]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: resched task in task_new_fair()
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
f5ff8422 64#include <linux/pagemap.h>
1da177e4 65
5517d86b 66#include <asm/tlb.h>
1da177e4 67
b035b6de
AD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
1da177e4
LT
78/*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
634fa8c9
IM
136#define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
91fcdd4e 139/*
634fa8c9 140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 141 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 142 */
634fa8c9 143static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 144{
634fa8c9
IM
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
152}
153
e05606d3
IM
154static inline int rt_policy(int policy)
155{
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159}
160
161static inline int task_has_rt_policy(struct task_struct *p)
162{
163 return rt_policy(p->policy);
164}
165
1da177e4 166/*
6aa645ea 167 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 168 */
6aa645ea
IM
169struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172};
173
174struct load_stat {
175 struct load_weight load;
176 u64 load_update_start, load_update_last;
177 unsigned long delta_fair, delta_exec, delta_stat;
178};
179
180/* CFS-related fields in a runqueue */
181struct cfs_rq {
182 struct load_weight load;
183 unsigned long nr_running;
184
185 s64 fair_clock;
186 u64 exec_clock;
187 s64 wait_runtime;
188 u64 sleeper_bonus;
189 unsigned long wait_runtime_overruns, wait_runtime_underruns;
190
191 struct rb_root tasks_timeline;
192 struct rb_node *rb_leftmost;
193 struct rb_node *rb_load_balance_curr;
194#ifdef CONFIG_FAIR_GROUP_SCHED
195 /* 'curr' points to currently running entity on this cfs_rq.
196 * It is set to NULL otherwise (i.e when none are currently running).
197 */
198 struct sched_entity *curr;
199 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
200
201 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
202 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
203 * (like users, containers etc.)
204 *
205 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
206 * list is used during load balance.
207 */
208 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
209#endif
210};
1da177e4 211
6aa645ea
IM
212/* Real-Time classes' related field in a runqueue: */
213struct rt_rq {
214 struct rt_prio_array active;
215 int rt_load_balance_idx;
216 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
217};
218
1da177e4
LT
219/*
220 * This is the main, per-CPU runqueue data structure.
221 *
222 * Locking rule: those places that want to lock multiple runqueues
223 * (such as the load balancing or the thread migration code), lock
224 * acquire operations must be ordered by ascending &runqueue.
225 */
70b97a7f 226struct rq {
6aa645ea 227 spinlock_t lock; /* runqueue lock */
1da177e4
LT
228
229 /*
230 * nr_running and cpu_load should be in the same cacheline because
231 * remote CPUs use both these fields when doing load calculation.
232 */
233 unsigned long nr_running;
6aa645ea
IM
234 #define CPU_LOAD_IDX_MAX 5
235 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 236 unsigned char idle_at_tick;
46cb4b7c
SS
237#ifdef CONFIG_NO_HZ
238 unsigned char in_nohz_recently;
239#endif
6aa645ea
IM
240 struct load_stat ls; /* capture load from *all* tasks on this cpu */
241 unsigned long nr_load_updates;
242 u64 nr_switches;
243
244 struct cfs_rq cfs;
245#ifdef CONFIG_FAIR_GROUP_SCHED
246 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 247#endif
6aa645ea 248 struct rt_rq rt;
1da177e4
LT
249
250 /*
251 * This is part of a global counter where only the total sum
252 * over all CPUs matters. A task can increase this counter on
253 * one CPU and if it got migrated afterwards it may decrease
254 * it on another CPU. Always updated under the runqueue lock:
255 */
256 unsigned long nr_uninterruptible;
257
36c8b586 258 struct task_struct *curr, *idle;
c9819f45 259 unsigned long next_balance;
1da177e4 260 struct mm_struct *prev_mm;
6aa645ea 261
6aa645ea
IM
262 u64 clock, prev_clock_raw;
263 s64 clock_max_delta;
264
265 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
266 u64 idle_clock;
267 unsigned int clock_deep_idle_events;
529c7726 268 u64 tick_timestamp;
6aa645ea 269
1da177e4
LT
270 atomic_t nr_iowait;
271
272#ifdef CONFIG_SMP
273 struct sched_domain *sd;
274
275 /* For active balancing */
276 int active_balance;
277 int push_cpu;
0a2966b4 278 int cpu; /* cpu of this runqueue */
1da177e4 279
36c8b586 280 struct task_struct *migration_thread;
1da177e4
LT
281 struct list_head migration_queue;
282#endif
283
284#ifdef CONFIG_SCHEDSTATS
285 /* latency stats */
286 struct sched_info rq_sched_info;
287
288 /* sys_sched_yield() stats */
289 unsigned long yld_exp_empty;
290 unsigned long yld_act_empty;
291 unsigned long yld_both_empty;
292 unsigned long yld_cnt;
293
294 /* schedule() stats */
295 unsigned long sched_switch;
296 unsigned long sched_cnt;
297 unsigned long sched_goidle;
298
299 /* try_to_wake_up() stats */
300 unsigned long ttwu_cnt;
301 unsigned long ttwu_local;
302#endif
fcb99371 303 struct lock_class_key rq_lock_key;
1da177e4
LT
304};
305
f34e3b61 306static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 307static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 308
dd41f596
IM
309static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
310{
311 rq->curr->sched_class->check_preempt_curr(rq, p);
312}
313
0a2966b4
CL
314static inline int cpu_of(struct rq *rq)
315{
316#ifdef CONFIG_SMP
317 return rq->cpu;
318#else
319 return 0;
320#endif
321}
322
20d315d4 323/*
b04a0f4c
IM
324 * Update the per-runqueue clock, as finegrained as the platform can give
325 * us, but without assuming monotonicity, etc.:
20d315d4 326 */
b04a0f4c 327static void __update_rq_clock(struct rq *rq)
20d315d4
IM
328{
329 u64 prev_raw = rq->prev_clock_raw;
330 u64 now = sched_clock();
331 s64 delta = now - prev_raw;
332 u64 clock = rq->clock;
333
b04a0f4c
IM
334#ifdef CONFIG_SCHED_DEBUG
335 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
336#endif
20d315d4
IM
337 /*
338 * Protect against sched_clock() occasionally going backwards:
339 */
340 if (unlikely(delta < 0)) {
341 clock++;
342 rq->clock_warps++;
343 } else {
344 /*
345 * Catch too large forward jumps too:
346 */
529c7726
IM
347 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
348 if (clock < rq->tick_timestamp + TICK_NSEC)
349 clock = rq->tick_timestamp + TICK_NSEC;
350 else
351 clock++;
20d315d4
IM
352 rq->clock_overflows++;
353 } else {
354 if (unlikely(delta > rq->clock_max_delta))
355 rq->clock_max_delta = delta;
356 clock += delta;
357 }
358 }
359
360 rq->prev_clock_raw = now;
361 rq->clock = clock;
b04a0f4c 362}
20d315d4 363
b04a0f4c
IM
364static void update_rq_clock(struct rq *rq)
365{
366 if (likely(smp_processor_id() == cpu_of(rq)))
367 __update_rq_clock(rq);
20d315d4
IM
368}
369
674311d5
NP
370/*
371 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 372 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
373 *
374 * The domain tree of any CPU may only be accessed from within
375 * preempt-disabled sections.
376 */
48f24c4d
IM
377#define for_each_domain(cpu, __sd) \
378 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
379
380#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
381#define this_rq() (&__get_cpu_var(runqueues))
382#define task_rq(p) cpu_rq(task_cpu(p))
383#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
384
e436d800
IM
385/*
386 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
387 * clock constructed from sched_clock():
388 */
389unsigned long long cpu_clock(int cpu)
390{
e436d800
IM
391 unsigned long long now;
392 unsigned long flags;
b04a0f4c 393 struct rq *rq;
e436d800 394
2cd4d0ea 395 local_irq_save(flags);
b04a0f4c
IM
396 rq = cpu_rq(cpu);
397 update_rq_clock(rq);
398 now = rq->clock;
2cd4d0ea 399 local_irq_restore(flags);
e436d800
IM
400
401 return now;
402}
403
138a8aeb
IM
404#ifdef CONFIG_FAIR_GROUP_SCHED
405/* Change a task's ->cfs_rq if it moves across CPUs */
406static inline void set_task_cfs_rq(struct task_struct *p)
407{
408 p->se.cfs_rq = &task_rq(p)->cfs;
409}
410#else
411static inline void set_task_cfs_rq(struct task_struct *p)
412{
413}
414#endif
415
1da177e4 416#ifndef prepare_arch_switch
4866cde0
NP
417# define prepare_arch_switch(next) do { } while (0)
418#endif
419#ifndef finish_arch_switch
420# define finish_arch_switch(prev) do { } while (0)
421#endif
422
423#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 424static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
425{
426 return rq->curr == p;
427}
428
70b97a7f 429static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
430{
431}
432
70b97a7f 433static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 434{
da04c035
IM
435#ifdef CONFIG_DEBUG_SPINLOCK
436 /* this is a valid case when another task releases the spinlock */
437 rq->lock.owner = current;
438#endif
8a25d5de
IM
439 /*
440 * If we are tracking spinlock dependencies then we have to
441 * fix up the runqueue lock - which gets 'carried over' from
442 * prev into current:
443 */
444 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
445
4866cde0
NP
446 spin_unlock_irq(&rq->lock);
447}
448
449#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 450static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
451{
452#ifdef CONFIG_SMP
453 return p->oncpu;
454#else
455 return rq->curr == p;
456#endif
457}
458
70b97a7f 459static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
460{
461#ifdef CONFIG_SMP
462 /*
463 * We can optimise this out completely for !SMP, because the
464 * SMP rebalancing from interrupt is the only thing that cares
465 * here.
466 */
467 next->oncpu = 1;
468#endif
469#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
470 spin_unlock_irq(&rq->lock);
471#else
472 spin_unlock(&rq->lock);
473#endif
474}
475
70b97a7f 476static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
477{
478#ifdef CONFIG_SMP
479 /*
480 * After ->oncpu is cleared, the task can be moved to a different CPU.
481 * We must ensure this doesn't happen until the switch is completely
482 * finished.
483 */
484 smp_wmb();
485 prev->oncpu = 0;
486#endif
487#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
488 local_irq_enable();
1da177e4 489#endif
4866cde0
NP
490}
491#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 492
b29739f9
IM
493/*
494 * __task_rq_lock - lock the runqueue a given task resides on.
495 * Must be called interrupts disabled.
496 */
70b97a7f 497static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
498 __acquires(rq->lock)
499{
70b97a7f 500 struct rq *rq;
b29739f9
IM
501
502repeat_lock_task:
503 rq = task_rq(p);
504 spin_lock(&rq->lock);
505 if (unlikely(rq != task_rq(p))) {
506 spin_unlock(&rq->lock);
507 goto repeat_lock_task;
508 }
509 return rq;
510}
511
1da177e4
LT
512/*
513 * task_rq_lock - lock the runqueue a given task resides on and disable
514 * interrupts. Note the ordering: we can safely lookup the task_rq without
515 * explicitly disabling preemption.
516 */
70b97a7f 517static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
518 __acquires(rq->lock)
519{
70b97a7f 520 struct rq *rq;
1da177e4
LT
521
522repeat_lock_task:
523 local_irq_save(*flags);
524 rq = task_rq(p);
525 spin_lock(&rq->lock);
526 if (unlikely(rq != task_rq(p))) {
527 spin_unlock_irqrestore(&rq->lock, *flags);
528 goto repeat_lock_task;
529 }
530 return rq;
531}
532
70b97a7f 533static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
534 __releases(rq->lock)
535{
536 spin_unlock(&rq->lock);
537}
538
70b97a7f 539static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
540 __releases(rq->lock)
541{
542 spin_unlock_irqrestore(&rq->lock, *flags);
543}
544
1da177e4 545/*
cc2a73b5 546 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 547 */
70b97a7f 548static inline struct rq *this_rq_lock(void)
1da177e4
LT
549 __acquires(rq->lock)
550{
70b97a7f 551 struct rq *rq;
1da177e4
LT
552
553 local_irq_disable();
554 rq = this_rq();
555 spin_lock(&rq->lock);
556
557 return rq;
558}
559
1b9f19c2 560/*
2aa44d05 561 * We are going deep-idle (irqs are disabled):
1b9f19c2 562 */
2aa44d05 563void sched_clock_idle_sleep_event(void)
1b9f19c2 564{
2aa44d05
IM
565 struct rq *rq = cpu_rq(smp_processor_id());
566
567 spin_lock(&rq->lock);
568 __update_rq_clock(rq);
569 spin_unlock(&rq->lock);
570 rq->clock_deep_idle_events++;
571}
572EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
573
574/*
575 * We just idled delta nanoseconds (called with irqs disabled):
576 */
577void sched_clock_idle_wakeup_event(u64 delta_ns)
578{
579 struct rq *rq = cpu_rq(smp_processor_id());
580 u64 now = sched_clock();
1b9f19c2 581
2aa44d05
IM
582 rq->idle_clock += delta_ns;
583 /*
584 * Override the previous timestamp and ignore all
585 * sched_clock() deltas that occured while we idled,
586 * and use the PM-provided delta_ns to advance the
587 * rq clock:
588 */
589 spin_lock(&rq->lock);
590 rq->prev_clock_raw = now;
591 rq->clock += delta_ns;
592 spin_unlock(&rq->lock);
1b9f19c2 593}
2aa44d05 594EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 595
c24d20db
IM
596/*
597 * resched_task - mark a task 'to be rescheduled now'.
598 *
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
601 * the target CPU.
602 */
603#ifdef CONFIG_SMP
604
605#ifndef tsk_is_polling
606#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
607#endif
608
609static void resched_task(struct task_struct *p)
610{
611 int cpu;
612
613 assert_spin_locked(&task_rq(p)->lock);
614
615 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
616 return;
617
618 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
619
620 cpu = task_cpu(p);
621 if (cpu == smp_processor_id())
622 return;
623
624 /* NEED_RESCHED must be visible before we test polling */
625 smp_mb();
626 if (!tsk_is_polling(p))
627 smp_send_reschedule(cpu);
628}
629
630static void resched_cpu(int cpu)
631{
632 struct rq *rq = cpu_rq(cpu);
633 unsigned long flags;
634
635 if (!spin_trylock_irqsave(&rq->lock, flags))
636 return;
637 resched_task(cpu_curr(cpu));
638 spin_unlock_irqrestore(&rq->lock, flags);
639}
640#else
641static inline void resched_task(struct task_struct *p)
642{
643 assert_spin_locked(&task_rq(p)->lock);
644 set_tsk_need_resched(p);
645}
646#endif
647
45bf76df
IM
648static u64 div64_likely32(u64 divident, unsigned long divisor)
649{
650#if BITS_PER_LONG == 32
651 if (likely(divident <= 0xffffffffULL))
652 return (u32)divident / divisor;
653 do_div(divident, divisor);
654
655 return divident;
656#else
657 return divident / divisor;
658#endif
659}
660
661#if BITS_PER_LONG == 32
662# define WMULT_CONST (~0UL)
663#else
664# define WMULT_CONST (1UL << 32)
665#endif
666
667#define WMULT_SHIFT 32
668
194081eb
IM
669/*
670 * Shift right and round:
671 */
cf2ab469 672#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 673
cb1c4fc9 674static unsigned long
45bf76df
IM
675calc_delta_mine(unsigned long delta_exec, unsigned long weight,
676 struct load_weight *lw)
677{
678 u64 tmp;
679
680 if (unlikely(!lw->inv_weight))
194081eb 681 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
682
683 tmp = (u64)delta_exec * weight;
684 /*
685 * Check whether we'd overflow the 64-bit multiplication:
686 */
194081eb 687 if (unlikely(tmp > WMULT_CONST))
cf2ab469 688 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
689 WMULT_SHIFT/2);
690 else
cf2ab469 691 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 692
ecf691da 693 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
694}
695
696static inline unsigned long
697calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
698{
699 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
700}
701
702static void update_load_add(struct load_weight *lw, unsigned long inc)
703{
704 lw->weight += inc;
705 lw->inv_weight = 0;
706}
707
708static void update_load_sub(struct load_weight *lw, unsigned long dec)
709{
710 lw->weight -= dec;
711 lw->inv_weight = 0;
712}
713
2dd73a4f
PW
714/*
715 * To aid in avoiding the subversion of "niceness" due to uneven distribution
716 * of tasks with abnormal "nice" values across CPUs the contribution that
717 * each task makes to its run queue's load is weighted according to its
718 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
719 * scaled version of the new time slice allocation that they receive on time
720 * slice expiry etc.
721 */
722
dd41f596
IM
723#define WEIGHT_IDLEPRIO 2
724#define WMULT_IDLEPRIO (1 << 31)
725
726/*
727 * Nice levels are multiplicative, with a gentle 10% change for every
728 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
729 * nice 1, it will get ~10% less CPU time than another CPU-bound task
730 * that remained on nice 0.
731 *
732 * The "10% effect" is relative and cumulative: from _any_ nice level,
733 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
734 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
735 * If a task goes up by ~10% and another task goes down by ~10% then
736 * the relative distance between them is ~25%.)
dd41f596
IM
737 */
738static const int prio_to_weight[40] = {
254753dc
IM
739 /* -20 */ 88761, 71755, 56483, 46273, 36291,
740 /* -15 */ 29154, 23254, 18705, 14949, 11916,
741 /* -10 */ 9548, 7620, 6100, 4904, 3906,
742 /* -5 */ 3121, 2501, 1991, 1586, 1277,
743 /* 0 */ 1024, 820, 655, 526, 423,
744 /* 5 */ 335, 272, 215, 172, 137,
745 /* 10 */ 110, 87, 70, 56, 45,
746 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
747};
748
5714d2de
IM
749/*
750 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
751 *
752 * In cases where the weight does not change often, we can use the
753 * precalculated inverse to speed up arithmetics by turning divisions
754 * into multiplications:
755 */
dd41f596 756static const u32 prio_to_wmult[40] = {
254753dc
IM
757 /* -20 */ 48388, 59856, 76040, 92818, 118348,
758 /* -15 */ 147320, 184698, 229616, 287308, 360437,
759 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
760 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
761 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
762 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
763 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
764 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 765};
2dd73a4f 766
dd41f596
IM
767static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
768
769/*
770 * runqueue iterator, to support SMP load-balancing between different
771 * scheduling classes, without having to expose their internal data
772 * structures to the load-balancing proper:
773 */
774struct rq_iterator {
775 void *arg;
776 struct task_struct *(*start)(void *);
777 struct task_struct *(*next)(void *);
778};
779
780static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
781 unsigned long max_nr_move, unsigned long max_load_move,
782 struct sched_domain *sd, enum cpu_idle_type idle,
783 int *all_pinned, unsigned long *load_moved,
a4ac01c3 784 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
785
786#include "sched_stats.h"
787#include "sched_rt.c"
788#include "sched_fair.c"
789#include "sched_idletask.c"
790#ifdef CONFIG_SCHED_DEBUG
791# include "sched_debug.c"
792#endif
793
794#define sched_class_highest (&rt_sched_class)
795
9c217245
IM
796static void __update_curr_load(struct rq *rq, struct load_stat *ls)
797{
798 if (rq->curr != rq->idle && ls->load.weight) {
799 ls->delta_exec += ls->delta_stat;
800 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
801 ls->delta_stat = 0;
802 }
803}
804
805/*
806 * Update delta_exec, delta_fair fields for rq.
807 *
808 * delta_fair clock advances at a rate inversely proportional to
809 * total load (rq->ls.load.weight) on the runqueue, while
810 * delta_exec advances at the same rate as wall-clock (provided
811 * cpu is not idle).
812 *
813 * delta_exec / delta_fair is a measure of the (smoothened) load on this
814 * runqueue over any given interval. This (smoothened) load is used
815 * during load balance.
816 *
817 * This function is called /before/ updating rq->ls.load
818 * and when switching tasks.
819 */
84a1d7a2 820static void update_curr_load(struct rq *rq)
9c217245
IM
821{
822 struct load_stat *ls = &rq->ls;
823 u64 start;
824
825 start = ls->load_update_start;
d281918d
IM
826 ls->load_update_start = rq->clock;
827 ls->delta_stat += rq->clock - start;
9c217245
IM
828 /*
829 * Stagger updates to ls->delta_fair. Very frequent updates
830 * can be expensive.
831 */
832 if (ls->delta_stat >= sysctl_sched_stat_granularity)
833 __update_curr_load(rq, ls);
834}
835
29b4b623 836static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 837{
84a1d7a2 838 update_curr_load(rq);
9c217245
IM
839 update_load_add(&rq->ls.load, p->se.load.weight);
840}
841
79b5dddf 842static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 843{
84a1d7a2 844 update_curr_load(rq);
9c217245
IM
845 update_load_sub(&rq->ls.load, p->se.load.weight);
846}
847
e5fa2237 848static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
849{
850 rq->nr_running++;
29b4b623 851 inc_load(rq, p);
9c217245
IM
852}
853
db53181e 854static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
855{
856 rq->nr_running--;
79b5dddf 857 dec_load(rq, p);
9c217245
IM
858}
859
45bf76df
IM
860static void set_load_weight(struct task_struct *p)
861{
dd41f596
IM
862 p->se.wait_runtime = 0;
863
45bf76df 864 if (task_has_rt_policy(p)) {
dd41f596
IM
865 p->se.load.weight = prio_to_weight[0] * 2;
866 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
867 return;
868 }
45bf76df 869
dd41f596
IM
870 /*
871 * SCHED_IDLE tasks get minimal weight:
872 */
873 if (p->policy == SCHED_IDLE) {
874 p->se.load.weight = WEIGHT_IDLEPRIO;
875 p->se.load.inv_weight = WMULT_IDLEPRIO;
876 return;
877 }
71f8bd46 878
dd41f596
IM
879 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
880 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
881}
882
8159f87e 883static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 884{
dd41f596 885 sched_info_queued(p);
fd390f6a 886 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 887 p->se.on_rq = 1;
71f8bd46
IM
888}
889
69be72c1 890static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 891{
f02231e5 892 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 893 p->se.on_rq = 0;
71f8bd46
IM
894}
895
14531189 896/*
dd41f596 897 * __normal_prio - return the priority that is based on the static prio
14531189 898 */
14531189
IM
899static inline int __normal_prio(struct task_struct *p)
900{
dd41f596 901 return p->static_prio;
14531189
IM
902}
903
b29739f9
IM
904/*
905 * Calculate the expected normal priority: i.e. priority
906 * without taking RT-inheritance into account. Might be
907 * boosted by interactivity modifiers. Changes upon fork,
908 * setprio syscalls, and whenever the interactivity
909 * estimator recalculates.
910 */
36c8b586 911static inline int normal_prio(struct task_struct *p)
b29739f9
IM
912{
913 int prio;
914
e05606d3 915 if (task_has_rt_policy(p))
b29739f9
IM
916 prio = MAX_RT_PRIO-1 - p->rt_priority;
917 else
918 prio = __normal_prio(p);
919 return prio;
920}
921
922/*
923 * Calculate the current priority, i.e. the priority
924 * taken into account by the scheduler. This value might
925 * be boosted by RT tasks, or might be boosted by
926 * interactivity modifiers. Will be RT if the task got
927 * RT-boosted. If not then it returns p->normal_prio.
928 */
36c8b586 929static int effective_prio(struct task_struct *p)
b29739f9
IM
930{
931 p->normal_prio = normal_prio(p);
932 /*
933 * If we are RT tasks or we were boosted to RT priority,
934 * keep the priority unchanged. Otherwise, update priority
935 * to the normal priority:
936 */
937 if (!rt_prio(p->prio))
938 return p->normal_prio;
939 return p->prio;
940}
941
1da177e4 942/*
dd41f596 943 * activate_task - move a task to the runqueue.
1da177e4 944 */
dd41f596 945static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 946{
dd41f596
IM
947 if (p->state == TASK_UNINTERRUPTIBLE)
948 rq->nr_uninterruptible--;
1da177e4 949
8159f87e 950 enqueue_task(rq, p, wakeup);
e5fa2237 951 inc_nr_running(p, rq);
1da177e4
LT
952}
953
954/*
dd41f596 955 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 956 */
dd41f596 957static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 958{
a8e504d2 959 update_rq_clock(rq);
1da177e4 960
dd41f596
IM
961 if (p->state == TASK_UNINTERRUPTIBLE)
962 rq->nr_uninterruptible--;
ece8a684 963
8159f87e 964 enqueue_task(rq, p, 0);
e5fa2237 965 inc_nr_running(p, rq);
1da177e4
LT
966}
967
968/*
969 * deactivate_task - remove a task from the runqueue.
970 */
2e1cb74a 971static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 972{
dd41f596
IM
973 if (p->state == TASK_UNINTERRUPTIBLE)
974 rq->nr_uninterruptible++;
975
69be72c1 976 dequeue_task(rq, p, sleep);
db53181e 977 dec_nr_running(p, rq);
1da177e4
LT
978}
979
1da177e4
LT
980/**
981 * task_curr - is this task currently executing on a CPU?
982 * @p: the task in question.
983 */
36c8b586 984inline int task_curr(const struct task_struct *p)
1da177e4
LT
985{
986 return cpu_curr(task_cpu(p)) == p;
987}
988
2dd73a4f
PW
989/* Used instead of source_load when we know the type == 0 */
990unsigned long weighted_cpuload(const int cpu)
991{
dd41f596
IM
992 return cpu_rq(cpu)->ls.load.weight;
993}
994
995static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
996{
997#ifdef CONFIG_SMP
998 task_thread_info(p)->cpu = cpu;
999 set_task_cfs_rq(p);
1000#endif
2dd73a4f
PW
1001}
1002
1da177e4 1003#ifdef CONFIG_SMP
c65cc870 1004
dd41f596 1005void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1006{
dd41f596
IM
1007 int old_cpu = task_cpu(p);
1008 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1009 u64 clock_offset, fair_clock_offset;
1010
1011 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1012 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
1013
dd41f596
IM
1014 if (p->se.wait_start_fair)
1015 p->se.wait_start_fair -= fair_clock_offset;
6cfb0d5d
IM
1016 if (p->se.sleep_start_fair)
1017 p->se.sleep_start_fair -= fair_clock_offset;
1018
1019#ifdef CONFIG_SCHEDSTATS
1020 if (p->se.wait_start)
1021 p->se.wait_start -= clock_offset;
dd41f596
IM
1022 if (p->se.sleep_start)
1023 p->se.sleep_start -= clock_offset;
1024 if (p->se.block_start)
1025 p->se.block_start -= clock_offset;
6cfb0d5d 1026#endif
dd41f596
IM
1027
1028 __set_task_cpu(p, new_cpu);
c65cc870
IM
1029}
1030
70b97a7f 1031struct migration_req {
1da177e4 1032 struct list_head list;
1da177e4 1033
36c8b586 1034 struct task_struct *task;
1da177e4
LT
1035 int dest_cpu;
1036
1da177e4 1037 struct completion done;
70b97a7f 1038};
1da177e4
LT
1039
1040/*
1041 * The task's runqueue lock must be held.
1042 * Returns true if you have to wait for migration thread.
1043 */
36c8b586 1044static int
70b97a7f 1045migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1046{
70b97a7f 1047 struct rq *rq = task_rq(p);
1da177e4
LT
1048
1049 /*
1050 * If the task is not on a runqueue (and not running), then
1051 * it is sufficient to simply update the task's cpu field.
1052 */
dd41f596 1053 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1054 set_task_cpu(p, dest_cpu);
1055 return 0;
1056 }
1057
1058 init_completion(&req->done);
1da177e4
LT
1059 req->task = p;
1060 req->dest_cpu = dest_cpu;
1061 list_add(&req->list, &rq->migration_queue);
48f24c4d 1062
1da177e4
LT
1063 return 1;
1064}
1065
1066/*
1067 * wait_task_inactive - wait for a thread to unschedule.
1068 *
1069 * The caller must ensure that the task *will* unschedule sometime soon,
1070 * else this function might spin for a *long* time. This function can't
1071 * be called with interrupts off, or it may introduce deadlock with
1072 * smp_call_function() if an IPI is sent by the same process we are
1073 * waiting to become inactive.
1074 */
36c8b586 1075void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1076{
1077 unsigned long flags;
dd41f596 1078 int running, on_rq;
70b97a7f 1079 struct rq *rq;
1da177e4
LT
1080
1081repeat:
fa490cfd
LT
1082 /*
1083 * We do the initial early heuristics without holding
1084 * any task-queue locks at all. We'll only try to get
1085 * the runqueue lock when things look like they will
1086 * work out!
1087 */
1088 rq = task_rq(p);
1089
1090 /*
1091 * If the task is actively running on another CPU
1092 * still, just relax and busy-wait without holding
1093 * any locks.
1094 *
1095 * NOTE! Since we don't hold any locks, it's not
1096 * even sure that "rq" stays as the right runqueue!
1097 * But we don't care, since "task_running()" will
1098 * return false if the runqueue has changed and p
1099 * is actually now running somewhere else!
1100 */
1101 while (task_running(rq, p))
1102 cpu_relax();
1103
1104 /*
1105 * Ok, time to look more closely! We need the rq
1106 * lock now, to be *sure*. If we're wrong, we'll
1107 * just go back and repeat.
1108 */
1da177e4 1109 rq = task_rq_lock(p, &flags);
fa490cfd 1110 running = task_running(rq, p);
dd41f596 1111 on_rq = p->se.on_rq;
fa490cfd
LT
1112 task_rq_unlock(rq, &flags);
1113
1114 /*
1115 * Was it really running after all now that we
1116 * checked with the proper locks actually held?
1117 *
1118 * Oops. Go back and try again..
1119 */
1120 if (unlikely(running)) {
1da177e4 1121 cpu_relax();
1da177e4
LT
1122 goto repeat;
1123 }
fa490cfd
LT
1124
1125 /*
1126 * It's not enough that it's not actively running,
1127 * it must be off the runqueue _entirely_, and not
1128 * preempted!
1129 *
1130 * So if it wa still runnable (but just not actively
1131 * running right now), it's preempted, and we should
1132 * yield - it could be a while.
1133 */
dd41f596 1134 if (unlikely(on_rq)) {
fa490cfd
LT
1135 yield();
1136 goto repeat;
1137 }
1138
1139 /*
1140 * Ahh, all good. It wasn't running, and it wasn't
1141 * runnable, which means that it will never become
1142 * running in the future either. We're all done!
1143 */
1da177e4
LT
1144}
1145
1146/***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
1153 * NOTE: this function doesnt have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
36c8b586 1159void kick_process(struct task_struct *p)
1da177e4
LT
1160{
1161 int cpu;
1162
1163 preempt_disable();
1164 cpu = task_cpu(p);
1165 if ((cpu != smp_processor_id()) && task_curr(p))
1166 smp_send_reschedule(cpu);
1167 preempt_enable();
1168}
1169
1170/*
2dd73a4f
PW
1171 * Return a low guess at the load of a migration-source cpu weighted
1172 * according to the scheduling class and "nice" value.
1da177e4
LT
1173 *
1174 * We want to under-estimate the load of migration sources, to
1175 * balance conservatively.
1176 */
a2000572 1177static inline unsigned long source_load(int cpu, int type)
1da177e4 1178{
70b97a7f 1179 struct rq *rq = cpu_rq(cpu);
dd41f596 1180 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1181
3b0bd9bc 1182 if (type == 0)
dd41f596 1183 return total;
b910472d 1184
dd41f596 1185 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1186}
1187
1188/*
2dd73a4f
PW
1189 * Return a high guess at the load of a migration-target cpu weighted
1190 * according to the scheduling class and "nice" value.
1da177e4 1191 */
a2000572 1192static inline unsigned long target_load(int cpu, int type)
1da177e4 1193{
70b97a7f 1194 struct rq *rq = cpu_rq(cpu);
dd41f596 1195 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1196
7897986b 1197 if (type == 0)
dd41f596 1198 return total;
3b0bd9bc 1199
dd41f596 1200 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1201}
1202
1203/*
1204 * Return the average load per task on the cpu's run queue
1205 */
1206static inline unsigned long cpu_avg_load_per_task(int cpu)
1207{
70b97a7f 1208 struct rq *rq = cpu_rq(cpu);
dd41f596 1209 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1210 unsigned long n = rq->nr_running;
1211
dd41f596 1212 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1213}
1214
147cbb4b
NP
1215/*
1216 * find_idlest_group finds and returns the least busy CPU group within the
1217 * domain.
1218 */
1219static struct sched_group *
1220find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1221{
1222 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1223 unsigned long min_load = ULONG_MAX, this_load = 0;
1224 int load_idx = sd->forkexec_idx;
1225 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1226
1227 do {
1228 unsigned long load, avg_load;
1229 int local_group;
1230 int i;
1231
da5a5522
BD
1232 /* Skip over this group if it has no CPUs allowed */
1233 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1234 goto nextgroup;
1235
147cbb4b 1236 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1237
1238 /* Tally up the load of all CPUs in the group */
1239 avg_load = 0;
1240
1241 for_each_cpu_mask(i, group->cpumask) {
1242 /* Bias balancing toward cpus of our domain */
1243 if (local_group)
1244 load = source_load(i, load_idx);
1245 else
1246 load = target_load(i, load_idx);
1247
1248 avg_load += load;
1249 }
1250
1251 /* Adjust by relative CPU power of the group */
5517d86b
ED
1252 avg_load = sg_div_cpu_power(group,
1253 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1254
1255 if (local_group) {
1256 this_load = avg_load;
1257 this = group;
1258 } else if (avg_load < min_load) {
1259 min_load = avg_load;
1260 idlest = group;
1261 }
da5a5522 1262nextgroup:
147cbb4b
NP
1263 group = group->next;
1264 } while (group != sd->groups);
1265
1266 if (!idlest || 100*this_load < imbalance*min_load)
1267 return NULL;
1268 return idlest;
1269}
1270
1271/*
0feaece9 1272 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1273 */
95cdf3b7
IM
1274static int
1275find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1276{
da5a5522 1277 cpumask_t tmp;
147cbb4b
NP
1278 unsigned long load, min_load = ULONG_MAX;
1279 int idlest = -1;
1280 int i;
1281
da5a5522
BD
1282 /* Traverse only the allowed CPUs */
1283 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1284
1285 for_each_cpu_mask(i, tmp) {
2dd73a4f 1286 load = weighted_cpuload(i);
147cbb4b
NP
1287
1288 if (load < min_load || (load == min_load && i == this_cpu)) {
1289 min_load = load;
1290 idlest = i;
1291 }
1292 }
1293
1294 return idlest;
1295}
1296
476d139c
NP
1297/*
1298 * sched_balance_self: balance the current task (running on cpu) in domains
1299 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1300 * SD_BALANCE_EXEC.
1301 *
1302 * Balance, ie. select the least loaded group.
1303 *
1304 * Returns the target CPU number, or the same CPU if no balancing is needed.
1305 *
1306 * preempt must be disabled.
1307 */
1308static int sched_balance_self(int cpu, int flag)
1309{
1310 struct task_struct *t = current;
1311 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1312
c96d145e 1313 for_each_domain(cpu, tmp) {
9761eea8
IM
1314 /*
1315 * If power savings logic is enabled for a domain, stop there.
1316 */
5c45bf27
SS
1317 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1318 break;
476d139c
NP
1319 if (tmp->flags & flag)
1320 sd = tmp;
c96d145e 1321 }
476d139c
NP
1322
1323 while (sd) {
1324 cpumask_t span;
1325 struct sched_group *group;
1a848870
SS
1326 int new_cpu, weight;
1327
1328 if (!(sd->flags & flag)) {
1329 sd = sd->child;
1330 continue;
1331 }
476d139c
NP
1332
1333 span = sd->span;
1334 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1335 if (!group) {
1336 sd = sd->child;
1337 continue;
1338 }
476d139c 1339
da5a5522 1340 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1341 if (new_cpu == -1 || new_cpu == cpu) {
1342 /* Now try balancing at a lower domain level of cpu */
1343 sd = sd->child;
1344 continue;
1345 }
476d139c 1346
1a848870 1347 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1348 cpu = new_cpu;
476d139c
NP
1349 sd = NULL;
1350 weight = cpus_weight(span);
1351 for_each_domain(cpu, tmp) {
1352 if (weight <= cpus_weight(tmp->span))
1353 break;
1354 if (tmp->flags & flag)
1355 sd = tmp;
1356 }
1357 /* while loop will break here if sd == NULL */
1358 }
1359
1360 return cpu;
1361}
1362
1363#endif /* CONFIG_SMP */
1da177e4
LT
1364
1365/*
1366 * wake_idle() will wake a task on an idle cpu if task->cpu is
1367 * not idle and an idle cpu is available. The span of cpus to
1368 * search starts with cpus closest then further out as needed,
1369 * so we always favor a closer, idle cpu.
1370 *
1371 * Returns the CPU we should wake onto.
1372 */
1373#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1374static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1375{
1376 cpumask_t tmp;
1377 struct sched_domain *sd;
1378 int i;
1379
4953198b
SS
1380 /*
1381 * If it is idle, then it is the best cpu to run this task.
1382 *
1383 * This cpu is also the best, if it has more than one task already.
1384 * Siblings must be also busy(in most cases) as they didn't already
1385 * pickup the extra load from this cpu and hence we need not check
1386 * sibling runqueue info. This will avoid the checks and cache miss
1387 * penalities associated with that.
1388 */
1389 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1390 return cpu;
1391
1392 for_each_domain(cpu, sd) {
1393 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1394 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1395 for_each_cpu_mask(i, tmp) {
1396 if (idle_cpu(i))
1397 return i;
1398 }
9761eea8 1399 } else {
e0f364f4 1400 break;
9761eea8 1401 }
1da177e4
LT
1402 }
1403 return cpu;
1404}
1405#else
36c8b586 1406static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1407{
1408 return cpu;
1409}
1410#endif
1411
1412/***
1413 * try_to_wake_up - wake up a thread
1414 * @p: the to-be-woken-up thread
1415 * @state: the mask of task states that can be woken
1416 * @sync: do a synchronous wakeup?
1417 *
1418 * Put it on the run-queue if it's not already there. The "current"
1419 * thread is always on the run-queue (except when the actual
1420 * re-schedule is in progress), and as such you're allowed to do
1421 * the simpler "current->state = TASK_RUNNING" to mark yourself
1422 * runnable without the overhead of this.
1423 *
1424 * returns failure only if the task is already active.
1425 */
36c8b586 1426static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1427{
1428 int cpu, this_cpu, success = 0;
1429 unsigned long flags;
1430 long old_state;
70b97a7f 1431 struct rq *rq;
1da177e4 1432#ifdef CONFIG_SMP
7897986b 1433 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1434 unsigned long load, this_load;
1da177e4
LT
1435 int new_cpu;
1436#endif
1437
1438 rq = task_rq_lock(p, &flags);
1439 old_state = p->state;
1440 if (!(old_state & state))
1441 goto out;
1442
dd41f596 1443 if (p->se.on_rq)
1da177e4
LT
1444 goto out_running;
1445
1446 cpu = task_cpu(p);
1447 this_cpu = smp_processor_id();
1448
1449#ifdef CONFIG_SMP
1450 if (unlikely(task_running(rq, p)))
1451 goto out_activate;
1452
7897986b
NP
1453 new_cpu = cpu;
1454
1da177e4
LT
1455 schedstat_inc(rq, ttwu_cnt);
1456 if (cpu == this_cpu) {
1457 schedstat_inc(rq, ttwu_local);
7897986b
NP
1458 goto out_set_cpu;
1459 }
1460
1461 for_each_domain(this_cpu, sd) {
1462 if (cpu_isset(cpu, sd->span)) {
1463 schedstat_inc(sd, ttwu_wake_remote);
1464 this_sd = sd;
1465 break;
1da177e4
LT
1466 }
1467 }
1da177e4 1468
7897986b 1469 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1470 goto out_set_cpu;
1471
1da177e4 1472 /*
7897986b 1473 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1474 */
7897986b
NP
1475 if (this_sd) {
1476 int idx = this_sd->wake_idx;
1477 unsigned int imbalance;
1da177e4 1478
a3f21bce
NP
1479 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1480
7897986b
NP
1481 load = source_load(cpu, idx);
1482 this_load = target_load(this_cpu, idx);
1da177e4 1483
7897986b
NP
1484 new_cpu = this_cpu; /* Wake to this CPU if we can */
1485
a3f21bce
NP
1486 if (this_sd->flags & SD_WAKE_AFFINE) {
1487 unsigned long tl = this_load;
33859f7f
MOS
1488 unsigned long tl_per_task;
1489
1490 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1491
1da177e4 1492 /*
a3f21bce
NP
1493 * If sync wakeup then subtract the (maximum possible)
1494 * effect of the currently running task from the load
1495 * of the current CPU:
1da177e4 1496 */
a3f21bce 1497 if (sync)
dd41f596 1498 tl -= current->se.load.weight;
a3f21bce
NP
1499
1500 if ((tl <= load &&
2dd73a4f 1501 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1502 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1503 /*
1504 * This domain has SD_WAKE_AFFINE and
1505 * p is cache cold in this domain, and
1506 * there is no bad imbalance.
1507 */
1508 schedstat_inc(this_sd, ttwu_move_affine);
1509 goto out_set_cpu;
1510 }
1511 }
1512
1513 /*
1514 * Start passive balancing when half the imbalance_pct
1515 * limit is reached.
1516 */
1517 if (this_sd->flags & SD_WAKE_BALANCE) {
1518 if (imbalance*this_load <= 100*load) {
1519 schedstat_inc(this_sd, ttwu_move_balance);
1520 goto out_set_cpu;
1521 }
1da177e4
LT
1522 }
1523 }
1524
1525 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1526out_set_cpu:
1527 new_cpu = wake_idle(new_cpu, p);
1528 if (new_cpu != cpu) {
1529 set_task_cpu(p, new_cpu);
1530 task_rq_unlock(rq, &flags);
1531 /* might preempt at this point */
1532 rq = task_rq_lock(p, &flags);
1533 old_state = p->state;
1534 if (!(old_state & state))
1535 goto out;
dd41f596 1536 if (p->se.on_rq)
1da177e4
LT
1537 goto out_running;
1538
1539 this_cpu = smp_processor_id();
1540 cpu = task_cpu(p);
1541 }
1542
1543out_activate:
1544#endif /* CONFIG_SMP */
2daa3577 1545 update_rq_clock(rq);
dd41f596 1546 activate_task(rq, p, 1);
1da177e4
LT
1547 /*
1548 * Sync wakeups (i.e. those types of wakeups where the waker
1549 * has indicated that it will leave the CPU in short order)
1550 * don't trigger a preemption, if the woken up task will run on
1551 * this cpu. (in this case the 'I will reschedule' promise of
1552 * the waker guarantees that the freshly woken up task is going
1553 * to be considered on this CPU.)
1554 */
dd41f596
IM
1555 if (!sync || cpu != this_cpu)
1556 check_preempt_curr(rq, p);
1da177e4
LT
1557 success = 1;
1558
1559out_running:
1560 p->state = TASK_RUNNING;
1561out:
1562 task_rq_unlock(rq, &flags);
1563
1564 return success;
1565}
1566
36c8b586 1567int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1568{
1569 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1570 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1571}
1da177e4
LT
1572EXPORT_SYMBOL(wake_up_process);
1573
36c8b586 1574int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1575{
1576 return try_to_wake_up(p, state, 0);
1577}
1578
1da177e4
LT
1579/*
1580 * Perform scheduler related setup for a newly forked process p.
1581 * p is forked by current.
dd41f596
IM
1582 *
1583 * __sched_fork() is basic setup used by init_idle() too:
1584 */
1585static void __sched_fork(struct task_struct *p)
1586{
1587 p->se.wait_start_fair = 0;
dd41f596
IM
1588 p->se.exec_start = 0;
1589 p->se.sum_exec_runtime = 0;
f6cf891c 1590 p->se.prev_sum_exec_runtime = 0;
dd41f596
IM
1591 p->se.delta_exec = 0;
1592 p->se.delta_fair_run = 0;
1593 p->se.delta_fair_sleep = 0;
1594 p->se.wait_runtime = 0;
6cfb0d5d
IM
1595 p->se.sleep_start_fair = 0;
1596
1597#ifdef CONFIG_SCHEDSTATS
1598 p->se.wait_start = 0;
dd41f596
IM
1599 p->se.sum_wait_runtime = 0;
1600 p->se.sum_sleep_runtime = 0;
1601 p->se.sleep_start = 0;
dd41f596
IM
1602 p->se.block_start = 0;
1603 p->se.sleep_max = 0;
1604 p->se.block_max = 0;
1605 p->se.exec_max = 0;
1606 p->se.wait_max = 0;
1607 p->se.wait_runtime_overruns = 0;
1608 p->se.wait_runtime_underruns = 0;
6cfb0d5d 1609#endif
476d139c 1610
dd41f596
IM
1611 INIT_LIST_HEAD(&p->run_list);
1612 p->se.on_rq = 0;
476d139c 1613
e107be36
AK
1614#ifdef CONFIG_PREEMPT_NOTIFIERS
1615 INIT_HLIST_HEAD(&p->preempt_notifiers);
1616#endif
1617
1da177e4
LT
1618 /*
1619 * We mark the process as running here, but have not actually
1620 * inserted it onto the runqueue yet. This guarantees that
1621 * nobody will actually run it, and a signal or other external
1622 * event cannot wake it up and insert it on the runqueue either.
1623 */
1624 p->state = TASK_RUNNING;
dd41f596
IM
1625}
1626
1627/*
1628 * fork()/clone()-time setup:
1629 */
1630void sched_fork(struct task_struct *p, int clone_flags)
1631{
1632 int cpu = get_cpu();
1633
1634 __sched_fork(p);
1635
1636#ifdef CONFIG_SMP
1637 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1638#endif
1639 __set_task_cpu(p, cpu);
b29739f9
IM
1640
1641 /*
1642 * Make sure we do not leak PI boosting priority to the child:
1643 */
1644 p->prio = current->normal_prio;
1645
52f17b6c 1646#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1647 if (likely(sched_info_on()))
52f17b6c 1648 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1649#endif
d6077cb8 1650#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1651 p->oncpu = 0;
1652#endif
1da177e4 1653#ifdef CONFIG_PREEMPT
4866cde0 1654 /* Want to start with kernel preemption disabled. */
a1261f54 1655 task_thread_info(p)->preempt_count = 1;
1da177e4 1656#endif
476d139c 1657 put_cpu();
1da177e4
LT
1658}
1659
dd41f596
IM
1660/*
1661 * After fork, child runs first. (default) If set to 0 then
1662 * parent will (try to) run first.
1663 */
1664unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1665
1da177e4
LT
1666/*
1667 * wake_up_new_task - wake up a newly created task for the first time.
1668 *
1669 * This function will do some initial scheduler statistics housekeeping
1670 * that must be done for every newly created context, then puts the task
1671 * on the runqueue and wakes it.
1672 */
36c8b586 1673void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1674{
1675 unsigned long flags;
dd41f596
IM
1676 struct rq *rq;
1677 int this_cpu;
1da177e4
LT
1678
1679 rq = task_rq_lock(p, &flags);
147cbb4b 1680 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1681 this_cpu = smp_processor_id(); /* parent's CPU */
a8e504d2 1682 update_rq_clock(rq);
1da177e4
LT
1683
1684 p->prio = effective_prio(p);
1685
9c95e731
HS
1686 if (rt_prio(p->prio))
1687 p->sched_class = &rt_sched_class;
1688 else
1689 p->sched_class = &fair_sched_class;
1690
44142fac
IM
1691 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1692 !current->se.on_rq) {
dd41f596 1693 activate_task(rq, p, 0);
1da177e4 1694 } else {
1da177e4 1695 /*
dd41f596
IM
1696 * Let the scheduling class do new task startup
1697 * management (if any):
1da177e4 1698 */
ee0827d8 1699 p->sched_class->task_new(rq, p);
e5fa2237 1700 inc_nr_running(p, rq);
1da177e4 1701 }
dd41f596
IM
1702 check_preempt_curr(rq, p);
1703 task_rq_unlock(rq, &flags);
1da177e4
LT
1704}
1705
e107be36
AK
1706#ifdef CONFIG_PREEMPT_NOTIFIERS
1707
1708/**
421cee29
RD
1709 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1710 * @notifier: notifier struct to register
e107be36
AK
1711 */
1712void preempt_notifier_register(struct preempt_notifier *notifier)
1713{
1714 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1715}
1716EXPORT_SYMBOL_GPL(preempt_notifier_register);
1717
1718/**
1719 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1720 * @notifier: notifier struct to unregister
e107be36
AK
1721 *
1722 * This is safe to call from within a preemption notifier.
1723 */
1724void preempt_notifier_unregister(struct preempt_notifier *notifier)
1725{
1726 hlist_del(&notifier->link);
1727}
1728EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1729
1730static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1731{
1732 struct preempt_notifier *notifier;
1733 struct hlist_node *node;
1734
1735 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1736 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1737}
1738
1739static void
1740fire_sched_out_preempt_notifiers(struct task_struct *curr,
1741 struct task_struct *next)
1742{
1743 struct preempt_notifier *notifier;
1744 struct hlist_node *node;
1745
1746 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1747 notifier->ops->sched_out(notifier, next);
1748}
1749
1750#else
1751
1752static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1753{
1754}
1755
1756static void
1757fire_sched_out_preempt_notifiers(struct task_struct *curr,
1758 struct task_struct *next)
1759{
1760}
1761
1762#endif
1763
4866cde0
NP
1764/**
1765 * prepare_task_switch - prepare to switch tasks
1766 * @rq: the runqueue preparing to switch
421cee29 1767 * @prev: the current task that is being switched out
4866cde0
NP
1768 * @next: the task we are going to switch to.
1769 *
1770 * This is called with the rq lock held and interrupts off. It must
1771 * be paired with a subsequent finish_task_switch after the context
1772 * switch.
1773 *
1774 * prepare_task_switch sets up locking and calls architecture specific
1775 * hooks.
1776 */
e107be36
AK
1777static inline void
1778prepare_task_switch(struct rq *rq, struct task_struct *prev,
1779 struct task_struct *next)
4866cde0 1780{
e107be36 1781 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1782 prepare_lock_switch(rq, next);
1783 prepare_arch_switch(next);
1784}
1785
1da177e4
LT
1786/**
1787 * finish_task_switch - clean up after a task-switch
344babaa 1788 * @rq: runqueue associated with task-switch
1da177e4
LT
1789 * @prev: the thread we just switched away from.
1790 *
4866cde0
NP
1791 * finish_task_switch must be called after the context switch, paired
1792 * with a prepare_task_switch call before the context switch.
1793 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1794 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1795 *
1796 * Note that we may have delayed dropping an mm in context_switch(). If
1797 * so, we finish that here outside of the runqueue lock. (Doing it
1798 * with the lock held can cause deadlocks; see schedule() for
1799 * details.)
1800 */
70b97a7f 1801static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1802 __releases(rq->lock)
1803{
1da177e4 1804 struct mm_struct *mm = rq->prev_mm;
55a101f8 1805 long prev_state;
1da177e4
LT
1806
1807 rq->prev_mm = NULL;
1808
1809 /*
1810 * A task struct has one reference for the use as "current".
c394cc9f 1811 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1812 * schedule one last time. The schedule call will never return, and
1813 * the scheduled task must drop that reference.
c394cc9f 1814 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1815 * still held, otherwise prev could be scheduled on another cpu, die
1816 * there before we look at prev->state, and then the reference would
1817 * be dropped twice.
1818 * Manfred Spraul <manfred@colorfullife.com>
1819 */
55a101f8 1820 prev_state = prev->state;
4866cde0
NP
1821 finish_arch_switch(prev);
1822 finish_lock_switch(rq, prev);
e107be36 1823 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1824 if (mm)
1825 mmdrop(mm);
c394cc9f 1826 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1827 /*
1828 * Remove function-return probe instances associated with this
1829 * task and put them back on the free list.
9761eea8 1830 */
c6fd91f0 1831 kprobe_flush_task(prev);
1da177e4 1832 put_task_struct(prev);
c6fd91f0 1833 }
1da177e4
LT
1834}
1835
1836/**
1837 * schedule_tail - first thing a freshly forked thread must call.
1838 * @prev: the thread we just switched away from.
1839 */
36c8b586 1840asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1841 __releases(rq->lock)
1842{
70b97a7f
IM
1843 struct rq *rq = this_rq();
1844
4866cde0
NP
1845 finish_task_switch(rq, prev);
1846#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1847 /* In this case, finish_task_switch does not reenable preemption */
1848 preempt_enable();
1849#endif
1da177e4
LT
1850 if (current->set_child_tid)
1851 put_user(current->pid, current->set_child_tid);
1852}
1853
1854/*
1855 * context_switch - switch to the new MM and the new
1856 * thread's register state.
1857 */
dd41f596 1858static inline void
70b97a7f 1859context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1860 struct task_struct *next)
1da177e4 1861{
dd41f596 1862 struct mm_struct *mm, *oldmm;
1da177e4 1863
e107be36 1864 prepare_task_switch(rq, prev, next);
dd41f596
IM
1865 mm = next->mm;
1866 oldmm = prev->active_mm;
9226d125
ZA
1867 /*
1868 * For paravirt, this is coupled with an exit in switch_to to
1869 * combine the page table reload and the switch backend into
1870 * one hypercall.
1871 */
1872 arch_enter_lazy_cpu_mode();
1873
dd41f596 1874 if (unlikely(!mm)) {
1da177e4
LT
1875 next->active_mm = oldmm;
1876 atomic_inc(&oldmm->mm_count);
1877 enter_lazy_tlb(oldmm, next);
1878 } else
1879 switch_mm(oldmm, mm, next);
1880
dd41f596 1881 if (unlikely(!prev->mm)) {
1da177e4 1882 prev->active_mm = NULL;
1da177e4
LT
1883 rq->prev_mm = oldmm;
1884 }
3a5f5e48
IM
1885 /*
1886 * Since the runqueue lock will be released by the next
1887 * task (which is an invalid locking op but in the case
1888 * of the scheduler it's an obvious special-case), so we
1889 * do an early lockdep release here:
1890 */
1891#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1892 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1893#endif
1da177e4
LT
1894
1895 /* Here we just switch the register state and the stack. */
1896 switch_to(prev, next, prev);
1897
dd41f596
IM
1898 barrier();
1899 /*
1900 * this_rq must be evaluated again because prev may have moved
1901 * CPUs since it called schedule(), thus the 'rq' on its stack
1902 * frame will be invalid.
1903 */
1904 finish_task_switch(this_rq(), prev);
1da177e4
LT
1905}
1906
1907/*
1908 * nr_running, nr_uninterruptible and nr_context_switches:
1909 *
1910 * externally visible scheduler statistics: current number of runnable
1911 * threads, current number of uninterruptible-sleeping threads, total
1912 * number of context switches performed since bootup.
1913 */
1914unsigned long nr_running(void)
1915{
1916 unsigned long i, sum = 0;
1917
1918 for_each_online_cpu(i)
1919 sum += cpu_rq(i)->nr_running;
1920
1921 return sum;
1922}
1923
1924unsigned long nr_uninterruptible(void)
1925{
1926 unsigned long i, sum = 0;
1927
0a945022 1928 for_each_possible_cpu(i)
1da177e4
LT
1929 sum += cpu_rq(i)->nr_uninterruptible;
1930
1931 /*
1932 * Since we read the counters lockless, it might be slightly
1933 * inaccurate. Do not allow it to go below zero though:
1934 */
1935 if (unlikely((long)sum < 0))
1936 sum = 0;
1937
1938 return sum;
1939}
1940
1941unsigned long long nr_context_switches(void)
1942{
cc94abfc
SR
1943 int i;
1944 unsigned long long sum = 0;
1da177e4 1945
0a945022 1946 for_each_possible_cpu(i)
1da177e4
LT
1947 sum += cpu_rq(i)->nr_switches;
1948
1949 return sum;
1950}
1951
1952unsigned long nr_iowait(void)
1953{
1954 unsigned long i, sum = 0;
1955
0a945022 1956 for_each_possible_cpu(i)
1da177e4
LT
1957 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1958
1959 return sum;
1960}
1961
db1b1fef
JS
1962unsigned long nr_active(void)
1963{
1964 unsigned long i, running = 0, uninterruptible = 0;
1965
1966 for_each_online_cpu(i) {
1967 running += cpu_rq(i)->nr_running;
1968 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1969 }
1970
1971 if (unlikely((long)uninterruptible < 0))
1972 uninterruptible = 0;
1973
1974 return running + uninterruptible;
1975}
1976
48f24c4d 1977/*
dd41f596
IM
1978 * Update rq->cpu_load[] statistics. This function is usually called every
1979 * scheduler tick (TICK_NSEC).
48f24c4d 1980 */
dd41f596 1981static void update_cpu_load(struct rq *this_rq)
48f24c4d 1982{
dd41f596
IM
1983 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1984 unsigned long total_load = this_rq->ls.load.weight;
1985 unsigned long this_load = total_load;
1986 struct load_stat *ls = &this_rq->ls;
dd41f596
IM
1987 int i, scale;
1988
1989 this_rq->nr_load_updates++;
1990 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1991 goto do_avg;
1992
1993 /* Update delta_fair/delta_exec fields first */
84a1d7a2 1994 update_curr_load(this_rq);
dd41f596
IM
1995
1996 fair_delta64 = ls->delta_fair + 1;
1997 ls->delta_fair = 0;
1998
1999 exec_delta64 = ls->delta_exec + 1;
2000 ls->delta_exec = 0;
2001
d281918d
IM
2002 sample_interval64 = this_rq->clock - ls->load_update_last;
2003 ls->load_update_last = this_rq->clock;
dd41f596
IM
2004
2005 if ((s64)sample_interval64 < (s64)TICK_NSEC)
2006 sample_interval64 = TICK_NSEC;
2007
2008 if (exec_delta64 > sample_interval64)
2009 exec_delta64 = sample_interval64;
2010
2011 idle_delta64 = sample_interval64 - exec_delta64;
2012
2013 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
2014 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
2015
2016 this_load = (unsigned long)tmp64;
2017
2018do_avg:
2019
2020 /* Update our load: */
2021 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2022 unsigned long old_load, new_load;
2023
2024 /* scale is effectively 1 << i now, and >> i divides by scale */
2025
2026 old_load = this_rq->cpu_load[i];
2027 new_load = this_load;
2028
2029 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2030 }
48f24c4d
IM
2031}
2032
dd41f596
IM
2033#ifdef CONFIG_SMP
2034
1da177e4
LT
2035/*
2036 * double_rq_lock - safely lock two runqueues
2037 *
2038 * Note this does not disable interrupts like task_rq_lock,
2039 * you need to do so manually before calling.
2040 */
70b97a7f 2041static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2042 __acquires(rq1->lock)
2043 __acquires(rq2->lock)
2044{
054b9108 2045 BUG_ON(!irqs_disabled());
1da177e4
LT
2046 if (rq1 == rq2) {
2047 spin_lock(&rq1->lock);
2048 __acquire(rq2->lock); /* Fake it out ;) */
2049 } else {
c96d145e 2050 if (rq1 < rq2) {
1da177e4
LT
2051 spin_lock(&rq1->lock);
2052 spin_lock(&rq2->lock);
2053 } else {
2054 spin_lock(&rq2->lock);
2055 spin_lock(&rq1->lock);
2056 }
2057 }
6e82a3be
IM
2058 update_rq_clock(rq1);
2059 update_rq_clock(rq2);
1da177e4
LT
2060}
2061
2062/*
2063 * double_rq_unlock - safely unlock two runqueues
2064 *
2065 * Note this does not restore interrupts like task_rq_unlock,
2066 * you need to do so manually after calling.
2067 */
70b97a7f 2068static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2069 __releases(rq1->lock)
2070 __releases(rq2->lock)
2071{
2072 spin_unlock(&rq1->lock);
2073 if (rq1 != rq2)
2074 spin_unlock(&rq2->lock);
2075 else
2076 __release(rq2->lock);
2077}
2078
2079/*
2080 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2081 */
70b97a7f 2082static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2083 __releases(this_rq->lock)
2084 __acquires(busiest->lock)
2085 __acquires(this_rq->lock)
2086{
054b9108
KK
2087 if (unlikely(!irqs_disabled())) {
2088 /* printk() doesn't work good under rq->lock */
2089 spin_unlock(&this_rq->lock);
2090 BUG_ON(1);
2091 }
1da177e4 2092 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2093 if (busiest < this_rq) {
1da177e4
LT
2094 spin_unlock(&this_rq->lock);
2095 spin_lock(&busiest->lock);
2096 spin_lock(&this_rq->lock);
2097 } else
2098 spin_lock(&busiest->lock);
2099 }
2100}
2101
1da177e4
LT
2102/*
2103 * If dest_cpu is allowed for this process, migrate the task to it.
2104 * This is accomplished by forcing the cpu_allowed mask to only
2105 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2106 * the cpu_allowed mask is restored.
2107 */
36c8b586 2108static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2109{
70b97a7f 2110 struct migration_req req;
1da177e4 2111 unsigned long flags;
70b97a7f 2112 struct rq *rq;
1da177e4
LT
2113
2114 rq = task_rq_lock(p, &flags);
2115 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2116 || unlikely(cpu_is_offline(dest_cpu)))
2117 goto out;
2118
2119 /* force the process onto the specified CPU */
2120 if (migrate_task(p, dest_cpu, &req)) {
2121 /* Need to wait for migration thread (might exit: take ref). */
2122 struct task_struct *mt = rq->migration_thread;
36c8b586 2123
1da177e4
LT
2124 get_task_struct(mt);
2125 task_rq_unlock(rq, &flags);
2126 wake_up_process(mt);
2127 put_task_struct(mt);
2128 wait_for_completion(&req.done);
36c8b586 2129
1da177e4
LT
2130 return;
2131 }
2132out:
2133 task_rq_unlock(rq, &flags);
2134}
2135
2136/*
476d139c
NP
2137 * sched_exec - execve() is a valuable balancing opportunity, because at
2138 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2139 */
2140void sched_exec(void)
2141{
1da177e4 2142 int new_cpu, this_cpu = get_cpu();
476d139c 2143 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2144 put_cpu();
476d139c
NP
2145 if (new_cpu != this_cpu)
2146 sched_migrate_task(current, new_cpu);
1da177e4
LT
2147}
2148
2149/*
2150 * pull_task - move a task from a remote runqueue to the local runqueue.
2151 * Both runqueues must be locked.
2152 */
dd41f596
IM
2153static void pull_task(struct rq *src_rq, struct task_struct *p,
2154 struct rq *this_rq, int this_cpu)
1da177e4 2155{
2e1cb74a 2156 deactivate_task(src_rq, p, 0);
1da177e4 2157 set_task_cpu(p, this_cpu);
dd41f596 2158 activate_task(this_rq, p, 0);
1da177e4
LT
2159 /*
2160 * Note that idle threads have a prio of MAX_PRIO, for this test
2161 * to be always true for them.
2162 */
dd41f596 2163 check_preempt_curr(this_rq, p);
1da177e4
LT
2164}
2165
2166/*
2167 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2168 */
858119e1 2169static
70b97a7f 2170int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2171 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2172 int *all_pinned)
1da177e4
LT
2173{
2174 /*
2175 * We do not migrate tasks that are:
2176 * 1) running (obviously), or
2177 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2178 * 3) are cache-hot on their current CPU.
2179 */
1da177e4
LT
2180 if (!cpu_isset(this_cpu, p->cpus_allowed))
2181 return 0;
81026794
NP
2182 *all_pinned = 0;
2183
2184 if (task_running(rq, p))
2185 return 0;
1da177e4 2186
1da177e4
LT
2187 return 1;
2188}
2189
dd41f596 2190static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2191 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2192 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2193 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2194 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2195{
dd41f596
IM
2196 int pulled = 0, pinned = 0, skip_for_load;
2197 struct task_struct *p;
2198 long rem_load_move = max_load_move;
1da177e4 2199
2dd73a4f 2200 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2201 goto out;
2202
81026794
NP
2203 pinned = 1;
2204
1da177e4 2205 /*
dd41f596 2206 * Start the load-balancing iterator:
1da177e4 2207 */
dd41f596
IM
2208 p = iterator->start(iterator->arg);
2209next:
2210 if (!p)
1da177e4 2211 goto out;
50ddd969
PW
2212 /*
2213 * To help distribute high priority tasks accross CPUs we don't
2214 * skip a task if it will be the highest priority task (i.e. smallest
2215 * prio value) on its new queue regardless of its load weight
2216 */
dd41f596
IM
2217 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2218 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2219 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2220 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2221 p = iterator->next(iterator->arg);
2222 goto next;
1da177e4
LT
2223 }
2224
dd41f596 2225 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2226 pulled++;
dd41f596 2227 rem_load_move -= p->se.load.weight;
1da177e4 2228
2dd73a4f
PW
2229 /*
2230 * We only want to steal up to the prescribed number of tasks
2231 * and the prescribed amount of weighted load.
2232 */
2233 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2234 if (p->prio < *this_best_prio)
2235 *this_best_prio = p->prio;
dd41f596
IM
2236 p = iterator->next(iterator->arg);
2237 goto next;
1da177e4
LT
2238 }
2239out:
2240 /*
2241 * Right now, this is the only place pull_task() is called,
2242 * so we can safely collect pull_task() stats here rather than
2243 * inside pull_task().
2244 */
2245 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2246
2247 if (all_pinned)
2248 *all_pinned = pinned;
dd41f596 2249 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2250 return pulled;
2251}
2252
dd41f596 2253/*
43010659
PW
2254 * move_tasks tries to move up to max_load_move weighted load from busiest to
2255 * this_rq, as part of a balancing operation within domain "sd".
2256 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2257 *
2258 * Called with both runqueues locked.
2259 */
2260static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2261 unsigned long max_load_move,
dd41f596
IM
2262 struct sched_domain *sd, enum cpu_idle_type idle,
2263 int *all_pinned)
2264{
2265 struct sched_class *class = sched_class_highest;
43010659 2266 unsigned long total_load_moved = 0;
a4ac01c3 2267 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2268
2269 do {
43010659
PW
2270 total_load_moved +=
2271 class->load_balance(this_rq, this_cpu, busiest,
2272 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2273 sd, idle, all_pinned, &this_best_prio);
dd41f596 2274 class = class->next;
43010659 2275 } while (class && max_load_move > total_load_moved);
dd41f596 2276
43010659
PW
2277 return total_load_moved > 0;
2278}
2279
2280/*
2281 * move_one_task tries to move exactly one task from busiest to this_rq, as
2282 * part of active balancing operations within "domain".
2283 * Returns 1 if successful and 0 otherwise.
2284 *
2285 * Called with both runqueues locked.
2286 */
2287static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2288 struct sched_domain *sd, enum cpu_idle_type idle)
2289{
2290 struct sched_class *class;
a4ac01c3 2291 int this_best_prio = MAX_PRIO;
43010659
PW
2292
2293 for (class = sched_class_highest; class; class = class->next)
2294 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2295 1, ULONG_MAX, sd, idle, NULL,
2296 &this_best_prio))
43010659
PW
2297 return 1;
2298
2299 return 0;
dd41f596
IM
2300}
2301
1da177e4
LT
2302/*
2303 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2304 * domain. It calculates and returns the amount of weighted load which
2305 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2306 */
2307static struct sched_group *
2308find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2309 unsigned long *imbalance, enum cpu_idle_type idle,
2310 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2311{
2312 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2313 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2314 unsigned long max_pull;
2dd73a4f
PW
2315 unsigned long busiest_load_per_task, busiest_nr_running;
2316 unsigned long this_load_per_task, this_nr_running;
7897986b 2317 int load_idx;
5c45bf27
SS
2318#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2319 int power_savings_balance = 1;
2320 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2321 unsigned long min_nr_running = ULONG_MAX;
2322 struct sched_group *group_min = NULL, *group_leader = NULL;
2323#endif
1da177e4
LT
2324
2325 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2326 busiest_load_per_task = busiest_nr_running = 0;
2327 this_load_per_task = this_nr_running = 0;
d15bcfdb 2328 if (idle == CPU_NOT_IDLE)
7897986b 2329 load_idx = sd->busy_idx;
d15bcfdb 2330 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2331 load_idx = sd->newidle_idx;
2332 else
2333 load_idx = sd->idle_idx;
1da177e4
LT
2334
2335 do {
5c45bf27 2336 unsigned long load, group_capacity;
1da177e4
LT
2337 int local_group;
2338 int i;
783609c6 2339 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2340 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2341
2342 local_group = cpu_isset(this_cpu, group->cpumask);
2343
783609c6
SS
2344 if (local_group)
2345 balance_cpu = first_cpu(group->cpumask);
2346
1da177e4 2347 /* Tally up the load of all CPUs in the group */
2dd73a4f 2348 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2349
2350 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2351 struct rq *rq;
2352
2353 if (!cpu_isset(i, *cpus))
2354 continue;
2355
2356 rq = cpu_rq(i);
2dd73a4f 2357
9439aab8 2358 if (*sd_idle && rq->nr_running)
5969fe06
NP
2359 *sd_idle = 0;
2360
1da177e4 2361 /* Bias balancing toward cpus of our domain */
783609c6
SS
2362 if (local_group) {
2363 if (idle_cpu(i) && !first_idle_cpu) {
2364 first_idle_cpu = 1;
2365 balance_cpu = i;
2366 }
2367
a2000572 2368 load = target_load(i, load_idx);
783609c6 2369 } else
a2000572 2370 load = source_load(i, load_idx);
1da177e4
LT
2371
2372 avg_load += load;
2dd73a4f 2373 sum_nr_running += rq->nr_running;
dd41f596 2374 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2375 }
2376
783609c6
SS
2377 /*
2378 * First idle cpu or the first cpu(busiest) in this sched group
2379 * is eligible for doing load balancing at this and above
9439aab8
SS
2380 * domains. In the newly idle case, we will allow all the cpu's
2381 * to do the newly idle load balance.
783609c6 2382 */
9439aab8
SS
2383 if (idle != CPU_NEWLY_IDLE && local_group &&
2384 balance_cpu != this_cpu && balance) {
783609c6
SS
2385 *balance = 0;
2386 goto ret;
2387 }
2388
1da177e4 2389 total_load += avg_load;
5517d86b 2390 total_pwr += group->__cpu_power;
1da177e4
LT
2391
2392 /* Adjust by relative CPU power of the group */
5517d86b
ED
2393 avg_load = sg_div_cpu_power(group,
2394 avg_load * SCHED_LOAD_SCALE);
1da177e4 2395
5517d86b 2396 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2397
1da177e4
LT
2398 if (local_group) {
2399 this_load = avg_load;
2400 this = group;
2dd73a4f
PW
2401 this_nr_running = sum_nr_running;
2402 this_load_per_task = sum_weighted_load;
2403 } else if (avg_load > max_load &&
5c45bf27 2404 sum_nr_running > group_capacity) {
1da177e4
LT
2405 max_load = avg_load;
2406 busiest = group;
2dd73a4f
PW
2407 busiest_nr_running = sum_nr_running;
2408 busiest_load_per_task = sum_weighted_load;
1da177e4 2409 }
5c45bf27
SS
2410
2411#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2412 /*
2413 * Busy processors will not participate in power savings
2414 * balance.
2415 */
dd41f596
IM
2416 if (idle == CPU_NOT_IDLE ||
2417 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2418 goto group_next;
5c45bf27
SS
2419
2420 /*
2421 * If the local group is idle or completely loaded
2422 * no need to do power savings balance at this domain
2423 */
2424 if (local_group && (this_nr_running >= group_capacity ||
2425 !this_nr_running))
2426 power_savings_balance = 0;
2427
dd41f596 2428 /*
5c45bf27
SS
2429 * If a group is already running at full capacity or idle,
2430 * don't include that group in power savings calculations
dd41f596
IM
2431 */
2432 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2433 || !sum_nr_running)
dd41f596 2434 goto group_next;
5c45bf27 2435
dd41f596 2436 /*
5c45bf27 2437 * Calculate the group which has the least non-idle load.
dd41f596
IM
2438 * This is the group from where we need to pick up the load
2439 * for saving power
2440 */
2441 if ((sum_nr_running < min_nr_running) ||
2442 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2443 first_cpu(group->cpumask) <
2444 first_cpu(group_min->cpumask))) {
dd41f596
IM
2445 group_min = group;
2446 min_nr_running = sum_nr_running;
5c45bf27
SS
2447 min_load_per_task = sum_weighted_load /
2448 sum_nr_running;
dd41f596 2449 }
5c45bf27 2450
dd41f596 2451 /*
5c45bf27 2452 * Calculate the group which is almost near its
dd41f596
IM
2453 * capacity but still has some space to pick up some load
2454 * from other group and save more power
2455 */
2456 if (sum_nr_running <= group_capacity - 1) {
2457 if (sum_nr_running > leader_nr_running ||
2458 (sum_nr_running == leader_nr_running &&
2459 first_cpu(group->cpumask) >
2460 first_cpu(group_leader->cpumask))) {
2461 group_leader = group;
2462 leader_nr_running = sum_nr_running;
2463 }
48f24c4d 2464 }
5c45bf27
SS
2465group_next:
2466#endif
1da177e4
LT
2467 group = group->next;
2468 } while (group != sd->groups);
2469
2dd73a4f 2470 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2471 goto out_balanced;
2472
2473 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2474
2475 if (this_load >= avg_load ||
2476 100*max_load <= sd->imbalance_pct*this_load)
2477 goto out_balanced;
2478
2dd73a4f 2479 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2480 /*
2481 * We're trying to get all the cpus to the average_load, so we don't
2482 * want to push ourselves above the average load, nor do we wish to
2483 * reduce the max loaded cpu below the average load, as either of these
2484 * actions would just result in more rebalancing later, and ping-pong
2485 * tasks around. Thus we look for the minimum possible imbalance.
2486 * Negative imbalances (*we* are more loaded than anyone else) will
2487 * be counted as no imbalance for these purposes -- we can't fix that
2488 * by pulling tasks to us. Be careful of negative numbers as they'll
2489 * appear as very large values with unsigned longs.
2490 */
2dd73a4f
PW
2491 if (max_load <= busiest_load_per_task)
2492 goto out_balanced;
2493
2494 /*
2495 * In the presence of smp nice balancing, certain scenarios can have
2496 * max load less than avg load(as we skip the groups at or below
2497 * its cpu_power, while calculating max_load..)
2498 */
2499 if (max_load < avg_load) {
2500 *imbalance = 0;
2501 goto small_imbalance;
2502 }
0c117f1b
SS
2503
2504 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2505 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2506
1da177e4 2507 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2508 *imbalance = min(max_pull * busiest->__cpu_power,
2509 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2510 / SCHED_LOAD_SCALE;
2511
2dd73a4f
PW
2512 /*
2513 * if *imbalance is less than the average load per runnable task
2514 * there is no gaurantee that any tasks will be moved so we'll have
2515 * a think about bumping its value to force at least one task to be
2516 * moved
2517 */
7fd0d2dd 2518 if (*imbalance < busiest_load_per_task) {
48f24c4d 2519 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2520 unsigned int imbn;
2521
2522small_imbalance:
2523 pwr_move = pwr_now = 0;
2524 imbn = 2;
2525 if (this_nr_running) {
2526 this_load_per_task /= this_nr_running;
2527 if (busiest_load_per_task > this_load_per_task)
2528 imbn = 1;
2529 } else
2530 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2531
dd41f596
IM
2532 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2533 busiest_load_per_task * imbn) {
2dd73a4f 2534 *imbalance = busiest_load_per_task;
1da177e4
LT
2535 return busiest;
2536 }
2537
2538 /*
2539 * OK, we don't have enough imbalance to justify moving tasks,
2540 * however we may be able to increase total CPU power used by
2541 * moving them.
2542 */
2543
5517d86b
ED
2544 pwr_now += busiest->__cpu_power *
2545 min(busiest_load_per_task, max_load);
2546 pwr_now += this->__cpu_power *
2547 min(this_load_per_task, this_load);
1da177e4
LT
2548 pwr_now /= SCHED_LOAD_SCALE;
2549
2550 /* Amount of load we'd subtract */
5517d86b
ED
2551 tmp = sg_div_cpu_power(busiest,
2552 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2553 if (max_load > tmp)
5517d86b 2554 pwr_move += busiest->__cpu_power *
2dd73a4f 2555 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2556
2557 /* Amount of load we'd add */
5517d86b 2558 if (max_load * busiest->__cpu_power <
33859f7f 2559 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2560 tmp = sg_div_cpu_power(this,
2561 max_load * busiest->__cpu_power);
1da177e4 2562 else
5517d86b
ED
2563 tmp = sg_div_cpu_power(this,
2564 busiest_load_per_task * SCHED_LOAD_SCALE);
2565 pwr_move += this->__cpu_power *
2566 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2567 pwr_move /= SCHED_LOAD_SCALE;
2568
2569 /* Move if we gain throughput */
7fd0d2dd
SS
2570 if (pwr_move > pwr_now)
2571 *imbalance = busiest_load_per_task;
1da177e4
LT
2572 }
2573
1da177e4
LT
2574 return busiest;
2575
2576out_balanced:
5c45bf27 2577#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2578 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2579 goto ret;
1da177e4 2580
5c45bf27
SS
2581 if (this == group_leader && group_leader != group_min) {
2582 *imbalance = min_load_per_task;
2583 return group_min;
2584 }
5c45bf27 2585#endif
783609c6 2586ret:
1da177e4
LT
2587 *imbalance = 0;
2588 return NULL;
2589}
2590
2591/*
2592 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2593 */
70b97a7f 2594static struct rq *
d15bcfdb 2595find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2596 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2597{
70b97a7f 2598 struct rq *busiest = NULL, *rq;
2dd73a4f 2599 unsigned long max_load = 0;
1da177e4
LT
2600 int i;
2601
2602 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2603 unsigned long wl;
0a2966b4
CL
2604
2605 if (!cpu_isset(i, *cpus))
2606 continue;
2607
48f24c4d 2608 rq = cpu_rq(i);
dd41f596 2609 wl = weighted_cpuload(i);
2dd73a4f 2610
dd41f596 2611 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2612 continue;
1da177e4 2613
dd41f596
IM
2614 if (wl > max_load) {
2615 max_load = wl;
48f24c4d 2616 busiest = rq;
1da177e4
LT
2617 }
2618 }
2619
2620 return busiest;
2621}
2622
77391d71
NP
2623/*
2624 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2625 * so long as it is large enough.
2626 */
2627#define MAX_PINNED_INTERVAL 512
2628
1da177e4
LT
2629/*
2630 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2631 * tasks if there is an imbalance.
1da177e4 2632 */
70b97a7f 2633static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2634 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2635 int *balance)
1da177e4 2636{
43010659 2637 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2638 struct sched_group *group;
1da177e4 2639 unsigned long imbalance;
70b97a7f 2640 struct rq *busiest;
0a2966b4 2641 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2642 unsigned long flags;
5969fe06 2643
89c4710e
SS
2644 /*
2645 * When power savings policy is enabled for the parent domain, idle
2646 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2647 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2648 * portraying it as CPU_NOT_IDLE.
89c4710e 2649 */
d15bcfdb 2650 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2651 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2652 sd_idle = 1;
1da177e4 2653
1da177e4
LT
2654 schedstat_inc(sd, lb_cnt[idle]);
2655
0a2966b4
CL
2656redo:
2657 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2658 &cpus, balance);
2659
06066714 2660 if (*balance == 0)
783609c6 2661 goto out_balanced;
783609c6 2662
1da177e4
LT
2663 if (!group) {
2664 schedstat_inc(sd, lb_nobusyg[idle]);
2665 goto out_balanced;
2666 }
2667
0a2966b4 2668 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2669 if (!busiest) {
2670 schedstat_inc(sd, lb_nobusyq[idle]);
2671 goto out_balanced;
2672 }
2673
db935dbd 2674 BUG_ON(busiest == this_rq);
1da177e4
LT
2675
2676 schedstat_add(sd, lb_imbalance[idle], imbalance);
2677
43010659 2678 ld_moved = 0;
1da177e4
LT
2679 if (busiest->nr_running > 1) {
2680 /*
2681 * Attempt to move tasks. If find_busiest_group has found
2682 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2683 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2684 * correctly treated as an imbalance.
2685 */
fe2eea3f 2686 local_irq_save(flags);
e17224bf 2687 double_rq_lock(this_rq, busiest);
43010659 2688 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2689 imbalance, sd, idle, &all_pinned);
e17224bf 2690 double_rq_unlock(this_rq, busiest);
fe2eea3f 2691 local_irq_restore(flags);
81026794 2692
46cb4b7c
SS
2693 /*
2694 * some other cpu did the load balance for us.
2695 */
43010659 2696 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2697 resched_cpu(this_cpu);
2698
81026794 2699 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2700 if (unlikely(all_pinned)) {
2701 cpu_clear(cpu_of(busiest), cpus);
2702 if (!cpus_empty(cpus))
2703 goto redo;
81026794 2704 goto out_balanced;
0a2966b4 2705 }
1da177e4 2706 }
81026794 2707
43010659 2708 if (!ld_moved) {
1da177e4
LT
2709 schedstat_inc(sd, lb_failed[idle]);
2710 sd->nr_balance_failed++;
2711
2712 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2713
fe2eea3f 2714 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2715
2716 /* don't kick the migration_thread, if the curr
2717 * task on busiest cpu can't be moved to this_cpu
2718 */
2719 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2720 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2721 all_pinned = 1;
2722 goto out_one_pinned;
2723 }
2724
1da177e4
LT
2725 if (!busiest->active_balance) {
2726 busiest->active_balance = 1;
2727 busiest->push_cpu = this_cpu;
81026794 2728 active_balance = 1;
1da177e4 2729 }
fe2eea3f 2730 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2731 if (active_balance)
1da177e4
LT
2732 wake_up_process(busiest->migration_thread);
2733
2734 /*
2735 * We've kicked active balancing, reset the failure
2736 * counter.
2737 */
39507451 2738 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2739 }
81026794 2740 } else
1da177e4
LT
2741 sd->nr_balance_failed = 0;
2742
81026794 2743 if (likely(!active_balance)) {
1da177e4
LT
2744 /* We were unbalanced, so reset the balancing interval */
2745 sd->balance_interval = sd->min_interval;
81026794
NP
2746 } else {
2747 /*
2748 * If we've begun active balancing, start to back off. This
2749 * case may not be covered by the all_pinned logic if there
2750 * is only 1 task on the busy runqueue (because we don't call
2751 * move_tasks).
2752 */
2753 if (sd->balance_interval < sd->max_interval)
2754 sd->balance_interval *= 2;
1da177e4
LT
2755 }
2756
43010659 2757 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2758 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2759 return -1;
43010659 2760 return ld_moved;
1da177e4
LT
2761
2762out_balanced:
1da177e4
LT
2763 schedstat_inc(sd, lb_balanced[idle]);
2764
16cfb1c0 2765 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2766
2767out_one_pinned:
1da177e4 2768 /* tune up the balancing interval */
77391d71
NP
2769 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2770 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2771 sd->balance_interval *= 2;
2772
48f24c4d 2773 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2774 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2775 return -1;
1da177e4
LT
2776 return 0;
2777}
2778
2779/*
2780 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2781 * tasks if there is an imbalance.
2782 *
d15bcfdb 2783 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2784 * this_rq is locked.
2785 */
48f24c4d 2786static int
70b97a7f 2787load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2788{
2789 struct sched_group *group;
70b97a7f 2790 struct rq *busiest = NULL;
1da177e4 2791 unsigned long imbalance;
43010659 2792 int ld_moved = 0;
5969fe06 2793 int sd_idle = 0;
969bb4e4 2794 int all_pinned = 0;
0a2966b4 2795 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2796
89c4710e
SS
2797 /*
2798 * When power savings policy is enabled for the parent domain, idle
2799 * sibling can pick up load irrespective of busy siblings. In this case,
2800 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2801 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2802 */
2803 if (sd->flags & SD_SHARE_CPUPOWER &&
2804 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2805 sd_idle = 1;
1da177e4 2806
d15bcfdb 2807 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2808redo:
d15bcfdb 2809 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2810 &sd_idle, &cpus, NULL);
1da177e4 2811 if (!group) {
d15bcfdb 2812 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2813 goto out_balanced;
1da177e4
LT
2814 }
2815
d15bcfdb 2816 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2817 &cpus);
db935dbd 2818 if (!busiest) {
d15bcfdb 2819 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2820 goto out_balanced;
1da177e4
LT
2821 }
2822
db935dbd
NP
2823 BUG_ON(busiest == this_rq);
2824
d15bcfdb 2825 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2826
43010659 2827 ld_moved = 0;
d6d5cfaf
NP
2828 if (busiest->nr_running > 1) {
2829 /* Attempt to move tasks */
2830 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2831 /* this_rq->clock is already updated */
2832 update_rq_clock(busiest);
43010659 2833 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2834 imbalance, sd, CPU_NEWLY_IDLE,
2835 &all_pinned);
d6d5cfaf 2836 spin_unlock(&busiest->lock);
0a2966b4 2837
969bb4e4 2838 if (unlikely(all_pinned)) {
0a2966b4
CL
2839 cpu_clear(cpu_of(busiest), cpus);
2840 if (!cpus_empty(cpus))
2841 goto redo;
2842 }
d6d5cfaf
NP
2843 }
2844
43010659 2845 if (!ld_moved) {
d15bcfdb 2846 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2847 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2848 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2849 return -1;
2850 } else
16cfb1c0 2851 sd->nr_balance_failed = 0;
1da177e4 2852
43010659 2853 return ld_moved;
16cfb1c0
NP
2854
2855out_balanced:
d15bcfdb 2856 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2857 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2858 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2859 return -1;
16cfb1c0 2860 sd->nr_balance_failed = 0;
48f24c4d 2861
16cfb1c0 2862 return 0;
1da177e4
LT
2863}
2864
2865/*
2866 * idle_balance is called by schedule() if this_cpu is about to become
2867 * idle. Attempts to pull tasks from other CPUs.
2868 */
70b97a7f 2869static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2870{
2871 struct sched_domain *sd;
dd41f596
IM
2872 int pulled_task = -1;
2873 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2874
2875 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2876 unsigned long interval;
2877
2878 if (!(sd->flags & SD_LOAD_BALANCE))
2879 continue;
2880
2881 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2882 /* If we've pulled tasks over stop searching: */
1bd77f2d 2883 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2884 this_rq, sd);
2885
2886 interval = msecs_to_jiffies(sd->balance_interval);
2887 if (time_after(next_balance, sd->last_balance + interval))
2888 next_balance = sd->last_balance + interval;
2889 if (pulled_task)
2890 break;
1da177e4 2891 }
dd41f596 2892 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2893 /*
2894 * We are going idle. next_balance may be set based on
2895 * a busy processor. So reset next_balance.
2896 */
2897 this_rq->next_balance = next_balance;
dd41f596 2898 }
1da177e4
LT
2899}
2900
2901/*
2902 * active_load_balance is run by migration threads. It pushes running tasks
2903 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2904 * running on each physical CPU where possible, and avoids physical /
2905 * logical imbalances.
2906 *
2907 * Called with busiest_rq locked.
2908 */
70b97a7f 2909static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2910{
39507451 2911 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2912 struct sched_domain *sd;
2913 struct rq *target_rq;
39507451 2914
48f24c4d 2915 /* Is there any task to move? */
39507451 2916 if (busiest_rq->nr_running <= 1)
39507451
NP
2917 return;
2918
2919 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2920
2921 /*
39507451
NP
2922 * This condition is "impossible", if it occurs
2923 * we need to fix it. Originally reported by
2924 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2925 */
39507451 2926 BUG_ON(busiest_rq == target_rq);
1da177e4 2927
39507451
NP
2928 /* move a task from busiest_rq to target_rq */
2929 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2930 update_rq_clock(busiest_rq);
2931 update_rq_clock(target_rq);
39507451
NP
2932
2933 /* Search for an sd spanning us and the target CPU. */
c96d145e 2934 for_each_domain(target_cpu, sd) {
39507451 2935 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2936 cpu_isset(busiest_cpu, sd->span))
39507451 2937 break;
c96d145e 2938 }
39507451 2939
48f24c4d
IM
2940 if (likely(sd)) {
2941 schedstat_inc(sd, alb_cnt);
39507451 2942
43010659
PW
2943 if (move_one_task(target_rq, target_cpu, busiest_rq,
2944 sd, CPU_IDLE))
48f24c4d
IM
2945 schedstat_inc(sd, alb_pushed);
2946 else
2947 schedstat_inc(sd, alb_failed);
2948 }
39507451 2949 spin_unlock(&target_rq->lock);
1da177e4
LT
2950}
2951
46cb4b7c
SS
2952#ifdef CONFIG_NO_HZ
2953static struct {
2954 atomic_t load_balancer;
2955 cpumask_t cpu_mask;
2956} nohz ____cacheline_aligned = {
2957 .load_balancer = ATOMIC_INIT(-1),
2958 .cpu_mask = CPU_MASK_NONE,
2959};
2960
7835b98b 2961/*
46cb4b7c
SS
2962 * This routine will try to nominate the ilb (idle load balancing)
2963 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2964 * load balancing on behalf of all those cpus. If all the cpus in the system
2965 * go into this tickless mode, then there will be no ilb owner (as there is
2966 * no need for one) and all the cpus will sleep till the next wakeup event
2967 * arrives...
2968 *
2969 * For the ilb owner, tick is not stopped. And this tick will be used
2970 * for idle load balancing. ilb owner will still be part of
2971 * nohz.cpu_mask..
7835b98b 2972 *
46cb4b7c
SS
2973 * While stopping the tick, this cpu will become the ilb owner if there
2974 * is no other owner. And will be the owner till that cpu becomes busy
2975 * or if all cpus in the system stop their ticks at which point
2976 * there is no need for ilb owner.
2977 *
2978 * When the ilb owner becomes busy, it nominates another owner, during the
2979 * next busy scheduler_tick()
2980 */
2981int select_nohz_load_balancer(int stop_tick)
2982{
2983 int cpu = smp_processor_id();
2984
2985 if (stop_tick) {
2986 cpu_set(cpu, nohz.cpu_mask);
2987 cpu_rq(cpu)->in_nohz_recently = 1;
2988
2989 /*
2990 * If we are going offline and still the leader, give up!
2991 */
2992 if (cpu_is_offline(cpu) &&
2993 atomic_read(&nohz.load_balancer) == cpu) {
2994 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2995 BUG();
2996 return 0;
2997 }
2998
2999 /* time for ilb owner also to sleep */
3000 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3001 if (atomic_read(&nohz.load_balancer) == cpu)
3002 atomic_set(&nohz.load_balancer, -1);
3003 return 0;
3004 }
3005
3006 if (atomic_read(&nohz.load_balancer) == -1) {
3007 /* make me the ilb owner */
3008 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3009 return 1;
3010 } else if (atomic_read(&nohz.load_balancer) == cpu)
3011 return 1;
3012 } else {
3013 if (!cpu_isset(cpu, nohz.cpu_mask))
3014 return 0;
3015
3016 cpu_clear(cpu, nohz.cpu_mask);
3017
3018 if (atomic_read(&nohz.load_balancer) == cpu)
3019 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3020 BUG();
3021 }
3022 return 0;
3023}
3024#endif
3025
3026static DEFINE_SPINLOCK(balancing);
3027
3028/*
7835b98b
CL
3029 * It checks each scheduling domain to see if it is due to be balanced,
3030 * and initiates a balancing operation if so.
3031 *
3032 * Balancing parameters are set up in arch_init_sched_domains.
3033 */
d15bcfdb 3034static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3035{
46cb4b7c
SS
3036 int balance = 1;
3037 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3038 unsigned long interval;
3039 struct sched_domain *sd;
46cb4b7c 3040 /* Earliest time when we have to do rebalance again */
c9819f45 3041 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3042 int update_next_balance = 0;
1da177e4 3043
46cb4b7c 3044 for_each_domain(cpu, sd) {
1da177e4
LT
3045 if (!(sd->flags & SD_LOAD_BALANCE))
3046 continue;
3047
3048 interval = sd->balance_interval;
d15bcfdb 3049 if (idle != CPU_IDLE)
1da177e4
LT
3050 interval *= sd->busy_factor;
3051
3052 /* scale ms to jiffies */
3053 interval = msecs_to_jiffies(interval);
3054 if (unlikely(!interval))
3055 interval = 1;
dd41f596
IM
3056 if (interval > HZ*NR_CPUS/10)
3057 interval = HZ*NR_CPUS/10;
3058
1da177e4 3059
08c183f3
CL
3060 if (sd->flags & SD_SERIALIZE) {
3061 if (!spin_trylock(&balancing))
3062 goto out;
3063 }
3064
c9819f45 3065 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3066 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3067 /*
3068 * We've pulled tasks over so either we're no
5969fe06
NP
3069 * longer idle, or one of our SMT siblings is
3070 * not idle.
3071 */
d15bcfdb 3072 idle = CPU_NOT_IDLE;
1da177e4 3073 }
1bd77f2d 3074 sd->last_balance = jiffies;
1da177e4 3075 }
08c183f3
CL
3076 if (sd->flags & SD_SERIALIZE)
3077 spin_unlock(&balancing);
3078out:
f549da84 3079 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3080 next_balance = sd->last_balance + interval;
f549da84
SS
3081 update_next_balance = 1;
3082 }
783609c6
SS
3083
3084 /*
3085 * Stop the load balance at this level. There is another
3086 * CPU in our sched group which is doing load balancing more
3087 * actively.
3088 */
3089 if (!balance)
3090 break;
1da177e4 3091 }
f549da84
SS
3092
3093 /*
3094 * next_balance will be updated only when there is a need.
3095 * When the cpu is attached to null domain for ex, it will not be
3096 * updated.
3097 */
3098 if (likely(update_next_balance))
3099 rq->next_balance = next_balance;
46cb4b7c
SS
3100}
3101
3102/*
3103 * run_rebalance_domains is triggered when needed from the scheduler tick.
3104 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3105 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3106 */
3107static void run_rebalance_domains(struct softirq_action *h)
3108{
dd41f596
IM
3109 int this_cpu = smp_processor_id();
3110 struct rq *this_rq = cpu_rq(this_cpu);
3111 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3112 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3113
dd41f596 3114 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3115
3116#ifdef CONFIG_NO_HZ
3117 /*
3118 * If this cpu is the owner for idle load balancing, then do the
3119 * balancing on behalf of the other idle cpus whose ticks are
3120 * stopped.
3121 */
dd41f596
IM
3122 if (this_rq->idle_at_tick &&
3123 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3124 cpumask_t cpus = nohz.cpu_mask;
3125 struct rq *rq;
3126 int balance_cpu;
3127
dd41f596 3128 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3129 for_each_cpu_mask(balance_cpu, cpus) {
3130 /*
3131 * If this cpu gets work to do, stop the load balancing
3132 * work being done for other cpus. Next load
3133 * balancing owner will pick it up.
3134 */
3135 if (need_resched())
3136 break;
3137
de0cf899 3138 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3139
3140 rq = cpu_rq(balance_cpu);
dd41f596
IM
3141 if (time_after(this_rq->next_balance, rq->next_balance))
3142 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3143 }
3144 }
3145#endif
3146}
3147
3148/*
3149 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3150 *
3151 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3152 * idle load balancing owner or decide to stop the periodic load balancing,
3153 * if the whole system is idle.
3154 */
dd41f596 3155static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3156{
46cb4b7c
SS
3157#ifdef CONFIG_NO_HZ
3158 /*
3159 * If we were in the nohz mode recently and busy at the current
3160 * scheduler tick, then check if we need to nominate new idle
3161 * load balancer.
3162 */
3163 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3164 rq->in_nohz_recently = 0;
3165
3166 if (atomic_read(&nohz.load_balancer) == cpu) {
3167 cpu_clear(cpu, nohz.cpu_mask);
3168 atomic_set(&nohz.load_balancer, -1);
3169 }
3170
3171 if (atomic_read(&nohz.load_balancer) == -1) {
3172 /*
3173 * simple selection for now: Nominate the
3174 * first cpu in the nohz list to be the next
3175 * ilb owner.
3176 *
3177 * TBD: Traverse the sched domains and nominate
3178 * the nearest cpu in the nohz.cpu_mask.
3179 */
3180 int ilb = first_cpu(nohz.cpu_mask);
3181
3182 if (ilb != NR_CPUS)
3183 resched_cpu(ilb);
3184 }
3185 }
3186
3187 /*
3188 * If this cpu is idle and doing idle load balancing for all the
3189 * cpus with ticks stopped, is it time for that to stop?
3190 */
3191 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3192 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3193 resched_cpu(cpu);
3194 return;
3195 }
3196
3197 /*
3198 * If this cpu is idle and the idle load balancing is done by
3199 * someone else, then no need raise the SCHED_SOFTIRQ
3200 */
3201 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3202 cpu_isset(cpu, nohz.cpu_mask))
3203 return;
3204#endif
3205 if (time_after_eq(jiffies, rq->next_balance))
3206 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3207}
dd41f596
IM
3208
3209#else /* CONFIG_SMP */
3210
1da177e4
LT
3211/*
3212 * on UP we do not need to balance between CPUs:
3213 */
70b97a7f 3214static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3215{
3216}
dd41f596
IM
3217
3218/* Avoid "used but not defined" warning on UP */
3219static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3220 unsigned long max_nr_move, unsigned long max_load_move,
3221 struct sched_domain *sd, enum cpu_idle_type idle,
3222 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3223 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3224{
3225 *load_moved = 0;
3226
3227 return 0;
3228}
3229
1da177e4
LT
3230#endif
3231
1da177e4
LT
3232DEFINE_PER_CPU(struct kernel_stat, kstat);
3233
3234EXPORT_PER_CPU_SYMBOL(kstat);
3235
3236/*
41b86e9c
IM
3237 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3238 * that have not yet been banked in case the task is currently running.
1da177e4 3239 */
41b86e9c 3240unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3241{
1da177e4 3242 unsigned long flags;
41b86e9c
IM
3243 u64 ns, delta_exec;
3244 struct rq *rq;
48f24c4d 3245
41b86e9c
IM
3246 rq = task_rq_lock(p, &flags);
3247 ns = p->se.sum_exec_runtime;
3248 if (rq->curr == p) {
a8e504d2
IM
3249 update_rq_clock(rq);
3250 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3251 if ((s64)delta_exec > 0)
3252 ns += delta_exec;
3253 }
3254 task_rq_unlock(rq, &flags);
48f24c4d 3255
1da177e4
LT
3256 return ns;
3257}
3258
1da177e4
LT
3259/*
3260 * Account user cpu time to a process.
3261 * @p: the process that the cpu time gets accounted to
3262 * @hardirq_offset: the offset to subtract from hardirq_count()
3263 * @cputime: the cpu time spent in user space since the last update
3264 */
3265void account_user_time(struct task_struct *p, cputime_t cputime)
3266{
3267 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3268 cputime64_t tmp;
3269
3270 p->utime = cputime_add(p->utime, cputime);
3271
3272 /* Add user time to cpustat. */
3273 tmp = cputime_to_cputime64(cputime);
3274 if (TASK_NICE(p) > 0)
3275 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3276 else
3277 cpustat->user = cputime64_add(cpustat->user, tmp);
3278}
3279
3280/*
3281 * Account system cpu time to a process.
3282 * @p: the process that the cpu time gets accounted to
3283 * @hardirq_offset: the offset to subtract from hardirq_count()
3284 * @cputime: the cpu time spent in kernel space since the last update
3285 */
3286void account_system_time(struct task_struct *p, int hardirq_offset,
3287 cputime_t cputime)
3288{
3289 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3290 struct rq *rq = this_rq();
1da177e4
LT
3291 cputime64_t tmp;
3292
3293 p->stime = cputime_add(p->stime, cputime);
3294
3295 /* Add system time to cpustat. */
3296 tmp = cputime_to_cputime64(cputime);
3297 if (hardirq_count() - hardirq_offset)
3298 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3299 else if (softirq_count())
3300 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3301 else if (p != rq->idle)
3302 cpustat->system = cputime64_add(cpustat->system, tmp);
3303 else if (atomic_read(&rq->nr_iowait) > 0)
3304 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3305 else
3306 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3307 /* Account for system time used */
3308 acct_update_integrals(p);
1da177e4
LT
3309}
3310
3311/*
3312 * Account for involuntary wait time.
3313 * @p: the process from which the cpu time has been stolen
3314 * @steal: the cpu time spent in involuntary wait
3315 */
3316void account_steal_time(struct task_struct *p, cputime_t steal)
3317{
3318 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3319 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3320 struct rq *rq = this_rq();
1da177e4
LT
3321
3322 if (p == rq->idle) {
3323 p->stime = cputime_add(p->stime, steal);
3324 if (atomic_read(&rq->nr_iowait) > 0)
3325 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3326 else
3327 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3328 } else
3329 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3330}
3331
7835b98b
CL
3332/*
3333 * This function gets called by the timer code, with HZ frequency.
3334 * We call it with interrupts disabled.
3335 *
3336 * It also gets called by the fork code, when changing the parent's
3337 * timeslices.
3338 */
3339void scheduler_tick(void)
3340{
7835b98b
CL
3341 int cpu = smp_processor_id();
3342 struct rq *rq = cpu_rq(cpu);
dd41f596 3343 struct task_struct *curr = rq->curr;
529c7726 3344 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3345
3346 spin_lock(&rq->lock);
546fe3c9 3347 __update_rq_clock(rq);
529c7726
IM
3348 /*
3349 * Let rq->clock advance by at least TICK_NSEC:
3350 */
3351 if (unlikely(rq->clock < next_tick))
3352 rq->clock = next_tick;
3353 rq->tick_timestamp = rq->clock;
f1a438d8 3354 update_cpu_load(rq);
dd41f596
IM
3355 if (curr != rq->idle) /* FIXME: needed? */
3356 curr->sched_class->task_tick(rq, curr);
dd41f596 3357 spin_unlock(&rq->lock);
7835b98b 3358
e418e1c2 3359#ifdef CONFIG_SMP
dd41f596
IM
3360 rq->idle_at_tick = idle_cpu(cpu);
3361 trigger_load_balance(rq, cpu);
e418e1c2 3362#endif
1da177e4
LT
3363}
3364
1da177e4
LT
3365#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3366
3367void fastcall add_preempt_count(int val)
3368{
3369 /*
3370 * Underflow?
3371 */
9a11b49a
IM
3372 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3373 return;
1da177e4
LT
3374 preempt_count() += val;
3375 /*
3376 * Spinlock count overflowing soon?
3377 */
33859f7f
MOS
3378 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3379 PREEMPT_MASK - 10);
1da177e4
LT
3380}
3381EXPORT_SYMBOL(add_preempt_count);
3382
3383void fastcall sub_preempt_count(int val)
3384{
3385 /*
3386 * Underflow?
3387 */
9a11b49a
IM
3388 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3389 return;
1da177e4
LT
3390 /*
3391 * Is the spinlock portion underflowing?
3392 */
9a11b49a
IM
3393 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3394 !(preempt_count() & PREEMPT_MASK)))
3395 return;
3396
1da177e4
LT
3397 preempt_count() -= val;
3398}
3399EXPORT_SYMBOL(sub_preempt_count);
3400
3401#endif
3402
3403/*
dd41f596 3404 * Print scheduling while atomic bug:
1da177e4 3405 */
dd41f596 3406static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3407{
dd41f596
IM
3408 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3409 prev->comm, preempt_count(), prev->pid);
3410 debug_show_held_locks(prev);
3411 if (irqs_disabled())
3412 print_irqtrace_events(prev);
3413 dump_stack();
3414}
1da177e4 3415
dd41f596
IM
3416/*
3417 * Various schedule()-time debugging checks and statistics:
3418 */
3419static inline void schedule_debug(struct task_struct *prev)
3420{
1da177e4
LT
3421 /*
3422 * Test if we are atomic. Since do_exit() needs to call into
3423 * schedule() atomically, we ignore that path for now.
3424 * Otherwise, whine if we are scheduling when we should not be.
3425 */
dd41f596
IM
3426 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3427 __schedule_bug(prev);
3428
1da177e4
LT
3429 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3430
dd41f596
IM
3431 schedstat_inc(this_rq(), sched_cnt);
3432}
3433
3434/*
3435 * Pick up the highest-prio task:
3436 */
3437static inline struct task_struct *
ff95f3df 3438pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596
IM
3439{
3440 struct sched_class *class;
3441 struct task_struct *p;
1da177e4
LT
3442
3443 /*
dd41f596
IM
3444 * Optimization: we know that if all tasks are in
3445 * the fair class we can call that function directly:
1da177e4 3446 */
dd41f596 3447 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3448 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3449 if (likely(p))
3450 return p;
1da177e4
LT
3451 }
3452
dd41f596
IM
3453 class = sched_class_highest;
3454 for ( ; ; ) {
fb8d4724 3455 p = class->pick_next_task(rq);
dd41f596
IM
3456 if (p)
3457 return p;
3458 /*
3459 * Will never be NULL as the idle class always
3460 * returns a non-NULL p:
3461 */
3462 class = class->next;
3463 }
3464}
1da177e4 3465
dd41f596
IM
3466/*
3467 * schedule() is the main scheduler function.
3468 */
3469asmlinkage void __sched schedule(void)
3470{
3471 struct task_struct *prev, *next;
3472 long *switch_count;
3473 struct rq *rq;
dd41f596
IM
3474 int cpu;
3475
3476need_resched:
3477 preempt_disable();
3478 cpu = smp_processor_id();
3479 rq = cpu_rq(cpu);
3480 rcu_qsctr_inc(cpu);
3481 prev = rq->curr;
3482 switch_count = &prev->nivcsw;
3483
3484 release_kernel_lock(prev);
3485need_resched_nonpreemptible:
3486
3487 schedule_debug(prev);
1da177e4
LT
3488
3489 spin_lock_irq(&rq->lock);
dd41f596 3490 clear_tsk_need_resched(prev);
c1b3da3e 3491 __update_rq_clock(rq);
1da177e4 3492
1da177e4 3493 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3494 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3495 unlikely(signal_pending(prev)))) {
1da177e4 3496 prev->state = TASK_RUNNING;
dd41f596 3497 } else {
2e1cb74a 3498 deactivate_task(rq, prev, 1);
1da177e4 3499 }
dd41f596 3500 switch_count = &prev->nvcsw;
1da177e4
LT
3501 }
3502
dd41f596 3503 if (unlikely(!rq->nr_running))
1da177e4 3504 idle_balance(cpu, rq);
1da177e4 3505
31ee529c 3506 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3507 next = pick_next_task(rq, prev);
1da177e4
LT
3508
3509 sched_info_switch(prev, next);
dd41f596 3510
1da177e4 3511 if (likely(prev != next)) {
1da177e4
LT
3512 rq->nr_switches++;
3513 rq->curr = next;
3514 ++*switch_count;
3515
dd41f596 3516 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3517 } else
3518 spin_unlock_irq(&rq->lock);
3519
dd41f596
IM
3520 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3521 cpu = smp_processor_id();
3522 rq = cpu_rq(cpu);
1da177e4 3523 goto need_resched_nonpreemptible;
dd41f596 3524 }
1da177e4
LT
3525 preempt_enable_no_resched();
3526 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3527 goto need_resched;
3528}
1da177e4
LT
3529EXPORT_SYMBOL(schedule);
3530
3531#ifdef CONFIG_PREEMPT
3532/*
2ed6e34f 3533 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3534 * off of preempt_enable. Kernel preemptions off return from interrupt
3535 * occur there and call schedule directly.
3536 */
3537asmlinkage void __sched preempt_schedule(void)
3538{
3539 struct thread_info *ti = current_thread_info();
3540#ifdef CONFIG_PREEMPT_BKL
3541 struct task_struct *task = current;
3542 int saved_lock_depth;
3543#endif
3544 /*
3545 * If there is a non-zero preempt_count or interrupts are disabled,
3546 * we do not want to preempt the current task. Just return..
3547 */
beed33a8 3548 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3549 return;
3550
3551need_resched:
3552 add_preempt_count(PREEMPT_ACTIVE);
3553 /*
3554 * We keep the big kernel semaphore locked, but we
3555 * clear ->lock_depth so that schedule() doesnt
3556 * auto-release the semaphore:
3557 */
3558#ifdef CONFIG_PREEMPT_BKL
3559 saved_lock_depth = task->lock_depth;
3560 task->lock_depth = -1;
3561#endif
3562 schedule();
3563#ifdef CONFIG_PREEMPT_BKL
3564 task->lock_depth = saved_lock_depth;
3565#endif
3566 sub_preempt_count(PREEMPT_ACTIVE);
3567
3568 /* we could miss a preemption opportunity between schedule and now */
3569 barrier();
3570 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3571 goto need_resched;
3572}
1da177e4
LT
3573EXPORT_SYMBOL(preempt_schedule);
3574
3575/*
2ed6e34f 3576 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3577 * off of irq context.
3578 * Note, that this is called and return with irqs disabled. This will
3579 * protect us against recursive calling from irq.
3580 */
3581asmlinkage void __sched preempt_schedule_irq(void)
3582{
3583 struct thread_info *ti = current_thread_info();
3584#ifdef CONFIG_PREEMPT_BKL
3585 struct task_struct *task = current;
3586 int saved_lock_depth;
3587#endif
2ed6e34f 3588 /* Catch callers which need to be fixed */
1da177e4
LT
3589 BUG_ON(ti->preempt_count || !irqs_disabled());
3590
3591need_resched:
3592 add_preempt_count(PREEMPT_ACTIVE);
3593 /*
3594 * We keep the big kernel semaphore locked, but we
3595 * clear ->lock_depth so that schedule() doesnt
3596 * auto-release the semaphore:
3597 */
3598#ifdef CONFIG_PREEMPT_BKL
3599 saved_lock_depth = task->lock_depth;
3600 task->lock_depth = -1;
3601#endif
3602 local_irq_enable();
3603 schedule();
3604 local_irq_disable();
3605#ifdef CONFIG_PREEMPT_BKL
3606 task->lock_depth = saved_lock_depth;
3607#endif
3608 sub_preempt_count(PREEMPT_ACTIVE);
3609
3610 /* we could miss a preemption opportunity between schedule and now */
3611 barrier();
3612 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3613 goto need_resched;
3614}
3615
3616#endif /* CONFIG_PREEMPT */
3617
95cdf3b7
IM
3618int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3619 void *key)
1da177e4 3620{
48f24c4d 3621 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3622}
1da177e4
LT
3623EXPORT_SYMBOL(default_wake_function);
3624
3625/*
3626 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3627 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3628 * number) then we wake all the non-exclusive tasks and one exclusive task.
3629 *
3630 * There are circumstances in which we can try to wake a task which has already
3631 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3632 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3633 */
3634static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3635 int nr_exclusive, int sync, void *key)
3636{
3637 struct list_head *tmp, *next;
3638
3639 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3640 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3641 unsigned flags = curr->flags;
3642
1da177e4 3643 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3644 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3645 break;
3646 }
3647}
3648
3649/**
3650 * __wake_up - wake up threads blocked on a waitqueue.
3651 * @q: the waitqueue
3652 * @mode: which threads
3653 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3654 * @key: is directly passed to the wakeup function
1da177e4
LT
3655 */
3656void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3657 int nr_exclusive, void *key)
1da177e4
LT
3658{
3659 unsigned long flags;
3660
3661 spin_lock_irqsave(&q->lock, flags);
3662 __wake_up_common(q, mode, nr_exclusive, 0, key);
3663 spin_unlock_irqrestore(&q->lock, flags);
3664}
1da177e4
LT
3665EXPORT_SYMBOL(__wake_up);
3666
3667/*
3668 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3669 */
3670void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3671{
3672 __wake_up_common(q, mode, 1, 0, NULL);
3673}
3674
3675/**
67be2dd1 3676 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3677 * @q: the waitqueue
3678 * @mode: which threads
3679 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3680 *
3681 * The sync wakeup differs that the waker knows that it will schedule
3682 * away soon, so while the target thread will be woken up, it will not
3683 * be migrated to another CPU - ie. the two threads are 'synchronized'
3684 * with each other. This can prevent needless bouncing between CPUs.
3685 *
3686 * On UP it can prevent extra preemption.
3687 */
95cdf3b7
IM
3688void fastcall
3689__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3690{
3691 unsigned long flags;
3692 int sync = 1;
3693
3694 if (unlikely(!q))
3695 return;
3696
3697 if (unlikely(!nr_exclusive))
3698 sync = 0;
3699
3700 spin_lock_irqsave(&q->lock, flags);
3701 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3702 spin_unlock_irqrestore(&q->lock, flags);
3703}
3704EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3705
3706void fastcall complete(struct completion *x)
3707{
3708 unsigned long flags;
3709
3710 spin_lock_irqsave(&x->wait.lock, flags);
3711 x->done++;
3712 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3713 1, 0, NULL);
3714 spin_unlock_irqrestore(&x->wait.lock, flags);
3715}
3716EXPORT_SYMBOL(complete);
3717
3718void fastcall complete_all(struct completion *x)
3719{
3720 unsigned long flags;
3721
3722 spin_lock_irqsave(&x->wait.lock, flags);
3723 x->done += UINT_MAX/2;
3724 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3725 0, 0, NULL);
3726 spin_unlock_irqrestore(&x->wait.lock, flags);
3727}
3728EXPORT_SYMBOL(complete_all);
3729
3730void fastcall __sched wait_for_completion(struct completion *x)
3731{
3732 might_sleep();
48f24c4d 3733
1da177e4
LT
3734 spin_lock_irq(&x->wait.lock);
3735 if (!x->done) {
3736 DECLARE_WAITQUEUE(wait, current);
3737
3738 wait.flags |= WQ_FLAG_EXCLUSIVE;
3739 __add_wait_queue_tail(&x->wait, &wait);
3740 do {
3741 __set_current_state(TASK_UNINTERRUPTIBLE);
3742 spin_unlock_irq(&x->wait.lock);
3743 schedule();
3744 spin_lock_irq(&x->wait.lock);
3745 } while (!x->done);
3746 __remove_wait_queue(&x->wait, &wait);
3747 }
3748 x->done--;
3749 spin_unlock_irq(&x->wait.lock);
3750}
3751EXPORT_SYMBOL(wait_for_completion);
3752
3753unsigned long fastcall __sched
3754wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3755{
3756 might_sleep();
3757
3758 spin_lock_irq(&x->wait.lock);
3759 if (!x->done) {
3760 DECLARE_WAITQUEUE(wait, current);
3761
3762 wait.flags |= WQ_FLAG_EXCLUSIVE;
3763 __add_wait_queue_tail(&x->wait, &wait);
3764 do {
3765 __set_current_state(TASK_UNINTERRUPTIBLE);
3766 spin_unlock_irq(&x->wait.lock);
3767 timeout = schedule_timeout(timeout);
3768 spin_lock_irq(&x->wait.lock);
3769 if (!timeout) {
3770 __remove_wait_queue(&x->wait, &wait);
3771 goto out;
3772 }
3773 } while (!x->done);
3774 __remove_wait_queue(&x->wait, &wait);
3775 }
3776 x->done--;
3777out:
3778 spin_unlock_irq(&x->wait.lock);
3779 return timeout;
3780}
3781EXPORT_SYMBOL(wait_for_completion_timeout);
3782
3783int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3784{
3785 int ret = 0;
3786
3787 might_sleep();
3788
3789 spin_lock_irq(&x->wait.lock);
3790 if (!x->done) {
3791 DECLARE_WAITQUEUE(wait, current);
3792
3793 wait.flags |= WQ_FLAG_EXCLUSIVE;
3794 __add_wait_queue_tail(&x->wait, &wait);
3795 do {
3796 if (signal_pending(current)) {
3797 ret = -ERESTARTSYS;
3798 __remove_wait_queue(&x->wait, &wait);
3799 goto out;
3800 }
3801 __set_current_state(TASK_INTERRUPTIBLE);
3802 spin_unlock_irq(&x->wait.lock);
3803 schedule();
3804 spin_lock_irq(&x->wait.lock);
3805 } while (!x->done);
3806 __remove_wait_queue(&x->wait, &wait);
3807 }
3808 x->done--;
3809out:
3810 spin_unlock_irq(&x->wait.lock);
3811
3812 return ret;
3813}
3814EXPORT_SYMBOL(wait_for_completion_interruptible);
3815
3816unsigned long fastcall __sched
3817wait_for_completion_interruptible_timeout(struct completion *x,
3818 unsigned long timeout)
3819{
3820 might_sleep();
3821
3822 spin_lock_irq(&x->wait.lock);
3823 if (!x->done) {
3824 DECLARE_WAITQUEUE(wait, current);
3825
3826 wait.flags |= WQ_FLAG_EXCLUSIVE;
3827 __add_wait_queue_tail(&x->wait, &wait);
3828 do {
3829 if (signal_pending(current)) {
3830 timeout = -ERESTARTSYS;
3831 __remove_wait_queue(&x->wait, &wait);
3832 goto out;
3833 }
3834 __set_current_state(TASK_INTERRUPTIBLE);
3835 spin_unlock_irq(&x->wait.lock);
3836 timeout = schedule_timeout(timeout);
3837 spin_lock_irq(&x->wait.lock);
3838 if (!timeout) {
3839 __remove_wait_queue(&x->wait, &wait);
3840 goto out;
3841 }
3842 } while (!x->done);
3843 __remove_wait_queue(&x->wait, &wait);
3844 }
3845 x->done--;
3846out:
3847 spin_unlock_irq(&x->wait.lock);
3848 return timeout;
3849}
3850EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3851
0fec171c
IM
3852static inline void
3853sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3854{
3855 spin_lock_irqsave(&q->lock, *flags);
3856 __add_wait_queue(q, wait);
1da177e4 3857 spin_unlock(&q->lock);
0fec171c 3858}
1da177e4 3859
0fec171c
IM
3860static inline void
3861sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3862{
3863 spin_lock_irq(&q->lock);
3864 __remove_wait_queue(q, wait);
3865 spin_unlock_irqrestore(&q->lock, *flags);
3866}
1da177e4 3867
0fec171c 3868void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3869{
0fec171c
IM
3870 unsigned long flags;
3871 wait_queue_t wait;
3872
3873 init_waitqueue_entry(&wait, current);
1da177e4
LT
3874
3875 current->state = TASK_INTERRUPTIBLE;
3876
0fec171c 3877 sleep_on_head(q, &wait, &flags);
1da177e4 3878 schedule();
0fec171c 3879 sleep_on_tail(q, &wait, &flags);
1da177e4 3880}
1da177e4
LT
3881EXPORT_SYMBOL(interruptible_sleep_on);
3882
0fec171c 3883long __sched
95cdf3b7 3884interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3885{
0fec171c
IM
3886 unsigned long flags;
3887 wait_queue_t wait;
3888
3889 init_waitqueue_entry(&wait, current);
1da177e4
LT
3890
3891 current->state = TASK_INTERRUPTIBLE;
3892
0fec171c 3893 sleep_on_head(q, &wait, &flags);
1da177e4 3894 timeout = schedule_timeout(timeout);
0fec171c 3895 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3896
3897 return timeout;
3898}
1da177e4
LT
3899EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3900
0fec171c 3901void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3902{
0fec171c
IM
3903 unsigned long flags;
3904 wait_queue_t wait;
3905
3906 init_waitqueue_entry(&wait, current);
1da177e4
LT
3907
3908 current->state = TASK_UNINTERRUPTIBLE;
3909
0fec171c 3910 sleep_on_head(q, &wait, &flags);
1da177e4 3911 schedule();
0fec171c 3912 sleep_on_tail(q, &wait, &flags);
1da177e4 3913}
1da177e4
LT
3914EXPORT_SYMBOL(sleep_on);
3915
0fec171c 3916long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3917{
0fec171c
IM
3918 unsigned long flags;
3919 wait_queue_t wait;
3920
3921 init_waitqueue_entry(&wait, current);
1da177e4
LT
3922
3923 current->state = TASK_UNINTERRUPTIBLE;
3924
0fec171c 3925 sleep_on_head(q, &wait, &flags);
1da177e4 3926 timeout = schedule_timeout(timeout);
0fec171c 3927 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3928
3929 return timeout;
3930}
1da177e4
LT
3931EXPORT_SYMBOL(sleep_on_timeout);
3932
b29739f9
IM
3933#ifdef CONFIG_RT_MUTEXES
3934
3935/*
3936 * rt_mutex_setprio - set the current priority of a task
3937 * @p: task
3938 * @prio: prio value (kernel-internal form)
3939 *
3940 * This function changes the 'effective' priority of a task. It does
3941 * not touch ->normal_prio like __setscheduler().
3942 *
3943 * Used by the rt_mutex code to implement priority inheritance logic.
3944 */
36c8b586 3945void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3946{
3947 unsigned long flags;
dd41f596 3948 int oldprio, on_rq;
70b97a7f 3949 struct rq *rq;
b29739f9
IM
3950
3951 BUG_ON(prio < 0 || prio > MAX_PRIO);
3952
3953 rq = task_rq_lock(p, &flags);
a8e504d2 3954 update_rq_clock(rq);
b29739f9 3955
d5f9f942 3956 oldprio = p->prio;
dd41f596
IM
3957 on_rq = p->se.on_rq;
3958 if (on_rq)
69be72c1 3959 dequeue_task(rq, p, 0);
dd41f596
IM
3960
3961 if (rt_prio(prio))
3962 p->sched_class = &rt_sched_class;
3963 else
3964 p->sched_class = &fair_sched_class;
3965
b29739f9
IM
3966 p->prio = prio;
3967
dd41f596 3968 if (on_rq) {
8159f87e 3969 enqueue_task(rq, p, 0);
b29739f9
IM
3970 /*
3971 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3972 * our priority decreased, or if we are not currently running on
3973 * this runqueue and our priority is higher than the current's
b29739f9 3974 */
d5f9f942
AM
3975 if (task_running(rq, p)) {
3976 if (p->prio > oldprio)
3977 resched_task(rq->curr);
dd41f596
IM
3978 } else {
3979 check_preempt_curr(rq, p);
3980 }
b29739f9
IM
3981 }
3982 task_rq_unlock(rq, &flags);
3983}
3984
3985#endif
3986
36c8b586 3987void set_user_nice(struct task_struct *p, long nice)
1da177e4 3988{
dd41f596 3989 int old_prio, delta, on_rq;
1da177e4 3990 unsigned long flags;
70b97a7f 3991 struct rq *rq;
1da177e4
LT
3992
3993 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3994 return;
3995 /*
3996 * We have to be careful, if called from sys_setpriority(),
3997 * the task might be in the middle of scheduling on another CPU.
3998 */
3999 rq = task_rq_lock(p, &flags);
a8e504d2 4000 update_rq_clock(rq);
1da177e4
LT
4001 /*
4002 * The RT priorities are set via sched_setscheduler(), but we still
4003 * allow the 'normal' nice value to be set - but as expected
4004 * it wont have any effect on scheduling until the task is
dd41f596 4005 * SCHED_FIFO/SCHED_RR:
1da177e4 4006 */
e05606d3 4007 if (task_has_rt_policy(p)) {
1da177e4
LT
4008 p->static_prio = NICE_TO_PRIO(nice);
4009 goto out_unlock;
4010 }
dd41f596
IM
4011 on_rq = p->se.on_rq;
4012 if (on_rq) {
69be72c1 4013 dequeue_task(rq, p, 0);
79b5dddf 4014 dec_load(rq, p);
2dd73a4f 4015 }
1da177e4 4016
1da177e4 4017 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4018 set_load_weight(p);
b29739f9
IM
4019 old_prio = p->prio;
4020 p->prio = effective_prio(p);
4021 delta = p->prio - old_prio;
1da177e4 4022
dd41f596 4023 if (on_rq) {
8159f87e 4024 enqueue_task(rq, p, 0);
29b4b623 4025 inc_load(rq, p);
1da177e4 4026 /*
d5f9f942
AM
4027 * If the task increased its priority or is running and
4028 * lowered its priority, then reschedule its CPU:
1da177e4 4029 */
d5f9f942 4030 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4031 resched_task(rq->curr);
4032 }
4033out_unlock:
4034 task_rq_unlock(rq, &flags);
4035}
1da177e4
LT
4036EXPORT_SYMBOL(set_user_nice);
4037
e43379f1
MM
4038/*
4039 * can_nice - check if a task can reduce its nice value
4040 * @p: task
4041 * @nice: nice value
4042 */
36c8b586 4043int can_nice(const struct task_struct *p, const int nice)
e43379f1 4044{
024f4747
MM
4045 /* convert nice value [19,-20] to rlimit style value [1,40] */
4046 int nice_rlim = 20 - nice;
48f24c4d 4047
e43379f1
MM
4048 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4049 capable(CAP_SYS_NICE));
4050}
4051
1da177e4
LT
4052#ifdef __ARCH_WANT_SYS_NICE
4053
4054/*
4055 * sys_nice - change the priority of the current process.
4056 * @increment: priority increment
4057 *
4058 * sys_setpriority is a more generic, but much slower function that
4059 * does similar things.
4060 */
4061asmlinkage long sys_nice(int increment)
4062{
48f24c4d 4063 long nice, retval;
1da177e4
LT
4064
4065 /*
4066 * Setpriority might change our priority at the same moment.
4067 * We don't have to worry. Conceptually one call occurs first
4068 * and we have a single winner.
4069 */
e43379f1
MM
4070 if (increment < -40)
4071 increment = -40;
1da177e4
LT
4072 if (increment > 40)
4073 increment = 40;
4074
4075 nice = PRIO_TO_NICE(current->static_prio) + increment;
4076 if (nice < -20)
4077 nice = -20;
4078 if (nice > 19)
4079 nice = 19;
4080
e43379f1
MM
4081 if (increment < 0 && !can_nice(current, nice))
4082 return -EPERM;
4083
1da177e4
LT
4084 retval = security_task_setnice(current, nice);
4085 if (retval)
4086 return retval;
4087
4088 set_user_nice(current, nice);
4089 return 0;
4090}
4091
4092#endif
4093
4094/**
4095 * task_prio - return the priority value of a given task.
4096 * @p: the task in question.
4097 *
4098 * This is the priority value as seen by users in /proc.
4099 * RT tasks are offset by -200. Normal tasks are centered
4100 * around 0, value goes from -16 to +15.
4101 */
36c8b586 4102int task_prio(const struct task_struct *p)
1da177e4
LT
4103{
4104 return p->prio - MAX_RT_PRIO;
4105}
4106
4107/**
4108 * task_nice - return the nice value of a given task.
4109 * @p: the task in question.
4110 */
36c8b586 4111int task_nice(const struct task_struct *p)
1da177e4
LT
4112{
4113 return TASK_NICE(p);
4114}
1da177e4 4115EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4116
4117/**
4118 * idle_cpu - is a given cpu idle currently?
4119 * @cpu: the processor in question.
4120 */
4121int idle_cpu(int cpu)
4122{
4123 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4124}
4125
1da177e4
LT
4126/**
4127 * idle_task - return the idle task for a given cpu.
4128 * @cpu: the processor in question.
4129 */
36c8b586 4130struct task_struct *idle_task(int cpu)
1da177e4
LT
4131{
4132 return cpu_rq(cpu)->idle;
4133}
4134
4135/**
4136 * find_process_by_pid - find a process with a matching PID value.
4137 * @pid: the pid in question.
4138 */
36c8b586 4139static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4140{
4141 return pid ? find_task_by_pid(pid) : current;
4142}
4143
4144/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4145static void
4146__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4147{
dd41f596 4148 BUG_ON(p->se.on_rq);
48f24c4d 4149
1da177e4 4150 p->policy = policy;
dd41f596
IM
4151 switch (p->policy) {
4152 case SCHED_NORMAL:
4153 case SCHED_BATCH:
4154 case SCHED_IDLE:
4155 p->sched_class = &fair_sched_class;
4156 break;
4157 case SCHED_FIFO:
4158 case SCHED_RR:
4159 p->sched_class = &rt_sched_class;
4160 break;
4161 }
4162
1da177e4 4163 p->rt_priority = prio;
b29739f9
IM
4164 p->normal_prio = normal_prio(p);
4165 /* we are holding p->pi_lock already */
4166 p->prio = rt_mutex_getprio(p);
2dd73a4f 4167 set_load_weight(p);
1da177e4
LT
4168}
4169
4170/**
72fd4a35 4171 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4172 * @p: the task in question.
4173 * @policy: new policy.
4174 * @param: structure containing the new RT priority.
5fe1d75f 4175 *
72fd4a35 4176 * NOTE that the task may be already dead.
1da177e4 4177 */
95cdf3b7
IM
4178int sched_setscheduler(struct task_struct *p, int policy,
4179 struct sched_param *param)
1da177e4 4180{
dd41f596 4181 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4182 unsigned long flags;
70b97a7f 4183 struct rq *rq;
1da177e4 4184
66e5393a
SR
4185 /* may grab non-irq protected spin_locks */
4186 BUG_ON(in_interrupt());
1da177e4
LT
4187recheck:
4188 /* double check policy once rq lock held */
4189 if (policy < 0)
4190 policy = oldpolicy = p->policy;
4191 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4192 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4193 policy != SCHED_IDLE)
b0a9499c 4194 return -EINVAL;
1da177e4
LT
4195 /*
4196 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4197 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4198 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4199 */
4200 if (param->sched_priority < 0 ||
95cdf3b7 4201 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4202 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4203 return -EINVAL;
e05606d3 4204 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4205 return -EINVAL;
4206
37e4ab3f
OC
4207 /*
4208 * Allow unprivileged RT tasks to decrease priority:
4209 */
4210 if (!capable(CAP_SYS_NICE)) {
e05606d3 4211 if (rt_policy(policy)) {
8dc3e909 4212 unsigned long rlim_rtprio;
8dc3e909
ON
4213
4214 if (!lock_task_sighand(p, &flags))
4215 return -ESRCH;
4216 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4217 unlock_task_sighand(p, &flags);
4218
4219 /* can't set/change the rt policy */
4220 if (policy != p->policy && !rlim_rtprio)
4221 return -EPERM;
4222
4223 /* can't increase priority */
4224 if (param->sched_priority > p->rt_priority &&
4225 param->sched_priority > rlim_rtprio)
4226 return -EPERM;
4227 }
dd41f596
IM
4228 /*
4229 * Like positive nice levels, dont allow tasks to
4230 * move out of SCHED_IDLE either:
4231 */
4232 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4233 return -EPERM;
5fe1d75f 4234
37e4ab3f
OC
4235 /* can't change other user's priorities */
4236 if ((current->euid != p->euid) &&
4237 (current->euid != p->uid))
4238 return -EPERM;
4239 }
1da177e4
LT
4240
4241 retval = security_task_setscheduler(p, policy, param);
4242 if (retval)
4243 return retval;
b29739f9
IM
4244 /*
4245 * make sure no PI-waiters arrive (or leave) while we are
4246 * changing the priority of the task:
4247 */
4248 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4249 /*
4250 * To be able to change p->policy safely, the apropriate
4251 * runqueue lock must be held.
4252 */
b29739f9 4253 rq = __task_rq_lock(p);
1da177e4
LT
4254 /* recheck policy now with rq lock held */
4255 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4256 policy = oldpolicy = -1;
b29739f9
IM
4257 __task_rq_unlock(rq);
4258 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4259 goto recheck;
4260 }
2daa3577 4261 update_rq_clock(rq);
dd41f596 4262 on_rq = p->se.on_rq;
2daa3577 4263 if (on_rq)
2e1cb74a 4264 deactivate_task(rq, p, 0);
1da177e4 4265 oldprio = p->prio;
dd41f596
IM
4266 __setscheduler(rq, p, policy, param->sched_priority);
4267 if (on_rq) {
4268 activate_task(rq, p, 0);
1da177e4
LT
4269 /*
4270 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4271 * our priority decreased, or if we are not currently running on
4272 * this runqueue and our priority is higher than the current's
1da177e4 4273 */
d5f9f942
AM
4274 if (task_running(rq, p)) {
4275 if (p->prio > oldprio)
4276 resched_task(rq->curr);
dd41f596
IM
4277 } else {
4278 check_preempt_curr(rq, p);
4279 }
1da177e4 4280 }
b29739f9
IM
4281 __task_rq_unlock(rq);
4282 spin_unlock_irqrestore(&p->pi_lock, flags);
4283
95e02ca9
TG
4284 rt_mutex_adjust_pi(p);
4285
1da177e4
LT
4286 return 0;
4287}
4288EXPORT_SYMBOL_GPL(sched_setscheduler);
4289
95cdf3b7
IM
4290static int
4291do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4292{
1da177e4
LT
4293 struct sched_param lparam;
4294 struct task_struct *p;
36c8b586 4295 int retval;
1da177e4
LT
4296
4297 if (!param || pid < 0)
4298 return -EINVAL;
4299 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4300 return -EFAULT;
5fe1d75f
ON
4301
4302 rcu_read_lock();
4303 retval = -ESRCH;
1da177e4 4304 p = find_process_by_pid(pid);
5fe1d75f
ON
4305 if (p != NULL)
4306 retval = sched_setscheduler(p, policy, &lparam);
4307 rcu_read_unlock();
36c8b586 4308
1da177e4
LT
4309 return retval;
4310}
4311
4312/**
4313 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4314 * @pid: the pid in question.
4315 * @policy: new policy.
4316 * @param: structure containing the new RT priority.
4317 */
4318asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4319 struct sched_param __user *param)
4320{
c21761f1
JB
4321 /* negative values for policy are not valid */
4322 if (policy < 0)
4323 return -EINVAL;
4324
1da177e4
LT
4325 return do_sched_setscheduler(pid, policy, param);
4326}
4327
4328/**
4329 * sys_sched_setparam - set/change the RT priority of a thread
4330 * @pid: the pid in question.
4331 * @param: structure containing the new RT priority.
4332 */
4333asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4334{
4335 return do_sched_setscheduler(pid, -1, param);
4336}
4337
4338/**
4339 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4340 * @pid: the pid in question.
4341 */
4342asmlinkage long sys_sched_getscheduler(pid_t pid)
4343{
36c8b586 4344 struct task_struct *p;
1da177e4 4345 int retval = -EINVAL;
1da177e4
LT
4346
4347 if (pid < 0)
4348 goto out_nounlock;
4349
4350 retval = -ESRCH;
4351 read_lock(&tasklist_lock);
4352 p = find_process_by_pid(pid);
4353 if (p) {
4354 retval = security_task_getscheduler(p);
4355 if (!retval)
4356 retval = p->policy;
4357 }
4358 read_unlock(&tasklist_lock);
4359
4360out_nounlock:
4361 return retval;
4362}
4363
4364/**
4365 * sys_sched_getscheduler - get the RT priority of a thread
4366 * @pid: the pid in question.
4367 * @param: structure containing the RT priority.
4368 */
4369asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4370{
4371 struct sched_param lp;
36c8b586 4372 struct task_struct *p;
1da177e4 4373 int retval = -EINVAL;
1da177e4
LT
4374
4375 if (!param || pid < 0)
4376 goto out_nounlock;
4377
4378 read_lock(&tasklist_lock);
4379 p = find_process_by_pid(pid);
4380 retval = -ESRCH;
4381 if (!p)
4382 goto out_unlock;
4383
4384 retval = security_task_getscheduler(p);
4385 if (retval)
4386 goto out_unlock;
4387
4388 lp.sched_priority = p->rt_priority;
4389 read_unlock(&tasklist_lock);
4390
4391 /*
4392 * This one might sleep, we cannot do it with a spinlock held ...
4393 */
4394 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4395
4396out_nounlock:
4397 return retval;
4398
4399out_unlock:
4400 read_unlock(&tasklist_lock);
4401 return retval;
4402}
4403
4404long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4405{
1da177e4 4406 cpumask_t cpus_allowed;
36c8b586
IM
4407 struct task_struct *p;
4408 int retval;
1da177e4 4409
5be9361c 4410 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4411 read_lock(&tasklist_lock);
4412
4413 p = find_process_by_pid(pid);
4414 if (!p) {
4415 read_unlock(&tasklist_lock);
5be9361c 4416 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4417 return -ESRCH;
4418 }
4419
4420 /*
4421 * It is not safe to call set_cpus_allowed with the
4422 * tasklist_lock held. We will bump the task_struct's
4423 * usage count and then drop tasklist_lock.
4424 */
4425 get_task_struct(p);
4426 read_unlock(&tasklist_lock);
4427
4428 retval = -EPERM;
4429 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4430 !capable(CAP_SYS_NICE))
4431 goto out_unlock;
4432
e7834f8f
DQ
4433 retval = security_task_setscheduler(p, 0, NULL);
4434 if (retval)
4435 goto out_unlock;
4436
1da177e4
LT
4437 cpus_allowed = cpuset_cpus_allowed(p);
4438 cpus_and(new_mask, new_mask, cpus_allowed);
4439 retval = set_cpus_allowed(p, new_mask);
4440
4441out_unlock:
4442 put_task_struct(p);
5be9361c 4443 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4444 return retval;
4445}
4446
4447static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4448 cpumask_t *new_mask)
4449{
4450 if (len < sizeof(cpumask_t)) {
4451 memset(new_mask, 0, sizeof(cpumask_t));
4452 } else if (len > sizeof(cpumask_t)) {
4453 len = sizeof(cpumask_t);
4454 }
4455 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4456}
4457
4458/**
4459 * sys_sched_setaffinity - set the cpu affinity of a process
4460 * @pid: pid of the process
4461 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4462 * @user_mask_ptr: user-space pointer to the new cpu mask
4463 */
4464asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4465 unsigned long __user *user_mask_ptr)
4466{
4467 cpumask_t new_mask;
4468 int retval;
4469
4470 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4471 if (retval)
4472 return retval;
4473
4474 return sched_setaffinity(pid, new_mask);
4475}
4476
4477/*
4478 * Represents all cpu's present in the system
4479 * In systems capable of hotplug, this map could dynamically grow
4480 * as new cpu's are detected in the system via any platform specific
4481 * method, such as ACPI for e.g.
4482 */
4483
4cef0c61 4484cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4485EXPORT_SYMBOL(cpu_present_map);
4486
4487#ifndef CONFIG_SMP
4cef0c61 4488cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4489EXPORT_SYMBOL(cpu_online_map);
4490
4cef0c61 4491cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4492EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4493#endif
4494
4495long sched_getaffinity(pid_t pid, cpumask_t *mask)
4496{
36c8b586 4497 struct task_struct *p;
1da177e4 4498 int retval;
1da177e4 4499
5be9361c 4500 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4501 read_lock(&tasklist_lock);
4502
4503 retval = -ESRCH;
4504 p = find_process_by_pid(pid);
4505 if (!p)
4506 goto out_unlock;
4507
e7834f8f
DQ
4508 retval = security_task_getscheduler(p);
4509 if (retval)
4510 goto out_unlock;
4511
2f7016d9 4512 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4513
4514out_unlock:
4515 read_unlock(&tasklist_lock);
5be9361c 4516 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4517
9531b62f 4518 return retval;
1da177e4
LT
4519}
4520
4521/**
4522 * sys_sched_getaffinity - get the cpu affinity of a process
4523 * @pid: pid of the process
4524 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4525 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4526 */
4527asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4528 unsigned long __user *user_mask_ptr)
4529{
4530 int ret;
4531 cpumask_t mask;
4532
4533 if (len < sizeof(cpumask_t))
4534 return -EINVAL;
4535
4536 ret = sched_getaffinity(pid, &mask);
4537 if (ret < 0)
4538 return ret;
4539
4540 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4541 return -EFAULT;
4542
4543 return sizeof(cpumask_t);
4544}
4545
4546/**
4547 * sys_sched_yield - yield the current processor to other threads.
4548 *
dd41f596
IM
4549 * This function yields the current CPU to other tasks. If there are no
4550 * other threads running on this CPU then this function will return.
1da177e4
LT
4551 */
4552asmlinkage long sys_sched_yield(void)
4553{
70b97a7f 4554 struct rq *rq = this_rq_lock();
1da177e4
LT
4555
4556 schedstat_inc(rq, yld_cnt);
1799e35d 4557 current->sched_class->yield_task(rq, current);
1da177e4
LT
4558
4559 /*
4560 * Since we are going to call schedule() anyway, there's
4561 * no need to preempt or enable interrupts:
4562 */
4563 __release(rq->lock);
8a25d5de 4564 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4565 _raw_spin_unlock(&rq->lock);
4566 preempt_enable_no_resched();
4567
4568 schedule();
4569
4570 return 0;
4571}
4572
e7b38404 4573static void __cond_resched(void)
1da177e4 4574{
8e0a43d8
IM
4575#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4576 __might_sleep(__FILE__, __LINE__);
4577#endif
5bbcfd90
IM
4578 /*
4579 * The BKS might be reacquired before we have dropped
4580 * PREEMPT_ACTIVE, which could trigger a second
4581 * cond_resched() call.
4582 */
1da177e4
LT
4583 do {
4584 add_preempt_count(PREEMPT_ACTIVE);
4585 schedule();
4586 sub_preempt_count(PREEMPT_ACTIVE);
4587 } while (need_resched());
4588}
4589
4590int __sched cond_resched(void)
4591{
9414232f
IM
4592 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4593 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4594 __cond_resched();
4595 return 1;
4596 }
4597 return 0;
4598}
1da177e4
LT
4599EXPORT_SYMBOL(cond_resched);
4600
4601/*
4602 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4603 * call schedule, and on return reacquire the lock.
4604 *
4605 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4606 * operations here to prevent schedule() from being called twice (once via
4607 * spin_unlock(), once by hand).
4608 */
95cdf3b7 4609int cond_resched_lock(spinlock_t *lock)
1da177e4 4610{
6df3cecb
JK
4611 int ret = 0;
4612
1da177e4
LT
4613 if (need_lockbreak(lock)) {
4614 spin_unlock(lock);
4615 cpu_relax();
6df3cecb 4616 ret = 1;
1da177e4
LT
4617 spin_lock(lock);
4618 }
9414232f 4619 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4620 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4621 _raw_spin_unlock(lock);
4622 preempt_enable_no_resched();
4623 __cond_resched();
6df3cecb 4624 ret = 1;
1da177e4 4625 spin_lock(lock);
1da177e4 4626 }
6df3cecb 4627 return ret;
1da177e4 4628}
1da177e4
LT
4629EXPORT_SYMBOL(cond_resched_lock);
4630
4631int __sched cond_resched_softirq(void)
4632{
4633 BUG_ON(!in_softirq());
4634
9414232f 4635 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4636 local_bh_enable();
1da177e4
LT
4637 __cond_resched();
4638 local_bh_disable();
4639 return 1;
4640 }
4641 return 0;
4642}
1da177e4
LT
4643EXPORT_SYMBOL(cond_resched_softirq);
4644
1da177e4
LT
4645/**
4646 * yield - yield the current processor to other threads.
4647 *
72fd4a35 4648 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4649 * thread runnable and calls sys_sched_yield().
4650 */
4651void __sched yield(void)
4652{
4653 set_current_state(TASK_RUNNING);
4654 sys_sched_yield();
4655}
1da177e4
LT
4656EXPORT_SYMBOL(yield);
4657
4658/*
4659 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4660 * that process accounting knows that this is a task in IO wait state.
4661 *
4662 * But don't do that if it is a deliberate, throttling IO wait (this task
4663 * has set its backing_dev_info: the queue against which it should throttle)
4664 */
4665void __sched io_schedule(void)
4666{
70b97a7f 4667 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4668
0ff92245 4669 delayacct_blkio_start();
1da177e4
LT
4670 atomic_inc(&rq->nr_iowait);
4671 schedule();
4672 atomic_dec(&rq->nr_iowait);
0ff92245 4673 delayacct_blkio_end();
1da177e4 4674}
1da177e4
LT
4675EXPORT_SYMBOL(io_schedule);
4676
4677long __sched io_schedule_timeout(long timeout)
4678{
70b97a7f 4679 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4680 long ret;
4681
0ff92245 4682 delayacct_blkio_start();
1da177e4
LT
4683 atomic_inc(&rq->nr_iowait);
4684 ret = schedule_timeout(timeout);
4685 atomic_dec(&rq->nr_iowait);
0ff92245 4686 delayacct_blkio_end();
1da177e4
LT
4687 return ret;
4688}
4689
4690/**
4691 * sys_sched_get_priority_max - return maximum RT priority.
4692 * @policy: scheduling class.
4693 *
4694 * this syscall returns the maximum rt_priority that can be used
4695 * by a given scheduling class.
4696 */
4697asmlinkage long sys_sched_get_priority_max(int policy)
4698{
4699 int ret = -EINVAL;
4700
4701 switch (policy) {
4702 case SCHED_FIFO:
4703 case SCHED_RR:
4704 ret = MAX_USER_RT_PRIO-1;
4705 break;
4706 case SCHED_NORMAL:
b0a9499c 4707 case SCHED_BATCH:
dd41f596 4708 case SCHED_IDLE:
1da177e4
LT
4709 ret = 0;
4710 break;
4711 }
4712 return ret;
4713}
4714
4715/**
4716 * sys_sched_get_priority_min - return minimum RT priority.
4717 * @policy: scheduling class.
4718 *
4719 * this syscall returns the minimum rt_priority that can be used
4720 * by a given scheduling class.
4721 */
4722asmlinkage long sys_sched_get_priority_min(int policy)
4723{
4724 int ret = -EINVAL;
4725
4726 switch (policy) {
4727 case SCHED_FIFO:
4728 case SCHED_RR:
4729 ret = 1;
4730 break;
4731 case SCHED_NORMAL:
b0a9499c 4732 case SCHED_BATCH:
dd41f596 4733 case SCHED_IDLE:
1da177e4
LT
4734 ret = 0;
4735 }
4736 return ret;
4737}
4738
4739/**
4740 * sys_sched_rr_get_interval - return the default timeslice of a process.
4741 * @pid: pid of the process.
4742 * @interval: userspace pointer to the timeslice value.
4743 *
4744 * this syscall writes the default timeslice value of a given process
4745 * into the user-space timespec buffer. A value of '0' means infinity.
4746 */
4747asmlinkage
4748long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4749{
36c8b586 4750 struct task_struct *p;
1da177e4
LT
4751 int retval = -EINVAL;
4752 struct timespec t;
1da177e4
LT
4753
4754 if (pid < 0)
4755 goto out_nounlock;
4756
4757 retval = -ESRCH;
4758 read_lock(&tasklist_lock);
4759 p = find_process_by_pid(pid);
4760 if (!p)
4761 goto out_unlock;
4762
4763 retval = security_task_getscheduler(p);
4764 if (retval)
4765 goto out_unlock;
4766
b78709cf 4767 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4768 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4769 read_unlock(&tasklist_lock);
4770 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4771out_nounlock:
4772 return retval;
4773out_unlock:
4774 read_unlock(&tasklist_lock);
4775 return retval;
4776}
4777
2ed6e34f 4778static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4779
4780static void show_task(struct task_struct *p)
1da177e4 4781{
1da177e4 4782 unsigned long free = 0;
36c8b586 4783 unsigned state;
1da177e4 4784
1da177e4 4785 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4786 printk("%-13.13s %c", p->comm,
4787 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4788#if BITS_PER_LONG == 32
1da177e4 4789 if (state == TASK_RUNNING)
4bd77321 4790 printk(" running ");
1da177e4 4791 else
4bd77321 4792 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4793#else
4794 if (state == TASK_RUNNING)
4bd77321 4795 printk(" running task ");
1da177e4
LT
4796 else
4797 printk(" %016lx ", thread_saved_pc(p));
4798#endif
4799#ifdef CONFIG_DEBUG_STACK_USAGE
4800 {
10ebffde 4801 unsigned long *n = end_of_stack(p);
1da177e4
LT
4802 while (!*n)
4803 n++;
10ebffde 4804 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4805 }
4806#endif
4bd77321 4807 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4808
4809 if (state != TASK_RUNNING)
4810 show_stack(p, NULL);
4811}
4812
e59e2ae2 4813void show_state_filter(unsigned long state_filter)
1da177e4 4814{
36c8b586 4815 struct task_struct *g, *p;
1da177e4 4816
4bd77321
IM
4817#if BITS_PER_LONG == 32
4818 printk(KERN_INFO
4819 " task PC stack pid father\n");
1da177e4 4820#else
4bd77321
IM
4821 printk(KERN_INFO
4822 " task PC stack pid father\n");
1da177e4
LT
4823#endif
4824 read_lock(&tasklist_lock);
4825 do_each_thread(g, p) {
4826 /*
4827 * reset the NMI-timeout, listing all files on a slow
4828 * console might take alot of time:
4829 */
4830 touch_nmi_watchdog();
39bc89fd 4831 if (!state_filter || (p->state & state_filter))
e59e2ae2 4832 show_task(p);
1da177e4
LT
4833 } while_each_thread(g, p);
4834
04c9167f
JF
4835 touch_all_softlockup_watchdogs();
4836
dd41f596
IM
4837#ifdef CONFIG_SCHED_DEBUG
4838 sysrq_sched_debug_show();
4839#endif
1da177e4 4840 read_unlock(&tasklist_lock);
e59e2ae2
IM
4841 /*
4842 * Only show locks if all tasks are dumped:
4843 */
4844 if (state_filter == -1)
4845 debug_show_all_locks();
1da177e4
LT
4846}
4847
1df21055
IM
4848void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4849{
dd41f596 4850 idle->sched_class = &idle_sched_class;
1df21055
IM
4851}
4852
f340c0d1
IM
4853/**
4854 * init_idle - set up an idle thread for a given CPU
4855 * @idle: task in question
4856 * @cpu: cpu the idle task belongs to
4857 *
4858 * NOTE: this function does not set the idle thread's NEED_RESCHED
4859 * flag, to make booting more robust.
4860 */
5c1e1767 4861void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4862{
70b97a7f 4863 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4864 unsigned long flags;
4865
dd41f596
IM
4866 __sched_fork(idle);
4867 idle->se.exec_start = sched_clock();
4868
b29739f9 4869 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4870 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4871 __set_task_cpu(idle, cpu);
1da177e4
LT
4872
4873 spin_lock_irqsave(&rq->lock, flags);
4874 rq->curr = rq->idle = idle;
4866cde0
NP
4875#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4876 idle->oncpu = 1;
4877#endif
1da177e4
LT
4878 spin_unlock_irqrestore(&rq->lock, flags);
4879
4880 /* Set the preempt count _outside_ the spinlocks! */
4881#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4882 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4883#else
a1261f54 4884 task_thread_info(idle)->preempt_count = 0;
1da177e4 4885#endif
dd41f596
IM
4886 /*
4887 * The idle tasks have their own, simple scheduling class:
4888 */
4889 idle->sched_class = &idle_sched_class;
1da177e4
LT
4890}
4891
4892/*
4893 * In a system that switches off the HZ timer nohz_cpu_mask
4894 * indicates which cpus entered this state. This is used
4895 * in the rcu update to wait only for active cpus. For system
4896 * which do not switch off the HZ timer nohz_cpu_mask should
4897 * always be CPU_MASK_NONE.
4898 */
4899cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4900
dd41f596
IM
4901/*
4902 * Increase the granularity value when there are more CPUs,
4903 * because with more CPUs the 'effective latency' as visible
4904 * to users decreases. But the relationship is not linear,
4905 * so pick a second-best guess by going with the log2 of the
4906 * number of CPUs.
4907 *
4908 * This idea comes from the SD scheduler of Con Kolivas:
4909 */
4910static inline void sched_init_granularity(void)
4911{
4912 unsigned int factor = 1 + ilog2(num_online_cpus());
21805085 4913 const unsigned long limit = 100000000;
dd41f596 4914
172ac3db
IM
4915 sysctl_sched_min_granularity *= factor;
4916 if (sysctl_sched_min_granularity > limit)
4917 sysctl_sched_min_granularity = limit;
dd41f596 4918
21805085
PZ
4919 sysctl_sched_latency *= factor;
4920 if (sysctl_sched_latency > limit)
4921 sysctl_sched_latency = limit;
4922
50c46637
IM
4923 sysctl_sched_runtime_limit = sysctl_sched_latency;
4924 sysctl_sched_wakeup_granularity = sysctl_sched_min_granularity / 2;
dd41f596
IM
4925}
4926
1da177e4
LT
4927#ifdef CONFIG_SMP
4928/*
4929 * This is how migration works:
4930 *
70b97a7f 4931 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4932 * runqueue and wake up that CPU's migration thread.
4933 * 2) we down() the locked semaphore => thread blocks.
4934 * 3) migration thread wakes up (implicitly it forces the migrated
4935 * thread off the CPU)
4936 * 4) it gets the migration request and checks whether the migrated
4937 * task is still in the wrong runqueue.
4938 * 5) if it's in the wrong runqueue then the migration thread removes
4939 * it and puts it into the right queue.
4940 * 6) migration thread up()s the semaphore.
4941 * 7) we wake up and the migration is done.
4942 */
4943
4944/*
4945 * Change a given task's CPU affinity. Migrate the thread to a
4946 * proper CPU and schedule it away if the CPU it's executing on
4947 * is removed from the allowed bitmask.
4948 *
4949 * NOTE: the caller must have a valid reference to the task, the
4950 * task must not exit() & deallocate itself prematurely. The
4951 * call is not atomic; no spinlocks may be held.
4952 */
36c8b586 4953int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4954{
70b97a7f 4955 struct migration_req req;
1da177e4 4956 unsigned long flags;
70b97a7f 4957 struct rq *rq;
48f24c4d 4958 int ret = 0;
1da177e4
LT
4959
4960 rq = task_rq_lock(p, &flags);
4961 if (!cpus_intersects(new_mask, cpu_online_map)) {
4962 ret = -EINVAL;
4963 goto out;
4964 }
4965
4966 p->cpus_allowed = new_mask;
4967 /* Can the task run on the task's current CPU? If so, we're done */
4968 if (cpu_isset(task_cpu(p), new_mask))
4969 goto out;
4970
4971 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4972 /* Need help from migration thread: drop lock and wait. */
4973 task_rq_unlock(rq, &flags);
4974 wake_up_process(rq->migration_thread);
4975 wait_for_completion(&req.done);
4976 tlb_migrate_finish(p->mm);
4977 return 0;
4978 }
4979out:
4980 task_rq_unlock(rq, &flags);
48f24c4d 4981
1da177e4
LT
4982 return ret;
4983}
1da177e4
LT
4984EXPORT_SYMBOL_GPL(set_cpus_allowed);
4985
4986/*
4987 * Move (not current) task off this cpu, onto dest cpu. We're doing
4988 * this because either it can't run here any more (set_cpus_allowed()
4989 * away from this CPU, or CPU going down), or because we're
4990 * attempting to rebalance this task on exec (sched_exec).
4991 *
4992 * So we race with normal scheduler movements, but that's OK, as long
4993 * as the task is no longer on this CPU.
efc30814
KK
4994 *
4995 * Returns non-zero if task was successfully migrated.
1da177e4 4996 */
efc30814 4997static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4998{
70b97a7f 4999 struct rq *rq_dest, *rq_src;
dd41f596 5000 int ret = 0, on_rq;
1da177e4
LT
5001
5002 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5003 return ret;
1da177e4
LT
5004
5005 rq_src = cpu_rq(src_cpu);
5006 rq_dest = cpu_rq(dest_cpu);
5007
5008 double_rq_lock(rq_src, rq_dest);
5009 /* Already moved. */
5010 if (task_cpu(p) != src_cpu)
5011 goto out;
5012 /* Affinity changed (again). */
5013 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5014 goto out;
5015
dd41f596 5016 on_rq = p->se.on_rq;
6e82a3be 5017 if (on_rq)
2e1cb74a 5018 deactivate_task(rq_src, p, 0);
6e82a3be 5019
1da177e4 5020 set_task_cpu(p, dest_cpu);
dd41f596
IM
5021 if (on_rq) {
5022 activate_task(rq_dest, p, 0);
5023 check_preempt_curr(rq_dest, p);
1da177e4 5024 }
efc30814 5025 ret = 1;
1da177e4
LT
5026out:
5027 double_rq_unlock(rq_src, rq_dest);
efc30814 5028 return ret;
1da177e4
LT
5029}
5030
5031/*
5032 * migration_thread - this is a highprio system thread that performs
5033 * thread migration by bumping thread off CPU then 'pushing' onto
5034 * another runqueue.
5035 */
95cdf3b7 5036static int migration_thread(void *data)
1da177e4 5037{
1da177e4 5038 int cpu = (long)data;
70b97a7f 5039 struct rq *rq;
1da177e4
LT
5040
5041 rq = cpu_rq(cpu);
5042 BUG_ON(rq->migration_thread != current);
5043
5044 set_current_state(TASK_INTERRUPTIBLE);
5045 while (!kthread_should_stop()) {
70b97a7f 5046 struct migration_req *req;
1da177e4 5047 struct list_head *head;
1da177e4 5048
1da177e4
LT
5049 spin_lock_irq(&rq->lock);
5050
5051 if (cpu_is_offline(cpu)) {
5052 spin_unlock_irq(&rq->lock);
5053 goto wait_to_die;
5054 }
5055
5056 if (rq->active_balance) {
5057 active_load_balance(rq, cpu);
5058 rq->active_balance = 0;
5059 }
5060
5061 head = &rq->migration_queue;
5062
5063 if (list_empty(head)) {
5064 spin_unlock_irq(&rq->lock);
5065 schedule();
5066 set_current_state(TASK_INTERRUPTIBLE);
5067 continue;
5068 }
70b97a7f 5069 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5070 list_del_init(head->next);
5071
674311d5
NP
5072 spin_unlock(&rq->lock);
5073 __migrate_task(req->task, cpu, req->dest_cpu);
5074 local_irq_enable();
1da177e4
LT
5075
5076 complete(&req->done);
5077 }
5078 __set_current_state(TASK_RUNNING);
5079 return 0;
5080
5081wait_to_die:
5082 /* Wait for kthread_stop */
5083 set_current_state(TASK_INTERRUPTIBLE);
5084 while (!kthread_should_stop()) {
5085 schedule();
5086 set_current_state(TASK_INTERRUPTIBLE);
5087 }
5088 __set_current_state(TASK_RUNNING);
5089 return 0;
5090}
5091
5092#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5093/*
5094 * Figure out where task on dead CPU should go, use force if neccessary.
5095 * NOTE: interrupts should be disabled by the caller
5096 */
48f24c4d 5097static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5098{
efc30814 5099 unsigned long flags;
1da177e4 5100 cpumask_t mask;
70b97a7f
IM
5101 struct rq *rq;
5102 int dest_cpu;
1da177e4 5103
efc30814 5104restart:
1da177e4
LT
5105 /* On same node? */
5106 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5107 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5108 dest_cpu = any_online_cpu(mask);
5109
5110 /* On any allowed CPU? */
5111 if (dest_cpu == NR_CPUS)
48f24c4d 5112 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5113
5114 /* No more Mr. Nice Guy. */
5115 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5116 rq = task_rq_lock(p, &flags);
5117 cpus_setall(p->cpus_allowed);
5118 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5119 task_rq_unlock(rq, &flags);
1da177e4
LT
5120
5121 /*
5122 * Don't tell them about moving exiting tasks or
5123 * kernel threads (both mm NULL), since they never
5124 * leave kernel.
5125 */
48f24c4d 5126 if (p->mm && printk_ratelimit())
1da177e4
LT
5127 printk(KERN_INFO "process %d (%s) no "
5128 "longer affine to cpu%d\n",
48f24c4d 5129 p->pid, p->comm, dead_cpu);
1da177e4 5130 }
48f24c4d 5131 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5132 goto restart;
1da177e4
LT
5133}
5134
5135/*
5136 * While a dead CPU has no uninterruptible tasks queued at this point,
5137 * it might still have a nonzero ->nr_uninterruptible counter, because
5138 * for performance reasons the counter is not stricly tracking tasks to
5139 * their home CPUs. So we just add the counter to another CPU's counter,
5140 * to keep the global sum constant after CPU-down:
5141 */
70b97a7f 5142static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5143{
70b97a7f 5144 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5145 unsigned long flags;
5146
5147 local_irq_save(flags);
5148 double_rq_lock(rq_src, rq_dest);
5149 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5150 rq_src->nr_uninterruptible = 0;
5151 double_rq_unlock(rq_src, rq_dest);
5152 local_irq_restore(flags);
5153}
5154
5155/* Run through task list and migrate tasks from the dead cpu. */
5156static void migrate_live_tasks(int src_cpu)
5157{
48f24c4d 5158 struct task_struct *p, *t;
1da177e4
LT
5159
5160 write_lock_irq(&tasklist_lock);
5161
48f24c4d
IM
5162 do_each_thread(t, p) {
5163 if (p == current)
1da177e4
LT
5164 continue;
5165
48f24c4d
IM
5166 if (task_cpu(p) == src_cpu)
5167 move_task_off_dead_cpu(src_cpu, p);
5168 } while_each_thread(t, p);
1da177e4
LT
5169
5170 write_unlock_irq(&tasklist_lock);
5171}
5172
dd41f596
IM
5173/*
5174 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5175 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5176 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5177 */
5178void sched_idle_next(void)
5179{
48f24c4d 5180 int this_cpu = smp_processor_id();
70b97a7f 5181 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5182 struct task_struct *p = rq->idle;
5183 unsigned long flags;
5184
5185 /* cpu has to be offline */
48f24c4d 5186 BUG_ON(cpu_online(this_cpu));
1da177e4 5187
48f24c4d
IM
5188 /*
5189 * Strictly not necessary since rest of the CPUs are stopped by now
5190 * and interrupts disabled on the current cpu.
1da177e4
LT
5191 */
5192 spin_lock_irqsave(&rq->lock, flags);
5193
dd41f596 5194 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5195
5196 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5197 activate_idle_task(p, rq);
1da177e4
LT
5198
5199 spin_unlock_irqrestore(&rq->lock, flags);
5200}
5201
48f24c4d
IM
5202/*
5203 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5204 * offline.
5205 */
5206void idle_task_exit(void)
5207{
5208 struct mm_struct *mm = current->active_mm;
5209
5210 BUG_ON(cpu_online(smp_processor_id()));
5211
5212 if (mm != &init_mm)
5213 switch_mm(mm, &init_mm, current);
5214 mmdrop(mm);
5215}
5216
054b9108 5217/* called under rq->lock with disabled interrupts */
36c8b586 5218static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5219{
70b97a7f 5220 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5221
5222 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5223 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5224
5225 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5226 BUG_ON(p->state == TASK_DEAD);
1da177e4 5227
48f24c4d 5228 get_task_struct(p);
1da177e4
LT
5229
5230 /*
5231 * Drop lock around migration; if someone else moves it,
5232 * that's OK. No task can be added to this CPU, so iteration is
5233 * fine.
054b9108 5234 * NOTE: interrupts should be left disabled --dev@
1da177e4 5235 */
054b9108 5236 spin_unlock(&rq->lock);
48f24c4d 5237 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5238 spin_lock(&rq->lock);
1da177e4 5239
48f24c4d 5240 put_task_struct(p);
1da177e4
LT
5241}
5242
5243/* release_task() removes task from tasklist, so we won't find dead tasks. */
5244static void migrate_dead_tasks(unsigned int dead_cpu)
5245{
70b97a7f 5246 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5247 struct task_struct *next;
48f24c4d 5248
dd41f596
IM
5249 for ( ; ; ) {
5250 if (!rq->nr_running)
5251 break;
a8e504d2 5252 update_rq_clock(rq);
ff95f3df 5253 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5254 if (!next)
5255 break;
5256 migrate_dead(dead_cpu, next);
e692ab53 5257
1da177e4
LT
5258 }
5259}
5260#endif /* CONFIG_HOTPLUG_CPU */
5261
e692ab53
NP
5262#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5263
5264static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5265 {
5266 .procname = "sched_domain",
c57baf1e 5267 .mode = 0555,
e0361851 5268 },
e692ab53
NP
5269 {0,},
5270};
5271
5272static struct ctl_table sd_ctl_root[] = {
e0361851 5273 {
c57baf1e 5274 .ctl_name = CTL_KERN,
e0361851 5275 .procname = "kernel",
c57baf1e 5276 .mode = 0555,
e0361851
AD
5277 .child = sd_ctl_dir,
5278 },
e692ab53
NP
5279 {0,},
5280};
5281
5282static struct ctl_table *sd_alloc_ctl_entry(int n)
5283{
5284 struct ctl_table *entry =
5285 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5286
5287 BUG_ON(!entry);
5288 memset(entry, 0, n * sizeof(struct ctl_table));
5289
5290 return entry;
5291}
5292
5293static void
e0361851 5294set_table_entry(struct ctl_table *entry,
e692ab53
NP
5295 const char *procname, void *data, int maxlen,
5296 mode_t mode, proc_handler *proc_handler)
5297{
e692ab53
NP
5298 entry->procname = procname;
5299 entry->data = data;
5300 entry->maxlen = maxlen;
5301 entry->mode = mode;
5302 entry->proc_handler = proc_handler;
5303}
5304
5305static struct ctl_table *
5306sd_alloc_ctl_domain_table(struct sched_domain *sd)
5307{
5308 struct ctl_table *table = sd_alloc_ctl_entry(14);
5309
e0361851 5310 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5311 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5312 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5313 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5314 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5315 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5316 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5317 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5318 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5319 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5320 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5321 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5322 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5323 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5324 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5325 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5326 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5327 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5328 set_table_entry(&table[10], "cache_nice_tries",
e692ab53
NP
5329 &sd->cache_nice_tries,
5330 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5331 set_table_entry(&table[12], "flags", &sd->flags,
e692ab53
NP
5332 sizeof(int), 0644, proc_dointvec_minmax);
5333
5334 return table;
5335}
5336
5337static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5338{
5339 struct ctl_table *entry, *table;
5340 struct sched_domain *sd;
5341 int domain_num = 0, i;
5342 char buf[32];
5343
5344 for_each_domain(cpu, sd)
5345 domain_num++;
5346 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5347
5348 i = 0;
5349 for_each_domain(cpu, sd) {
5350 snprintf(buf, 32, "domain%d", i);
e692ab53 5351 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5352 entry->mode = 0555;
e692ab53
NP
5353 entry->child = sd_alloc_ctl_domain_table(sd);
5354 entry++;
5355 i++;
5356 }
5357 return table;
5358}
5359
5360static struct ctl_table_header *sd_sysctl_header;
5361static void init_sched_domain_sysctl(void)
5362{
5363 int i, cpu_num = num_online_cpus();
5364 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5365 char buf[32];
5366
5367 sd_ctl_dir[0].child = entry;
5368
5369 for (i = 0; i < cpu_num; i++, entry++) {
5370 snprintf(buf, 32, "cpu%d", i);
e692ab53 5371 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5372 entry->mode = 0555;
e692ab53
NP
5373 entry->child = sd_alloc_ctl_cpu_table(i);
5374 }
5375 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5376}
5377#else
5378static void init_sched_domain_sysctl(void)
5379{
5380}
5381#endif
5382
1da177e4
LT
5383/*
5384 * migration_call - callback that gets triggered when a CPU is added.
5385 * Here we can start up the necessary migration thread for the new CPU.
5386 */
48f24c4d
IM
5387static int __cpuinit
5388migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5389{
1da177e4 5390 struct task_struct *p;
48f24c4d 5391 int cpu = (long)hcpu;
1da177e4 5392 unsigned long flags;
70b97a7f 5393 struct rq *rq;
1da177e4
LT
5394
5395 switch (action) {
5be9361c
GS
5396 case CPU_LOCK_ACQUIRE:
5397 mutex_lock(&sched_hotcpu_mutex);
5398 break;
5399
1da177e4 5400 case CPU_UP_PREPARE:
8bb78442 5401 case CPU_UP_PREPARE_FROZEN:
dd41f596 5402 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5403 if (IS_ERR(p))
5404 return NOTIFY_BAD;
1da177e4
LT
5405 kthread_bind(p, cpu);
5406 /* Must be high prio: stop_machine expects to yield to it. */
5407 rq = task_rq_lock(p, &flags);
dd41f596 5408 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5409 task_rq_unlock(rq, &flags);
5410 cpu_rq(cpu)->migration_thread = p;
5411 break;
48f24c4d 5412
1da177e4 5413 case CPU_ONLINE:
8bb78442 5414 case CPU_ONLINE_FROZEN:
1da177e4
LT
5415 /* Strictly unneccessary, as first user will wake it. */
5416 wake_up_process(cpu_rq(cpu)->migration_thread);
5417 break;
48f24c4d 5418
1da177e4
LT
5419#ifdef CONFIG_HOTPLUG_CPU
5420 case CPU_UP_CANCELED:
8bb78442 5421 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5422 if (!cpu_rq(cpu)->migration_thread)
5423 break;
1da177e4 5424 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5425 kthread_bind(cpu_rq(cpu)->migration_thread,
5426 any_online_cpu(cpu_online_map));
1da177e4
LT
5427 kthread_stop(cpu_rq(cpu)->migration_thread);
5428 cpu_rq(cpu)->migration_thread = NULL;
5429 break;
48f24c4d 5430
1da177e4 5431 case CPU_DEAD:
8bb78442 5432 case CPU_DEAD_FROZEN:
1da177e4
LT
5433 migrate_live_tasks(cpu);
5434 rq = cpu_rq(cpu);
5435 kthread_stop(rq->migration_thread);
5436 rq->migration_thread = NULL;
5437 /* Idle task back to normal (off runqueue, low prio) */
5438 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5439 update_rq_clock(rq);
2e1cb74a 5440 deactivate_task(rq, rq->idle, 0);
1da177e4 5441 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5442 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5443 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5444 migrate_dead_tasks(cpu);
5445 task_rq_unlock(rq, &flags);
5446 migrate_nr_uninterruptible(rq);
5447 BUG_ON(rq->nr_running != 0);
5448
5449 /* No need to migrate the tasks: it was best-effort if
5be9361c 5450 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5451 * the requestors. */
5452 spin_lock_irq(&rq->lock);
5453 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5454 struct migration_req *req;
5455
1da177e4 5456 req = list_entry(rq->migration_queue.next,
70b97a7f 5457 struct migration_req, list);
1da177e4
LT
5458 list_del_init(&req->list);
5459 complete(&req->done);
5460 }
5461 spin_unlock_irq(&rq->lock);
5462 break;
5463#endif
5be9361c
GS
5464 case CPU_LOCK_RELEASE:
5465 mutex_unlock(&sched_hotcpu_mutex);
5466 break;
1da177e4
LT
5467 }
5468 return NOTIFY_OK;
5469}
5470
5471/* Register at highest priority so that task migration (migrate_all_tasks)
5472 * happens before everything else.
5473 */
26c2143b 5474static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5475 .notifier_call = migration_call,
5476 .priority = 10
5477};
5478
5479int __init migration_init(void)
5480{
5481 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5482 int err;
48f24c4d
IM
5483
5484 /* Start one for the boot CPU: */
07dccf33
AM
5485 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5486 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5487 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5488 register_cpu_notifier(&migration_notifier);
48f24c4d 5489
1da177e4
LT
5490 return 0;
5491}
5492#endif
5493
5494#ifdef CONFIG_SMP
476f3534
CL
5495
5496/* Number of possible processor ids */
5497int nr_cpu_ids __read_mostly = NR_CPUS;
5498EXPORT_SYMBOL(nr_cpu_ids);
5499
1a20ff27 5500#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5501#ifdef SCHED_DOMAIN_DEBUG
5502static void sched_domain_debug(struct sched_domain *sd, int cpu)
5503{
5504 int level = 0;
5505
41c7ce9a
NP
5506 if (!sd) {
5507 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5508 return;
5509 }
5510
1da177e4
LT
5511 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5512
5513 do {
5514 int i;
5515 char str[NR_CPUS];
5516 struct sched_group *group = sd->groups;
5517 cpumask_t groupmask;
5518
5519 cpumask_scnprintf(str, NR_CPUS, sd->span);
5520 cpus_clear(groupmask);
5521
5522 printk(KERN_DEBUG);
5523 for (i = 0; i < level + 1; i++)
5524 printk(" ");
5525 printk("domain %d: ", level);
5526
5527 if (!(sd->flags & SD_LOAD_BALANCE)) {
5528 printk("does not load-balance\n");
5529 if (sd->parent)
33859f7f
MOS
5530 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5531 " has parent");
1da177e4
LT
5532 break;
5533 }
5534
5535 printk("span %s\n", str);
5536
5537 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5538 printk(KERN_ERR "ERROR: domain->span does not contain "
5539 "CPU%d\n", cpu);
1da177e4 5540 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5541 printk(KERN_ERR "ERROR: domain->groups does not contain"
5542 " CPU%d\n", cpu);
1da177e4
LT
5543
5544 printk(KERN_DEBUG);
5545 for (i = 0; i < level + 2; i++)
5546 printk(" ");
5547 printk("groups:");
5548 do {
5549 if (!group) {
5550 printk("\n");
5551 printk(KERN_ERR "ERROR: group is NULL\n");
5552 break;
5553 }
5554
5517d86b 5555 if (!group->__cpu_power) {
1da177e4 5556 printk("\n");
33859f7f
MOS
5557 printk(KERN_ERR "ERROR: domain->cpu_power not "
5558 "set\n");
1da177e4
LT
5559 }
5560
5561 if (!cpus_weight(group->cpumask)) {
5562 printk("\n");
5563 printk(KERN_ERR "ERROR: empty group\n");
5564 }
5565
5566 if (cpus_intersects(groupmask, group->cpumask)) {
5567 printk("\n");
5568 printk(KERN_ERR "ERROR: repeated CPUs\n");
5569 }
5570
5571 cpus_or(groupmask, groupmask, group->cpumask);
5572
5573 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5574 printk(" %s", str);
5575
5576 group = group->next;
5577 } while (group != sd->groups);
5578 printk("\n");
5579
5580 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5581 printk(KERN_ERR "ERROR: groups don't span "
5582 "domain->span\n");
1da177e4
LT
5583
5584 level++;
5585 sd = sd->parent;
33859f7f
MOS
5586 if (!sd)
5587 continue;
1da177e4 5588
33859f7f
MOS
5589 if (!cpus_subset(groupmask, sd->span))
5590 printk(KERN_ERR "ERROR: parent span is not a superset "
5591 "of domain->span\n");
1da177e4
LT
5592
5593 } while (sd);
5594}
5595#else
48f24c4d 5596# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5597#endif
5598
1a20ff27 5599static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5600{
5601 if (cpus_weight(sd->span) == 1)
5602 return 1;
5603
5604 /* Following flags need at least 2 groups */
5605 if (sd->flags & (SD_LOAD_BALANCE |
5606 SD_BALANCE_NEWIDLE |
5607 SD_BALANCE_FORK |
89c4710e
SS
5608 SD_BALANCE_EXEC |
5609 SD_SHARE_CPUPOWER |
5610 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5611 if (sd->groups != sd->groups->next)
5612 return 0;
5613 }
5614
5615 /* Following flags don't use groups */
5616 if (sd->flags & (SD_WAKE_IDLE |
5617 SD_WAKE_AFFINE |
5618 SD_WAKE_BALANCE))
5619 return 0;
5620
5621 return 1;
5622}
5623
48f24c4d
IM
5624static int
5625sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5626{
5627 unsigned long cflags = sd->flags, pflags = parent->flags;
5628
5629 if (sd_degenerate(parent))
5630 return 1;
5631
5632 if (!cpus_equal(sd->span, parent->span))
5633 return 0;
5634
5635 /* Does parent contain flags not in child? */
5636 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5637 if (cflags & SD_WAKE_AFFINE)
5638 pflags &= ~SD_WAKE_BALANCE;
5639 /* Flags needing groups don't count if only 1 group in parent */
5640 if (parent->groups == parent->groups->next) {
5641 pflags &= ~(SD_LOAD_BALANCE |
5642 SD_BALANCE_NEWIDLE |
5643 SD_BALANCE_FORK |
89c4710e
SS
5644 SD_BALANCE_EXEC |
5645 SD_SHARE_CPUPOWER |
5646 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5647 }
5648 if (~cflags & pflags)
5649 return 0;
5650
5651 return 1;
5652}
5653
1da177e4
LT
5654/*
5655 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5656 * hold the hotplug lock.
5657 */
9c1cfda2 5658static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5659{
70b97a7f 5660 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5661 struct sched_domain *tmp;
5662
5663 /* Remove the sched domains which do not contribute to scheduling. */
5664 for (tmp = sd; tmp; tmp = tmp->parent) {
5665 struct sched_domain *parent = tmp->parent;
5666 if (!parent)
5667 break;
1a848870 5668 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5669 tmp->parent = parent->parent;
1a848870
SS
5670 if (parent->parent)
5671 parent->parent->child = tmp;
5672 }
245af2c7
SS
5673 }
5674
1a848870 5675 if (sd && sd_degenerate(sd)) {
245af2c7 5676 sd = sd->parent;
1a848870
SS
5677 if (sd)
5678 sd->child = NULL;
5679 }
1da177e4
LT
5680
5681 sched_domain_debug(sd, cpu);
5682
674311d5 5683 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5684}
5685
5686/* cpus with isolated domains */
67af63a6 5687static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5688
5689/* Setup the mask of cpus configured for isolated domains */
5690static int __init isolated_cpu_setup(char *str)
5691{
5692 int ints[NR_CPUS], i;
5693
5694 str = get_options(str, ARRAY_SIZE(ints), ints);
5695 cpus_clear(cpu_isolated_map);
5696 for (i = 1; i <= ints[0]; i++)
5697 if (ints[i] < NR_CPUS)
5698 cpu_set(ints[i], cpu_isolated_map);
5699 return 1;
5700}
5701
5702__setup ("isolcpus=", isolated_cpu_setup);
5703
5704/*
6711cab4
SS
5705 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5706 * to a function which identifies what group(along with sched group) a CPU
5707 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5708 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5709 *
5710 * init_sched_build_groups will build a circular linked list of the groups
5711 * covered by the given span, and will set each group's ->cpumask correctly,
5712 * and ->cpu_power to 0.
5713 */
a616058b 5714static void
6711cab4
SS
5715init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5716 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5717 struct sched_group **sg))
1da177e4
LT
5718{
5719 struct sched_group *first = NULL, *last = NULL;
5720 cpumask_t covered = CPU_MASK_NONE;
5721 int i;
5722
5723 for_each_cpu_mask(i, span) {
6711cab4
SS
5724 struct sched_group *sg;
5725 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5726 int j;
5727
5728 if (cpu_isset(i, covered))
5729 continue;
5730
5731 sg->cpumask = CPU_MASK_NONE;
5517d86b 5732 sg->__cpu_power = 0;
1da177e4
LT
5733
5734 for_each_cpu_mask(j, span) {
6711cab4 5735 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5736 continue;
5737
5738 cpu_set(j, covered);
5739 cpu_set(j, sg->cpumask);
5740 }
5741 if (!first)
5742 first = sg;
5743 if (last)
5744 last->next = sg;
5745 last = sg;
5746 }
5747 last->next = first;
5748}
5749
9c1cfda2 5750#define SD_NODES_PER_DOMAIN 16
1da177e4 5751
9c1cfda2 5752#ifdef CONFIG_NUMA
198e2f18 5753
9c1cfda2
JH
5754/**
5755 * find_next_best_node - find the next node to include in a sched_domain
5756 * @node: node whose sched_domain we're building
5757 * @used_nodes: nodes already in the sched_domain
5758 *
5759 * Find the next node to include in a given scheduling domain. Simply
5760 * finds the closest node not already in the @used_nodes map.
5761 *
5762 * Should use nodemask_t.
5763 */
5764static int find_next_best_node(int node, unsigned long *used_nodes)
5765{
5766 int i, n, val, min_val, best_node = 0;
5767
5768 min_val = INT_MAX;
5769
5770 for (i = 0; i < MAX_NUMNODES; i++) {
5771 /* Start at @node */
5772 n = (node + i) % MAX_NUMNODES;
5773
5774 if (!nr_cpus_node(n))
5775 continue;
5776
5777 /* Skip already used nodes */
5778 if (test_bit(n, used_nodes))
5779 continue;
5780
5781 /* Simple min distance search */
5782 val = node_distance(node, n);
5783
5784 if (val < min_val) {
5785 min_val = val;
5786 best_node = n;
5787 }
5788 }
5789
5790 set_bit(best_node, used_nodes);
5791 return best_node;
5792}
5793
5794/**
5795 * sched_domain_node_span - get a cpumask for a node's sched_domain
5796 * @node: node whose cpumask we're constructing
5797 * @size: number of nodes to include in this span
5798 *
5799 * Given a node, construct a good cpumask for its sched_domain to span. It
5800 * should be one that prevents unnecessary balancing, but also spreads tasks
5801 * out optimally.
5802 */
5803static cpumask_t sched_domain_node_span(int node)
5804{
9c1cfda2 5805 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5806 cpumask_t span, nodemask;
5807 int i;
9c1cfda2
JH
5808
5809 cpus_clear(span);
5810 bitmap_zero(used_nodes, MAX_NUMNODES);
5811
5812 nodemask = node_to_cpumask(node);
5813 cpus_or(span, span, nodemask);
5814 set_bit(node, used_nodes);
5815
5816 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5817 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5818
9c1cfda2
JH
5819 nodemask = node_to_cpumask(next_node);
5820 cpus_or(span, span, nodemask);
5821 }
5822
5823 return span;
5824}
5825#endif
5826
5c45bf27 5827int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5828
9c1cfda2 5829/*
48f24c4d 5830 * SMT sched-domains:
9c1cfda2 5831 */
1da177e4
LT
5832#ifdef CONFIG_SCHED_SMT
5833static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5834static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5835
6711cab4
SS
5836static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5837 struct sched_group **sg)
1da177e4 5838{
6711cab4
SS
5839 if (sg)
5840 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5841 return cpu;
5842}
5843#endif
5844
48f24c4d
IM
5845/*
5846 * multi-core sched-domains:
5847 */
1e9f28fa
SS
5848#ifdef CONFIG_SCHED_MC
5849static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5850static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5851#endif
5852
5853#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5854static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5855 struct sched_group **sg)
1e9f28fa 5856{
6711cab4 5857 int group;
a616058b
SS
5858 cpumask_t mask = cpu_sibling_map[cpu];
5859 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5860 group = first_cpu(mask);
5861 if (sg)
5862 *sg = &per_cpu(sched_group_core, group);
5863 return group;
1e9f28fa
SS
5864}
5865#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5866static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5867 struct sched_group **sg)
1e9f28fa 5868{
6711cab4
SS
5869 if (sg)
5870 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5871 return cpu;
5872}
5873#endif
5874
1da177e4 5875static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5876static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5877
6711cab4
SS
5878static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5879 struct sched_group **sg)
1da177e4 5880{
6711cab4 5881 int group;
48f24c4d 5882#ifdef CONFIG_SCHED_MC
1e9f28fa 5883 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5884 cpus_and(mask, mask, *cpu_map);
6711cab4 5885 group = first_cpu(mask);
1e9f28fa 5886#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5887 cpumask_t mask = cpu_sibling_map[cpu];
5888 cpus_and(mask, mask, *cpu_map);
6711cab4 5889 group = first_cpu(mask);
1da177e4 5890#else
6711cab4 5891 group = cpu;
1da177e4 5892#endif
6711cab4
SS
5893 if (sg)
5894 *sg = &per_cpu(sched_group_phys, group);
5895 return group;
1da177e4
LT
5896}
5897
5898#ifdef CONFIG_NUMA
1da177e4 5899/*
9c1cfda2
JH
5900 * The init_sched_build_groups can't handle what we want to do with node
5901 * groups, so roll our own. Now each node has its own list of groups which
5902 * gets dynamically allocated.
1da177e4 5903 */
9c1cfda2 5904static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5905static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5906
9c1cfda2 5907static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5908static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5909
6711cab4
SS
5910static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5911 struct sched_group **sg)
9c1cfda2 5912{
6711cab4
SS
5913 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5914 int group;
5915
5916 cpus_and(nodemask, nodemask, *cpu_map);
5917 group = first_cpu(nodemask);
5918
5919 if (sg)
5920 *sg = &per_cpu(sched_group_allnodes, group);
5921 return group;
1da177e4 5922}
6711cab4 5923
08069033
SS
5924static void init_numa_sched_groups_power(struct sched_group *group_head)
5925{
5926 struct sched_group *sg = group_head;
5927 int j;
5928
5929 if (!sg)
5930 return;
5931next_sg:
5932 for_each_cpu_mask(j, sg->cpumask) {
5933 struct sched_domain *sd;
5934
5935 sd = &per_cpu(phys_domains, j);
5936 if (j != first_cpu(sd->groups->cpumask)) {
5937 /*
5938 * Only add "power" once for each
5939 * physical package.
5940 */
5941 continue;
5942 }
5943
5517d86b 5944 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5945 }
5946 sg = sg->next;
5947 if (sg != group_head)
5948 goto next_sg;
5949}
1da177e4
LT
5950#endif
5951
a616058b 5952#ifdef CONFIG_NUMA
51888ca2
SV
5953/* Free memory allocated for various sched_group structures */
5954static void free_sched_groups(const cpumask_t *cpu_map)
5955{
a616058b 5956 int cpu, i;
51888ca2
SV
5957
5958 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5959 struct sched_group **sched_group_nodes
5960 = sched_group_nodes_bycpu[cpu];
5961
51888ca2
SV
5962 if (!sched_group_nodes)
5963 continue;
5964
5965 for (i = 0; i < MAX_NUMNODES; i++) {
5966 cpumask_t nodemask = node_to_cpumask(i);
5967 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5968
5969 cpus_and(nodemask, nodemask, *cpu_map);
5970 if (cpus_empty(nodemask))
5971 continue;
5972
5973 if (sg == NULL)
5974 continue;
5975 sg = sg->next;
5976next_sg:
5977 oldsg = sg;
5978 sg = sg->next;
5979 kfree(oldsg);
5980 if (oldsg != sched_group_nodes[i])
5981 goto next_sg;
5982 }
5983 kfree(sched_group_nodes);
5984 sched_group_nodes_bycpu[cpu] = NULL;
5985 }
51888ca2 5986}
a616058b
SS
5987#else
5988static void free_sched_groups(const cpumask_t *cpu_map)
5989{
5990}
5991#endif
51888ca2 5992
89c4710e
SS
5993/*
5994 * Initialize sched groups cpu_power.
5995 *
5996 * cpu_power indicates the capacity of sched group, which is used while
5997 * distributing the load between different sched groups in a sched domain.
5998 * Typically cpu_power for all the groups in a sched domain will be same unless
5999 * there are asymmetries in the topology. If there are asymmetries, group
6000 * having more cpu_power will pickup more load compared to the group having
6001 * less cpu_power.
6002 *
6003 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6004 * the maximum number of tasks a group can handle in the presence of other idle
6005 * or lightly loaded groups in the same sched domain.
6006 */
6007static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6008{
6009 struct sched_domain *child;
6010 struct sched_group *group;
6011
6012 WARN_ON(!sd || !sd->groups);
6013
6014 if (cpu != first_cpu(sd->groups->cpumask))
6015 return;
6016
6017 child = sd->child;
6018
5517d86b
ED
6019 sd->groups->__cpu_power = 0;
6020
89c4710e
SS
6021 /*
6022 * For perf policy, if the groups in child domain share resources
6023 * (for example cores sharing some portions of the cache hierarchy
6024 * or SMT), then set this domain groups cpu_power such that each group
6025 * can handle only one task, when there are other idle groups in the
6026 * same sched domain.
6027 */
6028 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6029 (child->flags &
6030 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6031 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6032 return;
6033 }
6034
89c4710e
SS
6035 /*
6036 * add cpu_power of each child group to this groups cpu_power
6037 */
6038 group = child->groups;
6039 do {
5517d86b 6040 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6041 group = group->next;
6042 } while (group != child->groups);
6043}
6044
1da177e4 6045/*
1a20ff27
DG
6046 * Build sched domains for a given set of cpus and attach the sched domains
6047 * to the individual cpus
1da177e4 6048 */
51888ca2 6049static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6050{
6051 int i;
d1b55138
JH
6052#ifdef CONFIG_NUMA
6053 struct sched_group **sched_group_nodes = NULL;
6711cab4 6054 int sd_allnodes = 0;
d1b55138
JH
6055
6056 /*
6057 * Allocate the per-node list of sched groups
6058 */
dd41f596 6059 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6060 GFP_KERNEL);
d1b55138
JH
6061 if (!sched_group_nodes) {
6062 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6063 return -ENOMEM;
d1b55138
JH
6064 }
6065 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6066#endif
1da177e4
LT
6067
6068 /*
1a20ff27 6069 * Set up domains for cpus specified by the cpu_map.
1da177e4 6070 */
1a20ff27 6071 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6072 struct sched_domain *sd = NULL, *p;
6073 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6074
1a20ff27 6075 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6076
6077#ifdef CONFIG_NUMA
dd41f596
IM
6078 if (cpus_weight(*cpu_map) >
6079 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6080 sd = &per_cpu(allnodes_domains, i);
6081 *sd = SD_ALLNODES_INIT;
6082 sd->span = *cpu_map;
6711cab4 6083 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6084 p = sd;
6711cab4 6085 sd_allnodes = 1;
9c1cfda2
JH
6086 } else
6087 p = NULL;
6088
1da177e4 6089 sd = &per_cpu(node_domains, i);
1da177e4 6090 *sd = SD_NODE_INIT;
9c1cfda2
JH
6091 sd->span = sched_domain_node_span(cpu_to_node(i));
6092 sd->parent = p;
1a848870
SS
6093 if (p)
6094 p->child = sd;
9c1cfda2 6095 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6096#endif
6097
6098 p = sd;
6099 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6100 *sd = SD_CPU_INIT;
6101 sd->span = nodemask;
6102 sd->parent = p;
1a848870
SS
6103 if (p)
6104 p->child = sd;
6711cab4 6105 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6106
1e9f28fa
SS
6107#ifdef CONFIG_SCHED_MC
6108 p = sd;
6109 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6110 *sd = SD_MC_INIT;
6111 sd->span = cpu_coregroup_map(i);
6112 cpus_and(sd->span, sd->span, *cpu_map);
6113 sd->parent = p;
1a848870 6114 p->child = sd;
6711cab4 6115 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6116#endif
6117
1da177e4
LT
6118#ifdef CONFIG_SCHED_SMT
6119 p = sd;
6120 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6121 *sd = SD_SIBLING_INIT;
6122 sd->span = cpu_sibling_map[i];
1a20ff27 6123 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6124 sd->parent = p;
1a848870 6125 p->child = sd;
6711cab4 6126 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6127#endif
6128 }
6129
6130#ifdef CONFIG_SCHED_SMT
6131 /* Set up CPU (sibling) groups */
9c1cfda2 6132 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6133 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6134 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6135 if (i != first_cpu(this_sibling_map))
6136 continue;
6137
dd41f596
IM
6138 init_sched_build_groups(this_sibling_map, cpu_map,
6139 &cpu_to_cpu_group);
1da177e4
LT
6140 }
6141#endif
6142
1e9f28fa
SS
6143#ifdef CONFIG_SCHED_MC
6144 /* Set up multi-core groups */
6145 for_each_cpu_mask(i, *cpu_map) {
6146 cpumask_t this_core_map = cpu_coregroup_map(i);
6147 cpus_and(this_core_map, this_core_map, *cpu_map);
6148 if (i != first_cpu(this_core_map))
6149 continue;
dd41f596
IM
6150 init_sched_build_groups(this_core_map, cpu_map,
6151 &cpu_to_core_group);
1e9f28fa
SS
6152 }
6153#endif
6154
1da177e4
LT
6155 /* Set up physical groups */
6156 for (i = 0; i < MAX_NUMNODES; i++) {
6157 cpumask_t nodemask = node_to_cpumask(i);
6158
1a20ff27 6159 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6160 if (cpus_empty(nodemask))
6161 continue;
6162
6711cab4 6163 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6164 }
6165
6166#ifdef CONFIG_NUMA
6167 /* Set up node groups */
6711cab4 6168 if (sd_allnodes)
dd41f596
IM
6169 init_sched_build_groups(*cpu_map, cpu_map,
6170 &cpu_to_allnodes_group);
9c1cfda2
JH
6171
6172 for (i = 0; i < MAX_NUMNODES; i++) {
6173 /* Set up node groups */
6174 struct sched_group *sg, *prev;
6175 cpumask_t nodemask = node_to_cpumask(i);
6176 cpumask_t domainspan;
6177 cpumask_t covered = CPU_MASK_NONE;
6178 int j;
6179
6180 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6181 if (cpus_empty(nodemask)) {
6182 sched_group_nodes[i] = NULL;
9c1cfda2 6183 continue;
d1b55138 6184 }
9c1cfda2
JH
6185
6186 domainspan = sched_domain_node_span(i);
6187 cpus_and(domainspan, domainspan, *cpu_map);
6188
15f0b676 6189 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6190 if (!sg) {
6191 printk(KERN_WARNING "Can not alloc domain group for "
6192 "node %d\n", i);
6193 goto error;
6194 }
9c1cfda2
JH
6195 sched_group_nodes[i] = sg;
6196 for_each_cpu_mask(j, nodemask) {
6197 struct sched_domain *sd;
9761eea8 6198
9c1cfda2
JH
6199 sd = &per_cpu(node_domains, j);
6200 sd->groups = sg;
9c1cfda2 6201 }
5517d86b 6202 sg->__cpu_power = 0;
9c1cfda2 6203 sg->cpumask = nodemask;
51888ca2 6204 sg->next = sg;
9c1cfda2
JH
6205 cpus_or(covered, covered, nodemask);
6206 prev = sg;
6207
6208 for (j = 0; j < MAX_NUMNODES; j++) {
6209 cpumask_t tmp, notcovered;
6210 int n = (i + j) % MAX_NUMNODES;
6211
6212 cpus_complement(notcovered, covered);
6213 cpus_and(tmp, notcovered, *cpu_map);
6214 cpus_and(tmp, tmp, domainspan);
6215 if (cpus_empty(tmp))
6216 break;
6217
6218 nodemask = node_to_cpumask(n);
6219 cpus_and(tmp, tmp, nodemask);
6220 if (cpus_empty(tmp))
6221 continue;
6222
15f0b676
SV
6223 sg = kmalloc_node(sizeof(struct sched_group),
6224 GFP_KERNEL, i);
9c1cfda2
JH
6225 if (!sg) {
6226 printk(KERN_WARNING
6227 "Can not alloc domain group for node %d\n", j);
51888ca2 6228 goto error;
9c1cfda2 6229 }
5517d86b 6230 sg->__cpu_power = 0;
9c1cfda2 6231 sg->cpumask = tmp;
51888ca2 6232 sg->next = prev->next;
9c1cfda2
JH
6233 cpus_or(covered, covered, tmp);
6234 prev->next = sg;
6235 prev = sg;
6236 }
9c1cfda2 6237 }
1da177e4
LT
6238#endif
6239
6240 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6241#ifdef CONFIG_SCHED_SMT
1a20ff27 6242 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6243 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6244
89c4710e 6245 init_sched_groups_power(i, sd);
5c45bf27 6246 }
1da177e4 6247#endif
1e9f28fa 6248#ifdef CONFIG_SCHED_MC
5c45bf27 6249 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6250 struct sched_domain *sd = &per_cpu(core_domains, i);
6251
89c4710e 6252 init_sched_groups_power(i, sd);
5c45bf27
SS
6253 }
6254#endif
1e9f28fa 6255
5c45bf27 6256 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6257 struct sched_domain *sd = &per_cpu(phys_domains, i);
6258
89c4710e 6259 init_sched_groups_power(i, sd);
1da177e4
LT
6260 }
6261
9c1cfda2 6262#ifdef CONFIG_NUMA
08069033
SS
6263 for (i = 0; i < MAX_NUMNODES; i++)
6264 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6265
6711cab4
SS
6266 if (sd_allnodes) {
6267 struct sched_group *sg;
f712c0c7 6268
6711cab4 6269 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6270 init_numa_sched_groups_power(sg);
6271 }
9c1cfda2
JH
6272#endif
6273
1da177e4 6274 /* Attach the domains */
1a20ff27 6275 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6276 struct sched_domain *sd;
6277#ifdef CONFIG_SCHED_SMT
6278 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6279#elif defined(CONFIG_SCHED_MC)
6280 sd = &per_cpu(core_domains, i);
1da177e4
LT
6281#else
6282 sd = &per_cpu(phys_domains, i);
6283#endif
6284 cpu_attach_domain(sd, i);
6285 }
51888ca2
SV
6286
6287 return 0;
6288
a616058b 6289#ifdef CONFIG_NUMA
51888ca2
SV
6290error:
6291 free_sched_groups(cpu_map);
6292 return -ENOMEM;
a616058b 6293#endif
1da177e4 6294}
1a20ff27
DG
6295/*
6296 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6297 */
51888ca2 6298static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6299{
6300 cpumask_t cpu_default_map;
51888ca2 6301 int err;
1da177e4 6302
1a20ff27
DG
6303 /*
6304 * Setup mask for cpus without special case scheduling requirements.
6305 * For now this just excludes isolated cpus, but could be used to
6306 * exclude other special cases in the future.
6307 */
6308 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6309
51888ca2
SV
6310 err = build_sched_domains(&cpu_default_map);
6311
6312 return err;
1a20ff27
DG
6313}
6314
6315static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6316{
51888ca2 6317 free_sched_groups(cpu_map);
9c1cfda2 6318}
1da177e4 6319
1a20ff27
DG
6320/*
6321 * Detach sched domains from a group of cpus specified in cpu_map
6322 * These cpus will now be attached to the NULL domain
6323 */
858119e1 6324static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6325{
6326 int i;
6327
6328 for_each_cpu_mask(i, *cpu_map)
6329 cpu_attach_domain(NULL, i);
6330 synchronize_sched();
6331 arch_destroy_sched_domains(cpu_map);
6332}
6333
6334/*
6335 * Partition sched domains as specified by the cpumasks below.
6336 * This attaches all cpus from the cpumasks to the NULL domain,
6337 * waits for a RCU quiescent period, recalculates sched
6338 * domain information and then attaches them back to the
6339 * correct sched domains
6340 * Call with hotplug lock held
6341 */
51888ca2 6342int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6343{
6344 cpumask_t change_map;
51888ca2 6345 int err = 0;
1a20ff27
DG
6346
6347 cpus_and(*partition1, *partition1, cpu_online_map);
6348 cpus_and(*partition2, *partition2, cpu_online_map);
6349 cpus_or(change_map, *partition1, *partition2);
6350
6351 /* Detach sched domains from all of the affected cpus */
6352 detach_destroy_domains(&change_map);
6353 if (!cpus_empty(*partition1))
51888ca2
SV
6354 err = build_sched_domains(partition1);
6355 if (!err && !cpus_empty(*partition2))
6356 err = build_sched_domains(partition2);
6357
6358 return err;
1a20ff27
DG
6359}
6360
5c45bf27 6361#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6362static int arch_reinit_sched_domains(void)
5c45bf27
SS
6363{
6364 int err;
6365
5be9361c 6366 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6367 detach_destroy_domains(&cpu_online_map);
6368 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6369 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6370
6371 return err;
6372}
6373
6374static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6375{
6376 int ret;
6377
6378 if (buf[0] != '0' && buf[0] != '1')
6379 return -EINVAL;
6380
6381 if (smt)
6382 sched_smt_power_savings = (buf[0] == '1');
6383 else
6384 sched_mc_power_savings = (buf[0] == '1');
6385
6386 ret = arch_reinit_sched_domains();
6387
6388 return ret ? ret : count;
6389}
6390
5c45bf27
SS
6391#ifdef CONFIG_SCHED_MC
6392static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6393{
6394 return sprintf(page, "%u\n", sched_mc_power_savings);
6395}
48f24c4d
IM
6396static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6397 const char *buf, size_t count)
5c45bf27
SS
6398{
6399 return sched_power_savings_store(buf, count, 0);
6400}
6707de00
AB
6401static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6402 sched_mc_power_savings_store);
5c45bf27
SS
6403#endif
6404
6405#ifdef CONFIG_SCHED_SMT
6406static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6407{
6408 return sprintf(page, "%u\n", sched_smt_power_savings);
6409}
48f24c4d
IM
6410static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6411 const char *buf, size_t count)
5c45bf27
SS
6412{
6413 return sched_power_savings_store(buf, count, 1);
6414}
6707de00
AB
6415static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6416 sched_smt_power_savings_store);
6417#endif
6418
6419int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6420{
6421 int err = 0;
6422
6423#ifdef CONFIG_SCHED_SMT
6424 if (smt_capable())
6425 err = sysfs_create_file(&cls->kset.kobj,
6426 &attr_sched_smt_power_savings.attr);
6427#endif
6428#ifdef CONFIG_SCHED_MC
6429 if (!err && mc_capable())
6430 err = sysfs_create_file(&cls->kset.kobj,
6431 &attr_sched_mc_power_savings.attr);
6432#endif
6433 return err;
6434}
5c45bf27
SS
6435#endif
6436
1da177e4
LT
6437/*
6438 * Force a reinitialization of the sched domains hierarchy. The domains
6439 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6440 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6441 * which will prevent rebalancing while the sched domains are recalculated.
6442 */
6443static int update_sched_domains(struct notifier_block *nfb,
6444 unsigned long action, void *hcpu)
6445{
1da177e4
LT
6446 switch (action) {
6447 case CPU_UP_PREPARE:
8bb78442 6448 case CPU_UP_PREPARE_FROZEN:
1da177e4 6449 case CPU_DOWN_PREPARE:
8bb78442 6450 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6451 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6452 return NOTIFY_OK;
6453
6454 case CPU_UP_CANCELED:
8bb78442 6455 case CPU_UP_CANCELED_FROZEN:
1da177e4 6456 case CPU_DOWN_FAILED:
8bb78442 6457 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6458 case CPU_ONLINE:
8bb78442 6459 case CPU_ONLINE_FROZEN:
1da177e4 6460 case CPU_DEAD:
8bb78442 6461 case CPU_DEAD_FROZEN:
1da177e4
LT
6462 /*
6463 * Fall through and re-initialise the domains.
6464 */
6465 break;
6466 default:
6467 return NOTIFY_DONE;
6468 }
6469
6470 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6471 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6472
6473 return NOTIFY_OK;
6474}
1da177e4
LT
6475
6476void __init sched_init_smp(void)
6477{
5c1e1767
NP
6478 cpumask_t non_isolated_cpus;
6479
5be9361c 6480 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6481 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6482 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6483 if (cpus_empty(non_isolated_cpus))
6484 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6485 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6486 /* XXX: Theoretical race here - CPU may be hotplugged now */
6487 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6488
e692ab53
NP
6489 init_sched_domain_sysctl();
6490
5c1e1767
NP
6491 /* Move init over to a non-isolated CPU */
6492 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6493 BUG();
dd41f596 6494 sched_init_granularity();
1da177e4
LT
6495}
6496#else
6497void __init sched_init_smp(void)
6498{
dd41f596 6499 sched_init_granularity();
1da177e4
LT
6500}
6501#endif /* CONFIG_SMP */
6502
6503int in_sched_functions(unsigned long addr)
6504{
6505 /* Linker adds these: start and end of __sched functions */
6506 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6507
1da177e4
LT
6508 return in_lock_functions(addr) ||
6509 (addr >= (unsigned long)__sched_text_start
6510 && addr < (unsigned long)__sched_text_end);
6511}
6512
dd41f596
IM
6513static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6514{
6515 cfs_rq->tasks_timeline = RB_ROOT;
6516 cfs_rq->fair_clock = 1;
6517#ifdef CONFIG_FAIR_GROUP_SCHED
6518 cfs_rq->rq = rq;
6519#endif
6520}
6521
1da177e4
LT
6522void __init sched_init(void)
6523{
dd41f596 6524 u64 now = sched_clock();
476f3534 6525 int highest_cpu = 0;
dd41f596
IM
6526 int i, j;
6527
6528 /*
6529 * Link up the scheduling class hierarchy:
6530 */
6531 rt_sched_class.next = &fair_sched_class;
6532 fair_sched_class.next = &idle_sched_class;
6533 idle_sched_class.next = NULL;
1da177e4 6534
0a945022 6535 for_each_possible_cpu(i) {
dd41f596 6536 struct rt_prio_array *array;
70b97a7f 6537 struct rq *rq;
1da177e4
LT
6538
6539 rq = cpu_rq(i);
6540 spin_lock_init(&rq->lock);
fcb99371 6541 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6542 rq->nr_running = 0;
dd41f596
IM
6543 rq->clock = 1;
6544 init_cfs_rq(&rq->cfs, rq);
6545#ifdef CONFIG_FAIR_GROUP_SCHED
6546 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6547 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6548#endif
6549 rq->ls.load_update_last = now;
6550 rq->ls.load_update_start = now;
1da177e4 6551
dd41f596
IM
6552 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6553 rq->cpu_load[j] = 0;
1da177e4 6554#ifdef CONFIG_SMP
41c7ce9a 6555 rq->sd = NULL;
1da177e4 6556 rq->active_balance = 0;
dd41f596 6557 rq->next_balance = jiffies;
1da177e4 6558 rq->push_cpu = 0;
0a2966b4 6559 rq->cpu = i;
1da177e4
LT
6560 rq->migration_thread = NULL;
6561 INIT_LIST_HEAD(&rq->migration_queue);
6562#endif
6563 atomic_set(&rq->nr_iowait, 0);
6564
dd41f596
IM
6565 array = &rq->rt.active;
6566 for (j = 0; j < MAX_RT_PRIO; j++) {
6567 INIT_LIST_HEAD(array->queue + j);
6568 __clear_bit(j, array->bitmap);
1da177e4 6569 }
476f3534 6570 highest_cpu = i;
dd41f596
IM
6571 /* delimiter for bitsearch: */
6572 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6573 }
6574
2dd73a4f 6575 set_load_weight(&init_task);
b50f60ce 6576
e107be36
AK
6577#ifdef CONFIG_PREEMPT_NOTIFIERS
6578 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6579#endif
6580
c9819f45 6581#ifdef CONFIG_SMP
476f3534 6582 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6583 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6584#endif
6585
b50f60ce
HC
6586#ifdef CONFIG_RT_MUTEXES
6587 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6588#endif
6589
1da177e4
LT
6590 /*
6591 * The boot idle thread does lazy MMU switching as well:
6592 */
6593 atomic_inc(&init_mm.mm_count);
6594 enter_lazy_tlb(&init_mm, current);
6595
6596 /*
6597 * Make us the idle thread. Technically, schedule() should not be
6598 * called from this thread, however somewhere below it might be,
6599 * but because we are the idle thread, we just pick up running again
6600 * when this runqueue becomes "idle".
6601 */
6602 init_idle(current, smp_processor_id());
dd41f596
IM
6603 /*
6604 * During early bootup we pretend to be a normal task:
6605 */
6606 current->sched_class = &fair_sched_class;
1da177e4
LT
6607}
6608
6609#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6610void __might_sleep(char *file, int line)
6611{
48f24c4d 6612#ifdef in_atomic
1da177e4
LT
6613 static unsigned long prev_jiffy; /* ratelimiting */
6614
6615 if ((in_atomic() || irqs_disabled()) &&
6616 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6617 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6618 return;
6619 prev_jiffy = jiffies;
91368d73 6620 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6621 " context at %s:%d\n", file, line);
6622 printk("in_atomic():%d, irqs_disabled():%d\n",
6623 in_atomic(), irqs_disabled());
a4c410f0 6624 debug_show_held_locks(current);
3117df04
IM
6625 if (irqs_disabled())
6626 print_irqtrace_events(current);
1da177e4
LT
6627 dump_stack();
6628 }
6629#endif
6630}
6631EXPORT_SYMBOL(__might_sleep);
6632#endif
6633
6634#ifdef CONFIG_MAGIC_SYSRQ
6635void normalize_rt_tasks(void)
6636{
a0f98a1c 6637 struct task_struct *g, *p;
1da177e4 6638 unsigned long flags;
70b97a7f 6639 struct rq *rq;
dd41f596 6640 int on_rq;
1da177e4
LT
6641
6642 read_lock_irq(&tasklist_lock);
a0f98a1c 6643 do_each_thread(g, p) {
dd41f596
IM
6644 p->se.fair_key = 0;
6645 p->se.wait_runtime = 0;
6cfb0d5d 6646 p->se.exec_start = 0;
dd41f596 6647 p->se.wait_start_fair = 0;
6cfb0d5d
IM
6648 p->se.sleep_start_fair = 0;
6649#ifdef CONFIG_SCHEDSTATS
dd41f596 6650 p->se.wait_start = 0;
dd41f596 6651 p->se.sleep_start = 0;
dd41f596 6652 p->se.block_start = 0;
6cfb0d5d 6653#endif
dd41f596
IM
6654 task_rq(p)->cfs.fair_clock = 0;
6655 task_rq(p)->clock = 0;
6656
6657 if (!rt_task(p)) {
6658 /*
6659 * Renice negative nice level userspace
6660 * tasks back to 0:
6661 */
6662 if (TASK_NICE(p) < 0 && p->mm)
6663 set_user_nice(p, 0);
1da177e4 6664 continue;
dd41f596 6665 }
1da177e4 6666
b29739f9
IM
6667 spin_lock_irqsave(&p->pi_lock, flags);
6668 rq = __task_rq_lock(p);
dd41f596
IM
6669#ifdef CONFIG_SMP
6670 /*
6671 * Do not touch the migration thread:
6672 */
6673 if (p == rq->migration_thread)
6674 goto out_unlock;
6675#endif
1da177e4 6676
2daa3577 6677 update_rq_clock(rq);
dd41f596 6678 on_rq = p->se.on_rq;
2daa3577
IM
6679 if (on_rq)
6680 deactivate_task(rq, p, 0);
dd41f596
IM
6681 __setscheduler(rq, p, SCHED_NORMAL, 0);
6682 if (on_rq) {
2daa3577 6683 activate_task(rq, p, 0);
1da177e4
LT
6684 resched_task(rq->curr);
6685 }
dd41f596
IM
6686#ifdef CONFIG_SMP
6687 out_unlock:
6688#endif
b29739f9
IM
6689 __task_rq_unlock(rq);
6690 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6691 } while_each_thread(g, p);
6692
1da177e4
LT
6693 read_unlock_irq(&tasklist_lock);
6694}
6695
6696#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6697
6698#ifdef CONFIG_IA64
6699/*
6700 * These functions are only useful for the IA64 MCA handling.
6701 *
6702 * They can only be called when the whole system has been
6703 * stopped - every CPU needs to be quiescent, and no scheduling
6704 * activity can take place. Using them for anything else would
6705 * be a serious bug, and as a result, they aren't even visible
6706 * under any other configuration.
6707 */
6708
6709/**
6710 * curr_task - return the current task for a given cpu.
6711 * @cpu: the processor in question.
6712 *
6713 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6714 */
36c8b586 6715struct task_struct *curr_task(int cpu)
1df5c10a
LT
6716{
6717 return cpu_curr(cpu);
6718}
6719
6720/**
6721 * set_curr_task - set the current task for a given cpu.
6722 * @cpu: the processor in question.
6723 * @p: the task pointer to set.
6724 *
6725 * Description: This function must only be used when non-maskable interrupts
6726 * are serviced on a separate stack. It allows the architecture to switch the
6727 * notion of the current task on a cpu in a non-blocking manner. This function
6728 * must be called with all CPU's synchronized, and interrupts disabled, the
6729 * and caller must save the original value of the current task (see
6730 * curr_task() above) and restore that value before reenabling interrupts and
6731 * re-starting the system.
6732 *
6733 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6734 */
36c8b586 6735void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6736{
6737 cpu_curr(cpu) = p;
6738}
6739
6740#endif