]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: Add new prio to cpupri before removing old prio
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 243 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
321static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a1ba4d8b 496 unsigned long rt_nr_total;
a22d7fc1 497 int overloaded;
917b627d 498 struct plist_head pushable_tasks;
fa85ae24 499#endif
6f505b16 500 int rt_throttled;
fa85ae24 501 u64 rt_time;
ac086bc2 502 u64 rt_runtime;
ea736ed5 503 /* Nests inside the rq lock: */
ac086bc2 504 spinlock_t rt_runtime_lock;
6f505b16 505
052f1dc7 506#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
507 unsigned long rt_nr_boosted;
508
6f505b16
PZ
509 struct rq *rq;
510 struct list_head leaf_rt_rq_list;
511 struct task_group *tg;
512 struct sched_rt_entity *rt_se;
513#endif
6aa645ea
IM
514};
515
57d885fe
GH
516#ifdef CONFIG_SMP
517
518/*
519 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
520 * variables. Each exclusive cpuset essentially defines an island domain by
521 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
522 * exclusive cpuset is created, we also create and attach a new root-domain
523 * object.
524 *
57d885fe
GH
525 */
526struct root_domain {
527 atomic_t refcount;
c6c4927b
RR
528 cpumask_var_t span;
529 cpumask_var_t online;
637f5085 530
0eab9146 531 /*
637f5085
GH
532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
534 */
c6c4927b 535 cpumask_var_t rto_mask;
0eab9146 536 atomic_t rto_count;
6e0534f2
GH
537#ifdef CONFIG_SMP
538 struct cpupri cpupri;
539#endif
7a09b1a2
VS
540#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 /*
542 * Preferred wake up cpu nominated by sched_mc balance that will be
543 * used when most cpus are idle in the system indicating overall very
544 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 */
546 unsigned int sched_mc_preferred_wakeup_cpu;
547#endif
57d885fe
GH
548};
549
dc938520
GH
550/*
551 * By default the system creates a single root-domain with all cpus as
552 * members (mimicking the global state we have today).
553 */
57d885fe
GH
554static struct root_domain def_root_domain;
555
556#endif
557
1da177e4
LT
558/*
559 * This is the main, per-CPU runqueue data structure.
560 *
561 * Locking rule: those places that want to lock multiple runqueues
562 * (such as the load balancing or the thread migration code), lock
563 * acquire operations must be ordered by ascending &runqueue.
564 */
70b97a7f 565struct rq {
d8016491
IM
566 /* runqueue lock: */
567 spinlock_t lock;
1da177e4
LT
568
569 /*
570 * nr_running and cpu_load should be in the same cacheline because
571 * remote CPUs use both these fields when doing load calculation.
572 */
573 unsigned long nr_running;
6aa645ea
IM
574 #define CPU_LOAD_IDX_MAX 5
575 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 576#ifdef CONFIG_NO_HZ
15934a37 577 unsigned long last_tick_seen;
46cb4b7c
SS
578 unsigned char in_nohz_recently;
579#endif
d8016491
IM
580 /* capture load from *all* tasks on this cpu: */
581 struct load_weight load;
6aa645ea
IM
582 unsigned long nr_load_updates;
583 u64 nr_switches;
23a185ca 584 u64 nr_migrations_in;
6aa645ea
IM
585
586 struct cfs_rq cfs;
6f505b16 587 struct rt_rq rt;
6f505b16 588
6aa645ea 589#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
590 /* list of leaf cfs_rq on this cpu: */
591 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
592#endif
593#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 594 struct list_head leaf_rt_rq_list;
1da177e4 595#endif
1da177e4
LT
596
597 /*
598 * This is part of a global counter where only the total sum
599 * over all CPUs matters. A task can increase this counter on
600 * one CPU and if it got migrated afterwards it may decrease
601 * it on another CPU. Always updated under the runqueue lock:
602 */
603 unsigned long nr_uninterruptible;
604
36c8b586 605 struct task_struct *curr, *idle;
c9819f45 606 unsigned long next_balance;
1da177e4 607 struct mm_struct *prev_mm;
6aa645ea 608
3e51f33f 609 u64 clock;
6aa645ea 610
1da177e4
LT
611 atomic_t nr_iowait;
612
613#ifdef CONFIG_SMP
0eab9146 614 struct root_domain *rd;
1da177e4
LT
615 struct sched_domain *sd;
616
a0a522ce 617 unsigned char idle_at_tick;
1da177e4
LT
618 /* For active balancing */
619 int active_balance;
620 int push_cpu;
d8016491
IM
621 /* cpu of this runqueue: */
622 int cpu;
1f11eb6a 623 int online;
1da177e4 624
a8a51d5e 625 unsigned long avg_load_per_task;
1da177e4 626
36c8b586 627 struct task_struct *migration_thread;
1da177e4
LT
628 struct list_head migration_queue;
629#endif
630
dce48a84
TG
631 /* calc_load related fields */
632 unsigned long calc_load_update;
633 long calc_load_active;
634
8f4d37ec 635#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
636#ifdef CONFIG_SMP
637 int hrtick_csd_pending;
638 struct call_single_data hrtick_csd;
639#endif
8f4d37ec
PZ
640 struct hrtimer hrtick_timer;
641#endif
642
1da177e4
LT
643#ifdef CONFIG_SCHEDSTATS
644 /* latency stats */
645 struct sched_info rq_sched_info;
9c2c4802
KC
646 unsigned long long rq_cpu_time;
647 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
648
649 /* sys_sched_yield() stats */
480b9434 650 unsigned int yld_count;
1da177e4
LT
651
652 /* schedule() stats */
480b9434
KC
653 unsigned int sched_switch;
654 unsigned int sched_count;
655 unsigned int sched_goidle;
1da177e4
LT
656
657 /* try_to_wake_up() stats */
480b9434
KC
658 unsigned int ttwu_count;
659 unsigned int ttwu_local;
b8efb561
IM
660
661 /* BKL stats */
480b9434 662 unsigned int bkl_count;
1da177e4
LT
663#endif
664};
665
f34e3b61 666static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 667
15afe09b 668static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 669{
15afe09b 670 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
671}
672
0a2966b4
CL
673static inline int cpu_of(struct rq *rq)
674{
675#ifdef CONFIG_SMP
676 return rq->cpu;
677#else
678 return 0;
679#endif
680}
681
674311d5
NP
682/*
683 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 684 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
685 *
686 * The domain tree of any CPU may only be accessed from within
687 * preempt-disabled sections.
688 */
48f24c4d
IM
689#define for_each_domain(cpu, __sd) \
690 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
691
692#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
693#define this_rq() (&__get_cpu_var(runqueues))
694#define task_rq(p) cpu_rq(task_cpu(p))
695#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 696#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 697
aa9c4c0f 698inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
699{
700 rq->clock = sched_clock_cpu(cpu_of(rq));
701}
702
bf5c91ba
IM
703/*
704 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
705 */
706#ifdef CONFIG_SCHED_DEBUG
707# define const_debug __read_mostly
708#else
709# define const_debug static const
710#endif
711
017730c1
IM
712/**
713 * runqueue_is_locked
714 *
715 * Returns true if the current cpu runqueue is locked.
716 * This interface allows printk to be called with the runqueue lock
717 * held and know whether or not it is OK to wake up the klogd.
718 */
719int runqueue_is_locked(void)
720{
721 int cpu = get_cpu();
722 struct rq *rq = cpu_rq(cpu);
723 int ret;
724
725 ret = spin_is_locked(&rq->lock);
726 put_cpu();
727 return ret;
728}
729
bf5c91ba
IM
730/*
731 * Debugging: various feature bits
732 */
f00b45c1
PZ
733
734#define SCHED_FEAT(name, enabled) \
735 __SCHED_FEAT_##name ,
736
bf5c91ba 737enum {
f00b45c1 738#include "sched_features.h"
bf5c91ba
IM
739};
740
f00b45c1
PZ
741#undef SCHED_FEAT
742
743#define SCHED_FEAT(name, enabled) \
744 (1UL << __SCHED_FEAT_##name) * enabled |
745
bf5c91ba 746const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
747#include "sched_features.h"
748 0;
749
750#undef SCHED_FEAT
751
752#ifdef CONFIG_SCHED_DEBUG
753#define SCHED_FEAT(name, enabled) \
754 #name ,
755
983ed7a6 756static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
757#include "sched_features.h"
758 NULL
759};
760
761#undef SCHED_FEAT
762
34f3a814 763static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 764{
f00b45c1
PZ
765 int i;
766
767 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
768 if (!(sysctl_sched_features & (1UL << i)))
769 seq_puts(m, "NO_");
770 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 771 }
34f3a814 772 seq_puts(m, "\n");
f00b45c1 773
34f3a814 774 return 0;
f00b45c1
PZ
775}
776
777static ssize_t
778sched_feat_write(struct file *filp, const char __user *ubuf,
779 size_t cnt, loff_t *ppos)
780{
781 char buf[64];
782 char *cmp = buf;
783 int neg = 0;
784 int i;
785
786 if (cnt > 63)
787 cnt = 63;
788
789 if (copy_from_user(&buf, ubuf, cnt))
790 return -EFAULT;
791
792 buf[cnt] = 0;
793
c24b7c52 794 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
795 neg = 1;
796 cmp += 3;
797 }
798
799 for (i = 0; sched_feat_names[i]; i++) {
800 int len = strlen(sched_feat_names[i]);
801
802 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
803 if (neg)
804 sysctl_sched_features &= ~(1UL << i);
805 else
806 sysctl_sched_features |= (1UL << i);
807 break;
808 }
809 }
810
811 if (!sched_feat_names[i])
812 return -EINVAL;
813
814 filp->f_pos += cnt;
815
816 return cnt;
817}
818
34f3a814
LZ
819static int sched_feat_open(struct inode *inode, struct file *filp)
820{
821 return single_open(filp, sched_feat_show, NULL);
822}
823
f00b45c1 824static struct file_operations sched_feat_fops = {
34f3a814
LZ
825 .open = sched_feat_open,
826 .write = sched_feat_write,
827 .read = seq_read,
828 .llseek = seq_lseek,
829 .release = single_release,
f00b45c1
PZ
830};
831
832static __init int sched_init_debug(void)
833{
f00b45c1
PZ
834 debugfs_create_file("sched_features", 0644, NULL, NULL,
835 &sched_feat_fops);
836
837 return 0;
838}
839late_initcall(sched_init_debug);
840
841#endif
842
843#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 844
b82d9fdd
PZ
845/*
846 * Number of tasks to iterate in a single balance run.
847 * Limited because this is done with IRQs disabled.
848 */
849const_debug unsigned int sysctl_sched_nr_migrate = 32;
850
2398f2c6
PZ
851/*
852 * ratelimit for updating the group shares.
55cd5340 853 * default: 0.25ms
2398f2c6 854 */
55cd5340 855unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 856
ffda12a1
PZ
857/*
858 * Inject some fuzzyness into changing the per-cpu group shares
859 * this avoids remote rq-locks at the expense of fairness.
860 * default: 4
861 */
862unsigned int sysctl_sched_shares_thresh = 4;
863
fa85ae24 864/*
9f0c1e56 865 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
866 * default: 1s
867 */
9f0c1e56 868unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 869
6892b75e
IM
870static __read_mostly int scheduler_running;
871
9f0c1e56
PZ
872/*
873 * part of the period that we allow rt tasks to run in us.
874 * default: 0.95s
875 */
876int sysctl_sched_rt_runtime = 950000;
fa85ae24 877
d0b27fa7
PZ
878static inline u64 global_rt_period(void)
879{
880 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
881}
882
883static inline u64 global_rt_runtime(void)
884{
e26873bb 885 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
886 return RUNTIME_INF;
887
888 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
889}
fa85ae24 890
1da177e4 891#ifndef prepare_arch_switch
4866cde0
NP
892# define prepare_arch_switch(next) do { } while (0)
893#endif
894#ifndef finish_arch_switch
895# define finish_arch_switch(prev) do { } while (0)
896#endif
897
051a1d1a
DA
898static inline int task_current(struct rq *rq, struct task_struct *p)
899{
900 return rq->curr == p;
901}
902
4866cde0 903#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 904static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 905{
051a1d1a 906 return task_current(rq, p);
4866cde0
NP
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911}
912
70b97a7f 913static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 914{
da04c035
IM
915#ifdef CONFIG_DEBUG_SPINLOCK
916 /* this is a valid case when another task releases the spinlock */
917 rq->lock.owner = current;
918#endif
8a25d5de
IM
919 /*
920 * If we are tracking spinlock dependencies then we have to
921 * fix up the runqueue lock - which gets 'carried over' from
922 * prev into current:
923 */
924 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
925
4866cde0
NP
926 spin_unlock_irq(&rq->lock);
927}
928
929#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 930static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
931{
932#ifdef CONFIG_SMP
933 return p->oncpu;
934#else
051a1d1a 935 return task_current(rq, p);
4866cde0
NP
936#endif
937}
938
70b97a7f 939static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
940{
941#ifdef CONFIG_SMP
942 /*
943 * We can optimise this out completely for !SMP, because the
944 * SMP rebalancing from interrupt is the only thing that cares
945 * here.
946 */
947 next->oncpu = 1;
948#endif
949#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
950 spin_unlock_irq(&rq->lock);
951#else
952 spin_unlock(&rq->lock);
953#endif
954}
955
70b97a7f 956static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
957{
958#ifdef CONFIG_SMP
959 /*
960 * After ->oncpu is cleared, the task can be moved to a different CPU.
961 * We must ensure this doesn't happen until the switch is completely
962 * finished.
963 */
964 smp_wmb();
965 prev->oncpu = 0;
966#endif
967#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
968 local_irq_enable();
1da177e4 969#endif
4866cde0
NP
970}
971#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 972
b29739f9
IM
973/*
974 * __task_rq_lock - lock the runqueue a given task resides on.
975 * Must be called interrupts disabled.
976 */
70b97a7f 977static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
978 __acquires(rq->lock)
979{
3a5c359a
AK
980 for (;;) {
981 struct rq *rq = task_rq(p);
982 spin_lock(&rq->lock);
983 if (likely(rq == task_rq(p)))
984 return rq;
b29739f9 985 spin_unlock(&rq->lock);
b29739f9 986 }
b29739f9
IM
987}
988
1da177e4
LT
989/*
990 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 991 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
992 * explicitly disabling preemption.
993 */
70b97a7f 994static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
995 __acquires(rq->lock)
996{
70b97a7f 997 struct rq *rq;
1da177e4 998
3a5c359a
AK
999 for (;;) {
1000 local_irq_save(*flags);
1001 rq = task_rq(p);
1002 spin_lock(&rq->lock);
1003 if (likely(rq == task_rq(p)))
1004 return rq;
1da177e4 1005 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1006 }
1da177e4
LT
1007}
1008
ad474cac
ON
1009void task_rq_unlock_wait(struct task_struct *p)
1010{
1011 struct rq *rq = task_rq(p);
1012
1013 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1014 spin_unlock_wait(&rq->lock);
1015}
1016
a9957449 1017static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1018 __releases(rq->lock)
1019{
1020 spin_unlock(&rq->lock);
1021}
1022
70b97a7f 1023static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1024 __releases(rq->lock)
1025{
1026 spin_unlock_irqrestore(&rq->lock, *flags);
1027}
1028
1da177e4 1029/*
cc2a73b5 1030 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1031 */
a9957449 1032static struct rq *this_rq_lock(void)
1da177e4
LT
1033 __acquires(rq->lock)
1034{
70b97a7f 1035 struct rq *rq;
1da177e4
LT
1036
1037 local_irq_disable();
1038 rq = this_rq();
1039 spin_lock(&rq->lock);
1040
1041 return rq;
1042}
1043
8f4d37ec
PZ
1044#ifdef CONFIG_SCHED_HRTICK
1045/*
1046 * Use HR-timers to deliver accurate preemption points.
1047 *
1048 * Its all a bit involved since we cannot program an hrt while holding the
1049 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1050 * reschedule event.
1051 *
1052 * When we get rescheduled we reprogram the hrtick_timer outside of the
1053 * rq->lock.
1054 */
8f4d37ec
PZ
1055
1056/*
1057 * Use hrtick when:
1058 * - enabled by features
1059 * - hrtimer is actually high res
1060 */
1061static inline int hrtick_enabled(struct rq *rq)
1062{
1063 if (!sched_feat(HRTICK))
1064 return 0;
ba42059f 1065 if (!cpu_active(cpu_of(rq)))
b328ca18 1066 return 0;
8f4d37ec
PZ
1067 return hrtimer_is_hres_active(&rq->hrtick_timer);
1068}
1069
8f4d37ec
PZ
1070static void hrtick_clear(struct rq *rq)
1071{
1072 if (hrtimer_active(&rq->hrtick_timer))
1073 hrtimer_cancel(&rq->hrtick_timer);
1074}
1075
8f4d37ec
PZ
1076/*
1077 * High-resolution timer tick.
1078 * Runs from hardirq context with interrupts disabled.
1079 */
1080static enum hrtimer_restart hrtick(struct hrtimer *timer)
1081{
1082 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1083
1084 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1085
1086 spin_lock(&rq->lock);
3e51f33f 1087 update_rq_clock(rq);
8f4d37ec
PZ
1088 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1089 spin_unlock(&rq->lock);
1090
1091 return HRTIMER_NORESTART;
1092}
1093
95e904c7 1094#ifdef CONFIG_SMP
31656519
PZ
1095/*
1096 * called from hardirq (IPI) context
1097 */
1098static void __hrtick_start(void *arg)
b328ca18 1099{
31656519 1100 struct rq *rq = arg;
b328ca18 1101
31656519
PZ
1102 spin_lock(&rq->lock);
1103 hrtimer_restart(&rq->hrtick_timer);
1104 rq->hrtick_csd_pending = 0;
1105 spin_unlock(&rq->lock);
b328ca18
PZ
1106}
1107
31656519
PZ
1108/*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1114{
31656519
PZ
1115 struct hrtimer *timer = &rq->hrtick_timer;
1116 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1117
cc584b21 1118 hrtimer_set_expires(timer, time);
31656519
PZ
1119
1120 if (rq == this_rq()) {
1121 hrtimer_restart(timer);
1122 } else if (!rq->hrtick_csd_pending) {
6e275637 1123 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1124 rq->hrtick_csd_pending = 1;
1125 }
b328ca18
PZ
1126}
1127
1128static int
1129hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1130{
1131 int cpu = (int)(long)hcpu;
1132
1133 switch (action) {
1134 case CPU_UP_CANCELED:
1135 case CPU_UP_CANCELED_FROZEN:
1136 case CPU_DOWN_PREPARE:
1137 case CPU_DOWN_PREPARE_FROZEN:
1138 case CPU_DEAD:
1139 case CPU_DEAD_FROZEN:
31656519 1140 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1141 return NOTIFY_OK;
1142 }
1143
1144 return NOTIFY_DONE;
1145}
1146
fa748203 1147static __init void init_hrtick(void)
b328ca18
PZ
1148{
1149 hotcpu_notifier(hotplug_hrtick, 0);
1150}
31656519
PZ
1151#else
1152/*
1153 * Called to set the hrtick timer state.
1154 *
1155 * called with rq->lock held and irqs disabled
1156 */
1157static void hrtick_start(struct rq *rq, u64 delay)
1158{
7f1e2ca9 1159 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1160 HRTIMER_MODE_REL_PINNED, 0);
31656519 1161}
b328ca18 1162
006c75f1 1163static inline void init_hrtick(void)
8f4d37ec 1164{
8f4d37ec 1165}
31656519 1166#endif /* CONFIG_SMP */
8f4d37ec 1167
31656519 1168static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1169{
31656519
PZ
1170#ifdef CONFIG_SMP
1171 rq->hrtick_csd_pending = 0;
8f4d37ec 1172
31656519
PZ
1173 rq->hrtick_csd.flags = 0;
1174 rq->hrtick_csd.func = __hrtick_start;
1175 rq->hrtick_csd.info = rq;
1176#endif
8f4d37ec 1177
31656519
PZ
1178 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1179 rq->hrtick_timer.function = hrtick;
8f4d37ec 1180}
006c75f1 1181#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1182static inline void hrtick_clear(struct rq *rq)
1183{
1184}
1185
8f4d37ec
PZ
1186static inline void init_rq_hrtick(struct rq *rq)
1187{
1188}
1189
b328ca18
PZ
1190static inline void init_hrtick(void)
1191{
1192}
006c75f1 1193#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1194
c24d20db
IM
1195/*
1196 * resched_task - mark a task 'to be rescheduled now'.
1197 *
1198 * On UP this means the setting of the need_resched flag, on SMP it
1199 * might also involve a cross-CPU call to trigger the scheduler on
1200 * the target CPU.
1201 */
1202#ifdef CONFIG_SMP
1203
1204#ifndef tsk_is_polling
1205#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1206#endif
1207
31656519 1208static void resched_task(struct task_struct *p)
c24d20db
IM
1209{
1210 int cpu;
1211
1212 assert_spin_locked(&task_rq(p)->lock);
1213
5ed0cec0 1214 if (test_tsk_need_resched(p))
c24d20db
IM
1215 return;
1216
5ed0cec0 1217 set_tsk_need_resched(p);
c24d20db
IM
1218
1219 cpu = task_cpu(p);
1220 if (cpu == smp_processor_id())
1221 return;
1222
1223 /* NEED_RESCHED must be visible before we test polling */
1224 smp_mb();
1225 if (!tsk_is_polling(p))
1226 smp_send_reschedule(cpu);
1227}
1228
1229static void resched_cpu(int cpu)
1230{
1231 struct rq *rq = cpu_rq(cpu);
1232 unsigned long flags;
1233
1234 if (!spin_trylock_irqsave(&rq->lock, flags))
1235 return;
1236 resched_task(cpu_curr(cpu));
1237 spin_unlock_irqrestore(&rq->lock, flags);
1238}
06d8308c
TG
1239
1240#ifdef CONFIG_NO_HZ
1241/*
1242 * When add_timer_on() enqueues a timer into the timer wheel of an
1243 * idle CPU then this timer might expire before the next timer event
1244 * which is scheduled to wake up that CPU. In case of a completely
1245 * idle system the next event might even be infinite time into the
1246 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1247 * leaves the inner idle loop so the newly added timer is taken into
1248 * account when the CPU goes back to idle and evaluates the timer
1249 * wheel for the next timer event.
1250 */
1251void wake_up_idle_cpu(int cpu)
1252{
1253 struct rq *rq = cpu_rq(cpu);
1254
1255 if (cpu == smp_processor_id())
1256 return;
1257
1258 /*
1259 * This is safe, as this function is called with the timer
1260 * wheel base lock of (cpu) held. When the CPU is on the way
1261 * to idle and has not yet set rq->curr to idle then it will
1262 * be serialized on the timer wheel base lock and take the new
1263 * timer into account automatically.
1264 */
1265 if (rq->curr != rq->idle)
1266 return;
1267
1268 /*
1269 * We can set TIF_RESCHED on the idle task of the other CPU
1270 * lockless. The worst case is that the other CPU runs the
1271 * idle task through an additional NOOP schedule()
1272 */
5ed0cec0 1273 set_tsk_need_resched(rq->idle);
06d8308c
TG
1274
1275 /* NEED_RESCHED must be visible before we test polling */
1276 smp_mb();
1277 if (!tsk_is_polling(rq->idle))
1278 smp_send_reschedule(cpu);
1279}
6d6bc0ad 1280#endif /* CONFIG_NO_HZ */
06d8308c 1281
6d6bc0ad 1282#else /* !CONFIG_SMP */
31656519 1283static void resched_task(struct task_struct *p)
c24d20db
IM
1284{
1285 assert_spin_locked(&task_rq(p)->lock);
31656519 1286 set_tsk_need_resched(p);
c24d20db 1287}
6d6bc0ad 1288#endif /* CONFIG_SMP */
c24d20db 1289
45bf76df
IM
1290#if BITS_PER_LONG == 32
1291# define WMULT_CONST (~0UL)
1292#else
1293# define WMULT_CONST (1UL << 32)
1294#endif
1295
1296#define WMULT_SHIFT 32
1297
194081eb
IM
1298/*
1299 * Shift right and round:
1300 */
cf2ab469 1301#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1302
a7be37ac
PZ
1303/*
1304 * delta *= weight / lw
1305 */
cb1c4fc9 1306static unsigned long
45bf76df
IM
1307calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1308 struct load_weight *lw)
1309{
1310 u64 tmp;
1311
7a232e03
LJ
1312 if (!lw->inv_weight) {
1313 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1314 lw->inv_weight = 1;
1315 else
1316 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1317 / (lw->weight+1);
1318 }
45bf76df
IM
1319
1320 tmp = (u64)delta_exec * weight;
1321 /*
1322 * Check whether we'd overflow the 64-bit multiplication:
1323 */
194081eb 1324 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1325 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1326 WMULT_SHIFT/2);
1327 else
cf2ab469 1328 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1329
ecf691da 1330 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1331}
1332
1091985b 1333static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1334{
1335 lw->weight += inc;
e89996ae 1336 lw->inv_weight = 0;
45bf76df
IM
1337}
1338
1091985b 1339static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1340{
1341 lw->weight -= dec;
e89996ae 1342 lw->inv_weight = 0;
45bf76df
IM
1343}
1344
2dd73a4f
PW
1345/*
1346 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1347 * of tasks with abnormal "nice" values across CPUs the contribution that
1348 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1349 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1350 * scaled version of the new time slice allocation that they receive on time
1351 * slice expiry etc.
1352 */
1353
cce7ade8
PZ
1354#define WEIGHT_IDLEPRIO 3
1355#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1356
1357/*
1358 * Nice levels are multiplicative, with a gentle 10% change for every
1359 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1360 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1361 * that remained on nice 0.
1362 *
1363 * The "10% effect" is relative and cumulative: from _any_ nice level,
1364 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1365 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1366 * If a task goes up by ~10% and another task goes down by ~10% then
1367 * the relative distance between them is ~25%.)
dd41f596
IM
1368 */
1369static const int prio_to_weight[40] = {
254753dc
IM
1370 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1371 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1372 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1373 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1374 /* 0 */ 1024, 820, 655, 526, 423,
1375 /* 5 */ 335, 272, 215, 172, 137,
1376 /* 10 */ 110, 87, 70, 56, 45,
1377 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1378};
1379
5714d2de
IM
1380/*
1381 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1382 *
1383 * In cases where the weight does not change often, we can use the
1384 * precalculated inverse to speed up arithmetics by turning divisions
1385 * into multiplications:
1386 */
dd41f596 1387static const u32 prio_to_wmult[40] = {
254753dc
IM
1388 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1389 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1390 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1391 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1392 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1393 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1394 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1395 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1396};
2dd73a4f 1397
dd41f596
IM
1398static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1399
1400/*
1401 * runqueue iterator, to support SMP load-balancing between different
1402 * scheduling classes, without having to expose their internal data
1403 * structures to the load-balancing proper:
1404 */
1405struct rq_iterator {
1406 void *arg;
1407 struct task_struct *(*start)(void *);
1408 struct task_struct *(*next)(void *);
1409};
1410
e1d1484f
PW
1411#ifdef CONFIG_SMP
1412static unsigned long
1413balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1414 unsigned long max_load_move, struct sched_domain *sd,
1415 enum cpu_idle_type idle, int *all_pinned,
1416 int *this_best_prio, struct rq_iterator *iterator);
1417
1418static int
1419iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1420 struct sched_domain *sd, enum cpu_idle_type idle,
1421 struct rq_iterator *iterator);
e1d1484f 1422#endif
dd41f596 1423
ef12fefa
BR
1424/* Time spent by the tasks of the cpu accounting group executing in ... */
1425enum cpuacct_stat_index {
1426 CPUACCT_STAT_USER, /* ... user mode */
1427 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1428
1429 CPUACCT_STAT_NSTATS,
1430};
1431
d842de87
SV
1432#ifdef CONFIG_CGROUP_CPUACCT
1433static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1434static void cpuacct_update_stats(struct task_struct *tsk,
1435 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1436#else
1437static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1438static inline void cpuacct_update_stats(struct task_struct *tsk,
1439 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1440#endif
1441
18d95a28
PZ
1442static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1443{
1444 update_load_add(&rq->load, load);
1445}
1446
1447static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1448{
1449 update_load_sub(&rq->load, load);
1450}
1451
7940ca36 1452#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1453typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1454
1455/*
1456 * Iterate the full tree, calling @down when first entering a node and @up when
1457 * leaving it for the final time.
1458 */
eb755805 1459static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1460{
1461 struct task_group *parent, *child;
eb755805 1462 int ret;
c09595f6
PZ
1463
1464 rcu_read_lock();
1465 parent = &root_task_group;
1466down:
eb755805
PZ
1467 ret = (*down)(parent, data);
1468 if (ret)
1469 goto out_unlock;
c09595f6
PZ
1470 list_for_each_entry_rcu(child, &parent->children, siblings) {
1471 parent = child;
1472 goto down;
1473
1474up:
1475 continue;
1476 }
eb755805
PZ
1477 ret = (*up)(parent, data);
1478 if (ret)
1479 goto out_unlock;
c09595f6
PZ
1480
1481 child = parent;
1482 parent = parent->parent;
1483 if (parent)
1484 goto up;
eb755805 1485out_unlock:
c09595f6 1486 rcu_read_unlock();
eb755805
PZ
1487
1488 return ret;
c09595f6
PZ
1489}
1490
eb755805
PZ
1491static int tg_nop(struct task_group *tg, void *data)
1492{
1493 return 0;
c09595f6 1494}
eb755805
PZ
1495#endif
1496
1497#ifdef CONFIG_SMP
1498static unsigned long source_load(int cpu, int type);
1499static unsigned long target_load(int cpu, int type);
1500static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1501
1502static unsigned long cpu_avg_load_per_task(int cpu)
1503{
1504 struct rq *rq = cpu_rq(cpu);
af6d596f 1505 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1506
4cd42620
SR
1507 if (nr_running)
1508 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1509 else
1510 rq->avg_load_per_task = 0;
eb755805
PZ
1511
1512 return rq->avg_load_per_task;
1513}
1514
1515#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1516
c09595f6
PZ
1517static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1518
1519/*
1520 * Calculate and set the cpu's group shares.
1521 */
1522static void
ffda12a1
PZ
1523update_group_shares_cpu(struct task_group *tg, int cpu,
1524 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1525{
c09595f6 1526 unsigned long rq_weight;
a5004278
PZ
1527 unsigned long shares;
1528 int boost = 0;
c09595f6 1529
c8cba857 1530 if (!tg->se[cpu])
c09595f6
PZ
1531 return;
1532
ec4e0e2f 1533 rq_weight = tg->cfs_rq[cpu]->rq_weight;
a5004278
PZ
1534 if (!rq_weight) {
1535 boost = 1;
1536 rq_weight = NICE_0_LOAD;
1537 }
c8cba857 1538
c09595f6
PZ
1539 /*
1540 * \Sum shares * rq_weight
1541 * shares = -----------------------
1542 * \Sum rq_weight
1543 *
1544 */
ec4e0e2f 1545 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1546 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1547
ffda12a1
PZ
1548 if (abs(shares - tg->se[cpu]->load.weight) >
1549 sysctl_sched_shares_thresh) {
1550 struct rq *rq = cpu_rq(cpu);
1551 unsigned long flags;
c09595f6 1552
ffda12a1 1553 spin_lock_irqsave(&rq->lock, flags);
a5004278 1554 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1555 __set_se_shares(tg->se[cpu], shares);
1556 spin_unlock_irqrestore(&rq->lock, flags);
1557 }
18d95a28 1558}
c09595f6
PZ
1559
1560/*
c8cba857
PZ
1561 * Re-compute the task group their per cpu shares over the given domain.
1562 * This needs to be done in a bottom-up fashion because the rq weight of a
1563 * parent group depends on the shares of its child groups.
c09595f6 1564 */
eb755805 1565static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1566{
a5004278 1567 unsigned long weight, rq_weight = 0, eff_weight = 0;
c8cba857 1568 unsigned long shares = 0;
eb755805 1569 struct sched_domain *sd = data;
c8cba857 1570 int i;
c09595f6 1571
758b2cdc 1572 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1573 /*
1574 * If there are currently no tasks on the cpu pretend there
1575 * is one of average load so that when a new task gets to
1576 * run here it will not get delayed by group starvation.
1577 */
1578 weight = tg->cfs_rq[i]->load.weight;
a5004278
PZ
1579 tg->cfs_rq[i]->rq_weight = weight;
1580 rq_weight += weight;
1581
ec4e0e2f
KC
1582 if (!weight)
1583 weight = NICE_0_LOAD;
1584
a5004278 1585 eff_weight += weight;
c8cba857 1586 shares += tg->cfs_rq[i]->shares;
c09595f6 1587 }
c09595f6 1588
c8cba857
PZ
1589 if ((!shares && rq_weight) || shares > tg->shares)
1590 shares = tg->shares;
1591
1592 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1593 shares = tg->shares;
c09595f6 1594
a5004278
PZ
1595 for_each_cpu(i, sched_domain_span(sd)) {
1596 unsigned long sd_rq_weight = rq_weight;
1597
1598 if (!tg->cfs_rq[i]->rq_weight)
1599 sd_rq_weight = eff_weight;
1600
1601 update_group_shares_cpu(tg, i, shares, sd_rq_weight);
1602 }
eb755805
PZ
1603
1604 return 0;
c09595f6
PZ
1605}
1606
1607/*
c8cba857
PZ
1608 * Compute the cpu's hierarchical load factor for each task group.
1609 * This needs to be done in a top-down fashion because the load of a child
1610 * group is a fraction of its parents load.
c09595f6 1611 */
eb755805 1612static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1613{
c8cba857 1614 unsigned long load;
eb755805 1615 long cpu = (long)data;
c09595f6 1616
c8cba857
PZ
1617 if (!tg->parent) {
1618 load = cpu_rq(cpu)->load.weight;
1619 } else {
1620 load = tg->parent->cfs_rq[cpu]->h_load;
1621 load *= tg->cfs_rq[cpu]->shares;
1622 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1623 }
c09595f6 1624
c8cba857 1625 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1626
eb755805 1627 return 0;
c09595f6
PZ
1628}
1629
c8cba857 1630static void update_shares(struct sched_domain *sd)
4d8d595d 1631{
e7097159
PZ
1632 s64 elapsed;
1633 u64 now;
1634
1635 if (root_task_group_empty())
1636 return;
1637
1638 now = cpu_clock(raw_smp_processor_id());
1639 elapsed = now - sd->last_update;
2398f2c6
PZ
1640
1641 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1642 sd->last_update = now;
eb755805 1643 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1644 }
4d8d595d
PZ
1645}
1646
3e5459b4
PZ
1647static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1648{
e7097159
PZ
1649 if (root_task_group_empty())
1650 return;
1651
3e5459b4
PZ
1652 spin_unlock(&rq->lock);
1653 update_shares(sd);
1654 spin_lock(&rq->lock);
1655}
1656
eb755805 1657static void update_h_load(long cpu)
c09595f6 1658{
e7097159
PZ
1659 if (root_task_group_empty())
1660 return;
1661
eb755805 1662 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1663}
1664
c09595f6
PZ
1665#else
1666
c8cba857 1667static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1668{
1669}
1670
3e5459b4
PZ
1671static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1672{
1673}
1674
18d95a28
PZ
1675#endif
1676
8f45e2b5
GH
1677#ifdef CONFIG_PREEMPT
1678
70574a99 1679/*
8f45e2b5
GH
1680 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1681 * way at the expense of forcing extra atomic operations in all
1682 * invocations. This assures that the double_lock is acquired using the
1683 * same underlying policy as the spinlock_t on this architecture, which
1684 * reduces latency compared to the unfair variant below. However, it
1685 * also adds more overhead and therefore may reduce throughput.
70574a99 1686 */
8f45e2b5
GH
1687static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1688 __releases(this_rq->lock)
1689 __acquires(busiest->lock)
1690 __acquires(this_rq->lock)
1691{
1692 spin_unlock(&this_rq->lock);
1693 double_rq_lock(this_rq, busiest);
1694
1695 return 1;
1696}
1697
1698#else
1699/*
1700 * Unfair double_lock_balance: Optimizes throughput at the expense of
1701 * latency by eliminating extra atomic operations when the locks are
1702 * already in proper order on entry. This favors lower cpu-ids and will
1703 * grant the double lock to lower cpus over higher ids under contention,
1704 * regardless of entry order into the function.
1705 */
1706static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock)
1710{
1711 int ret = 0;
1712
70574a99
AD
1713 if (unlikely(!spin_trylock(&busiest->lock))) {
1714 if (busiest < this_rq) {
1715 spin_unlock(&this_rq->lock);
1716 spin_lock(&busiest->lock);
1717 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1718 ret = 1;
1719 } else
1720 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1721 }
1722 return ret;
1723}
1724
8f45e2b5
GH
1725#endif /* CONFIG_PREEMPT */
1726
1727/*
1728 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1729 */
1730static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1731{
1732 if (unlikely(!irqs_disabled())) {
1733 /* printk() doesn't work good under rq->lock */
1734 spin_unlock(&this_rq->lock);
1735 BUG_ON(1);
1736 }
1737
1738 return _double_lock_balance(this_rq, busiest);
1739}
1740
70574a99
AD
1741static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1742 __releases(busiest->lock)
1743{
1744 spin_unlock(&busiest->lock);
1745 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1746}
18d95a28
PZ
1747#endif
1748
30432094 1749#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1750static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1751{
30432094 1752#ifdef CONFIG_SMP
34e83e85
IM
1753 cfs_rq->shares = shares;
1754#endif
1755}
30432094 1756#endif
e7693a36 1757
dce48a84
TG
1758static void calc_load_account_active(struct rq *this_rq);
1759
dd41f596 1760#include "sched_stats.h"
dd41f596 1761#include "sched_idletask.c"
5522d5d5
IM
1762#include "sched_fair.c"
1763#include "sched_rt.c"
dd41f596
IM
1764#ifdef CONFIG_SCHED_DEBUG
1765# include "sched_debug.c"
1766#endif
1767
1768#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1769#define for_each_class(class) \
1770 for (class = sched_class_highest; class; class = class->next)
dd41f596 1771
c09595f6 1772static void inc_nr_running(struct rq *rq)
9c217245
IM
1773{
1774 rq->nr_running++;
9c217245
IM
1775}
1776
c09595f6 1777static void dec_nr_running(struct rq *rq)
9c217245
IM
1778{
1779 rq->nr_running--;
9c217245
IM
1780}
1781
45bf76df
IM
1782static void set_load_weight(struct task_struct *p)
1783{
1784 if (task_has_rt_policy(p)) {
dd41f596
IM
1785 p->se.load.weight = prio_to_weight[0] * 2;
1786 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1787 return;
1788 }
45bf76df 1789
dd41f596
IM
1790 /*
1791 * SCHED_IDLE tasks get minimal weight:
1792 */
1793 if (p->policy == SCHED_IDLE) {
1794 p->se.load.weight = WEIGHT_IDLEPRIO;
1795 p->se.load.inv_weight = WMULT_IDLEPRIO;
1796 return;
1797 }
71f8bd46 1798
dd41f596
IM
1799 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1800 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1801}
1802
2087a1ad
GH
1803static void update_avg(u64 *avg, u64 sample)
1804{
1805 s64 diff = sample - *avg;
1806 *avg += diff >> 3;
1807}
1808
8159f87e 1809static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1810{
831451ac
PZ
1811 if (wakeup)
1812 p->se.start_runtime = p->se.sum_exec_runtime;
1813
dd41f596 1814 sched_info_queued(p);
fd390f6a 1815 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1816 p->se.on_rq = 1;
71f8bd46
IM
1817}
1818
69be72c1 1819static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1820{
831451ac
PZ
1821 if (sleep) {
1822 if (p->se.last_wakeup) {
1823 update_avg(&p->se.avg_overlap,
1824 p->se.sum_exec_runtime - p->se.last_wakeup);
1825 p->se.last_wakeup = 0;
1826 } else {
1827 update_avg(&p->se.avg_wakeup,
1828 sysctl_sched_wakeup_granularity);
1829 }
2087a1ad
GH
1830 }
1831
46ac22ba 1832 sched_info_dequeued(p);
f02231e5 1833 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1834 p->se.on_rq = 0;
71f8bd46
IM
1835}
1836
14531189 1837/*
dd41f596 1838 * __normal_prio - return the priority that is based on the static prio
14531189 1839 */
14531189
IM
1840static inline int __normal_prio(struct task_struct *p)
1841{
dd41f596 1842 return p->static_prio;
14531189
IM
1843}
1844
b29739f9
IM
1845/*
1846 * Calculate the expected normal priority: i.e. priority
1847 * without taking RT-inheritance into account. Might be
1848 * boosted by interactivity modifiers. Changes upon fork,
1849 * setprio syscalls, and whenever the interactivity
1850 * estimator recalculates.
1851 */
36c8b586 1852static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1853{
1854 int prio;
1855
e05606d3 1856 if (task_has_rt_policy(p))
b29739f9
IM
1857 prio = MAX_RT_PRIO-1 - p->rt_priority;
1858 else
1859 prio = __normal_prio(p);
1860 return prio;
1861}
1862
1863/*
1864 * Calculate the current priority, i.e. the priority
1865 * taken into account by the scheduler. This value might
1866 * be boosted by RT tasks, or might be boosted by
1867 * interactivity modifiers. Will be RT if the task got
1868 * RT-boosted. If not then it returns p->normal_prio.
1869 */
36c8b586 1870static int effective_prio(struct task_struct *p)
b29739f9
IM
1871{
1872 p->normal_prio = normal_prio(p);
1873 /*
1874 * If we are RT tasks or we were boosted to RT priority,
1875 * keep the priority unchanged. Otherwise, update priority
1876 * to the normal priority:
1877 */
1878 if (!rt_prio(p->prio))
1879 return p->normal_prio;
1880 return p->prio;
1881}
1882
1da177e4 1883/*
dd41f596 1884 * activate_task - move a task to the runqueue.
1da177e4 1885 */
dd41f596 1886static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1887{
d9514f6c 1888 if (task_contributes_to_load(p))
dd41f596 1889 rq->nr_uninterruptible--;
1da177e4 1890
8159f87e 1891 enqueue_task(rq, p, wakeup);
c09595f6 1892 inc_nr_running(rq);
1da177e4
LT
1893}
1894
1da177e4
LT
1895/*
1896 * deactivate_task - remove a task from the runqueue.
1897 */
2e1cb74a 1898static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1899{
d9514f6c 1900 if (task_contributes_to_load(p))
dd41f596
IM
1901 rq->nr_uninterruptible++;
1902
69be72c1 1903 dequeue_task(rq, p, sleep);
c09595f6 1904 dec_nr_running(rq);
1da177e4
LT
1905}
1906
1da177e4
LT
1907/**
1908 * task_curr - is this task currently executing on a CPU?
1909 * @p: the task in question.
1910 */
36c8b586 1911inline int task_curr(const struct task_struct *p)
1da177e4
LT
1912{
1913 return cpu_curr(task_cpu(p)) == p;
1914}
1915
dd41f596
IM
1916static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1917{
6f505b16 1918 set_task_rq(p, cpu);
dd41f596 1919#ifdef CONFIG_SMP
ce96b5ac
DA
1920 /*
1921 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1922 * successfuly executed on another CPU. We must ensure that updates of
1923 * per-task data have been completed by this moment.
1924 */
1925 smp_wmb();
dd41f596 1926 task_thread_info(p)->cpu = cpu;
dd41f596 1927#endif
2dd73a4f
PW
1928}
1929
cb469845
SR
1930static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1931 const struct sched_class *prev_class,
1932 int oldprio, int running)
1933{
1934 if (prev_class != p->sched_class) {
1935 if (prev_class->switched_from)
1936 prev_class->switched_from(rq, p, running);
1937 p->sched_class->switched_to(rq, p, running);
1938 } else
1939 p->sched_class->prio_changed(rq, p, oldprio, running);
1940}
1941
1da177e4 1942#ifdef CONFIG_SMP
c65cc870 1943
e958b360
TG
1944/* Used instead of source_load when we know the type == 0 */
1945static unsigned long weighted_cpuload(const int cpu)
1946{
1947 return cpu_rq(cpu)->load.weight;
1948}
1949
cc367732
IM
1950/*
1951 * Is this task likely cache-hot:
1952 */
e7693a36 1953static int
cc367732
IM
1954task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1955{
1956 s64 delta;
1957
f540a608
IM
1958 /*
1959 * Buddy candidates are cache hot:
1960 */
4793241b
PZ
1961 if (sched_feat(CACHE_HOT_BUDDY) &&
1962 (&p->se == cfs_rq_of(&p->se)->next ||
1963 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1964 return 1;
1965
cc367732
IM
1966 if (p->sched_class != &fair_sched_class)
1967 return 0;
1968
6bc1665b
IM
1969 if (sysctl_sched_migration_cost == -1)
1970 return 1;
1971 if (sysctl_sched_migration_cost == 0)
1972 return 0;
1973
cc367732
IM
1974 delta = now - p->se.exec_start;
1975
1976 return delta < (s64)sysctl_sched_migration_cost;
1977}
1978
1979
dd41f596 1980void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1981{
dd41f596
IM
1982 int old_cpu = task_cpu(p);
1983 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1984 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1985 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1986 u64 clock_offset;
dd41f596
IM
1987
1988 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1989
de1d7286 1990 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1991
6cfb0d5d
IM
1992#ifdef CONFIG_SCHEDSTATS
1993 if (p->se.wait_start)
1994 p->se.wait_start -= clock_offset;
dd41f596
IM
1995 if (p->se.sleep_start)
1996 p->se.sleep_start -= clock_offset;
1997 if (p->se.block_start)
1998 p->se.block_start -= clock_offset;
6c594c21 1999#endif
cc367732 2000 if (old_cpu != new_cpu) {
6c594c21 2001 p->se.nr_migrations++;
23a185ca 2002 new_rq->nr_migrations_in++;
6c594c21 2003#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2004 if (task_hot(p, old_rq->clock, NULL))
2005 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2006#endif
e5289d4a
PZ
2007 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2008 1, 1, NULL, 0);
6c594c21 2009 }
2830cf8c
SV
2010 p->se.vruntime -= old_cfsrq->min_vruntime -
2011 new_cfsrq->min_vruntime;
dd41f596
IM
2012
2013 __set_task_cpu(p, new_cpu);
c65cc870
IM
2014}
2015
70b97a7f 2016struct migration_req {
1da177e4 2017 struct list_head list;
1da177e4 2018
36c8b586 2019 struct task_struct *task;
1da177e4
LT
2020 int dest_cpu;
2021
1da177e4 2022 struct completion done;
70b97a7f 2023};
1da177e4
LT
2024
2025/*
2026 * The task's runqueue lock must be held.
2027 * Returns true if you have to wait for migration thread.
2028 */
36c8b586 2029static int
70b97a7f 2030migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2031{
70b97a7f 2032 struct rq *rq = task_rq(p);
1da177e4
LT
2033
2034 /*
2035 * If the task is not on a runqueue (and not running), then
2036 * it is sufficient to simply update the task's cpu field.
2037 */
dd41f596 2038 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2039 set_task_cpu(p, dest_cpu);
2040 return 0;
2041 }
2042
2043 init_completion(&req->done);
1da177e4
LT
2044 req->task = p;
2045 req->dest_cpu = dest_cpu;
2046 list_add(&req->list, &rq->migration_queue);
48f24c4d 2047
1da177e4
LT
2048 return 1;
2049}
2050
a26b89f0
MM
2051/*
2052 * wait_task_context_switch - wait for a thread to complete at least one
2053 * context switch.
2054 *
2055 * @p must not be current.
2056 */
2057void wait_task_context_switch(struct task_struct *p)
2058{
2059 unsigned long nvcsw, nivcsw, flags;
2060 int running;
2061 struct rq *rq;
2062
2063 nvcsw = p->nvcsw;
2064 nivcsw = p->nivcsw;
2065 for (;;) {
2066 /*
2067 * The runqueue is assigned before the actual context
2068 * switch. We need to take the runqueue lock.
2069 *
2070 * We could check initially without the lock but it is
2071 * very likely that we need to take the lock in every
2072 * iteration.
2073 */
2074 rq = task_rq_lock(p, &flags);
2075 running = task_running(rq, p);
2076 task_rq_unlock(rq, &flags);
2077
2078 if (likely(!running))
2079 break;
2080 /*
2081 * The switch count is incremented before the actual
2082 * context switch. We thus wait for two switches to be
2083 * sure at least one completed.
2084 */
2085 if ((p->nvcsw - nvcsw) > 1)
2086 break;
2087 if ((p->nivcsw - nivcsw) > 1)
2088 break;
2089
2090 cpu_relax();
2091 }
2092}
2093
1da177e4
LT
2094/*
2095 * wait_task_inactive - wait for a thread to unschedule.
2096 *
85ba2d86
RM
2097 * If @match_state is nonzero, it's the @p->state value just checked and
2098 * not expected to change. If it changes, i.e. @p might have woken up,
2099 * then return zero. When we succeed in waiting for @p to be off its CPU,
2100 * we return a positive number (its total switch count). If a second call
2101 * a short while later returns the same number, the caller can be sure that
2102 * @p has remained unscheduled the whole time.
2103 *
1da177e4
LT
2104 * The caller must ensure that the task *will* unschedule sometime soon,
2105 * else this function might spin for a *long* time. This function can't
2106 * be called with interrupts off, or it may introduce deadlock with
2107 * smp_call_function() if an IPI is sent by the same process we are
2108 * waiting to become inactive.
2109 */
85ba2d86 2110unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2111{
2112 unsigned long flags;
dd41f596 2113 int running, on_rq;
85ba2d86 2114 unsigned long ncsw;
70b97a7f 2115 struct rq *rq;
1da177e4 2116
3a5c359a
AK
2117 for (;;) {
2118 /*
2119 * We do the initial early heuristics without holding
2120 * any task-queue locks at all. We'll only try to get
2121 * the runqueue lock when things look like they will
2122 * work out!
2123 */
2124 rq = task_rq(p);
fa490cfd 2125
3a5c359a
AK
2126 /*
2127 * If the task is actively running on another CPU
2128 * still, just relax and busy-wait without holding
2129 * any locks.
2130 *
2131 * NOTE! Since we don't hold any locks, it's not
2132 * even sure that "rq" stays as the right runqueue!
2133 * But we don't care, since "task_running()" will
2134 * return false if the runqueue has changed and p
2135 * is actually now running somewhere else!
2136 */
85ba2d86
RM
2137 while (task_running(rq, p)) {
2138 if (match_state && unlikely(p->state != match_state))
2139 return 0;
3a5c359a 2140 cpu_relax();
85ba2d86 2141 }
fa490cfd 2142
3a5c359a
AK
2143 /*
2144 * Ok, time to look more closely! We need the rq
2145 * lock now, to be *sure*. If we're wrong, we'll
2146 * just go back and repeat.
2147 */
2148 rq = task_rq_lock(p, &flags);
0a16b607 2149 trace_sched_wait_task(rq, p);
3a5c359a
AK
2150 running = task_running(rq, p);
2151 on_rq = p->se.on_rq;
85ba2d86 2152 ncsw = 0;
f31e11d8 2153 if (!match_state || p->state == match_state)
93dcf55f 2154 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2155 task_rq_unlock(rq, &flags);
fa490cfd 2156
85ba2d86
RM
2157 /*
2158 * If it changed from the expected state, bail out now.
2159 */
2160 if (unlikely(!ncsw))
2161 break;
2162
3a5c359a
AK
2163 /*
2164 * Was it really running after all now that we
2165 * checked with the proper locks actually held?
2166 *
2167 * Oops. Go back and try again..
2168 */
2169 if (unlikely(running)) {
2170 cpu_relax();
2171 continue;
2172 }
fa490cfd 2173
3a5c359a
AK
2174 /*
2175 * It's not enough that it's not actively running,
2176 * it must be off the runqueue _entirely_, and not
2177 * preempted!
2178 *
80dd99b3 2179 * So if it was still runnable (but just not actively
3a5c359a
AK
2180 * running right now), it's preempted, and we should
2181 * yield - it could be a while.
2182 */
2183 if (unlikely(on_rq)) {
2184 schedule_timeout_uninterruptible(1);
2185 continue;
2186 }
fa490cfd 2187
3a5c359a
AK
2188 /*
2189 * Ahh, all good. It wasn't running, and it wasn't
2190 * runnable, which means that it will never become
2191 * running in the future either. We're all done!
2192 */
2193 break;
2194 }
85ba2d86
RM
2195
2196 return ncsw;
1da177e4
LT
2197}
2198
2199/***
2200 * kick_process - kick a running thread to enter/exit the kernel
2201 * @p: the to-be-kicked thread
2202 *
2203 * Cause a process which is running on another CPU to enter
2204 * kernel-mode, without any delay. (to get signals handled.)
2205 *
2206 * NOTE: this function doesnt have to take the runqueue lock,
2207 * because all it wants to ensure is that the remote task enters
2208 * the kernel. If the IPI races and the task has been migrated
2209 * to another CPU then no harm is done and the purpose has been
2210 * achieved as well.
2211 */
36c8b586 2212void kick_process(struct task_struct *p)
1da177e4
LT
2213{
2214 int cpu;
2215
2216 preempt_disable();
2217 cpu = task_cpu(p);
2218 if ((cpu != smp_processor_id()) && task_curr(p))
2219 smp_send_reschedule(cpu);
2220 preempt_enable();
2221}
b43e3521 2222EXPORT_SYMBOL_GPL(kick_process);
1da177e4
LT
2223
2224/*
2dd73a4f
PW
2225 * Return a low guess at the load of a migration-source cpu weighted
2226 * according to the scheduling class and "nice" value.
1da177e4
LT
2227 *
2228 * We want to under-estimate the load of migration sources, to
2229 * balance conservatively.
2230 */
a9957449 2231static unsigned long source_load(int cpu, int type)
1da177e4 2232{
70b97a7f 2233 struct rq *rq = cpu_rq(cpu);
dd41f596 2234 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2235
93b75217 2236 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2237 return total;
b910472d 2238
dd41f596 2239 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2240}
2241
2242/*
2dd73a4f
PW
2243 * Return a high guess at the load of a migration-target cpu weighted
2244 * according to the scheduling class and "nice" value.
1da177e4 2245 */
a9957449 2246static unsigned long target_load(int cpu, int type)
1da177e4 2247{
70b97a7f 2248 struct rq *rq = cpu_rq(cpu);
dd41f596 2249 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2250
93b75217 2251 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2252 return total;
3b0bd9bc 2253
dd41f596 2254 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2255}
2256
147cbb4b
NP
2257/*
2258 * find_idlest_group finds and returns the least busy CPU group within the
2259 * domain.
2260 */
2261static struct sched_group *
2262find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2263{
2264 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2265 unsigned long min_load = ULONG_MAX, this_load = 0;
2266 int load_idx = sd->forkexec_idx;
2267 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2268
2269 do {
2270 unsigned long load, avg_load;
2271 int local_group;
2272 int i;
2273
da5a5522 2274 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2275 if (!cpumask_intersects(sched_group_cpus(group),
2276 &p->cpus_allowed))
3a5c359a 2277 continue;
da5a5522 2278
758b2cdc
RR
2279 local_group = cpumask_test_cpu(this_cpu,
2280 sched_group_cpus(group));
147cbb4b
NP
2281
2282 /* Tally up the load of all CPUs in the group */
2283 avg_load = 0;
2284
758b2cdc 2285 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2286 /* Bias balancing toward cpus of our domain */
2287 if (local_group)
2288 load = source_load(i, load_idx);
2289 else
2290 load = target_load(i, load_idx);
2291
2292 avg_load += load;
2293 }
2294
2295 /* Adjust by relative CPU power of the group */
5517d86b
ED
2296 avg_load = sg_div_cpu_power(group,
2297 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2298
2299 if (local_group) {
2300 this_load = avg_load;
2301 this = group;
2302 } else if (avg_load < min_load) {
2303 min_load = avg_load;
2304 idlest = group;
2305 }
3a5c359a 2306 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2307
2308 if (!idlest || 100*this_load < imbalance*min_load)
2309 return NULL;
2310 return idlest;
2311}
2312
2313/*
0feaece9 2314 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2315 */
95cdf3b7 2316static int
758b2cdc 2317find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2318{
2319 unsigned long load, min_load = ULONG_MAX;
2320 int idlest = -1;
2321 int i;
2322
da5a5522 2323 /* Traverse only the allowed CPUs */
758b2cdc 2324 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2325 load = weighted_cpuload(i);
147cbb4b
NP
2326
2327 if (load < min_load || (load == min_load && i == this_cpu)) {
2328 min_load = load;
2329 idlest = i;
2330 }
2331 }
2332
2333 return idlest;
2334}
2335
476d139c
NP
2336/*
2337 * sched_balance_self: balance the current task (running on cpu) in domains
2338 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2339 * SD_BALANCE_EXEC.
2340 *
2341 * Balance, ie. select the least loaded group.
2342 *
2343 * Returns the target CPU number, or the same CPU if no balancing is needed.
2344 *
2345 * preempt must be disabled.
2346 */
2347static int sched_balance_self(int cpu, int flag)
2348{
2349 struct task_struct *t = current;
2350 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2351
c96d145e 2352 for_each_domain(cpu, tmp) {
9761eea8
IM
2353 /*
2354 * If power savings logic is enabled for a domain, stop there.
2355 */
5c45bf27
SS
2356 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2357 break;
476d139c
NP
2358 if (tmp->flags & flag)
2359 sd = tmp;
c96d145e 2360 }
476d139c 2361
039a1c41
PZ
2362 if (sd)
2363 update_shares(sd);
2364
476d139c 2365 while (sd) {
476d139c 2366 struct sched_group *group;
1a848870
SS
2367 int new_cpu, weight;
2368
2369 if (!(sd->flags & flag)) {
2370 sd = sd->child;
2371 continue;
2372 }
476d139c 2373
476d139c 2374 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2375 if (!group) {
2376 sd = sd->child;
2377 continue;
2378 }
476d139c 2379
758b2cdc 2380 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2381 if (new_cpu == -1 || new_cpu == cpu) {
2382 /* Now try balancing at a lower domain level of cpu */
2383 sd = sd->child;
2384 continue;
2385 }
476d139c 2386
1a848870 2387 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2388 cpu = new_cpu;
758b2cdc 2389 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2390 sd = NULL;
476d139c 2391 for_each_domain(cpu, tmp) {
758b2cdc 2392 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2393 break;
2394 if (tmp->flags & flag)
2395 sd = tmp;
2396 }
2397 /* while loop will break here if sd == NULL */
2398 }
2399
2400 return cpu;
2401}
2402
2403#endif /* CONFIG_SMP */
1da177e4 2404
0793a61d
TG
2405/**
2406 * task_oncpu_function_call - call a function on the cpu on which a task runs
2407 * @p: the task to evaluate
2408 * @func: the function to be called
2409 * @info: the function call argument
2410 *
2411 * Calls the function @func when the task is currently running. This might
2412 * be on the current CPU, which just calls the function directly
2413 */
2414void task_oncpu_function_call(struct task_struct *p,
2415 void (*func) (void *info), void *info)
2416{
2417 int cpu;
2418
2419 preempt_disable();
2420 cpu = task_cpu(p);
2421 if (task_curr(p))
2422 smp_call_function_single(cpu, func, info, 1);
2423 preempt_enable();
2424}
2425
1da177e4
LT
2426/***
2427 * try_to_wake_up - wake up a thread
2428 * @p: the to-be-woken-up thread
2429 * @state: the mask of task states that can be woken
2430 * @sync: do a synchronous wakeup?
2431 *
2432 * Put it on the run-queue if it's not already there. The "current"
2433 * thread is always on the run-queue (except when the actual
2434 * re-schedule is in progress), and as such you're allowed to do
2435 * the simpler "current->state = TASK_RUNNING" to mark yourself
2436 * runnable without the overhead of this.
2437 *
2438 * returns failure only if the task is already active.
2439 */
36c8b586 2440static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2441{
cc367732 2442 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2443 unsigned long flags;
2444 long old_state;
70b97a7f 2445 struct rq *rq;
1da177e4 2446
b85d0667
IM
2447 if (!sched_feat(SYNC_WAKEUPS))
2448 sync = 0;
2449
2398f2c6 2450#ifdef CONFIG_SMP
57310a98 2451 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2452 struct sched_domain *sd;
2453
2454 this_cpu = raw_smp_processor_id();
2455 cpu = task_cpu(p);
2456
2457 for_each_domain(this_cpu, sd) {
758b2cdc 2458 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2459 update_shares(sd);
2460 break;
2461 }
2462 }
2463 }
2464#endif
2465
04e2f174 2466 smp_wmb();
1da177e4 2467 rq = task_rq_lock(p, &flags);
03e89e45 2468 update_rq_clock(rq);
1da177e4
LT
2469 old_state = p->state;
2470 if (!(old_state & state))
2471 goto out;
2472
dd41f596 2473 if (p->se.on_rq)
1da177e4
LT
2474 goto out_running;
2475
2476 cpu = task_cpu(p);
cc367732 2477 orig_cpu = cpu;
1da177e4
LT
2478 this_cpu = smp_processor_id();
2479
2480#ifdef CONFIG_SMP
2481 if (unlikely(task_running(rq, p)))
2482 goto out_activate;
2483
5d2f5a61
DA
2484 cpu = p->sched_class->select_task_rq(p, sync);
2485 if (cpu != orig_cpu) {
2486 set_task_cpu(p, cpu);
1da177e4
LT
2487 task_rq_unlock(rq, &flags);
2488 /* might preempt at this point */
2489 rq = task_rq_lock(p, &flags);
2490 old_state = p->state;
2491 if (!(old_state & state))
2492 goto out;
dd41f596 2493 if (p->se.on_rq)
1da177e4
LT
2494 goto out_running;
2495
2496 this_cpu = smp_processor_id();
2497 cpu = task_cpu(p);
2498 }
2499
e7693a36
GH
2500#ifdef CONFIG_SCHEDSTATS
2501 schedstat_inc(rq, ttwu_count);
2502 if (cpu == this_cpu)
2503 schedstat_inc(rq, ttwu_local);
2504 else {
2505 struct sched_domain *sd;
2506 for_each_domain(this_cpu, sd) {
758b2cdc 2507 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2508 schedstat_inc(sd, ttwu_wake_remote);
2509 break;
2510 }
2511 }
2512 }
6d6bc0ad 2513#endif /* CONFIG_SCHEDSTATS */
e7693a36 2514
1da177e4
LT
2515out_activate:
2516#endif /* CONFIG_SMP */
cc367732
IM
2517 schedstat_inc(p, se.nr_wakeups);
2518 if (sync)
2519 schedstat_inc(p, se.nr_wakeups_sync);
2520 if (orig_cpu != cpu)
2521 schedstat_inc(p, se.nr_wakeups_migrate);
2522 if (cpu == this_cpu)
2523 schedstat_inc(p, se.nr_wakeups_local);
2524 else
2525 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2526 activate_task(rq, p, 1);
1da177e4
LT
2527 success = 1;
2528
831451ac
PZ
2529 /*
2530 * Only attribute actual wakeups done by this task.
2531 */
2532 if (!in_interrupt()) {
2533 struct sched_entity *se = &current->se;
2534 u64 sample = se->sum_exec_runtime;
2535
2536 if (se->last_wakeup)
2537 sample -= se->last_wakeup;
2538 else
2539 sample -= se->start_runtime;
2540 update_avg(&se->avg_wakeup, sample);
2541
2542 se->last_wakeup = se->sum_exec_runtime;
2543 }
2544
1da177e4 2545out_running:
468a15bb 2546 trace_sched_wakeup(rq, p, success);
15afe09b 2547 check_preempt_curr(rq, p, sync);
4ae7d5ce 2548
1da177e4 2549 p->state = TASK_RUNNING;
9a897c5a
SR
2550#ifdef CONFIG_SMP
2551 if (p->sched_class->task_wake_up)
2552 p->sched_class->task_wake_up(rq, p);
2553#endif
1da177e4
LT
2554out:
2555 task_rq_unlock(rq, &flags);
2556
2557 return success;
2558}
2559
50fa610a
DH
2560/**
2561 * wake_up_process - Wake up a specific process
2562 * @p: The process to be woken up.
2563 *
2564 * Attempt to wake up the nominated process and move it to the set of runnable
2565 * processes. Returns 1 if the process was woken up, 0 if it was already
2566 * running.
2567 *
2568 * It may be assumed that this function implies a write memory barrier before
2569 * changing the task state if and only if any tasks are woken up.
2570 */
7ad5b3a5 2571int wake_up_process(struct task_struct *p)
1da177e4 2572{
d9514f6c 2573 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2574}
1da177e4
LT
2575EXPORT_SYMBOL(wake_up_process);
2576
7ad5b3a5 2577int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2578{
2579 return try_to_wake_up(p, state, 0);
2580}
2581
1da177e4
LT
2582/*
2583 * Perform scheduler related setup for a newly forked process p.
2584 * p is forked by current.
dd41f596
IM
2585 *
2586 * __sched_fork() is basic setup used by init_idle() too:
2587 */
2588static void __sched_fork(struct task_struct *p)
2589{
dd41f596
IM
2590 p->se.exec_start = 0;
2591 p->se.sum_exec_runtime = 0;
f6cf891c 2592 p->se.prev_sum_exec_runtime = 0;
6c594c21 2593 p->se.nr_migrations = 0;
4ae7d5ce
IM
2594 p->se.last_wakeup = 0;
2595 p->se.avg_overlap = 0;
831451ac
PZ
2596 p->se.start_runtime = 0;
2597 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2598
2599#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2600 p->se.wait_start = 0;
2601 p->se.wait_max = 0;
2602 p->se.wait_count = 0;
2603 p->se.wait_sum = 0;
2604
2605 p->se.sleep_start = 0;
2606 p->se.sleep_max = 0;
2607 p->se.sum_sleep_runtime = 0;
2608
2609 p->se.block_start = 0;
2610 p->se.block_max = 0;
2611 p->se.exec_max = 0;
2612 p->se.slice_max = 0;
2613
2614 p->se.nr_migrations_cold = 0;
2615 p->se.nr_failed_migrations_affine = 0;
2616 p->se.nr_failed_migrations_running = 0;
2617 p->se.nr_failed_migrations_hot = 0;
2618 p->se.nr_forced_migrations = 0;
2619 p->se.nr_forced2_migrations = 0;
2620
2621 p->se.nr_wakeups = 0;
2622 p->se.nr_wakeups_sync = 0;
2623 p->se.nr_wakeups_migrate = 0;
2624 p->se.nr_wakeups_local = 0;
2625 p->se.nr_wakeups_remote = 0;
2626 p->se.nr_wakeups_affine = 0;
2627 p->se.nr_wakeups_affine_attempts = 0;
2628 p->se.nr_wakeups_passive = 0;
2629 p->se.nr_wakeups_idle = 0;
2630
6cfb0d5d 2631#endif
476d139c 2632
fa717060 2633 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2634 p->se.on_rq = 0;
4a55bd5e 2635 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2636
e107be36
AK
2637#ifdef CONFIG_PREEMPT_NOTIFIERS
2638 INIT_HLIST_HEAD(&p->preempt_notifiers);
2639#endif
2640
1da177e4
LT
2641 /*
2642 * We mark the process as running here, but have not actually
2643 * inserted it onto the runqueue yet. This guarantees that
2644 * nobody will actually run it, and a signal or other external
2645 * event cannot wake it up and insert it on the runqueue either.
2646 */
2647 p->state = TASK_RUNNING;
dd41f596
IM
2648}
2649
2650/*
2651 * fork()/clone()-time setup:
2652 */
2653void sched_fork(struct task_struct *p, int clone_flags)
2654{
2655 int cpu = get_cpu();
2656
2657 __sched_fork(p);
2658
2659#ifdef CONFIG_SMP
2660 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2661#endif
02e4bac2 2662 set_task_cpu(p, cpu);
b29739f9
IM
2663
2664 /*
b9dc29e7 2665 * Make sure we do not leak PI boosting priority to the child.
b29739f9 2666 */
b9dc29e7 2667 p->prio = current->normal_prio;
ca94c442 2668
b9dc29e7
MG
2669 /*
2670 * Revert to default priority/policy on fork if requested.
2671 */
2672 if (unlikely(p->sched_reset_on_fork)) {
2673 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2674 p->policy = SCHED_NORMAL;
2675
2676 if (p->normal_prio < DEFAULT_PRIO)
2677 p->prio = DEFAULT_PRIO;
2678
6c697bdf
MG
2679 if (PRIO_TO_NICE(p->static_prio) < 0) {
2680 p->static_prio = NICE_TO_PRIO(0);
2681 set_load_weight(p);
2682 }
2683
b9dc29e7
MG
2684 /*
2685 * We don't need the reset flag anymore after the fork. It has
2686 * fulfilled its duty:
2687 */
2688 p->sched_reset_on_fork = 0;
2689 }
ca94c442 2690
2ddbf952
HS
2691 if (!rt_prio(p->prio))
2692 p->sched_class = &fair_sched_class;
b29739f9 2693
52f17b6c 2694#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2695 if (likely(sched_info_on()))
52f17b6c 2696 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2697#endif
d6077cb8 2698#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2699 p->oncpu = 0;
2700#endif
1da177e4 2701#ifdef CONFIG_PREEMPT
4866cde0 2702 /* Want to start with kernel preemption disabled. */
a1261f54 2703 task_thread_info(p)->preempt_count = 1;
1da177e4 2704#endif
917b627d
GH
2705 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2706
476d139c 2707 put_cpu();
1da177e4
LT
2708}
2709
2710/*
2711 * wake_up_new_task - wake up a newly created task for the first time.
2712 *
2713 * This function will do some initial scheduler statistics housekeeping
2714 * that must be done for every newly created context, then puts the task
2715 * on the runqueue and wakes it.
2716 */
7ad5b3a5 2717void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2718{
2719 unsigned long flags;
dd41f596 2720 struct rq *rq;
1da177e4
LT
2721
2722 rq = task_rq_lock(p, &flags);
147cbb4b 2723 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2724 update_rq_clock(rq);
1da177e4
LT
2725
2726 p->prio = effective_prio(p);
2727
b9dca1e0 2728 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2729 activate_task(rq, p, 0);
1da177e4 2730 } else {
1da177e4 2731 /*
dd41f596
IM
2732 * Let the scheduling class do new task startup
2733 * management (if any):
1da177e4 2734 */
ee0827d8 2735 p->sched_class->task_new(rq, p);
c09595f6 2736 inc_nr_running(rq);
1da177e4 2737 }
c71dd42d 2738 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2739 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2740#ifdef CONFIG_SMP
2741 if (p->sched_class->task_wake_up)
2742 p->sched_class->task_wake_up(rq, p);
2743#endif
dd41f596 2744 task_rq_unlock(rq, &flags);
1da177e4
LT
2745}
2746
e107be36
AK
2747#ifdef CONFIG_PREEMPT_NOTIFIERS
2748
2749/**
80dd99b3 2750 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2751 * @notifier: notifier struct to register
e107be36
AK
2752 */
2753void preempt_notifier_register(struct preempt_notifier *notifier)
2754{
2755 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2756}
2757EXPORT_SYMBOL_GPL(preempt_notifier_register);
2758
2759/**
2760 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2761 * @notifier: notifier struct to unregister
e107be36
AK
2762 *
2763 * This is safe to call from within a preemption notifier.
2764 */
2765void preempt_notifier_unregister(struct preempt_notifier *notifier)
2766{
2767 hlist_del(&notifier->link);
2768}
2769EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2770
2771static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2772{
2773 struct preempt_notifier *notifier;
2774 struct hlist_node *node;
2775
2776 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2777 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2778}
2779
2780static void
2781fire_sched_out_preempt_notifiers(struct task_struct *curr,
2782 struct task_struct *next)
2783{
2784 struct preempt_notifier *notifier;
2785 struct hlist_node *node;
2786
2787 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2788 notifier->ops->sched_out(notifier, next);
2789}
2790
6d6bc0ad 2791#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2792
2793static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2794{
2795}
2796
2797static void
2798fire_sched_out_preempt_notifiers(struct task_struct *curr,
2799 struct task_struct *next)
2800{
2801}
2802
6d6bc0ad 2803#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2804
4866cde0
NP
2805/**
2806 * prepare_task_switch - prepare to switch tasks
2807 * @rq: the runqueue preparing to switch
421cee29 2808 * @prev: the current task that is being switched out
4866cde0
NP
2809 * @next: the task we are going to switch to.
2810 *
2811 * This is called with the rq lock held and interrupts off. It must
2812 * be paired with a subsequent finish_task_switch after the context
2813 * switch.
2814 *
2815 * prepare_task_switch sets up locking and calls architecture specific
2816 * hooks.
2817 */
e107be36
AK
2818static inline void
2819prepare_task_switch(struct rq *rq, struct task_struct *prev,
2820 struct task_struct *next)
4866cde0 2821{
e107be36 2822 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2823 prepare_lock_switch(rq, next);
2824 prepare_arch_switch(next);
2825}
2826
1da177e4
LT
2827/**
2828 * finish_task_switch - clean up after a task-switch
344babaa 2829 * @rq: runqueue associated with task-switch
1da177e4
LT
2830 * @prev: the thread we just switched away from.
2831 *
4866cde0
NP
2832 * finish_task_switch must be called after the context switch, paired
2833 * with a prepare_task_switch call before the context switch.
2834 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2835 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2836 *
2837 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2838 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2839 * with the lock held can cause deadlocks; see schedule() for
2840 * details.)
2841 */
da19ab51 2842static int finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2843 __releases(rq->lock)
2844{
1da177e4 2845 struct mm_struct *mm = rq->prev_mm;
55a101f8 2846 long prev_state;
967fc046
GH
2847 int post_schedule = 0;
2848
da19ab51 2849#ifdef CONFIG_SMP
967fc046
GH
2850 if (current->sched_class->needs_post_schedule)
2851 post_schedule = current->sched_class->needs_post_schedule(rq);
2852#endif
1da177e4
LT
2853
2854 rq->prev_mm = NULL;
2855
2856 /*
2857 * A task struct has one reference for the use as "current".
c394cc9f 2858 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2859 * schedule one last time. The schedule call will never return, and
2860 * the scheduled task must drop that reference.
c394cc9f 2861 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2862 * still held, otherwise prev could be scheduled on another cpu, die
2863 * there before we look at prev->state, and then the reference would
2864 * be dropped twice.
2865 * Manfred Spraul <manfred@colorfullife.com>
2866 */
55a101f8 2867 prev_state = prev->state;
4866cde0 2868 finish_arch_switch(prev);
0793a61d 2869 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2870 finish_lock_switch(rq, prev);
e8fa1362 2871
e107be36 2872 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2873 if (mm)
2874 mmdrop(mm);
c394cc9f 2875 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2876 /*
2877 * Remove function-return probe instances associated with this
2878 * task and put them back on the free list.
9761eea8 2879 */
c6fd91f0 2880 kprobe_flush_task(prev);
1da177e4 2881 put_task_struct(prev);
c6fd91f0 2882 }
da19ab51
SR
2883
2884 return post_schedule;
1da177e4
LT
2885}
2886
2887/**
2888 * schedule_tail - first thing a freshly forked thread must call.
2889 * @prev: the thread we just switched away from.
2890 */
36c8b586 2891asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2892 __releases(rq->lock)
2893{
70b97a7f 2894 struct rq *rq = this_rq();
da19ab51
SR
2895 int post_schedule;
2896
2897 post_schedule = finish_task_switch(rq, prev);
2898
2899#ifdef CONFIG_SMP
2900 if (post_schedule)
2901 current->sched_class->post_schedule(rq);
2902#endif
70b97a7f 2903
4866cde0
NP
2904#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2905 /* In this case, finish_task_switch does not reenable preemption */
2906 preempt_enable();
2907#endif
1da177e4 2908 if (current->set_child_tid)
b488893a 2909 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2910}
2911
2912/*
2913 * context_switch - switch to the new MM and the new
2914 * thread's register state.
2915 */
da19ab51 2916static inline int
70b97a7f 2917context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2918 struct task_struct *next)
1da177e4 2919{
dd41f596 2920 struct mm_struct *mm, *oldmm;
1da177e4 2921
e107be36 2922 prepare_task_switch(rq, prev, next);
0a16b607 2923 trace_sched_switch(rq, prev, next);
dd41f596
IM
2924 mm = next->mm;
2925 oldmm = prev->active_mm;
9226d125
ZA
2926 /*
2927 * For paravirt, this is coupled with an exit in switch_to to
2928 * combine the page table reload and the switch backend into
2929 * one hypercall.
2930 */
224101ed 2931 arch_start_context_switch(prev);
9226d125 2932
dd41f596 2933 if (unlikely(!mm)) {
1da177e4
LT
2934 next->active_mm = oldmm;
2935 atomic_inc(&oldmm->mm_count);
2936 enter_lazy_tlb(oldmm, next);
2937 } else
2938 switch_mm(oldmm, mm, next);
2939
dd41f596 2940 if (unlikely(!prev->mm)) {
1da177e4 2941 prev->active_mm = NULL;
1da177e4
LT
2942 rq->prev_mm = oldmm;
2943 }
3a5f5e48
IM
2944 /*
2945 * Since the runqueue lock will be released by the next
2946 * task (which is an invalid locking op but in the case
2947 * of the scheduler it's an obvious special-case), so we
2948 * do an early lockdep release here:
2949 */
2950#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2951 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2952#endif
1da177e4
LT
2953
2954 /* Here we just switch the register state and the stack. */
2955 switch_to(prev, next, prev);
2956
dd41f596
IM
2957 barrier();
2958 /*
2959 * this_rq must be evaluated again because prev may have moved
2960 * CPUs since it called schedule(), thus the 'rq' on its stack
2961 * frame will be invalid.
2962 */
da19ab51 2963 return finish_task_switch(this_rq(), prev);
1da177e4
LT
2964}
2965
2966/*
2967 * nr_running, nr_uninterruptible and nr_context_switches:
2968 *
2969 * externally visible scheduler statistics: current number of runnable
2970 * threads, current number of uninterruptible-sleeping threads, total
2971 * number of context switches performed since bootup.
2972 */
2973unsigned long nr_running(void)
2974{
2975 unsigned long i, sum = 0;
2976
2977 for_each_online_cpu(i)
2978 sum += cpu_rq(i)->nr_running;
2979
2980 return sum;
2981}
2982
2983unsigned long nr_uninterruptible(void)
2984{
2985 unsigned long i, sum = 0;
2986
0a945022 2987 for_each_possible_cpu(i)
1da177e4
LT
2988 sum += cpu_rq(i)->nr_uninterruptible;
2989
2990 /*
2991 * Since we read the counters lockless, it might be slightly
2992 * inaccurate. Do not allow it to go below zero though:
2993 */
2994 if (unlikely((long)sum < 0))
2995 sum = 0;
2996
2997 return sum;
2998}
2999
3000unsigned long long nr_context_switches(void)
3001{
cc94abfc
SR
3002 int i;
3003 unsigned long long sum = 0;
1da177e4 3004
0a945022 3005 for_each_possible_cpu(i)
1da177e4
LT
3006 sum += cpu_rq(i)->nr_switches;
3007
3008 return sum;
3009}
3010
3011unsigned long nr_iowait(void)
3012{
3013 unsigned long i, sum = 0;
3014
0a945022 3015 for_each_possible_cpu(i)
1da177e4
LT
3016 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3017
3018 return sum;
3019}
3020
dce48a84
TG
3021/* Variables and functions for calc_load */
3022static atomic_long_t calc_load_tasks;
3023static unsigned long calc_load_update;
3024unsigned long avenrun[3];
3025EXPORT_SYMBOL(avenrun);
3026
2d02494f
TG
3027/**
3028 * get_avenrun - get the load average array
3029 * @loads: pointer to dest load array
3030 * @offset: offset to add
3031 * @shift: shift count to shift the result left
3032 *
3033 * These values are estimates at best, so no need for locking.
3034 */
3035void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3036{
3037 loads[0] = (avenrun[0] + offset) << shift;
3038 loads[1] = (avenrun[1] + offset) << shift;
3039 loads[2] = (avenrun[2] + offset) << shift;
3040}
3041
dce48a84
TG
3042static unsigned long
3043calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3044{
dce48a84
TG
3045 load *= exp;
3046 load += active * (FIXED_1 - exp);
3047 return load >> FSHIFT;
3048}
db1b1fef 3049
dce48a84
TG
3050/*
3051 * calc_load - update the avenrun load estimates 10 ticks after the
3052 * CPUs have updated calc_load_tasks.
3053 */
3054void calc_global_load(void)
3055{
3056 unsigned long upd = calc_load_update + 10;
3057 long active;
3058
3059 if (time_before(jiffies, upd))
3060 return;
db1b1fef 3061
dce48a84
TG
3062 active = atomic_long_read(&calc_load_tasks);
3063 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3064
dce48a84
TG
3065 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3066 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3067 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3068
3069 calc_load_update += LOAD_FREQ;
3070}
3071
3072/*
3073 * Either called from update_cpu_load() or from a cpu going idle
3074 */
3075static void calc_load_account_active(struct rq *this_rq)
3076{
3077 long nr_active, delta;
3078
3079 nr_active = this_rq->nr_running;
3080 nr_active += (long) this_rq->nr_uninterruptible;
3081
3082 if (nr_active != this_rq->calc_load_active) {
3083 delta = nr_active - this_rq->calc_load_active;
3084 this_rq->calc_load_active = nr_active;
3085 atomic_long_add(delta, &calc_load_tasks);
3086 }
db1b1fef
JS
3087}
3088
23a185ca
PM
3089/*
3090 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3091 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3092 */
23a185ca
PM
3093u64 cpu_nr_migrations(int cpu)
3094{
3095 return cpu_rq(cpu)->nr_migrations_in;
3096}
3097
48f24c4d 3098/*
dd41f596
IM
3099 * Update rq->cpu_load[] statistics. This function is usually called every
3100 * scheduler tick (TICK_NSEC).
48f24c4d 3101 */
dd41f596 3102static void update_cpu_load(struct rq *this_rq)
48f24c4d 3103{
495eca49 3104 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3105 int i, scale;
3106
3107 this_rq->nr_load_updates++;
dd41f596
IM
3108
3109 /* Update our load: */
3110 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3111 unsigned long old_load, new_load;
3112
3113 /* scale is effectively 1 << i now, and >> i divides by scale */
3114
3115 old_load = this_rq->cpu_load[i];
3116 new_load = this_load;
a25707f3
IM
3117 /*
3118 * Round up the averaging division if load is increasing. This
3119 * prevents us from getting stuck on 9 if the load is 10, for
3120 * example.
3121 */
3122 if (new_load > old_load)
3123 new_load += scale-1;
dd41f596
IM
3124 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3125 }
dce48a84
TG
3126
3127 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3128 this_rq->calc_load_update += LOAD_FREQ;
3129 calc_load_account_active(this_rq);
3130 }
48f24c4d
IM
3131}
3132
dd41f596
IM
3133#ifdef CONFIG_SMP
3134
1da177e4
LT
3135/*
3136 * double_rq_lock - safely lock two runqueues
3137 *
3138 * Note this does not disable interrupts like task_rq_lock,
3139 * you need to do so manually before calling.
3140 */
70b97a7f 3141static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3142 __acquires(rq1->lock)
3143 __acquires(rq2->lock)
3144{
054b9108 3145 BUG_ON(!irqs_disabled());
1da177e4
LT
3146 if (rq1 == rq2) {
3147 spin_lock(&rq1->lock);
3148 __acquire(rq2->lock); /* Fake it out ;) */
3149 } else {
c96d145e 3150 if (rq1 < rq2) {
1da177e4 3151 spin_lock(&rq1->lock);
5e710e37 3152 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3153 } else {
3154 spin_lock(&rq2->lock);
5e710e37 3155 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3156 }
3157 }
6e82a3be
IM
3158 update_rq_clock(rq1);
3159 update_rq_clock(rq2);
1da177e4
LT
3160}
3161
3162/*
3163 * double_rq_unlock - safely unlock two runqueues
3164 *
3165 * Note this does not restore interrupts like task_rq_unlock,
3166 * you need to do so manually after calling.
3167 */
70b97a7f 3168static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3169 __releases(rq1->lock)
3170 __releases(rq2->lock)
3171{
3172 spin_unlock(&rq1->lock);
3173 if (rq1 != rq2)
3174 spin_unlock(&rq2->lock);
3175 else
3176 __release(rq2->lock);
3177}
3178
1da177e4
LT
3179/*
3180 * If dest_cpu is allowed for this process, migrate the task to it.
3181 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3182 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3183 * the cpu_allowed mask is restored.
3184 */
36c8b586 3185static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3186{
70b97a7f 3187 struct migration_req req;
1da177e4 3188 unsigned long flags;
70b97a7f 3189 struct rq *rq;
1da177e4
LT
3190
3191 rq = task_rq_lock(p, &flags);
96f874e2 3192 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3193 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3194 goto out;
3195
3196 /* force the process onto the specified CPU */
3197 if (migrate_task(p, dest_cpu, &req)) {
3198 /* Need to wait for migration thread (might exit: take ref). */
3199 struct task_struct *mt = rq->migration_thread;
36c8b586 3200
1da177e4
LT
3201 get_task_struct(mt);
3202 task_rq_unlock(rq, &flags);
3203 wake_up_process(mt);
3204 put_task_struct(mt);
3205 wait_for_completion(&req.done);
36c8b586 3206
1da177e4
LT
3207 return;
3208 }
3209out:
3210 task_rq_unlock(rq, &flags);
3211}
3212
3213/*
476d139c
NP
3214 * sched_exec - execve() is a valuable balancing opportunity, because at
3215 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3216 */
3217void sched_exec(void)
3218{
1da177e4 3219 int new_cpu, this_cpu = get_cpu();
476d139c 3220 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3221 put_cpu();
476d139c
NP
3222 if (new_cpu != this_cpu)
3223 sched_migrate_task(current, new_cpu);
1da177e4
LT
3224}
3225
3226/*
3227 * pull_task - move a task from a remote runqueue to the local runqueue.
3228 * Both runqueues must be locked.
3229 */
dd41f596
IM
3230static void pull_task(struct rq *src_rq, struct task_struct *p,
3231 struct rq *this_rq, int this_cpu)
1da177e4 3232{
2e1cb74a 3233 deactivate_task(src_rq, p, 0);
1da177e4 3234 set_task_cpu(p, this_cpu);
dd41f596 3235 activate_task(this_rq, p, 0);
1da177e4
LT
3236 /*
3237 * Note that idle threads have a prio of MAX_PRIO, for this test
3238 * to be always true for them.
3239 */
15afe09b 3240 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3241}
3242
3243/*
3244 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3245 */
858119e1 3246static
70b97a7f 3247int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3248 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3249 int *all_pinned)
1da177e4 3250{
708dc512 3251 int tsk_cache_hot = 0;
1da177e4
LT
3252 /*
3253 * We do not migrate tasks that are:
3254 * 1) running (obviously), or
3255 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3256 * 3) are cache-hot on their current CPU.
3257 */
96f874e2 3258 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3259 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3260 return 0;
cc367732 3261 }
81026794
NP
3262 *all_pinned = 0;
3263
cc367732
IM
3264 if (task_running(rq, p)) {
3265 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3266 return 0;
cc367732 3267 }
1da177e4 3268
da84d961
IM
3269 /*
3270 * Aggressive migration if:
3271 * 1) task is cache cold, or
3272 * 2) too many balance attempts have failed.
3273 */
3274
708dc512
LH
3275 tsk_cache_hot = task_hot(p, rq->clock, sd);
3276 if (!tsk_cache_hot ||
3277 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3278#ifdef CONFIG_SCHEDSTATS
708dc512 3279 if (tsk_cache_hot) {
da84d961 3280 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3281 schedstat_inc(p, se.nr_forced_migrations);
3282 }
da84d961
IM
3283#endif
3284 return 1;
3285 }
3286
708dc512 3287 if (tsk_cache_hot) {
cc367732 3288 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3289 return 0;
cc367732 3290 }
1da177e4
LT
3291 return 1;
3292}
3293
e1d1484f
PW
3294static unsigned long
3295balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3296 unsigned long max_load_move, struct sched_domain *sd,
3297 enum cpu_idle_type idle, int *all_pinned,
3298 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3299{
051c6764 3300 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3301 struct task_struct *p;
3302 long rem_load_move = max_load_move;
1da177e4 3303
e1d1484f 3304 if (max_load_move == 0)
1da177e4
LT
3305 goto out;
3306
81026794
NP
3307 pinned = 1;
3308
1da177e4 3309 /*
dd41f596 3310 * Start the load-balancing iterator:
1da177e4 3311 */
dd41f596
IM
3312 p = iterator->start(iterator->arg);
3313next:
b82d9fdd 3314 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3315 goto out;
051c6764
PZ
3316
3317 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3318 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3319 p = iterator->next(iterator->arg);
3320 goto next;
1da177e4
LT
3321 }
3322
dd41f596 3323 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3324 pulled++;
dd41f596 3325 rem_load_move -= p->se.load.weight;
1da177e4 3326
7e96fa58
GH
3327#ifdef CONFIG_PREEMPT
3328 /*
3329 * NEWIDLE balancing is a source of latency, so preemptible kernels
3330 * will stop after the first task is pulled to minimize the critical
3331 * section.
3332 */
3333 if (idle == CPU_NEWLY_IDLE)
3334 goto out;
3335#endif
3336
2dd73a4f 3337 /*
b82d9fdd 3338 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3339 */
e1d1484f 3340 if (rem_load_move > 0) {
a4ac01c3
PW
3341 if (p->prio < *this_best_prio)
3342 *this_best_prio = p->prio;
dd41f596
IM
3343 p = iterator->next(iterator->arg);
3344 goto next;
1da177e4
LT
3345 }
3346out:
3347 /*
e1d1484f 3348 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3349 * so we can safely collect pull_task() stats here rather than
3350 * inside pull_task().
3351 */
3352 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3353
3354 if (all_pinned)
3355 *all_pinned = pinned;
e1d1484f
PW
3356
3357 return max_load_move - rem_load_move;
1da177e4
LT
3358}
3359
dd41f596 3360/*
43010659
PW
3361 * move_tasks tries to move up to max_load_move weighted load from busiest to
3362 * this_rq, as part of a balancing operation within domain "sd".
3363 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3364 *
3365 * Called with both runqueues locked.
3366 */
3367static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3368 unsigned long max_load_move,
dd41f596
IM
3369 struct sched_domain *sd, enum cpu_idle_type idle,
3370 int *all_pinned)
3371{
5522d5d5 3372 const struct sched_class *class = sched_class_highest;
43010659 3373 unsigned long total_load_moved = 0;
a4ac01c3 3374 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3375
3376 do {
43010659
PW
3377 total_load_moved +=
3378 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3379 max_load_move - total_load_moved,
a4ac01c3 3380 sd, idle, all_pinned, &this_best_prio);
dd41f596 3381 class = class->next;
c4acb2c0 3382
7e96fa58
GH
3383#ifdef CONFIG_PREEMPT
3384 /*
3385 * NEWIDLE balancing is a source of latency, so preemptible
3386 * kernels will stop after the first task is pulled to minimize
3387 * the critical section.
3388 */
c4acb2c0
GH
3389 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3390 break;
7e96fa58 3391#endif
43010659 3392 } while (class && max_load_move > total_load_moved);
dd41f596 3393
43010659
PW
3394 return total_load_moved > 0;
3395}
3396
e1d1484f
PW
3397static int
3398iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3399 struct sched_domain *sd, enum cpu_idle_type idle,
3400 struct rq_iterator *iterator)
3401{
3402 struct task_struct *p = iterator->start(iterator->arg);
3403 int pinned = 0;
3404
3405 while (p) {
3406 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3407 pull_task(busiest, p, this_rq, this_cpu);
3408 /*
3409 * Right now, this is only the second place pull_task()
3410 * is called, so we can safely collect pull_task()
3411 * stats here rather than inside pull_task().
3412 */
3413 schedstat_inc(sd, lb_gained[idle]);
3414
3415 return 1;
3416 }
3417 p = iterator->next(iterator->arg);
3418 }
3419
3420 return 0;
3421}
3422
43010659
PW
3423/*
3424 * move_one_task tries to move exactly one task from busiest to this_rq, as
3425 * part of active balancing operations within "domain".
3426 * Returns 1 if successful and 0 otherwise.
3427 *
3428 * Called with both runqueues locked.
3429 */
3430static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3431 struct sched_domain *sd, enum cpu_idle_type idle)
3432{
5522d5d5 3433 const struct sched_class *class;
43010659
PW
3434
3435 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3436 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3437 return 1;
3438
3439 return 0;
dd41f596 3440}
67bb6c03 3441/********** Helpers for find_busiest_group ************************/
1da177e4 3442/*
222d656d
GS
3443 * sd_lb_stats - Structure to store the statistics of a sched_domain
3444 * during load balancing.
1da177e4 3445 */
222d656d
GS
3446struct sd_lb_stats {
3447 struct sched_group *busiest; /* Busiest group in this sd */
3448 struct sched_group *this; /* Local group in this sd */
3449 unsigned long total_load; /* Total load of all groups in sd */
3450 unsigned long total_pwr; /* Total power of all groups in sd */
3451 unsigned long avg_load; /* Average load across all groups in sd */
3452
3453 /** Statistics of this group */
3454 unsigned long this_load;
3455 unsigned long this_load_per_task;
3456 unsigned long this_nr_running;
3457
3458 /* Statistics of the busiest group */
3459 unsigned long max_load;
3460 unsigned long busiest_load_per_task;
3461 unsigned long busiest_nr_running;
3462
3463 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3464#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3465 int power_savings_balance; /* Is powersave balance needed for this sd */
3466 struct sched_group *group_min; /* Least loaded group in sd */
3467 struct sched_group *group_leader; /* Group which relieves group_min */
3468 unsigned long min_load_per_task; /* load_per_task in group_min */
3469 unsigned long leader_nr_running; /* Nr running of group_leader */
3470 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3471#endif
222d656d 3472};
1da177e4 3473
d5ac537e 3474/*
381be78f
GS
3475 * sg_lb_stats - stats of a sched_group required for load_balancing
3476 */
3477struct sg_lb_stats {
3478 unsigned long avg_load; /*Avg load across the CPUs of the group */
3479 unsigned long group_load; /* Total load over the CPUs of the group */
3480 unsigned long sum_nr_running; /* Nr tasks running in the group */
3481 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3482 unsigned long group_capacity;
3483 int group_imb; /* Is there an imbalance in the group ? */
3484};
408ed066 3485
67bb6c03
GS
3486/**
3487 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3488 * @group: The group whose first cpu is to be returned.
3489 */
3490static inline unsigned int group_first_cpu(struct sched_group *group)
3491{
3492 return cpumask_first(sched_group_cpus(group));
3493}
3494
3495/**
3496 * get_sd_load_idx - Obtain the load index for a given sched domain.
3497 * @sd: The sched_domain whose load_idx is to be obtained.
3498 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3499 */
3500static inline int get_sd_load_idx(struct sched_domain *sd,
3501 enum cpu_idle_type idle)
3502{
3503 int load_idx;
3504
3505 switch (idle) {
3506 case CPU_NOT_IDLE:
7897986b 3507 load_idx = sd->busy_idx;
67bb6c03
GS
3508 break;
3509
3510 case CPU_NEWLY_IDLE:
7897986b 3511 load_idx = sd->newidle_idx;
67bb6c03
GS
3512 break;
3513 default:
7897986b 3514 load_idx = sd->idle_idx;
67bb6c03
GS
3515 break;
3516 }
1da177e4 3517
67bb6c03
GS
3518 return load_idx;
3519}
1da177e4 3520
1da177e4 3521
c071df18
GS
3522#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3523/**
3524 * init_sd_power_savings_stats - Initialize power savings statistics for
3525 * the given sched_domain, during load balancing.
3526 *
3527 * @sd: Sched domain whose power-savings statistics are to be initialized.
3528 * @sds: Variable containing the statistics for sd.
3529 * @idle: Idle status of the CPU at which we're performing load-balancing.
3530 */
3531static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3532 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3533{
3534 /*
3535 * Busy processors will not participate in power savings
3536 * balance.
3537 */
3538 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3539 sds->power_savings_balance = 0;
3540 else {
3541 sds->power_savings_balance = 1;
3542 sds->min_nr_running = ULONG_MAX;
3543 sds->leader_nr_running = 0;
3544 }
3545}
783609c6 3546
c071df18
GS
3547/**
3548 * update_sd_power_savings_stats - Update the power saving stats for a
3549 * sched_domain while performing load balancing.
3550 *
3551 * @group: sched_group belonging to the sched_domain under consideration.
3552 * @sds: Variable containing the statistics of the sched_domain
3553 * @local_group: Does group contain the CPU for which we're performing
3554 * load balancing ?
3555 * @sgs: Variable containing the statistics of the group.
3556 */
3557static inline void update_sd_power_savings_stats(struct sched_group *group,
3558 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3559{
408ed066 3560
c071df18
GS
3561 if (!sds->power_savings_balance)
3562 return;
1da177e4 3563
c071df18
GS
3564 /*
3565 * If the local group is idle or completely loaded
3566 * no need to do power savings balance at this domain
3567 */
3568 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3569 !sds->this_nr_running))
3570 sds->power_savings_balance = 0;
2dd73a4f 3571
c071df18
GS
3572 /*
3573 * If a group is already running at full capacity or idle,
3574 * don't include that group in power savings calculations
3575 */
3576 if (!sds->power_savings_balance ||
3577 sgs->sum_nr_running >= sgs->group_capacity ||
3578 !sgs->sum_nr_running)
3579 return;
5969fe06 3580
c071df18
GS
3581 /*
3582 * Calculate the group which has the least non-idle load.
3583 * This is the group from where we need to pick up the load
3584 * for saving power
3585 */
3586 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3587 (sgs->sum_nr_running == sds->min_nr_running &&
3588 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3589 sds->group_min = group;
3590 sds->min_nr_running = sgs->sum_nr_running;
3591 sds->min_load_per_task = sgs->sum_weighted_load /
3592 sgs->sum_nr_running;
3593 }
783609c6 3594
c071df18
GS
3595 /*
3596 * Calculate the group which is almost near its
3597 * capacity but still has some space to pick up some load
3598 * from other group and save more power
3599 */
3600 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3601 return;
1da177e4 3602
c071df18
GS
3603 if (sgs->sum_nr_running > sds->leader_nr_running ||
3604 (sgs->sum_nr_running == sds->leader_nr_running &&
3605 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3606 sds->group_leader = group;
3607 sds->leader_nr_running = sgs->sum_nr_running;
3608 }
3609}
408ed066 3610
c071df18 3611/**
d5ac537e 3612 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3613 * @sds: Variable containing the statistics of the sched_domain
3614 * under consideration.
3615 * @this_cpu: Cpu at which we're currently performing load-balancing.
3616 * @imbalance: Variable to store the imbalance.
3617 *
d5ac537e
RD
3618 * Description:
3619 * Check if we have potential to perform some power-savings balance.
3620 * If yes, set the busiest group to be the least loaded group in the
3621 * sched_domain, so that it's CPUs can be put to idle.
3622 *
c071df18
GS
3623 * Returns 1 if there is potential to perform power-savings balance.
3624 * Else returns 0.
3625 */
3626static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3627 int this_cpu, unsigned long *imbalance)
3628{
3629 if (!sds->power_savings_balance)
3630 return 0;
1da177e4 3631
c071df18
GS
3632 if (sds->this != sds->group_leader ||
3633 sds->group_leader == sds->group_min)
3634 return 0;
783609c6 3635
c071df18
GS
3636 *imbalance = sds->min_load_per_task;
3637 sds->busiest = sds->group_min;
1da177e4 3638
c071df18
GS
3639 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3640 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3641 group_first_cpu(sds->group_leader);
3642 }
3643
3644 return 1;
1da177e4 3645
c071df18
GS
3646}
3647#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3648static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3649 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3650{
3651 return;
3652}
408ed066 3653
c071df18
GS
3654static inline void update_sd_power_savings_stats(struct sched_group *group,
3655 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3656{
3657 return;
3658}
3659
3660static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3661 int this_cpu, unsigned long *imbalance)
3662{
3663 return 0;
3664}
3665#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3666
3667
1f8c553d
GS
3668/**
3669 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3670 * @group: sched_group whose statistics are to be updated.
3671 * @this_cpu: Cpu for which load balance is currently performed.
3672 * @idle: Idle status of this_cpu
3673 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3674 * @sd_idle: Idle status of the sched_domain containing group.
3675 * @local_group: Does group contain this_cpu.
3676 * @cpus: Set of cpus considered for load balancing.
3677 * @balance: Should we balance.
3678 * @sgs: variable to hold the statistics for this group.
3679 */
3680static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3681 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3682 int local_group, const struct cpumask *cpus,
3683 int *balance, struct sg_lb_stats *sgs)
3684{
3685 unsigned long load, max_cpu_load, min_cpu_load;
3686 int i;
3687 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3688 unsigned long sum_avg_load_per_task;
3689 unsigned long avg_load_per_task;
3690
3691 if (local_group)
3692 balance_cpu = group_first_cpu(group);
3693
3694 /* Tally up the load of all CPUs in the group */
3695 sum_avg_load_per_task = avg_load_per_task = 0;
3696 max_cpu_load = 0;
3697 min_cpu_load = ~0UL;
408ed066 3698
1f8c553d
GS
3699 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3700 struct rq *rq = cpu_rq(i);
908a7c1b 3701
1f8c553d
GS
3702 if (*sd_idle && rq->nr_running)
3703 *sd_idle = 0;
5c45bf27 3704
1f8c553d 3705 /* Bias balancing toward cpus of our domain */
1da177e4 3706 if (local_group) {
1f8c553d
GS
3707 if (idle_cpu(i) && !first_idle_cpu) {
3708 first_idle_cpu = 1;
3709 balance_cpu = i;
3710 }
3711
3712 load = target_load(i, load_idx);
3713 } else {
3714 load = source_load(i, load_idx);
3715 if (load > max_cpu_load)
3716 max_cpu_load = load;
3717 if (min_cpu_load > load)
3718 min_cpu_load = load;
1da177e4 3719 }
5c45bf27 3720
1f8c553d
GS
3721 sgs->group_load += load;
3722 sgs->sum_nr_running += rq->nr_running;
3723 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3724
1f8c553d
GS
3725 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3726 }
5c45bf27 3727
1f8c553d
GS
3728 /*
3729 * First idle cpu or the first cpu(busiest) in this sched group
3730 * is eligible for doing load balancing at this and above
3731 * domains. In the newly idle case, we will allow all the cpu's
3732 * to do the newly idle load balance.
3733 */
3734 if (idle != CPU_NEWLY_IDLE && local_group &&
3735 balance_cpu != this_cpu && balance) {
3736 *balance = 0;
3737 return;
3738 }
5c45bf27 3739
1f8c553d
GS
3740 /* Adjust by relative CPU power of the group */
3741 sgs->avg_load = sg_div_cpu_power(group,
3742 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3743
1f8c553d
GS
3744
3745 /*
3746 * Consider the group unbalanced when the imbalance is larger
3747 * than the average weight of two tasks.
3748 *
3749 * APZ: with cgroup the avg task weight can vary wildly and
3750 * might not be a suitable number - should we keep a
3751 * normalized nr_running number somewhere that negates
3752 * the hierarchy?
3753 */
3754 avg_load_per_task = sg_div_cpu_power(group,
3755 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3756
3757 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3758 sgs->group_imb = 1;
3759
3760 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3761
3762}
dd41f596 3763
37abe198
GS
3764/**
3765 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3766 * @sd: sched_domain whose statistics are to be updated.
3767 * @this_cpu: Cpu for which load balance is currently performed.
3768 * @idle: Idle status of this_cpu
3769 * @sd_idle: Idle status of the sched_domain containing group.
3770 * @cpus: Set of cpus considered for load balancing.
3771 * @balance: Should we balance.
3772 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3773 */
37abe198
GS
3774static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3775 enum cpu_idle_type idle, int *sd_idle,
3776 const struct cpumask *cpus, int *balance,
3777 struct sd_lb_stats *sds)
1da177e4 3778{
222d656d 3779 struct sched_group *group = sd->groups;
37abe198 3780 struct sg_lb_stats sgs;
222d656d
GS
3781 int load_idx;
3782
c071df18 3783 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3784 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3785
3786 do {
1da177e4 3787 int local_group;
1da177e4 3788
758b2cdc
RR
3789 local_group = cpumask_test_cpu(this_cpu,
3790 sched_group_cpus(group));
381be78f 3791 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3792 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3793 local_group, cpus, balance, &sgs);
1da177e4 3794
37abe198
GS
3795 if (local_group && balance && !(*balance))
3796 return;
783609c6 3797
37abe198
GS
3798 sds->total_load += sgs.group_load;
3799 sds->total_pwr += group->__cpu_power;
1da177e4 3800
1da177e4 3801 if (local_group) {
37abe198
GS
3802 sds->this_load = sgs.avg_load;
3803 sds->this = group;
3804 sds->this_nr_running = sgs.sum_nr_running;
3805 sds->this_load_per_task = sgs.sum_weighted_load;
3806 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3807 (sgs.sum_nr_running > sgs.group_capacity ||
3808 sgs.group_imb)) {
37abe198
GS
3809 sds->max_load = sgs.avg_load;
3810 sds->busiest = group;
3811 sds->busiest_nr_running = sgs.sum_nr_running;
3812 sds->busiest_load_per_task = sgs.sum_weighted_load;
3813 sds->group_imb = sgs.group_imb;
48f24c4d 3814 }
5c45bf27 3815
c071df18 3816 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3817 group = group->next;
3818 } while (group != sd->groups);
3819
37abe198 3820}
1da177e4 3821
2e6f44ae
GS
3822/**
3823 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3824 * amongst the groups of a sched_domain, during
3825 * load balancing.
2e6f44ae
GS
3826 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3827 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3828 * @imbalance: Variable to store the imbalance.
3829 */
3830static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3831 int this_cpu, unsigned long *imbalance)
3832{
3833 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3834 unsigned int imbn = 2;
3835
3836 if (sds->this_nr_running) {
3837 sds->this_load_per_task /= sds->this_nr_running;
3838 if (sds->busiest_load_per_task >
3839 sds->this_load_per_task)
3840 imbn = 1;
3841 } else
3842 sds->this_load_per_task =
3843 cpu_avg_load_per_task(this_cpu);
1da177e4 3844
2e6f44ae
GS
3845 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3846 sds->busiest_load_per_task * imbn) {
3847 *imbalance = sds->busiest_load_per_task;
3848 return;
3849 }
908a7c1b 3850
1da177e4 3851 /*
2e6f44ae
GS
3852 * OK, we don't have enough imbalance to justify moving tasks,
3853 * however we may be able to increase total CPU power used by
3854 * moving them.
1da177e4 3855 */
2dd73a4f 3856
2e6f44ae
GS
3857 pwr_now += sds->busiest->__cpu_power *
3858 min(sds->busiest_load_per_task, sds->max_load);
3859 pwr_now += sds->this->__cpu_power *
3860 min(sds->this_load_per_task, sds->this_load);
3861 pwr_now /= SCHED_LOAD_SCALE;
3862
3863 /* Amount of load we'd subtract */
3864 tmp = sg_div_cpu_power(sds->busiest,
3865 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3866 if (sds->max_load > tmp)
3867 pwr_move += sds->busiest->__cpu_power *
3868 min(sds->busiest_load_per_task, sds->max_load - tmp);
3869
3870 /* Amount of load we'd add */
3871 if (sds->max_load * sds->busiest->__cpu_power <
3872 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3873 tmp = sg_div_cpu_power(sds->this,
3874 sds->max_load * sds->busiest->__cpu_power);
3875 else
3876 tmp = sg_div_cpu_power(sds->this,
3877 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3878 pwr_move += sds->this->__cpu_power *
3879 min(sds->this_load_per_task, sds->this_load + tmp);
3880 pwr_move /= SCHED_LOAD_SCALE;
3881
3882 /* Move if we gain throughput */
3883 if (pwr_move > pwr_now)
3884 *imbalance = sds->busiest_load_per_task;
3885}
dbc523a3
GS
3886
3887/**
3888 * calculate_imbalance - Calculate the amount of imbalance present within the
3889 * groups of a given sched_domain during load balance.
3890 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3891 * @this_cpu: Cpu for which currently load balance is being performed.
3892 * @imbalance: The variable to store the imbalance.
3893 */
3894static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3895 unsigned long *imbalance)
3896{
3897 unsigned long max_pull;
2dd73a4f
PW
3898 /*
3899 * In the presence of smp nice balancing, certain scenarios can have
3900 * max load less than avg load(as we skip the groups at or below
3901 * its cpu_power, while calculating max_load..)
3902 */
dbc523a3 3903 if (sds->max_load < sds->avg_load) {
2dd73a4f 3904 *imbalance = 0;
dbc523a3 3905 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3906 }
0c117f1b
SS
3907
3908 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3909 max_pull = min(sds->max_load - sds->avg_load,
3910 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3911
1da177e4 3912 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3913 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3914 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3915 / SCHED_LOAD_SCALE;
3916
2dd73a4f
PW
3917 /*
3918 * if *imbalance is less than the average load per runnable task
3919 * there is no gaurantee that any tasks will be moved so we'll have
3920 * a think about bumping its value to force at least one task to be
3921 * moved
3922 */
dbc523a3
GS
3923 if (*imbalance < sds->busiest_load_per_task)
3924 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3925
dbc523a3 3926}
37abe198 3927/******* find_busiest_group() helpers end here *********************/
1da177e4 3928
b7bb4c9b
GS
3929/**
3930 * find_busiest_group - Returns the busiest group within the sched_domain
3931 * if there is an imbalance. If there isn't an imbalance, and
3932 * the user has opted for power-savings, it returns a group whose
3933 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3934 * such a group exists.
3935 *
3936 * Also calculates the amount of weighted load which should be moved
3937 * to restore balance.
3938 *
3939 * @sd: The sched_domain whose busiest group is to be returned.
3940 * @this_cpu: The cpu for which load balancing is currently being performed.
3941 * @imbalance: Variable which stores amount of weighted load which should
3942 * be moved to restore balance/put a group to idle.
3943 * @idle: The idle status of this_cpu.
3944 * @sd_idle: The idleness of sd
3945 * @cpus: The set of CPUs under consideration for load-balancing.
3946 * @balance: Pointer to a variable indicating if this_cpu
3947 * is the appropriate cpu to perform load balancing at this_level.
3948 *
3949 * Returns: - the busiest group if imbalance exists.
3950 * - If no imbalance and user has opted for power-savings balance,
3951 * return the least loaded group whose CPUs can be
3952 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3953 */
3954static struct sched_group *
3955find_busiest_group(struct sched_domain *sd, int this_cpu,
3956 unsigned long *imbalance, enum cpu_idle_type idle,
3957 int *sd_idle, const struct cpumask *cpus, int *balance)
3958{
3959 struct sd_lb_stats sds;
1da177e4 3960
37abe198 3961 memset(&sds, 0, sizeof(sds));
1da177e4 3962
37abe198
GS
3963 /*
3964 * Compute the various statistics relavent for load balancing at
3965 * this level.
3966 */
3967 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3968 balance, &sds);
3969
b7bb4c9b
GS
3970 /* Cases where imbalance does not exist from POV of this_cpu */
3971 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3972 * at this level.
3973 * 2) There is no busy sibling group to pull from.
3974 * 3) This group is the busiest group.
3975 * 4) This group is more busy than the avg busieness at this
3976 * sched_domain.
3977 * 5) The imbalance is within the specified limit.
3978 * 6) Any rebalance would lead to ping-pong
3979 */
37abe198
GS
3980 if (balance && !(*balance))
3981 goto ret;
1da177e4 3982
b7bb4c9b
GS
3983 if (!sds.busiest || sds.busiest_nr_running == 0)
3984 goto out_balanced;
1da177e4 3985
b7bb4c9b 3986 if (sds.this_load >= sds.max_load)
1da177e4 3987 goto out_balanced;
1da177e4 3988
222d656d 3989 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3990
b7bb4c9b
GS
3991 if (sds.this_load >= sds.avg_load)
3992 goto out_balanced;
3993
3994 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3995 goto out_balanced;
3996
222d656d
GS
3997 sds.busiest_load_per_task /= sds.busiest_nr_running;
3998 if (sds.group_imb)
3999 sds.busiest_load_per_task =
4000 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4001
1da177e4
LT
4002 /*
4003 * We're trying to get all the cpus to the average_load, so we don't
4004 * want to push ourselves above the average load, nor do we wish to
4005 * reduce the max loaded cpu below the average load, as either of these
4006 * actions would just result in more rebalancing later, and ping-pong
4007 * tasks around. Thus we look for the minimum possible imbalance.
4008 * Negative imbalances (*we* are more loaded than anyone else) will
4009 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4010 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4011 * appear as very large values with unsigned longs.
4012 */
222d656d 4013 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4014 goto out_balanced;
4015
dbc523a3
GS
4016 /* Looks like there is an imbalance. Compute it */
4017 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4018 return sds.busiest;
1da177e4
LT
4019
4020out_balanced:
c071df18
GS
4021 /*
4022 * There is no obvious imbalance. But check if we can do some balancing
4023 * to save power.
4024 */
4025 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4026 return sds.busiest;
783609c6 4027ret:
1da177e4
LT
4028 *imbalance = 0;
4029 return NULL;
4030}
4031
4032/*
4033 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4034 */
70b97a7f 4035static struct rq *
d15bcfdb 4036find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4037 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4038{
70b97a7f 4039 struct rq *busiest = NULL, *rq;
2dd73a4f 4040 unsigned long max_load = 0;
1da177e4
LT
4041 int i;
4042
758b2cdc 4043 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 4044 unsigned long wl;
0a2966b4 4045
96f874e2 4046 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4047 continue;
4048
48f24c4d 4049 rq = cpu_rq(i);
dd41f596 4050 wl = weighted_cpuload(i);
2dd73a4f 4051
dd41f596 4052 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4053 continue;
1da177e4 4054
dd41f596
IM
4055 if (wl > max_load) {
4056 max_load = wl;
48f24c4d 4057 busiest = rq;
1da177e4
LT
4058 }
4059 }
4060
4061 return busiest;
4062}
4063
77391d71
NP
4064/*
4065 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4066 * so long as it is large enough.
4067 */
4068#define MAX_PINNED_INTERVAL 512
4069
df7c8e84
RR
4070/* Working cpumask for load_balance and load_balance_newidle. */
4071static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4072
1da177e4
LT
4073/*
4074 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4075 * tasks if there is an imbalance.
1da177e4 4076 */
70b97a7f 4077static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4078 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4079 int *balance)
1da177e4 4080{
43010659 4081 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4082 struct sched_group *group;
1da177e4 4083 unsigned long imbalance;
70b97a7f 4084 struct rq *busiest;
fe2eea3f 4085 unsigned long flags;
df7c8e84 4086 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4087
96f874e2 4088 cpumask_setall(cpus);
7c16ec58 4089
89c4710e
SS
4090 /*
4091 * When power savings policy is enabled for the parent domain, idle
4092 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4093 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4094 * portraying it as CPU_NOT_IDLE.
89c4710e 4095 */
d15bcfdb 4096 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4097 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4098 sd_idle = 1;
1da177e4 4099
2d72376b 4100 schedstat_inc(sd, lb_count[idle]);
1da177e4 4101
0a2966b4 4102redo:
c8cba857 4103 update_shares(sd);
0a2966b4 4104 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4105 cpus, balance);
783609c6 4106
06066714 4107 if (*balance == 0)
783609c6 4108 goto out_balanced;
783609c6 4109
1da177e4
LT
4110 if (!group) {
4111 schedstat_inc(sd, lb_nobusyg[idle]);
4112 goto out_balanced;
4113 }
4114
7c16ec58 4115 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4116 if (!busiest) {
4117 schedstat_inc(sd, lb_nobusyq[idle]);
4118 goto out_balanced;
4119 }
4120
db935dbd 4121 BUG_ON(busiest == this_rq);
1da177e4
LT
4122
4123 schedstat_add(sd, lb_imbalance[idle], imbalance);
4124
43010659 4125 ld_moved = 0;
1da177e4
LT
4126 if (busiest->nr_running > 1) {
4127 /*
4128 * Attempt to move tasks. If find_busiest_group has found
4129 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4130 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4131 * correctly treated as an imbalance.
4132 */
fe2eea3f 4133 local_irq_save(flags);
e17224bf 4134 double_rq_lock(this_rq, busiest);
43010659 4135 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4136 imbalance, sd, idle, &all_pinned);
e17224bf 4137 double_rq_unlock(this_rq, busiest);
fe2eea3f 4138 local_irq_restore(flags);
81026794 4139
46cb4b7c
SS
4140 /*
4141 * some other cpu did the load balance for us.
4142 */
43010659 4143 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4144 resched_cpu(this_cpu);
4145
81026794 4146 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4147 if (unlikely(all_pinned)) {
96f874e2
RR
4148 cpumask_clear_cpu(cpu_of(busiest), cpus);
4149 if (!cpumask_empty(cpus))
0a2966b4 4150 goto redo;
81026794 4151 goto out_balanced;
0a2966b4 4152 }
1da177e4 4153 }
81026794 4154
43010659 4155 if (!ld_moved) {
1da177e4
LT
4156 schedstat_inc(sd, lb_failed[idle]);
4157 sd->nr_balance_failed++;
4158
4159 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4160
fe2eea3f 4161 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4162
4163 /* don't kick the migration_thread, if the curr
4164 * task on busiest cpu can't be moved to this_cpu
4165 */
96f874e2
RR
4166 if (!cpumask_test_cpu(this_cpu,
4167 &busiest->curr->cpus_allowed)) {
fe2eea3f 4168 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4169 all_pinned = 1;
4170 goto out_one_pinned;
4171 }
4172
1da177e4
LT
4173 if (!busiest->active_balance) {
4174 busiest->active_balance = 1;
4175 busiest->push_cpu = this_cpu;
81026794 4176 active_balance = 1;
1da177e4 4177 }
fe2eea3f 4178 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4179 if (active_balance)
1da177e4
LT
4180 wake_up_process(busiest->migration_thread);
4181
4182 /*
4183 * We've kicked active balancing, reset the failure
4184 * counter.
4185 */
39507451 4186 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4187 }
81026794 4188 } else
1da177e4
LT
4189 sd->nr_balance_failed = 0;
4190
81026794 4191 if (likely(!active_balance)) {
1da177e4
LT
4192 /* We were unbalanced, so reset the balancing interval */
4193 sd->balance_interval = sd->min_interval;
81026794
NP
4194 } else {
4195 /*
4196 * If we've begun active balancing, start to back off. This
4197 * case may not be covered by the all_pinned logic if there
4198 * is only 1 task on the busy runqueue (because we don't call
4199 * move_tasks).
4200 */
4201 if (sd->balance_interval < sd->max_interval)
4202 sd->balance_interval *= 2;
1da177e4
LT
4203 }
4204
43010659 4205 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4206 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4207 ld_moved = -1;
4208
4209 goto out;
1da177e4
LT
4210
4211out_balanced:
1da177e4
LT
4212 schedstat_inc(sd, lb_balanced[idle]);
4213
16cfb1c0 4214 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4215
4216out_one_pinned:
1da177e4 4217 /* tune up the balancing interval */
77391d71
NP
4218 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4219 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4220 sd->balance_interval *= 2;
4221
48f24c4d 4222 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4223 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4224 ld_moved = -1;
4225 else
4226 ld_moved = 0;
4227out:
c8cba857
PZ
4228 if (ld_moved)
4229 update_shares(sd);
c09595f6 4230 return ld_moved;
1da177e4
LT
4231}
4232
4233/*
4234 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4235 * tasks if there is an imbalance.
4236 *
d15bcfdb 4237 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4238 * this_rq is locked.
4239 */
48f24c4d 4240static int
df7c8e84 4241load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4242{
4243 struct sched_group *group;
70b97a7f 4244 struct rq *busiest = NULL;
1da177e4 4245 unsigned long imbalance;
43010659 4246 int ld_moved = 0;
5969fe06 4247 int sd_idle = 0;
969bb4e4 4248 int all_pinned = 0;
df7c8e84 4249 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4250
96f874e2 4251 cpumask_setall(cpus);
5969fe06 4252
89c4710e
SS
4253 /*
4254 * When power savings policy is enabled for the parent domain, idle
4255 * sibling can pick up load irrespective of busy siblings. In this case,
4256 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4257 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4258 */
4259 if (sd->flags & SD_SHARE_CPUPOWER &&
4260 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4261 sd_idle = 1;
1da177e4 4262
2d72376b 4263 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4264redo:
3e5459b4 4265 update_shares_locked(this_rq, sd);
d15bcfdb 4266 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4267 &sd_idle, cpus, NULL);
1da177e4 4268 if (!group) {
d15bcfdb 4269 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4270 goto out_balanced;
1da177e4
LT
4271 }
4272
7c16ec58 4273 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4274 if (!busiest) {
d15bcfdb 4275 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4276 goto out_balanced;
1da177e4
LT
4277 }
4278
db935dbd
NP
4279 BUG_ON(busiest == this_rq);
4280
d15bcfdb 4281 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4282
43010659 4283 ld_moved = 0;
d6d5cfaf
NP
4284 if (busiest->nr_running > 1) {
4285 /* Attempt to move tasks */
4286 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4287 /* this_rq->clock is already updated */
4288 update_rq_clock(busiest);
43010659 4289 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4290 imbalance, sd, CPU_NEWLY_IDLE,
4291 &all_pinned);
1b12bbc7 4292 double_unlock_balance(this_rq, busiest);
0a2966b4 4293
969bb4e4 4294 if (unlikely(all_pinned)) {
96f874e2
RR
4295 cpumask_clear_cpu(cpu_of(busiest), cpus);
4296 if (!cpumask_empty(cpus))
0a2966b4
CL
4297 goto redo;
4298 }
d6d5cfaf
NP
4299 }
4300
43010659 4301 if (!ld_moved) {
36dffab6 4302 int active_balance = 0;
ad273b32 4303
d15bcfdb 4304 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4305 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4306 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4307 return -1;
ad273b32
VS
4308
4309 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4310 return -1;
4311
4312 if (sd->nr_balance_failed++ < 2)
4313 return -1;
4314
4315 /*
4316 * The only task running in a non-idle cpu can be moved to this
4317 * cpu in an attempt to completely freeup the other CPU
4318 * package. The same method used to move task in load_balance()
4319 * have been extended for load_balance_newidle() to speedup
4320 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4321 *
4322 * The package power saving logic comes from
4323 * find_busiest_group(). If there are no imbalance, then
4324 * f_b_g() will return NULL. However when sched_mc={1,2} then
4325 * f_b_g() will select a group from which a running task may be
4326 * pulled to this cpu in order to make the other package idle.
4327 * If there is no opportunity to make a package idle and if
4328 * there are no imbalance, then f_b_g() will return NULL and no
4329 * action will be taken in load_balance_newidle().
4330 *
4331 * Under normal task pull operation due to imbalance, there
4332 * will be more than one task in the source run queue and
4333 * move_tasks() will succeed. ld_moved will be true and this
4334 * active balance code will not be triggered.
4335 */
4336
4337 /* Lock busiest in correct order while this_rq is held */
4338 double_lock_balance(this_rq, busiest);
4339
4340 /*
4341 * don't kick the migration_thread, if the curr
4342 * task on busiest cpu can't be moved to this_cpu
4343 */
6ca09dfc 4344 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4345 double_unlock_balance(this_rq, busiest);
4346 all_pinned = 1;
4347 return ld_moved;
4348 }
4349
4350 if (!busiest->active_balance) {
4351 busiest->active_balance = 1;
4352 busiest->push_cpu = this_cpu;
4353 active_balance = 1;
4354 }
4355
4356 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4357 /*
4358 * Should not call ttwu while holding a rq->lock
4359 */
4360 spin_unlock(&this_rq->lock);
ad273b32
VS
4361 if (active_balance)
4362 wake_up_process(busiest->migration_thread);
da8d5089 4363 spin_lock(&this_rq->lock);
ad273b32 4364
5969fe06 4365 } else
16cfb1c0 4366 sd->nr_balance_failed = 0;
1da177e4 4367
3e5459b4 4368 update_shares_locked(this_rq, sd);
43010659 4369 return ld_moved;
16cfb1c0
NP
4370
4371out_balanced:
d15bcfdb 4372 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4373 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4374 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4375 return -1;
16cfb1c0 4376 sd->nr_balance_failed = 0;
48f24c4d 4377
16cfb1c0 4378 return 0;
1da177e4
LT
4379}
4380
4381/*
4382 * idle_balance is called by schedule() if this_cpu is about to become
4383 * idle. Attempts to pull tasks from other CPUs.
4384 */
70b97a7f 4385static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4386{
4387 struct sched_domain *sd;
efbe027e 4388 int pulled_task = 0;
dd41f596 4389 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4390
4391 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4392 unsigned long interval;
4393
4394 if (!(sd->flags & SD_LOAD_BALANCE))
4395 continue;
4396
4397 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4398 /* If we've pulled tasks over stop searching: */
7c16ec58 4399 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4400 sd);
92c4ca5c
CL
4401
4402 interval = msecs_to_jiffies(sd->balance_interval);
4403 if (time_after(next_balance, sd->last_balance + interval))
4404 next_balance = sd->last_balance + interval;
4405 if (pulled_task)
4406 break;
1da177e4 4407 }
dd41f596 4408 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4409 /*
4410 * We are going idle. next_balance may be set based on
4411 * a busy processor. So reset next_balance.
4412 */
4413 this_rq->next_balance = next_balance;
dd41f596 4414 }
1da177e4
LT
4415}
4416
4417/*
4418 * active_load_balance is run by migration threads. It pushes running tasks
4419 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4420 * running on each physical CPU where possible, and avoids physical /
4421 * logical imbalances.
4422 *
4423 * Called with busiest_rq locked.
4424 */
70b97a7f 4425static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4426{
39507451 4427 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4428 struct sched_domain *sd;
4429 struct rq *target_rq;
39507451 4430
48f24c4d 4431 /* Is there any task to move? */
39507451 4432 if (busiest_rq->nr_running <= 1)
39507451
NP
4433 return;
4434
4435 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4436
4437 /*
39507451 4438 * This condition is "impossible", if it occurs
41a2d6cf 4439 * we need to fix it. Originally reported by
39507451 4440 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4441 */
39507451 4442 BUG_ON(busiest_rq == target_rq);
1da177e4 4443
39507451
NP
4444 /* move a task from busiest_rq to target_rq */
4445 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4446 update_rq_clock(busiest_rq);
4447 update_rq_clock(target_rq);
39507451
NP
4448
4449 /* Search for an sd spanning us and the target CPU. */
c96d145e 4450 for_each_domain(target_cpu, sd) {
39507451 4451 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4452 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4453 break;
c96d145e 4454 }
39507451 4455
48f24c4d 4456 if (likely(sd)) {
2d72376b 4457 schedstat_inc(sd, alb_count);
39507451 4458
43010659
PW
4459 if (move_one_task(target_rq, target_cpu, busiest_rq,
4460 sd, CPU_IDLE))
48f24c4d
IM
4461 schedstat_inc(sd, alb_pushed);
4462 else
4463 schedstat_inc(sd, alb_failed);
4464 }
1b12bbc7 4465 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4466}
4467
46cb4b7c
SS
4468#ifdef CONFIG_NO_HZ
4469static struct {
4470 atomic_t load_balancer;
7d1e6a9b 4471 cpumask_var_t cpu_mask;
f711f609 4472 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4473} nohz ____cacheline_aligned = {
4474 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4475};
4476
eea08f32
AB
4477int get_nohz_load_balancer(void)
4478{
4479 return atomic_read(&nohz.load_balancer);
4480}
4481
f711f609
GS
4482#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4483/**
4484 * lowest_flag_domain - Return lowest sched_domain containing flag.
4485 * @cpu: The cpu whose lowest level of sched domain is to
4486 * be returned.
4487 * @flag: The flag to check for the lowest sched_domain
4488 * for the given cpu.
4489 *
4490 * Returns the lowest sched_domain of a cpu which contains the given flag.
4491 */
4492static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4493{
4494 struct sched_domain *sd;
4495
4496 for_each_domain(cpu, sd)
4497 if (sd && (sd->flags & flag))
4498 break;
4499
4500 return sd;
4501}
4502
4503/**
4504 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4505 * @cpu: The cpu whose domains we're iterating over.
4506 * @sd: variable holding the value of the power_savings_sd
4507 * for cpu.
4508 * @flag: The flag to filter the sched_domains to be iterated.
4509 *
4510 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4511 * set, starting from the lowest sched_domain to the highest.
4512 */
4513#define for_each_flag_domain(cpu, sd, flag) \
4514 for (sd = lowest_flag_domain(cpu, flag); \
4515 (sd && (sd->flags & flag)); sd = sd->parent)
4516
4517/**
4518 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4519 * @ilb_group: group to be checked for semi-idleness
4520 *
4521 * Returns: 1 if the group is semi-idle. 0 otherwise.
4522 *
4523 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4524 * and atleast one non-idle CPU. This helper function checks if the given
4525 * sched_group is semi-idle or not.
4526 */
4527static inline int is_semi_idle_group(struct sched_group *ilb_group)
4528{
4529 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4530 sched_group_cpus(ilb_group));
4531
4532 /*
4533 * A sched_group is semi-idle when it has atleast one busy cpu
4534 * and atleast one idle cpu.
4535 */
4536 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4537 return 0;
4538
4539 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4540 return 0;
4541
4542 return 1;
4543}
4544/**
4545 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4546 * @cpu: The cpu which is nominating a new idle_load_balancer.
4547 *
4548 * Returns: Returns the id of the idle load balancer if it exists,
4549 * Else, returns >= nr_cpu_ids.
4550 *
4551 * This algorithm picks the idle load balancer such that it belongs to a
4552 * semi-idle powersavings sched_domain. The idea is to try and avoid
4553 * completely idle packages/cores just for the purpose of idle load balancing
4554 * when there are other idle cpu's which are better suited for that job.
4555 */
4556static int find_new_ilb(int cpu)
4557{
4558 struct sched_domain *sd;
4559 struct sched_group *ilb_group;
4560
4561 /*
4562 * Have idle load balancer selection from semi-idle packages only
4563 * when power-aware load balancing is enabled
4564 */
4565 if (!(sched_smt_power_savings || sched_mc_power_savings))
4566 goto out_done;
4567
4568 /*
4569 * Optimize for the case when we have no idle CPUs or only one
4570 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4571 */
4572 if (cpumask_weight(nohz.cpu_mask) < 2)
4573 goto out_done;
4574
4575 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4576 ilb_group = sd->groups;
4577
4578 do {
4579 if (is_semi_idle_group(ilb_group))
4580 return cpumask_first(nohz.ilb_grp_nohz_mask);
4581
4582 ilb_group = ilb_group->next;
4583
4584 } while (ilb_group != sd->groups);
4585 }
4586
4587out_done:
4588 return cpumask_first(nohz.cpu_mask);
4589}
4590#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4591static inline int find_new_ilb(int call_cpu)
4592{
6e29ec57 4593 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4594}
4595#endif
4596
7835b98b 4597/*
46cb4b7c
SS
4598 * This routine will try to nominate the ilb (idle load balancing)
4599 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4600 * load balancing on behalf of all those cpus. If all the cpus in the system
4601 * go into this tickless mode, then there will be no ilb owner (as there is
4602 * no need for one) and all the cpus will sleep till the next wakeup event
4603 * arrives...
4604 *
4605 * For the ilb owner, tick is not stopped. And this tick will be used
4606 * for idle load balancing. ilb owner will still be part of
4607 * nohz.cpu_mask..
7835b98b 4608 *
46cb4b7c
SS
4609 * While stopping the tick, this cpu will become the ilb owner if there
4610 * is no other owner. And will be the owner till that cpu becomes busy
4611 * or if all cpus in the system stop their ticks at which point
4612 * there is no need for ilb owner.
4613 *
4614 * When the ilb owner becomes busy, it nominates another owner, during the
4615 * next busy scheduler_tick()
4616 */
4617int select_nohz_load_balancer(int stop_tick)
4618{
4619 int cpu = smp_processor_id();
4620
4621 if (stop_tick) {
46cb4b7c
SS
4622 cpu_rq(cpu)->in_nohz_recently = 1;
4623
483b4ee6
SS
4624 if (!cpu_active(cpu)) {
4625 if (atomic_read(&nohz.load_balancer) != cpu)
4626 return 0;
4627
4628 /*
4629 * If we are going offline and still the leader,
4630 * give up!
4631 */
46cb4b7c
SS
4632 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4633 BUG();
483b4ee6 4634
46cb4b7c
SS
4635 return 0;
4636 }
4637
483b4ee6
SS
4638 cpumask_set_cpu(cpu, nohz.cpu_mask);
4639
46cb4b7c 4640 /* time for ilb owner also to sleep */
7d1e6a9b 4641 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4642 if (atomic_read(&nohz.load_balancer) == cpu)
4643 atomic_set(&nohz.load_balancer, -1);
4644 return 0;
4645 }
4646
4647 if (atomic_read(&nohz.load_balancer) == -1) {
4648 /* make me the ilb owner */
4649 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4650 return 1;
e790fb0b
GS
4651 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4652 int new_ilb;
4653
4654 if (!(sched_smt_power_savings ||
4655 sched_mc_power_savings))
4656 return 1;
4657 /*
4658 * Check to see if there is a more power-efficient
4659 * ilb.
4660 */
4661 new_ilb = find_new_ilb(cpu);
4662 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4663 atomic_set(&nohz.load_balancer, -1);
4664 resched_cpu(new_ilb);
4665 return 0;
4666 }
46cb4b7c 4667 return 1;
e790fb0b 4668 }
46cb4b7c 4669 } else {
7d1e6a9b 4670 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4671 return 0;
4672
7d1e6a9b 4673 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4674
4675 if (atomic_read(&nohz.load_balancer) == cpu)
4676 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4677 BUG();
4678 }
4679 return 0;
4680}
4681#endif
4682
4683static DEFINE_SPINLOCK(balancing);
4684
4685/*
7835b98b
CL
4686 * It checks each scheduling domain to see if it is due to be balanced,
4687 * and initiates a balancing operation if so.
4688 *
4689 * Balancing parameters are set up in arch_init_sched_domains.
4690 */
a9957449 4691static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4692{
46cb4b7c
SS
4693 int balance = 1;
4694 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4695 unsigned long interval;
4696 struct sched_domain *sd;
46cb4b7c 4697 /* Earliest time when we have to do rebalance again */
c9819f45 4698 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4699 int update_next_balance = 0;
d07355f5 4700 int need_serialize;
1da177e4 4701
46cb4b7c 4702 for_each_domain(cpu, sd) {
1da177e4
LT
4703 if (!(sd->flags & SD_LOAD_BALANCE))
4704 continue;
4705
4706 interval = sd->balance_interval;
d15bcfdb 4707 if (idle != CPU_IDLE)
1da177e4
LT
4708 interval *= sd->busy_factor;
4709
4710 /* scale ms to jiffies */
4711 interval = msecs_to_jiffies(interval);
4712 if (unlikely(!interval))
4713 interval = 1;
dd41f596
IM
4714 if (interval > HZ*NR_CPUS/10)
4715 interval = HZ*NR_CPUS/10;
4716
d07355f5 4717 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4718
d07355f5 4719 if (need_serialize) {
08c183f3
CL
4720 if (!spin_trylock(&balancing))
4721 goto out;
4722 }
4723
c9819f45 4724 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4725 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4726 /*
4727 * We've pulled tasks over so either we're no
5969fe06
NP
4728 * longer idle, or one of our SMT siblings is
4729 * not idle.
4730 */
d15bcfdb 4731 idle = CPU_NOT_IDLE;
1da177e4 4732 }
1bd77f2d 4733 sd->last_balance = jiffies;
1da177e4 4734 }
d07355f5 4735 if (need_serialize)
08c183f3
CL
4736 spin_unlock(&balancing);
4737out:
f549da84 4738 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4739 next_balance = sd->last_balance + interval;
f549da84
SS
4740 update_next_balance = 1;
4741 }
783609c6
SS
4742
4743 /*
4744 * Stop the load balance at this level. There is another
4745 * CPU in our sched group which is doing load balancing more
4746 * actively.
4747 */
4748 if (!balance)
4749 break;
1da177e4 4750 }
f549da84
SS
4751
4752 /*
4753 * next_balance will be updated only when there is a need.
4754 * When the cpu is attached to null domain for ex, it will not be
4755 * updated.
4756 */
4757 if (likely(update_next_balance))
4758 rq->next_balance = next_balance;
46cb4b7c
SS
4759}
4760
4761/*
4762 * run_rebalance_domains is triggered when needed from the scheduler tick.
4763 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4764 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4765 */
4766static void run_rebalance_domains(struct softirq_action *h)
4767{
dd41f596
IM
4768 int this_cpu = smp_processor_id();
4769 struct rq *this_rq = cpu_rq(this_cpu);
4770 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4771 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4772
dd41f596 4773 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4774
4775#ifdef CONFIG_NO_HZ
4776 /*
4777 * If this cpu is the owner for idle load balancing, then do the
4778 * balancing on behalf of the other idle cpus whose ticks are
4779 * stopped.
4780 */
dd41f596
IM
4781 if (this_rq->idle_at_tick &&
4782 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4783 struct rq *rq;
4784 int balance_cpu;
4785
7d1e6a9b
RR
4786 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4787 if (balance_cpu == this_cpu)
4788 continue;
4789
46cb4b7c
SS
4790 /*
4791 * If this cpu gets work to do, stop the load balancing
4792 * work being done for other cpus. Next load
4793 * balancing owner will pick it up.
4794 */
4795 if (need_resched())
4796 break;
4797
de0cf899 4798 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4799
4800 rq = cpu_rq(balance_cpu);
dd41f596
IM
4801 if (time_after(this_rq->next_balance, rq->next_balance))
4802 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4803 }
4804 }
4805#endif
4806}
4807
8a0be9ef
FW
4808static inline int on_null_domain(int cpu)
4809{
4810 return !rcu_dereference(cpu_rq(cpu)->sd);
4811}
4812
46cb4b7c
SS
4813/*
4814 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4815 *
4816 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4817 * idle load balancing owner or decide to stop the periodic load balancing,
4818 * if the whole system is idle.
4819 */
dd41f596 4820static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4821{
46cb4b7c
SS
4822#ifdef CONFIG_NO_HZ
4823 /*
4824 * If we were in the nohz mode recently and busy at the current
4825 * scheduler tick, then check if we need to nominate new idle
4826 * load balancer.
4827 */
4828 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4829 rq->in_nohz_recently = 0;
4830
4831 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4832 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4833 atomic_set(&nohz.load_balancer, -1);
4834 }
4835
4836 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4837 int ilb = find_new_ilb(cpu);
46cb4b7c 4838
434d53b0 4839 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4840 resched_cpu(ilb);
4841 }
4842 }
4843
4844 /*
4845 * If this cpu is idle and doing idle load balancing for all the
4846 * cpus with ticks stopped, is it time for that to stop?
4847 */
4848 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4849 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4850 resched_cpu(cpu);
4851 return;
4852 }
4853
4854 /*
4855 * If this cpu is idle and the idle load balancing is done by
4856 * someone else, then no need raise the SCHED_SOFTIRQ
4857 */
4858 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4859 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4860 return;
4861#endif
8a0be9ef
FW
4862 /* Don't need to rebalance while attached to NULL domain */
4863 if (time_after_eq(jiffies, rq->next_balance) &&
4864 likely(!on_null_domain(cpu)))
46cb4b7c 4865 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4866}
dd41f596
IM
4867
4868#else /* CONFIG_SMP */
4869
1da177e4
LT
4870/*
4871 * on UP we do not need to balance between CPUs:
4872 */
70b97a7f 4873static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4874{
4875}
dd41f596 4876
1da177e4
LT
4877#endif
4878
1da177e4
LT
4879DEFINE_PER_CPU(struct kernel_stat, kstat);
4880
4881EXPORT_PER_CPU_SYMBOL(kstat);
4882
4883/*
c5f8d995 4884 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4885 * @p in case that task is currently running.
c5f8d995
HS
4886 *
4887 * Called with task_rq_lock() held on @rq.
1da177e4 4888 */
c5f8d995
HS
4889static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4890{
4891 u64 ns = 0;
4892
4893 if (task_current(rq, p)) {
4894 update_rq_clock(rq);
4895 ns = rq->clock - p->se.exec_start;
4896 if ((s64)ns < 0)
4897 ns = 0;
4898 }
4899
4900 return ns;
4901}
4902
bb34d92f 4903unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4904{
1da177e4 4905 unsigned long flags;
41b86e9c 4906 struct rq *rq;
bb34d92f 4907 u64 ns = 0;
48f24c4d 4908
41b86e9c 4909 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4910 ns = do_task_delta_exec(p, rq);
4911 task_rq_unlock(rq, &flags);
1508487e 4912
c5f8d995
HS
4913 return ns;
4914}
f06febc9 4915
c5f8d995
HS
4916/*
4917 * Return accounted runtime for the task.
4918 * In case the task is currently running, return the runtime plus current's
4919 * pending runtime that have not been accounted yet.
4920 */
4921unsigned long long task_sched_runtime(struct task_struct *p)
4922{
4923 unsigned long flags;
4924 struct rq *rq;
4925 u64 ns = 0;
4926
4927 rq = task_rq_lock(p, &flags);
4928 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4929 task_rq_unlock(rq, &flags);
4930
4931 return ns;
4932}
48f24c4d 4933
c5f8d995
HS
4934/*
4935 * Return sum_exec_runtime for the thread group.
4936 * In case the task is currently running, return the sum plus current's
4937 * pending runtime that have not been accounted yet.
4938 *
4939 * Note that the thread group might have other running tasks as well,
4940 * so the return value not includes other pending runtime that other
4941 * running tasks might have.
4942 */
4943unsigned long long thread_group_sched_runtime(struct task_struct *p)
4944{
4945 struct task_cputime totals;
4946 unsigned long flags;
4947 struct rq *rq;
4948 u64 ns;
4949
4950 rq = task_rq_lock(p, &flags);
4951 thread_group_cputime(p, &totals);
4952 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4953 task_rq_unlock(rq, &flags);
48f24c4d 4954
1da177e4
LT
4955 return ns;
4956}
4957
1da177e4
LT
4958/*
4959 * Account user cpu time to a process.
4960 * @p: the process that the cpu time gets accounted to
1da177e4 4961 * @cputime: the cpu time spent in user space since the last update
457533a7 4962 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4963 */
457533a7
MS
4964void account_user_time(struct task_struct *p, cputime_t cputime,
4965 cputime_t cputime_scaled)
1da177e4
LT
4966{
4967 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4968 cputime64_t tmp;
4969
457533a7 4970 /* Add user time to process. */
1da177e4 4971 p->utime = cputime_add(p->utime, cputime);
457533a7 4972 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4973 account_group_user_time(p, cputime);
1da177e4
LT
4974
4975 /* Add user time to cpustat. */
4976 tmp = cputime_to_cputime64(cputime);
4977 if (TASK_NICE(p) > 0)
4978 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4979 else
4980 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4981
4982 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4983 /* Account for user time used */
4984 acct_update_integrals(p);
1da177e4
LT
4985}
4986
94886b84
LV
4987/*
4988 * Account guest cpu time to a process.
4989 * @p: the process that the cpu time gets accounted to
4990 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4991 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4992 */
457533a7
MS
4993static void account_guest_time(struct task_struct *p, cputime_t cputime,
4994 cputime_t cputime_scaled)
94886b84
LV
4995{
4996 cputime64_t tmp;
4997 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4998
4999 tmp = cputime_to_cputime64(cputime);
5000
457533a7 5001 /* Add guest time to process. */
94886b84 5002 p->utime = cputime_add(p->utime, cputime);
457533a7 5003 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5004 account_group_user_time(p, cputime);
94886b84
LV
5005 p->gtime = cputime_add(p->gtime, cputime);
5006
457533a7 5007 /* Add guest time to cpustat. */
94886b84
LV
5008 cpustat->user = cputime64_add(cpustat->user, tmp);
5009 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5010}
5011
1da177e4
LT
5012/*
5013 * Account system cpu time to a process.
5014 * @p: the process that the cpu time gets accounted to
5015 * @hardirq_offset: the offset to subtract from hardirq_count()
5016 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5017 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5018 */
5019void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5020 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5021{
5022 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5023 cputime64_t tmp;
5024
983ed7a6 5025 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5026 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5027 return;
5028 }
94886b84 5029
457533a7 5030 /* Add system time to process. */
1da177e4 5031 p->stime = cputime_add(p->stime, cputime);
457533a7 5032 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5033 account_group_system_time(p, cputime);
1da177e4
LT
5034
5035 /* Add system time to cpustat. */
5036 tmp = cputime_to_cputime64(cputime);
5037 if (hardirq_count() - hardirq_offset)
5038 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5039 else if (softirq_count())
5040 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5041 else
79741dd3
MS
5042 cpustat->system = cputime64_add(cpustat->system, tmp);
5043
ef12fefa
BR
5044 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5045
1da177e4
LT
5046 /* Account for system time used */
5047 acct_update_integrals(p);
1da177e4
LT
5048}
5049
c66f08be 5050/*
1da177e4 5051 * Account for involuntary wait time.
1da177e4 5052 * @steal: the cpu time spent in involuntary wait
c66f08be 5053 */
79741dd3 5054void account_steal_time(cputime_t cputime)
c66f08be 5055{
79741dd3
MS
5056 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5057 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5058
5059 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5060}
5061
1da177e4 5062/*
79741dd3
MS
5063 * Account for idle time.
5064 * @cputime: the cpu time spent in idle wait
1da177e4 5065 */
79741dd3 5066void account_idle_time(cputime_t cputime)
1da177e4
LT
5067{
5068 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5069 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5070 struct rq *rq = this_rq();
1da177e4 5071
79741dd3
MS
5072 if (atomic_read(&rq->nr_iowait) > 0)
5073 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5074 else
5075 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5076}
5077
79741dd3
MS
5078#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5079
5080/*
5081 * Account a single tick of cpu time.
5082 * @p: the process that the cpu time gets accounted to
5083 * @user_tick: indicates if the tick is a user or a system tick
5084 */
5085void account_process_tick(struct task_struct *p, int user_tick)
5086{
5087 cputime_t one_jiffy = jiffies_to_cputime(1);
5088 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5089 struct rq *rq = this_rq();
5090
5091 if (user_tick)
5092 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5093 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5094 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5095 one_jiffy_scaled);
5096 else
5097 account_idle_time(one_jiffy);
5098}
5099
5100/*
5101 * Account multiple ticks of steal time.
5102 * @p: the process from which the cpu time has been stolen
5103 * @ticks: number of stolen ticks
5104 */
5105void account_steal_ticks(unsigned long ticks)
5106{
5107 account_steal_time(jiffies_to_cputime(ticks));
5108}
5109
5110/*
5111 * Account multiple ticks of idle time.
5112 * @ticks: number of stolen ticks
5113 */
5114void account_idle_ticks(unsigned long ticks)
5115{
5116 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5117}
5118
79741dd3
MS
5119#endif
5120
49048622
BS
5121/*
5122 * Use precise platform statistics if available:
5123 */
5124#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5125cputime_t task_utime(struct task_struct *p)
5126{
5127 return p->utime;
5128}
5129
5130cputime_t task_stime(struct task_struct *p)
5131{
5132 return p->stime;
5133}
5134#else
5135cputime_t task_utime(struct task_struct *p)
5136{
5137 clock_t utime = cputime_to_clock_t(p->utime),
5138 total = utime + cputime_to_clock_t(p->stime);
5139 u64 temp;
5140
5141 /*
5142 * Use CFS's precise accounting:
5143 */
5144 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5145
5146 if (total) {
5147 temp *= utime;
5148 do_div(temp, total);
5149 }
5150 utime = (clock_t)temp;
5151
5152 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5153 return p->prev_utime;
5154}
5155
5156cputime_t task_stime(struct task_struct *p)
5157{
5158 clock_t stime;
5159
5160 /*
5161 * Use CFS's precise accounting. (we subtract utime from
5162 * the total, to make sure the total observed by userspace
5163 * grows monotonically - apps rely on that):
5164 */
5165 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5166 cputime_to_clock_t(task_utime(p));
5167
5168 if (stime >= 0)
5169 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5170
5171 return p->prev_stime;
5172}
5173#endif
5174
5175inline cputime_t task_gtime(struct task_struct *p)
5176{
5177 return p->gtime;
5178}
5179
7835b98b
CL
5180/*
5181 * This function gets called by the timer code, with HZ frequency.
5182 * We call it with interrupts disabled.
5183 *
5184 * It also gets called by the fork code, when changing the parent's
5185 * timeslices.
5186 */
5187void scheduler_tick(void)
5188{
7835b98b
CL
5189 int cpu = smp_processor_id();
5190 struct rq *rq = cpu_rq(cpu);
dd41f596 5191 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5192
5193 sched_clock_tick();
dd41f596
IM
5194
5195 spin_lock(&rq->lock);
3e51f33f 5196 update_rq_clock(rq);
f1a438d8 5197 update_cpu_load(rq);
fa85ae24 5198 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5199 spin_unlock(&rq->lock);
7835b98b 5200
e220d2dc
PZ
5201 perf_counter_task_tick(curr, cpu);
5202
e418e1c2 5203#ifdef CONFIG_SMP
dd41f596
IM
5204 rq->idle_at_tick = idle_cpu(cpu);
5205 trigger_load_balance(rq, cpu);
e418e1c2 5206#endif
1da177e4
LT
5207}
5208
132380a0 5209notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5210{
5211 if (in_lock_functions(addr)) {
5212 addr = CALLER_ADDR2;
5213 if (in_lock_functions(addr))
5214 addr = CALLER_ADDR3;
5215 }
5216 return addr;
5217}
1da177e4 5218
7e49fcce
SR
5219#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5220 defined(CONFIG_PREEMPT_TRACER))
5221
43627582 5222void __kprobes add_preempt_count(int val)
1da177e4 5223{
6cd8a4bb 5224#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5225 /*
5226 * Underflow?
5227 */
9a11b49a
IM
5228 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5229 return;
6cd8a4bb 5230#endif
1da177e4 5231 preempt_count() += val;
6cd8a4bb 5232#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5233 /*
5234 * Spinlock count overflowing soon?
5235 */
33859f7f
MOS
5236 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5237 PREEMPT_MASK - 10);
6cd8a4bb
SR
5238#endif
5239 if (preempt_count() == val)
5240 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5241}
5242EXPORT_SYMBOL(add_preempt_count);
5243
43627582 5244void __kprobes sub_preempt_count(int val)
1da177e4 5245{
6cd8a4bb 5246#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5247 /*
5248 * Underflow?
5249 */
01e3eb82 5250 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5251 return;
1da177e4
LT
5252 /*
5253 * Is the spinlock portion underflowing?
5254 */
9a11b49a
IM
5255 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5256 !(preempt_count() & PREEMPT_MASK)))
5257 return;
6cd8a4bb 5258#endif
9a11b49a 5259
6cd8a4bb
SR
5260 if (preempt_count() == val)
5261 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5262 preempt_count() -= val;
5263}
5264EXPORT_SYMBOL(sub_preempt_count);
5265
5266#endif
5267
5268/*
dd41f596 5269 * Print scheduling while atomic bug:
1da177e4 5270 */
dd41f596 5271static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5272{
838225b4
SS
5273 struct pt_regs *regs = get_irq_regs();
5274
5275 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5276 prev->comm, prev->pid, preempt_count());
5277
dd41f596 5278 debug_show_held_locks(prev);
e21f5b15 5279 print_modules();
dd41f596
IM
5280 if (irqs_disabled())
5281 print_irqtrace_events(prev);
838225b4
SS
5282
5283 if (regs)
5284 show_regs(regs);
5285 else
5286 dump_stack();
dd41f596 5287}
1da177e4 5288
dd41f596
IM
5289/*
5290 * Various schedule()-time debugging checks and statistics:
5291 */
5292static inline void schedule_debug(struct task_struct *prev)
5293{
1da177e4 5294 /*
41a2d6cf 5295 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5296 * schedule() atomically, we ignore that path for now.
5297 * Otherwise, whine if we are scheduling when we should not be.
5298 */
3f33a7ce 5299 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5300 __schedule_bug(prev);
5301
1da177e4
LT
5302 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5303
2d72376b 5304 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5305#ifdef CONFIG_SCHEDSTATS
5306 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5307 schedstat_inc(this_rq(), bkl_count);
5308 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5309 }
5310#endif
dd41f596
IM
5311}
5312
df1c99d4
MG
5313static void put_prev_task(struct rq *rq, struct task_struct *prev)
5314{
5315 if (prev->state == TASK_RUNNING) {
5316 u64 runtime = prev->se.sum_exec_runtime;
5317
5318 runtime -= prev->se.prev_sum_exec_runtime;
5319 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5320
5321 /*
5322 * In order to avoid avg_overlap growing stale when we are
5323 * indeed overlapping and hence not getting put to sleep, grow
5324 * the avg_overlap on preemption.
5325 *
5326 * We use the average preemption runtime because that
5327 * correlates to the amount of cache footprint a task can
5328 * build up.
5329 */
5330 update_avg(&prev->se.avg_overlap, runtime);
5331 }
5332 prev->sched_class->put_prev_task(rq, prev);
5333}
5334
dd41f596
IM
5335/*
5336 * Pick up the highest-prio task:
5337 */
5338static inline struct task_struct *
b67802ea 5339pick_next_task(struct rq *rq)
dd41f596 5340{
5522d5d5 5341 const struct sched_class *class;
dd41f596 5342 struct task_struct *p;
1da177e4
LT
5343
5344 /*
dd41f596
IM
5345 * Optimization: we know that if all tasks are in
5346 * the fair class we can call that function directly:
1da177e4 5347 */
dd41f596 5348 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5349 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5350 if (likely(p))
5351 return p;
1da177e4
LT
5352 }
5353
dd41f596
IM
5354 class = sched_class_highest;
5355 for ( ; ; ) {
fb8d4724 5356 p = class->pick_next_task(rq);
dd41f596
IM
5357 if (p)
5358 return p;
5359 /*
5360 * Will never be NULL as the idle class always
5361 * returns a non-NULL p:
5362 */
5363 class = class->next;
5364 }
5365}
1da177e4 5366
dd41f596
IM
5367/*
5368 * schedule() is the main scheduler function.
5369 */
ff743345 5370asmlinkage void __sched schedule(void)
dd41f596
IM
5371{
5372 struct task_struct *prev, *next;
67ca7bde 5373 unsigned long *switch_count;
da19ab51 5374 int post_schedule = 0;
dd41f596 5375 struct rq *rq;
31656519 5376 int cpu;
dd41f596 5377
ff743345
PZ
5378need_resched:
5379 preempt_disable();
dd41f596
IM
5380 cpu = smp_processor_id();
5381 rq = cpu_rq(cpu);
5382 rcu_qsctr_inc(cpu);
5383 prev = rq->curr;
5384 switch_count = &prev->nivcsw;
5385
5386 release_kernel_lock(prev);
5387need_resched_nonpreemptible:
5388
5389 schedule_debug(prev);
1da177e4 5390
31656519 5391 if (sched_feat(HRTICK))
f333fdc9 5392 hrtick_clear(rq);
8f4d37ec 5393
8cd162ce 5394 spin_lock_irq(&rq->lock);
3e51f33f 5395 update_rq_clock(rq);
1e819950 5396 clear_tsk_need_resched(prev);
1da177e4 5397
1da177e4 5398 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5399 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5400 prev->state = TASK_RUNNING;
16882c1e 5401 else
2e1cb74a 5402 deactivate_task(rq, prev, 1);
dd41f596 5403 switch_count = &prev->nvcsw;
1da177e4
LT
5404 }
5405
9a897c5a
SR
5406#ifdef CONFIG_SMP
5407 if (prev->sched_class->pre_schedule)
5408 prev->sched_class->pre_schedule(rq, prev);
5409#endif
f65eda4f 5410
dd41f596 5411 if (unlikely(!rq->nr_running))
1da177e4 5412 idle_balance(cpu, rq);
1da177e4 5413
df1c99d4 5414 put_prev_task(rq, prev);
b67802ea 5415 next = pick_next_task(rq);
1da177e4 5416
1da177e4 5417 if (likely(prev != next)) {
673a90a1 5418 sched_info_switch(prev, next);
564c2b21 5419 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5420
1da177e4
LT
5421 rq->nr_switches++;
5422 rq->curr = next;
5423 ++*switch_count;
5424
da19ab51 5425 post_schedule = context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5426 /*
5427 * the context switch might have flipped the stack from under
5428 * us, hence refresh the local variables.
5429 */
5430 cpu = smp_processor_id();
5431 rq = cpu_rq(cpu);
da19ab51
SR
5432 } else {
5433#ifdef CONFIG_SMP
5434 if (current->sched_class->needs_post_schedule)
5435 post_schedule = current->sched_class->needs_post_schedule(rq);
5436#endif
1da177e4 5437 spin_unlock_irq(&rq->lock);
da19ab51
SR
5438 }
5439
5440#ifdef CONFIG_SMP
5441 if (post_schedule)
5442 current->sched_class->post_schedule(rq);
5443#endif
1da177e4 5444
8f4d37ec 5445 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5446 goto need_resched_nonpreemptible;
8f4d37ec 5447
1da177e4 5448 preempt_enable_no_resched();
ff743345 5449 if (need_resched())
1da177e4
LT
5450 goto need_resched;
5451}
1da177e4
LT
5452EXPORT_SYMBOL(schedule);
5453
0d66bf6d
PZ
5454#ifdef CONFIG_SMP
5455/*
5456 * Look out! "owner" is an entirely speculative pointer
5457 * access and not reliable.
5458 */
5459int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5460{
5461 unsigned int cpu;
5462 struct rq *rq;
5463
5464 if (!sched_feat(OWNER_SPIN))
5465 return 0;
5466
5467#ifdef CONFIG_DEBUG_PAGEALLOC
5468 /*
5469 * Need to access the cpu field knowing that
5470 * DEBUG_PAGEALLOC could have unmapped it if
5471 * the mutex owner just released it and exited.
5472 */
5473 if (probe_kernel_address(&owner->cpu, cpu))
5474 goto out;
5475#else
5476 cpu = owner->cpu;
5477#endif
5478
5479 /*
5480 * Even if the access succeeded (likely case),
5481 * the cpu field may no longer be valid.
5482 */
5483 if (cpu >= nr_cpumask_bits)
5484 goto out;
5485
5486 /*
5487 * We need to validate that we can do a
5488 * get_cpu() and that we have the percpu area.
5489 */
5490 if (!cpu_online(cpu))
5491 goto out;
5492
5493 rq = cpu_rq(cpu);
5494
5495 for (;;) {
5496 /*
5497 * Owner changed, break to re-assess state.
5498 */
5499 if (lock->owner != owner)
5500 break;
5501
5502 /*
5503 * Is that owner really running on that cpu?
5504 */
5505 if (task_thread_info(rq->curr) != owner || need_resched())
5506 return 0;
5507
5508 cpu_relax();
5509 }
5510out:
5511 return 1;
5512}
5513#endif
5514
1da177e4
LT
5515#ifdef CONFIG_PREEMPT
5516/*
2ed6e34f 5517 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5518 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5519 * occur there and call schedule directly.
5520 */
5521asmlinkage void __sched preempt_schedule(void)
5522{
5523 struct thread_info *ti = current_thread_info();
6478d880 5524
1da177e4
LT
5525 /*
5526 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5527 * we do not want to preempt the current task. Just return..
1da177e4 5528 */
beed33a8 5529 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5530 return;
5531
3a5c359a
AK
5532 do {
5533 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5534 schedule();
3a5c359a 5535 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5536
3a5c359a
AK
5537 /*
5538 * Check again in case we missed a preemption opportunity
5539 * between schedule and now.
5540 */
5541 barrier();
5ed0cec0 5542 } while (need_resched());
1da177e4 5543}
1da177e4
LT
5544EXPORT_SYMBOL(preempt_schedule);
5545
5546/*
2ed6e34f 5547 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5548 * off of irq context.
5549 * Note, that this is called and return with irqs disabled. This will
5550 * protect us against recursive calling from irq.
5551 */
5552asmlinkage void __sched preempt_schedule_irq(void)
5553{
5554 struct thread_info *ti = current_thread_info();
6478d880 5555
2ed6e34f 5556 /* Catch callers which need to be fixed */
1da177e4
LT
5557 BUG_ON(ti->preempt_count || !irqs_disabled());
5558
3a5c359a
AK
5559 do {
5560 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5561 local_irq_enable();
5562 schedule();
5563 local_irq_disable();
3a5c359a 5564 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5565
3a5c359a
AK
5566 /*
5567 * Check again in case we missed a preemption opportunity
5568 * between schedule and now.
5569 */
5570 barrier();
5ed0cec0 5571 } while (need_resched());
1da177e4
LT
5572}
5573
5574#endif /* CONFIG_PREEMPT */
5575
95cdf3b7
IM
5576int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5577 void *key)
1da177e4 5578{
48f24c4d 5579 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5580}
1da177e4
LT
5581EXPORT_SYMBOL(default_wake_function);
5582
5583/*
41a2d6cf
IM
5584 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5585 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5586 * number) then we wake all the non-exclusive tasks and one exclusive task.
5587 *
5588 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5589 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5590 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5591 */
78ddb08f 5592static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5593 int nr_exclusive, int sync, void *key)
1da177e4 5594{
2e45874c 5595 wait_queue_t *curr, *next;
1da177e4 5596
2e45874c 5597 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5598 unsigned flags = curr->flags;
5599
1da177e4 5600 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5601 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5602 break;
5603 }
5604}
5605
5606/**
5607 * __wake_up - wake up threads blocked on a waitqueue.
5608 * @q: the waitqueue
5609 * @mode: which threads
5610 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5611 * @key: is directly passed to the wakeup function
50fa610a
DH
5612 *
5613 * It may be assumed that this function implies a write memory barrier before
5614 * changing the task state if and only if any tasks are woken up.
1da177e4 5615 */
7ad5b3a5 5616void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5617 int nr_exclusive, void *key)
1da177e4
LT
5618{
5619 unsigned long flags;
5620
5621 spin_lock_irqsave(&q->lock, flags);
5622 __wake_up_common(q, mode, nr_exclusive, 0, key);
5623 spin_unlock_irqrestore(&q->lock, flags);
5624}
1da177e4
LT
5625EXPORT_SYMBOL(__wake_up);
5626
5627/*
5628 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5629 */
7ad5b3a5 5630void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5631{
5632 __wake_up_common(q, mode, 1, 0, NULL);
5633}
5634
4ede816a
DL
5635void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5636{
5637 __wake_up_common(q, mode, 1, 0, key);
5638}
5639
1da177e4 5640/**
4ede816a 5641 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5642 * @q: the waitqueue
5643 * @mode: which threads
5644 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5645 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5646 *
5647 * The sync wakeup differs that the waker knows that it will schedule
5648 * away soon, so while the target thread will be woken up, it will not
5649 * be migrated to another CPU - ie. the two threads are 'synchronized'
5650 * with each other. This can prevent needless bouncing between CPUs.
5651 *
5652 * On UP it can prevent extra preemption.
50fa610a
DH
5653 *
5654 * It may be assumed that this function implies a write memory barrier before
5655 * changing the task state if and only if any tasks are woken up.
1da177e4 5656 */
4ede816a
DL
5657void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5658 int nr_exclusive, void *key)
1da177e4
LT
5659{
5660 unsigned long flags;
5661 int sync = 1;
5662
5663 if (unlikely(!q))
5664 return;
5665
5666 if (unlikely(!nr_exclusive))
5667 sync = 0;
5668
5669 spin_lock_irqsave(&q->lock, flags);
4ede816a 5670 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5671 spin_unlock_irqrestore(&q->lock, flags);
5672}
4ede816a
DL
5673EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5674
5675/*
5676 * __wake_up_sync - see __wake_up_sync_key()
5677 */
5678void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5679{
5680 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5681}
1da177e4
LT
5682EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5683
65eb3dc6
KD
5684/**
5685 * complete: - signals a single thread waiting on this completion
5686 * @x: holds the state of this particular completion
5687 *
5688 * This will wake up a single thread waiting on this completion. Threads will be
5689 * awakened in the same order in which they were queued.
5690 *
5691 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5692 *
5693 * It may be assumed that this function implies a write memory barrier before
5694 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5695 */
b15136e9 5696void complete(struct completion *x)
1da177e4
LT
5697{
5698 unsigned long flags;
5699
5700 spin_lock_irqsave(&x->wait.lock, flags);
5701 x->done++;
d9514f6c 5702 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5703 spin_unlock_irqrestore(&x->wait.lock, flags);
5704}
5705EXPORT_SYMBOL(complete);
5706
65eb3dc6
KD
5707/**
5708 * complete_all: - signals all threads waiting on this completion
5709 * @x: holds the state of this particular completion
5710 *
5711 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5712 *
5713 * It may be assumed that this function implies a write memory barrier before
5714 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5715 */
b15136e9 5716void complete_all(struct completion *x)
1da177e4
LT
5717{
5718 unsigned long flags;
5719
5720 spin_lock_irqsave(&x->wait.lock, flags);
5721 x->done += UINT_MAX/2;
d9514f6c 5722 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5723 spin_unlock_irqrestore(&x->wait.lock, flags);
5724}
5725EXPORT_SYMBOL(complete_all);
5726
8cbbe86d
AK
5727static inline long __sched
5728do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5729{
1da177e4
LT
5730 if (!x->done) {
5731 DECLARE_WAITQUEUE(wait, current);
5732
5733 wait.flags |= WQ_FLAG_EXCLUSIVE;
5734 __add_wait_queue_tail(&x->wait, &wait);
5735 do {
94d3d824 5736 if (signal_pending_state(state, current)) {
ea71a546
ON
5737 timeout = -ERESTARTSYS;
5738 break;
8cbbe86d
AK
5739 }
5740 __set_current_state(state);
1da177e4
LT
5741 spin_unlock_irq(&x->wait.lock);
5742 timeout = schedule_timeout(timeout);
5743 spin_lock_irq(&x->wait.lock);
ea71a546 5744 } while (!x->done && timeout);
1da177e4 5745 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5746 if (!x->done)
5747 return timeout;
1da177e4
LT
5748 }
5749 x->done--;
ea71a546 5750 return timeout ?: 1;
1da177e4 5751}
1da177e4 5752
8cbbe86d
AK
5753static long __sched
5754wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5755{
1da177e4
LT
5756 might_sleep();
5757
5758 spin_lock_irq(&x->wait.lock);
8cbbe86d 5759 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5760 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5761 return timeout;
5762}
1da177e4 5763
65eb3dc6
KD
5764/**
5765 * wait_for_completion: - waits for completion of a task
5766 * @x: holds the state of this particular completion
5767 *
5768 * This waits to be signaled for completion of a specific task. It is NOT
5769 * interruptible and there is no timeout.
5770 *
5771 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5772 * and interrupt capability. Also see complete().
5773 */
b15136e9 5774void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5775{
5776 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5777}
8cbbe86d 5778EXPORT_SYMBOL(wait_for_completion);
1da177e4 5779
65eb3dc6
KD
5780/**
5781 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5782 * @x: holds the state of this particular completion
5783 * @timeout: timeout value in jiffies
5784 *
5785 * This waits for either a completion of a specific task to be signaled or for a
5786 * specified timeout to expire. The timeout is in jiffies. It is not
5787 * interruptible.
5788 */
b15136e9 5789unsigned long __sched
8cbbe86d 5790wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5791{
8cbbe86d 5792 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5793}
8cbbe86d 5794EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5795
65eb3dc6
KD
5796/**
5797 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5798 * @x: holds the state of this particular completion
5799 *
5800 * This waits for completion of a specific task to be signaled. It is
5801 * interruptible.
5802 */
8cbbe86d 5803int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5804{
51e97990
AK
5805 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5806 if (t == -ERESTARTSYS)
5807 return t;
5808 return 0;
0fec171c 5809}
8cbbe86d 5810EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5811
65eb3dc6
KD
5812/**
5813 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5814 * @x: holds the state of this particular completion
5815 * @timeout: timeout value in jiffies
5816 *
5817 * This waits for either a completion of a specific task to be signaled or for a
5818 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5819 */
b15136e9 5820unsigned long __sched
8cbbe86d
AK
5821wait_for_completion_interruptible_timeout(struct completion *x,
5822 unsigned long timeout)
0fec171c 5823{
8cbbe86d 5824 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5825}
8cbbe86d 5826EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5827
65eb3dc6
KD
5828/**
5829 * wait_for_completion_killable: - waits for completion of a task (killable)
5830 * @x: holds the state of this particular completion
5831 *
5832 * This waits to be signaled for completion of a specific task. It can be
5833 * interrupted by a kill signal.
5834 */
009e577e
MW
5835int __sched wait_for_completion_killable(struct completion *x)
5836{
5837 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5838 if (t == -ERESTARTSYS)
5839 return t;
5840 return 0;
5841}
5842EXPORT_SYMBOL(wait_for_completion_killable);
5843
be4de352
DC
5844/**
5845 * try_wait_for_completion - try to decrement a completion without blocking
5846 * @x: completion structure
5847 *
5848 * Returns: 0 if a decrement cannot be done without blocking
5849 * 1 if a decrement succeeded.
5850 *
5851 * If a completion is being used as a counting completion,
5852 * attempt to decrement the counter without blocking. This
5853 * enables us to avoid waiting if the resource the completion
5854 * is protecting is not available.
5855 */
5856bool try_wait_for_completion(struct completion *x)
5857{
5858 int ret = 1;
5859
5860 spin_lock_irq(&x->wait.lock);
5861 if (!x->done)
5862 ret = 0;
5863 else
5864 x->done--;
5865 spin_unlock_irq(&x->wait.lock);
5866 return ret;
5867}
5868EXPORT_SYMBOL(try_wait_for_completion);
5869
5870/**
5871 * completion_done - Test to see if a completion has any waiters
5872 * @x: completion structure
5873 *
5874 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5875 * 1 if there are no waiters.
5876 *
5877 */
5878bool completion_done(struct completion *x)
5879{
5880 int ret = 1;
5881
5882 spin_lock_irq(&x->wait.lock);
5883 if (!x->done)
5884 ret = 0;
5885 spin_unlock_irq(&x->wait.lock);
5886 return ret;
5887}
5888EXPORT_SYMBOL(completion_done);
5889
8cbbe86d
AK
5890static long __sched
5891sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5892{
0fec171c
IM
5893 unsigned long flags;
5894 wait_queue_t wait;
5895
5896 init_waitqueue_entry(&wait, current);
1da177e4 5897
8cbbe86d 5898 __set_current_state(state);
1da177e4 5899
8cbbe86d
AK
5900 spin_lock_irqsave(&q->lock, flags);
5901 __add_wait_queue(q, &wait);
5902 spin_unlock(&q->lock);
5903 timeout = schedule_timeout(timeout);
5904 spin_lock_irq(&q->lock);
5905 __remove_wait_queue(q, &wait);
5906 spin_unlock_irqrestore(&q->lock, flags);
5907
5908 return timeout;
5909}
5910
5911void __sched interruptible_sleep_on(wait_queue_head_t *q)
5912{
5913 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5914}
1da177e4
LT
5915EXPORT_SYMBOL(interruptible_sleep_on);
5916
0fec171c 5917long __sched
95cdf3b7 5918interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5919{
8cbbe86d 5920 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5921}
1da177e4
LT
5922EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5923
0fec171c 5924void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5925{
8cbbe86d 5926 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5927}
1da177e4
LT
5928EXPORT_SYMBOL(sleep_on);
5929
0fec171c 5930long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5931{
8cbbe86d 5932 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5933}
1da177e4
LT
5934EXPORT_SYMBOL(sleep_on_timeout);
5935
b29739f9
IM
5936#ifdef CONFIG_RT_MUTEXES
5937
5938/*
5939 * rt_mutex_setprio - set the current priority of a task
5940 * @p: task
5941 * @prio: prio value (kernel-internal form)
5942 *
5943 * This function changes the 'effective' priority of a task. It does
5944 * not touch ->normal_prio like __setscheduler().
5945 *
5946 * Used by the rt_mutex code to implement priority inheritance logic.
5947 */
36c8b586 5948void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5949{
5950 unsigned long flags;
83b699ed 5951 int oldprio, on_rq, running;
70b97a7f 5952 struct rq *rq;
cb469845 5953 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5954
5955 BUG_ON(prio < 0 || prio > MAX_PRIO);
5956
5957 rq = task_rq_lock(p, &flags);
a8e504d2 5958 update_rq_clock(rq);
b29739f9 5959
d5f9f942 5960 oldprio = p->prio;
dd41f596 5961 on_rq = p->se.on_rq;
051a1d1a 5962 running = task_current(rq, p);
0e1f3483 5963 if (on_rq)
69be72c1 5964 dequeue_task(rq, p, 0);
0e1f3483
HS
5965 if (running)
5966 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5967
5968 if (rt_prio(prio))
5969 p->sched_class = &rt_sched_class;
5970 else
5971 p->sched_class = &fair_sched_class;
5972
b29739f9
IM
5973 p->prio = prio;
5974
0e1f3483
HS
5975 if (running)
5976 p->sched_class->set_curr_task(rq);
dd41f596 5977 if (on_rq) {
8159f87e 5978 enqueue_task(rq, p, 0);
cb469845
SR
5979
5980 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5981 }
5982 task_rq_unlock(rq, &flags);
5983}
5984
5985#endif
5986
36c8b586 5987void set_user_nice(struct task_struct *p, long nice)
1da177e4 5988{
dd41f596 5989 int old_prio, delta, on_rq;
1da177e4 5990 unsigned long flags;
70b97a7f 5991 struct rq *rq;
1da177e4
LT
5992
5993 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5994 return;
5995 /*
5996 * We have to be careful, if called from sys_setpriority(),
5997 * the task might be in the middle of scheduling on another CPU.
5998 */
5999 rq = task_rq_lock(p, &flags);
a8e504d2 6000 update_rq_clock(rq);
1da177e4
LT
6001 /*
6002 * The RT priorities are set via sched_setscheduler(), but we still
6003 * allow the 'normal' nice value to be set - but as expected
6004 * it wont have any effect on scheduling until the task is
dd41f596 6005 * SCHED_FIFO/SCHED_RR:
1da177e4 6006 */
e05606d3 6007 if (task_has_rt_policy(p)) {
1da177e4
LT
6008 p->static_prio = NICE_TO_PRIO(nice);
6009 goto out_unlock;
6010 }
dd41f596 6011 on_rq = p->se.on_rq;
c09595f6 6012 if (on_rq)
69be72c1 6013 dequeue_task(rq, p, 0);
1da177e4 6014
1da177e4 6015 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6016 set_load_weight(p);
b29739f9
IM
6017 old_prio = p->prio;
6018 p->prio = effective_prio(p);
6019 delta = p->prio - old_prio;
1da177e4 6020
dd41f596 6021 if (on_rq) {
8159f87e 6022 enqueue_task(rq, p, 0);
1da177e4 6023 /*
d5f9f942
AM
6024 * If the task increased its priority or is running and
6025 * lowered its priority, then reschedule its CPU:
1da177e4 6026 */
d5f9f942 6027 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6028 resched_task(rq->curr);
6029 }
6030out_unlock:
6031 task_rq_unlock(rq, &flags);
6032}
1da177e4
LT
6033EXPORT_SYMBOL(set_user_nice);
6034
e43379f1
MM
6035/*
6036 * can_nice - check if a task can reduce its nice value
6037 * @p: task
6038 * @nice: nice value
6039 */
36c8b586 6040int can_nice(const struct task_struct *p, const int nice)
e43379f1 6041{
024f4747
MM
6042 /* convert nice value [19,-20] to rlimit style value [1,40] */
6043 int nice_rlim = 20 - nice;
48f24c4d 6044
e43379f1
MM
6045 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6046 capable(CAP_SYS_NICE));
6047}
6048
1da177e4
LT
6049#ifdef __ARCH_WANT_SYS_NICE
6050
6051/*
6052 * sys_nice - change the priority of the current process.
6053 * @increment: priority increment
6054 *
6055 * sys_setpriority is a more generic, but much slower function that
6056 * does similar things.
6057 */
5add95d4 6058SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6059{
48f24c4d 6060 long nice, retval;
1da177e4
LT
6061
6062 /*
6063 * Setpriority might change our priority at the same moment.
6064 * We don't have to worry. Conceptually one call occurs first
6065 * and we have a single winner.
6066 */
e43379f1
MM
6067 if (increment < -40)
6068 increment = -40;
1da177e4
LT
6069 if (increment > 40)
6070 increment = 40;
6071
2b8f836f 6072 nice = TASK_NICE(current) + increment;
1da177e4
LT
6073 if (nice < -20)
6074 nice = -20;
6075 if (nice > 19)
6076 nice = 19;
6077
e43379f1
MM
6078 if (increment < 0 && !can_nice(current, nice))
6079 return -EPERM;
6080
1da177e4
LT
6081 retval = security_task_setnice(current, nice);
6082 if (retval)
6083 return retval;
6084
6085 set_user_nice(current, nice);
6086 return 0;
6087}
6088
6089#endif
6090
6091/**
6092 * task_prio - return the priority value of a given task.
6093 * @p: the task in question.
6094 *
6095 * This is the priority value as seen by users in /proc.
6096 * RT tasks are offset by -200. Normal tasks are centered
6097 * around 0, value goes from -16 to +15.
6098 */
36c8b586 6099int task_prio(const struct task_struct *p)
1da177e4
LT
6100{
6101 return p->prio - MAX_RT_PRIO;
6102}
6103
6104/**
6105 * task_nice - return the nice value of a given task.
6106 * @p: the task in question.
6107 */
36c8b586 6108int task_nice(const struct task_struct *p)
1da177e4
LT
6109{
6110 return TASK_NICE(p);
6111}
150d8bed 6112EXPORT_SYMBOL(task_nice);
1da177e4
LT
6113
6114/**
6115 * idle_cpu - is a given cpu idle currently?
6116 * @cpu: the processor in question.
6117 */
6118int idle_cpu(int cpu)
6119{
6120 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6121}
6122
1da177e4
LT
6123/**
6124 * idle_task - return the idle task for a given cpu.
6125 * @cpu: the processor in question.
6126 */
36c8b586 6127struct task_struct *idle_task(int cpu)
1da177e4
LT
6128{
6129 return cpu_rq(cpu)->idle;
6130}
6131
6132/**
6133 * find_process_by_pid - find a process with a matching PID value.
6134 * @pid: the pid in question.
6135 */
a9957449 6136static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6137{
228ebcbe 6138 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6139}
6140
6141/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6142static void
6143__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6144{
dd41f596 6145 BUG_ON(p->se.on_rq);
48f24c4d 6146
1da177e4 6147 p->policy = policy;
dd41f596
IM
6148 switch (p->policy) {
6149 case SCHED_NORMAL:
6150 case SCHED_BATCH:
6151 case SCHED_IDLE:
6152 p->sched_class = &fair_sched_class;
6153 break;
6154 case SCHED_FIFO:
6155 case SCHED_RR:
6156 p->sched_class = &rt_sched_class;
6157 break;
6158 }
6159
1da177e4 6160 p->rt_priority = prio;
b29739f9
IM
6161 p->normal_prio = normal_prio(p);
6162 /* we are holding p->pi_lock already */
6163 p->prio = rt_mutex_getprio(p);
2dd73a4f 6164 set_load_weight(p);
1da177e4
LT
6165}
6166
c69e8d9c
DH
6167/*
6168 * check the target process has a UID that matches the current process's
6169 */
6170static bool check_same_owner(struct task_struct *p)
6171{
6172 const struct cred *cred = current_cred(), *pcred;
6173 bool match;
6174
6175 rcu_read_lock();
6176 pcred = __task_cred(p);
6177 match = (cred->euid == pcred->euid ||
6178 cred->euid == pcred->uid);
6179 rcu_read_unlock();
6180 return match;
6181}
6182
961ccddd
RR
6183static int __sched_setscheduler(struct task_struct *p, int policy,
6184 struct sched_param *param, bool user)
1da177e4 6185{
83b699ed 6186 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6187 unsigned long flags;
cb469845 6188 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6189 struct rq *rq;
ca94c442 6190 int reset_on_fork;
1da177e4 6191
66e5393a
SR
6192 /* may grab non-irq protected spin_locks */
6193 BUG_ON(in_interrupt());
1da177e4
LT
6194recheck:
6195 /* double check policy once rq lock held */
ca94c442
LP
6196 if (policy < 0) {
6197 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6198 policy = oldpolicy = p->policy;
ca94c442
LP
6199 } else {
6200 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6201 policy &= ~SCHED_RESET_ON_FORK;
6202
6203 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6204 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6205 policy != SCHED_IDLE)
6206 return -EINVAL;
6207 }
6208
1da177e4
LT
6209 /*
6210 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6211 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6212 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6213 */
6214 if (param->sched_priority < 0 ||
95cdf3b7 6215 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6216 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6217 return -EINVAL;
e05606d3 6218 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6219 return -EINVAL;
6220
37e4ab3f
OC
6221 /*
6222 * Allow unprivileged RT tasks to decrease priority:
6223 */
961ccddd 6224 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6225 if (rt_policy(policy)) {
8dc3e909 6226 unsigned long rlim_rtprio;
8dc3e909
ON
6227
6228 if (!lock_task_sighand(p, &flags))
6229 return -ESRCH;
6230 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6231 unlock_task_sighand(p, &flags);
6232
6233 /* can't set/change the rt policy */
6234 if (policy != p->policy && !rlim_rtprio)
6235 return -EPERM;
6236
6237 /* can't increase priority */
6238 if (param->sched_priority > p->rt_priority &&
6239 param->sched_priority > rlim_rtprio)
6240 return -EPERM;
6241 }
dd41f596
IM
6242 /*
6243 * Like positive nice levels, dont allow tasks to
6244 * move out of SCHED_IDLE either:
6245 */
6246 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6247 return -EPERM;
5fe1d75f 6248
37e4ab3f 6249 /* can't change other user's priorities */
c69e8d9c 6250 if (!check_same_owner(p))
37e4ab3f 6251 return -EPERM;
ca94c442
LP
6252
6253 /* Normal users shall not reset the sched_reset_on_fork flag */
6254 if (p->sched_reset_on_fork && !reset_on_fork)
6255 return -EPERM;
37e4ab3f 6256 }
1da177e4 6257
725aad24 6258 if (user) {
b68aa230 6259#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6260 /*
6261 * Do not allow realtime tasks into groups that have no runtime
6262 * assigned.
6263 */
9a7e0b18
PZ
6264 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6265 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6266 return -EPERM;
b68aa230
PZ
6267#endif
6268
725aad24
JF
6269 retval = security_task_setscheduler(p, policy, param);
6270 if (retval)
6271 return retval;
6272 }
6273
b29739f9
IM
6274 /*
6275 * make sure no PI-waiters arrive (or leave) while we are
6276 * changing the priority of the task:
6277 */
6278 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6279 /*
6280 * To be able to change p->policy safely, the apropriate
6281 * runqueue lock must be held.
6282 */
b29739f9 6283 rq = __task_rq_lock(p);
1da177e4
LT
6284 /* recheck policy now with rq lock held */
6285 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6286 policy = oldpolicy = -1;
b29739f9
IM
6287 __task_rq_unlock(rq);
6288 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6289 goto recheck;
6290 }
2daa3577 6291 update_rq_clock(rq);
dd41f596 6292 on_rq = p->se.on_rq;
051a1d1a 6293 running = task_current(rq, p);
0e1f3483 6294 if (on_rq)
2e1cb74a 6295 deactivate_task(rq, p, 0);
0e1f3483
HS
6296 if (running)
6297 p->sched_class->put_prev_task(rq, p);
f6b53205 6298
ca94c442
LP
6299 p->sched_reset_on_fork = reset_on_fork;
6300
1da177e4 6301 oldprio = p->prio;
dd41f596 6302 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6303
0e1f3483
HS
6304 if (running)
6305 p->sched_class->set_curr_task(rq);
dd41f596
IM
6306 if (on_rq) {
6307 activate_task(rq, p, 0);
cb469845
SR
6308
6309 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6310 }
b29739f9
IM
6311 __task_rq_unlock(rq);
6312 spin_unlock_irqrestore(&p->pi_lock, flags);
6313
95e02ca9
TG
6314 rt_mutex_adjust_pi(p);
6315
1da177e4
LT
6316 return 0;
6317}
961ccddd
RR
6318
6319/**
6320 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6321 * @p: the task in question.
6322 * @policy: new policy.
6323 * @param: structure containing the new RT priority.
6324 *
6325 * NOTE that the task may be already dead.
6326 */
6327int sched_setscheduler(struct task_struct *p, int policy,
6328 struct sched_param *param)
6329{
6330 return __sched_setscheduler(p, policy, param, true);
6331}
1da177e4
LT
6332EXPORT_SYMBOL_GPL(sched_setscheduler);
6333
961ccddd
RR
6334/**
6335 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6336 * @p: the task in question.
6337 * @policy: new policy.
6338 * @param: structure containing the new RT priority.
6339 *
6340 * Just like sched_setscheduler, only don't bother checking if the
6341 * current context has permission. For example, this is needed in
6342 * stop_machine(): we create temporary high priority worker threads,
6343 * but our caller might not have that capability.
6344 */
6345int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6346 struct sched_param *param)
6347{
6348 return __sched_setscheduler(p, policy, param, false);
6349}
6350
95cdf3b7
IM
6351static int
6352do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6353{
1da177e4
LT
6354 struct sched_param lparam;
6355 struct task_struct *p;
36c8b586 6356 int retval;
1da177e4
LT
6357
6358 if (!param || pid < 0)
6359 return -EINVAL;
6360 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6361 return -EFAULT;
5fe1d75f
ON
6362
6363 rcu_read_lock();
6364 retval = -ESRCH;
1da177e4 6365 p = find_process_by_pid(pid);
5fe1d75f
ON
6366 if (p != NULL)
6367 retval = sched_setscheduler(p, policy, &lparam);
6368 rcu_read_unlock();
36c8b586 6369
1da177e4
LT
6370 return retval;
6371}
6372
6373/**
6374 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6375 * @pid: the pid in question.
6376 * @policy: new policy.
6377 * @param: structure containing the new RT priority.
6378 */
5add95d4
HC
6379SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6380 struct sched_param __user *, param)
1da177e4 6381{
c21761f1
JB
6382 /* negative values for policy are not valid */
6383 if (policy < 0)
6384 return -EINVAL;
6385
1da177e4
LT
6386 return do_sched_setscheduler(pid, policy, param);
6387}
6388
6389/**
6390 * sys_sched_setparam - set/change the RT priority of a thread
6391 * @pid: the pid in question.
6392 * @param: structure containing the new RT priority.
6393 */
5add95d4 6394SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6395{
6396 return do_sched_setscheduler(pid, -1, param);
6397}
6398
6399/**
6400 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6401 * @pid: the pid in question.
6402 */
5add95d4 6403SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6404{
36c8b586 6405 struct task_struct *p;
3a5c359a 6406 int retval;
1da177e4
LT
6407
6408 if (pid < 0)
3a5c359a 6409 return -EINVAL;
1da177e4
LT
6410
6411 retval = -ESRCH;
6412 read_lock(&tasklist_lock);
6413 p = find_process_by_pid(pid);
6414 if (p) {
6415 retval = security_task_getscheduler(p);
6416 if (!retval)
ca94c442
LP
6417 retval = p->policy
6418 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6419 }
6420 read_unlock(&tasklist_lock);
1da177e4
LT
6421 return retval;
6422}
6423
6424/**
ca94c442 6425 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6426 * @pid: the pid in question.
6427 * @param: structure containing the RT priority.
6428 */
5add95d4 6429SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6430{
6431 struct sched_param lp;
36c8b586 6432 struct task_struct *p;
3a5c359a 6433 int retval;
1da177e4
LT
6434
6435 if (!param || pid < 0)
3a5c359a 6436 return -EINVAL;
1da177e4
LT
6437
6438 read_lock(&tasklist_lock);
6439 p = find_process_by_pid(pid);
6440 retval = -ESRCH;
6441 if (!p)
6442 goto out_unlock;
6443
6444 retval = security_task_getscheduler(p);
6445 if (retval)
6446 goto out_unlock;
6447
6448 lp.sched_priority = p->rt_priority;
6449 read_unlock(&tasklist_lock);
6450
6451 /*
6452 * This one might sleep, we cannot do it with a spinlock held ...
6453 */
6454 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6455
1da177e4
LT
6456 return retval;
6457
6458out_unlock:
6459 read_unlock(&tasklist_lock);
6460 return retval;
6461}
6462
96f874e2 6463long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6464{
5a16f3d3 6465 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6466 struct task_struct *p;
6467 int retval;
1da177e4 6468
95402b38 6469 get_online_cpus();
1da177e4
LT
6470 read_lock(&tasklist_lock);
6471
6472 p = find_process_by_pid(pid);
6473 if (!p) {
6474 read_unlock(&tasklist_lock);
95402b38 6475 put_online_cpus();
1da177e4
LT
6476 return -ESRCH;
6477 }
6478
6479 /*
6480 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6481 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6482 * usage count and then drop tasklist_lock.
6483 */
6484 get_task_struct(p);
6485 read_unlock(&tasklist_lock);
6486
5a16f3d3
RR
6487 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6488 retval = -ENOMEM;
6489 goto out_put_task;
6490 }
6491 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6492 retval = -ENOMEM;
6493 goto out_free_cpus_allowed;
6494 }
1da177e4 6495 retval = -EPERM;
c69e8d9c 6496 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6497 goto out_unlock;
6498
e7834f8f
DQ
6499 retval = security_task_setscheduler(p, 0, NULL);
6500 if (retval)
6501 goto out_unlock;
6502
5a16f3d3
RR
6503 cpuset_cpus_allowed(p, cpus_allowed);
6504 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6505 again:
5a16f3d3 6506 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6507
8707d8b8 6508 if (!retval) {
5a16f3d3
RR
6509 cpuset_cpus_allowed(p, cpus_allowed);
6510 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6511 /*
6512 * We must have raced with a concurrent cpuset
6513 * update. Just reset the cpus_allowed to the
6514 * cpuset's cpus_allowed
6515 */
5a16f3d3 6516 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6517 goto again;
6518 }
6519 }
1da177e4 6520out_unlock:
5a16f3d3
RR
6521 free_cpumask_var(new_mask);
6522out_free_cpus_allowed:
6523 free_cpumask_var(cpus_allowed);
6524out_put_task:
1da177e4 6525 put_task_struct(p);
95402b38 6526 put_online_cpus();
1da177e4
LT
6527 return retval;
6528}
6529
6530static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6531 struct cpumask *new_mask)
1da177e4 6532{
96f874e2
RR
6533 if (len < cpumask_size())
6534 cpumask_clear(new_mask);
6535 else if (len > cpumask_size())
6536 len = cpumask_size();
6537
1da177e4
LT
6538 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6539}
6540
6541/**
6542 * sys_sched_setaffinity - set the cpu affinity of a process
6543 * @pid: pid of the process
6544 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6545 * @user_mask_ptr: user-space pointer to the new cpu mask
6546 */
5add95d4
HC
6547SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6548 unsigned long __user *, user_mask_ptr)
1da177e4 6549{
5a16f3d3 6550 cpumask_var_t new_mask;
1da177e4
LT
6551 int retval;
6552
5a16f3d3
RR
6553 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6554 return -ENOMEM;
1da177e4 6555
5a16f3d3
RR
6556 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6557 if (retval == 0)
6558 retval = sched_setaffinity(pid, new_mask);
6559 free_cpumask_var(new_mask);
6560 return retval;
1da177e4
LT
6561}
6562
96f874e2 6563long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6564{
36c8b586 6565 struct task_struct *p;
1da177e4 6566 int retval;
1da177e4 6567
95402b38 6568 get_online_cpus();
1da177e4
LT
6569 read_lock(&tasklist_lock);
6570
6571 retval = -ESRCH;
6572 p = find_process_by_pid(pid);
6573 if (!p)
6574 goto out_unlock;
6575
e7834f8f
DQ
6576 retval = security_task_getscheduler(p);
6577 if (retval)
6578 goto out_unlock;
6579
96f874e2 6580 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6581
6582out_unlock:
6583 read_unlock(&tasklist_lock);
95402b38 6584 put_online_cpus();
1da177e4 6585
9531b62f 6586 return retval;
1da177e4
LT
6587}
6588
6589/**
6590 * sys_sched_getaffinity - get the cpu affinity of a process
6591 * @pid: pid of the process
6592 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6593 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6594 */
5add95d4
HC
6595SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6596 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6597{
6598 int ret;
f17c8607 6599 cpumask_var_t mask;
1da177e4 6600
f17c8607 6601 if (len < cpumask_size())
1da177e4
LT
6602 return -EINVAL;
6603
f17c8607
RR
6604 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6605 return -ENOMEM;
1da177e4 6606
f17c8607
RR
6607 ret = sched_getaffinity(pid, mask);
6608 if (ret == 0) {
6609 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6610 ret = -EFAULT;
6611 else
6612 ret = cpumask_size();
6613 }
6614 free_cpumask_var(mask);
1da177e4 6615
f17c8607 6616 return ret;
1da177e4
LT
6617}
6618
6619/**
6620 * sys_sched_yield - yield the current processor to other threads.
6621 *
dd41f596
IM
6622 * This function yields the current CPU to other tasks. If there are no
6623 * other threads running on this CPU then this function will return.
1da177e4 6624 */
5add95d4 6625SYSCALL_DEFINE0(sched_yield)
1da177e4 6626{
70b97a7f 6627 struct rq *rq = this_rq_lock();
1da177e4 6628
2d72376b 6629 schedstat_inc(rq, yld_count);
4530d7ab 6630 current->sched_class->yield_task(rq);
1da177e4
LT
6631
6632 /*
6633 * Since we are going to call schedule() anyway, there's
6634 * no need to preempt or enable interrupts:
6635 */
6636 __release(rq->lock);
8a25d5de 6637 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6638 _raw_spin_unlock(&rq->lock);
6639 preempt_enable_no_resched();
6640
6641 schedule();
6642
6643 return 0;
6644}
6645
d86ee480
PZ
6646static inline int should_resched(void)
6647{
6648 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6649}
6650
e7b38404 6651static void __cond_resched(void)
1da177e4 6652{
e7aaaa69
FW
6653 add_preempt_count(PREEMPT_ACTIVE);
6654 schedule();
6655 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6656}
6657
02b67cc3 6658int __sched _cond_resched(void)
1da177e4 6659{
d86ee480 6660 if (should_resched()) {
1da177e4
LT
6661 __cond_resched();
6662 return 1;
6663 }
6664 return 0;
6665}
02b67cc3 6666EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6667
6668/*
613afbf8 6669 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6670 * call schedule, and on return reacquire the lock.
6671 *
41a2d6cf 6672 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6673 * operations here to prevent schedule() from being called twice (once via
6674 * spin_unlock(), once by hand).
6675 */
613afbf8 6676int __cond_resched_lock(spinlock_t *lock)
1da177e4 6677{
d86ee480 6678 int resched = should_resched();
6df3cecb
JK
6679 int ret = 0;
6680
95c354fe 6681 if (spin_needbreak(lock) || resched) {
1da177e4 6682 spin_unlock(lock);
d86ee480 6683 if (resched)
95c354fe
NP
6684 __cond_resched();
6685 else
6686 cpu_relax();
6df3cecb 6687 ret = 1;
1da177e4 6688 spin_lock(lock);
1da177e4 6689 }
6df3cecb 6690 return ret;
1da177e4 6691}
613afbf8 6692EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6693
613afbf8 6694int __sched __cond_resched_softirq(void)
1da177e4
LT
6695{
6696 BUG_ON(!in_softirq());
6697
d86ee480 6698 if (should_resched()) {
98d82567 6699 local_bh_enable();
1da177e4
LT
6700 __cond_resched();
6701 local_bh_disable();
6702 return 1;
6703 }
6704 return 0;
6705}
613afbf8 6706EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6707
1da177e4
LT
6708/**
6709 * yield - yield the current processor to other threads.
6710 *
72fd4a35 6711 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6712 * thread runnable and calls sys_sched_yield().
6713 */
6714void __sched yield(void)
6715{
6716 set_current_state(TASK_RUNNING);
6717 sys_sched_yield();
6718}
1da177e4
LT
6719EXPORT_SYMBOL(yield);
6720
6721/*
41a2d6cf 6722 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6723 * that process accounting knows that this is a task in IO wait state.
6724 *
6725 * But don't do that if it is a deliberate, throttling IO wait (this task
6726 * has set its backing_dev_info: the queue against which it should throttle)
6727 */
6728void __sched io_schedule(void)
6729{
54d35f29 6730 struct rq *rq = raw_rq();
1da177e4 6731
0ff92245 6732 delayacct_blkio_start();
1da177e4
LT
6733 atomic_inc(&rq->nr_iowait);
6734 schedule();
6735 atomic_dec(&rq->nr_iowait);
0ff92245 6736 delayacct_blkio_end();
1da177e4 6737}
1da177e4
LT
6738EXPORT_SYMBOL(io_schedule);
6739
6740long __sched io_schedule_timeout(long timeout)
6741{
54d35f29 6742 struct rq *rq = raw_rq();
1da177e4
LT
6743 long ret;
6744
0ff92245 6745 delayacct_blkio_start();
1da177e4
LT
6746 atomic_inc(&rq->nr_iowait);
6747 ret = schedule_timeout(timeout);
6748 atomic_dec(&rq->nr_iowait);
0ff92245 6749 delayacct_blkio_end();
1da177e4
LT
6750 return ret;
6751}
6752
6753/**
6754 * sys_sched_get_priority_max - return maximum RT priority.
6755 * @policy: scheduling class.
6756 *
6757 * this syscall returns the maximum rt_priority that can be used
6758 * by a given scheduling class.
6759 */
5add95d4 6760SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6761{
6762 int ret = -EINVAL;
6763
6764 switch (policy) {
6765 case SCHED_FIFO:
6766 case SCHED_RR:
6767 ret = MAX_USER_RT_PRIO-1;
6768 break;
6769 case SCHED_NORMAL:
b0a9499c 6770 case SCHED_BATCH:
dd41f596 6771 case SCHED_IDLE:
1da177e4
LT
6772 ret = 0;
6773 break;
6774 }
6775 return ret;
6776}
6777
6778/**
6779 * sys_sched_get_priority_min - return minimum RT priority.
6780 * @policy: scheduling class.
6781 *
6782 * this syscall returns the minimum rt_priority that can be used
6783 * by a given scheduling class.
6784 */
5add95d4 6785SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6786{
6787 int ret = -EINVAL;
6788
6789 switch (policy) {
6790 case SCHED_FIFO:
6791 case SCHED_RR:
6792 ret = 1;
6793 break;
6794 case SCHED_NORMAL:
b0a9499c 6795 case SCHED_BATCH:
dd41f596 6796 case SCHED_IDLE:
1da177e4
LT
6797 ret = 0;
6798 }
6799 return ret;
6800}
6801
6802/**
6803 * sys_sched_rr_get_interval - return the default timeslice of a process.
6804 * @pid: pid of the process.
6805 * @interval: userspace pointer to the timeslice value.
6806 *
6807 * this syscall writes the default timeslice value of a given process
6808 * into the user-space timespec buffer. A value of '0' means infinity.
6809 */
17da2bd9 6810SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6811 struct timespec __user *, interval)
1da177e4 6812{
36c8b586 6813 struct task_struct *p;
a4ec24b4 6814 unsigned int time_slice;
3a5c359a 6815 int retval;
1da177e4 6816 struct timespec t;
1da177e4
LT
6817
6818 if (pid < 0)
3a5c359a 6819 return -EINVAL;
1da177e4
LT
6820
6821 retval = -ESRCH;
6822 read_lock(&tasklist_lock);
6823 p = find_process_by_pid(pid);
6824 if (!p)
6825 goto out_unlock;
6826
6827 retval = security_task_getscheduler(p);
6828 if (retval)
6829 goto out_unlock;
6830
77034937
IM
6831 /*
6832 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6833 * tasks that are on an otherwise idle runqueue:
6834 */
6835 time_slice = 0;
6836 if (p->policy == SCHED_RR) {
a4ec24b4 6837 time_slice = DEF_TIMESLICE;
1868f958 6838 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6839 struct sched_entity *se = &p->se;
6840 unsigned long flags;
6841 struct rq *rq;
6842
6843 rq = task_rq_lock(p, &flags);
77034937
IM
6844 if (rq->cfs.load.weight)
6845 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6846 task_rq_unlock(rq, &flags);
6847 }
1da177e4 6848 read_unlock(&tasklist_lock);
a4ec24b4 6849 jiffies_to_timespec(time_slice, &t);
1da177e4 6850 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6851 return retval;
3a5c359a 6852
1da177e4
LT
6853out_unlock:
6854 read_unlock(&tasklist_lock);
6855 return retval;
6856}
6857
7c731e0a 6858static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6859
82a1fcb9 6860void sched_show_task(struct task_struct *p)
1da177e4 6861{
1da177e4 6862 unsigned long free = 0;
36c8b586 6863 unsigned state;
1da177e4 6864
1da177e4 6865 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6866 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6867 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6868#if BITS_PER_LONG == 32
1da177e4 6869 if (state == TASK_RUNNING)
cc4ea795 6870 printk(KERN_CONT " running ");
1da177e4 6871 else
cc4ea795 6872 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6873#else
6874 if (state == TASK_RUNNING)
cc4ea795 6875 printk(KERN_CONT " running task ");
1da177e4 6876 else
cc4ea795 6877 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6878#endif
6879#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6880 free = stack_not_used(p);
1da177e4 6881#endif
aa47b7e0
DR
6882 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6883 task_pid_nr(p), task_pid_nr(p->real_parent),
6884 (unsigned long)task_thread_info(p)->flags);
1da177e4 6885
5fb5e6de 6886 show_stack(p, NULL);
1da177e4
LT
6887}
6888
e59e2ae2 6889void show_state_filter(unsigned long state_filter)
1da177e4 6890{
36c8b586 6891 struct task_struct *g, *p;
1da177e4 6892
4bd77321
IM
6893#if BITS_PER_LONG == 32
6894 printk(KERN_INFO
6895 " task PC stack pid father\n");
1da177e4 6896#else
4bd77321
IM
6897 printk(KERN_INFO
6898 " task PC stack pid father\n");
1da177e4
LT
6899#endif
6900 read_lock(&tasklist_lock);
6901 do_each_thread(g, p) {
6902 /*
6903 * reset the NMI-timeout, listing all files on a slow
6904 * console might take alot of time:
6905 */
6906 touch_nmi_watchdog();
39bc89fd 6907 if (!state_filter || (p->state & state_filter))
82a1fcb9 6908 sched_show_task(p);
1da177e4
LT
6909 } while_each_thread(g, p);
6910
04c9167f
JF
6911 touch_all_softlockup_watchdogs();
6912
dd41f596
IM
6913#ifdef CONFIG_SCHED_DEBUG
6914 sysrq_sched_debug_show();
6915#endif
1da177e4 6916 read_unlock(&tasklist_lock);
e59e2ae2
IM
6917 /*
6918 * Only show locks if all tasks are dumped:
6919 */
6920 if (state_filter == -1)
6921 debug_show_all_locks();
1da177e4
LT
6922}
6923
1df21055
IM
6924void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6925{
dd41f596 6926 idle->sched_class = &idle_sched_class;
1df21055
IM
6927}
6928
f340c0d1
IM
6929/**
6930 * init_idle - set up an idle thread for a given CPU
6931 * @idle: task in question
6932 * @cpu: cpu the idle task belongs to
6933 *
6934 * NOTE: this function does not set the idle thread's NEED_RESCHED
6935 * flag, to make booting more robust.
6936 */
5c1e1767 6937void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6938{
70b97a7f 6939 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6940 unsigned long flags;
6941
5cbd54ef
IM
6942 spin_lock_irqsave(&rq->lock, flags);
6943
dd41f596
IM
6944 __sched_fork(idle);
6945 idle->se.exec_start = sched_clock();
6946
b29739f9 6947 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6948 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6949 __set_task_cpu(idle, cpu);
1da177e4 6950
1da177e4 6951 rq->curr = rq->idle = idle;
4866cde0
NP
6952#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6953 idle->oncpu = 1;
6954#endif
1da177e4
LT
6955 spin_unlock_irqrestore(&rq->lock, flags);
6956
6957 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6958#if defined(CONFIG_PREEMPT)
6959 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6960#else
a1261f54 6961 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6962#endif
dd41f596
IM
6963 /*
6964 * The idle tasks have their own, simple scheduling class:
6965 */
6966 idle->sched_class = &idle_sched_class;
fb52607a 6967 ftrace_graph_init_task(idle);
1da177e4
LT
6968}
6969
6970/*
6971 * In a system that switches off the HZ timer nohz_cpu_mask
6972 * indicates which cpus entered this state. This is used
6973 * in the rcu update to wait only for active cpus. For system
6974 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6975 * always be CPU_BITS_NONE.
1da177e4 6976 */
6a7b3dc3 6977cpumask_var_t nohz_cpu_mask;
1da177e4 6978
19978ca6
IM
6979/*
6980 * Increase the granularity value when there are more CPUs,
6981 * because with more CPUs the 'effective latency' as visible
6982 * to users decreases. But the relationship is not linear,
6983 * so pick a second-best guess by going with the log2 of the
6984 * number of CPUs.
6985 *
6986 * This idea comes from the SD scheduler of Con Kolivas:
6987 */
6988static inline void sched_init_granularity(void)
6989{
6990 unsigned int factor = 1 + ilog2(num_online_cpus());
6991 const unsigned long limit = 200000000;
6992
6993 sysctl_sched_min_granularity *= factor;
6994 if (sysctl_sched_min_granularity > limit)
6995 sysctl_sched_min_granularity = limit;
6996
6997 sysctl_sched_latency *= factor;
6998 if (sysctl_sched_latency > limit)
6999 sysctl_sched_latency = limit;
7000
7001 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7002
7003 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7004}
7005
1da177e4
LT
7006#ifdef CONFIG_SMP
7007/*
7008 * This is how migration works:
7009 *
70b97a7f 7010 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7011 * runqueue and wake up that CPU's migration thread.
7012 * 2) we down() the locked semaphore => thread blocks.
7013 * 3) migration thread wakes up (implicitly it forces the migrated
7014 * thread off the CPU)
7015 * 4) it gets the migration request and checks whether the migrated
7016 * task is still in the wrong runqueue.
7017 * 5) if it's in the wrong runqueue then the migration thread removes
7018 * it and puts it into the right queue.
7019 * 6) migration thread up()s the semaphore.
7020 * 7) we wake up and the migration is done.
7021 */
7022
7023/*
7024 * Change a given task's CPU affinity. Migrate the thread to a
7025 * proper CPU and schedule it away if the CPU it's executing on
7026 * is removed from the allowed bitmask.
7027 *
7028 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7029 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7030 * call is not atomic; no spinlocks may be held.
7031 */
96f874e2 7032int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7033{
70b97a7f 7034 struct migration_req req;
1da177e4 7035 unsigned long flags;
70b97a7f 7036 struct rq *rq;
48f24c4d 7037 int ret = 0;
1da177e4
LT
7038
7039 rq = task_rq_lock(p, &flags);
96f874e2 7040 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7041 ret = -EINVAL;
7042 goto out;
7043 }
7044
9985b0ba 7045 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7046 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7047 ret = -EINVAL;
7048 goto out;
7049 }
7050
73fe6aae 7051 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7052 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7053 else {
96f874e2
RR
7054 cpumask_copy(&p->cpus_allowed, new_mask);
7055 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7056 }
7057
1da177e4 7058 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7059 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7060 goto out;
7061
1e5ce4f4 7062 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
7063 /* Need help from migration thread: drop lock and wait. */
7064 task_rq_unlock(rq, &flags);
7065 wake_up_process(rq->migration_thread);
7066 wait_for_completion(&req.done);
7067 tlb_migrate_finish(p->mm);
7068 return 0;
7069 }
7070out:
7071 task_rq_unlock(rq, &flags);
48f24c4d 7072
1da177e4
LT
7073 return ret;
7074}
cd8ba7cd 7075EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7076
7077/*
41a2d6cf 7078 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7079 * this because either it can't run here any more (set_cpus_allowed()
7080 * away from this CPU, or CPU going down), or because we're
7081 * attempting to rebalance this task on exec (sched_exec).
7082 *
7083 * So we race with normal scheduler movements, but that's OK, as long
7084 * as the task is no longer on this CPU.
efc30814
KK
7085 *
7086 * Returns non-zero if task was successfully migrated.
1da177e4 7087 */
efc30814 7088static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7089{
70b97a7f 7090 struct rq *rq_dest, *rq_src;
dd41f596 7091 int ret = 0, on_rq;
1da177e4 7092
e761b772 7093 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7094 return ret;
1da177e4
LT
7095
7096 rq_src = cpu_rq(src_cpu);
7097 rq_dest = cpu_rq(dest_cpu);
7098
7099 double_rq_lock(rq_src, rq_dest);
7100 /* Already moved. */
7101 if (task_cpu(p) != src_cpu)
b1e38734 7102 goto done;
1da177e4 7103 /* Affinity changed (again). */
96f874e2 7104 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7105 goto fail;
1da177e4 7106
dd41f596 7107 on_rq = p->se.on_rq;
6e82a3be 7108 if (on_rq)
2e1cb74a 7109 deactivate_task(rq_src, p, 0);
6e82a3be 7110
1da177e4 7111 set_task_cpu(p, dest_cpu);
dd41f596
IM
7112 if (on_rq) {
7113 activate_task(rq_dest, p, 0);
15afe09b 7114 check_preempt_curr(rq_dest, p, 0);
1da177e4 7115 }
b1e38734 7116done:
efc30814 7117 ret = 1;
b1e38734 7118fail:
1da177e4 7119 double_rq_unlock(rq_src, rq_dest);
efc30814 7120 return ret;
1da177e4
LT
7121}
7122
7123/*
7124 * migration_thread - this is a highprio system thread that performs
7125 * thread migration by bumping thread off CPU then 'pushing' onto
7126 * another runqueue.
7127 */
95cdf3b7 7128static int migration_thread(void *data)
1da177e4 7129{
1da177e4 7130 int cpu = (long)data;
70b97a7f 7131 struct rq *rq;
1da177e4
LT
7132
7133 rq = cpu_rq(cpu);
7134 BUG_ON(rq->migration_thread != current);
7135
7136 set_current_state(TASK_INTERRUPTIBLE);
7137 while (!kthread_should_stop()) {
70b97a7f 7138 struct migration_req *req;
1da177e4 7139 struct list_head *head;
1da177e4 7140
1da177e4
LT
7141 spin_lock_irq(&rq->lock);
7142
7143 if (cpu_is_offline(cpu)) {
7144 spin_unlock_irq(&rq->lock);
371cbb38 7145 break;
1da177e4
LT
7146 }
7147
7148 if (rq->active_balance) {
7149 active_load_balance(rq, cpu);
7150 rq->active_balance = 0;
7151 }
7152
7153 head = &rq->migration_queue;
7154
7155 if (list_empty(head)) {
7156 spin_unlock_irq(&rq->lock);
7157 schedule();
7158 set_current_state(TASK_INTERRUPTIBLE);
7159 continue;
7160 }
70b97a7f 7161 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7162 list_del_init(head->next);
7163
674311d5
NP
7164 spin_unlock(&rq->lock);
7165 __migrate_task(req->task, cpu, req->dest_cpu);
7166 local_irq_enable();
1da177e4
LT
7167
7168 complete(&req->done);
7169 }
7170 __set_current_state(TASK_RUNNING);
1da177e4 7171
1da177e4
LT
7172 return 0;
7173}
7174
7175#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7176
7177static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7178{
7179 int ret;
7180
7181 local_irq_disable();
7182 ret = __migrate_task(p, src_cpu, dest_cpu);
7183 local_irq_enable();
7184 return ret;
7185}
7186
054b9108 7187/*
3a4fa0a2 7188 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7189 */
48f24c4d 7190static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7191{
70b97a7f 7192 int dest_cpu;
6ca09dfc 7193 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7194
7195again:
7196 /* Look for allowed, online CPU in same node. */
7197 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7198 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7199 goto move;
7200
7201 /* Any allowed, online CPU? */
7202 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7203 if (dest_cpu < nr_cpu_ids)
7204 goto move;
7205
7206 /* No more Mr. Nice Guy. */
7207 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7208 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7209 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7210
e76bd8d9
RR
7211 /*
7212 * Don't tell them about moving exiting tasks or
7213 * kernel threads (both mm NULL), since they never
7214 * leave kernel.
7215 */
7216 if (p->mm && printk_ratelimit()) {
7217 printk(KERN_INFO "process %d (%s) no "
7218 "longer affine to cpu%d\n",
7219 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7220 }
e76bd8d9
RR
7221 }
7222
7223move:
7224 /* It can have affinity changed while we were choosing. */
7225 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7226 goto again;
1da177e4
LT
7227}
7228
7229/*
7230 * While a dead CPU has no uninterruptible tasks queued at this point,
7231 * it might still have a nonzero ->nr_uninterruptible counter, because
7232 * for performance reasons the counter is not stricly tracking tasks to
7233 * their home CPUs. So we just add the counter to another CPU's counter,
7234 * to keep the global sum constant after CPU-down:
7235 */
70b97a7f 7236static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7237{
1e5ce4f4 7238 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7239 unsigned long flags;
7240
7241 local_irq_save(flags);
7242 double_rq_lock(rq_src, rq_dest);
7243 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7244 rq_src->nr_uninterruptible = 0;
7245 double_rq_unlock(rq_src, rq_dest);
7246 local_irq_restore(flags);
7247}
7248
7249/* Run through task list and migrate tasks from the dead cpu. */
7250static void migrate_live_tasks(int src_cpu)
7251{
48f24c4d 7252 struct task_struct *p, *t;
1da177e4 7253
f7b4cddc 7254 read_lock(&tasklist_lock);
1da177e4 7255
48f24c4d
IM
7256 do_each_thread(t, p) {
7257 if (p == current)
1da177e4
LT
7258 continue;
7259
48f24c4d
IM
7260 if (task_cpu(p) == src_cpu)
7261 move_task_off_dead_cpu(src_cpu, p);
7262 } while_each_thread(t, p);
1da177e4 7263
f7b4cddc 7264 read_unlock(&tasklist_lock);
1da177e4
LT
7265}
7266
dd41f596
IM
7267/*
7268 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7269 * It does so by boosting its priority to highest possible.
7270 * Used by CPU offline code.
1da177e4
LT
7271 */
7272void sched_idle_next(void)
7273{
48f24c4d 7274 int this_cpu = smp_processor_id();
70b97a7f 7275 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7276 struct task_struct *p = rq->idle;
7277 unsigned long flags;
7278
7279 /* cpu has to be offline */
48f24c4d 7280 BUG_ON(cpu_online(this_cpu));
1da177e4 7281
48f24c4d
IM
7282 /*
7283 * Strictly not necessary since rest of the CPUs are stopped by now
7284 * and interrupts disabled on the current cpu.
1da177e4
LT
7285 */
7286 spin_lock_irqsave(&rq->lock, flags);
7287
dd41f596 7288 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7289
94bc9a7b
DA
7290 update_rq_clock(rq);
7291 activate_task(rq, p, 0);
1da177e4
LT
7292
7293 spin_unlock_irqrestore(&rq->lock, flags);
7294}
7295
48f24c4d
IM
7296/*
7297 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7298 * offline.
7299 */
7300void idle_task_exit(void)
7301{
7302 struct mm_struct *mm = current->active_mm;
7303
7304 BUG_ON(cpu_online(smp_processor_id()));
7305
7306 if (mm != &init_mm)
7307 switch_mm(mm, &init_mm, current);
7308 mmdrop(mm);
7309}
7310
054b9108 7311/* called under rq->lock with disabled interrupts */
36c8b586 7312static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7313{
70b97a7f 7314 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7315
7316 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7317 BUG_ON(!p->exit_state);
1da177e4
LT
7318
7319 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7320 BUG_ON(p->state == TASK_DEAD);
1da177e4 7321
48f24c4d 7322 get_task_struct(p);
1da177e4
LT
7323
7324 /*
7325 * Drop lock around migration; if someone else moves it,
41a2d6cf 7326 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7327 * fine.
7328 */
f7b4cddc 7329 spin_unlock_irq(&rq->lock);
48f24c4d 7330 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7331 spin_lock_irq(&rq->lock);
1da177e4 7332
48f24c4d 7333 put_task_struct(p);
1da177e4
LT
7334}
7335
7336/* release_task() removes task from tasklist, so we won't find dead tasks. */
7337static void migrate_dead_tasks(unsigned int dead_cpu)
7338{
70b97a7f 7339 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7340 struct task_struct *next;
48f24c4d 7341
dd41f596
IM
7342 for ( ; ; ) {
7343 if (!rq->nr_running)
7344 break;
a8e504d2 7345 update_rq_clock(rq);
b67802ea 7346 next = pick_next_task(rq);
dd41f596
IM
7347 if (!next)
7348 break;
79c53799 7349 next->sched_class->put_prev_task(rq, next);
dd41f596 7350 migrate_dead(dead_cpu, next);
e692ab53 7351
1da177e4
LT
7352 }
7353}
dce48a84
TG
7354
7355/*
7356 * remove the tasks which were accounted by rq from calc_load_tasks.
7357 */
7358static void calc_global_load_remove(struct rq *rq)
7359{
7360 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7361 rq->calc_load_active = 0;
dce48a84 7362}
1da177e4
LT
7363#endif /* CONFIG_HOTPLUG_CPU */
7364
e692ab53
NP
7365#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7366
7367static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7368 {
7369 .procname = "sched_domain",
c57baf1e 7370 .mode = 0555,
e0361851 7371 },
38605cae 7372 {0, },
e692ab53
NP
7373};
7374
7375static struct ctl_table sd_ctl_root[] = {
e0361851 7376 {
c57baf1e 7377 .ctl_name = CTL_KERN,
e0361851 7378 .procname = "kernel",
c57baf1e 7379 .mode = 0555,
e0361851
AD
7380 .child = sd_ctl_dir,
7381 },
38605cae 7382 {0, },
e692ab53
NP
7383};
7384
7385static struct ctl_table *sd_alloc_ctl_entry(int n)
7386{
7387 struct ctl_table *entry =
5cf9f062 7388 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7389
e692ab53
NP
7390 return entry;
7391}
7392
6382bc90
MM
7393static void sd_free_ctl_entry(struct ctl_table **tablep)
7394{
cd790076 7395 struct ctl_table *entry;
6382bc90 7396
cd790076
MM
7397 /*
7398 * In the intermediate directories, both the child directory and
7399 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7400 * will always be set. In the lowest directory the names are
cd790076
MM
7401 * static strings and all have proc handlers.
7402 */
7403 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7404 if (entry->child)
7405 sd_free_ctl_entry(&entry->child);
cd790076
MM
7406 if (entry->proc_handler == NULL)
7407 kfree(entry->procname);
7408 }
6382bc90
MM
7409
7410 kfree(*tablep);
7411 *tablep = NULL;
7412}
7413
e692ab53 7414static void
e0361851 7415set_table_entry(struct ctl_table *entry,
e692ab53
NP
7416 const char *procname, void *data, int maxlen,
7417 mode_t mode, proc_handler *proc_handler)
7418{
e692ab53
NP
7419 entry->procname = procname;
7420 entry->data = data;
7421 entry->maxlen = maxlen;
7422 entry->mode = mode;
7423 entry->proc_handler = proc_handler;
7424}
7425
7426static struct ctl_table *
7427sd_alloc_ctl_domain_table(struct sched_domain *sd)
7428{
a5d8c348 7429 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7430
ad1cdc1d
MM
7431 if (table == NULL)
7432 return NULL;
7433
e0361851 7434 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7435 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7436 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7437 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7438 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7439 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7440 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7441 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7442 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7443 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7444 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7445 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7446 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7447 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7448 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7449 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7450 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7451 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7452 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7453 &sd->cache_nice_tries,
7454 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7455 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7456 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7457 set_table_entry(&table[11], "name", sd->name,
7458 CORENAME_MAX_SIZE, 0444, proc_dostring);
7459 /* &table[12] is terminator */
e692ab53
NP
7460
7461 return table;
7462}
7463
9a4e7159 7464static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7465{
7466 struct ctl_table *entry, *table;
7467 struct sched_domain *sd;
7468 int domain_num = 0, i;
7469 char buf[32];
7470
7471 for_each_domain(cpu, sd)
7472 domain_num++;
7473 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7474 if (table == NULL)
7475 return NULL;
e692ab53
NP
7476
7477 i = 0;
7478 for_each_domain(cpu, sd) {
7479 snprintf(buf, 32, "domain%d", i);
e692ab53 7480 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7481 entry->mode = 0555;
e692ab53
NP
7482 entry->child = sd_alloc_ctl_domain_table(sd);
7483 entry++;
7484 i++;
7485 }
7486 return table;
7487}
7488
7489static struct ctl_table_header *sd_sysctl_header;
6382bc90 7490static void register_sched_domain_sysctl(void)
e692ab53
NP
7491{
7492 int i, cpu_num = num_online_cpus();
7493 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7494 char buf[32];
7495
7378547f
MM
7496 WARN_ON(sd_ctl_dir[0].child);
7497 sd_ctl_dir[0].child = entry;
7498
ad1cdc1d
MM
7499 if (entry == NULL)
7500 return;
7501
97b6ea7b 7502 for_each_online_cpu(i) {
e692ab53 7503 snprintf(buf, 32, "cpu%d", i);
e692ab53 7504 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7505 entry->mode = 0555;
e692ab53 7506 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7507 entry++;
e692ab53 7508 }
7378547f
MM
7509
7510 WARN_ON(sd_sysctl_header);
e692ab53
NP
7511 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7512}
6382bc90 7513
7378547f 7514/* may be called multiple times per register */
6382bc90
MM
7515static void unregister_sched_domain_sysctl(void)
7516{
7378547f
MM
7517 if (sd_sysctl_header)
7518 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7519 sd_sysctl_header = NULL;
7378547f
MM
7520 if (sd_ctl_dir[0].child)
7521 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7522}
e692ab53 7523#else
6382bc90
MM
7524static void register_sched_domain_sysctl(void)
7525{
7526}
7527static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7528{
7529}
7530#endif
7531
1f11eb6a
GH
7532static void set_rq_online(struct rq *rq)
7533{
7534 if (!rq->online) {
7535 const struct sched_class *class;
7536
c6c4927b 7537 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7538 rq->online = 1;
7539
7540 for_each_class(class) {
7541 if (class->rq_online)
7542 class->rq_online(rq);
7543 }
7544 }
7545}
7546
7547static void set_rq_offline(struct rq *rq)
7548{
7549 if (rq->online) {
7550 const struct sched_class *class;
7551
7552 for_each_class(class) {
7553 if (class->rq_offline)
7554 class->rq_offline(rq);
7555 }
7556
c6c4927b 7557 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7558 rq->online = 0;
7559 }
7560}
7561
1da177e4
LT
7562/*
7563 * migration_call - callback that gets triggered when a CPU is added.
7564 * Here we can start up the necessary migration thread for the new CPU.
7565 */
48f24c4d
IM
7566static int __cpuinit
7567migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7568{
1da177e4 7569 struct task_struct *p;
48f24c4d 7570 int cpu = (long)hcpu;
1da177e4 7571 unsigned long flags;
70b97a7f 7572 struct rq *rq;
1da177e4
LT
7573
7574 switch (action) {
5be9361c 7575
1da177e4 7576 case CPU_UP_PREPARE:
8bb78442 7577 case CPU_UP_PREPARE_FROZEN:
dd41f596 7578 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7579 if (IS_ERR(p))
7580 return NOTIFY_BAD;
1da177e4
LT
7581 kthread_bind(p, cpu);
7582 /* Must be high prio: stop_machine expects to yield to it. */
7583 rq = task_rq_lock(p, &flags);
dd41f596 7584 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7585 task_rq_unlock(rq, &flags);
371cbb38 7586 get_task_struct(p);
1da177e4 7587 cpu_rq(cpu)->migration_thread = p;
a468d389 7588 rq->calc_load_update = calc_load_update;
1da177e4 7589 break;
48f24c4d 7590
1da177e4 7591 case CPU_ONLINE:
8bb78442 7592 case CPU_ONLINE_FROZEN:
3a4fa0a2 7593 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7594 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7595
7596 /* Update our root-domain */
7597 rq = cpu_rq(cpu);
7598 spin_lock_irqsave(&rq->lock, flags);
7599 if (rq->rd) {
c6c4927b 7600 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7601
7602 set_rq_online(rq);
1f94ef59
GH
7603 }
7604 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7605 break;
48f24c4d 7606
1da177e4
LT
7607#ifdef CONFIG_HOTPLUG_CPU
7608 case CPU_UP_CANCELED:
8bb78442 7609 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7610 if (!cpu_rq(cpu)->migration_thread)
7611 break;
41a2d6cf 7612 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7613 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7614 cpumask_any(cpu_online_mask));
1da177e4 7615 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7616 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7617 cpu_rq(cpu)->migration_thread = NULL;
7618 break;
48f24c4d 7619
1da177e4 7620 case CPU_DEAD:
8bb78442 7621 case CPU_DEAD_FROZEN:
470fd646 7622 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7623 migrate_live_tasks(cpu);
7624 rq = cpu_rq(cpu);
7625 kthread_stop(rq->migration_thread);
371cbb38 7626 put_task_struct(rq->migration_thread);
1da177e4
LT
7627 rq->migration_thread = NULL;
7628 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7629 spin_lock_irq(&rq->lock);
a8e504d2 7630 update_rq_clock(rq);
2e1cb74a 7631 deactivate_task(rq, rq->idle, 0);
1da177e4 7632 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7633 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7634 rq->idle->sched_class = &idle_sched_class;
1da177e4 7635 migrate_dead_tasks(cpu);
d2da272a 7636 spin_unlock_irq(&rq->lock);
470fd646 7637 cpuset_unlock();
1da177e4
LT
7638 migrate_nr_uninterruptible(rq);
7639 BUG_ON(rq->nr_running != 0);
dce48a84 7640 calc_global_load_remove(rq);
41a2d6cf
IM
7641 /*
7642 * No need to migrate the tasks: it was best-effort if
7643 * they didn't take sched_hotcpu_mutex. Just wake up
7644 * the requestors.
7645 */
1da177e4
LT
7646 spin_lock_irq(&rq->lock);
7647 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7648 struct migration_req *req;
7649
1da177e4 7650 req = list_entry(rq->migration_queue.next,
70b97a7f 7651 struct migration_req, list);
1da177e4 7652 list_del_init(&req->list);
9a2bd244 7653 spin_unlock_irq(&rq->lock);
1da177e4 7654 complete(&req->done);
9a2bd244 7655 spin_lock_irq(&rq->lock);
1da177e4
LT
7656 }
7657 spin_unlock_irq(&rq->lock);
7658 break;
57d885fe 7659
08f503b0
GH
7660 case CPU_DYING:
7661 case CPU_DYING_FROZEN:
57d885fe
GH
7662 /* Update our root-domain */
7663 rq = cpu_rq(cpu);
7664 spin_lock_irqsave(&rq->lock, flags);
7665 if (rq->rd) {
c6c4927b 7666 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7667 set_rq_offline(rq);
57d885fe
GH
7668 }
7669 spin_unlock_irqrestore(&rq->lock, flags);
7670 break;
1da177e4
LT
7671#endif
7672 }
7673 return NOTIFY_OK;
7674}
7675
f38b0820
PM
7676/*
7677 * Register at high priority so that task migration (migrate_all_tasks)
7678 * happens before everything else. This has to be lower priority than
7679 * the notifier in the perf_counter subsystem, though.
1da177e4 7680 */
26c2143b 7681static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7682 .notifier_call = migration_call,
7683 .priority = 10
7684};
7685
7babe8db 7686static int __init migration_init(void)
1da177e4
LT
7687{
7688 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7689 int err;
48f24c4d
IM
7690
7691 /* Start one for the boot CPU: */
07dccf33
AM
7692 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7693 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7694 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7695 register_cpu_notifier(&migration_notifier);
7babe8db 7696
a004cd42 7697 return 0;
1da177e4 7698}
7babe8db 7699early_initcall(migration_init);
1da177e4
LT
7700#endif
7701
7702#ifdef CONFIG_SMP
476f3534 7703
3e9830dc 7704#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7705
7c16ec58 7706static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7707 struct cpumask *groupmask)
1da177e4 7708{
4dcf6aff 7709 struct sched_group *group = sd->groups;
434d53b0 7710 char str[256];
1da177e4 7711
968ea6d8 7712 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7713 cpumask_clear(groupmask);
4dcf6aff
IM
7714
7715 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7716
7717 if (!(sd->flags & SD_LOAD_BALANCE)) {
7718 printk("does not load-balance\n");
7719 if (sd->parent)
7720 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7721 " has parent");
7722 return -1;
41c7ce9a
NP
7723 }
7724
eefd796a 7725 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7726
758b2cdc 7727 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7728 printk(KERN_ERR "ERROR: domain->span does not contain "
7729 "CPU%d\n", cpu);
7730 }
758b2cdc 7731 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7732 printk(KERN_ERR "ERROR: domain->groups does not contain"
7733 " CPU%d\n", cpu);
7734 }
1da177e4 7735
4dcf6aff 7736 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7737 do {
4dcf6aff
IM
7738 if (!group) {
7739 printk("\n");
7740 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7741 break;
7742 }
7743
4dcf6aff
IM
7744 if (!group->__cpu_power) {
7745 printk(KERN_CONT "\n");
7746 printk(KERN_ERR "ERROR: domain->cpu_power not "
7747 "set\n");
7748 break;
7749 }
1da177e4 7750
758b2cdc 7751 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7752 printk(KERN_CONT "\n");
7753 printk(KERN_ERR "ERROR: empty group\n");
7754 break;
7755 }
1da177e4 7756
758b2cdc 7757 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7758 printk(KERN_CONT "\n");
7759 printk(KERN_ERR "ERROR: repeated CPUs\n");
7760 break;
7761 }
1da177e4 7762
758b2cdc 7763 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7764
968ea6d8 7765 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7766
7767 printk(KERN_CONT " %s", str);
7768 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7769 printk(KERN_CONT " (__cpu_power = %d)",
7770 group->__cpu_power);
7771 }
1da177e4 7772
4dcf6aff
IM
7773 group = group->next;
7774 } while (group != sd->groups);
7775 printk(KERN_CONT "\n");
1da177e4 7776
758b2cdc 7777 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7778 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7779
758b2cdc
RR
7780 if (sd->parent &&
7781 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7782 printk(KERN_ERR "ERROR: parent span is not a superset "
7783 "of domain->span\n");
7784 return 0;
7785}
1da177e4 7786
4dcf6aff
IM
7787static void sched_domain_debug(struct sched_domain *sd, int cpu)
7788{
d5dd3db1 7789 cpumask_var_t groupmask;
4dcf6aff 7790 int level = 0;
1da177e4 7791
4dcf6aff
IM
7792 if (!sd) {
7793 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7794 return;
7795 }
1da177e4 7796
4dcf6aff
IM
7797 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7798
d5dd3db1 7799 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7800 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7801 return;
7802 }
7803
4dcf6aff 7804 for (;;) {
7c16ec58 7805 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7806 break;
1da177e4
LT
7807 level++;
7808 sd = sd->parent;
33859f7f 7809 if (!sd)
4dcf6aff
IM
7810 break;
7811 }
d5dd3db1 7812 free_cpumask_var(groupmask);
1da177e4 7813}
6d6bc0ad 7814#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7815# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7816#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7817
1a20ff27 7818static int sd_degenerate(struct sched_domain *sd)
245af2c7 7819{
758b2cdc 7820 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7821 return 1;
7822
7823 /* Following flags need at least 2 groups */
7824 if (sd->flags & (SD_LOAD_BALANCE |
7825 SD_BALANCE_NEWIDLE |
7826 SD_BALANCE_FORK |
89c4710e
SS
7827 SD_BALANCE_EXEC |
7828 SD_SHARE_CPUPOWER |
7829 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7830 if (sd->groups != sd->groups->next)
7831 return 0;
7832 }
7833
7834 /* Following flags don't use groups */
7835 if (sd->flags & (SD_WAKE_IDLE |
7836 SD_WAKE_AFFINE |
7837 SD_WAKE_BALANCE))
7838 return 0;
7839
7840 return 1;
7841}
7842
48f24c4d
IM
7843static int
7844sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7845{
7846 unsigned long cflags = sd->flags, pflags = parent->flags;
7847
7848 if (sd_degenerate(parent))
7849 return 1;
7850
758b2cdc 7851 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7852 return 0;
7853
7854 /* Does parent contain flags not in child? */
7855 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7856 if (cflags & SD_WAKE_AFFINE)
7857 pflags &= ~SD_WAKE_BALANCE;
7858 /* Flags needing groups don't count if only 1 group in parent */
7859 if (parent->groups == parent->groups->next) {
7860 pflags &= ~(SD_LOAD_BALANCE |
7861 SD_BALANCE_NEWIDLE |
7862 SD_BALANCE_FORK |
89c4710e
SS
7863 SD_BALANCE_EXEC |
7864 SD_SHARE_CPUPOWER |
7865 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7866 if (nr_node_ids == 1)
7867 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7868 }
7869 if (~cflags & pflags)
7870 return 0;
7871
7872 return 1;
7873}
7874
c6c4927b
RR
7875static void free_rootdomain(struct root_domain *rd)
7876{
68e74568
RR
7877 cpupri_cleanup(&rd->cpupri);
7878
c6c4927b
RR
7879 free_cpumask_var(rd->rto_mask);
7880 free_cpumask_var(rd->online);
7881 free_cpumask_var(rd->span);
7882 kfree(rd);
7883}
7884
57d885fe
GH
7885static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7886{
a0490fa3 7887 struct root_domain *old_rd = NULL;
57d885fe 7888 unsigned long flags;
57d885fe
GH
7889
7890 spin_lock_irqsave(&rq->lock, flags);
7891
7892 if (rq->rd) {
a0490fa3 7893 old_rd = rq->rd;
57d885fe 7894
c6c4927b 7895 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7896 set_rq_offline(rq);
57d885fe 7897
c6c4927b 7898 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7899
a0490fa3
IM
7900 /*
7901 * If we dont want to free the old_rt yet then
7902 * set old_rd to NULL to skip the freeing later
7903 * in this function:
7904 */
7905 if (!atomic_dec_and_test(&old_rd->refcount))
7906 old_rd = NULL;
57d885fe
GH
7907 }
7908
7909 atomic_inc(&rd->refcount);
7910 rq->rd = rd;
7911
c6c4927b
RR
7912 cpumask_set_cpu(rq->cpu, rd->span);
7913 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7914 set_rq_online(rq);
57d885fe
GH
7915
7916 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7917
7918 if (old_rd)
7919 free_rootdomain(old_rd);
57d885fe
GH
7920}
7921
fd5e1b5d 7922static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7923{
36b7b6d4
PE
7924 gfp_t gfp = GFP_KERNEL;
7925
57d885fe
GH
7926 memset(rd, 0, sizeof(*rd));
7927
36b7b6d4
PE
7928 if (bootmem)
7929 gfp = GFP_NOWAIT;
c6c4927b 7930
36b7b6d4 7931 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7932 goto out;
36b7b6d4 7933 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7934 goto free_span;
36b7b6d4 7935 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7936 goto free_online;
6e0534f2 7937
0fb53029 7938 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7939 goto free_rto_mask;
c6c4927b 7940 return 0;
6e0534f2 7941
68e74568
RR
7942free_rto_mask:
7943 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7944free_online:
7945 free_cpumask_var(rd->online);
7946free_span:
7947 free_cpumask_var(rd->span);
0c910d28 7948out:
c6c4927b 7949 return -ENOMEM;
57d885fe
GH
7950}
7951
7952static void init_defrootdomain(void)
7953{
c6c4927b
RR
7954 init_rootdomain(&def_root_domain, true);
7955
57d885fe
GH
7956 atomic_set(&def_root_domain.refcount, 1);
7957}
7958
dc938520 7959static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7960{
7961 struct root_domain *rd;
7962
7963 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7964 if (!rd)
7965 return NULL;
7966
c6c4927b
RR
7967 if (init_rootdomain(rd, false) != 0) {
7968 kfree(rd);
7969 return NULL;
7970 }
57d885fe
GH
7971
7972 return rd;
7973}
7974
1da177e4 7975/*
0eab9146 7976 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7977 * hold the hotplug lock.
7978 */
0eab9146
IM
7979static void
7980cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7981{
70b97a7f 7982 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7983 struct sched_domain *tmp;
7984
7985 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7986 for (tmp = sd; tmp; ) {
245af2c7
SS
7987 struct sched_domain *parent = tmp->parent;
7988 if (!parent)
7989 break;
f29c9b1c 7990
1a848870 7991 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7992 tmp->parent = parent->parent;
1a848870
SS
7993 if (parent->parent)
7994 parent->parent->child = tmp;
f29c9b1c
LZ
7995 } else
7996 tmp = tmp->parent;
245af2c7
SS
7997 }
7998
1a848870 7999 if (sd && sd_degenerate(sd)) {
245af2c7 8000 sd = sd->parent;
1a848870
SS
8001 if (sd)
8002 sd->child = NULL;
8003 }
1da177e4
LT
8004
8005 sched_domain_debug(sd, cpu);
8006
57d885fe 8007 rq_attach_root(rq, rd);
674311d5 8008 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8009}
8010
8011/* cpus with isolated domains */
dcc30a35 8012static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8013
8014/* Setup the mask of cpus configured for isolated domains */
8015static int __init isolated_cpu_setup(char *str)
8016{
968ea6d8 8017 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8018 return 1;
8019}
8020
8927f494 8021__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8022
8023/*
6711cab4
SS
8024 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8025 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8026 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8027 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8028 *
8029 * init_sched_build_groups will build a circular linked list of the groups
8030 * covered by the given span, and will set each group's ->cpumask correctly,
8031 * and ->cpu_power to 0.
8032 */
a616058b 8033static void
96f874e2
RR
8034init_sched_build_groups(const struct cpumask *span,
8035 const struct cpumask *cpu_map,
8036 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8037 struct sched_group **sg,
96f874e2
RR
8038 struct cpumask *tmpmask),
8039 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8040{
8041 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8042 int i;
8043
96f874e2 8044 cpumask_clear(covered);
7c16ec58 8045
abcd083a 8046 for_each_cpu(i, span) {
6711cab4 8047 struct sched_group *sg;
7c16ec58 8048 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8049 int j;
8050
758b2cdc 8051 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8052 continue;
8053
758b2cdc 8054 cpumask_clear(sched_group_cpus(sg));
5517d86b 8055 sg->__cpu_power = 0;
1da177e4 8056
abcd083a 8057 for_each_cpu(j, span) {
7c16ec58 8058 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8059 continue;
8060
96f874e2 8061 cpumask_set_cpu(j, covered);
758b2cdc 8062 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8063 }
8064 if (!first)
8065 first = sg;
8066 if (last)
8067 last->next = sg;
8068 last = sg;
8069 }
8070 last->next = first;
8071}
8072
9c1cfda2 8073#define SD_NODES_PER_DOMAIN 16
1da177e4 8074
9c1cfda2 8075#ifdef CONFIG_NUMA
198e2f18 8076
9c1cfda2
JH
8077/**
8078 * find_next_best_node - find the next node to include in a sched_domain
8079 * @node: node whose sched_domain we're building
8080 * @used_nodes: nodes already in the sched_domain
8081 *
41a2d6cf 8082 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8083 * finds the closest node not already in the @used_nodes map.
8084 *
8085 * Should use nodemask_t.
8086 */
c5f59f08 8087static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8088{
8089 int i, n, val, min_val, best_node = 0;
8090
8091 min_val = INT_MAX;
8092
076ac2af 8093 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8094 /* Start at @node */
076ac2af 8095 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8096
8097 if (!nr_cpus_node(n))
8098 continue;
8099
8100 /* Skip already used nodes */
c5f59f08 8101 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8102 continue;
8103
8104 /* Simple min distance search */
8105 val = node_distance(node, n);
8106
8107 if (val < min_val) {
8108 min_val = val;
8109 best_node = n;
8110 }
8111 }
8112
c5f59f08 8113 node_set(best_node, *used_nodes);
9c1cfda2
JH
8114 return best_node;
8115}
8116
8117/**
8118 * sched_domain_node_span - get a cpumask for a node's sched_domain
8119 * @node: node whose cpumask we're constructing
73486722 8120 * @span: resulting cpumask
9c1cfda2 8121 *
41a2d6cf 8122 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8123 * should be one that prevents unnecessary balancing, but also spreads tasks
8124 * out optimally.
8125 */
96f874e2 8126static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8127{
c5f59f08 8128 nodemask_t used_nodes;
48f24c4d 8129 int i;
9c1cfda2 8130
6ca09dfc 8131 cpumask_clear(span);
c5f59f08 8132 nodes_clear(used_nodes);
9c1cfda2 8133
6ca09dfc 8134 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8135 node_set(node, used_nodes);
9c1cfda2
JH
8136
8137 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8138 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8139
6ca09dfc 8140 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8141 }
9c1cfda2 8142}
6d6bc0ad 8143#endif /* CONFIG_NUMA */
9c1cfda2 8144
5c45bf27 8145int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8146
6c99e9ad
RR
8147/*
8148 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8149 *
8150 * ( See the the comments in include/linux/sched.h:struct sched_group
8151 * and struct sched_domain. )
6c99e9ad
RR
8152 */
8153struct static_sched_group {
8154 struct sched_group sg;
8155 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8156};
8157
8158struct static_sched_domain {
8159 struct sched_domain sd;
8160 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8161};
8162
9c1cfda2 8163/*
48f24c4d 8164 * SMT sched-domains:
9c1cfda2 8165 */
1da177e4 8166#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8167static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8168static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8169
41a2d6cf 8170static int
96f874e2
RR
8171cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8172 struct sched_group **sg, struct cpumask *unused)
1da177e4 8173{
6711cab4 8174 if (sg)
6c99e9ad 8175 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8176 return cpu;
8177}
6d6bc0ad 8178#endif /* CONFIG_SCHED_SMT */
1da177e4 8179
48f24c4d
IM
8180/*
8181 * multi-core sched-domains:
8182 */
1e9f28fa 8183#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8184static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8185static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8186#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8187
8188#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8189static int
96f874e2
RR
8190cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8191 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8192{
6711cab4 8193 int group;
7c16ec58 8194
c69fc56d 8195 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8196 group = cpumask_first(mask);
6711cab4 8197 if (sg)
6c99e9ad 8198 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8199 return group;
1e9f28fa
SS
8200}
8201#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8202static int
96f874e2
RR
8203cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8204 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8205{
6711cab4 8206 if (sg)
6c99e9ad 8207 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8208 return cpu;
8209}
8210#endif
8211
6c99e9ad
RR
8212static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8213static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8214
41a2d6cf 8215static int
96f874e2
RR
8216cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8217 struct sched_group **sg, struct cpumask *mask)
1da177e4 8218{
6711cab4 8219 int group;
48f24c4d 8220#ifdef CONFIG_SCHED_MC
6ca09dfc 8221 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8222 group = cpumask_first(mask);
1e9f28fa 8223#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8224 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8225 group = cpumask_first(mask);
1da177e4 8226#else
6711cab4 8227 group = cpu;
1da177e4 8228#endif
6711cab4 8229 if (sg)
6c99e9ad 8230 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8231 return group;
1da177e4
LT
8232}
8233
8234#ifdef CONFIG_NUMA
1da177e4 8235/*
9c1cfda2
JH
8236 * The init_sched_build_groups can't handle what we want to do with node
8237 * groups, so roll our own. Now each node has its own list of groups which
8238 * gets dynamically allocated.
1da177e4 8239 */
62ea9ceb 8240static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8241static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8242
62ea9ceb 8243static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8244static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8245
96f874e2
RR
8246static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8247 struct sched_group **sg,
8248 struct cpumask *nodemask)
9c1cfda2 8249{
6711cab4
SS
8250 int group;
8251
6ca09dfc 8252 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8253 group = cpumask_first(nodemask);
6711cab4
SS
8254
8255 if (sg)
6c99e9ad 8256 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8257 return group;
1da177e4 8258}
6711cab4 8259
08069033
SS
8260static void init_numa_sched_groups_power(struct sched_group *group_head)
8261{
8262 struct sched_group *sg = group_head;
8263 int j;
8264
8265 if (!sg)
8266 return;
3a5c359a 8267 do {
758b2cdc 8268 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8269 struct sched_domain *sd;
08069033 8270
6c99e9ad 8271 sd = &per_cpu(phys_domains, j).sd;
13318a71 8272 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8273 /*
8274 * Only add "power" once for each
8275 * physical package.
8276 */
8277 continue;
8278 }
08069033 8279
3a5c359a
AK
8280 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8281 }
8282 sg = sg->next;
8283 } while (sg != group_head);
08069033 8284}
6d6bc0ad 8285#endif /* CONFIG_NUMA */
1da177e4 8286
a616058b 8287#ifdef CONFIG_NUMA
51888ca2 8288/* Free memory allocated for various sched_group structures */
96f874e2
RR
8289static void free_sched_groups(const struct cpumask *cpu_map,
8290 struct cpumask *nodemask)
51888ca2 8291{
a616058b 8292 int cpu, i;
51888ca2 8293
abcd083a 8294 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8295 struct sched_group **sched_group_nodes
8296 = sched_group_nodes_bycpu[cpu];
8297
51888ca2
SV
8298 if (!sched_group_nodes)
8299 continue;
8300
076ac2af 8301 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8302 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8303
6ca09dfc 8304 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8305 if (cpumask_empty(nodemask))
51888ca2
SV
8306 continue;
8307
8308 if (sg == NULL)
8309 continue;
8310 sg = sg->next;
8311next_sg:
8312 oldsg = sg;
8313 sg = sg->next;
8314 kfree(oldsg);
8315 if (oldsg != sched_group_nodes[i])
8316 goto next_sg;
8317 }
8318 kfree(sched_group_nodes);
8319 sched_group_nodes_bycpu[cpu] = NULL;
8320 }
51888ca2 8321}
6d6bc0ad 8322#else /* !CONFIG_NUMA */
96f874e2
RR
8323static void free_sched_groups(const struct cpumask *cpu_map,
8324 struct cpumask *nodemask)
a616058b
SS
8325{
8326}
6d6bc0ad 8327#endif /* CONFIG_NUMA */
51888ca2 8328
89c4710e
SS
8329/*
8330 * Initialize sched groups cpu_power.
8331 *
8332 * cpu_power indicates the capacity of sched group, which is used while
8333 * distributing the load between different sched groups in a sched domain.
8334 * Typically cpu_power for all the groups in a sched domain will be same unless
8335 * there are asymmetries in the topology. If there are asymmetries, group
8336 * having more cpu_power will pickup more load compared to the group having
8337 * less cpu_power.
8338 *
8339 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8340 * the maximum number of tasks a group can handle in the presence of other idle
8341 * or lightly loaded groups in the same sched domain.
8342 */
8343static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8344{
8345 struct sched_domain *child;
8346 struct sched_group *group;
8347
8348 WARN_ON(!sd || !sd->groups);
8349
13318a71 8350 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8351 return;
8352
8353 child = sd->child;
8354
5517d86b
ED
8355 sd->groups->__cpu_power = 0;
8356
89c4710e
SS
8357 /*
8358 * For perf policy, if the groups in child domain share resources
8359 * (for example cores sharing some portions of the cache hierarchy
8360 * or SMT), then set this domain groups cpu_power such that each group
8361 * can handle only one task, when there are other idle groups in the
8362 * same sched domain.
8363 */
8364 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8365 (child->flags &
8366 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8367 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8368 return;
8369 }
8370
89c4710e
SS
8371 /*
8372 * add cpu_power of each child group to this groups cpu_power
8373 */
8374 group = child->groups;
8375 do {
5517d86b 8376 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8377 group = group->next;
8378 } while (group != child->groups);
8379}
8380
7c16ec58
MT
8381/*
8382 * Initializers for schedule domains
8383 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8384 */
8385
a5d8c348
IM
8386#ifdef CONFIG_SCHED_DEBUG
8387# define SD_INIT_NAME(sd, type) sd->name = #type
8388#else
8389# define SD_INIT_NAME(sd, type) do { } while (0)
8390#endif
8391
7c16ec58 8392#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8393
7c16ec58
MT
8394#define SD_INIT_FUNC(type) \
8395static noinline void sd_init_##type(struct sched_domain *sd) \
8396{ \
8397 memset(sd, 0, sizeof(*sd)); \
8398 *sd = SD_##type##_INIT; \
1d3504fc 8399 sd->level = SD_LV_##type; \
a5d8c348 8400 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8401}
8402
8403SD_INIT_FUNC(CPU)
8404#ifdef CONFIG_NUMA
8405 SD_INIT_FUNC(ALLNODES)
8406 SD_INIT_FUNC(NODE)
8407#endif
8408#ifdef CONFIG_SCHED_SMT
8409 SD_INIT_FUNC(SIBLING)
8410#endif
8411#ifdef CONFIG_SCHED_MC
8412 SD_INIT_FUNC(MC)
8413#endif
8414
1d3504fc
HS
8415static int default_relax_domain_level = -1;
8416
8417static int __init setup_relax_domain_level(char *str)
8418{
30e0e178
LZ
8419 unsigned long val;
8420
8421 val = simple_strtoul(str, NULL, 0);
8422 if (val < SD_LV_MAX)
8423 default_relax_domain_level = val;
8424
1d3504fc
HS
8425 return 1;
8426}
8427__setup("relax_domain_level=", setup_relax_domain_level);
8428
8429static void set_domain_attribute(struct sched_domain *sd,
8430 struct sched_domain_attr *attr)
8431{
8432 int request;
8433
8434 if (!attr || attr->relax_domain_level < 0) {
8435 if (default_relax_domain_level < 0)
8436 return;
8437 else
8438 request = default_relax_domain_level;
8439 } else
8440 request = attr->relax_domain_level;
8441 if (request < sd->level) {
8442 /* turn off idle balance on this domain */
8443 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8444 } else {
8445 /* turn on idle balance on this domain */
8446 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8447 }
8448}
8449
1da177e4 8450/*
1a20ff27
DG
8451 * Build sched domains for a given set of cpus and attach the sched domains
8452 * to the individual cpus
1da177e4 8453 */
96f874e2 8454static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8455 struct sched_domain_attr *attr)
1da177e4 8456{
3404c8d9 8457 int i, err = -ENOMEM;
57d885fe 8458 struct root_domain *rd;
3404c8d9
RR
8459 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8460 tmpmask;
d1b55138 8461#ifdef CONFIG_NUMA
3404c8d9 8462 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8463 struct sched_group **sched_group_nodes = NULL;
6711cab4 8464 int sd_allnodes = 0;
d1b55138 8465
3404c8d9
RR
8466 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8467 goto out;
8468 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8469 goto free_domainspan;
8470 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8471 goto free_covered;
8472#endif
8473
8474 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8475 goto free_notcovered;
8476 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8477 goto free_nodemask;
8478 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8479 goto free_this_sibling_map;
8480 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8481 goto free_this_core_map;
8482 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8483 goto free_send_covered;
8484
8485#ifdef CONFIG_NUMA
d1b55138
JH
8486 /*
8487 * Allocate the per-node list of sched groups
8488 */
076ac2af 8489 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8490 GFP_KERNEL);
d1b55138
JH
8491 if (!sched_group_nodes) {
8492 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8493 goto free_tmpmask;
d1b55138 8494 }
d1b55138 8495#endif
1da177e4 8496
dc938520 8497 rd = alloc_rootdomain();
57d885fe
GH
8498 if (!rd) {
8499 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8500 goto free_sched_groups;
57d885fe
GH
8501 }
8502
7c16ec58 8503#ifdef CONFIG_NUMA
96f874e2 8504 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8505#endif
8506
1da177e4 8507 /*
1a20ff27 8508 * Set up domains for cpus specified by the cpu_map.
1da177e4 8509 */
abcd083a 8510 for_each_cpu(i, cpu_map) {
1da177e4 8511 struct sched_domain *sd = NULL, *p;
1da177e4 8512
6ca09dfc 8513 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8514
8515#ifdef CONFIG_NUMA
96f874e2
RR
8516 if (cpumask_weight(cpu_map) >
8517 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8518 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8519 SD_INIT(sd, ALLNODES);
1d3504fc 8520 set_domain_attribute(sd, attr);
758b2cdc 8521 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8522 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8523 p = sd;
6711cab4 8524 sd_allnodes = 1;
9c1cfda2
JH
8525 } else
8526 p = NULL;
8527
62ea9ceb 8528 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8529 SD_INIT(sd, NODE);
1d3504fc 8530 set_domain_attribute(sd, attr);
758b2cdc 8531 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8532 sd->parent = p;
1a848870
SS
8533 if (p)
8534 p->child = sd;
758b2cdc
RR
8535 cpumask_and(sched_domain_span(sd),
8536 sched_domain_span(sd), cpu_map);
1da177e4
LT
8537#endif
8538
8539 p = sd;
6c99e9ad 8540 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8541 SD_INIT(sd, CPU);
1d3504fc 8542 set_domain_attribute(sd, attr);
758b2cdc 8543 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8544 sd->parent = p;
1a848870
SS
8545 if (p)
8546 p->child = sd;
7c16ec58 8547 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8548
1e9f28fa
SS
8549#ifdef CONFIG_SCHED_MC
8550 p = sd;
6c99e9ad 8551 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8552 SD_INIT(sd, MC);
1d3504fc 8553 set_domain_attribute(sd, attr);
6ca09dfc
MT
8554 cpumask_and(sched_domain_span(sd), cpu_map,
8555 cpu_coregroup_mask(i));
1e9f28fa 8556 sd->parent = p;
1a848870 8557 p->child = sd;
7c16ec58 8558 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8559#endif
8560
1da177e4
LT
8561#ifdef CONFIG_SCHED_SMT
8562 p = sd;
6c99e9ad 8563 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8564 SD_INIT(sd, SIBLING);
1d3504fc 8565 set_domain_attribute(sd, attr);
758b2cdc 8566 cpumask_and(sched_domain_span(sd),
c69fc56d 8567 topology_thread_cpumask(i), cpu_map);
1da177e4 8568 sd->parent = p;
1a848870 8569 p->child = sd;
7c16ec58 8570 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8571#endif
8572 }
8573
8574#ifdef CONFIG_SCHED_SMT
8575 /* Set up CPU (sibling) groups */
abcd083a 8576 for_each_cpu(i, cpu_map) {
96f874e2 8577 cpumask_and(this_sibling_map,
c69fc56d 8578 topology_thread_cpumask(i), cpu_map);
96f874e2 8579 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8580 continue;
8581
dd41f596 8582 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8583 &cpu_to_cpu_group,
8584 send_covered, tmpmask);
1da177e4
LT
8585 }
8586#endif
8587
1e9f28fa
SS
8588#ifdef CONFIG_SCHED_MC
8589 /* Set up multi-core groups */
abcd083a 8590 for_each_cpu(i, cpu_map) {
6ca09dfc 8591 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8592 if (i != cpumask_first(this_core_map))
1e9f28fa 8593 continue;
7c16ec58 8594
dd41f596 8595 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8596 &cpu_to_core_group,
8597 send_covered, tmpmask);
1e9f28fa
SS
8598 }
8599#endif
8600
1da177e4 8601 /* Set up physical groups */
076ac2af 8602 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8603 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8604 if (cpumask_empty(nodemask))
1da177e4
LT
8605 continue;
8606
7c16ec58
MT
8607 init_sched_build_groups(nodemask, cpu_map,
8608 &cpu_to_phys_group,
8609 send_covered, tmpmask);
1da177e4
LT
8610 }
8611
8612#ifdef CONFIG_NUMA
8613 /* Set up node groups */
7c16ec58 8614 if (sd_allnodes) {
7c16ec58
MT
8615 init_sched_build_groups(cpu_map, cpu_map,
8616 &cpu_to_allnodes_group,
8617 send_covered, tmpmask);
8618 }
9c1cfda2 8619
076ac2af 8620 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8621 /* Set up node groups */
8622 struct sched_group *sg, *prev;
9c1cfda2
JH
8623 int j;
8624
96f874e2 8625 cpumask_clear(covered);
6ca09dfc 8626 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8627 if (cpumask_empty(nodemask)) {
d1b55138 8628 sched_group_nodes[i] = NULL;
9c1cfda2 8629 continue;
d1b55138 8630 }
9c1cfda2 8631
4bdbaad3 8632 sched_domain_node_span(i, domainspan);
96f874e2 8633 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8634
6c99e9ad
RR
8635 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8636 GFP_KERNEL, i);
51888ca2
SV
8637 if (!sg) {
8638 printk(KERN_WARNING "Can not alloc domain group for "
8639 "node %d\n", i);
8640 goto error;
8641 }
9c1cfda2 8642 sched_group_nodes[i] = sg;
abcd083a 8643 for_each_cpu(j, nodemask) {
9c1cfda2 8644 struct sched_domain *sd;
9761eea8 8645
62ea9ceb 8646 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8647 sd->groups = sg;
9c1cfda2 8648 }
5517d86b 8649 sg->__cpu_power = 0;
758b2cdc 8650 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8651 sg->next = sg;
96f874e2 8652 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8653 prev = sg;
8654
076ac2af 8655 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8656 int n = (i + j) % nr_node_ids;
9c1cfda2 8657
96f874e2
RR
8658 cpumask_complement(notcovered, covered);
8659 cpumask_and(tmpmask, notcovered, cpu_map);
8660 cpumask_and(tmpmask, tmpmask, domainspan);
8661 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8662 break;
8663
6ca09dfc 8664 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8665 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8666 continue;
8667
6c99e9ad
RR
8668 sg = kmalloc_node(sizeof(struct sched_group) +
8669 cpumask_size(),
15f0b676 8670 GFP_KERNEL, i);
9c1cfda2
JH
8671 if (!sg) {
8672 printk(KERN_WARNING
8673 "Can not alloc domain group for node %d\n", j);
51888ca2 8674 goto error;
9c1cfda2 8675 }
5517d86b 8676 sg->__cpu_power = 0;
758b2cdc 8677 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8678 sg->next = prev->next;
96f874e2 8679 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8680 prev->next = sg;
8681 prev = sg;
8682 }
9c1cfda2 8683 }
1da177e4
LT
8684#endif
8685
8686 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8687#ifdef CONFIG_SCHED_SMT
abcd083a 8688 for_each_cpu(i, cpu_map) {
6c99e9ad 8689 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8690
89c4710e 8691 init_sched_groups_power(i, sd);
5c45bf27 8692 }
1da177e4 8693#endif
1e9f28fa 8694#ifdef CONFIG_SCHED_MC
abcd083a 8695 for_each_cpu(i, cpu_map) {
6c99e9ad 8696 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8697
89c4710e 8698 init_sched_groups_power(i, sd);
5c45bf27
SS
8699 }
8700#endif
1e9f28fa 8701
abcd083a 8702 for_each_cpu(i, cpu_map) {
6c99e9ad 8703 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8704
89c4710e 8705 init_sched_groups_power(i, sd);
1da177e4
LT
8706 }
8707
9c1cfda2 8708#ifdef CONFIG_NUMA
076ac2af 8709 for (i = 0; i < nr_node_ids; i++)
08069033 8710 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8711
6711cab4
SS
8712 if (sd_allnodes) {
8713 struct sched_group *sg;
f712c0c7 8714
96f874e2 8715 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8716 tmpmask);
f712c0c7
SS
8717 init_numa_sched_groups_power(sg);
8718 }
9c1cfda2
JH
8719#endif
8720
1da177e4 8721 /* Attach the domains */
abcd083a 8722 for_each_cpu(i, cpu_map) {
1da177e4
LT
8723 struct sched_domain *sd;
8724#ifdef CONFIG_SCHED_SMT
6c99e9ad 8725 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8726#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8727 sd = &per_cpu(core_domains, i).sd;
1da177e4 8728#else
6c99e9ad 8729 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8730#endif
57d885fe 8731 cpu_attach_domain(sd, rd, i);
1da177e4 8732 }
51888ca2 8733
3404c8d9
RR
8734 err = 0;
8735
8736free_tmpmask:
8737 free_cpumask_var(tmpmask);
8738free_send_covered:
8739 free_cpumask_var(send_covered);
8740free_this_core_map:
8741 free_cpumask_var(this_core_map);
8742free_this_sibling_map:
8743 free_cpumask_var(this_sibling_map);
8744free_nodemask:
8745 free_cpumask_var(nodemask);
8746free_notcovered:
8747#ifdef CONFIG_NUMA
8748 free_cpumask_var(notcovered);
8749free_covered:
8750 free_cpumask_var(covered);
8751free_domainspan:
8752 free_cpumask_var(domainspan);
8753out:
8754#endif
8755 return err;
8756
8757free_sched_groups:
8758#ifdef CONFIG_NUMA
8759 kfree(sched_group_nodes);
8760#endif
8761 goto free_tmpmask;
51888ca2 8762
a616058b 8763#ifdef CONFIG_NUMA
51888ca2 8764error:
7c16ec58 8765 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8766 free_rootdomain(rd);
3404c8d9 8767 goto free_tmpmask;
a616058b 8768#endif
1da177e4 8769}
029190c5 8770
96f874e2 8771static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8772{
8773 return __build_sched_domains(cpu_map, NULL);
8774}
8775
96f874e2 8776static struct cpumask *doms_cur; /* current sched domains */
029190c5 8777static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8778static struct sched_domain_attr *dattr_cur;
8779 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8780
8781/*
8782 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8783 * cpumask) fails, then fallback to a single sched domain,
8784 * as determined by the single cpumask fallback_doms.
029190c5 8785 */
4212823f 8786static cpumask_var_t fallback_doms;
029190c5 8787
ee79d1bd
HC
8788/*
8789 * arch_update_cpu_topology lets virtualized architectures update the
8790 * cpu core maps. It is supposed to return 1 if the topology changed
8791 * or 0 if it stayed the same.
8792 */
8793int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8794{
ee79d1bd 8795 return 0;
22e52b07
HC
8796}
8797
1a20ff27 8798/*
41a2d6cf 8799 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8800 * For now this just excludes isolated cpus, but could be used to
8801 * exclude other special cases in the future.
1a20ff27 8802 */
96f874e2 8803static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8804{
7378547f
MM
8805 int err;
8806
22e52b07 8807 arch_update_cpu_topology();
029190c5 8808 ndoms_cur = 1;
96f874e2 8809 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8810 if (!doms_cur)
4212823f 8811 doms_cur = fallback_doms;
dcc30a35 8812 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8813 dattr_cur = NULL;
7378547f 8814 err = build_sched_domains(doms_cur);
6382bc90 8815 register_sched_domain_sysctl();
7378547f
MM
8816
8817 return err;
1a20ff27
DG
8818}
8819
96f874e2
RR
8820static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8821 struct cpumask *tmpmask)
1da177e4 8822{
7c16ec58 8823 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8824}
1da177e4 8825
1a20ff27
DG
8826/*
8827 * Detach sched domains from a group of cpus specified in cpu_map
8828 * These cpus will now be attached to the NULL domain
8829 */
96f874e2 8830static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8831{
96f874e2
RR
8832 /* Save because hotplug lock held. */
8833 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8834 int i;
8835
abcd083a 8836 for_each_cpu(i, cpu_map)
57d885fe 8837 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8838 synchronize_sched();
96f874e2 8839 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8840}
8841
1d3504fc
HS
8842/* handle null as "default" */
8843static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8844 struct sched_domain_attr *new, int idx_new)
8845{
8846 struct sched_domain_attr tmp;
8847
8848 /* fast path */
8849 if (!new && !cur)
8850 return 1;
8851
8852 tmp = SD_ATTR_INIT;
8853 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8854 new ? (new + idx_new) : &tmp,
8855 sizeof(struct sched_domain_attr));
8856}
8857
029190c5
PJ
8858/*
8859 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8860 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8861 * doms_new[] to the current sched domain partitioning, doms_cur[].
8862 * It destroys each deleted domain and builds each new domain.
8863 *
96f874e2 8864 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8865 * The masks don't intersect (don't overlap.) We should setup one
8866 * sched domain for each mask. CPUs not in any of the cpumasks will
8867 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8868 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8869 * it as it is.
8870 *
41a2d6cf
IM
8871 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8872 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8873 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8874 * ndoms_new == 1, and partition_sched_domains() will fallback to
8875 * the single partition 'fallback_doms', it also forces the domains
8876 * to be rebuilt.
029190c5 8877 *
96f874e2 8878 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8879 * ndoms_new == 0 is a special case for destroying existing domains,
8880 * and it will not create the default domain.
dfb512ec 8881 *
029190c5
PJ
8882 * Call with hotplug lock held
8883 */
96f874e2
RR
8884/* FIXME: Change to struct cpumask *doms_new[] */
8885void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8886 struct sched_domain_attr *dattr_new)
029190c5 8887{
dfb512ec 8888 int i, j, n;
d65bd5ec 8889 int new_topology;
029190c5 8890
712555ee 8891 mutex_lock(&sched_domains_mutex);
a1835615 8892
7378547f
MM
8893 /* always unregister in case we don't destroy any domains */
8894 unregister_sched_domain_sysctl();
8895
d65bd5ec
HC
8896 /* Let architecture update cpu core mappings. */
8897 new_topology = arch_update_cpu_topology();
8898
dfb512ec 8899 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8900
8901 /* Destroy deleted domains */
8902 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8903 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8904 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8905 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8906 goto match1;
8907 }
8908 /* no match - a current sched domain not in new doms_new[] */
8909 detach_destroy_domains(doms_cur + i);
8910match1:
8911 ;
8912 }
8913
e761b772
MK
8914 if (doms_new == NULL) {
8915 ndoms_cur = 0;
4212823f 8916 doms_new = fallback_doms;
dcc30a35 8917 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8918 WARN_ON_ONCE(dattr_new);
e761b772
MK
8919 }
8920
029190c5
PJ
8921 /* Build new domains */
8922 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8923 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8924 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8925 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8926 goto match2;
8927 }
8928 /* no match - add a new doms_new */
1d3504fc
HS
8929 __build_sched_domains(doms_new + i,
8930 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8931match2:
8932 ;
8933 }
8934
8935 /* Remember the new sched domains */
4212823f 8936 if (doms_cur != fallback_doms)
029190c5 8937 kfree(doms_cur);
1d3504fc 8938 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8939 doms_cur = doms_new;
1d3504fc 8940 dattr_cur = dattr_new;
029190c5 8941 ndoms_cur = ndoms_new;
7378547f
MM
8942
8943 register_sched_domain_sysctl();
a1835615 8944
712555ee 8945 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8946}
8947
5c45bf27 8948#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8949static void arch_reinit_sched_domains(void)
5c45bf27 8950{
95402b38 8951 get_online_cpus();
dfb512ec
MK
8952
8953 /* Destroy domains first to force the rebuild */
8954 partition_sched_domains(0, NULL, NULL);
8955
e761b772 8956 rebuild_sched_domains();
95402b38 8957 put_online_cpus();
5c45bf27
SS
8958}
8959
8960static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8961{
afb8a9b7 8962 unsigned int level = 0;
5c45bf27 8963
afb8a9b7
GS
8964 if (sscanf(buf, "%u", &level) != 1)
8965 return -EINVAL;
8966
8967 /*
8968 * level is always be positive so don't check for
8969 * level < POWERSAVINGS_BALANCE_NONE which is 0
8970 * What happens on 0 or 1 byte write,
8971 * need to check for count as well?
8972 */
8973
8974 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8975 return -EINVAL;
8976
8977 if (smt)
afb8a9b7 8978 sched_smt_power_savings = level;
5c45bf27 8979 else
afb8a9b7 8980 sched_mc_power_savings = level;
5c45bf27 8981
c70f22d2 8982 arch_reinit_sched_domains();
5c45bf27 8983
c70f22d2 8984 return count;
5c45bf27
SS
8985}
8986
5c45bf27 8987#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8988static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8989 char *page)
5c45bf27
SS
8990{
8991 return sprintf(page, "%u\n", sched_mc_power_savings);
8992}
f718cd4a 8993static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8994 const char *buf, size_t count)
5c45bf27
SS
8995{
8996 return sched_power_savings_store(buf, count, 0);
8997}
f718cd4a
AK
8998static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8999 sched_mc_power_savings_show,
9000 sched_mc_power_savings_store);
5c45bf27
SS
9001#endif
9002
9003#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9004static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9005 char *page)
5c45bf27
SS
9006{
9007 return sprintf(page, "%u\n", sched_smt_power_savings);
9008}
f718cd4a 9009static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9010 const char *buf, size_t count)
5c45bf27
SS
9011{
9012 return sched_power_savings_store(buf, count, 1);
9013}
f718cd4a
AK
9014static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9015 sched_smt_power_savings_show,
6707de00
AB
9016 sched_smt_power_savings_store);
9017#endif
9018
39aac648 9019int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9020{
9021 int err = 0;
9022
9023#ifdef CONFIG_SCHED_SMT
9024 if (smt_capable())
9025 err = sysfs_create_file(&cls->kset.kobj,
9026 &attr_sched_smt_power_savings.attr);
9027#endif
9028#ifdef CONFIG_SCHED_MC
9029 if (!err && mc_capable())
9030 err = sysfs_create_file(&cls->kset.kobj,
9031 &attr_sched_mc_power_savings.attr);
9032#endif
9033 return err;
9034}
6d6bc0ad 9035#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9036
e761b772 9037#ifndef CONFIG_CPUSETS
1da177e4 9038/*
e761b772
MK
9039 * Add online and remove offline CPUs from the scheduler domains.
9040 * When cpusets are enabled they take over this function.
1da177e4
LT
9041 */
9042static int update_sched_domains(struct notifier_block *nfb,
9043 unsigned long action, void *hcpu)
e761b772
MK
9044{
9045 switch (action) {
9046 case CPU_ONLINE:
9047 case CPU_ONLINE_FROZEN:
9048 case CPU_DEAD:
9049 case CPU_DEAD_FROZEN:
dfb512ec 9050 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9051 return NOTIFY_OK;
9052
9053 default:
9054 return NOTIFY_DONE;
9055 }
9056}
9057#endif
9058
9059static int update_runtime(struct notifier_block *nfb,
9060 unsigned long action, void *hcpu)
1da177e4 9061{
7def2be1
PZ
9062 int cpu = (int)(long)hcpu;
9063
1da177e4 9064 switch (action) {
1da177e4 9065 case CPU_DOWN_PREPARE:
8bb78442 9066 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9067 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9068 return NOTIFY_OK;
9069
1da177e4 9070 case CPU_DOWN_FAILED:
8bb78442 9071 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9072 case CPU_ONLINE:
8bb78442 9073 case CPU_ONLINE_FROZEN:
7def2be1 9074 enable_runtime(cpu_rq(cpu));
e761b772
MK
9075 return NOTIFY_OK;
9076
1da177e4
LT
9077 default:
9078 return NOTIFY_DONE;
9079 }
1da177e4 9080}
1da177e4
LT
9081
9082void __init sched_init_smp(void)
9083{
dcc30a35
RR
9084 cpumask_var_t non_isolated_cpus;
9085
9086 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9087
434d53b0
MT
9088#if defined(CONFIG_NUMA)
9089 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9090 GFP_KERNEL);
9091 BUG_ON(sched_group_nodes_bycpu == NULL);
9092#endif
95402b38 9093 get_online_cpus();
712555ee 9094 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9095 arch_init_sched_domains(cpu_online_mask);
9096 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9097 if (cpumask_empty(non_isolated_cpus))
9098 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9099 mutex_unlock(&sched_domains_mutex);
95402b38 9100 put_online_cpus();
e761b772
MK
9101
9102#ifndef CONFIG_CPUSETS
1da177e4
LT
9103 /* XXX: Theoretical race here - CPU may be hotplugged now */
9104 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9105#endif
9106
9107 /* RT runtime code needs to handle some hotplug events */
9108 hotcpu_notifier(update_runtime, 0);
9109
b328ca18 9110 init_hrtick();
5c1e1767
NP
9111
9112 /* Move init over to a non-isolated CPU */
dcc30a35 9113 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9114 BUG();
19978ca6 9115 sched_init_granularity();
dcc30a35 9116 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9117
9118 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9119 init_sched_rt_class();
1da177e4
LT
9120}
9121#else
9122void __init sched_init_smp(void)
9123{
19978ca6 9124 sched_init_granularity();
1da177e4
LT
9125}
9126#endif /* CONFIG_SMP */
9127
cd1bb94b
AB
9128const_debug unsigned int sysctl_timer_migration = 1;
9129
1da177e4
LT
9130int in_sched_functions(unsigned long addr)
9131{
1da177e4
LT
9132 return in_lock_functions(addr) ||
9133 (addr >= (unsigned long)__sched_text_start
9134 && addr < (unsigned long)__sched_text_end);
9135}
9136
a9957449 9137static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9138{
9139 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9140 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9141#ifdef CONFIG_FAIR_GROUP_SCHED
9142 cfs_rq->rq = rq;
9143#endif
67e9fb2a 9144 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9145}
9146
fa85ae24
PZ
9147static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9148{
9149 struct rt_prio_array *array;
9150 int i;
9151
9152 array = &rt_rq->active;
9153 for (i = 0; i < MAX_RT_PRIO; i++) {
9154 INIT_LIST_HEAD(array->queue + i);
9155 __clear_bit(i, array->bitmap);
9156 }
9157 /* delimiter for bitsearch: */
9158 __set_bit(MAX_RT_PRIO, array->bitmap);
9159
052f1dc7 9160#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9161 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9162#ifdef CONFIG_SMP
e864c499 9163 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9164#endif
48d5e258 9165#endif
fa85ae24
PZ
9166#ifdef CONFIG_SMP
9167 rt_rq->rt_nr_migratory = 0;
fa85ae24 9168 rt_rq->overloaded = 0;
c20b08e3 9169 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9170#endif
9171
9172 rt_rq->rt_time = 0;
9173 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9174 rt_rq->rt_runtime = 0;
9175 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9176
052f1dc7 9177#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9178 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9179 rt_rq->rq = rq;
9180#endif
fa85ae24
PZ
9181}
9182
6f505b16 9183#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9184static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9185 struct sched_entity *se, int cpu, int add,
9186 struct sched_entity *parent)
6f505b16 9187{
ec7dc8ac 9188 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9189 tg->cfs_rq[cpu] = cfs_rq;
9190 init_cfs_rq(cfs_rq, rq);
9191 cfs_rq->tg = tg;
9192 if (add)
9193 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9194
9195 tg->se[cpu] = se;
354d60c2
DG
9196 /* se could be NULL for init_task_group */
9197 if (!se)
9198 return;
9199
ec7dc8ac
DG
9200 if (!parent)
9201 se->cfs_rq = &rq->cfs;
9202 else
9203 se->cfs_rq = parent->my_q;
9204
6f505b16
PZ
9205 se->my_q = cfs_rq;
9206 se->load.weight = tg->shares;
e05510d0 9207 se->load.inv_weight = 0;
ec7dc8ac 9208 se->parent = parent;
6f505b16 9209}
052f1dc7 9210#endif
6f505b16 9211
052f1dc7 9212#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9213static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9214 struct sched_rt_entity *rt_se, int cpu, int add,
9215 struct sched_rt_entity *parent)
6f505b16 9216{
ec7dc8ac
DG
9217 struct rq *rq = cpu_rq(cpu);
9218
6f505b16
PZ
9219 tg->rt_rq[cpu] = rt_rq;
9220 init_rt_rq(rt_rq, rq);
9221 rt_rq->tg = tg;
9222 rt_rq->rt_se = rt_se;
ac086bc2 9223 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9224 if (add)
9225 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9226
9227 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9228 if (!rt_se)
9229 return;
9230
ec7dc8ac
DG
9231 if (!parent)
9232 rt_se->rt_rq = &rq->rt;
9233 else
9234 rt_se->rt_rq = parent->my_q;
9235
6f505b16 9236 rt_se->my_q = rt_rq;
ec7dc8ac 9237 rt_se->parent = parent;
6f505b16
PZ
9238 INIT_LIST_HEAD(&rt_se->run_list);
9239}
9240#endif
9241
1da177e4
LT
9242void __init sched_init(void)
9243{
dd41f596 9244 int i, j;
434d53b0
MT
9245 unsigned long alloc_size = 0, ptr;
9246
9247#ifdef CONFIG_FAIR_GROUP_SCHED
9248 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9249#endif
9250#ifdef CONFIG_RT_GROUP_SCHED
9251 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9252#endif
9253#ifdef CONFIG_USER_SCHED
9254 alloc_size *= 2;
df7c8e84
RR
9255#endif
9256#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9257 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9258#endif
9259 /*
9260 * As sched_init() is called before page_alloc is setup,
9261 * we use alloc_bootmem().
9262 */
9263 if (alloc_size) {
36b7b6d4 9264 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9265
9266#ifdef CONFIG_FAIR_GROUP_SCHED
9267 init_task_group.se = (struct sched_entity **)ptr;
9268 ptr += nr_cpu_ids * sizeof(void **);
9269
9270 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9271 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9272
9273#ifdef CONFIG_USER_SCHED
9274 root_task_group.se = (struct sched_entity **)ptr;
9275 ptr += nr_cpu_ids * sizeof(void **);
9276
9277 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9278 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9279#endif /* CONFIG_USER_SCHED */
9280#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9281#ifdef CONFIG_RT_GROUP_SCHED
9282 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9283 ptr += nr_cpu_ids * sizeof(void **);
9284
9285 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9286 ptr += nr_cpu_ids * sizeof(void **);
9287
9288#ifdef CONFIG_USER_SCHED
9289 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9290 ptr += nr_cpu_ids * sizeof(void **);
9291
9292 root_task_group.rt_rq = (struct rt_rq **)ptr;
9293 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9294#endif /* CONFIG_USER_SCHED */
9295#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9296#ifdef CONFIG_CPUMASK_OFFSTACK
9297 for_each_possible_cpu(i) {
9298 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9299 ptr += cpumask_size();
9300 }
9301#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9302 }
dd41f596 9303
57d885fe
GH
9304#ifdef CONFIG_SMP
9305 init_defrootdomain();
9306#endif
9307
d0b27fa7
PZ
9308 init_rt_bandwidth(&def_rt_bandwidth,
9309 global_rt_period(), global_rt_runtime());
9310
9311#ifdef CONFIG_RT_GROUP_SCHED
9312 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9313 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9314#ifdef CONFIG_USER_SCHED
9315 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9316 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9317#endif /* CONFIG_USER_SCHED */
9318#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9319
052f1dc7 9320#ifdef CONFIG_GROUP_SCHED
6f505b16 9321 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9322 INIT_LIST_HEAD(&init_task_group.children);
9323
9324#ifdef CONFIG_USER_SCHED
9325 INIT_LIST_HEAD(&root_task_group.children);
9326 init_task_group.parent = &root_task_group;
9327 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9328#endif /* CONFIG_USER_SCHED */
9329#endif /* CONFIG_GROUP_SCHED */
6f505b16 9330
0a945022 9331 for_each_possible_cpu(i) {
70b97a7f 9332 struct rq *rq;
1da177e4
LT
9333
9334 rq = cpu_rq(i);
9335 spin_lock_init(&rq->lock);
7897986b 9336 rq->nr_running = 0;
dce48a84
TG
9337 rq->calc_load_active = 0;
9338 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9339 init_cfs_rq(&rq->cfs, rq);
6f505b16 9340 init_rt_rq(&rq->rt, rq);
dd41f596 9341#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9342 init_task_group.shares = init_task_group_load;
6f505b16 9343 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9344#ifdef CONFIG_CGROUP_SCHED
9345 /*
9346 * How much cpu bandwidth does init_task_group get?
9347 *
9348 * In case of task-groups formed thr' the cgroup filesystem, it
9349 * gets 100% of the cpu resources in the system. This overall
9350 * system cpu resource is divided among the tasks of
9351 * init_task_group and its child task-groups in a fair manner,
9352 * based on each entity's (task or task-group's) weight
9353 * (se->load.weight).
9354 *
9355 * In other words, if init_task_group has 10 tasks of weight
9356 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9357 * then A0's share of the cpu resource is:
9358 *
0d905bca 9359 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9360 *
9361 * We achieve this by letting init_task_group's tasks sit
9362 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9363 */
ec7dc8ac 9364 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9365#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9366 root_task_group.shares = NICE_0_LOAD;
9367 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9368 /*
9369 * In case of task-groups formed thr' the user id of tasks,
9370 * init_task_group represents tasks belonging to root user.
9371 * Hence it forms a sibling of all subsequent groups formed.
9372 * In this case, init_task_group gets only a fraction of overall
9373 * system cpu resource, based on the weight assigned to root
9374 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9375 * by letting tasks of init_task_group sit in a separate cfs_rq
9376 * (init_cfs_rq) and having one entity represent this group of
9377 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9378 */
ec7dc8ac 9379 init_tg_cfs_entry(&init_task_group,
6f505b16 9380 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9381 &per_cpu(init_sched_entity, i), i, 1,
9382 root_task_group.se[i]);
6f505b16 9383
052f1dc7 9384#endif
354d60c2
DG
9385#endif /* CONFIG_FAIR_GROUP_SCHED */
9386
9387 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9388#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9389 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9390#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9391 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9392#elif defined CONFIG_USER_SCHED
eff766a6 9393 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9394 init_tg_rt_entry(&init_task_group,
6f505b16 9395 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9396 &per_cpu(init_sched_rt_entity, i), i, 1,
9397 root_task_group.rt_se[i]);
354d60c2 9398#endif
dd41f596 9399#endif
1da177e4 9400
dd41f596
IM
9401 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9402 rq->cpu_load[j] = 0;
1da177e4 9403#ifdef CONFIG_SMP
41c7ce9a 9404 rq->sd = NULL;
57d885fe 9405 rq->rd = NULL;
1da177e4 9406 rq->active_balance = 0;
dd41f596 9407 rq->next_balance = jiffies;
1da177e4 9408 rq->push_cpu = 0;
0a2966b4 9409 rq->cpu = i;
1f11eb6a 9410 rq->online = 0;
1da177e4
LT
9411 rq->migration_thread = NULL;
9412 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9413 rq_attach_root(rq, &def_root_domain);
1da177e4 9414#endif
8f4d37ec 9415 init_rq_hrtick(rq);
1da177e4 9416 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9417 }
9418
2dd73a4f 9419 set_load_weight(&init_task);
b50f60ce 9420
e107be36
AK
9421#ifdef CONFIG_PREEMPT_NOTIFIERS
9422 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9423#endif
9424
c9819f45 9425#ifdef CONFIG_SMP
962cf36c 9426 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9427#endif
9428
b50f60ce
HC
9429#ifdef CONFIG_RT_MUTEXES
9430 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9431#endif
9432
1da177e4
LT
9433 /*
9434 * The boot idle thread does lazy MMU switching as well:
9435 */
9436 atomic_inc(&init_mm.mm_count);
9437 enter_lazy_tlb(&init_mm, current);
9438
9439 /*
9440 * Make us the idle thread. Technically, schedule() should not be
9441 * called from this thread, however somewhere below it might be,
9442 * but because we are the idle thread, we just pick up running again
9443 * when this runqueue becomes "idle".
9444 */
9445 init_idle(current, smp_processor_id());
dce48a84
TG
9446
9447 calc_load_update = jiffies + LOAD_FREQ;
9448
dd41f596
IM
9449 /*
9450 * During early bootup we pretend to be a normal task:
9451 */
9452 current->sched_class = &fair_sched_class;
6892b75e 9453
6a7b3dc3 9454 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9455 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9456#ifdef CONFIG_SMP
7d1e6a9b 9457#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9458 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9459 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9460#endif
4bdddf8f 9461 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9462#endif /* SMP */
6a7b3dc3 9463
0d905bca
IM
9464 perf_counter_init();
9465
6892b75e 9466 scheduler_running = 1;
1da177e4
LT
9467}
9468
9469#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9470static inline int preempt_count_equals(int preempt_offset)
9471{
9472 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9473
9474 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9475}
9476
9477void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9478{
48f24c4d 9479#ifdef in_atomic
1da177e4
LT
9480 static unsigned long prev_jiffy; /* ratelimiting */
9481
e4aafea2
FW
9482 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9483 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9484 return;
9485 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9486 return;
9487 prev_jiffy = jiffies;
9488
9489 printk(KERN_ERR
9490 "BUG: sleeping function called from invalid context at %s:%d\n",
9491 file, line);
9492 printk(KERN_ERR
9493 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9494 in_atomic(), irqs_disabled(),
9495 current->pid, current->comm);
9496
9497 debug_show_held_locks(current);
9498 if (irqs_disabled())
9499 print_irqtrace_events(current);
9500 dump_stack();
1da177e4
LT
9501#endif
9502}
9503EXPORT_SYMBOL(__might_sleep);
9504#endif
9505
9506#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9507static void normalize_task(struct rq *rq, struct task_struct *p)
9508{
9509 int on_rq;
3e51f33f 9510
3a5e4dc1
AK
9511 update_rq_clock(rq);
9512 on_rq = p->se.on_rq;
9513 if (on_rq)
9514 deactivate_task(rq, p, 0);
9515 __setscheduler(rq, p, SCHED_NORMAL, 0);
9516 if (on_rq) {
9517 activate_task(rq, p, 0);
9518 resched_task(rq->curr);
9519 }
9520}
9521
1da177e4
LT
9522void normalize_rt_tasks(void)
9523{
a0f98a1c 9524 struct task_struct *g, *p;
1da177e4 9525 unsigned long flags;
70b97a7f 9526 struct rq *rq;
1da177e4 9527
4cf5d77a 9528 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9529 do_each_thread(g, p) {
178be793
IM
9530 /*
9531 * Only normalize user tasks:
9532 */
9533 if (!p->mm)
9534 continue;
9535
6cfb0d5d 9536 p->se.exec_start = 0;
6cfb0d5d 9537#ifdef CONFIG_SCHEDSTATS
dd41f596 9538 p->se.wait_start = 0;
dd41f596 9539 p->se.sleep_start = 0;
dd41f596 9540 p->se.block_start = 0;
6cfb0d5d 9541#endif
dd41f596
IM
9542
9543 if (!rt_task(p)) {
9544 /*
9545 * Renice negative nice level userspace
9546 * tasks back to 0:
9547 */
9548 if (TASK_NICE(p) < 0 && p->mm)
9549 set_user_nice(p, 0);
1da177e4 9550 continue;
dd41f596 9551 }
1da177e4 9552
4cf5d77a 9553 spin_lock(&p->pi_lock);
b29739f9 9554 rq = __task_rq_lock(p);
1da177e4 9555
178be793 9556 normalize_task(rq, p);
3a5e4dc1 9557
b29739f9 9558 __task_rq_unlock(rq);
4cf5d77a 9559 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9560 } while_each_thread(g, p);
9561
4cf5d77a 9562 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9563}
9564
9565#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9566
9567#ifdef CONFIG_IA64
9568/*
9569 * These functions are only useful for the IA64 MCA handling.
9570 *
9571 * They can only be called when the whole system has been
9572 * stopped - every CPU needs to be quiescent, and no scheduling
9573 * activity can take place. Using them for anything else would
9574 * be a serious bug, and as a result, they aren't even visible
9575 * under any other configuration.
9576 */
9577
9578/**
9579 * curr_task - return the current task for a given cpu.
9580 * @cpu: the processor in question.
9581 *
9582 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9583 */
36c8b586 9584struct task_struct *curr_task(int cpu)
1df5c10a
LT
9585{
9586 return cpu_curr(cpu);
9587}
9588
9589/**
9590 * set_curr_task - set the current task for a given cpu.
9591 * @cpu: the processor in question.
9592 * @p: the task pointer to set.
9593 *
9594 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9595 * are serviced on a separate stack. It allows the architecture to switch the
9596 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9597 * must be called with all CPU's synchronized, and interrupts disabled, the
9598 * and caller must save the original value of the current task (see
9599 * curr_task() above) and restore that value before reenabling interrupts and
9600 * re-starting the system.
9601 *
9602 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9603 */
36c8b586 9604void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9605{
9606 cpu_curr(cpu) = p;
9607}
9608
9609#endif
29f59db3 9610
bccbe08a
PZ
9611#ifdef CONFIG_FAIR_GROUP_SCHED
9612static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9613{
9614 int i;
9615
9616 for_each_possible_cpu(i) {
9617 if (tg->cfs_rq)
9618 kfree(tg->cfs_rq[i]);
9619 if (tg->se)
9620 kfree(tg->se[i]);
6f505b16
PZ
9621 }
9622
9623 kfree(tg->cfs_rq);
9624 kfree(tg->se);
6f505b16
PZ
9625}
9626
ec7dc8ac
DG
9627static
9628int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9629{
29f59db3 9630 struct cfs_rq *cfs_rq;
eab17229 9631 struct sched_entity *se;
9b5b7751 9632 struct rq *rq;
29f59db3
SV
9633 int i;
9634
434d53b0 9635 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9636 if (!tg->cfs_rq)
9637 goto err;
434d53b0 9638 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9639 if (!tg->se)
9640 goto err;
052f1dc7
PZ
9641
9642 tg->shares = NICE_0_LOAD;
29f59db3
SV
9643
9644 for_each_possible_cpu(i) {
9b5b7751 9645 rq = cpu_rq(i);
29f59db3 9646
eab17229
LZ
9647 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9648 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9649 if (!cfs_rq)
9650 goto err;
9651
eab17229
LZ
9652 se = kzalloc_node(sizeof(struct sched_entity),
9653 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9654 if (!se)
9655 goto err;
9656
eab17229 9657 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9658 }
9659
9660 return 1;
9661
9662 err:
9663 return 0;
9664}
9665
9666static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9667{
9668 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9669 &cpu_rq(cpu)->leaf_cfs_rq_list);
9670}
9671
9672static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9673{
9674 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9675}
6d6bc0ad 9676#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9677static inline void free_fair_sched_group(struct task_group *tg)
9678{
9679}
9680
ec7dc8ac
DG
9681static inline
9682int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9683{
9684 return 1;
9685}
9686
9687static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9688{
9689}
9690
9691static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9692{
9693}
6d6bc0ad 9694#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9695
9696#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9697static void free_rt_sched_group(struct task_group *tg)
9698{
9699 int i;
9700
d0b27fa7
PZ
9701 destroy_rt_bandwidth(&tg->rt_bandwidth);
9702
bccbe08a
PZ
9703 for_each_possible_cpu(i) {
9704 if (tg->rt_rq)
9705 kfree(tg->rt_rq[i]);
9706 if (tg->rt_se)
9707 kfree(tg->rt_se[i]);
9708 }
9709
9710 kfree(tg->rt_rq);
9711 kfree(tg->rt_se);
9712}
9713
ec7dc8ac
DG
9714static
9715int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9716{
9717 struct rt_rq *rt_rq;
eab17229 9718 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9719 struct rq *rq;
9720 int i;
9721
434d53b0 9722 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9723 if (!tg->rt_rq)
9724 goto err;
434d53b0 9725 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9726 if (!tg->rt_se)
9727 goto err;
9728
d0b27fa7
PZ
9729 init_rt_bandwidth(&tg->rt_bandwidth,
9730 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9731
9732 for_each_possible_cpu(i) {
9733 rq = cpu_rq(i);
9734
eab17229
LZ
9735 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9736 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9737 if (!rt_rq)
9738 goto err;
29f59db3 9739
eab17229
LZ
9740 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9741 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9742 if (!rt_se)
9743 goto err;
29f59db3 9744
eab17229 9745 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9746 }
9747
bccbe08a
PZ
9748 return 1;
9749
9750 err:
9751 return 0;
9752}
9753
9754static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9755{
9756 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9757 &cpu_rq(cpu)->leaf_rt_rq_list);
9758}
9759
9760static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9761{
9762 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9763}
6d6bc0ad 9764#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9765static inline void free_rt_sched_group(struct task_group *tg)
9766{
9767}
9768
ec7dc8ac
DG
9769static inline
9770int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9771{
9772 return 1;
9773}
9774
9775static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9776{
9777}
9778
9779static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9780{
9781}
6d6bc0ad 9782#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9783
d0b27fa7 9784#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9785static void free_sched_group(struct task_group *tg)
9786{
9787 free_fair_sched_group(tg);
9788 free_rt_sched_group(tg);
9789 kfree(tg);
9790}
9791
9792/* allocate runqueue etc for a new task group */
ec7dc8ac 9793struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9794{
9795 struct task_group *tg;
9796 unsigned long flags;
9797 int i;
9798
9799 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9800 if (!tg)
9801 return ERR_PTR(-ENOMEM);
9802
ec7dc8ac 9803 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9804 goto err;
9805
ec7dc8ac 9806 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9807 goto err;
9808
8ed36996 9809 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9810 for_each_possible_cpu(i) {
bccbe08a
PZ
9811 register_fair_sched_group(tg, i);
9812 register_rt_sched_group(tg, i);
9b5b7751 9813 }
6f505b16 9814 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9815
9816 WARN_ON(!parent); /* root should already exist */
9817
9818 tg->parent = parent;
f473aa5e 9819 INIT_LIST_HEAD(&tg->children);
09f2724a 9820 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9821 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9822
9b5b7751 9823 return tg;
29f59db3
SV
9824
9825err:
6f505b16 9826 free_sched_group(tg);
29f59db3
SV
9827 return ERR_PTR(-ENOMEM);
9828}
9829
9b5b7751 9830/* rcu callback to free various structures associated with a task group */
6f505b16 9831static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9832{
29f59db3 9833 /* now it should be safe to free those cfs_rqs */
6f505b16 9834 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9835}
9836
9b5b7751 9837/* Destroy runqueue etc associated with a task group */
4cf86d77 9838void sched_destroy_group(struct task_group *tg)
29f59db3 9839{
8ed36996 9840 unsigned long flags;
9b5b7751 9841 int i;
29f59db3 9842
8ed36996 9843 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9844 for_each_possible_cpu(i) {
bccbe08a
PZ
9845 unregister_fair_sched_group(tg, i);
9846 unregister_rt_sched_group(tg, i);
9b5b7751 9847 }
6f505b16 9848 list_del_rcu(&tg->list);
f473aa5e 9849 list_del_rcu(&tg->siblings);
8ed36996 9850 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9851
9b5b7751 9852 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9853 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9854}
9855
9b5b7751 9856/* change task's runqueue when it moves between groups.
3a252015
IM
9857 * The caller of this function should have put the task in its new group
9858 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9859 * reflect its new group.
9b5b7751
SV
9860 */
9861void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9862{
9863 int on_rq, running;
9864 unsigned long flags;
9865 struct rq *rq;
9866
9867 rq = task_rq_lock(tsk, &flags);
9868
29f59db3
SV
9869 update_rq_clock(rq);
9870
051a1d1a 9871 running = task_current(rq, tsk);
29f59db3
SV
9872 on_rq = tsk->se.on_rq;
9873
0e1f3483 9874 if (on_rq)
29f59db3 9875 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9876 if (unlikely(running))
9877 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9878
6f505b16 9879 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9880
810b3817
PZ
9881#ifdef CONFIG_FAIR_GROUP_SCHED
9882 if (tsk->sched_class->moved_group)
9883 tsk->sched_class->moved_group(tsk);
9884#endif
9885
0e1f3483
HS
9886 if (unlikely(running))
9887 tsk->sched_class->set_curr_task(rq);
9888 if (on_rq)
7074badb 9889 enqueue_task(rq, tsk, 0);
29f59db3 9890
29f59db3
SV
9891 task_rq_unlock(rq, &flags);
9892}
6d6bc0ad 9893#endif /* CONFIG_GROUP_SCHED */
29f59db3 9894
052f1dc7 9895#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9896static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9897{
9898 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9899 int on_rq;
9900
29f59db3 9901 on_rq = se->on_rq;
62fb1851 9902 if (on_rq)
29f59db3
SV
9903 dequeue_entity(cfs_rq, se, 0);
9904
9905 se->load.weight = shares;
e05510d0 9906 se->load.inv_weight = 0;
29f59db3 9907
62fb1851 9908 if (on_rq)
29f59db3 9909 enqueue_entity(cfs_rq, se, 0);
c09595f6 9910}
62fb1851 9911
c09595f6
PZ
9912static void set_se_shares(struct sched_entity *se, unsigned long shares)
9913{
9914 struct cfs_rq *cfs_rq = se->cfs_rq;
9915 struct rq *rq = cfs_rq->rq;
9916 unsigned long flags;
9917
9918 spin_lock_irqsave(&rq->lock, flags);
9919 __set_se_shares(se, shares);
9920 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9921}
9922
8ed36996
PZ
9923static DEFINE_MUTEX(shares_mutex);
9924
4cf86d77 9925int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9926{
9927 int i;
8ed36996 9928 unsigned long flags;
c61935fd 9929
ec7dc8ac
DG
9930 /*
9931 * We can't change the weight of the root cgroup.
9932 */
9933 if (!tg->se[0])
9934 return -EINVAL;
9935
18d95a28
PZ
9936 if (shares < MIN_SHARES)
9937 shares = MIN_SHARES;
cb4ad1ff
MX
9938 else if (shares > MAX_SHARES)
9939 shares = MAX_SHARES;
62fb1851 9940
8ed36996 9941 mutex_lock(&shares_mutex);
9b5b7751 9942 if (tg->shares == shares)
5cb350ba 9943 goto done;
29f59db3 9944
8ed36996 9945 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9946 for_each_possible_cpu(i)
9947 unregister_fair_sched_group(tg, i);
f473aa5e 9948 list_del_rcu(&tg->siblings);
8ed36996 9949 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9950
9951 /* wait for any ongoing reference to this group to finish */
9952 synchronize_sched();
9953
9954 /*
9955 * Now we are free to modify the group's share on each cpu
9956 * w/o tripping rebalance_share or load_balance_fair.
9957 */
9b5b7751 9958 tg->shares = shares;
c09595f6
PZ
9959 for_each_possible_cpu(i) {
9960 /*
9961 * force a rebalance
9962 */
9963 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9964 set_se_shares(tg->se[i], shares);
c09595f6 9965 }
29f59db3 9966
6b2d7700
SV
9967 /*
9968 * Enable load balance activity on this group, by inserting it back on
9969 * each cpu's rq->leaf_cfs_rq_list.
9970 */
8ed36996 9971 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9972 for_each_possible_cpu(i)
9973 register_fair_sched_group(tg, i);
f473aa5e 9974 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9975 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9976done:
8ed36996 9977 mutex_unlock(&shares_mutex);
9b5b7751 9978 return 0;
29f59db3
SV
9979}
9980
5cb350ba
DG
9981unsigned long sched_group_shares(struct task_group *tg)
9982{
9983 return tg->shares;
9984}
052f1dc7 9985#endif
5cb350ba 9986
052f1dc7 9987#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9988/*
9f0c1e56 9989 * Ensure that the real time constraints are schedulable.
6f505b16 9990 */
9f0c1e56
PZ
9991static DEFINE_MUTEX(rt_constraints_mutex);
9992
9993static unsigned long to_ratio(u64 period, u64 runtime)
9994{
9995 if (runtime == RUNTIME_INF)
9a7e0b18 9996 return 1ULL << 20;
9f0c1e56 9997
9a7e0b18 9998 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9999}
10000
9a7e0b18
PZ
10001/* Must be called with tasklist_lock held */
10002static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10003{
9a7e0b18 10004 struct task_struct *g, *p;
b40b2e8e 10005
9a7e0b18
PZ
10006 do_each_thread(g, p) {
10007 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10008 return 1;
10009 } while_each_thread(g, p);
b40b2e8e 10010
9a7e0b18
PZ
10011 return 0;
10012}
b40b2e8e 10013
9a7e0b18
PZ
10014struct rt_schedulable_data {
10015 struct task_group *tg;
10016 u64 rt_period;
10017 u64 rt_runtime;
10018};
b40b2e8e 10019
9a7e0b18
PZ
10020static int tg_schedulable(struct task_group *tg, void *data)
10021{
10022 struct rt_schedulable_data *d = data;
10023 struct task_group *child;
10024 unsigned long total, sum = 0;
10025 u64 period, runtime;
b40b2e8e 10026
9a7e0b18
PZ
10027 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10028 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10029
9a7e0b18
PZ
10030 if (tg == d->tg) {
10031 period = d->rt_period;
10032 runtime = d->rt_runtime;
b40b2e8e 10033 }
b40b2e8e 10034
98a4826b
PZ
10035#ifdef CONFIG_USER_SCHED
10036 if (tg == &root_task_group) {
10037 period = global_rt_period();
10038 runtime = global_rt_runtime();
10039 }
10040#endif
10041
4653f803
PZ
10042 /*
10043 * Cannot have more runtime than the period.
10044 */
10045 if (runtime > period && runtime != RUNTIME_INF)
10046 return -EINVAL;
6f505b16 10047
4653f803
PZ
10048 /*
10049 * Ensure we don't starve existing RT tasks.
10050 */
9a7e0b18
PZ
10051 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10052 return -EBUSY;
6f505b16 10053
9a7e0b18 10054 total = to_ratio(period, runtime);
6f505b16 10055
4653f803
PZ
10056 /*
10057 * Nobody can have more than the global setting allows.
10058 */
10059 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10060 return -EINVAL;
6f505b16 10061
4653f803
PZ
10062 /*
10063 * The sum of our children's runtime should not exceed our own.
10064 */
9a7e0b18
PZ
10065 list_for_each_entry_rcu(child, &tg->children, siblings) {
10066 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10067 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10068
9a7e0b18
PZ
10069 if (child == d->tg) {
10070 period = d->rt_period;
10071 runtime = d->rt_runtime;
10072 }
6f505b16 10073
9a7e0b18 10074 sum += to_ratio(period, runtime);
9f0c1e56 10075 }
6f505b16 10076
9a7e0b18
PZ
10077 if (sum > total)
10078 return -EINVAL;
10079
10080 return 0;
6f505b16
PZ
10081}
10082
9a7e0b18 10083static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10084{
9a7e0b18
PZ
10085 struct rt_schedulable_data data = {
10086 .tg = tg,
10087 .rt_period = period,
10088 .rt_runtime = runtime,
10089 };
10090
10091 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10092}
10093
d0b27fa7
PZ
10094static int tg_set_bandwidth(struct task_group *tg,
10095 u64 rt_period, u64 rt_runtime)
6f505b16 10096{
ac086bc2 10097 int i, err = 0;
9f0c1e56 10098
9f0c1e56 10099 mutex_lock(&rt_constraints_mutex);
521f1a24 10100 read_lock(&tasklist_lock);
9a7e0b18
PZ
10101 err = __rt_schedulable(tg, rt_period, rt_runtime);
10102 if (err)
9f0c1e56 10103 goto unlock;
ac086bc2
PZ
10104
10105 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10106 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10107 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10108
10109 for_each_possible_cpu(i) {
10110 struct rt_rq *rt_rq = tg->rt_rq[i];
10111
10112 spin_lock(&rt_rq->rt_runtime_lock);
10113 rt_rq->rt_runtime = rt_runtime;
10114 spin_unlock(&rt_rq->rt_runtime_lock);
10115 }
10116 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10117 unlock:
521f1a24 10118 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10119 mutex_unlock(&rt_constraints_mutex);
10120
10121 return err;
6f505b16
PZ
10122}
10123
d0b27fa7
PZ
10124int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10125{
10126 u64 rt_runtime, rt_period;
10127
10128 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10129 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10130 if (rt_runtime_us < 0)
10131 rt_runtime = RUNTIME_INF;
10132
10133 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10134}
10135
9f0c1e56
PZ
10136long sched_group_rt_runtime(struct task_group *tg)
10137{
10138 u64 rt_runtime_us;
10139
d0b27fa7 10140 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10141 return -1;
10142
d0b27fa7 10143 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10144 do_div(rt_runtime_us, NSEC_PER_USEC);
10145 return rt_runtime_us;
10146}
d0b27fa7
PZ
10147
10148int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10149{
10150 u64 rt_runtime, rt_period;
10151
10152 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10153 rt_runtime = tg->rt_bandwidth.rt_runtime;
10154
619b0488
R
10155 if (rt_period == 0)
10156 return -EINVAL;
10157
d0b27fa7
PZ
10158 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10159}
10160
10161long sched_group_rt_period(struct task_group *tg)
10162{
10163 u64 rt_period_us;
10164
10165 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10166 do_div(rt_period_us, NSEC_PER_USEC);
10167 return rt_period_us;
10168}
10169
10170static int sched_rt_global_constraints(void)
10171{
4653f803 10172 u64 runtime, period;
d0b27fa7
PZ
10173 int ret = 0;
10174
ec5d4989
HS
10175 if (sysctl_sched_rt_period <= 0)
10176 return -EINVAL;
10177
4653f803
PZ
10178 runtime = global_rt_runtime();
10179 period = global_rt_period();
10180
10181 /*
10182 * Sanity check on the sysctl variables.
10183 */
10184 if (runtime > period && runtime != RUNTIME_INF)
10185 return -EINVAL;
10b612f4 10186
d0b27fa7 10187 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10188 read_lock(&tasklist_lock);
4653f803 10189 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10190 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10191 mutex_unlock(&rt_constraints_mutex);
10192
10193 return ret;
10194}
54e99124
DG
10195
10196int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10197{
10198 /* Don't accept realtime tasks when there is no way for them to run */
10199 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10200 return 0;
10201
10202 return 1;
10203}
10204
6d6bc0ad 10205#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10206static int sched_rt_global_constraints(void)
10207{
ac086bc2
PZ
10208 unsigned long flags;
10209 int i;
10210
ec5d4989
HS
10211 if (sysctl_sched_rt_period <= 0)
10212 return -EINVAL;
10213
60aa605d
PZ
10214 /*
10215 * There's always some RT tasks in the root group
10216 * -- migration, kstopmachine etc..
10217 */
10218 if (sysctl_sched_rt_runtime == 0)
10219 return -EBUSY;
10220
ac086bc2
PZ
10221 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10222 for_each_possible_cpu(i) {
10223 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10224
10225 spin_lock(&rt_rq->rt_runtime_lock);
10226 rt_rq->rt_runtime = global_rt_runtime();
10227 spin_unlock(&rt_rq->rt_runtime_lock);
10228 }
10229 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10230
d0b27fa7
PZ
10231 return 0;
10232}
6d6bc0ad 10233#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10234
10235int sched_rt_handler(struct ctl_table *table, int write,
10236 struct file *filp, void __user *buffer, size_t *lenp,
10237 loff_t *ppos)
10238{
10239 int ret;
10240 int old_period, old_runtime;
10241 static DEFINE_MUTEX(mutex);
10242
10243 mutex_lock(&mutex);
10244 old_period = sysctl_sched_rt_period;
10245 old_runtime = sysctl_sched_rt_runtime;
10246
10247 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10248
10249 if (!ret && write) {
10250 ret = sched_rt_global_constraints();
10251 if (ret) {
10252 sysctl_sched_rt_period = old_period;
10253 sysctl_sched_rt_runtime = old_runtime;
10254 } else {
10255 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10256 def_rt_bandwidth.rt_period =
10257 ns_to_ktime(global_rt_period());
10258 }
10259 }
10260 mutex_unlock(&mutex);
10261
10262 return ret;
10263}
68318b8e 10264
052f1dc7 10265#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10266
10267/* return corresponding task_group object of a cgroup */
2b01dfe3 10268static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10269{
2b01dfe3
PM
10270 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10271 struct task_group, css);
68318b8e
SV
10272}
10273
10274static struct cgroup_subsys_state *
2b01dfe3 10275cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10276{
ec7dc8ac 10277 struct task_group *tg, *parent;
68318b8e 10278
2b01dfe3 10279 if (!cgrp->parent) {
68318b8e 10280 /* This is early initialization for the top cgroup */
68318b8e
SV
10281 return &init_task_group.css;
10282 }
10283
ec7dc8ac
DG
10284 parent = cgroup_tg(cgrp->parent);
10285 tg = sched_create_group(parent);
68318b8e
SV
10286 if (IS_ERR(tg))
10287 return ERR_PTR(-ENOMEM);
10288
68318b8e
SV
10289 return &tg->css;
10290}
10291
41a2d6cf
IM
10292static void
10293cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10294{
2b01dfe3 10295 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10296
10297 sched_destroy_group(tg);
10298}
10299
41a2d6cf
IM
10300static int
10301cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10302 struct task_struct *tsk)
68318b8e 10303{
b68aa230 10304#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10305 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10306 return -EINVAL;
10307#else
68318b8e
SV
10308 /* We don't support RT-tasks being in separate groups */
10309 if (tsk->sched_class != &fair_sched_class)
10310 return -EINVAL;
b68aa230 10311#endif
68318b8e
SV
10312
10313 return 0;
10314}
10315
10316static void
2b01dfe3 10317cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10318 struct cgroup *old_cont, struct task_struct *tsk)
10319{
10320 sched_move_task(tsk);
10321}
10322
052f1dc7 10323#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10324static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10325 u64 shareval)
68318b8e 10326{
2b01dfe3 10327 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10328}
10329
f4c753b7 10330static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10331{
2b01dfe3 10332 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10333
10334 return (u64) tg->shares;
10335}
6d6bc0ad 10336#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10337
052f1dc7 10338#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10339static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10340 s64 val)
6f505b16 10341{
06ecb27c 10342 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10343}
10344
06ecb27c 10345static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10346{
06ecb27c 10347 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10348}
d0b27fa7
PZ
10349
10350static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10351 u64 rt_period_us)
10352{
10353 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10354}
10355
10356static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10357{
10358 return sched_group_rt_period(cgroup_tg(cgrp));
10359}
6d6bc0ad 10360#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10361
fe5c7cc2 10362static struct cftype cpu_files[] = {
052f1dc7 10363#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10364 {
10365 .name = "shares",
f4c753b7
PM
10366 .read_u64 = cpu_shares_read_u64,
10367 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10368 },
052f1dc7
PZ
10369#endif
10370#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10371 {
9f0c1e56 10372 .name = "rt_runtime_us",
06ecb27c
PM
10373 .read_s64 = cpu_rt_runtime_read,
10374 .write_s64 = cpu_rt_runtime_write,
6f505b16 10375 },
d0b27fa7
PZ
10376 {
10377 .name = "rt_period_us",
f4c753b7
PM
10378 .read_u64 = cpu_rt_period_read_uint,
10379 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10380 },
052f1dc7 10381#endif
68318b8e
SV
10382};
10383
10384static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10385{
fe5c7cc2 10386 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10387}
10388
10389struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10390 .name = "cpu",
10391 .create = cpu_cgroup_create,
10392 .destroy = cpu_cgroup_destroy,
10393 .can_attach = cpu_cgroup_can_attach,
10394 .attach = cpu_cgroup_attach,
10395 .populate = cpu_cgroup_populate,
10396 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10397 .early_init = 1,
10398};
10399
052f1dc7 10400#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10401
10402#ifdef CONFIG_CGROUP_CPUACCT
10403
10404/*
10405 * CPU accounting code for task groups.
10406 *
10407 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10408 * (balbir@in.ibm.com).
10409 */
10410
934352f2 10411/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10412struct cpuacct {
10413 struct cgroup_subsys_state css;
10414 /* cpuusage holds pointer to a u64-type object on every cpu */
10415 u64 *cpuusage;
ef12fefa 10416 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10417 struct cpuacct *parent;
d842de87
SV
10418};
10419
10420struct cgroup_subsys cpuacct_subsys;
10421
10422/* return cpu accounting group corresponding to this container */
32cd756a 10423static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10424{
32cd756a 10425 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10426 struct cpuacct, css);
10427}
10428
10429/* return cpu accounting group to which this task belongs */
10430static inline struct cpuacct *task_ca(struct task_struct *tsk)
10431{
10432 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10433 struct cpuacct, css);
10434}
10435
10436/* create a new cpu accounting group */
10437static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10438 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10439{
10440 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10441 int i;
d842de87
SV
10442
10443 if (!ca)
ef12fefa 10444 goto out;
d842de87
SV
10445
10446 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10447 if (!ca->cpuusage)
10448 goto out_free_ca;
10449
10450 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10451 if (percpu_counter_init(&ca->cpustat[i], 0))
10452 goto out_free_counters;
d842de87 10453
934352f2
BR
10454 if (cgrp->parent)
10455 ca->parent = cgroup_ca(cgrp->parent);
10456
d842de87 10457 return &ca->css;
ef12fefa
BR
10458
10459out_free_counters:
10460 while (--i >= 0)
10461 percpu_counter_destroy(&ca->cpustat[i]);
10462 free_percpu(ca->cpuusage);
10463out_free_ca:
10464 kfree(ca);
10465out:
10466 return ERR_PTR(-ENOMEM);
d842de87
SV
10467}
10468
10469/* destroy an existing cpu accounting group */
41a2d6cf 10470static void
32cd756a 10471cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10472{
32cd756a 10473 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10474 int i;
d842de87 10475
ef12fefa
BR
10476 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10477 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10478 free_percpu(ca->cpuusage);
10479 kfree(ca);
10480}
10481
720f5498
KC
10482static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10483{
b36128c8 10484 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10485 u64 data;
10486
10487#ifndef CONFIG_64BIT
10488 /*
10489 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10490 */
10491 spin_lock_irq(&cpu_rq(cpu)->lock);
10492 data = *cpuusage;
10493 spin_unlock_irq(&cpu_rq(cpu)->lock);
10494#else
10495 data = *cpuusage;
10496#endif
10497
10498 return data;
10499}
10500
10501static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10502{
b36128c8 10503 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10504
10505#ifndef CONFIG_64BIT
10506 /*
10507 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10508 */
10509 spin_lock_irq(&cpu_rq(cpu)->lock);
10510 *cpuusage = val;
10511 spin_unlock_irq(&cpu_rq(cpu)->lock);
10512#else
10513 *cpuusage = val;
10514#endif
10515}
10516
d842de87 10517/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10518static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10519{
32cd756a 10520 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10521 u64 totalcpuusage = 0;
10522 int i;
10523
720f5498
KC
10524 for_each_present_cpu(i)
10525 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10526
10527 return totalcpuusage;
10528}
10529
0297b803
DG
10530static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10531 u64 reset)
10532{
10533 struct cpuacct *ca = cgroup_ca(cgrp);
10534 int err = 0;
10535 int i;
10536
10537 if (reset) {
10538 err = -EINVAL;
10539 goto out;
10540 }
10541
720f5498
KC
10542 for_each_present_cpu(i)
10543 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10544
0297b803
DG
10545out:
10546 return err;
10547}
10548
e9515c3c
KC
10549static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10550 struct seq_file *m)
10551{
10552 struct cpuacct *ca = cgroup_ca(cgroup);
10553 u64 percpu;
10554 int i;
10555
10556 for_each_present_cpu(i) {
10557 percpu = cpuacct_cpuusage_read(ca, i);
10558 seq_printf(m, "%llu ", (unsigned long long) percpu);
10559 }
10560 seq_printf(m, "\n");
10561 return 0;
10562}
10563
ef12fefa
BR
10564static const char *cpuacct_stat_desc[] = {
10565 [CPUACCT_STAT_USER] = "user",
10566 [CPUACCT_STAT_SYSTEM] = "system",
10567};
10568
10569static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10570 struct cgroup_map_cb *cb)
10571{
10572 struct cpuacct *ca = cgroup_ca(cgrp);
10573 int i;
10574
10575 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10576 s64 val = percpu_counter_read(&ca->cpustat[i]);
10577 val = cputime64_to_clock_t(val);
10578 cb->fill(cb, cpuacct_stat_desc[i], val);
10579 }
10580 return 0;
10581}
10582
d842de87
SV
10583static struct cftype files[] = {
10584 {
10585 .name = "usage",
f4c753b7
PM
10586 .read_u64 = cpuusage_read,
10587 .write_u64 = cpuusage_write,
d842de87 10588 },
e9515c3c
KC
10589 {
10590 .name = "usage_percpu",
10591 .read_seq_string = cpuacct_percpu_seq_read,
10592 },
ef12fefa
BR
10593 {
10594 .name = "stat",
10595 .read_map = cpuacct_stats_show,
10596 },
d842de87
SV
10597};
10598
32cd756a 10599static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10600{
32cd756a 10601 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10602}
10603
10604/*
10605 * charge this task's execution time to its accounting group.
10606 *
10607 * called with rq->lock held.
10608 */
10609static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10610{
10611 struct cpuacct *ca;
934352f2 10612 int cpu;
d842de87 10613
c40c6f85 10614 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10615 return;
10616
934352f2 10617 cpu = task_cpu(tsk);
a18b83b7
BR
10618
10619 rcu_read_lock();
10620
d842de87 10621 ca = task_ca(tsk);
d842de87 10622
934352f2 10623 for (; ca; ca = ca->parent) {
b36128c8 10624 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10625 *cpuusage += cputime;
10626 }
a18b83b7
BR
10627
10628 rcu_read_unlock();
d842de87
SV
10629}
10630
ef12fefa
BR
10631/*
10632 * Charge the system/user time to the task's accounting group.
10633 */
10634static void cpuacct_update_stats(struct task_struct *tsk,
10635 enum cpuacct_stat_index idx, cputime_t val)
10636{
10637 struct cpuacct *ca;
10638
10639 if (unlikely(!cpuacct_subsys.active))
10640 return;
10641
10642 rcu_read_lock();
10643 ca = task_ca(tsk);
10644
10645 do {
10646 percpu_counter_add(&ca->cpustat[idx], val);
10647 ca = ca->parent;
10648 } while (ca);
10649 rcu_read_unlock();
10650}
10651
d842de87
SV
10652struct cgroup_subsys cpuacct_subsys = {
10653 .name = "cpuacct",
10654 .create = cpuacct_create,
10655 .destroy = cpuacct_destroy,
10656 .populate = cpuacct_populate,
10657 .subsys_id = cpuacct_subsys_id,
10658};
10659#endif /* CONFIG_CGROUP_CPUACCT */