]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched.c
sched: x86, track TSC-unstable events
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
9a11b49a 33#include <linux/debug_locks.h>
1da177e4
LT
34#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
7dfb7103 37#include <linux/freezer.h>
198e2f18 38#include <linux/vmalloc.h>
1da177e4
LT
39#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
8f0ab514 52#include <linux/tsacct_kern.h>
c6fd91f0 53#include <linux/kprobes.h>
0ff92245 54#include <linux/delayacct.h>
5517d86b 55#include <linux/reciprocal_div.h>
1da177e4 56
5517d86b 57#include <asm/tlb.h>
1da177e4
LT
58#include <asm/unistd.h>
59
b035b6de
AD
60/*
61 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
64 */
65unsigned long long __attribute__((weak)) sched_clock(void)
66{
67 return (unsigned long long)jiffies * (1000000000 / HZ);
68}
69
bb29ab26
IM
70/*
71 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
72 */
73void sched_clock_unstable_event(void)
74{
75}
76
1da177e4
LT
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
6aa645ea
IM
101#define NICE_0_LOAD SCHED_LOAD_SCALE
102#define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
1da177e4
LT
104/*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112#define DEF_TIMESLICE (100 * HZ / 1000)
113#define ON_RUNQUEUE_WEIGHT 30
114#define CHILD_PENALTY 95
115#define PARENT_PENALTY 100
116#define EXIT_WEIGHT 3
117#define PRIO_BONUS_RATIO 25
118#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
119#define INTERACTIVE_DELTA 2
120#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
121#define STARVATION_LIMIT (MAX_SLEEP_AVG)
122#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
123
124/*
125 * If a task is 'interactive' then we reinsert it in the active
126 * array after it has expired its current timeslice. (it will not
127 * continue to run immediately, it will still roundrobin with
128 * other interactive tasks.)
129 *
130 * This part scales the interactivity limit depending on niceness.
131 *
132 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
133 * Here are a few examples of different nice levels:
134 *
135 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
136 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
137 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
138 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
139 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
140 *
141 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
142 * priority range a task can explore, a value of '1' means the
143 * task is rated interactive.)
144 *
145 * Ie. nice +19 tasks can never get 'interactive' enough to be
146 * reinserted into the active array. And only heavily CPU-hog nice -20
147 * tasks will be expired. Default nice 0 tasks are somewhere between,
148 * it takes some effort for them to get interactive, but it's not
149 * too hard.
150 */
151
152#define CURRENT_BONUS(p) \
153 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
154 MAX_SLEEP_AVG)
155
156#define GRANULARITY (10 * HZ / 1000 ? : 1)
157
158#ifdef CONFIG_SMP
159#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
160 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
161 num_online_cpus())
162#else
163#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
164 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
165#endif
166
167#define SCALE(v1,v1_max,v2_max) \
168 (v1) * (v2_max) / (v1_max)
169
170#define DELTA(p) \
013d3868
MA
171 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
172 INTERACTIVE_DELTA)
1da177e4
LT
173
174#define TASK_INTERACTIVE(p) \
175 ((p)->prio <= (p)->static_prio - DELTA(p))
176
177#define INTERACTIVE_SLEEP(p) \
178 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
179 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
180
181#define TASK_PREEMPTS_CURR(p, rq) \
d5f9f942 182 ((p)->prio < (rq)->curr->prio)
1da177e4 183
1da177e4 184#define SCALE_PRIO(x, prio) \
2dd73a4f 185 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
1da177e4 186
2dd73a4f 187static unsigned int static_prio_timeslice(int static_prio)
1da177e4 188{
2dd73a4f
PW
189 if (static_prio < NICE_TO_PRIO(0))
190 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
1da177e4 191 else
2dd73a4f 192 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
1da177e4 193}
2dd73a4f 194
5517d86b
ED
195#ifdef CONFIG_SMP
196/*
197 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
198 * Since cpu_power is a 'constant', we can use a reciprocal divide.
199 */
200static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
201{
202 return reciprocal_divide(load, sg->reciprocal_cpu_power);
203}
204
205/*
206 * Each time a sched group cpu_power is changed,
207 * we must compute its reciprocal value
208 */
209static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
210{
211 sg->__cpu_power += val;
212 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
213}
214#endif
215
91fcdd4e
BP
216/*
217 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
218 * to time slice values: [800ms ... 100ms ... 5ms]
219 *
220 * The higher a thread's priority, the bigger timeslices
221 * it gets during one round of execution. But even the lowest
222 * priority thread gets MIN_TIMESLICE worth of execution time.
223 */
224
36c8b586 225static inline unsigned int task_timeslice(struct task_struct *p)
2dd73a4f
PW
226{
227 return static_prio_timeslice(p->static_prio);
228}
229
e05606d3
IM
230static inline int rt_policy(int policy)
231{
232 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
233 return 1;
234 return 0;
235}
236
237static inline int task_has_rt_policy(struct task_struct *p)
238{
239 return rt_policy(p->policy);
240}
241
1da177e4 242/*
6aa645ea 243 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 244 */
6aa645ea
IM
245struct rt_prio_array {
246 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
247 struct list_head queue[MAX_RT_PRIO];
248};
249
250struct load_stat {
251 struct load_weight load;
252 u64 load_update_start, load_update_last;
253 unsigned long delta_fair, delta_exec, delta_stat;
254};
255
256/* CFS-related fields in a runqueue */
257struct cfs_rq {
258 struct load_weight load;
259 unsigned long nr_running;
260
261 s64 fair_clock;
262 u64 exec_clock;
263 s64 wait_runtime;
264 u64 sleeper_bonus;
265 unsigned long wait_runtime_overruns, wait_runtime_underruns;
266
267 struct rb_root tasks_timeline;
268 struct rb_node *rb_leftmost;
269 struct rb_node *rb_load_balance_curr;
270#ifdef CONFIG_FAIR_GROUP_SCHED
271 /* 'curr' points to currently running entity on this cfs_rq.
272 * It is set to NULL otherwise (i.e when none are currently running).
273 */
274 struct sched_entity *curr;
275 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
276
277 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
278 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
279 * (like users, containers etc.)
280 *
281 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
282 * list is used during load balance.
283 */
284 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
285#endif
286};
1da177e4 287
6aa645ea
IM
288/* Real-Time classes' related field in a runqueue: */
289struct rt_rq {
290 struct rt_prio_array active;
291 int rt_load_balance_idx;
292 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
293};
294
295/*
296 * The prio-array type of the old scheduler:
297 */
1da177e4
LT
298struct prio_array {
299 unsigned int nr_active;
d444886e 300 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
1da177e4
LT
301 struct list_head queue[MAX_PRIO];
302};
303
304/*
305 * This is the main, per-CPU runqueue data structure.
306 *
307 * Locking rule: those places that want to lock multiple runqueues
308 * (such as the load balancing or the thread migration code), lock
309 * acquire operations must be ordered by ascending &runqueue.
310 */
70b97a7f 311struct rq {
6aa645ea 312 spinlock_t lock; /* runqueue lock */
1da177e4
LT
313
314 /*
315 * nr_running and cpu_load should be in the same cacheline because
316 * remote CPUs use both these fields when doing load calculation.
317 */
318 unsigned long nr_running;
2dd73a4f 319 unsigned long raw_weighted_load;
6aa645ea
IM
320 #define CPU_LOAD_IDX_MAX 5
321 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 322 unsigned char idle_at_tick;
46cb4b7c
SS
323#ifdef CONFIG_NO_HZ
324 unsigned char in_nohz_recently;
325#endif
6aa645ea
IM
326 struct load_stat ls; /* capture load from *all* tasks on this cpu */
327 unsigned long nr_load_updates;
328 u64 nr_switches;
329
330 struct cfs_rq cfs;
331#ifdef CONFIG_FAIR_GROUP_SCHED
332 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 333#endif
6aa645ea 334 struct rt_rq rt;
1da177e4
LT
335
336 /*
337 * This is part of a global counter where only the total sum
338 * over all CPUs matters. A task can increase this counter on
339 * one CPU and if it got migrated afterwards it may decrease
340 * it on another CPU. Always updated under the runqueue lock:
341 */
342 unsigned long nr_uninterruptible;
343
344 unsigned long expired_timestamp;
b18ec803 345 unsigned long long most_recent_timestamp;
6aa645ea 346
36c8b586 347 struct task_struct *curr, *idle;
c9819f45 348 unsigned long next_balance;
1da177e4 349 struct mm_struct *prev_mm;
6aa645ea 350
70b97a7f 351 struct prio_array *active, *expired, arrays[2];
1da177e4 352 int best_expired_prio;
6aa645ea
IM
353
354 u64 clock, prev_clock_raw;
355 s64 clock_max_delta;
356
357 unsigned int clock_warps, clock_overflows;
358 unsigned int clock_unstable_events;
359
360 struct sched_class *load_balance_class;
361
1da177e4
LT
362 atomic_t nr_iowait;
363
364#ifdef CONFIG_SMP
365 struct sched_domain *sd;
366
367 /* For active balancing */
368 int active_balance;
369 int push_cpu;
0a2966b4 370 int cpu; /* cpu of this runqueue */
1da177e4 371
36c8b586 372 struct task_struct *migration_thread;
1da177e4
LT
373 struct list_head migration_queue;
374#endif
375
376#ifdef CONFIG_SCHEDSTATS
377 /* latency stats */
378 struct sched_info rq_sched_info;
379
380 /* sys_sched_yield() stats */
381 unsigned long yld_exp_empty;
382 unsigned long yld_act_empty;
383 unsigned long yld_both_empty;
384 unsigned long yld_cnt;
385
386 /* schedule() stats */
387 unsigned long sched_switch;
388 unsigned long sched_cnt;
389 unsigned long sched_goidle;
390
391 /* try_to_wake_up() stats */
392 unsigned long ttwu_cnt;
393 unsigned long ttwu_local;
394#endif
fcb99371 395 struct lock_class_key rq_lock_key;
1da177e4
LT
396};
397
c3396620 398static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
5be9361c 399static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 400
dd41f596
IM
401static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
402{
403 rq->curr->sched_class->check_preempt_curr(rq, p);
404}
405
0a2966b4
CL
406static inline int cpu_of(struct rq *rq)
407{
408#ifdef CONFIG_SMP
409 return rq->cpu;
410#else
411 return 0;
412#endif
413}
414
20d315d4
IM
415/*
416 * Per-runqueue clock, as finegrained as the platform can give us:
417 */
418static unsigned long long __rq_clock(struct rq *rq)
419{
420 u64 prev_raw = rq->prev_clock_raw;
421 u64 now = sched_clock();
422 s64 delta = now - prev_raw;
423 u64 clock = rq->clock;
424
425 /*
426 * Protect against sched_clock() occasionally going backwards:
427 */
428 if (unlikely(delta < 0)) {
429 clock++;
430 rq->clock_warps++;
431 } else {
432 /*
433 * Catch too large forward jumps too:
434 */
435 if (unlikely(delta > 2*TICK_NSEC)) {
436 clock++;
437 rq->clock_overflows++;
438 } else {
439 if (unlikely(delta > rq->clock_max_delta))
440 rq->clock_max_delta = delta;
441 clock += delta;
442 }
443 }
444
445 rq->prev_clock_raw = now;
446 rq->clock = clock;
447
448 return clock;
449}
450
451static inline unsigned long long rq_clock(struct rq *rq)
452{
453 int this_cpu = smp_processor_id();
454
455 if (this_cpu == cpu_of(rq))
456 return __rq_clock(rq);
457
458 return rq->clock;
459}
460
674311d5
NP
461/*
462 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 463 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
464 *
465 * The domain tree of any CPU may only be accessed from within
466 * preempt-disabled sections.
467 */
48f24c4d
IM
468#define for_each_domain(cpu, __sd) \
469 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
470
471#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
472#define this_rq() (&__get_cpu_var(runqueues))
473#define task_rq(p) cpu_rq(task_cpu(p))
474#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
475
138a8aeb
IM
476#ifdef CONFIG_FAIR_GROUP_SCHED
477/* Change a task's ->cfs_rq if it moves across CPUs */
478static inline void set_task_cfs_rq(struct task_struct *p)
479{
480 p->se.cfs_rq = &task_rq(p)->cfs;
481}
482#else
483static inline void set_task_cfs_rq(struct task_struct *p)
484{
485}
486#endif
487
1da177e4 488#ifndef prepare_arch_switch
4866cde0
NP
489# define prepare_arch_switch(next) do { } while (0)
490#endif
491#ifndef finish_arch_switch
492# define finish_arch_switch(prev) do { } while (0)
493#endif
494
495#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 496static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
497{
498 return rq->curr == p;
499}
500
70b97a7f 501static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
502{
503}
504
70b97a7f 505static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 506{
da04c035
IM
507#ifdef CONFIG_DEBUG_SPINLOCK
508 /* this is a valid case when another task releases the spinlock */
509 rq->lock.owner = current;
510#endif
8a25d5de
IM
511 /*
512 * If we are tracking spinlock dependencies then we have to
513 * fix up the runqueue lock - which gets 'carried over' from
514 * prev into current:
515 */
516 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
517
4866cde0
NP
518 spin_unlock_irq(&rq->lock);
519}
520
521#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 522static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
523{
524#ifdef CONFIG_SMP
525 return p->oncpu;
526#else
527 return rq->curr == p;
528#endif
529}
530
70b97a7f 531static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
532{
533#ifdef CONFIG_SMP
534 /*
535 * We can optimise this out completely for !SMP, because the
536 * SMP rebalancing from interrupt is the only thing that cares
537 * here.
538 */
539 next->oncpu = 1;
540#endif
541#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
542 spin_unlock_irq(&rq->lock);
543#else
544 spin_unlock(&rq->lock);
545#endif
546}
547
70b97a7f 548static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
549{
550#ifdef CONFIG_SMP
551 /*
552 * After ->oncpu is cleared, the task can be moved to a different CPU.
553 * We must ensure this doesn't happen until the switch is completely
554 * finished.
555 */
556 smp_wmb();
557 prev->oncpu = 0;
558#endif
559#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
560 local_irq_enable();
1da177e4 561#endif
4866cde0
NP
562}
563#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 564
b29739f9
IM
565/*
566 * __task_rq_lock - lock the runqueue a given task resides on.
567 * Must be called interrupts disabled.
568 */
70b97a7f 569static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
570 __acquires(rq->lock)
571{
70b97a7f 572 struct rq *rq;
b29739f9
IM
573
574repeat_lock_task:
575 rq = task_rq(p);
576 spin_lock(&rq->lock);
577 if (unlikely(rq != task_rq(p))) {
578 spin_unlock(&rq->lock);
579 goto repeat_lock_task;
580 }
581 return rq;
582}
583
1da177e4
LT
584/*
585 * task_rq_lock - lock the runqueue a given task resides on and disable
586 * interrupts. Note the ordering: we can safely lookup the task_rq without
587 * explicitly disabling preemption.
588 */
70b97a7f 589static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
590 __acquires(rq->lock)
591{
70b97a7f 592 struct rq *rq;
1da177e4
LT
593
594repeat_lock_task:
595 local_irq_save(*flags);
596 rq = task_rq(p);
597 spin_lock(&rq->lock);
598 if (unlikely(rq != task_rq(p))) {
599 spin_unlock_irqrestore(&rq->lock, *flags);
600 goto repeat_lock_task;
601 }
602 return rq;
603}
604
70b97a7f 605static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
606 __releases(rq->lock)
607{
608 spin_unlock(&rq->lock);
609}
610
70b97a7f 611static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
612 __releases(rq->lock)
613{
614 spin_unlock_irqrestore(&rq->lock, *flags);
615}
616
1da177e4 617/*
cc2a73b5 618 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 619 */
70b97a7f 620static inline struct rq *this_rq_lock(void)
1da177e4
LT
621 __acquires(rq->lock)
622{
70b97a7f 623 struct rq *rq;
1da177e4
LT
624
625 local_irq_disable();
626 rq = this_rq();
627 spin_lock(&rq->lock);
628
629 return rq;
630}
631
c24d20db
IM
632/*
633 * resched_task - mark a task 'to be rescheduled now'.
634 *
635 * On UP this means the setting of the need_resched flag, on SMP it
636 * might also involve a cross-CPU call to trigger the scheduler on
637 * the target CPU.
638 */
639#ifdef CONFIG_SMP
640
641#ifndef tsk_is_polling
642#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
643#endif
644
645static void resched_task(struct task_struct *p)
646{
647 int cpu;
648
649 assert_spin_locked(&task_rq(p)->lock);
650
651 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
652 return;
653
654 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
655
656 cpu = task_cpu(p);
657 if (cpu == smp_processor_id())
658 return;
659
660 /* NEED_RESCHED must be visible before we test polling */
661 smp_mb();
662 if (!tsk_is_polling(p))
663 smp_send_reschedule(cpu);
664}
665
666static void resched_cpu(int cpu)
667{
668 struct rq *rq = cpu_rq(cpu);
669 unsigned long flags;
670
671 if (!spin_trylock_irqsave(&rq->lock, flags))
672 return;
673 resched_task(cpu_curr(cpu));
674 spin_unlock_irqrestore(&rq->lock, flags);
675}
676#else
677static inline void resched_task(struct task_struct *p)
678{
679 assert_spin_locked(&task_rq(p)->lock);
680 set_tsk_need_resched(p);
681}
682#endif
683
45bf76df
IM
684static u64 div64_likely32(u64 divident, unsigned long divisor)
685{
686#if BITS_PER_LONG == 32
687 if (likely(divident <= 0xffffffffULL))
688 return (u32)divident / divisor;
689 do_div(divident, divisor);
690
691 return divident;
692#else
693 return divident / divisor;
694#endif
695}
696
697#if BITS_PER_LONG == 32
698# define WMULT_CONST (~0UL)
699#else
700# define WMULT_CONST (1UL << 32)
701#endif
702
703#define WMULT_SHIFT 32
704
705static inline unsigned long
706calc_delta_mine(unsigned long delta_exec, unsigned long weight,
707 struct load_weight *lw)
708{
709 u64 tmp;
710
711 if (unlikely(!lw->inv_weight))
712 lw->inv_weight = WMULT_CONST / lw->weight;
713
714 tmp = (u64)delta_exec * weight;
715 /*
716 * Check whether we'd overflow the 64-bit multiplication:
717 */
718 if (unlikely(tmp > WMULT_CONST)) {
719 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
720 >> (WMULT_SHIFT/2);
721 } else {
722 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
723 }
724
725 return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
726}
727
728static inline unsigned long
729calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
730{
731 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
732}
733
734static void update_load_add(struct load_weight *lw, unsigned long inc)
735{
736 lw->weight += inc;
737 lw->inv_weight = 0;
738}
739
740static void update_load_sub(struct load_weight *lw, unsigned long dec)
741{
742 lw->weight -= dec;
743 lw->inv_weight = 0;
744}
745
746static void __update_curr_load(struct rq *rq, struct load_stat *ls)
747{
748 if (rq->curr != rq->idle && ls->load.weight) {
749 ls->delta_exec += ls->delta_stat;
750 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
751 ls->delta_stat = 0;
752 }
753}
754
755/*
756 * Update delta_exec, delta_fair fields for rq.
757 *
758 * delta_fair clock advances at a rate inversely proportional to
759 * total load (rq->ls.load.weight) on the runqueue, while
760 * delta_exec advances at the same rate as wall-clock (provided
761 * cpu is not idle).
762 *
763 * delta_exec / delta_fair is a measure of the (smoothened) load on this
764 * runqueue over any given interval. This (smoothened) load is used
765 * during load balance.
766 *
767 * This function is called /before/ updating rq->ls.load
768 * and when switching tasks.
769 */
770static void update_curr_load(struct rq *rq, u64 now)
771{
772 struct load_stat *ls = &rq->ls;
773 u64 start;
774
775 start = ls->load_update_start;
776 ls->load_update_start = now;
777 ls->delta_stat += now - start;
778 /*
779 * Stagger updates to ls->delta_fair. Very frequent updates
780 * can be expensive.
781 */
782 if (ls->delta_stat >= sysctl_sched_stat_granularity)
783 __update_curr_load(rq, ls);
784}
785
2dd73a4f
PW
786/*
787 * To aid in avoiding the subversion of "niceness" due to uneven distribution
788 * of tasks with abnormal "nice" values across CPUs the contribution that
789 * each task makes to its run queue's load is weighted according to its
790 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
791 * scaled version of the new time slice allocation that they receive on time
792 * slice expiry etc.
793 */
794
795/*
796 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
797 * If static_prio_timeslice() is ever changed to break this assumption then
798 * this code will need modification
799 */
800#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
dd41f596 801#define load_weight(lp) \
2dd73a4f
PW
802 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
803#define PRIO_TO_LOAD_WEIGHT(prio) \
dd41f596 804 load_weight(static_prio_timeslice(prio))
2dd73a4f 805#define RTPRIO_TO_LOAD_WEIGHT(rp) \
dd41f596
IM
806 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
807
808#define WEIGHT_IDLEPRIO 2
809#define WMULT_IDLEPRIO (1 << 31)
810
811/*
812 * Nice levels are multiplicative, with a gentle 10% change for every
813 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
814 * nice 1, it will get ~10% less CPU time than another CPU-bound task
815 * that remained on nice 0.
816 *
817 * The "10% effect" is relative and cumulative: from _any_ nice level,
818 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
819 * it's +10% CPU usage.
820 */
821static const int prio_to_weight[40] = {
822/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
823/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
824/* 0 */ NICE_0_LOAD /* 1024 */,
825/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
826/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
827};
828
829static const u32 prio_to_wmult[40] = {
830 48356, 60446, 75558, 94446, 118058, 147573,
831 184467, 230589, 288233, 360285, 450347,
832 562979, 703746, 879575, 1099582, 1374389,
833 717986, 2147483, 2684354, 3355443, 4194304,
834 244160, 6557201, 8196502, 10250518, 12782640,
835 16025997, 19976592, 24970740, 31350126, 39045157,
836 49367440, 61356675, 76695844, 95443717, 119304647,
837 148102320, 186737708, 238609294, 286331153,
838};
2dd73a4f 839
36c8b586 840static inline void
dd41f596 841inc_load(struct rq *rq, const struct task_struct *p, u64 now)
2dd73a4f 842{
dd41f596
IM
843 update_curr_load(rq, now);
844 update_load_add(&rq->ls.load, p->se.load.weight);
2dd73a4f
PW
845}
846
36c8b586 847static inline void
dd41f596 848dec_load(struct rq *rq, const struct task_struct *p, u64 now)
2dd73a4f 849{
dd41f596
IM
850 update_curr_load(rq, now);
851 update_load_sub(&rq->ls.load, p->se.load.weight);
2dd73a4f
PW
852}
853
dd41f596 854static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
2dd73a4f
PW
855{
856 rq->nr_running++;
dd41f596 857 inc_load(rq, p, now);
2dd73a4f
PW
858}
859
dd41f596 860static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
2dd73a4f
PW
861{
862 rq->nr_running--;
dd41f596 863 dec_load(rq, p, now);
2dd73a4f
PW
864}
865
dd41f596
IM
866static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
867
868/*
869 * runqueue iterator, to support SMP load-balancing between different
870 * scheduling classes, without having to expose their internal data
871 * structures to the load-balancing proper:
872 */
873struct rq_iterator {
874 void *arg;
875 struct task_struct *(*start)(void *);
876 struct task_struct *(*next)(void *);
877};
878
879static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
880 unsigned long max_nr_move, unsigned long max_load_move,
881 struct sched_domain *sd, enum cpu_idle_type idle,
882 int *all_pinned, unsigned long *load_moved,
883 int this_best_prio, int best_prio, int best_prio_seen,
884 struct rq_iterator *iterator);
885
886#include "sched_stats.h"
887#include "sched_rt.c"
888#include "sched_fair.c"
889#include "sched_idletask.c"
890#ifdef CONFIG_SCHED_DEBUG
891# include "sched_debug.c"
892#endif
893
894#define sched_class_highest (&rt_sched_class)
895
45bf76df
IM
896static void set_load_weight(struct task_struct *p)
897{
dd41f596
IM
898 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
899 p->se.wait_runtime = 0;
900
45bf76df 901 if (task_has_rt_policy(p)) {
dd41f596
IM
902 p->se.load.weight = prio_to_weight[0] * 2;
903 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
904 return;
905 }
45bf76df 906
dd41f596
IM
907 /*
908 * SCHED_IDLE tasks get minimal weight:
909 */
910 if (p->policy == SCHED_IDLE) {
911 p->se.load.weight = WEIGHT_IDLEPRIO;
912 p->se.load.inv_weight = WMULT_IDLEPRIO;
913 return;
914 }
71f8bd46 915
dd41f596
IM
916 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
917 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
918}
919
dd41f596
IM
920static void
921enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
71f8bd46 922{
dd41f596
IM
923 sched_info_queued(p);
924 p->sched_class->enqueue_task(rq, p, wakeup, now);
925 p->se.on_rq = 1;
71f8bd46
IM
926}
927
dd41f596
IM
928static void
929dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
71f8bd46 930{
dd41f596
IM
931 p->sched_class->dequeue_task(rq, p, sleep, now);
932 p->se.on_rq = 0;
71f8bd46
IM
933}
934
14531189 935/*
dd41f596 936 * __normal_prio - return the priority that is based on the static prio
14531189 937 */
14531189
IM
938static inline int __normal_prio(struct task_struct *p)
939{
dd41f596 940 return p->static_prio;
14531189
IM
941}
942
b29739f9
IM
943/*
944 * Calculate the expected normal priority: i.e. priority
945 * without taking RT-inheritance into account. Might be
946 * boosted by interactivity modifiers. Changes upon fork,
947 * setprio syscalls, and whenever the interactivity
948 * estimator recalculates.
949 */
36c8b586 950static inline int normal_prio(struct task_struct *p)
b29739f9
IM
951{
952 int prio;
953
e05606d3 954 if (task_has_rt_policy(p))
b29739f9
IM
955 prio = MAX_RT_PRIO-1 - p->rt_priority;
956 else
957 prio = __normal_prio(p);
958 return prio;
959}
960
961/*
962 * Calculate the current priority, i.e. the priority
963 * taken into account by the scheduler. This value might
964 * be boosted by RT tasks, or might be boosted by
965 * interactivity modifiers. Will be RT if the task got
966 * RT-boosted. If not then it returns p->normal_prio.
967 */
36c8b586 968static int effective_prio(struct task_struct *p)
b29739f9
IM
969{
970 p->normal_prio = normal_prio(p);
971 /*
972 * If we are RT tasks or we were boosted to RT priority,
973 * keep the priority unchanged. Otherwise, update priority
974 * to the normal priority:
975 */
976 if (!rt_prio(p->prio))
977 return p->normal_prio;
978 return p->prio;
979}
980
1da177e4 981/*
dd41f596 982 * activate_task - move a task to the runqueue.
1da177e4 983 */
dd41f596 984static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 985{
dd41f596 986 u64 now = rq_clock(rq);
d425b274 987
dd41f596
IM
988 if (p->state == TASK_UNINTERRUPTIBLE)
989 rq->nr_uninterruptible--;
1da177e4 990
dd41f596
IM
991 enqueue_task(rq, p, wakeup, now);
992 inc_nr_running(p, rq, now);
1da177e4
LT
993}
994
995/*
dd41f596 996 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 997 */
dd41f596 998static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 999{
dd41f596 1000 u64 now = rq_clock(rq);
1da177e4 1001
dd41f596
IM
1002 if (p->state == TASK_UNINTERRUPTIBLE)
1003 rq->nr_uninterruptible--;
ece8a684 1004
dd41f596
IM
1005 enqueue_task(rq, p, 0, now);
1006 inc_nr_running(p, rq, now);
1da177e4
LT
1007}
1008
1009/*
1010 * deactivate_task - remove a task from the runqueue.
1011 */
dd41f596 1012static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1013{
dd41f596
IM
1014 u64 now = rq_clock(rq);
1015
1016 if (p->state == TASK_UNINTERRUPTIBLE)
1017 rq->nr_uninterruptible++;
1018
1019 dequeue_task(rq, p, sleep, now);
1020 dec_nr_running(p, rq, now);
1da177e4
LT
1021}
1022
1da177e4
LT
1023/**
1024 * task_curr - is this task currently executing on a CPU?
1025 * @p: the task in question.
1026 */
36c8b586 1027inline int task_curr(const struct task_struct *p)
1da177e4
LT
1028{
1029 return cpu_curr(task_cpu(p)) == p;
1030}
1031
2dd73a4f
PW
1032/* Used instead of source_load when we know the type == 0 */
1033unsigned long weighted_cpuload(const int cpu)
1034{
dd41f596
IM
1035 return cpu_rq(cpu)->ls.load.weight;
1036}
1037
1038static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1039{
1040#ifdef CONFIG_SMP
1041 task_thread_info(p)->cpu = cpu;
1042 set_task_cfs_rq(p);
1043#endif
2dd73a4f
PW
1044}
1045
1da177e4 1046#ifdef CONFIG_SMP
c65cc870 1047
dd41f596 1048void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1049{
dd41f596
IM
1050 int old_cpu = task_cpu(p);
1051 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1052 u64 clock_offset, fair_clock_offset;
1053
1054 clock_offset = old_rq->clock - new_rq->clock;
1055 fair_clock_offset = old_rq->cfs.fair_clock -
1056 new_rq->cfs.fair_clock;
1057 if (p->se.wait_start)
1058 p->se.wait_start -= clock_offset;
1059 if (p->se.wait_start_fair)
1060 p->se.wait_start_fair -= fair_clock_offset;
1061 if (p->se.sleep_start)
1062 p->se.sleep_start -= clock_offset;
1063 if (p->se.block_start)
1064 p->se.block_start -= clock_offset;
1065 if (p->se.sleep_start_fair)
1066 p->se.sleep_start_fair -= fair_clock_offset;
1067
1068 __set_task_cpu(p, new_cpu);
c65cc870
IM
1069}
1070
70b97a7f 1071struct migration_req {
1da177e4 1072 struct list_head list;
1da177e4 1073
36c8b586 1074 struct task_struct *task;
1da177e4
LT
1075 int dest_cpu;
1076
1da177e4 1077 struct completion done;
70b97a7f 1078};
1da177e4
LT
1079
1080/*
1081 * The task's runqueue lock must be held.
1082 * Returns true if you have to wait for migration thread.
1083 */
36c8b586 1084static int
70b97a7f 1085migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1086{
70b97a7f 1087 struct rq *rq = task_rq(p);
1da177e4
LT
1088
1089 /*
1090 * If the task is not on a runqueue (and not running), then
1091 * it is sufficient to simply update the task's cpu field.
1092 */
dd41f596 1093 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1094 set_task_cpu(p, dest_cpu);
1095 return 0;
1096 }
1097
1098 init_completion(&req->done);
1da177e4
LT
1099 req->task = p;
1100 req->dest_cpu = dest_cpu;
1101 list_add(&req->list, &rq->migration_queue);
48f24c4d 1102
1da177e4
LT
1103 return 1;
1104}
1105
1106/*
1107 * wait_task_inactive - wait for a thread to unschedule.
1108 *
1109 * The caller must ensure that the task *will* unschedule sometime soon,
1110 * else this function might spin for a *long* time. This function can't
1111 * be called with interrupts off, or it may introduce deadlock with
1112 * smp_call_function() if an IPI is sent by the same process we are
1113 * waiting to become inactive.
1114 */
36c8b586 1115void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1116{
1117 unsigned long flags;
dd41f596 1118 int running, on_rq;
70b97a7f 1119 struct rq *rq;
1da177e4
LT
1120
1121repeat:
fa490cfd
LT
1122 /*
1123 * We do the initial early heuristics without holding
1124 * any task-queue locks at all. We'll only try to get
1125 * the runqueue lock when things look like they will
1126 * work out!
1127 */
1128 rq = task_rq(p);
1129
1130 /*
1131 * If the task is actively running on another CPU
1132 * still, just relax and busy-wait without holding
1133 * any locks.
1134 *
1135 * NOTE! Since we don't hold any locks, it's not
1136 * even sure that "rq" stays as the right runqueue!
1137 * But we don't care, since "task_running()" will
1138 * return false if the runqueue has changed and p
1139 * is actually now running somewhere else!
1140 */
1141 while (task_running(rq, p))
1142 cpu_relax();
1143
1144 /*
1145 * Ok, time to look more closely! We need the rq
1146 * lock now, to be *sure*. If we're wrong, we'll
1147 * just go back and repeat.
1148 */
1da177e4 1149 rq = task_rq_lock(p, &flags);
fa490cfd 1150 running = task_running(rq, p);
dd41f596 1151 on_rq = p->se.on_rq;
fa490cfd
LT
1152 task_rq_unlock(rq, &flags);
1153
1154 /*
1155 * Was it really running after all now that we
1156 * checked with the proper locks actually held?
1157 *
1158 * Oops. Go back and try again..
1159 */
1160 if (unlikely(running)) {
1da177e4 1161 cpu_relax();
1da177e4
LT
1162 goto repeat;
1163 }
fa490cfd
LT
1164
1165 /*
1166 * It's not enough that it's not actively running,
1167 * it must be off the runqueue _entirely_, and not
1168 * preempted!
1169 *
1170 * So if it wa still runnable (but just not actively
1171 * running right now), it's preempted, and we should
1172 * yield - it could be a while.
1173 */
dd41f596 1174 if (unlikely(on_rq)) {
fa490cfd
LT
1175 yield();
1176 goto repeat;
1177 }
1178
1179 /*
1180 * Ahh, all good. It wasn't running, and it wasn't
1181 * runnable, which means that it will never become
1182 * running in the future either. We're all done!
1183 */
1da177e4
LT
1184}
1185
1186/***
1187 * kick_process - kick a running thread to enter/exit the kernel
1188 * @p: the to-be-kicked thread
1189 *
1190 * Cause a process which is running on another CPU to enter
1191 * kernel-mode, without any delay. (to get signals handled.)
1192 *
1193 * NOTE: this function doesnt have to take the runqueue lock,
1194 * because all it wants to ensure is that the remote task enters
1195 * the kernel. If the IPI races and the task has been migrated
1196 * to another CPU then no harm is done and the purpose has been
1197 * achieved as well.
1198 */
36c8b586 1199void kick_process(struct task_struct *p)
1da177e4
LT
1200{
1201 int cpu;
1202
1203 preempt_disable();
1204 cpu = task_cpu(p);
1205 if ((cpu != smp_processor_id()) && task_curr(p))
1206 smp_send_reschedule(cpu);
1207 preempt_enable();
1208}
1209
1210/*
2dd73a4f
PW
1211 * Return a low guess at the load of a migration-source cpu weighted
1212 * according to the scheduling class and "nice" value.
1da177e4
LT
1213 *
1214 * We want to under-estimate the load of migration sources, to
1215 * balance conservatively.
1216 */
a2000572 1217static inline unsigned long source_load(int cpu, int type)
1da177e4 1218{
70b97a7f 1219 struct rq *rq = cpu_rq(cpu);
dd41f596 1220 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1221
3b0bd9bc 1222 if (type == 0)
dd41f596 1223 return total;
b910472d 1224
dd41f596 1225 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1226}
1227
1228/*
2dd73a4f
PW
1229 * Return a high guess at the load of a migration-target cpu weighted
1230 * according to the scheduling class and "nice" value.
1da177e4 1231 */
a2000572 1232static inline unsigned long target_load(int cpu, int type)
1da177e4 1233{
70b97a7f 1234 struct rq *rq = cpu_rq(cpu);
dd41f596 1235 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1236
7897986b 1237 if (type == 0)
dd41f596 1238 return total;
3b0bd9bc 1239
dd41f596 1240 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1241}
1242
1243/*
1244 * Return the average load per task on the cpu's run queue
1245 */
1246static inline unsigned long cpu_avg_load_per_task(int cpu)
1247{
70b97a7f 1248 struct rq *rq = cpu_rq(cpu);
dd41f596 1249 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1250 unsigned long n = rq->nr_running;
1251
dd41f596 1252 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1253}
1254
147cbb4b
NP
1255/*
1256 * find_idlest_group finds and returns the least busy CPU group within the
1257 * domain.
1258 */
1259static struct sched_group *
1260find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1261{
1262 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1263 unsigned long min_load = ULONG_MAX, this_load = 0;
1264 int load_idx = sd->forkexec_idx;
1265 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1266
1267 do {
1268 unsigned long load, avg_load;
1269 int local_group;
1270 int i;
1271
da5a5522
BD
1272 /* Skip over this group if it has no CPUs allowed */
1273 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1274 goto nextgroup;
1275
147cbb4b 1276 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1277
1278 /* Tally up the load of all CPUs in the group */
1279 avg_load = 0;
1280
1281 for_each_cpu_mask(i, group->cpumask) {
1282 /* Bias balancing toward cpus of our domain */
1283 if (local_group)
1284 load = source_load(i, load_idx);
1285 else
1286 load = target_load(i, load_idx);
1287
1288 avg_load += load;
1289 }
1290
1291 /* Adjust by relative CPU power of the group */
5517d86b
ED
1292 avg_load = sg_div_cpu_power(group,
1293 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1294
1295 if (local_group) {
1296 this_load = avg_load;
1297 this = group;
1298 } else if (avg_load < min_load) {
1299 min_load = avg_load;
1300 idlest = group;
1301 }
da5a5522 1302nextgroup:
147cbb4b
NP
1303 group = group->next;
1304 } while (group != sd->groups);
1305
1306 if (!idlest || 100*this_load < imbalance*min_load)
1307 return NULL;
1308 return idlest;
1309}
1310
1311/*
0feaece9 1312 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1313 */
95cdf3b7
IM
1314static int
1315find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1316{
da5a5522 1317 cpumask_t tmp;
147cbb4b
NP
1318 unsigned long load, min_load = ULONG_MAX;
1319 int idlest = -1;
1320 int i;
1321
da5a5522
BD
1322 /* Traverse only the allowed CPUs */
1323 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1324
1325 for_each_cpu_mask(i, tmp) {
2dd73a4f 1326 load = weighted_cpuload(i);
147cbb4b
NP
1327
1328 if (load < min_load || (load == min_load && i == this_cpu)) {
1329 min_load = load;
1330 idlest = i;
1331 }
1332 }
1333
1334 return idlest;
1335}
1336
476d139c
NP
1337/*
1338 * sched_balance_self: balance the current task (running on cpu) in domains
1339 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1340 * SD_BALANCE_EXEC.
1341 *
1342 * Balance, ie. select the least loaded group.
1343 *
1344 * Returns the target CPU number, or the same CPU if no balancing is needed.
1345 *
1346 * preempt must be disabled.
1347 */
1348static int sched_balance_self(int cpu, int flag)
1349{
1350 struct task_struct *t = current;
1351 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1352
c96d145e 1353 for_each_domain(cpu, tmp) {
5c45bf27
SS
1354 /*
1355 * If power savings logic is enabled for a domain, stop there.
1356 */
1357 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1358 break;
476d139c
NP
1359 if (tmp->flags & flag)
1360 sd = tmp;
c96d145e 1361 }
476d139c
NP
1362
1363 while (sd) {
1364 cpumask_t span;
1365 struct sched_group *group;
1a848870
SS
1366 int new_cpu, weight;
1367
1368 if (!(sd->flags & flag)) {
1369 sd = sd->child;
1370 continue;
1371 }
476d139c
NP
1372
1373 span = sd->span;
1374 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1375 if (!group) {
1376 sd = sd->child;
1377 continue;
1378 }
476d139c 1379
da5a5522 1380 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1381 if (new_cpu == -1 || new_cpu == cpu) {
1382 /* Now try balancing at a lower domain level of cpu */
1383 sd = sd->child;
1384 continue;
1385 }
476d139c 1386
1a848870 1387 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1388 cpu = new_cpu;
476d139c
NP
1389 sd = NULL;
1390 weight = cpus_weight(span);
1391 for_each_domain(cpu, tmp) {
1392 if (weight <= cpus_weight(tmp->span))
1393 break;
1394 if (tmp->flags & flag)
1395 sd = tmp;
1396 }
1397 /* while loop will break here if sd == NULL */
1398 }
1399
1400 return cpu;
1401}
1402
1403#endif /* CONFIG_SMP */
1da177e4
LT
1404
1405/*
1406 * wake_idle() will wake a task on an idle cpu if task->cpu is
1407 * not idle and an idle cpu is available. The span of cpus to
1408 * search starts with cpus closest then further out as needed,
1409 * so we always favor a closer, idle cpu.
1410 *
1411 * Returns the CPU we should wake onto.
1412 */
1413#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1414static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1415{
1416 cpumask_t tmp;
1417 struct sched_domain *sd;
1418 int i;
1419
4953198b
SS
1420 /*
1421 * If it is idle, then it is the best cpu to run this task.
1422 *
1423 * This cpu is also the best, if it has more than one task already.
1424 * Siblings must be also busy(in most cases) as they didn't already
1425 * pickup the extra load from this cpu and hence we need not check
1426 * sibling runqueue info. This will avoid the checks and cache miss
1427 * penalities associated with that.
1428 */
1429 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1430 return cpu;
1431
1432 for_each_domain(cpu, sd) {
1433 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1434 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1435 for_each_cpu_mask(i, tmp) {
1436 if (idle_cpu(i))
1437 return i;
1438 }
1439 }
e0f364f4
NP
1440 else
1441 break;
1da177e4
LT
1442 }
1443 return cpu;
1444}
1445#else
36c8b586 1446static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1447{
1448 return cpu;
1449}
1450#endif
1451
1452/***
1453 * try_to_wake_up - wake up a thread
1454 * @p: the to-be-woken-up thread
1455 * @state: the mask of task states that can be woken
1456 * @sync: do a synchronous wakeup?
1457 *
1458 * Put it on the run-queue if it's not already there. The "current"
1459 * thread is always on the run-queue (except when the actual
1460 * re-schedule is in progress), and as such you're allowed to do
1461 * the simpler "current->state = TASK_RUNNING" to mark yourself
1462 * runnable without the overhead of this.
1463 *
1464 * returns failure only if the task is already active.
1465 */
36c8b586 1466static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1467{
1468 int cpu, this_cpu, success = 0;
1469 unsigned long flags;
1470 long old_state;
70b97a7f 1471 struct rq *rq;
1da177e4 1472#ifdef CONFIG_SMP
7897986b 1473 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1474 unsigned long load, this_load;
1da177e4
LT
1475 int new_cpu;
1476#endif
1477
1478 rq = task_rq_lock(p, &flags);
1479 old_state = p->state;
1480 if (!(old_state & state))
1481 goto out;
1482
dd41f596 1483 if (p->se.on_rq)
1da177e4
LT
1484 goto out_running;
1485
1486 cpu = task_cpu(p);
1487 this_cpu = smp_processor_id();
1488
1489#ifdef CONFIG_SMP
1490 if (unlikely(task_running(rq, p)))
1491 goto out_activate;
1492
7897986b
NP
1493 new_cpu = cpu;
1494
1da177e4
LT
1495 schedstat_inc(rq, ttwu_cnt);
1496 if (cpu == this_cpu) {
1497 schedstat_inc(rq, ttwu_local);
7897986b
NP
1498 goto out_set_cpu;
1499 }
1500
1501 for_each_domain(this_cpu, sd) {
1502 if (cpu_isset(cpu, sd->span)) {
1503 schedstat_inc(sd, ttwu_wake_remote);
1504 this_sd = sd;
1505 break;
1da177e4
LT
1506 }
1507 }
1da177e4 1508
7897986b 1509 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1510 goto out_set_cpu;
1511
1da177e4 1512 /*
7897986b 1513 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1514 */
7897986b
NP
1515 if (this_sd) {
1516 int idx = this_sd->wake_idx;
1517 unsigned int imbalance;
1da177e4 1518
a3f21bce
NP
1519 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1520
7897986b
NP
1521 load = source_load(cpu, idx);
1522 this_load = target_load(this_cpu, idx);
1da177e4 1523
7897986b
NP
1524 new_cpu = this_cpu; /* Wake to this CPU if we can */
1525
a3f21bce
NP
1526 if (this_sd->flags & SD_WAKE_AFFINE) {
1527 unsigned long tl = this_load;
33859f7f
MOS
1528 unsigned long tl_per_task;
1529
1530 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1531
1da177e4 1532 /*
a3f21bce
NP
1533 * If sync wakeup then subtract the (maximum possible)
1534 * effect of the currently running task from the load
1535 * of the current CPU:
1da177e4 1536 */
a3f21bce 1537 if (sync)
dd41f596 1538 tl -= current->se.load.weight;
a3f21bce
NP
1539
1540 if ((tl <= load &&
2dd73a4f 1541 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1542 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1543 /*
1544 * This domain has SD_WAKE_AFFINE and
1545 * p is cache cold in this domain, and
1546 * there is no bad imbalance.
1547 */
1548 schedstat_inc(this_sd, ttwu_move_affine);
1549 goto out_set_cpu;
1550 }
1551 }
1552
1553 /*
1554 * Start passive balancing when half the imbalance_pct
1555 * limit is reached.
1556 */
1557 if (this_sd->flags & SD_WAKE_BALANCE) {
1558 if (imbalance*this_load <= 100*load) {
1559 schedstat_inc(this_sd, ttwu_move_balance);
1560 goto out_set_cpu;
1561 }
1da177e4
LT
1562 }
1563 }
1564
1565 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1566out_set_cpu:
1567 new_cpu = wake_idle(new_cpu, p);
1568 if (new_cpu != cpu) {
1569 set_task_cpu(p, new_cpu);
1570 task_rq_unlock(rq, &flags);
1571 /* might preempt at this point */
1572 rq = task_rq_lock(p, &flags);
1573 old_state = p->state;
1574 if (!(old_state & state))
1575 goto out;
dd41f596 1576 if (p->se.on_rq)
1da177e4
LT
1577 goto out_running;
1578
1579 this_cpu = smp_processor_id();
1580 cpu = task_cpu(p);
1581 }
1582
1583out_activate:
1584#endif /* CONFIG_SMP */
dd41f596 1585 activate_task(rq, p, 1);
1da177e4
LT
1586 /*
1587 * Sync wakeups (i.e. those types of wakeups where the waker
1588 * has indicated that it will leave the CPU in short order)
1589 * don't trigger a preemption, if the woken up task will run on
1590 * this cpu. (in this case the 'I will reschedule' promise of
1591 * the waker guarantees that the freshly woken up task is going
1592 * to be considered on this CPU.)
1593 */
dd41f596
IM
1594 if (!sync || cpu != this_cpu)
1595 check_preempt_curr(rq, p);
1da177e4
LT
1596 success = 1;
1597
1598out_running:
1599 p->state = TASK_RUNNING;
1600out:
1601 task_rq_unlock(rq, &flags);
1602
1603 return success;
1604}
1605
36c8b586 1606int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1607{
1608 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1609 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1610}
1da177e4
LT
1611EXPORT_SYMBOL(wake_up_process);
1612
36c8b586 1613int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1614{
1615 return try_to_wake_up(p, state, 0);
1616}
1617
1da177e4
LT
1618/*
1619 * Perform scheduler related setup for a newly forked process p.
1620 * p is forked by current.
dd41f596
IM
1621 *
1622 * __sched_fork() is basic setup used by init_idle() too:
1623 */
1624static void __sched_fork(struct task_struct *p)
1625{
1626 p->se.wait_start_fair = 0;
1627 p->se.wait_start = 0;
1628 p->se.exec_start = 0;
1629 p->se.sum_exec_runtime = 0;
1630 p->se.delta_exec = 0;
1631 p->se.delta_fair_run = 0;
1632 p->se.delta_fair_sleep = 0;
1633 p->se.wait_runtime = 0;
1634 p->se.sum_wait_runtime = 0;
1635 p->se.sum_sleep_runtime = 0;
1636 p->se.sleep_start = 0;
1637 p->se.sleep_start_fair = 0;
1638 p->se.block_start = 0;
1639 p->se.sleep_max = 0;
1640 p->se.block_max = 0;
1641 p->se.exec_max = 0;
1642 p->se.wait_max = 0;
1643 p->se.wait_runtime_overruns = 0;
1644 p->se.wait_runtime_underruns = 0;
476d139c 1645
dd41f596
IM
1646 INIT_LIST_HEAD(&p->run_list);
1647 p->se.on_rq = 0;
476d139c 1648
1da177e4
LT
1649 /*
1650 * We mark the process as running here, but have not actually
1651 * inserted it onto the runqueue yet. This guarantees that
1652 * nobody will actually run it, and a signal or other external
1653 * event cannot wake it up and insert it on the runqueue either.
1654 */
1655 p->state = TASK_RUNNING;
dd41f596
IM
1656}
1657
1658/*
1659 * fork()/clone()-time setup:
1660 */
1661void sched_fork(struct task_struct *p, int clone_flags)
1662{
1663 int cpu = get_cpu();
1664
1665 __sched_fork(p);
1666
1667#ifdef CONFIG_SMP
1668 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1669#endif
1670 __set_task_cpu(p, cpu);
b29739f9
IM
1671
1672 /*
1673 * Make sure we do not leak PI boosting priority to the child:
1674 */
1675 p->prio = current->normal_prio;
1676
52f17b6c 1677#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1678 if (likely(sched_info_on()))
52f17b6c 1679 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1680#endif
d6077cb8 1681#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1682 p->oncpu = 0;
1683#endif
1da177e4 1684#ifdef CONFIG_PREEMPT
4866cde0 1685 /* Want to start with kernel preemption disabled. */
a1261f54 1686 task_thread_info(p)->preempt_count = 1;
1da177e4 1687#endif
476d139c 1688 put_cpu();
1da177e4
LT
1689}
1690
dd41f596
IM
1691/*
1692 * After fork, child runs first. (default) If set to 0 then
1693 * parent will (try to) run first.
1694 */
1695unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1696
1da177e4
LT
1697/*
1698 * wake_up_new_task - wake up a newly created task for the first time.
1699 *
1700 * This function will do some initial scheduler statistics housekeeping
1701 * that must be done for every newly created context, then puts the task
1702 * on the runqueue and wakes it.
1703 */
36c8b586 1704void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1705{
1706 unsigned long flags;
dd41f596
IM
1707 struct rq *rq;
1708 int this_cpu;
1da177e4
LT
1709
1710 rq = task_rq_lock(p, &flags);
147cbb4b 1711 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1712 this_cpu = smp_processor_id(); /* parent's CPU */
1da177e4
LT
1713
1714 p->prio = effective_prio(p);
1715
dd41f596
IM
1716 if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
1717 task_cpu(p) != this_cpu || !current->se.on_rq) {
1718 activate_task(rq, p, 0);
1da177e4 1719 } else {
1da177e4 1720 /*
dd41f596
IM
1721 * Let the scheduling class do new task startup
1722 * management (if any):
1da177e4 1723 */
dd41f596 1724 p->sched_class->task_new(rq, p);
1da177e4 1725 }
dd41f596
IM
1726 check_preempt_curr(rq, p);
1727 task_rq_unlock(rq, &flags);
1da177e4
LT
1728}
1729
4866cde0
NP
1730/**
1731 * prepare_task_switch - prepare to switch tasks
1732 * @rq: the runqueue preparing to switch
1733 * @next: the task we are going to switch to.
1734 *
1735 * This is called with the rq lock held and interrupts off. It must
1736 * be paired with a subsequent finish_task_switch after the context
1737 * switch.
1738 *
1739 * prepare_task_switch sets up locking and calls architecture specific
1740 * hooks.
1741 */
70b97a7f 1742static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1743{
1744 prepare_lock_switch(rq, next);
1745 prepare_arch_switch(next);
1746}
1747
1da177e4
LT
1748/**
1749 * finish_task_switch - clean up after a task-switch
344babaa 1750 * @rq: runqueue associated with task-switch
1da177e4
LT
1751 * @prev: the thread we just switched away from.
1752 *
4866cde0
NP
1753 * finish_task_switch must be called after the context switch, paired
1754 * with a prepare_task_switch call before the context switch.
1755 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1756 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1757 *
1758 * Note that we may have delayed dropping an mm in context_switch(). If
1759 * so, we finish that here outside of the runqueue lock. (Doing it
1760 * with the lock held can cause deadlocks; see schedule() for
1761 * details.)
1762 */
70b97a7f 1763static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1764 __releases(rq->lock)
1765{
1da177e4 1766 struct mm_struct *mm = rq->prev_mm;
55a101f8 1767 long prev_state;
1da177e4
LT
1768
1769 rq->prev_mm = NULL;
1770
1771 /*
1772 * A task struct has one reference for the use as "current".
c394cc9f 1773 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1774 * schedule one last time. The schedule call will never return, and
1775 * the scheduled task must drop that reference.
c394cc9f 1776 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1777 * still held, otherwise prev could be scheduled on another cpu, die
1778 * there before we look at prev->state, and then the reference would
1779 * be dropped twice.
1780 * Manfred Spraul <manfred@colorfullife.com>
1781 */
55a101f8 1782 prev_state = prev->state;
4866cde0
NP
1783 finish_arch_switch(prev);
1784 finish_lock_switch(rq, prev);
1da177e4
LT
1785 if (mm)
1786 mmdrop(mm);
c394cc9f 1787 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1788 /*
1789 * Remove function-return probe instances associated with this
1790 * task and put them back on the free list.
1791 */
1792 kprobe_flush_task(prev);
1da177e4 1793 put_task_struct(prev);
c6fd91f0 1794 }
1da177e4
LT
1795}
1796
1797/**
1798 * schedule_tail - first thing a freshly forked thread must call.
1799 * @prev: the thread we just switched away from.
1800 */
36c8b586 1801asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1802 __releases(rq->lock)
1803{
70b97a7f
IM
1804 struct rq *rq = this_rq();
1805
4866cde0
NP
1806 finish_task_switch(rq, prev);
1807#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1808 /* In this case, finish_task_switch does not reenable preemption */
1809 preempt_enable();
1810#endif
1da177e4
LT
1811 if (current->set_child_tid)
1812 put_user(current->pid, current->set_child_tid);
1813}
1814
1815/*
1816 * context_switch - switch to the new MM and the new
1817 * thread's register state.
1818 */
dd41f596 1819static inline void
70b97a7f 1820context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1821 struct task_struct *next)
1da177e4 1822{
dd41f596 1823 struct mm_struct *mm, *oldmm;
1da177e4 1824
dd41f596
IM
1825 prepare_task_switch(rq, next);
1826 mm = next->mm;
1827 oldmm = prev->active_mm;
9226d125
ZA
1828 /*
1829 * For paravirt, this is coupled with an exit in switch_to to
1830 * combine the page table reload and the switch backend into
1831 * one hypercall.
1832 */
1833 arch_enter_lazy_cpu_mode();
1834
dd41f596 1835 if (unlikely(!mm)) {
1da177e4
LT
1836 next->active_mm = oldmm;
1837 atomic_inc(&oldmm->mm_count);
1838 enter_lazy_tlb(oldmm, next);
1839 } else
1840 switch_mm(oldmm, mm, next);
1841
dd41f596 1842 if (unlikely(!prev->mm)) {
1da177e4 1843 prev->active_mm = NULL;
1da177e4
LT
1844 rq->prev_mm = oldmm;
1845 }
3a5f5e48
IM
1846 /*
1847 * Since the runqueue lock will be released by the next
1848 * task (which is an invalid locking op but in the case
1849 * of the scheduler it's an obvious special-case), so we
1850 * do an early lockdep release here:
1851 */
1852#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1853 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1854#endif
1da177e4
LT
1855
1856 /* Here we just switch the register state and the stack. */
1857 switch_to(prev, next, prev);
1858
dd41f596
IM
1859 barrier();
1860 /*
1861 * this_rq must be evaluated again because prev may have moved
1862 * CPUs since it called schedule(), thus the 'rq' on its stack
1863 * frame will be invalid.
1864 */
1865 finish_task_switch(this_rq(), prev);
1da177e4
LT
1866}
1867
1868/*
1869 * nr_running, nr_uninterruptible and nr_context_switches:
1870 *
1871 * externally visible scheduler statistics: current number of runnable
1872 * threads, current number of uninterruptible-sleeping threads, total
1873 * number of context switches performed since bootup.
1874 */
1875unsigned long nr_running(void)
1876{
1877 unsigned long i, sum = 0;
1878
1879 for_each_online_cpu(i)
1880 sum += cpu_rq(i)->nr_running;
1881
1882 return sum;
1883}
1884
1885unsigned long nr_uninterruptible(void)
1886{
1887 unsigned long i, sum = 0;
1888
0a945022 1889 for_each_possible_cpu(i)
1da177e4
LT
1890 sum += cpu_rq(i)->nr_uninterruptible;
1891
1892 /*
1893 * Since we read the counters lockless, it might be slightly
1894 * inaccurate. Do not allow it to go below zero though:
1895 */
1896 if (unlikely((long)sum < 0))
1897 sum = 0;
1898
1899 return sum;
1900}
1901
1902unsigned long long nr_context_switches(void)
1903{
cc94abfc
SR
1904 int i;
1905 unsigned long long sum = 0;
1da177e4 1906
0a945022 1907 for_each_possible_cpu(i)
1da177e4
LT
1908 sum += cpu_rq(i)->nr_switches;
1909
1910 return sum;
1911}
1912
1913unsigned long nr_iowait(void)
1914{
1915 unsigned long i, sum = 0;
1916
0a945022 1917 for_each_possible_cpu(i)
1da177e4
LT
1918 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1919
1920 return sum;
1921}
1922
db1b1fef
JS
1923unsigned long nr_active(void)
1924{
1925 unsigned long i, running = 0, uninterruptible = 0;
1926
1927 for_each_online_cpu(i) {
1928 running += cpu_rq(i)->nr_running;
1929 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1930 }
1931
1932 if (unlikely((long)uninterruptible < 0))
1933 uninterruptible = 0;
1934
1935 return running + uninterruptible;
1936}
1937
48f24c4d 1938/*
dd41f596
IM
1939 * Update rq->cpu_load[] statistics. This function is usually called every
1940 * scheduler tick (TICK_NSEC).
48f24c4d 1941 */
dd41f596 1942static void update_cpu_load(struct rq *this_rq)
48f24c4d 1943{
dd41f596
IM
1944 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1945 unsigned long total_load = this_rq->ls.load.weight;
1946 unsigned long this_load = total_load;
1947 struct load_stat *ls = &this_rq->ls;
1948 u64 now = __rq_clock(this_rq);
1949 int i, scale;
1950
1951 this_rq->nr_load_updates++;
1952 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1953 goto do_avg;
1954
1955 /* Update delta_fair/delta_exec fields first */
1956 update_curr_load(this_rq, now);
1957
1958 fair_delta64 = ls->delta_fair + 1;
1959 ls->delta_fair = 0;
1960
1961 exec_delta64 = ls->delta_exec + 1;
1962 ls->delta_exec = 0;
1963
1964 sample_interval64 = now - ls->load_update_last;
1965 ls->load_update_last = now;
1966
1967 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1968 sample_interval64 = TICK_NSEC;
1969
1970 if (exec_delta64 > sample_interval64)
1971 exec_delta64 = sample_interval64;
1972
1973 idle_delta64 = sample_interval64 - exec_delta64;
1974
1975 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1976 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1977
1978 this_load = (unsigned long)tmp64;
1979
1980do_avg:
1981
1982 /* Update our load: */
1983 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1984 unsigned long old_load, new_load;
1985
1986 /* scale is effectively 1 << i now, and >> i divides by scale */
1987
1988 old_load = this_rq->cpu_load[i];
1989 new_load = this_load;
1990
1991 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1992 }
48f24c4d
IM
1993}
1994
dd41f596
IM
1995#ifdef CONFIG_SMP
1996
1da177e4
LT
1997/*
1998 * double_rq_lock - safely lock two runqueues
1999 *
2000 * Note this does not disable interrupts like task_rq_lock,
2001 * you need to do so manually before calling.
2002 */
70b97a7f 2003static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2004 __acquires(rq1->lock)
2005 __acquires(rq2->lock)
2006{
054b9108 2007 BUG_ON(!irqs_disabled());
1da177e4
LT
2008 if (rq1 == rq2) {
2009 spin_lock(&rq1->lock);
2010 __acquire(rq2->lock); /* Fake it out ;) */
2011 } else {
c96d145e 2012 if (rq1 < rq2) {
1da177e4
LT
2013 spin_lock(&rq1->lock);
2014 spin_lock(&rq2->lock);
2015 } else {
2016 spin_lock(&rq2->lock);
2017 spin_lock(&rq1->lock);
2018 }
2019 }
2020}
2021
2022/*
2023 * double_rq_unlock - safely unlock two runqueues
2024 *
2025 * Note this does not restore interrupts like task_rq_unlock,
2026 * you need to do so manually after calling.
2027 */
70b97a7f 2028static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2029 __releases(rq1->lock)
2030 __releases(rq2->lock)
2031{
2032 spin_unlock(&rq1->lock);
2033 if (rq1 != rq2)
2034 spin_unlock(&rq2->lock);
2035 else
2036 __release(rq2->lock);
2037}
2038
2039/*
2040 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2041 */
70b97a7f 2042static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2043 __releases(this_rq->lock)
2044 __acquires(busiest->lock)
2045 __acquires(this_rq->lock)
2046{
054b9108
KK
2047 if (unlikely(!irqs_disabled())) {
2048 /* printk() doesn't work good under rq->lock */
2049 spin_unlock(&this_rq->lock);
2050 BUG_ON(1);
2051 }
1da177e4 2052 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2053 if (busiest < this_rq) {
1da177e4
LT
2054 spin_unlock(&this_rq->lock);
2055 spin_lock(&busiest->lock);
2056 spin_lock(&this_rq->lock);
2057 } else
2058 spin_lock(&busiest->lock);
2059 }
2060}
2061
1da177e4
LT
2062/*
2063 * If dest_cpu is allowed for this process, migrate the task to it.
2064 * This is accomplished by forcing the cpu_allowed mask to only
2065 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2066 * the cpu_allowed mask is restored.
2067 */
36c8b586 2068static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2069{
70b97a7f 2070 struct migration_req req;
1da177e4 2071 unsigned long flags;
70b97a7f 2072 struct rq *rq;
1da177e4
LT
2073
2074 rq = task_rq_lock(p, &flags);
2075 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2076 || unlikely(cpu_is_offline(dest_cpu)))
2077 goto out;
2078
2079 /* force the process onto the specified CPU */
2080 if (migrate_task(p, dest_cpu, &req)) {
2081 /* Need to wait for migration thread (might exit: take ref). */
2082 struct task_struct *mt = rq->migration_thread;
36c8b586 2083
1da177e4
LT
2084 get_task_struct(mt);
2085 task_rq_unlock(rq, &flags);
2086 wake_up_process(mt);
2087 put_task_struct(mt);
2088 wait_for_completion(&req.done);
36c8b586 2089
1da177e4
LT
2090 return;
2091 }
2092out:
2093 task_rq_unlock(rq, &flags);
2094}
2095
2096/*
476d139c
NP
2097 * sched_exec - execve() is a valuable balancing opportunity, because at
2098 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2099 */
2100void sched_exec(void)
2101{
1da177e4 2102 int new_cpu, this_cpu = get_cpu();
476d139c 2103 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2104 put_cpu();
476d139c
NP
2105 if (new_cpu != this_cpu)
2106 sched_migrate_task(current, new_cpu);
1da177e4
LT
2107}
2108
2109/*
2110 * pull_task - move a task from a remote runqueue to the local runqueue.
2111 * Both runqueues must be locked.
2112 */
dd41f596
IM
2113static void pull_task(struct rq *src_rq, struct task_struct *p,
2114 struct rq *this_rq, int this_cpu)
1da177e4 2115{
dd41f596 2116 deactivate_task(src_rq, p, 0);
1da177e4 2117 set_task_cpu(p, this_cpu);
dd41f596 2118 activate_task(this_rq, p, 0);
1da177e4
LT
2119 /*
2120 * Note that idle threads have a prio of MAX_PRIO, for this test
2121 * to be always true for them.
2122 */
dd41f596 2123 check_preempt_curr(this_rq, p);
1da177e4
LT
2124}
2125
2126/*
2127 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2128 */
858119e1 2129static
70b97a7f 2130int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2131 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2132 int *all_pinned)
1da177e4
LT
2133{
2134 /*
2135 * We do not migrate tasks that are:
2136 * 1) running (obviously), or
2137 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2138 * 3) are cache-hot on their current CPU.
2139 */
1da177e4
LT
2140 if (!cpu_isset(this_cpu, p->cpus_allowed))
2141 return 0;
81026794
NP
2142 *all_pinned = 0;
2143
2144 if (task_running(rq, p))
2145 return 0;
1da177e4
LT
2146
2147 /*
dd41f596 2148 * Aggressive migration if too many balance attempts have failed:
1da177e4 2149 */
dd41f596 2150 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2151 return 1;
2152
1da177e4
LT
2153 return 1;
2154}
2155
dd41f596 2156static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2157 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2158 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596
IM
2159 int *all_pinned, unsigned long *load_moved,
2160 int this_best_prio, int best_prio, int best_prio_seen,
2161 struct rq_iterator *iterator)
1da177e4 2162{
dd41f596
IM
2163 int pulled = 0, pinned = 0, skip_for_load;
2164 struct task_struct *p;
2165 long rem_load_move = max_load_move;
1da177e4 2166
2dd73a4f 2167 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2168 goto out;
2169
81026794
NP
2170 pinned = 1;
2171
1da177e4 2172 /*
dd41f596 2173 * Start the load-balancing iterator:
1da177e4 2174 */
dd41f596
IM
2175 p = iterator->start(iterator->arg);
2176next:
2177 if (!p)
1da177e4 2178 goto out;
50ddd969
PW
2179 /*
2180 * To help distribute high priority tasks accross CPUs we don't
2181 * skip a task if it will be the highest priority task (i.e. smallest
2182 * prio value) on its new queue regardless of its load weight
2183 */
dd41f596
IM
2184 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2185 SCHED_LOAD_SCALE_FUZZ;
2186 if (skip_for_load && p->prio < this_best_prio)
2187 skip_for_load = !best_prio_seen && p->prio == best_prio;
615052dc 2188 if (skip_for_load ||
dd41f596 2189 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d 2190
dd41f596
IM
2191 best_prio_seen |= p->prio == best_prio;
2192 p = iterator->next(iterator->arg);
2193 goto next;
1da177e4
LT
2194 }
2195
dd41f596 2196 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2197 pulled++;
dd41f596 2198 rem_load_move -= p->se.load.weight;
1da177e4 2199
2dd73a4f
PW
2200 /*
2201 * We only want to steal up to the prescribed number of tasks
2202 * and the prescribed amount of weighted load.
2203 */
2204 if (pulled < max_nr_move && rem_load_move > 0) {
dd41f596
IM
2205 if (p->prio < this_best_prio)
2206 this_best_prio = p->prio;
2207 p = iterator->next(iterator->arg);
2208 goto next;
1da177e4
LT
2209 }
2210out:
2211 /*
2212 * Right now, this is the only place pull_task() is called,
2213 * so we can safely collect pull_task() stats here rather than
2214 * inside pull_task().
2215 */
2216 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2217
2218 if (all_pinned)
2219 *all_pinned = pinned;
dd41f596 2220 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2221 return pulled;
2222}
2223
dd41f596
IM
2224/*
2225 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2226 * load from busiest to this_rq, as part of a balancing operation within
2227 * "domain". Returns the number of tasks moved.
2228 *
2229 * Called with both runqueues locked.
2230 */
2231static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2232 unsigned long max_nr_move, unsigned long max_load_move,
2233 struct sched_domain *sd, enum cpu_idle_type idle,
2234 int *all_pinned)
2235{
2236 struct sched_class *class = sched_class_highest;
2237 unsigned long load_moved, total_nr_moved = 0, nr_moved;
2238 long rem_load_move = max_load_move;
2239
2240 do {
2241 nr_moved = class->load_balance(this_rq, this_cpu, busiest,
2242 max_nr_move, (unsigned long)rem_load_move,
2243 sd, idle, all_pinned, &load_moved);
2244 total_nr_moved += nr_moved;
2245 max_nr_move -= nr_moved;
2246 rem_load_move -= load_moved;
2247 class = class->next;
2248 } while (class && max_nr_move && rem_load_move > 0);
2249
2250 return total_nr_moved;
2251}
2252
1da177e4
LT
2253/*
2254 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2255 * domain. It calculates and returns the amount of weighted load which
2256 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2257 */
2258static struct sched_group *
2259find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2260 unsigned long *imbalance, enum cpu_idle_type idle,
2261 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2262{
2263 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2264 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2265 unsigned long max_pull;
2dd73a4f
PW
2266 unsigned long busiest_load_per_task, busiest_nr_running;
2267 unsigned long this_load_per_task, this_nr_running;
7897986b 2268 int load_idx;
5c45bf27
SS
2269#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2270 int power_savings_balance = 1;
2271 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2272 unsigned long min_nr_running = ULONG_MAX;
2273 struct sched_group *group_min = NULL, *group_leader = NULL;
2274#endif
1da177e4
LT
2275
2276 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2277 busiest_load_per_task = busiest_nr_running = 0;
2278 this_load_per_task = this_nr_running = 0;
d15bcfdb 2279 if (idle == CPU_NOT_IDLE)
7897986b 2280 load_idx = sd->busy_idx;
d15bcfdb 2281 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2282 load_idx = sd->newidle_idx;
2283 else
2284 load_idx = sd->idle_idx;
1da177e4
LT
2285
2286 do {
5c45bf27 2287 unsigned long load, group_capacity;
1da177e4
LT
2288 int local_group;
2289 int i;
783609c6 2290 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2291 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2292
2293 local_group = cpu_isset(this_cpu, group->cpumask);
2294
783609c6
SS
2295 if (local_group)
2296 balance_cpu = first_cpu(group->cpumask);
2297
1da177e4 2298 /* Tally up the load of all CPUs in the group */
2dd73a4f 2299 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2300
2301 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2302 struct rq *rq;
2303
2304 if (!cpu_isset(i, *cpus))
2305 continue;
2306
2307 rq = cpu_rq(i);
2dd73a4f 2308
5969fe06
NP
2309 if (*sd_idle && !idle_cpu(i))
2310 *sd_idle = 0;
2311
1da177e4 2312 /* Bias balancing toward cpus of our domain */
783609c6
SS
2313 if (local_group) {
2314 if (idle_cpu(i) && !first_idle_cpu) {
2315 first_idle_cpu = 1;
2316 balance_cpu = i;
2317 }
2318
a2000572 2319 load = target_load(i, load_idx);
783609c6 2320 } else
a2000572 2321 load = source_load(i, load_idx);
1da177e4
LT
2322
2323 avg_load += load;
2dd73a4f 2324 sum_nr_running += rq->nr_running;
dd41f596 2325 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2326 }
2327
783609c6
SS
2328 /*
2329 * First idle cpu or the first cpu(busiest) in this sched group
2330 * is eligible for doing load balancing at this and above
2331 * domains.
2332 */
2333 if (local_group && balance_cpu != this_cpu && balance) {
2334 *balance = 0;
2335 goto ret;
2336 }
2337
1da177e4 2338 total_load += avg_load;
5517d86b 2339 total_pwr += group->__cpu_power;
1da177e4
LT
2340
2341 /* Adjust by relative CPU power of the group */
5517d86b
ED
2342 avg_load = sg_div_cpu_power(group,
2343 avg_load * SCHED_LOAD_SCALE);
1da177e4 2344
5517d86b 2345 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2346
1da177e4
LT
2347 if (local_group) {
2348 this_load = avg_load;
2349 this = group;
2dd73a4f
PW
2350 this_nr_running = sum_nr_running;
2351 this_load_per_task = sum_weighted_load;
2352 } else if (avg_load > max_load &&
5c45bf27 2353 sum_nr_running > group_capacity) {
1da177e4
LT
2354 max_load = avg_load;
2355 busiest = group;
2dd73a4f
PW
2356 busiest_nr_running = sum_nr_running;
2357 busiest_load_per_task = sum_weighted_load;
1da177e4 2358 }
5c45bf27
SS
2359
2360#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2361 /*
2362 * Busy processors will not participate in power savings
2363 * balance.
2364 */
dd41f596
IM
2365 if (idle == CPU_NOT_IDLE ||
2366 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2367 goto group_next;
5c45bf27
SS
2368
2369 /*
2370 * If the local group is idle or completely loaded
2371 * no need to do power savings balance at this domain
2372 */
2373 if (local_group && (this_nr_running >= group_capacity ||
2374 !this_nr_running))
2375 power_savings_balance = 0;
2376
dd41f596 2377 /*
5c45bf27
SS
2378 * If a group is already running at full capacity or idle,
2379 * don't include that group in power savings calculations
dd41f596
IM
2380 */
2381 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2382 || !sum_nr_running)
dd41f596 2383 goto group_next;
5c45bf27 2384
dd41f596 2385 /*
5c45bf27 2386 * Calculate the group which has the least non-idle load.
dd41f596
IM
2387 * This is the group from where we need to pick up the load
2388 * for saving power
2389 */
2390 if ((sum_nr_running < min_nr_running) ||
2391 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2392 first_cpu(group->cpumask) <
2393 first_cpu(group_min->cpumask))) {
dd41f596
IM
2394 group_min = group;
2395 min_nr_running = sum_nr_running;
5c45bf27
SS
2396 min_load_per_task = sum_weighted_load /
2397 sum_nr_running;
dd41f596 2398 }
5c45bf27 2399
dd41f596 2400 /*
5c45bf27 2401 * Calculate the group which is almost near its
dd41f596
IM
2402 * capacity but still has some space to pick up some load
2403 * from other group and save more power
2404 */
2405 if (sum_nr_running <= group_capacity - 1) {
2406 if (sum_nr_running > leader_nr_running ||
2407 (sum_nr_running == leader_nr_running &&
2408 first_cpu(group->cpumask) >
2409 first_cpu(group_leader->cpumask))) {
2410 group_leader = group;
2411 leader_nr_running = sum_nr_running;
2412 }
48f24c4d 2413 }
5c45bf27
SS
2414group_next:
2415#endif
1da177e4
LT
2416 group = group->next;
2417 } while (group != sd->groups);
2418
2dd73a4f 2419 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2420 goto out_balanced;
2421
2422 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2423
2424 if (this_load >= avg_load ||
2425 100*max_load <= sd->imbalance_pct*this_load)
2426 goto out_balanced;
2427
2dd73a4f 2428 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2429 /*
2430 * We're trying to get all the cpus to the average_load, so we don't
2431 * want to push ourselves above the average load, nor do we wish to
2432 * reduce the max loaded cpu below the average load, as either of these
2433 * actions would just result in more rebalancing later, and ping-pong
2434 * tasks around. Thus we look for the minimum possible imbalance.
2435 * Negative imbalances (*we* are more loaded than anyone else) will
2436 * be counted as no imbalance for these purposes -- we can't fix that
2437 * by pulling tasks to us. Be careful of negative numbers as they'll
2438 * appear as very large values with unsigned longs.
2439 */
2dd73a4f
PW
2440 if (max_load <= busiest_load_per_task)
2441 goto out_balanced;
2442
2443 /*
2444 * In the presence of smp nice balancing, certain scenarios can have
2445 * max load less than avg load(as we skip the groups at or below
2446 * its cpu_power, while calculating max_load..)
2447 */
2448 if (max_load < avg_load) {
2449 *imbalance = 0;
2450 goto small_imbalance;
2451 }
0c117f1b
SS
2452
2453 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2454 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2455
1da177e4 2456 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2457 *imbalance = min(max_pull * busiest->__cpu_power,
2458 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2459 / SCHED_LOAD_SCALE;
2460
2dd73a4f
PW
2461 /*
2462 * if *imbalance is less than the average load per runnable task
2463 * there is no gaurantee that any tasks will be moved so we'll have
2464 * a think about bumping its value to force at least one task to be
2465 * moved
2466 */
dd41f596 2467 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
48f24c4d 2468 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2469 unsigned int imbn;
2470
2471small_imbalance:
2472 pwr_move = pwr_now = 0;
2473 imbn = 2;
2474 if (this_nr_running) {
2475 this_load_per_task /= this_nr_running;
2476 if (busiest_load_per_task > this_load_per_task)
2477 imbn = 1;
2478 } else
2479 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2480
dd41f596
IM
2481 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2482 busiest_load_per_task * imbn) {
2dd73a4f 2483 *imbalance = busiest_load_per_task;
1da177e4
LT
2484 return busiest;
2485 }
2486
2487 /*
2488 * OK, we don't have enough imbalance to justify moving tasks,
2489 * however we may be able to increase total CPU power used by
2490 * moving them.
2491 */
2492
5517d86b
ED
2493 pwr_now += busiest->__cpu_power *
2494 min(busiest_load_per_task, max_load);
2495 pwr_now += this->__cpu_power *
2496 min(this_load_per_task, this_load);
1da177e4
LT
2497 pwr_now /= SCHED_LOAD_SCALE;
2498
2499 /* Amount of load we'd subtract */
5517d86b
ED
2500 tmp = sg_div_cpu_power(busiest,
2501 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2502 if (max_load > tmp)
5517d86b 2503 pwr_move += busiest->__cpu_power *
2dd73a4f 2504 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2505
2506 /* Amount of load we'd add */
5517d86b 2507 if (max_load * busiest->__cpu_power <
33859f7f 2508 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2509 tmp = sg_div_cpu_power(this,
2510 max_load * busiest->__cpu_power);
1da177e4 2511 else
5517d86b
ED
2512 tmp = sg_div_cpu_power(this,
2513 busiest_load_per_task * SCHED_LOAD_SCALE);
2514 pwr_move += this->__cpu_power *
2515 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2516 pwr_move /= SCHED_LOAD_SCALE;
2517
2518 /* Move if we gain throughput */
2519 if (pwr_move <= pwr_now)
2520 goto out_balanced;
2521
2dd73a4f 2522 *imbalance = busiest_load_per_task;
1da177e4
LT
2523 }
2524
1da177e4
LT
2525 return busiest;
2526
2527out_balanced:
5c45bf27 2528#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2529 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2530 goto ret;
1da177e4 2531
5c45bf27
SS
2532 if (this == group_leader && group_leader != group_min) {
2533 *imbalance = min_load_per_task;
2534 return group_min;
2535 }
5c45bf27 2536#endif
783609c6 2537ret:
1da177e4
LT
2538 *imbalance = 0;
2539 return NULL;
2540}
2541
2542/*
2543 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2544 */
70b97a7f 2545static struct rq *
d15bcfdb 2546find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2547 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2548{
70b97a7f 2549 struct rq *busiest = NULL, *rq;
2dd73a4f 2550 unsigned long max_load = 0;
1da177e4
LT
2551 int i;
2552
2553 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2554 unsigned long wl;
0a2966b4
CL
2555
2556 if (!cpu_isset(i, *cpus))
2557 continue;
2558
48f24c4d 2559 rq = cpu_rq(i);
dd41f596 2560 wl = weighted_cpuload(i);
2dd73a4f 2561
dd41f596 2562 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2563 continue;
1da177e4 2564
dd41f596
IM
2565 if (wl > max_load) {
2566 max_load = wl;
48f24c4d 2567 busiest = rq;
1da177e4
LT
2568 }
2569 }
2570
2571 return busiest;
2572}
2573
77391d71
NP
2574/*
2575 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2576 * so long as it is large enough.
2577 */
2578#define MAX_PINNED_INTERVAL 512
2579
48f24c4d
IM
2580static inline unsigned long minus_1_or_zero(unsigned long n)
2581{
2582 return n > 0 ? n - 1 : 0;
2583}
2584
1da177e4
LT
2585/*
2586 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2587 * tasks if there is an imbalance.
1da177e4 2588 */
70b97a7f 2589static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2590 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2591 int *balance)
1da177e4 2592{
48f24c4d 2593 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2594 struct sched_group *group;
1da177e4 2595 unsigned long imbalance;
70b97a7f 2596 struct rq *busiest;
0a2966b4 2597 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2598 unsigned long flags;
5969fe06 2599
89c4710e
SS
2600 /*
2601 * When power savings policy is enabled for the parent domain, idle
2602 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2603 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2604 * portraying it as CPU_NOT_IDLE.
89c4710e 2605 */
d15bcfdb 2606 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2607 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2608 sd_idle = 1;
1da177e4 2609
1da177e4
LT
2610 schedstat_inc(sd, lb_cnt[idle]);
2611
0a2966b4
CL
2612redo:
2613 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2614 &cpus, balance);
2615
06066714 2616 if (*balance == 0)
783609c6 2617 goto out_balanced;
783609c6 2618
1da177e4
LT
2619 if (!group) {
2620 schedstat_inc(sd, lb_nobusyg[idle]);
2621 goto out_balanced;
2622 }
2623
0a2966b4 2624 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2625 if (!busiest) {
2626 schedstat_inc(sd, lb_nobusyq[idle]);
2627 goto out_balanced;
2628 }
2629
db935dbd 2630 BUG_ON(busiest == this_rq);
1da177e4
LT
2631
2632 schedstat_add(sd, lb_imbalance[idle], imbalance);
2633
2634 nr_moved = 0;
2635 if (busiest->nr_running > 1) {
2636 /*
2637 * Attempt to move tasks. If find_busiest_group has found
2638 * an imbalance but busiest->nr_running <= 1, the group is
2639 * still unbalanced. nr_moved simply stays zero, so it is
2640 * correctly treated as an imbalance.
2641 */
fe2eea3f 2642 local_irq_save(flags);
e17224bf 2643 double_rq_lock(this_rq, busiest);
1da177e4 2644 nr_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d
IM
2645 minus_1_or_zero(busiest->nr_running),
2646 imbalance, sd, idle, &all_pinned);
e17224bf 2647 double_rq_unlock(this_rq, busiest);
fe2eea3f 2648 local_irq_restore(flags);
81026794 2649
46cb4b7c
SS
2650 /*
2651 * some other cpu did the load balance for us.
2652 */
2653 if (nr_moved && this_cpu != smp_processor_id())
2654 resched_cpu(this_cpu);
2655
81026794 2656 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2657 if (unlikely(all_pinned)) {
2658 cpu_clear(cpu_of(busiest), cpus);
2659 if (!cpus_empty(cpus))
2660 goto redo;
81026794 2661 goto out_balanced;
0a2966b4 2662 }
1da177e4 2663 }
81026794 2664
1da177e4
LT
2665 if (!nr_moved) {
2666 schedstat_inc(sd, lb_failed[idle]);
2667 sd->nr_balance_failed++;
2668
2669 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2670
fe2eea3f 2671 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2672
2673 /* don't kick the migration_thread, if the curr
2674 * task on busiest cpu can't be moved to this_cpu
2675 */
2676 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2677 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2678 all_pinned = 1;
2679 goto out_one_pinned;
2680 }
2681
1da177e4
LT
2682 if (!busiest->active_balance) {
2683 busiest->active_balance = 1;
2684 busiest->push_cpu = this_cpu;
81026794 2685 active_balance = 1;
1da177e4 2686 }
fe2eea3f 2687 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2688 if (active_balance)
1da177e4
LT
2689 wake_up_process(busiest->migration_thread);
2690
2691 /*
2692 * We've kicked active balancing, reset the failure
2693 * counter.
2694 */
39507451 2695 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2696 }
81026794 2697 } else
1da177e4
LT
2698 sd->nr_balance_failed = 0;
2699
81026794 2700 if (likely(!active_balance)) {
1da177e4
LT
2701 /* We were unbalanced, so reset the balancing interval */
2702 sd->balance_interval = sd->min_interval;
81026794
NP
2703 } else {
2704 /*
2705 * If we've begun active balancing, start to back off. This
2706 * case may not be covered by the all_pinned logic if there
2707 * is only 1 task on the busy runqueue (because we don't call
2708 * move_tasks).
2709 */
2710 if (sd->balance_interval < sd->max_interval)
2711 sd->balance_interval *= 2;
1da177e4
LT
2712 }
2713
5c45bf27 2714 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2715 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2716 return -1;
1da177e4
LT
2717 return nr_moved;
2718
2719out_balanced:
1da177e4
LT
2720 schedstat_inc(sd, lb_balanced[idle]);
2721
16cfb1c0 2722 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2723
2724out_one_pinned:
1da177e4 2725 /* tune up the balancing interval */
77391d71
NP
2726 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2727 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2728 sd->balance_interval *= 2;
2729
48f24c4d 2730 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2731 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2732 return -1;
1da177e4
LT
2733 return 0;
2734}
2735
2736/*
2737 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2738 * tasks if there is an imbalance.
2739 *
d15bcfdb 2740 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2741 * this_rq is locked.
2742 */
48f24c4d 2743static int
70b97a7f 2744load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2745{
2746 struct sched_group *group;
70b97a7f 2747 struct rq *busiest = NULL;
1da177e4
LT
2748 unsigned long imbalance;
2749 int nr_moved = 0;
5969fe06 2750 int sd_idle = 0;
0a2966b4 2751 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2752
89c4710e
SS
2753 /*
2754 * When power savings policy is enabled for the parent domain, idle
2755 * sibling can pick up load irrespective of busy siblings. In this case,
2756 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2757 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2758 */
2759 if (sd->flags & SD_SHARE_CPUPOWER &&
2760 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2761 sd_idle = 1;
1da177e4 2762
d15bcfdb 2763 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2764redo:
d15bcfdb 2765 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2766 &sd_idle, &cpus, NULL);
1da177e4 2767 if (!group) {
d15bcfdb 2768 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2769 goto out_balanced;
1da177e4
LT
2770 }
2771
d15bcfdb 2772 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2773 &cpus);
db935dbd 2774 if (!busiest) {
d15bcfdb 2775 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2776 goto out_balanced;
1da177e4
LT
2777 }
2778
db935dbd
NP
2779 BUG_ON(busiest == this_rq);
2780
d15bcfdb 2781 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2782
2783 nr_moved = 0;
2784 if (busiest->nr_running > 1) {
2785 /* Attempt to move tasks */
2786 double_lock_balance(this_rq, busiest);
2787 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2788 minus_1_or_zero(busiest->nr_running),
d15bcfdb 2789 imbalance, sd, CPU_NEWLY_IDLE, NULL);
d6d5cfaf 2790 spin_unlock(&busiest->lock);
0a2966b4
CL
2791
2792 if (!nr_moved) {
2793 cpu_clear(cpu_of(busiest), cpus);
2794 if (!cpus_empty(cpus))
2795 goto redo;
2796 }
d6d5cfaf
NP
2797 }
2798
5969fe06 2799 if (!nr_moved) {
d15bcfdb 2800 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2801 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2802 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2803 return -1;
2804 } else
16cfb1c0 2805 sd->nr_balance_failed = 0;
1da177e4 2806
1da177e4 2807 return nr_moved;
16cfb1c0
NP
2808
2809out_balanced:
d15bcfdb 2810 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2811 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2812 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2813 return -1;
16cfb1c0 2814 sd->nr_balance_failed = 0;
48f24c4d 2815
16cfb1c0 2816 return 0;
1da177e4
LT
2817}
2818
2819/*
2820 * idle_balance is called by schedule() if this_cpu is about to become
2821 * idle. Attempts to pull tasks from other CPUs.
2822 */
70b97a7f 2823static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2824{
2825 struct sched_domain *sd;
dd41f596
IM
2826 int pulled_task = -1;
2827 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2828
2829 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2830 unsigned long interval;
2831
2832 if (!(sd->flags & SD_LOAD_BALANCE))
2833 continue;
2834
2835 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2836 /* If we've pulled tasks over stop searching: */
1bd77f2d 2837 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2838 this_rq, sd);
2839
2840 interval = msecs_to_jiffies(sd->balance_interval);
2841 if (time_after(next_balance, sd->last_balance + interval))
2842 next_balance = sd->last_balance + interval;
2843 if (pulled_task)
2844 break;
1da177e4 2845 }
dd41f596 2846 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2847 /*
2848 * We are going idle. next_balance may be set based on
2849 * a busy processor. So reset next_balance.
2850 */
2851 this_rq->next_balance = next_balance;
dd41f596 2852 }
1da177e4
LT
2853}
2854
2855/*
2856 * active_load_balance is run by migration threads. It pushes running tasks
2857 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2858 * running on each physical CPU where possible, and avoids physical /
2859 * logical imbalances.
2860 *
2861 * Called with busiest_rq locked.
2862 */
70b97a7f 2863static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2864{
39507451 2865 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2866 struct sched_domain *sd;
2867 struct rq *target_rq;
39507451 2868
48f24c4d 2869 /* Is there any task to move? */
39507451 2870 if (busiest_rq->nr_running <= 1)
39507451
NP
2871 return;
2872
2873 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2874
2875 /*
39507451
NP
2876 * This condition is "impossible", if it occurs
2877 * we need to fix it. Originally reported by
2878 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2879 */
39507451 2880 BUG_ON(busiest_rq == target_rq);
1da177e4 2881
39507451
NP
2882 /* move a task from busiest_rq to target_rq */
2883 double_lock_balance(busiest_rq, target_rq);
2884
2885 /* Search for an sd spanning us and the target CPU. */
c96d145e 2886 for_each_domain(target_cpu, sd) {
39507451 2887 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2888 cpu_isset(busiest_cpu, sd->span))
39507451 2889 break;
c96d145e 2890 }
39507451 2891
48f24c4d
IM
2892 if (likely(sd)) {
2893 schedstat_inc(sd, alb_cnt);
39507451 2894
48f24c4d 2895 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
d15bcfdb 2896 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
48f24c4d
IM
2897 NULL))
2898 schedstat_inc(sd, alb_pushed);
2899 else
2900 schedstat_inc(sd, alb_failed);
2901 }
39507451 2902 spin_unlock(&target_rq->lock);
1da177e4
LT
2903}
2904
46cb4b7c
SS
2905#ifdef CONFIG_NO_HZ
2906static struct {
2907 atomic_t load_balancer;
2908 cpumask_t cpu_mask;
2909} nohz ____cacheline_aligned = {
2910 .load_balancer = ATOMIC_INIT(-1),
2911 .cpu_mask = CPU_MASK_NONE,
2912};
2913
7835b98b 2914/*
46cb4b7c
SS
2915 * This routine will try to nominate the ilb (idle load balancing)
2916 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2917 * load balancing on behalf of all those cpus. If all the cpus in the system
2918 * go into this tickless mode, then there will be no ilb owner (as there is
2919 * no need for one) and all the cpus will sleep till the next wakeup event
2920 * arrives...
2921 *
2922 * For the ilb owner, tick is not stopped. And this tick will be used
2923 * for idle load balancing. ilb owner will still be part of
2924 * nohz.cpu_mask..
7835b98b 2925 *
46cb4b7c
SS
2926 * While stopping the tick, this cpu will become the ilb owner if there
2927 * is no other owner. And will be the owner till that cpu becomes busy
2928 * or if all cpus in the system stop their ticks at which point
2929 * there is no need for ilb owner.
2930 *
2931 * When the ilb owner becomes busy, it nominates another owner, during the
2932 * next busy scheduler_tick()
2933 */
2934int select_nohz_load_balancer(int stop_tick)
2935{
2936 int cpu = smp_processor_id();
2937
2938 if (stop_tick) {
2939 cpu_set(cpu, nohz.cpu_mask);
2940 cpu_rq(cpu)->in_nohz_recently = 1;
2941
2942 /*
2943 * If we are going offline and still the leader, give up!
2944 */
2945 if (cpu_is_offline(cpu) &&
2946 atomic_read(&nohz.load_balancer) == cpu) {
2947 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2948 BUG();
2949 return 0;
2950 }
2951
2952 /* time for ilb owner also to sleep */
2953 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2954 if (atomic_read(&nohz.load_balancer) == cpu)
2955 atomic_set(&nohz.load_balancer, -1);
2956 return 0;
2957 }
2958
2959 if (atomic_read(&nohz.load_balancer) == -1) {
2960 /* make me the ilb owner */
2961 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2962 return 1;
2963 } else if (atomic_read(&nohz.load_balancer) == cpu)
2964 return 1;
2965 } else {
2966 if (!cpu_isset(cpu, nohz.cpu_mask))
2967 return 0;
2968
2969 cpu_clear(cpu, nohz.cpu_mask);
2970
2971 if (atomic_read(&nohz.load_balancer) == cpu)
2972 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2973 BUG();
2974 }
2975 return 0;
2976}
2977#endif
2978
2979static DEFINE_SPINLOCK(balancing);
2980
2981/*
7835b98b
CL
2982 * It checks each scheduling domain to see if it is due to be balanced,
2983 * and initiates a balancing operation if so.
2984 *
2985 * Balancing parameters are set up in arch_init_sched_domains.
2986 */
d15bcfdb 2987static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 2988{
46cb4b7c
SS
2989 int balance = 1;
2990 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
2991 unsigned long interval;
2992 struct sched_domain *sd;
46cb4b7c 2993 /* Earliest time when we have to do rebalance again */
c9819f45 2994 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 2995
46cb4b7c 2996 for_each_domain(cpu, sd) {
1da177e4
LT
2997 if (!(sd->flags & SD_LOAD_BALANCE))
2998 continue;
2999
3000 interval = sd->balance_interval;
d15bcfdb 3001 if (idle != CPU_IDLE)
1da177e4
LT
3002 interval *= sd->busy_factor;
3003
3004 /* scale ms to jiffies */
3005 interval = msecs_to_jiffies(interval);
3006 if (unlikely(!interval))
3007 interval = 1;
dd41f596
IM
3008 if (interval > HZ*NR_CPUS/10)
3009 interval = HZ*NR_CPUS/10;
3010
1da177e4 3011
08c183f3
CL
3012 if (sd->flags & SD_SERIALIZE) {
3013 if (!spin_trylock(&balancing))
3014 goto out;
3015 }
3016
c9819f45 3017 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3018 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3019 /*
3020 * We've pulled tasks over so either we're no
5969fe06
NP
3021 * longer idle, or one of our SMT siblings is
3022 * not idle.
3023 */
d15bcfdb 3024 idle = CPU_NOT_IDLE;
1da177e4 3025 }
1bd77f2d 3026 sd->last_balance = jiffies;
1da177e4 3027 }
08c183f3
CL
3028 if (sd->flags & SD_SERIALIZE)
3029 spin_unlock(&balancing);
3030out:
c9819f45
CL
3031 if (time_after(next_balance, sd->last_balance + interval))
3032 next_balance = sd->last_balance + interval;
783609c6
SS
3033
3034 /*
3035 * Stop the load balance at this level. There is another
3036 * CPU in our sched group which is doing load balancing more
3037 * actively.
3038 */
3039 if (!balance)
3040 break;
1da177e4 3041 }
46cb4b7c
SS
3042 rq->next_balance = next_balance;
3043}
3044
3045/*
3046 * run_rebalance_domains is triggered when needed from the scheduler tick.
3047 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3048 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3049 */
3050static void run_rebalance_domains(struct softirq_action *h)
3051{
dd41f596
IM
3052 int this_cpu = smp_processor_id();
3053 struct rq *this_rq = cpu_rq(this_cpu);
3054 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3055 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3056
dd41f596 3057 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3058
3059#ifdef CONFIG_NO_HZ
3060 /*
3061 * If this cpu is the owner for idle load balancing, then do the
3062 * balancing on behalf of the other idle cpus whose ticks are
3063 * stopped.
3064 */
dd41f596
IM
3065 if (this_rq->idle_at_tick &&
3066 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3067 cpumask_t cpus = nohz.cpu_mask;
3068 struct rq *rq;
3069 int balance_cpu;
3070
dd41f596 3071 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3072 for_each_cpu_mask(balance_cpu, cpus) {
3073 /*
3074 * If this cpu gets work to do, stop the load balancing
3075 * work being done for other cpus. Next load
3076 * balancing owner will pick it up.
3077 */
3078 if (need_resched())
3079 break;
3080
dd41f596 3081 rebalance_domains(balance_cpu, SCHED_IDLE);
46cb4b7c
SS
3082
3083 rq = cpu_rq(balance_cpu);
dd41f596
IM
3084 if (time_after(this_rq->next_balance, rq->next_balance))
3085 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3086 }
3087 }
3088#endif
3089}
3090
3091/*
3092 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3093 *
3094 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3095 * idle load balancing owner or decide to stop the periodic load balancing,
3096 * if the whole system is idle.
3097 */
dd41f596 3098static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3099{
46cb4b7c
SS
3100#ifdef CONFIG_NO_HZ
3101 /*
3102 * If we were in the nohz mode recently and busy at the current
3103 * scheduler tick, then check if we need to nominate new idle
3104 * load balancer.
3105 */
3106 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3107 rq->in_nohz_recently = 0;
3108
3109 if (atomic_read(&nohz.load_balancer) == cpu) {
3110 cpu_clear(cpu, nohz.cpu_mask);
3111 atomic_set(&nohz.load_balancer, -1);
3112 }
3113
3114 if (atomic_read(&nohz.load_balancer) == -1) {
3115 /*
3116 * simple selection for now: Nominate the
3117 * first cpu in the nohz list to be the next
3118 * ilb owner.
3119 *
3120 * TBD: Traverse the sched domains and nominate
3121 * the nearest cpu in the nohz.cpu_mask.
3122 */
3123 int ilb = first_cpu(nohz.cpu_mask);
3124
3125 if (ilb != NR_CPUS)
3126 resched_cpu(ilb);
3127 }
3128 }
3129
3130 /*
3131 * If this cpu is idle and doing idle load balancing for all the
3132 * cpus with ticks stopped, is it time for that to stop?
3133 */
3134 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3135 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3136 resched_cpu(cpu);
3137 return;
3138 }
3139
3140 /*
3141 * If this cpu is idle and the idle load balancing is done by
3142 * someone else, then no need raise the SCHED_SOFTIRQ
3143 */
3144 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3145 cpu_isset(cpu, nohz.cpu_mask))
3146 return;
3147#endif
3148 if (time_after_eq(jiffies, rq->next_balance))
3149 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3150}
dd41f596
IM
3151
3152#else /* CONFIG_SMP */
3153
1da177e4
LT
3154/*
3155 * on UP we do not need to balance between CPUs:
3156 */
70b97a7f 3157static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3158{
3159}
dd41f596
IM
3160
3161/* Avoid "used but not defined" warning on UP */
3162static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3163 unsigned long max_nr_move, unsigned long max_load_move,
3164 struct sched_domain *sd, enum cpu_idle_type idle,
3165 int *all_pinned, unsigned long *load_moved,
3166 int this_best_prio, int best_prio, int best_prio_seen,
3167 struct rq_iterator *iterator)
3168{
3169 *load_moved = 0;
3170
3171 return 0;
3172}
3173
1da177e4
LT
3174#endif
3175
1da177e4
LT
3176DEFINE_PER_CPU(struct kernel_stat, kstat);
3177
3178EXPORT_PER_CPU_SYMBOL(kstat);
3179
3180/*
41b86e9c
IM
3181 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3182 * that have not yet been banked in case the task is currently running.
1da177e4 3183 */
41b86e9c 3184unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3185{
1da177e4 3186 unsigned long flags;
41b86e9c
IM
3187 u64 ns, delta_exec;
3188 struct rq *rq;
48f24c4d 3189
41b86e9c
IM
3190 rq = task_rq_lock(p, &flags);
3191 ns = p->se.sum_exec_runtime;
3192 if (rq->curr == p) {
3193 delta_exec = rq_clock(rq) - p->se.exec_start;
3194 if ((s64)delta_exec > 0)
3195 ns += delta_exec;
3196 }
3197 task_rq_unlock(rq, &flags);
48f24c4d 3198
1da177e4
LT
3199 return ns;
3200}
3201
1da177e4
LT
3202/*
3203 * Account user cpu time to a process.
3204 * @p: the process that the cpu time gets accounted to
3205 * @hardirq_offset: the offset to subtract from hardirq_count()
3206 * @cputime: the cpu time spent in user space since the last update
3207 */
3208void account_user_time(struct task_struct *p, cputime_t cputime)
3209{
3210 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3211 cputime64_t tmp;
3212
3213 p->utime = cputime_add(p->utime, cputime);
3214
3215 /* Add user time to cpustat. */
3216 tmp = cputime_to_cputime64(cputime);
3217 if (TASK_NICE(p) > 0)
3218 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3219 else
3220 cpustat->user = cputime64_add(cpustat->user, tmp);
3221}
3222
3223/*
3224 * Account system cpu time to a process.
3225 * @p: the process that the cpu time gets accounted to
3226 * @hardirq_offset: the offset to subtract from hardirq_count()
3227 * @cputime: the cpu time spent in kernel space since the last update
3228 */
3229void account_system_time(struct task_struct *p, int hardirq_offset,
3230 cputime_t cputime)
3231{
3232 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3233 struct rq *rq = this_rq();
1da177e4
LT
3234 cputime64_t tmp;
3235
3236 p->stime = cputime_add(p->stime, cputime);
3237
3238 /* Add system time to cpustat. */
3239 tmp = cputime_to_cputime64(cputime);
3240 if (hardirq_count() - hardirq_offset)
3241 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3242 else if (softirq_count())
3243 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3244 else if (p != rq->idle)
3245 cpustat->system = cputime64_add(cpustat->system, tmp);
3246 else if (atomic_read(&rq->nr_iowait) > 0)
3247 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3248 else
3249 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3250 /* Account for system time used */
3251 acct_update_integrals(p);
1da177e4
LT
3252}
3253
3254/*
3255 * Account for involuntary wait time.
3256 * @p: the process from which the cpu time has been stolen
3257 * @steal: the cpu time spent in involuntary wait
3258 */
3259void account_steal_time(struct task_struct *p, cputime_t steal)
3260{
3261 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3262 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3263 struct rq *rq = this_rq();
1da177e4
LT
3264
3265 if (p == rq->idle) {
3266 p->stime = cputime_add(p->stime, steal);
3267 if (atomic_read(&rq->nr_iowait) > 0)
3268 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3269 else
3270 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3271 } else
3272 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3273}
3274
7835b98b
CL
3275/*
3276 * This function gets called by the timer code, with HZ frequency.
3277 * We call it with interrupts disabled.
3278 *
3279 * It also gets called by the fork code, when changing the parent's
3280 * timeslices.
3281 */
3282void scheduler_tick(void)
3283{
7835b98b
CL
3284 int cpu = smp_processor_id();
3285 struct rq *rq = cpu_rq(cpu);
dd41f596
IM
3286 struct task_struct *curr = rq->curr;
3287
3288 spin_lock(&rq->lock);
3289 if (curr != rq->idle) /* FIXME: needed? */
3290 curr->sched_class->task_tick(rq, curr);
3291 update_cpu_load(rq);
3292 spin_unlock(&rq->lock);
7835b98b 3293
e418e1c2 3294#ifdef CONFIG_SMP
dd41f596
IM
3295 rq->idle_at_tick = idle_cpu(cpu);
3296 trigger_load_balance(rq, cpu);
e418e1c2 3297#endif
1da177e4
LT
3298}
3299
1da177e4
LT
3300#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3301
3302void fastcall add_preempt_count(int val)
3303{
3304 /*
3305 * Underflow?
3306 */
9a11b49a
IM
3307 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3308 return;
1da177e4
LT
3309 preempt_count() += val;
3310 /*
3311 * Spinlock count overflowing soon?
3312 */
33859f7f
MOS
3313 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3314 PREEMPT_MASK - 10);
1da177e4
LT
3315}
3316EXPORT_SYMBOL(add_preempt_count);
3317
3318void fastcall sub_preempt_count(int val)
3319{
3320 /*
3321 * Underflow?
3322 */
9a11b49a
IM
3323 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3324 return;
1da177e4
LT
3325 /*
3326 * Is the spinlock portion underflowing?
3327 */
9a11b49a
IM
3328 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3329 !(preempt_count() & PREEMPT_MASK)))
3330 return;
3331
1da177e4
LT
3332 preempt_count() -= val;
3333}
3334EXPORT_SYMBOL(sub_preempt_count);
3335
3336#endif
3337
3338/*
dd41f596 3339 * Print scheduling while atomic bug:
1da177e4 3340 */
dd41f596 3341static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3342{
dd41f596
IM
3343 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3344 prev->comm, preempt_count(), prev->pid);
3345 debug_show_held_locks(prev);
3346 if (irqs_disabled())
3347 print_irqtrace_events(prev);
3348 dump_stack();
3349}
1da177e4 3350
dd41f596
IM
3351/*
3352 * Various schedule()-time debugging checks and statistics:
3353 */
3354static inline void schedule_debug(struct task_struct *prev)
3355{
1da177e4
LT
3356 /*
3357 * Test if we are atomic. Since do_exit() needs to call into
3358 * schedule() atomically, we ignore that path for now.
3359 * Otherwise, whine if we are scheduling when we should not be.
3360 */
dd41f596
IM
3361 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3362 __schedule_bug(prev);
3363
1da177e4
LT
3364 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3365
dd41f596
IM
3366 schedstat_inc(this_rq(), sched_cnt);
3367}
3368
3369/*
3370 * Pick up the highest-prio task:
3371 */
3372static inline struct task_struct *
3373pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3374{
3375 struct sched_class *class;
3376 struct task_struct *p;
1da177e4
LT
3377
3378 /*
dd41f596
IM
3379 * Optimization: we know that if all tasks are in
3380 * the fair class we can call that function directly:
1da177e4 3381 */
dd41f596
IM
3382 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3383 p = fair_sched_class.pick_next_task(rq, now);
3384 if (likely(p))
3385 return p;
1da177e4
LT
3386 }
3387
dd41f596
IM
3388 class = sched_class_highest;
3389 for ( ; ; ) {
3390 p = class->pick_next_task(rq, now);
3391 if (p)
3392 return p;
3393 /*
3394 * Will never be NULL as the idle class always
3395 * returns a non-NULL p:
3396 */
3397 class = class->next;
3398 }
3399}
1da177e4 3400
dd41f596
IM
3401/*
3402 * schedule() is the main scheduler function.
3403 */
3404asmlinkage void __sched schedule(void)
3405{
3406 struct task_struct *prev, *next;
3407 long *switch_count;
3408 struct rq *rq;
3409 u64 now;
3410 int cpu;
3411
3412need_resched:
3413 preempt_disable();
3414 cpu = smp_processor_id();
3415 rq = cpu_rq(cpu);
3416 rcu_qsctr_inc(cpu);
3417 prev = rq->curr;
3418 switch_count = &prev->nivcsw;
3419
3420 release_kernel_lock(prev);
3421need_resched_nonpreemptible:
3422
3423 schedule_debug(prev);
1da177e4
LT
3424
3425 spin_lock_irq(&rq->lock);
dd41f596 3426 clear_tsk_need_resched(prev);
1da177e4 3427
1da177e4 3428 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3429 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3430 unlikely(signal_pending(prev)))) {
1da177e4 3431 prev->state = TASK_RUNNING;
dd41f596
IM
3432 } else {
3433 deactivate_task(rq, prev, 1);
1da177e4 3434 }
dd41f596 3435 switch_count = &prev->nvcsw;
1da177e4
LT
3436 }
3437
dd41f596 3438 if (unlikely(!rq->nr_running))
1da177e4 3439 idle_balance(cpu, rq);
1da177e4 3440
dd41f596
IM
3441 now = __rq_clock(rq);
3442 prev->sched_class->put_prev_task(rq, prev, now);
3443 next = pick_next_task(rq, prev, now);
1da177e4
LT
3444
3445 sched_info_switch(prev, next);
dd41f596 3446
1da177e4 3447 if (likely(prev != next)) {
1da177e4
LT
3448 rq->nr_switches++;
3449 rq->curr = next;
3450 ++*switch_count;
3451
dd41f596 3452 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3453 } else
3454 spin_unlock_irq(&rq->lock);
3455
dd41f596
IM
3456 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3457 cpu = smp_processor_id();
3458 rq = cpu_rq(cpu);
1da177e4 3459 goto need_resched_nonpreemptible;
dd41f596 3460 }
1da177e4
LT
3461 preempt_enable_no_resched();
3462 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3463 goto need_resched;
3464}
1da177e4
LT
3465EXPORT_SYMBOL(schedule);
3466
3467#ifdef CONFIG_PREEMPT
3468/*
2ed6e34f 3469 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3470 * off of preempt_enable. Kernel preemptions off return from interrupt
3471 * occur there and call schedule directly.
3472 */
3473asmlinkage void __sched preempt_schedule(void)
3474{
3475 struct thread_info *ti = current_thread_info();
3476#ifdef CONFIG_PREEMPT_BKL
3477 struct task_struct *task = current;
3478 int saved_lock_depth;
3479#endif
3480 /*
3481 * If there is a non-zero preempt_count or interrupts are disabled,
3482 * we do not want to preempt the current task. Just return..
3483 */
beed33a8 3484 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3485 return;
3486
3487need_resched:
3488 add_preempt_count(PREEMPT_ACTIVE);
3489 /*
3490 * We keep the big kernel semaphore locked, but we
3491 * clear ->lock_depth so that schedule() doesnt
3492 * auto-release the semaphore:
3493 */
3494#ifdef CONFIG_PREEMPT_BKL
3495 saved_lock_depth = task->lock_depth;
3496 task->lock_depth = -1;
3497#endif
3498 schedule();
3499#ifdef CONFIG_PREEMPT_BKL
3500 task->lock_depth = saved_lock_depth;
3501#endif
3502 sub_preempt_count(PREEMPT_ACTIVE);
3503
3504 /* we could miss a preemption opportunity between schedule and now */
3505 barrier();
3506 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3507 goto need_resched;
3508}
1da177e4
LT
3509EXPORT_SYMBOL(preempt_schedule);
3510
3511/*
2ed6e34f 3512 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3513 * off of irq context.
3514 * Note, that this is called and return with irqs disabled. This will
3515 * protect us against recursive calling from irq.
3516 */
3517asmlinkage void __sched preempt_schedule_irq(void)
3518{
3519 struct thread_info *ti = current_thread_info();
3520#ifdef CONFIG_PREEMPT_BKL
3521 struct task_struct *task = current;
3522 int saved_lock_depth;
3523#endif
2ed6e34f 3524 /* Catch callers which need to be fixed */
1da177e4
LT
3525 BUG_ON(ti->preempt_count || !irqs_disabled());
3526
3527need_resched:
3528 add_preempt_count(PREEMPT_ACTIVE);
3529 /*
3530 * We keep the big kernel semaphore locked, but we
3531 * clear ->lock_depth so that schedule() doesnt
3532 * auto-release the semaphore:
3533 */
3534#ifdef CONFIG_PREEMPT_BKL
3535 saved_lock_depth = task->lock_depth;
3536 task->lock_depth = -1;
3537#endif
3538 local_irq_enable();
3539 schedule();
3540 local_irq_disable();
3541#ifdef CONFIG_PREEMPT_BKL
3542 task->lock_depth = saved_lock_depth;
3543#endif
3544 sub_preempt_count(PREEMPT_ACTIVE);
3545
3546 /* we could miss a preemption opportunity between schedule and now */
3547 barrier();
3548 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3549 goto need_resched;
3550}
3551
3552#endif /* CONFIG_PREEMPT */
3553
95cdf3b7
IM
3554int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3555 void *key)
1da177e4 3556{
48f24c4d 3557 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3558}
1da177e4
LT
3559EXPORT_SYMBOL(default_wake_function);
3560
3561/*
3562 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3563 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3564 * number) then we wake all the non-exclusive tasks and one exclusive task.
3565 *
3566 * There are circumstances in which we can try to wake a task which has already
3567 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3568 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3569 */
3570static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3571 int nr_exclusive, int sync, void *key)
3572{
3573 struct list_head *tmp, *next;
3574
3575 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3576 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3577 unsigned flags = curr->flags;
3578
1da177e4 3579 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3580 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3581 break;
3582 }
3583}
3584
3585/**
3586 * __wake_up - wake up threads blocked on a waitqueue.
3587 * @q: the waitqueue
3588 * @mode: which threads
3589 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3590 * @key: is directly passed to the wakeup function
1da177e4
LT
3591 */
3592void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3593 int nr_exclusive, void *key)
1da177e4
LT
3594{
3595 unsigned long flags;
3596
3597 spin_lock_irqsave(&q->lock, flags);
3598 __wake_up_common(q, mode, nr_exclusive, 0, key);
3599 spin_unlock_irqrestore(&q->lock, flags);
3600}
1da177e4
LT
3601EXPORT_SYMBOL(__wake_up);
3602
3603/*
3604 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3605 */
3606void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3607{
3608 __wake_up_common(q, mode, 1, 0, NULL);
3609}
3610
3611/**
67be2dd1 3612 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3613 * @q: the waitqueue
3614 * @mode: which threads
3615 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3616 *
3617 * The sync wakeup differs that the waker knows that it will schedule
3618 * away soon, so while the target thread will be woken up, it will not
3619 * be migrated to another CPU - ie. the two threads are 'synchronized'
3620 * with each other. This can prevent needless bouncing between CPUs.
3621 *
3622 * On UP it can prevent extra preemption.
3623 */
95cdf3b7
IM
3624void fastcall
3625__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3626{
3627 unsigned long flags;
3628 int sync = 1;
3629
3630 if (unlikely(!q))
3631 return;
3632
3633 if (unlikely(!nr_exclusive))
3634 sync = 0;
3635
3636 spin_lock_irqsave(&q->lock, flags);
3637 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3638 spin_unlock_irqrestore(&q->lock, flags);
3639}
3640EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3641
3642void fastcall complete(struct completion *x)
3643{
3644 unsigned long flags;
3645
3646 spin_lock_irqsave(&x->wait.lock, flags);
3647 x->done++;
3648 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3649 1, 0, NULL);
3650 spin_unlock_irqrestore(&x->wait.lock, flags);
3651}
3652EXPORT_SYMBOL(complete);
3653
3654void fastcall complete_all(struct completion *x)
3655{
3656 unsigned long flags;
3657
3658 spin_lock_irqsave(&x->wait.lock, flags);
3659 x->done += UINT_MAX/2;
3660 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3661 0, 0, NULL);
3662 spin_unlock_irqrestore(&x->wait.lock, flags);
3663}
3664EXPORT_SYMBOL(complete_all);
3665
3666void fastcall __sched wait_for_completion(struct completion *x)
3667{
3668 might_sleep();
48f24c4d 3669
1da177e4
LT
3670 spin_lock_irq(&x->wait.lock);
3671 if (!x->done) {
3672 DECLARE_WAITQUEUE(wait, current);
3673
3674 wait.flags |= WQ_FLAG_EXCLUSIVE;
3675 __add_wait_queue_tail(&x->wait, &wait);
3676 do {
3677 __set_current_state(TASK_UNINTERRUPTIBLE);
3678 spin_unlock_irq(&x->wait.lock);
3679 schedule();
3680 spin_lock_irq(&x->wait.lock);
3681 } while (!x->done);
3682 __remove_wait_queue(&x->wait, &wait);
3683 }
3684 x->done--;
3685 spin_unlock_irq(&x->wait.lock);
3686}
3687EXPORT_SYMBOL(wait_for_completion);
3688
3689unsigned long fastcall __sched
3690wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3691{
3692 might_sleep();
3693
3694 spin_lock_irq(&x->wait.lock);
3695 if (!x->done) {
3696 DECLARE_WAITQUEUE(wait, current);
3697
3698 wait.flags |= WQ_FLAG_EXCLUSIVE;
3699 __add_wait_queue_tail(&x->wait, &wait);
3700 do {
3701 __set_current_state(TASK_UNINTERRUPTIBLE);
3702 spin_unlock_irq(&x->wait.lock);
3703 timeout = schedule_timeout(timeout);
3704 spin_lock_irq(&x->wait.lock);
3705 if (!timeout) {
3706 __remove_wait_queue(&x->wait, &wait);
3707 goto out;
3708 }
3709 } while (!x->done);
3710 __remove_wait_queue(&x->wait, &wait);
3711 }
3712 x->done--;
3713out:
3714 spin_unlock_irq(&x->wait.lock);
3715 return timeout;
3716}
3717EXPORT_SYMBOL(wait_for_completion_timeout);
3718
3719int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3720{
3721 int ret = 0;
3722
3723 might_sleep();
3724
3725 spin_lock_irq(&x->wait.lock);
3726 if (!x->done) {
3727 DECLARE_WAITQUEUE(wait, current);
3728
3729 wait.flags |= WQ_FLAG_EXCLUSIVE;
3730 __add_wait_queue_tail(&x->wait, &wait);
3731 do {
3732 if (signal_pending(current)) {
3733 ret = -ERESTARTSYS;
3734 __remove_wait_queue(&x->wait, &wait);
3735 goto out;
3736 }
3737 __set_current_state(TASK_INTERRUPTIBLE);
3738 spin_unlock_irq(&x->wait.lock);
3739 schedule();
3740 spin_lock_irq(&x->wait.lock);
3741 } while (!x->done);
3742 __remove_wait_queue(&x->wait, &wait);
3743 }
3744 x->done--;
3745out:
3746 spin_unlock_irq(&x->wait.lock);
3747
3748 return ret;
3749}
3750EXPORT_SYMBOL(wait_for_completion_interruptible);
3751
3752unsigned long fastcall __sched
3753wait_for_completion_interruptible_timeout(struct completion *x,
3754 unsigned long timeout)
3755{
3756 might_sleep();
3757
3758 spin_lock_irq(&x->wait.lock);
3759 if (!x->done) {
3760 DECLARE_WAITQUEUE(wait, current);
3761
3762 wait.flags |= WQ_FLAG_EXCLUSIVE;
3763 __add_wait_queue_tail(&x->wait, &wait);
3764 do {
3765 if (signal_pending(current)) {
3766 timeout = -ERESTARTSYS;
3767 __remove_wait_queue(&x->wait, &wait);
3768 goto out;
3769 }
3770 __set_current_state(TASK_INTERRUPTIBLE);
3771 spin_unlock_irq(&x->wait.lock);
3772 timeout = schedule_timeout(timeout);
3773 spin_lock_irq(&x->wait.lock);
3774 if (!timeout) {
3775 __remove_wait_queue(&x->wait, &wait);
3776 goto out;
3777 }
3778 } while (!x->done);
3779 __remove_wait_queue(&x->wait, &wait);
3780 }
3781 x->done--;
3782out:
3783 spin_unlock_irq(&x->wait.lock);
3784 return timeout;
3785}
3786EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3787
3788
3789#define SLEEP_ON_VAR \
3790 unsigned long flags; \
3791 wait_queue_t wait; \
3792 init_waitqueue_entry(&wait, current);
3793
3794#define SLEEP_ON_HEAD \
3795 spin_lock_irqsave(&q->lock,flags); \
3796 __add_wait_queue(q, &wait); \
3797 spin_unlock(&q->lock);
3798
3799#define SLEEP_ON_TAIL \
3800 spin_lock_irq(&q->lock); \
3801 __remove_wait_queue(q, &wait); \
3802 spin_unlock_irqrestore(&q->lock, flags);
3803
3804void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3805{
3806 SLEEP_ON_VAR
3807
3808 current->state = TASK_INTERRUPTIBLE;
3809
3810 SLEEP_ON_HEAD
3811 schedule();
3812 SLEEP_ON_TAIL
3813}
1da177e4
LT
3814EXPORT_SYMBOL(interruptible_sleep_on);
3815
95cdf3b7
IM
3816long fastcall __sched
3817interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3818{
3819 SLEEP_ON_VAR
3820
3821 current->state = TASK_INTERRUPTIBLE;
3822
3823 SLEEP_ON_HEAD
3824 timeout = schedule_timeout(timeout);
3825 SLEEP_ON_TAIL
3826
3827 return timeout;
3828}
1da177e4
LT
3829EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3830
3831void fastcall __sched sleep_on(wait_queue_head_t *q)
3832{
3833 SLEEP_ON_VAR
3834
3835 current->state = TASK_UNINTERRUPTIBLE;
3836
3837 SLEEP_ON_HEAD
3838 schedule();
3839 SLEEP_ON_TAIL
3840}
1da177e4
LT
3841EXPORT_SYMBOL(sleep_on);
3842
3843long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3844{
3845 SLEEP_ON_VAR
3846
3847 current->state = TASK_UNINTERRUPTIBLE;
3848
3849 SLEEP_ON_HEAD
3850 timeout = schedule_timeout(timeout);
3851 SLEEP_ON_TAIL
3852
3853 return timeout;
3854}
3855
3856EXPORT_SYMBOL(sleep_on_timeout);
3857
b29739f9
IM
3858#ifdef CONFIG_RT_MUTEXES
3859
3860/*
3861 * rt_mutex_setprio - set the current priority of a task
3862 * @p: task
3863 * @prio: prio value (kernel-internal form)
3864 *
3865 * This function changes the 'effective' priority of a task. It does
3866 * not touch ->normal_prio like __setscheduler().
3867 *
3868 * Used by the rt_mutex code to implement priority inheritance logic.
3869 */
36c8b586 3870void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3871{
3872 unsigned long flags;
dd41f596 3873 int oldprio, on_rq;
70b97a7f 3874 struct rq *rq;
dd41f596 3875 u64 now;
b29739f9
IM
3876
3877 BUG_ON(prio < 0 || prio > MAX_PRIO);
3878
3879 rq = task_rq_lock(p, &flags);
dd41f596 3880 now = rq_clock(rq);
b29739f9 3881
d5f9f942 3882 oldprio = p->prio;
dd41f596
IM
3883 on_rq = p->se.on_rq;
3884 if (on_rq)
3885 dequeue_task(rq, p, 0, now);
3886
3887 if (rt_prio(prio))
3888 p->sched_class = &rt_sched_class;
3889 else
3890 p->sched_class = &fair_sched_class;
3891
b29739f9
IM
3892 p->prio = prio;
3893
dd41f596
IM
3894 if (on_rq) {
3895 enqueue_task(rq, p, 0, now);
b29739f9
IM
3896 /*
3897 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3898 * our priority decreased, or if we are not currently running on
3899 * this runqueue and our priority is higher than the current's
b29739f9 3900 */
d5f9f942
AM
3901 if (task_running(rq, p)) {
3902 if (p->prio > oldprio)
3903 resched_task(rq->curr);
dd41f596
IM
3904 } else {
3905 check_preempt_curr(rq, p);
3906 }
b29739f9
IM
3907 }
3908 task_rq_unlock(rq, &flags);
3909}
3910
3911#endif
3912
36c8b586 3913void set_user_nice(struct task_struct *p, long nice)
1da177e4 3914{
dd41f596 3915 int old_prio, delta, on_rq;
1da177e4 3916 unsigned long flags;
70b97a7f 3917 struct rq *rq;
dd41f596 3918 u64 now;
1da177e4
LT
3919
3920 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3921 return;
3922 /*
3923 * We have to be careful, if called from sys_setpriority(),
3924 * the task might be in the middle of scheduling on another CPU.
3925 */
3926 rq = task_rq_lock(p, &flags);
dd41f596 3927 now = rq_clock(rq);
1da177e4
LT
3928 /*
3929 * The RT priorities are set via sched_setscheduler(), but we still
3930 * allow the 'normal' nice value to be set - but as expected
3931 * it wont have any effect on scheduling until the task is
dd41f596 3932 * SCHED_FIFO/SCHED_RR:
1da177e4 3933 */
e05606d3 3934 if (task_has_rt_policy(p)) {
1da177e4
LT
3935 p->static_prio = NICE_TO_PRIO(nice);
3936 goto out_unlock;
3937 }
dd41f596
IM
3938 on_rq = p->se.on_rq;
3939 if (on_rq) {
3940 dequeue_task(rq, p, 0, now);
3941 dec_load(rq, p, now);
2dd73a4f 3942 }
1da177e4 3943
1da177e4 3944 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3945 set_load_weight(p);
b29739f9
IM
3946 old_prio = p->prio;
3947 p->prio = effective_prio(p);
3948 delta = p->prio - old_prio;
1da177e4 3949
dd41f596
IM
3950 if (on_rq) {
3951 enqueue_task(rq, p, 0, now);
3952 inc_load(rq, p, now);
1da177e4 3953 /*
d5f9f942
AM
3954 * If the task increased its priority or is running and
3955 * lowered its priority, then reschedule its CPU:
1da177e4 3956 */
d5f9f942 3957 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3958 resched_task(rq->curr);
3959 }
3960out_unlock:
3961 task_rq_unlock(rq, &flags);
3962}
1da177e4
LT
3963EXPORT_SYMBOL(set_user_nice);
3964
e43379f1
MM
3965/*
3966 * can_nice - check if a task can reduce its nice value
3967 * @p: task
3968 * @nice: nice value
3969 */
36c8b586 3970int can_nice(const struct task_struct *p, const int nice)
e43379f1 3971{
024f4747
MM
3972 /* convert nice value [19,-20] to rlimit style value [1,40] */
3973 int nice_rlim = 20 - nice;
48f24c4d 3974
e43379f1
MM
3975 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3976 capable(CAP_SYS_NICE));
3977}
3978
1da177e4
LT
3979#ifdef __ARCH_WANT_SYS_NICE
3980
3981/*
3982 * sys_nice - change the priority of the current process.
3983 * @increment: priority increment
3984 *
3985 * sys_setpriority is a more generic, but much slower function that
3986 * does similar things.
3987 */
3988asmlinkage long sys_nice(int increment)
3989{
48f24c4d 3990 long nice, retval;
1da177e4
LT
3991
3992 /*
3993 * Setpriority might change our priority at the same moment.
3994 * We don't have to worry. Conceptually one call occurs first
3995 * and we have a single winner.
3996 */
e43379f1
MM
3997 if (increment < -40)
3998 increment = -40;
1da177e4
LT
3999 if (increment > 40)
4000 increment = 40;
4001
4002 nice = PRIO_TO_NICE(current->static_prio) + increment;
4003 if (nice < -20)
4004 nice = -20;
4005 if (nice > 19)
4006 nice = 19;
4007
e43379f1
MM
4008 if (increment < 0 && !can_nice(current, nice))
4009 return -EPERM;
4010
1da177e4
LT
4011 retval = security_task_setnice(current, nice);
4012 if (retval)
4013 return retval;
4014
4015 set_user_nice(current, nice);
4016 return 0;
4017}
4018
4019#endif
4020
4021/**
4022 * task_prio - return the priority value of a given task.
4023 * @p: the task in question.
4024 *
4025 * This is the priority value as seen by users in /proc.
4026 * RT tasks are offset by -200. Normal tasks are centered
4027 * around 0, value goes from -16 to +15.
4028 */
36c8b586 4029int task_prio(const struct task_struct *p)
1da177e4
LT
4030{
4031 return p->prio - MAX_RT_PRIO;
4032}
4033
4034/**
4035 * task_nice - return the nice value of a given task.
4036 * @p: the task in question.
4037 */
36c8b586 4038int task_nice(const struct task_struct *p)
1da177e4
LT
4039{
4040 return TASK_NICE(p);
4041}
1da177e4 4042EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4043
4044/**
4045 * idle_cpu - is a given cpu idle currently?
4046 * @cpu: the processor in question.
4047 */
4048int idle_cpu(int cpu)
4049{
4050 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4051}
4052
1da177e4
LT
4053/**
4054 * idle_task - return the idle task for a given cpu.
4055 * @cpu: the processor in question.
4056 */
36c8b586 4057struct task_struct *idle_task(int cpu)
1da177e4
LT
4058{
4059 return cpu_rq(cpu)->idle;
4060}
4061
4062/**
4063 * find_process_by_pid - find a process with a matching PID value.
4064 * @pid: the pid in question.
4065 */
36c8b586 4066static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4067{
4068 return pid ? find_task_by_pid(pid) : current;
4069}
4070
4071/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4072static void
4073__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4074{
dd41f596 4075 BUG_ON(p->se.on_rq);
48f24c4d 4076
1da177e4 4077 p->policy = policy;
dd41f596
IM
4078 switch (p->policy) {
4079 case SCHED_NORMAL:
4080 case SCHED_BATCH:
4081 case SCHED_IDLE:
4082 p->sched_class = &fair_sched_class;
4083 break;
4084 case SCHED_FIFO:
4085 case SCHED_RR:
4086 p->sched_class = &rt_sched_class;
4087 break;
4088 }
4089
1da177e4 4090 p->rt_priority = prio;
b29739f9
IM
4091 p->normal_prio = normal_prio(p);
4092 /* we are holding p->pi_lock already */
4093 p->prio = rt_mutex_getprio(p);
2dd73a4f 4094 set_load_weight(p);
1da177e4
LT
4095}
4096
4097/**
72fd4a35 4098 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4099 * @p: the task in question.
4100 * @policy: new policy.
4101 * @param: structure containing the new RT priority.
5fe1d75f 4102 *
72fd4a35 4103 * NOTE that the task may be already dead.
1da177e4 4104 */
95cdf3b7
IM
4105int sched_setscheduler(struct task_struct *p, int policy,
4106 struct sched_param *param)
1da177e4 4107{
dd41f596 4108 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4109 unsigned long flags;
70b97a7f 4110 struct rq *rq;
1da177e4 4111
66e5393a
SR
4112 /* may grab non-irq protected spin_locks */
4113 BUG_ON(in_interrupt());
1da177e4
LT
4114recheck:
4115 /* double check policy once rq lock held */
4116 if (policy < 0)
4117 policy = oldpolicy = p->policy;
4118 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4119 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4120 policy != SCHED_IDLE)
b0a9499c 4121 return -EINVAL;
1da177e4
LT
4122 /*
4123 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4124 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4125 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4126 */
4127 if (param->sched_priority < 0 ||
95cdf3b7 4128 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4129 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4130 return -EINVAL;
e05606d3 4131 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4132 return -EINVAL;
4133
37e4ab3f
OC
4134 /*
4135 * Allow unprivileged RT tasks to decrease priority:
4136 */
4137 if (!capable(CAP_SYS_NICE)) {
e05606d3 4138 if (rt_policy(policy)) {
8dc3e909 4139 unsigned long rlim_rtprio;
8dc3e909
ON
4140
4141 if (!lock_task_sighand(p, &flags))
4142 return -ESRCH;
4143 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4144 unlock_task_sighand(p, &flags);
4145
4146 /* can't set/change the rt policy */
4147 if (policy != p->policy && !rlim_rtprio)
4148 return -EPERM;
4149
4150 /* can't increase priority */
4151 if (param->sched_priority > p->rt_priority &&
4152 param->sched_priority > rlim_rtprio)
4153 return -EPERM;
4154 }
dd41f596
IM
4155 /*
4156 * Like positive nice levels, dont allow tasks to
4157 * move out of SCHED_IDLE either:
4158 */
4159 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4160 return -EPERM;
5fe1d75f 4161
37e4ab3f
OC
4162 /* can't change other user's priorities */
4163 if ((current->euid != p->euid) &&
4164 (current->euid != p->uid))
4165 return -EPERM;
4166 }
1da177e4
LT
4167
4168 retval = security_task_setscheduler(p, policy, param);
4169 if (retval)
4170 return retval;
b29739f9
IM
4171 /*
4172 * make sure no PI-waiters arrive (or leave) while we are
4173 * changing the priority of the task:
4174 */
4175 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4176 /*
4177 * To be able to change p->policy safely, the apropriate
4178 * runqueue lock must be held.
4179 */
b29739f9 4180 rq = __task_rq_lock(p);
1da177e4
LT
4181 /* recheck policy now with rq lock held */
4182 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4183 policy = oldpolicy = -1;
b29739f9
IM
4184 __task_rq_unlock(rq);
4185 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4186 goto recheck;
4187 }
dd41f596
IM
4188 on_rq = p->se.on_rq;
4189 if (on_rq)
4190 deactivate_task(rq, p, 0);
1da177e4 4191 oldprio = p->prio;
dd41f596
IM
4192 __setscheduler(rq, p, policy, param->sched_priority);
4193 if (on_rq) {
4194 activate_task(rq, p, 0);
1da177e4
LT
4195 /*
4196 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4197 * our priority decreased, or if we are not currently running on
4198 * this runqueue and our priority is higher than the current's
1da177e4 4199 */
d5f9f942
AM
4200 if (task_running(rq, p)) {
4201 if (p->prio > oldprio)
4202 resched_task(rq->curr);
dd41f596
IM
4203 } else {
4204 check_preempt_curr(rq, p);
4205 }
1da177e4 4206 }
b29739f9
IM
4207 __task_rq_unlock(rq);
4208 spin_unlock_irqrestore(&p->pi_lock, flags);
4209
95e02ca9
TG
4210 rt_mutex_adjust_pi(p);
4211
1da177e4
LT
4212 return 0;
4213}
4214EXPORT_SYMBOL_GPL(sched_setscheduler);
4215
95cdf3b7
IM
4216static int
4217do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4218{
1da177e4
LT
4219 struct sched_param lparam;
4220 struct task_struct *p;
36c8b586 4221 int retval;
1da177e4
LT
4222
4223 if (!param || pid < 0)
4224 return -EINVAL;
4225 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4226 return -EFAULT;
5fe1d75f
ON
4227
4228 rcu_read_lock();
4229 retval = -ESRCH;
1da177e4 4230 p = find_process_by_pid(pid);
5fe1d75f
ON
4231 if (p != NULL)
4232 retval = sched_setscheduler(p, policy, &lparam);
4233 rcu_read_unlock();
36c8b586 4234
1da177e4
LT
4235 return retval;
4236}
4237
4238/**
4239 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4240 * @pid: the pid in question.
4241 * @policy: new policy.
4242 * @param: structure containing the new RT priority.
4243 */
4244asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4245 struct sched_param __user *param)
4246{
c21761f1
JB
4247 /* negative values for policy are not valid */
4248 if (policy < 0)
4249 return -EINVAL;
4250
1da177e4
LT
4251 return do_sched_setscheduler(pid, policy, param);
4252}
4253
4254/**
4255 * sys_sched_setparam - set/change the RT priority of a thread
4256 * @pid: the pid in question.
4257 * @param: structure containing the new RT priority.
4258 */
4259asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4260{
4261 return do_sched_setscheduler(pid, -1, param);
4262}
4263
4264/**
4265 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4266 * @pid: the pid in question.
4267 */
4268asmlinkage long sys_sched_getscheduler(pid_t pid)
4269{
36c8b586 4270 struct task_struct *p;
1da177e4 4271 int retval = -EINVAL;
1da177e4
LT
4272
4273 if (pid < 0)
4274 goto out_nounlock;
4275
4276 retval = -ESRCH;
4277 read_lock(&tasklist_lock);
4278 p = find_process_by_pid(pid);
4279 if (p) {
4280 retval = security_task_getscheduler(p);
4281 if (!retval)
4282 retval = p->policy;
4283 }
4284 read_unlock(&tasklist_lock);
4285
4286out_nounlock:
4287 return retval;
4288}
4289
4290/**
4291 * sys_sched_getscheduler - get the RT priority of a thread
4292 * @pid: the pid in question.
4293 * @param: structure containing the RT priority.
4294 */
4295asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4296{
4297 struct sched_param lp;
36c8b586 4298 struct task_struct *p;
1da177e4 4299 int retval = -EINVAL;
1da177e4
LT
4300
4301 if (!param || pid < 0)
4302 goto out_nounlock;
4303
4304 read_lock(&tasklist_lock);
4305 p = find_process_by_pid(pid);
4306 retval = -ESRCH;
4307 if (!p)
4308 goto out_unlock;
4309
4310 retval = security_task_getscheduler(p);
4311 if (retval)
4312 goto out_unlock;
4313
4314 lp.sched_priority = p->rt_priority;
4315 read_unlock(&tasklist_lock);
4316
4317 /*
4318 * This one might sleep, we cannot do it with a spinlock held ...
4319 */
4320 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4321
4322out_nounlock:
4323 return retval;
4324
4325out_unlock:
4326 read_unlock(&tasklist_lock);
4327 return retval;
4328}
4329
4330long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4331{
1da177e4 4332 cpumask_t cpus_allowed;
36c8b586
IM
4333 struct task_struct *p;
4334 int retval;
1da177e4 4335
5be9361c 4336 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4337 read_lock(&tasklist_lock);
4338
4339 p = find_process_by_pid(pid);
4340 if (!p) {
4341 read_unlock(&tasklist_lock);
5be9361c 4342 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4343 return -ESRCH;
4344 }
4345
4346 /*
4347 * It is not safe to call set_cpus_allowed with the
4348 * tasklist_lock held. We will bump the task_struct's
4349 * usage count and then drop tasklist_lock.
4350 */
4351 get_task_struct(p);
4352 read_unlock(&tasklist_lock);
4353
4354 retval = -EPERM;
4355 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4356 !capable(CAP_SYS_NICE))
4357 goto out_unlock;
4358
e7834f8f
DQ
4359 retval = security_task_setscheduler(p, 0, NULL);
4360 if (retval)
4361 goto out_unlock;
4362
1da177e4
LT
4363 cpus_allowed = cpuset_cpus_allowed(p);
4364 cpus_and(new_mask, new_mask, cpus_allowed);
4365 retval = set_cpus_allowed(p, new_mask);
4366
4367out_unlock:
4368 put_task_struct(p);
5be9361c 4369 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4370 return retval;
4371}
4372
4373static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4374 cpumask_t *new_mask)
4375{
4376 if (len < sizeof(cpumask_t)) {
4377 memset(new_mask, 0, sizeof(cpumask_t));
4378 } else if (len > sizeof(cpumask_t)) {
4379 len = sizeof(cpumask_t);
4380 }
4381 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4382}
4383
4384/**
4385 * sys_sched_setaffinity - set the cpu affinity of a process
4386 * @pid: pid of the process
4387 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4388 * @user_mask_ptr: user-space pointer to the new cpu mask
4389 */
4390asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4391 unsigned long __user *user_mask_ptr)
4392{
4393 cpumask_t new_mask;
4394 int retval;
4395
4396 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4397 if (retval)
4398 return retval;
4399
4400 return sched_setaffinity(pid, new_mask);
4401}
4402
4403/*
4404 * Represents all cpu's present in the system
4405 * In systems capable of hotplug, this map could dynamically grow
4406 * as new cpu's are detected in the system via any platform specific
4407 * method, such as ACPI for e.g.
4408 */
4409
4cef0c61 4410cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4411EXPORT_SYMBOL(cpu_present_map);
4412
4413#ifndef CONFIG_SMP
4cef0c61 4414cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4415EXPORT_SYMBOL(cpu_online_map);
4416
4cef0c61 4417cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4418EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4419#endif
4420
4421long sched_getaffinity(pid_t pid, cpumask_t *mask)
4422{
36c8b586 4423 struct task_struct *p;
1da177e4 4424 int retval;
1da177e4 4425
5be9361c 4426 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4427 read_lock(&tasklist_lock);
4428
4429 retval = -ESRCH;
4430 p = find_process_by_pid(pid);
4431 if (!p)
4432 goto out_unlock;
4433
e7834f8f
DQ
4434 retval = security_task_getscheduler(p);
4435 if (retval)
4436 goto out_unlock;
4437
2f7016d9 4438 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4439
4440out_unlock:
4441 read_unlock(&tasklist_lock);
5be9361c 4442 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4443 if (retval)
4444 return retval;
4445
4446 return 0;
4447}
4448
4449/**
4450 * sys_sched_getaffinity - get the cpu affinity of a process
4451 * @pid: pid of the process
4452 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4453 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4454 */
4455asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4456 unsigned long __user *user_mask_ptr)
4457{
4458 int ret;
4459 cpumask_t mask;
4460
4461 if (len < sizeof(cpumask_t))
4462 return -EINVAL;
4463
4464 ret = sched_getaffinity(pid, &mask);
4465 if (ret < 0)
4466 return ret;
4467
4468 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4469 return -EFAULT;
4470
4471 return sizeof(cpumask_t);
4472}
4473
4474/**
4475 * sys_sched_yield - yield the current processor to other threads.
4476 *
dd41f596
IM
4477 * This function yields the current CPU to other tasks. If there are no
4478 * other threads running on this CPU then this function will return.
1da177e4
LT
4479 */
4480asmlinkage long sys_sched_yield(void)
4481{
70b97a7f 4482 struct rq *rq = this_rq_lock();
1da177e4
LT
4483
4484 schedstat_inc(rq, yld_cnt);
dd41f596 4485 if (unlikely(rq->nr_running == 1))
1da177e4 4486 schedstat_inc(rq, yld_act_empty);
dd41f596
IM
4487 else
4488 current->sched_class->yield_task(rq, current);
1da177e4
LT
4489
4490 /*
4491 * Since we are going to call schedule() anyway, there's
4492 * no need to preempt or enable interrupts:
4493 */
4494 __release(rq->lock);
8a25d5de 4495 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4496 _raw_spin_unlock(&rq->lock);
4497 preempt_enable_no_resched();
4498
4499 schedule();
4500
4501 return 0;
4502}
4503
e7b38404 4504static void __cond_resched(void)
1da177e4 4505{
8e0a43d8
IM
4506#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4507 __might_sleep(__FILE__, __LINE__);
4508#endif
5bbcfd90
IM
4509 /*
4510 * The BKS might be reacquired before we have dropped
4511 * PREEMPT_ACTIVE, which could trigger a second
4512 * cond_resched() call.
4513 */
1da177e4
LT
4514 do {
4515 add_preempt_count(PREEMPT_ACTIVE);
4516 schedule();
4517 sub_preempt_count(PREEMPT_ACTIVE);
4518 } while (need_resched());
4519}
4520
4521int __sched cond_resched(void)
4522{
9414232f
IM
4523 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4524 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4525 __cond_resched();
4526 return 1;
4527 }
4528 return 0;
4529}
1da177e4
LT
4530EXPORT_SYMBOL(cond_resched);
4531
4532/*
4533 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4534 * call schedule, and on return reacquire the lock.
4535 *
4536 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4537 * operations here to prevent schedule() from being called twice (once via
4538 * spin_unlock(), once by hand).
4539 */
95cdf3b7 4540int cond_resched_lock(spinlock_t *lock)
1da177e4 4541{
6df3cecb
JK
4542 int ret = 0;
4543
1da177e4
LT
4544 if (need_lockbreak(lock)) {
4545 spin_unlock(lock);
4546 cpu_relax();
6df3cecb 4547 ret = 1;
1da177e4
LT
4548 spin_lock(lock);
4549 }
9414232f 4550 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4551 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4552 _raw_spin_unlock(lock);
4553 preempt_enable_no_resched();
4554 __cond_resched();
6df3cecb 4555 ret = 1;
1da177e4 4556 spin_lock(lock);
1da177e4 4557 }
6df3cecb 4558 return ret;
1da177e4 4559}
1da177e4
LT
4560EXPORT_SYMBOL(cond_resched_lock);
4561
4562int __sched cond_resched_softirq(void)
4563{
4564 BUG_ON(!in_softirq());
4565
9414232f 4566 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4567 local_bh_enable();
1da177e4
LT
4568 __cond_resched();
4569 local_bh_disable();
4570 return 1;
4571 }
4572 return 0;
4573}
1da177e4
LT
4574EXPORT_SYMBOL(cond_resched_softirq);
4575
1da177e4
LT
4576/**
4577 * yield - yield the current processor to other threads.
4578 *
72fd4a35 4579 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4580 * thread runnable and calls sys_sched_yield().
4581 */
4582void __sched yield(void)
4583{
4584 set_current_state(TASK_RUNNING);
4585 sys_sched_yield();
4586}
1da177e4
LT
4587EXPORT_SYMBOL(yield);
4588
4589/*
4590 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4591 * that process accounting knows that this is a task in IO wait state.
4592 *
4593 * But don't do that if it is a deliberate, throttling IO wait (this task
4594 * has set its backing_dev_info: the queue against which it should throttle)
4595 */
4596void __sched io_schedule(void)
4597{
70b97a7f 4598 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4599
0ff92245 4600 delayacct_blkio_start();
1da177e4
LT
4601 atomic_inc(&rq->nr_iowait);
4602 schedule();
4603 atomic_dec(&rq->nr_iowait);
0ff92245 4604 delayacct_blkio_end();
1da177e4 4605}
1da177e4
LT
4606EXPORT_SYMBOL(io_schedule);
4607
4608long __sched io_schedule_timeout(long timeout)
4609{
70b97a7f 4610 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4611 long ret;
4612
0ff92245 4613 delayacct_blkio_start();
1da177e4
LT
4614 atomic_inc(&rq->nr_iowait);
4615 ret = schedule_timeout(timeout);
4616 atomic_dec(&rq->nr_iowait);
0ff92245 4617 delayacct_blkio_end();
1da177e4
LT
4618 return ret;
4619}
4620
4621/**
4622 * sys_sched_get_priority_max - return maximum RT priority.
4623 * @policy: scheduling class.
4624 *
4625 * this syscall returns the maximum rt_priority that can be used
4626 * by a given scheduling class.
4627 */
4628asmlinkage long sys_sched_get_priority_max(int policy)
4629{
4630 int ret = -EINVAL;
4631
4632 switch (policy) {
4633 case SCHED_FIFO:
4634 case SCHED_RR:
4635 ret = MAX_USER_RT_PRIO-1;
4636 break;
4637 case SCHED_NORMAL:
b0a9499c 4638 case SCHED_BATCH:
dd41f596 4639 case SCHED_IDLE:
1da177e4
LT
4640 ret = 0;
4641 break;
4642 }
4643 return ret;
4644}
4645
4646/**
4647 * sys_sched_get_priority_min - return minimum RT priority.
4648 * @policy: scheduling class.
4649 *
4650 * this syscall returns the minimum rt_priority that can be used
4651 * by a given scheduling class.
4652 */
4653asmlinkage long sys_sched_get_priority_min(int policy)
4654{
4655 int ret = -EINVAL;
4656
4657 switch (policy) {
4658 case SCHED_FIFO:
4659 case SCHED_RR:
4660 ret = 1;
4661 break;
4662 case SCHED_NORMAL:
b0a9499c 4663 case SCHED_BATCH:
dd41f596 4664 case SCHED_IDLE:
1da177e4
LT
4665 ret = 0;
4666 }
4667 return ret;
4668}
4669
4670/**
4671 * sys_sched_rr_get_interval - return the default timeslice of a process.
4672 * @pid: pid of the process.
4673 * @interval: userspace pointer to the timeslice value.
4674 *
4675 * this syscall writes the default timeslice value of a given process
4676 * into the user-space timespec buffer. A value of '0' means infinity.
4677 */
4678asmlinkage
4679long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4680{
36c8b586 4681 struct task_struct *p;
1da177e4
LT
4682 int retval = -EINVAL;
4683 struct timespec t;
1da177e4
LT
4684
4685 if (pid < 0)
4686 goto out_nounlock;
4687
4688 retval = -ESRCH;
4689 read_lock(&tasklist_lock);
4690 p = find_process_by_pid(pid);
4691 if (!p)
4692 goto out_unlock;
4693
4694 retval = security_task_getscheduler(p);
4695 if (retval)
4696 goto out_unlock;
4697
b78709cf 4698 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4699 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4700 read_unlock(&tasklist_lock);
4701 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4702out_nounlock:
4703 return retval;
4704out_unlock:
4705 read_unlock(&tasklist_lock);
4706 return retval;
4707}
4708
2ed6e34f 4709static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4710
4711static void show_task(struct task_struct *p)
1da177e4 4712{
1da177e4 4713 unsigned long free = 0;
36c8b586 4714 unsigned state;
1da177e4 4715
1da177e4 4716 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4717 printk("%-13.13s %c", p->comm,
4718 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4
LT
4719#if (BITS_PER_LONG == 32)
4720 if (state == TASK_RUNNING)
4721 printk(" running ");
4722 else
4723 printk(" %08lX ", thread_saved_pc(p));
4724#else
4725 if (state == TASK_RUNNING)
4726 printk(" running task ");
4727 else
4728 printk(" %016lx ", thread_saved_pc(p));
4729#endif
4730#ifdef CONFIG_DEBUG_STACK_USAGE
4731 {
10ebffde 4732 unsigned long *n = end_of_stack(p);
1da177e4
LT
4733 while (!*n)
4734 n++;
10ebffde 4735 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4736 }
4737#endif
35f6f753 4738 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
1da177e4
LT
4739 if (!p->mm)
4740 printk(" (L-TLB)\n");
4741 else
4742 printk(" (NOTLB)\n");
4743
4744 if (state != TASK_RUNNING)
4745 show_stack(p, NULL);
4746}
4747
e59e2ae2 4748void show_state_filter(unsigned long state_filter)
1da177e4 4749{
36c8b586 4750 struct task_struct *g, *p;
1da177e4
LT
4751
4752#if (BITS_PER_LONG == 32)
4753 printk("\n"
301827ac
CC
4754 " free sibling\n");
4755 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4756#else
4757 printk("\n"
301827ac
CC
4758 " free sibling\n");
4759 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4760#endif
4761 read_lock(&tasklist_lock);
4762 do_each_thread(g, p) {
4763 /*
4764 * reset the NMI-timeout, listing all files on a slow
4765 * console might take alot of time:
4766 */
4767 touch_nmi_watchdog();
39bc89fd 4768 if (!state_filter || (p->state & state_filter))
e59e2ae2 4769 show_task(p);
1da177e4
LT
4770 } while_each_thread(g, p);
4771
04c9167f
JF
4772 touch_all_softlockup_watchdogs();
4773
dd41f596
IM
4774#ifdef CONFIG_SCHED_DEBUG
4775 sysrq_sched_debug_show();
4776#endif
1da177e4 4777 read_unlock(&tasklist_lock);
e59e2ae2
IM
4778 /*
4779 * Only show locks if all tasks are dumped:
4780 */
4781 if (state_filter == -1)
4782 debug_show_all_locks();
1da177e4
LT
4783}
4784
1df21055
IM
4785void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4786{
dd41f596 4787 idle->sched_class = &idle_sched_class;
1df21055
IM
4788}
4789
f340c0d1
IM
4790/**
4791 * init_idle - set up an idle thread for a given CPU
4792 * @idle: task in question
4793 * @cpu: cpu the idle task belongs to
4794 *
4795 * NOTE: this function does not set the idle thread's NEED_RESCHED
4796 * flag, to make booting more robust.
4797 */
5c1e1767 4798void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4799{
70b97a7f 4800 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4801 unsigned long flags;
4802
dd41f596
IM
4803 __sched_fork(idle);
4804 idle->se.exec_start = sched_clock();
4805
b29739f9 4806 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4807 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4808 __set_task_cpu(idle, cpu);
1da177e4
LT
4809
4810 spin_lock_irqsave(&rq->lock, flags);
4811 rq->curr = rq->idle = idle;
4866cde0
NP
4812#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4813 idle->oncpu = 1;
4814#endif
1da177e4
LT
4815 spin_unlock_irqrestore(&rq->lock, flags);
4816
4817 /* Set the preempt count _outside_ the spinlocks! */
4818#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4819 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4820#else
a1261f54 4821 task_thread_info(idle)->preempt_count = 0;
1da177e4 4822#endif
dd41f596
IM
4823 /*
4824 * The idle tasks have their own, simple scheduling class:
4825 */
4826 idle->sched_class = &idle_sched_class;
1da177e4
LT
4827}
4828
4829/*
4830 * In a system that switches off the HZ timer nohz_cpu_mask
4831 * indicates which cpus entered this state. This is used
4832 * in the rcu update to wait only for active cpus. For system
4833 * which do not switch off the HZ timer nohz_cpu_mask should
4834 * always be CPU_MASK_NONE.
4835 */
4836cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4837
dd41f596
IM
4838/*
4839 * Increase the granularity value when there are more CPUs,
4840 * because with more CPUs the 'effective latency' as visible
4841 * to users decreases. But the relationship is not linear,
4842 * so pick a second-best guess by going with the log2 of the
4843 * number of CPUs.
4844 *
4845 * This idea comes from the SD scheduler of Con Kolivas:
4846 */
4847static inline void sched_init_granularity(void)
4848{
4849 unsigned int factor = 1 + ilog2(num_online_cpus());
4850 const unsigned long gran_limit = 10000000;
4851
4852 sysctl_sched_granularity *= factor;
4853 if (sysctl_sched_granularity > gran_limit)
4854 sysctl_sched_granularity = gran_limit;
4855
4856 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4857 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4858}
4859
1da177e4
LT
4860#ifdef CONFIG_SMP
4861/*
4862 * This is how migration works:
4863 *
70b97a7f 4864 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4865 * runqueue and wake up that CPU's migration thread.
4866 * 2) we down() the locked semaphore => thread blocks.
4867 * 3) migration thread wakes up (implicitly it forces the migrated
4868 * thread off the CPU)
4869 * 4) it gets the migration request and checks whether the migrated
4870 * task is still in the wrong runqueue.
4871 * 5) if it's in the wrong runqueue then the migration thread removes
4872 * it and puts it into the right queue.
4873 * 6) migration thread up()s the semaphore.
4874 * 7) we wake up and the migration is done.
4875 */
4876
4877/*
4878 * Change a given task's CPU affinity. Migrate the thread to a
4879 * proper CPU and schedule it away if the CPU it's executing on
4880 * is removed from the allowed bitmask.
4881 *
4882 * NOTE: the caller must have a valid reference to the task, the
4883 * task must not exit() & deallocate itself prematurely. The
4884 * call is not atomic; no spinlocks may be held.
4885 */
36c8b586 4886int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4887{
70b97a7f 4888 struct migration_req req;
1da177e4 4889 unsigned long flags;
70b97a7f 4890 struct rq *rq;
48f24c4d 4891 int ret = 0;
1da177e4
LT
4892
4893 rq = task_rq_lock(p, &flags);
4894 if (!cpus_intersects(new_mask, cpu_online_map)) {
4895 ret = -EINVAL;
4896 goto out;
4897 }
4898
4899 p->cpus_allowed = new_mask;
4900 /* Can the task run on the task's current CPU? If so, we're done */
4901 if (cpu_isset(task_cpu(p), new_mask))
4902 goto out;
4903
4904 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4905 /* Need help from migration thread: drop lock and wait. */
4906 task_rq_unlock(rq, &flags);
4907 wake_up_process(rq->migration_thread);
4908 wait_for_completion(&req.done);
4909 tlb_migrate_finish(p->mm);
4910 return 0;
4911 }
4912out:
4913 task_rq_unlock(rq, &flags);
48f24c4d 4914
1da177e4
LT
4915 return ret;
4916}
1da177e4
LT
4917EXPORT_SYMBOL_GPL(set_cpus_allowed);
4918
4919/*
4920 * Move (not current) task off this cpu, onto dest cpu. We're doing
4921 * this because either it can't run here any more (set_cpus_allowed()
4922 * away from this CPU, or CPU going down), or because we're
4923 * attempting to rebalance this task on exec (sched_exec).
4924 *
4925 * So we race with normal scheduler movements, but that's OK, as long
4926 * as the task is no longer on this CPU.
efc30814
KK
4927 *
4928 * Returns non-zero if task was successfully migrated.
1da177e4 4929 */
efc30814 4930static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4931{
70b97a7f 4932 struct rq *rq_dest, *rq_src;
dd41f596 4933 int ret = 0, on_rq;
1da177e4
LT
4934
4935 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4936 return ret;
1da177e4
LT
4937
4938 rq_src = cpu_rq(src_cpu);
4939 rq_dest = cpu_rq(dest_cpu);
4940
4941 double_rq_lock(rq_src, rq_dest);
4942 /* Already moved. */
4943 if (task_cpu(p) != src_cpu)
4944 goto out;
4945 /* Affinity changed (again). */
4946 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4947 goto out;
4948
dd41f596
IM
4949 on_rq = p->se.on_rq;
4950 if (on_rq)
4951 deactivate_task(rq_src, p, 0);
1da177e4 4952 set_task_cpu(p, dest_cpu);
dd41f596
IM
4953 if (on_rq) {
4954 activate_task(rq_dest, p, 0);
4955 check_preempt_curr(rq_dest, p);
1da177e4 4956 }
efc30814 4957 ret = 1;
1da177e4
LT
4958out:
4959 double_rq_unlock(rq_src, rq_dest);
efc30814 4960 return ret;
1da177e4
LT
4961}
4962
4963/*
4964 * migration_thread - this is a highprio system thread that performs
4965 * thread migration by bumping thread off CPU then 'pushing' onto
4966 * another runqueue.
4967 */
95cdf3b7 4968static int migration_thread(void *data)
1da177e4 4969{
1da177e4 4970 int cpu = (long)data;
70b97a7f 4971 struct rq *rq;
1da177e4
LT
4972
4973 rq = cpu_rq(cpu);
4974 BUG_ON(rq->migration_thread != current);
4975
4976 set_current_state(TASK_INTERRUPTIBLE);
4977 while (!kthread_should_stop()) {
70b97a7f 4978 struct migration_req *req;
1da177e4 4979 struct list_head *head;
1da177e4 4980
3e1d1d28 4981 try_to_freeze();
1da177e4
LT
4982
4983 spin_lock_irq(&rq->lock);
4984
4985 if (cpu_is_offline(cpu)) {
4986 spin_unlock_irq(&rq->lock);
4987 goto wait_to_die;
4988 }
4989
4990 if (rq->active_balance) {
4991 active_load_balance(rq, cpu);
4992 rq->active_balance = 0;
4993 }
4994
4995 head = &rq->migration_queue;
4996
4997 if (list_empty(head)) {
4998 spin_unlock_irq(&rq->lock);
4999 schedule();
5000 set_current_state(TASK_INTERRUPTIBLE);
5001 continue;
5002 }
70b97a7f 5003 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5004 list_del_init(head->next);
5005
674311d5
NP
5006 spin_unlock(&rq->lock);
5007 __migrate_task(req->task, cpu, req->dest_cpu);
5008 local_irq_enable();
1da177e4
LT
5009
5010 complete(&req->done);
5011 }
5012 __set_current_state(TASK_RUNNING);
5013 return 0;
5014
5015wait_to_die:
5016 /* Wait for kthread_stop */
5017 set_current_state(TASK_INTERRUPTIBLE);
5018 while (!kthread_should_stop()) {
5019 schedule();
5020 set_current_state(TASK_INTERRUPTIBLE);
5021 }
5022 __set_current_state(TASK_RUNNING);
5023 return 0;
5024}
5025
5026#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5027/*
5028 * Figure out where task on dead CPU should go, use force if neccessary.
5029 * NOTE: interrupts should be disabled by the caller
5030 */
48f24c4d 5031static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5032{
efc30814 5033 unsigned long flags;
1da177e4 5034 cpumask_t mask;
70b97a7f
IM
5035 struct rq *rq;
5036 int dest_cpu;
1da177e4 5037
efc30814 5038restart:
1da177e4
LT
5039 /* On same node? */
5040 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5041 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5042 dest_cpu = any_online_cpu(mask);
5043
5044 /* On any allowed CPU? */
5045 if (dest_cpu == NR_CPUS)
48f24c4d 5046 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5047
5048 /* No more Mr. Nice Guy. */
5049 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5050 rq = task_rq_lock(p, &flags);
5051 cpus_setall(p->cpus_allowed);
5052 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5053 task_rq_unlock(rq, &flags);
1da177e4
LT
5054
5055 /*
5056 * Don't tell them about moving exiting tasks or
5057 * kernel threads (both mm NULL), since they never
5058 * leave kernel.
5059 */
48f24c4d 5060 if (p->mm && printk_ratelimit())
1da177e4
LT
5061 printk(KERN_INFO "process %d (%s) no "
5062 "longer affine to cpu%d\n",
48f24c4d 5063 p->pid, p->comm, dead_cpu);
1da177e4 5064 }
48f24c4d 5065 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5066 goto restart;
1da177e4
LT
5067}
5068
5069/*
5070 * While a dead CPU has no uninterruptible tasks queued at this point,
5071 * it might still have a nonzero ->nr_uninterruptible counter, because
5072 * for performance reasons the counter is not stricly tracking tasks to
5073 * their home CPUs. So we just add the counter to another CPU's counter,
5074 * to keep the global sum constant after CPU-down:
5075 */
70b97a7f 5076static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5077{
70b97a7f 5078 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5079 unsigned long flags;
5080
5081 local_irq_save(flags);
5082 double_rq_lock(rq_src, rq_dest);
5083 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5084 rq_src->nr_uninterruptible = 0;
5085 double_rq_unlock(rq_src, rq_dest);
5086 local_irq_restore(flags);
5087}
5088
5089/* Run through task list and migrate tasks from the dead cpu. */
5090static void migrate_live_tasks(int src_cpu)
5091{
48f24c4d 5092 struct task_struct *p, *t;
1da177e4
LT
5093
5094 write_lock_irq(&tasklist_lock);
5095
48f24c4d
IM
5096 do_each_thread(t, p) {
5097 if (p == current)
1da177e4
LT
5098 continue;
5099
48f24c4d
IM
5100 if (task_cpu(p) == src_cpu)
5101 move_task_off_dead_cpu(src_cpu, p);
5102 } while_each_thread(t, p);
1da177e4
LT
5103
5104 write_unlock_irq(&tasklist_lock);
5105}
5106
dd41f596
IM
5107/*
5108 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5109 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5110 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5111 */
5112void sched_idle_next(void)
5113{
48f24c4d 5114 int this_cpu = smp_processor_id();
70b97a7f 5115 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5116 struct task_struct *p = rq->idle;
5117 unsigned long flags;
5118
5119 /* cpu has to be offline */
48f24c4d 5120 BUG_ON(cpu_online(this_cpu));
1da177e4 5121
48f24c4d
IM
5122 /*
5123 * Strictly not necessary since rest of the CPUs are stopped by now
5124 * and interrupts disabled on the current cpu.
1da177e4
LT
5125 */
5126 spin_lock_irqsave(&rq->lock, flags);
5127
dd41f596 5128 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5129
5130 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5131 activate_idle_task(p, rq);
1da177e4
LT
5132
5133 spin_unlock_irqrestore(&rq->lock, flags);
5134}
5135
48f24c4d
IM
5136/*
5137 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5138 * offline.
5139 */
5140void idle_task_exit(void)
5141{
5142 struct mm_struct *mm = current->active_mm;
5143
5144 BUG_ON(cpu_online(smp_processor_id()));
5145
5146 if (mm != &init_mm)
5147 switch_mm(mm, &init_mm, current);
5148 mmdrop(mm);
5149}
5150
054b9108 5151/* called under rq->lock with disabled interrupts */
36c8b586 5152static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5153{
70b97a7f 5154 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5155
5156 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5157 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5158
5159 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5160 BUG_ON(p->state == TASK_DEAD);
1da177e4 5161
48f24c4d 5162 get_task_struct(p);
1da177e4
LT
5163
5164 /*
5165 * Drop lock around migration; if someone else moves it,
5166 * that's OK. No task can be added to this CPU, so iteration is
5167 * fine.
054b9108 5168 * NOTE: interrupts should be left disabled --dev@
1da177e4 5169 */
054b9108 5170 spin_unlock(&rq->lock);
48f24c4d 5171 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5172 spin_lock(&rq->lock);
1da177e4 5173
48f24c4d 5174 put_task_struct(p);
1da177e4
LT
5175}
5176
5177/* release_task() removes task from tasklist, so we won't find dead tasks. */
5178static void migrate_dead_tasks(unsigned int dead_cpu)
5179{
70b97a7f 5180 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5181 struct task_struct *next;
48f24c4d 5182
dd41f596
IM
5183 for ( ; ; ) {
5184 if (!rq->nr_running)
5185 break;
5186 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5187 if (!next)
5188 break;
5189 migrate_dead(dead_cpu, next);
1da177e4
LT
5190 }
5191}
5192#endif /* CONFIG_HOTPLUG_CPU */
5193
5194/*
5195 * migration_call - callback that gets triggered when a CPU is added.
5196 * Here we can start up the necessary migration thread for the new CPU.
5197 */
48f24c4d
IM
5198static int __cpuinit
5199migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5200{
1da177e4 5201 struct task_struct *p;
48f24c4d 5202 int cpu = (long)hcpu;
1da177e4 5203 unsigned long flags;
70b97a7f 5204 struct rq *rq;
1da177e4
LT
5205
5206 switch (action) {
5be9361c
GS
5207 case CPU_LOCK_ACQUIRE:
5208 mutex_lock(&sched_hotcpu_mutex);
5209 break;
5210
1da177e4 5211 case CPU_UP_PREPARE:
8bb78442 5212 case CPU_UP_PREPARE_FROZEN:
dd41f596 5213 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5214 if (IS_ERR(p))
5215 return NOTIFY_BAD;
5216 p->flags |= PF_NOFREEZE;
5217 kthread_bind(p, cpu);
5218 /* Must be high prio: stop_machine expects to yield to it. */
5219 rq = task_rq_lock(p, &flags);
dd41f596 5220 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5221 task_rq_unlock(rq, &flags);
5222 cpu_rq(cpu)->migration_thread = p;
5223 break;
48f24c4d 5224
1da177e4 5225 case CPU_ONLINE:
8bb78442 5226 case CPU_ONLINE_FROZEN:
1da177e4
LT
5227 /* Strictly unneccessary, as first user will wake it. */
5228 wake_up_process(cpu_rq(cpu)->migration_thread);
5229 break;
48f24c4d 5230
1da177e4
LT
5231#ifdef CONFIG_HOTPLUG_CPU
5232 case CPU_UP_CANCELED:
8bb78442 5233 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5234 if (!cpu_rq(cpu)->migration_thread)
5235 break;
1da177e4 5236 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5237 kthread_bind(cpu_rq(cpu)->migration_thread,
5238 any_online_cpu(cpu_online_map));
1da177e4
LT
5239 kthread_stop(cpu_rq(cpu)->migration_thread);
5240 cpu_rq(cpu)->migration_thread = NULL;
5241 break;
48f24c4d 5242
1da177e4 5243 case CPU_DEAD:
8bb78442 5244 case CPU_DEAD_FROZEN:
1da177e4
LT
5245 migrate_live_tasks(cpu);
5246 rq = cpu_rq(cpu);
5247 kthread_stop(rq->migration_thread);
5248 rq->migration_thread = NULL;
5249 /* Idle task back to normal (off runqueue, low prio) */
5250 rq = task_rq_lock(rq->idle, &flags);
dd41f596 5251 deactivate_task(rq, rq->idle, 0);
1da177e4 5252 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5253 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5254 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5255 migrate_dead_tasks(cpu);
5256 task_rq_unlock(rq, &flags);
5257 migrate_nr_uninterruptible(rq);
5258 BUG_ON(rq->nr_running != 0);
5259
5260 /* No need to migrate the tasks: it was best-effort if
5be9361c 5261 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5262 * the requestors. */
5263 spin_lock_irq(&rq->lock);
5264 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5265 struct migration_req *req;
5266
1da177e4 5267 req = list_entry(rq->migration_queue.next,
70b97a7f 5268 struct migration_req, list);
1da177e4
LT
5269 list_del_init(&req->list);
5270 complete(&req->done);
5271 }
5272 spin_unlock_irq(&rq->lock);
5273 break;
5274#endif
5be9361c
GS
5275 case CPU_LOCK_RELEASE:
5276 mutex_unlock(&sched_hotcpu_mutex);
5277 break;
1da177e4
LT
5278 }
5279 return NOTIFY_OK;
5280}
5281
5282/* Register at highest priority so that task migration (migrate_all_tasks)
5283 * happens before everything else.
5284 */
26c2143b 5285static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5286 .notifier_call = migration_call,
5287 .priority = 10
5288};
5289
5290int __init migration_init(void)
5291{
5292 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5293 int err;
48f24c4d
IM
5294
5295 /* Start one for the boot CPU: */
07dccf33
AM
5296 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5297 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5298 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5299 register_cpu_notifier(&migration_notifier);
48f24c4d 5300
1da177e4
LT
5301 return 0;
5302}
5303#endif
5304
5305#ifdef CONFIG_SMP
476f3534
CL
5306
5307/* Number of possible processor ids */
5308int nr_cpu_ids __read_mostly = NR_CPUS;
5309EXPORT_SYMBOL(nr_cpu_ids);
5310
1a20ff27 5311#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5312#ifdef SCHED_DOMAIN_DEBUG
5313static void sched_domain_debug(struct sched_domain *sd, int cpu)
5314{
5315 int level = 0;
5316
41c7ce9a
NP
5317 if (!sd) {
5318 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5319 return;
5320 }
5321
1da177e4
LT
5322 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5323
5324 do {
5325 int i;
5326 char str[NR_CPUS];
5327 struct sched_group *group = sd->groups;
5328 cpumask_t groupmask;
5329
5330 cpumask_scnprintf(str, NR_CPUS, sd->span);
5331 cpus_clear(groupmask);
5332
5333 printk(KERN_DEBUG);
5334 for (i = 0; i < level + 1; i++)
5335 printk(" ");
5336 printk("domain %d: ", level);
5337
5338 if (!(sd->flags & SD_LOAD_BALANCE)) {
5339 printk("does not load-balance\n");
5340 if (sd->parent)
33859f7f
MOS
5341 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5342 " has parent");
1da177e4
LT
5343 break;
5344 }
5345
5346 printk("span %s\n", str);
5347
5348 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5349 printk(KERN_ERR "ERROR: domain->span does not contain "
5350 "CPU%d\n", cpu);
1da177e4 5351 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5352 printk(KERN_ERR "ERROR: domain->groups does not contain"
5353 " CPU%d\n", cpu);
1da177e4
LT
5354
5355 printk(KERN_DEBUG);
5356 for (i = 0; i < level + 2; i++)
5357 printk(" ");
5358 printk("groups:");
5359 do {
5360 if (!group) {
5361 printk("\n");
5362 printk(KERN_ERR "ERROR: group is NULL\n");
5363 break;
5364 }
5365
5517d86b 5366 if (!group->__cpu_power) {
1da177e4 5367 printk("\n");
33859f7f
MOS
5368 printk(KERN_ERR "ERROR: domain->cpu_power not "
5369 "set\n");
1da177e4
LT
5370 }
5371
5372 if (!cpus_weight(group->cpumask)) {
5373 printk("\n");
5374 printk(KERN_ERR "ERROR: empty group\n");
5375 }
5376
5377 if (cpus_intersects(groupmask, group->cpumask)) {
5378 printk("\n");
5379 printk(KERN_ERR "ERROR: repeated CPUs\n");
5380 }
5381
5382 cpus_or(groupmask, groupmask, group->cpumask);
5383
5384 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5385 printk(" %s", str);
5386
5387 group = group->next;
5388 } while (group != sd->groups);
5389 printk("\n");
5390
5391 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5392 printk(KERN_ERR "ERROR: groups don't span "
5393 "domain->span\n");
1da177e4
LT
5394
5395 level++;
5396 sd = sd->parent;
33859f7f
MOS
5397 if (!sd)
5398 continue;
1da177e4 5399
33859f7f
MOS
5400 if (!cpus_subset(groupmask, sd->span))
5401 printk(KERN_ERR "ERROR: parent span is not a superset "
5402 "of domain->span\n");
1da177e4
LT
5403
5404 } while (sd);
5405}
5406#else
48f24c4d 5407# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5408#endif
5409
1a20ff27 5410static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5411{
5412 if (cpus_weight(sd->span) == 1)
5413 return 1;
5414
5415 /* Following flags need at least 2 groups */
5416 if (sd->flags & (SD_LOAD_BALANCE |
5417 SD_BALANCE_NEWIDLE |
5418 SD_BALANCE_FORK |
89c4710e
SS
5419 SD_BALANCE_EXEC |
5420 SD_SHARE_CPUPOWER |
5421 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5422 if (sd->groups != sd->groups->next)
5423 return 0;
5424 }
5425
5426 /* Following flags don't use groups */
5427 if (sd->flags & (SD_WAKE_IDLE |
5428 SD_WAKE_AFFINE |
5429 SD_WAKE_BALANCE))
5430 return 0;
5431
5432 return 1;
5433}
5434
48f24c4d
IM
5435static int
5436sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5437{
5438 unsigned long cflags = sd->flags, pflags = parent->flags;
5439
5440 if (sd_degenerate(parent))
5441 return 1;
5442
5443 if (!cpus_equal(sd->span, parent->span))
5444 return 0;
5445
5446 /* Does parent contain flags not in child? */
5447 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5448 if (cflags & SD_WAKE_AFFINE)
5449 pflags &= ~SD_WAKE_BALANCE;
5450 /* Flags needing groups don't count if only 1 group in parent */
5451 if (parent->groups == parent->groups->next) {
5452 pflags &= ~(SD_LOAD_BALANCE |
5453 SD_BALANCE_NEWIDLE |
5454 SD_BALANCE_FORK |
89c4710e
SS
5455 SD_BALANCE_EXEC |
5456 SD_SHARE_CPUPOWER |
5457 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5458 }
5459 if (~cflags & pflags)
5460 return 0;
5461
5462 return 1;
5463}
5464
1da177e4
LT
5465/*
5466 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5467 * hold the hotplug lock.
5468 */
9c1cfda2 5469static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5470{
70b97a7f 5471 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5472 struct sched_domain *tmp;
5473
5474 /* Remove the sched domains which do not contribute to scheduling. */
5475 for (tmp = sd; tmp; tmp = tmp->parent) {
5476 struct sched_domain *parent = tmp->parent;
5477 if (!parent)
5478 break;
1a848870 5479 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5480 tmp->parent = parent->parent;
1a848870
SS
5481 if (parent->parent)
5482 parent->parent->child = tmp;
5483 }
245af2c7
SS
5484 }
5485
1a848870 5486 if (sd && sd_degenerate(sd)) {
245af2c7 5487 sd = sd->parent;
1a848870
SS
5488 if (sd)
5489 sd->child = NULL;
5490 }
1da177e4
LT
5491
5492 sched_domain_debug(sd, cpu);
5493
674311d5 5494 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5495}
5496
5497/* cpus with isolated domains */
67af63a6 5498static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5499
5500/* Setup the mask of cpus configured for isolated domains */
5501static int __init isolated_cpu_setup(char *str)
5502{
5503 int ints[NR_CPUS], i;
5504
5505 str = get_options(str, ARRAY_SIZE(ints), ints);
5506 cpus_clear(cpu_isolated_map);
5507 for (i = 1; i <= ints[0]; i++)
5508 if (ints[i] < NR_CPUS)
5509 cpu_set(ints[i], cpu_isolated_map);
5510 return 1;
5511}
5512
5513__setup ("isolcpus=", isolated_cpu_setup);
5514
5515/*
6711cab4
SS
5516 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5517 * to a function which identifies what group(along with sched group) a CPU
5518 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5519 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5520 *
5521 * init_sched_build_groups will build a circular linked list of the groups
5522 * covered by the given span, and will set each group's ->cpumask correctly,
5523 * and ->cpu_power to 0.
5524 */
a616058b 5525static void
6711cab4
SS
5526init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5527 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5528 struct sched_group **sg))
1da177e4
LT
5529{
5530 struct sched_group *first = NULL, *last = NULL;
5531 cpumask_t covered = CPU_MASK_NONE;
5532 int i;
5533
5534 for_each_cpu_mask(i, span) {
6711cab4
SS
5535 struct sched_group *sg;
5536 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5537 int j;
5538
5539 if (cpu_isset(i, covered))
5540 continue;
5541
5542 sg->cpumask = CPU_MASK_NONE;
5517d86b 5543 sg->__cpu_power = 0;
1da177e4
LT
5544
5545 for_each_cpu_mask(j, span) {
6711cab4 5546 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5547 continue;
5548
5549 cpu_set(j, covered);
5550 cpu_set(j, sg->cpumask);
5551 }
5552 if (!first)
5553 first = sg;
5554 if (last)
5555 last->next = sg;
5556 last = sg;
5557 }
5558 last->next = first;
5559}
5560
9c1cfda2 5561#define SD_NODES_PER_DOMAIN 16
1da177e4 5562
9c1cfda2 5563#ifdef CONFIG_NUMA
198e2f18 5564
9c1cfda2
JH
5565/**
5566 * find_next_best_node - find the next node to include in a sched_domain
5567 * @node: node whose sched_domain we're building
5568 * @used_nodes: nodes already in the sched_domain
5569 *
5570 * Find the next node to include in a given scheduling domain. Simply
5571 * finds the closest node not already in the @used_nodes map.
5572 *
5573 * Should use nodemask_t.
5574 */
5575static int find_next_best_node(int node, unsigned long *used_nodes)
5576{
5577 int i, n, val, min_val, best_node = 0;
5578
5579 min_val = INT_MAX;
5580
5581 for (i = 0; i < MAX_NUMNODES; i++) {
5582 /* Start at @node */
5583 n = (node + i) % MAX_NUMNODES;
5584
5585 if (!nr_cpus_node(n))
5586 continue;
5587
5588 /* Skip already used nodes */
5589 if (test_bit(n, used_nodes))
5590 continue;
5591
5592 /* Simple min distance search */
5593 val = node_distance(node, n);
5594
5595 if (val < min_val) {
5596 min_val = val;
5597 best_node = n;
5598 }
5599 }
5600
5601 set_bit(best_node, used_nodes);
5602 return best_node;
5603}
5604
5605/**
5606 * sched_domain_node_span - get a cpumask for a node's sched_domain
5607 * @node: node whose cpumask we're constructing
5608 * @size: number of nodes to include in this span
5609 *
5610 * Given a node, construct a good cpumask for its sched_domain to span. It
5611 * should be one that prevents unnecessary balancing, but also spreads tasks
5612 * out optimally.
5613 */
5614static cpumask_t sched_domain_node_span(int node)
5615{
9c1cfda2 5616 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5617 cpumask_t span, nodemask;
5618 int i;
9c1cfda2
JH
5619
5620 cpus_clear(span);
5621 bitmap_zero(used_nodes, MAX_NUMNODES);
5622
5623 nodemask = node_to_cpumask(node);
5624 cpus_or(span, span, nodemask);
5625 set_bit(node, used_nodes);
5626
5627 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5628 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5629
9c1cfda2
JH
5630 nodemask = node_to_cpumask(next_node);
5631 cpus_or(span, span, nodemask);
5632 }
5633
5634 return span;
5635}
5636#endif
5637
5c45bf27 5638int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5639
9c1cfda2 5640/*
48f24c4d 5641 * SMT sched-domains:
9c1cfda2 5642 */
1da177e4
LT
5643#ifdef CONFIG_SCHED_SMT
5644static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5645static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5646
6711cab4
SS
5647static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5648 struct sched_group **sg)
1da177e4 5649{
6711cab4
SS
5650 if (sg)
5651 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5652 return cpu;
5653}
5654#endif
5655
48f24c4d
IM
5656/*
5657 * multi-core sched-domains:
5658 */
1e9f28fa
SS
5659#ifdef CONFIG_SCHED_MC
5660static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5661static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5662#endif
5663
5664#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5665static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5666 struct sched_group **sg)
1e9f28fa 5667{
6711cab4 5668 int group;
a616058b
SS
5669 cpumask_t mask = cpu_sibling_map[cpu];
5670 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5671 group = first_cpu(mask);
5672 if (sg)
5673 *sg = &per_cpu(sched_group_core, group);
5674 return group;
1e9f28fa
SS
5675}
5676#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5677static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5678 struct sched_group **sg)
1e9f28fa 5679{
6711cab4
SS
5680 if (sg)
5681 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5682 return cpu;
5683}
5684#endif
5685
1da177e4 5686static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5687static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5688
6711cab4
SS
5689static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5690 struct sched_group **sg)
1da177e4 5691{
6711cab4 5692 int group;
48f24c4d 5693#ifdef CONFIG_SCHED_MC
1e9f28fa 5694 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5695 cpus_and(mask, mask, *cpu_map);
6711cab4 5696 group = first_cpu(mask);
1e9f28fa 5697#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5698 cpumask_t mask = cpu_sibling_map[cpu];
5699 cpus_and(mask, mask, *cpu_map);
6711cab4 5700 group = first_cpu(mask);
1da177e4 5701#else
6711cab4 5702 group = cpu;
1da177e4 5703#endif
6711cab4
SS
5704 if (sg)
5705 *sg = &per_cpu(sched_group_phys, group);
5706 return group;
1da177e4
LT
5707}
5708
5709#ifdef CONFIG_NUMA
1da177e4 5710/*
9c1cfda2
JH
5711 * The init_sched_build_groups can't handle what we want to do with node
5712 * groups, so roll our own. Now each node has its own list of groups which
5713 * gets dynamically allocated.
1da177e4 5714 */
9c1cfda2 5715static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5716static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5717
9c1cfda2 5718static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5719static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5720
6711cab4
SS
5721static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5722 struct sched_group **sg)
9c1cfda2 5723{
6711cab4
SS
5724 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5725 int group;
5726
5727 cpus_and(nodemask, nodemask, *cpu_map);
5728 group = first_cpu(nodemask);
5729
5730 if (sg)
5731 *sg = &per_cpu(sched_group_allnodes, group);
5732 return group;
1da177e4 5733}
6711cab4 5734
08069033
SS
5735static void init_numa_sched_groups_power(struct sched_group *group_head)
5736{
5737 struct sched_group *sg = group_head;
5738 int j;
5739
5740 if (!sg)
5741 return;
5742next_sg:
5743 for_each_cpu_mask(j, sg->cpumask) {
5744 struct sched_domain *sd;
5745
5746 sd = &per_cpu(phys_domains, j);
5747 if (j != first_cpu(sd->groups->cpumask)) {
5748 /*
5749 * Only add "power" once for each
5750 * physical package.
5751 */
5752 continue;
5753 }
5754
5517d86b 5755 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5756 }
5757 sg = sg->next;
5758 if (sg != group_head)
5759 goto next_sg;
5760}
1da177e4
LT
5761#endif
5762
a616058b 5763#ifdef CONFIG_NUMA
51888ca2
SV
5764/* Free memory allocated for various sched_group structures */
5765static void free_sched_groups(const cpumask_t *cpu_map)
5766{
a616058b 5767 int cpu, i;
51888ca2
SV
5768
5769 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5770 struct sched_group **sched_group_nodes
5771 = sched_group_nodes_bycpu[cpu];
5772
51888ca2
SV
5773 if (!sched_group_nodes)
5774 continue;
5775
5776 for (i = 0; i < MAX_NUMNODES; i++) {
5777 cpumask_t nodemask = node_to_cpumask(i);
5778 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5779
5780 cpus_and(nodemask, nodemask, *cpu_map);
5781 if (cpus_empty(nodemask))
5782 continue;
5783
5784 if (sg == NULL)
5785 continue;
5786 sg = sg->next;
5787next_sg:
5788 oldsg = sg;
5789 sg = sg->next;
5790 kfree(oldsg);
5791 if (oldsg != sched_group_nodes[i])
5792 goto next_sg;
5793 }
5794 kfree(sched_group_nodes);
5795 sched_group_nodes_bycpu[cpu] = NULL;
5796 }
51888ca2 5797}
a616058b
SS
5798#else
5799static void free_sched_groups(const cpumask_t *cpu_map)
5800{
5801}
5802#endif
51888ca2 5803
89c4710e
SS
5804/*
5805 * Initialize sched groups cpu_power.
5806 *
5807 * cpu_power indicates the capacity of sched group, which is used while
5808 * distributing the load between different sched groups in a sched domain.
5809 * Typically cpu_power for all the groups in a sched domain will be same unless
5810 * there are asymmetries in the topology. If there are asymmetries, group
5811 * having more cpu_power will pickup more load compared to the group having
5812 * less cpu_power.
5813 *
5814 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5815 * the maximum number of tasks a group can handle in the presence of other idle
5816 * or lightly loaded groups in the same sched domain.
5817 */
5818static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5819{
5820 struct sched_domain *child;
5821 struct sched_group *group;
5822
5823 WARN_ON(!sd || !sd->groups);
5824
5825 if (cpu != first_cpu(sd->groups->cpumask))
5826 return;
5827
5828 child = sd->child;
5829
5517d86b
ED
5830 sd->groups->__cpu_power = 0;
5831
89c4710e
SS
5832 /*
5833 * For perf policy, if the groups in child domain share resources
5834 * (for example cores sharing some portions of the cache hierarchy
5835 * or SMT), then set this domain groups cpu_power such that each group
5836 * can handle only one task, when there are other idle groups in the
5837 * same sched domain.
5838 */
5839 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5840 (child->flags &
5841 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5842 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5843 return;
5844 }
5845
89c4710e
SS
5846 /*
5847 * add cpu_power of each child group to this groups cpu_power
5848 */
5849 group = child->groups;
5850 do {
5517d86b 5851 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5852 group = group->next;
5853 } while (group != child->groups);
5854}
5855
1da177e4 5856/*
1a20ff27
DG
5857 * Build sched domains for a given set of cpus and attach the sched domains
5858 * to the individual cpus
1da177e4 5859 */
51888ca2 5860static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5861{
5862 int i;
d1b55138
JH
5863#ifdef CONFIG_NUMA
5864 struct sched_group **sched_group_nodes = NULL;
6711cab4 5865 int sd_allnodes = 0;
d1b55138
JH
5866
5867 /*
5868 * Allocate the per-node list of sched groups
5869 */
dd41f596 5870 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 5871 GFP_KERNEL);
d1b55138
JH
5872 if (!sched_group_nodes) {
5873 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 5874 return -ENOMEM;
d1b55138
JH
5875 }
5876 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5877#endif
1da177e4
LT
5878
5879 /*
1a20ff27 5880 * Set up domains for cpus specified by the cpu_map.
1da177e4 5881 */
1a20ff27 5882 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5883 struct sched_domain *sd = NULL, *p;
5884 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5885
1a20ff27 5886 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5887
5888#ifdef CONFIG_NUMA
dd41f596
IM
5889 if (cpus_weight(*cpu_map) >
5890 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
5891 sd = &per_cpu(allnodes_domains, i);
5892 *sd = SD_ALLNODES_INIT;
5893 sd->span = *cpu_map;
6711cab4 5894 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 5895 p = sd;
6711cab4 5896 sd_allnodes = 1;
9c1cfda2
JH
5897 } else
5898 p = NULL;
5899
1da177e4 5900 sd = &per_cpu(node_domains, i);
1da177e4 5901 *sd = SD_NODE_INIT;
9c1cfda2
JH
5902 sd->span = sched_domain_node_span(cpu_to_node(i));
5903 sd->parent = p;
1a848870
SS
5904 if (p)
5905 p->child = sd;
9c1cfda2 5906 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5907#endif
5908
5909 p = sd;
5910 sd = &per_cpu(phys_domains, i);
1da177e4
LT
5911 *sd = SD_CPU_INIT;
5912 sd->span = nodemask;
5913 sd->parent = p;
1a848870
SS
5914 if (p)
5915 p->child = sd;
6711cab4 5916 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 5917
1e9f28fa
SS
5918#ifdef CONFIG_SCHED_MC
5919 p = sd;
5920 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
5921 *sd = SD_MC_INIT;
5922 sd->span = cpu_coregroup_map(i);
5923 cpus_and(sd->span, sd->span, *cpu_map);
5924 sd->parent = p;
1a848870 5925 p->child = sd;
6711cab4 5926 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
5927#endif
5928
1da177e4
LT
5929#ifdef CONFIG_SCHED_SMT
5930 p = sd;
5931 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
5932 *sd = SD_SIBLING_INIT;
5933 sd->span = cpu_sibling_map[i];
1a20ff27 5934 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 5935 sd->parent = p;
1a848870 5936 p->child = sd;
6711cab4 5937 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
5938#endif
5939 }
5940
5941#ifdef CONFIG_SCHED_SMT
5942 /* Set up CPU (sibling) groups */
9c1cfda2 5943 for_each_cpu_mask(i, *cpu_map) {
1da177e4 5944 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 5945 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
5946 if (i != first_cpu(this_sibling_map))
5947 continue;
5948
dd41f596
IM
5949 init_sched_build_groups(this_sibling_map, cpu_map,
5950 &cpu_to_cpu_group);
1da177e4
LT
5951 }
5952#endif
5953
1e9f28fa
SS
5954#ifdef CONFIG_SCHED_MC
5955 /* Set up multi-core groups */
5956 for_each_cpu_mask(i, *cpu_map) {
5957 cpumask_t this_core_map = cpu_coregroup_map(i);
5958 cpus_and(this_core_map, this_core_map, *cpu_map);
5959 if (i != first_cpu(this_core_map))
5960 continue;
dd41f596
IM
5961 init_sched_build_groups(this_core_map, cpu_map,
5962 &cpu_to_core_group);
1e9f28fa
SS
5963 }
5964#endif
5965
1da177e4
LT
5966 /* Set up physical groups */
5967 for (i = 0; i < MAX_NUMNODES; i++) {
5968 cpumask_t nodemask = node_to_cpumask(i);
5969
1a20ff27 5970 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5971 if (cpus_empty(nodemask))
5972 continue;
5973
6711cab4 5974 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
5975 }
5976
5977#ifdef CONFIG_NUMA
5978 /* Set up node groups */
6711cab4 5979 if (sd_allnodes)
dd41f596
IM
5980 init_sched_build_groups(*cpu_map, cpu_map,
5981 &cpu_to_allnodes_group);
9c1cfda2
JH
5982
5983 for (i = 0; i < MAX_NUMNODES; i++) {
5984 /* Set up node groups */
5985 struct sched_group *sg, *prev;
5986 cpumask_t nodemask = node_to_cpumask(i);
5987 cpumask_t domainspan;
5988 cpumask_t covered = CPU_MASK_NONE;
5989 int j;
5990
5991 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
5992 if (cpus_empty(nodemask)) {
5993 sched_group_nodes[i] = NULL;
9c1cfda2 5994 continue;
d1b55138 5995 }
9c1cfda2
JH
5996
5997 domainspan = sched_domain_node_span(i);
5998 cpus_and(domainspan, domainspan, *cpu_map);
5999
15f0b676 6000 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6001 if (!sg) {
6002 printk(KERN_WARNING "Can not alloc domain group for "
6003 "node %d\n", i);
6004 goto error;
6005 }
9c1cfda2
JH
6006 sched_group_nodes[i] = sg;
6007 for_each_cpu_mask(j, nodemask) {
6008 struct sched_domain *sd;
6009 sd = &per_cpu(node_domains, j);
6010 sd->groups = sg;
9c1cfda2 6011 }
5517d86b 6012 sg->__cpu_power = 0;
9c1cfda2 6013 sg->cpumask = nodemask;
51888ca2 6014 sg->next = sg;
9c1cfda2
JH
6015 cpus_or(covered, covered, nodemask);
6016 prev = sg;
6017
6018 for (j = 0; j < MAX_NUMNODES; j++) {
6019 cpumask_t tmp, notcovered;
6020 int n = (i + j) % MAX_NUMNODES;
6021
6022 cpus_complement(notcovered, covered);
6023 cpus_and(tmp, notcovered, *cpu_map);
6024 cpus_and(tmp, tmp, domainspan);
6025 if (cpus_empty(tmp))
6026 break;
6027
6028 nodemask = node_to_cpumask(n);
6029 cpus_and(tmp, tmp, nodemask);
6030 if (cpus_empty(tmp))
6031 continue;
6032
15f0b676
SV
6033 sg = kmalloc_node(sizeof(struct sched_group),
6034 GFP_KERNEL, i);
9c1cfda2
JH
6035 if (!sg) {
6036 printk(KERN_WARNING
6037 "Can not alloc domain group for node %d\n", j);
51888ca2 6038 goto error;
9c1cfda2 6039 }
5517d86b 6040 sg->__cpu_power = 0;
9c1cfda2 6041 sg->cpumask = tmp;
51888ca2 6042 sg->next = prev->next;
9c1cfda2
JH
6043 cpus_or(covered, covered, tmp);
6044 prev->next = sg;
6045 prev = sg;
6046 }
9c1cfda2 6047 }
1da177e4
LT
6048#endif
6049
6050 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6051#ifdef CONFIG_SCHED_SMT
1a20ff27 6052 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6053 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6054
89c4710e 6055 init_sched_groups_power(i, sd);
5c45bf27 6056 }
1da177e4 6057#endif
1e9f28fa 6058#ifdef CONFIG_SCHED_MC
5c45bf27 6059 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6060 struct sched_domain *sd = &per_cpu(core_domains, i);
6061
89c4710e 6062 init_sched_groups_power(i, sd);
5c45bf27
SS
6063 }
6064#endif
1e9f28fa 6065
5c45bf27 6066 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6067 struct sched_domain *sd = &per_cpu(phys_domains, i);
6068
89c4710e 6069 init_sched_groups_power(i, sd);
1da177e4
LT
6070 }
6071
9c1cfda2 6072#ifdef CONFIG_NUMA
08069033
SS
6073 for (i = 0; i < MAX_NUMNODES; i++)
6074 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6075
6711cab4
SS
6076 if (sd_allnodes) {
6077 struct sched_group *sg;
f712c0c7 6078
6711cab4 6079 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6080 init_numa_sched_groups_power(sg);
6081 }
9c1cfda2
JH
6082#endif
6083
1da177e4 6084 /* Attach the domains */
1a20ff27 6085 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6086 struct sched_domain *sd;
6087#ifdef CONFIG_SCHED_SMT
6088 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6089#elif defined(CONFIG_SCHED_MC)
6090 sd = &per_cpu(core_domains, i);
1da177e4
LT
6091#else
6092 sd = &per_cpu(phys_domains, i);
6093#endif
6094 cpu_attach_domain(sd, i);
6095 }
51888ca2
SV
6096
6097 return 0;
6098
a616058b 6099#ifdef CONFIG_NUMA
51888ca2
SV
6100error:
6101 free_sched_groups(cpu_map);
6102 return -ENOMEM;
a616058b 6103#endif
1da177e4 6104}
1a20ff27
DG
6105/*
6106 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6107 */
51888ca2 6108static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6109{
6110 cpumask_t cpu_default_map;
51888ca2 6111 int err;
1da177e4 6112
1a20ff27
DG
6113 /*
6114 * Setup mask for cpus without special case scheduling requirements.
6115 * For now this just excludes isolated cpus, but could be used to
6116 * exclude other special cases in the future.
6117 */
6118 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6119
51888ca2
SV
6120 err = build_sched_domains(&cpu_default_map);
6121
6122 return err;
1a20ff27
DG
6123}
6124
6125static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6126{
51888ca2 6127 free_sched_groups(cpu_map);
9c1cfda2 6128}
1da177e4 6129
1a20ff27
DG
6130/*
6131 * Detach sched domains from a group of cpus specified in cpu_map
6132 * These cpus will now be attached to the NULL domain
6133 */
858119e1 6134static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6135{
6136 int i;
6137
6138 for_each_cpu_mask(i, *cpu_map)
6139 cpu_attach_domain(NULL, i);
6140 synchronize_sched();
6141 arch_destroy_sched_domains(cpu_map);
6142}
6143
6144/*
6145 * Partition sched domains as specified by the cpumasks below.
6146 * This attaches all cpus from the cpumasks to the NULL domain,
6147 * waits for a RCU quiescent period, recalculates sched
6148 * domain information and then attaches them back to the
6149 * correct sched domains
6150 * Call with hotplug lock held
6151 */
51888ca2 6152int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6153{
6154 cpumask_t change_map;
51888ca2 6155 int err = 0;
1a20ff27
DG
6156
6157 cpus_and(*partition1, *partition1, cpu_online_map);
6158 cpus_and(*partition2, *partition2, cpu_online_map);
6159 cpus_or(change_map, *partition1, *partition2);
6160
6161 /* Detach sched domains from all of the affected cpus */
6162 detach_destroy_domains(&change_map);
6163 if (!cpus_empty(*partition1))
51888ca2
SV
6164 err = build_sched_domains(partition1);
6165 if (!err && !cpus_empty(*partition2))
6166 err = build_sched_domains(partition2);
6167
6168 return err;
1a20ff27
DG
6169}
6170
5c45bf27
SS
6171#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6172int arch_reinit_sched_domains(void)
6173{
6174 int err;
6175
5be9361c 6176 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6177 detach_destroy_domains(&cpu_online_map);
6178 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6179 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6180
6181 return err;
6182}
6183
6184static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6185{
6186 int ret;
6187
6188 if (buf[0] != '0' && buf[0] != '1')
6189 return -EINVAL;
6190
6191 if (smt)
6192 sched_smt_power_savings = (buf[0] == '1');
6193 else
6194 sched_mc_power_savings = (buf[0] == '1');
6195
6196 ret = arch_reinit_sched_domains();
6197
6198 return ret ? ret : count;
6199}
6200
6201int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6202{
6203 int err = 0;
48f24c4d 6204
5c45bf27
SS
6205#ifdef CONFIG_SCHED_SMT
6206 if (smt_capable())
6207 err = sysfs_create_file(&cls->kset.kobj,
6208 &attr_sched_smt_power_savings.attr);
6209#endif
6210#ifdef CONFIG_SCHED_MC
6211 if (!err && mc_capable())
6212 err = sysfs_create_file(&cls->kset.kobj,
6213 &attr_sched_mc_power_savings.attr);
6214#endif
6215 return err;
6216}
6217#endif
6218
6219#ifdef CONFIG_SCHED_MC
6220static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6221{
6222 return sprintf(page, "%u\n", sched_mc_power_savings);
6223}
48f24c4d
IM
6224static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6225 const char *buf, size_t count)
5c45bf27
SS
6226{
6227 return sched_power_savings_store(buf, count, 0);
6228}
6229SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6230 sched_mc_power_savings_store);
6231#endif
6232
6233#ifdef CONFIG_SCHED_SMT
6234static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6235{
6236 return sprintf(page, "%u\n", sched_smt_power_savings);
6237}
48f24c4d
IM
6238static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6239 const char *buf, size_t count)
5c45bf27
SS
6240{
6241 return sched_power_savings_store(buf, count, 1);
6242}
6243SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6244 sched_smt_power_savings_store);
6245#endif
6246
1da177e4
LT
6247/*
6248 * Force a reinitialization of the sched domains hierarchy. The domains
6249 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6250 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6251 * which will prevent rebalancing while the sched domains are recalculated.
6252 */
6253static int update_sched_domains(struct notifier_block *nfb,
6254 unsigned long action, void *hcpu)
6255{
1da177e4
LT
6256 switch (action) {
6257 case CPU_UP_PREPARE:
8bb78442 6258 case CPU_UP_PREPARE_FROZEN:
1da177e4 6259 case CPU_DOWN_PREPARE:
8bb78442 6260 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6261 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6262 return NOTIFY_OK;
6263
6264 case CPU_UP_CANCELED:
8bb78442 6265 case CPU_UP_CANCELED_FROZEN:
1da177e4 6266 case CPU_DOWN_FAILED:
8bb78442 6267 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6268 case CPU_ONLINE:
8bb78442 6269 case CPU_ONLINE_FROZEN:
1da177e4 6270 case CPU_DEAD:
8bb78442 6271 case CPU_DEAD_FROZEN:
1da177e4
LT
6272 /*
6273 * Fall through and re-initialise the domains.
6274 */
6275 break;
6276 default:
6277 return NOTIFY_DONE;
6278 }
6279
6280 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6281 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6282
6283 return NOTIFY_OK;
6284}
1da177e4
LT
6285
6286void __init sched_init_smp(void)
6287{
5c1e1767
NP
6288 cpumask_t non_isolated_cpus;
6289
5be9361c 6290 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6291 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6292 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6293 if (cpus_empty(non_isolated_cpus))
6294 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6295 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6296 /* XXX: Theoretical race here - CPU may be hotplugged now */
6297 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6298
6299 /* Move init over to a non-isolated CPU */
6300 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6301 BUG();
dd41f596 6302 sched_init_granularity();
1da177e4
LT
6303}
6304#else
6305void __init sched_init_smp(void)
6306{
dd41f596 6307 sched_init_granularity();
1da177e4
LT
6308}
6309#endif /* CONFIG_SMP */
6310
6311int in_sched_functions(unsigned long addr)
6312{
6313 /* Linker adds these: start and end of __sched functions */
6314 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6315
1da177e4
LT
6316 return in_lock_functions(addr) ||
6317 (addr >= (unsigned long)__sched_text_start
6318 && addr < (unsigned long)__sched_text_end);
6319}
6320
dd41f596
IM
6321static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6322{
6323 cfs_rq->tasks_timeline = RB_ROOT;
6324 cfs_rq->fair_clock = 1;
6325#ifdef CONFIG_FAIR_GROUP_SCHED
6326 cfs_rq->rq = rq;
6327#endif
6328}
6329
1da177e4
LT
6330void __init sched_init(void)
6331{
dd41f596 6332 u64 now = sched_clock();
476f3534 6333 int highest_cpu = 0;
dd41f596
IM
6334 int i, j;
6335
6336 /*
6337 * Link up the scheduling class hierarchy:
6338 */
6339 rt_sched_class.next = &fair_sched_class;
6340 fair_sched_class.next = &idle_sched_class;
6341 idle_sched_class.next = NULL;
1da177e4 6342
0a945022 6343 for_each_possible_cpu(i) {
dd41f596 6344 struct rt_prio_array *array;
70b97a7f 6345 struct rq *rq;
1da177e4
LT
6346
6347 rq = cpu_rq(i);
6348 spin_lock_init(&rq->lock);
fcb99371 6349 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6350 rq->nr_running = 0;
dd41f596
IM
6351 rq->clock = 1;
6352 init_cfs_rq(&rq->cfs, rq);
6353#ifdef CONFIG_FAIR_GROUP_SCHED
6354 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6355 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6356#endif
6357 rq->ls.load_update_last = now;
6358 rq->ls.load_update_start = now;
1da177e4 6359
dd41f596
IM
6360 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6361 rq->cpu_load[j] = 0;
1da177e4 6362#ifdef CONFIG_SMP
41c7ce9a 6363 rq->sd = NULL;
1da177e4 6364 rq->active_balance = 0;
dd41f596 6365 rq->next_balance = jiffies;
1da177e4 6366 rq->push_cpu = 0;
0a2966b4 6367 rq->cpu = i;
1da177e4
LT
6368 rq->migration_thread = NULL;
6369 INIT_LIST_HEAD(&rq->migration_queue);
6370#endif
6371 atomic_set(&rq->nr_iowait, 0);
6372
dd41f596
IM
6373 array = &rq->rt.active;
6374 for (j = 0; j < MAX_RT_PRIO; j++) {
6375 INIT_LIST_HEAD(array->queue + j);
6376 __clear_bit(j, array->bitmap);
1da177e4 6377 }
476f3534 6378 highest_cpu = i;
dd41f596
IM
6379 /* delimiter for bitsearch: */
6380 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6381 }
6382
2dd73a4f 6383 set_load_weight(&init_task);
b50f60ce 6384
c9819f45 6385#ifdef CONFIG_SMP
476f3534 6386 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6387 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6388#endif
6389
b50f60ce
HC
6390#ifdef CONFIG_RT_MUTEXES
6391 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6392#endif
6393
1da177e4
LT
6394 /*
6395 * The boot idle thread does lazy MMU switching as well:
6396 */
6397 atomic_inc(&init_mm.mm_count);
6398 enter_lazy_tlb(&init_mm, current);
6399
6400 /*
6401 * Make us the idle thread. Technically, schedule() should not be
6402 * called from this thread, however somewhere below it might be,
6403 * but because we are the idle thread, we just pick up running again
6404 * when this runqueue becomes "idle".
6405 */
6406 init_idle(current, smp_processor_id());
dd41f596
IM
6407 /*
6408 * During early bootup we pretend to be a normal task:
6409 */
6410 current->sched_class = &fair_sched_class;
1da177e4
LT
6411}
6412
6413#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6414void __might_sleep(char *file, int line)
6415{
48f24c4d 6416#ifdef in_atomic
1da177e4
LT
6417 static unsigned long prev_jiffy; /* ratelimiting */
6418
6419 if ((in_atomic() || irqs_disabled()) &&
6420 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6421 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6422 return;
6423 prev_jiffy = jiffies;
91368d73 6424 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6425 " context at %s:%d\n", file, line);
6426 printk("in_atomic():%d, irqs_disabled():%d\n",
6427 in_atomic(), irqs_disabled());
a4c410f0 6428 debug_show_held_locks(current);
3117df04
IM
6429 if (irqs_disabled())
6430 print_irqtrace_events(current);
1da177e4
LT
6431 dump_stack();
6432 }
6433#endif
6434}
6435EXPORT_SYMBOL(__might_sleep);
6436#endif
6437
6438#ifdef CONFIG_MAGIC_SYSRQ
6439void normalize_rt_tasks(void)
6440{
a0f98a1c 6441 struct task_struct *g, *p;
1da177e4 6442 unsigned long flags;
70b97a7f 6443 struct rq *rq;
dd41f596 6444 int on_rq;
1da177e4
LT
6445
6446 read_lock_irq(&tasklist_lock);
a0f98a1c 6447 do_each_thread(g, p) {
dd41f596
IM
6448 p->se.fair_key = 0;
6449 p->se.wait_runtime = 0;
6450 p->se.wait_start_fair = 0;
6451 p->se.wait_start = 0;
6452 p->se.exec_start = 0;
6453 p->se.sleep_start = 0;
6454 p->se.sleep_start_fair = 0;
6455 p->se.block_start = 0;
6456 task_rq(p)->cfs.fair_clock = 0;
6457 task_rq(p)->clock = 0;
6458
6459 if (!rt_task(p)) {
6460 /*
6461 * Renice negative nice level userspace
6462 * tasks back to 0:
6463 */
6464 if (TASK_NICE(p) < 0 && p->mm)
6465 set_user_nice(p, 0);
1da177e4 6466 continue;
dd41f596 6467 }
1da177e4 6468
b29739f9
IM
6469 spin_lock_irqsave(&p->pi_lock, flags);
6470 rq = __task_rq_lock(p);
dd41f596
IM
6471#ifdef CONFIG_SMP
6472 /*
6473 * Do not touch the migration thread:
6474 */
6475 if (p == rq->migration_thread)
6476 goto out_unlock;
6477#endif
1da177e4 6478
dd41f596
IM
6479 on_rq = p->se.on_rq;
6480 if (on_rq)
6481 deactivate_task(task_rq(p), p, 0);
6482 __setscheduler(rq, p, SCHED_NORMAL, 0);
6483 if (on_rq) {
6484 activate_task(task_rq(p), p, 0);
1da177e4
LT
6485 resched_task(rq->curr);
6486 }
dd41f596
IM
6487#ifdef CONFIG_SMP
6488 out_unlock:
6489#endif
b29739f9
IM
6490 __task_rq_unlock(rq);
6491 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6492 } while_each_thread(g, p);
6493
1da177e4
LT
6494 read_unlock_irq(&tasklist_lock);
6495}
6496
6497#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6498
6499#ifdef CONFIG_IA64
6500/*
6501 * These functions are only useful for the IA64 MCA handling.
6502 *
6503 * They can only be called when the whole system has been
6504 * stopped - every CPU needs to be quiescent, and no scheduling
6505 * activity can take place. Using them for anything else would
6506 * be a serious bug, and as a result, they aren't even visible
6507 * under any other configuration.
6508 */
6509
6510/**
6511 * curr_task - return the current task for a given cpu.
6512 * @cpu: the processor in question.
6513 *
6514 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6515 */
36c8b586 6516struct task_struct *curr_task(int cpu)
1df5c10a
LT
6517{
6518 return cpu_curr(cpu);
6519}
6520
6521/**
6522 * set_curr_task - set the current task for a given cpu.
6523 * @cpu: the processor in question.
6524 * @p: the task pointer to set.
6525 *
6526 * Description: This function must only be used when non-maskable interrupts
6527 * are serviced on a separate stack. It allows the architecture to switch the
6528 * notion of the current task on a cpu in a non-blocking manner. This function
6529 * must be called with all CPU's synchronized, and interrupts disabled, the
6530 * and caller must save the original value of the current task (see
6531 * curr_task() above) and restore that value before reenabling interrupts and
6532 * re-starting the system.
6533 *
6534 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6535 */
36c8b586 6536void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6537{
6538 cpu_curr(cpu) = p;
6539}
6540
6541#endif