock);
1da177e4 6079 }
dce48a84 6080
48c5ccae 6081 rq->stop = stop;
dce48a84 6082}
48c5ccae 6083
1da177e4
LT
6084#endif /* CONFIG_HOTPLUG_CPU */
6085
e692ab53
NP
6086#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6087
6088static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6089 {
6090 .procname = "sched_domain",
c57baf1e 6091 .mode = 0555,
e0361851 6092 },
56992309 6093 {}
e692ab53
NP
6094};
6095
6096static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6097 {
6098 .procname = "kernel",
c57baf1e 6099 .mode = 0555,
e0361851
AD
6100 .child = sd_ctl_dir,
6101 },
56992309 6102 {}
e692ab53
NP
6103};
6104
6105static struct ctl_table *sd_alloc_ctl_entry(int n)
6106{
6107 struct ctl_table *entry =
5cf9f062 6108 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6109
e692ab53
NP
6110 return entry;
6111}
6112
6382bc90
MM
6113static void sd_free_ctl_entry(struct ctl_table **tablep)
6114{
cd790076 6115 struct ctl_table *entry;
6382bc90 6116
cd790076
MM
6117 /*
6118 * In the intermediate directories, both the child directory and
6119 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6120 * will always be set. In the lowest directory the names are
cd790076
MM
6121 * static strings and all have proc handlers.
6122 */
6123 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6124 if (entry->child)
6125 sd_free_ctl_entry(&entry->child);
cd790076
MM
6126 if (entry->proc_handler == NULL)
6127 kfree(entry->procname);
6128 }
6382bc90
MM
6129
6130 kfree(*tablep);
6131 *tablep = NULL;
6132}
6133
e692ab53 6134static void
e0361851 6135set_table_entry(struct ctl_table *entry,
e692ab53
NP
6136 const char *procname, void *data, int maxlen,
6137 mode_t mode, proc_handler *proc_handler)
6138{
e692ab53
NP
6139 entry->procname = procname;
6140 entry->data = data;
6141 entry->maxlen = maxlen;
6142 entry->mode = mode;
6143 entry->proc_handler = proc_handler;
6144}
6145
6146static struct ctl_table *
6147sd_alloc_ctl_domain_table(struct sched_domain *sd)
6148{
a5d8c348 6149 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6150
ad1cdc1d
MM
6151 if (table == NULL)
6152 return NULL;
6153
e0361851 6154 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6155 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6156 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6157 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6158 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6159 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6160 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6161 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6162 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6163 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6164 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6165 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6166 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6167 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6168 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6169 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6170 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6171 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6172 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6173 &sd->cache_nice_tries,
6174 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6175 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6176 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6177 set_table_entry(&table[11], "name", sd->name,
6178 CORENAME_MAX_SIZE, 0444, proc_dostring);
6179 /* &table[12] is terminator */
e692ab53
NP
6180
6181 return table;
6182}
6183
9a4e7159 6184static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6185{
6186 struct ctl_table *entry, *table;
6187 struct sched_domain *sd;
6188 int domain_num = 0, i;
6189 char buf[32];
6190
6191 for_each_domain(cpu, sd)
6192 domain_num++;
6193 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6194 if (table == NULL)
6195 return NULL;
e692ab53
NP
6196
6197 i = 0;
6198 for_each_domain(cpu, sd) {
6199 snprintf(buf, 32, "domain%d", i);
e692ab53 6200 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6201 entry->mode = 0555;
e692ab53
NP
6202 entry->child = sd_alloc_ctl_domain_table(sd);
6203 entry++;
6204 i++;
6205 }
6206 return table;
6207}
6208
6209static struct ctl_table_header *sd_sysctl_header;
6382bc90 6210static void register_sched_domain_sysctl(void)
e692ab53 6211{
6ad4c188 6212 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6213 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6214 char buf[32];
6215
7378547f
MM
6216 WARN_ON(sd_ctl_dir[0].child);
6217 sd_ctl_dir[0].child = entry;
6218
ad1cdc1d
MM
6219 if (entry == NULL)
6220 return;
6221
6ad4c188 6222 for_each_possible_cpu(i) {
e692ab53 6223 snprintf(buf, 32, "cpu%d", i);
e692ab53 6224 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6225 entry->mode = 0555;
e692ab53 6226 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6227 entry++;
e692ab53 6228 }
7378547f
MM
6229
6230 WARN_ON(sd_sysctl_header);
e692ab53
NP
6231 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6232}
6382bc90 6233
7378547f 6234/* may be called multiple times per register */
6382bc90
MM
6235static void unregister_sched_domain_sysctl(void)
6236{
7378547f
MM
6237 if (sd_sysctl_header)
6238 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6239 sd_sysctl_header = NULL;
7378547f
MM
6240 if (sd_ctl_dir[0].child)
6241 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6242}
e692ab53 6243#else
6382bc90
MM
6244static void register_sched_domain_sysctl(void)
6245{
6246}
6247static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6248{
6249}
6250#endif
6251
1f11eb6a
GH
6252static void set_rq_online(struct rq *rq)
6253{
6254 if (!rq->online) {
6255 const struct sched_class *class;
6256
c6c4927b 6257 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6258 rq->online = 1;
6259
6260 for_each_class(class) {
6261 if (class->rq_online)
6262 class->rq_online(rq);
6263 }
6264 }
6265}
6266
6267static void set_rq_offline(struct rq *rq)
6268{
6269 if (rq->online) {
6270 const struct sched_class *class;
6271
6272 for_each_class(class) {
6273 if (class->rq_offline)
6274 class->rq_offline(rq);
6275 }
6276
c6c4927b 6277 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6278 rq->online = 0;
6279 }
6280}
6281
1da177e4
LT
6282/*
6283 * migration_call - callback that gets triggered when a CPU is added.
6284 * Here we can start up the necessary migration thread for the new CPU.
6285 */
48f24c4d
IM
6286static int __cpuinit
6287migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6288{
48f24c4d 6289 int cpu = (long)hcpu;
1da177e4 6290 unsigned long flags;
969c7921 6291 struct rq *rq = cpu_rq(cpu);
1da177e4 6292
48c5ccae 6293 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6294
1da177e4 6295 case CPU_UP_PREPARE:
a468d389 6296 rq->calc_load_update = calc_load_update;
1da177e4 6297 break;
48f24c4d 6298
1da177e4 6299 case CPU_ONLINE:
1f94ef59 6300 /* Update our root-domain */
05fa785c 6301 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6302 if (rq->rd) {
c6c4927b 6303 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6304
6305 set_rq_online(rq);
1f94ef59 6306 }
05fa785c 6307 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6308 break;
48f24c4d 6309
1da177e4 6310#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6311 case CPU_DYING:
57d885fe 6312 /* Update our root-domain */
05fa785c 6313 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6314 if (rq->rd) {
c6c4927b 6315 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6316 set_rq_offline(rq);
57d885fe 6317 }
48c5ccae
PZ
6318 migrate_tasks(cpu);
6319 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6320 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6321
6322 migrate_nr_uninterruptible(rq);
6323 calc_global_load_remove(rq);
57d885fe 6324 break;
1da177e4
LT
6325#endif
6326 }
49c022e6
PZ
6327
6328 update_max_interval();
6329
1da177e4
LT
6330 return NOTIFY_OK;
6331}
6332
f38b0820
PM
6333/*
6334 * Register at high priority so that task migration (migrate_all_tasks)
6335 * happens before everything else. This has to be lower priority than
cdd6c482 6336 * the notifier in the perf_event subsystem, though.
1da177e4 6337 */
26c2143b 6338static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6339 .notifier_call = migration_call,
50a323b7 6340 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6341};
6342
3a101d05
TH
6343static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6344 unsigned long action, void *hcpu)
6345{
6346 switch (action & ~CPU_TASKS_FROZEN) {
6347 case CPU_ONLINE:
6348 case CPU_DOWN_FAILED:
6349 set_cpu_active((long)hcpu, true);
6350 return NOTIFY_OK;
6351 default:
6352 return NOTIFY_DONE;
6353 }
6354}
6355
6356static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6357 unsigned long action, void *hcpu)
6358{
6359 switch (action & ~CPU_TASKS_FROZEN) {
6360 case CPU_DOWN_PREPARE:
6361 set_cpu_active((long)hcpu, false);
6362 return NOTIFY_OK;
6363 default:
6364 return NOTIFY_DONE;
6365 }
6366}
6367
7babe8db 6368static int __init migration_init(void)
1da177e4
LT
6369{
6370 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6371 int err;
48f24c4d 6372
3a101d05 6373 /* Initialize migration for the boot CPU */
07dccf33
AM
6374 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6375 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6376 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6377 register_cpu_notifier(&migration_notifier);
7babe8db 6378
3a101d05
TH
6379 /* Register cpu active notifiers */
6380 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6381 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6382
a004cd42 6383 return 0;
1da177e4 6384}
7babe8db 6385early_initcall(migration_init);
1da177e4
LT
6386#endif
6387
6388#ifdef CONFIG_SMP
476f3534 6389
3e9830dc 6390#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6391
f6630114
MT
6392static __read_mostly int sched_domain_debug_enabled;
6393
6394static int __init sched_domain_debug_setup(char *str)
6395{
6396 sched_domain_debug_enabled = 1;
6397
6398 return 0;
6399}
6400early_param("sched_debug", sched_domain_debug_setup);
6401
7c16ec58 6402static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6403 struct cpumask *groupmask)
1da177e4 6404{
4dcf6aff 6405 struct sched_group *group = sd->groups;
434d53b0 6406 char str[256];
1da177e4 6407
968ea6d8 6408 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6409 cpumask_clear(groupmask);
4dcf6aff
IM
6410
6411 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6412
6413 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6414 printk("does not load-balance\n");
4dcf6aff 6415 if (sd->parent)
3df0fc5b
PZ
6416 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6417 " has parent");
4dcf6aff 6418 return -1;
41c7ce9a
NP
6419 }
6420
3df0fc5b 6421 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6422
758b2cdc 6423 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6424 printk(KERN_ERR "ERROR: domain->span does not contain "
6425 "CPU%d\n", cpu);
4dcf6aff 6426 }
758b2cdc 6427 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6428 printk(KERN_ERR "ERROR: domain->groups does not contain"
6429 " CPU%d\n", cpu);
4dcf6aff 6430 }
1da177e4 6431
4dcf6aff 6432 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6433 do {
4dcf6aff 6434 if (!group) {
3df0fc5b
PZ
6435 printk("\n");
6436 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6437 break;
6438 }
6439
18a3885f 6440 if (!group->cpu_power) {
3df0fc5b
PZ
6441 printk(KERN_CONT "\n");
6442 printk(KERN_ERR "ERROR: domain->cpu_power not "
6443 "set\n");
4dcf6aff
IM
6444 break;
6445 }
1da177e4 6446
758b2cdc 6447 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6448 printk(KERN_CONT "\n");
6449 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6450 break;
6451 }
1da177e4 6452
758b2cdc 6453 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6454 printk(KERN_CONT "\n");
6455 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6456 break;
6457 }
1da177e4 6458
758b2cdc 6459 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6460
968ea6d8 6461 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6462
3df0fc5b 6463 printk(KERN_CONT " %s", str);
18a3885f 6464 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6465 printk(KERN_CONT " (cpu_power = %d)",
6466 group->cpu_power);
381512cf 6467 }
1da177e4 6468
4dcf6aff
IM
6469 group = group->next;
6470 } while (group != sd->groups);
3df0fc5b 6471 printk(KERN_CONT "\n");
1da177e4 6472
758b2cdc 6473 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6474 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6475
758b2cdc
RR
6476 if (sd->parent &&
6477 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6478 printk(KERN_ERR "ERROR: parent span is not a superset "
6479 "of domain->span\n");
4dcf6aff
IM
6480 return 0;
6481}
1da177e4 6482
4dcf6aff
IM
6483static void sched_domain_debug(struct sched_domain *sd, int cpu)
6484{
d5dd3db1 6485 cpumask_var_t groupmask;
4dcf6aff 6486 int level = 0;
1da177e4 6487
f6630114
MT
6488 if (!sched_domain_debug_enabled)
6489 return;
6490
4dcf6aff
IM
6491 if (!sd) {
6492 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6493 return;
6494 }
1da177e4 6495
4dcf6aff
IM
6496 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6497
d5dd3db1 6498 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6499 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6500 return;
6501 }
6502
4dcf6aff 6503 for (;;) {
7c16ec58 6504 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6505 break;
1da177e4
LT
6506 level++;
6507 sd = sd->parent;
33859f7f 6508 if (!sd)
4dcf6aff
IM
6509 break;
6510 }
d5dd3db1 6511 free_cpumask_var(groupmask);
1da177e4 6512}
6d6bc0ad 6513#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6514# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6515#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6516
1a20ff27 6517static int sd_degenerate(struct sched_domain *sd)
245af2c7 6518{
758b2cdc 6519 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6520 return 1;
6521
6522 /* Following flags need at least 2 groups */
6523 if (sd->flags & (SD_LOAD_BALANCE |
6524 SD_BALANCE_NEWIDLE |
6525 SD_BALANCE_FORK |
89c4710e
SS
6526 SD_BALANCE_EXEC |
6527 SD_SHARE_CPUPOWER |
6528 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6529 if (sd->groups != sd->groups->next)
6530 return 0;
6531 }
6532
6533 /* Following flags don't use groups */
c88d5910 6534 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6535 return 0;
6536
6537 return 1;
6538}
6539
48f24c4d
IM
6540static int
6541sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6542{
6543 unsigned long cflags = sd->flags, pflags = parent->flags;
6544
6545 if (sd_degenerate(parent))
6546 return 1;
6547
758b2cdc 6548 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6549 return 0;
6550
245af2c7
SS
6551 /* Flags needing groups don't count if only 1 group in parent */
6552 if (parent->groups == parent->groups->next) {
6553 pflags &= ~(SD_LOAD_BALANCE |
6554 SD_BALANCE_NEWIDLE |
6555 SD_BALANCE_FORK |
89c4710e
SS
6556 SD_BALANCE_EXEC |
6557 SD_SHARE_CPUPOWER |
6558 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6559 if (nr_node_ids == 1)
6560 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6561 }
6562 if (~cflags & pflags)
6563 return 0;
6564
6565 return 1;
6566}
6567
c6c4927b
RR
6568static void free_rootdomain(struct root_domain *rd)
6569{
047106ad
PZ
6570 synchronize_sched();
6571
68e74568
RR
6572 cpupri_cleanup(&rd->cpupri);
6573
c6c4927b
RR
6574 free_cpumask_var(rd->rto_mask);
6575 free_cpumask_var(rd->online);
6576 free_cpumask_var(rd->span);
6577 kfree(rd);
6578}
6579
57d885fe
GH
6580static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6581{
a0490fa3 6582 struct root_domain *old_rd = NULL;
57d885fe 6583 unsigned long flags;
57d885fe 6584
05fa785c 6585 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6586
6587 if (rq->rd) {
a0490fa3 6588 old_rd = rq->rd;
57d885fe 6589
c6c4927b 6590 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6591 set_rq_offline(rq);
57d885fe 6592
c6c4927b 6593 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6594
a0490fa3
IM
6595 /*
6596 * If we dont want to free the old_rt yet then
6597 * set old_rd to NULL to skip the freeing later
6598 * in this function:
6599 */
6600 if (!atomic_dec_and_test(&old_rd->refcount))
6601 old_rd = NULL;
57d885fe
GH
6602 }
6603
6604 atomic_inc(&rd->refcount);
6605 rq->rd = rd;
6606
c6c4927b 6607 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6608 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6609 set_rq_online(rq);
57d885fe 6610
05fa785c 6611 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6612
6613 if (old_rd)
6614 free_rootdomain(old_rd);
57d885fe
GH
6615}
6616
68c38fc3 6617static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6618{
6619 memset(rd, 0, sizeof(*rd));
6620
68c38fc3 6621 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6622 goto out;
68c38fc3 6623 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6624 goto free_span;
68c38fc3 6625 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6626 goto free_online;
6e0534f2 6627
68c38fc3 6628 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6629 goto free_rto_mask;
c6c4927b 6630 return 0;
6e0534f2 6631
68e74568
RR
6632free_rto_mask:
6633 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6634free_online:
6635 free_cpumask_var(rd->online);
6636free_span:
6637 free_cpumask_var(rd->span);
0c910d28 6638out:
c6c4927b 6639 return -ENOMEM;
57d885fe
GH
6640}
6641
6642static void init_defrootdomain(void)
6643{
68c38fc3 6644 init_rootdomain(&def_root_domain);
c6c4927b 6645
57d885fe
GH
6646 atomic_set(&def_root_domain.refcount, 1);
6647}
6648
dc938520 6649static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6650{
6651 struct root_domain *rd;
6652
6653 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6654 if (!rd)
6655 return NULL;
6656
68c38fc3 6657 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6658 kfree(rd);
6659 return NULL;
6660 }
57d885fe
GH
6661
6662 return rd;
6663}
6664
1da177e4 6665/*
0eab9146 6666 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6667 * hold the hotplug lock.
6668 */
0eab9146
IM
6669static void
6670cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6671{
70b97a7f 6672 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6673 struct sched_domain *tmp;
6674
669c55e9
PZ
6675 for (tmp = sd; tmp; tmp = tmp->parent)
6676 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6677
245af2c7 6678 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6679 for (tmp = sd; tmp; ) {
245af2c7
SS
6680 struct sched_domain *parent = tmp->parent;
6681 if (!parent)
6682 break;
f29c9b1c 6683
1a848870 6684 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6685 tmp->parent = parent->parent;
1a848870
SS
6686 if (parent->parent)
6687 parent->parent->child = tmp;
f29c9b1c
LZ
6688 } else
6689 tmp = tmp->parent;
245af2c7
SS
6690 }
6691
1a848870 6692 if (sd && sd_degenerate(sd)) {
245af2c7 6693 sd = sd->parent;
1a848870
SS
6694 if (sd)
6695 sd->child = NULL;
6696 }
1da177e4
LT
6697
6698 sched_domain_debug(sd, cpu);
6699
57d885fe 6700 rq_attach_root(rq, rd);
674311d5 6701 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6702}
6703
6704/* cpus with isolated domains */
dcc30a35 6705static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6706
6707/* Setup the mask of cpus configured for isolated domains */
6708static int __init isolated_cpu_setup(char *str)
6709{
bdddd296 6710 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6711 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6712 return 1;
6713}
6714
8927f494 6715__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6716
6717/*
6711cab4
SS
6718 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6719 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6720 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6721 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6722 *
6723 * init_sched_build_groups will build a circular linked list of the groups
6724 * covered by the given span, and will set each group's ->cpumask correctly,
6725 * and ->cpu_power to 0.
6726 */
a616058b 6727static void
96f874e2
RR
6728init_sched_build_groups(const struct cpumask *span,
6729 const struct cpumask *cpu_map,
6730 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6731 struct sched_group **sg,
96f874e2
RR
6732 struct cpumask *tmpmask),
6733 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6734{
6735 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6736 int i;
6737
96f874e2 6738 cpumask_clear(covered);
7c16ec58 6739
abcd083a 6740 for_each_cpu(i, span) {
6711cab4 6741 struct sched_group *sg;
7c16ec58 6742 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6743 int j;
6744
758b2cdc 6745 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6746 continue;
6747
758b2cdc 6748 cpumask_clear(sched_group_cpus(sg));
18a3885f 6749 sg->cpu_power = 0;
1da177e4 6750
abcd083a 6751 for_each_cpu(j, span) {
7c16ec58 6752 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6753 continue;
6754
96f874e2 6755 cpumask_set_cpu(j, covered);
758b2cdc 6756 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6757 }
6758 if (!first)
6759 first = sg;
6760 if (last)
6761 last->next = sg;
6762 last = sg;
6763 }
6764 last->next = first;
6765}
6766
9c1cfda2 6767#define SD_NODES_PER_DOMAIN 16
1da177e4 6768
9c1cfda2 6769#ifdef CONFIG_NUMA
198e2f18 6770
9c1cfda2
JH
6771/**
6772 * find_next_best_node - find the next node to include in a sched_domain
6773 * @node: node whose sched_domain we're building
6774 * @used_nodes: nodes already in the sched_domain
6775 *
41a2d6cf 6776 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6777 * finds the closest node not already in the @used_nodes map.
6778 *
6779 * Should use nodemask_t.
6780 */
c5f59f08 6781static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6782{
6783 int i, n, val, min_val, best_node = 0;
6784
6785 min_val = INT_MAX;
6786
076ac2af 6787 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6788 /* Start at @node */
076ac2af 6789 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6790
6791 if (!nr_cpus_node(n))
6792 continue;
6793
6794 /* Skip already used nodes */
c5f59f08 6795 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6796 continue;
6797
6798 /* Simple min distance search */
6799 val = node_distance(node, n);
6800
6801 if (val < min_val) {
6802 min_val = val;
6803 best_node = n;
6804 }
6805 }
6806
c5f59f08 6807 node_set(best_node, *used_nodes);
9c1cfda2
JH
6808 return best_node;
6809}
6810
6811/**
6812 * sched_domain_node_span - get a cpumask for a node's sched_domain
6813 * @node: node whose cpumask we're constructing
73486722 6814 * @span: resulting cpumask
9c1cfda2 6815 *
41a2d6cf 6816 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6817 * should be one that prevents unnecessary balancing, but also spreads tasks
6818 * out optimally.
6819 */
96f874e2 6820static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6821{
c5f59f08 6822 nodemask_t used_nodes;
48f24c4d 6823 int i;
9c1cfda2 6824
6ca09dfc 6825 cpumask_clear(span);
c5f59f08 6826 nodes_clear(used_nodes);
9c1cfda2 6827
6ca09dfc 6828 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6829 node_set(node, used_nodes);
9c1cfda2
JH
6830
6831 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6832 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6833
6ca09dfc 6834 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6835 }
9c1cfda2 6836}
6d6bc0ad 6837#endif /* CONFIG_NUMA */
9c1cfda2 6838
5c45bf27 6839int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6840
6c99e9ad
RR
6841/*
6842 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6843 *
6844 * ( See the the comments in include/linux/sched.h:struct sched_group
6845 * and struct sched_domain. )
6c99e9ad
RR
6846 */
6847struct static_sched_group {
6848 struct sched_group sg;
6849 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6850};
6851
6852struct static_sched_domain {
6853 struct sched_domain sd;
6854 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6855};
6856
49a02c51
AH
6857struct s_data {
6858#ifdef CONFIG_NUMA
6859 int sd_allnodes;
6860 cpumask_var_t domainspan;
6861 cpumask_var_t covered;
6862 cpumask_var_t notcovered;
6863#endif
6864 cpumask_var_t nodemask;
6865 cpumask_var_t this_sibling_map;
6866 cpumask_var_t this_core_map;
01a08546 6867 cpumask_var_t this_book_map;
49a02c51
AH
6868 cpumask_var_t send_covered;
6869 cpumask_var_t tmpmask;
6870 struct sched_group **sched_group_nodes;
6871 struct root_domain *rd;
6872};
6873
2109b99e
AH
6874enum s_alloc {
6875 sa_sched_groups = 0,
6876 sa_rootdomain,
6877 sa_tmpmask,
6878 sa_send_covered,
01a08546 6879 sa_this_book_map,
2109b99e
AH
6880 sa_this_core_map,
6881 sa_this_sibling_map,
6882 sa_nodemask,
6883 sa_sched_group_nodes,
6884#ifdef CONFIG_NUMA
6885 sa_notcovered,
6886 sa_covered,
6887 sa_domainspan,
6888#endif
6889 sa_none,
6890};
6891
9c1cfda2 6892/*
48f24c4d 6893 * SMT sched-domains:
9c1cfda2 6894 */
1da177e4 6895#ifdef CONFIG_SCHED_SMT
6c99e9ad 6896static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6897static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6898
41a2d6cf 6899static int
96f874e2
RR
6900cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6901 struct sched_group **sg, struct cpumask *unused)
1da177e4 6902{
6711cab4 6903 if (sg)
1871e52c 6904 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6905 return cpu;
6906}
6d6bc0ad 6907#endif /* CONFIG_SCHED_SMT */
1da177e4 6908
48f24c4d
IM
6909/*
6910 * multi-core sched-domains:
6911 */
1e9f28fa 6912#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6913static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6914static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6915
41a2d6cf 6916static int
96f874e2
RR
6917cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6918 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6919{
6711cab4 6920 int group;
f269893c 6921#ifdef CONFIG_SCHED_SMT
c69fc56d 6922 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6923 group = cpumask_first(mask);
f269893c
HC
6924#else
6925 group = cpu;
6926#endif
6711cab4 6927 if (sg)
6c99e9ad 6928 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6929 return group;
1e9f28fa 6930}
f269893c 6931#endif /* CONFIG_SCHED_MC */
1e9f28fa 6932
01a08546
HC
6933/*
6934 * book sched-domains:
6935 */
6936#ifdef CONFIG_SCHED_BOOK
6937static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6938static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6939
41a2d6cf 6940static int
01a08546
HC
6941cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6942 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6943{
01a08546
HC
6944 int group = cpu;
6945#ifdef CONFIG_SCHED_MC
6946 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6947 group = cpumask_first(mask);
6948#elif defined(CONFIG_SCHED_SMT)
6949 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6950 group = cpumask_first(mask);
6951#endif
6711cab4 6952 if (sg)
01a08546
HC
6953 *sg = &per_cpu(sched_group_book, group).sg;
6954 return group;
1e9f28fa 6955}
01a08546 6956#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6957
6c99e9ad
RR
6958static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6959static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6960
41a2d6cf 6961static int
96f874e2
RR
6962cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6963 struct sched_group **sg, struct cpumask *mask)
1da177e4 6964{
6711cab4 6965 int group;
01a08546
HC
6966#ifdef CONFIG_SCHED_BOOK
6967 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6968 group = cpumask_first(mask);
6969#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6970 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6971 group = cpumask_first(mask);
1e9f28fa 6972#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6973 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6974 group = cpumask_first(mask);
1da177e4 6975#else
6711cab4 6976 group = cpu;
1da177e4 6977#endif
6711cab4 6978 if (sg)
6c99e9ad 6979 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6980 return group;
1da177e4
LT
6981}
6982
6983#ifdef CONFIG_NUMA
1da177e4 6984/*
9c1cfda2
JH
6985 * The init_sched_build_groups can't handle what we want to do with node
6986 * groups, so roll our own. Now each node has its own list of groups which
6987 * gets dynamically allocated.
1da177e4 6988 */
62ea9ceb 6989static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6990static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6991
62ea9ceb 6992static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6993static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6994
96f874e2
RR
6995static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6996 struct sched_group **sg,
6997 struct cpumask *nodemask)
9c1cfda2 6998{
6711cab4
SS
6999 int group;
7000
6ca09dfc 7001 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7002 group = cpumask_first(nodemask);
6711cab4
SS
7003
7004 if (sg)
6c99e9ad 7005 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7006 return group;
1da177e4 7007}
6711cab4 7008
08069033
SS
7009static void init_numa_sched_groups_power(struct sched_group *group_head)
7010{
7011 struct sched_group *sg = group_head;
7012 int j;
7013
7014 if (!sg)
7015 return;
3a5c359a 7016 do {
758b2cdc 7017 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7018 struct sched_domain *sd;
08069033 7019
6c99e9ad 7020 sd = &per_cpu(phys_domains, j).sd;
13318a71 7021 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
7022 /*
7023 * Only add "power" once for each
7024 * physical package.
7025 */
7026 continue;
7027 }
08069033 7028
18a3885f 7029 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
7030 }
7031 sg = sg->next;
7032 } while (sg != group_head);
08069033 7033}
0601a88d
AH
7034
7035static int build_numa_sched_groups(struct s_data *d,
7036 const struct cpumask *cpu_map, int num)
7037{
7038 struct sched_domain *sd;
7039 struct sched_group *sg, *prev;
7040 int n, j;
7041
7042 cpumask_clear(d->covered);
7043 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7044 if (cpumask_empty(d->nodemask)) {
7045 d->sched_group_nodes[num] = NULL;
7046 goto out;
7047 }
7048
7049 sched_domain_node_span(num, d->domainspan);
7050 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7051
7052 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7053 GFP_KERNEL, num);
7054 if (!sg) {
3df0fc5b
PZ
7055 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7056 num);
0601a88d
AH
7057 return -ENOMEM;
7058 }
7059 d->sched_group_nodes[num] = sg;
7060
7061 for_each_cpu(j, d->nodemask) {
7062 sd = &per_cpu(node_domains, j).sd;
7063 sd->groups = sg;
7064 }
7065
18a3885f 7066 sg->cpu_power = 0;
0601a88d
AH
7067 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7068 sg->next = sg;
7069 cpumask_or(d->covered, d->covered, d->nodemask);
7070
7071 prev = sg;
7072 for (j = 0; j < nr_node_ids; j++) {
7073 n = (num + j) % nr_node_ids;
7074 cpumask_complement(d->notcovered, d->covered);
7075 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7076 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7077 if (cpumask_empty(d->tmpmask))
7078 break;
7079 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7080 if (cpumask_empty(d->tmpmask))
7081 continue;
7082 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7083 GFP_KERNEL, num);
7084 if (!sg) {
3df0fc5b
PZ
7085 printk(KERN_WARNING
7086 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7087 return -ENOMEM;
7088 }
18a3885f 7089 sg->cpu_power = 0;
0601a88d
AH
7090 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7091 sg->next = prev->next;
7092 cpumask_or(d->covered, d->covered, d->tmpmask);
7093 prev->next = sg;
7094 prev = sg;
7095 }
7096out:
7097 return 0;
7098}
6d6bc0ad 7099#endif /* CONFIG_NUMA */
1da177e4 7100
a616058b 7101#ifdef CONFIG_NUMA
51888ca2 7102/* Free memory allocated for various sched_group structures */
96f874e2
RR
7103static void free_sched_groups(const struct cpumask *cpu_map,
7104 struct cpumask *nodemask)
51888ca2 7105{
a616058b 7106 int cpu, i;
51888ca2 7107
abcd083a 7108 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7109 struct sched_group **sched_group_nodes
7110 = sched_group_nodes_bycpu[cpu];
7111
51888ca2
SV
7112 if (!sched_group_nodes)
7113 continue;
7114
076ac2af 7115 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7116 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7117
6ca09dfc 7118 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7119 if (cpumask_empty(nodemask))
51888ca2
SV
7120 continue;
7121
7122 if (sg == NULL)
7123 continue;
7124 sg = sg->next;
7125next_sg:
7126 oldsg = sg;
7127 sg = sg->next;
7128 kfree(oldsg);
7129 if (oldsg != sched_group_nodes[i])
7130 goto next_sg;
7131 }
7132 kfree(sched_group_nodes);
7133 sched_group_nodes_bycpu[cpu] = NULL;
7134 }
51888ca2 7135}
6d6bc0ad 7136#else /* !CONFIG_NUMA */
96f874e2
RR
7137static void free_sched_groups(const struct cpumask *cpu_map,
7138 struct cpumask *nodemask)
a616058b
SS
7139{
7140}
6d6bc0ad 7141#endif /* CONFIG_NUMA */
51888ca2 7142
89c4710e
SS
7143/*
7144 * Initialize sched groups cpu_power.
7145 *
7146 * cpu_power indicates the capacity of sched group, which is used while
7147 * distributing the load between different sched groups in a sched domain.
7148 * Typically cpu_power for all the groups in a sched domain will be same unless
7149 * there are asymmetries in the topology. If there are asymmetries, group
7150 * having more cpu_power will pickup more load compared to the group having
7151 * less cpu_power.
89c4710e
SS
7152 */
7153static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7154{
7155 struct sched_domain *child;
7156 struct sched_group *group;
f93e65c1
PZ
7157 long power;
7158 int weight;
89c4710e
SS
7159
7160 WARN_ON(!sd || !sd->groups);
7161
13318a71 7162 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7163 return;
7164
aae6d3dd
SS
7165 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7166
89c4710e
SS
7167 child = sd->child;
7168
18a3885f 7169 sd->groups->cpu_power = 0;
5517d86b 7170
f93e65c1
PZ
7171 if (!child) {
7172 power = SCHED_LOAD_SCALE;
7173 weight = cpumask_weight(sched_domain_span(sd));
7174 /*
7175 * SMT siblings share the power of a single core.
a52bfd73
PZ
7176 * Usually multiple threads get a better yield out of
7177 * that one core than a single thread would have,
7178 * reflect that in sd->smt_gain.
f93e65c1 7179 */
a52bfd73
PZ
7180 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7181 power *= sd->smt_gain;
f93e65c1 7182 power /= weight;
a52bfd73
PZ
7183 power >>= SCHED_LOAD_SHIFT;
7184 }
18a3885f 7185 sd->groups->cpu_power += power;
89c4710e
SS
7186 return;
7187 }
7188
89c4710e 7189 /*
f93e65c1 7190 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7191 */
7192 group = child->groups;
7193 do {
18a3885f 7194 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7195 group = group->next;
7196 } while (group != child->groups);
7197}
7198
7c16ec58
MT
7199/*
7200 * Initializers for schedule domains
7201 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7202 */
7203
a5d8c348
IM
7204#ifdef CONFIG_SCHED_DEBUG
7205# define SD_INIT_NAME(sd, type) sd->name = #type
7206#else
7207# define SD_INIT_NAME(sd, type) do { } while (0)
7208#endif
7209
7c16ec58 7210#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7211
7c16ec58
MT
7212#define SD_INIT_FUNC(type) \
7213static noinline void sd_init_##type(struct sched_domain *sd) \
7214{ \
7215 memset(sd, 0, sizeof(*sd)); \
7216 *sd = SD_##type##_INIT; \
1d3504fc 7217 sd->level = SD_LV_##type; \
a5d8c348 7218 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7219}
7220
7221SD_INIT_FUNC(CPU)
7222#ifdef CONFIG_NUMA
7223 SD_INIT_FUNC(ALLNODES)
7224 SD_INIT_FUNC(NODE)
7225#endif
7226#ifdef CONFIG_SCHED_SMT
7227 SD_INIT_FUNC(SIBLING)
7228#endif
7229#ifdef CONFIG_SCHED_MC
7230 SD_INIT_FUNC(MC)
7231#endif
01a08546
HC
7232#ifdef CONFIG_SCHED_BOOK
7233 SD_INIT_FUNC(BOOK)
7234#endif
7c16ec58 7235
1d3504fc
HS
7236static int default_relax_domain_level = -1;
7237
7238static int __init setup_relax_domain_level(char *str)
7239{
30e0e178
LZ
7240 unsigned long val;
7241
7242 val = simple_strtoul(str, NULL, 0);
7243 if (val < SD_LV_MAX)
7244 default_relax_domain_level = val;
7245
1d3504fc
HS
7246 return 1;
7247}
7248__setup("relax_domain_level=", setup_relax_domain_level);
7249
7250static void set_domain_attribute(struct sched_domain *sd,
7251 struct sched_domain_attr *attr)
7252{
7253 int request;
7254
7255 if (!attr || attr->relax_domain_level < 0) {
7256 if (default_relax_domain_level < 0)
7257 return;
7258 else
7259 request = default_relax_domain_level;
7260 } else
7261 request = attr->relax_domain_level;
7262 if (request < sd->level) {
7263 /* turn off idle balance on this domain */
c88d5910 7264 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7265 } else {
7266 /* turn on idle balance on this domain */
c88d5910 7267 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7268 }
7269}
7270
2109b99e
AH
7271static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7272 const struct cpumask *cpu_map)
7273{
7274 switch (what) {
7275 case sa_sched_groups:
7276 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7277 d->sched_group_nodes = NULL;
7278 case sa_rootdomain:
7279 free_rootdomain(d->rd); /* fall through */
7280 case sa_tmpmask:
7281 free_cpumask_var(d->tmpmask); /* fall through */
7282 case sa_send_covered:
7283 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7284 case sa_this_book_map:
7285 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7286 case sa_this_core_map:
7287 free_cpumask_var(d->this_core_map); /* fall through */
7288 case sa_this_sibling_map:
7289 free_cpumask_var(d->this_sibling_map); /* fall through */
7290 case sa_nodemask:
7291 free_cpumask_var(d->nodemask); /* fall through */
7292 case sa_sched_group_nodes:
d1b55138 7293#ifdef CONFIG_NUMA
2109b99e
AH
7294 kfree(d->sched_group_nodes); /* fall through */
7295 case sa_notcovered:
7296 free_cpumask_var(d->notcovered); /* fall through */
7297 case sa_covered:
7298 free_cpumask_var(d->covered); /* fall through */
7299 case sa_domainspan:
7300 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7301#endif
2109b99e
AH
7302 case sa_none:
7303 break;
7304 }
7305}
3404c8d9 7306
2109b99e
AH
7307static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7308 const struct cpumask *cpu_map)
7309{
3404c8d9 7310#ifdef CONFIG_NUMA
2109b99e
AH
7311 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7312 return sa_none;
7313 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7314 return sa_domainspan;
7315 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7316 return sa_covered;
7317 /* Allocate the per-node list of sched groups */
7318 d->sched_group_nodes = kcalloc(nr_node_ids,
7319 sizeof(struct sched_group *), GFP_KERNEL);
7320 if (!d->sched_group_nodes) {
3df0fc5b 7321 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7322 return sa_notcovered;
d1b55138 7323 }
2109b99e 7324 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7325#endif
2109b99e
AH
7326 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7327 return sa_sched_group_nodes;
7328 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7329 return sa_nodemask;
7330 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7331 return sa_this_sibling_map;
01a08546 7332 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7333 return sa_this_core_map;
01a08546
HC
7334 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7335 return sa_this_book_map;
2109b99e
AH
7336 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7337 return sa_send_covered;
7338 d->rd = alloc_rootdomain();
7339 if (!d->rd) {
3df0fc5b 7340 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7341 return sa_tmpmask;
57d885fe 7342 }
2109b99e
AH
7343 return sa_rootdomain;
7344}
57d885fe 7345
7f4588f3
AH
7346static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7347 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7348{
7349 struct sched_domain *sd = NULL;
7c16ec58 7350#ifdef CONFIG_NUMA
7f4588f3 7351 struct sched_domain *parent;
1da177e4 7352
7f4588f3
AH
7353 d->sd_allnodes = 0;
7354 if (cpumask_weight(cpu_map) >
7355 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7356 sd = &per_cpu(allnodes_domains, i).sd;
7357 SD_INIT(sd, ALLNODES);
1d3504fc 7358 set_domain_attribute(sd, attr);
7f4588f3
AH
7359 cpumask_copy(sched_domain_span(sd), cpu_map);
7360 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7361 d->sd_allnodes = 1;
7362 }
7363 parent = sd;
7364
7365 sd = &per_cpu(node_domains, i).sd;
7366 SD_INIT(sd, NODE);
7367 set_domain_attribute(sd, attr);
7368 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7369 sd->parent = parent;
7370 if (parent)
7371 parent->child = sd;
7372 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7373#endif
7f4588f3
AH
7374 return sd;
7375}
1da177e4 7376
87cce662
AH
7377static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7378 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7379 struct sched_domain *parent, int i)
7380{
7381 struct sched_domain *sd;
7382 sd = &per_cpu(phys_domains, i).sd;
7383 SD_INIT(sd, CPU);
7384 set_domain_attribute(sd, attr);
7385 cpumask_copy(sched_domain_span(sd), d->nodemask);
7386 sd->parent = parent;
7387 if (parent)
7388 parent->child = sd;
7389 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7390 return sd;
7391}
1da177e4 7392
01a08546
HC
7393static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7394 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7395 struct sched_domain *parent, int i)
7396{
7397 struct sched_domain *sd = parent;
7398#ifdef CONFIG_SCHED_BOOK
7399 sd = &per_cpu(book_domains, i).sd;
7400 SD_INIT(sd, BOOK);
7401 set_domain_attribute(sd, attr);
7402 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7403 sd->parent = parent;
7404 parent->child = sd;
7405 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7406#endif
7407 return sd;
7408}
7409
410c4081
AH
7410static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7411 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7412 struct sched_domain *parent, int i)
7413{
7414 struct sched_domain *sd = parent;
1e9f28fa 7415#ifdef CONFIG_SCHED_MC
410c4081
AH
7416 sd = &per_cpu(core_domains, i).sd;
7417 SD_INIT(sd, MC);
7418 set_domain_attribute(sd, attr);
7419 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7420 sd->parent = parent;
7421 parent->child = sd;
7422 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7423#endif
410c4081
AH
7424 return sd;
7425}
1e9f28fa 7426
d8173535
AH
7427static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7428 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7429 struct sched_domain *parent, int i)
7430{
7431 struct sched_domain *sd = parent;
1da177e4 7432#ifdef CONFIG_SCHED_SMT
d8173535
AH
7433 sd = &per_cpu(cpu_domains, i).sd;
7434 SD_INIT(sd, SIBLING);
7435 set_domain_attribute(sd, attr);
7436 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7437 sd->parent = parent;
7438 parent->child = sd;
7439 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7440#endif
d8173535
AH
7441 return sd;
7442}
1da177e4 7443
0e8e85c9
AH
7444static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7445 const struct cpumask *cpu_map, int cpu)
7446{
7447 switch (l) {
1da177e4 7448#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7449 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7450 cpumask_and(d->this_sibling_map, cpu_map,
7451 topology_thread_cpumask(cpu));
7452 if (cpu == cpumask_first(d->this_sibling_map))
7453 init_sched_build_groups(d->this_sibling_map, cpu_map,
7454 &cpu_to_cpu_group,
7455 d->send_covered, d->tmpmask);
7456 break;
1da177e4 7457#endif
1e9f28fa 7458#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7459 case SD_LV_MC: /* set up multi-core groups */
7460 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7461 if (cpu == cpumask_first(d->this_core_map))
7462 init_sched_build_groups(d->this_core_map, cpu_map,
7463 &cpu_to_core_group,
7464 d->send_covered, d->tmpmask);
7465 break;
01a08546
HC
7466#endif
7467#ifdef CONFIG_SCHED_BOOK
7468 case SD_LV_BOOK: /* set up book groups */
7469 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7470 if (cpu == cpumask_first(d->this_book_map))
7471 init_sched_build_groups(d->this_book_map, cpu_map,
7472 &cpu_to_book_group,
7473 d->send_covered, d->tmpmask);
7474 break;
1e9f28fa 7475#endif
86548096
AH
7476 case SD_LV_CPU: /* set up physical groups */
7477 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7478 if (!cpumask_empty(d->nodemask))
7479 init_sched_build_groups(d->nodemask, cpu_map,
7480 &cpu_to_phys_group,
7481 d->send_covered, d->tmpmask);
7482 break;
1da177e4 7483#ifdef CONFIG_NUMA
de616e36
AH
7484 case SD_LV_ALLNODES:
7485 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7486 d->send_covered, d->tmpmask);
7487 break;
7488#endif
0e8e85c9
AH
7489 default:
7490 break;
7c16ec58 7491 }
0e8e85c9 7492}
9c1cfda2 7493
2109b99e
AH
7494/*
7495 * Build sched domains for a given set of cpus and attach the sched domains
7496 * to the individual cpus
7497 */
7498static int __build_sched_domains(const struct cpumask *cpu_map,
7499 struct sched_domain_attr *attr)
7500{
7501 enum s_alloc alloc_state = sa_none;
7502 struct s_data d;
294b0c96 7503 struct sched_domain *sd;
2109b99e 7504 int i;
7c16ec58 7505#ifdef CONFIG_NUMA
2109b99e 7506 d.sd_allnodes = 0;
7c16ec58 7507#endif
9c1cfda2 7508
2109b99e
AH
7509 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7510 if (alloc_state != sa_rootdomain)
7511 goto error;
7512 alloc_state = sa_sched_groups;
9c1cfda2 7513
1da177e4 7514 /*
1a20ff27 7515 * Set up domains for cpus specified by the cpu_map.
1da177e4 7516 */
abcd083a 7517 for_each_cpu(i, cpu_map) {
49a02c51
AH
7518 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7519 cpu_map);
9761eea8 7520
7f4588f3 7521 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7522 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7523 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7524 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7525 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7526 }
9c1cfda2 7527
abcd083a 7528 for_each_cpu(i, cpu_map) {
0e8e85c9 7529 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7530 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7531 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7532 }
9c1cfda2 7533
1da177e4 7534 /* Set up physical groups */
86548096
AH
7535 for (i = 0; i < nr_node_ids; i++)
7536 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7537
1da177e4
LT
7538#ifdef CONFIG_NUMA
7539 /* Set up node groups */
de616e36
AH
7540 if (d.sd_allnodes)
7541 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7542
0601a88d
AH
7543 for (i = 0; i < nr_node_ids; i++)
7544 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7545 goto error;
1da177e4
LT
7546#endif
7547
7548 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7549#ifdef CONFIG_SCHED_SMT
abcd083a 7550 for_each_cpu(i, cpu_map) {
294b0c96 7551 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7552 init_sched_groups_power(i, sd);
5c45bf27 7553 }
1da177e4 7554#endif
1e9f28fa 7555#ifdef CONFIG_SCHED_MC
abcd083a 7556 for_each_cpu(i, cpu_map) {
294b0c96 7557 sd = &per_cpu(core_domains, i).sd;
89c4710e 7558 init_sched_groups_power(i, sd);
5c45bf27
SS
7559 }
7560#endif
01a08546
HC
7561#ifdef CONFIG_SCHED_BOOK
7562 for_each_cpu(i, cpu_map) {
7563 sd = &per_cpu(book_domains, i).sd;
7564 init_sched_groups_power(i, sd);
7565 }
7566#endif
1e9f28fa 7567
abcd083a 7568 for_each_cpu(i, cpu_map) {
294b0c96 7569 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7570 init_sched_groups_power(i, sd);
1da177e4
LT
7571 }
7572
9c1cfda2 7573#ifdef CONFIG_NUMA
076ac2af 7574 for (i = 0; i < nr_node_ids; i++)
49a02c51 7575 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7576
49a02c51 7577 if (d.sd_allnodes) {
6711cab4 7578 struct sched_group *sg;
f712c0c7 7579
96f874e2 7580 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7581 d.tmpmask);
f712c0c7
SS
7582 init_numa_sched_groups_power(sg);
7583 }
9c1cfda2
JH
7584#endif
7585
1da177e4 7586 /* Attach the domains */
abcd083a 7587 for_each_cpu(i, cpu_map) {
1da177e4 7588#ifdef CONFIG_SCHED_SMT
6c99e9ad 7589 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7590#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7591 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7592#elif defined(CONFIG_SCHED_BOOK)
7593 sd = &per_cpu(book_domains, i).sd;
1da177e4 7594#else
6c99e9ad 7595 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7596#endif
49a02c51 7597 cpu_attach_domain(sd, d.rd, i);
1da177e4 7598 }
51888ca2 7599
2109b99e
AH
7600 d.sched_group_nodes = NULL; /* don't free this we still need it */
7601 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7602 return 0;
51888ca2 7603
51888ca2 7604error:
2109b99e
AH
7605 __free_domain_allocs(&d, alloc_state, cpu_map);
7606 return -ENOMEM;
1da177e4 7607}
029190c5 7608
96f874e2 7609static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7610{
7611 return __build_sched_domains(cpu_map, NULL);
7612}
7613
acc3f5d7 7614static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7615static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7616static struct sched_domain_attr *dattr_cur;
7617 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7618
7619/*
7620 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7621 * cpumask) fails, then fallback to a single sched domain,
7622 * as determined by the single cpumask fallback_doms.
029190c5 7623 */
4212823f 7624static cpumask_var_t fallback_doms;
029190c5 7625
ee79d1bd
HC
7626/*
7627 * arch_update_cpu_topology lets virtualized architectures update the
7628 * cpu core maps. It is supposed to return 1 if the topology changed
7629 * or 0 if it stayed the same.
7630 */
7631int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7632{
ee79d1bd 7633 return 0;
22e52b07
HC
7634}
7635
acc3f5d7
RR
7636cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7637{
7638 int i;
7639 cpumask_var_t *doms;
7640
7641 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7642 if (!doms)
7643 return NULL;
7644 for (i = 0; i < ndoms; i++) {
7645 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7646 free_sched_domains(doms, i);
7647 return NULL;
7648 }
7649 }
7650 return doms;
7651}
7652
7653void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7654{
7655 unsigned int i;
7656 for (i = 0; i < ndoms; i++)
7657 free_cpumask_var(doms[i]);
7658 kfree(doms);
7659}
7660
1a20ff27 7661/*
41a2d6cf 7662 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7663 * For now this just excludes isolated cpus, but could be used to
7664 * exclude other special cases in the future.
1a20ff27 7665 */
96f874e2 7666static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7667{
7378547f
MM
7668 int err;
7669
22e52b07 7670 arch_update_cpu_topology();
029190c5 7671 ndoms_cur = 1;
acc3f5d7 7672 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7673 if (!doms_cur)
acc3f5d7
RR
7674 doms_cur = &fallback_doms;
7675 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7676 dattr_cur = NULL;
acc3f5d7 7677 err = build_sched_domains(doms_cur[0]);
6382bc90 7678 register_sched_domain_sysctl();
7378547f
MM
7679
7680 return err;
1a20ff27
DG
7681}
7682
96f874e2
RR
7683static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7684 struct cpumask *tmpmask)
1da177e4 7685{
7c16ec58 7686 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7687}
1da177e4 7688
1a20ff27
DG
7689/*
7690 * Detach sched domains from a group of cpus specified in cpu_map
7691 * These cpus will now be attached to the NULL domain
7692 */
96f874e2 7693static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7694{
96f874e2
RR
7695 /* Save because hotplug lock held. */
7696 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7697 int i;
7698
abcd083a 7699 for_each_cpu(i, cpu_map)
57d885fe 7700 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7701 synchronize_sched();
96f874e2 7702 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7703}
7704
1d3504fc
HS
7705/* handle null as "default" */
7706static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7707 struct sched_domain_attr *new, int idx_new)
7708{
7709 struct sched_domain_attr tmp;
7710
7711 /* fast path */
7712 if (!new && !cur)
7713 return 1;
7714
7715 tmp = SD_ATTR_INIT;
7716 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7717 new ? (new + idx_new) : &tmp,
7718 sizeof(struct sched_domain_attr));
7719}
7720
029190c5
PJ
7721/*
7722 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7723 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7724 * doms_new[] to the current sched domain partitioning, doms_cur[].
7725 * It destroys each deleted domain and builds each new domain.
7726 *
acc3f5d7 7727 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7728 * The masks don't intersect (don't overlap.) We should setup one
7729 * sched domain for each mask. CPUs not in any of the cpumasks will
7730 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7731 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7732 * it as it is.
7733 *
acc3f5d7
RR
7734 * The passed in 'doms_new' should be allocated using
7735 * alloc_sched_domains. This routine takes ownership of it and will
7736 * free_sched_domains it when done with it. If the caller failed the
7737 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7738 * and partition_sched_domains() will fallback to the single partition
7739 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7740 *
96f874e2 7741 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7742 * ndoms_new == 0 is a special case for destroying existing domains,
7743 * and it will not create the default domain.
dfb512ec 7744 *
029190c5
PJ
7745 * Call with hotplug lock held
7746 */
acc3f5d7 7747void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7748 struct sched_domain_attr *dattr_new)
029190c5 7749{
dfb512ec 7750 int i, j, n;
d65bd5ec 7751 int new_topology;
029190c5 7752
712555ee 7753 mutex_lock(&sched_domains_mutex);
a1835615 7754
7378547f
MM
7755 /* always unregister in case we don't destroy any domains */
7756 unregister_sched_domain_sysctl();
7757
d65bd5ec
HC
7758 /* Let architecture update cpu core mappings. */
7759 new_topology = arch_update_cpu_topology();
7760
dfb512ec 7761 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7762
7763 /* Destroy deleted domains */
7764 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7765 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7766 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7767 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7768 goto match1;
7769 }
7770 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7771 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7772match1:
7773 ;
7774 }
7775
e761b772
MK
7776 if (doms_new == NULL) {
7777 ndoms_cur = 0;
acc3f5d7 7778 doms_new = &fallback_doms;
6ad4c188 7779 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7780 WARN_ON_ONCE(dattr_new);
e761b772
MK
7781 }
7782
029190c5
PJ
7783 /* Build new domains */
7784 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7785 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7786 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7787 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7788 goto match2;
7789 }
7790 /* no match - add a new doms_new */
acc3f5d7 7791 __build_sched_domains(doms_new[i],
1d3504fc 7792 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7793match2:
7794 ;
7795 }
7796
7797 /* Remember the new sched domains */
acc3f5d7
RR
7798 if (doms_cur != &fallback_doms)
7799 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7800 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7801 doms_cur = doms_new;
1d3504fc 7802 dattr_cur = dattr_new;
029190c5 7803 ndoms_cur = ndoms_new;
7378547f
MM
7804
7805 register_sched_domain_sysctl();
a1835615 7806
712555ee 7807 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7808}
7809
5c45bf27 7810#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7811static void arch_reinit_sched_domains(void)
5c45bf27 7812{
95402b38 7813 get_online_cpus();
dfb512ec
MK
7814
7815 /* Destroy domains first to force the rebuild */
7816 partition_sched_domains(0, NULL, NULL);
7817
e761b772 7818 rebuild_sched_domains();
95402b38 7819 put_online_cpus();
5c45bf27
SS
7820}
7821
7822static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7823{
afb8a9b7 7824 unsigned int level = 0;
5c45bf27 7825
afb8a9b7
GS
7826 if (sscanf(buf, "%u", &level) != 1)
7827 return -EINVAL;
7828
7829 /*
7830 * level is always be positive so don't check for
7831 * level < POWERSAVINGS_BALANCE_NONE which is 0
7832 * What happens on 0 or 1 byte write,
7833 * need to check for count as well?
7834 */
7835
7836 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7837 return -EINVAL;
7838
7839 if (smt)
afb8a9b7 7840 sched_smt_power_savings = level;
5c45bf27 7841 else
afb8a9b7 7842 sched_mc_power_savings = level;
5c45bf27 7843
c70f22d2 7844 arch_reinit_sched_domains();
5c45bf27 7845
c70f22d2 7846 return count;
5c45bf27
SS
7847}
7848
5c45bf27 7849#ifdef CONFIG_SCHED_MC
f718cd4a 7850static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7851 struct sysdev_class_attribute *attr,
f718cd4a 7852 char *page)
5c45bf27
SS
7853{
7854 return sprintf(page, "%u\n", sched_mc_power_savings);
7855}
f718cd4a 7856static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7857 struct sysdev_class_attribute *attr,
48f24c4d 7858 const char *buf, size_t count)
5c45bf27
SS
7859{
7860 return sched_power_savings_store(buf, count, 0);
7861}
f718cd4a
AK
7862static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7863 sched_mc_power_savings_show,
7864 sched_mc_power_savings_store);
5c45bf27
SS
7865#endif
7866
7867#ifdef CONFIG_SCHED_SMT
f718cd4a 7868static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7869 struct sysdev_class_attribute *attr,
f718cd4a 7870 char *page)
5c45bf27
SS
7871{
7872 return sprintf(page, "%u\n", sched_smt_power_savings);
7873}
f718cd4a 7874static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7875 struct sysdev_class_attribute *attr,
48f24c4d 7876 const char *buf, size_t count)
5c45bf27
SS
7877{
7878 return sched_power_savings_store(buf, count, 1);
7879}
f718cd4a
AK
7880static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7881 sched_smt_power_savings_show,
6707de00
AB
7882 sched_smt_power_savings_store);
7883#endif
7884
39aac648 7885int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7886{
7887 int err = 0;
7888
7889#ifdef CONFIG_SCHED_SMT
7890 if (smt_capable())
7891 err = sysfs_create_file(&cls->kset.kobj,
7892 &attr_sched_smt_power_savings.attr);
7893#endif
7894#ifdef CONFIG_SCHED_MC
7895 if (!err && mc_capable())
7896 err = sysfs_create_file(&cls->kset.kobj,
7897 &attr_sched_mc_power_savings.attr);
7898#endif
7899 return err;
7900}
6d6bc0ad 7901#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7902
1da177e4 7903/*
3a101d05
TH
7904 * Update cpusets according to cpu_active mask. If cpusets are
7905 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7906 * around partition_sched_domains().
1da177e4 7907 */
0b2e918a
TH
7908static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7909 void *hcpu)
e761b772 7910{
3a101d05 7911 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7912 case CPU_ONLINE:
6ad4c188 7913 case CPU_DOWN_FAILED:
3a101d05 7914 cpuset_update_active_cpus();
e761b772 7915 return NOTIFY_OK;
3a101d05
TH
7916 default:
7917 return NOTIFY_DONE;
7918 }
7919}
e761b772 7920
0b2e918a
TH
7921static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7922 void *hcpu)
3a101d05
TH
7923{
7924 switch (action & ~CPU_TASKS_FROZEN) {
7925 case CPU_DOWN_PREPARE:
7926 cpuset_update_active_cpus();
7927 return NOTIFY_OK;
e761b772
MK
7928 default:
7929 return NOTIFY_DONE;
7930 }
7931}
e761b772
MK
7932
7933static int update_runtime(struct notifier_block *nfb,
7934 unsigned long action, void *hcpu)
1da177e4 7935{
7def2be1
PZ
7936 int cpu = (int)(long)hcpu;
7937
1da177e4 7938 switch (action) {
1da177e4 7939 case CPU_DOWN_PREPARE:
8bb78442 7940 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7941 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7942 return NOTIFY_OK;
7943
1da177e4 7944 case CPU_DOWN_FAILED:
8bb78442 7945 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7946 case CPU_ONLINE:
8bb78442 7947 case CPU_ONLINE_FROZEN:
7def2be1 7948 enable_runtime(cpu_rq(cpu));
e761b772
MK
7949 return NOTIFY_OK;
7950
1da177e4
LT
7951 default:
7952 return NOTIFY_DONE;
7953 }
1da177e4 7954}
1da177e4
LT
7955
7956void __init sched_init_smp(void)
7957{
dcc30a35
RR
7958 cpumask_var_t non_isolated_cpus;
7959
7960 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7961 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7962
434d53b0
MT
7963#if defined(CONFIG_NUMA)
7964 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7965 GFP_KERNEL);
7966 BUG_ON(sched_group_nodes_bycpu == NULL);
7967#endif
95402b38 7968 get_online_cpus();
712555ee 7969 mutex_lock(&sched_domains_mutex);
6ad4c188 7970 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7971 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7972 if (cpumask_empty(non_isolated_cpus))
7973 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7974 mutex_unlock(&sched_domains_mutex);
95402b38 7975 put_online_cpus();
e761b772 7976
3a101d05
TH
7977 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7978 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7979
7980 /* RT runtime code needs to handle some hotplug events */
7981 hotcpu_notifier(update_runtime, 0);
7982
b328ca18 7983 init_hrtick();
5c1e1767
NP
7984
7985 /* Move init over to a non-isolated CPU */
dcc30a35 7986 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7987 BUG();
19978ca6 7988 sched_init_granularity();
dcc30a35 7989 free_cpumask_var(non_isolated_cpus);
4212823f 7990
0e3900e6 7991 init_sched_rt_class();
1da177e4
LT
7992}
7993#else
7994void __init sched_init_smp(void)
7995{
19978ca6 7996 sched_init_granularity();
1da177e4
LT
7997}
7998#endif /* CONFIG_SMP */
7999
cd1bb94b
AB
8000const_debug unsigned int sysctl_timer_migration = 1;
8001
1da177e4
LT
8002int in_sched_functions(unsigned long addr)
8003{
1da177e4
LT
8004 return in_lock_functions(addr) ||
8005 (addr >= (unsigned long)__sched_text_start
8006 && addr < (unsigned long)__sched_text_end);
8007}
8008
a9957449 8009static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8010{
8011 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8012 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8013#ifdef CONFIG_FAIR_GROUP_SCHED
8014 cfs_rq->rq = rq;
f07333bf 8015 /* allow initial update_cfs_load() to truncate */
6ea72f12 8016#ifdef CONFIG_SMP
f07333bf 8017 cfs_rq->load_stamp = 1;
6ea72f12 8018#endif
dd41f596 8019#endif
67e9fb2a 8020 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8021}
8022
fa85ae24
PZ
8023static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8024{
8025 struct rt_prio_array *array;
8026 int i;
8027
8028 array = &rt_rq->active;
8029 for (i = 0; i < MAX_RT_PRIO; i++) {
8030 INIT_LIST_HEAD(array->queue + i);
8031 __clear_bit(i, array->bitmap);
8032 }
8033 /* delimiter for bitsearch: */
8034 __set_bit(MAX_RT_PRIO, array->bitmap);
8035
052f1dc7 8036#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8037 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8038#ifdef CONFIG_SMP
e864c499 8039 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8040#endif
48d5e258 8041#endif
fa85ae24
PZ
8042#ifdef CONFIG_SMP
8043 rt_rq->rt_nr_migratory = 0;
fa85ae24 8044 rt_rq->overloaded = 0;
05fa785c 8045 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
8046#endif
8047
8048 rt_rq->rt_time = 0;
8049 rt_rq->rt_throttled = 0;
ac086bc2 8050 rt_rq->rt_runtime = 0;
0986b11b 8051 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8052
052f1dc7 8053#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8054 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8055 rt_rq->rq = rq;
8056#endif
fa85ae24
PZ
8057}
8058
6f505b16 8059#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8060static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8061 struct sched_entity *se, int cpu,
ec7dc8ac 8062 struct sched_entity *parent)
6f505b16 8063{
ec7dc8ac 8064 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8065 tg->cfs_rq[cpu] = cfs_rq;
8066 init_cfs_rq(cfs_rq, rq);
8067 cfs_rq->tg = tg;
6f505b16
PZ
8068
8069 tg->se[cpu] = se;
07e06b01 8070 /* se could be NULL for root_task_group */
354d60c2
DG
8071 if (!se)
8072 return;
8073
ec7dc8ac
DG
8074 if (!parent)
8075 se->cfs_rq = &rq->cfs;
8076 else
8077 se->cfs_rq = parent->my_q;
8078
6f505b16 8079 se->my_q = cfs_rq;
9437178f 8080 update_load_set(&se->load, 0);
ec7dc8ac 8081 se->parent = parent;
6f505b16 8082}
052f1dc7 8083#endif
6f505b16 8084
052f1dc7 8085#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8086static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8087 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8088 struct sched_rt_entity *parent)
6f505b16 8089{
ec7dc8ac
DG
8090 struct rq *rq = cpu_rq(cpu);
8091
6f505b16
PZ
8092 tg->rt_rq[cpu] = rt_rq;
8093 init_rt_rq(rt_rq, rq);
8094 rt_rq->tg = tg;
ac086bc2 8095 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8096
8097 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8098 if (!rt_se)
8099 return;
8100
ec7dc8ac
DG
8101 if (!parent)
8102 rt_se->rt_rq = &rq->rt;
8103 else
8104 rt_se->rt_rq = parent->my_q;
8105
6f505b16 8106 rt_se->my_q = rt_rq;
ec7dc8ac 8107 rt_se->parent = parent;
6f505b16
PZ
8108 INIT_LIST_HEAD(&rt_se->run_list);
8109}
8110#endif
8111
1da177e4
LT
8112void __init sched_init(void)
8113{
dd41f596 8114 int i, j;
434d53b0
MT
8115 unsigned long alloc_size = 0, ptr;
8116
8117#ifdef CONFIG_FAIR_GROUP_SCHED
8118 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8119#endif
8120#ifdef CONFIG_RT_GROUP_SCHED
8121 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8122#endif
df7c8e84 8123#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8124 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8125#endif
434d53b0 8126 if (alloc_size) {
36b7b6d4 8127 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8128
8129#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8130 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8131 ptr += nr_cpu_ids * sizeof(void **);
8132
07e06b01 8133 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8134 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8135
6d6bc0ad 8136#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8137#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8138 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8139 ptr += nr_cpu_ids * sizeof(void **);
8140
07e06b01 8141 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8142 ptr += nr_cpu_ids * sizeof(void **);
8143
6d6bc0ad 8144#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8145#ifdef CONFIG_CPUMASK_OFFSTACK
8146 for_each_possible_cpu(i) {
8147 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8148 ptr += cpumask_size();
8149 }
8150#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8151 }
dd41f596 8152
57d885fe
GH
8153#ifdef CONFIG_SMP
8154 init_defrootdomain();
8155#endif
8156
d0b27fa7
PZ
8157 init_rt_bandwidth(&def_rt_bandwidth,
8158 global_rt_period(), global_rt_runtime());
8159
8160#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8161 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8162 global_rt_period(), global_rt_runtime());
6d6bc0ad 8163#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8164
7c941438 8165#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8166 list_add(&root_task_group.list, &task_groups);
8167 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8168 autogroup_init(&init_task);
7c941438 8169#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8170
0a945022 8171 for_each_possible_cpu(i) {
70b97a7f 8172 struct rq *rq;
1da177e4
LT
8173
8174 rq = cpu_rq(i);
05fa785c 8175 raw_spin_lock_init(&rq->lock);
7897986b 8176 rq->nr_running = 0;
dce48a84
TG
8177 rq->calc_load_active = 0;
8178 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8179 init_cfs_rq(&rq->cfs, rq);
6f505b16 8180 init_rt_rq(&rq->rt, rq);
dd41f596 8181#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8182 root_task_group.shares = root_task_group_load;
6f505b16 8183 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8184 /*
07e06b01 8185 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8186 *
8187 * In case of task-groups formed thr' the cgroup filesystem, it
8188 * gets 100% of the cpu resources in the system. This overall
8189 * system cpu resource is divided among the tasks of
07e06b01 8190 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8191 * based on each entity's (task or task-group's) weight
8192 * (se->load.weight).
8193 *
07e06b01 8194 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8195 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8196 * then A0's share of the cpu resource is:
8197 *
0d905bca 8198 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8199 *
07e06b01
YZ
8200 * We achieve this by letting root_task_group's tasks sit
8201 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8202 */
07e06b01 8203 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8204#endif /* CONFIG_FAIR_GROUP_SCHED */
8205
8206 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8207#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8208 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8209 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8210#endif
1da177e4 8211
dd41f596
IM
8212 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8213 rq->cpu_load[j] = 0;
fdf3e95d
VP
8214
8215 rq->last_load_update_tick = jiffies;
8216
1da177e4 8217#ifdef CONFIG_SMP
41c7ce9a 8218 rq->sd = NULL;
57d885fe 8219 rq->rd = NULL;
e51fd5e2 8220 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8221 rq->post_schedule = 0;
1da177e4 8222 rq->active_balance = 0;
dd41f596 8223 rq->next_balance = jiffies;
1da177e4 8224 rq->push_cpu = 0;
0a2966b4 8225 rq->cpu = i;
1f11eb6a 8226 rq->online = 0;
eae0c9df
MG
8227 rq->idle_stamp = 0;
8228 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8229 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8230#ifdef CONFIG_NO_HZ
8231 rq->nohz_balance_kick = 0;
8232 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8233#endif
1da177e4 8234#endif
8f4d37ec 8235 init_rq_hrtick(rq);
1da177e4 8236 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8237 }
8238
2dd73a4f 8239 set_load_weight(&init_task);
b50f60ce 8240
e107be36
AK
8241#ifdef CONFIG_PREEMPT_NOTIFIERS
8242 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8243#endif
8244
c9819f45 8245#ifdef CONFIG_SMP
962cf36c 8246 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8247#endif
8248
b50f60ce 8249#ifdef CONFIG_RT_MUTEXES
1d615482 8250 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8251#endif
8252
1da177e4
LT
8253 /*
8254 * The boot idle thread does lazy MMU switching as well:
8255 */
8256 atomic_inc(&init_mm.mm_count);
8257 enter_lazy_tlb(&init_mm, current);
8258
8259 /*
8260 * Make us the idle thread. Technically, schedule() should not be
8261 * called from this thread, however somewhere below it might be,
8262 * but because we are the idle thread, we just pick up running again
8263 * when this runqueue becomes "idle".
8264 */
8265 init_idle(current, smp_processor_id());
dce48a84
TG
8266
8267 calc_load_update = jiffies + LOAD_FREQ;
8268
dd41f596
IM
8269 /*
8270 * During early bootup we pretend to be a normal task:
8271 */
8272 current->sched_class = &fair_sched_class;
6892b75e 8273
6a7b3dc3 8274 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8275 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8276#ifdef CONFIG_SMP
7d1e6a9b 8277#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8278 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8279 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8280 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8281 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8282 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8283#endif
bdddd296
RR
8284 /* May be allocated at isolcpus cmdline parse time */
8285 if (cpu_isolated_map == NULL)
8286 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8287#endif /* SMP */
6a7b3dc3 8288
6892b75e 8289 scheduler_running = 1;
1da177e4
LT
8290}
8291
8292#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8293static inline int preempt_count_equals(int preempt_offset)
8294{
234da7bc 8295 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8296
4ba8216c 8297 return (nested == preempt_offset);
e4aafea2
FW
8298}
8299
d894837f 8300void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8301{
48f24c4d 8302#ifdef in_atomic
1da177e4
LT
8303 static unsigned long prev_jiffy; /* ratelimiting */
8304
e4aafea2
FW
8305 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8306 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8307 return;
8308 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8309 return;
8310 prev_jiffy = jiffies;
8311
3df0fc5b
PZ
8312 printk(KERN_ERR
8313 "BUG: sleeping function called from invalid context at %s:%d\n",
8314 file, line);
8315 printk(KERN_ERR
8316 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8317 in_atomic(), irqs_disabled(),
8318 current->pid, current->comm);
aef745fc
IM
8319
8320 debug_show_held_locks(current);
8321 if (irqs_disabled())
8322 print_irqtrace_events(current);
8323 dump_stack();
1da177e4
LT
8324#endif
8325}
8326EXPORT_SYMBOL(__might_sleep);
8327#endif
8328
8329#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8330static void normalize_task(struct rq *rq, struct task_struct *p)
8331{
da7a735e
PZ
8332 const struct sched_class *prev_class = p->sched_class;
8333 int old_prio = p->prio;
3a5e4dc1 8334 int on_rq;
3e51f33f 8335
fd2f4419 8336 on_rq = p->on_rq;
3a5e4dc1
AK
8337 if (on_rq)
8338 deactivate_task(rq, p, 0);
8339 __setscheduler(rq, p, SCHED_NORMAL, 0);
8340 if (on_rq) {
8341 activate_task(rq, p, 0);
8342 resched_task(rq->curr);
8343 }
da7a735e
PZ
8344
8345 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8346}
8347
1da177e4
LT
8348void normalize_rt_tasks(void)
8349{
a0f98a1c 8350 struct task_struct *g, *p;
1da177e4 8351 unsigned long flags;
70b97a7f 8352 struct rq *rq;
1da177e4 8353
4cf5d77a 8354 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8355 do_each_thread(g, p) {
178be793
IM
8356 /*
8357 * Only normalize user tasks:
8358 */
8359 if (!p->mm)
8360 continue;
8361
6cfb0d5d 8362 p->se.exec_start = 0;
6cfb0d5d 8363#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8364 p->se.statistics.wait_start = 0;
8365 p->se.statistics.sleep_start = 0;
8366 p->se.statistics.block_start = 0;
6cfb0d5d 8367#endif
dd41f596
IM
8368
8369 if (!rt_task(p)) {
8370 /*
8371 * Renice negative nice level userspace
8372 * tasks back to 0:
8373 */
8374 if (TASK_NICE(p) < 0 && p->mm)
8375 set_user_nice(p, 0);
1da177e4 8376 continue;
dd41f596 8377 }
1da177e4 8378
1d615482 8379 raw_spin_lock(&p->pi_lock);
b29739f9 8380 rq = __task_rq_lock(p);
1da177e4 8381
178be793 8382 normalize_task(rq, p);
3a5e4dc1 8383
b29739f9 8384 __task_rq_unlock(rq);
1d615482 8385 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8386 } while_each_thread(g, p);
8387
4cf5d77a 8388 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8389}
8390
8391#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8392
67fc4e0c 8393#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8394/*
67fc4e0c 8395 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8396 *
8397 * They can only be called when the whole system has been
8398 * stopped - every CPU needs to be quiescent, and no scheduling
8399 * activity can take place. Using them for anything else would
8400 * be a serious bug, and as a result, they aren't even visible
8401 * under any other configuration.
8402 */
8403
8404/**
8405 * curr_task - return the current task for a given cpu.
8406 * @cpu: the processor in question.
8407 *
8408 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8409 */
36c8b586 8410struct task_struct *curr_task(int cpu)
1df5c10a
LT
8411{
8412 return cpu_curr(cpu);
8413}
8414
67fc4e0c
JW
8415#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8416
8417#ifdef CONFIG_IA64
1df5c10a
LT
8418/**
8419 * set_curr_task - set the current task for a given cpu.
8420 * @cpu: the processor in question.
8421 * @p: the task pointer to set.
8422 *
8423 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8424 * are serviced on a separate stack. It allows the architecture to switch the
8425 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8426 * must be called with all CPU's synchronized, and interrupts disabled, the
8427 * and caller must save the original value of the current task (see
8428 * curr_task() above) and restore that value before reenabling interrupts and
8429 * re-starting the system.
8430 *
8431 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8432 */
36c8b586 8433void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8434{
8435 cpu_curr(cpu) = p;
8436}
8437
8438#endif
29f59db3 8439
bccbe08a
PZ
8440#ifdef CONFIG_FAIR_GROUP_SCHED
8441static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8442{
8443 int i;
8444
8445 for_each_possible_cpu(i) {
8446 if (tg->cfs_rq)
8447 kfree(tg->cfs_rq[i]);
8448 if (tg->se)
8449 kfree(tg->se[i]);
6f505b16
PZ
8450 }
8451
8452 kfree(tg->cfs_rq);
8453 kfree(tg->se);
6f505b16
PZ
8454}
8455
ec7dc8ac
DG
8456static
8457int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8458{
29f59db3 8459 struct cfs_rq *cfs_rq;
eab17229 8460 struct sched_entity *se;
29f59db3
SV
8461 int i;
8462
434d53b0 8463 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8464 if (!tg->cfs_rq)
8465 goto err;
434d53b0 8466 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8467 if (!tg->se)
8468 goto err;
052f1dc7
PZ
8469
8470 tg->shares = NICE_0_LOAD;
29f59db3
SV
8471
8472 for_each_possible_cpu(i) {
eab17229
LZ
8473 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8474 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8475 if (!cfs_rq)
8476 goto err;
8477
eab17229
LZ
8478 se = kzalloc_node(sizeof(struct sched_entity),
8479 GFP_KERNEL, cpu_to_node(i));
29f59db3 8480 if (!se)
dfc12eb2 8481 goto err_free_rq;
29f59db3 8482
3d4b47b4 8483 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8484 }
8485
8486 return 1;
8487
49246274 8488err_free_rq:
dfc12eb2 8489 kfree(cfs_rq);
49246274 8490err:
bccbe08a
PZ
8491 return 0;
8492}
8493
bccbe08a
PZ
8494static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8495{
3d4b47b4
PZ
8496 struct rq *rq = cpu_rq(cpu);
8497 unsigned long flags;
3d4b47b4
PZ
8498
8499 /*
8500 * Only empty task groups can be destroyed; so we can speculatively
8501 * check on_list without danger of it being re-added.
8502 */
8503 if (!tg->cfs_rq[cpu]->on_list)
8504 return;
8505
8506 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8507 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8508 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8509}
6d6bc0ad 8510#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8511static inline void free_fair_sched_group(struct task_group *tg)
8512{
8513}
8514
ec7dc8ac
DG
8515static inline
8516int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8517{
8518 return 1;
8519}
8520
bccbe08a
PZ
8521static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8522{
8523}
6d6bc0ad 8524#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8525
8526#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8527static void free_rt_sched_group(struct task_group *tg)
8528{
8529 int i;
8530
d0b27fa7
PZ
8531 destroy_rt_bandwidth(&tg->rt_bandwidth);
8532
bccbe08a
PZ
8533 for_each_possible_cpu(i) {
8534 if (tg->rt_rq)
8535 kfree(tg->rt_rq[i]);
8536 if (tg->rt_se)
8537 kfree(tg->rt_se[i]);
8538 }
8539
8540 kfree(tg->rt_rq);
8541 kfree(tg->rt_se);
8542}
8543
ec7dc8ac
DG
8544static
8545int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8546{
8547 struct rt_rq *rt_rq;
eab17229 8548 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8549 struct rq *rq;
8550 int i;
8551
434d53b0 8552 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8553 if (!tg->rt_rq)
8554 goto err;
434d53b0 8555 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8556 if (!tg->rt_se)
8557 goto err;
8558
d0b27fa7
PZ
8559 init_rt_bandwidth(&tg->rt_bandwidth,
8560 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8561
8562 for_each_possible_cpu(i) {
8563 rq = cpu_rq(i);
8564
eab17229
LZ
8565 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8566 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8567 if (!rt_rq)
8568 goto err;
29f59db3 8569
eab17229
LZ
8570 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8571 GFP_KERNEL, cpu_to_node(i));
6f505b16 8572 if (!rt_se)
dfc12eb2 8573 goto err_free_rq;
29f59db3 8574
3d4b47b4 8575 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8576 }
8577
bccbe08a
PZ
8578 return 1;
8579
49246274 8580err_free_rq:
dfc12eb2 8581 kfree(rt_rq);
49246274 8582err:
bccbe08a
PZ
8583 return 0;
8584}
6d6bc0ad 8585#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8586static inline void free_rt_sched_group(struct task_group *tg)
8587{
8588}
8589
ec7dc8ac
DG
8590static inline
8591int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8592{
8593 return 1;
8594}
6d6bc0ad 8595#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8596
7c941438 8597#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8598static void free_sched_group(struct task_group *tg)
8599{
8600 free_fair_sched_group(tg);
8601 free_rt_sched_group(tg);
e9aa1dd1 8602 autogroup_free(tg);
bccbe08a
PZ
8603 kfree(tg);
8604}
8605
8606/* allocate runqueue etc for a new task group */
ec7dc8ac 8607struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8608{
8609 struct task_group *tg;
8610 unsigned long flags;
bccbe08a
PZ
8611
8612 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8613 if (!tg)
8614 return ERR_PTR(-ENOMEM);
8615
ec7dc8ac 8616 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8617 goto err;
8618
ec7dc8ac 8619 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8620 goto err;
8621
8ed36996 8622 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8623 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8624
8625 WARN_ON(!parent); /* root should already exist */
8626
8627 tg->parent = parent;
f473aa5e 8628 INIT_LIST_HEAD(&tg->children);
09f2724a 8629 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8630 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8631
9b5b7751 8632 return tg;
29f59db3
SV
8633
8634err:
6f505b16 8635 free_sched_group(tg);
29f59db3
SV
8636 return ERR_PTR(-ENOMEM);
8637}
8638
9b5b7751 8639/* rcu callback to free various structures associated with a task group */
6f505b16 8640static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8641{
29f59db3 8642 /* now it should be safe to free those cfs_rqs */
6f505b16 8643 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8644}
8645
9b5b7751 8646/* Destroy runqueue etc associated with a task group */
4cf86d77 8647void sched_destroy_group(struct task_group *tg)
29f59db3 8648{
8ed36996 8649 unsigned long flags;
9b5b7751 8650 int i;
29f59db3 8651
3d4b47b4
PZ
8652 /* end participation in shares distribution */
8653 for_each_possible_cpu(i)
bccbe08a 8654 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8655
8656 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8657 list_del_rcu(&tg->list);
f473aa5e 8658 list_del_rcu(&tg->siblings);
8ed36996 8659 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8660
9b5b7751 8661 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8662 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8663}
8664
9b5b7751 8665/* change task's runqueue when it moves between groups.
3a252015
IM
8666 * The caller of this function should have put the task in its new group
8667 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8668 * reflect its new group.
9b5b7751
SV
8669 */
8670void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8671{
8672 int on_rq, running;
8673 unsigned long flags;
8674 struct rq *rq;
8675
8676 rq = task_rq_lock(tsk, &flags);
8677
051a1d1a 8678 running = task_current(rq, tsk);
fd2f4419 8679 on_rq = tsk->on_rq;
29f59db3 8680
0e1f3483 8681 if (on_rq)
29f59db3 8682 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8683 if (unlikely(running))
8684 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8685
810b3817 8686#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8687 if (tsk->sched_class->task_move_group)
8688 tsk->sched_class->task_move_group(tsk, on_rq);
8689 else
810b3817 8690#endif
b2b5ce02 8691 set_task_rq(tsk, task_cpu(tsk));
810b3817 8692
0e1f3483
HS
8693 if (unlikely(running))
8694 tsk->sched_class->set_curr_task(rq);
8695 if (on_rq)
371fd7e7 8696 enqueue_task(rq, tsk, 0);
29f59db3 8697
29f59db3
SV
8698 task_rq_unlock(rq, &flags);
8699}
7c941438 8700#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8701
052f1dc7 8702#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8703static DEFINE_MUTEX(shares_mutex);
8704
4cf86d77 8705int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8706{
8707 int i;
8ed36996 8708 unsigned long flags;
c61935fd 8709
ec7dc8ac
DG
8710 /*
8711 * We can't change the weight of the root cgroup.
8712 */
8713 if (!tg->se[0])
8714 return -EINVAL;
8715
18d95a28
PZ
8716 if (shares < MIN_SHARES)
8717 shares = MIN_SHARES;
cb4ad1ff
MX
8718 else if (shares > MAX_SHARES)
8719 shares = MAX_SHARES;
62fb1851 8720
8ed36996 8721 mutex_lock(&shares_mutex);
9b5b7751 8722 if (tg->shares == shares)
5cb350ba 8723 goto done;
29f59db3 8724
9b5b7751 8725 tg->shares = shares;
c09595f6 8726 for_each_possible_cpu(i) {
9437178f
PT
8727 struct rq *rq = cpu_rq(i);
8728 struct sched_entity *se;
8729
8730 se = tg->se[i];
8731 /* Propagate contribution to hierarchy */
8732 raw_spin_lock_irqsave(&rq->lock, flags);
8733 for_each_sched_entity(se)
6d5ab293 8734 update_cfs_shares(group_cfs_rq(se));
9437178f 8735 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8736 }
29f59db3 8737
5cb350ba 8738done:
8ed36996 8739 mutex_unlock(&shares_mutex);
9b5b7751 8740 return 0;
29f59db3
SV
8741}
8742
5cb350ba
DG
8743unsigned long sched_group_shares(struct task_group *tg)
8744{
8745 return tg->shares;
8746}
052f1dc7 8747#endif
5cb350ba 8748
052f1dc7 8749#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8750/*
9f0c1e56 8751 * Ensure that the real time constraints are schedulable.
6f505b16 8752 */
9f0c1e56
PZ
8753static DEFINE_MUTEX(rt_constraints_mutex);
8754
8755static unsigned long to_ratio(u64 period, u64 runtime)
8756{
8757 if (runtime == RUNTIME_INF)
9a7e0b18 8758 return 1ULL << 20;
9f0c1e56 8759
9a7e0b18 8760 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8761}
8762
9a7e0b18
PZ
8763/* Must be called with tasklist_lock held */
8764static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8765{
9a7e0b18 8766 struct task_struct *g, *p;
b40b2e8e 8767
9a7e0b18
PZ
8768 do_each_thread(g, p) {
8769 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8770 return 1;
8771 } while_each_thread(g, p);
b40b2e8e 8772
9a7e0b18
PZ
8773 return 0;
8774}
b40b2e8e 8775
9a7e0b18
PZ
8776struct rt_schedulable_data {
8777 struct task_group *tg;
8778 u64 rt_period;
8779 u64 rt_runtime;
8780};
b40b2e8e 8781
9a7e0b18
PZ
8782static int tg_schedulable(struct task_group *tg, void *data)
8783{
8784 struct rt_schedulable_data *d = data;
8785 struct task_group *child;
8786 unsigned long total, sum = 0;
8787 u64 period, runtime;
b40b2e8e 8788
9a7e0b18
PZ
8789 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8790 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8791
9a7e0b18
PZ
8792 if (tg == d->tg) {
8793 period = d->rt_period;
8794 runtime = d->rt_runtime;
b40b2e8e 8795 }
b40b2e8e 8796
4653f803
PZ
8797 /*
8798 * Cannot have more runtime than the period.
8799 */
8800 if (runtime > period && runtime != RUNTIME_INF)
8801 return -EINVAL;
6f505b16 8802
4653f803
PZ
8803 /*
8804 * Ensure we don't starve existing RT tasks.
8805 */
9a7e0b18
PZ
8806 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8807 return -EBUSY;
6f505b16 8808
9a7e0b18 8809 total = to_ratio(period, runtime);
6f505b16 8810
4653f803
PZ
8811 /*
8812 * Nobody can have more than the global setting allows.
8813 */
8814 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8815 return -EINVAL;
6f505b16 8816
4653f803
PZ
8817 /*
8818 * The sum of our children's runtime should not exceed our own.
8819 */
9a7e0b18
PZ
8820 list_for_each_entry_rcu(child, &tg->children, siblings) {
8821 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8822 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8823
9a7e0b18
PZ
8824 if (child == d->tg) {
8825 period = d->rt_period;
8826 runtime = d->rt_runtime;
8827 }
6f505b16 8828
9a7e0b18 8829 sum += to_ratio(period, runtime);
9f0c1e56 8830 }
6f505b16 8831
9a7e0b18
PZ
8832 if (sum > total)
8833 return -EINVAL;
8834
8835 return 0;
6f505b16
PZ
8836}
8837
9a7e0b18 8838static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8839{
9a7e0b18
PZ
8840 struct rt_schedulable_data data = {
8841 .tg = tg,
8842 .rt_period = period,
8843 .rt_runtime = runtime,
8844 };
8845
8846 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8847}
8848
d0b27fa7
PZ
8849static int tg_set_bandwidth(struct task_group *tg,
8850 u64 rt_period, u64 rt_runtime)
6f505b16 8851{
ac086bc2 8852 int i, err = 0;
9f0c1e56 8853
9f0c1e56 8854 mutex_lock(&rt_constraints_mutex);
521f1a24 8855 read_lock(&tasklist_lock);
9a7e0b18
PZ
8856 err = __rt_schedulable(tg, rt_period, rt_runtime);
8857 if (err)
9f0c1e56 8858 goto unlock;
ac086bc2 8859
0986b11b 8860 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8861 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8862 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8863
8864 for_each_possible_cpu(i) {
8865 struct rt_rq *rt_rq = tg->rt_rq[i];
8866
0986b11b 8867 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8868 rt_rq->rt_runtime = rt_runtime;
0986b11b 8869 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8870 }
0986b11b 8871 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8872unlock:
521f1a24 8873 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8874 mutex_unlock(&rt_constraints_mutex);
8875
8876 return err;
6f505b16
PZ
8877}
8878
d0b27fa7
PZ
8879int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8880{
8881 u64 rt_runtime, rt_period;
8882
8883 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8884 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8885 if (rt_runtime_us < 0)
8886 rt_runtime = RUNTIME_INF;
8887
8888 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8889}
8890
9f0c1e56
PZ
8891long sched_group_rt_runtime(struct task_group *tg)
8892{
8893 u64 rt_runtime_us;
8894
d0b27fa7 8895 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8896 return -1;
8897
d0b27fa7 8898 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8899 do_div(rt_runtime_us, NSEC_PER_USEC);
8900 return rt_runtime_us;
8901}
d0b27fa7
PZ
8902
8903int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8904{
8905 u64 rt_runtime, rt_period;
8906
8907 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8908 rt_runtime = tg->rt_bandwidth.rt_runtime;
8909
619b0488
R
8910 if (rt_period == 0)
8911 return -EINVAL;
8912
d0b27fa7
PZ
8913 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8914}
8915
8916long sched_group_rt_period(struct task_group *tg)
8917{
8918 u64 rt_period_us;
8919
8920 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8921 do_div(rt_period_us, NSEC_PER_USEC);
8922 return rt_period_us;
8923}
8924
8925static int sched_rt_global_constraints(void)
8926{
4653f803 8927 u64 runtime, period;
d0b27fa7
PZ
8928 int ret = 0;
8929
ec5d4989
HS
8930 if (sysctl_sched_rt_period <= 0)
8931 return -EINVAL;
8932
4653f803
PZ
8933 runtime = global_rt_runtime();
8934 period = global_rt_period();
8935
8936 /*
8937 * Sanity check on the sysctl variables.
8938 */
8939 if (runtime > period && runtime != RUNTIME_INF)
8940 return -EINVAL;
10b612f4 8941
d0b27fa7 8942 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8943 read_lock(&tasklist_lock);
4653f803 8944 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8945 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8946 mutex_unlock(&rt_constraints_mutex);
8947
8948 return ret;
8949}
54e99124
DG
8950
8951int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8952{
8953 /* Don't accept realtime tasks when there is no way for them to run */
8954 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8955 return 0;
8956
8957 return 1;
8958}
8959
6d6bc0ad 8960#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8961static int sched_rt_global_constraints(void)
8962{
ac086bc2
PZ
8963 unsigned long flags;
8964 int i;
8965
ec5d4989
HS
8966 if (sysctl_sched_rt_period <= 0)
8967 return -EINVAL;
8968
60aa605d
PZ
8969 /*
8970 * There's always some RT tasks in the root group
8971 * -- migration, kstopmachine etc..
8972 */
8973 if (sysctl_sched_rt_runtime == 0)
8974 return -EBUSY;
8975
0986b11b 8976 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8977 for_each_possible_cpu(i) {
8978 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8979
0986b11b 8980 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8981 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8982 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8983 }
0986b11b 8984 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8985
d0b27fa7
PZ
8986 return 0;
8987}
6d6bc0ad 8988#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8989
8990int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8991 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8992 loff_t *ppos)
8993{
8994 int ret;
8995 int old_period, old_runtime;
8996 static DEFINE_MUTEX(mutex);
8997
8998 mutex_lock(&mutex);
8999 old_period = sysctl_sched_rt_period;
9000 old_runtime = sysctl_sched_rt_runtime;
9001
8d65af78 9002 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9003
9004 if (!ret && write) {
9005 ret = sched_rt_global_constraints();
9006 if (ret) {
9007 sysctl_sched_rt_period = old_period;
9008 sysctl_sched_rt_runtime = old_runtime;
9009 } else {
9010 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9011 def_rt_bandwidth.rt_period =
9012 ns_to_ktime(global_rt_period());
9013 }
9014 }
9015 mutex_unlock(&mutex);
9016
9017 return ret;
9018}
68318b8e 9019
052f1dc7 9020#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9021
9022/* return corresponding task_group object of a cgroup */
2b01dfe3 9023static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9024{
2b01dfe3
PM
9025 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9026 struct task_group, css);
68318b8e
SV
9027}
9028
9029static struct cgroup_subsys_state *
2b01dfe3 9030cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9031{
ec7dc8ac 9032 struct task_group *tg, *parent;
68318b8e 9033
2b01dfe3 9034 if (!cgrp->parent) {
68318b8e 9035 /* This is early initialization for the top cgroup */
07e06b01 9036 return &root_task_group.css;
68318b8e
SV
9037 }
9038
ec7dc8ac
DG
9039 parent = cgroup_tg(cgrp->parent);
9040 tg = sched_create_group(parent);
68318b8e
SV
9041 if (IS_ERR(tg))
9042 return ERR_PTR(-ENOMEM);
9043
68318b8e
SV
9044 return &tg->css;
9045}
9046
41a2d6cf
IM
9047static void
9048cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9049{
2b01dfe3 9050 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9051
9052 sched_destroy_group(tg);
9053}
9054
41a2d6cf 9055static int
be367d09 9056cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9057{
b68aa230 9058#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9059 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9060 return -EINVAL;
9061#else
68318b8e
SV
9062 /* We don't support RT-tasks being in separate groups */
9063 if (tsk->sched_class != &fair_sched_class)
9064 return -EINVAL;
b68aa230 9065#endif
be367d09
BB
9066 return 0;
9067}
68318b8e 9068
be367d09
BB
9069static int
9070cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9071 struct task_struct *tsk, bool threadgroup)
9072{
9073 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9074 if (retval)
9075 return retval;
9076 if (threadgroup) {
9077 struct task_struct *c;
9078 rcu_read_lock();
9079 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9080 retval = cpu_cgroup_can_attach_task(cgrp, c);
9081 if (retval) {
9082 rcu_read_unlock();
9083 return retval;
9084 }
9085 }
9086 rcu_read_unlock();
9087 }
68318b8e
SV
9088 return 0;
9089}
9090
9091static void
2b01dfe3 9092cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9093 struct cgroup *old_cont, struct task_struct *tsk,
9094 bool threadgroup)
68318b8e
SV
9095{
9096 sched_move_task(tsk);
be367d09
BB
9097 if (threadgroup) {
9098 struct task_struct *c;
9099 rcu_read_lock();
9100 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9101 sched_move_task(c);
9102 }
9103 rcu_read_unlock();
9104 }
68318b8e
SV
9105}
9106
068c5cc5 9107static void
d41d5a01
PZ
9108cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9109 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9110{
9111 /*
9112 * cgroup_exit() is called in the copy_process() failure path.
9113 * Ignore this case since the task hasn't ran yet, this avoids
9114 * trying to poke a half freed task state from generic code.
9115 */
9116 if (!(task->flags & PF_EXITING))
9117 return;
9118
9119 sched_move_task(task);
9120}
9121
052f1dc7 9122#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9123static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9124 u64 shareval)
68318b8e 9125{
2b01dfe3 9126 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9127}
9128
f4c753b7 9129static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9130{
2b01dfe3 9131 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9132
9133 return (u64) tg->shares;
9134}
6d6bc0ad 9135#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9136
052f1dc7 9137#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9138static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9139 s64 val)
6f505b16 9140{
06ecb27c 9141 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9142}
9143
06ecb27c 9144static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9145{
06ecb27c 9146 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9147}
d0b27fa7
PZ
9148
9149static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9150 u64 rt_period_us)
9151{
9152 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9153}
9154
9155static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9156{
9157 return sched_group_rt_period(cgroup_tg(cgrp));
9158}
6d6bc0ad 9159#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9160
fe5c7cc2 9161static struct cftype cpu_files[] = {
052f1dc7 9162#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9163 {
9164 .name = "shares",
f4c753b7
PM
9165 .read_u64 = cpu_shares_read_u64,
9166 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9167 },
052f1dc7
PZ
9168#endif
9169#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9170 {
9f0c1e56 9171 .name = "rt_runtime_us",
06ecb27c
PM
9172 .read_s64 = cpu_rt_runtime_read,
9173 .write_s64 = cpu_rt_runtime_write,
6f505b16 9174 },
d0b27fa7
PZ
9175 {
9176 .name = "rt_period_us",
f4c753b7
PM
9177 .read_u64 = cpu_rt_period_read_uint,
9178 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9179 },
052f1dc7 9180#endif
68318b8e
SV
9181};
9182
9183static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9184{
fe5c7cc2 9185 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9186}
9187
9188struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9189 .name = "cpu",
9190 .create = cpu_cgroup_create,
9191 .destroy = cpu_cgroup_destroy,
9192 .can_attach = cpu_cgroup_can_attach,
9193 .attach = cpu_cgroup_attach,
068c5cc5 9194 .exit = cpu_cgroup_exit,
38605cae
IM
9195 .populate = cpu_cgroup_populate,
9196 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9197 .early_init = 1,
9198};
9199
052f1dc7 9200#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9201
9202#ifdef CONFIG_CGROUP_CPUACCT
9203
9204/*
9205 * CPU accounting code for task groups.
9206 *
9207 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9208 * (balbir@in.ibm.com).
9209 */
9210
934352f2 9211/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9212struct cpuacct {
9213 struct cgroup_subsys_state css;
9214 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9215 u64 __percpu *cpuusage;
ef12fefa 9216 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9217 struct cpuacct *parent;
d842de87
SV
9218};
9219
9220struct cgroup_subsys cpuacct_subsys;
9221
9222/* return cpu accounting group corresponding to this container */
32cd756a 9223static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9224{
32cd756a 9225 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9226 struct cpuacct, css);
9227}
9228
9229/* return cpu accounting group to which this task belongs */
9230static inline struct cpuacct *task_ca(struct task_struct *tsk)
9231{
9232 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9233 struct cpuacct, css);
9234}
9235
9236/* create a new cpu accounting group */
9237static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9238 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9239{
9240 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9241 int i;
d842de87
SV
9242
9243 if (!ca)
ef12fefa 9244 goto out;
d842de87
SV
9245
9246 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9247 if (!ca->cpuusage)
9248 goto out_free_ca;
9249
9250 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9251 if (percpu_counter_init(&ca->cpustat[i], 0))
9252 goto out_free_counters;
d842de87 9253
934352f2
BR
9254 if (cgrp->parent)
9255 ca->parent = cgroup_ca(cgrp->parent);
9256
d842de87 9257 return &ca->css;
ef12fefa
BR
9258
9259out_free_counters:
9260 while (--i >= 0)
9261 percpu_counter_destroy(&ca->cpustat[i]);
9262 free_percpu(ca->cpuusage);
9263out_free_ca:
9264 kfree(ca);
9265out:
9266 return ERR_PTR(-ENOMEM);
d842de87
SV
9267}
9268
9269/* destroy an existing cpu accounting group */
41a2d6cf 9270static void
32cd756a 9271cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9272{
32cd756a 9273 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9274 int i;
d842de87 9275
ef12fefa
BR
9276 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9277 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9278 free_percpu(ca->cpuusage);
9279 kfree(ca);
9280}
9281
720f5498
KC
9282static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9283{
b36128c8 9284 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9285 u64 data;
9286
9287#ifndef CONFIG_64BIT
9288 /*
9289 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9290 */
05fa785c 9291 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9292 data = *cpuusage;
05fa785c 9293 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9294#else
9295 data = *cpuusage;
9296#endif
9297
9298 return data;
9299}
9300
9301static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9302{
b36128c8 9303 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9304
9305#ifndef CONFIG_64BIT
9306 /*
9307 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9308 */
05fa785c 9309 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9310 *cpuusage = val;
05fa785c 9311 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9312#else
9313 *cpuusage = val;
9314#endif
9315}
9316
d842de87 9317/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9318static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9319{
32cd756a 9320 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9321 u64 totalcpuusage = 0;
9322 int i;
9323
720f5498
KC
9324 for_each_present_cpu(i)
9325 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9326
9327 return totalcpuusage;
9328}
9329
0297b803
DG
9330static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9331 u64 reset)
9332{
9333 struct cpuacct *ca = cgroup_ca(cgrp);
9334 int err = 0;
9335 int i;
9336
9337 if (reset) {
9338 err = -EINVAL;
9339 goto out;
9340 }
9341
720f5498
KC
9342 for_each_present_cpu(i)
9343 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9344
0297b803
DG
9345out:
9346 return err;
9347}
9348
e9515c3c
KC
9349static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9350 struct seq_file *m)
9351{
9352 struct cpuacct *ca = cgroup_ca(cgroup);
9353 u64 percpu;
9354 int i;
9355
9356 for_each_present_cpu(i) {
9357 percpu = cpuacct_cpuusage_read(ca, i);
9358 seq_printf(m, "%llu ", (unsigned long long) percpu);
9359 }
9360 seq_printf(m, "\n");
9361 return 0;
9362}
9363
ef12fefa
BR
9364static const char *cpuacct_stat_desc[] = {
9365 [CPUACCT_STAT_USER] = "user",
9366 [CPUACCT_STAT_SYSTEM] = "system",
9367};
9368
9369static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9370 struct cgroup_map_cb *cb)
9371{
9372 struct cpuacct *ca = cgroup_ca(cgrp);
9373 int i;
9374
9375 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9376 s64 val = percpu_counter_read(&ca->cpustat[i]);
9377 val = cputime64_to_clock_t(val);
9378 cb->fill(cb, cpuacct_stat_desc[i], val);
9379 }
9380 return 0;
9381}
9382
d842de87
SV
9383static struct cftype files[] = {
9384 {
9385 .name = "usage",
f4c753b7
PM
9386 .read_u64 = cpuusage_read,
9387 .write_u64 = cpuusage_write,
d842de87 9388 },
e9515c3c
KC
9389 {
9390 .name = "usage_percpu",
9391 .read_seq_string = cpuacct_percpu_seq_read,
9392 },
ef12fefa
BR
9393 {
9394 .name = "stat",
9395 .read_map = cpuacct_stats_show,
9396 },
d842de87
SV
9397};
9398
32cd756a 9399static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9400{
32cd756a 9401 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9402}
9403
9404/*
9405 * charge this task's execution time to its accounting group.
9406 *
9407 * called with rq->lock held.
9408 */
9409static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9410{
9411 struct cpuacct *ca;
934352f2 9412 int cpu;
d842de87 9413
c40c6f85 9414 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9415 return;
9416
934352f2 9417 cpu = task_cpu(tsk);
a18b83b7
BR
9418
9419 rcu_read_lock();
9420
d842de87 9421 ca = task_ca(tsk);
d842de87 9422
934352f2 9423 for (; ca; ca = ca->parent) {
b36128c8 9424 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9425 *cpuusage += cputime;
9426 }
a18b83b7
BR
9427
9428 rcu_read_unlock();
d842de87
SV
9429}
9430
fa535a77
AB
9431/*
9432 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9433 * in cputime_t units. As a result, cpuacct_update_stats calls
9434 * percpu_counter_add with values large enough to always overflow the
9435 * per cpu batch limit causing bad SMP scalability.
9436 *
9437 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9438 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9439 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9440 */
9441#ifdef CONFIG_SMP
9442#define CPUACCT_BATCH \
9443 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9444#else
9445#define CPUACCT_BATCH 0
9446#endif
9447
ef12fefa
BR
9448/*
9449 * Charge the system/user time to the task's accounting group.
9450 */
9451static void cpuacct_update_stats(struct task_struct *tsk,
9452 enum cpuacct_stat_index idx, cputime_t val)
9453{
9454 struct cpuacct *ca;
fa535a77 9455 int batch = CPUACCT_BATCH;
ef12fefa
BR
9456
9457 if (unlikely(!cpuacct_subsys.active))
9458 return;
9459
9460 rcu_read_lock();
9461 ca = task_ca(tsk);
9462
9463 do {
fa535a77 9464 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9465 ca = ca->parent;
9466 } while (ca);
9467 rcu_read_unlock();
9468}
9469
d842de87
SV
9470struct cgroup_subsys cpuacct_subsys = {
9471 .name = "cpuacct",
9472 .create = cpuacct_create,
9473 .destroy = cpuacct_destroy,
9474 .populate = cpuacct_populate,
9475 .subsys_id = cpuacct_subsys_id,
9476};
9477#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9478