]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched.c
Define and use new events,CPU_LOCK_ACQUIRE and CPU_LOCK_RELEASE
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
9a11b49a 33#include <linux/debug_locks.h>
1da177e4
LT
34#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
7dfb7103 37#include <linux/freezer.h>
198e2f18 38#include <linux/vmalloc.h>
1da177e4
LT
39#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
8f0ab514 52#include <linux/tsacct_kern.h>
c6fd91f0 53#include <linux/kprobes.h>
0ff92245 54#include <linux/delayacct.h>
5517d86b 55#include <linux/reciprocal_div.h>
1da177e4 56
5517d86b 57#include <asm/tlb.h>
1da177e4
LT
58#include <asm/unistd.h>
59
b035b6de
AD
60/*
61 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
64 */
65unsigned long long __attribute__((weak)) sched_clock(void)
66{
67 return (unsigned long long)jiffies * (1000000000 / HZ);
68}
69
1da177e4
LT
70/*
71 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
74 */
75#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
78
79/*
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
83 */
84#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
87
88/*
89 * Some helpers for converting nanosecond timing to jiffy resolution
90 */
91#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
93
94/*
95 * These are the 'tuning knobs' of the scheduler:
96 *
97 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
98 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
99 * Timeslices get refilled after they expire.
100 */
101#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
102#define DEF_TIMESLICE (100 * HZ / 1000)
103#define ON_RUNQUEUE_WEIGHT 30
104#define CHILD_PENALTY 95
105#define PARENT_PENALTY 100
106#define EXIT_WEIGHT 3
107#define PRIO_BONUS_RATIO 25
108#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
109#define INTERACTIVE_DELTA 2
110#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
111#define STARVATION_LIMIT (MAX_SLEEP_AVG)
112#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
113
114/*
115 * If a task is 'interactive' then we reinsert it in the active
116 * array after it has expired its current timeslice. (it will not
117 * continue to run immediately, it will still roundrobin with
118 * other interactive tasks.)
119 *
120 * This part scales the interactivity limit depending on niceness.
121 *
122 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
123 * Here are a few examples of different nice levels:
124 *
125 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
126 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
127 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
128 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
129 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
130 *
131 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
132 * priority range a task can explore, a value of '1' means the
133 * task is rated interactive.)
134 *
135 * Ie. nice +19 tasks can never get 'interactive' enough to be
136 * reinserted into the active array. And only heavily CPU-hog nice -20
137 * tasks will be expired. Default nice 0 tasks are somewhere between,
138 * it takes some effort for them to get interactive, but it's not
139 * too hard.
140 */
141
142#define CURRENT_BONUS(p) \
143 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
144 MAX_SLEEP_AVG)
145
146#define GRANULARITY (10 * HZ / 1000 ? : 1)
147
148#ifdef CONFIG_SMP
149#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
150 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
151 num_online_cpus())
152#else
153#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
154 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
155#endif
156
157#define SCALE(v1,v1_max,v2_max) \
158 (v1) * (v2_max) / (v1_max)
159
160#define DELTA(p) \
013d3868
MA
161 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
162 INTERACTIVE_DELTA)
1da177e4
LT
163
164#define TASK_INTERACTIVE(p) \
165 ((p)->prio <= (p)->static_prio - DELTA(p))
166
167#define INTERACTIVE_SLEEP(p) \
168 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
169 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
170
171#define TASK_PREEMPTS_CURR(p, rq) \
d5f9f942 172 ((p)->prio < (rq)->curr->prio)
1da177e4 173
1da177e4 174#define SCALE_PRIO(x, prio) \
2dd73a4f 175 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
1da177e4 176
2dd73a4f 177static unsigned int static_prio_timeslice(int static_prio)
1da177e4 178{
2dd73a4f
PW
179 if (static_prio < NICE_TO_PRIO(0))
180 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
1da177e4 181 else
2dd73a4f 182 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
1da177e4 183}
2dd73a4f 184
5517d86b
ED
185#ifdef CONFIG_SMP
186/*
187 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
188 * Since cpu_power is a 'constant', we can use a reciprocal divide.
189 */
190static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
191{
192 return reciprocal_divide(load, sg->reciprocal_cpu_power);
193}
194
195/*
196 * Each time a sched group cpu_power is changed,
197 * we must compute its reciprocal value
198 */
199static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
200{
201 sg->__cpu_power += val;
202 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
203}
204#endif
205
91fcdd4e
BP
206/*
207 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
208 * to time slice values: [800ms ... 100ms ... 5ms]
209 *
210 * The higher a thread's priority, the bigger timeslices
211 * it gets during one round of execution. But even the lowest
212 * priority thread gets MIN_TIMESLICE worth of execution time.
213 */
214
36c8b586 215static inline unsigned int task_timeslice(struct task_struct *p)
2dd73a4f
PW
216{
217 return static_prio_timeslice(p->static_prio);
218}
219
1da177e4
LT
220/*
221 * These are the runqueue data structures:
222 */
223
1da177e4
LT
224struct prio_array {
225 unsigned int nr_active;
d444886e 226 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
1da177e4
LT
227 struct list_head queue[MAX_PRIO];
228};
229
230/*
231 * This is the main, per-CPU runqueue data structure.
232 *
233 * Locking rule: those places that want to lock multiple runqueues
234 * (such as the load balancing or the thread migration code), lock
235 * acquire operations must be ordered by ascending &runqueue.
236 */
70b97a7f 237struct rq {
1da177e4
LT
238 spinlock_t lock;
239
240 /*
241 * nr_running and cpu_load should be in the same cacheline because
242 * remote CPUs use both these fields when doing load calculation.
243 */
244 unsigned long nr_running;
2dd73a4f 245 unsigned long raw_weighted_load;
1da177e4 246#ifdef CONFIG_SMP
7897986b 247 unsigned long cpu_load[3];
bdecea3a 248 unsigned char idle_at_tick;
46cb4b7c
SS
249#ifdef CONFIG_NO_HZ
250 unsigned char in_nohz_recently;
251#endif
1da177e4
LT
252#endif
253 unsigned long long nr_switches;
254
255 /*
256 * This is part of a global counter where only the total sum
257 * over all CPUs matters. A task can increase this counter on
258 * one CPU and if it got migrated afterwards it may decrease
259 * it on another CPU. Always updated under the runqueue lock:
260 */
261 unsigned long nr_uninterruptible;
262
263 unsigned long expired_timestamp;
b18ec803
MG
264 /* Cached timestamp set by update_cpu_clock() */
265 unsigned long long most_recent_timestamp;
36c8b586 266 struct task_struct *curr, *idle;
c9819f45 267 unsigned long next_balance;
1da177e4 268 struct mm_struct *prev_mm;
70b97a7f 269 struct prio_array *active, *expired, arrays[2];
1da177e4
LT
270 int best_expired_prio;
271 atomic_t nr_iowait;
272
273#ifdef CONFIG_SMP
274 struct sched_domain *sd;
275
276 /* For active balancing */
277 int active_balance;
278 int push_cpu;
0a2966b4 279 int cpu; /* cpu of this runqueue */
1da177e4 280
36c8b586 281 struct task_struct *migration_thread;
1da177e4
LT
282 struct list_head migration_queue;
283#endif
284
285#ifdef CONFIG_SCHEDSTATS
286 /* latency stats */
287 struct sched_info rq_sched_info;
288
289 /* sys_sched_yield() stats */
290 unsigned long yld_exp_empty;
291 unsigned long yld_act_empty;
292 unsigned long yld_both_empty;
293 unsigned long yld_cnt;
294
295 /* schedule() stats */
296 unsigned long sched_switch;
297 unsigned long sched_cnt;
298 unsigned long sched_goidle;
299
300 /* try_to_wake_up() stats */
301 unsigned long ttwu_cnt;
302 unsigned long ttwu_local;
303#endif
fcb99371 304 struct lock_class_key rq_lock_key;
1da177e4
LT
305};
306
c3396620 307static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
1da177e4 308
0a2966b4
CL
309static inline int cpu_of(struct rq *rq)
310{
311#ifdef CONFIG_SMP
312 return rq->cpu;
313#else
314 return 0;
315#endif
316}
317
674311d5
NP
318/*
319 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 320 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
321 *
322 * The domain tree of any CPU may only be accessed from within
323 * preempt-disabled sections.
324 */
48f24c4d
IM
325#define for_each_domain(cpu, __sd) \
326 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
327
328#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
329#define this_rq() (&__get_cpu_var(runqueues))
330#define task_rq(p) cpu_rq(task_cpu(p))
331#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
332
1da177e4 333#ifndef prepare_arch_switch
4866cde0
NP
334# define prepare_arch_switch(next) do { } while (0)
335#endif
336#ifndef finish_arch_switch
337# define finish_arch_switch(prev) do { } while (0)
338#endif
339
340#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 341static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
342{
343 return rq->curr == p;
344}
345
70b97a7f 346static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
347{
348}
349
70b97a7f 350static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 351{
da04c035
IM
352#ifdef CONFIG_DEBUG_SPINLOCK
353 /* this is a valid case when another task releases the spinlock */
354 rq->lock.owner = current;
355#endif
8a25d5de
IM
356 /*
357 * If we are tracking spinlock dependencies then we have to
358 * fix up the runqueue lock - which gets 'carried over' from
359 * prev into current:
360 */
361 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
362
4866cde0
NP
363 spin_unlock_irq(&rq->lock);
364}
365
366#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 367static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
368{
369#ifdef CONFIG_SMP
370 return p->oncpu;
371#else
372 return rq->curr == p;
373#endif
374}
375
70b97a7f 376static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
377{
378#ifdef CONFIG_SMP
379 /*
380 * We can optimise this out completely for !SMP, because the
381 * SMP rebalancing from interrupt is the only thing that cares
382 * here.
383 */
384 next->oncpu = 1;
385#endif
386#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
387 spin_unlock_irq(&rq->lock);
388#else
389 spin_unlock(&rq->lock);
390#endif
391}
392
70b97a7f 393static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
394{
395#ifdef CONFIG_SMP
396 /*
397 * After ->oncpu is cleared, the task can be moved to a different CPU.
398 * We must ensure this doesn't happen until the switch is completely
399 * finished.
400 */
401 smp_wmb();
402 prev->oncpu = 0;
403#endif
404#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
405 local_irq_enable();
1da177e4 406#endif
4866cde0
NP
407}
408#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 409
b29739f9
IM
410/*
411 * __task_rq_lock - lock the runqueue a given task resides on.
412 * Must be called interrupts disabled.
413 */
70b97a7f 414static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
415 __acquires(rq->lock)
416{
70b97a7f 417 struct rq *rq;
b29739f9
IM
418
419repeat_lock_task:
420 rq = task_rq(p);
421 spin_lock(&rq->lock);
422 if (unlikely(rq != task_rq(p))) {
423 spin_unlock(&rq->lock);
424 goto repeat_lock_task;
425 }
426 return rq;
427}
428
1da177e4
LT
429/*
430 * task_rq_lock - lock the runqueue a given task resides on and disable
431 * interrupts. Note the ordering: we can safely lookup the task_rq without
432 * explicitly disabling preemption.
433 */
70b97a7f 434static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
435 __acquires(rq->lock)
436{
70b97a7f 437 struct rq *rq;
1da177e4
LT
438
439repeat_lock_task:
440 local_irq_save(*flags);
441 rq = task_rq(p);
442 spin_lock(&rq->lock);
443 if (unlikely(rq != task_rq(p))) {
444 spin_unlock_irqrestore(&rq->lock, *flags);
445 goto repeat_lock_task;
446 }
447 return rq;
448}
449
70b97a7f 450static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
451 __releases(rq->lock)
452{
453 spin_unlock(&rq->lock);
454}
455
70b97a7f 456static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
457 __releases(rq->lock)
458{
459 spin_unlock_irqrestore(&rq->lock, *flags);
460}
461
462#ifdef CONFIG_SCHEDSTATS
463/*
464 * bump this up when changing the output format or the meaning of an existing
465 * format, so that tools can adapt (or abort)
466 */
06066714 467#define SCHEDSTAT_VERSION 14
1da177e4
LT
468
469static int show_schedstat(struct seq_file *seq, void *v)
470{
471 int cpu;
472
473 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
474 seq_printf(seq, "timestamp %lu\n", jiffies);
475 for_each_online_cpu(cpu) {
70b97a7f 476 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
477#ifdef CONFIG_SMP
478 struct sched_domain *sd;
479 int dcnt = 0;
480#endif
481
482 /* runqueue-specific stats */
483 seq_printf(seq,
484 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
485 cpu, rq->yld_both_empty,
486 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
487 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
488 rq->ttwu_cnt, rq->ttwu_local,
489 rq->rq_sched_info.cpu_time,
490 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
491
492 seq_printf(seq, "\n");
493
494#ifdef CONFIG_SMP
495 /* domain-specific stats */
674311d5 496 preempt_disable();
1da177e4
LT
497 for_each_domain(cpu, sd) {
498 enum idle_type itype;
499 char mask_str[NR_CPUS];
500
501 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
502 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
503 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
504 itype++) {
33859f7f
MOS
505 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
506 "%lu",
1da177e4
LT
507 sd->lb_cnt[itype],
508 sd->lb_balanced[itype],
509 sd->lb_failed[itype],
510 sd->lb_imbalance[itype],
511 sd->lb_gained[itype],
512 sd->lb_hot_gained[itype],
513 sd->lb_nobusyq[itype],
06066714 514 sd->lb_nobusyg[itype]);
1da177e4 515 }
33859f7f
MOS
516 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
517 " %lu %lu %lu\n",
1da177e4 518 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
519 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
520 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
33859f7f
MOS
521 sd->ttwu_wake_remote, sd->ttwu_move_affine,
522 sd->ttwu_move_balance);
1da177e4 523 }
674311d5 524 preempt_enable();
1da177e4
LT
525#endif
526 }
527 return 0;
528}
529
530static int schedstat_open(struct inode *inode, struct file *file)
531{
532 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
533 char *buf = kmalloc(size, GFP_KERNEL);
534 struct seq_file *m;
535 int res;
536
537 if (!buf)
538 return -ENOMEM;
539 res = single_open(file, show_schedstat, NULL);
540 if (!res) {
541 m = file->private_data;
542 m->buf = buf;
543 m->size = size;
544 } else
545 kfree(buf);
546 return res;
547}
548
15ad7cdc 549const struct file_operations proc_schedstat_operations = {
1da177e4
LT
550 .open = schedstat_open,
551 .read = seq_read,
552 .llseek = seq_lseek,
553 .release = single_release,
554};
555
52f17b6c
CS
556/*
557 * Expects runqueue lock to be held for atomicity of update
558 */
559static inline void
560rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
561{
562 if (rq) {
563 rq->rq_sched_info.run_delay += delta_jiffies;
564 rq->rq_sched_info.pcnt++;
565 }
566}
567
568/*
569 * Expects runqueue lock to be held for atomicity of update
570 */
571static inline void
572rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
573{
574 if (rq)
575 rq->rq_sched_info.cpu_time += delta_jiffies;
576}
1da177e4
LT
577# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
578# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
579#else /* !CONFIG_SCHEDSTATS */
52f17b6c
CS
580static inline void
581rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
582{}
583static inline void
584rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
585{}
1da177e4
LT
586# define schedstat_inc(rq, field) do { } while (0)
587# define schedstat_add(rq, field, amt) do { } while (0)
588#endif
589
590/*
cc2a73b5 591 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 592 */
70b97a7f 593static inline struct rq *this_rq_lock(void)
1da177e4
LT
594 __acquires(rq->lock)
595{
70b97a7f 596 struct rq *rq;
1da177e4
LT
597
598 local_irq_disable();
599 rq = this_rq();
600 spin_lock(&rq->lock);
601
602 return rq;
603}
604
52f17b6c 605#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
606/*
607 * Called when a process is dequeued from the active array and given
608 * the cpu. We should note that with the exception of interactive
609 * tasks, the expired queue will become the active queue after the active
610 * queue is empty, without explicitly dequeuing and requeuing tasks in the
611 * expired queue. (Interactive tasks may be requeued directly to the
612 * active queue, thus delaying tasks in the expired queue from running;
613 * see scheduler_tick()).
614 *
615 * This function is only called from sched_info_arrive(), rather than
616 * dequeue_task(). Even though a task may be queued and dequeued multiple
617 * times as it is shuffled about, we're really interested in knowing how
618 * long it was from the *first* time it was queued to the time that it
619 * finally hit a cpu.
620 */
36c8b586 621static inline void sched_info_dequeued(struct task_struct *t)
1da177e4
LT
622{
623 t->sched_info.last_queued = 0;
624}
625
626/*
627 * Called when a task finally hits the cpu. We can now calculate how
628 * long it was waiting to run. We also note when it began so that we
629 * can keep stats on how long its timeslice is.
630 */
36c8b586 631static void sched_info_arrive(struct task_struct *t)
1da177e4 632{
52f17b6c 633 unsigned long now = jiffies, delta_jiffies = 0;
1da177e4
LT
634
635 if (t->sched_info.last_queued)
52f17b6c 636 delta_jiffies = now - t->sched_info.last_queued;
1da177e4 637 sched_info_dequeued(t);
52f17b6c 638 t->sched_info.run_delay += delta_jiffies;
1da177e4
LT
639 t->sched_info.last_arrival = now;
640 t->sched_info.pcnt++;
641
52f17b6c 642 rq_sched_info_arrive(task_rq(t), delta_jiffies);
1da177e4
LT
643}
644
645/*
646 * Called when a process is queued into either the active or expired
647 * array. The time is noted and later used to determine how long we
648 * had to wait for us to reach the cpu. Since the expired queue will
649 * become the active queue after active queue is empty, without dequeuing
650 * and requeuing any tasks, we are interested in queuing to either. It
651 * is unusual but not impossible for tasks to be dequeued and immediately
652 * requeued in the same or another array: this can happen in sched_yield(),
653 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
654 * to runqueue.
655 *
656 * This function is only called from enqueue_task(), but also only updates
657 * the timestamp if it is already not set. It's assumed that
658 * sched_info_dequeued() will clear that stamp when appropriate.
659 */
36c8b586 660static inline void sched_info_queued(struct task_struct *t)
1da177e4 661{
52f17b6c
CS
662 if (unlikely(sched_info_on()))
663 if (!t->sched_info.last_queued)
664 t->sched_info.last_queued = jiffies;
1da177e4
LT
665}
666
667/*
668 * Called when a process ceases being the active-running process, either
669 * voluntarily or involuntarily. Now we can calculate how long we ran.
670 */
36c8b586 671static inline void sched_info_depart(struct task_struct *t)
1da177e4 672{
52f17b6c 673 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
1da177e4 674
52f17b6c
CS
675 t->sched_info.cpu_time += delta_jiffies;
676 rq_sched_info_depart(task_rq(t), delta_jiffies);
1da177e4
LT
677}
678
679/*
680 * Called when tasks are switched involuntarily due, typically, to expiring
681 * their time slice. (This may also be called when switching to or from
682 * the idle task.) We are only called when prev != next.
683 */
36c8b586 684static inline void
52f17b6c 685__sched_info_switch(struct task_struct *prev, struct task_struct *next)
1da177e4 686{
70b97a7f 687 struct rq *rq = task_rq(prev);
1da177e4
LT
688
689 /*
690 * prev now departs the cpu. It's not interesting to record
691 * stats about how efficient we were at scheduling the idle
692 * process, however.
693 */
694 if (prev != rq->idle)
695 sched_info_depart(prev);
696
697 if (next != rq->idle)
698 sched_info_arrive(next);
699}
52f17b6c
CS
700static inline void
701sched_info_switch(struct task_struct *prev, struct task_struct *next)
702{
703 if (unlikely(sched_info_on()))
704 __sched_info_switch(prev, next);
705}
1da177e4
LT
706#else
707#define sched_info_queued(t) do { } while (0)
708#define sched_info_switch(t, next) do { } while (0)
52f17b6c 709#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
1da177e4
LT
710
711/*
712 * Adding/removing a task to/from a priority array:
713 */
70b97a7f 714static void dequeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
715{
716 array->nr_active--;
717 list_del(&p->run_list);
718 if (list_empty(array->queue + p->prio))
719 __clear_bit(p->prio, array->bitmap);
720}
721
70b97a7f 722static void enqueue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
723{
724 sched_info_queued(p);
725 list_add_tail(&p->run_list, array->queue + p->prio);
726 __set_bit(p->prio, array->bitmap);
727 array->nr_active++;
728 p->array = array;
729}
730
731/*
732 * Put task to the end of the run list without the overhead of dequeue
733 * followed by enqueue.
734 */
70b97a7f 735static void requeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
736{
737 list_move_tail(&p->run_list, array->queue + p->prio);
738}
739
70b97a7f
IM
740static inline void
741enqueue_task_head(struct task_struct *p, struct prio_array *array)
1da177e4
LT
742{
743 list_add(&p->run_list, array->queue + p->prio);
744 __set_bit(p->prio, array->bitmap);
745 array->nr_active++;
746 p->array = array;
747}
748
749/*
b29739f9 750 * __normal_prio - return the priority that is based on the static
1da177e4
LT
751 * priority but is modified by bonuses/penalties.
752 *
753 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
754 * into the -5 ... 0 ... +5 bonus/penalty range.
755 *
756 * We use 25% of the full 0...39 priority range so that:
757 *
758 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
759 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
760 *
761 * Both properties are important to certain workloads.
762 */
b29739f9 763
36c8b586 764static inline int __normal_prio(struct task_struct *p)
1da177e4
LT
765{
766 int bonus, prio;
767
1da177e4
LT
768 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
769
770 prio = p->static_prio - bonus;
771 if (prio < MAX_RT_PRIO)
772 prio = MAX_RT_PRIO;
773 if (prio > MAX_PRIO-1)
774 prio = MAX_PRIO-1;
775 return prio;
776}
777
2dd73a4f
PW
778/*
779 * To aid in avoiding the subversion of "niceness" due to uneven distribution
780 * of tasks with abnormal "nice" values across CPUs the contribution that
781 * each task makes to its run queue's load is weighted according to its
782 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
783 * scaled version of the new time slice allocation that they receive on time
784 * slice expiry etc.
785 */
786
787/*
788 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
789 * If static_prio_timeslice() is ever changed to break this assumption then
790 * this code will need modification
791 */
792#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
793#define LOAD_WEIGHT(lp) \
794 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
795#define PRIO_TO_LOAD_WEIGHT(prio) \
796 LOAD_WEIGHT(static_prio_timeslice(prio))
797#define RTPRIO_TO_LOAD_WEIGHT(rp) \
798 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
799
36c8b586 800static void set_load_weight(struct task_struct *p)
2dd73a4f 801{
b29739f9 802 if (has_rt_policy(p)) {
2dd73a4f
PW
803#ifdef CONFIG_SMP
804 if (p == task_rq(p)->migration_thread)
805 /*
806 * The migration thread does the actual balancing.
807 * Giving its load any weight will skew balancing
808 * adversely.
809 */
810 p->load_weight = 0;
811 else
812#endif
813 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
814 } else
815 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
816}
817
36c8b586 818static inline void
70b97a7f 819inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
820{
821 rq->raw_weighted_load += p->load_weight;
822}
823
36c8b586 824static inline void
70b97a7f 825dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
826{
827 rq->raw_weighted_load -= p->load_weight;
828}
829
70b97a7f 830static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
831{
832 rq->nr_running++;
833 inc_raw_weighted_load(rq, p);
834}
835
70b97a7f 836static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
837{
838 rq->nr_running--;
839 dec_raw_weighted_load(rq, p);
840}
841
b29739f9
IM
842/*
843 * Calculate the expected normal priority: i.e. priority
844 * without taking RT-inheritance into account. Might be
845 * boosted by interactivity modifiers. Changes upon fork,
846 * setprio syscalls, and whenever the interactivity
847 * estimator recalculates.
848 */
36c8b586 849static inline int normal_prio(struct task_struct *p)
b29739f9
IM
850{
851 int prio;
852
853 if (has_rt_policy(p))
854 prio = MAX_RT_PRIO-1 - p->rt_priority;
855 else
856 prio = __normal_prio(p);
857 return prio;
858}
859
860/*
861 * Calculate the current priority, i.e. the priority
862 * taken into account by the scheduler. This value might
863 * be boosted by RT tasks, or might be boosted by
864 * interactivity modifiers. Will be RT if the task got
865 * RT-boosted. If not then it returns p->normal_prio.
866 */
36c8b586 867static int effective_prio(struct task_struct *p)
b29739f9
IM
868{
869 p->normal_prio = normal_prio(p);
870 /*
871 * If we are RT tasks or we were boosted to RT priority,
872 * keep the priority unchanged. Otherwise, update priority
873 * to the normal priority:
874 */
875 if (!rt_prio(p->prio))
876 return p->normal_prio;
877 return p->prio;
878}
879
1da177e4
LT
880/*
881 * __activate_task - move a task to the runqueue.
882 */
70b97a7f 883static void __activate_task(struct task_struct *p, struct rq *rq)
1da177e4 884{
70b97a7f 885 struct prio_array *target = rq->active;
d425b274 886
f1adad78 887 if (batch_task(p))
d425b274
CK
888 target = rq->expired;
889 enqueue_task(p, target);
2dd73a4f 890 inc_nr_running(p, rq);
1da177e4
LT
891}
892
893/*
894 * __activate_idle_task - move idle task to the _front_ of runqueue.
895 */
70b97a7f 896static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4
LT
897{
898 enqueue_task_head(p, rq->active);
2dd73a4f 899 inc_nr_running(p, rq);
1da177e4
LT
900}
901
b29739f9
IM
902/*
903 * Recalculate p->normal_prio and p->prio after having slept,
904 * updating the sleep-average too:
905 */
36c8b586 906static int recalc_task_prio(struct task_struct *p, unsigned long long now)
1da177e4
LT
907{
908 /* Caller must always ensure 'now >= p->timestamp' */
72d2854d 909 unsigned long sleep_time = now - p->timestamp;
1da177e4 910
d425b274 911 if (batch_task(p))
b0a9499c 912 sleep_time = 0;
1da177e4
LT
913
914 if (likely(sleep_time > 0)) {
915 /*
72d2854d
CK
916 * This ceiling is set to the lowest priority that would allow
917 * a task to be reinserted into the active array on timeslice
918 * completion.
1da177e4 919 */
72d2854d 920 unsigned long ceiling = INTERACTIVE_SLEEP(p);
e72ff0bb 921
72d2854d
CK
922 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
923 /*
924 * Prevents user tasks from achieving best priority
925 * with one single large enough sleep.
926 */
927 p->sleep_avg = ceiling;
928 /*
929 * Using INTERACTIVE_SLEEP() as a ceiling places a
930 * nice(0) task 1ms sleep away from promotion, and
931 * gives it 700ms to round-robin with no chance of
932 * being demoted. This is more than generous, so
933 * mark this sleep as non-interactive to prevent the
934 * on-runqueue bonus logic from intervening should
935 * this task not receive cpu immediately.
936 */
937 p->sleep_type = SLEEP_NONINTERACTIVE;
1da177e4 938 } else {
1da177e4
LT
939 /*
940 * Tasks waking from uninterruptible sleep are
941 * limited in their sleep_avg rise as they
942 * are likely to be waiting on I/O
943 */
3dee386e 944 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
72d2854d 945 if (p->sleep_avg >= ceiling)
1da177e4
LT
946 sleep_time = 0;
947 else if (p->sleep_avg + sleep_time >=
72d2854d
CK
948 ceiling) {
949 p->sleep_avg = ceiling;
950 sleep_time = 0;
1da177e4
LT
951 }
952 }
953
954 /*
955 * This code gives a bonus to interactive tasks.
956 *
957 * The boost works by updating the 'average sleep time'
958 * value here, based on ->timestamp. The more time a
959 * task spends sleeping, the higher the average gets -
960 * and the higher the priority boost gets as well.
961 */
962 p->sleep_avg += sleep_time;
963
1da177e4 964 }
72d2854d
CK
965 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
966 p->sleep_avg = NS_MAX_SLEEP_AVG;
1da177e4
LT
967 }
968
a3464a10 969 return effective_prio(p);
1da177e4
LT
970}
971
972/*
973 * activate_task - move a task to the runqueue and do priority recalculation
974 *
975 * Update all the scheduling statistics stuff. (sleep average
976 * calculation, priority modifiers, etc.)
977 */
70b97a7f 978static void activate_task(struct task_struct *p, struct rq *rq, int local)
1da177e4
LT
979{
980 unsigned long long now;
981
62ab616d
KC
982 if (rt_task(p))
983 goto out;
984
1da177e4
LT
985 now = sched_clock();
986#ifdef CONFIG_SMP
987 if (!local) {
988 /* Compensate for drifting sched_clock */
70b97a7f 989 struct rq *this_rq = this_rq();
b18ec803
MG
990 now = (now - this_rq->most_recent_timestamp)
991 + rq->most_recent_timestamp;
1da177e4
LT
992 }
993#endif
994
ece8a684
IM
995 /*
996 * Sleep time is in units of nanosecs, so shift by 20 to get a
997 * milliseconds-range estimation of the amount of time that the task
998 * spent sleeping:
999 */
1000 if (unlikely(prof_on == SLEEP_PROFILING)) {
1001 if (p->state == TASK_UNINTERRUPTIBLE)
1002 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
1003 (now - p->timestamp) >> 20);
1004 }
1005
62ab616d 1006 p->prio = recalc_task_prio(p, now);
1da177e4
LT
1007
1008 /*
1009 * This checks to make sure it's not an uninterruptible task
1010 * that is now waking up.
1011 */
3dee386e 1012 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
1013 /*
1014 * Tasks which were woken up by interrupts (ie. hw events)
1015 * are most likely of interactive nature. So we give them
1016 * the credit of extending their sleep time to the period
1017 * of time they spend on the runqueue, waiting for execution
1018 * on a CPU, first time around:
1019 */
1020 if (in_interrupt())
3dee386e 1021 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
1022 else {
1023 /*
1024 * Normal first-time wakeups get a credit too for
1025 * on-runqueue time, but it will be weighted down:
1026 */
3dee386e 1027 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
1028 }
1029 }
1030 p->timestamp = now;
62ab616d 1031out:
1da177e4
LT
1032 __activate_task(p, rq);
1033}
1034
1035/*
1036 * deactivate_task - remove a task from the runqueue.
1037 */
70b97a7f 1038static void deactivate_task(struct task_struct *p, struct rq *rq)
1da177e4 1039{
2dd73a4f 1040 dec_nr_running(p, rq);
1da177e4
LT
1041 dequeue_task(p, p->array);
1042 p->array = NULL;
1043}
1044
1045/*
1046 * resched_task - mark a task 'to be rescheduled now'.
1047 *
1048 * On UP this means the setting of the need_resched flag, on SMP it
1049 * might also involve a cross-CPU call to trigger the scheduler on
1050 * the target CPU.
1051 */
1052#ifdef CONFIG_SMP
495ab9c0
AK
1053
1054#ifndef tsk_is_polling
1055#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1056#endif
1057
36c8b586 1058static void resched_task(struct task_struct *p)
1da177e4 1059{
64c7c8f8 1060 int cpu;
1da177e4
LT
1061
1062 assert_spin_locked(&task_rq(p)->lock);
1063
64c7c8f8
NP
1064 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1065 return;
1066
1067 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 1068
64c7c8f8
NP
1069 cpu = task_cpu(p);
1070 if (cpu == smp_processor_id())
1071 return;
1072
495ab9c0 1073 /* NEED_RESCHED must be visible before we test polling */
64c7c8f8 1074 smp_mb();
495ab9c0 1075 if (!tsk_is_polling(p))
64c7c8f8 1076 smp_send_reschedule(cpu);
1da177e4 1077}
46cb4b7c
SS
1078
1079static void resched_cpu(int cpu)
1080{
1081 struct rq *rq = cpu_rq(cpu);
1082 unsigned long flags;
1083
1084 if (!spin_trylock_irqsave(&rq->lock, flags))
1085 return;
1086 resched_task(cpu_curr(cpu));
1087 spin_unlock_irqrestore(&rq->lock, flags);
1088}
1da177e4 1089#else
36c8b586 1090static inline void resched_task(struct task_struct *p)
1da177e4 1091{
64c7c8f8 1092 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
1093 set_tsk_need_resched(p);
1094}
1095#endif
1096
1097/**
1098 * task_curr - is this task currently executing on a CPU?
1099 * @p: the task in question.
1100 */
36c8b586 1101inline int task_curr(const struct task_struct *p)
1da177e4
LT
1102{
1103 return cpu_curr(task_cpu(p)) == p;
1104}
1105
2dd73a4f
PW
1106/* Used instead of source_load when we know the type == 0 */
1107unsigned long weighted_cpuload(const int cpu)
1108{
1109 return cpu_rq(cpu)->raw_weighted_load;
1110}
1111
1da177e4 1112#ifdef CONFIG_SMP
70b97a7f 1113struct migration_req {
1da177e4 1114 struct list_head list;
1da177e4 1115
36c8b586 1116 struct task_struct *task;
1da177e4
LT
1117 int dest_cpu;
1118
1da177e4 1119 struct completion done;
70b97a7f 1120};
1da177e4
LT
1121
1122/*
1123 * The task's runqueue lock must be held.
1124 * Returns true if you have to wait for migration thread.
1125 */
36c8b586 1126static int
70b97a7f 1127migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1128{
70b97a7f 1129 struct rq *rq = task_rq(p);
1da177e4
LT
1130
1131 /*
1132 * If the task is not on a runqueue (and not running), then
1133 * it is sufficient to simply update the task's cpu field.
1134 */
1135 if (!p->array && !task_running(rq, p)) {
1136 set_task_cpu(p, dest_cpu);
1137 return 0;
1138 }
1139
1140 init_completion(&req->done);
1da177e4
LT
1141 req->task = p;
1142 req->dest_cpu = dest_cpu;
1143 list_add(&req->list, &rq->migration_queue);
48f24c4d 1144
1da177e4
LT
1145 return 1;
1146}
1147
1148/*
1149 * wait_task_inactive - wait for a thread to unschedule.
1150 *
1151 * The caller must ensure that the task *will* unschedule sometime soon,
1152 * else this function might spin for a *long* time. This function can't
1153 * be called with interrupts off, or it may introduce deadlock with
1154 * smp_call_function() if an IPI is sent by the same process we are
1155 * waiting to become inactive.
1156 */
36c8b586 1157void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1158{
1159 unsigned long flags;
70b97a7f 1160 struct rq *rq;
1da177e4
LT
1161 int preempted;
1162
1163repeat:
1164 rq = task_rq_lock(p, &flags);
1165 /* Must be off runqueue entirely, not preempted. */
1166 if (unlikely(p->array || task_running(rq, p))) {
1167 /* If it's preempted, we yield. It could be a while. */
1168 preempted = !task_running(rq, p);
1169 task_rq_unlock(rq, &flags);
1170 cpu_relax();
1171 if (preempted)
1172 yield();
1173 goto repeat;
1174 }
1175 task_rq_unlock(rq, &flags);
1176}
1177
1178/***
1179 * kick_process - kick a running thread to enter/exit the kernel
1180 * @p: the to-be-kicked thread
1181 *
1182 * Cause a process which is running on another CPU to enter
1183 * kernel-mode, without any delay. (to get signals handled.)
1184 *
1185 * NOTE: this function doesnt have to take the runqueue lock,
1186 * because all it wants to ensure is that the remote task enters
1187 * the kernel. If the IPI races and the task has been migrated
1188 * to another CPU then no harm is done and the purpose has been
1189 * achieved as well.
1190 */
36c8b586 1191void kick_process(struct task_struct *p)
1da177e4
LT
1192{
1193 int cpu;
1194
1195 preempt_disable();
1196 cpu = task_cpu(p);
1197 if ((cpu != smp_processor_id()) && task_curr(p))
1198 smp_send_reschedule(cpu);
1199 preempt_enable();
1200}
1201
1202/*
2dd73a4f
PW
1203 * Return a low guess at the load of a migration-source cpu weighted
1204 * according to the scheduling class and "nice" value.
1da177e4
LT
1205 *
1206 * We want to under-estimate the load of migration sources, to
1207 * balance conservatively.
1208 */
a2000572 1209static inline unsigned long source_load(int cpu, int type)
1da177e4 1210{
70b97a7f 1211 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1212
3b0bd9bc 1213 if (type == 0)
2dd73a4f 1214 return rq->raw_weighted_load;
b910472d 1215
2dd73a4f 1216 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1da177e4
LT
1217}
1218
1219/*
2dd73a4f
PW
1220 * Return a high guess at the load of a migration-target cpu weighted
1221 * according to the scheduling class and "nice" value.
1da177e4 1222 */
a2000572 1223static inline unsigned long target_load(int cpu, int type)
1da177e4 1224{
70b97a7f 1225 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1226
7897986b 1227 if (type == 0)
2dd73a4f 1228 return rq->raw_weighted_load;
3b0bd9bc 1229
2dd73a4f
PW
1230 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1231}
1232
1233/*
1234 * Return the average load per task on the cpu's run queue
1235 */
1236static inline unsigned long cpu_avg_load_per_task(int cpu)
1237{
70b97a7f 1238 struct rq *rq = cpu_rq(cpu);
2dd73a4f
PW
1239 unsigned long n = rq->nr_running;
1240
48f24c4d 1241 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1da177e4
LT
1242}
1243
147cbb4b
NP
1244/*
1245 * find_idlest_group finds and returns the least busy CPU group within the
1246 * domain.
1247 */
1248static struct sched_group *
1249find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1250{
1251 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1252 unsigned long min_load = ULONG_MAX, this_load = 0;
1253 int load_idx = sd->forkexec_idx;
1254 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1255
1256 do {
1257 unsigned long load, avg_load;
1258 int local_group;
1259 int i;
1260
da5a5522
BD
1261 /* Skip over this group if it has no CPUs allowed */
1262 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1263 goto nextgroup;
1264
147cbb4b 1265 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1266
1267 /* Tally up the load of all CPUs in the group */
1268 avg_load = 0;
1269
1270 for_each_cpu_mask(i, group->cpumask) {
1271 /* Bias balancing toward cpus of our domain */
1272 if (local_group)
1273 load = source_load(i, load_idx);
1274 else
1275 load = target_load(i, load_idx);
1276
1277 avg_load += load;
1278 }
1279
1280 /* Adjust by relative CPU power of the group */
5517d86b
ED
1281 avg_load = sg_div_cpu_power(group,
1282 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1283
1284 if (local_group) {
1285 this_load = avg_load;
1286 this = group;
1287 } else if (avg_load < min_load) {
1288 min_load = avg_load;
1289 idlest = group;
1290 }
da5a5522 1291nextgroup:
147cbb4b
NP
1292 group = group->next;
1293 } while (group != sd->groups);
1294
1295 if (!idlest || 100*this_load < imbalance*min_load)
1296 return NULL;
1297 return idlest;
1298}
1299
1300/*
0feaece9 1301 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1302 */
95cdf3b7
IM
1303static int
1304find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1305{
da5a5522 1306 cpumask_t tmp;
147cbb4b
NP
1307 unsigned long load, min_load = ULONG_MAX;
1308 int idlest = -1;
1309 int i;
1310
da5a5522
BD
1311 /* Traverse only the allowed CPUs */
1312 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1313
1314 for_each_cpu_mask(i, tmp) {
2dd73a4f 1315 load = weighted_cpuload(i);
147cbb4b
NP
1316
1317 if (load < min_load || (load == min_load && i == this_cpu)) {
1318 min_load = load;
1319 idlest = i;
1320 }
1321 }
1322
1323 return idlest;
1324}
1325
476d139c
NP
1326/*
1327 * sched_balance_self: balance the current task (running on cpu) in domains
1328 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1329 * SD_BALANCE_EXEC.
1330 *
1331 * Balance, ie. select the least loaded group.
1332 *
1333 * Returns the target CPU number, or the same CPU if no balancing is needed.
1334 *
1335 * preempt must be disabled.
1336 */
1337static int sched_balance_self(int cpu, int flag)
1338{
1339 struct task_struct *t = current;
1340 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1341
c96d145e 1342 for_each_domain(cpu, tmp) {
5c45bf27
SS
1343 /*
1344 * If power savings logic is enabled for a domain, stop there.
1345 */
1346 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1347 break;
476d139c
NP
1348 if (tmp->flags & flag)
1349 sd = tmp;
c96d145e 1350 }
476d139c
NP
1351
1352 while (sd) {
1353 cpumask_t span;
1354 struct sched_group *group;
1a848870
SS
1355 int new_cpu, weight;
1356
1357 if (!(sd->flags & flag)) {
1358 sd = sd->child;
1359 continue;
1360 }
476d139c
NP
1361
1362 span = sd->span;
1363 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1364 if (!group) {
1365 sd = sd->child;
1366 continue;
1367 }
476d139c 1368
da5a5522 1369 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1370 if (new_cpu == -1 || new_cpu == cpu) {
1371 /* Now try balancing at a lower domain level of cpu */
1372 sd = sd->child;
1373 continue;
1374 }
476d139c 1375
1a848870 1376 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1377 cpu = new_cpu;
476d139c
NP
1378 sd = NULL;
1379 weight = cpus_weight(span);
1380 for_each_domain(cpu, tmp) {
1381 if (weight <= cpus_weight(tmp->span))
1382 break;
1383 if (tmp->flags & flag)
1384 sd = tmp;
1385 }
1386 /* while loop will break here if sd == NULL */
1387 }
1388
1389 return cpu;
1390}
1391
1392#endif /* CONFIG_SMP */
1da177e4
LT
1393
1394/*
1395 * wake_idle() will wake a task on an idle cpu if task->cpu is
1396 * not idle and an idle cpu is available. The span of cpus to
1397 * search starts with cpus closest then further out as needed,
1398 * so we always favor a closer, idle cpu.
1399 *
1400 * Returns the CPU we should wake onto.
1401 */
1402#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1403static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1404{
1405 cpumask_t tmp;
1406 struct sched_domain *sd;
1407 int i;
1408
4953198b
SS
1409 /*
1410 * If it is idle, then it is the best cpu to run this task.
1411 *
1412 * This cpu is also the best, if it has more than one task already.
1413 * Siblings must be also busy(in most cases) as they didn't already
1414 * pickup the extra load from this cpu and hence we need not check
1415 * sibling runqueue info. This will avoid the checks and cache miss
1416 * penalities associated with that.
1417 */
1418 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1419 return cpu;
1420
1421 for_each_domain(cpu, sd) {
1422 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1423 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1424 for_each_cpu_mask(i, tmp) {
1425 if (idle_cpu(i))
1426 return i;
1427 }
1428 }
e0f364f4
NP
1429 else
1430 break;
1da177e4
LT
1431 }
1432 return cpu;
1433}
1434#else
36c8b586 1435static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1436{
1437 return cpu;
1438}
1439#endif
1440
1441/***
1442 * try_to_wake_up - wake up a thread
1443 * @p: the to-be-woken-up thread
1444 * @state: the mask of task states that can be woken
1445 * @sync: do a synchronous wakeup?
1446 *
1447 * Put it on the run-queue if it's not already there. The "current"
1448 * thread is always on the run-queue (except when the actual
1449 * re-schedule is in progress), and as such you're allowed to do
1450 * the simpler "current->state = TASK_RUNNING" to mark yourself
1451 * runnable without the overhead of this.
1452 *
1453 * returns failure only if the task is already active.
1454 */
36c8b586 1455static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1456{
1457 int cpu, this_cpu, success = 0;
1458 unsigned long flags;
1459 long old_state;
70b97a7f 1460 struct rq *rq;
1da177e4 1461#ifdef CONFIG_SMP
7897986b 1462 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1463 unsigned long load, this_load;
1da177e4
LT
1464 int new_cpu;
1465#endif
1466
1467 rq = task_rq_lock(p, &flags);
1468 old_state = p->state;
1469 if (!(old_state & state))
1470 goto out;
1471
1472 if (p->array)
1473 goto out_running;
1474
1475 cpu = task_cpu(p);
1476 this_cpu = smp_processor_id();
1477
1478#ifdef CONFIG_SMP
1479 if (unlikely(task_running(rq, p)))
1480 goto out_activate;
1481
7897986b
NP
1482 new_cpu = cpu;
1483
1da177e4
LT
1484 schedstat_inc(rq, ttwu_cnt);
1485 if (cpu == this_cpu) {
1486 schedstat_inc(rq, ttwu_local);
7897986b
NP
1487 goto out_set_cpu;
1488 }
1489
1490 for_each_domain(this_cpu, sd) {
1491 if (cpu_isset(cpu, sd->span)) {
1492 schedstat_inc(sd, ttwu_wake_remote);
1493 this_sd = sd;
1494 break;
1da177e4
LT
1495 }
1496 }
1da177e4 1497
7897986b 1498 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1499 goto out_set_cpu;
1500
1da177e4 1501 /*
7897986b 1502 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1503 */
7897986b
NP
1504 if (this_sd) {
1505 int idx = this_sd->wake_idx;
1506 unsigned int imbalance;
1da177e4 1507
a3f21bce
NP
1508 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1509
7897986b
NP
1510 load = source_load(cpu, idx);
1511 this_load = target_load(this_cpu, idx);
1da177e4 1512
7897986b
NP
1513 new_cpu = this_cpu; /* Wake to this CPU if we can */
1514
a3f21bce
NP
1515 if (this_sd->flags & SD_WAKE_AFFINE) {
1516 unsigned long tl = this_load;
33859f7f
MOS
1517 unsigned long tl_per_task;
1518
1519 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1520
1da177e4 1521 /*
a3f21bce
NP
1522 * If sync wakeup then subtract the (maximum possible)
1523 * effect of the currently running task from the load
1524 * of the current CPU:
1da177e4 1525 */
a3f21bce 1526 if (sync)
2dd73a4f 1527 tl -= current->load_weight;
a3f21bce
NP
1528
1529 if ((tl <= load &&
2dd73a4f
PW
1530 tl + target_load(cpu, idx) <= tl_per_task) ||
1531 100*(tl + p->load_weight) <= imbalance*load) {
a3f21bce
NP
1532 /*
1533 * This domain has SD_WAKE_AFFINE and
1534 * p is cache cold in this domain, and
1535 * there is no bad imbalance.
1536 */
1537 schedstat_inc(this_sd, ttwu_move_affine);
1538 goto out_set_cpu;
1539 }
1540 }
1541
1542 /*
1543 * Start passive balancing when half the imbalance_pct
1544 * limit is reached.
1545 */
1546 if (this_sd->flags & SD_WAKE_BALANCE) {
1547 if (imbalance*this_load <= 100*load) {
1548 schedstat_inc(this_sd, ttwu_move_balance);
1549 goto out_set_cpu;
1550 }
1da177e4
LT
1551 }
1552 }
1553
1554 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1555out_set_cpu:
1556 new_cpu = wake_idle(new_cpu, p);
1557 if (new_cpu != cpu) {
1558 set_task_cpu(p, new_cpu);
1559 task_rq_unlock(rq, &flags);
1560 /* might preempt at this point */
1561 rq = task_rq_lock(p, &flags);
1562 old_state = p->state;
1563 if (!(old_state & state))
1564 goto out;
1565 if (p->array)
1566 goto out_running;
1567
1568 this_cpu = smp_processor_id();
1569 cpu = task_cpu(p);
1570 }
1571
1572out_activate:
1573#endif /* CONFIG_SMP */
1574 if (old_state == TASK_UNINTERRUPTIBLE) {
1575 rq->nr_uninterruptible--;
1576 /*
1577 * Tasks on involuntary sleep don't earn
1578 * sleep_avg beyond just interactive state.
1579 */
3dee386e 1580 p->sleep_type = SLEEP_NONINTERACTIVE;
e7c38cb4 1581 } else
1da177e4 1582
d79fc0fc
IM
1583 /*
1584 * Tasks that have marked their sleep as noninteractive get
e7c38cb4
CK
1585 * woken up with their sleep average not weighted in an
1586 * interactive way.
d79fc0fc 1587 */
e7c38cb4
CK
1588 if (old_state & TASK_NONINTERACTIVE)
1589 p->sleep_type = SLEEP_NONINTERACTIVE;
1590
1591
1592 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1593 /*
1594 * Sync wakeups (i.e. those types of wakeups where the waker
1595 * has indicated that it will leave the CPU in short order)
1596 * don't trigger a preemption, if the woken up task will run on
1597 * this cpu. (in this case the 'I will reschedule' promise of
1598 * the waker guarantees that the freshly woken up task is going
1599 * to be considered on this CPU.)
1600 */
1da177e4
LT
1601 if (!sync || cpu != this_cpu) {
1602 if (TASK_PREEMPTS_CURR(p, rq))
1603 resched_task(rq->curr);
1604 }
1605 success = 1;
1606
1607out_running:
1608 p->state = TASK_RUNNING;
1609out:
1610 task_rq_unlock(rq, &flags);
1611
1612 return success;
1613}
1614
36c8b586 1615int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1616{
1617 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1618 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1619}
1da177e4
LT
1620EXPORT_SYMBOL(wake_up_process);
1621
36c8b586 1622int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1623{
1624 return try_to_wake_up(p, state, 0);
1625}
1626
bc947631 1627static void task_running_tick(struct rq *rq, struct task_struct *p);
1da177e4
LT
1628/*
1629 * Perform scheduler related setup for a newly forked process p.
1630 * p is forked by current.
1631 */
36c8b586 1632void fastcall sched_fork(struct task_struct *p, int clone_flags)
1da177e4 1633{
476d139c
NP
1634 int cpu = get_cpu();
1635
1636#ifdef CONFIG_SMP
1637 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1638#endif
1639 set_task_cpu(p, cpu);
1640
1da177e4
LT
1641 /*
1642 * We mark the process as running here, but have not actually
1643 * inserted it onto the runqueue yet. This guarantees that
1644 * nobody will actually run it, and a signal or other external
1645 * event cannot wake it up and insert it on the runqueue either.
1646 */
1647 p->state = TASK_RUNNING;
b29739f9
IM
1648
1649 /*
1650 * Make sure we do not leak PI boosting priority to the child:
1651 */
1652 p->prio = current->normal_prio;
1653
1da177e4
LT
1654 INIT_LIST_HEAD(&p->run_list);
1655 p->array = NULL;
52f17b6c
CS
1656#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1657 if (unlikely(sched_info_on()))
1658 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1659#endif
d6077cb8 1660#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1661 p->oncpu = 0;
1662#endif
1da177e4 1663#ifdef CONFIG_PREEMPT
4866cde0 1664 /* Want to start with kernel preemption disabled. */
a1261f54 1665 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1666#endif
1667 /*
1668 * Share the timeslice between parent and child, thus the
1669 * total amount of pending timeslices in the system doesn't change,
1670 * resulting in more scheduling fairness.
1671 */
1672 local_irq_disable();
1673 p->time_slice = (current->time_slice + 1) >> 1;
1674 /*
1675 * The remainder of the first timeslice might be recovered by
1676 * the parent if the child exits early enough.
1677 */
1678 p->first_time_slice = 1;
1679 current->time_slice >>= 1;
1680 p->timestamp = sched_clock();
1681 if (unlikely(!current->time_slice)) {
1682 /*
1683 * This case is rare, it happens when the parent has only
1684 * a single jiffy left from its timeslice. Taking the
1685 * runqueue lock is not a problem.
1686 */
1687 current->time_slice = 1;
bc947631 1688 task_running_tick(cpu_rq(cpu), current);
476d139c
NP
1689 }
1690 local_irq_enable();
1691 put_cpu();
1da177e4
LT
1692}
1693
1694/*
1695 * wake_up_new_task - wake up a newly created task for the first time.
1696 *
1697 * This function will do some initial scheduler statistics housekeeping
1698 * that must be done for every newly created context, then puts the task
1699 * on the runqueue and wakes it.
1700 */
36c8b586 1701void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4 1702{
70b97a7f 1703 struct rq *rq, *this_rq;
1da177e4
LT
1704 unsigned long flags;
1705 int this_cpu, cpu;
1da177e4
LT
1706
1707 rq = task_rq_lock(p, &flags);
147cbb4b 1708 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1709 this_cpu = smp_processor_id();
147cbb4b 1710 cpu = task_cpu(p);
1da177e4 1711
1da177e4
LT
1712 /*
1713 * We decrease the sleep average of forking parents
1714 * and children as well, to keep max-interactive tasks
1715 * from forking tasks that are max-interactive. The parent
1716 * (current) is done further down, under its lock.
1717 */
1718 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1719 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1720
1721 p->prio = effective_prio(p);
1722
1723 if (likely(cpu == this_cpu)) {
1724 if (!(clone_flags & CLONE_VM)) {
1725 /*
1726 * The VM isn't cloned, so we're in a good position to
1727 * do child-runs-first in anticipation of an exec. This
1728 * usually avoids a lot of COW overhead.
1729 */
1730 if (unlikely(!current->array))
1731 __activate_task(p, rq);
1732 else {
1733 p->prio = current->prio;
b29739f9 1734 p->normal_prio = current->normal_prio;
1da177e4
LT
1735 list_add_tail(&p->run_list, &current->run_list);
1736 p->array = current->array;
1737 p->array->nr_active++;
2dd73a4f 1738 inc_nr_running(p, rq);
1da177e4
LT
1739 }
1740 set_need_resched();
1741 } else
1742 /* Run child last */
1743 __activate_task(p, rq);
1744 /*
1745 * We skip the following code due to cpu == this_cpu
1746 *
1747 * task_rq_unlock(rq, &flags);
1748 * this_rq = task_rq_lock(current, &flags);
1749 */
1750 this_rq = rq;
1751 } else {
1752 this_rq = cpu_rq(this_cpu);
1753
1754 /*
1755 * Not the local CPU - must adjust timestamp. This should
1756 * get optimised away in the !CONFIG_SMP case.
1757 */
b18ec803
MG
1758 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1759 + rq->most_recent_timestamp;
1da177e4
LT
1760 __activate_task(p, rq);
1761 if (TASK_PREEMPTS_CURR(p, rq))
1762 resched_task(rq->curr);
1763
1764 /*
1765 * Parent and child are on different CPUs, now get the
1766 * parent runqueue to update the parent's ->sleep_avg:
1767 */
1768 task_rq_unlock(rq, &flags);
1769 this_rq = task_rq_lock(current, &flags);
1770 }
1771 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1772 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1773 task_rq_unlock(this_rq, &flags);
1774}
1775
1776/*
1777 * Potentially available exiting-child timeslices are
1778 * retrieved here - this way the parent does not get
1779 * penalized for creating too many threads.
1780 *
1781 * (this cannot be used to 'generate' timeslices
1782 * artificially, because any timeslice recovered here
1783 * was given away by the parent in the first place.)
1784 */
36c8b586 1785void fastcall sched_exit(struct task_struct *p)
1da177e4
LT
1786{
1787 unsigned long flags;
70b97a7f 1788 struct rq *rq;
1da177e4
LT
1789
1790 /*
1791 * If the child was a (relative-) CPU hog then decrease
1792 * the sleep_avg of the parent as well.
1793 */
1794 rq = task_rq_lock(p->parent, &flags);
889dfafe 1795 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1796 p->parent->time_slice += p->time_slice;
1797 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1798 p->parent->time_slice = task_timeslice(p);
1799 }
1800 if (p->sleep_avg < p->parent->sleep_avg)
1801 p->parent->sleep_avg = p->parent->sleep_avg /
1802 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1803 (EXIT_WEIGHT + 1);
1804 task_rq_unlock(rq, &flags);
1805}
1806
4866cde0
NP
1807/**
1808 * prepare_task_switch - prepare to switch tasks
1809 * @rq: the runqueue preparing to switch
1810 * @next: the task we are going to switch to.
1811 *
1812 * This is called with the rq lock held and interrupts off. It must
1813 * be paired with a subsequent finish_task_switch after the context
1814 * switch.
1815 *
1816 * prepare_task_switch sets up locking and calls architecture specific
1817 * hooks.
1818 */
70b97a7f 1819static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1820{
1821 prepare_lock_switch(rq, next);
1822 prepare_arch_switch(next);
1823}
1824
1da177e4
LT
1825/**
1826 * finish_task_switch - clean up after a task-switch
344babaa 1827 * @rq: runqueue associated with task-switch
1da177e4
LT
1828 * @prev: the thread we just switched away from.
1829 *
4866cde0
NP
1830 * finish_task_switch must be called after the context switch, paired
1831 * with a prepare_task_switch call before the context switch.
1832 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1833 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1834 *
1835 * Note that we may have delayed dropping an mm in context_switch(). If
1836 * so, we finish that here outside of the runqueue lock. (Doing it
1837 * with the lock held can cause deadlocks; see schedule() for
1838 * details.)
1839 */
70b97a7f 1840static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1841 __releases(rq->lock)
1842{
1da177e4 1843 struct mm_struct *mm = rq->prev_mm;
55a101f8 1844 long prev_state;
1da177e4
LT
1845
1846 rq->prev_mm = NULL;
1847
1848 /*
1849 * A task struct has one reference for the use as "current".
c394cc9f 1850 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1851 * schedule one last time. The schedule call will never return, and
1852 * the scheduled task must drop that reference.
c394cc9f 1853 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1854 * still held, otherwise prev could be scheduled on another cpu, die
1855 * there before we look at prev->state, and then the reference would
1856 * be dropped twice.
1857 * Manfred Spraul <manfred@colorfullife.com>
1858 */
55a101f8 1859 prev_state = prev->state;
4866cde0
NP
1860 finish_arch_switch(prev);
1861 finish_lock_switch(rq, prev);
1da177e4
LT
1862 if (mm)
1863 mmdrop(mm);
c394cc9f 1864 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1865 /*
1866 * Remove function-return probe instances associated with this
1867 * task and put them back on the free list.
1868 */
1869 kprobe_flush_task(prev);
1da177e4 1870 put_task_struct(prev);
c6fd91f0 1871 }
1da177e4
LT
1872}
1873
1874/**
1875 * schedule_tail - first thing a freshly forked thread must call.
1876 * @prev: the thread we just switched away from.
1877 */
36c8b586 1878asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1879 __releases(rq->lock)
1880{
70b97a7f
IM
1881 struct rq *rq = this_rq();
1882
4866cde0
NP
1883 finish_task_switch(rq, prev);
1884#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1885 /* In this case, finish_task_switch does not reenable preemption */
1886 preempt_enable();
1887#endif
1da177e4
LT
1888 if (current->set_child_tid)
1889 put_user(current->pid, current->set_child_tid);
1890}
1891
1892/*
1893 * context_switch - switch to the new MM and the new
1894 * thread's register state.
1895 */
36c8b586 1896static inline struct task_struct *
70b97a7f 1897context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1898 struct task_struct *next)
1da177e4
LT
1899{
1900 struct mm_struct *mm = next->mm;
1901 struct mm_struct *oldmm = prev->active_mm;
1902
9226d125
ZA
1903 /*
1904 * For paravirt, this is coupled with an exit in switch_to to
1905 * combine the page table reload and the switch backend into
1906 * one hypercall.
1907 */
1908 arch_enter_lazy_cpu_mode();
1909
beed33a8 1910 if (!mm) {
1da177e4
LT
1911 next->active_mm = oldmm;
1912 atomic_inc(&oldmm->mm_count);
1913 enter_lazy_tlb(oldmm, next);
1914 } else
1915 switch_mm(oldmm, mm, next);
1916
beed33a8 1917 if (!prev->mm) {
1da177e4
LT
1918 prev->active_mm = NULL;
1919 WARN_ON(rq->prev_mm);
1920 rq->prev_mm = oldmm;
1921 }
3a5f5e48
IM
1922 /*
1923 * Since the runqueue lock will be released by the next
1924 * task (which is an invalid locking op but in the case
1925 * of the scheduler it's an obvious special-case), so we
1926 * do an early lockdep release here:
1927 */
1928#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1929 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1930#endif
1da177e4
LT
1931
1932 /* Here we just switch the register state and the stack. */
1933 switch_to(prev, next, prev);
1934
1935 return prev;
1936}
1937
1938/*
1939 * nr_running, nr_uninterruptible and nr_context_switches:
1940 *
1941 * externally visible scheduler statistics: current number of runnable
1942 * threads, current number of uninterruptible-sleeping threads, total
1943 * number of context switches performed since bootup.
1944 */
1945unsigned long nr_running(void)
1946{
1947 unsigned long i, sum = 0;
1948
1949 for_each_online_cpu(i)
1950 sum += cpu_rq(i)->nr_running;
1951
1952 return sum;
1953}
1954
1955unsigned long nr_uninterruptible(void)
1956{
1957 unsigned long i, sum = 0;
1958
0a945022 1959 for_each_possible_cpu(i)
1da177e4
LT
1960 sum += cpu_rq(i)->nr_uninterruptible;
1961
1962 /*
1963 * Since we read the counters lockless, it might be slightly
1964 * inaccurate. Do not allow it to go below zero though:
1965 */
1966 if (unlikely((long)sum < 0))
1967 sum = 0;
1968
1969 return sum;
1970}
1971
1972unsigned long long nr_context_switches(void)
1973{
cc94abfc
SR
1974 int i;
1975 unsigned long long sum = 0;
1da177e4 1976
0a945022 1977 for_each_possible_cpu(i)
1da177e4
LT
1978 sum += cpu_rq(i)->nr_switches;
1979
1980 return sum;
1981}
1982
1983unsigned long nr_iowait(void)
1984{
1985 unsigned long i, sum = 0;
1986
0a945022 1987 for_each_possible_cpu(i)
1da177e4
LT
1988 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1989
1990 return sum;
1991}
1992
db1b1fef
JS
1993unsigned long nr_active(void)
1994{
1995 unsigned long i, running = 0, uninterruptible = 0;
1996
1997 for_each_online_cpu(i) {
1998 running += cpu_rq(i)->nr_running;
1999 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2000 }
2001
2002 if (unlikely((long)uninterruptible < 0))
2003 uninterruptible = 0;
2004
2005 return running + uninterruptible;
2006}
2007
1da177e4
LT
2008#ifdef CONFIG_SMP
2009
48f24c4d
IM
2010/*
2011 * Is this task likely cache-hot:
2012 */
2013static inline int
2014task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
2015{
2016 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
2017}
2018
1da177e4
LT
2019/*
2020 * double_rq_lock - safely lock two runqueues
2021 *
2022 * Note this does not disable interrupts like task_rq_lock,
2023 * you need to do so manually before calling.
2024 */
70b97a7f 2025static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2026 __acquires(rq1->lock)
2027 __acquires(rq2->lock)
2028{
054b9108 2029 BUG_ON(!irqs_disabled());
1da177e4
LT
2030 if (rq1 == rq2) {
2031 spin_lock(&rq1->lock);
2032 __acquire(rq2->lock); /* Fake it out ;) */
2033 } else {
c96d145e 2034 if (rq1 < rq2) {
1da177e4
LT
2035 spin_lock(&rq1->lock);
2036 spin_lock(&rq2->lock);
2037 } else {
2038 spin_lock(&rq2->lock);
2039 spin_lock(&rq1->lock);
2040 }
2041 }
2042}
2043
2044/*
2045 * double_rq_unlock - safely unlock two runqueues
2046 *
2047 * Note this does not restore interrupts like task_rq_unlock,
2048 * you need to do so manually after calling.
2049 */
70b97a7f 2050static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2051 __releases(rq1->lock)
2052 __releases(rq2->lock)
2053{
2054 spin_unlock(&rq1->lock);
2055 if (rq1 != rq2)
2056 spin_unlock(&rq2->lock);
2057 else
2058 __release(rq2->lock);
2059}
2060
2061/*
2062 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2063 */
70b97a7f 2064static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2065 __releases(this_rq->lock)
2066 __acquires(busiest->lock)
2067 __acquires(this_rq->lock)
2068{
054b9108
KK
2069 if (unlikely(!irqs_disabled())) {
2070 /* printk() doesn't work good under rq->lock */
2071 spin_unlock(&this_rq->lock);
2072 BUG_ON(1);
2073 }
1da177e4 2074 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2075 if (busiest < this_rq) {
1da177e4
LT
2076 spin_unlock(&this_rq->lock);
2077 spin_lock(&busiest->lock);
2078 spin_lock(&this_rq->lock);
2079 } else
2080 spin_lock(&busiest->lock);
2081 }
2082}
2083
1da177e4
LT
2084/*
2085 * If dest_cpu is allowed for this process, migrate the task to it.
2086 * This is accomplished by forcing the cpu_allowed mask to only
2087 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2088 * the cpu_allowed mask is restored.
2089 */
36c8b586 2090static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2091{
70b97a7f 2092 struct migration_req req;
1da177e4 2093 unsigned long flags;
70b97a7f 2094 struct rq *rq;
1da177e4
LT
2095
2096 rq = task_rq_lock(p, &flags);
2097 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2098 || unlikely(cpu_is_offline(dest_cpu)))
2099 goto out;
2100
2101 /* force the process onto the specified CPU */
2102 if (migrate_task(p, dest_cpu, &req)) {
2103 /* Need to wait for migration thread (might exit: take ref). */
2104 struct task_struct *mt = rq->migration_thread;
36c8b586 2105
1da177e4
LT
2106 get_task_struct(mt);
2107 task_rq_unlock(rq, &flags);
2108 wake_up_process(mt);
2109 put_task_struct(mt);
2110 wait_for_completion(&req.done);
36c8b586 2111
1da177e4
LT
2112 return;
2113 }
2114out:
2115 task_rq_unlock(rq, &flags);
2116}
2117
2118/*
476d139c
NP
2119 * sched_exec - execve() is a valuable balancing opportunity, because at
2120 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2121 */
2122void sched_exec(void)
2123{
1da177e4 2124 int new_cpu, this_cpu = get_cpu();
476d139c 2125 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2126 put_cpu();
476d139c
NP
2127 if (new_cpu != this_cpu)
2128 sched_migrate_task(current, new_cpu);
1da177e4
LT
2129}
2130
2131/*
2132 * pull_task - move a task from a remote runqueue to the local runqueue.
2133 * Both runqueues must be locked.
2134 */
70b97a7f
IM
2135static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2136 struct task_struct *p, struct rq *this_rq,
2137 struct prio_array *this_array, int this_cpu)
1da177e4
LT
2138{
2139 dequeue_task(p, src_array);
2dd73a4f 2140 dec_nr_running(p, src_rq);
1da177e4 2141 set_task_cpu(p, this_cpu);
2dd73a4f 2142 inc_nr_running(p, this_rq);
1da177e4 2143 enqueue_task(p, this_array);
b18ec803
MG
2144 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2145 + this_rq->most_recent_timestamp;
1da177e4
LT
2146 /*
2147 * Note that idle threads have a prio of MAX_PRIO, for this test
2148 * to be always true for them.
2149 */
2150 if (TASK_PREEMPTS_CURR(p, this_rq))
2151 resched_task(this_rq->curr);
2152}
2153
2154/*
2155 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2156 */
858119e1 2157static
70b97a7f 2158int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
95cdf3b7
IM
2159 struct sched_domain *sd, enum idle_type idle,
2160 int *all_pinned)
1da177e4
LT
2161{
2162 /*
2163 * We do not migrate tasks that are:
2164 * 1) running (obviously), or
2165 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2166 * 3) are cache-hot on their current CPU.
2167 */
1da177e4
LT
2168 if (!cpu_isset(this_cpu, p->cpus_allowed))
2169 return 0;
81026794
NP
2170 *all_pinned = 0;
2171
2172 if (task_running(rq, p))
2173 return 0;
1da177e4
LT
2174
2175 /*
2176 * Aggressive migration if:
cafb20c1 2177 * 1) task is cache cold, or
1da177e4
LT
2178 * 2) too many balance attempts have failed.
2179 */
2180
b18ec803
MG
2181 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2182#ifdef CONFIG_SCHEDSTATS
2183 if (task_hot(p, rq->most_recent_timestamp, sd))
2184 schedstat_inc(sd, lb_hot_gained[idle]);
2185#endif
1da177e4 2186 return 1;
b18ec803 2187 }
1da177e4 2188
b18ec803 2189 if (task_hot(p, rq->most_recent_timestamp, sd))
81026794 2190 return 0;
1da177e4
LT
2191 return 1;
2192}
2193
615052dc 2194#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
48f24c4d 2195
1da177e4 2196/*
2dd73a4f
PW
2197 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2198 * load from busiest to this_rq, as part of a balancing operation within
2199 * "domain". Returns the number of tasks moved.
1da177e4
LT
2200 *
2201 * Called with both runqueues locked.
2202 */
70b97a7f 2203static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f
PW
2204 unsigned long max_nr_move, unsigned long max_load_move,
2205 struct sched_domain *sd, enum idle_type idle,
2206 int *all_pinned)
1da177e4 2207{
48f24c4d
IM
2208 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2209 best_prio_seen, skip_for_load;
70b97a7f 2210 struct prio_array *array, *dst_array;
1da177e4 2211 struct list_head *head, *curr;
36c8b586 2212 struct task_struct *tmp;
2dd73a4f 2213 long rem_load_move;
1da177e4 2214
2dd73a4f 2215 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2216 goto out;
2217
2dd73a4f 2218 rem_load_move = max_load_move;
81026794 2219 pinned = 1;
615052dc 2220 this_best_prio = rq_best_prio(this_rq);
48f24c4d 2221 best_prio = rq_best_prio(busiest);
615052dc
PW
2222 /*
2223 * Enable handling of the case where there is more than one task
2224 * with the best priority. If the current running task is one
48f24c4d 2225 * of those with prio==best_prio we know it won't be moved
615052dc
PW
2226 * and therefore it's safe to override the skip (based on load) of
2227 * any task we find with that prio.
2228 */
48f24c4d 2229 best_prio_seen = best_prio == busiest->curr->prio;
81026794 2230
1da177e4
LT
2231 /*
2232 * We first consider expired tasks. Those will likely not be
2233 * executed in the near future, and they are most likely to
2234 * be cache-cold, thus switching CPUs has the least effect
2235 * on them.
2236 */
2237 if (busiest->expired->nr_active) {
2238 array = busiest->expired;
2239 dst_array = this_rq->expired;
2240 } else {
2241 array = busiest->active;
2242 dst_array = this_rq->active;
2243 }
2244
2245new_array:
2246 /* Start searching at priority 0: */
2247 idx = 0;
2248skip_bitmap:
2249 if (!idx)
2250 idx = sched_find_first_bit(array->bitmap);
2251 else
2252 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2253 if (idx >= MAX_PRIO) {
2254 if (array == busiest->expired && busiest->active->nr_active) {
2255 array = busiest->active;
2256 dst_array = this_rq->active;
2257 goto new_array;
2258 }
2259 goto out;
2260 }
2261
2262 head = array->queue + idx;
2263 curr = head->prev;
2264skip_queue:
36c8b586 2265 tmp = list_entry(curr, struct task_struct, run_list);
1da177e4
LT
2266
2267 curr = curr->prev;
2268
50ddd969
PW
2269 /*
2270 * To help distribute high priority tasks accross CPUs we don't
2271 * skip a task if it will be the highest priority task (i.e. smallest
2272 * prio value) on its new queue regardless of its load weight
2273 */
615052dc
PW
2274 skip_for_load = tmp->load_weight > rem_load_move;
2275 if (skip_for_load && idx < this_best_prio)
48f24c4d 2276 skip_for_load = !best_prio_seen && idx == best_prio;
615052dc 2277 if (skip_for_load ||
2dd73a4f 2278 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d
IM
2279
2280 best_prio_seen |= idx == best_prio;
1da177e4
LT
2281 if (curr != head)
2282 goto skip_queue;
2283 idx++;
2284 goto skip_bitmap;
2285 }
2286
1da177e4
LT
2287 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2288 pulled++;
2dd73a4f 2289 rem_load_move -= tmp->load_weight;
1da177e4 2290
2dd73a4f
PW
2291 /*
2292 * We only want to steal up to the prescribed number of tasks
2293 * and the prescribed amount of weighted load.
2294 */
2295 if (pulled < max_nr_move && rem_load_move > 0) {
615052dc
PW
2296 if (idx < this_best_prio)
2297 this_best_prio = idx;
1da177e4
LT
2298 if (curr != head)
2299 goto skip_queue;
2300 idx++;
2301 goto skip_bitmap;
2302 }
2303out:
2304 /*
2305 * Right now, this is the only place pull_task() is called,
2306 * so we can safely collect pull_task() stats here rather than
2307 * inside pull_task().
2308 */
2309 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2310
2311 if (all_pinned)
2312 *all_pinned = pinned;
1da177e4
LT
2313 return pulled;
2314}
2315
2316/*
2317 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2318 * domain. It calculates and returns the amount of weighted load which
2319 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2320 */
2321static struct sched_group *
2322find_busiest_group(struct sched_domain *sd, int this_cpu,
0a2966b4 2323 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
783609c6 2324 cpumask_t *cpus, int *balance)
1da177e4
LT
2325{
2326 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2327 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2328 unsigned long max_pull;
2dd73a4f
PW
2329 unsigned long busiest_load_per_task, busiest_nr_running;
2330 unsigned long this_load_per_task, this_nr_running;
7897986b 2331 int load_idx;
5c45bf27
SS
2332#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2333 int power_savings_balance = 1;
2334 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2335 unsigned long min_nr_running = ULONG_MAX;
2336 struct sched_group *group_min = NULL, *group_leader = NULL;
2337#endif
1da177e4
LT
2338
2339 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2340 busiest_load_per_task = busiest_nr_running = 0;
2341 this_load_per_task = this_nr_running = 0;
7897986b
NP
2342 if (idle == NOT_IDLE)
2343 load_idx = sd->busy_idx;
2344 else if (idle == NEWLY_IDLE)
2345 load_idx = sd->newidle_idx;
2346 else
2347 load_idx = sd->idle_idx;
1da177e4
LT
2348
2349 do {
5c45bf27 2350 unsigned long load, group_capacity;
1da177e4
LT
2351 int local_group;
2352 int i;
783609c6 2353 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2354 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2355
2356 local_group = cpu_isset(this_cpu, group->cpumask);
2357
783609c6
SS
2358 if (local_group)
2359 balance_cpu = first_cpu(group->cpumask);
2360
1da177e4 2361 /* Tally up the load of all CPUs in the group */
2dd73a4f 2362 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2363
2364 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2365 struct rq *rq;
2366
2367 if (!cpu_isset(i, *cpus))
2368 continue;
2369
2370 rq = cpu_rq(i);
2dd73a4f 2371
5969fe06
NP
2372 if (*sd_idle && !idle_cpu(i))
2373 *sd_idle = 0;
2374
1da177e4 2375 /* Bias balancing toward cpus of our domain */
783609c6
SS
2376 if (local_group) {
2377 if (idle_cpu(i) && !first_idle_cpu) {
2378 first_idle_cpu = 1;
2379 balance_cpu = i;
2380 }
2381
a2000572 2382 load = target_load(i, load_idx);
783609c6 2383 } else
a2000572 2384 load = source_load(i, load_idx);
1da177e4
LT
2385
2386 avg_load += load;
2dd73a4f
PW
2387 sum_nr_running += rq->nr_running;
2388 sum_weighted_load += rq->raw_weighted_load;
1da177e4
LT
2389 }
2390
783609c6
SS
2391 /*
2392 * First idle cpu or the first cpu(busiest) in this sched group
2393 * is eligible for doing load balancing at this and above
2394 * domains.
2395 */
2396 if (local_group && balance_cpu != this_cpu && balance) {
2397 *balance = 0;
2398 goto ret;
2399 }
2400
1da177e4 2401 total_load += avg_load;
5517d86b 2402 total_pwr += group->__cpu_power;
1da177e4
LT
2403
2404 /* Adjust by relative CPU power of the group */
5517d86b
ED
2405 avg_load = sg_div_cpu_power(group,
2406 avg_load * SCHED_LOAD_SCALE);
1da177e4 2407
5517d86b 2408 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2409
1da177e4
LT
2410 if (local_group) {
2411 this_load = avg_load;
2412 this = group;
2dd73a4f
PW
2413 this_nr_running = sum_nr_running;
2414 this_load_per_task = sum_weighted_load;
2415 } else if (avg_load > max_load &&
5c45bf27 2416 sum_nr_running > group_capacity) {
1da177e4
LT
2417 max_load = avg_load;
2418 busiest = group;
2dd73a4f
PW
2419 busiest_nr_running = sum_nr_running;
2420 busiest_load_per_task = sum_weighted_load;
1da177e4 2421 }
5c45bf27
SS
2422
2423#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2424 /*
2425 * Busy processors will not participate in power savings
2426 * balance.
2427 */
2428 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2429 goto group_next;
2430
2431 /*
2432 * If the local group is idle or completely loaded
2433 * no need to do power savings balance at this domain
2434 */
2435 if (local_group && (this_nr_running >= group_capacity ||
2436 !this_nr_running))
2437 power_savings_balance = 0;
2438
2439 /*
2440 * If a group is already running at full capacity or idle,
2441 * don't include that group in power savings calculations
2442 */
2443 if (!power_savings_balance || sum_nr_running >= group_capacity
2444 || !sum_nr_running)
2445 goto group_next;
2446
2447 /*
2448 * Calculate the group which has the least non-idle load.
2449 * This is the group from where we need to pick up the load
2450 * for saving power
2451 */
2452 if ((sum_nr_running < min_nr_running) ||
2453 (sum_nr_running == min_nr_running &&
2454 first_cpu(group->cpumask) <
2455 first_cpu(group_min->cpumask))) {
2456 group_min = group;
2457 min_nr_running = sum_nr_running;
2458 min_load_per_task = sum_weighted_load /
2459 sum_nr_running;
2460 }
2461
2462 /*
2463 * Calculate the group which is almost near its
2464 * capacity but still has some space to pick up some load
2465 * from other group and save more power
2466 */
48f24c4d 2467 if (sum_nr_running <= group_capacity - 1) {
5c45bf27
SS
2468 if (sum_nr_running > leader_nr_running ||
2469 (sum_nr_running == leader_nr_running &&
2470 first_cpu(group->cpumask) >
2471 first_cpu(group_leader->cpumask))) {
2472 group_leader = group;
2473 leader_nr_running = sum_nr_running;
2474 }
48f24c4d 2475 }
5c45bf27
SS
2476group_next:
2477#endif
1da177e4
LT
2478 group = group->next;
2479 } while (group != sd->groups);
2480
2dd73a4f 2481 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2482 goto out_balanced;
2483
2484 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2485
2486 if (this_load >= avg_load ||
2487 100*max_load <= sd->imbalance_pct*this_load)
2488 goto out_balanced;
2489
2dd73a4f 2490 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2491 /*
2492 * We're trying to get all the cpus to the average_load, so we don't
2493 * want to push ourselves above the average load, nor do we wish to
2494 * reduce the max loaded cpu below the average load, as either of these
2495 * actions would just result in more rebalancing later, and ping-pong
2496 * tasks around. Thus we look for the minimum possible imbalance.
2497 * Negative imbalances (*we* are more loaded than anyone else) will
2498 * be counted as no imbalance for these purposes -- we can't fix that
2499 * by pulling tasks to us. Be careful of negative numbers as they'll
2500 * appear as very large values with unsigned longs.
2501 */
2dd73a4f
PW
2502 if (max_load <= busiest_load_per_task)
2503 goto out_balanced;
2504
2505 /*
2506 * In the presence of smp nice balancing, certain scenarios can have
2507 * max load less than avg load(as we skip the groups at or below
2508 * its cpu_power, while calculating max_load..)
2509 */
2510 if (max_load < avg_load) {
2511 *imbalance = 0;
2512 goto small_imbalance;
2513 }
0c117f1b
SS
2514
2515 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2516 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2517
1da177e4 2518 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2519 *imbalance = min(max_pull * busiest->__cpu_power,
2520 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2521 / SCHED_LOAD_SCALE;
2522
2dd73a4f
PW
2523 /*
2524 * if *imbalance is less than the average load per runnable task
2525 * there is no gaurantee that any tasks will be moved so we'll have
2526 * a think about bumping its value to force at least one task to be
2527 * moved
2528 */
2529 if (*imbalance < busiest_load_per_task) {
48f24c4d 2530 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2531 unsigned int imbn;
2532
2533small_imbalance:
2534 pwr_move = pwr_now = 0;
2535 imbn = 2;
2536 if (this_nr_running) {
2537 this_load_per_task /= this_nr_running;
2538 if (busiest_load_per_task > this_load_per_task)
2539 imbn = 1;
2540 } else
2541 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2542
2dd73a4f
PW
2543 if (max_load - this_load >= busiest_load_per_task * imbn) {
2544 *imbalance = busiest_load_per_task;
1da177e4
LT
2545 return busiest;
2546 }
2547
2548 /*
2549 * OK, we don't have enough imbalance to justify moving tasks,
2550 * however we may be able to increase total CPU power used by
2551 * moving them.
2552 */
2553
5517d86b
ED
2554 pwr_now += busiest->__cpu_power *
2555 min(busiest_load_per_task, max_load);
2556 pwr_now += this->__cpu_power *
2557 min(this_load_per_task, this_load);
1da177e4
LT
2558 pwr_now /= SCHED_LOAD_SCALE;
2559
2560 /* Amount of load we'd subtract */
5517d86b
ED
2561 tmp = sg_div_cpu_power(busiest,
2562 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2563 if (max_load > tmp)
5517d86b 2564 pwr_move += busiest->__cpu_power *
2dd73a4f 2565 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2566
2567 /* Amount of load we'd add */
5517d86b 2568 if (max_load * busiest->__cpu_power <
33859f7f 2569 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2570 tmp = sg_div_cpu_power(this,
2571 max_load * busiest->__cpu_power);
1da177e4 2572 else
5517d86b
ED
2573 tmp = sg_div_cpu_power(this,
2574 busiest_load_per_task * SCHED_LOAD_SCALE);
2575 pwr_move += this->__cpu_power *
2576 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2577 pwr_move /= SCHED_LOAD_SCALE;
2578
2579 /* Move if we gain throughput */
2580 if (pwr_move <= pwr_now)
2581 goto out_balanced;
2582
2dd73a4f 2583 *imbalance = busiest_load_per_task;
1da177e4
LT
2584 }
2585
1da177e4
LT
2586 return busiest;
2587
2588out_balanced:
5c45bf27
SS
2589#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2590 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2591 goto ret;
1da177e4 2592
5c45bf27
SS
2593 if (this == group_leader && group_leader != group_min) {
2594 *imbalance = min_load_per_task;
2595 return group_min;
2596 }
5c45bf27 2597#endif
783609c6 2598ret:
1da177e4
LT
2599 *imbalance = 0;
2600 return NULL;
2601}
2602
2603/*
2604 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2605 */
70b97a7f 2606static struct rq *
48f24c4d 2607find_busiest_queue(struct sched_group *group, enum idle_type idle,
0a2966b4 2608 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2609{
70b97a7f 2610 struct rq *busiest = NULL, *rq;
2dd73a4f 2611 unsigned long max_load = 0;
1da177e4
LT
2612 int i;
2613
2614 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2615
2616 if (!cpu_isset(i, *cpus))
2617 continue;
2618
48f24c4d 2619 rq = cpu_rq(i);
2dd73a4f 2620
48f24c4d 2621 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2dd73a4f 2622 continue;
1da177e4 2623
48f24c4d
IM
2624 if (rq->raw_weighted_load > max_load) {
2625 max_load = rq->raw_weighted_load;
2626 busiest = rq;
1da177e4
LT
2627 }
2628 }
2629
2630 return busiest;
2631}
2632
77391d71
NP
2633/*
2634 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2635 * so long as it is large enough.
2636 */
2637#define MAX_PINNED_INTERVAL 512
2638
48f24c4d
IM
2639static inline unsigned long minus_1_or_zero(unsigned long n)
2640{
2641 return n > 0 ? n - 1 : 0;
2642}
2643
1da177e4
LT
2644/*
2645 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2646 * tasks if there is an imbalance.
1da177e4 2647 */
70b97a7f 2648static int load_balance(int this_cpu, struct rq *this_rq,
783609c6
SS
2649 struct sched_domain *sd, enum idle_type idle,
2650 int *balance)
1da177e4 2651{
48f24c4d 2652 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2653 struct sched_group *group;
1da177e4 2654 unsigned long imbalance;
70b97a7f 2655 struct rq *busiest;
0a2966b4 2656 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2657 unsigned long flags;
5969fe06 2658
89c4710e
SS
2659 /*
2660 * When power savings policy is enabled for the parent domain, idle
2661 * sibling can pick up load irrespective of busy siblings. In this case,
2662 * let the state of idle sibling percolate up as IDLE, instead of
2663 * portraying it as NOT_IDLE.
2664 */
5c45bf27 2665 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2666 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2667 sd_idle = 1;
1da177e4 2668
1da177e4
LT
2669 schedstat_inc(sd, lb_cnt[idle]);
2670
0a2966b4
CL
2671redo:
2672 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2673 &cpus, balance);
2674
06066714 2675 if (*balance == 0)
783609c6 2676 goto out_balanced;
783609c6 2677
1da177e4
LT
2678 if (!group) {
2679 schedstat_inc(sd, lb_nobusyg[idle]);
2680 goto out_balanced;
2681 }
2682
0a2966b4 2683 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2684 if (!busiest) {
2685 schedstat_inc(sd, lb_nobusyq[idle]);
2686 goto out_balanced;
2687 }
2688
db935dbd 2689 BUG_ON(busiest == this_rq);
1da177e4
LT
2690
2691 schedstat_add(sd, lb_imbalance[idle], imbalance);
2692
2693 nr_moved = 0;
2694 if (busiest->nr_running > 1) {
2695 /*
2696 * Attempt to move tasks. If find_busiest_group has found
2697 * an imbalance but busiest->nr_running <= 1, the group is
2698 * still unbalanced. nr_moved simply stays zero, so it is
2699 * correctly treated as an imbalance.
2700 */
fe2eea3f 2701 local_irq_save(flags);
e17224bf 2702 double_rq_lock(this_rq, busiest);
1da177e4 2703 nr_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d
IM
2704 minus_1_or_zero(busiest->nr_running),
2705 imbalance, sd, idle, &all_pinned);
e17224bf 2706 double_rq_unlock(this_rq, busiest);
fe2eea3f 2707 local_irq_restore(flags);
81026794 2708
46cb4b7c
SS
2709 /*
2710 * some other cpu did the load balance for us.
2711 */
2712 if (nr_moved && this_cpu != smp_processor_id())
2713 resched_cpu(this_cpu);
2714
81026794 2715 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2716 if (unlikely(all_pinned)) {
2717 cpu_clear(cpu_of(busiest), cpus);
2718 if (!cpus_empty(cpus))
2719 goto redo;
81026794 2720 goto out_balanced;
0a2966b4 2721 }
1da177e4 2722 }
81026794 2723
1da177e4
LT
2724 if (!nr_moved) {
2725 schedstat_inc(sd, lb_failed[idle]);
2726 sd->nr_balance_failed++;
2727
2728 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2729
fe2eea3f 2730 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2731
2732 /* don't kick the migration_thread, if the curr
2733 * task on busiest cpu can't be moved to this_cpu
2734 */
2735 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2736 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2737 all_pinned = 1;
2738 goto out_one_pinned;
2739 }
2740
1da177e4
LT
2741 if (!busiest->active_balance) {
2742 busiest->active_balance = 1;
2743 busiest->push_cpu = this_cpu;
81026794 2744 active_balance = 1;
1da177e4 2745 }
fe2eea3f 2746 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2747 if (active_balance)
1da177e4
LT
2748 wake_up_process(busiest->migration_thread);
2749
2750 /*
2751 * We've kicked active balancing, reset the failure
2752 * counter.
2753 */
39507451 2754 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2755 }
81026794 2756 } else
1da177e4
LT
2757 sd->nr_balance_failed = 0;
2758
81026794 2759 if (likely(!active_balance)) {
1da177e4
LT
2760 /* We were unbalanced, so reset the balancing interval */
2761 sd->balance_interval = sd->min_interval;
81026794
NP
2762 } else {
2763 /*
2764 * If we've begun active balancing, start to back off. This
2765 * case may not be covered by the all_pinned logic if there
2766 * is only 1 task on the busy runqueue (because we don't call
2767 * move_tasks).
2768 */
2769 if (sd->balance_interval < sd->max_interval)
2770 sd->balance_interval *= 2;
1da177e4
LT
2771 }
2772
5c45bf27 2773 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2774 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2775 return -1;
1da177e4
LT
2776 return nr_moved;
2777
2778out_balanced:
1da177e4
LT
2779 schedstat_inc(sd, lb_balanced[idle]);
2780
16cfb1c0 2781 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2782
2783out_one_pinned:
1da177e4 2784 /* tune up the balancing interval */
77391d71
NP
2785 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2786 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2787 sd->balance_interval *= 2;
2788
48f24c4d 2789 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2790 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2791 return -1;
1da177e4
LT
2792 return 0;
2793}
2794
2795/*
2796 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2797 * tasks if there is an imbalance.
2798 *
2799 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2800 * this_rq is locked.
2801 */
48f24c4d 2802static int
70b97a7f 2803load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2804{
2805 struct sched_group *group;
70b97a7f 2806 struct rq *busiest = NULL;
1da177e4
LT
2807 unsigned long imbalance;
2808 int nr_moved = 0;
5969fe06 2809 int sd_idle = 0;
0a2966b4 2810 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2811
89c4710e
SS
2812 /*
2813 * When power savings policy is enabled for the parent domain, idle
2814 * sibling can pick up load irrespective of busy siblings. In this case,
2815 * let the state of idle sibling percolate up as IDLE, instead of
2816 * portraying it as NOT_IDLE.
2817 */
2818 if (sd->flags & SD_SHARE_CPUPOWER &&
2819 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2820 sd_idle = 1;
1da177e4
LT
2821
2822 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
0a2966b4
CL
2823redo:
2824 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
783609c6 2825 &sd_idle, &cpus, NULL);
1da177e4 2826 if (!group) {
1da177e4 2827 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2828 goto out_balanced;
1da177e4
LT
2829 }
2830
0a2966b4
CL
2831 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2832 &cpus);
db935dbd 2833 if (!busiest) {
1da177e4 2834 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2835 goto out_balanced;
1da177e4
LT
2836 }
2837
db935dbd
NP
2838 BUG_ON(busiest == this_rq);
2839
1da177e4 2840 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2841
2842 nr_moved = 0;
2843 if (busiest->nr_running > 1) {
2844 /* Attempt to move tasks */
2845 double_lock_balance(this_rq, busiest);
2846 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2847 minus_1_or_zero(busiest->nr_running),
81026794 2848 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf 2849 spin_unlock(&busiest->lock);
0a2966b4
CL
2850
2851 if (!nr_moved) {
2852 cpu_clear(cpu_of(busiest), cpus);
2853 if (!cpus_empty(cpus))
2854 goto redo;
2855 }
d6d5cfaf
NP
2856 }
2857
5969fe06 2858 if (!nr_moved) {
1da177e4 2859 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
89c4710e
SS
2860 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2861 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2862 return -1;
2863 } else
16cfb1c0 2864 sd->nr_balance_failed = 0;
1da177e4 2865
1da177e4 2866 return nr_moved;
16cfb1c0
NP
2867
2868out_balanced:
2869 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
48f24c4d 2870 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2871 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2872 return -1;
16cfb1c0 2873 sd->nr_balance_failed = 0;
48f24c4d 2874
16cfb1c0 2875 return 0;
1da177e4
LT
2876}
2877
2878/*
2879 * idle_balance is called by schedule() if this_cpu is about to become
2880 * idle. Attempts to pull tasks from other CPUs.
2881 */
70b97a7f 2882static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2883{
2884 struct sched_domain *sd;
1bd77f2d
CL
2885 int pulled_task = 0;
2886 unsigned long next_balance = jiffies + 60 * HZ;
1da177e4
LT
2887
2888 for_each_domain(this_cpu, sd) {
2889 if (sd->flags & SD_BALANCE_NEWIDLE) {
48f24c4d 2890 /* If we've pulled tasks over stop searching: */
1bd77f2d
CL
2891 pulled_task = load_balance_newidle(this_cpu,
2892 this_rq, sd);
2893 if (time_after(next_balance,
2894 sd->last_balance + sd->balance_interval))
2895 next_balance = sd->last_balance
2896 + sd->balance_interval;
2897 if (pulled_task)
1da177e4 2898 break;
1da177e4
LT
2899 }
2900 }
1bd77f2d
CL
2901 if (!pulled_task)
2902 /*
2903 * We are going idle. next_balance may be set based on
2904 * a busy processor. So reset next_balance.
2905 */
2906 this_rq->next_balance = next_balance;
1da177e4
LT
2907}
2908
2909/*
2910 * active_load_balance is run by migration threads. It pushes running tasks
2911 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2912 * running on each physical CPU where possible, and avoids physical /
2913 * logical imbalances.
2914 *
2915 * Called with busiest_rq locked.
2916 */
70b97a7f 2917static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2918{
39507451 2919 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2920 struct sched_domain *sd;
2921 struct rq *target_rq;
39507451 2922
48f24c4d 2923 /* Is there any task to move? */
39507451 2924 if (busiest_rq->nr_running <= 1)
39507451
NP
2925 return;
2926
2927 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2928
2929 /*
39507451
NP
2930 * This condition is "impossible", if it occurs
2931 * we need to fix it. Originally reported by
2932 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2933 */
39507451 2934 BUG_ON(busiest_rq == target_rq);
1da177e4 2935
39507451
NP
2936 /* move a task from busiest_rq to target_rq */
2937 double_lock_balance(busiest_rq, target_rq);
2938
2939 /* Search for an sd spanning us and the target CPU. */
c96d145e 2940 for_each_domain(target_cpu, sd) {
39507451 2941 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2942 cpu_isset(busiest_cpu, sd->span))
39507451 2943 break;
c96d145e 2944 }
39507451 2945
48f24c4d
IM
2946 if (likely(sd)) {
2947 schedstat_inc(sd, alb_cnt);
39507451 2948
48f24c4d
IM
2949 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2950 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2951 NULL))
2952 schedstat_inc(sd, alb_pushed);
2953 else
2954 schedstat_inc(sd, alb_failed);
2955 }
39507451 2956 spin_unlock(&target_rq->lock);
1da177e4
LT
2957}
2958
7835b98b 2959static void update_load(struct rq *this_rq)
1da177e4 2960{
7835b98b 2961 unsigned long this_load;
ff91691b 2962 unsigned int i, scale;
1da177e4 2963
2dd73a4f 2964 this_load = this_rq->raw_weighted_load;
48f24c4d
IM
2965
2966 /* Update our load: */
ff91691b 2967 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
48f24c4d
IM
2968 unsigned long old_load, new_load;
2969
ff91691b
NP
2970 /* scale is effectively 1 << i now, and >> i divides by scale */
2971
7897986b 2972 old_load = this_rq->cpu_load[i];
48f24c4d 2973 new_load = this_load;
7897986b
NP
2974 /*
2975 * Round up the averaging division if load is increasing. This
2976 * prevents us from getting stuck on 9 if the load is 10, for
2977 * example.
2978 */
2979 if (new_load > old_load)
2980 new_load += scale-1;
ff91691b 2981 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
7897986b 2982 }
7835b98b
CL
2983}
2984
46cb4b7c
SS
2985#ifdef CONFIG_NO_HZ
2986static struct {
2987 atomic_t load_balancer;
2988 cpumask_t cpu_mask;
2989} nohz ____cacheline_aligned = {
2990 .load_balancer = ATOMIC_INIT(-1),
2991 .cpu_mask = CPU_MASK_NONE,
2992};
2993
7835b98b 2994/*
46cb4b7c
SS
2995 * This routine will try to nominate the ilb (idle load balancing)
2996 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2997 * load balancing on behalf of all those cpus. If all the cpus in the system
2998 * go into this tickless mode, then there will be no ilb owner (as there is
2999 * no need for one) and all the cpus will sleep till the next wakeup event
3000 * arrives...
3001 *
3002 * For the ilb owner, tick is not stopped. And this tick will be used
3003 * for idle load balancing. ilb owner will still be part of
3004 * nohz.cpu_mask..
7835b98b 3005 *
46cb4b7c
SS
3006 * While stopping the tick, this cpu will become the ilb owner if there
3007 * is no other owner. And will be the owner till that cpu becomes busy
3008 * or if all cpus in the system stop their ticks at which point
3009 * there is no need for ilb owner.
3010 *
3011 * When the ilb owner becomes busy, it nominates another owner, during the
3012 * next busy scheduler_tick()
3013 */
3014int select_nohz_load_balancer(int stop_tick)
3015{
3016 int cpu = smp_processor_id();
3017
3018 if (stop_tick) {
3019 cpu_set(cpu, nohz.cpu_mask);
3020 cpu_rq(cpu)->in_nohz_recently = 1;
3021
3022 /*
3023 * If we are going offline and still the leader, give up!
3024 */
3025 if (cpu_is_offline(cpu) &&
3026 atomic_read(&nohz.load_balancer) == cpu) {
3027 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3028 BUG();
3029 return 0;
3030 }
3031
3032 /* time for ilb owner also to sleep */
3033 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3034 if (atomic_read(&nohz.load_balancer) == cpu)
3035 atomic_set(&nohz.load_balancer, -1);
3036 return 0;
3037 }
3038
3039 if (atomic_read(&nohz.load_balancer) == -1) {
3040 /* make me the ilb owner */
3041 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3042 return 1;
3043 } else if (atomic_read(&nohz.load_balancer) == cpu)
3044 return 1;
3045 } else {
3046 if (!cpu_isset(cpu, nohz.cpu_mask))
3047 return 0;
3048
3049 cpu_clear(cpu, nohz.cpu_mask);
3050
3051 if (atomic_read(&nohz.load_balancer) == cpu)
3052 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3053 BUG();
3054 }
3055 return 0;
3056}
3057#endif
3058
3059static DEFINE_SPINLOCK(balancing);
3060
3061/*
7835b98b
CL
3062 * It checks each scheduling domain to see if it is due to be balanced,
3063 * and initiates a balancing operation if so.
3064 *
3065 * Balancing parameters are set up in arch_init_sched_domains.
3066 */
46cb4b7c 3067static inline void rebalance_domains(int cpu, enum idle_type idle)
7835b98b 3068{
46cb4b7c
SS
3069 int balance = 1;
3070 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3071 unsigned long interval;
3072 struct sched_domain *sd;
46cb4b7c 3073 /* Earliest time when we have to do rebalance again */
c9819f45 3074 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 3075
46cb4b7c 3076 for_each_domain(cpu, sd) {
1da177e4
LT
3077 if (!(sd->flags & SD_LOAD_BALANCE))
3078 continue;
3079
3080 interval = sd->balance_interval;
3081 if (idle != SCHED_IDLE)
3082 interval *= sd->busy_factor;
3083
3084 /* scale ms to jiffies */
3085 interval = msecs_to_jiffies(interval);
3086 if (unlikely(!interval))
3087 interval = 1;
3088
08c183f3
CL
3089 if (sd->flags & SD_SERIALIZE) {
3090 if (!spin_trylock(&balancing))
3091 goto out;
3092 }
3093
c9819f45 3094 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3095 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3096 /*
3097 * We've pulled tasks over so either we're no
5969fe06
NP
3098 * longer idle, or one of our SMT siblings is
3099 * not idle.
3100 */
1da177e4
LT
3101 idle = NOT_IDLE;
3102 }
1bd77f2d 3103 sd->last_balance = jiffies;
1da177e4 3104 }
08c183f3
CL
3105 if (sd->flags & SD_SERIALIZE)
3106 spin_unlock(&balancing);
3107out:
c9819f45
CL
3108 if (time_after(next_balance, sd->last_balance + interval))
3109 next_balance = sd->last_balance + interval;
783609c6
SS
3110
3111 /*
3112 * Stop the load balance at this level. There is another
3113 * CPU in our sched group which is doing load balancing more
3114 * actively.
3115 */
3116 if (!balance)
3117 break;
1da177e4 3118 }
46cb4b7c
SS
3119 rq->next_balance = next_balance;
3120}
3121
3122/*
3123 * run_rebalance_domains is triggered when needed from the scheduler tick.
3124 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3125 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3126 */
3127static void run_rebalance_domains(struct softirq_action *h)
3128{
3129 int local_cpu = smp_processor_id();
3130 struct rq *local_rq = cpu_rq(local_cpu);
3131 enum idle_type idle = local_rq->idle_at_tick ? SCHED_IDLE : NOT_IDLE;
3132
3133 rebalance_domains(local_cpu, idle);
3134
3135#ifdef CONFIG_NO_HZ
3136 /*
3137 * If this cpu is the owner for idle load balancing, then do the
3138 * balancing on behalf of the other idle cpus whose ticks are
3139 * stopped.
3140 */
3141 if (local_rq->idle_at_tick &&
3142 atomic_read(&nohz.load_balancer) == local_cpu) {
3143 cpumask_t cpus = nohz.cpu_mask;
3144 struct rq *rq;
3145 int balance_cpu;
3146
3147 cpu_clear(local_cpu, cpus);
3148 for_each_cpu_mask(balance_cpu, cpus) {
3149 /*
3150 * If this cpu gets work to do, stop the load balancing
3151 * work being done for other cpus. Next load
3152 * balancing owner will pick it up.
3153 */
3154 if (need_resched())
3155 break;
3156
3157 rebalance_domains(balance_cpu, SCHED_IDLE);
3158
3159 rq = cpu_rq(balance_cpu);
3160 if (time_after(local_rq->next_balance, rq->next_balance))
3161 local_rq->next_balance = rq->next_balance;
3162 }
3163 }
3164#endif
3165}
3166
3167/*
3168 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3169 *
3170 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3171 * idle load balancing owner or decide to stop the periodic load balancing,
3172 * if the whole system is idle.
3173 */
3174static inline void trigger_load_balance(int cpu)
3175{
3176 struct rq *rq = cpu_rq(cpu);
3177#ifdef CONFIG_NO_HZ
3178 /*
3179 * If we were in the nohz mode recently and busy at the current
3180 * scheduler tick, then check if we need to nominate new idle
3181 * load balancer.
3182 */
3183 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3184 rq->in_nohz_recently = 0;
3185
3186 if (atomic_read(&nohz.load_balancer) == cpu) {
3187 cpu_clear(cpu, nohz.cpu_mask);
3188 atomic_set(&nohz.load_balancer, -1);
3189 }
3190
3191 if (atomic_read(&nohz.load_balancer) == -1) {
3192 /*
3193 * simple selection for now: Nominate the
3194 * first cpu in the nohz list to be the next
3195 * ilb owner.
3196 *
3197 * TBD: Traverse the sched domains and nominate
3198 * the nearest cpu in the nohz.cpu_mask.
3199 */
3200 int ilb = first_cpu(nohz.cpu_mask);
3201
3202 if (ilb != NR_CPUS)
3203 resched_cpu(ilb);
3204 }
3205 }
3206
3207 /*
3208 * If this cpu is idle and doing idle load balancing for all the
3209 * cpus with ticks stopped, is it time for that to stop?
3210 */
3211 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3212 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3213 resched_cpu(cpu);
3214 return;
3215 }
3216
3217 /*
3218 * If this cpu is idle and the idle load balancing is done by
3219 * someone else, then no need raise the SCHED_SOFTIRQ
3220 */
3221 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3222 cpu_isset(cpu, nohz.cpu_mask))
3223 return;
3224#endif
3225 if (time_after_eq(jiffies, rq->next_balance))
3226 raise_softirq(SCHED_SOFTIRQ);
1da177e4
LT
3227}
3228#else
3229/*
3230 * on UP we do not need to balance between CPUs:
3231 */
70b97a7f 3232static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3233{
3234}
3235#endif
3236
1da177e4
LT
3237DEFINE_PER_CPU(struct kernel_stat, kstat);
3238
3239EXPORT_PER_CPU_SYMBOL(kstat);
3240
3241/*
3242 * This is called on clock ticks and on context switches.
3243 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3244 */
48f24c4d 3245static inline void
70b97a7f 3246update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
1da177e4 3247{
b18ec803
MG
3248 p->sched_time += now - p->last_ran;
3249 p->last_ran = rq->most_recent_timestamp = now;
1da177e4
LT
3250}
3251
3252/*
3253 * Return current->sched_time plus any more ns on the sched_clock
3254 * that have not yet been banked.
3255 */
36c8b586 3256unsigned long long current_sched_time(const struct task_struct *p)
1da177e4
LT
3257{
3258 unsigned long long ns;
3259 unsigned long flags;
48f24c4d 3260
1da177e4 3261 local_irq_save(flags);
b18ec803 3262 ns = p->sched_time + sched_clock() - p->last_ran;
1da177e4 3263 local_irq_restore(flags);
48f24c4d 3264
1da177e4
LT
3265 return ns;
3266}
3267
f1adad78
LT
3268/*
3269 * We place interactive tasks back into the active array, if possible.
3270 *
3271 * To guarantee that this does not starve expired tasks we ignore the
3272 * interactivity of a task if the first expired task had to wait more
3273 * than a 'reasonable' amount of time. This deadline timeout is
3274 * load-dependent, as the frequency of array switched decreases with
3275 * increasing number of running tasks. We also ignore the interactivity
3276 * if a better static_prio task has expired:
3277 */
70b97a7f 3278static inline int expired_starving(struct rq *rq)
48f24c4d
IM
3279{
3280 if (rq->curr->static_prio > rq->best_expired_prio)
3281 return 1;
3282 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3283 return 0;
3284 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3285 return 1;
3286 return 0;
3287}
f1adad78 3288
1da177e4
LT
3289/*
3290 * Account user cpu time to a process.
3291 * @p: the process that the cpu time gets accounted to
3292 * @hardirq_offset: the offset to subtract from hardirq_count()
3293 * @cputime: the cpu time spent in user space since the last update
3294 */
3295void account_user_time(struct task_struct *p, cputime_t cputime)
3296{
3297 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3298 cputime64_t tmp;
3299
3300 p->utime = cputime_add(p->utime, cputime);
3301
3302 /* Add user time to cpustat. */
3303 tmp = cputime_to_cputime64(cputime);
3304 if (TASK_NICE(p) > 0)
3305 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3306 else
3307 cpustat->user = cputime64_add(cpustat->user, tmp);
3308}
3309
3310/*
3311 * Account system cpu time to a process.
3312 * @p: the process that the cpu time gets accounted to
3313 * @hardirq_offset: the offset to subtract from hardirq_count()
3314 * @cputime: the cpu time spent in kernel space since the last update
3315 */
3316void account_system_time(struct task_struct *p, int hardirq_offset,
3317 cputime_t cputime)
3318{
3319 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3320 struct rq *rq = this_rq();
1da177e4
LT
3321 cputime64_t tmp;
3322
3323 p->stime = cputime_add(p->stime, cputime);
3324
3325 /* Add system time to cpustat. */
3326 tmp = cputime_to_cputime64(cputime);
3327 if (hardirq_count() - hardirq_offset)
3328 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3329 else if (softirq_count())
3330 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3331 else if (p != rq->idle)
3332 cpustat->system = cputime64_add(cpustat->system, tmp);
3333 else if (atomic_read(&rq->nr_iowait) > 0)
3334 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3335 else
3336 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3337 /* Account for system time used */
3338 acct_update_integrals(p);
1da177e4
LT
3339}
3340
3341/*
3342 * Account for involuntary wait time.
3343 * @p: the process from which the cpu time has been stolen
3344 * @steal: the cpu time spent in involuntary wait
3345 */
3346void account_steal_time(struct task_struct *p, cputime_t steal)
3347{
3348 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3349 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3350 struct rq *rq = this_rq();
1da177e4
LT
3351
3352 if (p == rq->idle) {
3353 p->stime = cputime_add(p->stime, steal);
3354 if (atomic_read(&rq->nr_iowait) > 0)
3355 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3356 else
3357 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3358 } else
3359 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3360}
3361
7835b98b 3362static void task_running_tick(struct rq *rq, struct task_struct *p)
1da177e4 3363{
1da177e4 3364 if (p->array != rq->active) {
7835b98b 3365 /* Task has expired but was not scheduled yet */
1da177e4 3366 set_tsk_need_resched(p);
7835b98b 3367 return;
1da177e4
LT
3368 }
3369 spin_lock(&rq->lock);
3370 /*
3371 * The task was running during this tick - update the
3372 * time slice counter. Note: we do not update a thread's
3373 * priority until it either goes to sleep or uses up its
3374 * timeslice. This makes it possible for interactive tasks
3375 * to use up their timeslices at their highest priority levels.
3376 */
3377 if (rt_task(p)) {
3378 /*
3379 * RR tasks need a special form of timeslice management.
3380 * FIFO tasks have no timeslices.
3381 */
3382 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3383 p->time_slice = task_timeslice(p);
3384 p->first_time_slice = 0;
3385 set_tsk_need_resched(p);
3386
3387 /* put it at the end of the queue: */
3388 requeue_task(p, rq->active);
3389 }
3390 goto out_unlock;
3391 }
3392 if (!--p->time_slice) {
3393 dequeue_task(p, rq->active);
3394 set_tsk_need_resched(p);
3395 p->prio = effective_prio(p);
3396 p->time_slice = task_timeslice(p);
3397 p->first_time_slice = 0;
3398
3399 if (!rq->expired_timestamp)
3400 rq->expired_timestamp = jiffies;
48f24c4d 3401 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
1da177e4
LT
3402 enqueue_task(p, rq->expired);
3403 if (p->static_prio < rq->best_expired_prio)
3404 rq->best_expired_prio = p->static_prio;
3405 } else
3406 enqueue_task(p, rq->active);
3407 } else {
3408 /*
3409 * Prevent a too long timeslice allowing a task to monopolize
3410 * the CPU. We do this by splitting up the timeslice into
3411 * smaller pieces.
3412 *
3413 * Note: this does not mean the task's timeslices expire or
3414 * get lost in any way, they just might be preempted by
3415 * another task of equal priority. (one with higher
3416 * priority would have preempted this task already.) We
3417 * requeue this task to the end of the list on this priority
3418 * level, which is in essence a round-robin of tasks with
3419 * equal priority.
3420 *
3421 * This only applies to tasks in the interactive
3422 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3423 */
3424 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3425 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3426 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3427 (p->array == rq->active)) {
3428
3429 requeue_task(p, rq->active);
3430 set_tsk_need_resched(p);
3431 }
3432 }
3433out_unlock:
3434 spin_unlock(&rq->lock);
7835b98b
CL
3435}
3436
3437/*
3438 * This function gets called by the timer code, with HZ frequency.
3439 * We call it with interrupts disabled.
3440 *
3441 * It also gets called by the fork code, when changing the parent's
3442 * timeslices.
3443 */
3444void scheduler_tick(void)
3445{
3446 unsigned long long now = sched_clock();
3447 struct task_struct *p = current;
3448 int cpu = smp_processor_id();
bdecea3a 3449 int idle_at_tick = idle_cpu(cpu);
7835b98b 3450 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3451
3452 update_cpu_clock(p, rq, now);
3453
bdecea3a 3454 if (!idle_at_tick)
7835b98b 3455 task_running_tick(rq, p);
e418e1c2 3456#ifdef CONFIG_SMP
7835b98b 3457 update_load(rq);
bdecea3a 3458 rq->idle_at_tick = idle_at_tick;
46cb4b7c 3459 trigger_load_balance(cpu);
e418e1c2 3460#endif
1da177e4
LT
3461}
3462
1da177e4
LT
3463#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3464
3465void fastcall add_preempt_count(int val)
3466{
3467 /*
3468 * Underflow?
3469 */
9a11b49a
IM
3470 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3471 return;
1da177e4
LT
3472 preempt_count() += val;
3473 /*
3474 * Spinlock count overflowing soon?
3475 */
33859f7f
MOS
3476 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3477 PREEMPT_MASK - 10);
1da177e4
LT
3478}
3479EXPORT_SYMBOL(add_preempt_count);
3480
3481void fastcall sub_preempt_count(int val)
3482{
3483 /*
3484 * Underflow?
3485 */
9a11b49a
IM
3486 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3487 return;
1da177e4
LT
3488 /*
3489 * Is the spinlock portion underflowing?
3490 */
9a11b49a
IM
3491 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3492 !(preempt_count() & PREEMPT_MASK)))
3493 return;
3494
1da177e4
LT
3495 preempt_count() -= val;
3496}
3497EXPORT_SYMBOL(sub_preempt_count);
3498
3499#endif
3500
3dee386e
CK
3501static inline int interactive_sleep(enum sleep_type sleep_type)
3502{
3503 return (sleep_type == SLEEP_INTERACTIVE ||
3504 sleep_type == SLEEP_INTERRUPTED);
3505}
3506
1da177e4
LT
3507/*
3508 * schedule() is the main scheduler function.
3509 */
3510asmlinkage void __sched schedule(void)
3511{
36c8b586 3512 struct task_struct *prev, *next;
70b97a7f 3513 struct prio_array *array;
1da177e4
LT
3514 struct list_head *queue;
3515 unsigned long long now;
3516 unsigned long run_time;
a3464a10 3517 int cpu, idx, new_prio;
48f24c4d 3518 long *switch_count;
70b97a7f 3519 struct rq *rq;
1da177e4
LT
3520
3521 /*
3522 * Test if we are atomic. Since do_exit() needs to call into
3523 * schedule() atomically, we ignore that path for now.
3524 * Otherwise, whine if we are scheduling when we should not be.
3525 */
77e4bfbc
AM
3526 if (unlikely(in_atomic() && !current->exit_state)) {
3527 printk(KERN_ERR "BUG: scheduling while atomic: "
3528 "%s/0x%08x/%d\n",
3529 current->comm, preempt_count(), current->pid);
a4c410f0 3530 debug_show_held_locks(current);
3117df04
IM
3531 if (irqs_disabled())
3532 print_irqtrace_events(current);
77e4bfbc 3533 dump_stack();
1da177e4
LT
3534 }
3535 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3536
3537need_resched:
3538 preempt_disable();
3539 prev = current;
3540 release_kernel_lock(prev);
3541need_resched_nonpreemptible:
3542 rq = this_rq();
3543
3544 /*
3545 * The idle thread is not allowed to schedule!
3546 * Remove this check after it has been exercised a bit.
3547 */
3548 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3549 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3550 dump_stack();
3551 }
3552
3553 schedstat_inc(rq, sched_cnt);
3554 now = sched_clock();
238628ed 3555 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 3556 run_time = now - prev->timestamp;
238628ed 3557 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
3558 run_time = 0;
3559 } else
3560 run_time = NS_MAX_SLEEP_AVG;
3561
3562 /*
3563 * Tasks charged proportionately less run_time at high sleep_avg to
3564 * delay them losing their interactive status
3565 */
3566 run_time /= (CURRENT_BONUS(prev) ? : 1);
3567
3568 spin_lock_irq(&rq->lock);
3569
1da177e4
LT
3570 switch_count = &prev->nivcsw;
3571 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3572 switch_count = &prev->nvcsw;
3573 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3574 unlikely(signal_pending(prev))))
3575 prev->state = TASK_RUNNING;
3576 else {
3577 if (prev->state == TASK_UNINTERRUPTIBLE)
3578 rq->nr_uninterruptible++;
3579 deactivate_task(prev, rq);
3580 }
3581 }
3582
3583 cpu = smp_processor_id();
3584 if (unlikely(!rq->nr_running)) {
1da177e4
LT
3585 idle_balance(cpu, rq);
3586 if (!rq->nr_running) {
3587 next = rq->idle;
3588 rq->expired_timestamp = 0;
1da177e4
LT
3589 goto switch_tasks;
3590 }
1da177e4
LT
3591 }
3592
3593 array = rq->active;
3594 if (unlikely(!array->nr_active)) {
3595 /*
3596 * Switch the active and expired arrays.
3597 */
3598 schedstat_inc(rq, sched_switch);
3599 rq->active = rq->expired;
3600 rq->expired = array;
3601 array = rq->active;
3602 rq->expired_timestamp = 0;
3603 rq->best_expired_prio = MAX_PRIO;
3604 }
3605
3606 idx = sched_find_first_bit(array->bitmap);
3607 queue = array->queue + idx;
36c8b586 3608 next = list_entry(queue->next, struct task_struct, run_list);
1da177e4 3609
3dee386e 3610 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3611 unsigned long long delta = now - next->timestamp;
238628ed 3612 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3613 delta = 0;
3614
3dee386e 3615 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3616 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3617
3618 array = next->array;
a3464a10
CS
3619 new_prio = recalc_task_prio(next, next->timestamp + delta);
3620
3621 if (unlikely(next->prio != new_prio)) {
3622 dequeue_task(next, array);
3623 next->prio = new_prio;
3624 enqueue_task(next, array);
7c4bb1f9 3625 }
1da177e4 3626 }
3dee386e 3627 next->sleep_type = SLEEP_NORMAL;
1da177e4
LT
3628switch_tasks:
3629 if (next == rq->idle)
3630 schedstat_inc(rq, sched_goidle);
3631 prefetch(next);
383f2835 3632 prefetch_stack(next);
1da177e4
LT
3633 clear_tsk_need_resched(prev);
3634 rcu_qsctr_inc(task_cpu(prev));
3635
3636 update_cpu_clock(prev, rq, now);
3637
3638 prev->sleep_avg -= run_time;
3639 if ((long)prev->sleep_avg <= 0)
3640 prev->sleep_avg = 0;
3641 prev->timestamp = prev->last_ran = now;
3642
3643 sched_info_switch(prev, next);
3644 if (likely(prev != next)) {
c1e16aa2 3645 next->timestamp = next->last_ran = now;
1da177e4
LT
3646 rq->nr_switches++;
3647 rq->curr = next;
3648 ++*switch_count;
3649
4866cde0 3650 prepare_task_switch(rq, next);
1da177e4
LT
3651 prev = context_switch(rq, prev, next);
3652 barrier();
4866cde0
NP
3653 /*
3654 * this_rq must be evaluated again because prev may have moved
3655 * CPUs since it called schedule(), thus the 'rq' on its stack
3656 * frame will be invalid.
3657 */
3658 finish_task_switch(this_rq(), prev);
1da177e4
LT
3659 } else
3660 spin_unlock_irq(&rq->lock);
3661
3662 prev = current;
3663 if (unlikely(reacquire_kernel_lock(prev) < 0))
3664 goto need_resched_nonpreemptible;
3665 preempt_enable_no_resched();
3666 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3667 goto need_resched;
3668}
1da177e4
LT
3669EXPORT_SYMBOL(schedule);
3670
3671#ifdef CONFIG_PREEMPT
3672/*
2ed6e34f 3673 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3674 * off of preempt_enable. Kernel preemptions off return from interrupt
3675 * occur there and call schedule directly.
3676 */
3677asmlinkage void __sched preempt_schedule(void)
3678{
3679 struct thread_info *ti = current_thread_info();
3680#ifdef CONFIG_PREEMPT_BKL
3681 struct task_struct *task = current;
3682 int saved_lock_depth;
3683#endif
3684 /*
3685 * If there is a non-zero preempt_count or interrupts are disabled,
3686 * we do not want to preempt the current task. Just return..
3687 */
beed33a8 3688 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3689 return;
3690
3691need_resched:
3692 add_preempt_count(PREEMPT_ACTIVE);
3693 /*
3694 * We keep the big kernel semaphore locked, but we
3695 * clear ->lock_depth so that schedule() doesnt
3696 * auto-release the semaphore:
3697 */
3698#ifdef CONFIG_PREEMPT_BKL
3699 saved_lock_depth = task->lock_depth;
3700 task->lock_depth = -1;
3701#endif
3702 schedule();
3703#ifdef CONFIG_PREEMPT_BKL
3704 task->lock_depth = saved_lock_depth;
3705#endif
3706 sub_preempt_count(PREEMPT_ACTIVE);
3707
3708 /* we could miss a preemption opportunity between schedule and now */
3709 barrier();
3710 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3711 goto need_resched;
3712}
1da177e4
LT
3713EXPORT_SYMBOL(preempt_schedule);
3714
3715/*
2ed6e34f 3716 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3717 * off of irq context.
3718 * Note, that this is called and return with irqs disabled. This will
3719 * protect us against recursive calling from irq.
3720 */
3721asmlinkage void __sched preempt_schedule_irq(void)
3722{
3723 struct thread_info *ti = current_thread_info();
3724#ifdef CONFIG_PREEMPT_BKL
3725 struct task_struct *task = current;
3726 int saved_lock_depth;
3727#endif
2ed6e34f 3728 /* Catch callers which need to be fixed */
1da177e4
LT
3729 BUG_ON(ti->preempt_count || !irqs_disabled());
3730
3731need_resched:
3732 add_preempt_count(PREEMPT_ACTIVE);
3733 /*
3734 * We keep the big kernel semaphore locked, but we
3735 * clear ->lock_depth so that schedule() doesnt
3736 * auto-release the semaphore:
3737 */
3738#ifdef CONFIG_PREEMPT_BKL
3739 saved_lock_depth = task->lock_depth;
3740 task->lock_depth = -1;
3741#endif
3742 local_irq_enable();
3743 schedule();
3744 local_irq_disable();
3745#ifdef CONFIG_PREEMPT_BKL
3746 task->lock_depth = saved_lock_depth;
3747#endif
3748 sub_preempt_count(PREEMPT_ACTIVE);
3749
3750 /* we could miss a preemption opportunity between schedule and now */
3751 barrier();
3752 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3753 goto need_resched;
3754}
3755
3756#endif /* CONFIG_PREEMPT */
3757
95cdf3b7
IM
3758int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3759 void *key)
1da177e4 3760{
48f24c4d 3761 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3762}
1da177e4
LT
3763EXPORT_SYMBOL(default_wake_function);
3764
3765/*
3766 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3767 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3768 * number) then we wake all the non-exclusive tasks and one exclusive task.
3769 *
3770 * There are circumstances in which we can try to wake a task which has already
3771 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3772 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3773 */
3774static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3775 int nr_exclusive, int sync, void *key)
3776{
3777 struct list_head *tmp, *next;
3778
3779 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3780 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3781 unsigned flags = curr->flags;
3782
1da177e4 3783 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3784 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3785 break;
3786 }
3787}
3788
3789/**
3790 * __wake_up - wake up threads blocked on a waitqueue.
3791 * @q: the waitqueue
3792 * @mode: which threads
3793 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3794 * @key: is directly passed to the wakeup function
1da177e4
LT
3795 */
3796void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3797 int nr_exclusive, void *key)
1da177e4
LT
3798{
3799 unsigned long flags;
3800
3801 spin_lock_irqsave(&q->lock, flags);
3802 __wake_up_common(q, mode, nr_exclusive, 0, key);
3803 spin_unlock_irqrestore(&q->lock, flags);
3804}
1da177e4
LT
3805EXPORT_SYMBOL(__wake_up);
3806
3807/*
3808 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3809 */
3810void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3811{
3812 __wake_up_common(q, mode, 1, 0, NULL);
3813}
3814
3815/**
67be2dd1 3816 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3817 * @q: the waitqueue
3818 * @mode: which threads
3819 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3820 *
3821 * The sync wakeup differs that the waker knows that it will schedule
3822 * away soon, so while the target thread will be woken up, it will not
3823 * be migrated to another CPU - ie. the two threads are 'synchronized'
3824 * with each other. This can prevent needless bouncing between CPUs.
3825 *
3826 * On UP it can prevent extra preemption.
3827 */
95cdf3b7
IM
3828void fastcall
3829__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3830{
3831 unsigned long flags;
3832 int sync = 1;
3833
3834 if (unlikely(!q))
3835 return;
3836
3837 if (unlikely(!nr_exclusive))
3838 sync = 0;
3839
3840 spin_lock_irqsave(&q->lock, flags);
3841 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3842 spin_unlock_irqrestore(&q->lock, flags);
3843}
3844EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3845
3846void fastcall complete(struct completion *x)
3847{
3848 unsigned long flags;
3849
3850 spin_lock_irqsave(&x->wait.lock, flags);
3851 x->done++;
3852 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3853 1, 0, NULL);
3854 spin_unlock_irqrestore(&x->wait.lock, flags);
3855}
3856EXPORT_SYMBOL(complete);
3857
3858void fastcall complete_all(struct completion *x)
3859{
3860 unsigned long flags;
3861
3862 spin_lock_irqsave(&x->wait.lock, flags);
3863 x->done += UINT_MAX/2;
3864 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3865 0, 0, NULL);
3866 spin_unlock_irqrestore(&x->wait.lock, flags);
3867}
3868EXPORT_SYMBOL(complete_all);
3869
3870void fastcall __sched wait_for_completion(struct completion *x)
3871{
3872 might_sleep();
48f24c4d 3873
1da177e4
LT
3874 spin_lock_irq(&x->wait.lock);
3875 if (!x->done) {
3876 DECLARE_WAITQUEUE(wait, current);
3877
3878 wait.flags |= WQ_FLAG_EXCLUSIVE;
3879 __add_wait_queue_tail(&x->wait, &wait);
3880 do {
3881 __set_current_state(TASK_UNINTERRUPTIBLE);
3882 spin_unlock_irq(&x->wait.lock);
3883 schedule();
3884 spin_lock_irq(&x->wait.lock);
3885 } while (!x->done);
3886 __remove_wait_queue(&x->wait, &wait);
3887 }
3888 x->done--;
3889 spin_unlock_irq(&x->wait.lock);
3890}
3891EXPORT_SYMBOL(wait_for_completion);
3892
3893unsigned long fastcall __sched
3894wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3895{
3896 might_sleep();
3897
3898 spin_lock_irq(&x->wait.lock);
3899 if (!x->done) {
3900 DECLARE_WAITQUEUE(wait, current);
3901
3902 wait.flags |= WQ_FLAG_EXCLUSIVE;
3903 __add_wait_queue_tail(&x->wait, &wait);
3904 do {
3905 __set_current_state(TASK_UNINTERRUPTIBLE);
3906 spin_unlock_irq(&x->wait.lock);
3907 timeout = schedule_timeout(timeout);
3908 spin_lock_irq(&x->wait.lock);
3909 if (!timeout) {
3910 __remove_wait_queue(&x->wait, &wait);
3911 goto out;
3912 }
3913 } while (!x->done);
3914 __remove_wait_queue(&x->wait, &wait);
3915 }
3916 x->done--;
3917out:
3918 spin_unlock_irq(&x->wait.lock);
3919 return timeout;
3920}
3921EXPORT_SYMBOL(wait_for_completion_timeout);
3922
3923int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3924{
3925 int ret = 0;
3926
3927 might_sleep();
3928
3929 spin_lock_irq(&x->wait.lock);
3930 if (!x->done) {
3931 DECLARE_WAITQUEUE(wait, current);
3932
3933 wait.flags |= WQ_FLAG_EXCLUSIVE;
3934 __add_wait_queue_tail(&x->wait, &wait);
3935 do {
3936 if (signal_pending(current)) {
3937 ret = -ERESTARTSYS;
3938 __remove_wait_queue(&x->wait, &wait);
3939 goto out;
3940 }
3941 __set_current_state(TASK_INTERRUPTIBLE);
3942 spin_unlock_irq(&x->wait.lock);
3943 schedule();
3944 spin_lock_irq(&x->wait.lock);
3945 } while (!x->done);
3946 __remove_wait_queue(&x->wait, &wait);
3947 }
3948 x->done--;
3949out:
3950 spin_unlock_irq(&x->wait.lock);
3951
3952 return ret;
3953}
3954EXPORT_SYMBOL(wait_for_completion_interruptible);
3955
3956unsigned long fastcall __sched
3957wait_for_completion_interruptible_timeout(struct completion *x,
3958 unsigned long timeout)
3959{
3960 might_sleep();
3961
3962 spin_lock_irq(&x->wait.lock);
3963 if (!x->done) {
3964 DECLARE_WAITQUEUE(wait, current);
3965
3966 wait.flags |= WQ_FLAG_EXCLUSIVE;
3967 __add_wait_queue_tail(&x->wait, &wait);
3968 do {
3969 if (signal_pending(current)) {
3970 timeout = -ERESTARTSYS;
3971 __remove_wait_queue(&x->wait, &wait);
3972 goto out;
3973 }
3974 __set_current_state(TASK_INTERRUPTIBLE);
3975 spin_unlock_irq(&x->wait.lock);
3976 timeout = schedule_timeout(timeout);
3977 spin_lock_irq(&x->wait.lock);
3978 if (!timeout) {
3979 __remove_wait_queue(&x->wait, &wait);
3980 goto out;
3981 }
3982 } while (!x->done);
3983 __remove_wait_queue(&x->wait, &wait);
3984 }
3985 x->done--;
3986out:
3987 spin_unlock_irq(&x->wait.lock);
3988 return timeout;
3989}
3990EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3991
3992
3993#define SLEEP_ON_VAR \
3994 unsigned long flags; \
3995 wait_queue_t wait; \
3996 init_waitqueue_entry(&wait, current);
3997
3998#define SLEEP_ON_HEAD \
3999 spin_lock_irqsave(&q->lock,flags); \
4000 __add_wait_queue(q, &wait); \
4001 spin_unlock(&q->lock);
4002
4003#define SLEEP_ON_TAIL \
4004 spin_lock_irq(&q->lock); \
4005 __remove_wait_queue(q, &wait); \
4006 spin_unlock_irqrestore(&q->lock, flags);
4007
4008void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
4009{
4010 SLEEP_ON_VAR
4011
4012 current->state = TASK_INTERRUPTIBLE;
4013
4014 SLEEP_ON_HEAD
4015 schedule();
4016 SLEEP_ON_TAIL
4017}
1da177e4
LT
4018EXPORT_SYMBOL(interruptible_sleep_on);
4019
95cdf3b7
IM
4020long fastcall __sched
4021interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
4022{
4023 SLEEP_ON_VAR
4024
4025 current->state = TASK_INTERRUPTIBLE;
4026
4027 SLEEP_ON_HEAD
4028 timeout = schedule_timeout(timeout);
4029 SLEEP_ON_TAIL
4030
4031 return timeout;
4032}
1da177e4
LT
4033EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4034
4035void fastcall __sched sleep_on(wait_queue_head_t *q)
4036{
4037 SLEEP_ON_VAR
4038
4039 current->state = TASK_UNINTERRUPTIBLE;
4040
4041 SLEEP_ON_HEAD
4042 schedule();
4043 SLEEP_ON_TAIL
4044}
1da177e4
LT
4045EXPORT_SYMBOL(sleep_on);
4046
4047long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4048{
4049 SLEEP_ON_VAR
4050
4051 current->state = TASK_UNINTERRUPTIBLE;
4052
4053 SLEEP_ON_HEAD
4054 timeout = schedule_timeout(timeout);
4055 SLEEP_ON_TAIL
4056
4057 return timeout;
4058}
4059
4060EXPORT_SYMBOL(sleep_on_timeout);
4061
b29739f9
IM
4062#ifdef CONFIG_RT_MUTEXES
4063
4064/*
4065 * rt_mutex_setprio - set the current priority of a task
4066 * @p: task
4067 * @prio: prio value (kernel-internal form)
4068 *
4069 * This function changes the 'effective' priority of a task. It does
4070 * not touch ->normal_prio like __setscheduler().
4071 *
4072 * Used by the rt_mutex code to implement priority inheritance logic.
4073 */
36c8b586 4074void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4075{
70b97a7f 4076 struct prio_array *array;
b29739f9 4077 unsigned long flags;
70b97a7f 4078 struct rq *rq;
d5f9f942 4079 int oldprio;
b29739f9
IM
4080
4081 BUG_ON(prio < 0 || prio > MAX_PRIO);
4082
4083 rq = task_rq_lock(p, &flags);
4084
d5f9f942 4085 oldprio = p->prio;
b29739f9
IM
4086 array = p->array;
4087 if (array)
4088 dequeue_task(p, array);
4089 p->prio = prio;
4090
4091 if (array) {
4092 /*
4093 * If changing to an RT priority then queue it
4094 * in the active array!
4095 */
4096 if (rt_task(p))
4097 array = rq->active;
4098 enqueue_task(p, array);
4099 /*
4100 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4101 * our priority decreased, or if we are not currently running on
4102 * this runqueue and our priority is higher than the current's
b29739f9 4103 */
d5f9f942
AM
4104 if (task_running(rq, p)) {
4105 if (p->prio > oldprio)
4106 resched_task(rq->curr);
4107 } else if (TASK_PREEMPTS_CURR(p, rq))
b29739f9
IM
4108 resched_task(rq->curr);
4109 }
4110 task_rq_unlock(rq, &flags);
4111}
4112
4113#endif
4114
36c8b586 4115void set_user_nice(struct task_struct *p, long nice)
1da177e4 4116{
70b97a7f 4117 struct prio_array *array;
48f24c4d 4118 int old_prio, delta;
1da177e4 4119 unsigned long flags;
70b97a7f 4120 struct rq *rq;
1da177e4
LT
4121
4122 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4123 return;
4124 /*
4125 * We have to be careful, if called from sys_setpriority(),
4126 * the task might be in the middle of scheduling on another CPU.
4127 */
4128 rq = task_rq_lock(p, &flags);
4129 /*
4130 * The RT priorities are set via sched_setscheduler(), but we still
4131 * allow the 'normal' nice value to be set - but as expected
4132 * it wont have any effect on scheduling until the task is
b0a9499c 4133 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4 4134 */
b29739f9 4135 if (has_rt_policy(p)) {
1da177e4
LT
4136 p->static_prio = NICE_TO_PRIO(nice);
4137 goto out_unlock;
4138 }
4139 array = p->array;
2dd73a4f 4140 if (array) {
1da177e4 4141 dequeue_task(p, array);
2dd73a4f
PW
4142 dec_raw_weighted_load(rq, p);
4143 }
1da177e4 4144
1da177e4 4145 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4146 set_load_weight(p);
b29739f9
IM
4147 old_prio = p->prio;
4148 p->prio = effective_prio(p);
4149 delta = p->prio - old_prio;
1da177e4
LT
4150
4151 if (array) {
4152 enqueue_task(p, array);
2dd73a4f 4153 inc_raw_weighted_load(rq, p);
1da177e4 4154 /*
d5f9f942
AM
4155 * If the task increased its priority or is running and
4156 * lowered its priority, then reschedule its CPU:
1da177e4 4157 */
d5f9f942 4158 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4159 resched_task(rq->curr);
4160 }
4161out_unlock:
4162 task_rq_unlock(rq, &flags);
4163}
1da177e4
LT
4164EXPORT_SYMBOL(set_user_nice);
4165
e43379f1
MM
4166/*
4167 * can_nice - check if a task can reduce its nice value
4168 * @p: task
4169 * @nice: nice value
4170 */
36c8b586 4171int can_nice(const struct task_struct *p, const int nice)
e43379f1 4172{
024f4747
MM
4173 /* convert nice value [19,-20] to rlimit style value [1,40] */
4174 int nice_rlim = 20 - nice;
48f24c4d 4175
e43379f1
MM
4176 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4177 capable(CAP_SYS_NICE));
4178}
4179
1da177e4
LT
4180#ifdef __ARCH_WANT_SYS_NICE
4181
4182/*
4183 * sys_nice - change the priority of the current process.
4184 * @increment: priority increment
4185 *
4186 * sys_setpriority is a more generic, but much slower function that
4187 * does similar things.
4188 */
4189asmlinkage long sys_nice(int increment)
4190{
48f24c4d 4191 long nice, retval;
1da177e4
LT
4192
4193 /*
4194 * Setpriority might change our priority at the same moment.
4195 * We don't have to worry. Conceptually one call occurs first
4196 * and we have a single winner.
4197 */
e43379f1
MM
4198 if (increment < -40)
4199 increment = -40;
1da177e4
LT
4200 if (increment > 40)
4201 increment = 40;
4202
4203 nice = PRIO_TO_NICE(current->static_prio) + increment;
4204 if (nice < -20)
4205 nice = -20;
4206 if (nice > 19)
4207 nice = 19;
4208
e43379f1
MM
4209 if (increment < 0 && !can_nice(current, nice))
4210 return -EPERM;
4211
1da177e4
LT
4212 retval = security_task_setnice(current, nice);
4213 if (retval)
4214 return retval;
4215
4216 set_user_nice(current, nice);
4217 return 0;
4218}
4219
4220#endif
4221
4222/**
4223 * task_prio - return the priority value of a given task.
4224 * @p: the task in question.
4225 *
4226 * This is the priority value as seen by users in /proc.
4227 * RT tasks are offset by -200. Normal tasks are centered
4228 * around 0, value goes from -16 to +15.
4229 */
36c8b586 4230int task_prio(const struct task_struct *p)
1da177e4
LT
4231{
4232 return p->prio - MAX_RT_PRIO;
4233}
4234
4235/**
4236 * task_nice - return the nice value of a given task.
4237 * @p: the task in question.
4238 */
36c8b586 4239int task_nice(const struct task_struct *p)
1da177e4
LT
4240{
4241 return TASK_NICE(p);
4242}
1da177e4 4243EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4244
4245/**
4246 * idle_cpu - is a given cpu idle currently?
4247 * @cpu: the processor in question.
4248 */
4249int idle_cpu(int cpu)
4250{
4251 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4252}
4253
1da177e4
LT
4254/**
4255 * idle_task - return the idle task for a given cpu.
4256 * @cpu: the processor in question.
4257 */
36c8b586 4258struct task_struct *idle_task(int cpu)
1da177e4
LT
4259{
4260 return cpu_rq(cpu)->idle;
4261}
4262
4263/**
4264 * find_process_by_pid - find a process with a matching PID value.
4265 * @pid: the pid in question.
4266 */
36c8b586 4267static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4268{
4269 return pid ? find_task_by_pid(pid) : current;
4270}
4271
4272/* Actually do priority change: must hold rq lock. */
4273static void __setscheduler(struct task_struct *p, int policy, int prio)
4274{
4275 BUG_ON(p->array);
48f24c4d 4276
1da177e4
LT
4277 p->policy = policy;
4278 p->rt_priority = prio;
b29739f9
IM
4279 p->normal_prio = normal_prio(p);
4280 /* we are holding p->pi_lock already */
4281 p->prio = rt_mutex_getprio(p);
4282 /*
4283 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4284 */
4285 if (policy == SCHED_BATCH)
4286 p->sleep_avg = 0;
2dd73a4f 4287 set_load_weight(p);
1da177e4
LT
4288}
4289
4290/**
72fd4a35 4291 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4292 * @p: the task in question.
4293 * @policy: new policy.
4294 * @param: structure containing the new RT priority.
5fe1d75f 4295 *
72fd4a35 4296 * NOTE that the task may be already dead.
1da177e4 4297 */
95cdf3b7
IM
4298int sched_setscheduler(struct task_struct *p, int policy,
4299 struct sched_param *param)
1da177e4 4300{
48f24c4d 4301 int retval, oldprio, oldpolicy = -1;
70b97a7f 4302 struct prio_array *array;
1da177e4 4303 unsigned long flags;
70b97a7f 4304 struct rq *rq;
1da177e4 4305
66e5393a
SR
4306 /* may grab non-irq protected spin_locks */
4307 BUG_ON(in_interrupt());
1da177e4
LT
4308recheck:
4309 /* double check policy once rq lock held */
4310 if (policy < 0)
4311 policy = oldpolicy = p->policy;
4312 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
4313 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4314 return -EINVAL;
1da177e4
LT
4315 /*
4316 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
4317 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4318 * SCHED_BATCH is 0.
1da177e4
LT
4319 */
4320 if (param->sched_priority < 0 ||
95cdf3b7 4321 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4322 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4323 return -EINVAL;
57a6f51c 4324 if (is_rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4325 return -EINVAL;
4326
37e4ab3f
OC
4327 /*
4328 * Allow unprivileged RT tasks to decrease priority:
4329 */
4330 if (!capable(CAP_SYS_NICE)) {
8dc3e909
ON
4331 if (is_rt_policy(policy)) {
4332 unsigned long rlim_rtprio;
4333 unsigned long flags;
4334
4335 if (!lock_task_sighand(p, &flags))
4336 return -ESRCH;
4337 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4338 unlock_task_sighand(p, &flags);
4339
4340 /* can't set/change the rt policy */
4341 if (policy != p->policy && !rlim_rtprio)
4342 return -EPERM;
4343
4344 /* can't increase priority */
4345 if (param->sched_priority > p->rt_priority &&
4346 param->sched_priority > rlim_rtprio)
4347 return -EPERM;
4348 }
5fe1d75f 4349
37e4ab3f
OC
4350 /* can't change other user's priorities */
4351 if ((current->euid != p->euid) &&
4352 (current->euid != p->uid))
4353 return -EPERM;
4354 }
1da177e4
LT
4355
4356 retval = security_task_setscheduler(p, policy, param);
4357 if (retval)
4358 return retval;
b29739f9
IM
4359 /*
4360 * make sure no PI-waiters arrive (or leave) while we are
4361 * changing the priority of the task:
4362 */
4363 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4364 /*
4365 * To be able to change p->policy safely, the apropriate
4366 * runqueue lock must be held.
4367 */
b29739f9 4368 rq = __task_rq_lock(p);
1da177e4
LT
4369 /* recheck policy now with rq lock held */
4370 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4371 policy = oldpolicy = -1;
b29739f9
IM
4372 __task_rq_unlock(rq);
4373 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4374 goto recheck;
4375 }
4376 array = p->array;
4377 if (array)
4378 deactivate_task(p, rq);
4379 oldprio = p->prio;
4380 __setscheduler(p, policy, param->sched_priority);
4381 if (array) {
4382 __activate_task(p, rq);
4383 /*
4384 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4385 * our priority decreased, or if we are not currently running on
4386 * this runqueue and our priority is higher than the current's
1da177e4 4387 */
d5f9f942
AM
4388 if (task_running(rq, p)) {
4389 if (p->prio > oldprio)
4390 resched_task(rq->curr);
4391 } else if (TASK_PREEMPTS_CURR(p, rq))
1da177e4
LT
4392 resched_task(rq->curr);
4393 }
b29739f9
IM
4394 __task_rq_unlock(rq);
4395 spin_unlock_irqrestore(&p->pi_lock, flags);
4396
95e02ca9
TG
4397 rt_mutex_adjust_pi(p);
4398
1da177e4
LT
4399 return 0;
4400}
4401EXPORT_SYMBOL_GPL(sched_setscheduler);
4402
95cdf3b7
IM
4403static int
4404do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4405{
1da177e4
LT
4406 struct sched_param lparam;
4407 struct task_struct *p;
36c8b586 4408 int retval;
1da177e4
LT
4409
4410 if (!param || pid < 0)
4411 return -EINVAL;
4412 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4413 return -EFAULT;
5fe1d75f
ON
4414
4415 rcu_read_lock();
4416 retval = -ESRCH;
1da177e4 4417 p = find_process_by_pid(pid);
5fe1d75f
ON
4418 if (p != NULL)
4419 retval = sched_setscheduler(p, policy, &lparam);
4420 rcu_read_unlock();
36c8b586 4421
1da177e4
LT
4422 return retval;
4423}
4424
4425/**
4426 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4427 * @pid: the pid in question.
4428 * @policy: new policy.
4429 * @param: structure containing the new RT priority.
4430 */
4431asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4432 struct sched_param __user *param)
4433{
c21761f1
JB
4434 /* negative values for policy are not valid */
4435 if (policy < 0)
4436 return -EINVAL;
4437
1da177e4
LT
4438 return do_sched_setscheduler(pid, policy, param);
4439}
4440
4441/**
4442 * sys_sched_setparam - set/change the RT priority of a thread
4443 * @pid: the pid in question.
4444 * @param: structure containing the new RT priority.
4445 */
4446asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4447{
4448 return do_sched_setscheduler(pid, -1, param);
4449}
4450
4451/**
4452 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4453 * @pid: the pid in question.
4454 */
4455asmlinkage long sys_sched_getscheduler(pid_t pid)
4456{
36c8b586 4457 struct task_struct *p;
1da177e4 4458 int retval = -EINVAL;
1da177e4
LT
4459
4460 if (pid < 0)
4461 goto out_nounlock;
4462
4463 retval = -ESRCH;
4464 read_lock(&tasklist_lock);
4465 p = find_process_by_pid(pid);
4466 if (p) {
4467 retval = security_task_getscheduler(p);
4468 if (!retval)
4469 retval = p->policy;
4470 }
4471 read_unlock(&tasklist_lock);
4472
4473out_nounlock:
4474 return retval;
4475}
4476
4477/**
4478 * sys_sched_getscheduler - get the RT priority of a thread
4479 * @pid: the pid in question.
4480 * @param: structure containing the RT priority.
4481 */
4482asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4483{
4484 struct sched_param lp;
36c8b586 4485 struct task_struct *p;
1da177e4 4486 int retval = -EINVAL;
1da177e4
LT
4487
4488 if (!param || pid < 0)
4489 goto out_nounlock;
4490
4491 read_lock(&tasklist_lock);
4492 p = find_process_by_pid(pid);
4493 retval = -ESRCH;
4494 if (!p)
4495 goto out_unlock;
4496
4497 retval = security_task_getscheduler(p);
4498 if (retval)
4499 goto out_unlock;
4500
4501 lp.sched_priority = p->rt_priority;
4502 read_unlock(&tasklist_lock);
4503
4504 /*
4505 * This one might sleep, we cannot do it with a spinlock held ...
4506 */
4507 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4508
4509out_nounlock:
4510 return retval;
4511
4512out_unlock:
4513 read_unlock(&tasklist_lock);
4514 return retval;
4515}
4516
4517long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4518{
1da177e4 4519 cpumask_t cpus_allowed;
36c8b586
IM
4520 struct task_struct *p;
4521 int retval;
1da177e4
LT
4522
4523 lock_cpu_hotplug();
4524 read_lock(&tasklist_lock);
4525
4526 p = find_process_by_pid(pid);
4527 if (!p) {
4528 read_unlock(&tasklist_lock);
4529 unlock_cpu_hotplug();
4530 return -ESRCH;
4531 }
4532
4533 /*
4534 * It is not safe to call set_cpus_allowed with the
4535 * tasklist_lock held. We will bump the task_struct's
4536 * usage count and then drop tasklist_lock.
4537 */
4538 get_task_struct(p);
4539 read_unlock(&tasklist_lock);
4540
4541 retval = -EPERM;
4542 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4543 !capable(CAP_SYS_NICE))
4544 goto out_unlock;
4545
e7834f8f
DQ
4546 retval = security_task_setscheduler(p, 0, NULL);
4547 if (retval)
4548 goto out_unlock;
4549
1da177e4
LT
4550 cpus_allowed = cpuset_cpus_allowed(p);
4551 cpus_and(new_mask, new_mask, cpus_allowed);
4552 retval = set_cpus_allowed(p, new_mask);
4553
4554out_unlock:
4555 put_task_struct(p);
4556 unlock_cpu_hotplug();
4557 return retval;
4558}
4559
4560static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4561 cpumask_t *new_mask)
4562{
4563 if (len < sizeof(cpumask_t)) {
4564 memset(new_mask, 0, sizeof(cpumask_t));
4565 } else if (len > sizeof(cpumask_t)) {
4566 len = sizeof(cpumask_t);
4567 }
4568 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4569}
4570
4571/**
4572 * sys_sched_setaffinity - set the cpu affinity of a process
4573 * @pid: pid of the process
4574 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4575 * @user_mask_ptr: user-space pointer to the new cpu mask
4576 */
4577asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4578 unsigned long __user *user_mask_ptr)
4579{
4580 cpumask_t new_mask;
4581 int retval;
4582
4583 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4584 if (retval)
4585 return retval;
4586
4587 return sched_setaffinity(pid, new_mask);
4588}
4589
4590/*
4591 * Represents all cpu's present in the system
4592 * In systems capable of hotplug, this map could dynamically grow
4593 * as new cpu's are detected in the system via any platform specific
4594 * method, such as ACPI for e.g.
4595 */
4596
4cef0c61 4597cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4598EXPORT_SYMBOL(cpu_present_map);
4599
4600#ifndef CONFIG_SMP
4cef0c61 4601cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4602EXPORT_SYMBOL(cpu_online_map);
4603
4cef0c61 4604cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4605EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4606#endif
4607
4608long sched_getaffinity(pid_t pid, cpumask_t *mask)
4609{
36c8b586 4610 struct task_struct *p;
1da177e4 4611 int retval;
1da177e4
LT
4612
4613 lock_cpu_hotplug();
4614 read_lock(&tasklist_lock);
4615
4616 retval = -ESRCH;
4617 p = find_process_by_pid(pid);
4618 if (!p)
4619 goto out_unlock;
4620
e7834f8f
DQ
4621 retval = security_task_getscheduler(p);
4622 if (retval)
4623 goto out_unlock;
4624
2f7016d9 4625 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4626
4627out_unlock:
4628 read_unlock(&tasklist_lock);
4629 unlock_cpu_hotplug();
4630 if (retval)
4631 return retval;
4632
4633 return 0;
4634}
4635
4636/**
4637 * sys_sched_getaffinity - get the cpu affinity of a process
4638 * @pid: pid of the process
4639 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4640 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4641 */
4642asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4643 unsigned long __user *user_mask_ptr)
4644{
4645 int ret;
4646 cpumask_t mask;
4647
4648 if (len < sizeof(cpumask_t))
4649 return -EINVAL;
4650
4651 ret = sched_getaffinity(pid, &mask);
4652 if (ret < 0)
4653 return ret;
4654
4655 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4656 return -EFAULT;
4657
4658 return sizeof(cpumask_t);
4659}
4660
4661/**
4662 * sys_sched_yield - yield the current processor to other threads.
4663 *
72fd4a35 4664 * This function yields the current CPU by moving the calling thread
1da177e4
LT
4665 * to the expired array. If there are no other threads running on this
4666 * CPU then this function will return.
4667 */
4668asmlinkage long sys_sched_yield(void)
4669{
70b97a7f
IM
4670 struct rq *rq = this_rq_lock();
4671 struct prio_array *array = current->array, *target = rq->expired;
1da177e4
LT
4672
4673 schedstat_inc(rq, yld_cnt);
4674 /*
4675 * We implement yielding by moving the task into the expired
4676 * queue.
4677 *
4678 * (special rule: RT tasks will just roundrobin in the active
4679 * array.)
4680 */
4681 if (rt_task(current))
4682 target = rq->active;
4683
5927ad78 4684 if (array->nr_active == 1) {
1da177e4
LT
4685 schedstat_inc(rq, yld_act_empty);
4686 if (!rq->expired->nr_active)
4687 schedstat_inc(rq, yld_both_empty);
4688 } else if (!rq->expired->nr_active)
4689 schedstat_inc(rq, yld_exp_empty);
4690
4691 if (array != target) {
4692 dequeue_task(current, array);
4693 enqueue_task(current, target);
4694 } else
4695 /*
4696 * requeue_task is cheaper so perform that if possible.
4697 */
4698 requeue_task(current, array);
4699
4700 /*
4701 * Since we are going to call schedule() anyway, there's
4702 * no need to preempt or enable interrupts:
4703 */
4704 __release(rq->lock);
8a25d5de 4705 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4706 _raw_spin_unlock(&rq->lock);
4707 preempt_enable_no_resched();
4708
4709 schedule();
4710
4711 return 0;
4712}
4713
e7b38404 4714static void __cond_resched(void)
1da177e4 4715{
8e0a43d8
IM
4716#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4717 __might_sleep(__FILE__, __LINE__);
4718#endif
5bbcfd90
IM
4719 /*
4720 * The BKS might be reacquired before we have dropped
4721 * PREEMPT_ACTIVE, which could trigger a second
4722 * cond_resched() call.
4723 */
1da177e4
LT
4724 do {
4725 add_preempt_count(PREEMPT_ACTIVE);
4726 schedule();
4727 sub_preempt_count(PREEMPT_ACTIVE);
4728 } while (need_resched());
4729}
4730
4731int __sched cond_resched(void)
4732{
9414232f
IM
4733 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4734 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4735 __cond_resched();
4736 return 1;
4737 }
4738 return 0;
4739}
1da177e4
LT
4740EXPORT_SYMBOL(cond_resched);
4741
4742/*
4743 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4744 * call schedule, and on return reacquire the lock.
4745 *
4746 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4747 * operations here to prevent schedule() from being called twice (once via
4748 * spin_unlock(), once by hand).
4749 */
95cdf3b7 4750int cond_resched_lock(spinlock_t *lock)
1da177e4 4751{
6df3cecb
JK
4752 int ret = 0;
4753
1da177e4
LT
4754 if (need_lockbreak(lock)) {
4755 spin_unlock(lock);
4756 cpu_relax();
6df3cecb 4757 ret = 1;
1da177e4
LT
4758 spin_lock(lock);
4759 }
9414232f 4760 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4761 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4762 _raw_spin_unlock(lock);
4763 preempt_enable_no_resched();
4764 __cond_resched();
6df3cecb 4765 ret = 1;
1da177e4 4766 spin_lock(lock);
1da177e4 4767 }
6df3cecb 4768 return ret;
1da177e4 4769}
1da177e4
LT
4770EXPORT_SYMBOL(cond_resched_lock);
4771
4772int __sched cond_resched_softirq(void)
4773{
4774 BUG_ON(!in_softirq());
4775
9414232f 4776 if (need_resched() && system_state == SYSTEM_RUNNING) {
de30a2b3
IM
4777 raw_local_irq_disable();
4778 _local_bh_enable();
4779 raw_local_irq_enable();
1da177e4
LT
4780 __cond_resched();
4781 local_bh_disable();
4782 return 1;
4783 }
4784 return 0;
4785}
1da177e4
LT
4786EXPORT_SYMBOL(cond_resched_softirq);
4787
1da177e4
LT
4788/**
4789 * yield - yield the current processor to other threads.
4790 *
72fd4a35 4791 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4792 * thread runnable and calls sys_sched_yield().
4793 */
4794void __sched yield(void)
4795{
4796 set_current_state(TASK_RUNNING);
4797 sys_sched_yield();
4798}
1da177e4
LT
4799EXPORT_SYMBOL(yield);
4800
4801/*
4802 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4803 * that process accounting knows that this is a task in IO wait state.
4804 *
4805 * But don't do that if it is a deliberate, throttling IO wait (this task
4806 * has set its backing_dev_info: the queue against which it should throttle)
4807 */
4808void __sched io_schedule(void)
4809{
70b97a7f 4810 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4811
0ff92245 4812 delayacct_blkio_start();
1da177e4
LT
4813 atomic_inc(&rq->nr_iowait);
4814 schedule();
4815 atomic_dec(&rq->nr_iowait);
0ff92245 4816 delayacct_blkio_end();
1da177e4 4817}
1da177e4
LT
4818EXPORT_SYMBOL(io_schedule);
4819
4820long __sched io_schedule_timeout(long timeout)
4821{
70b97a7f 4822 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4823 long ret;
4824
0ff92245 4825 delayacct_blkio_start();
1da177e4
LT
4826 atomic_inc(&rq->nr_iowait);
4827 ret = schedule_timeout(timeout);
4828 atomic_dec(&rq->nr_iowait);
0ff92245 4829 delayacct_blkio_end();
1da177e4
LT
4830 return ret;
4831}
4832
4833/**
4834 * sys_sched_get_priority_max - return maximum RT priority.
4835 * @policy: scheduling class.
4836 *
4837 * this syscall returns the maximum rt_priority that can be used
4838 * by a given scheduling class.
4839 */
4840asmlinkage long sys_sched_get_priority_max(int policy)
4841{
4842 int ret = -EINVAL;
4843
4844 switch (policy) {
4845 case SCHED_FIFO:
4846 case SCHED_RR:
4847 ret = MAX_USER_RT_PRIO-1;
4848 break;
4849 case SCHED_NORMAL:
b0a9499c 4850 case SCHED_BATCH:
1da177e4
LT
4851 ret = 0;
4852 break;
4853 }
4854 return ret;
4855}
4856
4857/**
4858 * sys_sched_get_priority_min - return minimum RT priority.
4859 * @policy: scheduling class.
4860 *
4861 * this syscall returns the minimum rt_priority that can be used
4862 * by a given scheduling class.
4863 */
4864asmlinkage long sys_sched_get_priority_min(int policy)
4865{
4866 int ret = -EINVAL;
4867
4868 switch (policy) {
4869 case SCHED_FIFO:
4870 case SCHED_RR:
4871 ret = 1;
4872 break;
4873 case SCHED_NORMAL:
b0a9499c 4874 case SCHED_BATCH:
1da177e4
LT
4875 ret = 0;
4876 }
4877 return ret;
4878}
4879
4880/**
4881 * sys_sched_rr_get_interval - return the default timeslice of a process.
4882 * @pid: pid of the process.
4883 * @interval: userspace pointer to the timeslice value.
4884 *
4885 * this syscall writes the default timeslice value of a given process
4886 * into the user-space timespec buffer. A value of '0' means infinity.
4887 */
4888asmlinkage
4889long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4890{
36c8b586 4891 struct task_struct *p;
1da177e4
LT
4892 int retval = -EINVAL;
4893 struct timespec t;
1da177e4
LT
4894
4895 if (pid < 0)
4896 goto out_nounlock;
4897
4898 retval = -ESRCH;
4899 read_lock(&tasklist_lock);
4900 p = find_process_by_pid(pid);
4901 if (!p)
4902 goto out_unlock;
4903
4904 retval = security_task_getscheduler(p);
4905 if (retval)
4906 goto out_unlock;
4907
b78709cf 4908 jiffies_to_timespec(p->policy == SCHED_FIFO ?
1da177e4
LT
4909 0 : task_timeslice(p), &t);
4910 read_unlock(&tasklist_lock);
4911 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4912out_nounlock:
4913 return retval;
4914out_unlock:
4915 read_unlock(&tasklist_lock);
4916 return retval;
4917}
4918
2ed6e34f 4919static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4920
4921static void show_task(struct task_struct *p)
1da177e4 4922{
1da177e4 4923 unsigned long free = 0;
36c8b586 4924 unsigned state;
1da177e4 4925
1da177e4 4926 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4927 printk("%-13.13s %c", p->comm,
4928 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4
LT
4929#if (BITS_PER_LONG == 32)
4930 if (state == TASK_RUNNING)
4931 printk(" running ");
4932 else
4933 printk(" %08lX ", thread_saved_pc(p));
4934#else
4935 if (state == TASK_RUNNING)
4936 printk(" running task ");
4937 else
4938 printk(" %016lx ", thread_saved_pc(p));
4939#endif
4940#ifdef CONFIG_DEBUG_STACK_USAGE
4941 {
10ebffde 4942 unsigned long *n = end_of_stack(p);
1da177e4
LT
4943 while (!*n)
4944 n++;
10ebffde 4945 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4946 }
4947#endif
35f6f753 4948 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
1da177e4
LT
4949 if (!p->mm)
4950 printk(" (L-TLB)\n");
4951 else
4952 printk(" (NOTLB)\n");
4953
4954 if (state != TASK_RUNNING)
4955 show_stack(p, NULL);
4956}
4957
e59e2ae2 4958void show_state_filter(unsigned long state_filter)
1da177e4 4959{
36c8b586 4960 struct task_struct *g, *p;
1da177e4
LT
4961
4962#if (BITS_PER_LONG == 32)
4963 printk("\n"
301827ac
CC
4964 " free sibling\n");
4965 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4966#else
4967 printk("\n"
301827ac
CC
4968 " free sibling\n");
4969 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4970#endif
4971 read_lock(&tasklist_lock);
4972 do_each_thread(g, p) {
4973 /*
4974 * reset the NMI-timeout, listing all files on a slow
4975 * console might take alot of time:
4976 */
4977 touch_nmi_watchdog();
39bc89fd 4978 if (!state_filter || (p->state & state_filter))
e59e2ae2 4979 show_task(p);
1da177e4
LT
4980 } while_each_thread(g, p);
4981
04c9167f
JF
4982 touch_all_softlockup_watchdogs();
4983
1da177e4 4984 read_unlock(&tasklist_lock);
e59e2ae2
IM
4985 /*
4986 * Only show locks if all tasks are dumped:
4987 */
4988 if (state_filter == -1)
4989 debug_show_all_locks();
1da177e4
LT
4990}
4991
f340c0d1
IM
4992/**
4993 * init_idle - set up an idle thread for a given CPU
4994 * @idle: task in question
4995 * @cpu: cpu the idle task belongs to
4996 *
4997 * NOTE: this function does not set the idle thread's NEED_RESCHED
4998 * flag, to make booting more robust.
4999 */
5c1e1767 5000void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5001{
70b97a7f 5002 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5003 unsigned long flags;
5004
81c29a85 5005 idle->timestamp = sched_clock();
1da177e4
LT
5006 idle->sleep_avg = 0;
5007 idle->array = NULL;
b29739f9 5008 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4
LT
5009 idle->state = TASK_RUNNING;
5010 idle->cpus_allowed = cpumask_of_cpu(cpu);
5011 set_task_cpu(idle, cpu);
5012
5013 spin_lock_irqsave(&rq->lock, flags);
5014 rq->curr = rq->idle = idle;
4866cde0
NP
5015#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5016 idle->oncpu = 1;
5017#endif
1da177e4
LT
5018 spin_unlock_irqrestore(&rq->lock, flags);
5019
5020 /* Set the preempt count _outside_ the spinlocks! */
5021#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 5022 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 5023#else
a1261f54 5024 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
5025#endif
5026}
5027
5028/*
5029 * In a system that switches off the HZ timer nohz_cpu_mask
5030 * indicates which cpus entered this state. This is used
5031 * in the rcu update to wait only for active cpus. For system
5032 * which do not switch off the HZ timer nohz_cpu_mask should
5033 * always be CPU_MASK_NONE.
5034 */
5035cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5036
5037#ifdef CONFIG_SMP
5038/*
5039 * This is how migration works:
5040 *
70b97a7f 5041 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5042 * runqueue and wake up that CPU's migration thread.
5043 * 2) we down() the locked semaphore => thread blocks.
5044 * 3) migration thread wakes up (implicitly it forces the migrated
5045 * thread off the CPU)
5046 * 4) it gets the migration request and checks whether the migrated
5047 * task is still in the wrong runqueue.
5048 * 5) if it's in the wrong runqueue then the migration thread removes
5049 * it and puts it into the right queue.
5050 * 6) migration thread up()s the semaphore.
5051 * 7) we wake up and the migration is done.
5052 */
5053
5054/*
5055 * Change a given task's CPU affinity. Migrate the thread to a
5056 * proper CPU and schedule it away if the CPU it's executing on
5057 * is removed from the allowed bitmask.
5058 *
5059 * NOTE: the caller must have a valid reference to the task, the
5060 * task must not exit() & deallocate itself prematurely. The
5061 * call is not atomic; no spinlocks may be held.
5062 */
36c8b586 5063int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5064{
70b97a7f 5065 struct migration_req req;
1da177e4 5066 unsigned long flags;
70b97a7f 5067 struct rq *rq;
48f24c4d 5068 int ret = 0;
1da177e4
LT
5069
5070 rq = task_rq_lock(p, &flags);
5071 if (!cpus_intersects(new_mask, cpu_online_map)) {
5072 ret = -EINVAL;
5073 goto out;
5074 }
5075
5076 p->cpus_allowed = new_mask;
5077 /* Can the task run on the task's current CPU? If so, we're done */
5078 if (cpu_isset(task_cpu(p), new_mask))
5079 goto out;
5080
5081 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5082 /* Need help from migration thread: drop lock and wait. */
5083 task_rq_unlock(rq, &flags);
5084 wake_up_process(rq->migration_thread);
5085 wait_for_completion(&req.done);
5086 tlb_migrate_finish(p->mm);
5087 return 0;
5088 }
5089out:
5090 task_rq_unlock(rq, &flags);
48f24c4d 5091
1da177e4
LT
5092 return ret;
5093}
1da177e4
LT
5094EXPORT_SYMBOL_GPL(set_cpus_allowed);
5095
5096/*
5097 * Move (not current) task off this cpu, onto dest cpu. We're doing
5098 * this because either it can't run here any more (set_cpus_allowed()
5099 * away from this CPU, or CPU going down), or because we're
5100 * attempting to rebalance this task on exec (sched_exec).
5101 *
5102 * So we race with normal scheduler movements, but that's OK, as long
5103 * as the task is no longer on this CPU.
efc30814
KK
5104 *
5105 * Returns non-zero if task was successfully migrated.
1da177e4 5106 */
efc30814 5107static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5108{
70b97a7f 5109 struct rq *rq_dest, *rq_src;
efc30814 5110 int ret = 0;
1da177e4
LT
5111
5112 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5113 return ret;
1da177e4
LT
5114
5115 rq_src = cpu_rq(src_cpu);
5116 rq_dest = cpu_rq(dest_cpu);
5117
5118 double_rq_lock(rq_src, rq_dest);
5119 /* Already moved. */
5120 if (task_cpu(p) != src_cpu)
5121 goto out;
5122 /* Affinity changed (again). */
5123 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5124 goto out;
5125
5126 set_task_cpu(p, dest_cpu);
5127 if (p->array) {
5128 /*
5129 * Sync timestamp with rq_dest's before activating.
5130 * The same thing could be achieved by doing this step
5131 * afterwards, and pretending it was a local activate.
5132 * This way is cleaner and logically correct.
5133 */
b18ec803
MG
5134 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5135 + rq_dest->most_recent_timestamp;
1da177e4 5136 deactivate_task(p, rq_src);
0a565f79 5137 __activate_task(p, rq_dest);
1da177e4
LT
5138 if (TASK_PREEMPTS_CURR(p, rq_dest))
5139 resched_task(rq_dest->curr);
5140 }
efc30814 5141 ret = 1;
1da177e4
LT
5142out:
5143 double_rq_unlock(rq_src, rq_dest);
efc30814 5144 return ret;
1da177e4
LT
5145}
5146
5147/*
5148 * migration_thread - this is a highprio system thread that performs
5149 * thread migration by bumping thread off CPU then 'pushing' onto
5150 * another runqueue.
5151 */
95cdf3b7 5152static int migration_thread(void *data)
1da177e4 5153{
1da177e4 5154 int cpu = (long)data;
70b97a7f 5155 struct rq *rq;
1da177e4
LT
5156
5157 rq = cpu_rq(cpu);
5158 BUG_ON(rq->migration_thread != current);
5159
5160 set_current_state(TASK_INTERRUPTIBLE);
5161 while (!kthread_should_stop()) {
70b97a7f 5162 struct migration_req *req;
1da177e4 5163 struct list_head *head;
1da177e4 5164
3e1d1d28 5165 try_to_freeze();
1da177e4
LT
5166
5167 spin_lock_irq(&rq->lock);
5168
5169 if (cpu_is_offline(cpu)) {
5170 spin_unlock_irq(&rq->lock);
5171 goto wait_to_die;
5172 }
5173
5174 if (rq->active_balance) {
5175 active_load_balance(rq, cpu);
5176 rq->active_balance = 0;
5177 }
5178
5179 head = &rq->migration_queue;
5180
5181 if (list_empty(head)) {
5182 spin_unlock_irq(&rq->lock);
5183 schedule();
5184 set_current_state(TASK_INTERRUPTIBLE);
5185 continue;
5186 }
70b97a7f 5187 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5188 list_del_init(head->next);
5189
674311d5
NP
5190 spin_unlock(&rq->lock);
5191 __migrate_task(req->task, cpu, req->dest_cpu);
5192 local_irq_enable();
1da177e4
LT
5193
5194 complete(&req->done);
5195 }
5196 __set_current_state(TASK_RUNNING);
5197 return 0;
5198
5199wait_to_die:
5200 /* Wait for kthread_stop */
5201 set_current_state(TASK_INTERRUPTIBLE);
5202 while (!kthread_should_stop()) {
5203 schedule();
5204 set_current_state(TASK_INTERRUPTIBLE);
5205 }
5206 __set_current_state(TASK_RUNNING);
5207 return 0;
5208}
5209
5210#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5211/*
5212 * Figure out where task on dead CPU should go, use force if neccessary.
5213 * NOTE: interrupts should be disabled by the caller
5214 */
48f24c4d 5215static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5216{
efc30814 5217 unsigned long flags;
1da177e4 5218 cpumask_t mask;
70b97a7f
IM
5219 struct rq *rq;
5220 int dest_cpu;
1da177e4 5221
efc30814 5222restart:
1da177e4
LT
5223 /* On same node? */
5224 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5225 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5226 dest_cpu = any_online_cpu(mask);
5227
5228 /* On any allowed CPU? */
5229 if (dest_cpu == NR_CPUS)
48f24c4d 5230 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5231
5232 /* No more Mr. Nice Guy. */
5233 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5234 rq = task_rq_lock(p, &flags);
5235 cpus_setall(p->cpus_allowed);
5236 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5237 task_rq_unlock(rq, &flags);
1da177e4
LT
5238
5239 /*
5240 * Don't tell them about moving exiting tasks or
5241 * kernel threads (both mm NULL), since they never
5242 * leave kernel.
5243 */
48f24c4d 5244 if (p->mm && printk_ratelimit())
1da177e4
LT
5245 printk(KERN_INFO "process %d (%s) no "
5246 "longer affine to cpu%d\n",
48f24c4d 5247 p->pid, p->comm, dead_cpu);
1da177e4 5248 }
48f24c4d 5249 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5250 goto restart;
1da177e4
LT
5251}
5252
5253/*
5254 * While a dead CPU has no uninterruptible tasks queued at this point,
5255 * it might still have a nonzero ->nr_uninterruptible counter, because
5256 * for performance reasons the counter is not stricly tracking tasks to
5257 * their home CPUs. So we just add the counter to another CPU's counter,
5258 * to keep the global sum constant after CPU-down:
5259 */
70b97a7f 5260static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5261{
70b97a7f 5262 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5263 unsigned long flags;
5264
5265 local_irq_save(flags);
5266 double_rq_lock(rq_src, rq_dest);
5267 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5268 rq_src->nr_uninterruptible = 0;
5269 double_rq_unlock(rq_src, rq_dest);
5270 local_irq_restore(flags);
5271}
5272
5273/* Run through task list and migrate tasks from the dead cpu. */
5274static void migrate_live_tasks(int src_cpu)
5275{
48f24c4d 5276 struct task_struct *p, *t;
1da177e4
LT
5277
5278 write_lock_irq(&tasklist_lock);
5279
48f24c4d
IM
5280 do_each_thread(t, p) {
5281 if (p == current)
1da177e4
LT
5282 continue;
5283
48f24c4d
IM
5284 if (task_cpu(p) == src_cpu)
5285 move_task_off_dead_cpu(src_cpu, p);
5286 } while_each_thread(t, p);
1da177e4
LT
5287
5288 write_unlock_irq(&tasklist_lock);
5289}
5290
5291/* Schedules idle task to be the next runnable task on current CPU.
5292 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5293 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5294 */
5295void sched_idle_next(void)
5296{
48f24c4d 5297 int this_cpu = smp_processor_id();
70b97a7f 5298 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5299 struct task_struct *p = rq->idle;
5300 unsigned long flags;
5301
5302 /* cpu has to be offline */
48f24c4d 5303 BUG_ON(cpu_online(this_cpu));
1da177e4 5304
48f24c4d
IM
5305 /*
5306 * Strictly not necessary since rest of the CPUs are stopped by now
5307 * and interrupts disabled on the current cpu.
1da177e4
LT
5308 */
5309 spin_lock_irqsave(&rq->lock, flags);
5310
5311 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5312
5313 /* Add idle task to the _front_ of its priority queue: */
1da177e4
LT
5314 __activate_idle_task(p, rq);
5315
5316 spin_unlock_irqrestore(&rq->lock, flags);
5317}
5318
48f24c4d
IM
5319/*
5320 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5321 * offline.
5322 */
5323void idle_task_exit(void)
5324{
5325 struct mm_struct *mm = current->active_mm;
5326
5327 BUG_ON(cpu_online(smp_processor_id()));
5328
5329 if (mm != &init_mm)
5330 switch_mm(mm, &init_mm, current);
5331 mmdrop(mm);
5332}
5333
054b9108 5334/* called under rq->lock with disabled interrupts */
36c8b586 5335static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5336{
70b97a7f 5337 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5338
5339 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5340 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5341
5342 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5343 BUG_ON(p->state == TASK_DEAD);
1da177e4 5344
48f24c4d 5345 get_task_struct(p);
1da177e4
LT
5346
5347 /*
5348 * Drop lock around migration; if someone else moves it,
5349 * that's OK. No task can be added to this CPU, so iteration is
5350 * fine.
054b9108 5351 * NOTE: interrupts should be left disabled --dev@
1da177e4 5352 */
054b9108 5353 spin_unlock(&rq->lock);
48f24c4d 5354 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5355 spin_lock(&rq->lock);
1da177e4 5356
48f24c4d 5357 put_task_struct(p);
1da177e4
LT
5358}
5359
5360/* release_task() removes task from tasklist, so we won't find dead tasks. */
5361static void migrate_dead_tasks(unsigned int dead_cpu)
5362{
70b97a7f 5363 struct rq *rq = cpu_rq(dead_cpu);
48f24c4d 5364 unsigned int arr, i;
1da177e4
LT
5365
5366 for (arr = 0; arr < 2; arr++) {
5367 for (i = 0; i < MAX_PRIO; i++) {
5368 struct list_head *list = &rq->arrays[arr].queue[i];
48f24c4d 5369
1da177e4 5370 while (!list_empty(list))
36c8b586
IM
5371 migrate_dead(dead_cpu, list_entry(list->next,
5372 struct task_struct, run_list));
1da177e4
LT
5373 }
5374 }
5375}
5376#endif /* CONFIG_HOTPLUG_CPU */
5377
5378/*
5379 * migration_call - callback that gets triggered when a CPU is added.
5380 * Here we can start up the necessary migration thread for the new CPU.
5381 */
48f24c4d
IM
5382static int __cpuinit
5383migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5384{
1da177e4 5385 struct task_struct *p;
48f24c4d 5386 int cpu = (long)hcpu;
1da177e4 5387 unsigned long flags;
70b97a7f 5388 struct rq *rq;
1da177e4
LT
5389
5390 switch (action) {
5391 case CPU_UP_PREPARE:
5392 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5393 if (IS_ERR(p))
5394 return NOTIFY_BAD;
5395 p->flags |= PF_NOFREEZE;
5396 kthread_bind(p, cpu);
5397 /* Must be high prio: stop_machine expects to yield to it. */
5398 rq = task_rq_lock(p, &flags);
5399 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5400 task_rq_unlock(rq, &flags);
5401 cpu_rq(cpu)->migration_thread = p;
5402 break;
48f24c4d 5403
1da177e4
LT
5404 case CPU_ONLINE:
5405 /* Strictly unneccessary, as first user will wake it. */
5406 wake_up_process(cpu_rq(cpu)->migration_thread);
5407 break;
48f24c4d 5408
1da177e4
LT
5409#ifdef CONFIG_HOTPLUG_CPU
5410 case CPU_UP_CANCELED:
fc75cdfa
HC
5411 if (!cpu_rq(cpu)->migration_thread)
5412 break;
1da177e4 5413 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5414 kthread_bind(cpu_rq(cpu)->migration_thread,
5415 any_online_cpu(cpu_online_map));
1da177e4
LT
5416 kthread_stop(cpu_rq(cpu)->migration_thread);
5417 cpu_rq(cpu)->migration_thread = NULL;
5418 break;
48f24c4d 5419
1da177e4
LT
5420 case CPU_DEAD:
5421 migrate_live_tasks(cpu);
5422 rq = cpu_rq(cpu);
5423 kthread_stop(rq->migration_thread);
5424 rq->migration_thread = NULL;
5425 /* Idle task back to normal (off runqueue, low prio) */
5426 rq = task_rq_lock(rq->idle, &flags);
5427 deactivate_task(rq->idle, rq);
5428 rq->idle->static_prio = MAX_PRIO;
5429 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5430 migrate_dead_tasks(cpu);
5431 task_rq_unlock(rq, &flags);
5432 migrate_nr_uninterruptible(rq);
5433 BUG_ON(rq->nr_running != 0);
5434
5435 /* No need to migrate the tasks: it was best-effort if
5436 * they didn't do lock_cpu_hotplug(). Just wake up
5437 * the requestors. */
5438 spin_lock_irq(&rq->lock);
5439 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5440 struct migration_req *req;
5441
1da177e4 5442 req = list_entry(rq->migration_queue.next,
70b97a7f 5443 struct migration_req, list);
1da177e4
LT
5444 list_del_init(&req->list);
5445 complete(&req->done);
5446 }
5447 spin_unlock_irq(&rq->lock);
5448 break;
5449#endif
5450 }
5451 return NOTIFY_OK;
5452}
5453
5454/* Register at highest priority so that task migration (migrate_all_tasks)
5455 * happens before everything else.
5456 */
26c2143b 5457static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5458 .notifier_call = migration_call,
5459 .priority = 10
5460};
5461
5462int __init migration_init(void)
5463{
5464 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5465 int err;
48f24c4d
IM
5466
5467 /* Start one for the boot CPU: */
07dccf33
AM
5468 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5469 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5470 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5471 register_cpu_notifier(&migration_notifier);
48f24c4d 5472
1da177e4
LT
5473 return 0;
5474}
5475#endif
5476
5477#ifdef CONFIG_SMP
476f3534
CL
5478
5479/* Number of possible processor ids */
5480int nr_cpu_ids __read_mostly = NR_CPUS;
5481EXPORT_SYMBOL(nr_cpu_ids);
5482
1a20ff27 5483#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5484#ifdef SCHED_DOMAIN_DEBUG
5485static void sched_domain_debug(struct sched_domain *sd, int cpu)
5486{
5487 int level = 0;
5488
41c7ce9a
NP
5489 if (!sd) {
5490 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5491 return;
5492 }
5493
1da177e4
LT
5494 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5495
5496 do {
5497 int i;
5498 char str[NR_CPUS];
5499 struct sched_group *group = sd->groups;
5500 cpumask_t groupmask;
5501
5502 cpumask_scnprintf(str, NR_CPUS, sd->span);
5503 cpus_clear(groupmask);
5504
5505 printk(KERN_DEBUG);
5506 for (i = 0; i < level + 1; i++)
5507 printk(" ");
5508 printk("domain %d: ", level);
5509
5510 if (!(sd->flags & SD_LOAD_BALANCE)) {
5511 printk("does not load-balance\n");
5512 if (sd->parent)
33859f7f
MOS
5513 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5514 " has parent");
1da177e4
LT
5515 break;
5516 }
5517
5518 printk("span %s\n", str);
5519
5520 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5521 printk(KERN_ERR "ERROR: domain->span does not contain "
5522 "CPU%d\n", cpu);
1da177e4 5523 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5524 printk(KERN_ERR "ERROR: domain->groups does not contain"
5525 " CPU%d\n", cpu);
1da177e4
LT
5526
5527 printk(KERN_DEBUG);
5528 for (i = 0; i < level + 2; i++)
5529 printk(" ");
5530 printk("groups:");
5531 do {
5532 if (!group) {
5533 printk("\n");
5534 printk(KERN_ERR "ERROR: group is NULL\n");
5535 break;
5536 }
5537
5517d86b 5538 if (!group->__cpu_power) {
1da177e4 5539 printk("\n");
33859f7f
MOS
5540 printk(KERN_ERR "ERROR: domain->cpu_power not "
5541 "set\n");
1da177e4
LT
5542 }
5543
5544 if (!cpus_weight(group->cpumask)) {
5545 printk("\n");
5546 printk(KERN_ERR "ERROR: empty group\n");
5547 }
5548
5549 if (cpus_intersects(groupmask, group->cpumask)) {
5550 printk("\n");
5551 printk(KERN_ERR "ERROR: repeated CPUs\n");
5552 }
5553
5554 cpus_or(groupmask, groupmask, group->cpumask);
5555
5556 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5557 printk(" %s", str);
5558
5559 group = group->next;
5560 } while (group != sd->groups);
5561 printk("\n");
5562
5563 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5564 printk(KERN_ERR "ERROR: groups don't span "
5565 "domain->span\n");
1da177e4
LT
5566
5567 level++;
5568 sd = sd->parent;
33859f7f
MOS
5569 if (!sd)
5570 continue;
1da177e4 5571
33859f7f
MOS
5572 if (!cpus_subset(groupmask, sd->span))
5573 printk(KERN_ERR "ERROR: parent span is not a superset "
5574 "of domain->span\n");
1da177e4
LT
5575
5576 } while (sd);
5577}
5578#else
48f24c4d 5579# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5580#endif
5581
1a20ff27 5582static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5583{
5584 if (cpus_weight(sd->span) == 1)
5585 return 1;
5586
5587 /* Following flags need at least 2 groups */
5588 if (sd->flags & (SD_LOAD_BALANCE |
5589 SD_BALANCE_NEWIDLE |
5590 SD_BALANCE_FORK |
89c4710e
SS
5591 SD_BALANCE_EXEC |
5592 SD_SHARE_CPUPOWER |
5593 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5594 if (sd->groups != sd->groups->next)
5595 return 0;
5596 }
5597
5598 /* Following flags don't use groups */
5599 if (sd->flags & (SD_WAKE_IDLE |
5600 SD_WAKE_AFFINE |
5601 SD_WAKE_BALANCE))
5602 return 0;
5603
5604 return 1;
5605}
5606
48f24c4d
IM
5607static int
5608sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5609{
5610 unsigned long cflags = sd->flags, pflags = parent->flags;
5611
5612 if (sd_degenerate(parent))
5613 return 1;
5614
5615 if (!cpus_equal(sd->span, parent->span))
5616 return 0;
5617
5618 /* Does parent contain flags not in child? */
5619 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5620 if (cflags & SD_WAKE_AFFINE)
5621 pflags &= ~SD_WAKE_BALANCE;
5622 /* Flags needing groups don't count if only 1 group in parent */
5623 if (parent->groups == parent->groups->next) {
5624 pflags &= ~(SD_LOAD_BALANCE |
5625 SD_BALANCE_NEWIDLE |
5626 SD_BALANCE_FORK |
89c4710e
SS
5627 SD_BALANCE_EXEC |
5628 SD_SHARE_CPUPOWER |
5629 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5630 }
5631 if (~cflags & pflags)
5632 return 0;
5633
5634 return 1;
5635}
5636
1da177e4
LT
5637/*
5638 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5639 * hold the hotplug lock.
5640 */
9c1cfda2 5641static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5642{
70b97a7f 5643 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5644 struct sched_domain *tmp;
5645
5646 /* Remove the sched domains which do not contribute to scheduling. */
5647 for (tmp = sd; tmp; tmp = tmp->parent) {
5648 struct sched_domain *parent = tmp->parent;
5649 if (!parent)
5650 break;
1a848870 5651 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5652 tmp->parent = parent->parent;
1a848870
SS
5653 if (parent->parent)
5654 parent->parent->child = tmp;
5655 }
245af2c7
SS
5656 }
5657
1a848870 5658 if (sd && sd_degenerate(sd)) {
245af2c7 5659 sd = sd->parent;
1a848870
SS
5660 if (sd)
5661 sd->child = NULL;
5662 }
1da177e4
LT
5663
5664 sched_domain_debug(sd, cpu);
5665
674311d5 5666 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5667}
5668
5669/* cpus with isolated domains */
67af63a6 5670static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5671
5672/* Setup the mask of cpus configured for isolated domains */
5673static int __init isolated_cpu_setup(char *str)
5674{
5675 int ints[NR_CPUS], i;
5676
5677 str = get_options(str, ARRAY_SIZE(ints), ints);
5678 cpus_clear(cpu_isolated_map);
5679 for (i = 1; i <= ints[0]; i++)
5680 if (ints[i] < NR_CPUS)
5681 cpu_set(ints[i], cpu_isolated_map);
5682 return 1;
5683}
5684
5685__setup ("isolcpus=", isolated_cpu_setup);
5686
5687/*
6711cab4
SS
5688 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5689 * to a function which identifies what group(along with sched group) a CPU
5690 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5691 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5692 *
5693 * init_sched_build_groups will build a circular linked list of the groups
5694 * covered by the given span, and will set each group's ->cpumask correctly,
5695 * and ->cpu_power to 0.
5696 */
a616058b 5697static void
6711cab4
SS
5698init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5699 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5700 struct sched_group **sg))
1da177e4
LT
5701{
5702 struct sched_group *first = NULL, *last = NULL;
5703 cpumask_t covered = CPU_MASK_NONE;
5704 int i;
5705
5706 for_each_cpu_mask(i, span) {
6711cab4
SS
5707 struct sched_group *sg;
5708 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5709 int j;
5710
5711 if (cpu_isset(i, covered))
5712 continue;
5713
5714 sg->cpumask = CPU_MASK_NONE;
5517d86b 5715 sg->__cpu_power = 0;
1da177e4
LT
5716
5717 for_each_cpu_mask(j, span) {
6711cab4 5718 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5719 continue;
5720
5721 cpu_set(j, covered);
5722 cpu_set(j, sg->cpumask);
5723 }
5724 if (!first)
5725 first = sg;
5726 if (last)
5727 last->next = sg;
5728 last = sg;
5729 }
5730 last->next = first;
5731}
5732
9c1cfda2 5733#define SD_NODES_PER_DOMAIN 16
1da177e4 5734
198e2f18 5735/*
5736 * Self-tuning task migration cost measurement between source and target CPUs.
5737 *
5738 * This is done by measuring the cost of manipulating buffers of varying
5739 * sizes. For a given buffer-size here are the steps that are taken:
5740 *
5741 * 1) the source CPU reads+dirties a shared buffer
5742 * 2) the target CPU reads+dirties the same shared buffer
5743 *
5744 * We measure how long they take, in the following 4 scenarios:
5745 *
5746 * - source: CPU1, target: CPU2 | cost1
5747 * - source: CPU2, target: CPU1 | cost2
5748 * - source: CPU1, target: CPU1 | cost3
5749 * - source: CPU2, target: CPU2 | cost4
5750 *
5751 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5752 * the cost of migration.
5753 *
5754 * We then start off from a small buffer-size and iterate up to larger
5755 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5756 * doing a maximum search for the cost. (The maximum cost for a migration
5757 * normally occurs when the working set size is around the effective cache
5758 * size.)
5759 */
5760#define SEARCH_SCOPE 2
5761#define MIN_CACHE_SIZE (64*1024U)
5762#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5763#define ITERATIONS 1
198e2f18 5764#define SIZE_THRESH 130
5765#define COST_THRESH 130
5766
5767/*
5768 * The migration cost is a function of 'domain distance'. Domain
5769 * distance is the number of steps a CPU has to iterate down its
5770 * domain tree to share a domain with the other CPU. The farther
5771 * two CPUs are from each other, the larger the distance gets.
5772 *
5773 * Note that we use the distance only to cache measurement results,
5774 * the distance value is not used numerically otherwise. When two
5775 * CPUs have the same distance it is assumed that the migration
5776 * cost is the same. (this is a simplification but quite practical)
5777 */
5778#define MAX_DOMAIN_DISTANCE 32
5779
5780static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5781 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5782/*
5783 * Architectures may override the migration cost and thus avoid
5784 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5785 * virtualized hardware:
5786 */
5787#ifdef CONFIG_DEFAULT_MIGRATION_COST
5788 CONFIG_DEFAULT_MIGRATION_COST
5789#else
5790 -1LL
5791#endif
5792};
198e2f18 5793
5794/*
5795 * Allow override of migration cost - in units of microseconds.
5796 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5797 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5798 */
5799static int __init migration_cost_setup(char *str)
5800{
5801 int ints[MAX_DOMAIN_DISTANCE+1], i;
5802
5803 str = get_options(str, ARRAY_SIZE(ints), ints);
5804
5805 printk("#ints: %d\n", ints[0]);
5806 for (i = 1; i <= ints[0]; i++) {
5807 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5808 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5809 }
5810 return 1;
5811}
5812
5813__setup ("migration_cost=", migration_cost_setup);
5814
5815/*
5816 * Global multiplier (divisor) for migration-cutoff values,
5817 * in percentiles. E.g. use a value of 150 to get 1.5 times
5818 * longer cache-hot cutoff times.
5819 *
5820 * (We scale it from 100 to 128 to long long handling easier.)
5821 */
5822
5823#define MIGRATION_FACTOR_SCALE 128
5824
5825static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5826
5827static int __init setup_migration_factor(char *str)
5828{
5829 get_option(&str, &migration_factor);
5830 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5831 return 1;
5832}
5833
5834__setup("migration_factor=", setup_migration_factor);
5835
5836/*
5837 * Estimated distance of two CPUs, measured via the number of domains
5838 * we have to pass for the two CPUs to be in the same span:
5839 */
5840static unsigned long domain_distance(int cpu1, int cpu2)
5841{
5842 unsigned long distance = 0;
5843 struct sched_domain *sd;
5844
5845 for_each_domain(cpu1, sd) {
5846 WARN_ON(!cpu_isset(cpu1, sd->span));
5847 if (cpu_isset(cpu2, sd->span))
5848 return distance;
5849 distance++;
5850 }
5851 if (distance >= MAX_DOMAIN_DISTANCE) {
5852 WARN_ON(1);
5853 distance = MAX_DOMAIN_DISTANCE-1;
5854 }
5855
5856 return distance;
5857}
5858
5859static unsigned int migration_debug;
5860
5861static int __init setup_migration_debug(char *str)
5862{
5863 get_option(&str, &migration_debug);
5864 return 1;
5865}
5866
5867__setup("migration_debug=", setup_migration_debug);
5868
5869/*
5870 * Maximum cache-size that the scheduler should try to measure.
5871 * Architectures with larger caches should tune this up during
5872 * bootup. Gets used in the domain-setup code (i.e. during SMP
5873 * bootup).
5874 */
5875unsigned int max_cache_size;
5876
5877static int __init setup_max_cache_size(char *str)
5878{
5879 get_option(&str, &max_cache_size);
5880 return 1;
5881}
5882
5883__setup("max_cache_size=", setup_max_cache_size);
5884
5885/*
5886 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5887 * is the operation that is timed, so we try to generate unpredictable
5888 * cachemisses that still end up filling the L2 cache:
5889 */
5890static void touch_cache(void *__cache, unsigned long __size)
5891{
33859f7f
MOS
5892 unsigned long size = __size / sizeof(long);
5893 unsigned long chunk1 = size / 3;
5894 unsigned long chunk2 = 2 * size / 3;
198e2f18 5895 unsigned long *cache = __cache;
5896 int i;
5897
5898 for (i = 0; i < size/6; i += 8) {
5899 switch (i % 6) {
5900 case 0: cache[i]++;
5901 case 1: cache[size-1-i]++;
5902 case 2: cache[chunk1-i]++;
5903 case 3: cache[chunk1+i]++;
5904 case 4: cache[chunk2-i]++;
5905 case 5: cache[chunk2+i]++;
5906 }
5907 }
5908}
5909
5910/*
5911 * Measure the cache-cost of one task migration. Returns in units of nsec.
5912 */
48f24c4d
IM
5913static unsigned long long
5914measure_one(void *cache, unsigned long size, int source, int target)
198e2f18 5915{
5916 cpumask_t mask, saved_mask;
5917 unsigned long long t0, t1, t2, t3, cost;
5918
5919 saved_mask = current->cpus_allowed;
5920
5921 /*
5922 * Flush source caches to RAM and invalidate them:
5923 */
5924 sched_cacheflush();
5925
5926 /*
5927 * Migrate to the source CPU:
5928 */
5929 mask = cpumask_of_cpu(source);
5930 set_cpus_allowed(current, mask);
5931 WARN_ON(smp_processor_id() != source);
5932
5933 /*
5934 * Dirty the working set:
5935 */
5936 t0 = sched_clock();
5937 touch_cache(cache, size);
5938 t1 = sched_clock();
5939
5940 /*
5941 * Migrate to the target CPU, dirty the L2 cache and access
5942 * the shared buffer. (which represents the working set
5943 * of a migrated task.)
5944 */
5945 mask = cpumask_of_cpu(target);
5946 set_cpus_allowed(current, mask);
5947 WARN_ON(smp_processor_id() != target);
5948
5949 t2 = sched_clock();
5950 touch_cache(cache, size);
5951 t3 = sched_clock();
5952
5953 cost = t1-t0 + t3-t2;
5954
5955 if (migration_debug >= 2)
5956 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5957 source, target, t1-t0, t1-t0, t3-t2, cost);
5958 /*
5959 * Flush target caches to RAM and invalidate them:
5960 */
5961 sched_cacheflush();
5962
5963 set_cpus_allowed(current, saved_mask);
5964
5965 return cost;
5966}
5967
5968/*
5969 * Measure a series of task migrations and return the average
5970 * result. Since this code runs early during bootup the system
5971 * is 'undisturbed' and the average latency makes sense.
5972 *
5973 * The algorithm in essence auto-detects the relevant cache-size,
5974 * so it will properly detect different cachesizes for different
5975 * cache-hierarchies, depending on how the CPUs are connected.
5976 *
5977 * Architectures can prime the upper limit of the search range via
5978 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5979 */
5980static unsigned long long
5981measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5982{
5983 unsigned long long cost1, cost2;
5984 int i;
5985
5986 /*
5987 * Measure the migration cost of 'size' bytes, over an
5988 * average of 10 runs:
5989 *
5990 * (We perturb the cache size by a small (0..4k)
5991 * value to compensate size/alignment related artifacts.
5992 * We also subtract the cost of the operation done on
5993 * the same CPU.)
5994 */
5995 cost1 = 0;
5996
5997 /*
5998 * dry run, to make sure we start off cache-cold on cpu1,
5999 * and to get any vmalloc pagefaults in advance:
6000 */
6001 measure_one(cache, size, cpu1, cpu2);
6002 for (i = 0; i < ITERATIONS; i++)
33859f7f 6003 cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
198e2f18 6004
6005 measure_one(cache, size, cpu2, cpu1);
6006 for (i = 0; i < ITERATIONS; i++)
33859f7f 6007 cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
198e2f18 6008
6009 /*
6010 * (We measure the non-migrating [cached] cost on both
6011 * cpu1 and cpu2, to handle CPUs with different speeds)
6012 */
6013 cost2 = 0;
6014
6015 measure_one(cache, size, cpu1, cpu1);
6016 for (i = 0; i < ITERATIONS; i++)
33859f7f 6017 cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
198e2f18 6018
6019 measure_one(cache, size, cpu2, cpu2);
6020 for (i = 0; i < ITERATIONS; i++)
33859f7f 6021 cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
198e2f18 6022
6023 /*
6024 * Get the per-iteration migration cost:
6025 */
33859f7f
MOS
6026 do_div(cost1, 2 * ITERATIONS);
6027 do_div(cost2, 2 * ITERATIONS);
198e2f18 6028
6029 return cost1 - cost2;
6030}
6031
6032static unsigned long long measure_migration_cost(int cpu1, int cpu2)
6033{
6034 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
6035 unsigned int max_size, size, size_found = 0;
6036 long long cost = 0, prev_cost;
6037 void *cache;
6038
6039 /*
6040 * Search from max_cache_size*5 down to 64K - the real relevant
6041 * cachesize has to lie somewhere inbetween.
6042 */
6043 if (max_cache_size) {
6044 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
6045 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
6046 } else {
6047 /*
6048 * Since we have no estimation about the relevant
6049 * search range
6050 */
6051 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
6052 size = MIN_CACHE_SIZE;
6053 }
6054
6055 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
6056 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
6057 return 0;
6058 }
6059
6060 /*
6061 * Allocate the working set:
6062 */
6063 cache = vmalloc(max_size);
6064 if (!cache) {
33859f7f 6065 printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
2ed6e34f 6066 return 1000000; /* return 1 msec on very small boxen */
198e2f18 6067 }
6068
6069 while (size <= max_size) {
6070 prev_cost = cost;
6071 cost = measure_cost(cpu1, cpu2, cache, size);
6072
6073 /*
6074 * Update the max:
6075 */
6076 if (cost > 0) {
6077 if (max_cost < cost) {
6078 max_cost = cost;
6079 size_found = size;
6080 }
6081 }
6082 /*
6083 * Calculate average fluctuation, we use this to prevent
6084 * noise from triggering an early break out of the loop:
6085 */
6086 fluct = abs(cost - prev_cost);
6087 avg_fluct = (avg_fluct + fluct)/2;
6088
6089 if (migration_debug)
33859f7f
MOS
6090 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
6091 "(%8Ld %8Ld)\n",
198e2f18 6092 cpu1, cpu2, size,
6093 (long)cost / 1000000,
6094 ((long)cost / 100000) % 10,
6095 (long)max_cost / 1000000,
6096 ((long)max_cost / 100000) % 10,
6097 domain_distance(cpu1, cpu2),
6098 cost, avg_fluct);
6099
6100 /*
6101 * If we iterated at least 20% past the previous maximum,
6102 * and the cost has dropped by more than 20% already,
6103 * (taking fluctuations into account) then we assume to
6104 * have found the maximum and break out of the loop early:
6105 */
6106 if (size_found && (size*100 > size_found*SIZE_THRESH))
6107 if (cost+avg_fluct <= 0 ||
6108 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
6109
6110 if (migration_debug)
6111 printk("-> found max.\n");
6112 break;
6113 }
6114 /*
70b4d63e 6115 * Increase the cachesize in 10% steps:
198e2f18 6116 */
70b4d63e 6117 size = size * 10 / 9;
198e2f18 6118 }
6119
6120 if (migration_debug)
6121 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6122 cpu1, cpu2, size_found, max_cost);
6123
6124 vfree(cache);
6125
6126 /*
6127 * A task is considered 'cache cold' if at least 2 times
6128 * the worst-case cost of migration has passed.
6129 *
6130 * (this limit is only listened to if the load-balancing
6131 * situation is 'nice' - if there is a large imbalance we
6132 * ignore it for the sake of CPU utilization and
6133 * processing fairness.)
6134 */
6135 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6136}
6137
6138static void calibrate_migration_costs(const cpumask_t *cpu_map)
6139{
6140 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6141 unsigned long j0, j1, distance, max_distance = 0;
6142 struct sched_domain *sd;
6143
6144 j0 = jiffies;
6145
6146 /*
6147 * First pass - calculate the cacheflush times:
6148 */
6149 for_each_cpu_mask(cpu1, *cpu_map) {
6150 for_each_cpu_mask(cpu2, *cpu_map) {
6151 if (cpu1 == cpu2)
6152 continue;
6153 distance = domain_distance(cpu1, cpu2);
6154 max_distance = max(max_distance, distance);
6155 /*
6156 * No result cached yet?
6157 */
6158 if (migration_cost[distance] == -1LL)
6159 migration_cost[distance] =
6160 measure_migration_cost(cpu1, cpu2);
6161 }
6162 }
6163 /*
6164 * Second pass - update the sched domain hierarchy with
6165 * the new cache-hot-time estimations:
6166 */
6167 for_each_cpu_mask(cpu, *cpu_map) {
6168 distance = 0;
6169 for_each_domain(cpu, sd) {
6170 sd->cache_hot_time = migration_cost[distance];
6171 distance++;
6172 }
6173 }
6174 /*
6175 * Print the matrix:
6176 */
6177 if (migration_debug)
6178 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6179 max_cache_size,
6180#ifdef CONFIG_X86
6181 cpu_khz/1000
6182#else
6183 -1
6184#endif
6185 );
33859f7f
MOS
6186 if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
6187 printk("migration_cost=");
6188 for (distance = 0; distance <= max_distance; distance++) {
6189 if (distance)
6190 printk(",");
6191 printk("%ld", (long)migration_cost[distance] / 1000);
bd576c95 6192 }
33859f7f 6193 printk("\n");
198e2f18 6194 }
198e2f18 6195 j1 = jiffies;
6196 if (migration_debug)
33859f7f 6197 printk("migration: %ld seconds\n", (j1-j0) / HZ);
198e2f18 6198
6199 /*
6200 * Move back to the original CPU. NUMA-Q gets confused
6201 * if we migrate to another quad during bootup.
6202 */
6203 if (raw_smp_processor_id() != orig_cpu) {
6204 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6205 saved_mask = current->cpus_allowed;
6206
6207 set_cpus_allowed(current, mask);
6208 set_cpus_allowed(current, saved_mask);
6209 }
6210}
6211
9c1cfda2 6212#ifdef CONFIG_NUMA
198e2f18 6213
9c1cfda2
JH
6214/**
6215 * find_next_best_node - find the next node to include in a sched_domain
6216 * @node: node whose sched_domain we're building
6217 * @used_nodes: nodes already in the sched_domain
6218 *
6219 * Find the next node to include in a given scheduling domain. Simply
6220 * finds the closest node not already in the @used_nodes map.
6221 *
6222 * Should use nodemask_t.
6223 */
6224static int find_next_best_node(int node, unsigned long *used_nodes)
6225{
6226 int i, n, val, min_val, best_node = 0;
6227
6228 min_val = INT_MAX;
6229
6230 for (i = 0; i < MAX_NUMNODES; i++) {
6231 /* Start at @node */
6232 n = (node + i) % MAX_NUMNODES;
6233
6234 if (!nr_cpus_node(n))
6235 continue;
6236
6237 /* Skip already used nodes */
6238 if (test_bit(n, used_nodes))
6239 continue;
6240
6241 /* Simple min distance search */
6242 val = node_distance(node, n);
6243
6244 if (val < min_val) {
6245 min_val = val;
6246 best_node = n;
6247 }
6248 }
6249
6250 set_bit(best_node, used_nodes);
6251 return best_node;
6252}
6253
6254/**
6255 * sched_domain_node_span - get a cpumask for a node's sched_domain
6256 * @node: node whose cpumask we're constructing
6257 * @size: number of nodes to include in this span
6258 *
6259 * Given a node, construct a good cpumask for its sched_domain to span. It
6260 * should be one that prevents unnecessary balancing, but also spreads tasks
6261 * out optimally.
6262 */
6263static cpumask_t sched_domain_node_span(int node)
6264{
9c1cfda2 6265 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6266 cpumask_t span, nodemask;
6267 int i;
9c1cfda2
JH
6268
6269 cpus_clear(span);
6270 bitmap_zero(used_nodes, MAX_NUMNODES);
6271
6272 nodemask = node_to_cpumask(node);
6273 cpus_or(span, span, nodemask);
6274 set_bit(node, used_nodes);
6275
6276 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6277 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6278
9c1cfda2
JH
6279 nodemask = node_to_cpumask(next_node);
6280 cpus_or(span, span, nodemask);
6281 }
6282
6283 return span;
6284}
6285#endif
6286
5c45bf27 6287int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6288
9c1cfda2 6289/*
48f24c4d 6290 * SMT sched-domains:
9c1cfda2 6291 */
1da177e4
LT
6292#ifdef CONFIG_SCHED_SMT
6293static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6294static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6295
6711cab4
SS
6296static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6297 struct sched_group **sg)
1da177e4 6298{
6711cab4
SS
6299 if (sg)
6300 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6301 return cpu;
6302}
6303#endif
6304
48f24c4d
IM
6305/*
6306 * multi-core sched-domains:
6307 */
1e9f28fa
SS
6308#ifdef CONFIG_SCHED_MC
6309static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6310static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6311#endif
6312
6313#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
6314static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6315 struct sched_group **sg)
1e9f28fa 6316{
6711cab4 6317 int group;
a616058b
SS
6318 cpumask_t mask = cpu_sibling_map[cpu];
6319 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6320 group = first_cpu(mask);
6321 if (sg)
6322 *sg = &per_cpu(sched_group_core, group);
6323 return group;
1e9f28fa
SS
6324}
6325#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
6326static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6327 struct sched_group **sg)
1e9f28fa 6328{
6711cab4
SS
6329 if (sg)
6330 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6331 return cpu;
6332}
6333#endif
6334
1da177e4 6335static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6336static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6337
6711cab4
SS
6338static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6339 struct sched_group **sg)
1da177e4 6340{
6711cab4 6341 int group;
48f24c4d 6342#ifdef CONFIG_SCHED_MC
1e9f28fa 6343 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6344 cpus_and(mask, mask, *cpu_map);
6711cab4 6345 group = first_cpu(mask);
1e9f28fa 6346#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
6347 cpumask_t mask = cpu_sibling_map[cpu];
6348 cpus_and(mask, mask, *cpu_map);
6711cab4 6349 group = first_cpu(mask);
1da177e4 6350#else
6711cab4 6351 group = cpu;
1da177e4 6352#endif
6711cab4
SS
6353 if (sg)
6354 *sg = &per_cpu(sched_group_phys, group);
6355 return group;
1da177e4
LT
6356}
6357
6358#ifdef CONFIG_NUMA
1da177e4 6359/*
9c1cfda2
JH
6360 * The init_sched_build_groups can't handle what we want to do with node
6361 * groups, so roll our own. Now each node has its own list of groups which
6362 * gets dynamically allocated.
1da177e4 6363 */
9c1cfda2 6364static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6365static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6366
9c1cfda2 6367static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6368static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6369
6711cab4
SS
6370static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6371 struct sched_group **sg)
9c1cfda2 6372{
6711cab4
SS
6373 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6374 int group;
6375
6376 cpus_and(nodemask, nodemask, *cpu_map);
6377 group = first_cpu(nodemask);
6378
6379 if (sg)
6380 *sg = &per_cpu(sched_group_allnodes, group);
6381 return group;
1da177e4 6382}
6711cab4 6383
08069033
SS
6384static void init_numa_sched_groups_power(struct sched_group *group_head)
6385{
6386 struct sched_group *sg = group_head;
6387 int j;
6388
6389 if (!sg)
6390 return;
6391next_sg:
6392 for_each_cpu_mask(j, sg->cpumask) {
6393 struct sched_domain *sd;
6394
6395 sd = &per_cpu(phys_domains, j);
6396 if (j != first_cpu(sd->groups->cpumask)) {
6397 /*
6398 * Only add "power" once for each
6399 * physical package.
6400 */
6401 continue;
6402 }
6403
5517d86b 6404 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
6405 }
6406 sg = sg->next;
6407 if (sg != group_head)
6408 goto next_sg;
6409}
1da177e4
LT
6410#endif
6411
a616058b 6412#ifdef CONFIG_NUMA
51888ca2
SV
6413/* Free memory allocated for various sched_group structures */
6414static void free_sched_groups(const cpumask_t *cpu_map)
6415{
a616058b 6416 int cpu, i;
51888ca2
SV
6417
6418 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6419 struct sched_group **sched_group_nodes
6420 = sched_group_nodes_bycpu[cpu];
6421
51888ca2
SV
6422 if (!sched_group_nodes)
6423 continue;
6424
6425 for (i = 0; i < MAX_NUMNODES; i++) {
6426 cpumask_t nodemask = node_to_cpumask(i);
6427 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6428
6429 cpus_and(nodemask, nodemask, *cpu_map);
6430 if (cpus_empty(nodemask))
6431 continue;
6432
6433 if (sg == NULL)
6434 continue;
6435 sg = sg->next;
6436next_sg:
6437 oldsg = sg;
6438 sg = sg->next;
6439 kfree(oldsg);
6440 if (oldsg != sched_group_nodes[i])
6441 goto next_sg;
6442 }
6443 kfree(sched_group_nodes);
6444 sched_group_nodes_bycpu[cpu] = NULL;
6445 }
51888ca2 6446}
a616058b
SS
6447#else
6448static void free_sched_groups(const cpumask_t *cpu_map)
6449{
6450}
6451#endif
51888ca2 6452
89c4710e
SS
6453/*
6454 * Initialize sched groups cpu_power.
6455 *
6456 * cpu_power indicates the capacity of sched group, which is used while
6457 * distributing the load between different sched groups in a sched domain.
6458 * Typically cpu_power for all the groups in a sched domain will be same unless
6459 * there are asymmetries in the topology. If there are asymmetries, group
6460 * having more cpu_power will pickup more load compared to the group having
6461 * less cpu_power.
6462 *
6463 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6464 * the maximum number of tasks a group can handle in the presence of other idle
6465 * or lightly loaded groups in the same sched domain.
6466 */
6467static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6468{
6469 struct sched_domain *child;
6470 struct sched_group *group;
6471
6472 WARN_ON(!sd || !sd->groups);
6473
6474 if (cpu != first_cpu(sd->groups->cpumask))
6475 return;
6476
6477 child = sd->child;
6478
5517d86b
ED
6479 sd->groups->__cpu_power = 0;
6480
89c4710e
SS
6481 /*
6482 * For perf policy, if the groups in child domain share resources
6483 * (for example cores sharing some portions of the cache hierarchy
6484 * or SMT), then set this domain groups cpu_power such that each group
6485 * can handle only one task, when there are other idle groups in the
6486 * same sched domain.
6487 */
6488 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6489 (child->flags &
6490 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6491 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6492 return;
6493 }
6494
89c4710e
SS
6495 /*
6496 * add cpu_power of each child group to this groups cpu_power
6497 */
6498 group = child->groups;
6499 do {
5517d86b 6500 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6501 group = group->next;
6502 } while (group != child->groups);
6503}
6504
1da177e4 6505/*
1a20ff27
DG
6506 * Build sched domains for a given set of cpus and attach the sched domains
6507 * to the individual cpus
1da177e4 6508 */
51888ca2 6509static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6510{
6511 int i;
89c4710e 6512 struct sched_domain *sd;
d1b55138
JH
6513#ifdef CONFIG_NUMA
6514 struct sched_group **sched_group_nodes = NULL;
6711cab4 6515 int sd_allnodes = 0;
d1b55138
JH
6516
6517 /*
6518 * Allocate the per-node list of sched groups
6519 */
51888ca2 6520 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
d3a5aa98 6521 GFP_KERNEL);
d1b55138
JH
6522 if (!sched_group_nodes) {
6523 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6524 return -ENOMEM;
d1b55138
JH
6525 }
6526 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6527#endif
1da177e4
LT
6528
6529 /*
1a20ff27 6530 * Set up domains for cpus specified by the cpu_map.
1da177e4 6531 */
1a20ff27 6532 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6533 struct sched_domain *sd = NULL, *p;
6534 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6535
1a20ff27 6536 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6537
6538#ifdef CONFIG_NUMA
d1b55138 6539 if (cpus_weight(*cpu_map)
9c1cfda2
JH
6540 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6541 sd = &per_cpu(allnodes_domains, i);
6542 *sd = SD_ALLNODES_INIT;
6543 sd->span = *cpu_map;
6711cab4 6544 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6545 p = sd;
6711cab4 6546 sd_allnodes = 1;
9c1cfda2
JH
6547 } else
6548 p = NULL;
6549
1da177e4 6550 sd = &per_cpu(node_domains, i);
1da177e4 6551 *sd = SD_NODE_INIT;
9c1cfda2
JH
6552 sd->span = sched_domain_node_span(cpu_to_node(i));
6553 sd->parent = p;
1a848870
SS
6554 if (p)
6555 p->child = sd;
9c1cfda2 6556 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6557#endif
6558
6559 p = sd;
6560 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6561 *sd = SD_CPU_INIT;
6562 sd->span = nodemask;
6563 sd->parent = p;
1a848870
SS
6564 if (p)
6565 p->child = sd;
6711cab4 6566 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6567
1e9f28fa
SS
6568#ifdef CONFIG_SCHED_MC
6569 p = sd;
6570 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6571 *sd = SD_MC_INIT;
6572 sd->span = cpu_coregroup_map(i);
6573 cpus_and(sd->span, sd->span, *cpu_map);
6574 sd->parent = p;
1a848870 6575 p->child = sd;
6711cab4 6576 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6577#endif
6578
1da177e4
LT
6579#ifdef CONFIG_SCHED_SMT
6580 p = sd;
6581 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6582 *sd = SD_SIBLING_INIT;
6583 sd->span = cpu_sibling_map[i];
1a20ff27 6584 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6585 sd->parent = p;
1a848870 6586 p->child = sd;
6711cab4 6587 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6588#endif
6589 }
6590
6591#ifdef CONFIG_SCHED_SMT
6592 /* Set up CPU (sibling) groups */
9c1cfda2 6593 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6594 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6595 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6596 if (i != first_cpu(this_sibling_map))
6597 continue;
6598
6711cab4 6599 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
1da177e4
LT
6600 }
6601#endif
6602
1e9f28fa
SS
6603#ifdef CONFIG_SCHED_MC
6604 /* Set up multi-core groups */
6605 for_each_cpu_mask(i, *cpu_map) {
6606 cpumask_t this_core_map = cpu_coregroup_map(i);
6607 cpus_and(this_core_map, this_core_map, *cpu_map);
6608 if (i != first_cpu(this_core_map))
6609 continue;
6711cab4 6610 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
1e9f28fa
SS
6611 }
6612#endif
6613
6614
1da177e4
LT
6615 /* Set up physical groups */
6616 for (i = 0; i < MAX_NUMNODES; i++) {
6617 cpumask_t nodemask = node_to_cpumask(i);
6618
1a20ff27 6619 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6620 if (cpus_empty(nodemask))
6621 continue;
6622
6711cab4 6623 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6624 }
6625
6626#ifdef CONFIG_NUMA
6627 /* Set up node groups */
6711cab4
SS
6628 if (sd_allnodes)
6629 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
9c1cfda2
JH
6630
6631 for (i = 0; i < MAX_NUMNODES; i++) {
6632 /* Set up node groups */
6633 struct sched_group *sg, *prev;
6634 cpumask_t nodemask = node_to_cpumask(i);
6635 cpumask_t domainspan;
6636 cpumask_t covered = CPU_MASK_NONE;
6637 int j;
6638
6639 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6640 if (cpus_empty(nodemask)) {
6641 sched_group_nodes[i] = NULL;
9c1cfda2 6642 continue;
d1b55138 6643 }
9c1cfda2
JH
6644
6645 domainspan = sched_domain_node_span(i);
6646 cpus_and(domainspan, domainspan, *cpu_map);
6647
15f0b676 6648 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6649 if (!sg) {
6650 printk(KERN_WARNING "Can not alloc domain group for "
6651 "node %d\n", i);
6652 goto error;
6653 }
9c1cfda2
JH
6654 sched_group_nodes[i] = sg;
6655 for_each_cpu_mask(j, nodemask) {
6656 struct sched_domain *sd;
6657 sd = &per_cpu(node_domains, j);
6658 sd->groups = sg;
9c1cfda2 6659 }
5517d86b 6660 sg->__cpu_power = 0;
9c1cfda2 6661 sg->cpumask = nodemask;
51888ca2 6662 sg->next = sg;
9c1cfda2
JH
6663 cpus_or(covered, covered, nodemask);
6664 prev = sg;
6665
6666 for (j = 0; j < MAX_NUMNODES; j++) {
6667 cpumask_t tmp, notcovered;
6668 int n = (i + j) % MAX_NUMNODES;
6669
6670 cpus_complement(notcovered, covered);
6671 cpus_and(tmp, notcovered, *cpu_map);
6672 cpus_and(tmp, tmp, domainspan);
6673 if (cpus_empty(tmp))
6674 break;
6675
6676 nodemask = node_to_cpumask(n);
6677 cpus_and(tmp, tmp, nodemask);
6678 if (cpus_empty(tmp))
6679 continue;
6680
15f0b676
SV
6681 sg = kmalloc_node(sizeof(struct sched_group),
6682 GFP_KERNEL, i);
9c1cfda2
JH
6683 if (!sg) {
6684 printk(KERN_WARNING
6685 "Can not alloc domain group for node %d\n", j);
51888ca2 6686 goto error;
9c1cfda2 6687 }
5517d86b 6688 sg->__cpu_power = 0;
9c1cfda2 6689 sg->cpumask = tmp;
51888ca2 6690 sg->next = prev->next;
9c1cfda2
JH
6691 cpus_or(covered, covered, tmp);
6692 prev->next = sg;
6693 prev = sg;
6694 }
9c1cfda2 6695 }
1da177e4
LT
6696#endif
6697
6698 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6699#ifdef CONFIG_SCHED_SMT
1a20ff27 6700 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6701 sd = &per_cpu(cpu_domains, i);
89c4710e 6702 init_sched_groups_power(i, sd);
5c45bf27 6703 }
1da177e4 6704#endif
1e9f28fa 6705#ifdef CONFIG_SCHED_MC
5c45bf27 6706 for_each_cpu_mask(i, *cpu_map) {
1e9f28fa 6707 sd = &per_cpu(core_domains, i);
89c4710e 6708 init_sched_groups_power(i, sd);
5c45bf27
SS
6709 }
6710#endif
1e9f28fa 6711
5c45bf27 6712 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6713 sd = &per_cpu(phys_domains, i);
89c4710e 6714 init_sched_groups_power(i, sd);
1da177e4
LT
6715 }
6716
9c1cfda2 6717#ifdef CONFIG_NUMA
08069033
SS
6718 for (i = 0; i < MAX_NUMNODES; i++)
6719 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6720
6711cab4
SS
6721 if (sd_allnodes) {
6722 struct sched_group *sg;
f712c0c7 6723
6711cab4 6724 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6725 init_numa_sched_groups_power(sg);
6726 }
9c1cfda2
JH
6727#endif
6728
1da177e4 6729 /* Attach the domains */
1a20ff27 6730 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6731 struct sched_domain *sd;
6732#ifdef CONFIG_SCHED_SMT
6733 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6734#elif defined(CONFIG_SCHED_MC)
6735 sd = &per_cpu(core_domains, i);
1da177e4
LT
6736#else
6737 sd = &per_cpu(phys_domains, i);
6738#endif
6739 cpu_attach_domain(sd, i);
6740 }
198e2f18 6741 /*
6742 * Tune cache-hot values:
6743 */
6744 calibrate_migration_costs(cpu_map);
51888ca2
SV
6745
6746 return 0;
6747
a616058b 6748#ifdef CONFIG_NUMA
51888ca2
SV
6749error:
6750 free_sched_groups(cpu_map);
6751 return -ENOMEM;
a616058b 6752#endif
1da177e4 6753}
1a20ff27
DG
6754/*
6755 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6756 */
51888ca2 6757static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6758{
6759 cpumask_t cpu_default_map;
51888ca2 6760 int err;
1da177e4 6761
1a20ff27
DG
6762 /*
6763 * Setup mask for cpus without special case scheduling requirements.
6764 * For now this just excludes isolated cpus, but could be used to
6765 * exclude other special cases in the future.
6766 */
6767 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6768
51888ca2
SV
6769 err = build_sched_domains(&cpu_default_map);
6770
6771 return err;
1a20ff27
DG
6772}
6773
6774static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6775{
51888ca2 6776 free_sched_groups(cpu_map);
9c1cfda2 6777}
1da177e4 6778
1a20ff27
DG
6779/*
6780 * Detach sched domains from a group of cpus specified in cpu_map
6781 * These cpus will now be attached to the NULL domain
6782 */
858119e1 6783static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6784{
6785 int i;
6786
6787 for_each_cpu_mask(i, *cpu_map)
6788 cpu_attach_domain(NULL, i);
6789 synchronize_sched();
6790 arch_destroy_sched_domains(cpu_map);
6791}
6792
6793/*
6794 * Partition sched domains as specified by the cpumasks below.
6795 * This attaches all cpus from the cpumasks to the NULL domain,
6796 * waits for a RCU quiescent period, recalculates sched
6797 * domain information and then attaches them back to the
6798 * correct sched domains
6799 * Call with hotplug lock held
6800 */
51888ca2 6801int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6802{
6803 cpumask_t change_map;
51888ca2 6804 int err = 0;
1a20ff27
DG
6805
6806 cpus_and(*partition1, *partition1, cpu_online_map);
6807 cpus_and(*partition2, *partition2, cpu_online_map);
6808 cpus_or(change_map, *partition1, *partition2);
6809
6810 /* Detach sched domains from all of the affected cpus */
6811 detach_destroy_domains(&change_map);
6812 if (!cpus_empty(*partition1))
51888ca2
SV
6813 err = build_sched_domains(partition1);
6814 if (!err && !cpus_empty(*partition2))
6815 err = build_sched_domains(partition2);
6816
6817 return err;
1a20ff27
DG
6818}
6819
5c45bf27
SS
6820#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6821int arch_reinit_sched_domains(void)
6822{
6823 int err;
6824
6825 lock_cpu_hotplug();
6826 detach_destroy_domains(&cpu_online_map);
6827 err = arch_init_sched_domains(&cpu_online_map);
6828 unlock_cpu_hotplug();
6829
6830 return err;
6831}
6832
6833static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6834{
6835 int ret;
6836
6837 if (buf[0] != '0' && buf[0] != '1')
6838 return -EINVAL;
6839
6840 if (smt)
6841 sched_smt_power_savings = (buf[0] == '1');
6842 else
6843 sched_mc_power_savings = (buf[0] == '1');
6844
6845 ret = arch_reinit_sched_domains();
6846
6847 return ret ? ret : count;
6848}
6849
6850int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6851{
6852 int err = 0;
48f24c4d 6853
5c45bf27
SS
6854#ifdef CONFIG_SCHED_SMT
6855 if (smt_capable())
6856 err = sysfs_create_file(&cls->kset.kobj,
6857 &attr_sched_smt_power_savings.attr);
6858#endif
6859#ifdef CONFIG_SCHED_MC
6860 if (!err && mc_capable())
6861 err = sysfs_create_file(&cls->kset.kobj,
6862 &attr_sched_mc_power_savings.attr);
6863#endif
6864 return err;
6865}
6866#endif
6867
6868#ifdef CONFIG_SCHED_MC
6869static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6870{
6871 return sprintf(page, "%u\n", sched_mc_power_savings);
6872}
48f24c4d
IM
6873static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6874 const char *buf, size_t count)
5c45bf27
SS
6875{
6876 return sched_power_savings_store(buf, count, 0);
6877}
6878SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6879 sched_mc_power_savings_store);
6880#endif
6881
6882#ifdef CONFIG_SCHED_SMT
6883static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6884{
6885 return sprintf(page, "%u\n", sched_smt_power_savings);
6886}
48f24c4d
IM
6887static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6888 const char *buf, size_t count)
5c45bf27
SS
6889{
6890 return sched_power_savings_store(buf, count, 1);
6891}
6892SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6893 sched_smt_power_savings_store);
6894#endif
6895
1da177e4
LT
6896/*
6897 * Force a reinitialization of the sched domains hierarchy. The domains
6898 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6899 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6900 * which will prevent rebalancing while the sched domains are recalculated.
6901 */
6902static int update_sched_domains(struct notifier_block *nfb,
6903 unsigned long action, void *hcpu)
6904{
1da177e4
LT
6905 switch (action) {
6906 case CPU_UP_PREPARE:
6907 case CPU_DOWN_PREPARE:
1a20ff27 6908 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6909 return NOTIFY_OK;
6910
6911 case CPU_UP_CANCELED:
6912 case CPU_DOWN_FAILED:
6913 case CPU_ONLINE:
6914 case CPU_DEAD:
6915 /*
6916 * Fall through and re-initialise the domains.
6917 */
6918 break;
6919 default:
6920 return NOTIFY_DONE;
6921 }
6922
6923 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6924 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6925
6926 return NOTIFY_OK;
6927}
1da177e4
LT
6928
6929void __init sched_init_smp(void)
6930{
5c1e1767
NP
6931 cpumask_t non_isolated_cpus;
6932
1da177e4 6933 lock_cpu_hotplug();
1a20ff27 6934 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6935 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6936 if (cpus_empty(non_isolated_cpus))
6937 cpu_set(smp_processor_id(), non_isolated_cpus);
1da177e4
LT
6938 unlock_cpu_hotplug();
6939 /* XXX: Theoretical race here - CPU may be hotplugged now */
6940 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6941
6942 /* Move init over to a non-isolated CPU */
6943 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6944 BUG();
1da177e4
LT
6945}
6946#else
6947void __init sched_init_smp(void)
6948{
6949}
6950#endif /* CONFIG_SMP */
6951
6952int in_sched_functions(unsigned long addr)
6953{
6954 /* Linker adds these: start and end of __sched functions */
6955 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6956
1da177e4
LT
6957 return in_lock_functions(addr) ||
6958 (addr >= (unsigned long)__sched_text_start
6959 && addr < (unsigned long)__sched_text_end);
6960}
6961
6962void __init sched_init(void)
6963{
1da177e4 6964 int i, j, k;
476f3534 6965 int highest_cpu = 0;
1da177e4 6966
0a945022 6967 for_each_possible_cpu(i) {
70b97a7f
IM
6968 struct prio_array *array;
6969 struct rq *rq;
1da177e4
LT
6970
6971 rq = cpu_rq(i);
6972 spin_lock_init(&rq->lock);
fcb99371 6973 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6974 rq->nr_running = 0;
1da177e4
LT
6975 rq->active = rq->arrays;
6976 rq->expired = rq->arrays + 1;
6977 rq->best_expired_prio = MAX_PRIO;
6978
6979#ifdef CONFIG_SMP
41c7ce9a 6980 rq->sd = NULL;
7897986b
NP
6981 for (j = 1; j < 3; j++)
6982 rq->cpu_load[j] = 0;
1da177e4
LT
6983 rq->active_balance = 0;
6984 rq->push_cpu = 0;
0a2966b4 6985 rq->cpu = i;
1da177e4
LT
6986 rq->migration_thread = NULL;
6987 INIT_LIST_HEAD(&rq->migration_queue);
6988#endif
6989 atomic_set(&rq->nr_iowait, 0);
6990
6991 for (j = 0; j < 2; j++) {
6992 array = rq->arrays + j;
6993 for (k = 0; k < MAX_PRIO; k++) {
6994 INIT_LIST_HEAD(array->queue + k);
6995 __clear_bit(k, array->bitmap);
6996 }
6997 // delimiter for bitsearch
6998 __set_bit(MAX_PRIO, array->bitmap);
6999 }
476f3534 7000 highest_cpu = i;
1da177e4
LT
7001 }
7002
2dd73a4f 7003 set_load_weight(&init_task);
b50f60ce 7004
c9819f45 7005#ifdef CONFIG_SMP
476f3534 7006 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
7007 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7008#endif
7009
b50f60ce
HC
7010#ifdef CONFIG_RT_MUTEXES
7011 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7012#endif
7013
1da177e4
LT
7014 /*
7015 * The boot idle thread does lazy MMU switching as well:
7016 */
7017 atomic_inc(&init_mm.mm_count);
7018 enter_lazy_tlb(&init_mm, current);
7019
7020 /*
7021 * Make us the idle thread. Technically, schedule() should not be
7022 * called from this thread, however somewhere below it might be,
7023 * but because we are the idle thread, we just pick up running again
7024 * when this runqueue becomes "idle".
7025 */
7026 init_idle(current, smp_processor_id());
7027}
7028
7029#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7030void __might_sleep(char *file, int line)
7031{
48f24c4d 7032#ifdef in_atomic
1da177e4
LT
7033 static unsigned long prev_jiffy; /* ratelimiting */
7034
7035 if ((in_atomic() || irqs_disabled()) &&
7036 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7037 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7038 return;
7039 prev_jiffy = jiffies;
91368d73 7040 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7041 " context at %s:%d\n", file, line);
7042 printk("in_atomic():%d, irqs_disabled():%d\n",
7043 in_atomic(), irqs_disabled());
a4c410f0 7044 debug_show_held_locks(current);
3117df04
IM
7045 if (irqs_disabled())
7046 print_irqtrace_events(current);
1da177e4
LT
7047 dump_stack();
7048 }
7049#endif
7050}
7051EXPORT_SYMBOL(__might_sleep);
7052#endif
7053
7054#ifdef CONFIG_MAGIC_SYSRQ
7055void normalize_rt_tasks(void)
7056{
70b97a7f 7057 struct prio_array *array;
1da177e4 7058 struct task_struct *p;
1da177e4 7059 unsigned long flags;
70b97a7f 7060 struct rq *rq;
1da177e4
LT
7061
7062 read_lock_irq(&tasklist_lock);
c96d145e 7063 for_each_process(p) {
1da177e4
LT
7064 if (!rt_task(p))
7065 continue;
7066
b29739f9
IM
7067 spin_lock_irqsave(&p->pi_lock, flags);
7068 rq = __task_rq_lock(p);
1da177e4
LT
7069
7070 array = p->array;
7071 if (array)
7072 deactivate_task(p, task_rq(p));
7073 __setscheduler(p, SCHED_NORMAL, 0);
7074 if (array) {
7075 __activate_task(p, task_rq(p));
7076 resched_task(rq->curr);
7077 }
7078
b29739f9
IM
7079 __task_rq_unlock(rq);
7080 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
7081 }
7082 read_unlock_irq(&tasklist_lock);
7083}
7084
7085#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7086
7087#ifdef CONFIG_IA64
7088/*
7089 * These functions are only useful for the IA64 MCA handling.
7090 *
7091 * They can only be called when the whole system has been
7092 * stopped - every CPU needs to be quiescent, and no scheduling
7093 * activity can take place. Using them for anything else would
7094 * be a serious bug, and as a result, they aren't even visible
7095 * under any other configuration.
7096 */
7097
7098/**
7099 * curr_task - return the current task for a given cpu.
7100 * @cpu: the processor in question.
7101 *
7102 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7103 */
36c8b586 7104struct task_struct *curr_task(int cpu)
1df5c10a
LT
7105{
7106 return cpu_curr(cpu);
7107}
7108
7109/**
7110 * set_curr_task - set the current task for a given cpu.
7111 * @cpu: the processor in question.
7112 * @p: the task pointer to set.
7113 *
7114 * Description: This function must only be used when non-maskable interrupts
7115 * are serviced on a separate stack. It allows the architecture to switch the
7116 * notion of the current task on a cpu in a non-blocking manner. This function
7117 * must be called with all CPU's synchronized, and interrupts disabled, the
7118 * and caller must save the original value of the current task (see
7119 * curr_task() above) and restore that value before reenabling interrupts and
7120 * re-starting the system.
7121 *
7122 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7123 */
36c8b586 7124void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7125{
7126 cpu_curr(cpu) = p;
7127}
7128
7129#endif