]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched.c
sched: clean up some unused variables
[mirror_ubuntu-jammy-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
6e0534f2
GH
77#include "sched_cpupri.h"
78
1da177e4
LT
79/*
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
83 */
84#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87
88/*
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
92 */
93#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96
97/*
d7876a08 98 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 99 */
d6322faf 100#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
d0b27fa7
PZ
113/*
114 * single value that denotes runtime == period, ie unlimited time.
115 */
116#define RUNTIME_INF ((u64)~0ULL)
117
5517d86b
ED
118#ifdef CONFIG_SMP
119/*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124{
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126}
127
128/*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133{
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136}
137#endif
138
e05606d3
IM
139static inline int rt_policy(int policy)
140{
3f33a7ce 141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
142 return 1;
143 return 0;
144}
145
146static inline int task_has_rt_policy(struct task_struct *p)
147{
148 return rt_policy(p->policy);
149}
150
1da177e4 151/*
6aa645ea 152 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 153 */
6aa645ea
IM
154struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
20b6331b 156 struct list_head queue[MAX_RT_PRIO];
6aa645ea
IM
157};
158
d0b27fa7 159struct rt_bandwidth {
ea736ed5
IM
160 /* nests inside the rq lock: */
161 spinlock_t rt_runtime_lock;
162 ktime_t rt_period;
163 u64 rt_runtime;
164 struct hrtimer rt_period_timer;
d0b27fa7
PZ
165};
166
167static struct rt_bandwidth def_rt_bandwidth;
168
169static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
170
171static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
172{
173 struct rt_bandwidth *rt_b =
174 container_of(timer, struct rt_bandwidth, rt_period_timer);
175 ktime_t now;
176 int overrun;
177 int idle = 0;
178
179 for (;;) {
180 now = hrtimer_cb_get_time(timer);
181 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
182
183 if (!overrun)
184 break;
185
186 idle = do_sched_rt_period_timer(rt_b, overrun);
187 }
188
189 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
190}
191
192static
193void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
194{
195 rt_b->rt_period = ns_to_ktime(period);
196 rt_b->rt_runtime = runtime;
197
ac086bc2
PZ
198 spin_lock_init(&rt_b->rt_runtime_lock);
199
d0b27fa7
PZ
200 hrtimer_init(&rt_b->rt_period_timer,
201 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
202 rt_b->rt_period_timer.function = sched_rt_period_timer;
203 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
204}
205
206static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
207{
208 ktime_t now;
209
210 if (rt_b->rt_runtime == RUNTIME_INF)
211 return;
212
213 if (hrtimer_active(&rt_b->rt_period_timer))
214 return;
215
216 spin_lock(&rt_b->rt_runtime_lock);
217 for (;;) {
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 break;
220
221 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
222 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
223 hrtimer_start(&rt_b->rt_period_timer,
224 rt_b->rt_period_timer.expires,
225 HRTIMER_MODE_ABS);
226 }
227 spin_unlock(&rt_b->rt_runtime_lock);
228}
229
230#ifdef CONFIG_RT_GROUP_SCHED
231static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
232{
233 hrtimer_cancel(&rt_b->rt_period_timer);
234}
235#endif
236
712555ee
HC
237/*
238 * sched_domains_mutex serializes calls to arch_init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
240 */
241static DEFINE_MUTEX(sched_domains_mutex);
242
052f1dc7 243#ifdef CONFIG_GROUP_SCHED
29f59db3 244
68318b8e
SV
245#include <linux/cgroup.h>
246
29f59db3
SV
247struct cfs_rq;
248
6f505b16
PZ
249static LIST_HEAD(task_groups);
250
29f59db3 251/* task group related information */
4cf86d77 252struct task_group {
052f1dc7 253#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
254 struct cgroup_subsys_state css;
255#endif
052f1dc7
PZ
256
257#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
052f1dc7
PZ
263#endif
264
265#ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
d0b27fa7 269 struct rt_bandwidth rt_bandwidth;
052f1dc7 270#endif
6b2d7700 271
ae8393e5 272 struct rcu_head rcu;
6f505b16 273 struct list_head list;
f473aa5e
PZ
274
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
29f59db3
SV
278};
279
354d60c2 280#ifdef CONFIG_USER_SCHED
eff766a6
PZ
281
282/*
283 * Root task group.
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
286 */
287struct task_group root_task_group;
288
052f1dc7 289#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
290/* Default task group's sched entity on each cpu */
291static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292/* Default task group's cfs_rq on each cpu */
293static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 294#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
295
296#ifdef CONFIG_RT_GROUP_SCHED
297static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
299#endif /* CONFIG_RT_GROUP_SCHED */
300#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 301#define root_task_group init_task_group
6d6bc0ad 302#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 303
8ed36996 304/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
305 * a task group's cpu shares.
306 */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
052f1dc7 309#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
310#ifdef CONFIG_USER_SCHED
311# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 312#else /* !CONFIG_USER_SCHED */
052f1dc7 313# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 314#endif /* CONFIG_USER_SCHED */
052f1dc7 315
cb4ad1ff 316/*
2e084786
LJ
317 * A weight of 0 or 1 can cause arithmetics problems.
318 * A weight of a cfs_rq is the sum of weights of which entities
319 * are queued on this cfs_rq, so a weight of a entity should not be
320 * too large, so as the shares value of a task group.
cb4ad1ff
MX
321 * (The default weight is 1024 - so there's no practical
322 * limitation from this.)
323 */
18d95a28 324#define MIN_SHARES 2
2e084786 325#define MAX_SHARES (1UL << 18)
18d95a28 326
052f1dc7
PZ
327static int init_task_group_load = INIT_TASK_GROUP_LOAD;
328#endif
329
29f59db3 330/* Default task group.
3a252015 331 * Every task in system belong to this group at bootup.
29f59db3 332 */
434d53b0 333struct task_group init_task_group;
29f59db3
SV
334
335/* return group to which a task belongs */
4cf86d77 336static inline struct task_group *task_group(struct task_struct *p)
29f59db3 337{
4cf86d77 338 struct task_group *tg;
9b5b7751 339
052f1dc7 340#ifdef CONFIG_USER_SCHED
24e377a8 341 tg = p->user->tg;
052f1dc7 342#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
343 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
344 struct task_group, css);
24e377a8 345#else
41a2d6cf 346 tg = &init_task_group;
24e377a8 347#endif
9b5b7751 348 return tg;
29f59db3
SV
349}
350
351/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 352static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 353{
052f1dc7 354#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
355 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
356 p->se.parent = task_group(p)->se[cpu];
052f1dc7 357#endif
6f505b16 358
052f1dc7 359#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
360 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
361 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 362#endif
29f59db3
SV
363}
364
365#else
366
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 368
052f1dc7 369#endif /* CONFIG_GROUP_SCHED */
29f59db3 370
6aa645ea
IM
371/* CFS-related fields in a runqueue */
372struct cfs_rq {
373 struct load_weight load;
374 unsigned long nr_running;
375
6aa645ea 376 u64 exec_clock;
e9acbff6 377 u64 min_vruntime;
6aa645ea
IM
378
379 struct rb_root tasks_timeline;
380 struct rb_node *rb_leftmost;
4a55bd5e
PZ
381
382 struct list_head tasks;
383 struct list_head *balance_iterator;
384
385 /*
386 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
387 * It is set to NULL otherwise (i.e when none are currently running).
388 */
aa2ac252 389 struct sched_entity *curr, *next;
ddc97297
PZ
390
391 unsigned long nr_spread_over;
392
62160e3f 393#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
394 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
395
41a2d6cf
IM
396 /*
397 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
398 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
399 * (like users, containers etc.)
400 *
401 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
402 * list is used during load balance.
403 */
41a2d6cf
IM
404 struct list_head leaf_cfs_rq_list;
405 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
406#endif
407};
1da177e4 408
6aa645ea
IM
409/* Real-Time classes' related field in a runqueue: */
410struct rt_rq {
411 struct rt_prio_array active;
63489e45 412 unsigned long rt_nr_running;
052f1dc7 413#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
414 int highest_prio; /* highest queued rt task prio */
415#endif
fa85ae24 416#ifdef CONFIG_SMP
73fe6aae 417 unsigned long rt_nr_migratory;
a22d7fc1 418 int overloaded;
fa85ae24 419#endif
6f505b16 420 int rt_throttled;
fa85ae24 421 u64 rt_time;
ac086bc2 422 u64 rt_runtime;
ea736ed5 423 /* Nests inside the rq lock: */
ac086bc2 424 spinlock_t rt_runtime_lock;
6f505b16 425
052f1dc7 426#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
427 unsigned long rt_nr_boosted;
428
6f505b16
PZ
429 struct rq *rq;
430 struct list_head leaf_rt_rq_list;
431 struct task_group *tg;
432 struct sched_rt_entity *rt_se;
433#endif
6aa645ea
IM
434};
435
57d885fe
GH
436#ifdef CONFIG_SMP
437
438/*
439 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
440 * variables. Each exclusive cpuset essentially defines an island domain by
441 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
442 * exclusive cpuset is created, we also create and attach a new root-domain
443 * object.
444 *
57d885fe
GH
445 */
446struct root_domain {
447 atomic_t refcount;
448 cpumask_t span;
449 cpumask_t online;
637f5085 450
0eab9146 451 /*
637f5085
GH
452 * The "RT overload" flag: it gets set if a CPU has more than
453 * one runnable RT task.
454 */
455 cpumask_t rto_mask;
0eab9146 456 atomic_t rto_count;
6e0534f2
GH
457#ifdef CONFIG_SMP
458 struct cpupri cpupri;
459#endif
57d885fe
GH
460};
461
dc938520
GH
462/*
463 * By default the system creates a single root-domain with all cpus as
464 * members (mimicking the global state we have today).
465 */
57d885fe
GH
466static struct root_domain def_root_domain;
467
468#endif
469
1da177e4
LT
470/*
471 * This is the main, per-CPU runqueue data structure.
472 *
473 * Locking rule: those places that want to lock multiple runqueues
474 * (such as the load balancing or the thread migration code), lock
475 * acquire operations must be ordered by ascending &runqueue.
476 */
70b97a7f 477struct rq {
d8016491
IM
478 /* runqueue lock: */
479 spinlock_t lock;
1da177e4
LT
480
481 /*
482 * nr_running and cpu_load should be in the same cacheline because
483 * remote CPUs use both these fields when doing load calculation.
484 */
485 unsigned long nr_running;
6aa645ea
IM
486 #define CPU_LOAD_IDX_MAX 5
487 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 488 unsigned char idle_at_tick;
46cb4b7c 489#ifdef CONFIG_NO_HZ
15934a37 490 unsigned long last_tick_seen;
46cb4b7c
SS
491 unsigned char in_nohz_recently;
492#endif
d8016491
IM
493 /* capture load from *all* tasks on this cpu: */
494 struct load_weight load;
6aa645ea
IM
495 unsigned long nr_load_updates;
496 u64 nr_switches;
497
498 struct cfs_rq cfs;
6f505b16 499 struct rt_rq rt;
6f505b16 500
6aa645ea 501#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
502 /* list of leaf cfs_rq on this cpu: */
503 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
504#endif
505#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 506 struct list_head leaf_rt_rq_list;
1da177e4 507#endif
1da177e4
LT
508
509 /*
510 * This is part of a global counter where only the total sum
511 * over all CPUs matters. A task can increase this counter on
512 * one CPU and if it got migrated afterwards it may decrease
513 * it on another CPU. Always updated under the runqueue lock:
514 */
515 unsigned long nr_uninterruptible;
516
36c8b586 517 struct task_struct *curr, *idle;
c9819f45 518 unsigned long next_balance;
1da177e4 519 struct mm_struct *prev_mm;
6aa645ea 520
3e51f33f 521 u64 clock;
6aa645ea 522
1da177e4
LT
523 atomic_t nr_iowait;
524
525#ifdef CONFIG_SMP
0eab9146 526 struct root_domain *rd;
1da177e4
LT
527 struct sched_domain *sd;
528
529 /* For active balancing */
530 int active_balance;
531 int push_cpu;
d8016491
IM
532 /* cpu of this runqueue: */
533 int cpu;
1f11eb6a 534 int online;
1da177e4 535
36c8b586 536 struct task_struct *migration_thread;
1da177e4
LT
537 struct list_head migration_queue;
538#endif
539
8f4d37ec
PZ
540#ifdef CONFIG_SCHED_HRTICK
541 unsigned long hrtick_flags;
542 ktime_t hrtick_expire;
543 struct hrtimer hrtick_timer;
544#endif
545
1da177e4
LT
546#ifdef CONFIG_SCHEDSTATS
547 /* latency stats */
548 struct sched_info rq_sched_info;
549
550 /* sys_sched_yield() stats */
480b9434
KC
551 unsigned int yld_exp_empty;
552 unsigned int yld_act_empty;
553 unsigned int yld_both_empty;
554 unsigned int yld_count;
1da177e4
LT
555
556 /* schedule() stats */
480b9434
KC
557 unsigned int sched_switch;
558 unsigned int sched_count;
559 unsigned int sched_goidle;
1da177e4
LT
560
561 /* try_to_wake_up() stats */
480b9434
KC
562 unsigned int ttwu_count;
563 unsigned int ttwu_local;
b8efb561
IM
564
565 /* BKL stats */
480b9434 566 unsigned int bkl_count;
1da177e4 567#endif
fcb99371 568 struct lock_class_key rq_lock_key;
1da177e4
LT
569};
570
f34e3b61 571static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 572
dd41f596
IM
573static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
574{
575 rq->curr->sched_class->check_preempt_curr(rq, p);
576}
577
0a2966b4
CL
578static inline int cpu_of(struct rq *rq)
579{
580#ifdef CONFIG_SMP
581 return rq->cpu;
582#else
583 return 0;
584#endif
585}
586
674311d5
NP
587/*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 589 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
48f24c4d
IM
594#define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
596
597#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598#define this_rq() (&__get_cpu_var(runqueues))
599#define task_rq(p) cpu_rq(task_cpu(p))
600#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601
3e51f33f
PZ
602static inline void update_rq_clock(struct rq *rq)
603{
604 rq->clock = sched_clock_cpu(cpu_of(rq));
605}
606
bf5c91ba
IM
607/*
608 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
609 */
610#ifdef CONFIG_SCHED_DEBUG
611# define const_debug __read_mostly
612#else
613# define const_debug static const
614#endif
615
616/*
617 * Debugging: various feature bits
618 */
f00b45c1
PZ
619
620#define SCHED_FEAT(name, enabled) \
621 __SCHED_FEAT_##name ,
622
bf5c91ba 623enum {
f00b45c1 624#include "sched_features.h"
bf5c91ba
IM
625};
626
f00b45c1
PZ
627#undef SCHED_FEAT
628
629#define SCHED_FEAT(name, enabled) \
630 (1UL << __SCHED_FEAT_##name) * enabled |
631
bf5c91ba 632const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
633#include "sched_features.h"
634 0;
635
636#undef SCHED_FEAT
637
638#ifdef CONFIG_SCHED_DEBUG
639#define SCHED_FEAT(name, enabled) \
640 #name ,
641
983ed7a6 642static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
643#include "sched_features.h"
644 NULL
645};
646
647#undef SCHED_FEAT
648
983ed7a6 649static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
650{
651 filp->private_data = inode->i_private;
652 return 0;
653}
654
655static ssize_t
656sched_feat_read(struct file *filp, char __user *ubuf,
657 size_t cnt, loff_t *ppos)
658{
659 char *buf;
660 int r = 0;
661 int len = 0;
662 int i;
663
664 for (i = 0; sched_feat_names[i]; i++) {
665 len += strlen(sched_feat_names[i]);
666 len += 4;
667 }
668
669 buf = kmalloc(len + 2, GFP_KERNEL);
670 if (!buf)
671 return -ENOMEM;
672
673 for (i = 0; sched_feat_names[i]; i++) {
674 if (sysctl_sched_features & (1UL << i))
675 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
676 else
c24b7c52 677 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
678 }
679
680 r += sprintf(buf + r, "\n");
681 WARN_ON(r >= len + 2);
682
683 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
684
685 kfree(buf);
686
687 return r;
688}
689
690static ssize_t
691sched_feat_write(struct file *filp, const char __user *ubuf,
692 size_t cnt, loff_t *ppos)
693{
694 char buf[64];
695 char *cmp = buf;
696 int neg = 0;
697 int i;
698
699 if (cnt > 63)
700 cnt = 63;
701
702 if (copy_from_user(&buf, ubuf, cnt))
703 return -EFAULT;
704
705 buf[cnt] = 0;
706
c24b7c52 707 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
708 neg = 1;
709 cmp += 3;
710 }
711
712 for (i = 0; sched_feat_names[i]; i++) {
713 int len = strlen(sched_feat_names[i]);
714
715 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
716 if (neg)
717 sysctl_sched_features &= ~(1UL << i);
718 else
719 sysctl_sched_features |= (1UL << i);
720 break;
721 }
722 }
723
724 if (!sched_feat_names[i])
725 return -EINVAL;
726
727 filp->f_pos += cnt;
728
729 return cnt;
730}
731
732static struct file_operations sched_feat_fops = {
733 .open = sched_feat_open,
734 .read = sched_feat_read,
735 .write = sched_feat_write,
736};
737
738static __init int sched_init_debug(void)
739{
f00b45c1
PZ
740 debugfs_create_file("sched_features", 0644, NULL, NULL,
741 &sched_feat_fops);
742
743 return 0;
744}
745late_initcall(sched_init_debug);
746
747#endif
748
749#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 750
b82d9fdd
PZ
751/*
752 * Number of tasks to iterate in a single balance run.
753 * Limited because this is done with IRQs disabled.
754 */
755const_debug unsigned int sysctl_sched_nr_migrate = 32;
756
fa85ae24 757/*
9f0c1e56 758 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
759 * default: 1s
760 */
9f0c1e56 761unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 762
6892b75e
IM
763static __read_mostly int scheduler_running;
764
9f0c1e56
PZ
765/*
766 * part of the period that we allow rt tasks to run in us.
767 * default: 0.95s
768 */
769int sysctl_sched_rt_runtime = 950000;
fa85ae24 770
d0b27fa7
PZ
771static inline u64 global_rt_period(void)
772{
773 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
774}
775
776static inline u64 global_rt_runtime(void)
777{
778 if (sysctl_sched_rt_period < 0)
779 return RUNTIME_INF;
780
781 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
782}
fa85ae24 783
690229a0 784unsigned long long time_sync_thresh = 100000;
27ec4407
IM
785
786static DEFINE_PER_CPU(unsigned long long, time_offset);
787static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
788
e436d800 789/*
27ec4407
IM
790 * Global lock which we take every now and then to synchronize
791 * the CPUs time. This method is not warp-safe, but it's good
792 * enough to synchronize slowly diverging time sources and thus
793 * it's good enough for tracing:
e436d800 794 */
27ec4407
IM
795static DEFINE_SPINLOCK(time_sync_lock);
796static unsigned long long prev_global_time;
797
dfbf4a1b 798static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
27ec4407 799{
dfbf4a1b
IM
800 /*
801 * We want this inlined, to not get tracer function calls
802 * in this critical section:
803 */
804 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
805 __raw_spin_lock(&time_sync_lock.raw_lock);
27ec4407
IM
806
807 if (time < prev_global_time) {
808 per_cpu(time_offset, cpu) += prev_global_time - time;
809 time = prev_global_time;
810 } else {
811 prev_global_time = time;
812 }
813
dfbf4a1b
IM
814 __raw_spin_unlock(&time_sync_lock.raw_lock);
815 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
27ec4407
IM
816
817 return time;
818}
819
820static unsigned long long __cpu_clock(int cpu)
e436d800 821{
e436d800 822 unsigned long long now;
e436d800 823
8ced5f69
IM
824 /*
825 * Only call sched_clock() if the scheduler has already been
826 * initialized (some code might call cpu_clock() very early):
827 */
6892b75e
IM
828 if (unlikely(!scheduler_running))
829 return 0;
830
3e51f33f 831 now = sched_clock_cpu(cpu);
e436d800
IM
832
833 return now;
834}
27ec4407
IM
835
836/*
837 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
838 * clock constructed from sched_clock():
839 */
840unsigned long long cpu_clock(int cpu)
841{
842 unsigned long long prev_cpu_time, time, delta_time;
dfbf4a1b 843 unsigned long flags;
27ec4407 844
dfbf4a1b 845 local_irq_save(flags);
27ec4407
IM
846 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
847 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
848 delta_time = time-prev_cpu_time;
849
dfbf4a1b 850 if (unlikely(delta_time > time_sync_thresh)) {
27ec4407 851 time = __sync_cpu_clock(time, cpu);
dfbf4a1b
IM
852 per_cpu(prev_cpu_time, cpu) = time;
853 }
854 local_irq_restore(flags);
27ec4407
IM
855
856 return time;
857}
a58f6f25 858EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 859
1da177e4 860#ifndef prepare_arch_switch
4866cde0
NP
861# define prepare_arch_switch(next) do { } while (0)
862#endif
863#ifndef finish_arch_switch
864# define finish_arch_switch(prev) do { } while (0)
865#endif
866
051a1d1a
DA
867static inline int task_current(struct rq *rq, struct task_struct *p)
868{
869 return rq->curr == p;
870}
871
4866cde0 872#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 874{
051a1d1a 875 return task_current(rq, p);
4866cde0
NP
876}
877
70b97a7f 878static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
879{
880}
881
70b97a7f 882static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 883{
da04c035
IM
884#ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887#endif
8a25d5de
IM
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
4866cde0
NP
895 spin_unlock_irq(&rq->lock);
896}
897
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 899static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 return p->oncpu;
903#else
051a1d1a 904 return task_current(rq, p);
4866cde0
NP
905#endif
906}
907
70b97a7f 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
909{
910#ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
916 next->oncpu = 1;
917#endif
918#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 spin_unlock_irq(&rq->lock);
920#else
921 spin_unlock(&rq->lock);
922#endif
923}
924
70b97a7f 925static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
926{
927#ifdef CONFIG_SMP
928 /*
929 * After ->oncpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
934 prev->oncpu = 0;
935#endif
936#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
1da177e4 938#endif
4866cde0
NP
939}
940#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 941
b29739f9
IM
942/*
943 * __task_rq_lock - lock the runqueue a given task resides on.
944 * Must be called interrupts disabled.
945 */
70b97a7f 946static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
947 __acquires(rq->lock)
948{
3a5c359a
AK
949 for (;;) {
950 struct rq *rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
b29739f9 954 spin_unlock(&rq->lock);
b29739f9 955 }
b29739f9
IM
956}
957
1da177e4
LT
958/*
959 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 960 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
961 * explicitly disabling preemption.
962 */
70b97a7f 963static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
964 __acquires(rq->lock)
965{
70b97a7f 966 struct rq *rq;
1da177e4 967
3a5c359a
AK
968 for (;;) {
969 local_irq_save(*flags);
970 rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
1da177e4 974 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 975 }
1da177e4
LT
976}
977
a9957449 978static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
979 __releases(rq->lock)
980{
981 spin_unlock(&rq->lock);
982}
983
70b97a7f 984static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
985 __releases(rq->lock)
986{
987 spin_unlock_irqrestore(&rq->lock, *flags);
988}
989
1da177e4 990/*
cc2a73b5 991 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 992 */
a9957449 993static struct rq *this_rq_lock(void)
1da177e4
LT
994 __acquires(rq->lock)
995{
70b97a7f 996 struct rq *rq;
1da177e4
LT
997
998 local_irq_disable();
999 rq = this_rq();
1000 spin_lock(&rq->lock);
1001
1002 return rq;
1003}
1004
8f4d37ec
PZ
1005static void __resched_task(struct task_struct *p, int tif_bit);
1006
1007static inline void resched_task(struct task_struct *p)
1008{
1009 __resched_task(p, TIF_NEED_RESCHED);
1010}
1011
1012#ifdef CONFIG_SCHED_HRTICK
1013/*
1014 * Use HR-timers to deliver accurate preemption points.
1015 *
1016 * Its all a bit involved since we cannot program an hrt while holding the
1017 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1018 * reschedule event.
1019 *
1020 * When we get rescheduled we reprogram the hrtick_timer outside of the
1021 * rq->lock.
1022 */
1023static inline void resched_hrt(struct task_struct *p)
1024{
1025 __resched_task(p, TIF_HRTICK_RESCHED);
1026}
1027
1028static inline void resched_rq(struct rq *rq)
1029{
1030 unsigned long flags;
1031
1032 spin_lock_irqsave(&rq->lock, flags);
1033 resched_task(rq->curr);
1034 spin_unlock_irqrestore(&rq->lock, flags);
1035}
1036
1037enum {
1038 HRTICK_SET, /* re-programm hrtick_timer */
1039 HRTICK_RESET, /* not a new slice */
b328ca18 1040 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1041};
1042
1043/*
1044 * Use hrtick when:
1045 * - enabled by features
1046 * - hrtimer is actually high res
1047 */
1048static inline int hrtick_enabled(struct rq *rq)
1049{
1050 if (!sched_feat(HRTICK))
1051 return 0;
b328ca18
PZ
1052 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1053 return 0;
8f4d37ec
PZ
1054 return hrtimer_is_hres_active(&rq->hrtick_timer);
1055}
1056
1057/*
1058 * Called to set the hrtick timer state.
1059 *
1060 * called with rq->lock held and irqs disabled
1061 */
1062static void hrtick_start(struct rq *rq, u64 delay, int reset)
1063{
1064 assert_spin_locked(&rq->lock);
1065
1066 /*
1067 * preempt at: now + delay
1068 */
1069 rq->hrtick_expire =
1070 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1071 /*
1072 * indicate we need to program the timer
1073 */
1074 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1075 if (reset)
1076 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1077
1078 /*
1079 * New slices are called from the schedule path and don't need a
1080 * forced reschedule.
1081 */
1082 if (reset)
1083 resched_hrt(rq->curr);
1084}
1085
1086static void hrtick_clear(struct rq *rq)
1087{
1088 if (hrtimer_active(&rq->hrtick_timer))
1089 hrtimer_cancel(&rq->hrtick_timer);
1090}
1091
1092/*
1093 * Update the timer from the possible pending state.
1094 */
1095static void hrtick_set(struct rq *rq)
1096{
1097 ktime_t time;
1098 int set, reset;
1099 unsigned long flags;
1100
1101 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1102
1103 spin_lock_irqsave(&rq->lock, flags);
1104 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1105 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1106 time = rq->hrtick_expire;
1107 clear_thread_flag(TIF_HRTICK_RESCHED);
1108 spin_unlock_irqrestore(&rq->lock, flags);
1109
1110 if (set) {
1111 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1112 if (reset && !hrtimer_active(&rq->hrtick_timer))
1113 resched_rq(rq);
1114 } else
1115 hrtick_clear(rq);
1116}
1117
1118/*
1119 * High-resolution timer tick.
1120 * Runs from hardirq context with interrupts disabled.
1121 */
1122static enum hrtimer_restart hrtick(struct hrtimer *timer)
1123{
1124 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1125
1126 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1127
1128 spin_lock(&rq->lock);
3e51f33f 1129 update_rq_clock(rq);
8f4d37ec
PZ
1130 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1131 spin_unlock(&rq->lock);
1132
1133 return HRTIMER_NORESTART;
1134}
1135
81d41d7e 1136#ifdef CONFIG_SMP
b328ca18
PZ
1137static void hotplug_hrtick_disable(int cpu)
1138{
1139 struct rq *rq = cpu_rq(cpu);
1140 unsigned long flags;
1141
1142 spin_lock_irqsave(&rq->lock, flags);
1143 rq->hrtick_flags = 0;
1144 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1145 spin_unlock_irqrestore(&rq->lock, flags);
1146
1147 hrtick_clear(rq);
1148}
1149
1150static void hotplug_hrtick_enable(int cpu)
1151{
1152 struct rq *rq = cpu_rq(cpu);
1153 unsigned long flags;
1154
1155 spin_lock_irqsave(&rq->lock, flags);
1156 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1157 spin_unlock_irqrestore(&rq->lock, flags);
1158}
1159
1160static int
1161hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1162{
1163 int cpu = (int)(long)hcpu;
1164
1165 switch (action) {
1166 case CPU_UP_CANCELED:
1167 case CPU_UP_CANCELED_FROZEN:
1168 case CPU_DOWN_PREPARE:
1169 case CPU_DOWN_PREPARE_FROZEN:
1170 case CPU_DEAD:
1171 case CPU_DEAD_FROZEN:
1172 hotplug_hrtick_disable(cpu);
1173 return NOTIFY_OK;
1174
1175 case CPU_UP_PREPARE:
1176 case CPU_UP_PREPARE_FROZEN:
1177 case CPU_DOWN_FAILED:
1178 case CPU_DOWN_FAILED_FROZEN:
1179 case CPU_ONLINE:
1180 case CPU_ONLINE_FROZEN:
1181 hotplug_hrtick_enable(cpu);
1182 return NOTIFY_OK;
1183 }
1184
1185 return NOTIFY_DONE;
1186}
1187
1188static void init_hrtick(void)
1189{
1190 hotcpu_notifier(hotplug_hrtick, 0);
1191}
81d41d7e 1192#endif /* CONFIG_SMP */
b328ca18
PZ
1193
1194static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1195{
1196 rq->hrtick_flags = 0;
1197 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1198 rq->hrtick_timer.function = hrtick;
1199 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1200}
1201
1202void hrtick_resched(void)
1203{
1204 struct rq *rq;
1205 unsigned long flags;
1206
1207 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1208 return;
1209
1210 local_irq_save(flags);
1211 rq = cpu_rq(smp_processor_id());
1212 hrtick_set(rq);
1213 local_irq_restore(flags);
1214}
1215#else
1216static inline void hrtick_clear(struct rq *rq)
1217{
1218}
1219
1220static inline void hrtick_set(struct rq *rq)
1221{
1222}
1223
1224static inline void init_rq_hrtick(struct rq *rq)
1225{
1226}
1227
1228void hrtick_resched(void)
1229{
1230}
b328ca18
PZ
1231
1232static inline void init_hrtick(void)
1233{
1234}
8f4d37ec
PZ
1235#endif
1236
c24d20db
IM
1237/*
1238 * resched_task - mark a task 'to be rescheduled now'.
1239 *
1240 * On UP this means the setting of the need_resched flag, on SMP it
1241 * might also involve a cross-CPU call to trigger the scheduler on
1242 * the target CPU.
1243 */
1244#ifdef CONFIG_SMP
1245
1246#ifndef tsk_is_polling
1247#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1248#endif
1249
8f4d37ec 1250static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1251{
1252 int cpu;
1253
1254 assert_spin_locked(&task_rq(p)->lock);
1255
8f4d37ec 1256 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1257 return;
1258
8f4d37ec 1259 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1260
1261 cpu = task_cpu(p);
1262 if (cpu == smp_processor_id())
1263 return;
1264
1265 /* NEED_RESCHED must be visible before we test polling */
1266 smp_mb();
1267 if (!tsk_is_polling(p))
1268 smp_send_reschedule(cpu);
1269}
1270
1271static void resched_cpu(int cpu)
1272{
1273 struct rq *rq = cpu_rq(cpu);
1274 unsigned long flags;
1275
1276 if (!spin_trylock_irqsave(&rq->lock, flags))
1277 return;
1278 resched_task(cpu_curr(cpu));
1279 spin_unlock_irqrestore(&rq->lock, flags);
1280}
06d8308c
TG
1281
1282#ifdef CONFIG_NO_HZ
1283/*
1284 * When add_timer_on() enqueues a timer into the timer wheel of an
1285 * idle CPU then this timer might expire before the next timer event
1286 * which is scheduled to wake up that CPU. In case of a completely
1287 * idle system the next event might even be infinite time into the
1288 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1289 * leaves the inner idle loop so the newly added timer is taken into
1290 * account when the CPU goes back to idle and evaluates the timer
1291 * wheel for the next timer event.
1292 */
1293void wake_up_idle_cpu(int cpu)
1294{
1295 struct rq *rq = cpu_rq(cpu);
1296
1297 if (cpu == smp_processor_id())
1298 return;
1299
1300 /*
1301 * This is safe, as this function is called with the timer
1302 * wheel base lock of (cpu) held. When the CPU is on the way
1303 * to idle and has not yet set rq->curr to idle then it will
1304 * be serialized on the timer wheel base lock and take the new
1305 * timer into account automatically.
1306 */
1307 if (rq->curr != rq->idle)
1308 return;
1309
1310 /*
1311 * We can set TIF_RESCHED on the idle task of the other CPU
1312 * lockless. The worst case is that the other CPU runs the
1313 * idle task through an additional NOOP schedule()
1314 */
1315 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1316
1317 /* NEED_RESCHED must be visible before we test polling */
1318 smp_mb();
1319 if (!tsk_is_polling(rq->idle))
1320 smp_send_reschedule(cpu);
1321}
6d6bc0ad 1322#endif /* CONFIG_NO_HZ */
06d8308c 1323
6d6bc0ad 1324#else /* !CONFIG_SMP */
8f4d37ec 1325static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1326{
1327 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1328 set_tsk_thread_flag(p, tif_bit);
c24d20db 1329}
6d6bc0ad 1330#endif /* CONFIG_SMP */
c24d20db 1331
45bf76df
IM
1332#if BITS_PER_LONG == 32
1333# define WMULT_CONST (~0UL)
1334#else
1335# define WMULT_CONST (1UL << 32)
1336#endif
1337
1338#define WMULT_SHIFT 32
1339
194081eb
IM
1340/*
1341 * Shift right and round:
1342 */
cf2ab469 1343#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1344
cb1c4fc9 1345static unsigned long
45bf76df
IM
1346calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1347 struct load_weight *lw)
1348{
1349 u64 tmp;
1350
7a232e03
LJ
1351 if (!lw->inv_weight) {
1352 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1353 lw->inv_weight = 1;
1354 else
1355 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1356 / (lw->weight+1);
1357 }
45bf76df
IM
1358
1359 tmp = (u64)delta_exec * weight;
1360 /*
1361 * Check whether we'd overflow the 64-bit multiplication:
1362 */
194081eb 1363 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1364 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1365 WMULT_SHIFT/2);
1366 else
cf2ab469 1367 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1368
ecf691da 1369 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1370}
1371
f9305d4a
IM
1372static inline unsigned long
1373calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1374{
1375 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1376}
1377
1091985b 1378static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1379{
1380 lw->weight += inc;
e89996ae 1381 lw->inv_weight = 0;
45bf76df
IM
1382}
1383
1091985b 1384static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1385{
1386 lw->weight -= dec;
e89996ae 1387 lw->inv_weight = 0;
45bf76df
IM
1388}
1389
2dd73a4f
PW
1390/*
1391 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1392 * of tasks with abnormal "nice" values across CPUs the contribution that
1393 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1394 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1395 * scaled version of the new time slice allocation that they receive on time
1396 * slice expiry etc.
1397 */
1398
dd41f596
IM
1399#define WEIGHT_IDLEPRIO 2
1400#define WMULT_IDLEPRIO (1 << 31)
1401
1402/*
1403 * Nice levels are multiplicative, with a gentle 10% change for every
1404 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1405 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1406 * that remained on nice 0.
1407 *
1408 * The "10% effect" is relative and cumulative: from _any_ nice level,
1409 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1410 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1411 * If a task goes up by ~10% and another task goes down by ~10% then
1412 * the relative distance between them is ~25%.)
dd41f596
IM
1413 */
1414static const int prio_to_weight[40] = {
254753dc
IM
1415 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1416 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1417 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1418 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1419 /* 0 */ 1024, 820, 655, 526, 423,
1420 /* 5 */ 335, 272, 215, 172, 137,
1421 /* 10 */ 110, 87, 70, 56, 45,
1422 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1423};
1424
5714d2de
IM
1425/*
1426 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1427 *
1428 * In cases where the weight does not change often, we can use the
1429 * precalculated inverse to speed up arithmetics by turning divisions
1430 * into multiplications:
1431 */
dd41f596 1432static const u32 prio_to_wmult[40] = {
254753dc
IM
1433 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1434 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1435 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1436 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1437 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1438 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1439 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1440 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1441};
2dd73a4f 1442
dd41f596
IM
1443static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1444
1445/*
1446 * runqueue iterator, to support SMP load-balancing between different
1447 * scheduling classes, without having to expose their internal data
1448 * structures to the load-balancing proper:
1449 */
1450struct rq_iterator {
1451 void *arg;
1452 struct task_struct *(*start)(void *);
1453 struct task_struct *(*next)(void *);
1454};
1455
e1d1484f
PW
1456#ifdef CONFIG_SMP
1457static unsigned long
1458balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1459 unsigned long max_load_move, struct sched_domain *sd,
1460 enum cpu_idle_type idle, int *all_pinned,
1461 int *this_best_prio, struct rq_iterator *iterator);
1462
1463static int
1464iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1465 struct sched_domain *sd, enum cpu_idle_type idle,
1466 struct rq_iterator *iterator);
e1d1484f 1467#endif
dd41f596 1468
d842de87
SV
1469#ifdef CONFIG_CGROUP_CPUACCT
1470static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1471#else
1472static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1473#endif
1474
18d95a28
PZ
1475static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1476{
1477 update_load_add(&rq->load, load);
1478}
1479
1480static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1481{
1482 update_load_sub(&rq->load, load);
1483}
1484
e7693a36
GH
1485#ifdef CONFIG_SMP
1486static unsigned long source_load(int cpu, int type);
1487static unsigned long target_load(int cpu, int type);
1488static unsigned long cpu_avg_load_per_task(int cpu);
1489static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1490#endif
1491
dd41f596 1492#include "sched_stats.h"
dd41f596 1493#include "sched_idletask.c"
5522d5d5
IM
1494#include "sched_fair.c"
1495#include "sched_rt.c"
dd41f596
IM
1496#ifdef CONFIG_SCHED_DEBUG
1497# include "sched_debug.c"
1498#endif
1499
1500#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1501#define for_each_class(class) \
1502 for (class = sched_class_highest; class; class = class->next)
dd41f596 1503
6363ca57
IM
1504static inline void inc_load(struct rq *rq, const struct task_struct *p)
1505{
1506 update_load_add(&rq->load, p->se.load.weight);
1507}
1508
1509static inline void dec_load(struct rq *rq, const struct task_struct *p)
1510{
1511 update_load_sub(&rq->load, p->se.load.weight);
1512}
1513
1514static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1515{
1516 rq->nr_running++;
6363ca57 1517 inc_load(rq, p);
9c217245
IM
1518}
1519
6363ca57 1520static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1521{
1522 rq->nr_running--;
6363ca57 1523 dec_load(rq, p);
9c217245
IM
1524}
1525
45bf76df
IM
1526static void set_load_weight(struct task_struct *p)
1527{
1528 if (task_has_rt_policy(p)) {
dd41f596
IM
1529 p->se.load.weight = prio_to_weight[0] * 2;
1530 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1531 return;
1532 }
45bf76df 1533
dd41f596
IM
1534 /*
1535 * SCHED_IDLE tasks get minimal weight:
1536 */
1537 if (p->policy == SCHED_IDLE) {
1538 p->se.load.weight = WEIGHT_IDLEPRIO;
1539 p->se.load.inv_weight = WMULT_IDLEPRIO;
1540 return;
1541 }
71f8bd46 1542
dd41f596
IM
1543 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1544 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1545}
1546
8159f87e 1547static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1548{
dd41f596 1549 sched_info_queued(p);
fd390f6a 1550 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1551 p->se.on_rq = 1;
71f8bd46
IM
1552}
1553
69be72c1 1554static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1555{
f02231e5 1556 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1557 p->se.on_rq = 0;
71f8bd46
IM
1558}
1559
14531189 1560/*
dd41f596 1561 * __normal_prio - return the priority that is based on the static prio
14531189 1562 */
14531189
IM
1563static inline int __normal_prio(struct task_struct *p)
1564{
dd41f596 1565 return p->static_prio;
14531189
IM
1566}
1567
b29739f9
IM
1568/*
1569 * Calculate the expected normal priority: i.e. priority
1570 * without taking RT-inheritance into account. Might be
1571 * boosted by interactivity modifiers. Changes upon fork,
1572 * setprio syscalls, and whenever the interactivity
1573 * estimator recalculates.
1574 */
36c8b586 1575static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1576{
1577 int prio;
1578
e05606d3 1579 if (task_has_rt_policy(p))
b29739f9
IM
1580 prio = MAX_RT_PRIO-1 - p->rt_priority;
1581 else
1582 prio = __normal_prio(p);
1583 return prio;
1584}
1585
1586/*
1587 * Calculate the current priority, i.e. the priority
1588 * taken into account by the scheduler. This value might
1589 * be boosted by RT tasks, or might be boosted by
1590 * interactivity modifiers. Will be RT if the task got
1591 * RT-boosted. If not then it returns p->normal_prio.
1592 */
36c8b586 1593static int effective_prio(struct task_struct *p)
b29739f9
IM
1594{
1595 p->normal_prio = normal_prio(p);
1596 /*
1597 * If we are RT tasks or we were boosted to RT priority,
1598 * keep the priority unchanged. Otherwise, update priority
1599 * to the normal priority:
1600 */
1601 if (!rt_prio(p->prio))
1602 return p->normal_prio;
1603 return p->prio;
1604}
1605
1da177e4 1606/*
dd41f596 1607 * activate_task - move a task to the runqueue.
1da177e4 1608 */
dd41f596 1609static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1610{
d9514f6c 1611 if (task_contributes_to_load(p))
dd41f596 1612 rq->nr_uninterruptible--;
1da177e4 1613
8159f87e 1614 enqueue_task(rq, p, wakeup);
6363ca57 1615 inc_nr_running(p, rq);
1da177e4
LT
1616}
1617
1da177e4
LT
1618/*
1619 * deactivate_task - remove a task from the runqueue.
1620 */
2e1cb74a 1621static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1622{
d9514f6c 1623 if (task_contributes_to_load(p))
dd41f596
IM
1624 rq->nr_uninterruptible++;
1625
69be72c1 1626 dequeue_task(rq, p, sleep);
6363ca57 1627 dec_nr_running(p, rq);
1da177e4
LT
1628}
1629
1da177e4
LT
1630/**
1631 * task_curr - is this task currently executing on a CPU?
1632 * @p: the task in question.
1633 */
36c8b586 1634inline int task_curr(const struct task_struct *p)
1da177e4
LT
1635{
1636 return cpu_curr(task_cpu(p)) == p;
1637}
1638
dd41f596
IM
1639static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1640{
6f505b16 1641 set_task_rq(p, cpu);
dd41f596 1642#ifdef CONFIG_SMP
ce96b5ac
DA
1643 /*
1644 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1645 * successfuly executed on another CPU. We must ensure that updates of
1646 * per-task data have been completed by this moment.
1647 */
1648 smp_wmb();
dd41f596 1649 task_thread_info(p)->cpu = cpu;
dd41f596 1650#endif
2dd73a4f
PW
1651}
1652
cb469845
SR
1653static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1654 const struct sched_class *prev_class,
1655 int oldprio, int running)
1656{
1657 if (prev_class != p->sched_class) {
1658 if (prev_class->switched_from)
1659 prev_class->switched_from(rq, p, running);
1660 p->sched_class->switched_to(rq, p, running);
1661 } else
1662 p->sched_class->prio_changed(rq, p, oldprio, running);
1663}
1664
1da177e4 1665#ifdef CONFIG_SMP
c65cc870 1666
e958b360
TG
1667/* Used instead of source_load when we know the type == 0 */
1668static unsigned long weighted_cpuload(const int cpu)
1669{
1670 return cpu_rq(cpu)->load.weight;
1671}
1672
cc367732
IM
1673/*
1674 * Is this task likely cache-hot:
1675 */
e7693a36 1676static int
cc367732
IM
1677task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1678{
1679 s64 delta;
1680
f540a608
IM
1681 /*
1682 * Buddy candidates are cache hot:
1683 */
d25ce4cd 1684 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1685 return 1;
1686
cc367732
IM
1687 if (p->sched_class != &fair_sched_class)
1688 return 0;
1689
6bc1665b
IM
1690 if (sysctl_sched_migration_cost == -1)
1691 return 1;
1692 if (sysctl_sched_migration_cost == 0)
1693 return 0;
1694
cc367732
IM
1695 delta = now - p->se.exec_start;
1696
1697 return delta < (s64)sysctl_sched_migration_cost;
1698}
1699
1700
dd41f596 1701void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1702{
dd41f596
IM
1703 int old_cpu = task_cpu(p);
1704 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1705 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1706 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1707 u64 clock_offset;
dd41f596
IM
1708
1709 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1710
1711#ifdef CONFIG_SCHEDSTATS
1712 if (p->se.wait_start)
1713 p->se.wait_start -= clock_offset;
dd41f596
IM
1714 if (p->se.sleep_start)
1715 p->se.sleep_start -= clock_offset;
1716 if (p->se.block_start)
1717 p->se.block_start -= clock_offset;
cc367732
IM
1718 if (old_cpu != new_cpu) {
1719 schedstat_inc(p, se.nr_migrations);
1720 if (task_hot(p, old_rq->clock, NULL))
1721 schedstat_inc(p, se.nr_forced2_migrations);
1722 }
6cfb0d5d 1723#endif
2830cf8c
SV
1724 p->se.vruntime -= old_cfsrq->min_vruntime -
1725 new_cfsrq->min_vruntime;
dd41f596
IM
1726
1727 __set_task_cpu(p, new_cpu);
c65cc870
IM
1728}
1729
70b97a7f 1730struct migration_req {
1da177e4 1731 struct list_head list;
1da177e4 1732
36c8b586 1733 struct task_struct *task;
1da177e4
LT
1734 int dest_cpu;
1735
1da177e4 1736 struct completion done;
70b97a7f 1737};
1da177e4
LT
1738
1739/*
1740 * The task's runqueue lock must be held.
1741 * Returns true if you have to wait for migration thread.
1742 */
36c8b586 1743static int
70b97a7f 1744migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1745{
70b97a7f 1746 struct rq *rq = task_rq(p);
1da177e4
LT
1747
1748 /*
1749 * If the task is not on a runqueue (and not running), then
1750 * it is sufficient to simply update the task's cpu field.
1751 */
dd41f596 1752 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1753 set_task_cpu(p, dest_cpu);
1754 return 0;
1755 }
1756
1757 init_completion(&req->done);
1da177e4
LT
1758 req->task = p;
1759 req->dest_cpu = dest_cpu;
1760 list_add(&req->list, &rq->migration_queue);
48f24c4d 1761
1da177e4
LT
1762 return 1;
1763}
1764
1765/*
1766 * wait_task_inactive - wait for a thread to unschedule.
1767 *
1768 * The caller must ensure that the task *will* unschedule sometime soon,
1769 * else this function might spin for a *long* time. This function can't
1770 * be called with interrupts off, or it may introduce deadlock with
1771 * smp_call_function() if an IPI is sent by the same process we are
1772 * waiting to become inactive.
1773 */
36c8b586 1774void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1775{
1776 unsigned long flags;
dd41f596 1777 int running, on_rq;
70b97a7f 1778 struct rq *rq;
1da177e4 1779
3a5c359a
AK
1780 for (;;) {
1781 /*
1782 * We do the initial early heuristics without holding
1783 * any task-queue locks at all. We'll only try to get
1784 * the runqueue lock when things look like they will
1785 * work out!
1786 */
1787 rq = task_rq(p);
fa490cfd 1788
3a5c359a
AK
1789 /*
1790 * If the task is actively running on another CPU
1791 * still, just relax and busy-wait without holding
1792 * any locks.
1793 *
1794 * NOTE! Since we don't hold any locks, it's not
1795 * even sure that "rq" stays as the right runqueue!
1796 * But we don't care, since "task_running()" will
1797 * return false if the runqueue has changed and p
1798 * is actually now running somewhere else!
1799 */
1800 while (task_running(rq, p))
1801 cpu_relax();
fa490cfd 1802
3a5c359a
AK
1803 /*
1804 * Ok, time to look more closely! We need the rq
1805 * lock now, to be *sure*. If we're wrong, we'll
1806 * just go back and repeat.
1807 */
1808 rq = task_rq_lock(p, &flags);
1809 running = task_running(rq, p);
1810 on_rq = p->se.on_rq;
1811 task_rq_unlock(rq, &flags);
fa490cfd 1812
3a5c359a
AK
1813 /*
1814 * Was it really running after all now that we
1815 * checked with the proper locks actually held?
1816 *
1817 * Oops. Go back and try again..
1818 */
1819 if (unlikely(running)) {
1820 cpu_relax();
1821 continue;
1822 }
fa490cfd 1823
3a5c359a
AK
1824 /*
1825 * It's not enough that it's not actively running,
1826 * it must be off the runqueue _entirely_, and not
1827 * preempted!
1828 *
1829 * So if it wa still runnable (but just not actively
1830 * running right now), it's preempted, and we should
1831 * yield - it could be a while.
1832 */
1833 if (unlikely(on_rq)) {
1834 schedule_timeout_uninterruptible(1);
1835 continue;
1836 }
fa490cfd 1837
3a5c359a
AK
1838 /*
1839 * Ahh, all good. It wasn't running, and it wasn't
1840 * runnable, which means that it will never become
1841 * running in the future either. We're all done!
1842 */
1843 break;
1844 }
1da177e4
LT
1845}
1846
1847/***
1848 * kick_process - kick a running thread to enter/exit the kernel
1849 * @p: the to-be-kicked thread
1850 *
1851 * Cause a process which is running on another CPU to enter
1852 * kernel-mode, without any delay. (to get signals handled.)
1853 *
1854 * NOTE: this function doesnt have to take the runqueue lock,
1855 * because all it wants to ensure is that the remote task enters
1856 * the kernel. If the IPI races and the task has been migrated
1857 * to another CPU then no harm is done and the purpose has been
1858 * achieved as well.
1859 */
36c8b586 1860void kick_process(struct task_struct *p)
1da177e4
LT
1861{
1862 int cpu;
1863
1864 preempt_disable();
1865 cpu = task_cpu(p);
1866 if ((cpu != smp_processor_id()) && task_curr(p))
1867 smp_send_reschedule(cpu);
1868 preempt_enable();
1869}
1870
1871/*
2dd73a4f
PW
1872 * Return a low guess at the load of a migration-source cpu weighted
1873 * according to the scheduling class and "nice" value.
1da177e4
LT
1874 *
1875 * We want to under-estimate the load of migration sources, to
1876 * balance conservatively.
1877 */
a9957449 1878static unsigned long source_load(int cpu, int type)
1da177e4 1879{
70b97a7f 1880 struct rq *rq = cpu_rq(cpu);
dd41f596 1881 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1882
3b0bd9bc 1883 if (type == 0)
dd41f596 1884 return total;
b910472d 1885
dd41f596 1886 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1887}
1888
1889/*
2dd73a4f
PW
1890 * Return a high guess at the load of a migration-target cpu weighted
1891 * according to the scheduling class and "nice" value.
1da177e4 1892 */
a9957449 1893static unsigned long target_load(int cpu, int type)
1da177e4 1894{
70b97a7f 1895 struct rq *rq = cpu_rq(cpu);
dd41f596 1896 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1897
7897986b 1898 if (type == 0)
dd41f596 1899 return total;
3b0bd9bc 1900
dd41f596 1901 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1902}
1903
1904/*
1905 * Return the average load per task on the cpu's run queue
1906 */
e7693a36 1907static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1908{
70b97a7f 1909 struct rq *rq = cpu_rq(cpu);
dd41f596 1910 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1911 unsigned long n = rq->nr_running;
1912
dd41f596 1913 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1914}
1915
147cbb4b
NP
1916/*
1917 * find_idlest_group finds and returns the least busy CPU group within the
1918 * domain.
1919 */
1920static struct sched_group *
1921find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1922{
1923 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1924 unsigned long min_load = ULONG_MAX, this_load = 0;
1925 int load_idx = sd->forkexec_idx;
1926 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1927
1928 do {
1929 unsigned long load, avg_load;
1930 int local_group;
1931 int i;
1932
da5a5522
BD
1933 /* Skip over this group if it has no CPUs allowed */
1934 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1935 continue;
da5a5522 1936
147cbb4b 1937 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1938
1939 /* Tally up the load of all CPUs in the group */
1940 avg_load = 0;
1941
1942 for_each_cpu_mask(i, group->cpumask) {
1943 /* Bias balancing toward cpus of our domain */
1944 if (local_group)
1945 load = source_load(i, load_idx);
1946 else
1947 load = target_load(i, load_idx);
1948
1949 avg_load += load;
1950 }
1951
1952 /* Adjust by relative CPU power of the group */
5517d86b
ED
1953 avg_load = sg_div_cpu_power(group,
1954 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1955
1956 if (local_group) {
1957 this_load = avg_load;
1958 this = group;
1959 } else if (avg_load < min_load) {
1960 min_load = avg_load;
1961 idlest = group;
1962 }
3a5c359a 1963 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1964
1965 if (!idlest || 100*this_load < imbalance*min_load)
1966 return NULL;
1967 return idlest;
1968}
1969
1970/*
0feaece9 1971 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1972 */
95cdf3b7 1973static int
7c16ec58
MT
1974find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1975 cpumask_t *tmp)
147cbb4b
NP
1976{
1977 unsigned long load, min_load = ULONG_MAX;
1978 int idlest = -1;
1979 int i;
1980
da5a5522 1981 /* Traverse only the allowed CPUs */
7c16ec58 1982 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 1983
7c16ec58 1984 for_each_cpu_mask(i, *tmp) {
2dd73a4f 1985 load = weighted_cpuload(i);
147cbb4b
NP
1986
1987 if (load < min_load || (load == min_load && i == this_cpu)) {
1988 min_load = load;
1989 idlest = i;
1990 }
1991 }
1992
1993 return idlest;
1994}
1995
476d139c
NP
1996/*
1997 * sched_balance_self: balance the current task (running on cpu) in domains
1998 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1999 * SD_BALANCE_EXEC.
2000 *
2001 * Balance, ie. select the least loaded group.
2002 *
2003 * Returns the target CPU number, or the same CPU if no balancing is needed.
2004 *
2005 * preempt must be disabled.
2006 */
2007static int sched_balance_self(int cpu, int flag)
2008{
2009 struct task_struct *t = current;
2010 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2011
c96d145e 2012 for_each_domain(cpu, tmp) {
9761eea8
IM
2013 /*
2014 * If power savings logic is enabled for a domain, stop there.
2015 */
5c45bf27
SS
2016 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2017 break;
476d139c
NP
2018 if (tmp->flags & flag)
2019 sd = tmp;
c96d145e 2020 }
476d139c
NP
2021
2022 while (sd) {
7c16ec58 2023 cpumask_t span, tmpmask;
476d139c 2024 struct sched_group *group;
1a848870
SS
2025 int new_cpu, weight;
2026
2027 if (!(sd->flags & flag)) {
2028 sd = sd->child;
2029 continue;
2030 }
476d139c
NP
2031
2032 span = sd->span;
2033 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2034 if (!group) {
2035 sd = sd->child;
2036 continue;
2037 }
476d139c 2038
7c16ec58 2039 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2040 if (new_cpu == -1 || new_cpu == cpu) {
2041 /* Now try balancing at a lower domain level of cpu */
2042 sd = sd->child;
2043 continue;
2044 }
476d139c 2045
1a848870 2046 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2047 cpu = new_cpu;
476d139c
NP
2048 sd = NULL;
2049 weight = cpus_weight(span);
2050 for_each_domain(cpu, tmp) {
2051 if (weight <= cpus_weight(tmp->span))
2052 break;
2053 if (tmp->flags & flag)
2054 sd = tmp;
2055 }
2056 /* while loop will break here if sd == NULL */
2057 }
2058
2059 return cpu;
2060}
2061
2062#endif /* CONFIG_SMP */
1da177e4 2063
1da177e4
LT
2064/***
2065 * try_to_wake_up - wake up a thread
2066 * @p: the to-be-woken-up thread
2067 * @state: the mask of task states that can be woken
2068 * @sync: do a synchronous wakeup?
2069 *
2070 * Put it on the run-queue if it's not already there. The "current"
2071 * thread is always on the run-queue (except when the actual
2072 * re-schedule is in progress), and as such you're allowed to do
2073 * the simpler "current->state = TASK_RUNNING" to mark yourself
2074 * runnable without the overhead of this.
2075 *
2076 * returns failure only if the task is already active.
2077 */
36c8b586 2078static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2079{
cc367732 2080 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2081 unsigned long flags;
2082 long old_state;
70b97a7f 2083 struct rq *rq;
1da177e4 2084
b85d0667
IM
2085 if (!sched_feat(SYNC_WAKEUPS))
2086 sync = 0;
2087
04e2f174 2088 smp_wmb();
1da177e4
LT
2089 rq = task_rq_lock(p, &flags);
2090 old_state = p->state;
2091 if (!(old_state & state))
2092 goto out;
2093
dd41f596 2094 if (p->se.on_rq)
1da177e4
LT
2095 goto out_running;
2096
2097 cpu = task_cpu(p);
cc367732 2098 orig_cpu = cpu;
1da177e4
LT
2099 this_cpu = smp_processor_id();
2100
2101#ifdef CONFIG_SMP
2102 if (unlikely(task_running(rq, p)))
2103 goto out_activate;
2104
5d2f5a61
DA
2105 cpu = p->sched_class->select_task_rq(p, sync);
2106 if (cpu != orig_cpu) {
2107 set_task_cpu(p, cpu);
1da177e4
LT
2108 task_rq_unlock(rq, &flags);
2109 /* might preempt at this point */
2110 rq = task_rq_lock(p, &flags);
2111 old_state = p->state;
2112 if (!(old_state & state))
2113 goto out;
dd41f596 2114 if (p->se.on_rq)
1da177e4
LT
2115 goto out_running;
2116
2117 this_cpu = smp_processor_id();
2118 cpu = task_cpu(p);
2119 }
2120
e7693a36
GH
2121#ifdef CONFIG_SCHEDSTATS
2122 schedstat_inc(rq, ttwu_count);
2123 if (cpu == this_cpu)
2124 schedstat_inc(rq, ttwu_local);
2125 else {
2126 struct sched_domain *sd;
2127 for_each_domain(this_cpu, sd) {
2128 if (cpu_isset(cpu, sd->span)) {
2129 schedstat_inc(sd, ttwu_wake_remote);
2130 break;
2131 }
2132 }
2133 }
6d6bc0ad 2134#endif /* CONFIG_SCHEDSTATS */
e7693a36 2135
1da177e4
LT
2136out_activate:
2137#endif /* CONFIG_SMP */
cc367732
IM
2138 schedstat_inc(p, se.nr_wakeups);
2139 if (sync)
2140 schedstat_inc(p, se.nr_wakeups_sync);
2141 if (orig_cpu != cpu)
2142 schedstat_inc(p, se.nr_wakeups_migrate);
2143 if (cpu == this_cpu)
2144 schedstat_inc(p, se.nr_wakeups_local);
2145 else
2146 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2147 update_rq_clock(rq);
dd41f596 2148 activate_task(rq, p, 1);
1da177e4
LT
2149 success = 1;
2150
2151out_running:
4ae7d5ce
IM
2152 check_preempt_curr(rq, p);
2153
1da177e4 2154 p->state = TASK_RUNNING;
9a897c5a
SR
2155#ifdef CONFIG_SMP
2156 if (p->sched_class->task_wake_up)
2157 p->sched_class->task_wake_up(rq, p);
2158#endif
1da177e4
LT
2159out:
2160 task_rq_unlock(rq, &flags);
2161
2162 return success;
2163}
2164
7ad5b3a5 2165int wake_up_process(struct task_struct *p)
1da177e4 2166{
d9514f6c 2167 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2168}
1da177e4
LT
2169EXPORT_SYMBOL(wake_up_process);
2170
7ad5b3a5 2171int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2172{
2173 return try_to_wake_up(p, state, 0);
2174}
2175
1da177e4
LT
2176/*
2177 * Perform scheduler related setup for a newly forked process p.
2178 * p is forked by current.
dd41f596
IM
2179 *
2180 * __sched_fork() is basic setup used by init_idle() too:
2181 */
2182static void __sched_fork(struct task_struct *p)
2183{
dd41f596
IM
2184 p->se.exec_start = 0;
2185 p->se.sum_exec_runtime = 0;
f6cf891c 2186 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2187 p->se.last_wakeup = 0;
2188 p->se.avg_overlap = 0;
6cfb0d5d
IM
2189
2190#ifdef CONFIG_SCHEDSTATS
2191 p->se.wait_start = 0;
dd41f596
IM
2192 p->se.sum_sleep_runtime = 0;
2193 p->se.sleep_start = 0;
dd41f596
IM
2194 p->se.block_start = 0;
2195 p->se.sleep_max = 0;
2196 p->se.block_max = 0;
2197 p->se.exec_max = 0;
eba1ed4b 2198 p->se.slice_max = 0;
dd41f596 2199 p->se.wait_max = 0;
6cfb0d5d 2200#endif
476d139c 2201
fa717060 2202 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2203 p->se.on_rq = 0;
4a55bd5e 2204 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2205
e107be36
AK
2206#ifdef CONFIG_PREEMPT_NOTIFIERS
2207 INIT_HLIST_HEAD(&p->preempt_notifiers);
2208#endif
2209
1da177e4
LT
2210 /*
2211 * We mark the process as running here, but have not actually
2212 * inserted it onto the runqueue yet. This guarantees that
2213 * nobody will actually run it, and a signal or other external
2214 * event cannot wake it up and insert it on the runqueue either.
2215 */
2216 p->state = TASK_RUNNING;
dd41f596
IM
2217}
2218
2219/*
2220 * fork()/clone()-time setup:
2221 */
2222void sched_fork(struct task_struct *p, int clone_flags)
2223{
2224 int cpu = get_cpu();
2225
2226 __sched_fork(p);
2227
2228#ifdef CONFIG_SMP
2229 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2230#endif
02e4bac2 2231 set_task_cpu(p, cpu);
b29739f9
IM
2232
2233 /*
2234 * Make sure we do not leak PI boosting priority to the child:
2235 */
2236 p->prio = current->normal_prio;
2ddbf952
HS
2237 if (!rt_prio(p->prio))
2238 p->sched_class = &fair_sched_class;
b29739f9 2239
52f17b6c 2240#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2241 if (likely(sched_info_on()))
52f17b6c 2242 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2243#endif
d6077cb8 2244#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2245 p->oncpu = 0;
2246#endif
1da177e4 2247#ifdef CONFIG_PREEMPT
4866cde0 2248 /* Want to start with kernel preemption disabled. */
a1261f54 2249 task_thread_info(p)->preempt_count = 1;
1da177e4 2250#endif
476d139c 2251 put_cpu();
1da177e4
LT
2252}
2253
2254/*
2255 * wake_up_new_task - wake up a newly created task for the first time.
2256 *
2257 * This function will do some initial scheduler statistics housekeeping
2258 * that must be done for every newly created context, then puts the task
2259 * on the runqueue and wakes it.
2260 */
7ad5b3a5 2261void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2262{
2263 unsigned long flags;
dd41f596 2264 struct rq *rq;
1da177e4
LT
2265
2266 rq = task_rq_lock(p, &flags);
147cbb4b 2267 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2268 update_rq_clock(rq);
1da177e4
LT
2269
2270 p->prio = effective_prio(p);
2271
b9dca1e0 2272 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2273 activate_task(rq, p, 0);
1da177e4 2274 } else {
1da177e4 2275 /*
dd41f596
IM
2276 * Let the scheduling class do new task startup
2277 * management (if any):
1da177e4 2278 */
ee0827d8 2279 p->sched_class->task_new(rq, p);
6363ca57 2280 inc_nr_running(p, rq);
1da177e4 2281 }
dd41f596 2282 check_preempt_curr(rq, p);
9a897c5a
SR
2283#ifdef CONFIG_SMP
2284 if (p->sched_class->task_wake_up)
2285 p->sched_class->task_wake_up(rq, p);
2286#endif
dd41f596 2287 task_rq_unlock(rq, &flags);
1da177e4
LT
2288}
2289
e107be36
AK
2290#ifdef CONFIG_PREEMPT_NOTIFIERS
2291
2292/**
421cee29
RD
2293 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2294 * @notifier: notifier struct to register
e107be36
AK
2295 */
2296void preempt_notifier_register(struct preempt_notifier *notifier)
2297{
2298 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2299}
2300EXPORT_SYMBOL_GPL(preempt_notifier_register);
2301
2302/**
2303 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2304 * @notifier: notifier struct to unregister
e107be36
AK
2305 *
2306 * This is safe to call from within a preemption notifier.
2307 */
2308void preempt_notifier_unregister(struct preempt_notifier *notifier)
2309{
2310 hlist_del(&notifier->link);
2311}
2312EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2313
2314static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2315{
2316 struct preempt_notifier *notifier;
2317 struct hlist_node *node;
2318
2319 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2320 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2321}
2322
2323static void
2324fire_sched_out_preempt_notifiers(struct task_struct *curr,
2325 struct task_struct *next)
2326{
2327 struct preempt_notifier *notifier;
2328 struct hlist_node *node;
2329
2330 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2331 notifier->ops->sched_out(notifier, next);
2332}
2333
6d6bc0ad 2334#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2335
2336static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2337{
2338}
2339
2340static void
2341fire_sched_out_preempt_notifiers(struct task_struct *curr,
2342 struct task_struct *next)
2343{
2344}
2345
6d6bc0ad 2346#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2347
4866cde0
NP
2348/**
2349 * prepare_task_switch - prepare to switch tasks
2350 * @rq: the runqueue preparing to switch
421cee29 2351 * @prev: the current task that is being switched out
4866cde0
NP
2352 * @next: the task we are going to switch to.
2353 *
2354 * This is called with the rq lock held and interrupts off. It must
2355 * be paired with a subsequent finish_task_switch after the context
2356 * switch.
2357 *
2358 * prepare_task_switch sets up locking and calls architecture specific
2359 * hooks.
2360 */
e107be36
AK
2361static inline void
2362prepare_task_switch(struct rq *rq, struct task_struct *prev,
2363 struct task_struct *next)
4866cde0 2364{
e107be36 2365 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2366 prepare_lock_switch(rq, next);
2367 prepare_arch_switch(next);
2368}
2369
1da177e4
LT
2370/**
2371 * finish_task_switch - clean up after a task-switch
344babaa 2372 * @rq: runqueue associated with task-switch
1da177e4
LT
2373 * @prev: the thread we just switched away from.
2374 *
4866cde0
NP
2375 * finish_task_switch must be called after the context switch, paired
2376 * with a prepare_task_switch call before the context switch.
2377 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2378 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2379 *
2380 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2381 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2382 * with the lock held can cause deadlocks; see schedule() for
2383 * details.)
2384 */
a9957449 2385static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2386 __releases(rq->lock)
2387{
1da177e4 2388 struct mm_struct *mm = rq->prev_mm;
55a101f8 2389 long prev_state;
1da177e4
LT
2390
2391 rq->prev_mm = NULL;
2392
2393 /*
2394 * A task struct has one reference for the use as "current".
c394cc9f 2395 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2396 * schedule one last time. The schedule call will never return, and
2397 * the scheduled task must drop that reference.
c394cc9f 2398 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2399 * still held, otherwise prev could be scheduled on another cpu, die
2400 * there before we look at prev->state, and then the reference would
2401 * be dropped twice.
2402 * Manfred Spraul <manfred@colorfullife.com>
2403 */
55a101f8 2404 prev_state = prev->state;
4866cde0
NP
2405 finish_arch_switch(prev);
2406 finish_lock_switch(rq, prev);
9a897c5a
SR
2407#ifdef CONFIG_SMP
2408 if (current->sched_class->post_schedule)
2409 current->sched_class->post_schedule(rq);
2410#endif
e8fa1362 2411
e107be36 2412 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2413 if (mm)
2414 mmdrop(mm);
c394cc9f 2415 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2416 /*
2417 * Remove function-return probe instances associated with this
2418 * task and put them back on the free list.
9761eea8 2419 */
c6fd91f0 2420 kprobe_flush_task(prev);
1da177e4 2421 put_task_struct(prev);
c6fd91f0 2422 }
1da177e4
LT
2423}
2424
2425/**
2426 * schedule_tail - first thing a freshly forked thread must call.
2427 * @prev: the thread we just switched away from.
2428 */
36c8b586 2429asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2430 __releases(rq->lock)
2431{
70b97a7f
IM
2432 struct rq *rq = this_rq();
2433
4866cde0
NP
2434 finish_task_switch(rq, prev);
2435#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2436 /* In this case, finish_task_switch does not reenable preemption */
2437 preempt_enable();
2438#endif
1da177e4 2439 if (current->set_child_tid)
b488893a 2440 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2441}
2442
2443/*
2444 * context_switch - switch to the new MM and the new
2445 * thread's register state.
2446 */
dd41f596 2447static inline void
70b97a7f 2448context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2449 struct task_struct *next)
1da177e4 2450{
dd41f596 2451 struct mm_struct *mm, *oldmm;
1da177e4 2452
e107be36 2453 prepare_task_switch(rq, prev, next);
dd41f596
IM
2454 mm = next->mm;
2455 oldmm = prev->active_mm;
9226d125
ZA
2456 /*
2457 * For paravirt, this is coupled with an exit in switch_to to
2458 * combine the page table reload and the switch backend into
2459 * one hypercall.
2460 */
2461 arch_enter_lazy_cpu_mode();
2462
dd41f596 2463 if (unlikely(!mm)) {
1da177e4
LT
2464 next->active_mm = oldmm;
2465 atomic_inc(&oldmm->mm_count);
2466 enter_lazy_tlb(oldmm, next);
2467 } else
2468 switch_mm(oldmm, mm, next);
2469
dd41f596 2470 if (unlikely(!prev->mm)) {
1da177e4 2471 prev->active_mm = NULL;
1da177e4
LT
2472 rq->prev_mm = oldmm;
2473 }
3a5f5e48
IM
2474 /*
2475 * Since the runqueue lock will be released by the next
2476 * task (which is an invalid locking op but in the case
2477 * of the scheduler it's an obvious special-case), so we
2478 * do an early lockdep release here:
2479 */
2480#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2481 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2482#endif
1da177e4
LT
2483
2484 /* Here we just switch the register state and the stack. */
2485 switch_to(prev, next, prev);
2486
dd41f596
IM
2487 barrier();
2488 /*
2489 * this_rq must be evaluated again because prev may have moved
2490 * CPUs since it called schedule(), thus the 'rq' on its stack
2491 * frame will be invalid.
2492 */
2493 finish_task_switch(this_rq(), prev);
1da177e4
LT
2494}
2495
2496/*
2497 * nr_running, nr_uninterruptible and nr_context_switches:
2498 *
2499 * externally visible scheduler statistics: current number of runnable
2500 * threads, current number of uninterruptible-sleeping threads, total
2501 * number of context switches performed since bootup.
2502 */
2503unsigned long nr_running(void)
2504{
2505 unsigned long i, sum = 0;
2506
2507 for_each_online_cpu(i)
2508 sum += cpu_rq(i)->nr_running;
2509
2510 return sum;
2511}
2512
2513unsigned long nr_uninterruptible(void)
2514{
2515 unsigned long i, sum = 0;
2516
0a945022 2517 for_each_possible_cpu(i)
1da177e4
LT
2518 sum += cpu_rq(i)->nr_uninterruptible;
2519
2520 /*
2521 * Since we read the counters lockless, it might be slightly
2522 * inaccurate. Do not allow it to go below zero though:
2523 */
2524 if (unlikely((long)sum < 0))
2525 sum = 0;
2526
2527 return sum;
2528}
2529
2530unsigned long long nr_context_switches(void)
2531{
cc94abfc
SR
2532 int i;
2533 unsigned long long sum = 0;
1da177e4 2534
0a945022 2535 for_each_possible_cpu(i)
1da177e4
LT
2536 sum += cpu_rq(i)->nr_switches;
2537
2538 return sum;
2539}
2540
2541unsigned long nr_iowait(void)
2542{
2543 unsigned long i, sum = 0;
2544
0a945022 2545 for_each_possible_cpu(i)
1da177e4
LT
2546 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2547
2548 return sum;
2549}
2550
db1b1fef
JS
2551unsigned long nr_active(void)
2552{
2553 unsigned long i, running = 0, uninterruptible = 0;
2554
2555 for_each_online_cpu(i) {
2556 running += cpu_rq(i)->nr_running;
2557 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2558 }
2559
2560 if (unlikely((long)uninterruptible < 0))
2561 uninterruptible = 0;
2562
2563 return running + uninterruptible;
2564}
2565
48f24c4d 2566/*
dd41f596
IM
2567 * Update rq->cpu_load[] statistics. This function is usually called every
2568 * scheduler tick (TICK_NSEC).
48f24c4d 2569 */
dd41f596 2570static void update_cpu_load(struct rq *this_rq)
48f24c4d 2571{
495eca49 2572 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2573 int i, scale;
2574
2575 this_rq->nr_load_updates++;
dd41f596
IM
2576
2577 /* Update our load: */
2578 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2579 unsigned long old_load, new_load;
2580
2581 /* scale is effectively 1 << i now, and >> i divides by scale */
2582
2583 old_load = this_rq->cpu_load[i];
2584 new_load = this_load;
a25707f3
IM
2585 /*
2586 * Round up the averaging division if load is increasing. This
2587 * prevents us from getting stuck on 9 if the load is 10, for
2588 * example.
2589 */
2590 if (new_load > old_load)
2591 new_load += scale-1;
dd41f596
IM
2592 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2593 }
48f24c4d
IM
2594}
2595
dd41f596
IM
2596#ifdef CONFIG_SMP
2597
1da177e4
LT
2598/*
2599 * double_rq_lock - safely lock two runqueues
2600 *
2601 * Note this does not disable interrupts like task_rq_lock,
2602 * you need to do so manually before calling.
2603 */
70b97a7f 2604static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2605 __acquires(rq1->lock)
2606 __acquires(rq2->lock)
2607{
054b9108 2608 BUG_ON(!irqs_disabled());
1da177e4
LT
2609 if (rq1 == rq2) {
2610 spin_lock(&rq1->lock);
2611 __acquire(rq2->lock); /* Fake it out ;) */
2612 } else {
c96d145e 2613 if (rq1 < rq2) {
1da177e4
LT
2614 spin_lock(&rq1->lock);
2615 spin_lock(&rq2->lock);
2616 } else {
2617 spin_lock(&rq2->lock);
2618 spin_lock(&rq1->lock);
2619 }
2620 }
6e82a3be
IM
2621 update_rq_clock(rq1);
2622 update_rq_clock(rq2);
1da177e4
LT
2623}
2624
2625/*
2626 * double_rq_unlock - safely unlock two runqueues
2627 *
2628 * Note this does not restore interrupts like task_rq_unlock,
2629 * you need to do so manually after calling.
2630 */
70b97a7f 2631static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2632 __releases(rq1->lock)
2633 __releases(rq2->lock)
2634{
2635 spin_unlock(&rq1->lock);
2636 if (rq1 != rq2)
2637 spin_unlock(&rq2->lock);
2638 else
2639 __release(rq2->lock);
2640}
2641
2642/*
2643 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2644 */
e8fa1362 2645static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2646 __releases(this_rq->lock)
2647 __acquires(busiest->lock)
2648 __acquires(this_rq->lock)
2649{
e8fa1362
SR
2650 int ret = 0;
2651
054b9108
KK
2652 if (unlikely(!irqs_disabled())) {
2653 /* printk() doesn't work good under rq->lock */
2654 spin_unlock(&this_rq->lock);
2655 BUG_ON(1);
2656 }
1da177e4 2657 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2658 if (busiest < this_rq) {
1da177e4
LT
2659 spin_unlock(&this_rq->lock);
2660 spin_lock(&busiest->lock);
2661 spin_lock(&this_rq->lock);
e8fa1362 2662 ret = 1;
1da177e4
LT
2663 } else
2664 spin_lock(&busiest->lock);
2665 }
e8fa1362 2666 return ret;
1da177e4
LT
2667}
2668
1da177e4
LT
2669/*
2670 * If dest_cpu is allowed for this process, migrate the task to it.
2671 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2672 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2673 * the cpu_allowed mask is restored.
2674 */
36c8b586 2675static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2676{
70b97a7f 2677 struct migration_req req;
1da177e4 2678 unsigned long flags;
70b97a7f 2679 struct rq *rq;
1da177e4
LT
2680
2681 rq = task_rq_lock(p, &flags);
2682 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2683 || unlikely(cpu_is_offline(dest_cpu)))
2684 goto out;
2685
2686 /* force the process onto the specified CPU */
2687 if (migrate_task(p, dest_cpu, &req)) {
2688 /* Need to wait for migration thread (might exit: take ref). */
2689 struct task_struct *mt = rq->migration_thread;
36c8b586 2690
1da177e4
LT
2691 get_task_struct(mt);
2692 task_rq_unlock(rq, &flags);
2693 wake_up_process(mt);
2694 put_task_struct(mt);
2695 wait_for_completion(&req.done);
36c8b586 2696
1da177e4
LT
2697 return;
2698 }
2699out:
2700 task_rq_unlock(rq, &flags);
2701}
2702
2703/*
476d139c
NP
2704 * sched_exec - execve() is a valuable balancing opportunity, because at
2705 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2706 */
2707void sched_exec(void)
2708{
1da177e4 2709 int new_cpu, this_cpu = get_cpu();
476d139c 2710 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2711 put_cpu();
476d139c
NP
2712 if (new_cpu != this_cpu)
2713 sched_migrate_task(current, new_cpu);
1da177e4
LT
2714}
2715
2716/*
2717 * pull_task - move a task from a remote runqueue to the local runqueue.
2718 * Both runqueues must be locked.
2719 */
dd41f596
IM
2720static void pull_task(struct rq *src_rq, struct task_struct *p,
2721 struct rq *this_rq, int this_cpu)
1da177e4 2722{
2e1cb74a 2723 deactivate_task(src_rq, p, 0);
1da177e4 2724 set_task_cpu(p, this_cpu);
dd41f596 2725 activate_task(this_rq, p, 0);
1da177e4
LT
2726 /*
2727 * Note that idle threads have a prio of MAX_PRIO, for this test
2728 * to be always true for them.
2729 */
dd41f596 2730 check_preempt_curr(this_rq, p);
1da177e4
LT
2731}
2732
2733/*
2734 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2735 */
858119e1 2736static
70b97a7f 2737int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2738 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2739 int *all_pinned)
1da177e4
LT
2740{
2741 /*
2742 * We do not migrate tasks that are:
2743 * 1) running (obviously), or
2744 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2745 * 3) are cache-hot on their current CPU.
2746 */
cc367732
IM
2747 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2748 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2749 return 0;
cc367732 2750 }
81026794
NP
2751 *all_pinned = 0;
2752
cc367732
IM
2753 if (task_running(rq, p)) {
2754 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2755 return 0;
cc367732 2756 }
1da177e4 2757
da84d961
IM
2758 /*
2759 * Aggressive migration if:
2760 * 1) task is cache cold, or
2761 * 2) too many balance attempts have failed.
2762 */
2763
6bc1665b
IM
2764 if (!task_hot(p, rq->clock, sd) ||
2765 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2766#ifdef CONFIG_SCHEDSTATS
cc367732 2767 if (task_hot(p, rq->clock, sd)) {
da84d961 2768 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2769 schedstat_inc(p, se.nr_forced_migrations);
2770 }
da84d961
IM
2771#endif
2772 return 1;
2773 }
2774
cc367732
IM
2775 if (task_hot(p, rq->clock, sd)) {
2776 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2777 return 0;
cc367732 2778 }
1da177e4
LT
2779 return 1;
2780}
2781
e1d1484f
PW
2782static unsigned long
2783balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2784 unsigned long max_load_move, struct sched_domain *sd,
2785 enum cpu_idle_type idle, int *all_pinned,
2786 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2787{
b82d9fdd 2788 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2789 struct task_struct *p;
2790 long rem_load_move = max_load_move;
1da177e4 2791
e1d1484f 2792 if (max_load_move == 0)
1da177e4
LT
2793 goto out;
2794
81026794
NP
2795 pinned = 1;
2796
1da177e4 2797 /*
dd41f596 2798 * Start the load-balancing iterator:
1da177e4 2799 */
dd41f596
IM
2800 p = iterator->start(iterator->arg);
2801next:
b82d9fdd 2802 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2803 goto out;
50ddd969 2804 /*
b82d9fdd 2805 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2806 * skip a task if it will be the highest priority task (i.e. smallest
2807 * prio value) on its new queue regardless of its load weight
2808 */
dd41f596
IM
2809 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2810 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2811 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2812 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2813 p = iterator->next(iterator->arg);
2814 goto next;
1da177e4
LT
2815 }
2816
dd41f596 2817 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2818 pulled++;
dd41f596 2819 rem_load_move -= p->se.load.weight;
1da177e4 2820
2dd73a4f 2821 /*
b82d9fdd 2822 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2823 */
e1d1484f 2824 if (rem_load_move > 0) {
a4ac01c3
PW
2825 if (p->prio < *this_best_prio)
2826 *this_best_prio = p->prio;
dd41f596
IM
2827 p = iterator->next(iterator->arg);
2828 goto next;
1da177e4
LT
2829 }
2830out:
2831 /*
e1d1484f 2832 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2833 * so we can safely collect pull_task() stats here rather than
2834 * inside pull_task().
2835 */
2836 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2837
2838 if (all_pinned)
2839 *all_pinned = pinned;
e1d1484f
PW
2840
2841 return max_load_move - rem_load_move;
1da177e4
LT
2842}
2843
dd41f596 2844/*
43010659
PW
2845 * move_tasks tries to move up to max_load_move weighted load from busiest to
2846 * this_rq, as part of a balancing operation within domain "sd".
2847 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2848 *
2849 * Called with both runqueues locked.
2850 */
2851static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2852 unsigned long max_load_move,
dd41f596
IM
2853 struct sched_domain *sd, enum cpu_idle_type idle,
2854 int *all_pinned)
2855{
5522d5d5 2856 const struct sched_class *class = sched_class_highest;
43010659 2857 unsigned long total_load_moved = 0;
a4ac01c3 2858 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2859
2860 do {
43010659
PW
2861 total_load_moved +=
2862 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2863 max_load_move - total_load_moved,
a4ac01c3 2864 sd, idle, all_pinned, &this_best_prio);
dd41f596 2865 class = class->next;
43010659 2866 } while (class && max_load_move > total_load_moved);
dd41f596 2867
43010659
PW
2868 return total_load_moved > 0;
2869}
2870
e1d1484f
PW
2871static int
2872iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2873 struct sched_domain *sd, enum cpu_idle_type idle,
2874 struct rq_iterator *iterator)
2875{
2876 struct task_struct *p = iterator->start(iterator->arg);
2877 int pinned = 0;
2878
2879 while (p) {
2880 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2881 pull_task(busiest, p, this_rq, this_cpu);
2882 /*
2883 * Right now, this is only the second place pull_task()
2884 * is called, so we can safely collect pull_task()
2885 * stats here rather than inside pull_task().
2886 */
2887 schedstat_inc(sd, lb_gained[idle]);
2888
2889 return 1;
2890 }
2891 p = iterator->next(iterator->arg);
2892 }
2893
2894 return 0;
2895}
2896
43010659
PW
2897/*
2898 * move_one_task tries to move exactly one task from busiest to this_rq, as
2899 * part of active balancing operations within "domain".
2900 * Returns 1 if successful and 0 otherwise.
2901 *
2902 * Called with both runqueues locked.
2903 */
2904static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2905 struct sched_domain *sd, enum cpu_idle_type idle)
2906{
5522d5d5 2907 const struct sched_class *class;
43010659
PW
2908
2909 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2910 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2911 return 1;
2912
2913 return 0;
dd41f596
IM
2914}
2915
1da177e4
LT
2916/*
2917 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2918 * domain. It calculates and returns the amount of weighted load which
2919 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2920 */
2921static struct sched_group *
2922find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 2923 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 2924 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
2925{
2926 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2927 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2928 unsigned long max_pull;
2dd73a4f
PW
2929 unsigned long busiest_load_per_task, busiest_nr_running;
2930 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2931 int load_idx, group_imb = 0;
5c45bf27
SS
2932#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2933 int power_savings_balance = 1;
2934 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2935 unsigned long min_nr_running = ULONG_MAX;
2936 struct sched_group *group_min = NULL, *group_leader = NULL;
2937#endif
1da177e4
LT
2938
2939 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2940 busiest_load_per_task = busiest_nr_running = 0;
2941 this_load_per_task = this_nr_running = 0;
d15bcfdb 2942 if (idle == CPU_NOT_IDLE)
7897986b 2943 load_idx = sd->busy_idx;
d15bcfdb 2944 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2945 load_idx = sd->newidle_idx;
2946 else
2947 load_idx = sd->idle_idx;
1da177e4
LT
2948
2949 do {
908a7c1b 2950 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2951 int local_group;
2952 int i;
908a7c1b 2953 int __group_imb = 0;
783609c6 2954 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2955 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2956
2957 local_group = cpu_isset(this_cpu, group->cpumask);
2958
783609c6
SS
2959 if (local_group)
2960 balance_cpu = first_cpu(group->cpumask);
2961
1da177e4 2962 /* Tally up the load of all CPUs in the group */
2dd73a4f 2963 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2964 max_cpu_load = 0;
2965 min_cpu_load = ~0UL;
1da177e4
LT
2966
2967 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2968 struct rq *rq;
2969
2970 if (!cpu_isset(i, *cpus))
2971 continue;
2972
2973 rq = cpu_rq(i);
2dd73a4f 2974
9439aab8 2975 if (*sd_idle && rq->nr_running)
5969fe06
NP
2976 *sd_idle = 0;
2977
1da177e4 2978 /* Bias balancing toward cpus of our domain */
783609c6
SS
2979 if (local_group) {
2980 if (idle_cpu(i) && !first_idle_cpu) {
2981 first_idle_cpu = 1;
2982 balance_cpu = i;
2983 }
2984
a2000572 2985 load = target_load(i, load_idx);
908a7c1b 2986 } else {
a2000572 2987 load = source_load(i, load_idx);
908a7c1b
KC
2988 if (load > max_cpu_load)
2989 max_cpu_load = load;
2990 if (min_cpu_load > load)
2991 min_cpu_load = load;
2992 }
1da177e4
LT
2993
2994 avg_load += load;
2dd73a4f 2995 sum_nr_running += rq->nr_running;
dd41f596 2996 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2997 }
2998
783609c6
SS
2999 /*
3000 * First idle cpu or the first cpu(busiest) in this sched group
3001 * is eligible for doing load balancing at this and above
9439aab8
SS
3002 * domains. In the newly idle case, we will allow all the cpu's
3003 * to do the newly idle load balance.
783609c6 3004 */
9439aab8
SS
3005 if (idle != CPU_NEWLY_IDLE && local_group &&
3006 balance_cpu != this_cpu && balance) {
783609c6
SS
3007 *balance = 0;
3008 goto ret;
3009 }
3010
1da177e4 3011 total_load += avg_load;
5517d86b 3012 total_pwr += group->__cpu_power;
1da177e4
LT
3013
3014 /* Adjust by relative CPU power of the group */
5517d86b
ED
3015 avg_load = sg_div_cpu_power(group,
3016 avg_load * SCHED_LOAD_SCALE);
1da177e4 3017
908a7c1b
KC
3018 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3019 __group_imb = 1;
3020
5517d86b 3021 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3022
1da177e4
LT
3023 if (local_group) {
3024 this_load = avg_load;
3025 this = group;
2dd73a4f
PW
3026 this_nr_running = sum_nr_running;
3027 this_load_per_task = sum_weighted_load;
3028 } else if (avg_load > max_load &&
908a7c1b 3029 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3030 max_load = avg_load;
3031 busiest = group;
2dd73a4f
PW
3032 busiest_nr_running = sum_nr_running;
3033 busiest_load_per_task = sum_weighted_load;
908a7c1b 3034 group_imb = __group_imb;
1da177e4 3035 }
5c45bf27
SS
3036
3037#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3038 /*
3039 * Busy processors will not participate in power savings
3040 * balance.
3041 */
dd41f596
IM
3042 if (idle == CPU_NOT_IDLE ||
3043 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3044 goto group_next;
5c45bf27
SS
3045
3046 /*
3047 * If the local group is idle or completely loaded
3048 * no need to do power savings balance at this domain
3049 */
3050 if (local_group && (this_nr_running >= group_capacity ||
3051 !this_nr_running))
3052 power_savings_balance = 0;
3053
dd41f596 3054 /*
5c45bf27
SS
3055 * If a group is already running at full capacity or idle,
3056 * don't include that group in power savings calculations
dd41f596
IM
3057 */
3058 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3059 || !sum_nr_running)
dd41f596 3060 goto group_next;
5c45bf27 3061
dd41f596 3062 /*
5c45bf27 3063 * Calculate the group which has the least non-idle load.
dd41f596
IM
3064 * This is the group from where we need to pick up the load
3065 * for saving power
3066 */
3067 if ((sum_nr_running < min_nr_running) ||
3068 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3069 first_cpu(group->cpumask) <
3070 first_cpu(group_min->cpumask))) {
dd41f596
IM
3071 group_min = group;
3072 min_nr_running = sum_nr_running;
5c45bf27
SS
3073 min_load_per_task = sum_weighted_load /
3074 sum_nr_running;
dd41f596 3075 }
5c45bf27 3076
dd41f596 3077 /*
5c45bf27 3078 * Calculate the group which is almost near its
dd41f596
IM
3079 * capacity but still has some space to pick up some load
3080 * from other group and save more power
3081 */
3082 if (sum_nr_running <= group_capacity - 1) {
3083 if (sum_nr_running > leader_nr_running ||
3084 (sum_nr_running == leader_nr_running &&
3085 first_cpu(group->cpumask) >
3086 first_cpu(group_leader->cpumask))) {
3087 group_leader = group;
3088 leader_nr_running = sum_nr_running;
3089 }
48f24c4d 3090 }
5c45bf27
SS
3091group_next:
3092#endif
1da177e4
LT
3093 group = group->next;
3094 } while (group != sd->groups);
3095
2dd73a4f 3096 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3097 goto out_balanced;
3098
3099 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3100
3101 if (this_load >= avg_load ||
3102 100*max_load <= sd->imbalance_pct*this_load)
3103 goto out_balanced;
3104
2dd73a4f 3105 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3106 if (group_imb)
3107 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3108
1da177e4
LT
3109 /*
3110 * We're trying to get all the cpus to the average_load, so we don't
3111 * want to push ourselves above the average load, nor do we wish to
3112 * reduce the max loaded cpu below the average load, as either of these
3113 * actions would just result in more rebalancing later, and ping-pong
3114 * tasks around. Thus we look for the minimum possible imbalance.
3115 * Negative imbalances (*we* are more loaded than anyone else) will
3116 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3117 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3118 * appear as very large values with unsigned longs.
3119 */
2dd73a4f
PW
3120 if (max_load <= busiest_load_per_task)
3121 goto out_balanced;
3122
3123 /*
3124 * In the presence of smp nice balancing, certain scenarios can have
3125 * max load less than avg load(as we skip the groups at or below
3126 * its cpu_power, while calculating max_load..)
3127 */
3128 if (max_load < avg_load) {
3129 *imbalance = 0;
3130 goto small_imbalance;
3131 }
0c117f1b
SS
3132
3133 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3134 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3135
1da177e4 3136 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3137 *imbalance = min(max_pull * busiest->__cpu_power,
3138 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3139 / SCHED_LOAD_SCALE;
3140
2dd73a4f
PW
3141 /*
3142 * if *imbalance is less than the average load per runnable task
3143 * there is no gaurantee that any tasks will be moved so we'll have
3144 * a think about bumping its value to force at least one task to be
3145 * moved
3146 */
7fd0d2dd 3147 if (*imbalance < busiest_load_per_task) {
48f24c4d 3148 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3149 unsigned int imbn;
3150
3151small_imbalance:
3152 pwr_move = pwr_now = 0;
3153 imbn = 2;
3154 if (this_nr_running) {
3155 this_load_per_task /= this_nr_running;
3156 if (busiest_load_per_task > this_load_per_task)
3157 imbn = 1;
3158 } else
3159 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3160
dd41f596
IM
3161 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3162 busiest_load_per_task * imbn) {
2dd73a4f 3163 *imbalance = busiest_load_per_task;
1da177e4
LT
3164 return busiest;
3165 }
3166
3167 /*
3168 * OK, we don't have enough imbalance to justify moving tasks,
3169 * however we may be able to increase total CPU power used by
3170 * moving them.
3171 */
3172
5517d86b
ED
3173 pwr_now += busiest->__cpu_power *
3174 min(busiest_load_per_task, max_load);
3175 pwr_now += this->__cpu_power *
3176 min(this_load_per_task, this_load);
1da177e4
LT
3177 pwr_now /= SCHED_LOAD_SCALE;
3178
3179 /* Amount of load we'd subtract */
5517d86b
ED
3180 tmp = sg_div_cpu_power(busiest,
3181 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3182 if (max_load > tmp)
5517d86b 3183 pwr_move += busiest->__cpu_power *
2dd73a4f 3184 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3185
3186 /* Amount of load we'd add */
5517d86b 3187 if (max_load * busiest->__cpu_power <
33859f7f 3188 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3189 tmp = sg_div_cpu_power(this,
3190 max_load * busiest->__cpu_power);
1da177e4 3191 else
5517d86b
ED
3192 tmp = sg_div_cpu_power(this,
3193 busiest_load_per_task * SCHED_LOAD_SCALE);
3194 pwr_move += this->__cpu_power *
3195 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3196 pwr_move /= SCHED_LOAD_SCALE;
3197
3198 /* Move if we gain throughput */
7fd0d2dd
SS
3199 if (pwr_move > pwr_now)
3200 *imbalance = busiest_load_per_task;
1da177e4
LT
3201 }
3202
1da177e4
LT
3203 return busiest;
3204
3205out_balanced:
5c45bf27 3206#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3207 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3208 goto ret;
1da177e4 3209
5c45bf27
SS
3210 if (this == group_leader && group_leader != group_min) {
3211 *imbalance = min_load_per_task;
3212 return group_min;
3213 }
5c45bf27 3214#endif
783609c6 3215ret:
1da177e4
LT
3216 *imbalance = 0;
3217 return NULL;
3218}
3219
3220/*
3221 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3222 */
70b97a7f 3223static struct rq *
d15bcfdb 3224find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3225 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3226{
70b97a7f 3227 struct rq *busiest = NULL, *rq;
2dd73a4f 3228 unsigned long max_load = 0;
1da177e4
LT
3229 int i;
3230
3231 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3232 unsigned long wl;
0a2966b4
CL
3233
3234 if (!cpu_isset(i, *cpus))
3235 continue;
3236
48f24c4d 3237 rq = cpu_rq(i);
dd41f596 3238 wl = weighted_cpuload(i);
2dd73a4f 3239
dd41f596 3240 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3241 continue;
1da177e4 3242
dd41f596
IM
3243 if (wl > max_load) {
3244 max_load = wl;
48f24c4d 3245 busiest = rq;
1da177e4
LT
3246 }
3247 }
3248
3249 return busiest;
3250}
3251
77391d71
NP
3252/*
3253 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3254 * so long as it is large enough.
3255 */
3256#define MAX_PINNED_INTERVAL 512
3257
1da177e4
LT
3258/*
3259 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3260 * tasks if there is an imbalance.
1da177e4 3261 */
70b97a7f 3262static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3263 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3264 int *balance, cpumask_t *cpus)
1da177e4 3265{
43010659 3266 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3267 struct sched_group *group;
1da177e4 3268 unsigned long imbalance;
70b97a7f 3269 struct rq *busiest;
fe2eea3f 3270 unsigned long flags;
5969fe06 3271
7c16ec58
MT
3272 cpus_setall(*cpus);
3273
89c4710e
SS
3274 /*
3275 * When power savings policy is enabled for the parent domain, idle
3276 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3277 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3278 * portraying it as CPU_NOT_IDLE.
89c4710e 3279 */
d15bcfdb 3280 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3281 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3282 sd_idle = 1;
1da177e4 3283
2d72376b 3284 schedstat_inc(sd, lb_count[idle]);
1da177e4 3285
0a2966b4
CL
3286redo:
3287 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3288 cpus, balance);
783609c6 3289
06066714 3290 if (*balance == 0)
783609c6 3291 goto out_balanced;
783609c6 3292
1da177e4
LT
3293 if (!group) {
3294 schedstat_inc(sd, lb_nobusyg[idle]);
3295 goto out_balanced;
3296 }
3297
7c16ec58 3298 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3299 if (!busiest) {
3300 schedstat_inc(sd, lb_nobusyq[idle]);
3301 goto out_balanced;
3302 }
3303
db935dbd 3304 BUG_ON(busiest == this_rq);
1da177e4
LT
3305
3306 schedstat_add(sd, lb_imbalance[idle], imbalance);
3307
43010659 3308 ld_moved = 0;
1da177e4
LT
3309 if (busiest->nr_running > 1) {
3310 /*
3311 * Attempt to move tasks. If find_busiest_group has found
3312 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3313 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3314 * correctly treated as an imbalance.
3315 */
fe2eea3f 3316 local_irq_save(flags);
e17224bf 3317 double_rq_lock(this_rq, busiest);
43010659 3318 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3319 imbalance, sd, idle, &all_pinned);
e17224bf 3320 double_rq_unlock(this_rq, busiest);
fe2eea3f 3321 local_irq_restore(flags);
81026794 3322
46cb4b7c
SS
3323 /*
3324 * some other cpu did the load balance for us.
3325 */
43010659 3326 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3327 resched_cpu(this_cpu);
3328
81026794 3329 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3330 if (unlikely(all_pinned)) {
7c16ec58
MT
3331 cpu_clear(cpu_of(busiest), *cpus);
3332 if (!cpus_empty(*cpus))
0a2966b4 3333 goto redo;
81026794 3334 goto out_balanced;
0a2966b4 3335 }
1da177e4 3336 }
81026794 3337
43010659 3338 if (!ld_moved) {
1da177e4
LT
3339 schedstat_inc(sd, lb_failed[idle]);
3340 sd->nr_balance_failed++;
3341
3342 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3343
fe2eea3f 3344 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3345
3346 /* don't kick the migration_thread, if the curr
3347 * task on busiest cpu can't be moved to this_cpu
3348 */
3349 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3350 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3351 all_pinned = 1;
3352 goto out_one_pinned;
3353 }
3354
1da177e4
LT
3355 if (!busiest->active_balance) {
3356 busiest->active_balance = 1;
3357 busiest->push_cpu = this_cpu;
81026794 3358 active_balance = 1;
1da177e4 3359 }
fe2eea3f 3360 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3361 if (active_balance)
1da177e4
LT
3362 wake_up_process(busiest->migration_thread);
3363
3364 /*
3365 * We've kicked active balancing, reset the failure
3366 * counter.
3367 */
39507451 3368 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3369 }
81026794 3370 } else
1da177e4
LT
3371 sd->nr_balance_failed = 0;
3372
81026794 3373 if (likely(!active_balance)) {
1da177e4
LT
3374 /* We were unbalanced, so reset the balancing interval */
3375 sd->balance_interval = sd->min_interval;
81026794
NP
3376 } else {
3377 /*
3378 * If we've begun active balancing, start to back off. This
3379 * case may not be covered by the all_pinned logic if there
3380 * is only 1 task on the busy runqueue (because we don't call
3381 * move_tasks).
3382 */
3383 if (sd->balance_interval < sd->max_interval)
3384 sd->balance_interval *= 2;
1da177e4
LT
3385 }
3386
43010659 3387 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3388 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3389 return -1;
3390 return ld_moved;
1da177e4
LT
3391
3392out_balanced:
1da177e4
LT
3393 schedstat_inc(sd, lb_balanced[idle]);
3394
16cfb1c0 3395 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3396
3397out_one_pinned:
1da177e4 3398 /* tune up the balancing interval */
77391d71
NP
3399 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3400 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3401 sd->balance_interval *= 2;
3402
48f24c4d 3403 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3404 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3405 return -1;
3406 return 0;
1da177e4
LT
3407}
3408
3409/*
3410 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3411 * tasks if there is an imbalance.
3412 *
d15bcfdb 3413 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3414 * this_rq is locked.
3415 */
48f24c4d 3416static int
7c16ec58
MT
3417load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3418 cpumask_t *cpus)
1da177e4
LT
3419{
3420 struct sched_group *group;
70b97a7f 3421 struct rq *busiest = NULL;
1da177e4 3422 unsigned long imbalance;
43010659 3423 int ld_moved = 0;
5969fe06 3424 int sd_idle = 0;
969bb4e4 3425 int all_pinned = 0;
7c16ec58
MT
3426
3427 cpus_setall(*cpus);
5969fe06 3428
89c4710e
SS
3429 /*
3430 * When power savings policy is enabled for the parent domain, idle
3431 * sibling can pick up load irrespective of busy siblings. In this case,
3432 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3433 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3434 */
3435 if (sd->flags & SD_SHARE_CPUPOWER &&
3436 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3437 sd_idle = 1;
1da177e4 3438
2d72376b 3439 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3440redo:
d15bcfdb 3441 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3442 &sd_idle, cpus, NULL);
1da177e4 3443 if (!group) {
d15bcfdb 3444 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3445 goto out_balanced;
1da177e4
LT
3446 }
3447
7c16ec58 3448 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3449 if (!busiest) {
d15bcfdb 3450 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3451 goto out_balanced;
1da177e4
LT
3452 }
3453
db935dbd
NP
3454 BUG_ON(busiest == this_rq);
3455
d15bcfdb 3456 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3457
43010659 3458 ld_moved = 0;
d6d5cfaf
NP
3459 if (busiest->nr_running > 1) {
3460 /* Attempt to move tasks */
3461 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3462 /* this_rq->clock is already updated */
3463 update_rq_clock(busiest);
43010659 3464 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3465 imbalance, sd, CPU_NEWLY_IDLE,
3466 &all_pinned);
d6d5cfaf 3467 spin_unlock(&busiest->lock);
0a2966b4 3468
969bb4e4 3469 if (unlikely(all_pinned)) {
7c16ec58
MT
3470 cpu_clear(cpu_of(busiest), *cpus);
3471 if (!cpus_empty(*cpus))
0a2966b4
CL
3472 goto redo;
3473 }
d6d5cfaf
NP
3474 }
3475
43010659 3476 if (!ld_moved) {
d15bcfdb 3477 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3478 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3479 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3480 return -1;
3481 } else
16cfb1c0 3482 sd->nr_balance_failed = 0;
1da177e4 3483
43010659 3484 return ld_moved;
16cfb1c0
NP
3485
3486out_balanced:
d15bcfdb 3487 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3488 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3489 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3490 return -1;
16cfb1c0 3491 sd->nr_balance_failed = 0;
48f24c4d 3492
16cfb1c0 3493 return 0;
1da177e4
LT
3494}
3495
3496/*
3497 * idle_balance is called by schedule() if this_cpu is about to become
3498 * idle. Attempts to pull tasks from other CPUs.
3499 */
70b97a7f 3500static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3501{
3502 struct sched_domain *sd;
dd41f596
IM
3503 int pulled_task = -1;
3504 unsigned long next_balance = jiffies + HZ;
7c16ec58 3505 cpumask_t tmpmask;
1da177e4
LT
3506
3507 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3508 unsigned long interval;
3509
3510 if (!(sd->flags & SD_LOAD_BALANCE))
3511 continue;
3512
3513 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3514 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3515 pulled_task = load_balance_newidle(this_cpu, this_rq,
3516 sd, &tmpmask);
92c4ca5c
CL
3517
3518 interval = msecs_to_jiffies(sd->balance_interval);
3519 if (time_after(next_balance, sd->last_balance + interval))
3520 next_balance = sd->last_balance + interval;
3521 if (pulled_task)
3522 break;
1da177e4 3523 }
dd41f596 3524 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3525 /*
3526 * We are going idle. next_balance may be set based on
3527 * a busy processor. So reset next_balance.
3528 */
3529 this_rq->next_balance = next_balance;
dd41f596 3530 }
1da177e4
LT
3531}
3532
3533/*
3534 * active_load_balance is run by migration threads. It pushes running tasks
3535 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3536 * running on each physical CPU where possible, and avoids physical /
3537 * logical imbalances.
3538 *
3539 * Called with busiest_rq locked.
3540 */
70b97a7f 3541static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3542{
39507451 3543 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3544 struct sched_domain *sd;
3545 struct rq *target_rq;
39507451 3546
48f24c4d 3547 /* Is there any task to move? */
39507451 3548 if (busiest_rq->nr_running <= 1)
39507451
NP
3549 return;
3550
3551 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3552
3553 /*
39507451 3554 * This condition is "impossible", if it occurs
41a2d6cf 3555 * we need to fix it. Originally reported by
39507451 3556 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3557 */
39507451 3558 BUG_ON(busiest_rq == target_rq);
1da177e4 3559
39507451
NP
3560 /* move a task from busiest_rq to target_rq */
3561 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3562 update_rq_clock(busiest_rq);
3563 update_rq_clock(target_rq);
39507451
NP
3564
3565 /* Search for an sd spanning us and the target CPU. */
c96d145e 3566 for_each_domain(target_cpu, sd) {
39507451 3567 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3568 cpu_isset(busiest_cpu, sd->span))
39507451 3569 break;
c96d145e 3570 }
39507451 3571
48f24c4d 3572 if (likely(sd)) {
2d72376b 3573 schedstat_inc(sd, alb_count);
39507451 3574
43010659
PW
3575 if (move_one_task(target_rq, target_cpu, busiest_rq,
3576 sd, CPU_IDLE))
48f24c4d
IM
3577 schedstat_inc(sd, alb_pushed);
3578 else
3579 schedstat_inc(sd, alb_failed);
3580 }
39507451 3581 spin_unlock(&target_rq->lock);
1da177e4
LT
3582}
3583
46cb4b7c
SS
3584#ifdef CONFIG_NO_HZ
3585static struct {
3586 atomic_t load_balancer;
41a2d6cf 3587 cpumask_t cpu_mask;
46cb4b7c
SS
3588} nohz ____cacheline_aligned = {
3589 .load_balancer = ATOMIC_INIT(-1),
3590 .cpu_mask = CPU_MASK_NONE,
3591};
3592
7835b98b 3593/*
46cb4b7c
SS
3594 * This routine will try to nominate the ilb (idle load balancing)
3595 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3596 * load balancing on behalf of all those cpus. If all the cpus in the system
3597 * go into this tickless mode, then there will be no ilb owner (as there is
3598 * no need for one) and all the cpus will sleep till the next wakeup event
3599 * arrives...
3600 *
3601 * For the ilb owner, tick is not stopped. And this tick will be used
3602 * for idle load balancing. ilb owner will still be part of
3603 * nohz.cpu_mask..
7835b98b 3604 *
46cb4b7c
SS
3605 * While stopping the tick, this cpu will become the ilb owner if there
3606 * is no other owner. And will be the owner till that cpu becomes busy
3607 * or if all cpus in the system stop their ticks at which point
3608 * there is no need for ilb owner.
3609 *
3610 * When the ilb owner becomes busy, it nominates another owner, during the
3611 * next busy scheduler_tick()
3612 */
3613int select_nohz_load_balancer(int stop_tick)
3614{
3615 int cpu = smp_processor_id();
3616
3617 if (stop_tick) {
3618 cpu_set(cpu, nohz.cpu_mask);
3619 cpu_rq(cpu)->in_nohz_recently = 1;
3620
3621 /*
3622 * If we are going offline and still the leader, give up!
3623 */
3624 if (cpu_is_offline(cpu) &&
3625 atomic_read(&nohz.load_balancer) == cpu) {
3626 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3627 BUG();
3628 return 0;
3629 }
3630
3631 /* time for ilb owner also to sleep */
3632 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3633 if (atomic_read(&nohz.load_balancer) == cpu)
3634 atomic_set(&nohz.load_balancer, -1);
3635 return 0;
3636 }
3637
3638 if (atomic_read(&nohz.load_balancer) == -1) {
3639 /* make me the ilb owner */
3640 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3641 return 1;
3642 } else if (atomic_read(&nohz.load_balancer) == cpu)
3643 return 1;
3644 } else {
3645 if (!cpu_isset(cpu, nohz.cpu_mask))
3646 return 0;
3647
3648 cpu_clear(cpu, nohz.cpu_mask);
3649
3650 if (atomic_read(&nohz.load_balancer) == cpu)
3651 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3652 BUG();
3653 }
3654 return 0;
3655}
3656#endif
3657
3658static DEFINE_SPINLOCK(balancing);
3659
3660/*
7835b98b
CL
3661 * It checks each scheduling domain to see if it is due to be balanced,
3662 * and initiates a balancing operation if so.
3663 *
3664 * Balancing parameters are set up in arch_init_sched_domains.
3665 */
a9957449 3666static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3667{
46cb4b7c
SS
3668 int balance = 1;
3669 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3670 unsigned long interval;
3671 struct sched_domain *sd;
46cb4b7c 3672 /* Earliest time when we have to do rebalance again */
c9819f45 3673 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3674 int update_next_balance = 0;
d07355f5 3675 int need_serialize;
7c16ec58 3676 cpumask_t tmp;
1da177e4 3677
46cb4b7c 3678 for_each_domain(cpu, sd) {
1da177e4
LT
3679 if (!(sd->flags & SD_LOAD_BALANCE))
3680 continue;
3681
3682 interval = sd->balance_interval;
d15bcfdb 3683 if (idle != CPU_IDLE)
1da177e4
LT
3684 interval *= sd->busy_factor;
3685
3686 /* scale ms to jiffies */
3687 interval = msecs_to_jiffies(interval);
3688 if (unlikely(!interval))
3689 interval = 1;
dd41f596
IM
3690 if (interval > HZ*NR_CPUS/10)
3691 interval = HZ*NR_CPUS/10;
3692
d07355f5 3693 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3694
d07355f5 3695 if (need_serialize) {
08c183f3
CL
3696 if (!spin_trylock(&balancing))
3697 goto out;
3698 }
3699
c9819f45 3700 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3701 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3702 /*
3703 * We've pulled tasks over so either we're no
5969fe06
NP
3704 * longer idle, or one of our SMT siblings is
3705 * not idle.
3706 */
d15bcfdb 3707 idle = CPU_NOT_IDLE;
1da177e4 3708 }
1bd77f2d 3709 sd->last_balance = jiffies;
1da177e4 3710 }
d07355f5 3711 if (need_serialize)
08c183f3
CL
3712 spin_unlock(&balancing);
3713out:
f549da84 3714 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3715 next_balance = sd->last_balance + interval;
f549da84
SS
3716 update_next_balance = 1;
3717 }
783609c6
SS
3718
3719 /*
3720 * Stop the load balance at this level. There is another
3721 * CPU in our sched group which is doing load balancing more
3722 * actively.
3723 */
3724 if (!balance)
3725 break;
1da177e4 3726 }
f549da84
SS
3727
3728 /*
3729 * next_balance will be updated only when there is a need.
3730 * When the cpu is attached to null domain for ex, it will not be
3731 * updated.
3732 */
3733 if (likely(update_next_balance))
3734 rq->next_balance = next_balance;
46cb4b7c
SS
3735}
3736
3737/*
3738 * run_rebalance_domains is triggered when needed from the scheduler tick.
3739 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3740 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3741 */
3742static void run_rebalance_domains(struct softirq_action *h)
3743{
dd41f596
IM
3744 int this_cpu = smp_processor_id();
3745 struct rq *this_rq = cpu_rq(this_cpu);
3746 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3747 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3748
dd41f596 3749 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3750
3751#ifdef CONFIG_NO_HZ
3752 /*
3753 * If this cpu is the owner for idle load balancing, then do the
3754 * balancing on behalf of the other idle cpus whose ticks are
3755 * stopped.
3756 */
dd41f596
IM
3757 if (this_rq->idle_at_tick &&
3758 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3759 cpumask_t cpus = nohz.cpu_mask;
3760 struct rq *rq;
3761 int balance_cpu;
3762
dd41f596 3763 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3764 for_each_cpu_mask(balance_cpu, cpus) {
3765 /*
3766 * If this cpu gets work to do, stop the load balancing
3767 * work being done for other cpus. Next load
3768 * balancing owner will pick it up.
3769 */
3770 if (need_resched())
3771 break;
3772
de0cf899 3773 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3774
3775 rq = cpu_rq(balance_cpu);
dd41f596
IM
3776 if (time_after(this_rq->next_balance, rq->next_balance))
3777 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3778 }
3779 }
3780#endif
3781}
3782
3783/*
3784 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3785 *
3786 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3787 * idle load balancing owner or decide to stop the periodic load balancing,
3788 * if the whole system is idle.
3789 */
dd41f596 3790static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3791{
46cb4b7c
SS
3792#ifdef CONFIG_NO_HZ
3793 /*
3794 * If we were in the nohz mode recently and busy at the current
3795 * scheduler tick, then check if we need to nominate new idle
3796 * load balancer.
3797 */
3798 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3799 rq->in_nohz_recently = 0;
3800
3801 if (atomic_read(&nohz.load_balancer) == cpu) {
3802 cpu_clear(cpu, nohz.cpu_mask);
3803 atomic_set(&nohz.load_balancer, -1);
3804 }
3805
3806 if (atomic_read(&nohz.load_balancer) == -1) {
3807 /*
3808 * simple selection for now: Nominate the
3809 * first cpu in the nohz list to be the next
3810 * ilb owner.
3811 *
3812 * TBD: Traverse the sched domains and nominate
3813 * the nearest cpu in the nohz.cpu_mask.
3814 */
3815 int ilb = first_cpu(nohz.cpu_mask);
3816
434d53b0 3817 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3818 resched_cpu(ilb);
3819 }
3820 }
3821
3822 /*
3823 * If this cpu is idle and doing idle load balancing for all the
3824 * cpus with ticks stopped, is it time for that to stop?
3825 */
3826 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3827 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3828 resched_cpu(cpu);
3829 return;
3830 }
3831
3832 /*
3833 * If this cpu is idle and the idle load balancing is done by
3834 * someone else, then no need raise the SCHED_SOFTIRQ
3835 */
3836 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3837 cpu_isset(cpu, nohz.cpu_mask))
3838 return;
3839#endif
3840 if (time_after_eq(jiffies, rq->next_balance))
3841 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3842}
dd41f596
IM
3843
3844#else /* CONFIG_SMP */
3845
1da177e4
LT
3846/*
3847 * on UP we do not need to balance between CPUs:
3848 */
70b97a7f 3849static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3850{
3851}
dd41f596 3852
1da177e4
LT
3853#endif
3854
1da177e4
LT
3855DEFINE_PER_CPU(struct kernel_stat, kstat);
3856
3857EXPORT_PER_CPU_SYMBOL(kstat);
3858
3859/*
41b86e9c
IM
3860 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3861 * that have not yet been banked in case the task is currently running.
1da177e4 3862 */
41b86e9c 3863unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3864{
1da177e4 3865 unsigned long flags;
41b86e9c
IM
3866 u64 ns, delta_exec;
3867 struct rq *rq;
48f24c4d 3868
41b86e9c
IM
3869 rq = task_rq_lock(p, &flags);
3870 ns = p->se.sum_exec_runtime;
051a1d1a 3871 if (task_current(rq, p)) {
a8e504d2
IM
3872 update_rq_clock(rq);
3873 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3874 if ((s64)delta_exec > 0)
3875 ns += delta_exec;
3876 }
3877 task_rq_unlock(rq, &flags);
48f24c4d 3878
1da177e4
LT
3879 return ns;
3880}
3881
1da177e4
LT
3882/*
3883 * Account user cpu time to a process.
3884 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3885 * @cputime: the cpu time spent in user space since the last update
3886 */
3887void account_user_time(struct task_struct *p, cputime_t cputime)
3888{
3889 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3890 cputime64_t tmp;
3891
3892 p->utime = cputime_add(p->utime, cputime);
3893
3894 /* Add user time to cpustat. */
3895 tmp = cputime_to_cputime64(cputime);
3896 if (TASK_NICE(p) > 0)
3897 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3898 else
3899 cpustat->user = cputime64_add(cpustat->user, tmp);
3900}
3901
94886b84
LV
3902/*
3903 * Account guest cpu time to a process.
3904 * @p: the process that the cpu time gets accounted to
3905 * @cputime: the cpu time spent in virtual machine since the last update
3906 */
f7402e03 3907static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3908{
3909 cputime64_t tmp;
3910 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3911
3912 tmp = cputime_to_cputime64(cputime);
3913
3914 p->utime = cputime_add(p->utime, cputime);
3915 p->gtime = cputime_add(p->gtime, cputime);
3916
3917 cpustat->user = cputime64_add(cpustat->user, tmp);
3918 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3919}
3920
c66f08be
MN
3921/*
3922 * Account scaled user cpu time to a process.
3923 * @p: the process that the cpu time gets accounted to
3924 * @cputime: the cpu time spent in user space since the last update
3925 */
3926void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3927{
3928 p->utimescaled = cputime_add(p->utimescaled, cputime);
3929}
3930
1da177e4
LT
3931/*
3932 * Account system cpu time to a process.
3933 * @p: the process that the cpu time gets accounted to
3934 * @hardirq_offset: the offset to subtract from hardirq_count()
3935 * @cputime: the cpu time spent in kernel space since the last update
3936 */
3937void account_system_time(struct task_struct *p, int hardirq_offset,
3938 cputime_t cputime)
3939{
3940 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3941 struct rq *rq = this_rq();
1da177e4
LT
3942 cputime64_t tmp;
3943
983ed7a6
HH
3944 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3945 account_guest_time(p, cputime);
3946 return;
3947 }
94886b84 3948
1da177e4
LT
3949 p->stime = cputime_add(p->stime, cputime);
3950
3951 /* Add system time to cpustat. */
3952 tmp = cputime_to_cputime64(cputime);
3953 if (hardirq_count() - hardirq_offset)
3954 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3955 else if (softirq_count())
3956 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3957 else if (p != rq->idle)
1da177e4 3958 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3959 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3960 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3961 else
3962 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3963 /* Account for system time used */
3964 acct_update_integrals(p);
1da177e4
LT
3965}
3966
c66f08be
MN
3967/*
3968 * Account scaled system cpu time to a process.
3969 * @p: the process that the cpu time gets accounted to
3970 * @hardirq_offset: the offset to subtract from hardirq_count()
3971 * @cputime: the cpu time spent in kernel space since the last update
3972 */
3973void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3974{
3975 p->stimescaled = cputime_add(p->stimescaled, cputime);
3976}
3977
1da177e4
LT
3978/*
3979 * Account for involuntary wait time.
3980 * @p: the process from which the cpu time has been stolen
3981 * @steal: the cpu time spent in involuntary wait
3982 */
3983void account_steal_time(struct task_struct *p, cputime_t steal)
3984{
3985 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3986 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3987 struct rq *rq = this_rq();
1da177e4
LT
3988
3989 if (p == rq->idle) {
3990 p->stime = cputime_add(p->stime, steal);
3991 if (atomic_read(&rq->nr_iowait) > 0)
3992 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3993 else
3994 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3995 } else
1da177e4
LT
3996 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3997}
3998
7835b98b
CL
3999/*
4000 * This function gets called by the timer code, with HZ frequency.
4001 * We call it with interrupts disabled.
4002 *
4003 * It also gets called by the fork code, when changing the parent's
4004 * timeslices.
4005 */
4006void scheduler_tick(void)
4007{
7835b98b
CL
4008 int cpu = smp_processor_id();
4009 struct rq *rq = cpu_rq(cpu);
dd41f596 4010 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4011
4012 sched_clock_tick();
dd41f596
IM
4013
4014 spin_lock(&rq->lock);
3e51f33f 4015 update_rq_clock(rq);
f1a438d8 4016 update_cpu_load(rq);
fa85ae24 4017 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4018 spin_unlock(&rq->lock);
7835b98b 4019
e418e1c2 4020#ifdef CONFIG_SMP
dd41f596
IM
4021 rq->idle_at_tick = idle_cpu(cpu);
4022 trigger_load_balance(rq, cpu);
e418e1c2 4023#endif
1da177e4
LT
4024}
4025
1da177e4
LT
4026#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4027
43627582 4028void __kprobes add_preempt_count(int val)
1da177e4
LT
4029{
4030 /*
4031 * Underflow?
4032 */
9a11b49a
IM
4033 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4034 return;
1da177e4
LT
4035 preempt_count() += val;
4036 /*
4037 * Spinlock count overflowing soon?
4038 */
33859f7f
MOS
4039 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4040 PREEMPT_MASK - 10);
1da177e4
LT
4041}
4042EXPORT_SYMBOL(add_preempt_count);
4043
43627582 4044void __kprobes sub_preempt_count(int val)
1da177e4
LT
4045{
4046 /*
4047 * Underflow?
4048 */
9a11b49a
IM
4049 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4050 return;
1da177e4
LT
4051 /*
4052 * Is the spinlock portion underflowing?
4053 */
9a11b49a
IM
4054 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4055 !(preempt_count() & PREEMPT_MASK)))
4056 return;
4057
1da177e4
LT
4058 preempt_count() -= val;
4059}
4060EXPORT_SYMBOL(sub_preempt_count);
4061
4062#endif
4063
4064/*
dd41f596 4065 * Print scheduling while atomic bug:
1da177e4 4066 */
dd41f596 4067static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4068{
838225b4
SS
4069 struct pt_regs *regs = get_irq_regs();
4070
4071 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4072 prev->comm, prev->pid, preempt_count());
4073
dd41f596 4074 debug_show_held_locks(prev);
e21f5b15 4075 print_modules();
dd41f596
IM
4076 if (irqs_disabled())
4077 print_irqtrace_events(prev);
838225b4
SS
4078
4079 if (regs)
4080 show_regs(regs);
4081 else
4082 dump_stack();
dd41f596 4083}
1da177e4 4084
dd41f596
IM
4085/*
4086 * Various schedule()-time debugging checks and statistics:
4087 */
4088static inline void schedule_debug(struct task_struct *prev)
4089{
1da177e4 4090 /*
41a2d6cf 4091 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4092 * schedule() atomically, we ignore that path for now.
4093 * Otherwise, whine if we are scheduling when we should not be.
4094 */
3f33a7ce 4095 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4096 __schedule_bug(prev);
4097
1da177e4
LT
4098 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4099
2d72376b 4100 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4101#ifdef CONFIG_SCHEDSTATS
4102 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4103 schedstat_inc(this_rq(), bkl_count);
4104 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4105 }
4106#endif
dd41f596
IM
4107}
4108
4109/*
4110 * Pick up the highest-prio task:
4111 */
4112static inline struct task_struct *
ff95f3df 4113pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4114{
5522d5d5 4115 const struct sched_class *class;
dd41f596 4116 struct task_struct *p;
1da177e4
LT
4117
4118 /*
dd41f596
IM
4119 * Optimization: we know that if all tasks are in
4120 * the fair class we can call that function directly:
1da177e4 4121 */
dd41f596 4122 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4123 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4124 if (likely(p))
4125 return p;
1da177e4
LT
4126 }
4127
dd41f596
IM
4128 class = sched_class_highest;
4129 for ( ; ; ) {
fb8d4724 4130 p = class->pick_next_task(rq);
dd41f596
IM
4131 if (p)
4132 return p;
4133 /*
4134 * Will never be NULL as the idle class always
4135 * returns a non-NULL p:
4136 */
4137 class = class->next;
4138 }
4139}
1da177e4 4140
dd41f596
IM
4141/*
4142 * schedule() is the main scheduler function.
4143 */
4144asmlinkage void __sched schedule(void)
4145{
4146 struct task_struct *prev, *next;
67ca7bde 4147 unsigned long *switch_count;
dd41f596 4148 struct rq *rq;
f333fdc9 4149 int cpu, hrtick = sched_feat(HRTICK);
dd41f596
IM
4150
4151need_resched:
4152 preempt_disable();
4153 cpu = smp_processor_id();
4154 rq = cpu_rq(cpu);
4155 rcu_qsctr_inc(cpu);
4156 prev = rq->curr;
4157 switch_count = &prev->nivcsw;
4158
4159 release_kernel_lock(prev);
4160need_resched_nonpreemptible:
4161
4162 schedule_debug(prev);
1da177e4 4163
f333fdc9
MG
4164 if (hrtick)
4165 hrtick_clear(rq);
8f4d37ec 4166
1e819950
IM
4167 /*
4168 * Do the rq-clock update outside the rq lock:
4169 */
4170 local_irq_disable();
3e51f33f 4171 update_rq_clock(rq);
1e819950
IM
4172 spin_lock(&rq->lock);
4173 clear_tsk_need_resched(prev);
1da177e4 4174
1da177e4 4175 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4176 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4177 prev->state = TASK_RUNNING;
16882c1e 4178 else
2e1cb74a 4179 deactivate_task(rq, prev, 1);
dd41f596 4180 switch_count = &prev->nvcsw;
1da177e4
LT
4181 }
4182
9a897c5a
SR
4183#ifdef CONFIG_SMP
4184 if (prev->sched_class->pre_schedule)
4185 prev->sched_class->pre_schedule(rq, prev);
4186#endif
f65eda4f 4187
dd41f596 4188 if (unlikely(!rq->nr_running))
1da177e4 4189 idle_balance(cpu, rq);
1da177e4 4190
31ee529c 4191 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4192 next = pick_next_task(rq, prev);
1da177e4 4193
1da177e4 4194 if (likely(prev != next)) {
673a90a1
DS
4195 sched_info_switch(prev, next);
4196
1da177e4
LT
4197 rq->nr_switches++;
4198 rq->curr = next;
4199 ++*switch_count;
4200
dd41f596 4201 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4202 /*
4203 * the context switch might have flipped the stack from under
4204 * us, hence refresh the local variables.
4205 */
4206 cpu = smp_processor_id();
4207 rq = cpu_rq(cpu);
1da177e4
LT
4208 } else
4209 spin_unlock_irq(&rq->lock);
4210
f333fdc9
MG
4211 if (hrtick)
4212 hrtick_set(rq);
8f4d37ec
PZ
4213
4214 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4215 goto need_resched_nonpreemptible;
8f4d37ec 4216
1da177e4
LT
4217 preempt_enable_no_resched();
4218 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4219 goto need_resched;
4220}
1da177e4
LT
4221EXPORT_SYMBOL(schedule);
4222
4223#ifdef CONFIG_PREEMPT
4224/*
2ed6e34f 4225 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4226 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4227 * occur there and call schedule directly.
4228 */
4229asmlinkage void __sched preempt_schedule(void)
4230{
4231 struct thread_info *ti = current_thread_info();
6478d880 4232
1da177e4
LT
4233 /*
4234 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4235 * we do not want to preempt the current task. Just return..
1da177e4 4236 */
beed33a8 4237 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4238 return;
4239
3a5c359a
AK
4240 do {
4241 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4242 schedule();
3a5c359a 4243 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4244
3a5c359a
AK
4245 /*
4246 * Check again in case we missed a preemption opportunity
4247 * between schedule and now.
4248 */
4249 barrier();
4250 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4251}
1da177e4
LT
4252EXPORT_SYMBOL(preempt_schedule);
4253
4254/*
2ed6e34f 4255 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4256 * off of irq context.
4257 * Note, that this is called and return with irqs disabled. This will
4258 * protect us against recursive calling from irq.
4259 */
4260asmlinkage void __sched preempt_schedule_irq(void)
4261{
4262 struct thread_info *ti = current_thread_info();
6478d880 4263
2ed6e34f 4264 /* Catch callers which need to be fixed */
1da177e4
LT
4265 BUG_ON(ti->preempt_count || !irqs_disabled());
4266
3a5c359a
AK
4267 do {
4268 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4269 local_irq_enable();
4270 schedule();
4271 local_irq_disable();
3a5c359a 4272 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4273
3a5c359a
AK
4274 /*
4275 * Check again in case we missed a preemption opportunity
4276 * between schedule and now.
4277 */
4278 barrier();
4279 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4280}
4281
4282#endif /* CONFIG_PREEMPT */
4283
95cdf3b7
IM
4284int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4285 void *key)
1da177e4 4286{
48f24c4d 4287 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4288}
1da177e4
LT
4289EXPORT_SYMBOL(default_wake_function);
4290
4291/*
41a2d6cf
IM
4292 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4293 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4294 * number) then we wake all the non-exclusive tasks and one exclusive task.
4295 *
4296 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4297 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4298 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4299 */
4300static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4301 int nr_exclusive, int sync, void *key)
4302{
2e45874c 4303 wait_queue_t *curr, *next;
1da177e4 4304
2e45874c 4305 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4306 unsigned flags = curr->flags;
4307
1da177e4 4308 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4309 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4310 break;
4311 }
4312}
4313
4314/**
4315 * __wake_up - wake up threads blocked on a waitqueue.
4316 * @q: the waitqueue
4317 * @mode: which threads
4318 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4319 * @key: is directly passed to the wakeup function
1da177e4 4320 */
7ad5b3a5 4321void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4322 int nr_exclusive, void *key)
1da177e4
LT
4323{
4324 unsigned long flags;
4325
4326 spin_lock_irqsave(&q->lock, flags);
4327 __wake_up_common(q, mode, nr_exclusive, 0, key);
4328 spin_unlock_irqrestore(&q->lock, flags);
4329}
1da177e4
LT
4330EXPORT_SYMBOL(__wake_up);
4331
4332/*
4333 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4334 */
7ad5b3a5 4335void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4336{
4337 __wake_up_common(q, mode, 1, 0, NULL);
4338}
4339
4340/**
67be2dd1 4341 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4342 * @q: the waitqueue
4343 * @mode: which threads
4344 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4345 *
4346 * The sync wakeup differs that the waker knows that it will schedule
4347 * away soon, so while the target thread will be woken up, it will not
4348 * be migrated to another CPU - ie. the two threads are 'synchronized'
4349 * with each other. This can prevent needless bouncing between CPUs.
4350 *
4351 * On UP it can prevent extra preemption.
4352 */
7ad5b3a5 4353void
95cdf3b7 4354__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4355{
4356 unsigned long flags;
4357 int sync = 1;
4358
4359 if (unlikely(!q))
4360 return;
4361
4362 if (unlikely(!nr_exclusive))
4363 sync = 0;
4364
4365 spin_lock_irqsave(&q->lock, flags);
4366 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4367 spin_unlock_irqrestore(&q->lock, flags);
4368}
4369EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4370
b15136e9 4371void complete(struct completion *x)
1da177e4
LT
4372{
4373 unsigned long flags;
4374
4375 spin_lock_irqsave(&x->wait.lock, flags);
4376 x->done++;
d9514f6c 4377 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4378 spin_unlock_irqrestore(&x->wait.lock, flags);
4379}
4380EXPORT_SYMBOL(complete);
4381
b15136e9 4382void complete_all(struct completion *x)
1da177e4
LT
4383{
4384 unsigned long flags;
4385
4386 spin_lock_irqsave(&x->wait.lock, flags);
4387 x->done += UINT_MAX/2;
d9514f6c 4388 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4389 spin_unlock_irqrestore(&x->wait.lock, flags);
4390}
4391EXPORT_SYMBOL(complete_all);
4392
8cbbe86d
AK
4393static inline long __sched
4394do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4395{
1da177e4
LT
4396 if (!x->done) {
4397 DECLARE_WAITQUEUE(wait, current);
4398
4399 wait.flags |= WQ_FLAG_EXCLUSIVE;
4400 __add_wait_queue_tail(&x->wait, &wait);
4401 do {
009e577e
MW
4402 if ((state == TASK_INTERRUPTIBLE &&
4403 signal_pending(current)) ||
4404 (state == TASK_KILLABLE &&
4405 fatal_signal_pending(current))) {
ea71a546
ON
4406 timeout = -ERESTARTSYS;
4407 break;
8cbbe86d
AK
4408 }
4409 __set_current_state(state);
1da177e4
LT
4410 spin_unlock_irq(&x->wait.lock);
4411 timeout = schedule_timeout(timeout);
4412 spin_lock_irq(&x->wait.lock);
ea71a546 4413 } while (!x->done && timeout);
1da177e4 4414 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4415 if (!x->done)
4416 return timeout;
1da177e4
LT
4417 }
4418 x->done--;
ea71a546 4419 return timeout ?: 1;
1da177e4 4420}
1da177e4 4421
8cbbe86d
AK
4422static long __sched
4423wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4424{
1da177e4
LT
4425 might_sleep();
4426
4427 spin_lock_irq(&x->wait.lock);
8cbbe86d 4428 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4429 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4430 return timeout;
4431}
1da177e4 4432
b15136e9 4433void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4434{
4435 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4436}
8cbbe86d 4437EXPORT_SYMBOL(wait_for_completion);
1da177e4 4438
b15136e9 4439unsigned long __sched
8cbbe86d 4440wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4441{
8cbbe86d 4442 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4443}
8cbbe86d 4444EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4445
8cbbe86d 4446int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4447{
51e97990
AK
4448 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4449 if (t == -ERESTARTSYS)
4450 return t;
4451 return 0;
0fec171c 4452}
8cbbe86d 4453EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4454
b15136e9 4455unsigned long __sched
8cbbe86d
AK
4456wait_for_completion_interruptible_timeout(struct completion *x,
4457 unsigned long timeout)
0fec171c 4458{
8cbbe86d 4459 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4460}
8cbbe86d 4461EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4462
009e577e
MW
4463int __sched wait_for_completion_killable(struct completion *x)
4464{
4465 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4466 if (t == -ERESTARTSYS)
4467 return t;
4468 return 0;
4469}
4470EXPORT_SYMBOL(wait_for_completion_killable);
4471
8cbbe86d
AK
4472static long __sched
4473sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4474{
0fec171c
IM
4475 unsigned long flags;
4476 wait_queue_t wait;
4477
4478 init_waitqueue_entry(&wait, current);
1da177e4 4479
8cbbe86d 4480 __set_current_state(state);
1da177e4 4481
8cbbe86d
AK
4482 spin_lock_irqsave(&q->lock, flags);
4483 __add_wait_queue(q, &wait);
4484 spin_unlock(&q->lock);
4485 timeout = schedule_timeout(timeout);
4486 spin_lock_irq(&q->lock);
4487 __remove_wait_queue(q, &wait);
4488 spin_unlock_irqrestore(&q->lock, flags);
4489
4490 return timeout;
4491}
4492
4493void __sched interruptible_sleep_on(wait_queue_head_t *q)
4494{
4495 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4496}
1da177e4
LT
4497EXPORT_SYMBOL(interruptible_sleep_on);
4498
0fec171c 4499long __sched
95cdf3b7 4500interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4501{
8cbbe86d 4502 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4503}
1da177e4
LT
4504EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4505
0fec171c 4506void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4507{
8cbbe86d 4508 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4509}
1da177e4
LT
4510EXPORT_SYMBOL(sleep_on);
4511
0fec171c 4512long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4513{
8cbbe86d 4514 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4515}
1da177e4
LT
4516EXPORT_SYMBOL(sleep_on_timeout);
4517
b29739f9
IM
4518#ifdef CONFIG_RT_MUTEXES
4519
4520/*
4521 * rt_mutex_setprio - set the current priority of a task
4522 * @p: task
4523 * @prio: prio value (kernel-internal form)
4524 *
4525 * This function changes the 'effective' priority of a task. It does
4526 * not touch ->normal_prio like __setscheduler().
4527 *
4528 * Used by the rt_mutex code to implement priority inheritance logic.
4529 */
36c8b586 4530void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4531{
4532 unsigned long flags;
83b699ed 4533 int oldprio, on_rq, running;
70b97a7f 4534 struct rq *rq;
cb469845 4535 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4536
4537 BUG_ON(prio < 0 || prio > MAX_PRIO);
4538
4539 rq = task_rq_lock(p, &flags);
a8e504d2 4540 update_rq_clock(rq);
b29739f9 4541
d5f9f942 4542 oldprio = p->prio;
dd41f596 4543 on_rq = p->se.on_rq;
051a1d1a 4544 running = task_current(rq, p);
0e1f3483 4545 if (on_rq)
69be72c1 4546 dequeue_task(rq, p, 0);
0e1f3483
HS
4547 if (running)
4548 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4549
4550 if (rt_prio(prio))
4551 p->sched_class = &rt_sched_class;
4552 else
4553 p->sched_class = &fair_sched_class;
4554
b29739f9
IM
4555 p->prio = prio;
4556
0e1f3483
HS
4557 if (running)
4558 p->sched_class->set_curr_task(rq);
dd41f596 4559 if (on_rq) {
8159f87e 4560 enqueue_task(rq, p, 0);
cb469845
SR
4561
4562 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4563 }
4564 task_rq_unlock(rq, &flags);
4565}
4566
4567#endif
4568
36c8b586 4569void set_user_nice(struct task_struct *p, long nice)
1da177e4 4570{
dd41f596 4571 int old_prio, delta, on_rq;
1da177e4 4572 unsigned long flags;
70b97a7f 4573 struct rq *rq;
1da177e4
LT
4574
4575 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4576 return;
4577 /*
4578 * We have to be careful, if called from sys_setpriority(),
4579 * the task might be in the middle of scheduling on another CPU.
4580 */
4581 rq = task_rq_lock(p, &flags);
a8e504d2 4582 update_rq_clock(rq);
1da177e4
LT
4583 /*
4584 * The RT priorities are set via sched_setscheduler(), but we still
4585 * allow the 'normal' nice value to be set - but as expected
4586 * it wont have any effect on scheduling until the task is
dd41f596 4587 * SCHED_FIFO/SCHED_RR:
1da177e4 4588 */
e05606d3 4589 if (task_has_rt_policy(p)) {
1da177e4
LT
4590 p->static_prio = NICE_TO_PRIO(nice);
4591 goto out_unlock;
4592 }
dd41f596 4593 on_rq = p->se.on_rq;
6363ca57 4594 if (on_rq) {
69be72c1 4595 dequeue_task(rq, p, 0);
6363ca57
IM
4596 dec_load(rq, p);
4597 }
1da177e4 4598
1da177e4 4599 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4600 set_load_weight(p);
b29739f9
IM
4601 old_prio = p->prio;
4602 p->prio = effective_prio(p);
4603 delta = p->prio - old_prio;
1da177e4 4604
dd41f596 4605 if (on_rq) {
8159f87e 4606 enqueue_task(rq, p, 0);
6363ca57 4607 inc_load(rq, p);
1da177e4 4608 /*
d5f9f942
AM
4609 * If the task increased its priority or is running and
4610 * lowered its priority, then reschedule its CPU:
1da177e4 4611 */
d5f9f942 4612 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4613 resched_task(rq->curr);
4614 }
4615out_unlock:
4616 task_rq_unlock(rq, &flags);
4617}
1da177e4
LT
4618EXPORT_SYMBOL(set_user_nice);
4619
e43379f1
MM
4620/*
4621 * can_nice - check if a task can reduce its nice value
4622 * @p: task
4623 * @nice: nice value
4624 */
36c8b586 4625int can_nice(const struct task_struct *p, const int nice)
e43379f1 4626{
024f4747
MM
4627 /* convert nice value [19,-20] to rlimit style value [1,40] */
4628 int nice_rlim = 20 - nice;
48f24c4d 4629
e43379f1
MM
4630 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4631 capable(CAP_SYS_NICE));
4632}
4633
1da177e4
LT
4634#ifdef __ARCH_WANT_SYS_NICE
4635
4636/*
4637 * sys_nice - change the priority of the current process.
4638 * @increment: priority increment
4639 *
4640 * sys_setpriority is a more generic, but much slower function that
4641 * does similar things.
4642 */
4643asmlinkage long sys_nice(int increment)
4644{
48f24c4d 4645 long nice, retval;
1da177e4
LT
4646
4647 /*
4648 * Setpriority might change our priority at the same moment.
4649 * We don't have to worry. Conceptually one call occurs first
4650 * and we have a single winner.
4651 */
e43379f1
MM
4652 if (increment < -40)
4653 increment = -40;
1da177e4
LT
4654 if (increment > 40)
4655 increment = 40;
4656
4657 nice = PRIO_TO_NICE(current->static_prio) + increment;
4658 if (nice < -20)
4659 nice = -20;
4660 if (nice > 19)
4661 nice = 19;
4662
e43379f1
MM
4663 if (increment < 0 && !can_nice(current, nice))
4664 return -EPERM;
4665
1da177e4
LT
4666 retval = security_task_setnice(current, nice);
4667 if (retval)
4668 return retval;
4669
4670 set_user_nice(current, nice);
4671 return 0;
4672}
4673
4674#endif
4675
4676/**
4677 * task_prio - return the priority value of a given task.
4678 * @p: the task in question.
4679 *
4680 * This is the priority value as seen by users in /proc.
4681 * RT tasks are offset by -200. Normal tasks are centered
4682 * around 0, value goes from -16 to +15.
4683 */
36c8b586 4684int task_prio(const struct task_struct *p)
1da177e4
LT
4685{
4686 return p->prio - MAX_RT_PRIO;
4687}
4688
4689/**
4690 * task_nice - return the nice value of a given task.
4691 * @p: the task in question.
4692 */
36c8b586 4693int task_nice(const struct task_struct *p)
1da177e4
LT
4694{
4695 return TASK_NICE(p);
4696}
150d8bed 4697EXPORT_SYMBOL(task_nice);
1da177e4
LT
4698
4699/**
4700 * idle_cpu - is a given cpu idle currently?
4701 * @cpu: the processor in question.
4702 */
4703int idle_cpu(int cpu)
4704{
4705 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4706}
4707
1da177e4
LT
4708/**
4709 * idle_task - return the idle task for a given cpu.
4710 * @cpu: the processor in question.
4711 */
36c8b586 4712struct task_struct *idle_task(int cpu)
1da177e4
LT
4713{
4714 return cpu_rq(cpu)->idle;
4715}
4716
4717/**
4718 * find_process_by_pid - find a process with a matching PID value.
4719 * @pid: the pid in question.
4720 */
a9957449 4721static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4722{
228ebcbe 4723 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4724}
4725
4726/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4727static void
4728__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4729{
dd41f596 4730 BUG_ON(p->se.on_rq);
48f24c4d 4731
1da177e4 4732 p->policy = policy;
dd41f596
IM
4733 switch (p->policy) {
4734 case SCHED_NORMAL:
4735 case SCHED_BATCH:
4736 case SCHED_IDLE:
4737 p->sched_class = &fair_sched_class;
4738 break;
4739 case SCHED_FIFO:
4740 case SCHED_RR:
4741 p->sched_class = &rt_sched_class;
4742 break;
4743 }
4744
1da177e4 4745 p->rt_priority = prio;
b29739f9
IM
4746 p->normal_prio = normal_prio(p);
4747 /* we are holding p->pi_lock already */
4748 p->prio = rt_mutex_getprio(p);
2dd73a4f 4749 set_load_weight(p);
1da177e4
LT
4750}
4751
4752/**
72fd4a35 4753 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4754 * @p: the task in question.
4755 * @policy: new policy.
4756 * @param: structure containing the new RT priority.
5fe1d75f 4757 *
72fd4a35 4758 * NOTE that the task may be already dead.
1da177e4 4759 */
95cdf3b7
IM
4760int sched_setscheduler(struct task_struct *p, int policy,
4761 struct sched_param *param)
1da177e4 4762{
83b699ed 4763 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4764 unsigned long flags;
cb469845 4765 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4766 struct rq *rq;
1da177e4 4767
66e5393a
SR
4768 /* may grab non-irq protected spin_locks */
4769 BUG_ON(in_interrupt());
1da177e4
LT
4770recheck:
4771 /* double check policy once rq lock held */
4772 if (policy < 0)
4773 policy = oldpolicy = p->policy;
4774 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4775 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4776 policy != SCHED_IDLE)
b0a9499c 4777 return -EINVAL;
1da177e4
LT
4778 /*
4779 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4780 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4781 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4782 */
4783 if (param->sched_priority < 0 ||
95cdf3b7 4784 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4785 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4786 return -EINVAL;
e05606d3 4787 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4788 return -EINVAL;
4789
37e4ab3f
OC
4790 /*
4791 * Allow unprivileged RT tasks to decrease priority:
4792 */
4793 if (!capable(CAP_SYS_NICE)) {
e05606d3 4794 if (rt_policy(policy)) {
8dc3e909 4795 unsigned long rlim_rtprio;
8dc3e909
ON
4796
4797 if (!lock_task_sighand(p, &flags))
4798 return -ESRCH;
4799 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4800 unlock_task_sighand(p, &flags);
4801
4802 /* can't set/change the rt policy */
4803 if (policy != p->policy && !rlim_rtprio)
4804 return -EPERM;
4805
4806 /* can't increase priority */
4807 if (param->sched_priority > p->rt_priority &&
4808 param->sched_priority > rlim_rtprio)
4809 return -EPERM;
4810 }
dd41f596
IM
4811 /*
4812 * Like positive nice levels, dont allow tasks to
4813 * move out of SCHED_IDLE either:
4814 */
4815 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4816 return -EPERM;
5fe1d75f 4817
37e4ab3f
OC
4818 /* can't change other user's priorities */
4819 if ((current->euid != p->euid) &&
4820 (current->euid != p->uid))
4821 return -EPERM;
4822 }
1da177e4 4823
b68aa230
PZ
4824#ifdef CONFIG_RT_GROUP_SCHED
4825 /*
4826 * Do not allow realtime tasks into groups that have no runtime
4827 * assigned.
4828 */
d0b27fa7 4829 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4830 return -EPERM;
4831#endif
4832
1da177e4
LT
4833 retval = security_task_setscheduler(p, policy, param);
4834 if (retval)
4835 return retval;
b29739f9
IM
4836 /*
4837 * make sure no PI-waiters arrive (or leave) while we are
4838 * changing the priority of the task:
4839 */
4840 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4841 /*
4842 * To be able to change p->policy safely, the apropriate
4843 * runqueue lock must be held.
4844 */
b29739f9 4845 rq = __task_rq_lock(p);
1da177e4
LT
4846 /* recheck policy now with rq lock held */
4847 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4848 policy = oldpolicy = -1;
b29739f9
IM
4849 __task_rq_unlock(rq);
4850 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4851 goto recheck;
4852 }
2daa3577 4853 update_rq_clock(rq);
dd41f596 4854 on_rq = p->se.on_rq;
051a1d1a 4855 running = task_current(rq, p);
0e1f3483 4856 if (on_rq)
2e1cb74a 4857 deactivate_task(rq, p, 0);
0e1f3483
HS
4858 if (running)
4859 p->sched_class->put_prev_task(rq, p);
f6b53205 4860
1da177e4 4861 oldprio = p->prio;
dd41f596 4862 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4863
0e1f3483
HS
4864 if (running)
4865 p->sched_class->set_curr_task(rq);
dd41f596
IM
4866 if (on_rq) {
4867 activate_task(rq, p, 0);
cb469845
SR
4868
4869 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4870 }
b29739f9
IM
4871 __task_rq_unlock(rq);
4872 spin_unlock_irqrestore(&p->pi_lock, flags);
4873
95e02ca9
TG
4874 rt_mutex_adjust_pi(p);
4875
1da177e4
LT
4876 return 0;
4877}
4878EXPORT_SYMBOL_GPL(sched_setscheduler);
4879
95cdf3b7
IM
4880static int
4881do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4882{
1da177e4
LT
4883 struct sched_param lparam;
4884 struct task_struct *p;
36c8b586 4885 int retval;
1da177e4
LT
4886
4887 if (!param || pid < 0)
4888 return -EINVAL;
4889 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4890 return -EFAULT;
5fe1d75f
ON
4891
4892 rcu_read_lock();
4893 retval = -ESRCH;
1da177e4 4894 p = find_process_by_pid(pid);
5fe1d75f
ON
4895 if (p != NULL)
4896 retval = sched_setscheduler(p, policy, &lparam);
4897 rcu_read_unlock();
36c8b586 4898
1da177e4
LT
4899 return retval;
4900}
4901
4902/**
4903 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4904 * @pid: the pid in question.
4905 * @policy: new policy.
4906 * @param: structure containing the new RT priority.
4907 */
41a2d6cf
IM
4908asmlinkage long
4909sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4910{
c21761f1
JB
4911 /* negative values for policy are not valid */
4912 if (policy < 0)
4913 return -EINVAL;
4914
1da177e4
LT
4915 return do_sched_setscheduler(pid, policy, param);
4916}
4917
4918/**
4919 * sys_sched_setparam - set/change the RT priority of a thread
4920 * @pid: the pid in question.
4921 * @param: structure containing the new RT priority.
4922 */
4923asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4924{
4925 return do_sched_setscheduler(pid, -1, param);
4926}
4927
4928/**
4929 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4930 * @pid: the pid in question.
4931 */
4932asmlinkage long sys_sched_getscheduler(pid_t pid)
4933{
36c8b586 4934 struct task_struct *p;
3a5c359a 4935 int retval;
1da177e4
LT
4936
4937 if (pid < 0)
3a5c359a 4938 return -EINVAL;
1da177e4
LT
4939
4940 retval = -ESRCH;
4941 read_lock(&tasklist_lock);
4942 p = find_process_by_pid(pid);
4943 if (p) {
4944 retval = security_task_getscheduler(p);
4945 if (!retval)
4946 retval = p->policy;
4947 }
4948 read_unlock(&tasklist_lock);
1da177e4
LT
4949 return retval;
4950}
4951
4952/**
4953 * sys_sched_getscheduler - get the RT priority of a thread
4954 * @pid: the pid in question.
4955 * @param: structure containing the RT priority.
4956 */
4957asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4958{
4959 struct sched_param lp;
36c8b586 4960 struct task_struct *p;
3a5c359a 4961 int retval;
1da177e4
LT
4962
4963 if (!param || pid < 0)
3a5c359a 4964 return -EINVAL;
1da177e4
LT
4965
4966 read_lock(&tasklist_lock);
4967 p = find_process_by_pid(pid);
4968 retval = -ESRCH;
4969 if (!p)
4970 goto out_unlock;
4971
4972 retval = security_task_getscheduler(p);
4973 if (retval)
4974 goto out_unlock;
4975
4976 lp.sched_priority = p->rt_priority;
4977 read_unlock(&tasklist_lock);
4978
4979 /*
4980 * This one might sleep, we cannot do it with a spinlock held ...
4981 */
4982 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4983
1da177e4
LT
4984 return retval;
4985
4986out_unlock:
4987 read_unlock(&tasklist_lock);
4988 return retval;
4989}
4990
b53e921b 4991long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 4992{
1da177e4 4993 cpumask_t cpus_allowed;
b53e921b 4994 cpumask_t new_mask = *in_mask;
36c8b586
IM
4995 struct task_struct *p;
4996 int retval;
1da177e4 4997
95402b38 4998 get_online_cpus();
1da177e4
LT
4999 read_lock(&tasklist_lock);
5000
5001 p = find_process_by_pid(pid);
5002 if (!p) {
5003 read_unlock(&tasklist_lock);
95402b38 5004 put_online_cpus();
1da177e4
LT
5005 return -ESRCH;
5006 }
5007
5008 /*
5009 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5010 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5011 * usage count and then drop tasklist_lock.
5012 */
5013 get_task_struct(p);
5014 read_unlock(&tasklist_lock);
5015
5016 retval = -EPERM;
5017 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5018 !capable(CAP_SYS_NICE))
5019 goto out_unlock;
5020
e7834f8f
DQ
5021 retval = security_task_setscheduler(p, 0, NULL);
5022 if (retval)
5023 goto out_unlock;
5024
f9a86fcb 5025 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5026 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5027 again:
7c16ec58 5028 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5029
8707d8b8 5030 if (!retval) {
f9a86fcb 5031 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5032 if (!cpus_subset(new_mask, cpus_allowed)) {
5033 /*
5034 * We must have raced with a concurrent cpuset
5035 * update. Just reset the cpus_allowed to the
5036 * cpuset's cpus_allowed
5037 */
5038 new_mask = cpus_allowed;
5039 goto again;
5040 }
5041 }
1da177e4
LT
5042out_unlock:
5043 put_task_struct(p);
95402b38 5044 put_online_cpus();
1da177e4
LT
5045 return retval;
5046}
5047
5048static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5049 cpumask_t *new_mask)
5050{
5051 if (len < sizeof(cpumask_t)) {
5052 memset(new_mask, 0, sizeof(cpumask_t));
5053 } else if (len > sizeof(cpumask_t)) {
5054 len = sizeof(cpumask_t);
5055 }
5056 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5057}
5058
5059/**
5060 * sys_sched_setaffinity - set the cpu affinity of a process
5061 * @pid: pid of the process
5062 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5063 * @user_mask_ptr: user-space pointer to the new cpu mask
5064 */
5065asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5066 unsigned long __user *user_mask_ptr)
5067{
5068 cpumask_t new_mask;
5069 int retval;
5070
5071 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5072 if (retval)
5073 return retval;
5074
b53e921b 5075 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5076}
5077
1da177e4
LT
5078long sched_getaffinity(pid_t pid, cpumask_t *mask)
5079{
36c8b586 5080 struct task_struct *p;
1da177e4 5081 int retval;
1da177e4 5082
95402b38 5083 get_online_cpus();
1da177e4
LT
5084 read_lock(&tasklist_lock);
5085
5086 retval = -ESRCH;
5087 p = find_process_by_pid(pid);
5088 if (!p)
5089 goto out_unlock;
5090
e7834f8f
DQ
5091 retval = security_task_getscheduler(p);
5092 if (retval)
5093 goto out_unlock;
5094
2f7016d9 5095 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5096
5097out_unlock:
5098 read_unlock(&tasklist_lock);
95402b38 5099 put_online_cpus();
1da177e4 5100
9531b62f 5101 return retval;
1da177e4
LT
5102}
5103
5104/**
5105 * sys_sched_getaffinity - get the cpu affinity of a process
5106 * @pid: pid of the process
5107 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5108 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5109 */
5110asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5111 unsigned long __user *user_mask_ptr)
5112{
5113 int ret;
5114 cpumask_t mask;
5115
5116 if (len < sizeof(cpumask_t))
5117 return -EINVAL;
5118
5119 ret = sched_getaffinity(pid, &mask);
5120 if (ret < 0)
5121 return ret;
5122
5123 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5124 return -EFAULT;
5125
5126 return sizeof(cpumask_t);
5127}
5128
5129/**
5130 * sys_sched_yield - yield the current processor to other threads.
5131 *
dd41f596
IM
5132 * This function yields the current CPU to other tasks. If there are no
5133 * other threads running on this CPU then this function will return.
1da177e4
LT
5134 */
5135asmlinkage long sys_sched_yield(void)
5136{
70b97a7f 5137 struct rq *rq = this_rq_lock();
1da177e4 5138
2d72376b 5139 schedstat_inc(rq, yld_count);
4530d7ab 5140 current->sched_class->yield_task(rq);
1da177e4
LT
5141
5142 /*
5143 * Since we are going to call schedule() anyway, there's
5144 * no need to preempt or enable interrupts:
5145 */
5146 __release(rq->lock);
8a25d5de 5147 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5148 _raw_spin_unlock(&rq->lock);
5149 preempt_enable_no_resched();
5150
5151 schedule();
5152
5153 return 0;
5154}
5155
e7b38404 5156static void __cond_resched(void)
1da177e4 5157{
8e0a43d8
IM
5158#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5159 __might_sleep(__FILE__, __LINE__);
5160#endif
5bbcfd90
IM
5161 /*
5162 * The BKS might be reacquired before we have dropped
5163 * PREEMPT_ACTIVE, which could trigger a second
5164 * cond_resched() call.
5165 */
1da177e4
LT
5166 do {
5167 add_preempt_count(PREEMPT_ACTIVE);
5168 schedule();
5169 sub_preempt_count(PREEMPT_ACTIVE);
5170 } while (need_resched());
5171}
5172
02b67cc3 5173int __sched _cond_resched(void)
1da177e4 5174{
9414232f
IM
5175 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5176 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5177 __cond_resched();
5178 return 1;
5179 }
5180 return 0;
5181}
02b67cc3 5182EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5183
5184/*
5185 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5186 * call schedule, and on return reacquire the lock.
5187 *
41a2d6cf 5188 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5189 * operations here to prevent schedule() from being called twice (once via
5190 * spin_unlock(), once by hand).
5191 */
95cdf3b7 5192int cond_resched_lock(spinlock_t *lock)
1da177e4 5193{
95c354fe 5194 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5195 int ret = 0;
5196
95c354fe 5197 if (spin_needbreak(lock) || resched) {
1da177e4 5198 spin_unlock(lock);
95c354fe
NP
5199 if (resched && need_resched())
5200 __cond_resched();
5201 else
5202 cpu_relax();
6df3cecb 5203 ret = 1;
1da177e4 5204 spin_lock(lock);
1da177e4 5205 }
6df3cecb 5206 return ret;
1da177e4 5207}
1da177e4
LT
5208EXPORT_SYMBOL(cond_resched_lock);
5209
5210int __sched cond_resched_softirq(void)
5211{
5212 BUG_ON(!in_softirq());
5213
9414232f 5214 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5215 local_bh_enable();
1da177e4
LT
5216 __cond_resched();
5217 local_bh_disable();
5218 return 1;
5219 }
5220 return 0;
5221}
1da177e4
LT
5222EXPORT_SYMBOL(cond_resched_softirq);
5223
1da177e4
LT
5224/**
5225 * yield - yield the current processor to other threads.
5226 *
72fd4a35 5227 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5228 * thread runnable and calls sys_sched_yield().
5229 */
5230void __sched yield(void)
5231{
5232 set_current_state(TASK_RUNNING);
5233 sys_sched_yield();
5234}
1da177e4
LT
5235EXPORT_SYMBOL(yield);
5236
5237/*
41a2d6cf 5238 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5239 * that process accounting knows that this is a task in IO wait state.
5240 *
5241 * But don't do that if it is a deliberate, throttling IO wait (this task
5242 * has set its backing_dev_info: the queue against which it should throttle)
5243 */
5244void __sched io_schedule(void)
5245{
70b97a7f 5246 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5247
0ff92245 5248 delayacct_blkio_start();
1da177e4
LT
5249 atomic_inc(&rq->nr_iowait);
5250 schedule();
5251 atomic_dec(&rq->nr_iowait);
0ff92245 5252 delayacct_blkio_end();
1da177e4 5253}
1da177e4
LT
5254EXPORT_SYMBOL(io_schedule);
5255
5256long __sched io_schedule_timeout(long timeout)
5257{
70b97a7f 5258 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5259 long ret;
5260
0ff92245 5261 delayacct_blkio_start();
1da177e4
LT
5262 atomic_inc(&rq->nr_iowait);
5263 ret = schedule_timeout(timeout);
5264 atomic_dec(&rq->nr_iowait);
0ff92245 5265 delayacct_blkio_end();
1da177e4
LT
5266 return ret;
5267}
5268
5269/**
5270 * sys_sched_get_priority_max - return maximum RT priority.
5271 * @policy: scheduling class.
5272 *
5273 * this syscall returns the maximum rt_priority that can be used
5274 * by a given scheduling class.
5275 */
5276asmlinkage long sys_sched_get_priority_max(int policy)
5277{
5278 int ret = -EINVAL;
5279
5280 switch (policy) {
5281 case SCHED_FIFO:
5282 case SCHED_RR:
5283 ret = MAX_USER_RT_PRIO-1;
5284 break;
5285 case SCHED_NORMAL:
b0a9499c 5286 case SCHED_BATCH:
dd41f596 5287 case SCHED_IDLE:
1da177e4
LT
5288 ret = 0;
5289 break;
5290 }
5291 return ret;
5292}
5293
5294/**
5295 * sys_sched_get_priority_min - return minimum RT priority.
5296 * @policy: scheduling class.
5297 *
5298 * this syscall returns the minimum rt_priority that can be used
5299 * by a given scheduling class.
5300 */
5301asmlinkage long sys_sched_get_priority_min(int policy)
5302{
5303 int ret = -EINVAL;
5304
5305 switch (policy) {
5306 case SCHED_FIFO:
5307 case SCHED_RR:
5308 ret = 1;
5309 break;
5310 case SCHED_NORMAL:
b0a9499c 5311 case SCHED_BATCH:
dd41f596 5312 case SCHED_IDLE:
1da177e4
LT
5313 ret = 0;
5314 }
5315 return ret;
5316}
5317
5318/**
5319 * sys_sched_rr_get_interval - return the default timeslice of a process.
5320 * @pid: pid of the process.
5321 * @interval: userspace pointer to the timeslice value.
5322 *
5323 * this syscall writes the default timeslice value of a given process
5324 * into the user-space timespec buffer. A value of '0' means infinity.
5325 */
5326asmlinkage
5327long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5328{
36c8b586 5329 struct task_struct *p;
a4ec24b4 5330 unsigned int time_slice;
3a5c359a 5331 int retval;
1da177e4 5332 struct timespec t;
1da177e4
LT
5333
5334 if (pid < 0)
3a5c359a 5335 return -EINVAL;
1da177e4
LT
5336
5337 retval = -ESRCH;
5338 read_lock(&tasklist_lock);
5339 p = find_process_by_pid(pid);
5340 if (!p)
5341 goto out_unlock;
5342
5343 retval = security_task_getscheduler(p);
5344 if (retval)
5345 goto out_unlock;
5346
77034937
IM
5347 /*
5348 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5349 * tasks that are on an otherwise idle runqueue:
5350 */
5351 time_slice = 0;
5352 if (p->policy == SCHED_RR) {
a4ec24b4 5353 time_slice = DEF_TIMESLICE;
1868f958 5354 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5355 struct sched_entity *se = &p->se;
5356 unsigned long flags;
5357 struct rq *rq;
5358
5359 rq = task_rq_lock(p, &flags);
77034937
IM
5360 if (rq->cfs.load.weight)
5361 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5362 task_rq_unlock(rq, &flags);
5363 }
1da177e4 5364 read_unlock(&tasklist_lock);
a4ec24b4 5365 jiffies_to_timespec(time_slice, &t);
1da177e4 5366 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5367 return retval;
3a5c359a 5368
1da177e4
LT
5369out_unlock:
5370 read_unlock(&tasklist_lock);
5371 return retval;
5372}
5373
2ed6e34f 5374static const char stat_nam[] = "RSDTtZX";
36c8b586 5375
82a1fcb9 5376void sched_show_task(struct task_struct *p)
1da177e4 5377{
1da177e4 5378 unsigned long free = 0;
36c8b586 5379 unsigned state;
1da177e4 5380
1da177e4 5381 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5382 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5383 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5384#if BITS_PER_LONG == 32
1da177e4 5385 if (state == TASK_RUNNING)
cc4ea795 5386 printk(KERN_CONT " running ");
1da177e4 5387 else
cc4ea795 5388 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5389#else
5390 if (state == TASK_RUNNING)
cc4ea795 5391 printk(KERN_CONT " running task ");
1da177e4 5392 else
cc4ea795 5393 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5394#endif
5395#ifdef CONFIG_DEBUG_STACK_USAGE
5396 {
10ebffde 5397 unsigned long *n = end_of_stack(p);
1da177e4
LT
5398 while (!*n)
5399 n++;
10ebffde 5400 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5401 }
5402#endif
ba25f9dc 5403 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5404 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5405
5fb5e6de 5406 show_stack(p, NULL);
1da177e4
LT
5407}
5408
e59e2ae2 5409void show_state_filter(unsigned long state_filter)
1da177e4 5410{
36c8b586 5411 struct task_struct *g, *p;
1da177e4 5412
4bd77321
IM
5413#if BITS_PER_LONG == 32
5414 printk(KERN_INFO
5415 " task PC stack pid father\n");
1da177e4 5416#else
4bd77321
IM
5417 printk(KERN_INFO
5418 " task PC stack pid father\n");
1da177e4
LT
5419#endif
5420 read_lock(&tasklist_lock);
5421 do_each_thread(g, p) {
5422 /*
5423 * reset the NMI-timeout, listing all files on a slow
5424 * console might take alot of time:
5425 */
5426 touch_nmi_watchdog();
39bc89fd 5427 if (!state_filter || (p->state & state_filter))
82a1fcb9 5428 sched_show_task(p);
1da177e4
LT
5429 } while_each_thread(g, p);
5430
04c9167f
JF
5431 touch_all_softlockup_watchdogs();
5432
dd41f596
IM
5433#ifdef CONFIG_SCHED_DEBUG
5434 sysrq_sched_debug_show();
5435#endif
1da177e4 5436 read_unlock(&tasklist_lock);
e59e2ae2
IM
5437 /*
5438 * Only show locks if all tasks are dumped:
5439 */
5440 if (state_filter == -1)
5441 debug_show_all_locks();
1da177e4
LT
5442}
5443
1df21055
IM
5444void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5445{
dd41f596 5446 idle->sched_class = &idle_sched_class;
1df21055
IM
5447}
5448
f340c0d1
IM
5449/**
5450 * init_idle - set up an idle thread for a given CPU
5451 * @idle: task in question
5452 * @cpu: cpu the idle task belongs to
5453 *
5454 * NOTE: this function does not set the idle thread's NEED_RESCHED
5455 * flag, to make booting more robust.
5456 */
5c1e1767 5457void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5458{
70b97a7f 5459 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5460 unsigned long flags;
5461
dd41f596
IM
5462 __sched_fork(idle);
5463 idle->se.exec_start = sched_clock();
5464
b29739f9 5465 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5466 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5467 __set_task_cpu(idle, cpu);
1da177e4
LT
5468
5469 spin_lock_irqsave(&rq->lock, flags);
5470 rq->curr = rq->idle = idle;
4866cde0
NP
5471#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5472 idle->oncpu = 1;
5473#endif
1da177e4
LT
5474 spin_unlock_irqrestore(&rq->lock, flags);
5475
5476 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5477#if defined(CONFIG_PREEMPT)
5478 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5479#else
a1261f54 5480 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5481#endif
dd41f596
IM
5482 /*
5483 * The idle tasks have their own, simple scheduling class:
5484 */
5485 idle->sched_class = &idle_sched_class;
1da177e4
LT
5486}
5487
5488/*
5489 * In a system that switches off the HZ timer nohz_cpu_mask
5490 * indicates which cpus entered this state. This is used
5491 * in the rcu update to wait only for active cpus. For system
5492 * which do not switch off the HZ timer nohz_cpu_mask should
5493 * always be CPU_MASK_NONE.
5494 */
5495cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5496
19978ca6
IM
5497/*
5498 * Increase the granularity value when there are more CPUs,
5499 * because with more CPUs the 'effective latency' as visible
5500 * to users decreases. But the relationship is not linear,
5501 * so pick a second-best guess by going with the log2 of the
5502 * number of CPUs.
5503 *
5504 * This idea comes from the SD scheduler of Con Kolivas:
5505 */
5506static inline void sched_init_granularity(void)
5507{
5508 unsigned int factor = 1 + ilog2(num_online_cpus());
5509 const unsigned long limit = 200000000;
5510
5511 sysctl_sched_min_granularity *= factor;
5512 if (sysctl_sched_min_granularity > limit)
5513 sysctl_sched_min_granularity = limit;
5514
5515 sysctl_sched_latency *= factor;
5516 if (sysctl_sched_latency > limit)
5517 sysctl_sched_latency = limit;
5518
5519 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5520}
5521
1da177e4
LT
5522#ifdef CONFIG_SMP
5523/*
5524 * This is how migration works:
5525 *
70b97a7f 5526 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5527 * runqueue and wake up that CPU's migration thread.
5528 * 2) we down() the locked semaphore => thread blocks.
5529 * 3) migration thread wakes up (implicitly it forces the migrated
5530 * thread off the CPU)
5531 * 4) it gets the migration request and checks whether the migrated
5532 * task is still in the wrong runqueue.
5533 * 5) if it's in the wrong runqueue then the migration thread removes
5534 * it and puts it into the right queue.
5535 * 6) migration thread up()s the semaphore.
5536 * 7) we wake up and the migration is done.
5537 */
5538
5539/*
5540 * Change a given task's CPU affinity. Migrate the thread to a
5541 * proper CPU and schedule it away if the CPU it's executing on
5542 * is removed from the allowed bitmask.
5543 *
5544 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5545 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5546 * call is not atomic; no spinlocks may be held.
5547 */
cd8ba7cd 5548int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5549{
70b97a7f 5550 struct migration_req req;
1da177e4 5551 unsigned long flags;
70b97a7f 5552 struct rq *rq;
48f24c4d 5553 int ret = 0;
1da177e4
LT
5554
5555 rq = task_rq_lock(p, &flags);
cd8ba7cd 5556 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5557 ret = -EINVAL;
5558 goto out;
5559 }
5560
9985b0ba
DR
5561 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5562 !cpus_equal(p->cpus_allowed, *new_mask))) {
5563 ret = -EINVAL;
5564 goto out;
5565 }
5566
73fe6aae 5567 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5568 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5569 else {
cd8ba7cd
MT
5570 p->cpus_allowed = *new_mask;
5571 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5572 }
5573
1da177e4 5574 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5575 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5576 goto out;
5577
cd8ba7cd 5578 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5579 /* Need help from migration thread: drop lock and wait. */
5580 task_rq_unlock(rq, &flags);
5581 wake_up_process(rq->migration_thread);
5582 wait_for_completion(&req.done);
5583 tlb_migrate_finish(p->mm);
5584 return 0;
5585 }
5586out:
5587 task_rq_unlock(rq, &flags);
48f24c4d 5588
1da177e4
LT
5589 return ret;
5590}
cd8ba7cd 5591EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5592
5593/*
41a2d6cf 5594 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5595 * this because either it can't run here any more (set_cpus_allowed()
5596 * away from this CPU, or CPU going down), or because we're
5597 * attempting to rebalance this task on exec (sched_exec).
5598 *
5599 * So we race with normal scheduler movements, but that's OK, as long
5600 * as the task is no longer on this CPU.
efc30814
KK
5601 *
5602 * Returns non-zero if task was successfully migrated.
1da177e4 5603 */
efc30814 5604static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5605{
70b97a7f 5606 struct rq *rq_dest, *rq_src;
dd41f596 5607 int ret = 0, on_rq;
1da177e4
LT
5608
5609 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5610 return ret;
1da177e4
LT
5611
5612 rq_src = cpu_rq(src_cpu);
5613 rq_dest = cpu_rq(dest_cpu);
5614
5615 double_rq_lock(rq_src, rq_dest);
5616 /* Already moved. */
5617 if (task_cpu(p) != src_cpu)
5618 goto out;
5619 /* Affinity changed (again). */
5620 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5621 goto out;
5622
dd41f596 5623 on_rq = p->se.on_rq;
6e82a3be 5624 if (on_rq)
2e1cb74a 5625 deactivate_task(rq_src, p, 0);
6e82a3be 5626
1da177e4 5627 set_task_cpu(p, dest_cpu);
dd41f596
IM
5628 if (on_rq) {
5629 activate_task(rq_dest, p, 0);
5630 check_preempt_curr(rq_dest, p);
1da177e4 5631 }
efc30814 5632 ret = 1;
1da177e4
LT
5633out:
5634 double_rq_unlock(rq_src, rq_dest);
efc30814 5635 return ret;
1da177e4
LT
5636}
5637
5638/*
5639 * migration_thread - this is a highprio system thread that performs
5640 * thread migration by bumping thread off CPU then 'pushing' onto
5641 * another runqueue.
5642 */
95cdf3b7 5643static int migration_thread(void *data)
1da177e4 5644{
1da177e4 5645 int cpu = (long)data;
70b97a7f 5646 struct rq *rq;
1da177e4
LT
5647
5648 rq = cpu_rq(cpu);
5649 BUG_ON(rq->migration_thread != current);
5650
5651 set_current_state(TASK_INTERRUPTIBLE);
5652 while (!kthread_should_stop()) {
70b97a7f 5653 struct migration_req *req;
1da177e4 5654 struct list_head *head;
1da177e4 5655
1da177e4
LT
5656 spin_lock_irq(&rq->lock);
5657
5658 if (cpu_is_offline(cpu)) {
5659 spin_unlock_irq(&rq->lock);
5660 goto wait_to_die;
5661 }
5662
5663 if (rq->active_balance) {
5664 active_load_balance(rq, cpu);
5665 rq->active_balance = 0;
5666 }
5667
5668 head = &rq->migration_queue;
5669
5670 if (list_empty(head)) {
5671 spin_unlock_irq(&rq->lock);
5672 schedule();
5673 set_current_state(TASK_INTERRUPTIBLE);
5674 continue;
5675 }
70b97a7f 5676 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5677 list_del_init(head->next);
5678
674311d5
NP
5679 spin_unlock(&rq->lock);
5680 __migrate_task(req->task, cpu, req->dest_cpu);
5681 local_irq_enable();
1da177e4
LT
5682
5683 complete(&req->done);
5684 }
5685 __set_current_state(TASK_RUNNING);
5686 return 0;
5687
5688wait_to_die:
5689 /* Wait for kthread_stop */
5690 set_current_state(TASK_INTERRUPTIBLE);
5691 while (!kthread_should_stop()) {
5692 schedule();
5693 set_current_state(TASK_INTERRUPTIBLE);
5694 }
5695 __set_current_state(TASK_RUNNING);
5696 return 0;
5697}
5698
5699#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5700
5701static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5702{
5703 int ret;
5704
5705 local_irq_disable();
5706 ret = __migrate_task(p, src_cpu, dest_cpu);
5707 local_irq_enable();
5708 return ret;
5709}
5710
054b9108 5711/*
3a4fa0a2 5712 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5713 * NOTE: interrupts should be disabled by the caller
5714 */
48f24c4d 5715static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5716{
efc30814 5717 unsigned long flags;
1da177e4 5718 cpumask_t mask;
70b97a7f
IM
5719 struct rq *rq;
5720 int dest_cpu;
1da177e4 5721
3a5c359a
AK
5722 do {
5723 /* On same node? */
5724 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5725 cpus_and(mask, mask, p->cpus_allowed);
5726 dest_cpu = any_online_cpu(mask);
5727
5728 /* On any allowed CPU? */
434d53b0 5729 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5730 dest_cpu = any_online_cpu(p->cpus_allowed);
5731
5732 /* No more Mr. Nice Guy. */
434d53b0 5733 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5734 cpumask_t cpus_allowed;
5735
5736 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5737 /*
5738 * Try to stay on the same cpuset, where the
5739 * current cpuset may be a subset of all cpus.
5740 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5741 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5742 * called within calls to cpuset_lock/cpuset_unlock.
5743 */
3a5c359a 5744 rq = task_rq_lock(p, &flags);
470fd646 5745 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5746 dest_cpu = any_online_cpu(p->cpus_allowed);
5747 task_rq_unlock(rq, &flags);
1da177e4 5748
3a5c359a
AK
5749 /*
5750 * Don't tell them about moving exiting tasks or
5751 * kernel threads (both mm NULL), since they never
5752 * leave kernel.
5753 */
41a2d6cf 5754 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5755 printk(KERN_INFO "process %d (%s) no "
5756 "longer affine to cpu%d\n",
41a2d6cf
IM
5757 task_pid_nr(p), p->comm, dead_cpu);
5758 }
3a5c359a 5759 }
f7b4cddc 5760 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5761}
5762
5763/*
5764 * While a dead CPU has no uninterruptible tasks queued at this point,
5765 * it might still have a nonzero ->nr_uninterruptible counter, because
5766 * for performance reasons the counter is not stricly tracking tasks to
5767 * their home CPUs. So we just add the counter to another CPU's counter,
5768 * to keep the global sum constant after CPU-down:
5769 */
70b97a7f 5770static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5771{
7c16ec58 5772 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5773 unsigned long flags;
5774
5775 local_irq_save(flags);
5776 double_rq_lock(rq_src, rq_dest);
5777 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5778 rq_src->nr_uninterruptible = 0;
5779 double_rq_unlock(rq_src, rq_dest);
5780 local_irq_restore(flags);
5781}
5782
5783/* Run through task list and migrate tasks from the dead cpu. */
5784static void migrate_live_tasks(int src_cpu)
5785{
48f24c4d 5786 struct task_struct *p, *t;
1da177e4 5787
f7b4cddc 5788 read_lock(&tasklist_lock);
1da177e4 5789
48f24c4d
IM
5790 do_each_thread(t, p) {
5791 if (p == current)
1da177e4
LT
5792 continue;
5793
48f24c4d
IM
5794 if (task_cpu(p) == src_cpu)
5795 move_task_off_dead_cpu(src_cpu, p);
5796 } while_each_thread(t, p);
1da177e4 5797
f7b4cddc 5798 read_unlock(&tasklist_lock);
1da177e4
LT
5799}
5800
dd41f596
IM
5801/*
5802 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5803 * It does so by boosting its priority to highest possible.
5804 * Used by CPU offline code.
1da177e4
LT
5805 */
5806void sched_idle_next(void)
5807{
48f24c4d 5808 int this_cpu = smp_processor_id();
70b97a7f 5809 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5810 struct task_struct *p = rq->idle;
5811 unsigned long flags;
5812
5813 /* cpu has to be offline */
48f24c4d 5814 BUG_ON(cpu_online(this_cpu));
1da177e4 5815
48f24c4d
IM
5816 /*
5817 * Strictly not necessary since rest of the CPUs are stopped by now
5818 * and interrupts disabled on the current cpu.
1da177e4
LT
5819 */
5820 spin_lock_irqsave(&rq->lock, flags);
5821
dd41f596 5822 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5823
94bc9a7b
DA
5824 update_rq_clock(rq);
5825 activate_task(rq, p, 0);
1da177e4
LT
5826
5827 spin_unlock_irqrestore(&rq->lock, flags);
5828}
5829
48f24c4d
IM
5830/*
5831 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5832 * offline.
5833 */
5834void idle_task_exit(void)
5835{
5836 struct mm_struct *mm = current->active_mm;
5837
5838 BUG_ON(cpu_online(smp_processor_id()));
5839
5840 if (mm != &init_mm)
5841 switch_mm(mm, &init_mm, current);
5842 mmdrop(mm);
5843}
5844
054b9108 5845/* called under rq->lock with disabled interrupts */
36c8b586 5846static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5847{
70b97a7f 5848 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5849
5850 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5851 BUG_ON(!p->exit_state);
1da177e4
LT
5852
5853 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5854 BUG_ON(p->state == TASK_DEAD);
1da177e4 5855
48f24c4d 5856 get_task_struct(p);
1da177e4
LT
5857
5858 /*
5859 * Drop lock around migration; if someone else moves it,
41a2d6cf 5860 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5861 * fine.
5862 */
f7b4cddc 5863 spin_unlock_irq(&rq->lock);
48f24c4d 5864 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5865 spin_lock_irq(&rq->lock);
1da177e4 5866
48f24c4d 5867 put_task_struct(p);
1da177e4
LT
5868}
5869
5870/* release_task() removes task from tasklist, so we won't find dead tasks. */
5871static void migrate_dead_tasks(unsigned int dead_cpu)
5872{
70b97a7f 5873 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5874 struct task_struct *next;
48f24c4d 5875
dd41f596
IM
5876 for ( ; ; ) {
5877 if (!rq->nr_running)
5878 break;
a8e504d2 5879 update_rq_clock(rq);
ff95f3df 5880 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5881 if (!next)
5882 break;
5883 migrate_dead(dead_cpu, next);
e692ab53 5884
1da177e4
LT
5885 }
5886}
5887#endif /* CONFIG_HOTPLUG_CPU */
5888
e692ab53
NP
5889#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5890
5891static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5892 {
5893 .procname = "sched_domain",
c57baf1e 5894 .mode = 0555,
e0361851 5895 },
38605cae 5896 {0, },
e692ab53
NP
5897};
5898
5899static struct ctl_table sd_ctl_root[] = {
e0361851 5900 {
c57baf1e 5901 .ctl_name = CTL_KERN,
e0361851 5902 .procname = "kernel",
c57baf1e 5903 .mode = 0555,
e0361851
AD
5904 .child = sd_ctl_dir,
5905 },
38605cae 5906 {0, },
e692ab53
NP
5907};
5908
5909static struct ctl_table *sd_alloc_ctl_entry(int n)
5910{
5911 struct ctl_table *entry =
5cf9f062 5912 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5913
e692ab53
NP
5914 return entry;
5915}
5916
6382bc90
MM
5917static void sd_free_ctl_entry(struct ctl_table **tablep)
5918{
cd790076 5919 struct ctl_table *entry;
6382bc90 5920
cd790076
MM
5921 /*
5922 * In the intermediate directories, both the child directory and
5923 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5924 * will always be set. In the lowest directory the names are
cd790076
MM
5925 * static strings and all have proc handlers.
5926 */
5927 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5928 if (entry->child)
5929 sd_free_ctl_entry(&entry->child);
cd790076
MM
5930 if (entry->proc_handler == NULL)
5931 kfree(entry->procname);
5932 }
6382bc90
MM
5933
5934 kfree(*tablep);
5935 *tablep = NULL;
5936}
5937
e692ab53 5938static void
e0361851 5939set_table_entry(struct ctl_table *entry,
e692ab53
NP
5940 const char *procname, void *data, int maxlen,
5941 mode_t mode, proc_handler *proc_handler)
5942{
e692ab53
NP
5943 entry->procname = procname;
5944 entry->data = data;
5945 entry->maxlen = maxlen;
5946 entry->mode = mode;
5947 entry->proc_handler = proc_handler;
5948}
5949
5950static struct ctl_table *
5951sd_alloc_ctl_domain_table(struct sched_domain *sd)
5952{
ace8b3d6 5953 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5954
ad1cdc1d
MM
5955 if (table == NULL)
5956 return NULL;
5957
e0361851 5958 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5959 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5960 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5961 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5962 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5963 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5964 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5965 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5966 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5967 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5968 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5969 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5970 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5971 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5972 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5973 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5974 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5975 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5976 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5977 &sd->cache_nice_tries,
5978 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5979 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5980 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5981 /* &table[11] is terminator */
e692ab53
NP
5982
5983 return table;
5984}
5985
9a4e7159 5986static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5987{
5988 struct ctl_table *entry, *table;
5989 struct sched_domain *sd;
5990 int domain_num = 0, i;
5991 char buf[32];
5992
5993 for_each_domain(cpu, sd)
5994 domain_num++;
5995 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5996 if (table == NULL)
5997 return NULL;
e692ab53
NP
5998
5999 i = 0;
6000 for_each_domain(cpu, sd) {
6001 snprintf(buf, 32, "domain%d", i);
e692ab53 6002 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6003 entry->mode = 0555;
e692ab53
NP
6004 entry->child = sd_alloc_ctl_domain_table(sd);
6005 entry++;
6006 i++;
6007 }
6008 return table;
6009}
6010
6011static struct ctl_table_header *sd_sysctl_header;
6382bc90 6012static void register_sched_domain_sysctl(void)
e692ab53
NP
6013{
6014 int i, cpu_num = num_online_cpus();
6015 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6016 char buf[32];
6017
7378547f
MM
6018 WARN_ON(sd_ctl_dir[0].child);
6019 sd_ctl_dir[0].child = entry;
6020
ad1cdc1d
MM
6021 if (entry == NULL)
6022 return;
6023
97b6ea7b 6024 for_each_online_cpu(i) {
e692ab53 6025 snprintf(buf, 32, "cpu%d", i);
e692ab53 6026 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6027 entry->mode = 0555;
e692ab53 6028 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6029 entry++;
e692ab53 6030 }
7378547f
MM
6031
6032 WARN_ON(sd_sysctl_header);
e692ab53
NP
6033 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6034}
6382bc90 6035
7378547f 6036/* may be called multiple times per register */
6382bc90
MM
6037static void unregister_sched_domain_sysctl(void)
6038{
7378547f
MM
6039 if (sd_sysctl_header)
6040 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6041 sd_sysctl_header = NULL;
7378547f
MM
6042 if (sd_ctl_dir[0].child)
6043 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6044}
e692ab53 6045#else
6382bc90
MM
6046static void register_sched_domain_sysctl(void)
6047{
6048}
6049static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6050{
6051}
6052#endif
6053
1f11eb6a
GH
6054static void set_rq_online(struct rq *rq)
6055{
6056 if (!rq->online) {
6057 const struct sched_class *class;
6058
6059 cpu_set(rq->cpu, rq->rd->online);
6060 rq->online = 1;
6061
6062 for_each_class(class) {
6063 if (class->rq_online)
6064 class->rq_online(rq);
6065 }
6066 }
6067}
6068
6069static void set_rq_offline(struct rq *rq)
6070{
6071 if (rq->online) {
6072 const struct sched_class *class;
6073
6074 for_each_class(class) {
6075 if (class->rq_offline)
6076 class->rq_offline(rq);
6077 }
6078
6079 cpu_clear(rq->cpu, rq->rd->online);
6080 rq->online = 0;
6081 }
6082}
6083
1da177e4
LT
6084/*
6085 * migration_call - callback that gets triggered when a CPU is added.
6086 * Here we can start up the necessary migration thread for the new CPU.
6087 */
48f24c4d
IM
6088static int __cpuinit
6089migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6090{
1da177e4 6091 struct task_struct *p;
48f24c4d 6092 int cpu = (long)hcpu;
1da177e4 6093 unsigned long flags;
70b97a7f 6094 struct rq *rq;
1da177e4
LT
6095
6096 switch (action) {
5be9361c 6097
1da177e4 6098 case CPU_UP_PREPARE:
8bb78442 6099 case CPU_UP_PREPARE_FROZEN:
dd41f596 6100 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6101 if (IS_ERR(p))
6102 return NOTIFY_BAD;
1da177e4
LT
6103 kthread_bind(p, cpu);
6104 /* Must be high prio: stop_machine expects to yield to it. */
6105 rq = task_rq_lock(p, &flags);
dd41f596 6106 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6107 task_rq_unlock(rq, &flags);
6108 cpu_rq(cpu)->migration_thread = p;
6109 break;
48f24c4d 6110
1da177e4 6111 case CPU_ONLINE:
8bb78442 6112 case CPU_ONLINE_FROZEN:
3a4fa0a2 6113 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6114 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6115
6116 /* Update our root-domain */
6117 rq = cpu_rq(cpu);
6118 spin_lock_irqsave(&rq->lock, flags);
6119 if (rq->rd) {
6120 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6121
6122 set_rq_online(rq);
1f94ef59
GH
6123 }
6124 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6125 break;
48f24c4d 6126
1da177e4
LT
6127#ifdef CONFIG_HOTPLUG_CPU
6128 case CPU_UP_CANCELED:
8bb78442 6129 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6130 if (!cpu_rq(cpu)->migration_thread)
6131 break;
41a2d6cf 6132 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6133 kthread_bind(cpu_rq(cpu)->migration_thread,
6134 any_online_cpu(cpu_online_map));
1da177e4
LT
6135 kthread_stop(cpu_rq(cpu)->migration_thread);
6136 cpu_rq(cpu)->migration_thread = NULL;
6137 break;
48f24c4d 6138
1da177e4 6139 case CPU_DEAD:
8bb78442 6140 case CPU_DEAD_FROZEN:
470fd646 6141 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6142 migrate_live_tasks(cpu);
6143 rq = cpu_rq(cpu);
6144 kthread_stop(rq->migration_thread);
6145 rq->migration_thread = NULL;
6146 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6147 spin_lock_irq(&rq->lock);
a8e504d2 6148 update_rq_clock(rq);
2e1cb74a 6149 deactivate_task(rq, rq->idle, 0);
1da177e4 6150 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6151 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6152 rq->idle->sched_class = &idle_sched_class;
1da177e4 6153 migrate_dead_tasks(cpu);
d2da272a 6154 spin_unlock_irq(&rq->lock);
470fd646 6155 cpuset_unlock();
1da177e4
LT
6156 migrate_nr_uninterruptible(rq);
6157 BUG_ON(rq->nr_running != 0);
6158
41a2d6cf
IM
6159 /*
6160 * No need to migrate the tasks: it was best-effort if
6161 * they didn't take sched_hotcpu_mutex. Just wake up
6162 * the requestors.
6163 */
1da177e4
LT
6164 spin_lock_irq(&rq->lock);
6165 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6166 struct migration_req *req;
6167
1da177e4 6168 req = list_entry(rq->migration_queue.next,
70b97a7f 6169 struct migration_req, list);
1da177e4
LT
6170 list_del_init(&req->list);
6171 complete(&req->done);
6172 }
6173 spin_unlock_irq(&rq->lock);
6174 break;
57d885fe 6175
08f503b0
GH
6176 case CPU_DYING:
6177 case CPU_DYING_FROZEN:
57d885fe
GH
6178 /* Update our root-domain */
6179 rq = cpu_rq(cpu);
6180 spin_lock_irqsave(&rq->lock, flags);
6181 if (rq->rd) {
6182 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6183 set_rq_offline(rq);
57d885fe
GH
6184 }
6185 spin_unlock_irqrestore(&rq->lock, flags);
6186 break;
1da177e4
LT
6187#endif
6188 }
6189 return NOTIFY_OK;
6190}
6191
6192/* Register at highest priority so that task migration (migrate_all_tasks)
6193 * happens before everything else.
6194 */
26c2143b 6195static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6196 .notifier_call = migration_call,
6197 .priority = 10
6198};
6199
e6fe6649 6200void __init migration_init(void)
1da177e4
LT
6201{
6202 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6203 int err;
48f24c4d
IM
6204
6205 /* Start one for the boot CPU: */
07dccf33
AM
6206 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6207 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6208 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6209 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6210}
6211#endif
6212
6213#ifdef CONFIG_SMP
476f3534 6214
3e9830dc 6215#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6216
099f98c8
GS
6217static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6218{
6219 switch (lvl) {
6220 case SD_LV_NONE:
6221 return "NONE";
6222 case SD_LV_SIBLING:
6223 return "SIBLING";
6224 case SD_LV_MC:
6225 return "MC";
6226 case SD_LV_CPU:
6227 return "CPU";
6228 case SD_LV_NODE:
6229 return "NODE";
6230 case SD_LV_ALLNODES:
6231 return "ALLNODES";
6232 case SD_LV_MAX:
6233 return "MAX";
6234
6235 }
6236 return "MAX";
6237}
6238
7c16ec58
MT
6239static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6240 cpumask_t *groupmask)
1da177e4 6241{
4dcf6aff 6242 struct sched_group *group = sd->groups;
434d53b0 6243 char str[256];
1da177e4 6244
434d53b0 6245 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6246 cpus_clear(*groupmask);
4dcf6aff
IM
6247
6248 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6249
6250 if (!(sd->flags & SD_LOAD_BALANCE)) {
6251 printk("does not load-balance\n");
6252 if (sd->parent)
6253 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6254 " has parent");
6255 return -1;
41c7ce9a
NP
6256 }
6257
099f98c8
GS
6258 printk(KERN_CONT "span %s level %s\n",
6259 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6260
6261 if (!cpu_isset(cpu, sd->span)) {
6262 printk(KERN_ERR "ERROR: domain->span does not contain "
6263 "CPU%d\n", cpu);
6264 }
6265 if (!cpu_isset(cpu, group->cpumask)) {
6266 printk(KERN_ERR "ERROR: domain->groups does not contain"
6267 " CPU%d\n", cpu);
6268 }
1da177e4 6269
4dcf6aff 6270 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6271 do {
4dcf6aff
IM
6272 if (!group) {
6273 printk("\n");
6274 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6275 break;
6276 }
6277
4dcf6aff
IM
6278 if (!group->__cpu_power) {
6279 printk(KERN_CONT "\n");
6280 printk(KERN_ERR "ERROR: domain->cpu_power not "
6281 "set\n");
6282 break;
6283 }
1da177e4 6284
4dcf6aff
IM
6285 if (!cpus_weight(group->cpumask)) {
6286 printk(KERN_CONT "\n");
6287 printk(KERN_ERR "ERROR: empty group\n");
6288 break;
6289 }
1da177e4 6290
7c16ec58 6291 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6292 printk(KERN_CONT "\n");
6293 printk(KERN_ERR "ERROR: repeated CPUs\n");
6294 break;
6295 }
1da177e4 6296
7c16ec58 6297 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6298
434d53b0 6299 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6300 printk(KERN_CONT " %s", str);
1da177e4 6301
4dcf6aff
IM
6302 group = group->next;
6303 } while (group != sd->groups);
6304 printk(KERN_CONT "\n");
1da177e4 6305
7c16ec58 6306 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6307 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6308
7c16ec58 6309 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6310 printk(KERN_ERR "ERROR: parent span is not a superset "
6311 "of domain->span\n");
6312 return 0;
6313}
1da177e4 6314
4dcf6aff
IM
6315static void sched_domain_debug(struct sched_domain *sd, int cpu)
6316{
7c16ec58 6317 cpumask_t *groupmask;
4dcf6aff 6318 int level = 0;
1da177e4 6319
4dcf6aff
IM
6320 if (!sd) {
6321 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6322 return;
6323 }
1da177e4 6324
4dcf6aff
IM
6325 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6326
7c16ec58
MT
6327 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6328 if (!groupmask) {
6329 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6330 return;
6331 }
6332
4dcf6aff 6333 for (;;) {
7c16ec58 6334 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6335 break;
1da177e4
LT
6336 level++;
6337 sd = sd->parent;
33859f7f 6338 if (!sd)
4dcf6aff
IM
6339 break;
6340 }
7c16ec58 6341 kfree(groupmask);
1da177e4 6342}
6d6bc0ad 6343#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6344# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6345#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6346
1a20ff27 6347static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6348{
6349 if (cpus_weight(sd->span) == 1)
6350 return 1;
6351
6352 /* Following flags need at least 2 groups */
6353 if (sd->flags & (SD_LOAD_BALANCE |
6354 SD_BALANCE_NEWIDLE |
6355 SD_BALANCE_FORK |
89c4710e
SS
6356 SD_BALANCE_EXEC |
6357 SD_SHARE_CPUPOWER |
6358 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6359 if (sd->groups != sd->groups->next)
6360 return 0;
6361 }
6362
6363 /* Following flags don't use groups */
6364 if (sd->flags & (SD_WAKE_IDLE |
6365 SD_WAKE_AFFINE |
6366 SD_WAKE_BALANCE))
6367 return 0;
6368
6369 return 1;
6370}
6371
48f24c4d
IM
6372static int
6373sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6374{
6375 unsigned long cflags = sd->flags, pflags = parent->flags;
6376
6377 if (sd_degenerate(parent))
6378 return 1;
6379
6380 if (!cpus_equal(sd->span, parent->span))
6381 return 0;
6382
6383 /* Does parent contain flags not in child? */
6384 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6385 if (cflags & SD_WAKE_AFFINE)
6386 pflags &= ~SD_WAKE_BALANCE;
6387 /* Flags needing groups don't count if only 1 group in parent */
6388 if (parent->groups == parent->groups->next) {
6389 pflags &= ~(SD_LOAD_BALANCE |
6390 SD_BALANCE_NEWIDLE |
6391 SD_BALANCE_FORK |
89c4710e
SS
6392 SD_BALANCE_EXEC |
6393 SD_SHARE_CPUPOWER |
6394 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6395 }
6396 if (~cflags & pflags)
6397 return 0;
6398
6399 return 1;
6400}
6401
57d885fe
GH
6402static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6403{
6404 unsigned long flags;
57d885fe
GH
6405
6406 spin_lock_irqsave(&rq->lock, flags);
6407
6408 if (rq->rd) {
6409 struct root_domain *old_rd = rq->rd;
6410
1f11eb6a
GH
6411 if (cpu_isset(rq->cpu, old_rd->online))
6412 set_rq_offline(rq);
57d885fe 6413
dc938520 6414 cpu_clear(rq->cpu, old_rd->span);
dc938520 6415
57d885fe
GH
6416 if (atomic_dec_and_test(&old_rd->refcount))
6417 kfree(old_rd);
6418 }
6419
6420 atomic_inc(&rd->refcount);
6421 rq->rd = rd;
6422
dc938520 6423 cpu_set(rq->cpu, rd->span);
1f94ef59 6424 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6425 set_rq_online(rq);
57d885fe
GH
6426
6427 spin_unlock_irqrestore(&rq->lock, flags);
6428}
6429
dc938520 6430static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6431{
6432 memset(rd, 0, sizeof(*rd));
6433
dc938520
GH
6434 cpus_clear(rd->span);
6435 cpus_clear(rd->online);
6e0534f2
GH
6436
6437 cpupri_init(&rd->cpupri);
57d885fe
GH
6438}
6439
6440static void init_defrootdomain(void)
6441{
dc938520 6442 init_rootdomain(&def_root_domain);
57d885fe
GH
6443 atomic_set(&def_root_domain.refcount, 1);
6444}
6445
dc938520 6446static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6447{
6448 struct root_domain *rd;
6449
6450 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6451 if (!rd)
6452 return NULL;
6453
dc938520 6454 init_rootdomain(rd);
57d885fe
GH
6455
6456 return rd;
6457}
6458
1da177e4 6459/*
0eab9146 6460 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6461 * hold the hotplug lock.
6462 */
0eab9146
IM
6463static void
6464cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6465{
70b97a7f 6466 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6467 struct sched_domain *tmp;
6468
6469 /* Remove the sched domains which do not contribute to scheduling. */
6470 for (tmp = sd; tmp; tmp = tmp->parent) {
6471 struct sched_domain *parent = tmp->parent;
6472 if (!parent)
6473 break;
1a848870 6474 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6475 tmp->parent = parent->parent;
1a848870
SS
6476 if (parent->parent)
6477 parent->parent->child = tmp;
6478 }
245af2c7
SS
6479 }
6480
1a848870 6481 if (sd && sd_degenerate(sd)) {
245af2c7 6482 sd = sd->parent;
1a848870
SS
6483 if (sd)
6484 sd->child = NULL;
6485 }
1da177e4
LT
6486
6487 sched_domain_debug(sd, cpu);
6488
57d885fe 6489 rq_attach_root(rq, rd);
674311d5 6490 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6491}
6492
6493/* cpus with isolated domains */
67af63a6 6494static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6495
6496/* Setup the mask of cpus configured for isolated domains */
6497static int __init isolated_cpu_setup(char *str)
6498{
6499 int ints[NR_CPUS], i;
6500
6501 str = get_options(str, ARRAY_SIZE(ints), ints);
6502 cpus_clear(cpu_isolated_map);
6503 for (i = 1; i <= ints[0]; i++)
6504 if (ints[i] < NR_CPUS)
6505 cpu_set(ints[i], cpu_isolated_map);
6506 return 1;
6507}
6508
8927f494 6509__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6510
6511/*
6711cab4
SS
6512 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6513 * to a function which identifies what group(along with sched group) a CPU
6514 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6515 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6516 *
6517 * init_sched_build_groups will build a circular linked list of the groups
6518 * covered by the given span, and will set each group's ->cpumask correctly,
6519 * and ->cpu_power to 0.
6520 */
a616058b 6521static void
7c16ec58 6522init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6523 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6524 struct sched_group **sg,
6525 cpumask_t *tmpmask),
6526 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6527{
6528 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6529 int i;
6530
7c16ec58
MT
6531 cpus_clear(*covered);
6532
6533 for_each_cpu_mask(i, *span) {
6711cab4 6534 struct sched_group *sg;
7c16ec58 6535 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6536 int j;
6537
7c16ec58 6538 if (cpu_isset(i, *covered))
1da177e4
LT
6539 continue;
6540
7c16ec58 6541 cpus_clear(sg->cpumask);
5517d86b 6542 sg->__cpu_power = 0;
1da177e4 6543
7c16ec58
MT
6544 for_each_cpu_mask(j, *span) {
6545 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6546 continue;
6547
7c16ec58 6548 cpu_set(j, *covered);
1da177e4
LT
6549 cpu_set(j, sg->cpumask);
6550 }
6551 if (!first)
6552 first = sg;
6553 if (last)
6554 last->next = sg;
6555 last = sg;
6556 }
6557 last->next = first;
6558}
6559
9c1cfda2 6560#define SD_NODES_PER_DOMAIN 16
1da177e4 6561
9c1cfda2 6562#ifdef CONFIG_NUMA
198e2f18 6563
9c1cfda2
JH
6564/**
6565 * find_next_best_node - find the next node to include in a sched_domain
6566 * @node: node whose sched_domain we're building
6567 * @used_nodes: nodes already in the sched_domain
6568 *
41a2d6cf 6569 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6570 * finds the closest node not already in the @used_nodes map.
6571 *
6572 * Should use nodemask_t.
6573 */
c5f59f08 6574static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6575{
6576 int i, n, val, min_val, best_node = 0;
6577
6578 min_val = INT_MAX;
6579
6580 for (i = 0; i < MAX_NUMNODES; i++) {
6581 /* Start at @node */
6582 n = (node + i) % MAX_NUMNODES;
6583
6584 if (!nr_cpus_node(n))
6585 continue;
6586
6587 /* Skip already used nodes */
c5f59f08 6588 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6589 continue;
6590
6591 /* Simple min distance search */
6592 val = node_distance(node, n);
6593
6594 if (val < min_val) {
6595 min_val = val;
6596 best_node = n;
6597 }
6598 }
6599
c5f59f08 6600 node_set(best_node, *used_nodes);
9c1cfda2
JH
6601 return best_node;
6602}
6603
6604/**
6605 * sched_domain_node_span - get a cpumask for a node's sched_domain
6606 * @node: node whose cpumask we're constructing
73486722 6607 * @span: resulting cpumask
9c1cfda2 6608 *
41a2d6cf 6609 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6610 * should be one that prevents unnecessary balancing, but also spreads tasks
6611 * out optimally.
6612 */
4bdbaad3 6613static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6614{
c5f59f08 6615 nodemask_t used_nodes;
c5f59f08 6616 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6617 int i;
9c1cfda2 6618
4bdbaad3 6619 cpus_clear(*span);
c5f59f08 6620 nodes_clear(used_nodes);
9c1cfda2 6621
4bdbaad3 6622 cpus_or(*span, *span, *nodemask);
c5f59f08 6623 node_set(node, used_nodes);
9c1cfda2
JH
6624
6625 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6626 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6627
c5f59f08 6628 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6629 cpus_or(*span, *span, *nodemask);
9c1cfda2 6630 }
9c1cfda2 6631}
6d6bc0ad 6632#endif /* CONFIG_NUMA */
9c1cfda2 6633
5c45bf27 6634int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6635
9c1cfda2 6636/*
48f24c4d 6637 * SMT sched-domains:
9c1cfda2 6638 */
1da177e4
LT
6639#ifdef CONFIG_SCHED_SMT
6640static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6641static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6642
41a2d6cf 6643static int
7c16ec58
MT
6644cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6645 cpumask_t *unused)
1da177e4 6646{
6711cab4
SS
6647 if (sg)
6648 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6649 return cpu;
6650}
6d6bc0ad 6651#endif /* CONFIG_SCHED_SMT */
1da177e4 6652
48f24c4d
IM
6653/*
6654 * multi-core sched-domains:
6655 */
1e9f28fa
SS
6656#ifdef CONFIG_SCHED_MC
6657static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6658static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6659#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6660
6661#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6662static int
7c16ec58
MT
6663cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6664 cpumask_t *mask)
1e9f28fa 6665{
6711cab4 6666 int group;
7c16ec58
MT
6667
6668 *mask = per_cpu(cpu_sibling_map, cpu);
6669 cpus_and(*mask, *mask, *cpu_map);
6670 group = first_cpu(*mask);
6711cab4
SS
6671 if (sg)
6672 *sg = &per_cpu(sched_group_core, group);
6673 return group;
1e9f28fa
SS
6674}
6675#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6676static int
7c16ec58
MT
6677cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6678 cpumask_t *unused)
1e9f28fa 6679{
6711cab4
SS
6680 if (sg)
6681 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6682 return cpu;
6683}
6684#endif
6685
1da177e4 6686static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6687static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6688
41a2d6cf 6689static int
7c16ec58
MT
6690cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6691 cpumask_t *mask)
1da177e4 6692{
6711cab4 6693 int group;
48f24c4d 6694#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6695 *mask = cpu_coregroup_map(cpu);
6696 cpus_and(*mask, *mask, *cpu_map);
6697 group = first_cpu(*mask);
1e9f28fa 6698#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6699 *mask = per_cpu(cpu_sibling_map, cpu);
6700 cpus_and(*mask, *mask, *cpu_map);
6701 group = first_cpu(*mask);
1da177e4 6702#else
6711cab4 6703 group = cpu;
1da177e4 6704#endif
6711cab4
SS
6705 if (sg)
6706 *sg = &per_cpu(sched_group_phys, group);
6707 return group;
1da177e4
LT
6708}
6709
6710#ifdef CONFIG_NUMA
1da177e4 6711/*
9c1cfda2
JH
6712 * The init_sched_build_groups can't handle what we want to do with node
6713 * groups, so roll our own. Now each node has its own list of groups which
6714 * gets dynamically allocated.
1da177e4 6715 */
9c1cfda2 6716static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6717static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6718
9c1cfda2 6719static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6720static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6721
6711cab4 6722static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6723 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6724{
6711cab4
SS
6725 int group;
6726
7c16ec58
MT
6727 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6728 cpus_and(*nodemask, *nodemask, *cpu_map);
6729 group = first_cpu(*nodemask);
6711cab4
SS
6730
6731 if (sg)
6732 *sg = &per_cpu(sched_group_allnodes, group);
6733 return group;
1da177e4 6734}
6711cab4 6735
08069033
SS
6736static void init_numa_sched_groups_power(struct sched_group *group_head)
6737{
6738 struct sched_group *sg = group_head;
6739 int j;
6740
6741 if (!sg)
6742 return;
3a5c359a
AK
6743 do {
6744 for_each_cpu_mask(j, sg->cpumask) {
6745 struct sched_domain *sd;
08069033 6746
3a5c359a
AK
6747 sd = &per_cpu(phys_domains, j);
6748 if (j != first_cpu(sd->groups->cpumask)) {
6749 /*
6750 * Only add "power" once for each
6751 * physical package.
6752 */
6753 continue;
6754 }
08069033 6755
3a5c359a
AK
6756 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6757 }
6758 sg = sg->next;
6759 } while (sg != group_head);
08069033 6760}
6d6bc0ad 6761#endif /* CONFIG_NUMA */
1da177e4 6762
a616058b 6763#ifdef CONFIG_NUMA
51888ca2 6764/* Free memory allocated for various sched_group structures */
7c16ec58 6765static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6766{
a616058b 6767 int cpu, i;
51888ca2
SV
6768
6769 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6770 struct sched_group **sched_group_nodes
6771 = sched_group_nodes_bycpu[cpu];
6772
51888ca2
SV
6773 if (!sched_group_nodes)
6774 continue;
6775
6776 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6777 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6778
7c16ec58
MT
6779 *nodemask = node_to_cpumask(i);
6780 cpus_and(*nodemask, *nodemask, *cpu_map);
6781 if (cpus_empty(*nodemask))
51888ca2
SV
6782 continue;
6783
6784 if (sg == NULL)
6785 continue;
6786 sg = sg->next;
6787next_sg:
6788 oldsg = sg;
6789 sg = sg->next;
6790 kfree(oldsg);
6791 if (oldsg != sched_group_nodes[i])
6792 goto next_sg;
6793 }
6794 kfree(sched_group_nodes);
6795 sched_group_nodes_bycpu[cpu] = NULL;
6796 }
51888ca2 6797}
6d6bc0ad 6798#else /* !CONFIG_NUMA */
7c16ec58 6799static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6800{
6801}
6d6bc0ad 6802#endif /* CONFIG_NUMA */
51888ca2 6803
89c4710e
SS
6804/*
6805 * Initialize sched groups cpu_power.
6806 *
6807 * cpu_power indicates the capacity of sched group, which is used while
6808 * distributing the load between different sched groups in a sched domain.
6809 * Typically cpu_power for all the groups in a sched domain will be same unless
6810 * there are asymmetries in the topology. If there are asymmetries, group
6811 * having more cpu_power will pickup more load compared to the group having
6812 * less cpu_power.
6813 *
6814 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6815 * the maximum number of tasks a group can handle in the presence of other idle
6816 * or lightly loaded groups in the same sched domain.
6817 */
6818static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6819{
6820 struct sched_domain *child;
6821 struct sched_group *group;
6822
6823 WARN_ON(!sd || !sd->groups);
6824
6825 if (cpu != first_cpu(sd->groups->cpumask))
6826 return;
6827
6828 child = sd->child;
6829
5517d86b
ED
6830 sd->groups->__cpu_power = 0;
6831
89c4710e
SS
6832 /*
6833 * For perf policy, if the groups in child domain share resources
6834 * (for example cores sharing some portions of the cache hierarchy
6835 * or SMT), then set this domain groups cpu_power such that each group
6836 * can handle only one task, when there are other idle groups in the
6837 * same sched domain.
6838 */
6839 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6840 (child->flags &
6841 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6842 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6843 return;
6844 }
6845
89c4710e
SS
6846 /*
6847 * add cpu_power of each child group to this groups cpu_power
6848 */
6849 group = child->groups;
6850 do {
5517d86b 6851 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6852 group = group->next;
6853 } while (group != child->groups);
6854}
6855
7c16ec58
MT
6856/*
6857 * Initializers for schedule domains
6858 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6859 */
6860
6861#define SD_INIT(sd, type) sd_init_##type(sd)
6862#define SD_INIT_FUNC(type) \
6863static noinline void sd_init_##type(struct sched_domain *sd) \
6864{ \
6865 memset(sd, 0, sizeof(*sd)); \
6866 *sd = SD_##type##_INIT; \
1d3504fc 6867 sd->level = SD_LV_##type; \
7c16ec58
MT
6868}
6869
6870SD_INIT_FUNC(CPU)
6871#ifdef CONFIG_NUMA
6872 SD_INIT_FUNC(ALLNODES)
6873 SD_INIT_FUNC(NODE)
6874#endif
6875#ifdef CONFIG_SCHED_SMT
6876 SD_INIT_FUNC(SIBLING)
6877#endif
6878#ifdef CONFIG_SCHED_MC
6879 SD_INIT_FUNC(MC)
6880#endif
6881
6882/*
6883 * To minimize stack usage kmalloc room for cpumasks and share the
6884 * space as the usage in build_sched_domains() dictates. Used only
6885 * if the amount of space is significant.
6886 */
6887struct allmasks {
6888 cpumask_t tmpmask; /* make this one first */
6889 union {
6890 cpumask_t nodemask;
6891 cpumask_t this_sibling_map;
6892 cpumask_t this_core_map;
6893 };
6894 cpumask_t send_covered;
6895
6896#ifdef CONFIG_NUMA
6897 cpumask_t domainspan;
6898 cpumask_t covered;
6899 cpumask_t notcovered;
6900#endif
6901};
6902
6903#if NR_CPUS > 128
6904#define SCHED_CPUMASK_ALLOC 1
6905#define SCHED_CPUMASK_FREE(v) kfree(v)
6906#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6907#else
6908#define SCHED_CPUMASK_ALLOC 0
6909#define SCHED_CPUMASK_FREE(v)
6910#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6911#endif
6912
6913#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6914 ((unsigned long)(a) + offsetof(struct allmasks, v))
6915
1d3504fc
HS
6916static int default_relax_domain_level = -1;
6917
6918static int __init setup_relax_domain_level(char *str)
6919{
30e0e178
LZ
6920 unsigned long val;
6921
6922 val = simple_strtoul(str, NULL, 0);
6923 if (val < SD_LV_MAX)
6924 default_relax_domain_level = val;
6925
1d3504fc
HS
6926 return 1;
6927}
6928__setup("relax_domain_level=", setup_relax_domain_level);
6929
6930static void set_domain_attribute(struct sched_domain *sd,
6931 struct sched_domain_attr *attr)
6932{
6933 int request;
6934
6935 if (!attr || attr->relax_domain_level < 0) {
6936 if (default_relax_domain_level < 0)
6937 return;
6938 else
6939 request = default_relax_domain_level;
6940 } else
6941 request = attr->relax_domain_level;
6942 if (request < sd->level) {
6943 /* turn off idle balance on this domain */
6944 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6945 } else {
6946 /* turn on idle balance on this domain */
6947 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6948 }
6949}
6950
1da177e4 6951/*
1a20ff27
DG
6952 * Build sched domains for a given set of cpus and attach the sched domains
6953 * to the individual cpus
1da177e4 6954 */
1d3504fc
HS
6955static int __build_sched_domains(const cpumask_t *cpu_map,
6956 struct sched_domain_attr *attr)
1da177e4
LT
6957{
6958 int i;
57d885fe 6959 struct root_domain *rd;
7c16ec58
MT
6960 SCHED_CPUMASK_DECLARE(allmasks);
6961 cpumask_t *tmpmask;
d1b55138
JH
6962#ifdef CONFIG_NUMA
6963 struct sched_group **sched_group_nodes = NULL;
6711cab4 6964 int sd_allnodes = 0;
d1b55138
JH
6965
6966 /*
6967 * Allocate the per-node list of sched groups
6968 */
5cf9f062 6969 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6970 GFP_KERNEL);
d1b55138
JH
6971 if (!sched_group_nodes) {
6972 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6973 return -ENOMEM;
d1b55138 6974 }
d1b55138 6975#endif
1da177e4 6976
dc938520 6977 rd = alloc_rootdomain();
57d885fe
GH
6978 if (!rd) {
6979 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
6980#ifdef CONFIG_NUMA
6981 kfree(sched_group_nodes);
6982#endif
57d885fe
GH
6983 return -ENOMEM;
6984 }
6985
7c16ec58
MT
6986#if SCHED_CPUMASK_ALLOC
6987 /* get space for all scratch cpumask variables */
6988 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6989 if (!allmasks) {
6990 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6991 kfree(rd);
6992#ifdef CONFIG_NUMA
6993 kfree(sched_group_nodes);
6994#endif
6995 return -ENOMEM;
6996 }
6997#endif
6998 tmpmask = (cpumask_t *)allmasks;
6999
7000
7001#ifdef CONFIG_NUMA
7002 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7003#endif
7004
1da177e4 7005 /*
1a20ff27 7006 * Set up domains for cpus specified by the cpu_map.
1da177e4 7007 */
1a20ff27 7008 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7009 struct sched_domain *sd = NULL, *p;
7c16ec58 7010 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7011
7c16ec58
MT
7012 *nodemask = node_to_cpumask(cpu_to_node(i));
7013 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7014
7015#ifdef CONFIG_NUMA
dd41f596 7016 if (cpus_weight(*cpu_map) >
7c16ec58 7017 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7018 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7019 SD_INIT(sd, ALLNODES);
1d3504fc 7020 set_domain_attribute(sd, attr);
9c1cfda2 7021 sd->span = *cpu_map;
7c16ec58 7022 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7023 p = sd;
6711cab4 7024 sd_allnodes = 1;
9c1cfda2
JH
7025 } else
7026 p = NULL;
7027
1da177e4 7028 sd = &per_cpu(node_domains, i);
7c16ec58 7029 SD_INIT(sd, NODE);
1d3504fc 7030 set_domain_attribute(sd, attr);
4bdbaad3 7031 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7032 sd->parent = p;
1a848870
SS
7033 if (p)
7034 p->child = sd;
9c1cfda2 7035 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7036#endif
7037
7038 p = sd;
7039 sd = &per_cpu(phys_domains, i);
7c16ec58 7040 SD_INIT(sd, CPU);
1d3504fc 7041 set_domain_attribute(sd, attr);
7c16ec58 7042 sd->span = *nodemask;
1da177e4 7043 sd->parent = p;
1a848870
SS
7044 if (p)
7045 p->child = sd;
7c16ec58 7046 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7047
1e9f28fa
SS
7048#ifdef CONFIG_SCHED_MC
7049 p = sd;
7050 sd = &per_cpu(core_domains, i);
7c16ec58 7051 SD_INIT(sd, MC);
1d3504fc 7052 set_domain_attribute(sd, attr);
1e9f28fa
SS
7053 sd->span = cpu_coregroup_map(i);
7054 cpus_and(sd->span, sd->span, *cpu_map);
7055 sd->parent = p;
1a848870 7056 p->child = sd;
7c16ec58 7057 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7058#endif
7059
1da177e4
LT
7060#ifdef CONFIG_SCHED_SMT
7061 p = sd;
7062 sd = &per_cpu(cpu_domains, i);
7c16ec58 7063 SD_INIT(sd, SIBLING);
1d3504fc 7064 set_domain_attribute(sd, attr);
d5a7430d 7065 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7066 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7067 sd->parent = p;
1a848870 7068 p->child = sd;
7c16ec58 7069 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7070#endif
7071 }
7072
7073#ifdef CONFIG_SCHED_SMT
7074 /* Set up CPU (sibling) groups */
9c1cfda2 7075 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7076 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7077 SCHED_CPUMASK_VAR(send_covered, allmasks);
7078
7079 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7080 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7081 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7082 continue;
7083
dd41f596 7084 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7085 &cpu_to_cpu_group,
7086 send_covered, tmpmask);
1da177e4
LT
7087 }
7088#endif
7089
1e9f28fa
SS
7090#ifdef CONFIG_SCHED_MC
7091 /* Set up multi-core groups */
7092 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7093 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7094 SCHED_CPUMASK_VAR(send_covered, allmasks);
7095
7096 *this_core_map = cpu_coregroup_map(i);
7097 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7098 if (i != first_cpu(*this_core_map))
1e9f28fa 7099 continue;
7c16ec58 7100
dd41f596 7101 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7102 &cpu_to_core_group,
7103 send_covered, tmpmask);
1e9f28fa
SS
7104 }
7105#endif
7106
1da177e4
LT
7107 /* Set up physical groups */
7108 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7109 SCHED_CPUMASK_VAR(nodemask, allmasks);
7110 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7111
7c16ec58
MT
7112 *nodemask = node_to_cpumask(i);
7113 cpus_and(*nodemask, *nodemask, *cpu_map);
7114 if (cpus_empty(*nodemask))
1da177e4
LT
7115 continue;
7116
7c16ec58
MT
7117 init_sched_build_groups(nodemask, cpu_map,
7118 &cpu_to_phys_group,
7119 send_covered, tmpmask);
1da177e4
LT
7120 }
7121
7122#ifdef CONFIG_NUMA
7123 /* Set up node groups */
7c16ec58
MT
7124 if (sd_allnodes) {
7125 SCHED_CPUMASK_VAR(send_covered, allmasks);
7126
7127 init_sched_build_groups(cpu_map, cpu_map,
7128 &cpu_to_allnodes_group,
7129 send_covered, tmpmask);
7130 }
9c1cfda2
JH
7131
7132 for (i = 0; i < MAX_NUMNODES; i++) {
7133 /* Set up node groups */
7134 struct sched_group *sg, *prev;
7c16ec58
MT
7135 SCHED_CPUMASK_VAR(nodemask, allmasks);
7136 SCHED_CPUMASK_VAR(domainspan, allmasks);
7137 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7138 int j;
7139
7c16ec58
MT
7140 *nodemask = node_to_cpumask(i);
7141 cpus_clear(*covered);
7142
7143 cpus_and(*nodemask, *nodemask, *cpu_map);
7144 if (cpus_empty(*nodemask)) {
d1b55138 7145 sched_group_nodes[i] = NULL;
9c1cfda2 7146 continue;
d1b55138 7147 }
9c1cfda2 7148
4bdbaad3 7149 sched_domain_node_span(i, domainspan);
7c16ec58 7150 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7151
15f0b676 7152 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7153 if (!sg) {
7154 printk(KERN_WARNING "Can not alloc domain group for "
7155 "node %d\n", i);
7156 goto error;
7157 }
9c1cfda2 7158 sched_group_nodes[i] = sg;
7c16ec58 7159 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7160 struct sched_domain *sd;
9761eea8 7161
9c1cfda2
JH
7162 sd = &per_cpu(node_domains, j);
7163 sd->groups = sg;
9c1cfda2 7164 }
5517d86b 7165 sg->__cpu_power = 0;
7c16ec58 7166 sg->cpumask = *nodemask;
51888ca2 7167 sg->next = sg;
7c16ec58 7168 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7169 prev = sg;
7170
7171 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7172 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7173 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7174 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7175
7c16ec58
MT
7176 cpus_complement(*notcovered, *covered);
7177 cpus_and(*tmpmask, *notcovered, *cpu_map);
7178 cpus_and(*tmpmask, *tmpmask, *domainspan);
7179 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7180 break;
7181
7c16ec58
MT
7182 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7183 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7184 continue;
7185
15f0b676
SV
7186 sg = kmalloc_node(sizeof(struct sched_group),
7187 GFP_KERNEL, i);
9c1cfda2
JH
7188 if (!sg) {
7189 printk(KERN_WARNING
7190 "Can not alloc domain group for node %d\n", j);
51888ca2 7191 goto error;
9c1cfda2 7192 }
5517d86b 7193 sg->__cpu_power = 0;
7c16ec58 7194 sg->cpumask = *tmpmask;
51888ca2 7195 sg->next = prev->next;
7c16ec58 7196 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7197 prev->next = sg;
7198 prev = sg;
7199 }
9c1cfda2 7200 }
1da177e4
LT
7201#endif
7202
7203 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7204#ifdef CONFIG_SCHED_SMT
1a20ff27 7205 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7206 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7207
89c4710e 7208 init_sched_groups_power(i, sd);
5c45bf27 7209 }
1da177e4 7210#endif
1e9f28fa 7211#ifdef CONFIG_SCHED_MC
5c45bf27 7212 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7213 struct sched_domain *sd = &per_cpu(core_domains, i);
7214
89c4710e 7215 init_sched_groups_power(i, sd);
5c45bf27
SS
7216 }
7217#endif
1e9f28fa 7218
5c45bf27 7219 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7220 struct sched_domain *sd = &per_cpu(phys_domains, i);
7221
89c4710e 7222 init_sched_groups_power(i, sd);
1da177e4
LT
7223 }
7224
9c1cfda2 7225#ifdef CONFIG_NUMA
08069033
SS
7226 for (i = 0; i < MAX_NUMNODES; i++)
7227 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7228
6711cab4
SS
7229 if (sd_allnodes) {
7230 struct sched_group *sg;
f712c0c7 7231
7c16ec58
MT
7232 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7233 tmpmask);
f712c0c7
SS
7234 init_numa_sched_groups_power(sg);
7235 }
9c1cfda2
JH
7236#endif
7237
1da177e4 7238 /* Attach the domains */
1a20ff27 7239 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7240 struct sched_domain *sd;
7241#ifdef CONFIG_SCHED_SMT
7242 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7243#elif defined(CONFIG_SCHED_MC)
7244 sd = &per_cpu(core_domains, i);
1da177e4
LT
7245#else
7246 sd = &per_cpu(phys_domains, i);
7247#endif
57d885fe 7248 cpu_attach_domain(sd, rd, i);
1da177e4 7249 }
51888ca2 7250
7c16ec58 7251 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7252 return 0;
7253
a616058b 7254#ifdef CONFIG_NUMA
51888ca2 7255error:
7c16ec58
MT
7256 free_sched_groups(cpu_map, tmpmask);
7257 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7258 return -ENOMEM;
a616058b 7259#endif
1da177e4 7260}
029190c5 7261
1d3504fc
HS
7262static int build_sched_domains(const cpumask_t *cpu_map)
7263{
7264 return __build_sched_domains(cpu_map, NULL);
7265}
7266
029190c5
PJ
7267static cpumask_t *doms_cur; /* current sched domains */
7268static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7269static struct sched_domain_attr *dattr_cur;
7270 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7271
7272/*
7273 * Special case: If a kmalloc of a doms_cur partition (array of
7274 * cpumask_t) fails, then fallback to a single sched domain,
7275 * as determined by the single cpumask_t fallback_doms.
7276 */
7277static cpumask_t fallback_doms;
7278
22e52b07
HC
7279void __attribute__((weak)) arch_update_cpu_topology(void)
7280{
7281}
7282
5c8e1ed1
MK
7283/*
7284 * Free current domain masks.
7285 * Called after all cpus are attached to NULL domain.
7286 */
7287static void free_sched_domains(void)
7288{
7289 ndoms_cur = 0;
7290 if (doms_cur != &fallback_doms)
7291 kfree(doms_cur);
7292 doms_cur = &fallback_doms;
7293}
7294
1a20ff27 7295/*
41a2d6cf 7296 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7297 * For now this just excludes isolated cpus, but could be used to
7298 * exclude other special cases in the future.
1a20ff27 7299 */
51888ca2 7300static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7301{
7378547f
MM
7302 int err;
7303
22e52b07 7304 arch_update_cpu_topology();
029190c5
PJ
7305 ndoms_cur = 1;
7306 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7307 if (!doms_cur)
7308 doms_cur = &fallback_doms;
7309 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7310 dattr_cur = NULL;
7378547f 7311 err = build_sched_domains(doms_cur);
6382bc90 7312 register_sched_domain_sysctl();
7378547f
MM
7313
7314 return err;
1a20ff27
DG
7315}
7316
7c16ec58
MT
7317static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7318 cpumask_t *tmpmask)
1da177e4 7319{
7c16ec58 7320 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7321}
1da177e4 7322
1a20ff27
DG
7323/*
7324 * Detach sched domains from a group of cpus specified in cpu_map
7325 * These cpus will now be attached to the NULL domain
7326 */
858119e1 7327static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7328{
7c16ec58 7329 cpumask_t tmpmask;
1a20ff27
DG
7330 int i;
7331
6382bc90
MM
7332 unregister_sched_domain_sysctl();
7333
1a20ff27 7334 for_each_cpu_mask(i, *cpu_map)
57d885fe 7335 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7336 synchronize_sched();
7c16ec58 7337 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7338}
7339
1d3504fc
HS
7340/* handle null as "default" */
7341static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7342 struct sched_domain_attr *new, int idx_new)
7343{
7344 struct sched_domain_attr tmp;
7345
7346 /* fast path */
7347 if (!new && !cur)
7348 return 1;
7349
7350 tmp = SD_ATTR_INIT;
7351 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7352 new ? (new + idx_new) : &tmp,
7353 sizeof(struct sched_domain_attr));
7354}
7355
029190c5
PJ
7356/*
7357 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7358 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7359 * doms_new[] to the current sched domain partitioning, doms_cur[].
7360 * It destroys each deleted domain and builds each new domain.
7361 *
7362 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7363 * The masks don't intersect (don't overlap.) We should setup one
7364 * sched domain for each mask. CPUs not in any of the cpumasks will
7365 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7366 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7367 * it as it is.
7368 *
41a2d6cf
IM
7369 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7370 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7371 * failed the kmalloc call, then it can pass in doms_new == NULL,
7372 * and partition_sched_domains() will fallback to the single partition
7373 * 'fallback_doms'.
7374 *
7375 * Call with hotplug lock held
7376 */
1d3504fc
HS
7377void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7378 struct sched_domain_attr *dattr_new)
029190c5
PJ
7379{
7380 int i, j;
7381
712555ee 7382 mutex_lock(&sched_domains_mutex);
a1835615 7383
7378547f
MM
7384 /* always unregister in case we don't destroy any domains */
7385 unregister_sched_domain_sysctl();
7386
029190c5
PJ
7387 if (doms_new == NULL) {
7388 ndoms_new = 1;
7389 doms_new = &fallback_doms;
7390 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7391 dattr_new = NULL;
029190c5
PJ
7392 }
7393
7394 /* Destroy deleted domains */
7395 for (i = 0; i < ndoms_cur; i++) {
7396 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7397 if (cpus_equal(doms_cur[i], doms_new[j])
7398 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7399 goto match1;
7400 }
7401 /* no match - a current sched domain not in new doms_new[] */
7402 detach_destroy_domains(doms_cur + i);
7403match1:
7404 ;
7405 }
7406
7407 /* Build new domains */
7408 for (i = 0; i < ndoms_new; i++) {
7409 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7410 if (cpus_equal(doms_new[i], doms_cur[j])
7411 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7412 goto match2;
7413 }
7414 /* no match - add a new doms_new */
1d3504fc
HS
7415 __build_sched_domains(doms_new + i,
7416 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7417match2:
7418 ;
7419 }
7420
7421 /* Remember the new sched domains */
7422 if (doms_cur != &fallback_doms)
7423 kfree(doms_cur);
1d3504fc 7424 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7425 doms_cur = doms_new;
1d3504fc 7426 dattr_cur = dattr_new;
029190c5 7427 ndoms_cur = ndoms_new;
7378547f
MM
7428
7429 register_sched_domain_sysctl();
a1835615 7430
712555ee 7431 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7432}
7433
5c45bf27 7434#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7435int arch_reinit_sched_domains(void)
5c45bf27
SS
7436{
7437 int err;
7438
95402b38 7439 get_online_cpus();
712555ee 7440 mutex_lock(&sched_domains_mutex);
5c45bf27 7441 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7442 free_sched_domains();
5c45bf27 7443 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7444 mutex_unlock(&sched_domains_mutex);
95402b38 7445 put_online_cpus();
5c45bf27
SS
7446
7447 return err;
7448}
7449
7450static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7451{
7452 int ret;
7453
7454 if (buf[0] != '0' && buf[0] != '1')
7455 return -EINVAL;
7456
7457 if (smt)
7458 sched_smt_power_savings = (buf[0] == '1');
7459 else
7460 sched_mc_power_savings = (buf[0] == '1');
7461
7462 ret = arch_reinit_sched_domains();
7463
7464 return ret ? ret : count;
7465}
7466
5c45bf27
SS
7467#ifdef CONFIG_SCHED_MC
7468static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7469{
7470 return sprintf(page, "%u\n", sched_mc_power_savings);
7471}
48f24c4d
IM
7472static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7473 const char *buf, size_t count)
5c45bf27
SS
7474{
7475 return sched_power_savings_store(buf, count, 0);
7476}
6707de00
AB
7477static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7478 sched_mc_power_savings_store);
5c45bf27
SS
7479#endif
7480
7481#ifdef CONFIG_SCHED_SMT
7482static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7483{
7484 return sprintf(page, "%u\n", sched_smt_power_savings);
7485}
48f24c4d
IM
7486static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7487 const char *buf, size_t count)
5c45bf27
SS
7488{
7489 return sched_power_savings_store(buf, count, 1);
7490}
6707de00
AB
7491static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7492 sched_smt_power_savings_store);
7493#endif
7494
7495int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7496{
7497 int err = 0;
7498
7499#ifdef CONFIG_SCHED_SMT
7500 if (smt_capable())
7501 err = sysfs_create_file(&cls->kset.kobj,
7502 &attr_sched_smt_power_savings.attr);
7503#endif
7504#ifdef CONFIG_SCHED_MC
7505 if (!err && mc_capable())
7506 err = sysfs_create_file(&cls->kset.kobj,
7507 &attr_sched_mc_power_savings.attr);
7508#endif
7509 return err;
7510}
6d6bc0ad 7511#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7512
1da177e4 7513/*
41a2d6cf 7514 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7515 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7516 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7517 * which will prevent rebalancing while the sched domains are recalculated.
7518 */
7519static int update_sched_domains(struct notifier_block *nfb,
7520 unsigned long action, void *hcpu)
7521{
7def2be1
PZ
7522 int cpu = (int)(long)hcpu;
7523
1da177e4 7524 switch (action) {
1da177e4 7525 case CPU_DOWN_PREPARE:
8bb78442 7526 case CPU_DOWN_PREPARE_FROZEN:
7def2be1
PZ
7527 disable_runtime(cpu_rq(cpu));
7528 /* fall-through */
7529 case CPU_UP_PREPARE:
7530 case CPU_UP_PREPARE_FROZEN:
1a20ff27 7531 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7532 free_sched_domains();
1da177e4
LT
7533 return NOTIFY_OK;
7534
7def2be1 7535
1da177e4 7536 case CPU_DOWN_FAILED:
8bb78442 7537 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7538 case CPU_ONLINE:
8bb78442 7539 case CPU_ONLINE_FROZEN:
7def2be1
PZ
7540 enable_runtime(cpu_rq(cpu));
7541 /* fall-through */
7542 case CPU_UP_CANCELED:
7543 case CPU_UP_CANCELED_FROZEN:
1da177e4 7544 case CPU_DEAD:
8bb78442 7545 case CPU_DEAD_FROZEN:
1da177e4
LT
7546 /*
7547 * Fall through and re-initialise the domains.
7548 */
7549 break;
7550 default:
7551 return NOTIFY_DONE;
7552 }
7553
5c8e1ed1
MK
7554#ifndef CONFIG_CPUSETS
7555 /*
7556 * Create default domain partitioning if cpusets are disabled.
7557 * Otherwise we let cpusets rebuild the domains based on the
7558 * current setup.
7559 */
7560
1da177e4 7561 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7562 arch_init_sched_domains(&cpu_online_map);
5c8e1ed1 7563#endif
1da177e4
LT
7564
7565 return NOTIFY_OK;
7566}
1da177e4
LT
7567
7568void __init sched_init_smp(void)
7569{
5c1e1767
NP
7570 cpumask_t non_isolated_cpus;
7571
434d53b0
MT
7572#if defined(CONFIG_NUMA)
7573 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7574 GFP_KERNEL);
7575 BUG_ON(sched_group_nodes_bycpu == NULL);
7576#endif
95402b38 7577 get_online_cpus();
712555ee 7578 mutex_lock(&sched_domains_mutex);
1a20ff27 7579 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7580 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7581 if (cpus_empty(non_isolated_cpus))
7582 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7583 mutex_unlock(&sched_domains_mutex);
95402b38 7584 put_online_cpus();
1da177e4
LT
7585 /* XXX: Theoretical race here - CPU may be hotplugged now */
7586 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7587 init_hrtick();
5c1e1767
NP
7588
7589 /* Move init over to a non-isolated CPU */
7c16ec58 7590 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7591 BUG();
19978ca6 7592 sched_init_granularity();
1da177e4
LT
7593}
7594#else
7595void __init sched_init_smp(void)
7596{
19978ca6 7597 sched_init_granularity();
1da177e4
LT
7598}
7599#endif /* CONFIG_SMP */
7600
7601int in_sched_functions(unsigned long addr)
7602{
1da177e4
LT
7603 return in_lock_functions(addr) ||
7604 (addr >= (unsigned long)__sched_text_start
7605 && addr < (unsigned long)__sched_text_end);
7606}
7607
a9957449 7608static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7609{
7610 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7611 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7612#ifdef CONFIG_FAIR_GROUP_SCHED
7613 cfs_rq->rq = rq;
7614#endif
67e9fb2a 7615 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7616}
7617
fa85ae24
PZ
7618static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7619{
7620 struct rt_prio_array *array;
7621 int i;
7622
7623 array = &rt_rq->active;
7624 for (i = 0; i < MAX_RT_PRIO; i++) {
20b6331b 7625 INIT_LIST_HEAD(array->queue + i);
fa85ae24
PZ
7626 __clear_bit(i, array->bitmap);
7627 }
7628 /* delimiter for bitsearch: */
7629 __set_bit(MAX_RT_PRIO, array->bitmap);
7630
052f1dc7 7631#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7632 rt_rq->highest_prio = MAX_RT_PRIO;
7633#endif
fa85ae24
PZ
7634#ifdef CONFIG_SMP
7635 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7636 rt_rq->overloaded = 0;
7637#endif
7638
7639 rt_rq->rt_time = 0;
7640 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7641 rt_rq->rt_runtime = 0;
7642 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7643
052f1dc7 7644#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7645 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7646 rt_rq->rq = rq;
7647#endif
fa85ae24
PZ
7648}
7649
6f505b16 7650#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7651static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7652 struct sched_entity *se, int cpu, int add,
7653 struct sched_entity *parent)
6f505b16 7654{
ec7dc8ac 7655 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7656 tg->cfs_rq[cpu] = cfs_rq;
7657 init_cfs_rq(cfs_rq, rq);
7658 cfs_rq->tg = tg;
7659 if (add)
7660 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7661
7662 tg->se[cpu] = se;
354d60c2
DG
7663 /* se could be NULL for init_task_group */
7664 if (!se)
7665 return;
7666
ec7dc8ac
DG
7667 if (!parent)
7668 se->cfs_rq = &rq->cfs;
7669 else
7670 se->cfs_rq = parent->my_q;
7671
6f505b16
PZ
7672 se->my_q = cfs_rq;
7673 se->load.weight = tg->shares;
e05510d0 7674 se->load.inv_weight = 0;
ec7dc8ac 7675 se->parent = parent;
6f505b16 7676}
052f1dc7 7677#endif
6f505b16 7678
052f1dc7 7679#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7680static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7681 struct sched_rt_entity *rt_se, int cpu, int add,
7682 struct sched_rt_entity *parent)
6f505b16 7683{
ec7dc8ac
DG
7684 struct rq *rq = cpu_rq(cpu);
7685
6f505b16
PZ
7686 tg->rt_rq[cpu] = rt_rq;
7687 init_rt_rq(rt_rq, rq);
7688 rt_rq->tg = tg;
7689 rt_rq->rt_se = rt_se;
ac086bc2 7690 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7691 if (add)
7692 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7693
7694 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7695 if (!rt_se)
7696 return;
7697
ec7dc8ac
DG
7698 if (!parent)
7699 rt_se->rt_rq = &rq->rt;
7700 else
7701 rt_se->rt_rq = parent->my_q;
7702
6f505b16 7703 rt_se->my_q = rt_rq;
ec7dc8ac 7704 rt_se->parent = parent;
6f505b16
PZ
7705 INIT_LIST_HEAD(&rt_se->run_list);
7706}
7707#endif
7708
1da177e4
LT
7709void __init sched_init(void)
7710{
dd41f596 7711 int i, j;
434d53b0
MT
7712 unsigned long alloc_size = 0, ptr;
7713
7714#ifdef CONFIG_FAIR_GROUP_SCHED
7715 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7716#endif
7717#ifdef CONFIG_RT_GROUP_SCHED
7718 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7719#endif
7720#ifdef CONFIG_USER_SCHED
7721 alloc_size *= 2;
434d53b0
MT
7722#endif
7723 /*
7724 * As sched_init() is called before page_alloc is setup,
7725 * we use alloc_bootmem().
7726 */
7727 if (alloc_size) {
5a9d3225 7728 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7729
7730#ifdef CONFIG_FAIR_GROUP_SCHED
7731 init_task_group.se = (struct sched_entity **)ptr;
7732 ptr += nr_cpu_ids * sizeof(void **);
7733
7734 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7735 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7736
7737#ifdef CONFIG_USER_SCHED
7738 root_task_group.se = (struct sched_entity **)ptr;
7739 ptr += nr_cpu_ids * sizeof(void **);
7740
7741 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7742 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7743#endif /* CONFIG_USER_SCHED */
7744#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7745#ifdef CONFIG_RT_GROUP_SCHED
7746 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7747 ptr += nr_cpu_ids * sizeof(void **);
7748
7749 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7750 ptr += nr_cpu_ids * sizeof(void **);
7751
7752#ifdef CONFIG_USER_SCHED
7753 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7754 ptr += nr_cpu_ids * sizeof(void **);
7755
7756 root_task_group.rt_rq = (struct rt_rq **)ptr;
7757 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7758#endif /* CONFIG_USER_SCHED */
7759#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 7760 }
dd41f596 7761
57d885fe
GH
7762#ifdef CONFIG_SMP
7763 init_defrootdomain();
7764#endif
7765
d0b27fa7
PZ
7766 init_rt_bandwidth(&def_rt_bandwidth,
7767 global_rt_period(), global_rt_runtime());
7768
7769#ifdef CONFIG_RT_GROUP_SCHED
7770 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7771 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7772#ifdef CONFIG_USER_SCHED
7773 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7774 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7775#endif /* CONFIG_USER_SCHED */
7776#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7777
052f1dc7 7778#ifdef CONFIG_GROUP_SCHED
6f505b16 7779 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7780 INIT_LIST_HEAD(&init_task_group.children);
7781
7782#ifdef CONFIG_USER_SCHED
7783 INIT_LIST_HEAD(&root_task_group.children);
7784 init_task_group.parent = &root_task_group;
7785 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7786#endif /* CONFIG_USER_SCHED */
7787#endif /* CONFIG_GROUP_SCHED */
6f505b16 7788
0a945022 7789 for_each_possible_cpu(i) {
70b97a7f 7790 struct rq *rq;
1da177e4
LT
7791
7792 rq = cpu_rq(i);
7793 spin_lock_init(&rq->lock);
fcb99371 7794 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7795 rq->nr_running = 0;
dd41f596 7796 init_cfs_rq(&rq->cfs, rq);
6f505b16 7797 init_rt_rq(&rq->rt, rq);
dd41f596 7798#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7799 init_task_group.shares = init_task_group_load;
6f505b16 7800 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7801#ifdef CONFIG_CGROUP_SCHED
7802 /*
7803 * How much cpu bandwidth does init_task_group get?
7804 *
7805 * In case of task-groups formed thr' the cgroup filesystem, it
7806 * gets 100% of the cpu resources in the system. This overall
7807 * system cpu resource is divided among the tasks of
7808 * init_task_group and its child task-groups in a fair manner,
7809 * based on each entity's (task or task-group's) weight
7810 * (se->load.weight).
7811 *
7812 * In other words, if init_task_group has 10 tasks of weight
7813 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7814 * then A0's share of the cpu resource is:
7815 *
7816 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7817 *
7818 * We achieve this by letting init_task_group's tasks sit
7819 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7820 */
ec7dc8ac 7821 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7822#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7823 root_task_group.shares = NICE_0_LOAD;
7824 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7825 /*
7826 * In case of task-groups formed thr' the user id of tasks,
7827 * init_task_group represents tasks belonging to root user.
7828 * Hence it forms a sibling of all subsequent groups formed.
7829 * In this case, init_task_group gets only a fraction of overall
7830 * system cpu resource, based on the weight assigned to root
7831 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7832 * by letting tasks of init_task_group sit in a separate cfs_rq
7833 * (init_cfs_rq) and having one entity represent this group of
7834 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7835 */
ec7dc8ac 7836 init_tg_cfs_entry(&init_task_group,
6f505b16 7837 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7838 &per_cpu(init_sched_entity, i), i, 1,
7839 root_task_group.se[i]);
6f505b16 7840
052f1dc7 7841#endif
354d60c2
DG
7842#endif /* CONFIG_FAIR_GROUP_SCHED */
7843
7844 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7845#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7846 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7847#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7848 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7849#elif defined CONFIG_USER_SCHED
eff766a6 7850 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7851 init_tg_rt_entry(&init_task_group,
6f505b16 7852 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7853 &per_cpu(init_sched_rt_entity, i), i, 1,
7854 root_task_group.rt_se[i]);
354d60c2 7855#endif
dd41f596 7856#endif
1da177e4 7857
dd41f596
IM
7858 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7859 rq->cpu_load[j] = 0;
1da177e4 7860#ifdef CONFIG_SMP
41c7ce9a 7861 rq->sd = NULL;
57d885fe 7862 rq->rd = NULL;
1da177e4 7863 rq->active_balance = 0;
dd41f596 7864 rq->next_balance = jiffies;
1da177e4 7865 rq->push_cpu = 0;
0a2966b4 7866 rq->cpu = i;
1f11eb6a 7867 rq->online = 0;
1da177e4
LT
7868 rq->migration_thread = NULL;
7869 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7870 rq_attach_root(rq, &def_root_domain);
1da177e4 7871#endif
8f4d37ec 7872 init_rq_hrtick(rq);
1da177e4 7873 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7874 }
7875
2dd73a4f 7876 set_load_weight(&init_task);
b50f60ce 7877
e107be36
AK
7878#ifdef CONFIG_PREEMPT_NOTIFIERS
7879 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7880#endif
7881
c9819f45
CL
7882#ifdef CONFIG_SMP
7883 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7884#endif
7885
b50f60ce
HC
7886#ifdef CONFIG_RT_MUTEXES
7887 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7888#endif
7889
1da177e4
LT
7890 /*
7891 * The boot idle thread does lazy MMU switching as well:
7892 */
7893 atomic_inc(&init_mm.mm_count);
7894 enter_lazy_tlb(&init_mm, current);
7895
7896 /*
7897 * Make us the idle thread. Technically, schedule() should not be
7898 * called from this thread, however somewhere below it might be,
7899 * but because we are the idle thread, we just pick up running again
7900 * when this runqueue becomes "idle".
7901 */
7902 init_idle(current, smp_processor_id());
dd41f596
IM
7903 /*
7904 * During early bootup we pretend to be a normal task:
7905 */
7906 current->sched_class = &fair_sched_class;
6892b75e
IM
7907
7908 scheduler_running = 1;
1da177e4
LT
7909}
7910
7911#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7912void __might_sleep(char *file, int line)
7913{
48f24c4d 7914#ifdef in_atomic
1da177e4
LT
7915 static unsigned long prev_jiffy; /* ratelimiting */
7916
7917 if ((in_atomic() || irqs_disabled()) &&
7918 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7919 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7920 return;
7921 prev_jiffy = jiffies;
91368d73 7922 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7923 " context at %s:%d\n", file, line);
7924 printk("in_atomic():%d, irqs_disabled():%d\n",
7925 in_atomic(), irqs_disabled());
a4c410f0 7926 debug_show_held_locks(current);
3117df04
IM
7927 if (irqs_disabled())
7928 print_irqtrace_events(current);
1da177e4
LT
7929 dump_stack();
7930 }
7931#endif
7932}
7933EXPORT_SYMBOL(__might_sleep);
7934#endif
7935
7936#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7937static void normalize_task(struct rq *rq, struct task_struct *p)
7938{
7939 int on_rq;
3e51f33f 7940
3a5e4dc1
AK
7941 update_rq_clock(rq);
7942 on_rq = p->se.on_rq;
7943 if (on_rq)
7944 deactivate_task(rq, p, 0);
7945 __setscheduler(rq, p, SCHED_NORMAL, 0);
7946 if (on_rq) {
7947 activate_task(rq, p, 0);
7948 resched_task(rq->curr);
7949 }
7950}
7951
1da177e4
LT
7952void normalize_rt_tasks(void)
7953{
a0f98a1c 7954 struct task_struct *g, *p;
1da177e4 7955 unsigned long flags;
70b97a7f 7956 struct rq *rq;
1da177e4 7957
4cf5d77a 7958 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7959 do_each_thread(g, p) {
178be793
IM
7960 /*
7961 * Only normalize user tasks:
7962 */
7963 if (!p->mm)
7964 continue;
7965
6cfb0d5d 7966 p->se.exec_start = 0;
6cfb0d5d 7967#ifdef CONFIG_SCHEDSTATS
dd41f596 7968 p->se.wait_start = 0;
dd41f596 7969 p->se.sleep_start = 0;
dd41f596 7970 p->se.block_start = 0;
6cfb0d5d 7971#endif
dd41f596
IM
7972
7973 if (!rt_task(p)) {
7974 /*
7975 * Renice negative nice level userspace
7976 * tasks back to 0:
7977 */
7978 if (TASK_NICE(p) < 0 && p->mm)
7979 set_user_nice(p, 0);
1da177e4 7980 continue;
dd41f596 7981 }
1da177e4 7982
4cf5d77a 7983 spin_lock(&p->pi_lock);
b29739f9 7984 rq = __task_rq_lock(p);
1da177e4 7985
178be793 7986 normalize_task(rq, p);
3a5e4dc1 7987
b29739f9 7988 __task_rq_unlock(rq);
4cf5d77a 7989 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7990 } while_each_thread(g, p);
7991
4cf5d77a 7992 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7993}
7994
7995#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7996
7997#ifdef CONFIG_IA64
7998/*
7999 * These functions are only useful for the IA64 MCA handling.
8000 *
8001 * They can only be called when the whole system has been
8002 * stopped - every CPU needs to be quiescent, and no scheduling
8003 * activity can take place. Using them for anything else would
8004 * be a serious bug, and as a result, they aren't even visible
8005 * under any other configuration.
8006 */
8007
8008/**
8009 * curr_task - return the current task for a given cpu.
8010 * @cpu: the processor in question.
8011 *
8012 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8013 */
36c8b586 8014struct task_struct *curr_task(int cpu)
1df5c10a
LT
8015{
8016 return cpu_curr(cpu);
8017}
8018
8019/**
8020 * set_curr_task - set the current task for a given cpu.
8021 * @cpu: the processor in question.
8022 * @p: the task pointer to set.
8023 *
8024 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8025 * are serviced on a separate stack. It allows the architecture to switch the
8026 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8027 * must be called with all CPU's synchronized, and interrupts disabled, the
8028 * and caller must save the original value of the current task (see
8029 * curr_task() above) and restore that value before reenabling interrupts and
8030 * re-starting the system.
8031 *
8032 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8033 */
36c8b586 8034void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8035{
8036 cpu_curr(cpu) = p;
8037}
8038
8039#endif
29f59db3 8040
bccbe08a
PZ
8041#ifdef CONFIG_FAIR_GROUP_SCHED
8042static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8043{
8044 int i;
8045
8046 for_each_possible_cpu(i) {
8047 if (tg->cfs_rq)
8048 kfree(tg->cfs_rq[i]);
8049 if (tg->se)
8050 kfree(tg->se[i]);
6f505b16
PZ
8051 }
8052
8053 kfree(tg->cfs_rq);
8054 kfree(tg->se);
6f505b16
PZ
8055}
8056
ec7dc8ac
DG
8057static
8058int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8059{
29f59db3 8060 struct cfs_rq *cfs_rq;
ec7dc8ac 8061 struct sched_entity *se, *parent_se;
9b5b7751 8062 struct rq *rq;
29f59db3
SV
8063 int i;
8064
434d53b0 8065 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8066 if (!tg->cfs_rq)
8067 goto err;
434d53b0 8068 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8069 if (!tg->se)
8070 goto err;
052f1dc7
PZ
8071
8072 tg->shares = NICE_0_LOAD;
29f59db3
SV
8073
8074 for_each_possible_cpu(i) {
9b5b7751 8075 rq = cpu_rq(i);
29f59db3 8076
6f505b16
PZ
8077 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8078 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8079 if (!cfs_rq)
8080 goto err;
8081
6f505b16
PZ
8082 se = kmalloc_node(sizeof(struct sched_entity),
8083 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8084 if (!se)
8085 goto err;
8086
ec7dc8ac
DG
8087 parent_se = parent ? parent->se[i] : NULL;
8088 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8089 }
8090
8091 return 1;
8092
8093 err:
8094 return 0;
8095}
8096
8097static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8098{
8099 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8100 &cpu_rq(cpu)->leaf_cfs_rq_list);
8101}
8102
8103static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8104{
8105 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8106}
6d6bc0ad 8107#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8108static inline void free_fair_sched_group(struct task_group *tg)
8109{
8110}
8111
ec7dc8ac
DG
8112static inline
8113int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8114{
8115 return 1;
8116}
8117
8118static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8119{
8120}
8121
8122static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8123{
8124}
6d6bc0ad 8125#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8126
8127#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8128static void free_rt_sched_group(struct task_group *tg)
8129{
8130 int i;
8131
d0b27fa7
PZ
8132 destroy_rt_bandwidth(&tg->rt_bandwidth);
8133
bccbe08a
PZ
8134 for_each_possible_cpu(i) {
8135 if (tg->rt_rq)
8136 kfree(tg->rt_rq[i]);
8137 if (tg->rt_se)
8138 kfree(tg->rt_se[i]);
8139 }
8140
8141 kfree(tg->rt_rq);
8142 kfree(tg->rt_se);
8143}
8144
ec7dc8ac
DG
8145static
8146int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8147{
8148 struct rt_rq *rt_rq;
ec7dc8ac 8149 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8150 struct rq *rq;
8151 int i;
8152
434d53b0 8153 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8154 if (!tg->rt_rq)
8155 goto err;
434d53b0 8156 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8157 if (!tg->rt_se)
8158 goto err;
8159
d0b27fa7
PZ
8160 init_rt_bandwidth(&tg->rt_bandwidth,
8161 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8162
8163 for_each_possible_cpu(i) {
8164 rq = cpu_rq(i);
8165
6f505b16
PZ
8166 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8167 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8168 if (!rt_rq)
8169 goto err;
29f59db3 8170
6f505b16
PZ
8171 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8172 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8173 if (!rt_se)
8174 goto err;
29f59db3 8175
ec7dc8ac
DG
8176 parent_se = parent ? parent->rt_se[i] : NULL;
8177 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8178 }
8179
bccbe08a
PZ
8180 return 1;
8181
8182 err:
8183 return 0;
8184}
8185
8186static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8187{
8188 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8189 &cpu_rq(cpu)->leaf_rt_rq_list);
8190}
8191
8192static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8193{
8194 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8195}
6d6bc0ad 8196#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8197static inline void free_rt_sched_group(struct task_group *tg)
8198{
8199}
8200
ec7dc8ac
DG
8201static inline
8202int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8203{
8204 return 1;
8205}
8206
8207static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8208{
8209}
8210
8211static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8212{
8213}
6d6bc0ad 8214#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8215
d0b27fa7 8216#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8217static void free_sched_group(struct task_group *tg)
8218{
8219 free_fair_sched_group(tg);
8220 free_rt_sched_group(tg);
8221 kfree(tg);
8222}
8223
8224/* allocate runqueue etc for a new task group */
ec7dc8ac 8225struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8226{
8227 struct task_group *tg;
8228 unsigned long flags;
8229 int i;
8230
8231 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8232 if (!tg)
8233 return ERR_PTR(-ENOMEM);
8234
ec7dc8ac 8235 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8236 goto err;
8237
ec7dc8ac 8238 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8239 goto err;
8240
8ed36996 8241 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8242 for_each_possible_cpu(i) {
bccbe08a
PZ
8243 register_fair_sched_group(tg, i);
8244 register_rt_sched_group(tg, i);
9b5b7751 8245 }
6f505b16 8246 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8247
8248 WARN_ON(!parent); /* root should already exist */
8249
8250 tg->parent = parent;
8251 list_add_rcu(&tg->siblings, &parent->children);
8252 INIT_LIST_HEAD(&tg->children);
8ed36996 8253 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8254
9b5b7751 8255 return tg;
29f59db3
SV
8256
8257err:
6f505b16 8258 free_sched_group(tg);
29f59db3
SV
8259 return ERR_PTR(-ENOMEM);
8260}
8261
9b5b7751 8262/* rcu callback to free various structures associated with a task group */
6f505b16 8263static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8264{
29f59db3 8265 /* now it should be safe to free those cfs_rqs */
6f505b16 8266 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8267}
8268
9b5b7751 8269/* Destroy runqueue etc associated with a task group */
4cf86d77 8270void sched_destroy_group(struct task_group *tg)
29f59db3 8271{
8ed36996 8272 unsigned long flags;
9b5b7751 8273 int i;
29f59db3 8274
8ed36996 8275 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8276 for_each_possible_cpu(i) {
bccbe08a
PZ
8277 unregister_fair_sched_group(tg, i);
8278 unregister_rt_sched_group(tg, i);
9b5b7751 8279 }
6f505b16 8280 list_del_rcu(&tg->list);
f473aa5e 8281 list_del_rcu(&tg->siblings);
8ed36996 8282 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8283
9b5b7751 8284 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8285 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8286}
8287
9b5b7751 8288/* change task's runqueue when it moves between groups.
3a252015
IM
8289 * The caller of this function should have put the task in its new group
8290 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8291 * reflect its new group.
9b5b7751
SV
8292 */
8293void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8294{
8295 int on_rq, running;
8296 unsigned long flags;
8297 struct rq *rq;
8298
8299 rq = task_rq_lock(tsk, &flags);
8300
29f59db3
SV
8301 update_rq_clock(rq);
8302
051a1d1a 8303 running = task_current(rq, tsk);
29f59db3
SV
8304 on_rq = tsk->se.on_rq;
8305
0e1f3483 8306 if (on_rq)
29f59db3 8307 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8308 if (unlikely(running))
8309 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8310
6f505b16 8311 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8312
810b3817
PZ
8313#ifdef CONFIG_FAIR_GROUP_SCHED
8314 if (tsk->sched_class->moved_group)
8315 tsk->sched_class->moved_group(tsk);
8316#endif
8317
0e1f3483
HS
8318 if (unlikely(running))
8319 tsk->sched_class->set_curr_task(rq);
8320 if (on_rq)
7074badb 8321 enqueue_task(rq, tsk, 0);
29f59db3 8322
29f59db3
SV
8323 task_rq_unlock(rq, &flags);
8324}
6d6bc0ad 8325#endif /* CONFIG_GROUP_SCHED */
29f59db3 8326
052f1dc7 8327#ifdef CONFIG_FAIR_GROUP_SCHED
6363ca57 8328static void set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8329{
8330 struct cfs_rq *cfs_rq = se->cfs_rq;
6363ca57 8331 struct rq *rq = cfs_rq->rq;
29f59db3
SV
8332 int on_rq;
8333
6363ca57
IM
8334 spin_lock_irq(&rq->lock);
8335
29f59db3 8336 on_rq = se->on_rq;
62fb1851 8337 if (on_rq)
29f59db3
SV
8338 dequeue_entity(cfs_rq, se, 0);
8339
8340 se->load.weight = shares;
e05510d0 8341 se->load.inv_weight = 0;
29f59db3 8342
62fb1851 8343 if (on_rq)
29f59db3 8344 enqueue_entity(cfs_rq, se, 0);
62fb1851 8345
6363ca57 8346 spin_unlock_irq(&rq->lock);
29f59db3
SV
8347}
8348
8ed36996
PZ
8349static DEFINE_MUTEX(shares_mutex);
8350
4cf86d77 8351int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8352{
8353 int i;
8ed36996 8354 unsigned long flags;
c61935fd 8355
ec7dc8ac
DG
8356 /*
8357 * We can't change the weight of the root cgroup.
8358 */
8359 if (!tg->se[0])
8360 return -EINVAL;
8361
18d95a28
PZ
8362 if (shares < MIN_SHARES)
8363 shares = MIN_SHARES;
cb4ad1ff
MX
8364 else if (shares > MAX_SHARES)
8365 shares = MAX_SHARES;
62fb1851 8366
8ed36996 8367 mutex_lock(&shares_mutex);
9b5b7751 8368 if (tg->shares == shares)
5cb350ba 8369 goto done;
29f59db3 8370
8ed36996 8371 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8372 for_each_possible_cpu(i)
8373 unregister_fair_sched_group(tg, i);
f473aa5e 8374 list_del_rcu(&tg->siblings);
8ed36996 8375 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8376
8377 /* wait for any ongoing reference to this group to finish */
8378 synchronize_sched();
8379
8380 /*
8381 * Now we are free to modify the group's share on each cpu
8382 * w/o tripping rebalance_share or load_balance_fair.
8383 */
9b5b7751 8384 tg->shares = shares;
6363ca57 8385 for_each_possible_cpu(i)
cb4ad1ff 8386 set_se_shares(tg->se[i], shares);
29f59db3 8387
6b2d7700
SV
8388 /*
8389 * Enable load balance activity on this group, by inserting it back on
8390 * each cpu's rq->leaf_cfs_rq_list.
8391 */
8ed36996 8392 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8393 for_each_possible_cpu(i)
8394 register_fair_sched_group(tg, i);
f473aa5e 8395 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8396 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8397done:
8ed36996 8398 mutex_unlock(&shares_mutex);
9b5b7751 8399 return 0;
29f59db3
SV
8400}
8401
5cb350ba
DG
8402unsigned long sched_group_shares(struct task_group *tg)
8403{
8404 return tg->shares;
8405}
052f1dc7 8406#endif
5cb350ba 8407
052f1dc7 8408#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8409/*
9f0c1e56 8410 * Ensure that the real time constraints are schedulable.
6f505b16 8411 */
9f0c1e56
PZ
8412static DEFINE_MUTEX(rt_constraints_mutex);
8413
8414static unsigned long to_ratio(u64 period, u64 runtime)
8415{
8416 if (runtime == RUNTIME_INF)
8417 return 1ULL << 16;
8418
6f6d6a1a 8419 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8420}
8421
b40b2e8e
PZ
8422#ifdef CONFIG_CGROUP_SCHED
8423static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8424{
10b612f4 8425 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8426 unsigned long total = 0;
8427
8428 if (!parent) {
8429 if (global_rt_period() < period)
8430 return 0;
8431
8432 return to_ratio(period, runtime) <
8433 to_ratio(global_rt_period(), global_rt_runtime());
8434 }
8435
8436 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8437 return 0;
8438
8439 rcu_read_lock();
8440 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8441 if (tgi == tg)
8442 continue;
8443
8444 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8445 tgi->rt_bandwidth.rt_runtime);
8446 }
8447 rcu_read_unlock();
8448
10b612f4 8449 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8450 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8451 parent->rt_bandwidth.rt_runtime);
8452}
8453#elif defined CONFIG_USER_SCHED
9f0c1e56 8454static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8455{
8456 struct task_group *tgi;
8457 unsigned long total = 0;
9f0c1e56 8458 unsigned long global_ratio =
d0b27fa7 8459 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8460
8461 rcu_read_lock();
9f0c1e56
PZ
8462 list_for_each_entry_rcu(tgi, &task_groups, list) {
8463 if (tgi == tg)
8464 continue;
6f505b16 8465
d0b27fa7
PZ
8466 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8467 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8468 }
8469 rcu_read_unlock();
6f505b16 8470
9f0c1e56 8471 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8472}
b40b2e8e 8473#endif
6f505b16 8474
521f1a24
DG
8475/* Must be called with tasklist_lock held */
8476static inline int tg_has_rt_tasks(struct task_group *tg)
8477{
8478 struct task_struct *g, *p;
8479 do_each_thread(g, p) {
8480 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8481 return 1;
8482 } while_each_thread(g, p);
8483 return 0;
8484}
8485
d0b27fa7
PZ
8486static int tg_set_bandwidth(struct task_group *tg,
8487 u64 rt_period, u64 rt_runtime)
6f505b16 8488{
ac086bc2 8489 int i, err = 0;
9f0c1e56 8490
9f0c1e56 8491 mutex_lock(&rt_constraints_mutex);
521f1a24 8492 read_lock(&tasklist_lock);
ac086bc2 8493 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8494 err = -EBUSY;
8495 goto unlock;
8496 }
9f0c1e56
PZ
8497 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8498 err = -EINVAL;
8499 goto unlock;
8500 }
ac086bc2
PZ
8501
8502 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8503 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8504 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8505
8506 for_each_possible_cpu(i) {
8507 struct rt_rq *rt_rq = tg->rt_rq[i];
8508
8509 spin_lock(&rt_rq->rt_runtime_lock);
8510 rt_rq->rt_runtime = rt_runtime;
8511 spin_unlock(&rt_rq->rt_runtime_lock);
8512 }
8513 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8514 unlock:
521f1a24 8515 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8516 mutex_unlock(&rt_constraints_mutex);
8517
8518 return err;
6f505b16
PZ
8519}
8520
d0b27fa7
PZ
8521int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8522{
8523 u64 rt_runtime, rt_period;
8524
8525 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8526 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8527 if (rt_runtime_us < 0)
8528 rt_runtime = RUNTIME_INF;
8529
8530 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8531}
8532
9f0c1e56
PZ
8533long sched_group_rt_runtime(struct task_group *tg)
8534{
8535 u64 rt_runtime_us;
8536
d0b27fa7 8537 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8538 return -1;
8539
d0b27fa7 8540 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8541 do_div(rt_runtime_us, NSEC_PER_USEC);
8542 return rt_runtime_us;
8543}
d0b27fa7
PZ
8544
8545int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8546{
8547 u64 rt_runtime, rt_period;
8548
8549 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8550 rt_runtime = tg->rt_bandwidth.rt_runtime;
8551
8552 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8553}
8554
8555long sched_group_rt_period(struct task_group *tg)
8556{
8557 u64 rt_period_us;
8558
8559 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8560 do_div(rt_period_us, NSEC_PER_USEC);
8561 return rt_period_us;
8562}
8563
8564static int sched_rt_global_constraints(void)
8565{
10b612f4
PZ
8566 struct task_group *tg = &root_task_group;
8567 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8568 int ret = 0;
8569
10b612f4
PZ
8570 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8571 rt_runtime = tg->rt_bandwidth.rt_runtime;
8572
d0b27fa7 8573 mutex_lock(&rt_constraints_mutex);
10b612f4 8574 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8575 ret = -EINVAL;
8576 mutex_unlock(&rt_constraints_mutex);
8577
8578 return ret;
8579}
6d6bc0ad 8580#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8581static int sched_rt_global_constraints(void)
8582{
ac086bc2
PZ
8583 unsigned long flags;
8584 int i;
8585
8586 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8587 for_each_possible_cpu(i) {
8588 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8589
8590 spin_lock(&rt_rq->rt_runtime_lock);
8591 rt_rq->rt_runtime = global_rt_runtime();
8592 spin_unlock(&rt_rq->rt_runtime_lock);
8593 }
8594 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8595
d0b27fa7
PZ
8596 return 0;
8597}
6d6bc0ad 8598#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8599
8600int sched_rt_handler(struct ctl_table *table, int write,
8601 struct file *filp, void __user *buffer, size_t *lenp,
8602 loff_t *ppos)
8603{
8604 int ret;
8605 int old_period, old_runtime;
8606 static DEFINE_MUTEX(mutex);
8607
8608 mutex_lock(&mutex);
8609 old_period = sysctl_sched_rt_period;
8610 old_runtime = sysctl_sched_rt_runtime;
8611
8612 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8613
8614 if (!ret && write) {
8615 ret = sched_rt_global_constraints();
8616 if (ret) {
8617 sysctl_sched_rt_period = old_period;
8618 sysctl_sched_rt_runtime = old_runtime;
8619 } else {
8620 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8621 def_rt_bandwidth.rt_period =
8622 ns_to_ktime(global_rt_period());
8623 }
8624 }
8625 mutex_unlock(&mutex);
8626
8627 return ret;
8628}
68318b8e 8629
052f1dc7 8630#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8631
8632/* return corresponding task_group object of a cgroup */
2b01dfe3 8633static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8634{
2b01dfe3
PM
8635 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8636 struct task_group, css);
68318b8e
SV
8637}
8638
8639static struct cgroup_subsys_state *
2b01dfe3 8640cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8641{
ec7dc8ac 8642 struct task_group *tg, *parent;
68318b8e 8643
2b01dfe3 8644 if (!cgrp->parent) {
68318b8e 8645 /* This is early initialization for the top cgroup */
2b01dfe3 8646 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8647 return &init_task_group.css;
8648 }
8649
ec7dc8ac
DG
8650 parent = cgroup_tg(cgrp->parent);
8651 tg = sched_create_group(parent);
68318b8e
SV
8652 if (IS_ERR(tg))
8653 return ERR_PTR(-ENOMEM);
8654
8655 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8656 tg->css.cgroup = cgrp;
68318b8e
SV
8657
8658 return &tg->css;
8659}
8660
41a2d6cf
IM
8661static void
8662cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8663{
2b01dfe3 8664 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8665
8666 sched_destroy_group(tg);
8667}
8668
41a2d6cf
IM
8669static int
8670cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8671 struct task_struct *tsk)
68318b8e 8672{
b68aa230
PZ
8673#ifdef CONFIG_RT_GROUP_SCHED
8674 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8675 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8676 return -EINVAL;
8677#else
68318b8e
SV
8678 /* We don't support RT-tasks being in separate groups */
8679 if (tsk->sched_class != &fair_sched_class)
8680 return -EINVAL;
b68aa230 8681#endif
68318b8e
SV
8682
8683 return 0;
8684}
8685
8686static void
2b01dfe3 8687cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8688 struct cgroup *old_cont, struct task_struct *tsk)
8689{
8690 sched_move_task(tsk);
8691}
8692
052f1dc7 8693#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8694static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8695 u64 shareval)
68318b8e 8696{
2b01dfe3 8697 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8698}
8699
f4c753b7 8700static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8701{
2b01dfe3 8702 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8703
8704 return (u64) tg->shares;
8705}
6d6bc0ad 8706#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8707
052f1dc7 8708#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8709static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8710 s64 val)
6f505b16 8711{
06ecb27c 8712 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8713}
8714
06ecb27c 8715static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8716{
06ecb27c 8717 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8718}
d0b27fa7
PZ
8719
8720static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8721 u64 rt_period_us)
8722{
8723 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8724}
8725
8726static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8727{
8728 return sched_group_rt_period(cgroup_tg(cgrp));
8729}
6d6bc0ad 8730#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8731
fe5c7cc2 8732static struct cftype cpu_files[] = {
052f1dc7 8733#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8734 {
8735 .name = "shares",
f4c753b7
PM
8736 .read_u64 = cpu_shares_read_u64,
8737 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8738 },
052f1dc7
PZ
8739#endif
8740#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8741 {
9f0c1e56 8742 .name = "rt_runtime_us",
06ecb27c
PM
8743 .read_s64 = cpu_rt_runtime_read,
8744 .write_s64 = cpu_rt_runtime_write,
6f505b16 8745 },
d0b27fa7
PZ
8746 {
8747 .name = "rt_period_us",
f4c753b7
PM
8748 .read_u64 = cpu_rt_period_read_uint,
8749 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8750 },
052f1dc7 8751#endif
68318b8e
SV
8752};
8753
8754static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8755{
fe5c7cc2 8756 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8757}
8758
8759struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8760 .name = "cpu",
8761 .create = cpu_cgroup_create,
8762 .destroy = cpu_cgroup_destroy,
8763 .can_attach = cpu_cgroup_can_attach,
8764 .attach = cpu_cgroup_attach,
8765 .populate = cpu_cgroup_populate,
8766 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8767 .early_init = 1,
8768};
8769
052f1dc7 8770#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8771
8772#ifdef CONFIG_CGROUP_CPUACCT
8773
8774/*
8775 * CPU accounting code for task groups.
8776 *
8777 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8778 * (balbir@in.ibm.com).
8779 */
8780
8781/* track cpu usage of a group of tasks */
8782struct cpuacct {
8783 struct cgroup_subsys_state css;
8784 /* cpuusage holds pointer to a u64-type object on every cpu */
8785 u64 *cpuusage;
8786};
8787
8788struct cgroup_subsys cpuacct_subsys;
8789
8790/* return cpu accounting group corresponding to this container */
32cd756a 8791static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8792{
32cd756a 8793 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8794 struct cpuacct, css);
8795}
8796
8797/* return cpu accounting group to which this task belongs */
8798static inline struct cpuacct *task_ca(struct task_struct *tsk)
8799{
8800 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8801 struct cpuacct, css);
8802}
8803
8804/* create a new cpu accounting group */
8805static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8806 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8807{
8808 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8809
8810 if (!ca)
8811 return ERR_PTR(-ENOMEM);
8812
8813 ca->cpuusage = alloc_percpu(u64);
8814 if (!ca->cpuusage) {
8815 kfree(ca);
8816 return ERR_PTR(-ENOMEM);
8817 }
8818
8819 return &ca->css;
8820}
8821
8822/* destroy an existing cpu accounting group */
41a2d6cf 8823static void
32cd756a 8824cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8825{
32cd756a 8826 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8827
8828 free_percpu(ca->cpuusage);
8829 kfree(ca);
8830}
8831
8832/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8833static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8834{
32cd756a 8835 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8836 u64 totalcpuusage = 0;
8837 int i;
8838
8839 for_each_possible_cpu(i) {
8840 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8841
8842 /*
8843 * Take rq->lock to make 64-bit addition safe on 32-bit
8844 * platforms.
8845 */
8846 spin_lock_irq(&cpu_rq(i)->lock);
8847 totalcpuusage += *cpuusage;
8848 spin_unlock_irq(&cpu_rq(i)->lock);
8849 }
8850
8851 return totalcpuusage;
8852}
8853
0297b803
DG
8854static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8855 u64 reset)
8856{
8857 struct cpuacct *ca = cgroup_ca(cgrp);
8858 int err = 0;
8859 int i;
8860
8861 if (reset) {
8862 err = -EINVAL;
8863 goto out;
8864 }
8865
8866 for_each_possible_cpu(i) {
8867 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8868
8869 spin_lock_irq(&cpu_rq(i)->lock);
8870 *cpuusage = 0;
8871 spin_unlock_irq(&cpu_rq(i)->lock);
8872 }
8873out:
8874 return err;
8875}
8876
d842de87
SV
8877static struct cftype files[] = {
8878 {
8879 .name = "usage",
f4c753b7
PM
8880 .read_u64 = cpuusage_read,
8881 .write_u64 = cpuusage_write,
d842de87
SV
8882 },
8883};
8884
32cd756a 8885static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8886{
32cd756a 8887 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8888}
8889
8890/*
8891 * charge this task's execution time to its accounting group.
8892 *
8893 * called with rq->lock held.
8894 */
8895static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8896{
8897 struct cpuacct *ca;
8898
8899 if (!cpuacct_subsys.active)
8900 return;
8901
8902 ca = task_ca(tsk);
8903 if (ca) {
8904 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8905
8906 *cpuusage += cputime;
8907 }
8908}
8909
8910struct cgroup_subsys cpuacct_subsys = {
8911 .name = "cpuacct",
8912 .create = cpuacct_create,
8913 .destroy = cpuacct_destroy,
8914 .populate = cpuacct_populate,
8915 .subsys_id = cpuacct_subsys_id,
8916};
8917#endif /* CONFIG_CGROUP_CPUACCT */